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PREFACE.

Tue following pages are addressed to those who may be inclined
to assist in introducing an improved system of practice with the
Sextant, the necessity for which -is' well known to all who have
been in the habit of employing tﬁéingtrﬁment for nice purposes,
whether on land or at sea, and whd are therefore aware that this,
like other instruments, is subject to certain imperfections, as well
in the parts which the operator has the means of adjusting as
in those over which he has no such control. The defect most
commonly met with was treated by the author in a paper since
published in the Memoirs of the Royal Astronomical Society ;
but as further investigation and experience have shown him the
advantage of treating other defects in a similar manner, he has
in the First Part of the work now published discussed the subject
in a more general form ; and although the investigations them-
selves may appear complicated, the resulting formule are so
simple as to render their application, with the aid of the exam-
ples given, sufficiently easy even to those who are not familiar
with the manipulation of algebraical symbols.

The Second Part is devoted exclusively to the applications
of the Sextant, the first Chapter treating in succession several



iv
methods that may be employed on land in the determination of
Latitude, Time, Longitude, Right Ascension, and Declination,
when observations are made under the most advantageous cir-
cumstances, and when consequently minute accuracy in the cal-
culation will be rewarded with corresponding accuracy in the
results. The second Chapter treats of the application of the
Sextant to Nautical Astronomy ; and in this will be found the
several processes which are discussed at length in the first, so
modified as to suit the circumstances under which the observa-
tions are made. The examples are numerous ; and every effort
has been made so to select them as to present the greatest variety
in the data, in order that the operator may not be at a loss to
find something to meet the case he may have to treat in the

course of his own experience.

December 1858.
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THE SEXTANT

AND

ITS APPLICATIONS.

PART I

GENERAL THEORY OF THE SEXTANT.

As the instrument employed by the navigator and the traveller
in the determination of geographical position, the Sextant may
perhaps be considered the most important of the many construc-
tions adapted to the measurement of angles; and if the re-
sults of observations made with it have not fully satisfied the ex-
pectations of those to whose purposes it is peculiarly adapted,
this appears to have arisen from a disposition to substitute larger
and less manageable instruments, rather than to discuss the
causes of such discrepancies as occur in practice with this, and
to devise means, either for their removal by mechanical or optical
improvement of the instrument itself, or for the elimination of
their effects by computation. The Reflecting Circle, simple and
repeating, the Transit and Altazimuth—instruments purchased
at greater cost, and removed from place to place with greater dif-
ficulty and risk—have been extensively employed on scientific
expeditions, when a Sextant properly treated would have answered
every purpose, and perhaps, considering the disadvantages under
which the heavier instruments are used elsewhere than in fixed
observatories, would have given results at least equal in ace ;
and the navigator has frequently been led to distrust the results
of observation of Lunar Distance, and to place undue confidence
in his chronometer, on account of discrepancies in the former,
which he is unable to account for, but which are in most instances
due to determinable error in his instrument, and can be treated
according to fixed and determinable laws. The method of as-
certaining the amounts of these errors, and of correcting the ob-
servations, being known and reduced to rule, the Sextant will
probably occupy its proper place as an astronomical instrument,
the occasions on which less portable instruments are made to
- 7 B
s



2 GENERAL THEORY

supersede it will be fewer, and the navigator will see reason to
place confidence in the results of his lunar observations and will
feel less dependent on his chronometer, of which the not unusual
imperfection is the cause of more uneasiness, difficulty, and
disaster than is commonly supposed.

1. Before we proceed to consider in detail the possible errors
in the parts of a well-constructed Sextant, and their effects upon
the observations made, it will be necessary to obtain a clear idea
of the conditions requisite to perfection ; and although this may
be gathered from the exposition of the principles of the Instru-
ment to be found in most treatises on navigation, it will never-
theless be well to present the subject in this place to the reader,
in the form which will best prepare him to enter upon the inves-
tigations that are to follow.

Suppose two systems of parallel rays, each parallel to the
plane of the.paper, the one in
the direction of A B, the other
in that of a b. Let rays of the
system parallel to ¢ fallupon
a plane-reflecting surface b,
this surface being at right
angles with the plane of the
paper. Let bp in the plane
of the paper be perpendicular
tothisreflectingsurface ; then
the ray ab will, after reflexion,
follow the direction 4 Bin the
plane of the paper, the angle
2 b B being equal to the angle
abp. Let this reflected ray
fall upon a second plane re-
flecting surface B, this surface likewise being at right angles
with the plane of the paper, and B P perpendicular to it. The
second reflexion will be in the direction BE, B E being in the
plane of the paper, and the angle P B E-equal to the angle 6B P ;
and the eye being at E, will receive the ray and refer it to the
direction ABE. Consequently, if at the same time the direct
ray A B fall upon the eye, the objects from which the systems
of rays parallel to ab, AB respectively emanate will appear to
coincide.

Now it will be obvious that if the mirror 4 be made to revolve
upon an axis at right angles to the plane of the paper, the ori-
ginal direction a b of the ray which, after two reflexions, is seen
to coincide with the direct ray, will vary; in other words, the
angle between the original directions of the two rays and that
between the surfaces of the mirrors are dependent one on the
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other. To determine the connexion between them, produce A B,
ab to meet in E, and p b, BP to meet in P. Then—

angle between mirrors = angle between the normals to them
=2 bPB,

and angle between the rays = < BE B;
and ".© £abB=24pbB,and LOBE=22bBP,
o 2abB—LbBE=2(4pbB—2£bBP).
But <abB—<£HBE= ZBEb{becausethe exterior angle of a

triangle is equal to the sum of
and ZpbB—2bBP=<bPB t;ll:il:lgteiilosr:gdop;oaiter:ngles,
. 2BEb=22bPB;

or the angle between the original directions of the rays is the
double of that between the mirrors.

If, therefore, with the revolution of the mirror 4 a radius 4 Q
revolve likewise, its extremity Q indicating upon the arc Qg,
which it traces, the angle moved through, this combination of
parts will supply the means of ascertaining the angle between
the original directions of the rays. For if, in the first instance,
we move the mirror  upon its centre until the direct and reflected
images of the same object coincide, this object being so far distant
that the rays emanating from it may, so far as the operator and
his instrument are concerned, be considered parallel, the angle
between the original direct rays being in this case nothing, that
between the mirrors will be nothing likewise, and the reading
of the indicator Q in this position will be that corresponding to
the mirrors parallel. The difference between this reading and
that obtained in any other position of 4 Q will be the angle be-
tween the mirrors; and the double of this will be that between
the rays from two objects, which in the second position are seen
to coincide.

If the reader will now turn to the instrument itself, he will
have no difficulty in identifying & as the index-glass with its
attached arm 4 Q, B as the horizon-glass, and Q ¢ as the divided
arc, a telescope being fixed in the direction E B to receive the
rays parallel to AB. But with respect to the figures upon the
arc, he will remark that each actual half degree 18 numbered as
a degree in order to save him the operation of doubling the read-
ing to obtain the desired angle, with which the indicator or
vernier thus supplies him at once.

2. On attentively considering the process which has conducted
to the above very simple result, expressing the connexion be-
tween the inclination of the mirrors and that of the direct rays
from the objects whose images are seen to coincide, we shall
perceive that the following conditions are implied :—

B2



4 GENERAL THEORY

(1) That thearc Q g is in one plane, and that the axis of revo-
lution of the index-glass is at right angles to this plane, and
passes through the centre of the arc;

(%) That the surfaces of the index- and horizon-glasses are
plane, and at right angles to the plane Q g, called the plane of
the instrument, and that the interior and exterior surfaces of
each of these glasses are parallel one to the other ;

(8) That the optical axis of the telescope at E is parallel to the
plane of the instrument.

And he will readily understand that, in the event of any de-
viation from these, the law will cease to obtain.

We proceed to treat each of these conditions in order.

3. With respect to the arc Q ¢, that it should be in one plane,
and that the axis of revolution should be at right angles to this
plane, these conditions can be fulfilled only in the excellence of
the workmanship. Very small defects in these particulars will
not produce sensible errors in the results; and the operator may
easily satisfy himself that such defects do not exist to any im-
portant extent. For this purpose he has simply to move the
vernier slowly and uniformly from one extremity to the other of
the arc, the mstrument being held with its face upwards and the
clamp released from contact; and should he effect the motion
by the application of a uniform pressure, there being no sense
of obstruction or evidence of greater friction upon one than an-
other portion of the arc, he may feel convinced that the con-
ditions are sufficiently fulfilled.

4. But we suppose likewise that the axis of revolution passes
through the centre of the arc. This is a condition of the great-
est importance, and one that is scarcely ever fulfilled. Indeed,
a very small deviation produces so great an effect, that it ma
be doubted whether it is in the power of the maker to fulfil it
except by accident ; but as the effect follows a certain law which
renders it easy to obtain both the relative position of the centres
of the arc and axis of revolution, as well as the amount of cor-
rection to be applied to any given reading on account of the
deviation of one from the other, the difficulty is not one about
which he need give himself trouble. To o o A
determine the law, let the points O, O/ in
the annexed figure represent respectively
the centre of the arc A B, and the axis of
revolution of the index-bar and vernier
O'A. Let O'p(=0'A) be any position
whatever of the index, and B the zero di- » B
vision of the arc. Join OB, and with
centre () and radius O' A deseribe the arc P
Abp. Then O'b is the position of the index when the reading




OF THE SEXTANT, 5

is zero, and the reading corresponding to the position O'p of the
index is the double of the angle 5 O P instead of that of 5 0'p,
through which the index has actually moved, which angle we
wish to obtain.

0b and O'p intersecting in ¢, we have from the triangles

Ocp, O'ch,
£b0'p+ £0b0'= £b60p+ £0p0/,
. 2b0'p= £b0p + £0p0'— £0b0'.
But
sin 0p0'= %%, .sin AQp = %(;’—I.sin (AOB +50p) ;
and since O O/ is small compared with O'p,
£0p0'= 00' sin (AOB+50p)

O'p sinl"
and similarly,
20b0'= 00’ sinAOB _ 00’ sin AOB
~ 0% sinl”  Op smnl"’
'

00 . .
.. 2b0'p= £b0p+ W{sm (AOB 4 50p)— smAOB}.
Let O'p= radius of index =a, 00'=b, £AOB=a,
£ 50p = half the uncorrected reading =}w, £250'p= half the
corrected reading = 1(}.

Then
Q=0+ ;'—3:1—1"{sin (x+jw)— sina}
=o+e. {sin(a+ ja)—sina} if e=——20 .

Let a, be the reading corresponding to coincidence of images
of a single object, that is, corresponding to 2=0,
<. 0=wp+e {sin (a4 jwy)—sina};
and subtracting this from the above,
Q=w—wy—e.s8in (a+}wy)+e.sn (a+ o)
=w+e+e.sin (a+jo) if e=—wy—e.sin (a+ o,),
which is the general expression for the true angle () when the
centre of the divided arc is not a point in the axis of revolution.
5. But in the preceding investigation we have supposed the
reading obtained constantly at one point of the index, which,
however, is not the case in practice. Attached to the index-bar
is a short divided segment, called the vernier, by means of which

we subdivide the spaces between the divisions on the arc; and
the reading is obtained from that point of the vernier at which



6 GENERAL THEORY

one of its divisions is seen to coincide with one on the arc. The
position of this point varies therefore with the minutes and
seconds taken from it, and we have now to inquire in what way
the results of our investigation are affected by this circumstance.

According to the principle of the vernier, the space between
each two divisions on the arc being m minutes, that between
each two on the vernier is m minutes less m seconds. Suppose,
then, the zero division on the vernier to coincide with any divi-
sion on the arc, say that representing 50° 10/, the spaces on the
arc representing 10/, and those on the vernier 10/'—10". The
first division from gzero on the vernier, when the centre of this
is coincident with that of the arc, will be in a position 10" short
of 50° 20’ on the arc; and consequently, if the vernier be ad-
vanced 10", this first division will coincide with that representing
50° 20/ on the arc. The coincidence, then, of the first division
of the vernier with the first on the arc beyond 50° 10/ will cor-
resgond to a position of the zero of the vernier representing
50° 10’ 10" on the arc. Similarly, the coincidence of the second
division of the vernier with the second beyond 50° 10/ on the
arc,will give for the position of the zero of the vernier 50° 10/ 20",
and so on. With this explanation of the principle of the vernier,
the manner in"which readings are obtained by its means will be
readily understood.

Now, as before, suppose OBtobe o o
the radius from the centre to the zero | A
of the arc, O'p any position of the
radius to the zero of the vernier, and
2’ the point on the vernier from which
in this position the reading is taken.
The reading will clearly be B

2/B0p'—22p0'p, s

of which the former part only is affected by the deviation of the
centres O, O’ one from the other, commonly called the error of
excentricity, the latter 2 p O'p' being, in fact, taken from the
arc of the vernier which has O' for its centre. Hence the cor-
rection to be applied to the reading will be that due to the angle
B Oy, or to the degrees and minutes on the arc corresponding
to the position of the coincidence of divisions on the arc and
vernier. These degrees and minutes may in general be derived
from the reading in a very simple way,—as it will be evident, on
consideration of the principle above explained, that for every
second taken from the vermer in excess of the degrees and mi-
nutes taken from the are, the position of coincidence will advance
one minute, and for every minute in excess it will advance one
degree. Thus, suppose the reading to be 54° 27/ 17". In this




OF THE SEXTANT. 7

case we take 54° 20/ from the arc, and 7 17" from the vernier.
The coincidence ought therefore to take place at 54° 20/'4-7°17
=61° 87’ on the arc, supposing each division on the arc to re-
present 1/, and on the vernier 1'—1", This is true in general ;
but nevertheless—as it may happen, as a consequence of the
error of excentricity, that there are two coincidences within the
normal extent of the vernier, or that, there being no coincidence
within the normal extent, it occurs beyond it on one side or the
other—it will be necessary in such cases to remark the point of
coincidence from which the reading is derived, although 1n other
cases this precaution is needless. Hence o being the reading,
and (w) the degrees and minutes on the arc at the point of coin-
:vii(}ierll;e from which the reading is derived, the general expression
Q=w+e+e.sin {a+}(0)},

where ¢, e, and « are constants to be determined.

For the purpose of determining the values of these constants,
let three known angles, Q,, Q,, ; be observed, and let w,, w,, wy
be the readings obtained from the limb of the sextant. en,
supposing these to be affected by no errors save those involving
the said constants, we have

Q) =0, +e+e.sinf{at+}(0)}; Qy=w,+e+e.5in {a+5(¢o,)};
Qy=wz+e+e.sin {a + 3 (w5)}.
Subtracting the two last successively from the first,
0, —Qy=0w,—w,+e¢. [sin {a+§ (@)} = sin {a+§ (0,)}]
= 0y — o+ 2e.sin}{ (@) — (@)} .co8 {a+ (@) + ()] b
0, —Qy=0,—vy+2¢.5in 3 {(0,)—(0g) } - cos {2+ [(»,)+(w)] }.
Let ©,—Q—(0,—wg)=¢;, ,—Q5— (0, —wg)=c,
Hl@) = (@)} =81 ${(@)+ (@)} =By }{(®)—(wg)}=1,,
${(@) + (@9 } =70
then :
c,=2e.8in B, .cos (a +/3;), and c;=2e.sinvy, . cos (a +,),
o6 .8iny, . co8 (a+9,)=cy.8in B, . cos (¢ + ;) ;
and dividing by cosa,
¢, .8in ry, (cos ¢y, — tan «.sin ) =c,.8in B, . (cos B; —tana.sinB,),

. a_c,.sinﬁ,.cosB,—c,.sinry,.cos'ye
cg.8in 3, .8in B, —¢, .8invy, . sinry,’

whence we may compute tan a, and take « itself from the Tables.
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The value of « being thus determined, we may compute that
of ¢ from either one of the equations ¢,=2e . sin B3, . cos (a + By),
cg=2e.sin vy, .cos (x+,); and this as well as that of « being
known, we may by substitution in any one of the three original
equations, determme the value of the remaining constant e.

The angles Q,, 0,, O, may be either those between well-
known stars computed for the occasion by formule which will
be found in the course of this work, or two of them may be
double altitudes of similar objects on the meridian of a place
the latitude of which is known; and they should be such that
the readings w,, ®,, @3 may be taken, one from about the middle
of the arc, and the remaining two from near to each extremity
of it. One of these may correspond to actual coincidence of
images of the same object, in which case we shall have Q,=0;
or it may be the vertical diameter of the sun observed with a
dark glass before the eyepiece of the telescope, the true diameter
being taken from the K‘ables, and the difference of refraction at
the npper and lower limb subtracted from it in erder to obtain
the apparent diameter.

Having determined the values of ¢, ¢,and «, we are in a posi-
tion to compute the correction e+e . sin {«+} (w)} to any read-
ing @. But it is to be observed that the second term of this cor-
rection depends only upon e and aand the variable angle (@), the
two former of which are not liable to vary, save with a variation
in the position of the centre of the divided arc with respect to.
the axis of revolution,—a change by no means probable in a well-
constructed instrument, except as the result of a serious accident,
or the operations of the maker in effecting a complete repair.
Hence, having once obtained the values of ¢ and a, we may tabu-
late those of e.sin {« + } (w)} for every five or ten degrees of
(), and from the table so constructed take that value which we
require for the reading on each particular occasion. But the
quantity e depending not only upon e and «, but likewise upon
the relative position of the planes of the index- and horizon-
glasses in a given position of the index upon the arc, is more
liable to change ; and its value should be obtained as a prelimi-
nary to every important series of observations. This, fortunately,
is an operation of no difficulty, since we have simply

€= —wy—e.sin {a+4(w)},
in which @, is the reading corresponding to coincidence of
images of a single object, and e.sin {« +} (w)} the quantity
corresponding to (@) in the table of values of e. sin {«+4 ()}
supposed already constructed. At night, coincidence of the

images of a star is easily obtained ; but during the day, the only
object adapted to the purpose is the sun: and in this case the
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contact of the limbs of the two images is in general a much
better observation than that of complete coincidence.
Let 2r be the apparent vertical diameter of the sun,
w,, o', the readings correspondingtoopposite coincidences
of limbs; '

then 2r=w,+e+e.sin {a+}{w)}
—r=a'\+e+e.sin {a+}(0')};
and by addition, ‘ .
0=0,+0',+2¢+e.5in {2+ } (@)} +e.8in {a+§ (o) };

€= —} (0, + o'|)— half the sum of the quantities in the
table corresponding to (,) and (o',).

6. Before we proceed to apply the results of the above inves-
tigation to a definite example, it will be proper to consider the
remaining conditions relative to the parts of the Sextant, of
which the next in order will be those affecting the index- and
horizon-glasses.

The surfaces of the index- and horizon-glasses are examined
by the maker previously to the operation of silvering those in-
tended to reflect the rays which fall upon them; and the tests
applied are in their nature so searching, that any defect can
scarcely escape an eye practised in their application. After sil
vering, it is more difficult to discover imperfections; but on
bringing the limb of the reflected image of the sun into contact
with that of the direct image of the moon in the middle of the
field of the telescope, the angle between the two being not less
than 90°, should the former image appear single and siarp, and
the contact of limbs remain unbroken when the images are
brought into other positions of the field, these new positions
being with respect to the first in a line parallel to the plane of
the instrument, it may safely be inferred that the defects, if any
exist, are unimportant. Should there be indistinctness or ap-
pearance of double image about the reflected limb of the sun, or
should the contact be broken on changing the position in the
manner described, the glasses are imperfect, and the instrument
should be supplied with others in their place. Taking for granted,
then, that the surfaces of the glasses are plane, and that the in-
terior and exterior surfaces of each are parallel one to the other*,
we have next to place them in a position perpendicular to the
plane of the instrument.

* We shall consider in its dproper place the effect of any deviation from
parallelism of the interior and exterior surfaces.
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Let O A Q be the plane of the instrument, A P Q being the
external edge of the limb sup- x
posed circular and to lie in the
plane OA Q. O CB theplane
of the index-glass in any posi-
tion, OC being the common
intersection of this with the
plane O A Q, and B C the edge
of the glass.

Let the eye at E see coinci-
dent with B the point A of the
edge of the limb. Then, the .
plane of the instrument not being at right angles with the plane
of the index-glass, let A O ¢ be supposed at right angles with it,
and in this plane and with radius O A describe the arc Apgq.
The angle PAp will thus represent the deviation of the plane
of the index-glass from its correct position.

Let the planes O CB, A O ¢ intersect in O ¢, let O ¢ be pro-
duced to p, and take £pOg=£pOA. Join Ag, Bg, the
former cutting Op in G, and let B N be the normal at B to the
plane of the index-glass. .

Then in the triangles AOG, gO G we have AO=0gq, OG
common, and £ZAO0G=¢,0G,

. AG=Gg, and each of the angles A G O, ¢GO is arightangle.

And A ¢ being thus at right angles to Op, the common in-
tersection of the planes A Og, BO ¢, which are at right angles
one to the other, and being situated in one of them, is itself at
right angles to the other plane B ¢ O, and therefore to the line
G B which lies in it.

And in the triangles AGB, ¢ GB we have AG=¢G, GB
common, and each of the angles A GB, ¢ G B a right angle;
<. £ZBAg=<¢BgA. But Ag and BN being each at right
angles to the plane OcB, are parallel one to the other, and there-
fore £N B¢ = alternate £ZBgA and ZEBN = interior and
opposite £BAg;

. ZEBN= 2N By, a result which shows that the point ¢
will be seen reflected at B, and coincident with A seen there
direct. Any point Q, therefore, in the edge of the limb will be
seen reflected above or below B, except when the angle QA ¢
vanishes; that is, when the planes A O Q, A O ¢ are coincident,
or when the plane of the index-glass and that of the instrument
are at right angles one to the other.

This, therefore, furnishes us at once with a test of the relative
positions of these two planes; for we have only to place the
index about the middle of the arc, and the eye in a position
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E behind the centre, looking directly at a point A of the limb
where the edge of the index-glass cuts it. If the plane of the
index-glass is at right angles to that of the instrument, we shall
see reflected at the same point B, the point Q of the limb ; but
any deviation of the former from this position will cause the
reflected limb, where it is cut off by the edge of the index-glass,
to appear above or below B. This of course supposes that the
limb A Q is circular, and in one plane; consequently, by apply-
ing the test in different positions of the index along the arc, we
have an additional criterion whereby to judge respecting the
figure of the latter. The operation of correcting the position of
the index-glass is performed by rubbing away the surfaces of the
pins behind it until the condition is fulfilled ; and if, on satis-
fying it for one position of the index, it appears satisfied for
others likewise, we may be sure that the limb is sensibly in one
plane, and that the index-glass and the centre upon which it
moves are nearly perpendicular to this plane. The effect of any
small deviation of the index-glass from its correct position we
shall investigate in the proper place; but it will be convenient
to inquire, in this, what amount of accuracy we may expect after
satisfying the above condition to the best of our ability.

In the annexed figure, 0AQ
(as before) represents the plane
of the instrument, A Q the ex-
ternal edge of the limb, Oc¢B
the plane of the index-glass,
and 8 Agq a plane perpendicular ¥
to it. E is the position of the
eye looking towards A, asbefore.

Draw E F e at right angles to
the plane Oc¢ B extended, meet-
ing this plane in F, and take
Fe=FE. Through ¢and Be
let a plane be supposed to pass
and to cut the edge of the hmb
in Q. Join eQ, cutting ¢ B, produced, if necessary, in 5. Join
Fb and Eb.

Then in triangles EF b, e F b we have EF=F ¢, F b common,
and tZEFb=rtZeF),

. Eb=beand LZEbF=_LebPF.

The ray Q& will therefore be reflected in the direction 4 E,
and the point Q of the edge of the limb will be seen at the edge
of the index-glass at b.

‘We have now to find the angle BE b subtended by the distance
between the two broken parts of the limb.
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Join eB, FB. Then in triangles EBF, ¢eBF we have, as
before, EB=¢B and £ZEBF= Ze¢BF, and consequently any
point in e B produced will be seen reflected at B. But we have
already shown that the point seen reflected at B is a point ¢
in the arc A ¢ described with radius O A, and determined by
£p0g=£4pOA. HenceeBgq is a straight line.

Now in triangles EB&, eBb we have EB=¢B, Eb=e¢b, and B3

common,
. LBEb=¢Beb= £Qeq.

But
__ Qg _ Qg 0OA.QAg"sinl".sinAQ
“ Qeq_eq .sm 1" nearly = g7 i 1" = EA.sin 1"
_QAg".sin AQ -
nearly =——p5— nearly,

1+ 0
an expression which, when the angle Q A ¢ is small, and the eye
is placed not very far above the plane of the instrument, may be
treated as the measure of the angle BEb.

Now our object in practice 18 to make a given error in the
position of the plane of the index-g}ass produce the greatest
effect in the phenomenon through which that error becomes ma-
nifest to us; that is, for a given value of Q A ¢ the angle BE b
ought to be as great as possible; and this condition will evi-
dently be fulfilled by making A Q=90°% and E O as small as we
can. But A Q being nearly the double of Ap, may, for our
present purpose, be considered as equal to the angle read from the
arc in the position O ¢ B of the in(!ex; and A and Q being taken
as the opposite extremities of the hml}, thg arc AQ cannot in the
Sextant be much greater than 60°, this being its magnitude when
the point A, seen directly, is situated behind the zero, and Q,
the point seen by reflexion, behind the division numbered 120°,
Hence it is clear that, in correcting the position of the plane of
the index-glass, the eye should be placed as near to the centre
as the parts of the instrument will allow, an.d that, the point seen
directly being that opposite to the zero division of the are, the
zero of the vernier should be placed at 60°, or thereabouts. Let
AQ=60° EO= 3 inches, OA = 8 inches, QAg=1/, then
60" x sin 60° '
BEb= 1+
or an error of orie minute in the position of the plane of the
index-glass will in this case produce a break between the direct
and reflected images of the limb, the space between the broken

parts subtending at the eye an angle of 38". '
What may be the smallest angle sensible to the eye in an

=38";
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operation of this kind it would be difficult to determine ; but in
one of a similar character, namely, obtaining index error by re-
ference to the sea horizon without the aid of a telescope, an
observer will probably never commit an error exceeding one
minute, The line of the edge of the limb, however, is by no
means so distinct as that of the horizon at sea in clear weather,
and we must moreover allow for some deviation in it from a
perfectly plane figure. Suppose 21 minutes to be the limit of
possible error in the observation ; then

EO

QAg= {1+ oxS B q1xes
= sin AQ 8 x sin 60°
An error of 2} minutes, therefore, in the observation of coinci-
dence of the points of the limb seen directly and by reflexion,
would in this case introduce one of 4 in the position of the plane
of the index-glass; and this may perhaps be considered the ex-
treme possible limit in a well-constructed instrument. We shall

have occasion to refer to this result in the sequel.

7. The plane of the horizon-glass, like that of the index-glass,
should be at right angles to the plane of the instrument ; but
we have no means of testing the position of this independently.
The general principle of reflexion, however, leads us at once to a
method of examining the position of the planes of the glasses
relatively to one another ; and as the frame in which the horizon-
glass is mounted is provided with an apparatus which enables
us to alter the inclination of its plane with respect to that of the
instrument, we may thus place it parallel to that of the index-
glass in a certain position of the latter, in which case, supposing
the axis upon which the index-glass revolves to be perpen-
dicular to the plane of the instrument, the inclination of the
planes of the glasses with respect to this plane will be constantly
equal ; and that of the index-glass being at right angles to it,
the plane of the horizon-glass will be so Likewise.

Let H E be parallel to the direct ray from
a distant object received by the eye along
the optical axis of the telescope, H N per-
pendicular to the plane of the horizon-glass.
In the plane E H N make theangle NHI=
4NHE. Then,when the direct and reflected
images of an object coincide, IH will be
parallel to the ray from the index-glass upon
the horizon-glass which is reflected from the
latter along HE. But the ray which falls
upon the index-glass will be E'I parallel to
HE. If therefore we bisect the angle E'IH

=4/ nearly.

N~/ B
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by the straight line I N/, I N’ will be perpendicular to the plane
of the index-glass.
Since H I meets the parallels HE, IE/, ... 2ZEHI= 2F'IH;

and  «NHI=4<EHI,and ¢N'IH=12FIH;
- cNHI=<«N'I1H;

and .. HN and I N’ are parallel, and consequently the planes of
the horizon- and index-glasses, to which these lines respectively
are normals, are parallel likewise.

It thus appears that if the direct and reflected images of a
distant object, the sun or a star for example, can be made to coin-
cide, the planes of the index- and horizon-glasses, in the position
in which the coincidence occurs, are parallel to one another.
This is a test which can be immediately applied ; and should it
appear on trial that, on moving the index, the images approach
and recede without coinciding, we have to do no more than to
move the proper screw attached to the frame of the horizon-
glass until complete coincidence is effected. The planes of the
glasses will then be parallel; and since that of the index-glass is
supposed not to change its inclination to the plane of the instru-
ment in the course of revolution, this inclination will be con-
stantly the same for both glasses.

8. The last of the conditions to be considered is that affecting
the optical axis, which we. have supposed to be parallel to the
plane of the instrument ; and the most convenient way of treat-
ing this will be to ascertain the effect of a small deviation from
the correct position.

- Let O be the centreupon =
which the index revolves, as
well as that of the divided
arc; and suppose it likewise
the centre of a sphere inter- E
sected in M HMIM" by the plane of the instrument. Let
O E, meeting the surface of the sphere in E, be parallel to the
line of sight in which coincidences are observed, and consequently
to the direction of the rays received from one object without re-
flexion, and of those from a second object, which, after success-
ive reflexions from the index- and horizon-glasses, appear to
- coincide with the rays from the first. Then if EM be the arc
of a great circle formed by & plane perpendicular to that of the
instrument, EM will measure the inclination of the line of sight
or optical axis.

Let E M =1, this quantity being supposed small.

O H is perpendicular to tﬂe plane of the horizon-glass, and
I0 to that of the index-glass; so that, w, being the reading
which corresponds to coincidence of the direct and reflected

po g
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images of the same object, and w to the position of the normals
assumed in the figure, we shall have £ HOI=3}(w—w,). The
angle M O H depends upon the construction of the instrument,
and may be measured and treated as known. Let £ MOH=28.

The rays from the horizon-glass following the direction O E,
_ those falling upon it from the index-glass will be parallel to E'O
if, in the plane E O H, wemake ZHOE'=2HOE; and those
from the index-glass following the direction E'O, those which
fall from the second object upon this glass will be parallel to OE"
if, in the plane F’O I, we make ZIOE'=¢ZIOE'; and OE
being the direction of the rays from the first object, and O E"
that.of those from the second, the true angle between them will
be measured by the arc E E.

Let EE"=(), and describe E'M/, E"M" ares of great circles
making right angles with the are M/IM".

Then from the spherical triangles EHM, E'HM’' we have
- sin EM=sin EH . sin EHM = sin E'H . sin EHM'= sin E'M/,

. EM=E'M'"
Similarly, from the triangles IE'M', IE"M",
E'M'=E'M'= .. EM=1.
Also '

cos EE'=sin EM . sin E"M" + cos EM . cos E"M" . cos MM" *,
And
MM"=IM +IM"=1IM 4 IM'=2IM + 2MH =2I0H =0 —w, ;

.. cos 2=sin® 7+ cos®7 . cos (0 — )
= cos (@ —ay) + sin® n{1—cos (0 —wy)} -
= cos (w—wo) +2n°. 8in® 1" . sin? } (0 — o) ;
s Q=w—wy—9?.5in1".tan (0 —o,) ;

. or, @, being small, as it usually is, a deviation # of the optical
axis from its correct position will increase the readings by a
quantity #?.sin1".tan {®, o being the degrees and minutes
read.

It thus appears that to a coincidence observed in a line of
sight parallel to the plane of the instrument, corresponds a read-
ing smaller than that which an observation in 2 line of sight in
any other position will give; from which it follows, that if we
so place the telescope that the least reading shall be obtained in
the middle of the field or at any point in the line parallel to the
plane of the instrument which divides the field into two equal
parts, the optical axis itself will be parallel to the plane of the

* This relation will be at once manifest if we produce the ares M E, M"E"
to meet in the pole of M M". .
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instrument. In this case, the images having been made to co-
incide in the middle of the field, they will appear to overlap when
brought into a position on either side of it, the apparent over-
lap increasing as the square of their distance from the middle
line, and, at a given distance from the middle line, varying as
the tangent of half the angle between the objects observed. And
the optical axis not being parallel to the plane of the instrument,
it is evident that the phenomena will be the same with respect
to a line not passing through the middle of the field, the images
overlapping equally at equal distances upon either side of it: or
the telescope may even be so much out of position, that a coin-
cidence being made at one side of the field, the images will con-
- tinually overlap in their passage towards the other side.

‘We may express these phenomena in a different manner, and
one better adapted to the treatment of the case in practice. Sup-
pose the telescope out of posi- a
tion; and in the annexed dia- T
gram let acdb represent the
field of view, c¢d being the line
parallel to the plane of the in-
strument on which the least
reading is obtained, and abd, ¢
parallel to it, that which divides
the field into two equal parts.
Then the direct and reflected
images of two objects being
made to coincide upon the line —d
a b, they will appear to overlap
when brought into another positien in the direction e away from
the line ¢ d, and to open when moved in the opposite direction
towards c d, continuing to open until brought upon ¢ d, beyond
which they will again close, and, should the field be large enough,
will at last overlap. Hence, should we, after making the coin-
cidence on the line a b, observe an overlapping towards e and an
opening towards f; it will be evident that the line of sight parallel
to the plane of the instrument intersects the field (or the field
extended) on the side of 2 towards f'; and as we wish to make
this line identieal with a b, we must move the telescope with
respect to the plane of the instrument, turning it upon an axis
parallel to ab; and, the inverting eyepiece being employed, it is
clear that the end e must approach us, and f recede from us.
The reader has ouly to refer to the instrument to pereeive that
this adjustment is effected by means of two screws holding the
collar into which the telescope fits; and bearing in mind that
the effect of an error varies at a given distance from the true
line as the tangent of half the angle between the objects observed,

70
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he will see that the above-explained process, reduced to rule, may
be briefly expressed in the following terms :— .
Make the direct image of one object, and the reflected image
of another, coincide in the middle of the field, the ang!e be-
tween the objects being as large as possible. Then if, on
being brought away from the middle of the field, the images
appear on one side to open and on the other to close, release
the screw on the side towards which they close, and tighten
that towards which they open, repeating this process until
they appear to close immediately on passing from the middle
towards either side of the field. .
For the purpose of removing any difficulty the operator might
experience in determining the middle of the field, the eyepiece
of the telescope is furnished with two parallel wires, sufficiently
close to enable him to estimate the position of the middle between
them, and still sufficiently distant to prevent their interfering
with the observation of objects. When the Sextant is prepared
for work, these wires are placed parallel to the plane of the in-
strument, an operation which the observer must perform for him-
self if the proper position of the eyepiece has not been previously
marked by the maker. To perform it, nothing more is requisite
than to place the index just so far from the zero position (in
which the index- and horizon-glasses are parallel), that, the direct
image of one object being brought near to the top of the field,
the reflected image of the other may appear at the bottom, or
vice versd. Then, one image being brought to the edge of one
of the wires, the other image must likewise appear on the same
edge of the same wire, and, not being there, the eyepiece must
be turned by the hand until this condition is fulfilled. The po-
sition once obtained, the eyepiece and its cell should be marked
accordingly, in order that the observer may be spared the trouble
of repeating the operation on future occasions. This done, and
the telescope adjusted, it is evident that all observations should
be made in the middle of the field, as nearly as we can estimate it.
The two parallel wires answer likewise another purpose; but
to apply them to this it is first necessary to obtain the apparent
angle between them. To obtain this angle, turn the eyepiece
in its cell until the wires are as nearly perpendicular to the plane
of the instrument as we can estimate. Let wy be the reading
which corresponds to coincidence of the direct and reflected images
of an object, and w, that to the position which places the direct
image on the outside of one wire, and the reflected image on the
outside of the other. Then w,—w, will be the angle between
the external edges of the two wires. This angle known, we may
apply it in the determination of the amount of error in the posi-
tion of the optical axis, so that, in the event of the adjustment
c
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not being quite perfect, we may, without troubling the screws,
apply the necessary corrections to angles observed in the middle
of the field.

The wires being restored to their correct position parallel to
the plane of the instrument,
let 2f be the distance between
their two external edges A B,
CD; 7 the distance of the line
¢ d of least reading from the
middle of the field. Then
ETF being at right angles to
A B, CD and cd, weshall have
=21, fg=n+f, fg=n—Ff
Let , @' be the readings ob-
tained for coincidence of images
of two objects on A B, C D re-
spectively. Then,  being the
true angle,

Q=w—w,— (n+f)?.sin1". tan } w=0'—wy—(n—f)%.sin 1", tan { o'.
And since o' will differ from @ by a small quantity only, or
tan } w=tan } o' nearly,
~.0—(n+f)2.sin1".tan } 0=0'—(n—f)*.sin1".tan } w nearly,
or wo—o'=47f.sin1" tan } o,

_ o—o
1=ifsnl" tan}o
from which 7 is known; and we may thence readily compute
the correction due to any reading « obtained for coincidence
made in the middle of the field, or we may take it from the fol-
lowing Table of values of 7%.sin 1".tan ; @ computed for various
values of 7 up to 1°and from 0 to 125° of w*.

* The magnitude of the corrections exhibited in this Table shows the
importance of making observations in the middle of the field, a point to
which some observers do not attend so carefully as they should. A devia-
tion of 20', supposing =0, will, at an angle of 100°, produce an error of
8”; and if n=>5', one of 12" or 4" according to the side upon which the
deviation occurs : and it may be here remarked, that the difficulty of keep-
ing the objects in the middle of the field during a time sufficient to enable
the operator to effect coincidence on contact is the principle cause of the
inferiority of observations made at sea.



OF THE SEXTANT. 19

Values of .

s’ | 1’| 15 25’ 3°’| 35’\40' 45’| 50'| 55" | 60’

o ” “” 4 " " "
10| 00| 02| 0'3| 06| 10| 14
20| o'1| 03| 07| 12| 19| 2°8
30| o'1| o5l 1'1| 19| 29| 42 75| 9°5|11°7| 14°1| 16'8| 30
40| 02| 06| 14| 2°5| 40| 57 102 |12°9 |15°9 | 19°2 | 22°9| 40
50| 02| o8 18| 3°3( 51| 7°3 [10°0 {130 [16°5 |20°3 | 24°6| 29°3 | 50
60| 0'3| 10| 23| 40| 6°3| 9"t |12°3 |16°1 [20°4 [25°2 | 30°5| 36°3| 60
65| 03| 1'x| 2°5| 4°4| 6°9 |10°0 |13°6 [17°8 [22°5 [27°8 | 33°6| 4070 65
70| 03| 12| 2°7| 48| 7°6 {11°0 |15°0 |19°6 |24°7 [30°6 | 37°0| 4470 | 70
75| 03] 13| 3°0| 54| 8'4(12°1|16°4 |21°4 |27°1 |33°5 | 40°5| 482 | 75
80| 04| r's| 33| 5'9| 9'2|13'2(17°9 23'4 [29'7 |36'6 | 44'3| 52'7| 80
85| 04| 1°6| 3°6| 64 |10°0|14°4 1196 |25°6 |32°4 |40°0 | 48°4| 57°6 | 835
go| 04| 17| 39| 7°0|10°9|15'7 |21°4 {27°9 |35°3 |43°6 | 52'8| 62'8 | go
95| 0'5| 1'9| 4'3| 7°6 |11°9 [17°1123°3|30°5 (386 |47°6 | 57°6| 68°6 | 95

" ” " " " o
24| 31| 38| 46| 55| 10
49| 62| 77| 93| 11’1 20

S Hy
003 00\O

Ioco| o'5| 2°1

83130 118'7 125°5133"3 l42°1 |[52'0 | 62°9| 74°9 [Too
Tog| 06| 2°3

43

47

51| 9'1(14°2 |20°5 |27°9 |36°4 |46°1 |56°9 | 68-8 | 81°9 | To5
110| 0°6 | 2°5| §°6 |10°0 |15°6 |22°4 |30°5(39°9 [50°5 [62°3 | 75°4| 89'7 | 110
115| 07| 27| 62 . 8

68

7’5

7
11°0|17°1 [24'7 {33°6 |43°8 |55°5 |68°5 | 82°9| 986|115
120| 08| 30 12°1 |18°9 27°2 [37°0 48°4 [61°2 |75°6 | 91°4 |108'8 | 120
13'4 21°0|30°2 |41 536 (67°9 |83°8 |101°4 |120°7 | 12§

125 | 08| 34

It will be evident that the greater the values of w and f, the
more accurately we shall obtain that of #. But f, being half the
distance between the wires, must not be so great, that is, the wires
must not be so wide apart as to render it difficult to estimate the
position of the middle between them, whilst, if they are very close,
the resulting value of / will be so small as to be of little service
in the determination of %#. The eyepiece ought therefore to be
furnished with a set of four parallel wires,—two strong wires at
a distance from one another, small enough to enable us to
estimate the position of the middle between them, and two finer
wires upon either side of these and at equal distances from them.
The latter may then be exclusively employed in observations
made for the purpose of determining the position of the optical
axis, as f may thus be made as great as we please within the
limits of the field¥, without interference with the strong wires,
which may be placed in their usual position and be applied
solely to their usual object.

9. We now pass to a more general treatment of the question ;
and supposing the simultaneous existence of errors in the posi-
tions of the optical axis and the planes of the index- and horizon-

* The second term of the expansion of Q is
}.tan 3 0. (§+tan® i w). n*sin®1”;
and as this does not become sensible in magnitude for any value of 7 less
than 2°, even for the maximum value 125° of w, we may safely have the
parallel wires for this purpose 4° apart.

c?
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glasses, we will investigate an expression for the true angle {3
in terms of the angle w read from the limb after coincidence of
images in the middle of the field, and the errors in the positions
of these fundamental parts.

Let O be the centre °
upon which the index ¥
revolvesaswell as that ™
of the divided arc, and
suppose it likewise
the centre of a sphere o
intersected in M"", M, M
M by the plane of the instrument. O E is parallel to the op-
tical axis; and the arc E M, at right angles to M"" M Mi¥, mea-
sures the error of its position. Let E M=1.

O H is parallel to the normal to the plane of the horizon-glass,
and O I to that of the index-glass; and the arcs H M!, I M", at
right angles to M""M MY, measure the errors of position of these
planes. Let HM'=§, IM"=..

In the plane EOH make £ HOE'= £¢HOE. Then E' O will
be parallel to the rays which fall from the index- upon the
horizon-glass ; and if in the plane E' O I we make <1 O E'=
<I O E/, O E" will be the direction of the rays from the second
object as they fall upon the index-glass. The true angle O will
therefore be measured by the arc E E".

Let <M OM/, which depends upon construction and is known,

Then
cos EH=sin EM . sin HM'+cos EM . cos HM'. cos MM’

=n.sin®1"+ (1—4 9. sin? 1") (1 — 4 £2.5in® 17).cos B
=cosf —%((n’ +£%).cos B— 2775) .8in?1"=alsocosE'H,

. EH=FH=8+ ((1;’+£’) . cos 3—21;5) .8in 12 sin B.
And

gin EM =sin HM' . cos EH + cos HM' . sin EH . cos EHM/,
or, retaining quantities of the first order only,

n.8in 1"=E. cos B.sin 1" +sin B . cos EHM,
.. cos EHM'= (n—£.cos B) .sin 1" +sin B and
E'HM'=90°— (n—§. cos B)+sin B.
Again,

“cos E'M'=cos HM’ . cos E'H + sin HM'. sin E'H . cos EHM'
=(1—} & .s5in%1"). (cos B—}. ((n’-l-?) .cos B
—2n§).sin® 1) + £. (n—&. cos B) sin® 1"
=cos ﬁ——{,((n’+4f’) . €08 ,3—4075) .sin® 1",
. EM'=8+1. ((n*+4$’) . coB 8—4475) .sin 1”+sgin B.

N
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Also
sin EEM" =cosE'H . sin HM'—sin E'H . cos HM' . cos EHM/,
E'M' being at right angles to M"'M,
=£.cosB.sin1"—(n—§.cosB) .sin 1"
=(RE. cos B—n).sin 1",
~EM"=2E. cos B—1.
- From AE'M'M" we likewise have
cosM'M" =cosE'M' +cos E'M"
= (cos B—13. ((n’+4£’) . cos B-—4q£).sin’l")
X (l + 1(2€.cosB—n)2. sin? l")
=cos B+2. (n—§. cos B) . sin® B .sin? 1",

- MM"=RB—2E. (n—§. cosPB) .sin B.sin 1". °

Let E"MI" be at right angles to the arc M"MM®. Then, as
we had

E' M"=2HM'. cos MM'—EM, we shall have
EMiv=2IM" . cos M"M" —E/M"™.

Let w, be the reading on the limb when OI is in the plane
HOM'; o that for the position assumed in the figure. Then
M'M"=}(w—w,) and

M'M"=1(w0—w,) +B—2E. (n—E.cos B) .sin B.sin 1".

Make ; (0—w,) +8=0,

. E"MiV=2;.cos 0—2 £. cos B+1.

Also, as we had
M'M"=MM'—2HM'. (EM —HM'. cos MM').sin MM'. sin 1",
we shall have

M”Mi' —_— M"M'" —_— 2] M”. (E’Ml"__ IM” .cos MI’M"I) . sin M"M"Isin 1"
=60—2E.(m—E.cosB).sinB.sin 1"—24(E. cos B—n
—¢.cos0).sn 0 .sin1"
=0+2sinl". (£.sinB.cos B+¢*.8in0.cos 0—n &
.sin B+ mn¢. sin 6 —2:E cos 8. 8in 6).
And :
MM"= é‘ (“""“’o) -8B,
< MM'=w—w,+2sin1". (£2.sin 8. cos 8+¢2.8in 6. cos §
—nE. sin B+ne.sin 0 —2E . cos B. sin 6).

Now

cos) =cos EE/ =3in EM. sin E"Miv¥ + cos EM.cos E"Miv, cos M Miv
=EM.E"M¥".sin*1" + (1 —3(EM? + E"M*?) 5in°1").cos MMiv
=cosMM!"—} .sin1"((EM?+ E"Mi%). cos MM"— 2 EM.E"M¥)

. Q=MM"+} . sin 1", ((EM?+ E'M"?). cos MMi*—2 EM. E"Miv)
-+sin MM¥,
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w—wy+2sin 1"(£*.sin 8. cos B+ ¢*.8in 0. cos 8—nf
.8inB+mn¢.sin —2 . cos B.sin )

— . (R7® + 4£2.cos?B + 442.co8%0 — AmE
orfl= sin 1" .cos B+4n.cos 0—8iEcos B
2 sin (0 —wy) .cos 0) . cos (w—awp)—29.(2 ¢
.cos 0—2E&.cos B+1)
Collecting the terms, the coefficient of %%. sin 1" is
cos(w—a,) 1 _
sin(w—w,) sin(@—w,)
The coefficient of £2. sin 1" is
. 2cos® . cos (w—w) __2 . cos B.cos (w—w,—f)
2un B oo S T ey sm(e—ag
The coefficient of ¢2. sin 1" is

—tan } (0 —w,).

. 2.c08% 0. cos (w—w,) _2 cosf. cos(w—wy,—6)
28in6.cos 0+ o (w—w:; 0 = sin (@—wy) 0
=2 cos (* (00— 00p) +,3) . cos (}! (w0—wy) —ﬁ)
sin (0 — wy)

The coefficient of 7 . sin 1" is
—28in ’3_2cosB . cos (m—wo)+ 2cosB _ 2sin(} (0—w,) '—B)‘

8in (0 — w,) sin (W—wg)~  cos § (w—wy)
The coefficient of 7¢ . sin 1" is
. Rcosf.cos (w—wy)  2cos6 _  2sinf
+2sin 0+ sin (0—w) sin (0—w,) o8} (0—wp)

The coefficient of £ . sin 1”is
—4cos 8. sin 9—4' cos B . cos 8. cos (0—w,)

8in (0 —w,) .
_—%.cos. cos (} (w—wy) -8)
- sin (0 —w,) ’

Hence, generally,
r 2£25in1". cos B.cos(w — wy—B)
sin (w—w,)
+ 2¢%.sin1".cos (3 (@ —'wo) +8) .cos (}(w—w;) —8)
~ sin (0 —w,)
+2 nf.sinl”.sin(% (0—ey) — B) +2 m.slin 1".5in B
cos i (w_.wo) COos & ((D-—(d()
_4&.sin1".cos B.cos (} (w—awp)—B)
8in (0 — w,) )

w—w,—n%sinl".tan} (0 —w,) +
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10. From this general expression for the true angle { we may
derive several important inferences.

1°. From the investigation in section 7, it follows that, when
the direct and reflected images of an object coincide, the planes
of the index- and horizon-glasses are parallel; and, treating the
question in a similar manner, it would be easy to show that, when
these planes are equally inclined to that of the instrument, the
plane of the index-glass may be made to assume a position in
which the direct and reflected images will coincide. These re-
sults may, however, be obtained from the general expression for
Q, from which, if we make Q=0, we shall have

2 cos?
O=w—w,—}.7% (0—w,) . sin® 1"+W
—27. (§—0).sing.sin 1", °
or 2 (w—wy)2—n%. (w—ap)?. sin® 1"+ 4 (E—¢)2. cos? B—4 9
: . (E—1).(w—w,) . sin B. sin 1"=0,
= (w—wp)2. (2 —n*.sin? 1"(1 4 tan? 8) ) + (2 (E—1).cos B—n
. (w—w,) . tan B. sin 1")2=0.
And since the quantity 2—»2.sin?1" (1 + tan® 8), 8 not being 90°,
must be positive, this equation cannot be satisfied except by
o—w,=0 and 2 (§—:¢).cos B—7 . (w—w,) tan B . sin 1"=0,
the latter requiring that £—¢=0 likewise, and .*. ®=w, and £=..

Hence it follows that, in order that the direct and reflected
images of the same object may be made to coincide in some one
position of the index, the planes of the index- and horizon-glasses
must be equally inclined to the plane of the instrument; and
conversely, when the direct and reflected images do coincide, we
may conclude that the planes of the index- and horizon-glasses
are parallel, and conse%:lently, assuming the axis of revolution of
the index to be perpendicular to the plane of the instrument, that
the errors £ and ¢ are equal in every position.

Now the first step in preparing for a series of observations, is,
by adjustment of the horizon-glass, to make the direct and re-
flected images of an object coincide; and we thus have £ and ¢ in-
variably equal in practice, except in so far as this adjustment
may be disturbed in the course of our work. But making
£=., and supposing w, small, as it usually is, the general equa-
tion becomes

. n
w—awy—n*.sinl", tan } w+g—:i'—:-:—:i(cosﬁ.cos(w—ﬂ)

Q= +cos (} w+B).cos(} w—B8)—2 cos 8. cos(}—8))

+ 2_’75;__;}:1"(sm (3 @—B) +sin B) ;
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and this, by substitution of trigonometrical equivalents, may be
reduced to :

ﬂ:—-m—wo— (,’_f . CO8 (* (D—'B)

cos} w

which may therefore be assumed as the formula applicable in
practice, w, being the reading corresponding to coincidence of
the direct and reflected images of the same object.

2°. In section 8 we supposed the only error to be that affect-
ing the position of the optical axis ; and we have there shown that,
on this hypothesis, the line of sight upon which we should obtain
the minimum reading for coincidence of the direct image of one ob-
ject with the reflected image of a second would be that parallel to
the plane of the instrument. We have now to inquire how this
result is affected by the existence of an error £ in the position of
the planes of the index- and horizon-glasses.

The above equation transposed becomes

w=ﬂ+w°+(ﬂ_£'_w§.&__uh—ﬁ)

Then Q being a given angle between two objects, and the
images being made to coincide in various positions in the field in
the manner explained in Section 8, the minimum reading will evi-

" . E.cos(}w—R8)
dently correspond to the position forwhich 7 —sTe =0,

the readings increasing upon either side of this position according
to the same law as, on the hypothesis assumed in that section, they
increased upon either side of the position corresponding to 7=0.
Hence in this case the phenomena will be with respect to a po-
£.cos (} w—p)
, cos } w

they were in the former with respect to a line parallel to the
plane of the instrument ; but since # is now a function of w, this
position will vary with the angle between the objects observed.
Let us in effect suppose the telescope adjusted so that for some
angle o not less than 90°, the optical axis shall coincide pretty

sition determined by 7= precisely the same as

nearly with the position determined by n___f._ccl(i_m_:@_); that .

cos} w
is, let the position of minimum reading for this angle be brought
pretty nearly into the middle of the field, in order that the quan-
tities to be treated may not be large. Then £ being the true
angle (greater than 100°) between two objects, and w,, o', the
readings obtained for coincidence of images on the outside of each
parallel wire, we shall have

2 .
)" tan}o.sinl" +2¢ . tan}o. sin1".

®
) tan }w.sin 1"—2 £, tan } w . sin 17,
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Q,:wl—wo—(n—g'——w +f)g. tan } @,.sin 1"—2 £

cos } o,
.tan } ,.sin 1"
.Co8 I— 2 .
O,=w/—w,— n—%f;%—f) tandw, .sin1"—2£°

.tan } &/, . sin 1"

E'(:(::)?——Tma"l_—m —f)e. taniow, .sinl1"—2£2

. tan } w, . sin 1" nearly.
And subtracting,

O0=w,—o/—4f. (q—g:'—cz%a;l—@) .tan } w, .8in 1",

=0, —w,— ("7“‘

Observing in the same way two other objects subtending an
angle {),, about 60° suppose, we obtain

0=ml—m’,—4f.(n—§w)) .tan } w, . sin 1",

cos } w,
The former of these two equations gives us

_E.cos(}o,—8)_ 0, —a',
cos } w, 4f.tan } @, .8in 1"

whilst from the second we have

_E.cos(3 m,—ﬁ)= w,—a'y
cos § w, 4f .tan } wg.sin 1%

and the combination of the two will furnish us with values of 5
and . So far as regards £, however, the determination will not
be very exact ; for we shall find on computation that the extreme
1oy—
values of c_osc:_clow_ﬁ_) throughout the arc of the Sextant differ
3
very little one from the other, and consequently, the coefficients
cos (} w,—B) cos (} wg—B)
coslew, ’ coslw,

on subtraction,

being nearly equal, we shall obtain

£ x a very small quantity =

.

s

1 N w,—w'l)
4f.sin1" \tanlw, tan}e,

whence it is evident that a small error in any one of the quan-
tities w,, w,/, w,, 'y Will produce a sensible effect on the result-
ing value of this element. But the same cause may be viewed
in another light ; and we shall in fact find that we may, without
appreciable error, omit all consideration of the terms in the
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general equation which depend upon £ separately. To show this,
’ cos (} 0— )
1. =A.
08 3@

The angle B depends, as before stated, upon the construction
of the instrument, and may, for our present purpose, be consi-
sidered, in any particular sextant, as invariable. Its general value
seems to be about 20°, but the operator should of course mea-
sure it for himself in the instrument he is about to use. In the
sextant from which our examples will be derived its value is 20°
nearly ; and this has therefore been assumed in the computation
of the following Table :—

we must in the first place compute the values of

w. A. w. A.

° +0°9397 70 + 10475
10 0'9546 80 10642
20 0°9696 90 10813
30 09847 100 10992
40 1°0000 110 1’1177
50 10155 120 1’1372
60 +1°0313 125 +11473

Now, taking all defects into consideration, we have shown in
section 6 that £ cannot, in a well-constructed instrument, be sup-
posed to exceed 4/; and since the extreme values of A differ
only by 0-2076, the difference between the extreme values of

1
Q%%g‘,mm——ﬁ), and therefore the greatest difference between
any twoz ositions of minimum reading, supposing £ to be as
great as 4/, will be only 50". Let us suppose £ as great as 4/,
and the optical axis adgusted to coincide pretty nearly with the
cos (3 . 120°—20°) 0 —4/ 33"
cosi.120° T )
Then, should the adjustment have feen performed imperfectly,
s that n—4/ x % (.120°—20°)
K cos 1. 120°
is left equal to a quantity 7/, the following will be the values of
n—4 x w for different values’of w :—
coslw
For w= 0 it Wi].l be "/+4’ X (AHO—AQ) =7]’+47”
W= 200 ”» ’l/+4! X (Allg@—Am) =ﬂ’+40
o= 40 » MY x (Ae—Ay) =7'+383
w= 60 » 1)'+4.‘,x (A]go—Aso) ="/+25
w= 80 » ﬂl+4, X (A[zo—Aeo) =1‘/+ 18
=100 ,, 7 +4'x(Aige—Aj0)=7'+ 9
0=120 s M+ x(Aigo—A)=7
0=125 w0+ x (Age—Ags) =7'—2".

line determined by n—4/ x

, instead of being equal to O,
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But supposing %' as great as 30/, we see from the Table in sec-
tion 8, that, for 7' + one minute, the increment to the correction
(that 1s, to the value of 9. tan } w . sin 1") will, for 0 =125° be
only 1", and less for smaller angles. Consequently, an error in
the position of the plane of the index-glass not exceeding 4/ will
not produce, with the variation of @, a variation in the value of
_E.cos(to—f)
K coslw
rections ; and thus, the value of »—

which will be at all sensible in the final cor-
£.cos(}o—p8)
costw
determined for w=120° or thereabouts, we may assume it to
have the same value in every other position of the index.

E.cos(jo—p)

costw ? the general equa-

having been

Hence, substituting 7 for n—
tion becomes
Q=w—w,—n*.tan j o .sin 1"—2£%. tan L @ .sin 1".

But supposing £ as great as 4/, the value of the term
2£%. tan } w . sin 1" will not exceed 0”3 throughout the possible
variation of ; and as this quantity is quite inappreciable in
practice, it is evident that we may safely omit the term, and
thus reduce our general equation to

Q=w—w,—7n*.tan } o .sin1";
and the value of % will be determined from n=ﬁ.%,,
where @), o', are the readings obtained for coincidence of images
on the outside edges of the two parallel wires whose angular
distance one from the other =2f, the angle  being at all events
greater than 90°, and, if possible, as great as the mstrument is
capable of measuring.

3°. We have supposed that £ once made equal to ¢, will con-
tinue so throughout a series of observations. But, in conse-
quence of instability of mounting, the position of the plane of
the horizon-glass with respect to that of the instrument is sin-
gularly liable to disturbance; and it is not uncommon, after
carefuf adjustment at the commencement, to find on the termi-
nation of work of half an hour’s duration, that the direct and
reflected images of an object can no longer be made to coincide.
It becomes therefore important to inquire to what extent obser-
vations are affected by a derangement of this description.

Resuming the general equation as given at the end of section 9,
substitute for £ the values ¢ and ¢+ ¢ successively, and let @ and
o be the corresponding readings, so that o'— shall be the
variation occasioned by a disturbance ¢ in the position of the
plane of the horizon-glass. We shall thus obtain, substituting
o for @ —w, in the coefficients of the small terms,
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o'—w=sinl". (21,".E“-):'—B'—'?.Ls—M
8N @
+ 4ud.cos 8. (cos (w‘—-B) —cos (3 w-B)) +2n, 50 wa_ B) .
sln @ CO8zw
But 7 being in this case the deviation of the optical axis from
the line parallel to the plane of the instrument, we may substi-

. ¢.cos (} w—p)
tute for it »+ oos @

the axis from the position of minimum reading. Making this
substitution and reducing, we have

» when 7 will be the deviation of

o —w=2/%.sin 1". M'—".'ﬂ“’—'@ —24/.8in1".tan } @
8in @
) sy sin(Few—pR)
+27/.8in 1 '__coséw .
Now ¢ being small (generally less than one minute), since in the
preceding part of this section we have shown that the maximum

value of 2:2.sin1". tang- is only 0"3, even when ¢ is as great as

4/, therefore 2u/'.sin 1”. tan }  will be less than 0"3, and con-
sequently unworthy of notice. Also the term

2. sin 17, 28808 (0—F)
8in @
diminishes with an increase in the value of @ to w=90° after
which it increases; but for an angle @ =10° which is about as
small as the smallest observed with a sextant in the course of
ordinary practice, this term, when J/=2', amounts to 0"*75, and
at one of 20° to 0"-89, whilst for /=1’ the values will be only
na Pt

0"19 and 0"'10. The last term, 27/. sin 1" .%ﬁ), in-
creases with an increase in w; and for large anglesi,r when the
sum of the first and second terms is practically nothing, this
becomes the only term to be considered. Suppose 7 as great as
15, /=2' and @=20, then this term =1"-87, whilst so rapid
is its diminution, that for w=80° its value is only 0"-50, and
for /=1’ the values will be 0”69, 0"-25. Hence it follows that
even though, on the termination of a series of observations, we
find that the position of the plane of the horizon-glass has suf-
fered disturbance to an extent exceeding 1/, but not exceeding
2/, there will be no occasion for uneasiness respecting the ob-
served angles, except they be either very large or very small—
exceeding 90° or falling within 10°—and respecting the large
angles, only when the error of the optical axis is considerable.
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Since, however, we have no means of knowing at what point of
the series the disturbance may have occurred, it will be proper,
in the event of its existence, the circumstances being at the same
time such as to render it important, that is, the angles observed
being either very large or very small,—it will be proper in this
case to reject the observations altogether. In measuring very
small angles indeed, the sun’s diameter for example, or the phe-
nomena of a solar eclipse, it is evident that we must be particular
in the adjustment of the horizon-glass, and must examine the
state of this adjustment at the end of short intervals of time.

11. We are now prepared to consider the effect of the planes
of the internal and external surfaces of the index-glass not being
Earallel one to the other, as well as of a similar defect in the

orizon-glass.

Suppose two lines parallel to the normals to the reflecting and
refracting surfaces to meet the surface of a sphere in I, I’ respec-
tively, and let the parallel to the emergent ray meet the same

surface in F/,
¢tEll'=q, II'=3, El=vy.
Then if E'I, E'l' are invariably
large compared with II', l@,ﬂ,
El'=+—3.cosy. + 7
And the line parallel to the ray
which, after reflexion, passes towards the refracting surface meet-

ing the surface of the sphere in ¢ in the arc E'I', and u being
the index of refraction,

sinl'= ;l-b .sinET'= ,1: (siny—= .sin 1". cosy. cos ).

Also d1=¢1'+ 3. cosy=¢"l if the ray immediately before re-
flexion meets the surface of the sphere in ¢’ in the arc ¢I pro-
duced. But

=143 .cosy= ... I'+ 23, . cosry.

Again, the incident. ray meeting the surface of the sphere in E
in the arc 1'¢" produced,

sinF''=p .siné'l'=p (sin I’ 4 23, . cosy . sin 1”. cos £T')
=siny—3% .'sinl”.cosvy.(cos«}r—f&p\ /1— l,.sin’qr)
W
=siny—3.5in1". cosy. (cos —2 v/ u?—sin’ ),

o ENl'=+—3 .cosy. (1— ?_‘/P:;T‘_l’ .
08
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And
E'E'=E"I'+ E'T nearly =2¢—23.cosy .(1 — ¥R —sinty R

cos

which is the expression for the gngle between the incident and
emergent rays.

Now on referring to the figure in section 9, it will be evident
that the direction of the emergent ray from the index-glass must
be invariably parallel to E'O, in order that, after reflexion from
the horizon-glass, it may follow that of OE. And supposing
OTI' to re’)resent the normal to the refracting surface, we shall .
have £ E'II'=¢, which, since the angle M"I¥ never differs from
a right angle by more than a very small quantity, may be con-
sidered constant ; and Z; is constant likewise. Also 4~ represent-
ing the arc E'I, we shall have

=2y —23 . cosy.(1— Y& P:o—.i.“."l' ;
8

or since Y=}  + B nearly,

EE'=2¢—23 .cosy.(1— Y —sin*Go+B)),
2 i (l cos (J w+ ) ’
whereas, had OI, OI' been coincident, we should have had, to
this same position of the index, E'E"=2+. Hence, since the
planes 1E/, IE", EE" are nearly coincident, we may consider the
effect of the deviation IOI' to be to diminish EE" by the quantity

V pE—sin?( Io +8)
23 .cosy.(1— X~ z ;
- s (Fo+5) )
and thus, resuming the equation arrived at in the second part
of section 10%, assigning to o, its original meaning, viz. the
reading of the index when the planes OIM", OHM' coincide,
and making 23, . cos y=o0, we shall have

—w—wy—n®.tan } w.sin 1'—g . (1— YL —sin’(Go + B)
Q=w—wy,—2 jw.sinl"—¢c (l s GwtB) ,
which provides for a defect of the index-glass in respect to the
parallelism of the internal and external surfaces.

Suppose, in the next place, a similar defect to exist in the
horizon-glass. This will evidently occasion a change in the
position of the point E/,—a change depending upon the constant
angle EOH, and unaffected b]y the revolution of the plane OIM”,
and consequently by the angle observed. But a small variation

* 3 is supposed so small a8 not to interfere materially with the condi-
tions which enabled us to reduce the general equation to this simple form.
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in the position of E' producing an equal variation in that of E",
the arc IE", and consequently EE", will be augmented or dimi-
nished by a constant quantity throughout the variation of w.
Hence the effect of an error in the relative position of the internal
and external planes of the horizon-glass will,so far as the reflected
image is concerned, be constant; and that it will be the same
for the direct image, may be shown in the following manner :—

Suppose the limbs of two objects of

sensible diameter (the sun and moon
for example) to have been brought
into contact in the middle of the field :
without the interposition of the un-
silvered portion of the horizon-glass,
and let the sun be the object viewed
directly. Then the objects being
considered to have no relative motion, and the parts of the instru-
ment consequently undisturbed, suppose the interposition of the
glass to cause the image of the sun S to appear at 8. Join §'S
and produce it to 8", taking § 8"=S8 §'. 'Then it will be evident
that, had a second sun appeared at S” when the first observation
was made without the interposition of the glass, it would now,
on the interposition, appear at S, the limb being in contact with
that of the reflected image of the moon in the middle of the
field ; and similarly, the glass being interposed and the contact
made, the apparent position of an image of the sun for which
the contact would occur on the removal of the glass would be §'.
Let the telescope be inverting. Then M being the position of
the moon’s centre in the heavens, and ' that of the
true sun, if we take 8'S==S'S of the preceding figure,
and <M S §'= £ M S §/, we shall have for a contact
of limbs, the glass being interposed, a reading which
would correspond to contact of limbs of objects at
M and S instead of at M and §'. But the displace-
ment S §' and the angle M S §' are evidently con-
stant ; and S 8’ being small compared with M S, we
have M§'—MS =— S§8'.cos MS8'= ... a con- ¥
stant ; or the effect of the displacement upon the arc measured
is invariable.

Hence introducing a general constant ¢ in the place of ,, as
well as the variable term for eccentricity from section 5, we
have

OV

Q=c+ew—n*.tan jw.sinl"—c. (l— V= ?iln’ (_f;)'*'ﬁ)
‘CO8 70

+e.sin (a+§(co)).
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Let w, be the reading for coincidence of images of a single object,
supposed small,

s 0=ct+ow, —o. (1— M)+e. sin (a+% (wo)),

cos B
and
. & 2 —sin®(1 3)
Q=w—a,—7*.tanjw.snl"+o. I:os;‘:-(}-!;)+ﬁ)
v u?—sin? . .
- __"“ESELB +e. (sm (u—}(w))—sm(u+}(wo)))
=m+e—n’.tan},w.sinl"+B.a-+e.sin(a+%(w)),
if e=—aw,—e.sin( a+3} (o))
and B= 4 pi—sin’(;w+;8)__ Vui— sin? 8
cos (Fw+8) cos B

12. We have now to determine the values of the constants
7, 0, a, e, and ¢, taking them in the order in which they are here
written.

1°, To determine 7.

The term 7%. tan } . sin 1” being the only one of the general
equation affected by a change in the position with respect to the
middle of the field of the telescope in which we observe the coin-
cidence of the direct image of one object with the reflected image
of another, it is obvious that we may proceed in the manner
already explained in section 10; and w,, @', being the readings
obtained for coincidence of images on the outside edges of the
two parallel wires whose angular distance one from the other

1
=2f, that we shall have n=

w0, —w,
4f.tan } w, .sin 1"
thus determined, we may take from the Table in section 8 the
correction 7%.tan}w.smm1” to be applied to any observed
angle w.

The value of 7 may be expected to remain unchanged through
long periods of time ; but the process should nevertheless be re-
peated at intervals.

20, To determine o.

The reading w, of the vernier for the coincidence of the direct
and reflected images of a single object having been carefully ob-
tained, let us observe in the middle of the field the coinci(ianoe
of the direct image of one object with the reflected image of an-
other, the true angle between them being 2, ; and let , be the
reading corrected for the value of 9 previously determined. We
shall then have

O =w,—wg+B.o+e. (sin (a+i(@))—sin (a+iwy)))-

; and 7 being
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Now let the index-glass be removed from its position and in-
verted, so that the side which was uppermost shall become that
resting upon the surface of the index-bar,—a proceeding which
will evidently change the sign of o. Supposing then «', to be
the new reading for coincidence, this not differing much from
w,y, a8 in a well-constructed instrument it will not, let us ob-
serve again the same two objects ; and as celestial are better than
terrestrial for the purpose, and as these are constantly changing
their apparent relative position, let Q,+ 8, be the angle be-
tween them at the time of the second observation. Then o',
being the reading corrected for 7 as before, o', not differing
much from o),

Q] + ml = wll - w’o— B.o+ e-(sin(a + &(wl)) —sin(a + %(@o))),
whence by subtraction,
=80, = (0, —wp) — (o'} — @'y) + 2B . o,

1
e I=38" ((“"l — /o) — (0, — o) —891):

a formula which, when x is known, will give us the value of o
affected with the sign with which it must be employed in the
first position of the index-glass.

The factor B depends upon the constants x4 and 8, and the
variable angle w. The value of B seems generally to lie between
18° and 20°, whilst that of 4 seldom perhaps differs much from
1'514. With this value of u, Tables of values of B for 18°,
19°, 20° of B have been constructed, and will be found at the
end of this Part, a column being added containing the values of
dB
;7;:
the determination of the true value of w*.

Now, as in other cases of a similar kind, it is desirable that
the factor B which occurs in the denominator of the expression
for o should be as great as possible ; and the said Tables show
us that this condition will be fulfilled if the angle between the
two objects observed is as great as the instrument is capable of
measuring.

Suppose £, to be 120°, or thereabouts, and let us observe other
two objects in addition to the first, the arc between the second
two subtending an angle of about 100° and the readings in the
two positions of the index-glass being w, and ;. Let B, and

which, as we shall presently see, will be serviceable to us in

* The method of determining the value of B is treated in section 17,
pages 42 and43. In the Sextant, which will furnish us with examples, its
exact value has been found to be 19°; but the difference between this and
20°, assumed in page 26, will not sensibly affect the results there obtained.

D
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‘%’- be the values of B taken from the Table for the angle w,,
and B, and % those for the angle w,; then making

(“”l _“’Io) - (@, —wyp) "‘801 =k,

(0= o) — (wy— wp) — 8Qy=4k,,
we have JB
dB

o=h+2(B, + T 8 ) =k;+2(B, + & 5u),

and B
. dB
o Bu= (k. By—ky . Bk, .ﬁ-kg.d—’:);
and the true value of p=1-5140+ 8x being thus known, we
may readily compute that of B for any angle w, since we shall
simply have
value of B for x=15140+- 8u= value of B from Table

+8u x_value of %}3 from Table.

Also o being computed from o=k, 2 (Bl + ‘Z—I;‘ . 8;4.), we may

construct a table of values of the term B . o for various values of
o, from which the correction to any angle whatever may be at

- once taken ; and the value of o not being liable to change except
with a change of index-glass, this Table will answer as long per-
haps as the instrument continues serviceable.

3°. To determine the constants ¢, e and a.

It will be evident, on referring to section 5, that the process
there given in detail will be applicable, w,, w,, g being the read-
ings from the limb corrected for the errors 7 and o previously
ascertained. It is to be remarked, however, that w, and conse-
quently (wy), being subject to very small variations only, we may

substitute for e(sin (a+}(@))—sin (a+ {,(wo))) its equivalent
Re¢.sinl ((w) — (@) - cos (a +1 (@) + (wo))), and tabulate

the values of this instead of those of e. sin (a + () ),—a course

which has some advantage, inasmuch as the constant correction
to w is thus reduced to the reading w, corresponding to coin-
cidence of the direct and reflected images of the same object.
The general equation thus takes the form

Q=w—w,—n*.tan } @.sin1"4+B .o+ Re.sin 1
) g 3

(@) —(@0) - cos( a+i((0)+ (mo))) ;
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or, (w,) being small,
Q=w—-w,—7tan } w.sin1"+B. o +2e¢.sin } (») . cos (a+};(w))

Let Q,, Q, be two known angles, w,, », the readmos from
the limb, and let

6,=0,— (0, —wy) +7. tan } w, .sin 1" —B, . o,
=0 — (wg—wp) +7%.tan } 0, .sin 1"—B, .0,
we then have
¢,=2e.sin }(w)) . cos (2 + L(@))),
c,=Re. sin 4(w,) . cos (a+ %(w,)) ;
and eliminating e and reducing,

tan e = (c,. sin}(w,) —¢, . 8in g(w,))+(c, .versin } (wg) — ¢,. versin }(wl)),
whence the value of « may be determined ; and that of 2¢ being
subsequently derived from

¢,=2e . sin }(w,) . cos (¢+i(wl))

or the similar equation depending upon G and (0,), we may
tabulate the values of

2e.8in }(w) . cos (a + }(m))

18. We are now supposed to be in possession of three tables
applicable to the particular instrument with which we are
operating,—the first expressing the values of

7%.tan o .sin 1",
the second those of Bc, and the third those of
2e.sin }(w) . cos (2 +4(w)) ;

and it is clear that since the elements upon which the quantities
in these tables depend are not under ordinary circumstances
liable to sensible variation, we may combine the first and
second, which have the same argument w, into one, and from the
collective table so constructed, take the correction due to the
reading for the errors  and o on each several occasion. The
two separate tables should, however, be preserved on record,
in order that in the event of a change in the value of %, we may
with greater facility construct a new collective one, the original
table of values of B . o being applicable so long as we retain the
same index-glass.

14. To any reading o taken from the limb, we shall then
have to apply three corrections when the fandamental parts only

of the instrument have been employed :—
p2
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1°. The constant —w,, ®,, being the reading for coincidence
of the direct and reflected images of the same object, obtained
anew before and after every important series of observations.

20, The correction from the collective table of the preceding
section. ) ‘

3°. The cortection from the table of values of

2e. sin () . cos (a +}(w)).

But the cases in which the fundamental parts only of the
Sextant are employed are comparatively few, since, in observing
the sun with the moon, or the moon with a star, one of the
images necessarily requires darkening by an interposed shade,
and in observations of double altitude we generally employ a
glass cover to protect the surfuce of the quicksilver in the trough
of the artificial horizon from the disturbing influence of the wind.
It becomes therefore important to inquire what new errors the
employment of these necessary appendages may introduce into
our observations.

15. Belonging to the Sextant are three sets of shades :—

1o, Those which apply to the eye-end of the telescope, and
darken both images equally. :

2°. Those behind the horizon-glass, which darken the direct
image alone,

8°. Those interposed between the index- and horizon-glasses,
which darken the reflected image alone.

Defects in the first of these are comparatively unimportant,
distinctness of vision being the only condition they are required
to fulfil. This will be manifest when we consider that the rays
from the direct and reflected images falling upon them in direc-
tions parallel one to the other, will, in the event of the internal
not being parallel to the external surface of the glass, be dis-
placed equally, and coincidence existing without the shade, will
therefore subsist when the shade is interposed, and vice versd.

But of the other shades, those of each set affecting one image
alone, it is especially important that the internal and external sur-
faces should be parallel one to the other, or, not being so, that
we should apply a correction to the reading on every occasion
on which these are employed ; and reasoning again in the way
we did in section 11, when treating the effect of a supposed
error in that part of the horizon-glass through which we view
the direct rays, it is easy to show that the correction will be a
constaut for each shade.

Let the shades be numbered 1, 2, 8, 4, 5, 6, 7, commencing
from that nearest to the index-glass, and terminating with that
farthest from the horizon-glass ; and let ¢,, ¢, ¢, ¢4, €5 Co) €7
be the quantities to be applied to the readings obtained with
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each shade alone, to reduce them to those which we should ob-
tain without the interposition of any shade whatever. Then
the correttion for any combination, 1, 2 and 5, for example, will
be ¢, + ¢, + ¢, and so for the rest. :

Now suppose the positive contact of the direct and reflected
images of the sun’s limb to be observed with a shade before the
eyepiece alone, and let  be the reading. Then w—e¢, would
.be  the reading on the interposition of shade 1 alone;
w—c,—c,—c; that obtained on the interposition of shades
Nos. 1, 2 and 5, and so0 on; * '

.. ¢+ ¢y +c;= reading obtained with shade before eyepiece
alone, minus that obtained on interposition of shades Nos. 1, 2
and 5 alone. Hence, for every combination of shades with which
the contact is observed, we have an equation between some of
the quantities ¢,, c,, ¢y, &c.; and from seven independent equa-
tions of this sort, we may evidently determine the values of
¢, €y Cg, &c.

The operation of observing the contacts is in practice greatly
facilitated by the provision made for elevating or depressing the
telescope with respect to the plane of the instrument*, as by
this means we are enabled to adjust the images compared to a
condition of equal brilliancy. But as the eye seems to judge a
contact differently on different occasions, and as a variation
in this respect appears to be produced, not only by an in-
equality in the brilliancy of the two images, but likewise by a
variation in the absolute brilliancy when it is the same for

“both, it will be better to observe both positive and negative con-
tacts, in order that this effect, as well as that of the variation of
the sun’s apparent vertical diameter, may be eliminated from the
mean. :

Other equations for the light shades may be derived in the

following way, perhaps preferable in general, as being much less
wearing than the observation of contacts of the sun’s limb.

Select a star whose distance from the moon varies very slowly.

View the moon directly with a shade, and observe the distance
of the star from the himb. Let the shade be No. 7. Then »
being assumed as the reading without a shade, @ —¢, will be the
reading with it. Suppose we now view the star directly, the
moon’s reflected image being darkened with shade No. 1; then
o' being assumed as the reading without the shade, o' —¢, will
be the reading with it. Let o'=w + 8w, the variation 8w, which

- may be assumed as the absolute variation in distance, being

_* In indifferently constructed instruments, the elevation or depression
of the telescope frequently changes the position of the optical axis mate-
rially. The operator should satisfy himself that his instrument is trust-
worthy in this respect. .
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computed independently or derived from the observations ; then
® +0w—c, will be the second reading. Hence the difference

A\

first reading — second reading =¢,—c,—dw,
». ¢,—c,= first reading — second reading + dw.

The most convenient method of operating in the determina-
tion of these constants will be seen from the example.

16. We have lastly to consider the consequence of defects
in the glasses which form the cover of the trough of the
artificial horizon, presuming the normals to the surfaces of these
glasses to be situated in one plane, identical with the plane of
observation. :

Let A B be the surface of

the quicksilver ; O Z a verti- 4

cal line; O A, a normal to

external surface of the glass N

upon which the rays from P
the object observed impinge;

O A, that to the internal s Sa
surface of the same glass; &; S7
S, O the direct ray; S,0 the

first, and S50 .the second X < T

refracted ray:—

¢70A =k, £Z0A,=k, £Z08,=¢ p= index of refrac-
tion for glass,

sin ,0A,=p. sin S, 0 A, or sin ({—k,) =4 . sin (Z O Sy—xy),
sin S0 A;=u.sinS;0A  orsin(ZO Sa—.(cg) =p.s8in(Z0S,—x,),

. 8in (Z O Sg—wp)=p. sin (Z O Sy— &, + #,— ) = sin (¢—x,)
+up . (ky—rKy).sin 1" . cos (Z O S;—x,) ;

or since «, and «, each =45° nearly,

sin (Z OS;—«x,) =sin ({—x,) + (£, —#,) . sin 1" . &/ u2— sin?(§{—45°)

Z O 83— kg=8—x,+ (1, — &) . v/ p®— sin® ({—45°) =+ cos ({—45°),
L0 Sy=8— (., —r;). (1— &/ p?—sin*({—456°) —cos({—45°)).
Let O S, be the ray reflected from A B, .-.. P Z08S,=2Z0S,
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And O §; being the ray convergent towards the instrument,
Z08,=Z0 8g—(¢3—x,) . (1— v p?— sin® ({—45°)
~+ cos (¢ —45°)) nearly,
20 Sg=—(1y—ry—(3—x) ) .(1— v/ u*— sin® ({—45°)
-+ cos ({-—45°))
={—«. (l— v/ 2 — sin? ({—45°) + cos (§—45°))

if K=K, —Ky— (kg —K,).
And angle measured between the rays S, O, O S; will be
or

2(90°—§) +x . (1— v/ p*— sin® ({—45°) + cos ({—45°)),

instead of 2(90°—{), as it would be were the glasses perf'ect; and
we have therefore to correct the reading @ by a quantity,

k. (1= &/ p2— sin® (§—45°)+ cos (;-45f))
=«. (l — ~ p?—sin® (45°— )+ cos (45°—}a>)) nearly.

Assuming then x=1-5140 as before, the following will be
the values of the coefficient of « for various values of @ from 30°
upwards, the sign of the correction depending of course upon
that of «.

w. w.
33 06502 80 0'5173

so | - 05695 100 | 05173
60 0°5444 110 05273
70 0'5273 120 | 0°5444

40 0°6041 90 0°5140 :
|

To find the value of the constant «, we have only to reverse
the cover, turning the side upon which the rays impinged to-
wards us, and that from which they emerged towards the object,
observing the same angle in the two positions. Then since
k=K, — Ko— (Kg— ,) in the first case, it will =wn;—r,— (x,—x,)
in the second, and the sign of the constant being thus changed,
the coefficient remaining the same, the correction will be the
same number of seconds in the second case as in the first, but
will be affected with the contrary sign. Hence the value of
« will be half the difference of the readings divided by the
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coefficient due to the angle read, and the results will at once
show with what sign it should be employed in each position of
the cover. .

In this treatment of the question, we have supposed the same
plane to contain the normals to the several surfaces, as well as
the eye and the object observed, conditions seldom probably
fulfilled in practice. If, however, we are careful in placing the
cover invariably in the same position with respect to the plane
of observation, or nearly so, the law we have derived on the
above assumption will evidently not lead us into much error, as
indeed we may satisfy ourselves by observing, in reversed posi-
tions of the cover, angles of various magnitudes between the
possible limits.

17. Having now discussed all the errors to which the Sextant
and its appendages are liable, we proceed to take an example in
an instrument of which nothing is supposed to be known, and
for which we wish to construct the requisite tables of cor-
rections.

1°. To determine 7.

The distance between the two outer parallel wires having been
ascertained by the process explained in section 8 to be -

123'=7380"=2f,
the following observations were obtained :—
a Vir_qir-tia and  Cygni.

" On wire to the right. On wire to the left. .
,=111°14/33" (mean of 5 obs.). o',=111°14/47"(mean of 5).

Here w,—o',=—14", jo,=55}° nearly, 4/=14760",

. 14
=7 14760 . tan 5537 . sn I

and the computation will be as follows :

log4f = 416909 « log(y—wy) = rig613
logtan {w; = o0'16287

901753 '
log sin 1” = 4°68557 .%2'11860 = log —9

Sum = 901753 . Son=—1347m —a! 147

—_—

* We retain the sign of 5 for the purpose of comparing the result of this
observation with that of the following one ; otherwise it is manifest that, as
the correction varies as the square of 7 and is always subtractive, the sign
of 7 itself is of no importance.
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A second observation was

a Virginis and a Lyre.

On wire to the right. On wire to the left.
»,=87° 44/ 29" (mean of 8).  ',=87° 44/ 40" (mean of 3).
+ And treating this in the same way, we shall obtain

n=—2'"41",

Hence we may safely conclude that the quantity represented
by 7 is less than 3'; and since the correction varies as the square
of the error, its amount for 3' will very little exceed a third of
that due to one of 5. But on referring to the Table in sec-
tion 8 (page 19), we see that the maximum correction for =5
is only 078. Consequently the maximum correction for the
value of % now determined, will be less than 05, and therefore
unworthy of notice.

Before we give in detail the observations made with a view to
ascertain the values of o, e and «, it will be proper to make a
few remarks on the determination of w, and B, as well as on
the computation of the true apparent distance between two
celestial objects. '

The quantity o, is the reading on the arc when the direct and
reﬂecte& images of an object coincide ; and the usual method of
obtaining it 1s to observe alternately positive and negative con-
tacts of the limbs of the direct and reflected images of the sun,
and, taking half the sum of the mean of the readings with their
proper signs, to treat this as the value of w,. This course, how-
ever, is manifestly improper, inasmuch as the positive readings
may be taken from a point on the are differing considerably from
that from which the negative readings are taken, and the error
of excentricity will in this case affect the results unequally. If,
indeed, we know the values of the constants e and «, we are then
in a position to compute the corrections due at the points of the
arc from which the readings are taken, and a process of calcula-
tion will give us the reading for coincidence itself; but as we
want the value of w, in the first place, we must have recourse to
some other method of obtaining it. We might indeed observe
the coincidence of the direct and reflected images of the sun ; but
to this there are some objections. The sun 1s invariably a bad
object to ebserve, its heat affecting the instrument to such an
extent as sometimes seriously to disturb the adjustments, and
with these the value of w, itself; and, in addition to this, the
quantity of light is so great as to render the eye insensible to
small distances between the limbs of the images in observing
either coincidence or contact. Coincidence of imagesof a star,
however, may be observed with very great nicety; and if we
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select for the purpose a bright one, and make our observations
of coincidence when this first becomes visible in the twilight, we
shall find a number of readings rarely exhibiting a difference of
more than 3 or 4 seconds between the extremes. This then is
the method I am inclined to recommend ; and on repeating the
operation in the course or at the conclusion ‘of a series of obser-
vations, should the sky have darkened in the meantime, a star
of inferior magnitude may be taken for the purpose, but still not
so small as to occasion any unpleasant exertion of the eye to per-
ceive clearly the coincidence of images. The coincidences should
in all cases be made by alternately elevating and depressing the
reflected image, so that, the first being obtained by elevating the
reflected image, in making the second we should depress it, and
80 on. The mean of an even number of readings, not fewer than
eight, will, I believe, seldom differ 1" from the truth.

The angle B is that between the optical axis and the normal
to the plane of the horizon-glass; and its value in most instru-
ments of modern construction is not far from 20°. A first
approximation may be obtained by measuring the sides of the
triangle of which the angles are at the middle of the frame of
the index-glass, the middle of that of the horizon-glass, and the
middle of the collar into which the telescope screws. The half
of the second angle, which may be computed from the measured
lengths of the sides, will be an approximate value of 8.

To determine 8 more accurately, the operator should remove
the index-glass, and then, pushing the index to the extreme end
of the arc, should direct the telescope to a distant object and
bring the image of it into the middle of the field. The Sextant
being held with its plane nearly horizoutal, the rays from a
second object, which with the first subtends an angle of 180°—228,
will evidently pass the position usually occupied by the index-
glass, and, falling directly upon the horizon-glass, will be reflected
thence along the optical axis, so that the image of this second
object will coincide with the direct image of the first. The ope-
rator having placed himself in a position from which two such
objects are visible, should now restore the index-glass to its place,
and selecting some third object intervening between the first and
second, and as nearly as possible in the same plane with these
and his eye, should direct the telescope to the middle object, and
effect coincidence of the image of this with that of the object to
the right reflected from the index- and horizon-glasses. The
reading of the vernier corrected for @, alone will be nearly the
angle between the two objects. Next, directing the telescope to
the object on the extreme left, let him determine in the same
way the angle between this and the middle object. The sum of
the two angles so obtained will bg nearly that between the first
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and second object, and may be taken as a reasonably good value
of 180°—248; that is, half the supplement of the angle may be
employed as the value of 8. :

To obtain B still more accurately, we may, in the manner to
be explained in the second part of this work, determine approxi-
mately the latitude of the place, and, with all needful accuracy,
the local time. These being known, we may compute the instant
at which the double-altitude of some bright star, which culmi-
nates sufficiently high, is equal to the angle 180°— 28 ascertained
approximately. Then, removing the index-glass as before, and
directing the telescope, at a time somewhat earlier than that
computed, to the image of the object reflected in the artificial
horizon, we must watch the approach of this and the image
reflected immediately from the horizon-glass, and note the instant
of coincidence of the two. Computing the apparent zenith-
distance of the star at the time observed, the result will be a value
of B sufficiently accurate for all practical purposes*,

With respect to the computation of true apparent distances
between two celestial objects, let A, A, be their right ascensions,
), Ty their polar distances taken from the Tables. Then if the
latitude of the place, and consequently the right ascension of the
meridian are unknown, we must observe the altitudes of the
objects before and after the time for which we wish to compute
their true apparent distance, and thus by interpolation obtain
their apparent zenith distances at the time in questiont. Let
the interpolated zenith distances be &), ¢, and p,, p, the re-
fractions (objects affected by parallax should not be employed in
operations such as those which we are now treating): then

* In performing these operations, it will in general be sufficient to remove
the index-glass and the clip alone, the plate against which the former rests
being so tgin that it will not interfere with the passage of the direct rays
towards the horizon-glass. If, however, the operator can obtain the value
of B before the maker places mw);]fmrt of the apparatus connected with the
index-glass in its position, he will thus be saved a considerable amount of
trouble, and nothing will then exist to interrupt the rays, as might other-
wise be the case should the construction of the instrument not admit of the
plate being brougat nearly perpendicular to the plane of the horizon-glass.

Should any difficulty be experienced in estimating the position of the
middle of the field in the direction in which angles are measured, two
parallel wires will be found convenient, these wires being at right angles
to the system we have already described in treating the deviation of the
optical axis, and forming with the two inner wires of that system a square
of which each side may represent about a degree of arc.

+ It is necessary to anticipate in this place some portions of the second
part of our work ; and it must be added that, in observing these altitudes,
the readings of the vernier of the Sextant may be assumed to be affected by
w, alone, since a small error in the interpolated zenith distance will not
sensibly affect the result we have in view.
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&=U,+p1, L=Us+p, will be the true zenith distances. Sup-
pose D to be the true distance between the objects, and D' the
true apparent distance sought, we shall have

cos D =cos 7, .cos 7, +8in mr, .8in m,.co8 (A, —A,),
and may compute D by means of either one of the formule—

1. cos D =08 T1-C08 (mg—0)
: cos

tan @ =tanar,.cos (A;—A,).
2. cos ) =08 Ma: 08 (w,—06)
’ - cos ¢

tan 0 =tanr,.cos (A;—A,).

8. sin } D=sin} (7, + m,).sin6, where
/ sinr,.sinmy.co83 (A, —A,)
sin} (m, + my)
4. sin 3 D=sin} (m, ~ m,) .sec, where
¥/ sinwr,.sinm,.sin } (A, ~ Ag
sin (7, ~ mry)
And since we then have
cos D—cos §,.cos§, cosD'—cosf,.cosly
sing,.sin§ ~  sinf .sinf, °’
we obtain in the usual way,
sin § D/=sin } (¢, + ;) . cos 6, where
sintd =502 (& +&+D).sing (8, +&—D).sinf,.sind, -
sing,.sim & s} (&, 4+ &) ’
whence D' may be found.

But if the latitude of the place is known approximately, and
the time consequently can be obtained, we may compute the
zenith distances ;, & in the following way :—

Let ¢ be the colatitude of the place, H, the true hour-angle
of the first object. Then cos g =" ¢- zg: (0”‘—0)
tan 6=tan ¢ . cos H, ; and a similar formula will answer for the
computation of &: or, should circumstances require it, we may
employ, in the place of this, formule similar to Nos. 2, 8 and 4
just given for the computation of D from the data ), my, A — A,.
And having computed ¢, &, and obtaining thence {',=¢&,—p,,
¢, =& — po, We may proceed with the computation of D' as before:

Another method of computing D' is the following :—

Having obtained &), &,, p;, po in the manner just explained,
we have, making =}, 7'y, A'}, A/, the apparent polar distances
and right ascensions of the objects,

, where

, where

cos =

tan 0 =

, where
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8in 7, . cos p—cos 7, . 8in ¢ . cos H,

7y =m—p x

sin §; ?
sin 7, . cos p—cos , . sin ¢ . cos H
=1y —py X ) ¢ = {: L 2
ing.sin H in¢.sin H
A’,=A1+p,xsm¢ sin H, A,,=Ag+ngsm¢ sin H,

sinm, .sin g’ sinm,.sin g,
hour-angles to the east of the meridian being reckoned negative ;
and we may thus calculate the quantities =, ', A;, A';, and
thence determine D' by means of any one of the four formule
above given for the determination of D, substituting therein
w), oy Ay, A'y, D' in the place of the same letters without
accents. ,

Ezample. Two objects having been watched near the meridian,
and their greatest apparent altitudes observed, one of the objects
being on the northern, the other on the southern meridian, the
mean of the two results which these gave for the latitude of the
place, the readings having been corrected by the quantities
®o, 7°.tan ; . sinl” only, was 50° 36’ N., which we therefore
employ for the present as an approximate latitude.

Sbserved altitudes of two equatorial stars, one to the east, the
other to the west of the meridian, the readings having been cor-
rected only as before, and the approximate latitude employed in
the reduction, gave the right ascension of the meridian 162 30m™ 9s,
when a watch, going mean time nearly, indicated 8" 44m 275,
The date being the 18th of July, 1858, we wish to know the true
apparent distance between Arcturus and « Lyre when the same
watch showed 8 30m 19s.

The difference between the mean times=14m 8s=14m 108
sidereal time;

h m s
- Right ascension of meridian at 8" 30™ 19* by watch=16 15 59
Right ascension of Arcturus=14 9 13

Hy=4 2 6 46=31°42"

Also ¢ =90°~50° 86'=89°24/ ; and from the Tables 7, =70°5".

log tan ¢ =9°91456 log cos ¢ =9°88803
log cos H,=9"92983 log cos 0=9'91364
Sum=9'84439=log tan 6 Difference =997439
0=134° 57 ’ log cos (7,—0)=9"91266

m—0=35" 8 'Sum =g-88705=log cos Z,
5i=139° 33

* In computing the true zenith distances for the purpose of obtaining
refraction only, it is unnecessary to take acconnt of seconds of arc.
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and the Barometer being at 30-12 ins., Thermometer 61°, we
find from the Tables,

log p,=1'6740, or p,=47"2, and .". {;,=389°82'12"8.
Similarly, for « Lyre we find
£, =26°42, log p,=14590,
or
pa=28"8 and ¢'y=26°41'18"-2.

To compute the effect of p, on the polar distance and right
ascension, we have

log cos 7, =9°5323 log sin 7, =9°9732
log sin ¢ =9°8026 log cos ¢ =9°8880
log cos H,=9°9298 Sum =-9_'8_6;;= log of 0°7265
Sum ='9TJZ,’, — log of 0'1840
log p,= r-774_o Difference = -{:o__Tqﬂ
log 0'5425=9'7344 m =70 ¢’ 42""4
Sum = r°4084 —————40"”2=effect in N.P.D.
log sin Z;=9'8040 /", =70°4 2”2
Diﬂ’erence-x'—6-o;;==log of I
log sin ¢ =9*8026 log sin m;=9'9732
log sin H;=9°7206 log sin &;=9"8040
logp, = 1-6740 Sum =-9%
Sum=11972 / 2777
97772 -

Difference = 1°4200=Ilog of 26"/*3=effect in right ascension.
Similarly, for « Lyre we shall find
my=>51° 20/ 28"5, and effect in right ascension= —29"1,
h m s "
s A =14 9 137324263
A’,=18 32 10'75—29'1
o A=Aly=— 4 22 §743+55'4=—65" 43" 26""1.

Next to compute D', we have

log tan 7’3=0'0969263 log cos 7'3=9'7956580
log cos (A’;—A’,)=09"6139832 log cos 6=g°9491039
Sum =1log tan 6=g*7109097 Difference=9°8465541
0=27° 12" 1’1 log cos (7, —0)=9'8650656
o ’ ’” e T frnn

m—0=42° 52" 11 Sum=g'7116197 =log cos D’,

~ D'=59°1'3".
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20, To determine o.

The observations made with this object, and which answer
likewise for the determination of e and «, were the following :—

July 14, 1858.—w,= +0'28". Bar.29'87 ins. Therm. 63°.
Arcturus and « Cygni. Mean of 10 observed distances
80° 44' 52" at mean of times 172 57™ 489 sidereal.

July 17, 1858*.—aw,= +1'4/. Bar. 3002 ins. Therm. 60°.

h m s o 1
Arcturus and « Lyre at 16 17 25, obs. dist. 59 2 “t mean of 10 obs.
Polaris, Antares 16 44 8, » 117 0 34 .
~ « Lyre, « Aquile 17 4 57 w34 11 44 ”

July 18, 1858.—Index-glass inverted. wy=+1'5". Bar.
30-12 ins. Therm. 61°.

h m s o 1 “
Arcturus, & Lyrse at 16 15 59, obs.dist. 59 2 o mean of 10 obs.
Arcturus, & Cygni 16 55 59, » 80 45 36 w 12,
« Lyre, & Aquile 17 22 13, ” 34 11 49 sy 10
July 19, 1858.—w,= +1'8". Bar. 3007 ins. Therm. 60°.
hm s
Polaris, Antares at 16 41 15, obs. di.st.u°7 o 4.cl>’ mean of 16 obs.

To commence then with the largest angle : if we compute the
true apparent distance between Polaris and Antares on the 17th
of July at 16h 44m 8s sidereal time, we shall find it 116° 59’ 44",
Hence, remembering that =0, taking the coefficient of ¢ from
the Table for 8=19° and denoting the correction for excentri-
city by ¢,

116°59' 44/ =117° /34" —~1'4"'+8.78 0 +¢,
=116° 59 30" +3780+c¢,
. +14'=878 0 +¢,.
Treating in the same manner the observation of the 19th of
July with the index-glass in the inverted position,
116°59'45"=117°0'40"—1'8"—378 0 +¢,,
2 13"'==8780 +¢,.
Subtracting this equation from the former,
1"=7-56 ¢ and o= +0"18,
the former sign applying to the first, the latter to the second
position of the index-glass.

But we wish to derive the best value of o from the results
furnished by all the observations; and we therefore treat them
all as we bave done those of Polaris and Antares, presuming
throughout that x=1514, since, & being so very small, it would
be useless to attempt to derive from them a value of 8w, which

* Between the 14th and 17th the horizon-glass was dismounted and
replaced, an operation which changed the value of w,.
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must be very small likewise. Hence arranging the equations in
pairs,
V 14'=48780+c¢ .
13 =—378 ,,._,_c:}POlal'ls, Antares ...... 1
13 =+0880+c,
15 =—0:88 o+,

7 =+4+043 0‘+03} Arcturus, a Lym ..... 3

}Arctums, a«Cygni.... 2

=—043 ¢ +08
5 =+4+0160+c¢ R
4 =-¥0°16:'+c:}“ Lyre, « Aquile . ... 4
Subtracting the second of each pair from the first,
+1"=756 ¢
-2 =1760
-1 =086 o
+1 =0320. .
Multiplying each equation by the coefficient of ¢ in it, and adding
the results, our final equation becomes ’
61:09 o= +3"50,
and ... o= 40 ‘057 for the first, and —0"-057 for the second
position of the index-glass.

Assuming then that 0=0"057, we see, from the Table at
the end, that the correction due for this to a reading of 125°
will be only 6°2 x 0"-057=0"-35; and as this is the maximum
and is less than half a second, we may for all practical purposes
assume o =0.

8¢, To determine « and e.

Adding the second to the first of each of the above pairs of
equations and dividing by 2, we have

18"5=¢,; 14'=c,; T"b=cy; 4'"b=c,
which are evidently the quantities ¢), ¢,, ¢5, ¢, of the third part
of section 12, (w,) being 117° 87/, (wy) =85° 53/, (wg) =61° 0,
and (w,)=35° 52'. Hence from the first and third, one being
derived from near the extremity and the other from about the
middle of the arc, we have
__¢.8inj(wg)—c.8in}(w) _68517—6-4165  0:4352
&=, versin } (wg) —cg.versin} (w,)~ 1-8680—3-6165~  1:7485’
' . log—tan a=9-39602 and a= —14° 25'.

Also from ¢,=2e.sin } (,) . cos (a+}(w,)) we obtain log 2e=
1-45417, results which would be sufficiently exact for ordinary
purposes.
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To obtain the best values of « and 2¢ from the combination
of our four pairs of observations, it 'would be necessary that the
approximate values should differ very little from these, so that
the approximate being o' and 2¢/, and &' + 8z, 2¢ + € the best, the
results of the substitution of the latter for  and 2ein the equations

¢,=2e.sin}(w,) . cos(x +}(w))), ca=2e.5in}(w,) . cos (a+}(w,)), &e.
might, on making sin xa=2z, be assumed as

¢/=¢ .sin}(w,).cos (¢' +}(o,) ) —2.2¢.sin}(w)).sin (' + }(@,)), &e.,
in which case the latter equations, on being treated according to

the usual method, would furnish two final equations for the de-
ternrination of 2 or sin da and ¢. But in the example before us

it will be remarked that, assuming —14°25' to be within a few
degrees of the value of «, each of the angles

- u+%(.,), ¢+%(0’9), &c-
is small, and its cosine not only nearly equal to unity, but

likewise so little affected by a variation of even 10° in « as to
make no sensible difference in the amount of any correction
2e . sin }() . cos (a+}(w)).
Under these circumstances, therefore, we cannot expect to obtain
a value of « sufficiently good for the application of the above
method, although it would be otherwise were some of the angles
a+3(w), a+3(w,), &c.

nearly equal to 90°; and the consideration that an error of even
some degrees in the assumed value of « will not sensibly affect
the value of the correction at any point of the arc, which thus
depends almost entirely upon that of 2¢, suggests that it will
be sufficient to assume the value already obtained for « as the
truth, and, substituting this in the equations of condition, apply
the results to the determination of 2¢ alone. We thus obtain

2e. sin }(e;) . cos (a+ }(,) ) ="4742 x 2e=18""5.

2¢.8in }(w,) . cos (a+ }(w,) ) =18632 x 2e=14 0.

2e . sin } (o) . cos (a+}(eg) ) ="2680 x 2e= 7 ‘5.

2e . sin 4(w,) . cos («+}(w) ) ="1552 x 2e= 4 °5.
And multiplying each of these by its coefficient of 2e, and adding
the results, the final equation becomes

*4501 x 2e=14-1588,
and ~.log2e= 1-49770.
Assuming this as the value of log 2¢ and —14° 25/ as that of «,
we proceed to form with these data our table of values of
2e.sin }(w) . cos(a + }(w)) =E.
E
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(w). E. (w). E.

o ] ©”w
10 +13 70 | + 94

20 27 8o 10°7
30 4'1 90 11°9
40 54 || 100 13°1

50 68 || 110 141
6o +81 | 120 | 4151
|
This, as the effects of the errors 7 and o are insensible, is the
only table which we have to employ in correcting the readings
from the limb of the Sextant with which we are now dealing ;
and although the instrument was supposed to be previously un-
tried, and the above observations were made on this hypothesis
for the purpese of furnishing an example, it will be proper to
remark, in order to show the amount of confidence to be placed
in our results, that a table similar to the above, for the same
instrument, was formed in March 1857, the objects observed
and the angles between them being on that occasion different
from those we have now employed. On the first occasion the
angles observed were seven in number, and included—

102° 56' between Capella and Arcturus.
78 5 between Capella and « Hydrz.
72 50 between « Hydree and a Urse Majoris.
67 51 between Procyon and « Urse Majoris.
45 1 between Procyon and Aldebaran.
30 41 between Capella and Aldebaran.
22 48 between Procyon and Pollux.

And the resulting Table of corrections was :—

(w). E. (w). E.

-] “ o “
10 415 70 4102

20 30 8o 11°5
30 4's 90 12'7
40 60 || 100 13°8
50 7' || 110 148

6o +89 || 120 | 4158

And on comparing this with the former it will be noticed that
the maximum difference is only 0”8, a fact which not only tends
to confirm our results, but which likewise proves the permanency
of the constants upon which they depend, the instrument having,
between the first and second of the above dates, made a voyage
round the world, not to mention sundry journeys by land, in
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the course of some of which it was unavoidably exposed to much
motion. It must not, however, be expected that the quantity to
be found in our Table is the exact amount necessary to reduce
a particular observed angle to equality with the result of com-
putation. Differences up to 3", and perhaps above this, will some-
times oceur, inasmuch as we have to consider not only the
probable error of observation, but that likewise of division, that
arising from possible flexure of the frame of the instrument
affecting differently angles measured in different planes, and
those of the tables of right ascensions, declinations and refraction,
affecting the values of the angles computed.

Our example having now included the treatment of errors in
the several fundamental parts of the instrument, we proceed

4°. To determine the corrections to be applied on the inter-
position of shades. -

The observations and the resulting equations were—

July 7, 1858.

Mean of positive readings for P
With shade on 14 contacts of sun’s imb. . 4382 2-4%

eyepiece Mean of negative readings for
the same number . ... ... —30 546
Half sum ...... = +339
Mean of positive readings for
With shades 14 contacts. .......... +382 2:5%
Nos. 4 & 5 Mean of negative readings for
the same number .. .. ... —30 557
. Half sum ...... = 4334
Hence +83"4+cy+cs= +33"9,
Syt es=+ 05 ......... (1)
Mean of positive readings for
‘With shades 4 contacts ........... +32 13
Nos. 2, 3, 5 Mean of negative readings for
the same number ...... —30 570
Half sum......= 4322

gt egteg=+1"7.
July 14, 1858.
Twelve contacts on each side with shade on eyepiece, and as
many with shades Nos. 2, 8 and 5, gave
cotecg+es=+1"5.

* These observations were made in the following order. Firstly, a pair
of contacts with shade on eyvevpiece, succeeded by a pair with shades 4 and
5; and so on alternately. e thus become aware of any change in the
value of wyin consequence of disturbances produced by the heat of the

sun.
E2
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Hence, taking the mean of this and the result of July 7,
cotecgtes=+1"6............ 2)

And proceeding in the some way on the 15th of July and
succeeding days, the following equations were obtained :—

etegte,=+1"7, . . . . . . (8)

o+cgtes=+0"8; . . . . . . (4
and as a test of these and the former results,

e, +cg+cg+e,=+2"8. ;

Now adding equations (3) and (4), and subtracting (1) from the
sum, we obtain
e, +co+cg+cy=+2"0,

a result differing only 0"'3 from that given by the test.

July 25, 1858.

The apparent distance of the moon’s limb from a Aquile was
observed, the moon being viewed directly, and with shades
Nos. 6 and 7 alternately; this arrangement being adopted in
order that the mean of the times of observation with No. 6
should be very nearly the same as that of the times with No. 7,
the correction to be applied to the mean of one set of observed
distances to reduce it to the distance corresponding to the mean
of the times of the other set thus becoming a small fraction of
the whole variation between the first and last observation of each.

Mean of ten observations with No. 6 gave

At 9b 55m 258, angle from Sextant 33° 5/ 45-3 ;

the time here given being the mean of ten observed times from
the Watch, and the angle the mean of the ten corresponding
readings.

Mean of ten observations with No. 7 gave

At 9t 55m 118, angle from Sextant 33° 5' 41"-8.

The interval between the means of the times is 14 seconds;
and on comparing the first with the last observation of the set
with-No. 6, it was found that the variation of the angle in 14
seconds amounted to 0"-8, the angle increasing with the time;
and the same result was obtained from the set with No. 7.
Hence, to determine the angle which would have been shown
with No. 7 at 9h 55m 258, we shall have to add 0”3 to the angle
with the same shade at 9t 55™ 118, and we obtain therefore for
shade No. 7,

At 9b 55m 255, angle from Sextant 33° 5/ 41-6.
Let « be the angle at this time without a shade, then
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2=383°5' 45"'8 + ¢4=38° 5' 4176 +¢c,,
oo cg—ey=—8"7. ‘
Four other similar sets having been taken with the same shades,
the mean of the five results was
cg—c==8"4. .. . . . . (5)
Again, returning to the sun, a light shade before the eyepiece
combined with Nos. 2 and 6 gave
Ceteg=—1"8. . . . . . . (6)
And the seventh equation, resulting from observations of the

sun likewise, was
ctesteg==2"4. . . . . (7)
Finally, a proof equation from observations with shades 2, 4 and
5, and 4 and 5, ,
111172+ g+ g+ c5=1' 12"7 4 ¢4+ 5,
or
= +1"5,
We have now to solve the equations numbered from (1) to (7).
From (1) and (7) we obtain cg= —2/"4—(c,+¢5)=—2"9;
and substituting this value of ¢g in (5) and (6) successively,
07= +0!I.5’
cg=+1-6,
the latter of which differs only a tenth of a second from the value

of ¢, given by the proof.
Substituting the values of ¢z and ¢, in (3),

c=+4"1;
and from this and (1),
c;=—3"6.
Substituting the values of ¢, and ¢, in (4), we obtain
oy=+2"8;
and the same values substituted in () give
cg=+3""6.
Hence arranging the results,
6= + 28
ce=+16
cg=+36
= +41
c;=—386
cg=—29

Cy= +0’5
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And from these we see that, although in every combination of
. shades in which the maker had an opportunity of adjusting them
in the ordinary way, the sum of the corrections is very small;
nevertheless, in treating them separately, the correction is in
some instances important, and will make a difference of many
seconds of time in the longitude deduced from an observed
lunar distance.

5° In determining the errors introduced by the glass cover of
the artificial horizon, the most convenient course of proceeding
will be to observe a number of circum-meridian double altitudes
of a star, reversing the cover after every observation. The
several angles read being reduced to meridional zenith distance*,
it is obvious, from what has been said in section 16, that those
resulting from the observations in the first position of the cover
being affected with an error + }%, the remainder will be affected
with one —1.%; and the difference between the mean of the
first and that of the second will therefore at once give %, which
may be considered the amount of correction due to the mean
between the greatest and least angles read in the course of the
observations. Let o be this angle, K the coefficient correspond-
ing to it in the Table in section J6; then

K.k=k or k=k+K;

and « being thus known, we may, with the help of the Table
referred to, compute the corrections due to various angles be-
tween the limits of possible observation, these corrections being
positive in one position of the cover and negative in the other.

Ezample. One end of the cover being marked N, and this
letter affixed to an observation signifying that the end so marked
was on that occasion placed towards the observer, thirty circum-
meridian double altitudes of « Urse Majoris were observed, and
these reduced gave

Meridian Z. D. from 15 marked N, 55 3£‘) 16'7,

From the remaining 15, 55 39 207 ;

a.n(;:I the mean between the extreme readings was 68° 24/,

r
o »0=68° 24/, K=0'5299, k=1,
s, k=1"+0'56299=1"-89;

and as the zenith distance for the position N was too small, or
he angle observed too great, the corrections to the latter will in

this position be negative, in the other positive, or for the marked
end towards the observer x= —1"-89.

* The method of performing this operation will be found treated in
Part II. Section 4.
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Similar observations of Canopus gave «= + 0"'55, and from
others of Antares was obtained x= + 2"-62 ; and the mean be-
tween the three values being thus +0"43, and consequently
the maximum correction within the limits of possible observa-
tion only 0":28, the cover was considered perfect, and accord-
ingly in the examples in Part II., against the letters A H in the
columns of corrections to the angle will be found invariably O.

18. We have now treated in detail all the errors which would
affect observations with the Sextant were the instrument perfectly
inflexible and stable in all its parts, so that a change in the di-
rection of the telescope or of the plane of the limb with respect
to the direction of gravity would not produce any variation in
the relative position of the planes of the index- and horizon-
glasses, or of these with respect to the zero division of the arc
in a given position of the zero of the vernier. This perfection,
however, is in all probability unattainable in practice; and in
most instances we shall find that the value of w, will sensibly
vary with a change in the position of the object from which it is
determined. The amount of variation will differ with the in-
strument, and must be ascertained by experiment. In the Sex-
tant which furnishes our examples, no perceptible difference has
been discovered when the telescope is elevated towards an object
in the heavens between 10° and 60° from the horizon, be the
plane of the limb inclined as it may to the vertical ; and as in
all, or almost all, observations of distance one of the two objects
is situated within these limits, the instrument may so far be
considered perfect. But on depressing the telescope towards an
object reflected on the surface of the mercury in the artificial
horizon a change is at once perceived ; and for any depression
of between 10° and 60°, the value of w, has been found to be
constantly 11" less than that obtained in the positions of eleva-
tion. This result, derived from an observation which can be
made immediately and repeated as often as we please, has been
confirmed by the results of circum-meridian observations of
objects on the northern and southern meridians, the latitudes
derived from double altitudes on the northern side being con-
stantly, throughout the limits of possible observation, about this
amount less in the northern hemisphere and greater in the south-
ern than those derived from observations of the same class in the
opposite direction. Thus the mean of the latitudes derived from
three sets of observations of Capella to the north, at a double
altitude or observed angle of 102° the readings having been
correctedfor all the errors heretofore treated, being 6°53'28"-9 N.,
that derived from similar observations of « Urse Majoris on the
same side at an observed angle of 61° was 6° 53' 28"-3 N.;
whilst those derived from Antares and Canopus to the south,
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the former at an angle of 114° and the latter at one of 63°,
were respectively 6° 53' 39"-9 N.'and 6° 53' 40"2. The mean
of the former being 6° 53' 28/-6, and of the latter 6° 53' 401,
the difference 11"-5 is the amount by which we may consider the
double altitude corrected for errors already discussed in each case
too small; and another set of observations on both parts of the
meridian, made long subsequently in a high northern latitude,
giving a difference of 11”3, the mean of this and the former,
amounting to +11"-4, will be treated as a correction to be ap-
plied to observations of double altitude alone,—a result, as before
stated, confirmed by observations for ay of an object reflected in
the artificial horizon. This last correction we shall distinguish
by the letter F. : :

The amount of the correction F, it may be again remarked, is
peculiar to the instrument ; and it is possible that in some sex-
tants it will not, as in this, be applicable to observations by
reflexion alone. Should there be in any case sensible differences
in the values of w, derived in different positions of the telescope
- or plane of the limb, it will be prudent, when making observa-
tions for very nice purposes, to obtain a special value from one
of the objects observed, and in that position of the instrument
in which the observations are made.

19. A set of corrections once obtained, the Sextant will be
found to possess great advantages over the Reflecting Circle.
The latter, on account of its weight, cannot be employed conve-
niently except with a stand, which not only adds materially to
the apparatus to be moved from place to place, but is ill-adapted
to the peculiar way in which instruments of this description
should be used. Directing the telescope to one of the two ob-
jects observed, we have to retain this in the middle of the field,
and by motion of the instrument round the optical axis, to shoot
the reflected image of the second object rapidly from one side
to the other of the first; and this motion it is difficult to effect
‘except with the hand unimpeded by any stiffness in the support
of the instrument itself. After a little practice, the operator
will be perfectly successful in giving this motion; and with
respect to objects approaching towards or receding from one
another, the index being set a little in advance, he will be able -
to perform it so immediately before and after coincidence as,
with a chronometer beating half-seconds, to be at no loss to esti-
mate the tenth of a second at which the coincidence occurred ;
that is, provided the relative motion 1s sufficiently rapid to render
the variation of distance in a tenth of a second appreciable.
Nor is the advantage above named the only one. The mean
of the three readings obtained from the vernier of the Reflect-
ing Circle will be nearly independent of the effect of excen-
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tricity ; but these three readings requiring some time to obtain,
it will be impossible to multiply observations to the extent to
which we can do this with the Sextant, and to which it is desi-
rable to multiply them on account of the optical power of the
instrument being in general considerably inferior to the circular
power—the vernier, if the divisions are fine, indicating distinctly
angles which are scarcely sensible with the telescope. The cor-
rection for exeentricity, moreover, is only one of several ; and the
remainder are as necessary in the Reflecting Circle as they are
in the Sextant. By employing the former we should therefore
dispense only with the determination of two constants and the
computation of a single table, a work involving very little labour,
and having to be performed perhaps only once in the course of
practice with an instrument, and entail upon ourselves a large
amount of trouble on every occasion of making observations, to
derive from them, after all, an inferior result.

It only remains, in concluding the first part of this work, to
direct the reader’s attention to the suggestions given at the end
of the second chapter of the succeeding part, some of which are
as applicable to operations on shore as to those at sea.
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Tables of values of

B= Vpi—sint(lo+8)_ Vpi—sin*g
cos (Jw + B) cosf ’

dof 4B p - L
ME N T cos Qo +B) Vir—sn*Qw+B) cosB v pf—sin®f’

for 8=18°, 19°, and 20° (see page 33).

B=18"°.
dB dB dB

. B. @ w. B. d_p. . . B. a .

-] o o

[ 0'00 | o‘co 85 096 | 141 || 11§ 3'09 | 4'12

5 o'o1 | o'02 88 106 | 1°55 || 116 325 | 4°31
10 o003 | c'o§ 90 1’14 | 165 || 1164 | 3°33 | 4°4x
15 o'o5 | o'o8 92 122 | 176 || 117 341 | 4°51
20 o007 | o'12 94 r3r| 188 || 1x74 | 3°50 | 462
2§ o'10 | o016 96 141 | 201 || 118 3°59 | 473
30 o'13 | o'20 98 1’52 | 2°15 || 2184 | 369 | 485
35 0’16 | 0'26 || 100 164 | 2°30 || 119 379 | 497
40 020 [ 0°32 || 102 77 | 2247 || 1193 | 389 | 510
45 o024 | 038 || 104 191 | 266 || 120 | 400 | 5§23

50 029 | 046 || 1085 199 | 2'75 || 1204 | 411 | 536
54 034 | 053 || 106 2'07 | 286 || r2x 423 | 551
58 0’39 | o060 || 107 216 | 2°97 || 121} | 4°35 | 565
62 0'44 | 069 | 108 225 | 309 || 122 | 448 | 581
66 o'51 | 078 || 109 235 | 321 || 1224 | 462 | 597
70 o058 | o088 | 110 2°46 | 334 || 123 476 | 6°14
73 | ©64 | o097 || 1xx | 2:57 | 348 [l 1234 | 4°91 | 6°32
76 | o731 | 106 || 112 | 2°69 | 3'62 || 124 | 506 | 651
79 o078 | 117 || 113 281 | 378 || 1244 | 523 | 6°71
82 o087 | r28 || 114 295 | 3°94 || 125 540 | 691
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B=19°.
dB dB dB
. B. e w. B. an w. B. @
o o o
o 0°00 | ©'00 85 1oz | 149 | 115 3°41 | 451
5 002 | 003 88 1’13 | 164 || 116 359 | 473
10 003 | o'os 90 22 | 1475 || 1163 | 3°68 | 4°84
15 o'05 | o'o9 92 131 | 187 | 117 3'78 | 4796
20 o008 | o112 94 1’41 | 200 || 1374 | 389 | 509
25 o'10 | o'17 96 sy | 2014 || 118 4°00 | §22
30 o'13 | o022 98 163 | 2029 || 1184 | 411 | 536
35 o017 | o027 || 100 176 | 2°46 || 119 423 | 550
40 | o2r| o°33 | 102 191 | 265 || 1198 | 4°35 | 565
45 ©'25 | 040 || 104 207 | 2'85 || 120 448 | 580
50 | 031 | 048 || 105 | 216 | 2°96 || 120} | 4°61 | §'96
54 035 | o'55 || 106 225 | 308 || 121 4'75 | 613
58 o041 | 063 || 107 2°35 | 320 || 1214 | 490 | 6°31
62 047 | o072 || 108 2°45 | 333 || 122 506 | 6°50
66 0’54 | 082 || 109 256 | 347 || 1224 | §22 | 6°70
70 | 061 | o093 || 110 | 268 | 361 || 123 5’40 | 6°go
73 068 | 1oz || 111 281 | 377 || 1234 | 558 | 712
76 | o075 | r12 || 112 2'94 | 3'93 || 124 577 | 735
79 | 083 | r23 || 113 | 309 | 411 || 1248 | 598 | 7°60
82 o'92 | 136 || 114 324 | 4°30 || 125 619 | 7°85
B=20°.
dB dB dB
w. B. e w. B. Fy w. B. Fy
o o o

o 0’00 | o‘co 85 rog | g8 | 115 378 | 4'95
5 o0z | 003 88 | 121 | 174 | 116 3'99 | §°21
10 0’04 | ©°0b 90 | 130 | 186 || 1163 | 410 | 535
15 006 | o'og 92 | 140 | 1°99 | 117 422 | 549
20 | o008 | o013 94 | sy | 213 || 1174 | 4°34 | 564
25 orr | o118 96 | 163 | 2728 || 118 447 | 579
30 | o014 | o023 98 | 176 | 2°45 || 1184 | 461 | 595
35 018 | 028 || 100 | 190 | 2°64 || 119 475 | 6°12
40 022 | 035 || 102 | 2'06 | 284 || 119} | 4°90 | 6°30
45 027 | o042 || 104 | 224 | 3'07 || 120 505 | 6°49
50 o032 | o51 || 105 | 2°34 | 3°19 || 1204 | 522 | 6°69
54 | 037 | o058 || 106 | 2°45 | 332 || 121 5°39 | 6°89
58 043 | 067 || 107 | 2°56 | 346 || 1214 | 557 | 711
62 o50| 076 || 108 | 2°67 | 360 | 122 577 | 734
66 o'57| 086 || 109 | 280 | 376 || 1228 | 597 | 7°59
70 | o065 | 098 | 110 | 2°94 | 3'93 || 123 619 | 7°84
73 072 | 1°08 111 308 | 410 /| 1234 | 642 | 812
76 o8 | 119 | 112 | 324 | 429 | 124 6:66 | 841
79 o8 | 130 | 113 | 340 | 450 | 1244 | 692 | 872
82 098 | 1.44 || 114 | 358 | 472 | 12§ 7°20 | 90§

59
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To extend the above Tables to cases in which B is less
than 18°
dB

Let (B)l’, (B’);8 signify respectively the values of B and v
M
for an angle w, supposing B to be 17°. Then

18

(B):,7= (B):,s_’o +0005; (B’)Z: (:B')m_’° +0-008;
(B)'=(B)._.+0010; (B)Y=(B)." .+0016;

(B)*=(B)L" o+ 0014; (B) =(B)" . +0:028;

(B):: = (B):,s_sa +0018; (B'):‘ = (B‘).l.s-sc +0-030.

NOTE.

When the internal and external surfaces of the index-glass
are not parallel one to the other, it is evident that of an incident
ray some portion of the light will be reflected immediately from
the external surface, whilst the remainder, being refracted
towards the internal surface, will be thence reflected, and emerge
eventually in a direction different from that purgued by the
former. A consequence of a defective index-glass 1s, therefore,
the production of two images of an object, that resulting from
reflexion at the silvered surface being brighter than the other
when the angle of incidence is small, and consequently to be
distinguished without difficulty. But this image continually
diminishing in brilliancy with augmentation of the angle whilst
under the same circumstances the other increases, the two ap-
proach rapidly towards equality in this respect, and, the index
being at about 115° on the arc, are frequently so nearly alike
that one may possibly be mistaken for the other. An index-
glass so defective as to produce two images separated by a sen-
sible angle should not be employed, although one producing
only a perceptible elongation of the image may be safely treated
according to the method detailed in sections 11 and 12, the co-
incidence observed on every occasion being that of the direct image
of one object with the middle of the elongated image of the other
produced by reflexion ; and the only modification resulting from
this course will be that the value of o derived from observations
in reversed positions of the glass will be that of . cos vy instead
of 23, cos vy, a difference of no practical consequence, since the



OF THE SEXTANT. 61

correction to an angle will now be BZ cosy and not 2B 5, cos y,
as it would if the single image emanating from the silvered sur-
face were that invariably observed. Pursuing the investigation
of section 11, we obtain for the angular separation of the images
the expression

23, . V2= sin® (o +B)
cos (Jo +8)
which, when =0 or 180° becomes
23, . ¥/ 2 — sin® (3o +B)
cos Go+B)
and when y=90° or 270°,
3 VA= e B =¢.5,
so that if 7%= total angular separation, we have
r2=p?.cos? y+ ¢2.sin%ry.
Now as the greatest value of ¢ between w=0 and 125° can
never exceed 1°5, and as the value of this quantity is very little
affected by a variation in that of 3, whereas the value of p may
be as great as 20 when w is large, and in this case only will vary
considerably with a variation of B, the greatest value of p more-
over occurring with the smallest of ¢, it is evident that it will
not be necessary to consider the dependence of the value of r
upon that of B3, exceptin the case in which the term ¢%. sin®  is
small compared with p?. cos®, or that in which v is not nearly

ual to 90° p and its variations being at the same time con-
siderable, so that

-\/cos’«y+i .sin®ry . cos? (3o + B),

=p.3;

r=p . cos ¢ nearly.

But on computing the values of p, we find that whereas at
»=125° the value is 17-6 if 8=20° it amounts only to 106 if
B=15° so that the ratio 176 : 106 represents very nearly the
advantage gained at w=125° by the reduction of 8 from 20° to
15°, an index-glass which with 8=20° would produce a double
image with an angular separation of 17"-6 producing with 8=15°
a separation of only 10}')'6, and for smaller separations in the
same proportion. The angle between the optical axis and the
perpendicular to the plane of the horizon-glass ought therefore,
in the construction OF the instrument, to be made as small as a
due regard to the free action of the several parts will permit, a
conclusion o:herwise evident on inspection of the tabulated values
of the coefficient B.
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PART II

APPLICATIONS OF THE SEXTANT.

CHAPTER 1.
GENERAL TREATMENT OF THE SUBJECT.

TrE Sextant may be employed in every operation that involves
the measurement of an angle, the objects subtending the angle
to be measured being so far distant that the direct rays from
each which fall upon the eye may, for all practical purposes, be
considered parallel to those which fall from the same object upon
the index-glass—or, in other words, that the distance between
the eye and the index-glass shall not subtend at either object any
sensible angle. This condition is seldom fulfilled except in the
case of objects in the heavens ; and accordingly it is to the obser-
vation of these that the Sextant is especially applicable.

The purposes for which we observe celestial objects are gene-
rally the following :—

1°. The determination of the geographical latitude of a place.

2°. The determination of local time, the latitude of the place

being known.

3°. The determination of the longitude of a place, the latitude

and time being known.
And we propose to treat each of these in order, commencing
with the determination of latitude.

1. Geographical latitude is the angle between the plane of
the equator and the vertical line or direction of gravity at the
place; andits complement, called the colatitude, is equal to the
true meridian zenith distance of a celestial object + the polar
distance of the same object, the upper or lower sign being taken
according as the object is at upper or lower transit, and the
zenith distance, if measured towards the pole which we assume
as the origin of polar distance, being reckoned positive, if away
from it, negative. The difference between this result and 90°
will be the latitude reckoned towards the assumed pole when
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the result is less than 90°, and away from it if greater. But as
the angle between the image of an object reflected in the artificial
horizon and its direct image is the double of its apparent alti-
tude, if in the case of an object on the meridian we observe with
the Sextant the angle between these two images and divide this
by 2, the result will be the apparent meridian altitude of the
onect ; and subtracting this from 90°, we shall obtain the ap-
parent meridian zenith distance. This again being corrected
for the effects of refraction and parallax, will give us the true
meridian zenith distance; and as the polar distance may be
taken from the Tables, we shall thus be in possession of all the
elements requisite for the calculation of latitude.

As we are supposed in the first instance not to know the time,
and consequently when to look for the object on the meridian,
it will be necessary to watch it closely as it increases its altitude,
and to obtain the reading at the moment when the angle between
the two images attains a maximum for upper, or a minimum for
lower transit. Let Q be this reading corrected for instrumental

errors, <. .Q = apparent meridian altitude,

90°— 1. Q = apparent meridian zenith distance,

true meridian Z. D.=Z = 90°— . Q + refraction — parallax,
Z being reckoned + or — according as it is measured towards
or away from the pole which we assume as the origin of the polar

distance m. Then  colatitude =Z +r,

the upper or lower sign being taken according as the object is
at upper or lower transit.

Ezample. July 26, 1858. Barometer 29-92 inch. Thermo-
meter 59°. Horizon cover N.
a Ophiuchi on Southern Meridian.

)

—wy =—1 go* w = 104 16 37 (W)=104 47
Correction for n & o= o oo* —_ — 0433
E =40 143t Q = 104 9 53’7
F =40 114 1.0 = 52 4 569
AH = o o0} 90°—42 = 37 55 371
Sum =-—o 43'3 Refraction = 44°5
Z == 37 55 47°6
™ = 77 20 3§
Colatitude = 39 24 15°9
Latitude = 50 35 441 N.

* Part I. Section 17, subdivisions 1 and 2.

¥ Taken from the Table constructed in 1857, given in subdivision 3 of
Section 17, Part. 1. . o

1 Part 1. Section 18. § Part I. Section 17, subdivision 5.
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In determining latitude by the above method, we should be
limited to a single observation of an object ; and for the purpose
therefore of obtaining a mean of a number of results, in which
error of observation would probably not appear, we should be
compelled to observe a number of objects, or the same object on
the meridian a number of times. But this process would cause
our observations to extend over a considerable period, whereas
in cases in which the Sextant is employed, we generally want to
obtain a good result in the course of a short period, sometimes
immediately. A single observation, however, of the above de-
seription will furnish us with a latitude sufficiently exact to
employ in obtaining time ; and this known, we shall be able to
extend our observations for the purpose of obtaining the other
element with greater accuracy. We have therefore—

2. To determine the local sidereal time, the latitude of the
place being known either exactly or approximately.

Let A and 7 represent the tabular right ascension and polar
distance of an object; its true zenith distance at observed time #;
¢ the true colatitude of the place; andlet T be the true sidereal
time or right ascension of the meridian when the watch or cleck
showed ¢.

Making H=T—A, we have

- cosg=cos¢p.cosm+sin¢.sin.cos H;

and from this, putting @ for } . ({+ ¢ +), we obtain

. in (0—d).smn (0— H being reckoned

sin} H= i\/sm ( sin¢2’ .:liz,(n. ) + or — according

as the object is west

(H= sin (f—¢) . sin (§—mr) | or east of the meri-
tanf H=+ \/ sinf.sin (9—p) | dian,

either of which formule may be employed in determining H
when the true values of §, ¢, and = are known, the second, how-
ever, being generally preferable to the first; and H determined,
we have at once T=A + H.

The above expressions are perfectly general, and apply, what-
ever be the values of 7 and H. There are, however, particular
values of these quantities, which, supposing a small error to
exist in § consequent on one in the observed altitude, or in the
computed refraction or parallax, will cause such an error to pro-
duce a minimum effect on the calculated value of H ; and objects
as nearly as possible in the corresponding position in the heavens
should therefore be employed in the determination of time.

To ascertain what are these values, let us suppose the true
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zenith distance, instead of being &, to be £+8¢; the true hour-
angle will then be H +8H, where

_dH 8¢.sin ¢ _ 8¢
SH=17 3¢

T sing.sina.sin H™ sin¢.sin *’s azimuth’

which, ¢ being given, is evidently a minimum when the sine of
the azimuth is a maximum, or when the azimuth is as near 90°
as possible. Now, for objects whose declination is not greater
than the latitude, and of the same name with it, the azimuth
may be 90°; and when it is (that is, when they cross the great
circle which passes through the zenith at right angles to the
meridian, and is called the prime vertical), they are most favour-
ably situated for observation for time* ; and with respect to other
objects whose declinations do not fulfil the above conditions, it
is evident that the greater the azimuth the smaller will be the
effect of an error of observation on the computed time; and
such objects, when their declinations are in name opposite to
that of the latitude, should therefore be observed as far from
the meridian as possible consistently with their having sufficient
altitude to render the results of the tables of refraction reliable;
and the above expression for 8H shows us, moreover, that an
object should never be observed for time when its azimuth is
small, that is when near the meridian if far distant from the
pole, and that an object near the pole itself should not be ob-
served for this purpose under any circumstances.

It is to be remarked, likewise, that the expression for 8H
changes sign with a change in the sign of H, thus showing us
that the effect of permanent small instrumental error will not
appear in the mean of the results of two observations, one of an
object west of the meridian, the other of an object east of it, the
latter at the time of the second observation having about the
same azimuth east as the former had west at the time of the
first, or vice versd.

Let us in the next place consider the effect of an error in the
assumed colatitude ¢.

In this case
_dH _cos¢.sinw.cosH—sind.cosm o
SH_W.&I"_— sing.sina.sin H -3;

* In Baily’s Astronomical Tables and Formule, page 153, and in other
similar works, will be found a Table whereby we can determine at sight
the altitude at which an object of given declination may be most advan-
tageously observed for time in a given latitude.

r
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and as the numerator of this expression vanishes when
cos H=tan ¢.cot =,

or when the azimuth is 90°, it follows that a small error in the
assumed latitude produces no effect on the time obtained from
an altitude observed on the prime vertical ; and this is therefore
on every account the most favourable position for observation
for the purpose in question.

With respect to an object which does not pass the prime ver-
tical because its declination is greater than the latitude, if we
put the coefficient of 8¢ into the form

cot ¢ . cot H— cot 7 . cosec H,
we shall readily obtain as the condition of minimum,
cos H=cot ¢ . tanm,

showing in this case that the minimum effect of an error 8¢ is
Eroduced when the vertical arc passing through the object

ecomes a tangent to the parallel of declination, that is, when
the azimuth of the object is a maximum. Andin the case of an
object whose declination is of a name different from that of the
latitude, since cot 7 will be negative, and cot H, cosec H conti-
nually diminish as H increases, such an object should be ob-
served as far as possible from the meridian, subject to the same
condition as that established in the case of an error in zenith
distance.

We likewise remark that, as in the case of an error in § so
in that of one in ¢, the expression for SH changes sign with a
change in the sign of H, thus showing that the effect of a small
error in the latitude will not appear in the mean of the results
of two observations upon opposite sides of the meridian, the two
objects at the times observed having about the same polar di-
stance and hour-angle.

From what has preceded, we may conclude generally,—

1°. Whether the latitude be known exactly or approximately,
all objects observed for time should be situated as nearly as pos-
sible on the prime vertical.

2°. When the latitude is known approximately only, a single
observation for time should be that of an object very close to the
prime vertical ; or, if two observations are obtained, the objects -
observed should have about the same polar distance, and be situ-
ated at about equal distances from the meridian upon opposite
sides of it. In the former case the single result, in the latter
the mean of the two results will be independent of any small
error in the assumed value of the latitude.
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Ezample.—July 26, 1858. Bar. 2992 ins. Therm. 59°.
Horizon cover N. Assumed latitude 50° 35' 44/’ N.

Arcturus west of Meridian.

Time by watch. Reading. (w). E$.
hm s ] o "
9 25 18¢ 76 1 o 77 © +o0 114
26 43 75 34 14 79 44 +o 115
27 40 75 16 38 81 48 +o0 117
Means 9 26 33'7 75 37 17 E =40 11°§
. —o0 46 —wy =-—1 9
Q = 75 36 31\ forpande = o o0
3.0 = 37 48 16 F =40 11’4
90°—3.Q = 52 11 44 AH = o o
Refraction = +1 13 Sum =—0 46§
4 = 52 12 §7
¢ = 39 24 16
r 4 = 70 4 42
Sum =161 41 §§
(] = 80 50 §8 log sin =9'9944376

-2 = 28 38 1 logsin =9'6805230
0—9¢ = 41 26 42 log sin =9'8207929
0—x = 10 46 16 log sin =9'2715768

Sums  9°6749606 9°0923697
\9'6749606

Difference =9°4174091

log tan §H=Half =g°7087046

H =27° ¢’ 56"

H =54 9 52

hm s

=+3 36 39'5
RAof # = 14 9 132

Sidereal time T = 17 45 52°7

The watch employed was losing 10 seconds from mean time
in the course of 24 hours||; and therefore, should we wish to
find the local sidereal time at any other time indicated by the

+ These times were taken with an ordinary pocket-watch ; and tenths
of seconds could not be observed.

1 In some instruments we shall find E vary materially with a few de-
grees of variation in (w); that is, with a few minutes in the reading.

§ It is unnecessary to notice tenths of seconds of arc in the sums.

|I Chronometers going sidereal time will be found much more conve-
nient than those going mean time in all astronomical observations, whether
on shore or at sea.

F2
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watch, we shall have to correct the interval shown by this for
retardation at the above rate ; and having converted the corrected
interval into sidereal time, apply this to 17 45m 5287,

Another method of obtaining time is suggested by the equa-
tion cos {=cos¢.cos 7+ sin¢.sin7w.cos H; from which we
see that for equal values of H with opposite signs, the value of
cos &, and therefore of {, is the same. Hence 1t follows that a
celestial object which does not change its right ascension and
polar distance, will at equal distances upon opposite sides of the
meridian have equal altitudes; and if therefore we observe it on
its approach towards the meridian, noting the time when the
Sextant gives a certain reading for the angle between the direct
image in the heavens and the reflected image in the artificial
horizon, and again, after its passage over the meridian, note a
second time when the reading is the same as the first, the mean
of the two times shown by the watch will be that indicated at
the instant of transit, and the right ascension of the object
will be the corresponding local sidereal time. This method is
seldom had recourse to, since when the interval is small, and
the object consequently near the meridian, its apparent motion
is too slow to admit of nice observation of the time of coincidence
of images; and when the object is sufficiently far from the me-
ridian to render this part of the operation trustworthy, the in-
terval between the observations must be so considerable that the
observer would in the mean time obtain more complete and satis-
factory results in another way.

It will be evident that we cannot, in the determination either
of latitude or time, have recourse to objects whose right ascen-
sion and polar distance change rapidly, without an approximate
knowledge of the longitude of the place of observation, or, which
amounts to the same thing, of the time at the place for which
the Tables are constructed. This known, we may employ the
sun, planets, moon, and circumpolar stars, bearing in mind,
however, that the tabular places of the moon are much less to
be trusted than those of other objects.

3. Having now obtained the local & 3%
sidereal time, we are in poasession of
all that is requisite to enable us to ex-
tend our observations for latitude, and
we will therefore next considergenerally
the method of deriving this element
from an observed altitude of an object
at a given angle from the meridian.

In the annexed figure,let Z repre-
sent the zenith; P the pole; S the
position of a celestial object ; and SM an arc at right angles to PZ.
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PS = polar distance = =, £ZPS = hour-angle = H,
'ZS = true zenith distance = § PZ= colatitude = ¢.
PM=Z,, ZM=Z, and <PZS=Z.
From APMS we have tan Z, = tanr.cosH; whence Z, is known.

From APZS we have sinZ = o ':i:l;n H; whence Z is known¥.
From AZSM we have tanZ,=tan{. cosZ; whence Z, is known*.
¢=7,+1Z,

Although this method of proceeding is perfectly general, ap-
plying to an object in any position of the heavens, nevertheless,
as In the case of observations for determination of time, so in
this there are particular positions more favourable than others
for the purpose in view ; and what these are we have therefore to
ascertain.

We have already found
_cosd.sinm.cos H—sin¢.cos 7
SH= sing.sin7.sm H 395

and we consequently have
sing.sinm.sin H

8= cos.smm7w.cos H—sing.cosm’

an expression from which we infer that the values of the ele-
ments which make 8H a minimum when 8¢ is given, make the
latter a maximum when 8H is given, and vice versd; and the
positions most favourable for observation for time, on the sup-
position of a small error in the assumed latitude, are thus the
most unfavourable for observation for latitude in the event of the
existence of a small error in the assumed time. All objects ob-
served for latitude should therefore be near the meridian when
their polar distance is considerable ; but a circumpolar star may
be advantageously employed at any hour-angle whatever.
Again, from the equation

3

cos{=cos¢.cosm+sin¢.sin7.cos H,
we derive

56 sin § .8

= sing.cosm—cosp.sin . cos H

* It is not necessary to take the value of Z itself from the Tables, since
all that we require in the computation of Z; is the cosine of this angle,
which may be taken at once from the proper column in the line opposite
to that in which we find sin Z, or interpolating between two lines if
requisite.
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and since
8in® {=1—(cos ¢ . cos 7+ sin ¢ . sin 7. cos H)?
=(sin ¢ . cos m— cos ¢ . sin 7. cos H)2+ sin? 7 .sin® H,

the coefficient of 8¢ becomes

\/l+( sin 7. sin H 2
cos ¢ .sin.cosH—sing . cosw/ ’

which for a given value of 7 is a minimum when H=0, or when
the object is on the meridian, and for a given value of H dimi-
nishes with a diminution in 7, that is, as the object is nearer to
the pole. On every account, therefore, the azimuth of objects
observed for latitude should be as small as possible.

Ezample. July 29, 1858. Bar.29'98 inches. Therm. 59°.
No cover over horizon.

Polaris.
Sidereal time. Reading. (w). E.
h m s . o 1 & o ¢ u

18 2 476 100 22 4§ 1003 § +o0 141
3 538 23 36 r03 56 142
5 20 24 31 104 §1 143
6 212 25 2§ 105 45 14°4
7 29'¢ 26 23 106 43 14°5
9 56 27 28 107 48 14°6
10 88 28 18 108 38 147
11 150 29 9 109 29 14'7
Means 18 7 043 100 25 §56°9 E =40 144
0 442 —wy =-—1 100
Q =100 2§ 127\ forp& e = o o0
ia = 50121364 \ F =40 11°%
90°—%.Q = 39 47 236 AH = o0 o'
Refraction = <4 o 47°6 Sum =—0 442

4 = 39 48 112

Now the right ascension of Polaris, corrected for nutation at
upper transit at Greenwich on the 29thof July, was 1> 7m 825-74;
and the sidereal time at the place, known to be about five minutes
west of Greenwich, being 18" 7m, the sidereal time at Greenwich
at the moment of observation was about 182 12m ; that is, about
seven hours before the transit of the star. Interpolating for this
interval between the right ascensions at upper transit on the 28th
and 29th, we have
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hm s
RA of Polaris at time of observation = 1 7 32°50
RA of meridian =18 7 043
Hour-angle H =7 03207 =— 105° & 1”1
And in the same way we obtain » = 126 537

Jog tan w=8'4028134  logsin r=84026746 logtan{ =g°9207809
log—cos H=9"4167592  logsin H=9'9846710 log cosZ*=9'9996844

log—tanZ,=7'8195726 ~ Sum  =8-3873456 logtan Z;=9°9204653

log sin { =9'8062827 Z3=139° 46’ 575
log sin Z=8"5810629 —Z)= 0 22 414
¢ =39 24 161

4. But when an object is near the meridian, there is a method
of proceeding which much facilitates the calculation of latitude,
and enables us therefore to multiply our observations without
fear of being overwhelmed with the subsequent labour of com-
putation. This method is called * Reduction to the meridian,”
and depends upon the expansion of { into a series of powers of
sin H, H being in this case small. Thus we have

- sing.sin7w 2sin?l H /sing.sin7\2 .y 2sin*iH
{=¢p—m+ sin(¢—m) snl”  \sin(¢p—m) ~cot ($—m) . —

and making ¢ —7=Z= true meridian ZD, and transposing,

2.sin*}H

_, sing.sinm 2.sin*tH sing.sinm)®
Z=t- . Sl

sin Z sin 1" sin Z cotZ.

Now in the coefficients of the small quantities on the second
side of this equation, it will be sufficient to substitute an ap-
proximate value of Z, which may be either the smallest of a
number of values of ¢ if the observations have been continuous
as the object approached towards and receded from the meridian,
or the result of the substitution of an approximate value of ¢ in
¢ —r if the observations were interrupted ; and these coefficients
are evidently independent of the hour-angle H. Hence denoting
the coefficients by Q, and Q,, if we have a number of true cir-
cum-meridian zenith distances &, &, &ec. §,, at hour-angles H,,
H,, &c. H,, these will give us

. * CosZ will evidently be positive or negative according as the object is
_ situated on the polar or equatorial side of the prime vertical at the time of
observation.
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2.s8in?i H 2 .sin*2 H
2=4=Q.- sinlé” Q. sinl£" b

2.8in?3 H 2.sin*4 H
Z=§9—Ql' sinl%' 9+Qe- T am 17 *,
&e. = &e.

2sin?} H, 2.sin*3 H,
Z=5L-Q,. sin%l" +Q,. sinl%' 5

and taking the mean,

_1 1 (2.sin*4 H 1 (2.sin*iH
b= 2-Q 0 2=y + Qe 2

a result which will probably be much more accurate than that
obtained from the observation of one double altitude.

To facilitate the application of this method, tables of values of
2sin’; H 2sin*3 H
sin 17 sin 1"
every second of time of H within such limits as it would be
proper to have recourse to it ; and these Tables will be found in
Baily’s Astronomical Tables and Formule, page 154, and in
other works of a similar description. The process will be made
perfectly clear by the following example, in which it will be un-
necessary to give in detail either the determination of the hour-
angles from the observed times, or that of the true zenith di-
stances from the readings, these operations having been already

sufficiently explained and illustrated in the preceding séctions.

have been constructed for

the quantities

July 26, 1858. Bar. 2992 inches. Therm. 59°.
a Ophiuchi on Southern Meridian.

H z. 2 si.n2 $H 2 si‘n‘ +4H

sin 17 sin 17
m s o ¢ " " "

—12 170 38 0479 2962 o021
8 514 37 58 177 154°0 006
6 170 37 57 43 77°5 oo1
- 1232 37 55 5073 38 ©"00
+ 1 4273 37 55 47'8 &7 o'o0
4 257 37 56 268 - 385 o°00
7 53°3 37 57 518 1222 0’04
+ 8 505 37 58 27°3 153°5 0’06
Means .... 37 57 342 10643 oo§
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For the computation of Q, and Q,, assuming Z = —37° 56'
and ¢=Z7Z+ 7=39° 24/,

log sin ¢ = 980259 log Q; = 000320 ,'—,-SZ- 37 57 342
log sin » = 9°'98930 log Q;2 = o0°00b40 )

Sum = 9°79189 logcot Z m 0'10823

log sin Z = 9°78869 log Q; = o'11463

log Q, = 0'00320 log 005 = 877815

log 106.43 = 2°02706 log 2nd correct. = 8'89278— nat.no.=+ o o ‘o8
log 1stcorrect. = 2°'03026 — natural no. = 107”22 =— 147 22

Z=—37 55 471
*= 7720 3§

$= 39 24 164

Should the object observed change its polar distance, as in the
case of the sun, then Z in any one of the above equations will
represent the meridian zenith distance, on the supposition that
the polar distance at the time of observation is that at the time
of transit. Hence if 2 be the interval to meridian passage ex-
pressed in minutes of time, and Az the variation of 7 in one
minute,

true meridian ZD=Z—%. A,

and the correction to the value of Z derived from all the ob-
servations on the supposition of the polar distance remaining
unchanged, will be

—l-zk.A'ﬂ',
n

or we shall have to subtract from the value of Z given by the
above process, the product of the mean of the intervals, with
their proper signs, and the variation of the polar distance in one
minute, the mean of the intervals being expressed in minutes.

5. To find the latitude and time by means of two observed
altitudes, either of two different objects, or of the same object,
an interval elapsing between the observations, and the latitude
being known to lie between given limits within some minutes
one of the Sther.

Let ¢, ¢' be the given limits within which the colatitude lies ;
T,, T, the times of observation by the watch, T being the in-
terval T,—T, corrected for rate; §, &, the true zenith distances
of the observed objects at T,, T, ; 7, and 7, their polar distances.

Then, assuming that ¢ is the true colatitude, we may, by the
process given in section 2, determine the time from each of the
observations. Let usdo so; and H,, H, being the resulting hour-
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angles, let #,, ¢, be the corresponding times. Then, if ¢+ 8¢ be
the true colatitude,

cos¢.sinr,.cosH, —sin¢.cosm,

true time at T, =4+ sin¢.sinm, .sm H,

Odp=t,4m,.0¢;

cos¢p.sinry.cos H,—sin¢. cosm,

at To=ty+ sin ¢ . sin 7, . sin Hy

Sp=t,+my.0¢;

and by subtraction,
Interval =T=¢,—¢,+ (my—m,) . 8¢,

o 8p=(T—(t— 1)) + (mg—m,),

.. true colatitude ¢+ 8¢ is known, as are likewise the true times
t,+m,. 8, ty+my. 8¢ at T,, T, respectively.

Instead of computing m,, m; by the above expressions, it will
be found more convenient to compute again in the ordinary way,
with colatitude ¢/, the times ¢, ¥ Then if n be the number of
seconds of arc in the difference ¢'— ¢, we shall have

1 1
ml=;(t’l_tl)’ me'-;(t’e—te)-

The expressions for m,, m, are useful however as showing us
the cases in which m,—m, will be small, and in which therefore
the results of the process will be comparatively inaccurate. These
are evidently,

1o When 7=, and sin H, = sin H, nearly, or when the
same object is observed twice, the interval between the ob-
servations being small when it is near the meridian, or even
considerable when it is distant from the meridian, and upon
the same side of it on both occasions.

2°. When the numerators of the expressions are both small,
that is, when the objects are situated near the prime ver-
tical, either upon the same or opposite sides of the zenith ;

and in other cases likewise in which the quantities nearly fulfil the
condition m,=m,. But it is evident that if we want the lati-
tude particularly, and are comparatively indifferent about timne,
we may with advantage observe the same object twice upon op-
posite sides of the meridian, and not very far away from it ;
whereas, if we are anxious about both elements, the best com-
bination will be that of an object near the meridian on one side,
with one near the prime vertical on the other, or the latter with
a circumpolar object at any hour-angle whatever. We remark,
moreover, that it is not absolutely necessary that the true lati-
tude should lie between the assumed limits; it may lie a little
beyond either one or the other.
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Ezample.—July 14, 1858. Bar. 29-87 inches. Therm. 63°.
Assumed limits of latitude 50° 80’ N. and 50° 40' N., or

$=39° 20/, ¢'=39° 30..

B Urse Minoris.

h m s
At 9 47 19°6 by watch,

o ’ "
(=28 22 25 .

Arcturus.
At 10 19 23 {=52 39 52
o hm s
The first observation reduced with colatitude 39 20 gives #; = 17 18 16%
» 39 30 ¥ = 17 15 14°9
The second observation, similarly reduced, gives s = 17 48 414
¥s = 17 48 578

The watch was losing 10 seconds daily from mean time.

=82%7 log

= 191751

947977 my=—0"30184

m s
Interval by watch = 31 42°7
Correction for Rate = +4o2
True mean interval = 31 42°9
Acceleration = 452
T = 31 481
=4 =30 25'¢
Difference = 1227
¥)—t;=~—131"1l0g = 2.2§792
n= 600 ‘olog = 277815
Diff. = log —m, =
t3—ty=+4 16°4log = 1'21484
logn  =2-77815
Difference =~ log mg = 8°43669 my=-+-0°02733

mg—m=+032917log  =9°51742

log 3¢ = 2°40009

log myg = 843669

log my.8¢p = 0°83678
my.0¢p = + o™ é6%g
ts 17%48 414
Sum

Difference = log d¢ =2°40009= log 251"

dp=40" 4’ 11”

¢= 39 20 ©

true colatitude= 39 24 11
latitude= 50 35 49

17 48 48'3 = true sidereal time when the watch indicated
: 108 19™ 23,

Should the resulting value of the latitude in any case fall much
without the assumed limits, we may assume new limits which
shall include it and repeat the process.

6. Of the two elements of geographical position, latitude may,
as we have seen, be determined with considerable accuracy by
means of observations sufficiently simple in themselves as well as
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easy of reduction, and we have now to treat the second element,
longitude.

Difference of longitude is measured by difference of time,
either mean or sidereal, so that a phenomenon being visible at
the same instant from two places, and spectators at those places
observing each the local time of its occurrence, the difference
between the times observed will be the difference of longitude.

The moon in the course of its revolution in its orbit is con-
tinually changing its apparent position with respect to other
celestial objects, and were this apparent position unaffected by
either parallax or refraction, we should have at every instant of

“time, in the angular distance between this and another object, a
phenomenon such as we desire, by means of observation of which
difference of longitude could at once ascertained. But
although the introduction of parallax and refraction complicates
the problem, the phenomena presented by the moon’s motion
are nevertheless available for our purpose; for we can ascertain
the effect of these complicating causes, and thus, having given
the apparent distance of the moon from the sun, a planet, or star
as seen by a spectator on the surface, can determine what would
be its apparent distance at the same instant to a supposed
spectator at the centre of the earth. The process of calculation
which this determination involves being performed upon ob-
servations made at two places, we have two local times corre-
sponding to two distances between the moon and another celes-
tial object, as the phenomena would appear to an observer at the
centre; and the observation being repeated at one of the places
at intervals of time, and the succegsive observed distances re-
duced to the centre in the same manner, we may by interpola-
tion ascertain the local time at this place corresponding to the
reduced distance resulting from the observation made at the
other. The difference between the local time thus interpolated
for one place and the time observed at the other, being that of
the local times of occurrence of the same phenomenon, will be
the difference of longitude. .

But the laws which regulate the moon’s motion, as well as the
constants involved in the formule expressing those laws, being
tolerably well known, we are able to predict what would be the
apparent position of that object to a supposed spectator at
the centre of the earth at any given time of a given meridian;
and in the ‘Nautical Almanac’ we find in tabular form, not
only the geocentric right ascensions and declinations of the moon
for every hour of mean time of the meridian of Greenwich, but
likewise the geocentric distances of certain objects from the
moon’s centre for every third hour of time of the same meridian.
These Tables, therefore, if they were absolutely exact, would
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render observations at two places unnecessary, since, having
observed a lunar distance at the place the longitude of which
we wish to determine, and having thence calculated the geocen-
tric distance at the time of observation, we might find from the
Tables the Greenwich mean time at which the moon and object
observed were separated by the resulting angle ; and this being
reduced to sidereal time, the difference between the Greenwich
sidereal time and the local sidereal time observed would be the
longitude of the place of observation east or west of Greenwich.
The Tables are indeed sufficiently exact to enable us to obtain in
this way a result not far from the truth; but if we wish to turn our
observations to the best account, we shall bear in mind that the
moon’s tabular places are liable to future correction, the amount
of which may either be ascertained on the publication of the
results of observations made at fixed observatories, or deter-
mined more accurately at some more remote date by careful
comparison of such observations in great numbers.

Now the circumstances of the operator who observes a lunar
distance are not always the same. He may either know nothing
of the longitude of the place of observation, and may wish to
determine it, or he may know the longitude approximately and
wish to ascertain it with greater accuracy; or, again, he may
wish to obtain a tolerably goed result immediately and be indif-
ferent about correcting this subsequently for errors in the tables,
or he may desire his result to remain a perpetual record, and
therefore to express it in a form in which it will be possible for
those afterwards interested in it to make the proper corrections
on account of errors which may at some future time be discovered
in the data employed by himself in the reduction. We will
suppose the case which includes all, and take that of an operator
who does not know his longitude within an hour¥, but wishes to
obtain at once a result sufficiently accurate for immediate pur-
poses, and at the same time such as may be corrected sub-
sequently, and rendered as trustworthy as a result of an observa-
tion of this class can well be. -

We suppose the colatitude ¢ and sidereal time or right ascen-
sion of meridian T obtained. The observation for longitude will
then consist of the following parts :— -

1°. From five to ten observed distances of the moon’s limb
from the limb of the sun or the centre of a planet or star at in-
tervals of from 1 to 2 minutes.

2°. Three altitudes of the moon at such intervals as will

* Tt is scarcely possible to conceive circumstances under which a traveller
conveying a Sextant would not know his longitude: within an hour, or even
the half of it.
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cnable us to obtain by interpolation the apparent zenith distance
of this object at the mean of the times of the observed distances.
3. Three similar observations of the second object.
4°. The barometer and thermometer at the time of observation.
To determine from these a result in the first place sufficiently
accurate for immediate purposes, we suppose the earth’s figure
spherical, and the centre situated in the line which represents
the direction of gravity at the place, at a distance equal to that
of the centre of the spheroid ; and as a consequence, we assume
parallax and refraction to take effect each in a vertical plane.
Let Z be the zenith; M the position =z
of the moon’s centre as seen from the
centre of the earth at the mean of the
times of the observed distances; and
M/, in the arc ZM produced, its ap-
parent position as seen from the place ™
of observation.
Similarly, let S and §' be the two ™
corresponding positions of the centre of the second object. Then

M'S' = apparent distance of the centres of the two ob-
jects at the mean of the observed times,

= corrected mean of observed distances between
limbs + apparent radius of moon + ap-
parent radius of second object . . . . . =u,

ZM' = apparent zenith distance of moon’s centre . . =¢
ZM = ¢, — parallax + refraction I
~ Z§' = apparent zenith distance of second object . . =z
ZS = z, — parallax + refraction . . . . . . =z
MS = geocentric distance sought . . . . . . . =y

and proceeding as we did in section 17 of Part I., making

sin6,.sin (6, —u,).sin ¢ .sinz,

=1 Q d si 20 = 3 1 1
0,=4% . (v +& +2,) and sin® 6, sin{,.sinzg.8in?} (§,+2,) ’

we shall have

sin ju,= sin (§,+2,) . cos 6, ;

and thus, the values of u,, &, 2, §, 7, being known, we may
compute that of «,.

But of the quantities u,, &, 2, ), 2,, two, viz. §, and z,, may
be at once derived from the observations of altitude of the
objects ; and if
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p = radius to place + earth’s equatorial radius*,

» = equatorial horizontal parallax of moon at time of ob-
servation,

P = equatorial horizontal parallax of second object t,

we may compute {, and z, by means of the formulz
§i=&+ refraction —p. p{.sin (§+ refraction),

2z=2,+ refraction — P.sin (2,4 refraction).

To determine u,, let
r= horizontal radius of moon at time of observation,
R= radius of second object.
Then, -
sin (& +refr.)t
r e -
sin &
apparent radius of second object =R — effect of refraction,

apparent radius of moon = effect of refr.,

where the effect of refraction in the first case is

(refraction at centre — refraction at upper limb) x cos?Z M'S!,

and in the second,

(refraction at centre — refraction at upper limb) x cos2Z S’ M'.

These last corrections are invariably small and quite unnecessary
when the moon and sun (if this be the second object) are within
40° of the zenith; and little will he gained by applying them
even for much greater zenith distances, except when we are pur-
suing the more accurate method of reduction which we are about
to treat. In cases, however, in which we wish to apply them,
we may employ the approximate value of u,, which will be de-
rived from the assumption that » and R are the apparent radii

* If e be the éxcentricity of the earth’s meridians =0-081697, and ¢’ the
geocentric colatitude of the place, we shall have cot ¢'=(1—e?) . cot ¢,
and p=V 1=+ Vv 1—¢ .sin?¢'.

1+ We write € equatorial horizontal Farallax ? for the sake of uniformity ;
but in fact the horizontal parallax of all objects except the moon is the
same practically for every point on the earth’s surface.

1 pp, which is called the horizontal parallax at the place, may be found
at once by subtracting from p the correstion for latitude given in most
collections of tables. And similarly, a little further on, the augmentation
to the moon’s horizontal radius may be taken from the Tables and applied
to r,—this, however, not including the effect of refraction.
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of the objects, and with this and the values of §, z, compute the
angles ZM'S§/, Z§'M' from

sin® § Z M’ §=n i(za"ge'!"‘i) -8in §(z,+ &—u,)
sin,.sny,
sin®} Z§' b %(Ce"‘ze""‘e) - 8m #(&—2+1uy)
: 8in z, . sin u, ]
taking the difference of refraction at centre and limb from the
Tables. ’ ,

Let (r) and (R) be the apparent radii thus determined; {2 the

mean of the readings corrected for instrumental errors ; then

) U=t (r)+(R),
and the five quantities necessary to the determination of u, being
thus known, we may compute this by the formula already given.

Let M be the Greenwich mean time at which the tabular
geocentric distance is u,*, and S the corresponding Greenwich
sidereal time. Then longitude of place of observation =S—T,
reckoned positive or negative according as it is west or east.

7. But we propose, in the next place, to obtain a more accurate
result than the above process will give, and at the same time,
by the introduction of terms expressing the effects of tabular
errors, to render it more complete.

Let the earth’s figure be now
treated as spheroidal, Z' being the
point where the radius to the place
produced meets the sphere, and Z the
zenith, as before. Let M be the posi-

_tion of the moon’s centre as seen from
the centre of the earth, and M’ in
the arc Z'M produced its place as
affected by parallax alone. Then
M’ M" in the arc Z M' being the effect
of refraction, M” will be the moon’s apparent position at the
place of observation.

Similarly, let 8 and §' be the true and apparent places of
the centre of the second object. These we may gpppose situated
in the same vertical arc Z S, the effect of parallax upon any
object except the moon being so small as to render insensible
the difference between the result derived on this hypothesis and
that which we should obtain by treating it as occurring in the
arc Z'S. Then M"8' being the apparent distance between the
centres of the objects, M'S will be the distance corrected for

2

b

* For the method of obtaining M, refer to the explanation given at the
end of the ¢ Nautical Almanac ’ under the head  pages xiii to xviii of each
month.’
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the effect of refraction alone upon the moon, and that of parallax
and refraction combined upon the second object ; and M § will
be the true geocentric distance sought.
The notation we shall employ in the treatment of the question
will be as follows:—
¢ = geographical colatitude of the place of observation.
¢/ = geocentric colatitude.

p = radius to place =+ earth’s equatorial radius.
T = RA of meridian at time of observation..
! — approximate longitude, determined by the process last

described, if not previously known.
T +1 = assumed Greenwich sidereal time; and this converted
into mean time giving ¢ to the nearest minute,
t  will be the assumed Greenwich mean time, for which
we take from the Tables the following quantities :—

a = moon’s geocentric right ascension.

7 = moon’s geocentric polar distance (= and ¢ being re-
ferred to the same pole).

» = moon’s equatorial horizontal parallax.

r = moon’s horizontal semidiameter.

A, II, P, R the same elements for the second object.
For the remaining quantities,—
h=T—a; H=T-—A,
M =g ’M=Y; ZM'=¢, ZM'=¢g,
= ; 28 =z, ZS =z,
M"S' =u,, M'S=u,, MS =u.
Now from the triangles Z M' S, Z M" §', we have, '

sin ;. sin(6,—u,).sin §, .sinz,

making 6,=1 . (4 + &+ 2,) and sin®6,= Sn &, sinz, ST RC 17

sin $u, = sin 1(§;+2,) . cos 0, ;
and similarly from the triangles Z'M'S, Z'M 8§,
sin @ .sin (' —u,) .sin ¢
sinf.sin?d(f+2)

making &=}, (v, +& +2) and sin?f=
gin ju=sin }(&-+2) . cos §,

and thus, the quantities §, ¢, &, &, 2, 2, 2o, 4, being known,
we may compute successively %, and u.
But for the computation of ¢ we have (see section 17 of

I art I-)
tan 0 ] (\os¢l oS 9
-— tan ¢ . COS ,l, CcOoS é —,’__._-(_____)

cos 8 ’

G
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and ¢'=¢+pp.sing-+}.p%?.sin2¢.sin 1" + § . g% .sin 8¢.sin®1" + &e.
=E+pp.sin £+ (p)*.
We might in the next place compute Z M from the equation
cos ZM= cos¢.cosm+ sing.sin.cosh,

and then from the triangles ZZ' M, Z Z' M’ derive Z M'={,, just
as we derived u from the triangles MZ'S, M'Z' §'. But the
equation
cosu;—cos §,.cosz; cosu,—cos,.cos z,
sin{;.sinz, ~  sin{,.sinz,

’

through which we derive the formula for the computation of u,,
being in fact equivalent to

u=u+Q.(5E—8)+Q . (2,—2)) + &e,

and the effects of refraction ¢ —¢,, and refraction and parallax
2,—2;, being not only small at any altitude at which it would
be proper to make observations of this class, but likewise not
sensibly changed in value in consequence of small variations in *
the values of ¢ and z,, we see that small errors in the values of
¢, and z,, as they will affect those of the coefficients Q, Q' alone,
will produce no sensible error in the result. Hence if in treating
the quantities which enter into the equation between u, and u,
we suppose §,=ZM'=ZM + MM/, our result will not be affected
to any appreciable extent. ‘ :

Let p'=pp .sin {+(p)=¢'—§
~ocos (G —p) = W, where tan §=tan ¢ . cos A+,

from which we may compute £, —p', and thence derive successively
¢, and §={ —refraction.

* Appended to this Part will be found a Table of values of (p) for
various values of p and (.

T Another method of proceeding will be to compute the angle ZZ'M from
sin ZZM="27-S07% :’i,'lsg‘“ h and thence {=("+(¢'—d) . cos ZZM, the sign de-
pending upon the quadrant in which the object is situated ; but when the
moon is very near the zenith, the best way will be to obtain {; by the more

neral process through the triangles ZZ'M, ZZ'M/, already mentioned.

hen the second object is the sun or a planet, and this happens to be near
the zenith, we must treat it in the same manner as wge do the moon : but
the better oourse in this case will be to wait until it has fallen a few

degrees.
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Similarly, for the computation of z, z,, 2;, we have
cos¢' . cos(I1—8)

cosz = cos 0 , where tan @ =tan ¢' . cos H,
cos z, =(£sj%;%—0), where tan §=tan ¢ . cos H,

2z,=2,+pP . sin z, —refraction.
And the quantities §, &, &, &, 2, 2, z, are thus determined.

Also © ug=0+(r) = (R),
where (r)=r. = ?—eﬁ'ect of refraction,
sin ¢

(R)=R —effect of refraction,

the effects of refraction upon the radii being computed in the
manner already explained; and all the quantities which enter into
the equations being now known, we may compute %, and u suc-
cessively, and by means of the latter determine from the Tables
the Greenwich mean time.

Let us now consider how the value of » will be affected by the
‘employment of an erroneous value of the moon’s equatorial
horizontal parallax.

u being derived from u, through the equation

cosu—cos §.cosz_ cosu;—cos ¢’ .cosz
sin ¢ - sin ¢’

or cosu .sin {'=cosu, . sin {4 cos z. sin (§'—¢),

we will suppose the moon’s equatorial horizontal parallax instead
of being p to be p+8p. Then, since p=1 nearly, the arc ¢’
would, by the employment of the correct value of the parallax,
be increased by the quantity 3p .sin {’; and to find the effect of
this increment on the value of u, we may differentiate the above
equation, assuming the two variable quantities to be » and ¢'.
Hence

—sinz.sin . Z—;+cosu.cos§’=cosz . cos ({'— &) =cosz nearly,

du _cosu.cos{'—cosz
¢~  snu.sml ’
this, multiplied by 8¢'=28p . sin ¢, gives

and

Su=

cosu.cosL"-—cOSz.8
sin u -
a2
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Again, should the moon’s horizontal semidiameter instead of
being r be r+ &7, the increment to u on this account will be
+ &r, the sign depending upon that of the apparent lunar radius,
as applied to the observed distance in the expression for u,.

Suppose, in the next place, that there is an error in the assumed
Greenwich mean time /, this giving rise of course to errors in
the RA and PD of the moon derived from the Tables, and con-
sequently to others in the computed zenith distances, of which
however it will be necessary to consider only ¢ and &', since it
has been already shown that a small error in §; affecting &, to
an equal extent will not materially affect the value of u,.

Let a + Aa, w+ Am be the moon’s tabular RA and PD at ¢+ 1
minute ; then if 8¢ be the increment to ¢,

8= si_:lf' ((cos¢'.sinm—sing'. cosmr.cosh) . Am—sing/.sin . sink.Aa ) ¥,

and the new value of ¢ will be {'+8¢.(1+pp.cos{.sin1").

Now we have already g%’___cos :i;lc:s fi'n—;os z, and we shall

o8, - €08 §—cos £, which, when entering
] ¢ siny, .sin§ ]
into the coefficient of a small quantity, may be considered the

same as .
ag’

.. du
sumlarly find _@= —

d di d .
8u=d—z,. 8§+d—;-, . 8(’:-‘%.pp.cos§.sml".8§

__cosu.cosl’ —cosz -

= p.cotf .sinl". 8¢,
which is the expression for the difference arising from an error
of one minute. Let M be the Greenwich mean time at which
the tabular distance is z, and » the number of seconds of time in
M—¢ Then, finally,

cosu.cos ¢ —cos 2z
Su= 2
60.sinu

Hence collecting the terms, the expression for the corrected
distance will be

.np.cot.sinl". &8¢

cosu.cos’ —cosz
60.sinu

+cosu.cos§’—cosz

sinu Op £+

.np.cot’.sinl". 8¢

* Tustead of computing this, we may if we please calculate { by the
ordinary formula, assuming the moon’s RA and P].};to be a+ Aa, 7+ Aw; and
the difference between this value of ¢ and that already obtained with RA
and PD, a and 7, will be &¢.



APPLICATIONS OF THE SEXTANT. 85

But U representing tabular distance, we shall have, generally,
cos U=cos7.cos IT 4sin7.sinII. cos (x —A) ;

and if the tabular right ascensions and polar distances are in-
correct, the true values of these elements being a4 8a, A+ 8A,
o+ &, I1 4 811, the true distance will be

sinar. sinII . sin (=
U+ snU
sin7r.cosII —cosmr. sinIl.cos (x — A)
+ snU o
cosr.sinIl —sin7. cosII. cos (« — A)
+ s U .11

Hence M being the Greenwich mean time at which the tabular
distance is u, and Au the tabular variation of the distance in
one mean second, the true distance at M + T seconds will be

—4) (5x—34)

sin7r. sinIl.sin («
sin u

utT.Au + —A).(Sa—BA)

sin7r.cosIl —coswr.sinIl.cos (a —A)
+ - O
sinu

cosr.sinll —sin7r.cosIl. cos(a— A)
sin

.OIL

Equating this with the expression which depends on the obser-
vation, and making

sin7.sinll.sin(A—a) 5. SO sinlII.cos (A —a) —sin7r. cosIT
K} —4

- = = 8
Au.smu Au.sinu i
sinvr.eosH.cos(A—a)—cosvr.sinl'[_s cosu.cos{!—cosz s
Au.sinu e Au.siny e
we have

remsy. (Ba—8A) 4 55,874 53, D11 . 8p £ A= O

+€1-0.s4.np.cot§'.sinl”.8§‘,

and corrected Greenwich mean time=M+ .
Let S be the Greenwich sidereal time corresponding to Green-
wich mean time,

1 .
M+@.:4.n.p.cot§'.sml".b‘;’,
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corrected Greenwich sidereal time

=S40, (B BA) 5y b4 5y BT 5, Ep k- B,
and longitude in time
=8S—T+ys. (84—8A)+s,.8‘n'+sa.8ﬂ+s4.8piALu.8r,

the corrections 8a, 8A, 8, &c. being expressed in seconds of
arc.

In the above investigation we have omitted to notice the effect
of the tabular errors —8a, —8II, &c. upon the computed zenith
distances, these being so small in general as in this respect to
be unworthy of notice. Even should the moon’s tabular place
be 15" in error, and should this lic entirely in the arc Z'M, the
moon itself being close to the point Z', the effect of such an
error on the parallax can scarcely exceed 0725; and in the
extreme case in which the second object is situated in the same
vertical plane with the moon, the computed value of  can be in
error onl{ to an equal amount. It 1s therefore clear that we
may safely neglect this, as we may likewise, and for similar
reasons, the effect of such small error as is likely to exist in the
latitude after its determination by any of the processes already
described.

Before we take an example, it will be well to collect the
formule into a convenient shape, leaving the example itself to
indicate the parts of the calculation in which it will be necessary
to proceed to seven places of decimals, and those in which five
and four respectively will suffice.

Approzimate Method. Altitudes of both objects observed.

T the sidereal time at the place. B
Q the mean of the readings corrected for instrumental errors.

Z, the apparent zenith distance of moon’s centre at T.

23 the apparent zenith distance of centre of second object at T.

2 the moon’s equatorial horizontal parallax.

P the horizontal parallax of second object.

r the moon’s horizontal radius.

R the horizontal radius of second object.

p the radius to place (earth’s equatorial radius =1).

1. I,=&,+refraction—pp . sin (£,+refraction).
2. z,=z,+refraction—P.sin (z,4refraction).
3. (r)=r. sin (Zg-s}i-Tll'gz:flraction).

4. u,=04(r)+R.

5. 0,=4%.(ug+%+2,).

Given
stance u, and thence

the longitude of the

To find the true di-
place.

* In treating these small corrections it is unnecessary to introduce the
factor for converting mean into sidereal time.
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sin 6. sin (0;—u) . sin &, .sin 2,

sin &y .8in z,.8in%}(2,+2))

. sind u; =sin } (§;+z;).cos 6,.

M =Greenwich mean time of geocentric distance u,.

. § =Greenwich sidereal time corresponding to M.

10. Longitude in time=S—T.
Final Method. Altitudes not observed.
8%
¢ the geographical, ¢’ the geocentric latitude; p the radius to place. &5
T the local sidereal time ; ¢ the approximate Greenwich mean time. 5 _‘;
g | a, 7 the moon’s geocentric RA and PD at #; Aa, Ar their variations | s $
E in one minute. -]
O | p, r the moon’s equatorial horizontal parallax and radius at 2. ol o
A, T, P, R the geocentric RA, PD, HP and R of second object at #. [E 8 S
Q the mean of the readings corrected for instrumental errors. ": 3%
F‘ @
1. A =T—a H =T-A.
2. tan 0 =tan¢’.cos A cosl =w.
cos 0
3.2 =pp.sin¢+(p) ¢ ={+2'.
4. tan 6 =tang¢.cos A cos (g, —p") =°M-—::__:9(ﬂ'—9)‘
5. &g =, —refraction.
’
6. tan 6 =tan¢’. cos H cos z =W.
_ cos 0
7. tan 0 =tan¢.cos H cos z; ___%.:‘:(S_II—_O).
8. z, =2,4pP. sin z; —refraction.
9. v, =9+r+R vg =11 +43+2).
10. sin24 M/ _sin (”2_'”1) . Si.n ("S-ZS) sin’}:’ sin ('72.—”]) . s?n (vﬁ' 7'2).
sinv, . sin { sinv, . sin 2y
s ’
1L (r) =r. :’;Zz — (refraction at moon’s centre —refraction at limb) X cos? M’
12. (R) =R — (refraction at sun's centre —refraction at limb) X cos?§’.
13. uy =0+4(r)+(R).
. 8in 6, . 8in (B;—uy) . sin &, . sin 2,
4, = 30, — 3 3 1 1
14. 6, Hut+dyt2) sint 6, sinZy.sin 2, .8in? §({,+ 2;)
15. sindy, =sin 4(¢;42,) . cos 6;.
16. _ , inag 8in0’.sin (6/—w).sing
6. ¢ Hoat+e'+2) i R T i)
17. sindu =sin § ({42).cos .
18. M =GMT of tabular geocentric distance «; n the number of seconds in M — 7.
19. Au =tabular variation of  in one mean second.
20. 8¢ =T111? - ((cos ¢’ . sin m—sin ¢’ . cos 7 . cos B) . A —sin ¢’ . sin 7. sin h. Aa).
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sinw.sinIl.sin (A—a) _cos.sinll. cos (A—a)—sin . cosII

A s Au.sinu 2 Au.sinu
22 sin 7.cosN .cos (A—a)—cos 7 .sinll . _cosu.cosy’—cosz
i .Au.siny - Au.sinu

23. True GMT=M+3, . (Ja—0A)+-8; . Omr4-85. M1 +-54. Bpi‘%‘ .6r+%—p.cot % .sinl” .88
24. S =Greenwich sidereal time to M+%" .cotZ’.sin.1”. 3% mean time.
25. Longitudein time =S —T-4#,. (5a—3A) + 3.7 42, Sl +#,.dp+ = . or.

The corrections da, 6A, dw, 811, 3p, dr to the tabular elements being expressed in seconds
of arc, and the terms representing the corrections to the longitude in seconds of time.
It will be obvious that when, knowing the longitude approxi-
mately, we employ the first or approximate method of reduction,
we may, instead of observing the altitudes of the objects, com-
pute their zenith distances by the ordinary formule.

Ezample. July 31, 1858. Bar. 30:23in. Therm. 64°.
wo=+1'6". Latitude 50° 36/,
Sun and Moon, the former direct, the shade employed being No. 5.

Local sidereal time. Reading. (w). E.
h m s ° " ° "
4 27 21 106 8 3 114 3% +t; 15°3
4 28 50 7 58 113 58 152
430 9 7 30 113 30 15°2
4 31 55 6 40 112 40 15°1
4 33 28 - 6 1 112 1 1570
Means 4 30 206 106 7 2172 E =40 152
-0 54'4 —w, =—1 6%
. Q=106 6 268 nande= o o'
g =-—o 36

Sum =-—o0 544

Observed altitudes gave—

h m s ° ’ “u
Apparent ZD of moon’s upper limb at 4 30 20:6=55 10 41
" sun’s lower s =59 39 56
The longitude of the place was known to be between Ob Om
and Ot 30™ west of Greenwich. Suppose we assume it at -
0Oh 15™ west, which will give the approximate Greenwich sidereal
time 4h 45m 2056, and mean time 314 20t 7=, For this latter
we take from the Tables,

Moon’s horizontal semidiameter =15 45=r
Moon’s equatorial horizontal parallax=>57 41=p
Sun’s semidiameter =15 48=R
Sun’s horizontal parallax =0 8=P

and are now prepared to proceed with the calculation.
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The rigorous method of proceeding would be to correct the
interpolated zenith distances of the limbs for refraction and
parallax, and applying to the results the true semidiameters, to
determine thus the true zenith distances ;, 2, of the centres. The
apparent zenith distances of the centres being then derived from
these by the formulz

&=¢& +pp . sin & + (p)—refraction
z,=2,+P.sin z, —refraction.
But in an operation of an approximate kind, no advantage would
be gained by this exactness, as at most it could only make a
difference of a second or two in the zenith distances, which would
produce no sensible effect on the result. To adhere then to the
course adapted to our formule, we have
Moon’s horizon- ¢ “  ApparentZDof] _ o ‘'
tal radius =1545 upper limb }—55 10 41
"
Ausg;g?]t)a jon at] _ 9 = 1554
Moon’s apparent| _ /& =55 26 35
radius } 15 54 Refraction = 123
Sum =55 27 58 log sin=9°91582
log p=13'53920
log p=9'99914™
Sum=13'45416

47 26NatNo.=47' 26"
Z =54 40 32 log sin=9°91163
log sin ({,+}-refraction)=9°91582

A ID o e} o5 * Diface oot
Apparent radius = 1548 log r=297543
A =59 24 8 log (r)=2'97962
Refraction = 1 36 (,.)xlsl 54"
Sum =59 25 44 logsin=9'93500 -
log P=0r90309
Sum=0-83809
o 7 Nat No. =W——
5 = 59 25 37 . @ =106 627
4 = 5440 32 " = 1535
Sum =14 6 g R = 1548
3¢ +2) =57 3 45 %, =106 38 ¢

* For geographical latitude 50° 36', and may either be taken from the
Tables or computed by the formula already given.
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Brought forward

Kot2) =57 3 45 vy =10638 ¢
& = 552635
z3 =15924 8

Sum =221 28 52
6, =110 44 26
O—u= 4 6 17
log sin 6, =gg7o901s logsin} (Z,4+5)=9'9238438

log sin (0,—u,)=88547896  Double =9°8476868
log sin I, =9'9r16321  log sin , =9°9156967
log sin 2, =9'9349937 logsin z, =9'9348830

Sums =8'67z;x69/9'698266 5
9°698266

logsin?6,  =8g740504 log sin } (L1+2)=9'9238434

log sin 6, =94870252  log cos 6, =9'9785162
lgsinju,  =ggca3sgb
1y =353 o 7"
u, =106 o0 14

Tabular distance July, 319 188 =107 o 27 PL=2855%*
Difference= 1 o 13 PL=4756
PL of 1 56 11*=Diff. = 1901
3118 o o

Sum=31 19 56 11
Correction for 2nd difference= 4o 4

M=31 19 56 15

Sidereal timeat Greenwich mean noon on the 31st 8 35 1628

19 hours mean in sidereal time 19 3 727

56 minutes 56 920

1§ seconds 1504
S= 4 3¢ 48
T= 4 30 21

Longitude in time= +o0 4 27

We might now, if we wished, amend the calculation by the
same method, taking from the Tables the moon’s equatorial
horizontal parallax and semidiameter for 19" 56 G.M.T. instead
of 20k 7m first assumed ; but the difference in the result would
be very trifling, the variation of the parallax during the interval

* The particulars of this process are given in the explanation appended
to the ¢ Nautical Almanac’ of every year.
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being only 0"-3, and that of the radius practically nothing. We
propose, therefore, as a second example, to treat the same ob-
servation according to the more accurate method, taking the
following quantities from the Tables for 192 56 G. M. T.*.

a=1b 18™ 23%15% Aa=+30""7§
T=77"49 4" Ar=—14"59
p=_ 57 406 r=15"45"2
A=8" 44™ 35735, M=71°54' 9", P=8"5, R=15"47"9.
And with respect to the remaining quantities :—
$=39" 24’ 177, ¢'=39° 35" 35", log p=9'99913543-
T=4" 30™ 20%6, Q=106° 6’ 26”8
1.
T= 4b 30™ 20*60 4 30™ 20%60
a= 1 18 23°15 ) A= 8 44 135°35
h=+3 11 57°45=+47°59"22" H=—4 14 14°75=—63"33" 41"
2 and 3.
logtan ¢'=991754  logcos ¢’  =g'88682 logp =9'99914
log cos A=9'82560  log cos 6 =9'94196 logp =3'53915
log tan 6 =9°74314  Difference =9'94436  {=54° 34" 53" logsin =g'g1113
0=28°57" 56" logcos (r—0) =9°81823 Sum =3'44942
=77 49 4 logcos{ =9"76309 Nat.N.=46’ 54"°6
7—0=48 51 8 (» = 27"

47 22" 1 p 547' 22”1
zl= 55° zz/ Is”"

* In the next chapter the reader will find an example of reduction in the
case of a star observed with the moon, the zenith distances being either ob-
served or computed.

+ These are interpolated from the Tables with first and second differ-
ences. A Table for facilitating this operation will be found appended to
this Part ; but it is to be remarked that such extreme accuracy is by no
means necessary. The parallax of the moon, and the elements of the sun’s
place have in this instance been computed in the same manner.

1 Should the operator prefer comgutmg ¢’ and p to taking them from
tables, he may employ the formula of the note at page 79. Thus

log (1+-€)=0r0341058 log e =8'9122061
log (1 —e)=9'9629860  log sin ¢’ =9'8043648
Sum =9°9976918 log e.sin¢’ =8'7165709=1log ‘052068

log cot$p =o'0853674  log (14-e.sing’)=0'0220438
log cot ¢’ =0'0824592 log (1 —e.sin ¢')=9°9767772

o =39°35"35” Sum =9'9988210
log (1—¢%) =9°9970918
log p* =9'9982708

log p =9'9991354
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4, 5.
log tan ¢ =9"91463
log cos A=g'82560

log tan 6=9'74023

=28°48" 12"
T=77 49 4
w—0=49 o0 52

6
log tan ¢’=9'91754
log cos H=9'64859

log tan 6=9°56613

0=20° 12’ 57"

O=7154 9

IM—0=51 41 12

7,8.
log tan ¢ =9°91463
log cos H=9'64859

log tan 0=9"56322

M=71 54 9
IM-0=51 48 40

9, 10.
Q=106° 6
r4+R= 32
v, =106 38
&= 55 26
%= 59 24
Sum=221 28
v, =110 44
v—v,= 4 6
v,— 3= 55 18

log cos (5, —p)=9'76217 4, —p" =54"40" 3"
¥ =_4172
4 =55 27 25
Refraction = 1 22°7
no =5
log cos ¢’ =9'83682
log cos 6 =9'97238
Difference = 9—9744
log cos (I1—6) =9'79237
log cos z =9°70681
z =59°23" 44"
log cos ¢ =9°88800
log coz 6 =9'97274
Difference =9'91526
0=20" 5'29" log cos (II-6) =9'79117  logp =9'99914
log cos z, =% log P =0'92942
% =59°25"30" logsin  =9°93499
Sum =0'86355
Nat. No. =+ 73
Refraction= —96'"*3
- 1 29°c Sum =—89'"0
% =59 24 10
log sin (v,—v,) =88543
log sin v, =99814
Difference = Fn; —_— 8:8729
log sin (v3—%5)=9'9149  log sin (v,—z,)=g8925
Sum = 8—78? Sum =§Tm
log sin &, =9'9156 log sin z, =9'9347
logsin?{ M’ =88722 log sin2 4 &’ =W3m
logsin{ M’ =9'4361  logsin} s =94154

log cos ¢ =9°88800
log cos 6 =9'94265
Difference =9'94535

log cos (w—0) =9-81682

APPLICATIONS OF THE SEXTANT.
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*Ml =‘sos°l *‘[ =!s° 5,
M =31 40 4 ' =130 10
11, 12. -
The difference between the refraction for limb and
centreofmoon . . . . . . . . . . . . =0"8
, ofsun . . . . . . . . . . . . . =1"0
log r =2'97552 log cos M’= 99300 log cos 8’ =9°9368

log sin §' =9'91532 Double =g°860c0 Double =g9°8736
Sum =2'89084 log 0’8 =g°9031 log 1 =0"0000

log 8sin { =g°91113 Sum =9'7631 Sum =9'8736

Difference=2'97971 Nat. No. =06 Nat. No. = o7
Nat.No. =15"54"4 / R =15 47°9
—o0 6 (R) =15 472
Q) =1553'8 7 =59° 25 30"
(R) =15472 & =55 27 25
13, &c.
Q =106° 6 26 '8  }({+2) =57 26 27's logsin 99257439
u, =106 38 78 log sin £, =9°9157692 Double 98514878
L, =155126 23 log sin  9°9156493
z, =5924 170 log sin  9°9348743
Sum =221 28 11 °1 log sin 2z, =9°9349850
0, =110 44 § 6 log sin  =g9'9709178

6,—u,= 4 5 57°'8 logsin =88542259
Sums  =8'6758979 9'7020114
9°70201 14/
log sin? 8, =8-9738865 logsin § ({1+2,)=9'9257439

log sin 6, =9'4869433 log cos 6, =9'9785247
log sin 4 u; =9'9042686

tw, =53 2017

) =106 40 3§ °O

¥ = §52215°1 I=54" 34 5370
z = §9 23 44 © 59 23 44 °
Sum =221 26 34 ‘1 4 (Z+2)=56 59 18 '5
4 =110 43 17 ‘1

O—u, = 4 242°1

log sin ¢ =9'9709564
log sin (6’ —u,;) =88484381

log 8in ¢ =9'9I11254
Sum =8'7305199
log sin &’ =9"9153193
Difference =8-8152006

Half =9'4076003
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Brought forward
Half =9°4076003
logsin } (+2) =9°923 5347 9°9235347
log sin 0 =9°4840656 logcos 6 =g9'9788217
- log sin 4 ¥=9°'9023564
bum s o 570

u=106 o0 10
Tabular distance at 314 18® G.M.T.=107 o0 27 PL =128555

Difference=" 1 o 17 PL =47508
PLof 1t 56™ 21* =Difference =-1F53.
31918 ‘o o -
Sum=31 19 56 21
Correction for second difference= + o 4

M =31 19 56 25§
‘ t = 19 56 o
n = +25
19, &e.
Au=—0""5181 log =9'714.4,log--£—'; =02856
5 . X
log sin u =g°9828 v 1'930
log—Au.sin u== Sum =9'6972

We might now obtain 8¢ by the formula of line 20 ; but as an
example of this will be found in the next chapter, we will here
compute £+ 8¢ by the ordinary process,

7T+ Ar=77° 48' 49", h43h=h—Aa=47° 58' 51",

log tan ¢’ =9'91754  log cos ¢’ =9'88682

log cos (h+4-0k)=9'82567 log cos 0 =9'94195

log tan 60 =g'74321  Difference =9'94487

0 =Wlo" log cos (w+Ax—0)=9-81830

m+Ax =77 48 49 logecos (+82)  =976317 L+8%=54° 34" 25"

n+Ax—0 =48 50 39 I =54 3453
8 = —28

21, &c. A—a=h—H=111° 33"

log sin 7 =g9'9901 log cos w=9°3244 log sin # =g°g9g01
log sin IT =9'9780 - 9'9780 log cos TT =9°4924
log sin (A—a) =g9°9685 Sum =9'3024 Sum =9°482%

Sum =9'9366
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Brought forward .
log sin (A—a) =9°9685 Sum =9¢'3024 Sum = 94825
Sum =9:'937 log—cos (A—a)=9°5651 Nat. No. =-+:;3_8
log—Au.sinu =g°6972 Sum =8-8675 Nat. No. =—‘0737
log—2, =0"2394 " Difference= —*3775 log=9°5769
2, = _;-7_3:’ log— Au.sinu=9'6972
log s, =w
s =+40758
log sin 7. cos IT=9'4825
log—cos (A—a)=g95651
Sum =9'_o476_ Nat. No. =-—-1126
log cos 7 .8in [I=9°3024 cos x.sin [I=--2007
T Difference = —-3123 log=9"4946
log—Au.sin u=9'6972
log s, =9'7974 &=+0'627
log—cos u =9°4404
log cos ¢’ =97546
Sum =g9'1950 Nat. No. = —‘1567

Nat. cos z= ‘5091
Difference = —'6658 log=98233

log—Au.sinu=96972

log s, =o0'1261 8,=+1'337
log n =1.3979
log p =3'5392

logcot &  =g8393
log sin 1” =46856

log—d% =14472
log &% =8'2218
Sum =9'2571 Nat. No.= —o*18

a correction to M, which in the result of a process of this de-
‘scription it is unnecessary to notice. S will therefore in this
case be the Greenwich sidereal time corresponding to mean
time M : or
S =4h 34m 58s
T =4 30 21
Longitude in time= +4 37—1-736 x (8«—8A)

+0-758 x 8w+ 0627 x 81T + 1-337 x 8p —1+930 x &r.

8. There is yet another method of treating lunar distance, the
principle of which may be briefly explained,

The distance between the two objects as affected by parallax
being expressed in terms of the tabular elements at an assumed
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Greenwich mean time, and of the corrections due to these elements,
as well as to the assumed time and the latitude of the place, we
may calculate the several parts, and, having done this, equate the
whole with the distance derived from observation, correcting the
latter for refraction alone, and adding terms representing the
quantities to be applied on account of errors in the tabular semi-
diameters. But reduction by this method is extremely laborious,
and the results will be practically the same as those obtained by
the above method in every case in which the Sextant can be em-
ployed to any purpose,—although, in cases in which the distance
18 so small as 1t is on the occasion of an occultation or eclipse for
example, it will be necessary to have recourse to it or to some
other equally exact process. The reader who wishes to make
himself acquainted with this method may consult the Appendix
to the ‘Nantical Almanac’ for 1854, where he will find it treated
at length in a paper by Professor Challis; and should he be
disposed to apply it to the observation which we have treated by
the other, he will obtain the result,

Longitude= +4m 375—1-754 x (8a —8A) 40765 x &
+0-630 x 811 + 1-350 x 8p—1-930 x &r + 0-008 x 3¢,

which, as will be seen, is practically identical with the above,
the last term showing us also how small an effect is produced by
an error in the assumed latitude.

9. In addition to the subjects treated in the foregoing pages,
the Sextant is sometimes applied to the determination of the
right ascension and polar distance of a celestial object, for ex-
ample a comet. In this case it will be necessary to observe the
distances between the object and two well known stars, the three
forming as nearly as possible an equilateral triangle, and to
remark at the same time the position of the former with respect
to the arc joining the two latter,—whether above or below it, to
the right or left. The observations being corrected for instru-
mental errors, the process of reduction will be sufficiently simple.

Let Z be the zemith ; M the apparent 2
position of the object of which we wish:
to ascertain the right ascension and
polar distance ; and S, §' the apparent
positions of the stars with which it is
observed. s

By the ordinary formule we may
compute the apparent zenith distances
ZS, Z8', the azimuths PZS, PZS/, and M
the apparent distance SS'; and the apparent distances SM, S'M
are derived from observation.
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1o, From AZSS', having the three sides given, we may compute
the angle ZS§'.

20. From AMSS/, we may similarly compute the angle MS§'.

8o, ... LZSM= £ZSS'+ £MS§' is known.

4°. From AZSM, having given two sides ZS and SM, and the
included angle ZSM, we may compute ZM, which is the apparent
zenith distance of M, and the angle SZM, which is its azimuth
from the vertical ZS. Correcting the former for refraction, and
applying the latter with its proper sign to the azimuth PZS of §,
we know the zenith distance and azimuth of M affected by
parallax alone.

5°. Treating the zenith distance and azimuth just found by
the ordinary formule, we may determine the right ascension and
polar distance of M affected by parallax alone.

10. It will not be out of place, in conclusion, to present in order
the formule by means of which the origin of the elements of
position is transferred from the pole to the zenith, and vice versa,
these being frequently employed in the course of practice with
the Sextant.

1o, Given the colatitude ¢ of the place, and the hour-angle H
and polar distance 7 of the object, to compute the true zenith
distance ¢ and azimuth Z, the {atter measured from the polar
meridian, and reckoned positive or negative according as it is
west or east.

[ | cos ¢ cos (m— 0)*
1. tan f=tan ¢ .cos H, cos {= wos 0 .

To be preferred when ¢ is less than o, and ¢ not small.
cos 7. cos (¢p—6)
cos 6 )
To be preferred when 7 is less than ¢, and & not small.
3. tan 9= V/sin . sin ¢ .sin H’ sin} £= sin} (m—¢)
sin 3 (T —¢) cos 0
To be preferred when ¢ is small.

3 2. tan f=tan 7.cos H, cos {=

For ¢

1. sin Z=sin . sin H
sin §
<{  May be employed when Z is either small or nearly 180°.
2. 0=} t Zz\/sin 6—¢).sm (=9
L # (p+7+{), tan} sin @.sin (§—x)
To be employed when Z is nearly 90° or when under any

For Z-

* This is the formula invariably given in the treatment of lunar distances;
but it must be understood that the others ought to be employed on occa-
sions on which the conditions render them preferable.

H
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circumstances there is a doubt as to whether we should take the
angle from the Tables or its supplement as the true value.

2°, Given the colatitude ¢ ofp the place, and the true zenith
distance ¢ and azimuth Z of an object, to compute the true polar
distance and hour-angle. _
(1. tan O=tan ¢ .cos Z, cos w=w

cos 6

To be preferred when ¢ is less than .

2. tan @=tan &. cos Z, cos =2 C-::: (¢_.0)

To be preferred when ¢ is less than ¢.

For .
A

3. tan 0= x/sin-¢.sin ¢.sin {,Z, sin } w__.sin},(gb—().
- sin § (p—¢) cos
~ . _sin{.sinZ

1. sin H_W'

May be employed when H is either small or nearly 180°.

1 1 H— . /8in(0—¢).sin(—)
2. 0=} (p+m+0),tan }H \/ G o,
To be employed when H is nearly 90° or when under any
circumstances there is a doubt as to whether we should take the
angle from the Tables or its supplement as the true value.

For H.
AL
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CHAPTER II.
APPLICATION TO NAUTICAL ASTRONOMY.

OBservaTioNs made at sea for the same purposes as those
made on land differ from these only in the degree of accuracy
attainable, being inferior on several accounts. In the first place,
the ship’s motion disturbs and embarrasses the observer; andin
the second, it being impossible to have recourse to the reflecting
surface of the mercury in the artificial horizon, we are compelled
to refer to the sea-horizon, and, observing in a vertical plane the
apparent elevation of the object above this line often itself ill-
defined, the angle must be corrected for dip, the amount of cor-
rection to be applied depending upon the height of the observer
above the surface, and upon other causes the effect of which it is
difficult to appreciate. All that can be done is to apply the
correction due to what may be considered the observer’s mean
height above the surface, that is, the height at which his eye
would be above a surface of perfectly still water, taking no
account of the effects of variations in the atmosphere from an
assumed mean state. Some general remarks on the precautions
to be taken with a view to secure the greatest possible amount
of accuracy will be found at the end of the Chapter. At present
we shall assume that an apparent altitude of a celestial object is
its apparent elevation above the line of sea-horizon less the dip,
and proceed to notice the several classes of observation in order,
commencing with that usually employed in the determination of
latitude, and called a meridian altitude.

1. When we know the exact time of meridian passage of a
celestial object, we may observe its apparent elevation above the
sea-horizon at that instant, and, correcting the observation for
dip, refraction, and parallax, we shall have a true meridian alti-
tude, from which, as shown in section 1 of the preceding
Chapter, we may at once determine the latitude. If, however,
the object be the sun or moon, it is the elevation of the limb
and not that of the centre that is observed; and in this case
therefore we have to apply the' semidiameter to our corrected
angle, when the result will be the true altitude of this point.
Let Q be the apparent elevation, that is the angle read, corrected
for instrumental errors. Then :

true altitude of centre

= — dip —refraction + parallax + semidiameter,
H2
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and the true zenith distance of centre being Z,
Z=90°— + dip + refraction — parallax T semidiameter.
Also Z being reckoned + or — according as it is measured to-

wards or away from the pole which we 'assume as the origin of
the polar distance IT of the object, we shall have

colatitude=¢p=Z +1I,

the upper or lower sign being taken according as the object is at
upper or lower transit, and

latitude =90° — colatitude

reckoned towards the assumed pole when ¢ is less than 90°, and
away from it if greater. .

But when we do not know the exact time of meridian passage,
we may, if the ship is stationary, observe the greatest aiparent
elevation, and this will of course, in the case of objects which do
not change their polar distance, be the apparent elevation on the
meridian. When, however, the ship is in motion, or the object
observed is changing its polar distance, it may happen that its
apparent elevation a little before or after meridian passage will
be greater than that at the instant of meridian passage itself ; and
it becomes therefore desirable to inquire what effect these causes
will produce upon the latitude determined on the assumption
filjmt the maximum elevation is that which occurs on the meri-

an.

Suppose a ship’s course to make an angle « with the polar
meridian, this angle being reckoned positive towards the east,
and her rate of sailing to be m knots or nautical miles per hour,

.. variation of colatitude in one mean minute= — (% . COS a,
effect of ship’s motion upon the hour-angle in the same time
=B sin a
=+5 g

Let @ be the colatitude, A and II the right ascension and
lar distance of the object at instant of meridian passage; 8A,
I1 the variations in minutes of arc of A and II in one mean mi-
nute of time. Then T representing the mean time at meridian
passage, and ¢ any number of minutes from it,

Colatitude at T+ will be &— - mcone

I . - tm.sina .
Right ascension of meridian A+ 15w ¢ +oemd’ M being the

factor for converting mean to sidereal time =1-00274.
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RA of object at T+ will be A+2.8A.

Polar distance I+¢.811.

Hour-angle t. (15 u—38 A+;”Ossx:1n<;

Now &, ¢, 7, H representing generally zenith distance, cola-
titude, polar distance and hour-angle, we have
cos §=cos ¢. cosm+ sing.sinar.cosH=cos(¢p—7) —2sin¢.sinw.sin*} H
=cos (p— ) —}.sin¢.sinw. H%sin?1' when H is small,

— sing.sinm .o |
or¢ =¢ 7r+2-———-——sm(¢ ) H2.sin 1'.

Substituting in this for ¢, = and H their values @—tmé(g)s “,

IT+¢.8 11, &c., and ¢ now representing the true zenith distance
within a few minutes of meridian passage,

b TT m.cosa
g=0—TI—+1.(311+ 2:22%)

sin ®.sinIl m.sina\% . _,
pm (15[& 8A+6081 P .sin 1.

=®—II—at+} bt suppose.

When ¢ is a minimum, %:0, or —a+bt=0 and t=%; and
the minimum value of ¢ being ¢, we shall have
aQ

a? a?
f=0—T—F +}. 7=L—}.F,

if Z=® —1I be the zenith distance on the meridian.

Hence
m.cosa

60
(15,4 SA+ o

81T +

sin <I>.s.in I
sin (O—1II) "

m.sina
60.sin®

(SH m. LOS a)

Z-¢=4. 2
sin @.sin I1 m.sina
sin (®—1I) 60.sin®

Now for all celestial objects whatever & A is very small com-
pared with 15 u, and so likewise at any practicable rate of sailing
m.8in &

® 60.5n®’

sm v

.sinl’

(l5p SA+~——

unless P be very small, that is, unless the latitude be
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not far from 90°. On these considerations therefore we may re-
duce the above expressions to

— 1 sin (—1I)
=60 (15 )% sin 1’ 'sin ®.sin IT° (60 3T1 +m . cos ),
_¥_ 1 sin (®—1II) .
LY=o (5 i 1 'sm b.win 11 - (G0 3TL+m. cosa)
and ‘ |
¢=;’+H+ 1 sin ((I)—H)(Go 81—-[‘*‘7’3.008&)9

2.60%. (15 u)2.8in1’ " sin @.sin 11

is a formula by means of which we may compute the colatitude at
the instant of meridian passage, it being sufficient to substitute its
approximate value only in the coefficient of (608 IT+ m . cos &)

Should it be more convenient to us to obtain at once the
colatitude at the time T+ ¢ of observation, we shall have, repre-
senting this by ¢, and the polar distance of the object at the
same time by r,

tm.cosa
P=¢+—g0

¢=§'+w—é-).t.(608ﬂ +1m. cos a}

MI=7w—1t.811,

4 1 sin (®—1II)
2.60% (15 )% sin 1’ ° sin ®.sin II

and substituting for ¢ its value, and making

. (60814 m.cosa)?;

1 :
k= 60r (5w sm 1» O 108X =732438,

_ sin (®—1II) o
¢—§'+'ﬂ'—k.m.(608n+m-cosﬂ) y

=0 +mr—k. sin ¢ . (6087 +m. cos a)?,

sin 7. sin (' + )

and time of meridian passage =

sin ¢’
T+t—k’ m . (6087r+m.cosu),
where k'=120 £, or log #'=9-40356.

It will be remarked that, according to the ordinary procese,
we should treat ¢’ +7r as the colatitude at the time of observa-
tion, considering this time identical with that of transit.
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For a fixed star we have 8II=0, and the expressions become

in (®—TI
=t +T+k. 5L (m. coa?,
in (@—1I
q>=g'+n—k.:??f‘fr-m% . (m . cos &)2.

But the colatitude we derive by the ordinary process being
¢ + 11, it follows that this is less than the true colatitude at me-
ridian ‘passage, and greater than that at the moment of observa-
sin (®—1II)
sin ®.sin I °
the latitude derived in the ordinary way from an observed
maximum altitude of a star is that of the ship at the mean be-
tween the time of observation and that of the star’s meridian
sin (®—1II)
sin @.sin 11

(m . cos «)?, and the interval

tion by the same quantity #. (m . cosa)?.  Hence

passage, the interval ¢ being in this case .
sin (®~TI)
sin®.sinII°

«m . cos « are evidently greatest in magnitude

Jn.CosSct.

The correction & .

_y sin (®-II)
=K moami
when cos a= +1,0ora=00r 120°, and in this case theyare reduced

k.m?, sin (®—1I) m.sin (®—1II) _
@ emn I emn - M P=Thorthe
objeét observed be in the zenith, the correction and interval
each =0 ; but when @ is greater than II, then since :—;%
=cot II —cot @ is positive and, ® being given, increases in mag-
nitude with a diminution in the value of II, the error we commit
in assuming the minimum zenith distance to correspond to me-
ridian passage increases as we approach the pole. If, again, ® is
less than II, and cot II —cot ® consequently negative, this in-
creases its negative value with an increase in the value of II, and
in this case the error therefore increases as we recede from the
pole from which we reckon II. Hence generally, the effect of
our erroneous assumption increases from the zenith towards the
poles.

To find at what distances from the poles in a given latitude
the error will amount to half a minute of arc, the value of « being
0 or 180°, or the ship’s course being due north or south, we have

km2.(cotIT—cot @)= +0-5, or cot II =cot<I>i]?—.m°2.

Suppose the rate of sailing to be 10 knots, or m =10, we then
have cot IT=eot P +2:3691.
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Hence if ©®=90°, or the ship be near the equator,
cot IT= + 23691, and IT=22° 53' or 157° 7/,

showing us that in this case the effect of the ordinary erroneous
assumption upon the latitude derived from the observation of
objects within 22° 53' of either pole will exceed half a minute,
this effect increasing as the object is nearer to the pole, and dimi-
nishing in the opposite direction.

If ®=80°, or the latitude be about 10°, we shall have

cot IT=cot 80° +2-:3691 =0-1763 + 23691 = + 2-5454, or —2:1928,

giving IT=21° 27" or 155° 29, and showing that the error will
exceed half a minute in the case of objects within 21° 27 of the
upper, and 24° 81’ of the lower pole.

Similarly for ®=70°, the limits of IT will be 20° 6' from the
upper, and 26° 30’ from the lower pole ; for ®=60° they will be
18° 45' and 29° 10'; for ®=50°, 17° 19’ and 83° 10/; for &=40°,
15° 40’ and 40° 20/, the second position in the last three cases
being below the horizon. For ®=30° they will be 13° 7’ and
65° 12’ ; for ®=20°, or latitude 70, they will be 11° 4/ and
110° 44/ ; whilst for latitudes greater than this, the course being
nearly north or south, and the rate of sailing at all considerable,
the limits will be such that the results of observations of ob-
. jects throughout a very large portion of the sky at upper transit
will be subject to a sensible amount of error.

Dealing, however, with cases of ordinary occurrence, the above
results prove to us that the latitude being between 60°N. and
60°8S., there is no star of any magnitude excepting « and 8
Ursz Minoris which we may not treat in the ordinary way, as-
suming the greatest apparent altitude to correspond to meridian
passage, without introducing sensible error into our results, pro-
vided the rate of sailing do not much exceed 10 knots the hour,
Observations of the two stars excepted are usually treated in a
different manner, which we shall discussin the proper place; but,
as an example of the calculation, we will determine the difference
between the true meridian and minimum zenith distances of
B Ursz Minoris, supposing the latitude about-1° N., the ship’s
course N.N.E. true, and rate of sailing 11 knots.

Resuming the equation

Z—'g’:k.:?;—;% . (m. cos «)2, we have
®=89°, M=15°16!, 2=22°80, m=11
logm =1'04139
log cos a =9'96562

Sum =1'00701

Double =2'01402
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Brought forward

Double =2'01402
log & =7'32438 logsin®=9'99993
logsin(®~1T)=9°98226 logsin IT=9°42047

Sum =9°32066 Sum  =g°42040
9°42040 /
Difference ~ =9'90026=log (Z—{¢’) or Z—{'=0"7948=0" 48"

- or the meridian zenith distance was 48" in excess of the corrected
minimum. If we substitute the same quantities in the equation
t=k’.M .m.cos a, we find {=9m:39=9m 23s; or the
sin ®.sin I1 ?
star continued to rise 9m 238 after it had passed the meridian,
‘and attained an altitude 48" greater than that which it had at the
instant of transit. The result of the ordinary process would
therefore in this instance place the ship 48" north of her position
at time of transit, and as much south of that which she occupied
at the moment of observation.

On looking through the limits of polar distance within which
corrections to latitude derived in the ordinary way from obser-
vations of maximum altitude are necessary, we observe that,
except for very high latitudes, they do not include any possible
position of the sun or moon. It is to be remembered, however,
that these objects change their polar distances; and in considering
the case with them we must therefore resume the equations in
their more general form.

_ sin (P—1II)
“sin ®.sin IT
Z—Y=k.n.(603I1+m.cosa)? t=K.n.(608II4m.cos ),

which, for given values of @ and II, are evidently greatest in
magnitude when «=0 or 180° according as SII is positive or
negative. Now in the case both of sun and moon, 8II is a maxi-
mum when IT is about 90°; and its general value is then g5
for the sun and 3§ for the moon. In the former case the value
of 60 311 being 1 only, is small compared with any value of m
which will make that of Z—¢' at all important, and the sun may
therefore be classed with the fixed stars; and we may assume
without appreciable error that between the latitudes 60° N. and
60° S., the maximum altitude corresponds to meridian passage.

But that it is otherwise with the moon a single example will
suffice to show.

Suppose I1=90° 8= + 1§, m=10, «a=0.

Then n= —cot P.

Z—Y =—k.(16+10)%.cot b, t=—=4k (16+10).cot ®;

Letn Then
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and when ®=40° or latitude=>50°, the values of these quanti-
ties become
Z—f=—1"70=—1'42" t= _7m847=—7m5]s,

and will be greater in higher latitudes.

Now Z being reckoned away from the pole will be negative ;
and it follows therefore that in this case the moon will attain
her maximum altitude 7™ 43¢ before her meridian passage, and
that altitude will exceed the meridian altitude by 1’ 42".

For the moon then our formula will be—

¥’ =true least ZD of centre=go°—Q+dip-} refraction — parallax J-semidiameter,
T+¢=1local mean time of observation,
x=polar distance at T+-¢,

¢=colatitude at T+#=2'4m—k. — 0 & 5 (6o dmtm.con e},

e sinx.sm (0 F
sin J’ .
t=y.m .(60dx+m.cosa),
T=time of meridian passage=time of observation—?,
sin g’
min———(z,_m . (608r+m .cos«)3,
and true latitude at either time=go® ~ colatitude* ; .
whilst for all other objects not circumpolar, the ship being between
60° N. and 60° 8., and the rate of sailing not much exceeding
ten knots the hour, we shall have
{=2Z, n=1I, and ®=¢=Z7Z +1I.
We will now take examples of determination of latitude.
1°. By an observed maximum altitude of a star.

2°. By a similar observation of the sun.
3°. By a like observation of the moon.

1°. On the 30th of June, 1857, the reading from the limb of
the Sextant for the greatest apparent altitude on the southern
meridian of « Centauri above the sea-horizon was 26° 3/ 0", that
for coincidence of images being+0' 17'. The barometer being
80°10 inches, thermometer 82°t, and the elevation of the observer
above the level of the sea 17 feet, it is required to find the lati-
tude at the time of observation.

* A little consideration and a few practical trials will enable the navigator,
without the necessity of going through the calculation on every occasion,
to form a correct opinion as to whether in any particular case it will be
necessary to correct the latitude determined in the ordinary way from an
observed maximum altitude of the moon.

+ The barometer and thermometer are observed for the purpose of
enabling us to determine the amount of refraction, which, in our examples,
is stated apart from that of the dip. In the treatment of ordinary observa-
tions of altitude, however, it will in general be sufficient to employ the
correction for the two collectively, taking it from the Tables constructed .
for the purpose, to be found in most works on nautical astronomy.

d=colatitude at T=¢'4-w—t.dn+k.
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—wy =—0 117"“ w = 26 é °
Correction for n &o= o o* . =0 13
E=+4o 4'/2_T26 2 47

Sum= -0 13 9o°—Q = 63 57 13

Dip=+4 s 4557
Refraction=4-1_52 'z =—64 3 10t
Sum=+35 ¢7 b1 = 150 14 §I

_ ® = 86 11 41

Latitnde= 3 48 19 N.

2°. On the 19th of March, 1858, the reading for the greatest
apparent altitude of the sun’s lower limb on the northern meri-
dian with Shade No. 4, was 55° 14’ 0, that for coincidence of
images being + 0’ 17”.  The barometer being 30-10 inches, ther-
mometer 82° and the elevation of the observer above the level
of the sea 11 feet, it is required to find the latitude at the time
of observation, on the supposition that the approximate longitude
was 76° west from Greenwich.

Here it will be remarked that we introduce a new datum,—
the approximate longitude ; and this, or the approximate Green-
wich mean time, will be necessary in every case of observation of
the sun or moon, in order that we may be able to take from the
Tables the polar distance of the object at the time. Thus, in this
instance, the time being apparent noon at the place, will be about
Ob 7m Jocal mean time, mean noon preceding apparent noon on
the day in question by about seven minutes; and adding to this
the longitude =76° W.=5b 4m, the Greenwich mean time at the
instant of observation was about 194 52 11m; and for this we
have to find the polar distance of the sun’s centre, which in the
present case we shall measure from the south pole.

Sun’s declination at Greenwich mean noon on the 19th . =0 3% %s
Difference for s* 11™=52X 59”26 neatly . . . . . . = 5 8
Sun’s declination at time of observation . . . . . . . = o028 oS.

Sun’s south polar distance at sametime . . . . . . . =89 32 o

* Consult Section 17 of Part I. It must be remembered that each of
these corrections, although small in the instrument which furnishes us
with our examples, amounts in some Sextants to several minutes of arc.
On account of their defective character we do not usually take notice of
seconds of arc in observations for latitude at sea ; but it is as well to do so
on occasions on which we wish our result to represent the nearest minute.

1 Reckoned negative because measured on the southernneridian, whereas

we assume the north pole as the origin of the polar distance I1. SeeSectionl.
Part I1. Chap. 1.
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In the example we have taken we have then

‘" o o 1 u

4 —wy=— 0 17 w = 5514 O

Correction forn & o= o o o -0 4

E=+o0 9 a = 5513 56

=+ o 4/ 90°—Q = 3446 4

Sum=— o 4 —12 1§

Dip=+ 3 17 z =-134 33 49

Refraction=4 o 38 1 = 8932 o

Parallax=— o g ® = 54 58 11
Semidiameter=—16 s Latitude = 35 1 498.

Sum=—12 15

3°. On the 1st of June, 1857, the reading for the greatest ap-
parent altitude of the moon’s upper limb, without shade, on the
southern meridian, was 39° 20/ 0, that for coincidence of images
being+ 0’ 17".  The barometer standing at 29-85 inches, ther-
mometer at 57°, and the elevation of the observer above the level
of the sea being 17 feet, it is required to find the latitude at the
time of observation, on the supposition that the approximate
Greenwich mean time was 8228m, the ship’s course due south, and
rate of sailing 84 knots.

—wp=— & 1} w = sad &
Correctionforn& o= o o —— -0 11
E=+4+ 0 6 Q = 3971949

Sum=-— o 11 90°—Q = 50 40 11

Dip=+ 4 3 —_— —22 o

Refraction=+ 1 10 h44 =—350 18 11
Parallax=—42 8% L = 93 I 40
Semidiameter=-+14 §3 U+m = 42 43 29

Sim=-—22 o

Now 60 §w=+-14'2, m=3'5, cos «=—1, 60 d7+m . cos =+ 107.

_ * The detail of the computation of parallax is as follows :—
Tabular equatorial horizontal parallax at 8% 28™ =54’ 30"

Reduction for place (approximate latitude 47°) = — 5
Horizontal parallax at place =54 25=3265"
log 3265 =13"51388

log sin (90" —Q +dip-refraction) =9°88896
Sum=log parallax =3'40284=log 2528"
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log 10*7 =1'02938

double =2"05876

log & =7'32438 log sinx  =9°99939

log—sin §’ =9¢'88617 logsin (4’4 m)=9'83154

Sum =926931 " Sum =9'83093
983093

Difference  =9°43838=log 0’*2744=Ilog 16"

U+m=42°43" 29"
Comrection=___ —16 [observation.
Difference=42 43 45=¢=colatitude at time of

.Lutitude at time of observation—=47 16 15 N.

" If we compute ¢ we shall find it equal to --3®-0774= —3m 53,
showing that the moon passed the meridian 3™ 58 after it attained
its greatest altitude and commenced to fall. Also

Colatitude of ship at time of transit o 1

= pr—t.5m—16". . ... ...... —48 48 57
Latitude at same time . . ........ .. =47 16 3N.

the ordinary process giving 42° 43' 29" as the colatitude,
47° 16' 31" as the latitude at the time of observation, which we
treat as identical with that of transit.

2. The observation next requiring notice is that for Time, and
to this we may apply rules aﬁg treatment the same as those esta-
blished with reference to the same case on land.

Let & be the true zenith distance of an object situated as
nearly as possible on the prime vertical at an observed time ¢,
the local sidereal time at which we wish to find. Let this be T;
and let 7 and A be the polar distance and right ascension of the
object at the instant of observation, the former measured from
the pole to which we refer the colatitude ¢. Make H=T—A,
and 0=} (¢+¢+m). Then

sin(0—¢). sin(0—) | H being reckoned
sing .sinw + or — according
YR as the objéet is to
_ sin (60— o). sin (0 —r) | the west or east of

tan jH= \/ sin 0. sin (=) the meridian ;

m 1 p—
sin jH=

either of which formule may be employed in determining H
when the true values of , ¢ and 7 are known, the second, how-
ever, being preferable in general to the first. H being deter-
mined, we have

T=A + H.
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Local mean time may either be obtained from sidereal time
by means of the proper Tables, or it may be derived from an
ogserved altitude of the sun; the hour-angle in this case fur-
nishing us with apparent time, which differs from mean by the
equation of time, the latter quantity with its variations being
given in the Almanac.

Ezample 1. On the 24th of June, 1857, at 8 32m 38s by
watch, the observed altitude of Regulus to the west of the meri-
dian was 43° 17’ 20", reading for coincidence of images being
40 17", barometer 30°13 inches, thermometer 81°, and eleva-
tion of the observer above level of sea 17 feet. Supposing the
latitude of the ship at the instant to be 10°27' N., and approxi-
mate longitude 263° W., it is required to find the local sidereal
and mean times.

—wy =0 117/ w = 4§ 171 20
Correction fornando= o o — o0 9
5 —+o s/ e =
Sum =—o—9 90°—Q= 46 42 49
Dip =+4 s +5 3
Refraction =40 58/Z = m
Sum =+z—_3 ¢  =17933

log sin (6—¢)=9"57900 log sin 6 =9°9906g L = 77 20 8

log sin (0—=)=9:61783 log sin (0—Z)=9'91359 Sum =203 41 o

Sum =9-19633/9‘9o428 0 =101 50 30
0—¢ 38

9'90428 =55 2

Difference  =g9°29255 0—¢ = 22 17 30
Half =9°64628 =log tan }H T0—m = 24 30 23

p— o ’ ” -
H = 23 5314 hm s
H =447 46 28 =+ 3 11 6
Right ascension of * = 10 o046
Local sidereal time = 13 II §2

+ Had we taken three observations for the purpose of employing the
mean in our calculation, we should have corrected each angle separately,
and © would thus have been the mean of the three corrected readings.
The correction E is in this case taken from the Table for (w)=43° %(s)’
+7°20'=50° 30/, whereas, had a second angle 43° 0’ been read, the value
of E for this would have been that corresponding to (»)=43° (', which in
some Sextants would differ materially from that due to 50° 30’. In the
case of observations for time at sea, as in that of observations for latitude,
it is neither usual nor necessary in general to take notice of seconds of arc,
the minute being the smallest part recognized; but the corrections due
to the angles read from the Sextant employed by the author are so very
small, that, to render his examples complete, he is compelled to introduce
seconds upon every occasion. )
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This observation having been made in the evening, it will be
evident that the preceding transit of the first point of Aries, or
of Ob sidereal time, occurred on the 23rd of June. Hence, to
convert the above into mean time, we have

d h m s
Mean time of transit of first point of Aries at Greenwich 23 17 §0 40'09
Difference for longitude 264 w.=—’32—'2x P sshgr = Jp———
Mean time of transit of first point of Aries at place =23 17 §0 2272
13 hours sidereal time in mean time 12 §7 §2°22
11 minutes 10 5820
52 seconds 5186
Local mean time=Sum =24 7 0 §00

The watch employed on this occasion was losing 755 from
mean time in the course of 24 mean hours ; and therefore, should
we wish to find the local sidereal time at any other time indi-
cated by the watch, we shall have to correct the observed inter-
val for retardation at the above rate, and converting the corrected
interval into sidereal time, apply this, together with the differ-
ence of longitude, to 181 11™ 525, Thus, should we wish to
know the local sidereal time at 9t 36™ 45¢ by watch, the ship
having made 0° 6'=0m 248 to the westward during the interval
between our observations, we shall have

h m s
Interval by watch =1 4 7
Correction for rate +0°3 Eom s
True mean interval 1 4 73 = 1 4 17°8 sidereal.
Correction for difference of longitude W. —240
Corrected interval 1 3 538
First local sidereal time 13 11 §2

Local sidereal time at second place
at g® 36™ 45° by watch

Ezample 2. On the 1st of December, 1857, at 16 32m 362
by watch, and approximate Greenwich mean time 14 16h 54m,
the observed altitude of the sun’s lower limb to the east of the
meridian, with shade No. 4, was 55° 22' 0", the reading for
eoincidence of images being +0' 17", barometer 30-20 inches,
thermometer 58°, and elevation of the observer above the level
of the sea 17 feet. Supposing the latitude of the ship at the
instant to be 41°26'S., it is required to find the local mean and
sidereal time.

} =14 15 448

* Since 264°=1" 46™, this correction may be obtained at once by sub-
tracting from 1 46™ its equivalent in mean time=1» 45™ 42*63. The
subject of the conversion of mean time into sidereal and vice versd is treated
annually in the explanation appended to the ¢ Nautical Almanac.’
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o s wu

—wy =— (; !/7I w B = 5522 o
fornande = o o . —0 s
E =+ o0 8 /‘2 = §5 21 §§
' =+0 4 90°—0= 34 38 s
Sum =— 0 5/ —1r 36
Dip =+4 5 Z = 348. 26 29
Refractior = = o
Sun’s pn'l:llu:t g 4: Aé':: 51?.:. : = gs 3‘: 408.
Semidiameter = —16 16 Sum =151 2 ¢
Sum =—11 3 (‘] = 75131 §
log sin (9—9)=9'65632  logsin®  =g'98597 O—% = 41 4 36
log sin (60— 7)=9°r1514  log sin (6—{)=9'81761 0—¢ = 26 57 §

Sum =8'77x4.6/9'80358 0—m = 7 29 25
9'80358

Difference  =8-96788

Half =9'48394=Ilog tan }H
— o / 2,7

H =—16°56" 55 A om s
H =—33 53 50 = —2 153§
_ 24 o O
Local apparent time =1921 44 25
Equation of time at 16® 54" G.M.T. = —10 25
Local mean time =12134 O

To find the local sidereal time, we have

Sun’s right ascension at 16® 54™ G.M.T.= 16 33 33
H = —2 1535
Local sidereal time = 14 17 58

8. The approximate Greenwich mean time being known, and
the approximate longitude likewise, to determine the latitude by
means of an observed altitude of an object near the meridian, or
by one of a circumpolar star at any hour-angle whatever.

Let M be the approximate Greenwich mean time, S the corre-
sponding Greenwich sidereal time, and / the approximate longi-
tude, + if west, — if east. Then S—/ will be the approximate
local sidereal time.

Let A and 7 be the right ascension and polar distance of the
object at Greenwich mean time M ; { the true zenith distance of
the object deduced from the observed altitude after correction of
the latter for instrumental error, dip, refraction, &c.*

* As a sufficient number of examples of the process of deriving true
zenith distance from observed altitude have already been given, it will be
unnecessary to repeat it. *
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.". approximate hour-angle of object=S —/— A =H suppose ;
and by the method of section 8 of Part II. Chap. I., we shall
have, for the computation of the colatitude ¢,

sin 7.sin H
sin ¢
b=z, +2,; latitude=90°—¢ ;

z, being greater or less than 90° according as 7 is greater or less
than the same, and cos Z being positive or negative according as
the object is at the time of observation near the polar or equa-

torial meridian.

This method will be found useful in a case which frequently
occurs at sea, viz. a good altitude of the sun or other object
being obtained a little before or after meridian passage, clouds
interfering with the observation of the greatest apparent altitude;
and as a small error in the hour-angle, when the azimuth of the
object is small, produces a very small effect upon the calculated
cofatitude, the result of the process may be depended upon in
every case in which the assumed Greenwich time and longitude
are not very far from the truth, the object itself not being close
to the zenith.

Ezample 1. April 6, 1858. Greenwich mean time by watch
=4h 11m; assumed longitude =58° W.= +3h 52m; corrected
zenith distance of sun’s centre =59° 50 towards northern
meridian.

tan z,=tanw.cos H; sin Z= ; tanzo=tan .cos Z;

h

Sidereal time at Greenwich mean noon on the 6th April = o g7 56
4 hours mean time in sidereal = 4 o039
11 minutes = 12
Sum=§ = 5 937
i =43 52 o
Difference=S—1 = 11737
Sun’s right ascension at 4 11™ Greenwich mean time = 1 1 2
Difference =H = 416 35=+44° ¢
Sun’s south polar distance at 4* 11™ G. M. T. = 96 31
And the detail of the computation will be—
log—tan w=0"94222 log sin w=9°99718 logtan{ =o023565
logcosH =9°99886 log sin H=8'85955 log—cos Z*=g9°99850
log—tan z; =094 108 Sum  =885673 log tan—z3 =o0°23415

7= 96°32’ log sin £ =9°93680

23=—59 45 log sin Z=38'91993

= 3647
Latitude = 53 13 S. at time of observation.

* Refer to Note to Section 3. Part II. Chap. I.
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In obtaining the hour-angle H in this example, we have em-
ployed the process which is applicable to all objects alike ; but
in the case of the sun we may obtain it by another, in which it
will be unnecessary to convert the assumed Greenwich mean
time into sidereal, or to interpolate the right ascension from the
Tables. Thus—

hm s
Assumed Greenwich mean time 4 11 ©
Assumed longitude west 3 52
Local mean time o 19
Equation of time at 4* 11™ to be subtracted from mean 2 2§
Local apparent time = Sun’s hour-angle =416 35 =+4° ¢

The same result as before.

Ezample 2. May 28, 1857. Greenwich mean time by watch
=9h 45m 175 ; assumed longitude =11° 3' W, = 4 0h 44m 12s;
corrected zenith distance of Polaris =42° 89' towards northern
meridian.

h m s
Sidereal time at Greenwich mean noon on the 28th May 4 23 54
9 hours mean time in sidereal 9 129
45 minutes 45 7
17 seconds 17
Sum=S$§ - 14 10 47
1l +44 12
Difference=S —1 13 26 35
#’s right ascension=A 1 619
Difference=H =—11 39 44=—174" 56
#’s north polar distance = 1 26
logtanw =839832 logsinr =8+39818 log tan  =9°96433
log—cos H=9'99830 log—sin H=238"94603 log cos Z = 000000
log tan—z, = 839662 Sum =7"34421 log tan z3=9°96433
logsin{ =9'33092 = 42°39
log—sinZ =7'51329 7= —1 26
$= 41 13

Latitude = 48 47 N.

4. To find the latitude and time by means of two observed
altitudes either of two different objects or the same object, an
interval elapsing between the observations, and the latitude being
known to lie between given limits not very far one from the
other.

The method of section 5 of Chapter I. will be applicable, on
our introducing into the formule the proper corrections for the
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motion of the ship during the interval between the observa-
tions.

Let A, A’ be the given limits within which the latitude is
supposed to lie; T,, T, the times of observation by watch, T
being the interval T,—T, corrected for rate. Then if ¢, be the
time obtained from the first observation reduced with latitude A,
¢, that obtained with latitude A’, #» the number of minutes of
arcin A'— A, and m the number to be added to A to obtain the
true latitude at T,

True time at T, in the first m
position of the ship =t +.({1—t).

Let a be the increment to the latitude, b that to the west lon-
gitude during the interval T, a being expressed in minutes of
arc, b in seconds of time. Then from the first observation we
obtain,

True time at T, in the second me,
position of the ship } =t+_.(th—1)—b

True time at T, in the same} —t
=0

m
position of the ship o (¢, —)—b+T.

But A +m being the latitude at T\, and 4 the increment pro-
duced by the motion of the ship during the interval T,
True latitude at T,=A+m+a,
True time at T, from the m+a
q } =ty+ (fa—to)

second observation

Equating this with the result of the first observation, and
transposing,
m :
= t— (=)} =T—b—(f— 1)) — = (¢4 1) ;

or making T—b— (f,—t,) =c,

_ en—a(ty—t;)
m_t'e_te—(t'n"tl) ’

and m being computed by means of this formula, we obtain at
once the true latitnde A +m, and the true time,

t,ju%z #,—t) at T,.

If the two observations follow so closely that the motion of
the ship during the interval is practically nothing, we have
a=0 and =0, and

nAT— (b= 1)} |

(l' =)= (t,—1)

12
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or the number of minutes to be added to the smaller of the
assumed latitudes will be obtained by multiplying the number
in the difference between the assumed latitudes by the seconds
of time in the excess of the interval given by the watch over that
given on reduction of the observations with the smaller latitude
and dividing the product by the number of seconds by which
the interval obtained with the greater latitude exceeds that
obtained with the smaller. )

The remarks made in section 5 of Part I. on the application
of this method may be repeated here.

When we wish to obtain latitude particularly, and are indif-
ferent about time, we may with advantage observe the same ob-
ject twice upon opposite sides of the meridian, and not very far
away from 1t, whereas, if we are anxious about both elements,
the best combination will be that of an object near the meridian,
or one side with a second object near the prime vertical on the
other, or the latter with a circumpolar object at any hour-angle
whatever ; but in no case should both objects be near the prime
vertical, either on the same or on opposite sides of the meridian.
And, furthermore, should the resulting latitude in any case fall
much without the assumed limits, we must assume new limits
which shall include it, and repeat the process.

The true time should be obtained from that of the two objects
which gives the least difference between the times which result
from the reduction of the observation with the two assumed
latitudes, in order that the effeet of seconds of arc or decimals
omitted from the value of m may be as small as possible.

Should the sun be the object observed on both occasions, it
will be more convenient to employ mean time than sidereal in
the reductions; but should an observation of the sun be com-
bined with one of the moon, or the objects observed be planets
or stars, it will be proper to use sidereal time.

Ezample 1. A ship’s gosition being supposed to lie between
latitudes 55° 50’ and 56° 10/, the sun was observed twice, and
the observations gave the following results :—

Time by watch at first observation . . . . t1l 13 2i=T1
Time computed with latitude 55°50' . . . =21 23 34=¢,

” with latitude 56 10 . . . =21 26 22=¢/,
Time by watch at second observation . . . . 159 14=T,
Time computed with latitude 55 50 . . . =22 7 53=¢,

» with latitade 56 10 . . . =22 12 7={,
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and the ship during the interval had increased her latitude 8"1%
and had gone to the westward 3"7*=15 seconds of time nearly,
the watch losing 7 seconds daily from mean time.

Here n=20, a=+31, b=+15,
h ms m s s
T = 045 53 U=t = 4 14 = 254 log = 2'40483
-d = —o15§ t'—t = 2 48 = 168 log 4-a= 049136
—(t,=t) = —44 19 Differ. = 86 Sum = 2'89619
c = 4+ 1 19=479* Nat. No.= +787
on = +1580/
a(t',—t) = + 787
Difference = + 793 log = 289927
log86 = 193450 A  =55° 50’
log m = o'gb477 m = +9
log 168 = 222531 Sum =55 59= latitudeatT,
Sum = 319008 hm s
log n = 1'30103 t, = 21 23 34
Difference = 1'88905= log +1 17

True mean time at T)= 21 24 §I
Ezample 2. Aug. 25,1857, A=51°40'S, A'=51°50' S.
At T,=§ 30 5i, corrected ZD of « Virginis =56 0
T,=9 35 0, o Canopus =72 58
And on reduction with A and A’, we shall find

h m [} h m s
t,=16 24 59 #,=16 24 22
,=16 26 4 #,=16 29 31

Hence T=4™ 9% mean =4m 108 sidereal time, an interval so
short that we may assume

a= 0 and =0; #,—¢,=65%; ¢t/—¢'=809%; and

_10x (250—65) _1850_,
TT800—65 T 244 ° neary,

}sidereal.

*. true latitude =51° 40/ +8'=51°48'§;

and selectmg @ Vlrgmns for the determination of time because
t',—t, is less than /;—¢,,

true sidereal time at T,=16h 24m 59— 8 x 375=16b 24m 29,

* It will be found convenient to employ minutes and decimals.
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The importance of this selection will be apparent, if we de-
rive the time in the same manner from Canopus, assuming
m=8 exactly. For 16> 26™ 45+ £ x207°=16b 28 50°; and
subtracting the interval 4™ 10¢ from this, we should have
16k 24m 40° for the sidereal time at T,, a result differing 11°
from the former. But computing accurately,

log 1850 = 326717

log 244 = 2'38739
logm = 087978
log 37 = 1°56820
Sum = 244798 h m s
logn = 1'00000 t, = 16 24 59
Difference = 1°44798= log 28

True sidereal time at T, = 16 24 31 by a Virginis.

logm = 087978
log 207 = 231597

Sum = 3’19575
logn = 1°00000 t; = 16 26 4
Difference = 2°19575= log 2 37

True sidereal time at T, = 16 28 41 by Canopus.

and the interval between the former and this is 4™ 108, as it
should be. Thus the omission of the decimals in the value of
m produces a difference of 2 seconds only in the time derived
from the observation of « Virginis, whereas in that derived from
the observation of Canopus it causes one of 9 seconds.

The process just explained is in principle that known to
navigators as ‘ Sumner’s Method;’ and there is none in the
whole range of Nautical Astronomy of more frequent utility.
It enables the operator, without entering upon calculations with
which he is not familiar, to obtain latitude and time whenever
two celestial objects in favourable positions are visible at the
same moment, or when the same object, having been once ob-
served and subsequently obscured, reappears after a favourable
interval. When we require latitude and time for reduction of
an observed lunar distance, it enables us to obtain them from a
combination of altitudes of two objects so near to the proper
instant that we are comparatively independent of errors in
reckoning course and distance, whether arising from causes
appertaining to the vessel herself, or to currents in the ocean;
and when the navigator wishes to direct his attention to these
currents, he will find a repetition of the process at intervals of
half an hour or an hour give results that will be serviceable to
himself, and add materially to the accurate knowledge already
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possessed on this interesting and important subject*. And
again, should the sun and moon be visible at the same time,
and be favourably situated for the application of the method, and
should the navigator sight a point of land the latitude and
longitude of which he wishes to ascertain, he may at convenient
times obtain his own positions, and to these refer that of the
point in question by observations with his azimuth compass, or,
still better, by observed angles between the sun’s limb and the
point, the instrument employed being the Sextant.

Thus let (2 be the corrected angle observed, ¢ the sun’s apparent
zenith distance, Z its azimuth at the time. Then the difference
between the azimuth of the sun and that of the object being 6,
we shall have cos 8= cos (Q+ sun’s radius) <+ sin £, and hence
deriving 6, and Z from the formula sin Z=s-——-ms‘i':l'§n g,
or difference of 6 and Z will give the true bearing of the point
at the time of observation more accurately than it could be ob-
served with the compass, and independent of magnetic variation.
Two positions of the ship being given, together with the true
azimuths of the point from those positions, the determination of
its latitude and longitude is a simple problem of trigonometry ;
but the introduction of a third or even fourth position and
azimuth is desirable with a view to obtain a more accurate result.
On such occasions then will the above method be found service-
able, and the scientific navigator will certainly spare no pains in
making himself familiar with it by constant practice. Bne un-
accustomed to the manipulation of the positive and negative signs
may probably experience some little difficulty at first ; but this
will be soon overcome; and as a check on the accuracy of his
work, he may reduce the observations independently with the
latitudes resulting from the operation, when, if all be correct,
the times, making proper allowance for the elapsed interval and
the motion of the ship, will be the same.

5. We now proceed to the determination of Greenwich mean
time by means of an observed distance between the moon and
some other celestial object,—an operation which ought to be per-
formed at sea at least three times in the course of every month,
should favourable opportunities present themselves. Unfortu-
nately, however, it is rarely performed under any circumstances ;
and the navigator, dependent entirely upon his chronometer, is
doubtless frequently involved in difficulties, and on many occa-

the sum

* It must be borne in mind that the simultaneous visibility of two
objects favourably situated is in this case indispensable. The accuracy of
the result derived from two observations of the same object will depend upon
that of the reckoning for the interval; and an unknown current affecting
this, will affect the other likewise.
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sions meets with accidents in consequence. A chronometer that
will maintain anything like a uniform rate at sea is not to be
had at command; and it is by no means uncommon to find
variations of many seconds daily from the assumed rate, in
some instances steadily increasing in one direction, in others
dependent on temperature, and so positive and negative alter-
nately. The navigator who wishes to be constantly in posses-
sion of reasonably accurate knowledge of his position, and to
obtain the means of ascertaining subsequently with greater
accuracy what that position was at a given time, will therefore
have recourse to observations of lunar distance, and, in reducing
them, will give attention to the various circumstances affecting
the result, whether that employed immediately in the ordinary
course of his operations, or that to be arrived at eventually,
which may be important not only to himself but to the world at
large. There are probably many dangers scattered over the
ocean, the positions of which are by no means exactly known ;
and although the navigator, after following on two or three
occasions a track at the time supposed to pass near to their
places as indicated on the chart, should he perceive no evidence
of their existence, may be inclined to entertain doubt respecting
it, we must remember that they may nevertheless exist, and that
the determination of their positions having been in the first
instance erroneous, in consequence perhaps of undue dependence
upon a chronometer, or indifferent observation and reduction of
lunar distance, many succeeding navigators, committing similar
errors, may have followed tracks which have not approached
either the indicated or actual places. The interest and utility
moreover of much of the information that may be collected at
sea must depend to a great extent upon accurate knowledge of
position ; and on all accounts, therefore, it is extremely desirable
that the subject should receive from the navigator the attention
which its importance demands.

But a good Sextant, in the first place, is essential to anything
like success in lunar observations ; and even though the mstru-
ment be in every respect excellent, it is equally essential that
the corrections for eccentricity and other errors be obtained in
the manner explained in the first part of this work. The Sextant
which was there taken for the purpose of furnishing examples of
the processes discussed, is one upon which extraordinary pains
were bestowed ; and nevertheless the reader will perceive that at
one point of the arc a correction of 16" is due to the reading,
and that the interposition of one of the shades produces an error
of 4", so that the angle resulting from an observation with this
instrument might, if corrected only for index error in the ordi- -
nary way, be incorrect to the extent of 20"; and the time ob-
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tained by means of a lunar distance might therefore be in error
to an amount exceeding 40° from this cause alone. But there
are perhaps few Sextants in which the error which varies with
the reading does not amount at its maximum to 40"; in many it
exceeds 1’;; and instances are to be met with in which it amounts
to 5. The importance of this system of correction is therefore
evident ; for an error of 5' in the angle would produce one of
about ten minutes of time in the longitude. It is true that
could we obtain a pair of observations, one of an object to the
west, and the second of an object to the east of the moon, and
80 situated that the mean of the readings in the one case should
exactly equal the mean in the other, the same shade being em-
ployed on both occasions; and furthermore, should the propor-
tional logarithm of the variation of distance for the one be equal
to that for the other, the mean of the two results derived from
these might be independent of instrumental errors: but such a
combination of circumstances is so rare that we might wait a year
or more for its occurrence with favourable weather likewise; and as
in many instruments a difference of even a few degrees between
the means of the readings will produce one of several seconds
in the corrections due, it would not be proper to treat the errors
with indifference in expectation of such a contingency. Pre-
suming, therefore, that the operator is in possession of a good
instrument, and that he has obtained a table of corrections for it
in all its parts, the next thing to be considered is the best mode
of obtaining observations.

As a comfortable position is essential to anything like accuracy
in observation, the operator should be furnished with a chair,
with a back inclined at an angle of about 45° to the vertical,
and provided with arms sufficiently elevated for the support of
the elbows when the telescope of the Sextant is directed to any
object between 30° and 60° from the horizon. With such a
convenience there will be comparatively little difficulty in ob-
serving lunar distance even with a considerable amount of
motion.

In the next place, much will depend upon the power of the
telescope employed. With respect to this, I have seldom found
in the course of my own experience that a power exceeding 9 can
be used at sea with any advantage; and on occasions of much
motion, or of observation of the moon and sun when the former
is faint on account of its proximity to the latter, a power of 5 has
proved more satisfactory. In very fine weather a power of 12 or
13 may be tried ; but although with this the instrument is per-
fectly munageable on land, it is seldom so at sea.

Thirdly, the operator should, if possible, make all the requisite
observations himself, and not depend upon others, either for
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noting time or for observation of altitude. A watch which can
be relied upon for an hour should be carefully compared with
the ship’s chronometer immediately before the commencement
of operations, and then, for the purpose of noting time, fixed in
some convenient position on deck ; and it should be compared
again with the chronometer immediately on the conclusion of
operations*. The first step should be the observation of altitudes
of two objects favourably situated for the application of the
method explained in section 4; these will give us latitude and
local time. The next step’ should be the observation of the
distance, the number of observations taken varying from 5 to 10
according to the state of the weather, 5 being sufficient when it
is favourable; but in no case should the intervals between the
observations be long, inasmuch as the moon’s apparent motion
towards or away from an object not being uniform, the intro-
duction of long intervals would vitiate the meant. The last
step should be a repetition of the first, either upon the same
objects or others equally favourably situated ; these will give us
latitude and time again, and we may thus, by interpolation
between these and the results of the first step, obtain the latitude
and time at the mean of the times of the observed distances,
and thence compute the zenith distances of the moon and the
object observed with it. Should a second, or a second and third
observer be employed to observe altitude, they should not await
any signal from the observer of distance, but on noticing that he
is recording an observation, should each observe an altitude as
speedily as possible, taking the times from the watch employed by
the observer of distance, and recording each his own observation.

The observer should not omit to record the readings of the
barometer and external thermometer, as these are essential for
the computation of refraction. And after what has been said in
the first and second parts of this work, it is perhaps needless to
remind him of the necessity of obtaining the value of w, by
coincidences observed at the commencement and termination of
his operations.

With respect to the reduction : should the navigator be anxious
only to take his vessel in safety from one point of land to another,
and therefore be indifferent to a few seconds of time in his
determinations of longitude, the approximate method will answer

* The operator should learn to count seconds; and in observing, he
should make the count O coincide with the instant of observation, and
continue counting 1, 2, 3, &ec. until he looks at the dial of the watch. The
number counted being deducted from the time then indicated by the hands,
the result will be the time to be recorded.

+ 1 have generally found it possible to observe at intervals of about
1} m’inute.
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his purpose, the zenith distances of the objects being either
derived from observations of altitude, or computed from the
latitude and time obtained in the manner already indicated.
Hence, referring to Section 6 of Chapter I. of this Part*, and
remembering that, as observations are supposed to have been
continued at intervals from the time of leaving land, the Green-
wich mean time ought to be known approximately, the formule

will be

No. 1. Approximate Method. Altitudes of both objects observed.

7 the mean of the times of observation of distance.

Q the mean of the readings corrected for instrumental errors.

t the approximate Greenwich mean time at r.

Z, the apparent zenith distance of moon’s centre at r.

zg the apparent zenith distance of centre of second object at .
p the moon’s horizontal parallax at the placet.

P the horizontal parallax of the second object.

r the moon’s augmeuted semidiameter 3.

R the tabular semidiameter of the second object.

1. &  =Z,4refraction—p.sin (Z,+refraction).
2. 2z,  =z,+refraction—P.sin (z,4-refraction).
3 w, =0tfriR :
400, =d(atita).
. _ 8in 0,.sin (03—u,) . sin &, .sin z;
- sin®f, = sin 7. sin z,.8in%4(3,42;)
. sin } u; =sin } (§;42,) . cos 6,.
M =Greenwich mean time of geocentric distance u,.
. r—M =Error of watch.

Given

the watch compared
with Greenwich mean

To find the error of
time.

® N & o

No. 2. Approzimate Method. Altitudes of objects not observed.

Notation the same as in No. 1, with the following additions.

e | T thelocal sidereal time at .
2| ¢ the geographical colatitude at 7.
O | a, = the moon’s geocentric RA and PD at 2.
A, I, the geocentric RA and PD of the second object.
1.4 =T-a H =T-A
_ _cos¢.cos (wr—0)
2. tan O—tan'cp .cosh cos 2, s "
3.0 =p.sinf,+(p)§ %y =Y,+p’—refraction.

* The reader should peruse Section 6 of Chapter I., as many particulars
of importance are noticed there, which, to avoid repetition, are assumed in
this l;’a(.,rt as understood.

1 Obtained by subtracting the correction for latitude from the equatorial
horizontal parallax at assumed Greenwich mean time £.

1 Obtained by adding the correction for altitude to the horizontal semi-
diameter.

§ Taken from Table I. annexed to this Part.
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4. tan O=tan¢.cos H cosz,=°°_'¢'°°'(“—9).
cos 6
5. zg =z+P.sin z,—refraction.

And the remaining quantities ug, 85, 6,, ;, M and 7— M will be obtained in this
case exactly as they were in No. 1.

Also S being the Greenwich sidereal time corresponding to M, S—T will be
the longitude.

But if the navigator desires, for the several reasons already
noticed as well as for others, to obtain a result as accurate as
possible for immediate purposes, and to possess in a compendious
form the means likewise of correcting this result at some future
period, he will have recourse to the second method of proceeding
given in Part 1., the formula of which, as it will be the same in
the two cases, it is unnecessary to repeat. The Greenwich mean
time to be immediately adopted will in this case be

M+3 oot . sinl". 8¢:
60
and in all cases, whether the method of reduction be the
approximate or the more accurate, the error of the chronometer
obtained should be employed with the proper daily correction
for rate in the ordinary determination of local time and longitude
between one set of observations and another. In the first in-
stance it will be necessary to adopt the rate given by the maker;
but this may be amended as observations are multiplied, and as
the interval between the first and last sets increases, the sums
of the errors in the times divided by the number of days becoming
thus smaller and smaller, and at last inappreciable. Instances,
however, have been known in which the variation of rate was so
considerable as to render it necessary to adopt for the time that
given by the results of observations separated by comparatively
short intervals. .

Ezample 1. Method 1. June 1, 1857. wy,=+0'17". Bar.
29-85inches. Therm. 57°. Latitude 47° 11’ N.
Moon and « Leonis, with Shade No. 2.
Time by watch. Reading.

h m s o 4 « n

T =9 37 32 39 40 23 E* =<0 7 Means of 6 obs.
Assumed error ==10 © —0 8 —wp =—017
¢ ‘ =9 483t Q=39 40 15\ nande= o o
. cg =+o 2
Sum =-—0 8

* Mean value of E. Refer to examples in Chap. I. t To the nearest minute.
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, interpolated from observation =53°49" o”
Refraction = 4118
Sum : =53 50 18
Moon’s equat. hor. par. at ¢ = 54/, 28" P=o
Correction for latitude = -6
? =54 22 zy interpolated = §7° 26’ o”
log » =3'51348 Refraction = +1 29
long sin (%;+refraction) =g'9o707 P .sin(z,4refr.) = o o
Sum =g42055=log 4354 7 = §7 27 29
L4 =53 624 — 53 6 24
Moon’s hor. } diam. at ¢ =14" 52”5 Sum =110 33 §3
Augmentation for Jg = 485 1 (Ghi+2) = 55 16 57
) =15 1 logsind(Z,+21)= 99148560
Q = 36°40 15 Double = 9'8297120
Uy = 39 55 16 logsinZ;=9'go29567 -
&4 =53 49 © log sin = 9'9069446
EA = 57 26 o log sin = 9'9257069
Sum =151 10 16 logsinz;=9'9258265
0, = 75 35 8 logsin =9¢9861088
6g—uy = 35 39 52 logsin =97656962
Sums =9'5805882 9°6623635
9°662363 S/
Difference=logsin? 0, =9°9182247 logsin4(%,42,) =9°9148560
log sin 6, =9°9591124 log cos 6, =9'6172956
Sum = logsin§ u, =9°5321516
iy =19° 54' 32"
%, =39 49 4
Tabular distance at 14 g G.M.T.=39 25 17 PL=3037%*
Difference = 23 47 PL=8790
PLof o 47™s2* =5753
1¥ 9 "0 o
Sum=1 9 47 52
Correction for 2nd difference= -1
M=1 9 47 51
T= 9 37 32
Error of watch= —10 19

125

* The process for the determination of M from u, is fully explained in
the ¢ Nautical Almanac’ for every year, in that for 1857 at pages 536, 537.
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It will be remarked, that amongst the particulars at the head of
this example we have given the latitude 47° 11’ N. This element,
however, is not required to any degree of exactness, inasmuch
as we employ it only in obtaining from the Tables the correction
to the equatorial horizontal parallax of the moon.

Ezample 2. Method 2.

Resuming the observation of Example 1, and supposing that
instead of the quantities &, and z, being given we have only

latitude=47° 11' N and ¢=42° 49/,
and local sidereal time at 7=13h 42m 58,

the calculation will be as follows :—

a =moon’s geocentric RA at # =12P 27™ 36*  h =1P 14™ 29*=18°" 37’
« =moon’s geocentric NPD at ¢=93° 20’

A =RA of a Leonis =10" o™ 46° H=3 41 19 =55 20
I1=NPD of a Leonis =77° 20'%
log tan ¢ =9°96687 log cos ¢ =9'86542
log cos h=9°97666 log cos 6 =9'87589
log tan 6=994353 Difference =9_‘;@
0=41° 17’ log cos (r—0) =9°78886 logp =3'51348
T=93 20 log cos &, =F839 log 8in &, =9°90296
T—0=52 3 ¢, =53°_6’. o”’*  Sum =3‘76_;:
7 = 43 54\ Nat. No. = 2608”8
Sum =53 49 54 \(p) = 250
Refraction = -1 18 v =2634"=43" 54”
& =53 48 36
log tan ¢=9°96687 log cos ¢ =9'86542
log cos H=9'75496 log cos 6 =9'94678
log tan 9=9—'7:_183 Difference =9m
0=27°47 log cos (IT—0) =9'81210
=77 20 log cos z, =;'—;;o;; z =57°27" o”
M—0=49 33 - Refraction= —1 29
T % =57 25 31

* It would be useless in nautical practice to take these quantities from
the Tables to a greater degree of accuracy than we have here done.
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And computing with these elements in the same manner as be-
fore, we shall find u,=89° 49’ 3", a result differing 1" from the
former.

-

Ezample 3. Method 3.
Treating the same observation again, we shall have

¢ =43°0 log p=9-99920 *
Aa = +26""4 A = +14"2,
and the remaining quantities will be as before, except that p

will now represent the moon’s equatorial horizontal parallax
=54/ 28",

log tan ¢’ =9°96966  log cos ¢’ =9'86413  log sin {=9'9o199
log cos & =9°97666 log cos 6 =9'87467 logp =3'51428
log tan 6 =9°94632 Difference =9'98946 logp =9°99920
0 =41° 28’ log cos (w—0) =9°79063 Sum =341547 = log
L4 =93 20 log cos & =9°78009 L=42° 56’ o” (»)
70 =51 52 ;4 43 48
U=53 39 48 log sin
log tan ¢ =9°96687 log cos ¢ =9'86542 From line 11 of [ log r
formula, the
log cos 5 =9°97666  log cos 6 =9'87589 effectof refrac. | Sum
. : = tion upon the .
logtan @ =g9'94353  Difference = =9°98953 radius _being log sin £
] =41° 177 logcos(w—0) =9'78886 inappreciable { 1og (r)
w =93 20 logcos(4,—p)=977839  L—p' =353° 6 o
r—0 =62 3 p = 43 48
9 =53 49 48
Refraction= 1 18
& =53 48 30
log tan ¢'=9°96966  log cos ¢’ =9'86413
log cos H=9"75496 log cos @ =9'94617

log tan 0=g9'72462  Difference =9'91796
0=27°s57 log cos (IT—0) =9°81358
M=77 20 log cos z =9"73154 or 2=§7°23’

M—0=49 23

43'23"
= +as

=9°gobog
=2'95061

=2'85670
=9'90199
=2'95471

* Values of ¢'—¢ and log p may be found in most collections of Tables,
or th(;y may be computed by the formula of the Note at the bottom of
page 79.
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And as z, will be the same as in the last example, we shall have

z] =57O z7I °II

) =57 25 31
2 = 39°40 15" (& +2) =55 38 24 logsin=9'9167211
(r) = 15 1 Double=9'8334422
u, = 39 55 16 log sin &, =9°9o70185
L, =53 4830 log sin=g°9068984
% = 57 25 31 log sin=9'9256678
Sum =151 9 17 log sin z, =9°9257875
6, = 75 34 385 log sin  =9°9860928

0,—u,= 35 39 22°5 log sin =M .
Sumws 9°5845085 96660084
9°6660084 /

Difference =log sin? 6, =9°9185001 logsin } (Z,42,) =9"9167211

log sin 6, =9°9592501 log cos 8, =9'6166298
T Sum=logsinjw,  =9'5333509
Yu = 19°57°59”
w = 39 5558
I =5313948 ¢ =52° 56" o
z = §7 23 0 —— 57 23 ©
Sum =150 58 46 $(3+2) =55 930
‘4 = '75 29 23 logsin =9'_9§§9_;14
& —u, = 35 33 25 logsin =9'7645585
logsin4 =g'9o19674
Sum =m
logsing’ =g9°9o6og21
Difference =g9°7463552
Half =9'8731776
log sin § ({4-2) =9°9142024 9°9142024
Difference=1log sin 6=9'9589752 16g cos §=9°6179565
log sin § u=9°5321589
fu=19°"54'33"6
=39 49 7
whence, proceeding as before;
Au =+ 04969 M=g" 47™ 57°
A—w=—2b26™ 50° = —36° 43’ t=9 48 o

n= -3
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(For the remainder of the calculation the angles to minutes
and four places of decimals in the logarithms will suffice.)

log cos ¢’ =9'8641 log sin ¢’ =9°8338 9'8338
log sin 7 =9°9993 log—cos w=8'7645 log sin * =9°9993
Sum =m log cos & =9°9767 log sin A =g°5042
Nat. No. = *7301 Sum =§T;;; logAx  =1'4216
—+0376—Nat. No. —?76 Sum =;7T-89=log 5”740
Differ. = +76—77 log =9'8852 T pd
- log Ar  =r1523 d
Sum =1'0375=log 10”°903 //
T 5 740 7
Difference = 5—xﬁ log =0'7129

log sin { =g°9020
log 8, =o'8109

(Tke computation of this quantity is never necessary when we
know the approximate Greenwich mean time within a minute,
or more in some cases. But in an example it is of course expe-
dient to include it ; and as in consequence of accident the navi-
gator may not know his time within a few minutes, he may in
some instances find it convenient to include in his result the
term which involves 8¢, and thus save himself the trouble of first
treating his observation by the approximate method No. 1 as a
preliminary to its more accurate treatment.)

log sin x =9'9993 log—eos 7w  =8'7645 logsin 7 =9°9993
log sin IT =9'9893 9'9893 log cos Il =9°3410
log—sin(A—a)=9'7766 logcos (A—a)=9'go40 Sum =m
Sum ==§'Té§ Sum =8—-6_5§ Nat. No. = —-219
9'5027— Nat. No. =——'o4—5 —_ —*045
Diff. =log—s, =o0'2625 | log Au =9°6963 Difference =jz_64. log=9"4216
2 =T5_;, log sin u =9'8064 E— 9°5027
T sum =m /" Difference=log—s,= 9‘9_153
8,=—083
log sin = . cos [I=9°3403 log-com.sinnsw
logcos (A—a) =9'9039 Nat. No.=—"057
Sum = 9—2.; Nat. No.=+-176

Difference= 233 log=9'3674
log Au.sin u=9°5027
log s, =9'8647 &,=+0'73
K
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log cosu - =9'8854 log Au =9°6963
log cos ¥’ =9'7727 log coeflicient of 8r =o0"3037
Sum =9'6581=log 0455 Nat. No. =201

Nat. cos z= 0°539
Difference= — 084 log=89243
log Ax.sinu =9°5027

log—3, =94216 s, =—026
log—n =0'¢771

log p =13'5143

log cot 2’ =9°8666

log sin 17 =4'6856

log 8¢ =o0'8109

Sum =87761

log 60 =1'7782

Difference =6'9979 =log 0*000995

And as this last quantity is inappreciable, we shall have

G.M.T. = 947 57183 x (Su—5A) —0:83 x 5 +073 x 8T1
—026 x 8p +2°01 x 8r

T = 93732

Errorof Watch= —10 25 + 183 x (8a —8A) +0-83 x 8w —0-73 x 311
+0-26 x 8p—2-01 x 8r.

Converting 9 47 57 mean into sidereal time,

S =142913

T =1342 5

Longitude = +47 8—1'83 x (8a—8A)—0'83 x 87w +0-78 x I

—026 x 8p + 201 x r.

The chronometer error, then, derived from this observation, to
be adopted whilst at sea, is —10™ 258, differing, it will be re-
marked, from the result of the reduction by the first method by
6 seconds, and from that by the second method by about 8
seconds. But the differences between the results of this and the
other methods will sometimes be considerably greater, as in the
instance of a second observation on the same night of another
object with the moon, in which they amounted to 20 and 19
seconds respectively ; and it is to be remembered that as thiese
differences depend upon the magnitude of ¢'—¢, they will in
general be greater in middle than in either very high or very
low latitudes, the moon in the latter case not being very near
the zenith.

Asregards the errors of the Tables, these, as already remarked,
are to be obtained at some subsequent date from the results of
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observations made at fixed observatories. In the present instance,
according to those made at Greenwich, da = —0%-40= —6" and
Sx= —8"; but the values of these quantities, as well as of & and
or, will eventually be ascertained with all the accuracy that can
result from comparison of similar observations made at different
places in considerable numbers. Our present object being
simply to furnish an example, it will be sufficient to assume the
above to be the values of 8« and &, and that 8p and & each=0;
and as the star is well known, we may suppose likewise, without
risk of serious error, that 8A and SII are inappreciable. Hence
the results,

Error of Watch= —10m 258—1'83 x 6 —0-83 x 8 =— 10m 43s,

Longitude =+47 8 +183x6+083x8=+47 26
=11°51'30" W.,

are probably not very far from the truth. The general result,
however, being recorded, we shall at some future date be able
to determine more accurately what was the error of the chrono-
meter on the 1st of June at 9t 48™ Greenwich mean time, and
from this and the results of subsequent observations similarly
reduced ascertain its rate during each interval. We shall thus
be prepared to amend the results of daily determination of lon-
gitude, and, should we have any particular reason for wishing to
know the position of the ship at a given time, shall have the
means of obtaining it with a ({Lgree of accuracy unattainable in
general by any other course of proceeding. It should be under-
stood, however, that it is always desirable that a second object
be observed with the moon, situated, if possible, upon the side
opposite to that of the first; but even one observation, made
with a Sextant for which the operator has obtained a table of
corrections, and reduced according to the most accurate method,
is of far greater value than the mean of many made in the ordi-
nary way, and reduced either according to the approximate
method, or by means of the Tables in common use among navi-
gators.

6. It remains only, in conclusion, to make a few general re-
marks on the Sextant, and the mode of handling it.

1°. A double-frame Sextant of from 7 to 8 inches radius will
be found very convenient as regards size and weight*; and gold

* There is probably less liability to flexure in the double-frame than in
the solid-frame Sextant ; and in a well-constructed instrument of the former
description, the maximum effect has been found not to exceed 3". In in-
struments of the other description, the amount of error seems to depend
to a great extent upon the mode in which the handle is connected with the
frame ; and it is to be feared that in many instances it is even ter than
in the Sextant which furnished the examples in Part I., in which the maxi-

K 2
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is perhaps the best material for receiving the divisions. The
instrument should be farnished with a good supply of eyepieces
of various power,—and with a supplementary handle to screw
into the ordinary handle at right angles to it, for convenience in
observing angles between objects in planes nearly horizontal.

2¢, For every necessary observation at sea, except those of lunar
distance and altitudes of stars of inferior brilliancy, a pocket-
sextant will be found sufficient and more convenient than the
larger instrument. The latter should be reserved for the more
delicate operations, and not exposed to spray except in cases of
emergency. Moisture condensing from the atmosphere will
generally evaporate from the surfaces of the glasses without in-
volving the necessity of wiping them, an operation which, as it
is very likely to disturb their positions and sure to injure their
polish, should be performed as seldom as possible.

8°. The Sextant should never be held except by the handle;
but in cases in which the frame interferes with this mode of
handling in removing it from or replacing it in the box, that
part only of the frame should be touched which is situated im-
mediately about the centre of gravity.

40, A good light is indispensable for reading the vernier by
night. This may be easily provided on land in a sheltered posi-
tion convenient to the observer ; and at sea, a signal lantern with
a good reflector, if lashed in a convenient place with the axis of
the reflector or lens inclined a little downward, will answer every
purpose. A light of the same description, directed upon the
surface of the horizon-glass by an attendant standing behind the
observer, may be had recourse to when the light in the sky is
not sufficient to render the wires of the telescope distinctly
visible.

5°. In observing angles between objects not situated in the
same vertical plane, the operator should be seated in a chair of
the description mentioned in the last section.

6°. Altitudes of the sun at sea may be observed with any
power under 9, depending upon the state of the weather; but
for those of the moon and stars, a power not exceeding 5 should
be employed ; and the horizon not being very well seen, a power
of 24 to 3} with a large field will be best. Altitudes of stars
can be most satisfactorily observed when the objects first become
visible in the twilight, or immediately before they disappear in
the dawn ; but should it be necessary to make observations of
this description by moonlight, the operator should be particularly

mum was 11”4, From some experiments recently tried, however, there
is reason to believe that an improved construction will reduce the amount
materially.
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careful that he does not take the shadow of a distant cloud for
the line of the horizon, the two being, under such circumstances,
extremely difficult to distinguish*.

7°. When observing an angle between two objects in relative
motion, it will be better, should the weather be very fine, to set
the index a little in advance and to await the instant of coinci-
dence of images. This is always practicable on shore; but as
at sea an inopportune movement of the ship may disturb the
observer at the critical time, it is generally necessary to trust to
manipulation of the tangent-screw to effect the coincidence at
the moment at which it can be most safely determined, that is,
when the images can be retained in the middle of the field during
an interval sufficient for the performance of the operation.

8°. In observing lunar distances, the operator may direct the
telescope to either of the two objects, preference depending upon
the position in which it will be necessary to hold the instrument,
which should invariably be that in which it can be most conve-
niently managed. If the glasses are in order, the reflected image
of a star of the third magnitude will be sufficiently distinct, and
may readily be brought into contact with the moon’s limb, the
direct image of the latter being darkened by the proper shade.

9°. In reading the vernier, the vision should, if possible, be
made to embrace four divisions—those most nearly coinciding
with divisions on the arc, and the two outside them likewise,—as
comparison of the relative departure of the latter from the neigh-
bouring divisions will materially assist the operator in estimating
the second to be adopted in the angles.

* With respect to the eye-pieces, these should be made to adapt both
to the long and short telescope, by which means we obtain a greater variety
of power; and the inverting eye-piece of lowest power applied to the short
telescope’ will be found to answer well for observation of altitude of stars.

It is to be remarked that the error of collimation not infrequently varies
considerably with the eye-piece employed,—a circumstance which suggests
the propriety of having the diaphragm fixed within the tube of the tele-
scope, or, each eye-piece carrying its own diaphragm as now, the applica-
tion of means for adjustment insependent of that which takes effect upon
the whole length of the tube.
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Table of values of (p)=}p®.sin2¢.sin 1"+ 3. sin 3¢. sin® 1"
for various values of p and ¢.

Values of p. .
14
s4 | s’ | s6 | 577 | 58 | s59° | 60" | 61
[} " " “w ” " " " ”
1 o9 ) 1o 10 10 I 1 12
2 8 1'9 1’9 2'0 2°1 2°2 2°2 2°3
3 27 2’8 29 30 31 32 33 3’5
4 36 37 3'9 40 42 43 45 46
5 45 47 48 50 52 54 56 57
6 54 56 58 6'0 62 64 6°6 69
7 63 65 63 70 72 7'5 77 8o
8 7' 74 77 80 82 85 88 91
9 80 83 86 89 92 9'6 9'9 102
10 88 92 9' 9°9 102 106 10°9 11’3
11 9'7 10°0 10°4 108 12 11°6 12°0 12°4
12 10°§ 10°9 11°3 11y 12°1 12°6 130 13°4
13 11’3 18 122 12°6 131 13°§ 14°0 14°5

14 12°1 12'6 13°1 13°§ 14’0 145 1§ 15§
15 | 129 | 134 | 139 | 1474 | 14%9 | 15 | 160 | 165

16 13'7 142 14°7 15°3 15°8 16°4 16'9 17°5
17 144 15°0 15°5 16°1 167 17°3 17°9 18°5
18 152 15°8 16'3 16°9 17°5 181 18'8 19°4
19 1579 16°5 17'1 17°7 184 19'0 19°'7 | 203
20 166 17°2 17°9 185 19%2 19°8 20°§ 21°2

21 17°3 17°9 186 19°3 199 | 206 | 214 | 2271

22 17°9 18°6 19°3 200 | 207 | 214 | 222 | 2279
23 186 19°3 200 207 214 | 2272 22°9 237
24 192 19'9 | 206 | 214 | 221 22°9 | 23'7 24°§
25 198 | 205 | 213 | 22'0 | 2272 | 236 | 244 | 252

26 203 21'1 219 | 22°7 23°§ 24'3 251 26'0
27 209 216 22°4 232 24’1 24'9 258 267
28 214 | 2272 230 238 24°7 25°5 264 | 27'3
29 219 | 227 235 24°¢ | 252 | 261 27'0 | 2779
30 22°3 233 24’0 24'9 258 267 27°6 28°5

31 22°7 236 24°5 25°3 26°3 27°2 281 29°1
32 231 240 24'9 25'8 267 277 286 29°6
33 23°§ 24°4 | 253 262 272 28'1 29°1 30°1
34 23'9 24'8 257 266 27°§ 28°5 29°5 jo's
35 24’2 25°1 260 269 | 27°9 289 29°9 30’9

36 24°5 254 26°3 27°3 282 29°2 302 31°3
37 | 247 | 256 | 266 | 2775 | 285 | 295 | 305 | 31'6
38 24'9 259 268 27'8 288 29'8 308 3r'9
39 25°1 26'1 270 280 29°0 30°0 311 32°1
40 253 262 27°2 282 29'2 jo'2 313 32°3
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Values of p.

14

$ 54 | 58 | 88 | 57 | ¥ | 59’ | 6 | 6r

"
o " 7” ” ” " ” ” "
41 254 | 264 | 274 | 283 | 294 | 304 | 314 | 32°§
42 | 255 | 265 | 27°5 | 285 | 295 | 305 | 315 | 326
43 256 266 27°§ 285 296 30°6 31°6 32°7
44 256 266 27'6 286 29'6 30'6 317 32°7
45 256 266 27°6 286 29°6 30°6 37 32'7
46 | 256 | 266 | 276 | 286 | 296 | 306 | 316 | 327
47 | 256 | 265 | 275 | 285 | 295 | 305 | 316 | 3276
48 | 2575 | 26¢ | 274 | 284 | 29%¢ | 304 | 31v5 | 32°5
49 | 25°¢ | 263 | 2773 | 283 | 2973 | 303 | 313 | 324
50 253 | 261 27t | 281 | 291 30'1 311 3272
51 25'0 | 260 | 269 | 279 | 289 | 299 30'9 31°9
52 24'8 257 267 | 27°6 286 | 296 306 317
53 24'6 | 255 | 264 | 274 | 283 | 2973 30'3 3r4
54 243 | 252 | 261 | 271 | 281 29'c | 300 | 310
55 240 24'9 258 267 27°7 286 29°6 30°6
§6 | 237 | 245 | 254 | 264 | 273 | 282 | 292 | 302
57 23'3 24°2 25'1 26'0 269 27°8 288 297
58 22'9 238 246 25°§ 26°4 27°3 283 292
59 22°§ 23'3 24’2 | 2§51 259 268 | 278 287
6o | 220 22°9 23'7 24°6 254 263 27°2 281
61 21'6 22°¢ 232 240 24°9 257 266 27°§
62 211 ar'9 27 | 23°5 24'3 25'1 260 | 269
63 206 | 213 22°1 229 | 237 | 24’5 | 254 | 262
64 200 | 207 | 215 | 22°3 | 231 | 239 | 247 | 25§
6s 19°4 20°2 209 216 22°4 232 24'0 24°8
66 188 19°§ 20'3 21'0 217 22°§ 232 240
67 182 189 19°6 | 20°3 210 | 217 | 227 232
68 17°6 182 189 19°6 | 20°3 210 | 217 | 22%
69 16°9 17°§ 182 18'8 19°§ 202 | 209 | 216
70 16°2 16'8 17°4 181 187 19°% 20°0 20'7
71 15°§ 16°1 167 17°3 17°9 18°5 19°1 19'8
72 14°8 154 15°9 16°5 17°1 77 18°3 189
73 14°1 14°6 15°1 157 16°2 16°8 173 179
74 1393 | 138 | 143 | 148 | 153 | 1579 | 164 | 17°0
75 12’5 13°0 | 13°5 140 | 145 14°9 15°5 16'0
76 '8 12°2 12'6 13°1 13°§ 14'0 14'§ 15°0
77 1o 11°4 8 12°2 12°6 13'1 13°§ 13°9
78 10°1 10°§ 10°9 g 117 12°1 12°§ 12°9
79 9'3 9'7 10°0 104 10'7 11'1 g '8
80 85 88 9'1 9°4 98 101 104 10'8
81 7°6 79 82 85 88 90 9'4 97
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If ug, u,, u, be the Moon’s RA or PD at hours Hy, H,,
H,, the RA or PD at H, hours+n minutes w1ll be
u,+ Bl . A“o'i‘Be A%uy; and variation between H,+n
and H +(n+l)—n Auy+b. A%,

n. | log B,. | log B,. | log . n. | log B,. | log B,. | log .
1 | 822185 | 7°92800 | 7°94201 || 31 |9'71321 |9°'59307 | 8232
2 [852288 (823609 | 795558 32 | 972700 9-61261 8’2392%
3 | 869897 [8:41913 |7°96874 || 33 |9°74036 | 962966 | 8-24647
4 882391 |855091 7798152 || 34 19775333 |9°64727 | 825326
5 |8'92082 [865455 |7°99393 || 35 |9'76592 | 9'66446 | 8:25994
6 | 900000 | 874036 | 800599 36 | 977815 | 9°68124 | 8-26652
7 [9706695 | 881384 8'01773 37 1979005 | 9°69764 | 8:27300
8 |[9'12494 | 887827 | 80291 38 [9'80163 (9'71368 | 827939
9 |9'17609 | 8:93576 | 804029 || 39 |9'81291 |9'72937 | 828568
10 |9'22185 | 8'98777 |8°05116 || 40 |9'82391 |9°74473 | 829189
1t | 926324 | 9'03532 | 806175 || 41 (983463 | 9°75977 | 8:29800
12 |9'30103 | 9°07918 | 8'07209 || 42 |9'84510 | 9'77452 (830404
13 [9°33579 |9°11993 |8-08219 || 43 |9'85532 | 9'78897 | 830998
14 |9°36798 (915803 | 8°09206 || 44 |9'86530 | 9'80315 | 8'31585
15 |9'39794 919382 810171 || 45 |9'87506 | 981707 | 8-32164
16 |9'42597 | 9°22760 |8 11115 46 | 988461 | 983073 | 8°32736
17 |9°45230 | 925961 |8'12039 || 47 |989395 | 9'84415 | 833300
18 | 947712 | 929003 (812044 || 48 |9°90309 | 9°85733 | 8:33857
19 |9°50060 | 9’31905 |8:13830 || 49 | 991204 | 987029 | 8:34406
20 | 952288 | 9°3¢4679 | 814699 || 50 |9'92082 | 9°88303 | 8:34949
21 | 9°54407 |9'37337 |8'15550 || 51 [9'92942 | 9'89556 | 835486
22 956427 | 9°39890 |8:16386 || 52 |9°93785 | 9"90789 | 8:36015
23 [958358 | 942347 | 817205 || §3 |9'94612 | 9'92002 | 8:36538
24 |9'60206 | 9'44716 |8-18009 || 54 [9°95424 |9°93197 | 837055
25 | 961979 | 9°47003 (818799 || 55 |9'96221 |9'94373 | 8'37567
26 | 963632 | 949214 |8'19575 || 56 |997004 |9'95531 | 838071
27 |9%65321 | 9°51355 |820337 || 57 |997772 | 9796673 | 8:38571
28 | 966901 | 9°53431 |8°21085 58 |9°98528 | 9°97798 | 8°39064
29 |9'68425 |9°55446 | 821821 || 59 |9'99270 |9'98907 | 839552
30 | 969897 | 9°57403 | 822545
THE END.
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