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ADVERTISEMENT.

Taxs work, commenced in 1839, and continued at intervals
which have probably exhausted the patience of many of the
Subscribers, is at length completed,—the object at first con-
templated having been attained by a concentration of talent
on this important branch of science, and by the production,
it is hoped, of a work on the ArT or Bringe BuiLping
which will supply the vacant space in the library of the
Practical Engineer.

Since the time of Hutton, Attwood, &c., the Theory 'of the
Arch has been deeply investigated in this and other countries;
and as the principles of Coulomb and others have caused such
investigations to progress extensively, the production of a work
on this important subject, combining numerous Theoretical and
Practical Examples down to the present period of improvement
in the art of construction, necessarily required no inconsider-
able portion of time, labour, and expense.

The PracticAL TREATISE on Bripge BuiLping will, it is
anticipated, together with the Specifications and the Paper on
FOUNDATIONS, supply all that is desirable for the Student in
the pursuit of his knowledge of the Art; while the great variety
of engraved specimens by which the work is illustrated, and the
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numerous exemplifications of comparative construction, to-
gether with the lucid and practical description of them which
is appended, will prove interesting to the Engineering public,
—and thus compensate for the unavoidable delay which has
occurred.

The Analytical List of Contents will guide the reader to the
several divisions of the work; and the General Index which
I have supplied will be found useful for all the objects of
reference.

JOHN WEALE.

59, Hiea HoLBoRrN,
Fes. 14, 1843.
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THEORY OF BRIDGES.

THis very important subject has exercised the talents
and ingenuity of some of the greatest mathematicians in
modern times, and many different solutions have been
given to the various problems connected with it ; but, as
the greater part of them are founded on suppositions
that have no existence whatever either in nature or
practice, they have had a tendency rather to mislead
than direct those who are engaged in the operations of
Bridge Building.

Since the time when Lord Bacon overthrew the ab-
surdities of Aristotle, and showed to the world that
experience was the only true guide to philosophy, it
might have been expected that theory and practice
would have gone hand in hand,—but this unfortunately
has not been the case; for we find that their respective
advocates have been continually cavilling with each other.

It is to be regretted, deeply regretted, that theoretical
and practical men should have always been thus op-
posed, and have looked upon each other’s efforts rather
with contempt than admiration, though they seem evi-
dently to have been designed for each other’s mutual aid ;

B
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and nothing but a deep-rooted prejudice could have
continued a system of opposition so destructive of the
best interests of society. Our illustrious countryman,
Dr. Olinthus Gregory, in the preface to his excellent
work on Mechanics, states with his usual elegance, that
‘“ theoretical and practical men will most effectually pro-
mote their mutual interests, not by affecting to despise
each other, but by blending their efforts; and further,
that an essential service will be done to mechanical
science, by endeavouring to make all the scattered rays
of light they have separately thrown upon this region of
human knowledge converge to one point.”

That a theory may be properly tested, too many
facts cannot be collected, too many energies cannot be
exerted ; for however beautiful may be the theory as far
as abstract science is concerned, and however legitimately
may the consequences flow from the premises, yet if
these premises are not in strict accordance with what
is known to take place in actual practice, such theory
must ultimately be abandoned, and give place to that
which is so founded as to agree with the results of
experience and observation. Gauthey, speaking of the
theory of La Hire, observes that such analytical re-
searches are unfortunately founded on hypotheses which
every day’s experience contradicts.

We shall in the first place give a brief account of the
principal writers on the equilibrium of the arch, with
some notice of their theories.

In 1691, the celebrated mathematicians, Leibnitz,
Huygens, James and John Bernoulli, solved the problem
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of the catenary curve: it was soon preceived that this
was precisely the curve that should be given to an arch,
the materials of which were infinitely small and of equal
weight, in order that all its parts may be in equilibrium.
In the Philosophical Transactions for the year 1697, it
appears that David Gregory first noticed this identity,
but his mode of argument, though sufficiently rigorous,
appears not to be so perspicuous as could be desired.

In one of the posthumous works of James Bernoulli,
two direct solutions of this problem are given, founded
on the different modes of viewing the action of the
voussoirs : the first is clear, simple, and precise, and
easily leads to the equation of the curve, which he shows
to be the catenary inverted ; the second requires a little
correction, which Cramer, the editor of his works, has
pointed out.

In 1695, La Hire,' in his Treatise on Mechanics, laid
down from the theory of the wedge, the proportion
according to which the absolute weight of the materials
of masonry ought to be increased from the key-stone
to the springing in a semicircular arch. The historian
of the Academy of Sciences relates in the volume for the
year 1704, that Parent determined on the same prin-
ciple, but only by points, the figure of the extrados of
an arch, the intrados being a semicircle, and found the
force or thrust of a similar arch against the piers.

In the memoirs of the Academy of Sciences for the
year 1712, La Hire gave an investigation of the thrusts

1 Mr. Attwood has written a dissertation on the construction of
arches on the same principles as La Hire.
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in arches under a point of view suggested by his own
experiments : he supposed that the arches, the piers
of which had not solidity enough to resist the thrust,
split towards the haunches at an elevation of about 45
degrees above the springings or impost ; he consequently
regarded the upper part of the arch as a wedge that tends
to separate or overturn the abutments, and determined,
on the theory of the wedge and the lever, the dimensions
which they ought to have to resist this single effort.
Couplet, in a memoir composed of two parts, the first
of which was printed in the volume of the Academy
for 1729, treats of the thrusts of arches and the thick-
ness of the voussoirs, by considering the materials
infinitely small, and capable of sliding over each other
without any pressure or friction. But, as this hypo-
thesis is not exactly conformable to experiment, the
second part of the memoir, printedin the volume for
1730, resumes the question by supposing that the mate-
rials have not the power of sliding over each other, but
that they can raise themselves and separate by minute
rotatory motions. It cannot however be said that
Couplet has added materially to the theories of La Hire
and Parent, and none of them treated the subject either
in theory or practice in such a satisfactory manner as
was afterwards done by Coulomb. '
In a subsequent volume there is a memoir by
Bouguer on the curve lines that are most proper for
the formation of the arches of domes. He considers
that there may be an infinite number of curve lines
employed for this purpose, and points out the mode
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of selecting them. He lays it down uniformly that
the voussoirs have their surfaces infinitely smooth,
and establishes, on this hypothesis, the conditions of
equilibrium in each horizontal course of the dome, but
has not given any method of investigating the thrusts
of arches of this kind, nor of the forces that act upon
the mason-work when the generating curve is subjected
to given conditions.

In 1770, Bossut gave investigations of arches of the
different kinds, in two memoirs, which were printed
among those of the Academy of Sciences for the years
1774 and 1776 : he appears to have been engaged in this
in consequence of some disputes concerning the dome of
the church of St. Genevieve (recently the French Pan-
theon), begun by the celebrated architect Soufflot, and
finished from his designs.

In 1772, Dr. Hutton, late Professor of Mathematics
in the Royal Military Academy, Woolwich, published
his principles of Bridges, in which he investigated the
form of curves for the intrados of an arch, the extrados
being given, and vice versa. He set out by developing
the properties of the equilibrated polygon, which is
extremely useful in the equilibrium of structures.

ON THE EQUILIBRATED POLYGON.

Any number n of bars or beams AB, BC, CD, &c.,
of given weights o, w,, og, &c. .. .. w,, and sup-
porting given weights W,, W,, W,  &c., at the re-
spective points B, C, D, &c., are freely moveable about
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each other in the same vertical plane AB CD, &c., by
means of joints at those points, and are supported at
the extremities of the first and last, and acted on by
gravity. It is required to investigate expressions for
determining their respective positions, when in a state
of equilibrium. ‘

Considering the two bars AB and BC as fixed at their
extremities A and C, their positions are determined as
they can form but

C
one triangle ABC B
upon the constant .~ '
A KX E ~\c X

side AC. But %"
supposing the three bars AB, BC, and CD, as sup-
ported at A and D, their positions become indeter-
minate, that is, they are moveable about those points,
and an equation is necessary to find their respective
positions when in a state of equilibrium. We.shall,
in the first place, take the three bars AB, BC, and
CD.

Produce CB, CD, &c., to meet the horizontal line
XAY at B, C, &c., draw BK perpendicular to this
line, and let BA'Y, the elevation of AB to the horizon
=6,, BB'Y; that of BC=4,; CC'Y, the elevation
of CD = 6, &c.

Suppose the weight W, to be fixed to the end of AB,
and let the vertical pressure acting at B upon A B in
direction BK, and upon BC in direction KB =p, the
lateral force acting at B upon A B in direction K A, and

upon BC in direction A K, being equal to that acting at

C upon BC in direction KA = f.
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Then the forces p and f united with gravity having no
effect to turn AB about A, we have the equation

(‘i;l + Wl) cos. 6, +pA cos. 8, —f sin. 6, =0,
.3t + W,y +p—f tan. 6,=0.

And since the tendency of the same forces at B, com-
bined with gravity, to turn BC about the joint C, is
destroyed in the position of equilibrium, we have also

% cos. 83— p cos. 83+ f sin. 8, =0,

% —p+f tan. 6,=0.
To this equation add the former, and we have
"’_1%9 +W,—f (tan. 6, —tan. 6,) =0,

. f_%(wl'l'wﬂ)"'wl.
"7 7 tan. 6, —tan. 8,

Now since the centre of gravity of BC is at rest, the
lateral forces at B and C in opposite directions must be
equal '

. f_%(“’l"""?) +W, =%("’9+"’5) +W, L.
"Y' 7 tan. §,—tan. 6, tan. 6, —tan. 6,

— '% (wn—l+a’n) +Wn—l

= an b —tan b (F
consequently

tan.(),—tan.ﬁ,:} “’1'|2""9+W1) ...

tan.ﬂ,—tan.03=}(“’"|2'“’3+W2). R )



8 THEORY OF

tan.os—tan.o4=}(“’8*2‘°’4+ws). L@
&c. &c. &c. &c

and tan. 4,_,—tan. 0,=}(%—& + W,,_.). o (n—1)

By means of these n —1 equations involving n +1
unknown quantities, viz., tan. 4,, tan. 6, . . . tan. 6,
and f, the positions of any number of bars may be
obtained so as to render them in a state of equili-
brium, having previously given two more data, vis., the
positions of any two of them : thus suppose 6, and 6, the
elevations of the p™ and ¢™ bars to be given, then if
we begin at equation (p), and add all the equations up to
the (g—1)* we have

tan. 6,—tan. oq=} {(a’p+"’p+l ce @) — __w,,-2|-wq

+ (Wp+wp+l tt e +Wq-l)}7

. f— (a’p+"’y+l"wq)“é(wp+wq)+(wp+wp+l"Wq—l)*_
T tan. §,—tan. 6,

If in equation (F) we suppose the weights of the bars

!

=0, we have
Wl - Wﬂ
tan. §, —tan. 6, ~ tan. 8, —tan. 8’
. W, : W, :: tan. 6, —tan. 6, : tan. 6, —tan. 5.
Hence the weights W,, W,, &c., are as the difference
of the tangents of the angles which the .bars make

with the horizon, the same as the proportion of the

* For the equilibrium ®f any number of bars without weights, an
investigation similar to the above has been given by that able mathe-
matician, Mr. Woolhouse, in thc Newcastle Magazine.
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weights on the funicular polygon. See Dr. Gregory’s
Mechanics, page 134 ; Whewell’s Mechanics, page 34.

—0- % (“’l“'“’a) — '% (“’s+“’a)
Wy, W, &c.=0; then o - a6, tan.6,—tand,

When the weights of the bars are also equal, we have
tan.f, —tan.6, =tan.f, —tan.;, &c...=tan.6, ,—tan.,.

Since the weights on the several joints are as the dif-
ference of the tangents of the angles of elevation, when
these bars are indefinitely diminished, or the polygon
becomes the curve of equilibration, we have ultimately
the weight on any point proportional to the tangent of
inclination to the horizon.!

! Or this may be shown from the principles of Coulomb, Mem.
Pres. &c., tom. vii.: he there shows that if an arch rest in equilibrium
on a base mn, it is necessary that the resultant of the two acting
forces, viz., the horizontal force acting at AB, and the weight of the
part A mn B acting vertically, shall be perpendicular to m=z, and that
it shall not fall without mn. Should the first condition be wanting,
the arch will yield by sliding along mn; and if the second be wanting,
it will have a rotatory motion about that extremity towards which the
resultant falls.

Let W be the weight of the

A
portion A mn B, F the horizon- /—
r

tal force on AB, : the inclina- m °
q B

tion of the joint mn to the

vertical ; then if the weight of /
the part A mn B be represented n

by the vertical line pr, and the
force F by the horizontal line
Pg¢, which meet in p, we have,
since the resultant ps is per-
pendicular to mn, the triangles psg and mon similar;
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From this property we may immediately derive one of
the most useful cases of equilibration, viz. The extrados
being a horizontal line, it is required to determine the intra-
dos, on the supposition that the equilibrium is maintained
by vertical pressures on the voussoirs. Let C be the origin
of co-ordinates, CH=z, HF=y, CE=a; CD=4a, AD=8,
¢ the inclination of the tangent to the horizon, and
draw H'F’ indefinitely near to HF. Now if we suppose
the whole mass to act perpendicularly on the voussoirs,
the differential of the weight of the column may be

represented by HF. HH'=ydz, and since % =tang. of

inclination, we have from the above fydz=c¢ dy

dr
or ydz=c. d.% ; ¢ being a constant quantity, which
will be determined afterwards: 3 »'n c
.'Lydw’:cd’y. E
r

Multiplying by dy, and inte-
grating, we have

A D

1 @+ const.)d2®*=1 ¢ dy*

copriors(pg) ::mo:on
W:F::8in.¢:co8.¢::tan. ¢: 1,
.*. W=F. tan., consequently W varies as tan.: since the
horizontal force is constant.

Also since mn is a normal, and tan. '=?fy’ we have
x

W=F. dy or Wdr=Fdy,
dz

an equation to the catenary.
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dy\*
orc (Ti.-r) = y* - const.
dy .
But when y=a, P vanishes,

. . . d_y e

.*. the correct integral is ¢ ( dz) =yi—a

. dy Vy'=a’ ~

Cdrs  va ,orde= Vc.m

the correct integral of which, Hall’s Diff. and Int. Cal-
culus, page 313, is

z=+vc - (hyp. log. 3@)

. z

=hyp. log. ¥+ V¥ —a*
7o hyp. log s

If e be the hyperbolic base, we have

r

. ;/—c— y+ Vys_an

a
Vo8 _y—vy—a
Cytvy-a@ e
By addition we have
:_ - X
v e
e ¢ + e -y
L x
a Ve :\/C
y= 5(’ € )
Differentiating,
_* =
dy a Ve Ve
dz = 3ve\® — ¢ )



12 THEORY OF

which shows that the curve is convex towards the
axis of z.

To find the constant ¢, we must observe that when
F comes to A, y=CD=a, and 2=A D=3,

.. B= ¥c. hyp. log. W

a + &/a’—a"'.

or / ¢=8-+hyp. log.
Hence by substitution we have

y+ Vy2_a2 a+ Vaﬁ_aQ.
a a

z=4. hyp. log. -+ hyp. log.

Also, from the above, another property may be derived,
on which Dr. Hutton bases many of his calculations.
If p = radius of curvature, then we have

ds’ .
p= dydiz—dediy’ which becomes,

if we suppose z to be the independent variable,

_ as
P= dzd?y’
since the curve is convex to the axis of z,
dy
d.-Z=yd
and cd. F=ydz
L2 _y
Tda*T ¢

—_— / d 2
but ds= vda*+dy*=dz v 1+d—‘;/ci ;

hence by substitution
dy*\3
- (1+3s)

y
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but %Y — tan..,
dz
__csec.’
)

Consequently the radius of curvature is proportional to
sec.: directly, and HF inversely, or HF is as sec.:
directly, and the radius of curvature inversely, ¢ being
constant.

At the vertex E of any curve the inclination is nothing ;
therefore sec.: = 1, and if the radius of curvature there
be represented by o', the general expression for the height

becomes a = & or ¢ = a ¢, which is the general value of
P

¢ for any curve, in terms of the height of the crown and
radius of curvature at that point: this substituted in the
general expression, we have

’

c
HF = S sec3 = 2P . sec.d..
p p

If the arc be the segment of a circle, then %:%: 1,
‘. HF = asec.3..

This may be very simply calculated by logarithms,
log. HF =1log. a+3 log. sec. «. Or By,
we may give a geometrical construc- [}
tion as follows :

Draw the vertical line F'S cutting
the horizontal diameter in S, draw
ST perpendicular to the radius DF,

draw the horizontal line Tz, cutting e
the vertical in 2, join Dg. Make [= “’\
Fu=CE, and draw uz parallel to [ —=p
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D ; then FH must be equal to Fz, and by similar tri-
angles,

. - .Fr_FS
FD.FS..FS.F._FD,
. .. . Fg_ [FS _FS
FS'FT”FT'Fz—FD’.FS FD*

CE:FH::Fu:Fz::Fz:FD::%:FD::FS’:

FDs:: DI : DE*.*

The curve CHP runs up to an infinite height above
the spring of the arch, and this must evidently be the
case with every curve that springs at right angles to the
horizontal line.

From the above it appears, that a semicircular arch
cannot be put in equilibrio by building upon it, whatever
may be its span or thickness at the crown; since the
curve CHP runs up indefinitely, having AB for its
assymptote ; and therefore, according to the principles
of equilibration, it is not adapted for a bridge which
requires an outline nearly horizontal, except for about
30 or 40 degrees on each side of the vertex C.

From the general expression HF=;’T sec.%:, and the

equation of the curve, we may find either the extrados or
intrados, whichever may be the given curve.

The celebrated experimental philosopher Coulomb,

* Dr. Gregory’s ““ Mechanics,” art. Arches.
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to whom practical science is so deeply indebted, seems
to have been the first who treated this important subject
in a manner conformable to experiment and observation :
he considers the equilibrium of arches successively on
the hypothesis of joints perfectly polished, and on that
where the friction of mortars or cements is taken into
cpnsideration. In the first place, he takes the part

ABnm of the half arch ABCD &
as abody supported on an inclined = S

plane, and gives, having respect to
the effects of friction and cohesion,
the limits between which the force  © H

F acting horizontally at some point in the joint AB must
fall, so that the arch may be prevented from sliding
along the joint m n, either downwards in direction m n,
or upwards in direction nm, or by rotation inwards
round the point n of the joint m n, or outwards round
the point m. The general expression for F being deter-
mined, he finds the maximum value of it, which will
prevent the arch from sliding in direction mn, and the
minimum value, which will cause it to slide in the oppo-
site direction n m : he then observes that the limit of F,
or the force which will be just sufficient to preserve the
equilibrium, must be greater than the maximum and
less than the minimum values so obtained.

He then considers what the conditions of equilibrium
must be, so that rotation cannot take place either round
morn, and finds in a similar way the maximum value
of F, which will prevent rotation round the point n, and
the minimum value that will cause it to move round m,
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and shows that to maintain the equilibrium the force
must be greater than the maximum and less than the
minimum.

From this we have two superior and two inferior
limits obtained for the force F, between which it must
be found, so that the arch cannot slide either in the
direction mn or nm, nor yet revolve round either of
the points m or n. Gauthey, speaking of the analysis of
Coulomb, observes that it leaves nothing wanting to
make it coincide with that to which we are conducted
by the latest experiments on the strength of arches.

That distinguished individual, the Rev. H. Moseley,
Professor of Natural Philosophy in King’s College, Lon-
don, has, in two excellent papers in the Transactions of
the Cambridge Philosophical Society, developed with
great ability a theory for the equilibrium of the arch, on
principles somewhat different from those of Coulomb,
and has deduced expressions which accord, not only with
a great many experiments made by himself, but also with
those of Gauthey and Professor Robison. As this
learned gentleman has kindly consented to give us some
account of this theory, which appears to include that
of Coulomb, we shall, for the present, defer entering
into his views on this subject, considering that he will
be better able to explain them himself; but we may
observe, that it is our intention, in this work, to enter
fully into the merits of both, and give as clear an ex-
position of each as we possibly can. Professor Mose-
ley’s Paper will be found in a future portion of this
work.
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We have, in the preceding pages, given a general
outline of the celebrated theory of equilibration, which
has long been considered by many eminent writers as
one of the most delicate researches in applied mathe-
matics, and indeed it seems to be almost too delicate
for practical purposes, being based on suppositions
which cannot hold good in practice ; neither is the
equilibrium sufficiently stable except under certain cir-
cumstances ; and to ensure the stability of this equili-
brium some writers have shown that the vertical line
through the centre of gravity of the part mnNM should
fall within the parallelogram abcd, formed by perpen-
diculars drawn at the extremities of the lines MN, mn,

for otherwise the resultant of the two v,
forces, viz., the weight of the part L | S— ,u
maNM, and the horizontal thrust, _,,j/é' 1
rests, and from no point of that
vertical could there be drawn two perpendiculars, the
one to mn and the other to MN, so as to fall within
both; consequently the part maNM could not be sus-
tained by those two joints or supports.

At the extreme point ¢, if the vertical line ce should
pass through the centre of gravity, it is evident that
from no other point in this line except ¢ could there
be drawn two perpendiculars, one to mn, and the other
to MN ; for if from any point ¢ below ¢, ¢'m’ be drawn,
the point m’ will fall on nm produced, and if from any
point ¢ in this line above c, ef be drawn, it will fall in

MN produced ; ¢ is therefore the utmost limit from
c
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which the vertical line passing through the centre of
gravity can be drawn for the equilibrium to have place,
and it is clear that this is but a very unstable equili-
brium, for the slightest force would derange it by
throwing the vertical line beyond the required limits.

We shall now give a few examples to show how the
extrados may be determined when the intrados is the
given curve.

The intrados being a Parabola, required the extrados.

Let E be the origin, EG=2, FG=y, then

_ (m+42)}
2V m

p and p’ being the radii of curvature

at F and E as before, and since
y=mz, and GT=22, we have

sec. t = V(m m4 m); and by page 13,

P and p’=3% m and sec. .=

HF= ap’ sec.’t=a ym.2mt . (m+4.r)%. = a.
P (m+442)* md
Hence it follows that the extrados is also a parabola
equal to the intrados, and every where vertically equi-
distant from it.

To find the thickness over any point of an Elliptic
arch.

Retaining the same notation for z, y, and a, let the
semi-axis major = b, the semi-axis minor = ¢, and
FO0=h.
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DE*: AD*.: DG : 0OG T
b u <
o oG

W ie—r: L (c—gp) = =
c:b::c z.c,(c z) L g
FO_ k¢ _ 4K \,
8€C. 1= G O B c— .’L') m, ' A ‘\‘\J D B
25

m being the parameter to DE= —
chr b
= also p'= -

_ap . _ abt b or__ad
HF = Tsec’.c_ R ¢ Be—2' = i

For the Cycloid.

Let 2 r be the diameter of the generating circle, then
in this curve the following

properties obtain, viz., the "'c /l
tangent FT is parallel to the '
corresponding chord EI, or > c

the angle TFG=the angle

EIG, also the radius of cur- 4 \\ g B

vature at F is parallel to
the supplemental chord ID, and equal to twice that
chord, or p=2ID,
El= v 2rz, GI= v2rz—2, DI= v4r—2rz,
and therefore
p=2v'4r—2rz, and p’=2DE=4r

also sec. ¢« = (F;;II = ‘/( 2rir_xw2 ‘/(2,-_;0)
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/ . 2r)*
. HF= gf— = a.dr . ( -
P T IV @r—2r)  @r—g)t
4ar*

which by reduction becomes @

It may here be observed that in both the ellipse and
the cycloid, the extrados is analogous to that of the
circle, but somewhat flatter, and by computing values
for FH the extrados is easily constructed by points.

We have throughout the whole of these articles con-
sidered the curve of equilibration to coincide exactly
with the intrados, but this does not appear to be the
most advantageous position for it to have. Dr. Thomas
Young, in one of the ablest written articles which has
appeared on this subject (see Napier’s edition of the
Encyclopzdia Britannica), observes that ‘ when the
curve of equilibrium touches the intrados of an arch
of any kind, the compression at the surface must be
at least four times as great as if it remained at the
middle of the arch-stones.” This perhaps might be
too high to fix its position when the bridge is con-
structed, since it is always found that arches settle
either more or less after the centering is struck: the
settlement then would throw the curve of equilibration
above the middle of the arch-stones at the crown, but
no allowance can be made for this, as it cannot be
determined a priori what any arch will settle. If
this curve coincides with the intrados, at the crown,
before the centering is struck, it will undoubtedly after-
wards take its place within the arch-stones, which is a
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more advantageous position, so far as strength or
durability of the arch is concerned.

We shall now proceed to take a different view of this
subject, and to show the conditions of equilibrium that
must exist, in order that the arch may be so tied up
that the voussoirs can neither slide upwards nor down-
wards, nor yet turn round either the upper or lower
edges of their joints. This method of establishing the
equilibrium of the arch has not been considered by any
English writer till very lately, and even on the Con-
tinent, the place of its birth, it has not till within late
years met with that attention which it so highly merits.
The theory of Coulomb, which proceeds on this prin-
ciple, has scarcely ever been noticed in this country;
nay, the only English works we are acquainted with
that inform us that Coulomb had at all written on the
theory of arches are Cresswell’s Venturoli, Dr. Gregory’s
edition of Dr. Hutton’s course, and some of the writings
of Professor Moseley.

On the equilibrium of an assemblage of voussoirs.

1. Let ABNM represent part of an arch, inclining at
AB against a fixed plane, and supported at the other
extremity by a force which is usually denominated the
horizontal thrust. The form of this part of the arch is
given by the curves of intrados and extrados, and the
direction of the planes of the joints.

Now if we consider this part of the arch to be formed
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by placing voussoirs successively upon each other, be-
ginning at the fixed plane AB, it ] x
is clear that the first voussoirs

placed against this plane would be

supported merely by the effects of »

friction, and would continue to be 4l x

so supported until the inclination of the joints be-
came so great as to cause them to slide;' it will then
be necessary to apply to the joint MN of the last
voussoir a force F, whose vertical and horizontal com-
ponents may be represented by P and Q. This force
ought to be sufficient to prevent the voussoirs from
sliding downwards on the planes of the joints, and also
to prevent them from turning on their lower edges ;
but it ought not to be so great as to cause the voussoirs
to slide upwards on the joints, or to produce a rotary
motion round their upper edges. We therefore see

—en F

! Mr. George Rennie, in a valuable paper in the Philosophical
Transactions for 1829, states that ‘* the granite voussoirs of the
arches of the New London Bridge, having their heds well faced
and dressed without mortar, generally commence sliding at angles
from 33° to 34°. But with a bed of fresh and finely ground mortar
interposed, the pressure on the centering commences at angles of
from 25° to 26°. In other cases of arches, where sand-stones, such
as Bramley Fall and Whitby, were employed, and their heds faced
and dressed as usual, the angle of sliding was found to vary from
85°to 36°. But with mortar interposed, the angle generally varied
from 33° to 34°.

“ It results from these and other experiments that friction, by
absorbing part of the horizontal thrust, is a most powerful assistant
in maintaining the equilibrium of arches, and enables us to determine
with something like precision the allowances due to theory.”
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generally that taking any joint mn whatever, the system
of forces applied to the arch ABMN comprised in the
components P and Q applied at the upper joint of the
last voussoir, ought to be such that the action of the
forces applied to the upper part mnNM cannot cause
that part to slide on the plane of the joint mn, nor
yet turn round either of the edges m or n.

Let z and y be the horizontal and vertical co-ordinates
of the point m.

z’, y’, those of the point n.

6 the angle which the joint mn forms with the ver-
tical.

3, the length of the joint mn.

a, b, the co-ordinates of the point M of the curve of
intrados.

a, v, the co-ordinates of the point N of the curve of
extrados.

W, w, the vertical and horizontal components resulting
from the weight of the portion mnNM of the arch.

a, B, the co-ordinates of the point ¢, where the com-
ponents W and » act.

J, the coefficient of friction, which is supposed to be
proportional to the pressure.

r, the cohesive force of a unit of surface of the joint
to prevent sliding.

R, the cohesive force of a unit of surface, which tends
to prevent rotation.

T, the pressure in direction perpendicular to the joint

mn.
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2. To investigate the conditions relative to sliding
on the joint mn, the force which tends to make the
portion of the arch MmnaN slide in the direction
nm, is

P+W) cos. ¢
and the force which opposes this sliding is

(Q+w) sin. 64f (P+W) sin. +4f (Q+ o) cos. 6+rs.
Now, that sliding may not take place in the direction
nm, the latter must be greater than the former, or

P (1—ftan. ) —Q (f+tan. ) <« —W (1 —ftan. 6)
+o (f+tan, )+ —=

cos. 0

Also the force which tends to make the same portion
slide in the opposite direction mn is

(Q+w) sin. 8
and the force which opposes this sliding is
(P+W) cos. 04f (P+W)sin. 64+f(Q+ o) cos. 04rz.

Hence, that the sliding may not take place in the direc-
tion mn, we must have

—P (1+ftan. 6)+Q (tan. 6—f) < W (14 ftan. 6)

— w(tan. 6— U
o (tan f)+cos.0

3. We must now proceed to establish the conditions
that rotation may not take place round either of the
points m or n.

Let us suppose, in the first place, that the portion
of the arch mnNM tends to turn from the top to the
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bottom on the edge or arris m, and that the force whose
resultants are P and Q is applied at the point N, where
it will have the least tendency to produce rotation round
the edge m.

The moment of the forces which tend to make maNM
turn round m is

P@'—2z) +W (a—2)

and the moment of the forces which oppose this rota-
tion is
QW' =y +o®@—y);

but if we take into account the resistance from cohesion,
we may adopt the theory of Mariotte and Leibnitz, viz.,
that the resistance to rupture which cohesion exerts
at different points of the joint between m and =, will
be proportional to the distances of those points from m.

Let an element of the joint mn be represented by
dv, and » its distance from the point m, the cohesion
of this element will be Rd», and the resistance exerted

by this cohesion is -l:'—vdv, the moment of this resistance

round the point m will be ~»dy ; its integral taken be-

tween the limits of »=0, and »=3, or as it is usually
expressed, e
{ g
5 #dv=1R,
the moment from cohesion ; hence the above becomes,
taking into account the effects of cohesxoq, »

Q¥ —y)+w(,3—.'/)+’§Rz"
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therefore, in order that rotation may not take place
round the point m, we must have .
P@—2)—Q@¥'—y) <—W(@—2z) +o(B—y) +3Rs
Now, in the next place, if we consider the portion
mnNM tends to turn on the edge n, and that the
force whose resultants are P and Q is applied at M,
where it will have the least tendency to produce this
rotation ; then the moment of the forces which tend
to produce this motion is
Q®—y) +oB—y)
also the moment of the forces which oppose this
motion is -
Pa—7) +W («—z) + 1 Rs®

Therefore, in order that this rotation may not take place,
we must have .
—P =) +Q0—y) < W (a—a)—w(8—y)+}Rs"
The equilibrium of the portion mnNM requires, besides
the condition mentioned in the last article, that the
components P and Q should be such that these last
conditions will also be satisfied for any joint mn.

Conversely, when the preceding conditions are satis-
fied for all the joints, the arch will necessarily remain
in equilibrium.

4. The pressure in direction perpendicular to the
joint mn, is

T= P+ W) sin. 6 4 (Q + o) cos. 6.

5. If in the preceding conditions relative to sliding
we suppose the resistance from friction and cohesion
to be nothing, we have, for a strict equilibriumn,
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P—Qtan. 6= —W +wtan. 8
P4+W
Q+e’
which shows that the resultant of the forces applied
to the portion of the arch manNM must be perpen-
dicular to the joint mn.

6. Also the conditions relative to rotation become,
when the friction and cohesion are not taken into
account,

P@d—2)—QW'—y)<—W@—2)+w(@—y)
—P@—2)+Qb—y)<W (@2—2) +o(B—y)

which show that the resultant of the forces applied to
mnNM must fall between the points m and n.

7. By the preceding we see that in order that there
may be an equilibrium of a system of voussoirs, it is
necessary that the components P and Q should satisfy
four inequalities, which are to be verified for all
the joints of the arch. Hence there exists certain
limits between which the values of P and Q must be
found. If these conditions do not contradict each
other, and if the values of the components P and Q
be such as to satisfy them, the equilibrium can subsist
in the proposed system of voussoirs ; and if we conceive
the last joint MN applied against a fixed plane as
the first joint A B is, and the system submitted to
the action of forces which are applied to the voussoirs,
we may rest assured that motion will not ensue.

. tan. 0 =
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Plate Bande.

8. The plate bande has its extrados and intrados, two
parallel straight lines, and differs from all other arches,
inasmuch as the joints are not perpendicular to the
intrados. ‘

Let ABMN represent half the plate bande, AM=agq,
the thickness M N=¢; the %<2 ¢ N
inclination of the extreme
joint AB with the vertical
=¢, the weight of a unit of
mass= m, and retaining the \
same notation as in art. 1, \
the area of the . trapezoid N
MmnN is equal the sum of \
the areas of the rectangle b
MNom and the triangle mno,

A

m M

area of rectangle= (a—z) ¢
area of triangle = } ¢*tan. ¢

.". the weight of the trapezoid == {(a—:c) t+ 3 ¢tan. 0}

Abstracting from the effects of friction and cohesion,
and making, in art. 5, P=0, H=0, -~

W== {(a—w) t-4 §t*tan. 0}; we have

_ 27 (e—2a)t

tan. 6= SQ—nt
which gives for the last joint AB
tan, = 27 4%

2Q—=nt
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__7(at4+¢ tan. )
hence Q= 2tan. §

.tan.0  a—z
"“tan.d T @

This last equation shows that if the joints AB and mn
were produced, they would intersect the vertical in the
same point o; hence the condition of equilibrium es-
tablished in art. 5 will be satisfied if all the joints
produced shall pass through the same point.
9. The conditions of art. 6 become for the plate bande
where y=0, y'=t, b=0, ¥'=t, P=0, 0 =0,
Qt>W (a—2),
—Qt < W (a—7),

for any joint mn ; but for the extreme joint AB we have

Q¢ > moment of trapezoid round A,
—Q ¢ < moment of trapezoid round B.

The moment of the trapezoid round A is the difference
of the moments of the triangle ABC, and the rectangle
ACNM,
moment of rectangle =}a.mwat
...... triangle = }¢.tan.¢. §w¢*tan. ¢
.. moment of trapezoid = § ma*t—} = . tan.* 4.

But the moment of the trapezoid round B is equal
to the sum of the moments of the triangle and rect-
angle.
Moment of rectangle = (3 a+¢. tan. ¢) atn
...... triangle = § ¢. tan. 6. J = ¢*. tan. ¢
.. moment of trapezoid round B is
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(3 a4t . tan. ¢) atwr 4 3 = tan. %9
Hence the above conditions for the joint AB
Qt>3nma*t—} e’ tan. ¥,
—Qt < }wat (a+42¢.tan. )+ L »£°. tan. %
The second inequality shows that the plate bande ABNM
cannot turn round the upper arris B, since whatever posi-
tive value be given to Q, this condition will be satisfied.
The first inequality shows that ABNM cannot turn
on the lower arris A, and it becomes, by substituting
for Q its value from art. 8,
at >} (a* — % tan. — } #tan.°¢
The extreme limit for & may be found by solving the
equation,

sy _a (@t 6a
tan.2 -3 (25 )tan.0'+_t-._0.

If we take =45, then since tan. 45°=1, the equation
becomes, if we make t=1,
1-3@—1)4+6a=0

this solved gives a=1 + v § = 2527, or the whole
span 5'054, which shows that the utmost limit to which
the span can be extended is about five times its thick-
ness ; but that the equilibrium may be stable we must
have a <2-527, or the whole span < 5-054.

If ¢=30° then tan. ¢ = 71-5 and the equation be-

comes
1

3v3
which solved gives a=3'76, or the whole span 7-52 ;

—3(a’—l).71§+6a=0
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here the utmost limit gives about seven and a-half times
the thickness for the extent of the span.

10. If a vertical line py be drawn through the centre of
gravity, and from p, pA be drawn, then if AB be drawn
perpendicular to pA, it will represent the extreme limit
for the inclination of the joint; for we can draw from
no other point in the line py, except p, two lines, the
one perpendicular to MN, and the other to AB. Draw
any two lines, Ov and r¢z, one on each side of the ver-
tical through the centre of gravity; from A produce
Ap to r, then the other perpendicular rs will evidently
fall above N ; and
if from the point ¢
the line ¢¢ be drawn o
parallel to A pr, it \ e
will fall below A, or
in B A produced,
and from any other
point in the line ¢z
below ¢, the perpen-
dicular will fall still
farther below A ; also
from any point above
r in this line, the per-
pendicular will fall
farther above N : ,
but, on the contrary, in the line Ov, we can draw
from any point between O and Ap, perpendiculars to AB
and MN, such for instance as ab, be, de, ef, &c. From
this it follows that the equilibrium will be stable if the

e
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centre of gravity should fall in any vertical line Owv,
within the triangle ABp ; strict but easily deranged if
it fall in py; and should it fall in any vertical line be-
yond this as ¢z, the arch cannot stand independent of
friction and cohesion.
By art. 4 the pressure exercised perpendicularly on
any joint mn is
T= P+ W) sin. 64 (Q+ o) cos. 6,
which becomes for the plate bande where P=0, o=0
T =W sin. 64+ Q cos. 6,
and for the last joint AB, by substituting for W and Q
their values, viz., W=~ (at 4 } . tan. ) and
Q=" (2at+4£. tan. 6)
2 tan. ¢

at £
T=m ( sin. & + 2cos.0’)'

11. If the thickness of the plate bande be very small,
compared with the span ; then for the utmost limit, the
equation at— 3} (a* — ¢*) tan. '+ § ¢*. tan.*6’=0 becomes,
neglecting the quantities that involve #*, which will be
very small,

we have

at—3%a*tan. =0

Therefore

also the expression for the perpendicular pressure on
AB becomes

t
T= "¢
sin. ¢




BRIDGES. 33

The following problem is taken from Professor Mose-
ley’s ¢ Illustrations of Science,” page 211. ‘

“TO0 FIND THE GREATEST HEIGHT OF THE PIERS, OF A
GIVEN WIDTH, WHICH WILL SUPPORT A STRAIGHT ARCH
OF GIVEN DIMENSIONS.

12. Let AIB be the straight arch to be supported,
and AK the given width of the piers.

Divide AB into two equal parts in C: upon AC
describe a semicircle, and measure
off AD equal to AK, so as to cut _ ,
the circumference of this semicircle
in D: produce AD, and let it inter-
sect the vertical line through C in
E: measure off EF equal to Al, e
and AG equal to AB: join DF, and 1"
draw GH parallel to DF; then AH will be the extreme
height of the pier. Being of any less height, it will stand
firmly ; being of any greater, it will be overthrown.”

ed
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13. To establish the theory of arches, La Hire and other
geometers supposed that they always break at points
equally distant from the key-stone and the springings,
and that the higher portion acts like a wedge against the
joints of rupture, and tends to separate the lower por-
tions ; consequently, to obtain the thickness which the
piers or abutments must have in order to resist this
thrust, they endeavoured to find the pressure which is
exerted perpendicular at one of the joints of rupture
by making the moment with respect to the exterior edge

D
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of the base of the pier equal to the moment of the half
arch and its pier with respect to the same edge, and
thus obtained an equation of equilibrium which gave the
thickness of the pier.

The experiments of Danisy, and afterwards those of
Boistard, have shown that arches may give way by
sliding as La Hire supposes, but that the rupture more
frequently occurs by means of rotation on the edges of
the joint of rupture.

They have also proved that the position of the inter-
mediate joints of rupture varies according as the force
exerted by one part of the arch is greater than that
exerted by the other.

14. If the force exerted by the upper portion be greater,
that part tends to descend by means of the lower parts
giving way, and the arch will break, as shown in the figure,
that is to say, in five places, and
the four portions of the arch turn
round the edges b, d, a, d, b’; but
if on the contrary the force exerted
by the lower portions is the greater,
the arch breaks as shown in the
figure, page 58.

Arches, therefore, give way at the key-stone, at the
springings, and at the intermediate points ; but as it has
been before observed, the position of the last points of
rupture varies according as the force exerted by the
upper or lower extremities is greater.

Coulomb, profiting by the experiments of Danisy, was
the first that considered the theory of arches with respect
both to the sliding of the voussoirs on each other, and
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also rotation round the upper or lower edges of the
joints. He showed that the theory of La Hire was in-
sufficient ; and first observed that an arch may break
into four parts instead of three. (See Mémoires Pré-
sentées, &c. tome vii. pp. 381 and 382).

15. Since the time of Coulomb succeeding writers have
contented themselves with developing his theory : among
the most successful may be mentioned Colonel Audoy in
No. 4, and Mr. Petit in No. 12, Mémorial de I’Officier
du Génie. Also perhaps one of the clearest expositions
of Coulomb’s theory may be found in Navier’s excellent
work, entitled Résumé des Legons données a I’Ecole des
Ponts et Chaussées.? Garidel’s Tables des Poussées des
Voiites en Plein Cintre, and Memoire sur la Stabilité des
Voiites, by M. G. Lamé and E. Clapeyron, may be
consulted with much advantage. These two latter emi-
ment engineers gave a number of transcendental equa-
tions for determining the points of rupture, but they
have given the investigation as regards rotation only,
and experience proves that this kind of rupture is most
to be dreaded.

16. To proceed with the exposition of Coulomb’s
theory we may consider as given—the span, the rise, the
curve of intrados, the height of the piers or abutments,
the distribution of the weights which the arch ought to
sustain, and the thickness of the arch at the key; this
thickness is generally determined from the example of
the most perfect constructions, similar to the one about

2 To this admirable work we are greatly indebted, and consider that
it should be used in every school that is at all interested in the progress
of science applied to the arts.
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to be projected. The equilibrium of the arch is main-
tained either by loading the parts more that tend to be
raised, or by giving more thickness to these parts.

Let us suppose the arch to be divided into two equal
parts at the key, the action of the weights supported by
the arch exercises a pressure perpendicular to this joint
between the two halves ; we may therefore suppress one
half of the arch, and replace it by a horizontal force
equal to the pressure it exercises.

17. Let ABNM represent a semi-arch, and mn any
joint where the rupture may be supposed to take place.
Let OM and ON=}, ¥'; z, y the co-ordinates of the
point m; &', y those of the point n; =
the length of the joint mn; 6 the angle M
which this joint forms with the vertical ;
a=AD the distance of the point A from
the vertical passing through the centre
of gravity of this portion.

T the normal pressure on the joint mn, and for the
rest the same notation as in art. 1.

18. Supposing that the rupture of the arch takes place
by the dliding of the voussoirs along the planes of the
joints, we have by art. 2

W (cos. 6—fsin. §) —r 5
F=—{ sin. 04-ffcos.a)0 Ao M

The values of F in this equation must be calculated

for all the joints in the semi-arch, since by varying the

A gp D o

* The friction which is proportional to the perpendicular pressure on
the joint will be
J (F cos. 8+ W sin. 6)

and the cohesion being proportional to the length of the joint, is r z.
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angle 6, we will have different values for F. The greatest
of these values ought to be taken for the horizontal
thrust, or the pressure which the two halves of the arch
exercise against each other at the key.

The force F, which would be sufficient to cause the
portion MNnm of the arch to slide upwards in the
direction mn, may be thus expressed :

W (cos. 8+ fsin. rs
F= 2 sin. :-;ffcos.o)e-'- )
The values of F being calculated in the same way for
all the joints in the semi-arch, the least value must be
greater than the horizontal thrust, or the equilibrium
requires that the maximum of equation (1) must be less
than the minimum of equation (2).

19. According to the forms and proportions generally
given to arches, the joints of rupture which will give
the maximum of equation (1) will be found in the
haunches of the arch. The joint which gives the mi-
nimum value of equation (2) is near the springings ; here
the arch has a tendency to give way, as in the annexed
figure, the upper parts sliding down-
wards, and thereby forcing the lower
parts upwards along the springing
line.

It may also happen that the joint which gives the
maximum of equation (1) may be
at or near the springing line,
whilst that which corresponds to
the minimum of equation (2) is
near the crown ; then the arch will be apt to give way as
in the annexed figure.
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20. Now that the rupture cannot take place by the
voussoirs turning on the upper or lower edges of the joints,
by art. 1, the horizontal force F, applied at the point N,
necessary to prevent the portion manNM of the arch
from turning from the top to the bottom on the lower
edge or arris m, may be thus expressed :

F=W(a—.,1:)—-§-Rz’ 3)
b'—y

The values of (3) being calculated for all the joints in
the semi-arch, the greatest of these values ought to be
taken for the horizontal thrust. Also, the horizontal
force F applied at N, which would be sufficient to cause
the portion mnNM to turn upon the upper arris n, may
be expressed by the equation

pWe-—D£3Re

b—y

The values of (4) being :.al_lso calculated for all the joints

in the semi-arch, the least value must be taken greater

than the horizontal thrust; that is, the equilibrium

requires that the minimum of equation (4) must be
greater than the maximum of equation (3).

From the above the maximum of equation (3) is
given by a joint of rupture near the key, and the mini-
mum of equation (4) given by a joint of rupture near the
springings. Then the arch is apt to break, as repre-
sented in the annexed figure, the
upper parts turning inwards round
the arris m, forcing the lower parts
of the arch to turn round the ex-
terior arris of the joints near the springings.

21. But, at page 80, ‘“ Papers on Bridges,” we have seen
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that the arch may give way, as in
the figure, the lower parts turning
inwards, and thereby forcing the
upper parts outwards. For the
equilibrium for this kind of rupture, the force F applied
at M, which would prevent the portion of the arch
maNM from turning on the edge or arris m, may be
thus expressed :

F=W(a——.’z‘)— Rz .

ey )

The maximum of this equation must be taken for the
horizontal thrust of the arch.

Also the force F applied at M, figure, page 36, which
would cause the same portion to turn on the arris », is

F=W@=d)+3RS
b—y

For the equilibrium in this case, the maximum of equa-
tion (5) must be less than the minimum of equation (6).
22. In art. 18 we have supposed the rupture to take
place only by sliding, and in arts. 20 and 21, that it should
be effected by rotation. The most general case is where
the arch is apt to give way as is represented in the figure,
page 38; it also sometimes happens that whilst the upper
parts, as here represented, are descending, they force the
lower parts outwards, as in the figure, page 37. It is clear
that to prevent this motion the maximum of the expres-
sion equation (3) must be less than the minimum of (2).
For every possible combination that can take place,
we must, in the first instance, have the equations (1) and
(3), throughout the whole arch, less than the cquations
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(2) and (4); and in the next place, the equations (1)
and (5) less than (2) and (6).

23. When the arch is built or supported on piers or
abutments the preceding formule may be here applied, if
we consider the piers or abutments to form part of the
arch ; but this supposes that the stones or voussoirs of the
piers are sufficiently long to extend throughout the whole
thickness, for the theory here treated of is founded on
the hypothesis that the arch can only give way at the
joints, either by sliding on their planes or turning on the
edges.

24. From the preceding we may proceed to give the
conditions of equilibrium in every possible case. 1st.
To find the horizontal thrust F applied at N by sup-
posing different positions of the joint of rupture mn, in
the haunches of the arch, and stopping at the position
for which the expression art. 21

F=W(a—a:)—%Rz’

b/ _ y ’
or by neglecting the effects of cohesion,
F= W ’(a —2z)
b—y

gives the greatest value.

‘We must next ascertain whether the horizontal thrust
thus determined be sufficient to cause either the whole or
a part of the semi-arch ABNM to turn on the exterior
arris. Now it is clear that the horizontal thrust can
more easily force the whole semi-arch to yield, either by
sliding or rotation, than it can a part of that semi-arch,
where the inclination of the planes of the joints to the
horizon is greater.
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For the equilibrium to exist, supposing the rupture in
the first joint AB, we must see that the expression
F=W (a—2")+3Rsz?

b—y
or neglecting the effects of cohesion,
F — W (d —.2")

V—y
calculated for this joint, is greater than the horizontal
thrust.

We must also see whether the horizontal thrust can
make either a part or the whole of the semi-arch slide
on the planes of the joints; that is, we must show that
the expression

F—W (cos. 8+ fsin. 6) 47z
- sin. 8 — f cos. 6

or neglecting cohesion,

F—W (cos. 8 4 fsin. 6)
" sin. 06— fcos. 0

’

calculated for any joint whatever near the springings, is
greater than the horizontal thrust. If this joint were
horizontal, the preceding expression would become
F=Wf+rs
or neglecting cohesion,
F=Wjf.

25. In the note, page 88, * Papers on Bridges,” we ob-
served that the theory there given gave the same results
as far as rotation was concerned as the theory of Cou-
lomb, but that the latter was much simpler in form.
We shall now reproduce the formulz given in the Papers
from that of Coulomb.
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W (2—2)
V—y
hesion. Here « —z = DP, the distance of a vertical
through the centre of gravity of the portion mn N M
from D, and '—y= EQ, usmg the potation given in the

Papers, we have

Equation (3) page 38, F= neglecting co-

Q=rgqg Q

Now by equation (4) the force Q, applied at E to
turn the whole semi-arch round the arris K, may be thus
determined.

The moment of the upper portion of the arch round
Kis p DP+KR).

The moment of the lower portion is ». KS, the sum
of these moments is the whole moment of the weight of
the semi-arch round the point or arris K.

Also the moment of Q round K=Q.KX=Q (EQ
+KU). Now in order to have a strict equilibrium
these moments must be equal

Q EQ4+KU)=u DP+KR) + ». KS

.. Q=F DP+KR)+4». KS
) EQ+KU )

Hence to ensure the stability we must have
DP < (DP+KR) 4 ».KS

“EQ< EQFKU
or by reduction
DP-KU
” EQ < u. KR41.KS,

but the triangles DMP and DEQ are similar
DP:PM (=FQ) ::DQ: EQ
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. np_PQ " FQ .
. DP—- _E—Q_ )
this substituted in the above gives

w FQ DQ gy, KR4.KS,

which is the same expression as given at page 84,
‘“ Papers on Bridges.”

From this we see clearly the superiority of the theory
of Coulomb over the complicated theory of rotatory
levers, having deduced the same expression from the
most simple and evident principles ; besides, as we have
before observed, the former is more general than the
latter, as it takes into account the tendency of the
voussoirs to slide on the planes of their joints.

26. M.M. Lamé and Clapeyron find the joint of rupture

. ma . .
by making —- & maximum, where m is the mass above

that joint, @ the distance between the point of rupture,
and the vertical passing through the centre of gravity
and h=E Q, (see figure, page 81, * Papers on Bridges :”’)

they give
H(MA ma

a maximum where H, M, and A are the corresponding
quantities to the above, taking both the arch and its
piers into consideration ; and since H and MH;A are
constant quantities, the above will be a maximum when

B8 s a maximum. For semicircular arches with parallel

h
extrados let R and r be the radii of bases of the cylin-
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ders of extrados and intrados, r @ the arc between the
middle of the key-stone and the joint of rupture, then A=
Re—y9

2
the distance of the centre of gravity of the mass m from
the vertical passing through the middle of the key. Let
us conceive the mass m to be divided into infinitely small
elements by planes passing through the common axis of
the cylinders, making between them the constant angle
d 6, the centre of gravity of each of the equal elements
will be distant from the axis of the cylinders by a
constant quantity 7', which by the property of the
centre of gravity is thus determined,

R'dé 2R _r'dé 2r _(R%d6 _ r’do) ,

2 3 2

whence ¥'=4§ ————

R—rcos. 6; m= . 0 and a=r sin. 6—z, z being

R—r) |
®I—r)’
7’ being known we must determine ,

R - R
z 3 (——2—)d0,
.*. 0z=7 (A—cos. 6), the value of the constant A is

unity, for the integral ought to vanish when 6=0; we
have then

—rcin a2 R=19)
a=rsin. 0 m,
and by substituting the values of m, a, and 4 in mTa_’ we
have
R~ r’)rosmo (R*— ra)(l —Cos. 0)
ma 2 . (l)
R R—r cos. 0

which must be a maximum.
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This equation, being transcendental, can only be solved
by approximation. In the following table we have the
different arcs 6 from 45° to 60° with the corresponding

values of sin. 6, cos. 6, and 2= _0 .
sin.
Valuos of 8 Values of | Valuesof | ~oue,¥
) sin. 4. cos. 6 = —
sin. 4
45° or 0°7854 07071 0-7071 1-1133
46 0-80285 0'7193 0°6947 1-1161
47 0-8203 073134 0-6820 1'1216
48 0-83776 07431 0°6691 11273
49 0-8552 07547 065606 11332
50 0-87266 07660 0-6428 11392
51 0-8901 0-7771 0-6293 11453
52 09076 0-7880 0:6157 1-1517
53 0-9250 07986 0-6018 11582
54 0°9425 0-8090 0-5878 11649
55 09599 0-8191 05736 1-1719
56 09774 0°8290 05592 11790
57 0-9948 0-8387 0-5446 1-1862
58 1-0123 0-8480 0-5299 11937
59 1-0297 0-8572 0'5150 1-2014
60 1-0472 08660 05000 1-2090
The radius is always supposed equal to unity.

Let us take for an example the case of an arch whose

thickness is #sth of its diameter, then E:g, and the
r

equation (2) becomes

(9—8cos. ) —z (8—9 cos. ) =1:0637 ... (3)
Suppose 6=45°, and we get 1'5218, which is too large ;
also if §=0, we have 2, which is also too great: hence
we conclude that the angle of rupture is between 45° and
90°. If 6=60, we get a quantity -7686, too small in the
left hand member of equation (3); therefore the real
value is between 44° and 60°.
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As the two preceding suppositions have given results
which differ from the second part of the equation (3) of
‘5 and -3 respectively, the true value appears to be
nearer 60° than 45°, and from the above relation it
appears that 6 is about 55°; this substituted gives
10859, which is still a little too great, which shows
that 6 is greater than 55°; and since 6=56° gives a
result 1-0282, a value which is too small, we may there-
fore easily find by interpolation §=>55° 23’; for taking
the difference for 1° or 60’, and the difference between
result for 50°, and the second member of equation (3),
we have

0577 : 60 : : -0222
60

‘0577) 13320 (23
1154

1780
1731

49

If 6=55° 23’ be substituted, it will give in the first
member of equation (3) 1'064, which differs from the
second member only by the small quantity -0003.

Thus the circular arch, whose thickness is constant and
rise Jzth of the span, has the point of rupture situated
55° 93’ from the middle of the key-stone, or 34° 37 from
the springings.

27. The theory of Coulomb, as originally given by that
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illustrious mathematician, and subsequently reproduced
by Navier, which is nearly the same as we have here
given, supposes a separate discussion of the conditions
of equilibrium of each particular voussoir, and establishes
the required maxima and minima by a comparison of the
various different results thus obtained. In this form it
supposes an immense labour of calculation ; and, after
all, it determines only the conditions of equilibrium of an
existing structure, lending its aid but indirectly, and
with difficulty, to the engineer who would determine the
form and dimensions of a proposed structure so as best
to secure its stability. The subsequent labours of M.M.
Audoy, Lamé and Clapeyron, Persy, Petit, Poncelet
and Garidel, have however given to this theory a new
form and character, embracing in the discussion many
conditions of the equilibrium of the arch which lay
before beyond its limits, and greatly diminishing the
labour of its calculations. From the account which our
limits permitted to give of it, it will appear that this new
developement of the theory of Couldmb consists in the
determination in terms of the inclination of any joint of
the arch to the vertical of a function expressing the
value of that horizontal thrust, which, being applied to
the summit of the key-stone, will just prevent the semi-
arch from turning inwards upon that joint. By the
theory of Coulomb the maximum of this function de-
termines the position of the joint of rupture.

Professor Moseley has shown that his theory, founded
upon the discussion of the lines of resistance and pres-
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sure, (the former of which he has been the first to in-
troduce in the theory of statics,) and developing itself
by a wholly independent method of analysis, so far
as it embraces the same elements of the discussion
with the theory of Coulomb, necessarily leads to the
same results; and it is a remarkable verification of
the formule given by this able mathematician, and of
those deduced from the theory of Coulomb by the
eminent individuals whose names we have mentioned,
that, proceeding with methods of analysis so remote
and so difficult, they have arrived at formule, which,
when they refer to the same circumstances of equili-
brium, are identical.

The formulz arrived at by the French mathematicians
as stated by Garidel, and made by him the foundation of
the tables which he has calculated with so much labour
and ingenuity, are the following; the notation being made
to correspond with that of Professor Moseley’s Paper.
In the case in which the load rests on the extrados, and
the arch is a complete segment, so that 6=0:
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Now, if in equation (7) of Professor Moseley’s Paper,
page 51, X and Y be taken=0, by which substitutions
the more general case of equilibrium supposed in that
equation will be reduced to the case of a complete arch
of equal voussoirs without loading, and if this equation

be then solved in respect to -P;-,-, then equation (1) of the

above will be reproduced. Equation (13) of Professor
Moseley’s Paper will, in like manner, give us equation
(2) of the above. If in the above equations (3) and (4),
« be assumed =0, and A taken = «, the Professor’s equa-
tions (19) and (20) will be obtained. These are the fun-
damental equations from which the Tables of Garidel
are calculated ; and they result alike from the theory
of Coulomb and that of Professor Moseley.

The discussion of the latter theory, however, embraces
various elements which are not, we believe, to be found
in any other.

It determines the conditions of equilibrium not only
of the continuous segmental arch, but of the Gothic arch,
and that under every variety of loading; not only for
instance when the pressure of the load is vertical, but
when its direction is inclined at any angle to the ho-

? M. Garidel has given the following approximate expressions for
the angle of rupture and the thrust in the case of an unloaded arch with
equal voussoirs ; they are derived from the equations (1) and (2).
49'594 (2 +1°69043) (2 —0°15371) (099987 —a)

(2+2) (+04597)
P _01532a (2+1:7106) (14565 —a)
r a+04597

¥=57°293 +
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rizon: as an illustration of this fact, let it be observed
that equations (25, 26, 27) determine the conditions of
equilibrium of an arch which sustains, either by its ex-
trados or intrados, the oblique pressure of a fluid. The
equations of the Professor’s Paper not only determine
what are the conditions of the stability of an arch, under
a given loading, but what loading will give certain condi-
tions of stability. They enable us, for instance, so to load
a segmental arch as to bring its points of rupture to any
given distance from its springing; they also determine
what load accumulated near the crown would cause the
arch to fall by the descent of the crown, and what at the
haunches would cause its fall by the elevation of the
crown. In respect to the direction of the pressure upon
the key-stone, these formule include, in common with
the French formule, the case in which (the arch being
constructed without cement) this direction may be sup-
posed to be through the summit of the key-stone ; they
determine also the actual direction of this pressure when
by the interposed cement a mathematical adjustment of the
joints is brought about, and when this direction is there-
fore through some point which intervenes between the top
and bottom of the key-stone,—a determination which, we
believe, has not been attempted by any other author. It
is, however, principally to be remarked in respect to the
theories of Coulomb and Professor Moseley, that the
latter is general, embracing every case of the equilibrium
of a system of bodies in contact, and including the arch
as a particular case. Of these various applications,
(others of which are given by-the learned Professor,) are
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the buttress, the pier, the straight arch or plate bande,
the embankment, &c.

The formulz given by the French mathematicians for
determining the width of the pier of a given height is
deducible from Professor Moseley’s equations, substi-
tuting in equation (4) the values of the horizontal thrust,
the weight of the arch, and the quantity k, as deter-
mined by the subsequent equations, and then solving
equation (4) for K.

28. We shall now proceed to give Petit’s formule and
tables for calculating the stability of arches.

At page 38 we have shown that if the length of the
arm of the lever, with which the horizontal thrust F
acts=y, and the weight of the portion mnNM=W, and
¢ the length of the arm at which it acts, then we have

F.y=W.¢or F=-Y-%;¢.

We are ignorant of the point m round which the ro-
tation tends to take place, or in other words, we do not
'know the angle 6 which the joint of rupture mn makes
with the vertical ; but since the force F must be such
that it shall keep any portion whatever of the arch in
equilibrium upon the portion beneath it, it must be equal
WX ¢

y

the greatest value that admits by the variation

of the point of rupture.

In order to obtain this value, we must assume a
point of the arch, or the angle 6, which determines the
position of the point, and find the corresponding value
of F. We must next assume another value of 6, and
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find another value of F, and proceed in this way until we
have found the maximum value of F. (See page 38.)

We must take the moment of this last force with
respect to the edge d, or the outer edge of the given
piers, and then put this moment, equal to the moment
(M) of the half arch and its pier, and this equation will
give (¢) the thickness of the pier. Thus, if F' be the
maximum value of F, and L the arm at which it acts,
we have the equation

M=F'L, which gives e.

These are the two formule which M.M. Audoy and
Petit have developed. The following are M. Petit’s
formule, relating to arches that are semicircular and
have a parallel extrados.

Semicircular arches with parallel extrados.

29. The formule for these arches are
K3—1
=T W
F'=r’{%(K’—l)(l+;i_na'—o.cos.6)—§(K3—l)} C .. ©®

e

=—1g -nr
;= 3w (K2 1)h+

cos.6+(l—Kcos.6),—o =K—-4%
sin. 6

Jﬁn’(K“‘—l)’.% + 2{Kc+§(K3—l)—}1r(K’—-l) }.;+2c @)

In the preceding formule K is the ratio of the radius
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of the extrados to that of the intrados or E; 6 the angle
r

of rupture corresponding to the maximum thrust ; F’ the
maximum value of the thrust F; r the radius of the in-
trados; h the height of the pier or abutment of the
arch ; c the ratio of the maximum thrust, and the square

of the radius or c= %, o the ratio of the circumference

to the diameter.

As an example, we may determine the necessary
thickness for the piers or abutments of a semicircular
arch with parallel extrados, where the radius of the
intrados r=16'4 feet, and the radius of extrados R
=2099 feet, and the height of the piers or abutments
6:56 feet.

With the Tables 1. and II. of M. Petit this problem
can be easily solved. We must first find the ratio
K=2-2099_1.98 In Table I we find the cor-

r 16-4
responding value of §=62°30', and Table II. gives the
following equation to solve
€ ——-5014' T4 v/2520- 7> 4-0801" © 42738
r h h? h
in order to determine the thickness of the abutments in

the case of strict equilibrium.
The preceding equation is only equation (3) with the

__ 164
val —1- —q. T —_
ues K=128, r=3'1416, or 7 = 556 2'5, and

this equation gives e=2-92 for the case of strict equili-
brium.
Without these tables we should first have supposed

6=61° or 9___61%@ =106, cos. 61° = -4848,
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sin. 61°=-8746 ; K=1'28; these numbers substituted
in equation (1) we have '9446 =-9592 ; hence 61° does
not satisfy the equation.

Next assume §=62°, and, proceeding as before, we
find -95856 = 95920 ; this value of 6 therefore does not
satisfy the equation.

Now assume §=63°, and we find ‘97093 = 95920 ;
here the first number is the greater, we therefore con-
clude that the real value of 4 lies between 62° and 63°.

Taking the difference ‘97093 —-95856="01237, which
corresponds to 1° or 60°, and also the difference ‘95920
—+95856 = 00064,

01237 : 60" : : 00064 : z=31";
hence 6 = 62° 31’; sin. 6 = ‘8871, cos. § = ‘4615, @
— 62°31" 3-1416
90 = 2

= 1'091. These values substituted
in equation (2) give c= %—: *135, nearly the same as

the value given by Table I., whence we may find the
maximum thrust F'="135 - (16:4)?=3631 feet ; lastly,
this value of ¢, and those of &, r, 7, and K, substituted
in equation (3), give the thickness e, as has been found
above. In the case where % is infinite, the formula (3)

would reduce to ;: ¥2¢, which gives for the limit of

the thickness of the piers or abutments e=8-528 feet |
instead of 2-92.

By Colonel Audoy’s method we may find the stability
by multiplying the value of the thrust by 19, which
gives the stability of arches calculated by the formula (3) ;
by putting 1'9 ¢ or ¢4 9 c instead of ¢, we have



BRIDGES. 57

S=—in(Kr—1).74
r 3

v {ﬁ—a’(K’— 1)2.’;2+ [1'8. Ke 42 Ke+3 (K*—1)—dn (KI—1)). 7

+2 c+l'8c}
If we want to find the limit of thickness in the case
of stability given by La Hire, the equation becomes

:7= V2c42X'9c= +38c="72, whence e="72 X 1'64

=11"8 feet.

The voussoirs tend to slide on the surfaces of the
inferior joints; hence there results a thrust sometimes
more powerful than that of rotation. In semicircular
arches with a parallel extrados the maximum thrust due
to sliding is G=-15304 r* (K*—1)=F’, G being the
horizontal force capable of preventing the sliding of any
voussoir whatever which tends to descend upon the
lower surface. It is by these means that Petit has found
the numbers which are given in the 5th column of Table

I. Thus, in the example ¢c= E =-15304 K?—1) =

r‘l
‘0977, a thrust which is less than the thrust from rota-
tion.

If the former thrust were the greater, we should use it
to determine the thickness of the piers. By examining
Table I. we find the values of ¢ relative to sliding
greater than those relative to rotation as far as K=1'44;
thus, for those arches which give to K a value between
2:732 and 1'44, we must employ the values of ¢ relative
to sliding for determining the thickness of the abut-
ments.

The following figure represents the rupture of the arch
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when the force exerted by the lower portions is greater
than that by the upper.

Semacircular arches with horisontal extrados.

30. The formule relative to these arches are

_ rsin3é _ 34 1
_(i(l(—cosa){K’[6 —3K—(3—2K)con.d) - (mo cos’}ﬂ)}(l)
and
I T o
r \? m—4) r 3
V(K—}w)’(h+Kr)+(2Kc—K+ - )erzc’ﬁ-ﬂ @

The first gives the thrust due to rotation, and the second
the thickness e of the piers.

And G=7? ("16391. K?—"15206) (3), which gives the
thrust due to the maximum of sliding. As an example,
let us find the thickness of the abutments of an arch
with an horizontal extrados, where the radius of intrados
is r==6°56 feet, and radius R=7-54 feet, and the height

of the piers h =984 feet.

We shall have K= R_754 _ 115, and we might

r 656 ’

assume the angle of rupture 6=160° and find the corres-
ponding value of F, and then make §=61° and find the
corresponding value of F by means of equation (1), and
proceed in the same manner as at pages 55 and 56, until
we found the maximum value of F; but, by Table IIL.

we see that if K=1-15, the corresponding value of the
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angle of rupture is 6=164°, and = ¢ = 11895 in the
r

case of rotation.

In the case of sliding we obtain by the same Table
F 06471
T

According to what we have before observed, we shall
take the first value of ¢ (it being greater than that due to

sliding) to determine the thickness of the abutments ; by

substituting in (2) the values K=1'15, -g—= c="11895

and r=3'1416, we have

:_-_-.. -3646 X ‘377 v/ -01889+ 01044+ 13465,

hence e= 175 feet for the case of strict equilibrium.
If b were infinite, the equation (2) would reduce to

;:V 2c¢=+v 2 X '11895; hence e=32 feet for the

limit of the thickness.

If we wanted the practical stability, we ought to sub-
stitute 1'9 ¢ for ¢ in equation (2). Similarly to obtain
the limit of the thickness according to La Hire, we must

substitute 19 ¢ for ¢ in formula ;-= v 2 ¢, which gives

e=r+/ 38 ¢c=434 feet nearly.

The Table III. shows that for values of K less than 1:35
we must consider in our calculation the thrust due to
rotation, since it exceeds that due to sliding, and we
must consider the latter thrust if K be equal or greater
than 1-35.

If in the above example we want the thrust due to
sliding, we obtain
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K 16391 K?— 15206 =-0647 .-. F'=2-785.

r?

Arches in the form of a circular arc with parallel ez-
trados.

31. Besides the data necessary
for the two preceding cases we must

have the span AB, which we de- A e i“ -
note by L, and the rise CD, Ny d
denoted by f.

Having L and f given, we shall have, in order to
determine the radius AE orr,

and the angle AEC, whlch we denote by a, is given by
the equation

L
sin. a= S
L |
4 f1
When the span L and the angle a are given, we shall

have the radius r by the formula r = L
2 sin

, and f
from f=r (1—cos. a), r being known, and the thickness

AF, we shall have EF=R, and therefore I:—= K. The

Table I. relative to semicircular arches with a parallel
extrados will give the angle of rupture 6. It may
happen,—1st. That this angle of rupture of the proposed
arch, considered as a complete semicircle, is smaller than
a or half the angle at the centre; in this case the joint
of rupture takes place between A and C, and the arch
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ought to be considered relative to the horizontal thrust
as a semicircular arch, and the Table I. will give the

maximum thrust F'=c¢7? or c=Tl‘:. As for the thick-

ness of the abutments it will be found by the equation
f=—}a.l(K3-1)+
r A
J{}a’(K’—l)’*’% +2[c(K—cos.a)+ $(K3—1)(1 — cos.a)— }(K3— 1)
asin. a) ;+2c} ....... “4)

The limit of the thrust in the case of strict equilibrium
is always given by e=r+ 2 ¢=+ 2 F; that is, it is
always equal to the square root of twice the horizontal
thrust ; and the stability, according to La Hire, is given
by the equation
e=r¥2X19c=rv38e¢.

As an example, let us find the thickness of the abut-
ments of an arch in the form of a circular arc with parallel
extrados, where a=62°, the thickness AF=223 feet,

L=19-68 feet, and h=13"12 feet, we have

r=_L _ 1968 _11.045. f=r (1—cos. a)=11-145(1 —-4695)

R_ 13375
=59124; R=11'145+2'23=13'375,—-=
24; R=11"145+223=13"37 =174

and to this value of K corresponds the angle 6=59° 41
(Table 1.), and ¢="-1114, a value which is greater than
the value of ¢ due to sliding; we shall therefore employ
¢='1114, in order to find the thickness of the abut-

ments. We shall also have a=62 w = 1-0821;

70 T 2
all these values substituted in equation (4) give

=1-2=K,

¢ = —-20223
y

+ +/ 040942 { -7305. ¢ +-1287—2101 } 8425+ 2,
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whence e=11"145 X *31 =345 when the equilibrium is
strict.

The limit of the thickness e=r v 2 c=11145X
V2228 = 525 feet.

For the stability according to La Hire we must put
1'9 ¢ for ¢ in the above formula, and we shall have

:_=_ -20223 +

e
+/0.409 +2 { *7305x 1°9 ¢ +°1287—-2101 } X 8495+2x19¢,

whence e=1r X ‘56 = 6-23 feet, and the limit e=r
V2 X 19 c="725 feet.

It may also happen that the angle of rupture of the
proposed arch, considered as a semicircle, is greater than
half the angle at the centre or a, which usually occurs in
practice ; then the rupture takes place at the springings,
and the thrust is given in this case by the equation

= F_3(K?—1) asin. ar®*—§ (K*—1) (1—cos. @) >

r? K—cos. a
Thus L and f being given we have the ratio ;',' , and the
L
formula sin. a = —'I_,f’._ gives a; having a sin. @,
i . F + 1 )

cos. a, K and r, we obtain ¢, and the formula (4) will
give the thickness of the abutments.

The Table IV. of M. Petit gives the thrust for those
arches whose rise f is the 4th, 5th, 6th, 7th, 10th, and
16th part of the span L, and for the different values of
K ; these are the kinds of arches most in use. We find
also in these Tables, and for each of these cases, the
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value of @, and that of r, which corresponds with it.
Let 0 be greater or less than a, formula (4) must be used
to find the thickness of the abutments; only if 6 be
greater than @, we must take the values of ¢ found in
Table 1V.; and if @ be less than a, those in Table I. As
an example, let us find the thickness of the abutments of
an arch in the form of a circular arc with parallel ex-
trados, where the angle at the centre = 70° or a =35°, -
and where the span L=492, and height A=13"12,
35 31416

we shall have a = 90 g = ‘6109 ; sin. a = *5735

nearly, cos. ¢ = ‘8191, f = r (1 —cos. @) = 1809 r;
L _ L . ;_,. CL_1'147r_ .

"Sgen e 1@ MU = a0, 0
Let us also suppose the thickness of the arch=3-28

L 492

f = N s p— = = ‘

eet, R=r4328; r 1147 1147 42-89, and

Table I. gives for K=ﬂz-= 1'076, an angle of rup-

42-89 ’

ture =49°48’, which is greater than the angle a; hence
the thrust must be found by Table IV. Here K=1-076
L

is between K=107 and K=1-08; and—f=6'34 is be-
tween % =6 and % =7, we may find by proportion
the value of c=l'_: =04681.

With this value and the others given above we must
proceed as in the former example, and by means of
equation (4) determine the thickness of the abutments
for a strict equilibrium. And for the stability according
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to La Hire we shall find the limit of the thickness by
_the formula e=r v"38 c.

It still remains for us to calculate the thrust due to
sliding, in order to substitute it in formula (4), in the
case where it is more powerful than that due to rotation.

If the half angle at the centre, or a, be greater than
26°, the horizontal thrust due to sliding is calculated by
the formula

F'=-15304 (K*—1) 2.
If the half angle a is less than 26°, we must substitute its
value instead of 6 in the formula

G=§r ®—1).—F (:+30 X

and we shall have the thrust due to sliding on the joint
at the springings. A horizontal interline drawn in the
columns indicates for all the Tables the value of K where
the one thrust exceeds the other.

Arches in the form of a circular arc with horizontal
extrados.
32. After finding the radii R and r as before, and

consequently K, by the formula
_ rsin3g 36 1
F= 6 (K—cos.a){K’ [6—3K—(3—2K) cos. 4] _(s_'m—.o—cos.’-} 0) }
we must find the angle 6 which corresponds to the maxi-
~mum thrust by proceeding as in page 56. If it be less
than a, or half the angle at the centre, this will be the
angle of rupture, and the corresponding value of F or
F’ will be the value of the horizontal thrust.
If the angle 6, which answers to the maximum value
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of F, is greater than a, we must put a instead of 8 in the
above formula. 'We must find the maximum thrust due
to sliding by the equation
r*8in. 4 0
=m{K’ (1—4cos.6)— } m},
¢ being the angle of friction of the masonry. M. Petit
takes $=30°.

The greatest value of F or G must be substituted in
the equation '
R4+h—7rcos. a) &+ (LR—% Lrcos. a — 1% a) e+ L3
$R—3& rcos. a)—% L a+4Lr?a+t47r (1—cos. a)
=2F (R4+h—7r cos. a) in order to obtain e.

We need only observe that ,l; =c¢ or F'=cr?, and that

¢ is given by the Tables.
We may proceed to the formule of Col. Audoy for
the calculation of other arches.

Formule relating to flat sweeps of three circular arcs with
extrados parallel to the intrados.

33. Let the angle A’aS (which subtends the % arc at the
summit) =6 ; let a be the thickness of the arch, or A’ a’,

-
X
A ETANY:
[ [
-/ r
/ 3
/ 7
r 7
o/
7/
b/
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R the radius of the arc at the crown, r the radii of the
arcs at the springings, A the spring, or the height of the
intrados under the key-stone, B the 4 of the span, Z the
angle mud contained by the supposed joint of rupture d ¥’
and the vertical passing through u the centre of the small
arc at the springings, & and e the height and thickness
of the abutments, S’ and Z’ the surfaces A’ S R’ o/, and
Sdk R’; N’ and L' the moments of these surfaces taken
with respect to the verticals A’ a and mu; M’ M” the
moments of these surfaces taken with respect to the
point d; F the value of the horizontal force; we must
employ the formulze

S= {_(Ii—_t«%’—_R’} 0, Z'= {(’_"“%"_f} (Z—8)
N'= {W——;_—Rf} (1 —cos. 6)

L'= {W} (cos. 86— cos. Z)

M'={R—r (1—sin. Z) }§'—N’; M"=rsin. Z. Z'—L,
F= M+M” .
A4a—rcos. Z

By taking for Z any angle greater than 6, we may

calculate all these values, and have the value of F cor-

responding to that angle. Similarly, we may find other

values of F, by assuming different values of Z, and when

we have obtained F' the maximum value of F, we must

substitute it in the equation e—;’i +eS+4+S)4+BS+
rS' —(N'4+N")=F(A+a+h) (5). S”is the surface of B’
SR'b, which is given by the equation "= { (L-I_-_aa)’;r’ }

(r—26) ; N” is its moment with respect to the vertical
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mu, and is given by the equation N"= { (1'—4'%3——’3 }
cos. 6.

For the methods of describing these arches, see
“Papers on Bridges,” pages 40 to 44.

When the arcs are

60°, and angle FEC , —

=30°, then sin. 30°= "
5 and FC=FE sin. [ -\

30°=4EF=4 R—1r) A N
or R—r=2F C, but AN
r=AC —FC, hence N
R=AC+FC. E

Consequently we have in this case the radii; R=AC
+FC and r=A C—F C respectively.

Let us give an example in which AC=230 feet or 10
yards, CD=44 feet or 14 yards, and the height of the
pier =12 feet or 4 yards, also C D=4 A C, and since FEC
=30°=6; sin. 30="5; o=20 . 31416 _ 5936, B C

90 2
=4.10=6%; and by “ Papers on Bridges,” (page 43,)

FC= "3+1(B A)=455342; R=AC4+FC=

14:55342 ; r=A C—F C=544658.

Substituting these values in the above formule, we
have §'=12:01871; N'=47'11; Z'=9Y-295 (Z—5236) ;
L'=57-878 (-866—cos. Z) ; M"=5"44658 sin. Z { 9-295
(Z—-5236) } —57-878 (-866—cos. Z).

= { 10—544658 (1 —sin. Z)} 12:01871—47:11,
A+4a—rcos. Z=816666 — 544658 cos. Z.
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Let Z=45°
= ‘;_g."il_;‘_‘_ﬁ=-7854 ; c0s. Z=sin.Z="7071 ; M'=53-9,
M"='166, A+a—r cos. Z=4'3154
_ MM _ ..
P et =125286.
If Z=46°,

Z'=25951640, L'=9-897138, M"="269902,
M'=54-6968742, A+a—r cos. Z=4-38, F=12'54.

If Z=47°,
Z'=2'7578265, L'=10-651114706, M"=-331474387,
M'=5549128068545732366,
A+a—rcos. Z=4'452156901194, F=12-5383.

Here the greatest value of F found is therefore F=12-54
=T, and corresponds to the angle of rupture Z=46°.

For the thickness of the piers in the case of strict
equilibrium we must substitute the different terms in
formula (5)
or h=4, §="5236, cos. =866, r.=31416 ; FF=12-54,
a=15,A=6'666, S'=1201871, B=10, r= 544658,
N'=47'11, §"=973372, N"= 5012235, then

e=—54431— v67-92718=2'8.

To find the practical thickness we must increase the
value of F' by & ; before we introduce it in the formula
(5), we should have substituted in that formula 12454
+ & X 12:54=23-83 instead of 12-54, and the resulting
value would be that which must be given to the thickness
of the piers, in order that they may be able to resist any
accidental causes.
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Formule relating to flat sweeps, described with three arcs
of a circle with horizontal extrados.

34. Let R be the radius of the arc at the crown, r the
radius of the arc at .

the springings, e the
thickness B'K at the
springings, a the thick-
ness of the arch at the
key-stone, 6 the angle o
Aas, Z the supposed 7’
angle of rupture, S’
and Z’ the surfaces ASRa’ and SdIR, N and L’ the
moments of these surfaces with respect to the verticals
Aa and mu, M’ and M” the moments of these surfaces
with respect to the vertical d ¢, M” the moment of the °
surface d Ah’'l with respect to the vertical dg, F the
maximum value of the thrust F. The formule are

g=R ’“2’1 912 R+a)
R® sm 9

.13

N'= B+ )= (1—cos.%)

Z'=r (A+a) (sin. Z—sm. 9)—-§-{Z+sm. Z cos. Z)
—(8+sin. 6cos. 6) } ;
L’=L;. (A +a) (sin. *Z—sin. *d)— g(cos. 30—cos. °Z)

=B—r+rsin. Z) S'—N’;
M'=rsin. Z .Z'—=L/; M”=a’sin.*Z
{(A+a)—r cos. Z _ acos. Z}

2 3
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F _ M’+M"_MI"
~ A4a—rcos. Z’

thickness e is ¢* (é-;l‘-l) +P+P=FA+aore

The equation which gives the

(%;a) +e(§'+8")+BS'+r8"— (N'+N")=F(A+a).

S” represents the surface S B’ b’ R, which is found by the
equation

S’=r (A+a) (1—sin. §)— -g-('”_22 o_ sin. @ cos. 0);

N” is its moment with respect to mu, which is

T A+ (—sin -T2,

2 3
P’ and P” the moments of the surfaces ASRa" and
SB’Y R with respect to Hk, which are found by the
equations

P=(e+B)S'—N’; P'=(e41r) S"—N".
If the thickness of the piers of an arch = e, the height

= h, the equation of equilibrium is

& ___.(A"';"' M te(®+8)+BS+rS —N'+N"
=F (A+a+h).

Formule for Plate Bandes.

35. In these arches the joints cannot be perpendicular
to the intrados; they are so constructed that all the
joints produced meet in the same point, (see page 29).
Retaining the same notation as at page 28,

p=3ai—f.tan.% . o
6
It

e? (’%t)+ext>(a+ 92—=F(a+h).
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It is usual to construct an equilateral triangle upon
the whole breadth, which finds 0 the common centre
of all the joints. In this case we have 6 = 30°;

2
tan. 0=—1_ and F=29=F"
v3 18

Let a=3'5 yards, t="8 yard, and A=3 yards, and
F =X = (86089, and 4 147¢=96 .". ¢
=2'445 for the case of strict equilibrium. To obtain
the practical thickness we must proceed as in page 68.

36. In concluding this part we may remark that the
investigation of many other valuable formule is given in
the Memoir of M.M. Lamé and Clapeyron, nearly the
same as we have given from M.M. Petit and Audoy.

They determine the position of the point of rupture
of the spherical extradossed dome of the church of St.
Isaac at Petersburg, whose radii of intrados and extrados
are 32 and 34 feet respectively, which give for the
thickness of the dome the g4 part of the interior
diameter, and they find that this point is 68° 18" from
the key, or, which is the same, 21° 42’ from the
springings.

In the supplement they give an investigation relative
to circular cylindrical arches with horizontal extrados, as
follows :

Retaining the same notation as at pages 43 and 44,

m a_ 3 Rr2sin. 20—r* sin. % cos. §—r* {3 fsin. 6—2 (1 —cos. )} @
6 (R—7 cos. 6)
Differentiating the second member of this equation for 6,

and putting the result equal to nothing, making %— =K

LRp— O,
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and

. ma
—— = g, we have the maximum of ——,
sin. h

82(1—Kcos.8) +2cos.80— 6K cos. 20+ 3(2K3 + 1)cos.0=3(K+2) ()
Calculating in the same manner as at page 46, we
obtain the arc corresponding to the point of rupture for
each particular value of K or ?, and this substituted in
ma
5
They also deduce the following beautiful property, viz.
the point of rupture in an arch is that for which the
tangent to the intrados at this point cuts the horizontal
line passing through the summit of the key at the same
point as the vertical passing through the centre of gravity
of the mass which tends to separate itself. The point of

equation (a), will give the maximum value of

rupture being known, n_;'_a is then equal to the mass m

divided by the tangent of the angle which the line
touching the intrados at the point of rupture makes
with the horizon.

They further proceed to examine if there do not
exist curves which give a constant moment of stability,
- and find that this condition cannot be satisfied throughout
the whole arch, but it may be so for a portion of the arch.

For as MT-Ié is constant in the same arch, they try if
1—%'3 can be so too, and find two different cases: in the
first, the thickness of the arch must be =0, in the
second, the height of the key must = 0, neither of which
is admissible ;—thus "the moment of stability cannot be
constant for the whole extent of the same arch.
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TasLe .—Semicircular arches in which the extrados is parallel
to the intrados.

Ratio of the thrust C to the | Ratio 4/2c¢ of the limit of

Value of square of the radius r of the thickness of the piers
the ratio Allgle of intrados. to the radius of intrados.
K=} | rupture. —
r Por the case | For the case Strict qut onum
of rotation. | of sliding. | equilibrium. | *FOrar8 *

2:732 0°00’ | 0-00000 0-98923 » »
270 13 42 0:00211 0-96262 » »
2:65 22 00 0-00319 0-92168 " »
2:60 27 30 0-00809 0-88151 ”» ”»
2:50 35 52 002283 0-80346 » »
2:40 42 6 0-04109 072847 " ”
2:30 46 47 006835 0:65654 ”» »
2:20 51 4 008648 058767 » »»
2:10 54 27 0-10926 0-52186 ”» "
2:00 57 17 0-13017 0-45912 0-9582 1-3223
1-90 59 37 014813 0-39943 0-8938 1-2320
1-80 61 24 0-16373 0-34281 0-8280 1-1414
170 62 53 0'17180 0-28924 0:7606 10484
1-60 63 49 017517 0-23874 0'6910 0-9525
1-59 63 52 0:17533 0-23386 06839 0-9427
158 63 55 0:17535 0-22901 0:6768 0-9329
1-57 63 58 0°17524 0-22434 0-6698 0-9233
1-56 64 1 0-17499 0-21940 0-6624 0-9131
1-55 64 3 017478 0-21464 0:6552 0-9031
1-54 64 5 0-17445 0-20991 0:6479 0-8931
1-53 64 7 0-17397 0-20521 06406 0-8831
1-52 64 8 0-17352 0-20054 06333 0-8730
1-51 64 8 017310 0-19590 06259 0-8628
1'50 64 9 0-17254 0-19130 0'6185 08527
1-49 64 8 0:17180 0-18673 06111 0-8424
1-48 64 8 0-17095 0-18218 0°6036 08320
1-47 64 7 0-17008 0°17766 0°5961 0-8216
1-46 64 6 0'16915 017318 0-5885 0-8112
1-45 64 5 016798 016872 0-5809 0-8007
1-44 64 3 0°16683 016430 05776 0°7962
1-43 64 00 0°16568 015991 0'5756 07934
1-42 63 56 0-16448 0°15555 0:5735 07906
1-41 63 52 0-16317 0:15122 0'5713 07874
1-40 63 48 016167 0-14691 0-5686 07838
1-39 63 43 0'16014 014264 0:5659 0-7801

G
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Ratio of the thrust C to the | Ratio 4/2 ¢ of the limit of
Value of square of the radius r of the thickness of the piers
the ratio Angle of intrados. to the radius of intrados.
k=1 | ot Equilib
r For the case | For the case Strict quiibrium
of rotation. of sliding. | equilibrium. l‘-‘f:""‘l{mirse‘m
1-38 63° 388’ 015845 0-13841 05629 0-7760
1-37 63 32 015672 0°13420 0-5598 07717
1-36 63 26 0°15482 013002 0-5564 0:7670
1-35 63 19 0°15287 0-12587 0-5529 07622
1-34 63 10 0-15096 012176 0-5495 07574
1-33 63 10 0-14896 011767 0-5458 07524
1-32 62 50 0-14678 011362 05418 07468
1-31 62 33 014510 0:10959 0-5387 0°7425
1-30 62 14 014330 0°10559 0-5353 07379
1-29 62 9 0-14013 010163 05294 0°7297
1-28 62 3 0-13691 009770 05233 07213
1-27 61 47 0-13430 0-09379 0-5183 07144
1-26 61 30 013157 0-08992 05130 0'7071
1-25 61 15 0-12847 0-08608 0-5069 0-6987
1-24 61 1 012516 0-08227 0-5003 0-6896
1-23 60 40 0-12201 0-07849 0°4940 0-6809
1-22 60 19 0-11887 007474 04876 06721
1-21 60 00 011516 007102 04799 0-6615
1-20 59 41 0-11140 006733 0°4720 0°6504
1-19 59 10 010791 006368 04646 0-6404
1-18 58 40 010417 0°06005 04564 0:6292
117 58 9 0°10021 005646 04472 06171
1'16 57 40 009593 0:05289 04380 0-6038
115 57 1 009176 0°04935 04284 0-5905
1-14 56 23 0-08729 004585 04178 05759
1-13 55 45 008254 004237 0-4063 0-5601
1'12 54 48 0-07789 0-03984 0-3947 05444
1-11 54 10 007273 003552 0-3814 0:5259
110 53 15 006754 003213 0-3675 0-5066
1-09 52 14 0-06177 002879 ”» »
1-08 51 7 0:05649 002546 »» »
1-07 49 48 0°05065 002217 » »
1:06 48 18 004455 001891 ”» »
1-05 46 32 003813 001568 » ”
1:04 44 4 003139 001249 » »”»
1-03 41 4 0°02459 0°00932 » »
1-02 38 12 001691 000618 » »»
1-01 32 36 0°00889 0-00308 ”» »”»
1:00 0 00 0°00000 0-00000 ”» »

PR SR



BRIDGES.

d

[

5

TaBLe I1.—Semicircular arches with parallel extrados.—Table

of the thickness of the piers.
&:lu;;: Ratio ; of the thickness of the piers to the radius of intra-
K= | dosasa function of the ratio % of radius to the height of
’ the piers. (For strict equilibrium.)
2-00 —2'3562% + & (55517 ;+ 1-7907% +09182)
190 —2-0449% + +/ (4-2021 ;‘;;+1-324o_;. +0°7988)
180 | — 1-7593% + « (3:0951 7.’; +0°9368% +0-6856)
170 | —14844 % + v (22034 ; +0'6933 7. +0'5783)
160 —1-2252 % + « (1'5012 ,%: +0-8775 "T +04775)
1'59 —1-2001_;. + o/ (1'4404 g +0'3566% +0:4677)
1'58 —1-1752% + ~ (1-3812 ;_: +0-3361 % + 04580)
157 —1-1513% + «/(1-3255%:+0~3151.;. +0-4487)
1'56 —1-1261 % + + (12677 ,,L: +O°2966% +0-4388)
. . r . 7?0973 10
1'55 1110152 + (12133 7, +02783 . +0'4293)
154 | —107727 + v (11605 ;_f +02603 7 +04198)
1'53 —1-0531% + /(11091 ;+0'2428—;- +0°4104)
152 —1-0292% + 4 (1-0592£.:+o-2224% +04011)
151 —1-0073% + +/ (1°0146 g +0°2056 % +0°3918)
1°50 —0-9817 % + (09638 ;_: +o-1937% +0-3826)
1'49 —0'9583-;; + v (0'9184;_':+0'1684% +0-3735)
148 —0-9349% + « (08741 ;_: +0'1659% +0-3644)
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/ Xlaeh;: g‘f, Ratio .:Tof the thickness of the piers to the radius of intra-
K= _lri dos as a function of the ntio.'l; of radius to the height of
the piers. (Por strict equilibrium.)
147 | —0 91257 +4/ (0 8328'2+o 14827 +0-3553)
1446 | —0'8887 % + «/ (0°7899 ”;_z +01362 L X +0-3464)
145 —0°8659 % + +/ (07498 ;: +01232 7 7 T0'3374)
144 | —0-8432 % +/ (071107 ” 401181 .,';' +0-3337)
143 | —082067 TtV ©O6735 5 "’ ,+0°1158 % X +0°3314)
142 | —07983 1 7 TV (06372 f2 +01143 7 7 +0°3290)
141 | —07760 X + v (0'6023 ;: +011027 +0-3263)
140 —0-7540 {. + 4/ (0°5685 ;+o- 1074 = - +03283)
1139 | —07321 % + «/ (0:5359 ’L:+o-1048§ +0-3203)
138 | —o0 7103 + « (0°5045 ”+o *1021 Z +0-3169)
137 | —06887 1 3tV (4743 '_:+o-0995 : +0'3134)
136 —06673 1 5 TV (04452 ::+0'0969_;; +0-3096)
185 | —OG4607 + v (041737 +00944 7 +0:3057)
1134 | —06249 7 h + « (0°3904 ;: +0'0926-;‘- +0°3019)
1133 | —0'6050 - 1; +  (0°3660 ;:+o 0903 ~ 7‘ +0°2979)
1132 | —058317 7TV @300 ~ 5 +00880 = = +0'2936)
131 | —05624 7 + v (03163 ,.‘";+o'os75 7‘ +0-2902)
1130 | —05419 % + « (02937 ”;_z+o 0867 =~ = +0°2866)
1129 | —0'5216 7:' + « (0-2720 ; +00828 7 2 +0'2803)
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X;h: t«:: Ratio % of the thickness of the piers to the radius of intra-
K= % dos a3 a function of the ratio = of radius to the height of
the piers. (For strict equilibrium.)
1-28 —015014§ +  (0-2520 g+o-osol _; +0-2738)
1-27 -0-49261 + v/ (02426 C';+o-o77s£ +0-2686)
126 | —046157 TtV (02130 ;:+o 0755 I +0-2631)
195 | —044187 3+ 19527 r 5 +00730 2 % +0'2569)
124 —0-4222% + v (0'1783 ;:+o 0713~ 5 +0°2509)
1-23 —04028 L + + (0:1623 ;+o-oss4_' +0°2440)
1122 | -0 3836 + 4/ (01471 f +0:0674 % 2 +0'2377)
121 | —03645 7 + v/ (011329 ;:+0°064l T +02309)
1-20 —03456 L T HV (1194 f +0-0614 1 +0-2228)
1119 | —o0-32687 5+ (01068 ”+o 0600 ~ S +02158)
1118 | —0-30827 5+ (00950 g+o-0581 S +0°2083)
117 | —02897 T + ./ (00840 z’;+0-0561 * +0:2004)
1-16 -0-2714% + 4/ (0°0734 ;‘T:+0-0559% +0°1919)
1'15 —o-2533§ + +/ (0:0642 7’; +0'O536% +0-1835)
114 —0-2353% + « (0°0554 .';2+o-0513_;; +0°1745)
1113 —0-2175§ + (00473 g+o-o490% +0°1651)
1112 —-0'1998% + «/ (00399 g+o-0467_; +0°1557)
11| —01823T +./ (00332 g+o-m26 T 401455)
1'10 "

-0 1649— + /(00272 P +00394 L i +0-1351)
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TasLe I11.—Semicircular arches in which the extrados is hori-
zontal.—Table of the angles of rupture, of the thrusts, and the
limit of the thickness of the piers.

Ratio C of the thrust to the | Ratio of the limit of the

Value of square of the radius r of thickness of the piers to
the ratio | Angle of intrados. - the radius r of intrados.
=R | rupture.
r : Stability
For For Strict .
rotation. eliding. | equilibrium. %

36° 0:05486 050358 1:0036 1-3834
39 0:07101 043966 09377 12925
44 008850 | 0°37901 0°8706 1-2001
48 0°10631 032164 08020 11055
52 012300 026755 07315 1-0082
52 0°12453 026232 0°7243 0'9984
53 012602 025712 | 07171 09885
53 012747 0°25196 0°7099 09784
54 012837 0-24683 | 0°7026 0'9684
54 013027 024173 | 06958 09584
55 0°131563 023667 0-6880 0-9483
65 013289 023163 | 0°6806 09381
55 ‘| 013414 | 022664 | 06732 09280
55 0-13531 022167 06658 09177
56 0-13648 021673 | 06583 0°9075
56 013756 021183 | 0°6509 0-8972
56 013856 020696 | 0°6433 0-8868
57 0:13952 | 0-20213 06358 08764
57 0°14041 019733 | 0°6282 08659
57 0-14122 0°19256 | 0°6206 0'8554
58 014195 018782 | 0°6129 0-8448
58 0-14268 018312 | 0°6052 08341
58 0-14311 017845 05974 0-8234
59 014376 0-17381 0-5896 08126
59 0-14421 016920 | 0-5817 0-8018
59 014456 016463 | 05738 07909
59 0-14481 016009 | 0°5658 0-7799
60 0-14498 015558 | 05578 0-7689
60 0-14506 015111 0:5497 07577
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BRIDGES. 79
Ratio C of the thrust to the | Ratio of the limit of the
square of the radius r of thickness of the piers to
Angle of intrados. the radius r of intrados.
rupture.
. Stability
For For Strict .
rotation. sliding. equilibrium. wﬁg’g‘aﬁ’w
60° 0-14504 0-14666 0-5416 07465
60 0-14491 0-14225 0°5383 0:7420
61 0°14467 ”» 0'5379 07414
61 0:14460 ” 0:5377 0-7412
61 0°14390 ” 05358 0-7394
: 61 0-14322 0-12495 0°5354 0-7379
. 61 014264 » 0:5341 0'7362
1-28 62 0°14186 » 0°5326 07342
1-27 62 0°14101 » 0°5310 07320
126 62 0'13988 » 0-5289 0°7290
125 62 013872 0-10405 0'5267 0-7260
1-24 62 0°13737 » 0'5235 07225
1-23 63 0-13593 »» 0'5214 07187
1-22 63 0°13437 »» 0'5184 0-7145
1-21 63 0-13263 » 05150 0:7099
1-20 63 0°13073 008397 05113 0:7048
1119 63 0°12870 » 0'5073 06993
118 63 0°12650 » 0'5030 0°6933
117 64 0°12415 ”» 0°4983 06868
116 64 0-12182 ”» 04936 0°6803
115 64 0°11895 006471 0-4877 0:6723
1'14 64 0°11608 ”» 04818 0°6641
113 64 0-11308 » 0:4755 0:6553
112 64 0°10979 ”» 0°4886 06459
I'11 65 0:10641 » 04613 06358
I'10 65 0-10279 0°04627 0°4535 06249
109 66 0:098992 » 0-4449 06133
1-08 66 0°094967 »” 0 4358 0°6007
107 67 0-091189 ”» 0-4270 0°5886
106 68 0-086376 ”» 0-4156 0'5729
1-05 69 0081755 | 002865 0-4044 0:5573
104 70 0°076857 » » »»
1-03 71 0071853 »» »”» '
102 73 0066469 »» »» »
1-01 74 0-061324 »» " »
100 75 0:055472 | 001185 »”» »
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TaBLe IV.—Arches in the form of an arc of a circle with parallel extrados.
Tables of thrusts in various systems.

RATIO OF THE THRUST TO THE SQUARE OF THE RADIUS OF EXTRADOS.
Value of
the r:{'o System where| System where | System where| System where| System where| System where
K= — L=4f L=5f L=6s L=17f L=8f L=10f
r r=%f r=%f r=>5f r=2% r= "} r=13f
a=53°7"30" |a=43°36'10" |a=36°5210" | a=31°53'26" | @ = 28°4'20" | a=22°37'10"
1-40 0°15445 0-14691 0-14691 0:14691 0-14691 0°14478
1-35 014717 0:13030 0-12587 012587 0-12587 0-12405
1-34 014543 0-12987 012171 012171 012171 0-11999
133 0°14364 0-12781 011767 011767 0:11767 0-11596
132 0-14173 0-12634 0-11362 0-11362 0-11362 0-11196
1-31 013975 0:12486 010959 0:10959 0-10959 0-10800
1-30 0-13764 012331 0-10682 0°10559 010559 0°10406
1-29 013543 012164 0:10563 0:10163 0-10163 0-10016
1-28 0-13311 0-11988 0-10437 009770 009770 0-09628
1-27 013068 011803 0:10304 009379 009379 0-09244
1-26 0-12815 0:11609 0-10160 0-08992 0-08992 0-08862
1-25 0-12547 011402 010009 0-08668 008608 0-08483
1-24 0-12270 011251 0-09850 008549 0-08227 0-08108
123 0-12031 0-10958 009679 0-08423 0-07849 0-07735
1-22 0-11675 0-10725 009499 0-08291 007474 0-07366
1-21 0-11354 0-10460 0°09305 0-08148 0-07102 0-06999
120 0-11023 0:10196 009102 0-07999 006981 0-06636
119 010676 0-09915 008885 007834 0-06859 0-06275
118 010313 009617 0-08653 0-07651 006727 0-05918
1-17 0:09934 009303 0-08408 0'07468 006583 0-05212
1-16 0-09537 0-08975 0-08144 007264 0-06420 0-05004
115 0-09123 0-08634 007866 007050 0-06259 0:04904
114 0-08690 0:08257 0-07568 0-06812 0-06077 0-04803
1113 0-08238 0-07869 0:07251 006558 005890 0-04671
1112 0:07764 0-07459 006911 006297 0405659 0°04451
1-11 007269 0:07042 0-06548 006026 0:05421 0-04384
110 006737 006563 0:06158 005666 005160 0:04214
1-09 0-06211 006077 005739 005345 0:04871 0-04023
1-08 0-05636 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>