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PREFACE

THE present volume was undertaken with certain very
definite aims. In the first place, it is intended to be com-

plete in itself, so that it should be possible to navigate a ship
in any ocean not very near the north or south pole without
other books or tabular works, excepting only the nautical

almanac for the year in which the voyage is made. To attain

this end without unduly extending the size of the volume,
certain essential nautical tables have been abridged ; but
all are given in sufficiently extended form to permit of actual

navigation with their aid ; and they are especially suitable

for beginners, who can here attain the necessary knowledge
with less effort than would be necessary with more bulky
volumes. In cases where very extended tables are conven-

ient, they are mentioned in the text.

In the second place, the author has not assumed that the

reader possesses formal mathematical and astronomical

knowledge, or desires to possess such knowledge. When-
ever methods of navigation require for their demonstration

an understanding of spherical trigonometry, or some other

branch of formal mathematical science, such demonstrations

have been replaced with incomplete or "
outline

" demonstra-

tions designed for the non-mathematical reader. Practical

methods are fully explained; and an attempt has always
been made so to word the explanations that the reader,

even the beginner, will understand his problem, and will

know what he is doing, and why he does it.

The requirements of those who may study without a

teacher have received constant and special attention. To
meet these requirements the whole subject is presented in

vii



viil PREFACE

a somewhat informal manner; such topics as the use of

logarithms, or the principles on which all mathematical

tables are constructed these less attractive parts of the

subject are not presented in a special chapter, but are de-

scribed in a sort of digression, when needed in the discussion

of an actual navigational problem.

Finally, to further simplify and condense his material,

the author has made no attempt to include every method
that can possibly be used to navigate a ship, or that ever has

been used to navigate a ship ;
his purpose has been rather

to limit the volume to the methods at present thought best

by the most reliable modern authorities.

Other books on navigation have been used freely, espe-

cially in the preparation of the tables. Among these, that

admirable encyclopedia of navigation, known as "Bowditch,"

published by the Hydrographic Office, United States Navy,
and Kelvin's

" Tables for Sumner's Method at Sea" have

been found of the greatest help.

Miss Dorothy W. Block, Instructor of Astronomy in

Hunter College, New York, has helped with great energy
in the preparation of the tables and the correction of the

text. It is hoped that such errors as may now remain in.

the book are few in number.

H. J.

COLUMBIA UNIVERSITY,

August, 1917.

PREFATORY NOTE TO THE SECOND EDITION

To meet the wishes of certain young navigators, this edition

has an added chapter on the adjustment of correctors in a

compensated compass binnacle, and also a collection of new

problems and examples.

H, J.

February, 1918,



TABLE OF CONTENTS
CHAPTER PAGE

I. THE FUNDAMENTAL PROBLEM OF NAVIGATION . . 1

The problem stated. Reasons for the existence of the

problem. Definition of "ship's position." Longitude
meridians and latitude parallels. Greenwich the initial

meridian. Position determined by observation; on the
coast and at sea. Dead reckoning. Sextant observa-
tions. Chronometer.

II. DEAD RECKONING WITHOUT LOGARITHMS ... 7

The two problems. Designation of .ship's course.

Latitude difference and departure. The traverse table.

Use and construction of tables in general. Arguments
and tabular numbers. Relation between departure and %

longitude difference. Middle latitude.

III. DEAD RECKONING WITH LOGARITHMS ... 23

Explanation of number logarithms and their use.

Multiplication and division. Trigonometric logarithms.
Solution of the two problems. Middle latitude sailing.

Mercator sailing. Meridional parts. Great circle sail-

ing. The rhumb line. Composite sailing. Parallel

sailing. Traverse sailing.

IV. THE COMPASS 40

The card, how divided. Degrees and points. Boxing
the compass. Lubber line. True course and compass
course. Error, variation and

,
deviation. Swinging ship.

Azimuth circle and pelorus. The compass formulas.

The two deviation tables. Comparative table of points
and degrees.

V. COASTWISE NAVIGATION ...... 53

The "fix." Bow bearings. Doubling the bearing on
the bow. Bow and beam bearings. Distance a-beam.

Cross bearings. The danger angle. Danger bearing.

Soundings,



X TABLE OF CONTENTS

CHAPTEB

VI. THE SEXTANT 61

Description of the instrument and its use. The vernier.

Index error. Three adjustments. The artificial horizon.

Correcting the altitude. Dip. Refraction. Parallax.

VII* THE NAUTICAL ALMANAC 75

Specimen pages of it. Greenwich mean time. Decli-

nation. Equation of time. Astronomic and civil day.

Apparent solar time. Chronometers and the rate card.

Right ascension. Solar and sidereal time.

VIII. OLDER NAVIGATION METHODS 86

The noon-sight for latitude. Tropic observations and
the midnight sun in high latitudes. Preparing for the

observation. Setting the cabin clock. Star observa-

tion. Ex-meridian observation. The time-sight for

longitude. Set of current. Star time-sight. Condensed
forms of calculation.

IX. NEWER NAVIGATION METHODS ; 108

Errors produced by dead reckoning. Captain Sumner,
and the Sumner line. Bearing of the line. The Sumner
point. Azimuth tables. Condensed form of calcula-

tion. Star observations. Comparison of Sumner navi-

gation with time-sight navigation. The Kelvin table.

Condensed forms of sun and star observations. Inter-

section of two Sumner lines obtained with a special table.

Motion of ship between observations.

X. A NAVIGATOR'S DAY AT SEA ..... 141

Voyage planned from New York to Colon. Departure
at Sandy Hook lightship. The course to Watlings Island.

The variation and deviation applied. Azimuth of the sun
observed at sunrise. Bow and beam bearings of Barnegat
Light. The patent log and the log book. New course

from Barnegat. Morning sight worked as a Sumner line.

Another Azimuth observation. Weather thickens at

11 : 30. Ex-meridian sight at 11 : 42, worked as a Sumner
line. Afternoon sight worked as a Sumner line. Posi-

tion of ship fixed from intersection of the two lines. East-

erly current estimated. Compass error again tested.

The course set for the night.

TABLES ........... 153

APPENDIX 1. Compass Adjusting 323

APPENDIX 2. Miscellaneous Examples 335



LIST OF ABBREVIATIONS
USED IN THE PRESENT VOLUME

Alt. for altitude ;

App. for apparent ;

Arg. diff. for argument difference ;

Cf . for compare ;

Chron. for chronometer ;

Comp'd for computed ;

Cos for cosine ;

Cot for cotangent ;

Csc for cosecant;
C. W. for chronometer minus watch ;

Dec. for declination;

Dep. for departure ;

Dist. for distance;
D. R. for dead reckoning ;

Eq. for equation of time ;

G. A. T. for Greenwich apparent time;
G. M. T. for Greenwich mean time ;

Hav. for haversine ;

H. D. for hourly difference ;

Int. dif . for interpolation difference ;

Lat. for latitude ;

Lat. diff. for latitude difference ;

Log for logarithm ;

Long. for longitude ;

Long, diff . for longitude difference ;

Mer, lat. diff. for meridional latitude difference ;

Obs'd for observed;

p for polar distance ;

R. A. for right ascension;
s for half sum ;

Sec for secant ;

Sin for sine ;

T for ship's apparent solar time (or star's hour-angle) ;

Tab. diff. for tabular difference ;

Tan for tangent.

xi





NAVIGATION
CHAPTER I

THE FUNDAMENTAL PROBLEM OF NAVIGATION

To find one's way in a ship across the trackless ocean is

our problem. Most people would like to know how it is

solved ;
nor is the solution very difficult to understand when

set forth in simple language and without too great wealth of

technical detail. We hope the reader will find this to be
the case after a study of the following pages.
Our fundamental problem can be more fully stated quite

easily. It consists in the determination of a ship's location

on the earth's surface at any given moment. If this loca-

tion can be determined, it becomes a comparatively easy
matter to ascertain the direction (north, south, northeast,

southeast, etc.) in which the ship must be steered in order

to reach her port of destination. For the location of the

port of destination on the earth's surface is of course also

known : and if we know where the ship and her destined port
both are, we can easily find the right course for the helmsman.
With the fundamental problem stated in this way, it

would almost seem as if there were really no such problem
in existence. For when the ship begins her voyage, she is

necessarily in a known port. Knowing also the port to

which she is to go, we should be able to determine her proper
course from the one known port to the other. This course

being then steered, no further navigational proceedings would

be required. But this reasoning is incorrect, because a ship
B 1



2 NAVIGATION

does not actually advance across the ocean in exactly the

direction in which she is steered. Ocean currents deflect

her; and the action of a strong wind blowing against one of

her sides will have a similar effect. Currents and winds

cannot be predicted with accuracy: and so it becomes

necessary to re-determine the ship's position frequently at

sea. This should be done at least once daily if possible;

and when it has been done, the mariner can take a new
"
departure," as he calls it, and lay a new course for his

intended port. Thus the effect of ocean currents, etc., can

be eliminated, and the voyage made as safely as if they did

not exist.

Now this determination of the ship's position at sea,

and when out of sight of land, is strictly an astronomical

problem. It can be solved by means of astronomical ob-

servations, and in no other way. But before giving an out-

line of how this is done, let us first see what is meant by
the words "ship's position at sea/

7 How can we describe

a ship's position so that one mariner could tell another

where she is located, and thus enable the second mariner to

find her?

To thus indicate the point on the earth's surface occupied

by the ship has a certain similarity with giving the address of

a house in a city. Such a city address always consists of

two separate statements; as, for instance, the name of a

street and the number of the house. An address cannot

be given completely unless two different facts are stated.

They need not necessarily be a street name and a street

number : we can equally well designate such an address by
stating that the house is at the corner of a certain street and
a certain avenue. But here also the address is made up of

two separate facts.

This form of stating an address as the intersection of a

certain street and avenue is the form having the closest

resemblance to the method of the navigator. If the city

avenues are supposed to run north and south, and the streets
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east and west, as they do in New York (approximately), the

analogy with navigation will be almost perfect.

For the navigator imagines the earth covered with a net-

work consisting of "avenues/
7

running north and south, and
"

streets/' running east and west. He calls the
" avenues

"

meridians of longitude, and the "
streets

"
parallels of latitude.

Then he designates the position of a ship on the ocean by
stating that it is at the intersection of a certain meridian

of longitude and parallel of latitude. There are 360 such

meridians of longitude : each begins at the terrestrial equator,

and runs north and south from there to the north and south

poles of the earth. Of the latitude parallels there are ISO. 1

They all run east and west, parallel to the terrestrial equator ;

90 are between the equator and the north pole, and the other

90 between the equator and the south pole.

One of the longitude meridians (that passing through

Greenwich, England) is chosen arbitrarily as the starting

point for counting longitude meridians. To this initial

meridian is assigned the number 0, and the other meridians

are numbered successively 1, 2, 3, etc. So numbered,
the meridians are called "degrees" of longitude; the third

one, for instance, being written 3. The meridians may be

counted either eastward or westward from Greenwich, a

ship on the 20th meridian west of Greenwich, for instance,

being in longitude 20 west.

The latitude parallels are similarly counted north and

south from the equator ;
and if the above ship were on the

40th latitude parallel north of the equator, her complete

"address/' or position at sea, would be long. 20 W.; lat.

4CN.
Of course a ship would only rarely be located exactly at

the intersection of a meridian and parallel. Therefore, the

space between any two successive meridians and between

any two successive parallels is subdivided into 60 parts,

called minutes of arc. Thus the above ship, if halfway

1 Including the equator twice, but excluding the two poles.
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between a pair of meridians and also halfway between a

pair of parallels, might be in longitude 20 30' west, and

in latitude 40 30' north. This would be written long.

20 30' W.
;

lat. 40 30' N.

Each minute of longitude and latitude is further sub-

divided, when extreme accuracy is required, into 60 seconds ;

so that if the ship were a little to the north and a little to

the west of the above position, she might, for instance, be

in long. 20 30' 26" W. ; lat. 40 30' 10" N.

These meridians and parallels, or longitude and latitude

lines, appear on many maps and charts as straight lines,

or at least as lines only slightly curved. But being all lines

imagined drawn on the earth, which is almost an exact

sphere or round ball, they must really all be circles. Thus,

the terrestrial equator is really a big circle, girdling the

earth, and divided into 360 equal parts, or degrees. At
each of the division points a meridian starts northward

toward the pole. This meridian is also a big circle

perpendicular to the equator. The distance along the

meridian from the equator to the pole is divided into 90

equal parts or degrees, and the whole distance from equator
to pole is one quarter of a complete circumference of the

earth. The 90 degrees, from equator to pole, thus repre-

senting one quarter of a circumference of the earth, a com-

plete circumference contains 4 X 90, or 360 degrees, the

same as the equator. So the degrees measured along the

meridians are equal to the degrees measured along the

equator. The former are degrees of latitude, the latter

degrees of longitude; and degrees of latitude are equal to

degrees of longitude, when the latter are measured along
the equator. The length of each degree is then 60 nautical

miles.

Having thus indicated what is meant by a ship's position
in latitude and longitude, we shall next describe in outline

how such a position may be determined by observation.

Tf the ship is within sight of a coast-line, there will probably
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be some lighthouse, or other "aid to navigation/' in view,
from which the navigator can ascertain where he is. Methods
for doing this are described later (p. 53). But when the

ship is really at sea
;
with no land in sight, real deep-sea

methods must be employed.
These methods, when the weather is clear, always include

an observation of the sun or some other heavenly body.
When the weather does not permit such observations, the

mariner can still find his position approximately by means
of "dead reckoning

77

(abbreviated, D. B,.). This process
will be described in detail in the next chapter ;

but we can

already state that it consists in a calculation based on his

astronomic observation of latest date. Knowing where the

ship was the last time he observed the sun, and also know-

ing both the direction in which he has steered and the

(approximate) speed of the ship, the navigator can calculate

(also approximately) the location of the point he has reached.

Even when astronomical observations are made, the

D. R. calculation is always carried out, because the navi-

gator is always anxious to know how nearly correct his

D. R. result would have been, if the day had been cloudy.

Furthermore, this result also acts as a check on the astronomi-

cal work, and tends to increase the navigator's confidence

in the correctness of his final result as to the ship's location.

The manner in which the ship's position is found from

astronomic observations will of course be explained in detail

later. It is all done with an instrument called a sextant.

This is merely a contrivance with which the navigator can

measure how high the sun (or other heavenly body) is in the

sky at any moment. The sun is highest in the sky daily

at noon, but it is not equally high on different days in the

year. Nor is it equally high on the same date in different

latitudes. Thus, by measuring with the sextant how high

it is on any particular date at noon, as seen from the ship,

the navigator learns the terrestrial latitude in which the

ship is located,
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Similar sextant observations made at other statable times

during the day, when combined with exact readings taken

from an accurate chronometer such as every ocean-going

ship carries, will similarly make the ship's longitude known.
All this will of course be explained in full detail in later

chapters.



CHAPTER II

DEAD RECKONING WITHOUT LOGARITHMS

As we have seen (p. 5), this is a process by means of

which the mariner can calculate a ship's position in latitude

West Longitude
61 6.0* 59* 5 57 5.6 5.5

s

46

Nf

45

44

43

42

41"

40

FIG. 1. Dead Reckoning. (Diagram not drawn to scale.)

7



8 NAVIGATION

and longitude, without special astronomic observations of

any kind. In the accompanying Fig. 1, which represents a

portion of a chart of the North Atlantic, a ship's position

at noon is shown at the point 7. This point we will call

the ship's "initial position/
7

in discussing our present prob-

lem. We will suppose that it was correctly obtained by as-

tronomic observations, and that these showed the ship at Y
to be in lat. 42 11' N. and long. 59 28' W. from Green-

wich. Sometime in the afternoon, having traveled a dis-

tance estimated from the known speed of the ship as 63 miles,

and having "made good" this distance in the direction YP,
the ship arrives at P. This point P we will call the ship's

"final position" ;
and our problem now is to find its latitude

and longitude.

This problem may be called the first fundamental dead-

reckoning problem. The second and remaining fundamental

problem is the converse of the first, and may be stated as

follows : having given the latitude and longitude of the initial

point Yj as occupied by the ship, and also the latitude and

longitude of the final point P, it is required to find the dis-

tance from Y to P in miles, and also the direction of the line

FP. 1

To understand these two problems properly it is next

necessary to explain how we may define the words "direc-

tion YP." This is done by referring the line YP to the

direction of the arrow shown in the figure. This arrow

is parallel to the longitude meridians on the chart, and

therefore points due north. The angle between the arrow

YN and the line YP is marked in the figure, and is called

the "ship's course." This angle is really the difference in

direction of the two lines YN and YP. The point Y is called

the "vertex" of the angle, and all angles are designated

1 We think it advisable to place these two important converse

problems together, and to call them both problems of dead reckon-

ing, though many writers on navigation confine the phrase "dead
reckoning

"
to the first fundamental problem alone.
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FIG. 2. Dead
Reckoning.

by three letters, the letter belonging to the vertex being

placed between the other two; in this case the angle is

called either NYP or PYN.
Now let us draw a line PQ (fig. 2), from P to NY, and

perpendicular to NY. Then the motion of the ship from
Y to P will have carried her north of the

point Y by a distance equal to YQ, and east

of the point 7 by a distance equal to QP. Q-

This is not strictly true, unless the earth's

surface, throughout the small area involved

in the present problem, can be regarded
as a flat surface. Such a flat surface is

called in geometry a "plane" surface; and

these calculations therefore belong to that

part of navigation which is called "plane sailing." Plane-

sailing calculations are easy calculations, and they are

generally sufficiently accurate for the purposes of the

navigator.

The ship's course, being thus an angle, must be designated

by means of a unit of measure

suitable for measuring angles.

For this purpose the degrees and

minutes already used for longi-

tude and latitude (p. 3) are

usually employed. Fig. 3 shows

that a latitude, for instance, is

really an angle, and must there-

fore also be measured in de-

grees. P is the earth's pole, PQ
a meridian, and the latitude of

the observer at is the angle

OCQ, here about 40.

So it is clear that the ship's course NYP (figs. 1 and 2)

will be measured in degrees. Minutes are not really needed

in measuring courses, as they are in measuring latitudes
;

the nearest whole degree is always accurate enough, because

FIG. 3. Latitude Angle.
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it is never possible to steer a ship on her proper course with

absolute exactness. In fact, many mariners use a still less

precise method of measuring courses by means of "the points

of the compass/
7

(See p. 40.)

Resuming our two fundamental problems (p. 8), let us

now begin with the first one, and proceed to find the lati-

tude and longitude of the point P (figs. 1 and 2). To solve

this problem, we must not only know the distance YP
(63 miles), as traveled by the ship, but also the number of

degrees in the course angle NYP. Let us suppose this course

angle happens also to be 40. The problem
then appears as shown in Fig. 4. We now
know the distance YP and the angle QYP.
Evidently the next step is to find the distances

QY&nd QP. QY, in our present problem, is

called a "latitude difference'' and QP is called

a "departure."
FIG. 4. Dead To find the "latitude difference" and

ec onmg.
"departure" from the course angle and dis-

tance we may either use that branch of mathematics called

plane trigonometry, or we may find them from a special

navigation table, called a "traverse table." Our Table 1

(beginning p. 154) is such a table.

Before x
beginning its use it will be well for the reader to

note in general that all mathematical tables consist of two
sets of numbers. The first set of numbers are called

"
argu-

ments" of the table, and the second set are called "tabular

numbers." The main object of the table is to furnish us

with the proper tabular number when we know the proper

argument.
The ordinary multiplication table is a good example of a

mathematical table. It is usually written as follows and

1 The beginner may find it advisable, on a first reading of the

book, to omit this explanation of mathematical tables, returning
later when he finds a reference to it in the text. The dead reckoning
problem under discussion is resumed on p, 13.
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it affords a good opportunity of studying the principles

underlying all mathematical tables in a ease so simple as

to offer no difficulty.

MULTIPLICATION TABLE

(to illustrate "
argument

" and " tabular number ")

In this table the arguments are printed in heavy type and

are contained in the left-hand column and the topmost
horizontal line. In using the table, these arguments are

given in pairs, being always the pair of numbers to be mul-

tiplied. In fact, in the ease of most tables, the arguments

are thus given in pairs, though there are some tables with

but a single argument- In the present case one number

from the pair of arguments will be found in the left-hand

column, the other in the top horizontal line. Thus, if we wish

to multiply 6 and 8, these two numbers constitute the pair

of arguments. We find the right line (belonging to 6) and

column (belonging to 8), and the tabular number 48 (marked

with a *) occurs at the intersection of the 6-line and the 8-

column. If the pair of arguments are taken in the order

8X6 instead of 6 X 8, we should use the 8-line and the

6-column, again finding the required product (48) as the

tabular number at the intersection.
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Sometimes the given arguments cannot be found di-

rectly in the table. Thus we might wish to multiply

6| (written 6.5) by 8. Evidently the proper tabular

number would be halfway between the 6x8 tabular

number (48) and the 7 X 8 tabular number (56). The

correct answer would therefore be 52. This process, by
which the tabular number 52 is obtained, is called "in-

terpolation.
77 The example 6J X 8 is an extremely simple

one. When less easy ones occur, the interpolation is best

made as follows : we ascertain by subtraction how much
the tabular number increases while the argument changes
from 6 to 7. This increase is here 8, because the tabular

number changes from 48 to 56 in the 8-column, while the

argument in the left-hand column changes from 6 to 7.

This increase of 8 in the tabular number is called a " tabular

difference.
77 We now compare the given argument (6.5)

with the nearest argument (6) occurring in the left-hand

column of arguments, and find an "
argument difference

77

of 0.5 (being 6.5 minus 6). Since this "argument dif-

ference
77

is 0.5, we must evidently take 0.5 X 8 (8 being the

tabular difference), and increase the tabular number 48 by
0.5 X 8, or 4. This again brings us to 52. Similar exam-

ples are :

(1) 5.3 X 4 - 21.2; (2) 7.7 X 8 - 61.6.

In example (1) the tabular numbers are 20 and 24; the

tabular difference is 4. 0.3 X 4 = 1.2; 20 + 1.2 = 21.2, the

answer. Both examples may be verified, of course, by ordi-

nary multiplication.

When both given arguments contain fractions, as, for

instance, 5.3 X 8.4, the resulting "double interpolation"
is so complicated as to be of little practical use to the navi-

gator.

To make this general explanation of mathematical tables

complete, it remains to show how they can be used in an
inverse manner

;
i.e. to find the argument from the tabular
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number. Thus, if we were told that the tabular number is

48, and one argument 8, an inspection of the table would
at once show that the other argument must be 6. In this

way the table might be used for division as well as multi-

plication ;
and interpolation would evidently also be possible.

Many mathematical tables must frequently be thus used

in an inverse manner.

Having thus explained the peculiarities of mathematical

tables, we return to our dead-reckoning problem and its

solution by means of the traverse table (p. 154).

Referring to that table we find a column (p. 167),

headed 40, the course angle of our present problem. On
the left-hand side of the page we find the given distance, 63.

Then, opposite the distance 63, and under 40, we find the

latitude difference (abbreviated, "Lat.
7

') and the departure

(abbreviated, "Dep.'
7

) to be:

lat. - 48.3, dep. - 40.5.

The following are additional examples for practice :

Given : dist., 84, course 26 ; Ans., lat. = 75.5, dep. =36.8.

Given: dist., 28, course 11; Ans., lat. =27.5, dep. = 5.3.

When the course is between 1 and 45 the course angle

will be found in Table 1 at the head of the column : but when

the course is between 45 and 90, it appears at the foot of

the column. In the latter case, the tabular lat. and dep.

are to be taken from the columns having "Lat. " and "Dep."
at the foot instead of the top of the column. Examples
follow :

Given : dist., 63, course 50 ; Ans., lat. 40.5, dep. = 48.3.

Given : dist., 84, course 64 ; Ans., lat. 36.8, dep. - 75.5.

Given: dist., 28, course 52 ; Ans., lat. * 17.2, dep. =22.1,

In addition to the course angles from 1 to 90, three ad-

ditional angles are given in parentheses at the top and foot

of each column. Thus, with the course angle 30 appear

also 150, 210, 330. This simply means that the latitudes
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and departures are the same for these four

course angles. The accompanying Fig. 5 shows,

for instance, that the departures QP and Q'P'

are equal for 30 and 150 courses if the two

distances YP and YP' are alike.

It will be noticed also that our traverse table

always gives distances from 1 to 50 on a left-

hand page, and from 50 to 100 on a right-hand

page. When distances larger than 100 occur,

it is necessary to use the 100, 200, etc., given on

the lower part of each page. If, for instance,

we require the latitude and departure for a

distance 363 miles, course 40, we turn again to

the 40 column, and find (near the bottom of

30 and 150. the page) :

For 300 miles, lat. = 229.8, dep. = 192.8

and (in the usual way) for 63 miles, lat. = 48.3, dep. = 40.5

Sums, 363 =278.1 233.3

Consequently, for dist. 363, course 40, lat. =278.1, dep.=233.3.

Other examples are :

Course 25, dist., 452 ; lat. = 409.6, dep. = 191.0.

Course 68, dist., 521 ;
lat. = 195.2, dep. =483.1.

Course 226, dist., 384 ; lat. = 266.8, dep. = 276.2.

When the given distances or course angles, which are

really the
"
pairs of arguments" (p. 11) of the traverse table,

contain fractions, interpolation can be used
;
but such close

accuracy is seldom, if ever, required in navigation.

More extended traverse tables will be found in Bowditch's

"American Practical Navigator/' published by the Navy
Department, Washington. They are also printed separately
in Bowditch's "Useful Tables.

7 ' Both volumes can be

purchased at any "navigation shop
77 where instruments

and books suitable for navigators are sold.

To complete this explanation of our traverse table, it is

still necessary to mention that it also provides, with suf-

ficiently close approximation, for the method of measuring
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course angles in "points of the compass" (pp. 10, 41). This

method is not now in use in the United States Navy, but it

is still largely employed in merchant vessels. It is sufficient

to state here that a course of 3 points, for instance, is very

nearly equal to a course of 34, and the traverse table column
for 34 may properlybe used for a 3-point course. Similarly,

31 may be used for 2| points, and the mariner desiring to use

points can always find from the traverse table itself just

what column to use. A special traverse table for points may
also be found in Bowditch's Tables, already mentioned.

We have now shown how to find latitude difference and

departure by means of the traverse table. But our problem
is not yet completely solved. Our ship (p. 8) started from

the point Y in lat. 42 II
7 N.

; long. 59 28' W. She traveled

63 miles on a 40 course, and the traverse table showed that

she thus made good a latitude difference of 48.3 miles and a

departure of 40.5 miles. It now remains to ascertain how
much the ship changed her latitude in degrees and minutes

from 42 11' N. and her longitude in degrees and minutes

from 59 28' W. Wlaen we have found these last changes,

we can learn the latitude and longitude of the point P,

which we are required to find.

To get the latitude change in degrees and minutes from

the latitude difference in miles offers no difficulty. If the

miles used are nautical miles (and in navigation they always

are nautical miles), each mile of latitude difference corre-

sponds to 1' of angular measure (p. 9), and 60 miles corre-

spond to 1. Thus our ship must have changed her latitude

48'.3, corresponding to a latitude difference of 48.3 miles.

Her initial latitude having been 42 IT N., her final latitude

at P will be 42 11' + 48' (if we omit the odd .3) or 42 59' N.

The relation between departure and difference of longitude

is not quite so simple. Our ship's departure of 40.5 miles

might correspond to far more than 40.5 minutes of longitude.

In fact, in very high latitudes near the north pole, the longi-

tude meridians converge so closely that a person traveling
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a few miles might change his longitude very greatly. At the

pole itself a man might change his longitude 180 by simply

stepping across the pole. So it follows that the longitude

difference in minutes is greater than the departure in miles

(however, cf . p. 4) . The difference between the two increases

rapidly as we approach high latitudes though it is nil at

the equator; in Table 2 (beginning p. 168) we give this

excess of longitude difference over departure for all latitudes

under 60, and for all longitude differences up to 100. When
the longitude differences are greater than 100, it is necessary

to use the numbers given for 100, 200, 300, etc., near the

bottom of each page in the table, and to sum tabular num-

bers, precisely as we did with the traverse table.

It will be noticed that Table 2 gives
"
tabular numbers"

for each degree of latitude in a separate column, and that

these various latitudes are called "middle latitudes." Thus
the middle latitude and the longitude difference are the pair

of arguments (p. 11) for Table 2, and, as we shall see pres-

ently, the use of the middle latitude avoids any uncertainty
in choosing the correct column for use. In our present

problem we have at our disposal (p. 15) two different lat-

itudes : the initial latitude at the point F, 42 11' N., and
the final latitude at the point P, 42 59' N. In this case, the

two latitudes are so nearly equal that we might use either

of them as an argument in Table 2 without material inaccu-

racy. In fact, in using Table 2 it is unnecessary to consider

minutes of latitude, the nearest degree being sufficient.

But often the two latitudes available at this stage of the

problem differ by many degrees. In such cases mariners

always use the average of the two latitudes, and call it the

"middle latitude." In the present case, the middle latitude

would be found thus :

Initial latitude 42 11'

Final latitude 42 59'

Sum = 85 10'

} sum = middle latitude = 42 35'
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The nearest even degree to 42 35' is 43, and the prob-
lem would therefore be worked with the 43 column of middle

latitude in Table 2.

Before completing our problem it is necessary to point
out that while Table 2 is intended primarily for changing

longitude differences in minutes into departures in miles, it

can also be used (as stated at the foot of each page) for the

inverse transformation of departures into longitude dif-

ferences ;
and this is the transformation we must make in

our present problem. It is merely necessary to use the

departure (40.5) in the left-hand column, at the head of

which are the words "Long. Diff. or Dep.," indicating that

either of these two may be used as the argument in that

column.. Then, in the 43 column of middle latitude, we
find (using interpolation) the tabular number 10.8.

This means that a longitude difference of 40'.5 corre-

sponds to a departure of 40.5 10.8 miles, or 29.7 miles.

But when the table, as in the present case, is used for the

inverse transformation, the tabular number 10.8 must,
before use, be multiplied by the factor given at the bottom

of the column. For the middle latitude 43 this factor is

1.37; and so the right tabular number becomes, in the

present case :

10.8 X 1.37 = 14.8;

and as the longitude difference is always greater than the

departure, it follows that the departure of 40.5 miles gives

a longitude difference of :

40.5 + 14.8 = 55'.3 = 55',

if we omit the odd tenths.

The initial longitude of the ship at the point Y was

59 28' W. As her 40 course has carried her nearer to Green-

wich, it follows that her final longitude at the point P is :

59 28' W. - 55' = 58 33' W.

We shall now discuss the following similar problem :

A ship takes her departure from a point about one mile
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east of Navesink Highlands Light, New Jersey, in the initial

lat. 40 24' N., initial long. 73 58' W., and travels 1377

miles on a course of 166. What final latitude and longitude

does she attain ?

Entering the traverse table in the column headed 166,
which is the same as the 14 column, we find :

For dist. 900, lat., 873.2, dep., 217.7

For dist. 400, lat., 388.1, dep., 96.7

For dist. 77, lat., 74.7, dep., 18.6

Sums, 1377, 1336.0, 333.0

To make the large given distance (1377 miles) come within

the range of Table 1, it has been necessary to enter the 166
6

column three times, with the arguments 900, 400, and 77,

and then to sum the corresponding tabular numbers.

The latitude difference, 1336 miles, is equivalent to 1336',

or 22 16', counting, as usual, 60' to 1. Then, since the

direction of her course (166) carried the ship to the south

of her initial position (cf . Fig. 5, p. 14, and p. 19), we have :

Initial lat., 40 24' N.
Lat. diff., 22 16' N.
Final lat., 18 8' N.
Middle lat., 29 16' N.

Now turning to Table 2, in the proper column for middle

latitude 29 :

For dep. 300 tabular number is 37.6

For dep. 33 tabular number is 4.1

Sums 333 41.7

As in the former example, this 41.7 must be multiplied

by the factor at the bottom of the column. This factor is

1.14. Multiplying, we have: 41.7 X 1.14 = 47.5. Conse-

quently, long, diflf. = 333 + 47.5 = 380'.5 6 20'.5. Since

the direction of her course (166) carried the ship eastward,
and therefore nearer to Greenwich, it follows that her final

longitude is 73 58' W. - 6 20', or 67 38' W. The final

position is therefore : lat. 18 8' N.
; long. 67 38' W.
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The point indicated by this final latitude and longitude
is just off the entrance to the Mona Passage, between Haiti

and Porto Rico
; the given course and distance would there-

fore be correct for a voyage from New York to Mona Passage

Additional similar problems are :

1. Initial lat., 40 28' N.; initial long., 73 50' W. ; course,

119; disk, 2924 miles. This would take the ship from

Sandy Hook to St. Vincent, Cape Verde Islands.

Ans. Final lat., 16 50' N. ; final long., 25 7' W.

2. Initial lat., 40 10' N.
;
initial long., 70 0' W.

; course,

75; dist., 2606 miles. This would take the ship from Nan-
tucket Lightship to Fastnet, the nearest point of the Irish

(*(\G erf"

Ans. Final lat., 51 24' N.
;
final long., 9 377 W.

Before proceeding to our second fundamental problem

(p. 8), it will be well to explain briefly two further points
of interest. The first of these relates to the method of desig-

nating a ship's course. We have hitherto supposed it to

be measured in degrees, from the north, around by way of

the east, through the south and west, and so back to the

north again. This is the best way to count courses, and is

the way now in use in the United States Navy. Since a

whole circle contains 360, it follows that courses may con-

tain any number of degrees from to 360.

But there is another quite convenient, although older, way
of designating courses, in which a 60 course, for instance, is

written N. 60 E., showing that the ship must be steered 60

east of north. In a similar way, a 120 course is written

S. 60 E., showing that the helmsman should head her 60

east of south, which would be the same as 30 south of east,

or 120 from the north toward the south by way of east.

The second further point of interest has to do with the

relation between Tables 1 and 2. It is possible to avoid

entirely the use of Table 2, and to transform longitude differ-

ences into departures, and vice versa} by means of Table 1
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alone. It so happens that the relation between these two
v

for any given middle latitude, as, for instance, 29, is iden-

tical with the relation between distance and latitude difference

in Table 1 for the course 29. In other words, if we have

given a middle latitude and a longitude difference, and wish

to find the departure, we :

Call the middle latitude a course, and

Call the longitude difference a distance
;

Then, corresponding to that course and distance, find from

Table 1 the tabular latitude difference, and it will be

the required departure. The same process can also be

reversed, so as to find the longitude difference from the

departure.

While this method with Table 1 is quite correct, we believe

beginners (at least) will find the use of Table 2 advantageous
in the solution of these problems, especially when the middle

latitude is not very great.

Coming now to our second fundamental problem of dead

reckoning, let us suppose a ship is required to proceed from

the initial lat. 42 11' N. and long. 59 28' W. to a final

lat. 42 59' N. and long. 58 33' W. We are to find the course

she must steer, and the distance she must run.

We have at once the latitude difference of 48', or 48 miles,

and the middle latitude 42 35', or nearest whole degree of mid-

dle latitude, 43. The longitude difference is 55'
;
and with this

we find from Table 2 the correction 14.8 in the 43 column
of middle latitude. Remembering that this time we are

transforming a longitude difference into departure, and con-

sequently do not need to use the factor at the foot of the

column, we subtract this correction (14.8) from the longi-

tude difference (550 and obtain the departure as 40.2 miles,

Next we proceed to Table 1, to find the course and distance

corresponding to lat. 48, dep. 40.2. To do this, we must
find a place in Table 1 where this particular latitude and

departure appear side by side. If this pair of numbers
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cannot be found (exactly) side by side, we must take the

pair which come nearest to them : in this case such a pair
of numbers is found in the 40 course column, opposite dist.

63. So it appears that the ship must steer on a 40 course

a distance of 63 miles, to proceed from the given initial to

the given final latitude and longitude. This problem is the

direct converse of the one first solved (pp. 15, 17).

As a second example, let us now calculate the course and

distance from Sandy Hook, lat. 40 28' N.
; long. 73 50' W.,

to St. Vincent, lat. 16 50' N.
; long. 25 T W. We have,

by subtraction, lat. diff . = 23 38' = 1418' = 1418 miles
;

long. diff. - 48 43' = 2923'.

This 2923' must be turned into a departure, the middle

latitude being 28 39', or, to the nearest whole degree, 29.

Turning to the column of Table 2 which belongs to 29 of

middle latitude, we find the correction for 2923' of longitude

difference thus :

Tabular number for 900 - 113.0,

which being multiplied by 3, gives :

Tabular number for 2700 - 339.0

Also, tabular number for 200 = 25.1

Tabular number for 23 = 2.9

Sums, tabular number for 2923 = 367.0

This must be subtracted from the longitude difference, and

so we get :

dep. - 2923 - 367.0 = 2556 miles-

We have now to seek a place in Table 1 where lat. 1418 and

dep. 2556 appear side by side. No traverse tables are suffi-

ciently extended to contain these large numbers, but we

can at once obtain an approximate answer to the problem

by dividing both numbers by 100. This reduces them to

lat. 14.2, dep. 25.6
;
and the nearest numbers to these which

can be found side by side in Table 1 are in the column belong-

ing to course 119 and opposite dist. 29. This course (119)

is the same as would have been obtained if we had not been
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forced to divide our latitude and departure by 100, to bring
them within the range of Table 1. .But the dist. 29 must
now be multiplied by 100, to remove the effect of our former

division of latitude and departure by 100. Thus we have

the closely approximate information that the course and
distance from Sandy Hook to St. Vincent are 119 and 2900

miles. /The same problem (p. 19), when taken in its inverse

form, starts with the numbers 119 and 2924 miles.

In discussing such a problem, many beginners have dif-

ficulty in choosing correctly the course number (119) from
the four (61, 119, 241, 299) to be found at the foot of

the same column of Table 1. This choice is easily made with

the help of our knowledge of elementary geography, or with

any rough chart or map. From these, we know that St.

Vincent is south and east of Sandy Hook, and the only one
of the four possible courses that will carry a ship south and
east is course 119. The same course might be written in

the other notation (p. 19) S. 61 E., which possibly makes
the actual direction to be steered a little easier to under-
stand.

The above result is approximate only, but higher accuracy
is seldom required. When desired, it can be obtained by
certain kinds of interpolations (p. 12) ; but these are always
unsatisfactory, especially as complete precision can always
be easily had by the use of logarithms, as explained in the
next chapter.



CHAPTER III

DEAD KECKO1TING WITH LOGARITHMS

SINCE the publication in 1876 of Kelvin's tables for

facilitating Sumner's method, it has been possible to navi-

gate in the most approved way without using logarithms or

trigonometry. Those who desire to study the subject in

this manner may do so by simply omitting those parts of

the book in which logarithmic or trigonometric formulas

and calculations occur. But this method of study is not

recommended, except perhaps for a first reading; for a

knowledge of logarithmic processes always affords a most
desirable check on the accuracy of the other method, and
so makes for safety of the ship and peace of mind of the

navigator.

Proceeding, then, with the subject of logarithms, we may
define them as a mathematical device for facilitating calcula-

tions. They are merely numbers; but they are numbers

having this peculiarity : every logarithmic number belongs
to some ordinary number (like 1, 2, 3, 27, 800, etc.), and

belongs to it alone. Its logarithm belongs to the number as

a man's shadow belongs to the man.
For our present purpose it is unnecessary to enter into the

theory of logarithms ;
we shall explain only the methods of

using them in practice. Logarithms (abbreviated "log")

always consist of two parts, a " whole number" part and a

"decimal" part. Thus, 3.30103 is a logarithm, of which
the whole number part is 3, and the decimal part .30103.

The whole number part may even be zero : thus, 0.30103

is also a logarithm. The decimal part of the logarithm
is found from a table of logarithms, such as our Table 3

23
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(p. 178) ;
but the whole number part is found by an inspec-

tion of the number to which the logarithm belongs.

We shall hereafter, to save space, always write "log 26 "

in place of "the logarithm belonging to 26 ": and, with

the help of this abbreviation, we may now write the follow-

ing tabular statement, which is fundamental in the matter

of logarithms :

logl -0.00000, log 1000 =3.00000,

log 10 - 1.00000, log 10000 - 4.00000,

log 100 = 2.00000, log 100000 = 5.00000, etc.

In other words, for these particular numbers, all "mul-

tiples" of 10, the decimal part of the log is zero. For

numbers intermediate between 1 and 10, the whole number

part of the log is 0, and the decimal part lies between

.00000 and .99999. For those between 10 and 100 the whole

number part is 1, and the decimal part again lies between

.00000 and .99999.

The general rule is : the whole number part of a log is

one less than the number of figures or "digits" in the number

to which the log belongs. Thus, the number 26 has two

digits : the whole number part of its log is 1. The number

2678 has four digits : the whole number part of its log is

therefore 3.

If a number is itself partly decimal, we count only the

number of digits to the left of the decimal point for the pur-

poses of the present rule. Thus, 26.78 has two digits only ;

2.678 has one ;
267.8 has three, etc.

If, on the dther hand, a number is wholly decimal, as

0.2678, the whole number part of its logarithm should be

"negative," or minus, i.e. less than 0; and it will be one

greater than the number of zeros immediately following the

decimal point in the number. According to this, the whole

number part of log 0.2678 should be 1, because this

number has no zeros immediately following the decimal

point. But as these negative whole number parts are

very inconvenient in actual work, it is customary to increase
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all logs of decimal numbers arbitrarily by 10, which will

avoid the negative sign. This arbitrary increase is always
corrected again in the further or final procedure; so that it

cannot possibly introduce error into the work.

In the case of log 0.2678, the arbitrary increase of 10

changes the 1 to + 9 x
;
and so 9 would be the whole

number part of log 0.2678. Similarly, log 0.002678 would

have 7 for its whole number part, because there are two zeros

after the decimal point. This would make the whole number

part of the log 3, which, being increased by 10, gives + 7.

In general, this matter of logs of wholly decimal numbers

may be summarized as follows :

log 0.1 =9.00000, log 0.0001 -6.00000,

log 0.01 -8.00000, log 0.00001 =5.00000,

log 0.001 - 7.00000, log 0.000001 = 4.00000, etc.

In all these cases the decimal part of the log is zero:

and if the number lies, for instance, between 0.1 and 0.01,

the whole number part of the log will be 8, and the decimal

part will lie between .00000 and .99999.

The decimal part in the log of any number is taken from

Table 3 without regard to the position of the decimal

point in the number itself. The numbers 0.2678, 0.002678,

26.78, 2.678, 267.8, and 2678 all have precisely the same
decimal part in their logs, so that such logs will differ in

their whole number parts only. We can at once obtain this

common decimal part from Table 3 (p. 181), where it is

found to be .42781. In looking up this log, we again use

(p. 11) a pair of arguments. The argument for the left-

hand column consists of the first three digits of 2678 (267) ;

and in selecting this argument we disregard any zeros that

may immediately follow the decimal point, if the number
is wholly decimal, like ,002678. The other argument, in

the top horizontal line of the tabular page is 8, the right-

hand digit of the number 2678. In the horizontal line

1 According to Algebra, 9 is greater than - 1 by 10.
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opposite 267
;
and in the column headed 8, appears 781 ? and

these are the last three digits of the required log (.42781).

The first two digits (.42) are common to a great many logs,

and are therefore only printed in the column headed 0.

The first two digits of every log are thus taken from the

zero column
; regularly from the same horizontal line that

contains the last three digits of the log, or from some line

above it. Only when there is an asterisk printed in the table

with the last three digits do we make an exception, and take

the first two digits from the line below the one containing the

last three. Thus the decimal part of log 2691 is .42991, but

the decimal part of log 2692 is .43008.

Having thus found the decimal part of log 2678 to be

.42781, and the number 2678 having four digits, the com-

plete
log 2678 = 3.42781 ;

and here the reader should once more note that all tabular

logs like .42781 are thus always decimals. The correspond-

ing logs for the other numbers given above are :

log 267.8 2.42781,

log 26.78 - 1.42781,

log 2.678 0.42781,

log 0.2678 -9.42781,

log 0.002678 - 7.42781.

It is clear that Table 3 gives directly the decimal part of

the logs of all numbers containing four digits. If the number

contains less than four digits, as 26, we should look it up in

the table as if it were 2600. We should find 260 as the

argument in the left-hand column (p. 181) ;
and in the

corresponding line, in the column headed (the fourth digit

of 2600), is 41497. This is the decimal part, as usual, and

the complete
log 26 = 1.41497.

If, on the other hand, the number whose log is wanted

contains more than four digits, as 26782, it is necessary to
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resort to interpolation (p. 12). The number of digits being
here 5, the whole number part of the log is 4 (p. 24). The
decimal part of the log is to be found quite without regard
to decimal points (p. 25). It may therefore be taken
from Table 3 just as if we wanted log 2678.2 instead of 26782.

Now the table tells us (p. 181) :

decimal part of log 2678 = 42781,
decimal part of log 2679 = 42797.

The tabular difference (p. 12) of these two decimal parts
is 16. As 26782 may, for our present purpose, be regarded
as lying ^ of the way from 2678 to 2679, it follows that the

decimal part of log 26782 will lie -f^ of the way from 42781

to 42797. Evidently, we must multiply the tabular differ-

ence 16 by -^ (giving 3.2) to find how much larger the decimal

part of log 26782 is than the decimal part of log 2678.

This 3.2 (or 3, in round numbers) must then be added to

42781 ; and we have, as the result of this interpolation :

decimal part of log 26782 = .42784.

As we have just found the whole number part to be 4,

we have for the complete :

log 26782 = 4.42784.

This whole process of interpolation may perhaps be more

clearly understood if we repeat (p. 10) that all tables furnish

tabular numbers corresponding to given arguments. In-

terpolation is necessary when the given arguments are not

to be found in the argument part of the table, but fall

between two of the tabular arguments. Then we obtain

by subtraction the difference between the given argument
and the nearest smaller argument contained in the table.

This difference is the "argument difference" (abbreviated,

arg. diff.), and it should be expressed as a decimal fraction

of the interval between two successive arguments (cf. ^,
above). The tabular difference (tab. diff.) between two

successive tabular numbers being also obtained by subtrac-
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tion, we have only to multiply the tabular difference by the

argument difference to find the "interpolation difference"

(int. diff.). This is then added l to the proper tabular

number (belonging to the above-mentioned nearest argu-

ment given in the table) to obtain the tabular number re-

quired.

The multiplication of the tabular difference by the argu-

ment difference is facilitated by certain little auxiliary mul-

tiplication tables (called tables of
"
proportional parts")

printed in the margins of many mathematical tables. In

the example given above, the tabular difference was 16
;
and

Table 3 contains on the proper page (p. 181) a proportional

part table headed with this same number 16
;
and it shows

that for an argument difference .2, and tabular difference 16,

the interpolation difference is 3.2, just as we found above.

Other examples of logarithms are :

log 427-2.63043, log 42765-4.63109,

log 4276 - 3.63104, log 282374 - 5.45082,

log 0.4276 = 9.63104, log 2 = 0.30103,

log 0.42765 - 9.63109, log .0027 = 7.43136.

The above considerations are preparatory only to the

actual use of Table 3
;
and they are not yet quite complete.

For it is still necessary to explain the inverse use (p. 12) of

the table, or, in other words, the finding of the number to

which a given log belongs. Thus, if the given log were

3.42781, we should begin by looking up its decimal part

among the logs in the table. Finding it there, we take out

the number to which it belongs, 2678. We then put in the

decimal point according to the whole number part of the log.

This being 3, we know (p. 24) that the number required must
contain 4 digits. Therefore :

number to which the log 3.42781 belongs = 2678.

1 Except when a glance at the table shows that the tabular num-
bers are growing smaller, in which case the interpolation difference

must be subtracted. This never occurs in Table 3, but happens fre

quently in Table 4.
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If the given log had been 2.42781, the table would furnish

the same number 2678, but the decimal point would be

differently located. Because the whole number part of the

given log is now 2, we know that the number to which it

belongs has three digits, and so :

number to which the log 2.42781 belongs = 267.8.

When the given log is not to be found in the ta.ble exactly,

a process of inverse interpolation is, of course, necessary.

Thus, if the given log is 4.42784, we look for its decimal

part in the table, and find it lies between

42781, which belongs to the number 2678, and

42797, which belongs to the number 2679.

The decimal part of the given log being 42784 is greater by
3 than the nearest tabular number 42781. This 3 is there-

fore the interpolation difference. The tabular difference is

16, obtained by subtraction between 42781 and 42797. We
now divide the interpolation difference by the tabular dif-

ference, which gives .2 (^ =
0.2, in round numbers). This

.2 is the argument difference, and therefore the complete
number belonging to the decimal part of the log (42784)

is 26782. The whole number part of the given log

being 4, the required number must have 5 digits, and will

therefore be 26782. Had the given log been 2.42784, we

should have arrived at the number 26782 in just the same

way; but we should locate the decimal point differently.

The whole number part of the log being now 2, there should

be only 3 digits in the number, and we should have :

number to which the log 2.42784 belongs = 267.82.

Other similar examples are:

log ~ 2.71828, corresponding number = 522.73,

log 4.26323, corresponding number = 18333,

log = 9.26323, corresponding number = 0.18333,

log = 0.21000, corresponding number ~ 1.6218.

The reader will perceive, from a consideration of these

interpolated numbers, that work with logarithms is never
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exact, absolutely. This is inherent in the nature of our

log tables, which really contain only the decimal parts of the

logs carried out to five places of decimals. Further decimals

of course exist, but are here omitted, because five places

always give sufficient accuracy for navigation calculations.

The simplest calculations which are facilitated by loga-

rithms are the ordinary arithmetical processes of multi-

plication and division. These processes can be turned into

addition and subtraction by the use of the following

principle :

The log of a product is equal to the sum of the logs of the

factors.

According to this principle, if we wish to multiply a series

of factors, we simply add their logs. The sum is then a log

and the number to which this log belongs is the product of the

series of factors. Suppose, for instance, we wish to multiply
the factors 2, 3, and 4. The product should be 24. Proceed-

ing with logs, we have from Table 3 :

log 2 = 0.30103,

log 3 - 0.47712,

log 4 0.60206,

log product = sum = 1.38021,

and the number to which the log. 1.38021 belongs is, accord-

ing to Table 3, 24.00, the correct product.
It is evident that the use of the log table is here of no

advantage, because the factors are very small : but when

large numbers are to be multiplied the advantage is very

great.

Taking now a similar simple example of division, let us

divide 6 by 3. In division, evidently, we must subtract

the log of the divisor from the log of the dividend, to obtain

the log of the quotient. We have

log 6 - 0.77815,

log 3 0.47712,

log f ~ difference - 0.30103,
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and the number to which the log 0.30103 belongs is 2.000,

the correct quotient. Other examples are:

2.426 X 42.78 X 17.26 - 1791 .3,

6.242 X 87.24 X 62.71 - 34149,

fir 1 -6234'

1=-75 -

In the last example, we have

log 18 = 1.25527,

log 24 = 1.38021.

The subtraction would lead to a negative log because 1.38021

is larger than 1.25527. Therefore we arbitrarily increase

1.25527 by 10, giving 11.25527, and then the subtraction

gives
log quotient - 9.87506,

which is the log belonging to the number 0.75, the correct

quotient.

We come now to the solution of the two fundamental

problems of dead reckoning (pp. 8, 10) by means of logs.

For this purpose we must use our Table 4, in connection with

Table 3. Table 4 is called a trigonometric log table and

the tabular numbers in it are certain logs known as :

sine, abbreviated sin, cotangent, abbreviated cot,

cosine, abbreviated cos, secant, abbreviated see,

tangent, abbreviated tan, cosecant, abbreviated esc,

It is not our purpose to consider the theory of trigonom-

etry, but it is necessary for the reader to have

some understanding of its practical applica-

tions. If we have a triangle QPY (fig. 6), we
notice that it is made up of six "parts/' the

three sides and the three angles. Now it is a

fact that if we know any three of these six

parts, we can calculate the other three parts, FIG. 6. Trigo-

provided one of the known parts is a side.
nome ry"

Trigonometry is the branch of mathematics which enables us
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to do this, and the triangle QPY is the very triangle which

occurs in the two problems of dead reckoning.

In trigonometry, every angle has belonging to it a sin,

cos, etc., just as every number has its log. These sines,

etc., can be taken out of Table 4 by means of a pair of argu-

ments in the usual way. The two arguments are the number

of degrees and the number of minutes in the angle (p. 9).

The number of degrees is found in Table 4 at the top or bottom

of the page, and the number of minutes in the right-hand or

left-hand column. Each page (as, for instance, p. 229) has

eight degree numbers, four, 33, (213), (326), and 146 at

the top, and four, 123, (303), (236) ;
and 56 at the bottom.

The proper sines, etc., for all these degrees appear on the

same page (p. 229). When the degree number is at the top

or bottom of the left-hand column 33, (213), (303), and

123, the minutes must be taken from the left-hand column.

But when the number of degrees is at the top or bottom of the

right-hand column 146, (326) , (236), and 56, the minutes

must come from the right-hand column. And when the

number of degrees comes from the top of the page, we must

look for the proper sine, etc., in a column having the word

sin, etc., at the top. But when the degree number comes

from the bottom of the page, the sine, etc., will be taken

from a column having the word sin, etc., at the bottom.

Thus (p. 229) :

sin 33 26' - sin 146 34' = cos 56 34' - cos 123 26' = 9.74113.

In this way, sines, tangents, etc., can be taken from

Table 4. Examples are:

sin 28 32' - 9.67913, cot 117 10' ~ 9.71028,

cos 66 14' - 9.60532, see 12 40' - 0.01070,

tan 128 28' = 0.09991, esc 111 11' 0,03038.

These sines, etc., are really all logs. When the whole num-
ber part is 9, it indicates that the log belongs to a number
which is wholly decimal (see p. 24), and that the log has

been arbitrarily increased by 10.
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Of course these trigonometric tables can also be used in

the inverse manner. Thus, to find the angle corresponding
to the sin 9.28190, we turn to p. 207, and finding 9.28190 in

the sin column, we see that the corresponding angle is

either 11 2', 191 2', 168 58', or 348 58'. When the sin,

etc., cannot be found in the table exactly, we may always
take the nearest one : interpolation is never practically

necessary in using the trigonometric tables in navigation.

Examples are :

see - 0.17177, angle 47 40' 227 40', 132 20' or 312 20',

tan - 0.17177, angle = 56 3
sin = 9.17177, angle = 8 32'

cos - 9.17177, angle = 81 28'

esc 0.17177, angle = 42 20'

cot - 0.17177, angle - 33 57 7

236 3', 123 57'

188 32', 171 28'

261 28', 98 32'

222 20', 137 40'

21357M46 3

or 303 57',

or 351 28',

or 278 32',

or 317 40',

or 326 3'.

Having thus explained the use of Table 4, we shall now
apply it to the two problems of dead reckoning. These

problems are:

1. To find latitude difference and departure from course

and distance;
2. To find course and distance from latitude difference

and departure.

These problems are solved by means of the following

formulas, in which the letter C represents the course angle :

,- , f log lat. din
5
. ~ log dist. -f cos C,

1 1 dep. ~ 12 ^st - + s^n &
~ f tan C = log dep. - log lat. diff.,

^ ^

[ log dist. = log dep. sin C.

Sometimes it is preferable to find the distance from the

latitude difference instead of the departure. We then use

the following modification of formula (2) :

(2') log dist. = log lat. diff. - cos C.

Let us now solve with these formulas our former problem

(p. 18), in which a ship traveled 1377 miles on a course of

166. Applying formula (1) above, we have:
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log dist. (1377) - 3.13893 log dist. (1377) = 3.13893

cos C (166) = 9.98690 sin C ( 166) = 9.38368

sum = log lat. diff . = 3. 12583 * sum - log dep. = 2.52261 1

corresponding lat. cliff. = 1336.1 corresponding dep. 333.1

These corresponding latitude difference and departure

agree very closely with the results already found (p. 18)

from Table 1.

If the departure and latitude difference were given, we

could find the course and distance by means of formula (2)

In the present case we have :

log dep. (333.1)' -2.52261 log dep. (333.1) =2.52261

log lat. diff. (1336.1) 3.12583 sin C (166) 9.38368

by subtraction, tan C = Q.39678 2 by subtraction, log dist. = 3.13893 3

corresponding C = 166 corresponding dist. - 1377

These numbers, 166 and 1377 miles, are the same numbers

with which we began this calculation
;

so it is clear that the

log method of calculation agrees with the traverse table

method. For accuracy the log method is superior.

The transformations of departure into longitude differ-

ence, and vice versa, are accomplished logarithmically with

the following formulas :

(3) log long. difL = log dep. cos middle lat.

(4) log dep. = log long. difT. + cos middle lat.

Thus the longitude difference corresponding to dep. 333.1

would be calculated by formula (3) as follows :

log dep. (333.1) -2.52261
cos mid. lat. (29 16', p. 18) - 9.94069

by subtraction, log long. din
3
. 2.58192 ,;

corresponding long. diff. = 381'.9 = 6 21'.9.

1 These numbers have been diminished by 10, to allow for the fact

that both cos C and sin C have been arbitrarily increased by 10 (p.

32; cf. also p. 25).
2 This number has been increased by 10, and therefore is in accord

with the usual practice of avoiding negative whole numbers in the

trigonometric Table 4.

8 This subtraction is correct, if we remember that the 9.38368 is

really too large by 10.
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This is in close accord with the result on p. 18, where

Table 2 gave 620 /
.5. The logarithmic method is again

the more precise, for it takes account of minutes in the course,

which were neglected on p. 18. But either result is accurate

enough for practical purposes.
Before finally leaving these problems of dead reckoning,

we shall explain briefly two additional methods of solving

them which differ from the method so far employed. These

two additional methods are called "Mercator sailing" and
"
great circle sailing"; whereas, up to the present, we have

been using "middle latitude sailing/' so named because

the middle latitude appears in the calculations.

Mercator sailing is based on a kind of chart first designed

by Gerhard Mercator, a sixteenth century geographer.

Such charts are still widely used for nautical purposes.

In calculations based on them, every parallel of latitude is

referred directly to the equator by means of a table of "merid-

ional parts." Our Table 5 is such a table, and it gives the

meridional part for every degree and minute of latitude

from the equator to 60. These meridional parts are really

the distances from the equator to the several parallels of

latitude, such as they would appear on a Mercator chart

drawn to such a scale that V of longitude at the equator would

occupy one linear unit on the chart. Thus the meridional

part for lat. 40 is given in Table 5 as 2607.6. Suppose the

scale of the chart at the equator were 1 inch to the degree of

longitude. That would be -^ inch to the minute. The dis-

tance on the chart from the equator to the 40 parallel of

latitude would then be 2607.6 X -fa inches = 43.46 inches.

It is needless to say that a chart on such a scale could not

show a very large part of the ocean on a single sheet.

Calculations by Mercator sailing are of course only made

when the distances involved are large and great accuracy is

required. It is therefore best to do them by means of

logarithms, although it is also possible to obtain Mercator

results from the traverse table. In such calculationswe do not
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use the latitude difference of ordinary middle latitude sailing.

In its place appears the "meridional latitude difference" (ab-

breviated mer. lat. diff.), defined as the difference between the

meridional parts (Table 5) belonging to the two latitudes

(initial and final) involved in the problem. With this defini-

tion in mind we may now give the Mercator formulas as

follows :

(5) log mer. lat, diff. = log long. diff. + cot C.

(6) log long. diff. = log mer. lat. diff. -h tan C.

(7) tan C = log long. diff. log mer. lat. diff.

Let us now apply these formulas to the problem of pp. 18

and 33, in which a ship starts from the initial lat. 40 24' N.
;

long. 73 58' W., and travels 1377 miles on a course, C,

of 166. What final latitude and longitude does she at-

tain? The latitude difference is found in the ordinary way
(p. 34), there being no special Mercator formula for it, and

comes out 1336.1 miles, or 1336M - 22 16'. The final lati-

tude (p. 18) is therefore 40 24' - 22 16' = 18 8'. Then,
from Table 5, we have :

for initial lat. 40 24', mer. parts = 2638.9

for final lat. 18 8', mer. parts = 1099.4

by subtraction, 1 mer. lat. diff. = 1539.5

Now, applying formula (6), we have :

log mer. lat. diff. (1539.5) (Table 3, p. 179) = 3.18738

tan C (166) (Table 4, p. 209) = 9.39677

by addition, log long. diff. = 2.58415

corresponding long. diff. (Table 3, p. 183) = 383'.8 6 24'

The final longitude is therefore 73 58' - 6 24' = 67 34' W.,
whereas we obtained before 67 38' W. (p. 18).

Finally, we shall apply the Mercator method to the

example of p. 21. It is required to find the course and
distance from

Sandy Hook, lat. 40 28' N. ; long. 73 50' W. to

St. Vincent, lat. 16 50' N.
; long. 25 7' W.

1 If one latitude were in the southern hemisphere and the other

'B the northern, we should add the meridional parts.
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We have from Table 5 :

for initial lat. 40 28', mer. parts = 2644.2
for final lat. 16 50', mer. parts = 1018.1

by subtraction, mer. lat. diff. = 1626.1

The longitude difference is found by subtraction to be
73 50' - 25 7' = 48 43' - 2923'. Now applying formula

(7), we have :

log long. diff. (2923) (Table 3) - 3.46583

log mer. lat. diff. (1626) (Table 3)= 3.21112

by subtraction, tan C 0.25471

and therefore (Table 4) C = 119 5'.

The distance is found in the ordinary way from the

latitude difference (not mer. lat. diff.) by means of formula

(20, P- 33.

The latitude difference is 40 28'-16 50'=23 38'= 1418'.

Formula (2') then gives :

log lat. diff. (14180 (Table 3) - 3.15168

cos C (119 5') (Table 4) = 9.686711

by subtraction, log dist. 3.46497

corresponding dist. (Table 3) 2917

Course 119 5', distance 2917 miles is therefore the

solution by Mercator sailing. On p. 22, we obtained 119

and 2900 miles
;
and on p. 19 we began with 119 and 2924

miles. The agreement is satisfactory.

Having thus briefly described Mercator sailing, we come

next to "great circle sailing." This is a method of determin-

ing the ship's course toward her port of destination in such a

way that the distance to be traveled will be as short as

possible. If the earth's surface were flat instead of spherical,

the shortest course would be a straight line, as used in plane

sailing; but on the sphere the shortest course is a curve

called a "great circle." Evidently, on all long voyages, the

great circle course is the most advantageous one; that

mariners do not more frequently use it is due to a peculiarity

of their charts.

1 TMs log is really too large by 10, so the subtraction is correct.
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We cannot here enter into the details of chart "pro-

jections/
7

as the theory of chart making is called. It is

sufficient to remark that a straight line drawn on the ordi-

nary nautical charts (which follow the Mercator system),

between any two ports, will not represent the shortest (or

great circle) course between them. On such a chart, the

great circle course between the two ports will appear to be

longer than the straight line course, although it is really

shorter. This accounts for the use of the longer Mercator

course by many navigators.

Now there is a kind of chart, called a
"
great circle sailing"

chart, on which straight lines between ports really represent

shortest (or great circle) courses. One would therefore

naturally suppose that mariners would entirely discontinue

the use of Mercator charts in favor :i great circle charts.

But there is a reason for not doing this.

On Mercator charts, all terrestrial longitude meridians

are represented by parallel vertical straight lines. Conse-

quently, if we draw another straight Hne on the Mercator

chart joining two ports, that line will make the same course

angle (p. 10) with all the meridians. In this way, a navigator

can get from a Mercator chart, by simply drawing a straight

line, and quite without calculation, a course angle which will

carry him from one port to another. And because the course

angle so obtained is the same with respect to all meridians

to be crossed by the ship it follows that the voyage can be

completed (theoretically at least) from the one port to the

other with the great advantage of never changing the course

to be steered.

On the other hand, the great circle track makes a different

angle with every meridian it passes : so that the mariner

must make very frequent changes in the course angle to be

steered during the progress of a voyage. The simple

Mercator track, without change of course, is called a "rhumb

line" ; the serious objection to it is that it sometimes leads

to greatly (and unnecessarily) lengthened voyages.



DEAD BECKONING WITH LOGARITHMS 39

The final conclusion is that Mercator charts, on account of

their simplicity, are most convenient for short voyages, or

for parts of long voyages when the land is not far away.
But for shaping the main part of the course on a very long

voyage, great circle sailing charts are to be preferred.
At times, in order to avoid very high latitudes, or to round

some projecting point of land, navigators must substitute for

a single great circle track one "composed'' of two or more
shorter arcs of great circles. This is called "composite"
sailing.

Finally, for the sake of completeness, we shall merely
mention two other kinds of sailing.

"
Parallel" sailing, which

is simply middle latitude sailing when the latitude difference

is zero; and "traverse" sailing, from which the traverse

table gets its name. This is also the same thing as middle
latitude sailing; but the special word "traverse" is used

when the ship changes her course frequently, perhaps even

during a single day. It is then possible to sum up the

result of all the short courses which together make up the

day's run. It is merely necessary to take from the traverse

tablethe latitude difference and departure foreach short course

separately, and then to add l all the values of latitude differ-

ence for a "summed latitude difference," and all the values

of departure for a "summed departure." With these a

"composite course and distance" can be taken from the

traverse table, or calculated with logs, and these will repre-

sent the motion of the ship, just as if she had steered an

unchanged course during the entire day.

1 It is necessary to stun separately latitude differences represent-

ing northward motion of the ship and those representing southward

motion. The difference of the two sums is what we need to know.

The same is true of departures representing eastward and westward

motion of the ship.



CHAPTER IV

THE COMPASS

THE ship's course has been defined (p. 8) as the angle

between the north and the direction in which the ship is

sailing. To ascertain what this angle is, or, in other words,

to steer the ship, mariners use the compass. The dial (or

"card") of this instrument is divided, like any circle, into

360. In the United States Navy these are numbered in

such a way (fig. 7) that appears at the north, 90 at the

east, 180 at the south, and 270 at the west. The numbers

therefore increase in a " clockwise " direction. There are

also compasses in which the numbering begins with at

both the north and south points, and increases to 90 at the

east and west points. But the United States Navy system

of numbering is to be preferred.

In addition to the above division and numbering, the dial

is also divided into 32 points (pp. 10, 15), each containing

360^ or nj . These points are then further subdivided
32
into quarter points, all of which is shown clearly in Fig. 7.

The naming of the points has not been done by chance,

but in accordance with a definite rule. The four principal,

or "cardinal/' points are north, east, south, and west. The

remaining points are located by a continued process of

halving. Halfway between the cardinal points are the

"inter-cardinal" points; and each is named by combining

the names of the two cardinal points adjacent to it. Thus

northeast (abbreviated N.E.) is halfway between north

and east. Again halving and combining names, we get

points like E.N.E., S.S.E., etc. Still once more halving

completes the tally of 32 points : but a combination of

names would now be too complicated. However, since

40
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each of these final points must necessarily be adjacent to a

cardinal or inter-cardinal point, they are named by simply

increasing the name of such adjacent cardinal or inter-

cardinal point. This is accomplished with the word "by."

FIG. 7. Compass Card.

Thus we find, adjacent to N.E., the points N.E.byE,, and

N.E. by N, In the light of the above, it is easy to "box"

the compass, as seamen say, or to name the 32 points in

order.

When the point system of division is used, and an accuracy
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closer than a single point is required, the compass card is

still further subdivided into quarter points. In naming
these it is customary, in the United States Navy, to "box' 7

from N. and S. towards E. and W. Thus the space between

N.N.E. and N.E.byN. would be divided into four parts

thus: N.N.E.JE., N.N.E.P!., N.N.E.fE. But an excep-

tion is made to this last rule in the case of quarter points

adjacent to a cardinal or inter-cardinal point. These last

are always put first in naming the quarter points. Thus,

between E. by N. and E., if we always boxed from N. towards

E., we should have : E. by N.JE., E. by N.E., E. by N.fE.
But it is customary, because shorter, to name these quarter

points E.fN., E.fN., and E.JN.
Inside the "bowl" of the compass, and adjacent to the

card, a black line is marked on the bowl. This line is in

plain view of the steersman, through the glass cover of the

compass, and is called the "lubber line/' When the ship

is headed in such a way that this line comes opposite N.E.,
for instance, on the card, the ship will be on a N.E. course,

which makes an angle of 45 with the north.

But would the ship 'really be traveling on a line making
a 45 angle with the geographic meridian, or direction of

the north pole of the earth? She would be doing so only
if the compass were absolutely correct. This is practically

the case with the "gyro-compass," a mechanical contrivance

now much used in the navy, but not the case with the ordi-

nary "magnetic" compass.
In Chapters II and III, concerning dead reckoning, we have

always used the word "course" as if all compasses were

absolutely correct. But since they are not correct, it is

now necessary to make allowance for their errors. In other

words, whenever we use a compass, we must first ascertain

the difference between the "true course" and the "compass
course." It must not be supposed from this statement that

a ship can be steered on two different courses at the same
moment. There is really only one direction along which
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the ship is moving: but the angle between that direction

and the true north may be different from the angle between

it and the "compass north." It is the course measured

from the true north that must be used in all dead-reckoning

calculations, and that always results from such calculations :

but for steering the ship by means of a compass the steers-

man must be furnished with the course as measured from

the compass north. Therefore it is essential for the navigator
to know the difference between the two. This difference

is called the "error" of the compass.

Unfortunately, this error is made up of two parts. The

first, called "variation" of the compass, is due to peculiari-

ties in the earth's magnetism, and is quite different in dif-

ferent places on the earth. It also varies in different years
at the same place. But at any one time, all ships in the

same part of the ocean will have the same variation.

The mariner can always ascertain how great the varia-

tion is in his part of the ocean, because it is always marked
on his chart. Certain curved lines are drawn on the chart

;

and if the ship is located on or near a line marked "varia-

tion 10," for instance, it follows that the navigator must

on that day allow for 10 of variation. It is also important
to take into consideration possible changes in the variation.

Sometimes the annual change is marked on the chart; if

not, it is important to use a chart of recent date.

The second part of the error is called "deviation" and is

due to peculiarities in the magnetism always developed in

the metallic parts of the ship itself. It is different in dif-

ferent ships, even in the same part of the ocean, and is even

different in the same ship, when she is headed on different

courses. Methods have been invented for "compensating"
marine compasses, so as to remove the effects of deviation,

and these methods are quite effective. But wen when

they are used, it is necessary, before beginning a long voyage,

to have a "compass adjuster" visit the ship. He will then

"swing" the ship on a number of different courses, and
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adjust the compass so that it will be as nearly correct as pos-

sible. Finally, he will determine, by means of astronomic or

other observations, just what the remaining compass devia-

tion is on all the various courses, and give the navigator a

table of these remaining deviations. This table must be taken

into account in
"
shaping" the ship's course during the

voyage. The navigator must also, from time to time, check

these tabular deviations while at sea by means of astronomic

observations of his own, to take care of possible changes.

Such astronomic observations are made with an instru-

ment (the "azimuth circle"), which can be attached to the

compass, and with which the "compass bearing
77

of the

sun or any other object can be observed. The compass

bearing is simply the compass direction of the object, as

seen from the ship ;
or the compass course on which the ship

would be steered, if she were moving directly toward the

object. When the sun is used, its true bearing, measured

from the true north, can be taken from astronomic tables

which will be explained later; and it is called the sun's
" azimuth." A comparison of this true bearing with that

measured on the compass with the azimuth circle then makes
the compass error known.

When it is not convenient to observe the sun, it is possible to

substitute observations of a distant well-defined terrestrial ob-

ject, whose true bearing can be measured on a chart for com-

parison with various compass bearings observed while the ship
is being swung. Another method is to set up a compass on

shore, away from any iron or steel, and use it to determine

the bearing of the distant object. And there is still another

method, if the above compass and the ship's compass are inter-

visible. For the bearing of each may then be taken from the

other, and these should differ by exactly 180. If they do not,
the variation from 180 must be due to deviation on board.

The "pelorus" is another instrument which may at times

replace the azimuth circle. It is located anywhere on the

ship, at a convenient point for observation, and not neces-
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sarily close to the compass. It has a "dummy card" and a

lubber line. The dummy card can be turned until the

lubber line indicates the same course as the real compass.
Observations of bearings with the pelorus will then obviously
bethe same as if made on the compass with the azimuth circle.

The advantage of the pelorus is that it can be used anywhere
on board, while the compass must be kept constantly in the

exact place where it was "
adjusted" before leaving port.

The error thus determined astronomically or otherwise

is the sum of the variation and deviation. If we indicate

by E the total compass error in that place, at that time, on

that ship, and on that course
; by D the deviation similarly

described
; by V the variation at that time and in'that place ;

and if all three are counted from in the usual direction

around the compass card, then

we have the formula :

(1) E = V+ D.

By counting in theusual direc-

tion, we tnean counting from the

north around to the east, as all

courses are counted (p. 19) ;
so

that a compass error of 10, for

instance, would mean that the

compass north pointed 10 east

of the true north, or had a true

bearing of N. 10 E. (p. 19).

This is shown in Fig. 8, which

also shows the ship's course,

counted in the same way.
It is clear from the figure that if we now indicate :

by C, the ship's compass course,

by T, the ship's true course,

by E, the compass error,

we shall have the formula :

(2) T

FIG. 8. Compass Error.
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The simple formulas (1) and (2) enable the navigator to

make all necessary compass calculations. The following

are examples.

Suppose, for instance, that the error E has been deter-

mined by observation, and the variation F taken from the

chart. Formula (1) then makes it possible to calculate

the deviation D. For the formula shows that E is the sum
of V and D

;
and so D must be the difference of E and V,

or: D=#~F.
Thus the deviation D becomes known, as a check on the

compass adjuster's work, and, while this value of D is cor-

rect only for the particular course on which the ship was

headed at the time the observation was made, yet that

course is the very one for which it is especially important
to have correct information.

Again, suppose dead-reckoning calculations show that the

ship is to sail on a 40 course. These calculations always
furnish the true course (p. 43) so that T = 40. The
variation being known from the chart, and the deviation

from the adjuster's table, we know from (1) E = V + D.

Then from (2) we see that C = T E, which gives the

compass course. Let us suppose in the present case, that

F was 9, D 1; then B = F + C=9 + 1 = 10; and
since T = 40, C = T - E = 40 - 10 = 30

;
and the

helmsman would be directed to steer a 30 course by com-

pass.

If, in Fig. 8, the compass north happened to be 10 on the

left side of the true north, instead of the right, the error E
would be 350, instead of 10 (see also fig. 7, p. 41). This

might be made up of a variation F of 349 and a deviation

D of 1, as before. If the true course is again to be 40,
the compass course would be 40 350, according to the

formula C = T E. This subtraction being impossible,
we increase the 40 by a complete circumference of 360,
which Is always permissible, and then have :
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C = 360 + 40 - 350 = 50.

The ship would be steered on a compass course of 50.
An alternative way to take care of errors, variations,

and deviations on the left side of the true north is to mark
them with the negative or minus sign. Instead of calling

V 349, we might call it - 11. This is really the best way,
and leads to the same result as before, if we remember that

the subtraction of a minus quantity is always equivalent to

an addition. In the example just given, calling V 11,
instead of 349, we should have : E = 7 + D = - 11 +
1 = - 10; and C = T - E = 40 - (- 10) = 50, the

same compass course as before.

An olderway of designating variations, deviations, and errors

is to call them east when the compass north points to the

right of the true north, and west when it points to the left

of the true north. This method leads to the necessity of

providing various rules or diagrams with which to make

compass calculations. We think the best way to avoid

error (and such errors may lose ships and lives) is to use the

method here given with its two simple formulas. When
some other designation of the error, or some other method

of numbering the card, is demanded by a captain, it is always

possible to conform to that demand, but also to translate

every problem into our method (in imagination at least)

as a check against mistake.

The following isan example of a compass adjuster's "devia-

tion table," taken from Bowditch's "
Navigator

"
(1916

edition). The deviations are set down in degrees and tenths

of a degree, instead of degrees and minutes, for convenience

in the further calculations. The ship was swung so that

her head bore successively around the horizon, and obser-

vations were made at intervals of 15. This is a smaller

interval than is usually necessary ;
and the deviations in the

table are much larger than commonly occur in a modern

well-compensated compass,
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DEVIATION TABLE

To illustrate the use of this table, let us suppose the ship

to be sailing on a compass course of 165, in a part of the

ocean where the variation is + 10, or 10 E. Using formula

(1) (p. 45), and finding from our table that the deviation D
for 165 is + 8.5, we have the compass error E = V + D
= + 10 +8.5 = + 18.5. By formula (2) (p. 45) the true

course of the ship is T = C+ E= 165 + 18.5 = 183.5.

We should use this true course 183 .5 in calculating later

the ship's position by dead reckoning (p. 10).

If the compass variation were everywhere the same, it

would be more convenient to have a table of compass errors,

instead of a table of deviations
;
but because the variation,

as given on the chart, varies greatly, the table must be

specially made for deviations only.

Equally important with the above use of our deviation

table is its inverse use. When the navigator has calculated

by dead reckoning the course he must steer, that course,
as it comes from the calculations, will be a true course (p.

43) ; and it is necessary to turn it into a compass course for

the use of the steersman.

To do this we must know the deviation
;
and we cannot

get it directly from the deviation table above, because the

use of that table presupposes a knowledge of the compass
course, the very thing we are trying to find. The best
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way to avoid this difficulty is to imagine the deviation to be

non-existent, for the moment, and to make use of the "mag-
netic course," defined as the course which would be indi-

cated by the compass, if deviation were thus totally absent.

Under these circumstances, formula (1) gives E = F, since

D =
;
and if we designate the magnetic course by M, we

may write, in place of formula (2) (p. 45) :

(3) M = T-F.
Let us suppose a case in which the variation is + 10, and

the desired true course of the ship 175. Then the magnetic
course, allowing for variation only, will be, by formula (3) :

M = T - V = 175 - 10 = 165.

This course is not really a compass course, because no
account has yet been taken of the deviation. Nor can we
yet find the deviation directly from the deviation table,

because in that table we must still know the compass course

to use as the argument (p. 10), whereas we know as yet only
the magnetic course. Therefore navigators should always

request the compass adjuster to furnish a "second deviation

table," in which the argument is the magnetic course, in-

stead of the compass course. Such a second table can al-

ways be calculated from the other. We here give one that

has been calculated from the table on the preceding page.

SECOND DEVIATION TABLE
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We also add as an example the calculation of one number

in the second table from those given in the first. We shall

find the deviation corresponding to the magnetic course

165 ;
and we do it by a kind of interpolation (p. 12). From

the first table we have the deviation 2.3 for the compass

course 150. Since the deviation is the only difference

between compass and magnetic courses, it follows that

150 2.3, or 147.7 magnetic, corresponds to 150 by com-

pass. Similarly, 173.5 magnetic corresponds to 165 by

compass.
The magnetic course 165 for which we are making the

calculation falls between 147.7 and 173.5, and exceeds

the smaller of the two by 17.3. The whole difference be-

tween 147.7 and 173.5 is 25.8. Similarly, the whole dif-

ference between the two compass courses involved is 15.

Therefore we may write the proportion :

25.8 : 15 = 17.3 : x,

where x is the excess over 150 of the compass course corre-

sponding to 165 magnetic.

Solving this proportion by the ordinary rules of arithmetic,

we have :

The compass course belonging to 165 magnetic is there-

fore 150 + 10.0 = 160.0. The corresponding deviation

is 165 160.0 = + 5.Q,
1 which is therefore the deviation

for 165 magnetic, and appears as such in the second table.

This entire table can be computed from the first table in an

hour.

Sometimes the second deviation table gives compass courses

instead of deviations. It is then often called a "
table of

* A comparison of formulas (1), (2), and (3) shows that

D-M-C; so that the deviation is obtained by subtracting the

compass course from the magnetic course. This is also evident

from the definition of a magnetic course (p. 49).
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steering courses"; and in the example just calculated it

would give the compass or steering course 160 for the mag-
netic course 165, instead of giving the deviation + 5.
We shall still further illustrate this important matter by

an example, supposed to occur on board a ship for which
our two deviation tables hold good.
What is the compass course to be given the helmsman at

Sandy Hook, en a voyage to St. Vincent?

We have already found, from dead-reckoning calculations

(p. 22) the course 119, Being the result of a dead-reckon-

ing calculation, this is a true course. The track chart of

the north Atlantic gives the variation at Sandy Hook as

10 W., or - 10. The true course being 119, we get the

magnetic course, allowing for variation only, by formula (3),

M = T - F - 119 -(- 10) = 129. The second devia-

tion table shows that :

for magnetic course 120, the deviation is 6.9, and

for magnetic course 135, the deviation is 4.8.

Magnetic course 129 falls between 120 and 135, so that

an interpolation (to be extremely exact) between 6.9

and 4.8 makes the deviation for magnetic course 129

come out 5.6. Formulas (1) and (2)' now give :

Error =E = 7+D=-10- 5.6 - - 15.8

Compass course=C = T-E = 119 -(- 15.6) = 134.6.

To check this, we can now solve the same problem in the

inverse way with the first deviation table. For the compass

course 134.6, this table gives the deviation as 5.9. The

variation being ,10, we have :

E = V + D = -10 - 5.9 = - 15.9 and

T = C + E = 134.6 - 15.9 = 118.7,

agreeing very closely with the true course 119, with which

we started. This shows that the two deviation tables are

quite consistent in this case, and also checks the accuracy

of the calculation.
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We shall close this chapter with the following little table,

showing the correspondence between the two methods of

dividing the compass card into points, and into degrees.

COMPASS POINTS AND DEGREES

pt. = 2 49' * pt. ^ 5 38' i pt. = 8 26' 1 pt. = 11 15'



CHAPTER V

"COASTWISE NAVIGATION

BEFORE proceeding to a consideration of navigation by
means of astronomic observations, as it is practiced on the

high seas, we must first explain certain methods by which

it is possible to ascertain a ship's position in latitude and

longitude while she is in sight of land. Often such methods

suffice to complete a long coastwise voyage in safety ; they
are always important for a last determination of the ship's

position before a deep-sea voyage actually begins. Such a

last determination is called "taking a departure
"

(cf. p. 2),

and from such point of departure dead-reckoning calcula-

tions begin for the first day of the voyage.

Any determination or fixing of a ship's position, by astro-

nomic observations or otherwise, is often called, for brevity,

a "fix." To obtain one while in sight of land it is customary
to make observations upon well-known objects ashore,

such, for instance, as lighthouses, or other conspicuous

objects marked on the chart. It is always possible to ob-

serve the bearings of such objects from the ship's deck with

the compass, azimuth circle, or pelorus (p. 44).

When there is but one such object in sight, it is impossible

to secure a fix with ordinary instruments, if the vessel is

at anchor. But if she is running, it is merely necessary to

take two bearings, and to estimate the distance run by the

ship in the interval between the two. Figure 9 will make
this matter clear. A lighthouse ashore is at L. SS" is the

direction of the ship's course; S her position when the

first bearing was observed, and Sf her position at the time

of the second bearing. SN is the direction of the north.

53
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After taking the first bearing, the navigator must calculate

the angle S"SL, between the ship's course SS" and the

lighthouse direction SL. Thus,
if the ship's course angle NSS"
(p. 10) was 20, and the bearing

NSL was 42, the angle S"SL
would be 42 - 20 =22. As
the ship proceeds on her course,

the angle S"SL will become

larger, and a second bearing must

be taken at the moment when
the ship reaches the point Sr

,

where the angle S"SL has become
S"S'L. This point S' must be

so chosen that the angle S"S'L
is just twice the angle S"SL ob-

served at S; or, in this case, 44.
This is called "doubling the bear-

FIG, 9. Ship's Position by TWO ing from the bow," and it can
Bearings.

easily be accomplished if we con-

tinue watching the compass bearing of L as the ship goes

ahead, and catch the observation at the right moment. The

ship's course not having been changed from 20 (this is

important), the right moment will occur when L bears

20 + 44 = 64 by the compass.
It can easily be proved by geometry that the distance

S'L between the ship at S r and the lighthouse at L will be

equal to the distance SS' traveled by the ship in the inter-

val between the two observations. This distance can be

estimated quite accurately with an instrument called a

"log," or "patent log," which is towed astern of the ship.

It is so constructed that it turns as it is pulled through the

water, and the number of turns is automatically counted by
an attached contrivance on deck. The count is (also auto-

matically) turned into miles of distance ; so that the log on

deck will indicate how far the ship traveled from S to $'.
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As soon as we know the distance S'L and the bearing of

the line S'L, we can "lay down" or "plot" the position oi

S' on the chart
;
and this will be a "good fix." To do this,

let us indicate by Bf
the bearing of the line S'L, and then

draw on the chart, through the lighthouse L, a pencil line

whose bearing from L is B' + 180, or "Br
reversed." This

can be done with a "course protractor," or with "parallel

rulers," instruments to be purchased from any dealer in

navigators
7

supplies. Next we measure or "lay off" on that

line the distance S'L, equal to the run SS' as it came from
the log. We always know the right "scale" of the chart

(or fraction of an inch corresponding to one logged mile)

which must be used in laying off the distance S'L] for we
know that one mile always corresponds to 1 minute of

latitude (p. 15), and the right- and left-hand edges of the

chart are always divided into degrees and minutes of latitude.

Since the above bearings were observed by compass, it

is now important to consider the compass error (p. 43).

This will not affect the observations, because it will be the

same for both ship's course and lighthouse bearing, so the

angles S"SL and S"S'L, which are obtained by subtraction,

will be the same as if there were no compass error. But
when we come to plotting on the chart, the compass bearing

B f must be corrected by adding the deviation from the

deviation table (pp. 48, 49). The resulting magnetic bear-

ing (p. 49) must be used for Br

,
if the chart has printed

on it a compass card (p. 41) showing magnetic bearings.

If the printed card shows true bearings only, B1 must be

corrected for.both deviation and variation (p. 43).

A specially important case of the foregoing occurs when

the two angles S"SL and S"S'L are 45 and 90. The

second bearing Br
will then put the light just abeam, and

the distance by log, SS', is the distance at which the ship

passes the light abeam. This case is called a "bow-and-

beam bearing." The navigator sights the light when it bears

45 or 4 points (p. 52) "broad" on the bow, "starboard,"
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or "port." He then "reads" the log. When he brings

the light abeam through the motion of the ship, he reads

the log again, and the run in the interval, as taken from the

log, is the light's distance abeam.

When sailing along the coast, it is particularly important

so to shape the ship's course that lights and other promi-

nent landmarks will be passed at the right distance abeam.

The chart shows what the right distance is : if the navigator

shapes a course which makes the distance abeam too small,

he may fail to clear rocks or shoals extending seaward ;
and

if he makes it too large, he may lengthen his voyage unneces-

sarily in rounding the light.

There are certain pairs of angles (S"SL and S"S'L) which

will make known the coming distance abeam long before

the ship is dangerously near the light. These angles, S"SL

and S"S'L, are called "bearings from the bow" (see p. 54),

since they are really measured from the ship's bow instead

of the north. If the two bearings from the bow are either

of the following pairs :

22 and 34, 32 and 59,

27 and 46, 40 and 79,

then the logged distance in the interval between the two

observations is the distance at which the ship will pass the

light abeam if she continues on her present course. This

kind of observation will inform the navigator whether his

course is safe in ample time to change it if necessary ; and,

since in this case no bearings are marked on the chart, no

attention need be paid to compass error.

When two or more known and conspicuous landmarks

are visible from the ship, it is possible to secure a fix by
means of "cross-bearings." Observe the bearings of the

objects as nearly simultaneously as possible. Allow for

compass error in the manner just explained. Calculate

for each object a reversed bearing by adding 180 to its

observed bearing. Draw on the chart through each object
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a pencil line having the proper reversed bearing and these

lines will intersect at the point on the chart where the ship

is located. Figure 10

illustrates this matter.

I/, I/, L" are lights or

landmarks ashore,
visible from the ship,

and also printed on

the chart. The ship

is at S. The lines in-

tersecting at S repre-

sent the reversed

bearings of L, L', I/",

as observed from S.

Only two lines are nec-

essary; and they
should be chosen so

that the angle be-

tween them is as near

a right angle as possible, if high accuracy is required in the

fix. The third object and line merely serve as an additional

check or safeguard against error.

In addition to the foregoing methods of locating a ship

by observations of objects ashore, there is a way to avoid

sunken rocks or shoals without actually locating the ship

on the chart. It is called the "danger angle," and is shown

in Fig. 11. The small circle is supposed drawn on the chart

around a rocky shoal K which must be cleared by the ship

traveling along the course SS'. To make certain of clearing

it safely, the navigator selects two visible objects ashore,

and shown on the chart at L and I/. He draws on the

chart a large circle passing through L and I/, and just touch-

ing the dangerous small circle at T. There is no difficulty

in finding the center of the large circle, because it must be

somewhere on the line PQ, which is drawn at right angles

to the line LI/ at its middle point P. A few trials with a

FIG. 10. Ship's Position by Cross Bearings.
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pair of compasses will locate the center. Next, the two lines

LT and L'T are drawn. Then the angle LTL' is called the

danger angle.

Now it is a principle of geometry that if we select other

points on the large circle, such as T' and T", the angles

FIG. 11. The Danger Angle.

LT'L'j LT"L', etc., will all be equal, and will contain the

same number of degrees as the danger angle LTU. It fol-

lows that if the navigator measures from the deck the angle
formed by two lines drawn to the ship from L and I/, and
if he finds it equal to the danger angle LTU, as measured

on the chart with a protractor (p. 55), he then knows that

the ship is somewhere on the large circle, and is therefore

perhaps too near the small dangerous circle. If, on the

other hand, the ship is entirely outside the large circle, and
therefore surely safe from the dangers of the small circle,
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the measured angle at the ship between the objects L and
L f

will always be smaller than the danger angle LTU.
Angles can be measured from the deck by taking compass

bearings of L and L'. The difference of the two will be the

deck angle, which should be smaller than the danger angle
measured on the chart. But the very best way to measure

the deck angle is to use the sextant, an angle-measuring
instrument to be described later (p. 61).

The danger angle can also be used when it is necessary to

pass between a sunken danger circle and the shore. The

large circle is then drawn through L and U as before, but in

such a way as just to touch the inside of the small circle

instead of the outside. To pass inshore of the small circle

it is then necessary for the navigator
to keep his measured deck angle larger

than the danger angle, instead of

smaller.

Navigators also use at times a

means of safety known as the
"
danger

bearing," illustrated in Fig. 12.

There is but one charted object in

sight ashore at the point L. The ship

at S must steer in such a way as to

avoid sunken rocks atK . Evidently,

she must pass outside the line SQ }
of

which the bearing from the north is

the angle NSQ, which can be meas-

ured on the chart. This is the danger

bearing, and the ship's course SS', to

be safe, must be greater than the danger bearing. In the

case shown in the figure, the danger bearing would be very

useful long before a fix could be had by means of bearings

from the bow or bow-and-beam bearings.

Finally, to complete this part of our subject, it is neces-

sary to mention
"
soundings," which are a method of feel-

ing the land, even when it cannot be seen. By means of

FIG. 12. The Danger
Bearing.
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the "lead-line" the mariner can ascertain when he is in

shoal water ; and as depths of water are always marked on
the chart, he can often get valuable information as to the

ship's position. As she runs along her course, he can take

a "line of soundings
" and upon examining the chart he

will often find but a single possible line on the chart where
the charted depths correspond with those observed. It

follows that the ship's course must have been along that

line on the chart
;
and at an anxious moment, in a fog, such

a check will be a great relief to the navigator. Even in

the ocean, far from land, it is possible to take soundings
with the "sounding machine" at great depths, and in some

parts of the ocean quite accurate locating of the ship will

result. Specimens from the ocean floor can also be brought
up by attaching some sticky grease to the bottom of the

lead, and at times these specimens also give information

of value, for the charts always specify the kind of bottom

existing in various parts of the ocean.
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THE SEXTAKT

WE have twice made reference to this instrument once

(p. 5) as a contrivance for ascertaining by observation how
high the sun is in the sky, and again (p. 59) in the measure-
ment of the danger angle. These two uses of the sextant

are not inconsistent, for it is really intended for the measure-

ment of any angle (p. 8) formed at the observer's eye by
two lines drawn to two distant objects. In the case of the

danger angle these two distant objects are landmarks

ashore; in the case of the sun they are the "horizon" line

(where sea and sky seem to meet), and the sun itself. This

height of the sun (or of any star) in the sky is called its

"altitude" ;
and so the altitude is always an angle, to be

measured in degrees and minutes. The point directly over-

head is the "zenith"; the angle between lines drawn to

horizon and zenith is 90, or a right angle. An altitude of

40, for instance, simply means that the distance from the

horizon to the sun is %% of the total distance from horizon

to zenith.

Figure 13 will give an idea of the construction of the sex-

tant.1 The essential parts are two small silvered mirrors,

M and m] a telescope, EK; and a circle, AA 7 engraved
with "graduations," by means of which angles may be

measured upon it in degrees, minutes, and seconds. The
mirror m and the telescope EK are firmly attached to the

sextant ; but the mirror M is pivoted in such a way that it

1 (Quoted in part from Jacoby's "Astronomy, a Popular Hand-

book," Macmillan, 1913 ; reprinted 1915.
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can be turned, and the angle through which it is turned

measured on the circle by means of the index CB. When

the mirror M is turned until it is parallel to the fixed mirror

m, the circle "reads" or indicates 0, because the angle be-

tween the two mirrors is then 0. In all other positions

FIG. 13.- The Sextant.

of the mirror M the circle measures the angle between the

two mirrors. P and Q are sets of colored glasses ;
which can

be interposed temporarily, when the sun's rays are so bril-

liant as to be hurtful to the observer's eye. B is a small

magnifying glass, pivoted at S, intended to facilitate the

examination of the index CB. At C and B are shown the

"clamp/
7

by which the index can be fastened to the circle,

and the "tangent screw/' or "slow-motion screw" which

will adjust it delicately, after it has been clamped. I and F
are additional telescopes or accessories.

The mirror m has an important peculiarity. The silver-

ing is scraped away at the back of the mirror from half its
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surface. Thus only one half reflects
;

the other half is

simply transparent glass. A navigator looking into the

telescope at E will therefore look through the mirror m with
half his telescope, and with the other half he will look into

the mirror.

Now it is a fact that half a telescope acts just like a whole
one. If a person using an ordinary spy-glass half covers

the big end with his hand, he will see the same view he saw
with the whole glass. Only, as half the "light-gathering"

power is cut off, this view will be fainter, less luminous.

Applying this to the sextant telescope, it is clear that the

observer will see two things at once : with half the telescope
he will see what is visible through the mirror m and with

the other half he will see what is visible by reflection from
the mirror m.

If he holds the sextant in such a position that the telescope
is horizontal, while the frame of the instrument is vertical,

he will see the visible sea horizon with half the telescope

through the mirror m. If the other mirror M is then turned

to the proper position, it is possible to see the sun in the sky
at the same time, with the other half of the telescope, the

solar rays having been reflected successively from both mir-

rors, M and m. To make this possible, the sextant tele-

scope must be aimed at that point of the sea horizon which

is directly under the sun. The solar rays will then strike

the mirror-M first
;
be thence reflected to the silvered part

oi; the mirror m; and finally reflected a second time into

the telescope. Therefore the observation consists in so

turning the movable mirror M, that the sun and horizon

can be seen coincidently in the telescope.

The angle between the mirrors can then be measured

on the circle ;
and it is easy to prove by geometry that the

angular altitude of the sun will be twice the angle between

the two mirrors. Thus it should merely be necessary to

double the mirror angle, as indicated by the sextant index,

to obtain the solar altitude. But the sextant makers always



64 NAVIGATION

save the navigator the trouble of doubling the angle by the

simple device of numbering half degrees on the arc AA as

if they were whole degrees ;
so the angle as it comes from the

sextant is already doubled for further use. The mirror m
is called the "horizon glass," because the navigator looks

through it at the horizon. The other mirrorM is the "index

glass," because it is attached to the index arm.

When the sextant is used for non-astronomical observa-

tions, such as the danger angle, the frame is held horizontally,

instead of vertically, as in observations of the sun. The

telescope is aimed at the left-hand object ashore, and that

object is viewed through the horizon glass m. The index

glass Af is then turned until light from the right-hand object

is also brought into the telescope, after successive reflections

from the two mirrors M and m. The two objects will then

be seen "superposed," and the sextant arc will give the

angle between two lines drawn from the observer on board

to the two objects ashore. This angle should be smaller

than the danger angle to keep the ship safely off-shore of

sunken dangers (p. 59).

Reading the sextant circle, or ascertaining from it the

angle that has been measured, is accomplished by means of

i "vernier." This is a short circular arc, engraved with

graduations resembling those on the sextant circle, attached

to the index CB (fig. 13) just under the little magnifier R.
Et is so placed that the graduations on the sextant circle

md the vernier are close together and can be seen at the
&me time through the magnifier R. Figure 14 gives an idea
>f the vernier and a part of the sextant circle near the zero
>f its graduations. Numbers on both circle and vernier
ncrease toward the left. On the circle, the largest spaces,
narked by long lines, are whole degree spaces. Each is

usually divided into two halves of 30' each indicated by
horter lines, and these are again subdivided into three
mall spaces of 10' each. The divisions on the vernier
Bsemble those on the circle, except that the degree spaces
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of the former are here called min-

ute spaces, and the 10' spaces of

the former are called 10" spaces.

The real index of the instru-

ment is the zero mark on the

vernier, sometimes provided with

an engraved "arrow." If this

falls exactly on a degree mark of

the circle, say the 1 mark, the

reading of the instrument is ex-

actly 1 0' 0". If it falls exactly
on a small line of the circle, say
the second to the left of the 1

mark, the reading is exactly 1

20' 0". But if it falls between two
of the small lines, say between

the 20' and 30' marks to the left

of the 1 mark (as shown in the

figure), the reading must be 1

20' and a "bit." It is the busi-

ness of the vernier to estimate

the size of that bit. To do this

look along the vernier until you
find a line which is exactly op-

posite some line on the circle.

There will always be such a line :

in the figure it is the 6' line of the

vernier. Pay no further atten-

tion to noting which line on the

circle is the one thus "exactly

opposite" ;
it matters not which

line it is. But read carefully the

number on the vernier belonging
to the "

exactly opposite" line

you have found there. Being on

this occasion the 6' line, it follows

in

I
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that the bit is 6'
;
and as we found the reading to be 1 20*

and a bit, the complete reading is 1 20' + 6' = 1 26'.

If the vernier line that happened to be "exactly opposite"

was not one of the ten long minute lines, but fell between

two of them, it would indicate that the bit was made up of

minutes and seconds, instead of being an exact number of

minutes. For each space the "exactly opposite
}y

vernier

line happens to lie to the left of a long vernier minute line,

10" must be added to the bit. For instance, if in the figure

the "exactly opposite" vernier line was the next short one

to the left of the 6' long line, the bit would be 6' 10", and the

complete reading 1 26' 10", instead of 1 26'. But seconds

are not really required when observing aboard ship, so that

it will be sufficient, in using the vernier, to find the number
of the long vernier line that comes nearest to being "exactly

opposite."

It will also be noticed in the figure that the sextant circle

has some additional graduations to the right of the mark.

These are called "off the arc" graduations, and it is some-

times necessary to read a small angle upon them, measuring
from the mark to the right instead of the left. This makes
it necessary to read the vernier backwards, calling the O

7

mark of the vernier 10' and the 10' mark O
7

.

This backward reading of the vernier offers no particular

difficulty, and it is especially useful in determining by ob-

servation the "index error" of the sextant. We have seen

(p. 62) that when the two sextant mirrors are parallel,

the index should read 0' 0". But it is seldom possible
to adjust the instrument so that this condition will be satis-

fied exactly ;
nor would the adjustment remain perfect very

long. A better plan is to determine by observation how
much the reading differs from O7

0", when the mirrors
are parallel. This difference is the index error, and- must
be applied as a correction to all angles observed with the
instrument.

It is easy to make the mirrors parallel : we have merely
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Co sight some distant well-defined terrestrial object like the

gilt ball on the top of a flagpole (or the sea horizon, if aboard

ship at sea), after clamping the index near 0. We shall

then see in the telescope two images of the distant object ;

one by direct vision through the unsilvered part of the hori-

zon glass, the other after reflection from both mirrors. By
means of the tangent screw, the observer, with his eye at

the telescope, can bring these two images together, so that

they will appear as a single image. Then the mirrors will

be parallel, and the vernier should read 0' 0". If it actually
reads 8', for instance, instead of 0' 0", it means that the

reading is 8' too large on account of index error
;
and every

angle measured with that sextant at that time will be 8'

too large, and must be corrected by subtracting 8' from it.

If, on the other hand, the reading is 8' "off the arc,"
when it should be 0', the instrument reads 8' too small,

and any angle measured with it must be corrected by adding
8' to it.

For accurate determination of the index error (and it

should be checked frequently), navigators prefer to observe

the sun, or at night, a star. If a star is used, the process

is the same as just described for a flagpole ball. But if

the sun is used, a slightly different method is required. The

sun, as seen in the telescope, shows a round disk of con-

siderable size, and it is not possible to

superpose the two images accurately.

Therefore it is better to make them

just touch, as shown in Fig. 15, when

they are said to be "
tangent" to each

other. This must be done successively

in two positions, AB and $A. In

other words, after the first "tangency"
***' 15.- index Error,

has been observed, the tangent screw (B, fig. 13) is manipu-
lated until the image A passes across B from top to bottom,

and gives a new tangency in the second position.

Each tangency will give a reading of the vernier. Unless
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the sextant is greatly out of adjustment, one of these read-

ings will be off the arc, the other on the arc. If there were

no index error, the off-arc and on-arc readings would be

equal ;
if they differ, half the difference is the index error.

If the off-arc reading is the larger, all altitudes measured

with that sextant must be increased by the amount of the

index 3rror; and if the on-arc reading is the larger, all such

altitudes must be similarly diminished.

The following is an example of an index error determina-

tion;

On-arc readings. Off-arc readings,

31' 20" 33' 20"
31 40 33 50

30 50 34

Means, 3l7 17 7> 33' 43"

The difference is 33' 43" - 31' 17" - 2' 26". Half the

difference, or I
7 13"3

is the index error ;
and because readings

on the arc are the smaller, all angles read with this instru-

ment must be increased by 1' 13", or, for ordinary purposes

of navigation, by 1'.

In addition to certain
"
adjusting screws" with which

the index error can be reduced when it becomes unduly

large, means are provided for three other sextant adjust-

ments. These are :

1. To make the index glass perpendicular to the frame of

the instrument.

2. To do the same with the horizon glass.

3. To set the telescope parallel to the frame of the instru-

ment.

These adjustments are always completed by the maker

before a sextant is sent out, nor does the navigator usually

need to correct them himself. But it is important to know
how to test them occasionally. Perpendicularity of the

index glass can be examined by looking into the glass very

obliquely with the index set near 0. It is then possible to

see the inner edge of the sextant circle both by looking at
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it directly, past the edge of the index glass, and also by reflec-

tion in the glass itself. The inner edge of the circle should
form a continuous line when so examined, if the glass is

perpendicular ;
but if it is inclined, the line will appear broken,

instead of continuous.

Secondly, perpendicularity of the horizon glass can be

tested at the same time the index error is determined by
observing a star or a distant terrestrial point (p. 67). The
index glass having been properly adjusted to perpendic-

ularity, the two mirrors can never be made parallel by
moving the index, unless the horizon glass is also properly

perpendicular. Any existing lack of adjustment will there-

fore betray itself in the index error determination, because

the two images of the star or distant object will not be super-

posed in any position of the index.

Thirdly, the parallelism of the telescope to the frame of

the instrument can usually be best tested with an ordinary

pair of "calipers."

Having thus described the sextant, its adjustments, and its

use from the deck, we have still to explain how it can be used

ashore. Sometimes it is necessary for the $,

navigator to make observations ashore, ^\
when it is not usually possible to see the

horizon line (p. 61). Recourse must

then be had to an "
artificial horizon/'

which is simply an iron basin full of

mercury covered with a glass roof. The

mercury furnishes an almost perfectly

horizontal mirror, and the glass roof

prevents wind from ruffling the mercury . \/ ..

surface, and thus destroying the mirror, p^. i6. Artificial

Figure 16 explains the principle of the Horizon,

artificial horizon. HH is the mercury mirror, S the sun,

and X the sextant. The observer aims the sextant telescope

at the mercury where he can see a reflection of the sun. He
then measures with the instrument the angle between a line
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drawn to the sun as seen reflected in the mercury and another

line drawn to the actual sun in the sky. It can be shown

by geometry that this measured angle will be just twice the

real altitude of the sun
3
such as it would be if observed from

the sea horizon. Therefore, in using the artificial horizon,

it is merely necessary to divide the sextant angle by 2 to ob-

tain the correct altitude of the sun.

In observations of this kind two "suns" are seen at the

same time in the telescope, just as is the case in index error

observations (p. 67) ;
whereas in observing from the sea

horizon, the telescope shows only one solar image and the

horizon line. When there are thus two solar images, they

must be brought into tangency, just as we have already

explained for index error (p. 67). When there is but one,

it must be brought into tangency with the visible sea

horizon line.

But this altitude is not yet ready to be used in the further

calculations for obtaining the position of the ship in latitude

and longitude. Further pre-

paratory corrections must be

applied, in addition to the

index error (p. 66), which is

always the first correction to

receive attention. These pre-

paratory corrections are :

1. "Dip" of the sea hori-

zon, due to the elevation of

the navigator on the ship's

deck above the surface of the

sea. Its cause is shown in

Fig. 17. C is the center of the

earth, K a point at sea level,

and the navigator, elevated

a distance OK above the sea. OZ is the direction of the ze-

nith (p. 61), OS the direction of the sun, and OH a horizontal

line from 0. OT is a line drawn through 0, and just touch-

17. Dip of tBe Horizon.
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ing the sea surface at Tf
. Evidently OT will be the direc-

tion of the sea horizon, where sky and sea seem to meet.

Therefore, the altitude of the sun, as measured from the

visible sea horizon, will be the angle SOT', whereas the angle
we require is the angle SOH, or the altitude of the sun
above the true horizontal line OH. Therefore the angle
HOT is a correction for dip which must be subtracted from
all measured altitudes, and the amount of the correction

depends on the height of the navigator's eye above the sea

surface.

2. "Refraction" is a bending of the light rays as they
come down to us from the sun through the terrestrial atmos-

phere. It always makes the sun seem higher in the sky
than it really is, giving another subtractive correction for

the observed altitude. The bending here involved is due
to the passage of the sun's light rays through atmospheric
strata of increasing density as the light approaches the

earth's surface.

3.
"
Parallax" is a small correction which must be added

to the observed altitude of the sun. In strict theory, all astro-

nomic observations are supposed to be made from the earth's

center instead of its surface where the ship floats
;
and the

small parallax correction allows for this minor theoretic

point. In the case of star observations this correction is

zero.

4. "Semidiameter" is a correction depending on the

choice by the navigator of a particular point on the sun's

disk (p. 67) for observation. The sun's altitude, as used'

in the further calculations, should be the altitude of the sun's

center ;
but it is impossible to locate the center of the disk

accurately in the telescope, so the navigator always observes

the lowest point of the disk. This is called the "lower

limb" of the sun.

Beginners sometimes have difficulty in distinguishing

the upper from the lower limb in the telescope. The best

way to do this is to focus the telescope on some distant
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object, and note whether It appears upside-down in the

field of view. If so, the telescope is an "inverting" one,

and the top of the sun must be observed, as it appears in

the telescope, though it will really be the correct (or lower)

limb, because of inversion by the telescope. When using the

artificial horizon with an inverting telescope, the tangency

must be made by bringing the bottom of the mercury image
in contact with the top of the other image. The high-pow-*

ered telescopes supplied with good sextants are usually in-

verting telescopes.

Evidently the measured altitude, as it comes from the

sextant, must be increased by the amount by which the sun's

center is higher than the lower limb, and this is the sun's

semidiameter. The index correction, together with the

above four additional corrections, will fully prepare a meas-

ured sextant altitude of the sun for further use in naviga^
tional calculations. In the case of a star, which appears
in the telescope as a point of light only, without any per-

ceptible disk, no semidiameter or parallax corrections are

required; and in using the artificial horizon (p. 69), no
correction for dip is necessary, either for the sun or a star.

It is possible to arrange these various corrections in con-

venient tables. Thus, in Table 6 (p. 247), we give a combi-

nation of corrections 2 (refraction), 3 (parallax), and 4 (semi-

diameter), to be used for observations of the sun's lower

limb, and the same combination without the semidiameter

and parallax
l to be used for star observations. It will be

"noticed that the tabular corrections vary for different values

of the observed altitude, which appears in the left-hand col-

umn of the table. This variation comes mainly from the
refraction part of the combined correction, for the refrac-

tion is much greater when the sun or star is observed at a
low altitude near the horizon than it is at a high altitude

near the zenith. At the foot of the page is given a small

supplementary correction depending on the date in the year.
1 WMeh leaves refraction only.
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This small correction is not important in navigation, but is

given here for the sake of completeness. It arises from the

semidiameter part of the combined correction, for the an-

nual orbit of the earth around the sun is of such a shape

that the earth is nearer the sun in January than it is in July,

which makes the sun appear bigger in January. And when the

sun appears big, the semidiameter will of course be large too.

Table 7 gives the dip of the sea horizon, the number in the

left-hand column being the height (in feet) of the navigator's

eye above sea level. This will be the height of the ship's

deck, increased by the height of the man's eye above the

deck. Unfortunately, the dip, as given in Table 7, at times

varies considerably from the dip as it actually exists at the

ship. The cause can be seen from Fig. 17 (p. 70), where

it will be noticed that the line from the observer at to the

sea horizon at Tr

passes very near the surface of the ocean.

It is therefore entirely in the lowest strata of the terrestrial

atmosphere, and there quite irregular refractions sometimes

occur. These have been known to produce errors in the dip

amounting to 10' or 20', and it is principally the existence

of these unavoidable errors that makes it unnecessary to

read the sextant closer than the nearest minute (p. 66),

when observing from the deck. But when observing ashore

with the artificial horizon, which has no dip, the navigator

may, if he chooses, read seconds, especially if he intends to

use in his further calculations the "mean" or average of

a considerable number of observations.

We shall now give an example of the complete correction

of a sextant observation. Suppose the angle read from

the sextant was 30 28', the index error (p. 68) 1', addi-

tive, height of observer's eye 26 feet. We should then

have:

observed altitude, lower limb
index correction
correction from Table 6 (p. 247)
correction from Table 7 (p. 247)

corrected altitude, for further use
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If the altitude had been observed ashore with an arti-

ficial horizon, it might have been desirable to retain seconds.
The calculation might then have been as follows :

observed double altitude (see p. 70), lower limb = 63 0' 20"
index correction (p. 68) =

-f- 1 13
corrected double altitude =63 1 33
resulting altitude =31 30 46
correction from Table 6 (interpolated) = -f 14 31
corrected altitude, for further use =31 45 17



CHAPTER VII

THE NAUTICAL ALMANAC

BEFORE beginning the further utilization of altitude ob-

servations in our navigation calculations, it is necessary to

understand the use of the Nautical Almanac. This is an
annual publication, issued in two different editions by the

Nautical Almanac Office, United States Naval Observatory.

Copies can be obtained from the Superintendent of Docu-

ments, Washington, D. C., or through any dealer in nautical

supplies. Navigators do not need the larger edition, of which
the title is "American Ephemeris and Nautical Almfl.na.fi";

accordingly, all our references are made to the smaller edi-

tion for the year 1917. Parts of certain pages from that

edition are reprinted in the present volume for convenience

of reference, and we shall give a somewhat detailed explana-
tion of the almanac page 29 (our p. 76).

Let us consider the date Monday, Dec. 17. We find for

that date, and for every even hour (0*, 2*, 4h
,
6A

, etc.) of

"Greenwich Mean Time" (abbreviated G. M. T. 1
), two

tabular numbers (p. 10) called "sun's declination" and

"equation^ of time."

To understand these it is necessary to bear in mind that

the kind of time in ordinary use is "solar time," as kept by
the sun. The "solar day" begins at "noon/' called 0* in

astronomic navigation, and it continues through twenty-four

hours, without any confusing A.M. and P.M. In ordinary

life the day begins twelve hours sooner, at midnight, and

runs through two twelve-hour periods of A.M. and P.M. to

1 The reader is requested to note earefully this abbreviation, as

it -will he used very frequently.
75
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SUN, DECEMBER, 1917. From Nautical Almanac, p. 29

NOTE. The Equation of Time is to be applied to the G. M. T, in accordance withthe sign as given.
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the following midnight ; but this "civil day," as it is called,

does not for the moment concern us.

Solar time, as kept by the visible sun, is a very incon-

venient kind of time, because there are certain peculiarities

in the astronomic motion of the earth which make these

solar days of unequal length. They are called "apparent
solar days" and the corresponding kind of time is "apparent
solar time."

To avoid the above inconvenience, an imaginary "mean
sun" and a "mean solar day" have been invented. The
mean sun conforms as nearly as possible to the average per-

formance of the visible sun, and the length of the mean
solar day is the average of all the apparent solar days through-
out the year. The corresponding kind of time, kept by the

mean sun, is "mean solar time"
;
and this is the kind of time

recorded by all our watches and marine chronometers (p. 6).

The difference between these two kinds of solar time varies

on different dates, and even at different hours on the same
date. It is this difference which is called the "equation of

time " and which is one of the tabular numbers in the nautical

almanac page 29 (our p. 76).

This equation of time is of great importance in navigation,

and it is easy to see how page 29 of the almanac may be used

to find it. Suppose, for instance, we wish to know what the

equation is on Dec. 17, 1917, on board ship, when the ship's

chronometer indicates on its face 3 P.M., civil time, or (which

is the same thing) 3A
,
astronomical time (p. 75). Ship's

chronometers are always set to Greenwich mean time, so

that 3* by the chronometer signifies that the time at Green-

wich was 3A .

We then look in the almanac page 29 (our p. 76), and find

that the equation was +3 TO 54*.4 at 2h
,
G. M. T., and

+ 3m 51*,9 at 4A
,
G. M. T. Its value at 3A must be half-

way between these two, or + 3m 53M5. This we would

call + 3m 53*.2, so as to avoid the use of hundredths of

seconds, which do not need attention in navigation. And
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since the equation Is merely the difference between the

two kinds of solar time, the + sign means that it must be

added to G. M. T., to obtain Greenwich apparent time, in

accordance with the "Note" at the foot of the almanac

page 29. Consequently; the G. M. T. by chronometer having

been 3* Om 0*, the Greenwich apparent time at the same in-

stant was 3* 0- G' + 3- 53*.2 - 3* 3- 53'.2.

It will be noticed that the process we have here used for

obtaining the equation from the almanac is merely an inter-

polation (see p. 12). Let us, as another example, find the

equation for Sunday, Dec. 30, at 10* 26 A.M., civil time by

chronometer, and we have purposely here retained the

civil method of reckoning time to make certain that the

reader understands the difference between civil and astro-

nomic (or navigation) time. The given time is 10* 26m A.M.,

civil time, Dec. 30. But the astronomic Dec. 30 does not

begin until noon (p. 75), so that it is not yet Dec. 30 by

astronomic reckoning. By that reckoning it is really only

22* 26** on Dec. 29. In other words, when the civil time is

P.M., as in the first example, the astronomic time is the same

as the civil time. But when the civil time is A.M., as in the

present example, the astronomic time is found by adding

12* to the civil time, and deducting 1 from the date. These

complications emphasize the advantage of the astronomic

count, which avoids A.M. and P.M. altogether.

We now have from the almanac (p. 76) :

equation of time, Dec. 29, 22*, G. M. T. = - 2 26*.4,

equation of time, Dec. 30, 0*, G. M. T. - -2- 28*.8;

and the numbers in this example have been purposely so

chosen that the above two tabular values of the equation

(between which the required value falls) come from different

dates in the almanac. This creates no confusion, for these

two values of the equation are really consecutive tabular

numbers, just as much as if they occurred on a single date.

The difference between the two values of the equation is
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2*.4; and as this difference corresponds to 2h in the left*

hand (or argument) column, it follows that the difference

for 1A is here P.2. This is the change of the equation per
hour of time; it is called the "hourly difference" (abbre-

viated H. D.) and is printed in the almanac at the foot of

each daily column.

Now we want the equation for Dec. 29, 22A 26m
, by the

chronometer. The 26TO must next be changed into a decimal

fraction of an hour. 26m = f| of an hour = A.43. So the

time for which we want the equation becomes Dec. 29,

22^.43. The H. D. being 1'.2, the change in A.43 will be

1*.2 X 0.43 = 0*.5. The almanac shows that at 22* the equa-
tion was 2m 26*.4, and was increasing numerically. There-

fore, at 22A.43, it was 2m 26*.4 + CK5 = 2m 26*.9. And this

number has the minus sign. Therefore, the G. M. T. being
Dec. 29, 22A 26m

, the Greenwich apparent time at the same
instant will be Dec. 29, 22A 26m - 2 TO 26*.9 = Dec. 29,

22* 23 33M.
Most of these minor interpolation calculations, which are

here set forth in great detail for the benefit of the beginner,

can be made with sufficient accuracy by a skilled navigator

mentally.

In the foregoing two examples we have assumed that the

chronometer was right, but these instruments practically

never run quite correctly. Therefore, before leaving port,

navigators always have their chronometers "rated" by a

chronometer expert; and when the instrument is returned

to the ship just before sailing, a "rate card" (or "rate paper")

always comes with it. Let us suppose that in the present

example this card stated that the chronometer was slow

Sm 22S
.5

1 on Dec. 20, at noon, and was "losing"
2 P.8 daily.

The 8m 22*.5 would then be the "chronometer error" on

Dec. 20
;
and the K8 would be its "daily rate."

1 This number is here purposely chosen much larger than would

ever occur in practice.
2 The opposite kind of "rate" is called "gaining."
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From Dec. 20, noon, to Dec. 30, 10* 26- A.M. is an interval

of 9 days 22 hours 26 minutes. This interval must now be

reduced to a decimal of a day. 26" = f& of an hour = 0*.43.

The interval is therefore 9* 22*.43.

But 22A.43 =*$* days = 0*.93. Therefore, in days, the

interval is 9*.93. This transformation of hours and minutes

into decimals of a day can be accomplished with less trouble by

means of our Table 8 (p. 248).

Having a losing rate of K8 daily, the chronometer lost

1'.8 X 9.93 = 17'.9 in the interval of 9.93 days. And as it was

already slow 8m 22*.5 on Dec. 20, it was slow Sm 22*.5 + 17*.9

= 8* 40*.4 at the time for which the equation is required.

Now the equation was required for Dec. 29, 22A 26 OT by the

chronometer; and that instrument being slow 8m 40a
.4, the

correct G. M. T. was : Dec. 29, 22* 26- + 8- 40'.4 = Dec. 29,

22k 34** 40*.4. Turned into a decimal fraction of an hour,

this becomes Dec. 29, 22A.58, instead of 22\43, as we found

before, when the chronometer error was omitted from the

calculation. The H. D. is P.2, as before, and the change

in 0*.58 = 1*.2 X 0.58 = 0.7. Therefore, at 22A.58 the

equation is 2m 26*.4 + 0*.7 = 2m 27M. This still has the

minus sign, so that the correct Greenwich apparent time

becomes Dec. 29, 22* 34 40'.4 - 2- 27M - 22* 32- 13*.3.

All the above calculations have been carried out here with

unnecessary accuracy. There would be no harm if the result

were in error by a few tenths of a second ;
and it is this cir-

cumstance that makes it possible to perform these inter-

polations largely mentally.

In the foregoing examples no account was taken of the

ship's location on the ocean
; yet this location may have an

indirect influence on the calculations. To understand this,

we must consider for a moment the time-differences which

exist between different places on the earth. The sun rises in

the east and travels across the sky toward the west ; so that

if we consider two places like Greenwich, England, and New
York, for instance, the sun, because of this motion from east
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to west, will pass Greenwich first. Consequently, when it is

noon in New York, it has already been noon in Greenwich,
and is afternoon there. Greenwich time is therefore always
later than New York time. The same is true of any other

two places ;
there is always a time-difference between them,

and the easterly place has the later or "faster" time.

The amount of such time-difference of course depends
on the relative location of the two places, and the relation is

such that 15 of longitude-difference corresponds exactly
to lh of time-difference. Thus Sandy Hook, which is in

longitude 73 50' west of Greenwich, has a time-difference

from Greenwich of 4h 55 20*. This conversion of longitude
into time-difference is best accomplished by means of our

Table 9 (p. 249). According to that table :

73 4* 52 0*
507 3 20

73 50' = 4* 55 20*

The indirect influence of such time-differences upon the

use of the almanac is that they may at times, especially

when they are large, make the Greenwich date of the ob-

servation different from the date on board. Thus a vessel

off Manila Bay, in longitude 120 east of Greenwich, would

have her local time Sh (120) later than Greenwich time. If

a sextant observation was made on board at 4 P.M., civil

time, on a Thursday, the chronometer would indicate 8A,

and it would be 8 A.M. on Thursday, because Greenwich is

8h earlier than the ship. This 8 A.M. would really be 20h of

the preceding Wednesday by astronomic time, and so the

almanac date used would be one day earlier than the date

of the observation. The chronometer will always give the

right Greenwich time^ but the navigator must be very care-

ful to interpolate the almanac numbers on the right date.

We have now learned how to ascertain the equation of

time from the almanac, and how to use it for transforming

G, M. T. into Greenwich apparent time. The contrary

transformation, from Greenwich apparent time to G. M, T.,
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can be made by applying the equation in the opposite way:

subtracting when it has the + sign in the almanac, and add-

ing when It has the sign.

The great importance of these time transformations comes

from the fact that sextant observations must necessarily be

made upon the visible sun. When they are made for the

purpose of calculating the local time on board, this local

time will therefore necessarily be local apparent solar time, as

kept by the visible sun. At the instant of the observation

(p. 6), the chronometer face (corrected for error and rate)

tells us the G. M. T. If this is turned into Greenwich ap-

parent time by applying the equation, we have only to com-

pare the Greenwich and the ship's apparent times to get

the time-difference between the ship and Greenwich. This

time-difference can then be turned into degrees and minutes,

and will be the ship's longitude. Examples of this calcu-

lation will be given in detail (p. 99). It is also worth

noting here that the time-difference between any two places

is precisely the same, quite irrespective of the kind of time

in which it is counted.

To complete our explanation of the almanac page 29 (our

p. 76), it remains to give an example of a calculation of the

sun's declination. This is an angle in degrees and minutes,

and it is interpolated just like the equation by the aid of

its H. D. Thus, for Dec. 29, 22\58 (p. 80) the declination

is obtained thus :

Dee. 29, 22*, declination = 23 1 1'.9

H-D. (OM) X 0*.5S = 0.1, declination decreasing ;

by subtraction, at 22*.58, dec. = 23 1 1'.S,

and according to the almanac, this declination must be given
the minus sign. When the sign should be +, that fact is

indicated in the almanac. The use of the declination will

be explained later; the accuracy required in the interpo-
lation of it is not so great as we have used here, for the

nearest minute suffices in practically all navigation work.

In addition to the sun's declination, navigators require
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in their further calculations another number called the sun's

"right ascension" (abbreviated, R. A.)- This is obtained

from pages like the almanac page 3 (reprinted in part below) .

It is always the R. A. of the "mean sun" that we need,
and the almanac gives it for Greenwich mean noon of each

day in the year. When needed in our further calcula-

tions, it is of course always required for the exact moment
when a sextant observation was made. In fact, this state-

ment applies also to the equation of time and declination.

They must always be interpolated from the almanac for the

moment when the navigator actually observed the sun ;
and

SUN", 1917. From Nautical Almanac, p. 3
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CORRECTION TO BE ADDED TO R. A. M. S. AT G. M. N.

TIME PAST NOON
From Nautical Almanac, p. 3, Continued

FOR

the Greenwich time of this event is of course always taken

from the chronometer (duly corrected for error and rate).

Thus, if the R. A. of the mean sun is required for Dec. 29,

22* 34* 40\4
?
G. M. T. (p. 80), we find from the almanac

page 3 (our p. 83) that the R. A. of the mean sun at Green-

wich mean noon is 18* 29ro 28*.?.1
This, according to the sup-

plementary table quoted above from page 3, must be increased

by a correction for "time past noon." In this case the time

past noon is 22A 34** 40*A The tabular correction for 22* 30*"

is 3m 41'.8
;
and for 22* 36W it is 3m 42: 8. Ours falls between

these two, and an interpolation makes the correction 3W 42*.6.

Consequently, the R. A. of the mean sun for Dec. 29, 22A

34~ 40.4, G. M. T. is 18* 29" 28*.7 + 3m 42'.6 = 18* 33" 11*.3.

It will be noticed that the small supplementary table

(quoted above from almanac page 3) only runs from 12* to 24*.

The other half of the table, from 0* to 12*, is printed on the

opposite page 2 of the almanac. There is also another

longer table, printed near the end of the almanac, and there

called Table III, from which the supplementary correction

can be taken without the necessity of interpolation.

It is not absolutely essential that the navigator learn what
1 Right ascensions are always thus measured in hours, minutes,

and seconds, like time, and they are counted from 0* to 24*.
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the words "right ascension " and "
declination'

7

really mean.

But for the benefit of those who are curious in such matters

we may state that these numbers locate the position of the

sun (or of a star) on the sky. The sky is a great globe, called

by astronomers the "celestial sphere/
7 and all heavenly

bodies are located upon it precisely as points on the earth

are there located by their latitudes and longitudes (p. 3).

There is a "celestial equator" with two "celestial poles,"

corresponding accurately to the terrestrial equator and poles.

Declination then corresponds exactly to latitude on the earth,

and so it measures the distance of a heavenly body from the

celestial equator. When the body is north of the celestial

equator, the declination is called +,

Eight ascension similarly corresponds to longitude ;
and for

the beginning point of right ascensions on the sky there is a

"celestial Greenwich," which is called the "vernal equinox/
7

After this brief digression into astronomy, we return to

our subject. We have seen (p. 82) that observations of

the sun will tell us only apparent solar time, because it is

only the visible sun that we can observe. If the observations

are made upon a star, the kind of time is different from any
so far mentioned. It is called "sidereal time/

7

or star time.

It is always possible to change mean solar time into sidereal

time, and vice versa, by a simple process of calculation
;
but

the only change of this kind required in navigation is the

transformation of G. M. T. into Greenwich sidereal time.

To make this transformation, we have only to take from the

almanac, for the given G. M. T., the R. A. of the mean sun,

and then to add it to the given G. M. T.

Thus, to find the Greenwich sidereal time corresponding

to Dec. 29, 22* 34m 40*.4, G. M. T., we have already found

(p. 84) that the R. A. of the mean sun = 18*33" 11'.3

To this must be added the given G. M. T. = 22 34 40.4

Sum= corresponding Greenwich sidereal time = 17A1 7W 51'.7

1 The number of hours was here really 41* : but whenever it is

larger than 24*, we must drop or reject 24*.



CHAPTER VIII

OLDER NAVIGATION" METHODS

WE shall now explain in detail certain standard methods

of determining a ship's latitude and longitude by means of

sextant observations. An understanding of these methods

is essential to a proper comprehension of the newer naviga-

tional processes to be described later; and the older methods

are in fact still very widely used at sea, although most re-

cent authorities believe they should be rejected in favor of

the newer procedure.
The simplest of these older processes, and the one most

frequently employed, is the determination of the ship's

latitude by a noon or "meridian " observation ("noon-

sight") of the sun's altitude (p. 61). Now the sun is

higher in the sky at noon than it is at any other time during

the day; and so it is possible to get the noon-sight by be-

ginning to observe the sun with the sextant a few minutes

before noon, and continuing the observation as long as the

sun's altitude is increasing. The moment it begins to

diminisn, or the sun to "dip/' as sailors say, the observation

should be terminated, and the vernier read.

The altitude thus observed will be an altitude of the lower

limb (p. 71) ;
and before it is used further it must be fully

corrected for index error ;
for refraction parallax and semi-

diameter; and for dip; all as in the example on p. 73,

where the observed altitude was 30 287
,
and we found the

corrected altitude to be 30 38'.

!N"ext, the sun's declination must be taken from the al-

manac, being interpolated for the Greenwich time of the

S6
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observation, as in the example on p. 82, where we found

the declination to be - 23 12' on Dec. 29, at 22* 34W 40*.4,

G. M. T. We shall suppose the above altitude 30 28' to

have been observed at the Greenwich time stated, so as to

make use of the results of our former calculated examples.
Nor is there any inconsistency in supposing a noon observa-

tion to have been made at 22* 34* 4O.4. For the noon
observation is made when it is noon on board ship, while

the 22* 34" 4O.4 is the G. M. T. at the same moment.
The difference is simply the time-difference (p. 80) between

Greenwich and the ship.

The calculation of the ship's latitude is now made by the

following formula:

Latitude = 90 + Decimation Altitude.

In this formula, the plies sign signifies that the declination

must be added; and the minus sign signifies that the altitude

must be subtracted. Furthermore, it is most important to

remember that if the declination is itself a "minus declina-

tion," as in this example, the addition of it according to the

formula is really a subtraction. Or, in other words, and in

general, whenever a formula calls for an addition, and the

number to be added is a minus number, then that number
must be subtracted instead of added. And similarly, if the

formula calls for a subtraction, and the number to be sub-

tracted is a minus number, then that number must be added

instead of subtracted. Two minus signs neutralize each other.

In the present case we have, omitting seconds :

90 0'

declination ==23 12

90 + declination - 66 48
altitude - 30 38
latitude = 36 10

In considering this result it is of interest to inquire where

this observation really locates the ship. Now we have not

yet stated what the date was, on board, when the observa-
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tion was made; but we have given the G.M.T. as Dec. 29,

22* 34* 40*.4. The noon-sight was taken, as a matter of

fact, at noon on Dec. 30, or at the moment when the date

Dec. 30 commenced by astronomic reckoning. Therefore

the ship's time was later than the Greenwich time by about

1* 25-; or 21 15', allowing 15 to 1* (p. 81) ;
and the ship

was (approximately) in 21 15' east longitudefrom Greenwich.

This, together with the latitude 36 10', locates the ship in

the Mediterranean, south of Greece, and west of Candia.

Although we have thus apparently located the ship com-

pletely in latitude and longitude from a single noon-sight,

it must not be supposed that we have really accomplished

this. The noon-sight is only suitable for ascertaining the

ship's latitude ;
the longitude is determined so inaccurately

as to be practically useless. The reason for this is that

near noon the sun changes its altitude very slowly, because

it is then near the turning-point where its upward morning

motion is about to become a downward afternoon motion.

For the sun's daily motion in the sky is upward in the morn-

ing and downward in the afternoon. Near noon it runs

along horizontally, or very nearly so, for several minutes,

so that its altitude change is insignificant during that time.

It follows from this temporary invariability of altitude

that we cannot determine the exact moment when noon

occurs by observing altitude changes with the sextant. But

the latitude determination is not affected; because, for

the latitude, we only need to know the noon altitude. And

if we happen to measure it a little too soon or too late, on

account of the difficulty of fixing the moment of noon, no

harm will result, because the altitude very near noon is the

same as it is at noon precisely, as we have just seen.

It is, in general, practically impossible to determine both

latitude and longitude from a single observation. To deter-

mine two unknown things, at least two different observations

must be made. Nor can any skillful method of planning

the observation overcome this fundamental circumstance.
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Returning now to our latitude formula (p.' 87), it is

necessary to modify it somewhat in case we happen to be in

the tropics, where the sun may pass between the zenith and

the celestial pole. Even in temperate latitudes a celestial

body may do this, if we happen to observe a star instead of

the sun. In such a case, if the ship is in the northern

hemisphere, the navigator will observe the sun's altitude

toward the north at noon instead of toward the south, as

usual. Furthermore, in very high northern latitudes, the

"midnight sun," as it is called, can be observed toward the

north, and below the celestial pole. This is the minimum
altitude during the day, instead of the maximum

;
but it is

usable for a latitude determination. Such an observation is

called a "lower transit" ;
and it can often be observed in the

case of stars in temperate latitudes.

If we now remember to call northerly latitudes and
declinations plus, and southerly ones minus, we have the

following complete set of formulas for the present problem,

including observations in both hemispheres. These formulas

are so arranged that we can easily choose the right formula,

by having regard to the + and signs. But the right

formula once chosen, the latitude is calculated without

marking declinations with either the + or sign.

lat.1 and
[if

lat. greater than dec., lat. = 90 + dee. alt. (1)

dec. both 4-
j
if dec. greater than lat., lat. dec. -f alt. - 90 (2)

or both -
[
if lower transit, lat. - 90 + alt. - dee. (3)

lat. and dec., 1

lat _ gQO _^ _ dec (4)
one +, one

j

We shall now give some more examples; and to enable

the reader to follow star observations correctly we reprint

part of the upper halves of pages 94 and 95 (our pp. 91, 92)

of the Nautical Almanac. These contain the right ascensions

and declinations (p. 85) of a quantity of bright stars for

various dates in the year. These numbers are correct for the

moment of "upper transit," which is the moment when these

1 Latitude and declination are abbreviated lat. and dee.
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stars attain their maximum altitudes. This event cannot

be called a noon-sight in the ease of a star ;
but it is observable

in a manner perfectly similar to a solar noon-sight.

These stellar right ascensions and declinations change

so slowly that it is unnecessary to use interpolation when

taking them from the almanac pages.

Proceeding now to our examples, suppose that on shore,

at Sandy Hook Light, approximate latitude and longitude

40 28' N., 74 0' W. ?
on Monday, Dec. 17, 1917, at noon, the

double altitude of the sun's lower limb was observed with a

sextant and artificial horizon, and found to be 51 48'. The

index correction required by the sextant was + 4'
;
and the

G. M. T. by chronometer was 4A 5617* at the moment the

observation was made. Find the latitude. We have :

Observed double altitude ............................. 51 48' (1)

Index correction ..................................... +
Adding (1) and (2) gives corrected double altitude ....51 52' (3)

Halving (3) gives observed altitude ....... . ...........25 56 (4)

Correction from Table 6 1
(p. 247) .................... +_14. (5)

Adding (4) and (5) gives fully corrected altitude ........ 26 10' (6)

Now use formula (4) (p. 89) because latitude is +
and declination is . Write ...................... 90 (7)

Subtracting (6) from (7) gives 90 - corrected altitude . . 63 50 (8)

Interpolate declination from almanac (p, 76). This

gives declination................................ 23 22 (9)

Subtracting (9) from (8) gives for the latitude ......... 40 28 (10)

With regard to the foregoing example it is worth remark-

ing that if there had been no available chronometer set to

Greenwich time, it would still have been possible to calculate

the observation. For the known approximate longitude,

even if only a dead-reckoning (p. 5) longitude, would be

quite accurate enough to make possible the interpolation of

the declination from the almanac. And in the present

example, the chronometer was only used in getting the

decimation printed in line (9) above.

1 Dip correction from Table 7 not needed because the artificial

horizon was used.
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APPARENT PLACES OF STABS, 1917

From Nautical Almanac, p. 94

FOR THE UPPER TRANSIT AT GREENWICH

RIGHT ASCENSION

Had it been thus necessary to get the declination without

using the chronometer, we should have proceeded as follows :

Apparent solar time of noon (p. 75)

Approximate longitude = 74 0' W. = (at 15 to

the hour)

Adding (l) and (2) (p. 81) gives approximate
Greenwich apparent time

Approx, eq. of time, Dee. 17, at 4a 56** (p. 76)

Subtracting J
(4) from (3) gives approximate

G. M. T ,

Declination interpolated for G. M. T. in line (5) is 23

1 The equation is additive to G. M. T., according to the note at

the foot of p. 76, and therefore to be subtracted from Greenwich

apparent time.
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APPARENT PLACES OF STAKS, 1917

From Nautical Almanac, p. 95

FOR THE UPPER TRANSIT AT GREENWICH

1When the mimber in this column is very small, and especially when it is minus,
the star is very bright.

It is further to be noted that as we can thus obtain the

approximate G. M. T.
?
we really know in advance the approx-

imate moment when the observation should be *nade. So
it is unnecessary to get the sextant ready a long time before

the observation
; and it is, in fact, better to observe at the

proper predetermined approximate moment rather than to

wait for the maximum altitude (p. 86).

When the ship's position at noon can be predicted with fair

approximation, it is thus possible to have the declination and
other numbers for calculating the noon-sight also all ready
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in advance, so that the latitude will be immediately available

when the noon altitude has been read from the sextant.

We shall now consider the following example: Off St.

Paul de Loando, West Africa, approximate latitude 8 55'

south, approximate longitude 12 55' east, both predicted
in advance by D. R. for noon on Monday, Dec. 31. The
altitude of the sun's lower limb is to be measured. Index
correction is 5'. Height of eye, 26 ft.

To prepare for the observation, we have, as before :

Apparent solar time of noon 0* 0" (1)

Approximate D. R. longitude = 12 55' east = (at 15 to

the hour) 52 E. (2)

Subtracting (2) from (1) gives approximate Greenwich

apparent time, Dee. 30 23 8 (3)

Approximate equation of time, Dec. 30, at 23* 8OT

(P- 76) - 3 (4)

Subtracting (4) from (3), having regard to sign of

(4), gives approximate G. M. T 23 11 (5)

The navigator will then make the observation when the

G. M. T. is 23* llm
,
as indicated by the chronometer, duly

corrected for error and rate. This would of course also be

noon, or the time when the sun attained its maximum altitude

for the day.
Now the dials of chronometers are always divided into

12 hours, like ordinary watches, although navigators count

time through 24 hours, as we have seen (p. 75). The
reason is that the dial would be overloaded with numbers
if there were 24 hour divisions. Therefore, when we speak
of the chronometer indicating 23* 11*% it must be under-

stood that the actual chronometer indication, or "chro-

nometer face/' as it is sometimes called, would really be

11A llm ; only, the navigator would call it 23* 11"*, astronomic

time. In this manner civil time still forces its way into

navigation, by way of the chronometer face.

To make the observation at the prearranged G. M. T. by
chronometer it is not desirable to carry that instrument out

into the sunlight, where the observer stands. It is much
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better for the navigator to use his watch, and to calculate in

advance the "watch time" of the observation. To do this,

it is merely necessary to compare the watch with the chro-

nometer, and thus ascertain how much the watch is slow or

fast of the chronometer. This amount is called "chro-

nometer minus watch" (abbreviated C. W.) ;
and when the

watch is fast of the chronometer, C. - W. is marked with the

minus sign.

To obtain the watch time for the observation, we subtract

C. W. from the G. M. T. In the present case we will

suppose the watch was 47m fast of the chronometer. Then

C. W. = 47m. To get the watch time for the observa-

tion we must subtract 47m from 23* 11". Subtracting a

minus number is equivalent to addition; and so the watch

time is 23* llm + 47m = 23* 5&m . The observation would

be made as nearly as possible 2m before noon, by the watch.

In this connection it also becomes of interest to inquire

how the navigator's watch happened to be 47m fast of the

chronometer. It is customary aboard ship to set the deck

and cabin clocks, and all watches, to the ship's local apparent
time once a day at least. To do this, we proceed as follows :

Take from chronometer the G. M. T., corrected for error and rate (1)

Apply to this G. M. T. the eq. of time, giving Green'h app. time (2)

Apply to (2) the approximate D. R. longitude, adding it if longi-

tude is E., which gives ship's apparent time (3)

And set the watch to the time (3).

An example of this proceeding can be had from the data on

p. 93. Suppose the watch was to be set; and the chro-

nometer time was 23* Qm . We should then prepare to set the

watch in about 5m, when the

G. M. T. by chronometer would be 23* 5m (1)

Chronometer error (corrected for rate) say 2 (2)

Corrected G. M. T. by chronometer, (1) + (2) 23 3 (3)

Equation of time (p. 93) 3 (4)

Greenwich apparent time, (3) +(4) 23 (5)

Approximate longitude (p. 93) 52 E. (6)

Ship's apparent time, (5) + (6) 23 52 (7)



OLDER NAVIGATION METHODS 95

And the watch would be set to 23A 52m
,
when the chro-

nometer face was 23* 5m
; or, which is the same thing, the

watch would be set at 8m to 12 when the chronometer in-

dicated 5 minutes past 11.

Sometimes the navigator wishes the watch to be correct

by ship's apparent time at noon, but desires to set it right
half an hour sooner, so as to be free at noon to make an
observation. In that case he calculates by D. R. what the

longitude will be at noon, and proceeds practically in the

same way as before.

Resuming now the example of p. 93, we are still

off St. Paul de Loando, and at 2* before noon by the

watch (p. 94) the altitude of the sun's lower limb was
measured.

Suppose it was found to be 75 34' (1)

The index correction was 5 (2)

Adding (1) and (2), with regard to sign of (2), gives
corrected altitude 75 29 (3)

Correction from Table 6 +16 (4)

Correction from Table 7, for 26 ft. height of eye 5 (5)

Adding (3), (4), (5) gives corrected altitude '. . 75 40 (6)

Formula (2), p. 89, is the proper one, and the inter-

polated declination, disregarding sign, is 23 8 (7)

Latitude, by formula, is (6) -f (7)
- 90, or 8 48 (8)

The latitude of the ship is therefore 8 48 ;

south, from the

above noon-sight observation. The difference of 7' from

the approximate latitude (p. 93) might easily be caused by
ocean currents.

Our next example is a star observation. Position of ship

by D. R. March 23, 1917, at 6* SO37*

ship's time is : latitude

40 25' N., longitude 46 52' W., so that she is near the turning

point in the southern "lane route" followed by steamships

bound from New York to Fastnet in summer. The upper
transit (p. 89) of Sirius was observed; and the sextant

altitude was 33 7'. Index correction, 7'
; height vj*-?**"'

24ft. "37 (5)
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The calculation is as follows :

Observed altitude of Sirius 33 7' (1)

Index correction
~~

' '^

Adding (1) and (2), having regard to minus sign of (2),

gives corrected altitude 33 (3)

Correction Tables 6 and 7, combined 6 (4)

Adding (3) and (4) gives finally corrected altitude . . .

;
32 54 (5)

Use formula (4), p. 89, because latitude is -f and decli-

nation of Sirius -. We have 90 (6)

Subtract (5) from (6), giving (90
- altitude) 57 6 (7)

Declination of Sirius (p. 92), disregarding sign, is. . . 16 36 (8)

Subtract (8) from (7), giving (90- altitude -declina-

tion), or the latitude 40 30 (9)

Ship's latitude at the moment of observation was therefore

40 30' N.

In making such a star observation, it is of course possible

to follow the star with the sextant until it begins to

dip (p. 86) toward the horizon exactly as we have ex-

plained for the sun. But it is preferable to prepare for the

observation in advance, and to make it at a definite prede-

termined minute by the navigator's watch. To make such

preparation, it is necessary to use pages 96 and
(

97 of the

Nautical Almanac, parts of which pages are reprinted here

(pp. 97, 98).

The almanac page . 96 gives for all the bright stars the

G. M. T. of upper transit (p. 89) at Greenwich, for the first

day of each month. And it will be noticed that the upper

transit is here called
"meridian transit/' which is practically

another name for the same thing. Almanac page 97 (our

p. 98) then gives a subtractive correction, applicable to the

numbers on page 96, to make them correct on days of the

month other than the 1st
.

Another small correction is still required to make the

numbers right in the approximate D. R. longitude of the ship,

instead of the longitude of Greenwich, as used on almanac

This correction is subtractive, if the ship is in west

,
and additive, if she is in east longitude ; and the



OLDER NAVIGATION METHODS 97

MERIDIAN TRANSIT OF STARS, 1917

From Nautical Almanac, p. 96

GREENWICH MEAX TIME OP TRANSIT AT GREENWICH

amount of it is 10* for every 15 in the ship's longitude.

After it has been applied, the result will be the ship's mean
solar time of the star's upper transit.

As an example, let us take the preparation for the fore-

going observation of Sirius, or a Can. Maj. We have :

G. M. T. of upper transit, March 1, from almanac

page 96 above. u 8* 5m (1)

Correction for 23d day of month, from almanac

page 97 (our p. 98) - 1 27 (2)

Correcting (1) with (2), having regard to - sign of (2) 6 38 (3)

Further correction for longitude 46 52' W., at 10* per
15 of longitude, approximately 1 (4)

Subtracting (4) from (3) gives ship's mean solar time

of the observation 6 37 (5)
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MERIDIAN TRANSIT OF STARS, 1917

From Nautical Almanac, p, 97

CORRECTIONS TO BE APPLIED TO THE MEAN TIME OF TRANSIT o?3

THE FIRST DAT OF THE MONTH, TO FIND THE MEAN TIME OF
TRANSIT ON ANY OTHER DAY OF THE MONTH

NOTE. If the quantity taken from this Table is greater than the
mean time of transit on the first of the month, increase that time
by 23ft 56* and then apply the correction taken from this Table.

The actual observation was made at 6* 30**, ship's time,
as indicated by the navigator's watch. The difference of

7n between 6* SO1

", and 6* 37OT in line (5) above, is due to the

equation of time (p. 77), which is 7m on March 23. This

7m
,

if applied (with its proper sign from the almanac) to

line (5) above, will give the ship's apparent time; and we
have seen that watches and clocks on board are usually

kept set to apparent and not mean ship's time (p. 94).

To complete this part of our subject, we have still to con-

sider a few additional points of interest. For instance, a
star chosen for observation may be one of the planets :

Mars, Jupiter, or Saturn. These look like very bright stare

in the sextant telescope; and calculations depending on
them are similar to those described for stars. The planetary
declinations and the G. M. T.'s of their upper transits are

given in the almanac, but not on the pages reprinted here.
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The moon is now so rarely observed that we have not given

examples of lunar observations.

Sometimes an "ex-meridian" observation of the sun or

a star is made at a time very near the upper transit, on a

day when the actual transit observation could not be secured

because of clouds. There are special tables 1 for calculating

observations of this kind ; but we have not included them
here because all such observations can be satisfactorily

treated by a new general method to be explained later

(p. 108).

Having now fully treated the older standard method of

determining the ship's latitude, let us next consider the older

way of obtaining the longitude. This cannot be done when
the sun (or a star) is near its maximum altitude, as already

explained (p. 88). The most favorable opportunity occurs

when the observed object bears (p. 44) east or west ; but

it is not always possible to get the observation on such a

bearing. In that case, the longitude observation, often

called a "time-sight/
7 must be taken when the sun is near

the desired bearing, but always avoiding, if possible, observa-

tions at very low altitudes. And if a very low altitude has

been observed in an emergency, it can sometimes be checked

by a later observation at a better altitude.

The principle on which the time-sight depends is simple.

Calculations based on the measured altitude make known
the ship's mean time at the moment of observation. At

the same moment the chronometer face (p. 93), duly cor-

rected for error and rate, tells us the G. M. T. The
difference between the two times then gives us the longitude

(see p. 82).

The calculations for this problem are made by means of

Table 4 (trigonometric logarithms) and Table 10 ("haver-

sines")- These haversines (abbreviated hav.) are really

additional trigonometric logarithms; and Table 10 gives

in every case not only the haversine itself, which is really

1 Tables 26 and 27 of Bowditch's "Navigator," for instance.
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a logarithm, but also, in the adjoining heavy type col-

umns, the number (abbreviated No.) of which the haver-

sine is the log. This additional heavy type number is not

given throughout the entire table, but only when necessary

for working Sumner line calculations (see Chapter IX,

p, 108). It is not needed in working time-sights.

The argument (p. 10) of the haversine table is a double

argument, not to be confounded with the pairs of arguments

already explained (p. 11). In the haversine table, the argu-

ment is generally given in degrees and minutes, as well as

(for convenience) in hours and minutes of time, allowing

the usual 15 to each hour, etc.

We shall now solve our time-sight problem for the sun;
and in doing so shall make use of two angles not hitherto

employed: the "polar distance
77

(abbreviated p), and the

"half smn 77

(abbreviated s). We shall also, for brevity,

indicate the ship's apparent solar time by T. Then we
have the following formulas :

If lat. and dec. are both + or both . . p = 90 dec. (1)

If lat. and dee. are one -f- and one . . . p = 90 + dee. (2)

In every ease s = f (alt. -j~ lat. + p) (3)

If time-sight was made before noon, ship's time,
hav. (24* T) see lat. -f esc p + cos s -f sin (s alt.) (4)

If time-sight was made after noon, ship's time,
hav. T = sec lat. -f esc p + cos s -f sin (s alt.) (5)

In using these formulas, we have to choose between (1)

and (2), and also between (4) and (5). Formula (3) is

always used. No attention need be given to the signs
of the declination or latitude except in choosing between
formulas (1) and (2) for calculating p ;

and in choosing
between (4) and (5), we have merely to note whether the

time-sight was taken in the forenoon or afternoon by ship's
time.

We also desire to emphasize especially that these formulas

presuppose the latitude to be known. This is merely
another application of the principle (p. 88) that both lati-
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tude and longitude cannot be determined from a single

observation. It follows that in using this method we must
first determine the latitude by a noon-sight before we can

calculate the time-sight for longitude. If the time-sight
was taken in the afternoon, the noon-sight will naturally
have preceded it, and the ship's latitude at noon will be

known. This noon latitude must then be carried forward

to the moment of the afternoon time-sight by D. R. methods

(p. 7) ; and the latitude thus obtained must be used for

calculating the time-sight.

But if the time-sight was a forenoon observation, it cannot

be properly calculated until noon, when the latitude will

be determined. After that, the latitude can be carried

backwards by D. R. to the moment of the forenoon time-

sight, and the latter can be calculated.

But if the navigator, because of emergency, needs his

longitude at once, after taking the forenoon time-sight, he

must obtain the latitude by a D. R. calculation based on the

last good noon-sight. Most navigators calculate morning

time-sights in this way, and then repeat the calculation

after the new noon-sight has been obtained. The latter

calculation will be preferable to the former, because the

further the latitude is carried along byD. R., the less accurate

will it be. And any error in the latitude used in the calcula-

tion will impress a consequent error on the calculated longi-

tude.

We shall now work some time-sight examples. On board

ship, at sea, Dec. 18, 1917, in the afternoon, D. R. latitude

42 20' N., D. R. longitude 35 16' W., the altitude of sun's

lower limb was observed to be 14 19'. The time was taken

with the navigator's watch, and was 2h 29m 58*. A com-

parison of the watch and ship's chronometer gave C. W. =
2h 27m 8*. The chronometer correction was 2m 8* slow of

G. M. T. The index correction of the sextant was + 4'
;

height of eye, 24 ft. Calculate the ship's longitude.

We have first to find, for the moment of the observation.
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values of the declination and equation of time. To do this,

we have:

Watch time of observation 2A 29 58* (1)

C. -W. 2 27 8 (2)

Adding (1) and (2) gives chronometer time of

observation . 4 57 6 (3)

Chronometer correction, slow 2 8 (4)

Adding (3) and (4) gives G. M. T. of observation 4 59 14 (5)

For the G. M. T. (5) we interpolate the declina-

tion (p. 76), finding ,
- 23 24' (6)

and for the same G. M. T. we interpolate the

equation of time + 3 21* (7)

Now, adding (5) and (7) gives Greenwich ap-

parent time of observation. 5ft 2m 35* (8)

Next we inspect the formulas (p. 100), choosing (2) be-

cause latitude is + and declination
,
and (5) because the

sight was an afternoon one.

We now have, from line (6), declination (disregard-

ing sign) 23 24' (9)

to which, by formula (2), we add 90 (10)

giving p 113 24 (11)

The observed altitude was 14 19 (12)

Index correction -J- 4 (13)

Adding (12) and (13) gives corrected altitude 14 23 (14)

Correction, Table 6 +12 (15)

Correction, Table 7 - 5 (16)

Adding (14), (15), (16) gives finally corrected altitude 14 30 (17)

The latitude by D. R. is 42 20 (18)

Adding (11), (17), (18) gives 170 14 (19)

Halving (19) gives (by formula (3), p. 100) 85 7 (20)

Subtracting (17) from (20) gives (s
-

alt.) 70 37 (21)

Next we apply formula (5), p. 100. We have:

see lat. (18) from Table 4, page 238 "0.13121 (22)

cse p (11) from Table 4, page 219 0.03727 (23)

cos s (20) from Table 4, page 200 8.93007 (24)

sin (s
-

alt.) (21) from Table 4, page 215 9.97466 (25)

sum (22) to (25) = hav. T, by formula (5) 9.07321 1
(26)

1 This sum has been diminished by 10 arbitrarily (see p. 25),
which must always be done when the sum of logs is larger than 10,
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TV corresponding to (26; from Table 10, page 260, Is 2ft 40m 59* (27)

Greenwich apparent time (8) by watch and
chronometer is 5 2 35 (28)

Subtract (27) from (28), giving time difference

between ship and Greenwich 2 21 36 (29)

Turning (29) into degrees with Table 9 y page 249,

gives 35 24' W. (30)

and (30) is the ship's longitude from this time-sight.

Upon comparing the D. R. longitude (35 16' W.) with the

result of the time-sight (35 24' W.), we find that the ship
is 8' west of her D. R. position. This means, of course, that

there has been a westerly "set" of current in the interval

between the last accurate determination of longitude and
the present one. It would be proper for the navigator to

calculate from this the amount of westerly drift per hour,

and to allow for it in carrying forward Ms longitude by D. R.

from the present time-sight. It is also clear that the

northerly or southerly set of the current can be similarly

measured and allowed for by comparing the D. R. latitude

with the latitude from a noon-sight (cf. p. 95). It is the

general custom of navigators to ascribe such differences to

ocean currents, never to uncertainty in the astronomic results.

Dead reckoning is never allowed any weight as against a

sextant observation.

The reader will have noticed that the foregoing calculation

has been made in great detail, so that a beginner may have

no difficulty in understanding it. But a practiced navigator
would of course work the calculation in a much more con-

densed form, in such a way as to bring the logarithms next

to the numbers to which they belong. We shall therefore

now repeat the same example in such a condensed form :

1 If the observation had been made before noon, we should have

used formula (4) and should here have obtained 24A T, instead'

of T. This 24ft - T would then be subtracted from 24A
,
to get

T, before continuing the calculation. Thus the form of calculation

would contain another line between (27) and (28), in the case of

a forenoon observation.
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TIME-SIGHT, CONDENSED FORM. SUN

Wateh time : 2* 29* 5S* (1)

C. - W. : 2 27 S (2)

Chr. time : 4 57 6 (3)

Chr. eorr'n: -h 2 8 (4)

G. M. T. : 18th 4 59 14 (5)

Eq. of time: + 3 21 (7)

G. app. time : 5 2 35 (8)

4- 3 22*.3

1.2

+ 3 21.1 (7)

T = sMp's app. time :

By ehron., Greenwich app. time :

Longitude :

or:

0.13121 (22)

0.03727 (23)

8.93007 (24)

: 9.97466 (25)

9.07321 (26) - hav. T
(or 24* - T) i

2a 4Qm 59* (27)

5 2 35 (8)

2* 21 36s
(29)

35 24' W. (30)

When the object observed is a star or planet, the choice

between formulas (4) and (5), p. 100, is not quite the same

as in the case of a solar time-sight. We must use (4) if there

is any east in the star's bearing at themoment of observation ;

and (5), if there is west in the bearing. The more nearly the

star bears due east or west, the more accurate will be the

resulting longitude. The use of formulas (1), (2), and (3)

is the same as for the sun
;
but T, in the case of a star, is no

longer the ship's apparent solar time. Instead, it is called

i See p. 103, footnote.
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the star's "hour-angle." To get the longitude, we must

first (p. 85) calculate the Greenwich sidereal time corre-

sponding to the G. M. T. of the observation, as taken from

the chronometer, duly corrected for error and rate; and

then use the following formulas :

(6) Greenwich sid. time 1 - right-ascension of star = Greenwich

hour-angle.
,,

{
West long. = Greenwich hour-angle T,

^ '
(
East long. = T - Greenwich hour-angle.

As an example of a star observation we shall take the

following :

At sea, just before sunrise, Dec. 17, 1917, off Cape Agulhas,

latitude by D. R. 35 20' S., longitude by D. R. 20 41' E.,

the altitude of Sirius was measured, and found to be 40 3'.

The star bore west, and the height of eye was 22 ft. Index

correction was + 5'. Time by watch, 16* 29 48*, or 4h 29

48' A.M., civil time, Dec. 18
;
C. - W., - lh 23- 50s

;
chro-

nometer fast of G. M. T. 2m 28*.

The calculation would proceed thus :

Watch time of observation 16* 29* 48* (1)

C.-W -1 23 50 (2)

Adding (1) and (2), having regard to sign of (2),

gives chronometer time of observation 15 5 58 (3)

Chronometer correction, fast 2 28 (4)

Adding (3) and (4), having regard to - sign of (4),

gives G. M. T. of observation 15 3 30 (5)

Right ascension mean sun, Greenwich mean noon,

Dec.l7(p.83) 17 42 10 (6)

Correction for
" time past noon

"
(see p. 84) 2 28 (7)

Adding (6) and (7) gives right ascension of mean

sun 17 44 38 (8)

Adding (5) and (8) (see p. 85) gives Greenwich

sidereal time of the observation 8 1 48 8 (9)

Right ascension of Sirius, Dec. 17, is (p. 91) 6 41 34 (10)

Subtracting (10) from (9) gives Greenwich hour-

angle (formula (6), above) 2 6 34 (11)

1 24* may always be added or dropped here, if necessary.
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Next we calculate T by formula (5), p. 100. We have :

Declination of Sirius, Dec. 17 (p. 92) -16 36' (12)

By formula (1), p. 100, subtract (12) from 90,

without attention to sign of (12), giving p . . 73 24 (13)

The observed altitude was 40 3 (14)

The index correction was + 5 (15)

Table 6 correction
"" 1 (16)

Table 7 correction ^ (*"'

Adding (14), (15), (16), (17), having regard to

signs, gives corrected altitude 40 2 (18)

The latitude by D. R. was 35 20 (19)

Adding (13), (18), and (19) gives 148 46 (20)

Halving (20) gives * 74 23 (21)

Subtracting (18) from (21) gives (s
- altitude) . . 34 21 (22)

Now applying formula (5), page 100, we have :

sec latitude (19) from Table 4, page 231 0.08842 (23)

esc p (13) from Table 4, page 212 0.01849 (24)

cos s (21) from Table 4, page 211 9.43008 (25)

sin (s
- altitude) (22) from Table 4, page 230 9.75147 (26)

Summing (23) to (26) gives hav. T, by form. (5) . .9.28846 1
(27)

T z corresponding to (27) , from Tab. 10, p. 263 is . . 3* 29m 14* (28)

Difference between (28) and (11) is the longi-

tude by formula (7), page 105 1 22 40 E. (29)

Turning (29) into degrees with Table 9, page

249, gives 20 40' E. (30)

The D. R. longitude, 20 41' E., was therefore within I
7
of

the longitude from this time-sight, and this shows that the

ship has not been affected by ocean currents since the last

observation. It is also interesting to note how near sunrise

the observation was made. The twilight must have been

quite strong, and the star therefore dim. But star observa-

tions can be made best in twilight because the horizon line

can then be seen distinctly.

1 This sum has also been diminished by 10 (see footnote, p. 102).
2 Might be 24* - T, if the star bore E. instead of W. (see footnote,

p. 103).
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The foregoing example can of course also be arranged in

condensed form, as follows :

TIME-SIGHT, CONDENSED FORM. STAR
Watch time:
C. - W. :

Chr. time :

Chr. eorr'n :

G. M. T. :

R. A. mean sun :

Corr'n, past noon :

Greenw'h sid. time :

R. A. of Sirius :

Greenwich hour-ang
T., from (27) :

Long.:

R. A. of Sirius :

Dee. of Sirius :

p:
sec lat. :

esc. pi
cos s:

sin (s alt.) :

sum of 4 : 9.28846 (27) - hav. T (or 24*- T)
'

Having now fully explained both the noon-sight and the

time-sight, we shall close this chapter with a strong recom-

mendation to young navigators to familiarize themselves with

'the observation of stars. These always furnish a valuable

check on sun observations : and at times of danger may save

the ship when clouds have obscured the sun for days, and

clearing occurs after sunset. It is easy to learn to know the

principal stars from Jaeoby's
"
Astronomy," Chapter III,

"How to Know the Stars."

1 See footnote, p. 103.



CHAPTER IX

NEWER NAVIGATION* METHODS

THE reader may have noticed in Chapter VIII that there

is a very definite difference between the determination of

latitude by a noon-sight and longitude by a time-sight : for

the latitude is obtained without previous knowledge of the

longitude; but to get the longitude, a previous knowledge

of the latitude is essential. This is, of course, a decided

disadvantage in determining longitude, nor is there any

practicable direct way to get the longitude without first

knowing the latitude.

We have also seen (p. 101) that any existing uncertainty

in our knowledge of the latitude will produce an error in the

longitude computed from a time-sight. In situations of

danger it is important to ascertain how great this longitude

error may be. Suppose, for instance, we have calculated

a time-sight with a D. R. latitude that we suspect may be

as much as 10' too small ; and we wish to know how much
our computed longitude may have been thereby put wrong.

The obvious way to find out is to recompute the longitude

with an assumed latitude 10' larger than the D. R. latitude.

The resulting longitude will then show the extreme range
of error that must have been produced if the D. R. latitude

was 10' too small.

A third calculation, with an assumed latitude 10' smaller

than the D. R. latitude, will similarly exhibit the extreme

possible range of longitude error in the other direction.

Thus these two extra calculations will show the limits of

longitude error that might be caused by a range of 20' in

the possible error of the D. R. latitude.

108
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This rather obvious procedure was probably used long

ago by more than one intelligent navigator ;
but it was first

published in 1837 by Thomas EL Sumner, an American
merchant captain. He used the method in dramatic cir-

cumstances of great danger ; and he brought his ship safely

into port. According to his own account, he made three

calculations of the longitude, using three assumed latitudes

differing by 10', and he of course obtained three different

longitudes. He then marked or plotted (p. 55) on his chart

the point indicated by the first assumed latitude and its

computed longitude. At this point the ship must have been

located, if the first assumed latitude had been correct. The
other two latitudes, with their computed longitudes, indicated

two more points on the chart ; and at one of these points the

ship must have been, if either of these additional latitudes

was correct.

Sumner found that the three points on the chart lay in a

straight line; and it became at once evident that whatever

latitude he might assume (within reason) he would always

get a point on the same straight line, after computing the

longitude. In other words, although he did not know his

latitude accurately, and so could not compute his longitude

accurately, yet he had found a straight line on the chart

upon which his ship was surely situated.

Such a line can always be found in the way Sumner found

it, or in some preferable modern way; and such a line we
shall call a "Sumner line," though some writers on naviga-
tion prefer to call it a "line of position."

On the occasion of laying down his line, Sunnier found that

it passed directly through Small's Light, near the Irish coast
;

and as the line bore E.N.E. on his chart, he simply put
the ship on that course, and in less than an hour he "made"
Small's Light, actually bearing E.N.E, % E., and, as he says,

"close aboard." He had had no observations after passing

longitude 21 W., until the morning of Dec. 17, when these

historic events occurred. He was off a rocky lee shore, in
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the midst of a winter gale, after crossing the Atlantic ; only

a seaman can understand the relief he must have felt when

that light suddenly appeared off the bow.

We have given this account of Sumner's experience to

impress on the young navigator that he must positively

familiarize himself with the Stunner method of navigation.

Should we be so fortunate as to have any experienced navi-

gator among our readers, we ask him to try the Sumner

method once more, in the manner explained below, even if

he may have found it troublesome in the past on account of

certain difficulties in its application. For the Sumner

method is the best method of navigation on all oceans and

at all times : even when a noon-sight is available for latitude,

it is better to treat it as a Sumner observation, and work

out the Sumner line.

The principal objection urged against it by certain prac-

tical navigators arises from the small scale of existing ocean

track charts, on which a distance of 10' is represented by

about $ inch. A line like Sumner's, 20' long, would have

only a length of J inch on the chart ; and such a little line

would not be long enough to show accurately the direction

in which it pointed. When near a coast, as in Sumner's

case, this difficulty disappears, because navigators always

have (or always should have and use) the large scale charts

that can be obtained for coastwise waters.

But it is inconvenient for navigators to begin using a

method off the coast, on the last day of a voyage, different

from the form employed for many days at sea. Therefore,

some authorities recommend the construction of a special

large scale chart, with its latitude and longitude lines, each

time an observation is made throughout the voyage, so that

the Sumner line can always be drawn on a sufficiently large

scale. It is no wonder that navigators have not generally

adopted this somewhat laborious proceeding; and in the

method given below we shall utilize the Sumner idea without

requiring any lines to be drawn on charts.
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Another objection to Simmer navigation is that it requires
too much calculation; three longitude calculations for one

observation, as Sumner practiced it. This objection is also

quite removed now by the use of suitable tables such as we
give in the present volume.

But before proceeding to explain these tables, we must
outline briefly the real principle on which rests the com-

plete utilization of the Summer method on the open sea.

There the navigator wants to know the ship's position in

both latitude and longitude ;
and will not be satisfied with

a mere line, with the ship "somewhere on the line." Along
the coast such a line might help him to find Small's Light ;

but he is not looking for coast lights at sea.

And the Sumner method takes care of this matter in the

simplest possible way. We have seen (p. 88) that two
different observations are always necessary by any method
to get both latitude and longitude. But two such observa-

tions by the Sumner method give two different lines on the

chart: and as the ship must be located on both lines, her

actual position must be at their point of intersection. We
shall show how the required latitude and longitude of the

ship at the point of intersection can be found by a simple

calculation, without the drawing of any lines on the chart.

Coming now to the modern method of calculating a Sum-
ner line, we must first state a general fundamental principle

that may be easily verified by geometrical considerations.

The true bearing (p. 44) of a Sumner line on a chart is

always 90 greater than the true bearing or azimuth (p. 44)

of the sun (or star) at the moment of observation. Or, in

other words, the Sumner line bears at right angles to the

sun at the time of observation.

We shall show how the bearing or azimuth of the sun can

always be found from suitable "azimuth tables"; but the

Sumner line is not completely known from its bearing alone.

To locate it properly it is necessary to know in addition the

latitude and longitude of some point on the line, which we
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mil call a "Sunnier point." Then, knowing such a point of

the line, and the bearing of the line, we may say we know the

line completely, and, if necessary, could draw it on a chart.

Now to find the required Sumner point. We always have

the D. R. position of the ship at the moment of observation;

which we will call the "D. R. point/' It is easy to find

out if the D. R. point is also a Sumner point. It is merely

necessary to calculate what the sun's altitude would be for

a ship at the D. R. point, and then compare this calculated

altitude with the one actually observed. If the D. R. point

was really a Summer point (which will rarely happen), the

two altitudes will agree ;
if not, the amount of disagreement

will show how far the D. R. point is distant from the nearest

Sumner point.
1

The first step, then, in Sumner navigation, is the calcula-

tion of the altitude, supposing the ship to be at the D. R.

point at the moment of observation. To do this for a sun

observation, we first calculate the Greenwich apparent time

(abbreviated G. A. TO of the observation, just as was done

in the case of a time-sight on p. 102. To this G. A. T. we

then add the ship's D. R. longitude, if east, or subtract it, if

west, to get T (p. 100), the ship's apparent time of the ob-

servation. We then use the formulas on p. 113, in which

X and Z are "auxiliary angles'
7

required in the calculations,

but not otherwise of special interest. These formulas are

called the "eosine-haversine" formulas.

There are several other sets of formulas with which the

same problem can be solved. One set, called the " haversine
"

formulas, involves the use of haversines only; another,

called the "sine-cosine" formulas, solves the problem with

sines and cosines. But neither is preferable to the following

cosine-haversine set.

1 This method is often called .the Marcq Saint Hilaire method ;

but it should probably be credited to Lord Kelvin, who published
" Tables for Facilitating Sumner's Method at Sea " in 1876. These
tables follow the method described above.
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If observation was made before noon, ship's time,

hav. X = cos lat. + cos dec. *- hav. (24* - T), (1)

If observation was made after noon, ship's time,

hav. X = cos lat. -f cos dec. + hav. I
7

, (2)

lat. dec. = diff. 1 of lat. and dee., if both are -f or both , (3)

lat. dec. = sum 1 of lat. and dec. if one is + and one , (4)

No. hav. Z = No. hav, (lat.
- dec.) + No. hav. Z, (5)

Alt. = 90 - Z. (6)

Now we can compare the altitude computed by formula

(6) with the observed altitude, fully corrected for index

error, etc. The difference between the two altitudes in

minutes will be the distance in miles of the nearest Sumner

point from the D. R. point, for the minute and nautical

mile here correspond, as they do in the case of differences of

latitude (p. 15). The bearing of the Sumner point from the

D. R. point will be the same as the sun's azimuth if the ob-

served altitude is greater than the computed altitude : but if

the observed altitude is less than the computed, the bearing of

the Sumner point will be 180 greater than the sun's azimuth.

The bearing and distance of the Sumner point from the

D. R. point once known, it is easy, by means of the traverse

table (p. 10), to obtain the latitude and longitude of the

Sumner point from the known latitude and longitude of

the D. R. point ; or, which is the same thing, from the ship's

D. R. latitude and longitude.

Before giving examples of these calculations, it remains

to show how the sun's bearing or azimuth can be taken from

Table 11 (p. 284), called the azimuth table. The pair of

arguments (p. 11) for entering this table are: first, in the

left-hand column, the declination, which is here used without

regard to its sign; and second, in the four topmost hori-

1 In using formulas (3) and (4), pay no attention to + or

signs after the right formula is once chosen. The difference between

latitude and declination is always taken by subtracting the smaller

from the larger ; and the sum by adding them, without regarding
their + or signs. Cf. also p. 89,
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zontal lines, T (p. 100), the ship's apparent time at the

moment of observation.

Having found this pair of arguments, we look in the

column under T, and in the horizontal line opposite the

declination. There we find an "index number." Next we

look up the altitude, as computed by formula (6), page 113,

in the right-hand column of the azimuth table, and follow

along the horizontal line belonging to that altitude, until

we reach a number equal (or nearly equal) to the index

number. Then we go down the column containing this

second appearance of the index number, and find the azi-

muth at the bottom of the page. The table gives approxi-

mate azimuths only, but the approximation is sufficient for

our present purpose.

The azimuths at the bottom of the page appear in four

horizontal lines, of which the upper two belong to forenoon

observations, and the lower two to afternoon observations.

All azimuths are counted from the north, through east,

south, and west, from to 360, like compass courses in

United States Navy practice (p. 41). It is important for

the navigator to record, at the time of observation, the word

"forenoon
"

or "afternoon," and also the sun's roughly

approximate bearing, to aid in choosing which of the azi-

muths at the bottom of the tabular page is the right one.

The record showing whether the observation was made in

the forenoon or afternoon limits the choice to two of the lines

of azimuths; and if there is any doubt remaining between

these two, the following rules may clear it up.

When latitude is + and declination ,
azimuth is between

90 and 270;
When latitude is + and declination +, if declination is

greater than latitude, azimuth is not between 90 and 270 ;

When latitude is and declination ,
if declination is

greater than latitude, azimuth is between 90 and 270 ;

When latitude is - and declination +, azimuth is not

between 90 and 270.
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In other cases, and especially when latitude and declina-

tion are nearly equal, the foregoing rules are insufficient, and
we must consult Table 12 (p. 290), the "auxiliary azimuth

table." This table has latitude and declination for its pair
of arguments, the former in the left-hand vertical column,
the latter in the topmost horizontal line : and in using the

table it is not necessary to pay attention to the + and

signs of latitude and declination. Start with the latitude,

and follow its horizontal line to the right until you reach the

column having the declination at its head. There you will

find an "auxiliary angle," which must be compared with

the altitude computed by formula (6), page 113. Then :

If the computed altitude is greater than the auxiliary

angle, and if latitude is +, azimuth is between 90 and 270
;

If the computed altitude is less than the auxiliary angle,

and if latitude is
,
azimuth is between 90 and 270

;

If the computed altitude is less than the auxiliary angle,

and if latitude is +, azimuth is not between 90 and 270
;

If the computed altitude is greater than the auxiliary

angle, and if latitude is , azimut^i is not between 90 and

270.
It will rarely happen that any of the foregoing rules will

be needed, if the navigator will make a careful observation

of the sun's azimuth with the azimuth circle or pelorus

(p. 44), as soon as possible after the sextant altitude has

been observed. The ship's course should also be specially

recorded when this observation is made. This proceeding
is not merely a convenience to avoid consulting the fore-

going rules in using the azimuth table : it is really essential

to safe navigation, for a comparison of the observed azi-

muth with that derived from the table will make the com-

pass error (p. 43) known. The variation is known from the

chart ; so that if we observe the compass error, we can allow

for the variation, and get the deviation. This can then be

compared with the deviation table (p. 48), to see if there has

been any change in the compass since leaving port. It is
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a great advantage of the Sumner method that the sun's

azimuth comes out as a sort of by-product, so that the com-

pass can be verified without any additional special calcu-

lations.

We shall now illustrate all the above considerations by
means of examples ; beginning with the observation already

treated as a time-sight (p. 101). That observation we shall

now work by the Sumner method. From page 101 we take

the following :

Date of observation, Dec. 18, 1917, in the afternoon; D. R.

latitude, 42 20' N. ; D. R. longitude, 35 16' W. ; altitude observed,
14 19'; time by watch, 2A 29W 58*; C. -W., 2* 27m 8*; chronometer

correction, 2* 8* slow of G. M. T.
; index correction, + 4' ; height of

eye, 24 ft.

From the preparatory part of the calculation (p. 102),

we also copy the following additional numbers :

Declination, line (6), page 102 -23 24' (1)

Greenwich apparent time (G. A. T.) of observation,
line (8), page 102 5* 2 35* (2)

We have next to calculate, by the formulas on page 113, the

altitude corresponding to the D. R. point, for which the

latitude and longitude are given above. The longitude is

35 16' W., or, at 15 to the hour (Table 9, p. 249) :

D. R. longitude is. 2* 21W 4* W. (3)

Subtracting (3) from (2), according to page 112,

gives ship's apparent time of observation, T. . 2 41 31 (4)

We are now prepared to apply formulas (1) to (6),

page 113. We choose formula (2) for an afternoon obser-

vation *
; and write :

1 For a forenoon observation we should choose formula (1), and
should therefore need to know 24* T instead of T. This would
make necessary another line in the form of calculation, and it would
follow line (4). This new line might be numbered (40 ; and in it

-would be written 24*-T9 obtained by subtracting T (line 4) from
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Cos lat., 42 20' N. by D. R. (see Table 4, p. 238) .... 9.86879 (5)

Cos dee., 23 24', line (1) (see Table 4, p. 219) 9.96273 (6)

Hav. T, 2* 41* 31*, line (4) (see Table 10, p. 260) .... 9.07596 (7)

Adding (5) to (7) gives hav. X (dropping 20, p. 25) . . 8.90748 (8)

Now we choose formula (4), because latitude and declina-

tion are + and
;

The latitude is, by D. R. 42 20' (9)

Adding (1) and (9) according to formula (4) gives

(lat.
-

dec.) 65 44' (10)
Now we have, Table 10, page 266, No. hav. of (10) . . 0.29451 (11)
No. hav. X,i line (8) 0.08082 (12)

Adding (11) and (12), according to formula (5), page
113, gives No. hav. Z 0.37533 (13)

And Z, corresponding to (13) is found from Table 10,

page 268 75 34' (14)

Then, by formula (6) computed altitude =90 Z (14),

or 14 26' (15)

This computed altitude (15) must now be compared with

the observed altitude, fully corrected. We find :

Obs'd alt., fully corrected, line (17), page 102, is 14 30' (16)

Difference between (15) and (16), in minutes, is the

distance of Sunnier point from D. R. point in

miles (p. 113). It is 4 miles (17)

Next we must find the sun's azimuth from Table 11, page
286. The top argument for entering the table is T7

,
line

(4), and it must be found in the "afternoon" lines. The

argument for the left-hand column is the declination, line (1).

Under T, and opposite declination, we find the tabular index

number 5872.2 Then we find the computed altitude, line

(15), in the right-hand column of Table 11, page 286, and

1 This No. hav. X comes from Table 10, page 258, without looking

up the angle X at all. We simply find hav. X in the table, and take

the No. hav. X out of the adjoining heavy type column. No inter-

polations are needed, the nearest tabular numbers being sufficiently

accurate.
2 The index numbers and the azimuth need not be very accurate :

it is sufficient to use the nearest tabular arguments, so that inter-

polation is not essential.
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follow Its horizontal line till we again come upon the index

number 5872. It lies about halfway between 5703 and

5973. Going down the two columns containing these index

numbers, we find in the afternoon azimuth lines two values

of the azimuth, 217 and 323. The choice between these

two numbers would be very easy, if the observer's record

contained even a rough estimate of the sun's bearing at the

time of observation. We have purposely not made this avail-

able, so as to show how to consult the directions on page

114, and there we find that when the latitude is + and the

declination -, the azimuth is between 90 and 270. So

we finally choose 217 for the sun's azimuth.

Since the observed altitude (16) is greater than the com-

puted altitude (15), the bearing of the Sumner point from

the D. R. point, according to page 113, is the same as the sun's

azimuth, or 217. And as we now know the bearing and

distance of the Sumner point from the D. R. point, we can

find its latitude and longitude by a simple application of the

traverse table (p. 154).

We have merely to consider the bearing and distance to

be a course angle and distance, and imagine a ship to have

sailed from the one point to the other. In the present case,

the distance is 4 miles (line 17), the course 217 : and Table 1

(p. 164) gives the corresponding latitude 3'.2, departure 2.4.

The longitude difference is obtained from the departure by
Table 2 (p. 174) and is, for latitude 42, about 3'.2. Drop-

ping odd fractions, the latitude difference and longitude differ-

ence both come out 3'. The Sumner point is therefore 3' dis-

tant from the D. R. point in both latitude and longitude.

And since the bearing 217 indicates on the compass card

that the Sumner point is south and west of the D. R. point,

it follows that :

Lat. of Simmer point = D. R. lat. 3' =
42 20' N. (line 9)

- 3' 42 17' N. (18)

Long, of Sumner point = D. R. long. +3' 35 19 W. (19)

Azimuth of Sumner line (p. Ill) 307 (20)
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It is important for the reader to understand that the fore-

going calculation is given in extended detail so as to make
it easy for the beginner to follow. In condensed form,
we should have the following arrangement of the calculation,

corresponding to the condensed time-sight form (p. 104).

Part of the work here repeated from page 104 has no attached

reference numbers in parentheses : the new part of the work
has references to the detailed calculation just given.

SUMNER LINE, CONDENSED FORM. SUN

2323'.7 S.

0.1H. D. :

Lat. - Dec. :

Z:
Comp'd alt. :

Obs'd alt. :

Diff.:

Index No. :

Azimuth i

Lat. diff. :

65 44
75 34

14 26

14 30
4

5872

217

3'.2

(3)

(4)

(9)

(D

(10)

(14)

(15)

(16)

(17)

Eq. time, 4* : -f 3** 22*.3

H. D.: 1.2

Eq.time,4*59: + 3 21.1

hav. !

cos lat. :

cos dec. :

sum = hav. X:
No. hav. X :

No. hav. (lat.

- dec.) :

No. hav. Z

D. R. lat. : 42 20' N. (9)

Sumner pt. lat. : 42 17 N. (18)

Azimuth of Sumner line : 307 (20)

Dep.:
Long. diff. :

D. R. long. :

Sumner pt. long. :

9.07596

9.86879

9.96273

8.90748

0.08082 (12)

0.29451 (11)

0.37533 (13)

2.4

3'.2

35 16' W. (3)

35 19 W. (19)

1 See footnote, p. 116.



120 NAVIGATION

When the object observed is a star (cf. p. 104) or planetj

the choice between formulas (1) and (2), page 113, is not quite

the same as in the case of a solar observation. We must

use formula (1) if the star was on the east side of the sky
when observed, which might be called a "forenoon 75

observa-

tion of the star
;
and we must use (2) if the star was on the

west side of the sky, giving an "afternoon" star observa-

tion. The use of the remaining formulas (3) to (6) is the

same as for the sun
;
but T is now no longer the ship's appar-

ent time. Instead, it is the star's hour-angle (p. 104);
to find it for use in formulas (1) and (2), and in Table 11,

we must first calculate (p. 85) the Greenwich sidereal

time corresponding to the G. M. T. of the observation, as

taken from the chronometer, duly corrected for error and
rate ;

and then use the following formulas :

(7) Greenwich hour-angle = Greenwich sidereal time right ascen-

sion of star,

,gv
f T = Greenwich hour-angle -f- D. R. longitude, if east,

'
\ T = Greenwich hour-angle D. R. longitude, if west.

As an application of the Sumner method to a star observa-

tion, let us take the observation of Sirius, Dec. 17, 1917,
off Cape Agulhas, already treated as a time-sight (p. 105).
From the preliminary calculations there given, we have :

Greenwich hour-angle, line (11), page 105 2* 6W 34* (1)
D. R. longitude (p. 105) is 20 41' E., or by

Table 9 (p. 249) 1 22 44 E. (2)

By formula (8) above, we add (1) and (2),

giving r 3 29 18 (3)

The star bore west l
(p. 105) so we choose formula (2)

(p. 113), and write:

eos lat. (p. 106, line 19), 35 20' S. by D. R.

(see Table 4, p. 231) 9.91158 (4)
cos dec. (p. 106, line 12),

- 16 36' (Tab. 4, p. 212) 9.98151 (5)
hav. T, Bh 29^ 18* (line 3, above) (see Table 10, p. 263) 9.28872 (6)

Adding (4) to (6) gives, by formula (2), page 113, hav. X, 9.18181 3
(7)

1 See p. 116, footnote.
2 Sum diminished by 20 (see footnote, p. 102).
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Next we choose formula (3), page 113, since latitude and
declination are both -. We have :

By formula (3), lat. - dec. - 35 20' - 16 36' = 18 44' (8)

We now use formula (5), page 113. We have:
No. hav. 18 44' (8) (see Table 10, p. 254) 0.02649 (9)

No. hav. X 1
(7) (see Table 10, p. 261) 0.15194 (10)

Adding (9) and (10) gives No. hav. Z. . 0.17843 (11)

And Z, corresponding to (11) is found from
Table 10, page 262 49 59' (12)

Then, by formula (6), page 113,

computed alt. = 90 -Z (12), or 40 I' (13*

This computed altitude (13) must be compared
with the observed altitude, fully corrected.

This was (p. 106, line 18) 40 2' (14,

Difference between (13) and (14), in minutes, or dis-

tance of Sumner point from D. R. point in miles

(p. 113) 1 mile (15)

Next we find the star's azimuth from Table 11, page 287.

The top argument for entering the table is T, line (3),

and it must be found in the "afternoon" lines, since the star

bore W. The argument for the left-hand column is the

declination, line (5). Under T (p. 287), and opposite

declination, we find (approximately) the tabular index num-
ber 7550. Then we find the computed altitude, 40 (13),

in the right-hand column of the table (p. 289), and follow

along its horizontal line until we again reach the index

number 7550. The nearest to 7550 is 7544; and under

this number, at the foot of the column, we find the two

"afternoon" azimuths 260 and 280.

These two numbers are so nearly equal that there is un-

certainty in choosing between them. Had the observer

taken the star's bearing by compass at the time of observa-

tion (p. 115), the uncertainty would be removed. But

in the absence of this information, we must have recourse

to Table 12 (p. 290), the auxiliary azimuth table. Enter-

ing this table with the pair of arguments of the present

1 No. !hav. here obtained from liav. without finding the angle X
(p. 117, footnote).
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problem: viz. latitude 35, declination 17, we find the

auxiliary angle 31. The computed altitude (13) being

40, is greater than the auxiliary angle, and the latitude is .

Therefore, by the instructions (p. 115), the azimuth is

not between 90 and 270. We therefore choose 280 as

our final azimuth, since 260, the other possible value, is in

the prohibited area between 90 and 270.

The computed altitude (13) being less than the observed

altitude, this observation places the Sumner point 1 mile

(15) from the D. R. point, and bearing from it 280, the same

as the star's azimuth (p. 113). The traverse table (p. 156)

gives, for distance 1 and course 280, latitude 0.2, departure

1.0. The longitude difference, by Table 2 (p. 172), is 1'.2,

for the departure 1 .0. Therefore, since azimuth 280 indicates

on the compass card that the Sumner point is W. and N.

of the D. R. point, we have :

lat. of Sumner point = - 35 20' (4) -f- 0'.2 = - 35 20' (16)

long, of Sumner point = 20 41' E. (2)
- 1'.2 = 20 40' E. (17)

The bearing of the Sumner line will be 90 greater than

the star's azimuth (p. Ill) ;
so we have :

Bearing of Sumner line 280 +90 370; or,

dropping 360 = 10 (18)

The foregoing calculation of the Sumner point from a

star observation can of course also be put in condensed form.

In doing so, we have repeated certain numbers from page 107

without references in parentheses. But numbers taken

from the extended calculation just given have their reference

numbers attached.

This condensed form, like the others previously given, is

the form of calculation which would be used in actual

navigation. It is most important, in the interest of numeri-

cal accuracy, to make all calculations upon forms ; and no

numbers should be written on the forms without having an

adjoining statement as to the meaning of the numbers.
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SUMNER LINE, CONDENSED FORM. STAR

Watch time :

C. - W. :

Chr. time :

Chr. corr'n : -- 2 28 Obs'd alt. : 40 3'

G. M. T. : 15 3 30 Index : 4* 5
R. A. mean sun : 17 42 10 Table 6 :

- 1

Corr'n, past noon : 2 28 Table 7 :
- 5

Greenw'h sid. time:

R. A. of Sirius :

Greenw'h hour-angle
D. R. long. :

T:

Corr'd alt. : 40 2

(6)

(5)

(4)

(7)

(10)

(9)

(ID
(12)

(13)

(14)

(15)

T or (24* - T} i
: 3* 29 18* (3) hav. : 9.28872

Dee.: - 16 36' cos: 9.98151

D. R. kt. :
- 35 20 cos : 9.91158

Sum of 3 = hav. X: 9.18181

No. hav. X: 0.15194

Lat. - Dee. : 18 44' (8) ; No. hav. : 0.02649

Sum of 2 = No. hav. Z : 0.17843

Z: 49 59'

Computed alt. 90 - Z : 40 1

Obs'd alt., eorr'd : 40 2

Diff. : 1

Index No.: 7550
Azimuth : 280
Lat. diff. : 0',2 Dep. : 1.0 Long. diff. : 1'.2

Sumner pt. lat. :
- 35 20' (16) ; long. : 20 40' E. (17)

Bearing of Sumner line : 10 (18)

We have now, in the foregoing examples, illustrated the

manner of determining a Sumner line completely by ascer-

taining the latitude and longitude of one point on the line

(the Sumner point), and the bearing of the line itself at that

point. It may be desired to draw the line on the chart,

which will always interest the navigator if he is near the

coast and has a large-scale chart. To draw it, we merely

locate the Sumner point on the chart by its latitude and longi-

1 See footnote, p. 116.
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tude ?
and then draw the line through the point so that it

will make with the meridian an angle equal to the bearing

which has been computed for the line. The Sumner line

should be extended in both directions from the Sumner

point, for any convenient distance, in such a way that the

point will be near the middle of the line.

We can now gain a better understanding as to Sumner

navigation by comparing the results obtained in one of the

foregoing examples with the corresponding calculation of

the same example as a time-sight. Thus from the same ob-

servation (pp. 104, 119)

As A TIME-SIGHT As A SUMNEE OBSERVATION

From D. R. latitude 42 20' N. ;
Prom D. R. latitude 42 20' N. ;

D. R. longitude 35 16' W., we D. R. longitude 35 16' W., we

found the ship's longitude to be found the Sumner point to be

35 24' W. io- latitude 42 17' ; longitude 35

19' W. ; and azimuth of Sumner
line, 307.

Starting with the same observed altitude, and the same

D. R. position of the ship, we get quite different results by
the two methods of calculation. The time-sight gives us

nothing but a longitude ;
and it will be the correct ship's

longitude only if the D. R. latitude was also correct (p. 101),

Therefore the time-sight calculation leaves us with both

latitude and longitude still affected by possible errors in the

D. R. latitude.

On the other hand, the Sumner calculation gives us both

a latitude and a longitude, but neither belongs to the ship's

position. They both belong to the position of the Sumner

point, but they are free from the effects of any D. R. errors.

They fix the Sumner point only, but they fix it correctly*

Furthermore, our knowledge that the ship is somewhere

on the Sumner line is also a fact, free from error. So what
we learn from the Sumner method is sure

;
what we get by

the older methods is all really D. R. information in some
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degree. The Sumner method is Independent of D. R., an

advantage of which the value cannot be estimated too highly.

Furthermore, it can be shown mathematically (cf. p. Ill)

that a single observation can never really do more than

determine a line on which the ship must be. Even a noon-

sight does no more than this
;
for in determining the ship's

latitude, it really only makes known a horizontal line (the

ship's latitude parallel) on the chart. In other words, for

a noon-sight the Sumner line is horizontal, or has a bearing
of 90. And it will always come out 90, if a noon-sight is

worked as a Sumner observation.

But the principal purpose of our present comparison of

the two methods of calculation is to warn the navigator

against falling into the error of imagining the ship to be at

the Sumner point. The observation does no more than tell

us where the Sumner point is, and that the ship is somewhere

on the line ;
so far as the observation is concerned, all points

on the line are equally likely to be the ship's true position.

Therefore it is misleading to call the Sumner point the ship's

"most probable position." Were it so, a second observation,

made later in the day, would give another "most probable

position" of the ship. We should then be naturally led to

take as the ship's final location a point midway between the

two "most probables/' ascribing their divergence to possible

errors of observation. But the ship's real position we already

know (p. Ill) to be at the intersection of the two Sumner
lines resulting from the two observations. And this inter-

secting point may be many miles from both "most proba-

bles," and from the above-mentioned midpoint between

them.

Less than two observations cannot fix the ship's position

completely; when two have been made, a correct applica-

tion of the Sumner method requires that the intersection

point of two Sumner lines be determined by calculation.

But before explaining the method of doing this, we must

describe an excellent alternative way of making Sumner
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calculations such as we have given in the above examples.

The results are the same results as before, but they are

obtained with less work, and quite without logarithms, by

means of special tables such as our Table 13 (p. 292),
1 which

we shall call Kelvin's Sumner Line Table.

This table has a pair of arguments (p. 11), a and b
}
a ap-

pearing at the heads of t3 tabular columns, and b in the

left-hand column of each page. Corresponding to these

two arguments, the table gives two angles, K and Q ;
so that

whenever a and b are given we can find the corresponding

K and Q; or, if a and K should be given, we can find the

corresponding b and Q.

In the Sumner problem we obtain, by preparatory calcu-

lation (cf. pp. 119, 123), the following data:

Declination of sun (or star) ;
D. R. latitude ; IX R. longitude ;

T, the snip's apparent time of the observation for the sun, or the

hour-angle for a star ;

and we wish to get the computed altitude and the azimuth.

The principle on which Table 13 depends is that the D. R.

latitude and longitude being always somewhat uncertain,

we can, if we choose, change them by reasonable amounts

before beginning our calculations. The Sumner point will

then be determined by its distance and bearing from the

changed D. R. point, instead of the original D. R. point.

By this device the tabular calculation is much facilitated.

The use of the table is easy after a little practice, the work

being divided into a series of separate operations. In de-

scribing these operations we have used small subscript num-

bers, to distinguish the several arguments, etc. ; as, for in-

stance, in Operation 1 we use a*, 61, KI.

1 These tables were first published by Lord Kelvin in 1876.

More extended ones were recently issued by Lieutenant de Aquino,
of the Brazilian Navy; and these were reprinted by the Hydro-
graphic Office, United States Navy, in 1917. Aquino also improved
Kelvin's method of using his table.
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OPERATION 1, requiring no interpolation. Enter Table 13

with:

Axg. ai = declination, taken without regard to -j- or sign, and cor-

rect to the nearest whole degree only ;

Arg. 61= T, if T
7
is between 0* and 6*;

= 12* - T
3 if T is between 6* and 12*;

= T -
12*, if T is between 12* and 18*;

= 24* - T, if T is between 18* and 24*;
and before use bi must be turned into degrees with

Table 9 (p. 249). It need be correct to the nearest

degree only. This proceeding will make 61 always
less than 90.

Then take from the table the tabular angle Ki y
also correct

to the nearest degree only.

OPERATION 2, requiring simple interpolation. Enter the

table a second time with :

Arg. 02 = the Ki, obtained in Operation 1.

Then, under this 02, run down the J-column until you
find the declination (taken without regard to + or sign) ;

so that, in other words, Kz = declination.

Take from the table the angle Qz, which stands next to

the declination K2) and also the &2 ,
which is in the left-hand

argument column, in the same horizontal line with the

declination Kz in the J^-coIumrj. It will rarely be possible

to find the declination (which must this time be exact to

the nearest minute) in the K-column; so that a simple

interpolation will be necessary in getting Q2 and 62- An

example of this interpolation will be found on page 129
; and,

as we shall see, it is practically the only numerical calculation

required in the whole problem. The Kelvin method is very
much shorter than it looks.

The angle Q2 is used in choosing the longitude of the

"changed D. R. point"; the latitude of that point will be

found in Operation 3. To utilize Qz for a sun observation,

calculate the Greenwich apparent time (G. A. T.) of the
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observation, as on page 102, line (8), and turn it into de-

grees with Table 9 (page 249). Then :

(1) W. long, of changed D. R. point = G. A. T. - Q2 , if, in Oper-

ation 1, T was less than 6*;

(2) W. long, of changed D. R. point = G. A. T. - (180
- Q2) if,

in Operation 1, T was between 6* and 12*;

(3) W. long, of changed D. R. point = G. A. T. - (180 -f Q2) if,

in Operation 1, T was between 12* and 18*;

(4) W. long, of changed D. R. point - G. A. T. - (360 - Q2) if,

in Operation 1, T was between 18* and 24*.

When the subtractions in these formulas cannot be made,
the G. A. T. may be increased by 360

;
and when the west

longitude comes out greater than 180, subtract it from 360,
and call it east longitude.

In the case of a star, we must use, in the above formulas,

the Greenwich hour-angle, instead of the G. A. T. See

page 105, line (11), for the method of obtaining it.

OPERATION 3, requiring no interpolation. Enter the table

a third time with :

Arg. c^ Ki, again as obtained in Operation 1.

(5) Arg. 63 = 90 -
(&a -f- changed D. R. lat.), if latitude and

declination are of opposite signs, one + and
one ;

(6) Arg. &3 = (62 + changed D. R. lat.)
- 90, if T was between

90 and 270;
(7) Arg. k = 90 -

(62
- changed D. R. lat.), if latitude is less

than 62 ;

(8) Arg. 63 = 90 + (&2
~ changed D. R. lat.), if latitude is

greater than 62.

In choosing among formulas (5) to (8), give them pre-
cedence in order; do not use (7) or (8) if the conditions

stated for (5) or (6) are satisfied. And at this point, use

your privilege of choosing any reasonable changed D. R. lati-

tude for the ship ; and choose one that differs as little as pos-
sible from the original D. R. latitude, and that yet makes
6s a whole number of degrees. In this way, all further
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interpolation is avoided. Having once chosen among the

formulas, the latitude is used without regard to + or

signs.

To complete Operation 3, having entered the table with

the pair of arguments as and b3j take out the tabular K3

and Q3 .

Ks is now the computed altitude, to be used (p. 113) in

locating the Sumner point from the changed D. R. point;
and Q3 is the sun's true azimuth, which will always come
from the table less than 90. If the ship is in the northern

hemisphere, this azimuth must be counted from the north

point of the horizon if, in Operation 3, we used formulas (6)

or (7) ; or from the south point of the horizon, if we used

formulas (5) or (8). With the ship in the southern hemi-

sphere, interchange the north and south points of the horizon

in these directions. And in both hemispheres, the azimuth
will of course be counted toward the east or west, according
as the observation was a "forenoon" or "afternoon" one

(cf. p. 120).

We shall now use Table 13 for the example given on page
119 in condensed form. We have (p. 127) :

OPERATION 1.

ai = dec. = 23, p. 119, line (1), to the nearest degree;

61 = T = 2h 41m 31*, p. 119, line (4) = 40, to the nearest

degree ; and, with ax and bt as arguments, Table 13 gives

(p. 298) : Ki = 36, to the nearest degree.

OPERATION 2.

02 = Ki = 36.
Z2

- 23 24', p. 119, line (1)

and, with 02 and K$, we must find Q2 and 62- Running down
the column headed a 36 (p. 302), we find :

When K2 - 23 5', Q2 = 39 43', b = 29,
When K2 = 23 51', Q2 = 40 0', ^ - 30.

We wish to interpolate for K2 = 23 24', which is 19'

down from 23 5' toward 23 51'. The whole distance from
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23 5' to 23 51' is 46'. Therefore we must interpolate

do\vn f of the whole interval from Q2
=* 39 43' to Q2 =

40 0'. The difference between these two Q2 's is IT
;
there-

fore the final &, belonging to K - 23 24', is 39 43' +
if X IT = 39 43' + 7' = 39 50'. Similarly, the difference

between the two 62 's being 60', the final value of 62 ,
for

Jv2
= 23 24', is 29 + if X 60' = 29 25'. These two

little interpolations are practically all the calculation required

in the whole problem.
To find the longitude of the changed D. R. point from the

above Q* = 39 50', we take from page 102, line (8),

Greenwich apparent time of observation, 5* 2m 35*

which, by Table 9 (p. 249) is, 75 39'

We now use formula (1), page 128, because T, in Opera^

tion 1, was less than 6A
. We get :

W. long, of eh'd D. R. pt. = G. A. T. - Q2 = 75 39 r - 39 507

= 35 49' W.

OPERATION 3.

a* = fa = 36.

The D. R. latitude is + 42 20' (p. 119, line (9)) ; and as

the declination is
,
we choose formula (5), page 128.

This, without changing the D. R. latitude, would give 63 =

90-(&2 -fD.R.lat.) =90~(29 25 /

4-42200 = 90 -71 45'
;

but by choosing a changed D. R. latitude of 42 35 7

,
we shall

make &s a whole number of degrees. So we have:

63 = 90 - (62+ changed D. R. latitude) = 90 -
(29 25 7

+ 42 35')
- 90 - 72 = 18.

Now we enter the table with the arguments a3 = 36, and
63 = 18, and obtain, without interpolation (p. 302) :

Kz = computed altitude = 14 29',

Qz = sun's true azimuth = 37 22'.

This azimuth must be counted from the south point of

the horizon, since we used formula (5) in Operation 3 ; and
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as the observation was an afternoon one, the correct azi-

muth will be S. 37 22' W. (cf. p. 19). Counted in the United

States Navy way, from the north toward the east, and so

around to 360, the azimuth will be 217 22'.

On page 119, we found : Computed altitude, 14 26'
;
azi-

muth, 217.

This computed altitude differs by 3' from the value just

found by Table 13. The difference is due to our having

changed the D. R. point.

From the changed D. R. point, in latitude 42 35' N.;

longitude 35 49' W., we now calculate (see Condensed Form,
next page) the position of the Surrmer point to be : latitude

42 34' N.
; longitude 35 50' W. The former position, as

obtained on page 119, was: latitude 42 17' N.
; longitude

35 19' W.
These two Sumner point positions should lie on the

same Sumner line if the method of Table 13 gives correct

results; and they will satisfy this test, if the bearing
of a line joining them agrees with the azimuth of the

Sumner line, which is 217 + 90 = 307. From the two

Sumner point positions we have : latitude difference = 17' ;

longitude difference = 31'; departure (Table 2, p. 174)
= 23.0. The traverse table (p. 164) gives, for latitude 17,

departure 23.0
7
the distance 28, course 307. The agree-

ment is perfect, and shows that the same Sumner line

passes through both points, though they are 28 miles

apart. This test also shows that the calculation may
indicate any point on the Sumner line as the Sumner point,

f the D. R. position of the ship is uncertain : and so

we again call attention to the error of taking the cal-

culated Sumner point as the ship's most probable position

(cf. p. 125).

We now, as usual, repeat the above calculation byTable 13,

in condensed form, and including the final determination

of the position of the Sumner point from the changed D. R.

point.
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SUMNER LINE BY TABLE 13, CONDENSED FORM. SUN
[The following is taken from page 119.]

DecL, 4* :
- 23 23'.7 Eq. of time : + 3m 22*.3

H. D. : 0.1 H. D.: 1.2

DecL, 4*59>: -23 24 Eq. time: +3 21.1

Watch time : 2h 29 58* Obs'd alt. : 14 19'

C. - W. : 2278 Index : -f 4
Chr. time: 4 57 6 Table 6 : +12
Chr. corr'n : -f 2 S Table 7 :

- 5

G. M. T. : 4 59 14 Corr'd alt. : 14 30

Eq. of time : +321 D. R. lat. : 42 20' N.
G. app. time : 5 2 35 D. R. long. : 35 16' W.
D. R. long. : 2214 W. (3)

Ship's app. time, T: 2 41 31 (4)

[The following is calculated with Table 13.]

OPERATION 1 OPERATION 2

ck = dec. = 23 az = Ki = 36
61 = T - 2* 41 31'(4) #2 = dec. = 23 24'

= 40 Table 13, Qz = 39 50'

Table 13, Ki = 36 Table 13, bz = 29 25'

Greenwich app. time = 5* 2 35* = 75 39'

By page 128, form. (1), W. long, of changed D. R. pt. = G. A. T. - Qa

= 35 49' W.
Lat. of changed D. R. pt. = 42 35' N.

OPERATION 3

o = Ki = 36
6 = 90 -

(fc -+- changed D. R. lat.) = 18
Table 13, Ks = comp'd alt. = 14 29'
Table 13, Q3 = azimuth of sun = 37 22'

or, by U. S. Navy - 217 22'
Azimuth of Sumner line = 217 22' + 90

= 307 22'
Dist. of Sumner pt. from changed
D, R. pt. = corr'd obs'd alt. comp'd alt. = 1' or 1 mile
Bearing of Sumner pt. from changed D. R. pt. = 217,
since comp'd alt. is less than obs'd alt.

Dist. 1, on course 217, gives lat. doff., O'.S; dep., 0.6 ; long, diff., 0'.8
Lat. of Sumner pt. = lat. of ch'd D. R. pt. - lat. diff. = 42 34' N.
Long, of Sumner pt. = long, of ch'd D. R. pt. -f long. diff. = 35 50' W.

A practised navigator can make the above complete calcu-

lation in a few minutes, as there are no logs used
;
and any-

one can easily obtain the necessary practice at sea by simply

forming the habit of working his sights both as time-sights
and as Sumners. To illustrate the subject further, we now
give, in condensed form, the Star Example of p. 123, worked

by Table 13,
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SUMNER LESTE BY TABLE 13, CONDENSED FORM. STAR
[The following is taken from page 123.]

Watch time: 16^ 29** 4S Obs'dalt. : 40 3'
C. - W. : - 1 23 50 Index : + 5
Chr. time : 15 5 58 Table 6 : 1
Chr. corr'n : - 2 28 Table 7 :

- 5
G. M. T. : 15 3 30 Corr'd obs'd alt. : 40 2
R. A. mean sun : 17 42 10
Corr'n, past noon : 2 28 Dec. of Sinus :

- 16 36
Greenwich aid. time : 8 48 8 D. R. lat. : - 35 20
R. A. of Sirius : 6 41 34
Green, hour-angle: 2 6 34
D. R. long. : 1 22 44 E.
T: 3 29 18

[The following is calculated with Table 13.]

OPERATION 1 OPEBATION 2

ai = dec. =17 a* = Ki = 49
bi=T = 3* 29 18' K* = dec. = 16 36'

= 52 Table 13, Qt = 51 57'
Table 13, Ki = 49 Table 13, b* = 25 49'

By page 128, form. (1),
W. long, of changed D. R. pt. = Green, hour-angle Qa1

339 41'
- 20 19' E.

Lat. of changed D. R. pt. = - 35 49'

OPEEATION 3

<z, = & = 49
By form. (8), page 128, 63 = 90 + (61

- changed D. R. lat.) = 80
Table 13, K* = comp'd alt. = 40 15'
Table 13, Q, = az. of Sirius = N. 81 25' W.

or, by U. S. Navy = 278 35'
Az. of Sunnier line = 368 35', or 8 35'

Dist. of Sumner pt. from changed
D. R. pt. = corr'd obs'd alt. comp'd alt. = 13' or 13 miles
Bearing of Sumner pt. from changed D. R. pt. = 99,
since comp'd alt. is greater than obs'd alt.

Dist. 13, on course 99, gives lat. diff., 2'.0 ; dep., 12.8 ; long, diff., 15'.9

Lat. of Sum-Tier pt. = lat. of ch'd D. R. pt. + lat. diff. = - 35 51'

Long, of Sumner pt. =* long, of ch'd D. R. pt. + long. diff. 20 35' E.

To complete this part of our subject, it remains to show

how the position of the ship can be found at the intersec-

tion of two Sumner lines (pp. Ill, 125) resulting from

two different observations. Figure 18 explains the nature of

the problem ; and it is almost exactly the same figure and

1 Qz being larger than the Greenwich hour-angle, the latter was
increased by 360, to make the subtraction possible (p. 128).
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N

problem treated in Chapter V, when we discussed fixing a

ship's position by means of
"
bearings from the bow"

(p. 54).

The two Sumner lines in Fig. 18 are SL and S'L, passing

through the two Sumner points S and Sf

,
whose latitudes

and longitudes are known

by calculation from the

observed altitudes. The

bearings or azimuths of the

two Sumner lines from the

north are the two angles

NSL and N'S'L, which are

also known from the pre-

vious calculations. It is

now required to find the

latitude and longitude of

the intersection point Z/,

where the ship is situated.

The similarity of this

problem to the former one

in ChapterVbecomes plain,

if
.

W6 ^agine a Second ship

sailing from one Sumner

point to the other, as from S to 5', and taking bearings
from her bow upon our ship, located at L. These bearings
will be the two angles S'SL and S"S'L. If the second

of these angles should happen to be just twice as big
as the first, the distance S'L between the two ships at

the time of the second bearing would be equal (p. 54) to

the distance SS' run by the imagined ship between the two
observations.

This would enable us to fix the position of the imagined
ship at S'j if L were a lighthouse ashore. But if L is our

ship, and S' a Sumner point of known position, the same
observations of bow bearings would fix the position of our

ship at L. Nor is it necessary (or possible) to measure

/*

FIG. IS. -Intersection of Sumner Lines.
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such imaginary bearings, or read the patent log to get the

distance run by an imagined ship.

For the distance and bearing of the second Sumner point
from the first can be obtained from their known latitudes

and longitudes with the traverse table. Thus the line S3'

(marked "distance 77

) and the bearing (or course) angle
NSS' become known. Furthermore, the "bow bearing" at

S is the angle S'SL, and it is equal to the difference NSL
NSS r

. We have just seen that NSS f
is obtained from the

traverse table
;
and NSL is the calculated azimuth of the

Sumner line through S. In a similar way we get the other

"bow bearing" S
rrSf

L. If this were twice the first one, the

"required distance" S'L in the figure would be equal to the

known distance SS' between the two Sumner points. If

not, it can be easily shown mathematically that :

(1) Required distance = known distance X a factor,

(2) log factor = sin S'SL - sin (S"S'L - S'SL).

By these simple formulas the required distance S'L might
be found : and as we also know the latitude and longitude
of the Sumner point S', and the azimuth or bearing of S'L,

the traverse table will make known the latitude and longi-

tude of the ship at L. It is to be noted also that as we are

at liberty to call either of the Sumner points S', it is desirable

to call that one S' which has the larger "bow bearing/
7

so that there will be no difficulty about subtracting S'SL
from S"S'L.

The factor of formula (2) above can practically always
be found in our Table 14, the Sumner Intersection Table,

without using logarithms. The pair of arguments of the

table are the smaller "bow bearing" and the larger "bow

bearing"; the tabular number is the factor of formula (1)

above, and will always give the distance of the intersection

point from that one of the two Sumner points for which

the bow bearing was the larger.

And it should not be forgotten that the Sumner line really
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extends equally in both directions (p. 124) from the Sumnei

point, whereas, in Fig. 18, we have extended it mainly
in the direction of the intersection point L. Now the cal-

culated azimuth of any Simmer line may be changed 180 a

at will, because the bearings of the two ends of the line from

the Sumner point differ by 180, and we may take the bear-

ing of the line to be the bearing of either end from the Sumner

point in the middle of the line. Figure 18 shows, however,
that for the purpose of the present problem we must choose

the bearing of that end of the line which is nearest the point

of intersection L; nor does the choice ever offer difficulty,

because the known D. R. position of the ship at L, when

compared with the known positions of the two Sumner

points, will always indicate whether L bears east or west

of either Sumner point, and also whether it bears north or

south. And the bearing of L once chosen, we can always
find either of the two bow bearings by this formula :

(3) Bow bearing = bearing of Sumner line minus bearing
of the second Sumner point S

f from the first point S.

In using formula (3) it is allowable to increase the bear-

ings of the Sumner lines by 360, when necessary to make
the subtractions possible, and if the formula brings out bow
bearings larger than 180, subtract them from 360, and

proceed as before.

It is also always desirable to draw a rough sketch for

every intersection problem occurring on shipboard so as to

guard against accidental large errors like 90 or 180 in ob-

taining the two bow bearings ;
and also to make sure that

the latitude and longitude of the intersection point L are

correctly computed with the traverse table.

The foregoing assumes that the ship did not move from
the point L between the two sextant observations from which
the two Sumner lines were calculated. This will rarely
be the case, because it is very desirable that the two observa-

tions, if they are both sun observations, be separated by
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three or four hours, if possible. The condition of an unmov-

ing ship will occur only if she is a sailing vessel becalmed,
or a steamer at anchor

;
or if the two observations are made

at nearly the same time upon two different heavenly bodies,

such as two stars.

High accuracy in the resulting "fix" (p. 53) of the ship
will then be attained, if the azimuths of the two stars differ

by about 90 at the time of observation. The same favor-

able condition will be secured if one of the observations is

made upon a star near upper transit (pp. 89, 96), in the

twilight just before sunrise or after sunset; and the other

observation, at nearly the same time, upon the sun, when
it is about 12 or 15 above the horizon.

But if the ship has traveled a considerable distance between

the two observations, it is necessary to allow for such travel

before calculating the intersection point. Suppose she has

gone a distance D, upon a course C, by D. R., between the

two observations. Then simply find from Tables 1 and 2

the difference of latitude and longitude corresponding to

distance D and course C ; and apply them as corrections to

the latitude and longitude of the Sumner point belonging

to the first observation. Everything else, including the

bearing of the first Sumner line, remaining unchanged,
the calculation then proceeds by Table 14, just as if the

ship had not moved. The computed intersection point is

then the ship's position at the time of the second sextant

observation.

We shall now work some intersection examples.

Suppose we have two Sumner lines, as shown in the rough

sketch, Fig. 19, taken on board a ship becalmed. The
two sextant observations give :

FOB ONE SUMNER POINT, S FOR THE OTHER POINT, S*

lat.1
: 4234'N. 42 50' N.

long.: 3550'W. 35 36' W.
bearing of Stunner line : 307 93 (changed to 273)

1 As found on page 132.
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The rough sketch, Fig. 19, having been made, and the

two "bow bearings" marked with little circular arcs as

shown, we call that one of the two Surrmer points S'
9 which

has the larger bow bearing ; and, for the point S', we change

FIG. 19. Rough Sketch of Sumner Intersection.

the bearing of the Sumner line from 93 to 180 + 93 =

273, so as to count the bearing for that end of the line which

is toward the intersection point L (p. 136). The other

bearing, 307, for the point S, is already correctly counted.

We now have, from the two Sumner point latitudes and

longitudes: latitude difference = 16'; longitude difference =
14'; departure (Table 2, p. 174, for middle latitude 43) =
10.2 ; and, for latitude difference = 16, departure = 10.2,

we find (Table 1, p. 162), distance = 19, course = 32. The
distance between the two Sumner points is therefore 19

miles, and the bearing of S' from S is 32.
Now we apply formula (3), page 136, and find :

Smaller bow bearing at S = 307 - 32 = 275.

Larger bow bearing at S' = 273 - 32 = 241.

Being larger than 180, these must be subtracted from
360 (p. 136), giving:

Smaller bow bearing = 85; Larger bow bearing = 119.

Next we refer to Table 14, and find with the smaller

bearing 85, and the larger 119 the factor 1.78 (p. 322).
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According to formula (1), page 135, we then have:

Required distance LS r = distance SSf X factor
= 19 X 1.78 = 33.8 miles.

Therefore the position of the ship at L is distant 33.8

miles from S', and she bears 273. With this distance and

bearing or course angle, the traverse table (p. 154) gives:
latitude = 1.8, departure = 33.8. For the departure 33.8,

Table 2 gives, for the middle latitude 43 (p. 174), differ-

ence longitude = 46/
.2. The bearing 273 showing that the

intersection point L is N. and W. of Sf

,
we have :

Latitude of ship at L = 42 50' N. + 1'.8 = 42 51'.8 N.

Longitude of ship at L = 35 36' W. + 46'.2 = 36 22' W.

As a second example take the following two Sumner lines,

as shown in the rough sketch, Fig. 20. The two sextant

observations give :

FOE ONE SUMNER POINT, S FOE THE OTHER POINT, Sf

lat. : 14 26' N. 15 30' N.
long. : 77 8' W. 76 22'.5 W.

bearing of line : 53 135

And suppose the ship, in the interval

between the two sextant observations, has

traveled a distance!) = 31 miles, on course

C = 205. We must begin (p. 137) by
shifting the first Sumner point S a dis-

tance D, on the course C. For this course

and distance, we have (Table 1, p. 160) :

lat., 28M; dep., 13.1; diff. long., 13'.5 FlG. 2o. Rough
(Table 2, p. 168). Sketch of Sumner
mi j- .LT -I J.M. j j T -j. j f Intersection.

Therefore, the latitude and longitude of

the first Sumner point must be corrected (p. 137) as follows :

For tne point S, lat. - 14 26' N. - 28M - 13 58' N.

long. = 77 8' W.+ 13'.5 = 77 21'.5 W.

Bearing (unchanged) = 53.

We now have, for the two Sumner points : lat. diff., 92'
;
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long, diff., 59'; dep., 57.0 (p. 169) ; dist., 108 miles (p. 162) ;

bearing of S' from S, 32.
Xow we have, by formula (3), page 136 :

Smaller bow bearing at S = 53 32 = 21.
Larger bow bearing at S' = 135 - 32 = 103.

Table 14 (p. 319) gives the factor 0.36 ; so that the ship at

L is distant from S' 108 X .36 = 38.9 miles, and bears 135.
For this distance and bearing we have (Table 1, p. 166),
latitude = 27',6 ; departure = 27.6 ; and longitude differ-

ence (Table 2, p. 168) = 28'.6. Finally, then, at the time
of the second sextant observation, the ship at L was in

latitude 15 30' N. - 27'.6 - 15 2'.4 N. ; and in longitude
76 22'.5 W. - 28'.6 = 75 54' W.



CHAPTER X

A NAVIGATOR'S BAY AT SEA

THE present chapter contains a number of examples by
means of which the reader can gain facility in the use of the

methods set forth in the preceding pages.
The steam yacht Nav is bound from New York to

Colon, and the captain plans to take his departure from
the Sandy Hook Lightship, on Dec. 18, 1917, as early as

possible in the morning.
The first bit of navigation, to be accomplished before the

yacht leaves her anchorage in the "Horseshoe," is to ascer-

tain by D. E.. methods the proper course to steer from

Sandy Hook. A glance at the track chart of the north

Atlantic shows that she must go by way of Crooked Island

Passage, and the Windward Passage between Cuba and
Haiti. It is also apparent from the chart that the first land

to be sighted among the islands is Watlings Island, and that

the proper course should pass to the eastward of it.

The position of Sandy Hook Lightship
x is lat. 40 28' N. ;

long. 73 50' W. Hinch inbroke Rock, at the southern end

of Watlings Island, is in lat. 23 57' N.
; long. 74 28' W.

But the course should be shaped for a point about 12 miles

east of Watlings Island, to be perfectly safe. The position

of such a point is (approximately) lat. 23 57' N. ; long. 74

15' W.2

1 There is an excellent list of latitudes and longitudes in Bow-
ditch's

*'
Navigator."

2 The difference between this longitude and that of Hinchinbroke
Roek is 13' ; but 13' here corresponds to about 12 miles, on account

of Table 2.
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ABSTRACT OF LOG. Steam Yacht Xav, Dec. 18, 1917

i i

j

PATENT COMPASS
|
TRUE

By the method of page 20, the course from Sandy Hook
Lightship should be 181, and the distance is 990 miles.

These numbers, and all subsequent numbers in the present

chapter, should be verified by the reader.

The distance being quite large, it is well to check it by
the logarithmic method, page 33. The result by this method
is: course 181 14', distance 991.7 miles.

The chart also shows that this course will carry the yacht
very near Barnegat Light, on the coast of New Jersey. The
position of this light is lat. 39 46' N.

; long. 74 6' W. The
captain decides that it will be well to plan passing this light
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at about 5 miles' distance. The position of a point 5 miles

east of Barnegat Light is lat. 39 46' X., long. 73 59' W. The
course and distance to this point from Sandy Hook Ship
are 189 and 42.5 miles. This course is so nearly the same
as the course to Watlings Island that the captain decides

to steer the 189 course.

All this work must be complete before reaching Sandy
Hook, for the course from the lightship must be ready for

the quartermaster before the lightship is passed. And
there is still more preliminary work. For the courses cal-

culated above are true courses (p. 43) and the quarter-
master must have the compass course, so that he may be

able to steer the yacht. The method of calculating the

compass course from the true course is given on page 48 ;
and

in applying it the captain must have his deviation tables

at hand. We shall assume that the tables printed on pages 48
and 49 were the ones furnished by the compass adjuster for

the present voyage.
An examination of the Atlantic track chart shows that in

the vicinity of Sandy Hook, the variation, V, is 10 W., or

10. By formula (3) (p. 49), we then have, since the true

course T is 189 :

Magnetic course = M - T - V = 189 - (- 10) - 199.

The second deviation table (p. 49) shows that when the

magnetic course (or magnetic bearing of ship's head) is 199,
the deviation, D, is + 18. Then, with V = - 10, D = 18,
formula (1), page 45, gives :

Compass error = E = 7+ D = - 10 + 18 - + 8a.

And from formula (2) , page 45 :

Compass course C = T - E = 189 - 8 = 181 ;

and so the yacht must be steered on a 181 compass course

for Barnegat. But the quartermaster is to steer by
"
points

"

so that the course nearest the 181 course is due south. The

captain decides to have the yacht steered due south by
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compass, and is prepared to give the quartermaster his

orders as soon as Sandy Hook Lightship shall be reached.

The foregoing preliminary work having been completed

the previous day, the anchor is tripped at the Horseshoe

about an hour before daylight on Dec. 18, the weather being

fine, sea smooth, and wind light from the northwest. The

lightship is reached and passed at 7 : 02 A.M., ship's time, civil

reckoning, the ship then taking her departure. At that

moment, the patent log is read, and found to register 26.2

miles. The quartermaster gets his orders to steer south;

and all the above facts are duly recorded in the log-book.

And at every hour thereafter, 8, 9, 10, etc., a similar record

must be made in the log-book.

The next event is sunrise, which occurs at 7 : 21, very
soon after leaving the lightship. The sun's compass bearing

can then be very conveniently observed, and will furnish

an excellent check on the compass adjuster. This observa-

tion was made at 7:21 A.M., ship's time, civil reckoning,

corresponding to 19* 21m
,
Dec. 17, ship's apparent time,

astronomic reckoning; and the sun's bearing or azimuth

was 113 by compass. This was entered in the log-book,

and at the same time the patent log was read, and found to

be 31.0 miles.

To check the deviation table, the procedure was then as

follows :

By patent log the yacht had proceeded from the light-

ship a distance of 31.0 26.2 = 4.8 miles, on a compass
course of 180, or true course of 188; by D. R., she had
therefore reached the position lat. 40 23' N.

; long. 73 51' W.
The sun's declination, from the almanac, is 23 23', and
the (approximate

1

) T (p. 100) is 19* 21m . The sun's true

azimuth is found from Table 11 to be 121
;
and in using the

table for this purpose take the altitude of the sun, for the

1 If there is any chance of this T being much in error, the cap-
tain's watch, by which the observation is timed, must be compared
with the chronometer. See p. 94.



A NAVIGATOR'S DAY AT SEA 145

moment of sunrise, to be 0. The observed compass azi-

muth having been 113, formula (2), page 45, gave E =TC
- 121 - 113 = +8. Then from formula (1), page 45,

D E - V - + 8 - (- 10) = + 18. As expected, this

deviation agrees with the deviation table, which would
not be likely to go wrong so soon after the beginning of a

voyage.
At 8 A.M. the patent log read 41.0; and at 9 A.M., 57.2.

The course was still S. by compass, or 188, true course.

At 9 : 24 Barnegat Light was sighted by the lookout, and
the mate was ordered to take bow-and-beam bearings (p. 55)

upon it.

At 9 : 36, the light bore 225 by compass, or 45 from the

bow ; patent log, 67.0.

At 9* 42* 28* by his watch the captain took the altitude

of the sun's lower limb with the sextant, and found it to

be 18 51'. Index correction was + 3', and height of eye,

15 feet. C. W. was 4* 51m 50*
;
and the chr. correction

by the rate card was 4% slow. Patent log, 69.1. At 9 : 45

by the watch, the sun's azimuth was again observed with

pelorus, and found to be 137, compass bearing. It was
intended to work a Surrmer line from the altitude by Kelvin's

table; and the pelorus observation was made because the

sun's true azimuth always comes out as a by-product, when
Kelvin's table is used, and so it is just as well to have an-

other check on the deviation table. This is the peculiar

advantage of Kelvin's table. Without any additional cal-

culations, the compass is always checked up on the very
course the ship is steering. This is just what the good

navigator wants.

The observations could not be worked up at once, be-

cause the captain wished to see the result of the mate's

bow-and-beam bearings. At 9 : 57 by the watch, Barnegat
bore abeam, on the starboard hand, or 270 by compass, the

yacht being still on the 180 compass course. Patent log

now 72.5.
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Between the bow-and-beam bearings the run by log was
72.5 67 = 5.5 miles. Therefore the yacht is now 5.5

miles from Barnegat Light, and the compass bearing of the

light is 270. The compass error being + 8, the true bear-

ing of the light is 278 ;
and the bearing of the yacht from

the light is the former bearing reversed, or 278 - 180 - 98,
true. From this comes an accurate and complete position

of the yacht. Barnegat Light is in lat. 39 46' N.
; long. 74 6'

W. The yacht, 5.5 miles away on the bearing 98, must, by
traverse table, be in lat. 39 45 7 N.

; long. 73 59' W.
At 10 A.M., the log was 73.4, course 188, true.

Now the captain prepared to shape a new course to be

followed from the Barnegat bow-and-beam bearing "fix" in

the above lat. 39 45' N.
; long. 73 59' W., at 9 : 57.

Allowing ten minutes to work up the new course, the

captain plans to change course at 10 : 07. At that time

the ship, on her course of 188, will be (at 15-knot speed)
2'.5 S. and practically 0' W. of the Barnegat position. So

the course will be changed when the yacht is in lat. 39 42' N.
;

long. 73 59' W., at 10 : 07. The course and distance from

there to the point 12 miles east of Hinchinbroke Rock are :

distance, 945 miles; course, 181, true, or 173 by compass.

Therefore, by the table on page 52, the quartermaster gets

the new course S.fE. by compass, at 10 : 07. This corre-

sponds to 174 by compass, or 182 true course; and at

10 : 07, when the course was changed, the patent log read

75.3.

Now the Sunnier line, from the observation at 9a 42m 28*

by the watch, was worked by Kelvin's table ; and the result

was:

Sumner point is in lat. 39 50' N. ; long. 73 56' W. ; bearing of

Sumner line 237.

It is necessary, as a check, to ascertain whether this Sum-
ner line passes through the position obtained for the ship

by the Barnegat bearings. Before doing this, the Sumner

point must be shifted by the method of page 137, to allow for
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the motion of the yacht between 9 : 42, when the sextant

observation was made, and 9 : 57, when Barnegat bore
abeam. The difference is 15 minutes, and in that time the

ship moved south 3.4 miles by the patent log and an in-

significant distance west.

Therefore the corrected Summer data are :

Stunner point is in lat. 39 46'.6 N. ; long. 73 56' W. ; bearing of

Sumner line 237.

If everything fits, this Sumner line must pass through the

Barnegat "fix" of the yacht in lat. 39 45' N.
; long. 73 59'

W., because the yacht must have been somewhere on the

line.

The traverse table shows that the bearing of a line passing
the Sumner point and the yacht's position is 235, differing

only 2 from the Sumner line bearing ;
so this check is satis-

factory. But a better way to check this matter is to deter-

mine the yacht's position from the intersection of two lines,

one of which is the Sumner line, and the other the beam bear-

ing of Barnegat Light. This can be done by the method of

page 133. The data of the problem are :

Stunner point : lat. 39 46'.6 N.

long. 73 56' W.
Line bears 237

Barnegat Light : lat. 39 46' N.

long. 74 6'W.
Line bears 98

We shall call Barnegat Light S'; and then formula (3),

page 136, gives, for the two bow bearings :

At Sumner point, 5, 237 - 266 = 29.
At Barnegat, S'9 98 - 266 = 168.

For these two bearings, Table 14 gives the factor 0,74, and

the yacht is placed 6 miles from Barnegat, on the 98 bear-

ing. The bow-and-beam observations gave 5.5 miles, so

the check by the Sumner line is excellent.

It remains for the captain to utilize the azimuth observa-
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tion made at 9 : 45. The bearing of the Sumner line was

237, and therefore the sun's true azimuth was 147. The

observed azimuth, by pelorus (p. 145), was 137. The com-

pass error was therefore + 10. The variation being - 10,

the deviation by formula (1), page 45, isD = 10 -
( -10) =

+ 20.

On page 143 we found that the deviation table made this

deviation -1- 18
;
so that the table appears to require a

correction of 4-2. The captain decides not to correct

the table for the present, unless later azimuth observations

shall confirm it, especially as the sunrise observation showed

the adjuster's results to be correct. Azimuth observa-

tions made when the sun is high in the sky are not quite

as reliable as sunrise ones. Moreover, the observation was

made at 9 : 45, whereas the altitude observation, for which

the true azimuth was calculated with Kelvin's table, was

made at 9 : 42, so that the true azimuth must have been in

error by the sun's azimuth change in three minutes. This

could have been avoided by giving the mate orders to ob-

serve the azimuth at about the same moment when the

captain took the altitude. Or, the sun's azimuth change

in three minutes might be taken from the azimuth table, and

the computed true azimuth duly corrected.

At 11 the log read 88.7, and the course was S.JE. by com-

pass, or 182, true.

At about 11 : 30, the weather showing signs of becoming

thick, no preparations were made for a noon-sight by the

method of page 86; and rather than take the risk of losing his

noon observation altogether, the captain took an ex-me-

ridian altitude at lla 42*1 s by his watch; log was 98.5;

the sextant reading 26 55'; index -f 3'; height of eye 15

ft. ; C. W. was now 4A 5lm 42*; and chronometer slow 4*.

The observation was worked by Kelvin's table, and gave
the Sumner point in lat. 39 20' N.

; long. 73 40' W. ; bearing

of Sumner line 86. Figure 21 is a rough sketch of this Sumner
line. It is very nearly horizontal ;

had the observation been
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3920'

made at noon precisely, it would have been perfectly hori-

zontal.

It wTould now have been possible to move up the Sumner
line observed at 9 : 42, and obtain an intersection to fix the

position of the yacht.

But this did not seem

necessary to the cap-

tain, because of the

beam bearing obtained

at Barnegat at 9 : 57,

which gave a good fix.

And the present
Sumner line being so

nearly horizontal, it is

not necessary to know
the longitude very ac-

curately to obtain an

exact latitude. The

longitude by D. R. is

sufficient, and it is 73 58' W. The difference between

this longitude and that of the Sumner point (73 40') is

18'; and the ship at L (fig. 21) bears 180 + 86 = 266

from the Sumner point. Table 2 gives the dep. 14.0 for

long. diff. 18', in lat. 39. And for course 266, dep. 14.0,

we find in Table 1, lat. diff. I'.O, so the yacht's latitude is I
7

less than that of the Sumner point, and is therefore 39 19'.

This happens to be in exact accord with the D. R. latitude,

which was also 39 19'. This was perfectly satisfactory,

and the captain decided to carry this Sumner line forward

for an intersection, in case he should obtain an observation

in the afternoon.

At 12, the patent log read 102.6, course S.p., 182 true;

D. R. lat. 39 15'; long. 73 58'; distance to Watlings Island

918 miles.

Had the yacht been on a course other than almost due

south, it would have been necessary to set the watch and the

FIG. 21. Sumner Line from ex-Meridian
Observation.
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cabin clock to ship's apparent time. In fact, some naviga-

tors set their watches to ship's apparent time before every

observation (p. 94) :

at 1, log read 117.7, misty,

at 2, log read 133.0, misty,

at 3, log read 149.0 misty,

at 4, log read 163.8, clearing.

At 4* 12m 18* by the watch, the weather having cleared,

the altitude of the sun was found to be 4 38' ;
index + 4'

;

eye 15 ft.; C. W. 4ft 51m 50s

;
chronometer slow 4*; log

166.9. Sun's azimuth, observed by the mate at the same

time, came out 224 by compass.
This observation was worked for a Sumner line by the

Kelvin table, and gave :

Position of Sumner point lat. 38 6' N. ; long. 73 49' W. ; bearing
of line 145 ; azimuth of sun 235.

The Sumner line obtained at 11* 42m 0* was brought up to

the time of the present observation by D. R. (p. 137), giving :

position of 11:42 Sumner

point, after moving it, lat.

38 12' N.; long. 73 43' W.;
bearing of the line 86.
Both lines were then

sketched, as shown in Fig.

22. The point S is the
PIG. 22. Rough Sketch of Sumner (moved) Sumner point from

Line Intersection. ji 1-1 AC* -u - &/the 11:42 observation, S
that from the 4 : 12 observation. The intersection point L is

the position of the ship at 4 : 12, and it came out (p. 134) :

lat. 38 11' N.
; long. 73 54' W. The position brought up

by D. R, from 11 :42 was : lat. 38 11'; long. 74 1'
;

so that
there has been an easterly set of the current, amounting to
7' of longitude in 4| hours. The sun's true azimuth at
4 : 12 was 235, from the Kelvin table

; and the pelorus
observation gave 224. The compass error was therefore
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+ 11. The variation being 10, the deviation must

be D = 11 -
(
- 10 =) + 21. The deviation table made

this deviation + 18, so that table seems to require a correc-

tion of -f 3. The pelorus observation of 9 : 45 gave a correc-

tion of + 2 for the deviation table
;
and as this is now

apparently confirmed, the captain decides to examine the

chart again, before finally shaping course for the night, to

see if the yacht has not perhaps moved into a region where

the variation is different from the Sandy Hook variation so

far used.

At 5 the log read 182.0, course was still 182 true.

The captain now prepared to shape the course for the

night, and to change his course, if necessary, at 6 : 00. His

first step was to obtain the D. R. position at 6 : 00, starting
from the observed position at 4 : 12. This gave position at

6:00, by D. R. : lat. 37 41'; long. 73 55'. The easterly

current 1 of about 2' per hour set the yacht farther east about

3' between 4 : 12 and 6 : 00. Therefore he took the D. R.

position at 6 : 00 to be lat. 37 44'
; long. 73 52'. The posi-

tion of the point of destination, 12 miles east of Watlings

Island, is still : lat. 23 57'
; long. 74 15'. The true course

and distance to that point from the yacht's 6 : 00 position is

therefore, by traverse table : course 181J ;
dist. 824 miles.

A further examination of the track chart shows that the

variation, which was 10 at Sandy Hook, is now 8.
The compass error, from the last pelorus observation,

was + 11. Consequently, by the pelorus observation, the

compass course for the night should be 181^ 11 = 170J,
or S.fE. (see the Table on p. 52). Furthermore, the

variation being now 8 and the error + 11 makes the

deviationD = # - F = + 11 - (- 8) = + 19. The com-

pass adjuster's deviation of + 18 is therefore vindicated,

and the compass course S.fE. can be set for the night.

At 6 the log read 197.2, course S.fE., or 182* true.

1 Doubtless the Gulf Stream.
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In conclusion, the captain of the Xav hopes he has been
able to make his imagined proceedings clear enough to help
the young navigator in planning his own first day's work at

sea. May it be the first of many happy and successful days.
And let him not forget, when attempting to verify the

various calculations and problems of the Nav, that every
observation in this book has been prepared by calculation,

and none is the result of actual sextant observing. Should

inconsistencies or errors be found by any young navigator, it

is hoped that he will make them known so that they may be

corrected, in case the Xav shall be required to make another

voyage in a second edition.



LIST OF TABLES

1. Traverse Table; explained on pages 10 and 19; and its

use in the Sumner method on pages 113, 135 154
2. Conversion of longitude difference and departure; ex-

plained on page 16 168

3. Number logarithms ; explained on page 23 178
4. Trigonometric logarithms ; explained on page 31 196
5. Meridional parts; explained on page 35 241

6. Sextant Correction Table ; explained on page 72 247
7. Dip correction ; explained on page 73 247
8. Conversion of hours and -mimitea into decimals of a day ;

explained on page 80 248
9. Conversion of degrees and minutes of longitude and hours

and -minutes of time 249

10. Haversines ; explained on page 99 250

11. Azimuth Table ; explained on page 113 284

12. Auxiliary Azimuth Table ; explained on page 115 290

13. Kelvin's Sumner Line Table ; explained on page 126 ..... 292

14. Sumner Intersection Table ; explained on page 135 318

PUBLISHERS' NOTE

Table 3, Number Logarithms, has been reprinted from "The
Maemillan Logarithmic and Trigonometric Tables," New York,

1917.

153



154 Table 1. Trayerse Table



Table L Trarerse Table 155



156 Table 1. Trayerse Table



Table 1, Traverse Table 157



158 Table 1. Trayerse Table



Table 1. Trayerse Table 159



160 Table 1. Trayerse Table

The 2-Pt. or 23 Courses are : N.N.E., N.N.W., S.S.E., S.S.W.



Table 1. Traverse Table 161

The 6-Pt. or 68 Courses are : E.N.E., W.N.W., E.S.E., W.S,W.
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The 5-Pt. or 56 Courses are : N.E. by E., S.E. by E., N.W. by W. r S.W. by W,
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The 4-Pt. or 45 Courses are : N.E., N.W., S.E., S.W.
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The 4-Pt. or 45 Courses are : N.E., N.W., S.E., S.W.



168 Table 2

To CHANGE LONG. DIFF. INTO DEP., SCBTBACT TABULAE NUMBER
FROM: LONG. DIFF.

To CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAB NUMBER BY
FACTOB AT FOOT OF COLUMN, AND ADD PBODUCT TO DEP.



Table 2 169

To CHANGE LONG. DIFF. IXTO DEP. SUBTRACT TABULAR NUMBER
FROM LONG. DIFF.

To CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAR NUMBER BY
FACTOR AT FOOT OF COLUMN AND ADD PRODUCT TO DEP.
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To CHANGE LONG. DIFF. IXTQ DEP., SCBTKACT TABULAR XUMBEB
FROM LOXG. DIFF.

To CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BI
FACTOR AT FOOT OF COLUMN AND ADD PRODUCT TO DEP.
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To CHANGE LONG. DIFF. INTO DEP. SUBTBACT TABULAR NUMBEB
FROM LONG. DIFF.

To CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAR NUMBER BY
FACTOR AT FOOT OF COLUMN, AND AD PRODUCT TO DEP.
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To CHANGE LONG. DIFF. INTO DEP., SUBTRACT TABULAR XUMBEH
FROM LONG. DlFF.

To CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER
FACTOR AT FOOT OF COLUMN, AND ADD PRODUCT TO DEP.



Table 2 173

To CHANGE LONG. DIFF. INTO DEP. SUBTRACT TABCLAB NUMBER
FROM LOXG. DIFF.

To CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAE NUMBER BY
FACTOR AT FOOT OF COLUMN AND ADD PRODUCT TO
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To CHANGE LONG. DITP. INTO DEP., SCBTEACT TABULAR
FROM LON'G. DlFF.

To CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BY
FACTOR AT FOOT OF COLUMN, AND AB PRODUCT TO DEP.
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To CHANGE LONG. DIFF. INTO DEP, SCBTBACT TABULAE NUMBER
FROM LOXG. DIFF.

To CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAR NUMBER BY
FACTOB AT FOOT OF COLUMN AND ADD PRODUCT TO DEP,
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To CHANGE LONG. DIJT. INTO DEP., SUBTRACT TABULAR NUMBER
FROM LONG. DlFF.

To CHANGE DEP. INTO LONG. DIFF., MULTIPLY TABULAR NUMBER BY
FACTOR AT FOOT OF COLUMN ANI> ADD PRODUCT TO DEP.
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Table 2 177

To CHANGE LOXG. DIFF. INTO DEP. SUBTRACT TABULAR NUMBER
FROM LOXG. DIFF.

To CHANGE DEP. INTO LONG. DIFF. MULTIPLY TABULAR NUMBER Bl
FACTOR AT FOOT OF COLUMN AND ADD PRODUCT TO DEP.
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Table Trigonometric Logarithms
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3
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90 (270) (269) 89
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go (357) 177

92 (272) (207) 87
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'356 "'j 176

(273) (266) 86
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(355=) 175
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5 (1S5
C
) (354

e
) 174

5 (275) (264) 84
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6C
(186) (353) 173

96 (276) (263) 83
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T (187) (352) 172

97 (277
e
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8 (1SS) (351) 171

98 (278) (261) 81
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9 (189) (350) 170

90 (279) (260) 80
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10 (190) (349) 169

100 (280) (259) 79
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11 (191) (348) 168

101 (281) (258) 78
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12 (192) (347) 167

102 (282) (257) 77
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13 (193) (346) 166

103 (283) (256) 76
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14 (194) (345) 165

104 (284) (255) 75
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15 (195) (344) 164

105 (285) (254) 74
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16 (196) (343) 163

106 (286) (253) 73
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17 (197) (342) 162

107 (287) (252) 72
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18 (198) (341) 161
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(199) (340) 160

109 (289) (250) 70
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20 (200) (339) 159

110 (290:> (249)
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21 (201) (338) 158

111 (291) (248) 68



218 Table 4. Trigonometric Logarithms

22 (202) (337) 157

112 (292) (247) 67
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23 (203) (336) 156

113 (293) (246) 66
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4 (204) (335) 155

114 (294) (245) 65



Table 4. Trigonometric Logarithms 221

25 (205) (334) 154

(295) (244) 64
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26 (206) (333) 153
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27 (207) (332) 152

117 (297) (242) 62
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28" (208) (331) 151

118 (298) (241) 61
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29 (209) (330) 150

119 (299) (240) 60
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30 (210) (329) 149
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31 (211) (328) 148

(238) 58
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32 (212) (327) 147

122 (302) (237) 57
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33 (213) (326) 146

123 (303) (236) 56
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34 (214) (325) 145

124 (304) (235) 65
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35 (215) (324)

125 (305) (234) 54
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36= (216
C
) C323) 143

126 (306) (233) 53



Table 4. Trigonometric Logarithms 233

37 (217) (322) 142

127 (307) (232) 521
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38 (218) (321) 141
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39 (219) (320) 140
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40 (220) (319) 139

130 (310
a
) (229) 49
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41 (221) (318) 138

131 (311) (228) 48
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42 (222) (317) 137

132 (312) (227) 47
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43 (223) (316) 136

133 (313) (226) 46



240 Table 4. Trigonometric Logarithms

44 (224) (315) 135

134 (314) (225) 45
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Combined Correction for Obserred
Sextant Altitudes

Correction for Dip of

Sea Horizon
(Sun or Star)

Small supplementary correction, for Sun
only,

Jan. to March \ AA 1fv /

and Oct. to Dec. f
add 10 '

April to Sept., subtract 10".

The dip correction is not
required when the artificial

horizon is used.
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To Change Hours and 30nutes into Decimals of a Day

HOURS EXPRESSED
AS DECIMAL PARTS

OF A DAY
MINUTES EXPRESSED AS DECIMAL PARTS

OF A DAY
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To Interchange Degrees and Minutes of Longitude and Hours, Minutes.,

and Seconds of Time. Parti

Part 2 EXPLANATION OF TABLE 9

1. To change degrees of longitude into hours and
minutes of time : Find the number of degrees in Part 1.

The required hours will then be found at the head of the
column containing the degrees, and the required min-
utes at the left-hand end of the line containing the
degrees.

Examples: 113 = 7^32; 294 = 19* 36.
2. To change minutes of longitude into minutes and

seconds of time : Find the minutes of longitude in Part 2.

The required minutes and seconds of time will again
be found at the head of the column and the left-hand end
of the line.

Examples : 43' = 2 52s
;
28' = 1 52".

3. 1 and 2 can be combined by addition.
Examples : 113 43' = 7h 34"* 52.

294 28' =19* 37" 52.
4. To change hours and minutes of time into degrees

and minutes of longitude : Find the number of hours at
the head of one of the columns of Part 1

; then run down
the column until you reach a line having at its left-hand
end a number of minutes equal to (or just smaller than)
thg given number of minutes of time. Where that line

and column, meet you will find the required degrees of longitude.
Examples: 7*32 = 113; 19^36 294.

5. To change minutes and seconds of time into minutes of longitude : Find the number of

minutes of time at the head of one of the columns of Part 2 ; then run down the column until

you reach a line having at its left-hand end a number of seconds equal (or nearly equal) to
the given number of seconds of time. Where that line and column meet you will find the
minutes of longitude.

Examples : 2m 52s = 43' ; lm 52 = 28'.
6. 4 and 5 can be combined by addition :

Examples: 7*34m 52* - 113 43'; 19*3752 =294 28'.
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Table 12. Completed
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APPENDIX I
1

COMPASS ADJUSTING

IN Chapter IV we have assumed that the ship's compass
will be properly compensated by a professional compass
adjuster (p. 43), and that the navigator will thereafter only
need to check the adjuster's table of small remaining devia-

tions from time to time during the voyage. This occasional

checking is accomplished most easily by observing the sun's

azimuth at the same (or very nearly the same) time when a

sextant altitude is measured in the regular work of navigat-

ing the ship (cf. p. 145).

But it may happen, expecially in the Navy, that the navi-

gator will be his own compass adjuster : he may be re-

quired to swing ship (p. 43), and construct a complete table

of deviations himself. To do this he will probably compare
the sun's compass bearing with its true azimuth after swing-

ing the ship's head successively on a number of different

courses. Each time he observes the sun's bearing with a

pelorus (p. 44) or other similar instrument, he will record

the time by his watch, which should as usual be set to the

ship's apparent time (p. 94). But no sextant observations

of any kind will be needed ; nor will the sun's altitude ordi-

narily be calculated. For this reason it is impossible to ob-

tain the sun's true azimuth from our Table 11 'p. 284) which

requires a knowledge of the altitude, and which is merely
intended for checking the compass error by an observation

mad nearly simultaneously with a sextant observation, as

just explained,
For the purposes of the compass adjuster, the sun's true

azimuth is most conveniently taken from Publication 71,

323
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U. S. Hydrographie Office, often called the "red" azimuth

table. 1 But if this is not available it can be obtained with

almost equal ease, and without interpolation, from the Kel-

vin Table 13 (p. 292), the use of which is in this case greatly

simplified because we only need the sun's azimuth, without a

"computed altitude" (the K3 of p. 129), and because the

azimuth itself need only be correct to within a degree.

The given quantities of the problem are :

1. The sun's declination, to be taken to the nearest degree only,

and without regard to its + or sign ;

2. The ship's known latitude, or D. R. latitude, always taken to

the nearest degree only, and without regard to sign, except when

choosing formulas ;

3. The ship's apparent time, taken from the navigator's watch;
counted for the present purpose in civil reckoning, A.M. or

P.M. (pp. 75, 78) ; and hereafter called "the time."

We proceed as follows :
2

OPERATION 1. Enter Table 13 with:

Arg. a i
= declination,

Arg. bi the time, if it is earlier in the morning than 6 A.M., or

earlier in the afternoon than 6 P.M. ;

Arg. &a = the time subtracted from 12h , if later than 6, A.M. or P.M.,

and before use 61 must be turned into degrees with

Table 9 (p. 249). It need be correct to the

nearest degree only; and it will always be less

than 90.

Then take from Table 13 the tabular angle KI, also correct

to the nearest degree only.

OPEKATION 2. Enter Table 13 a second time with :

Arg. a2 the K\ obtained in Operation 1.

Then, under this a^ run down the K-column until you find

the KZ which comes nearest to the declination; and from

the left-hand argument column take the 62 which is in the

1 In using this very extended table, the young navigator will note
that the words "declination same name as latitude" signify
that declination and latitude have the same sign, both 4- or both .

2 This is a modification of the proceeding of p. 127,
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same horizontal line with the declination K% just found in

the Jf-column.

OPERATION 3. Add 62 to the given latitude, and call it

the sum. Also take the difference,
1 between & 2 and the lati-

tude, subtracting the smaller from the larger. Then enter

Table 13 a third time with :

Arg. a 3
= Ki, again as obtained in Operation 1.

(5 ) Arg. 6 3 90 above sum, if latitude and declination are of

opposite signs, one + and one .

(6') Arg. 6 3
= above sum 90, if the time was later than 6 P.M.

in the afternoon, or earlier than 6 A.M. in the

morning.
(7') Arg. 6 3

= 90 above difference, in all other cases.

Then with the arguments a 3 and 6 3 ,
take from Table 13

the tabular Q 3 ,
the sun's true azimuth, to the nearest degree.

If the latitude is +, this azimuth Q 3 is to be counted from the

north point of the horizon if we used formula (6') just given ;

or if, in using formula (7'), &2 was greater than the latitude;

otherwise Q 3 is to be counted from the south point of the

horizon. (If the latitude is
, interchange the north and

south points of the horizon in these directions.2
) And in

all latitudes, the azimuth will of course be counted toward

the east or west, according as the time was A.M. or P.M.

The foregoing will enable the navigator to obtain the

sun's true azimuth from Table 13, either for compass adjust-

ing purposes, or in case he should ever wish to know the

azimuth when no altitude has been observed. The follow-

ing are examples : Given :

1. Dec. -f 8
;

D. R. lat. = + 38 ; ship's apparent time

4* 10 7

*, P.M.
; ship's head by compass 165 ; observed

bearing of sun - 240.5.

* The sum and difference are not both needed ; usually only one

of the two will be written down.
* It will not usually be necessary to consider these directions

about Q 3 , because the navigator will generally know whether the

sun bore N. or S. of the B. or W, point of the horizon at the time of

observation.
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COMPASS ADJUSTING

IN Chapter IV we have assumed that the ship's compass
will be properly compensated by a professional compass
adjuster (p. 43), and that the navigator will thereafter only
need to check the adjuster's table of small remaining devia-

tions from time to time during the voyage. This occasional

checking is accomplished most easily by observing the sun's

azimuth at the same (or very nearly the same) time when a

sextant altitude is measured in the regular work of navigat-

ing the ship (cf. p. 145i).

But it may happen, cxpecially in the Navy, that the navi-

gator will be his own compass adjuster: he may be re-

quired to swing ship (p. 43), and construct a complete table

of deviations himself. To do this he will probably compare
the sun's compass bearing with its true azimuth after swing-

ing the ship's head successively on a number of different

courses. Each time he observes the sun's bearing with a

pelorus (p. 44) or other similar instrument, he will record

the time by hie watch, which should as usual be set to the

ship's apparent time (p. 94)* But no sextant observations

of any kind will be needed ; nor will the sun's altitude ordi-

narily be calculated. For this reason it is impossible to ob-

tain the sun's true assimuth from our Table lip. 284) which

requires a knowledge of the altitude, and which is merely
intended for checking the compass error by an observation

made nearly simultaneously with a sextant observation, as

just explained.
For the purposes of the compass adjuster, the sun's true

arfmuth is most conveniently taken from Publication 71,
823
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U. S. Hydrographic Office, often called the "red" azimuth

table. 1 But if this is not available it can be obtained with

almost equal ease, and without interpolation, from the Kel-

vin Table 13 (p. 292), the use of which is in this case greatly

simplified because we only need the sun's azimuth, without a

"computed altitude'' (the Kz of p. 129), and because the

azimuth itself need only be correct to within a degree.

The given quantities of the problem are :

1. The sun's declination, to be taken to the nearest degree only,

and without regard to its + or sign ;

2. The ship's known latitude, or D. R. latitude, always taken to

the nearest degree only, and without regard to sign, except when

choosing formulas ;

3. The ship's apparent time, taken from the navigator's watch;
counted for the present purpose in civil reckoning, A.M. or

P.M. (pp. 75, 78) ; and hereafter called "the time."

We proceed as follows :
2

OPERATION 1. Enter Table 13 with :

Arg. cti
= declination,

Arg. 61 = the time, if it is earlier in the morning than 6 A.M., or

earlier in the afternoon than 6 P.M.
;

Arg. &i = the time subtracted from 12h,
if later than 6, A.M. or P.M.,

and before use &i must be turned into degrees with

Table 9 (p. 249). It need be correct to the

nearest degree only; and it will always be less

than 90.

Then take from Table 13 the tabular angle KI, also correct

to the nearest degree only.

OPERATION 2. Enter Table 13 a second time with :

Arg. a 2
= the KI obtained in Operation 1.

Then, under this a%, run down the ./^-column until you find

the Kz which comes nearest to the declination; and from

the left-hand argument column take the 62 which is in the

1 In using this very extended table, the young navigator will note
that the words "declination same name as latitude" signify
that declination and latitude have the same sign, both + or both .

2 This is a modification of the proceeding of p. 127.
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same horizontal line with the decimation Kz just found in

the K-colurnn.

OPERATION 3. Add 6 2 to the given latitude, and call it

the sum. Also take the difference,
1 between 62 and the lati-

tude, subtracting the smaller from the larger. Then enter

Table 13 a third time with :

Arg. a 3
~ Ki, again as obtained in Operation 1.

(50 Arg. 63 90 above sum, if latitude and declination are of

opposite signs, one -j- and one .

(60 Arg. &s * above sum 90, if the time was later than, 6 P.M.

in the afternoon, or earlier than 6 A.M. in the

morning.

(?0 Arg. 6 $
= 90 above difference, in all other cases.

Then with the arguments #3 and 6 8 ,
take from Table 13

the tabular Q^ the sun's true azimuth, to the nearest degree.

If the latitude is +, this azimuth Q 8 is to be counted from the

north point of the horizon if we used formula (60 just given ;

or if, in using formula (70, 62 was greater than the latitude;

otherwise <2s is to bo counted from the south point of the

horizon. (If the latitude is
, interchange the north and

south points of the horizon in these directions. 2
) And in

all latitudes, tho arimuth will of course be counted toward

the east or west, according as the time was A.M* or P,M*

Tho foregoing will enable the navigator to obtain the

sun's true azimuth from Table 13, either for compass adjust-

ing purposes, or in case he should ever wish to know the

azimuth when no altitude has been observed. The follow-

ing are examples : Given ;

1. Deo. - + 8 ; D. R. lat. - + 38 ; ship's apparent time

4* 10**, P.M. ; ship's head by compass * 165 j observed

bearing of sun - 240,5.

1 The sum and difference are not both needed j usually only one

of the two will b written down.
1 It will not uauaUy be necessary to consider these directions

about <3i, beoauae the navigator will generally know whether the

tin bore N, or S. of the X. orW point of the horizon at the time of

observation*
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Operation 1 gives Ol - 8; &i - & 10 = 62 (p. 249);

Xi = 61(p. 295) ;

Operation 2 gives a 2
= 61; Kz

= 8; 6 2 = 17 (p. 308) ;

Operation 3 gives swm = 55; difference =21; as
= 61;

& 3
= 69; Q s 79; sun's azimuth *JS 79 W * 259.

The red tables, p. 88, give N 101 W. = 259. Then by
formula (2), p. 45, we have: E = T - C = 259 - 240.5
= + 18.5 compass error. And if we take the variation

to be + 10, as on p. 48, we have by formula (1), p. 45,

D E - V = 18.5 - 10 + 8.5 = the deviation when
the bearing of the ship's head by compass was 165. This

deviation is the same as is given in the table on p. 48.

2. Dec. = - 8 ; D. R. lat. = + 38 ;
time = 7h 50m

,
A.M. ;

ship's head by compass = 75 ; compass bearing of sun = 114 ;

fll
= 8; &i = 12* - 7*50 - 4* 1O = 62; KI = 61;

a 2
= 61; Kz

= 8; 62 = 17;
s^m-55; dijf.21; a 3 =61; 6 3 =35; Q 3 =S66E 114.
The red tables also give 114 for the sun's azimuth, afford-

ing an excellent check on the work. Now the compass error

B = T - C = 114 - 114 = 0. With V + 10,
D E - V - - 10 - 10. The table on p. 48 gives
D - - 9.7.

3. Dec. = + 15; D. R. lat, = +38; time = 5A 40W , A.M.;

ship's head by compass = 225
; compass bearing of sun =39 ;

fll 15; & x
- 5MO* = 85; Ki = 74;

a 2 =74; Kz
= 15; & 2 - 70;

swm = 108; dijf.=32 ; a 3 =74; & 3
= 18; Q 3 =N75E 75.

The red tables also give 75 for the sun's azimuth. And
the compass error E = T C 75 39 = 36. With
7 - + 10, D = JS7

- V - 36 - 10 = + 26. The table

on p. 48 gives D = + 25.6.

In this way the entire deviation table of p. 48 might have
been obtained from observations, and the Second Deviation

Table (p. 49) subsequently computed.
In connection with these two deviation tables, it may bo

of interest to supplement p. 49 by emphasizing once more that

both tables are needed in correct navigation, The second

table is necessary for changing a true course into a compass
course for the helmsman (see p. 143 for an example) : and the

first table (in coastwise navigation) for correcting a re-
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versed bearing (p. 55), or fixing a ship's position by cross

bearings (p. 56). Only if the compass has been very well

compensated or adjusted is it permissible to navigate with
one table only. With a compass thus compensated the out-

standing deviations would be so small that the two tables

would be practically interchangeable. Were it possible to

effect a perfect compensation, the two tables would be

identical, and all the deviations of both would be 0.

Having now explained the method of determining devia-

tions without measuring or calculating the sun's altitude,
we shall next consider in a practical way the principal prob-
lem of compass adjusting, or the placing of magnetic
and other correctors in position, so as to minimize the de-

viation on all courses. We shall begin with certain defini-

tions. *

1. Semicircular deviation is that part of the total devia-

tion which is corrected by two permanent magnets (or bun-
dles of thin magnets) placed in the lower part of the binnacle.

One of these permanent magnets is always placed in a fore-

and-aft position, the other in a thwartship position. Both

may be raised and lowered, so as to change their distances

from the compass card. The north (or north-seeking) ends
of all permanent magnets are always painted red.

2. Quadrantal deviation is that part of the total devia-

tion which is corrected with two hollow iron spheres or other

pieces of iron placed on each side of the compass bowl in an

athwartship direction. They are adjustable in position, so

that their distances from the compass card can be varied

3. The heeling error is an additional deviation caused by
the ship's rolling, and is corrected with an additional perma-
nent magnet placed in a vertical position directly under the

center of the compass bowl
4* The following procedure may be used on a compass

entirely unoompensated, or on a compass already approxi-

mately compensated, either by actual observations, or by
the placing of magnets in approximate positions suggested
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by experience. The method is specially designed to avoid

the necessity of steering directly by the sun,
1 by ranges of

known bearing, or by means of a "
Napier diagram," in the

course of the adjustment.

5. With the ship on an even keel and all permanent mag-
nets being removed, begin by moving the vertical heeling

magnet from top to bottom of its travel. This should not

affect the compass card at all. If it does, the compass bowl

is itself not properly centered in the binnacle, and its position

there must be adjusted by the proper adjusting screws.

6. After the preliminary centering under 5, remove the

heeling magnet to a distance, and place the two iron spheres
in an approximately proper position, suggested by experi-

ence; or, if lacking experience, place them in the middle

positions permitted by their respective ranges of adjust-

ment.

7. Next you must learn how to head your ship on any de-

sired magnetic course, say M. To do this, let G represent

any convenient auxiliary number of degrees. In a steel ship,

with compass entirely uncompensated, we might put 15.

In a wooden ship, or for a compass already approximately

compensated, we might take G 10, or even less. In

general, G should be about half as large as the largest re-

maining deviations the compass is expected to have.

Now steady the ship on the compass course M 0, and

keep her steady on that course by heading for some object

ashore, or by careful use of the compass. While running

slowly on that course, observe the sun's compass bearing and
note the ship's apparent time by your watch. The watch
should be set in advance to ship's apparent time (see p. 94),

Then, with the red azimuth tables, or the Kelvin table,

ascertain the true bearing of the sun, which we will call T,

and calculate the compass error E = T (M 0). The

variation, V, being taken from the chart, you will have the

1 " Maneuver the ship with the helm until the sun cornea on the

sigiht vanes (of the pelorus)." Bowditoh, p. 51, 1916 edition.
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deviation D = T - (M -
(?)

- 7. Call this deviation di

(it corresponds to the compass course M (?).

Now steady the ship on a new compass course M + (?,

and determine by observation in exactly the same way a

new deviation, which call da.

You will then have :

For ship's head by compass the deviation

M - 0, 4,
M + <2, *,

Then the deviation for the magnetic course M, which we
desire to find, and which we will call dM,

will be :

And the required compass course, C^, corresponding to

the given magnetic course M, will be :

CU ~M- dM ,

The value of dM may be taken from the accompanying little

Table in all cases that are likely to arise in actual work.

Should a number ever be required from a blank place in the

Tablo, the compass probably has unusual deviations, and a

preliminary partial compensation should be attempted by
means of known ranges taken from a chart,

8. Go through the work under 7 for the magnetic course

M (or due north)* If you take * 15, this will

necessitate determining by observation the deviations d\

and da for the compass courses 15 345, and

+ 15 - 15 (see example, p. 333).

You will then calculate do and Co, the deviation and

compass course corresponding to the magnetic course 0,
using the above formula for d^, which in this case is do ;

or

you will take do directly from the Table,

9. Steady your ship on this compass course Co (or magnetic
course M m 0), and keep her quite steady by heading for

a visible fixed point like a light-house, or by using tern**
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Values of dx, the Deviation for the Magnetic Course M
G = 15

G = 10

= 5
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porarily an auxiliary compass. But this auxiliary compass
must not be near enough to the magnets to be influenced

by them.

10. Move the thwartship permanent correcting magnet
toward or from the compass bowl, until the lubber line (p.

42) is on the correct magnetic course 0. If you are working
with a compass as yet entirely uncompensated, for which the

permanent magnets have not even been placed in the bin-

nacle, the thwartship one should be located with its red end

to starboard, if the do found under 8 was plus, or easterly

deviation ;
and with its red end to port, if that do was minus,

or westerly deviation,

11. Go through the work under 7 again for the magnetic
course M === 90 (or due east). This will necessitate deter-

mining by observation the deviations for the compass courses

75 and 105, if you are working with G 15. And you
will calculate dw and Cao, the deviation and compass course

for the magnetic course 90.

12. Now steady the ship on the compass course Coo, and

place the fore-and-aft compensating permanent magnet with

its red end forward, if the deo found under 11 was plus, and

with its red end aft, if dw was minus. Adjust the magnet
so as to make the compass read 90, Your semicircular

deviation is now corrected.

13. Go through the work under 7 for the magnetic course

j\f a* 45 (or north-east, magnetic). This will necessitate

observing the sun on the compass courses 30 and 60
;
and

will give you dU a&d #43, the deviation and compass course

corresponding to magnetic course 45.
14* Steady your ship on the compass course C<5, and move

the two spheres in and out until the lubber line is on 45,

leaving the two spheres finally so placed that they are

equally distant from the compass bowl. Your quadrantal

deviation is now corrected.

15* To compensate for heeling error, head the ship approx-

imately north or south, and keep her accurately on that
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course by heading slowly for an object ashore. Now heel

the vessel about 10, by any convenient method.

If the north-seeking end of the compass card is thereby

deviated toward the high side of the ship, place the heeling

corrector with red end up in such a position as will bring the

compass card back where it was before ship was heeled.

If the compass card was deviated toward the low side of the

ship, place the heeling corrector with the red end down.

16. The "Flinders bar" is a vertical bar of soft iron (or a

combination of several bars) sometimes placed directly for-

ward or aft of the compass. It will correct a certain part

of the semicircular deviation not fully removed by the per-

manent magnets adjusted under 10 and 12. Usually a

Flinders bar is best located by placing it in a position sug-

gested by experience; but many compasses are adjusted

without such a bar, and when there is none, the magnets

usually need readjustment whenever the ship changes her

latitude very considerably.

17. After completing the adjustment, it is well to swing

ship on eight equidistant courses, and check the deviation

table by new observations.

18. After a compass has once been adjusted, necessary
minor changes of the magnets and spheres can be most con-

veniently made as follows. Head the ship north, and steady
her with an auxiliary compass, or by means of a conspicuous

object ashore. Then move the athwartship magnet up one

inch, and note by the compass bearing of the sun how much
the compass has changed, and in which direction. The same

thing can be done with the fore-and-aft magnets by heading
the ship east

;
and with the spheres by heading northeast.

Having thus ascertained how much the compass is changed
by a one-inch motion of each corrector, it is easy to calculate

how much they should each be moved to compensate for any
outstanding small deviations on the north, east, and north-

east magnetic courses. Corrections can thus be made at any
time during a voyage, if the deviations become unduly large,
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When the magnets are not movable, but consist of fixed

bundles of thin wire magnets, all adjustments throughout
are made by increasing or diminishing the number of wires,

instead of moving the magnets toward the compass bowl
or away from it.

Notes

Note to 8. You can equally well head the ship south in-

stead of north, and go through the work for M = 180, in-

stead of M = 0.

Note to 10. If you head south, according to the Note to 8,

the red end of the thwartship magnet must lie reversed.

Note to 11. This work may be done before that under 8,

if desired.

Note to 12. You may head the ship west, if you wish,

instead of east, and work for M = 270, instead of 90. The

magnet must then be placed with red end aft, to correct plus

deviation.

Note to 14, This may equally well bo done forM = 135,
225, or 315,

Note to 18. The above notes to 12 and 14 also apply to 18.

General Note. Whenever an adjustment can bo made on

two opposite courses, as indicated in the above Notes, accu-

racy will be increased by adjusting on both courses, and

leaving the correctors finally in the average of the two posi-

tions found*

EXAMPLE
Consider the compass for which the two deviation tables (pp, 48,

49) hold good ; and w shall suppose it to have been a totally un-

compensated compass.
Under 8 and 7, putting M 0, - 15, we have :

for compass course M - m 346, d\ - 16,0 (table, p. 48),

for compass course M + 15, d - I4.9 (table, p. 48).

Than d^m.m..^+^ m 15 X (
~ 3Q '9) m 463 '5

,
- H* 9Then, <far- 4 -

di 80-14.9 + 16.6
"

ITT 14 **'

This 14,9 is in exact agreement with the do given in the second

deviation table (p 49), for the magnetic course M ** 0. The
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agreement would not always be as perfect. The 14.9 must now
be corrected with, the thwartship magnet as directed under 10.

Next, under 11, for M = 90, we have:
for compass course M G = 75, di = 9.7 (table, p. 48),
for compass course M + G = 105, d2 = 9.0 (table, p. 48).

- - -

The 9.l agrees closely with 9.0, given in the second devia-

tion table (p. 49) for M = 90. It must be corrected as directed

under 12. This completes the ordinary semicircular compensation.
Coming now to 13, with M =45, we must observe the sun on the

compass courses 30 and 60. But the semicircular correction being
now complete, the observed deviations will no longer agree with
those given in the table, which are supposed to have been observed
with a compass entirely uncompensated.

Let us suppose the observations gave the following results :

for compass course M G 30, di = + 6.9,
for compass course M + G 60, dz = + 6.0.

Then, dM - da = gfo+<*i? = 16X12.9 _ + 193,5 _ +60-6-' M 46

j-dj 30+6.0-6.9 ^29.1
^

This 6.6 must now be corrected as directed under 14, completing
the quadrantal compensation.
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EX-MERIDIAN AND MISCELLANEOUS EXAMPLES

Ex-MERIDIAN observations (p. 99) are completely and ac-

curately calculated with the Kelvin Table 13, working out a

Sumner line (see p. 148 for an example). But if a rapid cal-

culation of the ship's latitude only is desired, we may either

use special tables (p 99, footnote), or, if these are not avail-

able, we may apply the Kelvin Table with but little additional

labor and almost equal accuracy We may still use the

simplified method already explained in Appendix 1 (p. 324) ;

except that Q& will not now be required, and K2 as well as K*
must be taken from the Table exact to the nearest minute

(see Ex. 1) This having been done, the ship's latitude,

at the moment of observation may be quickly calculated from

the ex-meridian altitude by first choosing from p. 89 the

formula which would be appropriate for a noon-sight, and

then applying to the D, R, latitude (taken to the nearest degree

only) the two following corrections ;

the "altitude correction" corrected observed altitude Kt j

the
"
declination correction" - sun's declination - K$.

These corrections are to be added or subtracted, according

as the formula chosen from p. 89 had a + or sign for the

altitude and declination respectively. This is the only use

here made of the formula.

Young naval officers having commands should give special

attention to the foregoing, because they may be required to

signal their latitude to the flagship promptly at noon, before

they have had time to calculate a noon-sight. In such eases

an ex-meridian taken at about 11* 30**, nhiplM apparent time,
335
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and the resulting latitude carried forward to noon with the

traverse table, will furnish an excellent value for the noon

latitude to be signaled. The whole calculation, including
the carrying forward to noon, can be completed in a few

minutes, and the signal flags bent on, ready to be run up at

noon precisely. The navigator will then be free to observe

a noon-sight as a check.

As the noon longitude is always signaled as well as the

latitude, a time-sight should be observed (if weather permits)
in the early morning. This time-sight should be calculated

as a Sumner long before noon; and the resulting Sumner
line should be carried forward to noon by D. R. methods

(p. 137), estimating in advance the probable speed of the ship
and her course to noon. An ex-meridian observation made
at about 11* 30W (and also carried forward) having furnished

the noon latitude, the complete noon position of the ship
will be finally fixed at that point of the moved Sumner line

which cuts the ship's noon parallel of latitude (see Ex. 4).

But when the navigator is not hurried by the necessity of

signaling the ship's position at noon, it is better to work
out a Sumner line from the morning time-sight, and also from
a sight taken near noon (or at noon), and then determine the
intersection point of the two Sumner lines in the regular way.

Ex. 1. Observed altitude, 26 55' ; index, + 3'
; height of eye,

15 feet ; watch time of observation, 11* 42m A.M. ; D. R. latitude,
to the nearest degree, 39

; D. R. longitude, 73 58' ; (7. - TF.,
4* 51 42*; chron. slow, 4; equation, + 3OT 22; declination,- 23 24' ; find the latitude by the ex-meridian method. (This ia

the example worked as a Sumner on pp. 148-149.)

The corrected observed altitude comes out 27 8'
; ship's

apparent time, 11* 41 w 16' A.M.; ai = 23; 6 X
= 18 44*

= 4 41' = 5, to the nearest degree; KI = 4
;

1 a*** 4;
1 The value 4 is the nearest whole degree for Ki, since, in using

Table 13, we notice that 61 was only 4 41', and therefore not
quite 5. But our result would be almost as accurate if we con-
tinued the calculation with Ki = 5 (see also Ex. 11).
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j?2
= 22 56' (taken out to the nearest minute) ;

& 2
= 23

;

sum = 62
;

Z> 3
= 90 - sum = 28

;
a3 4

;
K3

= 27 56'

(taken to the nearest minute). We choose formula (4),

p. 89, or lat. = 90 - alt. dec. The altitude correction

is 27 8' - 27 56' = -
48', which must be subtracted, be-

cause alt. is in the formula. The declination correction

is 23 24' - 22 56' + 28', which must also be subtracted,

because dec. is also in the formula. The D. R. latitude

being 39, the final latitude will be 39 - (- 48')
- 28' =

39 20'. On p. 149 we found 39 19' by the Sumner calcu-

lation.

Ex. 2. Corrected observed ox-meridian altitude, 74 26' ; ship's

apparent time, 12A 24m P.M. ; declination, + 3 12'; D. R. latitude,

+ 17 45', or, to the nearest degree, -f 18. Find the latitude.

An$. 17 39'.

Ex. 3. 1 Corrected observed ex-meridian altitude, 72 3' ; ship's

apparent time, 11* 4(>m A.M. ; declination, H- 20 30' ; D. R, latitude,

+ 3 5' ; find tho latitude. Ans, 2 53'.

Ex* 4 At sea, at 9 fc 42** 28* A.M, by the watch (see p. 146), a

time-sight was observed, and worked as a Sumner* It gave a Sum-
ner point in lat. 39 60' N,, long. 73 56' W., bearing of line, 237.
The ship was estimated to be steaming at a speed of 15 knots on a
true course of 182 e

, At 11* 42W an ex-meridian (see Ex, 1) gave the

latitude 39 20'. Find tho latitude and longitude to be signalled

at noon.

Ans, Sumnor point carried forward to noon Is then in

lat. 39 18', long. 73 58'
; bearing of line unchanged at 237.

1 If th observed altitude is larger than 45, it is well to be spe-

cially careful in taking out K&. For instance, if Ki happened to be

3J, a* as well as a would also be 3J and we might therefore take

Ka and Kt from the column headed a - 3 or th column headed

a 4. In the oas of sun observations the choice between the

two columns will not matter for JTt, but for Kt it is better to inter-

polate between the values given in the two adjoining columns in

question (see Ex. 3).

It may also help the beginner in choosing between the sum und

difference formulas of p. 326 to remember that the proper formula

will always make 6$ come within a degree or two of the observed

altitude in the ease of ex-meridian observations.
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The ex-meridian carried forward to noon gives the ship's

noon latitude as 39 15' (to be signaled). So the latitude

difference at noon between the ship and the Sumner point

is l/
7
and the bearing of the ship from the Simmer point is

237 .
1 For course 237 and lat. diff. 1', the Traverse Table

gives dep. = 1/.7. The corresponding long. diff. is 2'.2
;

and so the ship's long, at noon = 73 58' + 2' =* 74 0' (to

be signaled).

Ex. 5. At sea, Sept. 20, 1918, A.M., with. D. R. lat. 45 26' N. ;

D. R. long. 21 40' W.' ;
at 7h 58W 26 s

,
A.M. by the watch, the sun's

measured altitude was 22. 7' ; index, -j- 3' ; height of eye, 26 feet ;

C. - W. was lh 26 20 s at 6* A.M. Sept. 20, and 1* 27m 11* at 9* 26W

A.M. of the same date. The chronometer had been compared with

a standard ashore, and found to be fast of G. M. T. Om 26* on

Sept. 1 at 10 A.M., and slow of G. M. T. Ow 18* on Sept. 15 at 4 P.M.

The 1918 almanac gives :

Sept. 19, 20* G. M. T., deel., + 1 22'.4; equation, + 6m 17'3.

Sept, 19, 22* G. M. T., deel., + 1 20'.5; equation, + 6 19M).

Sept. 20,
A G. M. T., deel., + 1 18'.6; equation, -f 6 2CK7.

Sept. 20, 2* G. M. T., deel., + 1 16'.6; equation, + 6m 22*.5.

Find the longitude of the ship by the time-sight method. Arts. At
the time of observation C. W. was P26OT

49*.4; chronometer
was slow Om 32*.4; the observation being a forenoon one, the

G. M. T. came out 21A 25*48* of the 19th Sept. (p. 78) ; by formula

(4), p. 100, hav. (24* - T) was 9.38260 ; corresponding 24* - T was
3* 55 23* (p. 264), and T was 20* 4 37* (p. 103, footnote) ; ship's

longitude was 21 52' W.
Ex. 6. Simultaneously with the altitude measured in Ex. 5, the

sun's compass bearing was taken with, a pelorus and found to be
123. The variation was 22 W., by the magnetic chart. Find the

deviation. Ans. 11 E.

This example may be solved with Table 11 because the

altitude has been measured.

Ex. 7. Using the data of Ex. 5, find the ship's noon latitude

on Sept. 20, 1918, from a measured noon altitude of 45 46',

Ans. 45 18'.

Ex. 8. Calculate Ex. 5 as a Sumner by the Kelvin Table.

i This would be 237 ~ 180 if the ship's latitude had come out

greater than that of the Sumner point.
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Ans. The Sumner point is in latitude 45 33' ; longitude 21 49' ;

bearing of the line 22 or 180 + 22, according to the end of the

line to be used.

Ex. 9. From the noon latitude of Ex. 7, and the Sumner line

of Ex. 8, find the ship's noon longitude, assuming the ship was

steaming at 17 knots on a 168 true course. Ans. 21 2'.

Ex. 10. At sea, from an observation at 8^ 28 A.M., ship's ap-

parent time, a Sumner point was computed to be in latitude 28 26'

N. ; longitude 40 11' W. ; bearing of the line 28 or 208. Clouds

having prevented observation at noon, the latitude was found
from an ex-meridian observation to be 27 17' at 12A 2Sm P.M., ship's

time. The ship was steaming at 18 knots on a 130 true course.

Find the noon latitude and longitude. Ans. Latitude, 27 22' ;

longitude, 39 30'.

Ex. 11. With the data of Ex. 1, it is required to prepare in

advance for an ex-meridian observation and its calculation.

Since it is intended to make the observation at about 11*

40W
, ship's time, we begin our preparatory calculations by

computing K* and K* for IP 36M and 11A 44V ship's time,

which correspond to IP 36W 44* and 11* 44m 44* by the

watch 2 We thus obtain :

for 11* 36** 44*, decimation correction 28', to be subtracted;

alt. correction alt. - 26 50', to be subtracted.

for ll*44m 44*, declination correction 4- 28', to be subtracted;

alt. correction, - alt. - 27 66', to be subtracted,

This completes the preparatory calculation. In Ex. 1

the actual observation of altitude was made at 11* 42w
,
and

the corrected altitude was 27 8'. Interpolating the declina-

tion and altitude corrections for 11* 42W
,
we obtain :

declination correction - +9'; alt. correction - 27 8' - 276
34'

-26';

both corrections to be subtracted. We then have, finally ;

Latitude - 39 - 9' + 26' 39 17'. In Ex, 1 we found

39 20', and on p, 149, 39 19'.

1 We have chosen 36* and 44"* ao aa to have ti an exact number

of degrees. This inoreasea the accuracy of Ki (of. Ex* 1, p. 336,

footnote)*
* We know from the data of Ex. 1 that the watch was 44* fait

of ship's apparent time.
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Ex. 12. With the data of Ex. 3, prepare in advance for the
calculation. Ans. We find :

for 11A 40m , declination correction, 25', to be added,
alt. correction = alt. - 71 20', to be added;

for IP 48TO
, declination correction, 28', to be added,
alt. correction = alt. 71 46', to be added;

and for the final latitude 2 52'. In Ex. 3 we found 2 53' ; but
such small differences are not of much importance in navigation
calculations.

Ex. 13. Using the data of Ex. 5 and Ex. 9, prepare in advance
for the noon-sight of Ex, 7, and its speedy calculation.

Ans. D R. longitude at noon, 21 20'
;

watch time of

noon, 11* 50 37*; declination at noon, + 1 17'; D. R.

latitude at noon, 44 20'
; formula (p. 89), lat. = 90 + dec.

alt. To get the approximate noon altitude in advance,
we invert the formula, and thus obtain an approximate
"D. R. alt." = 90 + dec. - D. R. lat. - 90 + 1 17' -
44 20' = 46 57'. For this D. R. alt. at noon, we find that

Table 6 + Table 7 = + 10'. Therefore, at noon, lat. = 90

+ dec. 10' observed alt. index correction, or noon
lat. = 91 4' - observed alt. = 91 4' - 45 46' = 45 18'.

This number (91 4') is often called the
"
constant.'

7

If it

has been prepared in advance, the latitude can be calculated

in a few moments, after the noon observation has been made
at about 11* 50W 37 s

by the watch.

Ex. 14. With declination - 3 7' ; D. R. noon latitude -f 38 17' ;

prepare a constant for a noon-sight, and calculate the latitude, sup-
posing that the observed altitude turned out to be 48 17', height
of eye 20 feet, and index correction 4- 3'. Ans. D. R. altitude,
48 36'; lat. - 86 39' - obs'd alt. = 38 22'.

Ex. 15. With the data of Ex. 13, and at 11* 30W by the watch,
it is required to set it so that it will be correct at noon.

Ans. Move the hands forward from 11* 30M to 11
A 39W

23*, as nearly as may be conveniently possible. (The second
hand of a watch should always be set so as to be on 60* when
the minute hand is exactly on one of the minute divisions
of the dial,)
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Ex. 16. Prepare a constant for a meridian observation of p
Cassiopeise, Dec. 20, 1917, and determine in advance the approxi-
mate time for the observation. D. R. latitude, 39 18' N., D. R.

longitude, 33 7' W., both calculated for 8 P.M. ; ship steaming 11

knots due E. by compass ; variation, 24 W. ; deviation, 3 E. Also

calculate the latitude, supposing the observed altitude turned out to

be 70 54', with eye 20 feet and index + 3'. Ans. Ship's time of

observation, 6* 11 P.M. ; lat. - obs'd alt - 31 19" = 70 54' -
31 19' =* 39 35'. The constant is 31 19'.

Ex. 17. On the ship of Ex. 16, Dec. 20, 1917, at 6* 38 23- P.M.

by the watch, the altitude of Aldebaran or a Tauri was measured,
and found to be 33 25'. C. - W. was 2h 12 48 s

;
chron. fast

2"* 26*. Find the longitude, using a D. R. latitude ; and also run a
Sumner line. (Note. The correction for "time past noon" in this

example is lm 27*.) Ans. Longitude, 33 13' W. ; Sumner point, lati-

tude, 39 15' ; longitude, 33 13' ; bearing of the line, 6 or 180 + 6.
Ex. 18. From the Sumner line of Ex. 17 and the latitude of Ex.

16 find the longitude at 6* llm
,
when the meridian observation was

made. Ans. 33 16'.

Ex* 19, A ship is to proceed (p. 19) from Sandy Hook (latM
40 28' N.; long., 73 50' WO to St. Vincent (lat., 16 50' N.;

long., 25 7' W.). A straight line being drawn between these two

points on the North Atlantic great circle sailing (or gnomonic)
chart (p. 38), it was found to cross tho successive principal longi-

tude meridians at the following points :

A, lat., 39 37'; long., 70 0'; B, lat., 36 39'; long., 60 0';

C, lat., 32 34'; long., 50 Q'; D, lat., 27 10'; long., 40 0';

E, lat., 20 30'; long., 30 0',

The shortest track between Sandy Hook and St. Vincent will

therefore pass through these successive points (see p. 38). It is

required to calculate logarithmically, by middle latitude sailing

(p, 35), the successive courses and distances between these points,

so as to compare them with the middle latitude course and distance

from Sandy Hook to St. Vincent direct. The middle latitude is to

be taken to the nearest minute in each case. Ana.

COTOSB DISK.

Sandy Hook to A 106 9'

A to B 110 40'

B to C 116 23'

C to D 121 55'

Z>to$ 126 5'

to St. Vincent 128* 24'

Total distance by great circle sailing 2885.3
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Middle latitude sailing, Sandy Hook to St.

Vincent direct,

course, 118 56' dist. 2931.0
T

Apparent saving of distance by great

circle sailing, 45.7

It will thus be seen that the great circle course on leaving

the Hook is more than a whole compass point to the north-

ward of the middle latitude course, being 106 9', instead of

118 56'.

Ex. 20. A sub-chaser -with a cruising speed of 12 knots is bound
from Norfolk to New York. While on the way, the navigator is

required to find her true course and distance from a point off Winter

Quarter Lightship (lat., 37 54' ; long., 74 54'), to a point off N. E.

End Lightship (lat., 38 56'
; long., 74 27'), assuming that a J-knot

flood-current set into the mouth of the Delaware in a N. W. direc-

tion during 3 hours of the run.

Ans. If the chaser shaped her course without regard to

the tidal current, she would, after running down her dis-

tance, be If miles N. W. of her intended destination off N. E.

End ship. To avoid this, her course should be shaped for

a point If miles S.E. of her intended destination, and then the

current will cause her to reach the original desired point.

The easiest way to make the calculation is to use the method
of traverse sailing (p. 39). This requires that we calculate

the latitude difference and departure, separately, both for

the ship's run and for the current, and then correct the

former with the latter before taking from the traverse table

the ship's final course and distance. We first calculate for

the run from Winter Quarter to N. E. End, using the lati-

tudes and longitudes given above, and obtain :

For ship's run without LAT. DIFF.

regarding current , . . . 62.0, northerly; 21.2, easterly;
1J miles, N.W. current . . . . 1.0, northerly; 1,0, westerly;
Subtracting the current effect . 61.0, northerly; 22.2, easterly;

and corresponding to latitude difference 61.0, departure 22.2,
the Traverse Table gives true course for the ship 20, dis-

tance 65 miles. The course without regard to current would
have been 19.
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Accuracy, how attained in Sumner Argument, difference, 12, 27
method, 137

in interpolating declination, 82
in reading sextant, 66, 73

Address, of house in city, 2
of ship at sea, 3

Adjuster, compass, 43, 323
deviation table, 48

Adjusting screws, 68
Adjustments of sextant, 68
Advance preparation for observa-

tion, star, 96
aun, 92

"Afternoon" observation of star,

120
Aid to navigation, 5.

Almanac, nautical, chapter on, 75
specimen pages, 76, 83, 84, 91, 92,

t
97, 98

Altitude, changes slowly near noon,
88

defined, 61
maximum and minimum, 89
maximum of star, 90
sun or star, correction of, 70
used for noon-sight, 86

A.M. and P.M., 75
American ephemerle, 75
Angle, auxiliary, in Sumner method,

112
auxiliary, in azimuth table, 115
course, 10

danger, 58
deck, 59
defined, 8
how designated, 8
how measured, 9
of triangle, 31

pairs of, for bow bearings, 56
vertex of, 8

Apparent solar day, 77
time, 77
time, ttftd for shlp't clock, 94

tare, minutes of, 3
343

double, in haversine table, 100
in tables, 10
pairs of, 11

pairs of, in log table, 25
pairs of, in traverse table, 14

pairs of, in trigonometric table,
32

Arrow on sextant vernier, 65
Artificial horizon, 69

accuracy of, 73
Ashore, observing with sextant, 69
Astronomic time, 75, 78

Auxiliary, angle, in azimuth table,
115

angle, in Sumner method, 112
azimuth table, 115

Avenues and streets imagined by
navigator, 3

Azimuth, circle (instrument), 44, 58
how counted, 114
of sun, defined, 44
table, 111, 113

table, auxiliary, 115

Beam, bearing, 55
Bearing, bow and beam, 55

compass, of sun, 44
cross, 56

danger, 59
favorable, for time-eight, 99
from the bow, doubling it, 54
from the bow, in Sumner naviga*

tion, 134
of objects ashore, 53
of Sumner line, 111

reversed, 55
Below pole observations, 89
Bow, and beam bearings, 55

bearings from the, doubling, 54
bearings from the, use in Sumner

navigation, 184
Bowl of compass, 42

Boxing the compass, 41
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Cabin clock, how set, 94

Calipers, used in testing sextant, 69

Card, compass, 41

rate, of chronometer, 79
Cardinal points of compass, 41

Celestial, equator, 85

Greenwich, 85

poles, 85

sphere, 85

Changed D. B. point in Sumner
navigation, 126

Chart, great circle sailing, 37
how to draw Sumner lines on, 123

in dead reckoning, 8

laying down ship's place on, 55

Mercator, 35

Mercator, meridians on, 38

projections, 38
scale of, 55

Chronometer, 6

dial, divided in 12 hours, 93

error, 79

face, 93

keeps mean solar time, 77
minus watch, 94

rated, 79
used in interpolating declination,

90

Circle, graduated, of sextant, 61
Civil day, 77

time, 78, 93

Clamp of sextant, 62

Clock, deck and cabin, how set, 94
Clockwise, numbering of compass, 41
Coastwise navigation, chapter on, 53

Compass, adjuster, 43, 323

bearing of objects ashore, 53

bearing of sun, 44
bowl, 42
boxing, 41
card, 41

chapter on, 40

compensating, 43
course and true course, 42
deviation by observation, 44, 115
deviation table, 48
error of, 43
error of, when negative, 47
formulas, 45
gyro, 42
lubber line, 42
north, 43
old-fashioned designation of error,
47

Compass, points of, 10, 15, 52

points, cardinal and inter-cardinal,
41

variation, 43

Compensating compass, 43

Composite sailing, 39

Correction, of altitudes, 70

tables, for altitudes, 72

Cosecant, 31

Cosine, 31
-haversine formulas, in Sumner

method, 112

Cotangent, 31

Course, angle, 10

magnetic, 49

protractor, 55

ship's, defined, 8

ship's, error of compass, 43

ship's, in points, 15

ship's, measured, 9, 19

ship's, old way of measuring, 19,
22

ship's, shaping it, 44
ship's, true and compass, 42

steering, 51

Cross-bearings, 56

Currents, ocean, effect of, 2

ocean, measured, 103

Daily rate of chronometer, 79

Danger, angle, 57

bearing, 59

Date, right, in almanac, 81

Day, apparent solar, 77
at sea, navigator's, 141

civil, 77
mean solar, 77

solar, 75
Dead reckoning, begins, 53

chapter on, 7, 23

defined, 5
fundamental problems of, 8, 10, 20
point, changed, in Sumner naviga-

tion, 126

point, in Sumner navigation, 112
with logs, 23, 31, 33

Decimal part of log, 23
rule for, 25

Deck, angle, 59

clock, how set, 94

Declination, interpolated without
chronometer, 90

north and south, plus and ralnm
89
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Declination, of star, 85, 89, 92
of star, slow change of, 90
of sun, 75, 82, 85
of sun, minus, 87

Degrees, of latitude and longitude,
when equal, 4

of longitude, 3

of longitude, counted East and
West, 3

on compass card, 41
subdivisions of, 3
unit for measuring angles, 9

Departure, defined, 10

now, 2

port of, 1

relation of longitude difference to
r

16, 20
summed, 39

taking a, 53

Destination, port of, 1

Deviation, of compass, 43
of compass, by observation, 44, 115
of compass, older designation of, 47
of oompasti, when negative, 47
table, 48, 49

table, inverse use of, 48
table, Hocond, 49

Dial, chronometer, divided m 12

hours, 93
of Qonxp&HB, 41

Difference, argument, 12, 27

hourly, 79

interpolation, 28

latitude, defined, 10

latitude, in miles and minutes, 15

latitude, meridional, 30

latitude, summed, 39

longitude*, converted into depar-
ture, 15, 19

tabular, 12, 27

time, 80
Digits, defined, 24

Dip, of oa horiaon, 70
of aaa horiion, errors in, 78
of ftoa horiaon, table of, 73
of atar, at upper transit, 90
of aun, at noon-sight , 86

Direction, defined, 8
difference of, 8

Disk of sun In telescope, 07
Distance, in dead reckoning, ID

in, traverse tables, 13

laying off on chart, 55

polar, 100

Dividend, log of, 30
Division, by logs, 30
Divisor, log of, 30

Documents, superintendent of, 75
Double, argument in haversine table,

100

interpolation, 12

Doubling the bearing from the bow,
54

Ephemera, American, 75

Equation of time, 75, 77

Equator, celestial, 85

earth's, a circle, 4

longitude meridians begin, at, 3
Equinox, vernal, 85
Error, index, of sextant, 06

in tabular dip of horizon, 73
of chronometer, 79
of compass, 43
of compass, older designation of, 47
of oompasH, when negative, 47

Exactness of logs, 30
Ex-meridian observation, 99

Faco, chronometer, 93

Factor, correction, in Table 2, 17

log of, 30
Favorable bearing for time-sight, 99
"Fix" defined, 53
"Forenoon" ohHGrvution of star, 120

Formulas, coaino-havoraino, for alti*

tudo, 112

for compass, 45
for doad reckoning, 33, 34
for latitude by noon-sight, 87, 89
for magnetic oours, 49
for Morcator sailing, 30
for operations by Kelvin's Sumner

table, 127

for Sumner intersection point, 135
for time-sight, 100
for time-sight, star, 105

Gaining rat of chronometer, 79
Graduated circle, of sextant, 61

off arc, 00
Great cirde, 87

chart, 38

sailing, 85, 37
Greenwich, beginning of longitude, 3

celestial, 85
mean time, 77

Gyro-oompaw, 43
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Half sum, 100

Haversines, 99

High latitudes, noon-sight in, 89

Horizon, 61

artificial, 69

dip of, 70

glass, on sextant, 64

Hour-angle of star, 104, 120

Hourly difference, 79

Imaginary ship, in Sumner naviga
tion, 134

Index, error, of sextant, 66

error, of sextant, from sun obser

vations, 67

glass, of sextant, 64

number, in azimuth table, 114
of sextant, 62

Initial meridian, Greenwich, 3

Inter-cardinal points of compass, 41

Interpolation, 12

difference, 28
double, 12
in trigonometric tables, 33

inverse, 29
of logs, 27

Intersection point of Sumner lines,

111, 125

finding it, 133
Inverse interpolation, 29

use of deviation table, 48
use of mathematical tables, 12
use of Table 3, 28
use of Table 4, 33

Inverting telescope, 72

Kelvin, Lord, his table, 126

improves Sumner's method, 112

Land-marks, observed from ship, 53
Lane route, 95
Latitude, degrees of, equal to degrees

of longitude, 4
determined by noon-sight, 85
determined by sextant, 5
determined by star, 89

difference, defined, 10

difference, in miles and minutes, 15
difference, meridional, 36
difference, summed, 39
for time-sight calculation, 101
high, noon-sight in, 89

j

parallels of, denned, 3 i

Laving down ship's place on chart, 55
off distance on chart, 55

Lead-line, 60

Light-gathering power of telescope,
63

Lighthouse, aid to navigation, 5
observed from ship, 53

Limb, lower, of sun, 71
Line of soundings, 60

Sumner, or line of position, 109
Sumner, principle of, 111

Log, abbreviation for logarithm, 23
instrument for estimating speed of

ship, 54

Logarithms, decimal part of, rule

for, 25
exactness of, 30
in dead reckoning, chapter on, 23
interpolation of, 27

multiplication and division with,
30

of multiples of 10, 24
of products, 30
table of, 25
table of, inverse use of, 28
table of, trigonometric, 32
two parts of, 23
whole number part of, rule for, 24

Longitude, begins at Greenwich, 3
degrees of, 3

degrees of, counted east and west,
3

degrees of, when equal to degrees
of latitude, 4

determined from star, 104
determined from sun, 99
difference, converted into depar-

ture, 15, 19

difference, converted into time-
difference, 81

meridians of, defined, 3

minutes and seconds of, 4
not determinable by noon-sight, 88

losing rate of chronometer, 79
Lower, limb of sun, 71, 86

transit, 89
jubber-line of compass, 42

Magnetic course, 49
tfaps, lines on, 4
Mathematical tables, 10
inverse use of, 12

Maximum, altitude, 89
of star, 90
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Mean, of observations, 73
solar day, 77
solar time, 77

sun, 83

time, Greenwich, 77

Mercator, charts, 35

charts, meridians on, 38

Gerhard, 35

sailing, 35
Mercury, in artificial horizon, 69

Meridian, how numbered, 3

initial, at Greenwich, 3

of longitude-, defined, 3

on maps, 4
on Mcreator chart, 35

observation, 86

transit, 96

Meridional, latitude difference, 36

parts, 35
Middle latitude, 16

sailing, 35
sailing, formulas for, 33, 34

Midnight sun, observed for latitude,

89

Miles, nautical, 15

Minimum, altitude, 80

Minus, declination, 82, 87

defined, 25

sign, for south latitude and decli-

nation, 89

sign, in formula, 87
Minutes of arc, 3

subdivided, 4
used in measuring anglea, 9

Mirror, artificial horizon, 69

sextant, 31

Moon, observation of, 99

Motion, of ship, between two Sum-
ner observations, 137

Multiples of 10, lop of, 24

Multiplication, by logarithms, 30
table, 11, 28

Nautical almanac, chapter on, 75
mllM, 15

specimen pages, 76, 83, 84, 91, 92,

97,98
Navigator, his day at ea, 141

Negative, compfuw error, 47

defined, 24
Newer navigation methods, chapter

on, 108

Noon, 7

light, 86

Noon, sight, advance preparation for,

92

sight, good for latitude only, 88
sight, in high latitudes, 89

sight, in tropics, 89

sight, of star, 90

North, by compass, 43
declination and latitude are plus,

89)

Numbers, of longitude meridians, 3

tabular, 10

Objections to Sumner line, 110"

Observation, advance preparation
for sun, 92

advance preparation for star, 96
determines ship's position, 4
for compass deviation, 44

planets and moon, 98

single, determines one thing only,
88

Ocean currents, deflect ship, 2

measured, 103
Off arc, graduations of sextant, 66
Older navigation methods, chapter

on, 86

Pages from nautical almanac, 76, 83,

84, 91, 92, 97, 98

Pairs*, of angles for bow bearings, 56
of arguments, 11

of arguments, in log table, 25
of arguments, in traverHO table, 14

Parallax, correction of sun's altitude,
71

Parallel, of latitude, defined, 3
of latitude, how counted, 3
of latitude, on maps, 4

rulera, 55

sailing, 39

Parts, meridional, 35
of triangle, 31

proportional, 28
two, of compass error, 43

two, of log, 23

two, of log, role for, 24
Patent log, 54

Peloriifl, 44, 53

Plane, defined, 9

tailing, 9

trigonometry, 10

Planet*, observation of, lor latitude,

98
observation of, tlmenright, 104
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Plotting ship's place on chart, 55
Plus, sign in formula, 87

sign, north declination and lati-

tude, 89
P.M. and A.M., 75
Point, D. R., in Sumner navigation

112

intersection, of Sumner lines, 111
125

Sumner, 112

Sumner, ship not at, 125
Points of compass, 10, 15

cardinal, 41

inter-cardinal, 41
table of, 52

Polar distance, 100

Pole, celestial, 85

celestial, observing below it, 89
end of longitude meridians, 3

Port of departure and destination, 1

Position, line of, 109
of ship at sea, defined, 2
of ship, determined daily, 2
of ship, how determined, 4
of ship, most probable, not at
Sumner point, 125

Preparation for observation, star,
1 96

sun, 92

Principle of Sumner line, 111
Probable position of ship, not at

Sumner point, 125

Problem, of dead reckoning, 8, 10,
20

of dead reckoning, with logarithms,
23, 31, 33

of navigation, 1

Product, log of, 30
Projection chart, 38
Proportional parts, 28
Protractor, instrument, 55, 58

Quotient, log of, 30

Rate of chronometer, 79
Reading sextant circle, 62
Refraction of light, 71
Reversed bearing, 55
Rhumb line, 38

Right-ascension, of star, 85, 89, 91
of star, slow change of, 90
of sun, 83

Roof, of artificial horizon, 69
Rulers, parallel, 55

Sailing, composite, 39
Mercator, 35
middle latitude, 35

parallel, 39

plane, 9

traverse, 39
Saint Hilaire, Marcq, improves

Sumner's method, 112
Scale of chart, 55
Screw adjusting, 68

Secant, 31

Second deviation table, 49
Seconds of arc, 4
Semi-diameter of sun, 71
Set of current measured, 103

Setting watch on board, 94
Sextant, adjustments, 68

chapter on, 61

clamp, 62

denned, 5
determines latitude, 5
for danger angle, 59

graduated circle of, 61

graduations off arc, 66
horizon glass of, 64
index, 62
index glass, 64

mirrors, 62
read to minutes only, 66, 73
superposed objects, 64

tangency of sun's image, 67, 70
tangent screw, 62

telescope, 62
use of, ashore, 69

vernier, 64

Shaping a course, 39, 44
Ship, course, defined, 8

course, measured, 9, 19

course, measured, old way, 19

imaginary, in Sumner navigation,
134

motion of, between two Sumner
observations, 137

position of, how determined, 4
position of, laying down on chart,

55

swinging, for compass adjustment,
43

time is apparent solar time, 94
Sidereal time, 85
Sides of triangle, 31
Sine, 31

Single observation determines one
thing only, 88, 111, 125
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Sky, 85
Slow-motion screw of sextant, 62
Solar day, 75

apparent, 77

mean, 77
Solar time, 75

apparent, 77

mean, 77

Soundings, 59

machine, 60
South declination and latitude,

minus, 89

Specimen pages, from nautical

almanac, 76, 83, 84, 91, 92, 97, 98

Sphere, celestial, 85

Star, advance preparation for obser-

vation, 90

dip of, 96
"forenoon" and "afternoon" ob-

servation, 120

hour-angle of, 104

"noon-sight" of, 90
observed for index error, 67
observed for latitude, 89
observed for Sunnier line, 120
observed for time-sight, 104

right-ascension and declination, 85,

91, 92
time of upper transit, 96

Steering courses, table of, 51

Streets and avenues, imagined by
navigator, 3

Subdivisions, of degrees, etc., 3

of minutes, 4
Summed latitude difference and de-

parture in travorso sailing, 39

Sumner, Capt. Thos, H., 109
Sutnnor intersection table, 135
Sumner line, 109

bearing of. 111
how to draw it on chart, 123

objection to it, 110

point of intersection, 111, 125

point of intersection, finding it, 133

principle of. 111

star observed for, 120
sun observed for, 112

Sumner method, auxiliary angles in,

112
conditions for accuracy in, 187
cosine-havoreine formula, 112
with special tables, 126

Sumner navigation, compared with

time-fight, 124

Sumner navigation, use of bearings
from the bow in, 134

Sumner observations, motion of ship
between two, 137

Sumner point, 112

ship not at, 125

Sun, advance preparation for obser-

vation of, 92
altitude correction of, 70
azimuth of, 44
compass bearing of, 44
declination of, 75, 82, 85
in nautical almanac, 76
its disk in telescope, 67
lower limb of, 71

mean, 77, 83

midnight, observed for latitude, 89
observed for index error, 67
observed for Sumnor line, 112

right, ascension of, 83, 85.

Superintendent of documents, 75

Superposed objects in sextant, 64

Supplementary correction of sun's

altitude, 72

Swinging ship for compass adjust-
ment, 43

Table, auxiliary azimuth, 115

azimuth, 111

compass points, 52
corrections for altitudes, 72

deviation, 48

deviation, second, 49

dip, 73

havorflinos, 99

logarithms, 25

logarithms, inverse use of, 28
mathematical, 10

mathematical, inverse use of, 12

multiplication, 11, 28
of steering-courses, $1

Sumner, by Kelvin, 126
Sumner intersection , 135

traverse, 10

traverse, used to convert longitude
difference into departure, 19

trigonometric logarithms, 32

Tabular, difference, 12, 27

numbers, 10

Taking a departure, 53

Tangenoy of un's images, 67, 70
Tangent, images of sun, 67, 70

in trigonometric tables, 31
crew ol sextant, 62
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Telescope, inverting, 72
of sextant, 61

Ten, arbitrary increase of logs by, 25,

31,32
multiples of, logs of, 24

Time, apparent solar, 77
apparent solar, used for ship's

clock, 94
astronomical, 78
civil, 78, 93

difference, 80, 87
equation of, 75, 77
Greenwich mean, 75
mean solar, 77
sidereal, 85
solar, 75
transformation, mean to sidereal,

85
Time-sight, 99

calculation, latitude for, 101

compared with Sumner navigation,
124

Transformations, time, importance
of, 82

mean to sidereal, 85
Transit, lower, 89

upper, 89
Traverse, sailing, 39

table, 10

table, in Sumner method, 113, 135
table, used to convert longitude

difference and departure, 19

Triangle, parts of, 31

Trigonometry, log table, 31

plane, 10, 31

Tropics, noon-sight in, 89
True course of ship, 42

north, 43

Unit for measuring angles, 9

Upper transit, 89
time of, for stars, 96

Variation of compass, 43
older designation of, 47
when negative, 47

Vernal equinox, 85
Vernier, backward reading, off arc, (

of sextant, 64
Vertex of angle defined, 8

Watch, chronometer minus, 94
how set, 94
used for timing observations, 94

Whole number part of log, 23
rule for, 24

Wind, deflects ship, 2

Zenith, defined, 61
sun near it in tropics, 89

Zero, hours, same as noon, 75
meridian, Greenwich, 3











Carneqiu Mellon University Libraries

3 BH&E DiEDi



1 38 444


