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Material in this book has been prepared for students who wish to obtain facility
in using the slide rule and solving technical problems. The subject matter is arranged
so that it is suitable both for classroom use and for individual study. In presenting
the text material, the authors have stressed the practical application of mathematical
tools to help the student grasp the role of mathematical skills in problem solving
situations.

The section on the slide rule has been arranged so that the student can follow the
examples shown for each operation using the rule and then can practice and check
his progress with a set of problems for which answers are given. This material will
also be an excellent manual on use of the slide rule in future years.

The section on problem solving is designed to present situations involving the
application of basic physical principles. The student is encouraged not only to use
step-by-step reasoning in analyzing each problem but also to present the solution
in a neat and orderly manner.

Answers for selected problems are given in the Appendix. The Appendix also
includes frequently used constants, tables, and formulas.

The authors wish to express appreciation to the many professors, students, and
engineers in industry who have contributed suggestions for material covered in this
book. Their comments have been very helpful in the selection and presentation of
the -~ dject matter. Special appreciation is expressed to Donald Robbins and Leigh
Hendricks of the Sandia Corporation, Albuquerque, New Mexico, who have pro-
vided the electronic computer produced design that has been reproduced on the
cover of the text.

The authors are especially interested in learning the opinions of those who read
this book concerning its utility and serviceability in meeting the needs for which it
was written. Improvements that are suggested will be considered for incorporation
in later editions.

G.C.B.
H.W.L.
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The Slide Rule

The slide rule is not a modern invention although its extensive use in business
and industry has been common only in recent years. Since the slide rule is a
mechanical device whereby the logarithms of numbers may be manipulated, the
slide rule of today was made possible over three and a half centuries ago with the
invention of logarithms by John Napier, Baron of Merchiston in Scotland. Although
Napier did not publicly announce his system of logarithms until 1614, he had
privately communicated a summary of his results to Tycho Brahe, a Danish astron-
omer in 1594, Napier set forth his purpose with these words:

Seeing there is nothing (right well beloved Students of Mathematics) that
is so troublesome to mathematical practice, nor doth more molest and hinder
calculators, than the multiplications, divisions, square and cubical extrac-
tions of great numbers, which besides the tedious expense of time are for
the most part subject to many slippery errors, I began therefore to consider
in my mind by what certain and ready art I might remove those hindrances.

In 1620 Edmund Gunter, Professor of Astronomy at Gresham College, in
London, conceived the idea of using logarithm scales that were constructed with
antilogarithm markings for use in simple mathematical operations. William
Oughtred, who lived near London, first used “Gunter’s logarithm scales” in 1630
in sliding combination, thereby creating the first slide rule. Later he also placed the
logarithm scales in circular form for use as a “circular slide rule.”

Sir Isaac Newton, John Warner, John Robertson, Peter Roget, and Lieutenant
Amédée Mannheim further developed these logarithmic scales until there exist
today many types and shapes of rules. Basically all rules of modern manufacture
are variations of a general type of construction that utilizes sliding scales and a
movable indicator. The principles of operation are the same and they are not diffi-
cult to master.
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DESCRIPTION OF THE SLIDE RULE

The slide rule consists of three main parts, the “body,” the “slide,” and the
“indicator” (see Figure 10-1). The “body” of the rule is fixed; the “slide” is the
middle sliding portion; and the “indicator,” which may slide right or left on
the body of the rule, is the transparent runner. A finely etched line on each side of the
indicator is used to improve the accuracy in making settings and for locating the
answer. This line is referred to as the “hairline.”

LEFT INDEX SLIDE HAIRLINE RIGHT INDEX
hY
o ’ #g °°
: P / \
o | ©
-] '\ / o
/
BODY INDICATOR

Figure 10-1,

The mark opposite the primary number 1 on the C and D scale is referred to as
the “index” of the scale. An examination of the C and D scales indicates that each
scale has two indexes: one at the left end (called the “left index”) and one at the
right end (called the “right index”).

Regardless of the manufacturer or the specific model of slide rule that may be
used, the principles of operation are the same. The nomenclature used here is
general although some specific references are made to the Deci-Lon (Keuffel &
Esser Co.), the Versalog (Frederick Post Co.), the Maniphase Multiplex (Eugene
Dietzgen Co.), and the Model 800 ES (Pickett & Eckel, Inc.) rules. These models
are those most frequently used by engineers, scientists, and technicians. ’

CARE OF THE SLIDE RULE

The slide rule is a precision instrument and should be afforded reasonable care
in order to preserve its accuracy. Modern rules stand up well under normal usage, ‘
but dropping the rule or striking objects with it will probably impair its accuracy.
In use, the rule may collect dirt under the glass of the indicator. Inserting a piece |
of paper under the glass and sliding the indicator across it will frequently dislodge
the dirt without necessitating the removal of the indicator glass from the frame. If
the glass has to be removed for cleaning, it should be realigned when replaced,
using the techniques described below. ' \
The rule should never be washed with abrasive materials, alcohol, or other
solvents, since these may remove markings. If the rule needs to be cleaned, it may
be wiped carefully with a damp cloth, but the excessive use of water should be
avoided because it will cause wooden rules to warp.
The metal-frame rules are not subject to warping due to moisture changes, but
they must be protected against blows which would bend them or otherwise throw
them out of alignment. A light layer of lubricant of the type specified by the manu-
facturer of the metal rule will increase the ease with which the working parts move.
This is particularly important during the “breaking in” period of the new rule.
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MANIPULATION OF THE RULE

Some techniques in manipulation of the rule have been found to speed up the
setting of the slide and indicator. Two of these suggested procedures are described
in the following paragraphs.

1. Settings usually can be made more rapidly by using two hands and holding
the rule so that the thumbs are on the bottom with the backs of the hands toward the

operator.

Illlustration 10—1. In setting the indicator, a rolling motion with the forefingers will permit
rapid and precise locations to be made. Keeping the fingers of both hands in contact with
the indicator, exert slight forces toward each other with both hands.

2. In moving either the indicator or the slide, the settings are easier to make if
the index fingers and thumbs of both hands are used to apply forces toward each
other than if only one hand is used to apply force. For example, in setting the
indicator, put the forefinger of each hand against the respective edges of the indicator
and move it by a combined squeezing and rolling motion of the forefingers. The same
general procedure is used in setting the slide, where both hands exert forces toward
each other. The student is cautioned in setting the slide not to squeeze the frame of
the rule, since this will cause the slide to bind.

I e
.
%f}&og >§{i& ?;&ffé ? . .

Hlustration 10-2. In moving
the slide, use fingers to exert
forces toward each other. A
rolling motion with the fore-
finger aids in setting the in-
dexes. Avoid pinching the
frame because this will make
the slide bind.
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ADJUSTING THE RULE

Regardless of the make, most rules have the same general form of adjustment,
The method of adjustment is simple but should not be applied in a hurry. It is
desirable to use a magnifying glass, if one if available, to aid in lining up the scales
and hairline.

To determine whether or not a rule needs adjustment, line up the indexes of the
C and D scales. The indexes of the scales above and below the C and D scales should
also be aligned. If they do not coincide, slightly loosen the screws that clamp the top
bar of the frame and carefully move the frame to the right or left until the indexes
are aligned. Tighten the screws slightly and move the slide to check for proper
friction. If the alignment and friction are satisfactory, tighten the frame screws to
complete that part of the adjustment.

Next, test the hairline for proper alignment by setting the hairline over the
indexes of the C and D scales and checking to see that the hairline also coincides
with the other indexes on this side of the rule. If it does not coincide with all the
scale indexes, slightly loosen the screws which hold the glass frame to the indicator.
Rotate the frame slowly until the hairline coincides with the indexes on this side of
the rule. Tighten the screws holding this frame; then, while the hairline is aligned on
the indexes of the C and D scales, turn the rule over and check for the alignment
of the hairline with the indexes of the scales on the other side of the rule. If the hair-
line does not coincide with the indexes on this side of the rule, loosen the screws on
the indicator and make the necessary adjustment as before.

Check the tightness of all screws when the adjustment is completed. The student
is cautioned not to use excessive force in tightening any screws, as the threads may
become stripped. With reasonable care, a slide rule will usually require very little
adjustment over a considerable period of time.

ACCURACY OF THE RULE

Most measurements made in scientific work contain from two to four significant
figures; that is, digits which are considered to be reliable. Since the mathematical
operations of multiplication, division, and processes involving roots and powers will
not increase the number of significant figures when the answer is obtained, the slide
rule maintains an accuracy of three or four significant figures. The reliability of the
digits obtained from the rule depends upon the precision with which the operator
makes his settings. It is generally assumed that with a 10-in. slide rule, the error of
the answer will not exceed about a tenth of 1 per cent. This is one part in a thousand.

A common tendency is to use more than three or four significant digits in such
numbers as 7 (3.14159265 -+ -) and € (2.71828 - - -). The slide rule automatically
“rounds off” such numbers to three or four significant figures thus preventing false
accuracy (such as can occur in longhand operations) from occurring in the answer.

In slide rule calculations the answer should be read to four significant figures if
the first digit in the answer is 1 (10.62, 1.009, 1195., 1,833,000., etc.). In other
cases the answer is usually read to three significant figures (2.95, 872., 54,600.,
etc.). The chance for error is increased as the number of operations in a problem
increases. However, for average length operations, such as those required to solve
the problems in this text, the fourth significant digit in the slide rule answer should
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not vary more than =2 from the correct answer. Where only three significant digits
are read from the rule, the third digit should be within =2 of the correct answer.

Example:
16.27 e 0.0859
+ 16.26 } within slide rule accuracy { 0.0858 -+
Correct Answer 16.25 0.0857 Correct Answer
16.24 e 0.0856
~ 1623 within slide rule accuracy { 0.0855

Rules of modern manufacture are designed so that results read from the gradua-
tions are as reliable as the naked eye can distinguish. The use of magnifying devices
may make the settings easier to locate but usually do not have an appreciable effect
on the accuracy of the result.

INSTRUCTIONS FOR READING SCALE GRADUATIONS

Before studying the scales of the slide rule, et us review the reading of scale
graduations in general. First let us examine a common 12-in. ruler (Figure 10-2).

12 Inch Ruler

0 1 2 3 4 5 6 7 8 9 10 n 12
||h[.|.||l\l-l.I-l.J.l.]nhl:l||;l;].l.l.|.Ll:l-l:].\.l;I:l;l.l;ldml;!.|.l.l|l.l.h|1||||h|

Figure 10-2.

Example: We see that the total length of 1 ft has been divided into twelve
equal parts and that each part is further divided into quarters, eighths, and sixteenths.
This subdivision is necessary so that the workman need not estimate fractional parts
of an inch.

Example: Measure the unknown lengths L; and L, as shown in Figure 10-3.

/ ' Li=4%in.
I-<—LI=?-—:—

Figure 10-3. ——

English Measurement

The English system of measurement as shown in Figure 10-3 is probably
familiar to all students. The unit of length in the metric system which corresponds to
the yard in the English system is called the meter. The meter is 39.37 in. in length.
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For convenience, the meter is divided into one hundred equal parts called centi-
meters, and each centimeter is divided into ten equal parts called millimeters. Since
we can express units and fractional parts of units as tenths or hundredths of the
length of a unit, this system of measurement is preferred many times for engineering
work.

Example: Measure the unknown lengths L; and L, as shown in Figure 10-4.

- L,=24.2 ¢cm
/ f———tli=+——>
0 10 20 30
[—— l|1||||1|||z:|||||l1||t|||xnulx||s@
k be—1,=—>] | 1,=126em

Metric Measurement
Figure 10-4.

The scales of the slide rule are basically divided as in the metric system in that
between each division there are ten subdivisions. However, the student will find
that the main divisions are not equal distances apart. Sometimes the divisions will
be subdivided by graduations, and at other times the student will need to estimate
the subdivisions by eye. Let us examine the D scale of a slide rule (Figure 10-5).

DScale

1 2 3 4 5 6 7 8 91

L 1 1 11 Illl|III]IIIHlIIIIllllll]lllllllllltlll\UJ.‘Lulﬂ.u.l.lmhMﬂnm

Figure 10-5.

Since the graduations are so close together, let us examine the rule in three portions:
from left index to 2, from 2 to 4, and from 4 to the right index.

Example: Left index to 2 as shown in Figure 10-6.

Scale D Scale
readings |(T010> Q365> e | )
1| 050> 1 2 3 4 5 7 8 9 2
l 11 Hulnn!ml IiIIIJIIIIIHH ndulllunhlnlnn |f|1|m||mm:n
Hairline [
positions 1 2 3 4 5 6 7
Figure 10-6.

The student should refer to his own rule for comparisons as he studies the
diagrams in this chapter. In the example using Figure 10-6, we note that from
the left index (read as one-zero-zero) to the digit 1 (read as one-one-zero), there
are ten graduations. The first is read as one-zero-one (101), the second as one-
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zero-two (102), etc. Digit 2 is read as one-two-zero (120), digit 3 as one-three-
zero (130), etc. If need be, the student can subdivide by eye the distance between
each of the small, unnumbered graduations. Thus, if the hairline is moved to
position 4 (see example above), the reading would be one-three-six five or 1363.
Position 6 might be read as 1817 and position 7 as 1907. The student is reminded
that each small graduation on this portion of the rule has a value of 1.

Example: 2 to 4 as shown in Figure 10-7.

Scal
cale \ )
readings gm 2 2
2
M\':m
v

LIHllH hlllllHlllllllllllhlll

Hairline
positions

1 2
Figure 10-7.

Since the distance between 2 and 3 is not as long as the distance from the left
index to 2, no numbers are placed over the graduations. However, we can use the
same reasoning and subdivide as in the previous examples. Set the hairline in
position 1 (see example) and read two-one-zero, or 210. We note that the distance
between 200 and 210 has been divided into five divisions. Each subdivision would
thus have a value of 2. Consequently, if the hairline is in position 2, a reading of
228 would be obtained. Remember that each of the smallest graduations is valued
at 2 and not 1. What are the readings at 3, 4, and 57!

Example: 4 to the right index as shown in Figure 10-8.

=
Scale =
readings O i
4 5 6

TR AR

Hairline
positions 1 2

Figure 10-8.

The distance between 4 and 5 is still shorter than the distance between 3 and 4,
and it becomes increasingly more difficult to print such small subdivisions. For this
reason there are ten main divisions between 4 and 5, each of which is subdivided
into two parts. With this type of marking it is possible to read two figures and
estimate the third, or to get three significant figures on all readings. If the hairline
is set as indicated in position 1, the reading would be four-nine-zero (490), and
position 2 would give six-zero-five (605). What are the readings at hairline posi-
tions 3, 4, 5, and 67*

1 Readings at 3, 4, and 5 are respectively 281, 309, and 365.
2 Readings at 3, 4, 5, and 6 are respectively 678, 746, 810, and 963.
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Problems on Scale Readings

Read Answer on

SET HAIRLINE
TO

ST
SCALE

SCALE

LL,
SCALE

CI
SCALE

K
SCALE

DF
SCALE

LL,,
SCALE

LL,
SCALE

SCALE

1. 210 on D

. 398 on D

. 1056 on D

. 1004 on D

. 866 on D

. 222 on D

1196 on D

. 439 on D

. 5775 on D

ol vl ol 9] | L & w| L

. 2325 on D

11. 917 on D

12. 323 on D

13. 1077 on D

14, 1854 on D

15. 268 on

16. 833 on

18. 667 on

D

D

17. 551 on D
D

D

19. 8125 on

20. 406 on D

21. 918 on D

22. 5775 on D

23. 1466 on D

24, 288 on D

25. 466 on D

26. 798 on D

27. 1107 on D

28. 396 on D

29. 1999 on D

30. 998 on D
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If the student has followed the reasoning thus far, he should have little trouble
in determining how to read an indicated value on any scale of the slide rule.
Several of the problems on page 8 should be worked, and the student should
thoroughly understand the principle of graduation subdivision before he attempts
to delve further into the uses of the slide rule.

It is suggested that one have a good understanding of logarithms before pro-
ceeding to learn the operational aspects of the slide rule. Those who may desire
to review these principles should refer to Appendix I.

CONSTRUCTION OF THE SCALES

Let us examine how the main scales (C and D) of the rule are constructed.
As a basis for this examination, let us set up a scale of some length with a beginning
graduation called a left index and an end graduation called a right index as in
Figure 10-9.

Left index Right index
Figure 10-9.

Next let us subdivide this scale into ten equal divisions and then further sub-
divide each large division into ten smaller divisions as shown in Figure 10-10. We
call this the L scale.

Figure 10-10. 0 1 2 T &5 ol 7 8 9 ]

Let us place a blank scale beneath this L scale so that the left index of the L
scale will coincide with the left index of the blank scale as shown in Figure 10-11.
We shall call the blank scale the D scale.

LScale
0o 1 2 3 4 5 & 7 8 9
[ R S S | | | | J
Figure 10-11.
D Scale
L

Now let us graduate the D scale in such a way that each division mark is di-
rectly beneath the mark on the L scale that represents the mantissa of the logarithm
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of the number. Before examining the scales closer, we should note that the mantissa
of 2 is 0.3010, the mantissa of 3 is 0.4771, the mantissa of 4 is 0.6021, and the
mantissa of 5 is 0.6990 as shown in Figure 10-12.

e
LScale @ @ Mantissas
0 1 2 4 5 6 7 8 9 1
\ | l ] lilHIHIl il l | |
DScale
Figure 10-12.
1 2 4 5
| |

Hairline

52) @ ® positions

<—log 2—>®

log 3

If the student will examine his rule, he will find a C or D scale and an L scale.
The C and D scales are identical, so use the D scale since it is printed on the body
of the rule. Several problems should be worked, determining the logarithms of
numbers by using the slide rule.

Remember to:

1. Set the number on the D scale.

2. Read the mantissa of the number on the L scale.

3. Supply the characteristic, using the characteristic rules given in the dis-
cussion on logarithms.

Example: What is thé logarithm of 55.8? Use Figure 10-13.

7466) Mantissa

L 2 3 4 5 6 7|8 ¢ 1

L | 1 1 1 | | | wul 1 6|

D 2 3 p 5|6 7 8091 Figure 10-13.

| 1 1 Loslaad 11 11
< log 558
558) Number

From slide rule: Mantissa of 55.8 = 0.7466
From characteristic rules: Characteristic of 55.8 = 1.0000
Therefore log of 55.8 = 1.7466

From the preceding example, we can see that the D scale is so constructed that
each number lies below the mantissa of its logarithm. Also we note that the distance
from the left index of the D scale to any number on the D scale represents (in

r
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length) the mantissa of the number as shown in Figure 10-14, Since the charac-

teristic of a logarithm is governed merely by the location of the decimal point,
we can delay its determination for the time being.

1 2 3 4 5 6 7 8 91
L 1 1 1 L L 11
Figure 10-14. S —
-r:—|°g3-4-4—r~3-‘
log 55
log 765

Problems

10-1. Use the slide rule and find the logarithms.

a. 894. j- 591 x 107 s. 33.67 x 10—#
b. 1.845 k. 9.06 x 10—+ t. 4.40 x 10?
c. 0.438 l. 66.9 x 108 u. 98,700
d. 81.5 m. 155.8 x 102 v. 40.3 x 1079
e. 604. n. 23.66 x 10— w. 21.8 x 109
f. 7.41 0. 0.06641 x 108 x. 1.057 x 10-3
g. 1191 p. 933 x 1072 y. 719. x 103
k. 215, g. 29.88 x 107! z. 49.2 x 107
i. 993,000. F: 0552 % 108

MULTIPLICATION

As shown in Figure 10-15, the C and D scales are divided logarithmically with
all graduations being marked with their corresponding antilogarithms. These scales
can be used for multiplication by adding a given logarithmic length on one of the
scales to another logarithmic length which may be found on the other scale.

Example: (2)(3) = 6, asshown in Figure 10-15.

log 2 "4’“ log3 = log 6
Figure 10-15, |‘7|092 ot
i T,
oSk 7§ 1 fiiiy]
I<——~|og<ﬁv-————~—~‘)-l
PROCEDURE:

1. Set the left index of the C scale above the digit 2 on the D scale.
2. Move the hairline to the right until it is directly over 3 on the C scale.
3. Read the answer (6) directly under the hairline on the D scale.
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The A and B scales are also divided logarithmically, but their overall lengths
are only one half the lengths of the C and D scales. Therefore, although the A and
B scales can also be used for multiplication and division, their shortened lengths
will diminish the accuracy of the readings.

Similarly other pairs of scales of the slide rule may be used to perform multi-
plication if they are graduated logarithmically. A majority of slide rules have at
least one set of folded scales that can be used for this purpose. Most frequently
they are folded at 7w (3.14159 . . .). Special use of these scales will be explained
later in this chapter.

In some cases when the logarithm of one number is added to the logarithm of
another number, the multiplier extends out into space, and it is impossible to move
the indicator to the product (Figure 10-16).

Example: (3)(4) = ?, as shown in Figure 10-16.

log 4

-

CScale

M T
o

2
1
6 7 8
: S

o | -

1
|

1

|

1 DScale 2 ?
1

-

5
|

;
|

Figure 10-16.

In this case it is necessary to relocate the right index of the C scale above the
figure 3 on the D scale and move the hairline to 4 on the C scale as shown in
Figure 10-17.

re——log 44—

B e C Scale
i 2 3 4 5 67869 2 3 4 5 67891
Viivgbool oot b o2 ob ot e ea clusnad 11 1o illy
___---------‘_', ___________ D Scale
i 2 3 4 5 67891 3 4 5 67891
(S PO SRR R SO SO Sy O | [ BPTS BTY [ R
L—fog 3-—-l
<]
log 12 {
Figure 10-17.
PROCEDURE

1. Set the right index of the C scale above the digit 3 on the D scale.
2. Move the hairline to the left until it is directly over 4 on the C scale.
3. Read answer (12) directly under the hairline on the D scale.

The location of the decimal point in multiplication problems is ascertained either
by inspection or by applying one of the several methods explained in the following
paragraphs.

p -
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METHODS OF DETERMINING DECIMAL POINT LOCATION

Several methods which may be used are given below. Although these methods
by no means include all ways to determine the decimal point location, they will
be suitable for instruction of students, particularly those having an elementary
mathematical background.

Inspection Method

This is the simplest method and consists of determining the decimal point lo-
cation by observing the location of the decimal point in the numbers involved in
a slide rule operation and locating the decimal point in the answer by a quick
estimation.

E . (28.1) . : :

xample: (720) = 390 (decimal point to be determined)

A quick examination of the numbers involved shows that the answer will be
somewhere near the number “4,” so the answer evidently will be 3.90. This method
will have its widest application where only one or two operations are involved and
where the numbers lie between 1 and 100.

Example: (1.22)(58.2) =709

In the example above, it is seen that the number 58.2 is multiplied by a number
which is a little more than 1. Therefore, the answer will be slightly greater than 58.2.

Approximate Number Method

This method is an extension of the inspection method. It involves the same
general procedures except that the numbers used in a problem are “rounded off”
and written down and an approximate answer is obtained that will show the
decimal point location.

Example: (37.6)(0.188)(5.71)(11.92) = 482 (decimal point to be located)

Rewrite, using simple numbers that are near in value to the problem numbers.
[(40)(0.2)][(6) (10)] = (8)(60) = 480

This shows that the answer in the example problem should be expressed as 482.
A problem that is more involved can be solved by this method, as shown by
the following example.

(12,560) (0.0387)
(594,000)

Example: = 819 (decimal point to be determined)

Using simple numbers near in value to the problem numbers, write the same
problem:

(12,000) (0.04)

(600,000) 0-0008
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By cancellation the numbers can be simplified still further to obtain an ap-
proximate answer of 0.0008. One way of doing this would be to divide 12,000
into 600,000, obtaining a value of 50 in the denominator. This value of 50 divided
into 0.04 gives 0.0008. Referring to the original problem, the decimal point must
be located to give an answer of 0.000819.

Scientific Notation or Power-of-Ten Method

The power-of-ten or scientific notation method is a variation of the character-
istic method discussed later in this book. In this method the numbers in the prob-
lem are expressed as a single digit, a decimal point, the remaining digits, and
followed by the number “10” that is raised to the appropriate power. This process
simplifies the numbers, and the decimal point in the answer can be determined by
inspection or by the approximation method.

Example:
(15.9) (0.0077) (30500) (4660) = 1741 (decimal point to be located)

The next step is to write the same problem with each number expressed as a
digit, decimal point, and the remaining digits followed by the appropriate power of

10.
(1.59 x 10') (7.7 x 1073)(3.05 x 10*) (4.66 x 10*) = 174.1 x 10°

Since all the numbers are now expressed as numbers between 1 and 10, fol-
lowed by 10 to a power, the approximate value of the multiplication can be de-
termined rapidly, by inspection, to be about 170. The power of 10 is obtained by
adding algebraically the powers of 10 of each of the rewritten numbers. The answer
to the original problem is therefore 174.1 x 10% or 17,410,000, or 1.741 x 107.

(28,500) (307)

Example: (0.552)

= 1585 (decimal point to be located)

Rewrite the problem using powers of 10:

(2.85 x 10%) (3.07 x 10?)

Sty 7
e % 10 =1.585 x 10

By inspection and approximation the product of the numerator will be found
to be near 9, and dividing 5.52 into it will give about 1.6. This procedure de-
termines the decimal point location for the digits of the answer. The powers of
10 are added algebraically to give 107, which completes the decimal point location
in the answer. The answer may be rewritten as 15,850,000 if desired.

Digit Method

In this method the numbers of digits in each number are counted and the fol-
lowing rules apply.
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Multiplication. Add the number of digits to the left of the decimal of each
number to be multiplied. This will give the number of digits to the left of the
decimal in the answer. If the slide projects to the right, subtract one from the
number of digits to be pointed off.

Example: (27,300)(15.1) = 412,000

There are five digits to be counted in the first number and only two digits in the
second number. Since the slide projects to the right, subtract 1. There will be six
digits to the left of the decimal point in the answer.

Division. Subtract the number of digits to the left of the decimal in the de-
nominator from the number of digits to the left of the decimal in the numerator to
obtain the number of digits to the left of the decimal in the answer. If the slide
projects to the right in division, add one digit more to be pointed off.

(12.88)

—(46—6)' — 00276

Example.

Subtracting three digits in the denominator from two digits in the numerator gives
(—1) digit to be located in the answer. Inspection shows that the answer will be
a decimal quantity. In any case where decimal numbers are encountered, the
method of counting the digits is to begin at the decimal point and count the number
of zeroes between the decimal point and the first digit that is not zero to the right
of the decimal. Since the digit difference shown above is (—1), there must be one
zero between the decimal point and the first significant figure, which gives an
answer of 0.0276. The student will observe that the digit count of decimal numbers
is considered as a minus quantity and that the addition and subtraction of the
digit count must take into account any minus signs.

Variations and extensions of these methods may readily be set up to solve
problems involving roots and powers. Many schools prefer the “characteristic” or
“projections method” to determine decimal point location, and this method is given
in detail in the discussions which follow.

Characteristic Method

Projection Rule for Multiplication. This method of decimal point location is
recommended for students who are inexperienced in slide rule computations:

1. Before attempting to solve the problem, place the characteristic of each
quantity above or below it.

2. Solve for the sum of the characteristics by simple addition, and place this
number above the space for the answer.

3. Begin the multiplication with the slide rule, and each time the left index of
the C scale extends past the left index of the D scale, add a (+1) to the sum of
the characteristics previously determined.

4. Add the original sum to the +1’s obtained from left extensions. The total
number is the characteristic of the answer.
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Example: one left extension

i

CHARACTERISTICS. (0) + (0) — (0) + 1 = +1 « characteristic of answer
(5) ((3)= 15 Answer

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(5)(3) = 1.5(10)! « ESTIMATED ANSWER

Example: one left extension

J,

CHARACTERISTICS, (+2) + (=3) —>(-1)+1=0
(390) (0.0030) = 1.17 Answer

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(4)(10)2(3)(10) * = 1.2(10)" « ESTIMATED ANSWER

Example: two left
| extensions

CHARACTERISTICS. (—3) 4+ (4+1) + (42) + (+4) — (+4)+2 =+6
(0.001633) (79.1) (144) (96,500) = 1,800,000 Answer

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(2)(10)~3(8)(10)*(1)(10)2(10)% = 1.6(10)% « ESTIMATED ANSWER

Example:
three left
CHARACTERISTICS, | extensions
(+1) + (+3) + (=3) + (-4 —=(=3)+3=0
(73.7) (4460) (0.00704) (0.000853) = 1.975  Answer

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(7)(10)*(4)(10)*(7)(10)=3(9) (10) ~* = 1.8(10)° « ESTIMATED ANSWER

Example: two left extensions
.
(_’H
CHARACTERISTICS.  (+2) + (+2) + (0) — (+4) + 1+1 =+6

(861) (204) (9.0) = 1,580,0000r (1.58)(10)¢ Answer

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(9)(10)2(2)(10)%(9) = 1.6(10)° « ESTIMATED ANSWER




The Slide Rule
17

Multiplication Practice Problems

10-2. (23.8)(31.6) = (7.52)(10)2

10-3. (105.6)(4.09) = (4.32)(10)®

10—4. (286,000)(0.311) = (8.89) (10)*

10-5. (0.0886)(196.2) = (1.738)(10)!

10-6. (0.769)(47.2) = (3.63)(10)!

10-7. (60.7)(17.44) = (1.059)(10)?

10-8. (9.16)(115.7) = (1.060) (10)?

10-9. (592.)(80.1) = (4.74)(10)*

10-10. (7.69 X 10%)(0.722 x 10-%) = (5.55)(10)~3

10-11. (37.5 x 10-1)(0.0974 x 10~*) = (3.65) (10)~*
10-12. (23.9)(0.715)(106.2) = (1.815)(10)?

10-13. (60.7)(1059)(237,000) = (1.523)(10)®

10-14. (988)(8180)(0.206) = (1.665)(10)°

10-15. (11.14)(0.0556)(76.3 x 10-%) = (4.73)(10)~*
10-16. (72.1)(7)(66.1) = (1.497) (10)*

10-17. (0.0519)(16.21)(1.085) = (9.13)(10) !

10-18. (0.001093) (27.6) (56,700) = (1.710) (10)3

10-19. (0.379)(0.00507) (0.414) = (7.96) (10)~*

10-20. (16.05)(23.9)(0.821) = (3.15)(10)2

10-21. (1009)(0.226)(774) = (1.765) (10)5

10-22. (316)(825)(67,600) = (1.762) (10)®

10-23. (21,000)(0.822)(16.92) = (2.92)(10)*

10-24. (0.707)(80.6)(0.451) = (2.57)(10)*

10-25. (1.555 x 10%)(27.9 x 105)(0.902 x 10-7) = (3.91)(10)2
10-26. (0.729)(10)3(22,500)(33.2) = (5.45)(10)8

10-27. (18.97)(0.216)(899) (7) (91.2) = (1.055)(10)®
10-28. (7160) (0.000333)(26) (19.6) (5.01) = (6.09) (10)?
10-29. (1.712)(89,400)(19.5) (1075)(82.1) = (2.45)(10)3
10-30. (62.7)(0.537)(0.1137)(0.806) (15.09) = (4.66) (10)*
10-31. (10)® (159.2)(144)(7,920,000) (7) = (5.70) (10)*7
10-32. (0.0771)(19.66)(219)(0.993)(7.05) = (2.32) (10)?
10-33. (15.06) () (625)(0.0963) (43.4) = (1.236)(10)3
10-34. (2160)(1802) () (292)(0.0443) = (1.582)(10)*
10-35. (437)(1.075)(0.881)(43,300) (17.22) = (3.09) (10)®
10-36. () (91.6)(555)(0.673)(0.00315)(27.7) = (9.38) (10)?
10-37. (18.01)(22.3)(1.066)(19.36)(10) 5 = (8.29)(10) 2
10-38. (84.2)(15.62)(921)(0.662)(0.1509) = (1.210)(10)°
10-39. (66,000)(25.9) (10.62)(28.4)(77.6) = (4.00) (10)*
10-40. (55.1)(7.33 x 107#)(76.3) (10)%(0.00905) = (2.79) (10)~*
10-41. (18.91)(0.257)(0.0811)(92,500) (7) = (1.145)(10)"

Multiplication Problems

10-42. (46.8)(11.97) 10-46. (77,900) (0.467)
10-43. (479.)(11.07) 10-47. (123.9)(0.00556)
10-44. (9.35)(77.8) 10-48. (214.9)(66.06)

10-45. (10.09) (843,000.) 10-49. (112.2)(0.953)
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Multiplication Problems (continued)

10-50.
10-51.
10-52.
10-53.
10-54.
10-55.
10-56.
10-57.
10-58.
10-59.
10-60.
10-61.
10-62.
10-63.
10-64.
10-65.
10-66.
10-67.
10-68.
10-69.
10-70.
10-71.
10-72.
10-73.
10-74.
10-75.
10-76.
10-77.
10-78.
10-79.
10-80.
10-81.
10-82.
10-83.
10-84,
10-85.
10-86.
10-87.
10-88.
10-89.
10-90.
10-91.

(87.0)(1.006)

(1,097,000) (1.984)

(43.8) (0.000779)

(31.05)(134.9)

(117.9)(98.9)

(55.6) (68.1)

(1.055) (85.3)

(33,050.) (16,900.)

(6.089) (44.87)

(34.8)(89.7)

(43,900.)(19.07)

(41.3)(87.9)

(99.7) (434,000.)

(0.0969) (0.1034) (0.1111) (0.1066)

(1.084 x 10-5) (0.1758 x 10%)(66.4)(0.901)
(234.5)(10)%(21.21) (0.874) (0.0100)
(7)(26.88) (0.1682) (0.1463) (45.2) (1.007)
(75.8) (0.1044 x 108) (10) ~2(54,000) (0.769)
(34.5)(31.09) (10) ~8(54.7) (0.677) (0.1003)
(6.08) (5.77) (46.8) (89.9) (3.02) (0.443) ()
(1.055)(6.91) (31.9) (11.21) (7) (35.9) (4.09)
(10.68) (21.87)

(88,900.) (54.7)

(113,900.) (48.1)

(95,500.) (0.000479)

(0.0956) (147.2) (0.0778)

(15.47)(82.5) (975,000.)
(37.8)(22,490,000.) (0.15)

(1.048) (0.753)(0.933)

(1.856) (10)3(21.98)

(57.7) (46.8) (3.08)

(0.045) (0.512) (115.4)

(0.307) (46.3) (7.94)

(2.229)(86.05) (16,090.) ()
(44,090.) (38.9) (667.) (55.9)

(568.) (46.07) (3.41) (67.9)
(75.88)(0.0743) (0.1185) (0.429)
(10)-7(69.8) (11.03) (0.901)

(46.3) (0.865) (10)~2(0.953) ()
(665.)(35,090) (0.1196) (0.469)
(888.)(35.9)(77.9) (0.652)
(43.4)(0.898) (70.09) (0.113) ()

DIVISION

Multiplication is merely the process of mechanically adding the logarithms of the
quantities involved. From a review of the principles of logarithms, it follows that
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division is merely the process of mechanically subtracting the logal:ithm of the divisor
from the logarithm of the dividend.

Example: 8) =4
(2)
log 8 — 1 log2 = log 4 l
F 0-18 - I°92’T <)
igure 10-18. iy
[CScle | 3 .\5
1 D Scale 2 3 4 5 6 7 8 9]
| ] ] ] | S
e log 4 -‘J
log 8

PROCEDURE

1. Set the divisor (2) on the C scale directly above the dividend (8), which is
located on the D scale.

2. Read the answer (4) on the D scale directly under the left index of the C
scale.

For location of the decimal point in division problems the following Projection
Rule should be observed.

Projection Rule for Division

1. Locate the characteristic of the dividend above it and the characteristic of the
divisor below it.

2. Subtract the characteristic of the divisor from the characteristic of the
dividend.

3. For every left extension of the C scale’s left index, add a (—1) to the total
characteristic already obtained.

4. The sum is the characteristic of the answer.

Example: left extension
characteristic of answer

(+2) (+2) —(0) > +2 — 1 =+1
O75) . 5505 tiny!

(6.05)
(0)

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
6(10)*
6

= 1(10)* «~ ESTIMATED ANSWER
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Example: left extension

characteristic of answer

4

(-1) (-)—(+1) > —2—1=-3

(0.465) -
54— (8.61)(10) 2

(+1)

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
5(10) 1
5(10)°

= 1(10) ~2 « ESTIMATED ANSWER

Division Practice Problems

10-92,

10-93.

10-94.

10-95.

10-96.

10-97.

10-98.

10-99.
10-100.
10-101.
10-102.
10-103.
10-104.
10-105.
10-106.
10-107.
10-108.
10-109.
10-110.
10-111.
10-112.
10-113.
10-114.
10-115.
10-116.
10-117.
10-118.
10-119.
10-120.
10-121.
10-122.
10-123.

(29.6) =+ (18.02) = 1.641

(1.532) = (72.6) = (2.11)(10) 2
(0.1153) = (70.3) = (1.64)(10)~#
(89.3) = (115.6) = (7.72)(10) !
(0.1052) = (33.6) = (3.13)(10)3

(40.2) + (50.8) = (7.91)(10)!

(0.661) =+ (70,500) = (9.38)(10) ¢
(182.9) + (0.00552) = (3.31)(10)*
(0.714) + (98,200) = (7.27)(10) ¢
(4.36) = (80,300) = (5.43)(10) "5
(1.339) = (22.6 x 10%) = (5.92)(10) ¢
(17.03) = (76.3) = (2.23)(10) !

(0.511) + (0.281) = 1.819

(67.7) <+ (91,300) = (7.42)(10) 4

(5.04) + (29,800) = (1.691)(10)~*
(18.35) = (0.921) = (1.992) (10)*

(29.6 x 105) =+ (0.905) = (3.27)(10)¢
(0.1037) = (92.5 x 10%) = (1.121)(10) 8
(537) = (15.63 X 1077) = (3.44)(10)?®
(26,300) = (84.3 x 10%) = (3.12)(10)~3
(6,370) + (0.733) = (8.69)(10)®

(1.066) = (7.51 x 10%) = (1.419)(10)*
(29.6 x 10%) = (0.973) = (3.04)(10)°
(0.912) + (10.31 x 107%) = (8.85)(10)3
(17.37 x 10%) = (0.662) = (2.62)(10) 3
(0.693 x 10°) = (1.008 x 107%) = (6.88)(10)1°
(89.1) x 10%) = (189.3 x 10%) = (4.71)(10) 2
(0.617) = (29,600) = (2.08)(10)~®
(18.06 x 107) = (15.29) = (1.181)(10)7
(56.8) (10)* = (29.6) (10) ~3 = (1.919) (10)7
(183,600) + (76.3 x 1073) = (2.41)(10)°¢
(75.9) = (0.000813) = (9.34) (10)*




10-124.
10-125.
10-126.
10-127.
10-128.
10-129.
10-130.
10-131.

Problems in Division

10-132.

10-133.

10-134.

10-135.

10-136.

10-137.

10-138.

10-139.

10-140.

10-141.

10-142.

10-143.

10-144.

10-145.

10-146.

10-147.

10-148.

(43.6) + (0.0837) = (5.21)(10)2

(156.8 x 10%) = (0.715) = (2.19)(10)5
(216 x 10~%) = (1557) = (1.387)(10) ¢
(88.3 x 10~1) + (29.1 X 10~%) = (3.03)(10)3
(1.034 x 10%) + (0.706 x 10~%) = (1.465) (10)1

(55.2)(10)® + (0.1556 x 10%) = (3.55)(10)2
(0.01339) =+ (1896 x 10%) = (7.06) (10)~1t

(4,030 x 1077) + (75.3 x 107?%) = (5.35)(10)3

89.9

45

147.

22

9.06

71

1,985.

78.55

19,230.
64.88

87,600.
43.8

54.8

9.10

0.877

33.07

11.44

249

187,900.
71.45

0.00882
87.04

0.675

54.8

87.9

45.7

164,800.
3.88

7.09 x 10°

18.45

(0.001755)
(6.175)

(0.0000559)
(0.00659)

10-149.

10-150.

10-151.

10-152.

10-153.

10-154.

10-155.

10-156.

10-157.

10-158.

10-159.

10-160.

10-161.

10-162.

10-163.

10-164.

10-165.

(5.065)
(0.0003375)
(469,000)

(793)
(5,100,000)
(933 x 10°)
(3765 x.10%)

(760.3)

(4917)
(0.391)
(5516)
(1.65)
(0.0916)
(0.331)
(193.7)
(5.06)
(113.05)

(72.35)

(32.33)
(46.77)
(3.17)
(3.1416)
(0.221)
(56.91)
(233.17)
(5506)
(72.13)
(52.03)
(6607)
(1.91 x 107)
(1.993 x 10-%)

(72.31 x 107¢%)

(461 x 10%)
(0.003617)

10-166.

10-167.

10-168.

10-169.

10-170.

10-171.

10-172.

10-173.

10-174.

10-175.

10-176.

10-177.

10-178.

10-179.

10-180.

10-181.
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(9903 x 1073)
(47.31 x 10%)
0.711
11,980.
0.01253
66.8
0.974
1.058
0.000497
389 x 10—°
48.6 x 107°
1.977 x 108
69,990. x 10
439 x 1072
5.06 x 1077
0.001853 x 10"

1.097 x 106
458. x 107!
89.99 x 10~*
40.7 x 10~°¢
659,000

0.1148 x 1073
883.8

3.89 x 10~

15.06 x 107

33.8 x 107!

1.095

24.66

33.97 x 107

56.98 x 10°

22,900. x 10°°
76.4 x 10!
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Combined Multiplication and Division

Since most scientific calculations involve both multiplication and division, the
student should master the technique of combined multiplication and division. The
projection rules for both multiplication and division also apply in a combination
problem.

Example:

5\{;\\ y/) Grlly = () = 4

i (\?@ 300) _ 35 900, or 3.29 x 10
ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:

5(10)? (1.5)(10)*
(2.5) (10)®

= 3(10)* < ESTIMATED ANSWER

In order to work the problem above, first set 513 divided by 238 on the C and D
scales. Now, instead of reading this answer, move the hairline to 15,300 on the
C scale (thus multiplying this latter quantity by the quotient of the first setting).

The student should always alternate the division and multiplication settings and
should not try to take readings as he progresses with the steps. Only the final result
is desired and, since each reading of the rule further magnifies any error, the fewest
readings possible should be allowed.

Example: (left extension
from the division)

(+2) (-1) —(+2) > -3 —-1=—4
0)(9/090391)(6\93 5%:es 5% 30 54
302) (53 (773.1) =
(_1) M(ﬂ)

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
5(10)* 4(10)~* 7(10)*
3(10)~1 6(10)* 8(10)>

= 1(10) =3 « ESTIMATED ANSWER

Remember that when you want to divide, you move the slide, and when you
want to multiply, you move the hairline.

A common error committed by many students is to multiply all the quantities in
the dividend and all the quantities in the divisor and then divide these two results.
This is a bad habit and such practice should not be followed. There are too many
chances for mistakes, in addition to the method’s being slower.
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10-182.
r 10-183.
10-184.
10-18s.

10-186.

10-187.
/ 10-188.
10-189.
10-190.

10-191.

10-192.
10-193.
10-194.
10-195.
10-196.
10-197.
10—198.
10-199.
10-200.
10-201.
, 10-202.

10-203.

Combined Multiplication and Division Practice Problems

(29.6)(18.01)

o3y = (569107
(625,0(038);;.0337) P
%)2(21)’109—) = (1.884)(10)?
(0'10%,)2(1983)7’000) = (4.55)(10)°
T o = (332)(10)~*
% = (9.7’6)(1(5)7~1
(0,75.;?'(54;71?:)10_6) = (2.10) (10)*
(20Joé;}£§; <105 = (629)(10)~*
(87.3 ;0'12024?(0.717) = (3.61)(10)77
s - 200
(gg?s'goé (10?6_0;) = (4.61)(10)~*

(737,000)  .65)(10):

(0.1556) (61.9 X 109
(17.01)(0.0336) .
(52.600) (0.01061) — (1:024)(10)7°
(66.6) (0.937)
(7.05 x 10) (184,300)
(2.96) (1000) (62.1) _ e
(0911)(432,000) — (4:67)(10)
(45.8)(10.33) )
(29.200) (0.702) — (2:31)(10)™*
(0.604) (9,270) .
0317 x 109 (1372) — (499010~
(176,300) (42.8 X 10%) _

(683) (1500 — (7:36)(10)°
(39,200) (89.3 x 10-7) _
(204 x 10-9(1555) — (1-104)(10)*
(0.763 x 10-1)(0.01004) »

(443)(7.150,000)  — (242)(10)7*%
(152,300) (88,100) _

(0.00339) (60.4) — (6-39)(10)%
(90,400) (2.05 X 10%)
(243 x 10-2)(0.0227)

= (4.80)(10)" "7

= (3.36)(10)*

The Slide Rule
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Combined Multiplication and Division Practice Problems (continued)

(14.36 x 10?) (0.907)
(51.6 x 10%) (0.00001118)
(991,000) (60.3 x 10%) _ .
(233 x 10-1)(0.1996) — (1-285)(10)
(8.40) (10)3(29.6 x 105
(0.369) (10.02 X 109
(54.9)(26.8) (0.331) _ B
10-207. (516)(11.03) (546) = (374 (10)
(17,630) (0.1775) (92.3)
(0.433) (0.0061) (57.3)
(0.821)(0.221)(0.811)
(0.0907) (10.72) (66,300)
(0.00552) (89.6) (0.705)
(19.52 X 10°) (18.03) (22.9)
(30,600) (29.9) (0.00777) ——
(485)(19.32) (62.6)  — (1-212)(10)~*
(54.1)(0.393) (16.070)
(493 x 10°) (11.21) (61.6)
(44.2)(100.7) (62,400)
10-213. 5537(75.100) (0.01066) — (3-84) (10)°
(78.4)(15.59) (0.01669) _ )
(33.6)(88,100) (0.432) _ (1994 (10)~*
(994,000)(21,300) (0.1761) _ , -
(44.4)(71.2)(32.1 x 10) ~— ~
(16.21) (678,000 (56.6) _
(0.01073) (4,980) (30.3) — (>:84)(10)°
(613 x 10°)(0.1718) (0.893) _
10-217. — 16y (0.902) (0.01155)  — (418)(10)*
(20,900) (16.22 x 10%)(0.1061) _

10-218. =y 301 X T0-5)(3.03) = (+06)(10)
(999,000) (17.33 (0.1562)
(0.802)(0.0443) (29.3 x 10-7)
(16.21)(0.0339) (151.6) (0.211) _ )
10-220. ~5.00361) (0.785) (93.2) (406)  — (1-640)(10)~

(84.3)(0.916)(0.1133)(21.3) _ .
(66.2) (0.407)(353) (462)  — (272 (10)~*

10-204.

= (2.26)(10)*

10-205.

10-206.

= (6.72)(10) 10

10-208.

= (1.908)(10)¢

10-209.

— (2.28)(10)~®

10-210.

= (4.42)(10)"®

10-211.

10-212.

= (1.00) (10) 2

10-214.

10-215.

10-216.

10-219. = (2.60)(10)7

10-221.

Problems

Solve by combined multiplication and division method:

(0.916) (82)(9.3)
10-222. 505)(13.06) 2225 <
(0.00908) (167)(842)
14223, (22.3)(33.2) TiE20 (0.976)
10224, (24:5)(43) 10-227, (5:72)(3690)

(36) (95.7)
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10-228. (92_(53)_}(%@ 10-240. %(3?35)
10-229. (1—_(7.9% 10-241. %W
10-230. % 10-242. (ﬁ.;())é()).(ogcgg?)
10-23L. (7565 007y 10-243. {53 T ho0 1607
10-232. (—1(58% 10-244. (5.(2432))((01.882‘)11)
10-233, % 10-245, (—9(115%6—)
10-234. % 10-246. (422315%3?)
10-235. % 10-247. Egig%;izigég;
10-237. % 10-249. %
10-238. %&;‘52) 10-250. %2'79233)
10-239. % 10-251. ((()69;3; ngg?g)

(39.1) (680,000) (3.52) (1.1 x 10°)
(0.0316) (9.6 x 10°)(26.3)
(7.69)(76,000) (5.63) (0.00314)
(0.00365) (10 x 10°)
(3.97)(6.71 x 10-%)(0.067)
(63.1)(3 x 107) (7.61)(80,175)
(697)(0.000713) (68.1)
(234)(9.68) (5.1 x 10%)
(43,400)(9.16) (8.1 x 10-9)
(0.00613) (67,000) (0.416)
(691.6)(7.191) (3 x 107)
(410,000) (6.39) (0.0876)
(37.615)(81.4) (9.687) (0.0017)
(13.13)(0.076) (43)

(51.2 x 1079)(3.41 x 10%)(36.1)
(96.69) (7 x 10-2)(0.134)
(6.716) (3.2 x 10%)(0.0173) (413)
(0.0000787) (6.6 X 10%)

(1.061 x 10-1)(96,000) (3.717)

(7.34 X 10-9)(3.9 x 107)(13.5)

(361)(482)(5.816) (38.91)(0.00616)
(0.07181) (3 x 10°)(39.36)

N

10-252,

10-253.

10-254.

10-255.

10-256.

10-257.

10-258.

10-259.

10-260.

10-261.

10-262.
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Problems (continued)

(0.019 x 10®%) (111.15)(0.0168)
(7.96)(58.6) (0.0987) (3,000)
(21.4)(0.82)(39.6 x 10°1)

(10.86) (6.7 x 1072)(37,613)

(63,761)(43,890)(0.00761)

(8 x 10%) (0.0781)(67.17)

(516.7) (212 x 10*)(0.967)(34)
(76,516) (2 x 1075)(618)

(5.1 x 10%)(370)(8.71)(3,698)

(0.00176) (36,170)

(59.71 x 107%)(0.00916) (0.1695) (55.61)
(17.33 x 10%)(0.3165) (10.56) (1.105)

(773.6)(57.17)(0.316)(912.3)
(56,000)(715,000)(471.3)
(51.33)(461.3)(919)(5.03)

(66,000)(71.52)(0.3316) (12.39)
(0.6617)(75.391) (0.6577) (91.33)

(0.3305) (5.69 x 10)(0.00317 x 1073)

10-263.

' 10-264.

10-265.

10-266.

10-267.

10-268.

10-269.

10-270.

10-271.

Proportions and Ratios

A “ratio of one number to another is the quotient of the first with respect to
the second. For example, the ratio of a to b may be written as a:b or %. A “propor-

tion” is a statement that two ratios are equal. Thus, 2:3 = 6:B means that% = g :
The slide rule is quite useful in solving problems involving ratio or proportion
because these fractions may be handled on any pair of matching identical scales of
the rule. The C and D scales are most commonly used for this purpose.
In the example 2 ol
'3 B’
procedure to solve for B would be as follows:

2, 3, and 6 are known values and B is unknown. The

1. Divide 2 by 3 (using the C and D scales). In this position the value 2 on the
D scale would be located immediately beneath 3 on the C scale.

2. The equal ratio of g would also be found on the C and D scales. The un-
known value B may be read on the C scale immediately above the known value 6
on the D scale; B = 9.

With this particular location of the slide, every value read on the C scale bears
the identical ratio of 2:3 to the number directly below it on the D scale. It is also
important to remember that the cross products of a proportion are equal. In the
above example, 3 X 6 =2 X B.
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Examples:
47 18 B
GH 21" 4 Answer, A = 8.04
0721 B B
b 1336 ~ 593 Answer, B = 48.2
159  72.1 B
“ e <1667 Answer, C = 36.7
D 0921 -
d. 0.1156 0473 Answer, D = 0.225
c. B0 - Answer, E = 0.1912

7,060 — 0.0321
Folded Scales

The CF and DF scales are called folded scales. They are identical with the C
and D scales except that their indices are in a different position. On the majority of
slide rules, the CF and DF scales begin at the left end with the value 7, which
means that their indices will be located near the center of the rule. On some rules
‘the CF and DF scales may be folded at €(2.718) or at some other number.

Since the CF and DF scales are identical in graduations with the C and D scales,
they can be used in multiplication and division just as the C and D scales are. An-
other important fact may be noticed when the scales are examined; that is, if a
number such as 2 on the C scale is set over a number such as 3 on the D scale, then
2 on the CF scale coincides with 3 on the DF scale. This means that operations may
be begun or answers obtained on either the C and D scales or on the CF and DF
scales.

For example, if we wish to multiply 2 by 6, and we set the left index of the C
scale over 2 on the D scale, we observe that the product cannot be read on the D
scale because 6 on the C scale projects past the right end of the rule. Ordinarily this
would mean that the slide would need to be run to the left so that the right index of
the C scale could be used. However, by using the folded scales, we notice that the 6
on the CF scale coincides with 12 on the DF scale, thereby eliminating an extra
movement of the slide (See Figure 10-19). In many cases the use of the folded
scales will reduce the number of times the slide must be shifted to the left because
an answer would fall beyond the right end of the D scale.

T 4 5 6 7 8 91 12 .
| I |

T4 T5 6 17 '8 'o 1
2 3

-

T T T T

7
3 4 5 6 7 8

Figure 10-19.
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There are several methods by which the location of the decimal point in the
answer can be determined. The decimal point location can best be found by using
the method of scientific notation.

The projection rule can be used if it is always remembered that an answer read
on the DF scale to the right of the index (near the center of the rule) corresponds
to a left projection. Since in many operations the decimal point location in the
answer can be determined by inspection, the decimal point can often be placed
without reference to projection rules.

A convenient method of multiplying or dividing by = is afforded by the use of
the folded scales. For example, to find the product 27, set the hairline over 2 on
the D scale. The product 6.28 is read on the DF scale under the hairline. Of course
this same operation may be performed by using either index of the slide.

Reciprocal Scales

The CI, DI, and CIF scales are known as reciprocal scales or inverted scales.
They are identical with the C, D, and CF scales, respectively, except that they are
inverted; that is, the numbers represented by the graduations on these scales in-
crease from right to left. On some slide rules, the inverted scale graduations are
printed in red to help distinguish them from the other scale markings.

An important principle to remember when using these scales is that a number
on the C scale will have its reciprocal in the same position on the CI scale. Con-
versely, when the hairline is set to a number on the CI scale, its reciprocal is under
the hairline on the C scale.

The inverted scales are useful in problems involving repeated multiplication or
division because some movements of the slide may be eliminated.

Example: Find the product:
(1.71)(8.30)(0.252)(4910) (53.8)

In order to perform this operation, using the inverted scales, the following steps
are used:

Set the hairline to 1.71 on the D scale.

Move the slide until 83 on the CI scale is under the hairline.
Move the hairline until it is set on 252 on the C scale.

Move the slide until 491 on the CI scale is under the hairline.
Move the hairline until it is set on 538 on the C scale.

Read the product 94600 under the hairline on the D scale.

SN R G 1D B

The actual process has involved the use of reciprocal quantities in division in
Steps 2 and 4 of the sequence above. Rewritten as the operation is actually per-
formed, the problem appears as follows:

(1.71)(0.252)(53.8)
(1/8.30)(1/4910)

ESTIMATION OF ANSWER BY SCIENTIFIC NOTATION:
(2)(8)(2)(10)~1(5) (10)*(5) (10)* = (8) (10)? « ESTIMATED ANSWER
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Since the digits read on the slide rule were 946, the actual product would be
9.46(10)%. The projection rule should not be used with inverted scales, since the
number of left projections are sometimes difficult to determine.

Proper use of the folded and inverted scales will enable one to work each prac-
tice problem below with only one setting of the slide.

Use of Folded and Reciprocal Scales Practice Problems

10-272. (264)(564)(522) = (7.77)(10)7
10-273. (387)(7.32)(176) = (4.99) (10)3
10-274. (0.461)(4.79)(1140) = (2.52)(10)3
10-275. (6.69)(1548)(92,000) = (9.53) (10)®
10-276. (561)(3.30)(1.94) = (3.59) (10)?
10-277. (1456)(0.351)(0.835) = (4.27) (10)?
10-278. (1262)(0.405)(65,100) = (3.33) (10)7
10-279. (0.1871)(5.04)(53,000) = (5.00) (10)*
10-280. (7.28 x 1075)(4.16)(14.10) = (4.27)(10)~3
10-281. (10.70)(19,400)(0.0914) = (1.897) (10)*
10-282. (4.56)(47.4)(87.1) = (1.883)(10)*
10-283. (0.510)(68.9)(3,370) = (1.184) (10)®
10-284. (2,030)(14.72)(129.7) = (3.88) (10)¢
10-285. (1824)(29.1)(21,800) = (1.157)(10)?
10-286. (0.0255)(0.0932)(0.867) = (2.06) (10)~3
10-287. (93.6)(3.99)(5,680) = (2.12)(10)¢
10-288. (4.48)(103.5)(0.198) = (9.18) (10)*
10-289. (0.580)(43,700)(40.3) = (1.021) (10)°
10-290. (7.05)(62.0)(34.9) = (1.525)(10)*
10-291. (74.8)(8.)(483,000) = (2.89)(10)*
(208)(90.2)

10-292. LD = (6.13)(10)

10-293. (0'3?3')1(1%5)’200) = (8.26)(10)*

10-294, (0'45?3’,;154')(()516‘8)10_‘5) — (8.52)(10)~%
10-295. %{;gﬂ — (1.40)(10)°

10-296. %9 — (2.42)(10)?

10-297. (68,23(5),)6(0102),080) — (3.09)(10) "
10-208. B9 (07)1(;')0(003 4160)—20) — (4.52)(10) 19
-2 (0.000(517:(6);(();4,700) = CLASSH I
HUSH (15.14(3265.())0194) = CLISRICI00
10-301. (917,000) = (1.41)(10)°

(54.3)(119.8 x 107%)
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Squares and Square Roots

The A and B scales have been constructed so that their lengths are one-half
those of the C and D scales (see Figure 10-20). Similarly some slide rules are so
constructed that they have a scale (Sq 1 and Sq 2, or R, and R,) which is twice as
long as the D scale. This means that the logarithm of 3 as represented on the D

———1log9 > V25
3

AScale
IR RN A KRR AN
. | L | LLETI Figure 10-20.
[DScale
1 3 4 &6 7 8 91
LIIl|IllIl | | II l|lll|[h|

log3 5

scale would be equivalent in length to the logarithm of 9 on the A scale. Where the
Sq 1 and Sq 2 or the R, and R, scales are used in conjunction with the D scale, the
logarithm of 3 on the Sq 2 (R;) scale would be equivalent in length to the logarithm
of 9 on the D scale.

To Find the Square Root of @ Number Using the A and D Scales

1. Get an estimate of the intended answer by placing a bar over every two digits,
starting at the decimal point and working outward. There will be a digit in the
answer for each bar marked.

2. Set the number on the A scale and read the square root on the D scale under
the hairline. Note that the estimated answer will always indicate which A scale to
use, since only one of the scales will give a square root near the estimated value.

Greater accuracy can be obtained by using the D scale in conjunction with the
Sq 1 and Sq 2 scales (R; and R,).

Examples for Finding the Location of Decimal Points:

9 =x
@. \/97 65 The estimated answer is somewhere between 90 and 100.

.0 5
b. \/700 30 The estimated answer is approximately 0.05.

NOTE: In the last example, since the given value was 0.003, an extra zero would
have to be added after the 3 to complete the digits beneath the bar.
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Examples for Finding the Square Root of a Number:

1 x x
@ \/7 03 57 The estimated answer is somewhere between 100 and 200.

VT 03 57 = 101.8 = 1.018 x 102

. \/000 05 20 The estimated answer is approximately 0.02.
V000 05 20 = 0.02280 = 2.280 X 10~2

Examples for Finding Squares:

1. Express the number in scientific notation.
a. (0.0000956)2 = (9.56 x 1075)2

2. Square each part of the converted term by setting the number to be squared
on the D scale and reading its square on the A scale under the hairline.

a. (9.56)? x (1073)2 =914 x 10719 =9.14 x 107?

b. (90100)% = (9.01 x 10%)2
(9.01)2 x (10%)? = 81 x 10% = 8.1 x 10°

c. (357000000)2 = (3.57 x 10%)2
(3.57)2 x (10%)2 = 12.7 x 10" = 1.27 x 10"7

d. (0.00000001050)% = (1.05 x 107%)2
(1.05)% x (1078)2 = 1.10 x 10716

Squares and Square Roots Practice Problems

10-302. (408)2 = (1.665)(10)" 10-309. (296,000) = (8.76) (10)1°
10-303. (8.35)2 = (6.97)(10)* 10-310. (1037)2 = (1.075)(10)°
10-304. (3,980)% = (1.584)(10)7 10-311. (8.93)% = (7.97)(10)?
10-305. (0.941)% = (8.85)(10)~! 10-312. (30.9)2 = (9.55)(10)2
10-306. (57.4)2 = (3.29)(10)3 10-313. (43,300)2 = (1.875) (10)?
10-307. (0.207)% = (4.28)(10) 2 10-314. (0.00609)2 = (3.71) (10) 3
10-308. (784)% = (6.15)(10)° 10-315. (0.846)% = (7.16)(10) !

10-316. (55.2 x 10%)2 = (3.05) (10)?

10-317. (0.0707)2 = (5.00) (10) 3

10-318. (11.92 x 10~%)2 = (1.421)(10) ¢

| 10-319. (0.291 x 10-5)% = (8.47)(10) 2

| 10-320. (449,000)2 = (2.02) (10)™

| 10-321. (0.000977)2 = (9.55)(10)~7
10-322. (33.5 x 10-6)2 = (1.122) (10)~°
10-323. (8,810)2 = (7.76) (10)7

|
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(50.9 x 10%)% = (2.59) (10)*®

(0.0714 x 107%)2 = (5.10)(10)

1/0.00002767 = (5.26) (10)~*

V1.142 X 10-% = (3.38)(10) 2

V61.78 x 10~ = (7.86) (10) 2
1/3.648 x 1078 = (1.91) (10)~*

32

10-324.

10-325. (99,300)% = (9.86) (10)?

10-326.

10-327. /96,100 = (3.10)(10)?2

10-328. /0.912 = (9.55)(10) !

10-329. \/24.9 = 4.99

10-330. +/0.01124 = (1.06) (10) !

10-331. \/5,256 = (7.25)(10)!

10-332. /0.3764 = (6.14) (10) !

10-333. /43,800,000 = (6.62)(10)?

10-334. /0.01369 = (1.17)(10) !

10-335. \/73.6 = 8.58

10-336. \/1.1025 = 1.05

10-337. /487,000 = (6.98) (10)2

10-338. \/580.8 = (2.41)(10)!

10-339.

10-340. \/0.1399 = (3.74)(10) !

10-341. /6,368 = (7.98) (10)?

10-342.

10-343. /6.496 x 10! = 8.06

10-344. /190,970 = (4.37) (10)2

10-345. /3,204,000 = (1.79) (10)?

10-346. 1/0.003807 = (6.17)(10) 2

10-347. 1/0.08352 = (2.89)(10) !

10-348. /3069 = (5.54)(10)!

10-349.

10-350.

10-351. \/9.92 x 10° = (9.96) (10)2
Problems

Solve by method of squares and square roots.

10-352.
10-353.
10-354.
10-355.
10-356.
10-357.
10-358.
10-359.

(1468.)2
(0.886)2
(67.4)2
(11.96)2
(0.00448)?
(0.000551)2
(9.22)?
(64,800.)2

10-360.
10-361.
10-362.
10-363.
10-364.
10-365.
10-366.
10-367.

(0.0668)?
(16.85)?
(1.802 x 10°)?
(0.00358)?
(5089)2
(44,900.)2
(64.88)2
VI1.81

10-368.
10-369.
10-370.
10-371.
10-372.
10-373.
10-374.
10-375.

V4567.
\/0.01844
\/0.9953
V1395,
1/0.0001288
V1.082 x 10°
V759

vV
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10-376. +/73,800. 10-384. (54.23)%(88,900)*%
10-377. \/13.38 10-385. \/234.5 \/55,900.
10-378. \/93.07 10-386. \/16.38 \/45.6 \/0.9
10-379. +/0.1148 10-387. \/415. V7 \/86.4
10-380. \/0.2776 10-388. /15.66 \/0.1904 \/m
10-381. /931 10-389. (34.77)2(54.8)2(0.772)%
10-382. (0.774)%(11.47)% 10-390. \/7.90 \/7.02 \/11.54
10-383. (0.1442)%(33.89)% 10-391. \/31.19 \/56.7 \/54.8

Cubes and Cube Roots

The D and K scales are used to find the cube or cube root of a number as shown
in Figure 10-21. The same general procedure is used as that followed for squaring

K Scale

1 2 34567 2 |3 4 56789 2 3 456789
X [ | lilHﬂ | IIHIII‘ | !l]IlHI
Figure 10-21.

D Scale

1 3 5 6 |7 8 91

Lovoilinn | EEREE N rnn

, Y
2 3 (5)° (6.97)

numbers and taking the square root of a number. The K scale is divided into scales
Ki, K;, and K3, which are each one-third the length of the D scale. Thus, if a number
is located on the D scale, the cube of the number will be indicated on the K scale.
It follows that if a number is located on one of the K scales, the root of the number
would appear on the D scale.

To Find the Cube Root of a Number

1. Get an estimate of the intended answer by placing a bar over every three
digits, starting at the decimal point and working outward. There will be a digit in
the answer for each bar marked.

2. Set the number on the K scale and read the cube root on the D scale under
the hairline. (Some slide rules, such as those made by Pickett, have three cube root
scales instead of the conventional K scale. These cube root scales are used with the
D scale to determine cubes and cube roots of numbers. When they are used, however,
the number should be set on the D scale and the cube root read on the appropriate
cube root scale.)
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Examples for Finding the Location of Decimal Points:

3 X.
a. \/44, 800. The estimated answer is somewhere between 30 and 40.
0. 0 2

b. X/0. 000 011 The estimated answer is approximately 0.02.

NOTE: In estimating the answer by marking bars over the digit groupings, be sure
that the bars cover three digits instead of two, as was the case in square roots.

Since an estimated answer [see Example a. above] has been obtained, it is easy
to pick the proper K scale (K, K, or K;) to use. Remember that only one of these
will give an answer between 30 and 40 [see Example a.].

Examples for Finding the Cube Roots of a Number:

1 X X
a. \/71 490 000. The estimated answer is somewhere between 100 and 200.
/1 490 000. = 114.1 = (1.141)(10)2

. 0 6
b. X/0. 000 156 9 The estimated answer is approximately 0.06.

/0. 000 156 9 = 0.0537 = (5.37)(10)2.

o

Examples for Finding Cubes:

1. Convert the number to a number between 1 and 10 (scientific notation) that
must be multiplied by 10 raised to some power.

a. (0.00641)% = (6.41 x 107%)3

2. Cube each part of the converted term by setting the number to be cubed on
the D scale and reading its cube on the K scale under the hairline.

a. (6.41 x 1073)% = (264)(10)~° = 2.63 x 1077

b. (93.88)% = (9.388 x 10%)?
(9.388)3(10')% = 830 x 10° = 8.27 x 10°

c. (2,618,000.)® = (2.618 x 10°)3
(2.618)3(109)% = (17.95 x 10)*® = 1.794 x 10"

d. (0.000001194)% = (1.194 x 1076)?
(1.194)3(107%)% = 1.701 x 10718



Cubes and Cube Roots Practice Problems

10-392.
10-393.
10-394.
10-395.
10-396.
10-397.
10-398.
10-399.
10-400.
10-401.
10-402.

10-414.
10-415.
10-416.

10-417.
10-418.
10-419,
10-420.
10-421.
10-422.
10-423.
10-424.
10-425.
10-426.
10-427.
10-428.
10-429,
10-430.
10-431.
10-432.
10-433.
10-434.
10-435.
10-436.
10-437.
10-438.

10-439
10-440
10-441

(206)% = (8.74) (10)°
(7.68)% = (4.53)(10)2

(0.00519)% = (1.398)(10) -

(33.5)* = (3.76) (10)*
(0.229)% = (1.201) (10) 2
(1090)3 = (1.295) (10)?
(0.0579)* = (1.94)(10)~*
(9.89)% = (9.67) (10)?
(419) = (7.36) (10)7
(52.4)% = (1.439)(10)5

(0.0249)% = (1.544)(10)~%

(691)3 = (3.30) (10)*
(0.719)* = (3.72) (10) !
(4.34)% = (8.17)(10)1

q

/30,960,000 = (3.14) (10)?

\/0.001728 = (1.20) (10) !

491 = 7.89

9.91 x 10! = (9.97)(10)®

W0.272 = (6.48) (10) 1
118,400 = (4.91) (10)!

\/22.91 = 2.84
/527,500 = (8.08) (10)!
\/1.295 = 1.09

\30.0001804 = (5.65)(10) 2
\3/460,100,000 = (7.72)(10)*

\¥261,000 = (6.39) (10)!
\¥0.11620 = (4.88)(10) !

\0.0030486 = (1.45)(10)~*

~/0.03096 = (3.14)(10) !

/504.4 = 7.96
\¥/8,869,000 = (2.07) (10)*

\¥174,700,000 = (5.59) (10)?
\¥/5.886 x 10 = (3.89)(10)3
\¥/5.885 x 101 = (8.38)(10)!
¥/76.105 x 10—° = (9.13)(10) 2

¥/327.1 = 6.89
\¥0.02567 = (2.95)(10) 1

368,420 = (4.09) (10)*

. 0.0004118 = (7.44)(10) 2

10-403.
10-404.
10-405.
10-406.
10-407.
10-408.
10-409.
10-410.
10-411,
10-412.
10-413.
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(14.9)° = (3.31)(10)?
(2.96)% = (2.59) (10)*
(397)% = (6.26) (10)7
(63.4)% = (2.55)(10)3
(9040)% = (7.39) (10)1
(0.0783)3 = (4.80)(10) ~*
(0.844)% = (6.01) (10) !
(5.41)% = (1.583)(10)*
(35.5)% = (4.47) (10)*
(0.1270)% = (2.05) (10) 3
(20.7)* = (8.87) (10)?
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Problems

Solve by Method of Cubes and Cube Roots.

10-442.
10-443.
10-444.
10-445.
10-446.
10-447.
10-448.
10-449,
10-450.
10-451.
10-452,
10-453.
10-454.
10-455.

10-468.
10-469.
10-470.
10-471.

10-472.
10-473.
10-474.
10-475.
10-476.
10-477.
10-478.
10-479.
10-480.

10-481.
10-482.

(86)*

(148)3
(395,000)3
(47.6)°
(1.074)3
(76.9)*
(220.8)3
(9.72)®
(110.7)3
(91.3)3

(1.757 x 10%)?
(3.06 x 10-7)3
(44.8 x 1071)3
(0.933 x 10-2)3

WO.1853
Y1288
VT84 % 105

W/3.86 X 101
(9.94) (0.886)%
(248.) (11.98)%

(0.117) (0.0964) %

(7)3(44.89)3

10-456
10-457

10-458.
10-459.

10-460
10-461
10-462
10-463
10-464
10-465
10-466
10-467

(6.88)(0.00799)?
(0.915)%(0.366) %/ 11,250(36.12)%
(2.34)3(3.34)3(4.56)%(5.67)°
(8.26)%(8.26)3(1000)%(10)?
/2670 /3165 /1065 /7776
/206 /0.791(12.35)%(26.3)*

Trigonometric Functions

. (0.1184 x 108)3
. (515 x 10%)*
/118

. Y9

. \/0.001338
. W0.1794
. ¥/34,690.
. /1,258,000

Finding trigonometric functions on a log-log rule is a rather simple process. The
angle may be read on the S (sine), ST (sine and tangent of small angles), or T
(tangent) scales. The functions may be read under the hairline on the C, D, or DI
scales without any movement of the slide.

Sine 0° to 0.574°.

It is not often that the student needs to know the function

of extremely small angles, but if he does need them, it is possible to get approximate

values for these functions without consulting tables.
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Method 1: (Based upon the relation that the sine of small-angles is approxi-
mately equal to the size of the angle expressed in radians)

1. This method is more accurate than the following Method 2, and is preferable.

2. Express the angle in question in degrees.
3. Change the degrees to radians by dividing by 57.3.

NOTE: 57.3° = 1 radian (approximately)

4. The value obtained is the approximate answer.

Example: sin 6’ = ?
6’ = G‘;() = 0_100
. 0.10
, 0.
sin 6’ = 573

sin 6’ = 0.00174 approximately
Method 2:

1. Keep in mind the following values:

sin 17 = 0.000005 (five zeros-five) approximately
sin 1’ = 0.0003 (three zeros-three) approximately

2. For small angles, multiply the value of 1’ or 17, as the case may be, by the
number of minutes or seconds in question.

Example: sin 6’ =?
sin 6’ = (6)(sin1")
sin 6’ = (6)(0.0003)
sin 6/ = 0.0018 approximately

Sine 0.574° to 5.74°. To find the sine of an angle between 0.574° and 5.74°,
the ST and D scales are used as shown in Figure 10-22.

Example: §inl.5% =7
Angle is 1.5°
i
T o X L] 3e ° 50
LS R 1| b 2I I ‘1
Figure 10-22. DScale 2 3 4 5 6 7 891
L 1 L | | 1 N [ A
Y
Sine of the angle is 0.0262
INSTRUCTIONS
1. Be certain that the left index of the D scale is directly under the left index of
the ST scale.

2. Set the hairline to the angle on the ST scale.
3. Read the answer on the D scale. The answer will be a decimal number and

will have one zero preceding the digits read from the rule.
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Sine 5.74° to 90°. To find the sine of an angle between 5.74° and 90°, the S
and D scales are used as shown in Figure 10-23.

Example: sin 45° = 2
Angle is 45°
S SCGIB 10° 200 30° 40°|50°60°80°)
L L L 1 L )
D Scale 2 3 4 5 8 78 93 Figure 10-23.
— L 1 T S

-t

Sine of the angle is 0.707

INSTRUCTIONS:

1. Be certain that the left index of the D scale is directly under the left index of
the S scale.

2. Set the hairline to the angle on the S scale. If the rule has more than one set of
figures on the S scale, the angles for sine functions are usually shown to the right of
the longer graduations.

3. Read the answer on the D scale. Place the decimal preceding the first digit
read from the rule.

Sines Practice Problems

10-483. Sin 26° = 0.438 10-496. Sin 5.17° = 0.0901
10-484. Sin 81° = 0.988 10-497. Sin 33.8° = 0.556
10-485. Sin 16° = 0.276 10-498. Sin 20.3° = 0.348
10-486. Sin 15.5° = 0.267 10-499. Sin 68.2° = 0.928
10-487. Sin 42.6° = 0.677 10-500. Arc Sin 0.557 = 33.8°
10-488. Sin 3.33° = 0.0581 10-501. Sin~—'0.032 = 1.83°
10-489. Sin 10.17° = 0.1765 10-502. Sin~10.242 = 14.0°
10-490. Sin 63.2° = (0.893 10-503. Arc Sin 0.709 = 45.15°
10-491. Sin 70.83° = 0.945 10-504. Sin—10.581 = 35.5°
10-492, Sin 26.67° = 0.449 10-505. Arc Sin 0.999 = 87.5°
10-493. Sin 7.33° = 0.1276 10-506. Sin~—! 0.569 = 34.68°
10-494. Sin 2.83° = 0.0494 10-507. Sin~'0.401 = 23.6°

10-495, Sin 51.5° = 0.783

Cosine 0° to 84.26°. To find the cosine of an angle between 0° and 84.26°,
the markings to the left of the long graduations on the S scale are used in con-
junction with the D scale. Note that the markings begin with 0° at the right end
of the scale and progress to 84.26° at the left end of the scale as shown in Fig-
ure 10-24.

Example: cos 74.1° =7
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Angle is 74.1°
A
S Scale 80° 700 60° 50° 40°30° 0
| I | L L1 11
Figure 10-24. D Scale 2 3 4 5 6 7891
I ol 1 1 T S S |

Cosine of the angle is 0.274

Cosine 84.26° to 89.4°. To find the cosine of an angle between 84.26° and
89.4°, the complement of the angle on the ST scale is used in conjunction with the
D scale.

Example: cos 88.5° =7
complement of 88.5° = 1.5°
sin 1.5° = 0.0262
cos 88.5° = 0.0262

Cosine 89.4° to 90°. To find the cosine of an angle between 89.4° and 90°,
determine the complement of the angle and find the value of the sine of this angle
as previously discussed.

Example: cos 89.94° = ?
complement of 89.94° = 0.06°
: o 006
sin 0.06° = 373 = 0.001048

cos 89.94° = 0.001048

NOTE: In finding the cosine of any angle, it is sometimes more convenient to look
up the sine of the complement of the angle.

Example: cos 60° = 7
complement of 60° = 30°
sin 30° = 0.500

Therefore, cos 60° = 0.500

Cosines Practice Problems
10-508. Cos 18.8° = 0.947 10-517. Cos 8.9° = 0.988
10-509. Cos 33.17° = 0.837 10-518. Cos 77.6° = 0.215
10-510. Cos 71.5° = 0.317 10-519. Cos 39.1° = 0.776
10-511. Cos 45° = 0.707 10-520. Cos 50.7° = 0.633
10-512. Cos 68.3° = 0.370 10-521. Cos 11.5° = 0.980
10-513. Cos 26.9° = 0.892 10-522. Cos 49.2° = 0.653
10-514. Cos 55.7° = 0.564 10-523. Arc Cos 0.901 = 25.7°
10-515. Cos 5.5° = 0.995 10-524. Cos—10.727 = 43.4°

10-516. Cos 81.3° = 0.151 10-525. Cos™10.0814 = 85.3°
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Cosines Practice Problems (continued)
10-526. Arc Cos 0.284 = 73.5° 10-530. Arc Cos 0.303 = 72.4°
10-527. Cos~!0.585 = 54.2° 10-531. Cos~10.505 = 59.7°
10-528. Cos—!0.658 = 48.8° 10-532. Cos~10.693 = 46.1°

10-529. Cos~10.1190 = 83.1°

Tangent 0° to 5.74°. For small angles (0° to 5.74°) the tangent of the angle
may be considered to be the same value as the sine of that angle.

Tangent 5.74° to 45°. To find the tangent of an angle between 5.74° and 45°,
the T scale is used in conjunction with the D scale, as shown in Figure 10-25.

Example: Find tan 30°,

Angle is 30°
TScale 10° 20° 30° 40°45°
' : ' ' LJ Figure 10-25.
D Scale 2 3 4 5 6 7 8 91
| | | | I Y T
Y

Tangent of the angle is 0.577

INSTRUCTIONS

1. Be certain that the left index of the D scale is directly under the left index
of the T scale.

2. Set the hairline to the angle on the T scale. If the T scale has more than
one set of markings, be certain that the correct markings are used.

3. Read the answer on the D scale. Place the decimal preceding the first digit
read from the rule.

Tangent 45° to 84.26°. To find the tangent of an angle between 45° and
84.26°, the markings to the left of the longer graduations on the T scale are used
in conjunction with the CI or DI scales, as shown in Figure 10-26.

Example: tan 70° = ?
Angle is 70°
T Scale 80° 70° 60° 50° 45°
' 1 ' 1 ' Figure 10-26.
98B 7 6 5 4 3 2 Dl Scale
| (T I | | | . | J

A
Tangent of the angle is 2.74

=

-
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INSTRUCTIONS

1. Be certain that the left index of the DI or CI scale is aligned with the left
index of the T scale.

2. Set the hairline to the angle on the T scale.
3. Read the answer on the CI or DI scale. Note that these scales read from
right to left. Place the decimal after the first digit read from the rule.

Tangent 84.26° to 89.426°. To find the tangent of an angle between 84.26°
and 89.426°, the complement of the angle on the ST scale is used in conjunction
with the CI or DI scales, as shown in Figure 10-27.

Example: tan 88° =7

Complement of angle is 2°
A

ST Scale o o 3c 40 30
Figure 10-27. L 1 1 ] L
198 7 6 5 4 3 2 DI Scale
R R (I ] ] y

/
Tangent of the angle is 28.6

INSTRUCTIONS

1. Be certain that the left index of the DI or CI scale is aligned with the left
index of the ST scale.
2. Complement of 88° = 2°.

3. Read the answer on the DI or CI scale. Note that these scales read from
right to left.

4. Place the decimal point after the first two digits read from the rule.

Frequently the value of the function of an angle is known and it is desired to
find the value of the angle.

Example: sin @ = 0.53;
0=7

This may be written in the inverse form in either of two ways:

Arcsin0.53 = @
or Sin~10.53 =0
then g =32°

The forms arc sin, arc cos, and arc tan are usually preferred in modern practice.
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Tangents Practice Problems

10-533. Tan 29.6° = 0.568
10-534. Tan 48.2° = 1.118
10-535. Tan 11.5° = 0.203
10-536. Tan 71.9° = 3.06

10-537. Tan 5.7° = 0.0993
10-538. Tan 61.4° = 1.834
10-539. Tan 33.3° = 0.657
10-540. Tan 69.2° = 2.63

10-541. Tan 40.6° = 0.857
10-542. Tan 8.7° = 0.1530
10-543. Tan 17.5° = 0.315
10-544. Tan 85.1° = 11.66
10-545. Tan 58.6° = 1.638

10-546.
10-547.
10-548.
10-549,
10-550.
10-551.
10-552.
10-553.
10-554.
10-555.

Tan 39.3° = 0.818
Tan 20.9° = 0.382
Tan 42.1° = 0.904
Arc tan 0.362 = 19.9°
Arc tan 0.841 = 40.1°
Tan~10.119 = 6.78°
Tan—!0.0721 = 4.13°
Tan—! 1.732 = 60°
Arctan 21.6 = 87.3°
Tan~10.776 = 37.8°

10-556 Arc tan 89.3 = 89.36°

10-557.

Tan~'0.661 = 33.5°

The following tables have been prepared for reference purposes. The student
should check all the examples with his rule as he proceeds.

READ READ
ANGLE ANGLE FUNCTION DECIMAL EXAMPLES
ON ON

sine or 0°—0.574° Convert the angle to radians (1 radian = 57.3°), and this
tangent value is assumed to be equal to the sine or tangent of the angle.
sine or tan 2° = 0.0349
tangent 0.574°-5.74° ST D 0.0xxx sin 3° = 0.0523
sine 5.74°-90° S (right

markings) D 0.xxxx sin 29° = 0.485
cosine 0°-84.26° S (left

markings) D 0.xxxx cos 43° = 0.7314
tangent 5.74°-45° T (right

markings) D 0.XXXX tan 13° = 0.231
tangent 45°-84.26° T (left

markings) DI X.XXX tan 78° = 4.70
tangent 84.26°-89.426 Set comple-

ment on ST DI XX.XXX tan 89° = 57.3
cosecant 5.74°-90° S (right

markings) DI X.XXX csc 63° = 1.122
secant 0°-84.26° S (left

markings) DI X.XXX sec 48° = 1.494
cotangent | 0.574°-5.74° ST DI XX.XX cot 3.5° = 16.35
cotangent 574°-45° T (right

markings) DI X.XXX cot 23° = 2.36
cotangent 45°-84.26° T (left

markings) D 0.xxxX cot 68° = 0.404

Tr



Trigonometric Functions: Problems

Solve, using the slide rule.

10-558. sin 35° 10-586.
10-559. sin 14° 10-587.
10-560. sin 78° 10-588.
10-561. sin 3.7° 10-589.
10-562. sin 88.3° 10-590.
10-563. sin 55.3° 10-591.
10-564. cos 35° 10-592.
10-565. cos 66° 10-593.
10-566. cos 21.3° 10-594.
10-567. cos 11.1° 10-595.
10-568. cos 7.9° 10-596.
10-569. cos 43.8° 10-597.
10-570. tan 33.8° 10-598.
10-571. tan 9.4° 10-599.
10-572. tan 37.7° 10-600.
10-573. tan 22.5° 10-601.
10-574. tan 86.1° 10-602.
10-575. tan 54.4° 10-603.
10-576. tan 70.3° 10-604.
10-577. tan 29.7° 10-605.
10-578. tan 36.5° 10-606.
10-579. tan 13.3° 10-607.
10-580. tan 45.8° 10-608.
10-581. cot 14.7° 10-609.
10-582. cot 81.8° 10-610.
10-583. cot 36.9° 10-611.
10-584. cot 61.2° 10-612.
10-585. cot 54.3° 10-613.

10-642. (csc 20°)(sin 46°)

10-643. (cos 32°) (tan 43°)

(sin 13.9°)

(cot 13.9°)

cot 33°22’

sec 4°53

(cos 33°15")

(cot 46°19")

(sec 10°) (cot 10°)

(sin 10°) (csc 107)

8. (sin 35°) (tan 22°)
(\¥sin 5.96%)

10-644.

10-645.

10-646.

10-647.

10-64

cot 18.7°
cot 3.77°
cot 66.4°
csc 38.1°
cseT52°
csc 88.3°
csc 12.8°
csc 46.4°
csc 81.1°
csc 32.6°
csc 9.03°
sec 6.14°
sec 59.2°
sec 79.4°
sec 19.5°
sec 2.77°
sec 45.9°
arc-sin 0.771
arc cos 0.119
arc tan 34.8
arc sec 7.18
arc csc 1.05
cos 33.4°
cos 3.6°

arc cos 0.992
cos 24.67°
cos~10.496
cos 36°6’

10-649.

10-650.

10-651.

10~-652.

10-653.

10-614.
10-615.
10-616.
10-617.
10-618.
10-619,
10-620.
10-621.
10-622.
10-623.
10-624.
10-625.
10-626.
10-627.
10-628.
10-629.
10-630.
10-631.
10-632.
10-633.
10-634.
10-635.
10-636.
10-637.
10-638.
10-639.
10-640.
10-641.
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arc cos 0.238
cos 0.75°
cos 36.6°

tan 32.6°
tan 16.34°
tan 88°30’
arc tan 0.62
tan—! 0.75
arc tan 0.392
tan~ ! 1.53
tan 37°24’
arc tan 0.567
tan—! 0.0321
cot 19°3%
sec 46°46"
csc 827127
sin 37°

sin 51°507
sin 68°37/
sin 75°10”
arc sin 0.622
sin 13.6°
sin~! 0.068
sin 14.6°

arc sin 0.169
sin 34.67°
cos 26.26°
csc 20°207

(sec 11°)(tan 4°)

(cot 49°)

(sin 8°) (tan 9°)

(cot 82°)

(sin 1.36°) (cot 26°)

(~¥0.00916)

cotsin~10.916
(1.32)(5.061)

(77.19) (sec 46°

)

(tan 3.91°)
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Trigonometric Functions: Problems (continued)

10—654. (¥tan 25.9°) (sincos™' 0.5) 10-656. (1.916) (x¥/1.916) (+¥sin 20°)

(sin 5.16°) (tan 22°) ("¥sec 40°) (tan 10°22")
10-655. (0.03.11)(sec 69°)°%/9.0 10-657. _(6.17) (tan 6.17°) (:¥/6.17)
(sin 9°) (cos 9°) (6.17)%(sin 61.7°) (cos 6.17°)

Right Triangle Solution (Log-Log Rule)

In the study of truss design, moments, and free body diagrams, the right triangle
plays an important role. Since the Pythagorean theorem is sometimes awkward to
use, and mistakes in arithmetic are likely to occur, it is suggested that the following
method be used to solve right triangles.

Given: Right triangle with sides a, b, and ¢ and angles 4, B, and C (90°), as
shown in Figure 10-28.

A
b J Figure 10-28.
900
C a B

If the smaller side (b) is divided by the longer side (a) and the quotient is
greater than 0.100, use Solution 1. If the quotient is between 0.100 and 0.0100,
use Solution 2. If the quotient is less than 0.0100, assume that the hypotenuse
(¢) is equal in length to the longest side (@) and that angle B = 0°.

Solution 1

1. Set the index of the T scale above the larger side (a) on the D scale.

2. Move the hairline to the smaller side (b) on the D scale.

3. Read the two angles of the right triangle on the T scale. The larger angle
is always opposite the larger side.

4. Move the slide until the smaller of the two angles just read is under the
hairline on the sine scale.

5. Read the hypotenuse (c¢) on the D scale as indicated by the index of the
sine scale.

Example: a=+4 A=7
b=3 B =7
c="1?

a. Setright index of T to 4 on the D scale.

Move the hairline to 3 on the D scale.

c. Read B = 36.9°, A = 53.1° on the T scale. (Note that the smaller angle
is opposite the smaller side.)

d. Move the slide so that 36.9° on the S scale is under the hairline.

e. Read side ¢ = 5 at the right index of the S scale on the D scale.

&

r
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Solution 2

1. Set the index of the T scale above the largest side (a) on the D scale.

2. Move the hairline to the smaller side (b) on the D scale.

3. Read the smaller angle (B) on the ST scale. The other angle (A4) is the
complement of B.

4. The hypotenuse is assumed to be equal in length to the largest side.

Solution 3: This solution is used where the hypotenuse and one side are given.

Example: a=526 A=7?
b=7? B =7
c=28.75

a. Setindex over 8.75 on D scale.

b. Move hairline to 5.26 on D scale.

c. Read 4 = 37.0°; B = 53.0° on the S scale. (Note that the angle read on
the sine scale is opposite the given side.)

d. Set hairline to 37° on the cosine scale.

e. Read b = 7.0 on the Drscale.

Problems

Solve by right triangle method.

T I = N L
0an A28 BE1 e gmae a7
O T = I o A
o TIPS e gTi )
ez 2ZB3 01 e gTiE o0
wea J282 327 penslEm 4=
e I S O
I = S S N
O = T Yo
e = R T A
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The Log-log (Lon) Scales

There are two groups of log-log scales (also called “Lon” scales) on the slide
rule. Scales within the two groups are arranged in matched sets. Some slide rules
have four matched sets, whereas others have three. These scales are used to obtain
the roots, powers, and logarithms of numbers. The matched sets are arranged as
follows:

Matched Sets of Log-Log Scales

Four SETs THREE SETS
For Numbers Larger For Numbers Smaller
Than One Than One
(called “Lon” (called “Lon-minus” (called LL (called LL,
scales) scales) scales) scales)
LnO .. ... .............. Ln-0
EBT & o5 o somes 55 56 o s Ln-1 5 LL,,
Ln2 .. ... ... ... .. ... ... Ln-2 . LL;,
EAB v ve v v g9 5 s Ln-3 ) LL,,

The C and D scales are used in conjunction with these matched sets of log-log
scales. In former years other rules were manufactured with only two LL, scales, and
these are marked LL, and LL,,. The A and B scales were used with LL, and LL,,
scales on this type of rule. The general principles discussed below apply to all of
the various types of log-log scales.

Scale Construction

If the Lon scales Ln0O, Ln1, Ln2, and Ln3 were placed end to end, they would
form a continuous scale, as shown in Figure 10-29. Similarly, if the Lon-minus
scales Ln-0, Ln-1, Ln-2, Ln-3 were placed end to end, they would form a continu-
ous scale. The Lon-minus scales are graduated from approximately 0.999 to 0.00003
(representing the values of €~%%! to €71°). The Lon scales are graduated from ap-

1105 €
: |
1.01 Ln1 n3
EA__L__l_l_A_J_j 90— o ,L"?, g gl @ €10=122 026
e"Pl=1.001 €%l =1105 el=2718

Figure 10-29.

proximately 1.001 to 22,026 (representing the values of € %! to € 1°). Since € ® = 1,
values on both the Lon and Lon-minus scales approach the value 1.0000.

Each division on the Lon and Lon-minus scales represents a single unique
number. Thus the decimal point is already marked on these scales for all of the

ir
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numbers located on the scales. For example, there is only one place on the Lon
scales that the number 125.0 may be found. The number 125.0 is found on the
Ln3 (LL,) scale, whereas the number 1.25 is found on the Ln2 (LL,) scale.
Since the manner in which settings are read on the log-log scales is distinctly dif-
ferent from the method of reading the scales previously studied, the student should
be very careful in making his slide rule settings.

Reciprocal Values

The only case where the Lon and Lon-minus (LL and LL,) scales may be
used together is in the finding of reciprocals of numbers. The reciprocal of any
number on the Lon (LL) scales can be read on the corresponding Lon-minus (LL,)
scale.

Examples:

1. Find 1.25 on the Ln2 (LL,) scale. On the Ln-2 (LL,,) scale its reciprocal
can be read as 0.80.

2. Find 236 on the Ln3 (LL,) scale. On the Ln-3 (LL,;) scale its reciprocal
can be read as 0.00424.

Raising a Number to a Power

If such problems as (5.3)% = ? were worked entirely by logarithms, the follow-
ing procedure would be required:

1. (53)*=7?

2. log ans. = 3(log 5.3)

3. log[log ans.] = log 3 + log (log 5.3)
4. Answer = (1.488)(10)?

Step 3 is rather involved in many instances. It is for this reason that the log-log
scales have been added to the slide rule. Since log-log values of numbers are
recorded on the Lon (LL) scales and the log values of numbers have been recorded
on the C and D scales, it is quite-convenient to perform Step 3 in the preceding
example.

The Lon (LL) and Lon—minus (LL,) scales are also used in conjunction with
the C and D scales to find powers, roots, and logarithms to the base € of numbers.

In order to raise any number greater than 1.01 to any power:

(X)"=4

1. Set the index of the C scale over the value X found on the appropriate Lon
(LL) scale (Ln0O, Lnl, Ln2, or Ln3).

2. Move the hairline to the value n on the C scale.

3. Read the answer A on the appropriate Lon (LL) scale.
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Example: (1.02)25 = 2

log [log ans.] = log 2.5 + log (log 1.02)
Answer = 1.0507

Eog-log].OQ log 25— Hairline
—

C Scale 2.5¢ 'U

L
———— log-log 1.0507 ———

SOLUTION:

1. Set the index of the C scale over the value 1.02 on the Lnl (LL,) scale.
2. Move the hairline to the value 2.5 on the C scale.
3. Read the answer 1.0507 on the Lnl (LL,) scale.

These scales are arranged so that a number on the Ln3 (LL,) scale is the tenth
power of the number directly below it on the Ln2 (LL,) scale, and the Ln2 (LL,)
scale gives the tenth power of a number in the corresponding position on the Lnl
(LL,) scale. Therefore the Ln3 (LL;) scale would give the one-hundredth power of

a number in the corresponding position on the Lnl (LL,) scale.

Example: (1.034)°% = 1.00773 ans. on the Ln0
(1.034)2% = 1.0799 ans. on the Lnl (LL,)
(1.034)2* = 2,156 ans. on the Ln2 (LL,)
(1.034)230- = 2160 ans. on the Ln3 (LL3)

In order to raise any number less than 0.99 to any power:

(X)" =4

1. Set the index of the C scale over the value X found on the appropriate Lon—

minus (LL,) scale Ln-0, Ln-1, Ln-2, or Ln-3 (LL,;, LL,, or LL;).
2. Move the hairline to the value » on the C scale.
3. Read the answer A on the appropriate Ln—0 (LL,) scale.

Example: (0.855)*% = A, as shown in Figure 10-31.
- Number |  Answer
L _lr_l
Ln2 0.855 0.471
L | | 1
' Figure 10-31.
C‘Sn:ule ‘lﬂ‘ L
Y
‘ \Power

Ln1 Scale ].92 1.0?07 J Figure 10-30.

-0
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Method of Scale Selection—Powers of Numbers

To use this method, we must consider three factors: (1) the particular log log
scale upon which the number is located, (2) the power of ten of the exponent when
it is expressed in scientific notation, and (3) the particular index of the C scale that
is used in the calculation.

1. Each log log scale is given a positive value as follows:

Ln0 =0 Ln-0=0

Lnl = +1 (Also LL,) Ln-1 = +1 (Also LL;)
Ln2 = 42 (Also LL,) Ln-2 = +2 (Also LLy)
Ln3 = +3 (Also LL;) Ln-3 = +3 (Also LLg3)

2. The exponent should be expressed in scientific notation and the power of ten
indicated.

3. Assume that the left index of the C scale has a value of zero (0) and that the
right index has a value of plus one (+1).

Rule for Scale Selection of Powers of Numbers

The number of the scale upon which the answer will be read is the algebraic
sum of (1) the value of the scale on which the number to be raised is found plus
(2) the C scale index value plus (3) the power of ten of the exponent.

Example: (1.015)% =7
Rewrite as (1.015)8%8000t =19
FACTOR DESCRIPTION OF FACTOR VALUE
1.015 1.015 is found on LL, scale +1
Left Index Use left index of C scale 0
56 Power of ten of exponent =1 +1
? Sum = Scale location of answer +2 « Answer on Ln2 (LL,)

Therefore, the answer will be read under the hairline on the Ln2 (LL,) scale.

(1.015)%¢ = 2.30 Answer

/ Hairline

Figure 10-32.
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Negative Exponents

In solving problems which involve raising numbers to a negative power, either of
two methods may be employed.

Method 1. Set the number and its exponent on the proper scales in the usual
manner. Instead of reading the answer on the usual log-log scale, read it on the
corresponding scale of the other group.

Example: (9.2) 35 =7

Instead of reading the answer as 2355 on the Ln3 (LL;) scale, read its reciprocal
value on the Ln-3 (LL,;) as 0.000425; therefore

(9.2) 735 =4.25 x 107* (Answer)

Method 2. Set the numbers on the rule in the usual manner, ignoring the nega-
tive exponent. When the answer by this operation has been obtained, determine its
reciprocal, using the CI scale.

On the slide rules that have only the LL; and LL,, scales, Method 2 is the only
method that can be used.

Powers of Numbers: Practice Problems

10-678. (53.2)%% = 28.2 10-691. (4.00)00157 = 1,022
10-679. (4.65)%6% = 285. 10-692. (0.0818) 0777 = 7.00
10-680. (0.836)%47 = 0.919 10-693. (1.382)2'% = 980.
10-681. (1.0042)27 = 2.48 10-694. (0.071) 94 = 3.38
10-682. (0.427)* = 0.0360 10-695. (0.232)09% = 0.876
10-683. (0.3156)* = 0.00988 10-696. (2.718)°4% = 1.50
10-684. (0.159)°47 = 0.292 10-697. (0.916)°7 = 0.9384
10-685. (1.0565)%5 = 15.2 10-698. (1.1106)'7 = 1.197
10-686. (32.5)095 = 1,254 10-699. (59.2) %43 = 0.1727
10-687. (3.45)4%5 = 318. 10-700. (883)°61 = 688.
10-688. (0.759)° = 0.252 10-701. (7676)0-001102 = 10099
10-689. (2.127)* = 20.5 10-702. (4.30)0521 = 2.14

10-690. (2.03) 5 = 0.0290

Finding Roots of Numbers

The process of finding roots of numbers is easier to understand if it is remem-
bered that

\/576 = X

may be written as (X)*! = 576
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Therefore we can “work backward” and apply the principles learned in raising
a number to a power. Proceed as follows:

Example:
A =X

1. Locate the root n on the C scale to coincide with the value A found on the
appropriate log-log scale.

2. Move the hairline to the particular index of the C scale which is located
within the body of the rule.

3. Read the answer on the appropriate log log scale.

Example: *¢/120 = 4.46 ans. on Ln3 (LL;), as shown in Figure 10-33.
Hairlineﬁ-.n: Root
=7
| C Scale 3;2‘; g
Figure 10-33. | :

T

I.lL: Scale 4,:1,3‘ 1210\‘ JJ/
~ Answer ‘ Number

Also %/120 = 1.1615 ans. on Ln2 (LL,)

%120 = 1.0152 ans. on Ln1 (LL,)

In taking the root of a number, students usually are less certain of the appropri-
ate scale upon which the answer is found. Therefore, a method of scale selection
similar to that employed for powers of numbers should be used.

Method of Scale Selection for Roots of Numbers

As before there are three factors which must be considered: (1) the particular
log-log scale upon which the number is located; (2) the power of ten of the ex-
ponent when it is expressed in scientific notation, and (3) the particular index of the
C scale which is used in the calculation.

1. Each log-log scale is given a negative value as follows:

Ln0=0 Ln-0 =0

Lnl = —1 (Also LL,) Ln-1 = —1 (Also LLy,;)
Ln2 = —2 (Also LL,) Ln-2 = —2 (Also LLy,)
Ln3 = —3 (Also LL;) Ln-3 = —3 (Also LL3)

2. The root should be expressed in scientific notation and the power of ten
indicated.

3. Assume that the leff index of the C scale has a value of zero (0) and that the
right index has a value of plus one (+1).
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Rule for Scale Selection for Roots of Numbers

The number of the scale upon which the answer will be read is the algebraic sum
of (1) the value of the scale on which the number whose root is to be determined is |
located, plus (2) the C scale index value, plus (3) the power of ten of the root.

Example:
+¥/0.0092 = Answer
FACTOR DESCRIPTION OF FACTOR VALUE
0.0092 0.0092 is found on Ln-3 (LL ) Scale -3
Left Index Use left index of C scale 0
4.37 Power of ten of root = 0 0
? Sum = Scale location of Answer =3 <« Answer on

Ln-3 (LLy,)

Therefore, the answer will be read on the Ln-3 (LL,;) scale as 0.342.

4.37
V 0.0092 = 0.342
&
4,37
1
i
0.0092
i
Answer
‘\—Huirlme
Figure 10-34.
Roots of Numbers Practice Problems .
10-703. "3/585 = 1254 10-713. V9235 =107
10-704.  £/570835 = 0.661 10-714. V505 =0.9418
10-705. /50763 = 0.598 10-715.  \/0.0108 = 0.524
10-706. %760, = 1.0321 10-716. *70.9762 = 0.018
10-707.  ¥/5.0001 = 0.215 10-717. 32000 = 4.30
10-708. '¥/826 = 3.60 10-718. °%/0.9792 = 0.592 ‘
10-709. °*/0862 = 0.646 10-719. %817  =5.09
10-710. 23859 = 6.92 10-720. *RT218 = 1.0726
10-711. 35, = 1.0655 10-721. *V/5235 =6.31
10-712. *3YT606 = 1.0223 10-722. *T00 = 1.0116
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10-723. °%/237 =3.16 10-726. 550018 = 0.323
10-724. *°/T060 = 2.22 10-727. /0954 = 0.932

10-725. '3/650 = 3.45

General Guides for Decimal Location

The student should be able to estimate the approximate answer and thereby
know on which scale the answer will be found.

The following suggestions are presented so that the student can more easily
decide whether the answer is to be larger or smaller than the original quantity.

(Number) Exponent — Answer

1. If the number is larger than 1.00 and the exponent is larger than 1.00, the
answer will be greater than the number.

2. If the number is less than 1.00 and the exponent is less than 1.00, the answer
will be greater than the number.

3. If the number is less than 1.00 and the exponent is greater than 1.00, the
answer will be less than the number.

4. If the number is greater than 1.00 and the exponent is less than 1.00, the
answer will be less than the number.

Results That Do Not Fall Within the Limits of the Scales

In many computations the final answer may be larger than 22,026 and hence
cannot be read within the limits of the scales. In such cases the original expression
must be factored before attempting to use the log—log scales. Several such methods
of factoring are explained below.

These methods are for use in finding the powers of numbers. For problems
involving roots of numbers convert the problem to one involving the power of a
number and then apply the appropriate method.

Example: V5 = (5);_= (5)05
1
{5 = (5)T = (5)%

Method 1. Express the number in scientific notation and raise each part to the
given power.

Example: (353)4=7
(35.3)* = (3.53 x 10)*
=:(3.53)* % (10)*
Now, using the Lon (LL) scales, and since (3.53)* = 155, we obtain

(35.3)* = 155. x 10*
= 1.55 x 10% (Answer)
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Method 2. Factor the number which is to be raised to a power and then treat
each part separately, as in Method 1.

Example: (15)5 =7
(15)°*=(3 x 5)°
= (3)* X (5)°
= (243)(3125)

= 7.59 X 10° (Answer)

Method 3. Divide the exponent into two or more smaller parts and, using the
log-log scales, compute each part separately. A final computation is made using the
C and D scales as in Method 1 and Method 2.

Example: (2.36)% =72
(2.36)1% = (2.36)° X (2.36)° x (2.36)°
= (73.2)(73.2)(73.2)
= 3.93 x 10° (Answer)

or (2.36) = (2.36)% x (2.36)7
= (960) (410)
= 3.93 x 10° (Answer)

(2.36)1 = (2.36)"F X (2.36)7¢
= (620)2
= 3.93 x 10° (Answer)

Example: (0.000025)** = 2
(0.000025)13 = (2.5 x 10-5)13
= (2.5)18 x (10-5)13
=3.29 x (10)~6s
= (3.29)(10)~%(10) 95

= (3.29)(10) ¢ (31?)

(3.29)(10) "%(0.316)
1.041 x 107% (Answer)

1

Method 4. Express the number in scientific notation and then express the
power of 10 in logarithmic form.

Example: (250)%2 =7
(250)32 = (2.50 x 102)32 = (2.50)32(10)84

where (10)%* = x may be expressed as log,, x = 6.4 orx = (2.51)(10)°
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Then
(2.50)32(10)84 = (1.87 x 10")(2.51 x 108)
and (1.87 x 101)(2.51 x 10%) = 4.71 x 107

Method 5. This method is more suitable for those numbers which have 5, 6,
7, 8, or 9 as the first digit.

Example: (645)18 =72
(645) = (0.645)13(10%)
= (0.00335)(10)%

= 3.35(10) (Answer)

Method 6. Factor the exponent such that one part is equivalent to an exact
power of ten.

Example: (2)2="7

First raise the base (2) to a power such that the answer is an exact power of ten.

(2)* = 10,000 = (10)*
k=13.29

AISO: ' (2)52 — (2)13.29+13.29+13.29+12.13
= (109 (10)*(10)4(2) >
— (104)3(2)12.13
= (10)'2(4500)
= (4.5)(10)* (Answer)

Example: (1.324)(10) ~® = (0.815)™

First choose a factor such that an exact power of ten is obtained.
(0.815)% = 0.0001 = (10)*

Then: (1.324) (10) =9 = (0.815)45+45+¢
= (0.815)%(0.815)%(0.815)"
= (10)~%(10)~(0.815)"
(1.324)(10) °

e t
(10)* = (0.815)
1.324(10) -1 = (0.815)¢
t =9.87
Therefore: (1.324) (10)~V= (0,815)45 a5+
(1.324) (10) =2 = (0.815) %%
and: m =999 (Answer)

Methods 1 and 6 are generally preferred over the other methods because they usually
make greater accuracy possible in the final answer.
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Finding the Natural Logarithm of a Number

The natural base for logarithms is €(2.71828—). The logarithm of any number
(to the base €) may be found as follows:

For Numbers Greater than 1.00
loge X =4

1. Locate the number X on the Ln0O, Lnl (LL,), Ln2 (LL,), or Ln3 (LLj;)
scale.

2. Read the logarithm of the number under the hairline on the D scale.

Location of Decimal Point

If the number X is on Decimal point in the answer
Ln3 or LL; X.XXX
Ln2 or LL, 0.xxx
Lnlor LL, 0.0xxx
Ln0O 0.00xx
Examples: log. 62 =4.13

log. 1.271 = 0.240
log. 1.026 = 0.0257

For numbers Less than 1.00
loge X =4

1. Locate the number X on the Ln—-0, Ln-1 (LL,), Ln-2 (LLy,), or Ln-3

(LLy;3) scales.
2. Read the logarithm (to the base €) of the number A directly above X on the

D scale.
Location of Decimal Point !

If the number X is on Decimal point in the answer
Ln-3 or LL; —X.XXX
Ln-2 or LL, —0.xxx
Ln-1 or LLy, —0.0xxx
Ln-0 —0.00xx

3. The logarithm (to the base €) of all numbers less than 1.000 is a negative
number.

Examples: loge 0.0045 = —5.40
log. 0.745 = —0.294
log. 0.954 = —0.0471



The Slide Rule
57
Problems
Solve, using the log—log scales.
10-728. (2.89)¢ 10-746. (4780.)0913 10-763. 875
10-729. (4.11)5? 10-747. (253.)0269 10-764. 1=rg
10-730. (19.01)16 10-748. (0.428)05% 70, s V3.
10-731. (1.185)27 10-749. (4.08)2 =705 V/1.004
10-732. (1.033)58 10-750. (3.91)2° 10-766. '/0.642
10-733. (1.0134)% 10-751. (8.45) 10-767. %1438
10-734. (3.95)065 10-752, (7.77)% 10-768. %0952
10-735. (8.46)013¢ 10-753. (16.89)14%2 10769, 2rn
10-736. (81.2)0118 10-754. (87.8)* ¢ wGAe0
10-737. (7850.)0.077 10-755. (0.1164)03 10-770. /51975
10-738. (1.399)08s3 10-756. (0.779)04 10-771. °J/02218
10-739. (10.06)%%2! 10-757. (867.)" 10-772. 476430,
10-740. (0.569)* 10-758. (91.05)* 10-773. 0133 =~5—
10-741. (0.157)% 10-759. (0.775)00259 Py 0_5,‘507‘
10-742. (0.985)"5 10-760. %565 e L,
10-743. (0.318)%6 10-761. 5 A0S UN6.49
10-744. (0.078)045% o6 4 115094 10-776. 3851575
10-745. (17.91)0%0m2 0-762. \/8.74 10-777. 2%/3.1263
Solve for X
10-778. X = (43.8)64 10-791. (0.1299)06% = 0.443
10-779. X = (1.853)0447 10-792. (15.84)* = 4.87
10-780. (31.77)* = 1.164 10-793. (0.679)* = 0.337
10-781. (2.388)% = 3.066 10-794. (1.461)19%z = 9,07
10-782. (1.064)°2 = 4.99 10-795. (0.766)5% = 0.239
10-783. (X)58 = 8.57 10-796. (X)™® = 0.775
10-784. (4.92)096z = 24,1 10-797. (X)%1% = 8.53
10-785. (0.899)*7 = (1.552)(10)~* 10-798. (X)*3 = 1.055
10-786. (0.1135)07%% = 0.775 10-799. (X)°%7t = (.1557
10-787. (11.774)%3= = 12.88 10-800. (X)*™ = 1.088
10-788. (18.73)64* = 8688. 10-801. (X)°™ = 0.0521
10-789. (34.86)117% = 9.44 N ¢
10-790. (0.631)%64 = 0.318 10-802. (4.51)*™ = 3
Solve for the natural logarithms of the following numbers:
10-803. 15.77 10-811. 8.09 10-819. 1.0047
10-804. 19,850, 10-812. 1.571 10-820. 89.78
10-805. 0.7789 10-813. 0.1345 10-821. 0.664
10-806. 0.1845 10-814. 0.915 10-822. 0.459
10-807. 1.896 10-815. 0.001233 10-823. 0.1175
10-808. 56.87 10-816. 13,890. 10-824. 1.9974
10-809. 13.09 10-817. 2.066 10-825. 0.9974
10-810. 33.4 10-818. 1.3157 10-826. 0.2378

10-827. 0.01663
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Review Problems

Solve by general slide rule methods.

10-828.
10-829.
10-830.
10-831.
10-832.
10-833.
10-834.
10-835.
10-836.
10-837.
10-838.
10-839.
10-840.
10-841.
10-842.

10-852.
10-853.
10-854.
10-855.
10-856.
10-857.
10-858.
10-859.
10-860.
10-861.
10-862.
10-863.
10-864.
10-865.

10-866.
10-867.
10-868.
10-869.
10-870.
10-871.
10-872.
10-873.
10-874.

10-875.

(51)(9)

(426) (51)

(6.03) (5.16)

(561) (4956)
(43.2)(0.617)

(6617) (0.00155)
(99.043)(3.091)
(0.0617) (0.4417)
(1.035) (2.31 x 10%)
(79.81 x 10~4) (0.617)

(516 x 1078)(0.391 x 1072)

(51)(97)(32)
(52.3)(759.3)
(716.5) (0.03166)
(11.65)(—0.9213)

10-843,
10-844.

10-845.

10-846.

10-847.

10-848.

10-849,

10-850.
10-851.

(706.5) (1.695 x 1075) (0.006695)
(1033)(7.339 x 107%)(0.0317 x 1073)

(4.017 x 10~%) (0.0991) (0.1756)
(5.576)(0.0917) (1.669 x 10%)
(6.991) (0.75) (0.993) (4.217)

(56.88)(0.971 x 107°)

(59.17) (0.3617) (0.5916) (0.00552)
(5.691) (0.3316) (0.991) (0.00554) (0.1712)
(6.523)(71.22) (4.091) (591) (600) (0.1332)
(43.06) (0.2361) (0.905 x 10~%)(3.617 X 10-3)

(1917)216
(4.216)1517
(2.571)29
(0.3177)208
\/26.31
/0.03175

V3167
(179 x 10°)(0.3165)

(5033 x 107%)(0.9116)

(0.06105) (77.165)
(\/216) (34) (m)?
(\/819) (107) (V7))

(76.2)(—31.45)

(—0.6175) (—12,391)
(—759.6)
(0.6175)
(—19.96)
(3346)
(—1.0366)
(29.31)
(7575)
(695.2)
(—516.6)
(0.06052)
(116.5) (4619) (0.317)

(210.9)(151.3)(7716)



10-876.

10-877.

10-878.

10-879.
10-880.

10-881.
10-882.

10-883.

10-884.

10-885.

10-886.

10-887.
10-888.

10-889.

10-890.

10-891.

10-892.

10-893.

10-894.

10-895.

10-896.

10-897.

10-898.

ErF

(V/6T16) (6.767)
(V39.6)
(1045) _ (0.0278)
@) — (0.0798)
(1.486) _ (0.37) (X)
(G33) — 467
(244) (27)
(816) = 5549y ()
(0.0036) (sin 49.8°)
(20.5)2(7.49) (sin 49°)
(30.5) (0.0987)
N EDRNINE
CLE)
(7.61) (\¥/7.61) ()
(13.1) (sin 3.12°)
(tan 41.9°)

2 _(X)(m)

3~ 8.37
(9616) _ (3.1416)
X (0.0142)
(W64.9) (2.1 x 10°)
(4 x 108)(0.007) = (X) (10,980)

1 16 1
s (E)(6)(17)
X (v362) (3.14)?
T (sin3.7°)
(398)(X) (3 x 108)
(1.07)(38) ~ (17,680)
(w86 (14)

x  (1/116)
(X)? _ (18.17)(3.4)
(9.2) — ~ (166)

1
(3.6) _ (9.6 X 10°) _ (¥)?
(X)2~ ~ (67.4)  (64)

(X);_ _ (\/196)(189.1)
GL.1) 4/76
(96.5) X (Y)2

(3.9) ~ (sin 46.6%) T (3.14 x 1072)
(X)2 _ (67.3)2(Y) _ (497.1)

Y = (96.61)  tan75°
(3.7)(4.9) _ (46.7)

X 564

The Slide Rule
59



The Slide Rule and lts Use in Problem Solving
60

Review Problems (continued)

Solve by general slide rule methods:

- Y _ (32)
10-839, (28) ~ (4/118)
Y  39.1
10-900: = = a5y

10-901. (37.3)(X)(46.6) = (175)(m)
10-902. (\/256)(3) = (X)(197.6)
(54.6) (tan 10.6°)
(\/0.0967) (8.1 x 10%)
10-904. Y (15.1)%(314)*
(sin arc cos 0.617)

(0.954) (0.06 x 10%)
(tan 59°)%(6.5)?
10-906, __\/(15.6)%(0.9618)
(0.08173)(61,508) (27)
(68)(765)(391)(0.0093 x 10%)
(571)*(\¥/(64))
10-908. (COS 11.50)(\/6.87)
(0.00081) (7.7 x 10%)
10=909. \4/(].71)5(6.87)
(tan 53°) (5.1)2
(0.000817) (tan 81°)
(0.00763) (tan 81°)

10-903.

10-905.

10-907.

10-910.

1
10-911. (273)2(46.9) (cos 61°) (7*)
(sin arc tan 3.17) (71.7)
(V89.6) (V/(76.5)?)
10-913. (V/(16)*) (log,, 100)
(6.71 x 1071)(3.71)3
(6.93) (sin cos~* 0.98)
(0.937)2(39.6)
10-915. (\/9[.68)(\2/65.9)
(tan 68.7°) (0.671)%
10-916. (4:5)*(\/(98.71)) (sin 56.4°)
(0.09 x 10)(38.6)%
10-917. (\/WS) (COS 3660) ( 164)2
(67.1 X 1071)(5780)
(tan sin—1 0.87) (61.7)
(5.64)%%(3.65)2
(3174) (tan 64°)
(81.6)2(¥/18)
(44.6) (0.09 x 10?) (sin 80.9°)

(:¥96.7)(51.6)*

10-912.

10-914.

10-918.

10-919.

10-920.
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(tan 50.6°) (3.4)2

(v/968T) (171)

(296) (0.197 x 10%)

\/(76.1) (sin 49.6°)

(sin 22.6°) (9.918)

(tan 31.6°) (98.71)

(68.7 x 10%) (tan 56.1°)
(96.7)°%(18,614)

10925, (0.0098) (sin 17.6°)/(0.186)

(41.6)*(689.0)
(tan 19.8°)2(6.71 x 10%)
(1,876) (/59)

10-927. (\/sin 40° ) ( 17)2(4772)
(0.643) (tan 60°)

10-921.

10-922.

10-923.

10-924.

10-926.

Hyperbolic Functions on the Slide Rule

Hyperbolic functions are useful in several mathematical applications such as
the variation of electrical current and voltage with distance in the calculation of
transmission of electrical power. Several manufacturers of slide rules make special
scales from which hyperbolic functions can be read directly. However, it is pos-
sible to obtain numerical values for hyperbolic functions using conventional scales
by making use of the relations:

e —€e " . :
3 = hyperbolic sine x (sinh x)
6'_4:26_'_ = hyperbolic cosine x (cosh x)
62.1' — 1 i
Fri hyperbolic tangent x (tanh x)

Reading Hyperbolic Scales

Most slide rules that have hyperbolic scales have the scales marked as Sh and
Th. Slide rules manufactured by Pickett identify the hyperbolic sine scales as
upper and lower and the values of sinh x are read on the C scale. Keuffel & Esser
identify the hyperbolic sine scales as Sh 1 and Sh 2 and values of sinh x are read
on the D scale. Except for these minor differences, reading hyperbolic functions on
slide rules made by either company is essentially the same.

Hyperbolic Sines. In order to read hyperbolic sine functions on the slide rule,
set the value sinh x on one of the Sh scales and read the value of the function on
either the C scale or the D scale under the hairline.

Example: Find sinh 0.38

soLuTION: Locate 0.38 on the upper Sh scale or on the Sh 1 scale and read 0.389
on the C or D scale.
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Example: Find sinh 1.88

SOLUTION:  Using the method above read sinh 1.88 = 3.20. Note that the value
1.88 is located on the lower Sh scale (Sh 2 scale) and 3.20 is read on the C scale
(D scale).

The decimal point can be determined readily by noting that numbers correspond-
ing to function values on the upper Sh (Sh 1) scale lie between 0.1 and 1.0, and
numbers corresponding to function values on the lower Sh (Sh 2) scale lie between
1.0 and 10.0.

Hyperbolic Tangents. Hyperbolic tangents can be read by locating the value
of the tangent function on the Th scale and reading the number on the C or D
scale under the hairline.

Example: tanh 0.206 = 0.1990

Example: tanh 1.33 = 0.870

Hyperbolic Cosines. Most slide rules do not have a hyperbolic cosine scale.
Values for the hyperbolic cosine can be determined by use of the relation:

sinh x

coshx =
tanh x

In finding values for cosh x using the Pickett rule, first set the slide so the
indexes coincide. Locate the hairline over the value of x on the appropriate Sh
scale. Move the slide until the value of x on the Th scale is under the hairline and
cosh x can be read on the D scale at the C index.

Example: cosh0.482 = 1.118

Example: cosh 1.08 = 1.642

For the Keuffel & Esser Vector slide rule, this procedure can be followed. Set
an index of the slide on the value of x on the Th scale. Set the hairline on the
value of x on either Sh 1 or Sh 2, depending on its amount. Read the value of
cosh x on the C scale.

Example: cosh 0.305 = 1.046

Example: cosh 1.81 = 2.31

When the value of cosh x is given and it is desired to find x, use can be made

of the relation
cosh?x — sinh?x = 1
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Example: Find the value of x when cosh x = 2.1

SOLUTION : sinh x = \/cosh?x — 1
Substituting: sinhx = v/(2.1)2 -1
sinh x = \/3.41
and
sinhx = 1.85

Set 1.85 on the C (D) scale and read the value of x on the lower Sh (Sh 2)
scale. The lower scale is used because sinh x is greater than 1.

Then ¥=1372

Approximations for Large and Small Values of x

When the value of x is more than 3, it can be shown that the value of sinh x

X

and cosh x is approximately the same as %
Example: sinh4.2 =?
€4.2 o
T 335
sinh 4.2 = 33.5

Also for large values of x, tanh x is approximately 1.0.

Example: tanh 3.7 = ?
€(2](-’,’..7} = 1
SOLUTION : tanh 3.7 = m‘
1650 = 1
1650 + 1
tanh 3.7 = 1.0

When x has values below 0.1, it can be shown that sinh x and tanh x are ap-
. proximately the same as x, and cosh x is approximately 1.0.

Example: sinh 0.052 = 0.052
tanh 0.037 == 0.037
cosh 0.028 = 1.00

Other Hyperbolic Functions. While not often needed, other hyperbolic func-
tions can be obtained by using the following defining expressions:

1

cothx = b
1

sechx = e
1

wEnE = sinh x
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Problems on Hyperbolic Functions

10-928. Find the values of sinh x for the following values of x: (a) 0.12,
(b) 1.07, (¢) 1.91, (d) 2.30, (e) 3.11, (f) 4.26, (g) 5.00

10-929. Find the values of x for the following values of sinh x: (a) 0.1304,
(b) 0.956, (c) 1.62, (d) 4.10, (e) 8.70, (f) 19.42, (g) 41.96

10-930. Find the values of cosh x for the following values of x: (a) 0.28,
(b) 1.03, (c) 1.98, (d) 2.37, (e) 3.56, (f) 4.04, (g) 5.00

10-931. Find the values of x for the following values of cosh x: (a) 1.024,
(b) 1.374, () 2.31, (d)'5:29, (&) 8.50; (f) 21.7, (&) 52.3

10-932. Find the values of tanh x for the following wvalues of x: (a) 0.16,
(£) 0.55, (c) 1.14, (d) 1.94, (e) 2.34, (f) 2.74, (g) 5.00

10-933. Find the values of x corresponding to the following values of tanh x:

(a) 0.1781, (b) 0.354, (c) 0.585, (d) 0.811, (e) 0.881, (f) 0.980,
(2) 0.990

Slide Rule Solution of Complex Numbers

A complex number, which consists of a real part and an imaginary part, is
often used to describe a vector quantity. By definition, a vector quantity, frequently
referred to as a phasor in electrical engineering, has both magnitude and direction.

For example, the expression 3 + j4 will describe a vector which is /32 + 42

. 4 ;
units long and makes an angle arc tan 3 with an x-axis. For a more complete

discussion on complex number theory, refer to a text on basic algebra.

The symbol i or the symbol j is customarily used to represent the quantity \/—1.
In the discussion in this section the symbol j = \/—1 will be used.

If we let the scalar length of a vector be designated as R, as shown in Fig-
ure 10-35, then we can write Re’” = x + jy in polar form as R/6. This expression
R/8 is a shortened form of Re'® which is obtained from the identity

Re® = Rcos @ + jR sin 0.

Figure 10-35.

Complex Numbers on the Slide Rule. From trigonometric relations for a

¥ . X
sin 6’ Ell-ldJR_cosG

right triangle, we can show that tan 6 :%; R = . We can use
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these relations to solve complex number problems on the S].idf; rule. Take, for
example, the complex number 3 + j4 and let it be required to find R/ 8.

The following method will give the solution to this problem on most types of
slide rules:

1. Locate the larger of the two numbers on the D scale and set an index of
the C scale at this number. Locate the smaller of the two numbers on the D scale
using the hairline, and read the angle @ on the T scale under the hairline. If y is
smaller than x, 6 is less than 45°, and if y is larger than x, 6 is larger than 45°.

2. Next move the slide until the angle # on the S scale is in line with the
smaller of the two numbers. Read R on the D scale at the index of the C scale.

Example: Express 3 + j4 in polar form
SOLUTION: Set the right index of the C scale at 4 on the D scale.

Move the hairline to 3 on the D scale and read # = 53.1° on the T scale. Note
that the y value is larger than the x value; thus the angle is larger than 45°,

Without moving the hairline, move the slide until 53.1° on the S scale (reading
angles to the left) is under the hairline.

Read 5 at the right index of the C scale.

The solutionis 3 + j4 = 5/53.1°

This method can be performed on most types of rules, requiring the minimum
number of manipulations of the rule. It also can be applied readily to the solution
of most problems involving right triangles.

When any of the complex numbers have a minus sign, the slide rule operation
to solve the problem is the same as though the sign of the numbers were positive.
The angles usually are determined by inspection using trigonometric relations. The
following general rules apply:

If the expression has the form +x + jy, 8 is in the first quadrant.

For —x + jy, 6 is in the second quadrant
For —x — jy, 6 is in the third quadrant
For +x — jy, @ is in the fourth quadrant

Example: Express —7.1 + j3.8 in polar form.

SOLUTION: Set the right index of the C scale at 7.1 on the D scale, and read on the
T scale @ = 28.3° at 3.8 on the D scale.

Move the slide so that 28.3° on the S scale is over 3.8 and read R = 8.03 at
the C index.
- By inspection, the angle is in the second quadrant and the total angle is
180° — 28.3° = 151.7°.
Therefore, the polar form is 8.03/151.7°.
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Example: Express 4 — j3 in polar form.

SOLUTION: The angle is read as 36.9° and is in the fourth quadrant. The total

angle is 360° — 36.9° = 323.1°, ‘
The polar form is 5/323.1°. |
If the polar form is given, the rectangular form can be obtained by multiplying

the value of R by the appropriate sine and cosine value. A rapid method of finding

the quantities is to use the previously described slide rule manipulation in reverse.

Example: Express 3.3/28° in rectangular form.

SOLUTION:  Set the right index of the C scale at 3.3 on the D scale and read 1.55
on D under 28° on the sine scale.

Move the slide until 28° on the T scale is over 1.55 on the D scale.

Read 2.915 on the D scale at the right index. Since the angle is less than 45°, L
the imaginary part of the complex number is the smaller of the two. Therefore,

3.3/28° = 2.915 + j1.55

If the polar angle is larger than 45°, angles on the T scale and S scale are
read to the left, and the real part of the complex number is read first. The real
part of the number will be the smaller of the two parts.

Example: 179/66° = 72.9 + j163.5

For angles not in the first quadrant, obtain the angle of the vector with respect
to the x-axis and treat the solution as outlined above. By inspection, affix the proper
signs to the real and imaginary parts after obtaining their values. A sketch will
help greatly in this process.

Conversion for Small Angles. If the ratio of the x value and y value in the
complex number is greater than 10, the angle can be found on the ST scale. The
real value is approximately equal to the value of R.

Example: 35 + j1.5 = R/ !
SOLUTION: Set the C index at 35 on the D scale and read 6 = 2.45° on the
ST scale.

Then R/ = 35/2.45°.

Example: 0.075/4.1° = x + jy i
SOLUTION: Set the C index at 0.075 on the D scale. Read 0.00536 on D under

4.1° on ST.
Then x + jy = 0.075 + j0.00536.
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Conversion for Angles Near 90°. For angles between 84.27° and 90°, the
ratio of x to y will be 10 or greater and the imaginary part of the complex number
is approximately equal to the value of R. The angle can be read on the ST scale
after subtracting it from 90°.

Example: 18/88° = x + jy

SOLUTION: Set the left index of C at 18 on the D scale. Read 0.6 on D under 2°
on the ST scale.

Then x + jy = 0.6 + j18.

Remember that for very large and very small angles, the ratio of x and y will
be 10 or greater, and either the real part or the imaginary part of the complex num-
ber will be approximately equal to the value of R.

Applications of Complex Numbers. In solving problems involving complex
numbers, addition and subtraction of complex numbers are more easily performed
if the numbers are expressed in rectangular form. In this form, the respective real
parts and imaginary parts can be added or subtracted directly. However, to multiply
or divide complex numbers, it is more convenient to express them in polar form
and solve by multiplying or dividing the vector magnitude, and adding or subtracting
the angular magnitude.

Examples:
(a+jb) + (c+jd) = (a+ c) + j(b+ d) (Addition)
(a+ jb) — (¢ + jd) = (a—c¢) + j(b — d) (Subtraction)
(a/6,)(b/6y) = (a)(b)/6, + 6, (Multiplication )
a/6,

a
) =p/0—6 (Division)
" Sl

From the examples above, we can see that the ability to perform rapid con-
versions from polar form to rectangular form or vice versa will be helpful in solving
problems involving complex numbers.

Problems on Complex Numbers

10-934. Express in polar form: (a) 8 + j3, (b) 2 +j6, (¢) 1 + j4, (d) 5+ j5

10-93S. Express in rectangular form:(a) 6.2/39°, (b) 3.6/48°, (¢) 9.2/21.4°,
(dy 271710 - -

10-936. Express in polar form: (a) —89 +j42, (b) —16.8+ j9.3,
(¢) =53 +j2.1,(d) —18.4 +j3.3

10-937. Express in rectangular form: (a) 9.7/118°, (b) 115/137°,
(c) 2.09/160°, (d) 5.72/110°

10-938. Express in polar form: (a) —7.3—j6.1, (b) —4.4—j8.2,
(c) —8.8 —j2.5, (d) —1.053 — j5.13

10-939. Express in rectangular form: (a) 81.3/200°, (b) 62.1/253°,
(c) 1059/197°, (d) 0.912/231°
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Problems on Complex Numbers (continued)

10-940. Express in polar form: (a) 160.5 —j147, (b) 89.3 — j46.2,
(c) 0.0062 — j0.0051, (d) 3.07 — j1.954

10-941. Express in rectangular form: (a) 557/297°, (b) 6.03/327°,
(c) 0.9772/344°, (d) 19,750/300°

10-942. Express in polar form: (a) 15.61 + j7.09, (b) —14.9 —j61.7,
(c) 0.617 — j0.992, (d) —41.2 + j75.3

10-943. Express in rectangular form: (a) 1.075/29.1°, (b) 10.75/136°,
(¢) 107.5/253°, (d) 1075/322°
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The Engineering Method
of Problem Solving

The engineer is known for his problem solving ability. It is probably this ability
more than any other that has enabled many engineers to rise to positions of leader-
ship and top management within their companies.

In problem solving, both in school and in industry, considerable importance
is attached to a proper analysis of the problem, to a logical recording of the prob-
lem solution, and to the overall professional appearance of the finished calcula-
tions. Neatness and clarity of presentation are distinguishing marks of the engineer’s
work. Students should strive always to practice professional habits of problem
analysis and to make a conscious effort to improve the appearance of each paper,
whether it is submitted for grading or is included in a notebook.

The computation paper used for most calculations is 8%2 by 11 inches in size,
with lines ruled both vertically and horizontally on the sheet. Usually these lines
divide the paper into five squares per inch, and the paper is commonly known as
cross-section paper or engineering calculation paper. Many schools use paper that
has the lines ruled on the reverse side of the paper so that erasures will not remove
them. A fundamental principle to be followed is that the problem work shown on
the paper should not be crowded, and all steps of the solution should be included.

Engineers use slant or vertical lettering (see Figure 11-1), and either is ac-
ceptable as long as there is no mixing of the two forms. The student should not be
discouraged if he finds that he cannot letter with great speed and dexterity at first.
Skills in making good letters improve with hours of patient practice. Use a well-
sharpened H or 2H pencil and follow the sequence of strokes recommended in
Figure 11-1.

Several styles of model problem sheets are shown in Figures 11-2 and 11-3.
Notice in each sample that an orderly sequence is followed in which the known
data are given first. The data are followed by a brief statement of the requirements,
and then the engineer’s solution.

When the problem solution is finished, the paper may be folded and endorsed
on the outside or may be submitted flat in a folder. Items that appear on the

69
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Figure 11-1. Vertical lettering.
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1
Margin line should be drawn in Show last name first
Problem No. Name
GIVEN:
H
SKETC d

Show as much of the given data as possible

A _f on the sketch. Show all dimensions, weights,
and other pertinent information which might

a
—{ aid the student in solving the problem. List
wt. =71 1b. any other data which cannot be shown on
4 ,J the sketch
FIND:
a. List here all required answers
b.
SOLUTION:
a. Show completely all steps necessary for the solution. Double
underline required answers. Everything is printed
using either slant or vertical letters
b.

Figure 11-2. Model problem sheet, style A. This style shows a general form which is use-
ful in presenting the solution of mensuration problems.



The Slide Rule and Its Use in Problem Solving
72
MH 81-12 | SEPT 18,1972| ASGT. NO. 10 SMITH, JC. 2
e A
<PROBLEM NO. 8-2 Date due Number of this sheet j
Course & number 8 P Number of sheets |
= in this assignment
‘ DATA
M =020 for all surfaces
Determine magnitude of force P to prevent block A ;
from sliding down the plane. REGD
FREE BODIES ON LEFT ? QALCULATIONS ON RIGHT SoL'N
Show all steps
in solution
FF,=0
Ny - 1000 cos 30° =0
N, = 866 /b [
Fa = uNa=020(866)=173.2 /b :
y FEL=0
1000 Ib T - 1000 sin 30°+ 173.2=0
T =500-773.2= 3268 /b
F
| ZF =0
8 600 /b Ng-600 =0
Ng = 600 Ib
L YV L F=uNe=0200500)=120 16
ZF)( =0
R A P+Fa-T=0
P+ [20-326.8=0
Ng P= 206.8 /b —\*" =P
Double underline answers, ; Show direcriqq of
i vector quantities
and state units
Index answer |
(If two or more problems can be placed on one sheet, draw a double
line between adjacent problems. Do not begin a new problem when
it is obvious that it cannot be completed on the same sheet.)

Figure 11-3. Model problem sheet, style B. This style shows a method of presenting stated
problems. Notice that all calculations are shown on the sheet and that no scratch calcula-
tions on other sheets are used.
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endorsement should include the student’s name, and the course, section, date,
problem numbers, and any other prescribed information.

Problem solving may be considered in some degree to be both art and science.
The art of problem solving is developed over a period of continuous practice,
whereas the science of problem solving comes about through a study of the en-
gineering method of problem solving. Both engineers and scientists must be “prob-
lem solvers.” However, in many instances the end product of the engineer’s analysis,
which is a working system economically devised, is considerably different from that
of the scientist’s, which may be a solution without regard to economics or usefulness.
Before analyzing the “engineering method,” let us consider the two types of thought
processes used by the engineer in his problem solving.

TYPES OF THOUGHT PROCESSES

Deductive Reasoning

The laws of reasoning by deduction, sometimes called syllogism, were defined
by Aristotle (384-322 B.c.), a Greek philosopher. This form of reasoning makes
use of (1) a statement of a general law (called a major premise), (2) a statement
assigning a particular zone of interest to the general law (called a minor premise),
and (3) a statement of conclusion which applies the general law to the specific zone
of interest.

JI

il Illl:ulllllll““““\

[

L

lllustration 11-1. The ability
to make sound decisions at the
right time is a distinguishing
mark of the engineer. His
knowledge and his ability to
apply problem solving tech-
niques aid him in the decision
making process. (Courtesy
Alexander Hamilton Institute)
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Example: Major Premise. The volume of all spheres can be determined by the
relationship V' = #wD?/6, where D is the diameter of the sphere.
Minor Premise. A ball is a sphere.
Conclusion. The volume of a ball can be found by applying the rela-
tionship ¥ = wD?/6, where D is the diameter of the ball.

An obvious limitation of this form of reasoning is that the statements of the
major and minor premises may not always be free from error. If an untruth is as-
sumed as a major or minor premise, for example, the conclusion will most likely
also be in error. Only by chance could the conclusion be a true statement. Thus
this form of reasoning is most useful when the major and minor premises have been
proved by experimentation for all possible situations. It also follows that deductive
reasoning generally is not useful for the discovering of basic laws, but it may be
useful in finding new applications of proven laws.

Undoubtedly complete adherence to the doctrine of deductive reasoning during
the Middle Ages was a primary reason for the barrenness of achievement in physical
sciences and engineering during this particular period of history. However, mathe-
matics was not so limited because of its basic nature. Mathematics is a process of
reasoning based upon fundamental concepts or premises, the parts of which are
connected by the process of syllogism, or deductive reasoning.

In using deductive reasoning one must be very careful that the major premise
identified is in fact true without exception. The person who accepts someone else’s
general statement that “there are no poisonous snakes in Henderson County” as
being literally true, and then is bitten by one of the few rattlesnakes remaining, is
a victim of a faulty premise. A second pitfall concerns the identification of a minor
premise that in actuality is not correctly included within the major premise. For
example, all $20 Federal Reserve notes are legal tender in the United States. How-
ever, a particular $20 note may be refused because it is a counterfeit bill and there-
fore not covered by the major premise. Although completely honest in his intent, one
could violate the law by using the counterfeit money.

Inductive Reasoning

Methods of inductive reasoning, or truth by experiment, have been practiced to
some degree since the beginning of man. However, Aristotelian logic was long the
accepted authority, and it was not until the thirteenth century that a revolt against
deductive logic was successfully launched. Processes of inductive reasoning were
first set forth by Roger Bacon (1214—1294) and later amplified by Francis Bacon
(1561-1626). This form of reasoning is based upon the premise that if two or
more things agree with one another in one or more respects, they will likely agree
in still other respects; that things which are true of certain individual items within a
class will be true of the entire class; and phenomena which are true at certain times
will be true in similar environments at all other times. This is reasoning from a part
to a whole, from the particular to the general, and from the individual to the uni-
versal.

The aim of inductive reasoning is to arrive at general conclusions sufficiently
invariant to be used as major premises in processes of deductive reasoning. Verifica-
tion and identification of the behavior pattern is achieved by experiment. In many
instances too few experiments are performed to give absolute assurance of the
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truth, and a confidence level of less than 100 per cent is the result. This brings
about the use of statistics and probability to determine the most likely performance
that can be expected in a particular situation. As with deductive reasoning, there
are two pitfalls in using inductive reasoning. First, in an experiment, “Have the
observations been made under true environmental conditions?,” and second, “Have
enough observations been made to establish the degree of probability that the cir-
cumstances require?”’!

It is only by the processes of inductive reasoning that general laws and new
scientific truths can be discovered. Consequently it is only in this way that the major
premises necessary for deduction can be found.

REASONING AND PROBLEM SOLVING

Engineers and scientists must master both the inductive or experimental method
and the deductive method of logic, since the two processes of reasoning are comple-
mentary. Ordinarily a person does not by choice think only by deduction or induc-
tion. Rather, he will alternate from one form of logic to the other as he moves
through an analysis. It is of considerable value, however, to know which type of
reasoning to use in a given situation. Perhaps of even more value is the ability to
recognize false premises or improper experimental methods that may have been
employed in the processes of analysis.

Order of Action in the Problem Solving Process

Engineers who have mastered the engineering method of problem solving are
considerably more successful in their work than are people who have not been
trained in this technique. In the past many engineering problems were of such
routine nature that a resort to deductive reasoning would suffice, and premises of
deduction could be taken from handbooks. However, many of the engineering
problems of today cannot be solved by mere “handbook techniques.” Experimenta-
tion, research, and development have indeed become significant activities in today’s
world.

Regardless of the complexity of a problem or the subject area within which the
problem might arise, the method of solution used by the engineer will probably
follow a general pattern similar to that represented by Figure 11-4. Each part of
this “cyclic” process will be described in more detail, but first two general charac-
teristics of the process should be recognized:

1. Although the process conventionally moves in a clockwise direction, Fig-
ure 11-4, there is continual “feedback” within the cycle.

2. The method of solution is a repetitious process that may be continuously
refined through any desired number of cycles.

The concept of feedback is not new. For example, feedback is used by the hu-
man body to evaluate the result of actions that have been taken. The eye sees some-
thing bright that appears desirable and the brain sends a command to the hand
and fingers to secure it. However, if the bright object is also hot, upon touching
the nerves in the fingers “feed back™ information to the brain with the message that

1 Edward Hodnett, The Art of Problem Solving, Harper, New York, (1955), p. 137.
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“contact with this object will be injurious,” and pain is registered to emphasize this
fact. The brain reacts to this new information and sends another command to the
fingers to release contact with the object. Upon completion of the feedback loop
the fingers release the object.

As another example a thermostat, as part of a heating or cooling system, is a
“feedback™ device, since a changing temperature condition produces a response
from the thermostat to tend to alter the change.

The speed of movement through the problem solving cycle is a function of many
factors, and they change with each problem. Considerable time may be spent at
any point within the cycle, and in other situations very little time may be consumed
within steps. Thus, the problem solving process is a dynamic and constantly chang-
ing process that provides allowance for the individuality and capability of the user.

Recognition of a Need and Identification of the Problem

The first two steps in the problem solving process are the most important. First,
the engineer must be sensitive to the changing condition of his environment, and
he must be constantly aware that his immediate surrounding environment is but a
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small single point of experience which is located within the vast expanse of the
universe. The engineer must be able to perceive that a need does in fact exist within
his own environment. Only then is he ready to give consideration to identification
and definition of the particular problem whose solution will satisfy the specific
need that he has already recognized. Nothing is more frustrating than for him to
solve a problem and then to find that the solution did not satisfy the need and that
he had, in fact, been working on the wrong problem all of the time. Figure 11-5
is a diagrammatic representation of these relationships. It should be recognized that
the engineer’s design is but one possible solution to the identified problem. Many
other satisfactory designs also probably exist.

The story is told of how a student in a physics class, whom we shall call Henry,
was given the assignment of determining the height of his school building by using
a small laboratory barometer. Much to the teacher’s chagrin, Henry took the ba-
rometer, thought a moment, tied a long piece of string to it, and then lowered it to
the ground from the roof of the building. He then quickly measured the length of
the string and gave the teacher his answer. Unfortunately the teacher was not
pleased with Henry’s performance and asked him to obtain the solution by “the

UNIVERSE
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Figure 11-5.
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obvious” method. Henry thought a few moments more and then took the barom-
eter outside in the sunlight. By using a protractor and standing the barometer
vertically and noting the length of its shadow and then comparing it with the length
of the building shadow, he once again calculated the height of the building and
verified his first solution. The teacher seemed even more irritated with Henry’s
efforts and tersely instructed him to use a “scientific” method to obtain the solu-
tion and “do it quickly.” Henry thought and thought. Finally, he asked for a stop-
watch and once again he climbed to the roof. He dropped the barometer from the
roof into the fountain on the ground below. By carefully timing the free-fall of the
instrument and substituting into the equation, § = V't + %2, he obtained an answer
that verified the other two solutions. This time the teacher was very angry with
Henry and told him that unless he got the precise answer by the “correct” method
that he would fail the laboratory work. By this time Henry was completely con-
fused and frustrated, and not knowing what the teacher wanted, he decided that he
needed some “outside” help. Thereupon he took the barometer to the basement,
traded it to the building superintendent for a set of architectural and engineering
drawings of the building and within a few minutes he gave the teacher the precise
answer that he had requested. It is said that the teacher collapsed of apoplexy at
this point.

In each case the young student had “determined the height of the building by
using the small laboratory barometer.” In each instance he had obtained a seem-
ingly acceptable solution—although none of them had been found by the method
that the teacher had in mind. Too many people react as the teacher did and refuse
to recognize or use perfectly acceptable designs because they were not the types
of solutions that had been preconceived in their minds.

It is also much easier for one to recognize that “he has a problem” than to
identify “just what the problem is.” The most successful problem solvers are able
to see their situation from different vantage points and to bring into focus a defini-
tion of “the real problem”—the problem whose solution will bring about the most
satisfying result to the identified need. Successful problem solving does not begin
with a search for answers; it begins with the flexibility of your perception, with your
ability to ask the right questions.? By asking certain strategic questions, the engineer
can collect additional information that he can then evaluate and use in the identifica-
tion of the problem. In large measure the person who is able to discern the most
appropriate questions to ask is the person who will be most successful as a prob-
lem solver.

Search for Ideas, Incubation, and Evaluation of Alternatives

The search for ideas should be deliberate and planned. It is a very important
part of the problem solving process. If such a search is not consciously carried out,
many desirable and imaginative ideas will be overlooked. Such a search should
not be left to chance, since several techniques of idea stimulation are easy to use
(see Chapter 12) and are known to be effective. The accumulation of ideas should
begin as soon as the problem has been identified but not before. All too frequently,

2 Problem Solving, Arthur D. Little, Inc., Cambridge, Mass., p. 1.
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when confronted with a difficulty, many people will hurriedly grasp for ideas without
first having recognized the need or identified the problem. Such a tendency must
be resisted.

It is also of utmost importance that the search for ideas be a search without
evaluation of the worth of the individual ideas. Evaluation is certainly needed later,
but such judgment should be brought into play after the passage of a period of
time. During this lapse, which has been called the “period of incubation,” the sub-
conscious is allowed freedom to wander. The use of the subconscious is also called
intuition. Many testify to the fact that after such a period of freedom, insight and
inspiration are more likely to emerge. The imagination seems to work best when
the mind is unwearied and unrestrained. Of course, insight may occur at any time,
and it does not necessarily always follow a period of incubation. However, it is
known that insight and illumination do occur most often when one has immersed
himself in a problem to the extent that he has become fatigued (and in some cases
frustrated) and then has laid the problem to one side for a time.

It is difficult to search for ideas and consciously to defer judgment of those ideas
until a later time. However, the value of the “deferment of judgment” principle
has been proven many times. By deferring judgment a greater number of imaginative
ideas can be collected, and the probability of obtaining an idea of great value is
increased.

The practicability and theoretical soundness of each idea generated must now
be determined. Previous to this point in the problem solving process the engineer
was only concerned with the “quantity and originality” of ideas, but now he must
be primarily concerned with the “quality or feasibility” of the ideas. Judgment of
their worth will not depend upon the immediate usefulness of the ideas but rather
upon where the ideas may lead. Few ideas are practical within themselves. How-
ever, a single idea may form the nucleus of a new process or design that the engi-
neer can bring into being by expansion, minification, extension, modification, com-
bination, or by otherwise altering in some way the original thought. Because of the
nature of the educational process that engineering students experience, they be-
come considerably more skilled in the evaluation of ideas and alternatives than
they do in the birth of creative ideas. Although both abilities are very important
to the engineer, neither should obscure the other.

Creative Synthesis and Design

The heart of the engineering method of problem solving lies in the creative
synthesis of ideas and alternatives into an effective design. During this phase of
the process the ideas and alternatives that have seemed most profitable to investi-
gate are merged to form a useful solution to the identified problem. The data col-
lected earlier can now be used in this design phase to bring about a specific solution
for the specific purpose that has been set forth.

Although novel ideas frequently make their appearance when the conscious
mind is not actively seeking them, we should recognize that most of the engineer’s
inspirational ideas are the result of new combinations and rearrangements of old
thoughts which have already been stored within the subconscious. If this were not
so, poems in Chinese might be written spontaneously by poets who are unfamiliar
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with the Chinese language; new mathematical theorems might be revealed in the
dreams of Mexican bullfighters; and tomorrow’s Chicago newspaper headlines
might appear as visions today in the minds of uneducated fishermen in Greece.
We recognize that none of these events are likely to happen. Neither is the engineer,
regardless of how creative he may be, likely to produce new and useful ideas that
lie beyond the realm of his experience. This fact does not, of course, rule out the
use of inductive and deductive reasoning by the engineer in extending and applying
his knowledge to new situations.

Understanding is necessary for design. It is said that “A man has a certain
degree of understanding of an automobile when he can drive one, a higher degree
of understanding when he can repair one, and a still higher degree of understanding
when he can design one.”®

The engineer must be skilled in deliberately and creatively refining, combining,
and synthesizing his ideas into useful designs. In large measure his success will be
proportional to his understanding of man and nature and his skill in obtaining a
final design that is both simple and functional.

SIMPLIFYING ASSUMPTIONS AND PREPARATION OF A MODEL

Generally the engineer will not attempt to find the perfect solution to an identi-
fied problem, since finding the perfect solution would in most instances involve the
expenditure of an inordinate sum of money over an extended period of time. Engi-
neering is a profession that deals in realism. As such, it gives recognition to the
value of time, money, materials, and human effort. Therefore, the engineer will
strive to provide his employer or client with the best possible solution to a given
problem within the capability and resources that are available. Some problems
might have a great number of solutions. However, the engineer cannot spend
several years in investigating, for example, the types of materials and loading condi-
tions for a highway bridge . . . . not to speak of the unlimited number of variations
that would exist if a number of sites were considered. Therefore, the engineer will
accept certain simplifying assumptions or approximations that limit the scope of
the design.

Unlike some other professionals, such as doctors or lawyers, the engineer does
not usually work directly with the problem that he has identified. Instead, he will
construct an idealized model of the real situation, and then he will work with this
model to achieve what he believes to be an acceptable solution. Finally he will ex-
periment with his model and test its effectiveness in satisfying the need that he
originally found to be present. The idealized model is nothing more than an image
of the real situation as visualized by the engineer. It is not reality, It may take on
the form of a sketch, chart, geometrical diagram, mathematical equation, computer
program, scale model, simulation device, or some other type of representation that
may be substituted for the real situation for purposes of predicting behavior and
simplifying the analysis.

The use of models to represent circumstances and to predict future behavior is

% Marshall Walker, The Nature of Scientific Thought, Prentice-Hall, Englewood Cliffs, N.J.,
(1963), p. 1.
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not an unusual procedure in other walks of life. For example, each year thousands
of school boys who engage in sports study diagrams that are composed of circles,
squares, triangles, curved and straight lines, and other similar symbols. These
diagrams represent to them actions which are anticipated in some future football
or basketball game. Such geometrical models are limited because they are two-di-
mensional and they do not allow for strengths, weaknesses, and imaginative deci-
sions of the individual athletes. However, their use has been proved to be quite
valuable in simulating the outcome of small time-segments of the game and in pre-
dicting the eventual outcome of the contest. Other types of models such as the
tackling dummy, the blocking sled, the automatic pitcher, and the punching bag
have also proved their usefulness in training athletes to cope with circumstances
that have been predicted to occur in future athletic events.

An idealized model may emphasize the whole of a system and minimize its
component parts, or it may be designed to represent only some particular part of
the system and ignore the remainder. In selecting an idealized model the engineer
must recognize that he is merely simplifying or limiting the complexity of the prob-
lem in order that he can apply known laws of science in his analysis. In actuality,
the idealization chosen may deviate considerably from the true condition. Conse-
quently the engineer’s solution for the model may or may not be an acceptable
solution to the real problem. The engineer must therefore view his answers with
respect to the assumptions he made initially in preparing his idealized model. If
the assumptions were in error, or if their importance was underestimated, then the
engineer’s analysis will probably not approximate or predict true conditions very
closely. Thus, the usefulness of the model to predict future actions must be verified
by the engineer. This verification is accomplished by experimentation and testing
of the model. Refinement of the model and verification by experimentation are
continued until an acceptable representation of the real phenomena is obtained. The
design of the model must be the product of creative action by the engineer, but the
determination of the behavior or performance of the model will follow a pattern
of deductive analysis. In given situations some types of models are more useful to
the engineer than other types. A discussion of some of the general types of models
that engineers use is given below.

TYPES OF IDEALIZED MODELS
The Mathematical Model

A mathematical model can be established for a given situation if the problem
has been previously described in words or by use of sketches or diagrams. Mathe-
matics is a means of communication that originated as an abstraction from empirical
experience concerning the physical world. Originally the mathematical symbols
and operations that were used were concerned with visible objects and processes in
nature. Later it was found that the same symbols and operations could also be used
in combination to represent hypothetical situations not necessarily descriptive of
any physical object. In this way the behavior and characteristics of complex phe-
nomena could be studied.

As an example, Sir Isaac Newton (1642-1727) expressed several basic laws
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that he believed to govern the motion of particles. His second law was stated as fol-
lows:

When an external unbalanced force acts on a particle of mass, the motion
of the particle will be changed. The particle will be accelerated. Its rate of
change in motion will be in the direction of the unbalanced force and will
be proportional to it.

This statement would be very cumbersome and even difficult to use in the
printed form shown above. However, if mathematical symbols are used to repre-
sent some of the parts of the hypothesis, it becomes much easier to work with.

Stated mathematically: F, F, F;, F,
g . —=_==_2=_1 = aconstant
(for motion in one a, a, a,

direction)

Where: F,, F,, F;, etc., are the external unbalanced forces acting on a particle,
and a,, a,, as, etc., are the consequential accelerations of the particle.

The relationship is most commonly expressed as F = Ma, where M represents
the invariant quantity, mass. '

Another example can be taken from electrical engineering. There is a well
known relation of electrical quantities in a circuit which says that the ratio of the
voltage difference across a conductor to the current passing through it is a constant.
This may be expressed as:

Voltage ;

Yorage a constant called resistance
Current

or

IZ =R,and V = IR

A mathematical model is the most generally applicable and most powerful form
of model that the engineer can use. It is also the easiest to understand and manipulate
once it has been written.

The Diagram

A favorite type of model that is used by the engineer is the diagram. Typical
forms of diagrams are the block diagram, the energy diagram, the electrical diagram,
and the free body diagram. Some attention should be given to each of these forms.

The block diagram, Figure 11-4, is a generalized approach at examining the
whole problem and identifying its main components. Such a diagram is particularly
useful in indicating the relationships and interdependencies of component parts of
the problem. This type of diagram is particularly useful in the early stages of design
work and where representation by a mathematical model would be very difficult to
accomplish, Illustration 11-2 is an example of a block diagram in which electrical
subassemblies are drawn as blocks, and the connecting lines between blocks indi-
cate the flow of information in the whole assembly. This type of presentation is
widely used to lay out large or complicated systems—particularly those involving
servo-electrical and mechanical devices. No attempt is made on the drawing to detail
the inner circuits of any of the subassemblies pictured. This does not, however, pro-
vide a substitute for a mathematical model.




lllustration 11-2. The relation
of component parts of a tran-
sistorized telemetering system
are best shown by means of
a block diagram. (Courtesy
Texas Instruments Incorpo-
rated.)

The energy diagram is particularly useful in the study of thermodynamic systems
involving mass and energy flow. Before drawing such a diagram the engineer should
set forth simplifying assumptions and selection of boundaries and operating condi-
tions. This type of diagram is a modification of the block diagram. Some examples
of the use of an energy diagram are given in Figures 11-6 and 11-7.

Example: A quantity of high-temperature steam flows into a turbine at high
pressure, expands in the turbine while doing work on the turbine rotor, and then is
exhausted at low pressure. Draw an energy diagram of this situation. The results
may be as shown in Figure 11-6.

Example: Draw an energy diagram showing how nuclear power can be used
to operate a submarine. The results may be as shown in Figure 11-7.

The electrical diagram is a specialized type of model used in the analysis of
electrical problems. This form of idealized model represents the existence of partic-
ular electrical circuits by utilizing conventional symbols for brevity. These diagrams
may be of the most elementary type, or they may be highly complicated and require
many hours of engineering time in preparation. In any case, however, they are
representations or models in symbolic language of an electrical assembly.
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Figure 11-7. Diagrammatic sketch showing how nuclear power can be used to operate a
submarine. (Courtesy General Dynamics, Electric Boat Division.)

Figure 11-8 shows an electrical diagram of a photoelectric tube that is arranged
to operate a relay. Notice that the diagram details only the essential parts in order
to provide for electrical continuity and thus is an idealization that has been selected
for purposes of simplification.

The free-body diagram is a diagrammatical representation of a physical system
which has been removed from all other surrounding bodies or systems for purposes
of examination. It may be drawn to represent a complex system or any smaller part
of it. This form of idealized model is most useful in showing the effect of forces
that act upon a system.

The boundaries of a free-body diagram, real or imaginary, should be drawn
such that they enclose the system under study. All force actions external to the
boundaries that act on the “free-body” should be represented by force vectors on
the diagram. Force actions internal to the boundaries should be ignored, since the
system is usually analyzed as a whole. Extraneous detail of the complex environment
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should not appear on the free-body diagram. Rather, the diagram should include
only the detail that is significant to the problem.

Of course a free-body diagram is merely an idealized model of the real situation,
and it is imaginary in every sense. Such an idealized condition does not exist in
nature, but it is assumed to so exist for purposes of the analysis. The usefulness of
the diagram depends upon how well it represents the real situation. The following
example problems are typical of some problem types that the student may en-
counter in the solving of engineering problems.

Example: Draw a free-body diagram of a ship which is moving forward in
the water.

SOLUTION: It is not necessary that the free-body diagram be drawn to exact scale,
since the shape of the idealized model is only an imaginary concept. Proceed in two
steps as shown in Figure 11-9.

EXPLANATION: In the most general sense, the external forces acting on the idealized
model are four in number: a forward thrust, which acts at the ship’s propeller; a
friction drag, which acts in such manner as to retard motion; a buoyant force, which
keeps the ship afloat; and the ship’s weight, which in simplification may be con-
sidered to be acting through the center of gravity of the ship.
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NOTE: The symbol @ is used to denote the location of the center of gravity of an
idealized model. Also notice that a coordinate system, as applied to the free-body
diagram, is very useful for purposes of orientation. The diagram shown would be
an analysis of the relationships between the weight and buoyant force and between
the thrust and drag. However, it would not, for example, be useful for determining
the loads on the ship’s engine mounts. Another model (free body diagram) would
now be required.

Example: Draw a free-body diagram of a four-wheel drive automobile being
driven up an incline, as shown in Figure 11-10.

EXPLANATION: Always show the system under consideration in its true and
realistic position in space. For example, it would have been awkward to have shown
the automobile as being on a horizontal surface, since it is in actuality moving up
an incline.

GENERAL SUGGESTIONS FOR DRAWING FREE-BODY DIAGRAMS

To aid the student in learning to draw free-body diagrams, the following sug-
gestions are given:

1. Free Bodies. Be certain that the body is free of all surrounding objects.
Draw the body so it is free. Do not show a supporting surface, but rather show only
the force vector which replaces that surface. Do not rotate the body from its original
position, but rather rotate the axes if necessary. Show all forces and label them. Show
all needed dimensions and angles.

2. Force Components. Forces are often best shown in their component forms.
When replacing a force by its components, select the most convenient directions
for the components. Never show both a force and its components by solid-line
vectors; use broken-line vectors for one or the other since the force and its com-
ponents do not occur simultaneously.

3. Weight Vectors. Show the weight vector as a vertical line with its tail or
point at the center of gravity, and place it so that it interferes least with the re-
mainder of the drawing. It should always be drawn vertically.

4. Refer to the Free-Body Diagram. Each step of the solution should have a
clear cross reference to the free body to which it pertains.

5. Direction of Vectors. The free-body diagram should represent the facts
as nearly as possible. If a pull on the free body occurs, place the tail of the vector
at the actual point of application and let the point of the vector be in the true
direction of the pull. Likewise, if a push occurs on the free body, the vector should
show the true direction, and the point of the arrow should be placed at the point of
application. Force vectors on free-body diagrams are not usually drawn to scale
but may be drawn proportionate to their respective magnitudes.

6. Free-Body Diagram of Whole Structure. This should habitually be the first
free-bady examined in the solution of any problem. Many problems cannot be solved
without this first. consideration. After the free-body of the whole structure or com-
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plex has been considered, select such members or subassemblies for further free-
body diagrams as may lead to a direct solution.

7. Two-Force Members. When a two-force member is in equilibrium, the
forces are equal, opposite, and collinear. If the member is in compression, the
vectors should point toward each other; if a member is in tension, they should point
away from each other.

8. Three-Force Members. When a member is in equilibrium and has only
three forces acting on it, the three forces are always concurrent, if they are not
parallel. In analyzing a problem involving a three-force member, one should recall
that any set of concurrent forces may be replaced by a resultant force. Hence, if a
member in equilibrium has forces acting at three points, it is a three-force member,
regardless of the fact that the force applied at one or more points may be replaced
by two or more components.

9. Concurrent Force System. For a concurrent force system the size, shape,
and dimensions of the body are neglected, and the body is considered to be a particle.

Example: Draw a free body of point 4, as shown in Figure 11-11.
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Explanation

The normal force always acts at
an angle of 90° with the sur-
faces in contact. This force N
usually is considered to act
through the center of gravity of
the body.

Since the ring is of negligible
size, it may be considered to be
a point. All of the forces would
act through this point. The down-
ward force W is balanced by the
tensions T, and T, . The numerical
sum of these tensions will be
greater than the weight. This is
true since T, is pulling against T, .

Some surfaces are considered
frictionless, although in reality no
surface is frictionless. The force
P is an unbalanced force and it
will produce an acceleration. The
symbol @ denotes the location of
the center of gravity of the body.

The force of friction will always
oppose motion or will oppose the
tendency to move. For bodies of
small size, the moment effect* of
the friction force may be disre-
garded and the friction and nor-
mal forces may be considered to
act through the center of gravity
of the body.
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10. Pin Joints. A free-body diagram of the pin itself should bé drawn when it
lends to simplicity of the solution. Pin connections usually may be considered to be
frictionless.

11. Reaction between Surfaces. Some problems involve smooth surfaces (an
imaginary concept) that are considered to offer no frictional resistance to motion.
For bodies in equilibrium at rest, this concept is both a useful and practical ap-
proximation. Pins and the members they join are in contact on a surface, and the
reaction between the surfaces is perpendicular to the common tangent plane at the
point of contact. Thus, if a cylinder rests on a plane, the reaction at the point of
contact will pass through the center of the cylinder, as shown in Figure 11-12.

Additional examples are given in Figures 11-13 and 11-14 to illustrate situa-
tions that the engineer may encounter, together with the resulting free-body dia-
grams which may be drawn as models to represent the situations.

Situation Free-Body Explanation

A beam resting on
fixed supports

Load 501lb Load
<8 ﬁ*l\“‘e l For a uniform beam, the weight
2 ft e acts at the midpoint of the beam
7{ 2§ regardless of where the supports
7 % are located.
Wt =50 Ib gAEAN g
A pivoted beam resting
on a roller
100 Ib 70.|7 Ib 10Ib Since a roller cannot produce a
° f«— 12 ft —] 6 ft>—4<6 ft horizontal reaction, the horizon-
i 70.7 Ib r ’-I B, tal component of any force must
——>»% —— be counteracted by the horizontal
7 7 I component of the reaction at the
Wi=101b R, B, pivoted end.

A ladder resting against
a frictionless wall

the only reaction possible is per-
pendicular to the wall since the
surface is considered to be fric-

Wit
= \! At the upper end of the ladder,

Friction .
tionless.
N
Pulling a barrel
over a curb

Pull
= All of the forces are acting
1 through the center of the barrel.

N

Figure 11-14.
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The Scale Model

Scale models are used in various problem solviﬁg situations, and they  are
particularly useful where the system under consideration is very large and complex
or very small and difficult to observe. They are also used by the engineer in many
instances where a mathematical model is either impossible or impractical.

A scale model is an idealized replica, usually three-dimensional, of the system,
subsystem, or component being studied. The idealization may be constructed to any
desired scale and the final scale model may be larger in size, the same size, or much
smaller in size than the actual design.

Such projects as dam or reservoir construction, highway and freeway interchange
design, factory layout, and aerodynamic investigations are particularly adaptable to
study by using this type of idealized model. In some cases the scale model is not
instrumented, Illustration 11-3, but component parts of the model can be moved
about to represent changing conditions within the system. Of considerably more
usefulness, however, are those scale models which are instrumented and subjected
to environmental and load conditions that closely resemble reality, Illustration 11-4.
In such cases the models are tested and experimental data are recorded by the
engineer. From an analysis of these data, predictions of the behavior of the real
system can be made.

lllustration ‘11=3. Exact scale 'models are valuable aids to the engineer in clcqu'ainting
others with design and operating procedures such as this model of an ammonia-nitrogen
plant located in Taiwan. (Courtesy Allied Chemical Corporation.)

‘él
itz51 anh




lllustration 11-4. Pictured above is a spacecraft which is located in a 30-foot diameter
space simulation chamber to permit engineers to investigate problems of actual temperature
and vacuum conditions which will be encountered in space. The model spacecraft is altered
after’ each actual space mission to represent ‘more closely the behavior of the vehicle in
space. (Courtesy McDonnell Aircraft Corporation.)

21
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Illustration 11-5. Centrifuge used to simulate space conditions for training astronauts.
(Courtesy Timken Roller Bearing Company.)

By using a scale model the final design can be checked for accuracy prior to
actual construction of the design. Although scale models often cost many thousands
of dollars, they are of relatively minor expense, considering the total cost of a
particular project. Also, a scale model frequently may be constructed and tested
in a fraction of the time necessary to build the original system.

The Simulation Model

A simulation model may be used to represent the behavior of environmental
conditions, Illustration 11-5. When experimentation is performed on a scale model,
it is referred to as simulation. Such experimentation makes it possible for the engi-
neer to evaluate alternatives and to make adjustments in his design with minimum
expense, loss of time, and danger to life. The use of simulation devices, as much
as any other single factor, is credited with minimizing the fatality rate in the
“Manned Space Program,” presently being conducted by the United States.

Computer simulation has also become very important to the engineer. Analog
computers are used in those cases where electrical impulses can be made to be-
have in a manner analogous to that of the real object or process being simulated.
Digital computers are used where the designh or process can be broken down into
a multitude of small limited-choice decisions. In addition to obtaining a realistic
appraisal of the actual design performance, the computer can simulate years of real
time in a very few hours because of the exceptionally fast speed with which a digital
computer can accomplish a given calculation. Simulation of the passage of time
by any other means is very difficult for the engineer to achieve.
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lllustration 11-6. Experimentation and verification of the performance of idealized
models are important factors to the engineer. Here an engineer is working with a simula-
tion model of the human body which he is using to verify automotive design calculations
that he has made. (Courtesy Chrysler Corporation.)

EXPERIMENTATION, VERIFICATION, AND PRESENTATION OF THE SOLUTION

Much engineering work is concerned with experimentation for the purpose of
verifying design calculations. As suggested above a majority of such testing involves
a determination of the degree of success or failure of an idealized model to achieve
desired standards. Frequently feed-back of the test results will cause the engineer to
re-examine his model and to make alterations or adjustments in its design. By re-
peating this process over and over, an idealized model which closely approximates
the real-life situation can be found, Illustration 11-6.

Since the real-life situation cannot be known in advance in many instances, the
engineer’s model serves also to predict the future. For example, since man had
never before experienced the effects of space travel, the engineer could only antici-
pate such consequences by experimentation involving various types of models that he
designed for this purpose. The success of man’s first flight into space and his safe
return is a tribute to the engineer’s abilities in designing and testing models and in
simulating man’s reactions within a foreign environment.

It has been said that “the proof of the pudding is in the eating,” Certainly this is
good advice for the engineer to follow. No idealized model or design, regardless
of its sophistication or simplicity, is of value to the engineer unless it serves as a
satisfactory answer to the need that was recognized originally. This is the final goal
of the engineering method of problem solving, and this step serves to complete the
cyclic problem solving process.
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Prohleins

11—1 Draw a free- body diagram ofthe contamer for radioactive matenals as
. +.  shown inIllustration 11-7. ;
-11—2 Draw a frce-body dlagram of the balhstlc mlssﬂe as shown in Illustration
1 11-8,p. 95. !
11-3. Draw a free-body diagram of pomt O as shown in Flgurc 11215;
11-4, Draw a free_body diagram of the sphere shown in Figute 11-16.

A

Y

vy /// ///:f«:/

N

Figure 11-16.

lustration 11-7. Since radio-’
active ' materials ‘must “be
handled 'with! extreme ‘care,
the lowering of .a container
of radioactive products must
be monitored continuously,
using precision instruments.
(Courtesy’ Westinghouse Elec—
tric Corporation) '/ i
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11-5. Draw a free-body diagram of the sphere shown in Figure 11417:
11-6. Draw a free-body diagram of the sphere shown in Figure 11-18.
11-7,: Draw a free-body diagram of the sphere shown in Figure 11-19.

Diameter =2 ft.

Figure 11-17. Figure 11-18. Figure 11-19.

11-8. Draw the free-body diagram of the horizontal beam shown in Figure 11-20.

11-9. Draw a free-body diagram of the horizontal bar shown in Figure 11-21.
11~10.'Draw ‘a’thermodynamic system' of an ordinary gas-fired hot water heater.
11-11. A water heater operates under steady-flow conditions such that a quantity

Hlustration 11-8." Test stands
for launching rockets .and mis-
siles 'are: .complex - structures’
| which have been, designed so
that all parts of the missile
will be accessible for instru-
mentation  checks' ‘prior ' “to
launching. (Reprinted .'from |
Missiles, and  Rockets, American
.Aviation Publications, Inc.)
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Problems (continued)

8 ft.

1066 Ib. 3. 3t 100 Ib. /ft.

360

1 ft.
N

C

%?/, ‘ %5 7
1.7 ft: 3.7 ft. 21—, A

= N o)

(477116 f Sketch

Figure 11-20. Figure 11-21.

11-12.
11-13.

11-14.

11-15.

11-16.
11-17.

11-18.
11-19.

11-20.

11-21.

11-22.

11-23.

of entering low-temperature water is mixed with steam. The mixing takes
place inside the heater and leaves the exit as one fluid. Draw a thermo-
dynamic system to represent this process.

Draw a thermodynamic system of a vapor-compression refrigeration cycle.
A water heater operates under steady flow such that low-temperature water
enters the heater, extracts heat from steam while inside the heater, and
leaves the heater at an elevated temperature. The water and steam do not
come in direct contact with each other. Draw a thermodynamic system to
represent this process.

Draw an electrical circuit diagram containing two single-pole double-throw
switches in such manner that a single light bulb may be turned on or off at
either switch location.

Arrange three single-pole single-throw switches in an electrical circuit con-
taining three light bulbs in such manner that one switch will turn on one of
the bulbs, another switch will turn on two of the bulbs, and the third switch
will turn on all three bulbs.

Show a thermodynamic system representing a simple refrigeration cycle.

A white oak beam is 18 ft long and 8 in. by 10 in. in cross section. What is
its weight?

What will be the diameter of a tank 22.5 ft high that holds 1620 ft® of water?
A cylindrical tank is 20.6 ft in diameter, 8 ft high, and contains 15,300 gal
of water. What weight of water is contained in the tank?

A cylindrical tank is 20.8 ft in diameter, 8 ft high, and is made of steel % in.
thick. What is the area of the side and bottom of the tank? What is the
weight of the tank?

A storage vat is 100 yd long, 12 ft deep, and its width is 10 ft at the bottom
and 15 ft at the top (trapezoidal cross section). The ends of the vat are
vertical. Oil flows into the vat at a rate of 500 gpm. Find the time in hours
that is required to fill the vat to a depth of 10 ft.

How many gallons of water will be contained in a horizontal pipe 10 in. in
diameter and 15 ft long, if the water is 6 in. deep in the pipe?

Find the cost of 23 pieces of 2-in. by 10-in. yellow pine boards 12 ft long at
$100 per 1000 fbm.




11-24.

11-25.

11-26.

11-27.

11-28.

11-29.

11-30.

11-31.

11-32.

11-33.

11-34.

11-35.

11-36.

11-37.

11-38.
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A white pine board is 14 ft long and 2 in. by 8 in. in cross section. How
much will the board weigh? At $120 per 1000 fbm, what is its value?

A cast iron cone used in a machine shop is 10 in. in diameter at the bottom
and 34 in. high. What is the weight of the cone?

How many cubic yards of soil will it take to fill a lot 63 ft wide by 100 ft
deep if it is to be raised 3 ft in the rear end and gradually sloped to the front
where it is to be 1% ft deep?

A sphere whose radius is 1.42 in. is cut out of a solid cylinder 8.8 in. high
and 7.8 in. in diameter. Find the volume cut away, in cubic inches. If the
ball is steel, what does it weigh?

A container is 12 in. high, 10 in. in diameter at the top, and 6 in. in diameter
at the bottom. What is the volume of this container in cubic inches? What
is the weight of mercury that would fill this container?

A canal on level land is 19 mi long, 22 ft deep, and has a trapezoidal cross
section. The distance across the canal at the top is 36 ft and across the
bottom is 15 ft. Find: (a) the number of cubic yards of dirt that were
removed to complete the canal; (b) the time in hours required to pump the
canal full of water if the pump discharges 600 gpm and gates at either end
are closed.

A cylindrical tank 7.50 ft in diameter and 15.9 ft long is lying with its axis
horizontal. Compute the weight of kerosene when it is one-third full.

A container that is in the form of a right rectangular pyramid has the follow-
ing dimensions: base 26 in. by 39 in., height 16 ft. This container has one-
half of its volume filled with ice water. Neglect the weight of the container.
Find the weight of the contents.

A hemispherical container 3 ft in diameter has half of its volume filled with
lubricating oil. Neglecting the weight of the container, how much would the
contents weigh if enough kerosene were added to fill the container to the
brim?

Find the area in acres of a tract of land in the shape of a right triangle, one
angle being 55°30’, and the shortest side being 1755 ft long. What length of
fence will be needed to enclose the tract?

Points 4 and B are located on opposite corners of a building and are located
so that they can be seen from point C. The distance CA is 256 ft and CB
is 312 ft. The angle between lines CA and CB is 105°30". How far apart
are points A and B?

Find the area of a sheet of titanium 0.063 in. thick having dimensions as
shown in Figure 11-22. What will be the approximate weight of the sheet
of titanium?

A piece of sheet aluminum in the shape of a triangle has sides of 3.05 in.
and 6.11 in., and the angle between these sides is 76°18’. (a) What are the
other angles? (b) What is the area of the piece of metal?

In surveying, the determination of the distance AB is required. The given
measurements are shown in Figure 11-23. What is the distance 4 B?

In a survey, an obstacle in the line AB is encountered. To determine the
distance A B, the measurements shown in Figure 11-24 were made. What is
the computed distance A B?
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Problems (continued)
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11-39. Convert the following’ Fahrenheit temperatures, to; Celsius temperatures.
jo fnas (@) V6820 H) ¢ 98168515 (c):i 6% kd)!: 359°, 1€ T1L?, ‘(f) 2880°,
(g) 4.7 (104)°, (h) —5° %) —40% (s 2552 |
11-40. Convert the:following. Celsius - temperatures. to- Faﬁhrenheat temperamtes
S Lis G@n20% Kb -37%::(c) 1558,1:(d) 580°, (e) 8800", (fy L 22, (10%)°,
ean 15 (8I0F 2% I 408, (D273 %nsil oo i
11-41. The temperature of liquid oxygen used as mlssﬂe fue] is abgpt»—lSS"C
i ¢ - What is its temperature in-degrees Fahrenheit?.: 10 o0
11-42, The temperature of dry ice (solid carbon /dioxide), used:in shrmkmg metal
parts to fit them together, is —78.5°C. What is the correspondmg tempera—
o207 taresin degrqes-Fahrenhcit"* aefde afl gl moriaris 1o
11-43. An air-storage tank used in wmﬂtunnel research has a voiume\ of 138 ft3
How many cubic-feet of air-at atmospheric pressure wdl have: to. be pumped
rovi cintorit to paise the pressure to 185 psig? < i
11-44. A tlgh.t»ﬁttmg piston.3.77 in.} in-diameter in a closed .cyhnder compresses
|+ -1 air from an-initial pressure.of 35 psig to 68 psig! If the final velume of the
(oo air isi14458 ini®, what will be the, distance: the. piston-maves?. 111,
11-45. Natural gas in an underground pipe line 24 in::inside diameter is under a
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pressure of 375 psig. If this gas is allowed to-expand to a pressure of:3.0
... psig, what volume would the gas in a mile of high- pressure pipe occupy?,
11-46. An open-end cylinder with the open end down is lowered into a lake. If
.. the pressure due: to water is 0,434 psi for each foot depth of water, how.
deep would. the cylmder be lowered to reduce the volume of trapped air by
fey one fifth its eriginal volume? ;
11-47. The normal pressure of the atmosphere at sea level (14 7 psr) will support
T | column_ of mercury-. 29. 92 in. high in a, barometer The atmosphenc
pressure changes approximately 0.1 in. of mercury for each 90 ft of eleva-
tion change at low elevations. What will be the approx:mate normal
;. , atmospheric pressure in psi at an elevation of 3050 ft above sea level?
11-48. An automobile tire is mﬁated to a pressure of 28 psig, when the temperature
. is 51°F. After a period of drlvmg, the temperature of the air in the tire has
1 |, been raised to 125°F, What will be the gage pressure of the air?
11-49. Alr that has been conﬁned under a pressure of 5.0, psig in the cylinder of an,
' air compressor is further compressed by a tight- ﬁttmg prston that decreases
;.. the volume from 0.89 ft* to 0.27 ft*. At the same time the temperature of
. the air is raised. from 43° F to 138°F What will be the ﬁnal gage pressure
. of the confined air? ; ,
1_1—5_0. A balloon used for meteorolog1ca1 research has a volume of, 137 ft3 At the
time it leaves the ground, the pressure of the gas 1n51de the balloon is 3.0
. ounces per in?  page and the temperature 1s 88°F. It rises to a herght where
_the temperature is —40 F and the pressure in the ba]loon is 6. 88 ps1a If
.1, the balloon expands freeiy, what will be the new volume?
11-51. A steel drum of oxygen shows a gage pressure of 2100 psig.at a temperature
“of 95°F. What will be the gage pressure at a temperature of —12°F? \
11—52 An open end cylinder 10 ft long is lowered into a tank of water with the
1501 open end down so that ‘the lower end is at a depth of 9:65 ft. The tempera-
ture of the trapped air is 43°F. At what air temperature would the trapped
air have expanded until it had displaced all the water which had risen inside
the cylinder? The pressure due to water is' 0.433 psi per ft of depth.

PROBLEMS IN STATIC MECHANICS

Mechanics is the physical science that describes and predicts the-effects of forces
acting on material bodies. The condition under study may be one of rest or one of
motion. There are three specialized branches into which the general field of me-
chanics may be divided for more specific studies. These are:

1. Mechanics of rigid bodies

a. Statics

b. Dynamics
2. Mechanics of deformable bodies
3. Mechanics of fluids

a. Compressible flow

b. Incompressible flow

Our study here is concerned with an introduction to 1.a., Static Mechanics, as a
vehicle for the application of the engineering method of problem solution.
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Fundamental Concepts and Definitions

Concepts used in our study of static mechanics are force, space, and matter.
These concepts are basic and, as a frame of reference, should be accepted on the
basis of our general experience. A force is the result of the interaction of two or
more bodies and in our study here will be considered to be a localized vector quan-
tity. A force may be evolved as the result of physical contact, or it may be developed
at some distance—as is the case with magnetic and gravitational forces. Space is a
region extending in all directions. It is associated with the location or position of a
particle or of particles with respect to one another. Matter is a substance that oc-
cupies space.

A particle may be said to be a negligible amount of matter that occupies a single
point in space. A rigid body is a body that is constructed entirely of particles that
do not change their position in space with respect to each other. No real body is
rigid. However, in many situations the deformation, or change in position of the
particles, is very small and therefore would have a negligible effect upon the analysis.
Such is the assumption in this chapter.

A scalar quantity is one that can be completely defined by giving its magnitude.
Examples of scalar quantities are temperature, work, volume, time, speed, and
energy. A vecfor quantity is one that must be described by direction, as well as
magnitude, to define it completely. Vectors may be free in space, with no specific
line of action, or localized to a unique point of application or fixed position in space.
Examples of vector quantities are force, velocity, acceleration, displacement, and
momentum. Scalars may be added, subtracted, etc., according to the ordinary laws
of algebra. Vectors, on the other hand, must be handled according to principles of
vector mathematics, which will be discussed later in this chapter. Force systems are
said to be:

1. Coplanar, when all of the force vectors lie in the same plane (see Figure
11-25).
2. Collinear, when all forces act along the same line (see Figure 11-26).

3. Concurrent, when all the forces originate or intersect at a single point (see
Figure 11-27).

=

Coplanar Force System
Figure 11-25.

Collinear Force System Concurrent Force System

Figure 11-26. Figure 11-27.
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All force vectors should plainly show the sense or direction of force. This can
best be done by the use of arrowheads on the point of the force. Space coordinate
axes are frequently used to aid in positioning vector systems.

Example: A force of 150 Ib; is pulling upward from a point at an angle of 30°
with the horizontal (see Figure 11-28).

The length of the arrow in the above example was scaled (using an engineer’s
scale) to 1 in. equals 100 lb; and is 1% in. long acting upward at an angle of 30°
with the horizontal. In graphic work the arrow point should not extend completely to
the end of the vector, since it is very easy to ‘“overrun” the exact length of the
measured line in the drawing of the arrowhead.

150 Ib.
Y|
Scale1in.=100 Ib. /

Point of vector
Figure 11-28.

X ¥

s

Tail of vector

In rigid-body mechanics the external effect of a force on a rigid body is inde-
pendent of the point of application of the force along its line of action. Thus it
would be considered immaterial whether a tractor pushed or pulled a box from a
given position. The total effect on the box would be the same in either case. This is
called the Principle of Transmissibility and will be used extensively in this chapter.
This may be illustrated as shown in Figure 11-29.

Figure 11-29.

Example: In each case the body is being acted upon by forces of 26 1b; and
18 1b;. The total effect on the body is assumed to be the same for each example,
since it is the line of action of a force which is significant, rather than its point of
application.

Resolutions of Forces

In this initial study of static mechanics we shall deal mainly with concurrent,
coplanar force systems. It is sometimes advantageous to combine two such forces
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into a single equivalent force, which we shall call a resultant. The original forces are
called components. '

Example: What single force R pulling at point, O will have the same effect as
components F, and F,? (See Flgure 11-30.)

Figure 11-30. B

There are several methods of combining these two components into a single
resultant. Let us examine the parallelogram method, the polygon of forces, and the
rectangular component method.

Parallelogram Method

1. Choose a suitable scale. " P B LeTs

2. Lay out the' two coplanar components to scale pomtmg away from the pomt
of intersection.

3. Using these two components as sides, consfrubt's parallclogram.
4. Draw the diagonal through the point of intersection.

5. Measure the diagonal (which is the resultant of the two components) for
magnitude (with engineer’s scale) and direction (with protractor).

Example:  Solve for the resultant of components Fyand F, if they are separated
by angle 4 (see Figure 11-31).

Figure 11-31."

Example:  Two coplanar forces of 30 Ib; and 40 Ib;, respectively, are at right
angles to each other. Determine the magnitude of the resultant and the angle between
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the resultant and the 40-1b; force (see Figure 11-32). Lay out.the two forces to
scale as outlined above. The diagonal is measured to be 50 Ib; and is located at an
-angle of 36.9° with the 40-1b; force:: Ine ow !

L33 L

Soluhon )
Seule] in.=401b.'

30 Ib. R=50Ib. Figure 11-32.

Y -

401b.

Problems .i " , o

Soive using the parallelogram method — s

11—53 Find the resultant of two concurrent forces of 1939 1bs and 1220 1by,

) v respectively, if ithe angle between them is 20°%; if-the angleis 130°.
11—54 Find the ‘resultant. of two' concurrent forces,one 320 lb, due east and the
‘ other 5501b,830° E. !

11—55 Force 4 is 450 lb;. Force B is 325 lbf and acts at an angle of 54° with 4.

""" "The forces are concurrent. What is the amount of the resultant and what

., . angle does it make with force 4?7 ;

11-56.  Find the:resultant of two- concurrent; campouents ong of 1225 1by, due west

1t 21 n-and the other of 14501b; S 30°. E. Yetotel ‘

11-57. A heavy piece of machinery is bemg moved- along ar ﬂoor with' two cables
making an angle of 28° 30" with each other. If the pulls are 45,000 and
25,000 1by, respectively, by what single force could they be replaced, and
at what angle would the force act?

11-58. Find the resultant of a velocity of 150 mph due east and a velocity of 280
mph 8/70° E. Use a scale of 1 in. equals.20 mph.

11-59. Three ropes are attached to a heavy body. If the first is pulled east by a
force of 159 Iby, the second by a force of 75 Ib; 30° east of north, and the
third north by a force of 108 Ib;, what is the resultant pull exerted on the
. body?

11—60 ‘Three lines are connected to a missile. One hnc havmg a tension of 1500
1by, runs due north; a second line, with a tension of 870 Iby, runs S 75° W;
a third line, with a tension of 1240 1by, runs N 58 E. Find the position and
direction-of a properly placed guy wire to brace the missile.-

11-61. A man pulls straight ahead on a test sled with a force of 148 Ib;. If this man
is replaced by two men, one pulling 36° to his left and the other pulling 20°
to his right, what force must each of the new men exert if the sled is to move
in the same direction?
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Problems (continued)

11-62. A weight is held up by two cables that make angles of 50° and 25°, respec-
tively, with the horizontal. Their resultant is vertical and equal to the weight
which is 260 1b;. Find the tension in each cable.

11-63. Two men are raising a 100 Ib; container from a reactor by means of two
ropes. Find the force each man is exerting on his rope if one rope makes a
15° angle with the vertical and the other makes a 25° angle with the vertical.

Polygon of Forces

If two or more forces (or components) are concurrent and coplanar, their
resultant can be determined by a faster and more convenient method known as the
polygon of forces. In order to apply this method, proceed as follows:

1. Select a suitable scale.

2. Lay out one of the components with its correct magnitude and direction. At
the tip of this component construct very lightly a small space coordinate system.

3. From the origin of this new space coordinate system lay out another compo-
nent, placing the tail of the second component against the point of the first compo-
nent.

4. Proceed in like manner until all components are used once (and only once).

5. Draw a vector from the original origin to the tip of the last component. This
vector represents the resultant of the force system in both magnitude and direction.

Example: Solve for the resultant of the vector system shown in Figure 11-33.

Observe that R, is the resultant of the 116-lb; component and the 368-1b; com-
ponent, R, is the resultant of R, and the 415-Ib; component, and R; is the resultant
of R, and the 301-1b; component. We see that Ry (410-1b; at § = 28°), then, is the
resultant of all the components.

Solution
Scale Tin.=200 lb.

415 1b.
30°
1
30° ©
301 Ib !
: N6 b,
Figure 11-33.
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It makes no difference in what sequence the components are placed in series.
The resultant will be the same in magnitude and direction. In some cases the vectors
cross one another, but this, too, is nothing to cause concern.

Example: Solve for R, and the angle it makes with the X-axis.

Note that in solution A in Figure 11-34 we began with the 120-lb; component

12015, 275 |b. Scale 1in. =200 Ib.
Solution A Solution B
il /
o Ib.
R 120 Ib
\ |\
100 Ib. —Ofﬁ—‘~
Y
R =230 Ib.
g =38°
Figure 11-34.

and used components in a counterclockwise direction, while in solution B we began
with the 100-1b; component and worked in a counterclockwise direction.

Problems

Solve, using the polygon of forces. Find the resultant of each of the following
force systems and the angle the resultant makes with force A.

11-64. Forces A and B act 136° apart. A = 180 1b;, B = 325 1b;.

11-65. Forces A and B act 21° apart. 4 = 39.3 1b;, B = 41.6 lb;.

11-66. Forces A, B, and C act 49° apart, with B acting between A4 and C.
A =49.3 1bs, B = 66.7 lb;, C = 35.8 1by.

11-67. Find the resultant force which would replace the three forces in Figure
11-35.

11-68. A man weighing 210 Ib; stands at the middle of a wire supported at points
60 ft apart and depresses it 12 ft below the level of the ends. Solve for the
tension in the wire due to the man’s weight.

11-69. Solve for the magnitude and direction of the resultant of the forces shown
in Figure 11-36.

11-70. Find the resultant force that would replace the three forces 4, B, and C in
Figure 11-37.

11-71. Find the resultant of the four forces shown in Figure 11-38.

11-72. Solve for the resultant of the force systems shown in Figure 11-39.

11-73. Graphically resolve the force, shown in Figure 11-40 into three components,
one of which is 10 Ib; acting vertically upward and another 30 Ib; acting
horizontally to the left.
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-5 i Probléms/{continued) oo =it sanuinns 1edv s aonggtiih

. e

‘g0 fb. 1 L
541b. 1
Figure 11-35. . . Figure 11-36.
B 1
e i
: 3 "_‘" | 731b | 1051b.
= 45‘{‘ §i O} Y.dl
A : / | A
1801, ads 4{5 /45
| g ) A
H0o\= & 60“’ 600
189 b
C 1471b. | st3b! =wei

aw B nongloFigord W=38i15001h cabwdsolyrain Figure; Tn38eq 0

376 Ib.
1ig 140816 1o BUiS | i
47 R
Lt i DEL = B b
36.5° 4 N P
[ f 1} ;V 530* : X b
60°
i i 1 | iRl Lilare i
inioq io 1833dbaie s1iw 2 Yo -;i’:.ﬂ adi 15 A Ib di 018 261, lb 233451
Figure 11189, “D75 rit 1o | F:gure n-4o 2o Flgura 11-a1.

11274, Fitd the résultant of the force system shown iﬁ Flgul‘c 11——41 usnig d'scale
of 1 in. equals 10 Ib,. YE-LT amyy

11-75. ‘Find the resultant of the velocity vectors: 33 miiph soi}th 75 fps 20“’ west ‘of
north, and 2530 fpm north

v

Reciangulur ,Corn;wnems

Graphlﬁal solutions, such: ﬂS thf: paral!elagmm method and {he polygon of forces
are useful for estimations where time is a factor. However; where:exactitude is im-
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portant, a’numerical technique is meeded. ' The ‘method most frequently used by
engineers is the rectangular component method, which will be 'discussed here.

As we have seen in the previous methods, vector components can be added to-
gether or subtracted—always leaving some resultant value. (This resultant value, of
course, may be zero.) Also, any vector or resultant value can be replaced by two or
more other vectors that are usually called components, If the components are two in
number and perpendicular to each other, they are called rectangular components.
Although it is common practice to use space coordinate axes that are horizontal and
vertical, it is by no means necessary to do so. Any orientation of the axes will pro-
duce equivalent results.

Figure 11-42 shows a vector quantity F and its rectangular components F, and
F,. Note that the lengths of the components F, and F, can be determined numerically
by trigonometry. The components F, and F, also can be resolved into the force F by
the polygon of forces. Hence, they may replace‘the.force F in any computation.

(i F o 3any
X o "8 |- - -}F,..
. T, i A —=d=——->— - Figure 11-42,
o F,=F'sin 6
s e szF.cos )

Example; Let us examine a concurrent coplanar force system and resolve each
force into its rectangular components (see Figure 11— 43), By trigonometry, F, can
be found, using F and the cosine of the angle 6, or:F, = F cos 6° In the same man-
ner F, = Fsin 6°.

T Figure ' 11-43,

e

A ol &

In order to keep the directions of the vectors better in mind, let'us assume that
horizontal forces acting to the right are positive and those acting 'to the left are nega-
tive. ‘Also, the forces' acting upward may be considered poslt[ve and those acting
downward negative.

In working such force systems by solving for the rectangular components, a
table may be used.'When the sums of the horizontal and vertical components have
been determined, lay off these values on a new pair ‘of axes to prevent confusion.
Solve for the resultant in both magnitude and direction, using the method explained
on page 44.
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Example: Solve for R in Figure 11-44, using the method of rectangular com-

ponents (see Figure 11-45 for the final resolution of the force system).
100 Ib.
200 Ib.
605
45°
¥
R=179.5Ib.
30° e 6=16.09°
140 |b. 172.51b.
Figure 11-44. Figure 11-45,
HORIZONTAL HoRrizoNTAL VERTICAL VERTICAL
FORCES COMPONENT VALUE COMPONENT VALUE
100 lef 100 cos 45° = +70.7 lbf 100 sin 45° = +470.7 lbf
200 1b, 200 sin 60° = —173.2 Ib, | 200 cos 60° = +100 1b,
140 lb)r 140 sin 30° = —-70.0 lbf 140 cos 30° = -—121 lbf
Total value Positive +70.7 lbf Positive +170.7 1b,
Total value Negative —2432 b, | Negative —121 Ib,
Sum Horizontal —172.5 lbf Vertical +49.7 lbf
Problems

Solve, using rectangular components (analytical method).

11-76.

11-77.

11-78.

11-79,

11-80.

Find the resultant, in amount and direction, of the following concurrent
coplanar force system: force A, 180 lbs acts S 60° W; and force B, 158 Ib;,
acts S 80° W. Check graphically, using a scale of 1 in. equals 50 Ib;.

Find the resultant of the following concurrent coplanar force system:
A = 30 1b; due north; B = 251b; N 30° E; C = 35 1b; S 45° E; D = 55 lby
S30°W.

Four men are pulling a box. A pulls with a force of 115 1b;, N 20°40" E;
B pulls with a force of 95 1b; S 64°35” E; C pulls with a force of 140 Ib,
N 40°20” E; and D pulls with a force of 68 1b; E. In what direction will the
box tend to move?

Determine the amount and direction of the resultant of the concurrent
coplanar force system as follows: force A, 10 lby, acting N 55° E; force B,
16 lby, acting due east; force C, 12 by, acting S 22° W; force D, 15 lby, act-
ing due west; force E, 17 Iby, acting N 10° W.

Find the resultant and the angle the resultant makes with the vertical, using
the following data: 10 Ib;, N 18° W; 5 1b;, N 75° E; 3 by, S 64° E; 7 1by,
S0°W;101by, S 50° W.
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11-81. Five forces act on an object. The forces are as follows: 130 Iby, 0°; 170 Ib,
90°; 70 Ib,, 180°; 20 Ib,, 270°; 300 Ib;, 150°. The angles are measured
counterclockwise with reference to the horizontal through the origin. Deter-
mine graphically the amount and direction of the resultant by means of the
polygon of forces. Check analytically, using horizontal and vertical compo-
nents. Calculate the angle that R makes with the horizontal.

11-82. (a) In the sketch in Figure 11-46, using rectangular components, find the
resultant of these four forces: 4 = 100 lb;, B = 130 lb;, C =195 Iby,
D = 138 Ib,. (b) Find a resultant force that would replace forces A and B.
(¢) By the polygon of forces, break force A into two components, one of
which acts N 10° E and has a magnitude of 65 Ib;. Give the magnitude and
direction of the second component.

11-83. Two inclined posts, making angles of 45° and 60° with the horizontal, are
pinned together 8 ft above the ground. If a load of 1800 Ib; is hung from
the pin, solve for the compression forces in the posts.

11-84. A weight of 1200 b, is hung by a cable 23 ft long. What horizontal pull will
be necessary to hold the weight 8 ft from a vertical line through the point
of support? What will be the tension in the cable?

11-85. A weight of 80 Ib, is suspended by two cords, the tension in AC being
70 Ib, and in BC being 25 Ib;, as shown in Figure 11-47. Find the angles

« and 6.
E
D
?/ L 7, / 7
35° A B
A< ; all A
49°
10°
C
B
Figure 11-46. Figure 11-47.
MOMENTS

If a force is applied perpendicular to a pivoted beam at some distance away
from the pivot point, there will be a tendency to cause the beam to turn in either a
clockwise or counterclockwise direction (see Figure 11-48). The direction of the
tendency will depend on the direction of the applied force. This tendency of a force
to cause rotation about a given center is called moment (see Figure 11-49).

The amount of moment will depend upon the magnitude of the applied force as
well as upon the length of the moment arm. The moment arm is the perpendicular
distance from the point of rotation to the applied force. The magnitude of the
moment is calculated by multiplying the force by the moment arm.

The sign convention being used in a given problem analysis should be placed on
the calculation sheet adjacent to the problem sketch. In this way no confusion will
arise in the mind of the reader concerning the sign convention being used. We shall
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Figure 11-48. A 'i‘ B,—>| A8 |
Countercbckwn;e . Clocksise Mt
Momenf |

if i

i
Figure 11—49.: L g

g

assume that vectors acting to the right have a posltwe SIg]l vectors acting upward
have a positive sign, and moments directed counterclockwise have a positive sign.
To aid in establishing a system of positive senses, the sketch shown in Fxgure 11-50
will serve as a basis for problem analysis in this text.

Example:
! 50 Ib, 100 Ib.
+ on st
| > C @
Figure 11-50. Figure 11-51.

Example: Solve for the moments in Figure 11-51 that tend to cause turning of
the beam about the axle.

Counterclockwise moment = ('S01b) (2 ft) = +100 Tb-ft
" Clockwise moment = (1001b) (5 ft) = —500 Ib-ft

Since moment is the product of a force and a distance, its units will be the product
of force and length units. By convention, moments are usually expressed with the
force unit being shown first, as 1b,-ft; Ibin., kipft (a kip is 1000 Ib;), etc. This is
done because work ‘and enérgy also involve the product ' of distance and force, and
the units ft-Ib;, in-1by, etc., are commonly used for this purpose.

The ‘moment of a force ‘about some’ given center is identical to the sum of the
moments of the components of the force about the' same center. This principle 'is
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commonly called Varignon’s theorem. In problem analysis it is sometimes: ‘more
convenient to solve for the sum of the moments of the components of a force rather
than the moment of the force itself: Howcvér the probléfn sﬁlut:ons w1]1 be ‘idéttical.

~ui:Example: 1 Solve for the total' moment of ‘Ehfe 1000-1b; force ‘about' point ‘4" in
Figure 11-52. i

rsfH : -

T ;
P / 3
{ §/ Figure 11-52, ..
L S/ | R
/ Ad il o .‘.‘:":_ 2A—F T asunid
1 | A .
’-k = 2 H—i PR {;
St S L} ,|k : o Sty {
T ]
\ I :
Cb' ‘ .
= P
| ol
( A ol y
Q|
|
~8n | | l
3
I Tﬁ@\ f ‘ TR }: A i &

<~ ———-k—lA 7
. ’A p— lQOOc.osG - G E

3 3

Flgure il—53.':_j wh . A.:." . Flgure 11—54 Momems of components ofaforce

SOLUI‘IONA Moment ofaforce as shod Flgure 11 53 06
N 9 = arc tan 25/10‘_— 68 2O ' '

Momcnt arm = 25 1ri68 v o :
""TStal moment = (1000) (25 sin '68. 2°) AR
= 23,200 Ibit o
bruots owod A0T adlt Ji ] A1 1o noligmomis sl O JE

SOLUTION B Momeuts of componems of a force a as shown in Flgure 11 54

Véi‘tic}ilcomponent“ OB G2 20 TS s o
Fan‘d‘ _' Moert ffm 241 25 fpoTiupaT a1 A LG Isa L "-'
=1 Horlzontal component = 1000 cos 6‘8 e et lo

rand oo bod Lo-1 Moment agnueofe vhod

{(Note that'the horizontdl component passes through the center:4v) 00 D
Total moment = (1000 sin 68.2°) (25) = 23,200 Ibft
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Problems

11-86. Solve for the algebraic sum of the moments in pound-feet about 4 when
his 20 in. as shown in Figure 11-55.

11-87. Solve for the algebraic sum of the moments of forces about A in Figure
11-56.

Figure 11-55, Figure 11-56.

200 Ib.

X Y 74
d c%
TOOlb —f= -——e— ‘_J:}_
¥ — b >
/‘CEiS ft—r—7 ft.— R
Figure 11-57. Figure 11-58,

11-88. Solve for the algebraic sum of the moments about the center of the axle
shown in Figure 11-57.

11-89. (a) Write an equation for the clockwise moments about the point of appli-
cation of force R in Figure 11-58. (b) Write an equation for the counter-
clockwise moments about the point of application of force Y.

11-90. (a) Solve for the clockwise moments about 4, B, C, D, and E in Figure
11-59. (b) Solve for the counterclockwise moments about 4, B, C, D,
and E. (c¢) Solve for the algebraic sum of the moments about 4, B, C, D,
and E.

11-91. Find the summation of the moments of the forces shown around A4 in
Figure 11-60. Find the moment sum around D.

11-92. Find the moment of each of the forces shown about O in Figure 11-61.

11-93. What pull P is required on the handle of a claw hammer to exert a vertical
force of 750 Ib; on a nail. Dimensions are shown on Figure 11-62.

11-94. On the trapezoidal body shown in Figure 11-63 find the moment of each
of the forces about point O.

11-95. Find the moment of each of the forces shown in Figure 11-64 about the
point A.
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148 Ib.
421 |b. \
> 269 |b.
100 Ib. 300 Ib. 700 Ib. D
30 in.
<5 ffr><——10ft.—>| - 8 f?.—)l -
T ST e S 120°
A B/L‘_s ft. D _’tf A
600
900 Ib. 500 Ib. 331 Ib. 7 1b.
Figure 11-59. Figure 11-60.
99 Ib. Figure 11-61.
51°.177 Ib.
576 1b.
t\”: 39 ft.
3 1
60° 602, 311b.
90°
2
=
’ (o]
: N/ 1pae
1 L. /lef)o vy
| = k152 ‘
~1.41 = 13 |b. 993 1b
Figure 11-62. Figure 11-63.
Figure 11-64.
2 fi.
y |
412 |b. 33 Ib.
rF 3
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EQUILIBRIUM!

The term equilibrium is uséd to describe the condition of any body when the
resultant of all forces acting on the body equals zero. For example, the forces acting
upward on a body in equilibrium must be balanced by other forces acting downward
on the body. Also, the forces acting horizontally to the right are counteracted by
equal forces acting horizontally to the left. Since no unbalance in moment or turn-
ing effect can be present when a body is in equilibrium, the sum of the moments of
all forces acting on the body must also be zero. The moment center may be located
at any convenient place on the body or at any place in space. We may sum up these
conditions of equilibrium by the following equations:

2F, = 0 (the sum of all horizontal forces acting on the body equals zero)
3F, = 0 (the sum of all vertical forces acting on the body equals zero)
2M, = 0 (the sum of the moments of all forces acting on the body equals zero)

These equilibrium equations may be used to good advantage in working prob-
lems involving beams, trusses, and levers. ; wh

Example: A beam of negligible weight is supported at each end by a knife-edge.
The beam carries a concentrated load of 500 Ib, and one uniformly distributed load
weighing 100 1b; per linear foot, as shown in Figure 11-65. Determine the scale
readings under the knife-edges. B e —

500 Ib.
T 8t
I3t 3ft. 100 Ib. /ft.
Figure 11-65.
~Scale @
7 77 . / T
., ST S
Sketch

SOLUTION:" “The uniformly distributéd load is equivalent to a resultant of 8 ft X
100 Ibs/ft = 800 1b; acting at thé ‘center’of gravity of the uniform-load diagram:
Therefore the entire distribution load can be replaced by a concentrated load of
800 Ib; acting at a distance of 10 ft from the left end as shown in Figure 11-66.

1. Draw a free-body diagram of the beam. e .

2. Since there are no horizontal forces acting on the free body, 3F, = 0 is
satisfied. pR=ll SR &

3. From XF, = 0, we know that

A + B =5001b, + 800 Ib,  *
A+ B=13001b,
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4. From M, = 0, we know that the moments about any point must equal zero.
Let us take moments about point 4., '

IM, =0,

(B1by) (14 ft) — (500 Ib,) (3 t) — (8001b,) (10 ft) =0
1500 Ib,-ft + 8000 Ib,-ft

B1bj = 14 ft
9500 Ibft
= 679 Ib;

5. From the third step we saw that A + B = 1300 1b;. We can now subtract and
obtain
A = 1300 ]bf_ — 679 lb, = 621 1b;
NoTE: The same answer for A cou]d have been obtained by taking moments about
Basa moment center.
In Ihls book problems 1nvolv1ng trusses cranes, linkages, bridges, etc., should

800 Ib.

Figure 11-66.

A ‘ ol o W vhod 9998 ai D
be considered to be pin-connected, which means that the member is free to rotate
about the joint. For simplicity, members also are usually considered to be weightless.

By examining each member of the structure separately, internal forces in the
various members may be obtained by the ggndmons of equilibrium.

Example: Solve for the tensions in cables AF and ED and for the reactions at
C and R in Figure 11-67.

Equilibrium Equations
SF,=0
SF, =0
M, =0

SOLUTION

1. Take moments about point R in free body No. 1, (see Figure 11-68).
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EMR :-0
(12 ft) (FA) — (1001by) (4 ft) =0
400 bt
FA === = 3331,
SF, =0
R,—FA =0

R, =FA =3331b;—

1A

FA
Entire
12 ft. system
R, Y100 Ib.
Reiatr,
Sketch Free Body #1
Figure 11-67. Figure 11-68.

Figure 11-69. _f:_’

e Free Body #2 100 Ib.
Horizontal Member

2. Take moments about point C in free body No. 2, (see Figure 11-69).

3M.=DE,(4) —100(4) =0

DE, = 100 Ib,
Therefore DE = %;Lgﬂ, = 166.8 Ib; N\
And free body No. 2
3F,=0
C, = 1001Ib; — 100 1b;
c,=0
Also free body No. 2
3F,. =0
B _ 100 1b;
C. = DE, = tan 36.9°

C,=133.11b,—
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3. Consider XF, = 0, using the third free body (vertical member) as shown in
Figure 11-70. Remember that in two force members, such as cable DE, the reactions
at each end will be equal in magnitude but opposite in direction; that is, E; and E,
are equal to DE, and DE,.

SF, =0
R,— DE,=0
R, = 100.0 b, }

The resultant is indicated as before and solved by using the slide rule (see Figure
11-71.

|
I Ry
I

Free Body # 3
Vertical Member

Figure 11-70. Figure 11-71.

Equilibrium Problems

11-96. A horizontal beam 20 ft long weighs 150 1by. It is supported at the left end
and 4 ft from the right end. It has the following concentrated loads: at the
left end, 200 lby; 8 ft from the left end, 300 lby; at the right end, 400 lby.
Calculate the reactions at the supports.

11-97. A horizontal beam 8 ft long and weighing 30 lb; is supported at the left end
and 2 ft from the right end. It has the following loads: at the left end,
18 1by; 3 ft from the left end, 22 Iby; at the right end, 15 1b;. Compute the
reactions at the supports.

11-98. A beam 22 ft long weighing 300 Ib, is supporting loads of 700 Ib; 3 ft
from the left end and 250 Ib; 7 ft from the right end. One support is at the
left end. How far from the right end should the right support be placed so
that the reactions at the two supports will be equal?

11-99. A beam 18 ft long is supported at the right end and at a point 5 ft from the
left end. It is loaded with a concentrated load of 250 1b; located 2 ft from
the right end and a concentrated load of 450 Ib; located 9 ft from the
right end. In addition, it has a uniform load of 20 1b; per linear foot for its
entire length. Find the reactions at the supports.

11-100. A 12-ft beam which weighs 10 1b; per foot is resting horizontally. The
left end of the beam is pinned to a vertical wall. The right end of the beam
is supported by a cable that is attached to the vertical wall 6 ft above the
left end of the beam. There is a 200-1b; concentrated load acting vertically
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Equilibrium Problems (continued)

~ downward 3 ft from the right end of the beam. Determine the tension in
the cable and the amount and direction of the reaction at the left end of the
beam. ' '
11-101. A steel I-beam, weighing 75 b, per linear foot and 20 ft long, is supported
at its left end and at a point 4 ft from its right end. It carries loads of 10
tons and 6 tons at distances of 5.ft and 17 ft, respectively, from the left
end. Find the reactions at the supports. . : o
11-102. A horizontal rod 8 ft long and weighing 12 Ib, has a weight of 15 Ib, hung
from the right end, and a weight of 4 Ib, hung from the left end. Where
should a single support be located so the rod will balance? .
11-103. A uniform board 22 ft long will balance 4.2 ft from one end when a weight
of 61 Ib; is hung from this end. How much does the board weigh?
11-104. An iron beam 12.7 ft long weighing 855 Ib; has a load of 229 Ib, at the
right end. A support is located 7.2 ft from the load end. (a) ‘How much
force is required at the opposite end to balance it? (b) Disregarding'the
balancing force, calculate the reactions on the supports if one support is
located 7 ft from the left end and the other support is located 4 ft from the
right end. \ 4
11-105. A horizontal rod 8 ft long and weighing 1.2 1b; per linear foot has a weight
of 15 Ib; hung from the right end, and a weight of 4 Ib, hung from the left
end. Where should a single support be located so the rod will balance?
11-106. A 2-ft diameter sphere weighs 56 Ib,, is suspended by a cable, and rests
against a vertical wall. If the cable AB is 2 ft long, (a).calculate: the angle
the cable will make with the smooth wall, (b) soIv.é‘ for the 'ten,siox:} in the
' cable and the reaction at C in Figure 11-72. Check Tesults graphically.
11-107. ' What horizontal pull P'will be necessary just to start the wheel weighing

1400 Ib; over the 4-in. block in Figure 11737

Diameter =2 ft.

Figure 11-72. i Figure 11-73. - ' : Figure ‘11=74. | ,

150 Ib.

NN

11-108. A vertical pole 12 ft long is pinned to the ground at.4 and is stayed by a
i ‘guy-wire running from the top of the pole, B, to a point C, 8 ft to the left
of A. If a horizontal force of 1900 Ib, is-applied to the pole at D, 6 ft above
A, determine the tension in the guy wire BC, and the amount and direction
of the pin reaction at 4. i1~ . - .- i rand s
11-109.. Find the tension in 4B and the angle 6 that AB. makes with; the vertical in
Figure 11-+74, o dI-008 5 2 9mdT rresd ot Jo b 11




11-110.

11-111.

11-112.

11-113.

11-114.
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If the tension in the cable AB in Figute 11<75;:is:196-1bj; how much does
~the sphere B weigh? How much is the reaction of the inclined plane on the
sphere?

" The wheel B in Figure 11-76 weighs 175 Ib;. Solve for the force in mem-
ber AB, the reaction at C, and the horizontal and vertical force compo-
nents at A.

A cylinder weighing 206 Ib, is placed in a smooth trough as shown in
Figure 11-77. Find the two supporting forces.

A 796-Ib; load is supported as shown in Figure 11-78. AB equals 8 ft,
6 equals 25°. (a) Neglecting the weight of the beam A B, solve analytically
for the tension in the cable and the reaction at 4. (b) 1f beam AB is uni-
form and weighs 12 Ib,per foot, solve for the tension in the cable and the
reactionat.4. 0811 sruuid

Find the tension in 4B and the compression in BC in Figure 11-79.

Figurd 11-76.

N\

SN\

NN

Figord 1 fL7g! - MOT DOIOVEAG U Figure 114790

11-115.

11-116.

11-117.

11-118.

11-119.

~A weight of 1355 Ib; is supported by two ropes making angles of 30° and
45° on opposite sides of the vertical. What is the tension in each rope?
Forces are applied on a rigid frame as shown in Figure 11-80. Find the
reactions at 4 and B.

(a) What is the tension in BC in Figure 11-81? (b) What is the amount
and direction of the reactionat 4?7

(a) Find the tension in AC in Figure 11-82. (b) Find the amount and
direction of the reaction at B. BC = 10 ft, BD = 25 ft.

Cylindér No. 1 in Figure 11-83 has a 10-in. diameter and weighs 84 lb,.
Cylinder No. 2 has a 6-in. diameter and weighs 27 Ib,. Find the reactions
at A, B, and C. All surfaces are smooth.
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Equilibrium Problems (continued)

D
16 ft| 350
756 Ib.
B
A B 1~
C o (o
7 Z 14 ft,
17 <374, 2.1 f—~7 c v Ha
l 4771 Ib. 10 ft 7
Figure 11-80. Figure 11-81,

Figure 11-82. Figure 11-83,

11-120. (a) Find the force in member AB in Figure 11-84 and the reaction at
point E. (b) Find the force in member CG and the horizontal and vertical
components of the reaction at pin D.

11-121. Solve for the reactions at 1, 2, 3, 4, and 5 in Figure 11-85. Weights:
A = 1501b;, B =100 Ib;, C = 70 Ib,, D = 35 Ib,. Diameters: A = 26 in.,
B =20in,C = 15in., D = 9 in. Angle 6§ = 30°.

11-122. A 15-ft ladder leans against the side of a smooth building in such a
position that it makes an angle of 60° with the ground (horizontal). A
man weighing 190 1b; stands on the ladder three-fourths of the way up
the ladder. The bottom of the ladder is prevented from sliding by the

B
!
3, AVZ

@)

Figure 11-84. 8 ft.

o\

695 Ib.

w
—
=




The Engineering Method of Problem Solving
121

NS

B C D

AN
i
>

7/, Figure 11-85.

Vi Za

e
)

SN

2
o
7

N
AN

ground. Find the horizontal and vertical components of the reaction at
the foot of the ladder and the force between the ladder and the wall.

ELECTRICITY AND ELECTRONICS

The use of electrical machinery and electronic devices has become so much a
part of our present day life that practically all engineers will work with electricity
in some way in their professional role. The applications of electrical phenomena are
so widespread that all engineering students should have some basic knowledge of
the principles of electricity.

Although the knowledge of electrostatic and magnetic effects has been available
for many centuries, the concept that there was any relation between electric charge
effects and magnetic effects was not presented until the last century. An English
mathematician, Clerk Maxwell, was the individual principally responsible for pro-
viding a mathematical basis for showing a relationship between electricity and
magnetism. His mathematical derivations were based on experimental work done
previously by such scientists as Ampere, Volta, Faraday, and Coulomb.

Although we can look back and consider with disdain the difficulties of early
experimenters in performing what to us are the most elementary demonstrations
of electrical and magnetic phenomena, we must remember that in the days of early
experimenters, no one knew even the difference between insulators and conductors.
The discovery of the insulating properties of certain materials provided a means
for isolating charges and directing their flow. This one discovery, which to us is
almost an intuitive concept, was to the early experimenters a major breakthrough in
their work. Could it be that fifty years from now, engineers will look back at our
present difficulties in grasping concepts of solid-state electronic devices and wonder
why we made such a task of attempting to understand the behavior of such obviously
elementary phenomena?

The Atom

The basis for explaining the behavior of electricity depends on our concept of
the atomic structure of matter. As any student of science knows, within the atom is
a system of electrons in orbit surrounding a central nucleus. Some of these electrons
in the outer orbit can be transferred to other atoms under the influence of such
phenomena as electrical fields, heat, friction, and so on.

Materials differ widely in their tendency to transfer electrons, and all materials
can be classified broadly into insulators or conductors as a measure of the ease with
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which electrons are transferred. For example, if hard rubber is stroked with a woolen
cloth, friction will transfer electrons from the cloth to the hard rubber but, since
the hard rubber atoms cling tightly to the electrons, little or no movement of the
charges can then occur on the surface of the hard rubber.

On the other hand, if a piece of copper is charged, the charges will move readily
through the copper by transfer from atom to atom, and, unless insulating structures
are provided, the charges usually will dissipate rapidly to other conducting mediums.

The concept of conductors or insulators then deals not with the production of
electrical charges but rather with the relative ease with which charges are transferred.

Since the electrons appear to be moving in orbits, each electron will tend to
produce a magnetic field due to its own motion. In almost every material, the
orientation of the spins is such that the magnetic effects cancel and the resultant
field is substantially zero. However, in the case of iron, nickel, and cobalt, together
with a few alloys, the magnetic fields due to the electron spins do not cancel and the
atom or molecule does have a definite magnetic pattern. In simplified terms, this is
the general concept of the relation between electrical and magnetic effects.

In a classical experiment conducted by Professor Millikan early in the century,
the numerical value of the charge on an electron was measured. As a result of this
measurement, we find that the number of electrons flowing through the filament of
an ordinary 100-watt 110-volt electric light bulb is approximately 6.28 x 1018
electrons per second. _

Electrostatic generators are used to separate charges in the production of very
penetrating x-rays and in research on the acceleration of charged particles. A Van
de Graff generator is an example of a static charge generator. With this type of
machine, potentials of several million volts can be secured.

Another example of charges being produced by external forces is in the case of
piezoelectricity. It has been determined experimentally that certain crystalline sub-
stances such as quartz and Rochelle salts will have a separation of charges produced
by mechanical deformation of the crystal. Electronic devices can sense this charged
condition of certain faces of the crystal and by amplification of the charge effects
can convert them to many useful purposes. A microphone, for example, can be
made by having sound waves strike a flexible diaphragm that in turn is coupled
mechanically to a crystal. The deflections of the crystal will produce in electrical
charges corresponding charges that when amplified can be heard in a loudspeaker.

Electric Currents

If charged particles, usually electrons, move in a conductor, the movement of
the charges constitutes what is known as an electric current. Obviously the charges
will not move unless there is an excess of charges at one point and a deficiency at
another. In the case of a simple electric cell, the tendency of one of the electrode
materials to be chemically changed results in an ionization process that will produce
a difference in charges on the electrodes. As long as an external path of conducting
material exists, the charges flow from one electrode to another in an attempt to
equalize the charges. A coulomb is approximately 6.28 X 108 electrons and a flow
of 1 coulomb per second past a given point in an electrical circuit is defined as a
current of 1 ampere.

Voltage basically is a measure of the amount of work or energy necessary to
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move a certain number of charges from one place to another against opposition.
A voltage can be present even though the charges actually are not moving. For
example, in a certain storage battery, a voltage, representing a state of separation
of charges within the battery, exists regardless of whether the circuit is completed
so that current can flow. This can be compared to having a pile of rocks on a plat-
form. Potential energy due to the rock’s elevated position is present even though the
rocks are not moving. The usual unit of voltage is the volt—the voltage necessary to
move one ampere through an opposition of 1 ohm of resistance.

Resistance of flow of an electric current exists because of the difficulty of mov-
ing electrons from one atom to another. All materials have some resistance to cur-
rent flow except that certain metals at temperatures near absolute zero temperature
(approximately —459°F), appear to have negligible resistance. Commonly used
materials having quite low resistances at ordinary temperatures are silver, copper,
and aluminum. All metals are good conductors; however, the three mentioned are
the best conducting materials. Other substances having relatively low resistance are
carbon and solutions containing ions. Almost without exception, all other materials
are insulators having resistances from thousands to millions of times that of the
metals. In some cases, insulators at ordinary temperatures will become fairly good
conductors at temperatures of several hundred degrees and upward. Glass and some
plastics possess this property of having a markedly lower resistance at elevated
temperatures. As mentioned above, the unit of resistance is the ohm and is defined
legally as the resistance of a column of mercury 1 sq mm in cross section and 106.3
cm long held at a temperature of 0°C.

Laws and Principles

A well known relation of electrical quantities in a circuit is called Ohm’s Law.
Stated briefly, it says that in a circuit, the ratio of the voltage to the current is a
constant. Of course, like many laws, it must have limiting conditions, the major one
being that the temperature of the conductor must remain constant. In symbol form:

V (voltage) .
B (re
T (aurrent) (resistance)
This means that in a circuit of fixed resistance, if the voltage of the circuit is doubled,
the current (flow) will also double.

There are two basic ways in which circuit elements can be connected. These are
series and parallel connections. Examples are given in Figure 11-86.

R, R,
— AN N—ANN— R Ra
(a) An example of resistances (b) An example of resistances
connected in series connected in parallel

Figure 11-86. Two basic ways in which resistances can be connected.
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Series Circuit

As an example of an application of Ohm’s Law, if a simple series circuit is
sketched showing a cell and a resistance with a cell voltage of 28.3 v and a resistance
of 2.10 ohms, the current can be computed readily:

——— T T

(a) An example of electric (b) An example of electric (c) An example of an electric
cells connected in series cells connected in parallel cell and a resistance
connected in series

Figure 11-87. Series and parallel arrangements of circuit elements.

Example: First, draw a simple sketch using conventional symbols and label
the known quantities. Second, solve for the unknown quantities.

I=?

Note: The Greek
Figure 11-88. A simple series letter Q (O
circuit using Ohm's Law for 28.3" jé- R= 2.10n ey & Q)

AT usually is used to
solution to obtain unknowns. represent ohms of

resistance.

Applying Ohm'’s Law

|4

— =R

1

i o V (volts)
" R (ohms)
283

I =355 = 13.48 amp

Since this is a closed circuit with no branches, the same current (13.48 amp) is
flowing in all parts of the circuit, since it would be unlikely that charges would

> AVAYAY

+
31.8" = Ry =3.500

AVAYAY

AVAVAV
Ry = 4250

Figure 11-89. Resistances in series.
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stack up at some given point. Also, the voltage produced by the cell is assumed to be
all used in forcing the current through the resistance. This assumes that the resistance
of the cell and of the connecting wires is negligible.

For another example, let us take a circuit where several resistances are con-
nected in series as shown in Figure 11-89.

For this type of circuit, first add all the resistances to get a sum which is the
equivalent of all the resistances together. This sum is 8.81 ohms. Then applying
Ohm’s Law:

7= Z (volts)
~ R (ohms)
_ 318
I= 81— 3.61 amp

Since the circuit elements are all in series, this same current flows through each
element. At this time, we can compute the voltage across each resistance since a part
of the total available voltage is used for each.

For Resistance R,

V, = IR, volt

V,=(3.61)(1.06) =3.77v
For Resistance R,

V,= (3.61)(3.50) = 12.64 v
For Resistance R;

V,=(3.61)(4.25) =1534v

As a check, the sum of the individual voltages across the resistances, frequently
called the voltage drop across the resistance, can be obtained and should be the
same as the original cell voltage, within slide rule accuracy.

Vi+V,+ Vs=3175v

Parallel Circuits

Figure 11-90 is a sketch of a circuit containing resistances in parallel with the
group connected in series with a cell.

Figure 11-90. A parallel arrangement of resistances.
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To solve for the currents in this circuit, first find the value of a single equivalent
resistance that can replace the parallel set. This single equivalent can be found by
the expression:

1 1 1
= —4 —
Requiv Rl R2
or
1
Requiv =
R
Rl R2
R 1 3 1
L A ol 1~ 0.0466 + 0.0553
21.5 18.1
1
= BT010 = 9.83 ohm
Using this equivalent resistance
| 4
i =
: Requlv
248
I, =iggy = 2.52 amp

Currents I, and I; can be found in several ways. For instance, since the currents
will divide in inverse ratio to the resistances, a current ratio can be determined, and
since the total current (2.52 amp) is known, the individual currents can be found.
A more universal method is to find the current in each resistance by using the
voltage drop method. Since, in a parallel circuit, the same voltage appears across
each resistance, an application of Ohm’s Law to each branch will permit a solution
for the current.

V
IE_E
24.8
I, = 215_1152amp
and
V
Ia_R—2
I; = %;?—1370amp

As a check, I, + I, should add to give the total current out of the cell

Ii=1,+ I
I, = 1.157 4+ 1.370 = 2.52 amp

To summarize, for series circuits, the current in all parts is the same and the sum
of the voltage drops across the resistances equals the available cell voltage. For
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parallel circuits, the voltage is the same across each parallel path, and the sum of
the currents in each branch or path equals the total current supplied by the cell.

Series-Parallel Circuits

If a problem involving a series-parallel combination of circuit elements is given,
an application of the principles shown above will provide a means of solution.

Example:

= 1.590 a a
R, = 6.88 Ry=5.26

‘ 2—?l V:—_—"l
-7
| =2 =1 =0

R, = 2.66%

Figure 11-91. A series-parallel arrangement of resistances.

ANALYsIS: If the parallel arrangement of resistances R, and R; can be combined
into a single equivalent resistance, the circuit then will be a single series circuit and
a method of determining currents or voltages will be available as was used in a
previous example.

SOLUTION: The equivalent resistance of R, and R; will be

1 1 1

= — 4 —

Requlv RZ RE
RN W)

Ron 688 ' 5.26

= 0.1458 + 0.1902
= 0.3360

1
Requiv = 03_360 = 2.98 ohms

This means that if the parallel combination were replaced by a single 2.98 ohm
resistance, the current and voltage values in the remainder of the circuit would be
unchanged. The circuit then can be redrawn substituting R.q,, for R, and R; as
shown in Figure 11-92 on the next page.

First, obtain the total voltage of the electric cells. This is simply the sum of the
individual cell voltages.

Vi = 12.34-18.7
=310v
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Lt

12.3"

Vs=?l§;zf = 2988

AYAAY

Re = 2669

187"

ks

Al

Figure 11-92. The equivalent circuit of Figure 11-91.

Second, find the total circuit resistance. For this circuit, it is the sum of the
individual resistances in series.

Reges = 1.59 + 2.98 + 2.66
7.23 ohm

Third, find the total circuit current. This is found by an application of Ohm’s
Law using total voltage and total resistance.

I — Vtotal
total Rtotal
31.0
=353 = 4.28 amp
Since, in a series circuit, the total current is the same as the current in each part,
the current through each resistance also is 4.28 amp. From this, we can obtain the
voltage drop across each resistance by applying Ohm’s Law only to that part of
the circuit.

V,= LR,

= (4.28)(1.59) = 6.80v
Ve = LRy

= (4.28)(2.98) = 12.78 v
V,=LR,

= (4.28)(2.66) = 11.42 v

As a check, the sum of V,, Vg, and V, should be the same as the available volt-
age from the cells.

Fourth, referring back to Figure 11-91, we now can solve for the currents I
and /5. Since the voltage across the equivalent resistance was 12.78 v, this will also
be the voltage across each member of the parallel set. That is:

Ve=V,=V;=12.78 volt

The current /, and ;5 can be found by applying Ohm’s Law only to that part of the
circuit.
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12.78

and I; =

As a check, I, + I, should equal [, or /.

More complicated circuits involving delta-wye transformations, applications of
Kirchhoff’s laws, or network theorems are not discussed here. However, the stu-
dent may wish to investigate these additional methods of circuit solutions.

Power

Electric power is determined in dc circuits by the product of current and voltage.

That is
P=VI

where P is the power in watts, V' is the voltage in volts, and / is the current in
amperes. This expression can be applied to a part of a circuit, but then only the
current and voltage in that part can be used.

Example: Refer to Figure 11-91. Suppose it is required to determine the
power used in Resistance R; and the total power supplied by the battery.
For the resistance R, power, use values only for that part.

Pr = V,l, (v) (amp)
P, = (12.78)(1.858)
=23.7w

For the battery power, use total voltage and current values.

PB = VBII
= (12.3 + 18.7)(4.28)
=133 w

By algebra it can be shown that power also can be found by these expressions:

_ V2 (volts)®
~ R ohm

P=1IR

In alternating current circuits, power expressions must be modified to account
for the possibility of the maximum value of current and the maximum value of
voltage not occurring at the same time. This phenomena usually is referred to as the
current leading the voltage or the current lagging the voltage and is caused by the
presence of capacitive or inductive components in the circuit. A detailed explanation
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of these effects is beyond the scope of this discussion, but this leading or lagging
effect is a function of time and usually is written as

P="VIcos®

where P is the power in watts, V is the voltage in volts, I is the current in amperes,
and 6 is the angle called “phase angle” between a vector representing voltage and
one representing current,

v

Rotation -«— —> Voltage
Figure 11-93. Vector representation
of voltage and current in an alter- (]
nating current circuit.

Current

The diagram shown in Figure 11-93 is a vector system assumed to rotate
counterclockwise, and it generates sinusoidal traces on a linear time base, This figure
represents current lagging in time behind the voltage. This can be caused by the
presence of an inductance, usually a coil producing a magnetic field, in the alternat-
ing current circuit.

In making alternating current power measurements in a circuit having an induc-
tance, the product of a voltmeter reading and an ammeter reading will be different
from the reading of a wattmeter by the factor, cos 6. Since the wattmeter reads
power, the phase angle, 6, can be found from the meter readings by the expression:

P wattmeter

( Vvoltmeter) (Iammeter)

The expression cos @ frequently is referred to as “power factor.” It is possible
to have a circuit condition of low power factor in which a large current is flowing
but which actually involves relatively little actual power. This condition would occur
if a very large capacitance or a large inductance having a very low resistance were
connected in a circuit.

cos 6 =

Measurement of Electrical Quantities

The most common electrical measurements that are made are measurements of
voltage, current, and resistance. Meters that contain a moving element and pointer
together with a resistor or resistor network are the common indicating device for
most measurements.

Voltmeters. A direct current voltmeter consists usually of a coil of very fine
wire suspended but free to rotate in a permanent magnetic field. This is called a
D’Arsonval movement. A typical meter contains this movement together with a
series resistance of several thousand ohms in series with the coil to limit the flow of

Figure 11-94. A series resistance and /_\_
millivoltmeter combination make up the o—ANN \M—V/ O

basic parts of a voltmeter.
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Figure 11-95. Iron vane type of alternat-
ing current meter. (A) Pivot bearings. (B)
Soft iron discs on pivot shaft. (C) Cut away
section of coil. (D) Pointer. (E) Scale. (F)
Controlling spring. When current flows
through the coil, a magnetic field is pro-
duced in the coil. The soft iron discs tend
to align themselves along the lines of
magnetism, and the pivot assembly will
turn until the controlling spring torque
balances the torque resulting from mag-
netic effects.

current to a few milliamperes. See Figure 11-94. A scale graduated in appropriate
units completes the readout assembly. It is not usable on alternating current circuits
without additional circuit components.

An alternating current voltmeter usually will be one of two kinds. An iron vane
type of instrument consists of a stationary coil of wire carrying a current propor-
tional to the impressed voltage to which it is connected. The magnetic field produced
by current in the coil reacts with a pivoted iron vane to which a pointer is affixed.
The scale over which the pointer moves is graduated in voltage units, Figure 11-95.

A second type of alternating current voltmeter is made with two coils, one fixed
and one moving. When current goes through the coils, a magnetic field is produced
in each coil that reacts with each other coil to produce a torque. This is called the
electrodynamometer type of instrument.

A D’Arsonval type of movement can be used to measure voltage in AC circuits
if a rectifier system is used to convert the ac to de.

Ammeters. A D’Arsonval movement meter can be used to measure direct
currents by permitting most of the current to flow through a very low resistance
device called a “shunt,” Figure 11-96. When current flows through the shunt, a
voltage drop is produced that can be read on a millivoltmeter. Most shunts will have
a voltage drop of either 50 millivolts (mv) or 100 mv when full rated current flows
through them.

An ac ammeter can be made using the iron vane or electrodynamometer type of
construction. In addition, for high frequency current measurements, a hot wire
type or a rectifier type of meter is sometimes used. The hot wire type of current
measuring instrument depends on the elongation of a straight wire due to the heat

.
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Shunt

Line Current

_— A A A >
—_ -
v v T ?

Figure 11-96. A millivoltmeter
and a shunt making up an am-
meter.

M

Millivoltmeter

produced by current flowing through the wire. Its scale, like those of most ac
meters, is nonlinear and is compressed at its low end.

Wattmeters. A common method of measuring electric power is to use a watt-
meter. The usual form of wattmeter employs the dual coil construction of the
electrodynamometer movement. With proper precautions, a wattmeter can be used
to measure power either in dc or in ac circuits.

Bridge Measurements. A network of components arranged in a diamond
shape is referred to as a bridge type of circuit. A typical resistive bridge is shown in
Figure 11-97.

+

Figure 11-97. A typical re-
sistive bridge circuit as used
to indicate or measure resis-
tance changes.

In this circuit, if the resistance path from A4 to B and 4 to D is the same resis-
tance as the path from B to C and D to C, no current flow will be shown by the
galvanometer “G.” A galvanometer is a very sensitive D’Arsonval type of movement
that will respond to currents in the microampere range.

However, if any one of the four resistances is changed in resistance a very
small amount, a current will flow and will be indicated by the movement of the
galvanometer pointer. If one of the other resistances is changed a known amount,
it is possible to rebalance the bridge to give no current flow in the galvanometer.
This type of circuit measurement is called a “null-method” of measurement, since
it depends on balancing a known resistance against an unknown resistance to pro-
duce a zero or null deflection of the indicating instrument.
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It can be shown that the ratio of resistance at null balances is as follows:

RAB — RHC
R—AD RDC

If we know the ratio R,z to R,p and know the amount of resistance in ohms of
R ¢, for example, then an unknown resistance Rpc can be computed.

Example: The ratio of Ryp to Rypis 1 to 10. At bridge balance (null) condi-
tions, the value of Rpc is 26.8 ohms. What is the value of R -

SOLUTION:

Rge = Rpe (RAB)
AD

10
68(1

= 268 ohms

Note that the absolute values of R, and R, do not have to be known; only their
ratio must be known,

Electron Tubes. Following the discovery by Edison that electrical charges
could be transferred from a heated element in an evacuated space to another ele-
ment in that space, DeForrest developed a device that could amplify electrical
currents. The essential parts are shown in Figure 11-98.

Vacuum Tube

B Grid

Filament Plate

Figure 11-98. The essential parts of a
three-element (iriode) vacuum tube.
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In this simplified diagram, a cell or battery at 4 heats a filament of tungsten
that frequently is coated with material such as cesium or thorium. The heat “boils
off” electrons from the filament surface and produces a cloud of negatively charged
particles around the filament. If the plate is made electrically positive with respect to
the filament by the battery “B,” it is possible for the charges to flow through the
evacuated space from the filament area to the plate and constitute a current flow. If
the positive voltage of the plate is below a certain level or if the polarity is reversed
to make the plate negative, no current will flow.

These two elements in an evacuated space constitute a diode and can be used
to rectify alternating currents—that is, charge the ac to pulsating direct current.

If a third electrode is introduced between the filament and plate and is connected
S0 it is negative with respect to the filament, the voltage of this third element, called
a “grid,” can block the current flow, even though the positively charged plate is
attempting to attract electrons. In fact, because the grid is near the filament, a very
small change in its voltage will make a large change in the filament-to-plate current
flow. This constitutes the amplifying capability of the vacuum tube.

The Transistor

Shortly after the close of World War II, an announcement was made of the dis-
covery of a solid state device, requiring no heated filament, that could be used as an
amplifier. This discovery has, in only a few years, revolutionized the electronics
industry. Although the solid state diode as a rectifier had been in use for many years,
the introduction of another element to permit amplification provided a tremendous
opportunity for miniaturizing electronic components. This new device was called a
transistor and, as it made its appearance almost at the same time that the computer
was being developed, it was incorporated into almost all modern computers.

The theory of the transistor is fairly complex, but its action depends essentially
on the presence of minute quantities of an “impurity” material such as arsenic in a
crystal of pure material such as germanium permitting current to flow in one direc-
tion but not in the other. A proper assembly of three sections of negative carrier
and positive carrier material permits a small voltage to control a much larger
current flow in a manner similar to the way a vacuum tube behaves in a circuit.

The major advantages of the transistor as used in eleetronic circuits are light
weight, small space, low power consumption, and long life. The modern integrated
circuit is made possible only by the use of semiconductor techniques, and permits a
tiny chip of material to perform the same functions as a vacuum tube type of
amplifier which would be thousands of times larger.

A fascinating new world of circuit design has been opened recently with the
development of higher powered transistors, and now they can be used in all but the
high current output stages of amplifiers.

Problems

11-123. Using a small compass, verify experimentally the pattern of magnetic lines
around a bar magnet or a horseshoe magnet.

11-124. List, in order of increasing unit resistance, the ten best metallic conductors.
In a word or two, give major advantages and disadvantages of using each
as an electrical conductor for power circuits.

11-125. Sketch a simple circuit consisting of a crystal microphone, a vacuum tube
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11-127.

11-128.

11-129.

11-130.

11-131.

11-132.

11-133.

11-134.

11-135.
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or transistor used as an amplifier, and a loudspeaker. Explain briefly and
concisely its features of operation in terms that might be used for a sales
brochure.

A current of 5.5 ma flows from the filament to the plate of a vacuum tube.
What is the approximate number of electrons flowing per second across
the space?

A resistance of 3.65 kilohms is connected in series with 920 ohms. What is
the combined resistance? If these two resistors are reconnected so they
are in parallel, what will be the equivalent resistance?

Three resistors having values of 128 ohms, 144 ohms, and 98.2 ohms,
respectively, are connected in series. What will be their combined resis-
tance? If these three resistances are reconnected so they are in parallel
with each other, what will their equivalent resistance be?

A current of 75.5 ma flows through a 1.80 kilohm resistance in a circuit
containing a vacuum tube. What will be the voltage drop across the
resistance? If the current is measured later and is found to have decreased
to 48.1 ma, what things could have caused the decrease?

A circuit is suspected of having damaged insulation at some place in its
installation on an aircraft. In order to check the insulation, a battery having
a voltage of about 50 v is connected to the ship’s metal structure and in
series with the suspected circuit using a microammeter having an internal
resistance of 100 ohms. If the microammeter reads 7.4 ua, what is the
approximate resistance to ground of the circuit?

A battery having an internal resistance of 0.01 ohm and an open circuit
voltage of 27.6 v is connected to a starter on an aircraft. If the starter
resistance while not turning is 0.10 ohm and the line resistance of the
connecting wires is 0.03 ohm, what maximum current can flow through
the starter? What will be the voltage across the starter at the instant of
closing the starting circuit?

Power in watts in a dc electric circuit is defined as the product of current
in amperes and voltage in volts. If a 100 w lamp is connected to a 117 v
line, what current will flow through the lamp? If a 40 w lamp is con-
nected in parallel with the 100 w lamp, what total current will need to flow
in the line supplying both lamps?

In the circuit of Figure 11-91, if the voltage of the cells is changed to an
unknown amount but the current I, is measured to be 7.03 amp, what will
be the values of V', Vs, Vs, Vi, I, I, 14, and total cell voltages?

A dc voltage is to be measured which is known to be about 75 v. A volt-
meter is not available, but a dc microammeter having a full scale of
100 pa and a resistance of 100 ohms is on hand. A large quantity of
precision resistors is available. What series resistor should be chosen to
make the meter show full scale deflection if 100 v is applied across it with
a suitable resistor in series? (This will make the scale “direct reading.”)

A dc shunt is to be made to permit the measurement of starting currents
in an automotive starter. The expected current should not exceed 200 amp
from a 12 v system. What should be the resistance of the shunt so that a
current of 200 amp through it will produce a voltage drop of 50 mv
across it?
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Problems (continued)

11-136.

11-137.

11-138.

11-139.

11-140.

11-141.

11-142.

11-143.

11-144.

11-145,

A set of instructions accompanying an clectrodynamic movement watt-
meter says that a wattmeter should always have an ammeter and voltmeter
in the circuit when the wattmeter is being used. Why is this desirable?

A Wheatstone bridge is set up with a ratio of 1:100 in the 4B and AD
sections of the bridge (see Figure 11-97). If the galvanometer shows no
appreciable deflection when the resistance of BC is 157.1 ohms, what will
be the resistance of CD? If there is a barely discernible deflection of the
galvanometer when the resistance of BC is changed by =0.3 ohms, what
is the per cent uncertainty of the measurement of CD?

When using a Wheatstone bridge, what things might account for resistance
measurements below 1 ohm being subject to considerable uncertainty?

If a change in plate voltage of 35.0 v in a vacuum tube produces a change
in plate current of 2.20 ma and if a corresponding change of grid voltage
of 1.7 voltage will produce the same change in plate current, what is the
relative effectiveness of the change in plate voltage to change in grid
voltage to produce the same change in each case of plate current? This
ratio is known as amplification factor.

The life of an incandescent lamp varies approximately inversely as the 12th
power of the applied voltage. If the rated life of a lamp is 800 hr at 117 v,
what would be the expected life if operated continuously at 120 v? What
would be the expected life if operated at 110 v?

If energy cost is 2 cents per kw hr, what will be the approximate cost of
operating a 100 w lamp an average of 5 hr per day for a month?

Four strain gages having a resistance of 350.0 ohms each, are cemented
to a steel bar to measure surface strain. When the bar is strained and the
bridge is slightly unbalanced by the strain, a galvanometer having a resis-
tance of 30.5 ohms indicates a current flow of 12.3 pa. What would be the
voltage between points B and D (see Figure 11-97) of the Wheatstone
bridge network?

A series circuit is made up using a 10,000 ohm resistance, a 3000 ohm
resistance and an ammeter having a resistance of 720 ohms, all connected
to a battery. If the ammeter shows a current flow of 3.03 ma, what voltage
is supplied by the battery? What voltage drop would exist across the 3000
ohm resistance when this current is flowing?

A galvanometer used to measure small currents requires a connection to
a circuit having an equivalent resistance of 350 ohms in order to help
provide proper damping for reading oscillatory currents. If the strain gages
making up a Wheatstone bridge to which the galvanometer is connected
measure 120 ohms each, what resistance will need to be included in the
circuit in order to provide proper matching resistance for the galvanometer?
A galvanometer used to measure small currents requires a connection to
a circuit having an equivalent resistance of 120 ohms in order to help
provide proper damping for reading oscillatory currents. If the strain
gages making up a Wheatstone bridge to which the galvanometer is con-
nected measure 350 ohms, what resistance will need to be included in the
circuit in order to provide proper matching resistance for the galvanometer?

e



Logarithms —The Mathematical
Basis for the Slide Rule

LAWS OF LOGARITHMS

Since a logarithm is an exponent, all the laws of exponents should be reviewed.
! Let us examine a few of these laws.

Exponential Law I: (a)™(a)" = a"*n

We can put the equation above in statement form, since we know that logarithms
are exponents and therefore follow the laws of exponents.

Law I. The logarithm of a product equals the sum of the logarithms of the
factors.

| Example: () =2
logyy 5 + logy, 7 = logy, ans.
0.6990 + 0.8451 = log ans.
1.5441 = log ans.
Answer = (3.50) (10)?

This is true because 5 = (10)0-69%
7 = (10)0.8451
product = (10)%69%0(1()0.8451
product = (10)0-6990+0.8451
product = (10)15#1
product = (3.50) (10)*

Exponential Law Il: — = gm—n

Putting the equation above in statement form, we obtain the following law.

137
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Law II. The logarithm of a quotient equals the logarithm of the dividend
minus the logarithm of the divisor.

Example: =2
log 5 — log 4 = log ans.
0.6990 — 0.6021 = log ans.
0.0969 = log ans.
Answer = 1.25

Law III. The logarithm of the x power of a number equals x times the loga-
rithm of the number.

Example: (5)*="?
3(log5) = logans.
3(0.6990) = log ans.
2.0970 = log ans.
Answer = (1.25)(10)2

Law IV. The logarithm of the x root of a number equals the logarithm of the
number divided by x.

Example:

3375 ="

log 3375 _
3 = log ans.
3.5282
= log ans.

1.1761 = log ans.
Answer = (1.50) (10)*

NOTE: Law IV is actually a special case of Law IIL
In some instances a combination of Law III and Law IV may be used.

=B
Example: (0.916)*15 =7
(log0.916)(3) _
e = log ans.
(9.9619 — 10)(3) _
215 = log ans.
Perform multiplication first:
29.8857 — 30 _ —
415 e

To be divided by 4.15, the negative number must be divisible a whole number of
times. Therefore, the characteristic (which is — 1) is written as 414.0000 — 415.

¥ P
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There are several values which could be chosen, such as 4149.0000 — 4150, which
would satisfy the condition that the characteristic be — 1. Rewriting and dividing,

414.8857 — 415
4.15
99.9725 — 100 = log ans.
Answer = (9.39)(10) 1

= log ans.

The Cologarithm. Many times it is helpful to use the cologarithm of a number
rather than the logarithm. The cologarithm of a number is the logarithm of the
reciprocal of the number. The cologarithm is also the difference between the loga-
rithm and the logarithm of unity.

Example: colog 5 = log é-

=logl —log5
= 0.0000 — 0.6990
= —0.6990

Since log 5 equals 0.6990, we see that the colog x = —log x. Therefore:

1. The logarithm of the quotient of two numbers equals the logarithm of the
dividend plus the cologarithm of the divisor.

2. The logarithm of the product of two numbers equals the logarithm of one
number minus the cologarithm of the other number.

Natural Logarithms. When certain derivations of engineering formulas are
made, a term may appear that contains a natural logarithm. For example, the mag-
netic field intensity near a current-carrying conductor varies with distance from the
conductor according to a logarithmic pattern. In advanced texts it may be shown
that a natural logarithm function, when plotted, gives an exponential curve whose
slope at any point is equal to the ordinate at that point.

In solving problems involving natural logarithms, tables of natural logarithms
can be used if they are available, or the natural logarithm, frequently abbreviated
as “In,” may be converted to a logarithm to the base 10. To perform this latter
operation, an algebraic transformation called change of logarithmic base is used.
This transformation can be performed as follows:

Natural logarithm = (common log) (log. 10)
Since log. 10 = 2.3026, we may write:
Natural logarithm = (common log) (2.3026)

If natural logarithms are computed, it must be remembered that the mantissa is not
independent of the location of the decimal point. Therefore, the same sequence of
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significant figures does not have the same mantissa, as is the case with common
logarithms.

Example: Find the natural logarithm of 245

logy, 245 = 2.3892
In 245 = (2.3892)(2.3026)
= 5.5014

Example: Find the natural logarithm of 2.45
logyo 245 = 0.3892

In2.45 = (0.3892)(2.3026)
= 0.8961

The natural logarithm of a number less than 1 is a negative number.
Example: Find the natural logarithm of 0.245
log;, 0.245 = 9.3892 — 10

Since the logarithm has a negative characteristic, we can solve by first finding the
colog and then multiplying by log. 10.

colog;y 0.245 = —0.6108
In 0.245 = (—0.6108)(2.3026)
—1.4064




Trigonometry

RIGHT TRIANGLES

It can be shown by measurements and by formal derivations that for any given
size of an angle at A or C, the ratio of the lengths of the sides to each other in a
right triangle is a constant regardless of the numerical value of the lengths.

N /
&'

o\)

Figure A ll-1,

Opposite (O)

% QOpposite O
(0)

Adjacent (A)

Adjacent (A)

In Figure All-1, the sides of a right triangle are named in reference to the angle
- under consideration. In these cases, the angle is designated as € (theta).

Ratios of the sides are as follows:

DEEORE YdE Sine @ o Sin # w = Cotangent 6 - . Cot 0
hypotenuse H opposite side 0}
adjacent side : A hypotenuse H
hypotenuse Cotine H ™ Cogg adjacent side A Sec
opposite side O hypotenuse H _ 0
P Tre—— ke Tangent z = Tan @ OPbGEE S — Cosecant 6 o= Csc
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METHODS OF SOLVING OBLIQUE TRIANGLE PROBLEMS

In order to solve an oblique triangle problem, at least three of the six parts of
the triangle must be known, and at least one of the known parts must be a side. In
the suggested methods listed below, only the most effective methods are given.

1. Given: two sides and an angle opposite one of them:
a. Law of sines
b. Right triangles
2. Given: two angles and one side:
a. Law of sines
b. Right triangles
3. Given: two sides and the included angle
a. Law of cosines (answer is usually not dependable to more than three
significant figures).
b. Right triangles.
4. Given: three sides only:
a. Tangent formula (half-angle solution)
b. Sine formula (half-angle solution). This formula is not exact if the half-
angle is near 90°.
c. Cosine formula (half-angle solution). This formula is not exact if the
half-angle is about 6° or less.
d. Cosine formula (whole angle solution)

e. Law of cosines (answer is usually not dependable to more than three
significant figures).

METHODS FOR FINDING AREAS OF OBLIQUE TRIANGLES

The area of an oblique triangle may be found by any of several methods. Some
of the more common methods are given below:
1. Area = (%) (base) (altitude). '

2. Area =\/(8)(S — AB) (S — BC) (S — AC), where S = % perimeter of the
triangle.

3. Area = (product of two sides) (sine of the included angle).

SINE LAW

In any triangle the ratio of the length of a side to the sine of the angle opposite
that side is the same as the ratio of any other side to the sine of the angle opposite
it. In symbol form:

AB _ BC _  AC

] sin<< C sindXA sindB

Figure A ll-2.
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This expression is called the sine law. The student is cautioned not to confuse the
meanings of sine functions and sine law.

In the event one of the angles of a triangle is larger than 90°, a simple way to
obtain the value of the sine of the angle is to subtract the angle from 180° and
obtain the sine of this angle to use in the sine law expression.

The sine law can also be used if two sides and an angle of a triangle are known,
provided the angle is not the one included between the sides. However, as explained
in trigonometry texts, the product of the sine of the angle and the side adjacent
must be equal to or less than the side opposite the angle; otherwise no solution is
possible.

As an alternate method, the general triangle can be made into right triangles by
adding construction lines. This method of using right triangle solutions is as exact
as the sine law but usually will take more time than the sine law method.

COSINE LAW

In an oblique triangle, the square of any side is equal to the sum of the squares
of the other two sides minus twice the product of the other two sides times the
cosine of the included angle. In symbol form:

(AB)* = (AC)* + (BC)* — (2)(AC) (BC)(cos % C)

This expression is called the cosine law and is useful in many problems, although
it may not give an answer to the desired precision since we are adding and subtract-
ing terms that have only three significant figures.

After the side AB has been determined, the angles at A and B can be found
by using the law of sines.

In the event that the angle used in the cosine law formula is larger than 90°,
subtract the angle from 180°, and determine the cosine of this angle. Remember,
however, that the cosine of an angle between 90° and 180° is negative. If the angle
used in the formula is larger than 90°, the last term will add to the squared terms.

The problem above can also be solved by using construction lines and making
right triangles from the figure. To do this, we construct the line BD perpendicular
to AC. This will form two right triangles, ABD and BCD. In triangle BCD, side
BD may be found by using BC and the sine of & C. In a similar manner, by using
the cosine of & C, side DC may be found. From this we can determine side AD in
triangle ABD.

Using the tangent function, the angle at 4 can be found, and AB can be de-
termined by the use of the sine or cosine function or the Pythagorean theorem
(AB)* = (BD)* + (AD)2. The right triangle method, while it may take longer
to solve, will in general give a more accurate answer.

Figure A 1I-3.
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THREE SIDES LAWS

There are a number of formulas derived in trigonometry that will give the angles
of an oblique triangle when only three sides are known. The formulas differ con-
siderably in ease of application and precision, especially if logarithms are used. Of

B C

Figure A llI-4.

A

all the formulas available, in general the half-angle (tangent) formula is better than
others. The formula (half-angle solution) is as follows:

r
14 iy
tan %2 A = Te
where r= |(§—=A4B)(S—AC)(S — BC)
N
and § = % perimeter of triangle

Other formulas that may be used are:

[E—AC)(S— 4B)

Sine formula (half-angle solution) sin 2 4 =
N (4C)(4B)

Cosine formula (half-angle solution) cos ¥ 4 = M
(AC)(AB)
. ; _(285)(S§—BC)
Cosine formula (whole angle solution) cos 4 = ———( AB) (AC) 1

In the last formula, the quantity (2S) (S — BC)/(AB)(AC) will usually be
between 1 and 2 and can be read to four figures on the slide rule. Subtracting the 1
in the equation will leave the cosine of the angle correct to three figures. The formula
has the advantage that it requires fewer operations. Also it is convenient to use
if the slide rule is employed in solving problems.

After finding one angle, the remaining angles can be found by successive ap-
plications of the law, being careful to use the proper side of the triangle in the
formula. The sine law can also be used after one angle is found. In order to have a
check on the solution, it is better to solve for all three angles rather than solve for
two angles, and then subtract their sum from 180°. If each angle is computed
separately, their sum should be within the allowable error range of 180°.

As an incidental item in the tangent formula, the constant r is equal to the
length of the radius of a circle that can be inscribed in the triangle.




Geometric Figures

Rectangle

b
Right Triangle
B
C
a
20°
A
€ b
Any Triangle

Arca = (base) (altitude) = ab
Diagonal = +/(altitude)? + (base)?
C=Va+ b

Angle A + angle B = angle C = 90°

Area = % (base) (altitude)

Hypotenuse = +/(altitude)® + (base)?
C=va+ b

Angles A + B + C = 180°
(Altitude 4 is perpendicular to base c)
Area = % (base) (altitude)
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Parallelogram

s D
A /
: B

Trapezoid
C ‘ D
h
A 1
Regular Polygon
A
Circle
B
A
Sector of a Circle
A
B

Area = (base) (altitude)-
Altitude 4 is perpendicular to base AB
Angles A + B + C + D = 360°

Area = % (altitude) (sum of bases)
(Altitude A is perpendicular to sides AB and
CD. Side 4B is parallel to side CD.)

Distance
R == 1 lengt1.1 of Nurr_lber OA %o
one side of sides
center
A regular polygon has equal angles and equal
sides and can be inscribed in or circum-
scribed about a circle.

AB = diameter, CD = radius
7 (diameter)?
R
Circumference = w(diameter)
C = 2m(radius)

arc BC _ angle BDC

Area = 7r(radius)? =

circumference~  360°

I radian = 1> = 57.2958°

_ (arc AB) (radius)
n 2
(radius)?(angle ACB)
360°
_ (radius)? (angle ACB in radians)
N 2

Area
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Segment of a Circle
_ (radius)?[w( & ACB®) . .
Area = 5 180 sin ACB ]
1 2
Area = m%”[{ ACB in radians — sin ACB"]
Area = arca of sector ACB — area of
triangle ABC
Ellipse
D Area = m(long radius OA)(short radius OC)

Area = : (long diameter AB) (short diam-
Adeasssnummet (P B eter CD)

r“' - ———

Volume and Center of Gravity Equations*

Volume equations are included for all cases. Where the equation for the CG
(center of gravity) is not given, you can easily obtain it by looking up the volume
and CG equations for portions of the shape and then combining values. For example,
for the shape above, use the equations for a cylinder, Fig. 1, and a truncated cylinder,
Fig. 10 (subscripts C and T, respectively, in the equations below). Hence taking
moments

_ VeBe + Vyi(Br + L¢)
- Ve+ Vi

(g D2LC) (%) 4 1;- DL, (1—56-LT + Lc)
B, =

T T

—D%L, + o DL

4 ©cT 8 ’ #“ Courtesy of Knoll Atomic Power
Laboratory, Schenectady, New York,

B,

or

‘ 5 operated by the General Electric Com-

L + L,T(---—LT -+ LC) pany for the United States Atomic

B. = 16 Energy Commission. Reprinted from
* 2L. + L, Product Engineering—Copyright owned

by McGraw-Hill.
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In the equations to follow, angle @ can be either in degrees or in radians.
Thus @ (rad) = m0/180 (deg) = 0.01745 6 (deg).
For example, if # = 30 deg in Case 3, then sin 8 = 0.5 and

2R (0.5)

B = 3730) (0.01745)

= 0.637R

Symbols used are:

B = distance from CG to reference plane,
V = volume,

D and d = diameter,

R and r = radius,

H = height,

L = length.

o . 1. Cylinder

B, =L/2
Bj_—_R

V= %DﬂL = 0.7854D2L

Area of cylindrical surface
= (Perimeter of base) (perpendicular height)

—

2. Half cylinder

Y

____¢__ _

ﬁ 3. Sector of cylinder

T

D

e

-l @[

L}"—B]: :1 "'132 f*—L—-—[ 3
v = Ip°L = 0.3927D°L V=0RL B=2Rsnd
g 30
B, =L/2 B, = 2R _ 0.4044R

3w




ﬁ 4. Segment of cylinder

V:LRﬂ(Br—Elsinw)
V =0.5L[RS — C (R = H)]

Geometric Figures
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§R| 5. Quadrant of cylinder
—&- i | R—+—
YA T

I_(_§LI__,H H B
V= ZR?L = 0.7854RL

_ 4R

B = 4R sin® 6 B = — = 0.4244R
66 — 3sin 20 3
S =2R0
H =R (1 —cos#)
C =2Rsin @
a 6. Fillet or spandrel 7. Hollow cylinder
/
i S— _O___-__ _BL__é_
—— i
V= (1 s 3) RL = 0.2146R2L
CG at center of part
B= ig g” R = 0.2234R ? o'P
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3[ 9. Sector of hollow cylinder

i

10. Truncated cylinder
(with full circle base)

/{-Bt-

F<B] T

V = 0.01745 (R2 — r2) 6L

_38.1972 (R* — r*) sin 0
= R—r) 0

B

L

v = Zpr = 0.3927D°L

8

B, =0.3125L
B, =0.375D

’ 11. Truncated cylinder (with partial circle base)

ﬁ_._.

LB,

-

b=R(1—cosh)

‘RS, sin® @
V = B [sm@ 3 —00056]
5 ; .
L[Gcos 6 _ Ssinfcosf  sin*6cosd . 0
2 8 12 8
By= sin® @
[1—cos€}[sin9— 3 —Bcose]
fcosf  sinf® O sinfcosf
. ZR[— 2 T2 °3% —s“N}
80 3
[sinB — SH; Y= 6 cos 3]
ind ind
— sin® @ __sin 6 cos 6

6 12




12. Oblique cylinder
- (or circular hole at oblique angle)

Geometric Figures
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13. Bend in cylinder

T H 2 = B remn 2
V= 5 D —T 0.7854D%H sec 6 V= 360 D’R6 = 0.0274D*R6
_ _d _ r? B, =ytan@
B=H/2 r——2- )’—R{l‘*‘m} B;:ycotﬁ
m; 14. Curved groove in cylinder
: C . -1 -
: sin 8, = 3R, sin 8, = 3R, S = 2R0
H, =R, (1 — cos6,) H, =R, (1 —cos6,)
v=L|Rz2 (6, - % 8, sin 20,) + R, (6, — % 8 s 292)}

e

H=R(1~-cosf) R

S =2R6

sin @ =

(R

V:L[CN+R2(8—%sin26)]

‘ 16. Slot in hollow cylinder

H=R (1 —cosf)

V= L[CN - R* (6 —%sin 26)]

V:L{CN—O.S[RS%C(R—H)]J
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' 17. Curved groove in hollow cylinder

. _ € ; _ C .
sin 0, = 3R, sin 0, = 3R, S =2R6
H, =R, (1 —cosB,)
H, =R, (1 — cos8,)
5 | ; 1
V = L (|:R2" (B_; - Esln 29_)):| = |:R12 (91 e 'i"sln 291)])
L :
V= 5([R252 — C (R, — JHB)}—[RIS1 - C (R, — Hl)D
n 18. Slot through hollow cylinder
: N—-‘ )
. . . _C
A sin 0, = R, sin 6, = R,
S =2R0

H, =R, (1 —cos#b,)
H_)ZR_B(I _COSG;:)

V=L (CN + [Rlz (6, ——;-sin 261)-\—[R2 (0, — %sin 92)])

V=L (CN +0.5[R,S, — C (R, — H,)] — 0.5[R,S, — C (R, — Hz)])

= 19. Intersecting cylinder
\" (volume of junction box)

—— ) —=t

(e
) = 0.9041D"

<
Il
<
(SIE!
|
W]

;
~(
V=20

20. Intersecting hollow cylinders
(volume of junction box)

R T
"
G pesh

T 2 s _ gy _ T om _
5—3)(D’ d*) 2d(D d)

9041 (D* — d*) — 1.5708 d&* (D — d)
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21. Intersecting parallel cylinders
(M <R))
= & _R22+M2_R12
6, = 180° — 6, COSB{’_TRQ—
o — Rt M —R?
SO = T5MR,
H, =R, (1 —cosb)
Sl = 2R161

V= L(Wng EE [R32 (02 = % sin 292] = [R12 (61 - é-sin 291)])

H, =R, (1 —cosb,)
Sy = 2R,6,
R:2 + M? — R?
C g =— -
s IMR,

V=L ([w (R2 + R22)] . [Rlz 6, — % i 291)] _ [R22 (6, — % i 292)])

23. Sphere 24. Hemisphere
1
3
P = Eg— — 0.5236D°
Area of surface = 4 (radius)® = wD? B = 0.375R
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& 25. Spherical segment

= sz(R —g

B — HUAR—H)
'" 43R -H)
B, — 3(Q2R—H)’
27 4(3R-H)

26. Spherical sector

2m

V= R?H = 2.0944R*H

3
B =0.375 (1 + cos 8)
R =0.375 (2R — H)

27. Shell of hollow hemisphere

28. Hollow sphere

H* .
t __..hT
‘L‘_"‘ ] ;'\ _Bt

29. Shell of spherical sector

v =21 (RH — rh)

[R*H (2R — H)] — [*h (2r — b)]
RH — r°h l

B =0.375 '

3 3JR—H

(R_f_J)Hf (2R —H)®

30. Shell of spherical segment

r=elia-) w2

_Q)hi' (2r — h)?
"T3) 3 —h

3

3
. e (R-3)—w (s

=
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31. Circular hole through sphere

V=7T[r2L+2H2(R—E)} H=R-\/RE=7F
. L=2(R-H)

32. Circular hole through hollow sphere

V= ﬂ'{rzL + H, (R1 —%)— H,? (R2 - %)}

sinf, = r/R, sin @, = r/R, H=R(1—--cosb)

33. Spherical zone 34. Conical hole through
spherical shell
e, -
| Ty
BN Y
H h Pt LR %, il S0,
V:w'[HZ( - ?)]_[’“2 (R —Ei)]} 3 2 .
w3 3 B = 0.375 (R* — r*) (sin 6, + sin 6,)
=T 2 42 G2 + hy? = RE—P
vV 6[4C‘ —5-4C2 +h~]
35. Torus ( wf'@) 36. Hollow torus
. N {o,
|
w—t= D B 1
Jd 4 DF 1d:
V =2 mdD = 2.467dD V=3mD (42 — dy)
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é ‘s 37. Bevel ring &‘9 38. Bevel ring

& L
[R—w~] |
V=m(R+ % W) WH
R W
378
Ry 3712
B=H
P
3
39. Quarter torus
B < 0.4244R
v="RF (r i ﬁ) = 4.9348R? (r + 0.4244R)
3w
r+ 3k
5o 4R 8 | _ 0.4244Rr + 0.1592R?
~ 3 AR |~ r T 0.4244R
r+ 2=
3w

41. Curved shell ring
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@ 42. Curved shell ring

[r(Rf B0 o e R Rm]
37

2r

3

(RS = R?) +5 (Ryt = RyY)

p
B oy 2 3 3
r(Ry® — R?) + I (Ry» — R®)

4 sin 36 :
[Rl G (m — COS 6) RQ][G — 0.5sin 29]

47. Ellipsoid
|

V =—-7mACE

N — _3, V=T daL
Y|
F«A—J
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‘Q 48. Paraboloid
/|

49. Pyramid (with base of any shape)

A = Area of
Base
o _ 1 A = Area of | _1
VWEHD B—§H Base V—3AH B—4H
50. Frustum of pyramid 51. Cone

(with base of any shape)

A= Areu

*// SN

= Area

V=§H(A1+\/A1A2+A2)
_H (A4, +2VAA, + 34,)

4 (A, + VAA; +4,)

= E D*H B = Z H
Area of conical surface (right

cone) = ¥ (circumference of base)
X (slant height)

52. Frustum of cone

L
[

|
|

d
i i
pe/ 7
D

|r T

.

A

V:;T—ZH(D2+Dd+d3)

p = H (D* + 2Dd + 3d°)
~ 4(D*4+ Dd + d?)

53. Frustum of hollow cone

V =0.2618H [(D? + D.d, + d,*) —
(Ds2 + Dydy + d;?)]
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L

54. Hexagon 5. Closely packed helical springs

@ s
S U ]

le—1—— Py Y n—

2
Vz_\/_gdzL V:lf—L(D—d)
V = 0.86642L V =2.4674 (D — d)

56. Rectangular prism

Volume = length X width X height
Volume = area of base x altitude

57. Any prism
(Axis either perpendicular or inclined to

base)
' T Volume = (area of base) (perpendicular
_’i height)
Volume = (lateral length) (area of
perpendicular cross-section)




WEIGHTS AND MEASURES
Avoirdupois Weight

1 grain (avdp)
272 grain
16 dram

16 ounces

100 pounds
2000 pounds
2240 pounds

Metric Weight

10 milligram (mg)
10 centigram

10 decigram

10 gram

10 dekagram

10 hectogram

Tables

grain

dram

ounce (0z)
pound (lb)
hundredweight
short ton (T)
long ton

[ S S S

decigram (dg)
gram (g)

O

kilogram (kg)

Mass and Force Equivalents

gram
kilogram
metric ton
pound
ounce
newton

N . T T =

0.03527 ounce
2.2046 pound
2205 pound
453.6 gram
28.35 gram
105 dynes

160

1 grain (troy)

(cwt)

centigram (cg)

dekagram (Dg)
hectogram (hg)

980.6 dynes
(6.852) (1072) slug 9.807 newton

0.4536 kilogram 4.448 newton

0.2248 pounds




Dry Measure
2 pints
8 quarts
4 pecks

Liquid Measure
4 gill
2 pints
4 quarts
7.48 gallons
31% gallons
1 British Imperial gallon

Linear Measure

1 mil

12 inches

3 feet

5% yards

40 rods

320 rods

3 miles

Tables
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1 quart (qt) 67.2 cubic inches (in.?)
1 peck
1 bushel (bu)

pint (pt) 16 fluid ounces 2 cups
quart

gallon (gal) 231 cubic inches

cubic foot (ft*)

barrel (bbl)

1.200 U.S. gallons

el e e

0.001 inch (in.)

foot (ft)

yard (yd)

rod

furlong

mile 5280 ft 1760 yards
league

e e b e e

Linear Measure Equivalents

6.08 feet
6080.2 feet
1 nautical mile

1 fathom
1 nautical mile
1.15 statute mile

I knot is a speed of 1 nautical mile per hour

Metric Linear Measure

10 millimeter (mm)
10 centimeter

10 decimeter

10 meter

10 dekameter

10 hectometer

Metric Linear Equivalents

centimeter
meter
kilometer
inch

foot

mile
Angstrom
micron (u)

[ T I sy

centimeter (cm)
decimeter (dm)
meter (m)

dekameter (Dm)
hectometer (hm)
kilometer (km)

S g Sy

0.3937 inch 10-5 kilometer

39.37 inches 1.0936 yard 3.281 feet
0.62137 mile (approximately % mile) 3281 feet
2.540 centimeter

30.48 centimeter 0.3048 meter

1.6093 kilometer

1071 meter

10-6 meter
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Area Measure

144 square inches (in.?) 1 square foot (ft*)
9 square feet 1 square yard (yd?)
30% square yards 1 square rod
160 square rods 1 acre 4840 square yards 43,560 square feet
640 acres 1 square mile 1 section
2.47 acres 1 hectare (metric)
1

0.7854 square mils circular mil 7.854(10~7) square inches

Volume Measure

1728 cubic inches
27 cubic feet

231 cubic inches
2150.42 cubic inches
144 cubic inches
61.02 cubic inches

cubic foot (ft?)

cubic yard (yd?®)
standard gallon (U.S.)
standard bushel

board foot

liter (metric)

e

Conversion Equivalents

1 atmosphere 14.69 pounds per square inch (psi)
29.92 inches of mercury
406.8 inches of water

1 British thermal unit 252 calories (gram, at 15°C)
1 British thermal unit 778 foot-pounds (ft-Ib) 0.00039 horsepower-hour
1 calorie 0.003968 British thermal unit
1 cubic inch 16.39 cubic centimeters 0.01639 liters
1 foot-pound per second 0.001818 horsepower (hp)
1 horsepower 746 watts 33,000 foot-pounds per minute
550 foot-pounds per second
1 kilowatt 1.34 horsepower
Hydrostatic water pressure in pounds per square inch = (height in feet) (0.4332)
1 inch Hg (mercury) 0.491 pound per square inch
1 Joule 1 watt second 0.737 foot-pound 107 ergs
9.48(10~1) Btu
1 kilowatt-hour 3413 British thermal unit
1.341 hp-hr
3.6(10°%) Joule
1 radian 57.2958 degrees

1 million electron volts (Mev)  1.602(107) joule




COEFFICIENTS OF FRICTION

Average Values

SURFACES STATIC KINETIC
Metals on wood 0.4 —0.63 0.35—0.60
Wood on wood 0.3 —0.5 0.25—0.4
Leather on wood 0.38—0.45 0.3 —0.35
Iron on iron (wrought) 0.4 —0.5 0.4 —0.5
Glass on glass 0.23—0.25 0.20—0.25
Leather on glass 0.35—0.38 0.33—0.35
Wood on glass 0.35—0.40 0.28—0.31
Wood on sheet iron 0.43—0.50 0.38—0.45
Leather on sheet iron 0.45—0.50 0.35—0.40
Brass on wrought iron 0.35—0.45 0.30—0.35
Babbitt on steel 0.35—0.40 0.30—0.35
Steel on ice 0.03—0.04 0.03—0.04

THE GREEK ALPHABET

A o Alpha N » Nu

B B Béta = ¢ Xi

r vy Gamma O o Omicron

A & Delta I = Pi

E ¢ Epsilon P p Rho

Z ¢ Zeta 3 o5 Sigma

H 5 Eta T - Tau

® 6 Theta Y » Upsilon

I . Iota ¢ ¢ Phi

K « Kappa X x Chi

A x Lambda r ¢ Psi

M p Mu @ o Omega

DIMENSIONAL PREFIXES
SyMBoL PREFIX MULTIPLE

T tera units 1012

G giga units 109

M mega units 106

k kilo units 103

h hecto units 102

da deca units 101
units 100

d deci units 10-1

c centi units 10—2

m milli units 10—3

o micro units 106

n nano units 109

P pico units 10—12

f femto units 10—15

a atto units 10—18

Tables
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SPECIFIC GRAVITIES AND SPECIFIC WEIGHTS (Average Values)

AVERAGE AVERAGE
SPECIFIC SPECIFIC
SPECIFIC WEIGHT IN SPECIFIC WEIGHT IN
MATERIAL GRAVITY LBf/FT3 MATERIAL GRAVITY LB‘,/FT3
Alcohol, ethyl 0.792 49.6 Limestone,
Aluminum, cast 2.65 166 crushed 1.4—1.6 95
Air, ST.P. 0.001293 0.0806 Marble 2.5—-28 166
Babbitt metal, Mercury 13.56 845
soft 9.75—10.65 625 Nickel 8.90 558
Brass, cast, red 8.4—8.7 530 Qil, lubricating 0.91 57
Brick, common 1.8—2.0 119 Paraffin 0.90 56
Cement, port- Petroleum, crude 0.88 55
land, bags 1.44 90 Rubber 1.25 78
Chalk 2.25 140 Sand, loose, wet 1.9 120
Clay, loose, wet 1.7—1.8 110 Sandstone, solid 2.3 144
Coal, anthracite, Sea water 1.03 64
solid 1.4—18 95 Silver 10.5 655
Coal, bitumi- Steel, structural 7.9 490
nous, solid 12—1.5 85 Sulfur 13=2.1 125
Concrete, gravel, Tin ) 73 456
sand 2924 142 Turpentine 0.865 54
Copper, wire 8.93 560 Water, 4°C
Cork 0.18—025 125 139.2°F) 1.000 o245
Earth 145—22  90—130 Wa‘;l’i}go"c 096 c0.53
Gasoline 0.68—0.72 44 ( ) : }
Wood seasoned:
Glass, crown 2.5—-27 161
. Cedar 0.35—0.65 31
Glass, flint 3.0—3.6 205
T Cypress 0.48—0.57 32
Glycerine 1.25 78 Ebony 12—1.3 78
Oed. 123 1205 Fir 0.51—0.60 35
Gramte, solid 2.5—3.0 172 HleOTY 0.70—0.93 51
Gravel, loose, wet 1.45—1.90 105 Mahogany 0.56—0.85 44
Ice 0.511 57 Maple 0.68—0.80 45
Iron, gray cast 7.00—7.12 450 Oak 0.70—0.90 50
Iron, wrought 7.6—17.9 480 Pine, white 0.38—0.48 28
Kerosene 0.8 50 Pine, yellow 0.65—0.75 44
Lead 11.34 710 Walnut 0.60—0.70 41
Limestone, solid 2.5—2.9 168 Zinc 7.14 445

NoTE: The value for the specific weight of water, which is usually used in problem solutions,
is 62.4 1b,/ft3 or 8.34 Ib, per gallon.




TRIGONOMETRIC FUNCTIONS

sin(—a) = —sina
cos (—a) = cos &
tan (—a) = —tan«

sinf e = % — Y cos 2a

cos’a =% + Yo cos 2w

sina + cos’>a =1

sec2a = 1 + tan® «

csc?ae = 1 + ctn® &

sin 2a = 2 sin « cos &

cos2a =cosla —sinfa=1—2sina=2cos’a — 1

. o o o o

sma—a—gl-+§—7!-+§!-...
g

COR 6= Gy T 5 " B

sin (o = ) = sin« cos 6 = cos e sin O

cos (e = ) = cos a cos # == sin e sin 6

DIFFERENTIALS AND INTEGRALS

d(uv) _ ., dv du
dx _de+ de

d(u/v) _V(du/dx) — U(dv/dx)
dx v2

"d xn+1 C
[x xfn+1+

[udv:uv——fvdu

dx
?—log<x+C

[sinxdxz —cosx +C

cosxdx =sinx + C

sin 2x

b B Bem

sinzxdng— T +C
coszxdx:;-+sm42x + C

Tables
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SPECIAL PURPOSE FORMULAS USEFUL IN SOLVING UNIFORM MOTION
PROBLEMS

Legend
V—uvelocity V,—final velocity S—distance a—acceleration
V,—initial velocity V ., —average velocity t—time
GIVEN TO FIND SUGGESTED FORMULAS
V1 + ¥,
Vo Vo t S §= - t
V.V, a . i
- 2a
ar?
V. a t S S=Vit+ 5
V,+V,
Vl' VZ Vm‘ er a5 2
A
S’ t Vm* av = _f
Vo a, t V, V,=V,—at
V,, a, § Vl Vl—\/Vg_zaS
S at
S, a it 1 V1 = -; - E
¥y, it V2 V2= V,+at
Vi.a § V, V=V + 248
28
B, S, ¢ V, Vy= =k
2§
Vi Vy § f "=V,
N - ErEy
_ 1 Vi+ 2aS
V,a § t 1= X
a
V,— V¥
¥, ¥V, a t B 2 - 1
V,—F
2 3
Vl' V2, t a a= I
vi—Vi
Vl’ VZ, h) a a= 25
28 2V
Ve S, ¢t a =—-_1




LOGARITHMS
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Natural
Numbers

ProPoRTIONAL PARTS

[t el
W= O

14

0000] 0043,

0414
0792
1139
1461

1761

2304
25563
2788

3010
3222
3424
3617
3802

3979
4150
4314
4472
4624

4771
4914
5051
5185
5315

5441
5563
5682
5798
5911

6021
6128
6232
6335
6435

6532
6628]
6721
6812
6902

6990
7076
7160
7243
7324

0453
0828
1173
1492

1790

2330
2577
2810

3032
3243
3444
3636
3820

3997
4166
4330
4487
4639

4786
4928
5065
5198
5328

5453
5575
5694
5809
5922

6031
6138]
6243
6345
6444

6542
6637
6730
6821
6911

6998
7084
7168
7251
7332

0086
0492
0864
1206
1523

1818
2095
2355
2601
2833

3054
3263
3464
3655
3838

4014
4183
4346
4502
4654

4800
4942
5079
5211
5340

5465
5587
5705
5821
5933

6042
6149
6253
6355
6454

6551
6646
6739
6830
6920

7007
7093
7177
7259
7340

0128
0531
0899
1239
1553

1847
2122
2380
2625
2856

3075
3284
3483
3674
3856

4031

4200
4362
4518
4669/

4814
4955
5092
5224
5353

5478
5599
5717
5832
5944

6053
6160
6263
6365
6464

6561
6656
6749
6839/
6928

7016
7101
7185
7267
7348

0170
0569
0934
1271
1584

1875
2148
2405
2648}
2878

3096
3304
3502
3692
3874

4048}
4216
4378
4533
4683

4829
4969
5105
5237
5366

5490
5611
5729
5843
5955

6064
6170
6274
6375
6474

6571
6665
6758
6848
6937

7024
7110)

0212
0607
0969
1303
1614

1903
2175
2430
2672
2900

3118
3324
3522
3711
3892

4065
4232
4393
4548
4698

4843
4983
5119
5250
5378

5502
5623
5740
5855
5966

6075
6180
6284
6385
6484

6580
6675
6767
6857
6946

7033
7118

0253
0645
1004
1335
1644

1931
2201
2455
2695
2923

3139
3345
3541
3729
3909

4082
4249
4409
4564
4713

4857
4997
5132
5263
5391

5514
5635
5752
5866
5977

6085
6191
6294
6395
6493

6590
6684
6776
6866
6955

7042
7126

7193| 7202{ 7210

7275
7356

7284
7364

7292
7372

0294
0682
1038
1367
1673

1959
2227
2480
2718
2945

3160
3365
3560
3747
3927

4099
4265
4425
4579
4728

4871
5011
5145
5276
5403

55627
5647
5763
5877
5988

6096
6201
6304
6405
6503

6599
6693]
6785
6875
6964

7050
7135
7218
7300
7380

0334
0719
1072
1399
1703

1987
2253
2504
2742
2067

3181
3385
3579
3766
3945

4116
4281

4594
4742

4886
5024/
5159
5289
5416

5539
56568
5775

5999

6107
6212
6314
6415
6513

6609
6702
6794
6884
6972

7059
7143
7226
7308
7388

0374
0755
1106
1430
1732

2014
2279
2529
2765
2989

3201
3404
3598
3784
3962

4133
4298

4609
4757

4900
5038
5172
5302
5428

5551
5670
5786
5899
6010

6117
6222
6325
6425
6522

6618
6712
6803,
6893
6981

7067
7152
7235
7316
7396
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LOGARITHMS (continued)

ProPORTIONAL PARTS

4

6

T

7404
7482
7559
7634
7709

7782
7853
7924
7993
8062

8129
8195
8261
8325

8451
8513
8573
8633
8692

8751

8865
8921
8976

9031
9085
9138
9191
9243

9294
9345
9395
9445
9494

9542
95901
9638
9685
9731

9777
9823
9868
9912
9956

7412
7490
7566
7642
7716

7789

7931
8000
8069

8136
8202
8267

8395

8457
8519
8579
8639
8698

8756
8814
8871
8927
8082

9036
9090
9143
9196/
9248

9299
9350
9400
9450
9499

9547
9595/
9643
9689
9736

9782
9827
9872
9917
9951

7419
7497
7574
7649
7723

7796/

7938
8007
8075,

8142
8209
8274

8401

8463
8525

8645]
8704

8762
8820
8876
8932
8987

9042
9096
9149
9201
9253

9304
9355
9405
9455
9504

9552
9600
9647
9694
9741

9786
9832
9877
9921
9965

7427
7505
7582
7657
7731

7803
7875
7945
8014
8082

8149
8215
8280

8407

8470
8531
8591
8651
8710

8768
8825

8938
8993

9047
9101
9154
9206
9258

9309,
9360/
9410
9460
9509

9557
9605
9652
9699
9745

9791
9836
9881
0926
9969

7435

751
758
7664
7738

7810]
7882
7952
8021
8089,

8156
8222
8287
8351
8414

8476
8537
8597
8657
8716

8774
8831
8887
8943
8998)

90534
9106f
9159
09212
9263

9315
9365
9415
9465
9513

9562
9609
9657
9703
9750

9795
9841
9886
9930)
9974

7443
7520
7597]
7672
7745

7818
7889
7959
8028
8096

8162
8228
8293
8357
8420

8482
8543
8603
8663
8722

8779
8837
8893
8949
9004

9058
9112
9165
9217
9269

93201
9370,
9420
9469
9518

9566
9614
9661
9708
9754

9800
9845
9890
9934
9978

7451
7528
7604
7679
7752

7825
7896
7966
8035,
8102

8169
8235
8299
8363
8426

8488
8549
8609,
8669
8727

8785

8842
8899
8954
9009

9063
9117,
9170,
9222
9274

9325
9375
9425
9474
9523

9571
9619
9666/
9713
9759

9805
9850
9894
9939
9983

7459
7536
7612
7686
7760,

7832
7903
7973
8041
8109

8176
8241
8306
8370
8432

8494
8555
8615
8675
8733

8791
8848
8904
8960
9015

9069
9122
9175
9227
9279

9330
9380
9430
9479
9528

9576
9624/
9671
9717]
9763

9809
9854
9899
9943
9987

7466
7543
7619
7694
7767

7839
7910,
7980,

8116

8182
8248
8312
8376
8439

8561
8621
8681
8739

8797
8854
8910
8965
9020

9074
9128
9180
9232
9284

9335
9385
9435

9533

9581
9628
9675
9722
9768

9814
9859

9948
9991

7474
75651
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TRIGONOMETRIC FUNCTIONS
Angle 8
— | cosB sin 0 tan 0 sec f csc cotf
Degrees Radians

0° 00’ .0000 1.0000 L0000 .0000 1.000 |No value/No valuel| 1.5708 | 90° 00"
10 029 000 029 029 000 343.8 | 343.8 679 50
20 058 000 058 058 000 171.9 |171.9 650 40
30 087 1.0000 087 087 000 114.6 |114.6 621 30
40 116 .9999 116 116 000 85.95 85.94 592 20
50 145 999 145 145 000 68.76 68.75 563 10

1° 00 0175 .9998 0175 0175 1.000 57.30 57.29 1.5533 | 89° 00’
10 204 998 204 204 000 49.11 49.10 504 50
20 233 997 233 233 000 42.98 42.96 475 40
30 262 997 262 262 000 38.20 38.19 446 30
40 291 996 291 291 000 34.38 34.37 417 20
50 320 995 320 320 001 31.26 31.24 388 10

2° 00’ .0349 .9994 .0349 .0349 1.001 28.65 28.64 1.5359 | 88° 00’
10 378 993 378 378 001 26.45 26.43 330 50
20 407 992 407 407 001 24.56 24.54 301 40
30 436 990 436 437 001 22.93 22.90 272 30
40 © 465 989 465 466 001 21.49 21.47 243 20
50 495 988 494 495 001 20.23 20.21 213 10

3° 00 .0524 9986 .0523 .0524 1.001 19.11 19.08 1.5184 | 87° 00"
10 553 985 552 553 002 18.10 18.07 155 50
20 582 983 581 582 002 17.20 17.17 126 40
30 611 981 610 612 002 16.38 16.35 097 30
40 640 980 640 641 002 15.64 15.60 068 20
50 669 978 669 670 002 14.96 14.92 039 10

47 00’ 0698 .9976 .0698 L0699 1.002 14.34 14.30 1.5010 | 86° 00°
10 727 974 727 729 003 13.76 13.73 981 50
20 765 971 756 758 003 13.23 13.20 952 40
30 785 969 785 787 003 12.75 12.71 923 30
40 814 967 814 816 003 12.29 12.25 893 20
50 844 964 843 846 004 11.87 11.83 864 10

5700 .0873 .9962 .0872 .0875 1.004 11.47 11.43 1.4835 | 85° 00’
10 902 959 901 904 004 11.10 11.06 806 50
20 931 957 929 934 004 10.76 10.71 i 40
30 960 954 958 963 005 10.43 10.39 748 30
40 .0989 951 .0987 .0992 005 10.13 10.08 719 20
50 1018 948 L1016 .1022 005 9.839 9.788 690 10

6° 00" 1047 9945 .1045 .1051 1.006 9.567 9.514 || 1.4661 | 84° 00"
10 076 942 074 080 006 9.309 9.255 632 50
20 105 939 103 110 006 9.065 9.010 603 40
30 134 936 132 139 006 8.834 8.777 573 30
40 164 932 161 169 007 8.614 8.556 544 20
50 193 929 190 198 007 8.405 8.345 515 10

77 00/ 1222 9925 1219 1228 1.008 8.206 8.144 1.4486 | 83° 00"
10 251 922 248 257 008 8.016 7.953 457 50
20 280 918 276 287 008 7.834 7.770 428 40
30 309 914 305 317 009 7.661 7.596 399 30
40 338 911 334 346 009 7.496 7.429 370 20
50 367 907 363 376 009 7.337 7.269 341 10

8° 00" 1396 .9903 21392 1405 1.010 7.185 7.115 1.4312 | 82° 00’

Radians Degrees
sin cosf  cotf csc secf tan f

Angle
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TRIGONOMETRIC FUNCTIONS (continued)

Angle
cos 8 sin 6 tan 6 sec f! cscf cot

Degrees Radians

8°00"| .1396 9903 1392 .1405 1.010 7.185 7.115 | 1.4312 | 82° 00’

10 425 899 421 435 010 7.040 6.968 283 50

20 454 894 449 465 (U 6.900 827 254 40

30 484 890 478 495 011 765 691 224 30

40 513 886 507 524 012 636 561 195 20

50 542 881 536 554 012 512 435 166 10
9°00"| .1571 9877 1564 1584 1.012 6.392 6.314 || 1.4137 [81° 00’
10 600 872 593 614 013 277 197 108 50

20 629 B68 622 644 013 166 6.084 079 40

30 658 863 650 673 014 6.059 5.976 050 30

40 687 858 679 703 014 5.955 871 || 1.4021 20

50 716 853 708 733 015 855 769 || 1.3992 10
10° 00 1745 .9848 1736 1763 1.015 5.759 5.671 || 1.3963 [80° 00’
10 774 843 765 793 016 665 576 934 50

20 804 838 794 823 016 575 485 904 40

30 833 833 822 853 017 487 396 875 30

40 862 827 851 883 018 403 309 846 20

50 891 822 880 914 018 320 226 817 10
11°00"| .1920 9816 1908 1944 1.019 5.241 5.145 || 1.3788 [79° 00’
10 949 811 937 1974 019 164 5.066 759 50

20 1978 B80S 965 .2004 020 089 4.989 730 40

30 .2007 799 1994 035 020 5.016 915 701 30

40 036 793 .2022 065 021 4.945 843 672 20

50 065 787 051 095 022 876 773 643 10
12200 | .2094 9781 .2079 2126 1.022 4.810 4.705 || 1.3614 | 78° 00"
10 123 715 108 156 023 745 638 584 50

20 153 769 136 186 024 682 574 5355 40

30 182 763 164 217 024 620 511 526 30

40 211 157 193 247 0235 560 449 497 20

50 240 750 221 278 026 502 390 468 10
13°00"| .2269 9744 .2250 .2309 1.026 4.445 4.331 || 1.3439 | 77° 00"
10 298 737 278 339 027 390 275 410 50

20 327 730 306 370 028 336 219 381 40

30 356 724 334 401 028 284 165 352 30

40 385 717 363 432 029 232 113 323 20

50 414 710 391 462 030 182 061 294 10
14°00"| .2443 9703 2419 .2493 1.031 4.134 4.011 1.3265 | 76° 00
10 473 696 447 524 031 086 3.962 235 50

20 502 689 476 555 032 4.039 914 206 40

30 531 681 504 586 033 3.994 867 177 30

40 560 674 532 617 034 950 821 148 20

50 589 667 560 648 034 906 776 119 10
15°00"| .2618 9659 2588 2679 1.035 3.864 3.732 || 1.3090 | 757 00°
10 647 652 616 711 036 822 689 061 50

20 676 644 644 742 037 782 647 032 40

30 705 636 672 773 038 742 606 || 1.3003 30

40 734 628 700 805 039 703 566 || 1.2974 20

50 763 621 728 836 039 665 526 945 10

16°00"| .2793 9613 .2756 2867 1.040 3.628 3.487 || 1.2915 | 74" 007

Radians Degrees
sin@  cosf  cotf  cscf  secf  tanl |————
Angle f
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TRIGONOMETRIC FUNCTIONS (continued)
Angle
_— 1 cos# sin @ tan 6 sec B csc cotf
Degrees Radians
16% 00" 2793 9613 2756 .2867 1.040 3.628 3.487 1.2915 | 74° 00’
10 822 605 784 899 041 592 450 886 50
20 851 596 812 931 042 556 412 857 40
30 880 588 840 962 043 521 376 828 30
40 909 580 868 2944 044 487 340 799 20
50 938 572 896 3026 045 453 305 770 10
17° 00’ 2967 9563 2924 .3057 1.046 3.420 3.271 1.2741 | 73° 007
10 2996 555 952 089 047 388 237 712 50
20 3025 546 2979 121 048 357 204 683 40
30 054 537 .3007 153 048 326 172 654 30
40 083 528 035 185 049 295 140 625 20
50 113 520 062 217 050 265 108 595 10
18° 00’ 3142 9511 .3090 3249 1.051 3.236 3.078 1.2566 | 72° 00"
10 171 502 118 281 052 207 047 537 50
20 200 492 145 314 053 179 3.018 508 40
30 229 483 173 346 054 152 2.989 479 30
40 258 474 201 378 056 124 960 450 20
50 287 465 228 411 057 098 932 421 10
19° 00’ 3316 9455 3256 .3443 1.058 3.072 2.904 1.2392 | 71° 00’
10 345 446 283 476 059 046 877 363 50
20 374 436 311 508 060 3.021 850 334 40
30 403 426 338 541 061 2.996 824 305 30
40 432 417 365 574 062 971 798 275 20
50 462 407 393 607 063 947 773 246 10
20° 00 .3491 9397 .3420 .3640 .1064 2.924 2.747 || 1.2217 | 70° 00"
10 520 387 448 673 065 901 723 188 50
20 549 377 475 706 066 878 699 159 40
30 578 367 502 739 068 855 675 130 30
40 607 356 529 312 069 833 651 101 20
50 636 346 557 805 070 812 628 072 10
21° 00’ .3665 9336 .3584 3839 1.071 2.790 2.605 1.2043 | 69° 00’
10 694 325 611 872 072 769 583 1.2014 50
20 723 315 638 906 074 749 560 1.1985 40
30 752 304 665 939 075 729 539 956 30
40 782 293 692 3973 076 709 517 926 20
50 811 283 719 4006 077 689 496 897 10
22° 00’ .3840 9272 3746 .4040 1.079 2.669 2.475 1.1868 | 68° 00"
10 869 261 773 074 080 650 455 839 50
20 898 250 800 108 081 632 434 810 40
30 927 239 827 142 082 613 414 781 30
40 956 228 854 176 084 595 394 752 20
50 985 216 881 210 085 577 375 723 10
23° 007 4014 9205 .3907 4245 1.086 2.559 2.356 1.1694 | 67° 00"
10 043 194 934 279 088 542 337 665 50
20 072 182 961 314 089 525 318 636 40
30 102 171 3987 348 090 508 300 606 30
40 131 159 4014 383 092 491 282 577 20
50 160 147 041 417 093 475 264 548 10
24° 007 4189 9135 .4067 .4452 1.095 2.459 2.246 1.1519 | 66° 00"
Radians Degrees
sin@  cosf cot @ csc @ sec tanf [———

Angle 6
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TRIGONOMETRIC FUNCTIONS (continued)

Angle
— || cosf sin @ tan @ sec @ esc cotfl

Degrees Radians

24° 007 4189 9135 4067 4452 1.095 2.459 2.246 1.1519 | 66 00’
10 218 124 094 487 096 443 229 490 50
20 247 112 120 522 097 427 211 461 40
30 276 100 147 557 099 411 194 432 30
40 305 088 173 592 100 396 177 403 20
50 334 075 200 628 102 381 161 374 10

25700 4363 9063 4226 4663 1.103 2.366 2.145 1.1345 | 65° 00"
10 392 051 253 699 105 352 128 316 50
20 422 038 279 734 106 337 112 286 40
30 451 026 305 770 108 323 097 257 30
40 480 013 331 806 109 309 081 228 20
50 509 9001 358 841 111 295 066 199 10

26° 007 4538 .8988 4384 4877 1.113 2.281 2.050 1.1170 | 64° 00’
10 567 975 410 913 114 268 035 141 50
20 596 962 436 950 116 254 020 112 40
30 625 949 462 .4986 1 241 2.006 083 30
40 654 936 488 .5022 119 228 1.991 054 20
50 683 923 514 059 121 215 977 1.1025 10

27° 00" 4712 .8910 4540 .5095 1.122 2.203 1.963 1.0996 | 63° 00’
10 741 897 566 132 124 190 949 966 50
20 771 884 592 169 126 178 935 937 40
30 800 870 617 206 127 166 921 908 30
40 829 857 643 243 129 154 907 879 20
50 858 843 669 280 131 142 894 850 10

28° 007 4887 || - .8829 4695 5317 1.133 2.130 1.881 1.0821 | 62° 00°
10 916 816 720 354 134 118 868 792 50
20 945 802 746 392 136 107 855 763 40
30 4974 788 772 430 138 096 842 734 30
40 .5003 774 797 467 140 085 829 705 20
50 032 760 823 505 142 074 816 676 10

29° 00’ .5061 .8746 4848 .5543 1.143 2.063 1.804 1.0647 | 61° 00’
10 091 732 874 581 145 052 792 617 50
20 120 718 899 619 147 041 780 588 40
30 149 704 924 658 149 031 767 559 30
40 178 689 950 696 151 020 756 530 20
50 207 675 4975 735 153 010 744 501 10

30° 007 .5236 .8660 .5000 5774 1.155 2.000 1.732 1.0472 | 60° 00’
10 265 646 025 812 157 1.990 720 443 50
20 294 631 050 851 159 980 709 414 40
30 323 616 075 890 161 970 698 385 30
40 352 601 100 930 163 961 686 356 20
50 381 587 125 .5969 165 951 675 327 10

31° 00 5411 .8572 5150 6009 1.167 1.942 1.664 1.0297 |59° 00’
10 440 557 175 048 169 932 653 268 50
20 469 542 200 088 171 923 643 239 40
30 498 526 225 128 173 914 632 210 30
40 527 511 250 168 175 905 621 181 20
50 556 496 275 208 177 896 611 152 10

32° 007 5585 .8480 .5299 .6249 1.179 1.887 1.600 1.0123 | 58° 0G*

Radians Degrees
sin @ cosfl  cotf csc sec tan f

Angle

- e
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.

Tables
173
TRIGONOMETRIC FUNCTIONS (continued)
Angle 8
— | cosf  sinf tan 0 secl  cscf  cotf

Degrees Radians

32° 007 5585 .8480 .5299 .6249 1.179 1.887 1.600 1.0123 | 58° 00’
10 614 465 324 289 181 878 590 094 50
20 643 450 348 330 184 870 580 065 40
30 672 434 373 371 186 861 570 036 30
40 701 418 398 412 188 853 560 1.0007 20
50 730 403 422 453 190 844 550 9977 10

33° 00’ 5760 .8387 5446 .6494 1.192 1.836 1.540 .9948 | 57° 00’
10 789 371 471 536 195 828 530 919 50
20 818 355 495 577 197 820 520 890 40
30 847 339 519 619 199 812 511 861 30
40 876 323 544 661 202 804 501 832 20
50 905 307 568 703 204 796 492 803 10

34° 00" 5934 .8290 5592 6745 1.206 1.788 1.483 9774 | 56° 007
10 963 274 616 787 209 781 473 745 50
20 .5992 258 640 830 211 T73 464 716 40
30 6021 241 664 873 213 766 455 687 30
40 050 225 688 916 216 758 446 657 20
50 080 208 i .6959 218 751 437 628 10

35%00° .6109 .8192 5736 .7002 1:221 1.743 1.428 9599 | 55° 00°
10 138 175 760 046 223 736 419 570 50
20 167 158 783 089 226 729 411 541 40
30 196 141 807 133 228 722 402 512 30
40 225 124 831 177 231 715 393 483 20
50 254 107 854 221 233 708 385 454 10

36° 007 .6283 .8090 .5878 7265 1.236 1.701 1.376 9425 | 54 00’
10 312 073 901 310 239 695 368 396 50
20 341 056 925 355 241 688 360 367 40
30 370 039 948 400 244 681 a1 338 30
40 400 021 972 445 247 675 343 308 20
50 429 .8004 2995 490 249 668 335 279 10

37° 007 L6458 .7986 6018 7536 1.252 1.662 1.327 .9250 | 53° 007
10 487 966 041 581 255 655 319 221 50
20 516 951 065 627 258 649 311 192 40
30 545 934 088 673 260 643 303 163 30
40 574 916 111 720 263 636 295 134 20
50 603 898 134 766 266 630 288 105 10

387 00/ L6632 7880 6157 7813 1.269 1.624 1.280 9076 | 527 007
10 661 862 180 860 272 618 272 047 50
20 690 844 202 907 275 612 265 9018 40
30 720 826 225 L7954 278 606 257 .8988 30
40 749 808 248 .8002 281 601 250 959 20
50 778 790 271 050 284 595 242 930 10

397 00" L6807 7771 6293 .8098 1.287 1.589 1.235 .8901 | 517 00"
10 836 753 316 146 290 583 228 872 50
20 865 735 338 195 293 578 220 843 40
30 894 716 361 243 296 572 213 814 30
40 923 698 383 292 299 567 206 785 20
50 952 679 406 342 302 561 199 756 10

40° 007 L6981 7660 6428 .8391 1.305 1.556 1.192 .8727 | 50”7 00’

Radians Degrees
sin @ cos f cot ! csc i sec f tan 6

Angle f
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TRIGONOMETRIC FUNCTIONS (continued)

s .
!

Angle 6
———— | cos@ sinf  tanf  secl cscf  cotf

Degrees Radians ~

40° 00’ L6981 7660 6428 .8391 1.305 1.556 1.192 .8727 | 50° 00’
10 .7010 642 450 441 309 550 185 698 50 4
20 039 623 472 491 312 545 178 668 40 ¢
30 069 604 494 541 315 540 171 639 30
40 098 585 517 591 318 535 164 610 20
50 127 566 539 642 322 529 157 581 10

41° 007 7156 7547 6561 .8693 1.325 1.524 1.150 .8552 | 49° 00"
10 185 528 583 744 328 519 144 523 50
20 214 509 604 796 332 514 137 494 40
30 243 490 626 847 335 509 130 465 30
40 272 470 648 899 339 504 124 436 20
50 301 451 670 .8952 342 499 117 407 10

42° 007 L7330 7431 6691 .9004 1.346 1.494 1.111 .8378 |48° 00’
10 359 412 713 057 349 490 104 348 50 §
20 389 392 734 110 353 485 098 319 40 ¢
30 418 373 756 163 356 480 091 290 30
40 447 353 777 217 360 476 085 261 20
50 476 333 799 271 364 471 079 232 10

43° 007 7505 7314 .6820 9325 1.367 1.466 1.072 .8203 | 47° 007
10 534 294 841 380 371 462 066 174 50
20 563 274 862 435 375 457 060 145 40
30 592 254 884 490 379 453 054 116 30
40 621 234 905 545 382 448 048 087 20
50 650 214 926 601 386 444 042 058 10 &

44° 00’ .7679 7193 .6947 9657 1.390 1.440 1.036 .8029 | 46° 00’ . [
10 709 173 967 713 394 435 030 .7999 50 \ 'Y
20 738 153 .6988 770 398 431 024 970 40
30 767 133 .7009 827 402 427 018 941 30
40 796 112 030 884 406 423 012 912 20
50 825 092 050 .9942 410 418 006 883 10

457 007 .7854 L7071 L7071 1.000 1.414 1.414 1.000 .7854 | 45° 00’

Radians Degrees
sin @ cos @ cot ! csc B sec 0 tan ) fl—se -

Angle 8
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ABBREVIATIONS FOR ENGINEERING TERMS'

absolute . ............ ... ... ..., abs
ACTE . . . oo spell out
acre~-foot ... ... .55 o0d e s ey acre-ft
air horsepower . . ............... air hp
alternating-current (as adjective) .... a-c
AMPETE . . .o amp
ampere-hour . ................ amp-hr
amplitude, an elliptic function . ... .. am.
ANgSOm UDIE . 5 ¢ som & s s s ow 7 4 A
antilogarithm .............. ... antilog
ALNOSPhELe: = « wom v vs wes © o « 5w - atm
atomic weight . ........ ... ... .. at. wt
AVETAZE ... oo v veen s avg
avoirdupois . ............. P avdp
Y AT41111 1 SRR TN az or «
barometer .. .................... bar.
BArLel ... s oo 2 o o ocoe & S5 5 00 ¥ BEES bbl
Baliie . .o 5 o0 0 sei 5 ven ven & own v o Bé
board feet (feet board measure) . ... fbm
boiler PressULe: .o « wew o o % mee » spell out
boiling point . . ................... bp
brake horsepower . ............... bhp
brake horsepower-hour ....... .. bhp-hr
Brinell hardness number .......... Bhn
British thermal unit . .. ... .. .. Btu or B
“bushel ... ... ... y o vin @ s e e g bu
CAlOTE . .. . ¢ .55 755 ¥ S0 Fas ¥ Ve ¢ B G cal
Candle: ;o yos v o v v v e wan 5 o w ow s c
Can@le-hOur « - o« s © wmw Sam 5 v » b c-hr
candlepower ... .................. cp
CENL . .. i cor ¢
center to center . ............... ctoc
CENEIBTAM oy ¢ 5 & sam v v 5 5 5 s & o cg
CEAHIET « = vam = ca v v mnm = a5 5 wow b cl
centimeter . ..................... cm
centimeter-gram-second (system) .... cgs
chemical .. ................... . chem
chemically Pure : : zow v on v v v vww s cp
CIECHIAE « oo v sovw o5 % s ® oo w5 s cir
circular mils .. ... .. ....... .. cir mils
coefficient . ... ... ... ... . . . . .. coef
cologarithm . . ................. > colog
conductivity . .................. cond
CONSEANL o ¢ ey 5 0 2 oo & v s 5 4 const

Tables
175
SOl .. o oan Ben o e s @ s v e cd
COSEEANT -2 © vonv wovmei win & st WS 8 Weae 3 CsC
COSIEET S0 MR T30 W e mme w v sms cos
cosine of the amplitude, an elliptic
function . ...................... cn
COtANGeNE . ...« s 7 e 5.0 % o & 45 3 cot
COBIOHIY 5 s oz v s v s v » spell out
EUBIC . 11500 b & s e w0 w0 o s s cu
cubic centimeter . . ... ... ... cu cm, cm?
cubic feet per minute . ... cfm or ft*/ min
cubic feet per second . . .. .. cfs or ft3/sec
cubic FOOt « .« va s von s v s e cu ft or ft?
cubicinch ............... cu in. or in.?
cubic meter .. ............. cu m or m?
cubic micron . ... ... cu g or cu mu or u?
cubic millimeter . ....... cu mm or mm?
eabic Yard . o ox 6 onn v ona s cu yd or yd?
CYHBARE. ..« v o o wans v s wis w0 cyl
decibel ... ... ... ... . ... ... ... .. .. db
AERTFee = . in v v saa R Sen degor °
degree Celsius .00l vnn o v v oo C
degree Fahrenheit . ... .... o000 F
degree Kelvin ... .................. K
degree Réaumur .................. R
diameter ...................... diam
direct-current (as adjective) ........ d-c
AOUBES s e o 5 cvom & woass = pes st & am s 3 $
T Ui § S doz
dram . .... ... e dr
dyne ............0 i, spell out
CHCIENEY, =« o v s % 0 v v @ e s eff
electric ........................ elec
electromotive force . . ... ... .. ... .. emf
elevation ... ...................... el
SEEAHON . . oo v s 6 s v mn paw @ uew eq
extertial = o sow v oo e e v s w on s s ext
farad .. .. ... ... ... spell out or f
feet board measure (board feet) . ... fbm
feet per minute . .. ... .. .. ft/ min or fpm
feet persecond . . .::.vu v ft/sec or fps
fluid ... .. .. fl
foot .. ... .. .. ft
foot-candle .. ... ... ... ... .. ...... ft-c

1 This list of abbreviations is revised from Abbreviations for Scientific and Engineering Terms,
approved by the American Standards Association, and published by the American Society of

Mechanical Engineers, New York City.
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ABBREVIATIONS FOR ENGINEERING TERMS (continued)

foot-Lambert . .. .. ... .. . . . . ft-L
foot-pound ... ... .. .. .. .. . .. ft-1b
foot-second (see cubic feet per second)
freezing Point . ..« vou b sk 2as 5 s pos fp
fusion point .. ... .. . ... ... . fnp
gallon ... .. ... ... .. gal
gallons per minute . .. . . gal/min or gpm
gallons per second . .. ... gal/sec or gps
BEANY e wom s it % ot & 205 5 958 G5 5 W, o g
gram-calorie ... ... . .. . . . .. . ... g-cal
haversine . ... ... .. ... . . . . . hav
BECLATE! o ¢ i & 56 5 5500 & 200 11 wotor o snmcss ha
NEDEY o & womrne & o0 3 G & 95 % W & 55 & oo h
high-pressure (adjective) ... ... .. h-p
hogshead ... ... .. .. . . . .. . . hhd
horsepower ... .. ... .. ... hp
horsepower-hour ... ... ... hp-hr
BOULE & o v v s o i 0 29 5 s s e o hr
hundred .. .. ... .. . .. ... . . .. | &
hundredweight (112 1b) ... .. . . cwt
hyperbolic cosine . ... ... .. . . . . . cosh
hyberbolic sine . ... ... .. .. . .. sinh
hyperbolic tangent .. ... ... . . . . tanh
inch .. ... ... .. ... ... in.
inch-pound . ... ... .. . in.-1b
inches per second .. ... .. . in./sec or ips
indicated horsepower ... ... ... . . ihp
indicated horsepower-hour . . ... .. ihp-hr
inside diameter ... ... .. ... ... . 1D
internal .. ... ... .. ... ... int
s L T T j
kilocalorie . ... ..... . .. .. .. _ . . kcal
kilogram .. ... ... . . ... . ... ... kg
kilogram-calorie . ... ... ... . . . .. kg-cal
kilogram-meter .. ... ... . . . . . . kg-m
kilograms per cubic meter

.............. kg per cu m or kg/m3

kilograms per second . ... kg/sec or kgps

kiloliter . . ... ... .. ... .. . . . . . ... .. kl
kilometer .. covvig sy e km
kilometers per second . ... .. . . . . kmps
kilovolt .. ... ......... . . . ... ... . .. kv
kilovolt-ampere . ... ... ... .. . . . . kva
kilowatt .. ... .. .. . . . . . . . kw
kilowatthour .. ... ... ... . . . . . .. kwhr

latitude . o0 cin 0 s n o e e lat or ¢
lineat £O0L = 1o 2 st 555 + v o v 0 e lin ft
BEE: oo o v v v s v 4 50 3 804 & ¥ o s 1
logarithm (common) .. .. ... . . . . . log
logarithm (natural) .. ... . . . log, or In
longitude . ... ... . .. . . . . long. or A
low-pressure (as adjective) ... ... .. Lp
TSI & i o st % oo 68 % 555 5 1 o sums 0 s 1
lumen-hour ... .. ... .. .. .. I-hr
lumens per watt ... ... ... .. . Ipw
IASE & su 4 6 ¥ i 5 B wn o m or spell out
POARINUIIE = ooy 5 550 555§ vimm v ve o e max
mean effective pressure .. .. ... . mep
melting point .. ... ... .. .. .. mp
meter . ... ... m
meter-kilogram . ... ... . ... . . . m-kg
microampere .. ........ ., % M Or mu a
microfarad . .o s sem v g e v o by uf
microinch . ... .. ... ... in.
micromicrofarad .. ... ... .. . .. . . ot
micromicron . ... ....... . ML O mu mu
TOCEON oo i ¥ 5 5 s vee s mone o j4 or mu
MICFOVOIE: o o o o 4 s 5 60 % 505 2 e uv
microwatt .. ... ... ... .. MW or mu w
mile . ... ... mi or spell out
miles per hour .. .. .. . . mi/hr or mph
miles per hour per second
............... mi/hr/sec or mphps
milliampere .. ..... ... ... . . . . . ma
milligram . ... ... ... .. mg
millihenry . ... mh
millilambert . ... ... ... ... . . mL
021115111 R ml
millimeter .. ... ... ... ... .. . mm
millimicron .. .. ... ... .. .. my Or m mu
million .. ... ... .. ... . . . .. spell out
million gallons per day ...... . .. .. mgd
IHINVOIE: & v = wonr 20 % 0 % 555 0 e o s mv
minute . ..., ... min
minute (angular measure) ...... ... . ’
BAOLE" 555 5 1 mowse 1 st oy 3 s s spell out
molecular weight .. .. .. . . mol. wt
111 16) 011 1 R spell out
National Electrical Code . ... . .. .. NEC
newton . ........... ... ... ... .. .. n
ORI & 5 smos v & oz =00 5 spell out or ()
ohm-centimeter ....... ... . . ohm-cm

e



e e R e

Tables
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|
OUNCE . .0 it oz shaft horsepower ....:............ shp
ounce-foot ... ........ ... ... .. oz-ft" shillinge 2 88Tt . s o v o o 5 v s
OMnCEAINEH & ¢ vow v v e v an s e D241 HHE (BT T n s &t b W @ wEm B aEs sin
| outside ‘diamEter: . . s 5 s & aon w0 o 5 4 OD  specific gravity . ............. .. .. sp gr
j specificheat . . .................. sp ht
parts per million .. .......... .. ... ppin.  SqUATEBSM WBR AL, .o . .o o oo S e sq
4 PEEE . ... ¥ S i 0 B85 5 25 0 4 o5 B UEE pk square centimeter ........ sq cm or cm?
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SECANT v v v o we v wwn g ot & 0 g sec
SECON & 1« wam & o 5 v meuhle e oo T 7 R L R e yd
| second (angular measure) ........... 2 eypan ol (O s wh e e w s s s yr
hd
! N
b
3
1



Answers to Selected Problems

10-1.

10-45.
10-50.
10-55.
10-60.
10-65.
10-70.
10-75.
10-80.
10-85.
10-90.
10-135,
10-140.
10-145.
10-150.
10-155.
10-160.
10-165.
10-170.
10-175.
10-180.
10-225.
10-230.
10-235.
10-240.

e. 2.781

i- 7372

0. 6.822

t. 3.644

y. 7.857
8.51(10)¢
8.75(10)!
3.79(10)3
8.37(10)5
4.35(10)5
1.202(10)¢
1.095
8.32(10)3
6.06(10)¢
1.619(10)%
2.53(10)¢
4.59(10) !
4.25(10)*
5.91(10)2
2.77(10) 1
3.88(10) %
1.275(10)8
1.278
2.21(10)3
5.96(10)3
1.350(10)?
1.524(10) 2
9.54(10) 1
1.099(10) !

10-245

10-250.

10-255
10-260
10-265
10-270

. 2.87(10) ¢
1.437(10)
' 2.93(10)-7
. 2.96(10) ¢
. 5.07(10) 1
. 5.64

10-355. 1.430(10)2
10-360. 4.46(10)*
10-365. 2.02(10)°

10-370. 9.98(10) !
10-375. 1.772

10-380

. 5.27(10)1

10-385. 3.62(10)®
10-390. 2.53(10)*

10-445.

10-450
10-455
10-460
10-465

1.079(10)3
. 1.357(10)¢%
. 8.12(10) 7
. 2.08

. 3.26(10)!

10-470. 3.68(10)2
10-475. 5.36(10)2

10-480.

1.138(10)7

10-560. 0.978
10-565. 0.407

10-570

10-575.
10-580.

10-585
10-590

. 0.669
1.397
1.028
. 0.719
. 1.034

178

10-595. 1.856
10-600. 1.061
10-605. 88.36°
10-610. 7.25°
10-615. 0.999
10-620. 31.8°
10-625. 29.55°
10-630. 0.602
10-635. 0.235
10-640. 0.897
10-645. 1.513
10-650. 1.569
10-655. 1.168
10-660. b = 15.97

B =23.5°
10-665. ¢ = 4.09 3

B = 15°
= 599
= 1807
= 677

c =678
10-730. 1.11(10)2
10-735. 1.331
10-740. 0.1048
10-745. 1.0352
10-750. 6.89(10)"
10-755. 0.492
10-760. 1.433
10-765. 1.0006

10-670.

o Q

10-675.

o]

-
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Answers to Selected Problems
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10-770. 0.386 10-850. 1.706(10)® 10-930. a. 1.039
10-775. 0.8728 10-855. 8.53(10)3 b. 1.579
10-780. 0.044 10-860. 8.98(10)7 c. 3.69
10-785. 36 10-865. 9.41(10) 2 d. 5.395
10-790. 3.89 10-870. 5.62(10)! e. 17.61
10-795. 0.925 10-875. 5.43(10)® f. 28.42
10-800. 1.018 10-880. 2.75(10) % g. 7421
10-805. —0.250 10-885. 1.776 o
10-810. 3.51 10-890, 3.26(10)s 10793 m 3:3; i;gzg
10-815. —6.70 10-895. 2.45(10)™ ¢ 858 4336
10-820. 4.495 10-900. 7.39(10)* d. 088 4 j2.56
10-825. —0.0026 10-905. 1.049
10-830. 3.11(10)! 10-910. 1.071(10)-* 10-940. a. 218 /317.4°
10-835. 2.73(10) 2 10-915. 3.34(10)! b. 100.5 /332.6°
10-840. 3.97(10)* 10-920. 3.24(10)! c. 0.00803 /320.5°
10-845. —1.230(10)®* 10-925. 1.071(10)~° d. 3.65 /327.4°
11-18. D = 9.57 ft 11-64. R = 231 1b at 103.5° with 4
11-20. Area = 1724 ft2; wt = 6.59 11-66. R = 124 b at 44°15" with A
(10%) 1b 11-68. T = 296 1b
11-22. V = 38.3 gal 11-70. R =701batS75°E
11-24. cost = $2.24;wt = 43.61b 11-72. R = 1788 b at N 8°35’ W
11-26. V = 525 yd® 11-74. R = 621bat S35°10°E
11-28. V = 615.5in% wt = 301 1b 11-76. R = 333 Ibat 6 = 20.6°
11-30. 1.170 (10%) Ib 11-78. R = 3331bat N 58.6°E
11-32. Wt = 378 1b 11-80. R = 5.101bat S 39° W
11-34. AB = 453 ft 11-82. R = 228 Ibat S 58.7° E;
11-36. B = 74.5°;C = 29.2°; R =1771batS 43.8° W;
Area = 9.05 in? comp=128.31batS 60.1° W
11-38. AB = 272 ft 11-84. P = 4461b; T = 12801b
11-40. (a) = 68°F; (b) = 98.6°F; 11-86. M, = 220 Ib-ft
(¢) = 311°F; (d) = 1076°F; 11-88. M, = 231 Ib-ft
(e) = 15,852°F; (f) = 2.20 11-90. Clockwise (a) 13,750 lb-ft;
(105)°F; (g) = 28.4°F; (b) 5250 1b-ft; (c) 1750 Ib-ft;
(k) = —40°F; (i) = —459°F (d) 2250 1b-ft; () 9450 Ib-ft.
11-42. —119.2°F Counterclockwise (a) 26,250
11-44. Dist = 0.865 in. Ib-ft; (b) 14,750 Ib-ft;
11-46. Depth = 8.43 ft (¢) 9750 Ib-ft; (d) 9500 1b-ft;
11-48. P = 34.3 psig () 14,300 1b-ft.
11-50. v = 2.26 (10?) ft2 M = (a) 12,500 Ib-ft;
11-52. Temp = 185°F (b) 9500 Ib-ft; () 8000 Ib-ft;
11-54. R = 7621batS51.5°E (d) 7250 Ib-ft; (e) 4850 Ib-ft
11-56. R = 13501b at$S 21°45 W 11-92. 0 Ib-ft; 395 Ib-ft; 280 Ib-ft;
11-58. R'= 425 mphat S 77° E 780 Ib-ft
11-60. Brace = 19501b at S 6°30’ W 11-94. 0 Ib-ft; 2160 Ib-ft; 17,600
11-62. T, = 2431b; T, = 172 1b 1b-ft; 527 Ib-ft



The Slide Rule and Its Use in Problem Solving
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11-96. Ry = 7441b; R, = 306 1b
11-98. 7.37 from right end
11-100. T =470 lb; R = 436 Ib at

11-120. (a) AB = 344 1b; R, = 777
Ib at 26.3°; (b) CG = 695 Ib;
D, = 6021b; D, = 347 Ib

0 = 14.6° 11-122. F, = 82.21b; F, = 190 1b;
11-102. x = 2.58 ft from right end B=28221Ib
11-104. (a) P = 432 Ib; 11-124. Refer to engineering hand-
(b) Ry = 644 1b; book
R; = 4401b 11-126. 3.45 (10%%) electrons/sec
11-106. (a)6 = 19.5°; 11-128. R, = 370.2 ohm;
(b)T = 59.51b; R, = 40.1 ohm
R=1981b 11-130. R = 6.76 (10°) ohm
11-108. T = 1.714 (10%) Ib; 11-132. 1=0.856amp;I = 1.198 amp
R, =1.715(10% 1b at 33.6° 11-134. Approximately 1 megohm
11-110. Wt = 2801b; N = 131.71b 11-136. Discussion
11-112. P =153.11bN =2351b 11-138. Discussion
11-114. AB = 1917 Ib; 11-140. Life = 590 hr;
CB =23601b Life = 1665 hr
11-116. A = 37501b; R, = 1860 1b 11-142. v = 4.3 (10~?) volts
at 27.6° 11-144. R = 230 ohm in series
11-118. (a) A = 1750 1b;

(b) Rp = 14051b at S
72.4°E
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Abbreviations for engineering terms, 175

Accuracy, slide rule, 4
Adjusting slide rule, 4
Alternating current meter, 131
Ammeter, 131

Ampere, 121, 122

Approximate number method, 13

Area measure, 162

Aristotle, 73

Aristotelian logic, 74

Art of problem solving, 73
Assumptions, simplifying, 80
Atom, 121

Bacon, Francis, 74
Bacon, Roger, 74

Block diagram, 82

Body, slide rule, 2

Brahe, Tycho, 1

Bridge measurements, 132

Center of gravity, 114
equations, 147
Characteristic method, 15
Circle, 146
Circular slide rule, 1
Cleaning slide rule, 2
Clockwise moment, 109
Collinear, 100

Combined multiplication and division, 22

!’g&’%

wg,i

Complex numbers, 64
Components, 107
Compressible flow, 99
Computation paper, 69
Computer simulation, 92
Concentrated load, 114
Conclusion statement, 73
Concurrent, 100
Concurrent force system, 87
Conditions of equilibrium, 115
Conductors, 121
Cone, 158

frustrum of, 158
Construction of the scales, 9
Coplanar, 100
Cosecant functions, 42
Cosine functions, 38
Cosine law, 143
Cotangent functions, 42
Coulomb, 121, 122
Counterclockwise moment, 109
Creative synthesis, 79
Cube roots, 33
Cubes, 33
Cyclic process, 75
Cylinder, 148

bend in, 151

half, 148

half hollow, 149

hollow, 149
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Cylinder (continued)
intersecting, 152
oblique, 151
quadrant of, 149
sector of, 148
sector of hollow, 150
segment of, 149
truncated, 150

D’Arsonval movement, 130
Decimal point location, 13
Deductive reasoning, 73
Deferment of judgment, 79
DeForrest, 133

Diagram, 82

Differentials, 165

Digit method, 14
Dimensional prefixes, 163
Direction of vectors, 86
Division, slide rule, 18
Dynamics, 99

Edison, 133

Electrical diagram, 82

Electrical machinery, 121

Electricity, 121

Electronics, 121

Ellipse, 147

Ellipsoid, 157

Ellipsoid cylinder, 157

Energy, 110

Energy diagram, 82, 83

Equilibrium, 114
conditions of, 115
equations, 115

Experimentation, 93

Exponential laws, 137

Factoring numbers, 53
Faraday, 121

Feedback, 75

Fillet, 149

Folded scales, 27

Force, 100

Force components, 86

Free bodies, 86

Free-body diagram, 82, 86
Friction, coefficients of, 163

Geometric figures, 145
Graduations, slide rule, 5
Gravity, center of, 114

Greek alphabet, 163
Gunter, Edmund, 1

Hairline, slide rule, 2
Hemisphere, 153

Henry, 77

Hexagon, 159

Hyperbolic cosines, 62
Hyperbolic functions, 61, 63
Hyperbolic sines, 61
Hyperbolic tangents, 62

Idealized model, 80

Identification of the problem, 76

Incompressible flow, 99
Incubation, 78
Inductance, 130
Inductive reasoning, 73
Insulators, 121
Integrals, 165

Internal forces, 115

Iron vane type voltmeter, 131

Judgment, deferment of, 79

Kip, 110
Kirchhoff’s laws, 129
Knife-edge, 114

Large numbers, factoring, 53
Lettering, 69

Logarithm tables, 167
Logarithmic base, 139
Logarithms, laws of, 137
Logarithms, natural, 139
Log-log scales, 46

Lon scales, 46

Major premise, 73
Manipulation of the rule, 3
Mannheim, Amédée, 1

Mass and force equivalents, 160

Mathematical model, 81
Mathematics, 74
Matter, 100

Maxwell, Clerk, 121
Mechanics, static, 99

Mechanics of deformable bodies, 99

Mechanics of fluids, 99
Metric weight, 160
Microphone, 122

 J—
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Millikan, Professor, 122
Minor premise, 73

Model, idealized, 80

Model, preparation of, 80
Model problem sheets, 71, 72
Moment arm, 109

Moment center, 114
Moments, 109
Multiplication, slide rule, 11

Napier, John, 1
Natural logarithms, 56
Need, 76

Negative exponents, 50
Newton, Sir Isaac, 1
Nucleus, central, 121
Null-method, 132

Ohm'’s law, 123
Oughtred, William, 1

Paraboloid, 158
Parallel circuit, 125
Parallelogram, 146
Parallelogram method, 102
Particle, 100
Particle motion, 82
Particle of mass, 82
Pencil, 69
Phase angle, 130
Photoelectric tube, 84
Physics teacher, 77
Pin-connected, 115
Pin joints, 89
Polygon, regular, 146
Polygon of forces, 104
Power, electrical, 129
Power factor, 130
Power-of-ten method, 14
Powers of numbers, 49
Preparation of a model, 80
Presentation of a solution, 93
Principle of transmissibility, 101
Prism, any, 159
Prism, rectangular, 159
Problem solving methods, 69
Projection rule

division, 19

multiplication, 15

183

Proportions and ratios, 26
Pyramid, 158
Pyramid, frustrum of, 158

Reaction between surfaces, 89
Reasoning, problem solving, 75
Reciprocal scales, 28

Reciprocals, log-log scales, 47
Rectangle, 145

Rectangular component method, 107
Rectangular components, 106, 107
Resolutions of forces, 101

Right triangle, 145

Right triangle solution, 44

Roots of numbers, 50

Scalar quantity, 100

Scale model, 90

Science of problem solving, 73
Scientific notation, 14
Secant functions, 42
Second law, Newton’s, 82
Sector of circle, 146
Segment of circle, 147
Series circuit, 124

Shunt, 131

Sign convention, 109
Simplifying assumptions, 80
Simulation, 92

Simulation model, 92

Sine functions, 36

Sine law, 142

Small numbers, factoring, 53
Smooth surfaces, 89

Space, 100

Space simulation chamber, 91
Spacecraft, model, 91
Spandrel, 149

Specific gravities, 164
Specific weights, 164 '
Sphere, 153

Sphere, hollow, 154
Spherical sector, 154
Spherical segment, 154
Springs, helical, 159

Square roots, 30

Squares, 30

Static mechanics, 99

Statics, 99

Syllogism, 73
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Synthesis, creative, 79
Synthesis, simplifying, 79
System, 84

Tangent functions, 40
Thought processes, 73
Three-force member, 87
Three sides laws, 144
Torus, 155

hollow, 155

quarter, 156
Transistor, 134
Transmissibility, principle of, 101
Trapezoid, 146
Triangle, general, 145
Triangle, right, 145
Trigonometric functions, 36, 165, 169
Trigonometry, 141
Truth by experiment, 74
Two-force member, 87

Types of idealized models, 81

Uniform motion equations, 166
Uniformly distributed load, 114

Van de Graff generator, 122
Varignon’s theorem, 111
Vector quantity, 100
Verification, 93

Volta, 121

Voltage, 122

Voltage drop, 125
Voltmeter, 130

Volume measure, 162

Wattmeter, 132

Weight vectors, 86

Weights and measures, 160
Whole structure, free body of, 86
Work, 110

|
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