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PREFACE

This is the second of two volumes in which an attempt has been

made to give, in as limited a compass as possible, a good grounding

in the elements of those parts of the theory and practice of plane

surveying that are used by engineers in ordinary civil engineering work

and are required by students taking the examination in surveying for

the Associate Membership of the Institution of Civil Engineers. It

deals with the main principles and practice of surveying, while the

first volume deals with the principles and use of the main instruments

commonly used in civil engineering practice.

In his ordinary work, the civil engineer is not concerned with

geodesy or the higher branches of surveying, and accordingly the

field covered in these two books is confined to the elements of plane

surveying. For this reason, they are to be regarded as forming a text-

book of an elementary or intermediate standard which can, if neces-

sary, be used as an introduction to books of a more advanced kind.

As the ground covered is elementary, and is all part of generally

accepted and well-established practice, all that is claimed for these

two volumes is that the material has been carefully selected for the

object in view and every effort has been made to compress the treat-

ment into the minimum space consistent with a sound exposition of

rudimentary principles and practice. At the same time, special atten-

tion has been paid to matters such as the reduction of angular obser-

vations, the calculation of bearings from the observed angles, and

computations relating to rectangular co-ordinates, which, although

very simple in themselves, sometimes cause trouble to beginners;

and every effort has therefore been made to make the treatment of

these subjects as clear and easy as possible. Many examples are worked

out in the text and most chapters end with a series of questions, many
of them taken from examination papers set by the Institution of Civil

Engineers, which will enable the student to test and consolidate his

knowledge.

Special thanks are due to Professor C. A. Hart, D.Sc., of University

College, London (now Vice-Chancellor of the University of Roorkee,
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India), for kindly providing me with the field notes and plan of the

survey used as an example of a simple chain survey in Chapter III ;

to the Institution of Civil Engineers for permission to use questions

taken from the examination papers for Associate Membership; to

Messrs. Hilger and Watts, Ltd., for permitting the use of the illus-

tration of a station pointer on p. 230, which is taken from a catalogue

of Messrs. E. R. Watts & Son, Ltd.; and to Messrs. W. F. Stanley &

Co., Ltd., for permission to use the illustration, taken from their

catalogue, of an Amsler planimeter which appears on p. 244.

J. CLENDINNING.
ANGMERING-ON-SEA,

SUSSEX.

1st June, 1950.

PREFACE TO THE SECOND EDITION

In this edition, apart from some minor amendments and additions

in the main text, principally in the Sections on Air Survey, and the

addition of some supplementary notes in the Appendix on matters

connected with Plane Surveying which it seemed desirable to include,

the principal change has been the addition of six chapters on Field

Astronomy to cover that part of the syllabus of the examination in

surveying of the Institution of Civil Engineers which includes Field

Astronomy, as this subject was not included in the syllabus when the

First Edition was written. Consequently, the book has now been

divided into two parts, Part I dealing with Plane Surveying and Part II

with Field Astronomy.
In Field Astronomy the syllabus only calls for a knowledge of

"
Field Astronomy as required for the determination of azimuth

" and

consequently it would appear that candidates for the examination are

not required to know anything about observations for latitude and

longitude. However, although azimuth may be the observation with

which the ordinary civil engineer is mostly concerned, it does some-

times happen, particulary in unmapped country, that he may have to

determine his own local time, latitude, and longitude, as a knowledge
of approximate values of certain of these elements is required for com-

puting the results in some of the methods used in finding azimuth.

Also, any treatise on Field Astronomy would hardly be complete with-
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out some account of observations for latitude and longitude. Accor-

dingly, I have added short descriptions of the simpler methods available

for determining these quantities but candidates for the A.M.I.C.E.

examination can use their own discretion about omitting the sections

on latitude and longitude observations at the end of Chapter XVIII,
in which these methods are described.

In the worked out examples in Field Astronomy the data used have

been taken from the 1959 edition of the Star Almanac for Land Sur-

veyors, which was the latest edition available when the chapters in

question were written. There are small changes in these data from year

to year so that the values given in later editions of the Almanac will not

be the same as those used in the examples. However, the student

should be able, if he so desires, to re-work the examples using the data

in the edition of the Star Almanac which happens to refer to the par-

ticular year with which he is concerned, and he is strongly advised to

do this.

In conclusion, I should like to express my thanks to the Institution

of Civil Engineers for permission to reproduce some of the questions set

in recent papers at the examinations for Associate Membership; to the

Controller of H.M. Stationery Office, for permission to use data taken

from the Star Almanac for Land Surveyors', and to Brigadier K. M.

Papworth, O.B.E., M.C., and Colonel D. R. Crone, C.I.E., O.B.E., for

reading through the greater part of the typescript of Part II and for

their very helpful criticism and suggestions, and also to the former for

checking most of the worked out examples in Chapters XVII and

XVIII.

J. CLENDINNING.
ANGM ERING-ON-SEA,

SUSSEX.

July, 1959.
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Plane Surveying





CHAPTER I

INTRODUCTION

Surveying as practised by civil engineers usually has one or other

of two objects in view. The first is to produce a plan or map which
can be used as a basis for planning some kind of works or develop-
ment. The second is to lay out pegs or marks on the ground in such

a way that a foreman or workman can construct on the ground,

correctly and efficiently and without waste, the structure or works
which the engineer has shown on his plans.

There are several branches or divisions of surveying and these

are:

1. Geodetic surveying.
2. Topographical surveying.
3. Cadastral surveying.
4. Engineering surveying.
5. Mining surveying.
6. Hydrographical surveying.

Geodetic surveying may be taken to consist of surveys covering such
a large area that the spherical or spheroidal shape of the earth has
to be taken into account if serious error is not to be incurred. It is

the most accurate of all forms of survey, and its main object is generally
to provide points, very accurately fixed, which can be used as fixed

points whose positions and elevations can be accepted without question
when "

tying
"
other surveys of lesser accuracy to them. Sometimes,

however, geodetic surveys are executed for purely scientific purposes,
the main one being to determine the exact size and shape of the earth.

Topographical surveys are surveys made for producing maps or

plans showing the main physical features on the ground, i.e. towns,

villages, roads, railways, rivers, lakes, woods and forests, etc., and
also (by means of contours or form lines) the

"
vertical relief ", or

heights, hollows, hills and mountains. If the scale of the resulting

map or plan is about 1/10,000 or smaller (i.e. one unit of measurement
on the plan represents 10,000 similar units on the ground), it is generally
called a map. If the scale is greater than 1/10,000, it is usually
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called a plan. The well-known one-inch map of Great Britain (1/03,360)
is a topographical map, and the old 1/2500 and the new 1/1250 sheets

are plans.

Cadastral surveys are surveys made for producing plans showing
property boundaries or plans on which areas necessary for the assess-

ment of property or land taxes may be computed.

Engineering surveys are surveys made specifically for engineering

purposes.

Mining surveys are surveys of mining works and workings, surface

and underground, or other surveys made specifically for mining pur-

poses.

Hydrographical surveys are surveys of water areas, particularly the

sea, made for the purpose of showing the depth of the water at different

points, the nature of the bottom, currents, the shore line or lines where
the edge of the water merges with dry land or earth, lighthouses,

beacons, buoys, etc., and everything of importance to navigation or

needed in connection with engineering operations involving work under

water. Admiralty charts are hydrographic plans.

When surveys cover only a limited area, they can be regarded as

having been made on a plane surface, so that ordinary theorems in

plane geometry and plane trigonometry are applicable, but when very
extensive areas, covering, say, 1000 square miles or more, are involved,
it is necessary to take the spheroidal shape of the earth into account.

Nearly all surveys made for purely engineering purposes cover only a

limited area and can therefore be treated as plane surveys. Conse-

quently, in this book we shall concern ourselves only with the methods
of ordinary plane surveying.

1. General Principles of Surveying.

The main principles to be observed in surveying are to "work
from the whole to the part ", and to use methods which are accurate

enough for the object in view but which, since increased accuracy
means greater labour and cost, are no more accurate than the necessity
of the case demands. These principles are best exemplified in the case

of a large national survey.
Here the first thing that is done is the establishment of a number

of fairly widely separated points fixed with the most refined apparatus
and methods. Next, the wide gaps between these primary points are

filled in with a number of secondary points at much closer intervals

than the primary points, and surveyed by methods which are rigorous
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and accurate, but not so rigorous or so accurate as those used in

fixing the positions of the primary points. This still leaves rather

wide gaps between fixed points, so a number of tertiary points are

fixed to fill in the gaps, the positions of these tertiary points not being
so accurately surveyed as are those of the secondary and primary
points. The result is a network of points, fairly thickly spaced, which
can be used by the ordinary surveyor who is engaged in surveying the

detail on the ground as fixed points whose positions he can accept
and use to control his own work, his work not being nearly so accurate
as any that has gone before. In this way, the work has proceeded
from the whole to the part, and each stage is of no greater accuracy
than is necessary for the purpose for which it was designed.

It is to be noted that, if the final object of the survey is merely
to produce a map or plan, the accuracy of the last stage of the work,
i.e. the survey of the detail, need only be such that the errors in this

stage are too small to be plotted, but the accuracy of the fixings of

the original primary, secondary, and tertiary points will need to be

greater than this, that of the fixings of the primary points being very
much greater. The reason for this is that all survey work, even the

most refined, is subject to error, and errors are very quickly propagated
and generally very much magnified as the work proceeds. Hence, if

the primary work were not of the utmost possible accuracy, and the

secondary work only slightly less so, very small errors at the beginning
would soon become very large errors as the work was extended over

a large area.

In the above example, the primary points control the secondary,
the secondary the tertiary, and the tertiary the detail survey. Errors

in the primary can lead to large errors in the secondary, and so on.

Much the same principle is observed even in simple surveys. Thus,
in a chain survey of a small estate, lines are first run round the

perimeter, with a number of clear cross lines between, or else the outer

perimeter is surveyed with a theodolite traverse, and lines are then
run across the interior. These lines are fairly accurately measured
and are the first to be plotted to see that they all fit in properly.
Minor chain lines, which may be of lesser accuracy, are then run
between the main lines until the area is split up into convenient
blocks for the survey of the detail. We shall see later on how this

process works in practice.

In none of these cases do we start with the survey of detail and
build up from block to block or from detail to tertiary points and then
to primary points: in all cases, the points first laid down are the most
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accurately surveyed and serve as a skeleton on which to hang the

later work, all of which is adjusted to them.

2. Methods used in Surveying.

Nearly every operation in surveying is based ultimately on fixing

on a horizontal plane the position of one or more points with relation

to the position of one or more others, or/and determining the elevation

or vertical height of one or more points above a definite horizontal

datum plane, which is very often taken as Mean Sea Level.

There are four main methods used in fixing the position of a point

on the horizontal plane.

1. By triangulation from two points whose positions are already fixed

and known.

2. By bearing and distance from a single fixed point.

3. By offset from a chain line.

4. By resection.

In fig. 1.1, A and B are two points whose positions are known.

This means that we know (or can compute) the distance between the

two points, and the direction of one from the other. C is a point

B

Fig. 1.1

whose position is required. If now (a) two of the angles of the triangle

ABC are observed, or (6) the distances AC and BC are measured, the

size and shape of the triangle can be fully determined, either by drawing
or by computation, and hence the position of C with relation to both

A and B can be found.

When the position of C is fixed, we know the direction and length

of the side BC, and hence, from this side, using similar methods to
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those already employed, we can fix a fourth point D, and after it a

fifth point E, and so on. This is the principle of the process known as

triangulation, which is much used in survey work.

In practical triangulation involving angular observations, the three

angles of every triangle are measured wherever possible, as this not

only acts as a check, but it also serves to add considerably to accuracy.

If the angles BAC and ABC only in

fig. 1.1 are observed, the point C is

said to be fixed by intersection.

In fixing a point by bearing and

distance, we measure the distance

AB, fig. 1.2, where A is the fixed

point and B the point to be fixed,

and also measure the bearing or

direction of the line AB.

For certain purposes, when very

great accuracy is not needed, we

can measure bearings or directions

directly by means of a magnetic compass. This will give the bearing

or direction of the line with reference to a fixed direction known as

magnetic north, which is shown as the line AC in the figure. For more

accurate work, the bearing must be obtained by sextant or theodolite

by observing the angle DAB between a fixed point, say D in fig. 1.2,

whose bearing or direction from A is known, and the point B. When
this angle is known, we can compute the bearing of AB and this, com-

bined with the measured distance, enables us to fix the position of B.

Fig. 1.2

Kg. 1.3

This principle is used in traversing, a process also extensively used

in surveying. A traverse consists of a series of zigzag lines whose

bearings and distances are measured. Thus, in fig. 1.3, starting from

the fixed point B we measure the distances BC, CD, DE, EF and FG,
and also either the bearings of BC, CD, DE, EF, FG or else the angles

ABC, BCD, CDE, DBF, EFG, where in the latter case the bearing

or direction of the point A from B is known, and the bearing of BC
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is obtained by calculation from it and the measured angle ABC. Then,

knowing the bearing and distance BC, we can fix the position of C,

and after that, knowing the bearing and distance CD, we can fix the

position of D, and so on, the bearing of CD, if not observed directly

from compass observations, being obtained from the bearing of BC,
which we have already found, and the observed

angle BCD.
The term offset in surveying is applied to

a line laid out at right angles to a chain line

to fix some point of detail. In fig. 1.4, AB is

part of a chain line and c is a point on it whose

distance from A, the beginning of the line, is

noted and recorded, d is a point of detail

whose position is to be plotted. The point c

is chosen so that the line cd is perpendicular

to the line AB, and the distance cd is measured.

When the line AB is plotted on paper, and

the line cd laid out the correct distance from

the plotted position of c, so that dc is perpen-

dicular to AB, the position of the point d is at once plotted. It will

be seen that an offset is really a special case of fixing by bearing and

distance.

Offsets are mainly used in the survey of detail in chain surveying

and their length is generally limited to something less than 100 ft.

Offsets much longer than this

are very seldom used, except

perhaps for fixing the positions

of spot heights in connection

with contouring.

It sometimes happens that

the fixed points from which it

is desired to fix the position of

a new point are inaccessible,

or are in positions which are

inconvenient to use as observ-

ing points, but, provided all

four points do not lie on or near a single circle, it is possible to fix a

point by angular observations taken at it to three fixed points. Thus,
in fig. 1.5, A, B and C are three points whose exact positions are

known or are plotted on a plan. Then the position of the point
can be fixed if the angles AOB and BOG are measured. Alternatively,

Fig. 1.6
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if the work is being done by plane-table, there is a method which, by
suitable pointings of the alidade or sight rule in the directions of A,

B and C, enables the position of to be determined graphically in

the field. This method of fixing the position of a point by observa-

tions to three fixed points is known as resection, but it breaks down

if a circle drawn through the three fixed points passes through, or

near, the point to be fixed.

If prismatic compass fixings only are required, the point in fig.

1.5 can be fixed from two fixed points only by observing magnetic

bearings to them from the point to be fixed. In addition, a fixing

can be obtained from two fixed points only if a subsidiary station is

chosen suitably placed with regard to the station to be fixed, and

angular observations at each of these stations are taken to the other

one and to the two fixed points.*

In determining differences of elevation between points, several

methods are available. These are:

1. By observing vertical angles between points when the lengths of

the lines joining them are known.

2. By ordinary spirit levelling.

3. By readings on a barometer or aneroid.

4. By readings with the hypsometer or boiling-point thermometer.

Of these methods, (1) and (2) are, in general, more accurate than

(3) and (4), good spirit levelling being the most accurate of all.

3. Errors in Surveying.

All survey operations are subject to errors of observation, but

certain types of error are more serious than others.

The first type of error is a gross error or mistake. This means a

serious mistake in reading an instrument: for instance, reading 130

instead of 150 when reading the circle of a theodolite, or booking a

reading of 80 on a chain when it is really 60. Every care must be taken

to avoid making mistakes of this kind, since the results may naturally

be very serious.

The second kind of error is a constant error which has the same

value and sign for every single observation. For example, an index

error in a sextant will affect every angle measured with that sextant

by the same amount.

Sometimes constant errors cancel out. Suppose the first graduation

on a level staff is marked 1 ft. instead of zero. Then every single

*See The Principles and Use of Surveying Instruments, pp. 104-5 and 176-7.
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sight taken on the staff will be one foot longer than it should be, and

hence the apparent reading will be one foot too high. But, since a

level is used to measure differences of elevation, and these differences

are obtained by subtracting one staff reading from another, the error

will cancel out and the true difference of elevation will be obtained.

Nevertheless, constant errors are to be avoided as much as possible.

Systematic error is an error which has always the same sign, not

necessarily always the same magnitude, at every observation. Thus,

a chain may be uniformly stretched so that the error in apparent

length of any part of it is proportional to the length. If a line is measured

with this chain, the apparent length will be too short by an amount

equal to the length of the line multiplied by the amount of the error

per unit length.

If we knew the amounts and signs of constant or systematic errors

we could allow for them by applying calculated corrections. This is

often done, but sometimes, although systematic error is suspected,

neither its magnitude nor its sign is known, and consequently no cor-

rection is possible.

Accidental errors of observation are the small errors of observation

that vary in magnitude and in sign with every single observation.

Their occurrence depends on the laws of chance and, their magnitudes
and signs being unknown, their effects cannot be calculated and

allowed for. Small errors are more likely to occur than large ones.

The small errors in reading a levelling staff due to
"
shimmer "

in the

atmosphere or to temperature changes, small errors in reading an

angle, etc., are of this type.

It should be noted that, in the case of systematic error, the total

error in a measurement which is dependent on the sum of a series

of repeated readings of the same quantity, is directly proportional to

the total measurement, but, in the case of accidental errors of obser-

vation, the total error is proportional to the square root of the total

measurement, or rather to the square root of the number of repetitions

of readings. Thus, if there is a systematic error of k units per unit

length in the reading of a chain, the total error from this cause in

the length L of a line measured with that chain will be k X L. On
the other hand, errors of ordinary levelling tend on the whole to be

of the accidental type, so that the total error in the measurement of

a difference of elevation between two points L units of length apart
will be K^/L, where K is the

"
probable

"
accidental error per unit

length of line. Hence, since the effects of systematic and constant

errors tend to be propagated according to a linear law, and the effects
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of accidental errors according to a square root law, it is more important

to reduce or eliminate constant and systematic errors than it is to

reduce or eliminate the small purely accidental errors.

In many cases, but not in all, constant and systematic errors can

be reduced or eliminated by using suitable methods of observation.

Thus, errors of vertical collimation in a theodolite may be entirely

eliminated by observing angles
"
face right

"
and

"
face left

"
and

taking the mean of the two sets of readings. Similarly, errors of

horizontal collimation in levelling may be eliminated by keeping
'

backsights
"
and

"
foresights

"
equal in length.



CHAPTER II

CHAIN SURVEYING

When the country concerned is not too wooded or broken, complete

surveys of small areas can be made by the use of a chain and linen

tape alone. For extensive surveys, or in broken or very wooded country,

the chain must be supplemented by a compass for the measurement

of bearings, or, for more accurate work, by a sextant or theodolite

for the measurement of angles. Even when part of the work is done

by compass or theodolite, however, the methods of chain surveying

are often used for the survey and filling in of detail.

The chain and linen box tape can also be used for much setting-

out work, even for the setting out of railway curves, although in this

last case it is usual and better to set out with theodolite and steel

band.

Before we proceed to describe the methods of fixing detail from

chain lines and making a survey by chain, it is necessary to consider

the ranging out of straight lines, setting out angles, particularly right

angles, and the methods of working round obstacles and across gaps,

such as rivers and lakes. It will be assumed that the student is familiar

with the method of using the chain as described in Chapter II of

Principles and Use of Surveying Instruments.

1. Ranging Straight Lines.

Ranging a line means establishing a set of intermediate points on

a straight line between two points already fixed on the ground.
The simplest case occurs when the two points are intervisible and a

start is made from one end of the line. Let A and B, fig. 2.1, be the

Fig. 2.1

two points between which it is necessary to establish a number of

intermediate points. Having set up vertical ranging poles at A and

B, move a short distance behind the point B, the point from which
10
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it is proposed to work, to a point C, so that on looking towards A the

ranging poles at A and B appear to be in a straight line with the eye.

Standing at C, get an assistant to hold a pole near some intermediate

point d, and, using suitable signals or shouts, get him to move his

pole right or left of the line until A, d and B all appear to be in a straight

line. If required, points g and h beyond A can be lined in in a similar

manner.

The assistant should be made to stand to one side of the line during

these operations, so that his body does not obstruct the sight to the

distant point. He must also hold his ranging pole vertical by supporting

it loosely between the forefinger and thumb so that it tends to hang
vertical under its own weight.

Fig. 2.2

Sometimes the whole of the intermediate line cannot be seen from

the ends. In fig. 2.2 there is a gulley between A and B, and neither

point can be seen from points inside the gulley. Establish points d

and e on the line between A and B on the edges of the gulley and

mark them by ranging poles. Then move to d and from behind d

line in a pole at f on the straight line between d and e and possibly

another pole at g between f and e. If necessary, move to f and put

in intermediate poles at h and i. In this way, the line can easily be

laid out over the gulley.

Another case arises when the ends of the line are not intervisible.

This problem can easily be solved when a theodolite is available by

making a survey of the relative positions of the two ends and cal-

culating a bearing between them which can be laid out on the ground.

In heavy bush country, where heavy clearing is involved, this is the

easiest method, even if lines have to be specially cut for the legs of

a preliminary traverse. For many purposes, however, such an elaborate

procedure is not necessary, and a line can be established by ranging

pole alone or by ranging pole and chain.

In fig. 2.3 a hill intervenes between A and B, so that these points
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are not intervisible. If a point C on the hill can be chosen such that

it views A and B, it can be ranged in by a line ranger or by the method
now to be described. Intermediate points between A and C and between

C and B can then be ranged in in the ordinary way.

Fig. 2.3

Choose the point C which, as closely as can be judged by eye, is

on, or very close to, the line AB and line in a point D between A and

C. On going to D, fig. 2.4, stand behind the pole there and look in

the direction of B. In all probability it will be seen that D, C and

B are not in a straight line. From D line in a point E between D and

B

Fig. 2.4

B. Proceed to E and from a point behind it see if E, D and A are on

line. If not, line in the point F on the line EA. Proceeding in this

way, keep moving the poles closer and closer to AB until, after a few

trials, they are seen to lie on it.

If, as in fig. 2.5, it is not possible to choose a point between A
and B from which both, points can be seen, estimate the direction of

777%

Fig. 2.6
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A from B as closely as possible, and range and chain a straight line

BD in that direction, leaving intermediate numbered pegs along BD
at the end of each chain length. From A lay out a line AE perpen-

dicular to BD at E (p. 14) and measure the length of AE and the

chainage of E. Then, points such as f can be found by diawing a
T>TCi

perpendicular to BE at F and laying out Ff such that Ff = EA .
-

.

2. To Lay Out a Right Angle from a Point on a Chain Line.

The operations to be considered in the next few pages are all based

on simple geometrical propositions, and are the equivalent on the

ground of easy problems in geometrical drawing.

Let AB, fig. 2.6, be a chain line, and let it be required to lay out

a line from a point C on AB at right angles to AB.

D

If an optical square is available, stand at C and, viewing a ranging

pole at A or B directly through the square, signal to a man holding

a ranging pole at D until the image of the latter in the instrument

appears to coincide with the pole seen directly through the aperture

in the square.

If no optical square is available, the work can be done with the

chain alone, although neither of the two methods to be described is

as convenient as using an optical square. The principle of the first

method depends on the well-known fact that, in a right-angled triangle,

the sum of the squares on the two sides containing the right angle

is equal to the square on the hypotenuse. Thus, with sides of 3, 4

and 5, we have 32 + 42 = 52,
the sides of lengths 3 and 4 containing

the right angle, and the side of length 5 being the hypotenuse.

Standing at C, lay out a point E in line with A so that the distance

CE measures 4 units, and put arrows in the ground at E and C. Fas-

tening one end of the chain at C, or getting an assistant to hold it

there, get an assistant to hold the graduation 8 at E. Hold the chain
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at graduation 3 and move to the side of the line towards which the

right angle is to be laid out until the two lengths of the chain are taut

at some point D. Place an arrow at D. D is then a point on a line at

right angles at C to the line AB, as the sides of the triangle ECD are

equal to 5, 4 and 3, as shown in the diagram.

Instead of taking short lengths of 5, 4 and 3, it is generally better

to use a multiple of these figures. Thus, EC could be made 40 links,

DC 30 links, and DE 50 links.

Another method is to lay out two equal distances CE and CF,

each about 40 links long, on either side of C and both on the line AB

Fig. 2.7

(fig. 2.7). Then, if the ends of the chain are held at E and F, an arrow

is held at the centre of the chain, and the two lengths pulled equally

taut, the arrow will be at a point G such that GC is at right angles

to AB.

Any of the above described methods is good enough for ordinary

chain survey work, but cases sometimes occur where the work will

not be sufficiently accurate unless it is done with a theodolite. In

this case, set up the instrument at C, sight on A or B, and lay off an

angle of 90 on the horizontal circle. The line of collimation will then

be perpendicular to AB.

3. To drop a Perpendicular from a Given Point to a Given Straight Line.

Let it be required to lay out a line perpendicular to the line AB
from a given point C (fig. 2.8).

Fasten the end of the chain at C, or get a chainman to hold it

there, and choose some convenient length CD to form one side of an

isosceles triangle CDE. Get an assistant to hold the graduation mark
on the chain at D and, standing at G a short distance behind A, signal

to him to move the tightened chain until D appears to be in line with

AB and get him to put in an arrow. Have a similar arrow put in at

E, where CE = CD and E is on the line AB. Measure the distance
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DE and put in an arrow at F on the line AB such that DF =
The line FC is then at right angles to AB and passes through C.

If the point C is inaccessible, as in fig. 2.9, choose suitable points

D and E on the line AB and from D and E lay out lines DF and EG

T f
Fig. 2.8

perpendicular to EC and DC respectively. Then line out a point H
so that it lies on the intersection of the lines DF and EG. Finally,

from H lay out HK perpendicular to AB. The line KH when pro-

duced should then pass through C, as should be verified by standing
behind a pole at K and seeing if K, H and C are on one straight line.

K

Pig. 2.9

t

4. To run a Line through a Given Point Parallel to a Chain Line.

Let AB, fig. 2.10, be the chain line and C the point through which

it is desired to lay out a line parallel to AB.
From C lay out CD perpendicular to AB and measure the length

of CD. Choose a point E on the line AB as far as possible from D
and at E erect a perpendicular EF to AB equal in length to CD. The

points C and F will then be on a straight line parallel to AB.
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An alternative method is to choose points D and E, fig. 2.11,

suitably placed on the line AB and measure the distance CD, leaving

arrows at every chain length near the point which appears to be the

Fig. 2.10

centre of the line. Having obtained the length of CD, use the arrows

to put a mark at F so that CF = FD. Measure the distance EF and

prolong the line to G so that FG = EF. Then the line CG is parallel

to AB.

C G

D B

Fig. 2.11

In the above case the point C is supposed to be accessible. If it

is inaccessible, as in fig. 2.12, establish the foot D of the perpendicular

CD on the line AB by the method described on p. 15 and obtain the

distance DC by one of the methods described on pp. 17-18. A point F

on the line CF can now be obtained by laying out EF perpendicular

to AB and making EF equal in length to DC.

t
->

Fig. 2.12

E B

(G467)
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5. Obstacles in Chaining.

Cases often occur in the field where the distance between two

points is required, but direct chaining from one point to the other is

impossible because of some sort of obstacle.

There are two main cases to be considered: (1) obstacles which

obstruct chaining but not ranging, (2) obstacles which obstruct both

chaining and ranging, and, of those which come under (1), we may
distinguish between (a) obstacles round which chaining is possible, and

(6) obstacles round which it is not possible to chain.

(a)

Case 1 (a). In fig. 2.13a the line crosses a lake between A and

B and the distance AB is required.

At A and B range out lines AC and BD perpendicular to the chain

line and make AC equal to BD in length. Then the line CD can be

chained and will be parallel and equal in length to AB.

Other alternative methods are shown in figs. 2.136, c and d.

In fig. 2.136, E is the middle point of a chained line AC chosen so

that the lines EA and EB clear the obstacle. Produce BE to D and

make ED = BE. Then DC is equal and parallel to AB.

In fig. 2.13c, C is the middle point of AE and D the middle point

of BE. Then AB = 2 x distance CD.

In fig. 2.13d, a perpendicular BC is dropped on a line AC and AC
and BC are measured. Calculate from tan 6 = BC/AC, and AB from

AB = AC sec 6 = BC cosec 0.

Case 1 (6). Here a wide river prevents chaining round the obstacle.

In fig. 2.14a (p. 18), take a point C on line AB produced and

erect perpendiculars to AB at C and B. Take point D on the

2 (G467)
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perpendicular from C and line in E so as to be on the perpendicular

from B and on the line DA. Measure BC, BE and CD. Then

^5 = BC AB = -BEX BC

BE CD - BE !
r

CD - BE'

In fig. 2.146, lay out and measure BC perpendicular to BA and

mark the middle point E. At C lay out line CD perpendicular to BC,
and find point D on this perpendicular such that D, E and A are all

in a straight line. Measure CD, which is equal to BA.

(a) (b) (c)

Fig. 2.14

In fig. 2.14c, set out BC perpendicular to BA, and at C set out

line CD at right angles to AC. Choose point D on this line so that

D is in line with B and A. Measure BD and BC.

AB BC BC2

Then

In fig. 2.14rf, choose a line AC which makes an angle of about 30

with AB, and from B drop line BC perpendicular to AC. Measure

CB and prolong CB to D so that BD = CB. At D lay out line DE
at right angles to CBD and find the point E on this line which is in

line with B and A. Measure BE, which is equal to BA.
Case 2. Obstacles which prevent both chaining and ranging. In

fig. 2.15, a building interferes with the direct ranging as well as with

the chaining of the line AB.

(1). In fig. 2.15a, set out lines AC and BD perpendicular at A and

B respectively to AB, and make AC = BD. From C set out points
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E and F on line CD, ahead of D and clear of the obstacle. At E and

F set out lines EG and FH, equal in length to CA or DB and at right

angles to CDEF. Measure DE. Then GH is a continuation of AB
and BG = DE.

(2). In fig. 2.156, choose a suitable point C, measure AC and BC
and lay out points D and E on lines BC and AC, so that

CE CD

(a)

Fig. 2.15

Set out points F and G in line with D and E and measure OF and CG.

Produce CF and CG to I and H, making

CI = CH _ CA = 1

CF CG
"

CE k
m

Measure EF. Then H and I are on BA produced and

(3). In fig. 2.15c, lay out line BE and measure BD and BE. Let

BD = k X BE. Lay out line BF and line in point C at the intersection

of BF and DA produced. Measure BC and make BF = - x BC.

Measure DA and on line EF put in point G so that EG = - X DA.
rC
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G is then a point on BA produced. Similarly, find another point L
on BA produced. Measure BA.

AG =
BA(

-
l)

Then

and GL is a continuation of BA.

6. The Chain Traverse.

An irregular boundary or a winding road or stream may sometimes

be traversed by chain alone, although a compass or theodolite traverse

is usually preferable in cases where there is no alternative to a traverse

of some kind.

The method will be understood from figs. 2.16 and 2.17, the bends

in the lines being fixed by small triangles, of which the lengths of all

three sides are measured.

It will be seen from either of the above examples that a good deal

of room is required at the bends in order to get in the extra tie lines

or triangles. Hence, the method is not always possible, even when

Fig. 2.16

it is otherwise allowable, and the most satisfactory method of survey

in such cases is normally an instrumental traverse, either using a

compass to measure the directions of the lines, or a theodolite or sex-

tant to measure the angles at the bends. The survey of a closed figure

like that shown in fig. 2.17 can be strengthened by one or more tie

lines across it, such as the line EC. The method is not sound in prac-

tice if any other is available, because the directions of long legs are

determined by measurements of triangles with short sides, so that

any small linear error in the measurement of the sides of a triangle

will be magnified in the swing of the end of the leg whose direction

is determined by the triangle.



CHAPTEE TTI

CHAIN SURVEYING: SURVEY AND PLOTTING
OF DETAIL

In the previous chapter we have considered the ranging and setting

out of survey lines and some problems in field geometry which arise

in chain surveying. In this chapter we shall consider the survey and

plotting of detail, the keeping of field books, and the methods of

making a complete survey by chain alone.

1. Survey of Detail.

The survey of detail from a chain line is carried out mainly by

right-angled offsets or by small offset triangles, the latter being small

triangles of which two sides are measured from two points on the

chain line, as ends of the base. The important point in this kind of

work is to run the chain lines as close as possible to the detail to be

surveyed, so that offsets are as short, and offset triangles as small,

as possible. For accurate work, and when important detail has to be

surveyed, the lengths of offsets, and the size of the offset triangles,

should be strictly limited and care should be taken to see that offsets

are set out as closely as possible at right angles to the chain line. When
less important or ill-defined detail has to be surveyed, longer offsets

and larger offset triangles may be used, and less care taken in setting

out the offsets at right angles to the chain line. In addition, detail,

such as walls and hedges, that is sloping fairly sharply away from the

chain line requires more careful survey than detail that is running

more or less parallel to the line. The first rule of chain survey being
to work from the whole to the part, this leads to the second rule, which

is to try and keep the chain lines as close to and as nearly parallel as

possible to the general run of the detail.

When a point of detail is on a line whose direction is otherwise

established, the point can be fixed by noting the chainage of the point
where the line, produced if necessary, cuts the chain line, and then

measuring the distance along the line from this point to the point to

be fixed.

21
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Up to very recently, the Ordnance Survey, in the revision of the

large-scale plans, made extensive use of a system of graphical inter-

section from points already fixed. Thus, in fig. 3.1, P is the point

of intersection of two fences which it is desired to fix, PE being an

existing fence, which is shown on the plan. The surveyor determines

a point E on the fence which he sees is in line with the church spire

A and the corner of a building B, both of these points being easily

identified both on the ground and on the plan which is being revised.

The intersection of the line AB and the line of the fence fixes the point

E, and a measurement of the length of EP along the fence on which

Fig. 3.1

these points lie fixes the point P. The same method can sometimes be

used in a new survey when a number of points have been established

by other means. In the particular case illustrated, the fixing of E could,

if desired, be checked or strengthened if the two fence intersections

D and C which are in line with E on the ground are also in line with

it on the plan, as the intersection of the lines AB and CD would give

an independent fixing for E.

As a preliminary example of the survey of detail from a chain

line consider the building ABCDEFGHA in fig. 3.2 which is to

be fixed from the chain line XY. If it is an important building,

we are fairly safe in assuming that the corners will be right

angles.
The face ABCDEF could be fixed by right-angled offsets from the

chain line to the corners A, B, C, E and F, and the corner D by the distances

CD and ED, the plotting of B, C, E and F being checked, if necessary,

by the lengths AB, BC, EF. The corners A and B are rather far from the

chain line, so that, instead of fixing them by right-angled offsets, it would

be better to fix them by the offset triangles Aab and Bbc. The corner G
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can also be fixed by the right-angled offset jG, but, as it is rather far away
from the line and is an important point governing the survey of the back

of the building, it would be better to fix it by the offset triangle Gjk.

The corner H could most easily be fixed by noting the chainage of the point

a, where the line HA produced meets the chain line, and then measuring
the distance AH from A.

2. Booking of Detail.

The great principle to be kept in view when keeping the field

notes of any survey is to follow a definite system and to keep the

notes in such a way that they can be followed, and the work plotted

by a draughtsman who is totally unfamiliar with the ground and has

no means of referring doubtful points to the surveyor.
The form of the notebook generally used for chain survey work is

an oblong book about 7 in. by 5 in., with two parallel lines about

in. apart running up the centre of the page parallel to the longer
side. The chainages are entered between these lines and particulars

of the detail, with the relevant offset or other measurements, are

entered on either side of them. In all cases, the detail is booked

running up the page, from bottom to top, in the direction of the

chainage.

Fig. 3.3 (p. 24) shows the field notes relating to the survey of part

of the line CD in the survey shown on the plate opposite. The page

opens with a reference at the bottom to the page on which the survey
of the first part of the line appears. The first chainage point is 615

with offsets of 1 ft. to the right to a tree and 23 ft. to the edge of a

grass verge. Other offsets to the verge occur at chainages 693, 697,

703 and 705, and at 709 it cuts across the chain line at an angle. Note

that here the points where the verge crosses the chain line are shown
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opposite each other on the central lines of the field book, even although

the actual cut is at an angle, the chainage being written between the

cuts. The same thing will be noted at chainage 724 and where a fence

crosses the chain line at 752. A corner of the fence comes on the right

at chainage 718, with an offset of

9, and there are other offsets to

it on the right at 729, 731 and

749 and to the left at 756, 768,

778, etc.

A building on the right starts

at chainage 771 with an offset of

11, and the fixing is strengthened

and checked by a measurement

of 19 from chainage 756, so that

the points 756-771 form the base of

a small right-angled offset triangle.

Similarly, the other end of the

building is fixed by a right-angled

offset triangle with base 863-888

and hypotenuse 30 from 888. The

building is rectangular, and the

lengths of the ends, 41 ft., are

written alongside these ends with a

plus sign before each figure. Such

a measurement is known as a plus

measurement, the plus indicating

that the figure is a measurement

additional to any that has gone
before it. On the other hand,

when two or more offsets are taken

from the same chainage point, the

full measurement from the chain

line to each point is recorded.

Thus, the offset to the verge at

615 is 23 ft. from the chainage

line, not 23 ft. from the tree that

is 1 ft. from the chainage line; and at chainage 916 the outer fence

is 28 ft. from the chainage line, not 28 ft. from the inner fence.

Occasionally, however, it is convenient to record a measurement on

an offset or line from a point on the offset not on the chainage line.

In this case, a plus sign should be put before the additional measure-

Fig. 3.3
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merit to show that it is an additional measurement and is not taken

from the chainage line.

Two chain lines run off to the left at the chainages 841 and 1034,

and these are indicated by an arrow and a horizontal line, with the

length of the chain line written above the horizontal line, and the

number of the page in the field book on which the survey of it is to

be found written below it. This system of writing the length of a

line over the page number is a useful one for identifying different lines.

There is an outer fence to the left with offsets of 28 and 29 at chainages

916 and 929, and other details of this fence are to be found on p. 10

of the field book.

The total length of the line is 1079, and this is written vertically

between, and parallel to, the ruled lines and ringed as the last entry

for the line.

In keeping the chainage book, no attempt is made to draw rigidly

to scale, although it will be found to be of assistance in maintaining

clarity and neatness in note-keeping if the notes are kept very roughly

to scale as far as can be judged by eye.

3. Plotting Detail: Offset Scale.

.Detail is plotted from a chain line by means of a small offset scale.

This is a small scale about 2 in. in length, graduated exactly similarly

to the main scale, and with both ends cut exactly at right angles to

Fig. 3.4

the graduated edges. The main scale is laid on the plan against the

line from which the detail is to be plotted, and weights are put on

the ends of the scale to hold it in position. The offset scale is placed

alongside the main scale as shown in fig. 3.4, with one end against

2 (0467)
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the graduation on the main scale corresponding to the chainage of the

point to be plotted. The offset measurement is then easily plotted

from the offset scale.

4. Survey and Booking of Complete Surveys.

The method of making and booking a complete survey will be

understood from the plan opposite p. 23, and from figs. 3.5 and 3.6.

The first stage is to fix a framework for the main chainage lines. In the

General Diagram p.J.

D

00

90Z

A
'Or

571

cu
a.

B p.3. C

Bearing A-B - 14Z* Magnetic

Fig. 3.5

simple example given in the plan this consists of the four outer lines

AB, BC, CD and DA, the lengths of which are given in the General

Diagram shown in fig. 3.5. The points C and A being intervisible,

the line CA was measured, and this, with the measured lengths of AB
and BC, enables the triangle ABC to be plotted on AB as base, the

direction of AB being fixed by a given magnetic bearing. Hence, the

point C is fixed. The lengths of the sides CD and DA were also measured ;

this enables the triangle CDA to be plotted from the base CA, so fixing

the point D.

As a check, the lines joining B and D to the chainage point 400

on the line CA were also measured, so that their plotted lengths could

be compared with their measured lengths. All of these lines are shown

in the General Diagram which is drawn at the beginning of the field
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book. On this diagram it will be noted that, as before, the different

lines are identified by their lengths and field-book page numbers, except
that the line CA, and the lines joining points B and D to the chainage

point 400 on it, have no page numbers because no detail was suryeyed
from them, and their lengths were entered direct on the General Dia-

gram as shown as soon as they were measured.

Detail Diagram p.lA

1034

841

B O
ro P:3.

Fig. 3.6

Note here that it is not necessary that the central pole at chainage

400 on line CA should be on this line. If some other point near this

point had been taken, and the lengths AO, BO, CO and DO measured,

the figure could have been plotted from the triangles AOB, BOC,

COD, with the measured length of AD as check.

The Detail Diagram, or diagram illustrating the layout of the detail

lines, is shown in fig. 3.6. This diagram follows immediately after the

General Diagram. The first line fixed is one of length 702, which starts

at chainage 54 on line AB and ends at chainage 1034 on line CD.

This line holds one end of each of three others at chainages 79, 273

and 561. The line from chainage 79 is fixed at its other end by being

tied to line BC at chainage 102, and the ends of the other two lines
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are tied to a line joining chainage 841 on line CD to a point at chainage

200 on the line of length 863 which joins BC at chainage 102. In every

case, there is a check, as every line can be plotted from the points

where it meets other lines, and, after plotting, the plotted length

should agree with the length measured on the ground and recorded

on the diagram. During plotting, these lines are first drawn in faintly

in pencil, and then, if everything fits, they are inked in in red or light

blue and the detail plotted from them line by line.

The detail diagram is followed in the book by the notes relating

to the various detail lines, which are booked in the manner already

described, each line being booked on a separate page or pages.

5. Drawing the Plan.

The plan is usually drawn on best-quality Whatman paper, a ruled

margin of about 1 in. to 2 in. being left all round. If unmounted

drawing paper is used, it is well, because of the way in which paper

expands and contracts with changes in atmospheric conditions, to

damp and stretch it before pasting it round the edges to the drawing

board with good cornflour paste.

The most commonly used scales for large-scale plans are 1 rhain

(links or feet) to the inch and 2 chains to the inch, but scales of 3,

4, 5, 6, 7, 8, 9 and 10 chains (links or feet) to the inch are also used.

Boxes, containing wooden or ivory scales for all these scales, together

with a set of offset scales, can be obtained from instrument makers.

The other instruments needed are a drawing board, weights, steel

straight edge, compasses with lengthening bar and pencil and ink

points, beam compasses, pencil and ink bows, dividers, drawing pens,

proportional compasses, set squares, T-square, parallel ruler, large and

small brass protractors, French curves, and a set of railway curves.

Since paper is very liable to shrink and expand, a scale should be

drawn at the very beginning at the bottom of the plan. The survey
should be plotted facing north so that the left- and right-hand edges

are, as far as possible, parallel to the direction representing true north,

and north should be at the top of the sheet. The directions of true

and magnetic north should be drawn in when these are known.

After having been pencilled in, the work should be penned in in

dense black with the best-quality Indian or Chinese ink. Colour may
be used, if desired, to show water (light blue), roads (light brown),

buildings (grey), or different classes of land or cultivation.

Some of the conventional signs that are commonly used for large-

scale plans are shown in fig. 3.7.



CONVENTIONAL SIGNS

Deciduous Trees $ or

Marsh or Swamp

Rocks

Embankment =

Railway Single Line or ;

Double Line

Road (Fenced)

Bridge

Hou& ( Brick)

Shed with open sides S3

Fence or

Concrete or Brick Drain

Riiver

Evergreen Trees 4
*

Orchard

Rough Pasture

Sand and Shingle ,'.^,'.'J!'-

Cutting

Path ----- or ,X'--== ===^'-'-

Road (Unfenced) ^~-^~Z

Wall and Gate -H3^-=i> or

Green House

Shed with closed sides

Earth Drain --< or^

Canal with Lock

Boundaries zn-_mnT-m Lake or Pond

Fig. 3.7
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QUESTIONS ON CHAPTERS II AND III

1. It is required to find the perpendicular distance from a point to a

chain line a short distance away, the foot of the perpendicular on the

chain line being inaccessible. Describe how you would find this distance

by chain survey methods.

2. A perpendicular is to be laid out from a point C on a chain line AB,
and a point D is taken on the chain line 24 ft. from C, and between

C and A. It being assumed that a point E on the perpendicular will

be found by a right-angled triangle, of which the sides CD and CE

containing the right angle will measure 24 ft. and 32 ft. respectively,

what must be the length of the side DE ?

3. Describe three methods of finding the distance across a lake 300 yd.

across, by means of chain methods only.

4. Describe how you would lay out a straight line between two points

A and B by chain survey methods. The point B is in open country,
but is inaccessible, and a wide and long belt of forest lies between

A and B, so that these points are not intervisible. It is assumed that

cutting in the forest is permissible and is necessary, as it is not possible

to work round it.

5. How would you obtain the distance AB in the last example before

setting out the actual line ?

6. Show by dimensional sketches how you would lay out with a chain

lines from a given point on a given line to make angles of 45, 60

and 66 22' with the given line.

7. Describe with a sketch how you would lay out a hexagonal figure

from a base 100 ft. long.

8. How would you lay out a similar figure of 300-ft. side if it were to

enclose a lake covering the centre?

9. Name three commonly used methods of fixing detail with reference

to a chain line.



CHAPTER IV

ANGLES AND BEARINGS

ANGLES

1. Angular Units.

The sexagesimal method of reckoning angles is 'general throughout

the British Empire, although sometimes, mainly for rough work,

angles are reckoned in degrees and decimals of a degree.

In the sexagesimal system there are 360 degrees in a complete

circle, or 4 right angles, each degree being divided into 60 minutes,

and each minute into 60 seconds. Hence, there are 60 X 60 = 3600

seconds in a degree and 60 X 60 X 360 = 1,296,000 seconds in a com-

plete circle of 4 right angles.

In theoretical work in mathematics, angles are expressed in radians

or decimals of a radian, and there are 2?r radians in the complete circle,

where -n = 3-1415926536. Hence,

360 = 2?r radians,
%

1 = = 0-01745329 radian,
360

1' = = 0-000290888 radian,
360 X 60

I" = = 0-0000048481 radian,
360 X 60 X 60

and

1 radian = 57-2957795 degrees,

== 3437-74677 minutes,

= 206264-806 seconds.

In all ordinary survey work a radian is taken as 206,265 seconds.

In the case of small angles up to about 10 minutes of arc, the

radian measure of an angle is very little different from the sine of the

31
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angle. Hence, if is a small angle expressed in minutes or seconds,

and r is the value of the angle in radians, we may write

or r =

6"
and r^'rinl", or r =^
where ff is the value of the angle expressed in minutes and 6" is its

value expressed in seconds (log sin 1' = 3463 7261, log sin 1" =
8-685 5749).

Similarly, we can write

0' = _.
f_ or 6' = 3437-75r,

sin 1

and V 9 =
,

or 0" = 206,265r.
sin 1"

This explains why the factors sin V and sin 1" or 1/sinl' and

I/sin 1" enter into many formulae in higher surveying. Note, however,

that these factors must only be used when small angles are involved;

when large angles are involved, we write

= 0'arc', ff =

arc

JL,
arc

r = 8" arc", 0" = -JL,
arc

where arc
, arc', arc" are the number of radians in one degree, one

minute, and one second respectively.

In Continental practice, angles are often reckoned in grades and

decimals of a grade, there being 400 grades in 4 right angles, or 100

grades to a right angle. As this unit is practically never used in British

engineering or surveying work, we shall not consider it further.

2. Methods of Beckoning Angles.

The horizontal circles of most theodolites are graduated and num-
bered clockwise from through 90, 180, 270 to 360 (or 0), as in
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fig. 4.1, but some are numbered from through 90 to 180 on either

side of a diameter passing through the zero mark, as in fig. 4.2.

The first system is called the whole-circle system, and is more

generally useful for ordinary survey work, but, in theodolites to be

used for railway and road work, which consists largely of layirg out

225 155

curves by means of small deflection angles, the second system, called

the half-circle system, is the more convenient. In the whole-circle

system, there need never be any doubt about how an angle is to be

reckoned, but with the half-circle system it is important to note whether

an angle is to be reckoned left or right of the zero mark, and this

rnay lead to error unless great care is taken both in reading and booking.

Fig. 4.3

In fig. 4.3 A is the first point sighted, or the point from which the

angle is to be measured, and B is the second point sighted, or the

point to which the angle is to be measured. Then, with the whole-circle

system of numbering and measurement, the angle recorded in each

case is the one which is marked by the circular arc. If the theodolite

is set and clamped to read zero when the telescope is pointed at station
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A, and if the lower circle is kept clamped and the upper one is then

undamped and re-clamped after the telescope has been set to sight B,

the reading on the graduated arc will be the angle between A and B
reckoned clockwise from A. If the instrument is set and clamped with

the circle in any position when the telescope is pointed to A and the

reading taken, and the reading again taken when the telescope is

pointed at B, the observed angle is the first reading subtracted from

the second. Thus:

Angle No. 1234
Reading to B 165 34' 337 17' 36 12' 123 38'

Reading to A 23 13 36 29 131 54 315 22

Angle measured clockwise 142 21 300 48 264 18 168 16

from A.

In the last two cases, the reading to B is less than the reading
to A; in such an event 360 must be added to the reading to B, and
the reading to A subtracted from the sum. Hence we have the rule:

To obtain the angle measured clockwise from A, subtract the reading
to A from the reading to B. If the reading to B is less than the reading to

A, add 360 to the former and subtract the reading to A from the sum.

It will be noted that, with this system, it is very important to see

that readings are booked correctly against the stations to which they
are taken. Thus, if the reading to A were booked as being taken to

B and that to B booked as being taken to A, the deduced angle would

be the angle measured clockwise from B to A, which is 360 minus

the correct angle. This point is particularly important in traverse

work where the angles are often very close to 180, and so an error

is not immediately apparent.
If the deflection method of reckoning angles is used in conjunction

with a theodolite graduated on the half-circle system, the angles must
be booked left (L) or right (R) according as the instrument is rotated

to the left or to the right to bring the line of sight from the first station

to the second. In this case, the instrument may be set to read zero

when the telescope is pointed to the first station. When the upper
circle is undamped and the line of sight directed to the second station,

the reading on the circle will be the deflection angle, measured either

anticlockwise (Left) or clockwise (Right) from the first station.

An alternative method of reckoning deflection angles, which is the

one usually used in traverse and in railway work, is to reckon and
measure the deflection angles from the forward direction of the line
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from which the angle is being observed, i.e. from the direction of a

continuation beyond the instrument of the line joining the first point

sighted, or the rear station, to the instrument station. Here the in-

strument is first set to read when the telescope is pointed to the

rear station. The telescope is transited; then, the lower plate < f the

theodolite remaining clamped, the clamp of the upper plate is loosened

and the telescope sighted on the second, or forward, station; the upper

plate is then clamped. The reading on the circle will now be the deflec-

tion angle, right or left, from

the forward direction of the line

joining the first station to the

instrument station.

BEARINGS

The bearing of an object is

the angle between some fixed

direction and the direction of

the object. Thus, in fig. 4.4, if

is the position of the observer

and OP the fixed direction from

which bearings are reckoned, the

bearing of the point A is the Fig. 4.4

angle POA.

Usually bearings are reckoned clockwise from through 90, 180

and 270 to 360 from the fixed direction, so that in fig. 4.4 the angles

marked a, /? and y are the bearings from to A, B and C respectively.

Bearings reckoned in this way are called whole-circle bearings.

3. Azimuths.

If the fixed direction is the true geographical north from the point

of observation, bearings are called azimuths. Hence, in fig. 4.4., if

OP is the direction of the true geographical north from 0, i.e. the

northward direction of the geographical meridian through 0, the

bearings a, j8 and y become the azimuths of A, B and C from 0. Azi-

muths are generally reckoned from to 360 clockwise from north,

but sometimes, and particularly in astronomical and geodetic work,

they are reckoned from at geographical south clockwise through 90,

180, 270 to 360. In British practice, however, and now even in

nearly all geodetic work, azimuths are generally reckoned clockwise

from north.
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4. Magnetic Bearings.

If the fixed direction is the direction of magnetic north, the bearings

are called magnetic bearings. Hence, a, /? and y in
fig.

4.4 are magnetic

bearings if OP is the direction of magnetic north.

5. Grid Bearings.

There is another kind of bearing which has come much into use

during the last few years. If the sheets of the
" New Popular

"
and

the new Seventh Editions (National Grid) of the Ordnance Survey
one-inch map, or sheets of the new 1/1250 plans of towns, are examined,

it will be found that they are divided into squares by a series of

straight horizontal and vertical lines. These lines are parallel to those

on adjoining sheets, although they are numbered differently. The

vertical lines are not true north and south lines unless on one par-

ticular line which corresponds with a meridian that is roughly the

central meridian of the country. The whole network forms what is

called a grid and the northward direction of the vertical lines is called

grid north. Grid bearings are bearings referred to the direction of grid

north as given by the vertical lines. At any point the difference

between the directions of true north and grid north is a small angle

called the convergence, and this varies according to the position of the

point east or west of the central meridian, being greater in magnitude
the farther away the point is from this meridian. The amount of the

convergence can be calculated, and we then have:

azimuth = grid bearing . convergence
minus

according as the point is east or west of the central meridian. In the

case of the Seventh Edition of the Ordnance Survey one-inch map,
there is a small table at the bottom of the sheet which gives, for the

centre and for each of the four corners of the map, the angles which

the directions of true and magnetic north make with the vertical sheet

6. Reduced Bearings.

In computing, and in work with the magnetic compass, it is often

convenient to use what are called reduced bearings. A reduced bearing

is the angle between the main vertical line marking the direction to

which bearings are referred and the given line, measured from to

90 the shortest way, east or west and north or south of the point, to
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that line. Thus, in fig. 4.5, in which the circle is divided into four quad-
rants numbered I, II, III and IV, the reduced bearings of the lines OA,

OB, OC and OD are indicated by the Greek letters a, j8, y and 8, and

are all reckoned the shortest way, east or west, from the line SN. If

the bearings are given on the whole-circle system, it can easily be seen

from the figure that we have the following rules for obtaining reduced

bearings :

If the whole-circle bearing lies in the first quadrant, i.e. between and

90, the reduced bearing is the same as the whole-circle bearing.

If the whole-circle bearing lies in the second quadrant, i.e. between 90

and 180, the reduced bearing is 180 minus whole-circle bearing.

If the whole-circle bearing lies in the third quadrant, i.e. between 180

and 270, the reduced bearing is ivhole-circle bearing minus 180.

If the whole-circle bearing lies in the fourth quadrant, i.e. between 270

and 360, the reduced bearing is 360 minus whole-circle bearing.

It should be noted that a reduced bearing never exceeds 90 in

value, and, when bearings are derived and expressed in the iirst place

as whole-circle bearings, and reduced bearings are used only as a

convenience in computing, a reduced bearing need take no account of

the quadrant in which the line lies.

If, however, it is desired to specify

the quadrant in which a reduced

bearing lies, this is done by putting

the letter N or S before the figures

giving the actual bearing, accor-

ding as to whether the latter is

measured from the direction of

north or south, and then inserting

after the figures the letters E or

W to show whether the bearing

lies east or west of the north and

south line. Thus, the bearings a,

j8, y and S in fig. 4.5 would be

written as NaE, Sj3E, SyW and

NSW respectively. Magnetic compasses are often graduated on the

quadrantal system, with the letters, N, E, S and W marked on the

card or rim, and accordingly magnetic bearings are commonly booked

and expressed in terms of reduced bearings, with the proper dis-

tinguishing letters before and after them to specify the quadrant.

The rules given above are so simple that it is hardly worth while
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attempting to memorize them, as any given case can easily be worked

out from first principles. As practice is gained, the computation becomes

almost automatic without conscious effort. The importance of reduced

bearings in computing lies in the fact that most mathematical tables

only tabulate the values of the trigonometrical functions and their

logarithms in terms of angles lying between and 90. Accordingly,

when whole-circle bearings are used, it is usually necessary to convert

them into reduced bearings before entering the tables.

7. Calculation of Bearings from Included Angles.

In fig. 4.6, OR is the reference line from which bearings are reckoned.

An angle AOB is measured from station A, the first station observed,

to station B, the second station observed, and the bearing of the line

OA is known. To find the bearing of the line OB.

Let both angles and bearings be reckoned on the whole-circle

system and let the bearing ROA be denoted by a, and the measured

angle AOB be denoted by 6. The senses in which the angles and bearings

Fig. 4.6

are reckoned are shown in the figure by arrows. It can now easily

be seen that, in the first two cases, the bearing of OB (= angle ROB)
reckoned clockwise from R is a -f- 6. In the third case, OB lies in

the first quadrant so that its value is between and 90, while OA
lies in the fourth quadrant so that its value lies between 270 and 360.

Consequently, when 9 is added to a we have 9 + a = (a + AOR) +
ROB = 360 + ROB, or ROB = 6 + a - 360. But ROB, reckoned

clockwise from OR, is the bearing of OB. Hence, we have the following

simple rule for the calculation of bearings from included angles, both

reckoned on the whole-circle system:
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Add the observed angle to the bearing of the first point observed and subtract

360 if the sum is greater than 360. The result is the bearing of the second

point observed.

If angles are measured as deflection angles from the forward direc-

tion of the line joining the first station observed to the instrument

station, but bearings are reckoned on the whole-circle system, we can

easily deduce the following rule :

the forward bearing of the first line the deflection angle
From subtract

right
according as it is of the forward direction of the first line. Subtract

lejt

360 if the result is greater than 360. Add 360 to the bearing of the first

line if the deflection angle is left and greater in magnitude than the bearing

of the first line.

8. Back Bearings.

In fig. 4.7, AB, is the reference direction from which bearings are

reckoned. Then the bearing of the line AB is the angle marked a.

At B draw BE' parallel to AB. At B bearings are reckoned clockwise

Fig. 4.7

from BE', and the bearing of the line BA is the angle marked a',

which, it will easily be seen, is 180 + a. If the direction AB is taken

as the forward direction of the line and the bearing in that direction

as the forward bearing, the bearing in the back or reverse direction BA
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differs from the forward bearing by 180, and is known as the back

or reverse beamy/ of the line as viewed from station A. It will thus

be seen that the back bearing of AB at station A is the forward bearing

of BA at station B.

By drawing diagrams for each case, the student can verify the

following rules:

If forward bearing is in quadrants 1 or 77, back bearing
=
forward

bearing + 180.

If forward bearing is in quadrants III or 7F, back bearing
=
forward

bearing
- 180.

These rules also follow from the rules for working out bearings

from angles, because, since BA is the direction of AB turned clockwise

through 180, the bearing of BA can be obtained by adding the angle

of reversal (180) to the bearing of AB.

Examples :

Forward bearing .. 67 131 216 331 348

180 180 -180 -180 -180

Back bearing . . 247 311 ~36 151 168

12

180

192

9. Carrying Bearings Forward.

We are now in a position to consider the computation of the bearings

of a series of connected lines in which the forward bearing of the first

line is known, or can be observed, and the angle between each pair

of lines has been measured. This is a practical problem which arises

in the computation of every theodolite traverse.

Fig. 4.8 shows a traverse starting at station A and ending at
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station F. AP is a line whose bearing is known, and the angle PAB
is measured so as to obtain the bearing of AB, the first traverse leg.

The angles at B, C, D and E, each measured whole-circle clockwise

from the rear station, are also observed. AE is the standard direction

from which all bearings are reckoned. The procedure, which depends
on finding the back bearing of each line and then adding directly to

it the observed angle at the station, can best be illustrated by a numeri-

cal example.

Let us therefore assume that the bearing of A P is 334 10' 46" and the

angles, each measured to the nearest second, are:

A = 115 10' 18"; B = 224 36' 41"; C = 123 22' 04";
D = 72 46' 51"; E - 326 54' 56".

The work can then be set out as follows:

AP = 334 10' 46" CB = 313 57' 45"

A -= 115 10 18 C = 123 22 04

449 21 04 437 19 49

360 360

AB- 89 21 04 CD- 77 19 49

180 180

DA =- 269 21 04 DC = 257 19 49

B - 224 36 41 D = 72 46 51

493 57 45 DE = 330 06 40

360 180

BC - 133 57 45 ED - 150 06 40

180 E = 326 54 56

CB =- 313 57 43 477 Ol"~36

360

EF - 117 01 36

Here AB means the bearing of the line AB in the direction A to

B and BA the back bearing, or the bearing in the direction B to A,

and A, B, C, D and E are the observed angles at the stations measured

clockwise from the back station as shown. The work has also been

set out here in full, but, after a very little practice, the computer
will no longer find it necessary to write down 360 or 180 when these

quantities have to be subtracted or added, as this part of the work

can be done mentally, and the forward and back bearings written down

straight away.
If it is assumed that the positions of the points B, C, D, E and F

have not to be fixed, so that it is not necessary to measure the lengths
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of the legs AB, BC, CD, DE and EF, the traverse becomes a bearing

traverse. Such a traverse is sometimes useful in order to carry a bearing,

and a bearing alone, from a point A to a distant point F, and the

points A and F are not intervisible.

An alternative method of carrying bearings forward from observed

angles is to use angles of deflection, measured right or left of the first

line of the angle as viewed from the forward direction of that line, i.e.

the direction in which work is proceeding. To calculate these angles

of deflection and determine their
"
sense ", i.e. their direction right

or left, use the following rule, which can easily be verified from the

figure :

When the whole-circle angle is greater than 180, the deflection angle is

Right and is obtained by subtracting ISO from the whole-circle angle. When
the whole-circle angle is less than 180, the deflection angle is Left and is

obtained by subtracting the whole-circle angle from 180.

Then, having obtained the deflection angles, use the rule given on

p. 39 to get the bearing of the forward (second) line.

Thus, in the last example, denoting the deflection angles by dashes

above the letter:

A = 115 10' 18" B = 224 36' 41" C = 123 22' 04"

180 180 180

64 49 42 L. B' = 44 36 41 K. C" = 56 37 56 L.

D = 72' 46' 51" E = 326 54' 56"

180 180

D' = 107 13 09 L. Ef = 146 54 56 R.

Also, if we are to apply the same rule at A as we apply at B, C,

D and E, we must start with the initial bearing in the direction PA,
which is 154 10' 46". Accordingly, we write:

PA = 154 10' 46" CD = 77 19' 49"

A' = 64 49 42 L. 360

AB = 89 21 04 437 19 49

B' = 44 36 41 R. D' = 107 13 09 L.

BC = 133 57 45 DE = 330 06 40

C' = 56 37 56 L. E' = 146 54 56 R.

CD 77 19 49 477 01 36

360

EF - 117 01 36



IV] BEARINGS 43

There is not a great deal to choose between these two methods

as regards the actual amount of work involved, but, on the whole,

probably the first method is the quicker and, if anything, it is the

simpler to remember and to derive from first principles. Moreover,

the second method has the disadvantage of all deflection angles in

that it is so easy to make a mistake about the direction of a deflection.

One good plan is to work by one method and check by the other.

A quick check on the minutes and seconds, and also on the units

in the degrees, may be obtained by adding all the angles and the

initial bearing together. The result will be the bearing of the final

line plus some multiple of 180. Thus, in the above example:

AP = 334 10' 46"

A = 115 10 18

B = 224 36 41

C = 123 22 04

D = 72 46 51

E = 326 54 56

Sum - 1197 01 36

6 x 180 - 1080

EF - 117 01 36

This method, therefore, is not by itself a check against a wrong
addition or subtraction of 180, but it is useful nevertheless as a check

on the minutes and seconds, and on the odd degrees, and in survey

work it is always well to have independent checks on all computations.

10. Check on the Angles of a Closed Figure.

When a closed figure is involved, the angles may be checked by

adding them together. In fig. 4.9a (p. 44) the survey was made in the

direction of the large arrow, so that the angles measured were the

interior angles, yielding the following results:

A B C D E F
121 92 146 122 134 105

The sum of these is equal to 720, which is equal to n X 180 360,

where n is the number of sides in the figure, in this case 6. In fact,

we have the rule:

In any closed figure of n sides the sum of the internal angles is equal to

n x 180 - 360.

This rule can easily be proved by joining the corners of the figure to

some arbitrarily chosen internal pole 0. This gives n triangles, or
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one triangle to each side, and the sum of the angles in each triangle

is 180. Hence, the sum for the n triangles is n X 180. But this

includes the four right angles at 0, which therefore have to be deducted.

In practice, the actual sum will seldom or never be exactly the

same as the theoretical sum, but the difference should be very small,

and will represent an accumulation of the ordinary small errors of

observation.

Fig. 4.9

If the survey had been made in the direction of the large arrow

shown in fig. 4.96, the external angles of the figure would have been

measured as indicated, and it can easily be verified that the theoretical

sum is now n X 180 + 360.

QUESTIONS ON CHAPTER IV

1. Convert the following whole-circle angles into angles on the half-circle

system :

36 12'; 76 14'; 237 10'; 296 14' 51"; 136 12' 18"; 260 48' 19".

2. The following are the readings on a theodolite graduated on the whole-

circle system:

Station A: 18'; 96 18' 02"; 261 19' 12"; 325 14' 10".

Station B: 64 11'; 212 17' 28"; 334 41' 18"; 351 27' 22".

Station C: 168 12'; 337 46' 52"; 358 26' 07"; 72 18' 16".

Station D: 235 05'; 18 36' 14"; 14 12' 48"; 151 19' 36".

Station E: 331 58'; 78 41' 15"; 112 16' 19"; 231 14' 47".

Write down the whole-circle angles actually measured, all reckoned

from the R.O., Station A, each set of angles being taken from a

different instrument station.
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3. The following whole-circle readings were taken on a theodolite:

Station B: 136 12'; 15'; 321 17'; 221 54'.

Station A: 221 18'; 248 53'; 93 42'; 46 16'.

What are the whole-circle angles reckoned (1) clockwise from Station

A, (2) clockwise from Station B?

4. Write down the back or reverse bearings corresponding to the following

forward bearings:

16 14' 42"; 234 17' 28"; 196 36' 13"; 328 16' 54"; 93 56' 27";

291 06' 21"; 358 12' 16".

5. Write down the reduced bearings corresponding to the whole-circle

forward bearings in Question 4, specifying by the letters N, S, E, and

W, the quadrant in which the reduced bearing lies.

6. The bearing of the line OA and the included angle, measured whole-

circle clockwise from OA, are as follows:

Bearing of OA: 318 16'; 18 26'; 168 11'; 238 54'.

Included angle AOB: 331 14'; 194 23'; 212 14'; 116 12'.

In each case write down the bearing of OB.

7. Convert the following bearings, measured right or left from OA, into

whole-circle bearings referred to OA:

1831'R; 3614'L; 122 12' L; 131 13' B; 110 12' L;

164 48' B.

8. Convert the following observed reduced magnetic bearings into whole-

circle bearings:

S. 34 W.; N. 27J E.; N. 72J W.; S. 86f E.; S. 22| E.;

N. 48i W.
;

S. 38i W.
;
N. 78| E.

;
S. 64 14' W. ;

N. 81 56' W.

9. The bearing of a line AP is 312 18' 33" and the following whole-circle

angles were observed at stations A, B, C and D :

PAB = 164 14' 18" BCD = 246 13' 22"

ABC = 210 17' 17" CDE - 64 42' 55"

What is the bearing of the line DE ?

10. Convert the above angles into deflection angles measured left or right

from the forward direction of the first leg, and then calculate the whole-

circle bearings.

11. The following were the whole-circle interior angles observed in a closed

figure of 6 sides. Do these angles close the figure? If not, by how

much do they fail to close ?

110 16' 36"; 122 41' 16"; 191 38' 10"; 36 12' 54"; 131 55' 12";

127 14' 22".



CHAPTER V

RECTANGULAR CO-ORDINATES

Let in fig. 5.1 be a fixed point, OX a fixed direction passing

through 0, OY a direction passing through at right angles to OX,
and P some point whose position with relation to we wish to define.

From P draw lines PN and PM perpendicular to OX and OY respec-

tively. As and the lines OX and OY are fixed, the lengths of the

lines MP and NP, which are equal respectively to ON and OM, define

Y- M -Y

X
Fig. 6.1

the position of P with reference to 0. MP and NP, or ON and OM,
are then called the rectangular co-ordinates of P and are usually written

x and y. Thus, if P is defined as being 13,256 ft. north of OY and

27,450 ft. east of OX, we write:

x = 13,256; y = 27,450,

and these quantities clearly define the position of P. The line OX
is called the axis ofX and the line Y the axis of Y.

The reader already familiar with the elements of co-ordinate geo-

metry will here recall that, in ordinary mathematical work, the hori-

zontal axis is usually taken as the axis of X and the vertical axis as

46
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the axis of Y. In survey work, however, it is more usual to take the

axes as we have taken them above.

Now consider the point P', which lies in the second quadrant so

that ON' = ON and NT' = OM = NP. The co-ordinates of the

point are x = ON' and y = OM. Hence, unless we distinguish co-

ordinates in the second quadrant in some way from those in the first,

the co-ordinates of P', as written, would be exactly the same as those

of P. Similarly, those of P" in the third quadrant and of P'" in the

fourth would be equal to those of P. Accordingly, in order to clarify

matters, we specify that all x co-ordinates lying above (or to the north

of) the line YOY' must be taken as positive, and those lying below

(or to the south of) it as negative, while all y co-ordinates lying to the

right (or to the east) of the line XOX' must be taken as positive, and

those lying to the left (or to the west) of it must be taken as negative.

We may then draw up the following table:

Point in Quadrant x co-ordinate y co-ordinate

I + +
II - +
III

IV + -

In this way, supposing, as before, that in all cases the numerical

value of the x co-ordinate was 13,256 ft. and of the y co-ordinate

27,450 ft., we would write the co-ordinates of the points P, P', P"

and P'" as

P x = +13,256 y
= +27,450

F x = -13,256 y
= +27,450

P" x = -13,256 y
= -27,450

P" x = +13,256 y
= -27,450

In actual practice in survey work we usually try to choose 0,

the origin of co-ordinates, so that it lies to the south and west of the

area under survey, so that all co-ordinates, both x and y, are positive,

although the differences of co-ordinates of different points may be

either positive or negative according to the way one point lies with

reference to the other.

In writing the co-ordinates of a point, the usual method is to write

the x first and the y second, with a comma between. Thus: 13,256,

+27,450, meaning x = 13,256, y = +27,450. In mathematical work

a round bracket is usually put round the symbols standing for co-

ordinates defining the position of a point, and this is also sometimes
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done when writing numerical values, e.g. (x, y), (13,256, +27,450).

Another way of specifying the position of P in fig. 5.1 would be

to use the angle XOP and the distance OP. If the direction of OX
is taken as the fixed direction from which all angles are measured,

the angle XOP is the bearing of P from 0. Hence, this method is

known in survey work as the bearing and distance method. The positions

of the points P', P" and Y" are then defined by the angles XOP',
XOP" and XOP'", the bearings of the points measured clockwise

from OX, and the lengths OP', OP" and OP'".

1. Relation between Bearings and Distances and Rectangular Co-

ordinates.

Denoting the angle (or bearing) XOP by a and the distance OP

by I, we see at once that

x = ON = OP cos a = I cos a,

y = OM = NP = OP sin a = I sin a.

If the point is at P' in the second quadrant, the cosine of the angle

XOP' is negative, and the sine positive, while x is negative and y

positive. Hence, we have as before

x = ON' = I cos a,

y = OM = N'F = I sin a,

where, owing to the negative sign of cos a, x is negative, as it should

be. From this it follows that the signs of the rectangular co-ordinates

depend on the quadrant in which the bearing lies, and we can con-

sequently construct the following table of signs:

Point in Quadrant Bearing between x y
I and 90 + +
II 90 and 180 - +
III 180 and 270 - -
IV 270 and 360 -t-

2. Calculation of Co-ordinates from Bearing and Distance.

Most tables of logarithmic sines and cosines tabulate values only

in terms of angles from to 90. In this case it is necessary to work

out the reduced bearing (p. 36) and use this bearing for entering the

tables, but the signs of the co-ordinates will depend on the quadrant
in which the real bearing falls, as tabulated above. Thus, let OP =
5316-7 and the bearing of OP be 233 43'. The reduced bearing for
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obtaining the cosine and sine will be a' = 233 43' 180 = 53 43',

but, as the real bearing is in the third quadrant, both x and y will

be negative. The computation may be arranged as follows, assuming

that logarithms to six places, and not a calculating machine, are

used:

log cos a' 1-772 159 log sin a' = 1-906 389

log I
= 3-725 642 log I

-- 3-725 642

log x 3-497 801 log y
= 3-632 031

x = -3146-3 y
= -4285-8

In practical computing it is better to set out the computation as

follows:

log x
= 3-497 801 x - -3146-3

log cos a' = Y-7~72~159

log I
- 3-725 642

log sin a' I -906 389

log y
= 3-632 031 y

= -4285-8

Here log I has only been written down once, instead of twice,

thus not only saving a little writing but also running less risk of a

copying error. Log x is obtained by adding log I to log cos a' and log y

by adding log sin a' to log I.

If a calculating machine is used instead of logarithms, the work

might be set out as follows:

cos a = 0-591 779 sin a = 0-806 100

l~ 5316-7 I
= 5316-7

x I cos a = -3146-3 y
= I sin a =* -4285-8

or, better still,

x - -3146-3

cos a - 0-591 779

I = 5316-7

sin a - 0-806 100

y
- -4285-8

Here the natural cosine and natural sine take the place of the

logarithmic cosine and logarithmic sine, and the length I is written

instead of log I. The natural cosine and natural sine are set in turn

on the table of the machine, or both together if the machine is a double

3 (G467)
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one, the handle turned to represent a multiplication by 5316'7, and

the answers read on the register.

3. Calculation of Bearing and Distance from Co-ordinates.

If we are given the co-ordinates, the bearing and distance can also

easily be computed, for, either from fig. 5.1 (p. 46) or from the relations

x = I cos a, y = I sin a, we have

tan a = - and I = x sec a = y cosec a.
x

The quadrant in which a lies depends on the signs of x and y, for

which purpose the table on p. 48 may be consulted. The length I

may be calculated from either of the expressions I = x sec a or I =
y cosec a, but in practice it is well to calculate from both, using one

result as a check on the other.

Example. Let x = 4281-6; y +3614-2. Here, x is minus and

y plus so that the bearing lies in the second quadrant. Using five-figure

logarithms.

log y
= 3-558 01

log x
= 3-631 61

log tan a = 1-926 40

Giving a' (the reduced bearing)
= 40 10'-1. Hence, as the true bearing

is in the second quadrant,

a = 180 - 40 lO'-l = 139 49'-9.

Again,

log x
= 3-631 61 log y

= 3-558 01

log cos ex'
= 1-883 18 log sin a' =-= 1-809 58

log I
- 3-748 43 log I

= 3-748 43

the log I being obtained by subtracting the log cos a' or the log sin a' from

the log x or the log y. Consequently, we have

I
= 5603-1 ;

a = 139 49'-9.

If one co-ordinate is very much less in magnitude than the other, the

reduced bearing will lie close to either or 90. In this case the log sine

or the log cosine will be changing very rapidly in comparison with the

log cosine or the log sine, and accordingly, if we are working with long
lines and using six- or seven-figure logarithms, there may be small differ-

ences between the values of I obtained from the log sine and the log cosine.
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In such an event, the value derived from the quantity which is changing

most slowly should be accepted. Thus, working with co-ordinates to two

decimal places and using seven-figure logarithms, let

x = +18,342-16; y
= -394-13.

Then,

log y
= 2-595 6395

log x
= 4-203 4505

log tan a' = 2-332 1890

a' = 1 13'-859; a - 358 46'-141.

log x
- 4-263 4505 log y

= 2-595 6395

log cos a' - 1-999 8998 log sin a' = 2-332 0913

-

log I
= 4-263 5507 log I

= 4-263 5482

/. I - 18,346-40 or I
=

18,346-29.

Here we would accept the value 18,346-40 since the log cosine is changing

much more slowly than the log sine. It should be noted, however, that

in interpolating for a' and log sin a' from Chambers's Tables, which were

used and which only tabulate the logarithms of the trigonometrical func-

tions at intervals of 1' of arc, we have interpolated linearly from the tables

and have not taken into account the progressive variations in the differ-

ences between tabulated values. If we had employed special formulas

of interpolation involving the
"
second and third differences ", or the rules

given in Section 5, p. 53, for finding the value of the small arc from the

log tangent, and that of the log sine of a small angle, the two results would

have agreed or would have been very much closer to one another.

4. The Negative Characteristic when Computing with Logarithms.

In survey work, as in many other forms of computing, the negative

characteristic of the logarithm of a trigonometrical function, or of a

logarithm dependent on it, is often not written with a bar over the

number. Instead, we write a whole number, such as 9 or 19, it being

understood that this number, which makes the whole logarithm posi-

tive, means that it must be added to 10, 20, etc. Thus, 1-883 18

would be written as 9-883 18, which really means the same thing as 10

+ 9 + 0-883 18 or 1 + 0-883 18, and 3-774 31 would be written as

7-774 31, meaning 10 + 7 + 0-774 31. In tables of trigonometrical

functions, a positive characteristic is always given, even when the

actual characteristic is negative. Thus, the log sines of 12 and 03'

are given as 9-317 88 and 6-940 85, meaning 1-317 88 and 4-940 85

respectively.
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Sometimes the logarithm is written with the positive characteristic

and followed by a -10, 20, etc. Thus, 9-317 88 10, 18-476 28 - 20,

meaning 1-317 88 and 2-476 28.

With this convention, the calculation of log Z in the first of the last

two examples would be written:

log x
= 3-631 61 log y

= 3-558 01

log cos a' = 9-883 18 log sin a' = 9-809 58

log I
= 3-748 43 log I

= 3-748 43

In this case of subtraction, 10 is added mentally to the characteristic

of the upper figure, as the omitted 10 in the lower log cos a', log sin a'

line becomes +10 when the sign is reversed on subtraction. The first

subtraction, in fact, may be written 3-631 61 - (-10 + 9-883 18)
=

13-631 61 - 9-883 18. If the two logarithms had to be added instead

of subtracted, 10 would have to be subtracted from the sum of the

characteristics. Thus, the sum of log x and log cos a' would be 3-631 61 +
(- 10-1- 9-883 18)

= -10 + 13-51479 - 3-51479.

Again, suppose that it is desired to find z = I sin a cos
j8,

where I
=

3187-4, a <= 46 51', ]8
= 63 15', we have:

log I
= 3-503 44

log sin a = 9-863 06

log cos
-

9-653 31

log z - 3-019 81 .'. z = 1046-7.

In this example, the apparent sum is really 23-019 81, but, as there

is a 10 to be added in the case of both log sin a and log cos /?, 20 has

to be subtracted from 23-019 81, leaving 3-019 81.

This method of dealing with negative characteristics may be a little

confusing at first to those not used to it, but, keeping in mind the negative

10, or multiple of 10, for which a positive number has been substituted,

and by a careful study of the examples in the following pages, the matter

should become clear.

5. Logarithmic Trigonometrical Functions of Angles close to and

90.

When angles are very small, values of the logarithmic sine and

tangent are changing very rapidly and unevenly, and, unless the tables

are given at very close intervals, ordinary linear interpolation will not

give true values. Similarly, the logarithmic cosine and tangent of

angles very close to 90 change very rapidly. Different rules for such

cases are available, but the following, which are those given in the
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Explanation of Chambers's Seven-Figure Mathematical Tables, are

convenient and easy to use:

log sin a = log a" + 4-685 5749 -|(log sec a -10) . (1)

log tan a = log a" + 4-685 5749 + (log sec a -10) . (2)

log a" = log sin a + 5-314 4251 + (log sec a - 10) . (3)

log a" = log tan a + 5-314 4251 -(log sec a -10) . (4)

a" is the value of the angle a expressed in seconds. In (3) and (4)

the first thing to do is to find an approximate value of the angle by

ordinary straight interpolation from the tables, and from this approxi-

mate value obtain the value of log sec a. The characteristics of the

logarithmic sine and tangent are the positive values in each case.

Thus, to find the angle corresponding to log tan a' = 8*332 1890

and its log sine which entered into the example on p. 51
,
an approxi-

mation by direct interpolation gives a' = 1 13'-86, and so log sec a =
10-000 1002.

log tan a' = 8-332 1890

5-314 4251

3-646 6141

f(log sec a 10) = 0-000 0668

log a" = 3-646 5473

/. a" = 4431"-464.

.'. a' = 1 13' 51"-464,

and to find log sin a',

log a" = 3-646 5473 (from log a" above)

4-685 5749

8-332 1222

(log sec a 10) = 0-000 0334

log sin a' == 8-332 0888.

If this value of log sin a' is substituted for the value of log sin a'

in the example on p. 51, the value obtained for logZ is 4-2635507,

which agrees exactly with the value originally obtained from logo;

and the log cosine.

When angles are close to 90, the log cosine and log cotangent can

be found by subtracting the angle from 90, and then finding the log

sine or log tangent of the resulting small angle.
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6. Differences of Co-ordinates.

Although the positions of different points are defined in terms of

rectangular co-ordinates referred to a single origin and a single vertical

and horizontal axis, most survey calculations involve differences of

co-ordinates rather than the co-ordinates themselves.

In fig. 5.2 we have two points A and B plotted in relation to an

origin and rectangular axes OX and OY. From A and B drop

perpendiculars AC, AE and BD, BF on the axes OX and OY respec-

tively. Produce CA to meet BF at G. Then, since AG and BG are

Fig. 5.2

perpendicular to OX and OY, the angle EGA is a right angle. Also,

the rectangular co-ordinates of A are OC = x^ and OE = y1?
and of

B, OD = 2 and OF = y2 . Hence, in the right-angled triangle AGB,

GB = GD = OD-OC = *a -o?l
= As,

AG = EF = OF - OE = ya yl
= Ay,

where the symbols A#, Ay denote finite differences in x and y.

If we produce EA to H, we have Z.ABG Z.HAB. But AH is

parallel to OX, and the direction of OX is the fixed direction from

which bearings are reckoned. Consequently, Z.IIAB = a is the bearing

of the line AB, and we have

GB = Ax = AB cos a I cos a,

AG = Ay = AB sin a = I sin a,

where I is the length of AB.

These expressions are exactly similar in form to those found on

p. 48. In fact, for the calculation of Ax and Ay we may consider
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the original origin to be transferred to A and then, using axes through

A parallel to the original axes, treat the line AB exactly as we treated

OP in fig. 5.1 (p. 46).

From these formula it follows that

2
= xi + Az

x + I cos a;

y<t
= yl + Ay

yl -f- I sin a.

The reverse formulae, the calculation of bearing and distance from

given co-ordinates, follow exactly as before, for we have

AG EF _ Aytana== BG~CD~A?
and

I = AB = GB sec a = CD sec a = (x2 xj sec a = As sec a

= AG cosec a = EF cosec a = (y2 yx ) cosec a = Ay cosec a.

As before, we must pay proper attention to signs to determine the

quadrant in which AB lies, using the same rules as before but sub-

stituting Ax and Ay for x and y. All the formulae for co-ordinate

differences hold, of course, for all the four quadrants in which the line

AB may lie, provided the proper signs are given to the trigonometrical

functions or to A# and Ay.

Example 1. Given that the co-ordinates of a point A are x = 10,481-6,

y 26,384-2, and that the length and bearing of the line AB are 3784-6

and 296 34', find the co-ordinates of the point B.

The bearing is in the fourth quadrant so that Ax is positive and Ay

negative. Also the reduced bearing is a' = 360 296 34' = 63 26'.

Writing down the computation as before, but with Ax and Ay substituted

for x and y,

log Ax
- 3-22856 Ax - 4-1692-6

log cos a' =- 9-650 54

log I
= 3-578 02

log sin a' = 9-951 54

log Ay
- 3-529 56 Ay - -3385-0

x y

Co-ordinates of A - 10,481-6 26,384-2

Ax and Ay + 1,692-6
-

3,385-0

Co-ordinates of B - 12,174-2 22,99*9^2
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Example 2. Given that the co-ordinates of the points A and B are

x
?
=

43,223-62, yl
=

28,461-13, andx2
=

37,334-18, y2
= 36,141-84 respec-

tively, find the bearing and length of the line AB.

x y

Co-ordinates of B -
37,334-18 36,141-84

Co-ordinates of A =
43,223-62 28,461-13

Ax = -
5,889-44 Ay = + 7,680-71

The bearing is in the second quadrant since Ax is minus and A^ plus.

Using six-figure logarithms,

log Ay = 3-885 401

log Ax = 3-770074

log tan a'- 0-115327

/. a' - 52 31' 10"-5,

and, as the true bearing is in the second quadrant,

a = 180 - a' = 127 28' 49"-5.

Again,

log Ax = 3-770 074 log Ay = 3-885 401

log cos a' - 9-784 253 log sin a' - 9-899 581

log I
= 3-985 821 log I

= 3-985 820

/. I
=

9678-78; a = 127 28' 49"-5.

This calculation of a bearing from co-ordinates is one that is often

needed in survey work. For instance, a straight line has to be cut

through dense forest between two fixed points, or else two fixed points

have to be joined by a tunnel. In both cases, the co-ordinates of the

fixed points are first found by triangulation or traverse and the bearing

between the points calculated as above. Then, starting at one point

with a line of known bearing, the angle necessary to align the theodolite

on the computed bearing can easily be calculated and the instrument

set to that angle.

7. Total Co-ordinates: Latitudes and Departures.

Let A, B, C, D, E (fig. 5.3) be five points whose rectangular co-

ordinates referred to origin and rectangular axes OX and OY are

fa> y\)> (
x* %) (

x* ft) fr* fc) fe 2/s)-
From A

>
B

> C, D and B draw
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perpendiculars AE, BF, CG, DH and El on axis OX and AJ, BK,

CL, DM and EN on axis OY. The co-ordinates of A are therefore

a?!
= OE, yl

= OJ; of B, x2 = OF, y2
= OK; of C, x.A

= OG, y3 = OL;
and so on.

Let #2
xi
=

AzjL, 2/2
~

yi
= Ayr

Then #
2
= OF = OE EF. But EF = Aa^, which, since z2 is

less than x
l9

is negative. Thus, allowing for the sign of Ax1?
we can

write x
z
= Xi + Ao^. Similarly, ya = OK = J + JK = yx + Ayr

Also, it will be seen that z5 = 01 = OH + HI = z4 + Ax4 and

y5 = OM MN, which, since Ay4 is negative, may be written y$
=

y + Ay4 . In general, we may therefore write

yn = Ayw_lf

the proper signs being given in each case to the differences Aa^, Aas2 >

A#3,
Ax4,

. . . and Ay1? Ay2 , Ay3 , Ay4 ... in accordance with the bear-

ings of the lines and the particular quadrants in which they lie.

The differences of co-ordinates Ax1? A#2 ,
Ax3, . . . and A^, Ay2 ,

Ay3 ,
. . . are often, particularly in traverse work, called the latitudes

and departures, and the co-ordinates of a point referred to the origin

the total latitude and total departure. Latitudes and departures are

also sometimes called northings or southings and eastings or westings,

according to the direction in which they run, and the total latitude

and total departure the total northing or total southing and total easting

3* (G467)



58 RECTANGULAR CO-ORDINATES [CHAP.

or total westing, as the case may be. Very often, however, the word
"
total

"
is omitted from these expressions and the terms

"
latitude

"

and "
departure ", or

"
northing ",

"
southing ",

"
easting

"
and

"
westing

"
applied to describe the actual co-ordinates of a point.

If In l& Z3,
Zn-2> Z*-i are the kngth8 of t^o legs AB, BC, CD, etc.,

and a
1?

a2 ,
a3 ,

. . . an_2 ,
an_x are the forward bearings of these legs

reckoned clockwise from directions parallel to the direction of the

axis OX, then

A^ = l^ cos ax ;
A#2

1
2 cos a2 ;

Ax3
= 13 cos a3 ;

. . .

%i = k sin aiJ A#2
= k sin a2; A^3

= z3 sin as;

and we have

The last two expressions comprise the fundamental formula) used

in computing traverses, and in Chap. VII we shall give a numerical

example of a traverse computation and of the way in which it is best

arranged.

8. Calculation of Areas from Co-ordinates.

In fig. 5.4 ABCDEFA is a closed traverse of which A is the most

westerly station. Through A draw the Hue xAx' parallel to the axis

of X, and from B, C, D, E and F draw perpendiculars Bb, Cc, Dd, Ee
and Ff to xAx'. Then it can be seen that

area of ABCDEFA = area BbcC + area CcdD + area DdeE +
area EefF area AfF area AbB.

But the area of any figure such as DdeE ^(de)(dD + eE). Now
(dD + eE) = <ip, where p is the middle point of the leg DE and

pq is the perpendicular from p on xAx'. This quantity represents the

departure of the point p with reference to A and is called the longitude
of the leg DE. Denoting it by L

4 ,
let L

l9 L^ L3 ,
i5 ,

LQ be the longi-

tudes of the legs AB, BC, CD, EF, FA. The quantity de, taken with

its proper sign, is the latitude of the leg DE, which we shall call Aa?4 .

Accordingly,

area DdeE Ax4 x 4 ,
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and, if Aa^, Ax2 ,
Ax3 ,

Ax5 ,
Ax6 denote the latitudes of the other legs,

area ABCDEFA= Az2L2+ Ax3 L3+ Ax4L4+ Ax5 L6 A 6 L6 Ao^ .

Here it will be noticed that the Ax's of all the plus terms are posi-

tive since they are measured upwards from one point to the next,

while the Ax's of the negative terms are negative since they are measured

downwards from one point to the next. Hence, figures which have

positive latitudes are positive, and those which have negative latitudes

are negative, so that the total area is the algebraic sum of the products

of the latitudes and longitudes.

or

Fig. 6.4

In practice, instead of taking the mean of the two departures of

the ends of the leg as the longitude of the leg, it is more convenient

simply to take the sums of the two departures and call this the double

longitude. Then we have the rule :

Twice area offigure equals algebraic sum of the latitudes each multiplied

by its corresponding double longitude.

Also, to obtain the double longitudes we have the rule:

The double longitude of either of the lines meeting at the most westerly

point is the departure of that line. That of any other line is the algebraic sum

of the double longitude of the previous linet plus the departure of that line,

plus the departure of the line itself.
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Thus, if r is the middle point of EF and rh and Eg are perpen-

diculars from r and E on qp, the double longitude of line EF in fig.

5.4 is 2(qp pg gh), i.e. double longitude of DE + departure of

DE + departure of EF.

Example.

3,251,774
- 910,614

Algebraic sum
= twice area

Area

-910,614

2,341,160.

1,170,580 sq. ft.

26-873 acres.

Note the check on the working of the double longitudes, as here the

sum of the double longitude of the line before the closing line plus the

departure of that line plus the departure of the closing line should equal

in magnitude the departure of the latter.

Another rule for determining areas from co-ordinates which the

reader may be interested to derive for himself is:

Twice the area of a closed figure equals the algebraic sum of the products

formed by multiplying the total latitude (or x co-ordinates) of each station by

the algebraic sum of the departures of the two lines which adjoin the station.

In order to avoid unnecessarily large figures, the total latitudes

are best taken from one station, which is thus used as a local origin.

This method is useful for checking a computation carried out by the

method of double longitudes. Thus, the following example is a check

on the example given above.
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Algebraic sum

+ 30,771
-

2,371,931

+ 30,771

twice area = 2,341,160

Area -= 1,170,580 sq. ft.

26-873 acres.

QUESTIONS ON CHAPTER V

1. Given that the co-ordinates of a point A are

x (northing)
=

-f- 10,342-1; y (easting) -8369-6;

and that the distance and whole-circle bearing to point B are I 3621-1

and a = 74 18' 30", find the co-ordinates of B.

2. Given that the co-ordinates of A are as above, but I
= 3621*1 and

a = 221 16' 20", find the co-ordinates of B.

3. Given that the co-ordinates of two points A and B are

find the bearing and distance from A to B.

4. Given that the co-ordinates of three points A, B and C are

find the bearings and distances AB, AC, BC.



62 RECTANGULAR CO-ORDINATES [CHAP. V]

5. Given the following distances and bearings of the lines AB and AC,

find the bearing and distance of BC.

6. The following are the latitudes and departures of a closed traverse:

Find the area of the figure enclosed by the traverse correct to the second

decimal place of an acre.



CHAPTER VI

TRIANGULATION

1. Introduction.

In Chapter II we have described simple cases where, by means of

a triangle of which the lengths of all the sides are known or are measured,

a third point can be fixed from two others whose positions are already

fixed. In this chapter we shall consider the application of the same

principle, but on a very much larger scale, and with triangles of which

the length of one side is known and at least two of the three angles

are measured.

The object of the triangulation now to be considered is to establish

over a certain area a number of points whose positions are accurately

fixed, and from which a detail survey can be carried out, or else to

fix the relative positions of two or more widely separated points.

The area to be covered may be very large, as in the case of a national

survey, or it may be comparatively small, as when triangulation is

used as the main framework on which to hang the survey of a town

or large estate. Corresponding to the area involved, the average length

of side will vary within certain limits. Thus, in the case of a national

survey where the area may be very large, the lengths of sides of the

main triangles will be as long as visibility and the nature of the ground

permit say between 20 and 80 miles : in the case of a small survey,

such as that of a town, the lengths of the sides of the triangles will

be very short say half a mile to two miles.

In national surveys, triangulation may be arranged in chains or

in networks. In the former case, simple figures of triangulation, such

as single triangles or simple braced quadrilaterals, are extended one

after another until long, but relatively narrow, chains of triangulation.

are built up, the area concerned being split up into rough rectangles

each side of which consists of a chain of triangulation. Fig. 6.1 shows

part of such a scheme. In this figure, the chains a, b, c and d consist

of braced quadrilaterals and e, f and g of series of single triangles, all

linked together. The areas between the main chains are broken down

by chains of secondary and minor triangulation, or else by numerous
63
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theodolite traverses. This breaking-down process is not shown in the

diagram.
A small network of triangulation is shown in fig. 6.2 (p. 65), the

arrangement of the triangles being, of course, controlled by the nature

of the local topography. The trigonometrical framework of the

Ordnance Survey of Great Britain consists of a close network; in the

United States, this framework consists of chains of triangulation.

When the area concerned is comparatively small, as in most surveys

that are likely to be met with in ordinary engineering practice, a

Fig. 6.1

network is a more suitable arrangement and is more usual than closed

circuits of chains of triangulation. If, however, the work is only required

for the fixation of points a considerable distance apart, as in a survey

for fixing points near the ends of a proposed tunnel which are required

for the computation of a bearing, a network is not needed and a single

chain would be used.

All the triangulation in a scheme is not always of the same order

of accuracy, but is generally divided into primary, secondary and

tertiary, QT first-order, second-order and third-order work. The primary

work is the most accurate and forms a skeleton on which the secondary

and tertiary work is hung, the secondary work being more accurate

than the tertiary and serving to control it. In addition, the lengths

of the sides of the triangles vary with the order of accuracy, those
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of the primary triangulation in a national survey being from 20

to 60 miles in length, or even more; of the secondary from 10

to 20 miles, and of the tertiary from 1 or 2 to 10 miles. Single triangles

of the first order therefore cover a fairly considerable area, leaving

large gaps to be filled in with the secondary work. The secondary

triangulation breaks down the primary, but still leaves points too

inconveniently far apart for the survey of detail. Consequently, the

gaps left by the secondary work are filled in with the tertiary triangles.

The real object of the secondary and tertiary work is therefore to

enable points close enough for detail survey to be established. Some-

times, however, if the work is

needed for something other than

as a control for the detail survey,

the secondary and tertiary work is

omitted altogether.

There is no great difference

in the instruments or methods

used in surveying the dift'erent

orders of triangulation. Often all

three are measured with the same

instrument, or type of instrument,

but more observations are taken

at the primary points than at Fig. 6.2

the secondary, and more at the

secondary than at the tertiary points. Sometimes smaller theodolites

are used for the observation of the minor triangles.

The necessity for the points between which observations have to

be taken being intervisible usually results in the primary and secon-

dary points being on high hills often inconveniently high for the

topographer or detail surveyor. Sometimes, in order to ensure inter-

visibility, special towers of anything up to about 120 ft. in height,

from and to which observations can be taken, have to be used.

In order to start a triangulation, it is necessary to have one side

of a triangle whose length and azimuth or bearing are known or

measured, and one point, usually one end of the same line, whose

position has been fixed in terms of latitude and longitude, or other

suitable system of co-ordinates. If the side is measured, it is known

as a base line. Since, however, the measurement of the length of a

base line demands a stretch of fairly level country over which the

two ends of the line are intervisible, it would be very difficult to get

a suitable line as long as a side of primary triangulation. Moreover,
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most of the primary points would be on hills, and precise linear measure-

ments up or down the slopes of these hills would be virtually impossible.

Accordingly, it is usual to select a line considerably shorter than the

sides of the primary triangulation and, by means of carefully selected

and very carefully observed triangles, gradually increasing in size, to

"
extend

"
the base until the length of one side of the triangulation can

be computed.
Thus, in fig. 6.3, ab is the measured base, and all the angles of the

triangles abc, abd, acd and bed are observed. This enables the length

of cd to be computed in (in this case) four different ways. Similarly,

all the angles of the triangles cdf, cfe, cde and dfe are observed, so

giving the length ef. This process is repeated with the figure AeBf,

and this enables the length of AB, a side of the main triangulation,

to be computed from ef. Such a figure as this, which enables a long

length to be computed from a rather short measured base, is known

as a base extension. With small schemes of triangiilation, in which

the triangles have relatively short sides, a base extension, is normally
not needed because the triangles are small, with short sides, and the

length of one of them can easily be measured directly. The scheme

shown in the diagram, it should be noted, is only one example of

a great number of other possible schemes.

Up to the time of the invention of Invar, a metal with a very low

coefficient of thermal expansion, the measurement of a base line was

an exceedingly tedious, slow, and costly operation, with the con-

sequence that the length of a base line seldom exceeded six miles.

The application of Invar, in the form of wires or long bands, has

revolutionized the measurement of bases, so that to-day lines between
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10 and 20 miles in length are not uncommon, and can be measured

in very much less time than much shorter lines could be measured

with the older apparatus. In addition, it is now possible, and usual,

to introduce check bases at intervals of about 120 to 200 miles, whereas

up to fairly recent years base lines at such close intervals could seldom

or never be measured. The comparison of the length of a check base,

as computed through the triangulation from the original base, with

the length as determined by direct- measurement gives an indication

of the accuracy of the work. In modern first-order work, the difference

between the computed and observed length of a base line situated

about 150 miles from the original base line should not exceed 1/20,000
of the length of the check base, and in most cases in practice it is con-

siderably less.

After the base line has been measured, the latitude and longitude
of one end of the line and its azimuth are determined by astronomical

observations of the utmost precision, unless at least one station can

be connected easily to a point and line where values of these quan-
tities are already available. It is also necessary to determine the

elevation of the base line above mean sea-level. This is done by careful

levelling from sea-level or from a bench mark whose elevation above

mean sea-level has already been determined.

The observation of the angles of the triangulation, both horizontal

and vertical, follows the initial astronomical and levelling operations.

Nowadays, on long lines it is usual to employ luminous signals, either

heliograph by day or special electric lamps by night, on which to

sight, these signals being accurately centred over the station mark

and accurately pointed at the station from which the observations

are being taken. The signals and observing instrument are set on

special high observation towers if this is necessary to secure inter-

visibility.

On short lines, such as are used in secondary and tertiary work,

stopped-down heliographs or electric lamps may be used as signals,

but, as an alternative, non-luminous signals, in the form of large

tripods or quadripods or posts with crossed sighting vanes, are often

employed.
In first-order work, angles are measured with theodolites of the

Wild or geodetic Tavistock type, or similar instruments, which enable

the horizontal circle to be read direct to a single second of arc and

by estimation to tenths of a second. A single observation consists of

two sights, one circle left and the other circle right with change of

swing with each sight, and about 16 observations to a single station
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are taken, each observation commencing on a different zero or initial

setting on the horizontal circle when the telescope is pointed at the

first of the two stations between which the angle is being observed.

In secondary work, the number of observations to a station is reduced

to about eight, and in tertiary work to about two or four. Observations

of vertical angles consist of about the same number of measurements,

but of course there is here no question of change of zero, although

there is the usual change of circle and swing.

Observation of the angles marks the completion of the field work

and the computations are now begun. These involve an adjustment

of the angles of the triangles to make them satisfy certain geometrical

conditions, the solution of the triangles, and finally the calculation

of the co-ordinates and elevations of the stations.

Having thus given a general outline of the procedure involved in

carrying out a triangulation scheme, we shall now proceed to describe

in some detail the different stages of the work. These stages are:

1. Reconnaissance of scheme, including selection of site of base line.

2. Marking of stations and erection of signals.

3. Base-line measurement.

4. Determination of co-ordinates of one end of base line and of tho.

azimuth or bearing of the line.

5. Measurement of angles.

6. Computation of results.

2. Reconnaissance of Scheme.

Before any observations on a triangulation scheme can be com-

menced, it is necessary first to reconnoitre the ground and select suit-

able stations. If maps are available, a provisional scheme can be drawn

up on them in the office, and the possibilities and details of this scheme

verified later on the ground. The scheme must admit of the following:

1. Suitable shaped triangles, i.e. triangles which have no very acute

or very obtuse angles. The ideal is as nearly equilateral as possible.

2. Clear intervisibility between stations.

3. Avoidance of grazing rays, i.e. rays which come within a few feet

of the ground at any point on their length, or of rays which come

very close to large solid objects such as cliff faces, large buildings,

etc.

4. Accessibility of stations.

5. Suitability of points not only for providing strong figures but also

as regards their use for subsequent breaking-down operations.

6. A suitable site for a base line and its extension, and also possibly

suitable sites for check base lines.
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In drawing up a scheme on paper, regard must be paid to the

effects of curvature of the earth and of terrestrial refraction on the

intervisibility of distant points. In fig. 6.4, AA' represents the surface

of the sea, or a surface parallel to it, on a spherical earth in which

the distance AA' is D. B is a point at height h^ above A, and B' a

point where a line of sight from B to the horizon at C will meet the

vertical at A'. Let d be the distance of C from B and h2 the height

of B' above A'. Owing to the curvature of the earth and the bending

Fig. 6.4

of rays of light by refraction, the line BCB' will be curved and not

straight. Then it can be shown that d and h^ are connected by the

relation

where R is the radius of the earth and k is a constant known as the

coefficient of refraction. The value of k varies slightly according to the

time of day, being slightly different in day-time from what it is at

night, and according to whether the sight is over land or sea. Its

mean value may be taken at 0-07 and, using this value and a mean

value for R, the expressions become

A = 0-574d2 or d =

where ^ is expressed in feet and d in miles.

Similarly, with A2 expressed in feet and D and d in miles,

Aa = 0-574(1) d)\

so that d may be calculated from the second of the first two expressions,

and the value so obtained substituted in the last expression to give

h*,,.
This height will be the minimum height at A7

which can be seen

from B supposing that the surface ACA' is the surface of the sea or

a level land surface parallel to it.

Now suppose that, as in fig. 6.5, instead of the horizon at C there
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is a hill there of height H at distance d from A, and we wish to know

if a line of sight from B to B' would clear the hill.

Let h be the height above C of a point which would lie exactly

on the line of sight from B to B'. Then h will be given by

h = +
- - Kd(D - d) cosec* z,

where z is the zenith distance of B' from B and K is the constant

5280(1 2k)/(2R) == 0-574 approximately. If H is greater than A,

the line will not clear the hill at C, but if // is less than h, the points B
and B' will be intervisible.

Fig. 6.5

In this formula z, which is the angle of elevation or depression

measured from the zenith at B, is usually very close to 90, so that

in practically all cases that are met with in practice we can take

cosec z = 1 with sufficient accuracy.

If we substitute H for h in the last formula we can use it to

solve for A2 ,
the height which a signal at B' must have in order to

be visible from B. In this case, however, an amount of at least 10 ft.

should be added to H in order to avoid the possibility of a grazing

ray at C, and also to allow for possible vagaries in the value of K.

Having drawn up on paper what appears to be a feasible scheme,

a party proceeds to the field to see that all the proposed rays are

clear and the terminals intervisible. If necessary, heliographs or

lamps are used to verify the intervisibility of the end points of very

long lines. As lines are verified, they are plotted on a Trig. Diagram,

usually mounted on a plane-table, and at the same time compass

bearings are taken at each station and rays drawn to all distant points

that look as if they might be possible trig, points. If no map is avail-

able, the reconnaissance party will have to make its own diagram by

using compass bearings or plane-table shots to get approximate fixings

for all points, thus building up from a roughly measured base a graphical

triangulation in which rough elevations of selected stations will be

obtained by aneroid or Indian clinometer.
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At each station visited, panorama sketches in different directions

are made with compass bearings to the principal features figured on

each sketch. A careful description of every station is compiled. This

description, besides giving all data necessary for finding the point,

must give such information as how the point is approached; means
of transport used to reach it

;
details regarding local food supplies for

labourers; nearest water supply, its amount, quality, and situation;

nearest place where sand and stone for concrete may be obtained;

local fuel supplies, etc. In fact, everything that any surveyor visiting

the point later would require to know to reach the point, identify it,

obtain materials for station building, and maintain himself and a party
of labourers.

In Canada in recent years a special technique for trigonometrical

reconnaissance from aeroplanes has been worked out, and a good deal

of work done by this means.

3. Selection of Base-line Site.

The essential points to be kept in view when selecting a site for a

base line are:

1. A reasonably long stretch of moderately flat country suitable for

measurements with long metal bands.

2. Intel-visibility of ends of base.

3. Kinds elevated sufficiently to avoid a grazing ray along the base,

but with approach slopes not too steep for accurate linear measure-

ments to be made along them.

4. Good extension figure with well-shaped triangles from base to one

side of the main triangles.

The length of the base line will depend on the length of side of

the triangulation and the nature of the ground, but it is advisable

to make the base as long as possible so as to reach the main figures

in the fewest possible steps. Up to fairly recent years, bases varied

from about a tenth to a half of the average length of side of the

main triangles say 3 to 10 miles long but, as the use of Invar

wires or bands has rendered the measurement of a base line a

comparatively easy affair, the modern tendency is to use long lines

of anything up to 15 or even 20 miles when the ground permits.

In the case of small local schemes of triangulation, where the

triangles have very short sides, the base is generally one side of a main

triangle, so that no base extension, in the ordinary sense of the word,

is necessary.
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4. Station Preparation and Signal Building.

After the preliminary reconnaissance has been completed, or even

while it is in progress, the work of station preparation and signal

building commences. This means putting in permanent station ground

marks, clearing rays of bush and obstacles, and, when necessary,

erecting special signals or observing towers. The best form of station

mark is a concrete pillar about four feet high on a good solid foun-

dation, flat on top so that an instrument can be set directly on it,

the exact point to be taken as centre being a centre punch on a brass

bolt let into the top surface of the pillar. In small local schemes, the

station mark is a low concrete pillar about 1 ft. high and 9 in. square

on top, set on a foundation about 15 in. square and from 2 to 3 ft.

deep.
Modern practice tends more and more towards the use of nothing

but luminous signals heliograph or lamp and special lamps, either

electrical or acetylene, can be obtained for the purpose. Several

makers now make special sets of traversing equipment for use with

the
"
three-tripod system

"
of observing; this equipment is well

adapted for small schemes where errors due to bad centring of signal

or theodolite are much more serious than they are in the case of major

triangulation schemes with long-sided triangles. In this apparatus,

the upper part of the theodolite, including lower and upper plates

and vertical circle, is removable from the tribrach, the latter being

made to take either the theodolite or special targets which are very

accurately centred and which can be used as sighting marks. A number

of spare tripods, tribrachs and targets are provided. Consequently,

when observations are complete at one station, the observer removes

the upper part of the theodolite and sets a target in the tribrach,

after which he proceeds to the next station to be observed, and sets

the theodolite on the tribrach there after removing the target to which

he observed from the last station. In this way, errors of centring are

reduced to a minimum. The targets supplied with the equipment are

fitted with electrical bulbs for night observations.

The acetylene and electrical lamps for use on long lines show

powerful lights which, on clear nights, can be seen for distances up
to 60 or 70 miles. Heliographs also are visible over similar distances

when atmospheric and solar conditions are favourable.

When luminous signals are not employed, some form of opaque

signal must be erected. For rather long sights, this usually takes the

form of a large quadripod or tripod 10-20 ft. high, the upper part
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flag

re vane

-vertical square post

of which is covered with boarding or cloth down to about 6 or 7 ft.

from the ground. On top of the main structure is a wooden post carry-

ing a flag, or a red and a white flag, the object of which is to enable

the signal, through the waving of the flags in the breeze, to be picked

up fairly easily in the field of view of the telescope. Sights are taken

to the pointed apex of the signal, which is set accurately over the

station mark; when observations are being taken from the station, the

instrument is set over the station mark under the centre of the struc-

ture. When the latter is being erected,

care has to be taken to see that the

legs are so placed as not to interfere

with sights to any of the distant

stations.

The targets supplied for the three-

tripod system of observing can also be

used for daylight sights with triangles

with short sides. If this type of

equipment is not available, ordinary

ranging poles, accurately plumbed
over the station mark and stayed with

wire (not rope or string which alters

in length with changes in atmospheric

humidity), may be used as signals,

red and white flags being attached to

the top of each pole to make it easier

to pick it up in the telescope. In

conditions of good visibility, these

will be visible up to distances of two or three miles. If longer sights

are involved, say up to about ten miles, a more solid signal, consisting

of a solid wooden post 8-12 ft. high and with cross pieces as shown in

fig. 6.6 makes a good signal.

It is impossible to lay too much emphasis on the fact that in all

triangulation schemes it is most important to see that signals are truly

vertical and accurately centred over the station mark, as nothing will

reduce the accuracy of the work more than carelessness with regard
to this point. This holds particularly with respect to triangles with

short sides, and for this reason by far the best type of signal for local

schemes is the type used in conjunction with the three-tripod system of

observing.
In flat or wooded country it often happens that special high ob-

serving towers are necessary for long sights. Illustrations of these

small concrete
pillar

Fig. 6.6
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will be found in most textbooks on geodesy. Each tower consists of

an inner tower supporting the theodolite and an outer one carrying

a platform for the observer. These two towers are entirely independent

of one another and are separately stayed, so that vibrations caused

by the movement of the observer are not transmitted to the theodolite.

If luminous signals are not used with the tower, the top of the latter

must be pointed and opaque, so that the cross hair of the theodolite

can be centred on it from a long distance away, the centre of the

tower being, of course, carefully centred over the station mark.

The Ordnance Survey, in the new triangulation of Great Britain,

are using a portable type of tower, culled the
"
Bilby tower ", after

its designer, J. S. Bilby, of the United States Coast and Geodetic

Survey; it can be dismantled and moved from place to place.

This tower, which is in varying heights up to about 120 ft., consists

of the usual inner tower for the theodolite and an outer independent

tower for the observer; it is made up of light metal rods and angle

irons which can be bolted together or unbolted as required. Bilby

towers have been extensively used in the United States, where they

originated, and in Canada.

5. Base-line Measurement.

The apparatus now used in the measurement of geodetic base lines

has been described in Chapter II of Principles and Use of Surveying

Instruments. It consists of a long band of Invar supported
"
in cate-

nary
"
by means of weights suspended by cords over pulleys carried

^weight weight-'

Fig. 6.7

by straining trestles in the manner shown in fig. 6.7, the end marks

being set over special measuring heads. The measurement consists in

observing at every set-up of the band the small differences in length

between the marks on the ends of the band and index marks on the

measuring heads.

Sometimes tension is applied at one end of the band by a spring

balance supported on a straining pole as shown in Chap. II, fig. 2.16,
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of Principles and Use of Surveying Instruments, the other end of the

band being held steady by means of a special steadying pole or lever.

In order to determine slope correction and correction for height

above sea-level, spirit levels are either taken along the line or else

angles of slope are observed from measuring head to measuring head.

At least one of the points on the triangulation, usually one end of the

base, is connected to a bench mark whose height above sea-level is

known, but if no such height exists and it is impossible to run a special

line of levels to the sea, a rough value may be obtained by careful

barometric levelling. If heights and slopes along the base are deter-

mined by spirit levelling, the line of levels is taken over the pegs over

which the measuring heads are set, and the height of each measuring
head over the peg measured. If heights and slopes are determined

from angles of slope, a small telescopic clinometer, which fits on the

spike on each measuring head, is used to sight a special target placed
on the measuring head at the other end of the span.

During measurement, readings are taken at every set-up of the

band on two thermometers held near the ends of the band.

Before measurement commences, pegs are put in at every point
where a measuring head will be placed. If possible, the base is made
a whole number of band lengths long so as to avoid a short bay at

one end. If a short bay is unavoidable, its length is measured with a

special graduated tape kept for the purpose and used either along the

ground or in catenary. Pegs to mark the positions of measuring heads

must be put in carefully as otherwise the head may come outside the

limits of the scales used for the measurement of end differences.

Steel bands are often employed instead of Invar for the measure-

ment of bases not intended for geodetic work, measurements being
made either along the ground surface or else in catenary. If they
are made along the ground, the earth is levelled off so that the band

lies properly flat throughout its length: otherwise, pegs are put in

on grade between the end points at, say, 10-ft. intervals, and these

pegs become supports for the band. The end marks are on small

sheets of stout zinc nailed on top of pegs. On these sheets the line

of the base is marked out by a longitudinal line laid out with the

aid of a theodolite, and a fine scratch at right angles to this line, and

near the centre of the metal sheet, takes the place of the fiducial mark

on a measuring head. Tension in this case is applied by spring balance

at one end of the band.

For catenary measurements, if no measuring heads are available,

the marks are the intersection of two crossed lines on a round-headed
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brass nail carried on the centre of a stout wooden peg about 42 in.

high. Each peg must be very steady and is therefore best held fixed

by three stout wooden struts arranged like the legs of a tripod and

nailed to the peg at one end and fixed in the ground at the other.

Tension is applied through a spring balance at one end of the band,

the other end being held steady by a steadying pole stuck lightly into

the ground at its lower end. A steadying pole is also used with the

spring balance to enable a steady pull to be maintained.

When a base line, whether for major or minor work, is laid out,

all pegs and marks indicating where the end of the band will come,

or over which a measuring head will be placed, must, of course, be

properly and accurately lined in by theodolite. For convenience in

measurement and computation, a long line is divided into a number

of sections, each section representing the equivalent of a day or two's

work, and it is advisable to mark the end of each section by a small

concrete pillar carrying an accurately placed centre mark.

6. Measurement and Booking of End Differences.

The measurement of end differences means the measurement of the

small differences between the end marks on the band and the fiTxed

marks on the measuring heads, zinc plates or pegs. In base measure-

ment, no attempt is made to hold one end of the band against the

fixed mark, so that differences have to be measured at each end of

the band. The algebraic sum of all these differences over the whole

length of the line, plus the number of spans multiplied by the nominal

length of the straight line joining the end marks, plus the length of

the odd length bay, is the apparent length of the line.

End differences are measured either by means of a rule held against

or beside the band and the fixed mark, or else by means of gradua-

tions on the band itself, a magnifying glass fixed to the measuring
head or held in the hand being used to view the graduations clearly.

If the band is a metre band, the scales are graduated in millimetres

and readings estimated to tenths of a millimetre. If the length of

the band is a whole number of feet, the scales will generally be graduated
in hundredths of a foot and readings estimated to thousandths.

Great care must be taken to book signs correctly and the rule to

be followed is:

If the end mark of the band falls between the measuring heads, the end

difference is booked as a positive quantity; if the end mark of the band lies

between the measuring head and the straining trestle^ the difference is booked

as a negative quantity.
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In many bands intended for base measurement, the scales at the

ends both run in the same direction that of the length of the tape

looking at it from the zero or rear end. In this case the zero mark

must always lie behind the fixed mark, between that mark and the

straining trestle. Consequently, the rear reading will be negative.

The mark at the forward end will lie between two measuring heads

and will therefore be positive, so that here the apparent distance

between the fixed marks is nominal length of span, plus forward reading,

minus back reading. Hence, if the back reading is numerically greater

than the forward reading, the span between the fixed marks is less than

the nominal span; if the forward reading is numerically greater

than the back reading, the span between the fixed marks is greater

than the nominal span.

Some bands have scales which are graduated in both directions

outwards from the zero and end marks. In this case readings on the

outer scales are positive, and on the inner scales negative, and the

correction to be applied to the nominal span is the algebraic sum of

the two readings.

In all base-line measurements, even in short ones measured for minor

work only, the band is moved slightly after the first pair of readings,

and several other pairs taken on different parts of the scales, the direc-

tion of movement of the band being reversed after each pair. If tension

is applied by weight, the pulley of the straining trestle is rotated

through an angle each time the band is moved, so that the cord attaching

band to weight works on a different part of the circumference for each

pair of readings. In addition, in base lines for first-order triangulation,

sets of readings are taken with at least two bands, and, after the line
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has been completely measured in one direction, it is remeasured in

the opposite direction. Normally, one measurement is made in each

direction, but there is no great difficulty in making four measurements,

two of which are in opposite directions to the other two.

The table on p. 77 shows an example of the booking of end

differences when using a 50-metre tape. The mean of the end differ-

ences being +5-73 mm., the observed length of the span is 50-00573

metres.

7. Field Standardizations.

The field bands used in base measurement are standardized before

and after measurement, and, if the base is long and measurement is

going to take more than a day or two, it is well to standardize at the

beginning of each day's work. For this purpose, one or more bands,

which have themselves been standardized and had their coefficients

of expansion determined at the National Physical Laboratory, or similar

Institution, are kept as field reference bands and used for nothing

else but field standardizations.

A field standardization is carried out by measuring the distance

between a pair of measuring heads or other marks with the standard

bands and then measuring the same distance with the field bands.

The differences in the computed lengths, after all corrections have been

applied, will give the correction to be applied to the field bands. At

least two or three times the number of measurements used in ordinary

work should be made with each band when standardizing, as it is very

important that a standardization should be of the utmost accuracy

if the effects of a systematic error are to be avoided.

Example. A short base consisting of two measuring heads was measured

with a couple of standardized bands, and the mean corrected length of

this base was found to be 100-1213 ft. The same base was then measured

with an ordinary field band, and the corrected result, assuming the band

to be 100 ft. long, was 100-1106 ft. What was the correct length of the

band?

The base as measured by the 100-ft. field band was 100-1213 - 100-1106

= 0-0107 ft. too short, so the band must have been that much too long.

Hence, the correct length of the band is 100 + 0-0107 = 100-0107 ft.

It should be noted in passing that bands should always be standardized

with their own straining equipment, and the conditions of field standard-

ization should be as near as possible to the conditions of ordinary field

work.
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8. Corrections to be applied to Measured Lengths.

There are a number of corrections to be applied to all measure-

ments made with Invar or steel bands. In base-line measurement these

1. Correction for standardization.

2. Correction for temperature.
3. Correction for slope.

4. Correction for change of pull.

5. Correction for index error of spring balance if tension is applied by

spring balance.

6. Correction for sag, or catenary correction.

7. Correction for height above sea-level.

There is also a very small additional correction to the standard bands

when the locality in which they were standardized is entirely different

from that in which they were used. This correction is due to the varia-

tion of gravity with latitude and height above sea-level, which affects

the true value of the pull when this is applied by weights.

In ordinary measurements with steel bands, apart from base

measurement, some of the above corrections are too small to be worth

applying, but others may be applicable. All depends on the degree

of accuracy desired.

1. Correction for Standardization.

This is a correction to the observed length for the difference between

the nominal length of the band and its true length. It is best expressed
as a percentage and applied to the total length measured, using the

rule:

A line measured with a band that is too long/short will be too short/

long and the correction is additive/subtractive.

Example. A band whose true length is 100-0114 ft. was used to measure

a line of which the apparent length was 6,012-2372 ft. Find the true length

of the line.

The band used is 0-0114 per cent too long, and consequently the measured

length was too short, so that the correction to be applied is additive. Hence,

true length of line = 6,012-2372 + 60-12 X 0-0114

= 6,012-2372 + 0-6854 =- 6,012-9226 ft.

The correction for standardization is often combined with .the tem-

perature correction as in the two examples at the end of the next

section.
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2. Correction for Temperature.

When a band has been standardized, its length is known when it

is at a certain defined temperature and under a stated pull. If the

temperature or pull is altered, the length of the band will alter. In

practice, the band is very seldom used at the temperature at which

it has been standardized, because the temperature of the air is con-

stantly changing with time and place.

Let Ta be the temperature for which the band has been stan-

dardized, Tp the temperature at which it has been used, and ia its

length at temperature Ta . Then its length at temperature Tp will

be given by

where Jc is a constant, known as the coefficient of expansion, which gives

the amount by which unit length alters with unit change of temperature.

The second term on the right in this expression is the temperature

correction.

The value of k varies greatly with Invar bands and even in the

same band it changes slowly with time, so that an Invar band should

have its coefficient of expansion determined shortly before or shortly

after an important base measurement. With Invar, the coefficient is

usually positive, but it may actually be negative, in which case the

band decreases in length with increase in temperature; the numerical

value, however, seldom exceeds 0-0000005 per degree Fahrenheit.

The coefficient of expansion of ordinary steel bands is always positive,

and, if not specially determined or given, may be assumed to be

0-000 0062 per degree Fahrenheit.

Temperature correction may either be applied to each measured

bay, as is generally done in base-line work, or it may be applied to a

line as a whole, taking the mean temperature observed during the

measurement of the line. As noted above, this correction and the one

for standardization may be combined to form a single correction.

This is done by working out the temperature at which the band is

of standard length and then using this temperature as the one from

which all differences in temperature are to be reckoned when cal-

culating temperature correction, as in the two following examples:

Example 1. The length of a steel band was found to be 99-9846 ft. at

62 F. Find the temperature at which it is of nominal length (100 ft.),

assuming the coefficient of expansion to be 0-000 0062 per 1 F.

The tape is 0-0154 ft. too short at 62 F., and the increase in length
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for an increase in temperature of T
ft T^ will be 0-000 0062 x 99-9846 x

(Tp Ta), which, with sufficient approximation, may be written 0-000 0062
x 100 x

(Tp
- Ta ). This must be equal to 0-0154,

/. 0-0000062 x 100 x (Tp
- Ta)

=
0-0154,

giving (Tft

- TJ == 24-8 P.,

hence the tape is of nominal length at 62 4- 24-8 = 86-8 F.

Example 2. A line 8326-14 ft. long was measured with the tape roforred

to in the last Example, the mean temperature of measurement being
71-4 F. Find the true length of the lino.

Here (Tft

- TJ = 71-4 - 86-8 = -15-4 F.

and change of length in a line 8326 ft. long at this temperature

= 15-4 x 8326 x 0-000 0062 = 0-79 ft.

But at this temperature the band will be too short, and hence the measured

length of line will be too long. Hence, the true length is

8320-14 - 0-79 - 8325-35 ft.

3. Correction for Slope.

Since a plan represents a truly horizontal surface, and considerations

of mathematical convenience make it essential to reduce all measured

distances to the corresponding distances on a horizontal plane, a cor-

rection for slope of line must be applied to every individual bay and

at every change of slope. The formula) to be used will depend on

whether angles of slope are measured directly or whether slope cor-

rection is to be determined from observed differences of elevation.

(i) Slope Correction from Angles of Slope. Let I be the measured

length of the line and 9 the observed angle of slope. Then the horizontal

projection of I will be given by

lh = I cos

= 1 1(1 cos 0).

Hence, the correction to be applied to I is 1(1 cos 0) and this correc-

tion will always be subtractive.

The quantity (1 cos 9) is the versine of the angle 9 and can

easily be found from tables of natural versines such as are given in

Chambers''s Seven-figure Mathematical Tables.

Thus, if 6 = 3 43' and I
=

100-1032, the natural versine of 3 43' =
0-002103. Consequently, the correction is 100-1 x 0-002103 0-2105, so

that the corrected length is 99-8927.

4 (0467)
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B

Slope correction is also tabulated in some books of tables specially

prepared for surveyors and in some textbooks. Also, it is better to

correct lines by means of a small correction rather than compute
corrected values by the formula lh

= I cos 0; the latter method in-

volves a multiplication of large

figures, whereas the correction is

a small one, involving few figures,

so that it can often be worked out

by slide rule. Moreover, it will be

noticed from the example that, in

the multiplication by the versine,
Fig- 6-8

~
the decimal place in the length

need not ordinarily be used.

(ii) Slope Correction from Differences of Elevation. If differences of

elevation are measured, and not angles of slope, let h be the difference

in elevation between the two ends of the line. Then, in fig. 6.8,

'90

Expanding the expression under the radical sign by means of

the binomial theorem, we have

AC = Hl-i^--

and the correction to be subtracted from the measured length is

Example. Let h = 3-25, I
= 100-1645. Correction = 0-052 73 +

0-00001=0-0527. Consequently,

corrected length
= 100-1645 - 0-0527 = 100-1118.

From this example it will be seen that the second term in the

formula can usually be neglected unless the difference in height of

the two ends is very considerable.

When a band is used in catenary there is also another small cor-

rection for slope which will be considered with the correction for sag.

This is due to a deformation in the shape of the curve when the catenary
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is on a slope. If ordinary sag correction is applicable, it should, of

course, be applied before correcting for slope.

4. Correction for Change of Pull.

This correction is only applicable when the band is used at a different

pull to that at which it was standardized. Let Ps be the pull used in

standardization and P the pull used during measurement. Let a be

the sectional area of the band in square inches and E be Young's
modulus of elasticity in pounds per square inch. Then, from the

ordinary laws of elasticity, the correction is

This correction must be added to the standardized length of the

band when (P Pa)
is positive, and subtracted from it when it is

negative.

For ordinary steel bands E may be taken at 28,500,000 Ib. per

square inch and for Invar bands it may be taken at 22,000,000 Ib. per

square inch.

Example. Let the length of a steel band standardized on the flat at

a tension of 15 Ib. bo 100-1018 ft., and let it be used at a tension of 20 Ib.,

the width and thickness being 0-25 in. and 0-02 in. Find the correction

for the change of pull.

CL = 100-1 x 5 = 0-0035.v
0-25 x 0-02 x 28,500,000

Hence, length of tape under 20 Ib. pull
= 100-1018 + 0-0035 = 100-1053 ft.

A change of pull would, of course, also affect the sag correction,

so that a new sag correction must be computed from

where S is the sag correction at pull P and S8 the sag correction at

pull Ps .

If a standard band has been standardized with weights at a place

of very different latitude and elevation from those of the place where

it is to be used, a small correction for alteration of pull must be intro-

duced to allow for the variation of gravity with latitude and height of

station. This alteration in pull is given by

P P. = 0-00529Ps(sin
2

< sin2
<f>9)
- 0-000 00006PS(A

- Ag),
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where
<f>s

and
<f>

are the latitudes of the place where the band was

standardized and where it was used, and hs and h the corresponding

elevations in feet above sea-level. In this formula, the second term

on the right involving the difference in elevation is negligible in all

normal cases. If the band was standardized with a spring balance,

the correction does not apply. In both cases, however, the weight of

the band is affected slightly, but, since this weight and the weights

applying tension are similarly affected, this can only make a difference

to sag correction (and that to a usually negligible extent) when pull

is applied by spring balance. The alteration in weight may be cal-

culated by substituting w and w8 for P and P8 in the formula given

above.

5. Correction for Index Error of Spring Balance.

If pull is applied by spring balance, and the same balance was

not used in standardizing, a correction must be applied to the pull to

allow for the fact that the balance is used in a horizontal position,

whereas the probability is that it was graduated when used in a vertical

position.

Let / be the reading when the balance is suspended in its normal

position with hook downwards and no weight attached, /' the reading

when the balance is suspended vertically by the hook, and W the total

weight of the balance. Then,

index error for the horizontal position
= |(TF I /').

This correction is additive to the ordinary readings when it is

positive, / being taken as negative when the index is below zero.

6. Correction for Sag.

The correction for sag allows for the difference between the length

of the chord and that of the curved arc when the band is hanging

freely under the applied tension and its own weight, the value of the

correction being given by

where w is the weight of the band per unit length, I is the length of

the band between end marks, and P is the applied pull. A proof of

this expression will be found in the Appendix, p. 254.



VI] CORRECTIONS TO MEASURED LENGTHS 85

Example. Let, I
- 100 ft., w = 15 oz. per 100 ft., and P - 10 ib.

Then

0-0366 ft.-
24 V16 x 100

Hence the length of the chord joining the end marks is 100 - 0-0366 =

99-9634 ft.

If the band is used on a slope, the sag correction will depend on

whether the measured pull is applied at the upper or lower ends of

the band. If it is applied at the upper end, the sag correction becomes

Sa
= S cos2

(l
+ ~ sin

0),

where Sa is the sag correction on the slope and S the sag correction

when both ends of the band are at the same level.

If the measured pull is applied at the lower end, we have

S. = AS cos2

(l

-
vf

sisin

In both these cases, the second term is small, so that, for a steel

band, we may take

S, = S cos2 0.

Sometimes very long bands are used with one or more intermediate

supports dividing the total span into two or more equal spans. If

there are n equal spans, the total sag correction is n times the correction

for one span, so that, if I is the total length of the band, the length of

one span is l]n, and the total sag correction for the whole band is

5
~24

nX P*W ~~24

Sag correction, of course, is always subtractive if the band has

been standardized on the flat, and the chord length between end

marks is required; it is additive if the band has been standardized in

catenary, and the length on the flat is needed.

7. Correction for Height above Sea-level.

In fig. 6.9 (p. 86), DC is a line on the surface of mean sea-level on a

spherical earth of radius R = OD, being the centre of the earth. AB is

a parallel line on a surface at height h above DC, so that A is vertically



86 TRIANGULATION [CHAP.

above D and B is on the vertical at C. It is obvious from the figure

that AB is longer than DC, and a little consideration will show that,

provided the work is accurate enough for the difference between AB
and DC to be appreciable, confusion would result if all measured dis-

tances were not reduced to a common surface. Accordingly, it is

customary to reduce the measured lengths of base lines of all important

triangulation schemes to their equivalent lengths at mean sea-level

(M.S.L.). Once this is done, all lengths

computed from the base through the

triangulation will likewise be reduced

automatically to mean sea-level.

If AB = I and DC = I 8Z, we have

from the diagram,

Z-8Z 72

or

' "-
+ *'

81 is the amount which has to be

subtracted from AB to give DC, and

hence it is the correction required. It is subtractive for all heights

above mean sea-level and additive for all heights below it.

Sea-level correction is seldom applied to every measured bay, but

the mean height for a section of one or two miles is taken and a

correction based on this mean height applied to that section as a whole.

It is also necessary to apply the correction to precise traverses when

these traverses are measured at an appreciable height above sea-level

and form part of a network intended for framework purposes. In such

cases, the correction is applied to the total latitudes and total depar-

tures of the individual sections into which the traverse is divided,

the latitudes and departures of intermediate points being corrected

proportionately and automatically during the course of the adjust-

ment between the section terminals.

9. Accuracy of Base-line Measurement.

The measurement of a geodetic base line is one of the most accurate

operations that a surveyor is expected to carry out. Thus, if a line
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is measured twice with Invar bands, once in one direction and once

in the other, the discrepancy between the two measures will normally
not exceed about 1/2,000,000. Since, however, the discrepancy does

not take into account such unknown factors as small constant or

systematic errors of standardization, constant errors of pull, tem-

perature, etc., that do not become manifest in the difference between

the measures, the real
"
probable error

"
will seldom be much less

than 1/500,000.
With steel bands used without special base-measuring apparatus

either along the ground or in catenary, using the methods described

on pp. 75-76, the difference between the forward and back measures

should not exceed about 1/100,000 and the
"
probable error

"
of the

base may be assumed to be of the order of about 1/50,000. If special

base-measuring apparatus is used, the results should be somewhat
better than this, especially if the work is done at night when tem-

peratures are steadier than during the day.

10. Field Determination of Sag Correction.

If the weight per unit length w of the band is not known, and

no scales and weights are available for determining it, the sag correction

can easily be found, with sufficient accuracy for work in which a steel

band is used, from observations of the actual sag at the centre of a

horizontal span.

Let y be the depth of the sag at the middle of the span below a

horizontal line joining the end marks. Then it can easily be shown

that

Inserting this in the formula for sag correction, we have

24 V P I P* 3 I"'

a formula which, be it noted, is independent of w and P. Hence, a

value deduced by this method is not affected by uncertainties or errors

in respect of assumed values of these quantities.

The sensitiveness of this method depends on the fact that an error

in the determination of sag will be very considerably more than the

resulting error in the sag correction. In fact, if we differentiate the
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last expression with respect to y we see that the error S/S corresponding

to an error of 8y in y is given by

Hence, if y = 1 ft., Z = 100 ft., and Sy = 0-005 ft., we have 8/5 =
0-0003 ft.

The sag can be measured with the aid of a level and a graduated

scale supported vertically beside the band at the centre of its length,

the level being used to ensure that the line joining the end marks of

the band is truly horizontal, and also to determine the exact point

on the graduated scale where this line intersects it. Alternatively,

vertical angles can be observed by theodolite to the ends of the band

and to the centre point of the span, and the corresponding distances

measured from the horizontal axis of the instrument. This will enable

the differences in height below or above the horizontal plane through

the horizontal axis to be calculated, and from these differences the

sag can be obtained by subtraction.

11. Measurement of Horizontal Angles.

There are two main ways of measuring the horizontal angles of a

triangulation scheme. One is the method of repetitions and the other

is the method of directions, the latter being the one most commonly
used.

In the method of repetitions, a multiple of the angle is measured

and the observed angle is divided by the number of repetitions, the

procedure in observing being described on pp. 110-111 of Principles

and Use of Surveying Instruments. This method is more suitable for

the observation of very small angles, as in subtense methods of deter-

mining distance, than for ordinary trigonometrical observing.

In the method of directions, observations are commenced with a

pointing to one selected station known as the Referring Object, or R.O.,

and the instrument is swung round about its vertical axis to intersect

in turn the other stations visible from the station of observation, the

reading on the horizontal circle being taken at each .pointing. Thus,

in fig. 6.10, the instrument is set and clamped to sight R.O. and the

readings on both verniers or both micrometers taken. With the lower

plate kept clamped in this position, the upper plate and telescope are

swung round to sight in turn on A, B, C and D, the readings on both

of the verniers or micrometers being taken at each pointing. After

D has been sighted and the horizontal circle readings taken, the swing
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is continued until the theodolite again points to R.O., new readings

on the verniers being taken. If there were no errors of observation,

the new readings to R.O. would be the same as the previous ones,

but in practice there usually is a small discrepancy which is adjusted

equally among the angles.

Thus, if the second reading on R.O. were less than the original

reading by 5", 1" would be added to the reading to A, 2" to the reading

to B, 3" to the reading to C, 4" to the reading to D, and 5" to the

second reading to R.O. Alternatively, 1" would be added to each of

the deduced angles (R.O.)PA, APB, BPC, CPD and DP(R.O.).

One complete round having
been thus observed on one fa.ce

and one swing, the telescope is

transited so as to change face,

and the instrument again set to

read on R.O., D, C, B, A and

R.O. in turn. This completes one

set of observations, and the mean
of the two measures of each angle
is accepted as a single value of

that angle.

In ordinary work a number of

similar observations are made on

different zeroes. This means that

the operations are repeated with

different initial settings of the

lower circle when the telescope is directed to R.O. If there are to be n

zeroes, the difference between successive settings with an instrument

with two verniers or micrometers would be 180/w. Thus, with 8

zeroes, the initial settings would be such that the horizontal circle

readings when the telescope was pointed to R.O. would be 0, 22 30',

45, 67 30', 90, 112 30', 135 and 157 30' for each set of face-

right and face-left observations. Sometimes the number of zeroes is

doubled by changing zero between face-right and face-left observations.

Change of zero is, of course, made by setting the upper circle to the

reading of the desired zero and then, with upper circle clamped at that

reading, loosening the clamp of the lower circle and swinging the in-

strument to sight R.O., the final setting being made by clamping the

lower circle and using the lower-circle tangent screw.

In first-order geodetic triangulation the horizontal angles are

generally measured at night on 16 zeroes, with change of face and

4* (0467)

Fig. 6.10
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swing on each zero, using an instrument reading direct to single seconds

and by estimation to a tenth of a second. Secondary and tertiary

work is generally measured by day on smaller instruments, with 8

zeroes on secondary work and 4 on tertiary.

The object of changing swing, face and zero is to eliminate the

effects of errors of backlash and friction in moving parts; of vertical

collimation; of eccentric mounting of verniers and graduated arc;

and systematic errors of graduation of the circle.

Sometimes the sight back to R.O. at the end of a swing is not

made. Instead, face is changed after the last station is observed, and

all the stations observed in the reverse direction, starting from the

last station and closing back on R.O., any difference between the

first and last readings on the R.O. being equally distributed among
all the angles.

Again, it often happens that, before an entire set of observations

can be completed, the R.O. becomes invisible, although other stations

can be seen. In that case, another point may be used as a temporary

R.O., and observations taken to any others that are visible, additional

observations to the station used as the original R.O. being made

later.

An example of booking horizontal angles at a trigonometrical station

is given opposite. The full degrees, minutes and seconds are only

entered for the readings on the
" A "

micrometer, and seconds only

for the
" B "

micrometer. The closing error on R.O., and the adjust-

ments to the different directions, are entered above the means and

taken into account when working out the angle measured from R.O.

Individual angles may then be obtained by subtraction from the angles

from R.O., and summed and meaned on separate sheets of foolscap.

12. Accuracy of Angular Measures in Triangulation.

In triangulation, the angular error of closure of the triangles, i.e.

the difference between the sum of the observed angles of the triangle

and their theoretical sum of 180 plus spherical excess (if any), affords

a very good indication of the accuracy of measurement of the horizontal

angles. For example, the United States Coast and Geodetic Survey

lays down that the average error of triangular closure of first-order

"triangulation must not exceed 1" and the maximum must not exceed

3". For second-order work, the corresponding figures are 3" and 8"

respectively, and for third-order work they are 6" and 12". In the

case of small schemes measured with an ordinary vernier theodolite
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reading direct to 30", and with, say, angles observed on four zeroes,

the average closing of a triangle should be somewhere about 10",

with no closure greater than 30" allowed.

13. Measurement of Vertical Angles.

Vertical angles are often not measured at the same time as the

horizontal ones, as they are not so important as the latter, and it is

advisable to make the utmost of good observing weather when the

horizontal angles are being observed. In addition, on long lines, it

is best to observe vertical angles only at certain times of the day when

refraction is at its minimum and varying least. These times are usually

between about 10 a.m. and 3 p.m. Vertical angles are observed singly

or in rounds, face right and face left, but, of course, there can be no

change of zero with such observations.

The level bubble on the vernier frame is read at every observation

immediately after the station is sighted and before the verniers are

read, and, if necessary, a correction applied to the reduced angle.

This correction is given by the expression

(0-E),
correction = - - -

a,

where is the reading at the object glass end of the level, E the reading

at the eyepiece end, and d is the value of one division of the level tube

in seconds. If the tube is graduated continuously from the eye end

towards the objective end, or vice versa, and G is the middle graduation,

the correction is given by

(0 + E - 20) ,

correction = - : --- d.

In order to obtain vertical heights from the vertical angles, it is

necessary to measure the heights of the horizontal axis of the theodolite

and of the signals above the station marks.

The method of booking vertical angles is shown on p. 91. The

and E readings are inserted in the 10th and llth columns of the

page, and the level correction in the 12th column, these corrections

being applied directly to each observed value so that the 13th column

gives the corrected vertical angle.
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14. Computation of Triangulation.

The computations of a network of triangulation consists of the

following:

1. Computation of length of base line.

2. Abstract of angles and station adjustments.
3. Adjustment of figures.

4. Solution of triangles.

5. Computation of astronomical observations (if any).

6. Computation of co-ordinates.

7. Computation of vertical heights.

1. Computation of Length of Base Line.

This consists in computing and applying to the observed lengths
the different corrections described on pp. 79-86. As it is very im-

portant that there should be no mistake in the computed length of

the base line, it is desirable to have two separate and entirely inde-

pendent computations made by two different computers, each working
direct from the field books.

2. Abstract of Angles and Station Adjustments.

This entails abstracting the values of the observed angles from the

field books on to special sheets of paper, and taking out the arithmetical

means after "closing the horizon" (pp. 88-90). In first- and second-

order work it often happens that different combinations of angles have

been observed, and in such cases it is usual to obtain the
"
most probable

values
"

for the different angles by means of a station adjustment
carried out by a special mathematical process known as the method of
least squares. Adjustments of this kind are beyond the scope of this

book and, in any case, in all minor work it is usual, when more than

one value of an angle is available, simply to take the mean of all the

available values. If the angles have been observed in straight rounds

by directions from a single K.O., no question of a station adjustment
arises.

3. Adjustment of Figures.

In first- and second-order triangulation the work generally con-

sists of a series of somewhat complicated figures in which a point can

be fixed by more than a single triangle. Such figures are normally

adjusted by use of the method of least squares, which, besides giving
the most probable values of the angles, makes the figure geometrically
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consistent, so that the same result will be obtained no matter from

what triangles a point is fixed, and only a single value will be obtained

for each angle.

The need for some adjustment of the kind can be seen from fig.

6.11, which represents a braced quadrilateral ABCD in which all the

angles have been observed. If the observations were without error,

the sum of the angles in each triangle would add up exactly to 180,

or to 180 plus the spherical excess (p. 96) in the case of a very large

triangle, but, as there are always some small residual errors of observa-

tion present, the observed angles

will not add up to 180 exactly.

They can easily be adjusted to do

so, however, but this does not

necessarily mean that the figure is

geometrically consistent from a

computational point of view.

Thus, in the figure, if the point

D' is taken on BD produced, and

D' and C are joined, the angles of

the triangles ADB and BD'C will

add up to 180, and, as angle

BDC - BD'C + DCD', so will

those of every other triangle in

the figure. If we used the angles

of the triangle BD'C and the side

BC to obtain the other sides, we would obtain the length BD'. On
the other hand, if we used the angles of the triangle ABC and the

side BC to obtain AB, and then used this side and the angles of the

triangle ABD to obtain the other sides of this triangle, we would get

BD as the length of the side opposite A. Thus, although the angles of

the different triangles will all satisfy the conditions of closure of the

triangles, they do not necessarily close the sides. Hence, in addition

to the angular conditions which have to be satisfied to make the figure

geometrically consistent, we need a side condition as well. This is one

sort of problem which can be solved by the method of least squares.

In minor work, such as that with which the ordinary engineer has to

deal, a rigid least-squares adjustment, which demands some knowledge
of the method of least squares, is hardly necessary, but approximate
methods of adjustment depending on the use of simple empirical

formulae , such as the one described in the Appendix, pages 263-268,

are available. As a purely arbitrary substitute, a simple system of

Fig. 6.11
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averaging results is sometimes used as follows: First of all, before the

triangles are solved, their angles are adjusted to add up to 180. This

is done, for each single triangle, by distributing the amount by which

the angles fail to close equally among the three angles, which means

that one-third of the closing error is added to, or subtracted from, each

angle. Thus:

Angle Observed angle Correction Adjusted angle

A 60 48' 13" -6" 60 48' 07"

B 73 31 55 -6 73 31 49

C 45 40 10 -6 45 40 04

Sum 180 00 18 -18 180 00 00

Here, the sum of the angles exceeds the theoretical sum by 18",

and this quantity has to be distributed equally among the angles.

Hence, 6" must be deducted from each angle, and when this is done,

the adjusted angles add up to 180 exactly; it is these adjusted angles

which are to be used in the solution of the triangle.

After the angles have been adjusted and the triangles solved, it

will generally be possible, in the absence of a least-square adjustment,

to derive several slightly different values from different triangles for

certain computed sides. As the work proceeds, these values can be

meaned and co-ordinates computed. Again, different values of the

co-ordinates will be found from different points; these values can be

meaned to give finally accepted co-ordinates, and from these final

values, fresh and final values for the lengths and bearings of the sides

and diagonals can be recomputed. These recomputed values will then

be those which are finally accepted.

4. Solution of Triangles.

In ordinary triangulation the triangles which have to be solved

have one side and the angles given, so that the formula to be adopted

is the ordinary sine formula

a __ b __ c

sin A sin B sin C
'

or b = a sin B cosec A ;
c = a sin C cosec A ,

where a is the given side.

As both b and c are needed, the logarithmic computation is best

arranged as in the example that follows.

Example. Let a = 6325-56 and let the observed angles be A = 57

15' 12", B = 49 51' 57", C = 72 52' 41". Find b and c.
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Here the sum of the angles is 10" less than the theoretical sum of 180,

so that 10/3
=

3J" have to be added to each angle. Consequently, the

adjusted angles to be used in the solution are as set out in the last column

of the following table:

Angle Observed angle Correction Adjusted angle

A 57 15' 12" + 34" 57 15' 154"

B 49 51 57 + 3-3 49 52 00-3

C 72 52 41 + 3-3 72 52 44-3

Sum 179 59 50 4-10-0 180 00 00

The actual logarithmic computation is set out as follows:

b = 5749-99

c - 718748

In this calculation, the log sines of B and C, log cosec A and log a

are written down in the order shown; the addition of the upper three

lines gives log 6 and the addition of the lower three lines gives log c.

This is better than the following common arrangement which involves

writing down log a and log sin A twice.

log sin B = 9-883 405 log sm C = 9-930 315

log a = 3-801 099 log a
= 3-801 099

3-684 504 3-781 414

log sin A = 9-924 837 log sin A = 9-924 837

log 6 - 3-759 667 log c - 3-856 577

In general, when the whole of the work is computed by logarithms,

it is not necessary to look out or tabulate the true values of b and c

as the logarithms only are required, and, should the true values be

needed at any time, they can easily be found from the tabulated logar-

ithmic values. The log cosecant is, of course, found by subtracting the

log sine from zero, which is the logarithm of unity.

It may be added that the above description of the solution of

triangles applies strictly only to surveys which can be treated as

plane surveys. In geodetic work, the curvature of the earth has to be

taken into account, and in this case the triangles are no longer plane

triangles, but spherical or spheroidal triangles. Here the theoretical

sum of the three angles of a triangle is not 180 but 180 plus a small

quantity known as the spherical excess. This quantity can be found
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(in seconds) by dividing the area of the triangle by the square of

the radius of the earth multiplied by sin 1", and it amounts to 1"

roughly for every 76 square miles of area. It can, however, be proved

mathematically that, for all triangles which have sides that can be

sighted over, it is sufficiently accurate to treat a spherical triangle

as a plane triangle if each angle is reduced by one-third of the spherical

excess, so as to reduce the angles to plane angles and their sum to

180.

5. Computation of Astronomical Observations.

The data required at the beginning of a systematic trigonometrical

survey are the azimuth or bearing of one line, generally the base line,

and the co-ordinates of one point, generally one end of the base. If these

are not available from other sources, they can be obtained by means of

astronomical observations. These observations are described in Chap.
XVIII. If astronomical observations are not possible, and if no points

exist on the ground from which initial bearings and co-ordinates can be

obtained, the magnetic bearing of one line can be observed by compass
and all bearings based on it, and co-ordinates on assumed co-ordinates of

one point. Magnetic bearings are neither so accurate nor satisfactory as

bearings based on an azimuth properly determined with a theodolite.

6. Computation of Co-ordinates.

In geodetic work, co-ordinates are often computed in the first place

in terms of geographical co-ordinates, i.e. latitude and longitude, and

later in terms of special rectangular co-ordinates in which allowance

is made for the curvature of the earth. Small local surveys, however,

such as this book is concerned with, are computed in terms of simple,

plane, rectangular co-ordinates similar to those described in Chapter V.

Accordingly, after the triangles are solved, the bearings of the various

lines are deduced from the adjusted angles, and, the lengths of these

lines being known from the solution of the triangles, plane rectangular

co-ordinates are computed in the ordinary way by the rules already

given.

7. Calculation of Vertical Heights: Trigonometrical Levelling.

No matter how accurately vertical angles are observed, or how

carefully the results are computed, elevations determined by the

observations of vertical angles are never so accurate as elevations

determined by spirit levelling. There are cases, however, where a

height is required and where it would be very difficult, if not impossible,
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to establish one by ordinary spirit levelling. Such cases occur more

particularly on steep mountains or hills, and in these cases it often

happens that a height is particularly needed by a plane-tabler or topo-

grapher engaged on small-scale topographical work who depends on

being able to sight his fixed points from considerable distances away.

Extreme accuracy for this class of work is not necessary, and also,

as a general rule, accurately fixed heights of high hills are not needed

for most engineering purposes, since the tendency is for engineering

schemes and works, such as roads, railways, pipe lines, etc., to keep to

the low-lying plains where ordinary levelling is comparatively easy

and is the best method to use. On the other hand, trigonometrical

levelling will enable a large stretch of country to be covered much

more rapidly than would a network of lines of spirit levels.

If the earth were perfectly flat and rays of light were not bent in

their passage through the atmosphere, the computation of vertical

heights would be very simple, since they could be calculated from

the simple formula h = d tan 6, where h is the difference in height

between a horizontal plane through the horizontal axis of the instru-

ment and the point to which observations are taken, d is the horizontal

distance from the instrument to the point whose elevation is required,

and 6 is the observed vertical angle. Unfortunately, except for com-

paratively rough work or for very short sights, the curvature of the

earth and the effects of vertical refraction are very appreciable and

must be taken into account. Thus, as regards curvature, a level line

parallel to the earth's surface, such as the line ACA' in fig. 6.4 (p. 69),

falls away from a plane tangential to the earth at any point by about

8 in. in a distance of a mile, and this difference increases with the square

of the distance. In ordinary spirit levelling the effect is not appreciable

because of the very short sights, and, moreover, it can be almost entirely

eliminated by keeping backsights and foresights very approximately

equal in length.

The full solution for the determination of differences of elevation

by trigonometrical levelling when long lines are involved is not difficult,

but the problem is one in geodetic rather than in plane surveying,

and the solution will be found in most books on geodesy or advanced

surveying. Where only small surveys are involved, and lines do not

exceed about 10 miles in length, the following formula may be used

with sufficient accuracy for most practical purposes:

h2
- \ = d tan + ~

(1
-

2*),
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where the second term is the curvature and refraction terra, and is

the same as that given on p. 69 in connection with the determination

of the intervisibility of points. If A2 ,
A2 and d are in feet, this may be

written

A2
-

h,
= d tan 9 + 0-574

= d tan + 0-000 000 0206d2
.

In nearly all cases in practice, the height of the ground mark at

the observing end is known, and it is the height of the ground station

at the other point, not the height of signal, which is required. Hence,

the height of instrument and of signal above ground marks must be

measured and taken into account as in the following example.

Example. The elevation of the ground station at point B is 571-3 ft.

and the height of the instrument above the ground mark is 4-1 ft. The

angle of elevation observed to point A is 4 25' and log d, as obtained from

the solution of the triangles, is 3*856 577. Height of signal at A above

ground mark is 10-5 ft. Kind the elevation of the ground mark at A.

log d = 3-8566 log d = 3-857

log tan =-- 8-8878

log d tan 9 - 2-7444 2 log d 7-714

log (206 x 10-10
)

= 8-313

d tan 6 = +555-2 log {(206
x 10~10

)
x d2

}
= (M)27

206 x 10-10 x d2 - + 1-1

7i2 -A! = 4- 55CK3

Elev. of mark at B =571-3
Instrument above mark = 4-1

Kiev, of instrument = 575-4

h -
/*

=-- -1-556-3

Elev. of signal at A = 1131-7

Signal above mark at A = 10-5

Elev. of ground mark at A = 1121-2

In all cases in trigonometrical levelling it is advisable to observe

vertical angles in both directions, simultaneously if possible, as this

tends to eliminate the effects of curvature and vertical refraction.

15. Trigonometrical Resection: The Three-point Problem.

During the breaking-down process in trigonometrical survey it is

often necessary to fix a point on the ground from observations to three

fixed points, some or all of which are inaccessible and cannot be occupied
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as instrument stations. This happens, for instance, when the fixed

points are vanes on spires or lightning conductors on the top of factory

chimneys which have been fixed by intersection from other points.

The same problem arises in hydrographical work when the positions

of soundings have to be fixed from sextant observations made in a

small boat to fixed points on shore, but here the solution is generally

carried out by graphical means.

In fig. 6.12, A, B and C are three fixed points and P the point to

be fixed. Then, provided P does not lie on or near the circle drawn

(a) (b)

Fig. 6.12

(c)

through A, B and C, the co-ordinates of P can be found if the angles
APB = a and BPC /J are observed. In figs. 6.12a and 6, P is outside

the triangle ABC, and in c it is inside it.

There are a large number of different solutions possible, and the

following, which is easy to remember, is known as the Collins solution,

Collins Solution.

Imagine a circle drawn through A, P and C and let PB produced
meet this circle in L. Then, in figs. 6.12a and 6, angle LAC = LPC = /3

and LCA = LPA = a. Since A, B and C are fixed points, we can

calculate the lengths and bearings of the sides AB, BC and CA. In

the triangle ALC we therefore know the length of the side AC and the

angles adjacent to it. Hence, we can solve the triangle ALC for the

sides AL and CL, and, knowing the bearing of AC and the angles

LAC and LCA, we can find the co-ordinates of L from A and check

from C. The co-ordinates ofL and B are therefore known, and therefore

the bearing LB can be computed. Hence, the angles ALP and CLP
can be calculated from the bearings of the containing rays. Conse-
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quently, in the triangles ALP and CLP we know the angles at P and

L and the sides LA and LC, so that we can solve the triangles for AP
and CP. Moreover, since CAP = CLP and AGP = ALP, we can cal-

culate the bearings of AP and CP and thus find the co-ordinates of

P from those of A and check from those of B.

A similar construction and argument hold for fig. 6.12c, where P
is inside the triangle ABC, but in this case the angles LPA and LPC
are 180 a and 180 /? respectively.

It is important to note that, when the observations at a resected

station are booked, the figures should be accompanied by a clear

sketch showing roughly the position of the resected point with reference

to the three fixed points. Also, it is advisable to observe to a fourth

fixed point, as the observed angle will enable a bearing to be com-

puted which can be compared with the bearing calculated from the

co-ordinates of the fourth point and the computed co-ordinates of the

point being fixed. In this way, a check is obtained on both observations

and computations.
It should also be particularly noted that a solution of this problem

becomes impossible if the point to be fixed lies on or near the circle

which passes through the three fixed points.

Example. Assume that the co-ordinates of A, B and C in fig. 6.12a are:

Point x u

A 34,358-1 27,948-3

B 39,117-2 39,106-1

C 27,178-9 55,718-7

and the observed angles are a = 61 15' 27",
= 53 46' 54". Find the

co-ordinates of P.

The first step is to compute the bearings and distances between the

fixed points. The computation gives:

Line Bearing Log distance

AB 66 54' 03-3" 4-083 871

AC 104 29 41-1 4-457630

BC 125 42 05-2 4-310845

Then:

Triangle ACL
A =*

j8
= 53 46' 54" log CL = 4-407 244

C = a = 61 15 27 log sin A = 9-906 751

115 02 21 log cosec L = 0-042 863

180^ log AC = 4-457 630

L = 64 57 39 log sin =9-942896

log AL - 4-443 389
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Lfrom A

Bg. AC = 104 29 41-1

jS
= 53 46 54

Bg. AL = 50 42 47-1

log As = 4-244 933

log cos AL = 9-801 544

log AL = 4-443 389

log sin AL - 9-888 732

log Ay - 4-332 121

Lfrom C

Bg. CA - 284 29 41-1

a - 61 15 27

Bg. CL - 345 45 08-1

log Ax = 4-393 675

log cos CL - 9-986 431

log CL - 4-407 244

log sin CL =- 9-391 139

log Ay - 3/798 383

x y

A = 31,358-1 27,948-3

+ 17,576-5 +21,484-3

L = 51,934-6 49,432-6

Bearing LB

B -
39,117-2 39,106-1

L =
51,934-6 49,432-6

-12,817-4 -10,326-5

Bearing LB = 218 51 25-5

Triangle ALP

Bg. LA = 230 42 47-1

27,178-9

+ 24,755-7

y

55,718-7
-

6,286-1

L = 51,934-6 49,432-6

log Ay
log Ax

log tan LB

= 4-013 953
- 4-107 800

9-906 153

LB - 180 = 38 51 25-5

Triangle CLP

Bg. LB = 218 51 25-5
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Pfrom A Pfrom
Bg. AL = 50 42 47-1 Bg. CL - 345 45 08-1

Angle LAP 106 53 11-4 Angle LCP = 73 06 48-6

Bg. AP = 157 35 58-5 Bg. CP = 272 38 19^5

log Ax - 3-779 133 log Ax - 3-066 559

log cos AP = 9-965 928 log cos CP = 8-663 120

log AP = 3-813 205 log CP = 4-403 439

log sin AP = 9-581 013 log sin CP - 9-999 539

log Ay = 3^394 218 log Ay = 4402 978

x y x y
A = 34,358-1 27,948-3 C =

27,178-9 55,718-7
-

6,013-6 + 2,478-7 +_U65-6 "25,291-7

P -
28,344-5 30,427-0 P =

28,344-5 30,427-0

Hence,

Co-ordinates of P =
28,344-5; 30,427-0.

In working out this example we have introduced a number of

checks which it is always well to use. These are:

1 . Co-ordinates of L are computed from both A and C.

2. Partial check on solution of triangle ALP by solving triangle CLP
and finding a second value for the common side LP.

3. Co-ordinates of P computed from both A and C.

Note also that, as can be seen from the geometry of the figure,

angle A in triangle ALP is equal to the sum of the angles L and P
in triangle CLP, that angle C in triangle CLP is equal to the sum of

the angles L and P in triangle ALP, and that angle A in triangle ALP
is the supplement of angle C in triangle CLP. Hence, in the solution

of the triangles, sin A in triangle ALP is equal to sin in triangle

CLP.

A final check on the computation would be to work out the bearings

of the lines PA, PB and PC from the co-ordinates and see if the differ-

ences of bearings give the observed angles a and /?.
A better check,

however, as it is a check on both computation and observations, is

to compare the computed bearing to a fourth fixed point with the

observed bearing as deduced from the observation of an angle to that

point from one of the others.

It will be seen that this problem is a particularly good exercise

in the various computations dealt with in this and the previous two

chapters.
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16. Two-point Problem.

It is also possible, by choosing a suitable auxiliary point, to obtain

a fixing from two fixed points only.

In fig. 6.13, A and B are the fixed points and P the point to be

fixed. Set out the auxiliary point Q so that the figure gives four reason-

ably well-shaped triangles APQ, APB, ABQ and BPQ, with all four

points intervisible from one another. At P observe the angles APB = a

and BPQ = j8,
and at Q observe the angles PQA = y and AQB = 8.

Assume (1) approximate co-ordinates

of point P, (2) a bearing for PQ, and

(3) a convenient length, say 1000 or

10,000, for the length of PQ. Then the

triangles PAQ and PBQ can be solved

in terms of the assumed value of the

length PQ and preliminary co-ordinates

found for Q, A and B. From these

preliminary co-ordinates a preliminary

bearing and length can be computed for

the line AB. But the figure so com-

puted, P'A'B'Q' in fig. 6.13, will be

similar in all respects to the figure PABQ
except that its position, scale and orien-

tation will be different as shown. Hence,

the difference between the computed

bearing of A'B' and the true bearing

of AB will give a constant correction to be applied to the computed

bearings of all lines to give true bearings, and the ratio of the true

length of AB to the computed length of A'B' will give a constant

scale factor which can be applied to the computed lengths to give the

true lengths. Accordingly, the true lengths and bearings of the lines

AP and BP can be found, and the true co-ordinates of P computed
from those of A and checked from those of B.

Although the method just described is easy to construct from

simple principles and without remembering special formulae, it is prob-

ably not quite so easy to compute as the following interesting analytical

solution.

Analytical Solution. Denoting the angles QAB and PBA by x and

y (fig. 6.13), we see that

X + y = j8 + y.

Fig. 6.13
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Moreover, if is the point of intersection of the diagonals PB and

QA, we have the identity

OA OP OQ OB = 1

OP
'

OQ
'

OB
'

OA

Applying the sine rule to the triangles AOP, POQ, QOB and BOA
in turn, and remembering that angle PAQ = 180 (<x + + y) and

angle PBQ - 180 -
(j3 + y + 8), we get

sin a siny sin (jS + y + S) sin a; _ ^

sin (a + j8 + y)

"

sin ]8

'

sin 8
'

sin y

. siny = sin a sin y sin (ft + y + 8) = ^ gay ^

sin a; sin /?
sin 8 sin (a + j3 + y)

But it is easy to show that

tan i(x
-

y) cot J(

sn a? sn sn x

"*"
sin a;

(!-

/. tan \(x y)=- ^pr.-*!
tan i(x + 2/)-

This gives the value of (x y) and hence, as we know the value

of (x + y), the angles x and y can be obtained. It is then easy to solve

the triangle ABP for BP and AP and

to deduce the bearings of these lines.

Having done this, the co-ordinates of

P can be calculated from those of A
andB.

17. Satellite or Eccentric Stations.

In fig. 6.14, the angles BAC and

ABC have been observed from the

fixed stations A and B, but, for certain

reasons, it is impossible to set the

instrument over station C to observe

the angle ACB. The triangle ABC
can be solved from the angles BAC
and ABC, but the fixing will be strengthened if we can get a value

for ACB which depends on observation. To get such a value, set up
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the instrument at the satellite station S, as close as possible to C,

measure the distance SC, and observe the angles ASC = a and ASB
=

Make a preliminary solution of the triangle ABC from the two

observed angles and the known length AB, thus obtaining approximate
values for the lengths AC and BC. From the figure, using these approxi-

mate values, we have

CS .

sin x = - sm a,
AC

or, if x is small and is expressed in seconds of arc,

, , C S sin a
x = . . -.

Similarly,

,,__CSsin(a + ]8)

CB sin 1"

But Z.BCS = 180 -
(
a + 0)

-
y,

^lACS = 180 x a.

or C j8
= y x.

Hence C can be found.

It should be noted that /? should be observed with the same pre-
cision as angles BAG and ABC, but a need only be observed fairly

approximately.

GRAPHIC TRIANGULATION WITH THE PLANE-TABLE

In small-scale topographical work, it is often necessary, after the

minor instrumental triangulation has been completed, to fix additional

points required for the detail survey by means of graphic triangulation
executed by plane-table, or even to extend small chains of graphic

triangulation into areas where the instrumental triajigulation is not

sufficiently dense. In other cases, where small areas only are involved

and great accuracy is not needed, a graphic triangulation by plane-
table may be used as a framework for a survey which is to be carried

out entirely by graphic methods.

To commence a plane-table triangulation, it is necessary to start

with a base line which is either a line between two points fixed
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by instrumental triangulation, or resection or traverse, or, if such a

line is not available, one must be measured by chain or steel band.

The direction of this line and the position of one end of it must also

be known or determined.

Assuming that a suitable line is available, the two end points,

A and B, are plotted on the plane-table sheet. The plotted positions

are shown at a and b in fig. 6.15. The instrument is then set up and

levelled over one point, say point A. The point to be fixed as the third

apex of the first triangle and the other end of the base having been

V
C

Fig. 6.15

marked with ranging poles or other signals, the edge of the alidade

is laid carefully along the line representing the base line. The table

is then undamped and turned until the other end of the base, as

viewed in the direction ab on the map, appears to be in line with the

cross hairs of the alidade, after which the table is clamped. This means

that the table is now oriented with the line ab on the map lying in

the direction AB on the ground. A sharp-pointed pencil being held

vertically with its point on a, the plotted position of the point A,

so that the pencil point may act as a pivot, the alidade is laid against

this point and rotated round it until the point C, the point to be fixed,

is seen to be in line with the cross hairs. A line through a is then

drawn against the edge of the alidade in the direction of C.

The instrument is next moved to B and the table oriented with

the line ba on the map pointing in the direction of the line BA on

the ground. With the point b on the map as pivot, the line of sight
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of the alidade is directed to the point C, and a line drawn through b

in the direction of C. The intersection of this line with the line previ-

ously drawn through a will then give the position of c on the map.
If necessary, the table can be moved to C, and either of the lines CA
or CB used as a base for another triangle. In this case, of course, sights

to additional points which have to be taken from either A or B would

be taken before the instrument was moved from there. In this way,
a whole chain or network of triangles can be built up graphically on

the map.
As a point is fixed by the intersection of rays drawn from two

previously fixed points, a single point fixed in the manner described

above is said to befixed by intersection. Plane-table resection, from three

and two fixed points, is described in Chap. VII of Principles and Use

of Surveying Instruments.

QUESTIONS ON CHAPTER VI

A line was measured with a 100-ft. band of which the true length was

99-875 ft., aud the apparent length of the line was found to be

1964-66 ft. What is the true length of the line?

The following angles of slope were observed on a certain line, distances

being measured along the slope:

What is the correct length of the line?

3. A line was measured with a 300-ft. steel band whose true length at

62 F. was found to be 300-1482 ft. The mean temperature of measure-

ment was 86 F., and the measured length of the line was 3606*984 ft.

What is the corrected length of the line ? Assume that the coefficient

of thermal expansion of the band is 0-000 0065 per 1 F.

4. Describe how you would measure accurately the length of a base line

for a minor triangulation survey, giving details of the corrections to

be applied in order to obtain the true length referred to mean sea-level.

(Inst. C.E., April, 1946.)

5. Calculate the sag correction for a 100-ft. band weighing 12 oz. per
100 ft., used under a pull of 15 Ib.
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6. A base line of approximately 500 ft. was measured in five bays with an

Invar tape suspended in catenary under a tension of 20 Ib. The results

are tabulated below. The tape was standardized in catenary at a

temperature of 50 F. under a tension of 15 Ib. and the standard length

was found to be 99-998 ft.

Compute the true length of the base reduced to mean sea-level.

Coefficient of expansion = 0-000 0003 per F. ; sectional area of

tape = 0-0025 sq. in.; Young's modulus = 2-9 x 107 Ib. per sq. in.;

weight per foot run == 0-006 Ib.
;

radius of earth = 20-9 X 106 ft.
;

mean height of base = 1500 ft. (Inst. C.E., October, 1956.)

7. A nominal distance of 100 ft. was set out with a 100-ft. steel tape
from a mark on the top of one peg to a mark on the top of another,

the tape being in catenary under a pull of 20 Ib. and at a mean tem-

perature of 70 F. The top of one peg was 0-56 ft. below the top of

the other. The tape had been standardized in catenary under a pull

of 25 Ib. and at a temperature of 62 F.

Calculate the exact horizontal distance between the marks on the

two pegs and reduce it to mean sea-level. The top of the higher peg
was 800 ft. above mean sea-level.

Radius of the earth == 20-9 X 106
ft.

Density of tape = 0-28 Ib. per cub. in.

Section of tape J in. x ^o in.

Coefficient of expansion = 0-000 00625 per 1 F.

Young's modulus = 30 x 106
Ib. per sq. in.

(Inst. C.E., April, 1948.)

8. The following were the observed angles of a triangle ABC, the length

of the side AB being 7619-82 ft.

A = 42 14' 25"; B = 53 54' 40"; C = 83 51' 10".

Adjust the angles, and solve the triangle for the sides AC and BC.

9. It was required to lay out the line of a tunnel between two points A
and D which were not intervisible

;
the points were joined by two

triangles ABC and BCD, of which the observed angles were:
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Triangle ABC,

A = 48 15' 20"; B = 67 39' 55"; C = 64 04
;

30".

Triangle BCD,

B = 71 14' 30"; C = 44 38' 10"; D = 64 07' 50".

The points A and D lie on opposite sides of BC, and the measured

length of the side AB was 3240-33 metres. Find the distance AD,
and the angle BAD which must be set out on a theodolite in order to

set the instrument on the correct alignment for setting out the line

AD.

10. It is required to find the bearings of two lines TA and TB from an

inaccessible station T. A satellite station S was set up 12-7 ft. from T
in an approximately 8.E. direction and from it the following theodolite

angles were measured:

Telescope pointing on A = 360 00' 00"

Telescope pointing on B = 70 40 00

Telescope pointing on T = 305 00 00

If point A lies N. 10 04' 32" E. from station S, what are the true

bearings of A and B from T ?

AT is 9 miles; BT is 10 miles; log sin r = S-C8557.

(Inst. C.E., October, 1953.)

11. Angles were read from a boat X at sea to three station points A, B
and C on shore to the north of X. The angle AXB was 40 30', and

the angle BXC was 34 IS'. AB was 1154-1 ft. in length, BC was

1000 ft. The bearing of AB from north was N. 30 00' 00" E., and

that of BC was S. 75 06' E. Show (without using graphical methods)
that the position of the boat could not be fixed from the angles read

from it, and calculate the maximum distance it could have been from

station B, when the angles were read. (Inst. C.E., October, 1947.)

12. Three fixed points, A, B and C, were observed from a point X inside

the triangle ABC, the measured angles being

AXB - 100 53' 20" and BXC = 112 29' 40".

The co-ordinates of A, B and C are

Find the co-ordinates of X, and the bearing from X to A.
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TRAVERSING

1. General.

Traversing is an extension of the method of fixing a point by
distance and bearing, but, instead of a single point and a single line,

a traverse consists of a whole series of connected intersecting lines in

which a forward station is fixed from an instrument station and then,

in the next stage, becomes an instrument station to fix a new forward

point. Hence, a traverse follows a zigzag course such as that shown

in fig. 1.3 (p. 5).

Instrumental traversing, i.e. traversing in which angles or bearings

are measured and are not supplied by graphical or chain survey methods,

consists of many different kinds of work in which the fundamental

principles remain the same, but in which details of measurement

differ in order to obtain different degrees of accuracy. On the one

hand, there is a first-order precise traverse, intended to replace first-

or second-order triangulation, in which angles are measured with

the utmost accuracy with a full-scale geodetic type of theodolite

and distances with long Invar bands to much the same degree of

accuracy. At the other extreme there are
"
rope and sound

"
traverses,

executed for the survey of relatively unimportant detail in small-scale

topographical work, in which distances are measured with a rope, and

bearings are observed on a hand compass to a noise made at an unseen

point, some distance away. Traversing, in some form or another, is

one of the most commonly used survey methods : it is now used more

commonly than triangulation, and is particularly suitable for flat or

wooded country where triangulation is difficult or impossible.

In ordinary engineering and land surveying work, theodolite tra-

verses are used for a number of purposes, mainly to establish some

kind of control for detail work, principally in cases where triangulation

is impossible or too expensive. Thus, the whole of the main frame-

work for a town survey, or the survey of any large area, may con-

sist of theodolite traverses of several degrees of accuracy. In the

first place, there may be a theodolite
"
surround traverse

"
sur-

rounding the whole area, with a number of internal criss-cross or

111



112 TRAVERSING [CHAP.

radiating traverses of the same order to strengthen it. These traverses

are surveyed with a fairly large theodolite and with careful chaining

by steel band. Areas between are broken down by other traverses

of a lesser degree of accuracy, also carried out by theodolite and steel

band, or even by an ordinary land chain, but not so carefully measured

as the principal framework traverses.

Long single theodolite traverses, as opposed to closed loops, occur in

engineering work in location surveys for such things as railways, roads,

pipe lines, etc. These traverses may or may not start and end at fixed

points. Their function is to provide a strong
"
backbone

"
for the final

plans and layout of the work. They are planned to enable a proper and

final survey to be made of a line which has been laid down on paper

from a preliminary approximate survey, or from topographical features

shown on a map. In general they follow very closely the line which

the projected work will follow, and it is from permanent or semi-

permanent points established by means of them that the engineer will

work when laying out the work in detail and putting in pegs for the

guidance of the contractor.

Compass traverses are not used in engineering surveys as much as

are theodolite traverses. For one thing, they are not nearly so accurate

as the latter. Their main uses are two-fold. One is for preliminary

and reconnaissance surveys where it is desired to get a general picture

of the country involved without being concerned with too much detail.

The other is to help to fill in less-important detail on surveys where

framework of a higher order exists. Compasses, as a general rule, are

not used for laying out engineering works to the same extent as theo-

dolites are used.

In this chapter we shall consider theodolite traversing first because

the principles and general procedure are best exemplified by it, and

we shall then consider compass traversing, the procedure involved in

it being mainly a modification of theodolite traversing to allow of a

certain amount of relaxation in standards of accuracy and of simpli-

fication in method.

THEODOLITE TRAVERSING

Theodolite traversing has one advantage over triangulation in that

no elaborate preliminary reconnaissance to ascertain if a scheme is

possible is ordinarily necessary. Nevertheless, it is generally advisable,

where possible, for a responsible surveyor to go over the route to be

followed before work commences, with the object of finding out where
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special difficulties are likely to be encountered, and how the number

of legs may be reduced to a minimum. Another advantage is that, in

traverses, points are fixed in accessible positions where they can easily

be used in later work, whereas triangulation points are generally on

high hills which are often far off the beaten track and are very in-

accessible. On the other hand, triangulation will enable points to be

fixed over a given area fairly quickly, but a traverse is confined to a

single line.

The great disadvantage of traversing as opposed to triangulation is

the far greater possibility of making gross errors either in field measure-

ments or in the computations. Hence the utmost care must be taken

at all times in traverse work and in traverse computation to avoid

the occurrence of such errors.

The various stages in traversing now to be considered may be

grouped as follows:

1. Reconnaissance and laying-out.
2. Station marks and signals.

3. Angular observations.

4. Linear measurements.

5. Computations.

2. Reconnaissance and Laying-out.

The reconnaissance of the route to be followed by a traverse may
be made some time ahead of the observing and measuring, or it may
be done immediately ahead of the main measuring party, or it may
not be done at all. Much will depend on the length of the traverse,

the nature of the country involved and the strength of the party. In

very many cases the route of a traverse will follow a main road or

railway, thus avoiding unnecessary clearing or working over cultivated

land.

The main things in selecting the route of a traverse are:

1. To make individual legs as long as possible.

2. To make them as equal in length as possible.

3. To avoid very short legs.

4. To avoid grazing rays.

5. To select lines over which chaining will be easy.
6. To select lines which will avoid heavy clearing or damage to crops

or property.

In the more accurate types of work the chief difficulty in the field

work is to maintain the accuracy of the angular work, and this can

5 (0467)
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only be done by bringing bearings forward over long legs. Sometimes

long sights can be obtained over several legs, although the chaining
has to be taken over the more tortuous course. Thus, in fig. 7.1, the

chaining follows the line ABODE, but it is found that a sight may
be obtained from A to E. In this case, the line ABODE may be treated

as a subsidiary traverse from which the length of the leg AE can be

computed. The main bearings are then brought forward along the

line AE, which is treated as a single leg with a computed length for

the distance. Other variations of this problem are possible.

In many cases, the initial and end points of a traverse are fixed

points at which a line of known bearing already exists on the ground,
or else they have to be tied to such points. If the end points are already

fixed, nothing more has to be done

than to sight along the lines of

known bearing to get fixed bearings

for the first and last legs. If an end

point is not already fixed, both a fixing

and a bearing can be obtained, either

by intersection from two fixed points,

or by a two-point resection, if two

fixed points giving a well-shaped

triangle are visible from it, or else by
a three-point resection if three suitably

placed fixed points are visible. If

only one fixed point can be seen from it, it will be necessary to use

some form of measured base to obtain a fixing. Thus, in fig. 7.2, A
and B are the ends of a single leg, the fixed point X being visible

from both points, and from X another fixed point Y can be seen as

well as the points A and B. Then, by measuring the length of the

leg AB and the angles XAB and XBA, the triangle XAB can be

solved for XA or XB, and, by setting up the theodolite at X and

observing the angle AXY or BXY, the bearing of XA or XB, and

hence of AX or BX, can be obtained from the bearing of XY, thus

Fig. 7.2
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giving all the data necessary to fix the points A and B. If only a

bearing is required, all that is necessary is to observe the angles AXY
and XAB, or BXY and XBA.

In
fig. 7.3, the fixed point X is visible from A and B, but A and

B are not intervisible. Here a subsidiary traverse AabB, known as

a traverse base, is run between A and B, and this enables the length

of the side AB and the angles aAB and bBA to be calculated. The

angles XAa and XBb are observed, and hence the angles XAB and

XBA are known. Consequently, the triangle XAB can be solved as

before. The traverse base can be computed by using assumed values

for the co-ordinates of A, and an assumed false value, say zero, for the

bearing of Aa. This will give

the data to compute the dis-

tance and the false bearing of

AB.

Fig. 7.3 also represents the

case where A and B are inter-

visible, but the direct distance

AB is impossible for ordinary

chaining and has to be found

by computation from a traverse A
base run between the two Fig. 7.3

points.

If fixed points can be seen from different intermediate points on

the traverse, angular observations to them should be taken whenever

possible, or at least at reasonable intervals. These observations form

a useful check, because, when the traverse has been computed, a

bearing from the instrument station to the fixed point can be com-

puted from co-ordinates, and this computed value compared with the

value calculated from the bearings of the traverse lines and the angular
observations to the point.

If no fixed point exists in the neighbourhood of a traverse, it is

possible to obtain initial and closing bearings from astronomical ob-

servations for azimuth. Otherwise, a rough initial bearing may be

obtained by magnetic compass, but a compass bearing at the end may
not be sufficiently accurate to use as a bearing on which to close

bearings brought forward by theodolite. In many cases it is necessary
or sufficient to use an assumed value as the initial bearing of a traverse,

and assumed co-ordinates as the co-ordinates of the initial point.
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3. Station Marks and Signals.

The nature of the marks to be put in at traverse stations will

depend on whether or not permanent or semi-permanent marks will

be required. If permanent ground marks are needed, they may be

iron posts or concrete pillars with suitable centre marks. In most

cases it will be advisable to put in good permanent marks at the

beginning and end points; other permanent marks can also be put in

at reasonable intervals, not necessarily at every single traverse station,

the length of these intervals depending on the lengths of the traverse

legs and the purpose for which the traverse is required. Intermediate

marks can then consist of ordinary
d wooden pegs, preferably creosoted, with

tacks or nails driven in on top to mark
the exact centre.

When putting in permanent marks

of traverses, it is well to put them in

in sets of three, one at each of three

consecutive traverse stations. This pre-

serves two bearings and the included

angle on the ground. Hence, if at any
future time there is a doubt about

whether or not a mark has been moved,
the theodolite can be set over the middle

mark and the angle between the other

two measured and compared with the original angle. If the two do not

agree, the presumption is that at least one of the three marks has been

moved.

On constructional work especially, marks have often to be put in

at points where they are likely to be moved, and where it may be

necessary to re-establish them later. Let A in fig. 7.4 be a point which

is likely to be moved during constructional work. Pegs a and c are

put in at convenient points on lines Aa and Ac, approximately at

right angles to one another. The theodolite is set over A and sighted

on a. The telescope is then transited and a peg b put in on the line

aA produced. Similarly, the peg d is put in on the line cA produced.
If the point A is subsequently moved, and it is desired to replace it,

the theodolite is set over a, sighted on b, and two pegs p and q are

put in on the line ab, one on either side of where it is seen that the origi-

nal mark must have been. Similarly, from c two pegs r and s are put
in on the line cd. The intersection of strings stretched between p and
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<1 and between r and s will be the true position of the original mark.

This operation is known as referencing a point.

Signals for sighting on will normally be flagged ranging poles held

temporarily by a labourer while observations are in progress or else

held in a ranging-pole support,* or supported by wire guys over the

mark. In all cases it is important to ensure that the pole is truly

vertical at the instant of observation and, to minimize errors due to

lack of verticality, it should be sighted low down near the base. A
better arrangement than ranging poles, however, is to use the equipment
and targets of the three-tripod system of observing (p. 72) if these

are available.

If lines are very long, a signal consisting of a post and vanes such as

is used in triangulation (fig. 6.6, p. 73) may be necessary. If they are

very short, and if the three-tripod equipment is not available, the

string of a plumb bob suspended from a tripod, with the plumb bob

hanging freely over the station mark and a piece of white paper on

the string, makes a good signal.

In all theodolite traverse work it is essential to see that signals are

vertical and properly centred over the station mark, as nothing will

make for inaccurate work more than signals not being truly vertical

and faulty centring of signals and instruments.

4. Angular Observations.

Angular observations on traverse work are generally made in

much the same way as in triangulation, but, except on precise traverses,

smaller instruments are used and fewer observations are taken at

each station. Occasionally, the method of repetitions (p. 88) is used

on more accurate work and a special method, known as the direct bearing

method, on minor traverses; but by far the most common method is

a modification of the method of directions (p. 88). The usual instru-

ment used in engineering work is a small theodolite reading direct

to anything from 2" to 1'.

If the method of directions is employed, the instrument is set with

one vernier to read something near or 180, and pointed and clamped
with the telescope sighting the back station. After both verniers have

been read, the upper clamp is loosened, and the instrument turned

and clamped to sight the forward station, when the verniers are again

read. In traverse observations it is not usual to close back on the

R.O., and this therefore gives one measure on one face of the angle

*
Chap. II, fig. 2.1 (p. 5) of Principles and Use of Surveying Instruments.
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measured clockwise from the back station to the forward station.

Face or circle is now changed and the instrument set to a reading near

90 or 180, when the previous operation is repeated with the swing

made in the direction opposite to that used in the first observation.

This completes the observations at the station, the mean of the face-

right and face-left results being taken as the measure of the angle.

An example of the booking of such an observation is given on p. 121.

Here it is most important to see that the readings to rear and front

stations are correctly shown against their proper station. If, through

an error, the reading to the back station is booked as being to the

forward station and vice versa, the angle worked out from the readings

will be 360 minus the true value.

The above supposes that the instrument available is graduated on

the whole-circle system, and that angles also are measured whole-

circle from the rear station. If the instrument is graduated on the half-

circle system, i.e. through 90 on either side of zero to 1 80, it is more

convenient to measure angles of deflection, measured right or left,

from theforward direction of the rear leg, and the procedure in observing

is slightly different. The upper plate being set and clamped to read

0, the lower clamp is loosened, and the instrument set and then clamped

with the line of collimatioii intersecting the rear station; both verniers

are read. The telescope is then transited to point in the forward direc-

tion of the rear line and, the lower circle being kept clamped, the

upper circle is undamped and the telescope pointed to the forward

station. The upper circle is clamped and the line of collimation brought

on to the forward station by means of the upper horizontal tangent

screw, when both verniers are again read. This gives one measure of

the angle of deflection. The operation is then repeated with opposite

face and swing, and this gives a second value, the mean of the two

values being taken.

In both of the above methods, the stations are observed in the same

order on both faces that is to say, rear station, forward station,

change of face, rear station, forward station but, when whole-circle

angles are measured, it is also easy, and it is possibly a little quicker

in practice, to observe the forward station after the change of face,

and then to swing back to and observe the rear station, the usual care

of course being taken to see that readings are not booked against an

incorrect station.

The direct-bearing method of observing is normally used on work

of a minor nature only; it consists of an arrangement by which at every

set-up of the instrument the reading obtained on the upper plate, when
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the telescope is sighted to the forward station, is the actual bearing

of that station. Several slight variations in procedure are possible,

but there is little to choose between them, and the following is probably

as good as any:

Let A, B, C, D, etc., be the different instrument stations, the bearing

of the line AB being known. The instrument is set up at station B and

clamped with the upper circle reading the bearing of AB on one vernier.

The lower circle is undamped, and the instrument turned to sight on A,

the line of sight being brought on to A by clamping the lower circle and

using the lower-circle tangent screw, the upper circle being kept clamped.

The telescope is then transited so that it points in the forward direction

AB. Hence, it points along the direction of AB produced with the vernier

reading the correct bearing of AB. The upper clamp is then unloosened

and the telescope turned to point to station C, the line of collimation being

brought into coincidence with C by means of the upper clamp and tangent

screw. A little consideration will now show that the telescope and upper

circle have been turned through an angle equal to the difference between

the bearings of AB and BC, so that the angle read on the same vernier as

before will be the bearing of BC. The upper circle is kept clamped, while

the theodolite is moved to 0, when the previous operation is repeated.

This method is only suitable when a reading on one vernier and

one face is sufficient. Hence, it should only be used for short traverses

of a minor kind, as in breaking down traverses on town and estate

surveys. The instrument used should be in good adjustment for

horizontal collimation. In addition, although the same vernier will

always register the forward bearings of lines, provided the upper circle

is not shifted at all relative to the lower during the process of moving

from one station to another, it is always well to verify that the hori-

zontal circle is registering correct bearings after the instrument has

been set up at the new station.

5. Linear Measurements.

In theodolite traverse work, the ordinary surveyor's chain is very

little used, except perhaps on very short
"
breaking down

"
traverses,

a long, thin steel band up to about 300 ft. in length being used instead

for all main linear measurements. The most convenient system of

graduation for all except precise framework traverses is a band gradu-

ated either at every foot, with the first ten feet graduated in tenths,

or else at every ten feet, with the first ten divided in feet and the first

foot in tenths.

[n deciding on methods, the first point to be considered is whether
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to use the tape
" on the flat

"
along the ground or

"
in catenary

"

as described on pp. 25 and 27 of Principles and Use of Surveying

Instruments respectively. For most ordinary engineering work, surface

taping will be more convenient and quicker, provided the ground is

not too rough and there is not much clearing to be done. Otherwise,

if greater accuracy is desired, or if the ground is very rough or there

is a lot of bush clearing, some form of catenary taping may be the

better method to use.

The next point for consideration is what subsidiary observations

slope, temperature, etc. will be necessary, and whether or not the

tape should be used with a spring balance by means of which a constant

tension can be applied. The answer to this lies in the purpose of the

traverse and consequently the accuracy required. First- and second-

order precise traverses, for instance, require the use of Invar bands

very accurately standardized, accurately applied tension, and good
observations of temperature, slope and elevation above sea-level. For

the lowest class of work, an unstandardized band used without a

spring balance, with no observations for temperature or slope, will

serve the purpose, slopes in this case being allowed for by step-chaining.

The location survey for a road or railway is usually made by such

means used in conjunction with an ordinary small engineer's vernier

theodolite.

A short summary, giving particulars of the order of accuracy to

be expected in ordinary theodolite traversing by the use of different

instruments and different methods, will be found on pp. 130-131; this

may assist in giving some idea of the most suitable methods to adopt
for different classes of work, and to reach a required degree of accuracy.

6. Booking the Field Measurements.

The field book used for booking a theodolite traverse is generally
an ordinary oblong note-book with parallel lines about half an inch

apart running up the centre. Booking is from the bottom of the page

upward, and usually not more than two legs more often one are

booked on the same page.

An example of booking a line measured with a 300-ft. band used on
the flat under a tension of 10 Ib. is given opposite, the angular measure-

ments being made with a vernier theodolite reading to 20" of arc. In

this case an additional angular observation has been taken to a trigono-
metrical point T.P.A. 46 which lies to the right of the line. The observed

angles are shown on the right-hand side of the page, the full figures im-

mediately following the station numbers being the readings on "A"
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vernier, and the figures in the next column the seconds only of the reading

on " B" vernier, the mean of the seconds being given in the next column.

The last column gives the mean angle on a single face measured at station

163 from the rear station 162 as R.O. The top figures are the observations

with face left and the lower ones with face right, the mean result of the

two faces being below. .

The figures in between the contra! vertical lines relate to the cnamage,

the total measured length, which is 1206-18, being shown ringed below

EXAMPLE OF PAGE OF TRAVERSE FIELD BOOK

206 18
-3-44

202-74
+ 0-28

4 40

5 10

7-22

7 20

0-01

4 3

0-8

3

between

To TNIJem /

,**>
(G467)
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the number of the forward station 164. A road, a footpath and a river

cross the line, and the chainage of the cuts are noted. On the extreme

left of the page are the angles of slope, as read on an Abney level, with

the corresponding slope correction written below. Thus, the slope for the

first 300 ft. is 3, for which length the correction (obtained as explained

on p. 81) is 0-41. There are decided changes of slope at chainages 560

and 600, the slope from chainage 300 to 560 being 4 30', and from 560

to 600 it is 1 20', which is succeeded by a slope of 5 10' between chainages

600 and 900. On the right of the page is the temperature, 86 F. at the

time of measurement. The band concerned was of standard length under

the applied pull at 49 F., so that the combined temperature and stan-

dardization correction is 1206 x 37 x 0-000 0062 =
0-28, and, as the band

was too long, the measured length is too short and the correction is additive.

There is one sag of 60 ft. noted between chainage 1007 and 1067, where

the line crosses a river, and, with tension of 10 Ib. and a band weighing

16 oz. per 100 ft., the corresponding sag correction is 0-01.

The sum of the slope corrections is -3-44, and this, and the combined

temperature and standardization correction of +0-28 and the sag correction

of 0-01 are applied to the observed length as shown at the top left-

hand corner of the page, the corrected length, shown ringed, being 1203-01.

This example illustrates one way of keeping the field book of an

ordinary traverse executed by the methods described, but the entries

may easily be varied to suit other methods. Often it will be found

more convenient to keep the notes relating to the angular work in

one book and those relating to linear measurements in another. This

will be necessary if one party is responsible for the angular work and

another for the linear work.

7. Traverse Computations.

The computations of a theodolite traverse consist of the following:

(i) Application of corrections to observed lengths.

(ii) Abstract of angles, and computation and adjustment of bearings,

(iii) Preparation of latitude and departure forms, and computation of

latitudes and departures or co-ordinates.

(iv) Adjustment of co-ordinates.

(i) Application of Corrections to Observed Lengths.

The corrections to be applied to the measurements of traverse legs

are similar to those described on pp. 79-86 in connection with the

measurement of base lines by means of Invar bands, exactly the same

formulae being used; in the case of traverses some of the corrections
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may be omitted, the particular ones which are unnecessary depending

on the accuracy of the field methods and the final accuracy desired.

The corrections most commonly applied are*

1. Combined correction for standardization and temperature.

2. Correction for slope.

Sag correction will be applicable if the tape was standardized on the

flat and is used in catenary, and, on precise work in country of high

elevation, it may be necessary to correct for height above sea-level.

If sea-level correction is necessary, the best method of applying it is

either to combine it with the standardization and temperature correc-

tion over a section of 4 or 5 miles, taking the mean elevation of the

section as the basis for computation, or else to apply it to the co-

ordinates of the end point of a section and embody it in the proportional

correction for closing error which is applied to the co-ordinates of inter-

mediate points.

The correction to observed lengths are best made in the field book

as shown in the example on p. 121.

(ii)
Abstract of Angles, and Computation and Adjustment of Bearings.

The mean values of the angles are worked out and shown in the

field books; they are then either entered on sheets of paper or on the

latitude and departure forms described below. When the bearing of

one line at the initial station is known, the bearings of all the lines

are worked out from the included angles by the rules given in Chapter

IV. This can be done direct on the latitude and departure forms as

shown in the specimen form facing p. 125.

In most cases a traverse will either begin and end at the same point,

or else it will begin at one fixed point and end at another fixed point,

at each of which there exists a bearing already laid out on the ground.

Consequently, when the end of the traverse is reached, it will be possible

either to see if the observed included angles fulfil the rule for the sum

of the angles in a closed figure given in Chap. IV, pp. 43-44, or else to

see if a bearing brought forward through the intermediate legs of the

traverse agrees with the fixed bearing at the end station. In practice

it almost invariably happens that there is a small discrepancy between

the sum of the observed angles and the theoretical sum in the one case,

or between the calculated and fixed bearings in the other, and this

discrepancy must be distributed among the angles or bearings. The

method of doing this can best be seen from examples.
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Example 1. The observed internal angles in a closed figure of six

sides are given in the second column of the following table:

Angle Observed value Adjustment Adjusted value

A 92 48' 10" 4-5" 92 48' 15"

B 136 18 00 +5 136 18 05

161 17 40 +5 161 17 45

D 79 33 10 +5 79 33 15

E 162 57 30 +5 162 57 35

F 87 05 00 +5 87 05 05

719 59 30 4-30 720 00 00

720 00 00

Here there are 6 sides, so that, by the rule given on p. 43, the angles

should add up to 6 x 180 - 360 = 720. The actual sum is 30" less

than this, and hence 30/6
= 5" must be added to each angle, giving the

adjusted values shown in the last column of the table.

Example 2. A traverse ABCDEF starts at a point A and ends at a

point F. At A it is tied to a fixed line AP, of which the bearing is 332

18' 10", and at F it is tied to a fixed line FQ, of which the bearing is 286

21' 00". The observed angles FAB, ABC, BCD, CDE, DEF, EFQ, all

measured clockwise from the rear station, are as set out in the third column

of the following table. Find the adjusted bearings of the legs of the traverse.

From To Observed angle Bearing Adjustment Adjusted bearing

A P 332 18' 10" 332 18' 10"

A B 131 16' 50" 103 35 00 -5" 103 34 55

854 03 20 286 21 00

332 18 10 -30

1186 21 30

286 21 30

900 00 00

5 x 180 = 900

00 00

The unadjusted bearings are worked out by the rules given on pp. 39-43,
and are set out in the fourth column, the value obtained for the bearing
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FQ being 286 21' 30". This is 30" too much. Hence, by subtracting

30/6
= 5" from each angle, or by subtracting 5" from the bearing of AB,

10" from the bearing of BC, 15" from the bearing of CD, etc., the closing

error is distributed equally among the observed angles. In the table,

the adjustment has been applied directly to the bearings worked out from

the unadjusted angles, the adjusted bearings being given in the last column

of the table.

In the third column, the observed angles have been added together,

and the bearing of AP added to the sum. From the resulting quantity,

the unadjusted bearing of the last leg has been subtracted, leaving 900

00' 00", which is exactly 5 x 180. This checks the minutes and seconds,

and the units in the degrees in the unadjusted bearing of FQ

(iii) Preparation of Latitude and Departure Forms, and Computation of

Latitudes and Departures.

The latitude and departure form shown in the folder makes pro-

vision for the computation and adjustment of bearings and co-ordinates,

and gives the final values of the latter.

The station numbers or letters are entered in order in the first two

columns, and the figures in the subsequent columns refer to a good-

quality traverse made with a small micrometer theodolite reading

direct to 10" and by estimation to single seconds, distances to two

decimal places of a foot having been measured with a standardized

steel band. Corrections for combined standardization and temperature

and for slope have been applied to all distances, so that the lengths

entered in column 6 are the corrected lengths.

The traverse starts at a fixed point, 1, whose co-ordinates are

known and are to be held fixed, and it ends at another point, 10, whose

co-ordinates are likewise known and are to be held fixed. The bearings

from Trig, point 146 to point 1 and from 10 to T.P. 122 are also known

and are to be held fixed.

For purposes of illustration, the angles entered in column 3 are

deflection angles measured left (L) or right (R) from the forward

direction of the rear leg. The unadjusted bearings worked out from the

observed angles are first entered in column 4, but underneath each

bearing is written the adjustment and the adjusted bearings. The

fixed bearing of the line T.P. 146 station 1 is 331 14' 26" and from

station 10 T.P. 122 it is 134 31' 05". The bearing of this last line

computed through the traverse is 134 30' 24", so that there is a closing

error in bearing of 41"; as this error has to be distributed among 10
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legs, the correction to the bearing of the rth leg is X 41
" X r = 4"'lr.

These corrections are applied to the nearest second as shown on the

form.

As a check on the working out of the bearings, the left and right

deflection angles in column 3 have been added together, giving 246

42' 39" L and 49 58' 37" R. The difference is 196 44' 02" L and,

when this is subtracted from the bearing of the line T.P. 146 station

1, we get 134 30' 24", which agrees with the bearing worked out in

column 4. The reduced bearings in column 5 are obtained from the

adjusted bearings in column 4.

The remainder of the form needs little explanation. Although

nearly all traverse forms sold by instrument makers provide no special

space or column for the actual logarithmic calculation of latitudes and

departures, provision here is made for this in column 7, the latitudes

and departures being entered in columns 8-11. These latitudes and

departures, when added to the co-ordinates of the instrument station,

give the co-ordinates of the station at the end of the forward leg.

Hence the co-ordinate values appearing in columns 12 and 13 are the

co-ordinates of the station appearing in column 2, and the bearings

in column 4 are the bearings in the direction of the stations given in

column 1 to those given in column 2. Thus, the unadjusted bearing
of the line 4 to 5 is 270 52' 20" and the unadjusted co-ordinates of

station 5 are 34,873-73; 57,122-97.

As a check on the working out of the co-ordinates in columns 12

and 13, the latitudes and departures in columns 8, 9, 10 and 11 are

summed, and the difference between the northings and southings when

applied with its correct sign to the x co-ordinate of station 1 should

give the unadjusted x co-ordinate of station 10. Similarly, the difference

between the eastings and westings when applied to the y co-ordinate

of station 1 should give the unadjusted y co-ordinate of that station.

This test, shown on the form, should be repeated on every sheet.

In this form, in order to provide as complete an example as possible,

six-figure logarithms have been used and bearings have been taken

out to seconds. For many classes of theodolite traverses, however,

where angles have only been observed to minutes and distances measured

to a corresponding degree of accuracy, it is sufficient to work with

five- or even four-figure logarithms and bearings to minutes or half

minutes. Direct-bearing theodolite traverses and compass traverses

may be computed with the special traverse tables described on

pp. 138-139.
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(iv) Adjustment of Co-ordinates.

When a traverse closes on the same point from which it started,

the co-ordinates of the initial point calculated through the traverse

should, if there were no errors, agree with the initial co-ordinates of

that point; or, if the traverse starts at one fixed point and ends on

another fixed point, the co-ordinates of the terminal point calculated

through the traverse should agree with the fixed co-ordinates of that

point. In practice, there are always errors of some kind and there is

consequently a discrepancy (which is small unless there is a gross

error somewhere) between the co-ordinates worked through the traverse

and the accepted co-ordinates of the closing station. This discrepancy
is known as the closing error, and the adjustment of the co-ordinates

means distributing the error among the co-ordinates of the different

stations. As there arc two co-ordinates for each point, there is a closing

error, which we shall call ox, in x, and one, which we shall call %, in y.

The accuracy of a, traverse is judged by the fractional closing error,

which is given by !/{ -r V(8#)
2 + (&y)

2

},
where L is the total length

of the traverse.

Traverses may be adjusted by applying corrections

1. to the lengths and bearings;

2. to the latitudes and departures; and

3. to the co-ordinates themselves.

There is no simple method which is really sound in theory, and some

of those which are sometimes used are purely empirical. Perhaps the

one most commonly adopted is Bowditch's rule, which has a theoretical

basis although it is doubtful if some of the assumptions with regard

to the nature of the errors involved are really sound. This rule, as origi-

nally stated by Bowditch, involves applying corrections to the individual

latitudes and departures, but the following simple modification enables

the corrections to be applied to the co-ordinates themselves. The

modified rule is:

Correction to x co-ordinate (y co-ordinalc)
=

doting error in x (y), mul-

tiplied by length of traverse up to point concerned, divided by the total length

of traverse.

In the example given on the form, the fixed co-ordinates of the

point 10 are x = 34,574-55; y = 51,527-01, so that the closing error

is 4-0-22 in x and 0-75 in y. In column 6 of the form, the total

lengths from station 1 are written in brackets below the lengths of the
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different legs, the total length of the traverse being 13,530 ft. approxi-

mately. Hence the corrections to point 6, say, are

= -0-22 X - = -0-12,
13,

and Sj,.
= +0-75 X = +042.

These corrections are written below the co-ordinate values and the

adjusted values are written underneath. The co-ordinates of other

points are treated in the same way and the traverse form thus completed.
In this example, the fractional closing error is

1/{13,530 + V(0-22)
a + (0-75)

2

}
=

1/(13,530 -f- 0-78) = 1/17,300

approximately .

Another rule, involving corrections to the latitudes and departures,

which is very often used in adjusting a traverse, although it has less

theoretical justification than Bowditch's rule, is:

Correction to latitude (departure)
=

closing error in latitude (departure),

multiplied by the latitude (departure) to be adjusted, divided by the arithmetical

sum of all the latitudes (departures).

8. Errors and Standards of Accuracy in Theodolite Traversing.

The main difficulty with regard to traversing is to prevent the

occurrence of gross or systematic errors in the field work, and gross

error in the computations. For this reason, great care must be taken

at all stages of the work both in the field and in the office. Gross errors

in the field work are most likely to occur in the chainage by dropping
a chain length or by misreading the graduations on a band, and in the

angular work by booking observations taken to a rear station as if

they were taken to a forward station, and vice versa, or by booking
a deflection angle as being left (right) when it is actually right (left).

Gross errors may also arise through sighting a wrong signal or through

wrong readings of the degrees and minutes when reading the verniers,

but this is less likely to happen if the angle is read in full with every

change of face.

In computing, errors can occur at almost every stage of the work,
and the only really safe way of preventing them is to get a separate

computer to make an entirely independent computation, including the

abstraction of the data from the field books.
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Systematic error is likely to arise in the chaining by using bands

or chains not properly standardized, by using a band with the wrong
pull, or by using a thermometer which gives faulty readings.

Apart from the prevention of gross and systematic error, accurate

traverse work depends on the elimination, as far as possible, or the

reduction of the small accidental errors of observations, such as errors

in pointing of the telescope or in reading the verniers or micrometers.

The most common source of minor inaccuracy is probably bad centring
and bad plumbing of signals, and particular attention should be paid
to this point.

The closing error of a bearing computed through a theodolite

traverse, as compared with the fixed bearing at the end, or the closure

of the angles in a closed surround, is a test of the accuracy of the angular
measurements. The closing error in bearing or angles normally depends
on the square root of the number of angles observed and, when each

angle is the mean of a single face-right and face-left observation, should

not exceed 2-5a\/^ seconds, where a is the smallest number of seconds

that can be read or estimated on the vernier or micrometer, and N
is the number of angular stations. If angles are the means of n observa-

tions, each observation being the mean of a face-right and face-left

measurement, the closing error should not exceed 2-5a\/(A/yn). Nor-

mally, the actual closing errors should be less than values given by
these rules.

By differentiating the expressions Ax = I cos a and Ay I sin a, we

get the errors 8
(Ax) and 8 (Ay) in Ax and Ay produced by errors 81

in I and Sa in a, viz.

8 (Ax) = 81 cos a Sa sin 1" . I sin a,

8 (Ay) = 81 sin a + Soc sin 1" . I cos a,

or

8 (Ax) 81 cos a Ay . 8a sin 1",

8 (Ay)
= 81 sin a + Ax . Sa sin 1",

where Sa is a small angle expressed in seconds of arc.

The accuracy of theodolite traversing is ordinarily judged by the

closing error in position expressed as a fraction of the length when the

traverse closes on itself or on points fixed by a higher order of survey.

The closing errors of closed surrounds, however, are inclined to be

somewhat better than those of open traverses between fixed pomts,

not only because of the shape of the figure but also because systematic

errors, such as those due to inaccuracies of standardization, do not
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show up on the closing error of a closed surround, whereas they will

do so in the closing error of an open traverse.

It is very difficult to lay down definite rules about the closing errors

to be expected in different classes of traverse because so much depends

on the particular instrument and methods used, the skill and experi-

ence of the surveyor, atmospheric conditions, the nature of the ground,

etc., and, moreover, the closing error of a traverse is, strictly speaking,

not directly proportional to the length of the traverse, although it is

generally assumed to be so. The following notes, however, may be

useful to the student in giving him a very rough general idea of the

order of accuracy to be expected with different instruments and different

methods.

(i) First-order Precise Traverse.

Horizontal angles observed with a geodetic-type theodolite reading direct

to single seconds and by estimation to fifths or tenths. About 8 to 16 obser-

vations on different zeroes, each observation the moan of a face-right and

face-left measurement. Linear measurements to 0-001 ft. with Invar bands

used in catenary. Pull by weights over straining trestles. Temperatures
observed at every tape length. Angles of slope, for slope correction and

elevation above sea-level, by theodolite. Corrections applied for standard-

ization, temperature, slope and height above sea-level. Astronomical

observations for azimuth about every 10th station, and allowance made

in the computations for the curvature of the earth. Accuracy of order

1/70,000 to 1/200,000.

(ii) Third-order Traverse.

Horizontal angles observed by micrometric theodolite reading direct

to 10", and by estimation to 1" or 2". Four observations on different zeroes,

each mean of face right and face left. Linear measurement to 0-01 ft.

with 300-ft. steel band used in catenary. Pull by spring balance. Tem-

perature observed every tape length. Angles of slope by Abney level.

Corrections applied for standardization, temperature and slope, and, at

high elevations, for height of each section above sea-level. Astronomical

observations for azimuth at end of 20 to 30 stations. Accuracy 1/10,000

to 1/30,000.

(iii) Major Theodolite Traverse.

Horizontal angles by vernier instrument reading to 30". One observa-

tion mean of face right and face left with change of zero between faces.

Linear measurements to 0-01 ft. with 300-ft. steel band used in catenary
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or on the flat. Pull by spring balance. Temperature observed every 10th

set-up of band. Angles of slope by Abney level. Corrections applied for

standardization, slope and temperature. Accuracy 1/3000 to 1/10,000.

(iv) Minor Theodolite Traverse.

Horizontal angles by vernier instrument reading to 1'. One face-

right and one face-left observation with change of zero between face.

Linear measurements to 0-01 ft. with 300-ft. steel band used on flat. No

spring balance used. One temperature taken for the day. Angles of slope

not observed, but slopes step-chained carefully. Corrections applied for

standardization (if error is appreciable) and temperature. Accuracy

1/1000 to 1/5000.

(v) Direct-bearing Traverse.

Bearings observed directly on one face only with small vernier instru-

ment reading to 1'. Linear measurements to 0-1 ft. with 300-ft. steel band

or 100-ft. chain used on flat. No spring balance used and temperature
not observed. Slopes by step-chaining. No corrections applied. Accuracy

1/500 to 1/1000.

As examples of the class of work to which these traverses might
be applied, (ii) might be used for the main framework of a town survey;

(iii) for breaking down framework of a town survey or for the main

surround of a large estate; (iv), but with no temperature observed,

for a railway location survey; (v) for short traverses for survey of

detail and of such things as banks of streams and lakes.

When gauging the accuracy necessary in angular work, it is useful

to remember that a minute of arc subtends a length of 0-03 ft., or

approximately a third of an inch, at 100 ft., or a foot and a half at a

mile. As a fraction, this is approximately 1/3400.

9. Miscellaneous Problems in Theodolite Work.

Before closing these sections on theodolite traversing we shall con-

clude by discussing a few problems which are of importance in general

theodolite work.

(i) Prolonging Straight Lines by Theodolite.

In prolonging a straight line by theodolite it is generally advisable

to do so on both faces. In fig. 7.5 the instrument is set up at B, and

it is desired to prolong the line AB.

Sight on A and, after transiting the telescope, line in a mark at C

near where it is desired to put in a peg on line, C being a point on the
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line of collimation. If the instrument is slightly out of adjustment in

collimation, the line BC will not be on the line AB produced but will lie

to one side of it as shown. Change face and sight back on A. Then transit

telescope and sight in direction of C. Owing to the error in collimation,

C will not lie on the line of collimation. Put in point D beside C but on

line of collimation. Measure distance CD and drive a nail or a peg and nail

at point E, where EC = ED. E will then be a point on the line AB pro-

duced.

C

Fig. 7.5

In such work as laying out long straights on railways, lines should

always be prolonged by using both faces of the instrument in the

manner just described.

(ii) Laying out Straight Lines between Two Points which are not

Intervisible.

In many cases the best method of doing this is to fix the positions

of both points by theodolite traverse, and then calculate the bearing

between them from the co-ordinates so obtained. This bearing can

then be laid out from one of the points by turning off the requisite

angle from a line of known bearing.

If the direction of the line is known approximately, an alternative

method is to range out a random line BD as nearly as possible in the re-

quired direction as shown in fig. 2.5 (p. 12). Choose a point E on BD when
the random line is seen to be close to A and measure the angle BEA and

the distance EA. Then an intermediate point f can be ranged in by laying
BF

off the angle BFf = BEA and measuring Ff such that Ff = EA x -.
JD.CJ

(iii) Obstacles Obstructing Chaining.

The principle of triangulation is often very easy to apply in cases

where a theodolite and chain or steel band are available, and it is neces-

sary to find the distance between two points, direct chaining between

those points being obstructed by obstacles. Figs. 7.6a, 6, c and d

illustrate four such cases. Here AB is the distance required. The
lines shown by full lines are measured, the angles a, j8, y and S observed

and the distance AB computed.
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(a)

(iv) To lay out a Perpendicular on a Given Line from a Given Point.

Let AB be a given line, P a given point, and let it be required to

lay out from P a line perpendicular to AB. In fig. 7.7a, P is accessible.

Observe a and calculate j3 from j8
= 90 a. The perpendicular PC

can then be laid out by setting up the instrument at P, sighting on A,

and setting out the angle /?.

In fig. 7.76, P is inaccessible. Observe a and /? and measure AB.
Then it is easy to show that

.p __ AB tan /? __ AB cos a sin /?

tan a + tan
j8

sin (a + 3)

P
A

/
I

/ I

/ I

^ \i

Fig. 7.7

In fig. 7.7c, AB is inaccessible, but P is accessible. Choose an auxiliary

point Q, measure PQ, and observe angles a, /?, y and 8. In triangle

PAQ compute PA, and in triangle PQB compute PB. Then, in triangle

PAB, PA, PB and a are known, and angle PAB can be computed.

Lay off point R such that ^lAPR = 90 ^PAB. Then R is a point

on the perpendicular from P on AB.
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(v) To lay out a Parallel to a Given Line through a Given Point.

Let P be the given point and AB be the given line.

In fig. 7.8a both AB and P are accessible. Measure a and at P

lay off Z.APC = ]8
= 180 a. In fig. 7.86, P is inaccessible, but AB

is accessible. Measure AB and observe angles a and /?. Then, if PF
is the perpendicular from P on AB, PF = AB sin a sin j8/sin (a j8).

B

(a) (b)

Fig. 7.8

(c)

At points C and B on AB lay out CD and BE perpendicular to AB
and equal to PF. Then D and E are points on the line through P

parallel to AB. In fig. 7.8c, P is accessible, but AB inaccessible. Choose

an auxiliary point Q, measure PQ, and observe angles a, /?, y and 8.

From these compute angle PAB by using the triangles PAQ, PBQ
and PAB in turn and lay off PC such that Z.APC = 180 ^PAB.
PC is then the parallel required.

COMPASS TRAVERSING

The fact that bearings can be read on a compass very much less

accurately than angles can be observed with a theodolite severely

restricts the use of the former instrument in engineering work. Thus,

it is impossible to read even a large compass closer than to about a

quarter of a degree, whereas a direction can be read on even a very
small theodolite to at least a single minute of arc. Nevertheless, the

compass can be used for many purposes such as preliminary road and

railway surveys, surveys of rivers, streams and lakes, and for topo-

graphical work on small scales.

10. Magnetic Bearings and their Variations.

At most places on the earth's surface the direction of magnetic
north does not coincide with the direction of the true or geographical
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north. The difference varies from place to place and at any one place
it also varies slightly with time.

In fig. 7.9, PN is the true meridian, or direction of true north, and

PM the direction of magnetic north, here shown as west of true north.

The angle MPN = d between PM and PN is called the magnetic declina-

tion or magnetic variation. The magnetic bearing M of the point Q
is the angle MPQ, and the azimuth or true bearing A of Q is NPQ,
each measured clockwise, the one from PM, the direction of the magnetic

meridian, and the other from PN, the direction of the true or geogra-

phical meridian at P. From the figure we see that

M = A + d and /. A - M - d

for all points in which the magnetic variation is west of north; while

M = A d and .'. A=M + d

for all points in which the magnetic meridian lies east of north.

At the present time, the magnetic declination is about 8 west of

true north in the east of England and about 13J west of true north

in the west of Ireland, and these variations are decreasing by about

7|' per annum. In some other parts of the world, the declination is east

instead of west. Charts showing the

isogonic lines, or isogons, which are

curves passing through all places

where the magnetic declination has

the same value at any given time,

can be obtained from the agents for

Admiralty charts. Lines of zero

declination, which separate parts of

the earth where the declination is

west from parts where it is east of

north, are called agonic lines.

Besides the yearly change in de-

clination, there is also a small daily variation which is hardly large

enough to be appreciable with an ordinary compass. At present, in

England, this daily variation has an amplitude (total swing) of about

12' in summer and T in winter. In addition, irregular and sometimes

appreciable variations in the value of the magnetic declination occur

from time to time as the result of magnetic storms.

The correct amount of the magnetic declination is indicated, when

the instrument is set on a true south to north line, only by a compass

Fig. 7.9
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which is without error, and which consequently reads zero when the

magnetic axis lies in the direction of the magnetic meridian. As,

however, the magnetic and geometrical axis of their needles seldom

coincide, most compasses have their own individual errors, and hence

they do not always indicate the real magnetic north when the instrument

reads zero. The resulting error (which is also the difference between

the real magnetic bearing of any line and the bearing indicated by the

compass) is known as the compass error, and it affects every single

reading of the compass by the same constant amount. Its value can

be found by observing the bearing of a line whose magnetic bearing is

already known. Unfortunately, because of the difficulty of establishing

the true magnetic meridian without special instruments, such a line

will seldom be available, but, if a line of known azimuth or true bearing

is available, a combined correction for magnetic declination and com-

pass error can be ascertained by observing the compass bearing of

the line, and comparing it with the true bearing. When this correction

is applied with its proper sign to the compass readings, the result will

be true bearings.

It will be realized from the above that, as magnetic bearings change

with long intervals of time, it is always advisable, when a survey is

based on magnetic bearings, either to show the value of the magnetic

declination on the plan, or else to indicate the date of the survey if

the magnetic declination is not known.

11. Field Methods used in Compass Traversing.

There are two main classes of compass traverse, one executed with

a large surveyor's compass mounted on a stand, and used in conjunction

with a surveyor's chain or steel band; the other with a small compass
held in the hand, and used in conjunction with some rough method

of measuring distance, such as by pacing, by pedometer or by rope.

In traversing with the surveyor's compass, the instrument is set

up at the initial station, pointed to a ranging pole held on the forward

station, and, when the needle has settled down after having been

released, the reading is taken to the nearest half or quarter degree.

While this is being done, no metal object should be allowed near the

compass, the chain or band being held well clear of it. The distance

is then measured, and the compass brought forward and set over the

next station.

Sometimes, after removal to a fresh station, the instrument is set

to read the bearing of the rear station as well as that of the forward

station, so that the forward and rear bearings of each leg are observed.
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[n this case the two bearings should, of course, differ by 180; if not,

half the discrepancy is applied as a correction to the forward bearing.

Having read the rear bearing, the surveyor observes the forward bearing
of the forward leg. Often, however, only forward bearings are observed,
but reading both forward and rear bearings give a check against a

gross error in reading and adds a little, but not a great deal, to accuracy.
Distances on major compass traverses may be measured to a tenth

of a foot with either chain or steel band used on the flat. Here, no

spring balance is used, and no temperature or slopes are observed, allow-

ance for slope being made automatically by step-chaining. Con-

sequently, no corrections are applied to measured distances. The
errors of closure of traverses of this kind between points fixed by
surveys of higher order may be expected to lie between about 1/100
to 1/500.

When a hand compass is used, forward bearings only are observed

unless the surveyor decides to read back bearings as a check against

gross error. Bearings are usually taken to ranging poles held at the

forward station, but, in the case of
"
rope and sound

"
traverses in

forest or bush country, they are taken to a sound made by the man

holding the forward end of the rope. No corrections are applied to

measured lengths but, in order to allow for twists and bends in the

path or line, the rope is generally a little longer than its nominal length.

The accuracy of such a traverse cannot be expected to be much greater

than about 1/50. If distances are measured to the nearest foot with a

chain, accuracy may be increased to about 1/100 or a little more.

12. Plotting and Computation of Compass Traverses.

Compass traverses may either be plotted direct from the observed

bearings and distances, or else co-ordinates may be computed in the

ordinary way or by means of traverse tables, and the work plotted

from the co-ordinates. Minor surveys made with hand compasses are

hardly worth computing and are almost invariably plotted direct from

the bearings and distances.

The best instrument to use for plotting from bearings and distances

is a large brass protractor about 8 to 12 in. in diameter. This consists

of a circular ring of brass, with the otherwise flat top bevelled slightly

on top towards the outer edge. This bevelled portion carries the gradua-

tions, which usually are on the whole-circle system and go to half

degrees. The two inside edges of the ring opposite the 90 and 270

graduations are joined by a brass arm forming part of the main casting,

the edge of this arm on the side of the zero graduation of the arc coin-
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ciding with a diameter of the ring. In the centre of the arm is a small

notch marking the centre of the circle.

To use the protractor, a line parallel to the direction of magnetic

north (or true north if the readings have been corrected to give true

bearings) is drawn on the paper through the point representing the

rear station of the leg. The protractor is then set with its centre point

exactly over this point and its zero mark on the line representing

the direction of the meridian. It is thus oriented, and a tick can be

drawn on the paper against the graduation representing the bearing

of the line. A pencil line drawn through the point representing the

station and through the tick gives the direction of the traverse leg,

and a plotted distance along this line gives the position of the forward

point of the leg. A line parallel to the direction of the meridian is then

drawn through the latter point and the previous operation repeated

for the next forward leg.

Plotting by co-ordinates is most conveniently carried out on squared

paper, a suitable point being chosen as origin and the vertical and

horizontal lines through this point chosen as the axes of x and y respec-

tively. Plotting is then done by choosing or measuring out from the

origin a distance along the axis of y equal in length to the y co-ordinate

and then erecting a perpendicular at this point equal in length to the

x co-ordinate. If the traverse gets too far away from the origin for

convenient scaling, some other point can be chosen as a local origin,

and differences of co-ordinates between it and the other points plotted

from it.

Computation of Latitudes and Departures.

When compass traverses are to be computed, the accuracy of the

work hardly justifies the labour of computing by the cosine and sine

formulae in the manner used in the computation of theodolite traverses.

Instead of this, traverse tables can be used. These tables give, for

every degree or for every minute of arc, the natural cosines and natural

sines of the angle, each multiplied in turn by the numbers 1, 2, 3, ... 9.

Thus, the following is part of the entry of a traverse table for 64.
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If we wish to find the latitude and departure of a line whose bearing
and length are 64 02' and 2143, we proceed as follows:

Lat. Dep.

2000 875-7 1798-1

100 4:3-78 89-90

40 17-51 35-96

__3 1-31 2-70

2f4~3 938-3 l^f^T

In this case, for the 2000 in the number we look out the latitude and

departure for 2 under 64 02' and multiply the tabulated values by
1000. For the 100, we multiply the latitude and departure for 1 by
100, those for 4 by 10, and so on. The sum of each set of quantities

is then the latitude or departure for the whole line.

Latitude and departure tables may also be used for checking the

computations of theodolite traverses against gross error, or for locating

a gross error when it is known that one exists. They can also be used

for computing minor theodolite traverses.

If the observed bearings have had a correction applied to them

to give true bearings, and these corrected bearings are used in the

computation of the latitudes and departures, the direction of the axis

of x will be the true north line. If the observed bearings are used

without any correction for the magnetic declination, the direction of

the axis of x will, of course, be magnetic north.

Adjusting Compass Traverses.

Apart from the correction for compass error, there is no adjustment

for bearings in magnetic traverse work, as there is in a theodolite

traverse, but it is necessary to adjust it for the closing error in position

of the last point.

Fig. 7.10a (p. 140) shows a traverse surround closing on itself at A,

while b shows a traverse beginning at a fixed point A and closing on

another fixed point F'. When the traverses are plotted, the position of

the last point falls at F, whereas in a it should fall at A and in b it

should fall at F'. The lengths FA and FF' are then the closing errors

of the traverses.

If co-ordinates have been computed, they can be adjusted by the

rules already given for adjusting the co-ordinates of theodolite traverses,

but, if the traverse has been plotted direct from bearings and distance*,

the easiest way is to use the following graphical method of adjustment.

Join AF or FF', and through the points B, C, D and E draw lines
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BB', CC', DD' and EE' parallel to AF or FF', and make the lengths of

these lines equal to C x
l/L, where C is the magnitude of the closing error

at F, I the length of traverse from A up to the point being adjusted, and

L is the total length of the traverse. Join AB', B'C', C'D', D'E' and E'A

or E'F'. Then AB'C'D'E'A (fig. 7.10a) and AB'C'D'E'F' (fig. 7.106) are

the adjusted traverses.

The lengths of the lines BB', CC', DD', EE' can easily be calculated

by slide rule, but, for a long traverse, a graphical method is probably

quicker. In fig. 7.10c set off the horizontal line AF proportional to the

total length of the traverse, and at F draw the line FF' perpendicular to

AF and proportional in length to the closing error at F. Join F' to A and on

AF lay off the lengths AB, BC, CD, DE and EF proportional to the lengths

of the different legs. Draw lines BB', CC', DD', EE' perpendicular to

AF at B, C, D and E to meet AF' in B', C', D' and E'. Then the lengths

of these perpendiculars represent the amount of the adjustment necessary

at each point.

GRAPHIC TRAVERSING WITH THE PLANE-TABLE

When great accuracy is not required, a graphic traverse by plane-

table may sometimes be used instead of an instrumental traverse.

Let the traverse start at a point B whose position is fixed and

from which a line BA of known direction already exists on the ground.

Let the position of B and the direction of A be plotted as ba on the

plan (fig. 7.11).

The plane-table is set up at B and oriented and clamped in the

usual manner, so that the line ba is set in the direction BA. The direc-
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tion of C, the next station, is then drawn in by setting one end of the
alidade against the point of a pencil held at b and pivoting it about
this point until the line of sight intersects C. The distance BC is chained

and this distance laid off on the line be that has just been drawn, so

giving the plotted position c of C. The next leg can then be drawn by
moving the instrument to C, orienting it with the line cb directed in

the direction of CB and proceeding as before.

Fig. 7.11

If the plan on the plane-table is on a very small scale, the plotted

legs of the traverse will be very short, and hence thore would be a

very short length of line to lay the alidade against when orienting the

table. Consequently, in order to avoid unnecessary errors, it is ad-

visable in all cases to mark the directions of the various legs on the

edge of the plan, so as to have reasonably long lengths against which

the alidade can be laid when the table is being oriented at a new

station.
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QUESTIONS ON CHAPTER VII

1. The following were the observed interior angles of a closed figure

ABCDEA:

A = 122 14' 50"; B = 136 13' 10"; C = 121 54' 30";

D = 129 45' 40"; E - 29 47' 10".

Adjust the angles of the figure.

2. In a compass traverse the following bearings were taken:

Give the corrected bearing of each line and state where local attraction

is present (if any). On plotting the traverse it is found that there is

a closing error: explain how this error can be distributed by a graphical

application of Bowditch's rule. (Inst. C.E., October, 1945.)

3. Using the data of a closed traverse given below, calculate the lengths

of the lines BC and CD.

(Inst. C.E., October, 1955.)



VII] QUESTIONS 143

4. The calculated co-ordinates for a closed traverse were as follows:

Distribute the closing error among the latitudes and departures, and

calculate the area enclosed by the traverse, using the Double Meridian

Distance or other method. (Inst. C.E., April, 1946.)

5. A tunnel ran from a point A to a point D. It was required to find the

length and bearing of the line AD, so a traverse ABCD was run as

follows: AB - 438 ft,, BC = 341 ft., CD - 491-5 ft. Angle ABC -

118 15', angle BCD = 108 40', and the line AB ran due north.

Calculate the length and bearing from north of the line AD. (Inst.

C.E., October, 1947.)

6. A traverse ran from station A to a fixed station F, the following being

the measured distances and the observed angles measured whole-circle

clockwise from the last station:

The fixed bearings of the lines A? and FQ were 152 14' 20" and

105 40' 15", and the fixed co-ordinates of A and F were:

Compute the traverse after adjusting the bearings, and then adjust

the co-ordinates of the intermediate points to the fixed co-ordinates of

A and F.



CHAPTER VIII

LEVELLING AND CONTOURING

In levelling we are concerned with the measurement of differences

of height between points, or with the determination of the elevation

of certain points above some given plane or surface known as the

datum plane or surface. This datum may be a purely arbitrary one,

but for many purposes it is convenient to take the mean level of the

sea, known as mean sea-level (M.S.L.), as the fundamental and natural

surface above which elevations should be measured.

Some form of levelling is one of the most common operations in

engineering surveying, as levels are required for all kinds of purposes,
such as deciding depths of excavations for foundations; giving pegs
to enable a contractor to know when he has reached the required depth;

setting out the limits, depths and heights of cuttings and embank-

ments on railway and road construction; setting out gradients for

pipe lines; mapping contours as a guide in planning and designing
works and in estimating costs. In fact, there is no branch of civil

engineering in which levels in some form or another are not required.

On p. 7 we have named the different methods available for

determining elevations and differences of height, but by far the most

important, so far as the civil engineer is concerned, is the method

known as spirit levelling, and accordingly we shall consider it first.

SPIRIT LEVELLING

In Chapter V of Principles and Use of Surveying Instruments we
have described the ordinary surveyors' level and have indicated how
it is used. The principle of levelling is that by the use of the level we
establish a line, the line of collimation of the instrument, which lies

in a horizontal plane passing through the horizontal hair of the in-

strument. The operation of levelling consists essentially in determining
the vertical distance from this line to points whose elevations or differ-

ences of height relative to one another are required.

In fig. 8.1 we suppose that the elevation of a point A is given and
we wish to determine the elevation of a point D some distance away.
The level is set up at Lx and sighted on a levelling staff held vertically

144
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on A. After the instrument has been properly levelled, the line of

collimation is a horizontal line ab which intersects the staff held on
A at a. Consequently, Aa is the reading on the staff. After this reading
has been taken, the telescope is revolved about its vertical axis to

point at a staff held vertically at B, and, the instrument still being
level, the reading Bb is taken on this staff. Through B draw the hori-

zontal line BA;

to meet aA at A'. Then AA' is the difference in eleva-

tion between A and B.

But, AA' = Aa - A'a = Aa Bb
=

(staff reading at A) (staff reading at B).

Taking AB as the forward direction of the line, the sight Lja is a

backsight, as it is a sight in the rear direction of the line, and Ltb,

being in the forward direction of the line, is called a foresight. Hence,

Fig. 8.1

we see that the difference in elevation botween two points is equal
to the backsight reading minus foresight reading, and it is also obvious

that the elevation of the forward point relative to that of the rear point
is a rise if the backsight reading is greater numerically than the fore-

sight reading; similarly, the elevation of the forward point relative

to that of the rear point is a fall if the backsight reading is less numeri-

cally than the foresight reading.

The observations from Lt having been completed, the staff at B
is still held there and the instrument is moved to L2 , where, after

re-levelling, a new backsight reading Be is taken to the staff at B, and

a new foresight reading Cd is taken to a staff held at C, some distance

ahead of the instrument. Similarly, the instrument is set up and

levelled at L3 and a backsight reading taken to a staff held at C and

a foresight reading to one held at D. It will then be obvious that

Difference of elevation A D
= Aa - Bb + Be - Cd + Ce - Df
- (Aa + Be + Ce)

-
(Bb + Cd + Df)

*=
(sum of backsight readings] (sum of foresight readings).

6 (G467)
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This principle may be extended to any number of points so that

we can finally write:

Difference of height between points A and P
= (sum of backsight readings) (sum of foresight readings),

and it also follows that (P being the forward point) P is higher (lower)

than A if the sum of the backsight readings is numerically greater

(less) than the sum of the foresight readings. Finally, we have:

Elevation of P above datum
= elevation of A -f (sum of backsight readings) (sum of foresight

readings).

Points such as B, C, and D, where the staff is held and sighted for

two successive set-ups of the level, are called turning points, and the

accuracy of levelling depends, very largely, on these points not moving
at all between the readings. Consequently, good solid points must be

used as turning points. They can be stout wooden pegs, or iron pins

driven firmly into the ground, or any well-defined point on a solid

object, such as a part of a rock, top of a step, top of a man-hole, etc.

The point where the staff is held should be well defined so that there

is no doubt about the bottom of the staff resting on exactly the same

point for the two readings. Instrument makers can provide special

small triangular plates with a spike on top which can be used as turning

points on hard firm ground.

When the point A is a fixed permanent or semi-permanent point

whose elevation above the datum plane is known, or is assumed for

purposes of calculating elevations, it is called a bench mark.

If the elevations of additional points which are not used as turning

points are needed, they can be found by setting up a staff and taking

a reading there. Thus, in fig. 8.1, S and T are additional points of this

kind, and it can be seen that their elevation can be found by sub-

tracting the reading taken at them from the backsight reading, and

adding the result to the elevation of the point used for the backsight.

Additional points of this kind which are not bench marks or turning

points are termed intermediate points. It will also be seen that the differ-

ence of elevation between A and B is

(staff reading at A staff reading at S)

f (staff reading at S staff reading at B)

=
(rise A to S) + (rise S to B).
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Similarly, the fall from B to C =

(staff reading at B staff reading at T)

+ (staff reading at T staff reading at C)

=
(fall B to T) + (rise T to C),

falls being reckoned as negative quantities as compared with rises,

which are taken to be positive quantities.

1. Booking and Reducing Levels.

There are two main methods of booking levels and working out

elevations. These are (1) the rise and fall method, and (2) the height

of collimation method. An example of the rise and fall method is given

below.

The first entry is a backsight 4-23 taken at a bench mark (B.M.) whose

elevation, or reduced level, is 363*98.

This backsight is entered in the first line of the first column, and in the

second column and second and third lines are the readings at two inter-

mediate points taken on pegs at chainages 1044 and 1045. The first fore-

sight, to T.P. (Turning Point) 1, follows in the fourth line in the third

column, and this completes the observations at the first set-up of the level.
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The instrument is then moved, and, after having been levelled up, is

sighted back on the staff held at T.P.I, the reading being 9-28. This is

entered in column 1 on the same line as the previous foresight. Then follow

three intermediate sights and the foresight of 3-26 on T.P.2. At the next

set-up of the instrument, the backsight is entered on the same line as the

foresight from the last set-up, and the page closes with a foresight on a

bench mark.

In this line of levels the backsights and foresights were read to two

decimal places so as to maintain accuracy in the fixing of bench marks,

but some of the intermediate sights, having been taken to ground level

only to provide data for estimating earthwork quantities, were read and

entered only to the nearest single decimal place. Those at chainages

1047 + 21 and 1050 were, however, read to the second decimal place as

these points were intended to serve as temporary bench marks later on.

Note that all observations taken to a particular point are entered on

the same line. Thus, the backsight and foresight on T.P.I appear on the

same line, though in different columns.

In working out the elevations or reduced levels, the first step is to

work out the rises and falls. These are reckoned rises or falls with

reference to the previous point, whether backsight or intermediate

point. Finally, the reduced levels are obtained by adding or sub-

tracting each rise or fall to or from the reduced level of the last point.

Thus, the reading 1-6 at the first intermediate point is less than the

backsight of 4-23, and hence the rise to this point is (4-23 1-0)
~ 2-63,

so that the reduced level at the intermediate point is 360-01. Similarly,

the reading 2-8 at the second intermediate point is greater than the

reading 1-6 at the first intermediate point, and there is a fall of 1-20

from the first point to the second, the rcdiiced level of the latter thus

being 366-61 1-20 = 365-41. In the same way, there is a rise of

1-33 to T.P.I, giving a reduced level for that point of 366-74, which is

the same quantity as that found directly by adding to the elevation

of the bench mark the difference between the backsight of 4*23 and

the foresight of 1-47 to the first turning point.

There are two checks on the arithmetical work, as the difference

between the sum of the backsights and the sum of the foresights should

be equal to the difference between the rises and falls, and both differences

should be equal to the difference between the final and initial reduced

levels. These tests should be worked out, as shown in the example,
at the bottom of every page as it is completed.

The height of collimation method is even easier to follow. Referring
to fig. 8.1 (p. 145), we see that, if the reading Aa of the backsight to A
is added to the reduced level of A, the result is the reduced level of ab,
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the line of collimation. The reduced level of any other point is then

obtained by subtracting the staff reading at that point from the re-

duced level of the height of collimation.

In the specimen page given here it will be seen that the entries in the

first three columns are made exactly as before, but in the fourth column

the first backsight has been added to the elevation of the B.M. to give

the height of instrument, or height of line of collimation. The intermediate

readings and the first foresight are subtracted from this height to give

the reduced levels at the points to which the readings were taken. In this

way, the reduced level of the first T.P. is obtained, and, when the second

backsight is added to this, we get the height or reduced level of the instru-

ment at the second set-up, and so on.

There is one check on the reduced level of the point to which the

last foresight is taken, for the difference of the sums of the backsights

and foresights should be equal to the difference of the reduced levels

of the final and initial points. This test, like the other, should be

applied on every page of the field book.

In both cases, the initial entry on a page should be a backsight

and the final entry a foresight. If the page ends at an intermediate

point, the reading at that point should be entered as the last foresight

on that page and as the first backsight on the next page.

It will be seen that the checks on the rise and fall method of re-

ducing levels act as a check on the reduction of levels of the inter-

mediate points, whereas in the case of the height of collimation method
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this is not so, and there is no check on the reduction of the intermediate

levels. This is the one disadvantage of the height of collimation method ;

otherwise, it is simpler and rather quicker in use, and for this reason

is the more generally favoured method of the two. It is particularly

suitable for use in lines run primarily for establishing bench marks,

where intermediate sights are not needed or taken, and all the entries

are backsights and foresights.

2. Precautions necessary in Levelling.

Good levelling can only be obtained by careful work. The instru-

ment should be kept in good adjustment, and particular care taken

to see that the bubble is in the centre of its run when sights are taken

to a bench mark or turning point. Turning points should be well-

defined objects on which there is only one point where the bottom of

the staff can rest, and they should be solid enough not to move or

give under the weight of the staff while sights are being taken or

between successive sights. The staff should be held vertical; if it is

not fitted with a level bubble or plumb bob to indicate verticality, it

should be waved gently to and fro about its base in the direction of

the observer and the smallest reading taken. Failure to hold the

staff on the same point for both foresight and backsight after the

instrument has been moved will, of course, cause a gross error to be

made.

If backsights and foresights are kept as nearly as possible equal in

length, the effects of collimation error, curvature of the earth, and

refraction will tend to cancel out. This can be seen from figs. S.2a

and b. In a, AB is a horizontal line through the cross hairs of the

instrument; now suppose that, when the bubble is central and the

instrument sights the left-hand staff, the line of sight, instead of inter-

secting the staff at A, intersects it at A' below A. When the instrument

is turned to sight the staff on the right and the bubble is central, the

line of sight will intersect the staff at B'. IfLA = LB, then A'A = B'B,
and it follows that the true difference in height between C and D =
CA DB = CA' DB', or the difference between the actual readings
on the staff.

In fig. 8.26 the staffs at C and D lie along the verticals at these

points, and, owing to curvature, these verticals lie on the radii of the

circle representing the curved surface of the earth as represented by
the mean level of the sea. A horizontal line at L, tangential to the

vertical there, will intersect the staffs at C and D at A and B, while

a circle through L concentric with the circle representing mean sea-level
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will intersect the staffs at A' and B'. As elevations are distances above

sea-level, or a spherical surface concentric with it, measured along the

vertical at each point, (CA' DB') represents the true difference of

level between C and D. If LA = LB, then A'A = B'B and hence

(CA - DB) = (CA' - DB'). But (CA - DB) = difference of readings
on staff = apparent difference of elevation. Consequently A'A and B'B
cancel out when the difference between the staff readings is taken, so

that this difference represents the true difference of elevation between

Fig. 8.2

the two points. Similarly, a ray bent by refraction will be equally

bent between A and B; hence the amount of bending observed on the

staffs will be equal and will be cancelled when the difference of readings

is taken.

With the length of sight used in ordinary work, the effects of cur-

vature and refraction would not be appreciable on single sights, but

in precise work they would tend to accumulate to an extent that

would be appreciable if back and forward sights were not kept reason-

ably equal in length. The length of sight used in levelling depends
on the resolving power of the telescope, and should not be greater than

that at which the telescope can resolve the smallest divisions on the

staff. This will usually be somewhere between 200 and 300 ft. Very
short sights, involving a considerable alteration in focusing, should be

avoided as far as possible, though on steep ground this may be im-

possible. A good average length of sight is about 150 ft.

Lines of levels of any importance, and particularly those run for
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the purpose of establishing bench marks, are generally levelled twice

once in each direction and it is usual to lay down rules for the allow-

able discrepancy between the two levellings. The rule generally adopted

is of the form d = fa/M, where d is the allowable discrepancy in feet,

M is the length of a single levelling in miles, and k is a constant. For

lines observed with an ordinary engineer's lead, k is taken as 0-05 for

moderately flat country and 0-10 for hilly country. In the case of

first-order geodetic levels k is taken as 0-010. If d exceeds the limits

laid down, the line must be re-levelled.

3. Bench Marks.

Bench marks are permanent or semi-permanent marks of fixed or

known elevation which can be used for determining the elevations of

points in the immediate neighbourhood. They should be made on

permanent objects which are not likely to settle or to be disturbed or

(a)
Fig. 8.3

moved; and they should be very well-defined points which can easily be

found and recognized, and on which a staff can conveniently be held.

A mark chiselled on solid rock or a metal bolt set into solid rock

makes the most stable form of bench mark but, when rock is not

available, a metal pin set on top of a solid concrete pillar with good
foundations or on a solid building can be used instead. In Great

Britain, the Ordnance Survey put most of their bench marks on build-

ings. The older type consists of a broad arrow cut into a wall as shown

in fig. 8.3a. In this form, the centre of the groove in the horizontal

bar on top of the arrow is the mark to be taken. The new type of bench

mark consists of a special bronze tablet let into a wall. On construction

work, where no rock or building is available, a semi-permanent bench

mark may be made by cutting a notch in the root of a tree and driving

a nail on the part of the root left pointed, as shown in fig. 8.36
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4. Datum for Levelling.

Where no bench mark of known elevation is available, a datum

must be assumed This means establishing an initial bench mark and

calling the elevation of it some convenient whole number, such as

500 or 1000, above datum. This datum is then described as being so

many feet below the bench mark. The number chosen should be

such that no point in the area in which the survey is to be made is

likely to be below the assumed datum.

Most national surveys adopt mean sea-level as the datum for level-

ling. This means the average level of the sea as determined by obser-

vations of sea-level at one-hour intervals spread over a long period

of time. The advantage of this datum is that it is a natural one which

can be re-established very approximately at any time if every single

bench mark on shore should disappear or be destroyed by such calami-

ties as earthquakes, etc. In addition, drainage, hydraulic and similar

engineering schemes and works are often related to sea-level, and hence

a datum in terms of it is needed. Moreover, a datum based on sea-level

may be important from a scientific point of view in studying slow

changes of the land level relative to the sea. Mean sea-level is a better

datum to use than the levels of high or low waters, which are often

difficult to determine. Unfortunately, mean sea-level is not absolutely

constant over limited periods of time, as monthly, or even yearly

mean values show appreciable differences among themselves. Con-

sequently, for a first-order determination, observations should cover a

fairly considerable period at least one complete lunar year of 354 J

days for a reasonably good determination, but the longer the better,

provided the period taken is a multiple of the lunar month of 29-53

days.
Mean sea-level is determined by means of a tide gauge. In its most

simple form, this consists of a metal float working inside a long cast-

iron pipe, the lower part of which is open at the bottom and lies below

the level of the lowest of low waters. This pipe generally has small

holes bored in its side, and its function is to damp down the oscilla-

tions of the water outside the pipe so that the float works in water

which, apart from the rise and the fall of the tide, is motionless. The

float carries a vortical rod, or else it is attached by a wire which rides

over a frictionless pulley and carries a counterweight at its other

end. Readings of the rise and fall of the water are made by means

of a pointer on the rod or on the counterweight as it works against a

graduated scale. The zero on the scale is connected by levelling to a

6* (G467)
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nearby bench mark and to the level of the water in the pipe. Conse-

quently, the levels of the water in the pipe can be converted into levels

below the level of the bench mark,, and the latter expressed in terms

of feet above mean sea-level.

A gauge of this type requires the attendance of an observer at every

hour of the day, which is expensive and a great inconvenience. Hence,

an automatic self-registering tide gauge is generally employed when

observations have to be taken over an extended period. In this type

of gauge, the rise and fall of the water are transmitted from the float

to a recording pen working over a special chart carried on a revolving

drum operated by clockwork. In this way, a graphical record of the

movement of the water relative to a fixed bench mark can be kept.

5. Levelling over wide Gaps: Reciprocal Levelling.

Occasionally a line of levels has to be carried over a wide gap,

such as a wide river or a lake, over which it would be impossible in

the ordinary way to maintain equality of backsights and foresights

to eliminate the effects of curvature, refraction, and errors of col-

limation. If the water is stagnant, or nearly stagnant, as in some

lakes or very sluggish rivers, pegs can be put in flush with water sur-

face at each side of the obstacle and the line carried to the peg on one

Fig. 8.4

side, and then continued from the one on the other side, it being assumed

that the water level is the same at each peg. In the case of swiftly

moving rivers it is unlikely that the water will be at the same level

on both sides, and in that case the best method of procedure is reciprocal

levelling.

In fig. 8.4 a peg is put in at A on one bank of a wide river and

another at B on the opposite bank. The instrument is set up over

the peg at A, the height of the cross hairs above the peg is measured,

and a sight taken to a staff held at B. This will give one measure of

the difference of elevation between A and B. The instrument is then
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moved and set up over the peg at B, and a similar set of observations

taken with the staff held on A. This will give another measure of the

difference of elevation between the two pegs, and the mean of the

two results will give a value from which the effects of curvature, refrac-

tion and collimation error have been eliminated.

The principle of this method will be understood from a description
of the

"
two-peg

"
method of adjusting a dumpy level described on

p. 125 of Principles and Use of Surveying Instruments.

If the gap is too wide for the graduation on the staff to be read

accurately, a number of sights may be taken to a target staff, or to a

target held against the staff and moved up and down it until it is

intersected by the line of sight. The same number of sights is taken

at the other side of the gap, and the mean of the two sets of results

accepted as the difference of height.

6. Precise Levelling.

Precise levelling does not differ greatly from ordinary levelling

except that a larger instrument, fitted with a parallel-plate micrometer

enabling readings to be taken to 0*0001 ft., and a standardized Invar

staff in which the effects of temperature changes are reduced to a

minimum are used. Great care is taken here to maintain the equality
of the lengths of backsights and foresights. The instrument is generally

fitted with a horizontal hair and two stadia hairs; readings on the

latter serve not only as a check against gross error in the reading of

the middle hair, but also as a check on the equality of the length of

backsight and foresight at each set-up. Observations to points lower

than about 18 in. from the bottom of the staff are not allowed, and the

permissible limits of lengths of sights are strictly defined. The staffs are

carefully standardized from time to time against a standardized Invar

tape used under a definite tension and kept specially for the purpose,

corrections for errors of standardization of the staffs being made in the

computations. Air temperatures are taken at intervals during the course

of the field work, and the necessary corrections applied. In addition,

corrections have to be introduced for the convergence towards the

pole of the equipotential or level surfaces due to the variation of gravity

with latitude and height above sea-level. These corrections, known

as the orthometric and dynamic height corrections, are not appreciable

in ordinary levelling, but have to be taken into account in precise work.

They will be found described in books on advanced surveying or in

works on geodesy.
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As an example of the accuracy of modern precise levelling, it might
be mentioned that the greatest closing error in a closed circuit in the

geodetic levelling of England (1912-21) was 04771 ft. in a circuit of

290 miles, and the smallest was 0-0073 in a circuit of 60 miles.

LEVELLING WITH TACHEOMETER

One of the principal uses of tacheometry in surveying is in con-

touring, as here it is necessary to fix the positions as well as to deter-

mine the elevations of a number of points round and near the instru-

ment. The ordinary levSf is normally fitted with stadia hairs which

enable distances from the instrument to be determined to points not too

far away, and not too much above or below it, but this in itself is not

sufficient to fix the position of a point on a plan. Consequently, apart
from checking the equality of backsights and foresights, the stadia

hairs in a level only have limited applications, and for contouring it

is more convenient to use a theodolite fitted with stadia hairs or a

tacheometer.

The theory of tacheometry is fully explained in Chapter VI of

Principles and Use of Surveying Instruments, so that here it is only

necessary to recall the principal formulae. For a staff held vertically,

these are:

d = k^s cos2 + &a cos 0> (1)

E = e R + Jc^s cos 6 sin 9 + k2 sin 9, . . . (2)

where d = the horizontal distance from instrument to staff,

s = staff intercept,

&!
= the stadia constant,

&2
= a constant equal to the focal length of the objective plus

the distance of the objective from the vertical axis of

the tacheometer,

6 = inclination to the horizontal of line of collimation through
central hair,

E elevation above datum of point where staff is held,

e = elevation of horizontal axis of instrument above datum,

R = reading of central hair on staff.

Hence, knowing k^ k2 and e, and by observing s, 9 and J2, we can find

d and E, and, if the bearing to the staff is also observed, we can fix
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the position of the point, as well as determine its elevation above

datum.

In formulae (1) and (2) the constant fc2 wiU seldom exceed much
more than eighteen inches, and for many purposes, such as ordinary

contouring, the terms containing it can be neglected, in which case the

formulae may be written:

d = jtxs cos2 6, (3)

E = e R + PJ* sin 29 (4)

The determination of the bearing of any point may be obtained by

measuring the horizontal angle between a line of fixed bearing and the

line joining the instrument station to the point; but, for many purposes,

including contouring, it will be sufficient to observe compass bearings,

if the instrument is fitted with a compass, or else to use the method

of observing bearings directly which is described on pp. 1]81 19.

For a staff held perpendicular to the line of collimation, the formulae

are:

d =^ l^s cos + k2 cos 6 + R sin 0, . . . . (5)

JS ==
fly sin + Afc

sin # cos + r. ... (6)

which, when Jc2 is very small, become

d = fcxs cos 6 + R sin 9, (7)

E = ^881119 Rcos9 + e (8)

In an instrument fitted with an anallactic lens, it2 is zero and hence

the formulae applicable are (3), (4), (7) and (8).

LEVELLING WITH PLANE-TABLE AND INDIAN CLINOMETER

Levelling with the plane-table and Indian clinometer involves the

measurement of vertical angles with the Indian clinometer, using the

plane-table as a stand. If the position and elevation of the plane-

table have not already been fixed from other stations, the position must

be fixed by resection, or intersection, or by plane-table traverse, and

the elevation found by levelling the Indian clinometer and measuring

the angle of elevation to a fixed point of known elevation. The distance

from the plane-table to the fixed point is scaled off the plan, and the

difference in elevation between this point and the peep hole of the

clinometer is calculated from the expression h = d tan 0, where d is the

horizontal distance to the signal and 9 the angle of elevation or depres-
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sion. If the angle is an angle of elevation, the signal is higher than the

plane-table and h must be subtracted from the elevation of the signal

to give the elevation of the clinometer: if is an angle of depression,

h is additive to the elevation of the signal In both cases, the elevation

of ground level or station mark is obtained by subtracting the height

of the peep hole above the ground point from the elevation of the

clinometer.

The simple rule h = d tan only holds for short sights. For long

sights, the effects of curvature and refraction must be taken into

account by using the formula

where h and d are in feet.

Having determined the elevation of the instrument, the elevations

of other points whose positions have been, or can be, fixed may be

obtained by the measurement of vertical angles with the Indian clino-

meter.

LEVELLING WITH ANEROID BAROMETER

Although the aneroid barometer carries a scale of absolute heights

referred to mean sea-level, and in theory absolute heights may thus

be determined by direct readings on the scale, in practice it would

be unsound, except for very rough geographical purposes or when no

alternative exists, to rely on direct scale readings. This is because

the atmosphere is never static, and it very rarely happens that the

physical conditions at mean sea-level which are assumed for the

purposes of working out the scale of heights actually exist at the time

of observation. Hence, levelling by aneroid is best done by observing

the recorded elevations at two points not too far apart, and taking the

difference between them as the difference in elevation. If the elevation

of one point is known, and this difference is added to or subtracted

from it, the elevation of the second point is obtained. By proceeding

from a point of known elevation and observing differences between

readings there and readings at other points, or between readings from

point to point, a line of aneroid heights may be taken over a consider-

able distance.

If, as almost always happens, there is an appreciable interval of

time between the readings at two points, the atmospheric conditions

at the first station observed will probably have changed appreciably
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since the observation was taken there, and another observation would

give a different reading. Similar changes will also have occurred at

the second station. This will vitiate the results, since it has been

assumed that conditions at the first station remain constant during
the interval between the observations there and those at the second

station. Hence, the best results with the aneroid are obtained when

two observers, each with his own aneroid, are employed. The observer

at the first station takes a series of observations at different times,

and notes the time of each, while the second observer, who also takes

a reading with his instrument at the first station, takes other obser-

vations at the points required and notes the time of each. In this

way a correction for time of observation can be worked out from the

readings taken by the first observer. Thus, suppose readings by No. 1

observer at station A were 364 at 7 a.m. and 376 at 11 a.m., and by
No. 2 observer they were 371 at 7 a.m. at station A and 496 at 11 a.m.

at station B. Then No. 2 observer's instrument would read 371 +
(376 364) = 383 at 11 a.m. at station A. Consequently, difference

in elevation between stations A and B 496 383 = 113 ft.

Usually the station from which differences are reckoned is in camp,
and results will be better if both observers are provided, not with a

single aneroid, but with batteries of two or more.

If two observers are not available, the surveyor takes a reading,

or set of readings, at the first station, and then proceeds as quickly as

possible to the second station, where he takes other readings. He then

returns to the first station and repeats his original observations, the

mean of the two sets being taken as the accepted reading at that

station. This, of course, is not always possible on exploratory and

reconnaissance surveys, particularly where there is only one party

constantly on the move.

In certain parts of the tropics the variations of the barometer

during the day are very regular and remain the same, or practically

the same, day after day over fairly long periods. Here a series of obser-

vations can be taken throughout the course of the day at some point

in the centre of the area under survey, and the results can be plotted

against time. This gives a curve which can be used for correcting the

field observations for time of observation, and does away with the need

for maintaining observations daily at one station. In this case, it is

necessary to construct fresh curves at fairly regular periods of time,

say once weekly. This method, of course, is only advisable in places

where the daily barometric wave is known to be very constant for long

periods.
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CONTOURING

A contour may be defined as a continuous line or curve joining

points at the same elevation above datum ; otherwise, it is the curve

which the surface of the water would trace out along its points of

contact with the land if the whole of the latter were covered with still

water up to the elevation of the contour. Owing to the sloping surface

of the land, contours at diilerent elevations will trace out different

curves, and the process known as contouring means a survey carried

out to enable the contours to be plotted on a map or plan. The curves

to be plotted will represent contours corresponding to equal intervals

of elevation, the difference in elevation between successive plotted

contours being known as the vertical interval.

Plans showing contours are required for very many different classes

of work in civil engineering, as they are necessary in almost all cases

where extensive earthwork excavations are involved, not only for

choosing the site and for planning the work in the most economical

way, but also as a basis for estimating and calculating earthwork

quantities. Contours may be surveyed either from the air or on the

ground, but it is with ground survey methods that the following pages

are concerned.

The amount of work involved, and hence the time spent on survey,

depends mainly on the vertical interval chosen. This in turn depends

on the scale of the plan, the average slope of the ground, and the

purpose for which the contours are needed. In small-scale maps, the

vertical interval may be anything from 25 to 100 ft., and in very large-

scale plans it may be no more than 1 to 5 ft. The smaller the vertical

interval, the greater will be the accuracy required in the survey and

the amount of work involved.

There are two main methods by which contours may be surveyed.

One is to trace out and mark the line of each contour on the ground
and then to make a detail survey of the curves so formed, so that

these can be plotted on the plan. The second method is to observe a

number of spot heights, i.e. levels at different points whose horizontal

positions together with their elevations above datum are observed, and

then to interpolate the contours on the plan from the plotted positions

and elevations of these points. The first method is only used for work

for a plan on a large scale of a limited area. It is much the slower, but

at the same time it is the more accurate method of the two, since the
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"
run

"
of the contours is seen on the ground at the time of survey.

The second method is not so accurate because, unless the work is for

a medium- or small-scale map and is done by plane-table, the actual

tracing of the contours is carried out in the office on the assumption
that the slope of the ground between two successive spot heights is

uniform.

7. Laying Out Contours on the Ground.

In this method the engineer's level is used to enable a number of

points at exactly the same level to be laid out on the ground. The

points are marked by pegs or pins, and their positions surveyed sub-

sequently by any of the methods used for the survey of ordinary detail.

Working from the nearest bench mark, the surveyor runs a line

of levels until he reaches a point where the height of collimation of the

instrument is a few feet above the elevation of the contour required,

the difference between these two elevations giving the staff reading.

Having taken a trial observation with the staff held a little distance

away, he directs the staff man to go backwards or forwards until a

point is reached where the reading on the stall is the correct amount.

The staff man here drives a peg into the ground and marks it with a

number corresponding to the elevation of the contour. He then moves

in a direction as closely as he can judge at right angles to the line of

maximum slope of the ground until he arrives at a point at a con-

venient distance where the staff again gives the correct staff reading,

when he drives and numbers another peg. The operation is repeated

a number of times, at different points along the contour, and in this

way a line of pegs, following the line of the contour, is laid out which

can be surveyed in the ordinary way, usually by some form of traverse,

other contours being set out and surveyed in a similar manner.

The distance between pegs marking a contour will depend on the

accuracy required, which, in turn, depends on the vertical interval, the

slope of the ground, and the scale of the plan. Jf the vertical interval

is small, say a couple of feet, the presumption is that accurate con-

touring is necessary for plotting on a very large scale, and here the

interval between successive pegs should not exceed about 25 ft., and

should be closer in places where there is a very decided change in the

direction of the contours. If the vertical interval is 5 ft., the intervals

between pegs may be anything up to 100 ft., with closer spacing at

all places where the directions of the contours are changing rapidly.
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8. Contouring by Spot Heights.

In contouring by spot heights, three methods may be used:

1. By spot heights along lines laid out at right angles to a surveyed

line.

2. By dividing the area under survey into a series of roughly square or

rectangular blocks by means of chained lines, and taking spot

heights along these lines.

3. By spot heights radiating along lines in different directions from

the instrument, and measuring the bearing and distance from the

fixed instrument station to the point where the spot height is taken.

The first method is commonly used in such work as preliminary

surveys in connection with the construction of roads or railways,

where a contoured plan of a long narrow stretch of country is needed

for locating the best possible alignment. The surveyor or engineer

goes ahead, choosing by eye what appears to be a good general line

to be followed. He makes a major compass traverse of his route,

using a surveyor's compass and chain or steel band, and putting

in pegs at every chain. At the same time he carries a line of spirit

levels along the main chainage lines, taking spot heights at the end

of every chain length and at every decided change of slope, and estab-

lishing bench marks at convenient intervals. This traverse and the

line of levels form the framework of his survey. Lines about 100 to

300 ft. apart, and about 200 to .300 ft. long, are then laid out by optical

square on either side of, and at right angles to, the main traverse

lines. Spot heights are taken along these lines, which are known as

cross-sections, generally by means of a hand level and levelling staff,

or else by means of a theodolite or Abney level or clinometer. The

spot heights are plotted on the plan as shown in fig. 8.5, where AB
and BC are parts of two traverse lines and aa, bb, cc and dd are cross-

sections at right angles to them, with spot heights plotted at intervals.

The contours are drawn in by interpolation between the spot heights.

Thus, in the cross-section bb, there is a spot height of 393-4, where

the cross-section is intersected by the line AB and below it is a spot

height of 399-2. Obviously, then, the contour 395 crosses the cross-

section somewhere between these two points. The difference of level

between the two spot heights is 5-8 ft. The distance from the first

spot height to the second is 68 ft. and the difference in elevation between

393-4: and 395 is 1-6 ft. Hence, the contour will cross the section at a

point 68 X 1-6/5-8
= 18-8 ft. from the 393-4 spot height. This point

is marked off on the plan and the cuts of the same contour plotted
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on the other sections, the points so obtained being drawn in as a free-

hand curve to give the line of the contour. Other contours are then

drawn in in a similar manner. On the plan, contours are usually drawn

in brown ink.

In fig. 8.5 the cross-sections are at regular intervals but often marked

irregularities in the ground, indicating sudden bends or changes in the

contours, occur between cross-sections. When this happens, additional

cross-sections should be run between the main ones to pick up the

irregularities. If necessary, a cross-section may be inclined at an angle

to the main line, the direction of the section being fixed by chain survey
methods or by instrument.

590

In fig. 8.6 the survey covers an area, not a narrow strip, and the

block shown is bounded by traverses AB, BC, CD and DA which have

also been spirit-levelled. The straight lines aa, bb, cc, dd, ee, ff, gg

and hh have been laid out as closely as possible parallel to one another

and are tied at each end to traverses so that their positions on the

plan can be plotted. On each of these lines a series of spot levels has

been observed at every chain length, giving a fairly close mesh of

spot heights from which contours can be interpolated in the usual way.

In the figure, the line XY has been established between the traverses

DA and CB, and a line of spirit levels, with levelled pegs at every chain

length, has been run along it. This serves as an intermediate check

on the chainage and levelling along the lines aa, bb, cc, etc., and helps

to stiffen the network.

The third method of surveying contours by spot heights is most
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conveniently carried out by tacheometer. Thus, in fig. 8.7 the tacheo-

meter is set up at the point A, whose position is fixed, and sights at

different points are taken along a series of radiating lines, of which

the bearing can be obtained from readings of the compass on the in-

strument, or from readings on the horizontal circle and sights from

e f

Fig. 8.6

other fixed stations. The staff readings enable the horizontal distances

and the elevations of the various points to be computed. These points

are later plotted on the plan, their elevations written against them,

and the cuts of the contours interpolated as before. The instrument

is next set up at some adjoining point which, if necessary, has been

Fig. 8.7
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fixed by bearing and distance from the last point, and a similar series

of radiating lines of spot heights observed. In this way, the ground
is covered with a series of spot heights which, in turn, are plotted on

the plan, and from these plotted heights the contours are interpolated.

9. Interpolation of Contours between Spot Heights.

The method of interpolating contours described above involves a

little arithmetic which, however, is not great, especially if a slide rule

is used. Interpolation may, however, be done graphically. In fig.

8.8 the horizontal line YY is taken as the level 380 ft. above datum,
and the vertical line XX as the vertical through the point where the

X
Fig. 8.8

traverse line AB in fig. 8.5 intersects the cross-section bb. From the

point X lay out on the same scale as the plan Xp, Xq, Xr, Xs, Xt,

Xu equal in length to the distances of the different spot heights from

the traverse line, and erect perpendiculars at these points. On these

perpendiculars lay off, on a scale of, say, 10 ft. to the inch, ordinates

proportional to the heights of the corresponding spot heights above

the 380 datum line. Join the points so obtained by straight lines.

The result will be a section showing graphically, though with vertical

heights exaggerated relative to horizontal distances, the slopes of

the ground along the cross-section. On XX ky off horizontal lines to

represent horizontal planes at the 385, 390, 395, 400 and 405 ft. levels.

The points where these lines intersect the line representing ground

surface will give the points where the corresponding contours out this

surface, and, by scaling the distances of these points from XX and

laying them out on the section bb in fig. 8.5, we obtain, on the plan

the cuts of the contours along that section.
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10. Cross and Longitudinal Sections.

In fig. 8.8 we have shown a cross-section representing the slope of the

ground in a direction at right angles to a main traverse line, and we

have used it to obtain the distances of the points where the contours

cut the surface from the point of intersection of the two lines. Cross-

sections of a similar kind, however, are often required for the purpose

of obtaining areas for the calculation of earthwork quantities. For

such a purpose, the horizontal and vertical scales will normally be

the same, so that a true area will be obtained from the scaled dimen-

sions. The plotting is best done on squared paper.

L

Fig. 8.9

Fig. 8.9 is a cross-section used for taking out quantities during the

construction of a railway. The line LL is the centre of the line, which

here is in a cutting, the depth of cut being given by the line AF, where

A is a point on the centre line at the proposed height of bottom of

formation, or bottom of cutting, above datum.

A horizontal line BAG is drawn through A such that AB = AC =
half width of cutting, and through B and C are drawn lines BE and

CD on a slope of 1J to 1 to represent the sides of the cutting, and meeting
the line representing the surface of the ground at E and D. The section

EBACDFE represents a vertical section of the earth to be removed.

Longitudinal sections are vertical sections along a line representing
the main axis of a survey. In railway work, for instance, a preliminary
reconnaissance is followed by the preliminary contoured survey men-
tioned on p. 162. A suitable line is chosen and drawn in on the plan to

represent the centre line of the projected work. The construction en-

gineer, taking the plan out on the ground, proceeds to lay out on the

ground the line laid down on paper. For this work he uses a theodolite

and steel band and, during the course of it, he corrects such errors as may
be due to the preliminary survey having been made by a compass.
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He carries forward a through chainage, i.e. a chainage which is continu-

ous from some fixed starting point, and in which points are identified

by a whole number of chain lengths plus a certain number of hundredths

of a chain. Thus, there may be a culvert at station 1096 + 46-2,

meaning 1096 full chain lengths plus 46-2 hundredths of a chain (feet

or links), or 109,646-2 ft. or links from the starting point. After setting
out the straights and curves, he runs a line of levels along the line

he has laid out, fixing bench marks at convenient intervals as he goes,

connecting in to the bench marks established during the preliminary

survey, and taking spot heights at every chain length and at every

Scale 400'

Fig. 8.10

decided change in slope. These spot heights are plotted as a longi-

tudinal section or profile which not only shows the general slope, rises

and falls in the ground, but also the gradients which the bottom of

the formation will follow.

In plotting a longitudinal section or profile, the horizontal and

vertical scales are not generally the same, the horizontal scale being

usually 400 ft. to the inch and the vertical scale 20 ft. to the inch.

Such a section is shown in fig. 8.10, in which these were the scales of

the original drawing. There is a down gradient of 0-333 per cent from

chainage 2455 to a reduced level of 399-0 at chainage 2462. Then

follows a level length to chainage 2467 + 33, whence there is an up

gradient of 0-3 per cent. These gradients are clearly marked in the

diagram. There is a farm crossing at chainage 2459 + 30 and a bridge

at chainage 2468 + 67. Details of the horizontal alignment of the

centre line of formation are shown diagrammatically at the bottom,

and these indicate that a 2 left-hand curve, with a total deflection
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angle of 8 56', commences at chainage 2461 + 23-6 and ends at chain-

age 2465 -f- 70-3. The values of ground elevation, formation level, and

the cut or fill at every station are also often written on longitudinal

sections, but are not shown on the section illustrated above, except in

the case of stations where there is a change of grade, when the formation

level is given.

11. Contouring on Small Scales.

Contouring on small-scale maps is generally carried out by plane-

table in open country which is being systematically and accurately

mapped, or by aneroid heights in forest country or where the map
is on a very small scale and is little more than a rough geographical

or reconnaissance sketch.

Contouring by plane-table is done by establishing the positions of

a number of instrument stations by resection or plane-table traverse,

and observing with the Indian clinometer the vertical angles to points

of known height. The difference of height between table and distant

point is obtained by multiplying the distance to the point, as scaled

from the map, by the tangent of the angle of elevation or depression.

A number of spot heights near the table arc then established; they are

plotted by measuring the distance to a staff, plotting this along the

direction indicated by sighting through the alidade, and writing

the observed height beside the plotted position. This work will be

facilitated if a telescope alidade is used, as distance can then often be

obtained by stadia reading. The operation is repeated at a number of

other stations, so that the topographer has a whole series of spot heights

from which he can draw in the contours as he moves from point to

point.

It is impossible to lay down any hard-and-fast rule about the inter-

vals between instrument stations and between spot heights, as this will

depend very largely on the experience of the plane-tabler, as well as

on the nature of the country and the density of control points. Plane-

tabling, in general, is skilled work, in which efficiency can be gained

only by extensive experience.

The aneroid barometer is not nearly such an accurate instrument

as the plane-table and telescopic alidade, but it is quicker to use, and

it serves for establishing spot heights for rough contouring on geo-

graphical and reconnaissance maps on very small scales, where the

contour interval is large, and where time or lack of framework points
do not permit of the use of the plane-table. It is also used occasionally

for establishing spot heights for contours in densely wooded country
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where the ordinary resection methods by plane-table would not be

possible. In this case, for work on scales less than about 1/25,000,
the country is split up into blocks bounded by paths or cut lines, any-

thing from 500 ft. to 1 mile apart. These paths and lines are surveyed

by rope and sound, or other rough traverse, and lines of aneroid heights
which are tied to traverses of higher order and to lines of spirit levels

about 4 to 8 miles apart. All main streams and water courses, tops of

ridges, etc., are also surveyed, as these are important guides to the

run of the contours. In this way, the area is covered with a series of

spot heights from which rough contours at, say, 50 ft. vertical intervals

may be drawn.

QUESTIONS ON CHAPTER VIII

1. The following readings were taken with a level:

Foresight

2-08

6-64

11-32

The elevation of B.M. "A" was 948-78. What is the elevation of

B.M. "B"?
2. Prove that the effects of collimation error in the instrument can be

eliminated by keeping the backsights and foresights of equal length.

3. The following levels were taken on the ground along a survey line:

Keduce the levels, applying the usual checks. How would you test

whether the line of collimation were in adjustment? (Inst. C.E.,

October, 1945.)
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4. The figures given below represent readings with an engineer's level

from stations A, B, C, D and E. Write down the readings in the form

in which you would book them, both by the
"
Height of Instrument

"

method and the
"
Rise and Fall

"
method. In each case assume that

you must start a fresh page in your levelling book after taking the

reading to point
"

I
"
from Station C.

Reduced level of ground at (a)
= 206-42 ft.

* Leave a blank line in your booking and assume that you have begun a now page.

(Inst. C.E., April, 1954.)

5. A modern dumpy level was set up at a position equidistant from two

pegs A and B. The bubble was adjusted to its central position for

each reading, as it did not remain quite central when the telescope
was moved in azimuth from A to B. The readings on A and B were 4-86

and 5-22 respectively. The instrument was then moved to D so that

the distance DB was about 5 times the distance DA, arid the readings
with the bubble central were 5-12 and 5-43 respectively. Was the

instrument in adjustment? If not, how would the necessary adjust-
ments be made? Describe any other method of testing for this adjust-

ment. (Inst. C.E., April, 1948.)

6. A tacheometric theodolite was set to point at a staff held vertically,

the vertical circle of the instrument being set to read zero. The readings
of the stadia hairs on the staff were 6-721 and 4-296. What was the

distance of the instrument to the staff if the instrumental constants

were ^ = 100-3 and k2 = 1-1 ?

7. A dumpy level fitted with stadia wires was sighted on a staff, and
the readings on the staff were 4-282 and 3-368, the measured distance

between instrument and staff being 92-1 ft. The staff was then moved
to a point 205-4 ft. away from the instrument, and the readings on

the stadia hairs were 7-433 and 5-385. Calculate the values of the con-

stants &! and k2 .

8. Calculate the average gradient between two points P and Q from the

following observations, which were taken from a station :
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The middle reading on the staff in each case was 4-50 ft., the staff

being held vertical. Multiplying constant = 100; additive constant,

zero. (Calculate distances to the nearest foot.) (Inst. C.E., April, 1946.)

9. Tacheometric readings were taken from a survey station S on to a

staff held vertically at two pegs A and B, and the following readings

were recorded:

The multiplying constant of the instrument was 100, and the addition

constant zero. Calculate the horizontal distance from A to B, and

the height of peg A above the axis level of the instrument. (Inst.

C.E., April, 1947.)

10. It is required to contour an area of country in which there is a good

distribution of well-determined spot heights, but they are not sufficiently

close to enable contours to be drawn at the required interval of 10 ft.

Enumerate the various methods by which the area could be contoured,

assuming that the spot heights are easily recognizable both on the

ground, and if necessary on air photographs. Describe very briefly

the principle of the method used in each case. (Inst. C.E., April,

1947.)

11. An irrigation scheme is to be extended into a flat area about 150

miles by 30 miles, where there are no recorded levels and the gradient

is approximately 5 ft. in 100 miles. Part of the area is swampy but it

can be assumed that in the dry season it is possible to work on dry

groiind almost down the centre of the area.

Describe the instruments you would use and the field procedure

you would adopt to run a line of what, owing to the extreme flatness

of the country, would have to be precise levels, as close to the central

axis of the area as possible. There are no available bench marks and

all heights must be referred to an assumed water level at the supply

end. Vertical air photographs of the area are available but no maps
have been made from them. (Inst. C.E., April, 1955.)



CHAPTER IX

SETTING OUT WORK

Setting out work for a contractor or foreman is one of the most

important branches of engineering surveying. It is a subject which

is more closely related to simple field geometry than to ordinary sur-

veying, and it should present no difficulties to a student who knows

his elementary geometry and is familiar with the use of the steel band,

theodolite and dumpy level. The main problems to be considered

relate to the setting out of railway and road curves but, before pro-

ceeding to deal with these, we shall consider a few problems of a more

elementary kind.

1. Setting Out Gradients by Boning Rods.

If a couple of pegs have been set out at the ends of a predetermined

gradient or on a level surface, intermediate pegs can be established by
means of three boning rods. These consist (fig. 9.1) of three T-shaped

Fig. 9.1

wooden rods, each made up on a short board, about 12 in. long and
3 in. deep, set on, and perpendicular to, a wooden slat about 3 ft.

high and 3 in. wide. All these rods must be of the same height from

the top of the T-piece to the bottom of the supporting rod.

172
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Let A and B be the pegs at the end of the gradient which it is

required to set out. Set boning rods on A and B and sight along the

bop of them. An intermediate peg can be set to the gradient between

A and B by setting a third boning rod on top of it and driving it into

the ground until the tops of all three rods appear to be on line.

2. Setting Out Excavations for Foundations.

This work consists in putting in pegs to show the foreman the

limits of excavation. The points to be fixed are the main corners, or

changes of direction, although it is well to put in intermediate pegs
on all very long straights. The simplest method is to use short offsets

or offset triangles from well-fixed chain lines.

B

c J id eh

A
Fig. 9.2

Pig. 9.2 shows a simple case of laying out the excavation for the

abutment for a bridge, where pegs have to be put in at the points

C, D, E, F, G, H, I, J. The main face of the abutment is to be per-

pendicular to the line AB, and a line XZY is laid out perpendicular

to this line as close as possible to the edge of excavation. From this

line, which should be marked by a taut string stretched between tacks

on pegs, perpendicular offsets of proper lengths are laid off at the

corresponding distances from Z, the point where XZY is intersected

by AB. In this case the line XZY would best be set out by theodolite,

but the offset lines could be set out by the methods described on pp.

13-14 or by a special wooden
"
set square

"
with long sides of 4 or 5 ft.

3. Setting Out Slope Stakes.

One of the railway or road engineer's most common tasks during

construction is to lay out slope stakes marking the limits of excavation

for cuts or of fills for embankments. The sides of the cut or fill in this

case have to lie on planes of given slope; the given data are the width
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of grade, or formation, and the reduced level of the bottom of the cut

or of the top of the embankment.

In fig. 9.3 we have a section at right angles to the centre line of

the projected railway. The ground surface is indicated by the line

DEFGH and the earth has to be excavated to the line DBCAH, where

ACB is the bottom of formation, and C is the centre of AB vertically

under a centre peg at F. The sloping sides BD and AH are to lie on

a slope ofK units horizontal to 1 unit vertical.

Vig. 9.3

Continue the line AB right and left until it is intersected at the

points M and L by the verticals HM and DL from H and D, and through
H and D draw the horizontal lines HQ and DP to meet CF at Q and

P. Then HQ = MC and DP = LC are the horizontal distances for the

slope stakes at H and D from the centre line, and we see at once that

PD = CB + K x DL,

QH = CA + K x HM.

The work is done with a dumpy level and a box tape, and the pro-
cedure will best be illustrated by an example.

Lot AC = CB = 11 ft. and K =
1|, and let the reduced level or eleva-.

tion of AB be 373-66. We therefore want to find points D and II such

that PD = 11 4- fDL and QH = 11 + fHM.
Starting at a point of known elevation, carry levels forward to a point

near the projected cross-section. Let the height of collimation of the

level be 380-14. Then the grade reading, i.e. depth of formation below

height of collimation, is 380-14 - 373-66 = 6-48, and, if a staff were

placed at any point E, say, and the reading on it were 3'16, the cut there

would be (380-14
-

3-16)
- 373-66 = 3-32, which, as can be seen from

geometrical considerations, is also equal to 648 - 3-16. Hence, the cut

at any point is equal to grade reading minus staff reading, and the hori-

zontal distance from the centre line of a slope stake at a point such as D
must be equal to 11 + f (grade reading staff reading). Accordingly,
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the process consists in taking readings at various points along the line

ED until one is found where this relation between horizontal distance

and staff reading is satisfied. For example, after some trials it was found

that the distance of D from the centre line was 164 ft. and the staff reading
2-9. Hence, as 164 = 11 + |(6-5

-
2-9), D is the point where the slope

of the cutting meets ground surface, and is the point where the right-hand

slope stake should be put. Similarly, at H the staff reading was 4-7 at

distance 13-7 ft. from the centre line, and this is the point where the left-

hand slope stake should be driven. At these two points the surface of the

ground is 3-6 ft. and 1-8 ft. above formation level, and these points would

be indicated by a small peg level with the ground and with witness stakes

alongside. The stakes would be marked on one side with the chainage
of the section and with a minus sign (to indicate cut) and the depth from

formation level to ground level, i.e. 3-6 and 1-8 respectively, and on

the other side with the distances 164 R and 13-7 L.

It should be rioted that, when formation is on a gradient, the grade

reading will change at every section, or at different chainages. So long

as formation is level, there will be no change of grade reading from section

to section for a single set-up of the level.

If the ground level were very uneven, levels would be taken at the

points E and G at distance 11 ft. from the centre, and in any case one

would also be taken on a peg flush with the surface at F. If the staff

readings at the points were 3-2, 3-9 and 3-7 respectively, the cuts would

be 3-3, 2-6 and 2-8. These would be marked with the chainage and with

a minus sign on one side of the witness stakes, and with the figures 11 R,

11 L and C.L. on the other. The whole section would then be shown on

the right-hand page of the level book as follows:

-1-8 -2-6 -2-8 -3-3 -3-6

TPT ~TT ~~(T~ "IT T64'

the booking on the left-hand page being in the usual form. The top figures

indicate depth of formation below ground level, i.e. the necessary cut, and

the bottom figures the distances left and right from the centre.

In a similar manner, it is easy to show that, for a fill,

Fill = staff reading grade reading,

and horizontal distance from centre line to slope stake = half width

of formation + K (staff reading grade reading). Hence, ground level

is below formation level (fill)
when the staff reading is greater than the

grade reading ,
and ground level is above formation level (cut) when the

grade reading is greater than the staff reading.

When cuts and fills are light, and the longitudinal slope of the

ground is small and fairly regular, the interval between sections where
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slope stakes are inserted is generally 100 ft.
; where, however, the slope

is very uneven, or cuts and fills are heavy, the interval between sections

is reduced to anything from 10 to 50 ft. Slopes stakes should also be

put in at all places where the change from cut to fill takes place at

both sides of formation and on the centre line.

4. Transferring Bearings and Levels from Ground Surface to Lines

Underground.

The problem of transferring bearings or directions and levels from

ground surface to lines underground arises in mining and tunnelling
work. For long railway tunnels, where work started from both ends

has to meet accurately in the middle, the instruments used for setting

out are generally larger and more accurate than the ordinary engineer's
instruments.

Transferring a bearing down a shaft requires very careful and

accurate work because it necessitates prolonging a line underground
from marks whose distance apart is not greater than the diameter of

a shaft. The method consists in lining in on the surface two fine piano
wires carrying heavy plumb bobs, and then setting a theodolite under-

ground in line with these wires. The wires are either directly attached

to, or pass over, a pulley carried by a frame which is supported on

heavy timber baulks laid across the top of the shaft and bolted down
to rigid supports. This frame is usually provided with a fine-motion

lateral movement enabling the wire to be moved at right angles to the

direction of the line to be transferred. The plumb bobs at the bottom

of the shaft swing in vessels containing water or oil so that their oscilla-

tions may be damped down as much as possible. The tops of the wires

are lined in by theodolite on the surface and another theodolite is lined

in underground as far away as possible from the wires. After the lower

theodolite has been lined in and sighted on the wires, intermediate

points and forward points can be lined in as required*. It is, of course,

necessary to ensure that the wires do not touch the sides of the shaft

at any point of their length.

The wires, if need be, can be illuminated by lamps screened by

tracing cloth. Some form of illumination of the cross hairs of the

theodolite is also necessary when it is used underground.
Levels can be transferred by making marks at the top and bottom

of the wires and levelling to and from these marks, the distance between

* For cases where space underground prevents the theodolite being lined in with
the wires see Appendix, pages 268-269.
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being carefully measured on the surface with steel tapes or bands.

Alternatively, levels may be brought down by measurements vertically

along the slides or guides in which the cage works. When the depth
to be measured exceeds a tape length, temporary platforms must be

fixed in the shaft to enable a chain man to hold the end of the tape
as the cage descends to the end of the next tape length.

SETTING OUT CUKVES BY THEODOLITE

Setting out curves, or curve ranging, is necessary during the ex-

cavation stage of railway construction to give the centre line of the

earthworks to the contractor or foreman. Later, during the plate-

laying stage, it is necessary to lay out the line on the completed for-

mation for the guidance of the plate layer when laying down the rails.

Curves are necessary when the direction of the line changes.
There are two main classes of curve with which the railway or road

engineer has to deal. These are

(A) Circular Curves.

(B) Transition Curves.

Circular curves, as their name implies, consist of arcs of circles,

and they may be divided into three classes:

(1) Simple curves; (2) Compound curves; and (3) Reverse

curves.

A simple curve consists of a single circular curve tangential at its

ends to two intersecting straights or tangents.

A compound curve consists of two circular arcs of different radii

with curvatures of the same sign, the centres of the circles both lying

on the same side of the curve. The curves join on directly to one

another; they have a common tangent at their point of contact and

at their other ends are tangential to the intersecting tangents.

A reverse curve consists of two circular curves, tangential at their

point of contact, but curving in opposite directions. At their other

ends the circular curves are tangential to the intersecting tangents.

Transition curves are special curves, not circles, introduced where

a tangent joins a curve or where two curves of different curvature, or

different direction of curvature, meet. The object of transition curves

is to introduce cant or superelevation and change of curvature gradu-

ally, and so to avoid sudden changes in the value of the horizontal

acceleration due to the centrifugal force caused by curvature.

7 (G467)
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5. Specification of Circular Curves.

In England curves are generally defined by the lengths of their radii,

but on the American continent they are specified by the number of

degrees in the angle subtended at the centre by a chord of a specified

length, usually 100 ft. Thus a 3 curve is a circle, or part of one, in

which a chord 100 ft. long subtends an angle of 3 at the centre.

6. Relation between Radius and Degree of a Circular Curve.

In fig. 9.4, ACB is a chord of length I which subtends an angle D
at the centre of a circle of radius R.

A^-^ C *-^3 From draw 00 perpendicular to ACB.
Then

I

2 sin

50

sin .VZ
,
when 1 = 100.

This gives the exact relationship

between R and Z), but in practice an

approximate, but far more convenient,

rule is generally used in all cases where extreme accuracy is not

needed. This rule depends on the fact that the sine of a small angle

is not very different from the radian measure of the angle itself.

Let R be the radius of a curve of degree D. Then

and so

R sn---
sin

I

2 sin ^Dl

Z), . . .

__i approximately.D J

If D1
== 1 and I = 100, R^ = 5729-6 = 5730 approximately, and hence

.

This rule may be used in all ordinary railway and road work so

that, iSD 3, we take R as 5730/3 = 1910.
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Again, when D is a small angle expressed in degrees,

R =
Dr'

where r is the number of radians in one degree. Also, if ^ is another

chord length on the same curve and Dl the corresponding angle at the

centre,

' '

Dr

7. Tangent Lengths of a Circular Curve.

The first thing to be done in ranging out a circular curve is to find

the intersection of the tangents, measure the angle of deflection, and

calculate the distances of the beginning and end of the curve from the

point of intersection of the tangents. Let C in fig. 9.5 be the point of

intersection of the tangents, A and B the beginning and end of the

curve of radius R, and / the angle of deflection, or intersection angle,

of the tangents AC and BC. We need the distances CA and CB, which

are called the tangent kngths, A and B being called the tangent points.
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From the figure ^AOB = 7, and Z.AOC = Z.BOC = |7. Hence

AC = AO tan AOC
= R tan \1

= BC.

Also, it will be seen that the chord length AB is given by

AB = 272 sin \I9

and the arc length AB by

arc AB = 727 X -~ = 0-01745J27,
180

or arc AB = I X approximately.

The intersection of the tangents AC and BC can be found by lining

in with the theodolite two pegs with tacks on the line AC, well on

either side of where CB appears to cross it. Two similar pegs and

tacks are driven in on CB, when strings stretched between opposite

tacks will give the point of intersection. Hence, having established C
and measured the angle of deflection there, distances CA and CB
chained from C such that CA = CB = R tan |7 or (5730/7)) tan 7 will

give the first and second tangent points, or end points, of the curve.

These points should each be marked by a stout peg with a tack on

the centre line, and they should also be referenced (see p. 116), as

should be point C. For the case where C is inaccessible, see p. 183.

8. Setting Out a Circular Curve by Deflection Angles.

In setting out flat circular curves, i.e. circular curves of large
radius and small degree, it is usual to put in pegs at the end of every
chain length on a through chainage. The point A will seldom be at

the end of a chain length and hence, to complete the first chain length,
the first point on the curve will be at a distance less than I from A.

Let b in fig. 9.6 be the first point on the curve, and let the chord Ab
=

kj,y where k: is a fraction less than unity. This chord will subtend

an angle Dl at the centre of the circle, where 7)x
= (kJ/tyD = k-J),

D being the degree of the curve or the angle subtended at the centre

by a chord of length I. Now, by a well-known theorem in geometry,
the angle between the chord and the tangent at one end of it is one-

half of the angle subtended by the chord at the centre of the circle.
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Hence, as AC is tangential at A, the first deflection angle St = CAb =
DX
= \kj). Accordingly, b can be found by setting up the theodolite

at A, sighting along AC, turning off the angle 8l = \kv
D and measuring

the distance Ab = J^l along the direction so laid out.

Again, be is the next full chord length, and hence Z.bOc = D.

Consequently Z.AOc = D
l + D, and hence the deflection angle at

A is /.CAc = (#! + D) = SJL + S, where S = \D. Thus, c may be

found by turning off the deflection angle 8t + 8 and chaining out be = I

from b so that c lies on the direction indicated by the theodolite.

In a similar manner, the deflection angle for the third point will be

Si + 8 + 8 = Si + 28, and so on.

Proceeding in this way, we come to a point near the end of the

curve, say at the end of n chain lengths or points, where the next

chord length is less than I. Let k2l be the length of this short chord

length, where k% is a fraction less than unity, and let dB in fig. 9.6

be this chord. Then kj, + (n 1)1 + kzl should be very approximately

equal to the length of the curve, which is O017457J/, or Il/D. Also,

angle BOd = (dB/Z)D = kJD, and the deflection angle BAd is z.BOd =
%k2D = &28. Accordingly, the last deflection angle is &2 times the

deflection angle for a standard chord length Z, and the total deflection

angle from the tangent AC is CAB = 8l + (n 1)8 + 82 = JZ. Point

B has already been fixed as a tangent length from C and hence the
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setting out of the curve can be checked by laying out angle CAB and

measuring dB = k2l.

Example. The chainage of the intersection point of two tangents is

3428 + 46-2 ft. and the angle between them is 8 56'. It is desired to join

them with a 2 left-hand curve. Find the chainages of the beginning and

end points of the curve, and draw up a table of deflection angles for every

chain length (100 ft.) along the curve.

50
By the precise rule R = - - = 2864-93.

J
sin 1

5730
By the approximate rule R = = 2865.

2

Taking the latter value, the tangent distance

AC = 2865 tan 4 28' = 223-8.

Hence chainage of A =
(3428 + 46-2)

-
(2 + 23-8)

= 3426 + 22-4.

QO K//

Length of curve = -^- x 100 = 446-7.
2

Hence chainage of B =
(3426 + 22-4) + (4 + 46-7)

= 3430 + 69-1.

Deflection angle per 100 ft. = $ x 2 = 1.
77 .A

Deflection angle for first chord of 77-6 ft. = x 1 -
46J'; and

X \J\)

69-1
deflection angle for last chord = x 1 =

41J'.
AU\/

Hence total deflection angles for different through chainages are:

Chainage Deflection angle

3427 46'
3428 1 46|'

3429 2 46J'

3430 3 46^'

3430 + 69-1 4 28'

In this example, we have taken a curve defined in terms of D, the

degree of the curve. If the curve is denned in terms of R, the radius,

Z), can be calculated and the computation proceeds as before.
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9. Obstacles to Curve Ranging when using Deflection Angles.

If the point C in fig. 9.5 (p. 179) is inaccessible, as in fig. 9.7, put

pegs at intervisible points D and E on the tangents AC and BC, and

at D and E observe the angles CDE and CED. Measure the distance

DE. Then / = Z.CDE + Z.CED and

CE CD
sin CDE sin CED

DE
sin I*

Fig. 9.7

Thus, the angle 7 and the tangent lengths CA and CB can be cal-

culated. CD and CK can also be calculated, and from these distances

the lengths DA = CA CD and EB = CB CE can be chained, and

A and B located.

Now suppose that A and B are not intervisible, and that the point

C in fig. 9.8 having been laid out, other points beyond C cannot be

seen from A. In the figure, CD is the tangent at C and DAC = 8 C is the

deflection angle ofC at A. By simple geometry, angleDCA = DAC = Sc .

Hence, if the instrument is set up at C and sighted at A, it can be set

to point along the tangent at C by turning oil the angle 8 C to the right.

On transiting the telescope, the latter will point in the direction DC

produced, and hence other points can be laid out by turning off the

same deflection angles as would be used if C were the commencing

point of a new curve to which DC was a tangent.

In this last case it has been possible to set out the curve as far

as a point C, from which. B and all points lying between C and B can

be seen. In fig. 9.9, however, having got as far as d, other points



184 SETTING OUT WORK [CHAP.

between d and g cannot be seen owing to a large building. One way
of dealing with the problem would be to run the remainder of the

curve in the reverse direction from B, but this may not be convenient.

An alternative method is to set off the deflection angles at A until

one is obtained in which the line of sight clears the obstacle. Let

Fig. 9.8

CAg = a be this deflection angle. Then the angle subtended at the

centre by the chord Ag is 2oc, and the length of Ag can be accurately

calculated from Ag = 2R sin a. Hence, chain this distance from A,

so obtaining g. Set up the theodolite at g, sight A, and turn ofi an angle

a to the right of gA. This will bring the line of sight tangential to the

curve at g, and hence points to the left and right of g may be set out

in the usual manner.

Fig. 9.9

Three cases of inaccessible end points may arise. In the first, the

first tangent point A is not accessible. Set out points D and E, fig. 9.10,

and determine the distance DE by one of the methods already described

in Chapter VII. This will give the chainage of E and, as the chainage
of C is known, and that of A can be calculated, the distance AE is

known. Calculate the offset EF to the curve from

= AO - GO = R - - AE2 = R - - AE) (R + AE)}
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and lay out a peg at F. Now run in the curve from B and check on F,

where the chainage of F can be calculated from the chainage of A and
the angle subtended by AF at the centre, where

OF
~"
OF

~
R

'

Alternatively, assume 8 as the value of the deflection angle of a

point F on the curve (fig. 9.11) such that the tangent at F will inter-

sect the tangent AC at A at a point G which is clear of the obstacle.

Then AG = R tan 8. Hence, since the chainage of A can be calculated,

we know the chainage of G. Put in a peg at G and set the instrument

Fig. 9.10

there. From G lay out GF = AG making angle CGF = 28. This gives

the point F on the curve. If the instrument is set up at F, and sighted

on G, it will be aligned on the tangent at F and the curve can now be

laid out in both directions from F.

If the second tangent point is inaccessible, the curve can be laid

out as far as possible from the first tangent point. The problem now

is to establish the chainage on the second tangent beyond the second

tangent point.

In fig. 9.10 let B be the first tangent point, F the last chainage point

to be established on the curve, and let D be a point on the tangent

CA whose chainage is required. From F drop a perpendicular FE on

the tangent AC, measure the distance CE, and determine the distance

ED. Then, distance CD = CE + ED and distance CA can be cal-

culated. Hence AD = CD CA. The chainage of A can be computed
from the chainage of B and the length of the curve, and so the through

chainage of D can be found.

7t (0467)
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When both tangent points are inaccessible, establish the point F
as in figs. 9.10 or 9.11, and run in the curve from that point to a chainage

point as close to B, the end tangent point, as possible. Then proceed

as before to determine the chainage of a point on the tangent on the

far side of B.

C

Fig. 9.11

10. Setting Out Circular Curves by Two Theodolites.

This method consists in setting up a theodolite at each tangent

point and working out the deflection angles from the tangents. The

theodolites are then set to read corresponding deflection angles and

points set out to lie on both lines of sight (fig. 9.12).

Fig. 9.12

SETTING OUT CURVES BY CHAIN AND STEEL TAPE

Curves on railways should normally be set out by theodolite and

chain but short curves may be set out by the chain and steel tape alone;

this method is also applicable where great accuracy is not required,

or when short curves marking curves of buildings, curved wing walls,

etc., have to be set out.
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11. Location of Tangent Points.

If the positions of the tangent points are not known, find and
mark the intersection C of the tangents. From C, fig. 9.13, lay off

equal distances CD and CE along the two tangents. Measure PE,
bisect it at F and measure the distance CF. Then, by similar triangles

CDF and COA,
CA = CF
AO DF'

.
-

Hence A and B can be found by computing CA and measuring this

distance along the tangents from C in the directions CA and CB.

12. Setting Out Circular Curves by Offsets from Tangents.

In fig. 9.14, AB is tangent at A to curve. Offset CD at point C is

given by

CD = AO - EO = R - V/22 - ED2 = R - V(R - AC)(R + AC).

Again, from the properties of the circle,

AE(2jR AB) = ED2
.

ED2 AC2

Hence, for short offsets, CD = AE = - = # approximately when
AK &K

AE is small in comparison with R.
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13. Setting Out Circular Curves by Offsets from Chords.

In fig. 9.15 we require the offset EF at the point E on the chord

AB. Then, C being the mid-point of AB,

CD = R - V(R - CB)(R + CB),

GD = R - V(R - GF)(B + GF)

= R - V(R - GK)(R + CE).

.-. EF = CG = CD-GD
: V(R - CE) - V(R - CB).

When CD and GD are small in comparison with R,

CE2

.'. EF =_ CB2 - CE2 _ (CB - CE)(CB + CE)

The curve can also be set out by laying out the effect CD at the

centre point C of AB using

CB2

Join DB, fig. 9.16, and at E, the mid-point of DB, erect offset EF,
where

EF-?-?!'

Similarly, points may be established at the mid-points of DF and FB,
and so on.
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14. Setting Out Circular Curves by Deflection Distances.

In many cases when laying out curves by chain and tape a through

chainage is not needed, and we can start straight away with a chord

of a whole chain length.

Hold one end of the chain at the tangent point A, fig. 9.17, and

swing the other end until the right-angled offset Mb from the tangent

is equal to ,
where I is the length of the chain. This locates the

2/i

first point b on the curve.

N

M

Fig. 9.17

Produce Ab to N, making bN = Ab = Z, and pivot one end of the

chain about b until the distance Nc from N to the other end is equal

to I
2
IE. Then c is the second point on the curve.

In a similar manner produce be to P so that cP = be = Z, and make

Pd = p/R and cd = I, thus locating d, a third point on the curve;

and so on.

To check the work at the end point B, the distance from the last

point to B will be less than I. Let d in fig. 9.17 be the last point before

reaching B. Produce cd to Q and locate S such that dQ = I and QS
=

l*/R. Bisect SQ at T. Then dT is the tangent to the curve at d.

Let Zj be the distance dB. Chain this distance from d along dT, and

at the end of it lay out a right-angled offset = 11
2
/(2R). The point so

obtained should coincide with B.

To show that Nc 1
2
/R, we have, since OA =* Ob = Oc and Ab

be =
I, /.ObA = Z-Obc. Hence, zlNbc - 180 -

(Obc + ObA) -



SETTING OUT WORK [CHAP.190

180 - 20bc bOc. Consequently, triangles bNc and bOc are similar

and

Nc = be

be Ob'

.'. Nc
be2 _ J

Ob R'

Note also that this relation is exact, but that the value Mb
the right-angled offset at M is only approximate.

l*/(2R) for

M

M

If, as in the case of a railway or road survey, it is desired to main-

tain a through chainage with pegs at every chain length, and A is

not at a whole chainage mark, let Zx be the

length between A and the next whole chainage

mark. Hold one end of chain at A and find

point b, so that Ab = Zx and the right-angled

offset Mb to b from the tangent at A is

equal to l^/(2R) (see fig. 9.18). Similarly,

find point b
7

on the other side of A, such

that Ab' = I li and the right-angled offset

M'b' to b' is equal to (I
- l^/^R). Then

b and b' are both points on the curve.

Produce bb' to N making bN bb' = i, and

find c so that Nc = 1
2
/R and be = I. The

point c is thus another point on the curve

Fig. 9.18 an(l the work from there proceeds as before.

COMPOUND CURVES

Let the tangents AD and CD in fig. 9.19, which intersect at D,

be joined by the circular curves AB of radius Rl and BC of radius

R2 ,
and let EF be the common tangent at B meeting AD and CD at

E and F respectively. Then Ox and 2 ,
the centres of the curves, lie

on the straight line B01 a perpendicular to EB.

The angle of intersection CD of the tangents having been observed,

the known elements are Rl and R2 and to. In addition, we must know

either the chainage of A, or of B, or else one of the angles <f)
or which

the tangent EF makes with AD and DC. Usually, the chainage of one

tangent point, say A, will be scaled from the plan and, the chainage

of D having been found in the field, the tangent length AD = Tl can
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be obtained. The parts now required are 0, <j>
and CD T2 , and, when

these have been obtained, we have all the data required to lay out the

two circular curves by the methods already described.

Fig. 9.19

From the figure,

and

But

40 <P> EF sin to'

AD = AE + ED

1
sin co

EF = EB + BF = /?! tan -
2 + R2 tan \B.

_ i , , n , 1 n\ sin
Hence Tx

=
i tan^ + (J^. tan \<f> + R2 tan *#) -=--

^.

sin co = ^ tan \<f> (sin + sin co) + J22 tan \0 sin

= # tan J(co 0) (sin + sin w) + sin2

_ P
- g

) / 2 sin

-fl)l
cos -

6)}

- 2#! sin |(co
-

0) sin -

2 (co + 0) + /^(l
- cos 9)

=
Jf?! (cos cos co) + R2(l

cos 0)

- ^{(1
- cos co)

-
(1
- cos 6)} + #2(1

- cos 6)

= (2 jRl)(1 C S ^) + ^l(1
" C S ^

(#2
__ Rj versin + Rl

versin co.



192 SETTING OUT WOKK [CHAP.

T19 <o, R2 and Rl being known, can be found from this equation

and < from < = co 6. The other tangent distance T2 can then be

calculated from a similar expression to that involving 2\, namely

Ta sin o> = (Rl #a)
versin < + R% versin o>.

If the curve is started at A, the length of the curve AB can be

calculated and the point B laid out on the ground. The theodolite

is then moved to B, sighted on A, and angle ^ turned oil to the right.

This will cause the instrument to sight along the tangent BE or BF,

and from there the curve EC may be run in to check on the point C

which has been fixed from D. The point B can also be fixed by measur-

ing off AE = #! tan \<j>
and OF = R2 tan $6, and then chaining EB =

AE on the line EF, thus affording another check.

REVERSE CURVES

Reverse curves may be considered to be special cases of a com-

pound curve in which the curvature of one curve is negative with

respect to that of the other, and for which the formulae of compound

curves hold with a change of sign in some of the terms. Thus, for

the case shown in fig. 9.20, where AD = I\ and DC = T2,

Tl
sin aj = R

1
versin o> (B^ + R2) versin 0,

T2 sin co = (Rl + fia) versin < #
2
versin o>,

and we also see from the geometry of the figure that a) =
<f>

9.

These formulae can easily be derived in the same way as the formulae

for compound curves were derived.
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Three other cases are illustrated in fig. 9.21, and the reader may be

interested to verify for at least one or two of them that the same
formulae hold for these cases, except that the signs of the terms on the

right in the expression for 2\ sin co are reversed in all three cases,

T! sin = a + 6

T8 sin o> = -j- c d

(a)

T! sin co = a -f b

T2 sin <o = c

(b)

Fig. 9.21

Tj sin o) = a + 6

T2 sin co -- + c d

(c)

and the signs of the terms on the right in the expression for T
2
sin <o

are reversed in the cases of fig. 9.216. The signs of the terms are given
under each diagram in which a = R versin at, b = (/2X + fia) versin 0,

c = (Bj + jR
a) versin

<j> 9
d = Rz versin cu.

CROSS-OVERS

A special case arises when the tangents are parallel and to is zero.

Both T
l and T2 are then infinite

and the case becomes that of a

cross-over from two parallel sets of

rails (fig. 9.22). Here, if EF is the

common tangent at B, Z.BAE =
^EBAandZ.BCF = Z.FBC. But,

since AL and ON are parallel,

Z.FEL = Z.EFN. Now Z.FEL =
2 ^BAE and Z.EFN = 2 ^BCN,
so that Z.BAE = Z.BCN, and con-

sequently ABC is a straight line. Also, sioce AOX is parallel to C0a,

Fig. 9.22



194 SETTING OUT WORK [CHAP.

Through B draw BP parallel to AL and ON. If p is the perpen-

dicular distance AQ between the two tangents

p = AQ = AP + PQ
= RI versin < + R2 versin

= (Rl + R2) versin
<f>.

/. versin
<f>
= p/(Rl + R2),

and, knowing p, Rl and R2 , <f>
can be found. This gives the data to

compute the positions of B and C, and to enable both curves to be set

out. Moreover, as both curves are short, setting out can, if necessary,

be done by short offsets from the tangents or from the chords.

TRANSITION CURVES

Transition curves are curves of varying curvature which are used

in combination with cant or superelevation (i.e. making the outer rail

higher than the inner), to minimize the effects of sudden changes in

centrifugal force when the path in which a vehicle is travelling under-

goes a sudden change in curvature. Transition curves are therefore

introduced at the beginning and ends of circular curves. Their cur-

vature is zero where they join on to a tangent; it is equal to the cur-

vature of the curve where they join on

2 ^ * to a circular curve, and it assumes inter-

Mv \ \ mediate values in between.
R

\ \

15. Cant on Circular Curve.

In fig. 9.23 the centrifugal force acting

on a vehicle of mass M travelling with

a velocity v ft. per second on a circular

curve of radius R is Mv2
/R. This force

acts in a horizontal direction, and the

force in the vertical direction is Mg, where

g is the acceleration due to gravity. If there is to be no sideways thrust

along the road surface, which is inclined to the horizontal at an angle

a, the resolved forces acting in a direction parallel to the road surface

must equalize one another. Hence,

JUTcos a = Mg sin a
R

V*
or tan a = ;

gR
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or, where a is small and expressed in radians,

gR'

If d is the width of the road bed in inches and c is the amount of cant

or superelevation in inches on the outer edge,

c = d sin a

= d . a approximately

Assuming that g is 32*2 ft. per second per second, R is in feet, F
is the velocity of the vehicle in miles per hour, and that, with a standard

gauge of 4' 8J" between rails, the width between centres of rails is

4' 11", this gives for a railway curve with c in inches:

___
3-9F2

RT*

If no transition curve is provided, cant may be introduced in several

different ways. One method is to introduce it gradually on the straight,

to reach its full value at the point of tangency. Otherwise, it may
be introduced gradually on the curve, or else a combination of the two

methods may be used. All of these methods are objectionable because

they ignore the rule that the amount of cant should be proportional

to the curvature at every point. Consequently, the usual practice is

to introduce transition curves in which the proper relation between

cant and curvature is maintained throughout for a certain definite

and assumed standard velocity. In practice, however, in railway

work cant is seldom allowed to exceed 6 in.

16. Lengths of Transition Curves.

The length of a railway transition curve is now generally calculated

in this country by a rule which was proposed by Mr. W. H. Shortt in

1908 and is based on the assumption that a passenger will suffer no

inconvenience if the rate of change of acceleration does not exceed

1 ft. per second per second per second. Let a be this rate of change,

I the length of the transition curve at any point P measured along

the curve from the tangent point, L the total length of the transition

curve up to the point of tangency with the circular curve, r the radius

of curvature of the transition curve at P, R the radius of the circular
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curve, and t the time taken to travel from the origin to the point P.

Then, in differential notation,

Rate of change of acceleration at P

T> 4.But v = --,
at

consequently, putting the rate of change of acceleration equal to a

and substituting for dt,

, AA dl

d(-) = a-.
\ r / v

o
(jl

Integrating, = + a constant.
r v

But r = oo when I = 0, and r = R when I = L. Hence

aL^tf
v R'

7-*."
off

When L and R are infect, V is the velocity in miles per hour, and a = 1

ft. per sec.3, we have

3-155F3

Ju = -

R

In the United States, the length of a transition curve is commonly
made to depend on the time rate of increase of cant, the maximum
allowable for the usual 4: ft. 8 in. gauge being 7/6 in. per sec. This

gives

.-!,

or, substituting the value of c found above,

3-9P _ 7 L
R 60'
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Thus, the American rule, which is that recommended by the American

Railway Engineering Association, is exactly similar in form to the rule

commonly used in this country but embodies a higher valued constant,

giving a longer curve for the same

speed of vehicle and the same radius

of the circular curve.

17. Derivation of Equation of Tran-

sition Curve.

In fig. 9.24 let P be any point on

a transition curve, distant I measured Fis- 9 -24

along the arc from the tangent point

at 0, and let A be the point where the transition curve joins the

circular curve of radius R. Let L be the length of the arc OA, r the

radius of curvature of the transition at P, and 9 the angle which the

tangent at P makes with the horizontal axis OX. Then, by the

ordinary formula for curvature,

If the cant is taken as increasing directly as I, its angular value at point

P is a = kl, where k is a constant representing the increase per unit

length. Hence V2

But at A,

dl LR'
n

=

and

the constant of integration vanishing as = when I 0. This is

the general equation, in intrinsic form, of a transition curve.



198 SETTING OUT WORK [CHAP.

By putting dy = dl sin 6, dx = dl cos 6, and expanding sin 6 and

cos in the forms

sin0 = 0-~ + ...; cos0 = l--
2
- + -

2i
-...

and then using the equations

-
2LR

to eliminate Z, we get by integration

/03/z e?/
2

\

^- + ...),

^
1 '2-^ +

...)

If S is the deflection angle from to the point P, we have

<=?+*+...,
x 3 105

which, as 6 may be taken as a small angle, is very approximately equal

to the expansion

so that we can take S = J0. Hence, for small angles, %* deflection angle

from the tangent point to a poittt on the curve is one-third of the angle

which the tangent to the curve at the point concerned makes with the main

tangent. This property is of considerable value in laying out the curve

by deflection angles.

From the above equations we may derive

_ ,

"

and so, after reversing the last series to get I in terms of x, obtain
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The second term in both expressions for y is very small, so that

we can take with sufficient approximation

6RL

The first of these equations is that of the cubic spiral and is a little

more exact than the second equation, which is that of a cubic parabola.
The latter curve, often called Froude's transition curve, is commonly
used as a transition curve because of the ease with which it may be

set out by offsets. For both curves, we may take S = ^0 and angle QPO
in fig. 9.24 (p. 197) as $0.

18. Geometry of the Transition Curve.

In fig. 9.25 let A be the beginning of the transition curve joining

the tangent AT to the circular curve of radius R and centre which

commences at B, and let BF, the tangent common at B to both circular

and transition curves, make angle (j>
with the tangent AT.

From draw the perpendicular OE on the tangent AT and produce

the circular curve in the direction of OE to meet OE at D. Through
D draw DHG parallel to AT, meeting BF in H, and through B draw

BC parallel to EF.

Then

and

= 2LBHG = 2lBFT = 0,

CD = R(l cos <) = R versin <.
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Also, by substituting L for I in the intrinsic equation of the transition

curve,

Again, the ordinate BJ from the tangent AT to B will be obtained by

substituting L for I in the formula for y. Hence

TU L* L*

ttj =- =- .

QRL 6B

But CD = R(l cos
<{>)
= R X <

2
approximately

=
~8R'

This quantity DE is called the sAi/fc. It is the amount by which

the circular curve has to be moved above the main tangent to make

room for the transition, and it is denoted by s.

Again CB = EJ = -R sin
<j>
= -R . = \L, so that, when the angle

*2R

BAJ is small, AE = AJ EJ = L \L = JL approximately, and

the ordinate to the curve at E is

Again, it will be seen from fig. 9.25 that, if a circular curve is to be

joined to the tangents at each end by similar transition curves, and

if the tangents intersect at an angle 7, the angle subtended at its centre

by the circular curve will be (/ 2<f>) degrees, and the length of the

circular arc will be (/ 2<) X -^
. In addition, if T is the inter-

180

section of the tangents, we have

ET = OE tan \I9

and, as AE is approximately equal to \L, AT, the tangent distance,

is given by
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19. Setting Out the Transition Curve.

The first step is to determine the tangent distance AT from the

intersection of the main tangents at T to A, the beginning of the

transition curve. For this purpose, calculate L from

T _ 3-155F3

R~'

and then determine the shift s from

If 7 is the angle of intersection of the tangents, the distance AT can

be obtained from the expression

AT = (R + s) tan \l + \L9

and so the chainage of A is determined.

If the transition is to be set out by deflection angles, these can be

computed from

* / -,. r x
P 180 X 60 2

8 (in minutes of arc)
= = X-

and for the point B, where the transition curve joins the circular curve,

SB = 573 I

In using these expressions, I is taken as some convenient chord

length, say 25 ft. The first deflection angle will therefore be 8X =
573 X (25)

2
-4- (EL). With the instrument at A and sighted along the

tangent AT in fig. 9.25, this angle is laid out and 25 ft. chained along

the chord, thus fixing the first point on the curve. The second deflec-

tion angle will be 82
= 573 X (50)

2 4- (EL) = 4^. This angle is laid

out from A and a distance of 25 ft. chained from the first point so that

the end point of the second chord lies on the line of sight of the in-

strument. The process is carried on with the other chords until the

final deflection angle is 8B = 573L/JR and the chord distance from the

end of the last whole chord length is L 25n, where n is the number

of chords already laid out.

When B is reached, the instrument is set up there, sighted at A, and

the angle 28B is turned off to the left. This brings the line of sight
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on to the direction of the tangent to the circular curve, when the latter

may be laid out by the usual methods.

If the curve is to be laid out by offsets from the tangent, the offsets

are calculated from
a?

where y is the offset and x is the distance from A along the tangent.

The offset of B is very approximately

where L has been written for x in the last equation.

Example. Two tangents which intersect at an angle of 37 46' are to

be connected by a circular curve of 2000 ft. radius with a transition curve at

either end. The chainage of the point of intersection is 3436 4- 46. Find

the chainages of the beginnings and ends of the three curves, and draw

up a table of deflection angles and inches of cant for chords of 50 ft. for

each transition curve. Assume that the velocity for which the curve is

to be designed is 50 m.p.h.

F3
(50)

3

Length of each transition curve = 3-155 x - - = 3-155 x -

= 197-2 ft.

Hence tangent distance = (R 4- s) tan \l 4- \L
= 2000-8 tan 18 53' 4- 98-6

= 684-4 4- 98-6 = 783-0 ft.

.'. Chainage of A -
(3436 + 46)

-
(7 4- 83)

=
(3428 + 63).

Chainage of B =
(3428 4- 63) + (1 + 97-2)

=
(3430 4- 60-2).

8B
= 573 \ = 56-5'.

tt

<}>

= 38B
= 2 49-5'.

Angle subtended by circular curve

= / - 2cf>
- 37 46' - 2 x (2 49-5')

= 32 07'.

TT x 32 07'
A Length of circular curve = 2000 x -

- 1121-1.
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.". Chainage of end of circular curve

=
(3430 + 60-2) + (11 + 21-1)

= 3441 + 81-3.

Chainage of end of second transition curve

=
(3441 + 81-3) + (1 + 97-2)

= 3443 H- 78-5.

Deflection angles:

_ 573 x (50)2 _
81
~ ~ 363 -

S2
= 4 x 03-63 = 14-5'.

33
= 9 x 03-63 = 32-7'.

(1Q7.9\

2

-)
x 03-63 = 56-5' (check).

Ov *

.
,

3-9F2 3-9 x (50)
2

.

ft
.

Cant on circular curve = - = ^^ = 4-9 m.
M ZUUU

50
Cant at Point 1 = -- - x 4-9 = 1-24 in.

iy *u

Cant at Point 2 = 2 x 1-24 = 2-48 in.

Cant at Point 3 = 3 x 1-24 = 3-72 in.

Cant at B = 4-9 in.

20. Vertical Curves.

Corresponding to transition curves in a horizontal plane, special

curves in a vertical plane are fitted on railways at all places where

there is an appreciable change in gradient. These are required to ease

the passage from one gradient to another.

The curve ordinarily chosen for a vertical curve is part of a parabola,

the length of the curve depending on the algebraic difference between

the gradients. If the gradients are expressed as percentages, one

commonly used rule is that

length of curve in feet = 100 X (a b)/Jc,

where a and b are the gradients as percentages and k is a factor which

is taken as 0-1 on summits and 0-5 in sags. Thus, at a summit, if the

two gradients meeting are a rise of 1 per cent and a fall of 0-3 per cent,
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(a 6)
= 1-3, since the second gradient is in a different direction to

the first and is therefore negative with respect to it, and the length of

the curve will be (100 X l-3)/0-l
= 1300 ft. A length of 650 ft. is then

chained in each direction from the point where the gradients meet,

and this will give the chainage of the beginning and end of the curve,

thus fixing the points A and B in fig. 9.26. The elevation of the mid-

point D of AB is now calculated, and from this, and from the known

Fig. 9.26

elevation of C, the point of intersection of the gradients, the depth

CD can be calculated. The middle of the curve will then be the point

E such that CE = |CD. Now, in a parabola, the ordinates from a

tangent are proportional to the squares of the distances from the tan-

gent point, and hence at the point F, the ordinate FG is given by

FG _ CE
FB2 CB2

*

The elevation of F having been calculated from the position of F
on the gradient, the elevation of G can now also be calculated.

21. Transition Curves on Roads.

Transition curves are now commonly used on roads. Here, if there

is no cant, the condition for stability is that, where the radius of the

curve is R, the centrifugal force Mv2
/gR should not exceed ju,M, where

p. is a coefficient, known as the coefficient of adhesion, which depends
on the nature of the surface of the road. Assuming p,

= 0-25 and that

R is in feet and V is the velocity in miles per hour, this gives

R = 0-267272
.

If we also assume Mr. Shortt's criterion of 1 foot per second8 as a
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suitable value for a comfortable rate of change of acceleration, we
obtain as before for the length L in feet of the transition curve

3-15573

R '

and, substituting in this the above relation between R and F, we have

L = 12F approximately

= 23\/JR approximately.

I

(a)

Fig. 9.27

The transition itself may be either a cubic spiral or a cubic parabola,

the latter not being suitable if the deflection angle from the point of

tangency exceeds 9, because the curvature then reaches a maximum,
after which it starts to decrease. The spiral

2RL
or =

is suitable up to a deflection angle of about 45, but, for deflection

angles greater than that, the lemniscate

where p is the deflection ray or chord for a deflection angle 8 and

is a constant, is often used. This curve, fig. 9.27a, is a closed curve in
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which the relation 8 = $0 is rigorously true, and it repeats itself in each

of the four quadrants as in fig. 9.276. Space prohibits a detailed descrip-

tion of it, but details will be found in Vol. I of Clark's Flaw and Geodetic

Surveying for Engineers, or, in more complete form, and with tables

for its calculation, in Professor F. G. Royal-Dawson's book Elements

of Curve Design for Road, Railway and Racing Track on National

Transition Principles.

QUESTIONS ON CHAPTER IX

1. Calculate the radius of each of the following circular curves:

11 9 ** 4. f^Af >
^

> *
>
*

> 3

Calculate the radii of the last three by the rigid formula, and compare
the result with that obtained from the approximate formula.

2. What are the "degrees" of the circular curves of radii 2292 ft.;

1637-2 ft.; 1273-3 ft.?

3. The chainagc of the point of intersection of two tangents is 264 -f 69

ft., and the deflection angle measured to the right from the forward

direction of the first tangent, is 60 28'. The tangents are to be joined

by a circular 3 curve. Calculate the dunnages of the tangent points,

and tabulate the deflection angles from the first tangent point to

give a through chainage with pegs at the end of every 100 ft. of the

chainage.

4. What superelevation would you recommend for a 3 curve for an

average velocity of 40 miles per hour ? Assume that the distance between

rail centres is 4' 11".

5. A circular curve for a mineral railway is to be set out, with a radius

of 1500 ft., connecting two straights which intersect at 150 (i.e.

one straight deflects from the other at an angle of 30). The chainage
at the intersection point is 84 + 42. Calculate the chainage at the

tangent points, and the tangential angles necessary for setting out

the curve with a 100-ft. chain and theodolite. (Inst. C.E., April,

1946.)

6. In setting out a circular railway curve it is found that the curve must

pass through a point 50 ft. from the intersection point, and equidistant
from the tangents. The chainage of the intersection point is 280 -f 80,

and the intersection angle (i.e. deflection angle) 28.
Calculate the radius of the curve, the chainage at the beginning

and end of the curve, and the degree of curvature. (Inst. C.E., October,

1947.)
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7. A circular curve of 2250 ft. radius, with cubic parabola transition

curves each 180 ft. long, is to connect two straight lengths of railway
line which intersect at an angle of 135 (i.e. one straight deflects from

the other by 45). If the chainage of the intersection of the straights

is 79 + 42 ft., calculate the chainage of the beginning and end of

each part of the circular curve, and the tangential angles for setting

out the circular curve with a theodolite and chain. (Inst. C.E., October,

1945.)

8. Calculate the lengths of a spiral transition curve on a railway to join

on to a 3 circular curve suitable for a velocity of 60 m.p.h., and cal-

culate the deflection angles necessary for setting out the curve at the

ends of 50-ft. chords. Describe how you would set out the circular

curve from the end of the transition curve.

9. An up-grade of 1 per cent joins a down-grade of 0'5 per cent at a point
whose chainage is 374 + 50 ft., and whose reduced level is 468-26 ft.

Calculate the chainages of the beginning and end of a suitable vertical

curve to join these gradients, and tabulate the reduced levels of points
on the curve at 100-ft. intervals.

10. It is required to range a simple curve which will be tangential to three

straight lines YX, PQ and XZ, where PQ is a straight, joining the

two intersectiDg lines YX and XZ. Angles YPQ - 134 50'; YXZ =
72 30'; PQZ = 116 10' and the distance XP = 5-75 chains.

Compute the tangent distance from X along the straight YX and

the radius of curvature. (Inst. C.E., October, 1953.)

11. An uphill gradient of 1 in a 100 meets a downhill gradient of 0-45 in a

100 at a point where the chainage is 61 + 00 and the reduced level is

126 ft. If the rate of change of gradient is to be 0-18% per 100 ft.,

perpare a table for setting out a vertical curve at intervals of 100 it.

(Inst. C.E., October, 1956.)

12. Two straights AI and BI meet at I on the far side of a river. On the

near side of the river a point E was selected on the straight AI and a

point F on the straight BI and the distance from E to F measured and

found to be 3-40 chains. The angle AEF was found to be 165 36'

and the angle BFE 168 44'. If the radius of a circular curve joining

the straights is 20 chains, calculate the distance along the straights

from E and F to the tangent points. (Inst. C.E., October, 1952.)



CHAPTER X

GROUND AND AIR PHOTOGRAPHIC SURVEYING

GROUND PHOTOGRAPHIC SURVEYING

The circumstances in which ordinary ground photographic surveying

is mostly useful are when small-scale surveys have to be made of very

mountainous, or similar, country which in the ordinary way is in-

accessible. In such conditions, either ground or air photographic sur-

veys are sometimes the only practicable method. Ordinary ground

photographic surveying usually simply called photographic surveying

is not much used in Great Britain, but the principles upon which it

is based serve as a useful introduction to some of those involved in

air survey methods.

1. Formation of the Image in a Surveying Camera.

The ordinary surveying photo-theodolite, as described in Chap.
VIII of Principles and Use of Surveying Instruments, consists of a

special camera mounted on what is essentially a special form of theo-

dolite. At the back of the camera, immediately in front of the photo-

graphic plate, are a vertical and a horizontal hair which intersect at

right angles at the centre of the plate, and images of these hairs are

formed on the plate when it is exposed and developed. The intersection

of the images of the hairs is called the principal point and, when the

camera is in proper adjustment, this point coincides with the point

where the optical axis of the lens meets the plate. The image of the

horizontal hair in the plate is called the horizon line and that of the

vertical hair the principal line. A horizontal plane through the horizon

line is called the horizon plane and a vertical plane through the principal

line is called the principal plane.

In some cameras the hairs are replaced by collimating marks, which

show up on the top and bottom and side edges of the photograph.
Lines drawn through opposite collimating marks give the horizon and

principal lines.

The lens of the camera behaves in a similar manner to the lens of a

telescope in that the images of distant points are brought to a focus

208
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in a vertical plane at a constant distance, the focal length of the lens,

behind the latter, and rays passing in any direction through the optical
centre of the lens continue as straight lines in their passage through
and out of it.

In fig. 10.1, is the optical centre of the lens and bpa, which is

at right angles to pOP, the optical axis of the lens, is the line of inter-

section of the photographic plate with a plane containing pOP and
a distant point A, p being the principal point of the plate and Op the

focal length of the lens. Then the ray AO from A will form an image
at the point a, where the line AO continued meets the plate. Similarly,

Fig. 10.1

any point B lying in the plane AOP will form an image at b, where

BOb is a straight line, and other points in ditierent planes passing through
pOP will yield similar images. Hence, we see that the picture on the

plate is a reversed and upside-down image of the scene being photo-

graphed, situated behind the lens, and, moreover, the angle which

the ray from to the image of a point makes with the optical axis

is equal to the angle which the ray to the object makes with the same
axis. In addition, the image lies in the plane containing the object

and the optical axis.

In considering the theory of photographic surveying it is useful to

replace the plane of the plate by a plane parallel to it and at a distance

equal to the focal length of the lens in front of the latter. This plane
is called the picture trace. Let a' in fig. 10.1 be the point where the

ray AOa intersects this plane, and p' and b' the points where OP and

the ray BOb intersect it. It will then be seen that on it we have a

8 (0467)
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complete reproduction of the image on the plate, but direct and right

side up. This reproduction is also what an observer at would see

through a transparent sheet of glass held in the position of the plane,

or what would be seen from on a print held right side up at a'p'b'.

2. Fixing Points with the Photo-theodolite by Intersection.

Suppose that and 0' in fig. 10.2 are the plotted positions of

two fixed camera stations at which photographs were taken, Op and

O'p' the plotted positions of the optical axis, and apb and a'p'b' the

plotted positions of the picture traces of the horizon lines. Then a

B

Fig. 10.2

will represent the position on the picture trace of the horizontal pro-

jection on the horizon line of the image of the point A in the photo-

graph. Similarly, b will represent the position on the picture trace

of the horizontal projection on the horizon line of the image of the

point B in the photograph. In the photograph taken from 0', the

horizontal projections on the horizon line of the images of points A
and B will be represented by a' and b' respectively. The two photo-

graphs are shown in fig. 10.3.

It will be seen from this and from fig. 10.2 that, if we can plot

on the plan Op and O'p' and the picture traces passing through these

points, we can plot the position of the point A by scaling off the dis-

tances pa and pV on the traces and drawing rays through a and a'

from and O' respectively to intersect at A. As the angles aOO',

bOO', a'0'0, b'0'0, etc., in fig. 10.2, are independent of the scale of

the map, the distances Op and O'p' may both be drawn full-size on the

plan, and in that case the plotted lengths pa, pb, p'a', p'b', etc., are the

corresponding lengths measured direct from the photographs, in the

same units as/, the focal length of the lens. In this way, we can plot
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the positions of a number of points which appear and can be clearly
identified on both photographs.

Again, the elevations of different points can be determined by
scaling the ordinates of the images above or below the horizon line,

Fig. 10.3

and then scaling the distance of the point on the plan, for, if a is the

angle of elevation of A and d is the length of Oa in fig. 10.2, we have,

from fig. 10.3,

Aa
tan a = - _ ,

a

and height of point A above the level of the horizon line is

Aa
h = - X distance OA.

d

3. Orienting the Picture Traces.

The orientation of Op and hence of the picture trace will be known

if the angle O'Op has been measured on the horizontal circle of the

instrument or, the bearing of 00' being known and plotted, if the

bearing of Op has been found by

measuring the angle through A 3

which the instrument has been

turned from its position where

the telescope was directed to a p
point of known bearing.

Alternatively, the orientation

of the picture trace can be found Q
if one or more points, whose

Fig. 10.4

positions are known and are

plotted on the plan, appear on the photograph. If only one point

appears, join Q, the plotted position of on the plan, to A, the plotted

position of the fixed point, and on QA mark off Qf, fig. 10.4, equal in
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length to the focal length of the lens. From f draw the perpen-

dicular fa' equal in length to the abscissa of the known point A on

the photograph (pa in fig. 10.3). Join Qa'. On this line mark ofi

Qp = Qf =/, and through p draw pa fa' perpendicular to Qa'. Then

it is obvious that pa is part of the picture trace, and Qpa' is the trace

of the principal plane.

If more than one point of known position appears on the photograph,

orientation can be obtained very simply by marking off on the straight

edge of a sheet of paper the

abscissae pa, pb, pc, etc., as

measured direct from the

photograph, and then laying

down this sheet so that the

points a, b, c, etc., coincide

with the lines QA, QB, QC

joining the plotted position

of to the plotted positions

of the points A, B, C (fig.

Fig . 10.5 10.5). The edge abc of the

paper will then represent the

position of the picture trace, while the line Qp will give the direction of

the trace of the principal plane. This line should be perpendicular to

abc and Qp should be equal to/, the focal length of the lens. If there

are only two fixed points on the photograph, the sheet edge must

be kept touching a circle drawn with Q as centre and radius equal

to / and moved about until the points a and b on the sheet coincide

with the lines QA and QB on the plan.

AIR SURVEY

In recent years the method of constructing maps and plans from

photographs taken from an aeroplane in flight has made great progress

and has become of considerable importance in both military and civil

work. The principal advantages of the method are (1) the speed with

which (given favourable weather) the field work may be completed;

(2) the photographs form a permanent record of the ground; and (3)

the photographs are often of considerable use for purposes other than

pure survey. The principal disadvantages are (1) the relatively long

time required for plotting the results; (2) the expense of the initial

equipment which make it essential for the work to be handled by an

organization specializing in this class of work; and (3) the dependence of
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the work on the weather, since in many countries the periods during
which satisfactory air photography is possible are of very limited

duration.

In Great Britain, and in most parts of the Empire, the method

usually used is vertical photography, that is, the photographs are

taken with the plate in a more or less horizontal position and with

the lens pointing vertically below. The plane flies in a series of parallel

lines so that the photographs overlap each other by about 30 to 60

per cent on each side, and exposures are arranged so that there is an

overlap of about 60 per cent in the direction of flight. This means that,

provided there are no gaps caused by errors of navigation, each piece

of ground is photographed at least four times.

There are a number of reasons for providing ample overlaps. The

main ones are:

1. To ensure the fitting together of different photographs.
2 To overcome the distortions which occur principally at the outer

edges of photographs.
3. To facilitate interpretation so that objects may be viewed from

different angles.

4. To provide pairs of photographs for stereoscopic examination.

5. To provide an alternative picture if one is defective by reason of

excessive tilt, cloud shadows, etc.

6. To ensure that there are no gaps in the photography.

One of the most difficult operations in air photography is the

navigation of the aircraft so that it travels on a reasonably even keel

on the predetermined paths without leaving gaps in the photography

or insufficient overlaps. During the last few years the application of

radar has provided a means of control which makes the navigation

very much easier and has lessened the possibilities of awkward gaps

in the side overlaps.

Work is much simplified and is more accurate if tilt, or the deviation

of the axis of the lens from the vertical, or of the plate from the hori-

zontal, is small. In addition, as the scale of photography depends on

the height of the camera at the instant of exposure, variations in the

flying height must be reduced to a minimum.

Air photography in itself is not sufficient for mapping purposes,

and it is necessary to provide a certain number of ground control points

which will show on the photographs and whose positions are fixed;

if contours are required, the elevations of some at least of these points

must also be fixed or known. These points must, of course, be fixed

by ground survey methods.
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4. Relation between Scale of Photograph and Height of Camera.

Let in fig. 10.6 be the position of the lens of the camera at height

h above the level surface AB, and let apb be the position of the plate,

supposed horizontal, where Op is perpendicular to apb and equal to

/, the focal length of the lens. A ray from A to will intersect the

plate at a on AO produced, and a ray from B to will intersect the

B

plate at b on BO produced. These points will therefore be the images

of A and B, and their positions on the picture trace will be at a' and

b', where b'p'a' is parallel to apb at distance Op' =/ below the lens.

From the figure,

* = P =f
AB OP h

9

where P is the foot of the perpendicular from on the plane AB.

But ab is the distance between the images of A and B on the plate,

and the true distance between these points is AB. Hence

and

ab f
scale of photograph = -- =

,

ab = AB {,
h

f and h, of course, being expressed in the same units and ab in the same

units as AB.
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It follows from this expression that the scale of a photograph will

vary at different points if the ground level varies in height between

the limits of the photograph. The point P vertically below is called

the ground plumb point or ground nadir point, and its image p on the

plate is called the plate plunib point or plate nadir point. When the

optical axis of the lens is vertical as in the figure, the plate plumb

point and the principal point coincide.

5. Displacement of Detail due to Elevation above Datum.

Let PAG in fig. 10.7 be the horizontal datum plane to which the

map is drawn, and let B be a point on the ground whose elevation

above datum is e. From B draw BA perpendicular to PAC. Then

A is the point where B would be shown on the map, and BA = e.

Through B and A draw lines to 0, the position of the lens, intersecting

the picture trace at b' and a'. Then a' is the position of the point

A on the photographic print and b' the

position where the point B actually appears

in the photograph. Hence the distortion

is a'b', and, from similar triangles, it

follows that

But

a'b'

AC

AC

'

h'

PC

h

p'b'

a'b'= ,.p'b',
fl

so that the displacement is directly pro-

portional to the distance of the image of

the point from the plate plumb point of
Fig. 10.7

the photograph, and to the elevation of

the point above datum, and is inversely proportional to the height

of the lens. For points whose elevation is above datum, the dis-

placement is radial outwards from the plate point of the photograph,

and for points whose elevation is below datum it is radial towards

the plate plumb point.

6. Displacement due to Tilt.

In fig.
10.8a the optical axis Op of the lens is tilted through an

angle t = n'Op from the vertical On'. As a result, the axis CD of the
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picture trace will be tilted from the horizontal AB through an angle

BiD = t about an axis of tilt through i perpendicular to the plane

containing On' and Op. Op, the perpendicular from on CD, meets

CD at p, the principal point on the plate, and the vertical On meets

the horizontal plane through AB in n', where On' = Op =/, and

CD in the plate plumb point n. If the plate were horizontal, the

image of a point lying on the ray OD would meet it at B, but, as it

is, the image of this point will be at D. The displacement of the image
will then be iD iB. Similarly, the displacement at C will be iC iA,

and in fig. 10.86 a rectangle A'AA"B"BB' in the horizontal plane will

become a trapezium C'CC"D"DD' on the plate, where iC and iD are

equal to iC and iD in fig. 10.8a respectively.

(*>)

Fig. 10.8

The point i in fig. 10.86 is called the isocentre (or centre of distortion).

It is the point where a plane through the plumb line from 0, the

optical centre of the lens, and the optical axis meets the axis of tilt,

and it can be shown that the displacement at any point on the photo-

graph is in a direction radial from or towards the isocentre, with zero

displacement along the axis of tilt. Thus, in fig. 10.86, the points A'

and B' are displaced to C' and D' respectively along the lines A'i and

IB'.

Displacements due to tilt therefore differ from displacements due

to height of ground above datum, as in this last case the displacements
are radial from the plate plumb point. When tilts are very small,

however, say two or three degrees, the principal point, isocentre and

plate plumb point practically coincide, and it may be assumed that

the displacements due to elevation and tilt are both radial from the

principal point. In such circumstances, angles measured from the

principal point on the photograph will be equal to the corresponding

angles on the ground. This is the basis of a simple method of plotting
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from air photographs, known as Arundel or radial-line method, which

is now extensively used, and which avoids the use of elaborate and

expensive plotting machines.

7. Plotting from Air Photographs by the Radial-line Method.

In plotting by the radial-line method, at least three points whose

positions have been fixed on the ground must appear on the first two

photographs of a strip. The first step is to determine the scale of

photography. This is done by measuring the distance between two

points on the photograph and comparing it with the corresponding
distance on the ground. For this purpose, a line should be taken

in which the end points lie nearly equidistant on either side of the

principal point of the photograph. A skeleton map is then drawn
on the scale of the photograph and all the fixed ground points plotted

on it.

In order to orient and fix the position of the first photograph on the

map, radial lines are drawn from the principal point to images of three

fixed points and a tracing of these lines made on tracing cloth or, better

still, on a sheet of transparent film base. This tracing is transferred to

the skeleton map and manipulated until the three rays pass through

the corresponding fixed points on the map. The point where the rays

meet is then pricked through on to the map and this gives the map
position of the principal point of the photograph as well as the orienta-

tion of the latter, the process being a form of resection.

Before transferring the tracing to the map, and while the tracing

paper is still on the photograph, rays are drawn from the principal point

to any other fixed points and also to any clearly defined points of

detail which show on the next photograph. These rays are transferred

to the map by pricking through after the trace has been oriented on the

latter and are used to fix other points by intersection.

The second photograph is then treated in the same manner as the

first and, after orientation, rays to fixed points and sharply defined

points of detail appearing on both photographs are transferred to the

map. Intersections of rays on the map from the two principal points

to the same point of detail will give a fixation by intersection for that

point, and rays to fixed points will check the plotting or strengthen

fixes. In this manner, points fixed by intersection may be used as

picture control points to fix points on adjoining photographs in which

there are insufficient control points fixed by ground methods. After

sufficient control points have been plotted on the map, other detail

can be transferred to it from the photographs, using the control points

8* (0467)
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to adjust for varying scale, etc. The best results will be obtained when

the picture control points are fixed by intersections from the principal

points of three successive overlapping photographs.

This method, which is a form of graphical triangulation, may be

used to bridge quite extensive gaps, where there are few, if any, fixed

control points, by providing sufficient picture control points to serve

as additional fixed points from which to fix new control points, or on

which to hang detail. When the gap begins at one set of fixed points and

then ends at another set some distance away, because of small errors

in plotting, etc., the positions of the end series of points will not coincide

exactly with their accepted positions on the map, so that some adjust-

ment of the intermediate points becomes necessary. This may be done

somewhat on the lines of the method of adjusting compass traverses

described on pages 139-140 but the more satisfactory and easier method

is to use the slotted templet method described below.

If difficulty is experienced in plotting, and checks are not satis-

factory, the trouble may be due to varying heights of photography
or of the ground or to too much tilt. In this case, rectified prints may
be obtained by using special rectifying apparatus in which corrections

for tilt may be made by tilting the negative or the board on which the

printing paper is fastened, and corrections for scale may then be made

by small variations in the distance between negative and board.

8. The Slotted Templet Method.

This method of establishing and adjusting auxiliary control points

is a mechanical development of the radial line plot. In this case, each

photograph is placed, picture side up, on a sheet of cardboard and the

principal point and ground control points, and points to be used as

picture control points, are pricked through to the cardboard. Kadial

lines are then drawn from the point representing the principal point to

all these ground and picture control points, and the cardboard is next

put on a special punch which punches a circular hole at the principal

point and cuts slots along the lines radiating from this point. These

cardboard sheets, or templets, are used in conjunction with special studs

(fig. 10.9), which consist of a small cylinder fitted on to a metal disc,

the whole being bored through its centre with a vertical hole to take a

needle or pin. The outside diameter of the cylinder is only very slightly

less than the width of a radial slot so that the stud can move freely, but

without play, in the direction of the slot.

The fixed ground control points are plotted on a large sheet of draw-

ing paper representing the map, and needles stuck at these points, a
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stud being slipped down over each needle. Studs are then fitted in the

hole representing the principal point of the first templet and in the

slots radiating to the picture control points, and the templet is laid

down so that the slots to the ground control points fit over the corres-

ponding studs on the map. Provided there are at least three ground
control points on the first photograph, this will fix the position and

orientation of the first templet. The second templet is similarly fixed

and orientated and studs in the first templet relating to picture control

points are moved radially to fall within the slots relating to the same

points on the second templet. Since each stud will now be at the point

JBL

Fig. 10.9

of intersection of the two rays which fix the point concerned, this fixes

the positions of the picture control points common to the two templets.

Work is thus carried on using such ground control points, and any

picture control points fixed from the previous templets, as are needed

to fix and orientate each new templet in turn. In this way, a system of

triangulation may be carried for quite long distances over photographs

covering ground in which ground control points are sparse or non-

existent. Finally, if the work ends in country which is reasonably

supplied with ground control points, the triangulation can be fitted on

to them. The positions of these points as brought forward by the air

photographs will not agree exactly with their plotted positions, there

being the usual small discrepancies due to small and uncontrollable

errors in the work. However, by moving the assembly as a whole

slightly, the last templet can be adjusted to fit on to the studs over the

end control points, the intermediate studs being adjusted propor-

tionately. The positions of all the intermediate picture control points
can then be transferred to the map by pricking through the holes in

the studs.
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If the assembly cannot be fitted between the terminal points without

some bending or distortion, the indications are that there is an error

somewhere, or tilt for which insufficient adjustment has been made.

An alternative to the cardboard templets just described is a set of

spider templets. These consist of narrow metal strips with slots cut in

them through which studs of the kind already described can be passed
to move freely along the slot. A stud with a special threaded boss is

used to mark the principal point of each photograph, and one end of

each strip has two or three holes bored in it to fit exactly over the boss.

The different strips are now laid down to radiate from the principal

point along the directions of the rays to the ground and picture control

points, and the whole is then firmly secured in position by a lock nut

screwed down tightly over the threaded boss to hold all the strips in their

proper relative positions. In this way are formed templets equivalent
to slotted templets and used just as they are used. The advantage of the

method is that no special punch for punching holes or slots is needed,
and the labour of setting and cutting the templets in the punch is saved.

9. Principles of Binocular Vision and Stereoscopic Fusion.

In binocular vision the same object is seen as a whole with both

eyes at the same time and, for this to be possible, the lines of sight
from the object to each eye must be inclined slightly to one another

in order that the images formed on the individual retinas should appear
to coincide in space. For very distant objects, the lines of sight are

parallel, but for nearer objects they make an appreciable angle with

one another, the muscles which operate
a a, the eyes rotating them very slightly if

^ w necessary, without conscious effort on
our part, to form the single image. It is

b k
this relative convergence of the lines

* of sight on a single object which enables
lgi '

us to judge distances. In the case of solid

objects, appearance in depth is given by
the slightly different views obtained by the two eyes, different parts
of the object requiring different degrees of accommodation by the

eyes to form single combined images.
In fig. 10.10 are shown four dots a, a

1? b and bx
. Look at some fairly

distant object and, keeping the eyes at the same focus, interpose the

page, with the paper between the eyes and the object, about 15 in.

from the former. At first two pairs of dots will be seen by each eye,
but after a time the left-eye images of a and b can be made to coincide



X] AIR SURVEY 221

with the right-eye images of a
t
and ^ respectively. When this happens,

the combined image of a and ^ will appear to stand out in relief above

the combined image of b and bx . This is an example of stereoscopic

fusion. When fusion takes place, other images of the dots will be

seen to the left and right of the fused images. These ghost or satellite

images should be ignored, and attention concentrated on the fused

images in the centre.

If difficulty is experienced at first in obtaining fusion, it may help
if a piece of card is placed half-way between the pairs of dots with

its plane perpendicular to the plane of the paper, so as to prevent
the left and right eyes from seeing the right- and left-hand dots respec-

tively.

The theory of this phenomenon is illustrated in
fig. 10.11. Here

the combined images of a and a1? as seen by the eyes at E and Ex ,

appear to be at m and the combined

images of b and bt at n. The dis-

tance mn is called the stereoscopic

depth , and is a measure of the

amount by which the positions of

the fused images appear to stand out

in depth relative to one another.

The angles fa and fa at m and n

are called the parallax or parallactic

angles, and the stereoscopic depth

depends on the difference between

these angles, i.e. on the sum of the

angles a and /8 at E and E
a ,
and also

on the distance EEj the eye base

between the eyes, the smaller (a + /?)

and the shorter the eye base the

greater being the stereoscopic depth.

At the same time, as the eye cannot

resolve angles less than about 20" of

arc, the impression of stereoscopic

depth is lost for values of a + j3, fa or fa less than about 20", the

exact amount differing slightly with different observers.

Now suppose that a and b are two points on a photograph lying

to the left of the observer, and ^ and bx are the same points as they

appear on an overlapping photograph lying to the right of the observer.

It will then be seen that, when the images of the points are fused, the

one point will appear to stand out in relief with respect to the other.

m

v
n

Fig. 10.11
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Stereoscopic fusion is best obtained by the use of a stereoscope, of

which there are two main kinds. The principal function of the stereo-

scope is to accommodate a wide separation of the points in the left-

and right-hand photographs to the fixed length of the eye base. In

the lens or prism stereoscope (fig. 10.12a) this is done by two lenses

or narrow small-angled prisms. In the second type of stereoscope

(fig. 10.126), mirrors are used to bring the images together. From

LHPu R H Picture

Fig. 10.12

these diagrams, in which the paths of the rays are clearly indicated,

it will be seen that in both cases the effective separation between the

same points on the photographs has been widened, for the same eye

base, from aa, to a2a3 ,
and from bbx

to b2b3 .

The lens or prism stereoscope has the disadvantage that the two

photographs must be placed rather close together, but the mirror

stereoscope allows them to be more widely separated and a somewhat

wider photograph to be used. A slightly enlarged image of each picture

can be obtained directly by means of the refracting stereoscope when

suitable lenses are used instead of small-angled prisms. The image

from the mirror stereoscope is of natural size, but magnifiers placed

between the eye and the inner mirrors will yield magnified images.

10. Application of Stereoscopic Principles to Overlapping Photographs

for determining Differences of Elevation.

In fig. 10.13, L and R are the picture traces of two overlapping

vertical photographs taken with the lens in the positions Ol and 2 ,

both positions being at the same height H above datum. The images
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of the point A, of elevation h above datum, are % in photograph L
and a2 in photograph R. pL

and p2 are the principal points of the

photographs, which in this case coincide with the plate plumb points,

and P! and P2 are the ground plumb points. The direction of flight

Fig. 10.13

is horizontal and in the direction ptp2 or P^, and p'2 is the image of

P
2

in photograph L. The distance OjOjj
= B is the air base, which

here is horizontal. The amount of overlap is given by the lines 1Y1

and 2Y2
which pass through the adjoining edges of the photographs.

Through Ol
and 2 draw the vertical plane 1 2P2P1 ,

and from

A draw AA' perpendicular to this plane. The datum plane is the

horizontal plane through PtP2
. Also, if m and n are the intercepts

on the plate principal lines of lines joining Ol
and 2 to A', the x co-

ordinates of aj and a2 are xl
= ^m and x2

= p2n. Then from the

figure,

x, = EA'
.
x2 ^ AT

7~~(!f-A)
;

7 (H-Kf

/(EA- + AT) _ /B
*l + X*

(H=h) (H-Kf
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But

PiPj,' _ B

f H-

.: p = x, + ><

* H bH
'

(H-h) (H-
where ?,?' = 6.

The quantity x^ + #2> which in generalized form is written P =
x
i
~~ X2 because of the negative sign of #

2 ,
is called the stereoscopic

parallax, or simply the parallax, of the point A, and it is given by the

algebraic difference of the x co-ordinates of the images of A in the two

photographs. It follows that, if P and 6 could be measured and H
were known, we could determine h. In practice, the full stereoscopic

parallax is not very easy to measure, and it is much simpler to measure

differences of parallax between points. By differentiating the previous

expression with respect to A, we get

bH

,. dP(H -
,/* =__.

It should be noted that this formula only holds for small values

of dh and dP. For larger values of dh and dP it is easy to show that

(U - A)AP + bH

and, when h is zero and AA is measured from the datum plane,

AP.tf
.

(AP + b)

The differences of stereoscopic parallax can be measured on the

photographs by special instruments provided with micrometers. The

quantity b can be measured in the photographs, and H can be obtained

from the altimeter readings recorded on the photographs. Hence, by

measuring differences of parallax, we can obtain differences of eleva-

tion, and, working from points of known elevation, we can determine

the elevations of other points.

Different types of instruments for measuring differences of parallax
can be obtained, and these vary from very simple instruments to

others of some complexity. In general, they consist of two parts which
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may be separate or may be combined to form a single instrument.

The one part consists of the actual measuring apparatus and the other

of a stereoscope. Even when the two parts are not combined in the

one instrument, the measuring device is generally used in conjunction

with some form of simple stereoscope.

The measuring instrument, or measuring part of the instrument,

consists of a micrometer screw and two adjustable marks mounted

on transparent material, such as glass or lucite, which can be fused

under the stereoscope to form & floating mark. After the two photo-

graphs have been properly set and oriented, a relief model is seen

in the stereoscope. The marks are first fused and, after having been

set in contact with the image of one of the points in the relief model

from which the difference in elevation is to be measured, the fused

image is brought into contact with the fused image of a second point.

The difference in parallax can then be read on the micrometer screw

to which the adjustable marks are attached. This screw has a range

of anything from about 7 mm. to 25 mm. or more, and readings may
be taken to 0-01 mm. When the measuring device is separate from the

stereoscope, it is called a parallax or micrometer bar, but, when the

measuring device is combined with a stereoscope and special stages for

holding the photographs to form a combined instrument, the latter

is usually called a stereo-comparator.

11. Stereoscopic Plotting Equipment.

A number of different types of instruments, some of them very

complicated and expensive, have been devised for direct plotting from

stereoscopic pairs of photographs. In these, the photographs can be

set and adjusted in such a way as to remove the effects of height and

tilt, and a stereoscopic image is obtained in which the ground appears

to stand out in its correct relief. A floating mark can be adjusted to

be brought into contact with any given point on the three-dimensional

image, and this mark is made to operate a pencil, so that, as the mark

moves, the pencil also moves and can be made to trace the movement

on a plan. Thus, by setting the floating mark to coincide with a point

whose elevation is known, contours can be traced out on the plan.

There are a number of instruments on the market of this type, among
which may be mentioned the Swiss Wild Autograph A5 and the more

recently developed British instrument designed by Professor E. H.

Thompson and manufactured by Messrs. Hilger & Watts, Ltd. These

instruments can be used for mapping on almost any scale, large or
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small, and are capable of very accurate work, even on scales such as

1/200, but they are somewhat complicated and costly.

A much simpler apparatus, particularly useful for mapping on

moderate and small scales, has been developed under the name of

Multiplex, and has been much used in this country and in the United

States during and since the Second World War. This consists of a

number of small projectors mounted on a horizontal beam. Each pro-

jector has a number of adjustable movements so that each photo-

graph, in the form of a considerably reduced transparent positive of

the original called a diapositive, can be adjusted in such a manner

that it occupies the same position relative to adjoining diapositives

and to the drawing paper as the original photograph occupied relative

to the other photographs and to the ground at the moment of photo-

graphy. Transparent green and red filters are put in with alternate

diapositives so that overlapping green and red images are formed

below the projectors a short distance above the drawing paper.

These images are viewed through spectacles in which one glass is

coloured green and the other red. A small adjustable stand with a

flat circular table-top of about 2 in. diameter can be moved over the

drawing paper, and, when the image received on the table is viewed

through the coloured spectacles, the ground is seen standing out in

stereoscopic relief. This stand has a very small illuminated hole in

the centre of the disc to serve as a floating mark, and a pencil or pricker

immediately below the hole can be pressed to form a mark on the

paper. By lowering or raising the table slightly, the operator can make

the illuminated hole coincide with the image of any point on the

ground image seen in space, and, by pressing the pricker, he can register

the horizontal position of the point on the plan. After the illuminated

hole has first been set to coincide with a point of known elevation,

the elevation of any other point can be found by reading on a vertical

scale attached to the stand the amount by which the hole has been

raised or lowered when it is brought into contact with the image of the

second point. In this way, the detail can be plotted direct and a good
contoured map drawn with little difficulty.

The diapositives used in the ordinary Multiplex apparatus are

reductions from the original negatives to about If X 2 in. and accuracy
is lost through this reduction. The Kelsh Plotter operates on much

the same principles as the Multiplex but uses diapositives of the

same size as the negatives of the taking camera, and this, combined

with other features such as concentrating the illumination on the part

of the photograph being examined instead of over the whole of it,
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results in improved accuracy. Like the ordinary Multiplex, the Kelsh
Plotter operates with transmitted instead of reflected light, which
ensures a brighter image.

12. Minimum Number of Photographs Required to Cover a Given

Area, and Time Interval between Successive Exposures.

Let the width of a photograph measured in the direction of flight

be w, the depth t, and let there be specified a 60% overlap in the direc-

tion of flight and a 30% overlap laterally. Let a
1
b1c1d1

a
1 (fig. 10.14)

be the first photograph in a strip, Oj its principal point and e
x
and f

t

the points where the line of flight through Ol intersects its rear and

front edges, and let a2
b
2
c
2
d2a2 be the second photograph in the strip,

2
its principal point and e2 and f

2 the points where the line of flight

through Ol and 2
intersects its rear and front edges. Then the over-

lap between the two photographs is the rectangle a2b1c1d2a2 and, since

this is to be 60% in the direction of the line of flight, a2bx
= e.^ = 0*6w.

But the distance 0^ = 0-5w. Therefore the distance e^ is 0*lw.

Similarly, the distance e2 2
is Q-5w. Hence, the distance O1 2 04t^.

Again, let a3b3c3d3a3 be the third photograph, 3 its principal point

and e3 and f3 the points of intersection of the line of flight D1 2 3

with its rear and front edges. Then the overlap on the second photo-

graph is a3b2c2
d3a3

and e3f2 is 0-6w. Distance e3 3
is 0-5w and distance

3f2 is 0-6w Q-Sw = Q-Iw. Similarly, distance e3 2 is 0-lw and thus

the distance 2 3 is Thus it will be seen that

Distance between principal points
=

More generally, if the overlap is r X w> the distance between the

centres or principal points of successive photographs is w(l r).
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As an example, suppose that flying is at 15,000 ft., the focal length

of the lens is 10 in., that each plate measures 9 X 9 in. and that the length

of the rectangle on the ground to be covered is 60 miles. How many photo-

graphs are required to the strip, the stipulated overlap being 60% ?

Then ground covered by each photograph in the direction of flight

= 9 X 15,000
=13>5QQft

Distance between successive photographs
= 04 x 13,500 = 5400 ft.

Number of photographs = 60 X 5280/5400 = 59,

and, allowing for 2 extra photographs to provide for sufficient overlaps at

the ends, say 61 photographs per strip.

Again, to get the number of strips, a similar argument to the last will

show that the distance between the centres of parallel strips to secure a

30% overlap will be 0-7*. Hence, with flying at 15,000 ft. with a focal

length of 10 in. and with 9 X 9 in. plates, the distance between strips will

be 0*7 X 13,500 ft. Then, if the depth of the area to be covered is 45 miles,

the number of strips will be 45 X 5280/9450 = 25-2, say 27 after allowing
for sufficient coverage at the edges of the area covered. Thus, the minimum
number of photographs needed to cover the area of 60 x 45 miles will be

61 X 27 = 1647.

To work out the time interval between successive exposures, suppose
that the aircraft is travelling at 200 miles per hour. Then it will travel

5400 ft., the distance between successive photographs, in (5400 X 60 X 60)/

(200 X 5280) = 1841 sec., the required time interval, or, if the interval

between exposures were to be 20 sec., the speed of the aircraft would have

to be (1841 X 200)/20 = 184-1 miles per hour.
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QUESTIONS ON CHAPTER X

1. The angle at a camera station 0, between two points A and B, was
measured with a theodolite, and its value was found to be 40. A
photograph was then taken, and the abscissae a and b of the images of

A and B measured on the horizon line from the principal point P were
found to be Pa = 1-607 in. and Pb = 2-798 in. respectively, a and b

being on opposite sides of P. What was the focal length of the lens?

2. State briefly what are considered to be the advantages to the civil

engineer of mapping from air photographs, and indicate its limitations.

(Inst. C.E., April, 1948.)

3. In a photo-theodolite survey, a factory chimney is shown on photo-

graphs taken from two stations C and D, C being 1200 ft. due west

of D. In each case the instrument was sighted on a third station E,
north of the line CD; the angle ECD was 54, and EDC was 45 30'.

The chimney appeared 1-45 in. to the left of the vertical line on the

print obtained from C, and 1-66 in. to the right of the vertical line

on the print from D. Find the horizontal distance of the chimney
from E, and its direction from that station. The focal length of the

camera was 6 inches. (Inst. C.E., April, 1946.)

4. Two consecutive air photographs were taken with a 14-in. focal length
camera at a height of 20,000 ft. The overlap was exactly one-third,

and the prints were 9 in. by 9 in. The height was constant for both

exposures; the aircraft flew on an even keel with no drift; and the

ground, which was approximately 4000 ft. above sea-level, was almost

flat.

Determine the scale of the photograph and the length of the air

base. How would you determine these factors from a map of the area

if the flying height were not known?

Describe briefly the advantages and disadvantages of short and

long focal length cameras in air survey. (Inst. C.E., April, 1947.)

5. (a) What do you understand by
"
parallax measurements

"
in con-

nection with air survey? Assume a pair of overlapping photographs

to be taken with the camera axis vertical, and at a constant height;

derive an expression for the parallax of a point R ft. above the datum

level, taking the focal length as / in., the
"

air base
"

as B ft., and

the flying height of the aircraft above datum as H ft.

(6) A pair of overlapping vertical photographs show a large pylon

carrying high-tension wires across the Thames. From the following

measurements and data determine the height of the pylon above

datum level. The base of the pylon was at datum level.
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Focal length = 507 mm. ;
air base = 780 ft.

; flying height above

datum = 8100 ft.

Note that in both prints the photo image of the pylon was forward

of the principal point, and all parallax measurements are therefore

positive. (Inst. C.E., October, 1947.)

6. Draw a diagram to show that the height of an object appearing in a

pair of overlapping vertical photographs can be determined from the

x co-ordinates of the images of the top and bottom of the object. It

can be assumed that the x co-ordinates are measured on the photo-

graph from the principal point along the direction of flight.

A cliff rising from sea-level appears to the right of the principal

point of each two overlapping vertical photographs which have been

taken with a 507 mm. camera at a height of approximately 8000 ft.

The distance flown between the exposures was 780 ft. and the following

are the x co-ordinates measured on the photographs :

L.H. Photograph R.H. Photograph

P.P. to top of cliff 94-6 mm. 41-0 mm.
P.P. to bottom of cliff 88-38 mm. 40-4 mm.

What is the height of the cliff above sea-level? (Inst. C.E., April,

1956.)

7. The detail of a large number of modern topographical maps is copied

or traced from air photographs on each of which there is a number

of minor control points. The latter are plotted by radial line methods

making use of the
"
radial assumption ". What is the

"
radial assump-

tion
" and why is it necessary? (Inst. C.E., October, 1953.)

8. As a representative of an air survey firm how would you explain to a

civil engineering client the essential differences, economic and technical,

between making a map from air photographs to show contours at

2-ft. intervals and making one to show contours at 100-ft. intervals?

(Inst. C.E., October, 1956.)

9. In a pair of overlapping vertical air photographs the mean distance

between the two principal points (both of which lie at datum level)

is 1'95 in. At the time of photography the aircraft was 8000 ft. above

datum level, and the camera had a focal length of 20 in.
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In the common overlap, and lying between the two principal points,

there was a pylon 500 ft. high, the base of which was at datum level.

Determine the difference in the absolute parallax measurements

(i.e. the x co-ordinates in the direction of flight) for the top and bottom

of the pylon.

Why under ideal conditions should the y co-ordinates of any point,

measured on two photographs overlapping in the direction of flight,

be exactly the same? What is the most likely cause of a discrepancy,

generally known as a
" want of correspondence ", between the two y

measurements? (Inst. C.E., October, 1952.)



CHAPTER XI

TOPOGRAPHICAL AND HYDROGRAPHICAL SURVEYING

TOPOGRAPHICAL SURVEYING

In previous chapters we have considered methods of detail sur-

veying and contouring, mainly applicable to surveys of small areas

which are to be plotted on large-scale plans ;
we now proceed to describe

very briefly some of the principles and methods involved in making

topographical surveys of fairly extensive areas which are to be plotted

on small scales.

In all cases, the first thing to be done is to establish a framework

of fixed points and known heights if no such framework exists already.

In open country this is best done by triangulation, which should be

broken down into triangles having sides one to five miles long, the

density of control points varying with the scale on which the work

is to be plotted. The heights of these points above datum must be

fixed either by trigonometrical means or by spirit levelling. If the

area involved is not too extensive, the triangulation need not be of

geodetic accuracy, and in many cases it will be sufficient to measure

the base line with ordinary steel tapes used stretched along the ground

and to measure the angles with a small theodolite reading to 20" or

30". In other words, a triangulation of geodetic third-order accuracy

is all that is needed.

For very large areas, owing to the way in which error accumulates,

the main triangulation should be based on work of geodetic first-order

standard broken down with second- and third-order work. Elevations

determined by vertical heights should be tied in at intervals and

adjusted to lines of spirit levels.

The detail survey is best executed by plane-table and Indian clino-

meter. Points are fixed by resection or intersection with heights deter-

mined by clinometer observations, and detail and contours put in by

sketching in between the plane-table fixings. These plane-table fixings

may be so arranged as to divide the area between trigonometrical

points up into rectangular blocks of convenient size, with a plane-table

fixing at the corner of each block.

282
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In dense forest country, ordinary plane-tabling, and triangulation

for that matter, will be impossible. Here the framework will consist

of theodolite traverses and lines of spirit levels run along such roads

or paths as may exist; if no roads or paths are available, it is necessary

to cut lines. Other traverses and lines of levels split the areas between

the main framework traverses and levels up into a series of blocks, and

these blocks are cut up into smaller blocks by major compass traverses

(traverses measured with a large stand compass and a chain or long

steel band) or by plane-table traverses, in which intermediate elevations

are determined by Abney or Indian clinometer. Finally, the blocks

bounded by the compass or plane-table traverses are broken down by
minor compass or plane-table detail traverses, run along cut lines or

partals if necessary, with elevations derived from clinometer heights

or from aneroid barometer runs.

The distance between successive minor detail traverses and between

major compass or plane-table traverses will depend on the scale of the

map and the accuracy desired. For work on the one-inch scale (1/63,360),

for instance, the distance between major compass or plane-table tra-

verses may be anything from four to eight miles and distances between

detail traverses may be anything from 500 ft. to a mile. Supplementary

major compass traverses should be run along main rivers and along

main roads on which there is not a theodolite traverse, and detail

traverses along small streams and waterways. Detail traverses are also

advisable along main ridges, with others cutting across the ridge.

The topography on either side of the traverse lines should be roughly

sketched in in the field books or on the plane-table sheet as a guide to

the final drawing, and the chainage of all important
"
cuts

"
of detail,

such as cuts of streams and paths, should be noted and indicated.

All traverse work is generally plotted on auxiliary sheets on a scale

larger than the scale of the map, and then reduced and plotted on

the latter. For work on the one-inch scale, the scale for the auxiliary

sheets may be about 1/25,000. It is a convenience if these sheets

consist of sheets of squared paper.

The first stage in drawing is to plot a grid or graticule. A grid is

used if the co-ordinates of the framework points are given in terms of

rectangular co-ordinates, and it consists of a mesh of squares formed

by lines parallel to the co-ordinate axes. Points are plotted with

reference to the lower left-hand corner of the smallest squares within

which they fall, this corner thus becoming a local origin for the plotting

of the point concerned. In this way, small errors of plotting are reduced

to a minimum.
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When the co-ordinates of framework points are given in terms of

latitude and longitude, a graticule is used instead of a grid. A graticule

consists of a mesh formed by lines representing parallels of latitude

and meridians of longitude. In general, the parallels of latitude are

represented by curves, and the meridians may consist of straight

lines or of curves, according to the map projection used. The parallels

and meridians are best plotted by rectangular co-ordinates or in certain

cases by ordinates from tangents to the parallels at the points where

they cut the central meridian of the sheet, the values of these co-

ordinates or ordinates being obtained from special tables supplied for

the particular projection used.

In order to eliminate as far as possible errors caused by contraction

and expansion of the paper, important maps are often plotted on

metal sheets with specially prepared surfaces. In the Ordnance Survey,

for example, the drawings for all maps and plans, including the sheets

of the new 1/1250 plans and the new 1/25,000 maps, are drawn on

metal, no paper being used at any stage before printing.

HYDROGRAPHICAL SURVEYING

The branch of surveying known as hydrographical surveying is a

particularly wide one, since it includes national surveys for the charting

of the depths of the waters in the immediate vicinity of land, as well

as very minor surveys for the determination of the discharge of rivers

and streams. The main engineering applications are in connection with

harbour works, water supply, irrigation, water power, flood control,

etc.

1. Sounding.

So far as ordinary hydrographic surveying is concerned, sounding
means determining the depth of the water at various points in the

waters adjoining the land, or in lakes, rivers and streams inland.

These depths are used for plotting charts in the one case, or for planning

under-water works, or determining volumes of discharge, etc., in the

other.

Soundings for marine charting are more difficult than soundings in

lakes or rivers because allowance has to be made for the height of the

tide at the time of observation. In the Royal Navy most sounding is

now done by sonic methods, which consist in measuring the time taken

for a sound impulse to be transmitted to the bottom of the sea and



XI] HYDROGRAPHICAL SURVEYING 235

thence to return, after reflection, to a special receiver mounted along-
side the transmitter. This method can be adapted to give a continuous

graphic record of the profile of the sea bed, and it is also used to locate

wrecks, etc. If no echo-sounding apparatus is available, either a

sounding rod or a lead line must be used.

A sounding rod is a long graduated wooden pole of from 2 to 3 in.

diameter and 15 to 25 ft. long, which is plunged into the water until

bottom is reached, the depth of the bed below water surface being read

on the graduations on the pole. The lead line consists of a graduated
line or chain, to which a heavy lead weight is attached. This is lowered

into the water and run out until touch and a slackening of the line

indicate that the bottom has been reached, when the depth of the

weight below water surface is

read on the line. Usually, in

marine work, the bottom of a

sounding rod or of a weight is

hollowed out slightly to take

some tallow, so that specimens
of the material of the sea bed FiS- 1L1

may be obtained.

Soundings are best taken from a special sounding boat in the bottom

of which is a well communicating with the water outside (fig. 11.1).

The work is also very considerably simplified if a special sounding

machine, of which there are several different varieties, is used.

When soundings are taken at sea, the time of observation must be

carefully recorded and a correction applied later for the state of the

tide. This correction may be obtained from the results of readings

on a tide gauge or tide pole on shore, on which the height of water

above or below some definite datum is observed at regular intervals

of time while soundings are in progress, or it can be obtained by scaling

from the chart of an automatic recording tide gauge. The datum to

which marine soundings are ordinarily referred is L.W.O.S.T. (Low
Water Ordinary Spring Tides).

In river and lake surveys water level should be checked at intervals

by readings on a river gauge consisting of a graduated board set ver-

tically in the water and connected by levelling to a fixed bench mark

on land.

2. Fixing the Positions of Soundings.

Offshore soundings are fixed with reference to trigonometrical 01

other fixed points on shore. The most common method is to use resec-
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tion from three fixed points, the angles being observed from the sounding

boat at the time a sounding is taken by means of a sounding sextant.

Alternatively, the position of a sounding can be fixed by intersection

from simultaneous observations with two theodolites set over two

trigonometrical stations on shore.

If soundings are fixed by resection, their positions can be plotted

on the chart by means of the station pointer shown in fig. 11.2. This con-

sists of three long arms, one fixed and two hinged to the centre of a

circular protractor, to which they can be clamped at any reading. The

arms are set to read the observed angles and the instrument is moved

about until the edge of each arm lies alongside the plotted position of

(By courtesy of Messrs. Hilger and Watts, Ltd.)

Fig. 11.2

the point to which the corresponding observation was taken. The

position of the centre of the protractor can then be pricked through a

hole in the axis on to the chart, and this gives the position of the point

from which the soundings were taken.

Various other methods of fixing off-shore soundings are possible,

some of them depending on time intervals between soundings fixed

by other means. Thus, in fig. 11.3, a series of poles, 1, 2, 3, 4, 5, 6, 7,

8, 9 and 10 are ranged out and fixed on shore so that pairs, such as

10 and 1, 9 and 2, etc., define straight lines more or less perpendicular
to the coast line. The sounding boat in its travels from point to point

is kept on these lines in turn by sighting on each pair of points. A
theodolite at T is used to measure the bearing to the boat as each

sounding is taken. Then, the points 1, 2, 3, etc., being plotted on the

plan, the intersection of the line of the observed bearing with the line

on which the sounding is taken fixes the position of the sounding boat.

An alternative method is to take the sounding when the boat is

at a point such as $, where the poles 10 and 1 and the poles 8 and 4

respectively appear to be in line. Intermediate soundings between
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points such as s and t may be located by noting the time of travel

between soundings and the total time spent in actual travelling between

s and t.

is not

marks

Fig. 11.3

When sounding across rivers, the simplest way. if the stream

too wide, is to stretch a rope across it between fixed points with

at regular known intervals on the rope. The boat

is ferried across the river, one man holding on to

the rope, and soundings taken as each of the marks

is reached. If the stream is too wide for a marked

rope to be stretched across it, soundings may be

fixed by lines of suitable placed poles such as those

described above, or by two theodolites set up at

suitable fixed points on the bank.

3. Measurement of Tidal Currents.

In measuring tidal currents it is necessary to

determine the speed, direction and location of the

current. This can be done by using special floats

which present as little above-water surface as

possible, but which can easily be seen from a

distance. Fig. 11.4 shows a float made of a Fig. 11.4

wooden rod about 2J to 4J ft. long and 3 in.

square, weighted at the bottom with a lump of lead and carrying a

small flag on top. The float is released on its course and its position

determined at observed intervals of time. Fixings may be made by
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intersection by two theodolites from the shore or by resection from a

boat accompanying the float.

4. Measurement of Discharge of Rivers and Streams.

The measurement of the discharge of rivers and streams means the

measurement of the volume of water passing a given cross-section per

second
;
there are two cases to be considered. The first is the measure-

ment of the discharge of a wide river across which a temporary dam
cannot be built, and the other is the case of a narrow stream which

can be dammed and water allowed to flow over a special weir.

The principle of measurement in the case of a wide river is very

simple, but the actual work is, perhaps, not quite so easy. The first

thing is to obtain a cross-section by levelling and sounding, and the

next step is to measure the velocity of the water across the section at

fairly close intervals. The easiest and best method of doing this is

to use a current meter and observe the velocity of the water at different

depths below the surface. A current meter consists of a small screw

like a ship's propeller mounted to move up and down a graduated

pole, or suspended by a graduated cable at different depths. The

screw is made to assume a direction at right angles to the direction

of flow by means of a four-bladed vane attached behind it, and the

revolutions over a certain observed time are recorded by gearing on a

dial on the instrument, or else they are caused to make a noise in a

telephone buzzer. The main cross-section is divided into a number

of equally spaced sub-sections, and a series of readings taken at differ-

ent depths at the middle of each sub-section. The area of each sub-

section having been calculated from the plotted cross-section, the total

discharge is the sum of the quantities obtained by multiplying the

average velocity at each sub-section by the area of that sub-section.

If no current meter is available, floats must be used and the times

taken for them to travel between lines defined by pairs of poles on either

side of the section observed. These lines may be 50 to 300 ft. apart

and cross-sections must be taken at them and at other points 50 to

100 ft. apart if the distance between them exceeds these limits. A
series of observations at approximately equal distances apart along

the cross-sections is taken, and the mean velocity for each run deduced.

The sum of the quantities obtained by multiplying each average velocity

by the mean area of the corresponding sub-section gives the total

discharge.

In carrying out these observations, a length of the river should be

chosen in which the banks are fairly straight and parallel to one
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another, and in which the flow of the river is parallel to the banks

and is not too fast. In all cases the length used in calculating the velocity

is the distance between the end sections, not the distance actually

travelled by the float.

The velocity of the water in a straight stretch of river varies wibh

the depth, being zero on the bed and varying according to a more or

less parabolic law with a maximum at a point about 0-2 of the depth
below the surface. The mean velocity has a value somewhere between

0-7 and 0-95 of the surface velocity, the exact value increasing as the

velocity and depth increase. This value can be found by means of a

current meter, or by observations with surface floats and with others

which are only slightly shorter than the depth of the water, and which

can therefore be assumed to be carried along with a velocity equal to

the average velocity of the water.

5. Stream Discharge over a Weir.

In this method, water is allowed to flow over an aperture or notch

in a special weir, and the head of water a few feet upstream from the

weir is measured.

The opening or notch through which the water flows can be of

various shapes triangular, rectangular or trapezoidal. This opening

Fig. 11.5

is cut in a metal plate with sharp edges which is fastened to a dam of

planks or other material built across the stream at right angles to the

direction of flow.

The principle of the method will be understood from fig. 11.5 which

shows a weir with a triangular notch, the angle at the apex of the

notch being 20. Consider a horizontal strip of width y and depth dx
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at depth x below the surface of the stream. The head of water is then

x, so that, from the principles of hydraulics, the velocity of the water

flowing through the strip is given by

v2 = 2gx,

where g is the acceleration due to gravity, and the volume of water

flowing is

dQ = vydx =

But y = 2(H x) tan 0, where H is the depth of the bottom of the

notch below the surface of the stream. Hence, the total volume for

the whole notch is

Q =
'o

a;) . (H x) tan 6 dx

. tan Qxm(E x)dx

tan B

tan e #5/2 = 4 '3 tan 6 H5/2
>

when for g we substitute 32 ft. per second per second.

In actual practice, the constant multiplier is found not to be 4-3

but to vary from about 2-48 to 2-56. Assuming a value of 2-5, we can

write

and for a notch in which 26 = 90

Q = 2-5#2 *5
cub. ft. per second,

a formula which is easily remembered.

In the case of rectangular notches, there are two cases to be con-

sidered. One is when the notch is the same width as the stream, in

which case there are no end constrictions, and the other is when the

notch is not so wide as the stream and there are end constrictions.

The theoretical formula for a notch or weir of length L with no

end constrictions is easily found, for, if x is the depth below the surface

of a strip of depth dx, the discharge through the strip is L\/(2gx) . dx

and the discharge for the whole weir is

#3/2 = 5'35#3/2 cub. ft. per second.
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In practice, the discharge has not the theoretical value, and it has

been found that, instead of the factor 5-35, we must use a coefficient

of discharge c which varies slightly with // and L. Values of this co-

efficient for different values of // and L are generally given in text-

books on hydraulics, but a good average value is 3-33. Accordingly,
we may write

Q = 3-33L#3/2 cub. ft. per second.

This formula assumes discharge by a stream which is static a short

distance from the weir. Usually there is also a small velocity head due

to the movement of the stream as a whole. This head is given by
h v2/(2<7), where v is the velocity of the stream in feet per second.

This velocity is found by obtaining an approximate value of Q from

the above formula and dividing it by the area of a cross-section of

the whole stream a short distance above the weir. The formula then

becomes

Q =-- 3-

When a notch is not as wide as the stream, the lateral motion of

the water along the side of the weir causes the flow to be constricted

at the edges as shown in fig. 11.6. Each end constriction has the effect

L.
r
H

Fig. 11.6

of shortening the length of the notch by about 0-1 H, so that with two

end constrictions the discharge is given by the above formula) with

(L 0-2/7) substituted for L\ then

Q = 3-33(L - 02//)tf
3/2

,

or Q - 3-33(!i
- 0-2#){(# + A)

8/2 - *8/2
}-

The measurement of the head is best done by means of a special

hook gauge, which consists of a pointed hook attached to a graduated

rod that works up and down against an index and vernier carried on

a post or arm. This arm is fixed about twelve inches upstream above the

weir, in such a way that it does not interfere with the flow of the water.

The hook is immersed in the water and raised until the sharp point

9 (0467)
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is just level with the water surface. The gauge having been set so

that readings on the scale correspond to heights of the points of the

hook above the bottom of the notch, readings of the head of water

can be obtained to the nearest thousandth part of a foot by reading
the scale and vernier.

QUESTIONS ON CHAPTER XI

1. Describe a method which you would use for the survey of the banks

of a very wide river, and how you would take cross-sections at different

points along it.

2. In making a chart of a small harbour the positions of soundings were

fixed by taking horizontal angles with a sextant to known points on

the shore. What method would you use for plotting the positions?

Explain how your method difTors from plotting by the usual resection

method adopted in a topographical survey using a plane-table and

alidade. (Inst. C.E., October, 1946.)

3. Describe three different methods of fixing the positions of soundings
off a coast-line.

4. Calculate the discharge in cubic feet per second over a triangular
notch in which the sides arc inclined at an angle of 45 to the vertical,

the measured depth of the water above the bottom of the notch being
33 in.

5. Calculate the discharge in cubic feet per second over a rectangular
notch 6 ft. wide, with end constrictions, and H = 2 ft. Compare the

values obtained when "
velocity head

"
is neglected, and when it is

taken into account assuming that the area of a cross-section a short

distance upstream from the notch is 50-2 sq. ft.

6. To determine the discharge of a sluggish stream at a particular section,

a dam was built and the water made to flow over a 90 triangular weir

with sharp edges. The level of the water above the bottom of the weir

was found to be 2-75 ft. Calculate the discharge of the stream at the

section in cusecs.

Describe any method yon know for determining the level of the

surface above the bottom of the weir. (Inst. C.E., April, 1953.)

7. Describe briefly three methods of sounding depths on a broad river

estuary and three methods of fixing the positions of such soundings.
State which of the latter methods you would prefer to use, giving your
reasons. The shores of the estuary are gently rising and are well mapped.
(Inst. C.E., April, 1957.)



CHAPTER XII

AREAS AND EARTHWORK QUANTITIES

CALCULATION OF AREAS

The computation of areas can be done (1) by calculation from
measurements made on a plan; (2) by direct calculation from co-

ordinates; and (3) by the use of an instrument called a planimeter.

1. Calculation of Areas from Measurements on a Plan.

An area can easily be calculated from measurements taken on a

plan if the boundaries are straight lines which permit of the whole

figure being divided into a series of simple geometrical figures con-

sisting of triangles, squares or rectangles. Often, however, the boun-

daries are irregular, and in that case the procedure is to divide the

greater part of the interior into a series of simple geometrical figures

whose areas can be calculated by ordinary simple formulae, leaving

ABC D E F

Fig. 12.1

other figures, which have an irregular line as one boundary, and whose

areas must be calculated by special means and formula. As it is these

irregular figures which present the greater difficulty, we shall consider

them first.

In fig. 12.1 we have an irregularly shaped boundary a, b, c, d . . . j

close to a line AJ. Divide AJ into a number of equal parts AB, BC,

CD, . . . and at the points A, B, C, D . . . erect ordinates Aa, Bb, Cc,

Dd, ... to meet the boundary in a, b, c, d, . . . . If the points of divi-

sion are close enough together, the part of the boundary between ordi-

nates will be very approximately a straight line, and the whole figure

will be divided into a number of trapeziums, ABba, BCcb, CDdc, etc.

243
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Let the ordinates Aa, Bb, Cc, Dd, . . . be of length yl9 y2 y3 , y4 , . . .

and let d be distances AB, BC, CD ....

Then area of first trapezium = \d(yl + j/2),

2nd

,
3rd

(n
-

2)th = l%n-2 + 2/n-i),

(n l)th
=

Hence total area

This formula is known as the trapezoidal formula for areas. The

approximation used in it is, of course, that the lines ab, be, cd, . . .

are straight lines, whereas in actual fact they may be curved. To
allow for this, another alternative rule known as Simpson's rule

is often used instead. This formula is based on the assumption that the

lines ac, ce, eg, etc. ... are parabolic arcs of the form y = a + bx + ex2 .

With such a curve it can be shown that the area of a figure such as

ABCcbaA, is

Ki + 2/a) X 2d + f(2/2
-

i(yi + 2/3)} x 2d =

the second term in the first expression being the area included between

the parabolic arc and the chord, and the first term the area of the tra-

pezium bounded by yl and y3 . Accordingly, if the area is divided into

an even number of parts so that there is an odd number of ordinates,

we have for the area of the whole figure,

A = i %! + 4y2 + 2y3 + 4y4 + 2% + . . . + 2yn_2 + 4^ + yn].

In words, Simpson's rule is therefore :

Divide the area into an even number of equally spaced vertical strips.

Add together the first and last ordinates, four times the sum of the even ordi-

nates, and twice the sum of the remaining odd ordinates, and multiply the

result by one third of the distance between successive ordinates.

It is obvious that both the trapezoidal and Simpson's formulae can
be applied to a figure such as that shown in fig. 12.2, where the ordinates

are drawn from one irregular boundary to the other, and the area of
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the whole of the figure is included in the calculation. Owing to some

account being taken of the curvature of the boundaries, Simpson's
rule is rather more accurate than the trapezoidal rule. The latter is

included in Simpson's rule as a special case when the boundary between

alternate ordinates is a straight line.

Fig. 12.2

In other cases it is convenient to divide the central part of the

figure into a series of triangles, as in fig. 12.3, and calculate the areas

of the triangles, the areas of the small portions between the boundary
and the sides of the triangles being taken out by the trapezoidal or

by Simpson's rule. If ABCDEFGA is a closed traverse, the area in-

cluded in it may also be calculated by co-ordinates by the rules given

in Chapter V, p. 59.

Fig. 12.3

If the area is divided into triangles, the sides of which are measured,

the area of any triangle is given by

A = Vs(s a)(s b)(s c),

where a, b and c are the lengths of the sides and s = \(a -f- b + c).

Alternatively, the length of one side a and of the perpendicular p to
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it from the apex opposite to it may be scaled from the plan, when, of

course, A = \ap.

A sheet of tracing paper or celluloid with a square grid, such as

that shown in fig. 12.4, enables an area to be found rapidly and reason-

ably accurately. Each square contains a known area, and the method

Fig. 12.4

consists in counting the number of squares included in the figure but

not crossed by any part of the boundary. The areas of the figure in-

cluded in squares such as A which are crossed by the boundary can be

estimated by eye as a decimal part of the area of the whole square,

and the results added together and to the total area of the complete

squares.

/:

V
^rrr:
V

^X
A_\

Fig. 12.5

Another method is to use a piece of tracing paper (fig. 12.5) on which

has been drawn a series of strips bounded by parallel lines a fixed dis-

tance apart. This is placed over the plan, and the distance between the
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boundaries at the middle of each, strip is measured. The sum of these

distances multiplied by the width of each strip gives the total area

of the figure. This method can be simplified somewhat by the use of

a special computing scale. This consists of a scale on which is mounted

a rider with a square aperture provided with

a vertical cross hair. The cross hair is set

so that the small portion of the area which

is included by it appears to be equal to the

area of the portion excluded, as in fig. 12.6.

The reading on the scale is taken, and the

rider moved over to the other side of the

figure, when the hair is once more set to equalize the areas cut off

by it. The scale is again read and the difference of readings then

gives the mean length of the strip. As the instrument is made to work

over strips of standard width, the scale can be graduated to give

readings direct in terms of area.

Fig. 12.6

2. Computation of Areas from Co-ordinates.

This LS the most accurate method of determining aroas, and is

applicable when the figure, or the greater part of it, consists of a closed

traverse surround and the co-ordinates

of the various stations are known. The

method is described and the formula)

given on pp. 58-61.

3. Determination

Planimeter.

of Area by Amsler's

In order to understand the working
of the planimeter, consider the motion of

a tracing bar AB (fig. 12.7) freely jointed

at A to a pole arm AO which rotates about

a fixed centre 0. Let the end A move

through a small angle to A', and the end

B to a point B' close to B. As AA' is a

small arc, small enough to be considered

a straight line, the motion of B can be considered to be a lateral

displacement BB" parallel and equal to AA', and a rotation through

the angle B"A'B' = dv. about A'. Hence, if I is the length of AB
and dh = AA' sin BAA' is the perpendicular from A'B" to AB, the

12 -7
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area swept out by the arm as it moves from AB to A'B' will be

a.

Now suppose there is a small wheel or roller at P on AB which will

only register displacements at right angles to AB, and let AP = MB.
The displacement of the point P perpendicular to AB, and hence the

displacement registered on the wheel, will be

dp = dh + Jclda, or dh = dp klda.

Hence, substituting this value of dh in the original equation,

and, for finite area, displacement and rotation,

where p is the total lateral displacement registered on the wheel and

oc is the total angle through which AB has rotated about A.

Now take the cases shown in figs. 12.8 and 12.9, where the end B
travels clockwise round a closed curve C1? while A describes part of a

circular arc Ca in fig. 12.8 and a complete circle C2 exterior to the

Fig. 12.8 Fig. 12.9

curve G! in fig. 12.9. In both cases the direction of its motion is shown

by an arrow for different positions of the arm AB, the movement

registered on the drum, of course, being the component perpendicular

to AB, and it will be seen that, as AB returns to its original position,

the total rotation of B about A is zero, so that a = 0. In fig. 12.8,

during the left to right travel of B, AB will sweep out a positive area

bounded on the top and on the bottom by the upper part of CL and
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an arc of C2 respectively, while during the right to left travel of B,

AB will sweep out a negative area bounded on the top by the lower

part of Cj and on the bottom by the same arc of C
2 ,

the left and right

boundaries of both areas being the extreme left and right positions of

AB. Consequently, the area recorded will be the algebraic sum of these

two areas, which is the area contained by Cx . In this case a = and

In the case of fig. 12.9, the positive area swept out by AB is the

area of the figure bounded on the top by the upper part of Ct and on

the bottom by the upper part of the circle C2 ,
while the negative area

is bounded on the top by the lower part of Cx and on the bottom by

Fig. 12.10

the lower part of the circle C2 . The area recorded by the planimetor
is the algebraic sum of these two areas, which is (Al A 2 ), where A l

is the area of the figure Cx and Az
is the area of the circle C2 . Hence,

as a = in this case also,

or Al
= At + lp........ (2)

Next, let the figure traced by B totally enclose the circle described

by A as in fig. 12.10. In this case, AB will complete a whole revolution

9 (G467)
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before it returns to its original position and hence a = 27r, so that the

original equation gives

But the area traced out by AB will be the area lying between the curves

Ci and C2 ,
so that, if A

1
and A 2 are the areas contained by these curves,

A
l
- A 2

=
Ip + (#*

-
JeP)27T.

... A^At + lp+^-kP)^. ... (3)

In those equations A^ 1 and k are constants for the instrument and

the only observed quantity is p, which is given by the revolutions of

the drum; consequently /1
;
can be found.

(By courtesy of Messrs. W. F. Stanley & Co , Ltd )

Pig. 12.11

Fig. 12.11 shows an instrument designed on these principles. In

this planimeter the tracing bar is adjustable in a carriage which carries

the graduated rotating drum and to which the end of the pole arm is

pivoted. Complete revolutions of the drum are counted on a small

disc worked by a worm screw, but parts of a revolution are read on

the drum and a vernier, a magnifying glass being provided to enable

the vernier index to be seen clearly. A scale and setting arrangement

enable the tracing bar to be set with different effective lengths to suit

different scales, and a table supplied with the instrument gives the

positions at which the carriage must be set on the tracing bar to measure

areas on any required scale, and also the area corresponding to each

complete revolution of the drum.

The drum itself can only register movements at right angles to the

tracing bar. If there is any longitudinal movement in the direction

of the tracing bar the drum simply slides along the paper without

registering. The point of the tracing bar which is used to trace along

the boundary is an adjustable pin which is kept just clear of the paper

by an adjustable support.
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The end of the pole arm is pivoted on a needle-pointed weight which

carries the centre about which the arm rotates.

To use the instrument, set the tracing bar in the carriage at the

reading necessary to give the result in the desired units on the scale

on which the plan is drawn, and then place the weight outside the area

to be measured. Mark some point on the boundary from which to

start and, having set the tracing bar point at this point, read the

counter, drum and vernier. Now move the tracing point clockwise

along the boundary until it returns to the starting point and read the

counter, drum and vernier again. The difference in the two sets of

readings will give a number which, when multiplied by the constant

given in the tables, will give the area required.

If the area is large, it may be necessary to set the pole inside it,

in which case the end A of the tracing bar will trace out the circle C2 ,

fig. 12.10, as the end of the tracing bar B moves completely round the

boundary. In this case, the area of the circle C2 ,
which is given in the

tables or is marked on the instrument, together with the quantity

(1J2
_

frpy2ir 9
which is also given in the tables, must be added to the

area derived from the instrument readings as in equation (3) above.

When a new instrument is being used for the first time, it is well to

test the constants and settings. This can be done by drawing squares

or rectangles of given sides and then comparing the calculated area

from the area obtained by planimeter.

4. Calculation of Areas of Cross-sections of Cuttings and Embankments.

The calculation of areas of cross-sections of cuttings and embank-

ments from recorded levels follows

from very elementary problems in

mensuration. In fig. 12.12 we have .
,

an ideal section, level throughout
j
\!

along the surface, the side slopes ! .--V-

being k units horizontally to 1 unit

vertically. This is the case which Fig. 12.12

arises when rough quantities are

to be computed from a longitudinal section, and it can easily be seen

that the area is made up of the areas of the triangles ABE and DCF

and the rectangle BCFE. This gives

= h(2d + kh).

If much work of this kind is involved the area can be computed from
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special earthwork tables. If none is available, special tables can easily

be computed for given values of k and d and for different values of h.

In fig. 12.13, where the heights \, A2 ,
A3 ,

A4 ,
and A5 ,

and the distances

dl and d2 are known from the levelling operations,

A = \dji2 + Id(h2 + A3) + idfo + ^) + A
= \hj^ + d) + h3d + l\(d + d,2).

Other cases can be worked out by simple mensuration.

CALCULATION OF EARTHWORK QUANTITIES

5. Volumes of Railway Cuttings and Embankments.

Let AGgaA in fig. 12.14 represent part of a longitudinal section for

a road or railway, and let cross-sections be taken at equal distances

d apart at A, B, C, D, E, F, and G. Let the areas of these sections

be Al9
A2 , A3 , AI, .... Then if we take the mean of the end areas

of the solid comprised between A and B, which is equal to \(A^ + A2),

and multiply it by d, the distance between end sections, it is reasonable

to suppose that this will give us an approximate estimate of the cubic

contents of the solid. Hence
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Similarly, Vz
= %A t + A3)d,

Ajd,

+ A 6)d,

F6
- i(4. + AJd,

and, by addition,

V = l-rf(A + 2^f 2 + 24 8 + 2^t 4 + 2A, + 2A, + A 7).

This is the trapezoidal rule which is often used for obtaining approxi-
mate volumes, but it is only valid when the area of the section at the

middle is the mean of the end areas, and this is only true when the

solid is composed of wedges and prisms. Most of the solids involved

in earthwork cuttings or embankments are prismoids, which are solids

having two parallel end faces, each of which is a polygon of nny number

of sides, the side faces of the solid being planes. Accordingly, we now

proceed to deduce a more rigorous formula known as the prismoidal

formula.

6. Prismoidal Formula.

In fig. 12.15, ABCD and RFGII are the parallel end faces of a

prismoid, the area of these faces being A and A% respectively. Let

JKLM be a section midway between the end sections, and parallel to

both, and let the distance between this section and either of the end

sections be d. In JKLM take any pole and join to A, B, C and
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D, and to E, F, G and H. Then the total volume may be considered

to be made up of two pyramids OABCD and OEFGH, of height d

and with bases of areas Al and A 3 respectively, and four other pyramids

OABFE, OBFGC, OCDHG and OADHE, whose bases are the sides

of the solid. The volumes of the pyramids OABCD and OEFGH are

equal to \A^A and \A%d respectively.

Now take the pyramid OABFE. The volume of this pyramid is

-J(area ABFE) X (height of pyramid), which we may take equal to

\ X JK X '2d X p, where p is the perpendicular from on JK. But

p x JK = 2 X area of triangle JOK. Consequently, the volume of the

pyramid = X area of triangle JOK X d. Similarly, the volumes of the

pyramids OBFGC, OCDHG and OADHE are f x d multiplied by the

areas of the triangles KOL, LOM and MOJ. But the sum of the areas

of the triangles JOK, KOL, LOM and MOJ is equal to the area of the

cross-section JKLM A 2 . Hence the volume of the whole prismoid

is equal to

V = lA,d

Now, apply this result to the sections at A, 13, C, T), E, F, G in fig.

12.14 and the result is

V = \d(Av + A3 + 4A
2 ) + \d(A z + A5 + 4J 4) + Jrf(/l 5 + A, + <iA 6)

Ai + A,) + 2(A 3 + A,)l

a result which may be compared with Simpson's Rule for Areas.

In general, a prismoid may be divided up into a series of prisms,

wedges and pyramids so that the rule holds for any shape of cross-

section, and the different sections need not have the same number of

sides. Hence, for any prismoid:

Divide the cutting or embankment into an even number of evenly spaced

parts by an odd number of cross-sections. Then the volume required is equal
to one-third of the distance between sections, multiplied by the sum formed

by the sum of the areas of the first and last sections, plus four times the sum

of the areas of the even sections, plus twice the sum of the areas of the remaining
odd sections.

It will be noted that it is assumed in the derivation of this formula

that the ground surface between the odd sections is a plane. This is

not always the case, and in such an event there will be a small error.
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Consequently, in selecting the positions for cross-sections it is well to

aim at siting them so that there is no great change in slope at even
sections. If necessary, the spacing apart of the cross-sections can be

altered and the whole volume divided into several parts, the prismoidal
rule being applied to each part. When an excavation or embankment
is on a curve, the prismoidal rule is not strictly applicable because

radial sections are no longer parallel. A correction for curvature can

be made if desired, although, as the curves are generally flat, the

application of the prismoidal formula) in the ordinary way does not

lead to serious error, and it is usual to neglect the curvature correction.

This correction will be found described in some of the more advanced

textbooks.

7. Computation of Volumes of Large Excavations from a Rectangular

Mesh of Spot Heights.

In dealing with large excavations covering a large area, a con-

venient plan is to divide the area up into a mesh of squares or rectangles,

as shown in fig. 12.16, with spot heights at the intersections of the

Fig. 12. 10

lines forming the mesh. For computing purposes, each square or rect-

angle is best divided into two triangles by a diagonal, and the volume

computed by multiplying the area of each triangle by the mean of

the depths of excavation at the apices. This gives a better result than

that obtained by multiplying the area of each square by the means of

the depths of excavation at the four corners, since it deals more effec-

tively with any change of slope of the ground surface along and at

right angles to the diagonal.
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A simplification in computing results if we note that, taking any

triangles which do not abut on the boundary, and thus have the same

area, some depths may occur once at an apex, some twice, some three

times, and so on up to eight times. Let

= sum of depths used once,

A2
= sum of depths used twice,

= sum of depths used thrice,

SA8
= sum of depths used eight times,

A = area of a single triangle.

Then, the volume of that part of solid which does not contain any

prisms abutting on the boundary is

F = \A\Z\ + 2SA2 + 3SA3 + . . . + TEA, + 8EA8].

The volume of the whole solid is then this quantity plus the sum of

the volumes of all prisms abutting on the boundary, the volume at

each prism being the area of the base multiplied by the mean height.,

8. Computation of Volumes from Contours.

A simple case of this is to find out the storage capacity of a reser-

voir from a contoured plan, as in this case the surface of the water

lies in a horizontal plane parallel to the level surfaces enclosed by the

contour lines. Here, the area enclosed by each contour line is com-

puted, and the volume enclosed between each pair of contours is taken

as the mean of the areas of the surfaces enclosed by the two contours

multiplied by the vertical distance between them. The same method

can be used in computing the volumes of excavations when the bottom

of the excavation is to be taken as a flat surface. Alternatively, a

mesh of rectangles or squares can be drawn on the plan and the depth
of excavation at each corner point interpolated from the contours.

This last method may also be used if the new surface of the excavation

or fill is to be taken out or made up to a specified gradient, but in this

there is an alternative procedure.

In fig. 12.1Ta are shown a number of contours of a hill which has

to be excavated to the gradient ABODE in the longitudinal sectior

along the line XY which is shown in fig. 12.1T6. This means that al

the earth lying to the left of ABODE is to be removed. On the longi
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tudinal section draw the horizontal lines A'A, B'B, C'C, D'D and E'E,
to represent the planes of the 320, 315, 310, 305 and 300-ft. contours,
and to meet the line representing the gradient at the points A, B, C, D
and E. Through A and B draw lines perpendicular to XY to meet the

320- and 315-ft. contours (fig. 12.17a) in the lines aa' and bb' respec-

tively. Then the areas lying to the left of aa' and bb', and bounded by
these lines and by the 320- and 315-ft. contours respectively, represent

Fig. 12.17

the upper and lower surfaces of the volume of earth to be removed which

lies between the 320- and 315-ft. contours. Hence this volume may be

taken as the mean of these areas multiplied by the contour interval.

In a similar manner, the earth to be removed between the 315- and

310-ft. contours is the contour interval multiplied by the mean of the

areas bounded by the lines bb' and cc' and the portions of the 315-

and 310-ft. contours which lie to the left of them. Proceeding in this

way, by taking out the areas indicated in the plan by shading, the whole

volume may be found.

It may be noted that the curve formed by joining e, d, c, b, a, a',

b', c', d' and e' represents the face of the cutting in plan.
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QUESTIONS ON CHAPTER XII

1. Calculate the area of a cross-section of a cutting in flat country in

which the depth is 6 ft., the total width of formation of the bottom

25 ft., and the side slopes one and a half horizontal to one vertical.

2. Calculate the area of a cross-section of a railway embankment resting

on ground sloping sideways at a slope of 1 : 10. Depth of embankment

at centre is 8 ft., total width on top 25 ft., and side slopes one hori-

zontal to one vertical.

3. The following offsets were taken to a boundary from points along a

chainage line, all measurements being in feet:

Calculate the area of the iigure by Simpson's rule.

4:. A chainage line was run through the centre of a closed figure, and the

total width of the figure was measured at different points along the

line, and in a direction at right angles to it, the following being the

results in feet:

Calculate the area by Simpson's rule, and compare the result with

the area calculated by the trapezoidal rule.
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5. What is a prismoid, and why is the prismoidal formula particularly

suitable for determining volumes of such shapes as the end-portions

of cuttings and embankments?

Calculate the cubic contents of the length of embankment of which

the cross-sectional areas at 50-ft. intervals are as follows:

Distance: 50 100 150 200 250 300

Area (sq.ft.): HO 425 640 726 1590 1790 2600

Make a similar calculation using the trapezoidal formula, and

explain why the results differ. (Inst. C.E., April, 1948.)

6. Calculate the volume of the embankment described in the last example,

but assume that the area at zero distance is zero instead of 110 sq. ft.

Give the results calculated by both the prismoidal and trapezoidal

formulae.

7. Calculate the area of a triangle of which the measured sides are 1306 ft.,

2248 ft., 1559 ft,

8. The following symbols relate to the dimensions of a railway cutting:

b width of cutting at formation level;

h depth of cutting on centre line
;

*j
and s2 side widths or half breadths

;

hi and A2 the vertical heights above formation level of the

upper and lower limits of the transverse slope;

n horizontal to 1

vertical the inclination of the side slopes ;

m horizontal to 1

vertical = the transverse inclination of the ground.

The transverse slope of the ground does not cut the formation level.

Derive an expression for the area of the cross-section and indicate

how the dimensions s
x
and s2 are obtained. (Inst. C.E., April, 1953.)

9. The formation level of the centre point, C, of a particular cross-section

of a proposed cutting is 220-5 ft. The proposed formation width is

20 ft. and the side slopes are to be 1^ to 1. A level is set up nearby and

its height of collimation is 225-85 ft.

Describe how you would locate the side slopes of the section.

If the staff reading at the ground-level centre point D is 3-10 and the

readings at the slope stakes are 3-85 and 2'25 respectively, what is

the sectional area of the cutting? (Inst. C.E., October, 1954.)
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SUPPLEMENTARY NOTES

1. Proof of Formulae for the Sag Correction of a Metal Band with End

Supports at the Same Level.

Consider an infinitesimally small length 8s of the tape, or band, as in

fig. A.I, and let the tangents at the ends of this length make angles and

+ 80 with the horizontal tangent to the band at the centre of the span.

Let the corresponding pulls on the ends be P and P + SP. Assuming that

the band is perfectly flexible,* these pulls, together with the weight of the

element, keep the latter in equilibrium, so that by resolving horizontally

and vertically we have the following equations:

P cos -
(P + SP) cos (0 + 80)

-
0,

P sin + w8s - (P + SP) sin (0 + 80)
- 0.

As 80 is a very small angle, we may write cos 80 = 1 and sin 80 80.

.'. P cos -
(P + 8P)(cos 0-80 sin 0)

=
0,

and P sin -f w8s -
(P + 8P)(sin 0+80 cos 0)

= 0.

P ,
P P+l

-caSs

Fig. A.I

so

Also, as SP and 80 are both very small, we can put SP . 80 = 0, and

PS0sin0 - SPcosfl =
0,

PS0 cos + SP sin = w8s,

or d(P cos 0)
=

0,

and d(P sin 0) w ds.

* This means that there are no internal bending moments or shearing stresses.

260
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Integrating, P cos = A,

P sin = ws + B,

where A and B are constants of integration.

But if we take the origin of co-ordinates at the centre of the span
at its lowest point, and if P is the pull there, which will be in a horizontal

direction,

Consequently P cos = P
,

P sin =
ws,

and tan =
-.

* o

But dx = ds cos = '

sec V[l + tan2
0] V[l + (wsjPQf\

4

If X is the total chord length and I tho total length of the band, x = \X
when s =

Ji5,
and aj

= ~i^ when * = U. Hence, taking these as the

limits of integration,

3

24P 2 640 P 4

This gives X in terms of Z, the length of the band, and of P , the un-

known horizontal pull at the middle of the sag, while we want X in terms

of I and of P, the observed pull at the end of the band.

At the end of the band, where P = P and s =
-Ji,

a wl

tan 8 - ^
and P = P sec B.

-p* p*
v

p2

"3*

:' X =
'
"
^iPH"

'

4PV
'

640 P*

" l
""

24"P2

""

1920
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In ordinary cases the third term is negligible and we have

24

In order to get the sag, we have

dv = ds sin = ds - = ds tan 0|~1 + tan2
0]'*

sec

= ds tan 0[1
-

\ tan2 + . . ]

=
ds[tan \ tan3 -f . .

.J

ws w3s3
*= ^ efo i ^ n ds + . . . .

p 2 i> s

Now y
= when 5 = 0, and y

= F when 5 = p, F being the sag at

the centre of the span. Hence
1 7

rws _
LP

p

T28

in which the second term on the right is negligible in practice.

wl2

If this series is reversed so as to obtain ~~ in terms of F, we have

wl* 32F3

and substitution of this in the expression for sag correction already
found gives

8F2 32 F4

X ~ l

~W IB ~P
' ' '

When the last term on the right, which is very small numerically, is

neglected, we get the formula given on p. 87, which can be used when

sag correction is determined in the field by measuring the actual sag at

the centre of the curve.
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2. Approximate Adjustment of a Braced Quadrilateral.

Let ABCD (fig. A.2) be a braced quadrilateral in which all the angles

marked 1, 2, 3, 4, 5, 6, 7 and 8 have been observed. Owing to small

accidental errors of observation the sum of the angles in any triangle

will not be exactly equal to the theoretical sum of 180. Moreover,

as pointed out on page 94, even after

the angles have been adjiisted to close

the triangles, different values for the

length of a side or diagonal will usually

be obtained when, starting with the

length of one side as base, the length

of any other side is computed by a

different route. Thus, the length of

CD may be computed from the length

of AB by using in turn the triangles

ABC and BCD or by using the triangles
Fis- A -2

ABD and ADC. In general, there will

be a small difference between the two computed lengths and it is desired

to
"
iron out

"
this difference as well as to make all three angles in

each triangle add up to 180. An approximate adjustment of the figure

which does not require the use of the method of least squares may be

obtained as follows:

1. Add up the eight observed angles, the sum of which should be equal

to 360. Let there be a small difference, say ev and let the sum be greater

than 360, so that e1 is positive. Then subtract one-eighth of e
l
from each

angle so that the new values of the angles add up to 360 exactly. If the

original sum is less than 360, so that e
1

is negative, one-eighth of el must

be added to each angle.

2. Similarly, add angles 4 and 5 together and subtract the sum from

the sum of 1 and 8. Let the difference be e2 . If e2 is positive, subtract one-

fourth of it from 1 and 8 and add one-fourth of it to 4 and 5 so that 1 +
g 4 __ 5 = o. If e2 is negative, add one-fourth of it to 1 and 8 and sub-

tract one-fourth of it from 4 and 5.

3. Add angles 6 and 7 together and subtract the sum from the sum of

angles 2 and 3. Let the difference be e3 . If *
3

is positive, subtract one-

fourth of it from 2 and 3 and add one-fourth of it to 6 and 7 so that

2 + 367^0. If e3 is negative, add one-fourth of it to 2 and 3 and

subtract one-fourth of it from 6 and 7.

4. Now look out the log sines of all the adjusted angles, at the same time

booking the difference in the log sine for an increase of 1" in the value of
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the angle. (These differences, or multiples of them, are given in most

Tables of log sines.) Calculate

(log sin 2 + log sin 4 + log sin 6 + log sin 8)

(log sin 1 + log sin 3 + log sin 5 + log sin 7).

This sum should, in theory, be equal to zero. If not, let it be e4 . Also let

rv r2>
r3> r4> r

5>
r
6>

r7 and fg k the corrections to be added algebraically to the

angles and let dv d2 , dz , d^ d& de ,
d1

and ds
be the differences in the last

place of the log sines for an increase of 1" in the angle. Then apply the

following corrections

Cyffli ^AWO ^tto &$& eMn ^4^8~ __. _*_ -t . - * *
y _?. ?

if

* "
if

^
.'- V ===

^
-

[d
2
]'

2
[d

2
]'

3
[d

2
]' [d

2
]'

' ' ' '

[<^
2
J' [d

2
]

to the various angles adjusted as above, [d
2
] being

This method is superior to, and in the end quicker than, the method of

meaning results described in page 95.

A worked example is given on the facing pages 266 and 267. In this

example, the observed angles are set out in column 2, the preliminary

adjusted angles after the application of corrections for el e
2t

and es in

column 6 and the final corrected values in column 11. From this it will be

seen that the discrepancy in the sum of the eight angles is reduced from

4" to zero, the excess of the sum of 1 and 8 over the sum of 4 and 5

from +6" to +0-8", that of the sum of 2 and 3 over the sum of 6 and 7

from 12" to 0-2", while the excess in the difference of the log sines is

reduced from 21 in the 6th place to zero. The adjustment does not

always show such good results as this and in some cases, if the residual

discrepancies are larger than desirable, it may be advisable to proceed with

a second adjustment, using the finally adjusted angles from the first adjus-

ment as observed angles.

The finally adjusted log sines, given in column 12, are obtained by multi-

plying together the relevant r and d and adding the result to the unadjusted

log sine
; they are checked by looking out the log sines of the finally adjusted

The side equation, that is the equation for the difference of sums of log

sines, can be deduced as follows:

The length of the side DC in terms of that of AB can be obtained from

the triangles ADB and ADC, as well as from the triangles ABC and DBC.

Thus, from the triangles ADB and ADC,
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AD _ sin 3

AB
~"

sin 8'

DC _ sin 1

AD sin 6*

. .-.
sm 6 sin 8

Similarly, from the triangles ABC and ADC,

DC = AB
S S..
sin 5 sin 7

Hence, equating the two values of DC and taking logarithms,

(log sin 2 + log sin 4 + log sin 6 + log sin 8)

(log sin 1 + log sin 3 + log sin 5 + log sin 7)
^ 0.

This equation would be rigorously satisfied if there were no errors in

the observed angles. Owmg to small errors of observation, however, the

equation is not satisfied entirely when the values of tho observed angles
are substituted in it, and the difference in the sums of the log sines is e4 ,

so that 1, 2, 3, ... 8, being observed values,

(log sin 2 + log sin 4 + log sin 6 + log sin 8)

(log sin 1 + lg sin 3 + log sin 5 + log sin 7)
= e4

In order to satisfy the equation we apply corrections r
lt

r2 ,
r3 ,

. . .
,
r8 ,

so that the corrected values are 1 -)- rv 2 -\~ r2 , 3 + r3 ,
. . .

,
8 + r8 . But

as
f*i> ?*2>

r
s> >

rs arc smaM quantities,

log sin (1 + rj)
= log sin 1 + r^d^

log sin (2 + r2)
=

log sin 2 + r2d2 ,

log sin (3 -f- r3)
= log sin 3 + r3d3 , etc.,

^D d2 , d& etc., being the differences in the log sines for 1" increase in the

value of the angles. Hence, we must have,

(log sin 2 + log sin 4 + log sin 6 + log sin 8)

(log sin 1 + log sin 3 + log sin 5 + log sin 7) +
W2 + rA + r6d + r

&d )
-

(
rA + r3^3 + rbds + M?) = 0.

Hence

e4 + W2 + rA + ^6 + rM Mi + rA + ^5 + *W?) = 0-
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EXAMPLE OF THE APPROXIMATE ADJUSTMENT

-4*; +6"; g3
= -12"; -21.

Formula.

(1 + 2 + 3 + 4 + 6 + 6 + 7 + 8)- 360 cx . Apply- fo to each angle.

1 + 8-4-5=- e
2

- Apply
-

Jf2 to 1 and 8 and + Je2 to 4 and 5.

2 + 3-6-7 = e3 . Apply
-

Jfi3 to 2 and 3 and + Je2 to 6 and 7.

(log sin 2 + log sin 4 + log sin 6 + log sin 8)
-

(log sin 1 + log sin 3 + log sin 6 + log sin 7)
== e4 .
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OF A BRACED QUADRILATERAL

el
= 0-0"; e2

- +0-8*; ea
- -0-2'; e4

- 0.

Let d = difference in the log sine for an increase of I" in the angle; [d
2
]
= sum

of squares of the rTa; r
l9

r2 , r3 . . . rg the corrections to bo applied to the angles after

corrections for el9 c2 and e3 have been applied to them. Then

, A. r _ _ *A. _ _ , 'A. = _ 'A.
r
>
= + ' fz

-
3
"

4

.

,

.

---, _.

If e
t , e2 , 3, g4 are negative, the signs of the corrections to the angles are reversed

in all the above formulae.

Remember that d is positive for all angles less than 90 but negative for all angles

between 90 and 180.
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This equation will be satisfied if rv r
2 ,

r
3 , etc., are numerically propor-

tional to dlt dzy d3 , etc., or

ds <* da'

Then, substituting for r
1?

r2 ,
r3 ,

. . . , r8 in the last equation,

di + di + d\ + fb + d\ + d* + d|)
= o.

:. k =
rff -f di + ^ + - - - + di)

- fy* r - -4 -4
' 4

"
2

where [d
2
J
- if + d| + dj + . . . + 4

3. Further Note on Transferring Bearings from Ground Surface to

Lines Underground.

On page 176 we have described a method of trail sferring bearings
and levels from ground surface to lines underground, and the assump-
tion there was that a theodolite could be set exactly in line with two

wires suspended down a shaft. Space, however, may not permit setting

a theodolite on the exact line of the wires, and several methods have

been devised to overcome this difficulty, and so to carry on an under-

ground traverse.

Fig. A.3

In fig. A.3, AB is the base line defined by the wires but there is not

space to set up a theodolite on the line of AB continued. The first

point of the underground traverse is therefore established at a point C
as far away as possible along the line of the traverse and from which

both A and B are visible. The lengths AB, BC, and AC are measured

very carefully, and the angles ACB and ACD are observed, D being
the next traverse station. The angles A, B, and C of the triangle can



APPENDIX TO PART 1 269

then be computed from the measured sides by the formulae

ir(s a\(s _ h\(s c )~]
r /

*' ''*' '^' _

VL ~s J'

tan IA ;
tan IB = -

;
tanW

s a s b

where s = \(a + ft + c), and hence the bearings of BC and AC can

be computed from the bearing of AB. The angle C is computed as a

check on the work, as this computed value

should agree closely with the observed

value and also with the value computed
from

C = 180 -
(A + B).

The triangle ABC is sometimes known

as the Weisbach Triangle. Maximum

accuracy is obtained when the angles at A

and C are small.

Another method which is useful when

the line AB lies more or less at right angles

to the line of the traverse is shown in

fig. A.4, where ABCD is a well-shaped

quadrilateral of which the line AB between

the wires is one side and the angles marked

], 2, 3, 4, and 5 are observed and the

sides and diagonals measured. This provides sufficient data, as well

as several checks, for the solution of the quadrilateral and for deter-

mining the bearing of the first leg, DE, of the traverse.

4. Adjustment of the Bearings of a Traverse between Azimuth Stations.

It sometimes happens that a traverse begins at one station where

there is an observed azimuth and ends at a second station where there

is also an observed azimuth, and it is necessary to adjust the bearings

of the intermediate legs.

In fig. A.5 AB is a traverse which begins at station A where there

is an observed azimuth, the direction of the meridian at A, that is the

direction of true north at A, being AN, and the traverse is carried for-

ward to the point B, where there is also an observed azimuth. It is

assumed that the bearings of the intermediate legs will be used to com-
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pute rectangular co-ordinates in which AN will be the direction of the

axis of X.

At B the direction of the meridian is BN, but, supposing that the

bearings of the traverse are based on the observed azimuth at A so that

the angle NAm = a is the bearing of the first leg of the traverse, then

the bearing, /?,
of the last leg, sB, as calculated through the intermediate

angles, supposed without error, will be the angle N'BC, where BC is

a continuation of sB and BN' is parallel to AN. The meridians at A
and B, however, are not parallel but converge towards the earth's

pole, and hence BN, and not BN', will be the direction of the meridian

N N

Fig. A.5

at B, the angle y between BN and BN' being called the convergence at

5. (See the small inset in fig. A.5 representing the earth's northern

hemisphere in which N is the north pole, NA and NB the meridians

through A and B, and BN' is a small circle through B, the plane con-

taining it being parallel to the plane containing the meridian AN.)

Thus, the bearing of sB brought forward from A will be the angle

N'BC, while the azimuth of sB will be the angle NBC. Hence if we are

to get a true comparison between the azimuth of sB and the bearing

of sB brought forward through the intermediate angles from A, or

a bearing to which intermediate bearings are to be adjusted, we must

deduct the angle y from the azimuth of BC, the value of y being given

in seconds of arc by
_ T tan 0a

7
tfsinl"'

in which Y is the Y rectangular co-ordinate of B from A, </>B is the

latitude of B, and R is the radius of the earth expressed in the same
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linear units as Y. Strictly speaking, the R to be used here depends on

the latitude of B, but, for minor work, log :
- may be taken as

R sin 1

3-99373 when Y is in feet, this being the value for latitude 45.

If we call AN the standard meridian to which all traverse bearings

are referred, and azimuths are reckoned clockwise from to 360

from north, we have the following rules for applying convergence:

For points in the northern hemisphere

Bearing sB = Azimuth of sB y when B is east of A.

Bearing sB Azimuth of sB + y when B is west of A.

For points in the southern hemisphere

Bearing sB Azimuth of sB + y when B is east of A.

Bearing sB Azimuth of sB y when B is west of A.

The latitude of B, if not known from special astronomical obser-

vations, may generally be obtained with sufficient accuracy for minor

work by scaling from a map, and the value of Y from a preliminary

computation of the traverse using the unadjusted bearings.

Suppose, for instance, that the observed bearing of sB brought forward

through a traverse of 10 legs from A is 68 13' 21", the observed azimuth

at B is 68 19' 59", and that Y = + 48 954 ft. and $ R = 37 19' 40"

north, the point B being east of A since Y is positive. Then

log Y - 4-689 79

log tan <
7i
=- 9-88228

log l/R sin 1" = 3-993 73

log y" = 2-565 80

y = 367-96"

= 6' 08-0"

Azimuth of sB = 68 19' 59"

y= - 6 08"

Correct bearing of sB = 68 13 51

But the traverse bearing is 68 13' 21", which is 30" too low. Hence
the discrepancy must be distributed between the 10 bearings, or 3" must
be added to the bearing of the first leg, 6" to the bearing of the second leg,

9" to the bearing of the third leg, and so on, and finally 30" to the bearing
of the last leg. The bearings having been adjusted in this way, the next

step is to re-compute the co-ordinates, using the adjusted bearings,

It should be noted that the formula for y is approximate only and

should only be used for minor work of limited extent, say 60 miles, in
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Y. For more extensive surveys, or surveys of greater accuracy, the

reader should consult books on geodesy or advanced surveying. Thus,

the convergence mentioned on page 36 relates to the convergence

applicable to the National Survey of Great Britain and is the angular

difference between the direction of the meridian at any point and the

direction of the central meridian for the whole country. In this case,

therefore, the Y may be very large and the simple formula for con-

vergence given above would not be nearly accurate enough.

It should also be noted that, if the meridian through a point A
is the direction of the axis of X co-ordinates to which bearings are

referred, and if B and C are two other points between which a traverse

has been run and at which azimuths have been observed, then the

initial bearing at B from which the bearings for the traverse start will

be the azimuth there Hh the convergence between B and A, and the

final bearing at C to which they will be adjusted is the azimuth there

+ the convergence between C and A.

5. Correction to Traverse Latitudes and Departures for Small Cor-

rections to Lengths and Bearings.

In the last section we noticed that it was necessary to have a value

for Y before the convergence at a traverse azimuth station could be

calculated and the bearings finally adjusted. Final co-ordinates, how-

ever, could not be obtained without finally adjusted bearings. Since

the value of Y required to compute y need only be approximate, a

preliminary computation might be done with four-figure logs and

approximate lengths and bearings, the final computation being with

full-figure logs and the fully measured lengths and adjusted bearings.

An alternative is to compute the traverse at the very beginning with

full-figure logs, the complete and accurate measures of the lengths,

and the observed, but so far unadjusted, values of the bearings, and

then, when the corrections to the bearings are known, to apply cor-

rections, computed as follows, to the preliminary values of the latitudes

and departures. The corrections in question are numerically small and

can quite well be computed with slide rule or four-figure logs.

On page 129 we showed that the errors 8(Az) and S(A?/) in latitude,

Ax, and departure, A/, produced by errors 81 in I and da. in a are,

when <5a is expressed in seconds of arc,

S(Ax) = SI cos a Ay . SOL sin 1"

8(A2/)
= SI sin a + Ax . <5a sin 1"
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Instead of treating 6(&x), d(A#), 61 and fix. as errors, we can treat

them as corrections, so that, if <5a is the correction to be applied to a

bearing, the consequential corrections d(Ax), <XA#), to be applied to

the latitudes and departures are :

<5(A:z4)
=

A?/! (5at sin 1"; ^(A^) = +A#1 <5a1 sin 1",

6(&x2 )
= -Ay2 (5a2 sin 1"; 3(Ay2 )

= +Az2 <5a sin 1",

A</3 c5a3 sin 1"; <5(A?/3 )
= + Ax3 (5a3 sin 1",

A?/w <5aw sin 1"; <3(A# n )
= + Azn <5an sin 1".

It is much easier to apply these corrections to the latitudes and depar-
tures than it is to re-compute the whole traverse with the original lengths

and the corrected bearings, because the corrections are only small

quantities which can be computed with a slide rule or four-figure logs,

whereas to re-compute the whole traverse from the beginning means the

use of the full-figure logarithms and the full values of the lengths and

bearings. In those formulae sin I" may be taken as 0-000 00485 and

log sin I" as 6-6856. When latitudes and departures are computed by
machine using the natural cosines and sines, it may be simpler to jot

down, when interpolating, the differences, dc and </ s., in the values of

the cosine and sine for 1" difference in a for each value of a and then

to replace the terms A?/ da sin 1" and {-A-cda sin 1" by l.d
(
r5a and

+W s (5a respectively.

Similarly, the corrections to the latitudes and departures for given

corrections to lengths are given by

6(&x) 61 cos a; 6(&y) 61 sin a.

But corrections to lengths are usually constant fractions of the

lengths, so that dl = klv 61%
= M

2 ,
$3
= &/3 , etc., where k is a constant.

Hence the corrections to the latitudes and departures on account of

corrections klit kl2 ,
kla , etc., are

=
Idi cos

QCJ
= k A.TJ ; d(Ayx )

=
kl^ sin at

= k Ay1?

= kl2 cos a2
~ k A#2 ; <5(A?/2 )

= klz sin a2
= k Ay2 ,

= kl3 cos a3 = k Ax3 ; 6(Ay3 )
= kl3 sin a3

= k Ay3 ,

6(&xn )
= kln cos aw = k AxB ; d(kyn )

= kl n sin an = k Ayn .

These results can be seen at once from first principles, as the correc-

tions are obviously simply a matter of a change of scale, and it can

also be seen that the corrections to the co-ordinates, or total latitude

and departure, of any point are kx and ky.
10 (G467)
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Elementary Field Astronomy





CHAPTER XIII

INTRODUCTORY

1. Functions of Field Astronomy.

The object of astronomical observations in survey work is to fix

the position and orientation of a survey on the earth's surface when no

fixed points are available on the ground of which the latitudes, longi-

tudes, and the azimuths, or true bearings, of certain of the lines between

different points are known. It is not necessary, of course, for the exact

position of every survey on the earth's surface to be known, or for the

bearings used to be based on a true bearing or azimuth at one point,

but in some cases this is necessary and consequently astronomical

observations to the sun or stars have to be taken to obtain time, latitude,

longitude, and azimuth. Often, however, it is only necessary to obtain

azimuth. Such a case will arise when the latitude and longitude can be

scaled from a map with sufficient precision Azimuth, however, cannot

be obtained from a map and, if no lines of known azimuth exist on the

ground, special astronomical observations must be taken to determine it.

In some methods of doing this, it is necessary to have an approximate

value of the latitude of the point of observation in order to compute
the azimuth, and in some it is necessary to know the time of observation.

Here, the approximate latitude, if not known from the map, and time,

if not obtainable from radio time signals, must be determined astronomi-

cally.

2. Solar and Stellar Observations.

The celestial bodies to which observations are taken for survey

work are the sun and stars; the moon and planets are virtually useless

for this purpose. The sun is a little easier to observe than the stars

because there is no difficulty in finding it or in the identification of the

right body, but observations to it are never so accurate as careful

observations to a star, and they are rather more troublesome to com-

pute. In addition, since the sun's position in the heavens changes very

rapidly with time when compared with that of a star, it is generally
277



278 INTRODUCTORY [CHAP.

necessary to observe the times of solar observations, and, as the sun's

position is tabulated in Almanacs and Bphemerides in terms of Green-

wich time, it is necessary to be able to convert the recorded times of

observation to Greenwich times. This can be done by comparing the

clock with radio time signals, or else, when no suitable wireless set or

chronometer keeping Greenwich time is available, by observing local

time astronomically and then, knowing the longitude, converting local

into Greenwich time.

Solar observations have the great advantage that they can be taken

by day instead of at night, and hence they are very commonly used by

engineers and surveyors when great accuracy is not required. In

geodetic work, however, stellar observations are always used instead of

solar observations because of their greater accuracy and the possibility

of taking observations to a number of different stars, thus varying the

conditions of observation.

3. Factors affecting Choice of Method.

There are a number of methods available for determining time,

latitude, longitude, and azimuth. Some are more accurate, and some

easier and more convenient than others. Hence the methods adopted

vary according to the accuracy required and the instruments available,

more care in observation naturally being needed for the more accurate

work.

4. Instruments.

The instruments most commonly used in field and geodetic

astronomy are the sextant, prismatic astrolabe, theodolite, chrono-

meter, stop watch, and chronograph (recording), and, for working out

corrections to observed altitudes, an aneroid barometer graduated in

inches of pressure, and a thermometer. A suitable receiving set is a

useful addition for obtaining Greenwich time, and one capable of receiv-

ing the scientific time signals is now a necessity for the accurate deter-

mination of longitude.

The prismatic astrolabe is designed specially for the determination

of latitude and longitude and cannot be used for the determination of

azimuth. The recording chronograph also is a special instrument which

is used in geodetic work for the precise measurement of short intervals

of time. Neither of these instruments is used to any extent in ordinary
minor survey work, and hence descriptions of them are not given in these
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The sextant, complete with artificial horizon, is used for determining
latitude and time in navigation and in reconnaissance, geographical,

and exploratory surveys where great accuracy is not needed. It cannot

be used for azimuth determinations and for these a theodolite must be

employed. For a description of the sextant see Principles and Use of

Surveying Instruments, Chapter IV.

In all cases where a sextant or theodolite is used for solar observations

it must be provided with a dark-glass shade or cover for the eyepiece, as

very serious damage can be done to the eye if the sun is viewed through a

telescope, even for a second or two, without some sort of protection for the

eye.

The theodolite is a good all-round instrument suited for most classes

of astronomical work as well as for the measurement of horizontal and

vertical angles. When it is to be used for astronomical work, it should

be provided with a dark si iado for solar observations and with a diagonal

eyepiece. A striding level for measuring slight inclinations of the trunnion

or horizontal axis is also a useful accessory. For night observations, it

is necessary to have some means of illuminating the cross hairs and

micrometers or verniers. Many of the modern instruments have built-

in electric illumination, operated by an accumulator or dry battery,

for illuminating the cross hairs and micrometers; in others, it is possible

to obtain a special cap to fit over the objective end of the telescope with

a slit and a small reflecting prism at one side. By this means light from

an electric torch held at the side can be reilected down the barrel to

illuminate the cross hairs, the torch also being employed to light up the

micrometers or verniers. The diagonal eyepiece is needed for observing

bodies of high altitude, as, when an altitude of about 45 or over has to

be observed, the horizontal circle gets in the way of the ordinary eye-

piece, which cannot then be used.

When the observations concerned involve accurate measurements

of time, as when azimuths are being determined from observed hour

angles, a good chronometer, either pocket or boxed, is needed, and,

when the surveyor is alone and has not got a reliable hooker who can

note the time as he observes the heavenly body, a good stop watch,

readable to a tenth of a second, is useful for recording the short interval

between the time when the body appears to be on the cross hair and the

time when the chronometer can be read a few seconds later. If much

astronomical work has to be done, it is a good plan to have two chrono-

meters, one rated to keep ordinary mean time and the other rated to

keep mean sidereal time in which 24h. mean sidereal time is equal to

23h. 56m. 04-09s. ordinary mean time. Not only are two such chrono-



280 INTRODUCTORY [CHAP. XIII]

meters useful if both stellar and solar observations are being taken,

but also they give a spare in the event of one breaking down.

A good wireless set for the reception of the wireless time signals is

now practically a necessity for field astronomy work. In addition to the

usual provision for the reception of the ordinary Greenwich time signals

on the long and medium wave-lengths, it is advisable to have a set

capable also of short-wave reception, so that, if necessary, advantage
can be taken of the 24-hours-a-day service from the American National

Bureau of Standards Station WWV, which radiates on frequencies of

2-5 to 25 megacycles.



CHAPTER XIV

SOME BASIC DEFINITIONS AND FORMULAE OF SOLID

GEOMETRY AND SPHERICAL TRIGONOMETRY

As a necessary preliminary to the study of field astronomy it is

essential that the reader should clearly understand certain geometrical

properties of the sphere and have some knowledge of elementary

spherical trigonometry. Accordingly, this chapter will be devoted to a

resume of those parts of these subjects which we shall require later on.

1. The Sphere: Definitions and Properties.

A sphere is a surface such that every point of it is at a constant dis-

tance from a fixed point inside it which is known as its centre, the

constant distance being known as its radius. Thus, in fig. 14.1, P, P',

A, A', B and C are fixed points on the sphere whose centre is 0, and the

distances of these points from the centre, OP, OP', OA, OA', OB and

OC, are each equal to the radius R. Any line passing through the centre

of the sphere will intersect the surface in two points, and such a line is

known as a diameter. Thus, the lines POP' and AOA', which intersect

the surface of the sphere at the points P, P', and A, A' are diameters.

10* 281 (G467)
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Lines such as AP or BO'B' which join two points on the surface but do

not pass through the centre are not diameters.

Any plane passing through the centre of the sphere will intersect

the surface in a circle, which is called a great circle. If the plane does not

pass through the centre of the sphere it will intersect the surface of the

sphere in a circle known as a small circle. Thus, in fig. 14.1, the plane

containing the points ACA'C' passes through the centre of the sphere and

traces out the circle ACA'C' on the surface. Hence, this circle is a great

circle. The plane containing the points DBD'B' does not contain the

centre of the sphere but intersects the surface in the circle DBD'B', and

this circle is therefore a small circle.

If a diameter POP' is drawn through the centre of the sphere per-

pendicular to the great circle ACA'C', i.e. perpendicular to the plane

containing the circle, it will intersect the surface of the sphere in two

points, P and P'. These points are known as the poles of the great

circle. SimilarFy, if POP' is perpendicular to the small circle DBD'B',
i.e. perpendicular to the plane containing the circle, and passes through

the centre 0' of this circle, the points P and P' where the line intersects

the surface of the sphere are the poles of the small circle.

The radius of a great circle is equal to the radius, /?, of the sphere.

The radius, r, of the small circle is the length O'B = O'B' = O'D

O'D'. If the great circle PD'A'P'ADP is drawn through D' perpendicular

to the planes containing the small circle DBD'B' and the great circle

ACA'C', both planes being parallel to one another, and the line OD'

makes angle with OA', it can be seen that

r = 0'D
/ = OD'.cosO = #.cos0. ... (1)

2. The Spherical Triangle.

In fig. 14.2a, ABXA' and ACX'A' are parts of two great circles of

which the containing planes intersect along the diameter AOA'. Let

AT and AT' be the tangents to the circles at the point A. These tangents

will, of course, be in the planes containing the great circles. From

draw OX perpendicular to OA in the plane ABXA' and OX' perpen-

dicular to OA in the plane ACX'A'. Then the points X and X' lie on ,1

great circle whose pole is A. The angle between the great circles is the

angle between the planes containing them, and this is measured by the

angle TAT' = XOX', or, if the sphere is of unit radius, the circular

measure of the angle will be given by the length of the arc XX'.

Through the point B on the great circle ABXA' draw a great circle

BCB' intersecting the great circle ACX'A' in the point C. Then the arcs
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AB, BC, and AC form a figure on the sphere known as a spherical

triangle which is shown in fig. 14.26. This figure is the equivalent on the

sphere of an ordinary plane triangle on a plane, and, like the plane

triangle, it consists of six parts, three of which are known as the angles
and three as the sides. The angles are (1) the angle at A between the

great circles ABXA' and ACX'A', (2) the angle at B between the great

circles ABXA' and BCB', and (3) the angle at C between the great

circles ACX'A' and BCB'. The sides are the angles represented by the

arcs AB, BC, CA, as we are not concerned with the lengths of these

arcs but only with the angles they subtend at the centre of the sphere.

Fig. 14.2

Hence, the side AB is the angle AOB which lies in the plane of the great

circle ABXA' containing AB; the side BC is the angle BOC which lies

in the plane containing the great circle BCB'; and the side AC is the

angle AOC, which lies in the plane containing the great circle ACX'A'.

As in the case of the plane triangle, we denote the angles of a spheri-

cal triangle by capital letters, such as A, B and C, and the sides by the

small letters, a, b and c, corresponding to the capital letters denoting the

angles at the apices of the triangle which lie opposite to them (see fig.

14.26). Note again, however, that in the plane triangle the sides are

lengths but that in the case of the spherical triangle they are angles.

3. Solution of Spherical Triangles.

In a plane triangle the value of any one of the six parts can be

calculated if we know the values of three other parts of which at least
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one must be a side, and the same rule holds with regard to spherical

triangles though here the three unknown parts may consist of three

angles or three sides as well as different combinations of angles and sides.

Thus, in fig. 14.26, we can calculate the side a if we are given (1) the

angles A and B and the side 6, or (2) the sides 6 and c and the angle

A, or (3) the three angles A, B and C. Hence, corresponding to the

formulae of plane trigonometry for the solution of plane triangles, in

spherical trigonometry we have analogous expressions which resemble

the others in form but in which we have trigonometrical functions of the

angles representing the sides instead of linear values of the sides them-

selves. Many of these formulae are set out below and the student should

compare them with the corresponding formulas of plane trigonometry.

sin A sin B sin C /\

sin a sin b sin c

cos a = cos b cose + sin b sine cos A, .... (3)

cos A = cos B cos C + sin B sin C cos a, . . (4)

i/ , ,, cos i(A B) ,
, /f,\

tan i(a + 6)
=

\
~ tan \c, . . . (5)

cos $(A + />)

whence we get a and b from a = %(a + b) + Ua ~ &)

b = $(a + b)- i(a
-

6).

B)^
C s

-cot|C. ... (7)

i / * n\ s** #
j. i >- /o\

ton i(4
-

fl)
=

. ;) cot^C, ... (8)

whence we get 4 and 5 from 4 = \(A + B) + \(A B) and

B = \(A + B) - \(A - B).

.
... 0)

in 5 sin (s a)

sin sin c

where s = (a + 6 + c).
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When all three angles A, B, and C are needed, calculate

tan r =
\*

m
(
* ~ g) flm

-l-

"~
)
Sm

(
* ~~

c)1 . (11)
\ L sin s J

and then

1
, tanr . D tan r ln tanr 10

tan f4 = ;
tan fi = -

r
-

;
tan \G = . (12)

sin (s a) sm (s b) (.s c)

Also

cot a sin c cose cos B + sin B cot 4, . . . (13)

sin a cos B = sin c cos 6 cos c sin 6 cos ^
,

. . (14)

sin ^4 cos b = sin Cf cos B + cos C sin B cos a. . (15)

Other formulae can, of course, be obtained from suitable interchanges

of a, 6, and c and A, B, and C. Thus, interchanging b for a and B for /I

in formula (3), we get the analogous expression

cos b = cos a cos c + sin a sin c cos B. . . (16)

It should also be noted that, when an angle is obtained from the

sine, as when A is computed from (2) or (15), there is an ambiguous

case because sin A = sin (180 A). The value to be taken can often

be determined at once by inspection of a diagram showing the conditions

of the problem or from remembering that the larger angle of a triangle

is subtended by the larger side, but in cases of doubt it is better to use

a formula involving the tangent or cosine of the unknown instead of

the sine.

4. The Spherical Bight-angled Triangle.

When one angle of a spherical triangle is a right angle the formulae

are considerably simplified since in them we can then substitute unity

for the sine of the right angle and zero for the cosine. Thus, if C is the

right angle, we have :

sin a = sin c sin A = tan b cot fi, ... (17)

sin b = sine sin B = tan a cot A, . . . (18)

cos A = cos a sin B cot c tan 6, ... (19)

cos B = cos 6 sin A cot c tan a, ... (20)

cos c = cos a cos b = cot A cot B. ... (21)



CHAPTER XV

APP4RENT MOTIONS OF CELESTIAL BODIES

THE CELESTIAL SPHERE

1. Apparent Daily Motions of Stars and Sun.

An observer watching the sky by night will see that the stars appear

to move relative to the horizon; sonic will appear to sweep out paths

from east to west and others from east to west for a time, and then,

as they sink lower in the heavens, from west to east. Some will be visible

all the time but others will appear to rise above the horizon in the east

and then, after seeming to ascend higher and higher in the heavens

until' they reach a maximum elevation, they will appear to get lower

and lower until they finally set, or sink below the horizon, in the west.

Further, it will be noted that stars do not appear to alter their positions

relative to one another. Moreover, closer examination will show that

all stars appear to revolve during the course of the 24 hours about a

fixed point in the heavens which, in the northern hemisphere, is north

of the observer's zenith and is very close to one particular star the

pole star. Unless the observer is on, or very close to the earth's equator,

some stars near to the elevated pole* will remain above the horizon all

the time and will neither rise or set. These stars called circum-polar

stars will seem for a time to travel from east to west and then from

west to east.

Similarly, in the northern hemisphere south of latitude 67 1 N.

an observer will see the sun rise each day in the east and continue to

rise until the middle of the day, when it will start to get lower, finally

to set in the west. For observers north of latitude 67|N., during certain

seasons of the year the sun will neither rise nor set but will be visible

for the whole of the 24 hours : at other seasons, it will not appear above

the horizon at all and it will be dark for the whole of the 24 hours, and

for seasons in between it will rise and set each day, but its times of rising

and setting and its elevation above the horizon at midday will vary

greatly from month to month. In addition, if the sun's position is com-

* The elevated pole is the polo which is above the observer's horizon. To an observer

in the northern hemisphere it is the north pole and to one in the southern hemisphere
it is the south pole.
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pared day after day and night after night with the positions of the stars,

it will be seen that its position changes considerably relative to theirs in

a comparatively short time.

The apparent daily motion from east to west of all heavenly bodies,

and then of some from west to east, is due to the earth's daily rotation

about its polar axis. The earth actually rotates from west to east, but,

as the observer is unaware of his own motion, a heavenly body which

rises and sets appears to him to move from east to west. This is the

same effect as the one we experience sometimes when a train in which

we are travelling is standing still at a station and a moving one passing

us appears to us to be stationary, while we appear to be travelling in

the direction opposite to that of the moving one.

2. The Celestial Sphere.

Since an observer on the earth is not conscious of the relative dis-

tances of the stars, although some appear to be brighter than others,

what he sees is what he would sec if the stars were situated on the inside

surface of a very large sphere and he were at the centre of the sphere,

Za

bV,

Fig. 15.1

a conception which is invaluable in the study of spherical astronomy.

Thus, in fig. 15. la and 6, the stars A and B can be considered to be on

the surface of the sphere whose centre coincides with the observer's

position. This sphere is called the celestial sphere. If the observer's

eye were level with a perfectly horizontal plane, this plane, called the

horizon plane, would intersect the sphere in the great circle NESWN,
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called the horizon circle. The point Z immediately above him where a

straight line drawn vertically through perpendicular to the plane

NESWN meets the surface of the sphere, is the observer's zenith,

and the point Z' on the surface of the sphere immediately below him is

the nadir point, or simply the nadir. Owing to his rotation from west

to east, the stars A and B will appear to him to describe the small

circles a'Aaa' and b'Bbb', in the direction shown in the diagram,

about the celestial pole P where the line OP is a prolongation of the

earth's axis of rotation to meet the celestial sphere at P. Owing to the

great distances of the stars compared with the diameter of the earth,

what the observer sees from his position on the surface of the earth

is, to all intents and purposes, exactly what he would see if he could be

imagined to be at the centre of the earth. Hence, the centre of the

celestial sphere is considered also to be the centre of the earth.

The plane ZPNZ'SZ which contains the zenith Z and the pole P
and is perpendicular to the horizon plane NESWN is the observer's

meridian plane, and the great circle ZPNZ'SZ which the plane traces

out on the surface of the sphere is his meridian. Hence, the meridian is

the great circle traced out on the surface of the celestial sphere by the

plane perpendicular to the horizon plane which passes through both

zenith and pole. Also, as the latitude of the point on the eartli where

the observer is standing is the angle which the earth's axis of rotation

makes with the observer's horizon plane, the angle NOP in the meridian

plane in fig. 15. la, which represents the case where the observer is in

the earth's northern hemisphere, or the angle SOP in the meridian plane

in fig. 15.16, which represents the case where the observer is in the

earth's southern hemisphere, is the observer's latitude <. The com-

plement of the latitude, 90 <, is the arc PZ and is known as the

co-latitude, c.

The points N and S where the meridian intersects the horizon are the

north and south points respectively. The plane ZEOWZ drawn through
Z perpendicular to the horizon plane NESWN and the meridian plane

ZPNZ'SZ is the prime vertical plane. This plane intersects the sphere

in a great circle EZW, ihe prime vertical, and this circle meets the horizon

circle NESWN in the east point E and the west point W. When the

observer in the northern hemisphere faces the elevated pole the

northern pole in his case the east point lies to his right and the west

point to his left, as in fig. 15. la. On the other hand, when an observer

in the southern hemisphere faces the elevated pole lying above the

horizon plane the southern pole the east point will lie to his left and

the west point to his right as in fig. 15.16.
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A plane through perpendicular to OP will trace out a great circle

ERWQB which passes through the west point W and the east point E.

This circle is called the celestial equator.

It will be seen from fig. 15.1 that the star A completes a whole revo-

lution above the observer's horizon, and hence it will ne\er set, or

disappear below the horizon. The condition for this is that the angle

QOa' should be greater than the angle QON in fig. 15.1a or QOS in fig.

15.16. But the angle QOa', which is the angle that the star's position

makes with the plane of the celestial equator, is a fixed angle for the

star which is known as the star's declination and is denoted by d.

Similarly, the angles QON in fig. 15.1a and QOS in fig. 15.16 are each

equal to 90
(f>.

Hence the condition that the star should neither

rise nor set in the ordinary way is that

d > 90 -< ore (1)

Such a star is called a circum-polar star, though in Field Astronomy
the term is usually only applied to stars which neither rise nor set and

which at the same time are not more than a few degrees about 10

from the elevated pole.

Again, the star B will rise at b" and set at b'" and will be below

the horizon during its passage from b'" to b' and from b' to b". In

this case, the angle QOb' is the star's declination <5, and, as QON,

fig. 15.1a and QOS, fig. 15.16 are each equal to 90 <, we have

for a star that sets and rises

<5 < 90 -< ore (2)

When a celestial body during its daily passage around the pole

crosses the meridian it is said to transit. Thus, since ZPNZ'SZ in fig.

15.1 is the observer's meridian, the star A transits at a and a' and the

star B at b and b'. When the body crosses the meridian on the same

side of the pole as the zenith the transit is called upper transit', when

it crosses the meridian on the opposite side of the pole to the zenith

the transit is called lower transit. Thus, the upper transits of the stars

A and B in fig. 15.1 are at a and b respectively, and the lower transits

at a' and b', the latter transit being below the horizon and hence not

visible to the observer.

3. Apparent Motion of the Sun during the Year.

One important difference between the apparent motions of the

sun and stars is that, whereas the positions of the stars appear for all

practical purposes to remain fixed relative to one another, so that they
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seem to complete their daily revolution about the celestial pole all

together as a whole, the sun's position relative to the stars appears to

undergo a continuous change during the course of the year. In summer,

for instance, if we are in the northern hemisphere we notice that the

sun is much higher in the heavens at midday than it is in winter, and it

rises and sets much farther north than it does in winter. The reason

for this is that the earth travels around the sun in an elliptical path in

a plane called the plane of the ecliptic, or simply the ecliptic, the sun

being at one focus of the ellipse, and the polar axis of the earth remains

all the time at a practically fixed angle of about 66 with the plane of

the ecliptic. As a consequence, the plane of the celestial equator is

inclined at an almost constant angle of about 23 J to the plane of the

ecliptic.

Fig. 15.2a shows the motion of the earth around the sun and figs.

15.2ft and c show sections of the path along the lines SW and VA.

In each case, the letters NP denote the north pole of the earth and the

letters EQ the earth's equator. The sun will appear to be at its maxi-

mum elevation above the equator, about 23|, on June 21 of each year,

V Vernal EQumox
(MarcS. 2.)

Sun

Winter Solstice _ /-,

(Dec 22) E-tr

(a)

Autumnal Equinox

(Sept 25)

Fig. 15.2

when the earth is at the point S, and this point is called the summer

solstice: on December 22, when the earth is at the point W, the sun will

appear to be below the equator by its maximum amount, 23^, and the

point W is called the winter solstice: on March 21 and September 23

it will be on the equator, as well as on the ecliptic, at the points V and

A, and these points are called the vernal equinox and the autumnal

equinox respectively, the line VA, which is the line of intersection of the

planes of the horizon and the ecliptic, being called the line of equinoxes.

The earth will be farthest from the sun and moving most slowly in its

orbit when it is at aphelion at the point M, and it will be nearest to the
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sun and moving most rapidly in its orbit when it is at perihelion at the

point T, the line MT being called the apse line.

The apparent annual motion of the sun as seen by an observer in

the northern hemisphere is shown in fig. 15.3, where P is the celestial

(north) pole and EAQVE the celestial equator. The great circle SAWVS
is the great circle traced out on the celestial sphere by the plane of the

ecliptic. This plane and the plane containing the equator will inter-

sect in the line VA, and these two planes are inclined to one another at

an angle of approximately 23 . At S, at the summer solstice, June 21,

the sun is at its highest point in the heavens and we have the longest

days, or amount of daylight in the year; at W, the winter solstice,

December 22, it is at its lowest and we have the shortest days of the year.

Fig. 15.3

When it is at V, the vernal equinox (March 21) and at A, the autumnal

equinox (September 23) the sun is on the equator and day and night

are then of equal length. At V the sun crosses the equator, and its

declination, or elevation above or below the equator, changes from

negative to positive. In the southern hemisphere, of course, the seasons

are reversed and summer occurs while the sun's declination is negative,

or south of the equator, and winter when it is positive, or north of it,

The time in which the earth completes a whole revolution from one

vernal equinox to the next is about 365-2422 mean solar days, the

apparent yearly motion of the sun relative to the stars being in a direc-

tion (west to east) opposite to its apparent daily motion. As a result,

the interval between two successive upper transits of the sun (a solar

day) is a little greater than the interval between two successive upper

transits of a star (a sidereal day), and, in fact, the sun appears to slip

back relative to the stars by about 3 minutes 57 seconds of time (3m

57s) per day on an average. We shall return to this point later when we

consider the question of time.
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The point V on the line of intersection of the equatorial and ecliptic

planes, the line of equinoxes, where the sun passes from south to north

of the equator, is a very important one in astronomy and is called the

First Point of Aries, and is denoted by the symbol Y- At the time it

was so called it was in the constellation of Aries but it has moved since

then and is now in the constellation Pisces. The point A at the other

end of the line of equinoxes where the sun passes from north to south of

the equator is known as the First Point of Libra and is denoted by the

symbol =^. When the motion of y is studied, it is found that it, and the

line of equinoxes Y=^, move relative to the stars by about 50" per annum

in a direction opposite to that of the yearly motion of the sun, this

movement being called the precession of the equinoxes. The ordinary

surveyor, however, does not need to take account of it in his calcula-

tions as the tables he uses take care of it.



CHAPTER XVI

CELESTIAL CO-ORDINATES

THE ASTRONOMICAL TRIANGLE

1. Celestial Co-ordinates.

In astronomical computational work it is necessary to be able to

define accurately the position of a celestial body at any time. There are

several methods available but the following are the ones which concern

the surveyor;

1. The Azimuth and Altitude System.
2. The Hour Angle and Declination System.
3. The Right Ascension and Declination System.

The first two systems are peculiar to the observer since at any
instant of time the azimuth, altitude, and hour angle of a star are

different for observers differently situated on the earth's surface.

Moreover, these three co-ordinates change very rapidly with time.

The third system is independent of the position of the observer and

the co-ordinates, except in the case of the sun and other members of

the solar system, change very slowly with time. This enables tables to

be prepared that give fixed values for the co-ordinates which depend
neither on place nor (except within very small limits) on the time of

observation.

-(i) The Azimuth and Altitude System.

This system fixes or defines the position of a star or sun relative to

the observer's meridian and horizon. In fig. 16.1a, Z is the observer's

zenith, SZPN his meridian and NESWN his horizon, P as before being
the earth's pole. Let ^ be the celestial body whose position is to be

defined. Through S
t
and the zenith Z draw a great circle to meet the

plane of the horizon at Lj. As Z is the pole of the horizon circle, this

great circle the vertical circle will be perpendicular to the horizon

circle. Then the azimuth A of the star is the angle between the plane of

the meridian ZPN and the plane of the great circle drawn through Z

and Sp measuredfrom to 360 clockwise from the north. Hence, it is

293
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the angle NOLj, or NZSj, in fig. 16.10, or NZLX in fig. 16.16 which shows

a plan of the sphere projected on the horizon plane when looking down

from Z.

The altitude h of the star is the angle between it and the horizon

plane as measured in the plane of the vertical circle. It is positive,

and measured from at the horizon plane to 90 at the zenith, when it

(b)

Fig. 16.1

is above the horizon plane between that plane and the zenith, and it is

negative and similarly measured when it is below the horizon between

that plane and the nadir. Hence it is the angle L^Sj^ in fig. IG.la.

The angle ZOSj is the zenith distance of St and is denoted by z. Hence,

it can be seen that

z = 90 -h (1)

If B! in
fig.

16. la had been below the horizon circle NESWN, that

is between the horizon circle and the nadir, h would be negative and z
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would be 90
( h) = 90 + h, or numerically greater than 90.

Fig. 16.1a also shows a star S2 situated between south and west,

i.e. it is in the third quadrant. The azimuth, being always measured

clockwise from north, is the angle NOL2 or NZS2 in fig. 16, la, or the

angle NZL 2 in fig. 16.16, as shown by the arrows. As drawn, this angle
is about 220. The altitude is the angle L2OS2

in fig. 16. la.

Owing to the star's daily circular motion about the pole both

azimuth and altitude are constantly changing. In both hemispheres
the azimuth is when the star crosses the meridian north of the

zenith and 180 when it crosses the meridian south of the zenith. It

lies between and 180 when the star is east of the meridian and

between 180 and 360 when the star is west of the meridian, h is

positive in practically all cases which affect the surveyor, whether he

is in the northern or southern hemisphere. One case where h is negative
is when one is computing the time of sunrise or sunset. Here, owing to

the effect of atmospheric refraction, the sun appears to be on the horizon

when it is actually about 30' below it. Hence, h in this case is taken as

- 30' and z is 90 - (- 30'), or 90 30'.

(ii) The Hour Angle and Declination System.

In this system elevations are measured from the celestial equator,

and not from the horizon plane, and the apex of the angle forming the

other co-ordinate is the celestial pole, and not the zenith. In fig. 16.2a,

PSiM is the great circle, the hour circle, which passes through the

celestial pole P and the star Sx and is perpendicular to the celestial

equator EMRWQE at M. Then the elevation MS
t
of S, above the celes-

tial equator is the angle MO^ and this angle is known as the star's

declination, d, and the angle ZPSt
drawn westwards from the position

of upper transit of the star, from to 300 as shown by the arrow,

is the star's hour angle, //. The vertical circle ZSjLj meets the horizon

circle in the point L
1?

the angle PZS
a being the star's azimuth as

already defined.

Fig. 16.26 is a projection on the horizon plane looking down from a

distant point outside Z. Since upper transit occurs above P on the same

side of the meridian as Z, the hour angle is the angle ZPS1 ,
as indicated

by the arrow. Figs. 16.2a and 16.26 are drawn for an observer in

the northern hemisphere and figs. 16.2c and 16.2d are the equivalent

diagrams for an observer in the southern hemisphere, and these show

how the co-ordinates H and d are reckoned in each case.

Declination is measured from to 90 above or below, or north

or south of, the celestial equator, and is positive if the star is on the same
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side of the equator as the north pole, and negative if it is on the same side

of it as the south pole. In figs. 16.2a and 16.26 the declination is posi-

tive because Sx
is on the same side of the equator as the north pole, and

in figs. 16.2c and 16.2d it is taken as negative because it is on the same

side of the equator as the south pole.

N S

Fig. 16.2

The angle POS^ or the angle subtended at between the elevated

pole and the star, is called the polar distance and is denoted by p.

When declinations are positive for stars north of the celestial equator
and negative for stars south of it we have

p = W-d (2)
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at places in the northern hemisphere, and, now measuring p from the

southern celestial pole,

P = W + d (3)

at places in the southern hemisphere, the sign of <5 being of course

reversed in both cases when d is south or negative.

Note that, whereas to an observer facing the equator in the northern

hemisphere the stars appear to move clockwise from east to west, in

the southern hemisphere they appear to an observer facing the equator
to move anti-clockwise from east to west. Azimuth measured clockwise

from north, and hour angle measured westwards from to 360

from upper transit in the direction of the apparent motion of the stars,

are then the angles marked A and // in all four diagrams.

(iii) The Right Ascension and Declination System.

In this system right ascensions are angles measured in the plane of

the celestial equator and declinations are, as before, angles of elevation

north or south of it.

In figs. 16.3 and 16.36 REQWR is the celestial equator and P the

pole. Through P and S
1?

the apparent position of the star, draw the

hour circle PSjM perpendicular to the celestial equator at M. Then the

angle MOSi is the declination 8 reckoned positive from to 90 if the

star is north of the equator and negative from to 90 if it is south of

it. The Right Ascension, or R.A., is the angle yOM, where Y is the

First Point of Aries, reckoned along the equator in the direction opposite

to the direction of the apparent daily motion of the stars. To an

observer at the north celestial pole looking down at the celestial equator

as in figs. 16.3a and 16.36 this direction would appear to be anti-clock-

wise : to an observer at the southern celestial pole looking down on the

celestial equator, as in figs. 16.3c and 16.3d, the direction would appear

to be clockwise.

If 7/y and Hs
are the hour angles of Y and the star at any moment,

it will be seen from the figures that

//Y
=

//., + R.A., (4)

or, in words,

Hour angle of Y = hour angle of star + the star's right ascension.

This is a very important relation which should be memorized. If

the expression on the right exceeds 360, 360 or 24 hours, if hour

angles and right ascension are being reckoned in time, should be

subtracted from it.
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As we shall see later, hour angle and right ascension are closely

connected with time and can be expressed either in hours, minutes and

seconds of time or in ordinary angular measure. For some purposes it

is more convenient to express hour angles in units of time, and for others

(b)

(c)

(d)

Fig. 16.3

it is more convenient to express them in angular measure. Right

ascensions are generally expressed in units of time and are normally

given in time units in Tables and Almanacs such as The Star Almanac

for Land Surveyors.
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2. Summary of Directions and Signs.

It is very important to remember the directions of apparent motion
of celestial bodies and the direction in which celestial co-ordinates are

reckoned. Accordingly, we summarize them as follows:

1. East to west means the direction of the apparent daily motion of an

equatorial star, or star near the equator, from rising to setting, or

the direction of the apparent motion of a star at upper transit.

2. Altitude, h, is positive when the body is above the horizon and

negative when it is below it. It is nearly always positive and is

assumed to be positive in what follows. Zenith distance is 90

altitude.

3. Azimuth, A, is reckoned clockwise from to 360 from due north

in both hemispheres.

4. Hour angle, H, is reckoned from to 360, or from h. to 24 h.,

westwards in the direction of apparent motion of the body as it

crosses the meridian from the position of upper transit.

5. Declination, 8, is positive from to 90 when the body is north of

the celestial equator and negative from to 90 when it is south of

it. Polar distance, for positive declination, is 90 8 when referred

to the northern celestial pole and 90 + 8 when referred to the

southern celestial pole, the sign of 8 being reversed in each case when
it is negative.

6. Right ascension, R.A., is reckoned along the equator from to

360, or more usually from Oh. to 24 h., anti-clockwise from y as

seen by an observer viewing the celestial equator from the northern

celestial pole, or clockwise from y as seen by an observer viewing
the celestial equator from the southern celestial pole.

7. The apparent daily motion of the sun and stars from east to west

is clockwise to an observer viewing the celestial equator from the

northern celestial pole and anti-clockwise from east to west to an

observer viewing the celestial equator from the celestial southern

pole.

8. The apparent annual motion of the sun relative to y and the stars

is anti-clockwise to an observer viewing the celestial equator from

the northern celestial pole and clockwise to an observer viewing the

celestial equator from the southern celestial pole.

9. The precession of the equinoxes is in the direction opposite to the

apparent annual motion of the sun, i.e. clockwise to an observer

viewing the celestial equator from the northern celestial pole and
anti-clockwise to an observer viewing the celestial equator from the

southern celestial pole.



300 THE ASTRONOMICAL TRIANGLE [CHAP.

Applying these rules to what we know about the apparent motion

of the sun, we note the following points:

1. The sun's declination changes from to -f at the vernal equinox

(March 21) and from + to at the autumnal equinox (September 23.)

2. The sun's declination reaches its maximum positive value of approxi-

mately 231 at the summer solstice (June 21) and its maximum

negative value of approximately 23J at the winter solstice

(December 22).

3. The sun's right ascension increases by approximately 4m. a day
and 2 h. per month from h. at the vernal equinox to 24 h., when it

returns to the same point. The right ascensions and declinations

of the stars vary slightly during the year owing to the precession of

the equinoxes and other causes, but over very short periods of time,

i.e. for a few days, they may be considered for our purpose to be

constant.

3. The Astronomical Triangle.

The intersection, two by two, of the great circles meridian, hour

circle, and vertical circle, define a spherical triangle on the celestial

sphere with apices at the celestial pole, star and zenith. This triangle

is known as the astronomical triangle and is of great importance in

astronomical theory. Thus, in fig. 16.4a, the meridian is the great circle

ZPN, the vertical circle is the great circle ZS^ and the hour circle is

the great circle PS^j. The intersections of these great circles give the

astronomical triangle ZPSj (fig. 16.4), the sides of which are the co-

latitude, c, the zenith distance, z, and the polar distance, p. The
interior angles are here called the zenith or azimuth angle,, a, at Z, the

polar or time angle, /3, at P, and the parallactic angle, y, at S, respectively.

The solution of this triangle by the ordinary rules for the solution of

spherical triangles given in Chapter XIV leads to the working formulae

of field astronomy.

Fig. 16.4& and 6 show the astronomical triangle for the case where

the observer is in the northern hemisphere and the star is east of the

meridian ZP, and fig. 16.4c shows it when the star is west of the meridian.

Figs. 16.4d, e and/show the triangle when the observer is in the southern

hemisphere, figs, d and e showing the star east of the meridian and

fig. 16.4/ when it is west of the meridian.

The parts c, z, p, <x and j8 of the triangle are functions of latitude,

<; altitude, A; declination, d] azimuth, A', and hour angle, if, respec-

tively. Let us adopt the following conventions :
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N SI

Fig. 16.4
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(f)
= latitude, positive when north, negative when south, reckoned

from to 90.

8 = declination, positive when north of the celestial equator, negative

when south of it. to 90.

h altitude of star, positive from horizon to zenith, negative from

horizon to nadir. to 90. (Nearly always positive.)

H = hour angle, positive westwards from to 360, or h. to 24 h.,

from that part of the observer's meridian which contains his

zenith.

A = azimuth, positive eastwards, or clockwise, to 360, from north

in both hemispheres.

z = zenith distance = 90 h.

p = polar distance = ^ "7 <>
for observer in the

nor ern
hemisphere./ L 90+8 southern

L

i ^ i 90 <b e i . ,1 northern , . ,

c = co-latitude = . _
,

Y
. for observer in the

, , hemisphere.
90 + (/}

southern *

In the expressions for p and c the signs of d and
</>
must be reversed,

as usual, when they are negative.

With these conventions, we have the following relations between

a and A and
ft
and H, and between p, c and z and d, $ and h:

OBSERVER IN THE NORTHERN HEMISPHERE

Star east of meridian Star west of meridian

x = A a = 360 - A

ft
== 360 H ft

= H
p= 90 -8 p= 90 -8
c = 90 < c = 90

<t>

z = 90 h z = 90 - h

OBSERVER IN THE SOUTHERN HEMISPHERE

Star east of meridian Star west of meridian

a = 180 - A *=:A- 180

ft
= 360 - H ft

= H
p = 90 + 8 p = 90 + 8

c == 90 < c = 90
(/>

z = 90 - h z = 90 - h

In the expressions for p, it is to be understood that the sign of d

must be reversed when d is negative.

In solving astronomical problems involving the astronomical

triangle, the best plan is to draw the triangle and to convert the given

data into the sides and internal angles of the triangle; then, having
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solved the latter, convert the calculated parts of the triangle into their

astronomical equivalents. Thus, for an observer in the northern hemi-

sphere and with the star in the east, to find the azimuth given the

corrected observed altitude, h, the declination, <5, and the observed

hour angle, H,

z = 90 -A; y = 90-(5; ft
= 360 - H .

From fig. 16.46 and formula (2), page 284,

sin a _ sin /?

smp sin z

sin p sin ft cos d sin 8 ,-.
sin a = r = r--> - (5)

sin z cos h

and
A. === oc.

For a star west of the meridian in the southern hemisphere, but

otherwise with the same data as before, (fig. 16.4/), we have

z = 90-A, 2>-90 + (3,
= H 9

_ sin p sin
ft _ cos d sin

j3
sin oc ^^ -

j
>

sin z cos A

and A = 180 + a.

It should be noted that there is an ambiguous case here because

the sine has the same value and sign for 180 a as for a. In most

cases the doubt about which value to accept can be resolved from the

surveyor's notes by knowing not only on which side of the meridian

the star lay at the time of observation but also the actual quadrant in

which it was situated, or else by remembering that the largest side

subtends the largest angle. However, it is not always possible to resolve

the doubt in this way, and, if sufficient other data exist, it is then advis-

able to use a formula involving a tangent or a cosine. Thus, if the star

is close to the prime vertical so that the zenith angle a is close to 90,

the sine rule will not enable one to decide whether to accept, say,

a or 180 a, and, in any case, if logarithms are being used, the log

sine becomes somewhat insensitive for angular values near 90. Hence,

if the three sides of the triangle are known, we can find a by using

the formula

A ,
. I [sin (s b) sin (s c)~]

tan \A = A / T r : :
2

\ L sin s sin (s a) J
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in spherical trigonometry, so that, substituting for A, a, 6, c, and s

their equivalents a, p, z, c, and %(p + z + c) in the astronomical

triangle, we have

/pjM
\ L sisin s sin (s p)

(6)

If both azimuth and hour angle are required we use formulae (11)

and (12) on page 285 for the spherical triangle and substitute in them

the astronomical equivalents for the sides and angles, so getting

tanf= /rBia(-3)Bin(-g)rin(i_-:Li)1
(?)

\ L sift s J

, i
tan r , tan r .

tan oc = -
; tan Jj3

= - -
. . (8)

sm (s p) sin (s z)

Then, having found a and
/?,

we use the rules on page 302 to obtain

A and H. Thus, if the star is west of the meridian and the place of

observation is in the southern hemisphere, we have

A = 180 + a; H =
ft.

The positive sign for tan
|-oc

must always be taken so that a is

equal to or less than 90. If it were greater than 90, a would be greater

than 180 and hence the star would be on the other side of the meridian,

and, as a general rule, we know which side it is on. A similar argument
holds when

fi
is obtained from the analogous formulao involving the

three sides of the triangle.

Other examples of the solution of the astronomical triangle are:

sin p cos ft
= sia c cos z cos c sin z cos a, . . (9)

cos z = cos p cos c + sin p sin c cos /}, . . (10)

which come from the spherical trigonometry formulae (14) and (16)

on page 285 and

. ,

cot p sin c cos c cos p
(11)

which is derived from the spherical trigonometry formula (13) on page
285.

cot a sin c = cos c cos B + sin B cot A,

in which A is replaced by a, B by /?,
and a by p y

so that the astro-

nomical triangle ZPS corresponds to the spherical triangle ABC.
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Some numerical examples of problems involving the solution of the

astronomical triangle will be found on pages 347 to 355.

4. The Right-Angled Astronomical Triangle.

An important case arises when the star is a circum-polar one and
the parallactic angle is 90. In these circumstances, the star is said to

be at elongation. It is then in the most suitable position for azimuth

observations as the line of sight is tangential to the path of the star and

hence a small error in the observation of the hour angle or the altitude

will have little or no effect on the azimuth. (See fig. 16.5 and the

example on pages 354 and 355.)

Adapting spherical trigonometry formula (17) (21), page 285,

to the astronomical triangle, we have for a circum-polar star at elonga-

tion,

sin p = sin c sin a = tan z cot
ft.

... (12)

sin z -- sin c sin ft tan p cot a. ... (13)

cos a cos p sin
ft

cot c tan z. ... (14)

cos
ft

cos z sin a cot c tan p. ... (15)

cos c cos p cos z = cot a cot
ft.

. . (16)

tl (G467)



CHAPTER XVII

TIME

1. Measures of Time.

The apparent diurnal motion, east to west, of the stars and sun

about the pole affords a measure of time. For universal use, it is neces-

sary to adopt a certain meridian of longitude as a standard meridian, so

that the time of passage of a selected celestial body across this meridian

can be accepted as the zero datum from which time is reckoned. This

meridian is internationally accepted as the meridian passing through

the main transit instrument at Greenwich Observatory, and times based

on transits across this meridian are spoken of as Greenwich Time

(G.T.) or, when Greenwich Mean Time (G.M.T.) is involved, Universal

Time (U.T.).

Often in astronomical work it is convenient to reckon time from the

time of passage of the body across the observer's own meridian. This

gives Local Time (L.T.). In addition, since it would be very inconvenient,

when there is a large difference between Greenwich and local times due

to a large difference in longitude, to reckon time for ordinary civil

purposes at all places in the world from time of transit at Greenwich,

the earth has been divided into a series of time zones in which standard

civil time is taken as so many hours before or after Greenwich time.

This time is called Zone Time. Thus, standard civil time for the Eastern

States of the United States of America is taken as 5 hours behind

Greenwich time, so that, when it is noon at Greenwich, it is only 7 a.m.

in the east of the United States.

Daylight and darkness on the earth are governed by the sun, and

hence it appears to be natural to use the sun as man's time-keeper.

Unfortunately, the sun's motion during the course of a year is not con-

stant, so that, if the length of a day were to be defined as the time

interval between successive upper or lower transits of the sun across any

given meridian, this length, as measured on a mechanical device such

as a clock, would not be the same at all seasons of the year. Hence,

as a matter of convenience, it has been necessary to adopt the idea of

Mean Time; this is the time kept by an imaginary mean sun which is

assumed to move at a uniform rate along the celestial equator and for

306
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which the interval between successive upper or lower transits across

the meridian at any place is constant throughout the year and is

called the mean solar day. Mean time reckoned from to 24 hours

from the lower transit of the mean sun across the Greenwich meridian

is known as Greenwich Mean Time (G.M.T.), or now, more commonly,
Universal Time (U.T.).

The apparent motion of the stars throughout the year is very much

more regular than that of the sun, and, in fact, such irregularities as

there are are not noticeable except with very refined and accurate

observations. Hence, for astronomical work when observations to

stars are involved we use Sidereal Time*. The interval between

successive upper or lower transits of a star across the meridian is called

the sidereal day.

2. Relation between Time and Angular Measure.

The mean solar day and the sidereal day are each divided into

24 hours, each hour into 60 minutes, and each minute into 60 seconds.

During this time the body appears to complete a single whole revolution

of 360 about the earth's axis of rotation. Hence, 24 hours of time are

equivalent to 360 of angular measure, so that 1 hour of time is equiva-

lent to 360/24 15 of arc and 1 of arc = 1/15 hour. Again, since

there are 60 minutes of time hi an hour and 60 minutes of arc in a

degree, 1 minute of time is equivalent to 1/15 of 1 minute of arc, or

4 seconds of arc, and 1 second of time is equivalent to 1/15 of a second of

arc. Hence we have the rules

(1) To convert degrees, minutes, and seconds of arc into hours,

minutes, and seconds of time, divide by 15.

(2) To convert hours, minutes, and seconds of time into

degrees, minutes, and seconds of arc multiply by 15.

Thus (33 15' 15")/15
= 2 h. 13 m. 01 s. and (15 h. 04 m. 13 s.) x

15 - 226 03' 15".

In practical computing, time is saved by using special tables for

converting arc into time and time into arc. Such tables are given hi

various mathematical and astronomical tables, such as Chambers's

Seven-Figure Mathematical Tables, Chambers's Six-Figure Mathematical

Tables, The Star Almanac for Land Surveyors, etc.

* Astronomers also now use Ephemeris Time. This is a refinement designed to deal

with very small variations in the earth's rate of rotation about its axis, but the effects

are too small to be of direct concern to the ordinary surveyor.
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3. Longitude and Time.

The longitude of any point on the earth's surface is the angle be-

tween the meridian passing through that point and the standard meri-

dian. In fig. 17.1, which represents the earth, PP' is the earth's axis

of rotation, P and P' the poles, and the great circle PSP' the meridian

cut out on the earth's surface by a plane passing through P, P' and the

point S, the latter being any point on the earth's surface. PGP' is the

meridian chosen as the standard meridian from which longitudes are

reckoned, this usually being taken as the meridian which passes through

the main transit instrument at Greenwich Observatory. Consequently,

if G represents the position of the transit instrument at Greenwich,

the longitude of S is the angle GPS, or the arc sg divided by the radius

of the earth, s and g being the points where the meridians through S

and G cut the earth's equator.

Longitudes are reckoned from to 180 west or east of the Green-

wich meridian. In the diagram, the longitude of S is west and that of

the point S' is east. West longitudes are taken as positive and east

longitudes as negative.

Since the motion of the earth relative to the stars is west to east

and the apparent motion of the stars relative to the earth east to west,

and since the planes of the terrestrial and celestial meridians coincide,

a celestial body such as the sun or a star would appear to be on the

meridian through G sooner than it would appear to be on the meridian

through S, and it would appear to cross the meridian through G later

than it would appear to cross the meridian through S'. Hence, local
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time at S is later than time at G, and time at G is later than local time

at S'. Consequently, when longitude in angular measure is converted

into time, we see that, for points in west longitude,

Greenwich time = Local time + longitude in time, . (2)

and, for points in east longitude, after taking into account the negative

sign for the longitude,

Greenwich time Local time longitude in time. . (3)

These relations hold for both solar and sidereal time.

4. Relation between Apparent Solar Time and Mean Solar Time.

We have already noted that the sun is an irregular time-keeper,

with the result that the interval between successive upper or lower

transits of the sun is not the same throughout the year, and, to over-

come this difficulty so that mechanical devices such as clocks and hour

glasses can be used to measure time, it has been necessary to adopt the

expedient of an imaginary mean sun which is assumed to move along the

celestial equator, and for which the interval between successive upper

or lower transits is always the same and equal to the mean interval

between successive upper or lower transits of the real or apparent sun

throughout the year. The interval between two successive upper or

lower transits of the real or apparent sun is called a solar day, and the

interval between imaginary similar transits of the mean sun is called a

mean solar day. Time kept by the apparent sun is called apparent time,

and time kept by the mean sun is called mean, time.

In astronomical work, the solar day, both apparent and mean, is

measured from h. to 24 h. from the moment of lower transit to the

moment of the next lower transit, i.e. the day commences and ends at

midnight. In civil reckoning in this country, however, the day is divided

into two parts, one, ante meridiem, or a.m., from h. to 12 h., and the

other, post meridiem, or p.m., commencing with h. instead of 12 h.

and continuing to midnight as 12 h. Thus, ante-meridiem time is the

same as astronomical time but post-meridiem time is astronomical

time less 12 h.

The difference between apparent and mean time is known as the

equation of time and this quantity is tabulated for different dates and

times in many astronomical tables containing an ephemeris of the sun

in the form

A.T. -M.T. =e, (4)
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where A.T. stands for apparent time, M.T. for mean time, and e for the

equation of time. In recent years, however, it has been found more

convenient for surveyors and navigators to tabulate a variable E which

is defined as the difference between the Greenwich hour angle of the

apparent or true sun and the corresponding Universal, or Greenwich,

mean time. Thus, we have the relation

G.H.A. sun = U.T. + #, (5)

which connects apparent with universal mean time. Also, from this,

and from (4) above, and remembering that hour angle is measured

westwards from upper transit, it follows that

= e + 12h (6)

If u.T. + E exceeds 24 h., then 24 h. must be subtracted from it.

Note also that

U.T. of upper transit of the true sun across the

Greenwich Meridian == 24 h. E. (7)

The Star Almanac for Land Surveyors tabulates E to a tenth of a

second of time at h., 6 h., 12 h. and 18 h. for every day of the year,

and this makes it easy to convert apparent time and hour angle into

mean time and vice versa.

5. Relation between Mean and Sidereal Time Intervals.

Owing to its completing one entire revolution in the ecliptic round

the sun during the course of a tropical year, i.e. the interval between two

successive vernal equinoxes, the earth appears to complete one more

revolution in this time about its axis relative to the stars than it does

relative to the sun. There are 365 mean solar days in the tropical year,

and so the earth appears to complete 365 revolutions in this time rela-

tive to the sun and 366 revolutions relative to the stars. Hence, we

have:

365J mean solar days = 366J sidereal days.

1 mean solar day = (366J)/(365J) sidereal days
= 24 h. 03 m. 56-6 s. sidereal time intervals

= 1 sidereal day + 4 m. 3-4 s. approximately.
. . (8)

1 sidereal day = (365J)/(366) mean solar days
23 h. 56 m. 04 ! s. mean time

= 1 mean day - 4 m. + 4 s. approximately.

(9)
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From these relations we have:

1 mean solar hour = 1 h. + 9| s. sidereal time approximately,
6 m. mean solar time = 6 m. 4- 1 s. sidereal time approximately.

1 sidereal hour = 1 h. 9f s. mean solar time approximately,
6 m. sidereal time = 6 m. 1 s. mean solar time approximately.

In practice, the conversion of intervals of mean solar time to inter-

vals of sidereal time and vice versa is best carried out by means of

special tables such as those given on page 433 of Chambers's Seven-

Figure Mathematical Tables, etc. Thus, to find the sidereal interval

corresponding to an interval of 13 h. 14 m. 36 s. mean time:

Mean time interval = 13 h. 14 m. 36 s.

Correction for 13 h. (Chambers, p. 433) = +2 08-13

Correction for 14 m. = + 2-30

Correction for 36 s. = + 0-10

Algebraic Sum = Sidereal interval =13 16 46-53

Again, to find the mean time interval corresponding to a sidereal

interval of 22 h. 48m. 42s.:

Sidereal interval = 22 h. 48 m. 42 s.

Correction for 22 h. (Chambers, p. 433) = 3 36-25

Correction for 48 m. = 7-86

Correction for 42 s. = 0-11

Algebraic sum Mean time interval = 22 44 57-78

The "Interpolation Table for R "
on pages 68-69 in The Star

Almanacfor Surveyors may also be used for converting mean to sidereal

time intervals, and vice versa, as it gives, for a range of 6 h., the dif-

ferences between mean time and sidereal time intervals at critical

values ofmean time corresponding to increases of 0-1 s. in the differences.

Thus, in the first example given above, to convert 13 h. 14 m. 36 s.

mean time to sidereal time, the difference to be added to the mean time

is twice the difference for 6 hours plus the tabulated difference for

1 h. 14 m. 36 s., viz. 2 x 59-1 s. + 12-3 s. = 2 m. 10-5 s. and hence the

sidereal time interval required is 13 h. 14 m. 36 s. + 2 m. 10-5 s. =
13 h. 16 m. 46-5 s. An example of the reverse process is given in the

Introduction to the Tables, page xi. An error of 0-2 s. is possible with

this method.
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6. Sidereal Time and its Reckoning.

We have already seen that sidereal time is based on the intervals

between successive upper or lower transits of a star across the meridian.

In practice, we use as the time measurer a fictitious star whose position

in the heavens at any instant is the position of y, the First Point of

Aries. The sidereal day is reckoned from h. to 24 h. from the moment
when the First Point of Aries crosses the meridian at upper transit.

Thus, the method of reckoning sidereal time differs from that used in

reckoning solar time in that the sidereal day commences at the upper
transit of y, whereas the solar day commences at the moment of lower

transit of the true or apparent sun in the case of apparent time or of the

mean sun in the case of mean solar time.

The sidereal day, like the solar day, is divided into 24 hours, each

hour into 60 minutes, and each minute into 60 seconds. Also, like solar

time, sidereal time is local sidereal time if it is measured from the

moment of transit of y over the local meridian, and Greenwich sidereal

time if measured from the moment of transit over the Greenwich

meridian; the rules for reducing local sidereal time (L.S.T.) to Green-

wich sidereal time (G.S.T.) and vice versa are the same as those given
on page 309.

Owing to slight changes in the apparent motion of y throughout the

year, the length of the sidereal day varies slightly from day to day,

but, in contradistinction to the varying length of the solar day, the

difference is so small as to be inappreciable in ordinary survey work as

it is taken into account in the positions given in The Star Almanac for

Land Surveyors, though in geodetic work star positions need to have

small corrections applied which depend on the date and time of obser-

vation. Sidereal time based on the average length of the sidereal day
over a considerable period of time is called Mean Sidereal Time, but,

as it differs by so little from Apparent Sidereal Time, it is usual to speak
of the time kept by a clock regulated to keep mean sidereal time simply
as Sidereal Time, it being understood that it is Mean Sidereal Time

which is meant.

7. Relations between Sidereal Time, Right Ascension and Hour Angle.

Fig. 17.2a shows a plan of the celestial equator as seen by an observer

looking at it from above the north celestial pole and fig. 17.26 a similar

plan as seen by an observer looking at it from the south celestial pole. In

both diagrams P is the projection of the pole on the equator, NPZS
or NZPS is the projection of the meridian, and Z the projection of the
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zenith. The direction of apparent motion of a heavenly body as seen

by each observer is shown by an arrow and y is the position of the First

Point of Aries.

Since hour angle is measured westwards in both cases from upper
transit, the hour angle, 0, of y is the angle SPy in fig. 17.2a and NPy
in fig. 17.26. But since sidereal time is also measured westwards from

upper transit of y, it corresponds to the angle SPy in fig. 17.2a and NPy
in fig. 17.26, and so, in either hemisphere,

Sidereal time at any instant = Hour angle of y, . (10)

Fig. 17.2

Again, let X be the position in plan of a star and x the point where the

great circle through P and X meets the celestial equator. Then the hour

angle, H, of X is the angle SPx in fig. 17.2a and NPx in fig. 17.26.

But the right ascension of the star is measured in the direction opposite
to the direction of its apparent daily motion and is the angle yPx.

Hence, since SPx in fig. 17.2a = SPy - yPx and NPx = NPy - yPx
in

fig. 17.26,

Hour angle of star = hour angle of y star's R.A. (11)

= sidereal time star's R.A. . (12)

The star is at upper transit when its hour angle is zero and hence

Sidereal time of upper transit of star = star's R.A. (13)

The Star Almanac for Land Surveyors gives, for the first day of each

month throughout the year, the right ascensions to a decimal of a second

11* (G407)
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of time and declinations to a second of arc of 650 stars, arranged in

order of ascending right ascension and also, but at 10-day intervals of

time, the right ascension and declinations of three northern and two

southern circum-polar stars.

8. Conversion of Sidereal into Mean Time and Vice Versa.

In the case of the sun the Star Almanac tabulates at 6-hour intervals

for each day of the year a quantity R defined as the difference between

the hour angle of Aries and the corresponding Greenwich Mean Time,

or U.T., according to the equation

G.H.A. Aries = G.S.T (14)

= U.T. + fl, .... (15)

and, for time and hour angle referred to a local meridian,

L.H.A. Aries = L.S.T (16)

= L.M.T. + #.... (17)

R increases by the difference between a sidereal and mean time

interval, or at the rate of 3 m. 566 s. per diem, and a table to facilitate

the determination of intermediate values of R is given as
"
Inter-

polation Table for R "
near the end of the Star Almanac.

Since

L.M.T. = L.H.A. mean sun + 12 h.,

then

L.H.A. Aries = L.H.A. mean sun + 12 h. + R.

But

L.H.A. Aries L.H.A. mean sun = R.A. mean sun.

/. R.A. Mean sun = R =F 12 h.

/. R = R.A. Mean sun + 12 h. ... (18)

Similarly, the reader may care to verify the following relations for

himself:

R.A. of apparent sun = R E (19)

G.H.A. of Aries = G.H.A. apparent sun + R E. (20)

L.H.A. of Aries = L.H.A. apparent sun + R E. (21)

G.H.A. of star = U.T. + R R.A. star (22)

L.H.A. of star = L.M.T. + R - R.A. star. . . . (23)
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9. The Star Almanac for Land Surveyors.

This almanac is prepared annually by H.M. Nautical Almanac
Office and is published by H.M. Stationery Office at 4/6 a copy about

six months before the beginning of the year to which it refers. It is

intended for use in ordinary survey work of a minor order, and not for

geodetic work, for w&ch. another publication called Apparent Places

of Fundamental Stars m&st be used. It opens with an Introduction

which includes a description of the various tables contained in it, to-

gether with numerical examples of their use. Then follows an ephemeris
of the sun in 24 pages, with data for half of the month on the left of two

facing pages and data for the other half of the month on the right-hand

page. This ephemeris gives values of R, declination, and E at U.T.

Oh.,6h., 12h., and 18 h. of each day. Below this main table are given
the sun's semi-diameter for the month and times of sunrise and sunset

at various latitudes from to 60 N and 60 S at 5-day intervals, and,

in a line below this, the days and hours of the moon's phases. The sun's

semi-diameter is used for working out a correction to reduce obser-

vations taken to one edge, or limb, to what they would be if they were

taken to its centre, and the data about times of sunrise and sunset and

the moon's phases are useful for preparing programmes for stellar

observations, so that the stars selected will be likely to be visible at the

time when observations are to be taken.

It is to be noted that the argument in the ephemeris of the sun

is G.M.T., or U.T., and the tabulated values ofR and E are for the mean,
not the true or apparent, sun. Hence if, for instance, we wish to convert

L.S.T. into L.M.T., we must, before we can utilize the Almanac, first

convert L.S.T. to G.M.T. and then work back from G.M.T. to local time.

The magnitudes,* right ascensions, and declinations of 650 stars

are given for the beginning of each month in the 26 pages which follow

the ephemeris of the sun, right ascensions being given to 0-1 s. and

declinations to 1". A table for three northern and two southern circum-

polar stars gives the R.A. to 1 s. and the declination to 1" for each of

the five stars at 10-day intervals throughout the year.

Other tables include an Index to Places of Stars, a Pole Star Table

giving factors for computing latitude and azimuth from observations

to the Pole Star (Polaris, or a Ursae Minoris), Refraction Tables for

* The magnitude, or relative brightness of a star is indicated by a number, the

smaller the number the brighter the star, so that a star of magnitude 2 is brighter than

one of magnitude 4. The JStar Almanac includes all stars not fainter than magnitude
4-0 and such other stars not fainter than magnitude 4-5 as are tabulated in Apparent
Places of Fundamental Stars^ except close circum-polar stars.
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working out corrections to observed altitudes for atmospheric refrac-

tion, Interpolation Tables for the Sun and Star Tables, Interpolation

Table for R, and a table for converting time to arc and arc to time.

In the examples given in Section 11 below and at the end of Chapter

XVIII, the data from the Star Almanac for 1959 have been taken by

permission of the Controller of H.M. Stationery Office.

It should also be noted that the accepted way of writing date and

time is to put year, month, day of month, hours, minutes, and seconds

in this order Thus, 3 h. 51 m. 22 s. on the 5th June, 1959, would be

written 1959, June 5 d. 3 h. 51 m. 22 s.

10. Summary of Principal Formulae for Time Conversion.

Problems in time and hour angle may be very confusing to a beginner
and it is very important to be able to solve them quickly and con-

fidently. Accordingly, the following is a list of formulae which it would

be well to commit to memory and which includes all those usually
needed for the solution of practical problems:

G.T. = L.T. + West longitude (24)

G.T. = L.T. East longitude (25)

Apparent Mean solar time = e (26)

G.H.A. true sun = U.T. }- E (27)

L.H.A. true sun = L.M.T. + E (28)

L.S.T. of upper transit of a star = star's R.A. . (29)

G.H.A. Aries = G.S.T (30)

G.S.T. = U.T. + R (31)

L.H.A. Aries = L.S.T (32)

L.S.T. = L.M.T. + R (33)

G.H.A. Star = G.H.A. Aries R.A. Star. . . (34)

G.H.A. Star = U.T. + R- R.A. Star. . . . (35)

L.H.A. Star = L.H.A. Aries R.A. Star. . . (36)

L.H.A. Star = L.M.T. + R - R.A. Star. . . . (37)

In these formulae 24 h. should be subtracted or added when neces-

sary.
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11. Examples.

(i) An observation of the sun on 1959, January 3, at a place in longitude
64 45' West gave the L.H.A. as 5 h. 34 m. 00 s. Find the corresponding
L.M.T. (Obtain G.H.A. and use formula 27 above.)

From the S.A., Table, p. 67, longitude 64 45' W = 4 h. 19 m. 00 s.

L.H.A. Sun = 5 34 00

G.H.A. Sun = 9 53 00

E for 1959, January 3 d. 18 h. (Table, p. 2)
== 11 55 34-6

Approximate U.T. (Using formula 27) = 21 57 25-4

Correction for E for 3 h. 57 m. 25 s. (Table, p. 70) = + 4-5

U.T. of observation = 21 57 29-9

Longitude = 4 19 00-0

L.M.T. of observation = 17 h. 38 m. 29-9 s.

(In the above, the first step is to get an approximate value for the U.T.

so as to get a value for E. A preliminary look at the Table shows that E
is about 11 h. 56 m. and hence the approximate U.T. is somewhere about

21 h. 57 m., so that we then look out the tabulated value corresponding to

the U.T. next below 21 h., viz. 18 h. We thus get a closer approximation

to the true value of the U.T. A correction to allow for the correction to

E for the difference between 18 h. and the approximate U.T. of 21 h. 57 m.

25-4 s. is then introduced and the corrected value for the U.T. so obtained.

Note also that, as E is here greater numerically than the G. H.A. sun,

24 h. are added to the latter before the subtraction takes place.)

(ii) An upper transit of the sun was observed at a place A in longitude

122 14' 36" East on 1959, July 24, and the time registered on a clock set

to keep L.M.T. was 12 h. 06 m. 53-8 s. What was the error of the clock?

(Obtain G.H.A. and use formula 27.)

L.H.A. at upper transit 24 h. 00 m. 00 s.

From S.A., p. 67, 122 14' 36" E. longitude
- 8 08 58-4

G.H.A. at upper transit at A 15 51 01-6

-E at U.T. July 24 d. h. (S.A., p. 15) -11 53 37-8

.*. Approximate U.T. of upper transit at A 3 57 23-8

Correction to E for 3 h. 57 m. 24 s. (8.A., p. 70.) + 0-3

.'. U.T. of upper transit at A 3 57 24-1

East longitude +8 08 584

L.M.T. of upper transit at A 12 06 22-5

Time by clock 12 06 53-8

Clock fast Sl'38.
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(iii) Find the L.M.T. of 2 h. 14 m. 334 s. L.S.T. on 1959, Sept. 15, at

a place in longitude 4 h. 23 m. East. (Use formula 33, p. 316.)

Given L.S.T. 2 h. 14m. 334s.

R at 1959 Sept. 15 d. h. 23 32 504

.'. Approx. L.M.T. (Using formula 33.)

1959, Sept. 15 d. 2 41 43-0

East longitude -4 23 00-0

Approximate U.T. 1959, Sept. 14 22 18 43-0

Correction to R for 1 h. 41 m. 17 s. (S.A., p. 68.) +16-6

/. U.T. 1959, Sept. 14 22 18 59-6

East longitude +4 23 00-0

/. L.M.T. 1959, Sept. 15 2 41 59-6

(Note here that, owing to the negative longitude being greater than the

approximate L.M.T., U.T. is on Sept. 14, not Sept. 15, and, having taken

R out for Sept. 15 d. Oh. as a preliminary value, the correction to the R
is the correction for the difference between Sept. 14 d. 22 h. 18 m. 43-0 s.

and Sept. 15 d. 00 h., or for 1 h. 41 m. 17 s.)

(iv) Find the L.S.T. corresponding to 1959, Jan. 5 d. 06 h. 12 m. 32-3 s.

L.M.T. at a place in longitude 4 h. 23 m. East. (Usefo)mula 31, p. 316.)

Given L.M.T. Jan. 5 d. 06 b. 12m. 32-3 s.

East longitude
-4 23 00-0

/. U.T. 1 49 32-3

R at U.T. 1959, Jan. 5 d. 00 h. 6 55 22-2

Correction to R for 1 h. 49 m. 32 s. + 18-0

/. G.S.T. (from formula 31.) 8 45 12-5

East longitude
4 23 00-0

.'. L.S.T. 13 08 12-5

For further examples involving time conversions see the examples at

the end of Chapter XVIII.



CHAPTER XVIII

ASTRONOMICAL OBSERVATIONS

1. Limitations of Astronomically Observed Positions as Survey Control

Points.

Although astronomically observed latitudes and longitudes have

been, and still are, extensively used as a control for small-scale surveys

and mapping, they have their limitations as a direct control or check

on position in large-scale work. This is because of irregularities, or

anomalies, in the earth's gravitational field which affect the apparent

direction of the observer's zenith relative to the true celestial pole.

These irregularities, commonly called the deviation of ttie vertical, can

only be ascertained by extensive geodetic operations which are quite

beyond the province of the ordinary engineer or surveyor. The result

is that, if a survey is tied in to astronomically determined points, the

differences between the astronomical fixings and fixings determined

by direct survey may be much greater than the known accuracy of the

survey methods adopted would lead us to expect. Hence, astronomically

observed latitudes and longitudes have only limited value as checks for

position on large- or medium-scale survey work of limited extent,

though they are useful as a control for mapping on very small scales

say 1/250,000 or smaller for control of rough preliminary reconnais-

sance and exploratory surveys and for locating the positions on the

earth's surface of large-scale surveys and
"
putting them on the map ".

Fortunately, these deviations of the vertical have only a slight effect

on azimuths, so that in the case of ordinary engineering and large-

scale surveys this effect can be neglected, although allowance for it is

usually made in geodetic work of large extent. A knowledge of the

astronomical latitude is, however, required in some azimuth com-

putations and a fairly accurate knowledge of the time of observation,

local or Greenwich, is needed in others. However, azimuth is the

astronomical observation which is of most importance and occurs most

frequently in engineering and similar surveys and hence in this chapter

the emphasis will be on it with short descriptions of some of the simpler

methods of determining time, latitude, and longitude, mainly as factors

to be used in, or to assist in, azimuth work.

319
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2. Equipment for Azimuth Observations.

In Chapter XIII we have described the instrumental equipment

required for astronomical observations in general. For azimuth work

we need a good station mark, or Referring Object (R.O.), at a distant

point to which horizontal angle measurements between star and point

may be referred. If the observations are being taken to the sun, there

is no special difficulty about this as the signal will be one which can be

clearly defined and seen by daylight, the only thing being that it should

be as far away as possible, preferably inside the area to be covered by
the survey. Thus, the point of a distant spire, a lightning conductor

on a factory chimney, a carefully plumbed and distant ranging rod, a

nail head in a tree, etc., will all do, there being no absolute necessity

to fix the position of the R.O. accurately. At night time, signals or

marks such as those just mentioned would be useless, and a luminous

or illuminated signal becomes necessary. This can take several forms.

The most convenient is one of the special targets, mounted on a tripod

and illuminated by a battery-fed electric-light bulb, which are obtain-

able from makers as part of a
"
three-tripod

"
observing outfit, or as

part of a mining-survey equipment for underground traversing. These

targets generally show a cross of thin black vertical and horizontal lines

against a bright background, but some show bright lines against a

dark background. If such a target is not available, it will be necessary

to improvise one. This can be a box containing an electric or oil lamp
with a front of frosted glass or of tracing cloth on which a cross formed

by thin black vertical and horizontal lines has been drawn. For a

distant R.O., a box with a small circular aperature in an otherwise

opaque front, which is illuminated from behind so that the aperature

shows up at a distance as a fine point of light, will form a suitable

R.O.

For night observing, if the instrument is not provided with internal

electrical illumination of cross hairs and micrometers, or with a sun

cap fitted with a small reflecting prism at the side to reflect light held

at the side down the telescope to the cross hairs, other means must be

improvised for illuminating these hairs. A narrow piece of white paper,

fastened by a rubber band to the ordinary sun cap and bent over at an

angle to reflect light shone on it from the side down the telescope, will

serve to illuminate the cross hairs. The micrometers and verniers are

usually provided with reflectors which can be illuminated by a hand-

held electric torch.
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Whenever times and altitudes are observed, it is well, as far as pos-

sible, not to attempt to use the tangent screw to bring the cross hair

into contact with the image of the star, but rather to set the telescope
to point a little ahead of the star and then to note the reading as the

star appears to cross the hair. If, for instance, time observations are

being taken by the method of ex-meridian altitudes, the telescope can

be clamped when it is pointing a little ahead of the star and the time

noted when the star appears to cross the horizontal hair, the angle of

elevation, if not read immediately before the passage of the star, being
then read immediately afterwards. If azimuth is being determined by
ex-meridian altitudes, the telescope can be set as before at a fixed

altitude, and, by using the horizontal-circle tangent screw, the image of

the star should be kept on the vertical hair until the moment when the

image appears to cross the horizontal hair. The object in all cases should

be to avoid any unnecessary movement or touching of parts of the

instrument by using the actual apparent motion of the star instead.

Again, when a series of altitude observations are being taken and

the results will be worked out from the mean of the observed altitudes,

these observations should be taken as quickly as possible so as to avoid

the necessity for
"
curvature corrections

"
(pages 330 and 333) needed to

allow for the fact that the rate of change of altitude of a star with

regard to time is not quite constant.

3. Solar Observations.

The point in the sun to which the data given in Solar Ephemerides

refer is the centre, but in practice it is not possible to point the telescope

and cross hairs to the sun's exact centre. Instead, the observations

are taken to a limb (edge) or limbs. It would be possible, for instance,

when observing solar altitudes, to observe the altitude of the lower edge

of the disc and then correct the observation for the semi-diameter of

the sun, the angular value of which (about 16') is given in The Star

Almanac for Land Surveyors for each half-month in the year. Instead,

it is usual to take two observations in quick succession, one to the lower

limb and one to the upper as in fig. 18.1a, at the same time changing

face between observations, and to take the mean of the two results

as the altitude to be used in the computations. Similarly, if azimuth

is being observed by time observations, observations would be taken in

turn to the west and east limbs as in fig. 18.16, while, if azimuth is being

observed by altitudes, the sun would be observed in opposite quad-

rants as A and B or C and D as in fig. IS.lc.
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If only one limb is observed, the correction to the azimuth angle can

be derived as follows. In fig. 18.2 the correction to the azimuth angle

is Aa, ab is the sun's semi-diameter, S.D., and z the observed zenith

distance. The great circle Za is the great circle through the zenith and

(a) (b)

Fig. 18.1

fc)

the sun's centre a, and Zb the great circle tangential to the sun's limb

at b, so that the angle Zba in the spherical triangle Zba is a right angle.

Solving the triangle, we have

sin Aa = sin S.D. cosec Za,

or, since Aa and S.D. are small angles and Za is approximately equal

to Zb = z,

Aa = S.D. cosec z, (1)

Aa being in the same units, minutes or seconds, as S.D.

Z

Fig. 18.2

4. Corrections to Observed Altitudes.

All observed altitudes of a celestial body require various corrections

to be applied to them as follows:

(i) Correction for refraction.
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(ii) Correction for dislevelment of the vertical axis in the direction of

the line of sight,

and, in the case of the sun,

(iii) Correction for parallax.

(i) Correctionfor Atmospheric Refraction.

Fig. 18.3 shows a ray of light from a distant celestial body falling

on the earth's atmosphere at A, where, owing to refraction, it is bent

slightly towards the normal AN. As the density of the atmosphere
increases with decrease in height, the bending becomes greater as the

ray penetrates the atmosphere, and in the limit the ray travels along the

curved path AB, with the result that the body is seen in the direction

H

BC, where BC is tangential at ground level at B to the curve BA.

Draw BD parallel to AS. Then, as the body is at a very great distance

away, a ray from it, in the absence of the earth's atmosphere, would

reach B along the path DB. Hence, the true zenith distance of the star

referred to the normal BX at B is the angle XBD, but, owing to re-

fraction, the apparent direction is BC and the apparent zenith distance

is the angle XBC. Hence the angle CBD is the correction for refraction

which has to be applied to the observed zenith distance to give the true

zenith distance. When applied to the observed zenith distance it is

always positive, but when applied to the observed altitude it is always

negative.

The correction for refraction varies with the altitude of the body
and the atmospheric temperature and pressure at the time of obser-

vation. Its values for any given altitude, temperature, and pressure
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can be found from the refraction tables given on pages 60-62 of The

Star Almanac for Land Surveyors or from the refraction tables given in

Chambers's Seven-Figure Mathematical Tables. As surface observations

of pressure and temperature can only give a comparatively rough
indication of the conditions along the path of the ray, there is always

a little doubt about the true value of the refraction correction, especially

at low altitudes when the paths of rays of light traverse the greatest

thickness of the atmosphere. Hence, observations at very low altitudes

say less than 15 are to be avoided, and, whenever possible, obser-

vational methods should be arranged to minimize the effects of errors

of refraction.

As a rough rule, for stars of moderate elevation and neglecting the

small corrections for temperature and pressure, the refraction cor-

rection can be taken as

E = 58" cot # seconds of arc, .... (2)

where hQ is the observed altitude, the true altitude then being

hr
= hQ

- 58" cot A (3)

(ii) Correction for Diskvelment of the Vertical Axis in the Direction of

the Line of Sight.

The observed elevation of a celestial body will be in error if the

vertical axis of the theodolite is not truly vertical at the moment of

observation, and for this reason the altitude level on the vernier arm

should be read immediately before and after an observation is made.

The correction to be added algebraically to the observed altitude is then

given by

Ej /A
.

c^^d, (4)

where = reading of the end of the bubble at the object glass end of

the altitude level, E = reading of the end of the bubble at the eyepiece

end of the altitude level, and d = the value of one division of the alti-

tude level in angular measure. This supposes the bubble tube to be

graduated in both directions from zero in the middle of the tube. If

the latter is graduated continuously from the eyepiece end and G is

the reading of the central graduation,
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If there are n observations, including both E.R. and F.L., the cor-

rection to the mean altitude is

c = SO -
7 S(0d or c = ~-

2n

, ta .

d, . 6)

where 20 and SJ? denote summations of the n readings of both and E.

(iii) Correction for Parallax.

This correction, which is only applicable to solar observations,

allows for the fact that, as the length of the earth's radius is not alto-

gether negligible in comparison with the sun's distance from the earth,

the altitude of the sun at a place on the earth's surface is not quite the

same as it would be if it could be viewed from the centre of the earth.

M

Fig. 18.4

In fig. 18.4, is the centre of the earth, A the place of observation

on the earth's surface, Z the zenith at A, AM the horizon plane at A,

and ON is parallel to AM. Then the observed altitude of the sun S

from A, corrected for refraction and dislevelment, is the angle SAM =
Af , but, if S were observed from 0, the observed altitude would be the

angle SON = h. Then the angle ASO A/* is the correction which

must be applied to hr to give h.

Let OA = r and OS = d. Then in the triangle OAS,

sin Afe sin (90 + hr)

d

or

sin AA = - cos hr .

d

The quantity r/d, which we shall denote by P, is called the sun's

horizontal parallax and is the value which AA would have if the sun
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were on the observer's horizon and there was no refraction. Also,

the angle A/a is small, so that we can write

(7)

P varies from about 8"-95 at perihelion early in January to 8"-66

at aphelion early in July, and its mean value can be taken to be 8"-80.

Hence, the correction, which is always additive to hr is very small and

for much minor work can be neglected.

5. Correction to an Observed Direction for Dislevelment of the Hori-

zontal Axis of the Theodolite.

When an instrument is used which is provided with a striding level

for measuring the dislevelment of the horizontal axis, there is a small

correction to be applied to observed directions when the axis is not

truly horizontal, this correction being given by

c" = e"tanA, ....... (8)

where e" is the dislevelment of the horizontal axis as obtained from

readings on the striding level and h is the observed altitude of the point

concerned.

For angles of elevation, the correction to the observed direction

on the horizontal circle is positive when the left pivot is higher than the

right and negative when it is lower, the signs being reversed for angles

of depression.

6. Astronomical Observations in General.

In general, astronomical observations may be divided into the

following classes according to the methods used:

1. Meridian Observations.

2. Circura-Meridian Observations.

3. Ex-Meridian Observations.

4. Equal-altitude Observations.

5. Circum-polar Star Observations.

6. Position Line Methods.

Meridian observations are observations taken when the celestial

body is on the observer's meridian. Circum-meridian observations are

observations taken when the body is not actually on the meridian but

is only a short distance away from it. Ex-meridian observations are

observations taken when the body is some distance away from the

meridian. Equal-altitude observations are observations taken to the
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same body at equal altitudes on each side of the meridian or to two or

more bodies at the same altitude. Circum-polar observations are obser-

vations to a circum-polar star, generally at or near culmination (or

meridian transit) or at elongation. Position line methods give latitude

and longitude and have the advantage that the reductions are mainly

graphical and enable the most likely values of the unknowns to be

determined graphically when a number of observations are involved.

The following are the main methods used for determining azimuth,

time, latitude, and longitude, set out, as far as possible, in order of

relative simplicity; this, in general, is the reverse of the order of

relative accuracy.

Observations for Azimuth

1. By equal altitudes of star or sun.

2. By ex-meridian altitudes of star or sun.

3. By hour angles of sun or star.

4. By altitudes of Polaris, the pole star.

5. By observations to a close circum-polar star.

6. By observations of circum-polar stars at elongation.

7. By observations of a circum-polar star at culmination.

Observations for Time

1. By reception of the wireless time signals.

2. By equal altitudes of a star or of the sun.

3. By ex-meridian altitudes of stars or sun.

4. By meridian transits of stars or sun.

Observations for Latitude

1. By meridian altitudes of sun or star.

2. By circum-meridian altitudes of sun or star.

3. By ex-meridian altitudes of sun or star.

4. By altitudes of Polaris.

5. By meridian altitudes of a circum-polar star at upper and lower

transits.

6. By Talcott's method.

Observations for Longitude

The determination of longitude involves a determination of the

difference between local and Greenwich time. The local time can be

determined by any of the methods mentioned above while Greenwich

time is now easily obtained from the wireless time signals.
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Combined Observations

In certain cases observations can be arranged to yield two unknowns
from the one set of observations. In general, each set involves recording
both elevation and time, or else observations to two or more suitably
situated stars. Thus, timed observations of the altitude of Polaris will

give both azimuth and latitude, and latitude and time may be obtained

from timed observations of two stars of considerably different declina-

tions as they cross an approximate local meridian. Other methods are

equal altitudes of sun or star for rough determinations and ex-meridian

altitudes for more accurate ones.

AZIMUTH OBSERVATIONS

In principle an azimuth observation is a little more complicated
than any of the other ordinary astronomical observations because it

consists of a purely astronomical observation, which, when computed,

gives the azimuth of the celestial body at the moment of observation,
combined with the measurement of the horizontal angle between the

body and the mark or signal on the ground used as a R.O. The general

procedure therefore consists in a pointing to the R.O., with a reading 011

the horizontal circle, followed by a pointing to the star for the purely
astronomical part of the observation and another reading on the hori-

zontal circle.

(i) Azimuth by Equal Altitudes of Star or Sun.

If the horizontal angle between a star and the R.O. is observed when
the star is at equal altitudes east and west of the meridian, the mean of

the horizontal angles gives the horizontal angle between the meridian

and the R.O., and hence the azimuth of the latter. In practice, an even
number of observations should be taken to the star when it is east of

the meridian, with change of face between each observation of a pair,
and then a similar series taken at the same altitudes when the star is

west of the meridian, using in each case the same face as previously
used for the same altitude.

When taking the observation, the lower circle of the theodolite is

clamped and the telescope pointed so that the vertical hair intersects

the image of the R.O., when the upper circle is clamped and the hori-

zontal circle read. The upper clamp is then loosened and the telescope
set to point a little ahead of the star, when both horizontal and vertical
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circles are clamped. The fine-motion tangent screw of the upper circle

is then turned so that the vertical hair intersects the image of the star,

and, by turning the tangent screw, it is kept on the image of the star

until the latter appears to cross the horizontal hair, when both hori-

zontal and vertical circles are read. The difference between ihe first

and second readings of the horizontal circle gives the anglo between the

star and the R.O. when the star was at the elevation read on the vertical

circle. Face is then changed and the operation repeated for a slightly

higher elevation. This completes one set of observations. If greater

accuracy is needed, more sets can be observed. These sets are then re-

peated when the star is west of the meridian, the vertical circle being
set to the same elevations, on the corresponding faces, as were used when
the star was west of the meridian. The mean of all the horizontal angles

gives the zenith angle between the meridian and the R.O.

If the sun is used, as actual elevations are not needed, all observations

can be made with the same limb, upper or lower, on the horizontal hair,

say as in D and A or C and B in fig. 18. Ic. If, however, observations are

made with the sun in diagonally opposite quadrants of the reticule, as

in D and C, and, in the afternoon, B and A in
fig. 18. Ic, the morning

observation could be computed as an ex-meridian observation should

the afternoon observations become impossible. As the declination of

of the sun changes fairly rapidly with time, and if there is a large

interval between morning and afternoon observations, it may be

necessary to apply a correction for the change of declination during that

interval to the mean of the morning and afternoon horizontal angles.

The correction is given by

c = ^(d lv 6E) sec (f>
cosec t, .... (9)

where ^ = observer's latitude,

8E = sun's declination at the mean time of the morning
observations,

dw = sun's declination at the mean time of the afternoon

observations,

t = half of the time interval between morning and after-

noon observations.

When (6W dE )
is positive, the mean of the observed horizontal

angles lies west of the meridian when the place of observation is north

of the equator and east when the place of observation is south of the

equator, the directions being reversed when (dw 6K)
is negative. The

declination d is changing most rapidly at the equinoxes, when the rate
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of change is about 1' per hour, and it is changing most slowly at the

solstices. Hence, at an equinox, if
(f>
= 45 and t = 3 h. = 45, c =

| X 6 X V2 x V2 = 6' an(l is certainly not negligible.

This method is a very simple one from the point of view of there

being practically no computational work involved, and also it can be

used when the latitude of the place of observation is known only very

roughly or (and this may be a great advantage) if no tables are available.

It is, however, an inferior method as regards accuracy because, if obser-

vations are taken shortly before and shortly after transit, errors in

altitude produce unduly large errors in azimuth, and, if observations

are taken some hours before and some hours after transit, the interval

of time between them is rather large for convenience, and, moreover,

there may be very appreciable changes in refraction during that time.

(ii) Azimuth by Ex-meridian Observations of Star or Sun.

The observations consist of observing a series of altitudes of a star

or of the sun, preferably when it is on or near the prime vertical, and

at the same time noting the horizontal angle between the star and the

R.O., just as was done for one of the observations described in the last

section. Observations should be made very rapidly in pairs, with change
of face between the observations of each pair, several pairs being taken

if possible. If the observations are close together, the azimuth can be

computed for the mean altitude and the mean horizontal angle by the

formula :
*

, / fsin (s z) sin (s c)~]tan -J-a A / r r1 ,
. . . (10)

\ L sin s sin
(
s p) J

where s = \(*p + z + c).

If times of observation are also noted, both azimuth and clock error

can be found by using formula) (7) and (8) on page 304, viz.

and

tan r = (s
~

*>^ (*
~

c) (
* ~

. . (11)
sin s

, * tanr , tanr
tan <x = -

; tan^ = -
, . (12

sin (s p) sin (s z)

and then finding A and H from the rules given on page 302.

* In refined work a correction for curvature of path is applied when observations are

averaged in this way for computational purposes. This allows for the fact that the

altitude of a celestial body is not exactly a linear function of azimuth or time. For
most ordinary work it can be neglected.
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The method calls for a fairly accurate knowledge of the latitude of

the place, and, if this is not already known, it can be found by one of

the methods described later. In order to minimize the effects of errors

due to errors in the assumed latitude and of errors of the same sign in

the observed altitudes, it is advisable to balance a series of observations

of east stars with a series of observations of similarly placed west stars

at approximately the same altitudes as before, or, in the case of the

sun, a series of morning observations should be balanced by a similar

number of afternoon observations with the sun at approximately the

same altitudes as in the morning. Solar observations should be taken

with the sun in diagonally opposite quadrants of the reticule, as A and

B or C and D in fig. IS.lc. When the sun is used, it is necessary to know
the approximate Greenwich time of each observation in order to be

able to interpolate the declination of the sun reasonably accurately.

Hence, the U.T. of each observation, as well as the E and readings

of the vernier arm level bubble, should be recorded. Also, owing to the

fact that the difference between the azimuths of the centre and one

limb of the sun is dependent on the sun's altitude, there is a small

correction applicable to the azimuth angle calculated from the mean
of the altitudes of a face-right and face-left observation when there is

an appreciable difference, A/*, in altitude between the two observations.

This correction is given by

c = |S.D. sin 1' tan A sec A AA, .... (13)

where S.D. is the sun's semi-diameter in minutes and c is in minutes

or seconds according as AA (here of the sun's centre) is in minutes or

seconds. Taking |S.D. sin 1' = 0-142, the correction becomes

c =-0-142 tan h sec h AA, (14)

The sign of the correction depends on the order in which the side

limbs are observed, and it tends to cancel out if each morning or

afternoon set of observations is meaned with another similar set in

which the order in which these limbs are observed is reversed, and

also, when morning and afternoon azimuths of the R.O. are to be

meaned, if the limbs are observed in the same order in both sets.

The method, when carefully carried out, gives almost as good a

result as can be obtained from any that is normally used for work other

than geodetic work. The errors in a due to errors AA in h or A< in
<f>

are

Aa = cot y sec h AA, (15)
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where y is the parallactic angle given by

cos <b sin a .

siny = I-
, (16)

COS

and Aa = cot
ft
sec < A< (17)

(iii) Azimuth by Hour Angles of Star or Sun.

The procedure in the case of a star observation by this method is

exactly the same as in the last method except that, instead of measuring

altitudes, the chronometer times of the observations are noted and the

azimuth deduced from the hour angle by formula (11), page 304, viz.

tan =
.

8in/?
. . . (18)

cot p sin c cos c cos
ft

or, for logarithmic computation,

tan a = tan p sin 6 cosec (c 0), ... (19)

where tan = tan p cos
ft.

This method is not so convenient or simple as the previous one

because of the necessity for having an accurate knowledge of the chrono-

meter error, but it is slightly more accurate because it is not affected

by refraction, and, if the observations are near the prime vertical, as

they should be, small errors of time have no unduly serious effects on

the result. For accurate work, observations east of the meridian should

be balanced by others to a similarly placed star west of the meridian,

or, in the case of the sun, morning observations should, if possible,

be balanced by observations in the afternoon when it is at approxi-

mately the same elevation as in the morning.
The errors in a due to errors A/? in

ft
and A< in

(f>
are

Aa = sin a cos y cosec ft A/?, . . . (20)

where y is the parallactic angle calculated from formula (16) above,

and

Aa = cot z sin a A<, (21)

where z, when not observed, can be calculated from

sin z = sin
ft

sin p cosec a (22)

(iv) Azimuthfrom Observations of Polaris, the Pole Star.

This method, which can be used to obtain latitude as well as azimuth,

is suitable for observations between latitudes 15 N. and 66 N. as the
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computations are greatly simplified by the use of the
"
Pole Star

Table
"
given in The Star Almanac for Land Surveyors. The altitude

and approximate sidereal time of observation are noted at any hour

angle, and the latitude of the place and the azimuth of the star ran then

be obtained from

Latitude = corrected observed altitude + #o + ai + a2

Azimuth angle = (6 + 6X + 62 )
sec <, (24)

where the quantities a
,
a

t ,
a2 ,

6
,
6
1?

ft2 are obtained from the table

given in the Star Almanac, which also gives a table of natural secants

for the factor sec 0. As before, of course, the observation includes the

measurement of the horizontal angle between the R.O. and the star at

the moment of each observation of altitude and sidereal time. If a

mean-time chronometer is used, it will be necessary to convert the

recorded mean times into sidereal times.

(v) Azimuth by Observations to a Close Circum-polar Star.

This method, which can be used for first-order work when suitable

instruments are available, is similar to the method of ex-meridian

observations of hour angles to an ordinary star already described, the

only thing being the use of a circum-polar star near the pole instead

of any ordinary star. The best results are obtained when the star is

at or near elongation, i.e. when sin a is equal to, or approximately

equal to, sin p cosec c, for the star is then moving in the direction of

the line of sight.

If a series of n observations are taken fairly close together before

and after elongation, the mean of the hour angles can be used to com-

pute a by the formula (18) for tan a given on page 332, but, to the a

so computed must be applied a curvature correction given in seconds

of arc by
_ 2 tan a cos2 p sin2 %kt

n sin I"

where A is the sidereal time interval, expressed in angular measure,

between the time of a single observation and the mean of the times,

and S sin2 JAZ is the sum of the squares of the sines of the half AJ's.

The correction is always subtractive from a whether the star is east

or west of the meridian. Values of the correcting factor 2 sin2 A
cosec 1" are given in the

"
Table for Circum-Meridian Observations

"

on page 66 of the Star Almanac.
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Suitable stars for this method are Polaris (a Ursae Minoris), 51 H
Cephei, and d Ursae Minoris in the northern hemisphere and Octantis

and a Octantis in the southern, the right ascensions and declinations

of which are given for 10-day intervals in the special table for circum-

polar stars given in The Star Almanac for Land Surveyors.

(vi) Azimuth by Observations to a Circum-polar Star at Elongation.

When the star is at elongation the azimuth can be computed from

cos d--

COS
(f)

/0 x

(26)

If the star was not actually at elongation at the moment of obser-

vation but at a small interval, not exceeding 30 minutes of time, on

either side of it, the a calculated by the formula just given should have

applied to it a correction, c", which is given in seconds of arc by

)(^--*)
2

>
.... (27)

where (tE t) is the interval, in minutes of sidereal time, between

the time of observation and the time of elongation. This expression,

it will be noted, is of the same form as the expression given for c" in

the last section but with n put equal to 1 and ^(tE t) 15 sin 1' written

for sin^AZ.
The observation involves the preliminary calculation of the azimuth,

elevation, and time at the moment of elongation from

cos d /00 v

sm a = --, ........ (28)
cos<p

. , sin 6 /onxsm h = -r-i ,
........ (29)

sine)

. cos h /OAXsm =--, ........ (30)
COScp

L.S.T. = H + Star's R.A..... (31)

A few minutes before the computed time the instrument is set to read

on the R.O. and the horizontal circle read. The telescope is then set to

point to the star, and, when the latter is on the vertical hair, clock time

and horizontal circle are read, the lower circle being kept clamped, of

course, all the time. The telescope is then reversed very quickly to

give a change of face, and another set of readings taken. Each of these

readings has the correction given above applied to the calculated value



XVIII] TIME OBSERVATIONS 335

of a and the mean of the resulting azimuths of the R.O. taken as the

value required.

A rough method is to direct the telescope to the star shortly before

the calculated time of elongation and then to keep it on the vertical

cross hair until its direction of motion appears to be steady, readings
on the horizontal circle being, of course, taken both with the telescope

pointed to the R.O. and then again when the star appears to be station-

ary on the vertical hair. This method has the disadvantage that a single

observation on one face only is possible.

TIME OBSERVATIONS

Owing to the ease with which Universal or Greenwich time can now
be obtained from the ordinary wireless time signals the necessity for

astronomical observations to obtain time no longer arises as often as it

did before the advent of wireless. In fact, the occasions on which precise

time determinations are necessary are now usually when longitude is

required, and the precise determination of longitude is a problem which

concerns the geodesist rather than the ordinary engineer or surveyor.

Hence in this section we shall only consider methods which are suffi-

cient to give time to about a half of a second, which is amply accurate

enough to yield a satisfactory azimutli when the azimuth observations

are dependent on an observation of time, or are needed merely to give

times for interpolation purposes when looking out data for the sun or

for Polaris from The Star Almanac.

(i) Time by Reception of Wireless Time Signals.

Two types of wireless time signals are used in surveying. The first

corresponds to the ordinary time signal radiated by the British Broad-

casting Corporation at certain hours of the day, and the second are the

special rhythmic time signals radiated by different stations at intervals

throughout the day. The rhythmic time signals are used for accurate

longitude work and enable Greenwich time to be obtained to a few

hundredths of a second. The signals radiated in their ordinary trans-

missions by the B.B.C. consist of six dots or
"
pips

"
marking successive

mean time seconds, the first dot being emitted at five seconds before

the hour and the last at the hour itself. With practice and care time

may be estimated from these signals correct to about a third of a second.

Also, if a short-wave receiver is available, time can be obtained to a

little higher degree of accuracy from the time signals radiated, 24 hours
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a day, by station W.W.V., Washington, U.S.A. on the frequencies

2-5 to 25 megacycles per second.

If local time is required, U.T. determined from the wireless time

signals must be corrected for longitude when the latter is known with

sufficient precision; otherwise, local time must be found by astro-

nomical observations.

The rhythmic signals are devised for work of a higher order of

accuracy than that considered in these pages. For the minor work with

which we are immediately concerned, other stations besides the B.B.C.

radiate suitable time signals at fixed times. Occasional changes in the

signals are made from time to time, but full particulars and explana-

tions of all the signals available will be found in Vol. II of TJie Admiralty

List of Radio Stations, which is published annually by H. M. Stationery

Office.

(ii) Time by Meridian Observations.

A refined form of this type of observation is used for primary time

observations in fixed observatories where facilities exist for setting the

line of collimation of the instrument very accurately in the meridian,

and it is also much used in geodetic work. It is a convenient and simple

method to use in minor work when, as a result of previous survey

operations, lines of known bearings exist on the ground from which the

instrument, a theodolite, can be set on the meridian with fair precision.

The observation consists of observing the time as the celestial body,

sun or star, crosses the vertical hair of the telescope, this hair having

already been set to give a line of sight which lies in the plane of the

meridian.

When the sun is used, the times of passage of the east and west

limbs are noted, and the mean of the times taken as the time of passage

of the sun's centre. The hour angle of the sun will then be 24 hours,

and L.M.T. at the time of passage of the sun's centre will be given by

L.M.T. = 24h. - E, (32)

where E is the quantity defined in page 310 which is to be found tabu-

lated in The Star Almanac.

In order to calculate the value of E, the L.M.T. must be corrected

for longitude to give U.T. corresponding to 12 h. L.M.T., and the

value of E interpolated for this value. Thus, suppose the observed

mean time of transit of the sun on 1959 April 24 was 12 h. 01 s. 14-8 s.
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at a place in longitude 8 L. 36 m. 24-8 s. West, what was the error of

the watch ?

Then 12 h. L.M.T. = 20 h. 36 m. 24-8 s. U.T.

From the S.A., E for 1959, April 24 d. 18 h. = 12 h. 01 m. 48-8 s.

Correction for 2 h. 36 m. +1-2
E at 12 h. L.M.T. = 12 01 5(M)

L.M.T. =- 24 h. -E = 11 58 10-0

Time by watch ^12 01 14-8

Watch fast 3 04-8

If a star is used, the hour angle at upper transit is zero and the

sidereal time of upper transit is the star's right ascension. If the watch

used is one keeping sidereal time, its error is thus the difference between

the observed time of transit of the star and the star's right ascension.

If a watch keeping mean time is used,

L.M.T. - L.S.T. - R, (33)

in which, for purposes of interpolation from The Star Almanac, L.M.T.

must be converted to U.T. and the value of R used in the equation

interpolated for this time.

In making the observation when a booker is available, the latter

can note the exact time on the watch when the observer calls out
" now "

as the star crosses the meridian. If no booker is available, the

observer can use a stop watch to note the difference in time between that

when he sees the star on the cross hair and the time when he reads the

watch. If no stop watch is available, he can count half-seconds by

calling out thus:
" and 1 and 2 and 3 and . . ."to carry time

from instrument to watch.

(iii) Time by Equal Altitudes of Star or Sun.

If the times at which a star is at equal altitudes east and west of the

meridian are noted, the mean of these times will be the watch time of

transit of the star and this, compared with the time computed from the

star's right ascension, will give the error of the watch. The best time to

take the observations is when the star's altitude is changing most rapidly

with time, that is, when the star is at, or near, the prime vertical;

but the objection to the method is the long interval between obser-

vations, during which there may be a very appreciable change in

atmospheric refraction as well as an appreciable one in the clock error.

If the sun is used, the change in declination between observations

12 (G467)
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may be appreciable and will necessitate a correction, c, which must be

applied to the mean of the watch times at equal altitudes to give the

watch time of apparent noon. This correction is given by
o e

J
-
(tan 6 cot t tan < cosec t), . . (34)

2 X 15

where dE and <5 jr are the sun's declination at the U.T. of the morning
and afternoon observations, 6 = %(dE + (3,, ), t is one half of the interval

between observations and
(f>

is the observer's latitude, which need only

be known very approximately.
The observations may consist of a number of readings to one limb

of the sun taken close together in the morning followed by a number

taken at the same altitudes of the same limb in the afternoon.

(iv) Time by Ex-meridian Altitudes of Star or 8un.

This method consists in recording the altitude of the star or sun

when it is some way east or west of the meridian and the clock time of

observation. In this case, the latitude must be known fairly accurately

as the solution directly involves the three
"
sides

"
of the astronomical

triangle and is given by the formula

. . (35)
-

sin s sin (s z)

where

* = 4(2 + P + c).

The error A/8 in
/? due to an error AA in h is got by differentiating

/?
with respect to h in

sin h = sin < sin <5 + cos
<f>
cos d cos

/?.

This gives
cos h

A/? = ---
: AA sec <A cosec aAA, (36)

cos $ cos o sin p

or, with A/? expressed in seconds of time and AA in seconds of arc,

A/J s. = iV sec < cosec a AA", .... (37)

From this it is obvious that the error in
ft for a given error in k is

least when a is near 90, i.e. the best position for observing it when

determining time by this method is when the celestial body is on or

near the prime vertical.
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LATITUDE OBSERVATIONS

(i) Latitude by Meridian Altitudes of Sun or Star

A good value for the latitude is easily obtained by measuring the

altitude of a body of known declination, sun or star, as it crosses the

meridian, and, even when the direction of the meridian is not accurately

known, it will usually be possible to find the approximate direction of

it from Polaris or by prismatic compass or other means. A body will

be at its highest altitude when it crosses the meridian at upper transit,

and it will be at its lowest altitude when it crosses the meridian at

Z S,

Fig. 18.5

lower transit, though if it is not a circum-polar star the lower transit

will not be visible. Hence, if a series of altitudes of a body are observed

for some little time before and after transit, the highest or lowest

altitude can be interpolated arid used to work out the latitude.

The relation between the latitude of the place of observation and

the declination and altitude of the body at meridian passage can be

studied from figs. 18.5a and b which represent a section of the meridian,

fig. 18.5a being for the northern hemisphere and fig. 18.56 for the

southern. Z, as usual, indicates the observer's zenith and P the celestial

pole. SON is the section of the horizon plane and EOQ the section

of the celestial equator. Sx represents a (circum-polar) star at lower

transit, S2 a star crossing the meridian between the zenith and the

elevated pole, S3 one crossing the meridian between the zenith and the
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equator, and S4 one which crosses the meridian below the equator.

Then, ignoring negative signs of d and
(f>

and treating all values as

positive, it is easy to show that, in both hemispheres,

<f>
= 90 + A!

- dl

= h2 + 62 90

= 90 + <53
-

h,

= 90 -
(5
- A4 ,

(38)

where <5
1?

<52 , 53 ,
<54 and hv hz ,

h3 and #4 are the declinations and eleva-

tions of Sx ,
S2 ,

S3 ,
and S4 respectively.

If there are no lines of known bearing radiating from the point of

observation from which the direction of the meridian can be set out,

the instrument can be accurately orientated if the clock error in terms

of local time is known by remembering that the sidereal time of transit

of a star is the star's right ascension. Hence, by sighting on the star at

this time, the observer can set the instrument very approximately on

the meridian. If the clock error is not accurately known, the direction of

the meridian should be determined approximately as described above and

the highest or lowest altitude interpolated from observations before and

after transit. This interpolation is easy if sufficient observations are

taken because the altitude of a body changes only slowly as it crosses

the meridian. Observations should start while the altitude is increasing

or decreasing and be continued until it starts to decrease or increase as

the case may be.

In the case of the sun, observations can be taken to one limb through-
out and the altitude corrected for the sun's radius. Alternatively, a

number of alternate F.R. and F.L. observations on upper and lower

limbs should be taken in rapid succession and the altitude of the centre

deduced from the means of pairs.

In the case of star observations, it is well to take a series with dif-

ferent stars transiting north of the zenith and to balance these with

stars transiting south of the zenith at approximately the same altitudes.

This is probably the simplest method for the ordinary surveyor of

determining latitude.

(ii) Latitude by Meridian Altitudes of a Circum-polar Star at Upper and

Lower Transits.

If the altitude of a circum-polar star is observed at upper and lower

transit, the latitude will be the mean of the two altitudes. This method
is simple in theory but the main disadvantage is the long interval in
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time between the two observations. One feature of the method is that

a knowledge of the star's declination is not needed.

(iii) Latitude by Circum-meridian Altitudes of Stars or Sun.

This method, which is an improved variation of Method (i), is

simple and gives accurate results when the direction of the meridian

and the clock error are known with moderate accuracy. It consists in

measuring the altitudes of a series of stars at carefiilly timed intervals

before and after transit. If the hour angle in each case is known from

the observed times of observation, the observed altitude can be reduced

to the altitude which the star would have when it crossed the meridian

by applying the formula

z = zQ Am + Bn, (39)

where

z = observed zenith distance (corrected for refraction) and

positive or negative according as to whether the star is

south or north of the zenith,

z = required zenith distance when star is on the meridian,

zl
= an approximate zenith distance as deduced from the maxi-

mum observed altitude.

fa = an assumed approximate latitude as deduced from z
l5

positive when north and negative when south,

|8 polar angle of star at the moment of observation,

<5 = declination of star,

A cos
cf>
cos d cosec z cos fa cos 6 cosec z

l approximately,

2 sin2 ij8m==
-^i->

B = A 2 cot z,

2 sin4 \$

"snTF"
n

The number of observations, each of which must be reduced separ-

ately, should be the same for each side of the meridian, and, in order to

reduce the effects of errors due to refraction, each set of observations

to a northern star should be balanced by a similar set to a southern star

at very approximately the same altitudes as the first set. The factor m
can be obtained directly from the table on page 66 of the S.A.

In the case of solar observations, these should be taken to upper
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and lower limbs alternately, but, of course, observations cannot be

paired by others taken on the other side of the zenith.

With this method, the observed body will be moving almost per-

pendicularly to the meridian, so that a small error in time will produce a

very small error in the observed altitude.

(iv) Latitude by Timed Altitudes of Polaris.

In the northern hemisphere, when the clock error and rate are

accurately known, latitudes between about 20 and 66 N. can be

found fairly easily by timing the observations of the altitude of Polaris,

the Pole Star (a Ursae Minoris). The latitude is then the observed

altitude of the star with all corrections applied, plus the sum of three

quantities, a
,
a
1?

and &2 ,
which are specially tabulated in The Star

Almanac for Land Surveyors in terms of L.S.T., latitude (only required

approximately) and month.

(v) Latitude by Talcott's Method.

This method, sometimes called the Horrebow-Talcott method, is

mainly used in first-order geodetic work but it necessitates the use of a

special instrument called the Zenith Telescope, or else a theodolite

fitted with a specially sensitive level bubble for the vernier arm and an

eyepiece micrometer for measuring very accurately small differences in

zenith distance. Hence it is little used in work other than geodetic

work. It involves the measurement of the difference of the meridian

zenith distances between two stars which cross the meridian at nearly

equal altitudes with but a short interval of time between them, the

one north and the other south of the zenith. The great advantage of the

method is that, as small differences in zenith distances are used, and

not zenith distances themselves, the effects of unknown and unpredic-
table errors of refraction are reduced to a minimum.

OBSERVATIONS FOR LONGITUDE

The determination of longitude involves astronomical observations

for local time combined with observations for Greenwich time; for

longitude, as we have seen, is no more than a difference between local

and Greenwich time. Up to recent years the chief difficulty about a

longitude observation has been the determination of Greenwich time,

but the advent of the wireless time signals has done away with this

difficulty to a very great extent.



XVIII] POSITION LINE METHODS 343

For ordinary purposes, local time may be determined by any of the

methods previously described, and Greenwich time by the reception
of the ordinary wireless time signals as described on pages 335-336.

In geodetic work, or when a high degree of accuracy is demanded, the

rhythmic signals are used in conjunction with a chronometer beating
half-seconds and a chronograph on which short periods of time are

recorded graphically. The signals consist of a series of Morse dots

extending over a period of five minutes, with 61 dots per 60 seconds of

mean time, or 306 dots altogether in 300 seconds of mean time. By
noting the coincidences of the beats of the wireless signals and the beats

of the chronometer we get what is, in effect, a time vernier which

enables time to be recorded to a hundredth of a second.

POSITION LINE METHODS

The position line method of determining position was originally

devised for finding position at sea, but developments of it are now

proving more and more popular among surveyors for finding position

on land, so that this book would hardly be complete without some

reference to it.

In fig. 18.6, LTMPS represents part of the celestial sphere, P being

the celestial pole and LTM the celestial equator. Inside the sphere is

a smaller concentric sphere representing the earth with pole p and

Fig. 18.6

terrestrial equator Itm. On the earth, pgt is the Greenwich meridian

and on the celestial sphere this meridian is represented by PGT.

Let the altitude of a star be observed and the time of observation

noted so that the Greenwich hour angle of the star can be computed.
The declination of the star being known, its position, S, on the celestial

sphere is known. Join OS and let OS cut the surface of the earth in
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U. Then U is the position on the earth's surface at which the star would

be vertically overhead at the time of observation, this point being

called the sub-stellar point, or the star's geographical position. PSL is

the celestial meridian through 8, the meridian meeting the celestial

equator in L.

Now the angle LOS, being the angular elevation of the star above

the equator, is equal to the star's declination, and, if OL cuts the ter-

restial equator in 1, the angle 10TJ = angle LOS = the terrestrial

latitude of U. Thus, on the earth, the latitude ofU is the star's declina-

tion. Also, the angle SPG is known from the Greenwich Hour Angle,

and the angle Upg, which is the longitude of U with reference to Green-

wich, is equal to it. Consequently, the

latitude and longitude of U are known,
and thus the position of U on the earth's

surface is known.

This fixes the position of U, but what

we want is the position of the observer.

However, we note that all the places

which would have z as the observed zenith

distance of S must lie on a small circle ab

on the earth's surface which has as its

Fig. 18.7 centre the point U and an angular radius

Ua equal to 2. This small circle is called

the position circle for the star S. Similarly, if we observe the altitude

and the time of observation of another star, we can get another position

circle and the intersections of the two circles will give two points, one

of which is the station of observation. It will always be easy to decide

which of the two points must be taken since they will be widely

separated, and the observer will have at least some rough idea of his

position so that he will know without very much difficulty which point

to accept.

Instead of observations to two stars, observations can be taken to

the sun in two positions an hour or two apart, the point U at which

the sun is overhead at the moment of observation being then called the

sub-solar point.

In navigation the ship's position can be obtained very roughly by

plotting the two position circles on a globe or a very small-scale chart,

but this is not accurate enough for ordinary survey work. In this case,

approximate values for the latitude and longitude of the point are

assumed. Let fa and Lt be these assumed values and let D in fig. 18.7

be this point. Then in the spherical triangle UDp, Up = 90 5,
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pD = 90 -
fa, and angle UpD = (H - LJ. Hence, solving for UD,

cos UD = sin 6 sin ^ + cos <5 cos <, cos (H LJ. (40)

From this UD is found and Dj l5
the distance from D to the position

circle, is UD z, this distance being called the intercept. Again, the

angle UDp, which is the azimuth of U from P, can be calculated from

. cos 6 sin (H L,)
sin UDp = -.^

sin UD (41)

The distance Dj 1 is normally very small and the problem can be

completed graphically. Taking the point as origin of rectangular

co-ordinates (fig. 18.8) and giving it the assumed latitude <^ and longi-

tude Lv and letting distances scaled along OX and OY be represented

by, say, 1 inch to 10 seconds of arc in latitude and 10 sec <^ seconds of

arc in longitude,* lay off the intercept Oj t equal to UD zl and making

10 5 o 5 10

Seconds Longitude X cos
<j>

Fig. 18.8

angle A, = UDp with OX. Through ]\ draw the line cj^ perpen-

dicular to Ojj. Then c^dj is a tangent to the position curve of Sx
and

is called the position line of SlB
For small distances on either side of jj

the line c^dj will lie very close to the position curve, so that we can

assume that the true position of the point of observation lies on this

line. Now carry out the same procedure for another star S2 , or for

another position of the sun, assuming the same value as before for the

* The reason for the factor sec fa is that the radius of the small circle representing

a parallel of latitude is proportional to the cosine of the latitude so that an angular

displacement of A corresponds to a linear displacement of AL cos fa on the parallel of

latitude. Thii? A// cos fa = A 7 and AL = A Y sec fa.

12* (Q487)
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point 0, and so we get the second position line C2j 2d2 which intersects

the first position line at r. Then r is the position of the real point of

observation with reference to 0, and the co-ordinates of r, as scaled

from the diagram, will give the true position of the point of obser-

vation. Thus, in the diagram, if the assumed position of is <^

51 13' 28", //!
= 15 16' 06" E., and the co-ordinates of r scaled from

the diagram are x = + 10-4" and y = 2-6" sec & = 4-2", the

true position of the point of observation is ^ 51 13' 38-4", L =
1516' 01-8* E.

X

If several stars, say 4, are observed, this will give several position

lines such as ab, be, cd, da in fig 18.9, enclosing a figure abcda, inside

which can be drawn the circle with centre (\ which most nearly touches

all four lines. The rectangular co-ordinates of Ol
with reference to

yield the quantities which, added algebraically to the assumed co-

ordinates of 0, give the most likely fix for the point of observation.
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EXAMPLES

(Note. ID the following examples the astronomical data have been taken

from The Star Almanac for Land Surveyors for 1959, which is referred to as

the S.A.)

Example (i). The star y Pegasi was observed west of the meridian on

1959, October 5 and its altitude was found to be 42 39' 02", atmospheric

pressure and temperature being 29-9 in. and 69 F. respectively. The alti-

tude bubble readings (page 324) were = 13-7 and E 10-5, and d, the

angular value of one bubble division, was 10". The latitude of the place

of observation was 40 07' 15" North and the longitude h. 13 m. 41-2 s.

West. Find the azimuth of the star, and, if the observed L M.T. of this

observation was 2 h. 25 m. 09-1 s., what was the error of the clock?

Fig. 18.10

From the S.A. pages 26 and 27, and the interpolation table on page 70,

we see that the R.A. and declination of the star on 1959 October 5, were

h. 11 m. 11-1 s. and 14 57' 44" N. respectively.

The data given are the three sides of the astronomical triangle, so we

use forraulse (7) and (8) on page 304 to determine the angles a and
j8,

viz.

/
rsin (s p) sin (s z) sin (s c)"|

tan r = A /
-----

>

\ L sin s J

tanr lo tan r

tan a = -r-
---

. ;
tan tf =* -r-

---
.

-r ---.
sin (s p) fem (s z)

Then, from fig. 18.10 and the usual conventions regarding A and //,

A = 360 -
a, H = j8.
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Thus,

From S.A., p. 60, mean refraction for h = 42 39' = 63".

From p. 61, factor /for 29-9 in. and 69 F. = 0-96.

Refraction correction = - 63 X 0-96 = - 60-5" = - 00 01' 00-5"

Correction for dislevelment of vertical axis

= (13-7
-

10-5)10/2

Observed altitude

Corrected altitude

p = 90 - H 57' 44" = 75 02' 16"

z = go 42 38 17 = 47 21 43

c = 90 40 07 15 = 49 52 45

=+00
= 42

00

39

16

02

= 42 38 17

2
1

172 16 44

s ~~~~

(-*) =
(8
-

C)
=

86 08 22

11 06 06

38 46 39

36 15 37

log sin = 9-284544

log sin = 9-796782

log sin = 9-771 921

log tan r

log sin (s p)

log tan <x

= 9-427 117

= 9-284 544

= 0-142 573

Ja = 54 14' 24-7".

a = 108 28' 49".

A = 360 - a = 251 31' 11".

8853247

log sin = 9-999 013

2 [8-854 234

log tan r= 9-427 117

log tan r =9-427117

log sin (s z)
= 9-796 782

log tan = 9-630 335

|]B
= 23 07' 05-0".

j8
= 46 14' 10".

H = ]8
= 3 h. 04 m. 56-7 s.

From S.A., p. 20, R on 1959, October 5 d. h. = h. 51 m. 41-5 s.

Hence, from equation,

L.H.A. Star = H = L.M.T. + R - R.A. Star

Approx. L.M.T. = 3 h. 04 m. 56-7 s. h. 51 m. 41-5 s.

+ Oh. llm. 11-1 s.

= 2 24 26-3

West longitude - 13 41-2

Approx. U.T. =2 38 07-5

Correction to R for 2 h. 38 m. 07-5 s. (p. 68 of 8.A.) = + 26*0 s.*

* As the true value of U.T. was not available to begin with, the first value of R to

be used was that for 1959 October 6 d. h.. The correction of -H 26-0 s. is the difference

between this value and that for U.T. 2 h. 38 m. 07 s. Finally, there is a very small

correction to R for this 26-Os., so that the total final correction to R amounts to

+ 25-9s.
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Corrected U.T. =. 2 h. 38 m. 07-5 s.
- 26-0 s.

-= 2 37 41-5.

Corrected R for 2 h. 37 m. 41-5 s. = + 25-9 s.

Approximate L.M.T. = 2 h. 24 m. 26-3 s.

Corrected L.M.T. - 2 24 00-4

Time by clock = 2 25 09-1

Hence Clock Fast = 1m. 08-7 s.

The above computation is by logarithms. For computation by machine

we can use as our basic formula? in spherical trigonometry:

cos a = cos b cos c + sin b sin c cos A.

cos b = cos a cos c + sin a sin c cos B.

From which, by the usual substitutions in the astronomical triangle, we get

cos a = cos p cosec z cosec c cot z cot c.

cos
j8
= cos z cosec p cosec c cot p cot c.

Arrange the work as follows:

cos p = 0-258 182 cot z = 0-920 773

cosec z = 1 -359 347 cot c = 0-842 700

cosec c = 1 -307 724 cot z cot c = 0-775 935

cos p cosec 2 cosec c 0-458 957

cot z cot c = 0-775 935

cosa= -0-316978

a = 108 28' 49"

cos z = 0-677 365 cot p = 0-267 243

cosec p = 1 -035 094 cot c = 0-842 700

cosec c = 1 -307 724 cot p cot c = 0-225 206

cos z cosec p cosec c 0-916 893

cot p cot c = 0-225 206

cos j8
= 0-691 687

= 46 14' 10-3"

Example (ii).
On 1959 October 26, in latitude 36 34-6' N., longitude

3 h. 20 m. 50 s. E., it was only possible to observe the sun's lower and

eastern limbs before cloud prevented further observations. The observed

altitude of the lower limb at approximate L.M.T. 9 h. 20 m. 1 4 s., as

registered by the surveyor's clock, was 30 16-2', and the horizontal angle

between the eastern limb and the referring object, or R.O., measured clock-

wise from sun to R.O., was 48 15-2'. The barometer read 30-7 in. and the

thermometer 62 F. What was the azimuth of the R.O. and the approxi-

mate error of the clock ?
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In fig. 18.11, C is the centre of the sun, L the point where the vertical

circle through Z touches the eastern limb. The angle CZL = Aa is thus

the difference between the azimuths of the sun's centre and the sun's eastern

limb at the time of observation.

=-= - 1-65

=,= + 0-13

Fig. 18.11

Observed altitude of lower limb = 30 16-2'

From the S.A., p. 60, mean refraction for 30 16-2' = 99".

Correction factor for 30-7 in. and 62 F. - 1-00.

/. Refraction = - 99" X 1-00 - -99" - -1-65'

Correction for parallax
- +8-8" cos 30 16' --= +7-6"

From S.A., p. 21, sun's S.D.

.'. Sum corrected altitude of sun's centre

Clock L.M.T. of observation

Longitude East

/. Approx. U.T. of observation

From S.A., p. 21, declination of sun at U.T.

1959 October 26 d. 5 h. 59 m. 24 <$.
= 12

Then, using the tangent formulae to determine occ and ,

p ^ 90 (- 12 11-6')
= 102 11-6'

z = 90 -30 30-8 = 59 29-2

c = 90 - 36 34-6 =J^J2^4

2 [215 06-2

s==~107 33-1

5 21-5

48 03-9

54 07-7

30 30-8'

= 9 h. 20 m. 14 s.

= 3 20 50

= 5 59 24

11-6'

('-P) =

(s
-

c)
=

log sin = 8-97 027

log sin = 9-87 152

log sin = 9-90 866

87^045

log sin s =_9-97930

2["8
;7TTl5

log tan r = 9-38 558
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log tan r = 9-38 553 log tan r = 9-38 558

log sin (s p)
= 8-97 027 log sin (s z)

= 9-87 152

log tan ac
= 041 531 log tan = 9-51 406

iac
= 68 58-63' Jj3

= 18 05-33'

ac
= 137 57-3' ft

= 36 10-7'

= 2 h. 24 m. 43 s.

Aa = sun's S.D. X cosec 2 (page 322) = 1C-1' X 1-360 = 18-7'

Azimuth of sun's eastern limb = 137 57-3' 18-7'

= 137 38-6

Angle eastern limb to R.O. = 48 15-2

Azimuth of R.O. ==- 185 53-8

L.II.A. Sun = 24 h. ft
= 21 h. 35 m. 17 s.

E for 1959 October 26 d. 5 h. 59 m. 24 s. - 12 15 54

.-. L.M.T. - 9 19 23

Observed time -= 9 20 14

.'. Clock fast ---- 00 51

Example (Hi). At a station in latitude 30 S., longitude 18 E., on

1959 July 4, it is desired to observe a star whose R.A. is 18 h. 28 m. and

decimation 20 S. at about 9 p.m. L.M.T. Work out an approximate

altitude and azimuth for setting the instrument for this time.

L.M.T. = 21h.00rn.

Longitude = 18 E. = - * 12

Corresponding U.T. = 19 48

R for 1959 July 4 d. 19 h. 48 m. (S.A.< p. 14) - 18 48

L.H.A. Star =H - 21 h. 00 m. + 18 h. 48 m. - 18 h. 28 m.

=-. 21 h. 20 m.

--= 320.

Hence, the star lies east of the meridian and the angle ft
in the diagram is

= 360 320 = 40.
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We are therefore given

PZ = c = 90 30 = 60, PS = p = 90 20 = 70

and ft
= 40 and want to find the side ZS = z and the angle a.

We have

cos z = cos p cos c + sin p sin c cos
ft.

This formula as it stands is all right for machine computation, but,

for computation by logarithms, it is more convenient to get the right-

hand side into a form involving the cosine of the difference of two angles

by introducing the auxiliary angle such that

cos p = k cos 0,

sin p cos
ft

k sin 0.

Hence, by division,

tan = tan p cos ft (42)

Then, having found from (42),

cos z =
&{cos

cos c + sin sin
cj

cos p cos (0 c) /JOVL : (43)
cos

Hence,

log tan p = 10-43 893 log cos p = 9-53 405

log cos 0= 9-88425 log cos (0 c)
= 9-99 861

log tan = 10-32 318 9-53 266

log cos = 9-63 263

= 64 35-1', log cos z = 9-90 003

(0
-

c)
= 4 35-1' 2 - 37 24-2',

h = 52 35-8'.

To find a, use the tangent formula (6) on page 304 in order to avoid

the ambiguity which arises when the simpler sine formula is used.

sin 5 sin (s p)

z = 37 24-2'

c=60 00

p=10 00

2
|

167 24-2

s = 83 42-1
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s - c = 23 42-1' log sin = 9-60 420

s __ z = 46 17-9 log sin = 9-85 911

9-46 331

s p = 13 42-1 log sin = 9-37 450

0-08 881

log sin 5 = 9-99 737

log tan la == 0-04 572

| a -= 48 00-6'

a r= 96 01-2'

and A = 180 a = 83 58-8'.

Example (iv). On 1959 June 6, the mean of six observed altitudes of

Polaris corresponding to a m^an L.M.T. of 20 h. 40 m. 20 s. was 38 19-8',

the barometer reading 30-2 in. and the thermometer 58 F The mean hori-

zontal angle between the star and the R.O. was 292 17-6' measured clock-

wise from the star, and the means of the bubble readings were = 11*8

and E = 13-6, with d = 9-5". What was the latitude of the place of obser-

vation and what was the azimuth of the R.O. ? The longitude of the point

of observation was approximately 1 h. 30 m. 14 s. East.

L.M.T. = 20 h. 40 m. 20 s.

Longitude East = 1 30 14

U.T. = 19 10 06

R at 1959 June 6 d. 18 h. - 16 57 35-8

Increment for 1 h. 10 m. 06 s. = +__11-5

G.S.T. = 12 07 53.3

Longitude East = + 1 30 14

L.S.T. - 13 38 07-3

Mean refraction for altitude 38 19-8' = 73".

Correction factor /for 30-2 in. and 58 F. = 0-99.

Refraction correction = - 73" X 0-99 = -72" - - 01-2'.

Bubble correction (11-8
-

13-6) x 9-5/2
= 8-6" - -0-1.

From S.A. Pole Star Table, p. 58,

For L.S.T. 13 h. 38 m. 07 s. s = +55-3 6 = -4-6

For latitude 38 <*i
= 0-0 6,= 0-0

For June 2
= + 4 62

= +04

Sum + 55-7 -4-2

Observed altitude = 38 19-8

Refraction = 1-2

Bubble Correction = - <H sec < (8.A., p. 63)

'. Latitude -39 14-2' =1-291
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Azimuth of Polaris = (6 +
Angle star to R.O.

Azimuth of R.O.

= _ 0054'
= 292 17-6

- 292 12-2'

Example (v). What will be the altitude, azimuth, and L.M.T. of

eastern and western elongation of the circum-polar star Octantis on 1959

July 14, at a place in latitude 28 14' 13" S. and long-

itude 60 30' 15" W.
From the S.A., p. 52, the R.A. and decimation

of Octantis on 1959 July 14, are:

R.A. == 9 h. 02 m. 47 s.
;

Decimation = 85 30' 31" S.

Since we know from the figure that a must be less

than 90 in either position of the star we can use a

sine formula to determine it, but we shall use a cosine

or tangent formula to determine j8, though it is pretty

obvious from the figure that in both positions it, too,

must be less than 90. Then, by applying the rules

90
12, 16 and 15 on page 305 for the solution of the

2 right-angled astronomical triangle:

sin a = sin p cosec c,

cos z = cos c sec p,

cos ft
= cot c tan p,Fig. 18.13

formulae which, on their right-hand sides, contain only p and c,

p = 90 - 85 30' 31" = 4 29' 29"; c = 90 - 28 14' 13" = 61 45' 47".

log sin p = 8-893 812 log cos c = 9-674 970

log sin c = 9-944 975 log cos p = 9-998 664

log sin a = 8-948 837 log cos z = 9-676 306

a = 5 05' 58" z - 61 40' 06"

log cot c = 9-729 995

log tan p = 8-895 148

log cos )8
= 8-625 143

ft
= 87 34' 56"

= 5 h. 50 m. 20 s.

At eastern elongation

A = 180 - a = 174 54' 02" ;
h = 90 - z - 28 19' 54"

;

H = 24 h. ft
= 18 h. 09 m. 40 s.
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From formula

L.H.A. Star = L.M.T. + R - KA. Star.

L.M.T. + R = 18 h. 09 m. 40 s. -) 9 h. 02 m. 47 s. = 27 h. 12 m. 27 s.

R for G.M.T. 1959 July 14 d. 00 h. = 19 24 27-5

/. Approx. L.M.T. = 7 18 00

Longitude West == 4 02 01

/. Approx. U.T. ^11 50 01

Correction to R for 11 h. 50 m. 01 s. = 59-1 + 57-5 = h. 01 m. 56-6 s.

Approx. L.M.T. ^ 7 h. 48 m. 00 s.

Correction for correction to R ~ 1 57

.*. L.M.T. of Eastern elongation = 7 46 03

For western elongation:

A = 180 + a = 185 05' 58"; H = ft
- 5 h. 50 m. 20 s.

Difference in hour angle from eastern elongation to western elongation
= 5 h. 50 m. 20 s. - 18 h. 09 m. 40 s. + 24 h. = 11 h. 40 m. 40 s. (or 2]8).

Correction for mean time interval to 11 h. S.T. =- 1m. 48-13 s.

40 m. S.T. - - 6-55

40 s. S.T. =- - 0-11

Sum = Difference in mean time intervals between

Eastern and Western elongations =11 38 45

L.M.T. of Eastern elongation
=
J7_

46 03

.'. L.M.T. of Western elongation
= 19 24 48

Alternatively (as for Eastern elongation)

L.M.T. + R = 5 h. 50 m. 20 s. + 9 h. 02 m. 47 s.
= 14 h. 53 m. 07 s.

R for G.M.T. 1959 July 14 d. 18 h. --= 19 27 25

Approx. L.M.T. - 19 25 42

Longitude West = 4 02 01

Approx. G.M.T. of observation = 23 27 43

Correction to R for 5 h. 27 m. 43 s.
= 54

Approx. L.M.T. =19 25 42

/. Corrected L.M.T. of Western elongation
= 19 24 48
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QUESTIONS ON CHAPTERS XIII-XVIII

1. What is the altitude of the sun's centre at upper transit in latitude

56 N. if the declination at the instant is 13 N. ?

At the same instant, in what latitude in the southern hemisphere

would the sun have the same meridian altitude ?

What are the various corrections that have to be applied to the

observed altitude of the sun's lower limb in order to get the corrected

altitude of the sun's centre? (Inst. C.E., April, 1953.)

2. Describe briefly how you would determine the azimuth of a long survey

line, using (a) an approximate method, and (b) a more accurate method.

A theodolite reading to 10 sec. is available.

Explain what data you would need and how you would obtain

them; and state the degree of accuracy you would expect to obtain by
each method. (Inst. C.E., October, 1953.)

3. In taking a round of theodolite angles from station A, an altitude of the

sun's centre was recorded and the approximate time noted at the

instant. The horizontal reading when pointing on station B was

220 30' 00" and that on the sun's centre was 265 00' 00". From the

data given below compute the azimuth from N. of the line AB.

What degree of accuracy would you expect to achieve with such an

observation and how could the value of the result be increased?

Corrected mean altitude of sun's centre (East sun) 36 30' 00".

Latitude of Station A 51 30' 00' N.

Declination of sun at time of observation 5 00' 00" N.

. . A /["sin (s 6) sin (s c)l
Aide Memoire sm - = . /

-

, ,

2 'Y L sm " sm c J

where 2s = a + b + c. (Inst. C.E., April, 1954.)

4. Draw a diagram showing the visible portion of the celestial sphere for

an observer in latitude 50 N. Indicate in the diagram the celestial

triangle PZS with a star
"
S
"

of declination 10 N. and an hour angle

of 45. What is the azimuth angle in the celestial triangle and how

would you determine its value? (Inst C.E., October, 1954.)

5. Two methods of determining azimuth are as follows: (i) Knowing the

latitude of the station, to observe the altitude of the sun (in the E. or

W. sky), noting the approximate time of intersection, and to read the

horizontal angle between the sun and a reference object, (ii) Knowing
the latitude and longitude to record only the horizontal angle between

the sun and reference object, and to note the exact time when the sun

was intersected. With the aid of diagrams, show how with the altitude
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in one case, and the time of intersection in the other, the azimuth of the

reference object can be obtained. Formulae for the solution of the

triangles need not be given. (Inst. C.E., April, 1955.)

6. What are the particular merits of determining azimuth by observations

on a circum-polar stir at elongation ?

It is given that at the instant of elongation

cos P cot S tan <

where P is the time angle ZPS in the celestial triangle; 8 the de-

cimation of the star at elongation; <f>
the observer's latitude.

Compute the G.M.T. when Polaris will be at elongation in the

following conditions:

Latitude 51 29' 57" N.: Longitude 41-8 sec. of time West.

Decimation of Polaris 89 03' 38" N.

Right ascension of Polaris 01 h. 51 m. 48 s.

R at the instant of observation 10 h. 08 m. 04 s.

(G.H.A. Aries == U.T. + R). (Inst. C.E., October, 1955.)

7. A common method of determining azimuth is to note the time of ob-

servation and make use of the formula

cot Z = where tan x = tan CQS
sin x

This entails the preliminary computation of the angle P which is

the hour angle ZPS of the celestial triangle.

Compute the values for the angle P (in time) in the following cases

making use of the expressions: Greenwich Hour Angle Aries^U.T.+jK

and Greenwich Hour Angle Sun = U.T. + E, where U.T. is the same

as G.M.T.

East Star West Star

h ni * h tn s

Right ascension 10 04 50-7 00 09 46-5

G.M.T. of observation 19 05 18-0 19 15 39-1

R at instant of observation 10 40 27-8 10 40 29-5

Longitude of station 21 22-7 W. 21 22-7 W.

East Sun West Sun

h m s h m s

G.M.T. of observation 10 24 40-2 14 38 12-8

E at instant of observation 12 14 16-4 12 14 17-2

Longitude of station 21 22-7 W. 21 22-7 W.

Explain briefly the derivation of the terras R and E. (Inst. C.E.,

April, 1956.)
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8. Draw a diagram of the celestial sphere indicating clearly the celestial

triangle PZS. State briefly any three methods you know by which the

azimuth angle PZS can be determined and give the essential differences

in the field procedure between the different methods. (Inst. C.E.,

October, 1956.)

9. Using the formula (or any other you may know) and information given

below, compute the azimuth of the reference object from the observer's

position.

Mean observed altitude (h) of the sun's lower limb in the East

sky = 36 51' 43".

Latitude (0)
- 51 24' 00" N.

Declination of sun (S)
= 5 30' 00" N. and p = 90 8.

Correction for refraction = 1' 14".

Correction for semi-diameter 15' 24".

Correction for parallax
= 07".

Horizontal angle measured clockwise from reference object to

sun = 86 40' 30".

Formula :

A
tan V[sec s sin (s n) sin (s </))

sec (s p)],

where s = .

2

(Inst. C.E., April, 1957.)

10. Show that the formula for tan \A in the last example is another form

of formula (6), Chapter XVI, page 304, viz.

t / rsin (s z) sin (s c)~|
tan <x = A / : :

7 : ,

V L sm s sin (s p) J

where s = %(p -\-z-\-c).

11. On 1959, July 9, at a place in latitude 15 30' S. and longitude 62 10' W.,
it is desired to observe a star, r Virginis, whose R.A. is 13 h. 59 m. 36 s.

and decimation 1 44' 28" N., at (approximately) 21 h. L.M.T. Work
out the approximate azimuth and altitude to which the theodolite

should be set in order to
"
pick up

"
the star. Allow 50" for refraction.

12. At a place in the Southern hemisphere the circum-polar star, f Octantis,

was observed at upper arid lower transits and the altitudes found to be

49 46' 39" and 40 47' 57" respectively. Assuming refraction to be 49"

at upper transit and 67" at lower transit, what were the latitude of the

place and the decimation of the star?
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13. Assuming that, when the sun first appears to be on the horizon, it is

actually, because of refraction, some 33' below it, what was the approxi-
mate L.M.T. of sunrise at a place in latitude 42 15' 30" N. on 1959,

May 24? Take sun's declination at time of sunrise = 20 58' 40" N.
and E = 12 h. 03 m. 10 s.

14. Discuss the suitability of astronomically determined latitudes and

longitudes as control points for mapping on large and small scales

respectively.





ANSWERS TO QUESTIONS

CHAPTERS II AND III (p. 30)

2. 40 ft.

6. Lay out lengths of 100 ft. from given points and offsets at end = 100 tan a
=

(1) 100 ft.; (2) 173-21 ft.; 228-53 ft.

CHAPTER IV (p. 44)

1. 36 12' R; 76 14' R; 122 50' L; 63 45' 09" L; 136 12' 18" R;
99 11' 41" L.

2. Station B: 63 53'; 115 59' 26"; 73 22' 00"; 26 13' 12".

C: 167 54'; 241 28' 50"; 97 06' 55"; 107 04' 06".

D: 234 47'; 282 18' 12"; 112 53' 36"; 186 05' 26".

E: 331 40'; 342 23' 13"; 210 57' 07"; 266 00' 37".

3. (1) 274 54'; 111 22'; 227 35'; 175 38'.

(2) 85 06'; 248 38'; 132 25'; 184 22'.

4. 196 14' 42"; 54 17' 28"; 16 36' 13"; 148 16' 54"; 273 56' 27";

111 06' 21"; 178 12' 16".

5. N 16 14' 42" E; S 54 17' 28" W; S 16 36' 13" W; N 31 43' 06" W;

S 86 03' 33" E; N 68 53' 39" W; N 1 47' 44" W.

6. 289 30'; 212 49'; 20 25'; 355 06'.

7. 18 31'; 323 46'; 237 48'; 131 13'; 241) 48'; 164 48'.

8. 2l4i; 27i; 287*; 93i; 157; 311J; 218J; 78|; 244 14'; 278 04'.

9. 97 46' 25".

10. Sum of angles
= 719 58' 30", so they fail to close by 1' 30".

CHAPTER V (p. 61)

1. ZB - +11,321-5; */B ^ -4,883-5.

2. *B = +7,620-5; yB ~- -10,758-2.

3. a = 275 03' 18"; I - 6624-6.

4 Bearing AB - 155 18' 15"; log AB = 3-875046.

AC - 164 44' 35"; log AC - 3-658 838.

", BC - 321 19' 24"; Jog BC - 3-490 586.

5. Bearing BC - 32 10' 01"; log BC = 3-644 732; BC = 4413-0.

6. 47-17 acres.
861
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CHAPTER VI (p. 108)

1. 1962-20 ft.

2. 1026-89 ft.

3. 3609-329 ft.

5. 0-0104 ft.

6. True length = 500-9821 ft.

7. 99-9803 ft.

8. log AC = 3-791 911; log BC = 3-711 964.

9. log AD = 3-701 134; angle BAD = 15 57' 59".

10. TA = N 10 05' 17" E; TB = N 82 45' 11" E.

11. Angle ABC + angle AXC = 180. Maximum distance of BX = 1774-5 ft.

12. x = 36,864-8; y = 21,571-6. Bearing XA = 271 28' 25".

CHAPTER VII (p. 142)

1. Add 56" to each angle.

2. Local attraction at C and E.

Corrected bearings:

AB S 35 31' E DE N 40 10' W
BA N 35 31' W EO S 40 10' E
BC N 70 15' E EF S 50 11-5' W
CB S 70 15' W FE N 50 11-5' E
CD N 13 57-5' E FA N 81 14' W
DC S 13 57-5' W AF S 81 14' E

3. BC = 472 ft.; CD = 948 ft.

4. 151,550 sq. ft.

5. 710-1 ft.; N68 12' E.

6. Station X y
B 28,567-9 96,872-5

C 31,347-6 98,776-9

D 32,246-7 99,157-9

E 33,164-8 99,952-6

CHAPTER VIII (p. 169)

1. 949-93.

4. Height of Instrument Method: For checking at bottom of first page, reading
10-98 must be considered as F.S. At top of new page 10-98 is booked as a

B.S. to facilitate final checking by difference of sums of F.S. and B.S.

Rise and Fall Method: Check in usual way at bottom of each page.

6. 244-3.

7. fct
= 99-9: &2

= 0-8.

8. 1 in 23-9.

9. Horizontal distance = 770-1 ft.; height of A above axis level = 23-89 ft.
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CHAPTER IX (p. 206)

1. 3820; 2865; 1910; 1432-5; 1146. 1910-1; 1432-7; 1146-3.

2. 2; 3J; 4J.
3. Chainage of beginning of curve = 253 -f- 55-9; chainage of end of curve

273 + 71-6.

Deflection angles:
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CHAPTER X (p. 229)
1. 6 in.

3. 538-2 ft.; 9'EofN.
4. Scale = 1/13,714; length of air base == 6857 ft.

5. (a) fB/(H h); (b) height of pylon = 542 ft.

6. 875 ft.

9. P for top = 2-08 in.

P for bottom = 1-95 in.

dP = 0-13 in.

CHAPTER XI (p. 242)

4. 31-35 cub. ft. per sec.

5. 52-74 cub. ft. per sec.; 53-39 cub. ft. per sec.

6. 31-3 cusecs, using constant = 0-6.

CHAPTER XH (p. 258)
1. 204 sq.ft.

2. 268-3 sq. ft.

3. 10,383 sq. ft.

4. By Simpson's rule A = 91,800 sq. ft. By trapezoidal rule A = 90,100 sq. ft.

5. 11,687 cub. yd.; 12,085 cub. yd.

6. 11,620 cub. yd.; 11,983 cub. yd.

7. 22-77 acres.

. b \ mn
+ *n)^

b \ m>n

9. 53-26 sq. ft. (side slopes 1 horizontal to 1 vertical).

CHAPTERS XI1I-XVIII (p. 366)

1. 47; 30 S.

3. Azimuth of the line AB: N 94 37' 12" E.

6. 21 h. 39 m. 42 s.

7. 4 h. 40 m. 27-6 s; 5 h. 24 m. 59-4 s.; 01 h. 42. m. 26-1 s.; 02 h. 31 m. 07-3 s.

9. N 52 19' 48" E.

11. h = 53 42-3'; A = 244 29-3' reckoned clockwise from North.

12. $ = 45 16' 20" S; 8 = 85 30' 30" S.

13. L.M.T. Sunrise = 4 h. 32 m.; azimuth 60 30-2' reckoned clockwise from

North.



INDEX
abstract of angles, 93, 122, 123.

accidental errors of observation, 8.

propagation of, 8.

accuracy of angular measures in tri-

angulation, 90.

of base lino measurement, 86.

of compass traversing, 137.

of precise levelling, 156.

of spirit levelling, 152.

of theodolite traversing, 120, 12S, 129,

130, 131.

acetylene lamps for triangulation work, 72.

adhesion, coefficient of, 204.

adjustment, approximate of a braced

quadrilateral, 263.

of angles of triangulation, 94, 95, 263.

of figures in triangulation, 93, 263.

of picture control points, 218.

of the bearings of a traverse between

azimuth stations, 269.
-- of traverse bearings, 122, 123, 125, 269.

of traverse co-ordinates, 122, 127.

of traverse latitudes and departures,

127, 128.

of traverses, Bowditch's rule for, 127.

station, 93.

Admiralty List of Radio Stations, 336.

agonic lines, 135.

air base, 220.

navigation for air survey, 213.

survey, 213.

advantages and disadvantages of,

213.

alidade, telescopic, 168.

allowable closing error in bearing in

traversing, 129.

error in spirit levelling, 152.

altitude of star, 294, 299, 302.

altitudes of celestial bodies, observed,

corrections to, 322, 323, 324, 325.

American Railway Engineering Associa-

tion, 197.

Amslor's planimeter, determination of

areas by, 243, 247.

testing, 251.

theory of, 247.

anallactic lens, 157.

aneroid barometer, 7.

levelling with, 158, 168, 233.

use of in astronomical observations,

278.

angles, abstract of, 93, 122, 123.

close to and 90 logarithmic trigo-
nometrical functions of, 52.

deflection. See deflection angles.

methods of reckoning, 32.

of a closed figure, ch^ck on, 44.

of triangulation, adjustment of, 94, 95,

263.

angular measure, relation between time

and, 307.

measures in triangulation, accuracy of,

90.

observations in traversing, 113, 117.

units, 31.

anomalies, gravity, 319.

answers to questions, 363.

ante meridiem, 309.

aphelion, 290.

apparent daily motion of stain and sun,

286, 299.

motion of the sun during the year, 289,

299.

sidereal time, 312.

solar time, 309.

and mean solar time, relation

between, 309.

Apparent Places of Fundamental Stars, 315.

approximate adjustment of a braced

quadrilateral, 263.

apse line, 291.

area of a triangle, 245.

closed figure from co-ordinates,

calculation of, 58, 243, 247.

areas and earthwork quantities, 243.

calculation of from co-ordinates, 58,

243, 247.

from measurements on a plan,

243.

determination of by Amsler's plani-

meter, 243, 247.

of cross-sections, calculation of, 251.

365
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areas, Simpson's rule for calculation of,

244, 254.

trapezoidal formula for calculation of,

244.

Aries, First Point of, 292, 312.

Arundel method of plotting from air

photographs, 217.

astronomical observations, 67, 97, 277.

computation of, 93, 97.

factors affectively choice of method

for, 278.

in general, 326.

refraction, correction for, 322, 323.

triangle, the, 300.

parts of the, 300.

solution of the, 302.

astronomically observed positions, limi-

tations of as survey control points, 319.

astronomy, field, functions of, 67, 277.

autograph plotting instrument, Thomp-
son-Watts, 225.

Wild, A.5, 225.

autumnal equinox, 290.

auxiliary sheets, 233.

axis of tilt, 216.

azimuth and altitude system of co-

ordinates, 293.

angle, 300.

by altitudes of Polaris, 327, 332.

by equal altitudes of sun or star, 327,

328.

by ex-meridian altitudes of sun or star,

327, 330.

by hour angles of sun or star, 327, 332.

by observations of a circum-polar star

at culmination, 327.

by observations of a circum-polar star

at elongation, 327, 334.

by observations to a close circum-polar

star, 327, 333.

observations, equipment for, 320.
- observations for, 327, 328.

of star, 293, 299, 302.

stations, adjustment of the bearings of

a traverse between, 269.

azimuths, 36, 65, 67.

back bearings, 39.

backlash in theodolite, elimination of

errors due to effects of, 90.

backsight, 145.

barometer, 7.

aneroid, 7.

levelling with, 158, 168.

use of in astronomical observations, 278.

base extension, 66.

line, 65.

computation of length of, 93.

length of, 67, 71.

traverse, 115.

base-line measurement, accuracy of, 86.

along surface of ground, 75.

observations for height of above sea

level, 67, 75.

of, 74.

site, selection of, 71.

B.B.C. time signals, 335.

bearing and distance, fixing points by,

4, 5, 47.

traverse, 42.

bearings, 35.

and distances, calculation of from

rectangular co-ordinates, 50.

and rectangular co-ordinates,

relations between, 48.

closing error of in traversing, allow-

able, 129.

from deflection angles, calculation of,

39.

from included angles, calculation of, 38.

magnetic, 36, 1 35.

of a traverse, adjustment of between

azimuth stations, 269.

transferring, from ground surface to

lines underground, 176, 268.

traverse, adjustment of, 122, 123, 125,

269.

computation of, 122, 123, 125.

bench marks, 146, 152.

Bilby observation tower, 74.

binocular vision and steiooscopic fusion,

220, 221.

boiling-point thermometer, 7.

boning rods, setting out gradients by, 172.

booking levels, 147, 148.

of complete chain survey, 26.

of detail, 23.

of field measurements in theodolite

traversing, 120.

of horizontal angles in triangulation,

90.

of vertical angles in triangulation, 92.

Bowditch's rule for the adjustment of

traverses, 127.

cadastral surveys, I, 2.

calculation of areas by Simpson's rule,

244, 254.

by trapezoidal formula, 244.

from co-ordinates, 58, 243, 247.



INDEX 367

calculation of areas from measurements
on a plan, 243.

of cross-sections, 251.

of bearings from deflection angles, 39.

from included angles, 38.

of earthwork quantities, 252.

of volumes by prismoidal formula, 263.

by trapezoidal formula, 252.

from contours, 256.

of large excavations from spot

heights, 255.

camera, surveying, formation of image in,

208.

cant, maximum value of on railways, 195.

on circular curve, 194.

carrying bearings forward, 40.

catenary correction. See sag correction.

taping in traversing, 120.

celestial co-ordinates, 293.

systems of, 293, 295, 297.

equator, 289.

polo, 288.

sphere, 287.

centre of distortion, 216.

chain survey, survey of complete, 26.

surveying, 21.

use of, 10.

traverse, 20.

chainage, through, 167.

chaining, obstacles in, 17, 132.

characteristic, negative, when computing
with logarithms, 51.

check on angles of a closed figure, 44.

chronograph (recording), use of for astro-

nomical observations, 243, 278.

chronometer, use of for astronomical

observations, 243, 278, 279.

circular curve, degree of. See degree of

circular curve.

tangent lengths of, 179.

points of, 179.

curves, 177.

setting out by chain and steel tape,

186.

setting out by deflection angles, 180.

setting out by deflection distances,

189.

setting out by offsets from chords,

188.

setting out by offsets from tangents,

187.

setting out by two theodolites, 186.

specification of, 178.

circum-meridian observations, 326.

circum-polar stars, 286, 289.

circura-polar star observations, 326, 327.

closed figure, chock on angles of, 41.

closing error in bearing in traversing,

allowable, 129.

of traverse, computation of, 127.

coefficient of adhesion, 204.

of discharge, 241.

of expansion, 80.

of refraction, 69.

co-latitude, 288, 302.

collimating marks, 208.

eollimation error in levelling, elimination

of effects of, 150, 154.

horizontal, elimination of effects of

errors, of, 9.

vertical, elimination of effects of

errors of, 9, 90, 132.

Collins' solution of three-point problem,
100.

combined observations, 328.

compass error, 136.

traverse, 112.

traverses, adjustment of, 139.

computation of, 126, 137.

plotting, 137.

traversing, 134.

accuracy of, 137.

field methods used in, 136.

compound curves, 177, 191.

computation of astronomical observa-

tions, 93, 97.

of closing error of a traverse, 127.

of compass traverses, 126, 137.

of co-ordinates in triangulation, 93, 97.

of direct bearing traverses, 126.

of latitudes and departures, 122, 125,

138.

of theodolite traverses, 58, 113, 122.

of traverse bearings, 122, 123, 125.

of traverse co-ordinates, 122, 126.

of triangulation, 93.

of vortical heights from vertical angles,

93, 97, 158, 168.

computing scale, 247.

contour, definition of, 160.

contouring, 160.

by spot heights, 162.

on small scales, 168, 232, 233.

with tacheometer, 164.

contours, calculation of volumes from,

256.

interpolation of, 160, 162, 165.

laying out on ground, 160, 161.

plotting of from air photographs, 225,

226.
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control points, survey, limitations of astro-

nomically observed positions as, 319.

convergence, 36, 270.

conversion of degrees, minutes and

seconds into radians, 31.

of degrees, minutes and seconds of arc

into hours, minutes and seconds of

time, 307.

of grid bearing to azimuth, 36, 270.

of hours, minutes and seconds of time

into degrees, minutes and seconds of

arc, 307.

of radians into degrees, minutes and

seconds, 31.

of sidereal into moan time and vice

versa, 314.

of whole-circle angles into deflection

angles, 42.

of whole-circle bearings to reduced

bearings, 37.

co-ordinates, celestial, 293, 295, 297.

systems of, 293, 295, 297.

computation of in tnangulation, 93, 97.

rectangular. See rectangular co-

ordinates.

correction for astronomical refraction,

322, 323.

for change of declination of sun

between morning and afternoon obser-

vations, 329.

for curvature of path of star, 321, 330,

333.

for curvature of the earth in computing
vertical height, 99, 158.

for dislevelment of vertical axis of

theodolite in the direction of the line

of sight, 92, 323, 324.

for dynamic height, 155.

for height above sea-level, 75, 79, 85,

123, 130.

for index error of spring balance, 79,

84.

for orthometric height, 155.

for sag. See sag correction.

for slope, 75, 79, 81, 85, 123, 130, 131.

for standardization, 79, 123, 130, 131.

for state of tide, 235.

for sun's parallax, 323, 325.

for temperature, 79, 80, 123, 130, 131.

in precise levelling, 155.

for terrestrial refraction in computing
vertical heights, 99, 158.

to an observed direction for dislevel-

ment of the horizontal axis of the

theodolite, 326.

correction to sun's azimuth for difference

in altitude between observations, 331.

to sun's azimuth for semi-diameter,

322.

to sun's hour angle for change in de-

clination between observations, 337, 338.

to vortical angles for dislevelment of

bubble, 92, 323, 324.

corrections to measured lengths, 79, 122,

123.

to observed altitudes of celestial

bodies, 322, 323, 324, 325.

to traverse latitudes and departures for

small corrections to lengths and bear-

ings, 272.

cross-over, 193.

cross-sections, 162, 166.

calculation of areas of, 251.

setting out, 173.

cubic parabola transition curve, 199, 205.

spiral transition curve, 199, 205.

current meter, 238.

currents, tidal, measurement of, 237.

curvature, correction for curvature of

path of star, 321, 330, 333.

of earth, 1, 96, 98.

corrections for in computing ver-

tical heights, 99, 158.

effect of on intervisibility of

stations, 69.

elimination of effect of in level-

ling, 150, 154.

curve ranging, 177.

obstacles to when using deflection

angles, 183.

curves, setting out by theodolite, 177.

vertical, 203.

cuttings and embankments, railway,
volumes of, 252.

dark shade, necessity for use of with

theodolite or sextant for solar obser-

vations, 279.

datum for soundings, 235.

plane for levelling, 4, 144, 153.

decimal system of measuring angles, 32.

declination, magnetic, 135.

star's, 289, 293, 295, 297, 299.

deflection angles, calculation of bearings

from, 39.

measurement of, 118.

method of reckoning angles, 34.

degree of circular curve, 178.

relation between radius and,

178.
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departure, 56, 58.

departures, latitudes and. See latitudes

and departures,

detail, booking of, 23.

diagram, 27.

displacement of duo to elevation abovo
datum, 215, 216.

of due to tilt of photograph, 215,

216.

plotting, 25, 217, 225.

survey, of, 21.

on small scales, 232.

determination of differences of elevation, 7.

of elevation from overlapping

photographs, 222.

deviation of the vertical, 319.

diagonal eyepiece, use of for high altitude

observations, 279.

diapositives, 226.

differences of elevation, determination of,

7.

determination ot from over-

lapping photographs, 222.

direct bearing traverse, 117, 118, 131.

computation of, 12(5.

directions, measurements of horizontal

angles by method of, 88, 117.

discharge, coefficient of, 241.

of rivers and streams, measurement of,

238.

stream, over a weir, 239.

dislevelment of bubble, correction to

vertical angle for, 92, 323, 324, 32(3.

of horizontal axis of theodolite, corm--

tion to an observed direction for, 320.

of vertical axis 111 direction of the line

of sight, correction for, 92, 323, 324.

displacement of detail due to elevation

above datum, 215, 210.

dues to tilt of photograph, 215,

216.

distortion, centre of, 216.

divisions of surveying, 1 .

double longitude, 59.

drawing the plan, 28.

dynamic height, correction for, 155.

"E ", definition of, 310.

east point, 288.

eastings, 67.

eccentric mounting of horizontal gradu-

ated are, elimination of effects of

errors due to, 90.

verniers, elimination of effects

of errors due to, 90.

eccentric stations, 105.

ecliptic, 290.

plane of the, 290.

electric illumination of cross-hairs and

micrometers, 176, 279, 320.

electric lamps for triangulation work, 67,
72.

elevated pole, 286.

elevation, determination of differences of,

7.

differences of from overlapping
photographs, 222.

elimination of effects of instrumental

elongation, 305.

end constrictions, 240.

differences, measurement of, 76

engineering surveys, 1, 2.

ephemeris time, 307.

equal altitude observations, 326, 327, 328.

equation of time, 309.

equation of transition cuivc, derivation of,

197.

equator, celestial, 289.

equinox, autumnal, 290.

vernal, 290.

equinoxes, line of the, 290.

precession of the, 292, 299.

equipment for azimuth observations, 320.

t rrors, compass, 136.

er i ors, elimination of effects of by suitable

methods of observation, 8.

- - in surveying, classification of, 7.

propagation of, 3, 8, 9.

in theodolite traversing, 128.

- of adjustment, 9, 90, 131, 150, 154, 155.

of graduation of a circle, elimination of

effects of, 90.
- of instrumental adjustment, elimination

ot efTcvts of, 9. 90, 131, 150, 154, 155.

examples of problems in field astronomy,

317, 3 H.

excavations for foundations, setting out,

173.

large, calculation of volumes of from

spot heights, 255.

ex-meridian observations, 326, 327, 330,

338.

expansion, coefficient of, 80.

exposures, time interval between succes-

sive, 227.

eye base, 219.

factors affecting choice of method in

astronomical observations, 278.

field astronomy, functions of, 67, 277.

(0467)



370 INDEX

field determination of sag correction, 87.

standardizations, 78.

figures, triangulation, adjustment of, 93,

263.

First Point of Aries, 292, 312.

of Libra, 292.

fixing points with the photo-theodolite by
intersection, 210.

positions of soundings, 100, 235.

floating mark, 225.

floats for current observations, 237.

focal length of camera lens, 209.

foresight, 145.

formation of cutting or embankment, 166.

formula, prismoidal, 253.

Simpson's, 244, 254.

trapezoidal, for areas, 244.

for volumes, 253.

formulae for sag correction, proof of, 260.

forward bearings, 39, 58.

fractional closing error of a traverse, 127,

129.

friction in theodolite, elimination of errors

due to effects of, 90.

Froude's transition curve, 199.

functions of field astronomy, 67, 277.

gaps, levelling over wide, 154.

general diagram of chain survey, 26.

geodetic surveying, 1.

geographical position, star's, 344.

geometry of the transition curve, 199.

ghost image, 218.

grade reading, 174.

gradients, setting out by boning rods, 172.

graphic traversing with the plane-table,

140.

triangulation with the plane-table, 106.

graticule, 233, 234.

gravity anomalies, 319.

groat circle, deflection of, 282.

Greenwich Moan Time, 306, 307.

Time, 306.

grid, 36, 233, 234.

bearings, 36.

gross errors, 7, 113, 128, 129.

ground control points, 213.

nadir point, 215.

photographic surveying, 208.

plumb point, 215.

half-circle system of figuring circle

graduations, 33, 118.

height above datum, displacement of

detail due to, 215.

height above sea-level, correction for, 75,

79, 85, 123, 130.

observations for in base line

measurement, 67, 75.

observations for in theodolite

traversing, 120, 130.

of camera and scale of photograph,
relation between, 214.

of collimation method of booking and

reducing levels, 147, 148.

heliograph, 67, 72.

hook gauge, 241.

horizon circle, 288.

line, 208.

plane, 208, 287.

horizontal angles in triangulation, book-

ing of, 90.

measurement of, 88, 117, 118.

collimation, elimination of effects of

errors of, 9, 90.

parallax, 326.

Horrebow-Talcott method of determining

latitude, 327, 342.

hour angle and declination system of co-

ordinates, 293, 295.

of star, 295, 299, 302.

circle, 295.

illumination of cross-hairs and micro-

meters, 176, 279, 320.

index error of spring balance, correction

for, 79, 84.

Indian clinometer, levelling with plane-

table and, 157, 168.

instruments used for astronomical obser-

vations, 278.

interpolation of contours, 160, 162, 165.

intersection, fixing points by, 5, 108.

with the photo-theodolite, 210.

graphical, as used by the Ordnance

Survey, 22.

plane-table, 232.

intervisibility of stations, 69, 99.

Invar, 66.

band, use of on base-line measurement,

66, 74.

levelling stall, 155.

isocentre, 216.

isogonic lines, 135.

isogons, 135.

Kelsh Plotter, 226.

latitude and departure forms, preparation

of, 122, 125.

by altitudes of Polaris, 327, 342.
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latitude by circum-meridian altitudes of

sun or star, 327, 341.

by ex-meridian altitudes of sun or star,

327.

by meridian altitudes of a circum-polar
star at upper and lower transit, 327,

340.

by meridian altitudes of sun or star,

327, 339.

by Talcott's method, 327, 342.

observations for, 327, 339.

observer's, 288, 302.

latitudes and departures, 56.

adjustment of, 127, 128.

computation of, 122, 125, 138.

corrections to for small correc-

tions to lengths and bearings, 272.

laying out contours on tho ground, 160,

161.

least squares, method of, 93.

lommscate transition curve, 205.

length of base line, computation of, 93.

transition curves, 195, 205.

levelling over wide gaps, 154.

precise. See precise levelling.

reciprocal, 154.

spirit. See spirit levelling.

trigonometrical, 98.

with aneroid barometer, 158, 168,

233.

with plane-table and Indian clino-

meter, 157, 168, 233.

with taoheometer, 156.

levels, transferring from ground surface to

lines underground, 176.

Libra, First Point of, 292.

limb of sun, 321.

limitations of astronomically observed

positions as survey control points, 319.

lino of oqumoxcs, 290.

linear measurements in theodolite tra-

versing, 113, 119.

local time, 306.

location of tangent points, 180, 187.

logarithmic trigonometrical functions of

angles closo to and 90, 52.

of small angles, 51, 52.

longest and shortest days, 291.

longitude and time, 308.

double, 59.

observations for, 327, 342.

observer's, definition of, 308.

of traverse leg, 58.

longitudinal sections, 166.

lower transit, 289.

magnetic bearings, 36, 135.

decimation, 135.

meridian, 135.

north, 5.

variation, 135.

magnitudes of stars, 315.

map, definition of, 1.

projection, 234.

marks, collimating, 208.

mean and sidereal time intervals, relation

between, 310.

sea-level, 4.

as datum plane for levelling, 144, 153.

determination of, 153.

variations of, 153.

sidereal time, 312.

solar day, 307.

solar time, relation between apparent
solar time and, 309.

sun, 306.

time, 279, 306, 309.

conversion of sidereal into, 314.

measured lengths, corrections to, 79, 122,

123.

measurement of discharge of rivers and

streams, 238.

of horizontal angles, 88, 117, 118.

of tidal currents, 237.

of vortical angles, 92.

plus, 24.

measuring head for base-lino measure-

ment, 74.

meridian, 288.

observations, 326, 339.

plane, 288.

methods of reckoning angles, 32.

used in surveying, 4.

micrometer bar, 225.

parallel plate, 155.

minimum number of photographs to cover

a given area, 227.

mining surveys, 1, 2.

miscellaneous problems in theodolite

work, 131.

multiplex apparatus for plotting air

photographs, 226.

nadir, 288.

point, ground, 215.

plate, 215.

National Physical Laboratory 78.

negative characteristic when computing
with logarithms, 51.

north point, 288.

northings, 57.



372 INDEX

observation towers, 65, 73.

observations, combined, 328.

for azimuth, 327, 328.

for latitude, 327, 339.

for longitude, 327, 342.

for time, 327, 335.

to sun, necessity for dark shade, 279.

observer's latitude, 288.

longitude, 308.

observing times and altitudes, 321.

obstacles in chaining, 17, 132.

to curve ranging when using deflection

angles, 183.

offset, fixing points by, 4, 6.

scale, 25.

triangles, 21.

offsets, precautions to lx) taken in

measuring, 21.

one-inch map of Great Britain, 36.

Ordnance Survey, 22, 36, 64, 74, 152,

234.

orienting picture traces, 211.

orthometric height, correction for, 155.

overlapping photographs, determination

of differences of elevation from, 2J.

overlaps in air photographs, 213.

necessity for, 213.

panorama sketches, 71.

parallactic angle, 221, 300.

parallax, 221, 224.

amjlo, 221.

bar, 225.

correction for sun's, 323, 325.

horizontal, 325.

stereoscopic. See stereoscopic parallax,

parallel to a chain lino, setting out, 15,

134.

parallel-plate micromotor, 155.

perihelion, 291.

perpendicular to a given line from a given

point, to drop a, 14, 134.

photographic surveying, ground, 208.

photo-theodolite, 208.

fixing points with the, by intersection,

210.

picture control points, 217.

adjustment of, 218.

trace, 209.

traces, orientation of, 211.

plan, definition of, 1.

drawing the, 28.

plane of the ecliptic, 290.

plane-table and Indian clinometer, level-

ling with, 157, 232.

plane-table, graphic triangulation with

the, 106.

resection, 1 68.

traversing, 140, 168, 233.

planimetor, Amsler's. (See Amsler's

planimeter.

plate nadir point, 215.

plumb point, 215.

plotting compass traverses, 137.

contours from air photographs, 225.

detail, 25, 217, 225.

equipment, stereoscopic, 225.

from air photographs, radial line

method of, 217.

instrument, Thomson-Watts, 225.

Wild Autograph, A5, 225.

plumb point, ground, 215.

plate, 215.

plus measurements, 24.

polar angle, 300.

distance, 296, 299, 300, 302.

Polaris, or Ursae Minoris, 286, 315, 327,

332, 334, :W5, 342,

polo arm, 247.

celestial, 288.

star. See Polaris.

polos of a great circle, 282.

position circlo, 344.

line, 345.

methods of determining position,

326, 343.

post meridiem, 309.

precautions necessary in spirit levelling,

150.

procession of the equinoxes, 292, 299.

precise levelling, 155.

accuracy of, 156.

preparation of latitude and departure

forms, 122, 125.

prime vertical, 288.

principal lino, 208.

plane, 208.

point, 208.

principles, general of surveying, 2.

of binocular vision and stereoscopic

fusion, 220, 221.

prismatic astrolabe, use of for astro-

nomical observations, 278.

prismoidal formula for calculation of

volumes, 253.

profile, 167.

projection, map, 234.

prolonging straight lines by theodolite, 131.

protractor, 138.

pull, correction for change of, 79, 83.
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quadrantal system of figuring circles,

37.

quadrilateral, approximate adjustment of

a braced, 263.

quantities, earthwork, calculation of, 252.

questions, 30, 45, 61, 108, 142, 169,

206, 229, 242, 258, 356.

answers to, 361.

"R ", definition of, 314.

radar, application of to air survey, 213.

radial-lino method of plotting from air

photographs, 217.

railway cuttings and embankments,
volumes of, 252.

random line, 132.

ranging out curves, 177.

straight line by eye, 10.

lines with theodolite, 11, 131.

reciprocal levelling, 154.

reconnaissance for route of traverse, 112,

113.

for scheme of triangulation. 68.

rectangular co-ordinates, 46.

and bearings and distances, rela-

tions between, 48.

calculation of areas from, 68, 243,

247.

calculation of from bearings and

distances, 48.

correction of for small corrections to

bearings and distances, 272.

differences of, 47, 54.

origin of, 47.

signs of, 47.

total co-ordinates, 56.

rectified prints, 218.

reduced bearings, 36.

levels, 147, 148.

reduction of angles, 34.

referencing station marks, 116.

referring object, 88, 320.

refraction, astronomical, 322, 323.

correction for to observed eleva-

tions, 322, 323.

terrestrial, 69.

coefficient of, 69.

correction for in computing vertical

heights, 99, 158.

effects of on intervisibility of

stations, 69.

elimination of effects of in levelling,

150, 154.

relation between apparent and mean solar

time, 309.

relation between mean and sidereal time

intervals, 310.

radius and degree of circular curve,
178.

scale of photograph and height of

camera, 214.

time and angular measure, 307.

repetitions, measurement of horizontal

angles by method of, 88, 117.

resection, fixing points by, 7.

plane-table, 168, 233.

plotting of by means of station

pointer, 230.

trigonometrical, 99.

reverse bearings, 40.

curves, 177, 192.

rhythmic time signals, 335, 343.

right angle, laying out a, from a point on a

chain line, 13.

right-angled astronomical triangle, the,

305.

solution of, 305.

spherical triangle, the, 285.

solution of, 285.

right ascension, 297, 299.
- and declination system of co-

ordinates, 293, 297.

rise and fall method of booking and re-

ducing levels, 147.
"
R.O.", 320.

rope and sound traverse, 111, 137.

sag correction, 79, 84.

field determination of, 87.

on slope, 85.

proof of formula} for, 260.

satellite image, 221.

stations, 105.

scale of photograph and height of camera,

relation between, 214.

offset, 25.

selection of base- line site, 71.

sotting out circular curves by chain and
steel tape, 186.

by deflection angles, 180.

by deflection angles, obstacles

to, 183.

by deflection distances, 189.

by offsets from chords, 188.

by offsets from tangents, 187.

by two theodolites 1 86.

contours on the ground, 160, 161.

curves by theodolite, 177.

excavations for foundations, 173.

gradients by boning rods, 172.
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setting out slope stakes, 173.

transition curves, 201.

work, 1, 172.

sexagesimal system of reckoning angles,

31.

sextant, use of for astronomical observa-

tions, 279.

for fixing positions of soundings,

235.

shift, 200.

side conditions in adjustment of trigo-

nometrical figures, 94, 263.

sidereal day, 291, 307, 312.

time, 279, 307, 312.

and its reckoning, 312.

conversion of into mean time, 314.

intervals, relation between mean

and, 279, 310.

signal-building, 72.

quadripod, 72.

tripod, 72.

signals for triangulation, 67.

luminous, 67, 320.

opaque, 72.

station, in traversing, 113, 116.

wireless time, 280, 335, 336, 343.

simple curves, 177.

Simpson's rule for the calculation of areas,

244, 254.

slope, correction for, 75, 79, 81, 85, 123,

130, 131.

on base-line, 75, 79, 81.

measurement of angles of on base-lino,

75.

of on theodolite traverses, 120,

130, 131.

stakes, setting out, 173.

slotted templet, 218.

small circle, definition of, 282.

solar and stellar observations, relative

merits of, 277.

day, 291, 309.

mean, 307, 309.

observations, 279, 321.

necessity for use of dark shade for,

279.

time, 309.

solid geometry, basic definitions and

formulae of, 281.

solstice, summer, 290.

winter, 290.

solution of astronomical triangle, 302.

of plane triangles, 93, 95.

of spherical triangles, 283.

sonic sounding, 234.

sounding, 234.

boat, 235.

by sonic methods, 234.

machine, 235.

rod, 235.

soundings, datum for, 235.

fixing positions of, 100, 235.

southings, 57.

south point, 288.

specification of circular curves, 178.

sphere, celestial, 287.

properties of, 281.

spherical excess, 96.

right-angled triangle, 285.

triangle, the, 282.

triangles, 96.

solution of, 283.

trigonometry, basic definitions and

formulae of, 281.

spheroidal triangles, 96.

spider templet, 220.

spirit levelling, 7, 144, 233.

accuracy of, 152.

allowable error in, 152.

booking and reductions of, 147, 148.

precautions necessary in, 150.

precise, see precise levelling.

principles of, 144.

spot heights, 160.

calculation of volume of large

excavations from, 255.

stadia constant, 156.

hairs, 155, 156.

staff, Invar, 155.

target, 155.

standardization, correction for, 79, 123,

130, 131.

standardizations, field, 78.

Star Almanac for Land Surveyors, 298,

307, 310, 311, 312, 313, 314, 315, 321.

324, 333, 334, 335, 336, 337, 342.

star's geographical position, 344.

station adjustment, 93.

mark, 72.

marks and signals in theodolite tra-

versing, 113, 116.

referencing of, 116.

pointer, 236.

preparation, 72.

stations, descriptions of, 71.

intervisibility of, 69, 99.

stellar observations, relative merits of

solar and, 277.

step-chaining, 120.

stereo-comparator, 225.
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stereoscopic depth, 221.

fusion, 221.

principles of, 220.

parallax, 224.

measurement of, 224.

plotting equipment, 226.

principles, application of for deter-

mining differences of elevation, 222.

stop watch, use of for astronomical

observations, 278, 279, 337.

straights, 177.

straining trestles for base-line measure-

ment, 74.

stream discharge over a weir, 239.

striding level, 279, 326.

sub-solar point, 344.

sub-stellar point, 344.

summary of directions and signs of astro-

nomical quantities, 299.

of principal formulae for time conver-

sion, 316.

summer solstice, 290.

sun's declination, changes in sign and

magnitude of, 300.

right ascension, changes in magnitude
of, 300.

semi-diamoter, correction for, 322, 331.

superelevation, 195.

surface taping in traversing, 120.

surveying camera, formation of the imago

in, 208.

systematic errors, 8, 128.

propagation of, 8.

systems of celestial co-ordinates, 293, 295,

297.

tables, earthwork, 252.

traverse, 126, 138.

tachcometer, contouring with, 164.

levelling with, 156.

tacheometry, 156.

Talcott's method of determining latitude,

327, 342.

tangent lengths of circular curve, 179.

points of circular curve, 179.

location of, 180, 187.

tangents, 177.

taping, catenary, in traversing, 120.

surface, in traversing, 120.

target staff, 155.

Tavistock theodolite, 67.

telescopic alidade, 168.

temperature, correction for, 79, 80, 123,

130, 131.

for in precise levelling, 155.

temperature, observations for in bane-lino

measurement, 75.

in theodolite traversing, 1UO, 130,

131.

templet, slotted, 218.

spider, 220.

tension, application of in base-line

measurement, 74, 75, 76.

observations for in theodolite traver-

sing, 120, 130, 131.

terrestrial refraction. See refraction,

terrestrwl.

testing Anisler'a planimoter, 251.

theodolite, Tavistock, 67.

traverse, 111, 227.

traversing, 111, 112, 227.

accuracy of, 120, 128, 129, 130,
131.

allowable closing error in bearing,

121).

angular observations in, 113, 117.

booking field measurements in, 120.

computations, 58, 113, 122.

disadvantages of, 1 13.

errors in, 128.

linear measurements in, 113, 119.

reconnaissance and laying-out, 112,

113.

stages in, 111, 112.

standards of accuracy in, 120, 128,

129, 130, 131.

station marks and signals, 113, 116.

use of for astronomical observations,

278, 279.

- Wild, 67.

work, miscellaneous problems in, 131

Thomson and Watts autograph plotting

instrument, 225.

thi co-point problem, 99.

three-tripod system of observing angles,

72, 73, H7/
through chainago, 167.

tide, correction for state of, 235.

^auge, 153, 235.

pole, 235.

tilt, axis of, 216.

of photograph, displacement of detail

due to, 215, 216.

time and angular measure, relation be-

tween, 307."

angle, 300.

by equal altitudes of stars or sun, 327,

337.

by ex-meridian altitudes of stars or

sun, 327, 338.
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time by meridian transits of stars or sun,

327, 336.

by reception of wireless time signals,

327, 335.

conversions, summary of principal

formula? for, 316.

equation of, 309.

Greenwich, 306.

interval between successive exposures,

227.

local, 306.

longitude and, 308.

mean, 279, 306.

measures of, 306.

observations for, 327, 335.

sidereal, 279, 307.

signals, B.B.C., 280, 335.

rhythmic, 335, 343.

Washington, 280, 336.

solar, 309.

universal, 306, 307.

zone, 306.

topographical surveying, 1, 232.

detail survey in, 232.

framework required for, 232.

surveys, 1.

total co-ordinates, 56.

easting, 57.

latitudes and departures, 57.

northing, 57.

southing, 57.

westing, 57.

towers, observation, 65.

tracing bar, 247.

transferring bearings from ground sur-

face to lines underground, 176, 268.

levels from ground surface to lines

underground, 176.

transit, 289.

triangulation, adjustment of angles of, 94,

95, 263.

computation of, 93.

tropical year, 310.

two-point problem, 104.

United States Coast and Geodetic Survey,

90.

Universal time, 306, 307.

upper transit, 289.

variation, magnetic, 135.

velocity head, 241.

vernal equinox, 290.

vertical angles, correction to for astro-

nomical refraction, 322, 323.

for dislevolment of bubblo, 92,

323, 324.

for sun's parallax, 323, 325.

in triangulation, booking, 92.

measurement of, 92.

collimation, elimination of effects of

errors of, 9, 90, 132.

curves, 203.

heights, computation of from vortical

angles, 93, 97, 158, 168.

determination of from ground

photographs, 211.

interval, 160.

volumes, calculation of from contours,

256.

of large excavations, calculation of

from spot heights, 255.

of railway cuttings and embankments,
252.

prismoidal formula for calculation of,

253.

trapezoidal rule for calculation of, 253.

Washington time signals, 280, 336.

weir, stream discharge over, 239.

westings, 57.

west point, 288.

whole-circle system of figuring circle

graduations, 33, 118.

Wild Autograph A5 plotting instrument,

225.

theodolite, 67.

winter solstice, 290.

wireless receiving set, use of for astro-

nomical observations, 278, 280.

time signals, 280, 335, 336, 343.

zenith, 288.

angle, 300.

distance, 294, 299, 302.

telescope, 342.

zero, change of in measuring horizontal

angles, 89.

zone time, 306.








