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NAVIGATION OR PLANE SAILING.

CHAPTER L

(1.) Two distinct methods are used for navigating a ship from one place to
another: the first is an application of the common rules of Plane Trigono-
metry, the necessary angles and measurements being supplied by means of
the compass and log-line ; the second and more exact method requires a
knowledge of the rules of Spherical Trigonometry and of the principal defi-
nitions and facts in Astronomy, the necessary data being obtained by astro-
nomical observations taken usually with the sextant. The latter method is
for this reason called Nautical Astronomy ; the characteristic name of the
former being Navigation or Plane Sailing.

Before we proceed to give the rules in mnavigation for finding the place
of the ship, that is, its latitude and longitude, we will reprint, for the sake
of reference, the definitions and terms in pp. 143-44 of Navigation, Part 1L,
and also some trigonometrical and nautical problems taken for the most
part out of the author’s Zrigonometry, Part I. These problems are intended
to serve as a useful introduction to navigation ; at the same time they will
show the student that a knowledge of the rules in plane trigonometry is
. nearly all that will be required to enable him to understand and work out
the problems and examples in navigation or plane sailing.

Deﬁnitz’oné i Navigation.

(2.) The following are the principal terms in Navigation : the definitions
of these terms, like those in Nautical Astronomy, must be thoroughly under-
stood and committed to memory.

Course.

Distance.

Departure.

True difference of latitude.
Meridional difference of latitude.
Difference of longitude.

Middle latitude.

B



2 DEFINITIONS IN NAVIGATION OR PLANE SAILING.

Definitions of the preceding terms.

The course is the angle which the ship's track makes with all the meri-
dians between the place left and the place arrived at.

The distance is the spiral line made by the ship’s track in describing the
course between the place left and the place arrived at.

The departure is the sum of all the arcs of parallels of latitude drawn
between the place left and the place arrived at, through points indefinitely
near to one another taken on the distance, and intercepted between the
meridians passing through those points.

The true difference of latitude is the arc of a meridian intercepted
between the parallels of latitude drawn through the place left and the place
arrived at.

The meridional difference of latitude is the value in minutes of a great
cirele of the line on a Mercator’s chart, into which the true difference of lati-
tude has been expanded. )

The difference of longitude is the arc of the terrestrial equator intercepted
between the meridians passing through the place left and the place arrived at.

The middle latitude is the mean of the latitudes (supposed of the same
name) of the place left and the place arrived at.

These definitions will be clearly understood by means of the following
diagrams.

Let p represent the pole of the earth, Tz an arc of the equator, Pt the
meridian passing through a known place 6, as Greenwich, o and r two other
places on the earth (conmsidered as a sphere), Pu, Pz, their meridians.
Through the points A and r suppose
a curve line AF to be drawn, cutting
all the intermediate meridians pv,
PW, PX, &c., at the same angle ; that
is, making the angle PaB=PBC=
pcD=&c. Then this common angle
PAF is called the course. The arc
AF* is the distance. Draw the paral-
lels of latitude aa’, ¥¥’; then, since
the latitude of A is the arc avu, and
the longitude of A the arc TU, and
the latitude of F is the arc Fz, and
the longitude of ¥ is the arc Tz;
therefore the difference, or, as it is
usually called, the frue difference of
latitude, between A and ¥ is the are
A¥ or A’'F, and the difference of Zc'mgz'tude between a and F is the are of the
equator vz. Again, suppose the intermediate meridians pv, Pw, &e., to be

* A T is sometimes called the rhumb line, sometimes the loxodromic curve, some-

times the equiangular spiral, )

P




~ DEFINITIONS IN NAVIGATION OR PLANE SAILING. 3

drawn through points B, ¢, b, &ec., taken on the line AF indefinitely near to
each other; and through the points 4, B, ¢, D, &c., the arcs of parallels of
latitude AM, BN, co, &c. On this supposition (namely that the points
A, B, ¢, &e., are indefinitely near to each other) the elementary triangles
ABM, BON, ¢Do, &c., may be considered without any error to be right-angled
plane triangles. The departure between A and F=AM+BN+4-00+ . . . ER,
the points 4, B, ¢, &e., being supposed to be indefinitely near to each other.
If a parallel of latitude s’ be drawn through the middle of A¥/, then the
arc of the meridian su is called the mean or middle latitude between a and .
It is manifest that the are 33’ will bo nearly equal to AM+BN4 . .. DQ+ER,
the departure, A and F being supposed to be on the same side of the equator.
For short distances s§’ is substituted without any practical error for the
departure, and one of the principal rules in Navigation is deduced from it.

(3.) There are two kinds of charts ; the Plane chart, and Mercator’s chart.

The Plane chart.

The plane chart is a representation of the earth’s surface, considering it
as a plane. When a small portion of the surface is concerned, this mode of
representing it will lead to no practical error; hence coasting charts are
usually constructed in this manner, in which the different headlands, light-
houses, &c., are laid down according to their bearings.

Mercator’s chart.

The chart used at sea for marking down the ship’s track, and for other
purposes, is called Mercator’s chart. It
exhibits also the surface of the earth on «
plane ; but the meridians are drawn per- 7 7
pendicular to the equator, and therefore the
ares AM, BB, &c., of parallels of latitude
intersected between any two meridians are ¢
increased to am, U'b, &e., and become
equal to one another and to line uv, and

(fig. 1.) P (fig. 2)

theréefore to the intercepted arc uv of the @ &
equator. If we wish to make the figures
(supposed to be very small) amb¥/, bbec, “ g

&ec., on the chart similar to AMBE, B'BoC),

&e., of the globe, it is evident we must 4 ' | R
increase the sides bm, be, &c., in the same 1 . g
proportion as am, b'd, &e. (that represent A M
AM, BB, &c.), have been increased. Let &

us therefore suppose the straight lines am, u v e
U'b, ¢’¢c, &ec., have been drawn at such a ] ¥,

distance from each other that the above similarity of figure is preserved (and



4 ELEMENTARY RULES IN NAVIGATION OR PLANE SAILING.

this can only be done by supposing the surfaces amb?’, V'bec’, &c., inde-
Jinitely small, so that the surfaces AMBE, B'BCC/, &c., may be considered as
plane surfaces). Then a representation of the earth’s surface, or any part of
it, so constructed, is called a Mercator's chart.

The straight line s f, into which mF, the true difference of latitude
between 3 and F, has been expanded, is called the meridional difference of
latitude between M and F, and the values of bv, cv, &ec., in minutes, are
called the meridional parts of B, ¢, &e.: hence the meridional difference of
latitude between two places is the difference of the meridional parts for the
two places.

The method of constructing a Mercator’s chart and laying down a ship’s
track thereon will be given hereafter (see art. 16).

From these definitions and principles are deduced the following

ELEMENTARY RULES IN NAVIGATION.

Rule («). To find the true difference of latitude, having given the lati-
tude from and latitude in.*

(1.) When latitude from and latitude in have like names, that is, are
both north or both south. .

Under the latitude from, put down the latitude in, take the difference
and reduce the same to minutes; place N. or S. against the result according
as the latitude in is north or south of the latitude from ; the remainder is
the true difference of latitude.

(2.) When latitude from and latitude in have wunlike names, that is, one
north and the other south.

Take the sum of the two latitudes, reduce it to minutes, and attach N.
or S. thereto, according as the latitude in is north or south of the latitude
from ; the result is the true difference of latitude.

EXAMPLES,

1. Find the true difference of lati- 2. Find the true difference of lati-
tude, having given latitude from 42° tude, having given latitude from
10’ N., and latitude in 50° 48’ N. 3° 42’ N, and latitude in 2° 40" S.

lat. from 42° 10'N. lat. from 3° 42'N.
lat. in 50 48 N. lat.in 2 50 S.
8 38 6 32
60 60
.. T. D. lat. 518 N. .+ T. D. 1at. 392 8.

* The latitude of the place left is called the latitude from, the latitude of the place
arrived at is called the latitude in.
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<

Find the true difference of latitude in each of the following examples:

" Lat, from Lat, in r Answers.
3 S3RNL2AN), 40° 40’N. .>. T. D. lat.= 418 N.
4 40 40 N. 33 42 N. sk ==0 41188 S!
b. 3 42 S. 1 40 N. = 322 N.
6 Shimtenisls 14 42 S. e = 694 S.
7 68 48 N. 38 30 N. . =1818 S.
8 14 14 N. 0 0 . = 854 S.

Rule (). To find the meridional difference of latitude, having given the
latitude from and latitude in.

Take the meridional parts for the two latitndes from the table of meri-
dional parts: subtract if the names be alike, and add if the names be unlike,
the result is the meridional difference of latitude; N. or 8. being attached
thereto according as the latitude in is north or south of latitude from.

EXAMPLES.

9. Find the meridional difference 10. Find the meridional difference
of latitude, having given latitude of latitude, having given latitude
from 42° 10’ N,, and latitude in from 3° 42’ N., and latitude in 7°

50° 48’ N. 32'8.
lat. from 42° 10N, lat. from  3° 42'N.
lat. in 50 48 N. lat. in 7 32 S.
mer. parts...2795-2 N. mer. parts ...222:2 N.
mer, parts...3549-8 N. mer. parts ...453'3 S.
mer. diff. lat. ...7546 N. mer. diff. lat. ...675'5 S.

Find the meridional difference of latitude in each of the following ex-
amples :

Lat. from Lat, in Answers,
11,  34° 42'N., 33° 15'N. M. D. lat.= 1049 S.
12. 14 14 N. 30 14 N, .. =1041T N,
13. 84 10N. 80 30 N. .. =16815 8.
11, 2 88 3 10 N. = 3181 N.
15. 4 b5 N. 4 5 S. = 4904 S.
16. 0 o0 2 45 N. = JUBEA 3%

Rule (c). To find the middle latitude, having given the latitude from
and latitude in. )

The names being supposed to be alike, that is, both north or both south. -

Add together the two latitudes, and take half the sum ; the result is the
middle latitude.

When the names are unlike, the mid. lat. (which is seldom required but
for obtaining the departure) should be found by means of a table; but in
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this case it may perhaps be as well to avoid the use of the middle latitude
in any of the common problems in navigation.

EXAMPLES.

17. Find the middle latitude, having given latitude from 3° 42’ N., and
latitude in 13° 52" N.
' lat. from 3° 42'N.
lat.in 13 52 N.
9)T7 34
mid. lat. 8 47 N.

Find the middle latitude in each of the following examples :

Lat. from Lat. in Answers.
18. 38° 42'N. 30° 30'N. mid. lat. 34° 36’ N.
19. 62 17 S. 62 "30 S. .. 62 2318/

Rule (d). To find the difference of longtitude, having given the longitude
from and longitude in.

(1.) When the longitude from and longitude in have like names ; that is,
are both east or both west.

Under longitude from put longitude in, take the difference, and reduce
the same to minutes ; place E. or W. against the remainder according as the
longitude in is east or west of longitude from; the remainder will be the
difference of longitude.

(2.) When the longitude from and longitude in have unlike names ; that
is, one east and the other west.

Take the sum of the two longitudes, reduce it to minutes, and attach E.
or W. thereto according as the longitude in is east or west of the longitude
from ; the result is the true difference of longitude.

Note. If the difference of longitude found by this rule exceed 180° it must be sub-
tracted from 360° and the remainder brought into minutes must be considered the
difference of longitude, with the contrary letter attached to it.

20. Find the difference of longi- 21. Find the difference of longi-
tude, having given the longitude tude, having given long. from 12°
from=110° 42’ W., and longitude 10’ E., and long. in 2° 45' W,
in=100° 42’ W. '

long. from 110° 42'W. long. from 12° 10’ E.
long. in 100 42'W, long.in 2 45 W.
10 0 14 55
60 60

.. diff. lon3. 600 E. .*. diff. long. 895 W.
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Rule (f). 7o find the longitude in, having given the longitude from and
the difference of longitude.

1) When the longitude from and diff. long, have like names.

To the long. from, add diff. long. (turned into degrees, if necessary) ; the
sum will be long. in, of the same name as long. from.

(2.) When the long. from and diff. long. have unlike names.

Under long. from put diff. long. (ih degrees and minutes, if necessary) ;
take the less from the greater ; the remainder, marked with the name of the
greater, is the long. in.

NotE. If the long. in, found as above, exceed 180° subtract it from 360° and
attach to the remainder the contrary name to the one directed in the Rule.

EXAMPLES.
36. Find the long. in, having given long. from 38° 42’ W., and diff. long.
384'5" W. .
60)384-5 long. from 38° 42'W,
6° 24-5'W. diff. long. 6 245 W.
long. in 45 65 W.

Find the longitude in, in each of the following examples :

Long. from Dift, long. Answers.
37. 62° 32’ E. 1000-5'W. long. in 45° 51-5' E.
38. 2 30 E. 126-6 E. 0 o 4 366 E.
39. 3 40W, 2200 E. o0 0 0
40. 0 0 100-4W. oc 1 404W.
41. 179 59W. 2:0W. .. 179 590 E.

NoTE, The Nautical problems following (42 to 68) may be omitted by the student,
unless he is acquainted with the practical rules in Plane Trigonometry ; proceeding at
once to the construction of the Mariner’s Compass, p. 20, and then to the corrections in
Plane Sailing, p. 80.






10 NAUTICAL AND SURVEYING PROBLEMS.

then measured the distancé from the place of observation to the base of the
tower, and found it to be 142 feet. Required the height of the tower.

Let ¢B* represent the
tower, A the place of ob-
server. Draw the horizon-
tal line aoB at a height
above the ground ab equal
to the height of the eye,
and join ac.

Then in right-angled triangle AB ¢ are given AB=142, angle cAB=32° 14’
and B=90°: to find cB, the height of the tower, above the horizontal line
AB. ’

(Mark the figure in the usual way. See Trigonometry, Part 1., rule for
right-angled plane triangles.)

-~

Calculation.
log. aB...... 2:152288
,, tan. A......9°799717

.. CB=AB tan. A. »  ©B......1:952005
.*. log. ce=log. AB+1log. tan. A—10. .*. cB=89'5 feet.
(Trig. Part L art. 31.)
To the value of ¢B must be added the height of the eye a4 a: the result

will be the height of the tower required.

M, CB
Since —=tan. a.
AB

43. To find the height of a tower, I observed the angle of elevation of its
top above the level of my eye (supposed to be 5 feet above the ground) to
be 47° 56°. I then measured the distance from the place of observation to
the base of the tower, and found it to be 1904 feet. Required the height
of the tower. Ans. 216 feet.

44, On the opposite bank of a river to that on which I stood is a tower
known to be 216 feet high : with a pocket sextant I ascertained the angle
between a horizontal line drawn from my eye (supposed to be 5 feet above
the ground) and its top to be 47° 56. Required the distance across the
river from the place where I stood to the bottom of the tower.

Let oD (fig. to Prob. 1) represent the height of tower=216 feet; 4 a the

* The figures or diagrams of the following problems are not drawn accurately to
scale; the student should endeavour to draw them as neatly as he can by the eye, so
as to indicate the form without regard to the exact value of the sides and angles in the
problems to which they refer, Problems will be given hereafter (see art. 9), which
are solved not only by logarithms but by construction ; that is, by using mathematical
instruments. The practice of using instruments thus obtained will form a proper intro-
duction to the construction of charts, and the tracing the ship’s track thereon,
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height of spectator’s eye=5 ft.; and AB or @b width of river. Suppose an
parallel to horizontal line ab: join ca, then caB the angle of elevation=
47° 56’, and Bc=height of tower—5=211 feet are given: to find oB or ad
the width of river.

Sinoe L Pancobi@u B Calculation.
BC log. 211............ 2:324282
.. AB=BC cof. cAB ,, cob. 47° 56" 9955453
.*. log. Ap=log. Bc+log. cot. can—10 5 B cooeooo00as 2-279735
=log. 211 +log. cot. 47° 56'—10 .*. AB=1904

width of river.

45. On the opposite bank of a river to that on which I stood is a tower
known to be 94'5 feet high: with a pocket sextant I ascertained the angle
between a horizontal line drawn from my eye (supposed to be 5 feet above
the ground) and its top to be 32° 14'. Required the distance across the
river from the place where I stood to the bottom of the tower.

Ans. 142 feet,

46, Being ordered to place a target at 500 yards from the ship, and
knowing that the height of the truck above the water-line was 213 feet : it
is required to find what angle the height will subtend on my sextant when
I am at the required distance (before allowing for index correction).

Let nc represent the ship’s mast, o the required place of target: then
the angle Bac is the angle which must be read off on the sextant (supposing
it to have no index correction).

In right-angled triangle are given the side 80=213 feet, AB=500 yards
=1500 feet, and 3=90°, to find the angle a.

Rnsetan. Lm0 Calculation.
" AB log. ¢B+10...12-328380
.+. log. tan. A—10=log. cB—log. AB % WAB) o 3176091

.*. log. tan. A=10+log. cB—log. AB , tan. A ... 9152289
.. angle on sextant=8° 5,

47. Sailing in company with another ship, and being ordered to keep at
the distance of 500 yards from her, and knowing that the height of her mast
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(2.) To find ap.

In triangle ABD, AD:AB::8in. ABD : sin. ADB.
AB=T735 >Tog am i 4 2-866287
pAB=35° 10’ , 8in. ABD... 9976702
ABD=28 20+80° 1¢’ 12-842989
=108° 36’ s Sin. ADB... 9771643
and .. ADB=36° 14’ . AD... 3071346
.*. ap=F78"5.

(3.) To find ¢p (by Rule 4, second method, 7'rig. Part I.).

In triangle scp,
Ao= 4368 log.(aDp+4c)...3:208253...1og. (AD+40)...3:208253
Ap=11785 ,, (AD—a0)...2'870226 ,, sin.}caDp...9:721162

.'. AC+AD=1615'3 0-338027 2929415
AC—AD= 7417 , tan.lcap...9°791563 ,, sin, arc....... 9-904757
cADp=63° 30/ ,, tan, arc. ...10-129590 ,, ¢p............ 3:024658

... 30ap=31 45 .*. the distance cp=1058-3 yards.

53. To determine the distance between two redoubts ¢ and p by which
the entrance into a harbour is defended, a boat is placed at A with its head
towards a tree seen at E (produce the line AB to some point E) in the direc-
tion A B, and the angles cap=22° 17’ and DAE=48° 1’ were observed. The
boat is then moved to B, a distance of 1000 yards, directly towards the tree,
and the angles c8p=>53° 15’ and DBE=75° 43’ are observed. Required the
distance between the redoubts ¢ and p. Ans. 1290 yards.

As the two following problems are of great use in Marine Surveying, we
will solve them by logarithms, and also by a geometrical construction. In
Problem 98 of the author’s volume of Astronomical Problems, analytical
solutions of the same problems are also given.

54. Wishing to determine the position of a sunken rock at the entrance
of a bay, and the water being smooth, I anchored B

a boat upon it, and measured with a sextant the

angles which three objects, 4, B,.and ¢, on the k

shore subtended at the boat. They were as fol-

lows: the angle between A and the object B to - / \\ c

the right was 26° 27/, and the angle between B

and the object @ to the right was 84° 12’. On \

my chart of the bay I carefully measured with \

compasses the distances between the three objects, ‘

and found AB=>5 miles, Bc=6 miles, and Ac= /
o

7 miles. Required the distance of the rock from
A, B, and o, e}
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(1.) By Construction.

By means of a scale of equal parts make the friangle ABo, having the
side AB=5, Bc=0, and Ac=T7. At the point ¢, on the side of a¢ farthest
from the boat, make the angle AcD=26° 27', the angle observed between
the other two objects A and B; and at the point 4, on the farthest side also
from the boat, make the angle cap=34° 12/, the angle between the other
two objects B and ¢ : produce the sides oD and ¢p till they meet in . Then
describe a circle to pass through the three points A, b, and ¢; and the posi-
tion of the rock will be somewhere in the circumference of that circle. To
find that position, join Bp, and produce it to the circumference in ¢; then
6 will be the station sought, or the position of the rock.

For, the angles in the same segment of a circle being equal (Euclid,
b. iii.), therefore A¢B=4cp=26° 27', and cGB=0cAD=34° 12’; and these
were the angles observed at the boat. Hence ¢ must be the position of the
boat ; and @4, 6B, and @ ¢ measure respectively the distance of the rock from
each of the objects 4, B, and c.

(2.) By Trigonometry.

Assume any point & to be the position of the boat, and let 4, B, and ¢ be
the objects. Describe roughly a circle passing through the three points 4, g,
c. Join a4, ¢B, and ce. Then Ga, 6B, and Go are the distances required.
Draw ap, ¢D to the point of intersection . Then, by Geomelry, since the
angles in the same segment of a circle are equal, .. cAp=caB=34° 12/, and
ACD=4GB=26° 27’

{1.] Find ap, having given in the triangle ADc the side Ac=?7, the angle
A0p=26° 27, and Apc=180°—(34° 12'+26° 27")=119° 21".

[2.] Find angle Bac, having given the three sides of the triangle anc.

[8.] Find angle aBD, having given AB, aDp, and angle BAD (=Bac—
CAD).

[4.] Find 4, @B, and angle BAG, having given in the triangle anc the
side AB and the angles AGB and ABG.

[5.] Find ec, having given in the triangle Acc the side ac, the angle
AGe, and the angle cAG=(BAG—BAC).

Caleulation.
[1.] To find ap. [2.] To find angle BAC.
AC:AD::sin. ADC:8in. DCA 7 9154902
A0=T 0845098 aB=5 5 9-301030
ADC=119°21" 9:648766 Bc=06 D 0602060
pCcA= 26 27 10493864 ac=7 6 0301030
9-940338 8 9-359022
0553526 4.8 Bre=57° 715/
.*. AD=8577 4 cap=34 12 0
2.-.8AD=22 55 15
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(1.) By Construction.

Construct the triangle ABc from the scale of equal parts, by taking A=
575, Bc=7'5, and Ac=8'25. At the point ¢, in
the straight line ac, make Acp=63° 20’, the
supplement of the angle subtended by the other
two points A and B. Again, at the point 4, in the
straight line ac, make cap=67° 30', the supple-
\ ment of the angle subtended Ly the other two points
B and ¢: produce the lines oD and ¢p to meet in
the point n. About the triangle apc describe a
circle ; then the place of the reef will be somewhere
in the circumference of this circle. To find it, join
D BD; and the point of intersection ¢ is the position
of the reef required.
For since the angles in the same segment of a circle are equal (Euclid,
b. iii.), therefore Aep=4cD=03° 20'; therefore the angle acB=116° 40"
Again, cap=cAaD=067° 30’ ; therefore the angle Bcc=112° 30’. And these
were the angles observed at the boat; therefore ¢ must be the place of the
boat, or position of reef.

(2.) By Trigonometry.

Assume any point @ as the position of the reef, and let 4, B, and ¢ be the
objects on shore, Describe a circle passing through the three points a, g,
and ¢. Join B@, and produce it to meet the circle in p. Join ¢a and ac.
Then G4, 6B, and ac are the distances required. Join ADp and ¢p. Then,
by Geometry, since the angles in the same segment are equal, .. angle pac
=pGc=180°—Bac=180°—112° 30'=67° 30’, and angle AcD=46D=180°
—AeB=180°—116° 40'=63° 20".

[1.] Find aDp, having given in the triangle ADc, Ac=8-25, angle Acp=
63° 20, and angle Apc=180°—(67° 30"+ 63° 20")=49° 10"

[2.] Find the angle Bac, having given the three sides of the triangle
ABC.

[3.] Find the angle oD, having given aB, D, and the angle Bap=
(BACHCAD).

[4.] Find a4, 6B, and the angle BaG, having given in the triangle aBe
the side A B and the angles A¢B and A BG.

[5.] Find ec, having given in the triangle acc the side Ao, the angle
AG(, and the angle cAG=BAc~BAG. [

Calculation.
[1.] To find ap.

AQ:AD: :sin. ADC: 8in. DCA
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The problems about to follow require a knowledge of the several points
of the Mariner’s Compass. We will therefore first show how the compass
card is constructed and an expeditious method of learning the bearings of
its points and quarter-points from the meridian. These points must be
thoroughly known and committed to memory.

THE COMPASS.

The compass card is represented above: each quadrant is divided into
eight equal parts, called poinfs; each point therefore contains the eighth
part of 90°, or 11° 15’. The four cardinal points are the North, South,
Fast, and West points; the intermediate points are formed and named as
follows:

The middle point between N. and E.is......c.ccoviviiiiiiiinin, N.E.
(formed simply by putting these letters together).
Similarly : :
The middle point between N. and N.E.is............ccooin. N.N.E.
. o E. , NEisi.oiiiiiiin EN.E.
Again, one point from N. towards E.is N. by E.or......... N.b.E.
” » E. » N.isE. byN.or...... E.b.N.
’ - NE , NisNEbyNor...... N.E.b.N.
b s NE , EiNEbyEor....... N.E.Lb.E.

The other three quadrants of the compass are divided and named in a
similar manner.

Before the student proceeds further, he should form as neatly as he can,
in the manner pointed out above, and without the aid of instruments, the
above compass, writing it down several times, until he is thoroughly ac-
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quainted with its construction and the 32 1;arts or points into which it is
thus divided. f

(6.) Bearings or Angular Distances by Compass.

The points of the compass are frequently referred to with respect to their
position or bearing to the right or left of the cardinal point towards which
the speetator is looking: thus, suppose the compass card to represent the
horizon, and the spectator to be placed in the centre of the card and looking
towards the north, then any point as N.E. is said to be 4 points to the right
of N. (written thus—4 r. N.): E.b.N.is 7 points right of N. or 7r. N. If
the spectator is looking towards the east, then N.E.is 4 left of E. or 4 1. &,
E.Db.N. is 1 left of E. or 1 1. ., and so on.

EXAMPLES,
56. Required the bearings of the following points—first, from the north ;
second, from the east :
N.N.E N.E.b.N. N.b.E. N.N.W. N.W. W.b.N.

Answer.

Bearings N.N.E. N.Eb.N. N.b.E. N.NW. N.W., W.bN.
from or or or or or or
North...... 2r.N. 3r.N. 1r.N. 2LN. 4LN. T7LN.
East........ 6LE. 5LE. 71.E. 10LE. 12LE. 15LE.

57. Required the bearings of the following points from the north, east,
south, and west respectively.

Sb.E. S.EbS. S.ELE S.S.W. W.b.S. E.S.E.

Answer.
Bearings S.b.E. S.Eb.S. S.EDLE SSW. W.bS ESE.
from or or or or or or
North...... 15r.N. 13r.N. 11r.N. 14LN. 9LN. 10r N.
East ...... 7r.E. bHr L. 3r.E. 10r.E 15r.E. 2r E
South ...... 11.S. 3LS. 51 8. 2r.8. TrS. 61 S.
West ...... 9LLW. 11L.W. 13LW. 6LW. 11L.W. 141 W.

58. Required the compass bearings of the following points :
2r. N. 5L N. 3r. 8. 12291 5r.E. 41.1W.

Answer.
2r. N, or N.N.E. 3r. 8. or S W.b.S. 5r. E. or S.EDb.S.
51.N.or NNW.b.W. 12r.S.orN.W. 4]1. W.orS.W.
!

Each point of the compass, moreover, is subdivided into quarter-points,
and named from the adjacent points ; thus 24 points to the right of north is
N.N.E.LE.; 7§ points to the left of north is W.b.N.3W., or rather W.4N.
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EXAMPLES.

59, Required the bearings of the following points—first, from the north ;
second, from the east: -

NN.EJE NJE EbNIN. NEJN. NWIW. NIW.

Answer.
Bearings N.N.E.1E. N.2E. E.b.N.IN. N.E.3N. N.W.AW. NAW,
from or or or or or or

North...2}r.N. $rN. 6ir.N. 3,rN. 41LN. ILN.
East....53LE. 7}LE  13LE.  4JLE 12JLE 83LE

60. Required the bearings of the following points—first, from the south;
second, from the west :

SHEAE SEbSJS. SSEJE SIW. W.SWIS WSWIW.

Answer,
Bearings S.b.E.E, S.E.b.S.3S. S.S.EZE. S3&W, W.S.W.i8. W.S.WiW.
from or or or or or or

South....13LS. 231S. 23LS.  #rnS. B3rS.  6irS.
West.....0L W. 103LW. 103LW. 7iLW. 2}LW. 13LW.

61. Required the compass bearings of the following points:

211 N. 13LN.  10jr.S.  73LN. 3irS.  3LS.
6ir.S. 10118, 143rN. 8 rnN. 8 LS 15N

Answers.

24r.N.or NNE1E. 10}r S.or WN.W.N. 3irS. or SW.4S.

64r. 8. or W.S.W.LW. 143r. N.or Sb.EJE. 8 LS. or East.

1L N.or NN.W.IN. 7L N.or W.iN. 311 S. or S.E3S.
1041 8. or EXN.E.4N. 8 r. N. or East. 153 r. N. or S.1E.

" (7.) Attached to the compass card, and coinciding with the line N.S,,
is a magnetic bar of steel, by means of which the card, when balanced on a
fine point near its center, will indicate the compass bearing or direction of
any object beyond it. Thus, the compass being placed near the helm, the -
bearing of the ship’s head is seen at once, and the direction in which the
ship is steered is readily noted.

The Log-line.

(8.) The log is a flat piece of thin wood of a quadrantal form, loaded in
the circular side with lead sufficient to make it swim upright in the water;
to this is fastened a line about 150 fathoms long, called the log-line, which
is divided into certain spaces called Znofs; the length of each knot is sup-
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posed to be the same part of a nautical mile (about 6080 feet) that half a
minute is of an hour; hence 1 knot_—61080_51 feet nearly. If, therefore, 1
knot runs out in half a minute (shown by a half-minute glass), the rate of
the ship is supposed to be 1 mile an hour ; if 2 knots, the rate is 2 miles an
hour, and so on. The length of the knot is very rarely so much as 51 feet,
and the hour-glass used is not always a half-minute glass: various modifica-
tions of the two instruments are made, to render this method of measuring
the ship’s way tolerably correct; these will be more clearly understood in
the use of the instruments themselves.

NAUTICAL PROBLEMS SOLVED BY TRIGONOMETRY AND ALSO BY
CONSTRUCTION,

(9.) It is proved in Navigation, Part IL p. 151, that the distance, true
difference of latitude, departure, and course between M N
any two places on the earth may be correctly repre-
sented by the three sides and one of the angles of a ,
right-angled plane triangle ; and that the meridional
difference of latitude and difference of longitude by two
sides of a triangle which is similar to the same right-
angled plane triangle. Thus, let A and B be the two
places, AB a straight line joining them, and ac that
part of the meridian passing through a that is inter-
cepted between A and a straight line B¢ drawn through
B perpendicular to ac: then

A
ac will represent the true difference of latitude.
AB » ' distance.
BC 5 o departure.
angle CAB . ' course from A to B.

Again, if 40 be produced to 1, so that ax may be equal to the meridional
difference of latitude between A and B, and MN be drawn parallel to ¢B to
meet AB produced to N : then

aM will represent the meridional difference of latitude, and M~ the dif-
ference of longitude between the two places a and .

The line AN is not used in navigation.

We thus see that questions in navigation or plane sailing may be much
simplified by considering the above six terms as forming parts’of two similar
right-angled plane triangles connected together as shown in the above figure ;
for then we can solve nearly all the questions in plane sailing by the simple
application of the rules in Trigonometry for right-angled plane triangles.
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We will proceed to exemplify this by means of a few useful problems in
sailing, and will at the same time show how these problems may be solved
by eonstruction ; that is, by measuring with mathematical instruments the
several lines and angles given by the problem, limiting ourselves at present
to questions that require a knowledge only of the several parts of the smaller
triangle aBo.

62. A ship from latitude 47° 30’ N. has sailed S.W.b.S. 98 miles: find
by construction, and by calculation, the latitude in and departure.

(1.) By Construction.

Let a represent the point the ship departed from, Ap the meridian, and
Ap, drawn at right angles to it, the parallel of
latitude of the ship. At the point 4, with a
chord of 60°, describe the quadrant m p, and
cut off me=8.W.h.S. or 33° 45'=the course ;
B and through ¢ draw a line AB. From a scale
of equal parts take aB=98 miles, the dis-
tance; and through B draw BD parallel to
Ap, meeting Ap in p. Then B is the place
the ship has arrived at, oD is the difference

m  of latitude, and Bp is the departure. If aD
and BD are measured by the same scale of equal parts, it will be found that
the difference of latitude AD is about 81 miles, and the departure BD about
54 miles. The figure may be more easily laid off by means of a protractor
(see any work on Practical Geometry).

Y
- A
!
1
k)
1
\
)
\

(2.) By Trigonometry.
In the right-angled triangle ABD are given the course pAB=33° 45',"and
distance AB=98 miles ; to find the difference of latitude 4D, and departure

BD.

AD
By Rule, p. 9, Lp—C0S: DAB.". AD==AB C05. DAB

BD . :
By same Rule,;—B=sm. DAB.’. BD=AB sin. DAB.

Reducing these formule to logarithms, we have :

log. Ap=log. AB+1log. cos. paB—10
log. BD=log. AB+log. sin. DAB—10
AB=98 paB=33°45'

log. AB......... 1991226 log. AB......... 1991226
5y COS. DAB...9°919846 ,, SIN. DAB...9:744739
HE O\ R 1-911072 ey 1:735965

JHhD=815=1°2130"S: .*. Bp=54"4
Lat. from...47 30 0O N.
p Lat. in...... 46 8 30 N. and dep. 544 W.
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The Traverse Table,

Questions involving two or more parts of a right-angled plane triangle
are often very easily solved by means of a table called the Traverse Table,
which contains the difference of latitude and departure calculated for any
course and distance, so that when any two of these quantities are given the
other two may be found by inspection : thus in the last example are given
the course and distance to find diff. lat. and departure. Entering the table,
therefore, with the course S.W.b.S=3 points and distance 98 miles, we find
the corresponding diff. lat. and dep. to be 815 and 544 respectively.

63. A ship from latitude 20° 30’ N. has sailed W.S.W. 120 miles: find
by construction, by logarithms, and by the traverse table the latitude she is
in and the departure she has made.

Ans. Lat. in. 19° 44’ 6” N, dep. 110"9.

‘When a ship has described more than one course during the day, and it
is required to show by a diagram the latitude she has arrived at, we may
proceed as in the following example.

64. A ship in latitude 47° 30’ N, sailed N.N.W. 90 miles, and E.b.S.
60 miles : find latitude in and departure.

(1.) By Construction.

Let a represent the place the ship left, and with any convenient radius
describe the circle Nwsk to represent the
horizon of the ship. Draw two diameters Ns
and WE at right angles to each other. Let
xs represent the meridian, and wE the parallel
of latitude the ship departed from. To mark
off the several courses and distances during
the day, we may proceed as follows :

[1.] Divide one of the quadrants, ws, into
eight equal parts, to form a scale of points.
This may be done by bisecting ws in a, and
then Wa in b, and wbd in ¢ : the other points,
defg, may then be readily filled in.

[2.] Mark off on the circumference the several courses, thus: take N, =
N.N.W., or two points from the scale in ws; and ,=E.b.S., or one point
from the east.

[3.] Through , draw the straight line A5, and make AB=90 miles by
a scale of equal parts; and through B, parallel to a line passing through a,,
draw Bo=60 miles. The point ¢ represents the place the ship has arrived
at. Join Ac, and through ¢ draw ¢p parallel to WE, meeting AN produced
inp. Then av is the difference of latitude, and pc the departure made
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good during the day. Also the angle cap and line Ac represent the direct
course and distance from a to c. :

If we measure AD by the scale of equal parts, we shall find the difference
of latitude AD about 71 miles to the north, and the departure nc about 24
miles to the east of the place the ship left. The latitude arrived at is found
thus :

IEE1%, Lnosoooacos 47° 30’ N.
Diff. lat......... 1 11 N.
Lat. in.......... 48 41 N. and dep. 24 E.

(2.) By Trigonometry and Traverse Table.

To calculate the difference of latitude and departure befween A and o,
we must proceed as follows :

Through B draw BF parallel to wE, meeting the meridian produced in F.
Then in the right-angled triangle aBF are given the course BaAF=2 points,
and distance AB=90 miles, to calculate ar the diff. lat. and BF the de-
parture.  Again, through B draw Ba parallel to the meridian ~s; and
through ¢ draw ca parallel to WE, meeting Ba in ¢. Then in the friangle
BaC are given the course aBc=7 points, and Bc=60 miles, to calculate B&
=¥D the diff lat. and cc the departure. By performing the calculation,
we find that AF=83°2 miles to the north, and Ba=11'7 to the south; so
that the diff. lat.=83-2 N.—11-7 8.=71'6 miles. Similarly may be found
c¢c=588 to the east,and FB or D6=34"4 to the west ; so that the departure
=588 E.—344 W.=244 L.

This method of computing the diff. lat. and departure separately for
every course is in practice avoided by making use of the Traverse Table.
The diff. lat. and departure, when taken out of the table, are arranged
under proper heads in the following form :

Points. Courses, Dist. Diff, lat. Dep.

N. S. E. w.

2 N.N.W. 90 832 — - 344

7 E.b.S. 60 —_ 117 58-8 —_
832 117 58-8 344
11-7 344
715 N. 244 E.

Lat. from......... 47° 30" N.

Diff. Jatuwuveonnr. 1 115 N.=71-5'N.

TEEN D 5L WO 48 415 N, and dep. 24-4. E.
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65. A ship in latitude 50° 30’ N. has sailed during the day N.N.E. 100
miles and W.b.S. 70 miles : what latitude is she in, and what departure has
she made? Ans. Lat. in 51° 48-7 N., dep. 304 W.

66. A ship from latitude 50° 48’ N. has sailed during the day on the
following courses. Required the latitude in, and departure, and the direct
course and distance.

1 T lanl 40 miles. 4. N.W.b.W....30 miles.
20 “Nel........5 2 S 5. S.S.E......... 36
3. SW.b.W..52 ,, 6. S.E.b.E...... 58 ,

(.) By Construction.

Let a be the place sailed from, and N wsE the horizon of the ship. Draw
the meridian ~8, and parallel of latitude wE.

Divide one of the quadrants into eight equal parts for a scale of points,
as in the last example, and by means of this scale mark off the circumfer-
ence the several courses, viz. S,=8.E,
N,=N.E,,S;=S.W.b.W.,N,=N.W.b. W,
S;=8.8.E., and S;=S.E.b.E.

Through 4 draw aB=40 by a scale of
equal parts ; through B, and parallel to 4,,
draw Bc=28 miles ; through ¢, and paral-
lel to Az draw cp=52 miles; through b,
and parallel to A, draw pr=30 miles;
through r, and parallel to 4 , draw Fa=36
miles; and lastly, through @, and parallel
to A draw ¢E=58 miles. The point u
is the place the ship has arrived at. Join
AH, and through u draw BK parallel to wE
and meeting the meridian ~8 produced in
K. Then ax is the difference of latitude,
and xu the departure made good during
the day. Also the angle kau represents the direct course, and the line Ax
the direct distance from a to H.

If we measure AK by the scale of equal parts, we shall find the difference
of latitude Ax about 86 miles to the south, and the departure ku about 42
miles to the east of the place the ship left. The latitude arrived at is found
thus :

Latb: Manmditredess 50° 48’ N.
Diff. lat.......... 1 268.
Lat. ivedmens. 49 22 N. and dep. 42’ E.

2.) By Trigonometry and Traverse Table.
Y L1g! K

The diff. lat. and departure for each course and distance may be com-
puted as in Example, p. 25. DBut to avoid this tedious operation, the several

\
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CORRECTIONS IN PLANE SAILING.

(10.) Three corrections are sometimes necessary to be applied to the course
steered by compass, to reduce it to the true course ; and the converse. These
are called :

(1.) The correction for variation of the compass.
(2.) The correction for deviation of the compass.
(3.) The correction for leeway.

(1.) The Correction for Variation of the Compass.

(11.) The magnetic needle seldom points to the true north. Its deflec-
tion to the east or west of the true north is called the variation of the com-
pass ; it is different in different places, and it is also subject to a slow change
in the same place. The variation of the compass is ascertained at sea by
observing the magnetic bearing of the sun when in the horizon, or at a given
altitude above it. From this observation the true bearing is found by rules
given in nautical astronomy. The difference between the true bearing and
the observed bearing is the variation of the compass.

The method of correcting the course for variation will be more readily
understood by means of a few examples.

Suppose the variation of the compass is found to be two points to the
east, that is, the needle is directed two points to the right of the north point
of the heavens ; then the N.N.W. point of the compass card will evidently
point to the true north, and every other point on the card will be shifted
round two points. = If, therefore, a ship is sailing by compass NNN.W ., or,
as it is expressed, the compass course is N.N.W., her true course will be
north ; that is, two points to the right of the compass course. In a similar
manner it may be shown that, when the variation is two points westerly,
the true course will be fwo points to the left of the compass course. Hence
this rule:

To find the true course, the compass course being given.

Fasterly variation allow to the right.
Westerly , 0 left.

From the preceding considerations it will be easy to deduce the converse
rule, namely :

To find the compass course, the true course being given.

Easterly variation allow to the left.
Westerly ,, 5 right.
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EXAMPLES.

69. Find the true course, having given the compass course N.W.JW.
and variation 3}W.

pts. <'1rs.
Compass course...... 4 2 left of N.
variation............... 3 1 left.*
true course............7 3 left of N.=W.IN.

70. Find the compass course, having given the true course W.1N. and
variation 3}W.

pts. qrs.
True course ......... 7 3 left of N.
variation............. 3 1 right.

compass course...... 4 2 left of N.=N.W.1W.

Find the true course in each of the following examples :

Compass course. Var. Answers,

71. N.N.E. 21W. N.iwW.

72. N.W. 14E. N.N.W.LW.

73. S.W.2W. 11E. W.SW.LW.

74, S. 2W. S.8.E.

75. Ww. 21E. N.W.LW.iw.

Find the compass course in each of the following examples:
True course. Var. Answers.

76. N.N.ELE. IW. N.N.EZE.

e N. 11E. N.b.W.IW.

78. S.8.W. 2W. S.W.

79. S.W. 0 S.W.

80. N.b.W.LW. 11W. N.

(2.) The Correction for Deviation of the Compass.

(12.) This correction of the compass arises from the effect of the iron on
board ship on the magnetic needle, in deflecting it to the right or left of the
plane of a great circle called the magnetic meridian. The increased quantity
of iron used in ships has caused this correction to be attended to now more
than formerly, as its effects and magnitude have become more perceptible.
The amount of the deviation arising from this local cause varies as the mass
of iron changes its position with respect to the compass. When a fore and
aft line coincides with the direction of the magnetic meridian, the iron in
the ship may be supposed to be nearly equally distributed on both sides of
the needle, and its effect in deflecting the needle may be inappreciable. In
other positions of the ship with respect to the magnetic meridian, the iron

* When names are alike (that is, both left or both right), add : when unlike, su-
tract, marking remainder with the name of the greater,
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may produce a sensible deflection of the needle; and this deflection or
deviation will in general be the greatest when the ship's head points to the
east or west.

Various methods are used to determine this correction. The one usually
adopted is to place a compass on shore, where it may be beyond the influence
of the iron of the ship, or any other local disturbing force, and to take the
bearing of the ship’s compass, or some object in the same direction there-
with ; at the same time, the observer on board takes the bearing of the shore
compass ; then if 180° be added to the bearing at the shore compass, so as
to bring it round to the opposite point, the difference between the result and
the bearing at ship’s compass will be the amount of the deviation of the
compass for that position of the ship.

The ship is then swung round one or two points, and a similar observa-
tion made ; and thus the local deviation found for a second position of the
ship. This being repeated for every point or two points of the compass, the
deviation is thus known for all positions of the ship. A table, similar to
the one below, is then formed, and the courses corrected for this deviation
by the following rules; which resemble those already given for correcting
for variation.

Deviation of Compass of H.M.S.

, Jor given positions of the ship's head.

Direction of Deviation of Direction of Deviation of

ship’s head. compass. ship’s head. compass.
nearly nearly
N. E. 2°45or } pt. | S. W. 3 0orlpt
N.b.E. E. 457 ord, |ShW. W. 420 o0},
N.N.L. E 73003, |SSW W. 5 0Oord,
. N.EDb.N. E 9 Oorg, |SWhS W. 6 7ori,
N.E. E. 10 Oorg; | SW. W. 7 Oord,,
N.E.b.E. E 1055 0rl, |SWbW. W. 727or#,,
EN.E. E 1040 orl, | W.SW. W. 75002,
EDb.N. E. 9550rd, | WhS W. 820 oré,,
E. E. 850ord, | W W. 850 ori,,
ED.S. E 715003, | WhN. W. 810 ord,
ES.E. E. 58 ord, | WNW. W. 650o0rd,
S.ED.E. E 340or, |NWLW. W. 540or},
S.E. E. 1500}, |NW. W. 4500},
S.Eb.S. E 02000, |NWbN. W. 32 o,
S.S.E. W. 056 o0r0, |NNW W. 140 0r0,,
S.b.E. W. 220o0rt, | NbW IE. S SO0 Yori0 8

(13.) To find the true course, having given the compass course and the
deviation.
Easterly deviation allow to the right.
Westerly ,, g left.
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’

90. Required the compass course, the true course being S.W., variation
of compass 2}E., and deviation as in table, p. 32.

pts. qrs.
True course ............... 4790 T 4S.
Variatl NS o e e e 2 11
compass course nearly...I 3 r. 8., or SL.W.3W.
deviation...........oeunins 0 2r
COIPASS COUISe....uuunn 9 IrS.=8SWiW.

Required the compass course in each of the following examples (for
deviation, see table, p. 32) :

True course. Var. Answers.
91. N.1E. 21W. N.N.LE
92. N.N.W.2W. 131, N.W.
93. S.W.hW.3W. 11E. S.W.2W.
94. S.S.E1E. 2W. S.
95. W.N.W.IW. 21E. w.
96. W.S.W.LW. 11W. W.3N.

(3.) The Correction for Leeway.

(15.) This correction is the angle which the ship’s track makes with the di-
rection of a fore and aft line : it arises from the action of the wind on the sails,
&ec. not only impelling the ship forwards, but pressing against it sideways,
so as to cause the actual course made to be to leeward of the apparent course,
as shown by the fore and aft line. The amount
of leeway differs in different ships, depending on
their construction, on the sails set, the velocity
forwards, and other circumstances. Experience
and observation, therefore, usually determine the
amount of leeway to be allowed.

The method of correcting for leeway will be
Dest seen by the following example :

\ Suppose the apparent course is S.5.W.;W,,
and leeway two points, the wind being S.E.,
required the correct conrse.

Draw two lines at right angles to cach other towards the cardinal points
of compass, and a line, as ca, to represent. (roughly) the course of the ship,
and another to represent the direction of the wind (as the arrow in fig.);
then it will be seen that the corrected course, as cr, will be to the right of
the apparent course ; the observer being always supposed to be at the center c,
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105. Given the true course=XN. 42° 28’ E., and the variation of the
compass=1} points easterly ; construct a figure to show the compass
course.

Construction.

Let ~s represent the true meridian ; and since the variation of the com-

NN pass is 11 points E., draw N's’ 1] points,
F or 16° 52’ to the east of the true meri-
dian ; then N's’ will represent the direc-
tion of the magnetic meridian, and the
angle Nox’ the variation of the compass.
At the point o, in the straight line xo,
make the angle NoFr==42° 28'; then
NoF will represent the trne -course,
N. 42° 28’ E., and ~'or will therefore
be the compass course; and it is evi-
dent by the figure that

N'OF=KOF—NOY/,
or compass conrse=true course — variation
=42° 28" - 16° 52'=25° 306';

w

and since this angle is to the right of the magnetic meridian,

.*. the compass course=N. 25° 36' E.

106. Given the true course=N. 25° 36’ L., the variation=2 points W,
and deviation on account of local attraction=7° 20’ L. ; to find the corrected
compass course (by construction).

Construction.

Tet xs represent the true meridian; and since the variation of the com-

N 5 pass is 2 points westerly, draw ns 2 points, or

a0 F92° 30/, to the west of the true meridian ; then ns

/" will represent the direction of the magnetic meri-

dian, and the angle Non the variation of the com-

pass. But the needle is deflected 7° 20’ to the

\ east of the magnetic meridian; draw, therefore,

1< N8’ 7° 20’ to the right of ns; then Non=devia-

~ tion of compass, and N's’ will represent the po-

sition of the needle. At the point o, in the

straight line ~xo, make the angle NoFr=25° 3(';

then NoF - will represent the true course,

s N. 25° 36" E., and N'oF the corrected compass
course required,
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By the figure, Nor=x0F+ (Non—n0y’)
‘ =25° 36’4 (22° 30'—7° 20")
=25 36+ 15 10
=40 46

.*. the corrected compass course=N. 40° 46’ E.

By practical rule (p. 34),

True COUTS....vvirerrrnnnes 25° 36’ r. N.
variation..........cocce.e. 22 30 r.

compass course nearly.....48 6 r. N.

deviation .o.oeviiiiiiiianen. 7 201

.. COMPAss COUTSe ......... 40 46 r. N.=N. 40° 46'E.

EXAMPLE FOR PRACTICE.

107. Given the true course, S.15° 58" Ii.; variation of compass, 2}
points W. ; deviation, 4° 20° W.  Construct figure, and find compass course.
Ans. Compass course, S. 13° 40’ W,

CONSTRUCTION OF A MERCATOR’S CHART.

(1G6.) A Mercator's chart represents the surface of the carth as a plane
(p- 3), and is constructed as follows :

Draw at the bottom of a sheet of paper a straight line to represent the
most southern parallel of latitude required for the chart ; divide it into
equal parts, as degrees, &c., regulating the length of each degree according
to the number required in the chart and the size of the paper: or if the
chart is to be drawn to any given seale, as one inch or *7 of an inch, &e., make
the length of each degree of longitude on the scale one inch or -7 inch ac-
cordingly. The line so drawn at the bottom of the paper we may call the
longitude line; at each extremity of this line crect a perpendicular: these
perpendiculars are the graduated meridians, on which must be marked the
Iength of each degree of latitude.

To obtain the lincar measure of the deyrees of latitude.

(17.) Write down on a slip of paper, in a vertical column, the degtecs
of latitude which the chart is to contain, beginning with the highest de-
gree : take out from the Table of Mecridional Parts the meridional parts for
cach degree, and write them down opposite their corresponding latitudes ;
take the successive differences between the first and second, second and
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third, &c., of these meridional parts, and thus make a second vertical
column. Then, to find the points on the graduated meridians through
which cach parallel of latitude is to be drawn, transfer these meridional
differences of latitude to the graduated meridians, by measuring along the
Jongitude line at the bottom of the chart the number of minutes, &c. con-
tained in each meridional difference of latitude taken in order,* making a
dot on the graduated meridians at the extremity of cach measure ; connect
these dots by straight lines: these will be the parallels of latitude required.
The intermediate meridian lines are then to be filled in, by drawing lines
through the divisions of the base-line, or through every fifth degree, or
through as many as may be considered sufficient; a compass should then be
drawn on the chart (or more than one, if the chart is large) ; this will be
useful to determine the bearings of different points, or for more conveniently
finding the latitude and longitude of the ship when her conrse and dis-
tance run are given. To construct the compass, take some convenient in-
tersection of a meridian and parallel as a center, and describe a circle with
any suitable radius ; mark the points of the circumference cut by the meri-
dian with the letters N. and 8., and complete the compass by inserting the
other points,

To lay down upon the chart a point whose latitude and longitude are given.

(18.) Lay the edge of a ruler (or doubled edge of paper) along the given
parallel of latitude ; measure off the degrees, &ec. between the given longi-
tude and the longitude of the nearest meridian line drawn on the chart;
apply this difference to the edge of the ruler in the proper direction, and the
point on the chart whose latitude and longitude are given will be found.

EXAMPLE.

108. Let it be required to lay down on the chart a point whose latitude
is 50° 48’ N., and longitude 22° 10" W, ;

Place the edge of the ruler over latitude 50° 48" N. in the chart, and
with a pair of compasses, or otherwise, take 2° 10’ (the difference between
22° 10" and 20°, assuming that the meridian line of 20° is the nearest on
the chart), and lay it along the ruler towards the left from the meridian of
20°: the position of the required point will then be determined.

In this manner a ship’s daily track is usually pricked off ; for the lati-
. tude'and longitude being known at noon, her place is giveﬁ at that time,
and the entire track during the voyage can be seen by connecting, by
straight lines, the places or points on the chart thus found.

* This may be easily done by plaeing along the graduated longitude line the
doubled edge of a piece of paper, and transferring to it the required lengths ; or by
taking the proper distance by a pair of eompasses,
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To copy a chart on a different scale.

(19.) Having drawn the meridians and parallels as pointed out in p.
37, find the latitude and longitude of the prominent points in the chart,
and transfer these points to the new echart, p. 38 ; then sketch in neatly
with the hand the outline of the coast between the assumed points, and
insert all the other necessary parts of the chart, as rocks, shoals, islands, &e.,
as accurately as possible.

(20.) To find the course and distunce between two given pluces on the
chart.

1. To find the course. Place the edge of a parallel ruler over the two
places on the chart, and keeping omne part of the parallel ruler firm, move
the other till the edge passes through the center of the compass described
on the chart: the edge thus lying on the compass will point out the course
between the two places. It also may be found by means of the small semi-
circular protractor eontained in most cases of mathematical instruments in
the following manner. Place the straight edge of the protractor against the
edge of the ruler as it lies upon the two places, and slide it along till the
center of the protractor is on one of the meridian lines ; then the course will
be seen on that point in the eircumference of the protractor through which
the meridian line passes. A rectangular protractor will determine this with
equal facility.

2. To find the distance. The distance is found (nearly) by transferring
the space or interval between the two places as it appears on the chart to
the side line, or graduated meridian, as nearly opposite the two places as
possible : the degrees, &c. (turned into minutes) which this space measures
on the graduated meridian will be the distance required. If the places have
the same latitude, the distance is found more accurately as follows: Take
helf the space or interval between them ; apply it to the graduated meri-
dian above and helow the parallel on which the places are situated : the dif-
ference between the degrees of the extreme points (turned into minutes) will
be the distance required (nearly). If the places have the same longitude, it
is evident the difference of their latitudes (or the sum, if they are on different
sides of the equator) will be the distance between the two places.

To find the latitude and longitude in by the chart, having given the course
and distance from a given place. 1

(21.) Lay down the course on the chart in the manuer pointed ont
in pages 25-27, or by any other method suited to the instruments at
hand. "o the line (or edge of the ruler) thus lying in the direction of the
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course, apply the distance run (turned into degrees and minutes if neces-
sary), measured. from that part of the graduated meridian which is adjacent
to the given place, and to that to which the shipis sailing : this distance so
taken along the line or edge of the ruler from the place sailed from will
determine the position of the ship on the chart, that is, its latitude and
longitude in.

(22.) The following is an example of constructing a Mercator’s chart
and of tracing the ship’s track thercon.

109. Construct a Mercator's chart on a scale of one inch extending from
54° N. to 58° N, and from long. 178° L. to 178° W., and lay down thereon
the ship’s track, namely the several true courses and distances from the fol-
lowing sailings, thus forming a track chart :

Compass courses and { 8. Eb.S. NDLILE NLIW. NW. SWbLW.
dist. on each course. | 90" 100 65’ 6O’ 80 (s

Variation of the compass, 1 point E.
Correcting compass courses to get the true courses, we have

True cowrses { Sh.W. ES.E NNE NiE NWDLN WSW.
and distance. | 90’ 100 65’ 60’ 80 (b

Trirst, to construct the chart within the given limits.

This is done by following the directions given in Arts. 16, 18, pp. 37,
38, as follows :

1. At the bottom of the paper draw the longitude line, and divide it into
four equal parts each one inch long, to contain the four degrees of longitude,
namely, from 178° L. to 178° W., and erect the graduated meridians at each
extremity of the longitude line.

9. Subdivide each degree of the longitude line into 6 or any other con-
venient number of equal parts: if into 6, as in the diagram, then each sub-
division will be 10’. This longitude line may now be used as a scale of
equal parts from which to set off any longitude distances on the chart ; but
it will be better to make a scale of equal parts on a separate piece of paper
by drawing a straight line and dividing it into several equal parts cach one
inch, and one of these equal parts again to subdivide into 6 or more equal
parts.

3. Write down the meridional parls for each degree of latitude so as to
get the M. D. lat. for each degree, beginning with the highest degree : thus -

lat. 58...merid. parts...4294

il Ol o % ...4183.. M. D. lat. =111’ between 57° and 58°
o BB ths (0 EEOTALE 4 A o e Ml 56 B 7
b 850 T et 1o tBOBS o, o0 TR e ST 058

oo & 18865 .00 Ly 1l =183 2k 64 ,, 5b
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4. Transfer the quantities 103, 106, 109, 111, taken off the scale or from
the longitude line to the graduated meridians ; draw the parallels of latitude
and intermediate meridians and mark them with their proper degrees (sce
preceding page), and the chart will be ready to lay down on it the track of
the ship, that is, the several true courses and distances made during the day.
This is done as follows :

Second, to lay down the ship’s track on the chart.

1. Fird the point on the chart corresponding to the place the ship sailed
from : thus

Lay the edge of a ruler (or a doubled edge of a piece of paper) over lat.
56° 54’ N.; and since the longitude is 178° 50’ E.—that is, 10’ to the left
of 179° Li.—with a pair of compasses or otherwise take a distance of 10’ and
lay it along the ruler to the left from meridian 179° E.; make a small dot
at the point, and the position of the ship, namely lat. 56° 54’ N. and long.
178° 50’ L., is determined.

2. Draw the several lines to represent the ship’s traek: thus (Art. 21)

From the point thus found draw a line S.b.W. (or 1 point west of meri-
dian 179° L.) and equal to 90’, remembering to take all the distances from
that part of the graduated meridians adjacent to the respective courses.  From
the southern extremity of this line draw a line E.S.E. 100’, and proceed in
the same manner to lay down the several other courses given in the ques-
tion; when it will be found that the ship has arrived at a place in lat.
57° 21’ N. and long. 178° 81" L.

3. Finish the chart off neatly by rubbing ont pencilled and superfluous
lines, and surrounding it with parallel lines, &e., as a boundary (see track
chart on preceding page).

Fundamental Formule for Plane Sailing.

(28.) In p. 28 it is shown that the six terms—distance, tr. diff. latitude,
M N departure, meridional difference of latitude, diff.
long., and course—may be correctly represented
by two similar right-angled plane triangles asc,
ANN.

If any two or more ‘of these terms contained
in either of the triangles are known, the others
may be found by means of the trigonometrical
ratios (Art. 4, p. 9).

Thus, in triangle ABc, let AB the distance and
BAC the ‘course be given: to find B¢ the de-
parture, and ac the true diff. lat.
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RULES IN NAVIGATION.

Rule 1. To find the course and distance from one place to another, having
given the latitudes and longitudes of the two places (by using meridional
parts, called Mercator's method).

(1.) Find true difference of latitude, meridional difference of latitude,
and difference of longitude ; reduce the true difference of latitude and dif-
ference of longitude to minutes, attaching thereto the proper letters. Rules
(a), (©), ().

(2.) To find the course. From the log. difference of longitude (increased
by 10) subtract the log. mer. diff. latitude ; the remainder is the log. tan.
course, which find in the tables, and place before it the letter of the true
difference latitude, and after it the letter of the difference longitude, to
indicate the direction of course. At the same opening of the tables, take
out the log. secant course.

(3.) To find the distance. Add together log. secant course and log. true
difference latitude ; the sum (rejecting 10 in the index) will be the log. dis-
tance, which find in the tables.

110. Required the course and distance from a to .

lat. A 45°15" N. long. & 35° 26" W.

, 547 10 N, . B32 15 W.
M.D.
lat. a...45° 15’ N. 30512 N. long. ...35° 26’ W.
» B..47 10 N, 32174 N. s B..32 15 W.
T 55 M. D.lat. 1662 N. 311
60

60

T.D. lat. 115 N.

log. diff. long. +10..12-281033
M. D. lat....... 2:220631
tan. course......10-060402

*. course N. 48° 58’ L.

2]

»

equired also the compass course in the

diff. long. 191 E.
log. sec. course 0°182767
T. D. lat...2:060698
......... 2:243465
.. distance 175"

”»

2

above example: var. of compass

being 2 points W., and deviation on account of local attraction as in table
1 )

(p. 32). See Rule, p. 33.
pts. qrs.
True cowrse...... 48°58 r N.or4 1r N*
variation......... SRR 2 05 !
cOMpAss coUrse nearly.............. 6 1r. N.=LNEJL
(EVIAtI0NL. B e T 10N
+ ", COIMPASS COUISE.c.vvurinrrerrsns 5 1r N.=N.ELEJE.

* Degrees are converted into points, or the converse, by means of the table for that

purpose in the nautical tables.
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Rule 2. To find the latitude and longitude in, Laving given the course

and distance (by Mercator’s method).
: (1.) To find latitude in. Add together log. ces. course® and log. dis-
tance, the sum (rejecting 10 in the index) will be leg. true difference
latitude, which find in the tables ; reduce to degrees and minutes, and place
the letter N. or'S. against it, according as course is nerthward or southward.

(2.) Apply true difference latitude to latitude from, so as to get the lati-
tude in.  Rule (¢).

(8.) To find longitude in. Take out the meridional parts for the two
latitudes, and get M. D. lat. Rule (2).

(4.) Add together log. tangent course and log. meridional difference lati-
tude ; the sum (rejecting 10 in the index) will be the log. difference longi-
tude, which find in the tables ; reduce to degrees and minutes, and place the
letter E. or W. against it, according as the course is castward er westward.

(5.) Apply difference longitude to longitude from, so as to get longitude
in. TRule (/).

EXAMPLES,

118, Sailed from a, N, 37° 10’ E., 472:6 miles ; required the latitude
and lengitude in.

lat, A 27° 20/ N. long. A 25°12'E.

log. cos. course 9-901394 log. tan. course 9-879740 -
, dist......... 2674494 ,, M.D. lat, 2-641474
,, T.D. lat. 2:575888 ., diff. long.  2:521214

.. T D, Jat. 376-61 diff. long. 332-1

or G6° 17 N. M.P. or 5°32' L.

lat. from 27 20 N....... 1706 N. long. from 25 12 X,

, in 33 3TN.. 2144 N. , in 30 44 E,

M. D. lat.” 438

119. A ship in latitude 27°0’ 8. and longitude 123° W, sailed S.S.E.1E.
(or 8. 28° 7' 30” E.) 150 miles : required the latitude and longitude in.

9:945430 0727957
2-176091 2-176091
2121521 1-904048
6,0)13,2:3 801
diff. lat....... 20192 18" 8. M.P. 19207 6" E.
lat. from.....27 0 S. 1683S. 123 0 0 W.
I o St QORSIONIIRSS; 1833 S. 121 39 54 W.
50 Long. in.

* Take out, at same opening of tables, log. tan, course, and place it a little to the
right,
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Required the course and distance from A to B in each of the following
examples, by middle Jatitude method :

Lat, from and Long. from and Answers.
lat. in. long. in. Course and dist.

126. lat. A 49°52'S, long. A 17°22'W, N. 26°40' L.
lat. n 42 13 S. long. 3 11 50 W, 5136 -

127, lat. A 21 15 S, long. A 0 30 W. S. 14° 37 E.
lat. b 30 27 S, long. 3 2 10 E. 570°5

128, lat. 4 60 15 S, long. & 14 55 E. S. 32°50' I
lat. 65 36 S. Jong. B 22 30 E, 382

Rule 4. To jind the latitude and longitude in (by middle latitnde me-
thod), having given the course from a given place, and distance.

(1.) To find latitude in. Add together log. cos. course* and log. dis-
tance ; the sum (rejecting 10 in the index) is the log. true difference lati-
tude, which find from tables, and mark N. or S. according as the course is
northward or southward.

Apply true difference latitude (turned into degrees and minutes, if neces-
sary) to the latitude from, and thus get latitude in. Rule (¢). Find the
middle latitude. Rule (¢).

(2.) To findlongitude in. Add togetherlog. sin. course, log. distance, and
log. secant middle latitude; the sum (rejecting 20 in the index) is the log.
difference longitude, which find in tables, and mark E. or W. according as the
conrse is eastward or westward. Apply the difference longitude (in degrees
and minutes) to the longitude from, and thus get longitude in. Rule (/).

129. Sailed from a, S.37° 10’ W., 472:6 miles ; required lat. in and
long. in (by middle lat. method).

lat. A 27°20/S. long. 4 25°12' W.
log. cos. course...9901394 log. sin course...9-781134
T 2:674494 o =it 3 A 2:674494
,» T.D.lat......2:575888 ,, sec. mid. 1at.0-064531
. T. D. lat. 376-¢’ ,, diff. long....2"520159

or 6°17'S. .*. diff. long. 331-3'

lat. from 27 20 S. or 5°31'W.

Seing a3 3B S. long. from 25 12 W.

2)60 57 , in 30 43 W.

mid. lat. 30 28

* Take out at the same opening log. sin. courze, and put it down a little to the right,
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Required the true eourse and distance from a to B in each of the follow-
ing examples :
Answers.

Lat. A and B, Long, A. Long. B. Course and dist.
135. 70°10' S, 15° 10" E. 22° 15" E. East 144-2'
136. 50 48 N. 5 0 W. 5 O0E East 379-2
137. 50 10 N. 40 25 W.  50. 10 W.  West 3747
138. 48 10 N. 100 0 W. 110 0 W.  West 4002
139. 75 13 N. 15 20 E. 0 0L West 234-7
140. 80 15 N. 179 O E. 176 0 W.* FEast 508

Rule 6. To find the longitude n, having given the course and distance,
and latitude and longitude from.

Add together log. see. lat. and log. d1stance, the sum (rejecting 10 in
the index) will be the log. difference longitude. Find the natural number
thereof, and turn it into degrees, and mark it I. or W. according as the
course is E. or W. Apply difference longitude to longitude from, and thus
find longitude in.

The latitude in is the same as the latitude from.

EXAMPLE.

141. Sailed from A due east 1000 miles, required the latitude and longi-
tude in. Lat. A...32° 10" S. ; long. A...28° 42" W,

lat. in=Ilat. from=32° 10’ S.

log. see. lab. cuuvneninennninie. 0072372
sy iSbeeeeeieeee e 5-000000
yy diff.long......ocoeininis 3072372
*. diff. long. 1187/, or 19° 41’ L.

long. from............... 28 42 W.

o long inee.ieeiine. 9 1 W

Required the latitude and longitude in, in each of the following ex-

amples :
Answers.
Course and dist. Lat. from, Long. from Lat, in, Long: in,

142, East 492:5" 52° 10'N. 0°29'W. 52°10°N. 12°54'E
143. ZXast 1752 60 O N. b 10W. 60 ON. 53 14 E.
144. East 560 57 32 N. 13 53W. 57 32N. 4 18 E.
145. West 740 60 ON. 50 OW. 60 ON. 74 40W.

* In this example it is evident we must modify the general rule ; for the diff, long.
is never considered to be greater than 180°, When, therefore, the above rule gives the
diff. long. greater than 180°, subtract it from 360°, and apply thereto a contrary letter
to the one directed by the rule; the result will be the diff, long, to be used.
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Application and use of formule in page 43.

(24.) The preceding rules are the principal ones used in Navigation. Tt
would be easy for the mathematical student to make for himself others, by
means of the relations between the several terms course, dist., dep., &e., as
shown by the formule and diagram in p. 43 : he would find then no diffi-
culty in solving a great variety of problems similar to the following:

146. Sailed from 4, in long. in 3° 10’ W., 300 miles due cast, and
altered my longitude 10 degrees; required the latitude and longitude in.

Thus, by form (4)...dist.=diff. long. x cos. lat.

dist. 300 .
: . =gl in=060° o in=6° 50’ T
.+ cos. Jabi= go Tong, —600—% * " lat. in=060°, and long. in=6° 50’ L,

147. Wishing ‘o make a small island, I took the ship to windward of it
in the same latitude with the island, namely 50° 48" N, The longitude of
the ship by chronometer was 20° 35" W., and the long. of the island was
23° 50" W. What was my distance from the island?

In this example of parallel sailing we have given lat. 50° 48, and diff.
long. 3° 15/, or 195/, to find distance. '

Dy form (4)...dist. =difl. long. x cos. lat.

log. dift. long.......... 2:290035
, cos.lab............ 9800737

y  diste oo o 2:090772 .+, dist. 125+2 miles.

148. What course must be steered so that the departure may be one-
third the distance ¢
In fig. p. 42, we have given the relation between the departure ¢t and
distance a1 ; that is
dep. _ . )
it =Sin. course
. dep. |
and by the question, Kt

.*. sin, course=% and course=19° 28’

149. Sailed between the N. and E. 100 miles, and altered my latitude
1°10: required the course.
2 !

In fig. p. 42, ac=T. D. lat.=1° 10’'=70"; as=distance=100’

Heig w0, T ,
g 5 w —— e = ., o T. =0 an/ g
and cos. ¢o Ise= 0= 160=10 course=N, 45° 35’ L,
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To find the course and distance from one place to another, as from A to
B, having given T. D. lat., mid. lat,, and diff. long. By fig. p. 42.

150. Find course and distance from A to B.

lat. A...... 58° 24’N, long. A....4°12''W.
5 Boeins 63 17 N. » B...2 13 E. (Ex. 115).

M. P.
lat. A...58° 24'N. 43398 Iong. A...4° 12" W.
» B...63 17 N. 4942-6 » B..2 13 E,
"453 M. D. lat...6028=an 6 25
60 60

T. D. lat......298=ac¢ diff. long......385 =M~

To find the course. To find the distance.

MN ;
(By fig.)...tan. course=— distance AB=Ac sec. course.

AM
log. Mx+10...12:585461 log. ac....cuuenn. 2-466868
2y AMooLh 2:780173 » sec. course...10-074293
,» tan.course 9-805238 » dist....l. 2-541161

.. course=N, 32° 34'E. .*. distance=347"6.

To find the latitude and longitude in, having given the latitude and
longitude from, the course, and distance. By fig. p. 42.

151. Required the latitude and longitude in, having sailed from 4, in
lat. 52° 10’ N., long. 17° 32’ W. (see fig.), N. 29° 10’ E., 3754 miles. (See
Ex. 122.)

In triangle cAB, cA=AB cos. 4, or T. D. lat.=dist. x cos. course ; from
which T. D. lat. may be found, and therefore M. D. lat. and lat. in.

In triangle AMN, MN=AM tan. 4, or diff. long.=M. D. lat. X tan. course;
from which diff. long. is found, and therefore long. in.

To find T. D. lat.

To find diff. Jong.

Byfig.,T. D.lat. =dist. X cos. course. Byfig.,diff. long.=M.D.lat. x tan. course.

log. dist............ 2:572174
5,y COs. course...3:941117
, T.D.lat......2 518291
.. T. D. lat.=326
or 5° 26’ N.
lat. from......52 10 N....3681-5
y» il.i......57 86 N....4249-3
M. D. lat.= 5678

log. M. D. lat...........2:754195
,, tan. course........9:746726
» diff. long. ......... 2:500921
o Gty Lyt g At 3169 :
52 WTE.

long. from...17 32 W.
b i T LT 12 15 'W.
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155. Required the latitude and longitude in, having sailed due east 560
miles from a place G (see fig.) in lat. 57° 32’ N. and long. 13° 5" W. (Ex.
144).

lat. a8=57° 32/, dist. cF=560 log. dist....... 2:748188
and a=diff. long. required , sec.lat...0:270180
AB » diff.]long.3-018368
T D 000, 1 . Giff, Tong.=1043
.. diff. long, =dist. sec. course or 17°23' E.
long. from...... 13 5 W.
by M. 1 18 E.

The examples from 110 to 145 may be worked in a similar manner (by
making a figure to suit each case) as Examples 146 to 155.

EXAMPLES.
By Construction and Traverse Sailing.

A. A ship sails from 4, in latitude 24° 32’ N, on the following courses
and distances: required latitude in and direct course and distance. (1.)
S.W.bW. 45"; (2.) ES.E. 50°; (3.) S.W. 30’; (4.) S.EbL.E. 60; (5.)
S.W.b.SIW. 63 Ans. Lat. 22° 3, south, 149-2".

B. A ship sails from a, in lat. 28° 32’ N., on the following courses and
distances: required lat. in and direct course and distance. (1.) N.W.b.N.
20; (2.) SW. 40'; (3.) N.EDb.E. 60’; (4.) S.E. 55'; (5.) W.b.S. 41;
(6.) E.N.E. 66", Ans. Lat. 28° 32" N., east, 70-2",

C. Since yesterday at noon we have run the following courses : required
diff. lat. and departure, and direct course and distance. (1.) S.W.b.S. 20’;
(2) W.16’; (3) NNW.b.W. 28'; (4) S.8.E. 32"; (5.) EN.E. 14'; (6.)
S.W. 36 Ans. Diff. lat. 50-7’, dep. 507, SW., 71-7’,

EXAMPLES.
DBy Construction and Trigonometry.

A’. Two ships, A and B, sail from two islands bearing the one from the
other N.E. and S.W., their distance being 76'. 4 sails S.b.E,,and s Eb.S.:
at last they meet. How far has each sailed ?

Ans. A sails S.b.E, 684/, B sails E.b.S. 684",

B'. Coasting along shore, a headland bore N.E.b.N.; then, having run
E.b.N. 15, the headland bore W.N.W.: required the distance from head-
land at each observation. Ans. ;8- and 10-8'.

C'. Yesterday noon we were in lat. 33° 15’ N., and bound to a port in
latitude 28° 35’ N., lying 196’ to the west ; and this day at noon we were
in lat. 30° 20" N., having made departure 168’ west: required the direct
course and distance to the port. . Ans, S. 14° 55' W, dist. 108-8".



THE DAY’S WORK.

(25.) To find the place of the ship at noon, that is, its latitude and
longitude, having given the latitude and longitude at the preceding noon,
the compass courses, and distances run in the interval, the deviation of the
compass for each course on account of local attraction, the variation of the
compass, the leeway, the velocity and direction of current (if any), &e., con-
stitutes what is called the Day’s Work.

The Day’s Work.

Rule 7. (1.) Correct each course for variation, deviation, and leeway;
thus get the true courses, and arrange the same in a tabular form, as in the
example, p. 28. Add together the hourly distances sailed on each course,
and insert the same in table opposite the true course.

(2.) Take out of the traverse table the true difference latitude and de-
parture for each course and distance, putting them down in the columns
headed with the same letters as in course. Previously to opening the tra-
verse table, fill up the columns of true difference latitude and departure not
wanted by drawing horizontal lines ; this will frequently prevent mistakes.

(3.) If the ship does not sail from a place whose latitude and longitude
are known, her bearing and distance from some near object, as a church-
spire, &c., must be ascertained, and also its latitude and longitude. Then
the ship is supposed to sail from this known object to her anchorage, her
course being the opposite to the bearing of the object from the ship. This
course must be corrected like the rest for variation and deviation, and in-
serted in the table as an actual course, with the distance of the object as a
distance.

(4.) If a current sets the ship in any ascertained direction, and with a
known velocity, these also may be conceived to be an independent course
and distance, and must be corrected for variation, and should be for devia-
tion also, if the latter correction is appreciable, which is rarely the case.

(5.) To find the latitude in. The quantities in the four columns of true
difference latitude and departure being added up separately, the difference
between the north difference of latitude and south ditference of latitude,
with the name of the greater, will give the true difference of latitude made
at the end of the day. The departure is found in a similar manner. Apply
true difference latitude to latitude from, so as to qbtain the latitude in.
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Thus, in the first course in the preceding table, the ship’s head is S W.3W.;
looking in the deviation table, we see that the corresponding correction is
4 W. or £ ], and so for the others.

(2.) Form a table such as below, by writing down the headings, points,
courses, &c., over the seven columns which are to be filled in with the cor-
rected courses, &e.

5 . Dift, Jat, Departure.
Points. Courses, Distance, —_— =
N. | s E. | W,

(8.) To corvect the courses,

The courses are more readily corrected by drawing two lines at right
angles, to represent the N., S., K., and W.
N points of the compass, and then a line to
‘ represent (roughly) the compass course of
the ship. The direction in which the cor-
rection for leeway must be applied will then
be easily seen.
After some experience in correcting
1 * courses, they can be made mentally, and
5 \ . the diagram dispensed with.
7o correct the departure course which
£ is W.b.S.4S. (the opposite bearing to
E.Db.N.LN).

Draw a line roughly in the fig. W.h.S.48. as ¢ 1; it is then seen that

pts. qrs.
Compass course........... 6 2TS,

variation........... I Bl

ship’s head S.E.b.S. ... dev. 6 0 (Sec table, p. 82.)
— 1 3

frue course................. 8 1r8.
or 7 pts. 8 qus. left of N., or W.2N, dist. 14",
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(4) To find difference latitude and departure for each course and dis-
tance, by traverse table.

Enter traverse table, and take out the difference latitude and departure
corresponding to 77 poiuts, and distance 14:0. (Look out rather 7§ points
and 140 distance, the diff. lat. and dep. for which are 6-9 and 139'8 ; and
move the decimal points one place to the left,) and put down the results to
the nearest tenth, which are *7 and 14'0. Insert them in the spaces left un-
marked under N. and W.

The second course being due W. 8:2', the departure will be 82 (the same
as the distance).

With third course 6 points and distance 9-9 (looking for 99, and making
the proper change in decimal points), the diff. lat. is 3-8" and dep. 9-2".

In a similar manner find difference latitude and departure for the other
courses,

‘When the four columns are added up, it appears that the ship has sailed
N. 42°7" and 8. 7-8"; therefore upon the whole the true difference latitude is
34:9" N.; and her departure has been 143" E. and 846’ W.; hence the
departure made good in the 24 hours is 701 W.

(5.) To find the latitude in, apply the true difference latitude to the
latitude from, in the usual manner, to obtain the latitude in.

(6.) To find the longitude in.* With the latitude from and latitude in,
find middle latitude. Add together log. secant mid. lat. and log. departure ;
the result (rejecting 10 in index) is the log. difference longitude, which,
found in the tables, and applied to the longitude from, gives the longitude
in. Thus:

To find latitude in. To find longitude in.
T. D. lat.... 0°34'54" N. log. sec. mid. lat...0:093148
lat. from....36 30 0 8. » departure...... 1-845718
T L1 s 35 56 6 S. ,» diff. long....... 1938566
2)7" 25 6 .. diff. long. 87

mid. lat......36 12 33 or 1°27 W.

long. from....110 20 W.

b L gaono0c 111 47 W.

* Or thus: To find long. in (by inspection).
Since fi__p- =sin. course
dist.

dep. : N g b

and g =¢o08, mid. lat.==sin, complement mid. Iat.

diff. lon
If, therefore, the traverse table is entercd with complement of mid. lat, as a course
and with the given departure, the distance corresponding thereto will be the difference
of longitude nearly,
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Definitions of the preceding Terms in Noutical Astronomy.

(28.) To a spectator on the earth, the sun, moon, and stars seem to be
placed on the interior surface of a hollow sphere of great but indefinite
magnitude. The interior surface of this sphere is called the celestial con-
cave, the center of which may be supposed to be the same as that of the
earth.

(29.) The heavenly bodies are not in reality thus situated with respect
to the spectator ; for they are inferspersed in infinite space at very different
distances from him ; the whole is an optical deception, by which an ob-
server, wherever he is placed, is induced to imagine himself to be the center
of the universe. For let us suppose the
elliptical figure p ¢ p, g, to represent the
carth, ? @ P, Q; the celestial concave, and
a heavenly body. Then a spectator at 4,

not being able to estimate the distance of
", would imagine it to be in the celestial
concave ab M.

This figure will enable us to explain
the terms #rue and apparent place of a
heavenly body. The body m viewed from
the surface of the earth would appear to a
spectator A to be at m in the celestial con-
cave: but if it could be seen from the center of the earth ¢, the point occu-
pied by m would be », the extremity of a line drawn from the center ¢ of
the earth through the heavenly body to the celestial concave.  is called
the apparent place, and 1, the #rue place of the heavenly body .

(80.) The awis of the earth is that diameter about which it revolves : the
poles of the earth are the extremities of the axis.

(31.) The terrestrial equator is that great circle on the earth that is equi-
distant from each pole.

(32.) A spectator on the earth, not being sensible of the motion by which
in fact he describes daily a circle from west to east with the spot on which
ke stands, views in appearance the heavens moving past him in the opposite
direction, or from east to west. The sphere of the fixed stars, or, as it is
more usually called, the celestial concave, thus appears to revolve from
cast to west round an imaginary line which is the axis of the earth produced
1o the celestial concave: this line is therefore called the axis of the heavens.

(33.) The poles of the heavens are the extremities of the axis of the
heavens.

(84.) The celestial equator is that great circle in the celestial concave
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which is perpendicular to the axis of the heavens; or it may be defined to
be the terrestrial equator expanded or extended to the celestial concave.
The poles of the celestial equator and the poles of the heavens are therefore
identical.

(35.) While the earth thus performs its daily revolution, it is carried with
great velocity from west to east round the sun, and describes an elliptic
orbit once every year. This annual motion of the earth round the sun
causes the latter body, to a spectator on the earth, insensible of his own
change of place, to appear to describe a great circle in the celestial concave
from west to east. This may be ex- : ¢
plained by a figure. Let 404, be
the earth’s orbit, s the sun, and cdel
the celestial concave ; then, to a spec-
tator at @ the sun is seen at a point
¢ in the celestial concave : but when
the earth has arrived at b the spec-
tator (not being sensible of his mo-
tion frem ¢ to b) imagines the sun to
be at d, and thus it would seem to
have described the arc ¢ d in the
time the earth actually moved from
a to b. It appears from this, that
when the earth has arrived again at
a, the sun will again be at ¢, having described one complete circle in the
celestial concave among the fixed stars. The great circle thus described by
the sun is called the ecliptic.

(86.) The axis of the earth as it is thus carried round the sun continues
always parallel to itself, and it may be assumed without any sensible error,
on account of the smallness of the earth’s orbit (small, when compared with
the distance of the heavenly bodies), to be always directed to the same
points in the celestial concave, namely, the poles of the heavens.

(37.) From observation, the celestial equater is found to be inclined to
the ecliptic at an angle of about 23° 28". This inclination of the equator to
the ecliptic is called the obliquity of the ecliptic. 'The axis of the earth,
therefore, which is perpendicular to the equator, is inclined to the ecliptic,
or, as it is in the same plane, to the earth’s orbit, at an angle of 66° 32",

(38.) In consequence of the whirling motion of the earth about its axis,
the parts near the equator, which have the greatest velocity, acquire thereby
a greater distance from the center than the parts near the poles. By actual
measurement of a degree of latitude in different parts of the earth, it has
been computed that the equatorial diameter is longer than the axis or polar
diameter by 26 miles: the former being about 7924 miles; the latter about
7898 miles, and that the form of the earth is that of an oblate spheroid.
(Note, p. 123.) It is usual, however, in drawing the figure of the earth to

F
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exaggerate very much its ellipticity ; this is done for the sake of drawing
the lines about the figure with greater clearness; for if it were constructed
according to its true dimensions, the line pp, (fig. art. 29) (being only about
the 534th part of itself less than gg,) would appear to the eye of the same
length as ¢g,, and thus the figure that more nearly resembles the earth would
be a sphere,

(89.) If ac, a perpendicular to the earth’s surface, be drawn passing
through a, the angle aag formed by the line Aa with the plane of the
equator is the latitude, or true latitude of the point A.

(40.) If Ac be a line drawn from 4 to ¢, the center of the earth, then the
angle acq is called the reduced or central latitude of the point aA. The
difference between the true and reduced latitude is not great: it is, how-
ever, of importance in some of the problems in Nautical Astronomy. This
correction has accordingly been calculated, and forms one of the Nautical
Tables.

(41.) Sections of the earth passing through the poles, as pap,, are called
meridians of the earth. If the earth is considered as a sphere (which it is
very nearly), the meridians will be circles: on this supposition, moreover,
the perpendicular s¢ would coincide with ac, and the latitude of a place
on the surface of the earth may, on this supposition, be defined to be the
arc of the meridian passing through the place, intercepted between the place
and the equator. If ¢a be produced to meet the celestial conéave at z,
the point z is the zenith of the spectator at o. If ca be produced to the
celestial concave at z/, then z’ is called the reduced zenith of the spectator at
A. The point opposite to z in the celestial concave is called the Nadir.
In the figure the terrestrial equator ¢, is extended to the celestial concave,
and therefore Qcq, is the plane of the celestial equator.

By means of this figure we may define the zenith, reduced zenith, lati-
tude, and reduced latitude, as follows:

(42.) The zenith is that point in the celestial concave which is the ex-
tremity of the line drawn perpendicular to the place of the spectator,
as 2.

(48.) The reduced zenith is that point in the celestial concave which is
the extremity of a straight line drawn from the center of the earth, through
the place of the spectator, as z’.

(44.) The lutitude of a place A on the surface of the earth is the inclina-
tion of the perpendicular Ac to the plane of the equator: thus the angle
AGQq is the latitude of 4. The arc zq in the celestial concave measures the
angle A6Q; hence zq, or the distance of the zenith from the celestial equator,
is equal to the latitude of the spectator.

(45.) The reduced latitude of the place A is the inclination of z’c or ac
to the plane of the equator : or it is the angle 4 ¢q or arc z'q, which measures
the angle. Since the curvature of the earth diminishes from the equator to
the poles, the reduced latitude z'qQ must be always less than the true lati-
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tude zq, and therefore the difference zz' must be subtracted from the true
latitude to get the reduced latitude.

The formula for computing the difference between the true and reduced
latitude of any place is investigated in Nawvigation, Part II.

(46.) The wisible horizon is that circle in the celestial concave which
touches the earth where the spectator stands, as 2ar; and a circle parallel
to the wisible horizon, and passing through the center of the earth, is called
the rational horizon : thus HOR is the rational horizon. These two circles,
however, form one and the same great circle in the celestial concave: thus r
and 7 in the figure must be supposed to coincide. This may be readily con-
ceived, when we consider that the distance of any two points on the surface
of the earth will make no sensible angle at the celestial concave ; therefore
either of these two circles is to be understood by the word horizon. The
poles of the horizon of any place are manifestly the zenith and nadir.

(47.) Great circles passing through the zenith are called circles of altitude
or vertical circles. That circle of altitude which passes through the poles of
the heavens is called the celestial meridian. 'The points of the horizon
through which the celestial meridian passes are called the nort and south
points. A circle of altitude at right angles to the meridian is called the
prime vertical. This last circle cuts the horizon in two points called the
east and west points. The east and west points are manifestly the poles
of the celestial meridian.

(48.) Since the horizon and celestial equator are both perpendicular to the
celestial meridian, the points where the horizon and celestial equator inter-
sect each other must be 90° distant from every part of the meridian (Jeans’
Trig. P. II. art. 65); that is, the celestial equator must cut the horizon in
the east and west points.

(49.) The ecliptic (art. 85) is divided into twelve parts, called signs,
which receive their names from constellations lying near them. These
divisions or signs are supposed to begin at that intersection of the celestial
equator and ecliptic which is called the first point of Aries.

(50.) Great circles passing through the poles of the heavens are called
circles of declination; and great circles passing through the poles of the
ecliptic are called circles of latitude.

(51.) Parallels of declination and of latitude are small circles parallel
respectively to the celestial equator and ecliptic.

(52.) The declination of a heavenly body is the arc of a circle of declina-
tion passing through its place in the celestial concave, intercepted between
that place and the celestial equator.

(63.) The right ascension of a heavenly body is the arc of the equator,
intercepted between the first point of Aries and the circle of declination
passing through the place of the heavenly body in the celestial concave,
measuring from the first point of Aries, eastward, from 0° to 860°.

(54.) The latitude of a heavenly body is the arc of a circle of latitude
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passing through its place in the celestial concave, intercepted between that
place and the ecliptie.

(55.) The longitude of a heavenly body is the arc of the ecliptic inter-
cepted between the first peint of Aries and the circle of latitude passing
through the place of the heavenly body in the celestial concave, measuring
from the first point of Aries, eastward, from 0° to 360°.

(56.) The #rue altitude of a heavenly body is the arc of a circle of
altitude passing through the true place of the body intercepted between
the place and the horizon.

(57.) The azimuth, or bearing of a heavenly body, is the arc of the
horizon intercepted between the north or south points and the circle of
altitude passing through the place of the body; or it is the corresponding
angles at the zenith between the celestial meridian and the circle of altitude
passing through the body.

(58.) The amplitude of a heavenly body is the distance from the east
point at which it rises, or the distance from the west point at which it sets,
the ares or distances being measured on the horizon.

(59.) The Zour angle of a heavenly body is the angle at the pole between
the celestial meridian and the circle of declination passing through the place
of the body.

(60.) A solar year is the interval between the sun’s leaving the first
point of Aries and returning to it again. "

(61.) A sidereal year is the interval between the sun’s leaving a fixed
point, as a star, and returning to that point again.

(62.) The length of the solar years is found to differ a little from each
other, on account of certain irregularities in the sun’s apparent motion, and
that of the first point of Aries. The mean length of several solar years is
therefore the one made use of in the common division of time, and called
the mean solar year.

(63.) The sidereal day is the interval between two successive transits of
the first point of Aries over the same meridian. It begins when the first
point of Aries is on the meridian.

(64.) The apparent solar day is the interval between two successive
transits of the sun’s center over the same meridian. It begins when that
point is on the meridian.

(65.) The length of an apparent solar day is variable chiefly from two
causes :

1st. From the variable motion of the sun in the ecliptic.

2d. From the motion of the sun being in a circle inclined to the
equator.

(66.) To obtain, therefore, a proper measure of time, we proceed as fol-
lows. An imaginary, or as it is called a mean sun, is supposed to move
uniformly in the celestial equator with the mean velocity of the true sun. A
mean solar day may therefore be defined to be the interval between two
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successive transits of the mean sun over the same meridian. It begins
when the mean sun is on the meridian.

(67.) Sidereal time is the angle at the pole of the heavens between the
celestial meridian and a circle of declination passing through the first point
of Aries, measuring from the meridian westward.

(68.) Mean solar time is the angle at the pole between the celestial
meridian and a circle of declination passing through the mean sun, measur-
ing from the meridian westward.

(69.) Apparent solar time is the angle at the pole between the celestial
meridian and a circle of declination passing through the place of the sun’s
center, measuring from the meridian westward.

(70.) The equation of time is the difference in time between the places
of the true and mean sun.

(71.) A sidereal clock is a clock adjusted so as to go 24 hours during
one complete revolution of the earth ; that is, during the interval of two
auccessive transits of a fixed star: or supposing the first point of Aries to
be invariable, between two successive transits of the first point of Aries.

(72.) A mean solar clock is a clock adjusted to go 24 hours during one
complete revolution of the mean sun.

These definitions are fully explained and illustrated in Nawigation,
Part IL. pp. 8 to 11, by means of constructions or diagrams similar to the
following one, which is the diagram for definitions 67, 68, 69, and 70. The
student should endeavour to explain each of the other definitions by a similar
construction, as pointed out in Part IT.

Construct a figure, and show what is meant by sidereal time, apparent
solar time, mean solar time, and the equation of time.

Let NwsE represent the horizon, P the pole, A the equator, a the first
point of Aries, and ac the eclip-
tic. Let x be the place of the
sun in the ecliptic, and m the
mean sun ; through x and m draw B
the circles of declination Pr and
pm. Then sidereal time is the
angle QPa, or arc Qa; apparent
solur time is the angle QPR, or W B
arc QRr; and mean solar time is x[[__A
the angle Qpm, or arc Qm,—these A
angles or arcs being always mea-
sured from the meridian ~Nzs !
westward. Also the angle mpg,
or arc mR, is the equation of
time.

N

Rm




INTRODUCTORY RULES IN NAUTICAL ASTRONOMY.

Nautical day and Astronomical day.

(73.) The nautical or civil day begins at midnight and ends the next
midnight. The astronomical day begins at noon and ends at noon, and is
later than the civil day by 12 hours. Again, in the astronomical day the
hours are reckoned throughout from 0 to 24*; in the nautical day there are
twice 12 hours, the first 12 hours being before noon, or before the commence-
ment of the astronomical day (denoted by a.m., ante meridiem) ; the latter
are afternoon, and distinguished by the letters .M. (post meridiem.)

Rule 1. Given civil or nautical time, to reduce it to astronomical time.

1. If the given nautical time be .., it will be also astronomical time ;
P.M. being omitted.

. If the given nautical time be A.m., add 12° thereto, and put the day
one back omitting the letters a.n.; thus:

(1.) April 27, at 4" 10™ p.m. (civil) is April 27, at 4" 10™ (astro.).
(2.) April 27, at 4 10 a.m. (civil) is April 26, at 16 10 (astro.).
EXAMPLES.

Reduce the following civil or nautical times to astronomical times.

Civil times. Astronomical times.
157. Sept. 10th, 4* 10 .y Amns. Sept. 10th, 4* 10®
158. June 3 2 42 awm 5, dune 2 14 42
159. July 1 6 18 am ,, dune 30 18 18
160. Dec. 10 3 42 pM. » Dec. 10 3 42

Rule 2. Given astronomical time, to reduce it to civil or nautical time.

1. If the astronomical time is less than 12 hours, it will also be nautical
time P.M.

2. If the astronomical time be greater than 12 hours, reject 12 and put
the day one forward ; the result will be civil time A.M.; thus:

(1.) April 27, at 4" 10™ (astro.) is April 27, at 4* 10" p.x. (civil).
(2.) April 27, at 16 10 (astro.) is April 28, at 4 10- A, (civil).
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TIME INTO DEGREES.

EXAMPLE.
172. Reduce 2" 18 58™26 into degrees.
2 = 30° 0 0
8 = "4 80 0O
58-26 = 14 339
0201858426 = 34 44 339
EXAMPLES.

Find the arcs corresponding to the following times,

173. 359 4 Ans. 58° 1' 0"
174. 17 8 22 . 9257 5 30
175. 8 17 15 , 124 18 52%
176. 12 14 1675 , 183 34 1125
177. 9 13 8 , 138 17 0
178. 15 17 18+4 229 19 36

9

By means of the following Table* arcs to the nearest minute are more
readily expressed in time and the converse, than by the preceding rules.

TABLE

To reduce degrees into time, and the converse.

I'=0" 4| 21'=1"24" | 41'=2"44" | 1°=0* 4*| 10°= ("
2=0 8 | 22'=1 28 | 42'=2 48 2°=0 8 20°= 1
3=0 12 | 23'=1 32 | 43'=2 52 8°=0 12 30°= 2
4=0 16 | 24'=1 36 | 44'=2 56 4°=0 16 40°= 2
"h=0 20 | 25'=1 40 | 45'=3 O 5°=0 20 50°= 3§
6'=0 24 | 26'=1 44 | 46'=3 4 6°=0 24 60°= 4
7=0 28 | 27'=1 48 | 47=3 8 7°=0 28 70°= 4 40
8'=0 32 | 28'=1 52 | 48'=3 12 8°=0 32 80°= 5
9=0 36 | 29'=1 56 | 49'=3 16 9°=10 36 90°= 6
10'=0 40 | 30'=2 0 | 50'=3 20 | 10°=0 40 | 100°= 6
11'=0 44 | 31'=2 4 | 51'=3 24 | 11°=0 44 | 110°= 7
12’=0 48 | 32'=2 8 | 562'=3 28 | 12°=0 48 | 120°= 8
13'=0 52 | 33'=2 12 | 53=3 32 | 183°=0 52 | 130°= 8
14=0 56 | 34'=2 16 | 54'=3 36 | 14°=0 56 | 140°= 9 20

15'= 0 | 35=2 20 | 55'=3 40 | 15°=1 0 | 150°=10 O
16'=1 4 | 36'=2 24 | 56'=3 44 | 16°=1 4 | 160°=10 40
17"= 8 | 37'=2 28 | 57'=3 48 | 17°=1 8 | 170°=11 20

18'=1 12 | 38'=2 32 | 58'=3 52 | 18°=1 12 | 180°=12 0O
19'==1 16 | 39'=2 36 | 59'=3" 560 192=31S16HSIO0S=A12 A0y
200=1 20 | 40'=2 40 | 60'=4 0 | 20°=1 20 | 200°=13 20

* The table is computed to the nearest minute of arc; when seconds are to be
reduced (which is seldom required) the student must proceed as pointed out in the
preceding rules.
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Use of the Table.

179. Reduce 34° 44’ 34” into time. 180. Reduce 2" 18 5826 into

degrees.
34° 44’ 34"=34° 45’ nearly. 2" 18™ 58"26=2" 19" nearly.
By Table...80°....... 2" o By Table...2"....30° 0’
v S5 16 16 4 0
45... 3 3 45
.*. 34° 44’ 34”=2 19 nearly.  .-. 2" 18" 58"26=234 45 nearly.

In some nautical tables, the angles in the log. sine table are given both
in arc and in time. The reduction from degrees to hours, and the converse,
is by means of such a table readily made, simply by inspection.

Given the time at Greenwich, to find the time at the same instant at any
other place, and the converse.

(74.) To find the time at any place, as New York or Caleutta, corre-
sponding to a given time at Greenwich, or the converse, we must remember
that since the earth revolves through 360° in 24 hours, from west through
south to east, or 15° in 1 hour; then at a place 15° to the eastward of a
spectator the sun will be on the meridian 1 hour before, and at a place
15° to the westward, the sun will be on the meridian 1 hour later than
at the place of the spectator : hence, when it is 10 o’clock at a given place,
it will af the same instant be 11 o'clock at a place 15° to the eastward,
and 9 o'clock at a place 15° to the westward. If, therefore, the longitude
of a place is known, that is, the number of degrees it is to the east or
west of Greenwich, we can readily tell what time it is at the place corre-
sponding to a given time at Greenwich, and the converse. To find the
time at Greenwich, corresponding to any given time at a place, is required
in almost every nautical problem ; and even if the longitude and time are
only known nearly, the approximate true time at Greenwich, deduced from
the estimated longitude and estimated time at the place, is an important
element in nautical astronomy. The time at Greenwich, obtained in this

manner, is called an approximate Greenwich time, or more freguently #he
Greemwich date.
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TO FIND THE GREENWICH DATE.

Rule 5. -First method. By estimated ship time and longitude.

1. Express the time at the ship astronomically to the nearest minute
p. 73).

( 2. Reduce the longitude into time to nearest minute, and put it under
ship time (p. 72).

3. If west longitude, add longitude in time to ship time; the sum, if
less than 24 hours, will be the time at Greenwich, or the Greenwich date on
the same day as at the ship.

But if the sum be greater than 24 hours, reject 24 hours; the result will
be the Greenwich date on the day following the ship date.

4. If cast longitude, subtract longitude in time from ship time, the re-
mainder will be the Greenwich date. If the longitude in time is greater
than the ship time, 24 hours must be added to the ship time before sub-
traction is made, and the remainder will be the Greenwich date on the day
preceding the ship date.

EXAMPLES.

181. June 10, at 6" 10® p.M. mean 182. July 12, at 4" 5™ aM. in
time nearly in longitude by account long. 63°45'W.; required the Green-
32° 42'W.; required the Greenwich wich date.

date, or the Greenwich time to the Ship, July 11....... 1iCEe5=
nearest minute. _ long. in time........ 4 15 W.
Ship, June 10...... 6" 10" .*. Green. July 11......20 20

long. in time........ 2 11W.
.*. Green. June 10.....8 21

EXAMPLES,

Required the Greenwich date in each of the following examples.

Ship times, Answers, Greenwich dates.
183. Mar. 7,at 3"15" a.m. Long. 15°45’ E. . Mar. 6, at 14* 12"
184, Mar. 15 ,, 10 35 px. ,, 43 5 E. . Mar. 15 ,, 7 43
185. May 12 ,, 4 30 am. ,, 45 50W. . May 11 ,, 19 33

186. May 9 ,, 516 . , 9035 E.. May 8 , 23 14
187. May 5 ,, 11 30 vx. , 55 47W.. May 5 , 15 13
188. May 20 ,, 10 25 ax. , 150 15W. . May 20 , 8 26

The time at Greenwich, and therefore the Greenwich date, is more cor-
rectly found by means of a chronometer whose error on Greenwich mean
time is known at the moment of observation as follows.
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TO FIND THE GREENWICH DATE.

Rule 6. Second method. By chronometer and its error on Greenwich
mean time.

To the time shown by chronometer, apply its error on Greenwich mean
time ; adding if error is slow, and subtracting if error is fast, on Greenwich
mean time ; the result is the Greenwich date in mean time. Sometimes 12
hours must be added to this result, and the day put one back. To deter-
mine when this must be done, get an approximate Greenwich date in the
usual way by means of ship mean time and the estimated longitude ; if the
difference between the Greenwich dates found by the two methods is nearly
12 hours, then the Greenwich date by clronometer must be increased’ by 12
hours, and the day put one day back, if necessary, so as to make the two
dates more nearly agree both in the day and hour.

The following examples will remove any doubt as to putting the day one
back, or not, when the 12 hours are added.

EXAMPLE 1.

189. July 10th, at 6" 34™ p.m. mean time nearly, in longitude 60° W.,
a chronometer showed 10" 42” 3, its error on Greenwich mean fime being
2™ 10" fast ; required mean time at Greenwich, or the Greenwich date.

Greenwich time by chronometer, Greenwich date.

July 10th, chro...... 10° 42™ 3" Ship, July 10th... 6" 34"
Error on G. M. T.... 210 long. in time....... 4 OW.
Gr. July 10th.........10 39 53 Gr. July 10th......10 34

As these two results come out near to each other, the correct Greenwich
time is, July 10th, 10* 39® 53, and the Greenwich date is therefore
July 10th, 10" 40™, :

EXAMPLE 2.

190. Aug. 3d, at 5" 42" p.M. mean time nearly, in long. by account
150° 30" W, a chronometer showed 3* 23 15°, and its error on Greenwich
mean time was 10 104 slow ; required the Greenwich date.

Greenwich time by chronometer. Greenwich date.

Aug. 3d, at...... 3" 23" 15 Ship, Aug. 3d... 5" 42"
AUTIOMNE . ool o oo o 10 10-4 long. in time....10 2 W.
G e L R 3 33 254 Gr. Aug. 3d......15 44
AN e oo 12 d

Gr. Aug. 3d......15 33 254

In this example 12 héurs must be added to the Greenwich date by
chronometer, to bring the Greenwich times more nearly alike.






CHAPTER III.

EXPLANATION AND USE OF THE NAUTICAL ALMANAC.

(75.) Tae Nautical Almanac contains the declination, right ascension,
&e., of the principal heavenly bodies, for certain fixed times at Greenwich.
The declination and right ascension of the sun and planets are given for
every day at 0® 0™ 0*; for the moon, for every hour at Greenwich.

To obtain these quantities for any other time, we may either apply the
‘common rules of proportion,* or—which is in most cases the simplest
method—make use of certain tables computed for the purpose, called tables
of proportional logarithms. The tables of proportional logarithms are the
following :

. The proportional logarithms (properly so called).

2. The Greenwich date proportional logarithm of the sun.

3. The Greenwich date proportional logarithm of the moon.

4. The logistic logarithms.

The construction of these tables is given in Nav. Part IL p. 138.

ot

TO TAKE OUT THE SUN’S DECLINATION.
Rule 7. First method, by using proportional logarithms.

1. Get a Greenwich date, thus:

(a.) Put down the ship mean time expressed astronomically.

(6.) Under which put the longitude in time: add if west, subtract if
east (adding or subtracting 24 hours, according to Rule 5. p. 74).

2. Take out of the Nautical Almanac the sun’s declination for the two
consecutive noons between which the Greenwich date lies.

3. Take the difference of the declinations when their names are alike
(that is, both north or both south); but when the names of the declinations
are unlike, take their sum ; the result will be the change of declination in
24 hours. Mark it + or —, or with the same or different letter, according
as the declination is seen to be increasing or decreasing.

* The results obtained by the rules of proportion are only true when the daily or
hourly change is invariable, and this is seldom the case in the motion or apparent
motion of the heavenly bodies. When very great accuracy is required, we must apply
a further correction, called the equation of second differences. For all the common
purposes of navigation, however, a simple proportion, as directed in the following
rules, will be sufficiently correct.
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4. Add together Greenwich date logarithm for the sun and proportional
logarithm of the change in 24 hours ; the result is the proportional logarithm
of change of declination for the given time, which take from the table of
proportional logarithms and apply to the declination at first noon, either by
subtracting or adding it, according as the declination is seen to be de-
creasing or increasing.

Another method of taking out the sun’s declination is to make use of
the hourly changes of declination given in the Nautical Almanac.

TO TAKE OUT THE SUN’S DECLINATION.
Rule 8. Second method, by using hourly differences.

1. Find a Greenwich date, as in last rule.

2. Take out of the Nautical Almanac the declination at noon of the
Greenwich date, and put down a little to the right thereof the difference for
one hour found in the same page, and close to the declination taken out.
Multiply this quantity by the hours in Greenwich date, and the fractional
parts of the hour if necessary; the product will be the change of declination
in the time from noon ; apply this, reduced to minutes and seconds, to the
declination taken out, adding it if the declination is seen to be increasing,
and subtracting if decreasing. The result is the declination of the sun at
the time required.*

EXAMPLES.

198. March 2, at 4" 23" p.M. mean time nearly, in long. 32° 42’ W.:

required the sun’s declination. (1.) By proportional logarithms. = (2.) By
hourly differences.

Ship, Mar. 2. ............... 4" 23"
long. in time ............... 2 11'W.
Gr. Mar. 2 oo 6 84
First method. By proportional logarithms
Sun’s decl. Mar. 2......... 7 0SS
ol "B 6 44 28
22 - 58 N.

Gr. date log. ®... 56287
pro. log. 22" 58” . 89417

1:45704... 6 17 N.
.. sun’s decl. at 6" 34®...7 0 43 S.

* The corrections for Greenwich date of the quantities taken out of the Nautical

Almanac, when small, are frequently made by inspection ; the results thus obtained
are generally found sufficiently correct.
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200. July 30, 1845, at 3" 20™ p.y. mean time, in long. 9° 0’ W.:

required the sun’s decl. Ans. 18° 28’ 14" N.
201. Dec. 10, 1845, at 6" 32™ a.M. mean time, in long. 32° 30’ W.:
required the sun’s decl. Ans. 22° 56" 4” S.
202. Aug. 1, 1845, at 4" 52" p.M. mean time, in long. 152° 33’ E.:
required the sun’s decl. Ans. 18° 4/ 165" N.

Dec. and hourly diff. from Nautical Almanac.
Hourly diff.
July 30...... 18°30'39”N. July 31...... 18°15'57"N....... 367" dec.
Dee. 9........ 22 51 17 8. Dec. 10...... 22 5650 S....... 12-7 dee.
July 31...... 18 15 58 N. Aug. 1........ 18 058 N....... 375 dec.

Rule 9. 7o take out the EQUATION OF TIME.
First method, by using proportional logarithms.

1. Get a Greenwich date.

9. Take out the equation of time for two consecutive noons between
which the Greenwich date lies, and take their difference.

3. Add together the Greenwich date logarithm for sun and propor-
tional logarithm of difference: the sum is the proportional logarithm of cor-
rection, which find from the table, and apply it with its proper sign to the
equation of time first taken out ; the result is the equation of time required.

Second method, by using hourly differences.

1. Get a Greenwich date, as in first method.

2. Take out the equation of time for the noon of Greenwich date and
the hourly difference opposite thereto.

3. Multiply hourly difference by the hours of the Greenwich date,
and, if great accuracy is required, by the fractional parts of hour in the
Greenwich date ; the result will be the correction to be applied with its
proper sign to the equation of time taken out.

EXAMPLE.

203. July 12, 1853, at 5" 8” A.). mean time nearly, in long. 160° W.:
required the equation of time.

Ship, July 11......... I oy
long. in time.......... 10 40 W.
Greenwich, July 11..27 48
Greenwich, July 12..”3 48
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Equation of time. Or thus, by hourly difference.

T I e bm 157 Diff. for 1 hour....... 0+308° iner,
3 R S E S 5 231 3
74 0-924
Greenwich d. log. sun...0-:80043 30 1 154
Prop. log. 74'............ 316419 15 § 077
Prope logs cors.inzz . 3:96462 Bh1%  odtioosbaosoatoe 1-155
Gy S v N TR 152 (018500005000 Loy
o157

Equation required ...... 5 169

Equation required 5 169
Find the equation of time in the following examples :
204. March 2, 1853, at 6" 10" .M. mean time, in long, 38°42' W,

205. ,, 16 ,, , 5 42 am, 2 » 152 46 W.
206. ,, 29 , ,, 10 42 am. & - 87 8 E.
Eguation- of time from Nautical Almanac,

Diff. 1 hour.
Eq. of time, March 2,12 22-1°......... March 3, 12" 9-3°...053"
® s 16 8 484 ... » 17 8 308...0-72
> w 28 5 90.... s 29 4 504...077

Ans. to 204, 205, 206: 12" 17-4", 8" 455", 4® 56°0".

Rule10. To talke outtheMooN's SEMIDIAMETER AND HOR1ZONTAL PARALLAX.

The moon’s semidiameter and horizontal parallax are put down in the
Nautical Almanac for every mean noon and mean midnight at Greenwich;
to find these quantities for any other time we may proceed as follows :

First. To find the moon’s semidiameter.

1. Get a Greenwich date.

2. Take out of the Nautical Almanac the moon’s semidiameter for the
two times between which the Greenwich date lies, and take the difference,
To the Greenwich date logarithm for moon add the proportional logarithm
of the difference just found; the result.will be the proportional logarithm of
an arc, which being found and added to the semidiameter first taken out, or
subtracted therefrom (according as the semidiameter is increasing or decreas-
ing), will be the semidiameter at the given time.

Second. To find the moon’s horizontal parallax.

Proceed in a similar manner to that pointed out above for finding the
moon’s semidiameter.

EXAMPLES, )
207. Aug. 3, 1853, at 4* 10™ p.m. mean time nearly, in long. 56° 15’ W.:
required the moon’s semidiameter and horizontal parallax.
Ship, Aug. 3......... 4* 10"
long. in time......... 3 45 W.
Greenwich, Aug. 3...7 53
b )
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Moon’s semidiameter,

August 8, at noon...... 15" 66"
,, mid....... 15 106

‘ 40

Gr. d. log. for moon... 0°18064
Prop. log. for 40”...... 343136
Prop. log. cor. .......... 3-61200
(070) SR S 26
Required semi. ......... 15 92

Moon’s horizontal parallax.

August 8, at noon...... 55’ 206"
; mid. ...... 55 353
147

Gr. d. log. for moon... 0-18064
Prop. log. for 14:7”.... 2-86611

Prop. log. cor. .......... 304675
(0 97
Required hor. par....... 55 303

NotE. It is better in examples of this kind, where the differences taken out of the
Nautical Almanac are only a few secouds, to learn to estimate the correction at sight :
this, after a little practice, will not be difficult to do. The above method, however,
by logarithms, should be adopted by beginners for the practice it gives in learning the
use of the tables.

208. July 14, 1853, at G* 42™ A mean time nearly, in long. 30° W.:
required the moon’s semidiameter and horizontal parallax.
Ship, July 13......... 18" 49"
long. in time ......... 2 0OW.
Greenwich, July 13..20 42

Moon’s semidiameter, Moon’s horizontal parallax.

July 18, mid. ........ocoenien 16" 2:77  July 13, mid................. 58’ 458"
5 14, NOONML.....eiiniii. 16 7+5 o % MEEMS00000000000000¢ 59 35
48 T

Gr. d. log. moon for 8" 42°* 0:13966  Gr. d. log. moon for 8" 42™ 0-13966
Prop. log. 48" ............... 3:35218  Prop. log. 177"............. 2-78545
Prop. log. €or. ..., 3:49184  Prop. log. COT. ..vvvvvvrenenns 292511
0 L T € O S 12-8
Required semi................ 16 62  Required hor. par........... 58 586

Find the moon’s semidiameter and horizontal parallax in the following
examples :

209. Mareh 2, 1853....... at G* 42" par....... in long. 100° 0’ W.
210, ,, 14 ,, ... at 3 30 aM....... , 120 0 W.
211, ,, 24 ,, ... at 10 10 p.a....... ’ 60 42 E.
Moon's semi. and hor, par. from Nautical Almanac.
Moon’s semidiameter. Moon's hor. par. Answers.
March 2, mid. 16 517  Mid. 58 547  Semi. 16’ 47"

3 3, noon 16 2'1
March 13, mid. 14 489

Noon 58 436
Mid. 54 157

H. P. 58 584
Semi, 14 479

,» 14, noon 14 47-8 Noon 54 115 H.P. 54 117
March 24, noon 16 187 Noon 59 44-6 Semi. 16 21-2
» 24, mid. 16 257 Mid. 60 1-8 H. P. 59 58:8

* When the Greenwich date exceeds 12 hours, as in this example, look out the
Greenwich date logarithm moon for the excess of the Greenwich date above 12 hours,



SUN'S RIGHT ASCENSION AND MOON’S DECLINATION. 83

Rule 11. 7' take out the SuN’s RiGHT ASCENSION,

1. Get a Greenwich date.

2. Take out the right ascension for two consecutive noons between
which the Greenwich date lies, and take their difference.

3. Add together the Greenwich date logarithm for sun and propor-
tional logarithm of difference; the sum will be the proportional logarithm
of eorrection to be added to the right ascension for noon of Greenwich date.

EXAMPLE.
212. July 13, 1853, at 6" 31" A.m. mean time nearly, in long. 172° 10/ W.:
required the sun's right ascension.
Sun’s right ascension.

Ship, July 12.....18" 31* July 13 ...... 7" 30" 30°
long. in time...... 11 29 W. R U S 7 34 33
30 0 43
orship,July 13... 6 0 0-60206
1-64782
2:24988...... ol

sun’sR.A...7 31 3

This and the following examples may have been worked out by using
the hourly difference, as in Rule 8. Sometimes the simplest method is to
estimate the correction by sight, as in the above example, where we have to
find the change of right ascension in 6 hours, the change in 24 hours being
4™ 3, the correction is evidently 1™ 1° nearly.

Find the sun’s right ascension in the following examples :

213, March 11, 1853...at G" 42" r.M. mean time...long. 42°41'W.
214. ,, 21 , ..at10 10 am. 0 .. 5 100 41 E.
PASW sy 21 0 et O L0 A, . e, 142 14 W,

Suw's B. A. from Nautical Almanac.

Sun’s right ase., March 11, 28" 26™ 26-3’ March 12, 23" 30™ 66

20 23 39 200 , 21 0 2 582

1 , 21 0 2582 , 22 0 6 364
Ans. to 213, 214, 215 : 23" 27" 54°5°, 0" 1™ 400, 0" 4™ 24-2".

2 ER]

Rule 12. To take out the moon’s DECLINATION and RIGHT ASCENSION,

The moon’s declination and right ascension are recorded in the Nautical
Almanac for the beginning of every hour of mean time at Greenwich. To
find them for any other time we may proceed as follows:

First. To find the moon’s declination for any given time.

1. Get a Greenwich date,

2. Take out of the Nautical Almanac the moon's declination for two
consecutive hours between which the Greenwich date lies, and take the dif-
ference. g
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First method. By logistic logarithms.

1. Add together the logistic logarithm of minutes in Greenwich date
and proportional logarithm of difference, the sum will be the proportional
logarithm of correction, which take from the table and apply it to the de-
clination for the hour of Greenwich date, adding or subtracting according as
the declination is seen to be increasing or decreasing. The result is the
declination required.

Second method. By 10 minutes’ differences.

1. Take out “Diff. Dec. for 10™" opposite the first declination taken
out,

2. Multiply the 10™ diff. by the number of minutes in Greenwich date,
and remove the decimal point one place to the left : the result is the cor-
rection in decl, for Greenwich date in seconds, which turn into minutes and
seconds if necessary, and apply to the decl. as in first method,

To take out the MOON’S RIGHT ASCENSION.

First method. By logistic logs.
Proceed as in the first method just given for finding the moon’s declina-
tion.

Second method. By hourly difference, or by the rule of Practice.

Multiply hourly difference, turned into seconds, by the number of mi-
nutes in Greenwich date, and divide by 60: the result will be the cor-
rection in right ascension for Greenwich date in seconds, which turn into
minutes and seconds if necessary, and add to the right ascension at the hour
of Greenwich date ; or this correction may be obtained by the common rule
of Practice.

EXAMPLES.

216. January 24, at 5* 40" .y mean time, in long. 60° 10°W. : find the
moon’s declination and right ascension.

Ship, Jan. 24..... 5 40™
long. in time....... 4 1 W,

Gr. Jan, 24......... 9 41

Moon’s declination.
First method. By logistic logarithms.

SR OF s sposarbace 19° 39’ 12” N,
104 crlenritvrs 19 34 21 N.
I I T A
0:16537
1-56953
1:73490...... i 3 19—

.*, moon’s decl. ag 9* 41™...... 19 35 53
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Moorw’s R. A. and decl. from Nautical Almanac.

Moon's right ascension, Moon’s decl. 10m diff.
June 2,at 2...... 2R ATRED 3 1795191261 N 1 63:4" incr,
’ at 3. 2 49 281........ 17 18 46 N.
Sept. 6, at 12...... 14 52 447..... 16 48 19 S......... 68:9" incr.
” at 13...... 14 55 37........ 16 55 13 S.
July 10, at 0...... 11 26 552......... 1 17 58 S.... 111-7” iner.
. at 1....11 28 5290.... 1 29 9 8

Rule 13. To take out the RIGHT ASCENSION OF THE MEAN SUN (called in the
Nautical Almanac SIDEREAL time).

The right ascension of the mean sun, or the sidereal time at mean noon,
is given in the Nautical Almanac for.every day at mean noon. To find it
for any other time we may proceed as in the rule for finding the right ascen-
sion of the apparent or true sun; but as the motion of the mean sun is
uniform throughout the year (the motion in every 24 hours being 8™ 56:555°),
the ehange in any given number of hours, minutes, and seconds is more
easily found by means of a table. This table is given in the Nautical
Almanac, under the title of “Time Iquivalents;” it may be also found,
arranged in a very convenient form, in Inman’s Nautical Tables, p. 12*.

EXAMPLE,

220. July 23, 1853, at 2" 32" r.m., in long. 80° 42" L.: required the
right ascension of the mean sun.

Right asc. mean sun. Or thus, by table.
Ship, July 23...2" 32" July 22...8" 0"35° July 22...8" 0" 35*
long. in time.....5 23 E. 5, 23...8 4 32 cor. for 21" 3 27
Green.,July 22.21 9 3 57 N 9" 15
0:05490 AL 84 3%
1:65868 as before.

171358 3 29
Right asc. mean sun...8 4 4

Find the right ascension of mean sun (called in the Nautical Abmanac
sidereal time) in the following examples :

221. March 2, 1853, at 10" 42" p.x. mean time, in long. 48°10' W.

222, , 15 , ,, 6 G anx b 100 0 W.
208l 1, G iy ellO 0PI " 100 0 E.

Sid. time from Nautical Almanac, and Answers.
Sidereal time March 2, at noon, 22* 40" 44-9°...... Ans. 22" 43" 2:0

2 v It = iagems Ay . 23 32 T
& 3 21 o, 2385 sl 7793 V58 134
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Rule 14. 7o find the LUNAR DISTANCE for any given time at Greenwich.

1. Get a Greenwich date.

2. Find two consecutive distances in the Nautical Almanac at times
between which the Greenwich date lies. Take the difference of the dis-
tanees. To the proportional logarithm of the excess of the Greenwich date
above'the first of the times taken from the Nautical Almanac add propor-
tional logarithm of difference of distances ; the sum will be the proportional
logarithm of an arc; which arc being applied to the distance at first time
with its proper sign will be the distance required.

EXAMPLE.
224. September 24, at 6" 10™ r.:. mean time nearly, in long. 60° 15’ W.:
required the distance of Aldebaran from the moon.
Dist. of Aldebaran.

Ship, Sept. 24... 6"10" At 9%...18°57' 35"
long. in time ... 4 1 W, 12 ...20 23 37
Green. Sept. 24...10 11 Proportional log....32061 ... 1 26 2
prop. log. 1* 11™ ...40401
log. cor. ............ 72462 ... 0 33 56

.+, dist. of Aldebaran at 6" 10"...19 31 31

Required the distance of the moon from certain stars in the following
examples :
225. Jan. 24, at 4* 30" p.3. mean time neatly, in long. 30° 30’ E.: re-
quired the distance of Regulus from the moon. Ans. 69° 33" 6"
226. May 20, at 6" 20™ A, mean time nearly, in long. 40° 0’ L.: re-
quired the distance of & Pegasi from the moon. Ans. 56° 59" 77,
227. June 10, at 9" 40™ p.)1. mean time nearly, in long. 32° 45" W.: re-
quired the distance of « Aquilee from the moon. Ans. T4° 32’ 35".
228. July 2, at 7" 20™ A.31. mean time nearly, in long. 30° 0’ E.: required
the distance of Jupiter from the moon. Ans. 54° 16’ 52",
229. Sept. 19, at 10" 30™ a.M. mean time nearly, in long. 63° 15" E.: re-
quired the distance of Aldebaran from the moon. Ans. 72° 0’ 51",
2830. Dec. 15, at 2" 0" r.». mean time nearly, in long. 19° 40’ I.: required
the distance of Pollux from the moon. Ans, 58° 50" 47",

Distances from Nautical Almanac.

Distance of Regulus  at noon 68°11' 7”...... at 3"  69°50' 50"
,  aPegasi , 15° 57 17 6 ...... ,18 5556 9
o  wAqule , 9 7556 46 ... 12 7498 9
,  Jupiter , 15 55 41 18 ...... ,18 5352 44
- Aldebaran,, 18 72 9 14 ...... 1 21 UPOR4G 29
) Pollux ,, noon 58 32 51 ...... s & 160 1754
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Inrule (50), for finding the longitude by lunar observations, we have to
calculate the true distance of the moon from some heavenly body at the time
of observation. If the heavenly body is one whose distance is recorded in
the Nautical Almanac for every three hours, we may find the mean time
at Greenwich corresponding to the computed true distance for the time of
observation as follows :

Rule 15. 7o find the TiIME AT GREENWICH corresponding to ¢ GIVEN DIS-
TANCE of @ heavenly body from the moon.

1. Under the given distance put down the two computed distances of the
same heavenly body found in the Nautical Almanac between which the given
true distance lies.

2. Take the difference between the first and seeond, and also between
the second and the third.

3. From the proportional logarithm of the first difference subtract the
proportional logarithm of the second difference, the remainder is the propor-
tional logarithm of the additional time to be added to the hours of the
distance first taken out of the NVautical Almanac; the result is the mean time
at Greenwich corresponding to the given distance.

EXAMPLES.

231, November 22,1853, the true distance of Saturn from the moon was
found to be 77° 52’ 45”: required Greenwich mean time when the observa-
tion was taken.

True distance at observation...... 77952 45"
in Naut. Almanac dist. at 3"...... 77 14 40
6.unis 78 47 24
prop. logarithm  -67454......... 38 5
28804......... 1 32 44
38650  Cor. 1*13°55'

Adding 3

Greenwich mean time Nov. 22 ... 4 13 55

Find mean time at Greenwich from each of the following observations:
232. November 24, 1853, when true distance of Aldebaran was 93° 38’
45", Ans. 3 57" 18",
233. Sept. 24, 1853, when true distance of Regulus was 58° 45’ 8".
Ans. 16" 3 6"
934. May 27, 1853, when true distance of the sun was 110° 8’ 50",
Ans, 14* 2™ 22°,

Distances from Nautical Almanac.
Dist. Aldebaran, Nov. 24, at 3"... 93° 7' 57"...... at 6% ... 94°44' 42"
s auRegulus, Sépt. 24°.., 5 l5irsd59 J6716 ... 018 .0 b7 4T 27
»  Sun, May 27..0..i.0: 5, mid,...111 12 57 ..iuiey, 15 ...109 38 38
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Rule 18. Given apparent solar time :
1. Get a Greenwich date (p. 74).

BRIGHT STARS PASSING MERIDIAN.

to find sidereal time.

. Correct the equation of time and also the right ascension of the

mean sun for Greenwich date (pp. 80, 86).

3. Apply corrected equation of time to ship apparent t1me, and thus get

ship mean time. Then, as in the last rule,

4. Add together ship mean time and right ascension of mean sun.
5. The sum (rejecting 24 hours if greater than 24 hours) will be side-

real time.

EXAMPLES.

241, May 24, 1853, at G 8™ 40° a.x. apparent solar time, in long. 20° 20’

W.:

required sidereal time.

K Equation of time.
8m 40s

Ship, May 23 18" 3 . 3m 33:2s sub, from
long.intime. 1 21 20W. 24 .3 283 app. time,
Gr,May23 ., 19 30 O 49
Prop. logs.
009018
3:34323
343341, 40
eq. of time . 3 292 sub.
app. time . 18 8 400

May23 . . 18 &

Right ascension mean sun.

23d,at noon . 4b 4m 2:373
190 . 3 727
30m 493

R. A. mean sun 4 7 1457

108 ship mean time.

945. July 4,1853, at 31 42™ .. apparent solar time, in long.

required sidereal time.

ship M.T. . . 18 5 1080
sidereal time . 22 12 2537
84° 42’ W. :

Ans. 228 35™ 1053,

246. Oct. 21,1853, at 8t 48™ p,u, apparent solar time, in long, 88° 8'E.:

required sidereal time.

Ans. 22" 32= 30-87°,

Eg. of time, and R. A. mean sun from Nautical Almanac.

Equation of time,
July 8, 3™ 50-1°add 4, 4m 1-1%add
Oct. 21, 15 19'1 sub. 22, 15 28:1, sub.

Right ascen. mean sun.
3, 6h 45m 41-24
21, 13 59 2226

Rule 19. Given mean time, or apparent time at the ship: to find what
heavenly body will pass the meridian the next after that time.

1. Get a Greenwich date (p. 74).

2. Find the right ascension of the mean sun (p. 86), and, if the Green-
wich date is in apparent time, find also the equation of time (p. 80) for that

date, so as to get mean time.

8. Add together ship mean time and the right ascension of mean sun.



BRIGHT STARS PASSING MERIDIAN. 93

4. The sum (rejecting 24 hours if greater than 24 hours) will be sidereal
time, or the right ascension of the meridian.

5. Then that star, found in some catalogue of fixed stars, whose right
ascension is the next greater will be the star required.

EXAMPLE.

247, Feb. 24, 1853, at 4" 42m p,y. mean time nearly, in long. 100° E. ;
find what bright star will pass the meridian the next after that date.

Right ascension mean sun.

Ship, Feb. 24, . 4b 42m 23 , . . 224 13m 90s Ship, Feb, 24 . 4" 42m (s

long. in time. . 6 40E, 22n , | 3 36'8 R.A.meansun 22 16 46

G, ' Feb, 28 . . 22 .2 om ‘3 R.A.merid. . 2 88 46
22 16 461

Looking into the ¢ Catalogue of the mean places of 100 principal fixed
stars” (see Nautical Almanac), we find the star whose right ascension is nex
greater than 2" 58™ is « Persei; therefore o Persei is the bright star that
will come to tlie meridian the next after 4® 42™ ».31. on Feb. 24.

Sometimes it is required to find what prineipal stars will pass the
meridian between certain convenient hours for observing their transits : as,
for instance, between 8" and 11" r.m. To do this, we must find the right
ascension of the meridian for these two times by the above rule; then the
stars whose right ascensions lie between will be the stars required.

EXAMPLES.

248. Oct. 3, 1853, in long. 90° W., find what bright stars put down in
the Nautieal Alinanac will pass the meridian between the hours of 9 and
12 por.

Ship,iOet: 3... ... 9h Om Ship, Oct. 3 ......... 12k Qm
long. in time ......... 6 0W. long. in time ......... 6 0W.
Greenwich, Oct. 3 ... 15 0 Greenwich, Oct. 3... 18 0
Right ascension mean sun. Right ascension mean sun.
Wt coodooenss 12b 48m 245 OcHIUIL o S 12h 48m 94s
LG, 2 27 1BY ity 2 57
- 12 50 51 B LR OIS
ship, Oect. 3 ...... Parw () 110 ship, Oct. 3 ...... LE200 OF = 0

R. A. meridian... 21 50 51 R. A. meridian... 0 51 21

In Catalogue p. 432, Nautical Almanac, the stars whose right ascensions
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lie between 21 50™ 51° and O™ 51™ 21% are from « Aquarii to B Ceti in-
clusive.*

249. What bright stars put down in the Nautical Almanac will pass
the meridian of a ship in long. 40° E., between 8" and 10h .y mean time,
on Nov. 20, 18531 Ans. From o Andromede to « Arietis.

250. What bright star will pass the meridian of a ship in long. 30° W.
the first after 10" 30m p.y. on Oct. 10, 1853 ¢ Ans. « Andromede.

251. What bright stars will pass the meridian of a ship in long. 56° W,
between the hours of 6 and 10 p.m., on March 10, 1853 %

Ans. From (3 Tauri to s Arglls.

252, What bright stars put down in the Nautical Almanac will pass
the meridian of Greenwich, between the hours of 7 and 9 .M. mean time, on
August 20, 18537 Ans. From ¢ Ursae Minoris to 8 Lyrze.

258. What stars named in the Nautical Almanac will pass the meridian
of a ship in long. 86° E., on Oct. 20, 1853, between the hours of 10 p.m.

and midnight? Ans, From « Andromeda to « Eridani.
254. What bright star will pass the meridian of Greenwich the first
after O p.y. on Sept. 12, 1853 ? Ans. o Cygni,

R. A. mean sun from Nautical Almanac.

R. A, mean sun, R. A. mean sun,
Nov. 20 ...... 15" 57m 398 Aug. 20 ...... 9h 54m 568
Oct. 10 ...... 15 16 0 Oct. 20 ...... 13 55 26
Mar. 10 ...... 23 12 17 Sep. 12 ...... 11 25 37

Rule 20. Given sidereal time : to find mean {ime.

1. Take out of the Nautical Almanac the right ascension of the mean
sun (called in the Nautical Alimanac sidereal time) for noon of the given
day.

2. From sidereal time (increased if necessary by 24 hours) subtract the
quantity just taken out ; the remainder is mean time nearly.

3. Find in the table of the acceleration of sidereal on mean solar time
the correction for this time, and subtract it from the mean time nearly.

4. The remainder is the mean time required.

NoTE. In strictness we ought to have entered the table with the correct mean
time, instead of that used ; but it is evident we may obtain a still 2loser approxima-
tion to the truth by repeating the work, using the last approximate value instead of
the preceding one. For all practical purposes this repetition is seldom necessary.

* In the Handbook for the Stars, published by the author, there is a table of the
approximate times of the transits of the principal fixed stars. This table enables the
observer to find the name of the bright star that is near the meridian at any given
time, and at any place, by inspection, and without any calculation.
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255. April 27, when a sidereal

clock showed 3" 40™ 45°: required
mean time.
Sidereal time......... 3b 40m 45-00¢
R. A. mean sun af

mean noomn......... 2020 2158
mean time nearly ... 1 20 2342
770 T L 986

A 20m .., 328

- 23...... 06 13:20

. required meantime 1 20 1022

256. March 2, when a sidereal
clock showed 3" 40m 45°: required
mean time.

Sidereal time ...... 3t 40m 45-00¢
R. A. mean sun at

mean noon ...... 22 41 3594
mean time nearly... 4 59 906
cor, ...4% ... 3943

’ 59 .. 969

’ 9 ... 02 4914

.. required meantime 4 58 1992

(76.) The clock of an observatory used for noting the transit of a
heavenly body is generally adjusted to siderex! time. By means of the
above rule we can determine the error of a chronometer or solar clock regu-
lated to mean time, by comparing the chronometer with the sidereal clock
at some coincident beat, and then, correcting the sidereal clock for its error,
we can find the corresponding mean time at the instant; the difference
between which and the time shown by the chronometer will be the error of
the chronometer on mean fime at the place.

EXAMPLE,

257. Greenwich, March 3, 1853, when a sidereal clock showed
68 10™ 20* a chronometer showed T" 32™ 10°: required the error of the
chronometer on Greenwich mean time; the error of sidereal clock being
2m 42-5° slow.

Sidereal elock....occooviviiiiiniininnnn.. 62 10™ 20°
(&) 0 S O 2 42-5 slow.
Serealitime odveceo it onenseaenssornans 6018 = 25
R. A. mean sun at mean noon ......... 29 44 , 4148
(Clu R M et 1™ 8-99° 7 28 2102
o e T 4-60
o0 DU R 05
1 1364 1 1364
required mean time .............ceeeni. 7T 27, 738
chronometer showed ............c...o.nt ™ 82 100
error of chro. on Gr. mean time..... e 5 262 fast.

(77.) When the calculations are made for any other meridian than that
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of Gree‘nwich, for which the quantities in the Nautical Almanac are calcu-
lated, we must take into consideration the change of the mean sun’s place
arising from the difference of longitude. For example, the tables of the
Connaissance des Tems are computed for Paris, the long. of which is 9™ 22¢
to the east of Greenwich : as in that time the mean sun moves to the east-
ward through an arc of 1'53¢ in time (for 24" : 9™ 22¢::3™ 56-55°: 1'53°),
it follows that we must add 1-53° to all the right ascensions of the mean
sun in the French tables to obtain those of the mean sun at mean noon af
Greenwich. (See Nav. Part IL chap. vii) Or thus, by Rule 20:

EXAMPLE.

958. April 27, 1841, the right ascension of the mean sun at mean noon
at Paris, by the Connaissance des Tems, was 2 21™ 10:09°: required the
same for Greenwich mean noon.

Greenwich, April 27 ............ or 0™ O°
ey, 0, (D soacesoceaacsonao00s 9 22 W.
Paris date, April 27.............. 9 29
R. A. mean sun at Paris .........coooenene ob 21m 10-09°
Cor. 9m..... , 148
5, 22%..... 05
153 153
R. A. mean sun at Greenwich............ 2 21 1162

(78.) The longitude is usually found at sea by means of a chronometer
showing Greenwich mean time at the instant the mean time at the ship is
known. The mean time at the ship is deduced from the hour-angle of a
heavenly body, and this hour-angle is calculated by means of the altitude of
the body observed with a sextant and certain elements given in the Nautical
Almanac.

Rules for caleulating the hour-angle of a heavenly body from an observed
altitude will be given hereafter. We will here suppose the hour-angle
known, and proceed to show how mean time might be found from it.

Rule 21. 7o find mean time at the ship, from the howr-angle of a star or
the moon.

It is proved in Navigation, Part IL p. 34, that

1. When the star is WesT of meridian,

Mean time=star’s hour-angle 4 star’s right ascension —right ascension of
mean sun.

2. When the star is gasT of meridian,

Mean time=(2 {*—star’s hour-angle) + star’s right ascension —right ascen-
sion of mean sun.
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To find ship mean time, we must proceed therefore as follows :

1. Get a Greenwich date.
2. Take out the star’s right aseension.
3. Take out also the right ascension of the mean sun (called in Nautical

Almanac sidereal time), and ecorreet it for Greenwich date.

4. When heavenly body is WesT of meridian :

To the star’s hour-angle add star’s right ascension, and from the sum
subtract the right ascension of mean sun (adding or rejecting 24 hours if
necessary); the result is ship mean time.

5. When heavenly body is East of meridian :

First subtract hour-angle from 24 hours, then to the remainder add
star’s right aseension, and from the sum subtract the nght ascension of the
mean sun; the result (rejecting 24 hours if necessary) is ship mean time
required.

EXAMPLES.
259. Feb. 10,1847, at 9" 22™ p.M. mean time nearly, in long. 27° 15’ W.,
the hour-angle of Regulus (e Leonis) was 3™ 15™ 17° EAST of meridian: re-
quired mean time at the ship.

Ship, Feb. 10 ... 9 22 24 0 O
long. in time ... 1 49 W. Star’s L A....... 3 15 17
Gr. Feb. 10...... 11 11 20 44 430
R. A, mean sun. star’'s R. A. ...... 10 0 153
Febt 108 S itt. 21* 19® 46-0° —_—
cor...11* ......... 1 484 30 44 583
A A1 T 18 R.A meansun 21 21 362
R. A. mean sun.. 21 21 362 .-. ship mean time 9 23 221

260. Sept. 10, 1844,at 7" 11" p.m. mean time nearly, in long. 32° E,, the
hour-angle of Arcturus (« Bootis) was 4" 22" 15" WeST of meridian: required
mean time at the ship. Ans. T 11™ 317" p.1.

261. Nov. 22,1853,at 7* 15™ p.M. mean time nearly, in long. 22° 0 W.,
the hour-angle of Aldebaran (« Tauri) was 5" 10™ 20" EasT of meridian: re-
quired mean time at the place. Ans. T 10" 14",

262. June 23, 1853, at 4" 15™ A.M. mean time nearly, in long. 100° 40/ E
the hour-angle of @ Lyre was 3" 42" 40" wesT of meridian: required mean
time at the place. Ans. 16" 10™ 56",

!

Nore.—If the estimated ship time used for getting the Greenwich date
differs several minutes from the true ship time, the R. A. mean sun, and
therefore ship mean time deduced from it, may be a few seconds incorrect.
To get a correct result we must use the ship mean time, found asin the above
examples, instead of that first used, and thus obtain a corrected Greenwich

" ,
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date, and then recalculate the R."A. mean sun for that date. It will be
rarely necessary to repeat this method of approximation more than once;
but the necessity for this repetition should be borne in mind in many of the
subsequent rules when a wrong Greenwich date has been found to have been
used. The following examples will show the effect of an error in the
Greenwich date on the ship mean time deduced from it.

EXAMPLES.

263. August 11, 1846, at 8" 50™ p.»1. mean time nearly, in long. 90° W,
the hour-angle of Arcturus was 3" 56™ 55° WEST of meridian: required cor-
rect mean time at the place.

Ship, Aug. 11 ............... 8 50"
long. in time.................. 6 O0W.

Greenwich, Aug. 11......... 14 50
Right ascension mean sun. Star’s hour-angle ... 3" 56™ 55:0°
Aug. 11 ......... 9" 18" 1651 ,, right asc...... 14 8 4014
cor. 14" ......... 2 1799 —
, 00™ Ll 8-21 18 5 3514
————— 1t asc. meansun... 9 20 4271
9 20 4271 —_—_—
ship mean time ... 8 44 5243

This result is slightly incorrect, arising from the estimated mean time,
8" 50", being different from the true time. 'When great accuracyis required,
the operation should be repeated, using mean time last found, namely 8" 457,
instead of the one used before ; thus,

The operation repeated.

Ship, Ang. 11 ............... 8" 45™

long. in time.......cc......... 6 O

Greenwich, Aug. 11......... 14 45
Right ascension mean sun. Star's hour-angle... 3" 56™ 55-0°
Aug. 11 ... 9" 18" 16'51° ,, rightase. ... 14 8 4012
cor. 14" ... ...... 2 1799 PELATTIT . 7 S
N EIGE e A 639 iSRG N85

—— 1t. asc. mean sun ... 9 20 41-89
9 20 4189 -
cor. ship mean time 8 44 53:28.

264. June 15, 1853, at 10" 10™ p.x., supposed mean time nearly, in long.
10° 42’ W, the hour-angle of Arcturus was 2" 2* 30° EAST of meridian: re--
quired mean time ab the place.

Ans. 1st approximation, 6° 30™; 2d approx. 6" 30™ 35"
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Elements from Nautical Almanac.

Right ascension mean sun. Right ascension star.
Sept. 10, 1853...... DIEETSE 285 . . « Bootis ...... 14 8" 35"
N7 ¢ 2 2 S Kok —ol! 32,00 o Aldebaran...... 4 27 32
dunes20 0 6y 2 X0 ...... o Lyre ......... 18 32 O
JunepllSHeEs =" 5 34 43 ...... Arcturus ...... 14 8 59

TO FIND SHIP MEAN TIME FROM THE HOUR-ANGLE OF THE SUN,

If the heavenly body observed be the sun, its hour-angle will also be
apparent time at the place if p.m. at the time of observation, and what it
wants of 24 hours if oM.  Therefore, to find the corresponding mean time,
we have only to apply apparent time thus found to the equation of time,
with its proper sign, as pointed out in Rule 16, p. 90.

Rule 22. To find at what time any heavenly body will pass the meridian,
and how far north or south of the zenith.

1. Take out of the Nautical Almanac the right ascension of the heavenly

" body, and also the right ascension of the mean sun for noor of the given day.

2. From the right ascension of the heavenly body (increased if necessary
by 24 hours) subtract the right ascension of the mean sun ; the remainder is
mean time at the ship nearly.

3. Apply the longitude in time, and thus get a Greenwich date ; with
this Greenwich date correct the right ascension of mean sun, and the right
ascension of the heavenly body if necessary.

4. Then from the right ascension of the star subtract the right ascension
of the mean sun thus corrected ; the remainder is the mean time when the

‘heavenly body is on the meridian.

As in the last problem, the table of acceleration for correcting the R. A.
of mean sun ought to have been entered with the correct mean time; but
the error in this case is inappreciable.

EXAMPLE.

265. At what time will Sirius pass the meridian of a place in long.
68° 30' W. on Nov. 20, 1845 !

R. A. mean sun.

Star’s R. A.+24 30" 38m 23* Nov. 20, .... 15> 57= 26¢ Star’s R. A, .. 30b 38m 23¢
R.A.meansun 15 57 26 cor. 19n, .., 3 73 R.Ameansin 16 0 36

ship M.T.nearly 14 40 57 ,, 15m ... 25 .*.ship M. T., 14 37 47
long. in time .. 4 34 R.A.meansuni6 0 358

Gr. Nov. 20, ... 19 15

Therefore the transit of Sirius is at 14" 37" 47° on Nov. 20, or at 2* 37™ 47"
A on Nov. 21,



100 MERIDIAN ZENITH DISTANCE.

To find at what time it will pass the meridian on the morning of Nov. 20,
we must evidently begin one day back, and take out the right ascension of
the mean sun for Nov. 19.

966. At what time will & Pegasi pass the meridian of Portsmouth, long.
1° 6" W., on Nov. 25, 1853 ? Ans. Nov. 25, 6" 38™ 58",

267. At what time will the star Regulus (2 Leonis) pass the meridian of
Land’s End, long. 5° 42’ W., on May 30, 18451

Ans. May 30, 5" 27™ 45" p.or.

268. At what time will Antares pass the meridian of Portsmouth, long.

1° 6" W., on Aug. 20, 18451 Ans. Aug. 20, 6" 24™ 11"
269. At what time will « Leonis pass the meridian of Lisbon, long. 9° 8’
W., on June 4, 1846°? Ans. June 4, 5" 9™ 4",
270. At what time will the star Antares pass the meridian of Copenhagen,
long. 12° 35" E., on Aug, 20, 18461 Ans. Aug. 20, 6" 25™ 21"
271. At what time will the star Fomalhaut pass the meridian of Calcutta,
long. 88° 26" E., on Nov. 20, 18461t Ans. Nov. 20, 6" 52™ 34",

Elements from Nautical Almanac.

Right ascension mean sun. Right asc. of star.
Nov. 25, 1853 ...... 16" 17® 22" ......... 22* 57 26
May 30, 1845 ...... 4 31 25 ......... 10 0 9
Aug. 20, ,, ... 9 54 45 ... 16 19 58
June 4, 1846 ...... 4 50 11 ......... 10 0 11
Aug. 20, ,, ... 9 53 45 ......... 16 20 2
Nov. 20, ,, ...... 15 56 28 ......... 22 49 11

To find the meridian zenith distance of a heavenly body, or how far it will
pass north or south of zenith.

1. Take out the declination, and correct it, if necessary, for the Green-
wich date.

2. Under the latitude of the place put the declination, with their proper
names N. or S.

3. If the names are alike (both north or both south), take the difference
and mark it with the common name of the latitude and declination, if the
declination be greater than the latitude, otherwise on the contrary name.

4. If the names are wunlike (one north and one south), take the sum and
mark it with the name of the declination.

5. The result will be the meridian distance of the heavenly body from
the zenith N. or 8., according as the result was marked N. or S.

_ EXAMPLE.
279, In latitude 25° N. find how far north or south of the zenith the
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following heavenly bodies will pass the meridian, their declinations being
10° N., 30° N., 10° 8., and 50° 8. respectively :

h) (2) (3) (+)
LS 3 05 O NS T st 20 MNr Ay Labog oo 205 N iz, Lty 32D 2N
decl. :..10 N. ... decl....30 N, ... decl....10 S. ... decl....50 S.

diffess 158 S! PSS e IN: sum ...35 S. sum ...75 S.

273. At what time will « Columbee pass the meridian of a place in lat.
42° 20’ S. and long. 54° 40’ W. on May 10, 1856, and at what distance N.
or S. of the zenith ? Ans. 2" 19™; 8211’ N, of zenith.

274. At what time will Sirius pass the meridian of a place in latitude
61° N. and long. 10° W. on March 16, 1860, and at what distance N. or .

of the zenith? Ams. T O®; 77° 82’ 8. of zenith.
Elements from Nautical Almanac.
R. A. mean sun. Star’s R. A. Star’s decl.
May 10...... 3" 13" 52" ... bt 34™ 25" ... 34° 9" 12”8.
Mar. 16...... 23 37 10 ...... 6 39 0 ... 16 31 46 S.

We will conclude this chapter by giving brief explanations of some of
the principal corrections required for reducing the observations used for
finding the latitude, longitude, time at the ship, and variation of the com-
pass—the subjects of the next chapter.

CORRECTIONS OF THE OBSERVED ALTITUDE OF A HEAVENLY BODY.

(79.) The altitude observed at sea by means of the sextant is called the
observed or apparent altitude. To obtain the ¢rue altitude, or that defined
in p. 68, we must apply to the observed altitude (in addition to the index
error of the instrument itself) several corrections, the principal of which are
the parallax in altitude, refraction, and dip.

CORRECTION FOR PARALLAX IN ALTITUDE.

(80.) Let o be the place of the
spectator on the surface of the earth,
¢ the center, z the zenith, x a hea-
venly body, and zmr the celestial
concave.

Through x draw the two straight
lines Axm, and cxm to the celestial
concave. Then m, is the observed
or apparent place, and m the true
place of the heavenly body x.

Draw Ar, a tangent to the earth’s
surface, at 4 ; draw also ¢r through
the center parallel to a7 ; then con-

zZ
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sidering the infinite distance of the points 7 and & from the earth, the earth’s
semidiameter Ac will subtend no angle at » or R, and A » may be conceived
to coincide with cRr, and therefore the arc rrR=0. The observed altitude of
x (without reckoning at present refraction) is measured by the arc m, r, and
its true altitude by mmr==mr. The difference mm, between the true and
apparent altitudes, or the angle axc, is called the parallaz in altitude.

It appears from the figure that the effect of parallax is to depress bodies,
so that the true altitude mr is greater on this account-than the apparent
altitude 7, R, and that the true altitude may be obtained by adding the
parallax in altitude to the observed altitude.

If = be the same body when in the horizon, the angle axc is called its
horizontal parallaz.

(81.) It is also evident from the figure that the parallax of a heavenly
body is greatest when in the horizon, and that it diminishes to zero in the
zenith ; that the parallax for different bodies will differ, depending on their
distance from the spectator ; that the nearer the body is to the earth, the
areater will be its parallax : thus the moon’s parallax is the greatest of any
of the heavenly bodies : the fixed stars, with perhaps a few exceptions, are
at such an immense distance, that the earth dwindles to a point so inde-
finitely small that the radius of the earth ac subtends no measurable angle
at a star ; hence the fixed stars are considered to have no parallax.

Since the form of the earth is an oblate spheroid, the equatorial diameter
being about 26 miles longer than the polar diameter or axis, the horizontal
parallax of a heavenly body, as observed from some place on the equator,
will be greater than the horizontal parallax of the same heavenly body if

observed from the poles of the earth.

For let @ be a spectator at the equator,

and u a heavenly body in his horizon,

then the angle u is the equatorial hori-

zontal parallax of the bodyat H. Simi-

larly to a spectator at P, the pole of the
i earth, the horizontal parallax of the
-1’ same body would be ®', which is evi-
dently less than 1, since it is subtended
by a smaller radius of the earth ; thus it appears from the figure that the
horizontal parallax is greatest at the equator, and that it diminishes as the
latitude increases. The moon’s horizontal parallax put down in the Nautical
Almanac is the equatorial horizontal parallax, To find the horizontal
parallax for any other place a correction (see Nav. Part II. p. 125) must be
applied, which is evidently subtractive: this correction is seldom made in
the common problems of Navigation: in finding the longitude by occulta-
tions or solar eclipses, it ought not to be omitted. It is inserted in most
collections of Nautical Tables. N
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sub.), and horizontal parallax 22”: find by table, and also by calculation, the
parallax in altitude, and thence the true altitude.

(1) By Calculation. (2.) By Table (b).
Obs, alt.... 14° 6’ 50” log. cos. alt.... 9-986780 Cor. by table... 21:3”
refoun.... 3 50— ,, 22 ... 1-342423

14 38 O 5 Dpar.inalt. 1-:329203
par. in alt, 21-84  .-.par in alt....21-3"

.. truealt. 14 3 21-3

CORRECTION FOR REFRACTION.

(83.) A ray of light passing obliquely from one medium to another of
greater density, is found to deviate from its rectilineal course, and to bend
towards a perpendicular to the surface of the denser medium. XHence to a
spectator on the earth’s surface, a heavenly body seen through the atmo-
sphere appears to be raised, and its true place, on this account, is below its
apparent place. Observations show that refraction is greatest when the
body is in the horizon (about 34’), and that it diminishes to zero in the
zenith. A table of refractions for every altitude has been computed and
inserted in the Nautical Tables.

The corrections for parallax and refraction are frequently combined, so
that they form one correction, called the correction in altitude. The two
tables of the correction in altitude for the sun and moon may also be found
in most collections of Nautical Tables.

(84.) The investigation of the formula for computing a table of refrac-
tions belongs more directly to a work on Optics. In any elementary book
on that branch of mathematics the student will find this subject more satis-
factorily explained than can be done in the brief space that could be
assigned to it in the present work.

CORRECTION FOR DIP.

(85.) The altitude of a heavenly body, observed from a place above the
surface of the earth, as on the deck of a ship,

A
will evidently be greater than its altitude ob-
\]T ' served from the surface, since the observer
H/ C’/ B brings the image of the body down to his
R

horizon, which is lower than the horizon seen

‘ from the surface of the sea immediately below
him. The difference of altitude from this

A’ cause, expressed in minutes and seconds, is

/ called the dip of the sea horizon. Let a tan-

3 gent at B, the point directly beneath the spec-
tator at T, meet the celestial concave at m; from T draw the tangent T2,
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touching the earth at . Then, if A be the place of a heavenly body, am is
the altitude observed from B, the surface of the earth,and A’ is the altitude
from . The arc m% is the dip (very much exaggerated in the figure) for
the height 1 of the spectator above the surface of the earth, and is evidently
subtractive, to get the true altitude. This correction is found in all eollec-
tions of Nautical Tables.

The table may be constructed from the following formula (Nav. Part II.
p- 132):

dip="984./height of cye.

EXAMPLES.
278. Calculate the dip for the height of the eye above the sea=110 feet.
Ans. Dip=-984./110="984 x 10-488=10" 19-2".
279. Find dip for 20 feet and for 30 feet. Ans. 4" 24" ; 5 234",
(86.) The corrections just described are required in almost every example
in Nautical Astronomy. Besides these, there are others of not so frequent
occurrence, such as the corrections called ¢ The augmentation of the moon's
semidiameter,” * The contraction of the moon's semidiameter,” ¢ The correc-
tion of the moon's meridian passage;” and in rare observations, such as occul-
tations, &c., for determining the longitude, the oblate figure of the earth
must be taken into consideration, and corrections called ¢ Z%e correction of
the moon’s equatorial horizontal parallax,” and * Correction of the latitude for
the spheroidal figure of the earth,” must be applied to’ several of the terms
used in the calculation. These corrections we will now very briefly describe,
referring the student for fuller information to Navigation, Part II., where
these corrcctions are investigated and useful practical formule obtained
adapted to logarithms.

AUGMENTATION OF THE MOON’S HORIZONTAL SEMIDIAMETER.

(87.) When the moon is above the horizon, as at L, its distance o1’ from
a spectator at o is less than its dis-
tance on when in the horizon at n. [
For the distance cL of the earth’s e
center from the moon is about 60 -,
times the earth’s radius, therefore N1
cL=00xc1. But as the horizontal .,
parallax is small, oL is nearly equal
to cr, and therefore L1 is less than Lo
by nearly the earth’s radins. Hence )
if two observers were placed at 0 and Y
1, one would see the moon when at L = i

0 ! !
in his horizon, and the other in his > ‘L
zenith ; but to the spectator at o the | ¢t
moon would be a little more, and to

the spectator at 1 a little less, than 60 times its radius, and the diameter would




106 AUGMENTATION.

appear to the former about 80" less than to the latter. It is evident that
at any intermediate altitude, as at 1, the distance or’ is less than oL, and
therefore the moon’s diameter at L” would appear to be greater than the true
or horizontal diameter at L ; that is, the diameter at L’ would be augmented.
The correction to be made to the moon’s horizontal semidiameter on this
account is called the augmentation. It has been computed for every degree
of altitude, and may be found in the Nautical Tables.

" In Navigation, Part I1. p. 134, is investigated the following formula for
calculating the augmentation of the moon’s semidiameter.
Aug.=2R. cosec. (z'—p) cos. (z'—%p) sin. Lp
where rR=horizontal semidiameter, z'=apparent zenith distance,
and p=parallax in altitude=hor. par. X cos. app. alt. (Navigation,
Part IL p. 125.)

EXAMPLE.,

280. Calculate the augmentation of the moon’s horizontal semidiameter
when the apparent altitude of the center is 32° 42/, the horizontal parallax
being 54’ 42:5”, and horizontal semi. (in Nautical Almanac) 14" 56"

R= 14 56”=896"
Z=57° 18 0
p=par, in alt.
= 0° 46" 3"
#=57 18 0
coZ—p=56 82 0
ip=0 23 0
Z=57 18 O
7 =3p=56 55 0
1. To find par. in alt. 2. To find augmentation.
log. 3282°5......... 3:516205 1883, Booooooaoonddonan 0-301030
, cos. 32°42...9:925069 % Booooaoooono00soa 2:952308
,» par.inalt. ....3-441274 » cosec. (Z—p)..0"081170
.. par, in alt.=2763" » cos. (Z—%p)..9"725219
—46’ 3" s S AP, 7-825451
5 L 00, B0, the 0:885178

.*. augmentation=:7-68"

281. Calculate the augmentation of the moon’s horizontal semidiameter
when the apparent altitude of the center is 72° 0’, the horizontal parallax

58’ 43:4”, and horizontal semi. 16’ 0",
Ans. By formula, 15-86”; by table, 15-8".



M

CONTRACTION. 107

CONTRACTION OF THE MOON'S SEMIDIAMETER ON ACCOUNT OF
REFRACTION,

(88.) When the moon is near the horizon its disc assumes an elliptical
form, as ABB/, in consequence of the unequal effect of
refraction at low altitudes, the lower limb being raised
more than the center, and the center more than the
upper limb. If, therefore, a contact is made between d
a distant object in the direction p and some point P A A
on the moon’s limb, the contracted semidiameter op,
to be added to the distance to obtain the distance of =
the centers, must be less than ca the uncontracted semidiameter. This
correction has been calculated, and may be found in the Nautical Tables.

The formula investigated in Navigation, Part II. p. 135, for computing
the contraction, is the following :

Contraction=c . sin. 24,
where c=difference of refraction for center and vertex,
d=inclination of line joining the centers of the two bodies to the
horizon.

D

EXAMPLE. .

282, Calculate the correction for contraction of the moon’s semidiameter
when the altitude=4° 30’, and the line joining the centers is inclined at an
angle of 40°, the moon’s semidiameter being 15" 30",

Alt. of vertex...4° 45 30”...Refraction 10" 22"  log. C............ 1447158
,, center...4 30 0 5 10 50 ,, sin. 40°...9:808067
Lo= 28 ,, sin, 40°...9-808067

,, contr....... 1:063292
*. contraction=11'57"

283. Calculate the correction for contraction of the moon’s semidiameter-
when the altitude=30° 0’, and the line joining the centers is inclined at an
angle of 36°: the moon’s semi. being 16’ 5”.

Ans. By formula, 0:3459”; by table, 1:0”.

CORRECTION OF MOON'S MERIDIAN PASSAGE.

(89.) The time of the transit of any heavenly body can be found by
means of Rule 22, p. 99; but in the case of the moon, the following
approximate method of finding the time of her passage over a given meridian
may be sometimes used with advantaoe

The mean time of the moon’s transit for every day at Greenwich is put
down in the Nautical Almanac. At any place to the east of Greenwich,
the time of the transit, owing to the moon’s proper motion to the eastward,
must take place sooner (independent of that due to the difference of longi-
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tude), and to a place to the westward of Greenwich, later than the time
recorded in the Nautical Almanac. Thus, if we suppose the moon’s daily
motion to be 60 minutes: to a place 90° to the east of Greenwich the
transit will take place 6 hours earlier than that at Greenwich (on account of
the difference of longitude)+ 2% of 607, or 15 minutes, due to the moon’s
motion, supposed equable, to the eastward in the 6 hours before she reaches
the meridian of Greenwich. To a place west of the first meridian, a retarda-
tion will take place for the same reason.

The moon’s daily motion in RrA varies between 40™ and 60™, so that it
would not be difficult to construct a small table of the correction of the
transits given in the Nautical Almanac for any given longitude: this has
accordingly been done, and may be found in Inman’s Nautical Tables, p. 5.

The moon’s daily motion used should be that found by taking the dif-
ference between the two transits at Greenwich that happen before and after
the one at the place : that is, if the place be in west longitude, the difference
should be taken between the transit on the given day and the one follow-
ing ; if in east longitude, that on the given day and the one preceding. By
observing this rule, the error arising from the unequal motion of the moon
in R4 is diminished.

An example or two of finding the time at Greenwich at the transit of the
moor over a given meridian will show the use of the table.

284. April 27, required Greenwich mean time nearly at the transit of
the moon over the meridian of a place in longitude 50° W.

By Nautical Almanac, mer. pass. on 27th...11" 46-3»
B & on 28th...12 320
moon’s motion in 24 hours... 457

correction from table... 63+
.. time of transit at place L1 526

long. in time... 3 200 W.

.. Greenwich mean time of transit at ship...15 126

285. April 27th, required Greenwich mean time nearly at the transit of
the moon over the meridian of a place in longitude 50° E.

By Nautical Almanac, mer. pass. on 27th...11* 46-3"
on 26th...11 27

2 ”

43-6
Cor.=-32% % 436 correction... 60—
=6-06" transit at place...11  40-3
or by table=60 long. in time... 3 200 E.

.. time at Greenwich... 8 20-3

Required the mean time at the place of the moon’s meridian passage on
July 19 (astronomical day), in longitude 60° W., and on July 27 (astrono-
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mical day), in longitude 175° E., having given the following quantities from
the Nautical Almanac :

Gr. mer. pass. on July 19...... 11* 24-3" July 27...... =5 0:1F

b A IR D T e 930 2O 16 495
Ans. Mer. pass. at place on July 19 at 11* 33-3"
. 5 27 at 17 11-1=July 28 at 5" 11'1™ a.m.

The corrections for moon’s equatorial horizontal parallax and for the
Jfigure of the earth arve fully investigated and explained in Nawigation,
Part II. pp. 129, 123.

THE SEXTANT.

(90.) The student should begin as early as possible to learn to measure
angles and take altitudes with the sextant. Before,; therefore, we proceed
to apply the preceding corrections to the observed altitude of a heavenly
body, we will describe briefly the construction, use, and principal adjustments
of this important instrument.

Construction and use of the Sextant.

(91.) The sextant is adapted for measuring angles in any plane what-
ever ; differing in this respect from the theodolite, which is used for observ-
ing horizontal and vertical angles only.

The construction of the sextant may be explained by means of the
annexed figure.

A small piece of glass, mm/, called the movable veflector, quicksilvered
at the back, is placed at », the center ;™~__
of the arc aB. It is attached to
a movable radius, Mc, by moving
which the plane of its surface pro-
duced (supposed perpendicular to the
plane of AB) can be made to cut the
arc at any required point, c. An-
other piece of glass, ff/, called the
Jized reflector, also perpendicular to
the plane of aB, is placed at F, the
lower half only of which is quick-
silvered. I

Now suppose a ray of light proceed- ®
ing from the object = in the direction
D to impinge on the surface of the movable reflector M at the angle wym ;
then, by a well-known optieal law, the ray will be reflected back in the
direetion M¥, making an angle ¥/, with the movable reflector equal to the
angle @mm. Again, at the fixed reflector ¥, the ray MF will suffer another
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reflection in the direction FD, making, with the reflecting surface 77, the
angle prf'=angle MF/. If we suppose an observer's eye to be placed at ,
and another ray of light to proceed from the object y along the same line
y¥D, the two objects x and y will thus appear to come to the spectator from
the same point y ; the image of the object z having been transmitted to him
from the quicksilvered part of r, and the direct image of y through the
upper part of ¥, which is left transparent for that purpose. The angular
distance between = and 7, which is the object required to be found, is the
angle », and this angle p will be proved (see below) to be double of the
angle aMc, measured by the arc Ac¢; aM being supposed to be drawn parallel
to the surface ff’ of the fixed reflector r. Hence, if the arc aB, which may
be supposed to be the sixth part of a circle, or to contain 60°, be so gra-
duated that it shall contain twice that number, or 120°, then the reading off
on the arc Ac will be the value of the angle at p: and this is the method
adopted in dividing the arc of the sextant.

To observe, therefore, the angle between any two objects, « and v, the
observer at D* looks directly at the left-hand object y through the fixed
reflector ¥: he then moves the radius Mo, attached to the movable reflector
M, in the plane passing through p and the two objects, until he sees the ray
proceeding from z in the same direction as the object 7. Then the reading
off on the arc ac measures the angle at p, the angular distance between the
two objects = and 7; this may be proved as follows :

Proof that the arc Ac measures the angle at D between the two objects
x and .

Produce M F to E and ff’ to cut the line mc in @; then the angles zMmm
and pMG are equal, being vertical angles ; also the angle zMm is equal to
the reflected angle FMG ;+ mark therefore these three angles at m with the
same letter &; in the same manner the three angles, marked «, formed at
F by the reflected ray, may be shown to be equal.

Now in the triangle MDF, the exterior angle EFD=FMD-+D, or 2a= -

2b+D.
coa=b+ip;
also in the triangle FG, the exterior angle a=b+Fau.
.. b+3Dp=b+F6M, or JD=FaM=GMA,
since Fa is parallel to ma.

But the arc ac, which measures the angle ¢4, is divided into double
the number of degrees due to its length, the divisions commencing at the
point A ; therefore the reading off on the arc ac measures the angle b, the
angular distance between the two objects.

* The observer's eye is seldom exactly at the point D, but in some other point in
the line DF ; this, however, will make no appreciable difference when the objects #
and y are at a considerable distance from the spectator, as the sun or moon,

t See any work on Optics for a proof of this property of light.
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The index correction of the Sextant.

(92.) We have supposed above that the graduations of the arc commenced
at A, the point in the arc cut by a line M4, parallel to the fixed reflector F;
but this is seldom the case, the zero point of the arc being often a little to
the right or left of A.

Let us suppose the graduation to commence at o, to the left of a, then
the angle p would be equal to the reading off on 0 c+ the small arc 0a.  The
arc oA is called the index correction, the value of which is usually deter-
mined by measuring a small angle, as the sun’s diameter, off and on the ar,
that is, to the right and left of o; to enable us to do which, the divisions of
the arc are continued a little to the right of the zero point o.

To find the index correction by measuring the sun's diameter.

Let 4 be the point on the are of the sextant through which the movable
radius Mo (fig. p. 109) passes when its re-
flector M is parallel to the fixed reflector F;
then if the graduation of the arc had com-
menced at a, it is evident that the reading
off on any arc ac (p. 109) would have mea-
sured D, the angle between the two objects
z and y. But let us suppose that the com-
mencement of the graduation on the arc,
or the zero point as it is called, to be at o.
Then o4 is the error of the instrument or Q
index correction to be determined. p O

Let P be the point on the arc through 8
which the movable radius Mc passes when there is a contact of the direct

. and reflected limbs of the sun on the arc, and @ the point through which

Mc passes when there is a contact of the two limbs to the right of o, and
therefore called off the arc; then, since the direct and reflected suns must
coincide when the movable radius is at a, the arc AP=arc AQ.

Let a=op, the measure of sun’s diameter on the arc;
b=04q, the measure of sun’s diameter off the arc;
2=04, the index correction required.

Then, since AP=A44q,

r+a=b—ux;
or, 2e=b—a,
z=} (b—a);

or the index correction is equal to half the difference of the méasures of the
sun’s diameter off and on the arc.

In this case, the index correction o4, or #, must be added to the arc oc,
to get the angle between the two bodies « and y ; this is evident from the
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figure : hence the index correction is said to be additive when the reading
on the arc is less than the reading off the arc.

In the same manner it may be shown that if the zero point o is to the
right of 4, the index correction x=% (¢—>), and is subtractive; that is,
when the reading on the arc is greater than the reading off the arc, when
a contact of the true and reflected limbs of the sun is made.

Line of collimation.

(93.) The line of collimation, or optical axis of the telescope of the sex-
tant, is the imaginary line joining the centers of the object and eye glass.
This line should be parallel to the plane of the instrument.

The visual ray coming from any point of an object, viewed through the
telescope of the sextant, passes through the center of the object-glass; and
the instrnment must be held so that it enters the eye through the center of
the eye-glass, or the middle point between the two wires at the eye end of
the tube. If this ray, or line of sight, is not parallel to the plane of the
instrument, the angle read off on the arc will differ from the angle between
the two objects. This will be proved hereafter.

To ascertain whether the line of collimation is parallel to the plane
of the are.

Let A and B be two luminous objects, the latter of which is viewed
P directly through the middle point between the two
wires (supposed to be placed parallel to the plane
of the instrument), and the reflected image of the
former () is brought into contact with B by moving
the index along the arc. Now we may ascertain if
¢ the tube is properly adjusted, by making a contact
at the middle of the upper wire, and then (before
any perceptible change, arising from the motion of
the two bodies, takes place) bringing the same point
€ of contact to the lower wire : if the two bodies still
remain in contact, the instrument may be considered in adjustment; but if
this is not the case, the difference must arise from the want of parallelism of
the line of collimation. For let a contact be made between the two objects 4
and B, by bringing the object A, on the right hand, up to B, on the left. Then,
if the instrument is properly adjusted, the angle AcB is in the plane of the
instrument, and will be measured by its arc. Let now the two objects A and
8 be supposed to move through equal arcs, A4’ and BE, in circles vertical to
the plane of the instrument, and without moving the sextant, let the axis
of the telescope be directed to B in its new position at 8’, and thus inclined
to the plane of the sextant. This being done, the object A will still be seen
to coincide with B, while the angle they subtend at the eye, supposed to be
at ¢, is changed ; this may be shown as follows:
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Let ¢ be the eye, B and a the two objects, as the sun and moon, acB the
angle between them ; the instrument being supposed to be perfectly adjusted,
AcB will be in the plane of the instrument, and therefore will be measured
by the division on the arc to which the index is set. Now the image of A
being supposed in contact with B, let A and B be shifted up ap Bp, through
the equal arcs aa’ BB/, perpendicular to the plane acB. In this position
of the objects the image of A’ will still be seen in contact with 5’. For let
the eye be raised up ¢, perpendicular to acB, to ¢/, so that the plane a’c's’"
is parallel to the plane acB; then the angle A’c’B’ is equal to acB. Conse-
quently, the reflectors remaining as before, and being perpendicular to A’c'B’,
the image of A must be transferred to a’.

But the eye is actually at ¢, and views 4’ and B’ under the angle A’c¥E/,
which evidently differs from acB or a’c’B. It follows, that when the axis
of the telescope or of vision is inclined to the plane of the instrument,
the image of an object as A’ will be seen coincident with another object B’
when the division which the index is set to differs from the angle between
the two objects; and it is manifest that the difference is the same, whether
the axis of vision is inclined to the same degree from or towards the plane
of the sextant.

Hence is deduced the practical rule for determining whether the line of
collimation is parallel to the plane of the instrument, given under the head
of the third adjustment of the sextant.

Investigation of a formula for determining the error in the observed angle
arising from a given error in the line of collimation.

(94.) In fig. p. 112, let a’cn’ be the true angle between the objects a
and B, subtended at the eye of the observer at ¢, and acs the instrumental
angle, or the one read off on the arc, and aa’ or BB’ the measure of the in-
clination of the line of collimation of the telescope to the plane of the instru-
ment,
arc A'p’
arc AB
__chord A'p’
" chord B
_2sin. $4a'cB’
" 2sin. acs

.. sin. 3 A’cB'=sin. 1 AcB. cos. a4’

Then cos. AA'=

(Trig. Part IL art. 69) .

This formula determines the angle a’cs’; the difference between which

and the angle Ac¢B is the exror in the angle observed.
!

EXAMPLES.

Required the error in the observed angles 90° and 150°, when the in-
clination of the line of collimation is 1°,

I
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sin, $A’cB'=sin. $A0B . cos. a4’

4cB=90° Aug=il 2 AcB=150°
(1) (2)

sin. 45°......... 9-849485 sin. 75°......... 9-084944

cos. 1%........ 9:999934 cos. 1°........ 9999934

sin. 34’0’8’ . 9-849419 sin. £a’cB’ . 9984878

.*. 3a’0B'=44° 59" 30" .. 3 AloB'=T4° 58 0"
and $ AcB=45 and } AcB =75

% error=0 0 30 Lerror=0 2 0

.*. The error in one case is 1’ 0”; in the other 4’ 0.

From this it appears that a slight inclination of the line of collimation
to the plane of the instrument produces a considerable error in determining
the true angle between the two objects; that this error increases as the
angle increases; and that the observer should always take care, in nice
observations, to make the contact as near the middle point of the field of
view as possible.

Adjustments of the Sextant.

(95.) The principal adjustments are the following :

1. The movable reflector M (fig. p. 109) should be perpendicular to the
plane of the instrument.

2. The fixed reflector ¥ should be perpendicular to the plane of the in-
strument.

3. The line of collimation should be parallel to the plane of the instru-
ment.

To examine the adjustments.

First adjustment.—To see if the movable refiector is perpendicular to the
plane of the instrument.

Place the movable radius mc near the middle of the arc, as at c
(fig. p- 109); turn the face of the instrument upwards, and look obliquely
into the reflector m. Then the image of the arc Bc will be seen in the re-

“flector m ; and if this image appears in one unbroken line with the arc nc
itself, the reflector u is perpendicular to the plane of the instrument.

If the reflection of the line B¢ appears above or below the line B¢ itself,
then the reflector u is out of adjustment, and must be adjusted by certain
screws or studs at the back of the reflector, This adjustment, in good in-
struments, seldom requires to be made ; and when it does happen, it is best
to send it to the maker to be rectified.

Second adjustment.—To see if the fixed reflector is perpendicular to the
plane of the instrument.

Look through the telescope and the fixed reflector ¥ (fig. p. 109) at the
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sun, or any other well-defined object ; hold the instrument with its face in
a horizontal position; bring the index towards the commencement of the
divisions, move it gently backwards and forwards until the-image of the
object is placed as near as possible upon the object itself ; then, if the image
is found to obliterate or coincide exactly with the object itself, the fixed
reflector ¥ is perpendicular to the plane of the instrument.

If any portion of the direct object is seen not coinciding with the image,
then the fixed reflector F is not perpendicular to the plane of the instrument ;
and the adjustment is made by means of a screw, which in some instruments
is under the glass, in others behind it, and in others at the side. The screw
must be turned gradually till the image is made to coincide with the object.
This adjustment is frequently required to be made.

Third adjustment.—To see if the optical axis of the telescope (called the
line of collimation) is parallel to the plane of the instrument.

(It is usual to examine this adjustment in practice by making a contact
between the sun and moon.)

The telescope being placed in the collar of the sextant, turn the eye-
piece round till the two wires are parallel to the plane of the instrument.
Bring the darkened image of the sun (when at a considerable distance from
the moon, ¢ e. from 90° to 120°) to touch the edge of the moon at the middle
point of the upper wire, and then immediately, before any perceptible
change in the distance of the two bodies can take place from their own
proper motion, bring the point of contact of the two bodies to the lower
wire, at which, if they appear in contact, the axis of the telescope may be
considered to be parallel to the plane of the instrument ; if otherwise, the
adjustment is made by means of two screws in the collar—by slackening
one and tightening the other. In some instruments, however, these screws
are wanting, the adjustment of the parallelism of the tube being supposed to
be carefully made before the instrument leaves the maker’s hands.

Reading off on the Sextant.

(96.) The following brief directions for reading off will be more readily
~ understood by the student if he place a sextant before him for reference and
examination.

It will be seen that the arc is divided into degrees, and (in the best
instruments) into the sixths of degrees, or 10 minutes. We will suppose it
is an instrument of this kind before us. The index lines are cut on the
plate at the end of the movable radius, and therefore called the index plate.
The index itself is the commencement of the reading off on the index plate,
and is generally distinguished from the other lines on the plate by a dia-
mond-shaped mark, resembling a spear-head. First let us suppose this index
line to coincide exactly with some line on the arc; for example, with the
second line to the left of 50°; then the reading off will be 50° 20, since
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cach line on the are represents 10. Next, let us suppose the index line not
to stand exactly at any line on the arc, but somewhere between two, as, in
the above example, between the second and third line from 50°; suppose it
appelmred to be about halfway between the second and third lines (the reader
may place it in that position), then it is evident that the reading off would
be about 50° 25°. But as this is a rough and imperfect way of estimating
the additional minutes and seconds beyond the second division from 50°,
the exact value is found by means of the ingenious arrangement of certain
lines, called the wernier, cut on the index plate to the left of the index
line. It will be seen that the divisions of the vernier are nearer to each
other than the arc divisions; so that the line on the vernier immediately
to the left of the index is semewhat nearer to the corresponding one on the
arc than the small space the value of which is to be determined : and it is
manifest that it must be nearer by the difference between the width of one
division on the arc and one on the index plate. In like manner the second
line on the vernier, reckoning from the index line, must be nearer to the
corresponding line on the arc by two differences, the third by three, and so
on. By carrying the eye along the vernier in this manner, it will be at
length scen, by aid of the small reading-off glass, or microscope, attached
to the movable radius, that a complete coincidence takes place between a
line on the vernier and one on the arc.

Now it is evident, since the lines on the vernier have approached those
on the arc through the small space the index is in advance of 20’, that this
small space must be equal to as many times the difference of two divisions
as there are lines reckoning from the index before the coincidence takes
place. Hence, if we know the value of a difference, we shall know the.
value of the small arc to be measured; and this may be discovered in the
following manmner. It will be seen, by examining the arc of the sextant
before us, that 60 divisions of the vernier just cover or coincide with 59
divisions on the arc ; or the difference between a division on the arc and one
on the vernier is ¢ of a division of the arc: if therefore a division on the
arc is 10, the difference in question will be ¢; of 10/, or 10”. Let us now
suppose the index to stand between the second and third divisions from the
50°, and that, by carrying the eye along the vernier, we at length find the
coincidence of the two lines to take place at the fourth line to the left of the
line on the vernier marked 5 ; then the value of the space to be determined
will be 5" 407, every sixth division on the vernier being distinguished by a
figure indicating minutes. The magnitude of the whole angle is therefore
50°.20"+5" 40", or 50° 25" 40”. The sextant supposed under examination
is marked to read off to the nearest 10" ; some instruments are graduated to
15", or 30", &c. ; but the same method of reading off is to be followed as
pointed out above.

The graduation of the arc of the sextant is usually continued to the right
of 0° or zero: this is done to enable the observer to take a small angle to
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the right as well as to the left of the index line, or zero; as the measure of
the sun’s diameter off and ou the arc to determine the index correction, &c.
In this case we shall have to read off on an arc divided from left to right by
means of an index, which we must suppose divided from right to left : this,
however, is easily done, if we recollect that the line on the index plate
marked 10’ must be considered as the commencement of the divisions; 9’
must be eonsidered as 1'; 8 as 2'; 7’ as §'; &ec.: thus, if the coincidence
of the lines on the arc and index plate is at 6’ 40", we must read this as
3’ 20", and so on. .

These few rules and brief obscrvations on the adjustments and use of the
sextant must be considered as introductory to other works written more ex-
pressly on the use of astronomical instruments.

Rule 23. Given a STAR’S observed altitude : to find its true altitude.

The stars are at such a distance from the spectator, that (excepting pro-
bably a few) the earth’s orbit subtends no angle at the star: hence a star is
considered to have no parallax (p. 101); and the only corrections used for
reducing the observed altitude to the true are the index correction, the dip,
and refraction. Ience this rule.

1. To the observed altitude apply the index correction with its R sign.

2. Subtract the dip (taken from table of dip of horizon).

3. Subtract the refraction (taken from table of refraction).

4. The result is the true altitude of the star.

EXAMPLE.

286. The observed altitude of Areturus (« Bootis) was 36° 10" 207, index
correction 42’ 42”, and height of eye above the sea was 20 feet : required the
true altitude.

Observed altitude............ 36° 10" 20"
index correction ............ 2 424
36 13 2
(hyR) MocanosaBoatestinataeREDEa, 4 24—
star's apparent altitude...... 36 8 38
el ractionity . ove s oty a8 1 20—
star’s true altitude............ 36 7 18

987. The observed altitude of Aldebaran (« Tauri) was 13° 4’ 30", index
correction —10 407, and height of eye above the sea was 16 feet: required
the true altitude. Ans., 12° 45' 43",

288. The observed altitude of » Tauri was 62° 42’ 15", index correction
+0’ 40”, and height of eye above the sea was 20 feet: required the truo
altitude. Ans. 62° 38’ 1.

289. The observed altitude of « Canis Majoris (Sirius) was 32° 42’ 30",
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index correction was —3’ 30", and height of eye above the sea was 12 feet:
required true altitude. Ans. 32° 34" 4.

Rule 24. Given a PLANET'S observed altitude : to find its true altitude.

The effect of parallax on the true altitude of a heavenly body is to dimi-
nish it (p. 101): the correction of parallax in altitude must therefore be
added to the observed, to get the true altitude. Hence this rule.

Correct the observed altitude for index correction, dip, and refraction, as
in 1, 2, 3 (p. 117).

4. To the result add the parallax in altitude (taken out of the table of
parallax in altitude of sun and planets).

5. The result is the true altitude of the planet.

EXAMPLE.

290. January 4, 1348, the observed altitude of Mars was 21° 41’ 10”,

index correction +2' 42", and height of the eye above the sea 24 fect, hori-

zontal parallax (in Nuutical Almanac) being 10-1”: required the true alti-
tude.

Observed altitude............ 21° 41’ 10”
index correction ............ 2 424
21 43 52
AP oo 4 49—
21 39 3
refraction ........covivienenns 2 26—
21 36 37
parallax in altitude ......... 9+
true altitude .............o.... 21 386 46

291. Jan. 24, 1848, the observed altitude of Mars was 9° 8’ 30", index
correction —3’ 45”, and height of eye above the sea 16 feet: required the
true altitude. The horizontal parallax from Nautical dlmanac was 83"

Ans. 8° 55" 3",

292. Feb. 3, 1848, the observed altitude of Venus was 25° 8’ 307, index
correction —10" 50", and height of eye above the sea 12 feet: required the
true altitude. The horizontal parallax from Nautical Almanac was 8-1”.

Ans. 24° 52" 17",

293, Jan, 30, 1848, the observed altitude of Jupiter was 10° 20’ 10",
the index correction was + 0’ 147, and height of eye above the sea 18 feet :
required the true altitude, the horizontal parallax in Nautical Almanac
being 2-0”. Ans. 10° 11’ 3",

Rule 25. Given the suN’s observed altitude : to find the true altitude.
The true altitude of the sun’s center is found by observing the altitude
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of either the upper or lower limb, and then subtracting or adding the semi-
diameter taken from the Nautical Almanac; the other corrections, namely,
for index correction, dip, refraction, and parallax, being made as in the pre-
ceding rules. In some nautical tables, the two corrections for refraction and
parallax of the sun are combined in one table, and called the ‘‘ correction in
altitude of the sun.” Hence this rule.

1. Correct the observed altitude for index correction and dip, as in
articles 1, 2 (p. 101).

2. To this add the sun’s semidiameter, if the altitude of the lower limb
is observed ; but subtract if the upper limb is observed ; the result is the
apparent altitude of the sun’s center.

3. Subtract the refraction and add the parallax taken from the proper
tables ; or rather take out the ¢ correction in altitude of the sun,” and sub-
tract it.

4. The remainder is the sun’s true altitude.

EXAMPLE.

294. The observed altitude of the sun’s lower limb (L. L.) was 47° 32" 15",
the index correction was +2’ 10”, and the height of the eye above the sea
15 feet: required the true altitude of the sun’s center, the semidiameter
in Nautical Almanac being 15 49”.

Observed altitude............ 47° 32" 15"
index correction ............ 2 104
47 34 25
AU P RIS, o Tl el 3 49—
47 30 36
semidiameter.................. 15 494
apparent altitude ............ 47 46 25
correction in altitude ...... 47 —
true altitude .................. 47 45 38

295. The observed altitude of the sun’s L. L. was 48° 30’ 15", index
correction —2' 50", and height of eye above the sea 15 feet: required the
true altitude, the semidiameter being 15" 55”. Ans. 48° 38’ 46"

296. The observed altitude of the sun’s L. L. was 40° 42’ 16", index
correction 45’ 10”, and height of eye above the sea 20 feet: required the
true altitude, the semidiameter being 16’ 4”, Ans, 40° 58' 6.

297. The observed altitude of the sun’s upper limb (U. L.) was 55° 57’ 42,
index correction —3’ 40", height of eye above the sea 19 feet: required the
true altitude, the semidiameter being 16’ 6”. Ans, 55° 33’ 4"
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298. The observed altitude of the sun’s L. L. was 39° 25’ 15”, index
correction — 3’ 15”, height of eye above the sea was 15 feet: required the
true altitude, the semidiameter being 16’ 3”. Ans. 39° 33’ 11",

Rule 26. Given the MoON's observed altitude : to find the true altitude.

The moon’s horizontal parallax and semidiameter change so perceptibly,
that they cannot be considered (as in the corresponding case of the sun) to
be constant for 24 hours. The parallax and semidiameter taken out of the
Nautical Almanac must therefore be corrected for the Greenwich date in
order to find the horizontal parallax and horizontal semidiameter at the time
of the obscrvation. Moreover, since the moon is nearer the earth when
observed than when it was in the horizon, the horizontal semidiameter must
also be corrected for augmentation (p. 106). The correction of the moon’s
apparent altitude for parallax and refraction is found in most of the nautical
tables: it is entered with the corrected horizontal parallax at top, and the
apparent altitude at the side. Hence this rule.

1. Get a Greenwich date.

2. Correct the moon’s semidiameter and horizontal parallax, taken from
the Nautical Almanac, for the Greenwich date (p. 74).

3. Add to the semidiameter the augmentation, taken from the table of
angmentation.

4. Correct the observed altitude for index correction, dip, and semi-
diameter, as in the preceding rules (p. 117, 119).

5. Add the moon’s correction in altitude, taken out of the proper table.

6. The result is the moon's true altitude.

NoTE. The moon’s correction in altitude may be found by calculation by the fol-

lowing formula (Nav. Part IL p. 127):
Parallax in altitude=horizontal parallax X cos. app. alt, (corrected for refraction)..

EXAMPLE.

299. April 7, 1853, at 42 47™ p.a. mean time nearly, in long. 10° W,
the observed altitude of the moon’s L, L. was 72° 15" 0”, the index correc-
tion was —4’ 20", and height of eye above the sea 15 feet : required the true
altitude.

Moon’s semi. Moon’s hor. par.
Ship, April7 . , 4h 47m 7th,atnoon . 15 4077 moon . . . . BT 320"
lorg.intime . , 0 40W. , mid. . 15 458 mid. . . . . 57 508
GENAPIILT g . 5 20 51 18:8

034279 034279

. 332585 275927

3:66864 23 310206

15
aug, . 152
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L%

True alt. By Inman’s table (w). True alt. By Calculation.
Obs, alt. . 72° 15’ 0”  Obs, alf. 125 155A0%
in. cor. 4 20— in. cor.. 4 20—
72 10 40 72 10 40 57’ 40°5”
dip 3 49— dip . 3 49 60
72 6 51 72 6 51 3460°5=hor. par.inseconds.
CImber AN 15 58 gemi. 15 58
72 22 49 72 22 49
cor. for 57’ . 16 57 ref. . 19—
i 407 12 72 22 30 cos. alt. 9-481135
‘. truealt.. 72 39 58 par. in alt. 17 28+ hor. par. . 3:539139
‘. true alt. 72 39 53 3020274
par. in alt. 1048”

or 17’ 28"

300. July 12, 1848, at 9 18™ p.M. mean time nearly,in long. 44° 40’ W.,
the observed altitude of the moon’s L. L. was 27° 56’ 40”, the index cor-
rection + 2’ 20”7, and height of eye above the sea 20 feet: required the true
altitude. Ans. 28° 567 11",

301. May 15, 1848, at 10" 25™ p.ar. mean time nearly, in long. 55° 40° W,
the observed altitude of the moon’s L. L. was 21° 14’ 10", the index cor-
rection 42’ 20", and height of eye above the sea 15 feet :
" altitude.

required the true
Ans. 23° 15" 15",

302. May 15, 1848, at 10" 227 p.3y. mean time nearly, in long. 41° 30" W,
the observed altitude of the moon’s U. L. was 45° 20’ 30", the index cor- -
rection +4’ 10”, and height of eye above the sea 20 feet: required the true

altitude. Ans. 45° 427 32",
Elements from Nautical Almanac.
1Moon’s semidiameter. Moon’s horizontal parallax.
July 12, mid. ...... 14" 559" ... mid. ...... b4 47-8”
5, 13, noon...... 14 593 ............ noom...... . b5 03
May 15, mid. ...... 14 411 ............ mid. ...... 53 570
5, 16, noon...... 14 423 ............ noon...... 53 577

THE ARTIFICIAL HORIZON.

(97.) When the altitude of a heavenly body is observed by means of an
artificial horizon, the reading off on the instrument will be the angular dis-
tance between the heavenly body and its image in
the artificial horizon, and this will be double the , p
altitude as observed from the true horizon. This \g/
will be easily seen by the following figure. Let = :id
84, a ray of light proceeding from the body at
s, be reflected by means of an artificial horizon
placed at a, in the line aAr. Then, if the spec-
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tator’s eye is in the line aAE, as at E, the image of the body will appear
in the direction Ea coming from a point s’ below the horizon o, Now the
observer is supposed to be placed so near A that the distance na is inappre-
ciable when compared with the distance as of the heavenly body, that is,
the angle observed between s and &', namely, sEs’, may be considered to be
=sa¢’, and this angle sa ¢’ is manifestly double san, the altitude above the
horizontal plane Hu’. For by the principles of Opties it is proved that the
angle s AH is equal to Ean’, which is equal to the vertical or opposite angle
s'a H, that is, the horizontal line a H bisects the angle observed. Hence the
following rule for finding the true altitude from an observed altitude in the
artificial horizon.

Rule 27. Given the observed altitude of a heavenly body in an artificial
horizon : to find the true altitude.

1. Correct the observed altitude for index correction.
2. Half of the result will be the apparent altitude of the point observed.
3. Then proceed as in the preceding rules to find the true aititude.

303. The observed altitude of the sun’s lower limb in an artificial horizon
was 98° 14/ 10”, index correction —4’ 10”: required apparent altitude of sun’s
lower limb.

Observed alt. ......... 98° 14" 10"
IN. COT. vvvnnnnvnnnnnnnns 4 10—
2)98 10 0

.app. alt. sun’s I. L, 49 5 0

304. The observed altitude of moon’s L. L. in an artificial horizon was
112° 32’ 15", index correction + 3’ 25" : required apparent altitude of moon’s
lower limb.

*  Observed alt.......... 112° 32’ 15"
in. COT. vvverrvvvnnnnns 3 20+

2)112 35 40
.*. app. alt. moon’s L. L. 56 17 50

The corrections for semidiameter and correction in altitude are then
applied as in the preceding rules to obtain the true altitude.
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Obs. alt. above pole 74° 10" 10”

index Cor............. 2 10— Obs. alt. below pole 32° 42’ 15"
74 8 0 index cor. ......... 2 10—

dip v, 4 24— 32 40 b
74 3 36 (641D seooac000000boea00 4 24—

03 U 17 32 35 41

true alt. above ...... 74 3 19 ref. oo, 1 31

5 5 below ... 32 34 10 ...... true alt. below...... 32 34 10
9)106 37 29
latitude............... 53 18 445 N.

306. The meridian altitudes of & Aurigee (Capella) were observed above
and below the north pole to be 81° 10’ 52" (zenith north of star), and
3° 42' 52" (zenith south), index correction — 3’ 10", and height of eye above
the sea 14 feet : required the latitude.

Obs. .alt. from gorth 30 42 597 Obs. _alt. from s'outh 81° 10' 59~
point of horizon. point of horizou.

HINCTS) U 3 10— In.COTvuvvirvrirrannns 3 10—

3 39 42 81 7 42
@D coaoococacacooons 3 41— dip.cieeiiiiiniiinnn. 3 41—

3 36 1 81 4 1
ref, oo 12 53— ref. ...l 9—
true alt. ............. 3 23 :; true alt. ............ SI 3 52
true alt. ............. 98 56 8 180
2)102 19 16 .*.tr.alt. from north T
T o . point of horizon . R

.*. latitude ......... 51 9 38

307. The meridian altitudes of a star were observed above and below
the north pole to be 69° 20" 45" and 6° 14’ 30" respectively (zenith south
at hoth observations), index correction —1’ 45", and height of eye 16 feet :
required the latitude. Ans. Lat. 37° 37" 35" N.

308. The meridian altitndes of a star were observed above and below
the north pole to be 85° 10" 10” and 10° 10’ 10” respectively (zenith south
at both observations), index correction — 2’ 40”, and height of eye 20 feet:
required the latitude. Ans. Lat. 47° 30" 24" N.

309. The meridian altitudes of a star were observed above and below
the north pole to be 77° 8’ 10” (zenith north of star) and 3° 40" 45” (zenith
south), index correction + 1" 42", and height of eye 12 feet: required the
latitude. Ans. Lat. 53° 10" 3" N.
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310. August 12, 1850, the meridian altitudes of a star were observed
above and below the south pole to be 85° 14’ 15” (zenith south) and
4° 52" 0" (zenith north}, index correction —8’ 14”, and height of eye above
the sea was 30 feet : required the latitude. Ans. Lat. 49° 43’ 39" 8.

Rule 29 (using sea horizon). The LATITUDE Dy the meridian altitude of
the suN, and its declination.

1. Find a Greenwich date in apparent time ; namely, by adding the long.
in time to Ok 0™ when W., and subtracting it from 24" (putting the day one
back) when the long. is L.

2. By means of the Nautical Almanac find the sun’s declination for this
date (p. 77). Take out also the sun’s semidiameter, which is to be added
to the apparent altitude when the lower limb is observed, and subtracted
when the upper limb is observed.

3. Correct the observed altitude for index correction, dip, semidiameter,
and correction in alt. (=refraction—parallax), and thus get the true altitude
(p. 119), subtract the true altitude from 90°; the result will be the true
zenith distance.

4. Mark the zenith distance N. or S. according as the zenith is north or
south of the sun.

5. Add together the declination and zenith distance if they have the
same names ; but take the difference if their names be unlike ; the result in
each case will be the latitude, of the same name as the greater.

EXAMPLE.

311. April 27, 1853, in long. 87° 42' W, the obscrved meridian altitude
of the sun’s lower limb was 48° 42" 30" (zenith north), the index correction
was 41’ 42", and the height of eye above the sea was 18 fect : required the
latitude.

Sun’s decl. (at app. noon).
Ship, Aprit 27 0Oh O™ 97 . . . I3° 43’ 53”N. Obs.alt. . . 48° 42' 30"

long.intime. 5 51W, 28 . . . 14 2 57TN. index cor. . 1 424
Gr. April 27 . 5 51 19 4 48 44 12
dip. . . . 4 11—
0:61306 48 40 1
097500 gemi. . . . 15 54+
1:58806 4 38 app.alt.center 48 55 55
cun’s decl. 13 48 31 N, cor.inalt. 4;?—
s true alt. . . 48 55 10
" 90

true zen. dist. 41 4 50 N.
declination . 13 48 31 N

latitade . . 5% 53 21 N.

3192. January 14, 1853, in long. 72° 42’ W, the observed meridian al-
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titude of the sun’s L. L. was 32° 42’ 10” (Z. N.), the index correction
+2' 10”7, and height of eye above the sea 14 feet: required the latitude.
Ans. Lat. 35° 50’°34” N.

313. March 20, 1853, in long. 72° 42’ E., the observed meridian altitude
of the sun’s L. L. was 45° 4’ 20" (Z. 8.), index eorrection —3’ 4", and height
of eye above the sea 20 feet : required the latitude.

Ans. Lat. 44° 56’ 54” S,

314. July 4, 1853, in long. 100° 0' W, the observed meridian altitude
of the sun’s L. L. was 62° 8 77 (Z. N.), index correction — 3’ 0”, and leight

of eye above the sea 15 feet : required the latitude.
Ans. Lat. 50° 34’ 59" N,

315. March 21, 1853, in long. 62° 0’ W., the observed meridian altitude
of the sun’s U. L. was 50° 10" 5” (Z. N.), index eorrection + 7' 10", and
height of eye 14 feet : required the latitude. Ans. Lat. 40° 26" 47" N.

316. Sept. 24, 1853, in long. 33° 0’ E., the observed meridian altitude
of the sun’s U. L. was 42° 8’ 15" (Z. N.), index correction —1’ 4", and
height of eye above the sea 18 feet : required the latitude.

Ans. Lat. 47° 49' 39” N.

317. June 3, 1853, in long. 178° 30’ W, the observed meridian altitude
of the sun’s U. L. was 16° 20’ 0” (Z. 8.), index correetion + 3" 30”, and
height of eye above the sea 20 feet: required the latitude.

Ans, Tat. 51° 35’ 39" S.

Elements from Nautical Almanac.

Sun’s declination at apparent noon. Sun’s semidiameter.
Jan. 14...21° 16’ 4"S. 15...21° & 7"S. 14...1¢ 18"
March 19... 0 27 54 S. 20... 0 413 8. 1) 050t 5

July 4..22 53 8 N. 5...22 47 39 N. 4...15 46
March 21... 0 19 28 N. 22...0 43 7N. 21.16 5
Sept. 23...0 8 38S. 24..0 31288  23.15 59
June 3...22 20 42 N. 4...22 27 50 N. 3...15 48

Meridian altitude by Artificial Horizon.

‘When the altitude is taken in artifieial horizon, correct the observed alti-
tude for index correction, and divide by 2. Then correct for semi. and cor.
in alt.-as before to get the true alt.

EXAMPLES.

318. Oct. 21, 1853, in long. 1° 6’ W, observed the meridian altitude of
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Rule 30. The nATITUDE by the meridian altitude of the mMooN, and its
declination, §e.

Sinece the moon’s declination, &e., are given in the Nautical Almanac for
Greenwich mean noon, we must get a Greenwich date in mean time.

1. Find a Greenwich date in mean time.*

2. By means of the Nautical Almanac find for thjs date the moon’s de-
clination, moon’s semidiameter, and moon’s horizontal parallax, augmenting
the moon’s semidiameter for altitude (p. 120).

3. Correct the observed altitude for index correction, dip, semidiameter,
and parallax and refraction, and thus get the true altitude ; subtract the true
altitude from 90°, and thus get the true zenith distance.

4. Mark the zenith distance N. or S. according as the zenith is north or
south of the moon.

5. Add together the declination and zenith distance if they have the
same names, but take their difference if their names be unlike; the result
in each case will be the latitude—in the former of the name of either, in the
latter of the name of the greater.

EXAMPLES.

324. November 12, 1853, at 2" 20™ p.3. mean time nearly, in longitude
60° 42" W., observed the meridian altitude of the moon’s lower limb to be
30° 30" 40” (Z. N.), the index correction + 10" 42”, and height of eye above
the sea 16 feet : required the latitude.

Greenwich, Nov. 12...6 23

Moon’s declination. Moon’s semi. Hor. par.
Nov. 12, at 61...2° 44" 20” N. INoon/ il NG L 55’ 19-7"
» at 7 ...2 57 38 N. mid e lS | 525 e 55 64
13 18 37 13-3
0:41642 027413 0:27413
1-13142 3:46522 2-90957
prop. log. 1-54784 D6 373935 2:0 3-18370 71
(11c) AR T 2 49 26 N. 15 44 556 126
EIENERRSSS T4+
15 118

* When the estimated {ime at ship is given, the Greenwich date is found in the
usual way by applying the longitude in time (Rule 5), or the Greenwich date may be
found by correcting the moon’s transit (see p. 108).
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Moon’s alt......... 30° 30" 40” Or thus; true alt. by calculation
o111 S RS 10 42+ (p- 121):
30 41 22 app. alt. coo.oocenee, 30° 52" 38"
DR AZ i s eises s o8 3 56— T b06005850000000005 1 37
30 37 26 30 51 1
seni®.. T 1 0 15 124 log. €os. ....cuunene. 9933747
S TS 5, 831267 ... 3:520169
30 52 38 s o
cor. in alt, ..... { e :1)’? 3453916
.+ par.in alt. ... 28447
true alt. .......... 31 38 25 OF wronunsersansnesss A
zenith dist. ...... 58 21 35 N. Jobrmeplh ... 3185 39
declin. ...... 300000 2 49 26 N.
latitude ........... 61 11 1N.

325. January 10, 1853, at 7" 40™ .M., mean time nearly, in longitude
5° 30" E., the observed meridian altitude of the moon’s lower limb was
10° 20" 30" (Z. N.), the index correction —2’ 20”, and height of eye 14 feet:
required the latitude, Ans. Lat. 56° 87’ 46" N.

326. February 4, 1853, at 5" 40™ a.»., mean time nearly, in longitude
72° 18" W., the observed meridian altitude of the moon’s lower limb was
40° 20’ 15" (Z. N.), index correction + 3’ 40", and height of eye 15 feet:
required the latitude. Ans. Lat. 25° 17" 10" N.

327. March 7, 1853, at 8" 20™ p.M., mean time nearly, in Iong. 19° 20" W.,
the observed meridian altitude of the moon’s lower limb was 19° 17 18"
(Z. 8.), index correction —1’ 15", and height of eye 16 feet: required the
latitude. Ans. Lat. 88° 0’ 44" S.

328. July 5, 1853, at 1* 7™ p.y., mean time nearly, in long. 33° 30" E.,
the observed meridian altitude of the moon’s upper limb was 25° 42’ 30"
(Z. N.), the index correction + 2’ 15", and height of eye 20 feet : required
the latitude. Ans, Lat. 88° 22’ 37" N.

329. August 12, 1853, at 5% 4™ a.m., mean time nearly, in longitude
941° 40’ E., the observed meridian altitude of the moon’s upper limb was
72° 20" 0” (Z. S.), the index correction + 3’ 40", and height of eye 22 feet :
required the latitude. Ans. Lat. 31° 53 3" S.

330. December 27, 1853, at 9* 12™ A.M., mean time nearly, in longitude
15° 20’ W., the observed meridian altitude of the moon’s upper limb was
19° 50’ 4" (Z. 8.), the index correction —0’ 30", and height of eye above the

sea was 24 feet : required the latitude. Ans. Lat. 87° 35’ 20" S.
K
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Elements from Nautical Almanac.

Moon’s declination. Moon’s semi. Hor. par.
Jan, 10, at 7b...... 22° 1" 16"S. ...... noon 16" 0-1”...... 58 364"
- R 21 55 88. ... mid. 15 542 ...... 58 1449
Feb. 3,at 22 ...... 23 200 51S. ...... mid. 16 82 ...... 5977964
» s 23 ... 23 24 438. ... noon 16 66 ...... 59 03
Mar. 7,at 4 ...... 18 25 48 ... noon 15 334 ...... 56 585
B g7 @ oooooo 18 15 51 8. ...... mid. 15 293 ...... 56 437
July 4,at 22 ...... 24 33 11N...... mid. 14 507 ...... 54 22:0
o o 2R oooooc 24 35 27T N....... noon 14 529 ...... 54 301
Aug. 11,at 10 ...... 14 4 138S. ...... noon 16 69 ...... 59 11
] ] 14 16 46 S. ...... mid, 16 92 ...... 5O MERO-7
Dec. 26, at 22 ...... 17 55 16 8. ...... mid. 16 274 ...... 60 167
s s 23 ... 18 7 68 ... noon 16 332 ...... 60- 376

Rule 31. The LATITUDE by the meridian altitude of A FIXED STAR, and its
declination. .

The declination of a fixed star changes so slowly, that we may, without
any practical error, take it out of the Nautical Almanac by inspection ; a
Greenwich date will therefore be unnecessary.

1. Correct the observed altitude for index correction, dip, and refraction,
and thus get the true meridian altitude ; subtract this from 90° to obtain the
true zenith distance. -

2. Mark the same N. or S. according as the zenith is north or south of
the star.

3. Take out the star's declination by inspection from the Nautical Alma-
nac, and apply it to the true zenith distance in the manner pointed out in
Rule 28, and thus get the latitude.

EXAMPLES.

331. Feb. 10, 1853, the observed meridian altitude of « Hydre was
35° 50’ 40” (zenith north of star), the index correction was +2' 10”, and
height of eye 0 feet: required the latitude.

Observed altitude......... 35° 50" 40”
index correction .......... 2 10+
35 52 50
TRIraction .. ...ae.. .. oeslee 1 21—
true altitude ............... 35" 519D
90
true zenith distance...... » 854~ Lge sl N
declination ..........oeevuis 8 1 298. (Naut. Alm.)

Tabit B g bg oo sareriotn i 46 .7/ 2N,
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332. May 21, 1853, the observed meridian altitude of « Bootis was
62° 42 10" (Z. N.), the index correction —4’ 4”, and height of eye 18 feet :
required the latitude. Ans. Lat. 47° 23’ 32" N.

333. June 16, 1853, the observed meridian altitude of o Lyre was
77° 1/ 50" (Z. N.), index correction + 2’ 10”, and height of eye 16 feet : re-
quired the latitude. . Ans. Lat. 51° 39" 4" N.

334. May 6, 1853, the observed meridian altitude of « Virginis was
16° 52' 5” (Z. N.), index correction + 1’ 45”, and height of eye 20 feet : re-
quired the latitude. ' Ans. Lat. 62° 50’ 4” N.

335. Oct. 26, 1853, the observed meridian altitude of « Piscis Australis
was 70° 10’ 0” (Z. S.), the index correction —4’ 5”, and height of eye 10
feet : required the latitude. Ans. Lat. 50° 21’ 26" S.

336. May 10, 1853, the observed meridian altitude of «® Centauri was
10° 4’ 15" (Z. N.), index correction —2" 10", and height of eye 20 feet: re-
quired the latitude. Ans. Lat. 19° 54’ 9” N,

" 887. August 1, 1853, the observed altitude of « Aquilee was 50° 4" 15"
(Z. N.), index correction —4' 10”, and height of eye 14 feet: required the
latitude. Ans. Lat. 48° 33’ 32" N.

Elements from Nautical Almanac.

May 21 ... « Bootis................ ..Decl. 19° 56’ 57"N.
June 16 ... & Lyre......coeninnnnn. , 98 38 55 N.
May 6 ... o Virginis............... , 10 23 40 S
Oct. 26 ... « Piscis Australis...... s 980 23 53 8.
May 10 ... e? Centaurin........ccovie , 00 18 31 8.
Aug. 1.. e Aquile.........oouee s 8 29 7N

Rule 32. The LATITUDE by the meridian altitude of @ PLANET, and its
declination. >

1. Find a Greenwich date in mean time.

2. By means of the Noutical Almanac find the planet’s declination for
this date ; and when great accuracy is required, take out the planet’s semi-
diameter and horizontal parallax. !

3. Correct the observed altitude for index correction, dip, refraction
(and if necessary for semidiameter and parallax in altitude), and thus get
the true altitude. Subtract the true altitude from 90° to get the true zenith
distance.

4. Mark the zenith distance north or south according as the zenith is
north or south of the planet.

5. Proceed then as in Rule 28.
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EXAMPLES,

339. May 4, 1853, at 2" 45™ Ay mean time nearly, in long. 42° 10’ W.,
the observed meridian altitude of Jupiter’s center was 16° 42’ 10” (Z. N.),
index correction + 11’ $2”, and height of eye above the sea 20 feet : required
the latitude. Ans. Lat. 50° 30’ 38” N.

340. July 12, 1853, at 9" 36™ .M. mean time nearly, in long. 30° 30’ E.,
the observed meridian altitude of Jupiter’s center was 10° 10’ 507 (Z. N b
the index correction —4’ 4”, and height of eye above the sea 10 feet : re-
quired the latitude. Ans. Lat. 57° 45" 37" N.

341. November 27, 1853, at 6" 3" 4. mean time nearly, in long.
100° 0" W., the observed meridian altitude of Mars’ center was 32° 40’ 10”
(Z. 8.), index correction —8’ 10”, and height of eye 16 feet: required the
latitude. Ans. Lat, 45° 45’ 0” 8.

342. Sept. 15, 1853, at 4" 20™ 4.3 mean time nearly, in long. 10° 6’ W,
the observed meridian altitude of Saturn’s center was 19° 42’ 10” (Z. N.),
index correction —6’ 45”, and height of eye 12 feet: required the latitude.

Ans. Lat. 88° 55’ 24” N.

343. Jan. 12, 1853, at 7" 9™ r.x. mean time nearly, in long. 32° 0' W,
the observed meridian altitude of Saturn’s center was 62° 42" 10” (Z. S.),
index correction —8 10”, and height of eye 20 feet: required the latitude.

Ans. Lat. 14° 36" 41”7 S.

344, June 7, 1853, at 5" 40™ p.». mean time nearly, in long. 72°30" E,,
the observed meridian altitude of Venus was 30° 40’ 10” (Z. 8.), index cor-

rection +4' 207, and height of eyc 24 feet : required: the latitude.
Ans. Lat. 35° 39" 30" S.

Elements from Nautical Almanac.

Jupiter, decl. May 3... 22° 43 11”S. May 4... 22° 43’ 1”S.
Jupiter, ,, July 12... 22 16 10 S. July 13... 22 15 49 S
Mars, , Nov.27... 11 48 44 N. Nov. 28... 11 40 44 N.
Saturn, ,, Sept.14... 18 24 50 N. Sept. 15... 18 24 38 N.
Saturn, ,, Jan. 12... 12 54 5 N. Jan. 13... 12 54 24 N.
Venus, ,, June 7... 23 42 15 N. June 8... 23 48 1N

Rule 33. The LATITUDE by the meridian altitude of a heavenly body BELOW
the pole, and its declination.

1. Find the declination at the time of observation.

2. From the observed altitude get the true altitude ; then

3. Add 90° to the true altitude, and from the sum subtract the declina-
tion ; the remainder will be the latitude of the same name as the declination.

345. April 27, 1853, the meridian altitude of « Crucis below the south



134 LATITUDE BY ALTITUDE BELOW POLE.

pole was observed to be 14° 10’ 30”, the index correction was + 4’ 4”, and
the height of eye 20 feet: required the latitude.

Obs. alb vevvverennne.. 14° 10’ 30”
110, COT e eieiotors oo iste hom seifass 4 44

14 14 34
6HD corooroadehorpnaosos 4 24—

14 10 10
ref. e 3 47—
true alt. . .....oeeels . 14 6 23

90

104 6 23

star’s deel. ............ 62 17 108S.
colabe e 41 49 138.

346. June 18, 1853, at apparent midnight, in long. 100° W., the observed
meridian altitude of the sun’s lower limb below the north pole was 8° 42’ 10/,
the index correction — 3', and height of eye above the sea 14 feet : required

the latitude.
Sun’s decl. (app. noon).

Ship, June 18 12k Qm 18 . . . 23° 25’ 36”N. Obs.alt, . . 8 42/ 10”
long. in time 6 40W. 19 , . . 23 26 39 N, in.cor.. . . 3 0—

Gr., June 18 18 40 1 3 8 39 10
diph e 3 41~

10915 8 35 29

223408 gemi, , . . 15 464

234323 0 49 8 51 15

decl, . . 23 26 25 N, cor.inalt,, . 5 51—

8 45 24

90

98 45 24
sun’sdecl . . 23 26 25 N,
-, lat. 76 18 59 N.

347. Feb, 10,1853, the meridian altitude of & Arglis below the pole was
observed to be 6° 41’ 15”, index correction —2’ 10”, and height of eye above
the sea 14 feet: required the latitude. Ans. Lat. 43° 50’ 18” 8.

348. January 11, 1853, the observed meridian altitude of @ Ursee Majoris
below the pole was 14° 14’ 30, the index correction —4’ 5”, and height of
eye 20 feet : required the latitude. Ans. Lat. 41° 29" 47" N,

349. April 20, 1853, the observed meridian altitude of 4 Argfis below
the pole was 20° 14’ 15”, the index correction —4’ 5”, and height of eye
10 feet : required the latitude. Ans. Lat. 51° 9" 27" S,

350. June 1, 1853, in long. 30° 52’ W., the observed meridian altitude
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of the sun’s lower limb below the pole was 10° 42’ 07, the index correction
+2/ 10" and height of eye 20 feet : required the latitudo.
p Ans. Lat. 78° 41’ 0” N.
351. June 10, 1853, at 2" 40™ A.x. mean time nearly, in long. 30° W.,
observed the meridian altitude of the moon’s lower limb below the pole to
be 14° 30" 10”, index correction + 2’ 45”, and height of eye 14 feet : required
the latitude. Ans. Lat. 81° 32’ 317 N.
3562. July 1, 1853, at 9" 30" p.x. mean time mnearly, in long. 62° W., the
observed meridian altitude of Mars below the pole was 10° 32’ 30”, index
correction —3’ 0, and height of eye 18 feet : required the latitude.
Ans. Lat. 79° 8 32” N.

Elements from Nautical Almanae.

a ArgQls . ., Feb.10,decl.. . 52° 87’ 14”8S. Sun’sdecl,Junel. 22° 5 15”N.
o Urse Majoris, Jan.11, ,, . .62 32 26 N. w g June2. 22 13 10 N.
nArgls ., . Apr.20, ,, . .58 0564 39 8. » Semi. . ., 15 48
Moon’s decl. Moon’s semi. Mooun’s h. par, Planet’s decl.
June 9 at 16» 24° 3’ 51”N. mid. 15 04 &4 576" Julyl. 21° 77 5”N.

s 17 24 0 11 N. noon 15 40 55 110 s 2. 2015 9 N,

LATITUDE BY OBSERVATIONS OFF THE MERIDIAN.

In the velume of astronomical problems* by the author will be found
soveral methods for finding the latitude depending on some particular
bearing or hour-angle of the heavenly body: as when it bears due east, or
when it is in the horizon, or when the hour-angle is 6 hours, &e. ; but since
it is difficult to determine the precise moment when the heavenly body is in
any of these positions, the methods referred to are of little use in practice.
Problem 131 in that volume, however, is one from which a useful rule may
be derived (Vaw. Part IL p. 54), as it depends on the declination, altitude,
and hour-angle of the heavenly body ; and as it requires only the common
table of sines, &c., we shall select it as the second method about to be given
for finding the latitude from an altitude near the meridian. The first method
is deserving attention, being free from any distinction of cases; it requires,
however, the tables of haversines and versines, and that the latitude should
be known within a quarter of a degree of the truth, otherwise it may be
necessary to repeat a part of the work perhaps more than once; but it
is a useful method, and gives very accurate results. The altitude and decl.
are easily obtained at sea; the hour-angle is only known accurately when
the ship time is given, and this is a quantity difficult to discover inde-
pendently of an observation : the ship time, however, may always be consi-

* Problems in Astronomy, §o., and Solutions, pp. 33, 34, &c. These Solutions of
nearly 200 astronomical and nautical problems form a useful and interesting introduc-
tion to the theory of nautical astronomy.
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dered to be known nearly. To render, therefore, a rule for finding the
latitude, depending on the declination, altitude, and ship time, of practical
value, we must ascertain in what position of a heavenly body an error of a
few minutes in the ship time will produce the smallest error in the latitude
deduced from ibt; and this we find will be the case if the observed altitude
is taken when the body is near the meridian (see Nav. Part II. p. 57). It
is for this reason that single altitude observations taken off the meridian for
finding the latitude are confined to bodies within half an hour of the meri-
dian, when the time at the ship is uncertain to 3 or 4 minutes.

Another practical rule of more general application is deduced from pro-
blems 143 and 144. Two altitudes are taken of the same or different hea-
venly bodies at the same or at different times, from whence the latitude may
be found. This is called the rule by poUBLE ALTITUDE. In this method of
finding the latitude the heavenly bodies need not be close to the meridian,
but the effect of any error in the observations will be diminished if, in
selecting the bodies to be observed, the difference of their bearings be always
greater than the less bearing.

Rule 34. First method (using haversines). LATITUDE from an altitude
of the sun NEAR THE MERIDIAN.

1. ¥ind the Greenwich date in mean time.

2. Take out the declination and equation of time for this date, and sun’s
semidiameter.

3. 1o find the sun’s hour-angle. 'To the Greenwich mean time found as
accurately as possible apply the longitude in time, subtracting if west, and
adding if east ; the result will be ship mean time : to this apply the equation
of time with its proper sign to reduce mean time into apparent time ; the
result will be the sun’s hour-angle.

4. Add together the following logarithms :

Constant log. 6-:301030.

Log. cosine declination.

Log. cosine estimated latitude.
Log. haversine hour-angle.*

reject 30 in the index, and look for the result as a logarithm, and take out
its natural number.

5. Correct the observed altitude for index correction, dip, semidiameter,
correction in altitude, and thus get a zenith distance.

6. From the versine of zenith distance subtract the natural number
found as above. The remainder will be the versine of a meridian zenith
distance, which find from the tables.

* Or, instead of log. haversine, take out twice the log. sine of half the hour-angle
(rejecting in this case 40 from the index).
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Rule 35. Second method (using sines, &c.). LaTITUDE by altitude of sun
NEAR THE MERIDIAN.

In Navigation, Part II. p. 54,it is shown that if ~=hour-angle, p=polar
distance, and ag=altitude of a heavenly body, then the colatitude=y=+x,
where tan, z=cos. k. tan. p and cos. y=sec. p. cos. #, sin. a. From which
formulw the colatitude, and thence the latitude, is easily found, if we attend
to the proper algebraic sign of each quantity, as pointed out in Zrigonometry,
Part I art. 31. We may, however, deduce from these trigonometrical ex-
pressions a direct rule, and free from the distinction of cases arising from the
use of signs, by modifying the above formule as follows :

Let 2=90—=, and the decl.=90~p=d,

Then the above formule become

cot. z=cot. d. cos. %,
cos. y=cosec. d. sin. 2z . sin. «,

where the arcs z and y may be looked upon as the approximate declination,
and mer. zen. distance respectively, and marked N. or S., as in the Rule 29
for latitude by meridian altitude. Hence this direct Rule.

1. Find Greenwich date, declination, equation of time, hour-angle, and
true altitude, as in last Rule.

2. Add together log. cos. hour-angle, and log. cotangent of declination
(taking out at the same opening of the tables, and putting a little to the
right, the log. cosecant of declination). )

3. The sum (rejecting 10 in index) of the two logarithms just added
together will be log. cotangent of arc z, which find from the tables, and
mark it N. or S., according as the declination is north or south.

4. Under log. cosecant of declination (already taken out) put log. sine of
arc z, and log. sine of altitude : the sum of these three logarithms (rejecting
20 in index) will be the log. cosine of arc y, which take out, and mark N. or
S., according as the zenith is north or south of the heavenly body.

5. Under arc z put arc 7, and take their sum or difference, according as
they have the same or different names; the result will be the latitude re-
quired, to be marked north or south, as in the rule for latitude by meridian
altitude.

854. May 10, 1853, a.m., in latitude by account 50° 50’ N., and long,
2° 10’ W., a chronometer showed 11* 51" 58, error on Greenwich mean
time being 11™ 31" fast, when the observed altitude of the sun’s lower limb
was 56° 19’ 30" (Z. N.), index correction —3' 20”, and height of eye 18
feet : required the latitude. . .
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857. July 10, 1853, A.M., in lat. by account 57° 24’ N., and longitude
3° 40’ W., a chronometer showed 11" 20™ 15°, error on Greenwich mean
time being 30" 30" slow, when the observed altitude of the sun’s lower liml
was 54° 17" 19” (Z. N.), index correction —2’40”, and height of eye 20 feet :
required the latitude. Ans. Lat. 57° 25’ 25” N.

358. May 20, 1853, A.M., in lat. by account 79° 48’ N., and longitude
44° 30" E., a chronometer showed 11" 80 0°, error on Greenwich mean time
being 15™ 20" slow, when the observed altitude of the sun’s lower limb (in
artificial horizon) was 54° 30" 20” (Z. N.), index correction — 4’ 30”: required
the latitude. Ans. Lat. 79° 48’ 30" N.

359. June 16, 1853, p.x., in lat. by account 52° 25" N., and longitude
1° ¢’ W., a chronometer showed 1* 2™ 9* error on Greenwich mean time
being 40™ 30° fast, when the observed altitude of the sun’s lower limb was
60° 37/ 50” (Z. N.), index correction —2’ 10", and height of eye 17 feet :
required the latitude. Ans. Lat. 52° 24’ 15” N.

Elements from Nautical Almanac.

N Sun’s deeligutionl. , Equation of time. Sun’s semi.
or ;g, 15 18 33 S ------------ fom 2 }tobeadded ...... 16' 13"
T 25 11 3N b 15g | » whmeel 15 4
T 3 4 BNl 4 sop | v Sbimeied 15 40
ij ;g Lo 48 45 N BT } , added...... 15 50
Jl,l’ne 11(;,’ ‘222 Zii 12 Ili g ;?g } » Subtracted 15 46

LATITUDE by POLE-STAR (using Inman’s Table).

The table for correcting the altitude of the pole-star, contained in Inman’s
Nautical Tables, has recently been recalculated, and adapted to the present
and several subsequent years. As this table enables us to find the latitude
sufficiently near for all ordinary purposes, the practical rule (a proof of which
is given in Part IL) is now inserted.

Rule 36. 1. Get a Greenwich date.

9. Take out from the Nautical Almanac the right ascension of the mean
sun (called there sidereal time), and correct it for the Greenwich date (p. 86).
3. Add together the right ascension of mean sun so corrected to the
nearest minute and ship mean time (expressed astronomically).

The result, rejecting 24" if greater than 24, is the meridian right ascen-
sion, the argument of the table.
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LATITUDE BY DOUBLE ALTITUDE.

The most general rule for finding the latitude by a double altitude of a
heavenly body is the one selected as the first method; but the labour of
reducing the observations is somewhat greater than in the second method,
known as Ivory’s Rule. The great
advantage of the first method is
that it may be applied to the same
or different heavenly bodies, ob-
served at the same instant or at
different times, and that it is the
simple application of two rules in
Spherical Trigonometry.

Let » be the pole, z the zen-
ith, x and y the same heavenly
7 body observed at different times ;
or different heavenly bodies ob-
served at the same instant, or dif-
ferent heavenly bodies observed at
different times. Let zx zy be their zenith distances. Then in the figure
we know by observation zx and zy, and from the Nautical Almanac we
can find the polar distances Px and Py ; also by means of the elapsed time
as measured by a watch, or from the right ascension of the bodies, or from
both, we can compute the polar angle xpy; the colatitude rz may then be
computed in the following manner by the application of the common rules
of Spherical Trigonometry.
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1. In triangle pyx are given two sides Px, Py and the included angle
xPy, to find xy, which call arc 1.
2. In triangle Pxy are given three sides px, Py and arc 1, to find angle
pxy, which call arc 2.
N 3. In triangle zxy are given
three sides zx, zy and arc 1, to

o find angle zxy, which call arc 3.
4. Arc 2—arc 3=angle Pxz=
P arc 4. But if the arc xy drawn
y through x and y pass when pro-
z g duced between pand z the pole and

the ‘zenith, then it is evident by
the annexed figure that th