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PRETACHR)

F part of this book, privately lithographed for my pupils,
O a few copies given to scientific friends caused some to
express a desire for its publication. Hence, after revision, it i3
offcred to the publie, with the hope that it may prove useful
and acceptable.

Any one acquainted with only the clements of analytical
geometry, and of the fluxional caleulus, should find no difficulty
in understanding all it contains.

In this country, however, scientific education, as well as
classical, has unfortunately retrograded; and superficiality is the
fachion of the day. Hence, some anxious for scientific knowledge,
with the least labour and in the shortest time, imagine it might
be well in scientific literature to dispense with the caleulus.
To them no better advice can be given than to begin by studying
it thoroughly, if they would reasonably hope ever to comprehend
much which must otherwise be unintelligible.

In this book, as in all his instruction to young men, it
has been the effort of the writer to keep steadily in view the
sublime unity, simplicity, and perfection of those laws which
are manifest in the obedient physical universe. Laws which

could not exist without a Law-giver. To cnable us thus to sce



vi PREFACE.

more clearly the omnipotence and wisdom of God revealed in
his works is certainly the true and highest office of human
science. And such studies are also an intellectual preparation
most fit for the docile acceptance of that Christian faith, which,
we are told, is the substance of things hoped for and the
evidence of things not seen.

Sources of information have generally been indicated; but
it is difficnlt to avoid their accidental omission, when intent
chiefly upon demonstration. And in historical matters especially,
it is almost impossible to be perfectly accurate and just. Yet
the writer is unconscious of failure in these respects.

Lastly, he gratefully acknowledges his indebtedness to the
profound views of his friend Prof. W. H. C. Bartlett, whose
mathematical exposition of the unity of physical action has

been the point of departure of his own labours.
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MECHANICAL THEORY OF HEAT.

CHAPTER 1

HISTORICAL.

1. The mechanical theory of heat, sometimes called thermo-
dynamics, is that branch of science which treats of the phenomena
of heat as effects of motion and position.

Thus defined, it is of recent development, and is not only
interesting in itself, but of great practical importance. For by it
we are enabled to correctly understand the steam and other
engines, to calculate their efficiency, and appreciate their imper-
fections.

2. The mere speculative idea, that heat and light may be
motion, is found in the writings of ancient as well as of modern
authors. DBut imaginations are of no value and of little merit,
so long as they remain barren of positive results.

Real knowledge upon this subject dates only from the year
A. D. 1690, when Huyghens, in his celebrated “Traité de la
Lumiére,” published his truly elegant demonstrations of reflexion,
refraction, and double refraction, regarded as phenomena of wave
propagation.
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Unfortunately, not only the theory, but also the well-observed
facts of Huyghens were rejected by his great cotemporary, Sir
Isaac Newton; the influence of whose erroneous example seems
to have fettered the minds of his followers for more than a
century, and thus to have most sadly obstructed the progress of
knowledge. Of all the eminent men who, during the eighteenth
century, labored so suceessfully to extend Newton’s astronomical
discoveries, Euler alone appears to have had the requisite inde-
pendence of thought to appreciate and adopt the investigations
of Huyghens; but he was too busy with his marvellous labours
in mathematics to do much to extend our knowledge of light
and heat.

During all that eentury, the false Newtonian hypothesis, that
light and heat are matter attracted or repelled by other matter,
with forces analogous to gravitation or to chemieal affinity, swayed
the minds of scientific men. And Dr. Black’s important dis-
eoveries of latent heat and of the chemical decomposition of
alkaline carbonates, the latter of which soon led to the great
revolution in chemistry achieved by Lavoisier and his associates,
contributed much to confirm that erroncous belief.

When, at the beginning of the present century, Young in
England, and soon afterwards Fresnel in France, resumed the
chain of discovery so happily begun by Huyghens, it was only
against strenunous and sometimes even bitter opposition that
they could obtain consideration for their valuable researches.
Every experimental fact was scrutinized with skeptical suspicion,
trifling imperfections were exaggerated into fancied contradictions,
and evidence the most conclusive was often rejected without fair
examination. On the other hand, the cherished hypothesis, that
heat and light are matter, was overloaded with postulates the most
preposterous, for the purpose of still reconciling it with the progress
of experimental discovery. '

The splendid memoirs of Fresnel, recently collected and pub-
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lished by the French government, as a fit tribute to his merory
and their own intrinsic value, were by the scientific men of his
day, with {ew exceptions, among whom Arago and Ampére should
ever be remembered, cast aside, despised, and allowed to go without
attention or publication—some of them even to be lost for years,
until hunted up among mislaid papers.

Had Fresnel been ambitious of power, position, or praise, such '
unjust treatment might well have disheartened or driven him from
his glorious work; but amiable, modest, and sincerely earnest, he
loved truth for its own sake, and labored indefatigably in its
investigation. Subsequent generations have reversed the decisions
of his contemporaries, and now the scientific world points with
admiration to the name of Fresnel, as that of one than whom
none worthier ever earned the wreath of immortality.

This is, indeed, a dark picture for contemplation, one of
human weakness, of the promeness of even the ablest of cur
race to persist in the blind folly of prejudice, but it is as instructive
as it is sad.

So intimately connected are light and radiant heat, so precisely
similar are the phenomena of both, in' reflexion, refraction, polar-
ization, and interference, that when, as in case of the sunbeam,
they come together from the same source, and act in the same
manner, it scems scarcely sufficient to call them analogous; and,
with Melloni, we are compelled to pronounce them physically
identical ; differing chiefly in the distinct physiological sensations
they produce in us, and therefore varying not more, perhaps even
less, than violet light does from red. The triumph of the Huy-
ghenian theory of light was, consequently, the simultaneous
establishment of the mechanical hypothesis of heat.

Radiant heat can Dbe best studied in close parallel comparison
with the phenomena of optics. It is not, however, to those sub-
jects, but to that of heat applied as power, or energy, to do work,
a3 in the steam engine, that your attention is here invited.
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3. In the year 1798, Count Rumferd published experiments
on the large amount of hecat produced by {riction in boring
cannon. He observed particularly the fact that its source appeared
“evidently to be inexhaustible,” and logically argued that “any-
thing which an insulated body, or system of bodies, can continue
to farnish without limitation, cannot possibly be a material sub-
stance,” and that it is “extremely difficult, if not impossible, to
form a distinet idea of anything capable of being excited and
communicated in the manner that heat was excited and com-
municated in these experiments, except it be motion.”

Rumford also sought to determine the ratio of heat to the
mechanical work requisite to its development by frietion, or what
is now called the mechanical equivalent of heat. e found that
the work of one horse during two hours and a half is sufficient
to raise through 180° Fahr. 26.58 pounds of water. From which
it may be calculated that one pound heated one degree is equivalent
to 940 British units of work.. No allowance was made for loss of
heat by radiation, and the result is, thercfore, too high ; this was,
however, indicated as an imperfection by Rumford himself, and it
amounts to about 20 per cent. These admirable experiments
constitute the first positive step in thermodynamics; and for the
time when they wcre made, as well as for the perfectly clear and
logical theoretical views deduced from them, they are remarkable.

Rumford cmitted to prove, by actnal experiment, that the
capacity for heat of metallic chips and powder produced in boririg
cannon does not differ perceptibly from that of unbroken metal.
1t was therefore contended that such might be the fact; and to
explain his results in accordance with the material hypothesis,
latent heat was supposed to have been given out by the dis-
integrated metal.

Consequently, Sir Humphrey Davy, in 1799, performed the
crucial experiment of melting Iumps of ice by rubbing them
together, when both their own temperature and that of the sur-
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rounding bedies was below the freezing point of water. It could
not possibly be assumed that ice gives out latent heat in. becoming
water; and if heat developed in fricticn be imagined to be matter,
the conclusion is inevitable that in this experiment of Davy matter
is ereated, which is simply incredible. Henee Davy concluded
that “heat is motion, and the laws of its communication are the
same as those of the communication of motion.” Except by
Young, these views of Davy and Rumford were long neglected in
England, and generally considered to be rather speculative.

4. In the year 1807, Fourier communicated to the Institute of
France the laws of the transmission of heat by radiation and con-
duction, subsequently published in his ¢ Théorie Analytique de la
Chaleur,” and laid the foundation for the mathematical theory of heat.

Sadi Carnot, son of the famous General Carnot, published in
1824 a work entitled, « Réflexions sur la puissance motrice du fen,”
in which he compared the potential energy of heat to that of a
dynamic head, or fall of water, from one level to another, and
announced the very important law, now called the theorem of
Carnot, that the greatest possible amount of work which can be
performed by any heat engine is a function solely of the limits
of temperature, or chute de chaleur, between which the engine
works, and does not depend at all upon the nature of the substance
heated. He showed that this substance is only passive, transmit-
ting power as a rope does. When, therefore, the transmission
takes place without waste of heat, the work will be a maximum.
An engine thus supposed to work without waste, between two
limiting temperatures, would be theoretically perfect, but prac-
tically such an engine is an impossibility. ;

Excellent as the dynamical views of Carnot are, he was yet led
by the material hypothesis into the serious error of supposing the
quantity of heat received from the fire equal to that delivered to
the refrigerator, if used without waste during the chute de chaleur ;
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whereas its amount requires to be diminished by all the heat
transformed into mechanical work by the engine. This error per-
vades all writings and discussions relative to the power of heat, or
steam, in which the material hypothesis is employed ; for heat
transformed into work would, according to that hypothesis, be an
annihilation of matter, and therefore physically impossible. Al-
though Carnot refrained from fully believing the material hypoth-
esis and regarded it rather skeptically, he yet was misled by it, and
consequently failed to determine the form of the function whose
existenee and importance he had discovered.

The profound views of Sadi Carnot, set forth somewhat
obscurely in his book, were in 1834 put into the definite and
clearer form of analytical expressions and geometrical diagrams
by Clapeyron; who availed himself of the diagram of work or
energy, drawn by the indicator of Watt, to show how a cycle of
Carnot should be geometrically represented.

5. The idea that heat and mechanical work, or cnergy, are
mutually and definitely convertible, appears to have occupied the
minds of several persons at nearly the same time. In France,
Seguin in 1839; in Germany, Mayer in 1842; in Denmark,
Colding in 1843; and in England, Joule from 1843 to 1849;
—ecach was independently led, by similar thought and reasoning,
to determine and publish measurements of the equivalence of
heat and mechanical work. Rumford also, as we have stated,
had previously obtained for the same, in 1798, an approximate
value. Reduced to the common standard of French units of
work, their respective results give, for one calorie, the following
mechanical equivalent values in work or energy:

Rumford . . . . 515 kilogrammetres.
Seguin MRS VRIRET T Y 650 &
Mayer SR Al 365 fé

Joule ' . 3 § 425 &
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Of these observers, Joule deserves to be regarded as the one to
whom we are most indebted. For his laborious and faithful
experiments, repeated in various ways, during a period of several
years, and always with the greatest skill and care, furnish the
most reliable and complete data we yet possess for the determina-
tion, not only of the mechanical equivalent of heat, but also of
many other thermal effects, It is worthy of notice that the result
of Rumford, when compared with that of Joule, appears to be
a very close approximation, proper correction or allowance being
made for radiation, conduction, ete.

Equal merit with that of Joule has been claimed for Mayer;
but while he published gpeculations and experimented imperfectly,
thereby causing ideas intrinsically valuable to be looked upon as
visions, Joule labored to verify every probable conjecture by exact
experiment. Consequently, his results commanded more confidence
and respect, especially when the confirmation of some of the more
important by Regnault had placed. their accuracy beyond question.
To Joule, therefore, or rather to his admirable investigations, must
be justly awarded the superior merit of having caused the true
theory of heat, so long disregarded and rejected, to meet finally
with general reception.

6. That reccption, however, required, before it could be fully
accorded and thermodynamics could take its appropriate rank as a
recognized part of exact science, that another and a very different
labour should also be thoroughly performed, to wit, the mathemat-
ical application of the laws of energy to the exact investigation of
the well-known thermal phenomena. This was a task of no slight
difficulty and magnitude, but it has been admirably performed by
Sir W. Thomson and Rankine, in Glasgow, and by Clausius, in
Zurich, each working independently of the others.

7. Even if convenient, it would not be desirable to follow,
in strict chronological order, the steps of their mathematical
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discussion of our subject. Published in transactions of learned
societies, or in scientific journals, during a period of several years
before and after 1850, many of the results still remain scattered
and in their original form.

Rankine has published several editions of his valuable treatise
on the steam-engine; but unfortunately, like other books of that
able and eminent engineer, it is written in a style so brief that
beginners find it obscure. It has, however, the merit of having
been the first systematic treatise ever published on the steam-
engine in which it was explained in accordance with the true
theory of heat as power or energy.

The valuable and beautiful popular lectures of Tyndall, and a
small volume by Balfour Stewart, are works of real merit, well
calculated to eradicate false motions, to excite interest, and to
diffuse correct elementary knowledge. And the essays of Prof.
Tait, which originally appeared in the Norfh British Review, but
have sinee been published in separate form, constitute an excellent
historical sketch, but they neither profess, nor were intended, to
meet the demands of the professional student. So also with
reference to the more recent popular treatise by Prof. C. Maxwell,
it does not supply what is needed by him.

Consequently, we propose here to give information which will
not Le found in English treatises; but will not attempt more than
an clementary outline, excluding all that is hypothetical, and even
much which though positive is but imperfectly developed, and
referring for more extended knowledge to original memoirs and to
compilations in other languages.

8. As descriptions of both the experiments and the apparatus
employed by Joule for the determination of the mechanical equiv-
alent of heat are given in most of the recent treatises on physies,
we will simply refer to them for such details; but with the remark,
that of his latest and most perfect data, those of 1849, the mean
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result 425, obtained by the agitation of water and mercury, is the
most probable value.

We consequently adopt the number 425 kilogrammetres, and
call it, as is now usually done, Joule’s mechanical equivalent of
heat. To obtain this number from the measures used by Joule,
British feet and pounds must be reduced to French metres and
kilogrammes, and temperatures Fahrenheit to those of the Centi-
grade scale.

Denoting Joule’s equivalent by the letter Z, and by @ the
quantity of heat measured in thermal units, called calories, then

EQ=Z3fPdp

is the analytical expression for the first law of thermodynamics, or
the law of Joule, as it is often called in honor of him to whom we
chiefly owe its experimental investigation.

9. To complete the work of Joule, one step remained un-
finished. He had determined the heat produced by a given
amount of mechanical work; the solution of the inverse problem,
that of measuring the work done by heat, was still wanting. It
was accomplished by G. A. Hirn, an eminent engineer of Colmar,
in Alsace. It is quite impossible to give a brief and adequate
account of his admirable investigations; they must be read in
their original form and language.

The steam-engines of 100 horse power in the large manufac-
turing establishment of Haussman, Jordan, Hirn & Co. were the
apparatus used in the experiments. The water and fuel supplied
to the boilers; the temperature and elastic force of the steam
generated and conveyed to the cylinders; the expansion of the
steam and its pressure upon the piston, represented by diagrams
traced with the indicator of Watt, or antomatically by the engine
itself; the temperatures of the condensed steam and of the water
of refrigeration; the loss by radiation and conduction: these, and
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all other observable data had to be measured accurately; and the
difficulty of such measurements can readily be imagined. The
final result was, in each case, the numerical determination of the
amount of work done and of the two quantities of heat required
by the law of Carnot, @, that received by the steam from the
fire, and @, that given off in part to the condenser and in part
lost by radiation and conduction. Their difference is the amount
of heat corresponding to the work performed and gives

E(Qs— Q) :E([QPdp.

Evidently, this expression should give for % the same numerical
value 425 as that found by Jonle ;—the actual value obtained by
Hirn was 415 ; differing, therefore, by two per cent. But when we
consider the extreme difficulty of measuring such quantities as the
heat lost from a large engine, this result appears, not as a
discrepancy, but as a complete confirmation. Closer approxima-
tion could not be expected or desired.

Prior to the reception of the mechanical theory of heat, it was
generally held that the quantities @, and @, arc equal; for heat, if
material, should be indestructible. Such a supposition reduces the
first member of the last equation to zero; and the material hypoth-
csis consequently involves the absurdity of work done without
expenditure of energy. Nothing could show more conclusively
how that hypothesis must have obstructed true knowledge than
this result that, according to it, the steam-cngine becomes a reali-
zation of perpetual motion. Happily, the experiments of Rumford,
Davy, Joule, and Hirn, have put an end forever to ideas which
lead to such an absurdity.

It may render this notice of Hirn’s experiments more satisfac-
tory, if we briefly consider the cycle of operations which take place
in a condensing engine, when they have become regular, or
periodically constant, and indicate how they give the quantities
Q, and Q.
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A quantity of water w is taken from the condenser and forced
by the supply pump into the boiler; where, at the higher tempera-
ture #,, it is converted .into steam, and then passes into the
working eylinder. To accomplish this change from liquid water
into steam, a certain quantity of heat )

QQ:Lw

must be received from the fire. The coefficient L is called the
latent heat of evaporation; it expresses the heat requisite to
convert a unit of water into steam of the given temperature and
elastic force, and it has been very exactly determined by Regnanult.
In the eylinder the steam expands, pushes the piston, is partly
condensed, and then is forced by the engine back again into the
condenser. There it is entirely converted into water of the original
temperature, £, giving off in its condensation an amount of heat
sufficient to raise the water of refrigeration ' from a temperature
#, to t,.. 1If we denote this quantity by

w' (¢ — b),
and the heat lost by radiation by 7%, then will
Q=w(t, —1) +

The work done during the cycle of operations by the engine
was carefully determined by the indicator of Watt and the methods
usually employed for calculating the work of machines. We have,
therefore,

Q.- )=z [ Pap,

in which the only unknown quantity £ is determined by the values
experimentally found for the others.

To every intelligent mind there must be pleasure in beholding
truths of nature thus beautifully investigated, and the steam-
engine, that great invention of the last century, thus finally made
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by this eminent French engineer to bear true testimony to the
law, that work done is always power expended.

We shall see that the error of assuming the heat received and
given off, @, and @, to be. equal was not the only serious one
‘relative to the steam-engine corrected by the dynamical theory and
the researches of Hirn. Well, therefore, has he earned the right
to be honored as one of the few who have done most to promote
true knowledge upon this important subject.

10. We cannot better conclude this brief and very incomplete
historical sketch, than by showing how very imperfectly the steam-
engine was understood only a few years ago.

In the celebrated treatise of De Pambour, entitled, * Théorie
de la Machine & Vapeur,” published in 1844, then far superior to
other works, and still in many respects one of the very best stand-
ards on the subject, we find repeated and endorsed (see p. 84, op. cit.)
the erroneous idea of Watt, that the sum of the free and latent
heat of saturated steam under any pressure is a constant quantity.
This error was first corrected by Regnault, in 1847, thoungh others
had previously doubted it without ascertaining the truth; in his
very laborious and exact investigations made for the Trench
government, and published in the memoirs of the Institute,
Vol. XXI, 1847, he obtained for the total heat of evaporation the
formula since generally adopted and used,

0 = 606.5 + 0.305%

“ According to this formula (we translate from the original,
page 727), the total heat contained in a kilogramme of saturated
steam at the temperature ¢ is equal to the quantity of heat which
a kilogramme of saturated vapour at 0° gives off in becoming
water at 0°, increased by the product 0.305¢. The fraction 0.305
is the quantity of heat which must be furnished to a kilogramme
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of saturated vapor to elevate its temperature 1°, when at the same
time so compressed as to maintain its state of saturation.”

Such was the extent of knowledge which caused Regnault,
at the clos¢ of his labours, to criticise the steam-engine and
pronounce it grossly imperfect.

Let us follow his calculations, by applying them to the example
of Hirn’s engines, and then compare the result with their actual
work.

Suppose the boiler of an engine to generate steam of the
temperature 146° and the condenser to be at 34°; then, by
Regnault’s formula, the total heat of evaporation is in calories

@, = 606.5 + 0.305 x 146 = 651.
And this steam condensed at 34° would give off
@ = 606.5 + 0305 x 34 = 617.

The difference, ¢, less @, or 34 calories, would be all the heat
which can be converted into work out of 651 calories received
from the boiler. Hence the maximum coefficient of such an
engine should be only the ratio of 34 to 651, or one-nineteenth
nearly.

Now the actual working results obtained by Hirn from four
of his engines were:

No. 1. Single cylinder, between 149° and 31°, efiiciency, 1.
43 2' (3 {3 113 149 14 25’ [13 Ti()_'
“ 3. Woolf. g ) S Ve o 1.
113 4 13 3 143 9 39’ €« %.

The mean of which results is the efficiency of 4 for the limits of
temperature 146° and 34°.

We see that even the least advantageous of these experimental
trials gave an efficiency nearly twice as great as was then held
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to be possible, according to the theoretical views of every eminent
engineer of that day. Thus, therefore, in full contradiction of
their accepted ideas, the steam-engine proved itsclf to be twice .
as powerful or perfect as was generally supposed to be possible.

Here, indeed, was a wide discrepancy between theory and actual
fact, not easily to be explained away. It could not be ascribed to
crror of experiment, for Regnault’s investigations communicated
to the Institute, copied into scientific journals, and scrutinized in
their most minute details, were models of skill and marvellously
exact; neither could the results of Hirn be dounbted.

This confiict. was soon happily removed by an important
discovery, made partly by Rankine and partly by Hirn. It had
long been known that water accumulates in and obstructs the
cylinders of engines, and this water was erroncously believed to be
accidentally carried by the steam from the boiler; Rankine gave
the true explanation, in 1849, by ascribing the presence of water
in the cylinder to the condensation of steam working and losing
heat during expansion.

Steam had previously been supposed to enter into and pass
out from the cylinder entirely in the state of saturation; but for
this assumption there was no proof whatever. If such be not the
case, then it must pass out either partially condensed or super-
heated. To suppose it to be superheated is only to increase the
discrepancy, by diminishing the difference of heat and correspond-
ing work. The only remaining hypothesis is therefore the true
one; it is in fact partially condensed, and passes from the eylinder
as a mixture of steam and liquid water, having transformed a large
part of its latent heat into mechanical work.

But, though Rankine thus gave the true explanation of this
exceedingly important fact, its actual experimental demonstration
was first made by Hirn some years afterwards. Ilaving, for this
purpose, attached to one of his engines, working with an clastic
force of five atmospheres, a metallic pipe into which glass plates
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were tightly fitted, he could see the transparent steam of 152°
become clouded with liquid vesicles whenever expansion was made
to take place.

Hence it follows that the latent heat of steam condensed into
water in the cylinder of an engine does a large part of the work.
And according to the dynamical theory, this latent heat as energy
is simply transformed into mechanical work ; while by the material
hypothesis it must be absurdly supposed to be matter annihilated.

The apparent discrepancy between the equally exact and
admirable experiments of Hirn and Regnault vanishes; for a new
discovery casts light upon the subject; and a more correct theory
teaches, that to understand the steam-engine we must regard its
work only as the transformation of potential energy, or, in other
words, as expenditure of that power which is so bountifully pro-
vided for use in extensive forests, and in the vast masses of
underlying coal, the remains of forests which grew in wild
luxuriance and were stored up during ages, long before this Earth
was ready for habitation by man.



CHAPTER II.

DYNAMICS.

FUNDAMENTAL LAWS.

11. It is necessary to the comprehension of our subject that
the fundamental laws of mechanics be well understood, both in
their relative connexions with each other and in their thermal
applications. We shall, therefore, briefly present those which we
will most often need to employ, and will thus not only give a
summary of the most important for your convenient reference,
but also be enabled to define accurately some terms which are
of frequent use in thermodynamics.

12. The general equation of energy given by Prof. Bartlett,
which embraces both the law of Newton, that action and reaction
are always equal and opposite, and the principle of Dalembert,
that lost forces are in equilibrium,—and which may be adopted
as the fundamental law of analytical mechanics, is written thus:

S Pdp —Zm %‘st =10 (A)

This most important expression includes all thermodynamic action;
we ghall, therefore, first demonstrate and afterwards deduce from it
many of its principal consequents, thermal and mechanical. Its
first term denotes the elementary work done, or power expended
by all the forces, positive and negative, which act upon a system
of bodies; and its second term expresses the equivalent vis vive or
kinetic energy which those forces can produce. Evidently, the
equation simply expresses the equivalence of dynamical effects.
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13. In analytical geometry, we have for the square of the
elementary distance between any two consecutive positions,

(ds) = (d=)* + (dy)* + (d2) @)

but in motion velocity must be considered, and time becomes the
independent variable. The successive positions indicated by the
current co-ordinates, z, ¥, z, being functions of time, analytical
mechanics is, therefore, a geometry of four dimensions, in which
every motion may be expressed by the gencral equation

s=f() =a+ bt + c? + etc. @)

As the velocity at any instant is measured by the space which
would be passed over in the next succeeding unit of time if that
velocity were to remain constant, we have always

1<% T L A O

ds
or v=p 3)

The change of velocity which a force, if it remain constant,
causes in the unit of time is called the acceleration due to that
force ; and denoting it by ¢, we have

(i o SIEC AL A
’ dv s
or == )

It is evident that these equations are true for all possible motions.
Integrated under the supposition that ¢ is constant, or the
niotion uniformly varied, equation (4) gives

§ =8 + v + Lot )

The arbitrary constants s, and v, denote the initial space and
velocity, when ¢ is zero.
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If the velocity » be constant, then

is the law of uniform motion.

14, Yorces are proportional to their effects, and, therefore, are
measured by the aecelerations they produce in the velocity of the
same body. Hence, if we denote by w the weight of a body, by m
its mass, and by ¢ the acceleration due to the earth’s force of
gravity, we shall have
N ekt ' Ty
consequently, :

P = ;—Ugb = mep. )

If we combine this result with equation (4), we have

dv d2s

o g ®
The effect exerted by a force is the statical pressure or strain
at that instant, and may vary or not with lapse of time; but
always its instantancous value is given by the equation just found.
For it is not necessary that the force shall actually produce the
change of velocity, or even continue to act, but only that the effect
would be that indicated if the action upon the body free to move
should continue unchanged during the succeeding unit of time.
It is highly important that this explanation of what is the
instantaneous value of a constantly varying quantity be clearly
and fully comprehended.

15. Forces are sometimes exerted during intervals of time,
produeing changes of velocity in bodies free to move, the accumu-
lated effect is then the time-integral

'/Ptlt = mf% dt = mv, (9)
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no constant of integration being added if v is nothing when ¢
is zero. This time-integral is usually called the momentum, the
quantity of motion, the impulsion, or wis morfua.

Generally, forces act upon bodies resisting motion, or reacting
by inertia, cohesion, attraction, or repulsion; and the effects pro-
duced are measured by resisted changes of position. The forces
operate in space, and are said to perform work, which is determined
by the space-integral

SPis=m [T a5 =mL. (10)

The first member of this equation is by different authors variously
called: power applied, work done, potential energy, sum of the
virtual moments, quantity of action, ete. The second member
is generally called the half of the wis wviva, or living force, the
accumulated work, or the kinetic energy.
Differentiating equations (9) and (10), the force P has the

values 1

. dv dv

P__m—d—t_muzfs,
which are evidently ideuntical, for

s
dt

And thus simply is it proved that the memorable controversy
during the last century about forces, whether they are to be
measured by vis mortua, '
my,
or by vis viva,
mu?,

was merely a war of words; for in fact a force P is not measured
by either, being only a factor of which they are both products.
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16. When the elementary path ds makes an angle 0 with
the direction of the force /?, as is always the case if there be
deflecting forces or surfaces, then P cos 6 is the effective com-
ponent and dp is the projection of ds on the line of the force.
Multiplying, therefore, both sides of equation (8) by ds, sub-
stituting for I’ its effective component, and reducing by the
value of dp, we get the fundamental law,

Pdp — m f—; ds=0." (11)

It is evident that we may regard Pdp cither as the action of
P cos 6 through the length s, or as that of P through dp,
the projection of ds on the line of the force, and which is called
the virtnal velocity.

In equation (11) the term Pdp denotes the elementary work
done, or the power to do it; for if we define work to be resistance
overcome by a force P through a length p, and indicate it by

the symkol II, then
M= Y Pdp." = 5 (12)

We may generalize formula (11) by supposing any finite num-
ber of masses, m, m', m", m'", ete, to be acted npon by the forces
P, P', P", P", etc., and that these forces are themselves resultants
of any components, positive or negative. And we will thus obtain
the fundamental law,

902 5 e =0 (A)
s
If in this expression we suppose ds zero, then there is no motion,
and our cquation becomes the law of balanced forces, or of
equilibrinm,
X Pdp =0, (13)

by which all statical actions may he caleunlated.
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17. Let us assume, as a truth established by induction, that a
force may always be resolved into rectangular components, repre-
sented either by its projections on the co-ordinate axes, or by
sides of a parallelopipeden of which the diagonal represents the
foree itself, then for P, making the angles «, 8, v, with the axes
of co-ordinates, the components are

X =Pcosa; [¥Y.=PecosB; Z=P cosy. (14)
And the relation of these components to 2, their resultant, is
P=X24 Y2+ 22 (15)

This mode of considering the thcorem, usually called the parallel-
ogram of forces, to be an inductive truth appears to be the
most satisfactory. For it is not easy to prove a parallelogram
of statical pressures to be a direct logical consequence of one
of motions, which in such cases reduce to zero.

18. If equation (1) be divided by d#?, it becomes

=T

which equation (3) shows to be the same as
r=12+ 0+ vl amn

This result may be geometrically represented by a parallelopipedon
of velocities, whose edges, v, », v, are also the projections of
2 on the three co-ordinate axes.
As the value of v in this equation is arbitrary, we may replace
it by v ; then dividing by d#, and reducing by equation (4),
we have '
=2 4 ¢} + 2 (18)
In this expression ¢.. ¢,, ¢, denote the three component accelera-
tions in the directions of the axes; and we may geometrically
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construct the equation, either by a parallelopipedon of accelerations,
or by projecting ¢ on the co-ordinate axes.

If now we multiply by the mass m, differentiate equation (16)
as a function of the time, and generalize the result by summation,
we obtain

s d*x 4y &%
= md_tzds =) <c727 dx + b7 dy + a7 dz). (19)
This formula enables us to resolve into components the second
term of our fundamental equation of energy.

19. Let ¢, B, ¥ be the angles made by the co-ordinate axes
with the 'line of the force P, and A, p, v be those made with the
direction ds; then denoting by dz, dy, dz the projections of ds,
multiply both sides of the equation

co0s 0 = co3 @ cos A 4 cos 3 cos it + cos y cos v

by ds, and reducing by the values of X, ¥, Z, given in equa-
tions 14, we have, by summation,

S Pdp = 3 (Xdz + Ydy + Zdz); (20)

a formula for resolving into components the first term of the
fandamental equation (A), and which shows that the élementary
work of the forces P is always equal to the sum of the clementary
work of their components. :

20. If we compare equations (11, 19, 20) and equate the
cocfficients of like quantities, we see that

d*z
> <4Y'— m ;m—) = O,
Z?,
i (Y—mgz—tg) =0, (21)
$l e fﬁz)_
(Z m(h‘z )R
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equations which formulas (8, 12) show to be those for the resolution
into components of motions of translation, as well as for the statical
pressures, of any dynamical system of bodies.

Tet us transform these equations by multiplying the first
by y and the second by x; then the first by z and the third
by z; and lastly the second by z and the third by y. Now
combining these products, we have

dy
S (Xy — ¥a) — Em dﬁ Ty x) 0,
d*x d*
I(Xz + Zx) —Zm (dﬁ d_ﬁz) =i} (22)

2
E(Yz-ZJ)—Em(CZg Z;J)
These are the equations for the component moments of rotation
around the co-ordinate axes.

If of these components that around the axis of 2 be denoted
by w,, and those around the axes of y and 2 by w, and w,,
then it is readily shown that for the resultant moment of rotation
w there exists the relation

w=w? + w? + w?

which is usually called the theorem of the parallelopipedon of
rotations or moments.

21. To integrate equation (20) it is necessary that the co-
efficients X, ¥, Z, be functions of the co-ordinates z, ¥, 2,
and that the variables be capable of separation. If these con-
ditions be fulfilled, then

S/ Pip=F (2, 2) + C. (23)

Taking this integral between the positions, or configurations, (1)
and (), it gives
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s [ Pip=1i (09,2 — fi (@ 9, ). (24)

If now the system should pass by a cycle, from the position (1)
back again to the same state, then

s [ Pip =1y ) —fi@ 99 =0 (25)

That is to say, in such a change of the system, the work done,
or the energy lost or gained, will be zero.

THEORY OF MACHINES.

22. Transposing and integrating the second term of the funda-
mental equation, it becomes

zfpdp=zm%’“+0, (26)

an equation nsually called the theorem of wvis vive, and which
is of the greatest practical importance in caleulating the work
done by machines of all kinds.

Taking the integral between the limits or positions (1) and
(2), we have

2
b l[ Pdp == %3 (w2 — vd). (7

ITence, the amount of work done, or of power expended, during
the change of state or position from (1) to (2) is equivalent
to the corresponding variation which takes place in the wis vive
or kinetic energy.

As work is never measured by the whole, but always by the
half of the product me? we shall follow the example of Coriolis
in giving to the term wis 2ive the more convenient definition
of the half instead of the whole of that product.
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When a machine starts from repose to do work, the velocity
increases until the elementary resistance £ balances the power
applied ; the velocity then becomes a maximum, and

2
3 (Pdp — Rdr) = Zmd =0.

The machine now works to the greatest advantage, for power
is simply converted into work, and the velocity is either uniformly
or periodically constant.

If at any time we suppress the applied or motive power, then

}Zmr=C—Z2 S Rdr;

and as the second member of this equation is composed of a
constant diminished continually by an increasing quantity, it
must finally be exhausted. The velocity then becomes zero,
or the machine stops.

CONSERVATION OF VIS VIVA.

23. If in equation (26) the forces be assumed to be only
the internal mutual attractions and repulsions of the masses
composing the system, then these forces, taken in pairs, being
all equal and opposite,

Ede_p:Em—;}—z—!-O:O, (28)

or the sum of the vis vive is constant, and the system is, therefore,
either at rest or in uniform motion.

This theorem is generally known as Huyghens’ principle of
the conservation of wis wive. It is evidently only of limited
applicability and dependent upon the restricted conditions that
there are no external disturbing forces, and that the action of
the internal forces is one of mutual compensation.
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CONSERVATION OF ENERGY.

24. The first members of equations (24) and (27) being identi-
cal, their second members are equal, or

FSm(? —0d) = fi (5,3 2) — i (@ 9, ).

If now in this equation we put

(2,9, ) = ¢ — £ (2 9, 2) @9)
the constant ¢ being arbitrary, it becomes '
12 mod + IO, (2, g, 2) = + S me? + I, (2, 9, 2),
an equation which may be written thus,
LS mt 4 I (z, 9, 2) = c. (30)

This important transformation of equation (26) shows that there is
a function II, which if added to the vis vivae, or kinetic energy, will
give for their sum a constant value in any position of the system of
bodies. This function, called by Lagrange the function II (Mec.
Anal, section III, § 25, e¢f seq.), and by Green the potential
function, Gauss has named ¢he potential. 1t denotes the action
dependent upon the position or configuration w, 4, z, and is called
by Rankine and others the potential cnergy of the system, a term
which is likely to be universally adopted.

The theorem expressed by equation (30) may now be thus
enunciated: in a dynamical system of invariable bodies, if there
be no external action, and the internal forces depend only on
the relative positions, or configurations, of the masses, the total
energy is constant and equal to the sum of the poterntial and
kinetic energy. Such a system is said to be dynamically con-
servative, and the theorem is called the principle of the conserva-
tion of cnergy..
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It is practically impossible thus to disconnect a system from
the disturbing action of external bodies; the theorem, therefore,
only shows what would happen under such circumstances, imagi-
nary and really impossible. In fact, it is never realized, and
there is always dissipation of energy. But the smaller the external
forces, the less will be their disturbing influence in a given time,
and the nearer will the system approach, for short durations,
to a theoretically conservative condition.

POTENTIAL AND KINETIC ENERGY.

25. We will now cndeavour to make clear the meaning of

the potential function
TS (52

also to define more precisely the terms potential, kinetic, and
total energy, and to show what is the signification of the principle
of the conservation of energy.

There is power in the récoiling spring of a watch to drive
its wheels ; in the descending weight of a clock to give it motion;
in clevated water to work mills; in burning fuel to drive steam-
engines ; in gunpowder to project balls; in animals nourished
by vegetable food to perform labor; in zinc acted upon by acids
to propel electro-magnetic engines. These are familiar instances
of potential energy, of what Carnot named force vive latente, of
power stored and ready, if brought into action, to be consumed
or expended in doing work.

Potential energy is, therefore, but a name for the availability
of forces of nature to communicate kinetic energy or perform
other work. And its principal sources are: 1°, solar action ;
2°, fuel or food; 3° chemical union of reduced substances;
4°, animal effort, based upon vcgetdble nutrition ; 5°, electricity ;
6°, gravitation ; 7°, elasticity.
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To avoid confusion of thought and ambiguity of language,
we should not use the same word to express indiseriminately
an effect and its cause, work done and the power to do it. It
is well, therefore, to adopt the word energy, first proposed by
Bernouilli and afterwards used by Young, to express power to
do work, or force stored and ready for usec.

When a bullet shot from a gun reaches and shatters an object,
overcoming its resistance and therefore doing work, it possesses
vis viva, or kinetic energy, power previously transferred to it
by gunpowder. The swiftly-descending weight of the pile-driver
has energy stored up in it during its fall by gravitation; an
axe cleaving wood, a fly-wheel overcoming sudden and great
resistances, as in the work of crushing a mass of iron, the wind
propelling ships or mills—these are all examples of energy stored
in a moving body by natural forces—of power depending upon
motion and therefore called kinetic energy, instead of wis viva,
or living force, which are words without meaning.

TRANSFORMATION OF ENERGY.

26. The various forms of energy may be converted or trans-
formed into each other. Thus, solar radiation evaporates from
the sea and disperses in the atmosphere vapour of water, which
descending in streams supplies power of gravitation to work mills.
Solar action also stores up in growing plants potential cnergy
of fuel and food. This fuel enables us to reduce metals from
their ores; and metals consumed in voltaic circuits furnish electro-
dynamic power for telegraphs, ete.

But though the different forms of power or energy appear
thus convertible into each other, so ignorant are we of the nature
of their modes of action, calling these as we do by undefinable
names, such as electricity, chemical affinity, vitality, ete., that
in the present state of science we cannot obtain the laws of



DYNAMICS. 41

convertibility for many of the forms of energy. Evidently, if
is only when they may be reduced to a common measure, such
as their equivalent kinetic encrgy or work, that they become
capable of being expressed and discussed in mathematical equations.

27. The science of energetics, as some have proposed to name
it, or theory of cnergy, as others prefer to call it, has not yet
reached the stage of full and satisfactory development. And
it necessarily follows, that speculations under titles such as cor-
relation of forces, ete., may often be only hypotheses, useful,
if at all, only to suggest inquiry.

LIGHT AND HEAT ARE ENERGY.

28. TFortunately, mathematical demonstration based upon the
only solid foundation, that of many phenomena accurately obeerved
and compared, has proved light and heat to be kinectic energy
or vis vive; and we may now regard celestial and terrestrial
mechanics, physical optics and thermodynamics cach as a well-
established part of that exact knowledge of force and motion
which has attained to a positive progress far exceeding in depth,
extent, and certainty, that of any other branch of physical science.

TIIE POTENTIAL FUNCTION.

29. We may now interpret cquation (30), and determine the
potential function. To obtain that equation, the system must
be assumed to be dynamically conservative, that is to say, Zm
in integration is constant, or the masses are not subject to change ;
the forces also do not become feeble or strong with time, but
vary only with the relative positions 2, y, #, of the masses. Equa-
tion (30) is therefore limited, and applicable only to such conserva-
tive systems.
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To render our conceptions definite and clear, let us consider
an example. Suppose a simple peudulum, attracted by the carth,
to move in a vacuum without resistance, and that it oscillates
to and fro in a vertical circular arec A4DB. If now it ke at
its highest point of disturbance A, it will have a certain amount
of power or potential encrgy of gravitation due to the state
of the dynamical system for the position or configuration A.
Falling from 4 to D, the lowest point of the circular arc of
vibration, the potential cnergy becomecs gradually less and at
D is a minimum ; its loss having been transformed into kinetic
energy, which at D is a maximum. From D to B the pendulum
ascends, losing kinetic but recovering potential energy. Then
as it returns from I to A4 the phenomena recur in preecisely
reverse order. At the limits 4 and B the potential is a maximum,
and the kinetic energy is zero, a minimum ; but at D, the lowest
point, or position of stable equilibrium, the kinetic energy is
a maximum, and the potential is & minimum.

At all points of the path AB the sum of the potential and
kinetic energy is, by equation (30), a constant quantity ¢, de-
termined by the fact that at the points 4 and B the kinetic
energy is zero and the constant ¢ equal to the total initial energy,
or to the maximum value of the potential II, due to the position 4.
Calling this position or configuration of the system (1) and
that for D (2), and denoting by the letters II and ¥ the two
terms of the first member of equation (30), we have

I +V=1I(x1y,2) +Em-v—2=c,
and 2
N4+ V=I+V,=I0L+TV,=c

But for the configuration 4 or (1), the value of ¥, is zero, and
II, is consequently a maximum; hence

I, =¢
Hg —II = V — VQ;

and
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which shows that variations of potential are equal but opposite to
those of kinetic energy, gain in one being loss in the other.

If the pendulum be vibrated in a resisting medium, then
Sm is no longer constant, the system ceases to be conservative,
and initial energy will be gradually lost in motion given to
particles of the medium. Yet though energy be dissipated, it
is never annihilated, but only communicated to external bodies.

30. Combining equations (23) and (29) and replacing their
arbitrary constants of integration by a single constant, we find

I(x, 9,2 +2 S Pdp=c; (31)

which shows that, in any limited conservative system, the sum
of the potential and of the work already performed is constant
for all configurations of the masses, and cqual to the initial or
total energy, for which the function II, or potential, is a maximum
and the work done zero.

If a disturbed system secks to return by the action of its
internal forces to a state of repose or equilibrium, then at that
final position the work done will be a maximum, and the potential
a minimum. Hence the change in the potential may be measured
by the work required to be done in passing from a disturbed state
to one of equilibrinm.

Taking the definite integral of equation (31) between the
configurations (1) and (), we get

Pan e .[ Pdp, (32)

which shows that the work done in passing from one state or
configuration to another is equal to the variation of the potential
Jor those states, and independent of the path followed in the change.

It is, consequently, evident that this theorem of potential
energy involves the impossibility of perpetnal motion. Tor if
in a conservative dynamical system it were possible to pass by
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one path or set of points from the state (1) to amother (2) with
less work or resistance than by another path or set of points,
then by always going by one of these paths, and returning by the
other, the forces would be able to produce a continual increase
of energy without corresponding loss or work.

The independence of the potential of intermediate positions
or paths followed, in the passage from one configuration to
another, is one of its most valuable and important properties,
one which renders it of the greatest utility in investigations of
heat, of gravitation, of electrical and magnetic attractions or
repulsions, and of other analogous phenomena.

DISSIPATION OF ENERGY.

31. We have indicated the practically impossible conditions
necessary to render a system of bhodies dynamically conservative
(sec sections 23, 24, 29). Power expended in work is generally
dissipated, and recoverable only in particular cases, as when
muscular effort is converted into the potential of elasticity by
bending a spring, or of gravitation by lifting a weight. Sawing
wood, ploughing ground, grinding corn, hammering iron, are
cxamples of energy consumed or dissipated. Descending rivers
convert the energy of their falling waters into heat by friction.
A steamer quitting port for a voyage carries in her coal a definite
amount of potential cnergy. As it burns away, the work done
will be always equal to the energy of the coal consumed either
usefully or wastefully. The sea cannot restore the work expended
upon its resisting waves, nor can the winds give back the heated
gases of the burnt coal. In the ecconomy of nature, their carbon
and hydrogen may, by solar energy, be made part of some future
plant, and again Dbecome fuel or coal. But to that steamer their
original energy, once expended, is dissipated or lost forever.



CHAPTER III.

DYNAMICS,

PERPETUAL MOTION IMPOSSIBLE.

32. We have obtained the fundamental laws of dynamics, and
now propose to deduce some of their more important consequences,
such as the impossibility of perpetual motion.

Resuming the discussion of the fundamental equation of

cnergy,
}Zm @ —v?) =1 (%Y 2) =~ fi (@9 2), (33)

obtained by integration between the limits (1) and (2), it appears
that, if a conservative system pass by any path or cycle from
the state (1) back to the same primitive state or configuration,
the two terms in the second member of this equation become
identical and its value is zero. It is, therefore, impossible that
any permanent change of kinetic cnergy, or velocity, can have
taken place in the system.

But we have already proved, equation (25), that under pre-
cisely the same conditions and circumstances the work done
during the cycle must be zero. It is, therefore, impossible that
a limited system of masses, such as any machine set in motion
and then abandoned to itself and to gravity, or to other analogous
forces, such as magnetic or electrical attraction and repulsion,
can do work without loss of kinetic energy and consequently of
velocity. Such a moving system must therefore ultimately come
to rest.
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From formulas (27) and (32) combined, taking the integral
for any cycle between (1) and (1), we have

1
E[Pdpz%zm(v,z—vﬁ)zﬂl—II,=0,

which may be read thus, work cannot be done without an equivalent
expenditure of enerqy, either kinctic or potential ; and this is the
algebraic expression of the impossibility of perpetual motion.

MOLECULAR FORCES.

33. If instead of deducing the impossibility of perpetual
motion from the fundamental equation, we assume it to be an
inductive truth, founded upon the proportionality of cause and
effect, or admit as an axiom that an infinite amount of work
cannot be done by the expenditure of a finite quantity of power,
then equation (33) results as a consequence, and it may be shown
(a.ccording to Helmholtz), if matter be supposed to be composed
of ultimate particles, or material points, destitute of size or form,
that the mutual attractions and repulsions of a system would
take place in the directions of the lines between the centres of
the masses and be functions of their relative distances.

As equation (33) requires that me? and consequently that 2
shall always have the same value when m occupies precisely the
same position relatively to the system, it follows that +? is a
function of =z, y, 2z, the co-ordinates of that position, and

d (v

() =4 4, +’Z(32) ay + =02

Differentiating equation (16), we get

d(ﬁ):%(dtz dx +d12 dy + Zt"dz)
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which equations (21) reduce to
d(#) = 2 (Xde + Yy + Zi).

But the values of dz, dy, dz, are indeterminate; therefore the
first and last of these cquations give

2 o d(®),  2,_d0Y.

LIPS
i L e 7 7 Ry
Hence, if ¢* is a function of 2, ¥, 2, so also must the components
X, ¥, Z, be functions of the same variables or co-ordinates of
position.

Suppose now the system condensed into a hypothetical material
point ¢, the point of application of the resultant, then the action of
m upon ¢ will depend on their relative positions. But as these
positions are determined by the intervening distance (), see equa-
tion (1), or by the line joining m and e, their mutual actions
will depend both in direction and intensity upon this line only.
For the point @ being taken as the origin of co-ordinates, we have

d () = % (Xdz + Yy + Zdz) =0,

whenever ¢? is a2 minimum, or the potential of 72 is a maximum,

so that
rdr = adz + ydy + z2dz = 0,
and
i Fat st mﬁzl’_::__”_‘_@

Therefore, by substitution,
(Xz— Zx)dx + (Y2 — Zy)dy =0,
independently of the values of dz and dy. Ience
Xz — Zz = 0; Y2 — Zy=0;
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or the action of the material point m on @ passes through
the origin of co-ordinates.

In conservative dynamical systems composed of material points,
the mutual internal attractions and repulsions would therefore
act in the directions of the lines joining them and vary only
with their relative distances and masses.

It is, however, clear that a system, thus supposed to be composed
of material points without size or form, but possessing mass,
is purely a mathematical fiction.- For molecules must be regarded
as masses or groups of atoms or smaller particles, variously united
according to unknown laws of configuration, crystalline structure,
or chemical constitution ; and their motions, absolute and relative,
arc not only translations of their centres of gravity, but also
oscillations and rotations around those centres. Nor does this
difficulty vanish if we seck to apply the reasoning of Helmholtz
to atoms which may be supposed to compose the molecules, for
even they cannot be assumed to be mathematical points destitnte
of size or form, acting centrally so as to produce only translation
without rotation.

INTEGRABILITY OF THE FUNDAMENTAL EQUATION.

34. We have asserted, § 21, that the expression for work

or cnergy,
2 Pdp = 2 (Xdy + Ydy + Zdz),

cannot be integrated unless X, ¥, Z, are functions of «, ¥, %
the co-ordinates of m ; and we will now show that this equation
is integrable for systems in which the mutual actions X, ¥, Z,
are functions of the masses and their relative distances.

Let 2, 9, 2, and ), ¢/, 2, be the co-ordinates of any two mole-
cules or masses m and m’, and r be the distance of their centres.
Also let ¢ () be the function of the distance which denotes



DYNAMICS. 49

their mutual action. Then the components of the action of m
upon m’ will be ;
AR

G T O L= YO R

7

and those of the reaction of m' upon m are

o' z2—2

A Y e T Y 1§ K

r

We have, therefore, for the work of m and n?/,

0 (o — &) o — @) +-(y — ) (A = dy) + (¢ — ) (@—a2)].
But

R=@ =P+ G —yF+ =)
and

rdr = (x—2') (de—dz) + (y — y) (dy — dy') + (2—7') (dz—dZ).

Ience, by substitution in the equation just found, and exten-
sion of the result to all the masses taken in pairs,

2o {rydr =3 (Xdr + Ydy + Zdz),

which is evidently integrable when the function ¢ (r) is known.

MOTION OF THE CENTRE OF GRAVITY.

35. The motion of any body, or system of bodies, may be
decomposed into two motions; one common to all its molecules
or masses, their translation in space referred to a fixed system of
co-ordinate axes ; the other, their motions relatively to each other,
or to parallel but moveable axes thromgh the centre of gravity
of the system. Let us denote by =, 7, 2, the co-ordinates of m,

a
9
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one of the masses; by @/, ¥, 7, those of the common eentre of
gravity; and by & 7, &, the eo-ordinates of m referred to the
centre of gravity as a moveable crigin. If the two systems of
co-ordinates be taken parallel,

z2=2a 4§ y=y + z=14 +¢.

Henee, by substituting these values in equations (21), redueing
by the property of the centre of gravity,

I mé=0, Ehmapi= 10, 0% & SN IS0 ‘

and observing that the masses have a common factor, and may
therefore be added into one mass A1, we got

d*x' d*x
EX—C'IE —_ﬂ[dtz,
,_ &y &y

D i Im= M- PR (34)
Pos Ly asadial
EZ——-H(ZFZﬂl_—-M*dF,

also, if we multiply these equations by the co-ordinates of the
centre of gravity, 2, ¢, 2, as lever arms and combine the results,

¥y ~ar”)
>’ y d%
a2’ T ae’®)

dzz/ AN
e ~arY)’

2’
E(Xy’——Yx)-M(dgx ! d”.ﬂ)

S(XY — Zr) = M( (35)
5 (77 zy)__M(

which evidently espress the moments of rotation of the system
about the fixed origin and axes.
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The six equations just found show that the motion of a system
of bodies, relatively to fixed axes in space, is the same as if all its
masses were collected at the centre of gravity of the system, and
that it is entirely independent of their mutual actions. This
principle, usually called the conservation of the motion of the
centre of gravity, is perfectly general, or applicable in all cases,
no matter what may be the internal forges or disturbances.

Hence the centre of gravity of all the scattered fragments or an
exploded shell continues to pursue the original path of the pro-
jectile. And the common centre of gravity of the system of the
carth and moon revolves in its orbit around the sun, undisturbed
by the daily rotations of the earth, by tides caused by the moon,
by earthquakes, or by voleanic eruptions.

36. To find the expressions for the motion of the system rela-
tively to the centre of gravity and the moveable axes, substitute for
Z, Y, % in cquations (22) their values and

= &Py RN o5
E(I dt)x—~2<X—md)_/

+}](Y§—4Y7))——Em( & — \:O.

dr o
The first two terms of this equation vanish, for the factors within
brackets are zcro. _

Substituting now in the remaining terms the values of &z
and Py, we obtain

v &y , d*n d*

(s ) T — (zme) T+ 5(¥F — Xn)— Zm(cﬁé’ o \ =0,
But (Tmn) and (T mé) are zero, the first two terms therefore
disappear; and operating upon the other cquations (22) in the
fame manner, we have
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s = RNy SIEAREEN
2 e
2(T§— X7q) Em(dtzé; TP /~..0,
. d*¢ ¢
$(Z—~X)—3m (dte aﬁg)zo, (36)

S(Znp— YZ)—zm (Zt‘? E—Z’}g) = 0.

The co-ordinates of the ‘moveable origin, ', /, #, having entirely
disappeared from these equations, we see that the rotations around
the centre of gravity must be independent of its positicn in space ;
so that the motion of the system about its centre of gravity is the
same whether that centre be in motion or at rest.

CONSERVATION OF AREAS.

" 87. It the external forces which communicate motion to a
system of bodies cease to act upon it, abandoning it thus to the
cqual and opposite actions of its masses upon each other; or if
the forces X, ¥, Z, act centrally, passing through the origin
of co-ordinates; then in cach of the equations {22) the first and
consequently the second term will be zero.

Considering the first of those equations, putting the second
term equal to zero, and integrating it as a function of 7, we obtain

= m (ydx — wdy) = cdt,
and integrating again,
2m f(ydx — ady) = ct + ¢. 37)
The geometrical construction of the first member of this equation

is evidently twice the sum of the areas swept over by the radii
vectores of the masses, for
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f(ydx — zdy) = 2 ydx — zy,

in which [fydz is the familiar formula for quadratures, and zy
is the rectangle made by the co-ordinates of .

If when £ be zero, the bodies start from rest, then e, the
constant of integration, vanishes; and the two remaining equations
(22) similarly treated give like results, so that

2 m (ydr — zdy) = cdt,
Sm (zde — zdz) = c'df, (38)
S (2dy — ydz) = c'dt;

which show that the areas described around the component axcs
are proportional to the time of their deseription.

This i3 the well-known principle - called the conservation of
arcas. Applied to planetary motions, it is Kepler’s law of equal
areas in cqual times; and it further proves Kepler’s law to be
embraced in a far more general law involving the perturbations
which the mutual attractions of the bodies of the solar system
produce upon each other.

CONSERVATION OF MOMENTS OF ROTATION.
88. The first of equations (38) may be put under the form

dx dy
g le\’

zm (
But z and y are the lever arms, and their first derivatives are the
component velocities of the rotation about the axis of z; this
equation, therefore, expresses the fact that the sum of the moments
of rotation around the axis of z is constant. The other two
equations of the group (38) give like expressions. Hence, the
principle of areas is also called the law of the conservation of
moments of rotation.
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LOSS OF VIS VIVA IN COLLISIONS.

389. The principle of areas and the law of the niotion of the
centre of gravity show the muotions caused by external forces to be
independent of internal actions. Unlike the abstract and limited
principle of conservation of vis viva, they are general, while it is
applicable only in particular cases which in fact never really
oceur.

It is readily shown that, even when the forces acting upon a
system are internal only, there is loss of vis viva, whenever shocks
or collisions take place.

The simplest case is that of two equal masses destitute of all
clasticity, attracting each other with equal forces and consequently
moving with equal and opposite velocities ; if they should come
into collision, their motions would neutralize each other and
I mv}, which was 2me® before collision, would become zero
afterwards; there would, therefore, be total loss of vis viva.

If the masses m and m' as well as their velocities » and »" be
unequal, then the motion of their centre of gravity will not be
changed Dy collision. Let us denote its abscissa by 23, and by
@ and «' those of the masses m and m/, at any instant £, also
assume, for greater simplicity, the motion to be in the direction of -
the axis of 2. We have

(m + m') 2, = mx+m'z,
and differentiating we find for the velocity of the centre of gravity,

e R : {Z_a?'
(m+m)m_.mgz+m 7

This veloeity will not be changed by collision; denoting it by ,
we have
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[
[

(m + m') v = mv + m'v,
and
R 5 ’ £,
my + m'v —muy — mu = 0;

which is true always and for all bodies, whether they be elastic
or not.

Suppose now the masses to be destitute of clasticity, then will
the difference of = me® before and after collision be

me 4+ m'v'? — mu — m'uR;
and if from this we subtract
2u (mv + m'v' — mu — m'u) =0,
we get for the loss by coliision
m (v — ul + m (v — )3

which must always be a positive quantity, for it is the sum of the
gquares of the velocities lost and gained by the several masses.

If wc suppose the masses perfectly elastic, and that the
molecular forces restore entirely during expansion the work
cxpended during compression, without dissipating any part of the
potential of distortion in the form of vibrations, such as those of
heat and sound, then would m suffer during compression a loss of
veloeity (v — #) and an equal loss during expansion ; its velocity
after collision would, therefore, be

v—2 (v —u) =2u—u,

while that of m’ would gain (v — ") during compression and a
like amount during expansion, and would be

v+ R(u—v) =2 —v;

for the difference of = mw® before and after collision we have,
therefore,
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m? + m'v?—m (Qu — v — ' (RQu —v'),
which redunces to
du (mw + m'u — mv — m'v') = 0;

consequently the sum of the vis viva is constant. -

But to obtain this result, it has been necessary to suppose that
no part of the vis viva is dissipated in the form of vibrations, an
impossible condition never realized. For part of the work during
compression is not restored and there is consequent loss of sensible
motion, transformed into vibrations. In such actions as the
ringing of bells it is quite cvident that a large part of the encrgy
must be expended in producing vibrations of sound. Morcover,
whenever there is loss of sensible motion, even in such instances as
the collision of very inelastic bodies, energy is not destroyed but
transformed, partly into potential distortion and partly into
vibrations of sound, heat, etc. Hence we see that sensible energy
tends constantly to dissipation in the final form of imperceptible
vibrations.

It is important to avoid confusion of thought, which sometimes
occurs when the principle of conservation of vis viva is mistaken
for the theorem of vis viva; the latter is given in equation (20),
one of the algebraic forms of the fundamental law of energy, and
is true for all dynamical actions; while the former, expressed by
equation (28), is of very restricted applicability and never
physically possible.

THEOREM OF VIS VIVA.

40. Let us resume the consideration of equation (26);
comparing it with equation (A) and (19), and integrating both
sides of equation (19) we obtain

1= m( ) =43Zm [(ZZ) + (g;/>2+ (%)ily (39)
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which may be put under the form
IEmr=5L32m @2+ v? + v?).

Hence, the vis viva or kinetic energy of any moving system of
bodies is equal to the sum of its components in the directions of the
co-ordinate axes.

41. Tt does not follow, and it is not true that, as is sometimes
ignorantly asserted, if the motion of a system be decomposed into
other motions in any manner whatever, the total vis viva will
always be equal to the sum of the vires vivee of the several
component motions.

To render this evident let us divide the absolute motions of a
system into those of translation referred to the fixed axcsin space,
and the relative motions of its masses referred to any parallel and
moveable system of axes.

Denoting the absolute co-ordinates of the moveable origin by
2’y 7/, # and those of the mass m by =z, ¥, 2 also the relative
co-ordinates of m for the moveable axes by &, 7, ¢ we have

=2 F & y=y + =7+
and if these values be substituted in equation (89) it becomes

=m

di?

zm 3 2

+ 2T e + () + (@) (40)
a df | dy dy d_z’.cg)

Ay (th'"cﬁ a @t T ar a)

s =0 [(d2) + (dy')? + (d2)]

which may be put under the form

dr' d¢  dy dq  di dS)

: o s T [} bl g S B ey —_— 1
A SRR e R <th atawwtaa)
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in which = is the velocity of translation of the moveable origin,
and o the velocity of any mass m about that origin; the equation
evidently proves that generally the total vis vive is not equal to
the sum of the wires vive of its component motions, but exceeds
that sum by
de’ d¢  dy dn = dY dg
= (0 @+ at @0

or by the sum of the masses into the products of the parallel
component velocities for the two systems of parallel co-ordinates.

42. But if the movecable origin be taken at the centre of
gravity of the system, then because

2mé&=0, = ma = 0, Ims =0,

the last term in equation (41) reduces to zero, and it takes the

simple form
I mv* = I m (1? + ), (42)

an important relation hetween the kinetic energy of translation
and that around the centre of gravity in any moving system of
bodies; which may be thus enunciated, the total kinetic energy
of any system is cqual to the sum of its cnergy of translation and
its internal energy of motion relatively to the centre of gravity.

VIS VIVA OF VIBRATIONS.

43. The motions of a system may be divided into sensible
motions easily observed, and molecular vibrations, which generally
are too small to be seen and are very rapid. These vibrations
produce the phenomena of sound, light, and heat, and are to us,
therefore, of especial importance.
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Let us denote by u the very small displacement of a particle m
of any elastic body from its position of relative equilibrium, and
assume the general law of elasticity given by experiment,

d?u

T ey w24,

to be true for the particular substance; in which expression 22 is

the value of the intensity of molecular elasticity, or the force of

restitution for a displacement » equal to the linear unit.
Multiplying by 2dw and integrating, we find

du\?
s e 2272 o
(——dt)_v‘«’_c—nu,

to ‘determine ¢, let ¢ denote the maximum displacement when
v becomes zero, this gives for ¢ the value »%? and

2
(;%L) = i (a® — w?).

Transposing, extracting the square root, and integrating, we have
% = a sin (n¢ + ¢), (43)

the expression for a simple displacement in vibratory motion.
The sinc of the arc n# goes through all its periodic valnes
during an increment of 360° or 2=, or while ¢ increases by

?—75, that is to say, during the time of a full vibration. Denoting
n 5

this time by 7, we have

and the last equation may be written,

% = a sin <§_ft + c). (44)
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Let us now suppose n to be constant and the displacement
resolved into component displacements & 7, & in the directions
of the three co-ordinate axes, then

&=a sin (nf + ¢),

7 =a’sin (ut + ¢"),

§=a" sin (nt + ¢"').

The differentials of these components, substituted in the second
member of the equation

du\?*__ [(dE)? dn>2 dg\?
(ar) = (@) + (@) + (@)
give for the square of the component velocity,

.(_Zé2_- 1242 2 RIS BT
(dt) = a"*n? cos? (nt +- ¢)
:2%@’2[1+c0s2(¥t+c’)].

The mean value for the last term of this expression, being a period-
ical sum of the cosines of .a- continually increasing arc, must be
zero. Hence, for the mean value,

e AR
(%) _/./—,Ja A

Similar values for the component velocities of 7 and ¢, and for the
resultant velocity of m, give for the wvis viva of m, the mean value

7

1 rrme? 72
&= i — am — (' b 119
_“/OA 2dlf—)n72(a + @' 4 a""?),

or the vis vive of vibration is equal to the sum of the wires vive of
the component vibrations.
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Suppose now the body to be in motion in space, denote by
@, 7, 7, the current co-ordinates of the normal position of equi-
librium of m at any instant 7, and by & 7, ¢, the components
of its vibration about that normal position; and the variations

do + dé, dy + dn, dz + dg,

which occur during the time ¢ will give for the vis vive of m
during the period 0, a short time, but comprising many vibrations,

the mean value
o

1 0 2 m(der  dyt AR

5%7”§ﬂ (wa+%5+wJ
dm (dE% Ay 0

Of (dﬁ (12’2 + dﬂ) 4

0 +) ((Zx aé (ZJ dn  dz ds)dt.

dataataa

But as the movements da, dy, dz, arve arbitrary and independent
of ds, dn, d5, we have

dx d¢
o (dt @)

de Od¥
0 adl‘ 0 szt

ey
0
1 dzx/_s
ham%GJaa

The last term therefore disappears from the expression obtained,
and we conclude that the total vis vive is equal to the sum of that
dne to the sensible motion, plus that of the insensible motion of
vibration. It is clear that this result proved for any molecule m is
true for all the molecules.

From {he preceding demonstration, it follows that whenever
vibrations continue during a length of time sufficient to include
many of their periods and thus give .

Zima=10, Zmn =0, T m¢G = 0,
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the mean or total vis vive is capable of separation and is equal to
the sum of vis viva of vibration plus that due to the other motions
of the system.

VIBRATIONS CHANGE TIIE POTENTIATL.

44. To determine the effect of vibrations upon the potential,
we baye for it the two successive values ’

~lI =1 (Cl’, Y Z))
M=0@F% y+n 2+75)

But as & 7, ¢, are very small comparatively to z, %, z, we may
develope II' by Taylor’s theorem, which gives

dI .

{11 CZH >
dzx

¢

5 4 (/7 dz_
dA1 d H

g (axZ Y J" 1143

H'=H+<
C + ete. }

The mean value of the first differential or second term of this
series is zero. But the mecan value of &2 will be
§* = a”sin® (nt + ¢),

which by virtue of the relation
2 8in?w = 1 — cos 2w,

reduces to the mean value,

a'?
el Sie
§ %)
Therefore
A1 a1 1T
’ iy 2 e 72 vl’2 E
I =1 + - <d2 +d_/2 +‘“ +etc.)

Consequently the mean value of the potential of m is changed by
vibrations from that due to its normal position.
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WORK OF RELATIVE MOTION.

45. It has been shown that the absolute motion of any system
may be resolved into motion of its centre of gravity and motion
of its masses relatively to that centre; also, § 42, that the total
kinetic cnergy is separable into two portions, corresponding
respectively to those distinet and independent motions, or that

2 2 ~ W*
Em1=2m?‘ + 2m —-
E P :

2 2

We may therefore separate the work of these independent motions.

The current co-ordinates of the centre of gravity being denoted
by #, y', #, and the relative co-ordinates of m DLy & 7, ¢, the
vuriations of the absolute co-ordinates, § 35, will be

dr = dx' + d¢; dy = dy' + dn; dz = do' + di.

If we substitute these values in equations (20) and (26) and suppose
the system to start from rest, the constant will be zero, and the
work will be

13m (e + o?) = L/.[AY (do' +-d&) + Y (dy' +dn) + Z(dZ' +d3)].
But as the relative motions are the same, whether the centre of

gravity moves or not, dx', dy, dZ, are arbitrary and entircly
independent of @&, dn, d¢, as are also.« and o of each other, hence

Emy = S (xas + van + zaz),

or the general theorem of work is applicable to motion relative
to the centre of gravity.
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ENERGY OF ABSOLUTE AND RELATIVE MOTION.

46. The internal potential energy of any system depends only
upon the relative positions of its masses and their mutual actions
and reactions. It is, therefore, the same for either the absolute
or the relative motion cf the system, or

N

2 I (2, 4, 2) = 1L (£ 7, &).

~.

If there be no external disturbing forces the motion of the
centre of gravity is constant; cquation (42) may, therefore, be
written thus

v? o’
2m~0~=2m~§ +as

and substituting these valucs in equation (30) we obtain

w?
by Hl
H+~m2_c.

e

Ience, whenever there are no external forces of power or resist-
ance, the theorem that the sum of the potential and kinetic energy
is constant may be applied cither for the absolute motion, or for
the motion relative to the centre of gravity, and the system is
dynamically conservative.

47. For work between the limits (1) and (2) we have found
72
z /1 Pdp = 12 m (v? — v°).

This may be divided into the work of the external and that of the
internal forces, and be written thus

2
s [ Piap =7 int. + . eat,
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But we have seen that the mutual actions of a system of bodies
depend only on the masses and their relative internal positions,

so that
W. int. = II; — II,.

Combining these equations we obtain
(I, —IL) + =2 m (v — v’) = W. ext.

or the variation of the total energy is equal to the work of the
external forces.

WORK OF EXPANSION.

48. To obtain an expression of the work done by the pressure
of an expanding substance, such as steam or compressed air,
acting in all directions with equal force upon equal areas of the
enveloping surface, let dz dy or © be an element of that surface,
then the outward pressure exerted upon this element by the
expansive force p will be pw; and if it push the resisting surface
through the length dz or /, then dr dy dz or lw is the increment of
volume dv and pdv is the elementary work. The definite

integral
2
[ pav

is, therefore, the work done by the expanding substance.

WORK OF HEAT.

49. If we suppose the expansion of any substance to be caused
by variation of heat, other changes accompany that of volume.

The increment of heat produces:

1°, a change of invisible molecular motion or vibration, or
of temperature, expressed by

1=m (o) — o) ;
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R°, a change of molecular eonfiguration and consequently of
potential energy or latent heat, equal to

I, — 105

3° the change of expansion and external work

'/f 2]70},’2).

The total variation will, therefore, be

(1)2
A (Z Mo+ I+ fpdv). (45)

This evidently divides into two distinct portions, the invisible
change of enfernal cnergy, kinetic and potential, and the per-
ceptible change of exfernal work. Denoting the general integrals
of these two portions by U and S, we shall always have for the
thermal work of any heated substance

s [Pap=U+8 (46)

Such unfortunately, in the present state of science, is our
ignorance of the constitution of matter, that the function U is
generally so hidden as to be indeterminable, though we may
often eliminate it. But it is clear that all measurements, however
laboriously made of the dynamical action of heat, in which U is
neither determined nor eliminated, must be radically defeetive:
and of such there have been unhappily too many. Moreover,
cquation (46) shows that whenever part of the power is expended
in produeing thermal vibrations of friction the useful work is
thereby diminished.
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CALCULATION OF WORK.

50. The expression for mechanical work is

w=3f Pdp = f ¢ (x)de = [ ydz,

or the same as the geometric formula for quadratures. Whenever,
therefore, y is a known function of z, work may be e\actlj,
calculated by the method of quadratures.

But if, as is very often the case, Pdp or its equivalent ydz is
is not integrable, then its value can only be approximately
determined.

As such calculations have often to be made by the professional
engineer, we shall conclude this dynamical Introduction by giving
the most approved methods; of which there are three: 1° that of
trapezoids, 2° that of Thomas Simpson, 3° that of Ponoelet.

MEermop oF TraPEZOIDS.—Divide the projection of the curve
upon the axis of z into equal parts e, and measure the ordinates
corresponding to the points of division g, %, % % efc. Then
suppose thess ordinates to divide the surface into narrow
trapezoids, the area of the first is

%8 (.7/0 + yl)’
that of the second is

te(n + ¥
and, by summation, the total area is
v=e[f+y)+tnt+nty+.o o Fral (&)

Mernop oF SimpsoN.—Instead of imagining the curve to be
polygonally divided, Simpson applies the fact that, through any
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three points of a continuous curve, not too remote from each cther,
a parabola may be drawn, with which that part of the curve may
be supposed to sensibly coincide.

Let ACB be the part of the curve, also let ¢ = a¢ = ¢b. Then
for a parabolic segment

c AiBC = $ab x Ci.
A / iB Therefore
A v v Aw=ab [ci—.i- % (Ce — ¢)],
g =ab} (et + 20¢) ;
or
a C b Aw = act (2t + 4Cc),

=1¢ (% + 4 + 72)-
In like manner we find

Au = 3o (4 + 49 + ¥s)
A" w = e (Yo + 4Ys + Yo)-

Hence, by summation

u=3e @ty 4G+ Y+t )
+ 2 +ys+ys + ceiet Yuo)l (48)

If the curve be reversed, as in the annexed figure, then

Au=ab[ci—% (ci — cC)] . ) B
= B (cH+ RO 4 t;;ﬁ
the same as in the former case. ¢
The formula of Simpson is readily 5 5 o
obtained algebraically from the equation > 3 4
of the parabola
a J b

y=a+ﬂx+79ﬁ,
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which gives
[
su= [ ‘ylr=12a0+ e + gyen
To determine the factors e, 3, v, the curve gives

Yo = ¢, .
h=c+PBe+ ye,
Yo =« + 2Be + 4ye?;

making the requisite substitutions and reductions we obtain

Au=3e(y, + 4y -+ 1),

the same as by the geometric construction.

Mernop oF PoNCELET.—This method with fewer ordinates,
and consequently less labor, gives even a closer approximation
than that of the method of Simpson.

It is a modification of the ancient method of exhaustions by
inseribed and circamseribed polygons; and the greater the number
of subdivisions the more exact will be the result in each of these
several methods.

Let AB be the G o’

curve, divide the

. (8 i E
base into an even / =55 =
number of parts, XZ ________________ '_“_. % \
cach equal to ¢, and

draw the ordinates,
Yo Y Yo Yss Y» et i
The area of the 2 ;
curve will be the
mean between those a 4 1 d g € b
of the circum- :

seribed and incribed trapezoids.

<
g
w9
*4
B
od
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The area of the circumscribed trapezoids is
s=20(Cc+ Dd + Ee +elc.) = (h + %+ Y + . -o + Yur)s
and the area of the inscribed trapezoids is

§ = 3e(Aa + Cc) + ¢ (Cec + Dd) + cte. . . . + Yo (Fe + DBb),
=ce[3 (ho+y) + N+ Ws+Ys+ - o - FYus) F Y+ 3+ Y15

add and subtract ¥ (¢ + %.—) and we obtain
s=eR@+y+0 +90) + 3@+ )= 30 + 9]

and taking the mean of these areas s and s, we have
u=eRW + Y+ oo+ Yur) 1 & + ¥) — 1 (1 + 7))

The area is, therefore, equal to the product of the interval ¢ by
twice the sum of the even ordinates, ¥, ¥, ¥s, éfc., plus one-fourth
of the difference of the sums of the extreme ordinates and those
next to the extremes.

As the half sum plus the half difference of s and s’ is equal
to s the greater, and the half sum less their half difference is equal
to s’ the less of these two areas, it is evident that the area bounded
by the intermediate curve can never differ from the mean value
or half sum of s and §', by an amount equal to their half difference.
Hence, for this method of Poncelet, the limit of possible error is

s—¢g

5 =1 [ + ga) — (% + )],

which the figure shows to be geometrically equal to
1e (k2).

If this approximation be not sufficient, it may be rendered closer
to any required degree by lessening ¢ the interval between the
ordinates.
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51. To show the comparative accuracy of these several methods,
we will apply them to the example of measuring the integrable
area between an equilateral hyperbola and one of its asymptotes.
The cquation of the curve being

xY = n,

a—dex—mf —mlog_.

If in this expression we put m =4, ¢ =1, and & =7, then the
method of integration gives for « the exact value

a, constant,

7
U= L[yclx:%log T

And the several methods give the following comparative results:

Integration, . . . . exact, u = 0.9730
Trapezoids, . . . . approximation, » = 1.0107
Method of Simpson, £ % = 0.9791
Method of Poncelet, @ u = 0.9762

Heunce it appears that the method of trapezoids is in error for
this example to the amount of 3% per cent, that of Simpson to
0.6 per cent, and that of Poncelet to % of one per cent. With only
the extreme and cven erdinates, or little more than half the
number required in the method of Simpson, that of Poncelet is,
in this example, nearly twice as accurate.

The method of quadratures is always applicable when we have
to determine definite integrals of the form

u:b/:tp(z)dx;

for we may always represent ¢ () by g, the ordinate of a curve
corresponding to the abscissa #; and whatever be the nature of the
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function, or the quantities z and ¢ (), the value of » can be
determined by the area bounded by the curve, its projection
on the axis of 2, and the ordinates of its consecutive points.

By diminishing the interval e the methods of approximation
may be rendered indefinitely closer; and with very few ordinates
they usually give results sufficiently accurate for most practical
purposes, while integration is rarely possible. These methods are,
therefore, of great utility, for they enable us to make readily the
calculations required in a vast number of practical questions con-
stantly occurring in engineering, in mechanism, in physics, and
in other branches of applied science.



CHAPTER IV.

GENERAL LAWS,

DEFINITION OF TEMPERATURE.

52. Every person is familiar with the sensations to which we
apply the adjectives %ot and cold and the word temperature,
also with the fact, that when hot and cold bodies act upon
cach other, heat is lost by the hot and given to the cold, until
they become of the same temperature.

But as sensations and adjectives cannot be measured, the
thermometer is used to indicate variations of volume which
accompany and are functions of the corresponding temperaturcs
of equilibrium into which it puts itself with surronnding bodies.

The ordinary thermometer shows only apparent changes of
volume for mercury and glass; and the function whieh expresses
this relative expansion is not even known, other than by aid
of an empirical formula which varies with the chemical compo-
sition and molecular state of the particular glass employed.

The method used for the graduation of thermometers is based
upon the arbitrary assumption, that changes of temperature arc
proportional to those of volume ; which, so far from being true,
is generally false; for the law of dilatation of one substance is
rarely similar to that of another.

To express this arbitrary assumption algebraically, let v, denote
the relative volume at 0° v, its volume at 1° and v, that at ¢,
then will

V= s 1t v, —vy ¢ (50)
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be the equation which immediately gives for the algebraic defini-
tion cof the term femperature, when indicated by degrees of an
ordinary thermometer,
Ut — ¥ .
= '1/'1——-_770 2 (01)

The only substances which are found to obey the law expressed
by this definition, with even an approximate accuracy, are a few
gases, hydrogen, oxygen, nitrogen, etc., which have hitherto resisted
all efforts made to liquefy them by pressurec and extreme cold
combined. And even for these the law must be considered to
apply to their abdsolufe dilatation only, or the relative dilatation
corrected by elimination of that of the glass.

For such gases the observed law of absolute dilatation, usnally
called the law of Guy Lussac, but which should be named that of
Charles, is for changes of volume

v=0(1+ «f); (52)

in which the coefficient of dilatation e denotes the increment
of volume for the cubie unit and for one degree of temperature.
If we observe that, by definition, we have

vV — vy = &Vl

it will be evident that equations (51) and (52) are identical.
Permanent gases are also the only substances which obey

approximatively the law of Mariotte, that, when air is compressed

without change of temperature, the volume varies inversely as

the pressure, or
PV = PV

Bat if, at the same time, the temperature of the air compressed
be elevated to an amount #, then 72, becomes

Vo (1 + (Zt),
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and we get
pv=peo (1 + «l); (53)

an expression for the laws of Charles and Mariotte combined.

An air supposed to obey exactly those two laws, or their
combination expressed by the equation just found, is called a
perfect gas, oris said to be theoretically in the perfectly gaseous
state. Of all real gases, hydrogen approximates most nearly to
such an hypothetical substance.

As permanent gases are the only substances for which equa-
tions (51, 52, and 53) are nearly exact, temperatures should
always be measured by air thermometers when'accuracy is required.
But for ordinary practical and even for many scientific purposes,
the indications of mercurial thermometers, between 0° and 100° C.,
do mnot differ sufficiently to produce considerable errors. And,
when precision is requisite, corrections may be applied to reduce
degrees observed with a mercurial thermometer to their cor-
responding values indicated by the expansion of air; for which
purpose Regnault has furnished the requisite data, and even a
table of cquivalent indications extended to 850° C. (See Mem.
de I'Inst,, t. xxi, p. 239.) In the theoretical discussion of thermo-
dynamic phenomena, temperaturcs are, therefore, always to be
supposed to be those given by the absolute dilatation of air.

QUANTITIES OF HEAT.

53. There is an obvious distinction between temperatures
and quanfities of heat. To heat a cubic foot of water, weighing
1000 ounces avoirdupois, through a given range of temperature,
it would cvidently be necessary to consume 1000 times the amount
of fuel requisite for one ounce. A large block of ice would require
more heat to melt it than a small one. Also a ton and an ounce
of red-hot iron may be each of the same temperature, though
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there would manifestly be far more of what is called heat in the
ton than in the ounce.

Yet proper attention was not paid to this simple but important
distinction until it was shown by Dr. Black, at the middle of the
last century, that of the large quantity of heat required to melt
solids, or to evaporate liquids, none whatever is indicated by a
thermometer. Hence he gave the name latent heat to that which
thus causes such changes without elevation of temperature.

When bodies put themselves into equilibrium of temperature
with each other, these changes are attended with transfers of heat
absorbed by one and given off by another, to which the terms
specific heat and calorific capacity are gcﬁerally applied.

In the investigation of all such thermodynamic phenomena;
quantities of heat must be measured; and for these measurements
a standard unit is nceessary. The calorie, or unit by weight of
water at 0° raised to 1° C., is conventionally the thermal unit
cmployed, and to this common measure all thermal quantities
may be reduced.

It was long imagined that the quantity of heat requisite to
raise a given body from any temperature ¢ to the consecutive
degree (¢ + 1)° is constant, whatever may be the value of ¢
but this has been shown to be untrue. Hence it is necessary
to fix the temperatures 0° and 1°, for the standard unit. Gen-
crally, if we suppose the temperature of any body to be #, and
that it takes an increment d7, in consequence of the reeeption
of an amount cf heat dg, the specific heat of the body, at that
temperature ¢, is

ag .. ;
7 =S (54)

a function of the temperature which varies with the nature of
the substance.

The terms quantity of heat, calorie, latent and specific heat,
capacity for heat, ealorimetry, ete., are due to the material hypoth-
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esis; according to which heat was a subtle, indestructible substance,
called caloric, combining with or separating from other matter.
But it is perfectly easy to think of a quantity of heat as energy,
or as an amount of vibratory motion; which may be transferred
from one body to another, and thus be lost or gained, communi-
cated or received. "Hence, those terms, whicli have long been
the familiar names for certain observed facts, may still be used
in the new dynamical theory of heat, without confusion of
thought; and indeed, it would be difficult, even if it were
desirable, to find for them equivalent words.

GENERAL TORMULAS.

64. To determine the quantity of heat corresponding to any
given amount of cnergy cr mecharical work, equation (46) and
the law of Joule give

BQ=3[Pip=U+8; (55)

in which Z denotes the mechanical equivalent of heat, and is
called Joule’s coefficient.

And if we denote by A the reciprocal of Z, or the #heat
equivalent of work, then

Q=AU+ 8) (56)

It the sensible or external work S he that done by the pressure
of an expanding substance, such as steam or air, then
\

S =/ pdv,
and equation (56) may be put under the form

Q=AU+ 4 f pdv. 37)
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Taking this between the states or limits (1) and (2), we obtain
! 2
Q— Q=A4(U;—U) +4 [ pav. (58)

If the body or system pass from the state (1), by any intermediate
cycle of thermodynamic changes, back to the same state, or con-
figuration (1), then will

U—-U,=Wint. =1, —II, = 0, (59)

and equation (37) reduces to

Q=4 [ pin " (60)

This result is of great importanee, for it shows how, in thermal
investigations, we can climinate the internal energy U; which is
generally inaccessible to experimental determination. Consequent-
ly, if it were impracticable to eliminate U, we might despair of
being able to make any considerable progress in this branch of
science. The necessity and the mode of such an elimination were
first indicated by Sadi Carnot, who drew attention to the truth,
that thermal energy can be continuously converted into external
useful work only when the system periodically returns to the
same initial state, or configuration, and the variations of the
internal energy of the system, or of its potential II, reduce to
Zero.

THERMODYNAMIC FUNCTIONS.

55. The thermodynamnic state of any body is a funetion of
the action upon it of external forces, of the temperature, and
of its specific volume or reciprocal of its density. As the
external forces may vary in any manner whatever, the problem of
determining that state is evidently too general for sclution. It
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is, therefore, simplified by assuming the external forces to be
only those of a normal pressure acting uniformly upon the con-
taining surface, and also by supposing the density and temperature
constant throughout the entire mass. ILess simple cases are
referred to the theory of elasticity of bodies. But even when thus
limited and simplified, the problem is often incapable of solution.

As the dynamical condition of any system is determined by
its total energy, kinetic and potential, if we denote these by T
and TI, the normal pressure, tempemtﬁre, and spéciﬁc volume,
or any other dependent variables, such as the conductivity, radia-
tion, index of refraction, etc., are functions of T and II; and
from any three equations,

p=f (T I), h== e (QGHIE); H = o (TS

the variables Y and II may be eliminated, leaving only cne

cquation,
¢ (pvt) = 0. (61)

Only for the permanent gases has it been found possible to
determine the form of this function with sufficient accuracy.
The combined law of Charles and Marioctte (53) is, as we have
stated, a limit to which they approach, more or less closely, in
their thermodynamic changes; hydrogen obeying that law very
nearly, while carbonic acid and other liquefiable gases or vapours
depart sensibly from it.

PARTIAL DIFFERENTIAL EQUATIONS OF TRANSFORMATION.

56. We may regard the thermodynamic state of any body
or system as a determinate function of three variables, the tem-
perature 7, the specific volume #», and the normal pressure p;
it i3 expressed by the equation (61), just found. Also these
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variables p, v, {, may be considered as co-ordinates of a geometric
surface representing the function.
If for any assumed value of ¢ we find the corresponding values
of p and v, this is equivalent to the determination of the form
of a scction of the
thermodynamic surface
P perpendicular to the
axis of £ Similarly,
we may {ind any num-
ber of sections, cach
perpendicular to the
same axis; and these
sections would evident-
ly determine the sur-

face. But as sections
may be thus taken per-
pendicularly to each of the three axes, the investigation cor-
responding to this geometrical analysis by seetions may be made
in three distinct ways; in each of which two of the co-ordinates,
v, &, are taken as variables, while the third is an arbitrary
constant. It is clear that the results thus obtained must all
accord, as they are related to each other by the common function
(61), which is represented by the same geometric surface, and
expresses the states, or transformations, of the body.

57. Let v and ¢ be the variables for any constant value of p.
If now the temperature become ¢ + d¢, and the specific volume
v + dv, then will
_dQ ., dQ
dQ pey Zl?‘ (Zt -~ %- dv
be the variation of the quantity of heat for such a change. Sub-
stituting letters for the partial derivatives
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c=£Z_Q l:gg

dt’ dv’ %)
the equation just found becomes

dQ = cdt + ldv. (63)

The partial derivative ¢ is usually called the specific lLeat of
constant volume, it being the quantity of heat requisite to produce
a given change of temperature without any variation of volume.
And, analogously, the coefficient I bears the name of the lafent
heat of dilatation.

For any indefinite change we have

Q = S (cdt + ldv). (64)

But to integrate the second member of this equation, it is
necessary to know the function (61) for the particular body or
system. And as that function is not known, even approximately,
except for permanent gases, the integration is rarely possible.
Moreover, such is the impracticability of confining any solid
or liquid body when heated or chilled, and of preventing for
compressible gases the loss or gain of heat by conduction, that the
coefficient ¢ cannot be ascertained experimentally ; while for the
quantity 7, though attainable, we possess few observations.

58. Experimental investigations bave been mostly of specific
heat, or calorific capacity, under constant pressure. Taking,
therefore, p and ¢ for variables, we have

_dQ aQ . .
and denoting the specific heat of constant pressure by ¢,

des AOL
c ——C‘ﬂ—,
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if p vary independently of #, we have %dp for the quantity of heat
necessary to this change; the coeflicient %4 being analogous to
e, I, ¢, but without a conventional name. Thus, we obtain

dQ = c'dt + hdp, (63)

for the elementary quantity of heat duc to this transformation.
Between (63) and (65) there exists a relation determined by
the function (61); seeking from which the value dv, or of

dv dv
dv _%at+ i dp,

we get, by substitution,

(dt-{—]zdp__cdt-i—l( dt—f— )

and equating coefficients of like quantities,

dv
¢ —c+ldt’
dv

59. Finally, if p and v be taken as the variables, we similarly
have for an elementary variation of heat,

dQ) = Mdv 4+ Ndp ; (67)

M and N being nameless coeflicients analogous to ¢, I, ¢, h;
and for which the function (61) gives the following relations,

dt dt
= ) dv + o dp,

consequently,
Mdv + Ndp = ldv + cdt

= ldv +¢ (45 A ——dp)
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From which we readily deduce

dt dt
ﬂ[=l+c—d—v_c%,
at
N:C@. (68)

60. It is often desirable and even necessary, in the investi-
gation of thermal phenomena, to take for independent variables,
instead of the pressure, temperature and specific volume, other
data, such as the conductivity, the emissive or absorbent power, the
index of refraction, etc., of the substance under consideration.

Denoting, therefore, by #z and y any two such variables upon
which the thermal state of the body depends, or varying with
it in any manner whatever, we shall have for the clementary
(unartity of heat corresponding to their variation,

dQ = mdx + ndy ; (69)

and if dv and ¢ be the corresponding variations of volume and
temperature, then

mdz 4+ ndy = cdt + ldv.
Consequently,

dt dt dv dv
mdz + ndy = ¢ (cl_x dzr 4+ ?Zg_/dy) +- Z(% dz + ZZ&Jy),

and, therefore, we have alwayg

m_c%—}-l%,

(70)
"= &, Zfl—bj‘
=qy T ey’

general formulas, of which (66) and (68) are only particular
values.
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and consequently ,
¢ dh dv
There relations (72), (73), (74), between the coefficients ¢. ¢/, 7,
ete., which we owe to Clausius, show that the partial differential
cquations of transformation (63), (65), (67), are not directly inte-
grable ; for the criterion of integrability

an _ dn
dy — dz’

showing an expression of the form
mdz = ndy

to be an exact differential, is not fulfilled in either case. Yet
there always exists for such an expression an infinite number
of factors such that, if multiplied by any one of them, the
expression becomes an exact differential capable of integration.
This is usually proved in elementary treatises on the integral
calculus, but for convenient use we give a brief demonstration.

FACTORS OF INTEGRABILITY.

62. For any constant value of one of the co-ordinates or
variables, such as £ or for any given section of the corresponding
geometric surface cut perpendicularly to an axis, the general func-
tion (61) reduces to one of the two remaining co-ordinates, or
variables, and an arbitrary constant,

o(p,v, ¢)=0.
By differentiation,

do
dv

dv + @dpzo;
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and it is evident that, if we compare this with

Mdv + Ndp,

we must have

Ao i cid B

dp —dpdv T dv’
as the criterion of integrability, whenever the expression is an
exact differential of which the function ¢ is the integral.

We have scen that the partial differential equations of trans-

formation by heat, such as

dQ = Mdv + Ndp,

do not fulfil the criterion of integrability just demonstrated.
Let us, therefore, put this equation under the equivalent form

B
%—{-u_O,

in which # will be a function of p and v. The general integral
of this equation is a function of p and v and of an arbitrary
constant. Let this integral, resolved with reference to the
constant, be

o (p, v, ¢) =0.

Then, by differentiation, we get

dp  do dp _ i)
%+@.%_O’ or ——+——~——-——-0,
an equation from which the arbitrary constant has been elimi-
nated ; and which should, therefore, be identical with that

proposed. Consequently,

do dp

dp _4p
PRl i i 7
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or multiplying both sides by the same factor,

(00 il B B0
dp \dv Tdv " dp dv
But the second member is simply the first derivative of the
function ¢; such is also the case, therefore, with the proposed
equation
d] + 3¢ =40,

when multiplied by the requisite factor.

Hence, denoting by A the reciprocal of the factor of integra-

bility, we have

iQ —dv+ Yap=ag; (75)

and there is, therefore, a factor % which renders a differential of

the proposed form exact and integrable.
The number of such factors is also infinite, for let z be one
suitable to render exact

2 Mdv + z Ndp = dw,
then will
2 Yo (Mdv + Nap) = Yo dw

be an exact differential, and as yw is an arbitrary function, it
may evidently have an infinite number of values.

LAWS OF THE PERFECTLY GASEOUS STATE.

63. The consideration of gases assumed to obey exactly the
law of Charles and Mariotte,

v = poo (1 + «f),

and therefore said to be theoretically perfect, is very important ;
for thus we are enabled to discuss problems in thermodynamics
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in a manner precisely analogous to that which has been so
advantageously used in mechanics for the lever, the pulley, the
pendulum, the parabolic motion of projectiles and many other
problems, in which the effects of friction, resistance, and other
disturbing actions are provisionally disregarded, for the purpose of
obtaining simpler approximate solutions, which need only small
corrections to be applied to them to become close expressions
of the real facts of nature. This course is also followed in
astronomy; the imaginary elliptical orbits of planets being only
first approximations, cr hypotheses, requiring to be eorrected for
perturbations.  What those fictitious elliptical orbits are to
astronomy, what a frictionless machine in vacuo, or a simple
pendulum, is to mechanics, such in the study of heat is a
theoretically perfect gas, an important simplification giving for
difficult problems approximate solutions; which either differ
insensibly from exact solutions, or require only slight corrections
to render them accurate enough for all purposes. In fact, they
determine the first terms of a convergent series, whose remaining
terms either are inappreciable, or else constitute definite residual
phenomena for extended investigation.

Thus they establish positive relations, or laws, which must
be included in any future more advanced state of knowledge,
and indicate the path of research and discovery.

Moreover, they fully explain hot-air engines, such as that
of Ericsson, and enable us to compare them correctly with the
steam-cengine.

64. We shall also assume as laws, or as postulates, for
theoretically perfect gases, obeying the law of Charles and
Mariotte, the following experimental inductions:

1°, the second law of Joule, that the internal cnergy of
permanent gases is a function of the temperature only, and
therefore does not vary with the density or specific volume;
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2° the law of Regnault, that the specific heat of constant
pressure of any permanent gas is independent of its temperature
and density;

3°, the experimental law, that the product of the density
by the specific heat of constant pressure is the same constant
for all permanent gases.

The last two of these laws have been satisfactorily established
by Regnault; who has also determined the deviation of atmos-
pheric air, oxygen, hydrogen, and carbonic acid from the combined
law of Charles and Mariotte. The second law of Joule has been
verified both by Regnault and by Sir W. Thomson. And the
following important consequences are readily deduced.

By differentiating U in equation (71) as a function of v and 7,
we get

d U

Q=4 Zt+A<——+p)dv

But by the second law of Joule, U is a function of # only for
permanent gases, and does not vary with v, hence

dU

¥ i =055 (76)
and the equation just found reduces to

a0 = 4 dUdt 7 AP, (1)

1If now we compare this with the equation of transformation, when
» and ¢ are independent variables,

dQ = cdf + ldv,
we see that, for perfect gases,

=47 md 1=4p. (78)
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the algebraic expression for the second law of Joule. The constant,
of integration being zero.

67. If now we divide both sides of equation (80) by.w, or
which is the same thing, multiply by J, the density or specific
gravity, we have

0;62(0'—-0)6=Aap0; (82)
0 .

and as the second member is the same constant for all the perma-
nent gases, so must the first be also.
But by the third postulate, or law of Regnault, the ratio

i

L =cd : (83)

()
is the same constant for all permanent gases; consequently,

% led (84)

(]

must also be the same constant for them all.

JOULE’S COEFFICIENT THEORETICALLY DETERMINED.

68. From equation (82) we obtain the theoretical formula

yuissie o
which enables us to calculate the mechanical equivalent of Joule,
and compare this value with that determined by his experiments
on friction.

For hydrogen, oxygen, and atmospheric air, all the quantities
in the second member of (85), except ¢, have been experimentally
determined with great precision by Regnault. The value of ¢



GENERAL LAWS. 93

js less accurately known, for it is not possible to obtain it by
direct experiment; indirectly, however, it has been deduced from
the velocity of sound. If the acoustical value of ¢ be employed,
with those of Regnault for ¢, ¢, v, the following values of Z,
the equivalent of Joule, are given by the permanent gases,

iHliyelrogetys e E e et 42013
Oxygen . 2 St ; 22 W
Atmospheric air i ke A L (5

Of these results, that given by hydrogen, which approaches very
nearly to the limit of the perfectly gaseous state, is the most
probable.

The accordance of these theoretically computed values, based
upon entirely independent data, with the coefficient obtained
experimentally from friction by Joule, is truly remarkable, and
folly verifies the aecuracy of his work.

DETERMINATION OF THE FACTOR OF INTEGRABILITY.

69. We have proved that there exists always a factor, which
can render integrable a partial differential equation of thermo-
dynamic change. That factor may be easily found for perfect
gases ; for writing the law of Charles and Mariotte under the form

PV — epy (¢ + £) = 0, (86)
in which @ is the reciprocal of «, and substituting, in
dQ = cdt + Ildv,
for 7 its value 4p, we have

dQ = cdt + Apdv ; (87)






GENERAL LAWS. 5

consequently, p
dQ =cdt — A epwy (@ + ) —;—),
and 0 y
A 220 s gt . :
a—'_F—'t = p + tdt A “pol'o Z) (92)

Hence, as ¢’ is a function of ¢ only, the variables are separated
and the second member is the exact differential of a function of
p and ¢, so that again

aQ _ 4@ __

ek b ok
Lastly, if we assume p and v for the independent variables,
then will

o dQ = Mdv + Ndp ;

and substituting in this for M and N the values given by (68),
it becomes

dt dt
dQ =ldv + ¢ (%dv +Zl}3dp)’

but the quantities within brackets are the partial differentials of ¢
a3 a function of p and v, and their sum is its total differential o,
hence this equation reduces to

dQ = cdt + ldv;

which is the same as equation (87) and is rendered integrable

by the same factor,
AN==an 1T

Hence, for the perfectly gaseous state, there is a factor 4, equal to
the temperature ¢ plus a constant ¢, which renders integrable the
equations of thermal transformation ; and as the constant a is the
reciprocal of «, the coefficient of dilatation in the law of Charles
and Mariotte, the factor A is the same for all perfect gases. We
will, hereafter, show that this factor A is also the same for all
substances whatever.
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ABSOLUTE TEMPERATURES AND AN ABSOLUTE ZERO OF HEAT.

70. As heat is energy of motion and all motion may be reduced
to repose, it necessarily follows, whatever be the form of those
hidden molecular motions which render bodies hot, that they can
come to rest, or end in an absolute zero of heat and temperature.
As silence is complete negation of sound, and darkness of light, so
is this thermal zero utter privation of heat. Moreover, from these
dynamical views, it follows that negative absolute temperatures
cannot exist.

If in equation (87) we suppose that no external work is done,
then pdv is zero, and '

dQ = cdt + Apdv
reduces to
dQ = cdt ;
which, by integration between limits, becomes

Q—Q=c(t—1) (93)

provided that ¢ is constant. Now, the researches of Regnault
prove that, though ¢ is variable for vapours, liquids and solids,
it may be considered a constant for each permanent gas. Conse-
quently, the law expressed by equation (93), that variations of
temperature are proportional to the corresponding changes in
quantity of heat, is true only for perfect, or permanent, gases
expanding without external work. Only air thermometers, there-
fore, can be used for determining with precision corresponding
changes of temperature and quantity of heat.

But as each observation made with an air thermometer is
a delicate and difficult experiment, and as the function ¢ is
determinate for every substance, mercurial thermometers may be
graduated by comparison with air thermometers, and thus be
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rendered accurate. In fact, the great requisits for thermometers
is that their indications be comparable with each other, and with
those of air thermometers; which alone can serve us standards
to measure temperatures proportionally to variations of heat or
cnergy. Y¥rom equation (81) we have

U—U, = Ec (t—t) ; (94)

which shows that, when pdv is zero, the variation of  internal
cnergy of a perfect gas is proportional to that of the temperature
indicated by an air thermometer.

71. To determine absolute temperatures, suppose, in the

equation
v = epgy (@ + &),

the expansive force p to become zero, so that the gas exerts no
tension and can do no work; then, whatever may be the valuc
of v, we shall have

1
a+t=(—‘+t=0.

But according to the measurements of Regnault, the value of «
is 278 very nearly. Consequently,

¢ +1=2134+¢=0

is the equation which determines the ordinary centigrade tem-
perature ¢ corresponding to the absolute zero of heat. Its value
is evidently —273° C., which is nearly equal to — 460° Fahrenheit.

Denoting absolute temperatures by the Greek letter +, and
those of the ordinary thermometer by ¢, we shall have generally

T=a ¢ < (95)

Ience, to convert centigrade temperatures of the air thermometer
into absolute temperatures, proportional to variations of energy
5
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or heat, we have only to add to the observed indications the
constant number a or 273° C. This is evidently a mere change
of origin of eo-ordinates.

Absolute temperatures can be as readily expressed in degrees
Fahrenheit, or Reaumur; the algebraic formula being the same,
the only differences are in the arithmetical values of ¢ and ¢
required by their respective scales.

Differences of temperature give always

Te— T =l —1;

or they are equal for both absolute and ordinary temperatures;
consequently d¢ is always the same as dr. For many purposes,
only changes, or differences, of temperature need to be expressed ;
and the smaller numbers of the centigrade thermometer are often
more convenient than when increased by 273 to reduce them
to the absolute scale. But thermodynamic formulas are generally
simplified by substituting =, the absolute temperature, in place
of @ + %, the ordinary eentigrade or IMahrenheit indieation.

As Doth the factor A and the absolute temperature = have
been shown to be equal to the same quantity, so that

= B 2 (96)

it follows that the absolute temperature v is the factor of integra-
bility A for perfect gases. 'This result will be shown to be general,
o applicable to all bodies.



CHAPTER V.

AIRS AND VAPOURS.

LAWS OF CHARLES AND MARIOTTE.

72. To deduce the thermodynamic laws of clastic fluids, such
as air, from the gencral differential equations of transformation
and cnergy, we have supposed gases to obey exactly certain experi-
nental laws, § 64, among which are the law of Mariotte,

PV = Doy (96)
and that of Charles,
v=12,(1 + at), (97)

usually called the law of Gay Lussac.

The results were presented to your attention as close approxi-
mations to the real phenomena; and the degree of the approxima-
tion was compared to that of elliptical planetary orbits, requiring
only small corrections for perturbations.

To justify this eomparison, and let you judge of the probable
exactness of conelusions thus theoretically demonstrated, it is well
to present bricfly the results of the most reliable experimental
investigations.

LAW OF MARIOTTE.

73. This fundamental law, sometimes called that of Boyle,
was for nearly two centuries believed to be exact for all gases.

Boyle and Muschenbroeck, however, had each been experi-
mentally led to believe the compression of air less for high
pressures than the law assumes; but Sulzer, in 1753, published
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experiments showing it to be greater. Robison, imagining the
results of Sulzer to be due to condensation of hygrometrie
moisture, experimented upon moist air, air dried with ecaustic
lime, and air containing vapour of camphor, but found differences
from the law of Mariotte even greater than those of Sulzer.
The following are his observations:

DENSITY. ELASTIC FORCE.

1.000 1.000
2.000 1.957
3.000 2.848
4.000 3.737
5.500 4.930
6.000 5.342
7.620 6.490

Without doubt, these very inaccurate results were caused by
moisture, or other sources of error.

In 1826, experiments made with improved instrunments were
published by Oersted and Swendsen, which seemed to show,
though not distinctly, a compression for air slightly greater
than that of the law of Mariotte. But for sulphurouns acid they
found the compressibility far greater than that of air.

It was discovered by Faraday, that chlorine, sulphurous acid
and many other gases are liquefied by pressure and cold. And
Despretz confirmed the experiments of Oersted and Swendsen
upon sulphurous acid; which he also extended to sulphuretted
hydrogen, ammonia and cyanogen; proving them more compres-
sible than atmospheric air. But he found that hydrogen and air
do not differ for pressures below 15 atmospheres; though they
appeared to differ above 20 atmospheres. '

All doubt concerning the exactness of the law of Mariotte
for atmospheric air seemed finally to be completely dispelled by
the cxperiments of Dulong and Arago, made by request of the
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Academy of Sciences and published in 1829 ; their observations
differed from the theoretical values in no instance more than
0.01, for pressures from 1 to R7 atmospheres; and the differences
seemed purely accidental, following no law. Hence, they con-
cluded that the law of Mariotte is perfectly exact for air and
permanent gases, for all pressures below 27 atmospheres, and
most probably also for those above that limit.

It was the wish and intention of Arago and Dulong to have
continued and extended their rescarches, but this was prevented.
Pouillet, therefore, made experiments, the restlts of which were
briefly given in his Zlémens de Physique, and are as follows:
oxygen, nitrogen, hydrogen, and carbonic oxide follow the same
law as atmospheric air up to 100 atmospheres; sulphurous acid,
ammonia, carbonic acid and the protoxide of nitrogen are much
more compressible than atmospheric air; protocarburetted and
bicarburetted hydrogen, which at 10° C. are not liquefied by a
pressure of 100 atmospheres, are sensibly more compressible
than air.

74, Such was the state of knowledge upon this subject
before it was investigated by Regnault, clearly showing liquefiable
gases to be more compressible than air, but proving the law of
Mariotte for the compression of permanent gases to be an approxi-
mation so close as to have cluded all detection of difference by
such skilful observers as Dulong, Arago and Pouillet. Conse-
quently, our comparison with planetary orbits is fully justified;
and any small differences which exist may be properly considered
perturbations.

We shall not attempt to give a complete account of the
researches of Regnault; made with that extreme accuracy for
which he was distinguished, they can only be appreciated by
reading the original memoir published, in 1847, in the transactions
of the Institute, t. xxi, p. 329.
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The following abbreviated table presents his results for several
gases:

¢ ELASTIC FORCE OF PERMANENT GASES,
DENSITY.

Hydrogen. Nitrogen. Atmospheric Air.

2 2.0008 | 1.0004 | 1.9995 | 0.9992 | 1.9975 | 0.998782 |
4 4.0061 | 1.0015 | 3.9918 | 0.9979 | 3.9860 | 0.996490
8 8.0339 | 1.0042 | 7.9641 | 0.9955 | 7.9457 | 0.993212
6 16.1616 | 1.0101 | 15.8597 | 0.9912 | 15.8045 | 0.987780 |

The third, fifth, and seventh vertical columns give the ratios of
the pressure, or elastic force, to the corresponding density. For
atmospheric air, the maximum difference between the observed and
theoretical results, or the deviation from the law of Mariotte,
sensibly exceeds one per cent, and amounts to 0.0122 only under a
compression of sixteen times the original density. Hydrogen pre-
sents the singular phenomenon, that the ratio of the elasticity to
the density increases with the pressure, while it diminishes for air
and nitrogen.

For carbonic acid, one of the readily liquefiable gases, Regnault
obtained the following results:

|
?DENSITY. PRESSURE. RATIO. 'DENSI’I‘Y. PRESSURE. RATIO.
|
2 1.9829 0.9915 8 7.5193 0.9399
4 3.8969 0.9742 16 13.9267 0.8704 |
el

Hence it appears that earbonic acid deviates to the amount of
0.13 from the law of Mariotte for a pressure of sixteen atmospheres,
or more than three-fourths of one per cent for cach atmosphere.
Numerous observations for each of the above cases are rccorded
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Atmospheric air . . 1.00215 | Acid hydrochloric . . 1.00925
Nitrogen binoxide . . 1.00285 ¢ sulphohydric . . 1.01083
Oxide carbonic . . . 1.00293 | Ammonia . . . . . 1.01881
Marsh gas. . . . . '1.00634 | Sulphurous acid. . . 1.02352

Nitrogen protoxide . 1.00651 | Cyanogen . - oL H103358

All of these gases, thercfore, are more compressible than they
should be according to the law of Mariotte, and those deviate
from it most widely which are readily liquefied.

LAW OT CIARLES,

75. The law for the dilatation of gases, expressed by the

formula :
v=1v,(1 + i),

is nsually called the law of Gay Lussac; but the following criticism
by Verdet, which we translate, shows conclusively that it should
be called the law of Charles:

“The cssential feature of this law, the approximate identity
of the rate of dilatation e for all gases, and the consequent pro-
portionality of such dilatations to temperatures indicated by an
air thermometer made with any gas, was demonstrated by Charles
in a most simple manner. The reservoir of a barometer, filled
with the gas, was subjected successively to two temperatures,
those of the room and of boiling water; and the rise of the
mercury in the tube was observed. For air, oxygen, nitrogen,
hydrogen, and carbonic acid, Charles found the ascensions equal;
which was all that is necessary to establish the fact that the
coeflicient of dilatation of these gases is sensibly the same,
although its value could not be thus determined with precision.

“To this result, Gay Lussac, who reports the experiments of
Charles in his memoir (Ann. de Chim.,, t. xliii, p. 157), added
scarcely anything, except a measurement of the cocfficient of
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dilatation erroneous to nearly 4f;. It may even be asserted that,
in presenting as an absolute law that which is only an approxi-
mate relation, he in a measure retarded the progress of science.
According to Charles, the soluble gases are not dilated as much
agair. It is not clear what gases are designated by the term
soluble; but it is quite probable they may have been those upon
which Gay Lussuc saw fit to experiment, sulphurous and hydro-
chloric acid ; and for which he announced the coefficient of
expansion to be the same as that for air. It is now known to
be different to the amount of . On this important point,
Charles has the advantage; and, however imperfect his method
may appear, onc that failed to show differences of % in the
quantity to be measured was not superior.”

Though thus criticised, perhaps severely, the experiments of
Gay Lussac, which attached his name to the law, have the merit
of being the first in which the attempt was made to determine
with precision the coefficient of expansion for the different gases.
And if he failed, it was not for want of skill or care, but chiefly
because of two undiscovered sources of error. At that day, it
was not known how a gas and the apparatus containing it can
be perfectly dried ; moisture, therefore, remained; which, when
heated, became vapour and increased the apparent dilatation. Nor
was it then suspected that a tube is so imperfectly closed by
mercury that air can pass in or out between the glass and
the mercury. Gay Lussac used air thermometers, the tubes of
which were stopped by short, moveable portions of mercury.
After he had measured and obtained for air, oxygen, nitrogen,
and hydrogen, between 0° and 100° the same total dilatation,
0.375, he cven imagined that moisture might be a cause of
error, and repeated his obscrvations upon air dried by passing
it into a thermometer through a chloride of caicium tube; finding
again the same number 0.375, he no longer doubted the exactness
of his measurements. And, for many years, they were received
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with universal confidence. Morcover, they were believed to have
been confirmed by Dalton, and by Dulong and Petit in 1817;
who, although they obtained for 100« the mean value 0.366
between 0° and 3800°, adopted without question the value of
Gay Luszac .37, for temperaturcs below 100° Centigrade.

The inaccuracy of the experiments of Gay Lussac was first
maintained, in the year 1833, by Rudberg, professor in the Uni-
versity of Up:ala, in Sweden. Ascribing it altogether to moisture,
Rudberg undertook to determine the coefficient with air and
apparatus perfectly dried. I'or this purpose, using air thermom-
eters, as Gay Lussac had done, he, instead of sending the air only
once through a chloride of calcium tube, caused it to pass in and
out some fifty or sixty times,—expelling it either by heat or by
expansion produced by an air pump. He subsequently experi-
mented by a different method, but the only feature peculiar in his
researches was the extreme pains taken to render both the air and
the apparatus perfectly dry. The mean value given by his re-
sults for 100e¢ was 0.3646. To show the importance of getting
entirely rid of moisture, Rudberg measured the coefficient for air
without drying it, and obtained from one experiment 0.384, and
from a sccond 0.3902; the same apparatus having been again
thoroughly dried and then filled with dry air, gave 0.3652 for the
cocfficient. These results were simultaneously confirmed, in 1841,
py Magnus in Berlin, and by Regnault in Paris; the latter of whom
then undertook the complete investigation of the dilatation of airs
and vapours.

76. We shall give only results and not attempt to describe
either the experiments or apparatus of Regnault, referring for
such details to the original in the memoirs of the Institute, t. xxi;
it is sufficient to say they display extreme accuracy.

If in the thermodynamic equation for gases,

v =puy (1l + «t),
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the temperature be taken as the independent variable, then the
coefficient ¢ may be determined, cither directly by observing v
under a constant pressure p, or by allowing only p to vary with
¢, in which latter case the values of v must be calculated by the
law of Mariotte. And if that law bLe not exact, then the values
of « obtained by the two methods will differ.

Regnaunlt experimented by five different methods; from the
data of four the coecfficients of dilatation were deduced from
variations of elastic force under ncarly constant volume; but
in the fifth the variations of volume under constant pressure were
directly observed. The following table gives the value of 100e,
or expansion from 0° to 100°, for the gases used:

UNDER UNDER
CONSTANT VOLUME. [CONSTANT PRESSURE.

FRydTOgensez i =iy =50 %3 0.3667 0.3661
Atmospheric air . . . 0.3665 0.3670
NAETOZOM iy -vitd i bis 45 0.3668 0.3670
Carbonic oxide . . . 0.3667 0.3669

| & acldiasagese 0.3688 0.3710
! Protoxide of nitrogen . 0.3676 0.3719
Sulphurous acid . . . 0.3845 0.3903
(DY IO ZET TR S TR 0.3829 0.3877

This table shows that the coefficient « is greater for the more
compressible gases; also that under constant pressare it is greater
than under constant volume, except for hydrogen ; which is, it
will be remembered, less compressible than the law of Mariotte
requires. *

77. If in the expression for the law of Mariotte,

PV = Pl = Pt
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we suppose v to vary as a function of #, while p remains constant,

then
pdv = pyedt ;

in which ¢ is the coeflicient of expansion under constant pressure.
And if we suppose p, to vary with ¢ while v, remains constant,
then
vdp, = poe di ;
in which &' is the coefficient of elastic force under constant
volume. Hence, by subtraction,

P2dv — vidp, = pw, (¢ — ') dE 5
and integrating, !
PY — py = py, (@ — &) ¢,

If the law of Mariotte were exact, the first member of this equa-
tion would be zero; consequently, the coefficients ¢ and ¢’ shounld
be identical. But if the compressibility of the gas increase, or
decrease, in a ratio greater than that law requires, then will e be
greater or less than «'. We see, therefore, that the law of Mariotte
is a &imif to which permanent gases tend to approach when highly
rarefied ; and that the reason why the coefficient under constant
volume, for hydrogen, exceeds that under constant pressure, is
because its resistance or elastic foree, like that of a metallic spring,
increases with compression, exceeding the ratio of the law of
Mariotte; while all other gases act inversely, ‘becoming more
-compressible the closer their particles are forced to approach
each other.

THE COEFFICIENT « VARIES WITH THE PRESSURE.

78. It was announced by Sir I Davy, in the Philosophical
Transactions for 1823, that he had found the coefficient « the
same for 2ir at densities varying in the ratios 1, 2,3, 6, and 12:
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and other persons having found that ccefficient the same for air at
various barometric pressures, it was gencrally believed to be inde-
pendent of pressure.

But all such experiments seeming to have been made without
sufficient precision,” Regnault first examined the dilatation of air
of densities both less and much greater than that of the atmos-
pheric pressure, and then extended the investigation to other
gases.

Tor atmospheric air, the following are the results for the
coefficient of constant volume:

l DENSITY AT 0°. 1 + 100«'. DENSITY AT 0°, 1+ 100¢'.
|
0.1444 1.36482 1.0000 1.36650
0.2204 1.36513 2.2084 1.36760
0.3501 1.36542 i 22270 1.36800
0.4950 1.36587 2.8213 1.36894
1 0.4937 1.3657% 4.8100 1.37091

Hence it appears, that between the same limits of temperature,
the expansion of air increases with the pressure or density. And
for a change of density from 0.1444 to 4.81, that is to say, from
1 to 33.3, the coefficient varied from 0.36482 to 0.37091.

By the methods of constant volume, carbonic acid gave the
following results: :

| DENSITY AT 0°. 1 + 100a/ " DENSITY AT 0°, 1 + 100
| 1.0000 . 1.36856 !. 2.2976 1.37523
! 11879 ‘ 1.36943 || 4.1318 1.38598

The coefficient, therefore, increases much more rapidly with
the pressure than it does for atmospheric air.
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For the coefficient of constant pressure «, the following values
were obtained : '

. ATMOSPIIERIC AIR. CARBONIC ACID. HYDROGEN. ‘

Pressure. | 1 + 100«. | Pressure. t 1 + 100, | Pressure. ‘ 1 + 100c. |
760™m 1.36706 T60mm 1.37099 760Q™m 1.36613
525 1.36944 2520 1.38455 2545 1.36616

For hydrogen, the cocfficient ¢ does not, therefore, chang
sensibly between the limits of onc and four atmospheres; but it
increases rapidly for atmospheric air, and still more so for carbonic
acid.

For the small change of pressure from 760™" to 960™", the
coefficient of sulphurous acid, between 0° and 100°, changed
from 0.3902 to 0.3980; though the gas at 0° and under the
pressure 960", is far from its point of liquefaction.

TFrom the preceding data, Regnault drew the following con-
clusions : 1°, for the same gas the coeffieient of constant pressure
is not the same as that calculated from variations of elastic force
under constant volume ; 2°, the coefficients for different gases are
not equal, and the greater the pressure the more marked is this
inequality ; 3°, air and all other gases, except hydrogen, have
" coefficients which increase with the pressure ; 4°, as the coefficients
of expansion of different gases approach nearer to equality
when the pressure is diminished, the law of Charles, that all
gases have the same coefficient, is a Zimit applicable to gases
in a state of extreme dilatation; bunt which differs the more
from reality the denser the gas becomes under compression, or
the nearer the molecules approach each other.
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INFTLUENCE OF TEMPERATURE UPON COMPRESSIBILITY.

79. The results obtained by Regnault for the compressibility
of different gases, § 74, were from observations made at tempera-
tures varying from 2° to 10° C.; and are, therefore, absolutely
true only under such circumstances.

In order that gases may obey the same law, both of compres-
gion and dilatation, for all pressures and temperatures, it is
requisite that the ratio of their specific gravities or densitics be
constant for all such variations. To make this evident, let w, be
the weight of any fixed volume of a gas at 0° and o', that of
an equal volume of atmospheric air at the same temperature, and
let both be under the same barometric pressure p,; let also o
and ' be their weights for the same volume under the pressure p
and at the temperature 7. Now, if they both vary by the same
law, we shall have for the specific gravity of the gas obtained
under these different circumstances,

————
W nw, W,
a constant quantity, whatever may be the value of # the common
factor of variation.
Tor carbonic acid, Regnault found the following specific grav-
ities or densities, at the temperatures 0° and 100°, and for
barometric pregsures below that of atmospheric weight :

PRESSURE. DENSITY AT 0°. PRESSURE. DENSITY AT 10J°.
I
6o 1.52910 T60™ 1.52418 i

i 37413 1.52366 383.39 1.52410
| 2417 1.52145
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To compare the compressibility of atmospheric air with the
law of Mariotte by the same method, Regnault gives the following
experimental and calculated weights for the quantity of air con-
tained in a globe at 0°, under different pressures:

-l' WEIGHT OF THE AIR IN THE GLOBE AT 0°.

! PRESSURE.

! Observed. Calculated. Difference.

| -

f 303" 5.0895 5.0954 0.0059
312.35 5.2510 5.2522 0.0012
358.22 6.0225 6.0233 0.0008

)

The differences between the observed and the caleulated weights
for air are so small that Regnault considered them within the
limits of error of observation. :

These experiments prove that carbonic acid deviates sensibly
from the law of Mariotte at 0° C., even for pressures below that
of the atmosphere; but follows that law at 160° C., as air and
other permanent gases do, so closely that differences are only
observable by methods of extreme precision. It is considered very
probable that other liquefiable gases behave as carbonic acid does
when compressed at elevated temperatures, but the subject needs
experimental investigation.

80. The preceding facts show that gases may be divided into
two classes: permanent gases, of which atmosphefic air, oxygen,
nitrogen, and hydrogen arc the most important, and which all
obey the laws of Mariotte and Charles so very closely that they
may be assumed to do so exaetly; and liquefiable gases, whose
compressibility increases rapidly with pressure; but at elevated
temperatures, or when very highly rarefied, they also appear to
follow the law of Mariotte without sensible deviation.
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The peculiar exeception, which hydrogen presents, of a gas
whose compressibility is less than that required by the law of
Mariotte, renders it probable that, if the elastic force of other
permanent gases be increased by elevating the temperature until
the coefficient of elastic force under eonstant volume becomes
equal to that of dilatation under constant pressure, then such
gases would follow the laws of Charles and Mariotte exactly; but
if the temperature be still further increased, then the differenee
(¢ — ¢') would become negative, as it is for hydrogen, and they
too would deviate from that law in the opposite dircction. The
fundamental law for perfect gases, given by the equation

pv — pty (1 + «t) =0,

may, therefore, be properly considered as the expression of a
physical state, or limif, to which gases approach more or less
elosely, according to the values of the independent variables p
and ¢, and to that of «, which depends upon the nature of the
substance as well as upon the pressure.

HYPOTHETICAL LAW OF RANKINE.

81. Asthe law of Mariotte does not express exactly the com-
pressibility of any existing gas, it is natural to seck some other
formula which would be more correct. In the present state of
physical knowledge, it does not appear possible to find one more
satisfactory, for the data are very incomplete. Moreover, if we
express by the function

y 2,
o (p, v, ) :—.%—1,

the deviation of any gas from the law of Mariotte, which deviation
should be zero if that law were exact, then, as the experiments
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of Regnault show this function to depend upon the temperature,
the initial pressure, the variation of the pressure and the nature of
the substance, it is improbable that the true function can be of
simple form ; or that it would be as convenient as the law of
Mariotte ; which is sufficiently exact for practical uses, and may
be considered approximate in nice theoretical investigations.

As the absolute temperature = is equal to (¢ + ¢), and =, is
equal to @« when ¢ becomes zero, the general formula

v —po(1 + «t) =0
may be put under the form

v s
o (99)
a remarkably simple form of the equation for the law of Charles
and Mariotte, which may be thus enunciated, the encrgy of a
perfect gas is proportional to the absolute temperature.

From this expression and “{ke hypothesis of molecular vor-
tices,” Rankine has obtained, for the expansion and elasticity
of gases, the formula

8915 7 Vs 3o
Dl T

which agrees with the experiments of Regnault, and in which
A, B, € arc functions of the density to be determined experi-
mentally. (See.Rankine on Steam-engines, p. 229, 3d edition.)
This equation, regarded as merely an empirical formula, may
sometimes be useful; but the hypothesis of molecular vortices
is not an accepted part of positive science.
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ACCORDANCE OF AIR THERMOMETERS.

82. The variation of the coefficient «, not only for differeut
gases, but also for the same gas under different pressures,
suggests the very important question, whether or not temperatures
observed with air thermometers made of several gases, or of
atmospheric air of variable density, are comparable and exact.
This question was fully investigated and settled by Regnault, who
arrived experimentally at the following conclusions:

1°, atmospheric air follows the same law of expansion from 0°
to 350°, even when its initial elastic force varies from 0.4 to
1.3 metres at 0°; and consequently, air thermometers are com-
parable, giving the same indications whatever may be the density
of the air with which they are filled ;

2°, atmospheric air, hydrogen and carbonic acid obey, between
0° and 350° sensibly the same law of expansion, though their
coefficients are quite different; hence thermometers constructed
with these several gases accord with each other, provided the
temperatures are computed with the coefficient proper to each gas;

3°, sulphurous acid deviates from the law of dilatation of
the preceding gases. Its coefficient of expansion diminishes with
the temperature indicated by an air thermometer. Above 100°
the sulphurous acid thermometer gives indications which are
too small, and the deficiency increases regularly with the tempera-
ture. Thermometers made with this gas would, therefore, be
incorrect. :

The mean coefficient of expansion for sulphurous acid dimin-
ishes in a marked manner with the temperature, indicated by
the air thermometer. Thus from 0° to 100° it was found to be
0.003825, between 0° and 186° it was 0.003800, and between 0° and
300° it became 0.00379.
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From this action of sulphurous acid and the very rapid increase
of its coefficient with its density, Regnault was led to infer that
most vapours have coefficients very different from that of air when
near their points of liquefaction ; consequently, under the circum-
stances in which they are placed for the experimental determination
of their densities.

EXPANSION OF VAPOTURS.

83. Our knowledge of the expansion of steam and other
vapours is exceedingly imperfect. It is customary to apply to
them the laws of Charles and Mariotte and the coefficient ¢ of the
permanent gases, but such a practice is quite erroncous.

In 1852, Mr. Siemens published experiments on steam, giving
the mean coefficient of expansion 0.00693 near the point of ebulli-
tion, and a diminishing rate with increase of temperature.

Subsequently, Messrs. Fairbairn and Tate obtained results,
which were communicated to the Royal Society and briefly given
in the Lond. and Ed. Phil. Mag., vol. xxi, 1861, from which they
drew the following conclusions:

1°, that the density of saturated steam at all temperatures,
above as well as below 100° C., is invariably greater than that
derived from the laws of perfect gases;

2°, that the rate of expansion of superheated steam greatly
exceeds that of air for temperatures near the point of saturation;
whereas at higher temperatures the rate of expansion approaches
that of air and perfect gases. Thus between 80° and 82° the
coefficient for steam saturated at 80° was found to be three times
that of air; but at 90° it was nearly the same as that of air.

Messrs. Fairbairn and Tate proposed to extend and complete
these experiments. But if this purpose was ever carried into
effect, I am not aware that the results have been published.

The expansion of superheated steam has since been investigated






CHAPTER VI

INTERNAL ENERGY.

FIRST FUNDAMENTAL LAW.

84. The proposition, that heat is mechanieal energy, is very
properly called the first fundamental law of thermodynamics; and
the equation

EQ =3z fPdp,
in which 7, the coefficient of Joule, is equal to 425, not only
expresses the law, but determines the amount of work equivalent to
any given number of thermal units.

We have seen that for hydrogen, oxygen, and atmospheric air,
the laws of Mariotte and Charles enable us to calculate Z and give
for it the value 425, agreeing very closely with that of the experi-
ments of Joule, and confirmed by the working results of engines
measured by Hirn. Various experiments made by others all tend
to verify the accuracy of this value obtained by Joule.

But it may readily be demonstrated that Z is a constant of
nature, for which the same value must necessarily be found what-
ever be the method of determination.

For this purpose, let ¢ be the heat of friction which can be
produced by w a given amount of work. If now this heat be
reconverted into work, in any engine, it will reproduce the work

w=FEq;
for if not, then let it produce more or less, expressed by

w(l + k).
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and the difficulty of doing so in many cases, see § 54, has already
been remarked upon.

Differentiating U in the last equation, as a function of » and ¢,
we have generally

4Q = A( dt-l-dl >+Apdv. (101)

Now, for permanent, and consequently for perfect gases, Joule
proved experimentally that U is a function of # only; and there-
fore it does not vary with »; an important law, which shows for
such gases that the differential of U as a function of v is zero; and
this reduces the last equation to the simpler form

dQ = dUdt + Apdv ;

by comparing which with the general formula
dQ = cdt + ldv,

we obtain, for gases obeying this second law of Joule, the con-
sequences,
V=Rrct% B="Apy;

which may be enunciated thus: the infernal encrgy of o permanent
or perfect gas is a simple function of the temperature; and its
latent heat of cxpansion s directly proportional to the normal
pressure.

Moreover, when there is no external work done by the expand-
ing gas, p is zero, and integrating between limits,

Q— Q=c(t—1b)
U—Uy=Ee(t —t);

equations of fundamental importance, as we have already seen,
§ 70, for they prove that only air thermometers give indications
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of temperature proportional to variations of the quantity of heat
or internal energy; and they should, therefore, be used as standards
for all exact thermometric observations.

As Regnault has shown that ¢, the specific heat of constant
volume, is a constant for each permanent gas, it follows from the
second law of Joule, that thermometers made of different gases
should indicate the sume temperatures, as Regnault has proved
experimentally, § 82 ; for two gases such as hydrogen and air
give

Q—Q=c(—1t)=a(—1);
indicating for a given change of heat the same variation of tem-
perature (¢ — 4,); the only difference being, that linear spaces,
gradnated into the same number of degrees on the two instru-
ments, vary for the unit of volume in the ratio of ¢ to ¢, or
inversely as the specific heats of the two gases.

The second law of Joule, expressed by the formula

U—U,= Ee(t —t),

is thus enunciated, the internal energy of a gas is a function of
the temperature only. It, therefore, docs not vary with density
or specific volume; and it is of such interest and importance
that it will be well to give attention to the experiments by
which Joule established this second law. They are also very
instructive, for they show clearly the requisites to be attended
to in such investigations.

86. If a gas cxpand without being subjected to cxternal
pressure, p is zero and

Q =AU 5
whence by differentiating

aU av
(ZQ— A (Et-dt - %dv).
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In this, the first member expresses the quantity of heat requisite
to the elementary change of internal state under such ecircum-
stances. If now the changes of temperature which take place in
the gas be compensatory, or if mere interchanges of heat occur
between different portions, then will there be no heat given to,
or absorbed from, surrounding bodies; @ and ¢ will be constant and

d¥en

=0 (102)

or the internal cnergy of the cxpanding gas is independent of
its volume, and is a function of its temperature only.

To subject this theoretical deduction to experimental investi-
gation Joule contrived the following experiment. Two metallic
vessels of equal size were connected by a tube provided with a
stop-cock ; one of them contained air compressed to 22 atmos-
pheres, in the other was as perfect a vacuum as it was possible
to produce. When the stop-cock was opened the compressed
air from the first vessel flowed into the second, doubling its
volume without doing any external work ; and the entire apparatus
Leing immersed in water, the quantity of which was reduced as
much as possible, it was found that the most delicate thermometer
did not indicate any variation of temperature in the enveloping
water. The experiment was then varied by immersing each vessel
separately ; the compressed air, communicating in its expansion
sensible motion to its particles, does so at the expense of its
internal energy and with consequent reduction of temperature ;
which is experimentally rendered manifest by immersing it alone ;
and the air flowing into the second vessel loses its motion,
changing kinetic into internal energy with corresponding
elevation of temperature. The change of temperature and
energy in one vessel is equivalent but opposite to that in the
other, and their sum is congsequently zero. These experiments
of Joule prove that internal energy is independent of volume;
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and were the methods sufficiently delicate, they would have left
nothing to be desired relatively to the exactness of the law,
especially when carefully repeated and verified by an observer so
skilled as Regnault ; who was led by them to adopt the dynamical
theory of heat.

But the quantity of water required to envelope the apparatus
was so large, that it may be shown to have been impossible to
have detected a change of temperature in the air subjected to
experiment to the extent of one degree. It was, therefore,
necessary to contrive a much more delicate method of investi-
gation, in order to determine whether the law is rigorously true
for any gas, and whether permanent gases obey it alike; or
whether, as in the case of the laws of Charles and Mariotte,
this second law of Joule is only ¢ limit for theoretically perfect
gases, to which permanent gases tend to approximate in changes
of cnergy.

87. Such a method was contrived by Sir W. Thomson, and
the investigation was then continued by him and Joule jointly. It
is evidently necessary to measure the change of temperature
of the gas itself, in order to get rid of the concealing influence
exerted by the large quantity of water. This was simply done
by obstructing the flow of a current of gas through a long pipe,
by means of a porous plug ; the effect of which obstruction
would be to cause on one side of the plug condensation, and
on the other side expansion ; delicate thermometers show whether
the temperature of the gas is changed by the operation. If the
gas were perfect, obeying exactly the law of Mariotte,

v — pvy =0

should be the variation of energy when the compressed gas passes
from the pressure p on one side of the plug into the part of the
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tube communicating with the atmosphere under the diminished
pressure p, on the other side.
But if the gas does not obey that law, then will

Poto — pv = 08
or
0'Q = A4S = A(pyws — pv)

will be the expression for the quantity of heat absorbed in the
change of volume due to the escape of the gas into the air.
And if the internal work caused by compression and expansicn
in passing through the porous plug be nothing, then should there
be no change of temperature.

But if this be not rigorously true for the gas operated upon,

8"Q = AoU

will express the quantity of heat requisite to this internal change.
Substituting these values in equation (56), we obtain

6Q =0'Q 4+ 6'Q = A6 (U + 8),

for the variation of heat measured in thermal units, which the
thermometers should indicate.

The experiments showed for hydrogen a thermal variation
which was scarcely appreciable, a very small change for atmos-
pheric air, but a very considerable rednction of temperature for
carbonic acid.

They gave the general result, that for cach gas the ratio of the
reduction of temperature to the difference of pressures is a constant
factor,

t—th=a(p—po);

hence, if we denote by ¢ the specific heat of the gas,

Q=c(t—t)=ac(p—p);
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and
0U = Eac (p — po) + pv — pots

For an elementary variation of the normal pressure and volume
P =po + Op, V=1, — 0v;
and by equation (98), the formula of Regnault,

PV — Py = Py A’ (%“ —_ 1) + ete,

From these equations, omitting infinitesimals of the second order,
we obtain

poA,dv =povoA’ (%’ Sy 1) 3

but
pv — pots = vy 0p — p, O,
and therefore,

op =1+ 4) Lav.
(X
Hence, by substitution,

0U = Facdp + p, A" v ;
which becomes .

0U = Fae (1 + 4') L28v 4 A'pysn.
0

But in this equation the common factor of the second member,
o0, is the variation of external work. Dividing by it, we get for
the ratio of the change of internal energy to that of external work,

oU ac ) 4

an expression in which all the quantities in the second member
have been experimentally determined ; ¢ by the velocity of sound;
A" and v, by Regnault ; and @ and Z by Joule and Thomson for
atmospheric air, hydrogen, and carbonic acid.
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These three gases gave the following values of the ratio of
internal to external work:

Atmospheric air . . . ., 0.0020
Hydrogen I T R 010008
Carbonic acid e R R 1) 0080

Hence, we see that when air at the usual barometric pressure
cxpands slightly, the internal work is only 0.002 of the external.
While for hydrogen it is but two-fifths of that amount, and in fact
scarcely appreciable. But for carbonic acid, a liquefiable gas, it is
four times greater than for air, and amounts to nearly one per cent.

The effect of elevated temperature was ascertained for air and
carbonic acid, and found to be a great diminution of the constant
a, or of the rate of cooling to variation of pressure on the different
sides of the porous plug. For air, at temperatures of 15° to 20°
centigrade, the mean value of the rate @ was 0.262; but at 91°.5
it was only 0.206; for carbonic acid at 20° it was 1.151; and
at 91°.5 it was reduced to 0.703; comparing these numbers, we
see that for carbonic acid the rate reduces from five to three
and a half times that of air; thus again manifesting its tendency
to approach at high temperatures to the character of a perma-
nent gas.

88. From the above, it is evident that the second law of
Joule, like those of Mariotte and Charles, constitutes a limit
to which the action of real gases tends to approach when they
are highly rarefied ; and it is rigorously true only for a theorctically
perfect gas. '

To comprechend fully its meaning, the analysis of the total
action of heat upon an expanding body, already given in § 49,
must be borne in mind. That action divides itself into three
distinct effects: 1°, change of temperature, rendering the body
hotter; 2° change of internal molecular structure, or variation



INTERNAL ENERGY. 127

of the potential of molecular action, which may be called internal
work; 3°, external work upon the enveloping surface, or vessel,
as that upon a piston pushed by steam, or by expanding air,
in the cylinder of an engine. For an elementary thermal change,
the last of these three effects is expressed by pdv; and the first
is denoted by c¢d¢ in the formula

dQ = cdt + ldv,
or by the first term of the second member of the equation

dU aUu

dQ =4 5 dt + A% dv .4 Apdv.

It is, therefore, only the second term of the last member of this
expression, denoting internal work done against cohesion or
molecular action, which Joule found to be insensible by his
first method of experiment; and which the far superior method
of the porous plug proves to be very small, though not inappre-
ciable for air and hydrogen, but quite large for carbonic acid.

Hence” it appears that molecular attraction, or the force of
cohesion, must be very small in permanent gases, but is quite
sensible in a liquefiable gas, such as earbonic acid, and should
be nothing for the perfectly gaseous state.

From the equations just used and the second law of Joule,
we have already deduced equations (¥8) for perfect gases,

edt = AdU ; {=Adp;

the last being a very simple relation between the mechanical
equivalent of heat, the latent heat of expansion and the pressure,
from which any one of these three quantitics may be determined
when the other two are known.
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By substituting for 7 its value Ap, and for d¢ its equivalent dr,
the variation of absolute temperature, § 71, we have

dQ = cdv + Apdw. (103)

At the absolute zero of heat, both ¢Q and edr are nothing; and
therefore p is so also. Consequently, at that zero, a perfect
gas would be without external pressure, without internal motion
or temperature, and without molecular attraction or repulsion;
or it would be in a state of utter dynamic inaction and indiffer-
ence, hoth within itself, and relatively to an enveloping surface.

LAW OF DULONG AND PETIT.

89. The laws of Charles and Mariotte and the second law
of Joule being for real gases only limits, or approximations, the
question naturally arises, whether the two remaining experimental
postulates, from which we have deduced the properties of the
perfectly gaseous state, are more rigorously true; or whether
they too meed to be corrected for perturbations whén applied
to gases.

To the analyses chiefly of Berzelius we owe the establishment
of the great fundamental law of chemistry, that bodies combine in
definite proportions by weight; and to Gay Lussac the cquaily
simple law, that gases unite by volumes which are in very simple
ratios to each other; water, for example, being composed of one
volume of oxygen and #wo of hydrogen, and nitric acid consisting
of fwo volumes of nitrogen united with five of oxygen.

The postulate that the product of the density by the specific
heat of e gas s constant, see equation (83), is a consequence of
the laws of Berzelius and Gay Lussac, coupled with the discovery
of Dulong and Petit, that the product of the specific heat of
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bodies by their chemical combining proportions, or equivalents
by weight, is constant for those of like composition. For if
gases unite by volume, their combining weights are proportional
to their density or specific gravity. Hence, in chemical researches,
the combining proportions of gases and vapours are often calculated
from their densities. i

The usual enunciation of the law of Dulong and Petit is
that the product of the afomic weight by the specific heat is
constant for like chemical substances; but .the use of the term
atomic weight involves the hypothesis of combination by atoms.
Whatever may be the probability, or improbability, of that hypoth-
esis, we carefully avoid it, in pursuance of the purpose to exclude
from consideration, in discussing the subject of thermodynamics
as an exact science, everything purely hypothetical; so that it
may carry to your minds the full conviction of necessary truth
which only absolute demonstration commands. And this we do
the more willingly inasmuch as chemical analyses prove the law
of definite combining proportions most positively, thereby render-
ing the atomic hypothesis of Dalton unnecessary to our purposes,
it not even to chemistry itself, and reducing it to the minor
importance of being only an ingenious speculation, useful to
facilitate by simplifying conceptions of chemical science.

The question of the exactness of the law of Dulong and Petit
resolves itself into that of the probable error of measurements
of density and specific heat. The requisite manipulations are com-
plex and difficult, tending to increase limits of error. And they
are not reliable beyond the third place of decimals. Consequently,
we may justly conclude that, in determinations of density and
specific heat, the probable error must be such as to render uncertain
the third place of decimals.

With these remarks, we submit the following results of
Regnault: '
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d % cd ‘

| Atmospheric air . . 1.0000 0.2375 0.2375
| Hydrogem . . . . | 00693 3.4690 0.2360 |

Nitrogen . . . . . | 09713 0.2440 0.2370
Carbonic oxide . . | 09674 | 02450 02370 |
Catbonic acid . . . | 15200 02164 | 03308 |
Sulphurous acid . . | 22470 0.1553 0.3489 |
Chlorine . . . . . | 24400 0.1214 0.2962 ’

In this table d denotes the density, ¢' the specific heat, and ¢'d
their product. It is evident, that while ¢'d is constant for
permanent gases\vhich follow the law of Mariotte closely, such
is not the case for vapours and liquefiable gases. '

90. We have stated, §53, that for solids and liquids the
capacity, or specific heat, is a function of the temperature. But
for permanent gases, Regnault found the specific heat constaut
at all temperatures and densities. For atmospheric air and
carbonic acid, he obtained the following data:

‘ ATMOSPHERIC AIR. | CARBONIC ACID.

| Temperature. Capacity. Temperature. Capacity.

From —30° to +10° | 0.23771 || From —30° to 4-10° | 0.18427
© 0 to 100° | 0.23741 8 10°to 100° | 0.20246

] « 0 to 200° | 028751 | «  10°to 200° | 021692 |

Other gases were experimented upon with like results. Under
pressures varying from one to ten atmospheres, Regnault could
not find any appreciable change in the capacity of air or of other
permanent gases; mor did that of carbenic acid vary with like
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changes of pressure; though it inereases rapidly with the
temperature.

In measurements of capacity, or specific heat, that for air 0.2375
is the quantity of heat in calories necessary to raise the tempera-
ture of a kilogramme of air, under constant pressure, through
one degree centigrade; the specific heat, or capacity, of water -
being the thermal unit.

91. From these experiments, it follows that the permanent
gases are all equally adapted to exact measurements of tempera-
ture, comparable with those of thermometers made of atmospheric
air; for they all obey elosely the law of , Mariotte, have nearly
the same cocflicient of dilatation, and their specific heat, or the
guantity requisite to produce a variation of one degrée of tempera-
ture, is independent of pressure and temperature for each and
all of them., But they are the only substances which possess
such properties; the liquefiable gases and all solids and liquids
have speeific heats which increase rapidly with temperature and
are not proportional to their expansion. Thus for mercury,
according to Regnault, the specific ‘heat is 0.029 between 15°
and 20°; but only 0.028 from 10° to 15°; while for aleohol the
speeific heat is 0.615 from 20° to 15°; 0.602 between 15° and 10°;
and 0.596 from 10° to 5° It is, therefore, only for the permanent
gases, that such an equation as (93) can be applicable ; or that
heat absorbed is not rendered partly latent by the internal work
of changmv the potential of molecular action. In other words,
it is only for them that

au

="

and that the second member of the equation

aQr =1 ( dt + l (lv +pdv)
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reduces to the simpler form
dQ = cdt + Apdv ;

in which ¢ is constant for each gas; giving therefore, when
there is no external work, the equation

Q— Qozc(t""fu),

a8 the law of exact thermometric measurements.

CONCLUSIONS.

92. We have now examined carefully each of the four
fundamental postulates, or experimental laws, assumed in § 64,
as those of the perfectly gaseous state; they define that state and
let us deduce from it simple thermodynamic theorems, which
the more permanent gases obey so closely that the differences
either fall within the limits of probable errors of observation,
or are so small that they may be neglected. Those laws are,
therefore, approximations which for practical purposes may be
regarded as sufficiently exact expressions of actual phenomena.

In case of hydrogen, we have seen, that while it obeys the
last three postulates so closely that it is impossible to detect any
difference that may not be considered negligeable, this gas is,
with respect to the laws of Charles and Mariotte, (fo use an
expression of Regnault) even more than perfect ; for its elastic
force increases with pressure, while all other gases become more
compressible ; and its coefficient of dilatation for constant volume
is greater than that for constant pressure; but for other gases
it is less. If they, therefore, fall short of the law, hydrogen
exceeds it. Hence we may consider, with rigorous exactness, the
equation

o =pa (1 + «t)
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as the expression of an intermediate state between hydrogen
and the other gases, to which they all tend to approach as
to a limit.

Moreover, when the liquefiable gases expand with heat, or by
removal of pressure, they approximate in their changes to the
condition of the permanent gases, and consequently to the per-
fectly gaseous state.

93. For thermal transformations of gases, we have compared
deviations from the laws of Charles and Mariotte to perturbations
of theoretically elliptical orbits of planets. With equal fitness
bave we also compared a perfect gas to the simple pendulum
in mechanics; an imaginary thing, for it is impracticable to
realize the conditions of its definition, that it vibrate without
any resistance in arcs which must be considered cycloidal or.
infinitesimal ; yet, it gives us a simplified equation from which
we deduce readily, for vibratory motions, laws which we can
generally use as sufficient approximations in practical problems;
instead of the more complicated formulas of a real ecompound
pendulum vibrating in a resisting medium.

94. But the justification of our employment of the fiction
of a perfect gas as the means of getting simplified approximate
laws for real gases, must be put upon higher ground than mere
comparison with the successful practice of astronomy, or with
examples in rational mechanics. There is not, in fact, any
problem in physical mechanics, however simple we may imagine
it, which admits of solution in any other manner than by suc-
cessive approximations ; rendered closer by corrections for residual
phenomena, as Herschel has called them, or facts not taken into
account in the first and simpler determination of the principal
term or terms of the series. In-applying the mechanical theory
of heat, or any other, such as that of Fresnel for light, to actua!
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phenomena, we aré, therefore, compelled to content ourselves
with approximations; and such must necessarily be the case
independently of what may be the nature of the phenomena
investigated.

If we knew the laws of the internal forces of matter, and those
of its molecular structure, it might be possible to give a complete
solution of the problem of the effects produced by external forces.
Unfortunately, upon this subject we know actually nothing; and
if we would avoid errors into which we are led by substituting
conjecture for knowledge, we must eliminafe from our equations,
rather than attempt to determine, terms which depend upon
internal molecular action, which is so inscrutably concealed
from observation.

© 96. These truths and considerations lie at the very foundation,
not only of the study of heat, but also cf that division of dynamics
into rational and applied mechanics with which you are familiar.
A division of the subject in fact into two sciences,—one purely
rational, or abstract, an analytical geometry of four dimensions
with time and the current co-ordinates of space for variables;
and in which the bodies supposed to move are mere fictions,
endowed with such properties only as would cause their principal
motions to agree with those observed in the material world around
us; the other, a science of application, entirely physical, rejecting
fiction and hypothesis, absolutely real, positive and practical;
the knowledge of the material creation as it actually exists, in
so far as it is possible for such knowledge to be discovered
and comprehended by man. In every problem of physical
mechaunics, only partial and imperfect solutions are possible ;
not of choice, therefore, but of necessity, are planetary motions
divided into elliptical revolutions and residual perturbations. Nor
is it for mere simplicity and eonvenience, or in indulgence of
faney, that we Degin the investigation of thermodynamic trans-
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formations by determining those of a theoretically perfect state,
defined as this state has been by the laws of Charles and Mariotte ;
inductions which the real gases obey quite as closely as do planets
move in eclliptical orbits, or as machines do ever move without
friction.

The full force of these remarks, and the true nature of
thermodynamic as well as all other physico-mathematical ques-
tions, may be rendered clear by an example, and we select
for the purpose the accurate weighing of any bedy. Nothing
seems simpler at first, for we have only to use a good balance
and set of weights, and counterpoise the body with such of
the weights as will put the whole system into equilibrium. The
case is that of a lever with apparently equal arms and equal
weights; and for most practical purposes, this first approximation
is a sufficient solution of the problem, giving at once

mr = wr, or m=w;

in which m is the body, w the counterpoise weight, and », 7,
the lever arms. :

But no heed has been paid to moisture, or other adhering
matter. If we attempt to remove this by wiping, the body will
be electrified, and may be attracted by other adjacent substances.

Then the apparent weight must be corrected for atmospheric
buoyaney; w is not the trne weight of m; and we must add
a term B for buoyancy, giving

m=w 4+ B8 + etc.;

in which B is to be ascertained by obtaining the specific gravity
of air under the particular barometric pressure, temperature and
degree of moisture, at the time and place of weighing m, and the
difference of volume of m and w at the same temperature.
Denoting the specific gravity of the air by «, we have
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m=w + a(v—v) + ete.

To ascertain the values of ¢ and of » and ¢/, we must solve
problems equally if not more difficnlt than that of weighing m, and
requiring corrections. Thus rapidly does the question grow com-
plicated.

But suppose the correction for buoyancy made, either approxi-
mately or exactly, if to do so exactly were possible; how are we to
know that the weight w is not false, otherwise than by comparing
it exactly with a true standard, or know this standard to be true,
except by proving it so by complex investigations? Assuming this
error of w ascertained, we must correct both w and ( for it, giving

m=1w + B + 6 (w + B) + ete.

Thus far the balance has been supposed perfect, and its lever-arms
exactly equal, conditions which are neither of them possible. All
the imperfections of the balance must, therefore, be determined,
as well as the difference of its lever-arms at the time of weighing
sn ; and for these corrections must be applied. So, by successive
approximations, we arrive more and more closely at the probable
weight of the body, determining the principal terms which are to
be added in the second member of our expression.

Finally, after having made all possible corrections, we reach the
question of errors of observation, errors of dynamic change of
temperature, volume and moisture, during the time of the experi-
mental investigation, instrumental errors that cannot be ascertained,
etc., ete., and must then content ourselves with simply determining
the limit of probable error, or degree of the approximation in the
obtained result.
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of which internal work or energy may be eliminated and thermo-
dynamic transformations become measurable by external work
alone.

In steam-engines, the operations consist of a perpetually
recurring cycle of precisely similar positions, states and tempera-
tures; they, therefore, evidently fulfil the condition of Carnot,
and equation (104) is directly applicable to them.

WATT’S INDICATOR AND CLAPEYRON’S DIAGRAM OF ENERGY.

97. Of the many valuable contrivances relating to the steam-
engine, for which the world is indebted to the inventive genius of
James Watt, one of the most simple and beautiful is his indicator ;
a little instrument, by which an engine is made to furnish a
drawing of its own work, or graphically to integrate equation (104).
This indicator, attached usually to the working cylinder, consists
of a small cylinder and piston, to the rod of which is fastened a
pencil, moveable by the pressure of the steam but resisted by a
spiral spring ; so that it records upon a paper touching the pencil-
point changes of pressure as variation of the ordinates of a curve.
Another motion is given to the paper perpendicularly to that
of the pencil, which causes it to mark changes of volume, or
variations of the abscissas of the curve. This latter motion is
8o connected with that of the engine as to be made reciprocating,
causihg the paper to reverse its direction periodically, so that the
diagram becomes a closed curve or cycle; the area of which
represents the integral of pdv, or the external work.

For a more complete description of this little instrument,
reference may be made to Pambour, “Théorie des machines &
vapeur,” page 109, or to some other treatise on the steam-engine.

We owe to Clapeyron this use of Watt’s indicator and diagram
of energy, as the graphic method of applying the principles of
Carnot to the work of engines.
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CARNOT’S TEST OF PERFECTION.

98. An engine always receives from a boiler, or source, at &
temperature 7, a quantity of heat which we may denote by ¢ ; and
it emits at a lower temperature T, a part ¢’ to a condenser, or
refrigerator, which in non-condensing engines is the atmosphere.
If, of the difference (g — ¢') nonc be lost or wasted, but all be
converted into nseful work, then will the engine evidently bo
theoretically perfect. This, according to Carnot, would be the
complete utilization of the chufe de chaleur from + to =, or from
the higher to the lower temperature. Carnot, however, was led by
the material hypothesis to suppose erroneously ¢ equal to ¢’ ; for
according to that hypothesis heat cannot be put out of existence;
while by the dynamical theory it ceases to be heat, or to exist as
thermal cnergy, when transformed into mechanical work.

Carnot’s test of a perfect engine is that it be capable of being
worked backwards, in the cycle, reproducing all the changes;
or that it be reversible. An expanding gas converts internal heat,
or energy, into external work, and when compressed by external
pressure grows hot; as these opposite changes are conversely equiv-
alent, it is evident that if an engine worked by heat produces the
amount of work

Blg—q)= [ piv

so would it, if worked backwards, by expending this mechanical
work upon it, produce the amount of heat

{/—q'“—-A,/:gpdv;

provided that each of these transformations take place without
waste or loss. It is also necessary that the changes, or phenomena,
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be always such as are capable of being reversed; but in some cases
this is impracticable. For example, bars of iron are heated by
friction or by hammering them; but hot iron cannot be made
to perform directly any such work as rabbing or hammering.

99. To prove that reversibility is the test of perfection in
engines, let it be supposed that some other engine receiving heat
from a hot body or source 4 and giving it off to a refrigerator B,
can, for the same temperatures = and 7, do more work than a
reversible one. Then the two may be combined into one compound
engine ; the first receiving and conveying a certain quantity of
heat, works the reversible engine backwards, causing it to take
from the refrigerator the same heat and convey it to the source or
hot body 4 ; thus producing a perpetunal performance of work
without expenditure of encrgy, or in other words perpetual motion
would be realized.’

It is evident, therefore, that to perform work the reversible
engine would have to convey from the refrigerator a quantity
of heat greafer than is conveyed to it by the first engine; or that
work must be performed by a cold body giving heat to a hot one,
or by cooling itself below the temperature of surrounding bodies;
a mode of producing work which is contrary to all knowledge of
the phenomena of heat and clearly impossible.

CYCLES OF CARNOT AND CLAPEYRON.

100. Among the various cycles of thermodynamic transforma-
tion, or diagrams of energy, there is one especially important in
the discussion of the work of engines, and which is usually called
the cycle of Carnot.

In this cycle, the work is represented by an area bounded by
four intersecting curves; two ¢sothermal lines, or curves of constant
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temperature, cut by two adiabatic lines, or curves of constant
quantity of heat, sometimes called lines of no fransmission. The
term adiabatic, proposed by Rankine, seems preferable.

If in the annexed diagram of energy, we suppose a hot body to
pass from the state or condition of temperature, pressure and
specific volume, denoted by the
position M, whose co-ordinates
are p and v, the corresponding
pressure and specific volume,
to the state of the position X, P
passing through all the inter-
mediate states of the ¢sothermal
line MN, for which the abso-
lute temperature T is constant,

and
% =f(p:v) =cy

then that it pass from the state
AV to that of @ by the successive
changes indicated by the adia-
batic line N@; it will perform during these dynamic changes an
amount of poesitive work of expansion determined by integrating
the expression pdv, first between the limits of M and X, and next
between those of N and 0.

If now we suppose the engine to perform upon the substance
an amount of negative work of compression ; first from @ to P
through the states of constant temperature denoted by the isother-
mal line P@, whose equation ig

To=fo(pv) =0

then by the adiabatic line P, for which the body neither receives
nor gives heat to surrounding substances, while its pressure, volume
and temperature vary with the work performed upon it ; then the
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body will thus have returned to the primitive state #/ by the cycle
MNQP, a cycle of Carnot.

The external work for this cyele will be the integral of pdv
taken for all points of the area MNQP, positively from M to ,
negatively from @ back to M ; morcover, it will be equal to

E(@—4q)= L/: b, (105)

or the difference of the quantities of heat received from the source
at the temperature = and given at the lower temperature 7, to the
refrigerator, multiplied by Z, the cquivalent or coefficient of
Joule.

It will also be a mazimum, for in the chute de chaleuwr from
T to 7, there is no loss of heat during the transformations of the
adiabatic lines N¥¢ and MP, and as the body returns to its initial
or primitive state A/ the internal work is zero; or the chute de
chaleur is wholly converted into external work.

To realize such a cycle of transformations, it is necessary:
1°, that the substance acted upon, water or steam in ordinary
engines, be in contact with a perfectly conducting hot body, the
boiler or source, frecly receiving from it the quantity of heat ¢, at
the constant temperature +, along the isothermal line M.V,
2°, that, while it expands from N to ¢ and works along the
adiabatic line NQ, it be surrounded by perfect non-conductors of
heat; 3° that, between @ and P2, it be in contact, at the constant
temperature T, with the refrigerator, cr condenser, which shall
freely abstract from it the quantity of heat ¢'; 4°, and finally, ‘that
along the adiabatic line PM it be again completely enveloped by
perfect non-conductors.

Such are the conditions requisite to constitute a perfect engine,
capable of utilizing, or converting entirely into external work, the
difference ¢ — ¢’, or amount of thermal energy consumed by it.
But as there are no substances which are perfect non-conductors
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of heat, the conditions required by adiabatic curves are practically
impossible.  All engines are, therefore, rendered more or less
imperfect by radiation and conduction; the more completely,
however, the pipes, cylinder, ete., can be rendered non-conducting, X
the greater will be the economy. ‘

101. As the total quantity of heat received from the source
is ¢, and of this ¢’ must be given up to the refrigerator without
recovery, it is evident that the duty, as it is technically ecalled
by engineers, or the maximum efficiecncy of a perfect engine
is to be mreasured, not by the quantity of heat communicated ¢,
or by the gross amount of fuel consumed, but by

gand ol i (106)

the ratio of the heat converted into work to the total quantity
received.

102. The reversibility of a cycle of Carnot may be readily
shown. Let the direction of the cycle of operations be reversed,
then from 37 to P the substance will expand without receiving
heat, but performing the amount of positive work graphically
represented by the area MM PP'; next it will pass at the tem-
perature 7, by the isothermal line PQ to {, receiving the
quantity of heat ¢, and converting it into work PP Q@' ; then
from @ to &V, without change of quantity of heat, it is compressed
by'negah‘ve internal work done upon it, graphieally denoted by
NN'QQ', with increase of temperature or internal energy from
7o to 7p; and lastly, by the negative work NN'MM' along the
isothermal line NM, it is compressed back to M and gives off
at 7 the heat ¢. The total change of work will be again indicated
by the difference of positive and negative areas; but will now
be negative and equal to MNPQ ; and the total heat emitted
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will be ¢ —¢'; so that more work is expended upon the engine
than it performs, and this excess of work is transformed into the
heat

0
gi-ally s A[pdv; (107)

which is identical with (105), the equation for the changes in the
opposite direction. In the first case, therefore, when operating
directly the engine transforms heat into mechanical work; in
the second, work is converted into heat; and in both the
relative quantities are the same, or they are equivalent.

AIR ENGINES.

103. As practical examples of engines working in simple
cycles, we may take the hot-air engines of Stirling and Eriesson;
in which the ingenious artifice of employing a regenerator, or
economizer, was resorted to, in order to overcome the serious
imperfection of loss by radiation and conduction, or the impossi-
bility of an adiabatic line. The office of the regenerator is that
of restoring to the body transformed, during compression from
7, to 7, the amount of heat lost by counduction of enveloping
surfaces during expansion from 7 to 7,. Thus seeking to prevent
loss by conduction and radiation, and to render the engine perfect,
with a chute de chaleur from + to 7; which fall of temperature
may evidently be made much greater for a hot-air engine than for
a steam engine; as the temperature = may be that of incandes-
cence, or redness, without danger of explosion.

AIR ENGINE OF STIRLING.

104. This engine was invented in 1816, and is very ingenious.
For full and satisfactory descriptions of it, we must refer to works
illustrated by well executed working drawings, as it forms no
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part of the purpose of this clementary course to give plans for
the construction of engines. We limit ourselves to the simple
exposition of the laws of heat, and give for their application
only such diagrams as are nccessary to render the subject clear
and intelligible.

In the engine of Stirling, the body or mass of air is first
heated, under constant volume, from the state of pressure and
temperature at 4 to that of Z; increasing its temperature and
pressure until it becomes able at the state B to overcome the
resistance of the piston. I'rom B to €' the air expands under
constant temperature =, following the isothermal line BC. From
('to D its temperature is lowered from + to =, while its volume
remains constant and the pressure decreases. Lastly, under the
constant temperature =, while

acted upon by the refrigerator P

and compressed by the engine, B

it passes from D back to the c
original state at 4. During A

the changes from .1 to 2 and \.D

from ('to D, there is no varia-

tion of volume and therefore i
0 A c'

no external work ; but between
A and B the temperature is
elevated, requiring for that effect the amount of heat

¢ (T — 7o),

in which ¢ is the specific heat of air under constant volume.
Again from € to D there is cooling, or liberation of heat, to an
equal extent, giving out

c(m—7);
and it is the office of the regenerator, or economizer, to render

the heat emitted from € to D available for the change from
7
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E(q—q)

To determine its value, equations («) and (&) give

'”71d’
Jo= Ap]vo'/v0 —vg = Apwv, log %
, nd
gl= Apovo'/; % = Apsv; jogz——;.

Consequently, we have for the duty, or maximum efficiency, of
the engine the ratio of areas

4BCD _
ABOC T
or the algebraic formula
el o W ] (108)
q D G

For, since p, and p, are the pressures under the same volume v,
of the same mass of air at the temperatures T and =, the law of
Charles and Mariotte gives

TR LR
pavo_“(a +to)_7'o'

The expression for the duty, or maximum efficiency, of an engine,
working without loss,

=1,

‘q_;_l == =0 (109)
gives the ratio of the heat used to that received, or of the
equivalent chute de chaleur (+ —7,) to = ; and we shall find this
ratio, or theorem, to be one of the greatest importance, applicable
to all heat engines, and in fact constituting the second fundamental
law of thermodynamics.
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ERICSSON’S ENGINE.

1056. This engine may be theoretically considered a very inter-
esting modification of that of Stirling. In its cycle the air is
heated under constant pressure, instead of being heated under
constant volume.

In its diagram of energy, the body passes from the state .1 to
to that of B, nnder the constant pressure 02/, and with the change

of volume 4. The

P quantity of heat re-
M A B quired for the trans-

formation is

% < ¢ {r—7);

¥ in which ¢ is the
L ¢ specific  heat  of
0 v air under constant
pressure. From 7

it then passes to the
state € under the constant temperature =, and by the isothermal
line BC, absorbing in the change the quantity of heat ¢ ; from ('
it is compressed by the engine to the state ), and passing {rom the
higher temperature = to the lower =, it emits the quantity of heat

¢ (7 — 7). ;
~ From D it is compressed back again to 4 ; and being at the same
time in contact with the refrigerator, it gives to it the quantity of
heat ¢'. The heat utilized will be (g — ¢); and the regenerator is
employed to produce the compensation of loss and gain of the
(uantities of heat, each equal to

¢ (t — 7o),

in the changes from 4 to B, and from O to D.
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It is evident from the diagram, that the work done will be
denoted by the arca A ZCD, and the duty by the ratio of that area
to MNCB. Algebraically, the quantities of heat received and
given out are

e T = R
¢ +c (7 — 7o)
The hyperbolic areas are

Po
nety log =
Doty 108 ])17

Po

7t log =
Pt b])l,

and the area ABCD has for ifs value

The duty, or maximum ecfficiency, is

g—q —1i T—T

T B o
Consequently, the efficiency would ke the mazimum for both of these
cngines if no heat were nselessly wasted in changes of temperature ;
the quantity ¢ (+ — =) in one, and ¢’ (r — 7) in the other, being
cconomized and made to circulate in successive cycles, by being
alternately given to and taken from the regenerator or cconomizer.

106. Thus far we have considered engines supposed to be
perfect, and have sought to indicate the conditions necessary to
render them so. It is evidently important to determine such
conditions, and that an enginecr be familiar with them, for they
cnable him to detect imperfections and suggest improvements.

An engine is perfect if it fulfil Carnot’s criterion of reversibility,
or have for its coeflicient
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el Bl el

T
which requires that it receive the quantity of heat ¢ at the tempera-
ture T only, and part with ¢° to the refrigerator only at r,, neithes
receiving nor emitting heat at any other temperatures.

But as such an engine, working thus by a cycle of Carnot, is
an impossibility, it becomes important to study by what con-
trivances engines may be made to economize the waste of power
due to absorption and emission of heat at other temperatures than
7 and 7, or from other bodies than the source and the refrigerator.

Of such contrivances, none is more ingenious than the regener-
ator of Stirling. If this regenerator rendered the compensation
complete, evidently the engine would be as perfect as one working
in a cycle of Carnot.

The corresponding diagram of energy would be a quadrilateral
arca, bounded by two isothermal lines intersected by two lines of
equal loss and gain, instead of two adiabatic lines; to such lines of
equal transmission Rankine gives the name ¢sodiabatic.

ISODIABATIC LINES.

107. To express symbolically the relation of lines which are
isodiabatic. Let ¢ be the -
heat absorbed and ¢' that
emitted during the changes
between + and 7, or for the
isothermal lines MP and
N@Q. Now for any in-
finitesimal corresponding
changes along the isodia-
batic lines MN and PQ,
we have
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In Ericsson’s engine, the pressure is constant for N, and its
equation is
P —po=0;
hence for the equation ef P, we have

P —np,=0;

and both are straight lines parallel to the axis of ».

It is evident that the gencral equation of the line MV is arbi-
trary; and consequently, that the problem may have an infinite
number of solutions.

Theoretically, a regenerator should absorb heat only from the
hot air and give it back to it afterwards without loss ; practically,
it is impossible to prevent waste; a large portion of the heat being
always communicated by conduction and radiation to surrounding
bodies. The term economizer is, therefore, its appropriate name.
And we sce that for air and all other heat engines, loss by conduc-
tion and radiation must ever render it impracticable to make them
dynamically perfect. Yet of such loss a regenerator may save
quite a large part.

One of the greatest improvements made in furnaces for metal-
lurgy is that of Mr. Siemens, who, by attaching a regenerator
composed of a mass of fire-brick, has introduced great economy of
fuel united with other very important advantages.

ADIABATIC CURVIS.

108. To proceed further, it is necessary that we investigate the
nature and properties of those lines of no transmission called by
Rankine adiabatic; and which with isofhermal lines form the
diagrams of energy in cycles of Carnot.

For solids and liquids, our ignorance of the functions which
express the relations of pressure, volume, and temperature doring
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109. When the specific volume, or density, of a gas changes
without heat being either absorbed or emitted, dQ is zero, and the
product peve’ is constant ; this is the law of Poisson, and it may be

expressed thus, y
e = peod s (112)

the following modification of which is often used

PV = Pt 5 (113)
in which
7 o —C_’

the ratio of the two specific heats or capacities.

The equations just found replace the law of Mariotte, whenever
a perfect, or a permanent, gas varies in volume, pressure, and
temperature without reeeiving, or imparting, heat to other bodies.
And they are evidently those of a line of no transmission, or of an
adiabatic curve. .

The form of its equation shows an adiabatic curve for airs to be
a hyperbola referred to asymptotic axes; but for which the ordi-
nates p vary more rapidly than the abscissas v ; because the specific
heat under constant pressure ¢’ is always greater than ¢, the specific
heat of constant volume.

The law (113) was demonstrated by Laplace and Poisson before
the dynamical theory of heat was accepted ; and it is indeed inde-
pendent of any ideas we may conceive of the nature of heat.

When heated air, or superheated steam, expands in the eylinder
of an engine, after being cut off, it may be approximately considered
as changing by the law of an adiabatic curve, if it varies so rapidly
that time is not allowed for loss of heat by conduction.

For other substances than perfect or permanent gases, it has
not been found possible to determine the form of the function ¢ ;
but equation (75) and the condition dQ equal to zero give asa



AIR ENGINES. 155

general expression of no transmission of heat, or of an adiabatic
curve,

Di— '/d;? = a constant; (114)
which is, therefore, true for all substances; though the function ¢
is not the same constant for different bodies, but depends for each
upon its particular nature.

CURVES OF TRANSFORMATION.

110. Three kinds of lines, or curves of thermodynamic
change, are employed: 1°, adiabatic curves; 2°, isothermal lines s
3°, lines of equal cnergy. For perfect gases these lines reduce to
two kinds only ; for the isothermal lines are those of equal energy.
This is evident from the fact that, by the second law of Joule, the
internal energy of a gas is a function of its temperature alone ;
giving

cdt = AdU, or U:f(f)
Hence, in every change in which the temperature of a gas remains
constant, the internal energy does not vary; and isothermal lines
for a perfect gas are, therefore, lines of equal energy.

For the perfectly gaseous state, we have, for an isothermal
line, the law of Charles and Mariotte, or the equation

Ppv = py (1 + «t);

in which the temperature ¢ is constant for the same line. And
for bodies generally, we have for an isothermal line

t=f(vp) =0
Mdy + Ndp = 0.

For adiabatic lines, perfect and permanent gases give the law of

Poisson,
pCvc’ e _po(«‘voc’ ;
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and generally for all substances,
)dQ
0 _/ g constant.
If this integral be taken between any two limits or states (1)

and (?), its value is
‘/"(L_Q =0. (115)
1 A

The geometric construction of an isothermal line is for perfect
gases an cquilateral hyperbola, with p and » for asymptotic
co-ordinates. That of an adiabatic line for such gases is also an
hyperbola referred to asymptotic axes; but as p varies more
rapidly than v, the curve recedes more from the axis of » than it
approaches that of p, and is not, therefore, symmetrical cither in
position or form. For liquids, their very slight compressibility
shows that the ordinates p vary far more rapidly than the
volumes v ; and for solids, the outward pressure, or elastic repul-
sion, changes even to attraction, so that p becomes negative, and

the curve cuts the axis of abscissas.
The law of

P Charles and Mari-
otte may be put
under the form

v ==sliz,

which is the same
-4 as
A B =6z
=

/ Its geometric
7 construction is the
hyperbolic parabo-

loid, represented in
t the annexed figure.
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When  is constant the corresponding section gives for the
isothermal line
o=y =da,
an cquilateral hyperbola. And for sections perpendicular to the
axes of p and v respectively, we have

v=2a=udal,

D=0l

or the intersections of the planes with the paraboloid are straight
lines.

AIR ENGINES WORKING IN CYCLES OF CARNOT.

111. In the accompanying diagram let the quadrilateral
MNPQ represent a cycle of Carnot. The isothermal lines of the
temperatures = and 7, being
MN and PQ; and MP and
NQ, or ¢, and ¢, being adia- ¥ j
batic lines.

In the change from M to 4
A, at the temperature -, the
quantity of heat ¢ is absorbed ;
and ¢’ is the quantity given at
the temperature 7, to the re- % MII’ N
frigerator in the change from
Q to P. Between N and @, and again from P to M, no heat is
cither emitted or reccived, the curves ¢ and ¢, being adiabatic.

The integral of positive work is graphically represented by the
sum of the two areas A/’ MNN', and N'NQQ. The work from
N to @is done by expansion after communication is cut off at N
from the source of heat. &

The negative work, or that of compression, done by the engine
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and similarly, for the isothermal line 7, between P and @, the

quantity of heat
Go = 7o (¢ ~— ¢);

while for the adiabatic lines there is no variation of quantity.
Consequently, we have

q — qo T =T

q To

2

for the efficiency of cycles of Carnot.

1t is not possible to construct an engine in which changes occur
without loss by conduction and radiation; or, in other words, to
realize changes by adiabatic lines; vet we may readily reduce to
infinitesimal eycles of Carnot the operations of engines genecrally,
and find their work as a definite integral of such eclementary
cycles.

CARNOT’S THEOREM.

113. It has been announced, without proof, that, for all heat
engines whatever, the dufy, or maximum efficiency, is

= _T—",

- b
q To

>

this expression has just been shown to be that of the efficiency of a
perfect air engine working in a cycle of Carnot ; the same expression
has also been obtained for air engines of Stirling and Ericsson, if
rendered perfect by means of a regenerator. And if will now be
shown to be impossible that any heat engine whatever can have a
greater coefficient than that of an air engine working in a cycle of
Carnot; which being reversible should therefore be perfect.

When any two engines have equal coefficients of efficiency, we
must have
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B JU e i
G q

consequently,

Cifds St (RN (116)

R e O
If now it be imagined that any other engine whatever, 47, can be
more efficient; in other words can, with an equal amount of heat,
do more work than an air engine, &V, which works in a reversible
cycle of Carnot; then, let A/ make m cycles while N makes »
cycles, and let ¢ and ¢’ be the quantities of heat respectively
emitted and received by the source for a single cyele: while ¢, and
¢’y are those given to and taken from the refrigerator. The limit-
ing temperatures = and 7, being the same for both engines.

The quantity of heat to be used being, by hypothes1s, the same

for both engines, we must have

mqg — ng' = 0.
Hence, if the two engines be equally efficient,
m(g—q) —n(f —¢)=0"
But if M be more efficient than %, then will this difference, or
ngy’ — mgo

be a positive quantity.

Combine the two engines into one compound machine, 47 the
more efficient driving NV reversely. The engine 4/ receives from
the source 4 in m cycles the quantity of heat mg and gives to B,
the refrigerator, mg,, While N worked backwards takes from B
the quantity ng, and gives to 4 the quantity zg'.

The source 4 therefore imparts the total quantity of heat

mq — ng';
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but this is, by hypothesis, zero; and consequently A neither
receives nor emits any heat whatever.
The refrigerator B receives mq, and gives to 4 the quantity ng,’;
it therefore imparts
ngy — mg,.

Now, cither the work done must of necessity be zero, in which case
the two cngines are equally efficient and the last expression is zero;
or the work done by M in driving V must be produced by a positive
quantity of heat given by B to 4, the value of which is determined
by the expression just found.

This is simply impossible, for it is contrary not only to all our
knowledge and experience, that work should be done by a cold
body giving heat to a hot one, but also to the first principles of the
dynamical theory; according to which heat is energy, readily
imparted with a chute de chaleur by a hot to a cold body, by moving
to motionless particles; but not capable of the reverse transference
from cold to hot bodies with accompanying performance of mechan-
ical work done by it. Such a proposition is the equivalent of
supposing ice to generate steam and thereby work an engine; or
water to work mills by running up hill

The principle, that work cannot be done by a cold body impart-
ing heat to a hot one, is a thermodynamic axiom first proposed by
Sir W. Thomson. One less obvious was used by Clausius.

114. As it has now been proved that no engine can be more
efficient than an air engine working in a cycle of Carnot, it follows
that for all engines the dufy, or maximum, is

B PRy

q ‘T

This remarkable and very important equation, the same as (109),
though first definitely determined by Sir W. Thomson, is usnally
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called #he theorem of Carnot; for to Carnot we owe the law that
“the mechanical power of heat is independent of the agents
emploved to realize it ; its quantity being fixed solely by the tem-
peratures of the bodies between which the heat is transported;”
which enunciation may be symbolically written

¢ = C (7 — 7o) (117)

Unhappily, Sadi Carnot was so far misled by the then prevalent
material hypothesis, that he failed to determine the factor €, which
Thomson has since named the function of Carnot.

On comparison of the last two equations, it is evident that

3 (118)

or that the function of Carnot is the reciprocal of the absolute
temperature.

Conversely, it is sometimes given, as a definition of absolute
temperature, that it is the reciprocal of this function,

AIR ENGINES COMPARED WITH STEAM ,.ENGINES.

115. Having found for all heat engines the same dufy, or
coefficient of maximum efficiency, we may now compare the actunal
working results of air engines, such as that of Ericsson, with those
of one of the steam engines of Hirn.

Suppose a perfect air engine to work at the temperatures of one
of Hirn’s steam engines, for which he observed 7= 146° and
t, = 34°. We have also

1

@ = —— =~
293 T a

If we substitute these values we find
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7 ey il 4y 0112

e i aen
which is therefore the maximum. g

Now, for his steam engine, Mr. Ilirn obtained § as its actual
efficiency; and it is very probable that an air engine, working
between 146° and 34°, would not give one-eighth of the total
expenditure of heat as its coefficient.

Experiments made in Parig, at the Conservatoire des Arts,
under the direction of MM. Morin and Tresca, gave for an
air engine of Ericsson the result, that 4.13 kilog. of coke, or 5.85
kilog. of bituminous coal, per horse power, were consumed cvery
hour. The actual disposable work was only 0.27 of that measured
by the indicator. The latter coefficient shows very inferior
workmanship, for experiments made with an indicator and a
Jfrein de Prony had given, for the ratio of disposable work to that
shown by an indicator, 0.80 to 0.85 in well-constructed steam
engines.

Other experiments made with an air engine of M. Laubereau,
in his presence and with his aid, gave MM. Morin and Tresca the
consumption per horse-power of 4.55 kilog. of fuel per hour.

According to the same able observers, the comsumption of
bituminous coal per horse-power in steam engines varies from
1.2 to 6 kilog. per hour.

These practical working results do not, therefore, indicate any
superiority for air engines ; nor has any engine yet proved itself to
be, when considered in every respect, more advantageous than the
best steam engines.

The most serious attempt to substitute the power of heated air
for that of steam was that made at New York, about twenty years
ago, with the ship FEricsson, which was at first provided with
air engines constructed by Capt. Eriesson. The ¢xperiment on so
large a scale was instructive, but unsueccessful. And the ship was
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subsequently altered into an ordinary steamer. Small Eriesson
engines are, however, still used in New York, and if not morc
cconomical than steam engines, they at least are less dangerous in
some respects.

116. An inspection of the formula of maximum efficiency,

shows that advantage is gained either by increasing the numerator
or by lessening the denominator of this ratio. The numerator may
be increased by reducing 7, ; if it were the absolute zero, the value
of the ratio would become unity and the whole of the heat ¢
received could be utilized by a perfect engine. Upon this result a
dynamical definition of the absolute zero has been founded.

But =, is zero only at —273° C., a degrec of cold wholly
unattainable. If to increase the numerator we elevate the temper-
ature 7, we thereby also augment the denominator and partially
neutralize the advantage to be gained.

As limits the freezing point of water, or 0° C., and the temper-
ature of incandescence or redness, about 500° C., may be considered
physically attainable or possible in heat engines; these tempera-
tures give 4

T— Ty :’)_92
TR RS

= 0.64;

such therefore is the maximum coefficient for a perfect engine of
any kind working with a chute de chaleur from redness to the cold
of melting ice.

An engine whose faults of construction are so slight as to give a
practical or utilizing coefficient of 0.85 of the theoretical work
might consequently give 0.64 multiplied by 0.85, or the coefficient






CHAPTER VIIL

THERMAL LAWS.

t
THEOREM OF CARNOT.

117. The law of equivalence of Joule is only the definite
expression of the fundamental truth that heat is energy,

Eq = 2 S Pdp.

Not less important is the theorem of Carnot, that it is impossible
to employ efficiently, or utilize, of a given quantity of heat g,
more than the chute de chaleur, or fraction,

Hence this theorem is called the second fundamental law of thermo-
dynamics. And as gqnantities of heat are not directly measurable,
the law is the more valuable in that it enables us to substitute for
them absolute temperatures indicated by an air thermometer.

Moreover, being universally true, the theorem of Carnot can be
used to generalize many restricted propositions obtained for gases
only, from the law of Charles and Mariotte; and thus we can
establish general thermal laws applicable to all bodies.

To this extension and generalization chiefly, attention is in-
vited in this chapter. But before entering upon that subject, it
is well to familiarize ourselves with the various equivalent algebraic
forms in which the theorem of Carnot is usually expressed.

By the law of Joule, the work of an engine, receiving ¢ from
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The preceding expressions give also the constant ratio,

¢ _ 0o_ 9 _87_4dg, C22)

T T 7 AT d’
to which constant ratio (122) Clausius gives the rather obscure
name of “equivalence-value.”

It is evident that these different forms simply express that, not
only for perfect gases, but for all substances, absolute temperatures
vary proportionally to the quantities of heat absorbed and given out
in cycles of Carnot, or in perfect engines. From equation (119)
we obtain, for the heat necessarily lost in perfect engines,

—‘-—Dz—q—oz-ql,:qinzetc. (123)
i q 9l 7

To express which in ordinary temperatures, we have

4
|
|
i
|
|

and for the duty
e (129)

By the law of Joule, Ldg is the total dynamical value, or
cquivalent, of the variation of heat dg; but by the theorem of
Carnot the actual value, or proportion, of this heat which can be
used in an engine is only

y w7
If now in any cycle, ¢ be the heat received and ¢, that emitted,

d
E(Q_QO)-ETO'/;Z

be the work, during the cycle, of the heat which can possibly be
utilized.

then will
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But if the engine be perfect, or the cycle be reversible, the first
term denotes the amount of work ; and the second term conse-

S @ = (125)

Generally, however, as engines are imperfect, and therefore not
reversible, the work during a cycle is much less than the value of
the first term, which expresses its amount in perfect engines only;

quently becomes

consequently,
b Ly (126)

is the heat wasted, and neither converted into useful work, nor
necessarily given to the refrigerator, as ¢, must always be. Hence
the expression just found is called by Thomson, who first obtained
it, that of the dissipation ; and it measures the imperfection, which
cannot possibly be a negative quantity.

GENERAL EQUATION FOR ALL TRANSFORMATIONS.

118. We have proved that there is always a factor capable of
rendering exact and integrable the partial differential equations of
thermodynamic changes. We have also found that, for perfect
gases, this factor is

M= =

the absolute temperature, as defined and indicated by an air ther-
mometer. So that our general equation of transformation for all
substanees,

dQ = Adg,
becomes for perfect gases .
dQ = vdo. (127)

The theorem of Carnot serves to generalize this result, by proving
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that for all bodies A is equal to =, the absolute temperature; while
¢ is a determinate but unknown function for each particular sub-
stance ; the form of which can be obtained for perfect gases only.

119. To show that the factor A is equal to = for all bodies, let
an engine work in a cycle of Carnot, MNP, composed of two
" isothermal lines, + and +', and two
adiabatic lines, ¢ and ¢'; which may
be taken so near to each other that Lp

¢ =¢ + do. \N

Let 4" and A denote the values of 2
at M and @ ; then the general equa- Q
tion of transformation (75) gives for : P
the changes from M to X, and from \ ¢
P to @,

dg’ = Mdo,

dg = Ardo;
from which and equation (122) we get

ot ’ )
A

A

e Diiaen ™y

Bt

But the ratio of T to 7', or that of ¢ to ¢', has been proved to be
constant for all bodies ; it follows, therefore, that such is necessarily
the case for the equal ratio of 4 to 2. Consequently, the factors 4
and A’ must equal the same function of  and +', multiplied by an
arbitrary function u, dependent in each case upon the nature of the

body, or algebraically,
¥ _uf@)_ 7

VIR T A Gy T

The function # being arbitrary, and therefore capable of an infinite
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be represented by the closed area abed of the annexed figure.

Now, through its points b and d of highest and lowest tempera-

ture, = and 7, and the extreme points ¢ and ¢, corresponding

to the greatest and least values ¢ and ¢’ of the function ¢, we may
always draw isothermal and adia-
batic lines, forming a cycle of

. Carnot tangential at a, b, ¢, d to
the given cycle.

It is evident, upon mere inspec-
tion, that the area aded representing
the external work is less than that
of the circumseribed cycle of Car-
not. Bnt it may be imagined that
through the extreme points a, b, ¢, d
other lines of transformation may

be drawn which wonld give a greater area or efficiency. By
hypothesis, = and 7' are the extremes of temperature; no line

passing through the points b and ¢ can therefore give for
g =Jd¢

80 great a value as the isothermal line for which the factor = is the
maximum and constant. And no line passing through d can give
for

¢ = S7'dp
so small a value as the isothermal line for which the tenperature +'
is the minimum.

It is also evident that the definite integral of d¢ in these
equations is a maximum when ¢ and ¢’ are constant and the
tangential lines through ¢ and ¢ are consequently adiabatic.

Performing the integrations indicated in the preceding
discussion, and reducing, we obtain for the efficiency of the cycle
of Carnot, thus proved to be a maximum,
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and from this, by differentiation, we find
dp , __ _&p dp
Edr =T l-r2dT + d_d
consequently,
P

T —Sdr =0, (143)

Both terms of the expression (144) vanish, and the internal
molecnlar work is therefore zero. Heat is consequently entirely
consumed in rendering the body hotter and in perforniing external
work.
Writing the law of Charles and Mariotte under the form
P = Zf" T = Rr, (146)

0
and differentiating p as a function of +, we have

B rl L ®

de i e el

and thus again we arrive at the expression used above.
It has been shown, equation (80), that for perfect gases

C’ —_C = 44 (C[]ol’o 5

which, when p,, 24, 7, are assumed to be the pressure, volume, and
temperature for the state of melting ice, becomes

o ¢ 4 AR, (148)
o

By substituting this value of ¢ in equation (142), we obtain
o P\ g dv _
¢ = (c + 4 {0—") logr— 4 ‘/Ad_‘_ dp. (149)

The specific heat of constant pressure ¢ is evidently equal to the
specific heat of constant volume ¢, increased by the quantity of
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and
dw
PFi="A At
consequently, :
Fdr = Adw | (152)

is the heat equivalent of the elementary work dw, or the amount
of heat required for its performance, independently of the specific
heat of constant volume which causes the variation of temperature.

SIMPLE ENUNCIATION BY RANKINE OF THE SECOND LAW.

129. As the second law, algebraically expressed in the form

%_E_E’Ag
RISRETS. Y o

merely asserts, for absolute temperatures, their proportionality to
the corresponding quantities of heat absorbed and emitted in
perfect engines, it is evident that this truth may, conversely,
be so stated as to constitute an expression of the second funda-
mental law.

The work of ¢ being Zg, and A¢g and ZAq being their similar
submultiple or fractional parts, the above expression may be
written as follows:

nAg =gq; AT =183 nEAg = By ;
or thus
Mg =¢q; BATaE="T5 0 SEN) = Ey.

Hence, for the second general law, we have the following enuncia-
tion: if the total heat ¢, or absolute temperature v, of any
uniformly heated mass be subdivided into any number of equal
parts, the energy or work will be the sum of the equal effects of
those equal parts.
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This is only a particular case of the more general proposition
of Rankine in 1853, that, in causing transformations, the effect of
a quantity of energy is the sum of the effects of all its parts.

For this proposition, Rankine gives the following graphic
construction. Let ABCD be a diagram of energy between the

p A
j&D\B\,‘,

\ 4 g
2
m
\N—
o M

0 Yo v

two isothermal lines + and =, and the two adiabatic lines ¢
and ¢, indefinitely prolonged. Let At be the difference between
+ and 7, and such that nAr is equal to 7. Then will the area
ABCD bear to the indefinitely prolonged area MABLN the same
ratio that At does to =. Also, this area ABCD represents the
transformation of heat into work represented by the abstraction
of any one of the equal parts At into which r is divided, and the
effect of 7 is the sum of the effects of its parts nA7.

For this theorem Rankine also gives the following symbolical
exposition, Let the temperature vary by dr, then will the pressure
vary by

dp

Zl; dT,

and the quadrilateral ABCD will be expressed by

vdp
61"./; E dv.
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consequently, the indefinite or total area MABN, or the latent
heat of expansion, gives

fldv:Arfg—];dv;

which is evidently identical with equation (133) already obtained.

GENEKALIZATIdN OF ABSOLUTE TEMPERATURES.

130. For the function of Carnot, we have the expression

giving for all substances the definition, that absolute temperature
is the reciprocal of the function of Carnot.

We have also proved, first for the perfectly gaseous state, and
subsequently for all bodies, equation (128), that the factor of
integrability A, which renders exact the partial differential
equations of thermal transformation, is simply = the absolute
temperature. And the laws of perfect gases establish that, in the

equation
A=a+t=rm, (1563)

the temperature ¢ is that indicated by an air thermometer; and
a is the reciprocal of the coefficient of dilatation for a gas obeying
perfectly the laws of Charles and Mariotte ; the value of which
does not differ much from

a = — 273°,
according to the usual centigrade scale.

These results are of the greatest value, for they give for the
general thermodynamic function the form

dQ = td¢ ;
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in which the factor 2, having been replaced by 7, is no longer of
indeterminate signification or value.

Moreover, by eliminating the arbitrary indications of common
thermometers, and substituting for them absolute temperatures
dependent upon the nature of heat itself, and which do not vary
with the thermometric substance employed, we introduce into
thermodynamic expressions that generality and clearness which
belongs to the laws of Nature, ever comprehensive, simple and
beautiful when clearly understood. But this simplicity vanishes
if we employ such arbitrary thermometers as those of Fahrenheit,
Reaumur and Celsius, made capriciously to depend upon the
relative expansion of mercury and glass, and the particular tem-
peratures of melting ice and Dboiling water.

Yet, as thermometric observations are nearly all made with
ordinary thermometers, equation (153) is of great value to convert
ordinary into absolute temperatures; provided that we employ air
thermometers, or rednce the indications of common mercurial
thermometers to corresponding degrees of the air thermometer by
applying the requisite corrections.

131. It is mnecessary that we now seek to generalize the
definition of absolute temperatures. Heat being due to motion,
it is evident that, as already stated in § 70, rest or the absence
of motion will give the absolute zero of temperatures. But to
determine this zero and an absolute scale, we have used the laws of
Charles and Mariotte. This scems inadmissible, in so far as
absolute temperatures are thus made to depend upon the expansion
of perfect gases only. The defect has been removed by Sir
W. Thomson, by a happy generalization of the definition of
absolute temperature, so as to make it the same for all bodies.
In the law of efficiency

Ao -
T

Il

2
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the temperatures = and 7, are understood to be such as are indi-
cated by air thermometers; yet this law is true for all substances
whatever. So also, therefore, is the law

q

e

hence, absolute temperatures may be defined to be such as are pro-
portional to the quantities of heat received and emitted in perfect
engines, or in cycles of Carnot.

In the langunage of Thomson: ¢“the temperatures of two
bodies are proportional to the quantities of heat respectively taken
in and given out in localities at one temperature and at the other
respectively, by a material system subjected to a complete eycle of
perfectly reversible thermodynamic operations, and not allowed to
part with or take in heat at any other temperature. Or the
absolute values of two temperatures are to one another in the
proportion of the heat taken in to the heat rejected in a perfect
thermodynamic engine, working with a source and a refrigerator at
the higher and lower of the temperatures respectively.”

This definition, thus made to flow from the fundamental law of
efficiency, is evidently perfectly general and independent of the
substance employed; while it accords with and includes that
deduced from the laws of Charles and Mariotte.

132. If we make 7, equal to zero, in the equation of efficiency

T—To_ §—Q

Tt
.then ¢, becomes zero, and the heat ¢ received from the source is
entirely converted into work. Ience the absolute zero is defined to
be that value of +, which would cause the whole of the heat to be

utilized.
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133. It should be remembered that the word femperature is
simply the name used to indicate the relative state of one body to
another when the colder receives heat from the hotter. And that
the measurement of temperatures by expansion in thermometers,
based upon the arbitrary assumption that variations of volume are
proportional to changes of temperature, is, as we have fully shown,
not true, even approximately, except for thermometers made of
permanent gases. Such erroneous assumptions may have answered
their purposes two centuries ago ; but that volumes vary propor-
tionally to temperature is now no longer a postulate, which may be
conceded as a convenient basis fora faulty definition, but a prop-
osition to be refuted or verified for any substance by exact experi-
mental investigation.
A transfer of heat from a hot to a colder body is thus expressed,

dq = cdr + ldv,

the first term of the second member denoting the change of tem-
perature, and the last that of volume. These changes are evidently
perfectly distinct.

For clearness of conception, we need to bear in mind that
sensible heat, light, and sound are all effects of vibratory motion ;
and as the variations in the physiological sensation which we call
differences of brilliancy and colour for light, and of loudness and
pitch for sound, depend upon the vis wive, or the maximum
displacement and time of vibration, so are changes of temperature,
or hotness, analogous functions of the molecular vibrations in any
substance.

HEAT MEASURED DYNAMICALLY.

134. As heat is energy, or power to do work, it is clear that
quantities of heat, instead of being estimated in thermal units, may
be measured by the proportional dynamical work which they can
perform. For this purpose, we have the cquation
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s = S Pdp = By, (154)

in which & is Joule’s factor, and & the work or energy correspond-
ing to ¢, the number of thermal units or quantity of heat.
From equation (154) we readily obtain, for perfect engines,

£E—E& T—T,

; (155)

S

another expression for Carnot’s theorem, in which & and g are
units of work, or kilogrammetres. '

This simple dynamical mode of measuring heat is often prefer-
able, and is much used, especially by Rankine in his book on the
steam-engine.

DIFFERENT FORMS OF STATEMENT OF THE FUNDAMENTAL LAWS.

135. The variety of forms used to express the fundamental
laws may slightly perplex a beginner. It is not sufficient to state
the first law thus simply,

Eq =3 fPdp,
for internal work must be climirated.
Hence Clausius, instead of using the equation
Eyg=U+ 5, (46)
finds it necessary, in all applications, to employ
dg = AdU + Apdv, (71)

climinating U in definite integration by Carnot’s principle of
restoration to the initial state. In his later writings, Clausius
uses the expression
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APPLICATIONS OF THERMAL LAWS.

CHAPTER IX.

INTRODUCTION.

1387. Having discussed the general dynamic laws of heat and
the formulas which express them, we propose now to consider some
of their more important applications.

All thermal phenomena naturally divide themselves into two
classes, those of infernal, and those of external energy. The latter,
beinig accessible to observation, are already quite well known ; but
the former, with exceptions only, remain hidden and enveloped
in mystery.

These exceptions are, however, daily becoming more numerous;
and there are few fields of physical discovery more important, or
promising, than this difficult one of the internal encrgy and con-
stitution of bodies.

We are now familiar with the equations

EQ=U+ S
dQ = AdU + AdS;

and

which express this classification, and in which U denotes infernal
and S exfernal work or energy.



192 APPLICATIONS OF THERMAL LAWS,

188. But before proceeding to apply formulas, it may not be
amiss to remark upon the method we have adopted to establish our
two general fundamental laws, that of Joule, usually called the
first, and that of Carnot, known as the second.

You cannot have failed to perceive that we have simply fol-
lowed, link by link, and in historic order, the chain of physical
discovery; thus presenting our two laws, not as mere mathematical
theorems, but as examples of the inductive, or Baconian, method of
investigation. To sift evidence, each proposition, or observation,
is first challenged and then most severely scrutinized before its
admission. Lastly, from the facts a general law embracing the
whole group synthetically, and expressive of the relation between
them, is inferred; and from this law deduction leads to its
consequences. Almost always, however, the law is first only
imperfectly reached from a few facts, and then is not considered
more than hypothesis, to be confirmed or refuted by extended
investigation.

This inductive method, though slow and tedious, demanding
patient labour, is yet the only true path of physical discovery,—the
path of Galileo, of Newton, of Lavoisier and of Fresnel.

The abstract mathematician, familiar with pithy demonstrations
in ancient Greek geometry and with short algebraic processes,
hecomes impatient of tediousness, and fancies simple and compre-
hensive ways of reaching his conclusions. But to the physical
discoverer all is darkness and night, until glimpses of dawn become
harbingers of approaching day.

Not as a mathematical proposition, to be ended with quod
erat demonstrandum, was the law of celestial gravitation dis-
covered by Newton; nor have other astronomers so found its
verification.

And the grand law of all physical energy, or power, that
though convertible into many varied forms it is for them all one
and indestructible, God alone being able to annihilate what e
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created, never will or can be proved by algebra, but must rest
solely upon its true basis, that of a wide physical induction. The
ceneral acceptance of which law is justly regarded as the most
important step made in the progress of physical science during this
century ; a step in which the dynamical theories of heat and light
have played no minor part.

We may, with Bartlett, cxpress that universal law by the
formula

2
I Pop — Zm %‘st =103

or with Lagrange by
NSRS TE ="

calling it conservation of energy, or of vis vive ; and for a certain
range of purely mechanical truths we may even deduce these
equations from the equality of action and reaction, or from the
expenditure of power in performance of work. But when we
declare them to be the general expression of the mutunal transforma-
tion and convertibility of any and every kind of physical power, it
is clear that this truth is simply incapable of mathematical demon-
stration, and can only be founded upon induction.

Those habituated imperfectly to algebraic discussion and to
geometric reasoning are so accustomed to find conclusions correct,
which may have been reached thereby, that they often fall
into the error of mistaking shadow for substance, and falsely
imagine any result proved to be true, if merely so attained.
Nothing can be more fallacious, for diagrams are only auxiliary
pictures, and algebra is but a language of limited extent, invented
to express relations of quantity and position ; whose equations
are sentences, composed of verbs, adjectives and substantives;
and whose rules are none other than those of universal grammar
and correct logic. Nor are there two kinds of logic, one for
ordinary thought and words, the other for algebraic expressions ;

9
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in both of which, and with almost equal facility, sophistry may
be adduced and falsechood perpetrated.

Only upon those clear perceptions of truth, with which God,
in his goodness, has endowed human intellect, can we ever found
convictions which we may truly call knowledge.

What, therefore, we should require from the algebraic expres-
sion of a fundamental physical law is not demonstration or proof
thereof, for then the law would be derivative and not fundamentai,
but simply and solely that it express, or enunciate, the law in the
most general, fit and comprehensive manner.

139. Hence, we naturally seek, in an advanced state of
knowledge, such expressions for general fundamental laws as are
most clear and suitable for our purposes in the use thereof.

The one general formula for all thermodynamie changes

dQ = +do,

go much used by Rankine, is algebraically excellent, and from it
we readily deduce many consequences. Thus, for intance, the
law of Carnot

AQ At

OF &7
or the proportionality of absolute temperatures = to quantities
of heat @, in eycles of Carnot, flows from it directly by definite
integration, as has been shown in article 120

But that fundamental formula is objectionable in the feature
that it contains the indeterminate or arbitrary function ¢, for
which we know the form only in the hypothetical case of perfect
gases. ‘

Tor the law of Joule we have no better formula than that of
Clausius, adopted now hy all,

dQ = AdU + AdS.
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And for the law of Carnot there are none better than

Q;‘Qozf—To
0 ok

and
{="Ar @ »
dr
which is the formula of Thomson, presented (in article 123) as a
consequence of the law

dQ = Td¢
and of the partial differential equation (73) of Clausius,

ENE
dt — \dt  dv/

In article (1R9), following Rankine, we have given a simple geo-

metric construction and demonstration of the proposition

— 4P
ldv = A~ (ﬁ dv.

That mode of demonstration is due to Clapeyron, who first taught
us how to discuss and use
cycles of Carnot; and, in
modified form, we may <4
here present it as follows: | %
In a diagram of energy
for an elementary cycle of : v
Carnot, the infinitesimal i
(uadrilateral area bounded
by isothermal and adiabatic o
lines is measured by

dp - v ;

but as the pressure is a
fanetion of the temperature
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But the labours of Clausius, Thomson and Rankine have since
proved that for cycles of Carnot

which gives

whence !
— A+ dp
— i 217.

We have seen how difficult it is in the science of heat to define
what is meant by temperature, otherwise than by ascribing it to the
vis viva of vibrating particles, and regarding it as a state of motion.
As ordinarily employed, the word implies a certain condition of the
mercury in a thermometer, indicated by and varying with its
volume. Evidently, as any definition is arbitrary, we may adopt
the proportionality of absolute temperatures + to their correspond-
ing quantities of heat ¢, absorbed or emitted in cycles of Carnot,
not merely as a physical law, but rather as the very definition itself
of what are called absolute temperatures. From this definition,
then, based on induction, will flow not only Carnot’s theorem, as
its enunciation, with all the important consequences and applica~
tions thereof, but also the valuable formula just established for the
relation between the heat expended, or developed, in the mechani-
cal work of expansion, or compression, in any and all substances
whatever.

We may evidently put that formula for the latent heat of
expansion into the shape of the definite integral

Sy = 47 v — v) 2
Vo

i s

which we shall call the equation of Clapeyron ; who first gave it,
though in the modified form,
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dp
Q=Clv—u) .

denoting by €' an unknown function, identical for all bodies, but
sinee determined ; and who also not only gave it, but pointed out
clearly its great utility and important applications.

The reader who would entertain just views of the history of our
subjeet should remember always that the labours of Carnot and of
Clapeyron constituted, for Clausius, Rankine and Thomson, the
starting-point of all their admirable mathematical investigations.

VAPORIZATION.

140. Until, in the year 1818, Gay Lussac had indieated the
contrary, it was always imagined that the temperature of boiling
rema.ns constant for a given pressure or tension. He found it to
vary with the nature of the containing vessel, and to be higher in
glass than in metals. He also drew attention to the irregular and
explosive manner in which boiling takes place for many substances.

Subsequently, in 1842, Mareet found that, if glass vessels be
first washed with sulphuric acid, they adhere more tenaciously to
water, whieh, therefore, requires still higher temperatures in them
for its ebullition. And in 1846, Donny observed that in a glass
water hammer the water may be superkeated many degrees, and
until it gives off its vapour explosively.

Also, in 1863, Dufour further investigated this subject and
found that when a portion of one liquid is completely enveloped
by another liquid less volatile, the former may be heated far
above its temperature of normal ebullition without vaporization.
The smallest bubble of gas, or of escaping vapour, however, at once
changes the whole phenomenon.

Another curious and interesting fact has been studied by
- Abel, who finds that, when the chloride of nitrogen is covered by
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air only, it may be exploded gently, pushing back the incumbent
atmosphere without breaking a containing glass vessel; but if it
be coated by a mere film of water, then it will explode with
enormous and destructive violence.

In this curious fact, it would seem that the inertia of the
film of water must play an important part, giving time for the
explosion to extend through the entire mass; but when air
alone is pushed away the manner of explosion appearsto be by
successive superficial layers or films, and thereforc gradual and
gentle.

Here we cannot fail to think of the analogy presented to these
facts by the well-studied phenomena which occur in the compara-
tive use of gunpowder and of those more violently cxplosive
substances called bursting powders. One of the chief advantages
of gunpowder in its varied uses, and absolutely necessary in
artillery, being its gradual, or successive, mode of combustion,
grain by grain; while bursting powders ignite in mass
simultaneously, and consequently act with uncontrollable
violence. The inertia effect of the film of water in the experi-
ments of Abel also bears a striking analogy to that of the small
quantity of sand used to cover the charge of powder in blasting
rock.

Another phenomenon equally curious and important is that
first observed by Cagniard de la Tour: that water and other
liquids highly heated in strong confining vessels first expand as
liquids and then at definite temperatures and pressures pass
wholly into gas or vapour, leaving no surface of separation or
visible liquid portion. This very remarkable change has quite
recently been studied with great care by Dr. Andrews for carbonic
acid. The results of whose experiments tend to show that fluids
pass from the liquid into the gaseous state by continuous and
imperceptible degrees, and not discontinuously, or per saltum,
so that they are connected a3 it were by every intermediate state
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or degree of fluidity ; just as some solids pass into liquids through
every degree of viscidity,—butter and pitch for instance.

The experiment of Donny casts a faint light upon those
horribly violent explosions of steam boilers which sometimes occur
at temperatures and pressures too low apparently to account for
their evidently enormous development of force; and which have
not yet been sufficiently investigated.

Here too we should perhaps allude briefly to that repulsive action
of overheated metals which prevents water and other liquids from
cnfilming or adhering to them, and thus allows their own cohesion
to form small portions into drops which roll freely over the heated
surface of the metal ; a circumstance which led Boutigny and some
others to infer véry erroncously a fourth state of matter, by them
called the spheroidal state. The spheroidal form of any liquid
drop, or bubble, is, however, merely the mechanical consequence
of cohesion, acting between its molecules and shaping its surface
into equipotential forms of equilibrium ; which will be spherical,
only when there is neither rotation, nor any external force of
distortion, such as gravity, or atmospheric resistance, acting
upon its particles and that unequally. No one acquainted with
the researches of Laplace and Poisson on capillarity can be for a
moment misled by this imaginary spheroidal state of Boutigny.

The researches of chemists tend to prove that all solids may be
by heat converted into liquids and vapours; some such as camphor,
calomel, corrosive sublimate, chloral and ice passing apparently
into vapour without intermediate liquefaction. With such excep-
tions, the familiar changes of ice into water, and of water into
vapour are, therefore, typical for all bodies.

In many instances the phenomena called by chemists allotropism
and ¢somerism are certainly thermodynamic; take for instance the
effects of heat upon caoutchouc when distilled, converting it
entirely into various liquids, separable by redistillation at different
temperatures, but all called by the common name caoutchoucine,
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and all identical in substance and capable of being converted by
still higher temperatures into olefiant gas. Or again, take the
numerous other and quite similar compounds of carbon with
hydrogen, presented to us in the products obtained from petroleum,
@as tar, ete. ; some of which are very interesting in their applica-
tions, especially those which give the brilliant new dyes known as
analine colours. For all of which chemical changes the purcly
thermal phehomena are as yet unknown.

We cannot, however, fail to see that the various definite
compounds, called caoufchoucine, are but intermediate steps of
stable equilibrium between viscid caoutchouc and olefiant gas;
links as it were of a chain connecting the liquid and gaseous
states of the same body, and which differ probably in their heat-
potentials, or latent heat. They also may vary in the quantity and
manner of their union with the luminiferous ether pervading
space and all transparent substances; variations which chemists
generally ignore, only because they are imponderable; but
imponderability is no proof of non-existence. And as air in air,
or water in water, weighs zero, so may ether in ether; even for it,
therefore, weight as well as inertia may exist, though hitherto
undetected. Could we but condense cther, the famous cxperiment
of (alileo might be repeated upon it, if the eéxtraneous forces be
not in equilibrium.

As liquids pass into vapour when heated, or when, as in the art
of refining sugar, evaporation in vacuo is made to take place at low
temperatures by removal of pressure, so conversely vapours are
converted by combined cold and pressure into liquids. In 1823,
Faraday first liquefied chlorine and some other gases by cold and
pressure in glass tubes, but subsequently he thus succeeded in
liquefying all the known gases, except those few only which are
called permanent; thereby proving, that there is mo physical
distinction between a gas and a vapour.
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SATURATED VAPOUR.

141. Though such irregularities as the above-mentioned do
occur, yet generally liquids pass into vapour, and gases liguety,
under normal pressures and temperatures.

Thus for any given pressure what is called boiling, or ebullition,
usually takes place at a fixed temperature. But this boiling is
only the mechanical agitation caused when the expansive force of
the vapour becomes sufficicnt to overcome the external pressure,
which is usually that of the atmosphere, and thereforc lower on
high mountains.

At any and all temperatures and pressures, from ice as well as
from water and other liquids, vapour escapes in the state known
as that of saturation. That is to say, of such maximum density
that any increase of pressure, or decrease of temperature, will
immediately cause partial condensation, while reverse changes
produce additional vaporization.

When aqueous vapour, in contact with the surfaces of cold
bodies, becomes chilled down below this state of saturation, it
deposits upon them in the condensed form of dew or frost; the
corresponding temperature is therefore called the dew poinf. And
the formation of mists, clouds, rain, snow, ete., is due to the
operation of like causes of condensation.

Hence, there exists for all saturated vapours, between the
temperature, pressure, and specific volume, or density, a relation
perfectly determinate, though unknown, which we can only express
by an arbitrary function,

¢ (pot) = 0;

but for which Regnault has given the following empirical formula,
first proposed by Biot,

log p = ¢ — ba® — ca 2,
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in which

z =20 + ¢
and ¢ denotes the temperature centigrade. Ior the ccnstants
Regnault gives the following values:

a = 620640348,
log & = 0.1397743,
log ¢ = 0.6924351,
log @, = 1.994049292,
log ¢, = 1.998343862.

And he also gives the following table, more convenient generally
than any formula:

ATMOS. TEMP. ATMOS, TEMP. ATMOS. TEMP.
1 100° 8 171° 15 11992
2 121 9 176 16 202
3 134 10 180 17 205
4 . 144 11 185 18 208
5 152 12 188 19 10
6 159 13 192 20 213
1 165 14 196 21 15

LATENT HEAT OF VAPOUR.

142. The heat which does the work of liquefaction for solids,
or of vaporization for liquids, was called by Dr. Black lafent,
because it becomes emmagazined as energy, without causing any
variation of the temperature. Thus stored up, it is capable of
being liberated, or of becoming free to affect the temperature of
other bodies. Hence, when steam is condensed by contact with
cold bodies, it is found that it can heat up nearly five and a half
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times its own weight of water from 0° to 100° centigrade, or from
freezing to boiling. It is, therefore, said to absorb or to emit
nearly 550 units of lafent heat. Evidently, this quantity is
greater than is requisite to heat substances above redness; and we
see how admirably steam is adapted to warm buildings; through
which it is conveyed in iron pipes, which act as efficiently as
if they were red-hot, but need never be made hotter than 100° C. ;
thus obviating all danger to property of destruction by fire.

It may readily be shown that the latent heat of vaporization
is a mazimum when this change takes place normally. For this,
let the unit weight become vapour at the temperature 7, and under
the constant pressure p,, and let this vapour be afterwards heated
to the higher temperature 7, the requisite heat will be

Q=A+lﬂw;

in which 24 is the latent heat of vaporization, and ¢, is the specific
heat of the vapour.

Again, let the liquid be superheated, as in the experiment of
Donny, or in those of Dufour, to the temperature ¢, and let it
then pass into vapour. All of these changes being supposed to
occur under constant pressure. Then for this second mode of
change, the requisite heat is

Q:%+£%ﬁ

As the initial and final states are identical for both cases,
it is clear that the value of @ is the same for each. Hence we
have

¢
A:A,-l—‘/:(c—c/)dt,

which proves that A is greater than 2 , for it is found by observa-
tion that the specific heat of liquids ¢ exceeds ¢, that of their
vapour.
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This may be illustrated by a diagram, in which the horizontal
line ac indicates the
constant  pressure, P
and the area acc'e a_d b _c
measuring @ is the
same for both modes
of change. The work
due to A is denoted
by the area abb'a’,
greater than that of
A,, or the area dec'd';
and the area add'a,
showing the superheating from ¢, to ¢ of the liquid, is greater than
bec'd’, which shows the superheating of the vapour.

0 a’ d’ BUITO R v

TOTAL HEAT OF VAPOUR.

1483. We have already, in the historical introduction of this
work, remarked upon the erroneous hypothesis of Sir James Watt
that, for water heated from zero to any temperature 7, and then
converted at this temperature ¢ into vapour, the sum of the free
and lafent heat due to these changes respectively is always constant.
And we have also stated that this error was corrected by Regnault,
who found for such a change the simple law

0=oa+ bt; (157)

in which # denotes the temperature, and ¢ and & are constants,
whose numerical values his observations show to be very accurately
those of the formula,

0 = 606.5 4 0.305¢. (158)

The hypothesis of Watt would make 6 equal to the constant « only.
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To the heat indicated by formulas (157, 158) and requisite first
to heat a unit of water from 0° to ¢° centigrade and then to evap-
orate it at ¢°, Regnault has given the fictitious name of the ¢ofal
heat of vaporization; which we here give only because, though false,
it is much used by some writers, and needs, therefore, careful
definition to guard against errors which are apt to flow from the
false use of common words.

To obtain from these formulas of Regnault one for the latent
heat of vaporization of water at the temperature ¢°, it is evidently
only nccessary to subtract from 6 the heat required to raise the
unit of water from 0° to ¢° centigrade; which gives

258 Bge /; ol (159)

Although ¢, the specific heat of water, is equal to unity only
between 0° and 1° centigrade, yet it varies so slightly that for
all practical and many theoretical purposes it may be regarded as
unity and constant. Hence we obtain,

A = 606.5 — 0.695¢ ; (160)

a3 the numerical formula given by the data of Regnault for com-
puting the heat requisite to evaporate the unit weight of water at
any given temperature ¢ centigrade.

For very exact purposes, Regnaunlt gives for the term of
reduction

t
et =  + 0.000026 + 0.0000002 (161)
. Yo

In applying formula (160) it is sometimes necessary to separate
the internal from the external work. For this

t
A=A (AU+L/0']7[ZU)’
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Analogously, we have for an unit weight of the liquid the
precisely similar formula

! ’ ! d
m = (c iy %) (163)
Let now an unit of the mixture composed of a variable part z of
saturated vapour, and 1 — @ of the corresponding liquid, pass from
the physical condition denoted by the independent variables z and
¢ to that for which they will become z 4 dr and ¢ 4- d=. Then

if 4 be the latent heat, or coeflicient of vaporization,
dQ = ide + mzdr + m' (1 — a)dr (164)

will evidently be the heat required.
This equation is the same as

dQ 2

T s

de 4+ [m' 4 (m — m') z] %7-: (163)
But

aQ

e

is an exact differential; and therefore,

A
: (l (—)
m=—m _\r

Y T e o)

Which, by differentiation, gives
(Z)- | ’ - /.L ’ o
ot —m=; (167)

an important formula of Sir W. Thomson between the coefficients
A, m, m', from which z has been eliminated.
But the formula of Clapeyron (156) gives

A d,
;:A(’U——%)[—l]—:;
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dp 0
A= Ar (8 = 30) zl?; (1(2)

or the equation of Clapeyron, changed from the form (156) in
letters only.

GENERAL APPLICABILITY OF FORMULAS,

147. Though we shall pass in detailed review many of the
more important applications and consequences of the general for-
rinlas just deduced, yet to give the reader a clear idea of their
signification, the following remarks may not here be inappropriate.

It is evident that if, instead of the vaporization of a liquid, we
assume the phenomenon to be that of the liquefaction of a solid,
ice for instance melting into water, then all the above formulas
anplicable in the one case become equally so in the other.

Equation (172) gives

dt = A ; (s — o) dp, (173)

which shows that, if s be greater than s, as for the vaporization
of water, and for the liquefaction of some solids, then increase of
pressure will canse an clevation of the boiling or melting point;
but when s ig less than s,, which happens for melting ice, then
increase of pressure will lower the temperature of the melting point.

Prior to the deduction of this consequenee from the mechanical
theory of heat, it was imagined and bhelieved that the melting
points of solids do not depend at all upon pressure. And, though
it was known that water is often chilled bhelow its freezing point
without solidification, yet ice was believed to melt always at a fixed
temperature; which was, thercfore, adopted as one of the fixed
points for the scales of ordinary thermometers. That melting, as
well as boiling, varies with pressure, was therefore a new and
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important discovery, first deduced theoretically, or predicted, by
Prof. James Thomson in 1848 ; whose distingnished brother, Sir
W. Thomson, soon afterwards verified that prediction by experi-
ment. Thus do true physical theories anticipate observation, and
prove in the hands of able mathematicians powerful means of
valuable and unexpected discovery.

148. Another and cven a more interesting and valuable dis-
covery, or prediction, is that made, in 1850, simultancously by
Rankine and by Clausius, as a mathematical deduction from theory,
and which, in 1853, Hirn verified experimentally; to wit, that
saturated steam expanding in the cylinder of an engine lcses
latent heat converted into mechanical work, and consequently
becomes partially liquefied. To this discovery we have already
referred in the historical introduction to this treatise; but it is of
such importance that it demands complete discussion; nor can
that be done better elsewhere than here.

LIQUETACTION OF EXPANDING SATURATED VAPOUR.

149. The data of Regnault for the latent heat of steam prove
that in equation (167) the second member is greater than

(2)} + m )

henee in the first member m, the specific heat of saturated steam,
must be negative.

We will give the interpretation of this negative value of
in the very words used by Rankine (Trans. Roy. Soc. Edin., Feb.
1850, t. xx., p. 171) to announce it to the scientific world, words
which recorded it forever:
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“The kind of specific heat under consideration is a negative
quantity; that is to say, that, if a given weight of vapour at .
c=turation is increased in temperature, and at the same time
maintained by compression at the maximum elasticity, the heat
gencrated by the compression is greater than that which is
reqnired to produce the elevation of temperature, and a surplus
of heat is given out; and on the other hand, if vapour at satura-
tion is allowed to expand and at the same time maintained at
the temperature of saturation, the heat which disappears in pro-
ducing the expansion is greater than that set free by the fall of
temperature, and the deficiency must be supplied from without,
otherwise a portion of the vapour will be liquefied, in order to supply
the heat necessary for the expansion of the rest.” (The italics here
given were used by Rankine.)

“This circumstance is obviously of great importance in meteor-
ology and in the theory of the steam-engine. There is as yet no
experimental proof of it.” (Since so proved, in 1853, by Hirn.)

“Tt is true that in the working of non-condensing engines, it
has been found that the steam which escapes is always at the
temperature of saturation corresponding to its pressure, and carries
along with it a portion of water in the liquid state; but it is
impossible to distinguish between the water which has been lique-
fied by the expansion of the steam, and that which has been carried
over mechanically from the boiler.”

We have already stated how Hirn, in 1853, by using a hollow
cylinder, connected with a boiler and with the air by tubes and
stopcocks, and closed at its ends by glass plates, was enabled
to see the condensed clouds which form when saturated steam
expands; thus verifying Rankine’s admirable theoretical conclu-
gions, and thereby completing the most important discovery con-
cerning the steam-engine, which has been made since the day of
Dr. Black and of Sir James Watt, its grand inventor.

Well may the glorious old University of Glasgow now be proud
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that, as in 1750, from those eminent men within her walls, the
world veceived its knowledge of latent heat and of the steam-
engine in its present form, so likewise, a century later, in 1850, to
her distinguished professors, Rankine and Thomson, has that
world been also indebted for much of what has been achieved in
perfection of that knowledge.

150. The discovery of Rankine, and the importance of the
negative value of the coefficient m in the theory of steam, may be
rendered clearer by the following analytical discussion thereof.

Let any quantity of saturated vapour suffer the change d+, and
denote by dg the heat due to such a variation of temperature in
a unit of mass. Then will

dq = mdr.

Take as independent variables the heat ¢ and the specific volume
v, or the reciprocal of the density; we have

=1t % dv,

which gives
dv _ v
- el dg

Observation proves that the first member of this equation is
negative, for the density of saturated steam increases, or its specific
volume decreases, with the temperature. And as m is also negative
for steam, or aqueous vapour, it follows that the ratio of dv to dy
must always be positive; or they must both have the same alge-
braic sign.

Hence, when compression occurs, dv is negative and dg will
also be negative, or heat will be emitted, causing the vapour to
become superheated.

But if expansion take place, dv and dg will both be positive, or
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heat must be absorbed. If, therefore, as in the cylinder of an
engine, this expansion be so rapid that time is not given to allow
heat to be absorbed from other bodies, then one portion of the
saturated steam will be liquefied to furnish latent heat to the
remainder and preserve this in the state of saturated vapour.

SPECIFIC HEAT OF SATURATED VAPOUR.

151. As the specific volume v is a function of the temperature

¢, the increment of heat given to a unit of any saturated vapour is
d dg dv
dq = mdt = (d_3+2l%'ﬁf> dt.

Therefore, the coefficient m, or gnantity within the brackets, is a
binomial of which the first term is positive; but its second term is
composed of two factors, of which one is positive and the other
negative. Hence the two terms of the binomial are of opposite
signs, and its value may be either positive or negative for different
kinds of vapour.

The observations of Regnault and others upon the specific heat
m' of different substances and upon the latent heat A of their
vaporization, enable us to calculate for them respectively the values
of m, the coefficient of d¢. This is readily done by aid of the
equation (167), put for this purpose under the form

dAr A e
m=<d—r+m)_;’ (174)

in which the term within brackets is simply the derivative of what
Regnault has called the total heat of vaporization.

In this manner Clausius first obtained for steam the following
table:
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These results show that benzine and chloroform behave like
sulphuric ether at high temperatures, but like water and the
sulphide of carbon for low temperatures. Also we see that there
must exist for each of them a particular temperature, called that
of inversion, where the sign of m changes from negative to positise.

This temperature of <nversion is readily caleulated from
equation (174), by making in it m equal to zero; and is {or
benzine about 120° centigrade.

It is also casy to see that all these numbers éncrease with
the temperature; and therefore, that for water there should
exist a temperature of inversion which Rankine calculates at
520° cent. ; and for ether it would be — 116° centigrade nearly.

At this temperaturc of inversion, for which  is zero, a slight
compression or expansion will not cause either superheating or
condensation. But below it expansion produces liquefaction ;
and compression causes saturated vapour to become superheated.
While precisely reverse phenomena take place at temperatures
above this point of inversion.

152. The conclusion just stated, that a vapour for which m
is positive behaves under compression, or expansion, in a manner,
opposite to that of one for which m is negative, was simply and
beautifully verified by Hirn. For ether m is positive, and for the
sulphide of carbon and for water it is negative.

Hirn therefore took a glass globe into which he put some
ether; and then attached to it a pump, or syringe, of sufficient
size. This he then heated by plunging it entirely under hot water ;
and when all air had been driven out by the vapour of the ether,
through a stopcock for that purpose, the piston of the syringe,
which had been pushed outwards by the vapour, was quickly
forced inwards ; and immediately a cloud of condensed vapour was
observed in the glass globe. When this same experiment was
tried with the vapour of sulphide of carbon, compression produced
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no clond whatever, but the vapour in the globe retained, as it
should do, its perfect clearness and transparency.

We have already given (see article 10) calculations which show
of what great practical importance it was to have discovered
the liquefaction of satnrated steam by expansion in the working
cylinders of engines. And it is, therefore, unnecessary to recur to
them here.

DENSITY CT' SATURATED STEAM.

153. From the equation of Clapeyron, or formula (17), it is
clear that the specific volurnioc s, or its reciprocal the density, may
be readily caleulated from Regnault’s data for the latent heat 4
and for p the tension or pressure.

The experiments made by MM. Fairbairn and Tate, to which
we have referred in article (83), allow such calculations to be
compared with the results of observation; and this has been done
by Clausius, from whom we take the following table, in which the
values of s express in cubic metres the volume of saturated vapour
produced by a kilogramme of water:

VALUES OF &
TEMP. #° C. ¢
" Caleulated. Obsereed. Law of Mariotte.

58°.21 8.23 8.27 8.38

7718 3.74 3.72 ! 3.84

92.66 2.11 2.15 2.18
313 17 b 0.947 0.941 0.991
130.67 L1 20:639 0.634 0.674
144.74 | 0.437 | 0.432 0.466

The apparatus used by MM. Fairbairn and Tate was necessarily
so complicated that we shall not attempt any description of it.
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And when we bear in mind how difficult it is to observe values of
s with any accuracy, it will be seen that the concordance between
the observed and the calenlated values of s in the above table is
quite satisfactory, but that they both differ much from values
given for s by the' law of Mariotte previously and erroneously
adopted.

As the values of s decrease with the temperature, it is evident
that the densities, their reciprocals, must increase, and that they
follow a very different law from that of Mariotte.

The values of s being the number of cubic metres of vapour
which weigh one kilogramme, it is easy to get from them the
weights of one cubic metre. And then, by comparing these with
the weight of a cubic metre of air, under like conditions of
temperature and pressure, we may obtain the ratios of their
relative densities. Formerly, the ratio of the relative density
of steam to that of air was falsely supposed to be constant and
equal to 0.622 ; but this error was due to the ignorant assumption
that they both obey the law of Mariotte.

EMPIRICAL FORMULA OTF ZEUNER.

154. It is of course very desirable to obtain for saturated
steam a formula expressing the relation between the pressure,
specific volume and temperature, or in other words to ascertain
the form of the function

¢ (pvt) = 0.

This has been done to a certain degree of approximation by
Zeuner; who has given for that purpose the empirical fermula

pst = 1.704; (175)
in which
n = 1.0645;
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and as both the pressure p and the specific volume s are functions
of the temperature it can be omitted.

To show to what degree this formula may be relied upon,
Zeuner has computed for the densities w, or reciprocals of s, the
values of the following table, as given by his formula and by
observation :

DENSITY OF STEAM.
P v Caleulated.| o Observed. P w Caleulated.| v Observed.
1 0.606 0.606 1 6 3.262 3.263
P} 1.162 1.1031% 44 8 4274 4274
B 1.701 1108l 10 5.270 5.270
4 2.229 2.230 12 6.255 6.254

The pressures p are here expressed in atmospheres.

It is evident from this table, that formula (175) may be
regarded as an approximation sufficiently exact for all practical
purposes. But as it is entirely empirical, it is far better for exact
theoretical purposes to use for calculating s the equation (172) of
Clapeyron; which we know to be absolutely true and applicable to
bodies in cvery physical state.

GEOMETRIC CURVE FOR SATURATED VAPOTR.

155. With the values of s given by the law (172) of Clapeyron,
or by formula (175), we readily construct the enrve whose consecu-
tive points represent corresponding physical states of an unit of
saturated vapour, for which the pressure, density, and temperature
so vary that it remains dry and saturated, without liquefaction or
superheating. And formula (175) shows that this curve of
saturation must be a species of hyperbola referied to asymptotic
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axes p and v, and which varies more rapidly for ordinates p than
for abscissas v, because the constant exponent 2 exceeds unity.
Let now ec’ repre-
sent this curve of
saturation, and let it
be cut at any point o
by the horizontal linc
mm' and by the adia-
batic lines aa’ and 20';
the former aa' for
steam, and the latter
00’ for the vapour of
sulphurie ether.
A 7 When a quantity
of saturated vapour
is superheated under
constant pressure, both its temperature and its volume increase;
and such a change may always be denoted by the line om'.
Reversely, when it is chilled a portion liquefies and the volume
diminishes, which may be represented by the line om. We sce,

therefore, that the curve ¢¢' separates the angular space between the
axes into two regioms, one to the right and above the curve
indicating superheated vapour, the other to the left and below the
curve showing liquefaction.

Ilence of the two adiabatic lines cutting ¢c’ dissimilarly at o,
one aa’ shows for steam the liquefaction caused by sudden expan-
sion and the superheating due to compression; while the other 43’
indicates for ether phenomena precisely reverse.

Here it may be not inappropriate to refer to the cloud of
condensed vapour which forms whenever a jet of steam escapes
into the air, as a familiar phenomenon due to a sudden, and there-
fore to an adiabatic, change of volume, one portion of steam giving
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up its latent heat required for the expansion of another and thus
becoming liquefied, rather than to any chilling effect caused by
contact with eold air, which is well known to be an almost perfect
non-conductor. :

To those acquainted with the thermodynamic theory of storms,
urged by the late Mr. Espy,—a theory to which, in the opinion o1
the writer, proper attention and respect was not paid,—the adia-
batic formation of clouds, rain, hail, and snow in the upper
almosphere will appear as a rich field of meteorological research,
of which Rankine caught only a faint glimpse; one distinet
enough, however, to cause him, in one of the passages above
quoted, to cite the explanation of such meteorological phenomena
as an important application of his discovery.

ADIABATIC CIIANGES IN SATURATED STEAM.

156. We have obtained for saturated vapour, or steam, the
fundamental equations (168) and (172), which in the mechanical
theory of heat as applied to the steam-engine take the place of the
two general laws of Joule and Carnot; and we now propose to
determine from these equations the variable quantity of vapour ,
the volume v, and the work &, considered as funchons of the
temperaturc when, as in cither end of the working cylinder of
an engine closed by its moveable piston, the variable mass, partly
liquid and partly vapour, changes its volume adiabatically, without
loss or gain of heat, but performing external work positively or
negatively. And in these demonstrations we shall follow chicfly
Clausius (“ Théor. Méce. de la Chaleur,” t. i, p. 180, 2d edit., Paris,
1868), who first gave them.

157. ProBLEM 1.—T0 determine x, the quantity of vapour, for
any temperature =, when x,, the quantity for e given temperature
To, 18 known.
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From which equation the data of- Regnault allow 2 to be easily
caleulated. As an example, Clausius gives the values of z of the
following table, computed for a quantity of steam in a cylinder,
saturated and without liquid at 150° C., but becoming superheated
when compressed, and partially liquefied by dilatation:

i = 150° 125°

|
100° 15° 50° 25° |
{
|

[x i 1 0.956 | 0.911 | 0866 | 0821 | 0.776

158. Simple as is the above demonstration of Clausius for
equation (177), a yet simpler one flows from the equation (169) of
Thomson, which for an adiabatic change gives

A K0 A
m—;+d(7)_0,

whence, immediately, by integration,

2 Ao (B
—z=—x— [ m—,
B To To T

as before.

159. ProBLEM IL.—70 find the change of volume. For this
we denote by s,, as in equation (170), the volume of a unit of the
liquid in contact with its saturated vapour, and by s the volume
of a unit of that vapour. Then we have, as above,

v==8 + (s —s)z;

in which s, may be considered constant, for comparatively with s
its variation with temperature is exceedingly small.
Putting now, for brevity,

U =8 — 8, (179)
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And, therefore, from equation (176), we have
pdv = d (zup) — E[d (iz) + m'dr].
From this equatién, by definite integration, we find the work
S = zup — zgupy — B [Ax — Ay + m' (- — 70)]; (181)

an expression in which 2u and 2z are known by the equations
already found for them, and from which the values of S are there-
fore readily calculated. If for perfectly exact results the hypothesis
that s, is constant be rejected, then we must add to the values
given for S by the equation just found those of the integral

/ 1Tp(ls(,.

From the equation (181) and those preceding, Clausius calculated
the results given in the following table:

] i z v v S

12582 0.956 1.88 1.93 11,300

100 0.911 3.90 4.16 23,200
713 0.866 9.23 10.11 35,900
50 0.821 b MOt 29.7 49,300
25 0.776 88.7 107.1 63,900

For all of the data of this table the unit of volume (v = 1)
is that of a kilogramme, or unit of vapour (z=1), at the
temperature 150° C.; and the work § is given in French units of
work, or in kilogrammetres.

To show the great importance of -eaxpansion in the work of
engines, Clausius states the fact, which may be compared with the
numerical values of S in the last vertical column of this table, that
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the work done against external pressure is 18,700 units, when a
kilogramme of water is converted into steam at 150° C. and under
the corresponding pressure. And it will be observed that, between
the temperatures 150° and 50° the volume becomes nearly twenty-
six times its original value.

ENERGY OF A VARIABLE MIXTURE OF LIQUID AND VAPOUR.

161. As the variation of the internal energy of any mass, or
system of masses, has been shown to be equal to the external work
done, it is well to obtain an analytical expression for it in the case
under consideration, or that of a unit mixture of a liguid in
contact with its saturated vapour.

The heat required to change the temperature of the unit mass

¥ ’
/ m'dr.
L2

To

while liquid from 7, to = is

Our general formula gives also for this same change

4 (v —0+ [pi);
whence

A(U’,—C&):[Tm’dr—AL/:}ydso.

Let now the fraction z pass at the temperature = and pressure p
into vapour of maximum density; the heat required will be

=A[U—-T, + (s — %) p]-

From which equation we get

A(U—Uy) =2z + ./‘Tm’dr — Azup — Affpclso;
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an expression easily seen to be identical with the formula (181) of
Clausius for s the external work, except in its sign, which differs

becawse work is negative energy.
The formula just obtained may be rendered more convenient

for application. Observing that

v =8 + zu,

_/ pdsy, = psy — f Sdp,

and making these substitutions we easily obtain

and

U— U, = E(Ax HE / Tm'dt) — v + PoSo + /psodp. (182)
To Do

In this equation U, is the initial energy, and therefore a deter-
minate or constant quantity, though unknown.

For the definite integral, or value of U between the physical
states (1) and (R), for which the temperatures are =, and =, the
equation just found gives

U-U=F ()lfr'”ﬂ — m) — Pty + Py

+ Eb/f‘“m’dt + L/:hs.,d;o

1

(183)

It is customary in using these formulas to simplify them by
putting m' equal to ¢ the specific heat of the liquid for constant
pressure and regarding ¢ as constant ; both of which hypotheses .
are nearly true. Also the volume of the liquid s, may be consid-
ered constant. Making which changes, we have

U—U=EFE[c(t — 7o) + 2z] —p (v — 3) (184)
and ‘
Up— U=Efc(ra— 7)) + Ao — Ay]

(185)
— Pty + py + (P — 1) So.
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SUPERHEATED STEAM.

162. The experiments of Faraday having proved that all the
known gases, except only those few which are called permanent,
may readily be liquefied by cold and pressure, it follows at once
that they are all only superheated vapours.

Hence, all that we have said about the thermal properties of
airs, or gases, in the beginning of this work, may be generally
considered applicable to superheated vapours. In fact, the solid,
liquid and gascous states do, as we have seen, pass gradually and
continuously into each other. And the study of the physical
properties of vapours, except near to and at their points of
saturation when they are becoming liquid, is therefore only that
of the laws of such gases as do actually exist. The use of an ideal
or perfect gas as a limit has been sufficiently explained.

In article (83) we have mentioned the experiments of
Messrs. Fairbairn and Tate, and those of Hirn, upon the density
and expansion of saturated and superheated steam. The experi-
ments of Regnault have also given us, for various gases and
vapours, their coefficients of dilatation under constant pressure
and constant volume, and their specific heat under constant
pressure. And to these data we may of course apply the general
formulas which we have proved for bodies in all physical states
whatever. !

But when we atteﬁpt to go further, and deduce from observa-
. tions the form of the thermodynamic function

¢ (pvt) = 0,

even for ordinary gases, of which our knowledge is certainly far
more perfect than it is for superheated steam, it seems impossible
vet to solve that difficult problem; except approximatively and for
the few gases only which approach closely to the nature of what
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is called a perfect gas, and therefore obey very nearly the laws of
Charles and Mariotte ; or algebraically, which follow the law

pv g T
Dol w

0

Both Hirn and Zeuner have, however, attempted to give formulas
for superhcated steam which in the present imperfect state of
experimental knowledge, may be regarded as just approximations,
as was formerly the law of Mariotte; which even yet is often,
but improperly, employed in technical calculations.

163. Hirn simply assumes that an ¢sodynamic curve, as it is
called by Cazin, or one of constant infernal energy, is an equilateral
hyperbola, which will not be isothermal. And we have seen
(Art. 110) that an isothermal line, or curve of constant temperature,
will not be #sodynamic, unless U the internal energy is a function
of the temperature only; and that this would be true for a perfect
gas obeying the law of Charles and Mariotte,

pv=Rr,

is evidenf. But the experiments of Thomson and Joule (see 87)
prove conclusively, as do also those of Regnault, that not even
hydrogen obeys that law exactly. It is not possible, therefore,
that for any known substance an isothermal line can obey the law
of Mariotte; for which the algebraic expression is

v =26

and its geometric construction is an equilateral hyperbola. The
hypothesis of Hirn is, therefore, simply that the product ¢ is
constant for isodynamic curves. The simplicity of this hypothesis
is certainly a great recommendation for numerical applications;
and as an approximation, it is quite close enough, except when
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steam or vapour approaches its condition of saturation. Then the
errors of the calculated results, as compared with those of
observation, become too great.

164. To determine by steam the form of a curve, which shall
be either adiabatic or isodynamic, but not isothermal ; let p and »
be the independent variables, and put

Xav + Ydp =0;

(@ 420 ) g
T D LS

whence

Or assuming

% s (186)
we have
i—]p—kn%v:O; (187)

which, if we make 7~ constant, gives by integration
PVt = c. (188)
dQ = AdU + Apdv,

If now in

or in its equivalent,
aU dU

we suppose @) to be constant, then we shall have, as above,
Xdv + Ydp =0;
giving by integration equation (188) as that of an ediabdatic curve.
But if, instead of ¢, we suppose the internal energy U to be

constant, then our general equation evidently divides into the two

following :
dQ = Apdv,
and

au au
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the latter of which, identical with
Xdv + Ydp =0,

gives by integration equation (188), as that of an isedynamic curve
when # is constant. While the first equation shows that, in any
isodynamic change, heat absorbed is entirely converted into
external mechanical work.

From the above, it is clear that the integration which gives
equation (188) as the general form for an adiabatic curve, if @ be
constant, or for an ‘sodynumic curve if U be constant, depends
entirely upon the hypothesis that the factor » of formula (186) is
constant. An hypothesis which we have no right to assume
without demonstration.

165. Rankine was the first to use for adiabatic lines the
formula (188); and he seems to have been led to it by noticing
that in diagrams of encrgy of steam-engines, drawn by the
indicator of Watt, the adiabatic curves are in form Ayperbolic :
and that it is, therefore, very convenient to discuss adiabatic
changes graphieally by hyperbolas which are not equilateral.

Or in his own words,—“it has been deduced by trial, that for
such pressures as usually occur in the working of engines, the
relation between the co-ordinates is approximatively expressed by
the following statement: ¢he pressure varies nearly as the
reciprocal of the nth power of the space occupied. The convenience
of this method arises from the fact that the curve approximates to
one of the Zyperbdolic class ; that is, a curve in which the ordinate
is inversely proportional to some power of the abscissa, as is
expressed by the equation

pt=c.
The index # is different according to the circumstances of the case,
and is to be found by trial. When #2 is equal to unity, the curve
is an equilateral hyperbola. But in the cases which occur in the
working of saturated steam # is fractional and greater than unity.”
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Rankine gives for #, in the adiabatic curve of saturated steam,
the erroneous value 1.1111, or ten ninths. (See Rankine on Steum-
Engine, p. 385, edit. 3d, 1866.) But Zeuner, who adopts Rankine’s
formula (188), has corrected this error, and gives for that curve
7 = 4 =1.3333. Which result MM. Cazin and Hirn confirm, as
agreeing very closely with their recent observations.

166. Zecuner, generalizing the hypothesis of Rankine, assumeg
that for all vapours and gases, the thermodynamic function

o (pvt) =0
may, if adiabatic or isodynamic, be put under the form (188);
which for the curve of saturation of steam, (Art. 154), has for the
index % the value 1.0646, and for the constant ¢ the value 1.704.
And between these maximum density values for # and ¢ in
saturated steam, and those of the law of Mariotte, when » becomes
a maximum and equal to unity, Zeuner supposes 2z to be variable
and to decrease as the steam becomes more and more superheated.
Geometrically, this amounts to the assumption that

o=p=c
is an hyperbola with a variable index =, and whose variables
p, vy and n are all functions of the temperature. The curve also
becomes equilateral for the limit value 7 =1 required by
Mariotte’s law.

Evidently, however, formula (188) must be considered as
empirical only, whenever the value of the factor (186) is for
convenient . integration assumed without demonstration to be
constant. And the only apology that can be made for the adoption
of this formula (188) is that of Rankine, to wit its practical utility
and convenience.

The general equation of an isodynamic curve

Xdv + Ydp = 0,
or its equivalent,
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G i sl o
dU——d—v‘dU-f-d—])ap_O,

is evidently an exact differential and therefore integrable. But to
integrate it we must know X and ¥ in terms of v and p, and
these variables must be separated. And practically this is impossi-
ble until the function U is given by observation.

167. Zeuner and Hirn have more recently both given another
approximative equation for superheated steam of the form

pv = Br — (p~,

which Zeuner finds to agree very accurately with observed data,
and which Hirn endeavors to base upon theoretical reasoning.
(See Hirn, “Ann. de Ch. et de Phys.,” 4¢ sér, t. xi) We shall,
however, omit its discussion.

168. The following table of the specific volumes v of super-
lheated steam, as observed Ly Hirn for centigrade temperatures ¢,
is valuable for technical applications:

! P e o 7ok 13 .

| o M Al

b 7l 100° 1.65 3.5 201° 0.6035
« 1185 174 « 225 0.636
> 141 185 | 5 246.5 0.6574 |
G 1485 1.87 4 165 04822 |
« 162 1.93 L 200 0.522
« 200 2.08 g 295 0.539
203 2.14 « 246.5 0.5752
“ 246.5 2.29 5 160 0.3758
2.25 200 0.92 « 200 0.4095
3 200 0.697 « 205 0414
3.5 196 0.591
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The pressures p are here given in atmospheres,
From the above table of Hirn we construct the following, for
the temperature 200°:

P | 7. po.

1 2.08 2.08
2.25 0.92 2.07

3 0.697 2.091
4 0.522 2.088
5 0.4095 R.0475

Hence, it appears that steam superheated to 200° gives pv nearly
constant, or that it may be supposed to obey the law of Mariotte
approximatively.

If, from the data of Hirn, we calculate values for the coefficient
of expansion, they are very irregular; thus showing the observa-
tions to be affected with probable errors too great for exact
theoretical purposes. It is to be hoped, therefore, that before long
gsome other observer, with superior facilities, may repeat these
experiments and extend them to the superheated vapours of other
liquids beside water.



CHAPTER XL

ON STEAM-ENGINES, THEIR DEFECTS AND IMPROVEMENT.

169. We shall suppose the reader sufficiently acquainted with
the construction and working of condensing and non-condensing
engines to dispense with any description of the manner in which
the water is turned into steam, which pushes the piston to and fro
and does the effective work. Also, that the offices and the techni-
cal names of the usual parts of an engine are familiarly known to
him. Or if he lack such general or popular information, which
in this age every one pretending to be well informed is expected
to possess, then we trust that, before attempting to study this
chapter, he will acquire it, by reading some descriptive book, and
by personal inspection of steam-engines in operation; all of which
may be easily accomplished in a few hours in almost any active
part of the present civilized world. Consequently, we shall omit
descriptions and definitions, and will freely use any technical terms
we may have occasion to employ.

170. To any one thus fitly informed, the following brief
analysis of the cyele of operations constantly recurring in a con-
densing engine at work will, it is presumed, present no obscurity:
1°, a definite mass or weight of water in the boiler, at the temper-
ature = and under the corresponding pressure p, is changed into
steam of elastic force equal to p, which steam passes into the
cylinder and pushes the piston; 2°, the pipe from the boiler
being now closed, that steam continues to drive the piston, expand-
ing until it fills the cylinder, in which change the pressure
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decreases and part of the steam becomes liquefied ; 3°, the mix-
ture of steam and water is now driven by the engine out of the
cylinder into the refrigerator, where, at the reduced temperature
7, and pressure p, it becomes entirely liquefied ; 4°, lastly, it is,
under the pressure p, pushed back by the force-pump into the
boiler. And thence again, and in constantly recurring cyeles, the
same or an equal quantity of water goes through this same serics
of operations. ‘

IDEAL AXD PERFECT ENGINES.

171. Before considering real engines with their imperfections,
it is well to form a distinct conception of what would constitute a
perfect engine, working between the temperatures = and =, And
for all such engines we have already found Carnot’s law,

i g ek it 0
q i
Let now the physical state of a unit of water in the eondenser,
or refrigerator, of the
p temperature 7, and
under the pressure p,
be denoted in the

diagram of energy by

the position ¢. And
suppose a urnit of
a d water at a to be
driven by the force-

pump, with increase

ol 2t & & T S pressure from p,

to p, and of temper-
ature from =, to =,
into the boiler. Then the curve @b indicates this change, and the



STEAM-ENGINES, 239

heat absorbed by that unit of water will be

T D
J m'dr.
y

a

Next, let the fraction  of that unit of water be turned into steam,
under constant temperature ~ and pressure p, passing thus by an
isothermal change, indicated by the line &c to the expanded con-
dition ¢ and from the boiler into the cylinder. For this change
the required heat of vaporization is Ax.

The unit mixture of water and saturated steam in the cylinder
may now be supposed to pass suddenly, and therefore adiabatically,
from the state ¢ to that of ¢, with decrease of pressure from p to p,
and of temperature from + to 7,; no heat is received or emitted,
but in doing this work of adiabatic expansion, part of the steam
liquefies, to yield its heat to another part.

Lastly, let negative work of compression and condensation, be
done by the engine upon this unit mixture, containing now only ,
of saturated steam, under the constant pressure and temperature
2o and 7,; and let its volume be reduced by liquefaction until
it is all again liquid, and restored in the condenser, or refrigerator,
to a, its original condition. This isothermal change is denoted by
the line de of the diagram, and 4., is the latent heat of condensa-
tion due to it.

Adding now these thermal variations, we have

AQ =iz — Ay + [ midr, (189)

the total variation of heat due to the hypothetical cycle.
172. We have seen (in Art. 98) that for all heat engines the
test of perfection is reversibility. Also (in Art. 117) that by the

theorem of Carnot,
T —T

v dg

17
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is the maximum work which can possibly be done by any
elementary variation of heat. And therefore, that as, in any
perfect engine without waste,

E(g — q0)

is the work done, the dissipation or waste (equation 123) for a
reversible cycle, or perfect engine, is

173. If now the ideal engine under consideration be perfect,
then its cycle must be reversible, and by differentiation

453) (sz) + T —o; (190)

whence, by definite integration,

s s, 27 rdm
?_——-—-Jr m—_; (191)

0
and thus for a perfect engine, or reversible cycle, we get as the
condition of 7o loss the same equation (177) which, though in a
very different way, we have already found for an adiabatic change
in saturated steam.

STEAM-ENGINES WORKING IN CYCLES OF CARNOT.

174. Certainly, it is not necessary to prove for steam-engines
in particular what has been already shown for all engines supposed
to work in cycles of Carnot, that they are perfect. Nor will we
probably ever find for such ideal engines a simpler demonstraticn
of their perfection than that of Art. 120; which, by definite
integration of the function
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dqg = ~d¢,
gives the law of Carnot

Q'—‘%:T—‘o

q 77

»

for their efficiency.

175. Nevertheless, as an example of the use of our general
formulas for steam, let us apply them to a cycle of Carnot
composed of two isothermal cutting two adiabatic lines.

In the physical state represented by the co-ordinates p and » of
the point @, let in the boiler a unit of water receive heat
sufficient to convert a frac-
tion z thereof into steam ; p
this change will be figured
by the isothermal line ad,
for which the pressure and \a \b

temperature are constant. 3
During it, the mixture also

passes from the boiler into il ety
the working cylinder. And \ ‘s

the heat absorbed in this
isothermal change is

q:kx.

Next, adiabatically from & to ¢, there is in the cylinder expansion,
but neither loss nor gain of heat ; hence the temperature falls from
T to 7, and there is partial liquefaction, (Rankine’s law); the
amount of which, given by the adiabatic equation (177) or (191),
will be obtained from -

rAry  Aw L M

2 iad ol i ()
Then from c¢ to d condensation takes place, and the latent heat
given out to the refrigerator is

11
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REAL ENGINES.

176. For a first approximation we may suppose the engine
without friction or other imperfections, just as is domne in
mechanies for elementary machines, for the simple pendulum,
and for projectiles and falling bodies in vacuo. Also, if the steam
expands rapidly in the cylinder, we may assume this change to be
adiabatic and the expansion to be complete. The cycle of
operations will then be identical with those set forth for an ideal
engine in Art. 171} and its diagram, as well as all the formulas,
become directly applicable. So that we have for the heat absorbed,

qg =2z + '/”m’dr

for that emitted
@ = Ao 5

and for that converted into external work
g — Qo= A% — Ay + me'dr,

which is identical with (189), as it should be.
We may eliminate z, by aid of equation (177) for an adiabatic
change, or by the relation

)L°x° +fm
+fm(

which is, therefore, the general eqnation of such engines.

and thus obtain

Q"‘Qo—’lx

) (192)
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177. Moreover, it is clear that the equations just obtained
may be put under the following modified forms, if for approxima-
tion the specific heat ', which varies very slightly, be assumed to
be equal to ¢ and constant.

The heat received is

gq=4x+c(v— 7o)} (193)
that emitted is
qo = 7»0:7.'0.
To eliminate z,, we have

2 Al w
o=y clog—
[ ‘0

0
And, therefore, the heat turned into external work ig

T — T,

g —go= Az + et — 7) — ¢crolog —:_; K (194)

-
or

Ag =zl =104 0|>T — (1 + log ;)] (194%)
7 : 28 To

178. From the value given for 2 by the formula of Regnault
(160), and from equations (193) and (194), we may compute the
efficiency

e = 2= %
due to the cycle of such an engine. Making the requisite numer-
ical calculations for the temperatures 150° and 50° centigrade,

we find
¢ = 0.219.

Between the same limits a cycle of Carnot gives

e="""T0=10.236.

-

The difference 0.017 shows the imperfection of the cycle.
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179. It is easily proved that the coefficient ¢', or efficiency of
a steam-engine, approximates more and more closely to the maxi-
mum e of a perfect engine, or cycle of Carnot, as the clute de
chaleur, or difference between 7 and 7,, diminishes.

For this purpose, equation (194) gives the following trans-
formations:

iy (1 + log ;) = 7o — T, log —‘:9,
‘0/ ‘
but

z,log = = 7, log (1 - —T—__j)
If we develope the last term by aid of the well-known formula
b a0}
log (& + ) = loga + v o+ ete.,

making the proper substitutions, and rejecting powers of @ higher
than the first, we have

.-olog(l— -)Z—TOT-—Z—O-

Hence,
et — ¢ (1 i log—i—) = ¢t — ¢7p (1 A -T-:_E)

o

Or, by reduction,

o € oo ding 0 L LSRR St
T(l 2IIO+A )—C =

Consequently, equation (194) approaches the limit

i) T—72
oy plr =,
T

g — Qo= Az L —_
And if we divide this by (193) we get

e or e T S
=41 =——;

Ge il

or the limit is a cycle of Carnot.



246 APPLICATIONS OF THERMAL LAWS.

Geometrically, too, it is evident that as the isothermal line ed
approaches ab, or as =, is

p nearer to T, the area of
the triangle ade, which

is the difference of abed

a e, and abee, or of the cycle

of a steam-engine from

the cycle of Carnot, does

d c also approach a limit.

0 v 180. If we make in

equation (192) the higher

temperature equal to 7, and change the accent of T accordingly
both in it and in the expression for the heat absorbed,

g =iz + / “m'dr.

Then dividing (192) by ¢, the quotient, or efficiency, may readily
be reduced algebraically to the form

The second member of which proves that the efficiency is less than
that of a cycle of Carnot, expressed by the first term of the second
member. Also the value of the last term is a minimum when 2 is
greatest, or unity; which is the case when the steam in the
cylinder is not mixed with any liquid portion. There is, there-
fore, advantage in using dry steam.

181, Such is the importance of the steam-engine, that it is
well to consider its theory in various ways. And we shall, there-
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fore, give here another demonstration of its general formula (192);
the first was obtained by seeking expressions for the heat received
and expended ; the following will be based upon changes of energy
and work.

The engine being double-acting, its cycle will be that of a
single stroke of the
piston.

Let z, be the pro-
portion of steam in the 2

mixture as it enters the Pz
cylinder; and let p, -\:
and 7, be its pressure ——— ¢

and temperature. From
@ to & the steam acts
upon the piston with
full head, or with the L
pressure p,; but this Ry
pressure is antagonized

is4)
e | e e

by the pressure p, of

the vapour in the con-
denser, or by that of
the atmosphere. If
be the mass of the mixture, and v, be its specific volume, then mv,
is the capacity of the part of the cylinder whose length is a6 ; and
the work due to this part ab of the stroke will be

SlhE=
[p e, I

mvy (ps — p1)-
From &4 to ¢ expansion takes place, the steam from the boiler being
cut off ; and at ¢ the specific volume of the mixture will be #, and
its proportion of steam z, ; this work will be given by the formula
(183) already obtained for such changes, or by

2 L 2
S=m [E (JLQxQ — Az + ‘/1. cdr) — Py + Py + I sodp].
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To eliminate Az, we have from cquation (177) the relation
My Ay 32dm
ey

making this substitution, and subtracting the back pressure on the
piston, which is equal to

mp; (vy — vy),
we get

S—m%ﬂ[lﬂ, ~———+f (————) (lr] —v,(pg—p1)+£2soc@§-

And adding to this the work done under full head from ¢ to b,
we have for the entire stroke of the piston the work

;9—%171% As :"+f P d-:l f OdpE

From this we must now subtract the work of the force-pump,
which at every stroke of the engine takes a mass m from the
condenser under the pressure p, and forces it into the boiler under
the pressure p,; for which work the value is

22
ms, (p: — p1) = -/1 MSodp.

Making this reduetion, and dividing by the mass 2, we obtain for
the work due to the unit mixture,

sm s - o]

which is identical with equation (192) already found.
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DEFECTIVE EXPANSION.

182. Incomplete expansion is one of the principal defects of
steam-engines. In the preceding discussion, we have supposed
the expansion from 7, to 7, to be complete. The table of Clausius
(given in Art. 160) shows that between the temperatures 150° and
50° the expansion of saturated steam is 25.7, or nearly twenty-six
times its original volume. For such dilation cylinders of enormous
size would be requisite. Practically expansion is never pushed to
such a degree. The same table shows that between 150° and 100°,
it amounts to 3.9 or nearly four, and that between 150° and 75° it
exceeds nine. The values of s given in the last column of that
table indicate also the relative work for different degrees of
expansion.

In the figure of the preceding article (181) let expansion ceasc
at the point e, for which the pressure and temperature are p
and 7; then the loss of work or defect due to incomplete
expansion is measured by the area of the triangle ce'e. At ¢ let also
the specific volume of the mixture be v, and let # denote the
fraction of steam it contains.

The work of the unit mass during this partial expansion,
lessened by that of p, the opposing pressure, as given by
equation (183) will be

Ta Da
5 (A,xe — Az +1/" cdr) + ‘/; Sodp + Pv — Pve — Py (v — o).

Eliminating Az by its value

Ar = AT, i __ % 1= 7"/‘72ch,

2

and integrating, we get
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Ei:lgxg o ;— + ¢ (rs — 7) —c7 log ?:]
2 T

+ '/; pzsodp + pv — povy — oy (v — v,).
To this add the work of the full head of steam along ab, or
vy (e — pi),s
and from it subtract the energy expended upon the force pump
8o (p2 — p1)s

and we have after reduction

T

S=(p—p)(v—25) + El:l,xg TQ-r

+e(ra—17) —er Iogg_}
: T
From which formula, the data of Regnault and the table of
Clausius (Art. 160) enable us to compute values of S and compare
the relative efficiency of such an engine with that of either of those
already discussed.

If we make the requisite calculations for complete expansion
between 150° and 50°, and for partial expansion only between
150° and 100°, and again between 150° and 75°, we find for ¢’ the
efficiency, or coefficient, the relative values 0.219 = %, 0164 =},
and 0.205 = % ; while a cycle of Carnot gives 0.236 = 1 nearly,
between 150° and 50° centigrade; and if we compare the values of
S for incomplete expansion between 150° and 100°, and for
complete expansion from 150° to 50° we find them to be in the
ratio of 99 to 132; thus showing for the former the loss of 33,
or one-fourth of the latter.
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OTHER IMPERFECTIONS.

183. There are other defects in steam-engines which we will
not discuss, for they relate mostly to technical construction
and to economical management. We may, therefore, refer for
full information concerning them to such works as those of
Rankine, De Pambour, Hirn and others; and will here only
mention some of them. Of such are wasteful consumption of
fuel ; incrustation in hoilers; obstructed flow of steam; diminu-
tion of pressure between the boiler and cylinder, or between the
cylinder and condenser; chilling effects of radiation and conduc-
tion ; friction, ete.

But with all its existing defects, the steam-engine is far from
being the very imperfect and faulty machine, whicn false theoretical
ideas have led some to imagine it to be.

The numbers of the last article showing that from 150° to 50°
the duty of a perfect engine is only 236, and that an engine with
its boiler at 150° and condenser at 50° but with incomplete
expansion to 75° only, has a coeflicient of 205 or % nearly; it
follows that 0.93 is the true coefficient for such an imperfect
engine. And if of this coefficient four-fifths be available, or
effective, then 0.74 would be the actual coefficient of such an
engine. To compare this with Hirn’s results for his engines,
which had a mean coefficient of 1 = 0.125, as stated in Art. 10;
our engine would have a coefficient of four-fifths of 4 equal to
nearly, or 0.205 x 0.8 equal to 0.164 exactly; and the difference is
0.039, or say four per cent only. Thus we see that allowing 24 per
cent for friction and all other defects, Hirn’s engines would be
perfect.

It also appears that hot air is far from having the com-
parative advantage over steam, which some lately imagined
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it to possess; and that, on the contrary, for small ranges of
temperature steam is preferable. Indeed, if air like steam could
readily be liquefied, and thus used in condensed and less
bulky form, such a change would constitute a great improvement
for all hot-air engines.

We will now consider some of the theoretical improvements
which have been imagined or proposed of late years.

ENGINES OF TWO LIQUIDS.

184, It has been proposed to extend the difference of tempera-
ture, or chute de chaleur, npon which Carnot’s formula

C= —

0

-

shows the maximum efficiency of any heat engine to depend,
by combining with a steam-engine, working between the tempera-
ture T and T, another engine using a much more volatile liquid,
such as sulphuric ether or benzine, and working between the
temperatures v’ and 7. The condenser of the steam-engine
being thus made to play the part of boiler to the auxiliary ether
engine.

It is easily shown that such a double engine is simply equiva-
lent to a single engine working between the extreme temperatures
~and 7. For this purpose, each engine may be assnmed to be
perfect, or to work in a cycle of Carnot. The steam-engine will
convert into work
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This engine utilizes

and throws away

or its coefficient is the same as that of a single engine working
betwcen the extreme temperatures = and 7,; which was to be
proved. ;
An engine with two fluids may, therefore, be used to extend
the chute de chaleur.

Not only ether, but other volatile liquids, e. g., chloroform and
chloride of carbon, have been tried. Such engines have been used
in France, and one invented by Du Trembley was in 1855 tried in
the steamer “Brésil” with considerable economy of fuel.

They have been abandoned chiefly, perhaps, for fear of fire;
though escape of noxious fumes, corrosion of metal, etc., are
other objections urged against them.

STEAM-JACKETS,

185. Around the cylinder of his engines Watt placed another
cylinder of larger diameter, with a space between them filled with
steam from the boiler ; and this contrivance is called a steam-
jacket. :

It is not known what led him to adopt such an arrangement,
It has since been ecriticised and condemned hastily as a very faulty
way of preventing radiation and conduction ; which it was alleged
could be better done by an envelope of wood, or other non-
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conducting material. Such ignorant stupidity cannot be aseribed
to that illustrious man.

In the locomotive engine of Mr. Stephenson, the cylinder was
placed in the flue from the furnace, for economy of heat and fuel.

And it has been practically found by Hirn that an economy of
not less than 20 per cent may be realized from jacketed engines.

Very different views have been enterfained in theoretical ex-
planation of this important economy or advantage, which practical
results prove to be unquestionable as a fact. And clearly it has
nothing to do with radiation and conduction, which take place.
from the outer surface of the jacket even to a greater degree than
could happen for the working cylinder of smaller size.

The important discovery of Rankine, that liquefaction takes
place in a cylinder working expansively, has induced some to
adopt the hypothesis that a steam-jacket imparts additional heat,
prevents liquefaction, keeps the steam saturated but not super-
heated, and thus causes. the increased economy attested by expe-
rience.

Our equations will verify the truth of that hypothesis. The
heat required first to heat a unit of water and then to convert it
into steam, is that called by Regnault its total Zeat ; and it must
be increased by the quantity from the jacket preventing liquefac-
tion. The whole quantity received is, therefore,

Q=m(r— 1)+ 1 — frmdr.

To

And the heat lost is
Q0 =N

Hence, that converted into work is

A— 2y +m' (1 — 1) — frmdr.

To

In these expressions the last term is negative, because (Art. 149)
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the specific heat m of saturated steam is negative. But the equa-
tion of Sir W. Thomson (167) gives

By the formula of Regnault,

A = 606.5 — 0.695¢ = 796.25 — 0.6957,

and

39625 o oo
T T

whence
Q — Q, = 796.25 log — — 0.695 (+ — o).
o

And if we apply this formula to an engine working between 150°

and 50°, we find
@il s 1244

But for an ordinary engine with complete expansion between the
same temperatures we found (Art. 182) the work equal to 132 and
the efficiency 0.219; there is, therefore, a gain in work of one-
eleventh, or nine per cent nearly. But the amount of heat
received was greater to the extent of

f de‘r )

To

or 114.45 calories; and the economical coefficient is, therefore,
0.201 only. The cycle is, consequently, more imperfect than that
of an ordinary engine with incomplete expansion to 75°, for which
0.205 is the efficiency.
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What is the interpretation of these apparently discordant

results, an actnal gain of nine per cent of work and yet a smaller
* coefficient ? Evidently, the additional heat comes only from the
fire ; and hence there may be more work but less economy, if that
additional heat be not such as would be otherwise lost or wasted.
If the cylinder be put in the flue or chimney of the furnace, as in
the locomotive of Mr. Stephenson, or the heated gases of combus-
tion pass into a hot-air jacket before escaping, then evidently any
additional heat absorbed would be a positive economy, as well as a
gain, which would otherwise be lost.

But if, as in the steam-jacket of Watt, experience shows both
gain and economy amounting, according to Hirn, even to 20 per
cent ; then such an advantage is not at all explained or accounted
for by the hypothesis that the latent heat of the steam in the
jacket keeps that in the working cylinder saturated but withont
liquefaction.

Accordingly, we find that while Rankine adopts that hypoth-
esis, it is disputed and rejected by others. Combes ascribes all
advantage to the influence of the walls of the cylinder, which,
chilled by expansion and condensation, determine, at each intro-
duction of steam, the immediate liquefaction of a part which comes
mto contact with them. And Rankine mentions that in double-
cylinder engines, where the expansion begins in a small and finishes
in a large cylinder, if the small cylinder only be jacketed, the
liguefaction is prevented almost entirely.

Moreover, if the piston move rapidly, expansion wounld be nearly
adiabatic, sufficient time not being given for steam in-the jacket to
supply heat to the non-conducting steam in the cylinder. This
whole subject seems, therefore, to demand further experimental
investigation for its elucidation.
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SUPERHEATED STEAM.

186. With increase of temperature, the expansive force of
steam varies so rapidly, that it is said to vary in geometric pro-
gression when the former varies only arithmetically; and the
empirical formulas, which have been proposed for it, are logarith-
mic or exponential. For a pressure of ten atmospheres, used in
locomotives and other engines, the corresponding temperature is
about 180°; and that pressure cannot be much exceeded without
great danger of explosion. The chute de chaleur, or difference
(v — 7o), upon which the duty of an engine depends, cannot,
therefore, be much increased by making the boiler hotter.

It is, however, quite practicable to elevate the temperature by
letting the steam from the boiler pass to the cylinder throungh a
pipe, or system of pipes, exposed to the heating action of contact
with the hot escaping gases of combustion in the flue of the
farnace. And it is clear that in

Q_Qo__T'—To_l___"o
(R o G e G

the fractional part of the lost heat, measured by the last term,
varies directly as 7, the lower, and inversely as = the higher limit.

As the hot gases in the flue escape into the atmosphere, what-
ever heat can be taken from them to superfeat the steam is
obviously only so much saved or economized. And without in-
creased consumption of fuel a decided gain is thus realized.

To calculate that gain, we must add to the total heat absorbed
by @ unit mass in an ordinary engine, and expressed as above by

Qi I nch’

o

or by the formula (160) of Regnault, the additional quantity
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needed to heat it still higher to =, which "gives for the heat
received

AT, T

Q:A,+‘/ cdr—l-'/ indr,

To T
in which m is the specific heat of superheated steam, or of steam-
gas, as Rankine calls it.

The lost heat given to the condenser is A, ; and that used
in work is

Q— Qi=24, — iy + / Cedr - f mdr.

From this we may eliminate 2, by the following counsiderations.
The general thermodynamic function

expresses any determinate state or physical condition of a given
substance. If, therefore, in a steam-engine, by any cycle of oper-
ations, a mass of water pass back into its initial state of pressure,
density and temperature, then its first and last states are identical,
and for the entire cycle

d
fT'Q = — Py = 0.
Applying this to our engine, we have
A T T AR o o .
G L S Sy
v71+./.,°("7+../,jmr &3

And substituting the value of Az, given by this equation in the
first, we have

Q—Q=A8=21—T +L/”’c (1 AL _;") dr +(/"7n'<1 e ;’) d-.

T
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But for an ordinary engine we have found (Art. 181) that

+/ (1——3)&

Q— Q=AS=4"

Consequently,

A(S—SQ:/Z}:( —9) dr (195)
is the economy or gain in work.

The numerical calculations and the integration demanded by
this formula are easily performed, if for s we employ its mean and
constant vatue, found by Regnault equal to 0.48 nearly. An engine
whose boiler is at 150° and whose condenser is at 50°, gives for
steam superheated to 300°,

2o =071, and A8 =156;

and an ordinary engine gives (Art. 182) for like temperatures
132 thermal units. The gain would, therefore, be 24 units, or
nearly cighteen per cent, with the same consumption of fuel
Various arrangements for superheating steam have been tried ;
one of the more ingenious of which is that of Mr. Wethered, which
he call “combined steam ;” but we must refer to technical treatises
for descriptions of the construction of engines and other details.

NOMINAL AND ACTUAL HORSE-POWER OF STEAM-ENGINES.

187. When steam was first used instead of horses to pump
water from mines, it became necessary to compare the power of an
engine with that of horses. Various estimates of what a strong
horse can do were made by different engineers. But finally the
work done in elevating 33,000 pounds through a foot in a minute
of time was generally adopted in Great Britain and in this country,
as the conventional measure of one horse-power in steam-engines.
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This is also equivalent to the work of raising 550 pounds one foot
per second; which mode of caleulation is sometimes more
convenient.

In France a slightly different usage prevails, the horse-power,
or cheval-vapeur, being there assumed to be equal only to 75
kilogrammeétres, or French units of work, per second. To agree
with the British unit, it should be 76 kilogrammétres ; but except
in comparative theoretical calculations the difference is s5 small
that it may be technically disregarded.

We should observe the necessity existing to take time into
account in measuring the efficiency of machines and animals.
The same given quantity of work can be done by a child, a
man, or a horse, but the horse will do it more rapidly ; hence time
must be reckoned in the comparison. The discussion of machines,
given in Art. 22, and their law

2 m
- -[ s Bt

show that velocity e'qters into snch caleulations. And in the same
article it is also shown that when the power and resistance become
cqual, and the velocity constant, the machine works with
maximum economy and advantage.

Supposing now, for a steam-engine, that constant velocity
and equality of action and reaction established, or that its cyele of
operations has become periodically constant, we readily sec that
the rule used for computing the actual horse-power of an engine
is correct. 'Which rule is as follows: Multiply the total pressure
on the piston by the length of its stroke in feet and this by the
number of strokes per minute in both direetions, then divide that
product by 33000 for British measures. For Irench measures the
kilogrammeétre per second is the unit of work, the metre is the
linear unit, and %5 is the divisor.

Algebraically the work per minute will be
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2
S'=mrinp = ‘[ pdv,

in which 7 denotes the length of the stroke, » the number of
strokes per minute, p the average effective pressure upon the
unit of surface, 7r? the area of the piston, and v the volume
developed. ' :

The horse-power given by the above rule and definition
will therefore be for British usage,

S
H = 53500 (196)
and for French measures and units of work
B S s .
A =50 x = 500 e

To obtain in French measures the work S', if » be the mean
pressure in atmospheres, and v the volume developed by one stroke

of the piston, then
S' = 10330upv, { (198)

reckoned in kilogrammétres. * The coefficient 10330 being the
atmospheric pressure npon a square metre.

188. The formulas just given would be perfectly correct and
of easy application, if it were possible to determine exactly the
mean effective pressure p upon the piston. It is evidently only
the resultant, or difference, of the direct pressure of the steam upon
one face of the piston, and of the counter pressure of the vaponr in
the condenser, or of the atmosphere for non-condensing engines,
upon the other face. Moreover it is always exactly equal to and
varies with the intensity of the resistance or work ; which itself is
composed of two parts, that of the load or useful work, and that
due to friction and other opposing actions in the engine itself.
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In coming from the boiler into the cylinder the steam is
obstructed by the pipes and valves, and its pressure is thereby
somewhat reduced. 'This obstruction the manufacturer may and
shounld try to diminish by using short and large pipes, with open
valves; but the difference of pressure between the boiler and the
cylinder is chiefly due to the fact that in the cylinder the piston,
being moveable, acts as if it were a safety valve, and lowers the
pressure to the amount requisite to equalize its intensity with that
of the resistance, as was first proved by De Pambour.

The back pressure also cannot be determined, for it varies
largely, owing to more or less obstruction to the escape of the steam
from the cylinder into the air or condenser, to the mixture of air
and water with that steam, and to other causes not yet sufficiently
investigated.

By trials made upon various engines, Gen. Morin has sought
to obtain, for the difference of pressure in the boiler and cylinder,
a coefficient of reduction, which for locomotives he makes equal to
0.60 ; for steamers 0.80; and for stationary engines 0.85 to 0.90.
But De Pambour has proved, by careful trials, that even for the
same engine these coefficients are not constant, but variable with
its work or load.

Under these circumstances, the actual mean value of p can be
practically best determined by using the diagrams drawn by the
indicator of Watt, and recording the corresponding number of
strokes of the piston by an automatic register.

De Pambour gives, however, a formula for determining the
value of p from the quantity of water evaporated in the boiler, or
supplied by the feed pump, which he dedunces as follows: let m
be the quantity of water evaporated in the unit of time and s
the specific volume of the steam it produces in the boiler under the
pressure p'; it passes into the cylinder where its pressure will
reduce to the effective pressure p equal to the resistance R, and by
Mariotte’s law its volume will be
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i

ms p—

r

Again the area of the piston being @ and its length of stroke /,
their product is the volume of the cylinder v, and %v will be the
quantity of steam used by n strokes in the unit of time ; hence
the equality of demand and supply gives

i

= msp;

whence

_ms
Tt

Unfortunately, however, for De Pambour’s attempt, it was not
then known that steam becomes liquefied when expansion oceurs
in the cylinder, and Mariotte’s law fails entirely.

Neither the method of coefficients of Morin, nor that of
De Pambour, can be used for such calculations ; and both must be
abandoned.

189. Hence it appears that as the actual work of an engine
varies with its load, its Aorse-power, which only measures that work,
is in fact variable and indeterminate. This truth seems to have
been well known to Watt and to have induced him, as a
constructor, to adopt for his engines a purely fictitious, or nominal,
horse-power still used in trade. And which is calculated thus:
Multiply the fictitious pressure 7, by the assumed velocity 128 feet;
per minute, by the area of the piston in inches and by the cube
root of the stroke in feet, then divide by 33.000. Or algebraically

o7 X 128

B 58,000

Which reduces, if we make = equal to twenty-two sevenths, to
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64 3
H=a* 750 VA
The British Admiralty adopt a different rule: Multiply the
fictitious pressure 7 by the actual velocity of the piston in feet
and by the area of the piston in inches, and divide the product by
33,000 ; this gives
7 nlr?

| 2 = 5
H = 35506 """ = 1500

In the French marine the rule for the nominal horse-powér is
simpler. If p be the assumed ecffective pressure, and v the
velocity of the piston per second, then

q =,

And from this formula another mnch used by French con-
structors is derived. In an engine of Watt assumed to work with
a pressure of one atmosphere, and with the velocity of one metre
per second, v becomes unity, and therefore

=

B

If now we substitute for p its value, equation (198), then

10000
e i ; X 75

(2r)? = 100 (2r)2.
In which (2r) the diameter of the piston is measured in metres;:
but if we reduce it into decimeétres

H= (2r)2 (199)

Or we have the extremely simple rule that: fke square of the
diameter of the piston in decimétres is the nominal horse-power.
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And from this, for any other similar engine working with the
pressure p and velocity v, the nominal horse-power is

H = po ) (200)

Or we have the rule: Multiply the pressure by the velocity and by
the square of the diameter of the piston in decvmitres.

To these mominal horse-powers, it is customary to apply coet-
ficients of reduction, varying from 80 to 85 per cent, for defects of
construction ; and to multiply these again by the factors of reduc-
tion 0.60 to 0.90 for difference of pressure between the cylinder and
the boiler; thus giving as limits 0.50 to 0.75, called by Morin
factors of construction. )

190. The idea has been entertained by constructors, habituated
to the old formulas, that those required by the new theory of heat
are much more complex; this is far from being true; and it is
much to be regretted that any such false notion should be allowed
to perpetuate the use of erroncous methods, which can scarecely fail
to retard progress and improvement.

The maximum effect which a given quantity of heat @ can
produce in a perfect engine is very easily computed from the
formula of a cycle of Carnot,

S = EQ‘—"’

And having thus obtained the duty of a perfect engine, for any
given limits of temperature, we may with great facility compare
with it the work done by any other engine; using for that purpose
the formulas we have demonstrated ; which also may often be much
simplified by using tables and approximations sufficiently exact for
technical purposes.

Moreover, the law of action and reaction gives for the relation

12
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between the power applied and the resistances overcome that their
sum will be equal to zero, or

S=R+r+4 7+ ++" + " + ete.

It is, therefore, only necessary to determine successively the sepa-
rate hartful resistances and to subtract them from S, in order to
obtain 2, the useful work. And it is difficult to conceive of any
theory which could lead to calculations more simple.

191. We now quit this most important and interesting of the
applications of our theory, regretting much that the necessary
limits of an elementary treatise do not let us give more information
of practical details; but the reader will find them in the numerous
valuable books on the construction and management of engines,
which are written by experienced and able professional men, from
time to time, as perpetual progress demands.



CHAPTER XII.
MISCELLANEOUS.

192. To any one who has followed step by step the rizid chain
of inductive reasoning presented in the preceding chspters, from
which every supposition has been most carefully excluded, except
the single hypothesis. that heat and other forms of energy arc
convertible and indestructible, it will now be evident that, in all
our knowledge of the laws of the physical world, there are none
established upon a firmer basis than the two general propositions of
Joule and Carnot; which constitute the fundamental laws of our
subject, and which may both be combined in the single expression

But their applications are innumerable; and when we reflect how
generally physical phenomena are connected with thermal changes
and relations, it at once becomes obvious that there are few, if any,
branches of natural science which are not more or less dependent
upon the great truths under consideration. Nor should it, there-
fore, be matter for surprise that already, in the short space of time,
not yet a generation, elapsed since the mechanical theory of heat
has been freely adopted, whole branches of physical science have
been revolutionized by it.

All we propose to do in the remainder of this work, all that can
be done in the compass of one volume, is to present a selected few
of the more interesting general applications; in number and in
variety, however, sufficient to give a somewhat adequate idea of
their extent and utility.
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PHYSIOLOGICAL.

193. The body of an animal, not less than a steamer, or a
locomotive, is truly a heat engine, and the consumption of food in
the one is precisely analogous to the burning of fuel in the other.
In both the chemical process is the same, that called combustion.

To the illustrious but sadly unfortunate Lavoisier, the great
founder of modern chemical science, we are indebted for the
discovery that combustion is generally oxidation. The word gen-
erally is here used only because sulphur, chlorine, etc., play the
part of substitutes for oxygen in combustion.

To Lavoisier, too, we owe the explanation of respiration, in
which inhaled oxygen is perpetually exchanged for ejected carbonic
acid and vapour of water, products of combustion.

Other organs aid the lungs in the constant cycle of nutrition
and excretion; the skin, for instance, emitting perspiration, and
the kidneys urine; while the mouth, the stomach, and the intes-
tines replenish waste.

These facts are so familiar to all that no one need demand
further proof than his personal knowledge of the general truth
that the human body is a heat engine consuming food, water,
and air.

But when we seek to trace that truth in all its minor details,
difficulties arise, like those which present themselves to a person
ignorant of the construction of a locomotive, conscious by crude
observation that its activity is due to fire and steam, yet quite
unable to see just what are the offices of many of its organs or
parts.

So that even to the best informed physiologist obscurities exist
which cannot be comprehended.

Hence objections to Lavoisier’s theory have been from time to
time urged. Among such objections we may allude to that which
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finds the heat of the body generally and uniformly diffused instead
of being concentrated in the chest. But this is easily answered by
regarding arterial blood as oxygenated, and the combustion as
therefore taking place in every part of the body; from which to
the lungs the veins carry back blood in a carbonated state.

A more serious objection has been adduced, that friction, espe-
cially in the smaller blood-vessels, must develope heat. Without
doubt, animal heat is thus in part produced. But whence the
expenditure of energy causing that friction, and which must be
itself accounted for ?

Precisely here the mechanical theory of heat comes to our relief.
"The power which drives the blood through its vessels is the muscu-
lar exertion of the heart,—a force-pump to receive blood from and
send it to every part of the body, the discovery of Harvey,—darkly,
yet certainly, we therefore see that the rhythmic pulsations of the
heart, like those of the piston of an engine, are dependent upon and
consequently due to that cycle of nutrition and excretion which
sustains physical or organic life. But precise knowledge of the
involuntary action of the heart will probably ever be denied s ;
for even when a muscle acts voluntarily, we can form no concep-
tion of how mind thus subjects matter to volition ; and the union
of mind, or nervous agency, with matter is an impenetrable mystery,
Yet, even in this obscurity, we know that all which is not spiritnal
and immortal in our being is either matter or energy ; neither of
which can be created or destroyed, except by their Divine Author ;
nor continually expended without exhaustion or replenishment.

Directly then, or indirectly, the chemical theory of Lavoisier
accounts not only for animal heat, but also for all the complex
phenomena united in what is called organic or physical life; and
our bodies do literally burn out of their earthly existence, both
before and after death, decay being only slow combustion.

That matter and force constitute all which is physical, and that
they cannot be created or destroyed, except by God who made
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them, is in few words the enunciation of the law of conservation of
energy. And everything physical being subject thereto, it follows
that no physiological action can take place except with expenditure
of energy derived from food; also, that an animal performing
mechanical work must from the same quantity of food generate
less heat than one abstaining from exertion, the difference being
precisely the heat-equivalent of that work.

These views, which both amend and complete those of Lavoisier,
were first briefly published by Joule in 1843, but soon afterwards
they were much more fully and perfeetly set forth in Germany by
Mayer, who aptly likened the agency of mind, or will, in voluntary
motion, to that of the helmsman who steers but adds nothing to
the force which drives a steamer.

They were first verified experimentally in 1858 by Hirn, who
enclosed men in a tight wooden box, large enough to let them work
on a treadmill, elevating their own bodies as the work done; airin
measured quantities was introduced and conducted off in tubes ;
and both the heat emitted and the carbonic acid exhaled during =a
given time were carefully determined, alike when the man was at
rest and when he was at work.

The ratio of the heat emitted to the carbonic acid generated
was found much greater for repose than for periods of work ; thus
proving conversion of heat into work.

It should here he remarked that these experiments do not
at all conflict, but on the contrary do perfectly accord, with the
result of common experience, that muscular exercise increases
regpiration and temperature ; the numerical data of Hirn so show,
but they also demonsérate that the ratio of the heat emitted to the
carbon consumed is less when part thereof is expended in work and
thus ccases to exist as heat.

Hirn sought to calculate the mechanical equivalent of heat from
such experiments ; but for that exact purpose they lack the requisite
precision. From them, however, Helmholtz has sinee ingeniously
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deduced the economical coefficient of the human body regarded as
a heat engine. He observed that the quantity of heat given off in
an hour by a man in repose, as proved by Hirn, is just what would
do the work of elevating his body to a height of 540 metres. Also
that this 540 metres is the height to which a man climbs up a
mountain in an hour. But Hirn found the amount of respiration
five times as great when a man is climbing. Hence, it follows that
one-fifth is the available or economical coefficient.

From the force of the blood in the arteries, Helmholtz also
calculates that the heart would elevate its own weight in an hour
through the height of 6670 metres. And 2s in mountainous
regions the strongest locomotive can only ascend about 800 metres
per hour, Helmholtz finds the heart as a machine ecight times as
effective.

Others have since attempted to perfect the interesting investi-
gations thus begun by Hirn. Among them Beclard tried to
determine the heat developed in the muscles of the arm by means
of common thermometers ; and it is easily shown not only that he
reasoned imperfectly, but also that the variation of temperaturc
must be far too small to be indicated by a common thermometer.
His experiments, therefore, were of use chiefly in drawing attention
to the necessity of studying the action, not in the body as a whole
as done by Hirn, but in particular muscles, and with the aid of
much more refined instrumental means of measurement.

Accordingly, the delicate thermoelectric multiplier of Melloni
has since been employed in some experiments made upon frogs.
But the results are only interesting in that they show the pheno-
menon to be much more complex than was at first imagined ; that
lactic acid is produced in muscular action ; and that this chemical
change in the muscle itself interferes with the purely thermal
effects.
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LIQUEFACTION AND REGELATION.

194. All the general formulas deduced from our fundamental
laws, without hypothesis except that heat is energy, are applicable
not merely to vaporization, or steam, but also to liquefaction and
every other thermodynamic change which may be regarded as a
function of the pressure, density and temperature of any substance.
This has been already stated in Art. 147, and to some peculiar
phenomena attention has been drawn. But it may be desirable,
and certainly will be instructive, to discuss more fully a few such
facts. :

The formula of Sir W. Thomson, or theorem of Carnot,

d,
= A~ df f
gives for all bodies that of Clapeyron,

Z d])
ldy — A~ Lo g Ve LUCLR
l/v: 0 ('L’ v 0) dt

Whenever a body melts, it absorbs heat from without ; and the first
member of this equation is, therefore, always positive. Conse-
quently, the second member must be so too. Hence the two
factors, in the product

d
(v — vo)zl—];,

are always either both positive, or both negative. Whenever,
therefore, melting causes increase of size, the pressure and tempera-
ture will increase or diminish together. But if, as in case of ice,
melting lessens the volume, then increased pressure will be
attended with decrease of temperature, or the freezing point will
be lowered by compression.

This conclusion, though first theoretically deduced by his
brother, was experimentally verified, as stated in Art. 147, by
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Sir ' W. Thomson; who, for this purpose, subjected a mixture of
ice and water, with a delicate thermometer, to compression in the
apparatus of Oersted for measuring the compressibility of liquids,
which is deseribed in almost every treatise on experimental
physics. Thus he obtained, for pressures of 8.1 and 16.8 atmos-
pheres, the depressions 0°.059 and 0°.129 in the temperature of the
melting point. From which we have the proportionate reduction
0°.0075 for one atmosphere.

To compare this with theory, denoting by A the latent heat of
liquefaction, equal to 79.25 thermal units, we have

%:A%(v-—vo).

Also 7 =273 ; the volume v of the unit, or kilogramme, of water
is a litre, or 0.001 ; and for ice v, will be 0.00108. Hence

dr _ 273 (0.001 — 0.00108)

dp = 425 x 1925

As an atmosphere is equal to the pressure of 10334 kilogrammes
per square metre,
» = 10334p/,
and
it A

dp'

273 (— 0.00008) _ y
10334 ~pi— ezt = — 0.0010.

Hence the accordance between the observed and calculated results
is as close as could be desired.

195. With the apparatus of Oersted, made as usually of glass,
it was not possible for Sir W. Thomson to try very powerful
pressures; but Mousson has since done so by using a similar but
very strong instrument of iron. A detached piece of iron is put
in it, and the rest of the cavity is filled with water, which is after-
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wards frozen. By means of the compressing screw, an enormous
pressure is then brought into action and the ice is thereby
liquefied ; which is known by the piece of iron within becoming
free to fall from one part of the vessel to another. In this way
Mousson lowered the melting point of ice even to — 15° centigrade,
or to 5° Fahrenheit ; but the corresponding pressures were not
determined.

Analogous experiments have been tried by Bunsen upon paraf-
fine and spermaceti, compressed by a mercurial column in the short
leg of a bent glass tube, like that of Mariotte; and the results
show elevation of the melting point with increase of pressure, as
they should do for these substances.

196. The most interesting facts in relation to this subject are
those to which Faraday has applied the word regelation ; and to
which in 1850 he drew attention as « a remarkable property of ice
in solidifying water in contact with it. Two pieces of moist ice
will consolidate into one. IHence, the property of damp snow to
become compacted into a snow-ball, an effect which cannot be
produced on dry, hard-frozen snow. A film of water freezing when
placed between two sets of icy particles, though not affected by a
single set. Certain solid substances, as flannel, will also freeze to
an icy surface, though others, as gold-leaf, cannot be made to do so.”
This fact, thus deseribed by Faraday, is easily verified by squeezing
lumps of ice together with the fingers.

At the meeting of the British Association in 1857, the true
explanation of regelation, about which others had speculated, was
given by Prof. J. Thomson, and we will quote his own words:
“pieces of ice, on being pressed together at their points of contact,
will at those places, by virtue of the pressure, be in part liquefied
and reduced in temperature; and the cold evolved in their lique-
faction will cause some of the liquid film intervening between them
to freeze. Itis thusevident that by continued pressure fragmentary
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masses of ice may be moulded into a continuous mass; and a
sufficient reason is afforded for the reunion, found to occur in
glaciers, of the fragments resulting from an ice cascade, and for the
mending of the crevasses or deep fissures which result occasionally
from their motion along their uneven beds.

“The liquefied portions being subject to squeezing of the com-
pressed parts in which they originate, will spread themselves out
through the pores of the general mass, by dispersion from the
regions of greatest to those of least fluid pressure. Thus the
pressure is relieved from those portions in which the compression
and liquefaction of the ice had set in, accompanied by the lowering
of temperature. On the removal of the cause of liquidity, namely
the pressure, the cold evolved in the compressed parts of the ice
and water freezes the water again in new positions, and thus a
change of form or plastic yielding of the mass of ice to the applied
pressure occurs.

“Jce is thus shown to be incapable of opposing permanent
resistance to pressmres, and to be subject to gradual changes of
form while they act on it; or in other words, it is shown to be
possessed of the quality of plasticity.”

A very simple and beautiful experiment has been contrived by
Tyndall for the verification and illustration of the above views of
Thomson.

In a hollow spherical mould, made of dense wood, a lump of
ice is subjected to powerful compression; which first crushes it
into small fragments, and then by continued pressure first partially
liquefies and then freezes the ice again into a solid, clear, and
transparent ball.

Also, Tyndall, in his investigations of the phenomena of glaciers,
so well studied by him among the Alps, has applied the theory of
regelation to their explanation, and has described them in a manner
so admirable as to make the whole subject not only his own, but
onc of the most interesting of modern physical researches.
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STABILITY OF WATER.

197. Many phenomena prove that the particles of liquids
cobere powerfully. And as the experiments of Donny, Dufour,
and others show that water may be heated above its ordinary
boiling point without becoming steam, or cooled below its usual
freezing point without forming ice, neither of which changes
could take place without increase of size, it follows that a very
strong cohesion tends to keep it liquid. Moreover, its very slight
compressibility proves its fluidity to be only the property of
tangential displacement, its particles merely gliding upon each
other.

In Art. 142 it is shown that the latent heat of vaporization, or
expenditure of energy, requisite to change a liquid into vapour, is
a maximum when it takes place normally. And precisely the same
mode of reasoning and formulas may be used to prove that the
heat evolved in freezing is a maximum when it occurs normally.

Other bodies possess like properties; thus sulphur, phosphorus,
ete., may be cooled below their melting points without solidifying ;
and sulphuric acid, camphine, caoutchoucine, ete., boil explosively.
Analogous phenomena present themselves also in the anomalous
retardation of the crystallization of supersaturated solutions of
glanber salt. - But for these the thermal changes have not yet
been sufficiently investigated.

DISSOCIATION.

198. This word dissociation, now technically used to signify
chemical decomposition by heat, is here given only because it is so
used. A better one, perhaps, is tkermolysis, analogous to elec-
trolysis.

Yet, as geographers give names to countries they are the first
to visit, astronomers to new planets, and chemists to new metals
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and compounds, so Deville, the pioneer in this field of discovery,
one of the richest to which chemists have given attention since the
day of Lavoisier, has named it dissociation; and the word is
likely, therefore, to be a permanent fixture in science.

It is also well to give new names to new subjects of thought
and investigation, lest they be contemned and ignored, if not
deemed worthy even of a name. In itself a word is of little
consequence, but its meaning should be definite.

The fact that platinum, when heated to its melting point,
decomposes water into hydrogen and oxygen, without chemical
union with either, was first experimentally observed by Grove.
That experiment was repeated by Deville, who founded upon it and
other analogous facts his grand discovery that heat alone can
decompose all chemical compounds, and in doing so acts always in
a perfectly definite manner. Its action being in fact in strict
accordance with thermodynamic laws, and capable of being ex-
dressed by the very same general formulas which we have given
for steam and other physical phenomena.

Mathematically, the discovery of Deville may be enunciated as
follows: the physical state of any substance may be always expressed
by a function

¢ (pvt) =0,
which, though unknown, is yet always determinate. And, there-
fore, the pressure, density, and temperature are variables whose
particular values control all such changes as the liquefaction of
solids, the vaporization of liquids, and the chemical decomposition
of such vapours, if compound, into their constituent elements.
Moreover, one single law or function embraces all these changes.

The importance of such a discovery cannot fail to be appreciated
by any one even slightly acquainted with chemical science. For
valuable, beautiful, and attractive as are its facts, unfortunately
they are simply innumerable. Human life is not long enough to
learn them. No memory could retain them. No general laws
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embrace and explain them. Fascinated with their beauty and
utility, baffled by their multiplicity, we weary of the patient,
endless toil they demand almost in vain. Even the atomic hypoth-
esis of Dalton loses its simplicity for organic substances, and
attempts at general theory, or even classification, end in hopeless
confusion. In this I am unconscious of exaggeration ; certainly no
disparagement is intended. If the sketch be even approximatively
trae, how valuable any discovery which gives promise of bringing
particular facts under general law, or of introducing those mathe-
matical methods which are of such service in other branches of
physical science. But we must quit these reflections, and present
the reader the facts of this subject.

199. Dissociation was first studied by H. St. C. Deville for
water, hydrochloric, sulphurous and carbonic acids, and for car-
bonic oxide. Others have since extended his researches, and all
compounds are now believed to obey the same laws.

We select, as an example, clear, definite, and practically import-
ant, the action of heat upon pure carbonate of lime, studied by
Debray.

In the year 1750, the chemical difference of lime and limestone
was discovered by Dr. Black, who extended the inquiry to the
caustic and carbonated alkalies, and called carbonic acid gas fized
air, because found in solid combination. But from that day until
recently, when Debray resumed the investigation, all were content
to regard the phenomena which occur when carbonate of lime is
heated in kilns, or open vessels, as alone needing attention. Thus,
for a century, no one seems to have thought it worth while to
heat that substance in close vessels, or under pressure, with the
view of observing the difference, if any, in the results.

In few words, the reader may be told the difference is exactly
the same as in the case of water and steam. Heated in open
vessels, water escapes as steam. Confined and heated in close
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vessels, 1t generates only the vapour requisite to develope a pressure
sufficient to prevent further evaporation; the quantity of which
vapour depends upon and varies with the temperature, increasing
if heated higher, condensing if cooled. And precisely thus does
carbonate of lime act, if heated in close vessels, giving off only a
limited or definite quantity of dissociated carbonic acid gas, which
varies in amount with the pressure and temperature, increasing if
the mixture be made hotter, recombining chemically with the lime
if cooled. Certainly, no single discovery in modern chemistry is
more interesting than this.

A well-known difficulty, that of measuring very high tempera-
tures, caused Debray to use those of boiling sulphur, cadmium,
and zinc, which he estimated respectively at 440°, 860°, and 1040°.
Tor the first of these, dissociation was inappreciable; for 880° it
stopped when the tension became 85 millimétres, and for 1040°
when the tension was 520 millimétres.

The difficulty just mentioned is readily overcome by substi-
tuting for water and carbonate of lime, first used by Deville and
Debray, other and much more volatile and decomposable substances.
This has been'done by Jambert using for the purpose ammoniacal
compounds. And the results obtained are of the most valuable
and interesting nature. We regret that the scope of this article
does not let us give a detailed account of them, but for that the
reader may refer to the “ Annales de I'Ecole Normale,” t. V, p. 129.
His results were graphically represented by the method of curves,
which are as exaet and regular as they are for similar observations
on steam.

200. Deville was the first to indicate how this subject should
be mathematically studied and discussed. It is entirely unnecessary
to go into that discussion, for it is sufficient to say the analogy
between the dissociation of chemical compounds and the
vaporization of a variable mixture of water and steam is perfect.
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Every general formula is, therefore, at once applicable, and even
every particular equation which we have deduced for mixtures of
steam and water becomes immediately a formula for dissociation,
if mutatis mutandis we substitute for steam the gases of decomposi-
tion, and for water the chemical compound.

It may be well to exemplify, and we sclect for the purpose,
the law of Clapeyron

; d,
A=A (v — ) c_l‘?

In this A now expresses the latent heat of expansion, or the
energy requisite to do the work of chemical decomposition, we
may call it the latent heat of dissociation. The volume of an unit
weight of the compound is vy, and » is that of its dissociated
elements.

As 2 will be positive, the last two factors of the second member
are of like algebraic signs. 'When, therefore, v is greater than ¢,.
as is usually the case, the temperature of dissociation varies
directly with the pressure ; but one of these becomes & decreasing
function of the other if v be less than v, ; as happens in the freez-
ing of water. All this is evidently, by Art. 193, in such strict
analogy that it is but repetition.

This formula of Clapeyron also expresses the heat developed
in chemical combination; for taken inversely, let # and p both
diminigh, then will » also decrease; there will, therefore, be
chemical reunion, or combination ; and at the same time A will
decrease in quantity, or in other words heat will be set free or
given out to surronnding bodies.

This conclusion is of the utmost value and importance, for
it proves that we have in the formula of Clapeyron, or in the
equivalent and corresponding formula of Sir W. Thomson, for

the theorem of Carnot
dp

ZZATZt-,
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a perfectly general law, applicable not only fo all substances,
but also to any and every physical or chemical change, whether of
union or disunion of particles, in which heat is either absorbed or
emitted, with variations of volume, pressure and, temperature
mutually dependent upon each other, so that they may be
expressed by a determinate function
¢ (prt) =03

whose precise form observation alone can and does determine for
particular substances.

Moreover, the theorem of Clapeyron is one which lends itself
with perfect facility to experimental investigation. Nothing is
casier than to compute numerically the value of the derivative of
the pressure from observed tables or data of tension ; or graphically
by curves, it may be found as the direction tangent of any
elementary chord of the curve; while » and v, as well as 4 are all
most easily measured, requiring for this only skill, care and
instrumental accuracy.

If heat be energy, what else is chemical “ affinity ”; and if they
be mutually transformable into each other, acd one is calculable,
then asgsuredly the other is determinate; and we need only a
factor like that of Joule to convert measurements of the one into
their correlative values of the other. The only uncertainty about
such calculations is that part of the energy may be dissipated in
electrical effects, or lost as radiant energy in the form of lumin-
iferous or other vibrations.

Here perhaps a protest may not be amiss against the practice of
chemists who regard affinity as something hyperphysical,—some-
thing inscrutably mysterious, like the union of mind and matter,
or like the spiritual part of our being. So long as it is thus
regarded, there can be little hope of its ever being understood, even
in matters perfectly accessible to investigation.

For the heat of chemical combination, or decomposition, or
in other words for the value of A, we already possess many experi-
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mental data, the most complete and exact of which are those of
Favre and Silbermann. And all that is now needed, therefore; for
applying the law of Clapeyron to such results of chemical combina-
tion is the experimental determination of the quantities v, v,, p
and T contained in the second number.

201. The same formula also shows that A ig a function of and
therefore varies with p, v and 7. And consequently, mere observa-
tions of 4, without regard to the circumstances upon which its
variable values depend, are for exact science worthless. Unfortu-
nately, we possess too many of such fictitious data, gathered with
more laborious care and industry than intelligence.

ISOMERISM.

202. The transformation of paracyanogen by heat into
cyanogen has been studied by MM. Troost and Hautefeuille.
Heated under pressure p in a close vessel, the former a solid is
changed into the latter a gas. Physically, this change is precisely
analogous to that of water into steam, and the law of Clapeyron

A= A7 (v — vy %
is applicable.
~ We have now v for the specific volume of the mixture, or of
the cyanogen, if v,, which is that of the paracyanogen, be compara-
tively so small that it is negligible. And A will be the heat or
energy required for the transformation. As it is positive, and v
greater than v,, the pressure increases with the temperature. All
of which agrees perfectly with the observed results.

The importance of these researches, which throw light upon
what has hitherto been regarded as one of the most obscure
subjects in chemistry, namely “isomerism ” or ¢ allotropism,” is
obvious, and they suggest many desirable investigations yet to be
made.
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DISSOCIATION OF CARBONIC OXIDE.

203. The discovery of Deville has already enriched experi-
mental chemistry with many interesting facts; we will give only the
following due to him.

A tube of brass runs concentrically through another of
porcelain héated very highly. A rapid stream of cold water flows
through the brass tube, and a current of carbonic oxide passes, very
slowly, through the annular space between the brass and the
porcelain tubes, into a solution of caustic potash. After some
hours, the apparatus is dismounted, and the lower side of the brass
tube is found coated with lamp black; also the solution of potash is
found to contain carbonic acid.

Carbonic oxide has been dissociated. Its carbon has been
deposited on the cold brass tube, and its oxygen has united with
other portions of carbonic oxide to form carbonie acid. The
experiment consists in chilling the carbon of the dissociated
elements before it has recombined with oxygen, or reacted upon
carbonic acid; effects which generally occur unless prevented.

The decomposing or reducing effect of solar rays upon the
compounds of silver and other substances, used in photographic
processes, will be recognized as phenomena closely analogous to,
if not identical with, those of dissociation.

But by far the most important field of investigation in relation
to dissociation is presented to our attention in the growth of
plants; which take carbonie acid from the air, and decompose it
by aid of solar energy into carbon and oxygen, storing up the
first of these elements and emitting the other. Nor have we any
right to suppose this decomposition an effect of light rather than
of heat; for in fact radiant heat and light do not differ sufficiently
to let them be assumed to be distinct and separate forms of physical

energy.
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STEADY FLOW OF FLUIDS.

204. In the steady flow of any fluid, let the pressure, specific
volume, and height of a particle be respectively denoted by p, v,
and z, and let « be its velocity ; then will

0 m
I R e
2‘/1. Pdp_Ez(u u?).

Or, supposing the unit of weight to be the quantity flowing through
a section in a given time,

0 _ur—ud
s z/; Pdp = "

To determine the first member, it dividesitself into internal and

external work, or
s [Pdp= (U, —U) + (85— 8
CPap = (U —0) + (5 — 9),
in which
0
S—98)= /1. pdv + (2, — 2),

the last term denoting the work due to the fall of the unit weight
from z, to z. Hence, by substitution,

1w — U

2

an equation perfectly general and applicable to all fluids whatever.

=(Us— U) + (P00 — pv) + (0 —2),  (201)

205. If the density be constant, the internal work will be

nothing, and
u?

:25 + 2 +ﬁv=g—§v+ Zy + Po¥o s
which 1s the #heorem of Bernouilli. And if in this we suppose the
fluid to start from rest, or u, equal zero, and that the pressure act
like the atmosphere equally in both directions, then

u? = 29 (2 — %),
which is Zorricelli’s law.
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When the fluid i8 a gas obeying the laws of Charles and
Mariotte, or
= R and Pve =By,

equations (80) and (94) give
R=FE({ —¢)
and
(U, —U) = E¢ (79 — 7).
Whenee, by substitution,

Qﬁ—u(? rf o
_%«—z(zo*z)+Ec (o —7); (?202)

and if «, and the work (2 — z) be negligible,

u? =REcy (o — ) (03)

206. For an adiabatic flow, or one in which time is not
allowed for absorption or loss of heat, the equation
Q=AU+ 8)
AU + pdv =0

becomes

whence

1
Uy—U = £ pdv,
or integrating by parts,
o
Uy — U= pv — pp 'dp.
o PV — Pos + [ vdp
Now, if this be substituted in equation (201) and z be negligible,
St = vdp ; (204)

a very simple and general formula, in which v must be an adiabatic
function of p, that it may be applicable.
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207. To obtain an equation for the flow of saturated steam.
We will suppose that a unit mixture of water and steam, or of
moist vapour, moves rapidly from a position where its physical
state is denoted by the co-ordinates p,, 2, and by the fraction of
steam ,, to another place where they become p, v, and 2.  Also
that, as is usually the case, this movement and change of state
takes place so quickly that heat cannot be absorbed or given off;
or in other words, we assume the change to be adiabatic. Then
clearly equation (177) furnishes the relation

Adto = 5_:—” =i "m'é;:-

Ty To

Also equation (183) gives

U-UozEl:M:

T—T
[

+ m' (7 — 1) + m't, log ;’:'
D
— (pv — povy) + Sodp.
(2 Povs) ‘[)o o7

Omitting 2, this changes equation (201) into

w2 — uy?

T—T ' ) i
i So(po—p) — E| Az —T———o 4 m' (t—1y) + mrolog;"]-

A formula perfectly suited for numerical computation ; and from
which the data of Regnault easily show that in such changes the
steam is partially liquefied.

CONCLUSION.

208. And now our task is finished. We have written what we
undertook, not a complete treatise, but an elementary introduction
to this important branch of physical science; and have done it in
such a manner that he, who shall have faithfully studied what is
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here given, need not apprehend any difficulty in reading, with
perfect ease, the original memoirs published upon this subject.

Much has been omitted ; many varied and important applica-
tions to astronomy, to physical geography, and to electricity, are
not even mentioned. It would require several volumes, not one
alone, to present them to the attention of the reader. e need
not be at a loss, however, to extend his knowledge, and we com-
mend such inquiries to his consideration.

Again, whole branches of our knowledge concerning the phe-
nomena and laws of heat are entirely excluded as forming no part
of the special subject of this volume. Of such are Fourier’s
admirable investigations and their sequel. All too that relates to
radiant heat.

To some it may secm strange, perhaps improper, that not one
word is given about the theory of gases of Bernouilli, adopted by
Clausius and others; which is dwelt upon in most treatises upon
this subject, where the curious reader can readily find it. The
omission is intentional. We have adhered rigidly and conscien-
tiously to the purpose of excluding all hypothesis and speeulation,
and have presented nothing but what has been proved to be abso-
lutely true.

It is only thus that positive truth can be separated from fiction,
and presented as worthy of all confidence and acceptance. How-
ever ingenious, however suggestive of inquiry, an hypothesis may
be, so long as it rests on mere unverified imagination, it must
be discarded from that which is real and positive. IHypoth-
eses have their legitimate use as means to ends, not as ends in
themselves ; they aid discovery, but are not discoveries; though in
rare cases they sometimes become such, ceasing then to be hypoth-
eses. Often they fetter rather than aid. And it is far easier to
dream fiction, than it is with patient labour to discover and apply
the laws of the universe whose Maker and Ruler is God.

It should always be borne in mind that false premises do by
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logical reasoning lead to erroneous conclusions; and that only
the true laws of the created world can be to us mental telescopes
with which to penetrate its darkness.

In this day, when human perversity seems to incline some to
prefer the arctic skepticism of negation to the genial warmth
of Christian faith, while others go back to the atheistic blind
necessity, the diwn dveyrn, of Greek sophists, let it ever be
remembered that, in the words of inspiration, ‘the invisible things
of Him from the creation of the world are clearly seen, being
understood by the things that are made.”

May this book, whose object it is to make known some of those
invisible things, aid its reader to form clearer ideas of the sublime
simplicity, unity and harmony displayed by the Creator in the laws
by which He governs the physical universe; some of which He docs
not conceal but graciously permits us to learn and understand.

May also the contemplation of the Infinite Wisdom, Power and
Goodness manifested alike in the majestic laws and phenomena of
the heavens, and 1n the infinitesimal adaptations of means to the
support and happiness of every living creature, fit our hearts and
minds for firmer and more grateful acceptance of that grandest of
all truths—that e, “ by whom were all things made, and without
whom was not anything made that was made,” did Himself become
incarnate upon this earth, to the end that He might wipe out the
imperfection of man’s sinful and unredeemed nature, by Himself
bearing “our sins in His body on the tree.” And may human
science learn that its highest duty is, on bended knee and with
trembling but joyous heart, to point with uplifted finger steadfastly
to the cross of Christ, man’s only hope of a blessed immortality.
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greatly enlarged, 187 illustrations. 12mo, el................. $7.50
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EISSLER, M. The Metallurgy of Silver; a practical
treatise on the Amalgamation, Roasting and Lixivation of Silver Ores,
including the Assaying, Melting and Refining of Silver Bullion. 124
illustrations. Second edition, enlarged. 12mo,cloth........... $4.00

—— The Metallurgy of Argentiferous Lead; a Prac-
tical Treatise on the Smelting of Silver-Lead Ores and the Refining of
Lead Bullion. Including Reports on Various Smelting Establish-
ments and Descriptions of Modern Smelting Furnaces and Plants in
Europe and America. With 183 illustrations. 8vo, cloth...... $5.00

ELIOT, Prof. C. W., and STORER, Prof. F. H. A
Compendious -Manual of Qualitative Chemical Analysis. Revised
with the co-operation of the authors, by Prof. William R. Nichols.
Illustrated. Seventeenth edition, newly revised by Prof. W. B, Lind-
8aY4y 1 1 2m0R eloBRE i SR g W AT TR S8 R s el s e s AT ek iR $1.50

ELLIOT, Maj. GEO. H., U. S. E. European Light-
House Systems. Being a Report of a Tour of Inspection made in
1873. 51 engravings and 21 woodcuts. 8vo, cloth............ $5.00

ENDLICH, F. M. Manual of Qualitative Blow-Pipe
Analysis and Determinative Mineralogy. Illustrations and Colored
BlaterofiSpectratt A8voNelothe s Tatwr o i, U it L s s $4.00

EVERETT, J. D. Elementary Text-Book of Physics.
INustrated. Seventh edition. 12mo, cloth.................... $1.40

EWING, Prof. A. J. The Magnetic Induction in Iron
and other metals, 159 illustrations. 8vo, cloth .............. $4 00

FANNING, J. T. A Practical Treatise on Hydraulic
and Water-Supply Engineering. Relating to the Hydrology, Hydro-
dynamics, and Practical Construction of Water-Works in Nort
America. 180 illustrations. 8vo, cloth. Eleventh edition, revised,
enlarged, and new tables and illustrations added. 650 pages....$5.00

FISH, J. C. L. Lettering of Working Drawings, Thir-
teen plates, with descriptive text. Oblong, 9x12}, boards...... $1.00

FISKE, Lieut. BRADLEY A., U.S.N. ZElectricity in -
Theory and Practice ; or, The Elements of Electrical Engineering.
Bighth¥edition. . ~8vo;lcloth - To At sl Ui e o LSS H Sl $2.50

FLEMING, Prof. J. A. The Alternate Current Trans-
former in Theory and Practice. Vol. I—The Induction of Electric
Currents ; 500 pages. Second edition. Illustrated. 8vo, cloth.$3.00
Vol. II. The Utilization of Induced Currents, Illustrated. 8vo,
clothee S el o i RS AR Lol s o s sl St S e $5.00

FLEMING, Prof. J. A. Electric Lamps and Electric
Lighting. Being a course of four lectures delivered at the Royal In-
stitution, April-May, 1894. 8vo, cloth, fully illustrated........ $3.00

FLEMING, Prof. J. A. Electrical Laboratory Notes and
Forms, elementary and advanced. 4to, cloth, illustrated...... $5.00
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FOLEY, (NELSON) and THOS. PRAY, Jr. The
Mechamca.l Engineers’ Reference Book for Machine and Boiler Con-
struction, in two parts. Part 1—General Engineering Data. Part 2
—Boiler Construction. With fifty-one plates and numerous illustra-
tions, specially drawn for this work. Folio, half mor.......... $25.00

FORNEY, MATTHIAS N. Catechism of the Locomo-
tive. Second edition, revised and enlarged. Forty-sixth thousand.
BVe el ot he S MEaEII S i 8 N S Y Y . Lt o $3.50

FOSTER, Gen. J. G., U.S.A. Submarine Blasting in
Boston Harbor ’\Iassachusetts Removal of Tower and Corwin
Rocks Tllustrated with 7 plates. 4to, cloth.s................ $3.50

FRANCIS Jas. B., C.E. Lowell Hydraulic Experi-
ments. Bemg a selection from experiments on Hydraulic Motors,
on the Flow of Water over Weirs, in open Canals of uniform rec-
tangular section, and through submerged Orifices and diverging
Tubes. Made at Lowell, Mass. Fourth edition, revised and
enlarged, with many new expenments, and illustrated with 23 copper-
plate engravings. 4to,cloth...........ccvvivannnn.. SRR A $15.00

GEIPEL, WM. and KILGOUR, M. H. A Pocketbook
of Electrical Engineering Formule. Illustrated. 18mo, mor..$3.00
Large paper edition, wide margins. 8vo, morocco, gilt edges $5.00

GERBER, NICHOLAS. Chemical and Physical An-
allysils of Milk, Condensed Milk and Infant’s Milk-Food. $hvo,
1T AANEC A AR A ' 4 5% s L SN Y o i sl ol oig i T by e 1.25

GILLMORE, Gen. Q. A. Treatise on Limes, Hydraulic
Cements, and Mortars. Papers on Practical Engineering, United
States Engineer Department, No. 9, containing Reports of numerous
Experiments conducted in New York City during the years 1858 to
1861, inclusive. With numerous illustrations. 8vo, cloth...... $4.00

—— Practical Treatise on the Construction of Roads,
Streets, and Pavements, With 70 illustrations. 12mo, eloth, $2.00

—— Report on Strength of the Building-Stones in the
United States, etc. 8vo, illustrated, cloth..................... $1.00

GOODEVE, T. M. A Text-Book on the Steam-Engine.
‘With a Supplement on Gas-Engines. Twelfth edition. Enlarged.

148 illustrations. 12mo, eloth........ oo .ot iviiiiannss, $2.00
GORDON, J. E. H. School Electricity. Illustrations.
12mo, B R P TR T T S R Yy $2.00

GORE, G., F. R. S. The Art of Electrolytic Separa-
tion of Metals, ete. (Theoretical and Practical.) Illustrated. $8v0,
T N e e Aot A 4 s s et ot Al S L s o Mo o s 3.50

.......................................................... $ 80
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GRAY, JOHN, B.Sc. Electrical Influence Machines.
A full account of their historical development and modern forms, with
instructions for making them. 89 illustrations and 3 folding plates.
IO Cl o R R e o e ot e e .o . $L75

GRIFFITHS, A. B.,, Ph.D. A Treatise on Manures,
or the Philosophy of Manuring. A Practical Hand-Book for the
Agriculturist, Manufacturer, and Student. 12mo, cloth........ $3.00

GRUNER, M. L. The Manufacture of Steel. Translated
from the French, by Lenox Smith ; with an appendix on the Bessemer
process in the United States, by the translator. Illustrated. 8vo,
Clothy, . e el BN o i T $3.50

GURDEN, RICHARD LLOYD. Traverse Tables:
computed to 4 places Decimals for every © of angle up to 100 of Dis-
tance. For the use of Surveyors and Engineers. New edition. Folio,
Db o R TR £ o e o Bt o1 B0 B RNk 1 (8 R $7.50

GUY, ARTHUR F. Electric Light and Power, giving
the Result of Practical Experience in Central-Station Work. 8vo,
(e o T BT Y A i L A T B B e U g P $2 50

HAEDER, HERMAN, C. E. A Handbook on the
Steam Engine. With especial reference to small and medium sized
engines. English edition, re-edited by the author from the second
German edition, and translated with considerable additions and alter-
ations by H. H. P. Powles. 12mo, cloth, Nearly 1100 illus. ..$3.00

HALSEY, F. A. Slide Valve Gears, an Explanation
of the action and Construction of Plain and Cut-off Slide Valves.
Tlustrated. 12mo, cloth. Third edition ......cveveieieee .. $1.50

HAMILTON, W. G. Useful Information for Railway
Men. Tenth edition, revised and enlarged. 562 pages, pocket form.

Moroceos giltistiit = idSe: 50 gl T ISsdl TN it DT ) R $2.00
HANCOCK, HERBERT. Text-Book of Mechanics and
Hydrostatics, with over 500 diagrams. 8vo,cloth ............ $1 75

HARRISON, W. B. The Mechanics’ Tool Book.
With Practical Rules and Suggestions for use of Machinists, Iron-
‘Workers, and others. Illustrated with 44 engravings, 12mo,
ClOBI NN A SR At s SR KAt veeee . $1.50

HASKINS, C. H. The Galvanometer and its Uses.
A Manual for Electricians and Students. Fourth edition. 12mo,

HEAP, Major D. P., U. S. A. Electrical Appliances of
the Present Day. Report of the Paris Electrical Exposition of 1881.
250 illustrations. 8vofelothr i 1ot ia sl s Lo L L $2.00

HEAVSIDE, OLIVER. Electromagnetic Theory. Vol
15 A8V 0! Clothyy e i P e oy Tl et o e e T8, st LU $5 00




10 D. VAN NOSTRAND COMPANY’S

HENRICI, OLAUS. Skeleton Structures, Applied to
the Buﬂdmg of Steel and Iron Bridges. Illustrated $1.5

HERRMANN, Gustav. The Graphical Statics of
Mechanism. A Guide for the Use of Machinists, Architects, and
Engineers ; and also a Text-book for Technical Schools. Translated
and annotated by A. P. Smith, M.E. 12mo, cloth, 7 folding
plates:Secondietifiion T o .1 0 T R e e L $2.00

HEWSON, WM. Principles and Practice of embanking
Lands from River Floods, as applied to the Levees of the Mississippi.
8vo, cloth $2.00

HOBBS, W. R. P. The Arithmetic of Electrical Meas-

urements, with numerous examples. Fully Worked. 12mo, cloth, .50

HOFFMAN, H. D. The Metallurgy of Lead and the
Desﬂvemza’mon of Base Bullion.. 275 Illustrations. 8vo, céoth
........................................................... 6.00

HOLLEY, ALEXANDER L. Railway Practice. Ameri-
can and European Railway practice in the Economical Generation of
Steam, including the Materials and Construction of Coal-burning
Boilers, Combustion, the Variable Blast, Vaporization, Circulation,
Superheating, Supplying and Heating Feed Water, etc., and the
Adaptation of Wood and Coke-burning Engines to Coal- burmng ; and
in Permanent Way, including Road-bed, Sleepers, Rails, Joint Fasten-
ings, Street Railways, ete. With 77 lithographed plates. Folio,
ClOERERS = = 42, cnp it N T L e N e o L o = asi s R $12.00

HOLMES, A. BROMLEY. The Electric L1ght Popu-
larly Explamed Fifth edition. Illustrated. 12mo, paper.... .40

HOSPITALIER, E. Polyphased Alternating Currents.
RIS ated = 80, Lot T e N e s ek Tate Bl o o spaeits & $1.40

HOWARD, C. R. Earthwork Mensuration on the Basis
of the Prismoidal Formule. Containing Simple and Labor-saving
Method of obtaining Prismoidal Contents directly from End Areas.
Tlustrated by Examples and accompanied by Plain Rules for Practi-

...................................................

eal Uses. Tlustrated. '8vo, Cloth.. ... i il cainiee sl osssssn $1.50
HOWE, HENRY M. The Metallurgy of Steel. Vol.
I. Third edition, revised and enlarged. 4to, cloth........... $10.00

HUMBER, WILLIAM, C. E. A Handy Book for the
Calculatiorr of Strains in Girders, and Similar Structures, and their
Strength ; Consisting of Formulse and Corresponding Diagrams, with
numerous details for practical application, ete. = Fourth edition,
A e (el S e o et i B st g s AR A B d 7] .. $2.60

HUTTON, W. S. Steam Boiler Construction. A Prac-
tical Hand Book for Engineers, Boiler Makers and Steam Users.
With upwards of 300 illustrations. Second edition. 8vo, cloth $7.00
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HUTTON, W. S. Practical Engineer’s Hand-Book,
comprising a treatise on Modern Engines and Boilers, Marine, Locomo-
tive and Stationary. Fourth edition. Carefully revised, with addi-
tions., With upwards of 570 illustrations. 8vo, cloth, ........ $7 00

—— The Works’ Manager’s Hand-Book of Modern
Rules, Tables, and Data for Civil and Mechanical Engineers, Mill-
wrights and Boiler-makers, ete., etc. With upwards of 150 illnstra-
trations. Fifth edition. Carefully revised, with additions. 8vo,
G R AT o L o0 o8 S0 o it SRR g gnate 1. - 4 $6 00

ISHERWOOD, B. F. Engineering Precedents for Steam
Machinery. Arranged in the most practical and useful manner for
Engineers. With illustrations. 2 vols. in 1. 8vo, cloth...... $2.50

JAMIESON, ANDREW, C.E. A Text-Book on Steam
and Steam-Engines. Speciaﬁy arranged for the use of Science and
Art, City and Guilds of London Institute, and other Engineering
Students. Tenth edition. Illustrated. 12mo, cloth........... $3.00

—— Elementary Manual on Steam and the Steam-
Engine. Specially arranged for theuse of First-Year Science and Art,
City and Guilds of London Institute, and other Elementary Engineer-
ing Students. Third edition, 12mo, cloth ................... $1.40

JANNETTAZ, EDWARD. A Guide to the Determina-
tion of Rocks : being an Introduction to Lithology. Translated from

the French by G. W. Plympton, Professor of Physical Science at

Brooklyn Polytechnic Institute., 12mo, cloth....... .......... $1.50
JOYNSON, F. H. The Metals used in Construction.
Iron, Steel, Bessemer Metal, etc. Illustrated. 12mo, cloth.... .75

—— Designing and Construction of Machine Gearing.
Jllustrateds s 8vosclofhss Bl ok -k S end e s o S0 W ST S e $2.00

KANSAS CITY BIDGE, THE With an Account of
the Regimen of the Missouri River and a Description of the Methods
used for Founding in that River. By O. Chanute, Chief Engineer, and

+ George Morrison, Assistant Engineer. Tllustrated with 5 lithographic
views and 12 plates of plans. 4to, cloth....................... $6.00

KAPP, GISBERT, C.E. Electric Transmission of Ener-

gy and its Transformation, Subdivision, and Distribution. A Practical

hand-book. Fourth edition. Revised. 12mo, cloth... ....... $3.50
—— Dymamos, Alternators and Transformers. 138 Illus-
t1aliDn 12700 @lOTIANER " 0 Tl S I S T R i S $4.00

KEMPE, H. R. The Electrical Engineer’s Pocket
Book of Modern Rules, Formulee, Tables and Data. Illustrated.
32m0. ", "Miorsiltiy fiait sel S RN EE IR AL S b R s A $1.75

KENNELLY, A. E. Theoretical Elements of Electro-
Dynamic Machinery. 8vo, cloth ................0 b SV R S $1.50
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KILGOUR, M. H., SWAN, H., and BIGGS, C. H. W.
Electrical Distribution, its Theory and Practice. 174 Illustrations.
J2m0r clothas eSS an A | T T T AR e | Eried €10 TR, SN $4.00

KING, W. H. Lessons and Practical Notes on Steam.
The Steam-Engine, Propellers, etc., for Young Marine Engineers,
Students, and others. Revised by Chief Engineer J. W. King, United
States Navy. Nineteenth edition, enlarged. 8vo, cloth......... $2.00

KIRKALDY, Wm. G. Illustrations of David Kirk-
aldy’s System of Mechanical Testing, as Originated and Carried On
by him during a Quarter of a Century. Comprising a Large Selection
of Tabulated Results, showing the Strength and other Properties of
Materials used in Coustruction, with Explanatory Text and Historical
Sketch. Numerous engravings and 25 lithographed plates. 4to,
G SR RIS 3 0 4 R WP oS Y A s e $20.00

KIRKWOOD, JAS. P. Report on the Filtration of
River Waters for the supply of Cities, as practised in Europe, made
to the Board of Water Commissioners of the city of St. Louis. Ilus-
trated by 30 double-plate engravings. 4to, cloth.......... ....$15.00

KUNZ, GEO. F. Gems and Precious Stones of North
America. A Popular Description of Their Occurence, Value, History,
Archzology, and of the Collections in which They Exist; alsoa Chap-
ter on Pearls and on Remarkable Foreign Gems owned in the United
States. Illustrated with eight Colored Plates and numerous minor
Engravings. Second edition, with appendix. 4to, cloth...... $10.00

LARRABEE, C. S. Cipher and Secret Letter and Tele-
graphic Code, with Hog’s Improvements. The most perfect Secret
Code ever invented or discovered. Impossible to read without the
ey S I8ma, elot by L R R s e it A R A .60

LAZELLE, H . M. One Law in Nature. A New
Corpuscular Theory comprehending Unity of Force, Identity of
Matter, and its Multiple Atom Constitution, ete. 12mo, cloth,..$1.50

LEITZE, ERNST. Modern Heliographic Processes.
A Manual of Instruction in the Art of Reproducing Drawings, En-
gravings, etc., by the action of Light., With 32 woodcuts and ten
specimens of Heliograms. 8vo, cloth. Second edition......... $3.00

LOCKE, ALFRED G. and CHARLES G. A Practical
Treatise on the Manufacture of Sulphuric Acid. With 77 Construc-
tive Plates drawn to Scale Measurements, and other Illustrations.
o e L s S e T B B T S E il 1 e $15.00

LOCKWOOD, THOS. D. Electricity, Magnetism, and
Electro-Telegraphy. A Practical Guide for Students, Operators, and
Inspectors. 8vo, cloth, Third edition........ccoovevuiunnnann $2.50
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LOCKWOOD, THOS. D. Electrical Measurement and
the Galvometer ; its Construction and Uses. Second edition. 82 il-
lustrationss = 1am o) el ot e e S oo T el e $1.50

LODGE, OLIVER J. Elementary Mechanics, includ-
ing Hydrostatws and Pneumatics. Revised edition. 12mo, cloth, $1.20

LORING, A.E. A Hand-Book of the Electro-Magnetm

Telegraph Papeptborpds S8 RN S A2 i e S s
(G100 TR NP AL 75 o o o 0 MM 5T T S AP N 7o 54503 0 o 75
U (oo CTe e L b o ST e I b R O TS S b C Y s $1.00

LOVELL, D. H. Practical Switch Work. A Hand-
Book for Track Foremen. Illustrated. 12mo, cloth........... $1.50

LUNGE, GEO. A Theoretical and Practical Treatise
on the Manufacture of Sulphuric Acid and Alkali with the Collateral
Branches. Vol. I. Sulphuric Acid. Second edition, revised and

enlarged. 342 illustrations. 8vo, cloth.. ................... $15.00
IV OLSRITS S Svo el ot g e s fr s g 2 s J i s A LT e $16.80
Vol BIEIR NS Vol el o e S e e A ST s L i 9.60

—— and HUNTER, F. The Alkali Maker’s Pocket
Book. Tables and Analytlcal Methods for Manufacturers of Sul-
phuric Acid, Nitric Acid, Soda, Potash and Ammonia. Second
edition, 12mo I & e o SRE S SRS L i i SR ... $3.00

MACCORD, Prof. C. W. A Practical Treatise on the
Slide-Valve by Eccentrics, examining by methods the action of the
Eccentric upon the Slide- Valve and explaining the practical processes
of laying out the movements, adapting the Valve for its various
duties in the Steam-Engine. Second edition. Tlustrated. 4to,

o T e T L s WL I8 5 $2. 50
MAYER, PROF. A. M. Lecture Notes on Physics.
8vo, cloth ................................................... $2.00

McCULLOCH, Prof. R. S. Elementary Treatise on
the Mechanical Theory of Heat, and its application to Air and Steam
8 DTE St o) O i g S R ey e e e e N edot 1 $3.50

MERRILL, Col. WM. E., U.S.A. Iron Truss Bridges .|

for leroads The method of calculating strains in Trusses, with a
careful comparison of the most prominent Trusses, in reference to
economy in combination, etc. Illustrated. 4to, cloth. 4th ed., $5.00.

METAL TURNING. By a Foreman Pattern Maker.
Tllustrated with 81 engravings. 12mo, cloth.................. $1.50

MINIFIE, WM. Mechanical Drawing. A Textbook of
Geometmcal Drawing for the use of Mechanics and Schools, in which
the Definitions and Rules of Geometry are familiarly explamed the
Practical Problems are arranged from the most simple to the more
complex, and in their descnptwn technicalities are avoided as much as
possible. With illustrations for Drawing Plans, Sections, and Eleva-
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tions of Railways and Machinery ; an Introduction to Isometrical Draw- .
ing, and an Essay on Linear Perspective and Shadows., Illustrated with
over 200 diagrams engraved on steel. Ninth thousand. With an
appendix on the Theory and Application of Colors. 8vo, cloth..$4.00

MINIFIE, WM.  Geometrical Drawing. Abridged from
the octavo edition, for the use of schools. Illustrated with 48 steel
plates. Ninth edition. 12mo, cloth............ic. . ... $2.00

MODERN METEOROLOGY. A Seriesof Six Lectures,
delivered under the auspices of the Meteorological Society in 1870.
Tustrated.y “12moe,feloth. . 1 XL i, Eyr o S T $1.58

MOONEY, WM. The American Gas Engineers’ and
Superin