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PREFACE TO THE FIRST EDITION.

TT is not without apprehension that I give to the public my
elementary treatise upon the Mechanics of Engineering and

of the Construction of Machines. Although I can say to myself

that, in preparing this manual, I have gone to work with all pos-

sible care and attention, yet I fear that I have not been able to

satisfy the wishes of every one. The ideas, wishes and require-

ments of the public are so various, that it is not possible to do

so. Some may find the treatment of a particular subject too

detailed, others perhaps too short ; some will desire a more
scientific discussion of certain subjects, while others would prefer

one more popular. Many years of study, much experience in

teaching and very varied observations and experiments have led

me to adopt, as most suitable to the object in view, the method,

according to which this work has been arranged. My principal

effort has been to obtain the greatest simplicity in enunciation

and demonstration, and to treat all the important laws, in their

practical applications, without the aid of the higher mathematics.

If we consider how many subjects a technical man must master in

order to accomplish any thing very important in his profession,

we must make it our business as teachers and authors for techni-

cal men to facilitate the thorough study of science by simplicity

of diction, by removing whatever may be unnecessary, and by em-
ploying the best known and most practicable methods. For this

reason I have entirely avoided the use of the .Calculus in this

work. Although at the present time the opportunities for ac-

quiring a knowledge of it are no longer rare, yet it is an unde-

niable fact that, unless we are constantly making use of it, we
soon lose that facility of calculation, which is indispensable ; for

this reason so many able engineers can no longer employ the Cal-
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cuius which they learned in their youth. As I do not agree with

those authors, who in popular treatises enunciate without proof

the more difficult laws, I have preferred to deduce or demon-
strate them in an elementary, although sometimes in a somewhat
roundabout, manner.

Formulas without proof will therefore seldom be found in this

work. We will assume that the reader has a general knowledge

of certain principles of natural philosophy and a thorough knowl-

edge of the elements of pure mathematics. My attention has

been especially directed to preserving the proper mean between

generalization and specialization. Although I appreciate the ad-

vantages of generalization, yet it is my opinion that in this work,

as in all elementary treatises, too much generalization is to be

avoided. The simple is oftener met with in practice than the

complex. It is also undeniable that in considering the general

case we often fail to attain a more profound knowledge of the

special one, and that it is often easier to deduce the complex from

the simple than the simple from the complex. The reader must
not expect to find in this work a treatise upon the construction

of machines, but only an introduction to or preparation for it.

Mechanics should bear the same relation to the construction of

machines that Descriptive Geometry does to Mechanical Drawing.

When the pupil has acquired sufficient knowledge of Mechanics

and of Descriptive Geometry, it appears better to combine the

course of Construction of Machines with that of Mechanical

Drawing.

It may be doubted whether it was advisable to divide my sub-

ject into two parts, theoretical and applied. If we remember that

this work is intended to give instruction upon all the mechanical

relations of the construction and of the theory of machines, the

advantage, or rather, the necessity, of such a division becomes

evident. In order to judge of a structure or of a machine, we
must have a knowledge of mechanical principles of a very varied

character, e.g., those of friction, strength, inertia, impact, efflux,

&c. ; the material for the mechanical study of a structure or of a

machine must, therefore, be gathered from almost all the divis-

ions of mechanics. Nov/, since it is better to study all the me-

chanical principles of a machine at once than to collect them from

all the different parts of mechanics, the advantage of such a di-

vision is apparent.

Having practical application always in view, I have endeav-

ored, in preparing my work, to illustrate the principles laid down
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in it by examples taken from every-day life. I am justified in

asserting that this work contrasts favorably with any other of the

same character in the number of appropriate examples, which are

solved in it. I also hope that the great number of carefully-pre-

pared figures will contribute to the object in view. My thanks

are due to the publishers for having given the book in all respects

the best appearance. Particular care has been taken to have the

calculations correct ; generally every example has been calculated

three times, and not bv the same person. It is, therefore, im-

probable that any gross errors will be found in them. In the ex-

amples, as in the formulas, I have employed the Prussian weights

and measures, as they are probably familiar to the majority of my
readers. The printing (in this case so difficult) is open to little

complaint. The mistakes in copying, or of impression, which

have been observed, are noted at the end of the book,

I do not think that many additions to this list need be made.

An attentive examination of the illustrations will show that they

have been prepared with care. The larger illustrations, particu-

larly those representing bodies in three dimensions, are drawn
according to the method of Axonometric Projection, first treated by
me (see Polytechn. Mittheilungen Band I. Tubingen, 1845).

This method of drawing possesses all the advantages of Isometric

Projection, while in addition the pictures, which it furnishes, are

not only more beautiful in themselves, but more easily awaken in

us distinct conceptions of the objects represented. The drawings

in this work are made in such a way that the dimensions of the

width or depth appear but one-half as large as those of the height

and length of the same size. I cannot omit thanking Mr. Ernest

Eoting, student at the academy in Freiberg, whose revision has

essentially contributed to the accuracy of the work

It is necessary to inform the reader that he will find much
new matter, which is peculiar to the author. "Without stopping to

mention many small articles, which occur in almost every chapter,

I would call attention to the following comprehensive discussions :

A general and easy determination of the centre of gravity of plane

surfaces and of polyhedra, limited by plane surfaces, will be found

in paragraphs 107, 112, and 113 ; an approximate formula for the

catenary in paragraph 148 ; additional remarks upon the friction

of axles in paragraphs 167, 168, 169, 172, and 173. Important

additions to the theory of impact have been made, particularly

in paragraphs 277 and 278 ; for heretofore the impact of imper-

fectly elastic bodies has been too little considered, and that cf a,
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perfectly elastic with an imperfectly elastic body lias not been

treated at all. Very important additions, and in some cases en-

tirely new laws, will be found in the chapter upon hydraulics, a

subject to which I have for a number of years devoted special

study. The laws of incomplete contraction, first observed by the

author, will be found for the first time in a manual of mechanics.

The author has also incorporated in it the principal results, so

important in practice, of his experiments upon the efflux of water

through oblique short pipes, elbows, curved and long pipes, etc.,

although the third number of his " Untersuchungen im Gebiete

der Mechanik und Iiydraulik " has not yet appeared. The chap-

ter upon running water, upon hydrometry and upon the impact

of water contains some original matter. The theories of the re-

action of water discharging from a vessel and of the impact of

water, which are treated according to the principle of mechanical

effect, are original.

I cannot, however, conceal from the reader that, since the vol-

ume has been finished, I have wished that some few subjects had
been treated differently ; but I must add that as yet I have ob-

served no great imperfections. If at times the reader should

miss something, he is referred to the second volume, which will

supply both the accidental and the intentional omissions, as has

been noted in many places in the first volume.

The printing of the second volume will now go on without in-

terruption, so that we may expect the complete work to be in the

hands of the reader before the end of the year. The pocket-book,

the " Xngenieur," cited in the Mechanics, which contains a collec-

tion of formulas, rules and tables of arithmetic, geometry and
mechanics, will soon appear.

It will be a source of great pleasure and satisfaction to me, if

I have accomplished the purposes for which this work has been

undertaken, namely, to give to the practical man a useful coun-

sellor in questions of application, to the teacher of practical

mechanics a serviceable text-book for instruction, and to the stu-

dent of engineering a welcome aid in the study of mechanics.

JULIUS WEISBACH.
Freiberg, March IWi, 1346.
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rpHE present (second) edition of the Mechanics of Engineering

and of the Construction of Machines has undergone no es-

sential alterations either in method or arrangement. The inter-

nal construction of the work has been changed in many places,

and its size has been considerably increased. The author has

also endeavored, as much as possible, to correct the errors and
omissions of the first edition. The great increase in size is

mainly due to three additions. The first consists of a condensed

Introduction to the Calculus, which has been made as popular as

possible, and has been prefixed to the main work. The object of

introducing it was to avoid too complicated and too artificial de-

monstrations by means of the lower mathematics, and also to

render the reader more independent in his study of mechanics,

and to place him upon a higher stand-point in this important

branch of science. By making use of the principles explained in

the Introduction, it was possible to discuss many subjects of great

practical importance, which previously we could not treat at all,

or, at least, only imperfectly with the aid of elementary algebra

and geometry. In * order to avoid interruptions to those who
have not made themselves familiar with the Elements of the Cal-

culus, prefixed to the work, all the paragraphs, in which it is ap-

plied, are designated by a parenthesis
( ).

The second addition consists of a new chapter on Hydrostatics,

in which the molecular action of water is treated. Since a knowl-

edge of the molecular forces (capillarity) is of importance in ex-

periments and observations in hydraulics and pneumatics, the

author has thought it advisable to treat the fundamental princi-

ples of these forces in a separate chapter. Finally, a chapter has

been added to the work in the form of an appendix, which treats
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of oscillation and wave motion. The author found himself com-
pelled to do this in consequence of the importance to the engineer

of a more accurate knowledge of the theory of oscillation. The
great influence of vibration upon the working and durability of

machines is a subject to which too much attention cannot be

given. It is also to observations of oscillations that we owe the

latest determination of the modulus of elasticity, which is of such

importance in practice, I have mentioned in the Appendix the

magnetic force, principally because it is of great use to the engi-

neer in determining directions in mines, where the access to day-

light is "not easy. The theory of water-waves, which closes the

volume, is a part of hydraulics ; its presence in this work requires,

therefore, no explanation. Unfortunately, it is far from complete.

The changes in the other parts of the work are the following :

the chapter upon elasticity and strength has been much extended

and altered, the subject of hydraulics has been treated more at

length, and some modifications in it have been made, in conse-

quence of the continued experiments of the author.

I trust that the present edition will be received with the same

favor as the last, by which the author was encouraged to continue

his preparation of the work.

JULIUS WEISBACH.
Freiberg, May loth, 1850.



PREFACE TO THE THIRD EDITION.

rpHE tliird edition of the first volume of my Mechanics of En-

gineering and of the Construction of Machines, which I now
give to the public, has, compared with its predecessors, not only

been improved, but also augmented and completed. The changes

are due principally to the advance of science, and in some cases

to the results of more recent investigations. When not withheld

by some good reason, I have endeavored, so far as possible, .to

satisfy the wishes which have been communicated to me from

different quarters in regard to the work. From the extraordi-

nary favor, with which it has been received both in and out of

Germany, on this as well as on the other side of the Atlantic, I

natter myself that it has suited both in method and size the

greater portion of the public for whom it was intended, and my
efforts in preparing the new edition have been naturally directed to

removing any errors or omissions, that have been observed, and

to incorporating in it the latest experiments, treated in the same

manner and as concisely as possible. I am sorry to be obliged to

remark that the work has been subjected to unjust criticism.

Thus, e.g., Professor Wiebe, of Berlin, in a remark upon pages

245 and 246 of his work upon " die Lehre von der Befestigimg

der Machinentheile," (Berlin, 1854), states that I have given

coefficients of torsion for square shafts in my Mechanics (first

edition), as well as in the "Ingenieur," 16 times greater than

those given by Morin. The Professor has here committed an

oversight ; for in my formulas, as is expressly stated in both

works, the fourth power of the half length of the side occurs,

while the formulas of Morin and Wiebe, as well as those of my
second edition, contain the fourth power of the whole length of

the side of the cross-section. Now since 2
4

is equal to 16, the
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error observed by Professor Wiebe proceeds from a mistake on
bis part.

I shall make no reply to the partial criticism contained in

Gruneri's Archiv der Mathematik, as I do not wish to enter upon
a useless controversy here. Besides, Professor Grunert has

already printed in his Archiv enough nonsense about Physics

and Practical Mechanics (as I can easily prove) to demonstrate

his unfitness for criticising works on those subjects.

It would have been easier for me to have given my book a

more scientific form ; but it would then have met with less favor,

as it is intended for practical men.

From another stand-point also the book can easily and with

equal injustice be found fault with. Any one, who has had some
practical experience, will have observed how little theory is made
use of, and how often it is put in the back-ground and looked

upon with disfavor by practical men. The fault of this is no

doubt due in great measure to that method of instruction, which

condemns the study of science for the sake of its applications.

This edition, which has been augmented principally by the

revision of the theory of elasticity and strength, and by the in-

troduction of the latest hydraulic experiments, excels its prede-

cessors not only in substance, but also in appearance, all the

illustrations being new. The printing of the second volume will

continue uninterruptedly.

JULIUS WEISBACH.
Freiberg, July, 1856.



PREFACE TO THE FOURTH EDITION.

r"PHE fourth edition of my Mechanics of Engineering and of

the Construction of Machines has undergone no change either

in method or arrangement. As three large editions have been ex-

hausted in a comparatively short time, as two have been published

in the English language, one in England and one in North Amer-

ica, and as the work has been translated into Swedish, Polish, and
Eussian, I may well hope that this manual has met the wishes and

needs of that great practical public for whom it is intended. I

have, therefore, in preparing this edition, endeavored simply to

remove any errors or omissions, which may have been observed,

and to introduce the results of the latest practically important

experiments, together with the newest developments of theory.

Thus, e.g., in the chapter upon friction I have included the results

of the latest experiments by Bochet, aud the section upon elasti-

city and strength has been rewritten in accordance with the

present stand-point of science, in doing which I have made use of

the recent works of Lame, Rankin e, Bresse, etc. The section

upon hydraulics has been augmented, improved and completed.

The later researches of the author are here discussed. I will men-
tion more particularly the experiments upon the efflux of water
under great and very great pressures, as well as upon the heights

of jets, those upon the efflux of ah', and the comparative experi-

ments upon the impact of streams of air and water. The chapter

upon the efflux of air has been entirely rewritten, as the author is

of the opinion that the ordinary formulas for the efflux of air

under high pressures do not represent the law of efflux. The
formulas obtained are very simple, since, without materially affect-

ing its accuracy, I have substituted in the well-known formula
for heat
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1 + <Jt,

(?)1 + dr
0,50 instead of the exponent 0,42, by which I obtain

\Ht = ^| to §

*

61 )-

The practical value of a formula does not depend upon its cor-

rectness even at extreme limits, but rather upon the fact that,

within given limits, it furnishes values which agree sufficiently

well with the results of experiment.

Several new paragraphs, in which Phoronomics and Aerosta-

tics are treated with the aid of the Calculus, have been added. In
hydraulics the pressure of water flowing through pipes, on account

of its practical importance, has been treated separately in two new
paragraphs (§ 439 and § 440). In the chapter upon the force and
resistance of water I have treated the theory of the simple reaction

wheel, as well as its application as an instrument for proving the

theory of the impact and resistance of water. The more recent

gas and water meters are also discussed, since these instruments

are set in motion by the reaction of the issuing fluid, the intensity

of which can easily be determined by the foregoing theory.

Finally, the Appendix has been slightly augmented by the in-

troduction of the report of the recent experiments of Geh. Ober-

baurath Hagen upon waves of water.

* * * * ********
In answer to the criticism, which has been made in some

quarters, that a more scientific treatment of the subject, based

upon the Calculus, would have been more in accordance with the

object of the book, I would state that my book is intended for

the use of practical men, who often do not possess either the

requisite knowledge of the Calculus or sufficient facility in the use

of it. Having labored during upwards of thirty years as instructor

in a technical institution, during which time I have been engaged

in practical works of various kinds and have made many journeys

for the purpose of technical studies, I can confidently give an

opinion upon this subject.

As I consider my reputation as an author of much more

importance than any mere pecuniary advantage, it is always a

pleasure to me to find my " Mechanics " made use of in works of

a similar character ; but when writers avail themselves of it with-

out the slightest acknowledgment, I can only appeal to the judg-

ment of the public.

JULIUS WEISBACH.
Fkeibeeg, May, 1863.
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HPHE favor, with which both the English and American editions

of the Mechanics of Engineering and of the Construction of Ma-

chines were received, would sufficiently justify the appearance of a

new one, even if the original work had undergone no change. But

as the first two volumes of the last (fourth) German edition contain

more than twice as much matter as those of the first, and since a

third volume of about fifteen hundred pages has been added, the

translator feels not only that the work may be considered a new

one, but also that, in offering it to the public, he is supplying a

real want. The text of this edition has been, to a great extent,

rewritten and rearranged, and the translation is entirely original.

Weisbach's Mechanics is now so well known, wherever that sci-

ence is taught, that any eulogy on our part would be superfluous.

A large number of typographical errors, observed in the German

edition, have been corrected with the approbation of the author,

who has also communicated to the translator some slight modifica-

tions in the text. The work of translation was begun with the

author's approval, while the translator was a student of the Mining

Academy at Freiberg, but the work was delayed by his professional

engagements. He hopes that it will now appear without interrup-

tion.

At the suggestion of the author, an Appendix has been added

containing an account of the articles upon the subjects treated in

this volume, which have been published by him since the appear-

ance of the last German edition.
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All the tables, formulas, examples, etc., in which the Prussian

weights and measures occur, have been transformed so as to be ap-

plicable to the English system. Where the metrical system was

employed in the original work, it has been retained in the transla-

tion, as the meter is now much used both in England and America.

The " Ingenieur," which is so often quoted in this work, has,

unfortunately, not been translated into English, but all the refer-

ences to it have been preserved, as the work is a valuable one, even

to those who have little or no knowledge of German, and perhaps

an English edition of it may be published.

A list of errors and omissions observed in this volume will be

given in the succeeding one, and the translator will be glad to be

informed of any typographical errors.

He would call attention to the illustrations, which are printed

from electrotype copies of the wood-cuts prepared for the German

edition, and his thanks are due to the publisher and stereotypers

for the excellent appearance of the work.

ECKLEY B. COXE.
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THEORETICAL MECHANICS.





INTRODUCTION"
TO

THE CALCULUS

Art. 1 . The dependence of a quantity y upon another quan-

tity x is expressed by a mathematical formula : e.g., y = 3ic', or

y — a xn
\ etc. We write y=f(x)ovz = (p (y) etc., and we call y a

function of x, and z a function of y. The symbols/ and 0, etc., in-

dicate in general that y is dependent upon x, or z upon y, but leave

the dependence of these quantities upon one another entirely un-

determined, and do not give the algebraical operation by which y
can be deduced from x, or z from y. A function y=f(x) is an

indeterminate equation ; it gives an unlimited number of values for x

and y, which correspond to it. If one of them (x) is given, the other

(y) is determined by the function, and if one of them -is changed, the

other also undergoes a change. Therefore the indeterminate quan-

tities x and y are called Variables, or variable quantities ; and the

quantities which are given, or are to be regarded as given, and in-

dicate the operation by which y is to be deduced from x, are called

Cokstaxts, or constant quantities. That one of the variables,

which can be chosen at pleasure is called the independent variable*.

and the other, which is determined by means of a given operation

from the first, is called the dependent variable. In y—a xm, a and

m arc constants, x is the independent and y the dependent va-

riable.

The dependence of z upon two other quantities, x and y, is ex-
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pressed by the equation z—f(x, y). In this case z is at the same
time a function of x and y, and we have here two independent

variables.

Art. S» Every dependence of a quantity y upon another quan-

tity x, expressed by a function or formula y =f (x) can be repre-

sented by means of a curve, A P Q, Fig. 1 and Fig, 2.

M N

The different values of the independent variable x answer to the

abscissas A M9 A N9 etc., and the different values of the dependent

variable to the ordinates MP, N Q, etc., of the curve. The co-or-

'dinates (abscissas and ordinates) represent then the two variables

of the function.

The graphic representation of a function, or the referring of the

same to a curve, presents several advantages. It furnishes us in

the first place with a general view of the connexion between the

two variable quantities ; secondly, it replaces a table or summary of

every two values of the function belonging together ; and thirdly, it

affords us a knowledge of the different properties and relations of the

function. If with the radius CA — CB = r we describe a circle

ABB (Fig. 3), corresponding to the function y = V~% r x — x A

where x and y indicate the cc-ordinates A M,
MP, this curve affords us not only a general

view of the different values that the function

can assume, but also makes us acquainted

with other peculiarities of this function, for

the properties of the circle have also their

meaning in the function. "We know, e.g..

without farther research, that y becomes equal

to zero, not only when x — but also when
x = 2 r, and that y is a maximum and = r when x — r.

Fig. 3.
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Fig. 4.

Art. IB. The Laws of Nature can generally be expressed by

functions between two or more quantities, and are therefore in

most cases capable of a graphic representation.

(1) When a body falls freely in vacuo, Ave have for the ve-

locity y, which corresponds to the height of fall x, y — V 2 g a\

but this formula corresponds to the equation y = Vp x of the para-

bola, when the parameter (p) of the latter

is made equal to the double acceleration

(2 g) of gravity. We can therefore repre-

sent graphically the laws of the free fall

of a body by the parabola A P Q (Fig. 4),

whose parameter p~2g. The abscissas

A M, A JVJ of this curve are the space

traversed by the body in its fall, and the

ordinates MP, and NQ, the corresponding velocities.

(2) If a is a certain volume of air under the pressure of one

atmosphere, we have according to Marriotte's Law, the volume of

the same mass of air under a pressure of x atmospheres, y — -,

and we have, for x=l, y =a; for x = 2, y = -, for x = 4, y — --,

for 3=10, y=^K', forz=100,?/=~9 forz=: <z>,y=0.
10 100

7

We see in this manner that the volume becomes smaller as the ten-

sion becomes greater, and that if the law of Marriotte were correct

for all tensions an infinitely great tension would correspond to an

infinitelv small volume.

Further, for x = -\, we have y~ 2a ; for x—\, we have y—ka;
o> y~10aj " x=0, y=cca:

so that the smaller the tension, the greater the volume becomes

:

and if the tension is infinitely small the volume is infinitely

great.

The curve which corresponds to this law is drawn in Fig. 5,

A M, A N, are the tensions or abscissas x, MP, N Q, the corre-

sponding volumes or ordinates y. We see that this curve ap-

proaches gradually the axes A X and A Y without ever reaching

them.

(3) The dependence of the expansive force of saturated steam
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upon its temperature x can be expressed, at least within certain

limits, by the formula
(a+x\ m

and by experiment we have within certain limits a — 75, b = 175,

and m=6. If we put

Fig. 6.

Fig. 5.

1 M 2 N 3 4 " -75 A M*™ N 20»

and assume the formula to be correct without limit, we obtain

(175\
6

—-j = 1,000 atmosphere,

« x= 50%y = (^f = 0,133

..

" x= 0V^ = g)
6

= 0,006 «

« „ = _75», 2/ = (A)° = o,000

*fo = 120°, y = (gj?)' = 1,914

« * - 150°, 2/ - g||)

6

- 4,517

* * = 200°, y =
(Jgj)'

= 15,058

P Q, Fig. 6, presents to the eye the corresponding curve. It

passes at a distance AO-— 75 from the origin of co-ordinates
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A through the axis of abscissas and at a distance A S= 0,00(j

cuts the axis of ordinates ; an abscissa A M < 100 corresponds to

an ordinate. MP < 1, and an abscissa A N > 100 belongs to an

ordinate NQ > 1 ; and we can also see that not only y augments

as x increases to infinity, but also that the curve becomes steeper

and steeper as x becomes greater.

Art. 4. A function z—f (xy) with two independent varia-

bles can be represented by means of a curved surface. BCD, Fig.

7, in which the independent variables x and y are given by the

abscissas A M and A N on the axes AX and A Y, and the de-

pendent variable z by the ordinate P of a point P in the surface

ABO. If for a definite value of x we give different values to y9 the

values of z deduced furnish us with the ordinates of the points of a

curve EPF parallel to the co-ordinate plane YZ; if on the contra-

ry for a given value of y we take different values of x, we determine

the ordinates z of the points of a curve P IT parallel to the co-or-

dinate plane X Z. We can consequently consider the whole curved

surface B CD as the union of a series of curves parallel to the co-or-

dinate planes. The law of Marriotte and Gay-Lussac z — — ¥-,

x

by means, of which we can calculate the volume z of a mass of air

from the pressure x and the temperature y, is graphically repre-

sented by the curved surface CKP H, Fig. 8. A M is the pres-

Fig. 7. Fig. 8.

sure x, A N or MO the temperature y} and P the correspond-
ing volume z: the co-ordinates of the curve P OH give the vol-

umes for a temperature A N'=
y, and those of the right line K P

the volumes for the same pressure A M— x.
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Art. 5. When we increase the independent variable of a func-

tion or the abscissa AM—x (Fig. 9 and Fig. 10) of the correspond-

ing curve an infinitely small quantityM N, which we will in future

designate by d x] the corresponding dependent variable or ordinate

MP = y becomes NQ—y', being increased by an infinitely small

quantity R Q = ]V Q - MP, to be designated by d y. Both these

increments dx and dyofx and y are called the Differentials of the

Variables or Co-ordinates x and y, and our principal problem now
is to determine for the functions that most commonly occur the

differentials, or rather the ratio of the differentials of the varia-

bles x and y belonging together. If in the function y —f (x),

where x represents the abscissa A M, and y the ordinate MP, we

substitute, instead of x, x + dx — AM' + MN= A JV, we obtain,

instead of y, y + dy = MP + R Q — N Q ; therefore

y + dy ==/ (x + dx),

and subtracting the first value of y from it, the differential of the

variable y remains, i. e.

dy = df(x) =f(x + dx)—f (x)

Fig. 9. Fig. 10.

M N

This is the general rule for the determination of the differential of a

function, which when applied to different functions furnishes sev-

eral rules more or less general : E.G., if y = x2

, we have

d y = (x + d x)'
1 — x"

(x + d x)
n
- = x

n
- + 2 x d x + d x*

d y = 2 x d x + d xr — (2 x + d x) dx;

and more simply since dx, being infinitely small compared to 2 x,

disappears, or since 2 x is not sensibly changed by the addition

of d x, and the latter can therefore be disregarded,

d y = cl (xf — 2 x d x.



N F Q
!

D c

Art. 6.] INTRODUCTION TO THE CALCULUS. 3D

The formula y = x2
corresponds to the contents of a square,

A B CD, Fig. 11, whose side is A B = A D = xy

Fio 11
and we see from the figure that, by the addition to

the side of BM=D J\
T= d x, the square is in-

creased by two rectangles B and D P — 2xd x,

and by a square (d as*), so that by an infinitely

small increase d x of x the square 7/ = x1

is in-

creased by the differential quantity 2xdx.
~BU Art. 6. The right line, T P Q, Fig. 9 and

Fig. 10, passing through two points P and Q of

the curve, which are at an infinitely small distance from each other,

is called the Tangent to this curve, and determines the direction

of the curve between these two points. The direction of the tan-

gent is given by the angle P TM— a at which the axes of abscis-

sas A X\& cut by the line. When the curve is concave, as A P Q,

Fig. 9, the tangent lies beyond the curve and the axis of abscissas;

but when it is convex, as A P Q, Fig. 10, the line lies between the

curve and the axis of abscissas.

In the infinitely small right-angled triangle P Q R (Fig. 9 and
Fig. 10), with the base P R = dx, and the altitude R Q = dy, the

angle QP R is equal to the tangential angle P TM—a, and we

have ORtang.QPR^^

whence
, d y
tang, a = —~

;

therefore the ratio or quotient of the two differentials d y and d x
gives the trigonometrical tangent of the tangential angle ; E.G., for

the parabola whose equation is y'—p x we have, putting y"=px=z,

dz — (y + dyf — \f = y- -!- 2y dy 4- dy' — y" ~2y dy + dy\

or as dif vanishes before 2ydy, or what is the same thing, dy
before 2 y,

dz = 2ydy,
and also

dz~p{x 4- dx) —px,

therefore 2ydy — pdx, whence for the tangential angle of the-

parabola we have

tang.a = d
-JL = l- = JL=JL
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The definite portion P T of the tangent between the point of

tangency P and the point T where it cuts the axes of abscissas

Fig. 12. Fig. 13.

M N —

X

is generally called the Tangent, and the projection TM of the

same upon the axes of abscissas the Bub-tangent ; hence we have,

sitbtang. = PM cot. PTM
dx

2x
E.G., for the parabola, subtang. — y— = 2 x.

The subtangent is therefore equal to the double abscissa, and

from it the position of the tangent for any point P of the para-

bola is easily found.

For the curved surface BCD, Fig. 7, the angles of inclina-

tion a and (3 of the tangents P T and P TJ at a point P are

determined by the formulas

:

,
d z , r, d z

tang, a = -=— tang, p == -?—
ax ay

The plane P T U passing through P T and P U is the tan-

gent-plane of the curved surface.

Art. 7 . For a function y — a + mf (x) we have

dy = [a + mf (x + dx)] — [a + mf (x)]

;

= a — a -f mf (x -f- dx) — mf (x

= m[f(x + dx)-f(x)];
i. e.

I.) .... . d[a + ?nf (x)] — mdf (x),

E.G., d (5 + 3 x"') = 3 [(x + f7z)
2 — x'*] = 3 . 2xdx = 6x dx.

In like manner

:

d (4 - I s8

), = - i c? (»
3 = - 4 [(a? + dx) 3 - x3

]

= - i (^ + 3 x* dx + 3 x dx2 + dxz - z3

)

= —
-l; . 3 x' d x = — 4 a;

2
of #.
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Hence we can establish the following important rule : The con-

stant member («, 5) of a function disappears by differentiation, and

the constant factors remain unchanged.

The correctness of this rule can be graphically represented.

For the curve A P Q, Fig. 14, whose co-ordinates in one case are

Fig. 14. Fig. 15.

Ma. Ni

AM— x and MP = y =f (x), and in the other A, if, = x and

M
l
P = a + y = a+ f(x), we have P R — d x and R Q = d y —

d f (x) and also = d (a + y) = d [a -f / (x)] ; and for the curves

A P, Q, and A P Q, Fig. 15, whose corresponding ordinates M P,

and MP as well as N Q, and N Q have a certain relation to one

another, the relation between the differentials R, Q, — N Q, —
MP, and RQ= NQ- MP is the same ; for if we put MP, = m .

MP and NQ, = m. N Q, it follows that R, Q, = N Q, - MP, = m

.

(NQ-MP)=m. QR.

i. e. d [mf (x)] —mdf (x).

If y = u + v, or the sum of two variables u and v, we have

dy = u Jr d u + v -[- dv — (u + v), i. e., according to Art. 5.

II.) . . . d (u + v) — du -{- dv, and in like manner,

d [f (x) + («)] = rf/(z) + dcj) (x).

The differential of the sum of several functions is then equal

to the sum of the differentials of the separate function ; e.g.

d(2x + 3

x

2 - lx3

) = 2 dx + 6 xdx - | x
1 dx = (2+ 6 x - 3 x

3
) dx.

The correctness of this formula can also be made evident by the

consideration of the curve A P Q, Fig. 15. If M P —f (x) and

P P,z=6 (x) we have

MP, = y=f(x) + </> (x) and

dy = R, Q, = R,S+SQ, = RQ + SQ, = df(x) + d$(x)\
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for JF\ S can be drawn parallel to P Q, and therefore we can put
L\ S=BQ and QS= P P„

Art. 8. If y — u v or the product of two Variables, e.g. the

contents of the rectangle A B CD, Fig. 16, with the variable sides

J B — u and B G = v, we have

dy — (u -f du) (v 4- d v) — uv — u v 4- u dv 4- vdu + du dv—uv,
= udv 4- v du 4- du dv — u dv 4- (v 4- d r) d u.

But in v 4- d v, d v is infinitely small com-
pared to v, and we can put

v + dv = v, and (v 4- <£#) r?w =zvdu,
and also

udv + (v + d v) d u — w dv + v d u,

"b*m so "that

III.) . . . d{uv)~ udv + vdu,

it follows therefore that

«*[/(*).* (*)] =/(*) * <£ (*) + (*0 <*/ (*)•

The differential of the product of two variables is then equal to

the sum of the products of each variable by the differential of the

other.

When the sides of the rectangle A B C D are increased by

B M = d u and D — d v its contentsy=ABxAD=u v is aug-

mented by the rectangles CO — udv and CM— v du and C P
— du dv, the latter, being infinitely small, compared with the oth-

ers, disappears ; the differential of this surface is only equal to the

sum u dv + vd u of the contents of the two rectangles C and C M.

In conformity with this rule we have for y — x (3V 4- 1)

:

dy^xd(%x*+l) 4- (3a? 4- 1) dx = 3xd(x*) 4- (3 x
1

4-1) dx
— 3x . 2xdx 4- Sx* dx 4- dx = (9x* 4- 1) dx.

Further, if w be a third variable factor, we have

d (uv iv) — u d (vw) 4- v w d u,

or since d (viv) = v dw 4- *tf d v,

d (u viv)=uv div-\- u iv d v 4- v iv d u, and in like manner

d (uvw z)= uviv dz + u vzd iv-\-uwzdv + v iv z d u

;

if xv— v— iv—z, it follows that d («
4)=4ttJ du, and in general

IV.) . . . d (xm)=m x"~ x

dx, if m is a positive integer, e.g.

d (x
1

) = 7 z
6
tfz, d | x

H= G x1 dx.

If y = a;
-

'", w being again a positive integer, we have also

?/ of
1 = 1 and d (y x

m
) = 0, i. e.

y d (x
m
) 4- x''

1 dy = 0, and therefore

7 yd(3fn
) x~mmxm~ l dx . 7dy = — k—^—- — — — w a;-'*-

1

do*,
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or, if we put — m = n,

d(x") = nxn~ l dx.

The Eule IV. applies also to powers, whose exponents are neg-

ative whole numbers, as e.g.,

d(x~ 3

) = — 3 or* dx— j-i and
x

' x*

d (3 * + 1)- =, - 2 (3 3f + 1)- d (3 «?) = - i|^f

.

2! m
If in-y = x *; '^-is a fraction whose denominator w and whose

numerator 772 are integers, we have also ?/" ==iB™ and d (y
n
) = d (of

1

), i.e.,

?iyn~ l

cly — mxm~ l dx, therefore

, 7iix m
~ l dx m xm

~ l dx m *_,'

d y — —..- = — == — x « dx.
n y n '1 n

VYl

If we put— — p, it follows that

dy = d (xp ) =pxp~i dx, which agrees with Rule IV., which

can now be considered as general.

Also d ( up
) = p wp_1 d u, when u denotes any function de-

pendent upon x.

Hence we have, E.G., d ( V x3

) =d (x% ) ==| x* dx—\ Vx~d x,

d V2rx—x'z—d Vu—

d

(#) = £ u~% d

u

_ 1 d (2 rx — x*) _ 2rdx—2xdx __ (r — x)dx
ui 2 tfu 1/2 rx— x'

In order to find the differential of a quotient y = -, we put u =

y, whence d u — v d y -I- y d v, and

u 7d u d v

dy =
du-ytv -

V V

vdu—udv

-, I.E.,

rr\ 7 / U \ V du~

According to this Rule, e.g.,

, /^-1\ (x + 2) d (a? - 1) - (x~- 1) d (
x + 2)

a
\x±1&) (x + 2y

.dx

Jp^2Y \ (x + 2)
2

.,(3; 4- 2) . 2 xdx — (ar — 1) . dx _ /.r° + 4a; + IK
"I (a + 2)

2
/
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We have also

:

«(?) = - «4V<m(4) = - ^P = - M?L
\ V I V \X I X x%

Art. @. The function y — xn
is the most important in the

whole analysis, for we meet it in all researches. When we give the

exponent n all possible values, positive and negative, whole and

fractional, etc., it furnishes the different kinds of curves, which are

represented in Fig. 17. A is here the point of origin of the co-ordi-

nates,XX the axis of abscissas, and Y Y that of the ordinates.

If on both sides of the co-ordinate axes at the distances x = =fc 1

and y = ± 1 from the point A we draw the parallels XxXx ,X2 X>.

Yx Yl , Y2 JT2 to the axes, and join the points P1? P2 , P3 , and P4 .

where they cut each other, by means of the diagonals Z Z, Zx Zx, wo

obtain a diagram which contains all the curves, given by the equa-

tion y = xn
. For every point on the axis of abscissasXX we have

y — 0, and for every point on the axis of ordinates Y Y, x = :

and for the points in the axes Xx Xx and X2 X2 , y = ± 1, and

for the points in the axes Yx Yx and Y2 Y*, x = ± 1.

If in the equation y = xn we put x — 1, we obtain for all

possible values of n, y = 1, and for certain values of ?i, also

y = — 1 ; consequently all the curves belonging to the equa-

tion y — xn pass through the point Pl9 whose co-ordinates are

A M= 1 and ^ iV= 1. If we take % = lwe have y — x and we

obtain the right line Z A Z, which is equally inclined to the two

axesXX and Y Y, and which rises on one side of A at an angle

of 45° ( - L and on the other side dips at the same angle. On the

contrary, for y — — x we obtain the right line Zx A Zx which dips

on one side of A at an angle of 45°, and rises on the other side at

the same angle.

If, however, n > 1, y — xn becomes smaller for x < 1, and for

x > 1 greater, than x, and when n < 1, y — xn
is greater for x < 1

and smaller for x > 1 than x. The first case (n > 1) corresponds

to convex curves, which run in the beginning under, and from P,

over the right line (ZA Z), and the second case (n < 1) to concave

curves, where the reverse takes place.

When, in the first case, we take n smaller and smaller until at

last it disappears, or becomes equal to zero, the ordinates approach
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the constant value y = x° — 1 and the corresponding curve ap-

proaches more and more to the broken line A NPx Xx ; if, on the

contrary, in the second case, n becomes greater and greater, the

values of the ordinates approach the limit y = x'°t=xh = cx>, and

Fig. 17.

those of the abscissas, on the contrary, approach the value x=y°=l,
and the corresponding curve approximates more and more to the

broken line A M Px Tx.

If we take n— — 1, whence y = x~ l = -, for x = 0, we have y

~ <x> , and for % — 00 , y — and we obtain curve, which has been

discussed in Art. 3, and drawn in Fig. 5 (1 PI); it approaches

on one side the axes of ordinates, and on the other the axes of ab-

scissas without ever reaching them.

If the exponent (— n) of the function y ~ x~n = -— is a proper
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fraction, for x < 1, we have y < -, and on the contrary for % > 1,

?/ >-, and if this exponent is greater than unity, we have on the con-
x

trary for $ < 1, y > ~, and for a? > 1, y < -. The curve corre-
2? X

sponding to y = ar", according as n is greater or smaller than unity,

runs in the beginning below or above, and from Px above or below,

the curve y — x~ x = -., While those curves, which correspond

to the positive values of n, are placed in the beginning below,

and from P1 on above, the right lineXx Xlf the curves of the nega-

tive exponents (— ri) run first above, and from Px on below, Xx Xx .

For the former curves we have, for y = 0, x — 0, and for x = op,

y = co, and for the latter, for # = 0, y = <x>
?
and for # = oc:

,

y = 0. While the former diverge more and more from the co-or-

dinate axes XX and Y Y, the farther we follow them from the

origin A x, the latter approach more and more on one side the axis

XX, and on the other axis Y Y, without ever reaching them.

The last system of curves approach nearer and nearer the

broken line YNPx Xx or the broken line Yx Px MX as the expo-

nent approaches nearer and nearer the limit n = or n = oo.

If in y = x±m ,m is an entire uneven number (1,3,5, 7 . . .), y
and x have the same sign. Positive values of x correspond to positive

values of y, and negative values of x to negative values of y. If on

the contrary m is an entire even number (2, 4, G, etc.), y becomes

positive for all values of x, positive, or negative. Therefore the

curves in the first case, as e.g., (3 Px
A Pz 3) or (f Pi 1, 1 P3 1).

run on one side of the axis of ordinates above, and on the other side

below, the axis of abscissas X A X; on the contrary the curves in

the second case, as e.g., (2 Px A P4 2) or (2 Px 2, 2 P,2), are placed

above the axis of abscissas only, and are contained in the first and

fourth quadrants ; the former corresponds form = ± oo to the limit-

ing lines YX
MA Mx Y* and XM Y\ , XMx Y>, the latter on the

contrary to the limiting lines Yx M A Mx Ys and X M Yx

xm r„
i

If we have y — x* % n being an entire uneven number, y and

x have the same signs, and if n is an entire even number, every

positive value of x gives two equal values for y, one of which
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is positive and the other negative, and on the contrary for every

negative value of x, y is imaginary or impossible. The curves,

as E.G. (J Px
A P3 }), which correspond to the first case, are found

only in the first and third quadrants, and the curves of the second

case, as e.g. Q P
x
A P2 J), only in the first and second quad-

rants: the former become for m = oo the limiting lines Xx X
A Nx X2 and Xx N Y,X Xx Y, and the latter the limiting lines

X, JSfA N, X2 and Xx X Y, X, Nx T.

i

Since y = & * involves x = y
±n

, it follows, that the latter sys-

tem of curves \y = x "/ differs from the former
( y = x±m ) in its

position only, and that by causing them to revolve, the curves of

one svstem may be made to coincide with those of the other.

• = ( i\» i
Since y — x'

1

\z"J = (x'
n
)'

> we can always give from what

has gone before the general course of a curve. E.G., the curve

for

y = 4» - (z*Y = (l/
x
j

has, for both positive and negative values of #, positive ordinates

;

on the contrary, the curve for

y = zi = (xiy = (jA)
3

has, for positive values of x only, real ordinates, and they are equal

in magnitude, but with opposite signs. Further, for the curve

y = & = (yx),

y and x have the same sign, since neither the fifth root nor the

cube causes a change of sign.

Finally, the curves, which correspond to the equation y —
m m

—x", differ from those of the equation y. = x n only by their reversed

position in regard to the axis of abscissas X X, and they form the

symmetrical halves of a complete curve.

Art. SO. From the important formula d (xn
) = n xn~ l d x Ave

obtain the formula for the tangential angle of the corresponding

curves represented in Fig. 18. It is

dy
tang, a = --2- = naf~'9
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and therefore we have the subtangent of these curves

d x _ x" _x
" dy

~~
n af

_1 ~~
ri

Hence, for the so-called parabola of Neil, the equation of which

is a y — x' or y =\/~i we have

11 d(xl) _i_ . ,
' J

and the subtangent %%.

Farther, for the curve already discussed y = — = a2 x~\

(i)'
, , d (or1

) a'
tang, a = ar —\

—
- — =

dx x-

x
and the subtangent = —- === — x. (See Fig, 5.)

Fig. 18.



AUT. 11.] INTRODUCTION TO THE CALCULUS. 49

Consequently, we have for x — 0, tang, a — — co and a — 90°,

for x = a, tang, a = — 1 and a =135°

and for x = oo, tang, a = and a = 0°, etc.

Art. 1 1. When a right line A 0, Fig. 19, cuts the axis of ab-

scissas at an angle A X= o, and is at a distance GK — n from

the origin of co-ordinates C, the equation between the co-ordinates

CM — N P — x and G N — M P = y of a point in the same is

y cos. a — x sin. a — n, since n — M R — ML, MR — y cos. a

and M L — x sin. a.

-, therefore we have n—

Fig. 19.

y

For x — 0, if becomes C B = b
cos. a'

b cos. a, and y cos. a — x sin. a — b. cos. a or

y — b + x tang. a.

Generally the lines G A and G B, which measure the distances

from the points where the line cuts

the co-ordinate axes GX and G Y
to the origin of co-ordinates, are

called the parameters of the line,

and are designated by the letters a

and b. According to the figure

G A = — a, therefore

CB b
t™ff- a

='CA =
-

a
>

and consequently the equation of

U

K>

M

the straight line becomes

J) x II

y ~b x, or - + "^ = 1. (See Ingenieur, page 164.)

When a curve approaches more and more a line, which is sit-

uated at a finite distance from the origin of co-ordinates, without

ever attaining it, the line is called the Asymptote op the

Curve.

The asymptote can be considered as the tangent to a point

of the curve situated at an infinite distance. Its angle of inclina-

tion to the axis of abscissas can be determined by

, d y
tang, a =

-J
and. its distance n from the origin of co-ordinates by the equation

n = y cos. a — x sin. a = (y — x tang, a) cos. a

y — x tang, a

Vl + (tang, af (»-»•»+ est
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y cotg. a — x
as well as by the formula n—{y cotg. a—x) sin. a

-(*;-«)/ 'g-?

Vl + (cotg. a)"

when we substitute x and y = co in them.

In order that a tangent to a point infinitely distant can be an

asymptote, it is necessary, that for x or y = go, y — x tang, a or

y cos. a — x shall not become infinitely great.

For a curve whose equation is y = x~m = —-
x

ftro$r. a = - —- and y - x tang. « = «—+ — = -—

and also # cotg. a — x = —

or

X X
x = — (m-rl) —, thereforem m

1) for x = co
, y = 0, tang, a = 0, y — x, tang, a = and w = 0,

and 2) for y = cc, x = 0, tang, a = cc, y cotg. — x = and w = 0.

The axis of abscissas XX corresponds to the conditions tang, a

— co and n — 0, the axis of ordinates Y Y to the conditions

tawgr. a = and n = ; therefore these axes are the asymptotes

of the curve, corresponding to the equation y = x~m . (Compare

the curves 1 Px 1, % Px % and ^ Pj J in Fig. 18, page 48.)

Art. IS. The equation of an ellipse A D A x Dx, Fig. 20, can

be deduced from the equation

x1 + y\ = a2

of the circle A B A x BXi whose ra-

dius is CA = C B = C P = a

and whose co-ordinates are CM
= x and MP = ^ , when we

consider, that the ordinate M Q
— y of the ellipse is to the ordi-

nate MP = yx of the circle, as the

lesser semi-axis C D — l of the el-

lipse is to the greater semi-axis,

which is equal to the radius of the

circle C B = a. "We have then

£- = -, whence yx
— j y and a?' + 2/' = ^ I.E.
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OL + JL — i, the equation of the ellipse.

a o

If we substitute in this equation for + b\ — b\ we obtain the

equation —, — -p = h

which is that of the hyperbola formed by the two branches P A Q
and P1 A l ft, Fig. 21.

When in the formula

deduced from the latter equation we take x infinitely great, a%
dis-

appears before x\ and we have

v =z - y x' — ± — — ±x tana, a,
u a a

the equation of two right lines U and G V passing through the

origin of co-ordinates C. Since the ordinates

Fis. 21.

-X

-tr "y

tend to become equal as x becomes greater, it follows that the right

lines G U and C V are the asymptotes of the Hyperbola.

If we take G A — a, the perpendicular A B = + b and

AD— — b, we can determine the two asymptotes ; for the tan-

gent of the angle ± a, formed by the asymptotes with the axis of

abscissas, is

tang. A G B = -^—7, lb. tang, a = -, and
JL a

in like manner

tang. A CD = p—7, LB. tang. (— a) = .

If we take the asymptotes £7 U and F F as axes of co-ordi-
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nates, and put the abscissa or co-ordinate CN in the direction of

the one axis = u, and the ordinate or co-ordinate NP in the di-

rection of the other == v, we have, since the direction of u varies

from the axis of abscissas by the angle a, and that of v by the

angle — a

GM = x = GN cos. a + NP cos. a = (u + v) cos. a, and

MP — y — GN sin. a — NP sin. a -- (u — v) sin. a.

If we designate the hypothenuse C B = V a? + ¥ by e,

we have cos. a = — and sin. a = —

,

and consequently
cos. a

a

*L _ f_ - (**' + %uv + v> )

w2 + 2 ^ v + v*

\. a 1 n— = —-, and
? e

(u* — %uv + v*)
cos. a — - - -

o

U* — 2 u v + v* 4=uv
1.

e e e

From the latter we obtain what is known as the equation of the

hyperbola referred to its asymptotes

u v = —r or v
4 4:U

According to this it is easy to draw the hyperbola between the

two given asymptotes.

The co-ordinates of the vertex A are G E = E A = -^-, and

Fig. 22,

~Y

the co-ordinates for the point K are G B — e and B K = -j-; fur-

ther, for the abscissas 2 e, 3 e, 4 e, etc., the ordinates are J x> 3 *T >

i — etc
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Art. 13. If in the ratio of the differentials -r-, or in the for-
dx

mula for the tangent tang, a of the tangential angle, we substitute

successively the different values of x, we obtain all the different po-

sitions of the tangent to the corresponding curve. If we take x—0,

we obtain the tangent of the tangential angle at the origin of co-

ordinates, and if on the contrary we take x — oo, we have the same

for a point infinitely distant. The most important points are those

where the tangent to the curve runs parallel to one or other of the

co-ordinate axes, because here one or other of the co-ordinates x and

y have their greatest or smallest value, or, as we say, is a maximum
or minimum. When the curve is parallel to the axis of abscissas we

have a = 0, and tang, a = ; when parallel to the axis of ordinates

a =: 90°, or tang, a = oo , whence we deduce the following Kule

:

To find the values of the abscissa or independent variable x,

which correspond to the maximum or mini-

mum value of the ordinate or dependent va-

riable y, we must put the ratio of the differ-

Fig. 23.

entials
dj
d x

0, or = oo and resolve the result-

ing equation in regard to x; e.g., for the

equation y — 6 x — |\
x~ + x3

, which corre-

sponds to the curve A P Q R in Fig. 23.

|^ = 6^-9x.+ 3x* = 3 (2-dx + x') =
a x

'd (1 - x) (2 - x);

consequently, in placing -~ — 0, we hav(

x= 0,

dx
1 - x = and 2

i.e. x = 1 and x — %
Substituting these values in the formula

y = 6 x — -| x*'+ xz

,

we have the maximum value of y, M P = 6

the minimum value, N Q ~ 12 — 18 + 8 = 2.

Farther, for the curve K P Q R, Fig. 24, whose equation is

y = x + ^{x

j% = tang- »-!+?(«
2

which becomes = 0, for av = — 1, i.e. for A M — x = 1 —
3^-1

{$y = Jf = 0.7037, and on the contrary = oo, for A N = x = 1.

I)
2

, we have

l)ri - 1 +

|+1 = |, and

2

3V7T1'
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The first case corresponds to the maximum value,

MP = ym = 1 - (iy f (*y = j| = 1.148,

and the last to the minimum value, N Q ^ yn
= 1.

We have also A — if

= 1 for a; = 0, and ^ ==

for the abscissa ^4 ^ = a*.

corresponding to the cubic

equation x 3
-\- x2 — 2 x -h 1,

whose value is x= — 2.148.

Art. 1 4. Since in the

equation of a curve which

starts from the origin of

co-ordinates A, and rises

X above the axis of abscissas,

y increases with x, d y is

always positive, and since

when the curve on the contrary descends towards that axis, y de-

creases when x increases, d y becomes negative. Finally at the

point where the curve runs parallel to the co-ordinate axis A X,

d y becomes equal to zero, and the differentials of the ordinates,

corresponding to the equal differentials d x — MN— N = P 8
= Q T of the abscissas, are

8 Q = PS tang. Q P S, i.e., d yx
= d x tang. al9

TR = Q T tang. R Q T, i.e., d y2
= d x tang. c2 , etc.

The tangential angles a
x , a2 , etc., also increase for a convex

curve A P R, Fig. 25, and decrease for a concave curve APR,

Fig.

-3

24.

1

P /
7

K/l

^^0
Max.

Q

-2 M N + 2

Fig. 25. Fig. 26. Fig. 27.

M N oA M N O

Fig. 26 ; consequently in the first case

d {tang, a) = d
y^-J

is positive,

and in the second d (tang, a) = d ( j^-j is negative, and for the

points of inflexion Q, Fig. 27, i.e. for the places Q where the con-
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vexity changes into concavity, or where the contrary takes place,

we have S Q = T R, and therefore d (tang, a) — d K-\ = 0.

Hence we have the following Eule

:

If the differential of the tangential angle is positive, the curve is

convex, if it is negative, the curve is concave, and if it is equal to

zero toe have a point of inflexion of the curve to deal with. From
the foregoing we can easily make the following deductions

:

The place, where the curve runs parallel with the axis of abscis-

sas and for which tang, a = 0, corresponds either to a minimum or

to a maximum, or to a point of inflexion of the curve, according as

the curve is convex, concave, or neither, I.E., as d (tang, a) is pos-

itive, negative, or equal to zero. On the contrary, the point, where

the curve runs parallel with the axis of ordinates and for which we

have tang, a = oo, corresponds to a minimum, or maximum, or to a

point of inflexion of the curve, according as the latter is concave,

convex, or in part concave, or in part convex : I.E., as d (tang, a)

is negative or positive on each side of this point, or has a different

sign on different sides of it.

A portion of a curve with a point of inflexion of the first kind

is shown in Fig. 28, and a curve with one of the second kind in

Fig. 29. We perceive that the corresponding ordinate JV Q is nei-

ther a maximum nor a minimum, for in this case both of the

neighboring ordinates M P and R are larger or smaller than

N Q. In Geometry, Physics, Mechanics, etc., the determination

Fig. 28. Fig. 29 Fig. 30.

M N O M N O

of the maximum and minimum, or the so-called eminent, values of a

function, is often of the greatest importance. Since in the course

of this work various determinations of such values of functions will

be met with, we will here treat only the following geometrical

problem.

To determine the dimensions of a circular cylinder A N, Fig.

30. which for a given contents V has the smallest surface 0, let us
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designate the diameter of the base of the cylinder by x and the

height of the same by y ; here we have

and the surface or the area of the two bases plus that of the

curved portion

= —~ + rr x yy

but from the first equation we have

4 V
rr y — —- or rr x y = 4 V x~l

x

substituting this value of rr x y, we obtain

=^ + 4 rri,

and since we can treat and x as the co-ordinates of a curve, we have

tang, a == -— = rr x — 4 V x~*.
a x

Putting this quotient equal to zero, we obtain the equation of con-

dition

4 V
7T X = —„- 01* 77 x3 = 4 F.

a?"

Eesolving the equation in reference to #, we have

r

-, and= ;/>

4 F V 64 F" n' .74 7
V =^ = V -IF" -I6T3

= V IT = *

Since c? (fom^/. a) = I rr + —r j
dx is positive, the value found

furnishes the required minimum. We can employ the same

method when we wish to determine the dimensions of a cylindri-

cal vessel which for a given contents will need the smallest amount

of material. They are already determined directly when the vessel

besides its circular bottom is to have a circular cover, but when

the latter is not needed we have

rr x'= —j—h 4 V x~\ consequently

TT X 4 V—— = —r-, whence it follows that
2 x1

z

/~V */V a

t? */~V
x = 2y — and y = \ -^ .— = ^— = J ar.
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While in the first case we must make the height equal to the

width of the cylinder, in the second we must make it but one-half

the width of the latter.

Art. 1*5. By successive differentiations of a function y =f[x),
we obtain a whole series of new functions of the independent va-

riable x, which are

/r (,) = !* = iiMJ K
;' d x dx

//(*)'=if^W=^, etc.,J x
' d x ' d x

E.G., for y = / (x) = xl, we have

. A(x) = i x\f> (x) - -V
1 *"*,/. (*) = ~

-J? ar*, etc.

For a function which is developed according to a series of the

ascending powers of x

y = f(x) — A Q + A x x + A2 x' + A 3 x
3 + A t x* + etc., we have

/, (x) = A
x + 2 A 2 x + 3 A z x

1 + 4 A 4 x
% + etc.

/a (a) = 2 A, + 2 . 3 A 3 x + 3 . 4, Aix" + etc.

/8 (#) = 2 . 3 A + 2 . 3 . 4 A 4 x + etc.

Substituting in these series x — we obtain a series of expres-

sions suitable for the determination of the constants A ,A»A 2 .:. viz.

. /(0) =-4.,/,(0) = i^ 1,/2 (0) = 2^ 2 ,/3 (0) = g.S.ls ,

etc., whence we deduce these co-efficients themselves.

A % =/(0), A =/, (0), J, = i/2 (0), A % = ^/3 (0),

'^ = 3-^74/4 (O)etc.

Thus we can develop a function into the following series, known
as McLaurin's.

f(x) = /(o) + /, (0) . \ + /, (0) .^ + /3 (0) . r|^
+ /«(6) 1.2.3.4

For the binomial function y = f (x) = (1 -f x)"we have

/, (a?) = rc (1 + ^)-1

,/2 (x) =n(n - 1) (1 4- x)
n~>

f3 (X) = n (n - 1) (n - 2) (1 + x)
n~\ etc.

When we put x = 0, we obtain

/(0) = I,/, (0) = w,/, (0) - rc (if - 1)

/3 (0) == n (n — 1) (w — 2), etc., whence the binomial series.
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tv /i . \» i ,

n
,
n(n—l)

, ,

n{n — l)(n — 2) .

I,) (1 4 x)
n = 1 4 j a; 4-

. \ g
a + 12 3

e

We have also

/-, • \„ -,
n

,
n in — 1) •> n(n — l)(n — 2) ,

(1 - s)» = 1 - -j s + v

1<2
a?

1.2. 3
+ '

as well as

(1 + x) =1 - jx 4^T^ ~
x.2,3 * * -•

_ 1 a:

Farther, putting 1 4 a; = (1 — z)
l = -

, we have z— andr ° J — % 1 +x

(14a;)" — (1— z)-
n =l + nz+ v V 4-

v 103— ^+-,LR

.1.) (i + .)- ^ 1 +
j (ra) + \ 2 / (m)

»(» + !) (w + 2) I x
+ ETTs

The series I. is finite for entire positive values of n, and the

series II. for entire negative values of the same.

E.G., (1 4- x)" = 1 4 5 x 4- 10 % 4 10 xs 4 5 xK 4 x\ and

(i + *r = i-Hrh) + 10
(rJ-J-

10 (rhJ

+ 5 (rr-J-(rr-J-

Since «4-« = «(lH— Lit follows also that

III.) (a + xf = a" + 1 a- 1 s + !^qil) «-» x*

n (n — 1) (n — 2) „ ,
,+ 1.2.3 — * ' + '

'

*
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E.G., ^ 1009 2 = (1000 + 9)3 = 100 (1- + 0,009)1

= 100 (l + I . 0,009 + * (g ~ X)
. (0,009)

a + . . . )

= 100 (1 + 0,006 - 0,000009) = 100,5991.

We have also

(x + 1)" = of + n xn~ l +
n
^ ~ ^

of-' + . . . etc.

and approximately for very great values of x,

(x + l)
n = x" + n xn~\

From this it follows that

^,.71 1 \ ' -Kit -»*+-T% /-v-**

^/

»
)

j

(i;- 1)"-
. af —

n

-i)»
5

(*- 2)"- 1
(x- l)

n -(*--2)"
n )

(X - 3)"- 1
(x--2V -<*--3)'

» J

=

l
11- 1 _ 2n -

n
l
n

and finally

adding the two members of these equations together, we have

xr-' 4 {x - If-
1 + (a? - 2)"- 1 + (a - 3)"" 1 + . . . + 1

_ (x + l) n — r

or, putting n — 1 = m, and writing the series in the reversed

order, we have

1- + 2m + 3 OT + . . . + (x - l)'
n + x™ = l J

, -.
' m + 1

Now since # is very great, or properly infinitely great, we can

put (x + l)
ro+1 = af,+

'

1

, and we then obtain the sum of the powers

of the natural series of numbers.

/v.TO+ 1

IV.) lm + 2
m + om 4- . . . + xm = ——-

,

m + 1

e.g., VT* + V~2* + VY* + \T& + . . . + v^lOOO" approximately

= ™2°L = l VT000"5 = 60000.
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Fig. 31.

Art. 1 ©. The ordinate P = y, Fig. 31, corresponding to

the abscissa A — x, can be considered as composed of an infinite

number of unequal elements d y, as

FB, G C,HD, KB , which cor-

respond to the equal differentials d x =
AF,= FL~ LM = MN of

the abscissa. If therefore d y = (a?)

.

d x were given, we could determine y
by summing all the values of d y, which

we obtain, by substituting successively

in (j) (x) d x for x, d x, 2 d x, 3 d x . . . .

to n d x — x. This summing is indi-

cated by the so-called sign of Integra-

tion f, which is placed before the general expression of the differ-

ential to be summed. Thus we write, instead of

y = [0 (dx) + (2 d x) -f (3 d x) + . . . -f </> {x)] d x,

y — f Or) d x.

In this case we call y the integral of <p (x) d x, and $ (x) d x the

differential of y. Sometimes we can obtain the integral / </> (x) d x,

by really summing up the series <p (d x), (2 d x), (3 d x), etc.

;

but it is always simpler in the determination of an integral to em-

ploy one of the Eules of what is known as the Integral Calculus,

which will be the next subject treated.

If n is the number of differentials d x of x. we have x — n d x

or d x — -.and we can put
n

./> «*--MiWO*fir) -f +
nm

Thus for the differential d y — a x d x, we have

y = f ax dx — a d x (d x + 2 d x + 3 d x + ... + n dx)
= (I + 2 + 3 + . . . + n) a d x%

or since according to Art. 15, IV., for n = oq we have the sum of

the natural series of numbers
x\

1 + 2 + 3 + 4 + 5... + n = w2 and d x"

y — f axdx — \tf a
x-

a x

In a similar way we find, if x — n d x or if x is composed of n

elements d x,

y=f^(x)dx=f—- = Udxy + (2dxy+(3dxy+...+(ndxy]~~
X

a i— —I a

= (l + 2
a + 3

a + .... + ^)—

.
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But from § 15, IV., for n = oo , we have

n3

I + 2
2 + 3

2 + . . . . -f tf — -w, whence it follows that
o

/x" dx _ n* d x% _ (n d x)* _ x%

~'a~ ~ 3 ' a 3 a ~ 3d

Akt. 17. From the formula d (a + mf(x)) = mdf(x),we
obtain by inversion

fmdf (x) = a + mf (x) = a + mfdf (x), or putting

df (x) =
(f>

(x) . d x

I.) / m(f> (x) dx = a + m f <j> (x) dx,

and hence it follows that the constant factor m remains, in the In-

tegration as in the Differentiation, unchanged, and that a constant

member such as a can not be determined by mere integration;

the integration furnishes only an indefinite integral.

In order to find the constant member, a pair of corresponding

values of x and y—f(p(x)dx must be known. If for x = c, y = Jc,

and we have found y = / (x) d x — a + / (x) then we must

also have h = a + / (c), and by subtraction we obtain y — k =
f (x) —/ (c) ; therefore in this case we have

y = /4>(x)dx = 1c +f(x) -f(c)=f(x) + 7c-f(c),

and the constant factor a = h — / (c).

When, e.g., we know that the indefinite integral y = f x d x =
x*
-xt gives, for x — 1, y = 3 we have the necessary constant a =

3 — i = |, and therefore the integral

P -.
,

x2
5 + 3*

y = fxdx-a + -^- = —^—

.

2

Even the determination of the constant leaves the integral still

indefinite, for we can assume any value for the independent varia-

ble x ; but if we wish to have the definite value Jcx of the integral

corresponding to the definite value cx
of x, we must substitute this

value in the integral which we have found, or, Tcx —lc +/ (ci) —/ (c).

5 + x1

e.g., y — f x dx ——-— gives, for x = 5,y = 15.

Generally the value of x for which y becomes = is known

;

in this case we have 1c = 0, and the indefinite integral of the form
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/ </> x (dx) =ss / (z) leads to the definite one &, = / (cx )
— / (c),

which can also be found by substituting in the expression / (x)

of the indefinite integral the two given limits, cx and c, of x, and
by subtracting the values found from one another. In order to

indicate this ww write instead of / cp (x) d x, .V (x) d x}

if, E.G., /0 dx = j, f\{x)dx = -~^.

By the inversion of the differential formula

d [/ (
x) + 4> (%)] = df (x) + d <p (x) we obtain the integral

formula/ [df (x) + d (p (x)] = f (x) + 4> (x), or putting

df (x) — ip (x) d x and d (j> (x) = % (x) d x,

H.) / £*l> (x)dx + x(v)dx]=fil) (x) dx + f x (%) ^ »•

Therefore ^e integral of the sum of several differentials is equal

to the sum of the integrals of each of the differentials.

e.g. / (3 + 5 x) dx = / 3 d x + / 5 x d x — 3 x + § x\

Art. 1 8 . The most important differential formula, IV., Art 8,

d (x'
1

) = . n x"~ l d x, gives by inversion an integral formula which

is equally important.

It is / n xn~x d x — x", or n f xn~\ d x = x", whence

f x"-1 dx = —;
n

substituting n — 1 = m, and n = m + 1, we obtain the following

important integral

:

/W71+ 1

fx^dx^^—,,m + 1

which is employed at least as often -as all the' other formulas

together.

The form of this integral shows that it corresponds to the sys-

tem of curves treated in Art. 9 and represented in Fig. 17.

From it we have, E.G.,

/ 5 x* d x = 5 / x% d x = f z* ;

/ V¥d x=fx'dx = I
xl = | W\

f (4 - 6 x% + 5 x*) d x = f 4 d x - / 6 x* d x + / 5 x* d x

— 4/ dx- Qfx'dx + 5,f x* dx = 4=x- 2xz + X5
; farther,

~ i i d u ,

putting 3 x - 2 = w, 3 J # = <? ft, or d x = -^-, we have
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/' V3x-2.dx=ful ^=^=| VI? = | Vj3~x~^~2Y;

and finally, substituting 2 ar
2 — 1 — u and 4 x d x = <2 i\ or

7 $ w ,

x a x = —r-, we have
4

By the substitution of the limits the indefinite integral can be

changed into a definite one.

5 x% d x = | (2
4 - V) = i . (16 - 1) = 18|.

9 dx
2~^= ^9-^ = 1

f* \'Zx~-Z.dx=%( VW - V\') = | (64 - 1) = 14
f/ 1

If e.g. /(4 — 6 x"
2

-f 5 a;
4

) t? x = 7, for a; = we would haye,

in general,

/ (4 - 6 x 2 + 5 x*) d x = 7 + 4 a? - 2 z3 + x\

Art. 19. The so-called exponential function y — ax
, which

consists of a power with a variable exponent, can be developed as

follows into a series by means of McLaurin's Theorem, and its dif-

ferential can then be found.

Putting a* = A -f A x x + A 2 x1 + A z x
3 + we have, for

% — 0, a* = of = 1, whence A = 1

;

From ax = 1 + A x x + A 2 x* + A 3 x* + . . . . we have

arlx = 1 + A x d x + At d or -f ^4 3 6? x' + . . . . and also

^ (a1 ) = a*+
rf* - «* = of adx — a* = ax

(a
dx — 1)

= ax (A x d x + A 3 dx* + A 3 d x3 + ...
.)

= ax (A
x + A.2 d x -f . . . .) d x = A

x a
x d x.

Hence, by successive differentiation of the series, we have

/ (x) = a' — 1 + Ax x + A a x
7 + A 3 x

z + . .

.

fx (x) =^ = A x a
x = A

x + 2A 2 x ± 3A,x- + ...
d x
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/, (*) = *
(ff^ = AS a- = 2.A 3 + 2.3.A 3 x+...

f> {x) = ^nr3 = A '
a' = 3

•
3

•
A + • •

•

Putting x — 0, it follows that

1 1 1
whence A a = j--^ ^,", ,4, = j—3-775 ^i', ^4 =

1 .2.3.4^ &c*

and the exponential series takes the form

I. or = 1 + A x % + At £= + ^-^ + ^i
4

1 1.2 ' 1.2.3 ' ' 1.2.3.4

The constant coefficient A x is of course a definite function of

the constant base, as the latter is a function of the former. If one

of the two numbers be given, the other is then determined. The.

most simple, or the so-called natural series of powers, whose base

(a) will be designated hereafter by e, is obtained by putting A
}
= 1.

Then we have,

>T \ ^ X X X X
II.) ., = ! + _ +_ + __+.__+...

and if we put x = 1 we obtain the base of the natural series of

powers,

e
l = e = 1 + 1 + i + J + z\ + . . . . = 2,7182828.

I 1
If we put e = am, or a = em , we have — = I a, which is the Nape-

rian or hyperbolic Logarithm of a, and

in.) ^=(^^>=i.+|©+T^©
i

*;

_?_(£)' + ...
1 . 2 . 3W

Since this series corresponds in its form to that of I, we have

also A x
= —, and,m

IV.) d (a
x
) = A l a

x dx = = I a . a* d x, as well as

V.) <Z (O = e
x d x.

E.G. cZ (e
3*+1

) = e
Zx

'
1 d (3 a; + 1) = 3 e

3^1 d x.
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If we put y = a* = e
m we have, on the contrary,

x
x = loga y and — = I y.

\oga y = ml y, and, on the contrary,

I y, or log, y = — loga y.

The number m is called the modulus of the system correspond-

ing to the base a. By means of it we can transform the Naperian

logarithm into any artificial one, or one of the latter into the

former. For Brigg's system of Logarithms the base is a — 10,

whence — = 1 10 = 2,30258, and, on the contrary, m — y—^ =

0,43429.

We have also log y == 0,43429 I y, and

I y - 2,30258 log y.

(See Ingenieur, page 81, etc.)

Art. 530. The course of the curves which correspond to the

exponential functions y — e
x
, and y = 10x

, is represented by Fig.

32. For x = 0, we have in both cases y = e° = a = 1. Hence

both curves O Q S and O Qi St pass through the same point
(
O)

of the axis of ordinates A Y. For x = 1 we have,

y = e
x = 2,718, and

y = 10s == 10,

x = 2 gives

y = e
x = 2,718

2 - 7,389, and

y = 10° = 102 = 100, &c.

Both curves rise on the positive side of the axis of abscissas very

steeply, particularly the latter.

For x - - 1 we have e
x = c~' = ^r—r^ = 0,368 . . , and

10* = 10- 1 = 0,1

;

farther, for x = — 2, we have

' = ** = m? = °>135>

and 10* =? 10-2 = 0,01;

for x = — oo both equations give

5
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1 " 1 „
-5- = ,-^ = 0,

The two curves approach

nearer and nearer this axis of

abscissas on the negative side

of the axis of abscissas, the

last more quickly than the first,

but they never really meet this

axis.

Since we deduce from the

equation

y = e
x,x = ly

and also from

y = ax ,x = \oga y
the abscissas of these curves

furnish a scale for the Nape-

rian and common logarithms

;

for the abscissas are the loga-

rithms of the ordinates.

E.G. we have,

AM = IMP
= log. if P„ etc

From the differential for-

mula IV of the last article the

tangential angle of the expo-

nential curve is determined by

the simple formula,

d if ax d x
***-* = di~

= - = y =
m m

m d x

yla.

Consequently for the curve Px Qx $, Fig. 32, the subtan-

gent = y cotg. a = m, that is, is constant ; and for the curve

P Q S it is always == 1, e.g., for the point Q, A 1, = 1 for the

point R, 12 = 1, etc.

Aet. 21. If x = ay
, we have also

dx -

and by inversion,

d (a?)
in

dy = m d x m dx
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But y = loga x, that is, to the logarithm of the variable power
x with the constant base a ; therefore we have the following differ-

ential formula for the logarithmic functions,

y = loga x and y = lx:

I.) tf (ty. *) = *i^ - _L *!!,
x lax

II.) d (lx) = ~.

Ifa is the tangential angle of the curve corresponding.to the equa-

tion y = loga x, we have tew^. a = —, and the subtangent == y

coty. a =± -Jl, or proportional to the area a? y of the rectangle con-

structed with the sides x and y.

By means of the differential formulas I. and II. we obtain

i\ ^/iV~\ *
V^ - djrt)_ __, x~\dx dx

l) ^(^^) = -^---^--i-^r- =
2^ oralso

= <ZQ^) =?*.£<* (J a?) = J-.—.

2) dl%~^=d\l(2 + x) - lx']

= dl(2 + x) - d I (x
l

)

- ** g
__ 2— = - ^4 + ^ d

x

2 + x x x (2 -f x)
'

3) d
(
l Jri)

= fZ [l^ ~ ^ - d PC + 1)]

= d (**

)

_ «* (**) = g
J

<? a? __ e"flfa; _ 2e° dx
e*-l e

x + 1 e
x -l <f + 1

~ e^ZTJ-

Art. 33. If we reverse the differential formulas of the fore-
going article, we obtain the following important integral formulas.

From d (a
x

) - **£
it follows that f**l = a% LE

I.) f ax dx = ma* — ax
:l a, and therefore

n.) fex dx = e\

Farther,from^(%
a^)=^^,it follows that/^=%^, i.e.
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/d x 1— = — loga x — I x, which is also given by the for-

mula d (I x) = —

.

v
' x

By their aid we can easily calculate the following examples:

/ e*
x~l d x = J / e

5*- 1 d (5 x - 1) = J e
ix~\

= fxdx + fdx + 2 /** (g " ^ =-gp + a? + 2Z(s-l).

xm dx = leaves

the last integral undetermined ; for putting m = — 1, it follows

/d x f* x°— = / x~l d x = — -fa constant = go + constant, but

if we put x — 1 + u, and d x — d u, we have

— == s = (1 — w 4- w2 — w3 + w4 — )du; and therefore
x 1 + w v '

/iT = /iTS = f* -u + «>-u' + U>-....)<lu

= fdu — fudu + / U* d u— f u s du +

u* u* u*

4/' rt/' 7/*

we can therefore also put I (1 + u) = u =r- + ~ — + ..., or
/w o 4

mx , , _ (x-lY (x - l)
1 (z-1) 4

With the aid of this series we can calculate the logarithm of all

numbers which differ very little from 1 ; but if we require the

logarithm of large numbers we must adopt the following method.

Taking u negative in the foregoing formula, we have

- ,H . v? u* u*
Z (
1_ M) = _ W ____ -_-...;

and subtracting one series from the other, we have
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J(l+«)-J(l-ll) =%{u + J + |_' + ...)

Hr=^j = 2 (» + ¥ + -

5
- + . .

.)
or pnttmg

1 + M # — 1
i

= x, or u = -, we have
1 — -w a + 1

This formula is to be employed for the determination of the

logarithm of such numbers as differ sensibly from 1, since

x — 1 .

t *s always less than 1.

We have also I (x + y) - I x = I (^--) = I (l +
f)

L2z + ?/
s \2x + y/ °\2x + y/ J

VI.) ? (a? + y) = Z a; + 2 [V^L- + 1 (n-^—Y+ • -1' v ^ y L2#+y 3 \2x + y/ J

This formula is used to calculate from one logarithm, that

of a somewhat greater number

/ 0,33333
J

= 2
0,01234

\ = 2m o534656 = 0,69312,
) 0,00082 (

( 0,00007

)

more exactly == 0,69314718.

Hence 1 8 = 1 2 3 = 3 I 2 = 2,0794415, and according to the last

formula, 1 10 = I (8 + 2)

= 2,0794415 + 0,2231436 = 2,302585.
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Wecan also put 12 = 11 + s[—~j + i (^Tl)

S

+ *•••]

= %(l + l-js + i--| + -...)- 0,693147;

farther, Z 5 = I (4 + 1) = 2 Z 2 + 2^ +
-J

. ~ + .... ), and rinallv

we can put 110 = 12 + 15.

(Compare Art. 19.)

Art. £24. The trigonometrical and circular functions, whose

differentials will now be determined, are of practical importance.

The function of the sine,?/ == sin. #, gives for x = 0, y — ;

3,1416
for x 0,7854..., y= ^ = 0,7071,

x = -j,y = l,forx = 7T,y = 0;

« x =
-J

7t, y = — 1, for x = 2 7T, y — 0, etc.

Taking x as the abscissa A O, and y as the corresponding ordi-

nate O P, we obtain the serpentine curve (A P Btt 02 tt), Pig. 33,

which continues to infinity on both sides of A.

Fig. 33.

1
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The function of the cosine, # = cos. «, gives, for x = 0, y — 1

;

for x = ~,y = VI; fovx = —, y = 0; for x = 7T, y =_
— 1 ; for

a; = ^; 7T, ^ = ; for x — 2 tt, y — 1, etc. ; it corresponds to exactly

the same serpentine line ( 4- 1 P — i> -^- -r 1j as the function of

the sine, but it is always a distance h tt — 1,5708 behind or in

front of the curve of the sine.

The curves, corresponding to the function of the tangent or co-

tangent,?/ = tang, a and y = cotang. x, are, however, of an entirely

different form.

If we substitute in y = tang, x, x = 0, \ it, i it, we obtain y = 0,

1, oo , and therefore a curve (A Q E) which approaches more and

more, without ever attaining it, a line parallel ^o the axis of ordi-

nates A Y, and cutting the axis of abscissas A X at a distance -

from the origin of the co-ordinates. Now if we put x, = - , tt, | n
3

we obtain y = — oo, 0, + oo, and therefore a curve (F it G), which

continually approaches the parallel lines, passing through I - ) and

(| tt), and for which these parallel lines are asymptotes. (See

Art. 11.)

If we increase x still more, the same values of y are repeated,

and therefore the function y = tang, x corresponds to a series of

curves which are separated from each other in the direction of the

axis of abscissas by a distance tt = 3,1416. On the contrary, the

function y — cot. x gives for x = 0, j. -, t, y — oo, 1, 0, — oo, and

therefore corresponds to a curve IkQ-L) which differs from the

tangential curve only by its position; it is also easy to perceive

that an infinite number of branches of the curve, as, E.G.. \M—— N\

correspond to this function.

While the curve of the Sine and Cosine forms a continuous,

unbroken whole, the curve of the Tangent as well as that of the

Cotangent is formed of separate branches ; for the ordinates for

certain values of x change from positive to negative infinity, in

consequence of which the curve naturally loses its continuity.
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Art. 25. The differentials of the trigonometrical lines or

functions are given by the consideration of Fig. 34, in which

O A = CP"== Q =a 1, arc A P = x,P Q = dx,
PM — sin. x, CM — cos. x, A S = tang, x,

Q — N Q — MP — sin. (x 4- d x) — sin. x — d si?i. x,

OP — — (0N—CM) = — cos. (x + dx) + cos. x = — d cos. x, and

8 T — A T — A S = tang, (x + d x) — ta$. x = d tang. x.

Since the elementary arc P Q is perpendicular to the radius

V P, and since the angle P C A between the two lines CP and

A is equal to the angle P Q between the two perpendicular to

them, P Q and Q, the triangles C P M and Q P are similar,

and we have

OQ
PQ

CM
~CP'

I.E.
d sin.

d x

cos. x
, whence

I.) d (sin. x) — cos. x . d x, and in like manner,

OP P M
PQ

II.) d (cos. x) =

Fig. 34.

I.E.
- d cos. x

d x

sin. x
, whenceOP'

- sin. x d x.

We sec from this, that the influence of

errors in the arc or angle upon the sine

increases as cos. x becomes greater, or as

the arc or angle becomes smaller, while on

the contrary their influence upon the co-

sine increases as sine x becomes greater,

that is, the more the arc approaches to -

,

and that finally the differential of the co-

sine has the opposite sign from that of the

arc, for we know that an increase of x

causes a decrease of cos. x, and a decrease

of x an increase of cos. x.

Letting fall a perpendicular S R upon

C Twq form a triangle S R T which is

similar to the triangle C P M, since the angle R T Sis equal to

C Q N or C P M, and we have

ST CP dtang.x 1" -^-^. I.E. ^-2r— =-
COS. X

N M

OP d tang, x

SR

C S~'C P

: but we have also

SR OS.dx .

and
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1 dx
C S = secant x — , whence 8 R — and

cos. ar cos. x

III.) i{tm&-.4 =
jjl£fr

If instead of a we substitute - — z, and instead of d x, d
(
^ — x\

— — d x,we obtain

in \ dx
d tang. ^ - x) - -

, ia,

rs
- (2

- 7J

IV.) 4 («tay; »> =- 0^,,
By inversion this formula gives for the differential of the arc

, d sin. x d cos. x . xad x = ==
s = (cos. a*) a tana, x

cos. x sin. x

= — (sin. xy d cotang. xy or

tana, x
—rr^-—™, as w
(tang, xy .

d cos. x d cotang. x

d sin. x d tana, x
dx — -__ = z.

—
,

,,
v—™, as well as

Vl - (sin. xy 1 + (t<™g- x
)

d x =
Vl - (cos. xy 1 + (cotang. xy

If we designate sin. x by y, and x by sinr 1

y, we have

dy
Y.) dsinr 1

y
Vl-tf

unci in the same manner we find

M.) dcosr l y= - -7==,

VII.) d tangr 1

y =
1 +

y
,

VIII.) d cotangr 1

y = -
1 +

y
.

Art. 26. By inversion the latter differential formulae give

1.) ,/* cos. x d x = sin. x,

II.) / sk a; d x — — cos. a-,

III.) / —^— = tang, x,J cos/ x J

IV.) / -— -.— = — cotang. x.
'J sin. 2 x a

* &in~ l
y, tang.~ l

y, etc., designate the arc whose sine is y, whose tangent

is //, etc.—Tr.
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V.) / — = sinr 1 x = — cos.~
x

x, andJ Vl ~ x*

/d x——

—

*-— — tangr 1 x — — cotangr 1

x.

-p, ,, -, . , 7/7 x d sin. x cos.x.d
From the above, since we have d (I sin. x)=—:

= r
v ' sin. x sin. x

= cotg. x . d x
} we can easily deduce

VII.) / cotg. x d x = I sin. x, and also

VIII.) / tang, x d x = — I cos. x ; further

d (I tang, x)
d tang, x _ d x d x _ d (2 x)

tang, x ~
cos. x* tang, x sin. x cos. x ~ sin. % x*

d x
whence d (I tang. I x) — —.— , and

sin. x

x
-> S4h

=

l ianff
- (t +

1)

r

l cotg
- if - !)•

1 a b a(l—x) + b(l+x)
Now putting j—^ = TT^ + r- =

(1+g)(1 _ a)
-

we have 1 = a (1 — a;) + J (1 + #)> and taking 1 4 x = 0, or x =
— 1, we obtain 1 = & (1 +1) whence a — ±, and putting 1 — # - 0.

or x = 1, we obtain 1 = 2 5 or 5 = £, whence

1 ' j.

+ r-J— ; and finally1— a;
2

1 + # 1 — a;

p dx , P dx , p dx 17 /-,.\ ,7/^ x

XL) / z ^ = j Z (^
L

), and in like manner

xii.) r^_ = .
? (^i).

7 J X* — 1 ~ \x -f 1/
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Putting Vl + x'
1 — xy,we have 1 + x' — ar y'1 and

dx(l — y*) =xydy, whence

d x _ dy i*-m and
Vl + x- 1 - f * VI - y

xiii.) /VHh? =

z

(a; + |/r +^)' and ais°

XIV
) f~v§=r{ =

' (? + ^^
^
—

—

we have only to change - into a series, by division, and then
A. ~v X

integrate each member. We obtain thus

; ^ = 1 — %* -f x* — x
r
' 4- x8 — . .

. , and
1 + x*

i .. \— I dx— I x7 d x + / xK dx— I xG dx + ..., consequently

X^ X^ X*
I.) tangr} x = x—5-+^ s— ••• etc., e.g.,

o 7

— = tangr 1

1 = 1 — ^ + -§ --4 + J— • • • > an^ the half circumference

^ = 4(l-i + i-i + i-...),or

£= te^.-1 ^=vi\i-i.i + uw-m* + ...1

whence n = 6 ^j (1 - £ + ^ - TJ y +:..) = 3,1415926 ....

In the same manner we obtain from

1

Vl
= = (1 - x-)~l = 1 + ix* + § x* 4- T%a? +...

J-—JL==Jdx + \Jx*dx +%Jxi dx+ j%Jx
e dx+..., i.e.

;

TT ,
. .

,
1^,1.3^1.3.53;'

II.) fMli^ = , +
s
_ +-_ + j:t^ + .^

E.G., £ = Sk"1

-i
= J (1 + A + ,J + WW + ...),
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1,04167

0,00469 . =
0,00070

'

0,00012

When we put sin. x = A + A t x -j- A 2 x* + A s x* + A x x
K + . .

.

,

etc., we obtain by successive differentiation

d (sin, x) _
(I x

d (cos. x) _
d x

d (sin. x)

dx
d (cos. x)

cos.x— A x + 2 A a x -f 3 A % x" 4- 4,A±x* + ...

— sin.x — 2 A 2 + 2

.

3 A 5 x + 3 . 4 A 4 x* + . .

.

= -cos.x = 2.3. A z + 2.3.4. A,x + ...

= sin. x = 2 . 3 . 4 . ^4 4 -f .^2
Now for a; = we have sin. x = 0, and cos. 9=1, therefore

we obtain from the first series A = 0, from the second ^ = cos.

= 1, from the third ^ 2 = 0, from the fourth J 3 = — -—
-, from

2 . o

the fifth A 4 = 0, etc. If we substitute these values in the supposed

series, we have the series of the sine

•As Jb Jb Jb

III.) sm.x
^ t 2 g

,

x 2 3 4 5 x. 2.3.4.5.6.7

In the same way we obtain

IV.) cos. a; = 1 — -—- +1.2 1.2.3.4 1 .2.3.4.5.6

V.) |»^=»+-T +
j^ +_

r
—- + ....«Bd

VI.) cotang. x=\ - \- '^~ - g-^To -, etc.

(See Ingenieur, page 159.)

Art. 28. When we integrate the differential formula d (u v)

= u d v + v d u, of Art. 8, we obtain the expression uv =/ udv
+ / v d u, and the following formula for integration

:

f v d u = uv — f u d v, or

/ (x) df (x) = cf> (x) f (x) - ff (x) d
<f>

(x).

This is known as the integration by parts.

This rule is always employed if the integral f v d u —
/ <t>

(x) df (x) is not known, and if, on the contrary, f u d v=
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ff\x) d x is - E-G - By means of this formula we can refer the

integration of the formula,

d y = Vl + x* . d x

to another known integral. We must substitute

x d x
<f>

(x) = Vl + it*

2

, whence d
<f>

(x) = ,-—
and / (#) = a:, whence df(x) — d x, then we have,

Vl + ar dx = x VT+H? - J a/= . >
but

17 VI + x'

x* 1 + x' 1 = VT +
Vl + x* Vl + x* Vl+x*

rx 'rX
tfl + tf>

whence it follows that

d x
fVl+x 2 dx = xVl + xl -fVl + x*dx + f jfi^-£

or

VTT^*dx = xVTT^> + J -fifg
and consequently,

I.) f.VT+*d* = }x *^% +i£^§^
= i {x Vl + x- + I

(
x + Vl + ar

2

)].

In like manner,

d x

Vl-x'
ii.) y vr^^2 ^=1^ vi-^ + j y-

= £f [x VI — X* + sm." 1

#], and

III.) /&=! tf * = j**Sv^l - j f-^r\
= i[x Vx^^l - I (m + VSf^X)}.

We have also

/(sin. x)
2 d x=fsin. x sin. xdx= —fsin. x d (cos. x)= —sin. xcos. x

+ fcos. x d (sin. x) = — sin. x cos. x +f (cos. xf dx

= — sin. x cos. x + f[l — (sin. #)
2

] d x
y

whence it follows that



78 INTRODUCTION TO THE CALCULUS. [Art. 29.

2 / (sin. x)
2 d x =/ d x — sin. x cos. x, and

IV.) f (sin. xf d x = \ (x — sin. x cos. x) — -I (x - ^ sin. 2 x).

In like manner

V.) / (cos. xf d x=± (x+sin. x cos. x)—^ (x + J- sin. 2 x), and

VI.) / sin. x cos. x dx — \ f sin. 2 x d (2 x) = — \ cos. 2 x,

VII.) / (tang, xy d x — tang, x — x, and

VIII.) / (cotg. xy dx = — (cotg. x + x).

Finally we have

IX.) f x sin. x d x= —x cos. x+f cos. xdx——x cos. x -f sin. x,

X.) f x (f d x — f x d (c
x
) = x e

x — f e
x d x = (x — 1) e*,

XI.) jlx.dx — xlx — j
- = x (I X
x v

XII.)

1), and

/xlx.d x —tr I x — / — —- = (l x — r,) —
2 J 2 x v ~ / 2

i)i

Fig. 35.

.QL

MN

Art. S9. If we wish to find the quadrature of a curve, A P B,

Fig. 35, I.E., to determine or express by

a function of the abscissas o this curve

the area of the surface A B C, which

is enclosed by the curve A P B and

its co-ordinates A C and B C, we im-

agine this surface divided by an in-

finite number of ordinates M P, N Q,

etc., into elementary strips, like MN
P Q, with the constant width d x, and

the variable length MP — y. Since

tv
r

e can put the area of such an element of the surface

dF =
^

MP + ^Qy MN= (y + ldy)dx = ydx

wc will find the area of the entire surface by integrating the differ-

ential y d x, and we have

F= f y dx;

e.g., for the parabola whose parameter is p we have if — p x, and,

therefore, its surface

F —
J Vp xd x = Vp I x* d x s= \

A

' = 3 x Vp x = I x y.
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The surface of the parabola A B C is therefore two-thirds of

the rectangle A G B D which encloses it.

This formula holds good also for oblique co-ordinates inclined

at an angle X A Y = a, e.g., for the surface ABC, Fig. 36, we

have when we substitute instead of B C— y the normal distance

B N— y sin. a

F = sin. a f y d x,

E.G., for the parabola when the axis of abscissas A Xis a diameter,

and the axis of ordinates A Y is tangent to the curve, we have

y = Pix
p x

(See " Ingenieur," page 177.)
sin. a

and F = | x y sin. a,

i.e., the surface A B C = | parallelogram A B C D.

Fig. 37.

For a surface B C Cx Bx
= F, between the abscissa ACX

= c*

and A C — c, Fig. 37, we obtain, according to Art. 17,

F=f
l

ydx.

E.G., for y

'-/.
i a? d x

x
= a9

(I Ci — I c),

i.,., F=anQ
The equation — corresponds to the curve P Q, Fig. 38, dis-

(Hissed in Art. 3, and if we have A M = c and A N = d, the area

ftf the surface MN Q P is
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F *>®
Fig. 38, If we suppose, for simplicity,

that a = c = 1, and c, = x, we
obtain

F = Ix;

I hence the surfaces (1 M P 1),
'

rt (1 N Q 1), etc., are the Naperian

logarithms of the abscissas A M,
A JSF, etc. The curve itself is the

so-called equilateral hyperbola in

which the two semi-axes a and b

are equal ; hence the angle formed

by the asymptotes with the axes is a = 45° ; and the right lines

A X and A Y, which approach nearer and nearer the curve with-

out ever attaining it, are its asymptotes. In consequence of the

relation between the abscissas and the area of the surfaces, the

Naperian logarithms are often styled hyperbolic logarithms.

We can put every integral fydx — f'${x)d x

equal to the area of a surface F, and if the inte-

gration cannot be effected by means of one of the

known rules, we can find it, at least approximately,

by calculating the area of the corresponding

surface by means of a well-known geometrical

device.

If a surface A B P Q N, Fig. 39, is deter-

mined by the base A N = x, and by three equi-

distant ordinates A B — y , M P = #„ N Q
= y2, we have the area of the trapezoid

ABQJST^F^iyo+y.^;

and that of the segment B P Q S B, if we consider B P Q
to be a parabola

Fs = % PS.BB = i {MP ^ MS) . A N= lU-^^x.
Hence the entire surface is
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- U (yo + y2 ) + |yj« = (y<> + 4y, + y2).|

If we introduce in the equation a mean ordinate y and put

F^x y, we obtain

__#o + 4yr +
2/=

In order to find the area of a surface, lying above a given base

M N= x, and determined by an uneven number of ordinates

.</o> yu y-2, y* •
'•

« y*> by which it is divided into an. even number
of equally wide strips, we have only to make repeated application

of this rule. The width of a strip is -, and the area of the first
n

Fig. 40.

M

pair of strips is

_ y + 4 y1 +y3
- 2x

B 6 *
9»

'

of the second pair

__ #» + 4y, -fc.y4 2z
G ' w '

of the third pair,

N _y4 + 4y5 + y6 2z
etc.

6 w
and the area of the first six strips, or of the first three pair, for

which n — 6, is

' F=
fift + 4 y, + 2 y2 + 4 y3 + 2 y4 + 4y5 + y6)~

fob + y6 + 4 (y> + y3 + y5 ) + 2 (ys + y4)] ^;

it is easy to perceive that the area of a surface divided in four pair

of strips is

F= bfo + y8 + 4(yj + y, + y5 + y,) + 2 (y2 + y4 + y.)] ~,

and in general, for a surface divided in w strips, we have

^= l>o+ S?.+ 4 (y,+ y3+ ... + yn_,) + 2 (y2 + y4 + ... + y„_2 ) ]^
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and the mean altitude of such a surface is

v
_ Vq + y» + 4 (yi + v* +'••• + y*-0 + 2 (y, + y4 + - + y»-«)

^ 3 n

in which m must be an even number.

This formula, well known under the name of Simpson's Rule

(see "Ingenieur," page 190), can be employed for the determina-

tion ofan integral / ydx—j (x) d x, if we divide x — cx
— c

into an even number n of equal parts, and calculate the ordinates

y» = {c),yx
=

(f> [c + |), y2 = (c + -^-),

y3 = (c + -£-). . . up to yB = (»),

and then substitute these values in the formula

/ y d x = I (f>(x) dx

~ [yo + y„ + 4 (yt + y3 + .. + yn__,) + 2 (y2+ y4 +..+ y*_2 ) ]
~

e.g., / — gives, since here cx—c=2—1=1 and y= (#) = -,

when we assume n — 6 or - = -*-^— = hno
y = \ = 1,0000, ^-1=1 = 0,8571, y2 = § = | = 0,7500,

1 6 6

#3 = |-| =0,6666, y4=jW,6000,y5=^=0,5454, and y6=0,5000,

therefore

y + y6 = 1,5000, # + y, +'y, = 2,0692, and y2 + y4 = 1,3500,

and we1

have the required integral

p"1 J v 12 4768

y ^=(1,5000+4.2,0692+2 . 1,3500) . TV=^^= 0,69315.

From Art. 22, III, we have

/*— = I 2 - / 1 = 0,693147.

We see that the results of the two methods agree very well.
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Akt. 3 1 . Further on, another rule will be given which can be

employed for an uneven number

of strips. If we treat a very flat

segment A M B, Fig 41, as a seg-

ment of a parabola, we have from

Art. 29 the area of the same,

CDE AB.MD,
or, if A I7 and B T are the tan-

gents at the ends A and B, and therefore G T = 2 G M, we have

§ of the isosceles triangle A S B of the sameF=l AB.TE

height, and therefore = f A G. CS = | A G2
tang. SAC.

The angle SAC = SBCia = TAG+TAS= TB G -
TBS; putting the small angles TA #and TBS, equal to each

other, we obtain for the same

TAS=TBS=^-°~
TB G-TAG

, and

TAC+TBC 6 + e

Fig. 42.

SAC=TAC +
2 % t

.

s

when we denote the tangential angles TA Gand TB Gbyd and e.

Now since ^t C=BG=±AB = ± the chord 5, we have

This formula can be employed for the portion of surface

M A B N, Fig. 42, whose tangential

angles T A D = a and T B E = ]8

are given
;
putting the angle formed

by the chord BAD = ABE-o,
we have

TAB = 6 = TAD- BAD
— a — a and

TB A = e = ABB - TBE
— a — (3, whence

6 -f e = a — /3,

and the segment over A B

111) '

2 /

or, since a

F
(3 is small,

1 oS

^= j^tang. (a - 0)

to#. I

—

s
2

/ to#. a — tang. (3 \

12 u + tang, a tang, fir
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or since a and j3 differ but little from each other, and therefore we
can substitute in tang, a tang. (3 instead of a and j3 the mean value

o, we have

„ '
, n tana, a — tang. (3 t , „ ,

,

F= T* S
''

1 + tang, £
= T5 S C0S

'
a (tan^' a " tan9' W'

and substituting for s cos. o the base MN = x,

F=^(tang.a-tang.p),

therefore the area of the entire portion of surface MA B N, when

yd and yx
designate its ordinates MA and N B, is

X X^

If another portion of the surface NB G adjoins the first and

has a base JY = x, and the ordinates B N and G = yt and

yS3 and the tangential angles S B F = (3 and S G G = y, we have

for the area of the same

x x*
f* = ti/i + y*) 2 + (tan0- P - tan9- y) j£>

and therefore for the whole surface, since— tang. (3 cancels 4- tang. (3,

x*F= Ft + F2 = (hyo+yi + i yd V + (tang. a - tang.y)—.

For a surface composed of strips of like width we have, when a

is the tangential angle at the commencement and 6 at the end,

x1

F^ (2 2A> + Vi + 2/2+ 2 Vz) % + (tow^r. a - forap. (5)—

,

and in general for a portion of surface, determined by the abscissas

-, .—; 7T—,..%, and bv the ordinates
n n n J

tangential angles a and an of the ends,

iyo + 2/1+^2 + ••• +

+ T^(tang.a-tang.an)^

x ? x 3 x
~i—>

—- • • • #j and by the ordinates y yif y2 . . . y„, and by the

^=(i2A> + 2/i+#2 + ... + Vn-l+iVn)^

An Integral

/ y dx — (p{x) dx

= (J 2/0 + 2/1 + y» + • • + 2/»-i + \ y>)

T^ (te(7. a — to#. an) ( -
)
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can be found by putting x — cx
— c, calculating the values

Vo = 0(c), yi = [c + ^),y3 = [c + -^j,

, I 3a;\ / nx\ /
,

'

.

y3 = ^ -f —j . .
. , yn = $ \c + —

-

J
=

(CX ),

as well as tang, a — -^ = \p(x)=\p (c) and ta#. an= -0 (ci), and sub-

stituting them in the equation.

P2 d x
E.G., for / —^we have, if we take n = 6, since

«/i
. #

.

a; = Ci — c — 2 — lxtnd?/ = (a:) = -,

, . d y d (x~x

) 1
also, since -~ = —~—- = T,d x d x x*

tang, a = — \ = — 1 and to#. /^ = "~(9/ = "*i? an^ therefore

r^ = (i+f+l+f+T60+T6T+^).H(-l+i).T^.
2d^
X

4,1692

36

- I • -h •A = 0,69487 - 0,00173 = 0,69314.

(Compare the example of the last article.)

Aet. 39. To rectify a curve, or from its equation y =f(x) be-

tween the co-ordinates A M — x and MP = y, Fig. 43, to deduce

an equation between the arc A P — s and one or other of the

co-ordinates, we determine the differential of the arc A P of the

curve, and then we seek its integral. If x be increased by a quan-

tity MN = P R = d x, y is increased by R Q = dy, and s by

the element P Q = d s, and
according to the Theorem
of Pythagoras we have

Fig. 43.

M N

P Q*=P R*+QR\
I.E.,

d.s
2=dx*+dy\

ds=* Vdx* + dy2

,

hence the arc of the curve

itself is

s =f V dx* + d y\
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e.g., for Neil's parabola (see Art. 9, Fig. 17), whose equation is

a if— x% we have 2 a y d y = 3 x1 d x, whence

7
3x*dx

3

'

„ 9 a.-

4 dx1 Sxdx*
dv — —^ and d y = ——7-^- = —-——

,

3 2 ay * 4: a' y* 4 a '

and d s
2 = ( 1 + ^— 1 ^ #\ hence

V 4«/

•s=M+4-:^=¥/(^a'* .6-3

4a/1 ,, 4»„ , „ .//
1 ,

9z\ s

In order to find the necessary constant, we make s begin with :/-

and y, and we obtain

== t,
8
7 a VV -f Cow., or CW. = — ^ a

and s=A«lV(1+ t!)

a - 1
}

e.g.
? for the piece A Px whose abscissa x = a, we have

« = 2
8
7 a [ V^) 3 - 1] = 1,736 a.

Introducing the tangential angle QPR = PTM— a (Fig

43) we have

Q R = P Q.sin. Q P Rtm&P R= P Q cos. Q P R,

i.e., d y — d s sin. a and d x = d s cos. a,

and besides, tang, a — --M (see Art. 6),

also, sin. a = ^M and cos. a = -j—
; and finallv,

d s as

r Art

—-1—r-
7 r & v r d *

s = / V 1 -j- tana, a . 02 = / -—-— = / .«/•.'..'.«/ sin. a O cos. a

If the equation between any two of the quantities x, y, s and a

is given, we can find the equation between any two others.

If, E.G., cos. a — — . we have
Vc* + s*

7 7 s d s ,

d x = d s cos. a = — , and

f s d s , f 2 s d s . Pd u . / , 7

J
i/c

* + s
» *t/ 4/c

2 + ^ "V */^ -«/

= iV + s
2 + Const., and if a; and 5 are equal to zero at the

same time, x = re" + s
2 — c.
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Art. 33. A right line perpendicular to the tangent P T, Fig.

44, is also normal to the curve at the point of tangency, for the

Fig. 44.

tangent gives the direction of the curve at this point.

The portion PK of the line between the point of tangency P
and the axis of abscissas is called simply the Normal, and the pro-

jection of the same MK on the axis of abscissas the Subnormal.

We have for the latter, since the angle M P Kis equal to the tan-

gential angle P TM = a,

MK= M P .tang, a,

i.e., the subnormal = y tang, a = y d

Since for the system of curves y = xm, tang, a — m xm~\ it fol-

VYl if
1

lows that the subnormal h = m xm . xm
~A — m £2m_1 =; ——, and

x

for the common parabola, whose equation is if = p x, we have the

subnormal == y that is constant.

If to a second point Q, infinitely near the point P, we draw

another normal Q C, we obtain in the point of intersection of

these two lines the centre (7 of a circle which can be described

through the points of tangency P and Q. It is called the circle of"

curvature, and the portions C P and C Q of the normals are radii

of this circle, or, as they are styled, the radii of curvature. This

circle is the one of all those, which can be made to pass through P
mid Qy which keeps closest to the element P Q of the curve, and

we can therefore assume that its arc P Q coincides with the ele-

ment P Q of the curve. It is called the oscillatory circle.

Denoting the radius C P = C Q by r, the arc A P of curve by

•s- or its element P Q by d s, and the tangential angle or arc of

P TMhj a, and its element SUMS T M, i.e.,- U 'S T ' = -
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P C Q by da, we have, since P Q=CP . arc of the angle P C Q,

d s=—r d a, whence the radius of curvatures r = —

Fig. 45.

da

T • A M S k ^

We can generally determine a from the equation of the co-ordi-

nates by putting tang, a = -=-?

Ct X

Now d tang, a = -— and cos. a ——-. whence
cos? a d s

da = cos.
2 a . d tang, a =

d s

d x'

17~. d tang, a and

ds 5

d r d tang, a'

ds z

and for a

Fig. 46

cos.'
2 a d tang, a

•o .
d s

i> or a convex curve r — 4- ^— = +
da d x a tang, a '

point of inflexion r = op.

For the co-ordinates A — u and C — v of the centre C of

curvature, we have

u—A M+H C=x+ C P sin. CPU, i.e., u=x+r sin. a, and

v=0 C=MP-HP=y-CP cos.C P H, i.v.,v=y-r cos. a.

The continuous line formed

by the centres of curvature forms

a curve, which is called evolute

of A P, and whose course is de-

termined by the co-ordinates u

and v.

If the ellipse A D A
x D» Fig.

46, is laid upon the circle A B
A

y Bi, its co-ordinates C M — x

and M Q = y can be expressed

by means of the central angle

PCB = (pof the circle. We have

here
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= CPsin. CPM = C P sin. B CP = a sin. <f>, ml

y = MQ = -MP = - CP cos. CP3f= bcos.ct*.J ^ a a

From the latter we obtain d x = a cos. <j> d
<f)

and d y' = — b

sin. d 0, and consequently for the tangential angle of the ellipse

QTX=a
. dy b sin. b ,

• .,

tana, a = --^ = — — tana. 0, and for its com-.J d x a cos. a

plementary angle Q T C = a
x
= 180°— a,

tang, a, = - tang. and co^. e^ = - C0&7. 0.

Hence the subtangent of the ellipse is

MT= MQ cotg. MTQ

- y cotg. a, = -^ cotg. = y%
cotg.

<f>,

when y x
designates the ordinate MP of the circle. Since the tan-

gent P T to the latter is perpendicular to the radius C P, we have

also P TM=P C B=(j>, and therefore the subtangent M T of the

same is also = MP cotg. MT P—y
x cotg. <p.

Therefore the two points of the ellipse and circle
fwhich have

the same ordinate, have one and the same subtangent.

Farther, for an elementary arc of the ellipse

d s
2=d x- + dy'= (a' cos.

2 + V sin.' 0) d 2

,

and the differential of tang, a,

d tana, a = d tana. =
,J a y a cos.'

whence it follows that the radius of curvature of the ellipse is

d s
3 _ (a* cos.' + ¥ sin.' 0)1

d x l d tana, a „ , ,
bJ

a* cos.
2

.

a cos. 2

_ (a
2
cos.' + y sin.' 0)f

a b

e.g., for y = 0, i.e., for sin. = 0, and cos. = 1, we have the

maximum radius of curvature

Vm ~ ab~ b'
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and, on the contrary, for = 90°, i.e., for sin. = 1 and cos. <p

— 0, the minimum radius of curvature

V I
2

rn = -r = -
ao a

The first value of r corresponds to the point D, and the last to

the point A, and both are determined by the portions of the axes

GL and C K, which are cut off by the perpendiculars erected upon

the chord A x D at its ends A
x
and D.

Akt. 34. Many functions, which occur in practice, are com-

posed of the various functions which we have already studied,

such as

y — xm
, y = e

x
, and y = sin. x, y = cos. x, etc.

;

and it is easy, with the assistance of the foregoing rules, to deter-

mine their properties, such as the position of their tangents, their

quadrature, their radius of curvature, etc., as well as to construct

the curves, as is shown by the following examples

:

For the curve, whose equation is y = x%
1 1 — -) = x2 — ^ x\

we have d y — 2 x d x — x1 d x,

Avhcnce tang, a = 2 x — x2 = x (2 — x).

Since this tangent becomes = for x = and x = 2, its direction

at these two points is parallel to that of the axis of abscissas.

Farther, d tang, a = 2 d x — 2 % d x = 2 (1 — x) d x,

whence for x = 0, d tang, a = + 2 d x,

and for x = 2, d tang, a = — 2 d x,

and therefore the ordinate of the first point is a minimum, and that

of the second point a maximum. If we put d tang, a = 0, we ob-

tain x = 1 and y — |, the co-ordinates of a point of inflexion in

which the concave portion of the curve joins the convex.

Farther, for an element d s of the curve we have

d s
a = dx2 + d f = dx2 + x2

(2 - xy d x2 =[1+ x2
(2 -xf] d x\

whence the radius of curvature is

_ ds*

- [1 + x2

(2 - x)
2]l

t

d x2 d tang a
~

2 (1 — x)

— 1 •
• 2*

e.g., for x = we have r = -—- == —
J, for x = 1, r == — jr = oo,

for x = 2, r = ^ = + h and for x=3, r = j . 10?= +7,90G.



Art. 34.] INTRODUCTION TO THE CALCULUS. 91

The corresponding curve is shown in Fig. 47, in which A is the

origin and XX, Y Y the

axes of co-ordinates. The
parabola B A Blf which ex-

tends symmetrically upon

both sides of the axis of A Y,

represents the first part y x =x'
i

of the equation, and, on the

contrary, the curve C A C19

which upon the right-hand

side of Y Y descends below

XX, and on the left-hand

side rises above it, and thus

diverges more and more from

the axis X X, as it increases

its distance from Y Y, cor-

responds to the second part

y, = -
J x\

In order to find for a given

abscissa x, the corresponding

point of the curve y = x* —
\ x3

, we have but to add alge-

braically the corresponding

ordinates of the first two

curves ; e.g., since for x ==

1

we have yx =l and y.2 = — 4,

it follows that the correspond-

ing ordinate of the point W
is y[= yx + y, = 1 - i

.'=
1

;

farther, for x = 2 we have

yx
— 4, and y.2 = — f , and

hence the co-ordinate of the

point M is y = 4 —f = f

.

In the same way x == 3 gives

y — Vx fy3 = 9-9 = 0;x=--

4V=iC- ¥=-¥;.* =
-1, y•= 1 + \ = I ; a; = - % y = 4 + 'f

~
§?, etc., and we per-

ceive that the curve from A towards the right has the form A W
MK L, and that in the beginning it runs above the abscissa A K
= 3, but from that point it extends to infinity below the axis
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X X, and that from A towards the left it forms but one branch

A P Q . . ., which rises to infinity. From what precedes we see

that W is a point of inflexion, and M a point of the curve where

the ordinate is a maximum. While the curve has in A and M the

direction of XX, in Wit rises at an angle of 45
°, for we have for

the latter tang, a = x (2 — x) = 1 ; on the contrary, the angle of

inclination at X, is tang, a = — 3, consequently a is = 71° 34',

etc. The quadrature of the curve is given by the integral

F— J y d x = J (x
i— | z3

) dx — I x 1 d x — \ J x* d x

_ X* XK

__ Xs
/ x\

~ 3 .

"""
12 ~ T I - V'

Hence, e.g., we have for the area of the portion of surface

A WMKnhoYeAX=3

and on the contrary the area of the portion of surface 3 L 4 below

the abscissa 3 4 is

^ = 4!(i-i)-^(i-f) = o-f = -

3 v 4/
3

r

Finally, to find the length of a portion of the curve, E.G., A WM.

we put

s =J Vl + x* (2 - x)
2 dx =f\ (x) dx,

and employ the method of integration explained in Art. 30. Here

c is = 0, and c x
= 2, and taking n — 4 we have d x =——

o o= —— = \, then substituting successively the values 0, -}, 1, | and

2 for x in the function <j> (x) = V 1 + x2

(2 — x)
2
, we obtain the

values

(o)= 4/1=1, <p q)= 4^r+7g =f,</> (i)= ^r+i^ ^=i,4i4....

</> (i)= ^1+^%=! and (2)= Vl=l,

and therefore the length of the arc A WM is

8 = (0(O)+4 0a)+2 0(l) + 4 0(;l) + 0(2))|^|

= (l + 5+2,828 + 5 + l).i = 2,471.
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By means of the curve y—x% (1— - 1 we can easily determine the

course of the curve y—xyl—^ by extracting the square roots of

the values of the co-ordinates of the first, which give the corre-

sponding co-ordinates of the latter. But since the square root

of negative quantities are imaginary, this curve does not continue

beyond the point K to the right ; and since every square root of a

positive number gives two values, equal and with opposite signs,

the new curve (//) runs in two symmetrical branches Q A MK
and Qx

A Mx K on both sides of the axis of abscissas.

(b (x)
Art. 05, When the quotient y = of two functions (x)

and ip (x) takes the indeterminate form of - for a certain value a

x* — a2

of x
y
which always occurs when, as e.g., in y — —, the numer-

x ct

ator and denominator of a fraction have a common factor x — a,

we can find the real value of the same by differentiating the nu-

merator and denominator.

If x is increased by d x, and y by the corresponding element

d y, we have

y + d y =
, , ;

..
, ; { , but for x = a3 J

ip (x) + d ip (x)'

(x) = and 0. (#) = 0, whence

, d (x)

y + d y = 7 , / ( ;* J dip (x)
'

but since d y is infinitely small in comparison to y, we have

. _ (x) _ d (x) _fa (x)

:V xp(x) dip(x) fa{x)'

in which fa (x) and fa (x) designate the differential quotients of

(x) and -0 (x).

(x) .

If y = y-r-v, is also = -, we can differentiate it anew, and put

'.:
y

dfa(x) fa(x)'

In the same way the indeterminate expressions y = -~~ and
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x oo, etc., can be treated, for oo = -, whence -|§ and x cc

can be put = -

:

3 tf _ 7 x* _ 8 x + 20 . .
rt™* *

=
5 g'-ai^ + 24V=1 becomes for * = % y = o-

For this we can put

d (3 xs - 7 x* - 8 x + 20) 9 a;
2 - 14 a; - 8

V ~ d (5 a;
3 - 21 a* + 24 a; - 4)

~ 15 x2 - 42 a: + 24'

which for x = 2 gives again y — -, and we can again put

d (9 a;
2 - 14 x - 8) _ 18 x - 14 _ 9 a; - 7 _ 11

^ ~~
d (15 a;

2 - 42 x + 24)
~ 30 a; - 42

"~
15 x '- 21

~ = ¥*

The factor (x — 2) is really contained twice in the numerator,

and twice in the denominator. If we divide both by x — 2, we

obtain

_ 3 x9 - x - 10
y ~ 5 x* - 11 x + 2'

and dividing the last again by (x — 2)

Sx + 5

which for a; == 2 gives ^ = —-.

^~5a-
Ll

9~

We have also for y — when x — 0, -,J x '

but since d (a — Va? — x)~ — d (a
1 — x)\ = A

—

in this case y = ,
== =-

;

Vc?-x %a

further y = -
'

, for x = 1, gives # = -,

Vl — x o

f7 a; i —' 6? a;

but dlx — -"JT and ^7 yl — a; =

1 .WTl 4--U
%Vl-x 2.0

hence it follows that y = = —

-

*
a; 1
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Finally, y = —- .- gives for a = - (90°)J ' * — 1 + MW. X + COS. a &
2 v ;

1-1+0 , ...
# = — 1 4- 1

— =
n'
we ve tnere*ore

d (1 — sk a; + cos. x) — cos. x — sin. x
y = * ' —
J d(—l + sinx + cos.x) cos. x — sin. x

Art. 36. When, for a function y• = a u + (3 v, a series of

corresponding values of the variables u, v and y has been deter-

mined by observation or measurement, we can require the values

of the constants a and (3 which are the freest from accidental or

irregular errors of observation and measurement, and which

express most exactly the relation between the quantities u, v and

y, of which u and v are known functions of one and the same

variable, x. Of all the methods that can be employed for the

resolution of this problem, i.e., for the determination of the most

possible, or the most probably correct, values of the constants, the

method of the least squares is the most general, and rests upon the

most scientific basis.

If the results of the observations corresponding to the func-

tion y = a u + j3 v are,

^3> V39 y*

un> vn, yn

we have the following values for the errors of observation, and for

their corresponding squares.

2i = &'- (aid + (3v
x )

z, = y*-- (a u2 + 0O
Zz -w-- (au3 + 0i>8)

2» F Vn — (« K + (3 vn)
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z?—y?— 2aUi yi—2 [3 v x yx + a2 u 2 + 2 aj3u 1 v 1 +(3
2
v 2

$*—y*— 2au 2 y*—2 (3 v2 y2 + a2
u.{ + 2 a (i u s v% + (3

2 v£

\%z=yz— 2auz yz
—2 (3 v3 yz+a2 u£+% a (3 uz v3 + (3

2
v

2

{

zn
2=yn

*- 2aun yn-2p vnyn + a> un*+2 a(3un vn +(3
2

vn
2

Employing the sign of summation 2 to denote the sum of

quantities of the' same kind, y
2 + y

2

-f y
2 + . . . + y

2 = 2 (y
2

) y

Vt yx + v, y% + vz y3 + . . . + vn yn = 2 (v y), etc., we have for the

sura of the squares of the errors

2 (z
2

) = 2 (y
2

)
- 2 a 2 (u y) - 2 (3 2 (v y) + a2 2 (u

2

)

+ 2 a (3 2 (u v) + & 2 (y
2

).

In this equation, besides the sum of the squares of the errors

2 (z
2

), which is to be considered as the dependent Variable, only

a and j3 are unknown. The method of the smallest squares

requires us to choose such values for a and ft as shall cause 2 (z
2

)

to be a minimum ; and therefore we must differentiate the

function 2 (z
2

), which we have obtained, once in reference to a

and once in reference to (3, and put each differential quotient

of 2 (z
2

) thus obtained by itself equal to zero. In this way we
obtain the following equations of condition for a and ft

-2(w^) + al (u
2

) + (3 2 (u v) = 0,

- 2 (v y) + j3 2 (v
2

) + a 2 (u v) = 0,

and resolving these we have

_ SWl(«y)-I(«!))S(t>y) ,

2 (w
a
) 2 (V

2

)
- 2

(tt
v) 2 (ti *,)'

anU

2(V)2 (vy) — 2(^^)2 (w«)
,a _ .

'
'

^

=

A*)M%-*1?4*&% -

(See IngeMeur' page 77°

These formulas give for a function y — a + (3 v, since here

u - 1, and 2 (u v) = 2 (v), 2
(
M y) = 2 (y), and 2(w2

) = 1*1
+ l+...= w, i.e., the number of equations or observations,

Z(v2)2(y)-2(v)2(vy)
n 2 {v

2

) - 2 (v) 2 (?) '

fl = ttS(t,y)-S(t,):S(y)
H

rc 2 (v
2

) - 2 (*>) 2 (v)

For the still simpler function y — (3 v, in which a = 0, we have

a- * fry)
' 2 (*,

2

)
'
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and, finally, for the most simple case y = a, where we have to de-

termine the most probable value of a single quantity.

. = £&>
n

that is the arithmetical mean of all the values found by measure-
ment or by observation.

Example.—In order to discover the law of a uniformly accelerated mo-
tion, i.e., the initial velocity c and the acceleration p, we have measured
the different times t

1
,t

2
,t3J etc., and the corresponding spaces 8ly s2J sa ,

etc., described, and have found the following results,

Times . . . o i 3 5
|

1

7 io sec.

1 I

j
Spaces . . . o 5 20 33

1

58A
|

101 feet.

p t"
Now if * = e t + — is the fundamental law of this motion, we are re-

quired to determine the constants c and p. Putting in the foregoing for-

mulas u = t, and v =t\ and also a = c
} p = | and y = *, we obtain for

the calculation of c and p the following formulas :

c = 2 (*
4

) 2 (st) - 2 (O 2 (s t>)

2 (t?) 2 (t*) - 2 (*
3
) 2 (*

3

)

i> = 2 (£
2
) 2 (s ?) - 2 (O 2 (s t)

2 ~ 2 (*
3
) 2 (t

4
) - 2 (?) 2 (*

3
)

'

from which the following calculations can be made,

and

\

1

1

f tf

4
s S*

j !

1 1 1 5 5 1 5 1

3 9 27 81 20 60 180
5 25 125 625 38 190

I
95°

7 49 343 2401 58-5 409.5 2866.5
10 100 1000 IOOOO 101 1010 IOIOO

Sum 184 1496 13108 222.5 1674.5 14101.5= 2 (f) =S(f) = 2 (0 =*'(•) =s(«0 =2(sf).
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from which we obtain

13108 . 1674,5 -
c =

184 . 18108 - 1496 . 1496

184 . 14101,5 - 1496 . 1674,5

1496 . 14101,5 _ 85340 _
17386

~~

89624
*P ~ 184.13108-1496.1496 ~~ 173860

:

Whence the formula for the observed movement is

s - 4,908 * -f 0,5155 t\

and from this formula we have

4,908 feet, and

= 0,5155 feet.

For the times . o 1 3 5 7 10 sec.

For the spaces o 5-43 19.36 37-43 59.62 100.63 &et

Pig. 48. b If we consider the times

(t) as abscissas, and lay off

the calculated as well as

the observed spaces (») as

ordinates, we can draw a

curve through the extrem-

ities of the calculated ordi-

nates, which will pass be-

tween the points M, JVJ 0, P,

Q, determined by the ob-

served co-ordinates, so that

the sum of the squares of the

deviation of the curve from

these points shall be as small

as possible.

Akt. 37. If we have no formula for the successive values of a

quantity y, or for its dependence

upon another quantity x, and we
wish to determine its value for a

given value of x, determined by

experiment, or taken from a table,

we employ the so-called method

of interpolation, of which only

the most important part will be

given here.

If the abscissas A Jf = xt,

A Mx
— x

x
and A M2 = x», Fig.

49, and the corresponding ordi-

nates M P == y , Mx
P

x
— y Xi

M« P2 = #2 are given, we can

Fig. 49.
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express the ordinate MP—y, corresponding to the new abscissa A M
—x, by the formula y—a +j3 x + y x% provided three given points P ,

P19 P2, he nearly in a straight line or in a slightly curved arc. If we

change the origin of co-ordinates from A to M , the' generality of

the expression will not be affected, and we obtain for x = simply

y = a, and consequently the constant member a = yQ. Substi-

tuting in the supposed equation, in the first place x
x
and y x, and

then in the second place x2 and y.2, we obtain the two following

equations of condition,

y\ — y = 'P %\ + 7 %\, and

y.2 — y = (3 x2 -f y x2 , hence

n-M- ffo) x " - (y» ~ 2/o) x*

'Jb\ %Mj<^,
~ Jb^ JL]

-, and

= (yi - yo) s» - (y» - yo) ^

from which we have

y=yQ + / (yi.-yo) a;8
,

-(y^yo) a;A ^ +
/(y1-yo)^--(y2-yo)^\ ^

\ «X/| Jut} Jb^ %ls\ / \ 4.C-J *t/2 ^2 *^1 /

If the ordinate yx
lies midway between y and #2, we have x.2 —

2 xx, and therefore more simply

If but two pair of co-ordinates x
, yQ9 and xx , y x

are given, we

must regard the limiting line P P
x
as a straight line, and conse-

quently put y — y + J3 x

and y x
= y + (3 xXf

whence we have (3 — ™
^, and

= y„ + (")
"When it is required to interpolate by construction between

three ordinates yQ , yx , y2 a fourth ordinate y, we draw, through the

extremities P , P x , P2 of these ordinates a circle, and take y = to

the ordinate of the same. The centre C of the circle is determined

in the usual way by joining the points P Px P2 by straight lines

and erecting perpendiculars at the middle points of the chords.

The point of intersection C of the perpendiculars is the required

centre.

If the distances of the middle point Px
from the two others P
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and P2, are s and $ £, and the distance Px K of the point P from the

chord P P2 = Si — h, we have for the angle at the periphery

a — P, P P2 = I the angle at the centre Px C P2

sin. a
h

s

and consequently the radius of curvature C P = CP = CPx
=

2 sin. a 2 7^

consequently we find the centre C of the circle passing through the

points P , Pu P2, by describing from P or Px or P2 with a radius

equal to the value of r, calculated by means of this formula, an arc

whose intersection with the perpendicular to the chord P P2 erected

at its centre D is the required point.

Aet. 38. The mean of all the ordinates upon the line M M^ is

the altitude of a rectangle M M^ jV2 N with the same base M M*
and having the same area as the surface M M* P2 Pi P , and can

therefore easily be determined from this surface. According to

Art. 29 we have

F — y cl x = J
2

(y + j3 x + y x2

) dx

- % x> +
2

-. +
3

= y x, + (
(//l ~ ^o) ^ ~~ (^2 ~ y^ x *

\ ^
\ X\ X% ~—

" iCg *^i / "

+ /^i - ?/o) ^ - (y» - y.) ^A rf

\ 3^i X% — X% X\ I O

- L 4. fa - y.) ^2 _ (y»-y,)(3a?i-2g,) \

""
V° 6 ^ (z2

- x
x)

6 (s8
- x

x ) J *

= (it+*) ,2 + fr
- *) * - (* - y-> *

) ^
\ 2 / V 6 ^ (#2

— Xj) /

and consequently the mean ordinate is

„ .._
F _ (y. + y») , /(yi-y.)s»-(y»-y.)3A „

?V"^~ "2 + V~ 6^-^) /

If ^

—

d° were = _J ^e kounciarv WOuld be a right line, and
yi - y a

*i

we would have simply

*=(H*)*
aud ^ =^fH
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Fig. 50.

If also x2 = 2 x
Y, that is, if y1 is equidistant between y and

y.2, we have

F= {yQ + ± yi + yj I (see Art. 30), and ym ^±Ml^JL\

If a surface Jf if3 P3 P i
Fi#

50, is determined by four co-or-

dinates M P = y M
x Px

= y x ,

M, P2 = y2, M3 P3 = yZi which
are equidistant from one an-

other, we can determine approx-

imately the area of the same in

the following simple manner

:

Let us denote bya:3 the base

M M3, by z zx z3, three ordinates

intercalated between y and y3,

and equidistant from each other,

Vj}h K z MaN3

we can then put approximative^ the surface

M M% Ps P = F=(£y
9 + Zl +z,+ z3 + J y3)

-J;
but

Zi + z -2 + z3 _ 2 zx + 2 z.2 4- 2 z3 2 z x + z, 2 z3 4- z, ,

3
— ' ~6~ ~6~~ + 6 and

ffi
= * + \ (z, - z

x ) = **+-*
as well as y, = l?l+J>

whence it follows that
Zx + Z2 + Z3 + y<.

, and

^=Hsr» + l(y. + y.) + iyj|!

ym =

b/o + 3{y^+ y.) + ya] y, and

yo_+_3 (y» + y») + ^
8

While the former formula for ym is employed when the surface

is divided into an even number of strips, the latter is employed
when the number of these divisions is uneven.

Hence we can write approximately

£v d x = /% (*) dx = [yQ + 3 (yx + *) + y,] ^-C
, if
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y> = (c)>yi = (~V"~)' #* = ^ (- 3--) and y» = * fa) arc

— (see example, Art.

HO) we have c = l,Ci = 2 and (a;) = -, whence it follows that

3 3
?..= t = *># === 2iT2

= hfh = r^ri = s and y = 2> and that

the approximate value of this integral is

/^=[l + 3(f + f) + iH=ig = 0,694.



PART FIRST.

GENERAL PRINCIPLES OF MECHANICS.





FIRST SECTION.

PHORONOMICS OR THE PURELY MATHEMATICAL
THEORY OF MOTION.

CHAPTER I.

SIMPLE MOTION.

§ 1. Rest and Motion.—Everybody occupies a certain posi-

tion in space, and a body is said to be at rest, (Fr. repos, Ger. Ruhe).

when it does not change that position, and, on the contrary, a body

is said to be in motion, (Fr. mouvement, Ger. Bewegung), when it

passes continually from one position to another.

The rest and motion of a body are either absolute or relative,

according as its position is referred to a point which is itself at rest

or in motion.

On the earth there is no rest, for all bodies upon it participate

in its motion about its axis and around the sun. If we suppose

the earth at rest, all the terrestrial bodies which do not change

their position in regard to the earth are at rest.

§ 2 Kinds of Motion.—The uninterrupted succession of po-

sitions which a body occupies in its motion forms a space, that is

called the path or trajectory (Fr. Chemin, trajectoire, Ger. Weg) of

the moving body. The path of a point is a line. The path of a

geometrical body is, it is true, a figure, but we generally under-

stand by it the path of a certain point of the moving body, as, e.g..

its centre. Motion is rectilinear (Fr. rectiligne, Ger. geradlinig)
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when the path is a right line, and curvilinear (Fr. curviligne, Ger.

kvummlinig) when the path of the moving body is a curved line.

§ 3. In reference to time (Fr. temps, Ger. Zeit) motion is either

uniform or variable. Motion is uniform (Fr. uniforme, G. gleich-

formig) when equal spaces are passed through in equal arbitrary

portions of time. It is variable (Fr. varie, Ger. ungleichformig)

when this equality does not exist. When the spaces described in

equal times become greater and greater as the time during which

(he body is in motion increases, the variable motion is said to be

accelerated (Fr. accelere, Ger. beschleunigt) ; but if they decrease

more and more with the increase of time, this motion is said to be

retarded (Fr. retarde, Ger. verzogert). Periodic (Fr. periodique, Ger.

periodisch) motion differs from uniform motion in this, that equal

spaces are described only within certain finite spaces of time, which

are called periods. The best example of uniform motion is given

by the apparent revolution of the fixed stars, or by the motion of

the hands of a clock. Examples of variable motion are furnished

by falling bodies, by bodies thrown upwards, by the sinking of the

surface of water in a vessel which is emptying itself, etc. The
play of the piston of a steam engine, and the oscillations of a pen-

dulum, afford good examples of periodic motion.

§ 4. Uniform Motion.— Velocity (Fr. vitesse, Ger. Geschwin-

digkeit) is the rate or measure of a motion. The larger the space

that a body passes through in a given time, the greater is its mo-

tion or its velocity. In uniform motion the velocity is constant,

and in variable motion it changes at each instant. The measure

of the velocity at a given moment of time is the space that this

body either really describes, or which it would describe, if at that

instant the motion became uniform or the velocity remained con-

stant. We generally call this measure simply the velocity.

§ 5. If a body in each instant of time describes the space o, and

if a second of time is made up of n (very many) such instants,

then the space described within a second is the velocity, or rather

the measure of the velocity, and it is

c = n . o.

During a time t (seconds) n . t instants elapse, and in each in-
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stant the body passes through the space o, and therefore the total

space, (Fr. l'espace, Ger. Weg), which corresponds to the time t, is

s = n.t.o = n.a.t, i.e.

I.) s = ct.

In uniform motion the space (s) is a product of the velocity (c)

and the time (t).

Inversely II.) c = -•

III.) t = -.
'

c

Example.—1. A locomotive advancing with a velocity of 30 feet passes

in two hours = 120 minutes = 7200 seconds, over the space s = 30 . 7200

= 216000 feet.

- 2. -If we require 4-J- minutes = 270 seconds to raise a bucket out of a

pit, which is 1200 feet deep, we have its mean velocity (c) = -^-zr = —

-

/*7U J

= 4| = 4,444 . . . feet,

3. A horse advancing with a velocity of 6 feet requires, to pass over five

miles, or 26400 feet, the time t = —-— = 4400 seconds, or 1 hour 13

minutes and 20 seconds.

§ 6. If we compare two different uniform motions, we obtain

tho following result

:

As the spaces are s = c t and s x
— c x t l

their ratio is - = —-.
S\ C\ t\

S C S
If we put t = t x

we have - = -
; if we take c = cx we obtain - =

t . . c t
-

; and finally, if s = s
{
it follows that - — --

1

.W J
c, t

The spaces described in the same time in different uniform mo-

tions are to each other as the velocities ; the spaces described ivith

equal velocities are to each other as the times ; and the velocities cor-

responding to equal spaces are inversely as the times.

§ 7. Uniformly Variable Motion.—A motion is uniformly

variable, (Fr. uniformement varie, Ger. gleichformig verandert),

when the increase or diminution of the velocity within equal, ar-

bitrarily small, portions of time is always the same. It is either

uniformly accelerated (Fr. uniformement accelere, Ger. gleichfor-
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mig besclileunigt) or uniformly retarded (Fr. uniformement retarde,

Ger. gleichformig verzogert). In the first case a gradual augmen-

tation, and in the second a gradual diminution of Telocity takes

place.

A body falling in vacuo is uniformly accelerated, and a body

projected vertically upwards would be uniformly retarded, if the

air exerted no influence upon it.

§ 8. The amount of the change in the velocity of a body is

called the acceleration (Fr. acceleration, Ger. Beschleunigung and

Acceleration). It is either positive (acceleration) or negative (re-

tardation), the former when there is an increase, and the latter

when there is a diminution of velocity. In uniformly variable mo-

tion the acceleration is constant. We can therefore measure it

by the increase or decrease of velocity which takes place in a

second. For any other motion, the acceleration is the increase or

decrease of velocity, which a body would undergo if, from the instant

for which we wish to give the acceleration, the acceleration became

constant, and the motion was changed to a uniformly varied one.

This measure is generally called simply the acceleration.

§ 9. If the velocity of an uniformly accelerated motion in a very

small (infinitely small) instant of time is increased by a quantity

k, and if the second of time is composed of n (an infinite number
of) such instants, the increase of velocity in a second, or the so-

called acceleration, is

p — n k,

and the increase after t seconds is = n b . it = n k . t = p t.

If the initial velocity (at the moment from which we begin to

count t) is = c} we have for the final velocity, i.e., for the velocity

at the end of the time t,

v = c 4- pt

For a motion starting from rest c is = 0, whence v —p t ; and

when the motion is uniformly retarded, in which case the accelera-

tion ( —p ) is negative, we have

v — c — p t.

Example.—1. The acceleration of a body falling freely in vacuo is

== 32,20 feet. It acquires therefore after 3 seconds the velocity v = pt =
32,20 . 3 = 96,60 feet.

2. A ball rolling down an inclined plane lias in the beginning a velocity
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of 25 feet, and the acceleration is 5 feet per second. Its velocity after 2|- sec-

onds is therefore v = 25 + 5 . 2,5 = 37,5 feet ; i.e., if from the last moment
it moved forward uniformly, it would pass over 37,5 feet in every second.

3. A locomotive moving with a velocity of 30 feet loses, in consequence

ofthe action of the brake, 3,5 feet of its velocity every second ; its accelera-

tion is therefore — 3,5 feet and its velocity after G seconds is v = 30 — 3,5 . 6

= 30-21 = 9 feet.'

§ 10. Uniformly Accelerated Motion.—Within an infinitely

small instant of time r we can consider the velocity of every

motion as constant, and put the space passed through in this

instant
(

O = V . T,

and we obtain the space passed through in the finite time t by-

summing these small spaces. But the time in which all these

small spaces were described is one and the same r, and we can put

their sum equal to the product of this instant of time and the sum
of the velocities corresponding to the different equal instants.

For uniformly accelerated motion the sum (0 -f v) of the ve-

locities in the first and last instant is just as great as the sura

p r + (v — p r) of those in the second and last but one instants,

and equal to the sum 2 p r + (v — 2 p t) of those in the third and

last but two instants, etc., and this sum is in general equal to v

;

the sum of all these velocities is therefore equal to \y .

-J
the pro-

duct of the final velocity and half the number of the elements

of the time, and the space described is equal to the product

H- *)
of the final velocity v and half the number of the elements

of the time and one of these elements. Now the magnitude (r)

of an element of the time multiplied by their number gives the

whole time t, whence the space described in the time t with an

v t

uniformly accelerated motion is s.= :=-

The space described with uniformly accelerated motion is the

same as that described with uniform motion when the velocity of

the latter is half the final velocity of the former.

Example.—1. If a body in uniformly varied motion has acquired in 10

seconds a velocity v = 26 feet, the space described in the same time is

.' = —-— = 130 teet.
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2. A wagon whose motion is uniformly accelerated and which describes

25 feet in 2£ seconds, possesses at the end of that time the velocity

2.25 50.4 00 __

• ^-2T25-^-^
= 22

'
22 --- feet -

§ 11. The two fundamental formulas of uniformly accelerated

motion
I.) v = p t and

TT \
Vt

ID . = -j,

which show that the velocity is a product of the acceleration and

the time, and that the space is the product of half the terminal ve-

locity and the time, furnish two other equations, when we eliminate

in the first place v and in the second t. By this operation

we obtain

III.) s=^and

IV.) s = f.' 2p
Hence, in uniformly accelerated motion, the space described is

equal to the. product of half the acceleration and the square of the

time, and also to the square of the terminal velocity divided by dou-

ble the acceleration.

From these four principal formulas we deduce by inversion,

and by the elimination of one or other of the quantities contained

in them, eight other formulas, which are collected together in a table

in the " Ingenieur," page 325.

Example.—1. A body moving with the acceleration 15,625 feet, describes

in 1,5 seconds the space
15

'
625

*

(1
'
5^ = 15,625 . 4 = i?,578 feet-

2. A body, which acquires a velocity v = 16,5 in consequence of an

acceleration p = 4,5 feet, has described in so doing the space s =
( *6,5 )

2

- 30,25 feet.
2 . 4,5

§ 12. On comparing two different uniformly accelerated mo-

tions, we arrive at the following conclusions.

The velocities are v = p t and v x
= p x tx

. The spaces, on

the contrary, are s = ~— and s, = —^-, whence we have

V p t
1

S p f V t _ V* p x— ——— anci — , - — , — ., •

vx pi t
x

S x Pi t* Vi U v
x p

Putting t, = t we obtain

:
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8 1) 7)~ — — = — ; the times being equal, the ratio of the spaces de-sx Vi pi

scribed is equal to that of the final velocities or of the accel-

erations.

If we putp x
— p we have

The acceleration being the same, lb., when we have the same
uniformly accelerated motion, the final velocities are to each other
as the times, the spaces described as the squares of the times, and
also as the squares of the final velocities.

Farther, if we take *v= # it gives ^- = ~ and — = 4~; for the
Pi t s x tu

same final velocities the accelerations are to each other inversely,

and the spaces directly as the times.

Finally, for sx = s we have ^- = ~ = -^ for equal spaces de-

scribed the accelerations are to each other inversely. as the squares
of the times and directly as the squares of the velocities.

§ 13. For a uniformly accelerated motion with the initial veloc-

ity c we have from § 9

I.) v = c + p t,

and since the space c t belongs to the constant velocity c, and the

space ~r— to the acceleration p

II.) s = ct + ^J-.
til

Eliminating p from the two equations, we obtain

or eliminating t, we find

IV.) , =
*'-

2p
Example.—1. A body moving with the initial velocity c = 3 feet and

with the acceleration p = 5 feet describes in 7 seconds the space

s = 3.7 + 5.-- = 21 + 122,5 = 143,5 feet.

2. Another body, which in 3 minutes = 180 seconds changes its ve-

locity from 2£ feet to 7£ feet, describes during this time the space
2
i
5_t^i5. 18o = 900 feet.
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§ 14. Uniformly Retarded Motion.—For uniformly retarded

motion with the initial velocity c we have the following formulas,

which are deduced from those of the foregoing paragraph by mak-
ing p negative.

I.) v = c — pt,

II.) s = ct~ pf
2

TTT \
C + V

,

III.) s = —^— ,t,

IV.) s =
2p

While in uniformly accelerated motion the velocity increases

without limit, in uniformly retarded motion the velocity decreases

up to a certain time, when it is = 0, and afterwards it becomes

negative, i.e., the motion continues in the opposite direction.

If we put v = in the first formula, we obtain p t — c, whence

the time in which the velocity becomes = is t = —

;

substituting this value of t in the second equation, we obtain the

space described by the body during this time, 5- =
2p

c c*
If the time is greater than —, the space is smaller than ~—

;

2 c
and if the time is = — the space becomes = 0, the body having re-

turned to its point of departure; finally, if the time is greater than

2c— , s is negative, i.e., the body is on the opposite side of the point

of departure.

Example.—A body which is rolled up an inclined plane with an in-

itial velocity of 40 feet, and which suffers a retardation of 8 feet per sec-

40 40 2

oad, rises only during—- = 5 seconds and reaches a height of-—- = 100
*" o 2.8

foet, after which it rolls back and arrives after 10 seconds with a velocity

of 40 feet at the point from whence it started, and after 12 seconds is al-

ready 40 . 12 — 4 . 12 2 or — (40 . 2 + 4 . 2") = 9C feet below its point of de-

parture, if the plane continues beneath it.
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§15. The Free Fall of Bodies.—Thefree or vertical fall of

bodies in vacuo (Fr. mouvement vertical des corps pesants, Geij

der freie oder senkrechte Tall der Korper) furnishes thje most imi

portant example of uniformly accelerated motion. The acceleration

of this motion produced by gravity (Fr. gravite, Ger. Schwer-

kraft) is designated by g, and its mean value is

9,81 meters.

30,20 Paris feet.

32,20 English feet.

31,03 Vienna feet.

31| = 31,25 Prussian feet,

32,7 Bavarian or meter feet.

If any of these values of g be substituted in the formulas v=g t,

4 = ~- and s = =-=-, v = V2 g s, all possible questions in relation

to the free fall of bodies can be answered.
' For the metrical system of measures we have

v == 9,81 . t = 4,429 Vs,

s = 4,905 t = 0,0510 v% _
t = 0,1019 v

1 = 0,4515 Vs

;

and for English measures

v = 32,2 t = 8,025 Vs,

s ~ 16,1 f = 0,0155 v
2

,

t = 0,031 v = 0,249 V7.

Example.—1.) A body attains when it falls unhindered in 4 seconds a

velocity v = 32,2 . 4 = 128,8 feet, and describes in this time the space s =
16,1 . 42 = 257,6 feet. 2.) A "body "which has" fallen from the height s —
9 feet, has the velocity v = 8,025 4/9 = 24,075. 3 ) A body projected ver-

tically upwards with a velocity of 10 feet rises to the height s — 0,0155 .

109 = 1,55 feet, in the time \
;

t- 0,031 . 10 = 0,31,

or nearly £ of a second.

§ 16. The following Table shows how the motion takes place as

the time elapses,
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(Time in)

! seconds

)

o I 2 3 4 5 6 7 8 9 IO

|

Velocity

.

o tg 29 39 49 59 6g 7# 85- 9<7 I°#

j Space o
2 4 4 J-

2 •4 3< 49f '«! 8i?
2

ioo-
2'

Difference o
2 4 4 A A xx?

2 <3f «? '< A
The last horizontal column of this table gives the spaces de-

scribed by a body falling freely in each single second. We see that

these spaces are to each other as the uneven numbers 1, 3, 5, 7, etc.,

while the times and the velocities are to each other as the regular

series of numbers 1, 2, 3, 4, 5, etc., and the distances fallen through

as their squares 1, 4, 9, 16, etc. Whence, e.g., the velocity after 6

seconds is = 6 g — 193,2 feet, i.e., the body, if from this moment
it continued to move uniformly as on a horizontal plane which of-

fered no resistance, would describe in every second the space 6 g =
193,2 feet. It does not really describe this space in the following

or seventh second, but from the last column we see that it de-

13 . 16,1 = 209,3 feet, and in the eighthscribes exactly 13 ^

second 15 f = 15 . 16,1 = 241,5 feet.

Remark.—Older German writers designate the space 16,1 feet, de-

scribed by a body falling freely in the first second, by g, and call it also the

acceleration of gravity. They employ for the free fall of bodies the for-

mulas

© = 2 g t = 2 \S~g~s,

t = • = -a/1.
2(7

Y g

This usage, known only in Germany, is tending gradually to disappear,

which, on account of the frequent misapprehensions and errors resulting

from it, is much to be desired.

§ 17. Free Fall with an Initial Velocity.—If the free fall

of a body lakes place with an initial velocity (Fr. vitesse initiate, Ger.
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Anfangsgeschwindigkeit) c, the formulas assume the following

• form

:

v — c + g t = c + 32,2 t feet = c -h 9,81 t meters,

v = Vc l + 2 g s — V~6
r+ 64,4~s feet = Vc2 + 19,62 s meters.

g; = c $ + I f = c t + 16,1 f feet = c t + 4,905 f meters,

and s == ^ ~ c
- = 0,0155 (v

2 - c
2

) feet == 0,0510 (v
2 - c

2

) meters.

2#

If, on the contrary, the body is projected vertically upwards, we

have

v =c-gt=c- 32,2 t feet = c — 9,81 t meters,

v = V? -2gs = Vc* — 64,4s feet = Vc2 — 19,62 5 meters.

Sz:zct _ltf = c t- 16,1 f feet = c t - 4,905 f meters,

and s = c2 ~^ = 0,0155 (c
1 - v-) feet = 0,0510 (c

2 - v
4
) meters.

If we consider a given velocity c as a velocity acquired by a free

fall, we call the space fallen through

-^ = 0,0155 c
2
feet == 0,0510 c' meters,

"tfAe height due to the velocity" (F. hauteur due a la vitesse, Ger.

Geschwindigkeitshohe). By the substitution of the above, several

of the foregoing formulas may be expressed more simply. If we

denote the height (£-) due to the initial velocity by Jc, and that
\Z g/

(l\ aUe to the final velocity by h, we have for falling bodies,

h — Jc + s and s — 7i — 1c,

and for ascending bodies,

Ji = Jc — s and 5 = 1c — h.

The space described in falling or ascending is therefore equal

to the difference of the heights due to the velocities.

Example.—If for a uniformly varied motion the velocities are 5 feet

and 11 feet, and the heights due to the velocities arc 0,0155 . 5
2 = 0,3875,

and 0,0155 . II 2 = 1,8755, the space described in passing from one velocity

to the other is s = 1.8755 — 0,3875 = 1,4880 feet.
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& — v*
§ 18. Vertical Ascension.—If in the formula s =

for the vertical ascension of bodies we put the final velocity v =
0, we obtain the maximum height of ascension,

&

consequently the maximum height of ascension, corresponding to

the velocity c, is equal to the height of fall h due to the final velo-

city c, and therefore c — V2 g k is not only the final velocity for

the height h of free fall, but also the initial velocity for the maxi-

mum height of ascension 7c. Hence it follows that a body pro-

jected vertically upwards has at any point the same velocity, which

it would have, in the opposite direction, if it fell from a height

equal to the remaining height of ascension to that point, and which

it really possesses afterwards, when it reaches it upon falling back.

Example.—A body projected vertically upwards, with a velocity of 15

feet, after ascending 2 feet meets an elastic obstruction, which throws it

back instantaneously with the same velocity with which it struck. How
great is this velocity, and how much time does the body require to ascend

and fall back again ? The height due to the initial velocity 15 feet is Tc
—

3,49 feet, and the height due to the velocity at the instant of collision is

h = 3,49 — 2,00 = 1,49, and, consequently, the velocity itself is = 8,025

•|/i,49= 9,8 feet. The time necessary to ascend the entire height (3,49 feet)

would be t = 0,031 c = 0,031 . 15 = 0,465 seconds, while the time neces-

sary to ascend the height 1,49 is t x = 0,031 . 9,8 = 0,3038 seconds, whence

the time necessary to ascend the 2 feet is t — t
t
— 0,465 — 0,3038 =

0,1012 seconds, and finally the whole time employed in ascending and fall-

ing is = 2 . 0,1612 = 0,3224 seconds. This, therefore, is but j^=, or

about % of the time, which would be employed by the body in rising and

falling if it met with no obstacle. This case occurs in practice in forging

red-hot iron, for we are obliged to give as many strokes of the hammer
as possible in a short space of time, on account of the gradual cooling of

the iron. If by means of an elastic spring we cause the hammer to be

thrown back, it can, under the circumstances supposed in the example,

make three times as many blows as when its rise was unimpeded.

Remark 1.—In practical mechanics, particularly in hydraulics, we are

often obliged to convert velocity into height due to velocity, or the latter

into the former. A table, by means of which this operation can be per-

formed at once, is of the greatest service to the practical man. Such a

one, calculated for the Prussian foot, is to be found in the " Ingenieur,"

page 326 to 329.
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Remark 2.—The formulas deduced in the foregoing paragraphs are

strictly correct only for bodies falling freely in vacuo; they are, however:

sufficiently accurate for practical purposes, when the weight of the body is

great compared to its. volume, and when the velocities are not very great.

They are, besides, employed in many other cases, as will be shown here-

after.

§ 19. Variable Motion in General.—The formula s = c t

(§ 5) for uniform motion holds good also for every variable motion,.

if instead of t we substitute an element or an infinitely small in-

stant of the time r, and instead of s the space a described in this

instant, for we can assume that during the instant r the velocity c,

which we here denote by v, remains constant, and that the mo-

tion itself is uniform.

Hence, we have for every variable motion

I.) a = v r, and v = - (compare § 10).

TJie velocity (v) for every instant is given by the quotient of the

element of the space divided by that of the time.

In like manner the formula v — p t (§ 11) for uniformly accele-

rated motion holds good also for every variable motion, if instead of

t and v we substitute the element of time r and the infinitely small

increase of velocity k during that time, for the acceleration p
does not vary sensibly in an instant r, and the motion can be re-

garded as uniformly accelerated during this instant. Consequently

we have for all motions

II.) k = p r, and p = -.
T

The acceleration (p) is, therefore, equal to the element of the ve-

locity divided by the element of the time.

If wre put the total duration of the motion t = n r, and the ve-

locities in the successive instants r are v x , v2, vz . . v„, the corres-

ponding elements of the space are o
x
= i\ r, a2 — v„ r, <r3 = v3

~ .
.

,

an = vn r, and the total space described is

s = fyt + v-2 + Vz . .
.X) r = y— —- ') n r, i.e.,

I*) s =
J

— -) t — vt, when
\ n '

v == — 3 '" '"

denotes the mean velocity of the body while

describing the space s.



118 GENERAL PRINCIPLES OF MECHANICS. [§19.

In like manner if c denotes the initial and v the final velocity,

and ifp lf p2 . . . pn denote the accelerations in the equal successive

instants r, we have

V — C — (pi + Pi + . . .pn ) T — V?1 P*^'J_Jb\ n -, I.E.,

IP) v ~c=(!±±^^jt^pt,vhCn

p — 411—J •2
~r

-
-j—o denotes the mean acceleration.

n
By combining the formulas I. and II. we obtain the following

not less important equation :

III.) v ic — p a.

If, while the space s = n a is described, the acceleration assumes

successively the values p l9 p2 . . .pn, the sum of the productsp a is

(#+#... +p.) o =
[

l l— —)n a

If the initial velocity c is transformed by successive increases

v — o
of k — — into the final velocity v, the sum of the products

it

v n is

OR -f (c -f «) K + + {V— K) tt^rVK— \c+ ((J + ic) +. . .+ (v— k) + v] K,

, . n k (v 4-c) (v — c) v
2 — c

2

= <" + c
> T"

=
*

=
-X-'

and therefore we can write

III*) —^—- = ^» 5, or 5 = —0-7- (compare IY., § 13).

With the aid of the fore^oino- formulas wc can solve the most

varied problems of phoronomics and mechanics.

The time, in which the space s = 11 o is described with the vari-

able velocities i\, vs, . . . v„, is

txtx I 1
,

1 IV * /l 1 1\ 5
IV.) t = o[— + — + ..—) = -(— -f — f .. 4- - }=-,

u'i w2 v,/ n \v
x

v,2 vn I v

when we put the value - ( h h ... -1 ) = -, whose recip-x n \%\ v 2 vn / v

rocal v can be considered as the mean velocity.

Example.—When a body moves according to the law v = at"1 , we have

D|/! = fl({ + T)
! = fl(f + 2h + r-), and k = a r (2 t + r), consequently

p == - = 2 a £.



£20.] SIMPLE MOTION. 119

The velocities of the body at the end of the times

r, 2r, 3, t .

.

. n t are a t
2
, a (2 r)

2
, a (3 r)

2
. . a (n t)

2

,

whence it follows that the space described in t — n r seconds is

s = [ar- + a{2ry + ..a (n r)
2
] r = (l

2 + 22 + 32 + . . + »') a r3

,

but from Article 15, IV., of the Introduction to the Calculus we have

12 + 22 + 32 + . . + n- =.- -, hence

(§ 20.) Differentia! and Integral Fcrmulas of Phoronc-

mics.—The general formulas of motion found in the foregoing-

paragraphs assume, when the notations of the calculus are em-

ployed, I.E., when the element of time r is designated by d t, the

element of space o by d s, and the element of velocity n by d v, the

following form

:

I.) v —
-J-*

or d s = v dt, whence s — J vdt, and t =J —

.

II.) p — —4 or d v =pd t, whence v —J p d t, and t=J -----
.

III.) vdv —p d s, or 5 =y— , and—-— = J p d s,

in which c denotes the initial and v the final velocity, while the

space s is being described.

We see from the above that the difference of the squares of the

velocities is equal to twice the integral of the product of the accelera-

tion and the differential d s, or equal to the product of the mean ac-

celeration and the space described by the body in passingfrom the

velocity c to the velocity v.

According to the theory of maxima and minima the space is a

maximum, and the motion attains the greatest extension, when we

have
d s

and the velocity is a maximum or minimum when

d v

n = p = a

The foregoing are the fundamental formulas of the higher

Phoronomics and Mechanics.

Example.—1. From the equation for the space s — 2 + 3 t + £
2

,
wc

deduce by differentiation the equation for the velocity v=3 + 2 t, and that
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for the acealeration p] = 2 ; the latter is constant and the motion is uni-

formly accelerated,

For t = 0, 1, 2, 3 . . . seconds, we have

v = 3, 5, 7, 9 . . . (Feet), and

s = 2, 6, 12, 20 . . . (Feet;.

2. From the formula for the velocity

v = 10 + 3 1 — f , we obtain by integration

s= flOdt + fdtdt - Ct2 dt = lOt +§ti - t-
i

and on the contrary by differentiation p=S — 2t.

Consequently, for 3 — 2 £=0, i.e., Mrt—§ seconds, the acceleration is

and the velocity is a maximum (v = 12|-), and for 10 + 3 1 — f- = 0, i.e., for

t = | + V 10 -f f-
= —s

— = 5 the velocity is = and the space is a maxi-
2

mum.
For t = 0, 1, 2, 3, 4, 5, 6 seconds we have

p = 8, 1, — 1, — 3, - 5, — 7, — 9 feet,

v = 10, 12, 12, 10, 6, 0,-8 feet,

s = 0, Hi 23A-, 34^, 42f, 45f, 42 feet.

3. For the motion expressed by the formula^? = — y, s, in which /u des-

ignates a constant coefficient, we have

—— = I pds=z — /j, I aids— — ^p or v 2 = c
2 — fi s

2
;

whence v—^Jc 1 — a s
2 and s =1/ .

We have also d t = — = , =

4*. -?e c

/i _ HJtf

c I du

V^j/

V

Vu\
2 V^Vl-u2

*

when we put 8 v ^ = « ; and it follows that (see Art. 26, V., of the Introduc-
c

tion to the Calculus).

t =— sin.
- 1 u = —-sin.-1 2-U^ and

Vfl *W-p c

c
8 ~ 77= sin. (t V //\ as well as

d 8 ; r-\ ,
v = -y~ = c cos. (t V /«) and

^? = -=— = — c V^t sm. (£ V /z).

ft

When the motion begins we have, for t = 0, * = 0, v = c and 4? = 0,

and afterwards for
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t VH= —,ort = -^=, a = -?=, v = andp = - e^j. for

t V/I= 7T, or £ = ~t=> s = M = - c and -P = °» for

V //

t V7« = 1 77, or * = o^ s = ~ 4=> v = ° and ? = c V^» and for

2rr

£ vV = 2 77, or * = —
7=-, s = 0, « = c and p = 0.

The moving point has therefore a vibratory motion upon both sides of the

fixed point of beginning, to which it returns every time that it has de-

scribed, with a velocity which gradually increases from to»=± c. the

c
space s = zt —-.

§21. Mean Velocity.—The velocity c,— —, which we fmd

when we divide the space described during a certain time, e.g..

during the period of a periodic motion, by the time itself, differs

from the velocity v = — l-r^j for an instant or during the ele-

ment of time r (d t). We call the former the mean velocity (Fr.

vitesse moyenne, Ger. mittlere Geschwindigkeit), and we can con-

sider it as the velocity that a body must have, to describe uniformly

in a certain time (t) the space (s) which it really does describe with a

variable motion in the same time. When the motion is uniformly

variable the mean velocity is equal to the half sum of the initial and

of the final velocity, for according to § 13 the space is equal to this

(^—) multiplied by the time (t).

In general, the mean velocity is (according to § 19) e, =
V) -f v.2 + . .

vn
in ^jch Vif v^ . . ,vn denote the velocities corre-

sponding to equal and very small intervals cf time.

-While a crank is turned uniformly in a circle V Id K
Fig. 51, the load Q attached to it, e.g., the piston of an

air or water pump, etc., moves with a variable motion up

and down ; the velocity of this load is at the highest and

lowest points J7and a minimum, and equal to zero, and

at halfthe height at M audita maximum, and equal to the

velocity ofthe crank. Within a half revolution the mean ve-

locity is equal to the whole height of ascent, i.e., the diam-

eter U of the circle in which the crank revolves, divided

by the'time ofa half revolution. If we put the radius of the

circle in which the crank revolves, C U — C = r, that

sum
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is, its diameter = 2r, and the time equal to t, it follows that the mean
2r

velocity c
x
= -—. The crank in the same time describes a half circle

- r, and its velocity is c

2 2 t

-, and therefore the mean velocity of the load

the crank.

3,141
c is 0,6366 times as great as the constant velocity c of

§ 22. Graphical Representation of the Formulas of Mo-
tion, The laws of motion which have been found in the foregoing

paragraphs can be expressed by geometrical figures, or, as we say,

graphically represented. Graphical representations, as they ren-

der the conception of the formula more easy, assist the mem-
ory, protect us from many errors, and serve also directly for

the determination of quantities which may be required, are

of the greatest use in mechanics. In uniform motion, the space

(s) is the product (c t) of the velocity and

the time, and in Geometry the area of a rect-

angle is equal to the product of the base by

the altitude ; we can therefore represent the

space described (s) by a rectangle A B C D,

Fig. 52, whose base A B is the time t, and

whose altitude A D — B C is the velocity c,

provided the time and the velocity are expressed by similar units

of length, that is, if the second and the' foot arc represented by

Fig. 52.

N

AL M

on: and the same line.

§ 23, "While in uniform motion the velocity (M N) at any mo-

ment (A M) is the same, in variable motion it is different for each

instant ; therefore this motion can only be represented by a four-

sided figure, A B C D, Fig. 53, the base
Fig. 53. '

of which A B} denotes the time (t), the

other boundaries being the three lines,

A D, B C, and C D. The first two

of these lines denote the initial and final

velocities, and the last one is determined

by the extremities (N) of the different lines

representing the velocities corresponding

to the intermediate times (M). Accord-

ing to the nature of the variable motion in question, the fourth

Hue CD is straight or curved, rises or sinks from its origin, and is
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concave or convex towards the base. In every case, however, the

area of this figure is equal to the space (s) described ; for every sur-

face A B C D, Fig. 53, can be divided into a series of small

stripsM P
'
N, which may be considered as rectangles, raid the area

of each of which is a product of the base (M 0) and the corresponding

altitude (M N) or (0 P), and in like manner the space described

in a certain time is composed of small portions, each one of which

is a product of an element of time and the velocity of the body

during that instant. The figure also shows the difference between

the measure of the velocity and the space actually described in the

following unit of time. The rectangle M L, above the base

MH— unity (1) = v . 1 is the measure of the velocity M, and on

the contrary, the surface MK above the same base represents the

space actually described. In the same way the rectangle A F over

A I = nnity is the measure of the initial velocity A D = c, and the

surface A E that of the space actually described in the first second.

§ 24. In uniformly variable motion the increase or decrease v—c
of the velocity (— p t, § 13) is proportional to the time (t). If in

Fig. 54 and Fig. 55 we draw the line D E parallel to the base A B,

we cut off from the lines B C and M N, which represent the velo-

Fig. 54.

*

cities, the equal portions B E and M 0, which are equal to the

line A D representing the initial velocity, there remain the pieces

OF and N 0, which represent the increase or decrease in velocity

;

for these we have from what precedes the proportion

NO: CE ^ D 0:D E.

Such a proportion requires that N, as well as every point of the

line CD, shall be upon the straight line uniting and D, or that

the line CD, which limits the velocitiesMN, shall be straight. Con-

sequently the space described in uniformly accelerated or retarded

motion can be represented by the area of a Trapezoid A B C D,
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whose altitude A B is the time (t) and whose two parallel bases

A D and B C are the initial and final velocity. The formula found

in 13 5 = C + V

2
t corresponds exactly to this figure. For uni-

formly accelerated motion the fourth side D C rises from the point

of origin, and for uniformly retarded motion this line descends

from the same point. When the uniformly accelerated motion be-

gins with a Telocity equal to zero, the trapezoid becomes a trian-

gle, whose area is A B C . A B = -A o t

§ 25. The mean velocity of a variable motion is the quotient of

the space divided by the time ; it gives, when multiplied by the

time, the space, and can be considered as the altitude A F —
B Eoi the rectangle A B E F, Fig. 56, the base of which A B is

equal to the time t, and the area of which is equal to that of the

four-sided figure A B CN D, which measures the space described.

The mean velocity is found by changing the four-sided figure A B
CND into an equally long rectangle A B E F. Its determina-

tion is especially important for periodic motion, which occurs in

almost all machines. The law of this motion is represented by

the serpentine line CD E F G, Fig. 57. If the right line L M,

drawn parallel to A B, cuts off the same space as the serpentine

line, then L Mis also the axis of CD EF G, and the distance A L
= B M between the two parallels A B and L M is the mean ve-

locity of the periodic motion, and, on the contrary, AC, E, B G,

etc., are the maximum, and ND and P F the minimum velocities

of a period A 0, B, etc.

§ 26. The acceleration or the continuous increase of velocity in a

second can easily be determined from the figure. In uniformly

accelerated motion it is constant, and is therefore the difference

P Q, Fig. 58 and Fig. 59, between the two velocities OP and MJV,
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one of which corresponds to a time (II 0) one second greater than
the other. If the motion is variable, but not uniformly, and the line

Fig. 58. Fig. 59.

M o M O

of velocity C D therefore a curve, the acceleration at every instant

is different, and consequently it is not really the difference P Q of

the velocities P and MN = Q, Figs. 60 and 61, which are

those at times differing one second M from each other, but it

Fig. 61.

E

N

D

M O

is the increase R of the velocity M N, which would take place>

if from the instant M the motion became a uniformly accelerated
one, that is if the curve NP C became a straight line N E. But
the tangent NE is the line in which a curve D N would prolong
itself, if from a certain point (N), its direction remained unchanged

;

the new line of velocity coincides with the tangent, and the perpen-
dicular R which reaches to this line is the velocity which would
have existed at the end of a second, if at the beginning of the same
the motion had become a uniformly accelerated one, and therefore

the difference R Q between this velocity and the initial one {MN)
is the acceleration for the instant which corresponds to the point

M in the time line A B. We can also of course consider the time
. u I the accelerations as the co-ordinates of a curve, in which case

iho velocities are represented by surfaces.
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CHAPTER II.

COMPOUND MOTION.

§ 27. Composition of Motion.—The same body can possess,

at the same time, two or more motions ; every (relative) motion is

composed of the motion within a certain space, and of the motion

of this space within or in relation to another space. Every point

on the earth possesses already two motions; for it revolves once

every day around the earth's axis, and with the earth once a year

around the sun. A person moving on a ship has two motions in

relation to the shore, his own motion proper and that of the ship

;

the water which flows out of an opening in the side or in the bot-

tom of a vessel carried upon a wagon has two motions, that from

the vessel, and that with the vessel, etc.

Hence we distinguish simple and compound motion. The rec-

tilinear motions of which other rectilinear or curvilinear motions

are composed (Fr. composes, Ger. zusammengesetzt), or of which

we can imagine them to be composed, are simple motions (Fr. sim-

ple, Ger. einfach). How several simple motions can be united so

as to form a compound one, and how the decomposition of a com-

pound motion into several simple ones is accomplished, will be

shown in what follows.

§ 23. If the simple motions take place in the same straight line,

their sum or difference gives the resulting compound motion, the

former when the motions are in the same direction, and the latter

when the motions are in opposite directions. The correctness of

this proposition becomes evident, when we combine the spaces de-

scribed in the same time by virtue of the simple motions. The

spaces cx t and c2 1 described in the same time correspond to uni-

form motions whose velocities are cx
and c2, and if these motions

are in the same direction the space described in t seconds is

s = c x
t + cu t = (d + c2) t,

and consequently the resulting velocity of the compound motion is

the sum of the velocities of the simple motions. When the mo-

tions are in contrary directions, we have
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s= d t — &2 1 = (ci — c2) t,

and the resulting velocity is equal to the difference of the simple

velocities.

Example.—1. A person, walking upon the deck of a ship with a velo-

city of 4 feet in the direction of the motion of the latter, appears to people

on shore, when the ship moves with a velocity of G feet, to pass by with a

velocity of 4 + 6 = 10 feet.

2. The water discharged from an opening in the side cf a vessel with a

velocity of 25 feet, while it is moved simultaneously with the vessel in the

opposite direction with a velocity of 10 feet, has in reference to the other

objects which are at rest a velocity of only 25 — 10 = 13 feet.

§ 29. The same relations also obtain for variable motion. If

the same body has, besides the initial velocities cx
and c2, the con-

stant accelerations px andj»9, the corresponding spaces are cx t, c2 1>

i 2h t~, i p* t\ and if the velocities and the accelerations have the

same directions, the total space described in virtue of the compo-

nent motions is

s = (<h H- C9) t + (2h + Pt) j.

If we put c x + Co = c and p x + p3 = p, we obtain s = c t + p -,

Fio. 62. whence it follows that not only the sum of the component

velocities gives the velocity of the resulting or compound
motion, but also that the sum of the accelerations of the

simple motions gives its acceleration.

Example.—A body upon the moon has imparted to it by the

moon an acceleration p t
= 5,15 feet, and from the earth an ac-

celeration p 2
= 0,01 feet. Therefore, a body A, Fig. 62, beyond

the moon M and the earth E, falls towards the centre of the

moon with an acceleration of 5,16 feet, and a body B between M
and E with an acceleration of 5,14 feet.

§ 30. Parallelogram of Motions,—If a body possesses at the

Bame time two motions which differ from each other in direction,

it takes a direction which lies between those of the two motions,

and if these motions are of different kinds, e.g., if one is uniform

and the other variable, the direction changes at every point, and

the motion is curvilinear.

We find the point O, Tig. G3, which a body moving at the same

time in the direction A X and A Y, occupies at the end of a cer-
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Fig. 63.

tain time (t) by seeking the fourth corner of the parallelogram A
M N, determined by the spaces A M — x and A N — y, de-

scribed simultaneously, and by the angle X A Y which the direc-

tions of motion form with one another.

We can convince ourselves of the correct-

ness of this proceeding by supposing the

spaces x and y described not simultane-

ously, but one after the other. By virtue

of one motion the body describes the space

A M = x, and by virtue of the other from

M in the direction A Y, that is on a line

M parallel to A Y, the space A N — y.

If we make M = A N, we obtain in

the position of the body which corresponds to the two motions x

and y, and which, according to this construction, is the fourth cor-

ner of the parallelogram. We can also imagine the space AM—
x to be described in a line A X, which with all its points moves

forward in the direction A Y, and therefore carries M parallel to

A Y and causes this point to describe the path M = A N'= y.

§ 31. Parallelogram of Velocities.—If the two motions in

the directions A X and A Intake place uniformly with the ve-

locities cx
and c2, the spaces described in a certain time t are x =

i and y = c2 ty and their ratio
1/ Co
- = — is the same for all times,
x d

Fig. 64. a peculiarity which is possessed only by

the right line A 0, Kg. 64. It follows

therefore that the direction of the com-

pound motion is always a straight

line. If we construct with the veloci-

ties A B = c x
and A C = c> the paral-

lelogram A B C D, its fourth corner D
gives the point where the body is at

the end of the first second, but since

the resulting motion is rectilinear, it

follows that it takes place in the direction of the diagonal of the.

parallelogram constructed with the velocities. If we designate by

s the space A really described in the time t, we have from the

similarity of the triangles A M and A B D
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j-jgf whence it follows that this space

x.AD c x t.A D

129

AB = A D.t.

According to the last equation the space described in the di-

agonal is proportional to the time (t), and therefore the compound
motion is itself uniform and its velocity c equal to A D.

TJierefore the diagonal of a parallelogram, constructed with two
velocities and with the angle inclosed by them, gives the direction

and magnitude of the velocity, with which the resulting motion actu-

ally takes place. This parallelogram is called the parallelogram

of velocities (Fr. parallelogramme de vitesse, Ger. Parallelogram
der Geschwindigkeiten) ; the simple velocities are called compo-
nents (Fr. composantes, Ger. Seitengeschwindigkeiten), and the
compound velocity the resultant (Fr. resultante, Ger. die resulti-

rende or mittlere).

§ 32. By employing trigonometrical formulas, the direction

and magnitude of the resulting veloc-

ity can. be found by calculating one
of the equal triangles, e.g., A B D,
of which the parallelogram of velocities

is composed, by which we obtain the re-

sulting velocity AD — c in terms of

the components A B = cx and A C —
Co and of the angle included between

them BAC=a.
For we obtain c by the formula

c = Vc? + c~£ + 2da2 cos. a,

and the angle B A D — <j>, which the resultant makes with the

velocity <;,, by the formula sin. $ = ———

,

Fig. 65.

or

Co . sin. a
ta?ig. <p — — —

—

3 or cotang. <p == cotang. a
C\ ~r C-2 COS. CI Co sin. a

We have also

, I a ,\ Ci — c» ,
a

tang.^- <!>) =—tJang.--.

If the velocities c
x
and c2 are equal to each other, the parallelo-

gram is a Rhombus, and in consequence of the diagonals being at

right angles to each other, we have more simply

c = 2 cx cos. A a and cp = ± a.
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If the velocities are at right angles, we have also more simply

a2

c = Vc{~ -f- c? and tang.
<f>

='—

.

0\

Example.—1. The water discharged from a vessel or from a machine

has a velocity c
t
= 25 feet, while the vessel itself is 'moved with a velocity

c2
= 19 feet in a direction, which forms with that of the water an angle

a = 130\ What is the direction of the resultant or absolute velocity

of the water ?

c = V25 3 + 19M- 2 . 25 . 19 co*. 130° = V625 + 361 — 50 . 19 . cos. 50l

= V~986 - 950 cos. 50 u = V986 - 610,7 =V 375,3 = 19,37 feet

is the required resulting velocity.

1 9 tin 1 SO 9

Further, si/i. = — ' = 0,9808 sw. 50" = 0,7513, hence the

angle formed by the direction of the resultant with that of the velocity cx is

f = 48° 42 1

, and the angle formed by it with the direction of the motion

of the vessel is a — (p = 81° 18 1

.

2. If the foregoing velocities were at right angles to each other, we

would have cos. a = cos. 90° =0, and therefore the resulting velocity c=V986
= 31,40 feet, and also tang. 6 = |-| = 0,76, hence the angle formed by it with

the first velocity is <j> = 37° 141
.

§ 33. We can also consider every velocity to be composed of

two components, and therefore under

certain conditions can decompose it

into such components. If, for example,

the angles D A X = <j>, and D A Y
— ib, Fig. 66, which the required

velocities form with the resultant

A D = c, are given, we draw through

the extremity D of the line represent-

ing c other lines parallel to the di-

rections i Zand A Y: the points of

intersection B and D cut off the ve-

locities sought, and we have

A B = c x
and A C — c*.

Trigonometry gives these velocities by the formulas

c sin. ib c sin. <b

sin.(<j> + ip)' ' sin. (0 + V)'

Generally, in the application of these formulas, the two velocities

are at right angles to each other, and

<p -f rj) = 90°, sin. (0 + V) = 1) whence

c x
= c cos.

<f>
and c> = c sin. </>.
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We can also determine, when one component (<;,) and its angle

of direction (0) are given, the magnitude and direction of the

other. Finally, if the three velocities c, c x
and c2 are given, we can

determine their angles of direction by the same method that we

employ to find the angles of a triangle, when three sides are given.

Example.—If the velocity c = 10 feet is to be decomposed into two

components whose directions form with that of c the angles <p = C5" and

y = 70°, we have

iH sin. TO'
1

sin. 135 J

9,397
;

'sinAV
; 13,29 feet and c

2
.

10 swi. 65 1

smi. 185 J

9,0G3

0.7071
: : 12,81 feet.

§ 34. Composition and Decomposition of Velocities.—

By repeated use of the parallelogram of velocities, any number of

velocities can be combined so as to give a single resultant.

The construction of the parallelogram A B D C (Fig. 67) gives the

resultant A D of cx and c.:, the construction of the parallelogram

A D F Ogives the resultant of A D and A E = cz, and from the

construction of the parallelogram A FH G ^\
re obtain the result-

ant A H = c of A Fund. A G = c4 , or that of c„ c2 , cz and c4.

The most simple manner of resolving this problem is by the

construction of a polygon A B D FH, whose sides A B, B D, D F
and F Have parallel and equal to the given velocities cx, cs, cz and

c4, and whose last side is always equal to the resulting velocity.

Fig.

In case the velocities do not lie in the same plane, the re-

sultant can also be found by repeated application of the paral-

lelogram of velocities. The resultant A F — c (Fig. G8) of three

velocities A B — e„ A C = c2 and A E = c:., not in the same

plane, is the diagonal of a parallelopipedon whose sides are equal
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to the velocities. We often employ for this reason the term paral-

lelopipcdon of velocities,

§ 35. Composition of Accelerations.—By the composition

of two uniform]}' accelerated motions, beginning with a velocity =
0, we obtain also a uniformly accelerated motion in a straight line.

If we designate the accelerations of the motions in the directions

A Xslii&A I7' (Fig. 69) byjt? t and p., the spaces described during the

time t are

A M = x = —— and
Z

and their ratio is

x _ ]hf _ pi

y p* ? pi
9

which is entirely independent of the

time, therefore the path A is a

straight line. If we make A B = p ly

2hj we obtain a parallelogram A B D C, andEind B D = A C ='-

lh: , we

we have

A A M 1 At
A D~ A B Pi

= =

-

1-— = A f, whence .4 = £ .4 Z) . f

According to this equation the space A of the compound motion

is proportional to the square of the time ; the motion itself is there-

fore uniformly accelerated, and its acceleration is the diagonal A D
of the parallelogram constructed with the two simple accelera-

tions.

We see, therefore, that we can combine several accelerations so

as to form a single one, or decompose a single one into several

others by means of the parallelogram of accelerations (Fr. parallel-

ogramme des accelerations, Ger. Parallelogram der Accelerationen)

according to exactly the same rules as we perform the composition

and decomposition of velocities by means of the parallelogram of

velocities.

§ 36. Composition of Velocities and Accelerations.—
By the combination of a uniform motion with a uniformly ac-

celerated one we obtain, when the directions of the two motions

do not coincide, a motion which is completely irregular. If during

a certain time t, by virtue of the velocity c, the space

A N — y = c t
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is described in the direction A Y, Fig. 70, and if during the same

time, "by virtue of a constant acceleration, the space

2

is described in the direction A JT at right angles to the former.

then the body will be in the corner of the parallelogram coi>

structed with y = c t and x -~ J
-^-- By the aid of these formulas,

it is true, we can find the position of the body for any given time,

but these positions do not lie in the same straight line; for if we

ysubstitute the value of t taken from the first equation, in tin

second we obtain the equation of the path

r = it.
2 &'

According to this formula the space (x) described in one direction

varies, not as the space, but as the square («/
2

) of the space described

Fig. 70.

in the other direction, and the path of the body is therefore not a

straight line, but a certain curve known in Geometry as the parab-

ola (Fr. parabole, Ger. Parabel).

Remark.— Let A B (J, Fig. 71, be a cone with a circular base AE Bl<\

and B EF a section of the same parallel to the side B C and at right an-

gles to the section A B C, and let OP NQ be a second section parallel to

the base and therefore circular. Further, let E F be the line of intersec-

tion between the base and the first section, and finally, let us suppose the

parallel diameters A B and P Q to be drawn in the triangular section A B (J

and the axis B O in the section B E F. Then for the half chord M V

= M we have the equation WW — PM . M Q : but M Q = G M and for



L3JL GENERAL PRINCIPLES OF MECHANICS. [§37.

P M we have the proportion PM : I)M— AG : B G, whence

1) 6

But we have also G E'-=B G . A G ; whence, dividing the first equation

by the second,

BjM_ 'Mlp
D G ~ G ~E*

The portions cut of from the axis (abscissas) arc as the squares of the cor-

ra3;7ondi)ig perpendiculars {Ordinates). This law coincides exactly with

the law of morion just found; the motion takes place then in a curved

line I) B E
)
which is one of the conic sections. For the construction, po-

sition of the tangent, and other properties of the parabola, see the Inge-

nieur, gage 175, etc.

§ 37. Parabolic Motion.—In order thoroughly to under-.

stand the motion produced by the combination of velocity and

acceleration, we must be able to give for any time (/) the direction,

velocity, and the space described.
.
The velocity parallel to A Y is

constant and — c, and that parallel to A A" is variable and =-p't;

if we construct with these ve-
FlG

-
72 '

locities Q = c and P = p f

* the parallelogram P R Q,

! \ Fig. 72, we obtain in the di-

a! \ N
Y

agonal R the mean velocity.

^^^»-<\ or that with which the body in

I ^Njo Q ^ describes the parabolic path
~"~~

i^sT"*: A U. This velocity itself is

p|....\« v — X & + (p ty.

\ R gives also the tangent
x or the direction in which the

body moves for an instant ; con-

sequently, for the angle P R = X T = p, which the same

makes with the direction (axis) A X of the second motion, we

have the following formula

Q c

Finally, to obtain the space described or the arc of the curve

A = 5, we can employ the formula rj — ,•• -
(g 10). by the aid of

which we can calculate the small portions -which we can consider

as elements. The calculus also gives a complicated formula for the

computation of an arc of a parabola.
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§ 38. We have previously supposed that the primitive directions

of motion were at right angles to each other, and we must now
consider the case, when the direction of the acceleration makes any
arbitrary angle

the body
to

in the

with that of the

direction A Yx

Fig.

( T N

IS

a *^x
A ,F

TvT

;

a\'p

] C

X
Y,

X

velocity. If the velocity of

(Fig. 73) is c, and if, in the

direction A Xx
which forms

an angle X
x
A Yx

= a with

the former, the acceleration

is p, A is no longer the ver-

tex, and A Xx no longer

the axis, but only the di-

rection of the axis of. the

parabola. The vertex of the

parabola is situated at a

point whose co-ordinates, in

reference to the point of be-

ginning of the motion, are OB = a andB A — b, ofwhich the former

lies in the axis of the parabola and the latter is at right angles to

it. The velocity AD— c is composed of the two components

A F= c sin. a and A E— c cos. a. The first of these is constant,

and the latter is variable, and always equal to the variable velocity

p t, provided that the body requires the time t to pass from the

vertex C to the real point of beginning.

Hence we have

c . cos. a

P
p f __ c" cos.' a

c~ sin. a cos. a c" sin. 2 a

c cos. a = p t, whence t and therefore

1) CB =
2p

2)

If

B A = 1) — c sin. a .t =
P 2 P

we have determined by these distances the vertex of the

parabola, starting from this point Ave can, for any given time, de-

termine the position of the body. Besides, if we put CM= x and

MO the general formula

x = V V
or y = c sin

P
holds good.

2 & sin? a

Remark.—One of the most important applications of the theory of par-

abolic motion, just discussed, is to the motion of projectiles. A body pro-

jected in an inclined direction either upward or downward would describe,

in virtue of its initial velocity c and of the acceleration of gravity (g = 32 . 2

f^t), an arc of a parabola, if the resistance of the air were done away with,.
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or if its motion took place in vacuo. If the velocity of projection is not very

great and if the body is very heavy compared with its volume, the diver-

gence of the body from a parabolic path is small enough to be neglected.

The most perfect parabolic trajectories arc those described by jets of water

issuing from vessels, fire-engines, etc. Bodies shot from guns, etc., e.g..

musket balls, describe, in consequence of the great resistance of the air,

paths which differ very sensibly from a parabola.

§ 39. Motion of Projectiles.—A body projected in the di-

rection A Y at an angle

_
FlG

'
74 of elevation YA D = a,

Fig. 74, ascends to a cer-

tain height B C, which

is called the height of

projection (Fr. hauteur

du jet, Got. Wurfhohe),

and it reaches the hori-

zontal plane from which

it started in A, at a dis-

tanceA I) from it,which

is called the range of

projection (Fr. ampli-

tude du jet, Ger. Wurfweite).

From the velocity c, the acceleration g and the angle of eleva-

tion, we obtain, according to § 38, when we replace p by g and

a by 90° -f a , or cos. a by sin. a, etc.

the height of. projection C B = a =

half the range of projection A B = b

c sin. a
and

9
c" sin. 2 a

From the last formula Ave see that the range of projection is a

maximum for sin. 2 a — 1, or 2 a = 90°, that is for a — 45°. A
body projected at an angle of elevation of 45° attains the greatest

range of projection.

We have also

gV
2 c'

2

cos? a'

and for a point in the path of the projectile for which GM' = as

and M = g,

ff tx —
2 c

2
cos? a'

or when its position is given by the co-ordinates A N = £j

N = 2/1, since in that case

and
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x = C3I= B G - N = a-- y x
and

yr = M = A B - A N' = b -- #i, we have

g(b - x,y
a yi ~ 2c*cos*a>

(j (b - x
xy

?/, = a — ir—„ ^-, or since aJ 2 c cos.' a 2 c~ cos/ a

* , $ x?y,-xx tang, a
2V^V

=

CI Q
"

"

Substituting in the equation yt
= a\ tang, a — \

1

2 , for
/w c cos. a

|]ie yalue 1 + tang.
2
a, and resolving the same in reference

cos." a

to tang, a, we obtain the following expression for the angle of eleva-

tion (a), required to reach a point given by the co-ordinates x
}

andf/1?

/r^a = -^ ± i/(^-)V(l + ?A-VJ
(/ j:

\(J
xj \

(J
X{ I

if (-£)' = i
\gxj

'—?-, or c
4 — 2 a ?/i c~ — r/

2
.rA then we have

c — ^g (tji + *V -t #*) and

fa/z<7. a =—

.

Smaller values of c make tang, a imaginary, and larger values of c

give two values for tang, a ; in the first case the point cannot be

attained, and in the second case it would bo attained either in the

rise or in the fall of the projectile.

Example.—1. A jet of water rises with a velocity of 20 feet at an angle

oi' 66°. The height due to the velocity is h = 0,0155 .
20" = 6,2 feet, and

the jet ascends to a height a = 7i sin.
2 a = G,2 . {sin. 66 )

2 = 5,17 feet, the

range of the jet is 2 1) = 2 . 6,2 sin. 132° = 2 . 6,2 sin. 48 = 9,21 feet. The
time, which each particle of water requires to describe the entire arc A CD

, , • , 2 c sin. a 2. 20 sin. 66° ... , •, , .

oi the parabola, is t = = =~ = 1,14 seconds. The height
Cj O/Zl^rJ

corresponding to the horizontal distance A JT= »
t
= 3 feet is

o , nno 32.2 .9 . „oa 0,36225
9t = 3 . tang. 66 -^——^—^ = 0, ,33 -^-

?
= 6,738 - 2,189 = 4,549 feet.

2. A jet of water discharged from a horizontal tube has, for a height 1|

feet, a range of 5|- feet ; how great is its velocity ?
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g y* y" y-
From the formula x = ~—

;

, = a -t, we deduce h =-r- , in which we must
2 c 4 Iv 4 a?

5 25 2

substitute x = 1,75 and y = 5,25, and thus we obtain li = j
' = 3,937

feet and the corresponding velocity c= 15,92 feet.

§ 40. Jets of Water.—The peculiarities of the motion of jets

of water are explained and shown in what follows. From what

precedes we have

q x" Tl 4- (tana. a)-~\ _

y = x tang, a — - k— A__^___ZJ. an(j

* = * tov'- -uUUg*^
for the equations of the parabolas formed by the paths of two as-

cending jets of water whose velocities c are the same, and whose

angles of elevation a and a
x
are different. If we put x

x
= x and

subtract these equations from one another, we obtain

a x°-

y — ?/, = x {tang, a — tang, a/) — ~—
%
[(tang, a)

2 — (tang. a
} y]

/v c"

= x (tang, a — tang, a-) (1 — ~t, (tang, a 4- to<jr. a^J.

If we assume that the two streams have nearly the same angle

of elevation and require the two parabolas to have a point in com-

mon, we must put-^ = y and consequently Ave have

.'• (rang, a — tang. a
t ) (1 — j—^ (tang, a + to#. a^J = 0, or

(

{A (tanff. a + tang, a,) = 1,

or, since we can put aj = a we have simply

a x tana, a
t

_ c
2

=-—— = 1, whence tana, a = •—

.

c 9 x

Substituting this value in the equation

a r2

2/ = x tang, a - J— [1 + (tang, a)
2

],

we obtain the equation

* # 2c2
\
r
/ z7 2# 2 &

of the curve D P S P D, Fig. 75, which passes through the neigh-

boring points, in which every two parabolas starting from the same

point A at different angles cut each other, and which, therefore,

(ouches or envelops the whole system of parabolas A C D, A OR,
etc.
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The height to which a vertical jet of water rises is A 8

139

20'

and the range of projection of a jet A CD rising at an angle of

Fig. 75

45° is A D = 2 .

c
2
sin. 2 a = 2.^- =2 A 8,

If we transfer the origin of co-ordinates from A to 8, re-

placing the co-ordinates A N= $ and i\TP = # by the co-ordinates

S U— u and UP = r. we have

and tho equation

A 8-8 U=£- ~?*and yl i^= ?7P= *,

r
?/ — — •_—

-,- is thus transformed into
2 // 2

r/>

2 c r/

9 ,>3

This equation is that of the common parabola whose parameter

i

' =
'

— = 4 XS; and therefore the otitfftnu P P fl P P of all
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the jets of water rising from the point A is a common parabola,

whose vertex is S and whose axis is S A.

Fig. 76.

a. bunch of jets rising from A in all directions would be envel-

cped by the paraboloid generated by the revolution of the envelope

D P SP 1) mound A S. If t is the time in which a body rising in

a parabola describes the arc A 0, Fig. '70, the co-ordinates of which

are A M - x and M — y, w

x = ct cos. a and y

have

= c t sin. a ---, whence

x , . y + I g f
cos, a = —, and sin. a — -,-—

.

ct ct

Substituting these values for cos. a and sin. a in the well-known

trigonometrical formula {cos. a)' -f (sin. a)' — 1, we obtain the fol-

lowing formula

(c~ty
+ ~1^T" ~

'

a + (z/ + **' } ~ 6 '*

If from a point A, Fig. 7G, bodies bo projected at the same mo-

ment and in the same vertical plane at different angles of eleva-
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turn, the positions that they occupy after the lapse of a certain

time (t) are determined by the last equation, which is that of a circle

whose radius is r = c t and whose centre is situated vertically below

A at a distance a — \ g f, and which can therefore be written in

the following form,

x* + (y + aY — r\

The circumference of this circle would therefore be reached at the

same moment by all the elementary jets A C D, A P, A L S....

rising at the same moment from the point A.

x
If in the formula t x

— we substitute a ==. 45*, and x —
c cos. a

A B = r—, we obtain tx
— - t^ — — V±, hence the time re-

%(J 2 g cos. 45° g

quired to describe the whole arc of the parabola A D is t
' ==

2 tx = — V%, and the radius of the circle D L D, which is reached
j

simultaneously by the different elements of the water, is

KD = r = ct^= — V2 = —¥% = 2,828 ~ = 2,828 . A~S, and
g %g %g

the distance of the centre K from A is

A K 3= a - %g f = — = % £- = 2 AS.~ J
g %g

If we divide D K in 4, and A K in 16 equal parts, we can, since

r is proportional to t and a to f , from the points of division 1, 4, 9

in A K, describe other circles with the radii \ J) K, § D K, and

I
D K, which cut off the parabolic arcs described in the same time,

e.g., the circle described from 1 with 1 a = J D ig cuts off in the

points a, a, , the parabolic paths A a, A a
x , described simul-

taneously, and the circle described from 4 with 4 (3 = ^ D iT cuts off

in the points ft ft . . . .the parabolic arcs A ft A ft, etc., which are

also simultaneously described.

If these circles be revolved about the vertical axis K L, they de-

scribe spherical surfaces which bound the parabolic paths described

simultaneously, when the jets are projected all around A at all

angles of elevation.

§ 41. Curvilinear Motion in General.—By the combination

of several velocities and several constant accelerations, we obtain

also a parabolic motion, for not only the velocities but also the ac-

celerations can be combined so as to form a sino-le resultant; the
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problem is then the same as if there were one velocity and one

acceleration, i.e., as if there were but one uniform and one uni-

formly accelerated motion.

If the accelerations are variable, they can be combined so as to

give a resultant, as well as if they were constant, for we can con-

sider them as constant during an infinitely small period of time (t),

and the motion as uniformly accelerated during this time. The

resulting acceleration is, it is true, like its components themselves,

variable. If we combine this resulting acceleration with the given

velocity, we obtain the small parabolic arc, in which the motion

takes place during this instant, If we determine also for the follow-

ing instant the velocity and the acceleration, we obtain another por-

tion of an arc belonging to another parabola, and proceeding in the

same manner, we obtain approximately the entire curve of the path.

§ 42 We can consider every small arc of a curve as an arc of a

circle. The circle to which this arc belongs is called the circle of

curvature or osculatory circle (Fr. cercle osculateur, Ger. Kriim-

mungskreis), and its radius is the radius of curvature (Fr. rayon de

courbure, Ger. Krummungshalbmesser). The path of a body in

motion can be considered as composed of such arcs of circles, and

we can therefore deduce a^ 77 - formula for its radii. Let

A M (Fig. 77) == x L£f-

be a very small space de-

scribed in the direction A X
with uniformly accelerated

motion, A J\
r= y = bravery

small space described uni-

formly and the fourth cor-

ner ofthe parallelogram con-

structed with x and y, that

is, the position that the body

starting from A occupies at

the end of the instant (r).

Let us draw A C perpen-

dicular to A Y, and let us

see from what point C in this line an arc of a circle can be de-

scribed through A and 0. In consequence of the smallness of A
we can consider not only C A, but also COP as perpendicular to
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A Y, so that in the triangle N P the angle N P can be

treated as a right angle. The resolution of this triangle gives

P = Nsin. NP = A M sin. XAY =^ sin, a,

and the tangent
__2

A P = A N + NP = vt +^- cos. a — iv + ^- cos. a) r.

can be put == v r, for^~ cos. a can be neglected in the presence of

v, in consequence of the infinitely small factor r. Now, from the

properties of the circle we know that APJ = P . (P + 2 CO),

or since P can be neglected in the presence of 2 C 0, A P* = P
.2CO; whence it follows that the radius of curvature is

ni rtn ^P* v
* r*

v*

CA = CO = r =
2 P p T* s^n- a P sin' a

In order to determine by construction the radius of curvature,

we lay off upon the normal to the original direction of the motion

A Y the normal acceleration, i.e., its normal component p sin. a

= AD, and join the extremity E of the velocity A E = v to D by

the right line D E, then we erect upon D E a perpendicular E C\

the point of its intersection with the first normal is the centre of

the oscillatory circle of the point A.

By inverting the last formula we obtain the normal accelera-

v*
Hon n = p sin, a = — ; from which we see that it increases di-

rectly as the square of the velocity, and inversely as the radius of

curvature, or directly as the greatness of the curvature.

Example.—The radius of curvature of the parabolic trajectory pro-

duced by the acceleration of gravity is r = 0,031 —,
, and for the vertex

' sin. a

of this curve where a = 90°, and therefore sin. a = 1, it becomes r —
0,031 c- feet. For a velocity c = 20 feet we obtain r = 12,4 feet ; the

farther the body is distant from the vertex the smaller a becomes, and con-

sequently the greater is the radius of curvature.

§ 43. If the point A has described the ebmentary space A O —
a, its velocity has changed ; for the initial velocity v in the direc-

tion A I
r
is now combined with the velocity j9 r acquired in the di-

rection A X, and consequently from the parallelogram of velocities

we have for the velocity i\

vS = v
2 + 2 v p r cos. a + p* r2 = v

1 + p r (2 v cos. a + p r),

hutp r vanishes in the presence of 2 v cos. a, and we have
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v* = v" + 2 p v r cos. a.

But v r is the elementary space A N — A - o, and p cos. a is the

tangential acceleration, i.e., the component h of the acceleration p
in the direction of the tangent or of the motion, whence we have

V\ — v" ,—-— — k g.

Here a cos. a is the projection A R — & of the space upon the

direction of the acceleration, and consequently we have

Vx — V'

As the motion progresses v x changes successively into v 2, vz . . .

.

vtl> and the projections of the elementary spaces are increased by

the quantities £*£*.-•... £»> therefore we have

, v.? - v? v^ - v,U
= P ?* 5T— =P &» o =-P 6#2

and by addition

v,,
2 — v — # (li +& + . . * 4) = ^ $3
2

in which a; denotes the total projection of the acceleration upon

A X. We can also put

«*'—

y

_ / Pi+M-. -. + jU
2 " "I" "

" < " 7*'
when the acceleration is variable and assumes successively the val-

ues pl9 ps . . . . pw,

We see from the above that the variation of the velocity does

not in the least depend upon the form or length of the path de-

scribed, but only on its projection x upon the direction of the ac-

celeration. For this reason all the jets of water, Fig. 7G, have one

and the same velocity on reaching the same horizontal plane H II

If c is the initial velocity or velocity of efflux, v the velocity atH H,

and b the height of the line HH above A, we have

v
1 - &

2
= — g b, whence

v — Vd' — 2 gb.

If at a certain point of the motion we have a = 90°, the tan-

gential acceleration k = p cos. a becomes —. 0, and the normal ac-

celeration n — p sin. a is equal to the mean acceleration p. In this

case the variation of the squares of the velocities while the clement

<r of the space is being described, is v* — v
n
- = 0, and we have i\ =

v: and if the motion continues in a curve, the direction of the ac-
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celeration changing in such a manner as always to remain normal
to the direction of the motion (i.e., if there is no tangential accel-

eration); ly — r = 0, or v
x
= v remains constant while the point is

describing any finite space, and the final velocity is equal to the
initial velocity c.

The normal acceleration, for which the velocity remains constant,

is V

an example of which is afforded by motion in a circle, for then the ra-
dius of curvature C A = C = G D = r is constant. Inversely

a constant acceleration, which always acts

at right angles to the direction in which
the body is moving, causes uniform mo-
tion in a circle.

Example.—A body, revolving in a circle 5
feet in diameter in such a manner as to make each

revolution in o seconds, has a velocity c= —^ —

2 7T.5 ,

~5~ = 2.rr=6, feet, and a normal ac-

celerationp=±-!—L = 7,896 feet, i.e., in every

second it would be diverted from the straight line a distance I- p=^ 7,806
= 3,948 feet.

79,

Fig. 79.

(§ 44.) Curvilinear Motion in General.—If a point P, Fig.
moves in two directions A X and A Fat the same time, we

can consider the spaces de-

scribed A K — L P ~x
and A L = KP = y as the

co-ordinates of the curve

A P Wformed by the path,

and if d t is the element

of time, in which the body

describes the elementary

spaces P R — d x and R Q
— cl y, we have (from § 20)

the velocity along the ab-

scissa

and that along the ordi-

nate
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2) v =__ d Vdf
and therefore the resulting tangential velocity, or that along the

curve, when the directions A X and i Fof the motions are at

right angles to each other,

o\ i^i i A/idxX , (d yY Jdx- + dif ds

in which formula d s denotes the element P Q of the curve which,

according to Art. 32 of the Introduction to the Calculus, is equal to

Vd~sf~+ d y\
The acceleration along the abscissa is, according to § 20,

.. du
4) *.=j?

and that along the ordi-

nate

dv

Fig 80.

5) q df
For the tangential an-

gle P TX= QPR = a,

formed by the direction of

motion P iv with the direc-

tion of the abscissas, we

have,

v dy
tang.a =-=fj

and also

v dy ,

sin. a — — —-^r- and
w d s

u
cos. a = — =

w
dx
d s

The accelerations p and q can be decomposed into the following

components in the directions of the tangent P Tand of the nor-

mal P Nt

p x
— p cos. a and p^ = p sin. a,

q x
= q sin. a and q9 = q cos. a.

Consequently the tangential acceleration is

h = pi + Qi = p cos, a + q sin. a

_du u dv v u d u + v d v

d t w d t

and the normal acceleration is

w w dt
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n -= p9 — q<, — p sin. a — q cos. a

__ d *;, v dv u __ v d u — u d v

d t to d t' to to dt
But by differentiating tr + v- = 10* we obtain

u d u + v d v — tod to,

and therefore we have more simply for the tangential acceleration

„, , _ to d to _ d to

~
to d~t~ dt'

-p ± v
i 1 • 7 , u d v — v d uh rom tana, a = - we obtain <:? ta#. a = ,

(Introduction to the Calculus, Art. 8) and the radius of the curva-

ture C P = C Q of the elementary arc P Q (according to Art. 33
of the Introduction to the Calculus) is

ds*

d xr d tang. ay

whence it follows that

7 7 27 , u2 dss dsz ds/ds\* w1 d s
v d u—u d v= — if d tana. a=—-— =—_ —_r (_ )

—
y rd x l %df r \d t) r

2

and that the normal acceleration is simply

„, _ to
1 d s _to ds __ to

2

r to d t~ r ' dt ~ r'

Finally we have

7 7 dto 7 ds ,
k d s = -y-: • a s = -=-, d to = to d w ;dt dt '

from which we obtain (as in § 20),

to
2 — c

2

8) —-— — fkds,

when we suppose that while describing the space 5 the velocity

changes from c to to. Therefore, in curvilinear motion half the dif-

ference of the squares of the velocities is equal to the product oftlu
mean acceleration (Jc) and the space s. In like manner

2)dx + q d y = u d u 4- v d v — to d to, and therefore

to'
2 — c

2

9) —2~=f(p clx + q dy) = fp dx + f q d y, and

10) flcds — fp d x + f q d y, or

h d s = p d x + q d y.

TJie product of the tangential acceleration and the element of the

curve is equal to the sum of the products of the accelerations along

the co-ordinates and the corresponding elements of co-ordinates.
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Example.—A body moves on one axis A X with the velocity u = 12 %
and on the other A Y with the velocity © = 4 t

2 — 9 ; required the other

conditions of the resulting motion. The corresponding accelerations along

the co-ordinates are

du An , dv

and the co-ordinates, or spaces described along the axes, are

x = fudt = fl2tdt = 5t% and

y = Cvdt= f(i «
3 - 9) d t =

1
1' - 9 %

in which equations the spaces count from the time £=0. The tangential

velocity, or that along the curve, is

v>= Vu* + it = YlUt2 + (4i2 — 9)
3 = Vl6 V + 72 V + 81 = 4 *

2 + 9,

consequently the tangential acceleration is

h = ,— = 8 £ = the acceleration g- along the ordinate.

We have also for the space described along the curve

s= Jw d t = /(4

£

2 + 9) <Z « = - £
3 + 9 «.

When the direction of the motion is given by the formula,

v 4 *' — 9 %x — 9

, ,
4 + 9 , ,we have a tang, a = ^ t,

and therefore the radius of curvature of the trajectory is

_ ds* (4*2 + 9)
3

. 12£2 _ (4£2
-f9)*

T ~ ~dx2 d tang, a ~ 144 P (4 1- + 9) ~ 12 '

or
'
r =

"~i2"-

Consequently the normal acceleration, which produces a constant

change of direction of the motion of the body, is

7i = — = — 12, or constant.

The equation of the curve of the trajectory of the body is found by sub-

stituting t = y -y in the foregoing equation, and it is

9
The ordinate y is a (negative) maximum for v = 0, i.e., for£*=— , or t =

8 9 27— , and a? = 6 . ? = 6 . -j- = -^-, and then

4 9 3 A 3

27 ^ — 81
and on the contrary, it is = 0, for t* = -j- or t = — V3, and a? = ~~.
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The curve which forms the path of the body runs at first below the axis

of abscissas, and after the time t — y -t- it cuts it at a point whose

SI
abscissa is x = ~-, and from that time it remains above the axis.

a

The following table contains a collection of the corresponding values

of t, u, v, w, x, y, tang, a, r and s, from which the curve ABODE, Fig. 81,

is constructed.
Fig. 81.

t u V w X 2/ to#. a r s

27
° o -9 9 00

4

1 12 -5 13 6

3 12

169

12

5i
!

3

xi 18 18
2

-9 - 27 18

2

i

24 7 25 24
22

3

_7_

24
_ ^1

12

86

3

1

18^3 18 36
81

2
3

3

— 108

675

_ 1

27 1/3

63

i

s ^ 27 45 54 + 9

148

4

55

4

1875 364
4 48 55 75 9 b +T 48 4 3 »

§45. Relative Motion.— If two bodies are moving simul-

taneously, a continual change in their relative positions, distances

apart, etc., takes place, the value of which may be determined for

any instant by the aid of what precedes. Let A, Fig. 82, be the

point where one andB that where the other motion begins ; the first
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Fig. 82.

N^-

/,^
/
7

./
' I

X

body passes in a given time (t) in the direction A Xto> the position

M, and the other body in the same time in the direction B Yto
the point N. Now if we draw M N, this line will give us the rela-

tive position and distance from

each other of the bodies A and

B at the end of this time. Draw-

ing A parallel to M JV, and

making A — M X, the line

A will also give the relative

position of the bodies A and B.

If we now draw N, we obtain

a parallelogram, in which iVis = A 31. If, finally, we make B Q
equal and parallel to X and draw Q, we obtain a new parallel-

ogram B X Q,m which the one side B X is the absolute space

( y) described by the second body, the other side B Q is the space

(x) described by the other body in the opposite direction, and the

fourth corner is the relative position of the second body, that is,

in reference to the position of the first body, which we consider

to be fixed. Hence we can determine the relative position of a

moving body (B) by giving to this body besides its motion (B X)
another, equal to but in the opposite direction from that A M of

the body (A), to which its position is referred, and then by com-

bining in the ordinary way, as, e.g., by the aid of a parallelogram,

these two motions.

§ 46. If the motions of the bodies A and B are uniform, we

can substitute for A M and B X the velocities c and c
x , that is the

spaces described in one second. In this way we obtain the rela-

tive velocity of one body when we give to it besides its own abso-

lute velocity, that of the body to which we refer the first velocity,

but in the opposite direction.

The same relation holds good for

the accelerations. If, e.g., a body

A, Fig. 83, moves uniformly in the

direction A C with the velocity c,

and a body B moves in the direc-

tion B Y, which makes an angle a

with B-Xx , with an initial velocity

= and with the constant accele-

ration p, we can also suppose that

A stands still and that B possesses,

-x
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besides the acceleration p, also the velocity (— c) in the direc-

tion B Xi parallel to A X; the body will then describe the parabolic

path BOP.
The spaces described in the time t in the directions B Y

and BXX are B N = ^- and B M = c t, the first of which can be

decomposed into the componentsNR = -^- cos. a and B R = ^~

sin. a, which are parallel and at right angles to A X.

Now if A C = a and C B — b are the original co-ordinates of

,the point B in reference to A, and J. K = # and K — y the co-

ordinates of the same after the time £, we have, since A K — A C
-OX- XRand K = C B - B R,

,
pf .

7
pf .

x — a — ct — Sr~ C05. a and it — b — -— s-m. a,

and jconsequently the corresponding relative velocities

u — — c — p t cos. a and v = — p t sin. a.

From the abscissa x we determine the time by the formula

jtf COS. a \p cos. a] p cos. a

and, on the contrary, from the ordinate y by the formula

' p sin. a
'

If the body B moves in the line A X towards A, we have b =
and also a = 0, and therefore

, = j/a C - *) + (£V _ £,

putting a; = 0, we obtain for the time, when two bodies will meet,

_ ./2 a /cX" c V% a p + c
l — c

' p \pl p p
If, on the contrary, the body B moves in the line A X ahead

of the body A, then a = 180°, and the distance of the former from

the latter body is x = a — ct + —^- , and, inversely, the time, at

the end of which the bodies are at a distance x from each other, is,

t = ± j~iEE*r7fj' +
c

.

P Y" P
The corresponding velocity u = — c -f p t is = 0, and the dis-

c c~
tance a; is a minimum for t — -, and its value is x = a — ^r—

p* 2p



152 GENERAL PRINCIPLES OF MECHANICS. [§ *».

For every other value of x we have two values for the time, one

Q
of which is greater and the other less than -.

° p

Remark.—The foregoing theory of relative motion is often applied, net

only in celestial mechanics, but also in the mechanics of machines. Let us

consider the following case.

A body A, Fig. 84, moves in the direction A X with the velocity c lt and

should be met by another body B which has the velocity c
2 ; what direction

must we give the latter ? If we draw A B, lay off from B, c
x
in the op-

posite direction and complete with c
x
and c

2
a parallelogram B c

t
c c

2 ,

whose diagonal e coincides with A B, we obtain in the direction B c 2 =c,
of its side, not only the direction B Yin which the body i?must move,

but also in the point of intersection C of the two

directions A X and B Y, the point where the two

bodies will meet. If a is the angle BAX formed

by A X, and 3 the angle A B Y formed by B Y with

A B
7
we have

sin. 3 _ c
t

sin. a Co"

This formula is applicable to the aberration of the

light of the stars which is caused by the compo-

sition of the -velocity c
x
of the earth A around the

sun with the velocity c
2
of the light of the star B.

Here c
x

is about 19 miles, and c
2

about 192,000

miles, consequently

c A . 19 sin. a sin. a

c
2

=
192000"

=
10T05

1

hence the aberration or the angle A B G = 3, formed by the apparent di-

rection A B of the star (which can be supposed to be infinitely distant) with

the true direction B C or A D, is (3=20" sin. a; and for g=90°, that is, for a

star, which is vertically above the path of the earth (in the so-called 23ole of

the ecliptic), we have ,3 = 20". In consequence of this divergence we al-

ways see a star 20" in the direction of the

motion of the earth behind its true posi-

in. 3 =

Fig. 85.

neighborhood of the pole of the ecliptic

describes apparently in the course of a

year a small circle of -20" radius around

its true position. For stars in the plane

of the earth's path this apparent motion

takes place in a straight line, and for

the other stars in an apparent ellipse.

Example.—A locomotive moves from

A upon the railroad track A X, Fig. 85,



§46.] COMPOUND MOTION. 153

with 35 feet velocity, and another at the same time from B with 20 feet

velocity upon the track B Y\ which forms an angle B D X= 56° with the

first. Now if the initial distances are A G= 30000 feet, and C B = 240CO

feet, how great is the distance A O after a quarter of an hour ? From the

absolute velocity B E= c
x
= 20 feet of the second train, the inverse velo-

city B F= c = 35 feet of the first, and the included angle E B F— <
--

180° - B D C= 180° — 56° = 124°, we obtain the relative velocity of the

second train

B G = \Ul +c^ + 2cc
t
cos. a = V35- + 20' — 2 . 35 . 20 . cos. 56°

= 1/1225 + 400"—1400 "cos. 56~° = 1/1625 — 782,0 = 1/8424 = 29,02 feet.

For the angle Q B W = 6, included between the direction of the rela-

tive motion and the direction of the first motion, we have

ct sin. 56° 20.0,8290 7 . ^~™ ft -. , . oi o KA .

sin. $ = --
29 02

-- = 2902"" '
log sliK 0=0,75090-1, whence 9=34°,50 .

The relative space described in 15 minutes= 900 seconds is B 0=29,02 .

TOO = 26118 feet, the distance A B is = ^SOOOO)' + (24000)* = 38419

24000
fcet. the value of the angle B A G = A B F, whose tangent is = 0,8,

i j »> = 38° 40', and therefore the angle

A B O = 6 + ip = 34° 50' + 38' 40' = 73° 30',

and the distance apart of the two trains after 15 minutes is

AO= ^AB- + BO% -2AB.BOcos.ABO
= V38419'

2 + 261182 - 2. 38419 . 261 1« cos. 73° 30'

1/1588190000 = 39850 feet.



SECOND SECTION,

MECHANICS, OR THE PHYSICAL SCIENCE OF
MOTION IN GENERAL.

CHAPTER I.

FUNDAMENTAL PRINCIPLES AND LAWS OF MECHANICS.

§ 47. Mechanics.—Mechanics (Fr. mecaniquc, Ger. Mechanik)

is the science which treats of the laws of the motion of material

bodies. It is an application to the bodies of the exterior world of

that part of Phoronomics or Cinematics which deals with the mo-

tions of geometrical bodies without considering the cause. Me-

chanics is a part of Natural Philosophy (Fr. physique generate,

(lor. Naturlehre) or of the science of the laws, in accordance.with

which the changes in the material world take place, viz., that part

of it, which treats of the changes in the material world arising from

measurable motions.

§ 48. Force.—Force (Fr. force, Ger. Kraft) is the cause of the

motion, or of the change in the motion of material bodies. Every

change in motion, E.G., every change of velocity, must be regarded

as the effect of a force. For this reason we attribute to a body

falling freely a force, which we call gravity ; for the velocity of the

body changes continually. But, on the other hand, we cannot

infer from the fact that a body is at rest or moving uniformly that

it is free from the action of any force ; for forces may balance

each other without causing any visible effect. Gravity, which

causes a body to fall, acts as strongly upon it when it lies upon a

table, but its effect is here destroyed by the resistance of the table

or other support.
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§ 49. Equilibrium.—A body is in equilibrium (Fr. equilibre,

Ger. Gleichgewicht), or the forces acting on a body hold each other

in equilibrium, or balance each other, when they counterbalance

or neutralize each other without leaving any resulting action, or

without causing any motion or change of motion, e.g. When a

body is suspended by a string, gravity is in equilibrium with the

cohesion of the string. The equilibrium of several forces is de-

stroyed and motion produced when one Of the forces is removed or

neutralized in any way. Thus a steel spring, which is bent by a

weight, begins to move as soon as the weight is removed, for then

the force of the spring, which is called its elasticity, comes into

action.

Statics (Fr. statique, Ger. Statik) is that part of mechanics which

treats of the laws of equilibrium. Dynamics (Fr. dynamique, Ger.

Dynamik), on the contrary, treats of forces as producers of motion.

§ 50. Classification of the Forces..—According to their

action, we can divide forces into motive forces (Fr. forces motrices

puissance, Ger. bewegende Krafte), and resistances (Fr. resistances,

Ger. Widerstande). The former produce, or can produce, motion,

the latter can only prevent or diminish it. Gravity, the elasticity of

a steel spring, etc., belong to the moving forces, friction, resistance

of bodies, etc., to the resistances ; for although they can hinder or

diminish motion or neutralize moving forces, they are in no way
capable of producing motion. The moving forces are either accel-

erating (Fr. acceleratrices, Ger. beschleunigende) or retarding (Fr.

retardatrices, Ger. verzogernde). The former cause a positive, the

latter a negative, acceleration, producing in the first case an accel-

erated, and in the second a retarded motion. The resistances are

always retarding forces, but all retarding forces are not necessarily

resistances When a body is projected vertically upward, gravity

acts as a retarding force, but gravity is not on this account a re-

sistance, for when the body falls it becomes an accelerating force.

We distinguish also uniform (Fr. constantes, Ger. bestandige, con-

stante) and variable forces (Fr. variable, Ger. vcranderliche). While

uniform forces act always in the same way, and therefore in the

t.-qual instants of time produce the same effect, i.e., the same in-

crease or decrease of velocity, the effects of variable forces are

different at different times; hence the former forces produce uni-

formly variable motions, and the latter variably accelerated or

retarded motions.
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§ 51. Pressure.

—

Pressure (Fr. pression, Ger. Brack), and

traction (Fr. traction, Ger. Zug), are the first effects of force upon

a material body. In consequence of the action of a force bodies are

either compressed or extended, or, in general, a change of form is

caused,

The pressure or traction, produced by gravity acting vertically

downwards and to which the support of a heavy body or the string,

to which it is suspended, is subjected, is called the weight (Fr. p6ids,

Ger. Gewicht) of the body.

Pressure and traction, and also weight, are quantities of a pe-

culiar kind, and can be compared only with themselves ; but since

they are effects of force they may be employed as measures of the

latter.

The most simple and therefore the most common way of

measuring forces is by means of weights.

§ 52. Equality of Forces.—Two weights, two pressures, two

tractions, or the two forces corresponding to them are equal, when
we can replace one by the other without producing a different

action. When, e.g., a steel spring is bent in exactly the same man-

ner by a weight G suspended to it as by another weight G1 hung
upon it in exactly the same manner, the two weights, and therefore

the forces of gravity of the two bodies are equal. If in the

same way a loaded scale (Fr. balance, Ger. Waage) is made to bal-

ance as well by the weight G as by another Glf with which we have

replaced #, then these weights are equal, although the arms of the

balance may be unequal, and the other weight be greater or less.

A pressure or weight (force) is 2, 3, 4, etc., or in general n

times as great as another pressure, etc., when it produces the same

effect as 2, 3, 4 : ... n pressures of the second kind acting together.

If a scale loaded in any arbitrary manner is caused to balance by

the weight ( G) as well as by 2, 3, 4, etc., equal weights
( Gx), then is

the weight (G) 2, 3, 4, etc. times as great as the weight (Gj).

§ 53. Matter.—Matter (Fr. Matiere, Ger. Materie) is that, by

which the bodies of the exterior world (which in contradistinction

to geometrical bodies are called material bodies) act upon our

senses. Mass (Fr. masse, Ger. Masse) is the quantity of matter

which makes up a body.

Bodies of equal volume (Fr. volume, Ger. Volumen) or of equal

geometrical contents generally have different weights. Therefore
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we can not determine from the volume of a body its weight ; it is

necessary for that purpose to know the weight of the unit of

volume, e.g., of a cubic foot, cubic meter, etc.

§ 54, Unit of Weight.—The measurement of weights or

forces consists in comparing them to some given unchangeable

weight, which is assumed as the unit. We can, it is true, choose this

unit of weight or force arbitrarily, but practically it is advan-

tageous to choose for this purpose the weight of a certain volume

of some body, which is universally distributed. This volume is

generally one of the common units of space. One of the units of

weight is the gram, which is determined by the weight of a cubic

centimetre of pure water at its maximum density (at a temperature

of about 4° C). The old Prussian pound is also a unit referred

to the weight of water. A Prussian cubic foot of distilled water

weighs at 15° R. in vacuo 66 Prussian pounds. Now a Prussian

foot is == 139,13 Paris lines == 0,3137946 meter; whence it follows

that a Prussian pound = 407,711 grams. The Prussian new or

custom-house pound weighs exactly h kilogramm. The English

pound is determined by the weight of a cubic foot of water at a

temperature of 39°, 1 R The pound is equal to 453,5926 grams.

A cubic foot of water weighs 62,425 lbs.

§ 55. Inertia (Ft. inertie, G-er. Tragheit) is that property of

matter, in virtue of which matter cannot move of itself nor change

the motion, that has been imparted to it. Every material body re-

mains at rest as long as no force is applied to it, and if it has been

put in motion continues to move uniformly in a straight line, as

long as it is free from the action of any force. If, therefore,

changes in the state of motion of a material body occur, if a body

changes the direction of its motion, or if its velocity becomes

greater or less, this result must not be attributed to the body as a

certain, quantity of matter, but to some exterior cause, i.e., to a

force.

Since, whenever there is a change in the state of motion of a

body, a force is developed, we can in this sense count inertia as one

of the forces. If a moving body could be removed from the influ-

ence of all the forces which act upon it, it would move forward

uniformly for ever; but such a uniform motion is nowhere to be

found, since it is impossible for us to remove a body from the in-

fluence of every force. If a mass moves upon a horizontal table
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the action of gravity is counterbalanced by the table, and therefore

does not act directly upon the body, but in consequence of the

pressure of the body on the table a resistance is developed, which

will be treated hereafter under the name of friction. T.his resist-

ance continually diminishes the velocity of the moving body, and

the body therefore assumes a uniformly retarded motion and finally

comes to rest. The air also opposes a resistance to its motion, and

even if the friction of the body could be completely put aside, a

continual decrease of velocity would be caused by the former.

But we find that the loss of velocity becomes less and less, and that

the motion approximates more and more to a uniform one, the more

we diminish the number and magnitude of fchesa resistances, and we

can therefore conclude, that if all moving forces and resistances

were removed, a perfectly uniform motion would ensue.

§ 56. Measure of Forces.—The force (P) which accelerates an

inert mass (if) is proportional to the acceleration (p) and to the

mass (M) itself. When the masses are the same, it increases with

the infinitely small increments of velocity produced in the infin-

itely small spaces of time, and when the velocities are equal it in-

creases in the same ratio as the masses themselves. In order to

produce an m fold acceleration of the same mass, or of equal masses,

we require an m fold force, and an n fold mass requires an n fold

force to produce the same acceleration.

Since we have not as yet adopted a measure for the masses, we

can assume

or that the force is equal to the product of mass and the accelera-

tion, and at the same time we can substitute instead of the force

its effect, i.e., the pressure produced by it.

The correctness of this general law of motion can be proved by

direct experiment, when we, e.g., drive along upon a horizontal

table by means of bent steel springs similar or different movable

masses; but the important proof lies in this, that all the results

and rules for compound motion, deduced from the law, correspond

exactly with our observations and with natural phenomena.

§ 57. Mass.— All bodies at the same point on the earth fall in

vacuo equally quickly, namely, with the constant acceleration

g — 9,81 meter == 32,2 feet (§ 15). If the mass of a body is = M
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and the weight which measures the force of gravity = G, we have

from the last formula

G = Mg,

i.e., the weight of a lody is a product of its mass and the acceleration

of gravity, and inversely

TUT
G
<7

i.e., the mass of a body is the tveight of the same divided by the accel-

eration of gravity, or the mass is that weight which a body would

have if the acceleration of gravity were = 1, e.g., a meter, a foot,

etc. For that point upon or in the neighborhood of the earth or of

any other celestial body, where the bodies fall with a velocity (at the

end of the first second) of 1 meter instead of 9,81 meters, the mass,

or rather the measure of the same, is given directly by the weight

of the body.

According as the acceleration of gravity is expressed in meters

or feet we have for the masses

*--§§£= 0A019 G, or

Hence the mass of a body, whose weight is 20 pounds, is

M =0,031 x 20 = 0,62 pounds, and inversely the weight of a

mass of 20 pounds is G = 32,2 x 20 = 644 pounds.

§ 58.—If we suppose the acceleration (g) of gravity to be con-

stant, it follows that the mass of a body is exactly proportional to its

weight, and that, when the masses of two bodies are M and Mx and

their weights G and Gly we have

mx

~ g;

Therefore, the weight of a body can be employed as a measure

of its mass, so that the greater the mass a body is the greater is its

weight.

However the acceleration of gravity is variable, becoming

greater as we approach the poles and diminishing as we approach

the equator; it is a maximum at the poles and a minimum at the

equator. It also decreases when a body is elevated above the level
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of the sea. Now since a mass, so long as we take nothing from it

nor add anything to it, is a constant quantity and remains the

same for all points on the earth, and even on the moon, it follows

that the weight of a body must be variable and depend upon the

position of the body, and that in general it must be proportional

to the acceleration of gravity, or that—T must be = —

.

The same steel spring would therefore be differently deflected

by the same weight at different points on the earth—at the

equator and on high mountains the least, and at the poles at the

level of the sea the most.

§ 59. Heaviness (Fr. densite, Ger. Dichtigkeit) is the in-

tensity with which matter fills space. The heavier a body is, the

more matter is contained in the space it occupies. The natural

measure of the heaviness is that quantity of matter (the mass)

which fills the unity of volume; but since matter can only be

measured by weight, the weight of a unit of volume, e.g., of a

cubic meter or of a cubic foot of another matter, must be employed

as the measure of its heaviness. Hence, the heaviness of water

at 39°.l F. is = G2,425 pounds, and that of cast iron at 32° F.

is — 452 pounds, i.e., a cubic foot of water weighs 62,425, and

a cubic foot of cast iron 452. In ordinary calculations we assume

that of water to be G2^- pounds. From the volume V of a body

and its heaviness y we have its weight G — Ky.

The product of the volume and the heaviness is the weight.

The heaviness of a body is uniform (Fr. homogene, uniformc,

Ger. gleichformig) or variable, (Fr. variable, heterogene, Ger.

ungleichformig), according as equal portions of the volume

have equal or different weights, e.g., the heaviness of the simple

metals is uniform, since equal parts of them, however small, weigh

the same. Granite, on the contrary, is a body of variable heaviness,

since it is composed of parts of different density.

Example.—1. If tho heaviness of lead is 712 pounds, then 8,2 cubic feet

of lead weigh G — Vy — 2278,4 lbs. If the weight of a cubic foot of bar

iron be 480 pounds, the volume of a piece, whosa weight is 205 pounds, is

V=— = ~7, = 0,4271 cubic feet = 0,4271 x 1728 = 733 cubic inches.
y 480

IToto.—In German and French tho word " density" is employed to express

the weight of a cubic foot, a cubic meter, etc., of any material. In English,

uafortunately, it is employed aa a synonym of specific gravity.—Tn.
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If 10,4 cubic feet of hemlock, thoroughly saturated with water, weighs

577, then its heaviness is

G 577
7 = -y = io^

= 55 >° pounas.

§ 60. Specific Gravity.—Specific weight, or S23ecific gravity,

i (Fr. poids specifique, Ger. specifisches or eigenthumliches Gewicht)

is the ratio of the heaviness of one body to that of another body,

generally water, which is assmred as the unit. But the heaviness

is equal to the weight of the unit of volume ; therefore the specific

gravity is also the ratio of the weight of one body to that of

another, e.g., water, of equal volume.

In order to distinguish the specific gravity or specific weight

from ih.c weight of a body of a given volume, the latter is called the

absolute weight (Fr. poids absoln, Ger. absolutes Gewicht).

If y is the heaviness of the matter (water), to which the others

are referred, and y, the heaviness of any matter whose specific

gravity is denoted by e, we have the following formula:

e = — and yi =^e y, ,

y
therefore the heaviness of any matter is equal to the specific gravity

, of the same multiplied by the heaviness of water.

The absolute weight 67 of a mass of whose volume is V, and

whose specific gravity is c, is

:

G = Vyx
= Vey.

Example.—1. The heaviness of pure silver is 655 pounds, and that of

water 62,425 pounds ; consequently the specific gravity of the former (in

655
relation to water) is = - = 10,50, i.e

,
^ery mass of silver is 10J

time3 as heavy as a mass ofwater that occupies the same space. 2) If we
take 13,598 for the specific gravity of mercury, and the heaviness of water as

62,425, then we have for the heaviness of mercury,

7 = 13,593. 62,425 =.- 848,86 pounds.

A mass of 35 cubic inches of the same weighs, since 1,728 cubic inches arc

a cubic foot,
CM o Qrt or:

G = 848,86 V. = ^Vv! — - l
r
'U3 pounds.

172o

Remark.—The use of the French weights and measures possesses the

advantage that we can perform the multiplication by e and y by simply

changing the position of the decimal point, for a cubic centimeter weighs

a gram, and a cubic meter a million grams, or 1,000 kilograms. The

heaviness of mercury is therefore, when we employ the French measure,.

y t
= 13,598 . 1000 == 13598 kilograms; that is, a cubic meter of mercury

weighs 13598 kilograms.
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§ 61. The following table contains the specific gravities of those

substances, which are met with the oftenest in practical mechanics.

A complete table of specific gravities is to be found in the

Ingenieur, page 310.

Mean specific gravity of

the wood of deciduous

trees, dry

Saturated with water =
Mean specific gravity of

the wood of evergreen

trees, dry =
saturated with water =

Mercury =
Lead =
Copper, cast and dense . =

" hammered . . . =
Brass =
Iron, cast, white . . . . =
" " grey ....=:
" " medium . . . =a

" m rods

Zinc, cast .

" rolled

Granite . .

Gneiss . .

Limestone .

= 2,50 to

= 2,89 to

= 0,659

0,453

0,839*

13,56

11,33

8,97

8,55

7,50

7,10

7,06

7,60

7,05

7,54

3,05

2,71

2,80

Sandstone . . . = 1,90 to 2,70

Brick = 1,40 to 2,22

Masonry with mortar made
oflime and quarry stone :

Fresh ....'...= 2,46

Dry = 2,40

Masonry with mortar made
of lime and sandstone

:

Fresh = 2,12

Dry . . = 2,05

Brickwork with mortar

made of lime

:

Fresh = 1,55 to 1,70

Dry = 1,47 to 1,59

Earth, clayey, stamped

:

Fresh . . .• ....=: 2,06

Dry = 1,93

Garden earth

:

Fresh . = 2,05

Dry = 1,63

Dry poor earth .,..=: 1,34

§ 62. State of Aggregation,—Bodies present themselves to

us in three different states, depending upon the manner in which

their parts are held together. This is called their state of aggrega-

tion. They are cither solid (Fr. solides, Ger. fest) or fluid (Fr.

fluides, Ger. fliissig), and the latter are either liquid (Fr. liquides,

Ger. tropfbar fliissig) or gaseous ((Fr. gazeux, aeriformes, Ger. elas-

tisch fliissig). Solid bodies are those, whose parts are held together

so firmly, that a certain force is necessary to change their forms or

to produce a separation of their parts. Fluids are bodies, the

position of whose parts in reference to each other is changed by the

smallest force. Elastic fluids, the representative of which is the

air, are distinguished from liquids, the representative of which is

*See the absorption cf water by wood, polytechnischo Mittheilingen

Vol. II, 1845.
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water, by the fact that they tend continually to expand more and
more, which tendency is not possessed by water, etc.

While every solid body possesses a peculiar form of its own and

a definite volume, liquids have only a determined volume, but no
peculiar form. Gases or aeriform fluids possess neither one nor the

other.

§ 63. Classification of the Forces.—Forces are very differ-

ent in their nature ; we give here only the most important ones

:

1) Gravity, by virtue of which all bodies tend to approach the

centre of the earth.

2) The Force of Inertia, which manifests itself when a change

in the velocity or in the direction of the moving body

takes place.

3) The Muscular Force of living beings, or the force produced

by means of the muscles of men and animals.

4) The Elastic Force, or that of springs, which bodies exhibit

when a change of form or of volume occurs.

5) The Force of Heat, by virtue of which bodies expand and

contract, when a change of temperature takes place.

6) The Force of Cohesion, or the force by which the parts of a

body hold together, and with which they resist separa-

tion.

7) The Force of Adhesion, or the force with which bodies

brought into close contact attract each other.

8) The Magnetic Force, or the attractive and repulsive force of

the magnet.

Then we have the electric and the electro-magnetic forces, etc.

The resistances due to friction, rigidity, resistance of bodies,

etc., are due principally to the force of cohesion, which, like the

elasticity, etc., is due to the so-called molecular force, or the force

with which the molecules, or the smallest parts of a body, act upon

one another.

§ 64. Forces, hov* Determined.—For every force, wc must

distinguish

:

1) The point of application (Fr. point d'application ; Ger. An-

griffspunkt), the point of the body to which the force is

directly applied.

2) The direction of the force (Fr. direction, Ger. Eichtung), the

right line, in which a force moves the point of applies-
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tion, or tends to move it or hinder its motion. The direc-

tion of a force has, like every direction of motion, two

senses. It can take place from left to right, or from right

to left, from above downwards, or from below upwards.

One is considered as positive, and the other as negative.

As we read and write from left to right, and from above

downwards, it is natural to consider these motions as

positive, and the opposite motions as negative.

3) The absolute magnitude or intensity (Fr. grandeur absolue,

intensity, Ger. absolute Grosse) of the force, which we
have seen is measured by weights, e.g. pounds, kilograms,

etc.

Forces are graphically represented by straight lines, whose

direction and length indicate the direction and magnitude of the

forces, and one of whose extremities can be considered as the point

of application of the forces.

§ 65. Action and Reaction.—The first effect produced by a

force upon a body is an extension or compression, combined with

a change of form or of volume, which commences at the point of

application, and from there gradually spreads itself farther and

farther into the body. By this inward change in the body the

elasticity inherent in it comes into action and sets itself in equi-

librium with the force, and is, therefore, equal to it, but acts in the

opposite direction. Hence, action and reaction are equal and oppo-

site. This law is true, not only for the effects of forces acting

by contact, but also for those acting by attraction and repulsion,

among which the magnetic forces, and also that of gravity, must

be counted. A bar of iron attracts a magnet exactly as much as it

is attracted itself by the magnet. The force, with which the moon
is attracted towards the earth (by gravity), is equal to the force

with which the moon reacts upon the earth.

The force with which a weight presses upon its support 13

returned by the latter in the opposite direction. The force, with

which a workman pulls, pushes, etc., a machine, reacts upon the

workman, and tends to move him in the opposite direction. When
one body impinges upon another, the first presses upon the second

exactly as much, as the second does upon the first.

§ 66. Division of Mechanics.—General mechanics are di-

vided into two principal divisions, according to the state of aggre-

gation of the bodies

:
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1) Into the mechanics of solid or rigid bodies (Fr. mecanique

des corps solides, Ger. Mechanik der festen oder starren

Korper).

2) Into the mechanics of fluids (Fr. mecanique des flnides,

Ger. Mechanik der flussigen Korper). The latter can

again be divided

:

a) Into the mechanics of water and other liquids or hydraulics

(Fr. hydraulique, Ger. Hydraulik, Hydromechanik) ; and

b) Into the mechanics of air and other aeriform bodies (Fr. me-

canique des fluides aeriformes, Ger. Mechanik der luft-

formigen Korper).

If we take into consideration the division of mechanics into

statics and dynamics, we can again divide it into

:

1) Statics of rigid bodies.

2) Dynamics of rigid bodies.

3) Statics of water, etc., or hydrostatics.

4) Dynamics of water, etc., or hydrodynamics.

5) Statics of air (of gases and vapor) or aerostatics.

6) Dynamics of air (of gases and vapors) or aerodynamics or

pneumatics.

CHAPTER II.

MECHANICS OF A MATERIAL POINT.

§ 67. A material 'point (Fr. point material, Ger. materieller

Punkt) is a material body whose dimensions in all directions are in-

finitely small compared with the space described by it. In order to

simplify the discussion, we will now consider the motion and equili-

brium of a material point alone. A (finite) body is a continuous

union of an infinite number of material points or molecules. If

the different points or elements of a body move in exactly the same

manner, lb*., with same velocity in parallel straight lines, the

theory of the motion of material point is applicable to the whole

body; for in this case we can suppose that equal portions of the

mass are impelled by equal portions of the force.
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§ 68. Simple Constant Force.—Ifp is the acceleration with

which a mass M is impelled by a force P, we have from § 56

PP = Mp, or inversely the acceleration p — —-

Patting the mass M' = — , G denoting the weight of the body

and g the acceleration of gravity, we obtain the force

and the acceleration

1) P = V- G,
9

%)p = -q9'

We find then the force (P) which moves a body with the accel-

eration (p) by multiplying the weight (G) of the body by the

ratio (— ) of its acceleration to that of gravity.

Inversely we obtain the acceleration
(p), with which a force (P)

will move a mass M, by multiplying the acceleration (g) of gravity

by the ratio (-^ ) of the force to the weight of the body.

Example.—Let us imagine a body placed upon a very smooth horizon-

tal table, which opposes no resistance to its motion, but which counteracts

the effect of gravity. If this body be subjected to the action of a horizon-

tal force^ the body yields and moves forward in the direction of the force.

If the weight of the body is G — 50 pounds and the force which acts

uninterruptedly upon itisP= 10 pounds, it will assume a uniformly accel-

P 10
erated motion, the acceleration of which is p = -~r g = — 32,2 = 6,44

Or 0\J

feet. If, on the contrary, the acceleration produced in a body weighing

v 9
42 pounds by a force P is p = 9 feet, then the force is P = — c7 .=

.42 == 0,031 . 378 == 11,7 pounds.

§ 69. If the force acting upon a body is constant, a uniformly

variable motion is the result, and it is uniformly accelerated, when

the direction of the force coincides with the original direction of

motion, and uniformly retarded, when the force acts in the opposite

direction. If we substitute in the formulas of § 13 and § 14, in-

P P
stead of p, its value -^ = — g, we obtain the following:
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I. For uniformly accelerated motion

:

P P P
1) v — c + y-7 g t = c + 32,2 -^feet = c + 9,81 -^ t metres,

2) s = c t + -2--=zct + 16,1w f feet = c t + 4,905 -^2
metres.

Cr -<J Cr Cr

II. For uniformly retarded motion

:

P P P
1) v — c — —gt^c — 32,2 -= t feet = c — 9,81 -^ t metres.

Cr Cr Cr

2) s = ct -^^ = ct - 16,1^- f feet = ct - 4:,905~ f metres.
Cr Z Cr Cr

By means of the above formulas all questions, which can arise

in reference to the rectilinear motions produced by a constant force,

can be answered.

Example.—1) A wagon weighing 2,000 pounds moves upon a horizon-

tal road, which opposes no resistance to it, with a velocity of 4 feet, and

is impelled during 15 seconds by a constant force of twenty-five pounds
;

with what velocity will it proceed after the action of this force ? The

p
required velocity is v = c + £2,2 -^ t t but here we have c = 4, P = 25,

Or

25
9 = 2,000 and t = 15, whence i> = 4 + 32,2 .

6?
—

- . 15 = 4 + 0,037 =

10,037 feet. 2) Under the same circumstances a wagon weighing 5,500

pounds, which in the three previous minutes had described uniformly 950

feet, was impelled during 30 seconds by a constant force, so that after-

wards it described 1650 feet uniformly in three minutes. What was this

force? The initial velocity is c = -—— = 5,277 feet, and the final. ve-
o . oO

1650 P
locity is = -—— = 0,106 feet, whence~ g I = c — c —. 3,889, and the

force P = ?'^?- = 0,031 . 3,889 .

5™-° = 0,120559 .*??= 22,10 pounds.
(j t oO o

3) A sled weighing 1500 pounds and sliding on a horizontal support with

a velocity of 15 feet loses, in consequence of the friction, in 25 seconds, the

whole of its velocity. What is the amount of the friction ? The motion is.

here uniformly retarded and the final velocity is « == 0, hence c = 32.2 .

P
fl, and P = 0,031 —' = 0,031 ^^-— = 0,031 . 900 = 27,9 pounds,

which is the friction in question. 4) Another sled, weighing 1200 pounds

and moving with an initial velocity of 12 feet, is obliged to overcome a
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friction of 45 pounds when in motion. What is its velocity after 8 seconds,

and what is tiie space described ?

The final velocity is

o = 1:3 - 32,2 -.^--~ == 12 - 9,G6 = 2,34 feet,

and the space described is

. = fi±-°) * = (ii±jS?*)
. 8 = 57,80 feet.

§ 70. Mechanical Effect.*

—

Mechanical effect or ^w& i/ofte

(Fr. travail mecanique, Ger. Leistuug or Arbeit der Kraft) is that

effect which a force accomplishes in overcoming a resistance, as,

E.G., gravity, friction, inertia, etc. Work is done when we elevate

a weight, when a greater velocity is communicated to a body, when
the forms of bodies are changed, when they are divided, etc. The

work done depends not only upon the force, but also on the space

during which it is in action, or during which it overcomes a re-

sistance. If we raise a body slowly enough to be able to disregard

the inertia, the work done is proportional to its weight and to the

height which it is lifted for 1) the effect is the same if a body of

the m (3) fold weight is lifted a certain height, or if m (3) bodies

of the weight (G) are lifted the same height; it is m times as

great as that necessary to raise the simple weight the same height:

and in like manner 2) the work done is the same, if one and the

same weight be raised the n (5) fold height (n h) or if it is raised

n (5) times to the simple height, and in general n (5) times so great,

as when it is raised to the simple height. In like manner, the

work done by a weight sinking slowly is proportional to the weight

and to the distance it sinks. This proportion is, however, true for

every other kind of work done ; in order to make a saw cut of

twice the length and of the same depth as another we are obliged

to separate twice as many particles, and the work done is therefore

double ; the double length requires the force to describe double the

distance, anil consequently the work is proportional to the space

described. In like manner the work done by a run of millstones

increases evidently with the number of grains of a certain kind

of corn which it grinds to a certain fineness. This quantity is,

however, under the same circumstances proportional to the number

* Energy is the capacity of a body to perform work. Energy is said to bo

stored when this capacity is increased, and to be restored when it is diminished.

The- unit of energy is the same as that of work.—Til.
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of revolutions, or rather to the space described by the upper mill-

stone while this quantity of corn is being ground. The work

done increases, therefore, directly with the space described.

§ 71. As the work done by a force depends upon the inten-

sity of the force and the space described by it, we can assume as

the unit of work or dynamical unit (Fr. unite dynamique, Gcr.

Einheit der mechanischen Arbeit oder Leistung) the work done,

in overcoming a resistance, whose intensity is the unit of weight

(pound, kilogram) over a space equal to the unit of length (foot,

metre), and we can also put this measure equal to the product

of the force or resistance into the space described by it in its

direction while overcoming the resistance.

If we put the amount of the resistance itself = P and the

space described by the force, or rather by its point of application,

while overcoming it — s, then the work done in overcoming this

resistance is

A = P s units of work.

In order better to define the units of work (which we can style

simply dynam) the units of both factors P and s are generally

given, and instead of units of work we say kilogram-meters and

pound-feet, or inversely meterkilograms, foot-pounds, etc., accord-

ing as the weight and the space are expressed in kilograms and

meters, or in pounds and feet. For simplicity we write instead of

meterkilogram, m h or h m; and instead of foot pound, lb. ft.,

ovft.lb.

Example.—1. In order to raise a stamp weighing 210 pounds, 15 inches

high, the work to be done is A = 210 . ~ = 282,5 ft. lbs. 2. By a me-

chanical effect of 1509 foot pounds a sled, which when moving must over-

come a friction of 75 pounds, will be drawn forward a distance

£_15O0
P ~ 75 ~ ~U Ie8t*

§ 72. Not only when the force is invariable, or the resistance is

constant, but also when the resistance varies while the force is

overcoming it, can the work done be expressed by the product of the

force and the space described, provided we assume for the value of

the force the mean value of the continuous succession of forces. The

relation between the time, velocity and space is therefore the same

here ; for we can regard the latter as the product of the time and
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of the mean of the velocities. We can also employ here the same

graphical representations. The work done can be regarded as the

area of a rectangle A B C D, Fig. 86, whose base A B is the space

(.$) described and whose height is either the constant force P or

the mean value of the different forces. In general, however, the

work done can be represented by the area of a figure A B C N D,

Fig. 87, the base of which is the space s described, and the height

of which above each point of the base is equal to the force corre-

sponding to that point of the path. If we transform the figure

A B C N D in a rectangle A B E FMfith the same base and the

same area, its altitude A F — B E gives the mean value of the

force.

Fig. 88.

§ 73. Arithmetic and Geometry give several different methods

for finding the mean value of a continuous succession of quanti-

ties, the most important of which are to be found in the Ingcnicur.

The method known as Simpson's Rule is, however, the one most

generally employed in practice, because in many cases it unites

great simplicity with a high degree of

accuracy.

In every case it is necessary to divide

the space A B = s (Fig. 88), in n (as

many as possible) equal parts, such as

AE=EG = GJ, etc., and to deter-

mine the forcesEF= P„ GH= P2,JK
= P3 , etc., at the ends of these portions

of the path. If we put the initial force

A D = P
n
and the final one B C = Pn

we have the mean force P — (\ P + Pi 4- P2 + Pa + • • • +
Pn _, + \ Pn ) : 7i, and consequently its work

Fs = (i? -fi)1 +P8 + ... + Pn_, + i Pn)



§74] MECHANICS OF A MATERIAL POINT. 171

If the number of parts (n) be even, i.e. . 2, 4, G, 8, etc., Simp*

son's Kule gives more exactly the mean force

P = (P
o +4P1

+-2?l f4P,H-'..
:

. +4 PH_, + P„) : 3?i,

whence the corresponding work done is

?s = (P +4P1 + 2P2 f4P3 + + 4Pn_, 4- P„) —
o 11

If ro is an uneven number, we can put

P s = [f (P + 3 P, + 3 P2 + P3) + i (Ps + 4 P4 + 2 Ps

+ + 4 PB__, + P,,)] —. (Sec Art. 38 of the Introduction

to the Calculus.)

Example.—In order to determine the work done by a horse, in drawing

a wagon along a road, we employ a dynamometer (or force measurer), one

Liide of which is attached to the wagon and the other to the horse, and we
observe from time to time the intensity of the force. If the initial force is

P = 110 pounds, that after moving 25 feet 122 pounds, that after 50 feet 127

pounds, that after 75 feet 120 pounds, and that at the end of the whole dis-

tance, 100 feet, 114 pounds, we have for the mean value of the force ac-

cording to the first formula

P = (i
. 110 + 122 + 127 + 120 + h x 114) : 4 = 120,25 pounds,

and for the mechanical effect

.

Ps = 120,25 x 100 = 12025 foot-pounds.

According to the second formula we have
1446

P =(110 + 4. 122 + 2. 127 + 4. 120 + 114) : (3 . 4) = -,- = 120,5 pounds,

and the mechanical effect

Ps = 120,5 . 100 — 12050 foot-pounds.

§ 74. Principle of the Vis Viva or Living Forces.—If la
11"

,
p- .j/ f>~

the formula s — --= ox p s = —^—, found in § 14, we substi-

p
fcuto for p its value -^ $•> wc obtain the mechanical effect A = P s

(v 2 — C'\ V"— jG, or designating the heights due to the velocities-—-
j j

and - - by h and Jc,

P s - (h - Jc) G.

This equation, so important in practical mechanics, means that

the mechanical effect (Ps), which a mass absorbs when its velocity

changes from a lesser to a greater, or that which it gives out, when

its velocity is forced to change from a greater to a less, is always
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equal to the product of the weight of the mass into the difference of

(IT C" \—-J.

Example.—1. In order to impart, upon a perfectly smooth railroad, a

velocity of 80 feet to a wagon weighing 4000 pounds, the work to be done

is Pa = ~- G= 0.0155 o' G = 0,0153 x 900 x 4000 = 55800 pounds, and this

wagon will perform the same amount of work if a resistance nc opposed to

it, so as to cause it gradually to come to rest. 2. Another wagon, weighing

C000 pounds and moving with a velocity of 15 feet, acquires in consequence

of the action of a force a velocity of 24 feet ; how much mechanical effect

is stored by the wagon, or how much work is performed by the force ?

The heights due to the velocities 15 and 24 feet are h = —- = 3,487 and
2g

h= --= 8,928 feet. Consequently the work done P a = (h — k) O

= (8,928 - 3,487) x G000 = 5,441 x 6000 = 32646 foot-pounds.

If the space described is known the force can be found, and if the

force is known the space can be found. Let us suppose, e.g., in the last

case, that the space described by the wagon, while the velocity changes from

11 to 24 feet, is but 100 feet, we have then the force P = (h — 7c)

-— = -
. - = 32G,46 pounds. If, however, the force was 2000 pounds.

the space would be a = (7i - 7c) % = ^^- = 16,323 feet. 3. If a sledP ioOOU

weighing 500 pounds, and moving with a velocity of 16 feet, loses in con-

sequence of the friction the whole of its velocity while describing 100 feet,

the resistance of the friction is

P = L^__? = o,0155 x 162 x ~ = 0,0155 x 256 x 5 = 19,84 pounds.
a

' 100 '
r

§ 75. The formula for the work done, found in the preceding

paragraph,

holds good not only when the forces are constant, but also when
they are variable, if we substitute (according to § 73) instead of P
the mean value of the force; for according to III*), in § 19, we

have, in general, for every continuous motion

v
2 - c"

aT-Tt,*

in which p — — -- — "- denotes the mean acceleration
1 n
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with which the space s is described, and we have also

P, + P2 + . . P. ,

» = ttt , whence

lv' - c-\ „ (P
l -f- P. + . . . + P,\ ,nH i¥ =h—r

)
s and

P s = (-^---) M= £^£ = (A - *) ft

P 4- . . 4- P
in which P = — — denotes the mean of all the forces

n

measured after the spaces -—, —- . — ...— are described.
n ii n n

The force P can also be calculated by means of one of the

formulas of § 73, when the number n of the parts is not assumed

to be very great.

We are very often required to calculate the change of velocity

that a given mass M undergoes, when a given amount of me-

chanical effect P s is imparted to it. The principal equation

which we have found is then to be employed in the following form

7 7 ,

Fs ./""Ts
h = fc -\——- or v = y c~ + 2 g -

7T .

(jT (jT

If we have calculated by means of this formula the velocities

r„ i\2 . . . vn which correspond to the spaces —, — , — ... 5, we can
llr 1Z IX

calculate by means of the formula

1\5/1 1 1= — (— + —+— + ...+t
Vn

the time in which the space s is described.

2 P 5 P s
In the form G=Mg = -=—- = -—. -—

r
— r the principalJ v—c J (v + c) (v — c)

formula we have found serves to determine the mass M, which in

consequence of the mechanical effect P s imparted to it will un-

dergo a change of velocity v — c.

When the motion of a body is continuous and the final velocity

v is equal to the initial one c, then the work done becomes = 0,

i.e, the accelerated part of the motion absorbs exactly as much
work as the retarding portion gives out.

Example.—If a wagon weighing 2500 pounds, moving without fric-

tion with an initial velocity of 10 feet, has imparted to it a mechanical

effect of 8000 foot-pounds, what is its final velocity ?



174 GENERAL PRINCIPLES OF MECHANICS. [§76.

Here v = i/lO2 + 64,4 .^ = ^100 + 200,03 = 17.49 feet,
r 2o00

Remark.—We call, without attaching any particular idea to the term.
si

the product of the mass M= — into the square of the velocity ^2
), that is

M v", the vis viva (Fr. force vive, Ger. lebendige Kraft) of the moving mass,

and we can therefore put the mechanical effect, which a mass which is

moved absorbs, equal to the half of its vis viva. If an inert mass passes

from a velocity c to another », then the work gained or lost is equal to the

half difference of the vis viva at the beginning and of that at the end of

the change of velocity. This law of the mechanical effect bodies produce

by virtue of their inertia is called the principle of vis viva (Fr. principe

des forces vives, Ger. Princip der lebendigen Krafte).

§ 76. Composition of Forces.—If two forces P, and P2 act

upon the same body 1) in the same or 2) in opposite direc-

tions, then their effect is the same as when a single force equal to

1) the sum or 2) the difference of these forces acted upon the body;

for these forces impart to the mass the accelerations

*=»"»*'* = $;
whence, according to § 28, the resulting acceleration is

,
"Pi ± P,

and consequently the corresponding .force is

P = Mp = Pt ± P2 .

We call the force P derived from the two forces and capable of

producing the same effect (equipollent) their resultant (Fr. result-

ante, Ger. Resultirende), and its constituents Pt and P2 its com-

ponents (Fr. coraposantes, Ger. Componenten).

Example.—1) A body lying upon the flat of the hand presses with its

absolute weight on it only so long as the hand is at rest, or is moved with

the body uniformly up or down; but if we lift the hand with an accelerated

motion, it experiences a heavier pressure ; and if, on the contrary, we allow

it to sink with an accelerated motion, then the pressure becomes less thau

the weight, and even = when the hand is lowered witb an acceleration

equal to that of gravity. If the pressure on the hand is P, then th£ body

falls with the force G — P only, if its mass is M = — ; if we put the ac-

C
celeration with which the hand descends = p we have G — P = — p, and

therefore the pressureP= G— — G= (1 — -•-) 67. If, on the contrary,
V V 9 J
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Fig. 89.

we raise the body upon the hand with an acceleration p, then the accelera-

tion p is opposite to the acceleration g, and the pressure becomes P = l\

f —\g. According as we lower or raise a body with an acceleration of

20 feet, the pressure upon the hand is ( 1 — i-r^
J
G = {1 — 0,G2) G =

0,38 times the weight of the body, or 1 + 0,62 = 1,62 times the same

weight. 2) If with tbe flat of tbe hand I throw a body weighing 3

pounds 14 feet vertically upward, by urging it on continuously during the

first two feet, then the work done is P s = G h = 3 . 14 = 42 pounds, and

42
the pressure of the body on the hand is P = —- = 21 pounds. Hence

the body when at rest presses with a weight of three pounds upon the

hand, and, on the contrary, during the act of throwing it, it reacts with a

force of 21 pounds upon the hand.

3) What load Q can a piston movable in a cylinder A A C (7, Fig. 89,

raise to the height B K = 8 — 6 feet, if during the first half of its course

the air which flows in from a very large res-

ervoir acts upon it with a force of 6000

pounds, and if during the second half of its

course this air enclosed in the cylinder ex-

pands according to the law of Mariotte, while

the exterior air acts with a constant pressure

of 2000 pounds in the opposite direction.

Since the air shut in the cylinder at the end

of the second half of the course of the piston

has expanded to double its volume, the

pressure of the same upon the piston at the

end of the course is only \ . P = 3000 pounds.

The air inclosed in the cylinder, when the

piston has traveled 3 feet, presses with a force of 6000 pounds upon it, on

the contrary at the end of four feet with a force off . 6000 = 4500 pounds,

at the end of 5 feet with f . 6000 = 3600 pounds, and at the end of the

entire course with a force of f . 6000 = 3000 pounds. Hence the mean

force during the expansion = $ [6000 + 3 (4500 + 3600) + 3000] =
33300--— = 4162 pounds, and consequently the mean force during the whole

G000 -f 4162
of the course of the piston is = — 5081 pounds. If we sub-

tract the constant opposing force of 2000 pounds from this, it follows that

the weight to be raised by the piston is

Q = 5081 — 2000 = 3081 pounds.

The motive force for the first half of the course is then P — (Q -f

2,000) = 6000 — 5031 = 919 pounds, and consequently the acceleration

of the motion isis P =
(

P-(G + 2000)\ 919

5081
12,2 = 9,6 feet, and
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the velocity at the end of the first half of the course of the piston s
x
= —

= 3 feet is v = y/~2pa
t
— V67976 = V57,6 = 7,589 feet, and the time in

which this space is described by the piston is t, = —- == _, fJO<> = 0,7901 J L x
v 7,580

seconds. The distance, which has been traveled by the piston when the

force and the load balance each other, that is, wdien the motive force and

consequently the acceleration is = 0, and the velocity of the piston is a

maximum, is

When the distance -\— = 3,2715 feet has been described, the force act-
a

, . . . 6000 .

3

ing on the inside piston is r-~ = 5502, and consequently the motive
o,271o

force is = 5502 — 5081 = 421 pounds, and the mean value of the same

while the piston passes from 3 to 3,543 feet is ~ = 434

434 434 . 32 2
pounds. The corresponding mean acceleration is == -~—- g = —t^t~loOol oOol

= 4,535 feet, and consequently the maximum velocity of the piston at the

end of the space x = s
x + s

2
= 3,543 feet is

t.

vm = vV + 2ps
2
— V 57,6 + 2 x 4,535 x 0,543 = V 62,525 = 7,907 feet.

The time required to describe the space s
2
= 0,543 can be put

t (t + i) = °-2715 (m +i) = °>070 seconds-

If the piston has described the space 5,5 the motive force is — —
0,500

5081 = — 1808 pounds, and if the piston is midway between this point

and the point of maximum velocity, this force is then = -j r — 5081

1808 x 32

2

—— 1100 pounds, and the corresponding accelerations are=— —

~

3081

s= - 13,89 feet, and = - 110
?

* 8^ = - 11,49 feet.
oOol

The mean acceleration while the piston describes the portion of the

,,„ A _. -, nr« .- , • xi + 4x11.49 + 18,89
space 5,500 — 3,o43 = 1,957 feet 13 consequently = —-—

~

= — 10,81 feet, and therefore the velocity acquired at the end of this space is

= V62,525 - 2 x 1~0~81 x 1,957 = V20,315 = 4,490 feet. On the contrary,

during the first half of the last portion of the crurse, the mean acceleration is

+ 11 49—
^r

2— — ~~ 5,745 feet, and therefore the velocity at the end of the

space 4,5215 feet v
t
= V 62,525 — 2 x 5,745 x 0,9785 = V51,282 =z

7,161 feet, and we have for the time required to describe the space s3
==
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1,957, t3
= £(1- + ± + -1) = 0,320 (^ +^ + j^g) = 0,320

x 0,9075 == 0,296 seconds. Finally, we can put the time during which the

last portion s4 = 0,5 of the whole course is described £4 = —- = A AQP

= 0,2224 seconds, and the time required by the piston to describe its entire

course t=t
t
+t

2 + t
3 + ti

= 0,790 + 0,070 + 0,296 + 0,2224 = 1,378 seconds.

§ 77. Parallelogram of Forces.—If a mass (a material

point) M, Fig. 90, is acted upon by two forces, P, and P2, whose

direction, MX and M Y, form an angle X M Y = a with each

other, the forces cause in these directions the accelerations

P P
p,= y«ri*~ jp

and by combining them, a resulting acceleration (§ 35) in the

direction M Z, which is determined by

the diagonal of a parallelogram con-

structed with p ly p 2, and a, is obtained
;

this resulting acceleration is

p =z Vp* + p? + %Pi]?a cos. a,

and we have for the angle </>, which its

direction makes with the direction

MX of the acceleration p x

Pi sin. a
sin. <b = .

P
Substituting in these two formulas the given values of p x

and p 2 ,

we obtain

* =vW+©,+
2
(5) &)»" and

sin. a
sin.'-63

and multiplying the first equation by M, we have

Mp = V PS + P2

3 + 2 P, P2 000.0,

or since Mp is the force P corresponding to the acceleration p, we

find 1) P = i7 Pf + P8

a + 2 P,~ P2 cos. a,

m . , P.sin.a
2) saw. <^> = ———

—

The resultant or mean force is determined in magnitude and di-

rection from the component forces in exactly the same manner, as the

resulting acceleration is determinedfrom the component accelerations-

If we represent the forces by right lines, making the ratio of

12
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their length the same as that of the weights (e.g. pounds) to

each other, the resultant can . then be represented by the di-

agonal of the parallelogram whose sides are formed by the compo-

nent forces, and one angle of which is equal to the angle formed by

the component forces with each other. The parallelogram thus

constructed with the component forces, the diagonal of which rep-

resents the resultant, is called the parallelogram offorces.

Example.—If a body, Fig. 91, weighing 150 pounds and resting on a

perfectly smooth table, is acted on by two forces Px
= 30 pounds, and

P
z
-— 24 pounds, which form with each other an angle P

±
MP2

=b a = 105°,

in what direction and with what acceleration will the motion take place ?

Since cos. a = cos. 105° = — cos. 75°, we have

the resultant

P = V30 2 + 242 2 x 24 x 30 x cos. 75 :I

1140708775"= V900 + 576

= V1476 —"372,7 = 33,22 pounds

;

and the corresponding acceleration

P _Pg_ 33^22 x 32,2

MP nr ~/o
= 7,13 feet.a 150

The direction of the motion- forms an angle <*

with the direction of the first force, which is de-

termined by the following formula

sin. ^ = -
5|4o- sin> 105 J=0,7224 sin. 75°=0,6978:

and
<i>

is = 44° 15'.

Remark.—The resultant (P) depends (according to the formula just

found) upon the components alone, and not upon the mass ( if) of the

body upon which the forces act. For this reason we find in many works

upon mechanics the correctness of the parallelogram of forces demonstrated

without reference to the mass, but with the assumption of some one of the

fundamental laws of statics. Such pure statical demonstrations are

numerous. In each of the following works we find a different one:
44 Eytelwein's Handbuch der Statik fester Korper ;" " Gerstner's Hand-

buch der Mechanik ;" u Kayser's Handbuch der Statik ;" u Mobius' Lehr-

buch der Statik ;" u Riihlman's Technische Mechanik. 1
' The demonstration

in Gerstner's u Mechanik" is based upon the theory of the lever ; it is really

very simple, and is to be found in old, and also in later works, e.g., in those

of Kiistner, Monge, Whewell, etc. Kayser's demonstration is that of Poisson

in elementary shape. Mobius' discussion of it is based upon a particular

theory of couples (des couples) introduced by Poisson (Elements de

Statique). A peculiar demonstration is given by Duchayla in the Corre-

spondence sur l'ecole polytechnique No. 4, which is reproduced by Brix in
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his Lehrbuoh der Statik fester Korper. It is also given in many other

works, e.g., in Moseley's Mechanical Principles, etc. The demonstration

of the parallelogram of forces given by Navier in his " Lecons de Mecan-

ique" (German by Meier, 1851) is also to be found in Riihlmann's " Grund-

ziige der Mechauik," Leipzig, 18G0. A theory of this parallelogram,

founded on the laws of motion, is to be found in Newton's " Principia."

It is also employed in many later works, i.e., by Venturoli, Ponceiet, Burg,

etc. See " Elementi di Mecanica e d'Idraulica di Venturoli," a Mecanique

industrielle par Ponceiet," " Compendium der popularen Mechanik and

Machinenlehre von Burg." A new demonstration by Mobius is to be found

in the Berichten der Gesellshaft der Wisseushaften zu Leipzig (1850), an-

other by Ettingshausen in the papers of the Academy of Vienna (1851), and

a third, by Schlomich in his " Zeitschrift fur Mathematik and Physik"

(1857).

§ 78. Decomposition of Forces.—With the aid of the paral-

lelogram of forces we can not only combine two or more forces so

as to find a single resultant, but also decompose a given force,

under given circumstances, into two or more forces. If the angles

and 0, which the components M'P, = P, andMP2 = P2 , Fig. 91-

make with the given force M P — P are given, then the compo-

nents are determined by the following formulas

P sin. p P sin. </>

in. (<p + '0)' ~~ sin. (0 + "0)'

If the components are at right angles, then <p + = 90° and sin.

(0 + 0) = 1, and we have

Pi = P cos. and P2 = P sin. 0.

and if, finally, and are equal, we have

P -P = P
'
sin

' = P
2 1

sin. 2 " 2 cos.

Example.— 1) How heavily will a table A B, Fig. 92, be pressed by a

body M whose weight is G = 70 pounds, and which acted on by a force

P — 50 pounds, which is inclined to the horizon

at an angle PM P
1

. = tf = 40°? The horizontal

component is

P
1
= Pcos. <p = 50 cos. 40° = 38,30 pounds,

and the vertical component

sB P2 — Psin. <p = 50 sin. 40° = 32,14 pounds.

The latter tends to raise the body from the table,

and consequently the pressure on the table is

G — P2
= 70 - 32,14 = 37,86 pounds.

2) If a body if, Fig. 91, weighing 110 pounds.

is moved upon a horizontal support by two forces,

*J so that in the first second it describes a distance

of G,5 feet in a direction, which forms with the two directions of the forces

P.

Fig. 92.

A^»
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the angles <p = 52° and ip = 77°, the forces can be found as follows: The
acceleration is double the space described in the first second, or in this

cas&p = 2 . 6,5 = 13 feet, and the resultant is

P = p G = 0,031 . 13 . 110 = 44,33 pounds.

Hence one of the components is

P sin. 77° 44,33 sin, 77°

1 sin. (52° + 77°)'

and the other is

i. 51°
— 55,58 pounds,

_ 44,33 sm. 52°

Fig. 03.

§ 79. Composition of Forces in a Plane.—In order to find

the resultant P of a number of component forces P1? P2, P3, etc.

(Fig. 93), we can pursue exactly the same method that we em-

ployed in the composition of velocities. We can, by employing

repeatedly the parallelogram of forces, combine the forces two by

two so as to form one, until but one is left. The force Px and P2

give, E.G., by means of the parallelogram MPx Q P2, the resultant

M Q = Q ; and if we combine this with P3 we obtain, by means

of the parallelogram M Q R Pz

the resultant M R = R, and the

latter, combined with P4, gives,

by means of the diagonal M P
— P, the resultant of all four

forces P
x , P2, P3, and P4. It is

not necessary, when combining

these forces, to complete the par-

allelograms and to find their

diagonals. We have but to con-

struct a polygon M P
x Q R P

by drawing its sidesM P x , P x Q,

Q R, R P, equal and parallel to the given components P Xi P2, P3,

P4 . The last side M P, which closes the parallelogram, is the re-

sultant required, or rather the measure of the same.

Remabk.—The solution of mechanical problems by construction is very

useful. Although the results are not as accurate as those obtained by cal-

culation, yet they are of great value as checks against gross errors, and can

therefore always be employed as proofs of calculations. In Fig. 93 we
have drawn the forces as meeting each other and forming the given angles

P
x
MP„ = 72° 30', P2

MP
3
= 33° 20 ;

, and P3 M P4 = 92° 40'; and

their length is such, that a pound is represented by a line or TV of a
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Prussian inch. The forces P
x
= 11,5 pounds, P'

2
= 10,8 pounds, P

3
=

8,5 pounds, and P4 = 12,2, are therefore expressed by sides 11,5 lines.

10,8 lines, 8,5 lines, and 12,2 lines long. A careful construction of the

polygon of forces gives the value of the resultant P = 14,6 pounds, and

the angle formed by the direction MP with the direction M

P

t
of the first

force a = 86i°.

§ 80. We can determine the resultant P more simply by de-

composing each of the components P
x , P2, P3, etc., into two com-

ponents Qx
and Rl9 ft and P2, Qz and Rz, etc., in the direction of

the rectangular axes XX and Y Y, Fig. 94, by then adding alge-

braically the forces which lie in the same axis, and by seeking the

intensity and direction of the resultant of the two forces which

have been thus obtained, and whose directions are at right angles

to each other. If the angles P
x
MX, P2 MX, P3 MX, etc., P,.

P2, Po, etc., form with the axis of X are = a
x, a,, az, etc., we

have the components ft = P x cos. a
} , Rl

= P, sin. a
x ; Q2

= P,

cos. a 2, R.2 = Pa sin. a.
2, etc. ; whence it follows from the equation

Q = ft + ft + ft + . . ., that

1) Q = P
x cos. a

x + Po cos. a.2 + P3 cos. az + ...,

and also from R = Rx
'+. P2 + P3 . . ., that

2) R = Px sin. a
x + P2 sin, a 2 -f- P3 sin. az -f ...

We find the value of the resultant of the two components Q and R,

just obtained, by the aid of the formula

3) p = V Qr + R%
and that of the angle P MX = a, formed by its direction with the

axis X X, by means of the formula

R
4) tang, a =

Q
Fig. 94. In adding algebraically the forces

we must pay particular attention to

their signs ; for if they are different

for two different forces, i.e. if these

forces act in opposite directions

from the point of application, then

this addition becomes an arithmeti-

cal subtraction. The angle a is

acute as long as R and Q are posi-

tive; it is between 90°—180°, when

Q is negative and R positive ; it is

between 180°—270°, when Q and R
arc both negative, and is finally be-

tween 270°—360°, when R alone is negative.
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Example.—What is the direction and intensity of the resultant of

the forces P1
== 30 pounds, P

2
= 70 pounds, aud P

3
= 50 pounds, whose

directions lie in the same plane and form the angles P
t
M P„ =56° and

h\ MP3
= 104° with each other ? If we lay the axis X X, Fig. 94, in the

direction of the first force, we obtain a
1
= 0°, «

3
= 56°, and a

3
= 56° -f

104° = 160° ; hence

1) Q = 30 . cos. 0° + 70 . cos. 56° + 50 cos. 160° = 30 + 39,14 - 46,98

= 22,16 pounds,

2)' B = 30 . sin. 0° + 70 . sin. 56° -f 50 . sin. 160° = + 58,03 + 17,10

= 75,13 pounds, -and

75 13
3) tang, a = -^ = 3,3903,

and therefore the angle formed by the resultant with the positive portion

of the axis MX is a = 73° 34', and the resultant itself is P =Vg- + R' =
Q -B 75,13 75,13 '„„— = = -

• n» n »4 } = 7?^™ = 78,83 pounds.
cos.a sin. a am. 7-3° 34' -0,9591 L

§ 81. Forces in Space.—If the direction of the forces do not

lie in the same plane, we pass a plane through the point of appli-

cation and decompose the forces into two others, one of which lies

in the plane, and the other at right angles to it. The components

thus obtained, which lie in the plane, arc combined according to

the rule given in the last paragraph, so as to give a single result-

ant, and those at right angles to the plane give, by simple addition,

another "resultant. From these two components, which are at right

angles to each other, we find the resultant according to the well-

known rule (§ 77).

This method of proceeding is graphically represented in Fig.

95. MP, = Pi, MP, = P,, M~P3
= P3 arc the simple forces,

A B is the plane (plane of projection) and ZZ is the axis at right

angles to it. From the decomposition of the forces P
x P2, etc., we

obtain the forces $i S2, etc., in the plane, and the forces Nx Nz, etc.,

along the normal Z Z. The former are again decomposed into the

components Qu Q9) etc., Rl9 P>, etc., which, by addition, give the

resultants Q and R, from which, as components, we determine the

resultant S, which, combined with the sum of all the normal forces

N
x
iVo, etc., gives the required resultant P.

If we put the angles of inclination cf the directions of the

forces to the plane equal to j3„ (3.,, etc, we obtain for the forces in

the plane S\ = P
x
cos. /3„ #2 == P« cos. j32, etc., and for the normal

forces iVi = Pi sin. ft, iV2 == P« sin.fi*, etc. Designating the angles

which the projections of the directions of the forces in the plane
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A B form with the axis X JTby a,, a
2, etc., that is, putting&MX

— a
h #2MX = a.

2, etc., we obtain the following three forces, which

Fig. 95.

form the edges of a rectangular parallelopipedon (parallelopipe-

don of forces)

:

Q = Sicos. a
x -f $. cos. a 2 + . . ., or

1) Q = P
x cos. j3j cos. a, + P2 ^05. j3, cos. a3 + '•

• •>

2) R = P
x
cos. j3, sm a, + P2 cos. |88m a, . .'] and

3) i\T = P
x sin. |3, + P2 smi. & + . .

.

From these three forces we obtain the final resultant

4) P = V Cf + W + N\
and its angle P M 8 = (3 of inclination to the plane of pro-,

jection by the aid of the formula

5) tang. /3 = — —

Finally, the angle SMX= a, which the projection of the re-

sultant in the plane A B forms with first axis XX, is given by

the formula

6) tang, a = —

.

If /l
1?

Ao, etc., are the angles formed by the forces P„ P2 with the

axis M X, ul9 ft* . . ., the angles formed by them with the axis

M Y and v„ v2, etc., the angles formed by them with the axis MZx

\o have also
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5*) cos. A =

1*) Q = p
x
cos. Aj + P2 cos. A 2 -f . . .,

2*) R = Pj cos. // 2 -I- P2 co5. jLt
2 + . . . and

3*) N = P, cos. v, + Pa cos. r, + . .

.

The value of the resultant is given by the formula

4*) P = V Q
2 + E'~+Wi

,

and the direction of the same by the formulas

Q R &
-p cos. P=-p, ccs. v = -p

in which A, /i and v denote the angles formed by P with the axes

MX,MY,MZ.
We have also cos. A = cos. a cos. ft cos. f-x = sin. a cos. ft and

v = 90° — ft or cos. v = sm. ft

Example.—In order to raise vertically a

weight 67, Fig. 96, I and II, by means of a

rope passing over a fixed pully, three work-

men pull at the end of the rope A with the

forces P
t
= 50 pounds, P

2
= 100 pounds and

P3
= 40 pounds; the directions of these

forces are inclined at an angle of 60° to the

horizon, and form the horizontal angles

S± A S
2
= S

2
AS

3
= 135° and S3 A S

t
=

90° with each other. What is the inten-

sity and direction of the resultant which we
can put equal to the weight G, and how
great could this weight be made, if the forces

had the same direction ?

The vertical components of the forces are

sin. /31=50 sin. 60°=43,30 pounds,

N9 =Pr, sin.

and N3
== P

3

pounds

G0°= 86,60 pounds

in. (3 3
= 40 sin. 60° = 34,64

consequently, the vertical force is

iV = Nt + iV
3 + N3

= 164,54 pounds.

The horizontal components are

St
= P

x
cos. 3

X
= 50 cos. G0° = 25 pounds,

#2
= P

2
cos. j3 2

= 100 cos. G0° = 50 pounds

and 8
3
=P

3
cos. (3 3

= 40 cos. G0°= 20 pounds.

If we j)ass an axis X X in the direction

of the force S
t , we have for the component

forces in this direction

Q— Q t + Q 2 + Q 3
=S

t
cos. a

x -f S2
COS. a„ +

S3 cos. a
3
= 25 cos. 0° + 50 cos. 135° +

20 cos. 270° = 25 . 1—50 . 0,7071— 20 . =
25 — 35,355 == — 10,355 pounds, and for the

component in the direction Y T
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E = igj -fE2 + Bz
= S

±
sin. a

± + S2

50 sin. 135*° + 50 sin. 270° = 50 . 0,7071

horizontal resultant

sin,. c + Sc = 25 si/i.
fl

20 = 15,355 pounds, and for the

S = V^ 3 + E~ = V 10,355" + 15,355 J =a 18,520 pounds.

The angle a, formed by this resultant with the axis X X, is determined

by the formula

E 15,355
tang. a= —

- = 57rs=t^
ej 10,35i3

Tli3 final resultant is

;
.; = — 1,4828, whence a = 180°— 56° = 124°.

Fig. 97.

P = VJP+ #- = V 164,54" + 18,52~0 2 = 1G5,58 pounds.

The angle of inclination of this force to the horizon is determined by

the formula

tang. ;3 = — = vrvte = 8,8848, whence we have (3 = 83° 85'.
JS 18,5ki0

If all the forces acted in the same direction, the resultant would be =
50 + 100 + 40 = 190 pounds, or 190 — 165,58 = 24,42 pounds greater

than the one just found.

§ 32. Principle of Virtual Velocities.—From the fore-

going rules for the composition of forces, two others can be

deduced, which are of great importance in their practical appli-

cations. Let M, Fig. 9?, be a ma-

terial point, MP, = P, and Ml]
= P2 the forces acting upon it,

andMP = P the resultant of the

forces Pi and P,. If we pass

through M two axes M X and

MY at right angles to each other,

and decompose the forces P, and

P2, as well as their resultant P.

into their components in the di-

rection ofthese axes, i.e., P
x
into ft.

and Pi, P2 in ft and P2 and P into

Q and P, we obtain the forces in the

direction of one axis ft, ft2 and ft and those in the direction of the

other P, Pj and Po, and we have Q = ft + ft and E = P, + 11,.

If from any point O in the axis MX we let fall the perpendiculars

L 1} O L« and O L upon the directions of the forces P„ P and

P, we obtain the right-angled trianglesM O

L

x MO L2i and M O L.

which are similar to the triangles formed by the three forces, viz.,

AJ/Oi,ODA MP, ft,

A M O L, a> a M P., ft,

t, M O L co a J/P ft
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*xl- • -1 -x 1 -^ft & ^^i
In consequence of this similarity we nave ^~ i.e., -— = irr-sy

)>'
=

m~7)
anc*" p ~ 177") »

substituting these values of ft, ft and

Q in the formula Q — Qi + ft, we obtain

P.ML = P
x . MLX + P2 . ifU

In like manner we have

P, _ OL± R, _ OL, R _ L
p, ~ m a p,~ m 6 f ~ m a

whence

P.O L = P1 .0 Z, + Pt-0 U
The formulas hold good, when P is the resultant of three or

more forces Plf P2, P3, etc., since we have, in general,

Q = ft + ft -f ft + • • •

R= R, + R2 + R3 + ...

We can, therefore, put, in general,

1) P .~W~L = P, . I/A + P2 . 3fT2 + P3 . MLZ + . . .,

») p . crx = p, . ox; + p2 . oir2 + p3 . ox3 + . .

.

The resultant P of the forces P19 P2, P., etc., must correspond

to both these equations, and they can therefore be employed to de-

termine P.

The first of these two formulas can also be employed for a sys-

tem of forces in space, N, ft R, Fig. 95, since here Ave have also

ar= m + JV, + nz + ...,or

P ^05. v = P
} cos. v

x + P« cos. v2 4- P3 cos. i'3 + . . ., and also

P . JfO COS. V= P, . Jf0 COS. Vi + P2 WO COS. V, + P3 W6COS. 1'3 + . .

.

§ 83. If the point of application J/, Fig. 98 and Fig. 99, moves

to ft or if we imagine the point of application moved forward

Fig. 98. Fig. 99.

through the space M O — x, we call the projection M L = s of

this space x upon the direction of the forceMP the s^ace described

by the force P, and the product P s of the force by the space £&?/u?
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work done by the force. If we substitute these quantities in the

equation (1) of the last paragraph we obtain

P s = P, sx + P, s, + P3 53 4- . . .,

hence the work done by the resultant is equal to the sum of the work

done by the component forces.

In adding the mechanical effects we must, as in adding the

farces, pay attention to the signs of the same. If one of the forces

Qiy Q», of the foregoing paragraph, acts in the opposite direction to

the others, then it must be introduced as negative quantity; this

force, as for example, Q3 in Fig. 94, § 80, is, however a component

of a force P3 which, under the circumstances supposed in the fore-

going paragraph, opposes the motion M Lz of its point of applica-

tion ; we are, therefore, obliged to treat the force P, Fig. 99, which

acts in opposition to the motion M L, as negative, if we consider

the force P, Fig. 98, which acts in the direction of the motion M L,

to be positive.

If the forces are variable, either in magnitude or in direction,

then the formula

P s = P, s, + P2 s, + P3 s3 + ...

is correct only for an infinitely small space s, sh s2, etc.

We call the infinitely small spaces cr„ rr
2, g2, etc., described by the

forces corresponding to the infinitely small space described by the

material point, the virtual velocities (Fr. vitesses yirtuelles, Ger.

virtuelle Geschwindigkeiten) of the same, and the law correspond-

ing to the formula P a = P
l
a

t
4- P 2 a.

2 + P3 <rs is known as the

principle of virtual velocities.

§ 84. Transmission of Mechanical Effect.—According to

the principle of vis viva for a rectilinear motion the work (P s)

done by a force (P), when the velocity c of a mass M is changed

into a velocity v, is

P s -..,m
Now if P is the resultant of the forces P„ P2, etc., which act

on the mass M, and if the spaces described by them are s1} s.7, etc.,

while the mass M describes the space s, we have, from the forego-

ing paragraph,

P s= P
1
s 1 + P, Si + . . .

,

from which we deduce the following general formula,

pl 8X + p, »,+•;.. = if~^) m'\
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therefore the sum of the ivorh done by the single forces is equal to

half the increase of the vis viva of the mass.

If the velocity during the motion is constant, i.e., if v =• c and

the motion itself is uniform, we have v- — c~ = 0, and therefore

there is neither gain nor bss of vis viva, whence

Pl s\ + P2 s, + P, Si 0;

or

and the sum of the mechanical effects of the single forces is null.

If, on the contrary, the sum of the mechanical effects is null,

then the forces do not change the motion of the body in the given

direction ; if the body hag no motion in the given direction, it will

not have any imparted to it in this direction by the action of the

forces ; if it had before a certain velocity in a given direction, it will

retain the same.

If the forces are variable, the variable velocity v can, after a cer-

tain time, become the initial. This phenomena occurs in all peri-

odic motions, which are very common in machinery. But v = c

—-— ) M = 0, and therefore the gain

loss of mechanical effect during a period of the motion is = 0.

Example.—A wagon, Fig. 100, weighing G = 5000 pounds is moved

forward on a horizontal road by a force P
x
= 660 pounds, inclined at an an-

gle a = 24° to the horizon.

Fig. 100, an(j js obliged to overcome

a horizontal resistance P
s

= 450 produced by the fric-

tion, what work must the

force P± do, in order to

change the initial velocity

of 2 feet of the wagon into

a velocity of 5 feet ?

If we put the space de-

scribed by the wagon M O
= s, we have the work done

by the force Pt

= P
t . ML = Pt s cos. a = 660 . s cos. 24° = 602,94 . «,

and the work done by the force P
3
acting as a resistance is

= (-P
s
).s=-450.s,

consequently the work done by the motive force is

Ps = P± s cos. a — P
2

s cos. = (602,94 — 450) s = 152,94 s foot pounds.

The mass, however, absorbed during the change of velocity the me-

chanical effect
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f*°2^~) G== (°~2~)- 5000=°>0155 -(25-4)- 5000=1627,5 foot-pounds;

putting the two effects equal to each other we obtain 152,94 . s = 1627,5,

whence the space described by the wagon is

1627 5MO = a = ji^ = ™,64 f^t,

and finally the mechanical effect of the force Px
is

P
t

s cos. a = 602,94 . 10,64 = 6415 foot-pounds.

§ 85. Curvilinear Motion.—If we suppose the spaces (<?, g
x,

etc.,) infinitely small, we can apply the foregoing formulas to cur-

yilinear motion. Let M O S, Fig. 101, be the trajectory of the

material point, and M P = P
the resultant of all the forces act-

ing upon it. If we decompose

this force into twTo others, the

one of which MK = K is tan-

gent and the other MN=N
normal to the curve, wTe call the

1 Vn
former the tangential and the

latter the normal force.

While the material point de-

scribes the element M O — a of its curved path M O 8, and its

velocity changes from c to vlf the mass M absorbs the mechanical

-^— ) M, during the same time the tangential force K
performs the work K o, and the normal force the work N . = 0,

and consequently wre have

If, while the point describes the space M O S — s — n o, the

tangential velocity changes from c to v, and at the same time

the tangential force assumes successively the values KXi K°, . .Kn ,

then

(A, + E2 -f . . + Kn) a = (

and the work done is

•)'*-£r)*

A = Ks Pi9 3L when K Kr + K,+

2

denotes the mean value of the variable tangential force.

If we put the projection of the elementary spaceM O = o npcn
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the direction M L of the force = f, we have also P f — K <j; if,

therefore, while the point describes the space M S = s = n a

the resultant P assumes successively the values P19 P2 . . . P„, the

projections of the elementary spaces are successively fi, f2 . . . f„,

and we have also

P\ f, + P* f2 + • • + -P. f» = (iST, + K, + . . + Kn) a,

and therefore

A = P, ft + P, ft + . . + P. ft = (--—-) M
When the direction of the force P remains constant, the pro-

jections fi, fa . . f„ of the portions a. a . . of the space or that of

the whole space s = n o form a straight line

JfiZ= »=.fi + & + ..&.

If we put .r = m f, we can also write

-4 = (P, 4- P2 + .. + P«)?;= (P, + P2 + ... + P.) — = P.r,
/T2'

P + P + . . . 4- P
where P denotes the mean — - — of the forces, whichm

CO

correspond to the equal portions f = — of the projections of the

path on the direction of the force.

We have, therefore, also

Px -
( A )M= (h - h) G,

in which Tc denotes the height due to the initial velocity c and h

that due to the final velocity v, and G the weight M g of the

moving body.

Therefore, in curvilinear motion, the entire work done is equal

to the product of the weight of the hody moved and the difference

of the heights due to the velocities.

Remakk.—The formulas, thus obtained by the combination of the prin-

ciple of vis viva with that of virtual velocities, are particularly appli-

cable to the cases of bodies, which are compelled to describe a given path,

either because there is a support placed under them, or because they are

suspended by a string, etc. If such a body is impelled by gravity alone

then the work performed by its weight G in descending a distance, whose

vertical projection is s, is = G s, whence

G s = (h-*&) G, i.e. 3 = 7i — h
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Whatever may be the path on which a body descends from one hori-

zontal plane A B
}
Fig. 102, to another horizontal one G D, the difference

of the heights due to the velocities is always equal to the vertical

height of descent. Bodies, which begin to describe the paths E F, E
x
Fu

F
3
F

2 , etcM with equal velocities (c), arrive at the end of these paths with

the same velocity, although they require different times to acquire it.

If, for example, the initial velocity is c = 10 feet, and the vertical height

of fall = s = 20 feet, or h= s -f h = 30 -f 0,0155 . 102 = 21,55 feet, we have

for the final velocity

v = V2 g h = 8,025 V21,55 - 37,24 feet,

whatever may be the straight or curved line in which the descent takes

place.



THIRD SECTION

STATICS OF RIGID BODIES

CHAPTER I

.

GENERAL PRINCIPLES OP THE STATICS OF RIGID BODIES.

§ 86. Transference of the Point of Application.—Al-

though the form of every rigid body is changed by the forces which

act upon it, that is, it is compressed, extended, bent, etc., yet in

many cases we can consider the body as perfectly rigid, not only

because this change of form or displacement of its parts is often

very small, but also because it takes place during a very short

space of time. For the sake of simplicity we will therefore con-

sider, when nothing to the contrary is stated, a rigid body to be a

system of points rigidly united to each other.

A force P, Fig. 103, which acts upon a rigid body at a point A,

transmits itself unchanged
Fig. 103. ... ... ,. v -^

in its own direction XX
through, the whole bodv,

and an equal opposite force

P x will balance it, when its

point of application A x lies

in the direction X X.

The distance of these

points of application A
and Ax from each other has no influence' upon the state of equi-

librium ; the two opposite forces balance each other, whatever the

distance may be, if the points are rigidly connected. We can
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therefore assert, that the action of a force P
x
(Fig. 104) remains

the same, no matter in what point A
x , A», A 3, etc., of its direction

it may be applied or act upon the body M.

§ 87. If two forces Px and P2 , Fig. 105, acting in the same

plane are applied at different points A
x
and A 2 to a body, then-

action upon the body is the same as if

the point C at which the two directions

intersect were the common point of ap-

plication C of these forces ; for, accord-

ing to the law just laid down, both

points of application can be transferred

to C without producing any change in

the action of the forces. If, therefore,

we make

CQ X
= A

X
Px P, and

CQs = A a P2

and complete the parallelogram C Q x

-p Q Q 2, its diagonal will give us the result-

ant C Q = P of G Q x
and C Q 2 and also of the forces P, and P?.

The point of application of this resultant can be any other point A
in the direction of the diagonal.

If at a point B on the diagonal we apply a force B P = — P
equal and opposite to the resultant A P = P, the forces Plt P2 and
— P will balance each other.

§ 88. Statical Moment.—If from any point 0, Fig. 106, in

the plane of the forces we let fall the perpendiculars Lx, L*

and L upon the directions of the component forces Px and P2 .

and of the resultant P, we have, according to § 82,

P .~(TL = P
x

. 0T
X + P9 . o~ZT,

and, therefore, from the perpendiculars or distances L
x
and Lr

of the components we can find that of the resultant by putting

L P
x .O L

x + Pt.OLt

While the intensity and direction of the resultant is found L;,

means of the parallelogram of forces, the position L of the point,

of application is obtained by means of the last formula.

13
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If the directions of the forces, when sufficiently prolonged, form

an angle Pr C' P.2
— a, the value of the resultant is

1) P = VP? + Pf+ 2 P, PTcos^i.

If the direction of the resultant

forms an angle P G P, = a, with the

direction of the component P19 we

have

P2 sin. a
2) sin. a

x P
If, finally, the distances from any

point to the directions G Px and CP2

of the given forces are Lx
= a x and

L2 = a2, then the distance L — a

from this point to the direction G P
of the resultant is

v P, «! + P2 a 2

3) a = ™

By the aid of the last distance a we can determine the position

of the resultant without reference to any auxiliary point G by de-

scribing from with the radius a a circle, and by drawing a tan-

gent L P to it, the direction of which is given by the angle a,.

Example.—A body is acted upon by the forces P
x
= 20 pounds and

P
2
— 34 pounds, whose directions form an angle P

t
C P

2
= a = 70° with

each other, and their distances from a certain point are L
x
=a

x
=4

feet and L2
= c

tion of the resultant ? The value of the resultant is

1 foot ; what is the intensity, direction and posi-

P= V 20 3 + W + 2 . 20 ."34 co*. 70° = V 400 + 1156 + 1360.0,34203

= V 2021,15 = 44,96 feet;

-and its direction is determined by the angle a
t , whose sine is

34 . sin. 70°
sin. «h =

44,96
hence log sin. a

t
= 0,85163 — 1,

snd the angle formed by the direction of the resultant with that of the

force Pt
isaj = 45° 17'. The position or line of application of the result-

ant is finally determined by its distance O L from O, which is

20.4 + 34.1

44,96
^=8,586 feet.
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§ 89.—We call the normal distances L
x
— a

x
and L2

— «,

of the directions of the forces from an arbitrary point 0, Fig. 107,

the arms of the lever, or simply the arm»
(Fr. bras dn levier, Ger. Hebelarme) of the

forces, because they form an important ele-

ment in the theory of the lover, which will

be discus33d hereafter. The product P a of

the force and the arm of the lever is called

the statical moment of the force (Fr. moment
des forces, Ger. statisches or Kraffcmomcnt). Since P a = P, a x

+ P2 a2j the statical momsnt of the resultant is equal to the sum
of the statical momants of the two components.

In adding the moments, we must pay attention to the positive

and negative signs. If the forces P, and P2 act in the same direc-

tion around 0, as in Fig. 107, if, e.g., the direction of the forces

coincide with the direction of motion of the hands of a watch, they

and their moments are said to have the same sign, and if one of

them is taken as positive, the other must also be considered as

positive. If, on the contrary, the two forces, as in Fig. 108, act in

Fig. 108. Fig. 109.

opposite directions around the point O, they and their statical mo-
ments are said to be opposite to each other, and when one is

assumed to be positive, the other must be taken as negative.

In the combination represented in Fig. 109 we have Pa =
Pj a x

— P2 a.
}, since P2 is opposite to the force P„ or its moment

Ps a2 is negative, while in the combination in Fig. 106 P
(d "==

P
1
a

x + P, a,.

§ 93. Comprsition of Forces in the Same Plane.—If

three forces P1? P.:, P3, Fig. 110, arc applied to a body at three

different points A l9 A«, A z in the same plane, we first combine two

(Pj, P2) of these forces so as to obtain a resultant U Q — Q, and

then combine the latter with the third force (P3) according to the
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same rule, constructing with D Rx
— C Q and D R2 — A z Pz the

parallelogram D R
x
R R2 . The diagonal D R is the required re-

sultant P of P
x , P2, and P3. It is easy to see how we must pro-

ceed, when a fourth 'force P4 is added.

Here the intensity and direction of the resultant is found in ex-

actly the same manner as when the forces are applied at the same

point (see § 80); the rules

given in § 80 can be employed

to calculate the first two ele-

ments of the resultant, but

the third element, viz., the

position of the resultant or

its line of application, must
be determined by means of

the formula for the statical

moments. If Lx
= aXf

L2 = a 2, Lz = az and

L = a are the arms of

the three component forces

P
x , P2, Pz and of their re-

sultant P in reference to an arbitrary point 0, and if Q is the re-

sultant of Pi and P2 and K its arm, we have

Pa= Q. CTK + P3 «3 and Q . 0~K = Px a x + P2 a,.

Combining these two equations, we obtain

P a = Px a x + P2 a2 + Pz az,

and in like manner when there are several forces

P a = P
x (h + Pi a2 + P3 «3 + ...

i.e., the {statical) moment of the resultant is always equal to the alge-

braical sum of the (statical) moments of the components.

§ 91. If P
x , P2, P3, etc., Fig. Ill, are the individual forces of a

system, a
x ,

a,, az, etc., the angles P
x
D

x
X, P2 D2 X, Pz Dz X} etc.,

formed by the directions of these forces with any arbitrary axis

XX and a
x , a2, az, etc., their arms L

x , L 2, Lz, etc., in refer-

ence to the point of intersection of the two axes XX and Y Y,
we have, according to §§ 80 and 90,

1) the component parallel to the axis XX
Q = P

x cos. a
x -f P2 cos. a.2 + . . .,

. 2) the component parallel to the axis Y Y
R = Px sin. a

x + P2 sin. a2 + ...
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3) the resultant of the whole system

m

P= V Q* + R\
4) the angle a formed by the resultant with the axis for which

R
tang, a =

Q'

5) and the arm of the resultant or the radius of the circle to

which the direction of the resultant is tangent

_ Pi «i + P2 a-2 + . .

.

a -
p, + p, + ...

If b, b19 # 2, etc., denote the distances D} DXi D2, etc., cut

off from the axis X X, we have

a = b sin. a, a x
= b x sin. a

x , a2 = b.2 sin. a2, etc.,

and therefore also

P, ^! sin. a
x -f P2 bo sin. a.2 + . . . _ Pi b x + P2 b.2 4- . . .

P rift, a R
If we replace the resultant (P) by an equal opposite force (— P),

the forces P1? P,, P3 . . . (— P) will balance each other.

If xlt x2 .

.

. and yi} y.2 . . . denote the co-ordinates of the points

of application A
: , A 2 ... of the" given forces P„ P2 . . ., the mo*

ments of the components of the latter are Rx
xl} R2 x2 . . . and Q x y )}

Q 2 y, . . ., and the moment of the resultant is

Pa={R1 xl + R, x, + . . .) - (Ql y x + & y* + . . .),

and its arm is
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a = {Ri a* + R* x, + ...)- (ft yi + ft y» + . . •)

V(R, + A^ + ...r + (ft + ft + ...)
a

Example.—The forces P, = 40 pounds, P
2
= 30 pounds, P

3
= 70

pounds, Fig. 112, form with the axis XX the angles a
x
— 00°, a

2
—. — 80°,

o
3

-- 140°, and the distances between the points of intersection D
t , Z>3 , D3

of the- directions of the forces with the axis are D
t
D

?
— 4 feet, and P2 D3

= 5 feet. Required the elements of the resultant. The sum of the com-

ponents parallel to the axis XX is

Q = 40 cos. 60° + 30 cos. (- 80°) + 70 cos. 142°

= 40 cos. 60° + 30 cos. 80° - 70 cos. 38°

= 20 + 5,209 - 55,161 = - 29,952 pounds.

The sum of those parallel to the axis Y T is

B = 40 sin. 60° + 30 sin. (- 80°) + 70 sin, 142°

= 40 sin. 60° - 30 sin. 80° + 70 sin. 38°

= 34,641 - 29,544 + 43,096 = 48,193.

Fig. 112.

=X

Hence it follows that the resultanU

P= \/Q- + B' = l/29,952
2 + 48,198" = ^219^68 = 56,742 pounds.

The angle a formed by the latter with the axis is determined by the

formula

7? 48 1 9S
tang, a = --= — 5^^= — 1,6080, from which we obtain

a = 180° — 58° 8' = 121° 52'.

If we transfer the origin
>
of the co-ordinates O to P

3 , we have the

ftrnj of the force

Pj sin. a
t b t + P2

sin. a
2
b
? + . . . __B

t
b

t
4- P„ bz -f . • •

O £ = a

34,641 . (4 + 5) - 29,544 . 5 + _ 164,049

56,742 ~ 56,742"
= 2,891 feet,
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and, on the contrary, the distance cut off on the axis XX

§ 92. Parallel Forces.—If the forces P
x , P2, P2, etc., Fig. 113,

of a rigid system of forces are parallel, their arms Lx, Z 2,

Lz, etc., coincide with each other; if through the origin we

draw an arbitrary line XX, the directions of the forces will cut off

from it the portions D
x , D 2, D», etc., which are proportional

to the arms L
x , L,, Lz, etc., for we have a D

x
L

x
a> a

A Li cc A A 2/3, etc. Designating the angle D x L
x
— D2 Z„

etc., by a, the arms Lx , L :, etc., by ax, a>2, etc., and the distances

cut off D x , A> etc., by b x , b.2, etc., we have

a
x
= b x cos. a, cu = b2 cos. a, etc.

Finally, substituting these values in the formula

p a= Piety + P, a 2 + . . .

,

we obtain

P b cos. a — Px b
x
cos. a + Pobi cos. a -f . .

.

,

or, omitting the common factor cos. a, we have

Pb = P
x b

x + P2 b, + ...

Fig. Hi
In every system of parallel

forces we can substitute for the

arms the distances D
x , D,,

etc., cut off from any oblique line

by the directions of the forces.

Since the intensity and direction

of the resultant of a system of

forces with different points of

application is the same as that

of a system of forces applied in one point, the resultant of the sys-

tem of parallel forces has the same direction as the components*

and is equal to their algebraical sum ; hence we have

i)

3)

P = P, + p, + p3 + .

_ P, cr, + P, «» + ...—p
l-Vp, + .., •

P
x b x + P2 K + . . .

and

or

1 =
Py + A + •
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Example.—The directions of the three forces P
t
.= 12 pounds, P2

=
— 32 pounds and Ps

== 25 pounds cut a straight line in the points B
t , B2

and D
3 , Fig. 113, whose distances from each other are B

x
B

2
= 21 inches,

and B
2
B

3
= 30 inches; required the resultant. The intensity of thin

force is

P = 12 — 82 + 25 = 5 pounds,

and the distance B
x
B of its point of application B in the axis XX from

the point Z>
1

is

1 = 12 . - 32 . 21 + 25 . (21 + 30) - 672 + 1275 = 120,6 inches.

§ 93. Couples.—The resultant of two equal and opposite

forces P, and — P
x
is

p = p, + (- Pi)' = p* - Pi =-o>
and its arm is

P, 0, + P2 «2 /• /• -i. 1 4-\« = - = go (infinitely great).

Fig. 115.'

Ko finite force acting at a finite distance can balance a couple,

but two sucli couples can balance each other. Let P\ and — P,

and —P2 and P2, Fig. 115, be two such couples, and O L x
— a

x , M\
= O L x

- L
x
M

x
= a x

- bx , £2 = a2 and M, = Z2
— L2 M,

= a2 — #2 their arms measured from a certain point O, then,when
equilibrium exists, we have

P, a x
- P, (a x

- b
x ) — P2 a2 + P2 (a2

- 5 2) = 0, i.e.

P, ft, = P2 ft*

Two such couples balance each other when the product of one

force by its distance from the opposite one is the same for both

couples.

A pair of equal opposite forces is called simply a couple (Fr.

couple, Ger. Kraftepaar), and the product of one of its forces by
their normal distance apart is called the moment of the couple.
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Fig. 116.

From the foregoing we see that two couples acting in opposite

directions balance each other, when their moments are equal.

That this rule is correct can be proved in the following manner.

If we transfer the points of application of the forces PU P* and
- i\,- P, of the couples (P„ - P,) and fP2,

- Pf), Fig. llff,

to the points of intersection A and B of their lines of application.

we can combine P
l
and P..

as well as — P
x
and — P,

by means of the parallelo-

gram of forces and obtain

the resultants. If the di-

rections of these resultants

lie in the prolongation of

the line A B, then these

forces, and consequently the

corresponding couples (Pj,

- P1), and (P.2> ~ P s ), bal-

ance each other. If equilibrium exists, the triangle ABC formed

by A B and by the directions of the forces — P and P2 must be

similar to the triangles R A Px and B R Pj, and consequently we

have the proportion

CB ' Px

C A 7 P-2

But the perpendiculars A P, = b
]
and B L 2 = b.2 to the di-

rections of the couples are proportional to the hypothenuses C A
and (J B of the similar triangles A C L

x
and B C L«, and we can

therefore put
P. h = P, K

The moments of two couples which balance each other are con-

sequently equal to each other.

If in the formula (§ 91) for the arm a of the resultant

P, a x + P2 «* + ....

or the equation P
}
.C A = P2 . C B.

we substitute P = 0, while the sum of the statical moments has a

finite value, we obtain a = «x> , a proof that in this case there can

be no other resultant than a couple.

If the forces of a system shall balance each other, it is necessary

not only that the resultant P = VQZ + R2
of the components Q

and R, but also that its moment
P a = Pi a, + P2 a, + . . . shall be = 0.
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Example.— If one couple consists of the forcesP
1
= 25 pounds and

— Pt = — 25 pounds and the other of the forces P
2
= 18 pounds and

— P2
— — 18 pounds, and if the normal distance between the first couple

is 5 = 3 feet, then to produce equilibrium it is necessary that the normal

distance or arm of the second couple shall be

»»»¥ = «***

§ 94, Composition and Decomposition of Couples.—The
composition and decomposition of couples acting in the same plane

is accomplished by a mere algebraical addition, and is therefore

much simpler than the composition and decomposition of single

forces. Since two opposite couples balance each other, when their

moments are equal, the action of two couples is the same and the

couples are said to be equivalent,, when the moment of one couple

is equal to that of the other. If, therefore,

Fig. 117. the two couples (p]?
_ pj and (P2,

- P2),

Fig. 117, are to be combined, we can replace

the one (P2 ,
— P2 ) by another which has

the same arm A B — b x as the former couple

(Pi, — P,), and can then add the forces thus

obtained to the others, and thus obtain a

single couple. If b, is the arm C D of the

one couple and ( Q,
— Q) the reduced couple,

we have Q b x
= P2 h, and consequently

P. b
Q == r-j-J-

%
hence one component of the

resulting couple is

p, + Q = P +^
and the required moment of the resulting couple is

(P, + Q)h = Pi h + P* K
In same manner the resultant of three couples may be found.

If Px b 1} P2 b„ and P3 bz be the moments of these couples, we

can put

p, b a
= Qby and P3 b3 = R h, or

A P*h -. „ P3 b,

Q =— and R =s -j-,

from which we obtain the resultant

(Pt + Q 4- P) 5i = Pi &, + P2 Z>2 + P3 &*

In combining these couples to obtain a single resultant we

must pay attention to the signs, since the moments of the couples
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Fig. 118.

tending' to tarn the body in one direction are positive, and the mo-

ments of those tending to turn it in the other are negative. We can

now adopt the following principle for indicating the direction of

rotation of a couple. Let us assume arbitrarily a centre of rotation

between the lines of application of the forces of a couple ; then if

the couple tends to turn in the direction of the hands of a watch,

the couple is to be considered as positive, and if in the other

direction, as negative.

The foregoing rule for the composition of couples is also appli-

cable, when the forces act in parallel

planes. If the parallel couples (P„
- Px ) and (P2,

- P2),F%. 118, in

the parallel planes MM and NN
have equal moments Px l) x and

P2 &> and act in opposite directions

to each other, they will also balance

each other ; for they give rise to two

resultants P
x + P2 and — (P, +

P2), which balance each other, as

they are applied in the same point

E, which is determined by the equa-

tions

MA. % = WS\ Ps, 1TB. P, = E~D . P2 and

Pa h = P2 K, i.e. A~B. P x
= OS P2, whence-

EA:EB:AB = ECiED:CD;

hence this point coincides with the point of intersection of the two
transverse lines A C and B D.

Since the couple (P2,
— P2 ) balances every other couple acting

in a parallel plane with an equal and opposite moment, it follows

that every couple can be replaced by another which has the same

moment, and which acts in a plane parallel to that of the first.

If, therefore, several couples whose planes of action are parallel

arc applied to a body, they can be replaced, by a single couple whose

moment is the algebraical sum of their moments, and whose plane,

which in other respects is arbitrary, is parallel to the planes of the

given system.

§ 95. If two couples (P„ - P,) and (P £ ,
- P,) act in two differ-

ent planes EMEX and FN

F

x , Fig. 119, whose line of intersection ia
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the straight line A B, and which form with each other a given

Fm. 119.

angle

EAF=F
l
BF

1
= a

we can, after having reduced them
to the same arm A B. combine
them by means of the parallelo-

gram of forces. We obtain thus

from Px and P2 the resultant P,

and from — P, and— P2 the result-

ant — R. These two resultants

being equal and opposite, form

another couple, whose plane is

given by the direction of R and
- R.

The resultant R can be found

according to § 77 by means of the

formulas

V Px

2 + P* + 2 Px P2 cos. a and

_ P2 sin. a
" R '

in which (3 denotes the angle E A R = Ex B R formed by the

direction of the resultant with that of the component P
x . If the

arm is A B — c, and if we put the moment Px c = P a and the

Qb

R =

sin. (3

moment P2 c

R

Q I or Px =— and P2 = we obtain

/ Pa
c

Qb \\2± Qb
C J c c

or the moment of the resultant of the couples (P,

{Q, - Q)

cos. a,

P) and

Rc= V(Pa)* + {Qbf +2 Pa.Qb.coLa,

and in like manner for the angle formed by its plane with that of

the first couple (P, — P) we have

Qb
sin. (3 ==

Re sin. a.

We can therefore combine and decompose couples acting in the

different planes in exactly the same manner as forces applied at the

same point, by substituting instead of the latter the moments of

the former, and instead of the angles, which the directions of the

former make with each other, those formed by their planes of action.
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Fig. ICO.

The referring back of the theory of couples to the principle of

•the decomposition of simple forces can be greatly simplified by in-

troducing the axis of rotation instead of the plane of rotation of

the couple. We understand by the axis of rotation or axis of a

couple, any perpendicular to its plane. Since every couple can be

arbitrarily displaced in its plane without changing its action upon

the body, we can pass the axis of the couple through any given

point.

Since the plane and the axis of a couple are at right angles to

each other, the axes A X, A Y
and A Z, Fig. 120, form the same

angles with each other as the

planes A E K, AFK and A G K
themselves. If one of the couples

is the resultant of the other two,

we see from what precedes, that

the diagonal of the parallelogram

constructed with the moments P a

and Q b will give the moment
of the resultant; if therefore we

lay off upon the axes A X and A I
r the moments P a and Q b,

and then complete the parallelogram, we obtain in its diagonal not

only the axis A Z of the resulting couple, but also its moment Re.

We see, therefore, thai couples are combined and decomposed in ex-

actly the same ivay as simple forces, provided we substitute for the

directions of the forces the axes of the couples and the moments
of the latter for the forces themselves. All the rules for the com-

position and decomposition of forces given in § 76 and § 77, etc.,

are in this sense applicable to the composition and decomposition

of couples.

§ 96. Centre cf Parallel Forces.—If the parallel forces lie

in different planes, their composition must be effected in the fol-

lowing manner. Prolonging the straight line A
x
A.2, Fig. 121,

which joins the points of application of two parallel forces Px
and

P2, until it meets the plane which contains the axesMX saidM Y,

which are at right angles to each other, and taking the point of

intersection K as the origin, we have for the point of application

A of the resultant P
x -f P2 of these forces

(Pi + P2 ) • KA =p P, . K A x + P2 . K A,



206 GENERAL PRINCIPLES OF MECHANICS. [§»«.

Now since B, B x
and P2 are the projections of the points of ap-

plication A, A
x
and A.2 upon the plane X Y, we have

AB:A l B1 :A 2 Ms = KA : K

A

x
: K A»

and therefore also

Fig. 121.

(P
x + P,).AB = P

X . A, Bx + P2 . A, B,.

If we designate the normal distances A
x
P„ A^ P2, A 3 B->, etc.,

of the points of application

from the plane XX by z l} z?,

zz, etc., and the normal dis-

tance of the point of applica-

tion A from this plane by z,

we have for two forces

(Pi + P2)*= Pi* + A*;
and for three forces, since (P,

+ P2) can be considered as

one force with the moment
X i Z\ + p? #2>

(P
1 + P2 + P3) Z

= Pi ^ +P2 22+P3 Zz> etc.

Consequently we have in general

(P, + P2 + P3 + . . .) z = P: % + P2 z2 + P3 z3 . • .,

and therefore

-

.

Pi 2, + P2 z* + . .

.

1} ^^TTPTTT^-
If, in like manner, we denote the distances A C and A D of the

point of application A of the resultant from the planes X Z and

Y Zby y and x, and the distances of the points of application A»
A 2 . . . from the same planes by y x , y»— and x1} x» . . ., we obtain

2) y

3) iC —

p, yi + P2 ?/ 2
4- . . .

Pi

Pi

ah

+
+
P2

P2

+
z2 + ...

P
1 + P2 + ...

The distances, x, y and z, from three fixed planes, as, e.g., from

the floor and two sides of a room, determine completely the point A ;

for it is the eighth corner of the parallelopipedon constructed with

x, y and z ; hence there is but one point of application of the re-

sultant of such a system of forces.

Since the three formulas for x, y and z do not contain the angles

formed by the forces with the fixed planes, the point of application

is not dependent upon them or upon the direction of the forces

;
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the whole system can therefore be turned about this point without

its ceasing to be the point of application, as long as the forces re-

main parallel.

In a system of parallel forces we call the product of a force by

the distance of its point of application from a plane or line the

moment of this force in reference to the plane or line, and it is also

customary to call the point of application of the resultant the cen-

tre of p&ralUl forces (Fr. centre des forces paralleles, Ger. Mittel-

punkt des ganzen Systems). We obtain the distance of the centre

of a system ofparallel forces from anyplane or line (the latter, when

the forces are in the same plane) by dividing the sum of the stati-

cal moments by the sum of the forces themselves.

Example.—If the forces are

and their distances or the co-

ordinates of their points

of application are

we will have the moments

Pn 5 - 7 10

Xn 1 2

Vn 2 4 5

Zn 8 3 7

Pn** 5 - 14

PnVn 10 - 28 50

Pn*n 40 - 21 70

4 pounds.

feet.

3 "

10 "

CO foot pounds.

12 "

40 "

Now the sum of the forces is = 19 — 7 = 12 pounds, and therefore

the distances of the centre of parallel forces from the three co-ordinate

planes are

x
5 + 36-14

12

27

12

10 + 50 + 12 --28
12

40 4- 70 + 40 --21

12

11— = — = 3,6G feet, and

§ 97. Forces in Space.—If we wish to combine a system of

forces directed in different directions, we pass a plane through

them and transfer all their points of application to this plane, and

then decompose each force into two components, one perpendicular

to and the other in the plane. If ft, ft . . . are the angles formed

by the directions of the forces with the plane, the components nor-

mal to the plane are P, sin. ft, P2 sin. ft • • • and those in the plane

are P x cos. ft, P 2 cos. ft, etc. The resultant of the latter can be ob-

tained as indicated in § 91, and that of the former as indicated in
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the last paragraph. Generally the directions of the two resultants

do not cut each other at all, and the composition of the forces so

as to form a single resultant is not possible. If, however, the re-

sultant of the parallel forces passes through a point K, Fig. 122,

in the direction A B of the resultant P of the forces lying in the

plane (that of the paper), a composition is possible. Putting the

ordinates of the points of application JSTof the first resultant O
^DK=ua,n&OD= CK == v, the arm of the other L = a

and the angle B A formed by the latter with the axis X X, - a,

then the condition for the possibility of the composition is

u sin. a 4- v cos. a = a.

If this equation is not satisfied, if, e.g., the resultant of the nor-

mal forces passes through Kx , it is not possible to refer the whole

system of forces to a single resultant, but they can be replaced by

Fig. 122. Fig. 123.

a resultant R, Fig. 123, and a couple (P, — P) by decomposing

the resultant JV" of the parallel forces into the forces — P and E,

one of which is equal, parallel and opposite to the resultant P of

the forces in the plane.

We can accomplish directly this referring of a system of forces

to a single force and to a couple by imagining a system of couples,

whose positive components are exactly equal in amount and direc-

tion to the given forces, to be applied to the body at any arbi-

trary point. These couples naturally do not change the state of

equilibrium, for being applied at the same point they counteract

themselves. On the contrary, the positive components can be

j'ombined according to known rules (§81) so as to give one result-

ant, while the negative components form with the given forces

couples, whose resultant (according to § 95) is a single couple.

After these operations have been performed, we have only one force

and. one couple.
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§ 98. Principle of Virtual Velocities.—If a system of forces

PXy P,, P3, Fig. 124, which act in a plane, have a motion of trans-

lation, that is, if all the points of application A
x , A*, A z describe

equal parallel spaces A x B x , A, B», A 3 B3, then (according to

the meaning of § 81) the work done hy the resultant is equal to

Fig. 124.

the sum of the work done by the components, and consequently,

when the forces balance each other, this sum is = 0. If the pro-

jections of the common space A x
Bx

= A* B2, etc., upon the di-

rections of the forces are A x Lx , A 2 L :, etc., — s x , s.:, etc., the work

done by the resultant is

Ps = Px s x + P 2 s, + .

This law is a consequence of one of the formulas in § 91. Ac-

cording to it, the component Q of the resultant parallel to the axis

XX is equal to the sum

ft + ft + ft + • • •

of the components of the forces P
x , P., etc., which arc parallel to

it. Now from the similarity of the triangles A
X BX

L X
and A x Px ft

we know that

ft = A
x Lx

Px A
x
B\

and therefore we have
A B'

^=xft*"^'.^,^^.»
Hence, instead of

we can put

14

e = ft + ft +

,

P s = Pv sx + P 2 s.
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§ 99. Equilibrium in a Rotary Motion.—If a system of
forces P*, P2, etc., Fig. 125, acting in the same plane, is caused to

turn a very small distance

about a point 0, the principle

of virtual velocities announced
in § 83 and § 98 is applicable

here also, as can be demon-
strated in the following man-
ner. According to § 89 the mo-

ment of the resultant P . WL
= P a is equal to the sum
of the moments of the com-

ponents, or

Pa — Px ax + P2 «2
-}- ...

The space A x
B

x , corresponding to a rotation through a small

(3°

angle A x Bx
= (3° or a small arc (3 t== —— . n, is situated at right

angles to the radius A x , therefore the triangle A x B x Cx formed

by letting fall the perpendicular Bx Cx upon the direction of the

force, is similar to the triangle A X L X
formed by the arm Lx

= ux,

and we have
PL, = iti^
oa\ a

x b;

If we put the virtual velocity A x Cx
— a

x and the arc A
x
i?,

= A x . 3, we obtain

A x . G
x

O
x

, . ,., <72

(h — vt~a
—

ft — tt> and m like manners = ?n etc.A
x

. (3 (3' 0'

Substituting these values of ai9 a*, etc., in the above equation,

we obtain

Pa P
x
a

x
P,a,

,

or since (3 is a common divisor,

P a = P
x
a

x + P, a, + . . v

as we found in § 83.

Therefore, for a small rotation, the work (P a) done by the re-

sultant is equal to the sum of the work done by the components.

§ 100.—The principle of virtual velocities holds good for any

arbitrarily great rotation, when, instead of the virtual velocities

of the points of application, we substitute the projections
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L x CXi Lo Cj, Fig. 126, of the spaces described by the ends Ll3 L25

Fig. 12G.

etc., of the perpendiculars ; for multiplying the well-known equa-

tion for the statical moment
P a = Px a x + P, a2 + ...

by sin. (3 and substituting in the new equation

P a sin. (3 = Px a x sin. (3 + P2 a2 sin. [3,

instead of ax sin. (3, a.> sin. (3 . . . the spaces

Bx sin. L x B x
= D x

B
x
= Lx Cx

= sx,

B2 sin. L2 OB, = R2 B, = L, a *?= s2, etc.,

we obtain

Ps == P
x s x + P2 s2 + ...

This principle remains correct for finite rotations, when the di-

rections of the forces revolve with the system, or when the point

of application or end of the perpendicular changes continually so

that the arms Lx
— B

x , etc., remain constant ; for from

P a — P
x a x

+- P^ 3 + . . .,

by multiplying it by B we obtain

P a (3 = p
x
a x (3 + P.2 a, [3 + . . ., i.e.,

P s = P
x s x + P,2 s2 + . .

.,

when s x s?, etc., denote the arcs L x B x , L2 B2, etc., described by

the points of application L x , L 2, etc.

§ 101. A Small Displacement Referred to a Rotation.—
Every small motion or displacement of a body in a plane can be

considered as a small rotation about a movable centre as we will

now proceed to show. Let A and B, Fig. 127, two points of the

body (surface or line), be subjected to a small displacement, in con-

sequence of which they now occupy the positions A
x
and B x , A x Bx

being — A B. If we erect at these points perpendiculars to the

paths A A
x , and B Bx , they will cut each other at a point C, about

which we can imagine the spaces A A
x
and B Bx ,

considered as

arcs of circles, to be described. But since A B — A
x
Bx , A C —
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A
x C and B C = B

x C, the two triangles A B (7 and A
x Bx C

are similar; the angle B
x C A

x
is therefore equal to the angle

B C A, and the angle of rotation A C A x equal to the angle

of rotation B C B
x
. If we make A X D X

— A D we obtain, since the

angles D
x
A x C and D A C and the sides C A x and C A are equal

to each other, two equal, similar triangles C A X D X and CAD,
in which CD, = C D and Z A

x C

D

x
= A A C D. Conse-

quently, Z ^4 C^ Is also — /_ D C D
x , and when the displace-

placement of the line A B is small,

every other point D of it will de-

scribe an arc of a circle. Finally, ifE
is a point lying without the line A B
but rigidlyconnected with it, the small

space E Ex described by it can also

be regarded as a small arc of a circle,

whose centre is at C; for if we make
the angle Ex A x

Bx
= E A B and the

distance A
x Ex

— A E, we obtain

again two equal and similar trian-

gles A X C Ex and ACE, whose sides

C E
x and C E and whose angles

A
x C Ex

and ACE are equal to each other, and the same thing

can be proved for every other point rigidly connected with A B.

We can, therefore, consider any small motion of a surface or of a

solid body rigidly connected with A B as a small rotation about

a centre, which is determined by the point of intersection C of the

perpendiculars to the spaces A A
x and B Bx described by two

points of the body.

§ 102. Generality of the Principle ofVirfcual Velocities.

—According to a foregoing paragraph (99) the mechanical effect

of the resultant is equal to the mechanical effect of its components

for a small revolution of the system, and according to the last

paragraph (101) any small motion can be considered as a revolu-

tion ; the principle of virtual velocities is therefore applicable to

any small motion of a body or of a system of forces.

If, therefore, a system of forces is in equilibrium, i.e., if the re-

sultant is null, then after a small arbitrary motion the sum of the

mechanical effects must be equal to 0. If, on the contrary, for a

small motion of the body the sum of all the mechanical effects is

equal to zero, it does not necessarily follow that the system is in
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equilibrium, for then this sum must be = for all possible small

motions. Since the formula expressing the principle of virtual

velocities fulfils but one of the conditions of equilibrium, in order

that equilibrium shall exist it is necessary that this formula shall

be true for as many independent motions as there are conditions,

e.g., for a system of forces in a plane for three independent

motions.

CHAPTER II.

THE THEORY OF THE CENTRE OF GRAVITY.

§ 103. Centre of Gravity.—The weights of the different

parts of a heavy body form a system of parallel forces, whose re-

sultant is the weight of the whole body and whose centre can be

determined by the three formulas of paragraph 96. We call this

centre of the forces of gravity of a body or system of bodies the

centre of gravity (Fr. centre de gravite, Ger. Schwerpunkt), and

also the centre of the mass of the body or system of bodies. If a

body be caused to rotate about its centre of gravity, that point will

never cease to be the centre of gravity, for if we suppose the fixed

planes, to which the points of application of the single weights are

referred, to rotate with the body, during this rotation the position

of the directions of the forces in regard to these planes change, and

on the contrary the distances of the points of application from

these planes remain constant. Therefore the centre of gravity is

that point at which the weight of a body acts as a force vertically

downwards, and at which it must be supported in order to keep

the body at rest.

§ 104. Line and Plane of Gravity.-^Every straight line,

which contains the centre of gravity, is called a line of gravity, and

every plane passing through the centre of gravity a plane of gravity.

The centre of gravity is determined by the intersection of two lines

of gravity, or by that of a line of gravity and a plane of gravity, or

by the point where three planes of gravity cut each other.

Since the point of application of a force can be transferred arbi-

trarily in the direction of the force without affecting the action of

the latter, a body is in equilibrium whenever any point of the ver-

tical line passing through the centre of gravity is held fast.
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Fig. 128.

c

^— | i
;

If a body M, Fig. 128, be suspended at the end of a string CA,
we obtain in the prolongation A B of this string a line of gravity, and

if it be suspended in another

way we find a second line of

gravity DE. The point of inter-

section 8 of the two lines is the

centre of gravity of the whole

body. If we suspend a body

by means of an axis, or if we
balance it upon a sharp edge

(knife edge), the vertical plane

passing through the axis or

knife edge is a plane of gravity.

Empirical determinations

of the centre of gravity, such

as we have just given, are seldom applicable ; we generally employ

some of the geometrical methods, given in the following pages, to

determine with accuracy the centre of gravity. In many bodies,

such as rings, etc., the centre of gravity is without the body. If

such a body is to 1x3 suspended by its centre of gravity, it is neces-

sary to fasten to it a second body in such a manner that the cen-

tres of gravity of the two bodies shall coincide.

§ 105. Determination cf the Centre of Gravity.—Let sblf

Xp x?,, etc., be the distances cf the parts of a heavy body from one

co-ordinate plane, yx , y„, y3, etc., those from the second, and zl9 z2,

z
V) , etc., those from the third, and let P„ P,, P3, etc., be the weights

of these parts, we have, from § 96, £or the distances of the centre

of gravity of the body from the three planes

P, Xi + P2 Xa + P3 X, + . . .

y
:

, and

X
P, + P, + Pa + ...

_ Pxyx + P9 y* + P„y, + ..

_ P, Z, + Po Z» + PA Z,, -f- . . .

Z ~~
Pi + Ps+P't

'

If we denote the volume of these parts of the body by Vlf V.2,

F3, etc., and the weight of their units of volume by y„ y2, yz, etc.,

we can write

F, Ti A
'i + Fa Ta x, + F3 y-, xs

F y, + V, y, 4- V, y. + . .

.

etc.
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If the body is homogeneous, i.e., if y is the same for all the

parts, we have

x ==_ (
V

x
x

x + T2 x, + . ) y
(F+F2 + ...)y '

or, cancelling the common factor y,

F, xx -{-Vox* + .,.
1) x

%,& =

3) z =

F + F2 + .

_ F^ + Fy2 + ...

Fj + F + .

.

V,zx +V,z, + ...

F, + F8 + . . .
*

, and

Consequently we can substitute for the weights of the different

parts their volumes, and the determination of the centre of gravity

becomes a question of pure geometry.

When one or two of the dimensions of a body are very small

compared with the others, E.G., in the case of sheet-iron, wire, etc.,

we can regard them as planes or lines, and determine their centres

of gravity by means of the last three formulas, substituting instead

of the volumes Fl3 F2, etc, the surfaces Fl9 F*, etc., or the lengths

/„ /o, etc.

Fig. 129.

§ 106. In regular spaces the centre of gravity coincides with

their centre, e.g., in the case of the cube, sphere, equilateral trian-

gle, circle, etc. Symmetrical spaces have their centre of gravity in

the axis or plane of symmetry. A body A D F H, Fig. 129, is di-

vided by the plane of symmetry A BCD
into two halves, which differ only in their

position in regard to the plane, raid the

conditions are therefore the same on both

sides of the plane; the moments are con-

sequently the same on both sides, and
the centre of gravity is to be found in

this plane.

Since the axis of symmetry E F di-

vides the plane surface A B F C D, Fig-

ISO, into two parts, one of which is the

reflected image of the other, the conditions are the same on each
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side ; consequently the moments on both sides are the same, and
the centre of gravity of the whole surface lies in this line.

Finally, the axis of symmetry K L of a body A B G H, Fig.

131, is also a line of gravity of it ; for it is formed by the intersec-

tion of two planes of symmetry A B C D and E F G II

For this reason the centre of gravity of a cylinder, of a cone and

of a solid of rotation, formed by the revolution of a surface, or by

being turned upon a lathe, is to be found in the axis of the body.

§ 107. Centre of Gravity of Lines.—The centre of grav-

ity of a straight line is at its centre.

The centre of gravity of the arc of a circleAMB — d, Fig. 132,

is to be found in the radius drawn to the middle M of the arc ; for

this radius is an axis of symmetry of the arc. In order to deter-

mine the distance C 8 = y of the centre of gravity S from the cen-

tre of the circle, we divide

FlG - 133 - the arc into a very great

number of parts and deter-

mine their statical moment

in reference to an axis X X,

which passes through the

centre C and is parallel to

the chord A B = s. If P Q
is a part of the arc and P X

its distance from XX, its statical moment is — P Q ..P X
Drawing the radius P C' = M' O—r and the projection Q i? of P Q
parallel to A B, we obtain two similar triangles P Q R and CP X,

for which we have

_x
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P Q: QR = C P:P N,

whence we obtain for the statical moment of an element of the arc

P Q.P N=-QR. CP=QE.r.
But in the statical moments of all the other elements of the are

r is a common factor, and the sum of all the projections Q R of the

elements of the arc is equal to the chord, which is the projection of

the entire arc ; consequently the moment the arc is = the chord s

multiplied by the radius r. Putting this moment equal to the arc

b multiplied by the distance y, or h p = s r, we obtain

v s sr

b'
0T V = T-

The distance of the centre of gravityfrom the centre is to the ra-

dius as the chord is to the arc.

If the angle subtended by the arc l is = (3° and the arc cor-

responding to the radius 1 = j3.=
180

c
we have l — 3 r and

2 r si?i. -, and consequently

2 sin. i /3 . r
y

For a semicircle (3 = n and sin. 1, whence

2
y = z r 0,6366 ... r, aj)proximatiyely = —- r.

Fig. 133.

108. In order to find the centre of gravity of a polygon or

combination of lines A B C D, Fig.

133, we first obtain the distances of

the centres H, K, L of the lines

AB = ll} B C=l, CD=*h etc.,

from the two axes X and F,

viz., II H, = y,; HH, = x„ K K, =
y» KK2 = x„ etc. The distances

of the centre of gravity from these

axes are

?! X\ + ?2 :r2 + . .

.

OS1 = SSa = x =

OS9 =SSl = y =
l{- +72 + . .

.

_ l\ y\ + h y-i + •

ix + ?r+ . .

.
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e.g., the distance of the centre of gravity 8 of a wire ABC, Fig.

134, bent in the shape of a triangle from the base A B is

2fS = y = ±
ah + ±bh a + b h

a + b + c a + b + c' 2'

Fia. 134

c
•

TT/ i d\k
/N. ,^rx /\

r
sV \

A G Is[ M B

when the sides opposite the angles

A, B, C are denoted by a, b, c

and the altitude C G by h.

Ifwe join the middles i/, K, M
of the sides of the triangle and
inscribe a circle in the triangle

thus obtained, its centre will co-

incide with the centre of gravity

8; for the distance of this point

from one of the sides HK is

8D = ND-NS = -
6

h a + b li cli

A A B C
a + b + c

tances S E and SF from the other sides.

2 a + b:+ c ' % 2 (a + b + c)

, or constant, and therefore —
• the dis-

Fig. 135.

§ 109. Centre of Gravity of Plane Figures.—The centre

of gravity of a parallelogram A B C D, Fig. 135, is situated at the

point of intersection S of its diagonals
;

for all strips K L, formed by drawing

lines parallel to one of the diagonals

B D, are divided by the other diagonal

A (7 into two equal parts; each of the

diagonals is therefore a line of gravity.

In a triangle ABC, Fig. 136, every

line C D drawn from an angle to the

centre D of the opposite side A B is a line of gravity ; for it bisects

every element K L of the triangle formed by drawing lines paral-

lel to A B. If from a second angle A we draw a second line of

gravity to the middle E of the opposite side B C, the point of in-

tersection S of the two lines of gravity gives the centre of gravity

of the whole triangle.

Since B D = £ B A and B E = ± B C, D E is parallel to A C
and equal to ± A C, the triangle D E 8 is similar to the triangle

A 8 and C 8 = 2 8 D. Adding 8 D, we obtain C 8 + 8 D,
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i.e. CD = 3 8D and inversely SD = \ CD. The centre of

gravity '8 is at a distance equal to | C Z? from the middle Z) of the

base and at a distance equal to f CD from the angle C. If we
draw the perpendiculars CZTand/SjVto the base, we have also

Fig. 136. Fig. 137.

A 11 ^D

Ai CiSjD, Bi

X # = | C H; the centre of gravity 8 is at a distance from the

base of the triangle equal to one third of the altitude.

The distance of the centre of gravity of a triangle A B C, Fig.

137, from an axis X Xis 8 8, = D Dx + J (C C\ - D D
x ), but

D D x
—

\ (A A x + B B x ), and consequently we have

AAx+BBx+GCi
i, = 8 8X

CCX + ?.i(AA x + BBX )

i.e., the arithmetical mean of the distances of the angles from XX.
Since the distance of the centre of gravity of three equal weights,

applied at the corners of a triangle, is determined in the same way,

the centre of gravity of a plane triangle coincides with the centre

of gravity of these three weights.

§ 110. The determination of the centre of gravity of a trape-

zoid A BCD, Fig. 138, can be made in the following manner.

The right line M X, which joins the centres of the two bases A B
and C D, is a line of gravity of the trapezoid ; for if we draw a great

number of line's parallel to the bases, the figure will be divided into

a number of small strips whose centres or centres of gravity lie

upon the line M X. In order to determine completely the centre

of gravity >S', we have only to find its distance 8 H from the

base A B.

Let the bases A B and CD be denoted by b x
and h and the al-

L
itiuie or normal distance between the latter by U. Xow if we

draw D E parallel to the side B C. we obtain a parallelogram
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B CD E, whose area is h h and the distance of whose centre of

gravity Sl
from A B is = ^ and a triangle ABB. whose area is

- 1

and the distance of whose centre of gravity from A B

is
h

F-" A O HM.E

Fy

The statical moment of the trapezoid in reference to A B
is therefore

Ult'^^^rr $ + »*>£
but the area of the trapezoid is F — (&, + i.2) -,

consequently the normal distance of the centre of gravity from

the base is

rr a _ _ g (fr + % h) 1? __ h + 2 £2 A
y

i (&, + a,) 7*
""

a, + h ' 3*

The distance of this point from the middle line KB — --——
z

of the trapezoid is

2 J, + b, 6' ^ *, + J2 6

In order to find the centre of gravity by construction, we have

only to prolong the two bases, make the prolongation C G = l x
and

the prolongation A F = K, and join the extremities i^and G thus

obtained by a straight line ; the point of intersection S with the line

M iVis the required centre of gravity; for from H

S

'== ]

Jt follows that

*,-5
8 A

CT Jt + 2 &2 MN r ,r 2 &, + fc J/.Y
or

N S~ 2 h +•&. ~ b x + % b,
~ CG~VNC~ N &
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which, in consequence of the similarity of the triangles M S .Fand

N S G, is perfectly true.

If we denote by a the projection A of the side A D upon

A B, the distance of the centre of gravity from the corner A is

determined by the formula

£,
2 + h h + W + a (fix + 2 &,)A H = X = ^-tt—:—r\ •

3 {o x + o2)

§ 111. In order to find the centre of gravity of any other four-

sided figure A B D, Fig. 139, we can

divide it by means of the diagonal A C
into two triangles, and then determine

their centres of gravity Si. and S2 by

means of the foregoing rules ; thus we
obtain a line of gravity Si S». If we
again divide the figure by the diagonal

B D into two other triangles, and de-

termine their centres of gravity, we
obtain a second line of gravity, whose

intersection with Sr S2 gives the centre of gravity of the whole

figure.

We can proceed more simply by bisecting the diagonal A C at

M and laying off the longer portion B E of the other diagonal

upon the shorter portion, so as to have D F — B E. We then

draw FM and divide this line irtto three equal parts ; the centre

of gravity is at the first point of division S from M as can be

proved in the following manner. We have M Sx
~ 4 M D and

J/ S, = I 31 B ; consequently Sx S, is parallel to B D, but S Sx

multiplied by a A CD = S S, multiplied by A A C B or S S, .

D E = S S,. BE, whence S Sx
\ S S, = B E: D E. But we have

B E = D F and D E = B F, consequently also SSl iSS,=
D F: B F. Hence the right line M F cuts the lino of gravity

S\ S2 at the centre of gravity S of the whole figure.

§ 112. If wre are required to find the centre of gravity S of a

polygon ABODE, Fig. 140, we divide it into triangles and find the

statical moments in reference to two rectangular axesXXand Y Y.

If the co-ordinates A x
= x

x , A 2 = y x , B x
= x.2, B.2

—

y±, etc., of the corners are given, the statical moments of the tri-

angles A B 0, B C 0, CD 0, etc., can be determined very simply

in the following manner. The area of the triangle ABO is, ac-

cording to the remark which follows, = D\ =
-J

(x
x y.2 — x2 y x\
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that of the following triangle B C is = D2 = \ (jr8 y3
— x3 y?),

etc., the distance of the centre of gravity of A B from Y Y is,

according to § 109,

Xi + x.2 + _ xx + x.2

3~ " ~ 3 '

_ yx + y*

u, —

and that from XX is = i\
-

ity of the triangle B C are

those of the centre of grav-

x, + x3 y2 + y3

%h = —o— ^d i\2 — * J
\ etc.

Multiplying these distances by the areas of the triangles we ob-

tain the statical moments of the latter, and substituting the values

thus found in the formulas

Dx Ui + Da ua + .. , Dx vt -f A vs + . .

.

u — and ViD1 + R2 + .

.

' A + A + . . .
'

we obtain the distances u = $ and v = S.2 of the required

centre of gravity S from the axes Y Y and X X.

If we divide in two ways a polygon of n sides by means of a di-

agonal into a triangle and a polygon of (n — 1) sides, and then

join the centre of the former with that of the latter, we obtain in

this way two lines of gravity, whose intersection gives the centre

of gravity. By repeated application of this operation, we can find

by construction the centre of gravity of any polygon.

Example.—A pentagon ABODE, Fig. 140, is given by the co-ordi-

Fig. 140.

nates of its corners A, B, (7, etc.. and the co-ordinates of its centre of

gravity are required.
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Co-ordinates
given.

Double area of the triangles.

The triple co-ordi-

nate of the centre

of gravity.

\

The sextuple statical

moment.

1

X y 3 **» 3 Vn 6 Dn un 6D„r„ '

24

7

-l6
— 12

18

11

21

15

- 9
—12

24. 21— 7. 11=427
7 . 15 + 21 . 16=441
16.9+ 12.15=324
12 . 12 + 18.9=306
18 . 11 +24. 12= 486

3i

- 9
- 28

+ 6

+ 42

32

36
6

— 21

— 1

13237
-3969
-9072

1836
20412

13664
I5 8 7 6

1944
—6426 ;

- 486
j

!

i

Total, 1984 22444 24572

The distance of the centre of gravity from the axis Y Y\s therefore

and from XX it is

1 22444

1 24572SSX
=v = -. -

77T7TT- = 4,128.
3 1984

Remake:.—If G A t
= xt1 G Bi=z2 , GA 2

— yt
and GB

2
= y 2

are the

co-ordinates of two corners of a triangle ABC, Fig. 141, the third corner

G of which coincides with the origin of co-ordinates, its area is

Fig. 141. B = trapezoidABB
1
A

1 + triangle

CBB
t
- triangle GAA

X

y2) "T" O
~"^)^'

*xV* ®x y2 - ®z Vi

2 2

The area of this triangle is there-

fore the difference between those

of two other triangles CB2 A t
and

C

A

2
B

t , and one co-ordinate of

one point is the base of one trian-

gle and the other co-ordinate is the altitude of the second triangle. In

like manner one co-ordinate of the second point is the altitude of the first

triangle and the other co-ordinate is the base of the second triangle.

§ 113. The Centre of Gravity of a Sector, A C B, Fig.

142, coincides with centre of gravity S of the arc A
x
Bx ,

which has

the same central angle as the former and whose radius G A x
is two

thirds of that CA of the sector; for the latter can be divided by an
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infinite number of radii into small triangles, whose centres of gravity

are situated at a distance from the

centre C equal to two thirds of ra-

dius ; the continuous succession of

these centres forms the arc A
x
M

x
Bx,

The centre of gravity 8 of the sector

lies, therefore, upon the radius which

bisects this surface and at the distance

~ ~ chord 2 ^—r 4 sin. \ j3

CS = y — . - CA — -
.
—~—

. r
* arc 3 3/3

from the centre, when r denotes the radius of sector and (3 the

arc which measures its central angle A C B.

For the semicircle 13 = n, sin. -i j3 = sin. 90° = 1, whence

4 14
y = -— r = 0,4244 r, or approximatively— r.

O 7T OO

For a quadrant we have

4 VI 4l/2
3 rr

and for a sextant

_ 4 _^ _ 2 ^

y o *i — ~5 I n n

0,6002 r,

0,6366 r.

Fig. 143.

114. The Centre of Gravity of the Segment of a Circle,

A B Mi Fig. 143, is found by putting

its moment equal to the difference

of the moments of the sector A CBM
and of the triangle A O B. If r is

the radius C A, s the chord A B and

A the area of the segment ABM, we

have the moment of the sector

= sector multiplied by C S}
—

r . arc chord 2
s r

arc

the moment of triangle

— triangle multiplied by G S<2 or 7 a • o f ' 4

s r s
3

3 12'

and consequently the moment of the segment A
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A.CS = Ay = \sr-{^- S

^) 12'

s

Hence the required distance is y =
^

1
~ 2

4 r

For a semicircle s = 2 r and A

8 r
2

'

tt r
2

, and therefore

y =
12

n r" 3ttj

as we have already found.

b

In the same way the centre of grav-

ity 8 of a section of a ring A B D E,

Fig. 144, can be found; for it is the

difference of two sectors A C B and

D C E. If the radii are C A — rx and

C E = r2 and the chords A B = s t

and D E — s.2, we have the statical

°, r? • s.2 r2

2

moment of the sectors

and consequently that of the portion of the ring

M= Si r x ?2 /*2 • ^2 ^*2

, or since — ==—

,

M= r,

P r? P r2

2 HmThe area of the piece of the ring isF

=

in which P denotes the arc which measures the central angle

A B ; hence the centre of gravity Sof the section of the ring is

determined by the formula

n o _ —K- r *~ r
*

? A_ - ? (
r * ~~ r>

\
Cll°rd~ y ~ F ~ rf-r? ' 3 ' T^P ~ 3 V,

2 - r-7
*

#rc

4 sw. A j3

3 £ - —^-(1 + TV [yj ) 2 r, when r, - r9
P rS - r2

= b and rx + r2 = 2 r.

Example.—If the radius of the extrados of an arch is i\ = 5 feet, and

that of the intrados is r2
= 3£ feet, and if the central angle is (3° = 130°,

the distance of the centre of gravity of the front surface of the arch from

its centre is

_ 4sm. 65° 5 3 — 3,5
3 _ 4 . 0,9063 125 — 42,875 _ 3,6252 . 82,125

3,5
3 ~ 3 . 2,2689 ' 25 - 12,25 ~ 6,8067 .

12,75'y = -3
3 arc. 130° 5 2

= 3,430 feet.

15
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(§ 115.) Determination of the Centre of Gravity by the
Aid of the Calculus.—The determination of the centre of gravityw means of the calculus is accomplished in the following man-

ner. Let A N P, Fig. 145, be the given

surface, A N= x its abscissa andNP == y
its ordinate. The area of an element

of the surface is

d F = y d x (see Introduction to the

Calculus, Art. 29) and its moment in ref-

erence to the axis of ordinates A Y is

(FM.d F=AN.dF = xydx;
if we put the distance L 8 — A K of the

centre of gravity 8 of the whole surface

F from the axis AY, — u, we have

Fu = f x y dx,

f x zi d x f' x ii d x
and consequently 1) u— -—^ == ' „ •

7
—

.

• ^ J F J y dx
Since the centre or centre of gravity if of the element NM P

is at the distance N' M' = \y from the axis A X, the moment of

d F in reference to this axis A X is

2) v

NM.dF = ±y dF= ly-dx;

putting the distance K S = A L of the centre of gravity 8 of the

whole surface jPfrom the axis A X, = v, we have

F v — f \y* d x, and therefore

J / y
2 d x __ 1 f y

1 dx
F ~ 2 fydx' •

E.G., for the parabola, whose equation is y- = p x or y = 4^ . a#,

we have

/ Vp • a$ x dx _ Vp f x* d x _ f x* d x
U ~ fVp\ %> dx '

' Vp f x* d x
~ f xl d x

or L8~AK=%AN, and, on the contrary,

f xdx
V =z i fl)xdx

i vv-

or

Vp f xl d x

V~px = | y,

^ / SI d x Vp xi

NP.
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Fig. 146.

§ 116. The Centre cf Gravity of Curved Surfaces.—The
centre of gravity of the curved surface (envelope) of a cylinder

A B CD, Fig. 146, lies in the middle 8 of

the axis M

N

'of this body ; for all the ring-

shaped elements of the envelope of the cyl-

inder, obtained by cutting the body parallel

to its base, have their centres and centres of

gravity upon this axis ; the centres of grav-

ity form then a homogeneous heavy line.

For the same reason the centre of gravity

of the envelope of a prism lies in the middle

of the line, which unites the centres of gravity of its bases.

The centre of gravity 8 of the envelope of a right cone ABC,
Fig. 147, lies in the axis of the cone one-third of its length from

the base, or two-thirds from the apex ; for this curved surface can

be divided into an infinite number of infinitely small triangles by

means of straight lines (called sides of the cone). The centre of

gravity of all these triangles form a circle H K, which is situated

at a distance equal to two-thirds of the axis from the apex C, and
whose centre or centre of gravity 8 lies in the axis C M.

Fig. 148.

The centre of gravity of a zone A B D E, Fig. 148, of a sphere,

and also that of spherical shell, lies in the middle 8 of its height

M N; for, according to the teachings of geometry, the zone has

the same area as the envelope F G HK of a cylinder, whose height

is equal to that MN of the zone and whose radius is equal to that

C of the sphere, and this holds good even in the ring-shaped ele-

ments obtained by passing an infinite number of planes parallel to

the base through the zone; hence the centre of gravity of the zone

and of the envelope of the cylinder coincide.

Remakk.—The centre of gravity of the envelope of an oblique cone or
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pyramid is to be found, it is true, at a distance from the base equal to one-

third of the altitude, but not in the right line joining the apex to the

centre of gravity of the periphery of the base, since by cutting the en-

velope parallel to the latter we divide it into rings of different thicknesses

on different sides.

§ 117. Centre of Gravity of Bodies.—The centre of gravity

8 of a prism A K, Fig. 149, is the centre of the line uniting the

centres of gravity M and N of the two bases

A D and G K\ for by passing planes parallel

to the base through the body we divide it

into similar slices, wThose centres lie in M N,

and whose continuous succession form the

homogeneous heavy line M N.

For the same reason the centre of gravity

of a cylinder is to be found in the middle of

its axis.

The centre of gravity of pyramid A D F, Fig. 150, lies in the

straight line if ^joining the apex .Pwith the centre of gravity M
of the base ; for all slices such as JV P Q E have, in consequence

of their similarity to the base ABODE, their centre of gravity

upon this line.

Fig. 150. Fig. 151.

If the body is a triangular pyramid, like A B C D, Fig. 151, we

can consider each of the four corners as the apex and the opposite

side as the base. The centre of gravity is therefore determined by

the intersection of the two straight lines drawn from the comers

D and A to the centres of gravityM and N of the opposite surfaces

A B <7and£ CD.
If the right lines E A and E D are also given, we have (accord-
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Fig. 152.

ing to § 109) EM=iEAm&E]Sr=lFD. MWis therefore

parallel to A D and = 4 A D, and the triangle MN S is similar

to the triangle DAS. In conse-

quence of this similarity we have

also M 8 = \D S or D S = 3 MS
m6LMD = MS+ SD = ±MS,
or inversely M S = \ 31 D. The

distance of the centre of gravity

of a triangular pyramid from its

base along the line joining the

centre of gravity M of the base to

the apex D of the pyramid is equal

to one-fourth of this line.

If the altitudes D 5" and 8 G
are given and if we draw the line

H M, we obtain the similar triangles D HM and 8 G M, in which,

as we have just seen, 8 G = J D H. We can therefore assert that

the distance of the centre of gravity of a triangular pyramid from

its base is one-fourth and from its apex three-fourths of its altitude.

Finally, since every pyramid and every cone is composed of tri-

angular pyramids of the same height, the centre of gravity of every

pyramid and of every cone lies at a distance from the base equal to

one-fourth of the altitude and at a distance from the apex equal to

three-fourths of the altitude.

We determine the centre of gravity of a pyramid or of a cone

by passing a plane, at a distance from the base equal to One-fourth

the altitude, through the body parallel to its base and by finding

the centre of gravity of this section or the point where a line

drawn from the centre of gravity of the base to the apex will cut it.

§ 118. If we know the distances A A Xi B B19 etc., of the four

corners of a triangular pyramid A B C D, Fig. 153, from a plane

H K, the distance 8 8X of its centre of gravity 8 from the plane is

their mean value

SSX

A A y -f- BBX + CC\ + DD y

which can be proved in the following manner. The distance of

the centre of gravityM of the base ABC from this plane is (§ 109)

MMx
= •

—
,
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and the distance of the centre of gravity S of the pyramid is

8 & = MMl + \ {D D
x
- MM

X ),

m which D A is the distance of the apex. Combining the last two

equations, we obtain

ak = y=i mm j *»*=**?***£ ?'* + D̂ .

The distance of the centre of gravity of four equal weights

placed at the corners of the triangular pyramid is also equal to the

arithmetical mean

A A, 4- B B
x + CGX

4- DD
X

y = __ _
;

consequently the centre of gravity of the pyramid coincides with

that of these weights.

Remark.—The determination

of the volume of a triangular pyra-

mid from the co-ordinates of its

corners is very simple. If we pas*

through the apex of such a

pyramid A B 0, Fig. 154, three

co-ordinate planes I7,IZ, Y Z,

and denote the elistances of the

corners A
}
B, C from these planes

we have the volume of the pyramid

v= ± H^lS'2^ + «s2/ 3
s

*3 Vt H - (*i y 3 h + m y

+ ^3 Ui. «i)],
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which is found by considering the pyramid as the aggregate of four ob-

liquely truncated prisms.

The distances of the centre of gravity of this pyramid from the three

co-ordinate planes YZ, XZ and X Fare

*, + x
2 + x

3 y x + y 2 + y 3
zx
+

' s2 4- z3x = — r -, v = — -7 —
, and z — — r

§ 119. The centre of gravity S of any polyhedron, such, as

A B CD 0, Fig. 155, can be found by calculating the statical

moments and volumes of the triangular pyramids, such as A B C 0,

B C D 0, into which it can be decomposed.

If the distances of the corners A, B, C, etc., from the co-ordinate

planes Y Z, XZ andX Y, passing through the common apex of

all the pyramids, are x\, x,, x-,, etc, yl9 y«, yi} etc., and zlf z.2, z3, etc.,

we have the volumes of the various pyramids

F, = ± J (ar, y, z3 4- x, y3 z
x
4- x3 yx z« - x\ yz z, - x, y, z, - x3 y, 2,),

Yo — ± ^(x. y3 z4 4- x3 yA z2 + x4 y, z3
- x, #4 zz - x, y, z+ — xA y3 z2),

etc., and the distances of their centres of gravity from the co-ordi-

nate planes are

Xx + Xt + X3 Vl + tf, + V% Zy 4- z« 4- z3yx
4- y2 4- y3 %\ + z2

v . = S.

1
£» Wl = _

X% 4" X3 4~ 3^4 y-2 + y* + y4
w.

z<i 4- 23 + #4
, etc.

4 ? v 4 '
~*

4

From these values we calculate the distances u, v, w of the

centre of gravity S of the whole body by means of the formulas
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U = Vx u x + F2 u, + • . • Vx v
x + V, v, + . . . ,

'9 v — —Tr , rr—;

j and

Fj Wj 4- F2 w2 4- ...
w

F, + F2 + ...

Example.—A body A B G D 0, Fig. 155, bounded by six triangles, is

determined by the following values of its co-ordinates, and we wish to find

the co-ordinates of the centre of gravity.

Given Co-
ordinates.

The sextuple volume of the
triangular pyramids

A B C and B C D O.

Quadruple
Co-ordi-

nates of the
Centres of
Gravity.

Twenty-four fold

Statical Moments.

X

20

y

23

z 1
*#

4 24

Vn Un
24 24
Vn V„ Vn Wn

41 f 20.29.281 f20.40.30]
!

j

QYt= j
23.30.12 t - - 23.28.45 I rr 31072 77 92 99 2392544 285862413076128

45

12

29

40

30

28

1 41.45.40 J

f 45.35.281

\ 29.20.12 !• -

141.12.29 J

f 45.40.201

1

i

i

GV2= 29.28.38 [ = 17204 95 104 78 1034380 1789216 1341912

38 35 20 1 30.3840 j 1 30.12.35 J

Total 48276 40269244647840 4418040

From the results of the above calculation we deduce the distances of

the centre of gravity 8 of the whole body from the planes YZ,X Z andX F,

4026924

48276

464784

48276

4418040

48276

20,853,

= 24,069, and,

= 22,879.

Remark.—We can also determine the centre of gravity of a polyhedron

by dividing it in two ways by means of a plane into two pieces and by

joining the centres of gravity of each two pieces ; the intersection of the two

lines gives the required centre of gravity. Since both lines are lines of

gravity, the intersection must be the centre of gravity of the whola body.

If the body has a great number of corners, this process becomes very long,

in consequence of the number of times this division must be repeated.

The five-cornered body in Fig. 155, which must be divided in two ways

into two triangular pyramids, has its centre of gravity at the intersection

of the lines joining the centres of gravity of each two of these pyramids.
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Fig. 156.

120. The centre of gravity of a truncated pyramid or frus-

tum of a pyramid A D Q JV, Fig. 156,

lies in the line G M joining the centres of

gravity of the two (parallel) bases. In or-

der to determine the distance of this point

from 6ne of the bases we must calculate

the volumes and moments of the complete

pyramid A D F and of the portion N Q F,

which has been cut away. If the areas

of the bases A D and N Q are — ft and

ft, and if the perpendicular distance be-

tween them = li, the height x of the por-

tion of the pyramid, which is wanting, is

determined by the formula

ft _ (h + xf
ft"

tf Si

whence
x

and

— V 7T or x —

x* '

hVG,

VG
X
- VG,

7l + x = "77=
VG, - VG,

The moment of the whole pyramid in reference to its base is

ft (h + X) ll + X __ 1 ;

V G *

3 • 4 ~ n ( vg, - VG,y

and that of the part of pyramid, that is wanting, is

ft xt

+ i)
1 _
3 Vft

h*VG*

vg,
1^

12

h* ft

3 V ' 4 J

hence the moment of the truncated pyramid is

¥ .

. [ft
2 -4(4/0, ft

3 -

( fft - 4/ ft)'

12(Vft- Vft)
5 ft

2

) - ft*] -

/*
3

(ft
2 - 4 ft Vft ft 4- 3 ft/) 7*

a

12 (ft - 2 Vft ft + ft) 12

Now the contents of the truncated pyramid are

h

. (ft + 2 VG, ft + 3 ft).

F= (ft + Vft ft + ft) 3'

and therefore the distance of the centre of gravity 8 from the

base is
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ft + 2 VQ
X G, + 3 G,

G x + VG X G, + G, 4

The distance # # of this point from the plane K L, passing

through the middle of the body parallel to its base and dividing its

height into two equal parts, is

[2 (G x + VGVG, + G,)-(G 1 +2 VWGI+ 3 ft)] h
#• ~ V

Gx + V"gTG2 + G, 4

to, +7Cft+ gJ £
If the radii of the bases of afrustum of cone are r, and r2, or

Gt
= n r* and G2 — n r2

2
, we have

r,
2 + 2 r, r, + 3 r»

9
7* ,

2/
= ^— :

—

^- • T and

yi =

*i + n r« t r2

r,
2 - r2

2
7i

+ r, r2 + r2

2
*

4*

Example.—The centre of gravity of a truncated cone whose altitude

is h = 20 inches and whose radii are r = 12 inches and r x
— 8 inches lies,

as is always the case, in the line joining the centres of the bases, and at a

distance

. 12 2 + 2. 12. 8 + 3. 82 5.528 2640-
y = ¥ •

12 2 + 12 . 8 + 82

from the greater base.

304
—-- = 8,684 inches

§ 121. An obelisk, i.e., a body A C Q, Fig. 157, bounded

by two dissimilar rectangular bases and by four trapezoids, can

be decomposed into a parallelopipedon

A F R P, into two triangular prisms

EHRQxn&GKRO and into a

four-sided pyramid IIK R. By the aid

of the moments of these component

parts we can find the centre of gravity

of the whole body.

It is easy to see that the right line

joining the middle of one base to that

of the other is a line of gravity of the

body ; we have, therefore, but the distance of the centre of gravity

from one of the bases to determine. Let us denote the length

B C and the width A B of one base by lx
and J„ and the length

Q R and the width P 6 of the other base by l2 and h*, and the

height of the body or the distance of the bases apart by h. The
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contents of the parallelopipedon are then = fa h h, and its moment

is bo l2 h . - = i bo ?2 h*- The contents of the two triangular

prisms are

= ([»!-*»] 4 + P. -w\
and their moments are

and finally the contents of the pyramid are

= ft - a.) ft - M |
and its moment is

From the above we deduce the volume of the whole body

V= (6bJ.2 + Sb x l+ Skb*- 6bJ,+ 2b 1 l1 + 2bJo-2b l
l2-2bJ x ).-^

= (2bili -{ 2 fa l2 4- b x l2 4- ?i J2) p> its moment

Vy = (6 £2 Z2 4 2 J, Z2 4 2 ?, &2
- 4 £2 k+ b x I, 4 J2 Z2- &, Z2 - Z, l %)

. ^
= (3 h k 4- Mi + h h + b, l) ^,

and the distance of its centre of gravity S from the base b x
lx

b\ ?i 4- 3 b.2 h 4- bx ?2 4- b 2 lx
li

y ~ 2 b x h 4 2 b, k + h U 4 U ' 5"

We can also put (see the " Planimetrie und Stereometrie " of

C. Koppe)
_b

{ -h b2 lj + l,
7

b x
— K I, — I h

~ 2~ * 2
+ 2~ ' 2

'%'

The distance ^, of the centre of gravity from the cross section

through the middle is determined by the formula

_ h _ l x h - bQ I
U

\

~ 2 V ~ 3 (h 4 b,)\l
x 4 y + (&, - 62) ft

- 1)
*

Remark.—This formula is also applicable to bodies with elliptical

bases. If the semi-axes of one base are a
x
and b

t
and those of the other

a
2
and 62 , the volume of such a body is

V = — (2 a
t
b
t + 2 a

2 b 2 4 a
x
b
2 4 «

s
b
t ),

and the distance of its centre of gravity from the base rr a
t b

x
is

tf
i &, + 3 a

2 J 3 + a± & 2 + a 2 b
t

h
y ~ 2 a

t b
t + y« 3

b
2
~+ a

x b
2 + a

2
~b

x
' 2

'
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Example.—If the embankment A C Q, Fig. 158, for a dam is 20 feet

high, 250 feet long and 40 wide at the bottom, and 400 feet long and 15

Fig. 158.

feet wide on top, what is the distance of its centre of gravity from its base ?

Here l
±
— 40, l1

— 250, 5
3
= 15, l2

= 400, and h = 20, and consequently

the distance is

40 . 250 + 3 . 15 . 400 + 40 . 400 + 15 . 250 20
V = 2.40

4775

5175*

, 250

10 =

+ 2. 15

1910 _
207

~

. 400 + 40 . 400 + 15 . 250 ' 2

9,227 feet.

§ 122. If the circular sector A C D, Fig. 159, is revolved about

its radius C D, a spherical sector A C B is generated, the centre

of gravity of which can be determined in

the following manner. We can consider

this body as the aggregate of an infinite

number of infinitely thin pyramids, whose

common apex is the centre C and whose

bases form the spherical zone AD B. The

centres of gravity of each of these pyramids

are situated at a distance equal to f of the

radius CD of the sphere from its centre

C, and they form a second spherical zone

A x Dx 2?„ whose radius C D x
— f CD.

The centre of gravity of this curved surface is also that of the

spherical sector ; for the weights of the elementary pyramids are

equally distributed over this surface, which is therefore every-

where equally heavy.

If we put the radius C A = C D = r and the altitude D M of

the exterior zone = 7if we have for the interior zone CDx
= f r

and Mx Dx = j h, and consequently (§ 116) S

D

x
= $ MX DX = j h,

and the distance of the centre of gravity of the spherical sector

from the centre C is

CS= CDX
- SDX h «• 2l

For a hemisphere r = h, and therefore the distance of its centre

of gravity S from the centre C is
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CS=$ r.

§ 123. We obtain the centre of gravity 8 of a spherical seg-

ment A B D, Fig. 160, by putting

the moment of the segment equal

to that of the spherical sector

A D B C less that of the cone

ABC. Denoting again the radius

C D of the sphere by r and the

altitude D M by A, we have the

moment of the sector

| (2 r - h)= I tt r
8 A

and that of the cone

±=i n A(2 r - li) . (r - A) . f (r - A)

lience the moment of the segment is

n r A (2 r - h),

==inh(2r~ li) (r - h)%

Vy = J tt A (2 r - A) (r
2 - [r - A]

2

)

The contents of the segment are

¥ (2 r - h)\

V = J:rr If (3 r - A),

and consequently the required distance is

7rA
a
'(2r - hf __ 3

(2r- A)
1

VS = y =
i
"3 3r - Att M (3 r - A)

If we put again A = r, the segment becomes a hemisphere, and,

as before, we have C S = | r.

This formula is also true for the segment A x D Bx of a spheroid

generated by the revolution of the arc D A
x
of an ellipse about its

major axis D = r; for if we cut the two segments by means of

planes parallel to the base A B into thin slices, the ratio of the

M\A* CB 2
b'

corresponding slices is constant and = •-?*«* whenMA2 C E* r

b denotes the smaller semi-axis of the ellipse. We must multiply

not only the volume, but also the moment of the spherical segment
If

by -3 to obtain the volume and moment of the segment of the

spheroid, and therefore the quotient O 8 =

(ftr
In general we have O 8 — y —

moment
volume
-ny

is not changed.

. in which r de-
4 3 r — A

'

notes that semi-axis about which the ellipse is revolved, when gen-

erating the spheroid.

§ 124. Application of Simpson's Rule.—In order to find

the centre of gravity of an irregular body A B G D, Fig. 161, we



GENERAL PRINCIPLES OF MECHANICS. [§ 134.

Fig. 161.

divide it, by means of planes equally distant from each other, into

thin slices and determine the area of the cross sections thus ob-

tained and their moments in reference to the first parallel plane

A B, which serves as .base, and we then

combine the latter by means of Simpson's

rule.

If the areas of the cross-sections are

F0> Fp F,, F,, F, and the total height or

distance MN between the two parallel

planes farthest apart = h, we have, ac-

cording to Simpson's rule, the volume of

the body
ItV= (FQ + 4,F

t -h2F,+ 4:FS + FA) 12*

Multiplying in this formula each surface by its distance from

its base we obtain the moment of the body, viz.,

Fy = (0. ^ + 1.4^ + 2.2^ + 3.4^, +±F4 ) |. A
and dividing the last equation by the first we obtain the required

distance of the centre of gravity S
(0 . F + 1 . 4.F, + 2 . 2 F> + 3 . 4^ + ±F4) h

y

M8 ~y- ^ + 4^ + 2^ + 4^3 + ^4 4

If the number of slices = 6, we have

. F 4 1 . 4 Fx + 2 . 2 F, + 3 . 4 i^+ 4 .2 F4 + 5 .±F5 + 6 F6

F9 t4:Fl + 2^ + 4^3 + 2^+4^ + ^ 6

It is easy to see how this formula varies, when the number of

slices is changed. The rule, however, requires, that the number of

slices shall be an even one, or the number of surfaces an uneven one.

In many cases we need determine but one distance, as a line of

gravity is also known. Solids of rotation formed upon the turn-

ing lathe are very common examples of such bodies. Their axis

of rotation is a line of gravity.

This formula is also applicable to the determination of the

centre of gravity of a surface, in which case the

cross sections F , Fl9 Fi} etc., become lines.

Example 1. For the parabolic conoid A B C, Fig.

162, formed by the revolution of a portion ABM of

a parabola about its axis A M, we obtain, when we make

but one sectionDNEthrough the middle, the following.

Let- the altitude A M = 7<, the radius B M — r,

A JV = JSTM = - and consequently the radius B N
is

— r VJ. The area of the section through A is F = 0,

Fig. 162.
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that through N F
t
= tt D iV 2 = -^- and that through If, F2

= tt r2
.

Hence it follows that the volume of this body is

F = | (0 + 4 ^ + F2 ) = g (2 t r3 + tt r2
) = -I-

tt r2 A = |- i^2 A,

and that its moment is

Fy = ^ (1 . 2 tt fa + 2 rrV) = $ tt r2 A2 = J F3
A2

.

Consequently the distance of the centre of gravity 8 from the vertex is

Fig. 163. Fig. 164.

Example 2. The mean half widths of the vessel A B C D, Fig. 164,

arc r = 1 inch, rx
= 1,1 inches, r2

= 0,9 inches, r3 = 0,7 inches, and r4

= 0,4 inches, and its height MN'= 2,5 inches; required the centre of

gravity of the space within it. The cross sections are F = 1 ^
F

t
= 1,21 tt, F

2
= 0,81 tt, F

3
= 0,49 tt and FA = 0,16 tt, and therefore

the distance of its centre of gravity from the horizontal plane A B is

. 1 tt + 1 . 4.1,21 tt + 2 . 2 . 0,81 tt + 3 .4 . 0,49 tt + 4 . 0,16 . tt 2,5M S =
1 TT + 4 . 1,21 TT + 2 . 0,81 TT + 4 . 0,49 tt + 0,16 . TT

14,60 2,5 36,50

"9,58" " T~ 38,32
= 0,9502 inches.

2,5

Fig. 165.

The vacant space in the vessel is V= 9,58 tt .
-—- = 6,270 cubic inches.

(§ 125.) Determination of the Centre of Gravity of Sur-

faces and Solids of Rotation.—The centre of gravity of curved

surfaces and of bodies with curved sur-

faces can be determined generally by the

aid of the calculus. In practice, solids

and surfaces of rotation occur most fre-

quently, and we will therefore here treat

only of the determination of the centre

of gravity of these forms. If the plane

curve A P, Fig. 165, revolves about its

axis A C, it describes a so-called surface

of rotation A P P
x \ and if the surface

A P M bounded by the curve A P and



240 GENERAL PRINCIPLES OF MECHANICS. [§ 125.

•

its co-ordinates A M and M P is revolved about the same axis a

solid of rotation bounded by a circular surface P M P
x and by a

surface of rotation A P P
x is produced.

If we denote the abscissa A if by x, the corresponding ordinate

by y and the corresponding arc A P by s, and also the element

MN — P R of the abscissa by d*x, the element Q R of the ordi-

nate by d y and the element P Q of the curve by d s, we have the

area of the belt-shaped element P Q Q1
P, generated by the revo-

lution of d s, when we put the surface of rotation A P P, = 0,

d = 2rr. P M. P Q =.2 ny d s,

and, on the contrary, the contents of the element of the solid of ro-

tation A P Pi = V, limited by this element of the surface, are

d V = 7T PM2 .MJSr=irtf d x.

Since the distance of both elements from a plane passing

through A at right angles to the axis A C is equal to the abscissa

x, the moment of d is

x d = 2 7r x y d s,

and that of d Vis
x d V — n xy* d x.

Now since

— f27Tyds = 2nfyds and

Y — f ny* dx — rr f y
1 d x,

and since according to the above formulas the moment of is

f 2 n x y d s = 2 n f x y d s,

and that of V is

f rr x y
1 d x = n f x y* d x,

it follows, that the distance A S — y of the centre of gravity S from

the origin A is

1) for surfaces of rotation

• 2 n f x y d s __ fxyds
2 rr f y d s ~ /yds*

and, on the contrary,

2) for solids of rotation,

rr f x if dx f xtf dx
rr f y

1 d X f y* d x
'

e.g., for a spherical zone whose radius C Q = r we have, since

P Q C Q ds r , ,

iT-ji = -^r-Tr LE - -j- = — oryds^rdx,PR Q N d x y J
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fxrdx _ f x d x _ ix?_

J'rdx T f dx x

241

x = lsA M.

(Compare § 116.)

For a segment of a sphere, on the contrary, we have, since we

can put if = 2 r x — x\

A 8 = u = f (2 r x — x-) x d x _ f%rx'dx — / x * dx

f (2 r x — x'
2

) d x~
~~ J'2rxd x — ./' x* d x

- f r x* - 1 $* _ (j r-j x ) x _ /8 r - 3 z\ x-

~ rx1 -*-\x* r — \x \3r — x J 4?

and consequently

CS=r-u = * ^T-Jt, (Compare § 123.)
I O 7 — X

§ 126. Properties of Guldinus.—An interesting and often

yery useful application of the theory of the centre of gravity is

the properties of Guldinus (Fr. methode centrobarique, Ger. die

Guldinische Kegel). According to these the contents of a solid

of rotation (or the area of a surface of rotation) is equal to the

product of the generating surface (or generating line) and the

space described by its centre of gravity ivhile generating the body

(or surface). The correctness of this rule can be proved as follows

:

If a plane surface A B D, Fig. 166, is revolved about an axis

XX1 every element Fly F.:, etc. of it describes a ring;, if the dis-

tances of these elements Ff9 F», etc. from the axis of rotation

XX are F
x F: , Fs Ju, etc. = r„ r«, etc.,

and if the angle of rotation is FKF
x

= S CSt
= a or the arc corresponding

to the radius 1, = a, the arc- shaped

paths described by the elements are

rx
a

f
r\ a, etc. The spaces described by

the elements F
x , 1% etc., can be re-

garded as curved prisms whose alti-

tudes are f, a, ra a, etc., their contents

are therefore F
x
r

x
a, F* r» a, etc., and

consequently the volume of the whole body A B D D
x
B

x
A

x
is

Fig. 166.

V= Fx r x

16

F, r, a + (F
x r, + F, r. )a.
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If y = CS is the distance of the centre of gravity 8 of the gen-

erating surface from the axis of rotation, we have

{Fx + F% + ..
.) y

"= Fx r, + F2 r* + ..,,

and consequently the volume of the whole body

F= (Fi -f i 2̂ + ...)#«•

But i^ + i^ + . . . is the area of the surface F, and y a is the arc

S S-i — tu described by the centre of gravity; hence it follows

that V = F w, which is what was to be proved.

This formula is also applicable to the case of the rotation of a

line, since the latter can be considered as a surface of infinitely

small width. In this instance we have F = I w, i.e. the surface

of rotation is the product of the generating line (I) and the space

(iv) described by its centre of gravity.

Example 1. If the semi-axes of the elliptical cross section A B E.I),

Fig. 167, of a half ring are G A = a and G B = I, and if the distance CM
of its centre G from the axis X X = r, the elliptical generating surface

will be F = 7T a 5, and the space described by its centre of gravity (G

)

will be w = rr r. Hence the volume of this half ring is V = sf
3 a ~b r, and

that of the whole ring is Yt
= 2 F = 2 t2 ahr.

If the dimensions are a = 5 inches, 5 = 3 inches and r = 6 inches, the

volume of one-quarter of the ring is

9,8696 .5.9 = 444,132 cubic inches.

Example 2. The volume of a ring with the semi-circular cross section

^4 B B, Fig. 168, is, when G A = G B = a denotes the radius of this cross

-section and M G = r that of the hollow space,

3

k a* ' i 4a\
ira'inr + f a).

Example 3. If the segment of a circle A B B, Fig. 169^ revolves about

the diameter E F parallel to its chord A B, it describes a sphere A B
i
B

with a cylindrical hole A B B
x
A

l
in it. If A is the area of the segment
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and s the length of its choreic B = A
t
B

x , we have (§ 114) for the distance

of its centre of gravity 5 from the centre G

C8 = y =

and consequently the volume of the sphere with the cylindrical hole is

For a complete sphere we have the chord or height of the hole equal to

the diameter d of the sphere, and consequently its volume

7T d 3

V =
c

as we know.

Example 4. We are required to find the area of the surface and the

contents of the cupola ABB, Fig. 170, of a cloistered arch, when the half

width MA = MB = a and the altitude MD = 7i are given. From the

two given dimensions we obtain the radius C A = C B of the generating

circle

a 1 + h7

T = .

2 a

The central angle A CB = a is given by the formula
h

sin. a = —

.

r

The centre of gravity S of an arc B A B
1
= 2 A B is determined by

the distances

CS = r.
chord M B r sin. a

i'cAB and C 31 = r cos. a
;

consequently the distance of the centre of gravity S from the axis 31B is

r sin. a (sin. a \M b = r cos. a = r ( cos. a ),

and the space described by the centre of gravity in describing the surface

A B B is

o /tin- a \= 2 7T r I cos. a\.
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The generatrix B A B
±

is 2 r a, consequently its half is A B = r a, and
the surface of rotation ABB generated by the latter is

(sin. a \

cos. a i = 2 7r r2
(sin. a — a cos. a).

Very often we have a° == 60°, or

a = -, s^. a = |- V3 and ws. a = £

;

hence the required area is

= 7T r3 (V3 - *\ = 2,1515 . r2
.

The distance of the centre of gravity of the segment B A B
t
= A'= r%

(a — £ sin. 2 a) from the centre G is

(2. MB)* _2 r*dn*a
~ 12.4 ~ 3 ' A '

and, therefore, its distance from the axis is

2 r3 sin? a
118 = 08- CM= - -

r— — rcos.a,
3 A '

and the space described by this centre of gravity in one revolution around

MB is

2nr 2 n r 3

w = ——— (3 r- sin.
3 a — A cos. a) = —-—

[f sin.
3 a — (a — |- sin. 2 a) cos. a].

The volume of the body generated by the revolution of the segment

B A B
t

is found by multiplying this space by A, and the volume of the

cupola by dividing the last product by two. The latter volume is

V= tt r3

[f sin.
3 a — (a — \ sin. 2 a) cos. a]

E.a., if a° = 60°, we have

a = -, sin. a =f V3, sm. 2a = | V3, cos. a = £, and therefore
o

V = 77 r3 U V3 - ^)
= 0.3956 . r8

.

§ 127. The properties of Guldinus are also applicable to bodies

formed by the motion of the centre of gravity of the generating

surface along any curve, as long as the surface remains at right-

angles to the curve ; for every curve can be regarded as composed

of an infinite number of infinitely small arcs of circles. The vol-

ume of the body is here also equal to the product of the generating

surface and of the space described by its centre of gravity. The

properties can also be made use of, when the generating surface in

moving forwards is always at right angles to the projection of the

path of its centre of gravity upon any plane. In this case the

generating surface is to be multiplied not by the space described,

but by its projection.
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Fig. 171.

Hence, for example, the volume of one turn of the thread

A H K, Fig 171, of a screw is de-

termined by the product of its cross

section A B D E by the circum-

ference of the circle, whose radius

is the distance M 8 of the centre

of gravity 8 of the surface A B D E
from the axis CM of the screw.

In many cases we can combine

the use of the properties of Guldi-

nus with that of Simpson's rule.

E.G., to find the contents of the

curved embankment A D Bx D2 A«,

Fig. 172, we need only know the central angles 8 C82 = 2 8Q C8X

— 2 SX C 8,= ft the cross sections A D = F , A x Dx = FX
,A 2 Dx

= F2 and the distances C 8Q = r , C 8X
= rx and C S2 = r2 of the

centres of gravity 8 , Sx
and 8* of these cross sections from the cen-

tral axis C X. The volume V of the body is determined by the

formula

F r 4- 4 F
x
r x + F2 r,\ F it IF, r + 4 F

x rx + F2 r2\

F r + 4 F
x r x

4- F2 r2= 0,01745
0-f

/ 180° V

)

If the radii r , ?*i and r2 are equal to each other, or if they differ

but little, we can put r = rx
— n = r and therefore

V = 0,01745 p r
(f'

+''** + *'
X.

§ 128. The following is another application of the theory of

the centre of gravity, which is closely allied to the foregoing.
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We can assume that every obliquely truncated prismatic body

A B K L, Fig. 173, is composed of infinitely thin prisms, such as

Fx G x . If G x , 6r», etc., are the bases and

h x h 2, etc., the altitudes of these prismatic

elements, we have the contents

G x hi, G, 7h, etc.

and consequently the volume of the

whole obliquely truncated prism

V= G x
h

x + GJh +

Now an element F
x
of the oblique

section K L is to the element Gx
of the

base A B = G as the whole oblique sur-

face i^is to the base G; hence we have

G G
Gx
= y F

x , G*=-y Fs, etc., and

G
F (F

x
h

x + F h + • • •)•

Finally, since Fx hx + F2 h, +
whole oblique section, we can put

is the moment Fli of th<

F Fit = Gh,

i.e., the volume of an obliquely truncated prism is equal to the volume

of a complete prism, which stands on the same base and whose alti-

tude is equal to the distance 8 of the centre of gravity 8 of the

oblique sectionfrom the base.

The distance of the centre of gravity of the oblique section of a

right triangular prism, which is truncated obliquely, from iha

base is

h
x + Jh + h?,

3
'h =

and consequently the volume of this prism is

V= Gh n (hi + lu + 7h)- G 3 .
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CHAPTER III.

EQUILIBRIUM OF BODIES RIGIDLY FASTENED AND SUPPORTED.

§ 129. Method of Fastening.—The propositions relative to

the equilibrium of rigid systems of forces, demonstrated in the first

chapter of this section, are applicable to solid bodies subjected to

the action of forces, when we consider the iveight of the tody as a

force applied at Hie centre of gravity and acting vertically down-

wards.

Bodies, which arc held in equilibrium by forces, are capable of

moving freely, i.e., they can obey the influence of the forces, or

they are in one or more points rigidly fastened, or they are sup-

ported by other bodies.

If a point C, Fig. 174, of a solid body is rigidly fastened, any

Fig-. 174.

other point P of the body, when put in motion, will describe a path,

which lies upon the surface of a sphere, whose centre is the fixed

point C and whose radius is the distance C P of the other point

from C. If, on the contrary, we fasten a body in two points

and D, the paths described by all other points in consequence cf

any possible motion would be circles ; for the path of each point i

;

the intersection P Q of two spherical surfaces described fron

the two fixed points.

The planes of these circles arc parallel to each other and per-,

pendicular to the straight line joining the two fixed points. T1j s

points upon the latter line remain immovable ; the body, therefore*
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revolves around this line D, which is called, for this reason, the

axis of rotation or revolution of the body.

The planes perpendicular to this axis, and in which the different

points revolve, are called the planes of rotation or revolution of the

body. We obtain the radius MP of the circle P Q by Id-ting

fall a perpendicular upon the axis of revolution CD. The greater

this perpendicular is, the greater is the circle, in which the point

revolves.

If three points of a body, not in the same straight line, are firmly

fastened, then the body does not move in any direction, since

the three spherical surfaces, in which the body must move, cut eacli

other only in a point.

130. Equilibrium cf Supported Bodies.—Every force pass-

ing through the fixed point of a body, e.g., through the centre of a

ball and socket joint, is counteracted by the support of the body.,

and has, therefore, no influence upon the state of equilibrium of

the body. In like manner, if a body is supported in two points or

bearings, every force whose direction cuts the axis passing through

these fixed points is counteracted by the supports, without pro-

ducing any other effect on the body. A couple wTould also be

counteracted by the supports of a body, if the plane of the couple

contains the axis of revolution passing through these points, or is

parallel to the same. Every other couple (P, — P), Fig. 175,

produces, on the contrary, a revolution of the body A C B about

the axis of revolution C, if it is not balanced by another couple

(see § 95 and § 97). If the couple retains its direction during the

rotation, its lever arm and consequently its moment is variable, and

both become = 0, when the body occupies a certain position. If a

body A C B, Fig. 175, is rigidly fast-

Fig. 175. ene^ at
qr and ^ thc direction of the

sf^ ^f force forms the angle BA P = a with

§£<*-""— *^ the line A B passing through the

JBk ..-''/ l two points of application, a rotation

/ Jr' •*' A CA x — ^ — 180° — a is necessary

STf^QL •' ^° annill *he moment of the couple

.•i^fejll^ [P9
—

- P) ; the same is also true of a

*r WM body rigidly fastened in an axis and
-** li»ill acted upon by a couple, whose plane

is perpendicular to this axis.

If a body A B, Fig. 170, rigidly fastened at C, is acted on by a
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force P, whose direction does not pass through C, we can, by the

addition of two opposite forces P and — P, decompose this force

into a couple (P, — P) and a force + P, applied in 6' and coun-

teracted by the point of support. The rela-

tions are the same, when the axis of a body is

rigidly fastened and a force acts upon it in a

plane of revolution. Here, however, the force

+ P is divided between the two points of sup-

port. If a is the distance C A of the point of

application A of the force from the axis C and a

the angle A C A» formed by the line C A with

the direction of the force, we have the moment
of the couple (P, — P), which tends to turn the

body, M = Pa sin. a. If the direction of the

force P remains unchanged during the rotation,

M changes with a and is a maximum for a = 90°

and for a = 0° or 180° it is = 0. The work done by the force

P or by the couple (P, — P) during the rotation of the body is

A = P . K~A, = Pa (1 - cos. a).

ctmg131, Stability of a Suspended Body.—If the force

upon a body, supported at one point or in a line, consists only of

its weight, the conditions of equilibrium require, that the centre of

gravity shall be supported, i.e., that the vertical line of gravity

shall pass through the point of support.

If the centre of gravity coincides with the point of support, we
have a case of indifferent equilibrium (Fr. equilibre indifferent, Gcr.

indifferentes Gleichgewicht) ; for the body remains in equilibrium,

Fig. 177.

no matter how we may turn it. If, on the contrary, the body is
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rigidly fastened or supported at a point C, lying above the centre

of gravity S, the body is in stable equilibrium (Fr. stable, Ger. sich-

eres or stabiles) ; for, if we bring the body into another position, one

of the components JV^ of the weight S causes the body to return to

its original position, and-the other component Pis counteracted by

the fixed point C. If finally the body A B, Fig. 178, is fastened

at a point C, which lies below the centre of gravity, the body

is in unstable equilibrium (Fr. eq. instable, Ger. unsicheres or

labiles Gleichgewicht) ; for if we move the centre of gravity out of

the vertical line passing through C, the weight G is resolved into

two components, one iV"of which, instead of tending to bring the

body back to its original position, moves it more and more from it,

until the centre of gravity comes vertically below the point of

support.

The circumstances are the same, when a body is supported in

two points or in an axis ; it is either in indifferent, stable or unstable

equilibrium as the centre of gravity coincides with, or is vertically

below or above the point of support. If a body is supported at a

point or in a horizontal axis, the moment with which the body seeks

to return to its position of stable equilibrium is M = G a sin. o,

in which formula G denotes the weight, a the distance C S
}
of the

centre of gravity # from the axis C and a the angle of revolution

S C Sx
. The work done is A — G a (1 — cos. a).

§ 132. Pressure upon the Points of Support of a Body.

—When a body CAB, Fig. 179, supported in two points C and

Fig. 179.

Z>, is acted upon by a system of forces, in order to determine the

conditions of its equilibrium we refer (according to § 97) the
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whole system to two forces, the direction of one of which is parallel

to the axis, while that of the other lies in a plane normal to this

line. Let RX = X, Fig. 180, be the force parallel to the axisXX
passing through the points of support G and D and A P — P the

other force, whose direction lies in a plane Y Z .F perpendicular to

XX. We can resolve the first force into a force -f- X, tending to

displace the ads in its own direction, and a couple ( X, — X),
which is transmitted to the points of support in the shape of an-

other couple (JVj, — X
} ), the components of which are

X — X and - X
l

d „

d denoting the distance E of the parallel force iVfrom the axis

G D and I the distance CD of the two points of support from

each other.

In like manner we decompose the force P into a force + P and
a couple (P, — P), and the former again into its components P

x

and P2, the first applied in C and the second in D. Designating

the distances C and D of the points of application from the

two points of support G and D by I
x
and h, we have

P,
i
***/\-

i

and it is now easy, by employing the parallelogram of forces, to find

the resultant Sx of the forces X
x
and P, at C, and also the resultant

S, of the forces — X
x
and P2 at D.

If we put the angle Y ( + P) formed by the plane X X
with the direction 'of the force P or + P, = a, wre have also the
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angle JV, P-
L
= a and N, D P2 = 180° — a, and consequently the

resulting pressures in C and P are

8X
= ^JVi

1 + P,2 + 2 i\T, P, cos. a

and & = ^iV? + P»* - 2 N, P, cos. a.

If, finally, a denotes the perpendicular L to the direction of

the force, the moment of the couple (P, — P), which lends to turn

the body, is M = P a. If the body is in a state of equilibrium, a

must naturally be = 0, and therefore P must pass through the

axis CD.

Example.—Let the entire system of forces acting on a body rigidly

supported in the axis XX be reduced to the normal force P = 36 pounds,

and the parallel force if = 20 pounds ; let the distance of the latter force

from the axis be E = d = 1|- feet, and the distance CD between the

two points of support be I = 4 feet; required the pressure upon the axis

or on the fixed points C and D supposing that the direction of the force P
forms an angle a = 65° with the plane X Y, and that its point of applica-

tion is at a distance G = l
x
= 1 foot from the point C.

The force AT = 20 produces in the axis in its own direction a thrust

AT = 20 pounds and also the forces

d 15
A^ = j- AT = -j- . 20 = 7,5 pounds and — AT

t
= — 7,5 pounds,

which are counteracted by the supports C and D. The forceP gives rise to

the forces

Px
= ljP=^-^ . 36 = 27 pounds and P2 = -jP-%. 36 = 9pounds.

Combining the latter with the former force, we obtain the resultants

S
t
= V 7,5

2 + 27 2 + 2 . 7,5 . 27 . cos. 65° = V 56,25 + 729 + 171,160

= V 956,410 = 30,926 pounds, and

S2
== V 7,5

J + 9
2~— 2 . 7,5. 9. cos. 65° == V 56,25 + 81 — 57,054

= V 80,196 = 8,955 pounds.

§ 133. If a body C B D, Fig. 181, firmly supported in two

points C and P, is acted upon by a single force B; whose direction

forms an angle P A R = (3 with the plane of rotation Y O Z, we

can decompose this force into the components

AP = P = P cos. j3 and

^1 Jf~ J\T= R sin, (1,

the first of which acts in the piano of rotation and the second

parallel to the axis, and we can treat these forces in exactly the

same manner as the resultants P and Ar cf the system of forces in
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the last paragraph. Here the force which the axis must counter-

act in its own direction is N = R sin. (3, and the components of

the couple (JV„ — JVi), which act in Cand D in opposite directions

and at right angles to C D, are

dNx
= ~ N = j R sin. (3 and — if, = R sin. (3,

I denoting the distance CD of the two points of support C and D
from each other and cl the distance A of the point of application

A of the force P from the point on the axis.

In like manner the force acting in at right angles to CD is

+ P = R cos. (3 and its components in C are

P
1
= I

fP = fR cos. (3, and in D
I

lx
and L again denoting the distances CO and D of the points C

and Z) from the plane of rotation Y Z Y.

Substituting the values of N„ P„ and P2 in the formulas

Sx = V iV? + P, 2 + 2 jft P, cos. a

S, = V iVf + iY - 2 JV, P2 cos. a

for the normal pressures in 6' and P, in which we designate by a

the angle YAP formed by the component P with the plane

A C D. we obtain
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R
8X
= y V (d sin. (3y + (l2 cos. (if + 2 $ k sin. (3 cos. (3 cos. a

P^=|-r(d siw. /3)
u + (Z, cos. py - 2 5 l x sin. (3 cos. (3 cos. a

The moment of the remaining couple (P, — P) is

Fig. 183.

' P . B = P a = Ed sin. a cos. [3.

These formulas are applicable to the discussion of the stability

of a body A, Fig. 182, revolving about an inclined axis C D. 21

is here the weight G of the body.

d the distance 8 — S
x

of its

centre of gravity from the axis of

rotation, a the angle S /Si = $ Z,

which the centre of gravity has de-

scribed in turning from its position

of equilibrium S in the plane Y 8 Y
perpendicular to CD, and j3 the angle

G /Si P formed by the plane of revo-

lution with the vertical line, or that

formed by the axis of revolution CD
with the horizontal line D It.

The work done, when the body is

brought back by its weight to its position of equilibrium and

/Si to 8, is

A = G . K 8 cos. j3 = G d cos. (3 (1 — cos. a).

§ 134. Equilibrium of Forces around an Axis.—The re-

sultant P is produced by all the component forces, whose directions

lie in one or more planes normal to the axis. But in this case

(according to § 89) the statical moment P a is equal to the sum

Pi Ox + P2 «, + ... of the statical moments of the components,

and, when the forces are in equilibrium, the arm a is — ; for this

force then passes through the axis itself, and consequently this sum

P, a x + P2 a, 4- . . . = ;

LE., a body rigidly supported in an axis is in equilibrium, and

therefore remains without turning, when the sum of the statical

moments of all the forces in relation to this axis is = 0, or when

the sum of the moments of the forces acting in one direction of
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rotation is equal to the sum of the moments of those acting in the

other.

By the aid of the last formula any element of a balanced sys-

tem of forces, such as a force or an arm, can be found, and any

force of rotation reduced from one arm to another.

If we wish to produce a state of equilibrium in a body movable

about its axis, and whose moment of rotation is P a, we have only

to apply a force of rotation Q or a couple, the moment of which

Q h — P a, the difference in the two cases being that by the addi-

tion of the couple (Q, — Q) the pressure on the axis is not changed,

while by that of a force Q a force 4- Q is added to the pressure on

the axis. If the force Q or its lever arm b is given, we can calcu-

late either

7 Pa ~ Pa

In the latter case we call Q the force P reduced from the arm a

to the arm b, and we can thus reduce the given force of rotation P
to any arbitrary arm, or we can replace or balance it by another

force acting with any arbitrary arm.

We can also, by means of the formula

n — Pl a
* + P2 g2 + . .

.

^~
b

reduce a whole system of forces to one and the same arm.

Example.—The forces P
x
= 50 pounds and P

3
= — 35 pounds act

on a body movable about an axis with the arms a
t
= 1^ feet and a

2
~

%\ feet ; required the force J£ which must act with an arm a
3
= 4 feet, in

order to produce equilibrium or to prevent motion about the axis. We
have

50 . 1,25 - 35 . 2,5 + 4 P3
= 0, and

P 87,5-02,5 _ OK 1P3 = ——j = c
?
25 pounds.

§ 135. Ths Lever.—A body movable about a fixed axis and

acted on by forces is called a lever (Fr. levier, Ger. Hebel). If we
imagine it imponderable, we have a mathematical lever ; but if not,

it is a material lever.

We generally assume the forces of a lever to act in a plane at

right angles to the axis and substitute for the axis a fixed point

called the fulcrum (Fr. point d'appui, Ger. Euhe, Dreh, or Stiitz-

punkt). The perpendiculars let fall from this point upon the di-

rection of the forces are called (§ 89) the arms of the lever. If the

directions of the forces of a lever are parallel, the arms of the lever



256 GENERAL PRINCIPLES OE MECHANICS. [§ 136.

form a single right line, and the lever is then called a straight

lever (Fr. levier droit, Ger. geradliniger or gerader Hebel). The
straight lever acted on by two forces only is one or two armed, ac-

cording as the points of application of the forces lie upon the same

or upon opposite sides of the fulcrum. We distinguish also levers

of the first, second and third sort, calling the two-armed lever a

lever of the first sort, the one-armed lever a lever of the second

sort or of the third sort, according as the force (load), which acts

vertically downwards, or that (power), which acts vertically up-

wards, is nearest the fulcrum.

§ 138. The theory of the equilibrium of the lever has been

completely demonstrated in what precedes, and we have only to

make special applications of it.

For the two-armed lever A C B, Fig. 183, when the arm C A
•of the force Pis denoted by a and that C B of the other force Q,

which is generally called the load, by b, we have, according to the

general theory Pa— Q b, i.e. the moment of the force is equal to

Fig. 183. Fig. 184.

A.® ©B

aP

the moment of the load, or also P : Q — b'.a, I.E. the force is to the

load as the arm of the latter is to the arm of the former. The

pressure on the fulcrum is R — P + Q.

For the one-armed lever ABC, Fig. 184 and BAG, Fig. 185,

the relations between force (P) and load (Q) are the same, but the

direction of the power is opposite to that of the load, and therefore

the pressure on the fulcrum is equal to the difference of the two ; in

the first case we have

R-Q- P, and in the second R = P - Q.
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If in the bent lever A C B the arms are CN= a and G

b, Fig. 186, we have again P : Q - b : a, but in this case the

Fig. 185.

P
A.

Fig. 186.

D

B» <U Jfc

pressure R on the fulcrum is the diagonal R of the parallelogram

G Px R Qu constructed with the force P, the load Q and with the

angle Px C Qi = P D Q — a formed by their directions with each

other.

If 67 is the weight of the lever and CB = e, Fig. 187, the dis-

tance of the fulcrum C from the vertical line S O passing through

the centre of gravity 8 of the lever, we must put P a ± G e— Qby

and we must employ the plus sign of 67, when the centre of gravity

lies on the same side as the force P> and the minus sign, when
upon that of the load Q.

The theory of the lever is often applicable to tools and ma-

Fig. 187. Fig. 188.

chinery. The knee lever A B G D, Fig. 188, which is sometimes-

cited as a peculiar sort of lever, is simply a bent lever. The arm,

which is movable around an axis G, is acted upon by a force at its

17
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end A, and acts by means of a rod B D, (which forms with the arm
an acute angle A B D = C B E = a) upon the load, which is ap-

plied at D. If a denotes the length of the arm C A and b the

length of the arm C B, we have the lever arm of Q
G E = b sin. a, whence

P a = Q b sin. a, or

P = - Q sin. a, and inversely

Q = %
P

Fig. 189.

b sin. a

This lever is employed for pressing together materials. The

pressure increases directly with P and j, and inversely as sin. a. By

diminishing the angle a this force Q can be arbitrarily increased.

Example—1) If the end A of a crowbar A C B, Fig. 189, be pressed

down with a force P of 60 pounds, and if the arm C A of the power is 12

times as great as the arm G B
of the load, then the latter, or

rather the force Q developed in

B, is 12 times as great as P, and

we have

Q = 12 . 60 = 720 pounds.

2) Ifa load Q, Fig. 190, hang-

ing from a bar, be carried by

two wTorkmen, one of whom
takes hold at A and the other

at B, we can determine how
much weight each has to sus-

tain. Let the load be Q = 120

pounds, the weight of the

rod be G = 12 pounds, the

distance A B of the two work-

men from each other be = 6

feet, the distance of the load

from one of them B be B C —
2! feet and the distance of the

centre of gravity of the bar 8
from the same point be B 8 =
3£ feet. If we regard B as the

fulcrum, the force P
t
at A must

balance the load Q and G, and

therefore we have

Fig. 190.
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Q . B C + G . BS, i.e.,

6 Pt
= 2,5 . 120 + 3,5 . 12 = 300 + 42 = 342,

P
t
.BA

and therefore
342

IT
= 57 pounds.

If, on the contrary, A be regarded as the fulcrum, we can put

P
2

. A B = Q . ATU + G . A S, or in numbers

6 P
2
= 3,5 . 120 + 2,5 . 12 = 420 + 30 = 450,

and the force exerted of the second workman is

450
P2
= — = 7o pounds.

The sum of the forces, which act upwards, is therefore correctly

P
t + P2

= 57 + 75 = 132 pounds,

or as great as the sum of those acting downwards

Q -h G = 120 + 12 = 132 pounds.

3) The load upon a bent lever A G P, Fig. 101, weighing 150 pounds,

acts vertically downwards and is Q = 650 pounds, and its arm G B == 4

feet, and, on the contrary, the arm of the force

P, GA = 6 feet and that of the weight GE— 1 foot

:

required the force P necessary to produce equili-

brium and the pressure B on the bearings. We have

~GA .P='(fB.'Q + GE. G, i.e.,

6 P = 4 . 650 + 1 . 150 = 2750,

and consequently

B 2750P = -g- = 458£ pounds.

The pressure on the bearings is composed of the

vertical force Q + G = 650 + 150 = 800 pounds,

and of the horizontal force P = 458£ pounds, and

consequently we have

p = V(© + Gf + p<

= V (800)
2 + (458i) 2

= V~850070 = 922 pounds.

§137. More than two forces P and Q may act on a lever; it

also is not necessary that these forces act upon the lever in one and

the same plane of rotation. If ft, ft2, ft are the loads on a lever

A <7P3,Eig. 192, and b1} b,, b3 their lever arms C Bif C B„ C Bz,

while the power acts with the lever arm C A = a, we have

Pa = Q 1 b 1 + ft 6 2 + ftZ>3 ;

and if the lever is straight, the pressure on the fulcrum is

R = P + ft + ft + ft-

If the several forces of a lever act in different planes of rotation

S
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upon the lever A D Bx B^ Fig. 193, the formula for the moment
Pa— Qxh + §2 Z»2 + . . . does not therefore change, but a differ-

ent distribution of the total pressure R = P + Qx + (?2 + Qx

Fig. 192. Fig. 193.

Jl C B, B2 Ba

l
P 'HI

I % **

> rR

upon the axis takes place between the two points of support or

bearings and D. If we denote by I the length of the axis

C D of the lever or the distance of the fulcrums from each other

and by l , l1} Z2 , . . . the distances C 0, C Oi9 G 2 of the planes of

revolution from the fulcrum C, the pressures i?2 and Rx on the

bearings at D and C are determined by the following formulas

r
1
= r-r, = p (l

~ l°) + e. (*-*.) + o.P-»i)

If the forces acting upon a bent lever are not parallel, the ex-

pression P a = Q x J)i -h Q3 1)
-2 + . . . remains unchanged, but the

pressures in the axis reduced to the fulcrum, E.G.,—--, -^~, ~-
9̂
actill

in different directions and cannot, therefore, be combined by simple

addition, but, on the contrary, we must combine them in the same

manner as several forces applied to a point and acting in the same

plane (see §§ 79 and 80).

Example.—The lever represented in Fig. 193 supports the loads Q t
=

300 pounds and Q2
= 480, acting at the distances G O

x
= l

t
= 12 inches

and G
2
= l2

= 24 inches from the bearing G with the arms O
t
B

t
=

h
x
= 16 inches and

2
B

2
= l 2 = 10 inches ; required the force P, which,

acting with the arm O A = a = 60 inches, is necessary to produce equili-

brium, and the pressure on the bearings at G and Z>, under the assumption,

that the force acts at a distance G O = l =18 inches from the journal G,

and that the length of the entire axis is GB = I = 32 inches.

The force required is

p== Qt h + Q2 h = 300.16 + 480.10 = 30. 16 + 480 = g() QQ = m
a 60 6

pounds, and the pressures on the bearings arc
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Ro
160 . 18 + 300 . 12 + 480 . 24

32
=562,5 pounds and

Fig. 194.

-C-- -C-%

B±
= B — B

2
= 300 + 480 + 160 — 562,5 = 377,5 pounds.

Remark.—The action of gravity on the lever can be employed with

advantage to determine the centre of gravity S and the weight G of a

body A B, Fig. 194. We support the body

first at a point G and then at a point C
t

at a

distance G Cx
= d from the former, and each

time we bring the body into equilibrium by a

force acting at the distances C A = a and

Cx
A = a

x
= a — d. If the force necessary

in the first case be = P and in the second case

= P1? and if the weight of the body be G and

the distance of its centre of gravity 8 from A be A B = x, we have

P a = G (x — a) and P
t
a

x
= G (x — a^), whence

z^

M

G =

(P - P
, )

a a
x

Pa — Px
a
x

Pa — Pt a t

a. — at

and

Fig. 195.

§ 138. Pressure of Bodies upon one another.—The law

deduced from experiment and announced in § 65 :
" Action and

reaction are equal to each other," is the basis of the whole mechan-

ics of machines, and wr
e must here explain at greater length its

meaning. If two bodies M and Mh Fig. 195, act upon each other

with the forces P and Pu the directions

of which do not coincide with that of the

common normal XX to the twro surfaces

of contact, a decomposition of the forces

always occurs ; only that force N or iV
7
,,

whose direction is that of the normal, is

transmitted from one body to the other,

the other component force S or /Si, on

the contrary, remains in the body and

must be counteracted by some other force

or obstacle, when the bodies are to be

held in equilibrium. But according to

the principle announced, the two normal

components J\^and iV7! must be exactly

equal. If the direction of the force P
= a with the normal A X and an angle

S A P = (3 with the direction of the other component S, we
have (see § 78)

forms an angle NAP
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w = P sin. 13

:,S
P sin. a

sin. {a + (3y sin. (a + (3)'

Designating in like manner JV; A
x
P, by «i and £i ^ P, by ft,

we have also

P sk /3j P, sin. a
xNi = -•- /_

—
t-td-x and /Si

and, finally, since JV — JVi

P s-iw. (3

sin. (a, + j3j)
*

Ptm j3im (a + (3) sin. (a
x + fa)'

Example.—How are the forces decomposed, when a body M
x , Fig. 18C,

held fast by an impediment D E, is pressed

upon by another body M, movable about

its axis C, with a force P = 250 pounds ?

The angles formed by the directions are

the following

:

PAN= a = 35°

P A 8 = /? = 48*

P
A ^ iVi = 0l = 65°

^^^=1^ = 50".

The normal pressure between the two

bodies is determined by the first formula

and is

P sin, ft

sin. (a + j3)

250 sin. 48°
—177-555— = 187

>
18 Pounds

;

i^^iV,

from the second we have the pressure on the axis or bearing C
P sin. a 250 sin. 85° „,,,«»5 = y - == r—rsaT— = 144,47 pounds I

ewi. (o + /3) w«. 83' '
i

and, finally, by combining the third and fourth formula we obtain the

component which presses against the imx>edimcnt D E

S,=
Slil. a,

sin. j3 t

187,18 sin. 65°

sin. 50''
= 221,46 pounds.

§ 139. In consequence of the equality of action and reaction,

the equilibrium of a supported body is not changed, when, instead

of the support, we substitute a force, which counteracts the pressure

or tension transmitted to the support, and which is, therefore,

equal in magnitude and opposite in direction to it. After having

introduced this force, any body supported or partially retained

may be considered as entirely free, and consequently its state of

equilibrium can be treated in the same manner as that of a free

body or of a rigid system of forces.
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If, e.g., a body M, Fig. 197, is movable around its axis C, the

force N is transmitted to a second body M{9 the force 8 is counter-

acted by the axis C and we can assume, that the body is entirely

free and that besides P two other forces — i^and —8 act upon it.

If the body Mx
presses upon ilf with the force Nx and against the

fixed plane D E with the force $, the equilibrium would not be

disturbed, if instead of these impediments we should substitute two

opposite forces — Nx and — 8X and combine the same with the

forces (e.g. with Pi), which act upon the body. In a state of

equilibrium the resultant of the forces in the one as well as that

Fig. 197. Fig. 198.

>>v

Yx -S

in the other body must be null, and therefore the resultant of

— iVand — #must be counteracted by P and the resultant of

- Ni and - S\ by Px .

Since the forces ^and NXi with which the two bodies act upon

each other, are in equilibrium, the forces P, — 8, P, and — 6',

must be in equilibrium, when the combination of the two bodies

(M, M
x ) is in equilibrium. The forces N, A7

", are called tiie interior

and the forces P, — 8, P x and — 8X the exterior or extraneous

forces of the combination of bodies or of the system of forces, and

Ave can therefore assert that not only the interior forces are in equi-

librium, tut that the exterior forces are so also, when, as is repre-

sented in Fig. 198, we suppose the forces applied in any point 0.

§ 140. Stability.—When a body supported upon a horizontal

plane is acted on by no other force than that of gravity, it has no

tendency to move forwards ; for its weight, acting vertically down-

wards, is completely counteracted by this plane, but a rotation of
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the body may bo produced. If the body A D B F, Fig. 199, rests

with the point D on the horizontal plane H R, it will remain at

rest as long as its centre of gravity #is

supported, i.e., as long as it lies in the

vertical line (vertical line of gravity).

passing through the point of support I).

But if a body is supported in two points

upon the horizontal surface of another

body, the conditions of equilibrium

require, that the vertical line of gravity

shall pass through the line joining the

two points of support. If, finally, a body

rests upon three or more points on a horizontal plane, equilibrium

exists, when the vertical line of gravity passes through the triangle

or polygon formed by joining these points by straight lines.

We must also distinguish for supported bodies, stable and un-

stable equilibrium. The weight G of a

body A B, Fig. 200, draws the centre

of gravity S of the same downwards

:

if there is no obstacle to the action

of this force, it produces a rotation of

the body, which continues until the

centre of gravity has assumed its lowest

position and the body has assumed a

state of equilibrium. We can assert

that the equilibrium is stable, when the

centre of gravity occupies its lowest position (Fig. 201), that it is

unstable, when it occupies its highest position (Fig. 202), and that

Fig. 201. Fig. 203. Fig. 203.

Fig. 200.

finally the equilibrium is indifferent, when the centre of gravity re-

mains at the same height, no matter what may be the position of

the body (Fig. 203).
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BtrasB

Examples,—1) The homogeneous body A DBF, Fig. 204, composed

a hemisphere and a cylinder, rests upon a horizontal plane H B. Re-

quired the height 8 F = h of the cylindri-

cal portion in order that this body shall be

in equilibrium. Any radius of a sphere is

perpendicular to the tangent plane corre-

sponding to it, but the horizontal plane is

such a plane, and consequently the radius

8B must be perpendicular to it and contain

the centre of gravity. The axis F 8 L
passing through the centre of the sphere is

also a line of gravity ; the centre 8, as inter-

section of the two lines of gravity, is therefore the centre ot gravity of the

body. If we put the radius of the sphere and of the cylinder 8 A =
SB = 8L = r, and the altitude of the cylinder 8 F = BE =h, we have

for the volume of the hemisphere V1
= f tt r3

, and for the volume of the

cylinder V2
— tt r3

ft, for the distance of the centre of gravity of the sphere

8X , 8 8
t
= £ r and for that of the centre of gravity of the cylinder

S
2 , S S2

=£h. In order that the centre of gravity of the whole body fall

in 8 we must make the moment of the hemisphere §- tt r3
.
-f
r equal to the

moment of the cylinder tt
rr h . J ft, whence we have

ft
2 =

I- f or h — r VJ = 0,7071 r.

If the bod}7 is not homogeneous, but on the contrary the hemispherical

portion has the specific gravity c
t
and the cylindrical portion the specific

gravity e2 , then the moments of these portions are f tt r3

. e
t £ r and

tt ?*
2

ft e
2 . \ ft, and consequently by equating them we have

2 e ft
2 = et r\ or h = r V ~- = 0,7071 i/-^- . r.

2) The pressure, which each of three legs A, B, G, Fig. 205, of an arbi-

trarily loaded table has to bear, can be

determined in the following manner.

Let 8 be the centre of gravity of the

loaded table, and 8 E, G B perpendicu-

lars upon A B. Designating the weight

of the entire table by O and the. pres-

sure in G by B, we can treat A B as an

axis and put the moment ofB == the mo-

ment of #, i.e., B.G D = G.8E,
from which we obtain

AABS

Fig. 205.

M = -
8E
GB G =

A ABC
and in like manner for the pressure in B, we have

A AGS

P =

A A OB
A B G8
A ABG

G, and for that in A

G.
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§ 141. Let us now investigate more fully the case of a body

resting with one base upon a horizontal plane. Such a body pos-

sesses stability or is in stable equilibrium, when its centre of gravity

is supported, i.e. when the vertical line passing through its centre

of gravity passes also through its base, since in this case the rota-

tion, which the weight of the body tends to produce, is prevented

by the resistance of the body. If the vertical line passes through

the periphery of the base, the body is in unstable equilibrium; and

if it passes outside of the base, the body is not in equilibrium, but

will rotate around one of the sides of the periphery of its base and

bo overturned. The triangular prism ABC, Fig. 206, is conse-

quently in stable equilibrium, since the vertical line 8 G passes

through a point iV"of its base B C. The parallelopipedon A B CD,
Fig. 207, is in unstable equilibrium, because the vertical line 8 G
passes through one of the edges D of the base C D. Finally, the

cylinder A B CD, Fig. 208, is without stability; for S G does not

pass through its base C D,

Fig. 206. Fig. 207.

m%mm : "

Stability (Fr. stability Ger. Stabilitat or Standfahigheit*) is the

capacity of a body to maintain by

its weight alone its position and

to resist any cause of rotation. If

we wish to select a measure for the

stability of a body, it is necessary

to distinguish the case of simply

moving the body from that of

actually overturning it. Let us

first consider the former case

alone.

§ 142. Formulas for Stability.—A force P whose direction

is not vertical tends not only to overturn, but also to push forward

the body A B C D, Fig. 209. Let us suppose that there is an
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Fig. 209.

obstacle to its pushing or pulling the body forwards, and let us

consider only the rotation around an edge G. If from this edge

we let fall a perpendicular G E = a upon the direction of the

force and another perpendicular

CN — e upon the vertical line of

gravity S G of the body, we have

then a bent lever E G N, to which

the formula Pa— G c or P = - G
a

is applicable. If, therefore, the ex-

terior force P is slightly greater than

Ge—, the body begins to turn around

G and thus loses its stability. Its stability is therefore dependent

upon the product
(
G e) of the weight of the body and the smallest

distance of a side of the periphery of the base from the vertical line

passing through the centre of gravity, and G e can therefore be

considered as a measure of stability, and we will henceforth call it

simply the stability. Hence we see that the stability increases

equally with the weight G and with the distance e, and conse-

quently we can conclude that under the same circumstances a wall,

etc., whose weight is two or three tons, does not possess any more

stability than one, whose weight is one ton and in which the dis-

tance or arm of the lever e is two or three fold.

§ 143. 1) The weight of a parallelopipedon A B C D, Fig. 210,

whose length is /, whose breadth is ^4 I> = C D = b and whose

lieight is A D = B G — h, is G = Vy = b hi y, and its stability

St = G . WW = G . A G~D = ^ = IF hi y,

y denoting the heaviness of the material of the parallelopipedon.

Fig. 210. Fig. 211.

A B A B

%) The stabilities of a body B D E, Fig. 211, composed of two
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parallelopipedons, in reference to the two edges of the base C and
F, are different from each other. If the heights are B G and E

I

— h and li
x
and the widths D and D F — b and b

} , we have the

weights G and G x
of the two portions — I lily and b

{
h

x
I y ; the

arms in reference to C are CN == \ b and G — b 4-
-J

b
x , and

those in reference to .Fare Z>j + \ b and } bJy and the stability is,

first, for a rotation around G
St = iGb + Gi(b + i h), = (\ If li + bb x hx + J $,

2

h) I y,

and, secondly, for a rotation about F
Stx
= G{h + ±b) +±G1 b l

= (\bSh 1 + bb
l h + -lb

n

'h)ly.

The latter stability is St x
— Si = (li — 7*i) bb x ly greater than

the former. If we wish to increase the stability of a wall A C by

offsets D F, we must put them upon the side of the wall, towards

which the force of rotation (wind, water, pressure of earth, etc.)

acts. The stability of a wall A B C F, Fig. 212, which is battered

on one side, is determined as follows. Let

the length of the wall be I, the width on

top A B =b, the height B G'=h and the

batter = n, i.e. when the height A K=
1 foot the batter K L — n, or for a height

li feet, = n li. The weight of the parallel-

opipedon A C is G = b li I y, that of the

triangular prism A D E = Gx
= I n h .

li I y ; the arms for a rotation about E are

E 1ST — ED + ± I == n h + £b and E Q
= | E D = | n h. Hence the stability is

St = G (n h -f- i I) + ] Gt n h == Q &
2 + n * 5 + 1 ft

2 £2

) * ? y.

A parallelopipedical wall of the same volume isb + ^ nh wide.

and its stability is

Sti= Kb + inhyiily^tlV + inhb'+ln*V)hly;
the stability is therefore St — St

x
= (b + fW w li) . ± n If I y

smaller than that of a battering wall.

The stability of a wall with a batter on the other side is

fife = ($
2 + 7i lib + i tf If) .hhly,

and consequently smaller than St by an amount

St - Sh = (5 + i n li) .
i n If I y,

but greater by an amount St., — St
x
= 2? ^2

7i
3

2 y than the sta-

bility of a parallelopipedical wall of the same volume.

Example.—What is the stability per running foot of a stone wall 10

feet high, 1£ feet wide on top and with a batter of A of a foot on its back ?

The density of this wall can be put (§ 61) = 2,4, consequently its heaviness
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is y = 62,4 . 2,4 = 149,76 pounds ; but we have I = 1, h = 10, 1 = 1,25

and n = -§- = 0,2, and consequently the required stability is

St = [£ . (1,25)
2 + 0,2 . 1,25 . 10 + £ (0,2)

2
. 10] 10 . 1 . 149,76

= (0,78125 + 2,5 + 1,3333) 1497,6 = 4,6146 . 1497,6 = 6911 foot-pounds.

If the same quantity of materials is used, under the same circumstances

the stability of a parallelopipedical wall would be

8lx
= [£ . (1,25)

2 + | . 0,2 . 1,25 .10 + | (0,2)
2

. 10 2

] . 149,76. 10

= (0,78125 + 1,25 + 0,5) 1497,6 = 2,531 . 1497,6 = 3790 foot-pounds.

The stability of the same wall with a batter on its front would be

St3 = ft (1,25)' + \ . 0,2 . 1,25 .10+| (0.2)
2

. 102] i49;76 . 10
" = (0,78125 + 1,25 + 0,666) 1497,6 = 2,6979 . 1497,6 = 4040 foot-pounds.

Remark.—"We see from the above that we economize material by bat-

tering the wall, by furnishing it with counterforts or offsets, by building

it on plinths, etc. This subject will be treated more in detail in the second

volume, where the pressure of earth, arches, bridges, etc., will be con-

sidered.

§ 144. Dynamical Stability.—We must distinguish from

the measure of stability given in the last paragraph another meas-

ure of the stability of a body, in which we bring into consideration

\he mechanical effect necessary to overturn the body. The work

done is equal to the product of the force and the space ; the force

in a heavy body is its weight, and the space is the vertical pro-

jection of the space described by the centre of gravity, and, con-

sequently, in the latter sense the product 67 s can be employed as

the measure of the stability of a body, when s is the vertical height,

which the centre of gravity of the body must rise, in order to bring

the body from its state of stable into one of unstable equilibrium.

Let C be the axis of rotation and 8 the centre of gravity of a

body A B CD, Fig. 213, whose dy-

namical stability is to be deter-

mined. If we cause the body to

rotate, so that its centre of gravity

8 comes to 81; i.e. vertically above

C, the body is in unstable equili-

brium ; for if it is caused to revolve

a little more, it will tumble over.

If we draw the horizontal lino

8 JV, it will cut off the height

JV/Si = s, which the centre of gravity

lias ascended, by the aid of which we obtain the dynamical sta-

bility G s. If now we have 8 = O 8t
= r, OM = N 8 = e

and the altitude C' N — M 8 = a, we obtain

Fig. 213.
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8l
JS/~=s = r — a= \a" + & — a,

and the stability in the second sense is

St = G ( VcT+~e% - a).

The factor s — Va* + e
1 — a gives, for a — 0, s = e, for a = e,

5 = e ( V2 — 1) = 0.414 e, for a = n e> s = ( ^2 + 1 — n) e, ap-

6 ('

proximativeiy = (n + — n) e = — , thus for a = 10 e, s —
;

-

and for «= oo , s = — = ; this stability, therefore, becomes greater

and greater as the centre of gravity becomes lower and lower, and

it approaches more and more to zero as the centre of gravity is

elevated more and more above the base. Sleds, wagons, ships etc.

should therefore be loaded in such a manner, that the centre of

gravity shall lie not only as low as possible, but also as near as

possible above the centre of the base.

If the body is a prism with a symmetrical trapezoidal section,

such as is represented in Fig. 213, and if the dimensions are the

following : length — I, height M = h, lower breadth CD — b :
.

upper breadth A B = h«, we have

M S — a = ~ y- . 7T (§ 110) and

CM = e — h b 19 whence

and the dynamical stability or the mechanical effect necessary to

overturn this body is

Example.—What is the stability of, or what is the mechanical effect

Fig. 214. necessary to overturn, the granite obelisk A B C D,

Fig. 214, when its height is Ti = 30 feet, its upper length

and breadth l±
= \\ and ft

±
= 1 foot and its lower

length and breadth l
2
= 4 feet and b2 = 34 feet ? The

volume of this body is

V = (2 l
x

l
t

4- 2 b2 l
2 + b

t
l
2 + l

2
I,) ±

= (2 . f . 1 + 2 . 4 . J + 1 . 4 + f . I)
3
¥
°

1 = 40,25 . 5 = 201,25 cubic feet.

I If a cubic foot of granite weighs 7 = 3. 62,4 = 187.2

I pounds, we have for the total weight of the body

W G = 201,25 . 187,2 = 37674.

The height of its centre of gravity above the base is
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Mi + h + Mi
2b

3
l2 + 2b

1
l
x + b

2
l
t + ~bt I,

4.1 + 3 1.4 + 4 27,75 . 15 = 10,342 feet.
40,25 a 40,25

Supposing a rotation around the longer edge of the base, we have the

horizontal distance of the centre of gravity from this edge, e = \ d
2
—

J- . $ = f feet, and therefore the distance of the centre of gravity from the

axis is

Fig. 215.

CS = r = Va i + <r = V(l,75/ + (10,342)
a = V110,002 = 10,489

;

hence the height that centre of gravity must be lifted is

« = r — a = 10,489 — 10,342 = 0,147 feet,

and the work to be done or the stability

8 t = Gs = 87874 . 0,147 = 5538 foot-pounds.

§ 145. Work Done in Moving a Heavy Body.—In order

to find the mechanical effect, which is necessary to change the

position of a heavy body by causing a rotation, we must pursue the

same course as in calculating its dynamical stability. If we cause

a heavy body A C, Fig. 215, to rotate about a horizontal axis to

such an extent, that the inclination M G S — a of the line of

gravity C 8 = r becomes M C #, = a,.

the centre of gravity S will describe the

vertical space H 8X
— Mx 8X

— M 8 — s x

— r {sin, a
x
— sin. a), and therefore if we

designate by G the weight of the body,

the mechanical effect required is

A
x
— G Si = Gr {sin a

x
— sin. a).

If the axis of rotation is not horizon-

tal, but inclined at an angle (3 to the

horizon, we have

s% =z r cos. (3 {sin. a
x
— sin. a) and

A
x
= G s x

= G r cos. (3 [sin. a
x
— sin. a). (Compare § 133.)

If in addition the body is moved in such a manner as not to

change its position in relation to the direction of gravity, and if its

centre of gravity and all its parts describe one and the same space,

the vertical projection of which, is = s2, then the moving of the

body will require, in addition to the above mechanical effect, an

amount of work A 2 — G s*
9
and consequently the total work done

M Mv

will be
A=A X G [r cos. [3 {sin. a

x
— sin. a) + s2,]

The space described by the body in a horizontal direction dees
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not enter into the question, when we suppose the motion to be slow,

in which case the work of inertia can be put equal to zero.

If a body A C, Fig. 216, tying upon a horizontal plane B C is to

be placed upright upon another plane C2 D 2, we have (3 — 0°, or

cos. (3 — 1; and if a and e

FlG- 216, denote the horizontal and

^~j~-P» vertical co-ordinates of the

/ \ centre of gravity of the body,

/ i \ when it is in an upright

position, the radius C Sx
=

r — Va? + e~, and the height

Ex Si — a = r sin. a,. If a

is the angle of inclination

B C S formed by the side

B Cof the body with the line

of gravity C S, we have the

original height of the centre

of gravity above the surface

on which the body rests

K S = C Ssin. B C8 — r sin. a — tV + e
2
sin. a,

and consequently the height, which the centre of gravity is raised,

while the body is being placed upright is

US, = », = Ex & - EXH= a - V^~+~? sin. a.

If now s2 is the vertical distance of the plane C\ Z>2 above the

first plane B C, we have for the entire work done in placing the

body upon 6'
2 A

A = G (a — Vd1 + e~ sin. a + &>).

This determination of the work necessary to move the body is

perfectly correct only, when the centre of gravity is raised by a con-

tinuous movement from S to S2. If, on the contrary, the body is

first placed upright and then raised, the mechanical effect neces-

sary is

A= G (FO + s,2) = G (
(TO-KS+s.:) = G [ Va^T? (1-sin. a) + s.:] ;

for the work G . Nwhich the body performs, when the centre of

gravity sinks from to $,,is lost.

§ 146. Stability of a Body en an Inclined Plane,—A body

A G, Fig. 217, resting upon an inclined plane (Fr. plan incline,

Ger. schiefe Ebene), can assume two motions; it can slide down
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Fig. 21'

the inclined plane, or it can overturn by a revolution around one

of the edges of its base. If the body is left to itself the weight G is

decomposed into a force iVat right angles to and a force P parallel to

the base; the first is counteracted entirely by the inclined plane,

the latter, however, moves the body down the plane. If we put

the angle of inclination of the plane to the horizon = a, we have

also the angle G 8 N — a, and

consequently the normal pressure

JSf — G cos. a and

the sliding force

P ~ G sin. a.

If the vertical line of gravity

S G passes through the base C D,

as is shown in Fig. 217, the sliding

motion alone can take place ; but

if the line of gravity, as in Fig. 218, passes without the base, the

body will be overturned and is without stability.

The stability of a body A C upon an inclined plane F H, Fig.

219, is different from that of a body upon a horizontal plane H R.

If D M — e and Ms = a are the rectangular co-ordinates of the

centre of gravity S, we have for the arm of the stability

DE = DO — MN— e cos. a — a sin. a,

while, on the contrary, it is = c, when the body stands upon a hori-

zontal plane. Since e > e cos. a — a sin. a, the stability in refer-

ence to the lower edge D is always smaller upon the inclined plane>

and become null, when e cos. a — a sin. a, i.e. when tang, a = -..

If, then, a body, whose stability is G e when standing upon a hori-

zontal plane, is placed upon an inclined plane, whose angle of incli-

nation corresponds to the expression tang, a = -,

18

it loses its sta-
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bility. On the other hand, a body can acquire stability upon an

inclined plane, although wanting it when placed upon a horizontal

one. For a rotation about the upper edge C the arm is C

E

x
— C

{

-f MN = e x cos. a + a sin, a, while for the same position on a

horizontal plane it is CM— e
x
. If, however, e x

is negative, the

body possesses no stability as long as it rests upon a horizontal

plane ; but if placed upon an inclined plane, the angle of inclina-

tion a of which is such that we have tang, a > -1

, the body acquires

a position of stable equilibrium. If, in addition to the force of

gravity, another force P acts upon the body A B C D, Fig. 209, it

retains its stability, if the direction of the resultant iV of the weight

G of the body and of the force P passes through the base CD
of the body.

Example.—In the obelisk in the example of paragraph 144, e = \ and

a = 10,342 feet ; consequently it will lose its stability, when placed upon

an inclined plane, for whose angle of inclination we have

7 7000
Un°- * = 4710^43 = 41368 = °'16922>

and whose angle of inclination is therefore

a = 9° 36'.

§ 147. Theory of the Inclined Plane.—Since the inclined

plane counteracts only the pressure

perpendicular to it, the force P, ne-

cessary to retain the body, which is

prevented from turning over, on the

inclined plane, is determined by the

consideration, that the resultant N,

Fig. 220, of P and G must be per-

pendicular to the inclined plane. Ac-

cording to the theory of the parallel-

ogram of forces, we have

sin. P NO
m

''

sin. P O N'
but the angle P N O = angle G O N = F H E = a, and the

angle P O JST = P OK±KOJV=(3 + 90°, when we denote

the angle P E F' = P O K formed by the direction of the force

with the inclined plane by (3 ; hence we have

P sin. a P _ sin. a

G
=

sin^ijfVWj'
LE

' ~G
~ cosTp



§ 148.] EQUILIBRIUM OF BODIES RIGIDLY FASTENED. 275

and the force, which holds the body on the inclined plane, is

_ G sin, a
~

cos. (3

For the normal pressure we have

2? sin. G JV

G sin. OJVG'
° — (a + j3) and if = P 2Vor, since the angle G JV = 90

« 90 + ft

JV _ sin. [90° — (a + ff) ] _ cos, (a + g§
7}~ si?i.(90° +0).

~
cos. 13 '

and the normal pressure against the inclined plane is

G cos. (a 4- (3)
JV

cos. (3

If a _j_ (3 is > 90" or (3 > 90° - a, JV becomes negative, and

then, as is represented in Fig. 221, the inclined

plane H F must be placed above the body O, to

which the force P is applied. If the force P is

parallel to the inclined plane, (3 becomes — and

cos, j3 = 1, and we have

P — G sin. a and JV = G cos. a.

If the force P acts vertically a -f- is = 90°,

and we have

cos. (3 = sm. a, cos. (a + /3) = 0,

P = G and JV = 0. In this case the inclined

plane has no influence upon the body.

Finally, if the force is horizontal, J3 becomes ~ — a and cos. }3

cos. a, and we have

~ G sin. a

COS. a
G tang, a and JV = Gcos.O

cos. a

G
cos. a

Example.—In order to retain a body weighing 500 pounds upon a

plane inclined to the horizon at an angle of 50°, a force is employed, whose

direction forms an angle of 75° with the horizon : required the intensity of

the force and the pressure of the body upon the inclined plane. The
force is

500 sin. 50° 500 sin. 50°
p = —==5

—

^k =
n-^— = 422,6 poundB.

cos. (75° — 50 J

) cos. 25° '
l

and the pressure upon the plane is

__ 500 cos. 75° ., "

^ = ~^25^ = U2
'
8 I)OUnds -

§ 148. The Principle cf Virtual Velocities.—If we com-

bine the principle of the equality of action and reaction, explained
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Fig. 222.

in § 138, with the principle of virtual velocities (.§ 83 and § 98), we
obtain the following law. If two bodies M

x
and 3£2 hold each other

in equilibrium, then, for a finite rectilinear orfor an infinitely small

curvilinear motion of the point A ofpressure or contact, not only

the sum of the mechanical effects of the forces of each separate

tody, hut also the sum of the me-

chanical effects of the exterior

forces acting upon the tivo bodies

(taken together) is equal to zero.

If Pi and ft are the forces in

one body and P2 and ft those

in the other, when the point of

contact is moved from A to B,

the spaces described by these

forces are A DhA Eu A P2 and

A Bo, and according to the law

announced above we have

P, . AD
X + ft . TEX + P2 A~B2 + 8,.~AE, = 0,

or without reference to the direction

r^.

Px A Bx + ft . A Ex = P2 . A D% + ft . A E+
The correctness of this law can be demonstrated as follows.

Since the normal forces Nx
and N3 are equal, their mechanical

effects N[ . A G and N* , A G must also be equal to each other, the

only difference being, that one of the forces is positive and the

other negative. But according to what we have already seen, the

mechanical effect of the resultant N
X
.A is equal to the sum

of those Pi A Pi + ft . A Ex of its components, and in like man-

ner N't A G= P2 . A P2 + ft • A B2 ; consequently we have

Pi . AD
X + ft . AEX

= P2 . A~D] + ft '.AE,.

This more general application of the principle of virtual

velocities is of great importance in

researches in statics, the determina-

tion of formulas for equilibrium be-

ing much simplified by it. If,' E.G.,

we move a body A upon an inclined

plane, F H, Fig. 223, a distance A B,

the space described by its weight G
is = A C=ABsin.A B C =
A B sin. FJIB = A B sin a,

and, on the contrary, the space de-

Fig. 223.

1>

c
s

A .;.;:;

^^iiiimmr "

\ f
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scribed by the force P is = A D = A B cos.BAD—AB cos. j3, and

finally that described by the normal force A" is = 0; but the work

done by JV is equal to the work done by G plus the work done by

P, and we can therefore put

JV.O=-G.AC+P.AD,
consequently the force, which holds the body upon an inclined

G sin. a
plane, is

P = A C
A D 67 =

cos. (3
'

Fig. 224.

a result, which agrees perfectly with that obtained in the foregoing

paragraph.

On the contrary, to find the

normal force N, we must move

the inclined plane H F, Fig. 224,

an arbitrary distance A B at

right angles to the direction

of the force P, determine the

space described by the exterior

forces and then put the me-
chanical effect of the weight G
and of the force P equal to the

mechanical effect of the pressure

iV^upon the inclined plane.

The space described by iV^is

>\

"Bx

AD = AB cos.BAD = AB cos. (3
;

that described by G is

A C~AB cos. B A C = A B cos. (a + (S),

and that described by the force P is = 0, hence the mechanical

effect is

N.AD=. G.AC+ P.0,

, „ G . A C „ cos. (a + j3)
and lf=—-j-yr- = G . —7^*A D cos. fi

as we found in the foregoing paragraph.

§ 149. Theory of the .Wedge.—We can now deduce very

simply the theory of the wedge. The wedge (Fr. coin, Ger. Keil) is a

movable inclined plane formed by a three-sided prism F H G,
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Fig. 225. The force K P — P acts generally at right angles to

the back F G of the wedge and balances another force or weight

Fig. 225.

A Q = Q, which presses against a side FHof the wedge. If the

angle, which measures the sharpness of the wedge, is FH G = a

and the angle formed by the direction K P or A D of the force

with the side G His GEK=BAD = d, and, finally, if the

angle L A H formed by the direction of the load Q with the side

F His == ft the spaces described, when the wedge is moved from

the position FH G to the position F
x
H

x Gu are found in the fol-

lowing manner. The space described by the wedge is

AB = FF
X
a HH„

that described by the force is

AD = AB cos. B A D m A B cos. d,

and that described by the rod A L or by the load Q is

. p _ A B sin. A B C _ A B sin. a _ A B sin. a

sin. A OB ~ sin.HA C ~
sin.fi

On the contrary, the space described by the reaction R of the

base E G as well as that described by the reaction corresponding

to the pressure against the guides of the rod is = 0.

Now putting the sum of the mechanical effects of the exterior

forces P, Q, R and Rx
= 0, we have

P . AD - Q . AC + R • + R, . = 0,

from which we obtain the equation of condition

p _ Q - A C Q . A B sin. a Q sin. a

AD " AB cos. 6 sin. (3
~ «^ Z

3 cos.
6'

If the direction KE of the force passes through the edge H of

the wedge and bisects the angle FH (7, we have J = — , and therefore
2
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Q sin. a

a
sin.fi cos.

2 Q sin.

sin. j3

If the direction of the force is parallel to the base or side G H,

we have 6=0, and consequently

Q sin, a

sin. (3

and if the direction of the load is also perpendicular to the side

F ff, we' have (3 = 90°, and consequently

P = Q sin. a.

Example.—The sharpness FH G = a of a wedge is 25°, the direction

of the force is parallel to the base, and therefore 6 is = 0, and the load acts

at right angles to the side F H, i.e., j3 is = 90' : required the relations of

the force and load to each other; in this case we have

P = Q sin. a or ^ = sin. 25° = 0,4226.

If the load is Q = 130 pounds, the force is

P = 130 . 0,4226 = 54,938 pounds.

In order to move the load or rod a foot, the wedge must describe the

space

AB = A C 1 = 2,3662 feet.
0,4226

Remark 1. The relation between the force P and the load Q of the

wedge F G H, Fig. 226, can be determined by the application of the

parallelogram of forces in the

following manner. The load

upon the rod A Q — Q is de-

composed into a component

A iV
T = -^perpendicular to the

side FH and into a component

A S — S perpendicular to the

axis of the rod. While S is.

counteracted by the guides of

the rod, A IT— N is transmit-

ted to the wedge and combines

there as A x
N

x
with the force

KP— A t P= P of the wedge to form a resultant AXB = B, whose

direction must be perpendicular to the base G Pof the wedge, in which

case it will be transmitted completely to the support of the wedge. The
parallelogram of forces A

t
P R N

t
gives



280 GENERAL PRINCIPLES OF MECHANICS. [§150:

P _ sin. B A
x
N

t _ sin. FH G _ sin. a

W
t

sin. A
t M N1

~ sin. P A
1
R~ cos. <5'

and from the parallelogram of forces A N Q S we have

iV"_ sin. JST Q A _ sin. QAS _ 1

Q ~ sin. A N~Q ~ sin. LA H~ sin. j3
;

but since N"t is = N, we obtain by multiplying these proportions together,

P N_P_ sin. a

N' Q~ Q~ sJn.Jcos7d'
°r

_ Q sin. a
~

sin. ft cos. <5'

as was found in the large text of this paragraph.

Remark 2. The theory of the lever, inclined plane and wedge will

be discussed at length in the fifth chapter, when the influence of friction

will also be taken into consideration.

CHAPTER IV.

EQUILIBRIUM IN FUNICULAR MACHINES.

§ 150. Funicular Machines.—We have previously considered

the solid bodies to be perfectly rigid or stiff bodies (Fr. corps

rigides ; Ger. starre or steife Korper) ; i.e., as bodies, whose vol-

ume and form are unchanged by the action of exterior forces upon

them. Very often in the practical application of mechanics the

supposition, that bodies are perfectly rigid, is not permissible, and

it becomes necessary, therefore, to consider these bodies in two

other states. These states are those of perfect flexibility and

of perfect elasticity, and consequently we distinguish flexible

bodies (Fr. corps flexible; Ger. biegsame Korper) and elastic

bodies (Fr. corps elastiques ; Ger. elastische Korper). Flexible

bodies counteract without change of form forces in one direction

only and follow perfectly those acting in other directions ; elastic

bodies, on the contrary, yield to a certain extent to every force

acting upon them.

A rigid body A B, Fig. 227, I, counteracts completely the force
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P, a flexible body A B, Fig. 227, II, follows the direction of the

force P, which acts upon it, in such a manner, that its axis assumes

the direction of the force, and an elastic body A B, Fig. 227, III,

resists the' force P to a certain extent only, so that its,axis under-

goes a certain deflection. Cords, ropes, straps and in a certain

sense chains are representatives of flexible bodies, although they do

not possess perfect flexibility. These bodies will be the subject of

the present chapter ; elastic bodies, or rather the elasticity of rigid

bodies, will be treated of in the fourth section.

We understand by a funicular machine (Fr. machine funicu-

laire ; Ger. Seilmaschine) a cord or a combination of cords (the

word cord being employed in a general sense), which is stretched

by forces, and we will occupy ourselves in this chapter with the

theory of the equilibrium of this machine. The point of the

funiculaire machine to which a force is applied, aud where, conse-

quently, the cord forms an angle or undergoes a change of direc-

tion is called a knot (Fr. noeud ; Ger. Knoten). The same is either

fixed (Fr. fixe ; Ger. fest) or movable (Fr. coulant ; Ger. beweg-

lich). Tension (Fr. tension ; Ger. Spannung) is the force propa-

gated in the direction of its axis by a stretched cord. The ten-

sions at the ends of a straight cord or piece of cord are equal and

opposite (§ 86). A straight cord cannot propagate any other force

but the tension acting in the direction of its axis; for if it did, it

would bend and would no longer be straight.

§ 151, Equilibrium in a Knot.—Equilibrium exists in a

funicular machine, when each of its knots is in equilibrium. Con-

sequently we must begin with the study of the conditions of equi-

librium in a single knot.

Equilibrium exists in a knot K formed by a piece of cord
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Fig. 228.

A K B, Fig. 228, when the resultant K S = S of the two tensions

of the cord K 6\ = Si and K & = S.2 is equal and opposite to the

force P applied at the knot; for the

tensions of the cord #i and S2 pro-

"Jj
duce the same effect in the knot

iT as two forces equal to them and

acting in the same direction as

they do, and the three forces are in

equilibrium, when one of them is

equal and opposite to the resultant

of the other two (§ 87). In like

manner the resultant R of the

force P and of one of the tensions

Si is equal and opposite to the

second tension $>, etc. We can

profit by this equality to determine two conditions, e.g., the ten-

sion and direction of one of the ropes. If, e.g., the force P, the

tension # and the angle formed by them

AK P = 180" - AXS = 180° - a

arc given, we have for the other tension

S,= V P 2 + SS - 2 P Si cos. a

and for its direction or for the angle B K S — j3 formed by it

with K S
. n St sin. a

sin. (3 = - -

—

&2

Example.—If the rope A KB, Fig. 228, is fastened at its end B and

stretched at its end A by a weight G = 135 pounds and at its centre

A" by a force P = 109 pounds, whose direction is upwards at an angle of

25
s

to the horizon, what will be the direction of the tension in the

piece of cord KB ?

The intensity of the required tension is

0. =3 V 109 s + 135* - 2 . 109 . 135 cos. (90° — 25")

== V 11881 + 18225 - 29430 . cos. 65° = V1766873

For the angle (X we have

S« sin. a 135 . sin. 65

132,92 pounds.

sin. ft
—

5,
log sin. ft = 0,96401 — 1,

whence ft
= 67° 0', and the inclination of the piece of cord to the horizon is

ft°
- 25° = 67° 0' - 25° 0' = 42° 0'.
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§ 152. If a cord A K B, Fig. 229, forms a fixed knot ^in con-

sequence of one portion of the cord B K lying upon a firm sup-

port 31, while the other portion of

the cord is stretched by a force K S
-- 8, whose direction forms a certain

angle S K S
x
—a with the direction

of the first portion of the cord, we
have the tension in the portion K B
of the cord

K S
}
— S\ — S cos. a,

while the second component KN = N = S sin. a is counteracted

by the support M. We have also

Si = S V 1 - (sin. af,

and therefore, when the angle of divergence is small,

** = (!-«)«s\ 1 -
2

{sin. a)
1
-

or inversely

S = tt

1 -
&.

If a cord is laid upon a prismatical body, and its directions thus

changed successively an amount measured by the angles ez„ a.2, az>

the foregoing decomposition

of the force is repeated, so

that in the knot iTithe ten-

sion S is changed into St
=

S cos. o„ and in the knot K*
the tension $ into

#2= S% cos. an_—S cos. a
x cos. a2,

and in the knot Kz the ten-

sion & into

S3 = S% cos. az — S cos. Oj cos. a.
2 cos. az .

If the angles a
1}
a

2, a3 are equal to each other and = a, we have

S3 = S (cos. a)"

Sn — S (cos. a) n
.

If the prism M becomes a cylinder, a is infinitely small and n

infinitely great, and consequents

or if we denote the total angle of divergence n a by (3, we have

i
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Sn -<• - VTL* I.E.

&
a/3.

#, because a and consequently -^ is infinitely small compared

with 1.

If, therefore, a cord is laid upon a^sinooth body so as to cover n

portion of the periphery of its cross section, its tension is not

changed thereby ; and when a state of equilibrium exists the ten-

sion at both ends of the cord are equal to each other.

§ 153. If the knot K is movable, if, e.g., the force P is applied

by means of a ring to the cord A K B, Fig. 231, which is passed

through it, the resultant 8 of the tensions 8X and Sa of the cord is

equal and opposite to the force P applied to the ring; besides the

•tensions of the cord are equal to each other. This equality is a

consequence of § 152, but it can also be proved in the following

manner. If we pull the rope a certain distance through the ring,

one of the tensions 8t
describes the space s, the other tension 8.2 the

space — s, and the force P the space 0. If, therefore, we assume

perfect flexibility, the work done is

P.O = S^s — S9 .8,u& SiS = S,sor8, = & '

The equality of the angles A K S and B K S, formed by the

direction of the resultant S with the directions of the rope, is also a

consequence of this equality of the tensions. Putting this angle

= a the resolution of the rhomb K 8X 8 8^ gives

8 ;= P =2 8X cos. a, and inversely

8X
= 8,=

2 cos. a

Fig. 231.

If A and B, Fig. 232, are fixed points of a cord A K B of a
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given length (2 a) with a movable knot K, we can find the posi-

tions of this knot by constructing an ellipse, whose foci are at A and

B and whose major axis is equal to the length of the rope 2 a,

and by drawing a tangent to this curve perpendicular to the given

direction of the force. The point of tangency thus found is the

position of the knot; for the normal K S to the ellipse forms equal

angles with the radii vectores K A and K B, exactly as the result-

ant 8 does with the tensions Sx
and S.2 of the cord.

If we draw A D parallel to the direction of the given force,

make B D equal to the given length of the cord, divide A D in

two equal parts at M and erect the perpendicular M K, we obtain

the position K of the knot without constructing an ellipse; for the

angle A KM — angle DKM and A K— D K, and consequently

the angle A K S= angle B K S and A K 4- KB = DK +
KB = D B.

Example.—Between the points A and B, Fig. 233, a cord 9 feet long is

•tretched by a weight G = 170 pounds, hung upon it by means of a ring.

The horizontal distance of the two points

from each other is A G = 6*- feet and the

vertical distance of the same G B = 2 feet

:

required the position of the knot as well as

the tensions and directions of the two por-

tions of the cord. From the length A D =
9 feet as hypothenuse and the horizontal

distance A C = 6£ feet, we obtain the ver-

tical line

GD = V9 2 -6,5 3 = V~81 - 42,25-

= V 33/75 = 6,225 feet,

and from this the base of the isosceles tri-

angle B D K
BD = GD- GB = 6,225 - 2 = 4,225 feet.

On account of the similarity of the triangles DKM and D A G, we have

Fig. 233.

DK=BK^= DM B A = 4,225 . 9 = 3,054 feet,DG 2 . 6,225

whence

AK=9- 3,054 = 5,946 feet.

Hence for the angle a formed by the two portions of the cord with the ver-

tical line we have

cos. a — ~A^ — ' „, = 0,6917, whence a — 46° 14',B K 3.0o4 '

and finally the tension in the cord is

G 170

2 cos. 2.0,6917
122,9 pounds.
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Fig. 234.

§ 154. Equilibrium of a Funicular Polygon.—The con-

ditions of equilibrium of a funicular polygon, i.e. of a stretched

cord acted upon in different

points by forces, are the same

as those of the equilibrium

of forces applied at the same

point. h&iAKB, Fig. 23^1,
be a cord stretched by the

forces P„ P2, P3,P4, P6 ; P x

and P2 beiug applied in A,

Pz in K and P4 and P& in B.

Let us denote the tension of

the portion of the cord A K
by Sx and that of the portion

B K by Sif then we have #,

as the resultant of the two

forces P
t
and P2 applied in A.

Transferring the point of ap-

plication of this tension from A to K, we have S« as resultant of

Si and Pj or of P„ P2 and P3. Transferring the point of applica-

tion of the force S2 from K to P, we have S2 as the resultant of P4

and P5 ; now, since S2 is the resultant of P„ P2, and P3, this system

of forces is in equilibrium; we can therefore assert, that if certain

forces Pi, P2, P3, etc., of a funicular polygon are in equilibrium,

they will also hold

Fig. 235. eacJi other in equi-

librium, wlien they

are applied toithout

change of direction

or intensity to a sin-

gle point, e.g. to C
{II). If the rope

A Kx Ki . . . B, Fig.

235, is stretched in

the knots Kx,
iu,

etc., by the weights

Gx, 6r2, etc., and if

its extremities are

held fast by the ver-

tical forces Vx and

Vn and by the hori-
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zontal forces II
X
and H,a the sum of the vertical forces is

Vxf Fn -(ft + ft+ ft + ...),

and the sum of the horizontal forces is Hx
— Hn. The conditions

of equilibrium require both these sums to be = 0, and therefore

we have

1) yx + Vn = ft + ft + ft + -. • and

2) Hx
- #„, i.e.

•£7*0 sum of the vertical forces or tensions at the extremities of the

ropes of a funicular polygon stretched by weights is equal to the sum

of weights hung upon it, and the horizontal tension at one extremity

is equal and opposite to that at the other.

If we prolong the directions of the tensions 8X and Sn at the

extremities A and B, until they cut each other in C, and if we
transfer the point of application of these tensions to this point, we
obtain a single force P= Vx

4- Vn ; for the horizontal forcesHx andHn

balance each other. Since this force balances the sum ft -f- ft -f

ft 4- ... of the weights attached to it, the point of application or

centre of gravity of these weights must be in the direction of this

force, i.e. in the vertical line passing through G

§ 155. From the tension #i of the first portion A Kx
of the

rope and from the

angle of inclination

Sx A II
X
= ^we ob-

tain the vertical ten-

sion Vx
= Si sin. a,

and the horizontal

tension Hi = St
cos. a x

.

If we transfer the

-Jh„ point of application

of these forces from

A to K^ we have, in

addition to them,

the weight ft, which

acts vertically down-

wards, and the verti-

cal tension in the

following portion

Ki K2 of the rope is V2 — Vx
— ft = Sx sin. a

x
— ft, while the

horizontal tension II2
— IIX

= II remains unchanged. The two

latter forces, when combined, give the axial tension of the second

portion of the rope

Fig. 235.
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S2 = VVi + H%
and its inclination a2 is determined by the formula

tang. a2

Si sin. a
x
— ft

H
tang. a.2 =t tang. a

x
—
Si cos. a x

Gi

I.E.

H'
Transferring the point of application of V, and II, from Ki to

JT8, we have, by the addition of the weight ft, a new vertical force

r3 = F2 - ft = Fx
- (ft + ft) = fl sk a, - (ft + ft),

which is that of the third portion of the rope, while the horizontal

force Hz = H remains unchanged. The total tension in this third

portion of the cord is

&= VvfTW\
and its angle of inclination a3 is determined by the formula

Vz _ 8\ sin, di — ( ft 4 ft)_ _tang. a
3

tang. a3 = tang. a
x
—

Si cos. ttj

ft + ft

H

-J I.E.

For the angle of inclination of the fourth portion of the cord

wc have

ft + ft + ft

H -. etc.

If
ft 4- ft 4- ft

becomes > tang, a, or ft 4- ft 4 ft > F„

then to#. o4 and consequently o4 becomes negative, and the cor-

responding side Kz iT4 of the polygon is no longer directed down-

ward, but upward. The conditions are the same for any point, for

which ft + ft + ft 4 . . . is > Vi.

The tensions S
x , S.2, S3, etc., as well as the angles of inclination

«„ a 2, a3, etc., of the different portions of the rope can easily be

represented geometrically. If we make the horizontal line O A =
C B, Fig. 236, = the horizontal tension

II and the vertical line GK
x
— the vertical

tension Vx
at the- point of suspension A,

the hypothenuse A Hi will give the total

tension Sx
of the first portion of the rope,

and the angle OA K
x
the inclination of

the same to the horizon. If, now, we

lay off upon CiTj the weights ft, ft, 6>
etc., as the divisions K

x
K,> K, K3, etc.,

and draw the transverse lines A Iu, A JT8,



£156.] EQUILIBRIUM IN FUNICULAR MACHINES. 289

the latter will indicate the tensions of the different succeeding

portions of the cord, and the angles C A JT2, C A K3, etc., the

angles of inclination a2, «3j etc., of these portions.

§ 156. From the investigations in the foregoing paragraph we

can deduce the following law for the equilibrium of a cord stretched

! >v weights

:

1) The horizontal tension is in all parts of the cord one and the

same, viz.:

H — 8X cos. a
x
=z Sn cos. an.

2) The vertical tension in any portion is equal to the vertical

tension of the cord at the end above it minus the sum of the iveights

suspended above it, or

Vm = VX -(G X + 672 + ...67_0.
This law can be expressed more generally thus : The vertical

tension in any point is equal to the tension in any other lower or

higher point plus or minus the sum of the weights suspended be-

tween them.

If we know besides the weights the angle a
x and the horizontal

tension H, we obtain the vertical tension at the extremity A by

means of the formula
Vx
= H . tang. a

x ,

and that at the extremity B is

Vn = (G x + G, + ... + Gn) - Vx
.

If, on the contrary, the two angles of inclination a
x and an at

the two points of suspension A and B are known, the horizontal

and vertical tensions are determined in the following manner

;

we have
Vn _ tang. an
V

x

~ tang, a"

and therefore V„ = —
-,
—-

-.

tang. a
x

But since F, + Vn
— fy -f G, + . . . i.e.,

itanq. a
x + tang. a,\

V tang. a
x J

we have

(Gx -f 6r2 H- . . . ) tang. a
x sin. a

t cos. ar
v

i
—

;

—

= ( Cti + Cro + . . . )
— t- ——

-

tang. a
x + tang. an

' sin. (a
x + «„)

and

T^ _ (G x + 67o 4- • . . ) tang. an sin. an cos. r,
J

n — 1 :—

7

" = (6ri + 6r 2 + . . . )
—

7
.

tang. a
x + tang. an

;
sin. (a

x + a„)

and consequently

19
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H — Vx cotg. a, = Vu cotg. an — (G, + Gt +
cos. a

x cos. a.
t

V,

sin. (a
x + an

)'

If the two ends of the cord have the same inclination, we have

= Vn = — — '

-
n

; then one endA carries as much

as the other end B.

These formulas are applicable to any pair of points or knots of

the funicular polygon, when we substitute instead of Gx + G2 + . .

.

the sum of the weights, etc., suspended to the cord between the

two points. The vertical tensions of a cord, on which a weight Gm
is hung and the angles of inclination of which are am and am + „ are

sin. am cos. am + , GM
V, G.

sin. (am -

sin. a, cos. am

1 + cotg. am tang. a
r

Gm

and

m + l ~ m
sin. (am + am + a ) 1 + tang. am cotg. am +

,"

These laws are applicable to any funicular polygon stretched by

parallel forces, when we substitute instead of the vertical the direc-

tion of the forces.

Example.—The funicular polygon AK
x
K

2 Kz
B, Fig. 237, is stretched

by three weights G
x
= 20, G2

= 30 and G 3
= 16 pounds as well as by

the horizontal force H
x
= 25

pounds ;
required the axial ten-

sions, supposing the extremities

A and B to have the same angle

of inclination. The vertical ten-

sions at the ends are equal and are

0« 4- G9 + G,

Fig. 237.

V — V -r i — V 4 —
20 + 30 + 1G = 33 pounds.

The vertical tension of the

second portion of the cord is

V2
= Vx

- G
x
= 33 - 20 = 13

pounds ; that of the third is,

F3 = F4 - G 3 (or G
x + G

2
- Vx ) = 33 - 16 = 17 pounds.

The angles of inclination a
x
and a 4 of these extremities are determined

by the formulas

y qq
tang. a

x
= tang. a4 = ~; = — = 1,32

;

those of the second and third portions by the formulas

tang. a
2

tang. a
3

tang. ^-132 2°

H ~ lj83 _
25

G,
twig. a 4

— ~ = 1,32
16

25

= 0,52 and

= 0,68
;
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whence we have

a
t
= a4 = 52° 51', a 2

= 27° 28', a
3
= 34° 13'.

Finally the axial tensions are

g, _ _£ _ VTV^T^ = V SS" '+ 25 a = V 1714 = 41.40 pounds,

5 = VFa
2 + J? a = V 13* + 25 2 = V~794 = 18,18 pounds and

&
3

== VF8
8 + jEP = VT7ir 4r251 = 30,23 pounds.

§ 157. The Parabola as Catenary.—Let us suppose, that

the cord A G B, Fig. 238, is stretched by the weights G„ G.: , Gs,

etc., hung at equal horizontal

F[G
-
238 - distances from each other. Let

M _B us denote the horizontal dis-

tance A M between the point of

suspension A and the lowest

point C by b and the vertical

distance GM by a ; let us also

put the similarly placed co-ordi-

nates of a point of the funicu-

lar polygon N = y and CN
= x. If the vertical tension in

A is = V, that in is consequently = t • V> and' therefore we

have for the angle of inclination to the horizon N T = R Q
= of the portion of the cord Q

tang. <p = | . ^,

in which H designates the horizontal tension.

From this we obtain Q R = OR. tang.
<f>
= R .

V V . . . .

\ . — , which is the difference of height of two neighboring corners
b Jti

of the funicular polygon. If we put y successively = R, 2 (J M,

3 R, etc., the latter formula gives the difference of height of

the first, second, third, etc., corners, counting from the lowest

point upwards ; if now we add all these values, whose number we
can suppose to be = m, we obtain the height GN of the point

above the lowest point G. Here we have

IN\ R NT /
h ,\

VG
>,\

c

bJ G

x = CN= ~ . °J*(OR + 20R + SOR + ... +m.OB)H b
v

V
H

OR'
(1 + 2 + 3 + . . . + m)

V m (m + 1) R'

H ' 1.2b
x*

'
" '

" v ~ H ' 1.2 b

in accordance with the rule for summing an arithmetical series.
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Finally, putting B = —, we obtain

__ V m (m + 1) y*
x ~ H ' ¥m% ' T'

or substituting for the yalue of the tangent of the angle of inclina-

V
tion a of the end A of the rope tang, a = —

_ m (m + 1) y
1

tang, a

.

X ~ tmTb
*

If the number of the weights is very great, we can put m + 1

= m, and consequently

For x — a, y — ~b, and consequently we have

_ V b _ b tang, a
a ~ H ' 2~~~2

x 11*

or more simply - — ~,

which is the equation of a parabola.

If, therefore, an imponderable string is stretched by an infinite

number of equal weights applied at equal horizontal distances from

each other, the funicular polygon becomes a parabola.

For the angle of inclination <£ we have

y 2 a n a n x 2 x n
tang. $ =

f
. T = 2 y . ^ = 2 y . -> = y and

2a
tang, a = —

.

The subtangent for the point is

WT= (TNtang. <j> = y — = 2x=:2 ~CN.
if

If the chains and rods of a chain bridge A B D F, Fig. 239, were

Fig. 239.

B ,, A

without weight or very light in proportion to that of the loaded

bridge D E F, the latter weights alone would have to be considered,

and the chain A C B would form a parabola.
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Example.—The entire load of the chain bridge in Fig. 239 is G = 2 V
= 3200G0 pounds, the span is AB = 2& = 150 feet, the height of the arc

GM = a = 15 feet ; required the tension and other conditions of the

chain. The inclination of the chain to the horizon is determined by the

formula
2 a 30 2

tang, a = -j- = — = - = 0,4, whence a = 21° 48'.

The vertical tension in each point of suspension is

V= \ weight == 160000 pounds,

the horizontal tension is

R= Vcotg. a = 160000 . ^ = 400000 pounds,

and the total tension at one end is

S V' Tl M'2 = FV 1 + cotg? a = 160000

/"29
160000 y -j- = 80000 V29 = 430813 pounds

/«
*&

§ 158. The Catenary.—If a perfectly flexible and inextensible

cord, or a chain composed of. short links, is stretched by its own
weight, the axis of the same will form a curved line, which has re-

ceived the name of the catenary curve (Fr. chainette, Gr. Ketten-

linie). The strings, ropes, ribbons, chains, etc., which we meet

with in practice, are imperfectly elastic and extensible, and conse-

quently form curves, which only approach the catenary, but which

can generally be treated as such. From what precedes we know,

that the horizontal tension in the catenary is equal at all points,

while, on the contrary, the vertical tension in one point is equal to

the vertical tension in the point of attachment above it minus the

weight of the portion of the chain between this point and the point

of suspension. Since the vertical tension at the vertex, where the

catenary is horizontal, is = 0, or since the vertical tension at the

point of suspension is equal to

the weight of the chain from

the point of attachment to the

vertex, the vertical tension in

any point is equal to the weight

of the portion of the chain or

cord below it.

Ifequal portions ofthe chain

are equally heavy, the curve

produced is the common cate-

nary, which is the only one we

Fig. 240.
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will discuss here. If a portion of the chain or cord one foot long

weighs y, and if the arc corresponding to the co-ordinates C 31 = a

andMA = b, Fig. 240, is A C = /, we have for the weight of

the portion A C of the chain G = I y.

If, on the contrary, the length of the arc corresponding to the

co-ordinates CN = x andN = y is — ,9, we have for the weight

of this arc V — s y. Putting, finally, the length of a similar piece

of chain, whose weight is equal to the horizontal tension H, = c,

we have II = c y, and we have for the angles of inclination a and
in the points A and

tang, a = tang. SA II —
-^f

tang. <j> — tang.N T — V

^iand
cy c

sy s

H cy c

§ 159. If we make the horizontal line C H, Fig. 241, equal to

the length c of the portion of the chain measuring the horizontal

tension and C G equal to the length I of arc of the chain on one

side, in accordance with § 155, the hypothenuse G H gives the

intensity and direction of the tension of the cord at the point of

suspension A ; for

C_G I

C II
= - and

GH
S

tang. ORG

= V CG* + GE l = Vr + <?> or

Fig. 241.

V G* + H 2 = VI2 + & . y= G H. y.

If we divide C G into equal parts and draw from H to the

points of division 1, 2, 3, etc., straight

lines, the latter give the intensity and di-

rection of the tensions obtained by dividing

the length of the arc of the chain A C into

as many equal parts. For example, the line

//iT gives the magnitude and direction of

the tension or tangent at the point of di-

vision (P) of the arc A P C, since at this

point the vertical tension — OX. y, while

the horizontal tension is constant and ==

c . y, and therefore for this point we have

. QK.y GK
tana. 6 = = -ftttJ

' cy C II

as is really shown by the figure.

This peculiarity of the catenary can be

made use of to construct mechanically, approximative!)7 correctly,
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this curve. After having divided the given length of the catenary

to be constructed in very many equal parts and laid off the line

H = c, which measures the horizontal tension, we draw the

transverse lines H 1, H 2, H 3, etc., and lay off on CH a division

Gl of the arc of the curve as C a, pass through the point of division

(a) thus obtained a parallel to the transverse line H 1 and cut off

again from it a part a b = G 1. In like manner we draw through

the point (b) thus obtained a parallel to the transverse line H2 and

cut off from it b c = Gl equal to a division of the arc. We now

draw through the new point (c) a parallel to H 3 and make c d

equal to a division of the arc and continue in this way, until we
have obtained the polygon Cab cdcf. We now construct another

polygon Gafiydecpby drawing G a parallel to HI, a (3 to H2,

(3 y to H 3, etc., and by making C a = a (3 = (3 y, etc., = ~G 1 =
12 = 23, etc. If, finally, we pass through the centre of the lines

a a,b ft c y . . ./ </> a curve, we obtain approximatively the catenary

required'.

For practical purposes we can often obtain accurately enough

a catenary corresponding to given conditions, e.g. to a given width

and height of the arc or to a given width and length of arc, etc.,

by hanging a chain with small links against a vertical wall.

§ 160. Approximate Equation of the Catenary.—In

many cases, and particularly in its application to architecture and

machinery, the horizontal tension of the catenary is very great

compared to its vertical one, and therefore the height of the arc is

small, compared with its width. Under this assumption, an equa-

tion for this curve can be found in the following: manner

:

Let s denote the length, x the abscissa GN and y the ordinate-

N of a very low arc G 0,

Fig. 242. We can, according

to the remark upon page 298*V
Fig. 242.

M
N
u____^-^" put approximatively

[»!(i)>=1 1

and therefore the vertical tension in a point of a low arc of a

catenary is
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and the tangent of the tangential angle T N = $ is

If we divide the ordinate y into m equal parts, we find the

portion R Q — N U of the abscissa X corresponding to such a

division Rby putting

RQ = 0~R tang. cf>
t= OR .

V-
[ 1 + |(

'- V 1.

Since a; is very small compared to y, we have approximative^

R Q ~ OR.-. Substituting now R = — and successively for y

the values —,
—-, —¥-, etc., we obtain one after the other the differ-m tn m

ent portions of x, the sum of which is

x = JLAI + 2 + 3 + ... + w) = J^«J*±i) (§i 67 ) = JC;
c m 2 v ! cm 2 vo 7 2 c

the latter equation is that of the parabola.

If we proceed more accurately and substitute in the formula

it
instead of x, the value ~- just found, we obtain

Putting y again successively equal to —, -—, —, etc., and
//t' //fc' //C'

instead of R, — , we obtain successively the different portions ofm
x, and consequently their sum

^=-^r^(l + 2 + 34-... +m)+-^.(^)
3

(l
3 + ^

3+ 3
3
4-... +m3)l

cmL m v
6 c" \m

/

'J

When the number ofmembers is very great, the sum of the cardi-

nal numbers 1 + 2 + 3 . . . + m is = -^ and the sum of their cubes

is = -j- (see "Ingenieur," page 88). Hence we have

z=m + f
l Xl-LB.

c\2 6 & 4 /

1} X ~2
c

4
24 c' "2d1 +

12*U/ J'

the equation of very powerfully stretched catenary.
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By inversion we obtain
nft

4: C" X^ O?
y* — 2 ex — -^~ — 2cx——r—r — 2 c x —, whence

JL/i C x/& C o

2) y = y 2 ex --, or approximatively,
o

y = V2 ex 1 - --?-

\ 12 c,

The measure of the horizontal tension is given by the formula

__ y' y
l

y
1

y* 4 ^
C ~

~2x~
+

2 x '. 12 c
3 ~~ 2x~

+
24^

%

~tf~>

LE *

6) C -2x +
l'

The tangential angle is determined by the formula

el 8U)J
H' +

|(I)]

-¥['.+ j(i)']t'-l(J)'l-

The formula for the rectification of the curve is

5) s =*[-i(i)>*M(in-
Example—1) The length of the catenary for a width of arc 2 b == 16

feet and for a height of arc a = %\ feet is

..»'="[> + i («!='*• [^4(fy]
= 16 + 16 . 0,065 = 17,04 feet;

and the length of the portion of the chain, which measures the horizontal

tension, is

*-ri + J =T + 5 = 13
'
8 + °'417 ~ 13

'
217 feet;

the tangent of the angle of inclination at the point of suspension is

2«r 1/aVl 5 [\ 1/5 \
al 5.1,03255 A •

=

tang, a = -^1 +^ J
= - |l +_y J

-—^_ = 0,6453...,

whence the angle itself is a = 32° 50'.

2) If a chain is 10 feet long and the width of span is 91 feet, the height

of* arc is

a/^h 7^7> a / 3 (10 - 9^) % i/ 3 19 i/57A7

2
v" ~ T 2 2 '2 ~ V 2 ' 16 ~~ T 32

=Vl,7812= 1,335 feet,
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and the measure of the horizontal tension is

_¥' a 4.75 2

C =
2~a

+ 6" ~~
2 .1,335

1,335 = 8,673 feet.

3) If a string 30 feet long and weighing 8 pounds is stretched as nearly

horizontal as possible by a force of 20 pounds, the vertical tension is

V = \ G = 4 pounds, and the horizontal force

11= V^7^T2 =V202 -42 = V384 = 19,596 pounds,

the tangent of the angle of inclination at the point of suspension is

te^ = g=TWo =
'
20412

'

and the angle itself is 11° 32'; the measure of the horizontal tension is

e = - = H: £= = ?? H= 73,485 feet,

y oU o

the width of the span is

"^"i1 - I (i)> 3° • t
1 - T ' (f^)>30-0,208= 29,792 ft.,

and the height of the arc

a = |/?&(Z-&) = y
3 29,792 . 0,208

2
- V 29,792 . 0,078 = 1,524 feet

Remark 1.—We find from the radius CA = CB = CD = r and the

ordinate A M — y of an arc of a circle A B, Fig. 243, the ordinate

A N = B N=y 1
of half the arc A B = B D, by putting

:CK- = AW* + tflf3 = AM* + (CB- O My

i.e. 4 y ±
3 = 2 r3 — 2 r \^r 2 — y 2

.

= AM 2 +(CB- ^/CA 2-AM 2
)
2=2CA'2-2CA VCA'>

Fig-. 243. 1Jo^ rc.Hence wc uavc
n

a/ r 2 — r V r 2

A M\

small compared with r

, or approximatively, if y is

By repeated application of this formula we find the

ordinate of a quarter of the arc

^ ~ 2 ^ +
8W - 4 y +

8>V \ * " «W
and that of an eighth of the arc

1 + £)(<*<* 8r 2
,

Since the ordinates of very small arcs can be put equal to the arcs

themselves, we obtain for the arc A B approximatively
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= 8 • Vz = V
(
x + [! + 4 + (i)

3
] gT^ or more accurately

- 1 + [1 + i+ (-1-)
3 + (i)

3 + J
8 r-J

- =$ (see Irigenieur, page 82),But 1 + I + (i) 3 + (i)
3 + . . . is = T

and therefore

• = (»+&)"
or substituting instead of /• the abscissa J3 J/ = a- by putting 2 r x = y2

,

vvc obtain

This formula is not only applicable to the arc of a circle, but also to all

low arcs of curves.

Remark 2. If we compare the equation

x 2

2 ex — —

,

Fig. 244. y

found above, with the equation of the ellipse

y = — y 2 ax — x2

Ob

(see Ingenieur, page 189), we find

— — c and — = -*, and consequently

a — % c and & = a VJ = c v3.

The curve formed by a powerfully stretched string can therefore be

considered as the arc A C B, Fig. 244, of an ellipse, the major axis of which

is K C — a = 3 c and the minor axis is K D = K E = & = cV3 =
a \% = 0,577 a.

(§ 161.) Equation of the Catenary.—The complete equa-

tion of the catenary can be found in the following manner by the

aid of the calculus. According to § 158, we have for the angle of

suspension T N = <£, Fig. 245,

formed by the tangent T to a

point of the catenary ACB with

the horizontal co-ordinate W,

when the arc C is denoted by s

and the horizontal tension by H =
cy,

tang. = -

But is also equal to the angle

OPE formed bv the element of

Fig. 245.

M

\ Tl . /
\] y «. ~7
ov J

C
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the arc OP.— d s with the element P R = d y of the ordinate

N = y, and hence

4 n d r> # # ^ ^
t*V.OPB =rs =jp

in which E is considered as an element tZ a? of the abscissa C N
= a;. From the above it follows, that

dx _s ^ dy* _ c
1

dy~c' dx* ~ s'
2
*

But d s* is = d x* + d y\ or d y* = d s* — eZ x\ whence

ds* — dx* c
1

dx* ~ s
2

'

Clearing the equation of fractions and transposing, we obtain

sds
d x* (s* + c

2

) = s
2 d s\ or d x = "7Fy=f.

Putting s
2 + e

2 = w, we have
- die

2sds = du and dx = %—=- = I u—Z d u.

By integration we obtain (according to Article 18 of the In-

troduction to the Calculus)/vfc
u—\du— i

. -r- + Const = Vu + Const.
* i

= *V + c
2 + OwwJ.

Finally, since for # = 0, s is also == 0, we have = V~~&
-f Const.,

i.e. Const = — c and

1) # = V s
2 + c

2 — c, or inversely

5 = y (» + c)
2 - c

2 = V2co; + a;
2

, and

_ s* -a?
C ~ 2x

Example.—If a chain J. (71?, 10 feet long and weighing 30 pounds, is

suspended in such a manner that the height of the arc is GM = 4 feet, we
have

y = |o. = 3 pounds,

_ gg _ 3S _ 52 ^ 42 _
^

C ~ 2* ~ 8
_ ¥>

and consequently the horizontal tension

#=cy = 3.f = 3£ pounds.

(§ 162.) As in the last paragraph by eliminating d y we obtained

an equation between the arc s and the abscissa x, in like manner

by eliminating d x we can deduce an equation between the arc .<?

and the ordinate y. For this purpose we substitute in the equation
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-j^x = —,d x1 = ds2 — dir
d x- s

2 ' J

and obtain the equation

-v = =———, or d y
2
(s

2 + c~) = c
2

*Z a", whence
c
2 dy J v 7

Dividing the numerator and denominator by c and putting

- = v, we obtain
c

cat
8
-)

\cl c d v
d y =—

:

= 9

Vl + v*

^e-)
and the formula XIII, in Article 26 of the Introduction to the

Calculus, gives us the corresponding integral

y
r dv

+ Vs2 + &o\ ,/«+ y*+c\
*' = ''{

e }
Substituting in this formula s — V2 c x + x2

, we obtain the

proper equation for the co-ordinates of the common catenary

or
Jc +x + V2cx + z2

\
3) y=cl\ ),

(s + x\ s
2 — x\ Is + x\

Finally, by inverting 2 and 3, we obtain

o) s =
y
e
<_

e
cy.- and

6)*=[i(- + -)~l>
e denoting the base 2,71828 ... of the Naperian system of loga-

rithms (see Article 19 of the Introduction to the Calculus).

Example.—The two corresponding co-ordinates of a point of the cate-

nary are x = 2 and y — 3 ; required the horizontal tension e of this curve.

Approximatively, according to No. 3 of paragraph 160, we have

V 2 x 9 3
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But according to No. 3 of this paragraph (162), we have exactly

_ (c + x + V 2 c x + ar\

Substituting for c, 2,58, we find the error

= 3 — 3,035 = — 0,035.

If, however, we assume c = 2,53, we find the error

= 3 - 3,002 = — 0,002.

In order to find the true value of c, we put according to a well known
rule (see Ingenieur, page 76)

c _ 2,58_ / _ 0,035

c- 2,53 ~ ft

~
0,002

~"
' '

whence it follows that 16,5 . c = 17,5 . 2,53 - 2,58 = 41,69 and

41 69
c = -^— = 2,527 feet.

16,5

Remabk.—We can express very simply s, x and y for the common cate-

nary in terms of the angle of suspension <j> ; for from what precedes we have

c sin. <j>

s — c tang. $ =
cos. 9

na.
2

4> — 1) = —^~
cos. <p

cos. <p

, /-+ 1 v~ a. c 0- — o08- 0)
x = c (V 1 + fo«^ ^ — lj = — and

y — cl {tang. <p + V 1 + tang.'
1
$) = cl I

:— ).

y cos, o f

By means of these formulas we can easily calculate the lengths of the

arcs and of the co-ordinates for different angles of susjoension, and a useful

table, such as is given in the Ingenieur, page 353, may be thus prepared.

For this purpose we need adopt as base but a single catenary, and in this

case the best one is that, in which the measure of the horizontal tension is

= 1 ; to obtain s, x and y for another catenary corresponding to the hori-

zontal tension c, we have but to multiply the values of s, x and y given in

s II

the table by c. If tang. <j> were not = -, but to -, we would have the com-
c c

mon parabola, for which
c r sin.

(f>
* i\ * + <f\]

v 2 \eos. $)

c sin. §

x = g tang.

y = c tang.
<f>
=

COS. <?



§ 163.] EQUILIBRIUM IN FUNICULAR MACHINES. 303

§ 163. Equilibrium of the Pulley.—Eopes, belts, etc., are

the ordinary means employed to transmit forces to the pulley and

the wheel and axle. We will here discuss only the most general part

of the theory of these two apparatuses, so far as it can be done with-

out taking into consideration the friction and the rigidity of cordage.

A pulley (Fr. poulie ; G-er. Eolle) is a circular disc or sheave

ABC, Figs. 246 and 247, movable about an axis and around

Fig. 246. Fig. 247.

whose circumference a string is laid, the extremities of which are

pulled by the forces P and Q. The block (Fr. chape ; Ger. Gehixuse

or Lager) of a fixed pulley (Fr. p. fixe ; Ger. feste R), in which the

axles or journals rest, is immovable. That of a movable pulley

(Fr. p. mobile ; Ger. lose E.) on the contrary is free to move.

"When a pulley is in equilibrium, the forces P and Q at the ex-

tremities of the cord are equal to each other ; for every pulley is a

lever with equal arms, which we obtain by letting fall from the

axis C the perpendiculars C A and G B upon the directions D P
and D Q of the forces or cords. It is also evident, that during any

rotation about G the forces P and Q describe equal spaces r ,#.

when r denotes the radius CA = GB and (3° the angle of rotation,

and from this we can conclude, that P and Q are equal. The forces

P and Q give rise to a resultant G R = R, which is counteracted

by the journal or axle and is dependent upon the angle AD B — a

formed by the directions of the cords, it is given by construction

as the diagonal of the rhomb GP
X R Qx

constructed with P and a
;

a
its value is R= 2 P cos.

2'
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§ 164. The weight to be raised or the resistance Q to be overcome

in a fixed pulley, Fig. 246, acts exactly in the same manner as the

force P, and the force is therefore equal to the resistance, and

the use of this pulley produces no other effect than a change of

direction.

On the contrary, in a movable pulley, Fig. 247, the weight R
acts on the hook-shaped end of the bearings of the axle, while one

end of the rope is made fast to some immovable object ; here the

force is

EP =
2 cos.

Designating the chord A MB corresponding to the arc covered

by the string by a and the radius C A == B, as before, by r, we
have

a = 2 A M=2CA cos. C A M=2 C A cos. A D M = 2 r cos.

and therefore

2 cos.

and
P
R

Fig. 248.

Hence, in a movable pulley, the force is to the load as the

radius of the pulley is to the chord of the arc covered by the string.

If a = 2 r, i.e. if the string covers a semicircle, Fig. 248, the

force is a minimum and is P = {r R ; if a = r or

if 60° of the pulley is covered by the string, we
have P — R. The smaller a becomes, the greater

is P; lb., when the arc covered by the cord is

infinitely small, the force P is infinitely great.

The relation is inverted, when we consider the

spaces described ; if & is the space described by

P, while R describes the space h, we have Ps —
Rh, whence

s _ a

li
~ ?

The movable pulley is a means of changing

the force, and is used to gain power ; by means

of it we can, e.g., raise a given load with a smaller

force ; but in the same ratio as the force is in-

creased the space described is diminished.
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Remark.—The combinations of pulleys, such as block and tackle, etc.,

as well as the influence of friction and of the rigidity of cordage upon the

state of equilibrium of pulleys, will be treated in the third volume.

Fig. 249.

§ 165. Wheel and Axle.—The wheel and axle (Fr. roue sur

Tarbre, G-er. Kadwelle) is a rigid combination A B F E, Fig. 249,

of two pulleys or wheels mov-

able about a common axis.

The smaller of these wheels

is called the axle (Fr. arbre,

Ger. Welle), and the larger

the wheel (Fr.roue, Ger. Bad).

The rounded ends E and FT

upon which the apparatus

rests, are called the journals

(Fr. tourillons, Ger. Zapfen).

The axis of revolution of a

wheel and axle is either hori-

zontal, vertical or inclined.

We will now discuss only

the wheel and axle, movable

around a horizontal axis. "We

will also suppose, that the forces P and Q or the force P and the

weight Q act at the ends of perfectly flexible ropes, which are

wound around the circumferences of the wheel and of the axle.

The questions to be answered are, what is the relation between the

force P and the weight Q, and what is the pressure upon the bear-

ings at E and F ?

If at the point C, where the plane of rotation of the force P
cuts the axis E F, we imagine two equal opposite forces CP — P
and G P = — P to be acting in a direction parallel to that of the

force of rotation P
9 we obtain by the combination of these three

forces a force C P — P, which acts upon the axis, and a couple

(P, — P), whose moment is == P . C A — P a. when a designates,

the arm of the force A P = P or the radius C A of the wheel..

Now if we imagine the two forces D Q — Q and D Q = — Q to he=

applied at the point D, where the plane of revolution of the weight

Q cuts the axis E F, we obtain also a force D Q = Q acting upon-

the axis and a couple (Q, — Q), whose moment is — Q . D B — Qh,,

when b designates the arm of the weight Q applied in B or the-

20
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radius D B of the axle. Since the axial forces C P = P and

D Q = Q are counteracted by the bearings, and consequently

can have no influence upon the revolution of the machine, it is

necessary, in order to have a state of equilibrium, that the two

couples, which act in parallel planes, shall have equal moments
(compare § 94), or that

p a .= Q b, or

Q ~ a

In every wheel and axle ivhich is in equilibrium, whatever may
be its lengthy the moment P a of the pozver is, as in the lever, equal to

the moment Q b of the load, or the ratio of the power to the load is

equal to that of the arm of the load to the arm of the power.

If more than two forces act upon the wheel and axle, the sum
of moments of the forces tending to turn it in one direction is

naturally equal to the sum of those tending to turn it the other.

§ 166. The axial forces O P = P and D Q = Q can be

decomposed into the vertical forces C P
x
— Px and D Q x

= ft and

into the horizontal forces C P2 = P* and D Q.2 = (X. ; the first two

forces combined with the weight of the machine G, which acts at

tlie centre of gravity S'oi the machine, give the total vertical

pressure on the bearings, which is

V
x + F2 = P, + Q x + G,

while the horizontal forces P
?
and Q.t produce the lateral pressures

H
x
and H* on the bearings. If a is the angle of inclination P OP.,

of the direction of the force P to the horizon and ft that Q J) Qu

'of the load, we have

P
x
= P sin. a and P» — P cos. a, as well as

Q x

— Q sin, and Q^ = Q cos. (3.

If now I is the total length of the axis E F, d the distance C E,

c« the distance D E and c the distance 8 E of the points of the axis

*C, D and 8 from one extremity E of the axis, we have, according to

'the theory of the lever:

1) When we consider 2? as fulcrum of the lever E F, which is

:acted on by the forces P„ ft and G,

V, . EF= Px . EC + Qx . E~D + G . ~E8, lb.

Vtl=P t
d+'Q

l
e+ Gs,
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whence we obtain the vertical pressure

K2 = -j , and

2) considering F as the fulcrum of the supposed lever,

VX
.FE= P

X
.FZ' + Q x

.FD'•+ G.FS,i.e.

yx i = ft (i -ay +Qi (l—e) + G(l- s),

whence we deduce the vertical pressure

Fig. 249.

The horizontal pressures II
X
and IIS are found, as follows, from

the horizontal forces P2 and Q».

1) Considering E as the fulcrum of the lever E F acted on by

the forces P2 and Q.2, we obtain

H, . EF = P2 . ElJ - ft . El), i.e.

ff,l= P»d- Q, e,

whence we obtain the horizontal pressure

P2 d — Q,eH,=

2) Considering F as the fulcrum, we have

Hx
. F~E = P,.TC- Q,. FD, i.e.

ffx l = P,(l- d) - Q, (I - e%

from which we deduce the horizontal pressure

P2 (l-d)- & (I - e)m =
i
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By the application of the parallelogram of forces, we obtain the

total pressures Rx
and B2 upon the bearings E and F, and they are

R x
= Wf. + B? and E.2 = W; + Hi

Finally, if 6
t and d2 are the angles R x EHx and B2 FH2 formed

by these pressures with the horizon, we have

tang, d, = -^- and tang. 6.2 = —

\

Hi tt2

Example.—The weight Q, suspended to a wheel and axle, acts verti-

cally and weighs 365 pounds ; the radius of the wheel is a = If feet; the

radius of the nxle is ft = f foot ; the weight of the wheel and axle together

is 200 pounds ; the distance of its centre of gravity from the journal E is

H- feet; the centre of the wheel is at a distance d =
f-
from this journal

E, and the vertical plane, in which the weight acts, is e = 2 feet distant

from the same point, while the whole length of the axis is EF=l = 4

feet ; now if the force necessary to produce equilibrium acts downwards at

an angle of inclination to the horizon of a = 50°, how great must it be and

what are the pressures upon the bearings ? Here we have Q = 365, (3 =
90°, and consequently Q ±

= Q sin. (3 = Q and Q 2
= Q cos. (3 = 0, P is

unknown, and a is = 50°, whence P
1
= P sin. a = 0,7660 . P and P2

is — P cos. a = 0,6428 . P, but a is = If = f and b = £, whence

P = - Q = s
. 365 = 156,4 pounds, P

t
= 119,8 and P2

= 100,5 pounds.

Since 1 = 4, d = -|-, c = 2 and s = § , we have I — d = -1/, I — c = 2

and I — 3 — f

.

1) On the bearing F the vertical pressure is

119,8. | + 365.2 +200.

|

F2 = ! ±-r
—-z = 280>° Pounds,

and the horizontal -pressure is

100,5.| — 0.2 Mnn
'

•

B2
= - — = 18,8 pounds,

and consequently the resulting pressure is

R2
= YV2

Z + H2
2 = ^2802 + 18,83 = 280,6 pounds,

and its inclination to the horizon is determined by the formula

tang. <5 = ^>-, log tang. 6
2
= 1,17300, from which we obtain d 9 = 86° 9' 5".

18,8

2) For the bearing at E
119,8.-^ + 365.2 + 200.1 ,hi fl , .Vx

= * j = 404,8 pounds and

100,5 .
i£ -

Q .

- = 81,7 pounds,
1 4

and consequently the resulting pressure is

R
x
= \/~V

x
* + Et

2 = 4
7404,8 3 + "8177*"= 413,0 pounds,
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and for its inclination 6
t
to the horizon we have

tang- 6
i = -0TI7-3 locJ ian(J- 6

i = 0,69502 or 6
t = 78° 35'.

We see that these results are correct, for we have

Vx + V2
= 280 + 404,8 == 684,8 = P

t + Q t + G, and

H
t
+H

2
= 81,7 + 18,8 = 100,5 = P3 + Q2 .

CHAPTER V.

THE RESISTANCE OF FRICTION AND THE RIGIDITY OF CORDAGE.

§ 167. Resistance of Friction.—Heretofore we have sup-

posed (§ 138) that two bodies could act upon one another only by

forces perpendicular to their common plane of contact. If these

bodies were perfectly rigid and their surfaces of contact mathemat-

ical planes, i.e. unbroken by the smallest hills or hollows, this law

would also be confirmed by experiment ; but since every material

body possesses a certain degree of elasticity or even of softness, and

since the surface of all bodies, even the most highly polished, con-

tains small hills and valleys and in consequence of the porosity of

matter does not form a perfectly continuous plane, when two bodies

press upon each other their points of contact penetrate, pro-

ducing an adhesion of the parts, which can only be overcome by a

particular force, whose direction is that of the plane of contact.

This adhesion of bodies in contact, produced by their mutual pene-

tration and grasping of each other, is what is called friction (Fr.

i'rottement, G-er. Reibung). Friction presents itself in the motion

of a body as a passive force or resistance, since it can only hinder

or prevent motion, but can never produce or aid it. In investiga-

tions in mechanics it can be considered as a force acting in opposi-

tion to every motion, whose direction lies in the plane of contact

of the two bodies. Whatever the direction may be In which we
move a body resting upon a horizontal or inclined plane, the fric-

tion will always act in the opposite direction to that of the motion.

e.g., when we slide the body down an inclined plane, it will appear

as motion up the same. If a system of forces is in equilibrium, the

smallest additional force produces motion as long as the friction

does not come into play; but when friction is called into existence

a greater addition of force, the amount of which depends upon the

friction, is necessary to disturb the equilibrium.
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§ 168. In overcoming the friction, the parts which come in

contact are compressed, the projecting parts bent over, or perhaps

torn away, broken off, etc. The friction is therefore dependent not

only upon the roughness or smoothness of the surfaces, but also

upon the nature of the material of which the bodies are composed.

The harder metals generally cause less friction than the softer

ones. We cannot establish a priori any general rules for the de-

pendence of friction upon the natural properties of bodies ; it is in

fact necessary to make experiments upon friction with different

material?, in order to be able to determine the friction existing

between bodies under other circumstances. The unguents (Fr. les

enduits ; Gcr. die Schmieren) have a great influence upon tho.

friction and upon the wearing away of bodies in contact. The
pores of the bodies are filled and the other roughnesses diminished

by the fluid or half fluid unguents, such as oil, tallow, fat, soaps,

etc., and the mutual penetration of the bodies much diminished ;

for this reason they diminish very considerably the friction.

But we must not confound friction with adhesion, i.e., with

that union of two bodies which takes place when the bodies come
i u contact in very many points without the existence of any pres-

sure between them. The adhesion increases with the surface of

contact and is independent of the pressure, while for Motion the

reverse is true. When the pressures arc small, the adhesion appears

to be very great compared with the friction, but if the pressures

are great, it becomes but a very small portion of the friction and

can generally be neglected. Unguents generally increase the adhe-

sions, since they produce a greater number of points of contact.

§ 169. Kinds of Friction.—We distinguish two kinds of

friction, viz., sliding and rolling friction. The sliding friction

(Fr. frottement de glissement; Ger. gleitendc Reibung) is that

resistance of friction produced, when a body slides, i.e., moves so

that all its points describe parallel lines. Rolling friction (Fr. f. de

roulement ; Ger. rollende or wiilzendc Reibung) on the contrary,

ie that resistance developed, when a body rolls, i.e., when every

point of the body at the same time progresses and revolves and

when the point of contact describes the same space upon the

moving body as upon the immovable one. A body M, Fig. 250,

supported on the plane II B, slides, for example, upon the plane

and must overcome sliding friction, wlicn all points such as A, B, C,

etc, describe the parallel trajectories A A Xi
B B

x , C C
} , etc., and

therefore the same points of the moving body come in contact with
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different ones of the support. The body M, Fig. 251, rolls upon

the plane H R and must therefore overcome rolling friction, when

Fig. 251.

H-ii!g

the points A, B, etc., of its surface move in such a manner, that

the space A E B
x
= the space A D B — A

x
D

x
B

]
an . iilao that

space A E is = the space A D and the space B
x
E — u , i)

: , etc.

A particular kind of friction is the friction of axles or journals

which is produced, when a cylindrical axle, journal or gudgeon

revolves in its bearing. We distinguish two kinds of axles, hori-

zontal and vertical. The horizontal axle, journal or gudgeon

(Fr. tourillon ; Ger. liegende Zapfen) moves in such a manner that

different points of the gudgeon, etc., come successively in contact

with the same point of the support. The vertical axle or pivot

(Fr. pivot; Ger. stehende Zapfen) presses with its circular base

upon the step, on which the different points of it revolve in con-

centric circles.

Particular kinds of friction are produced, when a body oscillates,

upon an edge, as, e.g., a balance, or when a vibrating body is sup-

ported upon a point, as, e.g., the needle of a compass.

Friction can also be divided into immediate (Fr. immediat ;.

Ger. unmittelbare) and mediate (Fr. mediat ; Ger. mittelbare). In

the llrst case the bodies are in immediate contact ; in the latter,,

on the contrary, they are separated by unguents, as, e.g., a thin

layer of oil.

We distinguish also the friction of repose or quiescence (Fr. f. do-

repos ; Ger. E. dcr Euhe), which must be overcome when a body

at rest is put in motion, from the friction of motion (Fr. f. do-

mouvement ; Ger. R. der Bcwegung), which resists the continuance

of a motion. •

§ 170. Laws of Frictions.—1. The friction is proportional'

to the normal pressure between the rubbing bodies. If we press,

a body twice as much against its support as before, the friction

becomes double. A triple pressure gives a triple friction, etc.

If this law varies slightly for small pressures, we must ascribe the

variations to the proportionally greater influence of the adhesion.
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2. The friction is independent of the rubbing surfaces or sur-

faces of contact. The greater the rubbing surfaces the greater is,

it is true, the number of the rubbing parts, but the pressure upon
each part is so much the smaller, and consequently the resistance

of friction upon it is less. The sum of the frictions of all the par(s

is therefore the same for a large and for a small surface, when xho

pressure and other circumstances are the same. If the surfaces of

the sides of a parallelopipedical brick are of the same nature, the

force necessary to move the brick on a horizontal plane is the same
whether it lies on the smallest, medium, or greatest surface. When
the surfaces are very great and the pressures very small, this rule

appears to be subject to exceptions on account of the effect of the

adhesion.

3. The friction of quiescence is generally greater than that of

motion, but the latter is independent of the velocity ; it is the

same for high and Ioav velocities.

4. The friction of greased surfaces (mediate friction) is gene-

rally smaller than that of ungreased surfaces (immediate friction)

and depends less upon the rubbing bodies themselves than upon

the unguent.

6. The friction on axles is less than the ordinary friction of

eliding. The rolling friction between smooth surfaces is in mos:

cases so small, that we need scarcely take it into account in com-

parison with the friction of sliding.

Remark.—The foregoing rules are strictly true only, when the pressure

upon the unit of surface of the bearings is a medium one, and when the

velocity of the circumference of the journal does not exceed certain limits.

This medium pressure is from 250 to 500 pounds per square inch, and the

mean velocity of the circumference should be 2 to 10 inches. When the

pressure is much smaller, the adhesion forms a very sensible portion of the

resistance which then becomes dependent upon the magnitude of the rub-

bing surfaces, and where the pressure and velocity are very great a large

quantity of heat is developed, which volatilizes the unguents, thus causing

the journals to cut very quickly. When, as in the case of turbines, rail-

road cars, etc., we cannot avoid these

great velocities, we must counteract this

heating of the axle by increasing the rub-

bing surfaces, i.e., by increasing the length

and thickness of the axles.

§ 171. Co-efficient of Friction

—From the first law of the foregoing

paragraph we can deduce the fol-

lowing. If in the firs
4

- plaee a body
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A C, Fig. 252, presses with a force N against its support, and if

to move it along, i.e., to overcome its friction, we require the

force F, and if in the second place, when pressing with the force

iV~i a force Fx
is necessary to transfer it from a state cf rest into

one of motion, we will have, according to the foregoing paragraph.FN i77
,

F
=
N'

whcnce F = y '
iY*

If by experiment we have found for a certain pressure JV", the

corresponding friction. FJ} we see from the above, that if the rub-

bing bodies and other circumstances are the same, the friction F
corresponding to another pressure N can he found by multiplying

this pressure by the ratio \^) between the values F
x
and Nx

cor-

responding to the first observation.

This ratio of the friction to the pressure or the friction for a

pressure = 1, e.g. pound, is called the coefficient of friction

(Fr. coefficient du frottement ; Ger. Eeibungscoefficient) and will

in future be designated by (p. Hence we can put in general

F = <p W.

The coefficient of friction is different for different materials

and for different conditions of the same material and must there-

fore be determined by experiments undertaken for that purpose.

If the body A C is pulled along a distance s upon its support; the

work to be performed is F s. The mechanical effect <•> N s ab-

sorbed by the friction is equal to the product of the coefficient of

friction, the normal pressure and the space described. If the sup-

port is also movable, we must understand by s — s
x
— s.2 the relative

*pace described by the body, and F s ~ (p JSf s is the work done by

the friction between the two bodies. The body that moves the

most quickly must perform, while describing the space £r, the me-
chanical effect N s x and the body which moves slower gains in

consequence of the friction while describing the space s» the me-

chanical effect (p Ns2 ', the loss of mechanical effect caused by the

friction between the two bodies is

<p JSFs, - <p Ns« — (p JSr(s x
— £o) = <p Ns.

Examples—1. If for a pressure of 2G0 pounds the friction is 91 pounds,

the corresponding coefficient of friction is $ = ¥
9/- = ^ = 0,35.

2. In order to pull forward a sled weighing 500 pounds on a horizontal

and very smooth snow-covered road, when the coefficient of friction is

o = 0.04, a force F = 0,04 . 500 = 20 pounds is necessary.

3. If the coefficient of friction of a sled loaded with 500 pounds and
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Fig. 2:

pulled over a paved road is 0,45, the mechanical effect required to move
the sled 480 feet is </> Ns = 0,45 . 500 . 480 = 108000 foot-pounds.

§ 172. The Angle of Friction or cf Repose and the
Cons of Friction.—If a body

A O, Fig. 253, lies apon an in-

clined plane F II, whose angle of*

inclination is F II R = a, we can

decompose its weight into the nor-

mal pressure N = G cos. a, and

into the force S — G sin, a paral-

lel to the plane. The first force

causes the friction F — 6 G cos. a,

which resists every motion upon
the plane ; consequently the force necessary to push the body up
the plane is

P = F + S = G cos. a 4- G sin. a

--. (sin, a + cos. a) G,

and the force necessary to push it clown the same is

P
x
— F — 8 = (0 cos, a — sin. a) G.

The latter force becomes = 0, i.e. the body holds itself upon.

tli 3 inclined plane by its friction when sin. c, = $ cos. a, i.e. when
/ mg. a -- (p. As long as the inclined plane has an angle of incli-

nation, whoso tangent is less than (p, so long will the body remain

at rest upon the inclined plane ; but if the tangent of the angle of

inclination is a little greater than <p, the body will slide down the in-

clined plane. We call this angle, i.e. the one whoso tangent is equal

to the coefficient of friction, the angle of friction or of repose or of

resistance (Fr. angle du frottcment, Gcr. Eeibungs - or Euhcwlnkel).

Hence we obtain the coefficient of friction (for the friction cf qui-

escence) by observing the angle of friction p and putting cl> = tang. p.

In consequence of the friction, the surface F II, Fig. 254, of a

body counteracts not only the normal pressure N of another body

A B, but also any oblique pressure P when

the angle JV B P — a formed by its direc-

tion with the normal to the surface docs

not exceed the angle of friction ; since the

force P gives rise to the normal pressure

B N = P cos. a, and to the lateral or

tangential pressure B S = S = P sin. a

and since the normal pressure P cos. a pro-

duces the friction <£ P cos. a, which opposes

Ftg. 254.
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every movement in the plane F H, S can produce no motion as

long as we have

<p P cos. ay P sin. a or cos. a > sin. a, i.e.

tang, a < cj> or a < p.

If we cause the ;mgle of friction C B D — p to revolve about

the normal C B, it describes a cone, which we call the cone of fric-

tion or of resistance (Fr. cone de fr., Ger. Reibungshcgel). The

con j of friction embraces the directions of all the forces, which are

completely counteracted by the inclined plane.

Example.—In order to draw a full tucket weighing £09 pounds up a

wooden plane inclined to the horizon at an angle of 50°, the coefficient of

friction being 9 = 0,43, we would require a force

P = ($ cos. a + sin. a) G = (0,48 cos. 50° + sin. 50°) . S00

= (0,308 + 0,766) . 200 = 215 pounds.

In order to let it down or to prevent its sliding down, we would have need

of a force

P
t
=

( p cos. a — sin. a) G = — {sin. 50° — 0,48 cos. 50°) . 200

= — (0,766 — 0,308) . 200 = — 91,5 pounds.

§ 173. Experiments en Friction.—Experiments on friction

have been made by many persons ; those, which were most ex-

tended and upon the largest scale, are the experiments of Coulomb

and Morin. Both these experimenters employed, for the determina-

tion of the coefficient of friction of sliding, a sled movable upon a

horizontal surface and dragged along by a rope passing over a fixed

pulley, to the encl of which a weight was attached, as is shown in

Fig. 255, in which A B is the surface, GD the sled, E the pulley,

and F the weight. In order to obtain the coefficients of frictions

for different substances, not only the runners of the sled, but also

the surface upon which it slid, were covered with the smoothest

possible plates of the material to be experimented on, such as wood,

iron, etc. The coefficients of friction of rest were given by the

weight necessary to bring
FlG

-
255 - the sled from a state of

rest into motion, and the

coefficients of friction of

motion were determined

by aid of the time required

by the slid to describe a

certain space s. If G is

the weight of the sled and
P the weight necessary to move the same, we have the friction
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p . ry

=
<f> G, the moving force = P — G and the mass M=——

—

9
whence, according to §68, the acceleration of the uniformly acceler-

ated motion engendered is P — d> G

and inversely the coefficient of friction is

P _ P±G

p

>9 G " G 'g
2s

But we have also (§ 11) s == \p f, whence p — ~ and

/ - ? _ P + A if9 ~" # £ ' gf
If we allow the sled to slide down an inclined plane, the moving

force is = G (sin. a — cos. a), and the accelerated mass is = — ;

9
'

consequently the acceleration is

2 s G (sin. a — d> cos. a) . .
,

p =-— = — '- = g (sin. a — (p cos. a)

J
2 s

or —t
- = sin. a — <p cos. a, and consequently the coefficient of sliding

9*

friction is <p = tang, a .
J

g t cos. a

If li denotes the altitude, I the length and a the base of the

inclined plane, we have also 6 — -,. .

*

r T a g a t
In order to determine the coefficient of friction for the friction

of axles or journals, they employed a fixed pulley A C B, Fig. 256.

around which a rope was wound, to which the weights P and Q
were suspended; from the sum of the weights P + Q we have

the pressure B upon the axle, and from their difference P — Q the

force at the periphery of the pulley, which is held in equilibrium by

the friction F — <j> (P + Q) on the surface of the axle. If now
A = a = the radius of the axle and GD = r = the radius of the

journal, we have, since the statical moments are equal,

(P-Q)a = Fr = <p(P + Q)r,

and consequently the coefficient of friction of rest

P-Q a

^PVQ'?
and, on the contrary, when the weight P falls and Q rises in the

time t a distance 6% the coefficient of friction of motion is
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P - Q 2 s\ a

317

~ XPTQ. ~~
a f) ?Q 9

The engineer Hirn employed in his (the latest) experiments

upon friction of journals the apparatus represented in Fig. 257,

Fig. 256. Fig. 257.

which lie called a friction balance (Fr. balance de frottement, Ger.

Reibungswage). Here C is an axle, which is kept in constant-

rotation, as, e.g., by a water-wheel, D is the bearing, and A D B
is a lever of equal arms, which produces the pressure between

tb 3 journal and its bearing by means of the weights Pand Q. The

pressure on the axle B.= P + Q produces the friction

F=-<!> R = 9 (P + Q)

hdtwcen the journal and its bearing. With this force the revolving

shaft seeks to turn the bearing and the lever A D B, which is attached

t > it, in the direction of the arrow ; and therefore, in order to keep

the whole in equilibrium, we must make the weight P on one side

A so much greater than the weight Q on the other, that P — Q
will balance the friction. But the friction F acts with the arm

CD = r = the radius of the bearing and the difference of the

weights P — Q with the arm C A = a, which is equal to the hori-

zontal distance between the axis C of the shaft and the vertical

line through the point of suspension A, and therefore we have

Fr = $-R r - $ (P + Q) r = (P - Q) a,

and the coefficient of friction required

* 2 P^Q .

«

9 P+Q"f
Remark.—Before Coulomb, Anion tons, Camus, Bulffinger, Muschen-

brock, Ferguson, Vince and others had studied the subject of 'friction and

made experiments upon it. The results of all these researches have, however,

little practical value; for the experiments were made upon too small a sca'e.

The same objection applies to those of Ximenes, which were made about
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the same time as those of Coulomb. The results of Ximenes are to be found

in the work "Teoria e Pratica delle resistenze de' solidi ne' loro attriii,

Pisa, 1782." Coulomb's experiments are described in detail in the work :

"Theorie des machines simples, etc., par Coulomb. Nouv. edit., 1821."

An abstract from it is to be found in the prize essay of Metternich, u Vom
Widerstande der Reibung, Frankfurt und Mainz, 1789." The later experi-

ments on friction were made by Rennie and Morin. Rennie employed in

his experiments in some cases a sled, which slid upon a horizontal surface,

and in others an inclined plane, down which he caused the bodies to slide,

and from the angle of inclination determined the amount of the friction.

Rennie's experiments were made with most of the substances, which we
meet with in practice, such as ice, cloth, leather, wood, stone and the

metals ; they also give important data in relation to the manner in which

bodies wear, but the apparatus and the manner of conducting these experi-

ments do not allow us to hope for as great accuracy as Morin seems to have

attained in his experiments. A German translation of Rennie's Experiments

is to be found in the 17th volume (1832) of the Wiener Jahrbiicher des

K. K. Polytechnischen Institutes, and also in the 34th volume (1829) of

Dingler's Polytechnisches Journal. ' The most extensive experiments and

those, which probably give the most accurate results, are those made by

Morin, although it cannot be denied that they leave certain points doubtful

and uncertain, and that here and there there are points, upon which more

information could be desired. This is not the place to describe the method

and apparatus employed in these experiments ; we can only refer to Moriirs

writings :
" Nouvelles Experiences sur le frottement," etc. A capital discus-

sion of the subject " friction," and a rather full description of almost all the

experiments upon it, Morin's included, is given by Brix in the transactions

of the Society for the Advancement of Industry in Prussia, 16th and 17th

Jahrgang—Berlin, 1837 and 1838. Later experiments on mediate friction,

with particular reference to the different unguents, made by M. C. Ad.

Hirn, are described in the "Bulletin de la societe industrielle de Mulhouse,

Nos. 128 and 129, 1855," under the title of " Etudes sur les principaux

phenomenes que presentent les frottements mediats, etc. ;" an abstract of it

is to be found in the " Polytechnisches Centralblatt, 1855. Lieferung, 10."

The latest researches upon friction by Bochet are described under the title,

"Nouv. Recherches experimentales sur le frottement.de glissement, par M,

Bochet," in the Annales des Mines, Cinq. Serie, Tome XIX., Paris, 18GL

Prof. Riihlmann gives some information in regard to the experiments with*

Waltjen's friction balance in the "Polytechnisches Centralblatt, 1861.

Heft 10."

§ 174. Friction Tables.—The following tables contain a con-

densed summary of the coefficients of friction of the substances,

most generally employed in practice.
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TABLE I.

COEFFICIENTS OF FRICTION OF REST.

Condition of the surfaces and nature of the unguents. •

Name of the rubbing bodies.

f Minimum value,

Wood nponj Meaa
wood .

Metal upon

metal . . . .

^ Maximum "

[" Minimum value.

-I Mean

0,30

0,50

0,70

0,15

0,18

0,24

0,60

0,50

0,63

0,80

0,43

0,62

0,47

0,54

upon stone or I Mini'm value. 0,67

brick,well pol-
|

Max'm ;
- 0,75

ished I

Stone upon wrought
( Min. val.j 0,42

0,49

0,64

j Maximum "

Wood on metal

Hemp in ropes, f Mini'm value.

plaits, etc., on
<j
Mean "

wood (. Max'm "

Thick sole leath-
f

er as packing I On edge . . .

on wood or Flat

cast iron . . .

Black leather .

I Made oi wood,
straps over -{

I
" metal

drums . . . . {

Stone or brick

iron ( Max.

Pearwood upon stone . . . .

0,65

0,68

0,71

0,65

0,87

0,62

0,80

0,11

0,12

0,16

0,10

0,12

0,13

•E !

v>

£ i

5 !

— 0,14; 0,22

0,21; 0.19 0,36

'

0,25 0.44

0,10

0,12

0,11

0,12

0,15

I
0,10

0,27

0,28: 0,38-'
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TABLE II.

COEFFICIENTS OF FRICTION OF MOTION.

Name of the rubbing bodies.

[' Min. value.

Wood nPoni Mean „

wood
[ Max< tt

Metal uponf
MiQ-™lue -

, -,

<J
Mean "

metal . . . .
j

L Max. "

„- , f Min. value.
Wood upon

metal.... 1
Mean "

[ Max. "

Hemp in rojoes, ( On wood.

etc (On iron .

Sole leather flat f Raw . . .

upon wood or ^ Pounded.

metal [ Greasy . .

The same on ( ^
1 Dry . . .

edge for pis-
Grcagy _

ton packing. I

Condition of the surfaces and nature of the unguents.

d
in

P . ;

P

0,20

'3

p

O

ci

00

"eo
o

H

T3

X

g

3

o

u

0,14

6
i

0,08— — 0,06 0,06 — —
0,3G 0,25 — 0,07 0,07 — — 0,15 0,12

0,48 — — 0,07 0,08 — — 0,16 0,15

0,15 — 0,0G 0,07 0,07 0,06 0,12 — 0,11

0,18 0,31 0,07 0,09 0,09 0,08 0,15 0,20 0,13

0,24 — 0,08 0,11 0,11 0,09 0,17 — 0,17

0,20 — 0,05 0,07 0,06 — — — 0,10

0,42 0,24 0,06 0,07 0,08 0,08 0,10 0,20 0,14

0,62 — 0,08 0,08 0,10 — — — 0,16

0,45 0,33

— — 0,15 — 0,19

0,54 0,36 0,16 — 0,20

0,30

— 0.25

0,34 0,31 0,14 — 0,14

0,24

Remake.—More complete tables of the coefficients of friction are to be

found in the " Ingenieur,'' page 403, etc. The coefficients of friction of

loose granular masses will be given in the second volume, when the theory

of the pressure of earth is treated.

§ 175. The Latest Experiments on Friction.—From the

experiments of Bochet upon sliding friction, we find, that the

results obtained by the older experimenters Coulomb and Morin

must undergo some important modifications. The former experi-
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ments were made with railroad wagons weighing from 6 to 10 tons,

which were caused to slide on a horizontal railroad either upon

their wheels, which were made fast, or upon a kind of shoe (patin).

The shoes were fastened to the frame of the wagon before, between

and behind the wheels, and in the different series of experiments

they were covered with soles of different materials, such as wood,

leather, iron, etc., on which a pressure of 2, 4, 6, 10 and 15 kilograms

per square centimetre could be produced. The wagon, thus

transformed into a sled, was moved by a locomotive attached in

front by means of a spring dynameter, which gave the pull or force,

which balanced the sliding friction. In order to prevent, as much
as possible, the resistance of the air, the wagon, which preceded the

sled, had a greater cross-section than the latter.

The correctness of the formula F = N, according to which

the friction F is proportional to the pressure, is proved anew by

these experiments ; but it was found, that the co-efficient of fric-

tion was dependent not only upon the nature and state of the rub-

bing surfaces, but also upon other circumstances, viz. : the velocity

of the sliding body and the specific pressure, i.e., the pressure per

unit of surface. Bochet puts

ic — y
* = inn, + y'

in which v denotes the velocity of sliding, k the value of
<f>

for infi-

nitely slow and y the value (p for a very rapid motion. According

to this formula the coefficient decreases gradually from ic to y as

the velocity increases. The mean value of the coefficient a ig.

= 0,3, when v is expressed in meters, and on the contrary = 0,091,

when v is given in feet. Hence we can assume the co-efficient of

friction to be constant only, when the velocities vary from to at

most 1 foot and when the other circumstances remain the same..

The co-efficients it and y are different for different materials and

depend upon the degree of smoothness of the rubbing surfaces,

upon the unguents, upon the specific pressure etc.

The co-efficient of friction it attains its maximum value for

wood, particularly soft wood, leather and gutta-percha sliding upon

dry and ungreased iron rails. Here we have \i = 0,40 to 0,70. The

mean value for soft wood is k = 0,60 and for hard wood n = 0,55.

The
t
value k is also very different for the friction of iron upon

iron. If the surfaces are not polished we have ic — 0,25 to 0,60;.

and, on the contrary, for polished surfaces we have k — 0,12 to
.

21
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0,40. The friction of iron upon iron is not diminished by sprink-

ling it with water, but the friction of wood, leather and gutta-

percha is considerably diminished by wetting the rail. When the

surfaces are oiled, n sinks to from 0,05 to 0,20.

The co-efficient y is always smaller than it. When the velocities

are great, the surfaces smooth, the unguent properly applied and

the specific pressure a medium one, y has nearly the same value for

all substances.

The friction of rest is greater only in those cases where wood

or leather slide upon wet or greased rails, and then it is twice as great.

According to these experiments, we have

1. for dry soft wood, when the pressure is at least 10 kilo-

grams per square centimeter or 142 pounds per square inch,

0,30 n „ .

2. for dry hard wood under the same pressure

3. for half polished iron, dry or wet, under a pressure of more

than 300 kilograms per square centimeter or 4267 pounds

per square inch,

0,15

4. for the same either dry, under a pressure of at least 100

kilograms per square centimeter or polished and greased

under specific pressure of at least 20 kilograms, and also

for resinous wood with water as unguent under the same

pressure,

5. for wood properly polished and rubbed with fatty water or

fat under a pressure of at least 20 kilograms per square

centimeter (284 pounds per square inch),

= rrSrs + °'06 -

1 -f 0,d v

If v is given in feet, we must substitute in the denominator

0,091 v instead of 0,3 v.

Remark.—It is very desirable that these experiments, made on so large

a scale and giving results which differ so much from those already known,

should be repeated.
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Fig. 258.

§ 176. Inclined Plane.—One of the most important applica-

tions of the theory of sliding friction is to the determination of the

conditions of equilibrium of a body A C upon an inclined plane

FH, Fig. 258. If, as in § 146,

F H R — a is the angle of incli-

nation of the inclined plane and

P Sx
— ft the angle formed by

the direction of the force P with

the inclined plane, we have the

normal force due to the weight G
JV = G cos. a,

the force which tends to move
the body down the plane == S=
G sin. a, the force JVj, with which

the force P seeks to raise the

body from the plane, == P sin. ft and the force S\ with which it

draws the body up the plane = P cos. ft. The resulting normal

force is

N— N
Q
— 2Vj = G cos. a — P sin. (3,

and consequently the friction is

F=
<t> (G cos. a — P sin. (3).

If we wish to find the force necessary to draw the body up the

plane, the friction must be overcome, and therefore we have

Sx
= S -f F, i.e. P cos. (3 — G sin. a + <j> (G cos. a — P sin. (3).

But if the force necessary to prevent the body from sliding down
the plane is required, as the friction assists the force, we will have

St + F= S, i.e. P cos. (3 + (p(G cos. a— P sin. (3) = G sin. a.

From these equations we obtain in the first case

„ sin. a 4- cos. a.

P =

cos. (3 + sin. ft

sin. a — (p cos. a

. 6r, and in the second case,

.G.
cos. ft — (p sill, ft

If we introduce the angle of friction or of repose p by putting

, sm.p , , .

tang, p — - — , we obtain
cos. p

p _ sin. a cos. p ± cos. a sin. p

cos. ft cos. p ± sin. ft sin. p
.0,
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Fig. 259.

or according to a well-known trigonometrical formula

_ sin, (a ± p )

cos.(P^p) '
*>

the upper signs are for the case, when motion is to be produced, and

the lower ones, when motion is to be prevented.

As long as we have

P >^ j° 7 P
!
g and < f^+_4 G>

cos. (0 + p)
^ cos. ((3 — p) '

the body will move neither up nor down.

If a is < p, the force necessary to push the body down the

plane is

p _ tin, (p - a)
G

cos. (p + j3)

The latter formula can be found by the simple application of

the parallelogram of forces P Q G, Fig. 259. Since a body

counteracts any force from another body,

when the angle of divergence of the di-

rection of the force from that of the normal

to the surface is equal to the angle of

friction p (§ 172), a state of equilibrium

will exist in the foregoing case, when the

resultant Q — Q of the forces P and G
forms an angle JV Q = p with the nor-

mal. If, in the general formula

P_ sin. G OQ
G ~ sin. P OQ'

we substitute GOQ= GON+.NO Q -
a + pan&POQ=POS+ SOQ = fl +
90° — p, we obtain

P _ sin. (a -f p) _ sin, (a + p)

~G
~

sin. (0 - p + 90
5
)

-
cos. ((3 -p)'

If the force P, is to prevent the body from sliding down the

inclined plane, the resultant Q x falls on the lower side of the normal

Nt
and the angle of friction p enters in the calculation with a

negative sign, and consequently we have

P _ sin. (a — p)

G ~
cos. (j3 -t- p)

f
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If the hody lies upon a horizontal plane, a is = 0, and the force

necessary to move it forward becomes

<p G _ G sin. p
~

cos. (3 + $ sin. ft
~

cos. ((3 — p)'

If the force acts parallel to the inclined plane, I.E., in the

direction of its slope, we have (3 = 0, and therefore

sin. (a ± p)P = (sin. a ± (j> cos. a) G G. (Compare § 172.)
COS. p

If, finally, the fores acts horizontally, we have

(3 = — a, cos. (3 = cos. a and sin. (3 = — sin. a, and consequently

sin. a ± <j> cos. a tang, a ± cpP = G G, I.E.
cos. a =f </> sin. a' lq:f> tang, a

P = tang, (a ± p) 67, which is also given by the direct

resolution of the parallelogram P Q G.

Farther, the force necessary to push the body up the plane

becomes a minimum, when the denominator cos. (f3 — p) becomes a

maximum, that is, when it is — 1, or when [3 — p is = 0, 1.E. when

(3 — p. When the angle formed by the direction of the force with

that of the inclined plane is equal to the angle of friction, this

force is a minimum and is P = sin. (a + p) . G.

Example.—What is the pressure along the axis of a wooden prop

A E, Fig. 260, which prevents the mass of rock A B C D, weighing G —
5000 pounds, from sliding down an inclined plane (the floor of a mine),

when the inclination of the prop to the horizon is 35°, that of the inclined

plane C D, 50° and when the coefficient of friction p is = 0,75 ? Here

we have

G = 5000, a = 50°, (3 = 35° - 50° = - 15° and ^ = 0,75,

and the formula gives

_ sin. a — cos. a „ sin. 50° - 0.75 50°

cos. j3 — <p sin. /3

_ 0,766 - 0,482
~ 0,966 + 0,194

Fig. 260.

. 5000

P<1

/ *M<S^

i sti&^ih

\
P
:

1

cos. 15° + 0,75 sin. 15°

. 5000 = ~|? = 1224 pounds.

If the prop was horizontal, we would have

3 = — 50° and tang, p = 0,75, or p = 36° 52',

from which we obtain

P = G tang, (a — p) = 5000 tang. (50° — 36° 52")

= 5000 tang. 13° 8'=5000 . 0,2333=1166 pounds.

In order to push the same mass of rock by
means of a horizontal force up the floor, when
the other circumstances are the same, a force

P = G tang, (a + p) = 5000 tang. 86° 52'

= 5000 . 18,2676 = 91338 pounds would
be necessary.
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177. The normal pressure, with which a body A C presses

upon the inclined plane F H, Fig. 261, while being pushed up it, is

Ar . G sin. P Q G sin. (90° - a - (3)
JY ~ Q cos. p = -r—.

—
D n J* cos. p = —-—773—7-7^x3 \ cos - P

sin. P Q sin, ([3 4- 90° — p)

G cos. (a + j8) cos. p

cos. (j3 — p)

and, on the contrary, when wc prevent its sliding down, we have

-a- s\ /-* s\ tit rv & C0S ' (
a + P) COS. pN

x
= Q x cos. Q x N{ = ft cos. p = _^__LL__^

If the direction of the force is parallel to the direction of the

plane, we have j3 = and N = G cos. a, and when its direction is

horizontal, we have (3 = — a and

G cos. pW =
cos. (a ± p)'

Fig. 2G1.

The normal pressure becomes null, when cos. (a + (3) = or

a + [3 = 90°, and becomes negative, when a + (3 is > 90° or (3 is

> 90° — a. In the latter case the inclined plane is not under but

over the body, as is represented in Fig. 262. Here again the two

extreme cases of equilibrium exist when the resultant Q or Qu

which is transmitted to the inclined plane F H, diverges from the

normal either above or below it at an angle, which is that of the

friction NOQ = NOQ
x
= p.

In the foregoing development of the formulas for the equili-

brium of a body upon an inclined plane it is supposed, that the

resultant Q can be completely transmitted from the body A C to

the support FH R, which forms the inclined plane; this is only
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JFmi
Hi

^

II-

possible (according to § 146), when the direction of this force passes

through the supporting surface

Fig. 263. C 1) of the body A C. Other-

wise the body A C, Fig. 2G3, has

a tendency to revolve or overturn

about the outer edge C, and this

tendency increases with the dis-

tance CK = e of this edge from

the direction Q of the result-

ant Q.

If a denotes the distance C L
of the direction P of the force

and b the distance C E of the

G vertical line of gravity G of

the body from the outer edge C,

then the moment, with which the body seeks to turn from left to

right about C, is Q e = P a — G b.

P b
If P a were = G b or ~

rJ — -, the resultant Q would pass

through the edge C and would be counteracted by the inclined

plane ; if P a were < G b, the body would have a tendency to turn

from right to left, which turning would be prevented by its im-

penetrability.

If, on the contrary, P a is > G bt\\Q body must receive a second

support or be guided by a second inclined plane F
x
H

x
. If this

second inclined plane counteracts in A the force 1Y and the fric-

tion (p iV caused by it, the inclined plane F
}
H

x
will react upon the

body in A with the opposite forces — N and — </> i\7, which pre-

vent the turning of the body about C, and the sum of the moments
of these forces must be equal to the moment of rotation of the.

force Q, i.e. Nl + Nd = Q c = P a — G 5, or

1) N (I +
<f>
d) = Pa - Gb,

I and d designating the distances C D and CB of the edge A from O
in the directions parallel and at right angles to the inclined plane.

If, further, N^ is the pressure of the body upon the inclined

plane F Hat C and <p Nx
the friction caused by it, we can put

2) P cos. 13 = G sin. a + (if H- JV,) and

3) P sin. /3 = G cos. a + JV
r - ]\

r
,.

Eliminating Nx
from the last two equations we obtain the equa-

tion of condition.
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P (cos. j3 + sin. ft) = G (sin. a -f cos. a) + 2 JV,

and substituting the value N == — -— from equation' (1) we

have the equation

P (co*. ft + m 0) = (mil a + cos. a) +
2 ^ (Pg - g Q

/ + f

{

-r. (I + fZ , ~ . \
or P f

—-— (cos. ft + swz. j3) — a)

~ (1% <t> d ., . . _ \= Cr I—^— (*&w. a + cos. a) — 0C-I,

from which we obtain finally

p _ .(? 4- f?) (*m. a 4- cos. a) — 2 5

(I + $ d) {cos. ft -f sk ft) — 2(f) a

(I 4- 6?) sm. (a -j- p) — 2 & co*. p

(/ + <i ) ccs. (j3 — p) — 2 0a cos. p
*

If iVis = 0, we have P a = G b and

*m. (a + p) # ,

775 ( = -, whence
cos. (ft — p) a

__ sin, (a + p)
^ "

CCS. (0 - p) ^
as we found before.

§ 178. The Theory cf the Equilibrium of Supported
Bodies referred to the Equilibrium of Free Bodies.—In

investigating the conditions of equilibrium of a body, taking into

consideration the friction, we will accomplish more surely our

object, if we imagine the body entirely free and suppose, that every

body, with which it comes in contact, acts upon it with two forces,

viz. : with one force N, which proceeds from it and is normal to the

surface of contact, and with another force N, which opposes the

supposed motion of the point of contact on this surface and which

is caused by the friction between the two bodies. In this way

we obtain a rigid system of forces, whose state of equilibrium can

easily be determined according to the rules given in § 90, as is

shown in the following special case.

A prismatical bar A B, Fig. 264, is so placed, that its lower end

rests upon a horizontal floor C #and that its upper end leans

against the vertical wall G V; at what inclination B A G — a

does it lose its equilibrium ? We can here express the reactions

of the floor upon the body by a vertical force R and by the fric-

tion E, which acts horizontally, and, on the contrary, the reaction
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of the wall by a horizontal force .AT and by a friction N acting

upwards. Hence, if G is the weight of the rod acting at its centre

of gravity S, we have here a system of ver-

tical forces G, R, N and a system of

horizontal ones N and R.

When these forces arc in equilibrium,

we have

1) G = R + <p i\
r
,

2) <p R = iV^and

3) G.TF = N.ATjD + N.aTC.
But the arm A E is = A S cos. a —

}s A B cos. a, the arm A D — A B sin. a

and the arm A C = A B cos. a, hence the

third equation becomes simply

^ G cos. a — N (sin. a + cos. a).

Combining the first two equations, we obtain

G = R + 2 R = (1 + 2

) R, whence

R G , ,r G<p

1 + (p
2

1 + 0'

Substituting this value of JY^in the equation (3), we have

-.', G cos. a
4>& ,

'.

-^ (sin. a + cos. a), or

1 ±J
20

= tang, a + 0,

aud the tangent of the required angle of inclination is

tang, a ==
1 + & 2

2

1 — <p" 1 — tang.
2
p

20
cos." p — sin.

2

p

20
cos. 2 p

2 sin. p cos. p sin. 2 p

== fcm<jr. (90° - 2 p) ; therefore

Z £ ^ 6r = a = 90° - 2 p and Z -4 5 C

2 tang, p

cotg. 2 p

(3 = 2p.

§ 179. Theory of the Wedge.—Friction has also a great

influence upon the conditions of equilibrium of the wedge (see

§ 149). Let us suppose, that its cross section forms an isosceles

triangle A B S, Fig. 265, the acute angle of which A S B = a,

i luit the force acts in the centre if of the back of the wedge A B
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Fig. 265

S,

and at right angles to it and that the body CHE presses with a

certain force iV^ against the surface of the wedge B S, while the

wedge reposes with its

surface. A S upon a

horizontal plane. The
body C IIK is also in-

closed in two guides

G and If, which com-

pel it, when the wedge

ispushed forward upon

the horizontal plane,

to rise with the load Q
'in the direction E C

perpendicular to the surface B 8 of the wedge.

Since the direction of the force P forms equal angles with the

two surfaces A S and B S of the wedge, the normal pressures N, IT,

and consequently the frictions IT, IT caused by them, are equal

to each other, and the forces P, N, IT, N and 6 IT must hold

each other in equilibrium. If we decompose each of the last four

forces into two components, one parallel and the other perpendicu-

lar to the direction of the force P, the sum of the forces having the

same direction as P must, of course, be in equilibrium with P.

But the directions of the forces IT, inform, with the direction MS
of the forco P, an an^le 90 — -, and those of the forces IT, N

an ancrlc , and therefore the components of N, iVin the direction

M S are N sin. - and IT sin. -, and those of Hand iVare IT

cos. --, and IT cos. ^, and consequently we can put
4> A

P = 2 IT sin. + 20 IT cos. - =
6

,_ / . a c\
iv ism. - + cos.-J.

In consequence of the friction IT between the surface B S of

the wedge and the base of the body C II IT, this body is pressed

with an opposite force — IT against the guide G II, which causes

a friction F
x
= 0! . IT = fa IT, which resists the upward move-

ment of the body C H IT; hence we have

IT- Fx
= Q or IT (1 - 0,) = Q and

QIT
0,'
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Substituting this value for JVin the above equation, we obtain

the force necessary to raise the weight Q

P = — [sin. 5 + cos. tJ, approximatively
1 —

2
\ 2 41

= 2 Q (1 + 00 (m ^ + *w,

_ / . a a a\= 2 Q [sin. - -f cos. - + 0, 6'?;?. --
1,

or putting the coefficient of friction along the guides equal to

that along the surfaces A S and B 8 of the wedge, we obtain

2<2P = / •
a

sin.

= 2«((1

, cos. -), approximatively

<b~) sin.
<£
+ <t> cos-l).

When a wedge ^1 B C, Fig. 2G6, is used

for splitting or compressing bodies, the force

upon the back A B corresponding to the

normal pressure Q against the sides A O
and B C is

P = 2 Q Isin. ^ + cos. ~j.

Example.—Let the load on the wedge repre-

sented in Fig. 265 be Q = 650, the sharpness of

the wedge a = 25° and the coefficient of friction

(f) = (p t
= 0,36 ; required the mechanical effect

necessary to move the load Q £foot along its guides.

The force is

*» = —, {tin. 12|° + 0,36 cos. 12|°)
1 - (0,36)

2

1300
(0,2164 + 0,36 . 0,9763)

1 - 0,1296

1300 737,27=
0^8704

(°'2164 + °'3515) =
0,8^04

= 848
'
2 P°Unds'

The space described by the load is EE
t
= s

1
= |- foot, and that de-

scribed by the force is

1 2 sin. a
cos. - = —

2 sin.

0,25

sin. 12J

0,25
1,155 feet,

0,2164

and consequently the mechanical effect necessary is

Ps = 848,2 . 1,^55 = 979,6 foot-pounds.

Ifwe neglected the friction, the work done would be P s =. Q 8
t
= |

.

650 = 325 ; consequently the friction nearly triples the mechanical effect

necessary to raise Q.
*
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Fig. 267.

§ 180. In the same way we can find the force P required, when

a wedge A B C, Fig. 267, raises a load Q vertically upwards, while

moving forward itself upon a horizontal plane HO. Let the

normal pressure between the wedge A B C and the block D, which

is pressed vertically downwards by the load Q, be = N, the normal

pressure of the wedge upon the support H be = R and the normal

pressure of the block against the

guide BFhe = S. Then P must bal-

ance the forces R, 0, R, — N and
-

<f>
N, and Q the forces S, 2 S, N

and N
If a is the angle of inclination

A B C of the surface A B of the

wedge, we can decompose N into the

vertical force N cos. a and the hori-

zontal force N sin. a, and N into

the vertical force N sin. a and the

horizontal force
<f>
Ncos. a, and there-

fore we can put

1) P = ^ R 4- Nsin. a + Ncos. a,

2) R — JSf cos. a— Nsin. a,

3) Q = Ncos. a— $ Nsin. a— 2 #and

< 4) S = N sin. a + i^cos. a.

From the first two equations we obtain

P = [(1 — X )m a + (0 + 00 C05. a] JV,

and from the last two

Q = [(1 — 2) cos. a — (0 + 2) sm. a] N;

and dividing the first by the second, we have

P _ (1 — Q sin. a + (0 + 0Q cog, a

~Q ~ (1 — 2) cos. a — (0 + 2 ) sk a*

. If = 0j = 2, we have, since == toff, p and

20

-7. zzxmesm

<t>'

— tang. 2 p,

P
Q

sin. a + cos. a toff.
2 p _ toff, a + toff. 2 p

cos. a — Sw. a toff. 2 p
—

1— toff, a tang. 2 p
= toff, (a + 2 p).

If we disregard the friction upon the points of support, we can

put 0! and 2
= 0, and consequently ,

P = sin.a.+ cp cos.a J tan^a±± =^ (ft + p)< (Comp# g lm)
Q cos. a — sm. a 1— toff- a
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When the load Q acts at right angles to the surface of the

wedge, the equations (3) and (4) must be replaced by the following

Q = i\T_ 2 £and
S = N,

whence Q = (1 — <f> fa2) iV, or inversely,

and
1 - (pep,

(1 — </> 9i) sin. a -f ((p + <£i) <?os. a

When </> is = fa =
l-4>fa

>o, it becomes

—- 5= sin. a + cos. a . tang. 2 p.

The formula P = Q tang, (a + 2 p) is applicable to the deter-

mination of the conditions of equilibrium, when two bodies ifand iV

are fastened together by

means of a key A B, Fig.

268, I. and II. The force

P applied to the back of the

wedge causes the tension,

with which the two bodies

are drawn against one an-

— other,

Q = Pcotg.(a + 2p).

On the contrary, the

force, with which we must
press upon the bottom B
of the key in order to loosen

it, i.e. to drive it back in the direction B A, is, since a is neg-

ative here,

P
x
= Q tang. (2 p — a),

or substituting the former value of Q, we have

p .. p tang. (2 p - a)
1

tang. (2 p + a)'

In order to prevent the wedge from jumping back of itself, a

must < 2 p.

§ 181. Coefficients cf Friction of Axles.—For axles the

friction of motion alone is important, and for this reason only the

results of experiments upon it are given.
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TABLE III.

COEFFICIENTS OF FRICTION OF AXLES, ACCORDING TO MORIN.

Condition of the surfaces and nature of the unguents.

± . H3.C Oil, Tallow, -o

, ... , ,.
"Z! '5« rt'£ or Lard. .'t: <u

.

fat,

wit!

umbago.

y.

bp .

1/5 (/)

4) S u

c ><
'rtti

3 «

>>
r^3

i £ *
do
H S 10

*"'

a
s
o

Bell metal upon bell metal. 0,097 — i

U (( cast iron. .

.

. — 0,049 — — —
Wro't iron " bell metal. 0,251 0,189 0,075 0.054 0,090 0,111 —

u a cast iron. .

.

— — — 0,075 0,054 — — —
Cast iron " tc — 0,137 0,079 0,07510,054 — — 0,137'

u u bell metal.

.

0,194 0,161 — 0,0750,054 0,065 — 0.166'

Wro't iron " lig. vitas ..

.

0,188 — — 0,125 — — — —
Cast iron " u 0,185 — — 0,100|0,092 — 0,109 0,140
Lign'm vitas

"

cast iron..

.

— — — 0,116 — — — 0,153,
a u

lig. vitae. .

.

— — " — — 0,070 — — ~
\

From this table the following practically important conclusions

can be drawn: for axles, journals or gudgeons of wrought or cast-

iron running in bearings of cast iron or bell-metal (brass), greased

with oil, tallow or lard, the coefficient of friction

is, when the lubrication is well sustained, = 0,054,

and with ordinary lubrication, = 0,070 to 0,080.

The values found by Coulomb differ in some respects from the

above.

Kemark.—By his experiments upon mediate friction, by means of the

friction balance, Him obtained several results, which differ somewhat from

those already known. The axle employed by him, consisting of a hollow

cast-iron drum 0,23 metres in diameter, and 0,22 metres long, was lubri-

cated upon the outer surface by dipping it in oil and kept cool by causing

water to pass through its interior. The bronze bearing (8 of copper and 1

of tin) was pressed upon it by means of a lever 1} metre long and weigh-

ing 50 kilogr. while the axle made 50 to 100 revolutions per minute. It

is easy to see, that in the experiments made with this apparatus the fluidity

and adhesion of the oil employed as unguent must have played an import-

ant part, since not only the velocity of revolution, but also the rubbing

gurface was very great compared to the pressure. The velocity at the cir-
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cumference of the drum, since its circumference was 72 centimetres and

since it revolved f to \°- times in a second, was 60 to 120 centimetres, or 24

to 48 inches, while in machines it is generally but from 2 to 6 inches. The

horizontal section of the axle was 22 . 23 = 506 square centimetres, and

consequently the pressure on each square centimetre of this section was

50
only —— = 0,1 kilogram, i.e. 6,45 . 0,220 = 1,42 pounds upon a square inch,

oOo

while this pressure in ordinary machines is generally more than one hun-

dred pounds. Hirn's experiments were consequently made under condi-

tions different from those generally met with in very large and powerful

machinery, and under which the other experiments, such as, e.g., those of

Morin, were tried, and therefore the variation in the results obtained is

perfectly explicable. The principal results -of Hirn's experiments are the

following.

The mediate friction is dependent not only upon the pressure and the na-

ture and character of the rubbing surfaces and of unguent, but also upon

the velocity and upon the temperature of the rubbing surfaces and of the

surroundings, as well as upon the magnitude of these surfaces. The fric-

tion is directly proportional to the velocity, when the temperature is con-

stant ; and if the temperature is disregarded, it increases with the square

root of the velocity. From other experiments Him concludes, that the

mediate friction is also proportional to the square root of the rubbing sur-

faces as well as to the square root of the pressure. In regard to the par-

ticular influence of the temperature, the following formula was given by

these experiments

:

1,0492'

'

in which t denotes the temperature of the rubbing surface, F the friction

at 0°, and F that at t degrees of temperature.

One of the principal results of these experiments was the determination

of the mechanical equivalent of heat. This subject will be treated more id

length, when we discuss the theory of heat.

§ 182. Work Done by the Friction of Axles.—If w£
know the pressure R between the axle and its bearing, and if the

radius r of the axle, Fig. 269, is given, we can easily calculate the

work done by the friction on the axle during each revolution. The
friction is F — R, the space described is the circumference 2 ~ r

of the axle, and consequently the mechanical effect lost by the

friction is A =
(f>
R . 2 tt r = 2 tc

<f>
R r. If the axle makes u

revolutions per minute, the mechanical effect expended in each

second is

Jj = 2 if fR r .
A = *2±£l = 0,105 . « * R r.



336 GENERAL PRINCIPLES OF MECHANICS. [§ 182.

The work done by the friction increases, therefore, with the

pressure on the axle, with the radius of the axle and with the

number of revolutions. We have therefore the following practical

rale, not to increase unnecessarily the pressure on the axles in

rotating machines, to make them as small as possible without en-

dangering their solidity and durability and not to allow them to

make too many revolutions in a minute, at least, when the other

circumstances do not require it.

Fig. 269. Fig. 270.

By the use of friction-wheels instead of plumber-blocks, -the

work done by the friction is diminished. In Fig. 270 A B is a

shaft, whose journal C E E
x
rests upon the circumferences E H

and E
x
H

x
of the wheels (friction-wheels), which revolve around D

and D
x
and lie close behind one another. The given pressure R

upon the shaft gives rise to the pressure

N = JV
X
= R

2 cos.

Here a denotes the angle D C D
x
included between the lines join-

ing the centres, which are also lines of pressure. In consequence

of the rolling friction between the axle C and the circumference of

the wheels, the latter revolve with this axle, and the frictions </> N
and </> Nx are produced on the bearings D and Dl} the sum of which

</> R
is F = (j> (N + Nx ) = If the radius D E = D, E

x
be de

COS.

noted by a
x and the radius of the axle by rx, we obtain the forcL».

which must be exerted at the circumference of the wheels or at

that of the axle C to overcome the friction, and it is
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0, a x
a

"*.»

while, on tlie contrary, it is == R, when the axle lies directly on a

step.

If we neglect the weight of the friction-

wdieels, the work done when these wiieels are

employed is i/> = — times as great as

a
x
cos. -

when the shaft revolves in a plumber-block.

If we oppose a single friction-wheel G Hy

Fig. 271, to the pressure R of the axles and

if we counteract the lateral forces, which in

other respects can be neglected, by the fixed

cheeks K and L, a becomes = 0, cos. ~ = 1 and the above ratio

, ru
f = —

.

Example.—A water-wheel weighs 30000 pounds, the radius of its cir-

cumference, a is 16 feet and that of its gudgeon is r = 5 inches ; how much
force is required at the circumference of the wheel to overcome the friction

or to maintain the wheel in uniform motion, when running empty, and how
great is the corresponding expenditure of mechanical effect, when it makes

5 revolutions per minute ? We can here assume a coefficient of friction

o = 0,075, and consequently the friction is £ M — 0,075 . 30000 = 2250

16 . 12 192
pounds. Since the radius of the wheel is —-— = -— = 38,4 times as-

o o

great as that of the gudgeon or the arm of the friction, the friction re-

duced to the circumference of the wheel is

R 2250 , .=
3~8,4 = "387 " 58

' ^
2 5 rr

The circumference of the gudgeon is — *
'

"- = 2,018 feet ; and conse-

quently the space described by the friction in a second is

° 618 5
-

60

' = 0,2182 feet,

and the work done by the friction during one second is

L = 0,2182 . i? = 0,2182 . 2250 = 491 foot-pounds.

It the gudgeon of this Avheel is placed on friction wheels, whose radii'

T
are but 5 times as great as the radius of the gudgeon, that is, if— = £,„

the force necessary at the circumference of the wheel to overcome the fric-

22
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tion would be on\y -} . 58,59 = 11,72 pounds and the mechanical effect

expended but ££A = ^8,2 pounds. But in this case the support would be

much less safe.

§ 183. Friction on a Partially Worn Bearing.—The fric-

tion of an axle A C B, Fig. 272, upon a bearing, which is partially

worn, so that the shaft is supported in a single point A, is smaller

than that of a new axle, which touches all points of its bearing.

If no rotation takes place, the axle presses'

Fig^272. upon the point B, through which the direction

of the resulting pressure R passes ; if the shaft

begins to rotate in the direction A B, the axle

rises in consequence of the friction on its

bearing, until the force 8 tending to move it

down balances the friction F. The result-

ant R is decomposed into a normal force N
and a tangential one 8, JV is transmitted to

the plumber block and produces the friction F = <j> N, which acts

tangentially, 8, however, puts itself in equilibrium with F, and

we have, therefore, 8 = <p N. According to the theorem of Pytha-

goras, we have R2 = N'2
-f 8~, whence

JR» = (1 + 2

) N\
or inversely the normal pressure

N = — — and the friction F =
v"i + 2 V l + </

or introducing the angle of friction p or $ = tang, p

F = —~—— = R tang, p cos. p = R sin. p.

V 1 + tang?p

Consequently, when the shaft begins to turn, the point of pres-

sure B moves in^its bearing in the opposite direction through an

angle A C B = the angle of friction p.

The moment F . G A — Ft of the friction on the axle is

naturally equal to the moment R r sin. p of the pressure R upon

the bed, both being referred to the axis of revolution C. If there

were no motion, we would have

F — R = R tang, p ==
;y cos.p
'

the friction after the motion begins is cos. p times as great as

before. Generally
<f>
= tang, p is scarcely T\ and cos. p > 0,995,

so that the difference is scarcely -

fD
5
0U == 2 -Jo > we cari ? therefore,

in ordinary cases neglect the effect of the motion.
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Fig.

Fig 274.

If the wheel A B revolves with a nave, Fig.

273, about a fixed axle A C, the friction is the

same as if the axle moved in an ordinary plumber-

block, but when the nave is worn the arm of the

friction is not the radius of the shaft, but that of

the opening in the nave.

§ 184. Friction on a Triangular Bearing.—If wo lay the

axle in a prismatical bearing, we have more pressure on the bearing,

and consequently more friction than, when the bearing is circular.

If the bearing A D B, Fig. 274, is tri-

angular, the axle is supported at two

points A and B and at both of them

friction must be overcome. The result-

ing pressure R is decomposed into two

components Q and Q x , each of which is

again decomposed into a normal stress

NovNx and into a tangential one, which

equal to the friction F = <p N and

Fx
— (p Nx

. According to the foregoing paragraph, we can put

these frictions = Q sin. p and Q x
sin. p, consequently the total

friction is F + Fx
— (Q + Q x ) sin. p.

The forces Q and Q x are found, by the resolution of a parallelo-

gram of forces formed of Q and Q x , witli the aid of the resultant R,

of the angle of friction p and of the angle A C B — 2 a, corespond-

ing to the arc A B included between the two points of contact;

now we have

Q R = A CD - C A = a - p and

Q l OR = BCD+ OB = a + p and therefore

Q Qx
= a — p + a + p = 2a.

By employing the formula of § 78, we obtain

c.
sin. (a — p)

sin. 2 a

whence the required friction is

R and Q =
sin. (a + p)

sin. 2 a
.R;

F + Fx
= (Q + Q x ) sin. p — {sin. [a — p] + sin. [a + p])

R sin. p

sin. 2 a

But from trigonometry we know, that sin. (a — p) + sin. (a -f p)

— 2 sin. a cos. p, and that sin. 2 a = 2 sin. a cos. a, and we can

therefore put
2 sin. a R sin. p cos. p _ R sin. 2 pF+ ft

2 sin. a cos. a 2 cos. a



540 GENERAL PRINCIPLES OF MECHANICS. [§185.

R sin O
which, owing to the smallness of n, we can- make = —. When

cos. a
s

a triangular bearing is used, the friction becomes times greater
cos. o>

than when a circular one is employed. If, e.g., A D B is 60°,

A O B is 180° - GO = 120° and A D ~ a = 60°, we have

7̂ -a times — twice as much friction as for a circular bearing.
cos. 60° to

§ 185. Friction of a New Bearing.—By the aid of the latter

formula we can find the friction on a new circular bearing, when
the axle is supported at all points. Let A D B, Fig. 275, be such

a bearing. Let us divide the arc ABB along

which the bearing and axle are in contact into

very many parts, such as A J\T, JV O. etc., whose

projections upon the chord A B are equal, and

let us suppose that each one of these parts

transmits from the axle to the bearing equal

portions — of the whole pressure R. Here n

denotes the number of these parts. According

to the foregoing paragraph, the friction of two

parts N O and Nx O x
opposite to each other is

R sin. 2 p~ n'cos. N C D'
N P

But cos. N CD is also = cos. O NP — -j^-^, N P represent-

ing the projection of the part JSF O on A B, and therefore

,_ ^ chord A BNP — •

n
consequently the friction corresponding to these two parts JY O and

# °i is _ Rsin.2p n.JsTO _ Rsin.2p -^
n ' chord chord

In order to find the friction for the entire arc A D B, we have

only to substitute instead ofN the arc A D = -\ A D B; for the

sum of all the frictions is equal to —r—'-^— . the sum of all theu chord

parts of the arc ; consequently the friction on a new bearing is

^ „ . arc A DF— R sin. 2 p .
~.

1 . r),
chord A B

or putting the angle at the centre A C B corresponding to the arc

contained in the bearing = 2 a and the chord A B — 2 A C sin. a,

we have
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,_ Rsin.2p a ,. ,F = ~—-- . —. or approximative^,
2 Sill, d

assuming 2 p = 2 sm. p,

F — R sin. p .
— .

' sin. a

Hence the initial friction increases with the depth, that the axle

is sunk in its bearing, e.g., if the bearing includes the semi-circum-

ference of the axle, we have a = ± tt and sin. a = 1, and therefore

IT T
F — - . R sin. p is = = 1,57 times as great as it is when a bearing

2 2

has been vforn. If the axle does not lie deep in its bearing, or if a is

small, we can put sin. a = a — — = a ll —
—J,

whence it fol-

lows that F = (l -'- •—) Tt sin- p ov = R sin. p, when a is very

Email.

(§ 186.) Poncelet's Theorem.—The pressure R on the bear-

ings is generally given as the resultant of two forces P and Q,

which act at right angles to each other, and it is consequently

= V P 2 + Q
2
. So far as we need it for the determination of the

friction

F=(f>R = <p V"W+~Q\
we can content ourselves with an approximate value of VP2 + Q'\

partly because an exact value of the coefficient cj> can never he

given, as it depends upon so many accidental circumstances,

partly, also, because the product R is generally but a small

fraction of the other forces, which act on the machine, e.g., the

lever, pulley, wheel and axle, etc., which is supported by the bear-

ings. The formula for calculating the approximate value of

VP 2 + ~Q 2

is known as Poncelet's theorem, and its truth can be

demonstrated in the following manner. We have

VT^Tlr = P]/i +
(I)"

= P Vi~+~x\

in which x = p, and if Q is the smaller force, x is a simple frac-

tion. Now let us put V~T + x2 — \i 4- v x, and let us determine

the coefficients fi and v corresponding to certain conditions. The

relative error is

_ Vl -\- x* — \l — v x _ u + v x

Vl + x% VTTz9
'
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This equation corresponds to the curve 8 P, Fig. 276, whose
ordinate, when the abscissa x '— % is A -ij — \—^ and,when

the abscissa^ B = 1, is y = 1 — l^~ m The curve also cuts the
T 2

axis of abscissas in two pointsK and iV and at 8 lies, at its greatest

distance C 8 from this axis. If

weput?/ = 0or

V I + #2 = n + v x,

and solve the equation in relation

to a;, we obtain

__ jtt V + V^t
a + V2 — 1

the values of which are the abscissas A iTand A N o£ the points

K and N, where the curve cuts the axis, and also those values for

which the error is = 0. In order to find the abscissa A C of the

maximum negative error C 8, we must put the differential ratio

<l y - h ± v ^ ^ + ^y~} x ~ v Q- + i2)
i_- _ odx~ 1 + x1

(see Article 13 of the Introduction to the Calculus).

This condition is fulfilled by putting

([i 4- v x) (1 -f x 1)—\x = v (1 + or)! or

(p + v x) x — v (I + x'\, i.e. a; = --.
' K

ft

v
According to this formula, the abscissa A C — - gives the greatest

negative ordinate.

^^1--—=^-^(^=^1) = -(*V + * - 1).

V i + -i

In order to have neither a great positive nor a great negative

error, let us put the three ordinates A = 1 — ft, B P = 1 —
\i + *> --

.77 " and C 8 = IV" -f v 2 — 1 equal to each other, and deter-

mine from them the coefficients fjt and v. We have

/j = !—tJ-, I.E., v = ( ^T- 1) ;e = 0.414 jt* and

2 :— \i — *V + "v\ i.e., 2 = f* (1 4- i
7
1 + 0,414'-')

and consequently
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li = - = 0,96 and v = 0,414 . 0,96 = 0,40.
1 + V 1,1714

We can, therefore, put VT+~x2 = 0,9G + 0,40 . x, and in like

manner the resultant

R = 0,96 P + 0,40 Q,

and we know that in this case the greatest error we can make is

± y = 1 — \i ~ 1 — 0,96 = 0,04 = four per cent, of the true •

value.

This formula supposes, that we know, which of the two forces

is the greater ; if this is unknown to us, we assume

¥T+~z' = [i (1 + x)

and obtain in that way

v = i _ ft (1 + ^
^ ~ i

/_

l + a*

In this case not only x — 0, but also x — co gives an error

I — p. If we put sb = - = 1, we have the greatest negative error

-(^|-l) = -*^-i).
Patting these errors equal to each other, we obtain

1 - *

=

*f» - hx " = r+Vf = wk = ik = ms -

in case we do not know, which cf the forces is the greatest, wo.

can write

R = 0,83 (P + Q),

then the greatest error we can make is ± y - 1 — 0,83 = 17 per

cent. = £- of the true value.

If, finally, we know that x is not over 0,2, we do beet to neglect

x altogether and to put V P* + Q~ = P • if, however, x is over

0,2, it is better to make

V'"P^T"(? - 0,888 P -!- 0,490 . Q.

In both cases the maximum error is about 2 per cent.*

§ 187. The Lever.—The theory of friction just given is appli-

cable to the material lever, to the wheel and axle and to other

machines. Let us now take up the subject of the lever, discussing

at once the most general case, that of the bent lever A C B,

* Polytechnisclie Mittheilungen, Vol. I.
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Fig. 277. Let us denote, as formerly (§ 136), the arm of the lever

C A of the power P by a, the

lever arm C B of the load Q by I

and the radius of axle by r, and

let us put the weight of the lever'

= 67, the arm C E of the same

== s and the angles A P K and

B Q K formed by the directions

of the forces with the horizon

= a and [3. The power P produces the vertical pressure P sin. a

and tho load Q the vertical pressure Q sin. (3, and the total, vertical

pressure is V = G 4- P sin. a + Q sin. (3. The force P produces

also the horizontal pressure P cos. a and the load an opposite

pressure Q cos. 13, and the resulting horizontal pressure is H =
P cos. a — Q cos. 0, and the total pressure on the axle is

R = fiV+vH=fi(G -fPsin. a +Q sin. (3) -j- v (P cos. a — Q cos. (3)

in which, however, the second part v (P cos. a — Q cos. (3) is never

to be taken as negative, and, therefore, when Q cos. 6 is > P cos. a

the sign must be changed, or rather P cos. a must be subtracted

from Q cos. 3. In order to find the value of the force correspond-

ing to a state of unstable equilibrium so that for the smallest addi-

tion of force motion will take place, wT
e put the statical moment

of the power equal to the statical moment of the load plus or minus

the moment of the weight of the machine (§ 136) and plus the

moment of the friction ; thus we have

Pa= Qb'dt Gs 4- 0i2r
= Q b ± G s + <p d-i V + v II) r, whence

_ Qb±Gs 4- [fi (67 + Q sin. (3) + v Q cos . ff\r

a — ii r sin. a + v r cos. a

If P and Q act vertically, we have simply R — P + Q + G
and therefore P a = Q b ± O s 4- -$\P 4- Q 4- G) r. If the lever

is one armed, P and Q act in opposite directions to each other and

R is = P — Q + G and therefore the friction is less. But R
must always enter into the calculation with a positive sign, for the

friction R only resists motion and never produces it. We see

from this,. that a single armed lever is mechanically more perfect

than a double armed one.

Example.—If the arms of the bent lever represented in Fig. 277 are

a = 6 feet, 5 = 4 feet, s = \ foot and r = If inches, if the angles of incli-

nation are a — 70°, (3 = 50°, and if the load is Q = 5600 pounds and the
'

weight of the lever O is = 900 pounds, the force necessary to produce
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unstable equilibrium is determined as follows. The friction being disre-

garded, we have Pa + G s = Qo and therefore

Qo-Gs 5600.4- 900. £ .-,

P _ J* — _ _ ? = 3658 pounds.
a 6

If we put /t = 0,96 and v = 0,40, we obtain

p^Q + Q sin. 8) = 0,96 (900 + 5600 sin-. 50") = 4982 pounds,

v Q cos. 3 = 0,40 . 5600 cos. 50° — 1440 pounds,

ft sin. a = 0,96 . sin. 70> = 0,902 and

vcos-<i = 0,40 . cos. 70 J = 0,137.

It is easy to see, that P cos. a is here smaller than Q cos. 8 ; for since P is

approximative! y 3858 pounds, we have P cos. a == 1251 pounds, while, on

the contrary, Q cos. 8 is = 3800 pounds ; therefore we must employ in this

case for v Q cos. 8 and for v <j> r cos. a the lower sign and put

_ 5600 . 4 — 900 .
I-
+ <j> r (4982 + 1440)P=

Q~—~^r~(0j62 - 0,137")
'

Assuming the coefficient of friction '/> = 0,075, we obtain

<j> r — 0,075 . ^ = 0,009375 and 6422 <j> r = 60

and the force required

22400 — 450 + 60 22010
P =

6 _ 0>^i7— = 5^928 = 36 ' 3 P **
Here the vertical pressure, when we substitute the force P = 3658 pounds

determined without reference to the friction, is

V= 3658 sin. 70 :) + 5600 sin. 50 5 + GOO = 3437 + 4290 + GOO

= 8627 pounds.

and, on the contrary, the horizontal pressure is

H= 5600 cos. 50 — 3358 cos. 70 == 3600 — 1251 = 2349 pounds.

Here J? is > 0,2 V, and therefore we have more correctly

R = 0,888 . H+ 0,490 V— 0,888 . 8627 + 0,490 . 2349 = 8811, and

consequently the moment of the friction is

= <? r B= 0,009375 . 8811 = 82,6 foot-pounds ;

and finally the force

„ 22400 - 450 + 82,6p_ __ _ 3672 pounds,

which value differs very little, it is true, from the one obtained above.

§ 188. Friction of a Pivot.—If in a wheel and axle there is

a pressure in the direction of the axis, which is always the case,

when the axle is vertical, in consequence of the weight of the

machine, friction is produced upon the base of one of the journals.

Since there is pressure at all points of the base between the pivot

and the step (or footstep), this friction approaches nearer to the

ordinary friction of sliding, than to what we have previously con-

cidered as axle friction, and we must therefore employ in this case

the coefficients of friction given in Table II. (page 320). In order
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to find the work done by this friction, we must know the mean
spacs described by the base A B> Fig. 278, of such a pivot. We
assume that the pressure R is equally distributed over the whole

surface, that is, we suppose that the friction upon equal portions

of the base is equally great. If we divide the base by means of the

radii C B, C E, etc., in equal sections or triangles, such as D C E.

these correspond not only to equal frictions, but

also to equal moments, and Ave need therefore only

find the moment of the friction of one of these

triangles. The frictions on such a triangle can be

considered as parallel forces, since they all act

tangentially, i.e., at right angles to the radius C D
;

and since the centre of gravity of a body or of a

surface is nothing else than the point of application

of the resultant of the parallel forces, which are

equally distributed over the body or surface, we can

consider the centre of gravity 8 of this sector or

triangle D C E as the point of application of the

resultant of all the frictions upon it. If the pressure on this sector

is = — and radius CD = C E = r, it follows (according to § 113),

CsM=~r

= »<>Ii r.

bat the statical moment of the friction of this sector is

4>JZ

n " 11
'

und finally that the statical moment of entire friction of the pivot is

M — n . 3 r -—
s n

the rubbing surface is a ring A B E B, Fig. 279

If the radii of the same are C A = i\ and C B =
r>, we have here to determine the centre of gravity

S of a, portion of a ring. Hence, according to

§ 114, the arm is

r 3 — r 3

C S = -
2 -
3
TV — ri

7

and therefore the moment of the friction is

Sometime:

Fig. 279.

7-

If we introduce the mean radius—^—
* == r

and the breadth of the ring r,

moment of the friction

r.2 = b, we obtain also for the
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31= (b B
(
r +

ifc)
The mechanical effect of the friction is, in the first case,

A = 2 77 . § $ R r =
-J
n <j> R r, and, in the second case,

From the above data it is easy to calculate the friction upon a

journal composed of one or more collars, when a vertical shaft is

borne by it. It is also easy to see, that, in order to diminish the

loss of mechanical effect, the pivots should be made as small as

possible, and that, when the other circumstances are the same, the

friction is greater on a ring than on a full circle.

Example.—A turbine, weighing 1800 pounds, makes 100 revolutions

per minute, and the diameter of the base of the pivot is 1 inch ; how much
mechanical effect is consumed in a second by the friction of this pivot ?

Assuming the coefficient of friction 9 = 0,100, we obtain

9 R = 0,100 . 1800 = 180 pounds,

the space described in a revolution is

= f 7T r .
= f . 3,14 . ¥V = 0,1745 feet,

and therefore the work done in one revolution is

= 180 . 0,1745 = 31,41 foot-pounds.

But this machine makes in a second ±g£- = |- revolutions, and therefore

the required loss of mechanical effect is

= ' = 52,3 foot-pounds.

§ 189. Friction on Conical Pivots.—If the end of the axle

A B D, Fig. 280, is conical, the friction is greater than when the

pivot is flat, for the axial pressure. R is

decomposed into the normal forces N, J\
r
„

etc., which produce friction and whose

sum is greater than R alone. If half the

angle of convergence A'DC=BDC=a,
we have

R

Fig. 280.

••N.

2 JV
r =

si?i. a'

and therefore the friction

pivot is

F = <p

of this conical

R
sin. a

If we denote the radius C A = C B of the axle at the place of

entrance in the step by r„ we have, in accordance with what pre-

crdes, the statical moment,
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or, since
sin. a

M = ~— . « r, = | $ ;

TY A
= the side Z) A of the cone — a, we have

sz?a. a

M 4> Ra.
If we allow the axle to penetrate a very short distance into the

step, the friction is less than for a flat pivot, and for this reason

we can employ conical pivots with advantage. If, e.g.,

a = - , or r x
— A r sin. a,_7J_

sin. a

the conical pivot, whose radius is r1? occasions only half as much
loss of mechanical effect as the flat pivot, whose radius is r.

If the pivot forms a truncated cone, Fig. 281, friction is pro-

duced on the conical surface and on the flat base, and we have for

the statical moment of the friction

\ sin. a }
6

r

when r denotes the radius C A at the point, where the pivot enters

the step, rx the radius of the base and a half the angle of conver-

gence. In consequence of the great lateral pressure N the step

becomes soon so worn that finally only the pressure on the base

EF remains and the moment of the friction becomesM —%<j> R rv

Fig. 281. Fig. 282. Fig. 283.

Vertical shafts or pivots are very often rounded off as in Figs.

282 and 283. Although by this rounding the friction is not in

any way diminished, yet a diminution of the moment of the fric-

tion can be produced by diminishing the penetration of the pivot

into the step. If we suppose the rounded surface to be spherical,

we obtain with the aid of the calculus, for a hemispherical step the

moment of friction

*-¥ Rr;

and for a step forming a low segment approximatively

M = i[l + 0J-(£)
#

]#JBlrtt
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Fig. 284.

in which formula r denotes the radius of the sphere MA — M B
and Ti the radius of the step C A = C B.

Remark.—The pressure R upon the centre ABB, Fig. 284, of the

spindle of a turning-lathe is perpendicular to

the direction of the axis I) X and is decom-

posed into a normal pressure iV and a lateral

l^ressure £ parallel to the axis. Retaining the

same notation, that we employed above for

conical pivots, we have
r>

iV = —— and S = B tana c.
cos. a

The moment of the friction caused by i^is

Mr

•or since r
t
= CA — D A sin, A D C = a sin. a, when a denotes the length

C D of the portion of the centre which is buried, we have M = § 6 R a

tang. a.

The lateral force S is entirely or partly counteracted by an opposite

force S
t
on the other centre.

Example.—If the weight of the shaft and other parts of a whim gin is

H = 6000 pounds, the radius of its conical pivot is = r = 1 inch and the

arigle of convergence 2 a of the latter is = G0°, the statical moment
of the friction is

v 2
Br

- a-,
6000 1 10° a„h* *M = | . p .

~ = s
. 0,1 .

-—7—
.
— = -—- = 47,1 foot-pounds. .

,J

I sin. a s
' sin. 45 J 12 3 y'4.

l

If the shaft in hoisting a bucket out of a mine makes u = 24 revolu-

tions, the mechanical effect consumed by the friction of the pivot during

this time is

I <f>
-7-^ = 2 7T . 24 . 47,1 = 7103 foot-pounds.A = 2~u
sin. a

§ 190. The so-called Anti -friction Pivots.—Supposing

that the axial pressure on a pivot ABB A, Fig. 285, is propor-

tional to the surface of the cross-

section, we can put the vertical

pressure per square inch R± = -=,

R being the total pressure and G
the area of the vertical projection

A D D A of the whole rubbing

surface ABBA. If now a is the

angle of inclination C T of the

element of the surface to the

axis C T of the pivot, the normal

pressure on each square inch
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of the bearing, will be JVi = —r-^r- and the corresponding friction

will be

Fx
= <j> Nx

= &
R" 22,

sm a 6r 6T?z. a

and if «/ denotes the distance or radius of friction M 0, the moment
of this friction is

n a R
G sin. a'

or, since —P— = tangent T,
sm. a °

~ . OT.

Fig. 288.

In order to obtain a regular wearing away of the axle and of its

step, the moment Fx y must be the same for all positions, and con-

sequently the tangent T must have the same value for all points

of the generating curve A B of the axle, and therefore the mo-

ment of the friction on the whole pivot is when T'
= a

M= Ft y. G = (p Ra.

The curve A B, whose tangent T, measured from the

point of tangency to the axis C X, is constant, is a tractrix or trac-

tory, and is generated by drawing a heavy point A, Fig. 286, over a

horizontal plane by means of a string,

whose end moves along a straight line

C X. This string forms the constant

tangent lines A C = a 1 = (3 2 — y 3,

etc. == a. In order to construct this

curve, we draw C A — a perpendicular

to the axis C X and take in C A, a

near to A, and lay off a 1 = a, take (3

in a 1, near to a and lay off 13 2 — a,

here again take y near to (i and lay off

y3 = «, etc., and we then draw a curve

tangent to the sides Aa,a (3,f$y,yd ...,

etc. This method gives the tractory

the more accurately the smaller • the

sides A a, a [3, .(3 y, y 6 . . ., etc., are.

Schiele calls this curve the anti-friction

curve. (See the Practical Mechanics*

Journal, June number, 1849, -translated in the Polytechnisehes

Centralblatt, Jahrgang, 1849.)

If, as is represented in Fig. 285, we make the anti-friction curve
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end at the circumference of the shaft the maximum radius of

friction C A — r is at the same time the constant tangent a, and

therefore the moment of the friction M— </> R r is independent of

the length of the pivot. When the rubbing surface is flat and of

the same radius, the moment of friction is M
x
= | <j> B r, that is.

one third smaller, and it decreases still more in time ; for the exte-

rior portions are more worn than the interior ones, and thus the

surface of friction becomes less.

The plugs and chambers of codes are sometimes made in the

form of the anti-friction curve ; for in this case the conditions are

the same as in a pivot.

Remark.—When the pressure R on the pivot is so distributed that the

amount of the wearing, measured in the direction of the pressure, is equal

in all points of the circumference of the pivot, we have

sin.a
1

sin.a
2

sin.a
3

and for conical pivots, where

at = az = ffs ,-.. . = o; Nt yt
=:JF9 yz = JT3 y3 . . .

If O
t , 2 , 3 ... denote the surfaces, upon which the normal pressures

JVj, JT
g , JVS . . . act, we have

R = Nx O
x

sin. a
x

-j- i\T
3 2

sin. a
2 + JVa 3

sin. a
3 + . . .

or for conical pivots R = (JVj O
x + Nz 3 + J3 3 + . . .) sin. a.

The portions of the surface can be considered as rings of the same

height -, whose widths are—:
—

-,
and whose radii are y,,y»,y., conse-° n n sin. a ^i»^25^3>

quently we have

O x
= 2 ~ yx

—-— , 2 = 2-y
2
—

: ,
3
= 2-y

3
—

, etc.
1 * % n sin. a -

J ' n sin. a'
3 y 3 n sin. a'

2
=^

1? 3
= y-±

15 etc., and also

S"t O
x
= Nz 2 = W3 3 . . ., and R=n . ff

x
O

x
sin. a.

Therefore, under the above assumption, the normal pressure on the

equally high rings of the circumference of the pivot are equal.

R
Inversely we have Hft O

x
— —.— , hence the moment of the friction

lb \y(/Tb, €L

on the pivot is

M=<p(Xi Pi 2/x + *i 2 y 2 + N3 3 y 3 + . . .)

= + *t O
x {yx + 'y

z + .... + y,) = n ^ a (y x + y2 + . . . + yn ).

If we have a truncated conical pivot, whose radii are r
x
and r2 , we must

71 (r -*- t ")

put y x + y s + . . . + yn = ^ —j from which it follows that M —

6 R (r
x + r

2 )

2 si?i. a

For a complete conical pivot, whose radius is r
2
= 0, we have If ==
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</> R r. R r
,,— -.— , while in a foregoing paragraph (% 189) we foundM'== %6 -1-.

See the article by M*r. Reye upon the Theory of Friction of Axles in Vol.

6 of the Civiiingenieur, as well as the article upon the same subject by
Director Grashof in the 5th volume of the Journal of the Association of

German Ingenieurs.

§ 191. Friction on Points and Knife-E&ges.—Tn order to

diminish as much as possible the friction of the*axles of rotating

bodies, they are often supported on sharp points, knife-edges, etc.

If the bodies employed were perfectly solid and inelastic, no loss of

mechanical effect in consequence of the friction would take place

by this method, since the space described by the friction is immeas-

urably small ; but since every body possesses a certain degree of

elasticity, upon placing it upon the point or knife-edge, a slight

penetration takes place and a surface of friction is produced, upon
which the friction describes a certain space, which, although small,

occasions a loss of mechanical effect. When the rotation or vibra-

tion of a body supported in this way has continued some time, such

surfaces of friction are arcs developed by the wearing away of the

point or knife-edge, and the friction is then to be treated as we have

previously done. This mode of support is therefore only employed

in instruments such as compasses, balances, etc., where it is impor-

tant to diminish the friction and where the motion is not constant.

Coulomb made experiments upon the friction of a body sup-

ported by a hard steel point and mova.blc around it. According

to these experiments, the friction increases somewhat faster than

the pressure, and changes with the degree of sharpness of the

supporting point. It is a minimum for a surface of garnet, greater

for a surface of agate, greater for a surface of rock crystal, still

greater for a surface of glass, and the greatest for a steel surface.

For very small pressures, as, e.g., in the magnetic needle, the point

can be sharpened to an angle of convergence of 10° to 20°. If,

however, the pressure is great, we must employ a much larger

angle of convergence (30° to 45°). The friction is less, when a body

lies with a plane surface upon a point than when the point plays in

a conical or spherical hollow. The circumstances are the same for

a knife-edge such as that of a balance. Balances, which are to be

heavily* loaded, have knife-edges with an angle of convergence of

90°. When the balance is light, an angle of 30° is sufficient.

If we assume that the needle A B, Fig. 287, has pressed down

the point F C G an amount D (J E, the height of which OM— h>

and the radius of which D M = r, and if we suppose the volume
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-} n r
2 h to be proportional to the pressure R, the measure of the fric-

tion can be found in the following manner. If we put \ rr r
2 h —

f.i R, in which ft is a coefficient given by experiment, and substi-

tute the angle of convergence DC£J=^2aovh = r cotg. a, we
obtain for the radius of the base

— a/3 t
l R tang, a

,
_ . / 3 ii R* tana, a

=
3 [i

7T

'^ R* tang. a.

From this we see that we can assume, that the friction on a pivot

increases with the cube root of the fourth power of the pressure

and with the cube root of the tangent of half angle of convergence.

Fig. 287. Fig. 288.

'

^____.

riii!liG

The amount of friction of a beam A B, Fig. 288, oscillating on

a knife-edge C Oi, can be found in like manner. If a is the half

angle of convergence D C M, I the length C C\ of the edge and R
the pressure, we have

4>Er =^^^X
I

§ 192. Friction of Rolling.—The theory of rolling friction

is as yet by no means established upon a firm basis. We know,,

that the friction increases with the pressure, and that it is greater,,

when the radius of the roller is small than when it is large ; but

we cannot yet give the exact algebraical relation of the friction to-

the pressure and to the radius of the rolling body. Coulomb made.

a few experiments with rollers of

lignum-vitaa and elm from 2 to 10
inches thick, which were rolled

upon supports of oak by winding-

a thin string around the roller and

attaching to the ends of it the un-
equal weights P and Q, Fig. 289.

According to the results of these-

experiments, the rolling friction is.

directly proportional to the pressure

and inverselv to the radius of the



354 GENERAL PRINCIPLES OF MECHANICS. [§ 192.

rollers, so that the force necessary to overcome the rolling friction

can be expressed by the formnla F = f . —, R denoting the press-

ure, r the radius of the roller and / the coefficient of friction to be

determined by experiment. If r is given in English inches, we
have, according to these experiments,

~$oy rollers of lignum-vita?, / = 0,0189

For rollers of elm, / = 0,0320.

The author found for cast-iron wheels 20 inches in diameter,

rolling on cast-iron rails,

/ = 0,0183, and Sectionsrath Eittinger

/ = 0,0193.

According to Pambour, we have for iron railroad wheels about

39,4 inches in diameter

/ = 0,0196 to 0,0216.
r>

The formula F — /— supposes that the force F, which over-

comes the friction, acts with a lever-arm H C = II L = r equal to

the radius of the roller, and that it describes the same space as the

latter. If, however, it acts on a lever arm HK = 2 r, the space

described by it is double that described by the roller on the sup-

port, and the friction is therefore

The conditions of equilibrium of rolling friction can be found

in the following manner. In consequence of the pressure Q of the

roller A C B upon the base A O, Fig. 290, the latter is compressed

;

the roller rests, therefore, not upon its lowest point A, but upon

the point O which lies a little in front of it. Transferring the

points of application A and B of the forces Q and F, of which the

latter F is the force necessary to overcome the friction, to their

Fig 290 point of intersection D, and constructing

l> with Q and F the parallelogram of forces,

we obtain in its diagonal D R the force

R, with which the roller presses upon its

support in O, and it is therefore necessary

that the moments of the forces of the bent

lever AON shall be equal to each other.

If we put the distance O N of the point

of support O from the direction of the

force = a, and the distance O M of the

same point from the vertical line of grav-
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ity of the body = /, we have

Fa = Qf,
from which we obtain the required equation

/F Q-

The arm /is a quantity to be determined by experiment and is

so small, that we can substitute instead of a the distance of the

lowest point A from the direction of the force F, as well as instead

of Q the total pressure R.

Hence we have F f R, and consequently, when the force

acts horizontally and through the centre C, a = r or

F f R,

and on the contrary, when this force acts tangentially at the high-

est point K of the roller,

2r
R.

The so-called coefficient of friction/ of rolling friction is there-

fore no nameless quantity, but a line, and must therefore be ex-

pressed in the same unit of measure as a.

If a body A S B is placed upon two rollers C and D, Fig. 291,

and moved forward, the force P required to move the body is very

small, as we have only two rolling

FlG
-
291 - frictions to overcome, viz., one

" ' ..
! i[ liB'ihiilniilliil

*$

R

between A B and the rollers and

the other between the rollers and

the surface H K. The space de-

scribed progressively by the roll-

ers is but one-half that described

by the load R, so that new rollers

must be continually pushed under

it in front, for the points of con-

tact A and B between the rollers and the body A B move exactly

as much backward, in consequence of the rolling, as the axes of

the rollers move forward. If the roller A H has turned an arc

A 0, it has also moved forward the space A A
x
equal to this arc,

has come in contact with 0„ and the new point of contact O x

has gone backward behind the former one (^t) a distance A
1
=

A 0. If we designate the coefficients of friction on HK and A B
by/and/, we have for the force necessary to move the body forward
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Remark.—The extensive experiments of Morin upon the resistance of

wagons on roads confirm this law, according to which this resistance in-

creases directly as the pressure and inversely as the thickness of the rollers.

Another French engineer, Dupuit, on the contrary, infers from his experi-

ments, that rolling friction increases directly as the pressure and inversely

as the square root of the radius of the rollers. The newer experiments of

Poiree and Sauvage by means of railroad wagons, also lead to the conclu-

sion, that rolling friction increases inversely as the square root of the radius

of the wheel. See Comptes rendues de la societe des ingenieurs. civils a

Paris, 5 et 6 annee. Particular theoretical views upon the subject of roll-

ing friction are to be found in Von Gerstner's Mechanics, Vol. I, § 537, and

in Brix's treatise on friction, Art. 6. This subject will be treated with

more detail in the Third Part, under the head of transportation on roads

and railroads.

Fig. 392.

193. Friction of Cords.—We have now to study the fric-

tion of flexible bodies. If a perfectly

flexible cord stretched by a force Q is

laid over the edge C of a rigid body

ABE, Fig. 292, and is thus compelled

to deviate from its original direction an

angle JD C B = a°, a pressure R is pro-

duced at this edge, which gives rise to a

friction F, in consequence of which a

force P, which is either greater or less

than Q, is necessary to produce unstable

equilibrium. The pressure is (§ 77)

2 P Q cos. a, and consequently the friction

= VP2 + Q* - 2 P Qcos.a.

If now we substitute P = F + Q and P2 approximatively

= 6
2
-h 2 Q F, we obtain

F = (j> V Q
2 + 2 Q F + Q* - 2 Q* cos. a -2 F~Q cos. a

</> Y2(l cos. a) (<2
2 + Q F) = 2 4> sin. ^VQ'+Q F,

for which we can write 2 $ sin. - (Q 4- 2 F), when we take into
2

account only the first two members of the square root. Hence we

have

F =
(f)
F sin. - + 2 <j> Q sin.

^,

and consequently the friction required is
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a
2 Q sin. ^

F =
. a7

1 — sm. ;r

for which we can generally write accurately enough

F'= 2 Q sin. - ( 1 + sin. ^\, and very often

F=2<pQ sin. |
when the angle of deviation a is very small. Hence, in order to

draw the rope over the edge C, we need a force

/ .20 sin. | \

*=« + *= 1 +—— ft

\ l-Qsin.^J

and, on the contrary, the force necessary to prevent the weight §
from sinking: is

P,-#f* +
2 stft. s

;
_

a
1

1 — Sift.

we can put approximative^

P = M +20 sm | ( 1 + sm |)J ft or more simply

P =
(
1 + 2 0sm|j Qand

P, -^ r>
or

1 + 20 sift. -1 + sift.

P, = ——2 = (l - 2 sk
|) ft

1 + 20 sm. ^

If the cord passes over several edges, the forces P and Px at the

other end of the cord can be calculated by repeated application of

these formulas. Let us consider the simple case, where the cord

A B C, Fig. 293, is laid upon a body with n edges, and where the

deviation at each edge is the same and equal to a. The tension of

the first portion of the cord is

ft = (i +2 0sm.^j ft

when that at the end is = ft that of the second is
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+ 2cj>sin.^ ft

\- 2<f)sin.^) ft

1 + 2$ sin.
g) ft

1 + 2cf>sin.~) ft

e. = (i

that of the third is

ft = (l

raid in general the tension at the other end is

P = (l + 2 sin.
~Jq,

when it is required to produce motion in the direction of the force

P. Interchanging P and ft we obtain the force necessary to pre-

yent motion in the direction of the force Q and it is

Pi = Q

(l + 2 </> sin. -J
Fig. 293. Fig. 294.

in

h-V.
;

The friction in the first case is

F=P-Q = [(l + %
<S>

sin. ff- l] Q,

and in the second

F = Q - Px
= [(l + 2 ink -j)"- l] P,

= [l-(l+2 0sm|)~"]ft

The same formulas are also applicable to the case of a body

composed of links, as, e.g., a chain ABE, Fig. 294, which is

passed round a cylindrical body, when n is the number of links

lying upon the body. If the length of one joint of the chain is

= I and the distance C A of the axis A of a link from the centre
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G of the arc* which is covered, = r, we have for the angle of devia-

a I >

tion DBL=ACB— a, sin.
2 2r*

Example.—How great is the friction on the circumference of a wheel

4 feet high, covered with twenty links of a chain, each five inches long

and 1 inch thick, when one of the ends is fastened and the other subjected

to a strain of 50 pounds ? Here we have

P
t
= 50 pounds, n = 20, sin. - = - 5

49

now if we substitute for $ the mean value, 0,85, we obtain the friction, with

which the chain opposes the revolution of the wheel

= [Yt|Y - l] . 50 = 2,974 . 50 = 149 pounds.

50

Fig. ?9'

§ 194. If a stretched cord A B, Fig. 295, lies upon a fixed

cylindrically rounded body A C B, the friction can also be found

by the rule given in the foregoing paragraph.

Here the angle of deviation is E D B — a —
•m-gle at the centre A C B of the arc A B of the

• >r& ; if we divide the same in n equal parts and

regard the arc A B as consisting of n straight

a
lines, we obtain n edges with the deviation —

,

and therefore the equation between the power

and the load is as in the foregoing paragraph

P = (l + 2
;

sin. ~Jq.

On account of the smallness of the arc -, sin. -— can be re-
n 2 n

placed by -—, and we can put

Developing according to the binomial theorem, we obtain

P-l/i . „ <M ,

n(n-l) ((f>
a)' n (n-1) (n-2) (0a)'

Jr — \L-j-7l
1

-
1

—-

—

1 1- .

V n 1.2 n l 1.2.3 ?i
3

or, since n is very great and we can put n — l=n—2 = n — 3 .

.

•)«?,

n,
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X' X'
But 1 + x -f -z—g + r—s—^ + ... = c*, c "being the base

2,71828 of the JSTaperian system of logarithms (see Introduction to

the Calculus), and we can therefore write

P — e^
a

. Q or Q = P c~~ y a
, and inversely

1 . P 2,3026 n _ . _.

If the arc of the cord is not given in parts of rr, but in degrees,

a
then we must substitute a — -~—

. n, and if finally it is expressed

by the number u of coils of the rope, we must put a = 2 rr «.

The formula P = <r . Q shows, that the friction of a cord

F — P — Q on a fixed cylinder does not depend at all upon the

diameter of the same, but upon the number of coils of the cord,

and also that it can easily be increased to almost infinity. If we
put (j> — -|, we have

for | coils, P = 1,69 Q
"

i " P = 2,85 Q
« 1 " P = 8,12 Q
« 2 " P = 65,94 Q
« 4 " P = 4348,56 0.

(Remark.)—From the equation P = II + 2 </> sw.
-J Q in § 193, it fol-

lows that

P-Q = 2<!> sin. ~ Q,

or substituting instead of a the element d a of the arc and instead ofP — Q,

the corresponding increase d P of the variable tension P of the cord and

putting Q = P, we obtain

dP = 2 $ — P, or -^- = <p d a,

whence by integration wTe obtain

I P = <j> a + Con.

.In the beginning a is = and P = Q, and therefore we have

or inversely

P
I Q = + Cwi. and IP— IQ = 1 — =:<pa,

— == e
1

i
orP=e p

Q.
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Fig. 296.

Example.—In order to let down a shaft a very great but indivisible

weight P = 1200 pounds, we wind the

rope, to which this weight is attached,

If times around a firmly fastened log

A B, Fig. 296, and we hold the other

end of the rope in the hand. What force

must be exerted at this end of the rope,

when we wish the weight to descend

slowly and uniformly ? If we put here

<j> = 0,3, we obtain for this force

Q= Pe-* a = 1200. e
A

= 1200 . e~ ^ "

0,3

I Q = l 1200 - — n = 7,0901 - 2,5918

= 4,4983,

or log Q = 1,9536, whence

Q = 89,9 pounds.

§ 195. Rigidity of Chains.—If ropes or bodies composed of

links, etc., are laid on a pulley or a cylinder movable about its

axis, the friction of cords and chains considered in the last para-

graph ceases, because the circumference of the wheel and the cord

have the same velocity, and hence force is only necessary to bend

the rope as it lays itself upon the pulley, and sometimes to

straighten it as it is unrolled from the pulley.

If it is a chain, which winds itself around a drum, the resistance

during the rolling and unrolling consists of the friction of the bolts

Fig. 297.

against the links, since the

former are turned through a

certain angle in their bear-

ings. If A B, Fig. 297, is a

link of the chain and B G
the following one, if C is the

axis of rotation of the pulley,

upon which the chain, stretch-

ed by the weight Q, winds,

and if finally C M and C N
are perpendiculars let fall

upon the major axis of the

links A B and B G, then

M C iV — a° is tho angle
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turned through by the pulley, while a new link lays itself upon it,

and K B G — 180° — A B G is the angle described by the link

B G with its bolt B D upon the link A B during the .same time.

If B I) = B E = ra is the radius of the bearing of the bolt, the

point D of the pressure or friction describes an arc D E — r^ a,

while a link lays itself upon the roller, and the work done by the

friction at the point D is, = 6
X Q . rx

a. Supposing the force P
T

necessary to overcome this friction to act in the direction of the

greater axis B G, we have the space described by it in the same

tinie s = CN multiplied by the arc of the angle M CN—C N.a,

and therefore the work done = P
t

. C N' . a, equating the two

mechanical effects, we have Pj . C JSf . a = fa . Qr x
a, and the force

required is

a denoting CiVthe radius of the drum plus half the thickness of

the chain.

If we neglect the friction, the force necessary to turn the

pulley would be P = Q, .

but when we take into account the friction caused by the winding

of the chain upon the pulley, we have

If the chain unwinds from the drum, the resistance is the same

;

if, therefore, as on a fixed pulley, the rope is wound upon one side

and unwound upon the other, the required force is

P = (l + (
f) l —J Qy

or approximative!? = II + 2 0! —J Q.

If, finally, the pressure on the axle is = R and the radius of the

axle — r, the force necessary to overcome all the resistances is

P = (l + 2 0,— ) Q + 0— E.

Example.—How great is the force P at the end of a chain passing

Fig. 298. round a roller A G B, Fig. 298, when the weight

acting vertically is Q = 110 pounds, the weight

Ik of the roller and chain is 50 pounds, the radius a

SB of the roller, measured to the middle of the chain,

W is a = 7 inches, the radius of the axle C is = f of an

%f inch and that of the bolts of the chain is = f of an

inch ? If we put <£ = 0,075 and (j> t
= 0,15, we obtain,

according to the last formula, the force

P=(l + 2 . 0,15 . -1^.110 + 0,075.^ (110 + 50 + P),



RESISTANCE OF FRICTION, ETC. 363

or assuming in the right-hand member P approximatively = 110

P= 1,016 . 110 + 0,0067 . 270 = 111,76 + 1,81 = 113,6 pounds.

§ 196. Rigidity of Cordage.—If a rope is passed over a pulley

or winds itself upon a shaft, its rigidity (Fr. roideur, Ger. Steifig-

keit) comes into play as a resistance to its motion. The resistance

is not only dependent upon the material, of which the rope is made,

but also upon the manner, in which it is put together, and upon the

thickness of the rope ; it can consequently be determined by experi-

ment alone.

The principal experiments for this object are those made by

Coulomb and those made more recently by the author himself.

While Coulomb employed only small hemp ropes from \ to at most

14 inches in thickness and made them wind upon rollers of 1 to at

most 6 inches in diameter, the author employed hemp ropes 2

inches thick and wire ropes from 4 to 1 inch thick and passed

them over rollers from 2 to 64 feet in diameter. Coulomb's experi-

ments were made in two different ways. In
Fig. 299. one case? i^e Amonton, he employed the

apparatus represented in Fig. 299, where A B
is a roller around which two ropes are wound,

the tension being produced by a weight Q
and the rolling down of this roller by a weight

P, which pulls upon this roller by means of a

thin string. In the other case he laid the

ropes around a cylinder rolling upon a hori-

zontal surface and, after having subtracted the

rolling friction, calculated the resistance of the

rigidity from the difference of the weights,

which were suspended to the two ends of the

rope and which produced a slow rolling motion.

According to the experiments of Coulomb, the resistance of the

rigidity increases tolerably regularly with the amount of the ten-

sion of the rope ; but there is also a constant member K, as might

have been expected; for a certain force is necessary to bend an un-

stretched rope. It was also shown, that this resistance was inversely

proportional to the radius of the roller; that for a roller of twice

the diameter it is only one-half, for one of three times the diam-

eter, one-third, etc. Finally, the relation between the thickness

and rigidity of a rope can only be determined approximative^ from

these experiments, as we might have supposed; for this rigidity de-



364 GENERAL PRINCIPLES OF MECHANICS. [§197.

pends upon the nature of the material of the ropes and upon the

size of the fibres and strands. When a rope is new, the rigidity is pro-

portional, approximative!y, to d 1
'
7
, and when it is old, to cV'

4
, d

denoting the diameter of the rope. The assumption by some

authors that it varies with the first power, and that of others that

it varies with the square of the thickness of the rope, are therefore

only approximative^ true,
i

§ 197. Prony's Formula for the Rigidity of Hemp
Ropes.—According to the last paragraph, the rigidity of hemp
ropes can be expressed by the following formula

:

S= £.(K + .vQ),
U/

in which d denotes the thickness of the rope, a the radius of the

pulley measured to the axis of the rope, Q the tension of the rope,

which passes round the pulley, and n, K and v empirical con-

stants. Prony found from Coulomb's experiments for new ropes

and for old ones

&=.— (2,45 + 0,053 Q),

8X
= — (2,45 + 0,053 Q),

in which formulas a and d are expressed in lines and Q and S in

pounds. These formulas are, however, based upon Paris measures

;

for English measures they become, when expressed in inches and

pounds,
s==

d* {u^ + 0;389 q)
Or

Sl
= — (6,96 + 0,14 Q).

a

Since even these complicated formulas do not agree as well as

could be wished with the results of experiment, we can, as long as

we do not take into account the later experiments, write with

Eytelwein

a d* d" Q

In this formula a must be expressed in English feet and d in

English lines, but Q and S may be expressed in any arbitrary sys-

tem of weights. If we employ the metrical system of measures,

we have
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a

The results given by this formula are not sufficiently accurate, ex-

cept when the tension upon the rope, as is generally the case in

practice, is very great.

The rigidity of tarred ropes was found to be about one-sixth

greater than that of untarred ones, and wet topes were found to be

about one-twelfth more rigid than dry ones.

Example.—If the tension upon a new rope 9 lines thick, which passes

round a pulley 5 inches diameter, is 350 pounds, the rigidity, according to

Prony, is

8 = f (f)
1

'
7 (14,39 + 0,289 . 350) = 0,613 . 46,216 = 28,33 pounds,

and according to Eytelwein

9 2
. 350

S = 360T^= 37
'
75 P°Uncls -

If the tension were but Q = 150 pounds, we would have, according to

Prony,

8 = 0,613 . 23,1 = 14,16,

and according to Eytelwein

a 81 - 150
lfl g8 ~

36047~V
- 16

>
2 '

In this case the formulas give results, which coincide better with each

other. We see from the above example, how uncertain these formulas are.

Remakk.—Tables for facilitating the calculation of the resistance due

to the rigidity of cordage will be found in the Ingenieur, page 365. Ac-

cording to Morin (see his Lecons de Mecanique Pratique), we have, when
n denotes the number of strands in the rope and a the radius of the pulley

in centimetres, for untarred ropes

d = V0,1338 n centimetres and

n
8 = 2^ (0,0297 + 0,0245 n + 0,0363 Q) kilograms

d-= — (0,1110 + 0,6843 d2 + 0,1357 Q) kilograms,

and for tarred ropes

d = V 0,186 n centimetres and

8 =~ (0,14575 + 0,0346 n + 0,0418 Q) kilograms

d?=— (0,3918 + 0,5001 d* + 0,1124 Q) kilograms.
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If, however, d and a are expressed in inches, and S and Q in pounds,

we can put for untarred ropes

d*
& =— (0,621 + 24,70 d2 + 0,3445 Q),

Qj

and for tarred ones

S = — (2,193 + 18,06 d2 + 0,2S89 Q).
CI m

If, e.g., for an untarred rope we have d = f inch, a = f inches and

Q = 350 pounds, then

S = ~.~ (0,621 + 24,70 .
~ + 0,3445 . 350)

= ^ (0,621 + 13,893 + 120,575) = 30,4 pounds,

while in this case (last example) Prony's formula gave S = 28,33 pounds.

§ 198. Experiments Upon the Rigidity of Thick Ropes.—
The author, in his experiments upon the rigidity of cordage, made
use of the apparatus represented in Fig. 300. The sheave or roller

B D E, over which the rope to be

tested is passed, was, together with a

pair of iron wheels C L M, fastened

upon a shaft or axle C, and these

wheels ran upon two horizontal rails

i |!H|S^MWF H R To one end F of the roPe a

weight G was attached, and to the

other end A a cross E, upon which

wreights were hung until the wheels

and pulley began to roll forward

slowly. In order to be as independ-

ent as possible of errors arising from

imperfections in the apparatus, addi-

tional weights were afterwards added

at F until a rolling motion in the

opposite direction was produced. The
arithmetical mean of the weights

added gave, when the rolling fric-

tion wras deducted, the rigidity of

the rope. The coefficient of rolling

friction to be used was determined in the same way, except that a

thin string, whose rigidity could be neglected, was employed instead

Fig. 300.

D

h|L^

of a rope. The mean value of this coefficient was given in § 192.
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The resistance due to the rigidity is, according to the authors

views, due less to the rigidity proper than to the friction of the

different wires or strands upon each other ; for in passing oyer the

pulley, they naturally change their relative positions. When a

wire rope passes round a fixed pulley, the first part of this resist-

ance is wanting, as the rope, in consequence of its elasticity, gives

out, when it straightens itself, as much mechanical effect as was em-

ployed in bending it around the pulley. Hence the rigidity of the

rope in this case consists solely of the friction of the wires upon

one another, a conclusion which is confirmed by the author's ex-

periments ; for he found the resistance to be forty per cent, less,

when the ropes were freshly oiled or tarred than when they were

dry. The conditions are different in the case of hemp ropes, for

they do not possess, especially after long use, any elasticity, and

the strands and fibres require force not only to bend them, but also

to straighten them.

§ 199. New Formulas for the Resistance Due to the

Rigidity of Cordage.—Since the rigidity of a rope depends not

only upon its thickness, but also upon the amount of bending it is

subjected to, and also upon the manner in which it is put together,

the author considers, that these conditions can be very well ex-

pressed by the formula

s= K+ vQ
m

a '

the constants K and v must be determined specially for each kind

of rope. The experiments of the author also showed, that for wire

K
ropes we should put simply K instead of — , or

a

1. For tarred hemp ropes 1,6 inches thick passing round sheaves

from 4 to 6 feet in diameter, he found

S- 1,5 + 0,00565 Q kilograms,

when the radius a is expressed in metres, or

S = 3,31 + 0,222 Q pounds,
ci

when a is expressed in inches.

2. For a new untarred hemp rope j inch thick, upon a pulley

21 inches in diameter, he found
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#=0,086 + 0,00164-? kilograms = 0,1896 + 0,06457 - pounds.

3. A wire rope 8 lines in diameter, formed of 16 wires, each 1A

lines thick, and weighing 0,68 pound per running foot, was passed

around pulleys from 4 to 6 feet in diameter, and gave

# = 0,49 + 0,00238-? kilograms = 1,08 + 0,0937 — pounds.
ct ct

4. For a freshly-tarred wire rope, with a hemp centre in each

strand and in the rope, which was 7 lines in diameter, was com-

posed of 4.4 = 16 wires, each 1} lines thick, and weighed 0,67

pound per running foot, he found, with a pulley 21 inches in

diameter,

8 = 0,57 + 0,000694 ^- kilograms 1,26 + 0,0272 ?- pounds.

Remark.—A detailed description of the author's experiments is to be

found in the Zeitschrift fur Ingenieurwesen (dem Ingenieur), by Borne-

inann, Bruckmann and Roting, Vol. I, Freiberg, 1848. The hemp ropes

of 1 were formerly employed in Freiberg for hoisting from the shafts by

means of a water-wheel and drum (Ger. Wassergopel), but of late they

have been replaced by the wire ropes of 3 and 4. Both of these kinds of

ropes can support with sextuple security a load of 30 cwt. It was shown

by the above experiments that, when the load was the same, the resistance

due to the rigidity of wire ropes was less than that due to the rigidity of

hemp ones. If we assume the tension of the rope to be Q = 2000, and the

radius of the sheave to be a — 40 inches, we have for hemp ropes

S = 3,31 + 0,222 £%%& = 14,41 pounds,

and, on the contrary, for wire ropes

8 = 1,08 + 0,0937 ££<p. = 5,8 pounds.

§ 200. Theory of the Fixed Pulley.—Let fis now apply

the principles just enunciated to the theory of the fixed pulley.

Fig. 301. Fig. 302.

Let A C B, Fig. 301 or Fig. 302, be the pulley, and let a be its
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radius C A = C B, r the radius of its axle, G its weight, d the

thickness of the rope, Q the weight suspended to one end of the

latter, S the resistance due to the rigidity, F the friction upon the

axle, reduced to the circumference, and P = Q + F -f 8 the force

at the other end of the rope. The rigidity of the rope is shown hy

the fact that the rope does not immediately assume the curvature

of the pulley as it is wound upon the sheave, nor straighten itself

immediately, when it is unwound. On the contrary, it approaches

the sheave in an arc, the curvature of which constantly increases,

and leaves in an arc, the curvature of which constantly diminishes.

The difference between the elastic wire ropes and the unelastic

hemp ones is that the former leave the sheave somewhat sooner

and the latter somewhat later ; hence the arm C D of the force in

the first case (Fig. 301) is somewhat greater, and in the second case

(Fig. 302) somewhat less than the radius A — a of the sheave.

If we neglect the friction upon the axle and put P = (Q + S)>

we have

(Q + S). CD= Q. OF,
and consequently the rigidity of the rope is

8 = (^<#>=§f-'H
and the ratio of the arms is

CD~ + Q>

the value of which can easily he calculated by substituting one of

the values of S.

We can also determine this force P = Q + S + F without

employing the ratio of the arms of the lever by substituting in

that formula either with Prony for thin hemp ropes

or with the author for wire or thick hemp ropes.

B = k +
VA
a

and the friction upon the axles reduced to the circumference of

the pulley is

T
F=(p-(Q + G + P), or approximatively,

a

F=t>
r-(ZQ+ G).

U
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Hence, in the first case, we have

and in the second

In the case of the wheel and axle a reduction of the force from

the circumference of the axle to that of the wheel is necessary.

Example.—If a wire rope 8 lines in diameter passes over a pulley

5 feet high, whose axles are 3 inches in diameter, and if the tension upon

the rope is 1200 pounds, we have the required force, when the coefficient

of friction is <j> = 0,075 and the weight of the pulley = 1500 pounds

P = 1200 + 1,08 + 0,0937 . lffa + 0,075 . & (2400 + 1500)

== 1200 + 1,08 + 3,748 + 14,62 = 1219 pounds;

hence y| = 1,6 per cent, of the force is lost in consequence of the rope's

passing round the pulley.

If instead of a wire rope we employed a hemp one 1,6 inches thick, we
would have

P = 1200 + 3,31 + 0,222 . if^- + 14,62 = 1227

and the loss of force would be

27P — Q = — = 2,25 per cent.
L4i



FOURTH SECTION.

THE APPLICATION OF STATICS TO THE ELAS-
TICITY AND STRENGTH OF BODIES.

CHAPTER I.

ELASTICITY AND STRENGTH OF EXTENSION, COMPRESSION
AND SHEARING.

§ 201. Elasticity.—The molecules or parts of a solid or rigid

body are held together by a certain force, called cohesion (Fr. cohe-

sion ; Ger. Cohesion), which must be overcome, when the body

changes its form and size, or if it is divided. The first effect, which

forces produce upon a body, is a variation in the relative position

of its parts, in consequence of which a change of form and volume

occurs. If the forces acting upon a body exceed certain limits, a

separation of the parts takes place and perhaps a division of the

whole body into pieces. The capability of a body to resume its

original form, after the force which caused its change of shape has

been removed, is called in the most general sense of the word its

elasticity (Fr. elasticite ; Ger. Elasticitat). The elasticity of every

body has certain limits. If the change of form and volume exceeds

a certain amount, the body remains of the same form after such a

change, although the forces which have produced the variation

have ceased to act. The limit of elasticity is very different for

different bodies. The bodies, which permit a great change of

volume before their limit of elasticity is reached, are called perfectly

elastic ; those, whose limit of elasticity is reached when they have

undergone a very slight change of form, are called inelastic,
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although no such bodies really exist. It is an important rule in

architecture and in the construction of machinery, not to load the

materials employed to such an extent that the change of form

produced shall reach, much less exceed, the limit of elasticity.

§ 202. Elasticity and Strength.—Different bodies present

different phenomena, when they are changed in their form beyond

the limit of elasticity. If a body is brittle (Fr. cassant ; Ger. sprode),

it flies in pieces, when its form is changed beyond its limit of elas-

ticity ; if, however, it is ductile or malleable (Fr. ductile ; G-er. ge-

schmeidig), as, e.g., many metals, we can cause considerable

changes in its form beyond its limit of elasticity, without" causing

a separation of its parts. Some bodies are hard (Fr. dur ; Ger. hart),

others soft (Fr. mou ; Ger. weich) ; while the former oppose great

resistance to a separation of their parts, the latter permit it with-

out much difficulty.

We understand by elasticity, in the more restricted sense of the

word, the resistance with which a body opposes a change of its

form, and by strength (Fr. resistance, Ger. Festigkeit) the resistance

with which a body opposes division. In what follows, both sub-

jects will be treated. According to the manner in which the extra-

neous forces act upon bodies, we can divide elasticity and strength

into

I. Simple and

II. Combined;

and the former again into

1) Absolute or the elasticity and strength of extension,

2) Reacting, or the elasticity and strength of compression,

3) Relative, or the elasticity and strength offlexure,

4) The elasticity and strength of sheering and

5) The elasticity and strength of torsion or hoisting.

If two extraneous forces P and — P act by extension (Fr.

traction, Ger. Zug) in the direction of the axis of a body A By Fig.

Fig. 303. 303, the latter resists the

^^e^^^^^^^̂ ^^^^ r
extension and tearing by

A^^^^^^^^^^^^^ Ĥ means of its absolute elas-

ticity and strength or its elasticity and strength of extension (Fr.

elasticite et resistance de traction, Ger. Zuor oder absolute Elasticity
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und Festigkeit) ; if, on the contrary, two forces P and — P press

Fig. 304 the body together in the direction

of the axis of the body A B, Fig.

304, so that the latter is compressed

and finally crushed, the elasticity and strength of compression or the

reacting elasticity and strength (Fr. elasticite et resistance de com-

pression, Ger. Druck or riickwirkende Elasticity und Festigkeit)

must be overcome. If, farther, three forces P, Q, R, which balance

each other, are applied at three different points A, B, C, in the

axis of the body A B, Fig. 305, and act at right angles to the same,

this body would be bent or perhaps broken, and it is the relative

elasticity and strength, or the elasticity and strength offlexure (Fr.

elasticite et resistance de flexion, Ger. Biegungs oder relativeElas-

ticity und Festigkeit), that must be overcome, in order to bend

or break it. If, in the latter case, the points of application A and

C lie close together, as is represented in Fig. 305, a distortion is

Fig. 305. Fig. 306.

produced in the cross section D D, between the two points A and

(7; if the force P is great enough, the body is divided into two

parts, and in this case the elasticity and strength of sheering (Fr.

elasticite et resistance par glissement cisaillement ou tranchant,

Ger. Elasticity und Festigkeit des Abschierens) is overcome. If

two couples (P, — P), (Q, — Q), which balance each other, act upon

a body C A, Fig. 308, in such a manner that their planes are at

right angles to the axis of the body, a hoisting of the body is pro-

duced, which may become a wrenching, and here the elasticity and

strength of torsion (Fr. elasticite et resistance de torsion, Ger. Dreh-

ungs-elasticitat und Festigkeit) is to be overcome.

If several of the forces here enumerated act at the same time

upon a body, the combined elasticity and strength or a combination

of two or more of the simple elasticities and strengths comes into

play.
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Fig. 307.

§ 203. Extension and Compression.—The most simple

case of elasticity and strength is presented by the extension and
compression of prismatic bodies, when they are acted npon by
forces whose directions coincide with the axis of these bodies. It is

of course not necessary

that both should be

motive forces. The ac-

tion is the same, when
the body is firmly sus-

pended or supported at

one end and at the

other end subjected to

a pull or to a thrust.

We can obtain an ex-

ample of this case ei-

ther by suspending to

a prism A B C D, Fig.

307, which hangs vertically, a weight P, or by loading with a weight

P a prism A B CD, Fig. 308, which is supported at the bottom.

In the first case, the body is extended a certain amount C C
x
=

/) D
x
— A, and in the second case, it undergoes a similar compres-

sion ; if, therefore, the initial length of the body is A D = B C —
I, it becomes, in the first case,

A Dx = B (Jl = A D + D Dr = l + X,

and in the second case,

A D x
= B Gx

= A D - D D
x
= I— X.

The extension or compression a increases with the pull or thrust

P, and is a function of the same. This function or algebraical

relation between P and a cannot be determined a priori ; it is

dependent upon the physical properties of the body, and is different

for different materials. If we regard P and A as the co-ordinates of a

curve and construct this curve with the corresponding values of P
find A determined by experiment, we obtain by this means not only

a graphic representation of the law, according to which bodies are

extended and compressed by extraneous forces, but also a means of

determining the peculiarities of this law.

If we lay off from A on the positive side of the axis XX,
Fig. 309, the tensions or tensile forces, which act upon a body, as

abscissas A B, A M, etc., and at their ends the corresponding
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extensions as ordinates B D, M 0, etc., parallel to Y Y, we obtain

a curve A D W, which represents the law of the extension of

this body ; and if, on the contrary, we cut off on the negative side

of the axis XX from A the pressures or thrusts as abscissas A Bx ,

A Mi, etc, and at the extremity of the same lay off the correspond-

ing compressions as ordinates B
x
Dl9 Mx O x , etc, we obtain a curve

A B
x Ox Wx , by which the law of compression of the body is graph-

ically represented. According to the results of many experiments,,

these two curves pass without interruption into one another, have*

consequently at A a common tangent G A G
x , and are therefore-

properly only branches of the same curved line W D A B
]
Ox Wi-

Although the curve as a whole differs considerably from a right

line, yet in the neigborhood of the origin of co-ordinates A it

nearly coincides witli the tangent G A G x , and since for this line

the ordinates are proportional to the abscissas, Ave can also assume

that the small extensions and compressions produced by the pulls or

thrtists A B, A B
x , etc., arc proportional to these forces (Hooks,J

Law).

The total extension M 0, produced by the pull A M, consists:

of two parts, viz.: the permanent extension or set M Q, which

remains in the body, when the stress has ceased to act, and the

elastic extension Q 0, which vanishes with the pull. It is the same,

for compression. The total compression Mx O x
is the sum J/, Q x -h
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Q\ Ox of the permanent compression or set If, Q x and of the elastic

one Qi Ox
. When the forces are small, the permanent change is so

very small compared with the total one, that it can be regarded as

not existing, and consequently the total extensions and compres-

sions can be treated as the elastic ones. If the force exceeds a cer-

tain limit A B (A B
x ), the so-called limit of elasticity, if, e.g., it

becomes A M (A Mx ), the permanent change of length or set forms

a considerable portion of the total extension M or of the total

compression M
x O x

. If the pull or thrust reaches a certain value

A U or A Ux, the extensions U R, U IF and the compressions Z7, 7^

and Ui W\ attain the limit at which the cohesive force of the body

is no longer able to balance the pull or thrust, and consequently a

tearing asunder or a crushing of the body takes place.

If a body has been subjected to a force, which has not extended

or compressed it beyond the limit of elasticity, the body will not

assume any further set, when subjected to another pull or thrust,

which does not reach the limit of elasticity.

§ 204. Fundamental Laws of Elasticity. Modulus of

Elasticity.—The lengthening or extension of a prismatical body,

produced by a force P, is proportional, in the first place, to the

length I of the body, since we can assume that equally long por-

tions are equally extended, and it is inversely proportional to the

cross-section F of the body, since we can sup-

pose the entire stretching force to be equally dis-

^ .—^— tributed over the entire cross-section of the body.

If, therefore, a body A B, Fig. 310, whose length

is = unity and whose cross-section = unity, is

extended an amount a by a stress P, the exten-

sion produced in another body F G of the same

material, whose length is = I and whose cross-

section is = F, by the same stress is

al

F'

The extension a is of course dependent upon

the pull P alone and is different for different

materials ; but according to what precedes

(§203) we can assume that for small pulls, which do not exceed

the limits of elasticity, the extension is proportional to the cor-

responding stress, or that the quotient p- is a constant quantity.

Fig. 310.

^ F

1
III
1™

6
s

I
1

..B

' I
]? I

X =
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Now if A B, Fig. 311, represents the tension P of a prism,

whose length is = unity and whose cross-section = unity, within

the limits of elasticity and B D the corresponding extension c,

and if we denote the angle G A U = I) A B of the tangent to the

curve of extension at A by a, we have also

tang, a — t ^ = — , and therefore

1)

A B P'
P tang, a, whence we obtain

P I tang, a

F '

The quantity tang, a is dependent upon the physical proper-

ties of the body and can be determined by experiment only. If

we assume I = 1, F — 1 and P = 1, we obtain tang, a ~ a, and

this quantity tang, a, to be determined by experiment, is the exten-

sion which is produced in a prism, ivhose length is unity and whose

cross-section is unity, by the tensile force unity (see Combes : Traite

de Vexploitation des mines, tome I.). If in the formula (1) Ave

assume F — 1 and X — I, we obtain the expression

1 = P tang, a, or == cotang. a, = P

;

is that force, which would stretch a prism, whose cross-licnce
tang, a

section is one square inch (1), its otvn length, tvere that possible with-

out surpassing the limit of elasticity.
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This hypothetical empirical quantity — cotg. a is called

the modulus of elasticity (Fr. coefficient d'elasticite ; Ger. Elastici-

tatsmoclul) of the body or material and will hereafter he designated

by the letter E.

According to this we have

2) X ~ F~E'
or the relative extension, i.e., its ratio to the entire length of the

body X _ P
6)

T ~ TW
Inversely the force corresponding to the extension X is

4) P = j FE.

The same formulas obtain also for the compression X, caused by

a thrust P, and the modulus of elasticity E = cotang. a is the same

as for extension as long as the limit of elasticity is not sur-

passed, although in this case it denotes that force, which would

compress a prism of the cross-section unity its whole length, or to

an infinitely thin plate, provided that this were possible without

exceeding the limits of elasticity.

Remark 1.—We can also put the modulus of elasticity E equal to the

weight of a prism of the same material as the body, upon which E acts, and

of the same cross-section unity. If a is the length of this body and y the

heaviness or the weight of one cubic inch of the same material, we have

EE = a 7, and therefore inversely a = —
Tredgold (after Young) used this length as the measure of the elasticity

(see T. Tredgold on the strength of cast iron and other metals). If E\s,

e.g., 30000000 pounds for cast steel and y — 0,3 pounds, we have

30000000 ,„A/V _. ,

a = —^— = 100000000 inches,

i.e., a steel rod 100000000 inches long-, would extend a steel bar of the same

cross-section its whole length, if the law of extension given above were true

for all limits.

Remark 2.—During the extension or compression of a body a change

of cross-section takes place, which, according to Wertheim (see Comptes

rendues, T. 26), amounts to -| of the longitudinal extension or compression.

If I is the initial length, F the initial cross-section and Fthe initial volume

F I of the body, l
x
and Fx

being the length and cross-section during the

action of the force P, we have.the corresponding volume

Vx
=F

X
l
x
= Fl + F(l

x
-l)-(F-F

x
)l, or

Ft
- V=F(l

x
-l)-(F-F

x
)l,
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and the relative change of volume is

Vt —V h-l _ F-Fx

V ' ~ I F

But we know that —-^-^ = I (
*

z
h

whence it follows that

=«w
i.e., the increase in whims is one-third the increase in length.

V — V (I — 1\
According to the theory of Poieson,

* — = \ (
-±——

].

Example—1) If the modulus of elasticity of brass wire is 14000000

pounds, what force is necessary to stretch a wire 10 feet long and 2 lines

thick one line ? Here we have

I = 10 . 12 = 120 inches, X = ^ inch and consequently j — T-^\

~d*
but F == 0,7854 Ctf)

3 = 0,0218 square inches, hence the force re-

quired is

p = _i_
. 0,0218 . 14000000 = 212 pounds.

2) If the modulus of elasticity of iron wire is 31000000 pounds, and an

iron surveyor's chain 66 feet long and 0,2 inch thick is submitted to a pull

of 150 pounds, the increase in length is

150 66 . 12
/==

0778547(0^^ * 31000000 = °'122 mcheS = UU"****'

§ 205. Proof Load, Proof Strength, Ultimate Strength.—
The force A B, Fig. 312, which stretches a prismatical body, whose

Fig. 312.

Y

V W
Gy^

yy^ R

N

C
Mx Bi A

®y y
Q_^-^^"^

v TJt k^fD___
X" ^^0^ B M J

J

*/ /y^
G,

Y
W



380 GENERAL PRINCIPLES OF MECHANICS. [§205.

cross-section is unity, to the limit of elasticity, is called the modulus

of proof strength of extension, and will in future be designated by

T, while the thrust necessary to compress the same to its limit of

elasticity is called the modulus ofproof strength of compression, and

will hereafter be designated by T
x

.

From the moduli of proof strength Tand T
x , with the aid of

the modulus of elasticity E, the extension o and the compression c
l

at the limit of elasticity can easily be found ; for we have

o T o
x Tx

T
= ^and T = ¥.

If F is the cross section of a prismatical body, whose moduli of

proof strength are Tand Txy we have their proof strength or proof

load

X
x (for a pull, P = FT
}

\ and for a thrust, P x
= F Tx .

In constructions the bodies should never be loaded beyond their

limit of elasticity, and the loads should therefore never surpass the

proof strength of the cross-section of the prismatical bodies em-

ployed. Cross-sections must therefore be determined by the follow-

ing formulas

:

!pF = p and

P
*\ — Iff'

On account of the accidental overloading and concussions, to

which buildings and machines may be subjected, and also on ac-

count of the changes, which the bodies undergo in the course of

time, owing to the action of air, water, etc., we render these con-

structions safer by substituting in the foregoing formula, instead

of the proof load, only one-half or one-third of the same, i.e. by

making the cross-section two or three times as great as those given

directly by the formula. In order to have an wfold security, we

P P
must substitute in the formulas F = y^ or Fx

= ^, instead of T
1 l x

T Tx

or T
x , the worhinq or safe loads — or —

.

J J m m
The force A U, Fig. 313, necessary to tear apart a prismatical

body, whose cross-section is unity, is called its modulus of rupture

or of ultimate strength of extension, and is denoted by the letter K\

and in like manner we call the force A J]xwhich crushes a body,

whose cross-section is unity, the modulus of rupture cr cf ultimate
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strength of compression, and we denote it by Kx . If the cross-sec-

tion of the prismatical body is F, we have

Fig. 313.

Y

3) r FK for the force, which will tear the body, and

,
— FKx for the force, which will crush it.

The cross-section of bodies is often determined from the modu-

lus of rupture by substituting in the formulas

4)

PF = -=. and

-Fi

Pi

rr rr

instead ofK the worhing load of rupture, i.e. a small part — or —-,

e.g., a fourth, sixth, tenth, etc., of the numbers determined by ex-

periment. We call n a factor of safety. If the proof strength of

all substances were the same fraction of the ultimate strength, that

is, if the ratios
A B
A U

T , AB
X-~and -r-prK A L\

-= were fixed constants, the

determination of the cross-section by means of the moduli of proof

strength would give the same result as that by means of the work-

ing load of rupture ; but since this ratio is different for different

bodies, the determinations by the aid of the moduli of proof

strengths T and TXi or rather by means of the worhing or safe loads

T T— and —-, are generally more correct and proper, and the deter-
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K K
mination by the workinq or safe loads of rupture — and *-J is only

.

n n
to be employed, when the modulus of proof strength is unknown.

If the cross-section of a body is a circle, whose diameter is d, we.

have -^ = F, whence P = ^ t = 0,7854 ef Tand

tf = |/-^p = 1,128 4^F = 1,128 |/^.

Example 1.—What weight can a hanging column of fir support, if it is

5 inches wide and 4 inches thick? Assuming the modulus of proof

strength to be 3000 pounds, the cross-section being F — 5 . 4 = 20 square

inches, we have P = F T = 20 . 3000 = 60000 pounds as the proof load

of this column. If, however, we assume the modulus of rupture to be

K = 10000 pounds, and we desire a quadruple security, we have P= FK
— 20 .

ioooo = 50000 pounds. In order to be secure for a great length of

time, we take but a tenth part of K, and obtain thus P = 20 . 1000 =
20000 pounds.

Example 2.—A round wrought-iron rod is to be turned so as to bear a

weight of 4500 pounds; what should be its diameter? Here T is 18700

pounds, whence d = 1,128 y ^s^n = 1,128 y t^= = 0,553 inches. The
lo7UU ' Io7

modulus of rupture of average wrought-iron is = 58000 pounds ; if, how-

ever, we wish five-fold security, we take K = 11600 pounds, and we have

d = 1,128 \/^q = 1,128 |/i^ «= 0,7025 inches.

§ 206. Modulus of Resilience and Fragility.—When we

stretch a prismatical body by a force, which gradually increases from

to P = A M — N 0, Fig. 314, and by this means lengthen it

from to X = M — A N, a certain amount of work is done,

which is determined by the product of the space or total extension

A i^and the mean value of the pull, which increases gradually from

to P — N 0. This product can be expressed by the surface

A N 0, whose abscissa is the extension A N = A and whose ordi-

nate is the pulling stress N O — A M' = P. If the extension does

not exceed the limit of elasticity, the surface A N O can be con-

sidered as a right-angle triangle, whose base and altitude are A and

P, and the work done, corresponding to it, is

L = \ X P.

If we substitute in it

A = cr I and P = F T,
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we obtain the ivork to be done in stretching it to the limit of elas-

ticity a

L = i<rl.FT=io T.Fl=. A V,

Fig. 314.
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J
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1

G,

Y
W

in which V denotes the volume Fl of the body and A a number,

given by experiment, which is called modulus of resilience for

extension and is determined by the expression

~ ±j

In like manner the work necessary to compress it to the limit

of elasticity is

in which

A l
=iAC

1
.Cl D 1

= ±o
1 T1

= ±
2 h of E

denotes the modulus of resilience for compression at the limit of

elasticity.

Similar formulas can be employed for the work done in tearing

or crushing prismatical bodies ; for the first case we have

L = VB,
and for the second,

L
x
= VB Xi

B = the surface A U W denoting the modulus of fragility for

tearing ; and B
x
— the surface A U1 Wx , the modulus of fragility

for crushing.



384 GENERAL PRINCIPLES OF MECHANICS. [§207.

We see from the foregoing that the mechanical effect necessary

to stretch or compress a prismatical body to the limit of elasticity,

as well as that, which is necessary to produce a tearing or crushing

of the same, is not at all dependent upon the different dimensions,

but only upon the volume Fof the body; that, e.g., for two prisms

of the same material the expenditure of mechanical effect in pro-

ducing rupture is the same, when one is twice as long as the other

and the cross-section of the former but one-half that of the latter.

Example.—If the modulus of elasticity of wrought iron is E= 28000000

pounds and the extension of the same at the limit of elasticity a = —-,1500
T

the modulus of proof strength is, since a = —
,

„ 28000000 ,_' .

''''

T = a E = 1Rnn - = 18700, (approximative]?)
1500

and consequently the modulus of resilience for extension is

T 2 18700
A = *' r = 2^ = *^= sTWo = 6

'
2S P°unds-

Hence, in order to stretch a prismatical body of wrought iron to the limit

of elasticity, the mechanical effect

L = A V = 6,23 Fis necessary.

If, e.g., the volume of this body were V = 20 cubic inches, the me-

124 6
clianical effect would be L = 6,23 . 20 = 124,6 inch-pounGs = * '

= 10,33 foot-pounds.

(§ 207.) Extension of a Body by its Own Weight.—
If a prismatical body A B, Fig. 315, has a considerable length 1,

it undergoes, in consequence of its weight, a notable extension,

which can be determined in the -following manner. Let F denote

the cross-section of the body, y its heaviness or the weight of a cu-

bic inch of the matter composing it and x the variable length of a

portion of it ; the tension in an elementM iV'is produced
Fig. 315. ^ tjie weight of the part of the body B M lying below

A it, and consequently [according to § 204, (2)] the cor-

II
responding extension of the length MN = 6 x of this

element is

, , y F x ., y 7

By integration we obtain the extension of the entire

piece B M U**.= **s3

and consequently that of the entire body A B is
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yV _ y FT _ ^G
2E

~ %FE~ FE
in which G = y F I denotes the weight of the whole body.

If this weight was not equally distributed in the body, but

applied at its end B, the extension would bo

; - Gl -2A

The extension X =? i X
x
of a body in consequence of its own

weight, is but one half as great as that produced by the same weight

at the end of the body.

The same law obtains of course for the compression X produced

in a body by its own weight.

If in either case a pull or thrust P acts upon the body, we have

the extension or compression produced

PI , Gl _ (P ±jG)l
FE . ~ FE ~ FE '

in which the upper sign is to be employed, when the force P acts

in the same direction as the weight G, and the lower one, when it

acts in the opposite direction. In the latter case, the extension is

of course smaller than when P is the only tensile or compressive

force.

The total extension or compression is = 0, when

i G = P, or G = y Fl = 2 P, or

\~ yF±
The force P, acting at the end of the body, extends it equally

X P
in all parts, viz., in the ratio ^ == ^rip, while, on the contrary, the

weight G stretches or compresses it in the variable ratio -^- = L...

ax E
The ratio of the total extension at any point, at the distance x from

the point of application of the force P, is

X
t

X dX
I

*" dx
If the force P acts in the same direction as G, the maximum

ratio of extension or compression is for x = I, and it is then

*i (P A 1 P + G

?= »(?*'*)!•

>-£"*
I \F ' ' J E FE

25



p
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and, on the contrary, the minimum is for x = 0, 1.E., at the point

X. P
of application of P, and it is -~ ~ jrW*

If P and G act in opposite directions, we must distinguish the

P . P
cases, in which I < -=— and in which I > -=—. In the first casePy Py

the ratio of extension or compression -j- = (-=
T — y x) -= is a

p
maximum for x == and == ^ttt> and a minimum and =

Jit Jo

/P \ 1
j
— — y If

— for x == I. In the latter case there is a positive

for # = 6, and a negative maximum ( y Z — ^J —

p
for x = I, and, on the contrary, for # = -^— the function becomes

= zero.

In order that the body shall be extended or compressed to the

limit of elasticity only, the maximum of the ratio of extension or

/p \ i T
compression [-= ± y x \ -= should be at most = a = —, or more

simply the maximum of (-^- ± y x) = T. But, when P and G

have the same direction, this maximum is

_ P P+jy_Fl _ P + G— ^T + T — ^7 — ^7 >

and therefore we must put ^—- = T, or P = F (T — y Z),

hence the required cross-section is

F P
T - yX

If, on the contrary, the forces P and G act in opposite directions,

P / P\
we have two maxima, one = = and the other = ( y I — — j, and

therefore the corresponding cross-section is equal to the greater of

the values ^ P , « P ™
F—Tf? and F — — — T.

T yl

If in the formulas we substitute 7T instead of T7

, we obtain the

conditions of tearing and crushing, that is, in the first case,

P — F (K — y I), and in the second either

P=FKor P = F(yl-K).
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For P = we have either

T
y l- T= and? = -or

y I — K — and I = —
;

r
the first formula being applicable to the case, when the body is ex-

tended or compressed to the limits of elasticity, and the second to

the case, when a tearing or crushing of the body takes place.

Esmakk.—The energy stored by a body, which is extended or com-

pressed by its own weight, can he calculated in the following manner. The

element M jY, Fig. 316, whose length is dx, is gradually stretched by the

weight y F x of the portion of the body B M an amount, which
Fig. 31G. -v x d x

increases gradually from to d 1 = -—=—, and the work done

jl in accomplishing it is

= \yFx. 6X = ^
y-^~dx.

Integrating this expression, we obtain the expression for the

quantity of work done in extending all the elements of the rod

from B to Jf,

y~ F P „ -, r Fx*

and that done in extending the entire rod

y*Fl*
, y

2 FU2 l . G 2 l

01

L -?' SB ~?' SFE ~^-^FE~^ G7''

in which (according to § 207) ?* = A _. „ denotes the total extension of
jo Hi

the rod.

Example.—If a lead wire, whose modulus of rupture is K ±= 3100 and

the weight of a cubic inch of which is = 0,412 pounds, is suspended verti-

cally, it will break by its own weight, when its length is

I = — = P^: = 7524 inches = 627 feet.
7 0,412

If the modulus of proof strength is T = 670, it is stretched to the limit

of elasticity, when its length is

T 670
L = — = —— = 1626 inches = 135,5 feet,
1

y 0,412

and if its modulus of elasticity is E = 1000000 pounds, we have for the

corresponding extension

1 = ^lx
=

10qqq00
• 135,5 = 0,090785 feet = 1,0894 inches.

§ 208. Bodies of Uniform Strength.—If the pull or thrust

F upon a vertical prismatical body is sensibly augmented by its

weight G, we must of course put

P + G = FTovP = FT- G = F(T-ly),
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and determine the cross-section of this body by means of the for-

mula (compare § 207)

T-ly
If this body, as, e.g., A B, Fig. 317, is composed of prismatical

parts, we can save material by giving to each of these parts a cross-

section calculated by means of this formula. If the
'

K
length of these portions of the body are lx, I*, l3, etc., and
if the load P is gradually increased by the weights Fx lx y,

F2 la y, F3 ls y, etc., of the portions to Px, P», Pz, etc., the

required cross-section of the first portion is

F- P

that of the second should be

Pl F
X TF T-ky T-l2

y>

that of the third

-ry Fa Fa T
,

If the length of all the parts is the same, or l x
= Z2 = lz, etc., = ly

we have more simply

1 T-ly T \T- ly)

FX T _ FT _ P_
(

T V
*~T-ly~ {T-lyf~ T \T-lyl '

_ F,T _ F
I

T
\
3

**~ T-ly' T \f-ly)'
elC '>

or in general for the cross-section of the nth portion

. T \T-ly)
If the cross-section of all the pieces are to be the same, that

cross-section should be

F PITF= T \T-nly)T-nly T \T-nlyj
While in this case the volume of the whole body would be

TT Til nPlV—nFl = -= j-,T—nly
m the former case, where every piece has its own proper cross-sec-

tion, the volume is determined by the geometrical series
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V, = (F
t + F, + . . . + Fn) I

But the sum of the geometrical series in the parenthesis is (see

Ingenieur, page 82)

whence it follows, that

_ P r/ T V n _ (Fn - Fx) T
Vn ~

y \\T-ly) 'J- j" >

and that the weight of the whole body is

G=(Fn - F,) T.

If the length I of the parts is very small, and, on the contrary,

their number n very great, and if we denote the total length n I by

a, we have, reasoning as in § 194,

{
T-lyy= {T- a

fj=Tr(l~
a-g=T-^

in which e = 2,71828 is the base of the Naperian system of loga-

rithms, and therefore we have

w - P ( T V P P ay ay

1 6 r£

in which F = -^ denotes the area of the first cross-section.
P
T

We have also approximative!}7

P

and, on the contrary,

The volume of the body, composed of very many small por-

tions, is found in the manner shown above to be

approximatively
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while on the contrary, the volume of the body with a constant

cross-section is approximatively

T - ay~ T L T
The formulas

+ mi
F =J- «

p zx

hold good, of course, for every body, such as A B, Fig. 318, and

A B, Fig. 319, in which there is a constant variation of the cross-

section. In order to find the cross-section F„

for any position M and the volume of the body

cut off at the same point, we have only to sub-

stitute in this formula for a the distance B M
of the given position from the point of applica-

tion B of the tensile or compressive force. The
bodies thus determined have at every point a

cross-section corresponding to the load they

support, and are therefore called bodies of uni-

form strength (Fr. solides d'tgale resistance.

Ger. Korpervon gleichem Widcrstande). These

bodies have (the other circumstances being the

same) the smallest volume, require therefore the least quantity of

material and are for this reason generally the cheapest and most

advantageous that we can employ. If we compare such a body

with a prismatical one, we find from the above approximate formu-

las, that the economy of volume is

v- v - F-i r 1 —y ± 5 /?lzV1 - F-arLi /.i .

5 *y\
:

" " T L 2. T ."*"
6 \ Tl \ 2T* \ * 3 ~¥f

Remark.—Since the relative extension and compression of a body of

T .

uniform strength is everywhere the same, viz., a = -p, its total extension is

T
1 = a a — — a, while for a prismatical body it is only

. _ (P + \ G) a _ P + $G r.
A ~~ FE ~~ P + G ' E '

Example.—What must be the cross-section of a wrought-iron pump
rod, whose length is 1000 feet, when, in addition to its own weight, it must

support a load P — 75000 pounds ? If instead of the modulus of proof

T
strength T— 18600 we employ for safety a working load -- = 9800 pounds

and put the weight of a cubic inch of wrought-iron

7,70

12

. 62,425

13. 12
0,2782 pounds,
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the required cross-section is

P 75000 75000 „„
* = T^Ty = 9300^12000.0,8782

=
5962

= 12
'
58 S^Uare mche8

»

and the weight of the rod is

G = F .ay = 12,58 . 12000 . 0,2782 = 42000 pounds.

If we could give this rod the form of a body of uniform strength, we
would have for the smallest cross-section

P 75000
F

°
= Y =

"9300
= 8,°6 SqUare incbeS

'

and for the greatest

Fn = 8,08 .
fl»,«M.i,M = 8,06 c -

3083 = 8,06 . 1,432 == 11,5-1 square inches,

and the weight of the rod would be

Gn = Vn y = (Fn — F) T = (11,54 — 8,06) 9300 = 32364 pounds.

If the modulus of elasticity of wrought iron is E = 28000000 pounds,

the extension of the rod in the latter case would be

„ T 18600 . 1000 186 93 _
t n M . _

A =W a = -28000000"
=

280
=

140
f6et = 7

'
97 inChe3

'

and, on the contrary, in the first case it is

P + §- G , 75000 + 21000 ^ 96000 n ^ .

T^V A =
75000--T12000 '

7
'
97 - 117000 "

7
'
97 = ^inchca.

§ 209. Experiments upon Extension and Compression.
—In order to study thoroughly the laws of the elasticity of any

substance, it is necessary not only to submit prismatical bodies of

this substance (which should be made as long as possible) to

extension or compression by weights, which are gradually increased

in amount until rupture is produced, but also to observe the exact

extension or compression produced by each weight. If we place

the bodies to be experimented upon in a vertical position, the

weights can be hung or laid upon them, and they then give

directly the pull or thrust to which the body is subjected. In

order to avoid experimenting with too great weights, we generally

prefer to let the weights act upon the body by means of a lever

with unequal arms ; the weights are always hung upon the long

arm (#), and the body is acted upon by the shorter arm (I). Mul-

tiplying the weight G by the ratio j of the arms, we find the corre-

sponding pull or thrust P = - G. The so-called hydraulic press:
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can also be employed with advantage instead of weights to produce

very great tensile or compressive forces. In order to observe the

amount of the extension or compression, a fine line is drawn upon

tiie bar to be experimented with near each of its ends, or a pair of

pointers, with verniers attached, are fastened to it at those points.

and in order to determine not only the elastic, but also the perma-

nent extension or set, we measure the distance between these lines

or pointers not only before and during the application of the

weights, but also after they have been removed, and it is generally

preferable to allow several minutes or even hours to elapse between

the application or removal of the weights and the measurement:

for when the forces are*very great the extension and compression

do not assume the true value in a moment, but only after a certain

time. This distance is measured either with a bar compass or

directly by means of a division on the rod itself. The so-called

cathometer is also employed for this purpose ; it consists essentially

of a vertical staff and of a spirit-level, which is capable of sliding

up and down the former (see Ingenieur, page 234). In order to

observe the compression on long rods, we must enclose them in

tube-shaped guides ; they must also be well greased from time to

time, so that they can slide without resistance in their guides.

If we wish to determine the modulus of ultimate strength of a

pieces for the experiments. In

experimenting upon rupture by

extensionsre employ bodies with

large heads A and B, Fig. 320,

through which holes are bored

exactly in the axis. In the

middle of each hole a circular

so that the body shall be pulled exactly in the

line of the axis by means of the bolt CD and the

clevis FF, which is applied to its ends.

In experimenting upon rupture by crushing,

the two bases of the body (A, Fig. 321) are

made parallel, it is then brought between two

cylinders B and C, whose bases are ground flat

;

while the rounded head of one of the cylinders

is acted on by the compressive force, the other

is supported by the large bed-plate D, and both

slide in the interior of cylinder E F. The

pressure P upon the head H of the cylinder ie

body, we can employ shorter

Fig. 320.

XrJry

knife-edge is made.
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produced either by a hydraulic press or by a one-armed lever

L 0, such as is partially represented in the figure.

While the rupture of a body by tearing occurs in the smallest

cross-section, and the body is therefore divided in two parts only,

the rupture by crushing takes place generally in inclined surfaces,

and the body is divided into several pieces. Prismatical bodies arc

divided, in the first place, into two pyramids, whose bases are those

of the body and whose apexes are at its centre, and in the second

place, into other pyramidical bodies, whose bases form the sides of

the body and whose apexes are also situated at its centre. Bodies,

whose structure in different directions is different, of course do not

act thus ; e.g., a piece of wood would be compressed by a force

acting in the direction of the fibres, in such manner, that at its

smallest cross-section the fibres would be bent out in a spherical

form.

§ 210, Experiments upon Extension.—We are indebted

to Gerstner for the first thorough experiments upon the extension

and elasticity of iron wire. He employed in his experiments iron

wire from 0,2 to 0,8 lines in diameter and made use of the lever

apparatus represented in Fig. 322 with the pointer CD 15 feet

Fig. 322.

long, the counter-balance G and the sliding weight Q. The wire

A" IJ \ which was about 4 feet long, was firmly fastened at one end E
and the other was wound round a pin F, which was turned by the
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endless screw S, so that the wire could be subjected to any desired

strain. The extension of the wire was shown by the pointer D
upon a rod A B in 54 times its natural size. The knife-edge C of

the lever, the pin F, around which the upper end of the wire is

wound, and the endless screw S, which turns the pin, are all repre-

sented on a larger scale in Fig. 323.

Gerstner proves by his ex-

periments, that every extension

is the sum of two extensions, one

of which (the elastic extension)

disappears, when the weight is

removed, and the other (the per-

manent extension, or set) remains,

so that the extension X is not ex-

actly proportional to P within the limits of elasticity, and that it

is more proper to replace the formula

P = jFB [§204(4)]

by the following series

ia which a and /3 are numbers determined by experiment.

Quite extensive experiments upon the elasticity and strength

of wrought iron and iron wire were afterwards made by Lagerhjelm

and by Brix. Both experimenters employed in their researches a

bent lever A B, Fig. 324, the longer arm B of which was de-

pressed by the weights G, which were laid upon a scale-pan W, and

- r^.
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thus the iron bar or wire D E, which was fastened to the shorter

arm G A, was stretched to any desired extent. In the apparatus

G A
used by Brix, the ratio of the arms of the lever was j^-jt = ^,

and one end D of the wire was attached to the arm C A with

clamps, hooks and bolts, and the other end was fastened in the

same way to a screw 8, which was turned by means of a train of

wheels by a crank K. The increase in length was given by two

verniers, which were screwed fast to the ends of the wire and

moved along two scales divided into quarter lines. When the wire

had been firmly fastened in the clamps, the scale-pan was gradually

loaded with heavy weights, and in each experiment the wire was

stretched by turning the crank K until the lever was lifted from

its support and the tension of the wire balanced the weight G.

The experiments were made with wire 1| to 1A lines thick and

gave for the average value of the modulus of rupture of unannealed

wire K — 98000 pounds, and, on the contrary, after annealing,

K — 64500 pounds. The average modulus of elasticity, on the

contrary, for annealed and unannealed wire was found to be

E — 29000000 pounds ; it was also found, that the limit of elas-

ticity was reached, when the strain was 0,5 K for unannealed and

0,0 A" for annealed wire.

When the tensions were greater, the extension became perma-

nent, and the total extension of unannealed wire at the instant of

rupture was
/I X
~ — 0,0034, and that of annealed wire - = 0,0885,

or 26 times as much. In the apparatus used by Lagerhjelm the

tension on the wire was produced by a hydraulic press, the piston

rod of which was attached to the end of the iron bar.

Lagerhjelm employed in his experiments iron rods 30 inches

long, \ inch thick, the cross-sections of which were circular and

square. According to his experiments, the average modulus of

elasticity for Swedish wrought iron is

E = 46000000 pounds

;

the modulus of rupture or of ultimate strength is

E = _ E = 92000 pounds

;

out)

and the modulus of proof strength

T =zc .E= JL . 46000000 = 28750 pounds.
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Wertheim, in his experiments upon the elasticity and cohesion

of the metals, allowed the wire to hang freely, and fastened to the

end of the same a weight-box, which was supported upon the floor

by means of feet, which could be raised or lowered by turning i\

screw. In order to stretch the wire by means of the weights

placed in the box, the foot-screws were turned until the box swims:

freely. A cathometer was employed to determine the extension of

the wire.

The experiments were performed at very different tempera-

tures, and with wire made of various metals, such as iron, steel,

brass, tin, lead, zinc, silver, etc. The principal results of these ex-

periments will be found in the table given in § 212.

The apparatus, wTith which Fairbairn performed his experiments,

consists essentially of a strong wrought-iron lever or balance-beam

A C D, Fig. 325, whose fulcrum D is firmly retained by a strong

bolt F, which can be raised or lowered by means of a nut. Two

Fig. 325.

iron pillars give the necessary resistance to the bed-plate H II,

through which J7 passes. The piece of iron L M to be experi-

mented upon is suspended by means of a chain to the support A' A".

which reposes upon the two columns T T and is connected by a

bolt and clevis to the stirrup C of the lever A C D. To the long* r
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arm of the latter there is suspended not only a constant weight G,

but also a scale-board for the reception of smaller weights ; the

bolt X serves to support the lever, and the latter is raised by means

of a rope P, which passes over a pulley and is wound upon the

shaft W of a windlass U Y Z. After the weights had been laid on,

1 he arm E of the lever was allowed to sink gradually by turning

the crank U, until the piece of iron to be tested was finally sub-

jected to the tension produced by iVand G.

Remark.— Gerstner's experiments upon the elasticity of iron wire, etc.,

are discussed in Gerstner's Mechanics, Vol. I. For tbe experiments of

Lagerhjelm, see Pfaff's translation of the treatise : Researches for the pur-

pose of determining the density, homogeneity, elasticity, malleability, and

strength of bar iron, etc., by Lagerhjelm (Nurnberg, 1829), and the informa-

tion in regard to the experiments of Brix is to be found in the treatise on

the cohesion and elasticity of some of the iron wires employed in the con-

struction of suspension bridges (Berlin, 1837).

The experiments of "Wertheim upon the elasticity and cohesion of the

metals, etc., as well as of glass and wood, are discussed in "Poggendorf 's

Annalen der Physik und Chemie," Erganzungsband II, 1845. In the

latter experiments the modulus of elasticity of the bodies named was de-

termined not only by experiments upon extension, but also by experiments

upon flexion and vibration. For Fairbairn's experiments on the strength

of materials, his " Useful Information for Engineers" can be consulted.

§ 211. Iron and Wood.—The most complete set of experi-

ments upon the elasticity and strength of cast and wrought iron

are those more recently made by Hodgkinson. By these we have

for the first time acquired a complete knowledge of the laws of ex-

tension and compression for these materials, which are of such

great importance in their practical applications. Although, accord-

ing to these experiments, iron produced in different ways has

different degrees of elasticity and strength, yet it is possible to

express the behavior of this body in regard to extension and com-

pression by means of curves.

The average modulus of elasticity of cast iron (Ft. fonte, Ger.

Gusseisen) is, according to these experiments, for extension as well

as for compression

E = 1000000 kilograms, when the cross-section is one centime-

ter, and consequently

E — 14,22 . 1000000 = 14220000 pounds when the cross-section is

cue inch.

The extension at the limit of elasticity is

- x - UL
° ~

l '

~ 1500'



G
x
=
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This extension corresponds to the modulus of proof strength

T 1000000 rpr . ...= ~
1500

"~ ~ kilograms, or

m 14220000 ,,.=
1500 = 9480 Poinds.

The compression at the limit of elasticity, on the contrary, is

1

750'

and therefore the modulus of proof strength is

m 1000000 10001 , 14220000 ,„_ . ,
Tx =

75Q
= 1383 kilograms = ——— = 18960 pounds.

The modulus of rupture for tearing was found by these experi-

ments to be
K = 1300 kilograms = 18486 pounds,

and, on the contrary, that for crushing

Kx
= 7200 kilograms = 102400 pounds.

The resistance of cast iron to crushing is, therefore, 5^ times as

great as that to tearing.

For wrought iron (Fr. fer; Ger. Schmiedeisen) we have for

extension as well as compression

E = 2000000 kilograms = 28440000 pounds,

and the limit of elasticity is reached, when a == - = ^-^^r, whence

the modulus of proof strength is

T = ^^~ = 1333 kilograms = 18960 pounds.

Finally the modulus of rupture or of ultimate strength of

wrought iron was found to be for tearing

K = 4000 kilograms = 56880 pounds,

and for crushing

Kx = 3000 kilograms = 42660 pounds.

The modulus of elasticity of wrought iron is therefore about

double that of cast iron, and while the modulus of rupture by tearing

of cast iron is but about ^ that of wrought iron, the modulus of rup-

ture by crushing of cast iron is nearly 2.\ times as great as that of

wrought iron. The relations of the elasticity and strength of cast

and wrought iron are graphically represented in Fig. 326. From

the origin A on the right-hand side of the axis of abscissas XX
uhe tensile forces, given in thousand pounds per square inch, arc-

aid off and on the left-hand side the compressive forces, while the
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upper half of the axis of ordinates Y Y represents the correspond-

ing extensions, and the lower half the compressions. It will at

once strike the eye, that the curve of cast iron has a great develop-

ment on the side of compression and that of wrought iron on the

side of extension ; and we also remark, that the curves form

approximatevely straight lines near the origin A.

Fig. 326.

Thousandths

Thousand pounds

SO 80 70 60 50 40 30 20 10

Wrought Iron

—

X

10 20 30 40 50

Thousand pounds

60

Wrought Iron

Cast Iron

—Y-^-lO Thousandths

As next to iron wood (Fr. bois ; Ger. Holz) is most generally

employed in construction, the relations of the elasticity of fir,

beach and oak wood are graphically represented in the figure by
a curve. The average modulus of elasticity of these kinds of

wood is

E = 110000 kilograms == 1564200 pounds.

The limit of elasticity is reached, when a =—- of the length, and
600 to

the corresponding modulus of proof strength is

T = -gQQ- = 180 kilograms = 2607 pounds.

Finally, the modulus of rupture for tearing is

K = 650 kilograms = 9243 pounds,
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and, on the contrary, for crushing

K — 450 kilograms = C399 pounds.

The ratio 156 : 1422 : 2844 approximatively = 1 : 9 : 19 of the

moduli of elasticity of wood, cast and wrought iron to each other

is expressed in the figure by the subtangents ab, ac and ad.

Fig. 327.

Wrought Iron

Thousandths

Thousand pound3

90 80 70 60 50 40 30 20 10

10 20 30 40 50
Thousand pounds

GO

Cast Iron

10 Thousandths

The modulus of resilience A — -\ a T for the limit o: elasticity

is expressed by the triangles A ah, A a
x
c x
and A aL a

7

,, the bases

of which are the small ratios of extension o = A a — tt™ and
0UO

a = A «j = -— (approximatively).

From the above, we have for wood

A — A o T = S .— . 180 - 0,15 kilogram centimeters
GOO

1_
600

. 2607 = 2,17 inch-pounds,

for cast iron

1
A

* ' 1500
667 = 0,222 kilogram centimeters = 3,16 inch-

pounds, and for wrought iron
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1333
A — -h . —^- = 0,444 kilogram centimeters == 6,32 inch-pounds.

Properly, a complete series of experiments is necessary to deter-

mine the modulus of fragility for tearing or crushing* for this

modulus is found by the quadrature (see Art. 29, Introduction to

the Calculus) of the complete branches of the curve on either side,

and this is especially necessary for the extension of wrought iron and
for the compression of cast iron, since the curves corresponding to

Che changes in these bodies differ considerably from right lines.

The extension and compression of wood at the instant of rupture
by tearing or crushing is so little known, that we are unable to

give with any degree of certainty its moduli of fragility. If we
treat the corresponding curve as a right line, we obtain the modu-
lus of resilience for tearing

, K2
650 2

H M , .,b — \
-ft

=
Yioooo

~ ? kilogram centimeters == 27,2 inch-

pounds, and, on the contrary, the modulus of fragility for crushing is

K 2 450 2

B—h ~w=l' 11QQQQ
= O?92 kilogram centimetres = 13,07 inch-lbs.

When cast iron is ruptured by tearing, assuming the extension

fco be o
x = 0,0016 and the mean value of the force to be 560 kilo-

grams, the modulus of fragility is

/; = 0,0016 . 650 = 1,04 kilogram-centimetres = 14,8 inch-lbs.

When cast iron is ruptured by crushing, the maximum exten-

sion can be assumed to be o
x
= 0,008 and the mean crushing force

to be — 3600 kilograms; hence the corresponding modulus of

fragility is

B
x
= 0,008 . 3600 = 29 kilogram-centimetres = 411 inch-lbs.

We can assume as the mean value of a
x
for the rupture of

wrought iron by tearing, 0,008 and for the mean value of the

force 3000 kilograms; hence the corresponding modulus of fra-

gility is

B = 0,008 . 3000 =3 24 kilogram-centimetres = 341 inch-lbs.

On the contrary, for the rupture of wrought iron by crushing,

we must assume a = 0,0018 and the mean- force to be = 1300
kilograms; whence the corresponding modulus of fragility is

B == 0,0018 . 1300 = 2,34 kilogram-centimetres = 33,3 inch-lbs.

§ 212. Numbers Determined by Esqjeriment—In the

following tables I and II the mean values of the moduli of elas-

• 26
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ticity, of proof strength and of ultimate strength of the materials

generally employed in constructions are given. The first table is

for tensile and the second for compressive forces.

The value of the relative extension o = - for the limit of elas-
V

ticity given in the second column of the tables expresses also the

T
ratio .-= of the values of jTand E given in the third and fourth

columns. In practice the bodies are only loaded with — T, E.G.,

\ T to ^ T, or the cross-section is determined by substituting in

the formula

instead of K, for metals the modulus of safe load - K — J K, for

wood and stone = T\ K, and for masonry but ^ K, On the con-

trary, for ropes we can employ \ K to i JT. We call n a factor of

safety.

The lower numbers in the parenthesis •! [• give the values in

kilograms, assuming a cross-section of 1 centimetre square; the

upper numbers express the values in pounds referred to a cross-

section of one square inch.

Remark.—The moduli given in these tables are for unannealed metals.

For annealed metals (Fr. metaux cuits, Ger. ausgeglute Metalle) the modu-
lus of elasticity is generally the same as for unannealed metals, while the

modulus of rupture by tearing of annealed metals is generally from 80 to

40 per cent, less than that of unannealed ones. Tempered and annealed steel

(Fr. acier trempe et recuit, Ger. geharteter und angelassener Stahl) has the

same modulus of elasticity as untempered steel, but its modulus of proof

strength is 20 to 30 per cent, greater than that of untempered steel. When
it is not otherwise stated, the moduli for metals were determined with

wire, which had on the outside a harder crust (caused by the drawing)

than hammered or cast metal rods. For some materials, e.g. wood, iron,

und stone, the moduli of elasticity, of proof strength and of ultimate

strength vary so much that in particular cases a value differing 25 per cent,

(more or less) from those here given may be found.
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TABLE I.

MODULI OF ELASTICITY AND STRENGTH FOR EXTENSION.

Name of the material.

Cast iron

Wro't iron in rods.

in sheets.

German steel, tem-
pered and annealed

Fine cast steel. . . .

Hammered copper

Sheet copper. . .

.

Copper wire

Zinc, melted... .

.

Brass

Brass wire

Bronze,gun metal.

Lead

Lead wire

Extension

A

at the limit of
Elasticity.

I500

I

I500

I

IOOO
I

I250

I

835
I

45°
1

4000
1

3650
1

IOOO
I

415°
I

1320
I

742
I

!59°
1

477
1

1500

= 0,000667

= 0,000667

= 0,001000

= 0,000800

= 0,001198!

= 0,002222

= 0,000250

= 0,000274

== 0,001000

= 0,000241

= 0,000758

= 0,001350

== 0,000629

= 0,00210

= 0,000667

Modulus
of Elasticity JEJ.

14 220000
I OOOOOO

28 OOOOOO
1 970000

31 OOOOOO
2 I90OOO

26 OOOOOO
1 830000

29 OOOOOO
2 O50OOO

41 500000
2 92OOOO

15 64OOOO
I I OOOOO

15 64OOOO
I I OOOOO

I 720000
I 2IOOOO

13 500000
950000

9 100000
640000

14 OOOOOO
987000

9 800000
690000

711000
50000

I OOOOOO
70000

ffi

9480
667

18700
J3i3

31000
2190

20800

1475

34730
2460

92200

6490

3910
275

4285
301

1720
1210

3250
229

6890

485

18900
J 33o

6160

434

1490
105

667

47

g^» £*

3>i6

0,222

6,23

0,44

15.5

1,10

8,32

1,18

20,8

1,48

102,4

7,20

o,49

0,034

°>59

0,041

8,60

0,605

0,392

0,029

2,61

0,184

12,76

0,90

1,94

0,136

1,56

0,110

0,22

0,016

iff

18500)
1300 f

58200)
4090 j

88300

1

6210
j

46800)
3290 j

116500)
8190

1

145500

1

10230

)

33800

J

2380 j

30400)
2140 j

60300)
4240}

7500)
526 J

17700

)

•1242 >

51960)
3654)

36400

1

2560 j

1850)
13° y

3100)
220 j
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MODULI OF ELASTICITY AND STRENGTH FOR EXTENSION—Continued.

Name of the material.

Extension
A

at the limit of Elasticity.

Modulus
of Elasticity E.

1

Modulus

of

proof
strength

"Boil

1^— 1

23!

Tin
I

9OO
= 0,OOIIII

\

5 700000
400000

6300

440
3.50

0,24

5000 )

350)

Silver
I

660"
= 0,001515 \

[o 400000
730000

15800
IIOO

12,00

0,83

41200
)

29OO
j

Gold
I

60O
= 0,OOl667

I

[i 400000
800000

I9OOO

1300
153
1,09

384OO
)

27OO
)

Platina
I

60O
= 0,OOl667 {>2 80OOOO

I 600000
380OO
27OO

3i,7

2,25

483OO )

3400)

Aluminum — j 9 60OOOOO

( 675OOO — 289OO )

2030)

Glass —
!

[0 000000
700000 — — 3530 X

248}Wood : beach, oak,

pine, spruce, fir,

in the direction

of the fibres ....
I

60O
=

3
OOl667

i

I 560000
IIOOOO

2600
180

2,17

0,15

9200

)

650 j-

The same kinds of

wood in the di-

rection of the

radii to the

yearly rings —
1

185000
13000 — 570)

40
j

The same kinds of

wood parallel to

the yearly rings

.

—
i

I 14000
8000

— — 640)

45)

Light hemp rope .

.

~ — —

-

— f 8700)

X 610 f

Strong hemp rope

.

~ — — — j 6830)

1 480 j-

Wire rope — — — — i 47000

1

( 3300

j

Chain cable ...... — — — — j 51900)

( 3650)

Leather straps (cow

leather)

Sheet iron (riveted

—
!

10400

731

—
— j 4100}

I 290)

with one row of

rivets} — j 37000

)

( 2600
)

|

IlVCLb,....
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TABLE II. •

THE MODULI OF ELASTICITY AND STRENGTH FOR COMPRESSION.

f 1
to
cu

Name of the

material.

Compression
A

at the limit of elasticity.

.2

"o

O

1/5

2 b

"3
-a

1- b

3 II

r

l/J

.£

w-
O
t/>

J3

'O
O

Cast iron . -— = 0,001333
75°

f 14000000

( 990000
18700
I32O

12,44

0,88

IO4OOO)
73'oj

Wrought " = 0,000667
1500

( 28000000

( 1970000
187OO

1320
6>3
0,44

31000)
2200

j

Copper . .

1 = 0,0002150
4000 J

f 15640000

( IIOOOOO
39IO

275

0,49

0,039

58300)
4100)

Brass . . .
— — — — ( 10400

)

X 731)

Lead. . . .

Wood in

— — —
{W

the direc-

tion of the j 6800 )

1 480 ffibre. . . .
— —

Basalt . . .

Gneiss and

— — — — j 28000 )

\ I970 f

j 83OO
I

I 585 f
granite . .

— — — —
Limestone. — — — j

5200 )

1 365 s

1 4150^
( 292

j

Sandstone

.

— — —
Brick . . .

— — — —
i t\

Mortar. . .
— —

1 1?!

Example 1. What should be the cross-section of a wrought-iron rod
1500 feet long, which is subjected to a pull of 60000 pounds ?

T
Neglecting the weight of the rod and allowing a strain of — = 9350

2

pounds per square inch, we obtain the required cross-section F == ~^^r
9350

= 6,42 square inches. Taking into account the weight of the rod, the
weight of a cubic inch of iron being y = 0,280 pounds, we have
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F = 60000 60000 6000

5040
=W=13

'
92sqUareinches -

9350 — 1500.12.0,280 9350

The weight of the rod is G = Fl y = 5040 . 13,92 = 70157 pounds, and

the extension of the same by the pull P= 60000 jiounds and by the "weight

Q = 70157 pounds is

i- G) I 95078 . 18000 142617(P+t
FB 13,92.28000000 32480

Example 2. How thick must the foundation walls of a building 60 feet

long and 40 feet wide on the outside, and weighing 35000000 pounds, be

made when we employ good cut pieces of gneiss ? If we make the thick-

ness of the wall equal to x, we can put the mean length of the wail = 60

— x and the mean breadth = 40 — x, and therefore the mean periphery

2 . (60 — x + 40 — x) = 200 — 4 x, and consequently the base of the

whole masonry is (200 — 4 x) x square feet = 144 (200 — 4 x) x — 576

(50 — x) x square inches. The modulus of rupture of gneiss for crushing

is 8300 pounds. If, therefore, we assume a coefficient of security of
fy

or

a factor of safety of 20 for the wall, we can put the allowable pressure

upon a square inch == -^r—- = 415 pounds ; hence we have
/wO

415 . 576 (50 — x)x= 35000000,

whence 50 x — x2 = 146,4,

and finally the required thickness of the wall

146,4 + x- n_ .
8,57

2,928 + = 3,10 feet.
50 '

' 50

§ 213. Strength of Shearing.—The strength of shearing (Ft.

resistance par glissement on cisaillement, Ger. Schnbfestigkeit or

Widerstand des Abdruckens oder Abscheerens), which comes into

play when the surface of separation coincides with the direction

of the force, can be treated in the same manner as the strength of

extension. We have here to consider the action of three parallel

forces P, Q, and E, Fig. 328. when the points of application A and

C of two of the forces lie so near each other, that bending is not

possible, and thereforo a separation of the body in two parts takes

Fig. 328. Fig. 329.

M1M

place between A and C in a surface D D at right angles to the

of the body. The strength of shearing, like that of tearing

axis

tearing and
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crushing, is proportional to the section of the body, or rather to the

area F of the surface of separation, and in the case of wrought iron

is approximately equal to that for tearing, so that the modulus of

rupture K for tearing can also be employed as the modulus of rup-

ture for shearing, and consequently we can put the force necessary

to produce rupture by shearing, when the cross-section is Fy

P — FK. In general we have P = FK» K2 denoting the ultimate

strength of shearing per unit of surface determined by experiment.

The formula P = j FE a FE iov tensile and compressive

forces within the limit of elasticity can also be employed for the

C A
shearing force P, Fig. 329, but here a denotes the ratio i == -^—=

of the displacement G A to the distance G B of the directions A P
and E F of the two forces from each other.

The following Table III. contains the modulus of elasticity
( C

)

and that of rupture or ultimate strength (iTs) for all bodies, for

which they are known at present, and they correspond to the

formulas P — i F G and P
2
= FK2 for the elasticity and strength

of shearing.

TABLE III.

MODULI OF THE ELASTICITY AND ULTIMATE STRENGTH OF
SHEARING

Names of the Bodies. Modulus of Elasticity C.

Modulus of Ultimate
Strength A"2 .

Cast Iron

Wrought Iron

Fine Cast Steel ....

Copper

Brass

Wood of deciduous Trees . .

Wood of evergreen Trees . .

C 2840000

{ 200000

j 9000000
( 630000

J
14220000

1 I 000000

( 6260000
1

I 440000 j

j 5260000)
"j 370000 j

1 569000

1 40000

f 616000

j 43300

323OO
I

2270
j

50000 )

3500 j"

9240O )

6500 )

683) j

48 f

2290

1

161
j

G is generally taken = \ E and iT2 = K.
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FIG. 380. Fig. 331.

The most important application of tlie formula P = F K^ is

to the determination of the thickness d of bolts and rivets, with

which plates and other flat bodies are fastened together. There

are two modes in which bodies

may be fastened together in this

way ; either the plates A B and

C D to be joined together are

laid upon one another, as in Fig.

330, and then fastened together

by the bolts or rivets iV^iV^and

0, or, as is represented in Fig.

331, the plates are butted to-

gether and covered with splicing

pieces D D and E E, and they

are then fastened together by

means of the rivets iVi\^and 0,

which pass through both the plate and the splicing pieces. In the

first method of joining the plates the tensile stress passes from one

plate to the other through the intervention of a couple, which

causes both of the plates to undergo in addition to the stretching

also a bending, and consequently their safe or working load is

diminished. The second method, where no such couple is called

into action and where, consequently, no bending takes place, is for

this reason to be preferred. Since the plates and splicing pieces,

which are thus joined, press upon each other with no inconsidera-

ble force, the strength of the joint is considerably augmented by the

friction arising from this pressure. For greater safety we disregard

this action in determining the thickness of the rivets. On the other

hand, the working load of the plate is diminished by the holes

made for the rivets or bolts, and we must therefore take care that

it is not exceeded by the working load of the rivets. If cl is the

thickness of the rivets and v their number, in the case of the joint

in two plates represented in Fig. 331, we have for the working

load of the rivets „ tt d~ K^P — v — .

4 n

Now, if b is the width and ,9 the thickness of the pieces to be joined

and v, the number of the rivets in one row, the cross-section of the

plate submitted to the force P is

F — (b — v
x
d) s, and therefore we have P = (b — v

x
d) s —

,

K denoting the modulus of rupture of sheet iron ; equating these

two values, we obtain
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—-— K2 = (b — v
x
a) s K, or

v
_ 4 (I) - v

x d) s K

When the holes in the plates are punched, the strength of

shearing must be overcome, but in this case the surface is not

plane, but cylindrical. If s is the thickness of the plate and d the

diameter of the hole in it, we have the area of the surface of

separation

F= ttcIs,

and consequently the force necessary to punch the hole is

P = FK2
=± ~ds K.} .

(Compare in the "Civil Ingenieur," Vol. I, 1854, the article "John
Jones' experiments on the force necessary to punch sheet-iron," by

C. Borneman).

Example—1) An iron rivet 1|- inch thick can resist with safety, if we as-

sume K
2
= i

. 50000 = 8300 pounds, a force

d* 7r/3\
2 9.2075-

P = -j-Kz
=^A . 8300 = ^ = 14670 pounds,

and the force necessary to punch the hole through the sheet-iron, which is

£ inch thick, is

Pt
= t? d s . K„ = tt .

-

s.

, - . 50T)00 = 37500 tt = 117810 pounds.
a /^

2) If two pieces of sheet-iron are to be joined together by a row of

rivets, and if we denote the thickness of the plate by s and its width for

each rivet by b, we have

(b — d) s = ^j— j whence

e.g., for d = § and s = -I inch

b — | / 1 -f-^l = 5 inches.

CHAPTER II.

ELASTICITY AND STRENGTH OF FLEXURE OR BENDING.

§ 214. Flexure.—The most simple case of flexure is that of a

body ABC, Fig. 332, acted upon by a force A~P — P, whose di-

rection is normal to its axis A B, while the body at the same time

hi retained at two points B and O. Let I and l^ be the distances
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C A and C B of the points of application A and B from the cen-

tral fulcrum or point of application C, then the force at B is

and consequently the resultant is

Z = P + Q=(i + 1)p.

Fig. 333.

"']" ;",'»',! I J

j
^[iiiiiii!iiiiiiii!i:i'iiiiV ;ii:;i.

!

r.iii'!:ii:!.i!i: s;;iiiiiiiiiiiiiiiiii B

mm

If we wish to prevent one portion of the body from bending,

we must insert between the two points of support an infinite num-
ber of others, or the body must be fastened or solidly walled in

along B C, as is represented in Fig. 333, and we have then to study

only the flexure of the free portion A 6
y

of the bod}*. Let us sup-

pose the body to be a prism, and let us assume, that it is composed

of long parallel fibres placed above and alongside of one another

and that, when the body is bent, they neither lose their parallelism

nor slide upon one another.

By this flexure those fibres, which arc on the convex side of

the body, are extended, and those on the concave side are com-

pressed, while a certain mean layer undergoes neither extension

nor compression. This is called the neutral surface of a deflected

beam (Fr. couche des fibres invariables, Ger. neutrale Axenschieht)..

The extension and compression of the various fibres above and

below this layer are proportional to their distance from it. The ex-

tension of the fibres on one side and the compression of those on

the other increase gradually, so that the fibres most distant from

this surface on the one side undergo the maximum extension, and

those on the other the maximum compression. A portion of the

body A K B, Fig. 334, bounded before the flexure by the cross-

sections K L and N 0, assumes, in consequence of, the flexure, the

form K L O x
iV„ by which the cross-section N becomes A7

, 0„
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that is, it ceases to be parallel to K L and assumes a position per-

pendicular to the neu-
FlG

-
834 - tral surface R S. The

length KN of the up-

permost fibre becomes,

in consequence, K Nx,

and that of L the

lowest fibre becomes

L O x
. The increase in

length of the former is

thereforeNN„ and the

decrease of the latter is

0], while the fibre

R S in the neutral sur-

face retains its primi-

tive length unaltered.

The intermediate fibres,

such as T U, V W, etc.,

are. increased or dimin-

ished in length becom-

ing TU» FJF^etcand
the amount U U19WWu

etc., of the increase or

decrease is determined

by the proportions

uux su

WW, _
o

x

=

8N y

S W
SO , etc.

Let us assume the length of the fibre

RS=KN=LO = unity (1),

and let us denote the extension or compression of the fibres, which

arc situated at the distance unity (1) from the neutral surface, by ff
?

then we have for a fibre, which is situated at a distance S U or

S W — z from this surface, the extension or compression

U 17, or W Wi = oz.

If the body is but little bent, so that the limit of elasticity is

nowhere surpassed, we can put the strain on the di fit'rent fibres

proportional .to their extensions, etc., and we can consequently as-

sume, that these strains are proportional to their distance from the

n utral surface, as is represented in the figure by the arrows.
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If the cross-section of a fibre is = unity, we have in general the

tension upon it = a % .E; and if the cross-section of the fibre == F,

the tensile or compressive strain is expressed by the formula

8 = a zFE = a E.Fz,
•and its moment in reference to the point 8 upon the axis is

M = z . o z F E = a z
l FE = a E . F z\

§ 2u.5. Moment of Flexare.—The tensile and compressive

strains in the cross-section N
x Ox balance the bending force P at

the end A of the body A B. We can therefore apply to these

forces the well-known laws of equilibrium. If we imagine that

there are in action at 8 two other forces -f P and — P, which
are not only equal but also parallel in direction to the given force

P, we obtain

1) A couple (P, — P), which produces the flexure or bending

around 8, and

2) A simple shearing force 8 P— P, which tends to cut off the

portion A 8 of the body in the direction 8 P or A P. The latter

force can be decomposed into two components P, and P2, whose

directions lie in the plane of the cross-sectionNx Ox
and in the neu-

tral axis 8 R. If a is the angle formed by the cross-section N
x O x

with the direction A P of the bending force, we have

Pj = P cos. a and

P^ = P sin. a.

In ordinary cases in practice the flexure of the body and also a is,

so small, that we can put sin. a = and cos. a = 1, and consequently

we can neglect the component P2 , which tends to tear off the por-

tion A 8 at JVx lf and, on the contrary, we can put the force P J;

which tends to rupture by shearing the piece A 8 in iV,
3 , equal

to the bending stress P.

If F denote the area of the cross-section JVi 0\ and iT2 the modu-

lus of rupture for shearing, the shearing force is determined by

the product F iT2.

If we are considering a long prismatical body, P is generally

so small a portion of F K* that rupture by shearing can scarcely

occur, and for this reason it will be considered in particular cases

only. (See the following chapter.)

Since one couple (P, — P) can be balanced only by another

couple, it follows, that the tensile strains on one side form with the

compressive strains on the other another couple (<2, — Q), and

that the moments of the Wo couples must be equal. If P„ P, P3)

etc., are elements or infinitely small portions of the entire siirface
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Fig. 334 a.

Fof the cross-section N — Nx X ,
and if the distance of these

portions from the neutral surface or 8 be denoted by z» zi} z3, etc.,

the strains in these elements are

g E . F
x
z x,g E . Ft z„ a E . F3 zz, etc.,

and their moments
g E.F

X
z

x
\ a E.F, z2\ g E . Fz z{, etc.

Since these forces form a couple (Q, - <?), their sum

g E (Fx z x + F,z2 + F3Z3+ . • .), and consequently

FiZt + FoZ2 + F3 Zs + . . . must be = 0.

But this sum can

only be = 0, when the

point S of the axis co-

incides with the centre

of gravity of the sur-

face F = Fx + F +
F3 + . .

.
; consequently

the neutral axis ofa dent

body passes through the

centre of gravity S of

its cross-section F. The
moment of the couple

(ft - Q),

g E (Fx z? + F* tf

+ F3 z* +'...),

should now be put

equal to the moment
of the couple (P, - P).

If we denote the dis-

tance S II of the cen-

tre of gravity S from

the direction A P of

the bending force by x,

we have the moment
of the latter couple =
P x, and therefore

P x = g E(F
X z?

+ F, z? + . . .).

Finally, we have for the radius of curvature M R — M S of

the neutral surface the proportion

MR _ S_U
~R S~ UU'
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or, substituting M R = r, R 8 = 1, 8 U = 1 and U U^ — a,

r _ 1

1
~~

a

Consequently r o — 1 or a = -, whence the moment of force is

Px=y(Fl z l
> + F2 z.2

* + ...).

The radius of curvature at 8 is therefore

The expression F
x z{ + F2 z* + ... is dependent only upon

the form and size of the cross-section, and can therefore be deter-

mined by the rules of geometry. We will hereafter denote it by

W and we will call the quantity corresponding to it the measure

of the moment of flexure, and W E the moment of flexure itself

(Fr. moment de flexion ; Ger. Biegungs-moment).*

From the above, we have for the radius of curvature

WE
r
=lFx->

and we can assert that the radius of curvature of the neutral axis

of a deflected body is directly proportional to the measure W of the

moment offlexure and the modulus of elasticity E, and, on the con-

trary, inversely proportional to the moment P x of the force.

The curvature itself, being inversely proportional to the radius

of curvature, increases with the moment P x of the force, and

decreases, when the moment of flexure WE increases.

§ 216. Elastic Curve.—If we have determined the moments

of flexure WE for the cross-sections of the bodies, which generally

occur in practice, we can determine by means of these values the

curvature and from it the form of the neutral axis or of the so-

called elastic curve. The equation

D ^^ WEP xr — WE or r = ~^—
P x

indicates, that in the case a prismatical body the product of the

radius of curvature and the moment of the stress is constant for

all parts of the elastic curve A B, Fig. 335, and that consequently

r becomes greater or less as the arm x of the force is diminished or

increased, or as the distance of the point 8 considered from the

end A of the neutral axis is less or greater. At A we have x = 0.

and consequently the radius of curvature is infinitely great ; at the

fixed point B, on the contrary, x is a maximum, and the radius of

curvature is therefore a minimum ; hence the radius of curvatu^

* Moment of flexure is also used for the bendin? moment P x.—Tr.
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increases by degrees from a certain finite value to infinity, when
we proceed from the fixed point B to the end A.

If we divide a portion A 8 of the elastic curve,. the length of

which is = s, into equal parts, and erect at the end A and at the

points of division 8X , 82, S&, etc., perpendiculars to the curve, they

will intersect each other at the centres M ,MXi j\L of the oscillatory

circles, and the portions cut off M9 A = M &l9 Mx 8X
= if, S&

M2 82 = M.2 83, etc., are

the required radii of

curvature rlf r2, r3 of

the elastic curve. (See

Introduction to the

Calculus, Art. 33.) If

n is the number of di-

visions of this line, we
have the length of a di-

Fig. 335.

vision -
; and if we

n

denote the length of

the arc (for the radius

= 1) of the angles of

curvature A MQ $ =
6

X
°, 8X

M
x 8, = d>,

& M, S3 = ds
°, etc., by

&>, <5 S , etc., we can2'

s

n

n, etc.,

== ^1 ri
~ &**%=

whence we

obtain S
x
=— , ds

=
nr x

, ^a — , etc.
n r-2 n r3

If we suppose the elastic line to be but slightly curved, we can

substitute for the divisions of the arc their projections upon the

axis of abscissas A X perpendicular to the direction of the force,

I.E. we can put A Kx
= Hx 8X

= K
x
K« = K2 Kz, etc., so that the

arms of the force in reference to the points 8
X , 82, Sz, etc., are

ffiti ~
ri

IT, 8, — Hx 8i + 8X L2
~-

n

H3 S3 = Hz 8, + o2 L3 -

n
etc.,
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and consequently the corresponding moments of the force or the

values for P x are Ps2Ps3Ps
, ,

—
, LLC

n n n
Substituting successively these values for P x in the formula
WE

r ~ -73— for the radius of curvature, we obtain the following series
Jr X

of values for the radii of curvature

WE nWE 11WE
ri=n yj, r, = -~

9 r, =
g

-

yj , etc.;

hence the corresponding angles which measure the curvature are

s P s" . S P s
2

n~r, ~ ri WE' 2 " n~r»
~~ " * tiTWlS'

x s o p **
4.o3 = — = . ———=-, etc.

n rz n- WE'
Summing these angles, we obtain for the angle of curvature

A 8 = <f>°
of the entire arc A S== s '== x

$= 8
t + <52 -f ^3 + • • - + 4m

= (1 + 2 + 3 + . . • + n)

d,=

WE'

or, since we know that 1 + 2 -f 3 -f

Ps2 P s
8

^ 2 » If ^
Fig. 330.

2 J^ :

+ n — T-, we have

for which we can write,

according to the above

supposition,

Pa?
* ~~

2 WE'
This arc or angle

(since the angle be-

tween two lines is equal

to that between their

normals) is equal to the

angle S T U included

between the tangents

A T and S T to the

two points A and S
or to the angle, which

c xpresses the differ-

ence between the in-

clination of the curve

to the axis in A and in

H«j .$, If we pass from the
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undetermined point S to the fixed point B, we must substitute

instead of s the entire length I of A S B, or approximately the

projection A C of the same upon the axis of abscissas, and under

the supposition that the curve at B is perpendicular to the direc-

tion of the stress or parallel to the axis of abscissas, the angle </>

becomes '

. ^ „ _ p __ PI"

2 WE 9

andv on the contrary, the angle of inclination or tangential angle

TSR= STXi becomes
PT Ps' _ P (F - y) _ P(F-x*)

a ~ fj P ~ % WE 2 W E~ 2 WE " 2 WE '

If the curve at the fixed point B is not perpendicular to the

direction of the force, but inclined at a small angle a
}
to the axis,

we will have n ,
PF ,,, „

P = a
i + » ttt tii and therefore

2 W E
,
P(F-x*)a = a^-¥WE~

§ 217. Equation of the Elastic Curve.—By the aid of the

latter formula we can now deduce the equation of the elastic curve.

The ordinate of the curve K S = y is composed of an infinite

number (n) of parts, such as Kx Sx , X2 S*, L3 S3, etc., which are

found by multiplying an element of the arc

A St
= A £ = S, 8&t etc. = -

by the sine of the corresponding tangential angle

Sl A Ku S2 S1 X2, Sz S, Lz\ etc.

Hence we have

KS=K
1 Sl + L,$, + L3 $, + ..., or

s
y = - (sin. Sx

A K + sin. S2 Si L« + sin. S3 S2 L3 4- . . .).
ix

Substituting the abscissa A K = x instead of the arc A S = s,

and for the sines the arcs calculated from the formula

%WE '

x 2 x 3 r*'

and introducing instead of x successively -, — , — , etc., we obtain°
" n n ' n' '

II

Now we have F -f F + . . . + F = w Z
2 and

27
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©*+(¥)MW--(")'
= (!• + ! + 3" + ••• + »)©= I'©'

(see Ingenieur, page 88), whence

y

y

n 2 WE[•'-T0i-

2 JFi?
7

which is the required equation of the elastic curve, when we suppose

that the curvature is not very great.

If we substitute in this equation x = I, we obtain instead of y
the height of the arc or the deflection

p rBC = a= ZWM
While the tangential angle a increases with the force and with

the square of the length, the deflection increases with the force and

with the cube of the length.

The work done in bending the body is determined, since the

force

3 WBa
r

increases gradually with the space described and its mean value is

, n „ WBa

by the expresssion

L Pa =

r '

WEa? P'l3

P - « WE'
If a girder ABA, Fig. 337, whose length is I, is supported at

both ends and acted on in the centre B by a force P, the ends are

Fig. 337.

bent exactly in the same way as in the case just treated, but in

Pthis case we must substitute for the force acting at A,
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and for the length of the arc A B — -\ A A = ^ I. Consequently

the equation for the co-ordinates A K = x and K 8 — y is

P x (| V - \ x-) _ P x (3 r - 4 x 1

)

y 4 WE 48 IfE

so that for a; = A I

C = - the deflection is

y = B C = a x

PI3 PF
48 IFi?

-
1(i '3 JF^'

I.E., one sixteenth of the deflection of a girder (Fig. 333) loaded at

one end with an equal weight.

If in the first case the elastic curve A B, Fig. 336, is inclined at

a small angle a
x to the axis at the fixed point B, we must add to

the former expression for y the vertical projection of the portion $
of the tangent, i.e., a

1
x, so that we have for the ordinate

and for the deflection

+
P (V

2 WE
PV

£1)

Fig. 338.

(§ 218.) More General Equation of the Elastic Curve,—
A more exact equation of the curve A S B, Fig. 338, formed by

the neutral axis of a deflected beam, can be deduced in the follow-

ing manner by the aid of the calculus.

If we substitute in the general equa-

tion of § 216, WE = P x r the value

of radius of curvature {from Art. 33 of

the Introduction to Calculus)}

_ d^s[

d x- d (tang, a)

and in the latter, according to Art 32,

d s — V 1 + (tang. a)
a

. d z,

we obtain

P x d x [1 + (tang, a)
2

] §

d tang. a.

When the girder is but moderately deflected, the angle a formed

by the tangent with the axis of abscissas is but small, and we can

therefore write

[1 + (tang, a)
2

] I =± 1 -f J (tang. a)\

and consequently

WE
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WE = - Fx ^ + i(tang.ay]dx

d {tang, a)

or inversely

Pxdx d tang, a

~wW = ""
fpjxfc)5

= ~ [1
~

"
<tow* a« rZ^ a)-

From the latter we obtain

w E = - J d (t<™g- a
) + 5 J (tang, a)

2 d (tang, a),

or, according to Art. 18 of the Introduction to the Calculus,

P x2

9 w n = — tang, a -f l (tang, a)
3 + Con.

But at the vertex B the curve is parallel to the axis of abscissas

$nd a = ; substituting, therefore, the projection A — b of the

elastic line on the axis of abscissas, we obtain

Pb2

——— = — fang. + \ (tang. 0)
3 + Con. = + CW.

Subtracting from this the former equation, we have

p (j
a _ ^n

2 jpjff
= tang, a— J (to#. a)

3

,

or inversely, for the tangential angle 8 TN — a,

p n? _ #*\

^- « =
g ^^ + i (tang, a)*

P (b
2 - x1

) x
P3

(5
2 - xj

2 WE +
- 8 WE 3

'

But tang, a — ~^, hence we have

L P2
(5= - x-Y\ P (V - x") dx

,

H- Cew.
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Since for x = 0, y = 0, we have also Con. = 0, and

At the vertex x = b and y is the deflection C B = a, and

therefore

P
(2 m i

* in **\

2 1F^

P¥ I P2
7/ \

From £? 5 = I
7
1 + {tang, a) 2

. d'x = [1 + J (tang, a)
2

] d x we

obtain, by substituting tang, a = —
^

'

,

= /V? +
8
^lw \J{vdx -%V x*dx + x* dxj\

i.e j the length of the arc

If we assume x = b, we have the total length of the girder

Inversely we have

6>*-=-- -W- =
(* - 154^) *>

+
15 IF

2 B*
and therefore

P Z
3

/ P2
Z
4

\
3

/ P2 r \

3 TF^ \ 15 FT j£7 \
+

* 5 * pp ^T

"- 7) a = 34i(1 ---TS)-
Neglecting the members containing the higher powers of

P
WHO3 We °^^n»

as *n *ne ^as^ paragraph,
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F
(
l

tang, a = -
2 WE

x)
,

Pa;
/7 ,

2 irz1

for .T = 0,
PI*

2 JF^

J £ 3

), therefore,

pr
, and for .r = b = l,y — a =

dwir

§ 219. Flexure Produced by two Parallel Forces.—If a
girder A A

l
B, Fig. 339, 1, and IX, fixed at one end, is bent by two

forces P and P„ whose points of

application A and A
x
are at a dis-

tance I from each other, while the

point of application A x
of the force

P
x is at a distance A

l B — lx from

the fixed point P, the moment of

flexure at a point S of the portion

A A l is

M -Px,

and, on the contrary, that of a

point Si in the portion A
x
B is

if, = P (Z + x,) + P, s„

in which a; and a;, denote the ab-

scissas A iTand A
x
Rx .

In order to obtain a clear idea

of the manner in which these moments vary, Ave can lay off, as in

II., their different values for the different points as ordinales, e.g.,

M = y = K L, Mi = y1
— Kx Lly and join their extremities L, X,

etc., by a line A L H L
x Giy which will limit the values of M and

M
x
for the whole length of the beam.

If the girder were subjected to the force P alone, the line

bounding all the values of M or y = P x would be the straight

line A G, the ordinate of the extremity G of which is B G =
P . AB = P (Z -f y. By the addition of the force P, the por-

tion H G of this right line is replaced by the right line H 67„ whose,

extremities II and Gx
are determined by the co-ordinates A A

x —I
and A^H= P I, and also AB = Z + 7, and P^ = P~67 +

#^ SPP + IJ + P, Z,.

If 'the force P is negative, the moment M = y = P % of a point

TTupon J. ^4, = Z remains unchanged, while, on the contrary, that

of a point K
x
upon ^ B becomes Mx

= ^, = P (I + a?i) — Pj a;,,

and the moment of flexure at the fixed point B is = P (Z -f 7,)
—
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P
x
l

x , and it is positive or negative as P (I + lx ) is greater or less

than Pi lx
. In both cases the moment of flexure decreases grad-

ually from A x , remaining in the first case, Fig. 340, positive, and,

Fig. 340. Fig. 341.

on the contrary, in the second case, Fig. 341, becoming = for a

P I

point at a distance A x
— xx

— 75 ^ from A x , for greater
r

x
— r

values it takes the negative sign, and at the fixed point B it is

= - [>, 7, - P(l + ?,)]•

In the first case the right line II Gi} Fig. 340, II., which repre-

sents the moment of flexure at a point K
x
between A and B, passes

below the base line A B and ends at a point Gx , whose ordinate is

H G x
= P (/ + /,) — P

x lt. In the second case, on the contrary,

the right line H G x , Fig. 341, II., rises from the point above A B,

and the ordinates become Kx L x
— yx

— — \PX
x, — P (I + a\)]

and B G x
= a x

= - [P
x

l
x
- P (I + lx )].

WE
Since the radius of curvature r = —^ -of the girder is inversely

and consequently the curvature itself is directly proportional to the

moment of flexure M, the graphic representations in II. of figures

339, 340 and 341 furnish us also a representation of the variation

of the curvature of the girder. In the case represented in Fig. 339,

where the forces P and P
x
acting upon the girder have the same

direction, the curvature increases gradually in going from A to B%

but if P and Px have opposite directions, it decreases again grad-

ually as we recede from A x
.
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If, as in Fig. 340, Px l
x < P (I + l

x ), the beam is bent in one

direction only; but if P, l x > P (J 4- li), there is no flexure at the

point A and also at a point 0, Fig. 343, where a point of inflection

is formed (sec Art. 14, Introduction to the Calculus), and from

Fig. 342. Fig. 343.

towards B the curvature of the girder gradually increases in the

opposite direction. If in the second case, Fig. 342, the forces P and

Pi are equal, for a point K
x between A x and B,

M=P(l + a?,)- Px
x =Pl

is constant, and the curvatures of that portion A
x
B of the girder

is the same everywhere, i.e., the clastic curve is a circle.

The radius of curvature of the portion A A
x
is determined in

all three cases by the well-known formula

_ WE_
T ~ Px'

and that of the portion A x
B

x in the first case by the formula

, _ WE
n " P (I + x\) + P

x
xx

'

and, on the contrary, in the second and third cases by the formula

WE
n P(l + xx )

- P x
x

x

'

WE
When, in the second case, P x

== P, r
x
becomes = PI or con-

stant, and in the third case, where Px lx > P (I + l
x ), for the point

P I

0, whose abscissa x
x
= p _ p> we have r, = co (infinitely great),



§220.] ELASTICITY AND STRENGTH OF FLEXURE, ETC. 425

WE
and, on the contrary, for the point A lf r= ~p~T> an(l f°r the point B,

WE
Tl ~ px ix -p{i + y"

According as P lis greater or less than P
x lx

— P (I + lx ) etc.,

I. E., P > r„ in the latter case we have r ^ r, or the curvature at

A
x
greater or less than that at B.

§ 220. The Elastic Curve for Two Forces,—The equa-

tions of the elastic curve, formed by the axis of a girder subjected

to the action of two forces P and P1? can easily be deduced from

the formulas found in paragraphs 216 and 217.

If a denote the angle of incli-

nation of the elastic line at A
: , we

have first for the portion of the

curve A A lf Fig. 344, I, the arc

measuring the inclination of the

same at S

1} ° = ai + -TWe>
and the ordinate K S corresponding

to the abscissa A K = x
P^f-jjr)

2 WE '2) y = a
x
x 4-

(compare § 217).

By putting x = in (1), we deter-

mine the angle of inclination in A
,

P?
a

*

= a^2WE>
and, on the contrary, by putting x = I in (2), we obtain the ordi-

nate at A
x

'

n . P t

For a point in the second portion of the girder A x B the mo-
ment of flexure P (I + xx) -f P x

x, = P I + (P + P,) x, is com-
posed of the two parts P I and (P + P,) x

x , one of which, being

constant, bends this portion of the beam in an arc of a circle,

WE
whose radius is r = —pj and whose angle of inclination at a point

Si situated a distance A
x 8X

= x
x
from A and B /Si = ?, — x\ from

3 is measured by the arc

h-Xi_ Pl(h - x
x)

ft = WE
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The inclination at S of this portion of the girder, due to the

flexure produced by the moment
(P + P

x ) x1} is measured by the arc

2̂
~

2 WE
and consequently the total inclina-

tion at the same point is

+
2 WE

The deflection of B 6\, due to the

curvature in a circle measured by ft,

is according to the well-known for-

mula for the circle

2r 2 WE
hence that of the entire piece BA

x is

t? n — p 1
1*

B(jx ~ 2WE }

and the height of the point Sx
above A\ is

A, A, _ 2* ft - JV, « m-^ WW^ .

According to what precedes (§ 217) the deflection K
x
S

x
—

(P + P,) X, (V - W) i 4. +1 t
'*

-• ^ T„ ^— corresponds to the angle of curvature
2 W E L °

ft = sPrHf > anc^ ^e ^°^ deflection is therefore

±\ v q - „ - P*0U^-Q ± (P + PQ 5 ft
2 -

1 55

Substituting in (3) x
x
= 0, we obtain the angle of inclination ft

which we had assumed as given, and its value is

_ 2Pll, + (P + Pi) I*
Gl ~ '

2 WE
JNw if we substitute in (4) z, = Z„ we obtain by this means the

deflection

nn - - 3P//, 2 +2(P+ P,)l*^^-^-
gTFp

*

Finally, the total deflection of the whole girder is
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*BD = ai'+ a, = a, I + g-ppr^ +
pr 3PHS + 2{P + po^

= a, Z +

= OiZ +

6 FTA7

p i (2 r + 3
7

t

2

) 4- 2 (P + pj 7
i

3

P(2Z3 + 3 II? + 2Z,') + 2P x lx

s

Fig. 345.

If the beam A B is not horizontal at B, but inclined, at a cer-

tain angle /3 , Ave must add in (3) /3 to /3, and in (4) to y x , (3 x
x .

If the force Px acts in an opposite direction to P, we must sub-

stitute in the fundamental formulas (3) and (4) P ~ Px instead

of P + Px .

§ 221. Girders Supported at One End.—The formulas

of the foregoing paragraph are applicable to numerous cases in

practice. If, for exam-

ple, a girder A B, Fig.

345, is at one end im-

bedded in a wall and

at the other merely

supported, the question

arises, what is the bend-

ing force at A, or what

force has the support at

A to bear, when the

beam is loaded with a

weight Pi, suspended at an intermediate point A
x ?

P is here negative, (3 = and, since A and B are at the same

level, the sum of the deflections C A
x
— a and Cx

B = aXi is = 0,

/ p r \ .* r +
rune)

l +
IPIV + i(P - ^i)

7

i = 0,WE
Pii

x + h{P-P,)i;-
or since a, = - w •, we have

PZ27,
4- I (P- PO 7

i

27
4. 4 P/3 + ^P 77

,

2 +
-J
(p _ i>) ^ = 0.

From this it follows that

(3 Z + 2 Z,) Z, P,

r + 3(r/, + 77
1

a

) + zx

3 2
?

e.g., for Z — Zi, that is, when P, is applied in the middle of the

girder, we have _ 5 pi ~ 16 * x-

Hence the moment of flexure at A x is

and, on the contrary, that at B is
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or greater than that at A x .

If l ~ l, and the points A and B are not situated upon the
same level, if, for example, A lies a distance a2 higher than B, w
must put a + a

x
= ci2 . But in this case

. (3P-P
X)P

2 WE ?

PI"
a ~ a

x l -\-

a
x
-

3 If^ ~~
6 JKiT~

[3 P + 2 (P - P/)] Z
3 _ (5 P -

and

2 P,)P

hence we have
6 JFJST

(16 P -5P,)f

6 Wi?

= «2>
6 TTJ5T

and consequently p _ 6 WB a 2 5 p~ 16 r
+

16 *'

If the moments at A x and B should he equal and opposite,

we must put PI = Px l — 2 P I,

P>
or 3P Pl9 I.E.P=fy

in which case we must make
PP

a.2 =
PW3

6 JFJ? 18 pr^r
P,Z3

if, therefore, the end of the girder lies 0,0555 -757-™ higher than

P I

B, the moment of flexure in A and B is = ± —-, or smaller than
o

when ^4 and B are at the same height.

With the aid of the values found for P we can calculate the

radii of curvature, the tangential angles, etc., of the portions A A
,

and A x
B of the curve.

§ 222. Flexure of a Girder supported at both Ends.—
Another case, to which the formulas of the last paragraph are

applicable, is that of a girder A B, Fig. 346, supported at both ends

Fig. 346.
A and B and acted

upon by a force P„
whose point of ap-

plication A
x

is at a

distance I from one of

the points of support

A, and at a distance

l
x
from the ether.
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Here the moment

P . B~A — the moment P x . B A 1}

I.E. P (? + « = P x h
and consequently the pressure on the point of support A is

i + V
and, on the contrary, the pressure on the point of support B is

Since A and B arc situated in a horizontal plane, we have

a + a
x
— 0,

and the angle (3 is not here = 0, but is a negative quantity C B Tx

to be determined.

We have here

WE ^ 3 WE9

and also

a --31 .

IPIV + UP-PJV

and therefore their sum

£ (* + y - q-^(2 r + Gr ?i + G ^ 2

+ 2 &?

or

<5 j3 (z + ?o fp-jsr=p (2 r+ e p.t + 6 ? y + 2 ?>

3

) - p, (3 ? v + 2

z

x

8

)

= [2?
3 + 6PJ, + 6W +2^ -(377, + 2Z,

2

) (? + ?,)] P,

from which we deduce the angle of inclination at B
. Q _ P?(2?2 +37?! + ?r) _ Pi I ^ (2 f + 3?U ?f)

^ ~ 6 (? + y r^ ~ 6 (? + y 2 FJ
and that at A

Pi ? ^ (P + 3 ? ^ + 2 ?,')
a ~

6 (?+?!)
2 PF^

If, for example, Pi is suspended in the middle, we have

?! = ?andP- C = y,"

and therefore

=5% = VWb (bompare § 21C) -

With the aid of the angle j3, thus determined, all the relations
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of the flexure of the girder can be determined by the formulas

found in what precedes.

The maximum value-oftliQ moment of flexure is for the point

of application A x, and it is

and it is a maximum for I — llf i.e., when the weight is hung in

the middle, its value is then

M P, (I + h) hFil

§ 223. A uniformly loaded Girder.—If the load is uniformly

distributed over the girder A B, Fig. 347, and if the unit of length

bears a weight = q, or the whole
FlG

-
847 ' girder, whose length is l

f
bears the

Q. —ISS load Q = I q, and a portion of the

Si girder A S = s the load a s, we must

BS substitute, instead of the moments12 3
- P s,- P s,-P s, etc., the moments
n n n

for the centres of gravity of the loads #(-),</( ^— \<t\— )
e^ c'-

lie in the middle of -,— , —, etc., and their arms are I -, i —!:
.

3 s
4 —, etc. In this way we find the angles of curvature of the ele-

ments of the arc

*i

qs< a 1
* qs*

- 1

32-^3

etc2 * n3 W E' "' ~ *' n3 W E' 3 2
" n 3 WE'

and therefore the angle of curvature of A 8 = s is

= aV^ approximative^ = ^~,
l£x = I, we have the tangential angle TA C'= U T B of the

end -4 g Z
3 _ Q Z

2

• ' 6~WE~6WE'
and therefore for a point S, whose abscissa is A K — x,

£-0 =
6 WE (?-x>).
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From the latter measure for the angle we find for an element

of the ordinate x _ x q m ,

m a -mTW~E {L ~ X) '>

(x \
3
/ 2 x \

3
/ 3 x V— )> ( y (
—L

)? we

obtain the required equation for the ordinate K S = y,

_ x q
y ~ ~m' 6 WE

x q
~ m ' 6l¥ E

[
m ^"(^)

3

' (13 + 23 + "-"fw3)
]

y -Q>WEV 4 r
Assuming again x = ?, we obtain the deflection

6 Iff * 4 8 WE ~ 8 TF.# " 5 " 3 JF ^
LB,., | of what it would be, if the load acted at the end of the girder.

The ordinate of the middle of the girder is

v - **'
(r - I) - *W

J] ~ 12 WE V 32/ 12 . 32 WE'
hence the distance of this point below the horizontal line passing

through B is 17 q I*

and therefore the mechanical effect corresponding to the deflection

a or to the sinking (?/2) of the centre of gravity of the load Q = I q,

when Q is gradually applied, is

t - i n - i ; _ll ?j_L__ - n e
2 ?

^ ~ 3 V * "" 3 ? ^2 ~ 24 . 32 . WE ~ 24 . 32 7TF\#
If the girder is acted upon simultaneously by a uniformly dis-

tributed load Q and a force P at the end, we have the deflection

PI* QF IP_ Q_\ r
a ~ 3 WE +

8 WE ~ \3
+

8/ WE'
If the girder ABA, Fig. 348, is supported at both ends and

carries not only the weight P applied at its centre, but also the

*fb*«V Fig. 348. lv x
load Q = U Uniformly dis-

*<£ HJ W+c tributed over its length, we
find the deflection C B = a by

substituting in the expression

(P Q\ I'

a r AT +
8 ) WW

for the case represented in

Fig. 347, instead of P the
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P 4-
pressure or reaction —^—^ at the extremity A, instead of Q the

load — ~, which is equally distributed upon one-half B A, and

instead of I half the length of the girder BA~±AA — ±1.

In this manner we obtain

1 _ (P + Q Q\ i

6

If p = 0, we have a =
WE ~ ^P + ® e) 48 Jf ^

that is, when the entire

Fig. 349.

load is uniformly distributed upon a beam, supported at both ends,

the deflection is but § of what it would be, if the load was sus-

pended at the centre of the girder.

The iveight G of the beam Jias exactly the same influence upon

the deflection as a load Q, which is equally distributed, and there-

fore enters in exactly the same manner into the calculation.

§ 224. Reduction of the Moment of Flexure.

—

If we

know the moment of flexure Wx B of a body A B C D, Fig. 349,

in reference to an axis N
x
iVj without the

centre of gravity, we can easily find this

moment in reference to another axis N N,

passing through the centre of gravity and

parallel to the first. If the distance HH
x

— KKx between the two axes is == d, and

if the distances of the elements of the sur-

faces Fl9 B2, etc., from the neutral axis

JV iV^are = Zj, z,2, etc., we have their dis-

tances from the axis JVi JVl9 = d + z19 d + zi}

etc., and the moment of flexure is

W,^= [Fx (d + z,y + F2 (d + ztf +...]E
= [F

x
(d* +.2dzi + z?) + F, (d* + 2dz2 + z<?) + . . .] E

= [d*(F
x + F2 + ...) + 2d(F

1 zl + F2 z2 + ...)

+ (F,z? 4- JW + ...)] &
But

Fx + F2 + . .

.

being the sum of all the elements is the . cross-section F of the

entire body, and
F

x z, 4- Ft z, + ...

being the sum of the statical moments in relation to an axis pass-

ing through the centre of gravity is — 0, and

(F, z* + F, z? + . . .) E

-N,
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is the moment of flexure W Bin relation to the neutral axis N N;
consequently we have

Wl E = (W + Fd i

) E, or

Wl =W + Fd 2

and inversely

W= Wi -Fd\
Therefore, the measure W of the moment offlexure in reference to the

neutral axis is equal to the measure W\ of the moment of flexure in

reference to a second parallel axis minus the product of the cross-

section F and the square (d°~) of the distance between these axes.

From this we see that, under any circumstances, the moment
of flexure in relation to the neutral axis is always the smallest.

The moment of flexure of many bodies in reference to some par-

ticular axis can often be found very easily, and we can employ it

to determine, by the aid of the formula just found, the moment in

reference to the neutral axis.

§ 225. Let CK — x and C L — y, Fig. 350, be the coordinates

of a point F, referred to a sys-

tem of rectangular co-ordinates,

XX, YY, and let CM=u
and C N~= v be the co-ordinates;

of the same point, referred to an-

other system of rectangular co-

ordinates U IT, V V, and, finally

let CF— r be the distance of the

point .Ffrom the common origin

C of the two systems of co-ordi-

nates ; according to the theorem,

of Pythagoras we have

x" + f — v? + v — r
a

, and also

Fx' 4- Ftf = Fu* + Fv- = Fr\
If in this equation, instead of F, we substitute successively the

elements Flf F%, F3, etc., of the entire cross-section, and in like

manner, instead of x, y, u and v, the corresponding co-ordinates.

pi, x.2, xS9 etc., y 19 y?, yz, etc., ulf u^ u z, etc., and v
: , i\2, vz, etc., we obtain

by addition the following formulas

F^ + Ftx} + . .. + Fx y? + F2 y* + ...

= Fx u* + F,u? + . . + Fx v? + F% vf + ...

= Fx r,
3

4- F9 r? + . ' *t

if we denote

28
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Fx x{ + F, x 2 + . . . by 2 (Fa?)

Fl yl
* + Fi yt*+...hy2(Fy,:

)

F
x
u{ + Ft u? -f

F
x
v x

2 + Ft vt
* +

..by 2 (Fu2

)

. . by 2 (Fv2
) and

Fl r1

2 + Fi ri
' + ...by2 (Fr2

),

we have

2 (Fx2

) + 2 (Fy2

) = 2 (j?V) + 2 (j?V) = 2 (iV).

Therefore the sum of the measures of the moment of flexure, in

reference to the two axes XX and Y Y of one system of axes, is

equal to the sum of the measures of the moments offlexure, in refer-

ence to the tivo axes of another system of axes, and equal to the

measure of the moment of flexure, in reference to the origin, i.e.

equal to the sum of the products of the elements of the cross-section

and the square of the distancesfrom the axis C.

If the cross-section A C Cx, Fig. 351, of a deflected body is a

symmetrical figure, and if the axis XX at right angles to the

plane of flexure is an

axis of symmetry of

the figure, there will

be still another rela-

tion between the mo-
ments of flexure of the

body. Let S K = x

and KF
x
= y be the

co-ordinates of an el-

ement of the surface

Fx in reference to the

system of axes X X
and FF,andletJ?.tf

— v be the distance

of the same element

from the axis U U>

which forms an angle X S U — a with the first axis X X, we
have then

v = MF
X
- MX= MFX

- KL
= KF

x
cos. KF

X
M' — S Ksin. KSL = y cos. a — x sin. a,

and therefore

v
2 = x1

(sin. a)
2 + y

2
(cos. af -~2xy sin. a cos. a,

Fx v
2 = (sin. a)

2 F
x
x2 + (cos. a)

2 Fx y
2 — sin. 2 a F

x
xy, and

.2 (Fv2
) = (sin. a)

2 2 (Fx2

) + (cos. a)
2 2 (Fy2

)
- sin. 2a*(Fxy).
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In consequence of the symmetry of the figure, every element

I\, F2 . . . corresponds to another opposite element F19 F2 . . ., for

which y, and consequently the entire product, is negative ; hence

the sum of the corresponding products for two such elements, and

also the whole sum
2(Fxy) =0,

and therefore we have

S (Fv2

) = (sin. a)
7 £ (Fa?) + (cos. a) 2 2 (F tf), or

W = (sin. a)
2 Wt + (cos. af w>;

in which W denotes the measure of the moment of flexure in refer-

ence to any axis U U, Wx that in reference to the axis of symme-

try XX and W2 that in reference to the axis Y Y at right angles

to the axis of symmetry, provided that the axes U U and Y Y as

well as the axis of symmetry XX pass through the centre of

gravity S of the figure.

By the aid of foregoing formulas we can often find, from the

known moments of flexure of a hody in reference to a certain axis,

its moment of flexure in reference to another axis.

§ 225. Moment of Flexure of a S'rip.—In order to find

the moment of flexure of a known cross-section A B, Fig. 352, 1,

of a hody in reference to an axis XX, let us imagine the cross-

section divided by lines perpendicular to XX into small strips

and every such strip as C A to be divided- again into rectangular

elements Fiy F2, F3, etc. If z 1} z«, zz, etc. are the distances (O F) of

these elements from the axis X X, we have the measure of the

moment of such a strip

Ft*?'* F,z? + F3 z3
2 + ...

= F
x
z

x
. zx + F2 z2 .z, + F3 z3 .z3 + . .

.

Now if we lay off in Fig. 352, II, A B at right angles to and
equal to C A, and join B and
C by a straight line, it cuts

off from the perpendiculars to

C A, erected at the distances

(OF) = z1} z2, z2, etc., pieces

of the same length (F G) —
zlf z-2, zs, etc., and F

x z)} F2 z,,

etc., can be regarded as the

volumes of prisms, and Fx zx . z„

F2 z% . zs, etc., as their statical

moments with reference to the
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axis G. The prisms F
x z1} F.2 z2, etc., however, form together a tri-

angular prism, whose base is A B G, and whose height is the

width of the strip A G (I) ; the sum of the above statical moments
is therefore equal to the moment of the prism A B Cm reference

to the axis XX. If we put the height G A — z and the width of

the prism = b, we have the volume of such a triangular prism

= i * **>

and since the distance of the centre of gravity from G m f z (see

§ 109), we have the statical moment of the above prisms, and con-

sequently the measure of the moment of flexure of the strip GA

In order to find the moment of flexure of the entire cross-sec-

tion A D, we have only to add together the moments of flexure of

the strips, such as G A, into which the entire surface is decomposed

by the perpendiculars to the axis X X.

The most simple case is that of a rectangular cross-section

A B G D, Fig. 353. The strips into which the surface is divided

are here all of the same size and form to-

gether but a single strip, whose width A D
= b is that of the entire rectangle.. If the

height A B of this rectangle is = h, we

have for the height of a strip

z==lh;
consequently the measure of the moment
of flexure of half of this surface is

l¥
24

finally, the measure of the moment of the entire rectangle is

w
* 24 12

§ 227. Moment of Flexure of a Girder, whose Form ia

that of a Parallelopipedon.—From the foregoing we see that

1) h*
the moment offlexure of a parallelojoipedicdl girder WE — —- E
increases with the width and with the ciibc of the height of the girder.

Substituting this value for WE in the first formula

we obtain the deflection of a girder, whose cross-section is rectangu-

lar, and which is fixed at one end,

Fig

A
353

D

.N u
c

B
3
u
\2/ a
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PT
a ~^ f b¥E'

Substituting it in the second formula of the same paragraph

a ~~
48 'W E'

we have for a beam supported at loth ends

PF
a ~ ±bWE'

Inversely, from the deflection a we obtain in the first case the

modulus of elasticity ^ _ 4 P F

and in the second „ P F

4*abh*

Example—1) A wooden girder 10 feet = 120 inches long, 8 inches

wide and 10 inches high is supported at both ends and carries a uniformly

distributed load of Q = 10000 pounds; how much will it be bent?

The deflection is

- s _?.i!_ 5
100Q0 • 12°

3 _ 50000 • 13
3 _ 1350000

a ~ * JVhFE ~ "" * 8 . 10a
. E ~ 82 . 8 E ~ 4 . E '

Substituting E = 1560000, we have a = . \ Kn = 0,216 inches.° 4 . 156

2) If a parallelopipedical cast-iron rod, supported at both ends, is £)

inches wide and % an inch thick, and is deflected -|- of an inch by a weight

P = 18 pounds placed upon it at its centre, the distance of the supports

from each other being 5 feet, the modulus of elasticity is

PI3 18 . 60 3 18 . 60 3

E = T^hV = 4. j. .2,(1)3
=—|— = 72. 216000-15552000 pounds.

§ 228. Hollow, Double-Webbed cr Tubular Girders.—
The moment of flexure of a hollow parallelopipedical girder

A B C D, Fig. 354, is determined by subtract-

ing from the moment of the whole cross-sec-

tion the moment of the hollow portion. If

A B = b and B O' = h are the exterior and
A l Bi =* b x and Bx d = h

x
the interior width

and height, we have the measures of the mo*

ments of flexure of the surfaces^! C and A x C,

b ¥ , b
t ht

*

= IT and
"IT'

and consequently by subtraction the measure oj

the moment offlexure of the tubular girder

12
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Fig. 855.

D C

The moment of flexure of the single-welled girder A B C D,
Fig. 355, is determined in exactly the same man-
ner. If A B — b and B <J — h are the exterior

height and width, and if A B — A
x Bx

= b x
and

B x Cx = h x are the sum of the widths and the

height of the two cavities, we have by subtrac-

tion

:N

W b h3 - l
x
h*

12

The moment of flexure of the body A BCD, Fig. 356, the

cross-section of which is a cross, is found in a

similar manner. If A B = I and B C ~ h are

the height and width of the central portion, and

A XBX
— A B — bx is the sum of the widths,

and B
x
C

x
— li x the height of the lateral por-

tions, we obtain by addition the measure of the

moment of flexure

W = I h z + I, li{

12

In the same manner we can determine the moments of flexure

of many bodies which occur in practice. Thus for a body A X BX
CD,

Fig. 357, with a T-shaped cross-section, whose dimensions are

A B = CD = I,

AB - A X
B

X
= AA

X + BBx
= bx,

AD^BC=li and

A D x
= £ C

x
= B C - C (7, = K

the measure of the moment of flexure in

reference to the lower edge A x Bx is = mo-

ment ofthe rectangle A B CDminus moment
of the rectangles A x Dx and Bx

C
x , i.e.,

I (2 hf b x (2h xf = bh3-b x
h *

12 rTFi = 3 12 3

These moments are found by assuming each of these rectangles to

be the half of rectangles twice as high ; for these the axis N
x
Nx

is

the neutral axis.

Now the surface A x Cx
D — F = b li — b x h x, and its statical

moment is

7 7 h , 7 lhb7i.--b x
7i x .jF.e

x

consequently the lever arm is

i (b V - b x h :

2

);
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the product
F. e{ = \ (b ¥ - b x WY :{bh-bx hx)

and the measure of the moment of flexure of the body in reference

to the neutral axis N N, passing through the centre of gravity S, is

W=z Wl _ F , ft
- = bh z -hlh *

_
i {bh, _wy .

{fih
_ hh)

_ 4 (b V - b x h x

5

) (b li - b x
h x) - 3 (b K- - b x 7i xJ~~

12 (bh-bx h x )

__ (b ¥ - b x
h

xy -4,b7ib
x

7i
x
(li - 7i x )

2

12 (b h - b x h x )

It is also easy to perceive, that the high webbed and flanged

girders have, for the same quantity of material, a greater moment
of flexure than the wide and massive ones. Since this moment
increases with the surface (F) and with the square (z*) of the dis-

tance from the neutral axis, the same fibre is better able to resist

the bending the farther it is removed from the neutral axis. If,

for example, the height of a massive parallelopipedical girder is

double the width b, the measure of moment of flexure is cither

b.(2bf „ 71 2b.b*
12 3 °

'

°r
12

the first formula obtaining, when we place its greater dimension

2 b vertical, and the latter, when it is placed horizontal ; in the

first case the moment of flexure is four times as great as in the

second. If, again, we replace the solid girder, whose cross-section

is b li by a double webbed one, m which the hollow is equal to the

massive part of the cross-section bx h x
— b h, or \ib x

li
x
— bli — b 7iy

i.e., b x 7i
x
— 2b h, or b x

= b V 2 and li
x
= 7i V 2, the measure of

the moment of flexure for the latter girder is

b x
h

x

3 -bh* _ b VY(7i VT) 3 - b V
12

~
12 " — - T2- * A

i.e., three times as great as for the first one.

§ 229. Triangular Girders.—The measure of the moment of"

flexure of a body with a triangular cross-section A B C, Fig. 358,

can be found, in accordance with what has been stated in the last

paragraphs, in the following manner.

The measure of the moment of flexure for the prism with a rec~

tangular cross-section A B CD is, when we retain the notations.

b hz

of the next to the last paragraph, = — -, and consequently that of
12

>' — 10 — 3 ° >
Ui — 10 — a ° >
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Fig. 35S.

Yx
Y

its half withjhe triangular cross-section A B Cm reference to the

central line Nx Nx is

w ,
b If _ b h>

But the line of gravity JViVof the

triangle is at a distance
I

, A B = \h
from the central line or line of gravity

JV"i Nx
of the rectangle, and, therefore,

according to § 224, the measure of the

moment in reference to WN is

blf . bit"

W
yirr n

36
— "3

12

The measure of the moment of flexure W of a girder with a

triangular cross-section is but one-third of the measure of the mo-

ment of flexure of a parallelopipedical one, the cross-section of

which lias the same base and altitude. But since the latter girder

has but double the volume of the former, it follows, that for equal

dimensions the moment of flexure of a triangular girder is but f

that of a rectangular one.

For the axis Zx Zx
passing through the base B C, the measure

of this moment is W
,
bh* _ btf

36
+ "18 """ "12

'

W* = W (»• F=.

and for the axis Z Z, passing through the edge A.

IV w +
/2 h V b_

\3 / * '2

bh
2

btf

36
+

4 b h %

4

These formulas do not require the cross-section to be a right-

angled triangle. They hold good for any other triangle ABC,
Fig. 359, whose base B C is at right angles to the bending force

P ; for it can be de-
Fig. 359.

I. A II.

S

c D B

N / \ /

/ \ S
/

B 13 c

A B C, so that we have for this triangle

composed into two

right-angled Irian*

gleaADBun&ACD
m whose bases BD — b x

and D C = b2 form

together the base B C
= b of the triangle
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W=-'nhW + iVM' (W+ J8)7r ==
36*

It is also of no importance whether the base B lies above or

below the axis, i.e., whether it is placed as in I or II. The mo-
ment of flexure in both cases is

when the modulus of elasticity for extension is the same as that for

compression. The same formulas can also be employed, when the

cross-section is a rhomb A B C D, Fig. 360, with the horizontal

diagonal B D. If B D = ~b is the width and A C — h the height,

we have for the body with this cross-section

W ~ * ' 12 \% / 48 ~ 4 12"'

I.E., one quarter of the measure of the moment of a girder with a

rectangular cross-section of the same height and width. From this

it follows
;
that for a double trapezoid ABED, Fig. 361, the height

of which is A C = B D = 7i, the exterior width A B = D — I

and the interior width E F = l l9

W=
12 <* - W I

(3 5 + h) h3

48

Fig. 360.

E A IT

H C G

.X D

§ 230. Polygonal Girders.—The foregoing theory can be

applied to a body with a regular polygonal cross-section A C E.

Fig. 362, whose neutral axis X Xis at the same time an axis of

symmetry. Since such a polygon can be resolved into triangles,

having a common vertex S, the determination of its moment
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consists essentially in the calculation of the moment of flexure of one
of those triangles A S B. If we denote the sideAB — B G= CD
of the polygon or the base of one of the triangles composing it by s

and the altitude S K of the

same by h, we have the measure

of its moment of flexure in ref-

erence to the axisXX
_ , h# _ 7i^

m

" 4
* 12 " 48 j

on the contrary, this moment
in reference to a second axis

— s h z

Y Y is = —-, and conse-

quently the sum of these two

moments is

hs* s 7a /,« s
2Hs_ _sji I £\+

48 ~ 4 X
+

\%Y
This sum holds good (according to § 225) for every other trian-

gle, and therefore, for a polygon of n sides, we have

ns7i /, „ s
2

\ FW
t + ^ = Ti

(*- a) = t(*v+ 5V
s li

when its area n . -_-, is denoted by F.

If we designate the angle A S X by a, the measure of the

moment in reference to the axis A S L is

= Wx {sin. a)
2 + W, (cos. a)*

;

but the latter is also equal to the measure of the moment W\ in

reference to K S D or X X, and therefore we have

Wx
= Wx (sin. ay + W, (cos. a)

2

,

or Wx [1 - (sin. a)
2

] = Wt (cos. a) 2

,

i.e. Wx (cos. a)
2 = Tfo (cos. a)

2

, and consequently

Wx = w2.

For an axis U U, forming an arbitrary angle X S U — § with

the axisXX of symmetry, the measure of the moment is

W = Wx sin.* 4- TFo cos.
2

<p = Wx (sin.
2

</> + cos.
2

</>) = Wt.
'

Now if we substitute in the above equation

Wx + W> = y (h
2 +

-J-),
IF- Wx = Wit

we obtain for any arbitrary axis of a regular polygon the measure

of the moment of flexure
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W= W1 = If2 ={ ft + Q>
or, putting the radius of the polygon S A = S B = r and there-

fore 7i
a = r* - -j-,

§ 231. Cylindrical or Elliptical Girders.—For the circle,

considered as the polygon of an infinite number of infinitely small

sides, 5 = 0, and therefore the measure of the moment of flexure

of a cylinder is

W=~r* = -^- = 0,7854 r\
4 4

For a hollow cylinder or tube, whose exterior radius is rx and

whose interior one is r2, we have by subtraction

w _ tt (r,
4 - r./) _ 77

(n
2 - ?y) {r? + r,') _ F (r,

a + r2

a

)

4

2

in which F = tt {r* — r2

2

) denotes the area of the ring-shaped

7* -4- ^*

cross-section, r — —„—
- the mean radius and h = rx

.— n> the

thickness of the wall of the tube. The horizontal diameter divides

the entire circle D E, Fig. 363, into two
FlG

-^
63 ' semicircles A D B and A E B, and the

measure of the moment for such a

j. \ N semicircle in reference to the diameter

\ A B is

[' +m

Jfi

x -.£..-'* But the distance of the centre of

gravity S of the semicircle from the

4 T
centre O of the circle is C 8 — ^— (see § 113), and therefore the

measure of the moment for the parallel axis NN is

Vi = Wx
- F. OW = Pf, - F. (|^V

=7rr4 S-9y = °'1098 -^

while, on the contrary, for the semicircle, whose diameter is vertical,
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W = re r
0,3927 r\

In reference to an axis N N, which forms an angle N 8X = a

with the axis of symmetry C D, Fig. 364, the measure of the

(noment of the semicircle is

= (0,3927 sk a a + 0,1098 cos.
2
a) r\

W

B X

From the formula

W-—W ~ 4 '

for the measure of the moment of flexure of the full circle, that of

an ellipse A B A B, Fig. 365, is easily deduced. In consequence

of the relation of the ellipse to the circle given in Art. 12 of the

Introduction to the Calculus, when A Bx A Bx represents a circle

whose radius C A is equal to the major semi-axis a of the ellipse,

and when the other semi-axis C B of the ellipse is represented by

D E
b, we have the ratio n T1

- of the width D E of an element of the

ellipse to that D x
Ex

of a similarly placed and equally high element

of the circle

_ BB __ OB^ _ b
~ B

1
B

1

~ CB1
~ a

But since the moment of flexure of such a strip increases with the

simple width, the moment of a strip D E of the ellipse is to that

of the corresponding strip of the circle as b is to a, and conse-

quently the measure of the moment of flexure of a body with an

elliptical cross-section is equal - times that of a body with a circu-

lar cross-section, i.e.

pp_ b rra*
___ ~<fb

" a ' 4~ ~4~~
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If this body contains also an elliptical hollow, the semi-axes of

which are a x and b lt
we have for this body

W ~ 4

If a body with a rectangular cross-section has an elliptical hol-

low around its axis, or, as is represented in Fig.

366, has an elliptical cavity on the side, we have

the measure of its moment of flexure

W =
12

rr a? b x

b and h denoting the length A B and the height

A A — B B of the rectangular cross-section

ABBA, and, on the contrary, ax
and b x the

semi-axes CE and C F of the semi-elliptical hol-

low Z> jF E.

§ 232. The measure IF of the moment of flexure of a cylinder

or a segment of a cylinder may be determined very simply in the

following manner. We divide the quadrant A D of the segment

of the cylinder A B JV, Fig. 367, into n equal parts, pass

through the points of division vertical

planes, such as D E, F G, etc. and de-

termine the moment of flexure for each

one of the slices D E F G, which we
consider to be right parallelopipedons.

The sum of the moments of these

slices gives the moment of flexure of the

semi-cylinder A B, and by doubling

this moment we obtain the moment of

flexure of the entire cylinder. If r de-

notes the radius A = C of the cir-

cular cross-section A B K, a division D G of the arc =
X tt r 7t r
- . — — -— , and in consequence of the similarity of the triangles

D G if and CD K, we have for the thickness K L of the slice of

the cylinder D EFG = 2D G LK
KL = G H= KD D G = KDCD

Now according to the formula of
j

of flexure of the slice D E F G is

~KL. (2 KD) 3 _ 8 7T

12 ~ 12'2 n

rr r

2~n
.KD.CD '% n 2 n

226, the measure of the moment

KD'
3 n

KD\
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If we put the variable angle A C D, which determines the dis-

tance of the slice from the vertical diameter, =
<f>, we obtain the

ordinate or half-height of the slice, D K — r cos. 0, and therefore

the last measure of the moment of flexure can be put = -— (cos. <bV
3 n v r/

_ 7rr4
3 + 4 cos. 2 <j> + cos. 4 </> . ,w_3 Jr 4 cos. 2

<f>
+ cos. 4

<f>- 3- g
'
aS {C0S ' 0) " "8

~"~

(see the " Ingenieur," page 157). In order to find the measure of

the moment of flexure for the semi-cylinder, we must substitute in

the factor 3+4 cos. 204- cos. 4 </>, for successively the values

TT IT TT TT

1 .
-—, 2 .

-— , 3 .
-— , to n .

-— , then add the results found, and
2 n 2 n 2 n 2 n

TT T*
finally multiply by the common factor . Eow the number 3

added n times to itself gives 3 n, the sum of the cosines from to tt

is = 0, since the cosines in the second quadrant '- to tt are equal

and opposite to the cosines in the first quadrant to --, and the sum
/j

3
of the cosines in the third quadrant tt to - n cancel those in the

fourth quadrant - rr to 2 rr ; therefore the measure of the moment of

flexure of the semi-cylinder is

W _ Try4 _ it r
4

T~24w'' ~ S~>

and that of the entire cylinder is

W =^ = 0,7854 r\ or
4

W =-~ = 0,04909 d\
04

d = 2 r denoting the diameter of the cylinder.

(Remark.)-If we employ the formulas of the Calculus, d <p denotes an

T TC

element of the arc 6, and the element D G = ~r
- = rd <j>; hence the nieas-

ure of the moment of the element D E F G of the surface is

2d$.ri 2 r* d 9 /3 4- 4 cos. 2 <j> + cos. 4

3

2 r* d <p /3 + 4 cos. 2 <p + cos. 4 M
(«». ,)« = ——-

( q J

— __ (3 + 4 cos . 2 ^> + cos. 4 <j>) ^0 = — (3 d$ + 4 cos. 2$d<t> + cosAf d<£)

= f- [3^0 + 2 cos. 2$d(2<p) + |- cos. 4^(4$],
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and consequently that of the portion A B ED of the cylinder is

W = ^ (s id <j>+ 2 Acs. 2$d(2 6) + ^ J
cos. 4: <p d {4: <j>)\ i.e.

W = ^ (3 ^ + 2 sw. 2^ + i sirc. 4 ^). (See Introduction to tlie Calculus,
12

§ 26, I.).

Substituting ? == -, sk 2 = sw. 7r = 0, and sin. 4 </> = sm. 2 7r — 0,

and doubling the result obtained, we have the measure of the moment of

flexure of the entire cylinder

* 3. ^n 12
' 2 * 4

For the segment DOE, on the contrary, we have

TT=^ (3 <£ + 2 sift. 2 9 + |- sin. 4
v

8 v r
'

r
'

4 ry 12

tTr
— 29 /2 sm. 2 </» + i sm. 4 A1

4__
^

_ _jj r

=z [Q (tv — 2 <j>)
— 8 sin. 2 <p — sin. 4 0] -—

.

By simple subtraction we obtain, by means of the latter formula, the

measure of the moment TTof.a board D E F G of a finite thickness K L.

(§ 233.) Beams with Curvilinear Cross-sections.—The

measure of the moment of flexure W of bodies with regular curvi-

linear cross-sections is determined most surely by the aid of the

calculus. For this purpose we decompose such a surface A N P,

Fig. 368, by ordinates into its elements, and we determine the

moments of such an element in reference to

Fig. 368. the axis of abscissas A X and also in refer-

ence to the axis of ordinates A Y.

If x is the abscissa A i^and y the ordi-

nate N P, we have the area of an element

d F — y d x

(see Introduction to the Calculus, Art. 29)

and therefore the measure of the moment
of flexure in reference to the axis A X

dW1
= iy\dF= \if dx

(see § 226), and, on the contrary, that in reference to the axis A Y
d Wl = xz y dx,

Bince all points of the element are at the same distance x from A Y.

By integration we obtain for the whole surface A N P — F
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*== ififdx
and

W2 = / x* y dx.

If we have determined (according to § 115) the centre of gravity

of the surface A NP and its co-ordinates A K = u and K 8 = v,

we find the measures of the moments of flexure in reference to the

axes passing through the centre of gravity and parallel to the co-

ordinate axes by putting

Wj = i ftf dx- v
1 F

and

W9 = I x1

y d x — if F.

e.g., for a parabolic surface A N P, whose equation is y
1 = p x,

we have {according to Art 29 of the Introduction to the Calculus)

F — %x y, and {according to § 115)

u = | x and v = § y9

hence

and

"'-'©>- ,-©
,

- ,

-|-j'-s.^
?/

2

Since also from y- — p x, it follows, that a? = — and f? a: =

2 y dy ,——-- we have

1 /•
, 7 I P , 2ydy 2 /»

4 7
2 */

5
2

3

se/ y'** = iJ ^ • > = 57/ ' <^ = 157
=

is y

.12
2

1 _
.2

and
/'

. 7 Pv* 2?/
9 ^?/ 2 /»

a 7
2?/

7
2 ,

=
7 • 3 « y • ^ = 7

/y x -

Finally we obtain
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Fig. 369.

Y

X—

B

For a symmetrical parabolic surface

A D B, Fig. 3G9, whose cord A B = 5 and
whose altitude CD — h, we can put the

measure of the moment in reference to the

axis of symmetry XX
wx = if

20 K)

while, on the contrary, that in reference

to it re-to the axis Y Y at right angles

mams

% Vs.Wo Fh -175

§234. Curvilinear Cross-sections,— If we are required to
calculate the moment of flexure of a body, whose cross-section

forms a compound or irregular figure, we must either divide this

cross-section into parts, for which the measure W is already known,,
or we must decompose the same by vertical lines, calculate the*.

measures of the moment of flexure of these strips {according to

§ 226), and, finally, add these values together, in doing which we?
can employ with advantage Simpson's or Cotes' rule.

If, e.g., A B E C, Fig 370, is such a figure or such a portion of

the cross-section of a body and if its mo-
ment of flexure in reference to the axis-:

A X is to be determined, we calculate firsfc-

the measure Wx for the portion of surface

A B G D and then the measure W2 for the

part C ED; subtracting the latter from
the former, we obtain the required moment

W=W1
~ JK.

If the base A D of the first part = x^
and the altitudes of the same at equal dis-

tances from each other are zQ, zx, z,, z3, z4, we*
have the corresponding measure of the mo-
ment, according to Simpson's rule,

Wl =
3 ' 12 ^°

3 + 4 Zx% + 2 z
*
+ 4 z * + *? )'

If, on the contrary, the width C D of the piece C D E to be,

subtracted be == x
x and the altitudes of the same arc y , y„ y„ y3y

we have, according to Cotes' rule (see Introduction to the Calculus,.

Art 88), W2 =1.4 (yQ
> + 3 yS + 3 y," + y,>).

3 8

29
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If A X does not pass through the centre of gravity 8 of the

entire surface, we must reduce it by the well-known rule (§ 224) to

the axis passing through 8. In the same manner other parts of

the cross-section, which lie below A X or alongside of A Y, may
be treated. The centre of gravity 8 can be determined either

according to § 124, or empirically by cutting a pattern of the

section out of thin sheet iron or paper and laying it upon a sharp

knife-edge. If we determine in this way two lines of gravity, their

point of intersection gives the centre of .gravity.

Example.—J. B G E C, in Fig. 370, is a portion of the cross-section

of an iron rail, which can be considered as the difference of two surfaces

A B G D and G E D. If the width of the first is f inches and that of tin-

second 1 inch, and if the heights of the first are

zQ = 2,85; z
x
= 2,82; z

2
= 2,74; z3 — 2,60; andz4 = 2,30,

and those of the second

y = 0,20 ; y x
== 1,50 ; y 2

= 1,80 and y 3
= 2,15,

we have for the measure of the moment of flexure of the first portion

Wt
= | . | . ~ . [2,85» + 2,30^ + 4 . (2j823 + 2,60*) + 2 . 2,74*]

27

27

(23,149 + 12,167 + 4 . 40,002 + 2 . 20,571)

236,47 = 8,7584,

and, on the contrary, that of the second portion

W2
=« | . 1 , | . [0,20

3 + 2,15
3 + 3 (1,50

3 + 1,80?)]

1 37,5674= —
. (0,0080 + 9,9384 + 27,6210) = —~— = 1,5653,

(consequently, the required measure for the entire surface A B G E (7 is

TF= Wx
- W2

= 8,7584 - 1,5653 = 7,1931.

Remark.—"We can also put

"W = ^ (-0'(1 .0\y + 4 . V.y t + 2 .2\y 2 + 4 .3 2
.t/

3 + 1.4'.y4)

s
3

=
wo, (± y x + 8 y2 + 36 y 3 + 16 yj,

•when yw y x , y2 , y31 y± denote the widths measured at the distances

'& $, i s, | s, | s,
f-

s from A X.

§ 235. Strength of Flexure.—If we know the moment of

flexure of a body A K O B, Fig. 371, fixed at one end B and at the

other end A subjected to a force P, we can find the strain in every

one of its cross-sections NO. If 8 denotes the strains per square

inch at a distance 8 N = e from the neutral axis 8, the strains at

the distances z1} z«, . , . . , are $ = — 8, 8? = ~ 8, and their mo-
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ments for the cross-sections F
x , F2 . . .

.
, are

S s
F* S2 z2 = F2 z* — , etc.,

G
Mx

= Fx Sx
zx
= Fx z? . —, M2

6

and consequently the sum of the strains in the cross-section N is

.=Wft'+>;'rf+...)v=-^
Now if x is the dis-

tance S Hoi the cross-

section N from the

point of application A
of the force P, we have

also M = P x, and

consequently

1) P x — , or

Pxe= WS,
and the strain in the

body at the distance e

from the neutral axis is

2)S = Mi Pxe
W W

The latter increases

with x, and is therefore

a maximum for x = I,

i.e., at the fixed point

B. In like manner it

increases with e, and is

therefore a maximum
for the point most dis-

tant from the neutral

axis.

If the body is no-

where to be stretched"

beyond the limit of elasticity, the maximum strain S should, at

most be equal to the modulus proof strength T, and consequently

Pie
we must put

or

a

pi =

w
W T

from which we obtain the proof strongill of the girder A K B
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p.. WT

In like manner we have for the ultimate strength or force

necessary to break the body at B

P __ WK

in which we must substitute for K the modulus of ultimate

strength determined by experiment upon rupture. The funda-

WE
mental formula P x = , found in § 215, can be obtained

directly as follows.

If we denote by o the extension JSf JSfx produced by the strain S,

we have S = o E, and substituting in the proportion

jyy
x _ r_s

SN ~ MR9

N'lTx = o, 8 ~N .
= e, R 8 =*= 1, and MR = r, the radius of curva-

g 1 e
ture, we have - = - or a = - ; hence it follows, that

& e,_ S E
S — - E or — = —

>

r e r

and therefore also

WE WSP x =
r e

If in the formula L = i ^=r-^ (§ 217) for the work done in

T W
bending the body A KB we substitute the moment PI —

and the modulus of proof-strength T = a E,we obtain

But (according to § 206) J <?
2
i? is the modulus of resilience A

;

therefore the work done in bending a body to the limit of elasticity

is T . WlL = A.~
?

.

If h is the greatest width of the body, we can imagine the whole

cross-section F of the body to be divided in n equally wide strips,

whose width is -, and whose altitudes are z l} z.2, z3 . . ., and we can put

F = - (zx + z2 + zz + . . .) and
n
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^^(V + rf + tf.4

and therefore also

W 7 - (
z * + *8' + *»'+•• A #J
\z

x + z.2 + z, + . . . / 12*

"We can make 21 == ft e, z.2 — ft e, zz = ft e, ft, ft, ft denoting

numbers dependent upon the form of the cross-section, and there-

fore we have

Wl _ /ft
3 + ft

3 + ft
3 + . . A Fl

e
2 ~ \ ft + ft + ft + . . . / 12'

and consequently the mechanical effect

L = A /ft
3 + ft

a + ft
3 + . . A Ft

3 \ ft + ft + ft -f . . . / 12'

11
S -1_ M 3 4. ft,

3

But ———

—

— is a coefficient i/>, dependent upon the form
ft + ft + ^3

of the body alone, and Fl = F is the volume of the body ; hence

the work done L —
-Ju

ip A V is not dependent upon the indi-

vidual dimensions, but only upon the form of the cross-section and

the volume of the body, which is bent. When the bodies are of the

same nature and of similar cross-sections, the work done is propor-

tional to the volume of the body.

For the work clone in producing rupture we must put

Wl
3e"

B denoting the modulus offragility.

Z, = B.

vli'^A

r
g:i. • •-

:

• •.
=
•- -3----.

I.- .v-.:

§ 236. Formulas for the Strength of Bodies.—For a paral-

lelopipedical girder A C B, Fig. 372, the length of which is I, the

width b and the height fa, we have
Fig. 372.

e = ± h, and, according to § 226,

W= -=7? ; hence — = ——, the proof
12 e 6

r

strength of the girder is ? =
bWT . T

1* -7- -pr? and its moment is P l— b 7i* .—.

.

t o

From this it follows, that the mechanical effect necessary to bend

the girder to the limit of elasticity is

T
AWl A b¥2l , . ,,_ , . -
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If the girder is hollow, and if its cross-section is shaped as is

represented in Fig. 373 and Fig. 374, we have

W ft h
% - ft, h* ft h3 - ft, hf .

, whence
e 12 . ^ h

1 ~ 6 AT

'

6h

ft and h being the exterior and ft, and /^ the interior width and

Fig. 374. Fig. 375. Fig. 376.

ft:—

P =

height of the cross-section. For a body with a rhombic cross-sec-

tion, such as Fig. 375, we have

W bhz
bh- , * ,,.

c 48 . ^ 7i 24

5// T^__ ,bJl JZ
7

J ' 24
~" 4

I ' 6
'

i.e. J- as great as for a parallelopipedical girder of the same height

A G = h and width B D = b. For a girder, whose cross-section is

a double trapezoid, such as is represented in Fig. 376, we have

W = (3 ft + ft,) A' (3 ft 4- ft,)/*
2

.

hence the moment of the proof strength is

(3 ft + ftQ W T_

4 * 6'P/ =

ft denoting the upper and b x the central width and h the height of

the cross-section.

For a girder with a regular %n sided base, such as A D F, Fig.

377, 1 and II, we have, if r denotes the exterior radius O A, s the

length of the side A B, h the interior radius C L and F the entire

area of the cross-section,

W F F
±t?- i/)=-j.<*; + ao=*

F(r* +2h*)
12
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If the neutral axis N 0, as in Fig. 377, I, passes through the

middle of the opposite sides, c = r; and if, as in Fig. 377, II, it

passes through the opposite corners,

e = h = Vr* - (is)\

Hence it follows, that in the first case

PI

Pi I

F(r- + 2 7r)

12 r

F (V
2 + 2 7i/)

12 h

F = i n sli = n 7i Vr — h

T, and, on the contrary, in the second

T, while in both cases

tt«y
p

The ratio — of the proof strengths is

n s IV
r

li

If the number n of the sides of a polygon is uneven, as in Fig.

377, III, we must substitute o — r, and therefore we must employ

the first formula only
;
provided always that the direction of the

force coincides with that of the axis of symmetry.

For a square cross-section we have s = 2 h==r V2, F w s
2

.

and the moment of the proof load

Pl =

and, on the contrary,

P
x
l= ^,T'-= -

6 V2
T T = 0,333 r

z
T,

V~2
T = 0,471 r3

T.

For a hexagonal cross-section we haveo

9, 7,

s = r
3^3

__, F = —-— 6'
2 = 2,598 5

2
, and therefor©

V 3 ^

n

P I = -~- s* T= -4/- r% T = 0,541 r3
5T, and

10 lb

P, Z = g s
3 T =r

g r
3 T = 0,G25 r

3
Z!

For a regular octagonal cross-section we have
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F=4t.sh=2 VY . r-

V~2, li = - V 2 + V 2 and
2

2 vT—- s- ; hence
2 - V 2

Pl^

and

4(2^ 2 + 1) * m /% V 2 +

3 t
7 2J6~Tl4 4/~|

= S
3 T /2 V 2 4- 1\

r3 T = 0,638 r3
T,

p, * = _±E£4±iL ^ r = ^tl^L ,3 y = 0j691 ,3 E
^ 4/ 17 + 12 |/"2 3 1/ 2 + -/Y

For a massive cylinder, whose radius is r, we have

W ft T* 7T T
3— = -—

- == —-—, and therefore

PI = -r3 T= 0,785 r
3 T = J i^r . T, and

Z = -^ ^4 . rr r Z = ^ A V.
A rr rz

I

But if the cylinder is hollow, we have, on the contrary,

(IX
1 + VZr/ I

4 i\
1 +

^- ^(compare §231),
2

2r
0" -4- 7'"

ri denoting the exterior, r2 the interior and r = -?-——
- the mean

2

radius, P = rr (?y — ?V
2

) the annular cross-section of the cylinder

and 1)
— r

x
— r.2 its width.

Fig. 379. por a gjrc[er> whose
—g cross-section is elliptical,

i' as is represented in Fig.

i
378, when the direction

'c
of the semi-axis C A — a

is that of the force, and

that of the semi-axis C B
= l) coincides with the

neutral axis, we have

PI = -^ T=\FaT.
4 *

Finally, for a parallelopipedical girder hollowed out on each

eide in the shape of a semi-ellipse, as is represented in Fig. 379.

we have

** <$h
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and, on the contrary, if the cross-sections of the hollows are para-

bolas,

_V 5 h* - j% hA a* _ 5 b 7? — 32 b x a?
Pl

~^~~~~T7i
i ~ 30/*

b denoting the exterior width, h the exterior height, b x
the depth

of the hollow and a
x
the height of the same.

8 237. Difference in ths Moduli of Proof Strength.—
W T

The formula P = —=- for the proof load of a girder fixed at one
6 I

end A, Fig. 380, holds good only, when the extension a and the

compression o
x
of the body are equal

FlG
-
38°- to each other at the limit of elas-

ticity ; for under those circumstances

only can the modulus of proof

strength for extension

T= a E
be equal to that of compression

T, = a, E.

For wrought iron this assumption seems to be nearly correct, and

for wood approximately so, but these relations are entirely different

in the case of cast iron ; the latter has not only a much greater

modulus of ultimate strength for crushing than for tearing, but

also the compression o
1 at the limit of elasticity, which can, how-

ever, be given only approximatively, is about twice as great as the

extension a, and. consequently the modulus of proof strength Tx

for compression is twice as great as the modulus of proof strength

T for extension.

In order to find the proof strength of cast iron or of any other

body, for which there is a perceptible difference between er and a
}

or between T and T^ wo must first see which of the quotients

T 1\ . T— and — is the lesser, and substitute that instead of — in the
e e x e

formula _ W T
el'

The other half of the beam, corresponding to the greater ratio

— or — ), is of course not stretched to the limit of elasticity. In

order to reduce this cross-section and consequently that of the

whole body to a minimum and thus to economize as much mate-

rial as possible, it is necessary, that both the halves of the girder

shall be strained to the limit of elasticity. Therefore we must give

the beam such a form and such a position that we will have
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T_ T± e _ T _ a

e ex ex T
x

~~ c
x

I.E., that tlie ratio of the greatest distances e and c
x
of the fibres on

the two sides from the neutral axis shall be equal to the ratio of

the moduli of proof strength T and T
x
for compression and ex-

tension.

T
x

a
If, then, for cast iron we have T = 2 (see § 211), we

must so fashion the cross-section of a cast iron girder that — shall°
e

be as near as possible = 2. A triangular girder must be so placed,

that the half with a triangular cross-section shall be compressed,

and that with the trapezoidal cross-section shall be stretched. If

we place one of the sides of the prism horizontal or at right angles

to the force, we have — — -, while in the opposite position, we

, e
x

1
have — = -.

e 2

We can also give cast-iron girders, whose cross-section approach

the shape of a T (as is represented in Fig. 381), such dimensions

that the ratio — shall be equal to 2.

Fig. 381.

B C

! c

i

. 1

!

}

s i

M 1

i

n j

Let the entire height of the beam be A B
— lu the width of the upper flange be B B\ •==

2B 6

—

b, the height of the hollow on the side be

AD — li x
= ih Ji,

the width of the same be

2D~G = fc =vx b,

the height of the lower flange be

H L = h2m= fi2 li

and its projection on both sides be

2 L N = 1), = vt 1),

then the distance of the centre of gravity s of the whole surface

from the lower edge II is

1 b h- — b x
7i

x

9 + Z>2 lur

2 111

A H M II

MS=c x

b\h\ + fa ?h

_ li /l — ju,
2 v

x
-h /V vA

~ 2\1 — [i
x
v

x + jUv, v2 /

(see § 105 and § 109). If we substitute — = 2 and e -f $x
= h, we

c

have e — l li and c
x
— % h, and therefore the equation of condition
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3 a
'*

1 •—
J*,

v, + /z2 ^2

'

which, when transformed, becomes

^, i'! (4 — 3 /Ji) — ^2 r2 (4 - 3 //,,) = 1,

By the aid of this formula, when three of the ratios ju,, v
l} fi 2 and v

t

of the dimensions are given, we can calculate the fourth. If we
make //2 = 0, we have the cross-section represented in Fig. 382, the

moment of flexure of which has already been determined (§ 228),

and for which we have y, x
v

x (4 — 3 \i
x )
— 1.

Remark.—Moll and Reuleaux (see their work, "Die Festigkeit der

Materialen," Brunswick, 1853) recommend for the determination of the

most advantageous cross-section the use of a balance, the beam of which
forms a table. Patterns of the cross-section, cut out of sheet-iron, are

placed upon it in such a manner that the neutral axis, determined by the

e a
ratio — = — , shall lie exactly above the centre of rotation of the beam.

e
x

c
t

If the pattern has the most advantageous form, the beam will balance ; if

it does not, we must cause it to do so by cutting away portions from the

side of the body, until the beam balances, when the pattern occupies the

above position.

Example 1.—If the cross-section of a cast-iron beam has the form of

Fig. 381, and if the ratios of the heights are

h
x 7 , 7 1

^ = T = 8'^

we have for the ratios of the width the condition

7

8

8 '8'

(
4 -|)^-^(4 -"8)^ = 1, I.E.

77 v
x
- 29 vz = 64.

If the lower flange is omitted, then v
2
= 0, and we have

I, 64

77
0,831,

and the thickness of the web proper is 5 — J)
x
= 0,169 &.

v I 29\
If, on the contrary, we make v2 = —

-, we have ( 77 — y) v
i
= 64> an(*

Fig. 382.

Ai Bi

consequently v
1
= 0,887 and v

2
— ~. 0,887 =

0,148. For h = 8 inches and b = 5|- inches, h
x
is

= 7 inches, li
2
= 1 inch, b

1
= 5 inches and b 2

= -| inch ; so that the thickness of the upper and

lower flange is 1 inch, and that of the vertical

web but i inch.

Example 2.— For a girder with a T-shaped

cross-section, Fig:. 882, we have found (§ 228)

W - ftW-bxK *? -4S5 t
hh

x
(h-h

tY
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in which we must put

_ 1 l h*-l
t
h
t
*

e
i ~ g i h — b

t h
x

;

hence, if one end is fixed and the other loaded, we have

P I
_. ®

Kl - b
iM3

-±1>1>i hh
i & ~ Kf_ T

x

If we put 7i
1
= fi 1

h and d
t
— v

x 6, we obtain

pi - a-^i^J'-^^^a-^)
2 bK T

and therefore if the beam is cast-iron and we substitute^ = f and *, = $

If, e.g., A is = 10 and 5 = 8 inches, and consequently

A
t = f- . 10 = ^ == %ft— ht

= If inches,

^ =£.8 = 7and5-&
1
= 1 inch,

we have

13 8.100 _520^^-70*~6"_
- ^ -ST 2 *'

If we substitute 2^ = 18700 pounds, we have for the moment of the

proof strength, which, for the sake of safety, we should put = 150000

520
Pl=— m 18700 = 463048 pounds.

If this beam is 100 inches long, its safe load at the free end is

150000
P =

1
= 1500 pounds.

If the girder is supported at both ends and carries the load in the middle,

we have

P = 4 . 1500 = 6000 pounds.

While in the first case the flange must be placed on top, in the latter it

must be put at the bottom.

§ 238. Difference in the Moduli of Ultimate Strength.—
If we determine the moduli of elasticity and of 'proof strength

by means of experiments on bending, making use of the formulas

-, P It . _ Pie

the values found for E and T generally agree very well with those

given by direct experiments on extension and compression, when the

formulas

PI PE =
YJp

anc* T — ~p are employed.

But this relation is entirely different for the modulus of ulti-



3 238.] ELASTICITY AND STRENGTH OF FLEXURE, ETC. 461

mate strength. Since we cannot consider the modulus of elasticity

E to be constant beyond the limits of elasticity (for it decreases,

when the extension or compression increases), and since the mod-

ulus of elasticity for extension is .no longer equal to that for

compression, the strains in the superposed fibres are no longei

proportional to their distances from the neutral axis, and conse-

quently that axis no longer passes through the centre of gravity

;

the values of c and e
x
differ in that case essentially from what they

are, when the limit of elasticity is not surpassed.

If W denotes the measure of the moment of flexure for the

stretched half of the girder and E the mean modulus of elasticity

of the same, and if Wx denotes this measure for the compressed

portion and Ex the mean modulus of elasticityr, we have for the

moment of the bending force, when the bending becomes excessive,

WE + WX Exr i - - ,

K e K e
and if we put, at least approximately, — = - and -p = ~9

iTand

Kx
denoting the moduli of ultimate strength for tearing and

crashing, the moment of the force necessary to break it is

P , either = JT(r.J + ik-jq = KIWM + Wt *y
Eg E

x
c x

If we again denote the statical moment of the cross-section of the

stretched portion of the body in reference to the neutral axis by M
and that of the cross-section of the compressed portion of the body

in reference to the same axis by 3£
x , we have the force on one side

3fE W F1

=— and on the other •— ——
-, and since the two forces must

r r
'

form a couple, M E = Mx Ex . This equation serves to determine

the neutral axis by means of the distances c and ex .

For a girder with a rectangular cross-section we have

M=— and Mx
= ~±

r

and therefore

Ee2 = Ex e x\

From this we obtain

e
x
= ey ^
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Substituting this value in the equation e + e
x
= h, we have

h VE
X h VE

e — ——

:

—

:

= and e
x
=

ve+ ve
x

Ve + vw;
The measures of the moments of flexure are in this, case

7Tr b e*
TT_ b e xW = -

<y
- and Wx

= ~,
o o

and consequently we have

b
Fl = 3r

(Ee> + Ex
*•) = ™ l*M*±**+E\

1
3 r \

(^ -f tfg;)
1

/

_ btf E E
x _~3 r (VE + VWXT

and therefore the moment necessary to produce rupture is

D7 ... K.bV EE
X b7i

2 _ V^P Z either = -^h-^— .
-=—— -—r- = -^- . A .

—

—

3 Z?e
( VE+ VE

xy 3 ' t/E+ VE
X

n? ^ VE
or = -— iij

3 |/^ + f^tf,

For E ~ E
x we have, of course,

For wood and wroug7it iron, E is really about = E
x, and there-

fore we can write approximately

in which we must substitute forK the smaller value of the modulus

of ultimate strength. For cast iron, E
x is much greater than E,

and therefore P I approaches the value -— K, K being the modu-

lus of rupture for extension. For wood we must substitute the

mean value of the modulus of ultimate strength for crushing.

Kx
— 480 kilograms == 6800 pounds, which value agrees very well

with the results of the experiments of Eytelwein, Gerstner, etc.

In like manner, for a wrought iron girder we must substitute

instead ofK the modulus of ultimate strength for crushing K
x
—

2200 kilograms = 31000 pounds. While under the same circum-

stances wood and wrought iron break by crushing, cast iron breaks

by tearing. If for the latter iTwere about = K
x , we would have

to substitute for cast iron girders, in the above formulas, the

modulus of ultimate strength of tearing, i.e., K = 1300 kilograms
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= 18500 pounds; but, according to the results of many experi-

ments, we must put '
.

K — 3200 kilograms — 45500 pounds,

i.e., about the mean value of the modulus of ultimate strength for

tearing and of that for crushing.

This great difference is caused not only by the difference of the

moduli of elasticity E and E1} but also by the granular texture of

the cast iron, which precludes the supposition that the beam is

composed of a bundle of rods.

Many different circumstances influence the elasticity, the

proof strength and the ultimate strength of a body, so that nota-

ble differences occur in the results of experiment.

The wood, for example, near the heart and root of the tree js

stronger than the sap wood and that near the top, and wood will

resist a greater force, when the latter acts parallel to the yearly

rings than when it acts at right angles to them ; finally, the soil

and position of the place where the wood grew, the state of

humidity, the age, etc. influence the strength of wood. Finally,

the deflection of a body, which has been loaded very long, is always

a little greater than that produced, when the weight is first laid on.

§ 239. Experiments upon Flexure and Rupture.—Experi-

ments upon elasticity and strength were made by Eytclwein and

Gerstner with the apparatus represented in Fig. 383. A B and

A B are two trestles, upon which two iron bed-plates C and C are

fastened, and D D is the body to be experimented upon, which is
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placed upon them. The weight P, which is to bend the body, is

placed on a scale board E E, which is suspended to a stirrup M N,
whose upper end is rounded and rests upon the centre M of the

girder. In order to find the deflection produced by the weight,

Eyteiwein employed two horizontal strings F J7 and G G and a

scale 31 II, placed upon the middle of the girder. G-erstner, on

the contrary, employed a long sensitive one-armed lever, which

rested upon the beam near its fulcrum and whose end indicated on

a vertical scale the deflection of M in 15 times its real size.

Lagerhjelm employed a pointer, which was moved by means of a

string passing over a pulley, and which showed the deflection of

the beam magnified upon a graduated circular dial. Others, as,

E.G.,
(

Morin, made use of a cathometer to determine the deflection.

The object observed was a point fastened in the centre of the girder.

In the English experiments a long wedge was used to measure this

deflection ; it was inserted between the centre of the beam and a

fixed support. In order that the accuracy of the measurement

may not be affected by the yielding of the supports of the girder,

it should rest during the experiments either upon stone founda-

tions (Morin), or a long ruler should be placed a certain distance

above the girder and fastened at its ends to the ends of the latter,

but in such a manner that it cannot bend with the beam, and in

each experiment the distance between the lower edge of the ruler and

the centre of the deflected "girder should be measured (Fairbairn).

The manner in which Stephenson, etc., determined the deflec-

tion and strength of tubular sheet iron girders, is shown with the

principal details in Fig. 384. The tube A B is 75 feet long (the

front portion being omitted in the figure), is supported at both

ends, as, e.g., in C, upon blocks of wood and its centre rests upon

a beam D D, which is carried by two screw-jacks. An iron arm,

the end F of which only can be seen in the figure, passes through

the middle of the tubular girder near the bottom, and from this

two stirrups G, G hang, to which the scale-board II II to receive

the weight P is suspended. Before the experiment and during

the laying on of the weights, the entire load was supported by the

beam D D ; when the screw-jacks were lowered D D sank and

placed itself upon the supports E, E, while the centre of the tube

A. F, loaded with P, remained free and could assume a deflec-

tion corresponding to the force P. This deflection was measured

by means of a wedge.

In order to avoid the use of very large weights in experiment-
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ing upon large girders, they are generally made to act upon the

latter by means of a lever with unequal arms. With the same

object in view, Hodgkinson caused the force of the lever to be

Fig. 884

applied not to the centre of a girder supported at both ends, but to

one end of a girder, which was supported in the middle and the

other end of which was fastened by a bolt to the foundation.

The results of experiments, made under very different circum-

stances and with very different kinds of materials, particularly of

wood and iron, have shown the theory laid down in the foregoing

pages to be correct in all important particulars. In regard to the

rupture of parallelopipedical girders it was proved, that those of

wood and wrought iron, under the same circumstances, gave way
by crushing, and that in the case of cast iron the rupture began

either by the exterior fibres being torn apart or by a wedge break-

ing out at the most compressed part (in the middle).

We can satisfy ourselves of the truth of the hypothesis, made
in § 214, in regard to the behaviour of the fibres of a body, sub-

jected to flexure, by. making saw cuts upon the compressed side of.'
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parallelopipedical wooden rods and then filling them up with pieces

of wood, by drawing a series of lines upon the side of a beam at

right angles to its longitudinal axis, and finally by fastening two
thin rods to the beam, one along the extended and the other along
the compressed side.

§ 240. Moduli of Proof and Ultimate Strength.—In the

following table the moduli of elasticity, of proof strength and of

ultimate strength or of rupture, as determined by experiments

upon bending and breaking are given. The first differ but little

from those determined by the experiments on extension and com-
pression ; but, for the reasons given above (§ 238), this is not

true of the modulus of ultimate strength. The upper of the

two quantities in a parenthesis ! [ gives the value in English meas-

ures (pounds per square inch) and the lower one the same in

French measures (kilograms per square centimeter).

TABLE
OF THE MODULI OF ELASTICITY, OF PROOF STRENGTH AND OF

ULTIMATE STRENGTH OR OF RUPTURE OF DIFFERENT BODIES
IN RELATION TO BENDING AND BREAKING.

Names of the Bodies.
Modulus of Elasticity

E.

Modulus of
Proof

Strength T.

Modulus of Rup-
ture or of Ultimate
Strength AT (A',).

|

Wood of deciduous Trees

Wood of evergreen Trees

Cast Iron

Wrought Iron ....

Limestone and Sandstone

Clayslate

f I280OOO

{ 9OOOO

j 2I3OOOO

1 I50OOO

j 17OOOOOO

| 1200000

f
284OOOOO

( 20O0OOO

3IOO
220

430O
3OO

I067O

750

I7OOO
I200

9240}
650}

I280O )

900)

45500
j.

3200 )

3270O )

23OO)

{'£}
f 5000

1

l 350)

In order to determine from the value in the foregoing table the

load, which a girder can carry securely, we must introduce a factor
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of safety and substitute in the formulas for the proof strength

already found for wood

either instead of T, \ Toy instead of K, T\ K,

for cast iron

either instead of T, ^ T or instead of K, I K,

and for wrought iron

either instead of T, h T or instead of K, \ K.

Consequently we can hereafter put for wood

T = 73 kilograms = 1000 pounds,

for cast iron

T — 510 kilograms = 7000 pounds

and for wrought iron

T = 660 kilograms == 9000 pounds.

We cannot employ these values in calculating the dimensions

of shafts and other parts of machines ; for, on account of their

constant motion and of the wearing away of the parts, a greater

factor of safety must be introduced, which requires us to assume a

smaller value for T.

If we substitute these values in the formulas

T T T
o 4 32

for parallelopipedical and for cylindrical girders, we obtain the fol-

iowing practical formulas

:

For wood
Pl=:161ih2 = 785 r

3 = 98 d3 inch-pounds.

For cast iron

P I = 1167 I W = 5500 t
3 = 687 d3

inch-pounds.

And for wrought iron the greatest value

P I = 1500 b h2 = 7070 r
3 = 884 d3 inch-pounds.

If with Morin, and in accordance with the practice in England,

we put for cast iron

instead of T, — to — = 750 kilograms,

and for wrought iron

instead of T, — — 600 kilograms,
o

we obtain for cast iron

P I = 1778 I W = 8376 r
3 = 1047 d 3 inch-pounds,

and for wrought iron the smaller value

P I = 1422 1 7i
2 = 6700 r

3 = 838 d3 inch-pounds.

If the load Q is not applied at the end of the beam, but is
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equally distributed over the same, the arm of the load is no longer

I, but -, and consequently, the moment being but half as great, we

mustput Ql_WT n7 WT

If the girder is supported at both ends (Fig. 337) and the load

P acts midway between the two points of support, whose distance

p
from each other is = I, the force at each end is == — , its arm is ==

Z

- and its moment

PI WT , _ _ WT
—t- = and P I = 4 -—

.

4 e e

Therefore, under the same circumstances, the girder bears twice

as great a load in the second and four times as great a one in the

third as in the first case.

If, finally, a girder uniformly loaded along its whole length is

supported at both ends, it is in the first place bent upwards by a

force -£, whose arm is -, and in the second place downwards by a
A Z

force -if, whose point of application is the centre of gravity of one
Z

of the halves of the load, whose lever arm is therefore - and whose
4

moment is .—-. Consequently the moment with which one end of

the girder is bent upwards is

- 91 _ 91 - 91
4 8 8

'

W T
hence we have Q I = 8 . The proof load of the girder is in

e

this case 8 times as great as in the first one.

For a parallelopipedical girder we have in the first case

TP I = l h2—, in the second

01= 2 b Ji
2
^-, in the third
o

TP I — 4 b h2 — and in the fourth

Ql = 8bh2 ~,

b denoting the width and h the height of the rectangular cross-section.
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Example—1) What load can a girder of fir carry at its middle, when
its width is b = 7 and its height h = 9 inches, and when the point of ap-

plication of the load is 10 feet distant from the supports ? Here we have

\l — 10 . 12 = 120 inches, and therefore, according to the above formula,

P I = 4 . 167 I W = 4 . 167 . 7 . 81,

and the required working load is

4676.81 ftW ._
27 = 1578 pounds.P =

240
= 58,45

2) A cylindrical stick of wood, firmly imbedded at one end in masonry,

is required to bear a weight Q = 10000, uniformly distributed over its

whole length 1 = 5 feet ; what should be its diameter ? "We have here

T— = 2 . 785 . r\

and consequently by inversion

y 1570 V
10000 . 60 — V 382 = 7,26 inches,

1570 f 1570

and the required diameter is = 2 r = 14,52 inches.

§ 241. Relative Deflection.—The bending of the moving
parts of machines, snch as the shafts, axles, etc., has often a very

bad effect upon their

working, either by giv-

ing rise to vibrations

and concussions, or by

preventing the different

parts of the machine

from engaging perfect-

ly. We are therefore

in certain cases re-

quired to determine the

cross-sections of these

parts of machines, not

with reference to the

modulus of proof

strength, but to the

deflection, by assum-

ing the deflection to

be a very small definite

portion of the entire

length of the body or

part of the machine.

We have already found (§ 217) the deflection for a prismatic

body A S B, Fig. 385, fixed at one end B and loaded at the other

A. to be
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and we can put its ratio to the length A B, which is given

~
I 3 WE'

whence, by inversion,

PJ9 = 3 WE
Hence we have for a parallelopipedical girder

P^^J/i1 QJbWEPI _3
T3
-i7=-^—

,

and for a cylindrical one

PV = 3 6
7^~E=~7rdri E.
4 4

Generally a relative deflection 6 m - = ^i^ is admissible, and
I

we can put

If we substitute for wood the modulus of elasticity E = 1600000,

we obtain

FT = 800 o ¥ = 7540 r\

For cast iron we have E — 15000000 pounds, and therefore

P?m 7500 I ¥ - 70700 r\

and for wrought iron E = 22000000 pounds and

PT = 11000 o hs = 103700 r\

On the contrary, when the deflection reaches the limit of elas-

ticity, we have (§ 235)

'
e e

and, therefore, equating the two values ofP Z
2

, we obtain

^- = 30 WE,
e

and consequently the ratio of the length I of the beam to the maxi-

mum distance e, when both the deflection and strain reach at the

same time their limit values 6 and T, is

I - Sd

E

- —
hence for parallelopipedical bodies

1 = *°-

li
3 a
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and for cylindrical ones

I 3 I „
- = — or -j = I -,
7* g d z

<r

a denoting the extension or compression at the limit of elasticity

corresponding to the strain T.

7 Q R
If - < — , we obtain from the first formula the greater value

e a °

I SO
for P I and if, on the contrary, - > — , the second formula gives

the greater value for the moment of the force. Therefore for a

given moment of force (P T) the greater dimensions for the cross-

section are given in the first case, where the length of the body is

less than I = ( ) e, by the formula

WT =pl
c

and in the second case, where I > ( ) e, by the formula

3 WE- Pl\

If we substitute in the ratio - == — for the limit, = —-,
e g 500

Ave have for all materials - = ft^tt— = —
> and, therefore, for

G O00GO
wood, for which o = -—

-, - = 0.00G . GOO = 3,G, and more par-
0UO g

ticularly for a prismatical beam of this material

1
i

l 18 10
7,

and
d = 10 = ^

If we assume for cast and wrought iron o == .

'

we obtain for

these substances

The formula

I 3 . 1500
- = —zt^t— — 9 and therefore
c 500

1
or

*
= % = ¥

2000 2000

is of course applicable to the normal case above, i.e., when the body

is loaded at one end and fixed at the other. For a load equally

distributed we must substitute (according to § 223), instead of

P,
-J Q. If the body is supported at both ends and the load is sus-
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P j

pended in the middle, we have, instead of P, — and, instead of/, -,
& it

and therefore

p r ="8
. Ii~ j
2000 2000

If the girder is supported in the same manner and the load

5 Q
uniformly distributed, we must substitute for P, -—.

8

Example— 1) What load placed upon the centre of a wooden beam,

supported at both ends, will produce a relative deflection = T^ if its

width is 1) — 7, its height h = 9 inches and the distance between the sup-

ports is I = 20 feet ? Here we have

„ „ 800 & A3 6400 . 7 . 9 3
„ MP = 8 ,

—
¥
— =

(2() ^ 12y
a
- = 7 .

9' = 567 pounds,

while in the foregoing paragraph, under the assunqjtion that the beam,

should be bent to the limit of elasticity" we found P = 1578 pounds.

2) How high and wide must we make a cast iron girder (the ratio of

its dimensions being = = 4), which, when supported at both ends, will

sustain a load Q = 4000 pounds, uniformly distributed over its length,

which is 8 feet ? Under the latter supposition, we have

|gPr:8. 7500 I h\

h 4

i.e., £ . 4000 .
Q-

. 12 2 = 8 . 7500 -r- or h* = 44
. 6,

' 8 4

consequently

h = 4 Vo = "G 5 . 4 = 6,26 inches and

h
1) = -. = 1,565 inches.

4

According to the formulas of the foregoing paragraph, we would have

A 3

Ql= 8 . 1167 1) h\ or 4000 . 8 . 12 = 8 . 1167 . -j,

whence the required height is

3
/3000

h = 4 y -^ = 4 . 1,37 = 5,48 inches,

and the required width

& = -j == 1,37 inches.
4

§ 242. Moments of Procf Load.—From the formula

T
o

for the moment of the proof load of a 2)arallelqpipedical girder we

perceive that this moment increases with the width b and with the

square of the height h, that the proof load itself
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_ IV T
I 6

is inversely proportioned to the length (I) and that the height has a

much greater influence than the width upon the solidity of such a

girder. A girder, whose width is double that of another, will bear

but twice as great a load as the latter, or as much as two such

girders placed side by side. A girder, whose height is double that

of another, bears, on the contrary, (2") = 4 times as much as the

latter, when their widths are the same. For this reason we make

the height of parallelopipedical girders greater than their width,

or we place them on edge, or in such a position, that the smaller

dimension shall be perpendicular to the direction of force P and

that the greater dimension shall be parallel to it.

Since b h expresses the cross-section F of the beam, we have also

T
Pl = Fh~;

hence the moments of the proof load of bodies of equal cross-section,

mass or weight are proportional to their height. If, for example,

b and h are the width and height of one body and - and 3 h those

of another body or F = - 3 h = b h the area of both their cross-

sections, the bodies have the same weight, when the other circum-

stances are the same, but the latter bears three times as great a

load as the former.

If b = h, the cross-section of the beam is a square, and we can

diminish the moment of proof load by placing the diagonal in a

vertical position. In this case, W, as we know from § 230, remains
773 74

unchanged and is = -— = —, while e becomes equal to the semi-

diagonal -}f b V 2 = b V i. Therefore we have•a

T
while, if it were laid on one of its sides, we would have P I = b

z —

.

6

See § 236.

The equations for parallelopipedical girders are analogous to

those for girders with an elliptical cross-section. We have in the
7 3

latter case (according to § 231) W = —-— and e = a, the semi-

axis a being supposed parallel and the semi-axis b perpendicular to
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the direction of the force or, as is generally the case, horizontal.

Here we have for such a girder

4 4

the area of the elliptical cross-section being F = nab. The mo-
ment of the proof load of this beam increases, therefore, with the

area and with the height a of the cross-section.

If b = a = r, we have a cylindrical girder, whose radius is r,

and the equation becomes
n r 3 T

Pl = -i- T = Ft 4-.
4 4

The moment of proof load of this body increases, therefore, with

the product of the area of the cross-section and its radius.

If the cross-sections or weights are equal, the ratio of the mo-
ment of proof load of a body with an elliptical cross-section to that

of one with a circular cross-section is -. Therefore, we should
r

always prefer the elliptical to the cylindrical girder.

This holds good for all other forms of cross-section ; the regu-

lar form (the square, the regular hexagon, the circle, etc.) has

always, for the same area, a smaller moment of proof load than a

form of greater height and less width.

Regular forms of cross-section should, therefore, be employed

only for shafts and other bodies, revolving about their longitudinal

axis, in which case during the rotation a continual change in the

position of the dimension of the cross-section takes place, i.e., after

one-quarter of a rotation the height becomes the width and the

width the height.

§243. Cross-section of Wooden Girders.—If a cylindri-

cal girder has the same cross-section F — n r
2 = If as a parallelo-

pipedical beam, whose height and width is = b, we have the ratio

- = Vk = 1,77245,
r

and, on the contrary, the ratio between the moments of proof load

M and Mx (M2) is in the first place, when the latter body is laid

upon one of its sides,

I, = i
:

I = It = ^k = v °>5643 = °>8463'

and in the second place, when its diagonal is placed in a vertical

position,
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M r h V2 3

f =i :V="^= 3 - o'3989 = l
'1967-

The moment of proof load of the cylinder (with circular base)

is in the first place smaller and in the second place greater than

that of a parallelopipedon with a square base.

Since wooden parallelopipedical girders are cut or sawed from

the round trunks of trees, the question arises, what must be the

ratio of the dimensions of the cross-section of such a beam, in order

that it shall have the greatest moment of working load ?

Let A B D E, Fig. 386, be the cross-section of the trunk of the

tree, A D — d its diameter and

A B = D E = b

the breadth and

AE = BD =h
the height of the beam ; then we have

b
2 + A3 = d\ or

Jr & d2 - b%

and the moment of proof load is

P l = L . b V = T.
j (f _ n

The problem now is to make

I {d
2 - V)

as great as possible. If we put, instead of d, ft ± x, x being very-

small, we obtain for the last expression

(b-± x) c? - (h ± xf = 1) d2 - F ± (d
2 - 3 V) x - 3 I x2

,

when x3
is neglected. Now the difference of the two expressions is

y = =f (d
2 - 3 V) x + 3 I x2

.

In order that the first value shall always be greater than the

second, the difference

y = ^ (d
2 - 3 b

2

) x + 3bx2

must be positive, whether we increase or diminish b by x. But
this is only possible when d2 — 3 b

2 = ; for this difference is then

= 3 b x2
or positive, while, on the contrary, when d2 — 3 b

2
has a

real positive or negative value, 3b x2 can be neglected, and the sign

of the difference =F (d
2 — 3 b

2

) x varies with that of x. Therefore,

putting d2 — 3 b
2 = 0, we obtain the required width

b — d V\, and the corresponding height

h = Vd2 -b2 = av%;
the ratio of the height to the width is
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1,414 or about %

{% 243.

Fig. 387.

h _ v%
I - VI

We should, therefore, cut the trunk of the tree in such a man-
ner as to produce a beam, whose height is to its

width as 7 is to 5. , In order to find the cross-

section corresponding to the greatest strength,

we divide the diameter A D, Fig. 387, into three

equal parts, erect in the points of division M and
N the perpendiculars M B and N E and join

the points B and E, where they cut the circum-

ference, with the extremities A and D by straight

lines. A B D E is the cross-section of greatest resistance ; for we
have ,AM:AB = AB:ADimdLA']Sr:AE = AE:AD)

and consequently

AB = b = VAM.AD = VJdTd = d V\ and

AE=h= VAJST.AI) = VJdTd = d V%, or

h V2
t = -zr-9 which is what was required.

Remark 1. The moment of proof load of the trunk of the tree is

and that of the beam of greatest resistance, cut from the same, is

T T ST
^Vatt**'

and coDsequently the beam loses by being cut

i.e. 35 per cent, of its proof strength. In order to reduce this loss, the

beam is often made imperfectly four-sided, i.e. with the corners wanting.
The moment of the proof load of a beam with a square cross-section, hewed
from a tree of the same size is

since the width is = height = d VJ = 0,707 d ; the loss is

ft 4- ft

1 -. - = 1 = 1 - 0,60 == 0, 40,
6 . 2 V2 * 3 7T V2

i.e. 40 per cent.

(Remark 2.) In order to cut from a trunk of a tree a parallelopipedical

beam, whose moment of flexure is a minimum, or for which 6 =
7

is as

small as possible (compare § 241), we must have
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W =— or I A3 = V V^=Ai, or (6 h*)* = K* (<* - *)
12

_ ^3 7^,6 _ ^,8

as great as possible. The first differential coefficient of the latter expres-

sion in reference to Ms 6 d*h* - 8 A 7
,
which is equal to zero for A> = f «l»,

i.e. for

n d V3 _

A = tfVf = -2- and

I = <Jd^hl = ^p» = |.

For these values the moment of flexure of the beam is a minimum (see

Introduction to the Calculus, Art. 13).

Here we have - = ~ = 1,7321, or about £-, while above we found for

~b 1

h '

the maximum of the moment of proof load j — £•

This condition corresponds to the construction in Fig. 387, when ^e

make .4 M=DN=^AI).

§ 244. Hollow and Webbed Girders.—We have, accord-

ing to § 228, for a Jiollow parallelopipedical learn

w - l %% ~ h ^M " 12
?

and therefore the moment of proof load is

D)_ff W T _ 11 h* - lx h*\ T_
Fl -~J~~~TTi"~ \ h /

6*

If we put -j- = fi and y = v, we obtain

and, since the cross-section of the body is

F=b7i - h lh =bh(l- f*
v),

Pl= (L^). Fk .T
\ 1 -- [i v I 6

1 __ i*
3 v 1 - fi V + fl V - fl" v _, ,

(1 - ft
2

) p V

S*iee T^7V = l-pv "•— - X +
-.1-f.v

increases with v, we obtain the maximum value of P I for v = 1,

and it is

If, on the contrary, we put fi = v, we obtain

2) Pl= (HF)^f-
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Ill both cases we must make \i as great as possible, and there-

fore nearly = 1. If we wish the proof strength of the girder to be

a maximum, we must make the webs as thin as possible. Hence
we have for \x = 1 in the first case

T TP I — 3 Fh — = Fh -^, and in the second case

T TP I = 2 Fh— = Fh ^ and, on the contrary, for ft = 0,

T
Pl = Fh^r

6

In all three cases the proof load of the girder, when the cross-

section (F) or the weight is the same, increases with the height

(h) ; but in the first case, where the girder consists of two flanges,

it is a maximum ; and in the second case, where it forms a paral-

lelopipedical tube, it has a mean value ; and in the third case,

where it is composed of one or two webs, a minimum one.

If, for example, a massive girder, whose dimensions are b x and

fo1} has the same cross-section or weight as the supposed tubular

girder, we have

F —b x h x
= bh — bx h x, i.e. 2 b x h x

= b h or ^~ =p = i.

If we assume ~ = ~, we have \i — v — V±>, and therefore the

ratio of the proof loads of the two beams is

P x
1 — ii v h x \1 — y 2

the tubular girder is therefore capable of carrying more than double

the load that an equally heavy massive girder can, whose form is

that of the hollow of the first girder.

The same relations also obtain for I-shaped girders, since (see

§ 228) the measure of the moment of flexure W is the same for

both. These formulas can also be employed for bodies with more

than two weds, as, e.g., bodies with the cross-section represented in

Fig. 388, in which case b denotes the width of the

upper and lower rib, h the entire height A D — B C,

bx the sum of the widths and h x the height of the

hollow spaces M, N, 0, P.

The formulas for a pipe or hollow cylinder are

analogous to those for a parallelopipedical beam. If r

is the exterior and i\ — \ir the interior radius, the

moment of proof load of this body is
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= (1 + ,4JV.|.

This value increases as \i == — approaches unity, and therefore

as the wall of the pipe becomes thinner. If we put ;i = 1, we ob-

tain the corresponding maximum moment of proof load

T T
PI = 2Fr^r = Fr~

4 2

If we compare the proof load of this tube with that of a massive

iron, cylinder, whose radius rx
— fi r — r V±, we have then for the

latter „ 7 ^ T „ T ,Px l — F?\ — = 11 F r -r and
4 4

exactly what we found under the same suppositions for parallelo-

pipedical girders.

We can see from the general equation

PI = }I1 = (
F

>
z * + F°- z

-' + •) T = Wrf + F.tf + ..)eT,

that the moment of proof load of a body increases as the distances

z x
— \i

x e, Zi = fa e, etc., of the portions FlfF2, etc., of the cross-sec-

tion from the neutral axis become greater. But since this distance

can at most be = e, those girders will have the greatest moment
of proof load, the different portions of whose cross-section are at

"one and the same distance (the maximum one) from the neutral

axis. Such a beam consists of two flanges. Since the webs which

unite the two flanges cannot satisfy the conditions of maximum
moment of proof load, it is impossible to attain this maximum, and

we must therefore content ourselves with increasing the proof

strength of the girder by hollowing it out, by thinning it in the

neighborhood of the neutral axis, or by adding flanges at the

greatest possible distance from the same axis.

The thickness, which the web must possess in order to resist the

shearing strain, will be determined in the following chapter.

Remark.—Under the supposition that the proof strength increases and

decreases with the ultimate strength, the English engineers increase the

size of that portion of cast-iron girders, which is subject to compression

;

for that material resists compression best. On the contrary, they increase

the dimensions of the compressed side of girders of wrought iron, as the
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latter resists extension best. If the girders are to be supported at both

ends, their form must depend upon the substance of which they are made.

If the beam is of cast iron, we make the bottom flange larger than the

other; if of wrought iron, the upper flange, or the upper part of the

girder is constructed of two flanges,, united by vertical webs, as is repre-

sented in Fig. 388. The forms T and T, discussed in a previous paragraph

(§ 237), are employed for cast iron.

Example.—An oak girder 9 inches wide and 11 inches high, which has

up to the present time shown sufficient strength, is to be replaced by a

cast-iron girder, whose exterior width is 5 inches and whose height is 10

inches ; how thick should it be made ? If we put the double thickness of

the metal = x\ the width of the hollow is = 5 — x, and its height is

= 10 — x, and consequently we have for the hollow girder

Mi 3 — &
s V = 5. 10 3 — (5 - x) (10 — %y = 2500 £— 450£ s + 35 xz — x\

7000
hence the moment of proof load is P I — «—^ (2500 x— 450 or + 35 x z—x4

).6.10
1000

If the moment of j)roof load of the massive wooden beam is P I = —

-

9 . II 2 = a
. 1089000, we must put

700 . (2500 x — 450 x" + 35 x>

2500 x — 450 x* + 35 x % — x*

In the first place, x is approximative!

y

— or
1

) = 1089000, or

= 1556. '

1556

2500
= 0,62, for which, how-

ever, x — 0,65 should be put. From this we obtain 450'z 3 = 450 . 0,4225

== 190,12, 35 x* = 9,61, x* = 0,18, and finally

1556 + 190,12 - 7,56 + 0,18

2500

and consequently the required thickness of metal is

x

1 ?38,7

"2600"
=

°'69° inCheS
'

23:5. Excentric

Fig. 389.

0,3475 inches.

Load.—If the force which acts upon a

girder supported at both ends

A and B, Fig. 389, is not applied

at the centre, but at some inter-

mediate point, situated at the

distances I) A = lx
and D B —

l2 from the points of support, the

proof load is greater than when
the force is applied in the mid-

dle. Let us denote the forces,

with which the points of support

A and B react, by P t and P2

antl the entire length of the gir-

der A B = 1
{
+ I by I low,

if we put the moment of P a in
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reference to the point of support B equal to that of P in reference

to the same point and in like manner the moment of P2 in refer-

ence to A equal to that of P or P
x

I = P L and P^l = P lly we

obtain the reactions at the points of support

Pi = jP and P* =£ p,

and consequently their moments in reference to the points of

application* p _ p 7 _ P lx ?2

For any other point E, whose distance B E from the point of

support B is == x, we have this moment

•*~
* P>.WE= £&

smaller than that just found, and consequently at B we have the

greatest deflection, and therefore we must determine the proof load

in reference to this point alone, for which we have

P h I, W T
I e

•

If we substitute. ?i
-
_ I

~
2

x and "•=! -f- a*3 we v obtain the

moment of the force

p
» Pl

x
l2

I

g- ) &
I

.)_ '6-

hence the proof load is

P = I W T _

3

and therefore greater <3r less as x is greater or less. For x ~ 2*

i.e., for ^ = 0, in which case P is transferred to the point of sup-

port A, we have n IW T

and on the contrary for x = 0, i.e. if the force P is applied at the

centre, the proof load is a minimum and is

W TP = 4

as we know already from § 240. A prismatical girder supported

at both ends will sustain the smallest load, when the latter is ap-

plied at the centre, and more and more as the weight approaches-

the points of support.

If we lay off as ordinates the moments of the force, which aro
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inversely proportional to the radius of curvature and directly to the

curvature itself, as ordinates at the different points upon the girder,

we obtain a clear representation of the variation of the deflection

at the different points upon the girder.

If, in the case just discussed, the moment of the force
I

in

D is represented by the ordinate D L and if from its extremity L
the right lines L A and L B be drawn to the extremities of the

abscissas D A = lx and D B — k, these lines will limit the differ-

ent ordinates (as for example E N) representing the measures of

the deflection for the different portions of the body; for since

EN D L
E B~ DB>

EN

it follows that

E B
D B

as we had previously found

Fig. 390.

D L Plrh Plx X

Another case which

often occurs in practice

is, when the weight is

equally distributed'over

a portion E F == c of

the entire length I of

the girder A B, Fig.

390. Let us again de-

note the distances of

the middle D of this

weight from the points

of support A and B by

lx and L and the reac-

tion of the abutments

by Pi and P2, then we

have again

and

If Q were not distributed, but if, on the contrary, the force was ap-

plied at D, the moment for D would be
Qhh

, and, representing
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the same by an ordinate D L, the moment for the other points of

A B will be cut off by the right lines L A and L B. But, since

for the points within E F the forces P, and P2 act in opposition

to the weight placed upon it, the ordinates between E G and FH
will be diminished. For the centre D of the loaded portion E F
the moment of half the weight

must be subtracted, and there remains, therefore, of the ordinate

D L = l 2
only the portion

DM =M -WL = Q fi£ ~ |V

For another point JSf, whose abscissa is A JV", the moment is, on

the contrary,

Pi . NA — NE . q . -^- = Pi x - z ^
and if P, x is represented by the ordinate NR and ~ ^r—

—

^-*

by the portion S R, the ordinate N 8 will give the total moment

(x-!i + icyq
rx x -

.

This is of course very different for different values of x, i.e. for dif-

p
ferent points, but is a maximum for x — lx + -J-

c = —-, and then

its value is

Hence we must put the proof load of this girder

Qhh L c\_WT
I X 21/ e '

Example.—What weight will a hollow parallelopipedical girder, made
of \ inch thick sheet iron, support, if its exterior height is 16 inches and its

exterior width is 4 inches, when it is loaded uniformly along 5 feet of its

length, the middle of the loaded portion being 8 and 4 feet distant from

the points of support ? Here we have

I A3 - \ V 4 . 16 s - 3 . 15 s

16
= 391

>
3

and
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hh MH-« ('-£)=
32. 1 9

~~S4

76

3'

and the weight required is therefore

3 T 195 6
Q = 391,2 .

—
. — = -^- . 9000 = 23160 pounds.

Remakk.—If the weight Q is not uniformly distributed over E F, but

if half is applied at the extremity E and half at the extremity F, the line

G MH is then a right line, and the maximum moment is the ordinate

G E, for which
Ql

2 /
7

c\_WT
~r v *

~~
»/
~ ~r~

l\ denoting the greater distance D A and l
2
the smaller distance D B of

the middle D from the two extremities A and B.

% 246. Girders Fixed at Both Ends.—If a beam A B,

Fig. 391, is loaded in the centre C and fixed at loth ends, it will be

Fig. 391.

curved upwards at the centre, and at the points of support A and

B downwards, and there will be formed at the centres D and E of

the semi-girders C A and C B points of inflection, where there is

no curvature or where the radius of curvature is infinitely great.

One-half of the weight P is supported by A D and the other half

by B E, and we can therefore assume that both the quarters A D
and B Eof the beam are bent downwards at their ends D andE by

p—, and that, on the contrary, the half D E of the girder is bent

upwards at its ends D and E by
[
— y). The arm of each of these
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forces A D
ment is

G D, etc., is

P
2

*

PI
8

PI

—— = -; consequently their mo-

, and therefore

WT
; hence we can put the proof load

8 W T ±WT
I e I e

Such a girder will bear twice as great a load as when it is

simply supported at both ends.

: pi
If we make the ordinates A H = B K — C L = — , and

o

draw the right lines H L and K L, they will cut off ordinates

(M N) for every other point (M) upon the beam proportional to

the moments of the force and to the deflection.

If in the formula, which we have found, we substitute the modu-

lus of rupture K instead of the modulus of proof strength T, we

obtain, of course, the force necessary to break the beam, which is

SWKP =
le

Since the curvature is the same in A, B and C, the rupture will

take place at the same time in A, B and C.

If the position of the girder is the same and the load Q = I q

is uniformly distributed, the girder assumes, it is true, two curva-

tures upwards and two downwards, but the points of inflection

Fig. 392.

-R -B.

H K
D and E, Fig. 392, do not lie at the centres of the semi-girders

;

for the deflecting forces R, R of the portions A D and B E are
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aided by the weight upon the latter, and, on the contrary, the

action of the bending forces — R, — R of the central piece D is

diminished by this load. Let us put the length AD = B E = ?„

the length CD — CE = Z2 and the total length of the beam I =
2ft f h), and let us denote the weight upon A D or B E by

ft — q l1} and that upon D E by ft — 2 R = 2 q I,. Now, since

A D is bent downwards by R and ft,we have, according to § 216

and § 223, the angle of inclination to the horizonED T—D E T
— a at the point of inflection D

n _ BV ft?!
2

~ 2 WE * 6 WE'
and since CD is bent upwards by (— R) and downwards by ft,

we have for the same position D also

a =
2 WE ~~

6 WE'
Equating the two values of a, we obtain the relation

3 R (72

2 - K) = ft K + ft ?2
2
, or

Bqh C?2
2 - Z>

2

) = q (K + 4
s

), I.E.,

Resolving this equation, we obtain

* (i - *T),L 2^1 and?!
2

and, therefore, the moment of force in relation to the middle C is

U - 7? 7
Bh_Rl _q U _qT _ Ql

and that in reference to the extremity A or B is

. Fig. 393.

-R -H
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= ^ a - «T) (i + *T)

_ g

*

a

ft - j) = «i - o ei
8 12 24"

The proof load of this beam is therefore

n
' rr_3 8 IF?7

9 ~ 12
' TT ~ 2

" "T^
-

'

lb., I times as great as in the former case, where the weight acted

at the centre C.

If we lay off -~r- as ordinate in A and B and also --- as ordi-
J 12 24

nate in (7, making A H'•= B K — :r—- and C L — — ~-, we ob-
12 24

tain three points iZ", JT and X of the curve HD L E K, which

represents the variation of the deflection of the girder.

Example.—How high can grain be piled in a grain house, when the

floor rests on beams 25 feet long, 10 inches wide ana 12 inches high, if the

distance between two beams is = 8 feet and if a cubic foot of corn weighs

46,7 pounds ? If we employ the last formula Q I = 12 . 167 . ~b 7i
2
, we

must put

b = 10, h = 12, I = 25 , 12 = 300, and consequently

n 12.167.10.144 M^
Q = g^ = 9619 pounds.

Now a parallelopipedical mass of grain 25 feet long, 3 feet wide and

x feet high weighs 25 . 3 . x . 46,7 pounds; if we substitute this value for

Q, we obtain the required height of the mass

9619
„, n

x = ==—-r— = 2,75 feet.
75 . 46,7

§ 247. Beams Dissimilarly Supported.—If a beam ABC,
Fig. 394, is fixed at one end A and supported at the other B and if

the load acts in the middle between A and B, we have, according

to § 221, the reaction of the support B

1

16 '

and therefore the moment of the force in reference to C

Pl l 5

and, on the contrary, that in reference to A is
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*= F
2

P,l = PI
\2 16/

_3_

16
Pl = m Pl

>

Fig. 394.
or greater, and consequent-

ly we can put the proof

load

16 WT^
~ 3 ' le

'

For an intermediate point

M, at a distance CM = x

from the centre C, this mo-
ment is

MW= p
x
(I + x}

If we assume
Pi

- (P - Pi

22

x.

- = ^rx I, we obtainP - Px
16-5

that point, for which the moment is equal to zero and the radius

of curvature infinitely great. The variation of this moment and

the deflection of the girder are represented by the ordinates of the

right lines II L and L B, passing through the extremities of A II

PI^PZandof&^A
If, finally, a girder A B, Fig. 395, supported in the same man-

ner as the last, is uniformly
Fig. 395.

loaded, as we have previous-

ly generally supposed, witli

a certain weight q upon the

running foot of the girder,

we can determine the reac-

tion Px at the support B in

the following manner. If

the length of the beam is /,

the entire load is Q — I (]

and the moment of the force

in reference to a point M,

at a distance BM = x from

the point of support B, is
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q x*

and consequently the angle of inclination

px (r - x-)
__ g (r - x9

)a ~ 2 WE 6 WE '

and (according to § 217 and § 223) the corresponding deflection is

^~
2 WE 6 WE '

But since A lies on the same level with B, the ordinate in A,

i.e. for x — 7, is ?/ = 0, and we must put

3 Px . 1 r - q . | r,

from which we obtain the reaction at B

If we substitute this value for Px in the expression for the mo-

ment, we obtain

R S = | () x — -— = —-- (\l — x); and therefore for a? = Z

qV __ QlAH=-
8 8-

For x — B D = | ? this moment is = 0, and for x — B E
I I it is a maximum

9 q I' _ 9EK=Tk = m* 1

Ql 16 9
Since ~- = T^ § I > T^ § /, the moment A H in reference

O I/CO 1/CO

to the fixed point A is greater than the moment KE in reference

to the middle E of B D, and the proof load corresponding to the

moment -^- must therefore be determined, i.e. we must put
o

W T
•

in which case we assume, of course, that the modulus of proof

strength for extension is the same as that for compression.

This proof load is 8 . j\ = f times as great as it would be if

the weight were concentrated in the middle.

§ 248, Girders Loaded at Intermediate Points.—If a

girder A B, Fig. 396, loaded at both ends with equal weights P, P,
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Fig. 396.

^ill

u c M

is supported at two points C
and D, which are at the same

distance A C— B D = lx from

the ends, the reaction of each

of these points of support is

equal to the force P, and for a

pointMupon CD the moment
of flexure

lTO = MN
I,) -Px

x
= -Pl

{

C L
= P (xx

is constant, and the form of

neutral axis of CD is therefore a circle, while, on the contrary, for

a point U upon A C this moment U V = P x is variable and

smaller than P lx.

WE
The radius of curvature of the middle piece C D is = r — -pj-jP l\

and the angle of inclination of the axis of the beam in C and D is

I Pl'h
consequently * =— = ^^r, I denoting the length of this

middle piece. From this we obtain the deflection

MS a
_«Z) 2

2 r

a x
= a

x
lx +

PV

PVlx

8 WE
PI I?

, as well as the deflection of C A

3 WE 2 WE ' 3 WE
Plx

9 _ PI? 1 1 I
)•WE\2 ' 3 j

W T
The moment of proof load for this girder is P l

x
=

.

e

If the same beam A B is uniformly loaded, as is shown in Fig.

397, with q per running
Fig. 397. foot, under certain circum-

H.

- ,

\ \
o\ ll III

dances the moment of

flexure for some points is

I
ps^iB positive, and tor others

negative, and therefore at

two points U and V it is

equal to zero.

For a point upon A
and B D this moment is

-\ q x*, and, on the con-

trary, for a point between

( ' and the middle M, or between D and M, since the value of the

reaction at C and D is A Q - (i I + l x ) q, it is B S = y = i



§ 249.] ELASTICITY AND STRENGTH OF FLEXURE, ETC. 491

(z + l\Y q — (h I + h) z q = ^ (x
2 — I x + I

2

) q, and therefore

= for z2 — I x = — I
2

, i.e. for
_________

CW= z = 1-- |/Q
2

- I? and for

i

< -, le. C A < C M. Under

Fig. 398.

.LLUiUlflllUJii

which of course requires that l
:

any other circumstances the moment of flexure remains always

positive, as is shown in Fig. 398.

The moment of flexure is a maxi-

mum or minimum for x — ~ and

is **= -*[©-*.>,
while the moment of flexure in O
and D is U17= WO"=

\ q l,\

If, therefore, in the first case,

Fig.397,g)
2

-?
1
2 >Z1

2 org)
a

>
2 Zj

2
, i.e. Z > k V8, we have MN

, we must put the moment of proof> L, and since q —
load equal to

[©•- «]

.

<H 2

j + a/i

TFT
2(2 + 2"?,)

, while, on the contrary, we have

8(J + 24)- <
'^en?<?1 ^.

§ 249. Girders not Uniformly Loaded.—If a beam A B,

Fig. 399, is not uniformly loaded, but in such a manner that the

load on the running foot increases

Fig. 399. towards the extremities of the girder

regularly with the distance from its

centre, the statical relations will be as

follows.

If 1 = AB = 2 CA = 2 CBis
the length of the beam, measured be-

tween the points of support A and B,

q the weight of the load per unit of

surface of the cross-section and p the

angle of inclination A C D = B C E

__£ ^\|^>L n J*< 1

Af' f»B
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of the planes C D and C E, which bound the load, we have the

weight of the prism A CD = B GE of the load, sustained by one

point of support,

and consequently the moment of this force in reference to a point

JST, at a distance A JSf = x from A, is

yi== ~9~' x== iy^ x tang, p.

The weight ofthe heavy prism above A JV=xis q I —
) A iV,

and the centre of gravity of the same is at a distance N —

.
——- from N, and consequently the moment of

this prism in reference to JSf is

y2 = q(2AD + ML)—— = q \l tang, p + (- — x) tang, p -"-.-

a x*
== ^- tang, p (j I — x),

and the entire moment of flexure for the girder at N is

WV=y = y, - y, = 4 taWP
(3 ? x _ 6 7^ + 4^

if we put C iV = #! = ^ — # or measure the abscissa #i from (7.

This is a maximum for x — - and equal to -— to#. p, and
/£ 4o

the moment ofproof load of this girder is

qF, Ql WT
y-tang. P,i.v.,-

i
- = -

tr,

while for an uniformly loaded beam the moment of flexure is

=£[©•-*].

hence the moment of proof load is~ = .

§250. Girders Sustaining Two Loads.—If a girder A B,

Fig. 400, supported at both ends is loaded at a point C, which is at

the distances C A = I
x
and C B = l2 from the points of support
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A and B, with a weight P and in addition carries a uniformly dis-

tributed load Q — ql, the reaction of points of support A and B

are Rx
= -V~ + ^r and B, = -^-r- + ^-, and the moment of

flexure at a point JV, situated at a distance A N —x from the

point of support A, is

r*»_«.-i£-(*:,¥)-.-!ef-.).JV

Fig. 400. Fig. 401.

This moment is a maximum for

2 JB, i?i
a; = x. i.e., for sc = —, and is then

It is here assumed, that C A > (7 B, i.e., ?, > ?2 and x < ^
If x === lx the maximum of the moment of flexure is at C (Fig. 401),

and consequently

If we substitute

rx (i,p q\ i ; , , .

a?= _l = (-ir + f)g=?1, we obtain

P __ h-ll _ 2 I, - I _ ^ - £>

e"
""

/o " 2 /o
~~ 2

1

'

and the moment ofproof load of the girder, when

Q < ~2h->
1S
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PI OY I W T
~T~ + o ) o~n — '

arLC*> on ^e contrary, when(¥ + *)

it is

('+*) r &
*

These formulas are specially applicable to cases, where the

weight G of the beam is taken into consideration ; here G must

be substituted for Q.

Fig. 402.

§ 251. Cross-section of Rupture.—In all the cases, which

we have previously treated, we have assumed the body A B,

Fig. 402, to be prismatical and, there-

fore, the moment of flexure WE to

be constant, hence we could conclude

from the fundamental formula

Pxr — WE,
that the radius of curvature

WE .

r = Px
was inversely, or the curvature itself directly, proportional to the

moment (P x) of the force P acting upon the body and that con-

sequently the curvature becomes a maximum or a minimum at the

same time that P x does. If, therefore, the force P is constant,

or if it increases with x (as, e.g., in the case represented in Fig. 403,

where Q = q x), the curvature in-

creases or diminishes with x and be-

comes with it a maximum and mini-

mum. When, on the contrary, the

cross-section F of the body is differ-

ent in different points, then W —
2 (F z

2

) is also variable, the radius of

curvature is proportional to the quo-

W
tient -=r- and the curvature itself toPx

P X
the expression -=. If we are required to find the points of great-

est and least curvature, we have only to determine those, for which

Px
-f?f is a maximum and a minimum.W
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In like manner, according to the formnla

Pxe

of § 235, the strain 8 in a body is proportional to the expression

Pxe—j^r-, and becomes a maximum or a minimum simultaneously

with it.

W
If the body is pnsmatical, — is constant, and the maximum

strain 8 is proportional to the moment P x of the force only. If

W
the cross-section of the lody varies, — is a variable quantity, and

G

this strain is dependent upon this quotient also. In the first case

the strain becomes a maximum with P x, e.g., when the beam is

acted upon at one point by a force P and by a load Q — q x uni-

formly distributed oyer a distance x, for x = I ; in the second case

this maximum cannot be determined unless we know how the

cross-section varies. In order to find the point of maximum strain,

it is necessary to determine by algebra the maximum of the expres-

P xe
sion -TTT-. la any case the part of the body where this maximum

strain occurs is also that point at which, if the load is sufficient, the

strain 8 first becomes equal to jTand also to K, and, consequently,

where the limit of elasticity will first be attained or where rupture

will take place. This cross-section of the body corresponding to

(P xe\—r-r-
J
is therefore called the section of rup-

N

hire (Fr. section de rupture, Ger. Brechungsquerschnitt) or also

the dangerous (weak) section.

If the body has a rectangular cross-section, with the variable

width u and the variable height v, we have

W _ uv*

e ~ 6
'

P x
and the section of rupture is determined by the maximum of —\J u v*

, , , . . „u v9

or by the minimum of -=—

.

Jl x

For a body with an elliptical cross-section, whose variable semi-

axes are u and v, we have

W _ 7T u v
1

T — A 9
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and we must therefore again determine the minimum value of

it v'
1

p— , when we wish to know the weakest point in the body.

When the weight is constant, P can be left out of consideration,

u v
and we have to determine only the minimum of—•. If, on the

X
contrary, the weight Q = q x is uniformly distributed upon the

it v"
girder, we must determine the minimum of —— in order to find the

X

section of rupture.

'

§ 252. If a body A CDF, Fig. 404, forms a truncated ivedge

or a horizontal prism with a trapezoidal base A E B F, whose con-

stant width is B G' = D E = ft, and if the force P acts at the ex-

tremity D F of the same, we
have to find only the mini-

v~ .mum of — in order to deter-

Fig. 404.

U5*=£ mine the section of rupture.

Putting the height D G =
E F'of the end = li and the

heightK U of the truncated

portion HK U= c, and as-

suming, as previously, that

the section of rupture L MN is at a distance U V — x from the

extremity D E F,wq obtain the height of this section

ML = v = h + ~h = h(l + -),
c \ cl

and we have therefore but to determine the minimum of the ex-

pression

fr* 3- *e .*+'&
1 x

or, since Ji and c are determined, only that of - H .7
vis C

2
If we assume x = c, the latter expression becomes = - ; but if

c

we make x a little (.?,) greater or less than c, we obtain

c ± Xi

(>*?)
H'-? +?H
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X C —i— X\ i. X\

consequently

1 x __ 2 a?!
2

2
or in any case greater than - Hence x = c gives the minimum

c

required, i.e. the section of rupture L H JSf is at a distance from

the end D E F equal to the height K TJ — c or to the distance of

the truncated edge HK from the same end D E F in the other

direction.

The height of this section of rupture is

v — h 4- - . c — 2 It,

c

and consequently the proof load is

p _ h (2 ny t_ _ 45 h2
t_

c ' 6 ~~
c

'6*

For a parallelopipedical girder, which has the same length I — c,

the same width and equal volume V = h h I, the height is

, h + 2 7* _-.
Ai =—£— = I &,

and consequently the proof load is

c ' 6 ~ 4 c ' 6'

and such a girder hears, therefore, but T
9
g as much as the wedged-

shape body just treated. If the body is a truncated pyramid, the

edges A E, B D, etc., when sufficiently prolonged, cut each other

in a paint, and if we designate the height of the truncated portion

by c, we have

M2T = u = b(l +
f)

and L M=v = h(l+ -)'

and therefore the minimum of

1 +
c

or of

1 Sx x
x & ' c

b

must be determined, in order to find the section of rupture. By
the differential calculus we obtain

32
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and we can easily satisfy ourselves that this value is correct by first

substituting x = ^ c + x
x and then x = J c — x

x . In both cases

we obtain a greater value than

2 3 1 15 . . , . M- + s

—

b T~ — r~ j which is the value

the expression

1 3 a; a;
2—

1

j-
-J—s assumes for # = A c.

x c c

The distance of the section of rupture from the end D F is then

equal to half the height c of the portion of the pyramid, which is

cut off. The dimensions of this surface are

u = b(l+±}=*
-I
b and v = f />,

and, consequently, the required proof load of the beam is

§ 5 (j ft)
2 T^Mbh?T_

~
-he 6 ~ 4 c 6*

For a body, the form of which is a truncated cone, we have,

when the radius of extremity is r and the height of the truncated

portion is c, the radius of the section of rupture rx
= J r, and

therefore

3? ^ T
4 ' c *

"4
*

§ 253. Bodies of Uniform Strength.—If a body is so bent,

that the maximum strain S upon the extended and compressed

;side of the neutral axis is at all points the same, we have a body of

the strongest form, or of uniform strength (Fr. corps d'egale resist-

ance, Ger. Korper von gleichem Widerstande). By a certain force

such a body is strained to the limit of elasticity in all its cross-

section at the same time, and has, therefore* in each part a

cross-section corresponding to its proof strength ; it requires,

therefore, when the other circumstances are the same, a smaller

quantity of material than any other body of the same strength.

Therefore, for the sake of economy and to avoid unnecessary

weight, such forms are to be preferred in construction.

Since the greatest strain in a cross-section is determined by

the expression

S = -|-- (see §251),

P x e
a body of uniform strength requires that w shall be constant for

<all cross-sections of the body.
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If the force P is constant and applied at the end of the body,

we have only to make
ex W
W ex

constant, and when the force Q = q x is uniformly distributed

upon the girder.

ex' W
W 0r

'ex1

must be constant. For a girder with a rectangular cross-section (see

§ 251), whose dimensions are u and v, we must make in the first

case , and in the second —r, constant.
x x*

If at another place at the distance I from the extremity the

width is b and the height li, we must have consequently in the

lh2

r

For the constant width u = h, we have in the first case

v
2 h2

G , u v
2 bh" , . ,

,

. u v
first case = -7—, and 111 the second —rx I

'

x2

, I.E.,

V X V
T^ — ~T 0r T f%

Since the equation -^ — j is that of a parabola (see § 35, Re-

mark), the longitudinal profile A B E, Fig. 405, of such a body

Fig. 405. Fig. 406.

p'in.'.'ivl
1

|;'Hll"/W.

li;"ii::Wii'

liiilli^i
1 lliii' ii'

has the form of a parabola, whose vertex E coincides with the ex-

tremity or point of application of the load P.

If a beam A B, Fig. 406, whose ividth is constant, is supported

at both ends and sustains the load P in the middle, or if the beam
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Fig. 407.

A2P

A B, Fig. 407, is supported in the middle and is acted upon at its

ends A and B by two forces, which balance each other, its eleva-

tion must have the form of two para-

bolas united in the middle. As ex-

amples of the latter case, we may
mention working beams, balance

beams, etc. As the beam is weak-

ened by the eyes, made for the shafts

A, B and C, lateral or central ribs

are added to it.

If the height v = h is constant,

we have

u b u x- = T or T = 7,x I I V
and the width is proportional to the distance from the end; the

horizontal projection of the beam ACE, Fig. 408, is a triangle

BCD and the entire girder is a wedge, the vertical edge of which
coincides with the direction of the force.

Fig. 408. Fig. 409.

Instead of the parabolic girders, Fig. 405, we generally make
use of girders, Fig. 409, with plane surfaces. In order to econo-

mize as much material as possible the girder is made in the mid-

dle M of the same height MO— hm = h V~%, as the parabolic

girder would have been, and the limiting plane surface CD is made
tangent to the corresponding parabolic surface. We have

B C SAM . .AD AM
MO

SAM _ . A D—

—

_a Q"nrj .
—

.2A3f~~MO~2 A M
and consequently, if we denote the greater height B C by h x and

the lesser one A D by h2, we obtain

fc = | hm = | h VJ = 1,0607 h and

h, = J hm =4&VT= 0,3536 li,
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for which we must determine the height B JST = hhj means of

T
the well-known formula P I — b h 1

-*-.

The volume of such a girder, whose faces are planes, is

1) I (Jh + 7*o) _ ^ ^1 ^ i ^ ^liiie that of the parabolic girder of

equal strength is = f b lh = 0,667 5 ? 7z, i.e., 5,7 per cent, smaller.

In like manner we can

construct the girder A NA l9

Fig. 410, which is supported

at its extremities A and^4„

of two portions, bounded by

plane surfaces, which have a

common height B C = hi =
1,0607 h at the point of ap-

plication of the load, and at the extremities the altitude

~AD = AA = K = 0,3536 h.

Here the altitude B N — h must be determined by the formula

Phk _ bh* T
I ~ 6

§ 254. If the body ABB, Fig. 411, is to be made with all its

cross-sections L M N, ABC, etc., similar, we must put

v u
Fig. 411.

li b

u . if h

I.E.,

and therefore

bhr

u _ v _ m/x

~li~ y VV°"bm
If X

it
3 X

1
The width and height are therefore

proportional to the cube root of corres-

ponding arms of the lever. When the

distance from the end becomes eight-fold, the height and width

are only doubled.

We can replace this body by a truncated pyramid A C E G,

Fig. 412, at the middle of whose length the height isM O = hn
~

VJ
2 . h = 0,7937 h and the width MN = bm == VJ . I = 0,7937 b

and the strength of this body is exactly the same as that of the body
3 r-

V /X
just discussed. For the tangential angle ofthe curve t — V v

v — j— x\ we have, according to Art. 10 of the Introduction

or
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h li

r, therefore it follows,to the Calculus, tang, a = arS = —
O VI o V Ix'

1

that for

| = J, i I toy. « = } A y Q
S

= l h VI = | V| = 0,2646 A,

and in like manner we haye for the curve

T p fowgr. /3 3V7 and

J J tang. (3 = | V*.
o.

From this we can calculate the dimensions of the base ABC
A B = A 2

= 7^ + i Z to?, a = |
3>/J • h = 1,0583 A and

B C =b 1
= bm + I I tang. =

-J
Vj . J = 1,0583 &,

and those of the smaller base E F
Fig. 412. Fig. 413.

C

I I tang, a = § vO
y . ]h — 0,5291 7* andFG = h« = h„^

EF = b.2 = hm - I I tang. /3 = § Vj. I =j 0,5291 J.

We must of course put P Z =
u

If we make the cross-section of the body of uniform strength

circular, we have for the variable radius the equation

u = v ifi
and if we replace this body by a truncated cone ABE, Fig. 413,

its radii must be

M O = rm =VT. r ^ o,7937 r, C A = r, = 1,0583 r and

D E= r9 = 0,5291 r,

and the radius r of the base of the solid of uniform strength must

be calculated according to the formula

7i r
2
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If the girder is uniformly loaded and its width is constant, lb.

if u — b, we have V" x

¥ = T'
01

V _ X

h~V
and its form must be that of a wedge, whose elevation is a trian-

gle ABB, Fig. 414.

Fig. 414. Fig. 415.

If the height is constant, we have - = -^- • hence the horizontal

section of the girder is a surface limited by the two inverted arcs

of a parabola B D and C D, as is shown in Fig, 415.

/7/
3 q^ rtfi

•If we again make the cross-sections similar, we have -=-= r-~=~
9°

b h I

and the vertical and horizontal profiles are cubic parabolas, the

cubes of the ordinates of which are proportional to the squares of

the abscissas.

If a body ABB, Fig. 41 G, supported at both ends, is uni-

formly loaded with the weight q

Fig. 416.
N

per running foot or upon its whole

length A B = I with Q — q I, we
have the moment of the force at

a point 0, situated at the distance

A = x from one of the sup-

ports A,

— .x-qx.- = ±(lx - x\

and, on the contrary, at the cen-

tre C

~ 2 '2 2 '4 8 ' 8
*

Assuming the width b of the body to be constant, we have
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T a
h v* . —- = \ (I x — x2

) and

h denoting the height C E of the body at the centre, and by divi-

sion we obtain

v
2

I x — x"
or

(hh
h* -} I'

2

If h = J ^ v
c would be — I x — a2

, and therefore the longitu-

dinal profile would be the circle A D
x B, described with the

radius J I; but since I x — ar must be multiplied by (
—

,) in order

to obtain the square i>
2
of the height M = JV at any point, the

circle becomes an ellipse A D B or A E B, whose semi-axes are

C A = ax = \l and CD = CE = I, = 7*.

We can replace this body by a girder A A B D B, Fig. 417,

with. _p&me surfaces, whose

height at the distance A M
— I I from the points of sup-

port B and B is M = Zi

Fig. 417.

The angle of inclination a of

the surface B D to the axis ^1 C is given by the equation

h \l-x _ 2 h i* _ 2 h _ 2 ,^ h
tang.a = ~. ^_-- _— . ^-^ _ ^-_ ,™ . r

«

eonsequently we have - tang, a = J V3 . 7i and the height of the

body in the middle

CD = M + ~ tang. a = %¥3.h= 1,1548 h,

and, on the contrary, the height at the ends is

AB = MO- l

j tang, a = \ VZ . A = 0,5774 7z.

(§ 255.) The deflection of a body of uniform strength is, of

course, under the same circumstances, greater than that of a pris-

matical girder. For the case, where the beam is fixed at one end
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and subjected to a stress P at the other, the deflection is found as

r E
follows. The well-known proportion - = — gives us the formula

6 J.

r = —fp-> in which the radius of curvature is a function of the dis-

tance e. If we know the dependence of e and x upon each other,

we obtain an equation between r and x, from which we can deduce

(in the way explained in § 218) the equation of the co-ordinates of

the elastic curve. If we assume the deflection to be small, we can

again put the length of arc s equal to the abscissa x, and conse-

quently equate the differentials d s and d x ; hence we can, as be-

fore, assume dx
r = — -T-.

a a
From this we obtain

7
E

7dx — — -^ e d a,

and, by integration, the tangential angle

EJ e
'

For a girder with a rectangular cross-section t ='j«^ and

therefore 2 T rd x

If the width is constant or u = b, we have

v
2 x— —

j (see § 253), and therefore

v =. li y — and

VT r t , 2T Vi nir n
T~J arr3 x ~ —W ' ~7~ ' + Cons.,

I

2 T Vl C , , 2T Vl

E li J Eh
or, since for # = 7

, a = and consequently

„ 2T \
r

l

"^-Eiri^-^)-
If we put a = jf, we obtain

7 ±T VIdy=z ~W~hi r̂i ~ Vi)dx,

and, therefore, the required equation of the co-ordinates is

4 T V~l T V~l

y = .-gr -j- («/i-|»<^x = 4^-r ( v7 - f ^) a-
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For x — l,y becomes a; the deflection is then

T r
a =*EK

T m 6 PI
6

is given by the formula

But P I = b 7f . - or T = ^~~, and, therefore, the deflection

Ebh 3 EbW
i.e

, it is twice as great as in the case of a parallelopipedical girder,

whose height is h and whose width is b (compare § 227).
If the force acts at the middle of a girder, supported at both

P I
ends, we have only to substitute — for P, and -for I, and we obtain

£ </

a ~ ie *

Eblf
i.e., it is 16 times smaller than when the force acts at the end.

For a body of uniform strength with a triangular base, as is

represented in Fig. 408, the variable width is u = -- b, and
i

hence the radius of curvature r = —~- . -p is constant, the curve

formed is a circle, and the corresponding deflection is

_L 6 Pl%
- a

4P p
a "*

2 r ~ b ifE ~ 3
' F¥E 7

i.e., | times as great as for a parallelopipedical girder.

§ 256. Deflection of Metal Springs.—The most common
examples of bodies of uniform strength, as well as of those which

bend in a circle, are steel or other metal springs. The springs, of

which the spring dynamometers are made, are of the finest steel and

are from 4 to 1 meter long, from 4 to 5 centimeters wide and in

the middle from 8 to 21 millemeters thick. They form bodies of

uniform strength, and their longitudinal profile is composed of two

parabolas united in the middle (see § 253). In order to increase

the action, the spring dynamometer is made of two such parabolic

springs A A and B B, Fig. 418, which are united at their ends A



§ 256.] ELASTICITY AND STRENGTH OF FLEXURE, ETC. 507

by means of the links A B, A B (see Morin's Lecons de Mecanique

Fm 418
Pratique, Kesistance des Materiaux,

d,, 'No. 198). These dynamometers

^^^_._.?r]3^'_----^*®A measure the force P, which is ap-

$iV̂ --
:
-
1^m--zz^^0^B Pne(i to the hook D in the middle
^ss
9d

&
of one of the springs, by the space

(jL described by the point Z, which is

. of course equal to the sum of the

/^k deflections of the two springs. But

%j|P from what precedes we know that

i
8 pf

a ™ T * *
b ¥ Bf

and consequently we have here
pp

s — 2 a

and, therefore, the force

*- {'-¥)*
corresponding to the space s described by the pointer.

In experimenting with such an instrument, whose springs were

of the following dimensions: b.m 0,05, h = 0,0211, 1 = 1,0 meter,

the space described by the pointer was s = 9,7 millemeter, when
the load was P — 1000 kilograms ; the coefficient of this dynam-

eter was therefore

P ~ s ~ 9,7
~ iUt5

'
Uy>

and for other cases we must put

P — 103,09 s kilograms,

when s is given in millimeters, or when the scale is divided into

millimeters.

If, instead of parabolic springs, we employ triangular ones of

uniform strength, we have

| =s a = 7*g . y^p and, therefore,

i.e., one-third greater than for a dynamometer with parabolic

springs.

Wagon springs should unite great flexibility with great strength,

while, on the contrary, it is not necessary to know the exact relation

1 >ctween P and s. For this reason, these springs are often formed

of a number of simple springs laid upon one another.
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If the compound spring is composed of n simple parallelopiped-

ical springs, placed upon one another, we have, when the width is

b, the thickness h and the length /, the deflection corresponding to

4. p I
3

the force P at the end A of the entire spring a = —„, T „ and theto n Ebh3

proof load

P = n —j—— , and therefore also

a

a —

T r

^El^l -'LI
% E It

If the entire spring A C D, Fig. 419, consists of n simple tri-

angular springs, we have

err , ., ^ iw r
6nEbh* while P *—

remains unchanged, and therefore

a = E7i
m l=EK

Therefore, in both cases the measure =- of the flexibility in-

T I
creases with the ratios •=- and j and is the same as for a simple

spring of n times the width (n b).

Fig. 419. Fig. 420.

In order to economize material, we superpose springs of differ-

ent lengths and construct them of such a shape, that by the action

of the force P at the end A of the entire spring they are bent in

arcs of circles of nearly or exactly the same radius. The force P
bends the lowest triangular piece A A of the the entire spring

A B H, Fig. 420, whose length = .-
-, in the arc of a circle, whose

radius is r
bh* E
12 I ' P , and in order that the remaining paral-

lelopipedical portion shall be bent in like manner, it is necessary
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that the same shall exert a pressure at A upon the succeeding

spring, which shall be equal to the force P ; for the moment of

P I

flexure of this spring is then equal to the moment of a couple

I

( p. — P) whose arm is -. The relations of the flexure of the first

spring repeat themselves in the second, which is - shorter than
lb

it ; it is bent in a circle whose radius r = -^-7- • -77, when its end
xZ I JL

A
x
A 2 is triangular and the other portion is parallelopipedical, and

if it presses on the third spring with a force P. This is also the

case for the third spring A 2 67 D, etc., up to the last piece, which has

no parallelopipedical portion, and which, by the action of the force

P, is bent in a circle of the above radius r. The entire deflection of

r 6 p r
this compound spring is a = ^— = —wirjij anc^ the proof load is

P — n —j- --, hence
I

_ T T a _T l

The relations of the flexure are here exactly the same as for a

spring composed of single triangular springs; it can also easily

be proved, that both sets of springs require the same amount of

material.

It is not, however, necessary to make the ends of the springs

exactly triangular ; we can employ any other form of equal curva-

ture, e.g., we can make them of the constant width b and then at

the distance x from the end A the height must be

, A /nx
y = li\/-T

Such a double spring is represented in Fig. 421. Here the

Fig. 421.

total proof load is 2 P ; the length must not, however, be meas-
ured from the middle, but from the ends B £>, B D of the fastening.
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Remark.—The reader can consult upon the subject of wagon springs :

F. Reuleux : Die Construction und Berechnung der fur den Maschinenbau

wichtigsten Federarten. Winterthur, 1857 ; also Redtenbacher : die

Gesetze des Locornotivenbaues, Mannheim 1855, and Philips : Memoire sur

les ressorts en acier, etc., in the Annales des Mines, Tome I., 1852.

CHAPTER III

THE ACTION OF THE SHEARING ELASTICITY IN THE BENDING
AND TWISTING OF BODIES.

§ 257. The Shearing Force Parallel to the Neutral

Axis.—In a body, which is subjected only to a tensile or com-

pressive force, the bases A B and C D of an element A B C D of

Fig. 422.

Eftfifffl

mm
^mmm

the body, Fig. 422, are only acted upon by the two opposite forces

P and — P, which balance each other, while the sides A B and

Fm 423
D remain free from the ac-

tion of extraneous forces ; for

the neighboring elements of

the body are subjected to the

same axial strain as the sup-

posed element A B CD itself.

But the case is different when

the body is bent ; for on one

side A B of the element

A B C D a strain is pro-

duced which is opposite in di-

rection to that upon the other

side G D of the element, and

in consequence of the cohesion
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in A B and CD, the element A B C D is subjected to the action

of a couple. This couple is a maximum for an element which lies

in the neutral axis ; for the element is here subjected on the side

A B to an extension, and on the side C D to a compression.

If S is the strain upon a fibre at the distance e from the neu-

tral axis, when the cross-section = 1, the strains upon the portions

Flf F», Fz . . . of the entire cross-section, which are situated at the

distances ziy z2> zs . . . from the neutral axis, are

*±* 8, *1*S,^ S, etc.,
e e e

and the total strain in the cross-section F
x + F.2 + F2 ...is

Q = -f (F, zx + F> * -f ...) = - 2 (Fz).

Now if F
x -f F2 + . . . is the part of the cross-section on one

side of the neutral axis, Q is the total strain on that side of the

neutral axis. The strain on the other side is, according to the

theory of the centre of gravity (compare § 215), equal in intensity

to it, but opposite in direction.

P xe 8 P x
Besides we have, according to § 235, S — —^-, or — = —^,

P x
whence also Q = -

llF (Fx zx + F^z* -J-. . . .).W
Tn a cross-section, which is at a distance A B — x

x
from the first

one, the strain is

ft =
P

(^ Xl)
&i *i + *i ** + • )i

and therefore the total force with which the piece ABE tends to

slide upon A B is

q - a = -^ w ft + n*i + •
.

•)•

Now if b is the width of the cross-section at the neutral axis,

the shearing force along the unit of surface in this axis is

If, therefore, the girder is not to be ruptured by a sliding along

the neutral axis, we must put X = the modulus of ultimate

strength, and in order that it shall be as secure against rupture

by shearing as against breaking across, it is necessary that X shall

be at most equal to the modulus of proof strength T, i.e. that
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*=SjM*$ or P = %™ and

2 (P 2!) is also = P, a, = F2 s2, when i^ and F« denote the

areas of the portions of the entire cross-section F — F
x + F.2, lying

on the opposite sides of the neutral axis, and s x
and s2 the distances

of the centres of gravity of the two portions from that axis.

For a rectangular girder, whose cross-section F — b 7i, we have

„ /ET x n b 7i 7i b 7i
2

rjr b 7? , , y ,

1 (i^) .— F
x s x

= — . ^ = —, IF = ——, and 5 = b, whence

P = ! & A Tand fc = j = J
—-.

For a cylindrical girders whose cross-section is P— -j-, we

2
have, since the centre of gravity is situated at a distance =— d from

the centre,

n d2
2 d*

2 (Fz) = i77
! «, = -—

.
-— d = -x, and, according to § 232,

IF = ~^-r-, and b = d, whence
64

d = 4 S^^T = 1,303 /J,
3 X

In like manner for an elliptical girder, since IF — ^—r—

,

Ft Si = -^r— . - . | a = -3 'a" b and b ~2f), we have P = J tt« b T,

Finally, for a tubular parallelopipedical girder, whose cross-

section is F = b 7i — b x
7i x

(Fig. 354, § 228), we have

Fi s _ = 5£-W} ^ = **-*£ and h = h _ ^

hence P = ,
9^Mv-\i&r

b 7v — b x
li{

Tlie shearing force X diminishes as the distance of the surface,

in which it exists, from the neutral axis increases, and becomes

finally null at the surface of the body, where the distance from the

neutral axis is a maximum. The intensity of the shearing force



§ 258.] ACTION OF THE SHEARING ELASTICITY, ETC. 513

X at a given distance B = h x from the neutral axis of the body

M N, Fig. 424, is also given by the formula X — —C ;,. - found

Fig. 424.

K w
above, if instead of 1 (F z)

we substitute the sums of the

products F
x z1} F2 z.2 . . . on

one side of A B C D, and in-

stead of b
Q
the width b x of the

surface at the given distance

hi. The sums of the products

Fn zn , Fn + iZn _ui for the other

side is, however, equal to the

sum of the products Fx z lf

Ft z.2 . . . since the products

of the elements, situated on

the opposite sides of the neutral axis within, the distance =fc hy

balance each other.

e.g. if the cross-section of a girder is rectangular, we have for

the poittt situated midway between the neutral axis and the limit-

ing surfaces, i.e., at the distance - from the neutral axis

MFz) = Fl sl = h4-\§h = £g bh\

and, therefore, the shearing force is

bji
3

12"

9 l_
8

I ti

while at the neutral axis its value is X = | yr.

§ 258. The Shearing Force in the Plane of the Cross

section.—As the tensile and compressive forces of the ends of ai

element A B C D, Fig. 424, are in equilibrium, so also the shearing;

forces in this element, which form two couples, balance each other.

Xow if £ is the length A B and £ the height B of the element,

we have the shearing forces along A B and CD, % Xand — % X,.

and the moment of the couple, formed by them, £ X . £ = £ £ X,
and the shearing forces along B C and D A are <T Z and — % Z,

;

and the moment of the couple formed by the latter is = £ Z . % =
£ C Z; now if equilibrium exists, we must have £ £ X = £ £ Z, i.e.,.

that X = Z.

33
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P s (Fz)
The formula X — —>~W is> therefore, also applicable to the

determination of the shearing force Z along the entire cross-section.

It is, e.g., in a girder with a rectangular cross-section, for an ele-

p
ment in the neutral axis = f -v-p and for one at a distance ± \ h

P
from the neutral axis = § j-r, etc.

The sum of the shearing forces along the entire cross-section,

must of course be equal to the force P, or, if several forces act at

right angles to the axis of the beam, equal to the sum 2 (P) of

these forces. This can be proved as follows: if we divide the

maximum distance e of the elements of the surface from the neutral

axis into n equal parts, we can imagine the cross-section upon the

corresponding side of the neutral axis to be composed of the strips

#i -» h -j hi -> etc., whose moments in reference to the neutral
n n n

axis are

h \» « , th \
2

and the sum of the latter is

nv
n

ter is

(1£, +2£2 + 3&3 + 4£4 + ...).-

In reference to the axis, which is at a distance - from the neu-
n

tral axis, the sum of these moments is

=
(

h

n J(2h
+ db, + 4 £4

+..*.),

in reference to the axis at the distance 2 -, it is
n

(l)\zh + ih + ...),

and therefore the sum of all these sums to the distance e is

(l)\h + (3 + 2)£2 + (3 + 3 + 3)&3 + ...]

(n)
(12 -^ + 2'

• ^ + 3 3

. 53 + .. . + n'K).

It follows that the sum of all the shearing forces along cross-

section on one side of the neutral axis is
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Pli
times the sum last foundWn

But the measure of the moment of flexure for this half of the

cross-section is

= i^j (l
2

. h + 2
2

. 1, + 3
2

. h + • • • + rc
9

• &j?

whence it follows, that the required shearing force along this sur-

face is
ifc =

In like manner we find for the half of the cross-section, situated

P W
on the other side of the neutral axis, the shearing force i?2 = — ™r>

and finally it follows that the shearing strain for the entire cross-

p (m +
section is R —

W
—- == P, since the measure W of the mo-

Fig. 425.

ment of flexure of the entire cross-section is equal to the sum
Wt + W2 of measures of the moments of flexure of the two por-

tions of it.

§ 259. Maximum and Minimum Strain.—If the strains

in any section are known, the strain in any given cross-section

can be found by employing the ordinary methods for the com-

position and decomposition of forces. In order to find the

strains in an element A G, Fig. 425, of

the surface, whose plane forms the varia-

ble angle B A C — \j> with the longitu-

dinal axis of the body, we decompose the

tensions in the projections A B and B G
of this element of the surface into two

components, one of which acts in the

plane ofA G and the other at right-angles

to it, and we then combine the compo-

nents in A G, so as to form a single

shearing force, and the components, acting

in a direction at right-angles to A G, so as to form a single tensile

or compressive force. If the width of the elements A B, B G and

A G of the surfaces is unity, we can put the shearing force along
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A B, = A B . Xand decompose it into its components A B . X
cos. ip and A B . X sin. ip, and in like manner we can put the

shearing force along B C, = B . Z — B C . X and decompose

it into its components

B G . Xsin. ip and B G . X cos. r/>.

Sz
, The components of the tensile force B G . Q — B G . —, whose

c

direction is perpendicular toB G, on the contrary, are B G . Q cos. ip

and B G . Q sin. ip, and it follows that the entire shearing strain

along A G referred to the unit of surface is

U = CAB . Xcos. ip - iTtf . Xsin. $ + B~G. Q cos. xl>) : A C,

and that the tensile strain at right-angles to A C is for the unit

of surface

V = (ATB. Xsin. o/> + WC . Xcos. ip + B~G . Q cos. ip):AG.

' But -r-fj- = cos. ip and -r-^ = sin. \p, whence it follows also that

U — X (cos. ipy — X (sin. ipy + Q sin. ip cos. ip and
. :.- JJ = 2 X sin. ip cos. ip + Q (sin. ipy, or, since

{cos. ipy — (sin. ipy == cos. 2 i/> and 2 sw. t/> cos. i/> = sin. 2 i/>,

U = X cos. 2 ip + i Q sin. 2 ip = X cos. 2 ip -f ^— sm. 2 i/> and

F = Jsk 2 ^ + Q (sin. ip)> = Xsin. 2 ^ + ^ (1 - cos.2 V>).

The strains in the surfaces .4 Z) and G D, which together with

the. surfaces A B and D fully limit the element A B G D, giye,

of course, equal and opposite shearing and tensile forces. On the

contrary, for a similar element of the body upon the compressed

side Q is negative, and therefore

SzU =± X cos. 2 ip — \ Q sin. 2 ip = X cos. 2 ip — ^— sin. 2 ip and

F :

==JTsm 2 ip - JC (1 - cos. 2 V) -Xsin. 2ip — ~^(l- cos. 2 ip).

In order now to find the values of the angle of inclination ip,.

for which the shearing force U and the normal one V assume their

maximum or minimum values, we substitute for ip, 2 ip + /*, \i de-

noting a very small increment, and require that by it the corres-

ponding values of U and V shall not be changed. For U =
X cos. 2-ip .+ & Q sin. 2 ip, we obtain thus a second value

U
x
= Xcos. (2 ip 4- v) +£ Q sin. (2 ip + \i)

^ X (cos. 2 ip cos. ii — sin. 2 ip sin. fi) + ± Q (sin. 2 ip cos. \i

; -f cos. 2 ip sin. p), or, since we can put cos. \jl ~ 1,
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Ux
= X cos. 2 i/> + -h Q sin. 2 i/> — {X sin. 2 i/> — I Q cos. 2 i/>) sin. jx.

Now if we put Ux
— U, we must haveX sin. 2 ij> — ^- Q cos. 2 ip ==

and therefore .
ft , § rt ,

to* » *.=tx =O?
From this it follows also that

• «, #*
szra. 2 ip = —-=— = — __ ana

i^-f 4X3
i
/
(/S'^)

2 + (2 2rcy
j

2Jg 2Je
cos.2y = v^T43? =

*/(£*)« + (2X<
and that, finally, the required maximum value of the shearing force

Z7is

In the neutral axis Q is = 0, and therefore Um = X and tang.

2 V = 0, i.e. 2 -0 = and 180°, or i/> = and 90°. For the most

remote fibres, on the contrary, X is = and z = e; therefore

Um = ^- = -f-
and to#. 2 V = oo, or 2 <«/> = 90° and V> = 45.

z z

In passing from the neutral axis to the outmost fibre, the

angles of inclination for the maximum strain change gradually

from and 90 degrees to 45 degrees, and the maximum strain
a

varies from X to —

.

Z

In order to be certain that this strain shall not become greater

than the axial strain S, which is calculated by the aid of the for-.

p xe
mula S = -=- and is equal to the modulus of proof strength T,

we must makeX
Q
at most = S, or rather

PZ(Fz) ^Pxc Z(Fz) ^

ifri< Tr ll-TJ

;

<"
If, then, in the formula V = X sin. 2 ip + ~ (1 — cos. 2 V)

:

Z
we put ip + \t instead of i/> and again make cos. \i

.
= 1, we obtain

Vx
= X (sin. 2 1/> cos. \i + cos. 2 ip sin. jtx) -f -- (1 — cos. 2 ip cos. p .

z

4- sin. 2 ip sin. p) = X sin. 2 ip + ^- (1 — cos. 2 ^)

+ (X cos. 2i\> + ~ sin- % V>) sin. /*,
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and in order that ip shall cause V to become a maximum or a min-

imum, Vi must be = For J cos. 2 V + ir sin. 2^—0, i.e.

tang. 2 \j)
= ^y- = ~—, as well as

The corresponding minimum of F is

and, on the contrary, its maximum is

j/e
2+^^ 3 \ Vg2+4X

2e* r
\% e)

+ X\

We must require the maximum FOT to be at most equal to the

modulus of proof strength T or

In the neutral axis Q is = 0, and therefore tang. 2 \p = — oo

or 2 V>
= 270° and i/> = 135 or 45 degrees, and Vn = — JT , on

the contrary, FOT = + XQ
. In the most distant fibre, on the con-

trary, X is = and Q = S, and therefore tang. 2 tp = or 2 V
= or 180° and i/> = or 90°, and Vn — 0, on the contrary,

Fro
== S. In ordinary girders the maximum strain Vm increases

, „ , ^ PZ(Fz)^ a Pxe
gradually from X = — to # = —^- as we pass from the

neutral axis to the outmost fibre.

For a parallelopipedical girder we have S (P 2) = —-, JF =

__^ , bo
= I and e — -x, and therefore the limit values are X t= §

.

12 /&

'(t-«XHP 6?a;
t-v and # = , /a ; but in general we haveX =

== v-,-, lis) — s
3 and — = —7-7-3

—

r
, and therefore

I h 3
L\2/ J e oh3
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6Pxz
~~bJT + /r»^T + OT(iy--']
GPr
1) h L V(^^)

2

+
( 9/

~"^
/ MorexamPH for z-=lh

3P
4- ^ aa + (|)

a
Jr], and for a; = 0,

9P

If such, a girder A By
Fig. 426, is fixed at one end i?, the di-

rections of the maximum and minimum normal forces Vm and V
n

can be represented by two systems

.-^ of lines, which cut the neutral axis

i J
at an angle of 45°, and the outer

V- ——
,

,

,Q
J

fibre and each other at an angle of

90°. The curves, which are concave

downwards, correspond to the tensile

nfe— — •
'

'

' ,_; forces, and those which are concave
"

J

|

1 upwards to the compressive forces.

p The steeper end of any curve cor-

responds to the minimum and the flatter end, on the contrary, to

the maximum forces. At the ends D and Z), both these strains

become equal to zero, while for the ends C and C
x
their values are

the greatest.
•

§ 260. Influence cf the Strength of Shearing upon the

Proof Load of a GKrder.—The capability of a girder to support

P x c
a certain load requires not only that the strain S = —==- in the

P 2 (Fz)
outermost fibre, but also that the shearing force J£, — —r—---— m°

b„ IV

the neutral axis shall not exceed the modulus of proof strength T.

In the last chapter Ave have repeatedly given the moments which,

in ordinary cases, wT
e must substitute for P x in the expression for

,S
Y

; we have, therefore, only to give the values, which we must sub-

stitute for the force P in the expression for Jf .

If the girder is fixed at one end and acted on by a force P
at the other end, P can be directly employed in the formula

P 2 (Fz)X = —
7 w . If the beam supports, in addition, a uniformly

distributed load, whose intensity upon the unit of length is q, we

must substitute for P in this expression P + q x and P + q I,
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isP

when we wish to determine the maximum value ofX .
'

If, on the

contrary, the girder is supported at both ends and sustains at the

distances U and l2 = I — l
x from the points of support a load P,

we must substitute for one portion of the beam j P, and for the

other j P instead of P in the formula for JF , in order to find the

shearing force in the neutral axis. If, on the contrary, this girder

sustains an equally distributed load q I, each of the points of sup-

port bears -—, and the shearing force of the whole cross-section at

any point at the distance x from the points of support is P = q

I- — x\. The latter is = in the middle, where x = -, becomes

greater and greater towards the end, and at the point of support

ql
2'

If a girder, supported at both ends, sustains a load, which is

equally distributed over a part c of its total length, while the other

portion I — c is not loaded, the point of support of the first por-

tion bears a part q c (l — ^-) of the total load q c and that of the

second portion a load --y, and the vertical shearing force at the
Z I

distance x from the first point of support is

(I c
The value of the latter becomes for x = c, — 4r7? an(i this value

remains the same for any distances x > c. If the load covers

exactly one-half of the girder, i.e. if c = ~, we have

p = Q (-g- - x
)
or for a; = -, P = - ^-.

If, finally, the girder A B,

Fig. 427, bears a load p I equal-

ly distributed over its entire

length I and a load q c equally

distributed over the length A C
= c, the reactions of the points

of support are

Fig. 427.

« =£ + ,(.-£)&*« ^V*'
2 %v
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whence it follows, that the vertical shearing force at the distance

A — x from the point of support A is

P .= P± +q (a^£.y (p + g)X)

for x — c the latter expression becomesp I- — c ) — ^rj, and for

any distances x > c it is

%
+

%l PV *)- 2 + 21 ^ pX'

The vertical shearing force P — p (^
— c) — 4-y i*1 6' is —

for c* +— lc = --l\ I.E., for
<1

c

=(-f-^(f)'*f):'
If, in general, at a point of the girder the shearing force is

P = i£ — q x, we have for the moment of flexure
„a

q x\ q x /2 R \M= Ex — ^-z- = -^--i x).
2 2 \ q I

This, however, for x = x, I.E., for x = —, is a maxi-

mum, in which case P becomes == ; the moment of flexure of a

girder becomes a maximum for the same point at which the verti-

cal shearing force is = 0, and in the foregoing case c gives that

length of the load q c, for which the moment

becomes a maximum, and it is then = —————

.

These formulas are applicable to girders for bridges, where q c

denotes the intensity of the moving load.

The shearing force X = —, r - must be specially consid-

ered in the case of bodies of uniform strength, the cross-section of

which, according to what we have seen above (§ 253), might in

some parts be infinitely small. For example, for the parabolic

i p
girder in Fig. 406, we have X = T = | . r-ir, and therefore, the

p
necessary cross-section at each end is FQ

= b h =
-f

„-, in which

T
7

denotes the modulus of proof strength for shearing.
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§ 261. Influence of the Elasticity of Shearing upon the

Form of the Elastic Curve.—We have yet to determine what

influence the elasticity of shearing has upon the form of the elastic

curve or upon the form of the neutral axis of a loaded girder A B,

Fig. 428. According to the formula P — i F 6r

, in which G de-

notes the modulus of the elasticity of
Fig. 428. shearing and F the cross-section of the

beam, the inclination the beam A
x
B pro-

duced by the shearing force is i — ~°,

and, therefore, the corresponding deflec-

v tion of the end A x
of the girder, whose

length A Q B = I, is

A A - a _ Ll
_XJ_ Pl*{F z)

A A x -ax
-ii-

c
- hW c

.

To this must be added the deflection A x A —a,, produced by

the flexure of the beam, and which, according to § 217, is a2 =
P V

-—-—,: the total deflection of the girder is therefore
o W E' to

P I i 2 (Fz) r \B C = A A = a = a x + a* = -^ y -j-q~ + O7 /'

blf
For a parallelopipedical girder b = b, 2 (F z) = -»- and W=

~jc, consequently

a =
bli

6 Eb^mn
E

or, assuming -~ = 3,

-{&i>* »(?n
4 p r

E.G., for I - 10 li, we have a = 1,01125 . g^rjj, if then the

girder is ten times as long as thick, the deflection at the loaded

end, due to the shearing force, is so small compared with that due

to the flexure of the girder, that in most cases we can neglect it.

In order to determine the modulus of elasticity of a girder A B,

we load it first with a small weight P at the greatest distance I, and

afterwards with a large weight Px at a smaller distance lx
from the

point of support B, and we observe the corresponding deflections

a and «, of the length I of the girder. Now we have
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Pis(Fz) rr
, „., „— + n „ r ^ and
ba W C 3 WE

__ P,lX(F z) P x l* pjni- ii)
1

I, WO "VS lf-#
+

2 W'^ '

In order to eliminate C, divide the first equation by P and the

second by P
x
and subtract the equations obtained from one

another. Thus we obtain

a* - v tf(i-li)\ i /i
3 us . isa a, 1 II

P ~~% ~WE\
i {I ~ <i)\ _ _J_ (I

3

3 2 J ~ W E\S
7 7

2— + )
and therefore the modulus of elasticity for tensile and compressive

forces is i? = -—rr '

, Tr j- L 4. JL\
(aP1 -a 1

P) IV \3 2 6/
With the aid of this expression and the formula for a, we

determine the modulus of elasticity for shearing by the formula

C=— 3 2 (Fz)E
b ' 3 W E a - PF

§ 262. Elasticity of Torsion.—In order to investigate the

theory of the hoisting or torsion of a body (see § 202), we can again

begin with the case of a body H C I) L, Fig. 429, fixed at one end,

but, in order to avoid any

complex change of form, we
must assume that the free

end is acted upon bya couple
{P-P) whose plane AHB
coincides with the plane of

rotation of the axis G D.

Let us imagine the body to

be composed of long fibres,

such as H K, which, in

consequence of the torsion,

assume the form of a helix,

by which H K comes into

the position L K and the

w*hole base is turned through an angleHCL — a. If the portions

Hx Ki, II2 K^ etc., of the fibres, whose lengths are unity and whose
cross-sections are Fl} F^ etc., undergo a lateral displacement through

the distanceH
x
L

x
— o

x , ff2 Z2
= cr

2 etc., we can put, when the modu-
lus of elasticity for shearing is C, the corresponding shearing forces

S
x
— c

x
Fx } Si — o2 F2 (7, etc. Now if the corresponding angle
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of torsion is Hx
L x — II

X L2
—

<f>
and if the distances of these

fibres from the axis CD of the body are H
x
— z1} H2

— zif we
have o

x = fp z
x , a2 = <J> z2 .

, . .; hence the strains, are $ = <p CF
x z

x ,

S2 = <j> C F2 z-2 . . ., and their moments are

S\ z x
= <t>CFx zx\ & * =.0 OF, z{ . .

.

All the forces S
x , S2 ... of a cross-section JET, Z2 must in any

case balance the couple (P, — P) ; if then & is the lever arm A B
of this couple or P a its moment, we can put

Pa = Sl z1 + S2 z2 + ... = <!> CF1 zx

i + 4> OF2 z.2
2 + . .

.

=K(W + P2 z2

2 + ...)-

Kow if we designate the geometrical measure i^ 2,
2 + P2 z2

* -f . . .

.

of the moment of torsion by W, we have P a — $ W,

But the angle of torsion for the entire length Q D = I of the

body is a = cp I, therefore we can put

1) P a = °L^-K
y
orPal=aCW,

6

and the angle of torsion

P a I

2) o =
(7 IT

As we have done previously (§ 215), we can call W C the

moment of torsion, and consequently IF the measure of the moment

of torsion, and we can then assert, that the moment of theforce P a

increases directly as the angle of torsion and inversely as the length

of the body.

The work done in producing a torsion equal to the angle a is

P a2 WC P% a-l
. a a

2 21 ~ 2 WC
for the space described by the force P, which causes it, is a a.

These formulas hold good for prismatical bodies alone, for bodies

with other forms we must substitute in them instead of the ratio

-=-, a mean value of it.

W

§ 263. Moment of Torsion or Twisting Moment.—The
measure W = F

x
z{ + P2 z2 + . . . of the moment of torsion can

easily be calculated, according to the rule explained in § 2#5, from
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Fig. 430.

the measure of the moment of flexure for the same cross-section.

If, for example, Wx is the measure of the moment of flexure of a

surface A B D, Fig. 430, re-

ferred to an axis XX and W2

the same in reference to an axis

Y Y at right angles to the first,

we have for the measure of the

moment of torsion in reference

to the intersection of the two axes

W = Wx + W2.
.

For a shaft with a square cross-

section A B D E, Fig. 431, we
have, when b denotes the length

of the side A B=D E, according

to § 226, the measure of the mo-

ment of flexure in reference to each axis XX and Y Y
Wl W

*.
~ 12 " 12'

and consequently the measure of the moment of torsion is

12 o

and the moment of the force

Pa= C
-
WO aV

°=o,imi
aOV

I 6 1
-'---•

I

For a shaft with a rectangular cross-section (b h) we would

have, on the contrary,

P a = lim+D c = 0,0833 ^Ai^tHl.
Fig. 431. Fig. 432. _»q

For a cylindrical shaft with circular cross-section A B, Fig.

432, whose radius is O.A == r, the measure of the moment of

flexure in reference to an axis ZJor Y Fis (according to § 231)
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IT T*Wt = W* = -i-,4

and therefore the measure of the moment of torsion in reference to

the point G in that axis is

Now if the twisting couple (P, — P) acts with an arm H E
= #, or each of its components with an arm G H = GX — ^,

we have

P^-y- = -^y- = 1,5708-^
If the shaft is holloio and its radii are rt and i%, we have the fol-

lowing formula

:

Pa = "W^')g = lj5708 ak^U?
The torsion of a shaft A B M, Fig. 432, is generally produced

by two couples (P, — P), (ft — Q), which balance each other,

and therefore, instead of ?, we must substitute not the entire length

of the shaft, but the distance between the planes in which the two

couples act; it makes no difference, however, whether we make the

moment of torsion equal to the moment of the couple (P, — P) or

to that of the couple (Q, — Q). If we denote the arm HK of the

couple (P, — P) by a, and the arm N of the other couple

( Q> — Q) by h we nave

t> ni aWCP a = Qh aa —-—

.

The foregoing theory gives us for bodies limited by plane sur-

face moments of torsion, which vary somewhat from the exact

truth ; for we suppose, in calculating them, that the bases of the

prism subjected to the torsion remain plane surfaces, while, in re-

ality, they become warped. According to the researches of Saint

Venant, Werthheim, etc. (see the " Comptes rendus cles seances de

l'academie des sciences a Paris," T. 24 and T. 27, as well as " l'ln-

genieur," Nos. 1 and 2, 1858; in German in the " Civilingenieur,"

4 Vol., 1858), we have for a square shaft

Pa = o,841 ?-*!£ = 0,1403^,

in which b denotes the length of the side of the square cross-section.

For bodies, the dimensions of whose cross-sections differ very
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much from each other, these variations are greater ; e.g., for a pris-

matical body with a rectangular cross-section, whose width is b and

whose height is h, we have

_ _ , _ bit
,

liV bh(b* + W) *., ,W = W
, + W2 = -j + To" ~ '

12
> ancl tnere±ore

a WO a Hi (V + li-)Fa = —J- =
121

Now if this formula requires a correction, when h = b, in which

case Pa —
y

, it is natural to expect that when b differs ma-

terially from 7i, in which case the surface of the sides will become

more warped, it will no longer be sufficiently accurate. In fact,

taking into consideration the warping of the surfaces, we find by

means of the calculus

a 7i
2
b

3 C

and according to the later experiments of Werthheim, the mean
value of the required coefficient of correction is — 0,903 ; conse-

quently we must put

Pa - 0903
all%¥ ° -0301 ^^

If b is very small compared to h, we have

Pa— 0,301 .

a9
it

If the angle of torsion is given in degrees, putting a — -•—

-

= 0,017453 a , we obtain

1) for prismatic girders or shafts with a circular cross-section,

the diameter of which \$ d — 2 r

rat- —
-
O - -— G - igov^ ° " I805 32°

= 1,571 a r
4

(7 = 0,0982 a cT C = 0,02742 a r
4

(7

= 0,001714 a tf
1

6';

2) for prismatic girders, axles or shafts with a square cross-section,

the length of whose side is b, when we neglect the coefficient of

correction,

Pal= ^-- = 0,1667 a V C= ^fj7 = 0,00201 a V C.
lOoU
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Inversely we have

Pal Pal n Pala = 0,637^ = 10,13-^ = G^ and

on .Pal Pal ...Pal

The values for C must be taken from Table III. in § 213.

Hence we have, e.g.,

1) For cast iron, C = 2840000, whence

Pal = 77900 a r* = 4867 a d* = 8264 a V and *
.

a = 0,00001281° —,- = 0,0002053°
I

:= 0,0001211

r"
'

cV

Pal

2) For wrought iron, C — 9000000, whence

Pal = 246780 a° r" = 15426 a° # = 26190 a° 5* and

V = 0,00000404° ^^=0,0000648° —
7
?-= 0,0000382° 4r^«

3) For wood, C = 590000,

P a I = 161800 a° r
4 = 1011 a° cZ

4 = 1712 a° tf and

a° = 0,0000617°^^ = 0,000988°-~ = 0,000583°?^.
i a o

Example—1) What moment of torsion can a square wrougkt-iron shaft

10 feet long and 5 inches thick withstand, without suffering the angle of

torsion to become more than a of a degree ? Here, according to this table,

we have
625Pa = 26190 .

-I
. rrr—— = 84102 inch-pounds = 2342 foot-pounds.

3) What is the amount of torsion sustained by a hollow cast-iron shaft,

whose length is I = 100 inches and whose radh are rt
= 6 inches and

r
9
= 4 inches, when the moment of the force is P a = 10000 foot-pounds ?

Here ^ ~~™ o° (r/ — rJ)
Pa — 77900 —

-

^ 3
,

consequently

P«Z 10000.12.100

7900 {r
t
4 — rs

4
)
~~

77900 {Q 2 + 4 s
) (6

3 - 4»)

120000

779 . 52 . 20

1500
degrees = 8,887 minutes = 8 minutes 53 seconds.

101 /o7

§ 264. Resistance to Rupture by Torsion.—If in a prism

O If L, Fig. 433, twisted by a couple {P, — P) the shearing force

per unit of surface at a certain distance c from the axis CD is = 6\
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the shearing force at any other distance zx is = -1

S, and its mo.

Fig. 433.

e

S

'-i

ment is = — & and for a
o

cross-section Fx
it is

in like manner the moments
of the shearing forces of other

cross-sections F«, Fz . . .,

which are at the distances

Zi, Zo . . . from the axis C D>

are— F2 z"\ — Fz, zj
2

, etc.;
e ' e

hence the total moment of tor-

sion of the body is

F z* +—F3 z3
* + ...

= — (F z? + F2 z2

2 +
6

}, I.E.

1) P a = , or P ae = S h, and — = -=-.

Substituting for # the modulus ofproof strength T for shearing,

and for e the greatest distance of the elements of the cross-section

from the neutral axis, we obtain in the formula

2) P ae — T Wan equation for determining the dimensions

of the cross-section, which the body must have if it is not to be

strained at any point beyond the limit of elasticity. If, instead of

the modulus of proof strength T, we substitute the modulus of

rupture K for shearing, we obtain the moment Px a, which will

break the body by wrenching ; it is

3) Px a ——

-

For a massive cylindrical shaft, whose diameter d — % r, we
have

W = rr r
4

e ~ 2 r

Tir*T ncF T

77 f°
-=-, and therefore

Pa =

Pt a =
34

2

rrr5 K
16

7T d* K
16-

0,1963 d2
T, and also

= 0,1963 d2 X,
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If the shaft is hollow and the diameters are dx
— 2 r, and d2 =

2 r2, in which case

;

— = x -, we have, on the contrary,

7,
(ri

* _ ^) _ n (d * _ ^) ^ __ F^ + ^)^
" ~ * 2~>,

2 ~ 16 d, " ~ ^4* ^

in which F = —^-~- — denotes the cross-section of the body.

For a prismatical body with a square cross-section, the length

of whose side is b, we have

W = tt and = -i 5 */ 2 = Z> t
7
£, whence

b

IF 7>
3

Z>
3

7;
3 T- -^ - ^~ and P a = f-4= = 0,2357 5

9
7!

If in the fundamental formula P a = <j> C W of § 2G2 we substi-

tute
<f>
= - = ———, in which e denotes the distance of the most

remote fibre from the axis of rotation CD and 6 the angleHK L,

which this fibre has been turned from its original position by the

torsion, we obtain

P a e = W tang. 6 ; but we have also

P a e — S W, hence

S = C tang, d, and therefore

TT = C tang. <5, or tang. 6 = —-,

in which S denotes the angle of displacement, when the strain

has reached the limit of elasticity.

The mechanical effect, which is required to twist the shaft

P2 «2
I

through an angle a, is, according to §*262, L =
9 w p , and there-

fore if we substitute P a = , we can put L — -~ n « , m
e O 2 e

which S denotes the maximum strain.

At the limit of elasticity S — T; hence it follows that the me-

chanical effect necessary to twist the body to the limit of its elas-

ticity is

G '2/



§284.] ACTION OF THE SHEARING ELASTICITY, ETC. 531

For a prismatic body with a circular cross-section W = -=p-

and e — r, whence

20 ' 2 4,0 '

and, on the contrary, when the cross-section is a square

b* ¥W = -=- and e" = —, and therefore
o /&

T _ t* v±_ r- ,,

,

"
_a™ v

20 ' 3b' 6 6

Now —-= = -ir-7=- = s- is the modulus of resilience for the
2(7 2 2 J

limit of elasticity ; hence we have for the cylinder L — ^ A V, and

for the parallelopipedon L = } A V.

The toork done in both cases is proportional to the volume of

the body alone (compare § 206 and § 235).

We can also put for the mechanical effect necessary to rupture

of the body by wrenching L = A B V and \ B V, in which B
denotes the modulus of fragility for wrenching.

If we assume with General Morin for all substances

jj- = tang. 6 = 0,000067

or the angle of displacement 6 = 2 min. 18 sec, we obtain for

cast iron

T = 200000 . 0,000667 = 134 kilo. = 1906 lbs.,

therefore, when we employ the French measures

P a = 26,3 d 3 = 31,6 b
3
kilogr. centimeters,

and, on the contrary, when we employ the English measures

P a = 374 d 3 = 449 b
3
inch-pounds.

Under the same conditions we have for wrought iron

T = 6300.00 . 0,000667 = 420 kilo. = 5974 lbs.,

and therefore

Pa — 82,4 d3 = 99,2 b
3 kilogram centimeters,

or

P a - 1173 d1 - 1408 ¥ inch-pounds.

Likewise under the same conditions we have as a mean for

wood
F = 41650 . 0,000667 = 27,8 kilogr. == 395 lbs.,

whence
P a = 5,46 d 3 = 6,55 b

3
kilogr. centimeters,

or

Pa = 77,5 d3 = 93,1 b> inch-pounds.
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The coefficients of these formulas are correct only for bodies

at rest or for shafts, which turn slowly and smoothly ; for common
ghafts we give double security, i.e., we make the coefficients but

half as great. When their motion is very quick and accompanied

by concussions, we are obliged to make the coefficient but one-

eighth of those given above.

Example— 1) The cast iron shaft of a turbine wheel exerts at the cir-

cumference of the cog-wheel upon it, which is 6 inches in diameter, a

pressure of 4000 pounds. Required the thickness of the shaft. Here the

moment of the force is P a — 4000 . 6 = 24000 inch-pounds, and conse-

374
quently the diameter of the wheel, when we put Pa — -— d\ is

d — y -j£~ — 5,04 inches.
24000
187"

If the distance from the cog-wheel to the water-wheel is I = 48 inches,

we have, according to the foregoing paragraph, the angle of torsion

24000 48= 0,0002053°
"' = °$Qr = 2*'-

'

5,04
4 '

3) A force P — 600 lbs. acts with a lever arm a = 15 feet = 180 inches

upon a square fir shaft, while the load Q acts with an arm of 2 feet at a

distance I = 6 feet = 72 inches in the direction of the axis ; how thick

should the shaft be made and what is the angle of torsion ?

In order to have quadruple safety, we must put

Pa = 600 . 180 = 108000 = ^L-,

hence the width of the side is

;/4. 108000 ,_. ,= Y —031 = 16,68 inches,

and the anale of torsion is

108000 72
c° = 0,000583 -TYgg^Ti— = 0,0586 degrees = 3| minutes.

CHAPTER IV.

OF THE PROOF STRENGTH OP LONG COLUMNS OR THE RESIST-

ANCE TO CRUSHING BY BENDING OR BREAKING ACROSS.

§ 2S5. Proof Strength of a Long Pillar Fixed at One
End.—If a prismatic body A B (I), Fig. 434, is fastened at one end
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B and acted upon at the other by a force P, whose direction is that

of the longitudinal axis of the pillar, the relations of the flexure,

Fig. 434.

under these circumstances, are very different from what they are

where the force acts, as we have seen in § 214, etc., at right angles

to this axis. The neutral axis A B (II) assumes in this case

another form ; for the lever arm of the force P is represented by

the ordinate M = y and not by the abscissa A M = x, and its

moment is not P x, but P y ; consequently the radius of curva-

ture K = r is determined by the expression

WE
r =

Py'
while, according to § 215, for a bending force acting at right

angles to the axis we must put

_ WE
r ~ P x

At the point B, where the pillar is fastened, y becomes the de-

W E
flection B C' = a, the radius of curvature r Pa is a minimum

and the curvature itself a maximum. On the contrary, at the point

of application A, where y — 0, the radius of curvature is infinite

and the curvature itself null.

If we denote by d the arc, which measures the angle K OjOf

curvature of the element Ox
= a of the curve, we have r = -*,

and therefore P y a = W E 6; and if j3° is the angle of inclina-

tion 0! N of the same to the axis A C, we can put the element

iV of the ordinate = v = a ft, and therefore

P y v z= WE (3 6, and in like manner
P2(yv) = WE* (]3<5).



534 GENERAL PRINCIPLES OF MECHANICS. [§265.

In order to find the sum 2 (y v) for the arc A 0, let us substi-

tute for y, v, 2 v, 3 v . . . n v in the above equation. Thus we
obtain 2 (y v) = v 2 (y) = v (v + 2 v + 3 v + . . . + n v) = v

tf v w* wa
. _, .-— = —— , or since nv — M — y,

S(yv)= |^ andPS(^i;) = |P^.

In like manner, to find 2 (j3 d), we substitute for j3 successively

j(3, j3 + d, j3 4- 2 (J ... /3 +»d, and complete the summation as

follows

:

2(0d) = <52(£) = c5(0 + + (S + + 2(S + ... + j3 +^
= d[?i(3 + (1 + 2 + 3 + ... + n)d]

If the angle of inclination at -4, = a, we can put |3 -f n 6 = a,

and therefore

S d) = (a - j3) (jB + ^?) = J (a - j3) (a + 0) = j (a' - 0«),

whence

IF ,0 2 (0 <J) = £ IF^ (a
2 - /F), and finally

P?/3 = WE(a%
-ff).

For the end B,y = a and /3 = 0, and therefore

P«2 = WE a- and

from this we obtain the tangential angle

From j3 and the element N ~v of the ordinate we obtain

the element of the abscissa

(3
Y P (a

2 — ?r) v a2 — y
T P

/ V

W E ~ Va? - f
If with the hypothenuse C B — a of the right-angled triangle

B O D, Fig. 435, whose altitude is B D = y

and whose base is C D — Va? — y\ we de-

scribe an arc A B, we have for the element

B — \p the proportion

B _ CB_ <0_ _
a

BN T~ CD' LE
* v ~~ Va2 - t/

2'

whence
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V
= *i

a
and

Vcr- y

V WE , as well as

i/
P

11 W E (*)
=

1

a
S («/>).

But 2 (£) is the sum of all the elements of the abscissa and is

== x, and 2 (ip) is the sum of all the elements of the arc A B and

is equal to the arc A B itself; therefore we have also

W^ = arc A B . . y
IK ^7 a «

The abscissa of the elastic curve A B, Fig. 434, II, is therefore

2) x — i/—=5— . sinr1
-,

r P a
and its ordinate is

3) y = a sin,
( 2 y jy^)-

If x = A B — A C — I, the length of the column, we have

e/ = the deflection B C =-- a; therefore

whence

a — a sin. (l \ jtt^)' le -> sin - y V |jr#) = *>

Z |/ - .-=, = -^-, from which we obtain the bending force

Since this formula does not contain the deflection a, we cart

assume that the force P, determined by it, is capable of holding the*

body in equilibrium, however much the body may be bent. This,

peculiar circumstance is owing to the fact that the increase of

the flexure is accompanied not only by an increase of resistance, but

also by an increase of the lever arm a, and consequently of the.

moment P a of the force.

The force necessary to rupture the pillar by breaking it across,

is therefore

WEWE= 2,4674a,) r

p=Remark.—If we substitute in the formula y = a sin. Ix y ™^)

\2~z)
^E->

we 0Dta
'

in the following equation of the elastic curve for this

case of the action of a force
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y = a sin.

to)

Substituting in this .x = '

I 21

— a

u ,1

a

G I, etc.,

we obtain y = a 0, etc.

If, then, a column, whose length is I, is increased any amount in length,

a force P= (—- \ WE will bend it in the shape of the serpentine line

A B A
l
B

1
A

s . . ., Fig. 438, which is composed of a number of similar arcs

A Band is cut by the axis A Xat the distancesAA
t , A A 3 ,

. . ., and at the distances A C, A C,, A C
2 , the curve is

at its maximum distances OB — a, G
t
B

t

from this same axis.

Fig. 438.

A — a, C Bz
— a

§ 266. Paraileiopip8&icr.l and Cylindrical

Columns.—For a parallelopipedical column, the

greater dimension of whose cross-section. is b and the

bh 5

smaller one is h, we have W— -^ (see § 226), and con-

sequently the force necessary to rupture the same

Bi by breaking it across is

The resistance of a parallelopipedon to breaking

across is directly proportional to the width b and to the

cube (ft*) of the thickness or smaller dimension h of its

cross-section and inversely proportional to the square

(r) of the length.

For a cylindrical pillar, whose radius is r or whose diameter is d.

*--f =
G4
_3

(see § 231), consequently we have

r" E 7T
3 dA E

256

r
4 E

1,9381 . -y-

= 0,1211
':
l E

Therefore the (reacting) strength of a cylindrical cGfamn, fa/

which it resists bending cr breaking across, is directly proportional

to the fourth poiver of Us diameter and inversely proportional to the

square of the length.

For a holloiv column, whose radii are r and ?\, and whose diam-

eters are d and dx
= p d, we have
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n * (r * _ r *) E _ t:
3

(a* - as) e

537

16 256 f

If the column ABA, Fig. 437, is not fixed at the lower end

A, but only stands upon it, it will bend in. a symmetrical curve,

each half B A and B A
x
having the form of the axis of a column

fixed at one end (Fig. 434). The above formula can be applied

directly to this case by substituting-instead of I ; I of course denotes

the total length of the pillar. The proof load is therefore four

times as great as in the first case, and it is

This case of flexure occurs when, as is represented in Fig. 437,

Fig. 437 Fig. 408.

I. and III., the ends of the pillar are rounded or when they arc

movable around bolts. An example of the latter case is the con-

nccting rod of a steam engine.

If a pillar is fixed at both ends, as is represented by B A B„
Fig. 438, I. and III., its axis will be bent in a curve B A C A, B„
Fig. 438, II., with two points of inflection A and A u and in which
the normal case of curvature is repeated four times, substituting,

therefore, in the formula for the normal case 7, instead of I, we ob-
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tain the proof load of such a pillar fixed at both ends

2 TT \»_ _ 7T b If _ •7T
3 d

("i"=?T'=S. JK

Fig. 433.

I

According to Hodghinsorts experiments, the proof load is only

twelve times as great as in the normal case, while according to the

above formula it would be sixteen times as great.

The principal example of this case of flexure is that of the

piston rod of steam engines, etc.

If, finally, a column A JB, Fig. 439, is fixed at one end B and
at the other prevented from sliding sideways,

the proof load P is eight times as great as in

the normal case, or

The force which is necessary to crush a

column, whose cross-section is F and whose

modulus of rupture is K> is given, according to

205, by the simple formula P — F K.

If we put this force equal to the force

p =(S we
necessary to produce rupture by breaking across

in the normal case, we obtain the equation

* F? /7T\
2 E _ J'F TT

4
/W

For a cylindrical pillar, whose thickness is d, in which case

F 16
-^ = -^j it follows thatW d

= 0,3927 \/^j.

For cast iron E = 17000000 and K = 104500, hence

5.i/~ = V 162,68 = 12,8 and \¥ K d

For wrought iron E = 28400000 and K — 31000, hence

^ = 4/"916 == 30,3 and
l
- - 12.

Finally for wood we have as a mean

E = 1664000 aud E = 6770, hence

*/
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V^= = V 246 = 15,7 and \ = 6.

if f?

If a column is free at both ends, the values of - are twice as

great as those found above.

When the ratio of the length to the thickness is that just given,

the resistance to breaking across is equal to that of crushing, and

it is only when the pillars are longer than this, that the resistance

to breaking across exceeds the resistance to crushing. In this case

the dimensions of the cross-section are to be calculated by the

above formula.

Example—1) The working load of a cylindrical pine column 12 feet

long and 1 1 inches thick, assuming 10 as a factor of safety, is

3

- ~ ~ = 0,48-15 (ilY
. 166400 = 80620 . 0,7061 = 56900.

2) How thick must such a column of cast iron be made, when its length

is to be 20 feet and the load 10000 pounds ? Here, if we put instead of E,

— = 1700000, we have

64

640000 . 240 2

31 . 1700000
7 _ 4v er: pi* _ ;/C V tt

s
. 1700000 V

= V 8^34375 = V 97)74
= 5

'
M mdheB -

According to the formula for the strength of crushing

d = \ VK>
or, substituting — = 10400 pounds in the calculation, we have

„ /4 . 10000 ./~400~
A /~m ,_. ,

d = V ,-10400 = V -.TT04- = V f3- = 1,106 inches.

If the length of the pillar does not exceed 10 .1,106 = 11,06 inches, the

required thickness would then be but 1,106 inches.

(§ 267.) Bodies of Uniform Resistance to Breaking
Across.—If a pillar A B, Fig. 440, fixed at one end, is so shaped,

that in all its cross-section the strain is the same, a solid of uni-

form resistance is formed, which requires the minimum amount of

material for its construction (see § 208 and § 253). The cross-

section of such a body is certainly a maximum at the fixed end B,

and it decreases gradually towards the end A. The law of this

decrease is found as follows : denoting again by x and y the co-

ordinates of a point O in the axis of the column, by a the tangen-
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tial angle M A for this point, by Wthe measure of the moment
of flexure, by z the radius O x

of the column at this point and by

S the strain at the surface A
]
B

} , which is there-

fore that at the point 0^ of the cross-section through

0, we have

Mz _ P y z
S w (see § 235) and

-r „ d tang, aVr PM=Py=— = -- W E ---
J

r dx '

(see § 218), whence

8= „ d tana, a dyE z
7
— or, since tang, a = -y^-,

CC X CI X

8 d y == — E z tang, a d tang. a.

W IT Z*
But, since for a circular cross-section — = —-,

z 4

a n Z 4 P y IT

8 = P y — = f, or - 8 z
z — P y,J W 7T Z

Z 4 J and we have

, IT 8 7 ,
3

3 tt # , , jo? 3 rr #—- -=r z d z and 8d y = —A
- -^ sr # 2,

4 P ^ 4 P
whence

3 7T # 5

4 P^
By integration we obtain

8 2

4
° T PE

z d z — — tang, a d tang. a.

in

z1 = Const. — tang} a,

and, if we denote the radius of the cross-section at B by r, we have

. S 2

I 7T

ta#. a — 8

(r
2 — z

2

) — tang.
2
a, since a = ; hence

4PJ2

Putting to#. a _ <? #
d#

, V r
2 - i

8_ z
2_dz_

P ' '^aT'
we obtain

, / 3 7r E z
2 dz

* 4P * dx ''

£?.T

Z .

Yr2 — 2
2 and

z
2 d z

4P 1V - z
2

./ 3 tt E u2 &u

when -- is denoted by u.
r J
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But
21* 1 -

and therefore

r u*du r
,

r du

= - i u Vi - %e + ± J -

d u

Vl - it

= — 4 u Vl — y? -f I smr 1

u.

(See the Introduction to the Calculus, Art. 27 and 26.

Hence we have

v 4f? [
r' sinr'

r
- z Vr"~ - **]

1G P
For x — l9 z = r, the radius of cross-section of the base, for

Z IT

ch sm -1
- = sm.~^ I = - and
r 2

^ Vr* — r — 0. Therefore it follows that

I — - r
2 y - and that the proof load is

that is, three-fourths of the proof load of a cylindrical pillar, whose

radius is r (compare § 265). Consequent]}7 the radius of the base

of a column of uniform strength is = ^ % = 1,075 times the

radius of a column of the same length whose proof strength is the

same.

Comparing the abscissa x with the total length I of the column,
we obtain

segment of a circle, whose radius = 1 and whose chord = —

.

r

2 x
If, then, we regard - - as the area of the segment of a circle, we

n c

can determine, by means of a table of segments (see the Ingcnicur,

page 152), the corresponding angle at the centre, and from it we
can calculate for a given abscissa x the corresponding radius of the
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cross-section z = r sin. ^ : e.g., for x = A I, — ,- = - = 0,3183,

and we find from the table of segments </> = 93° 49'; hence the

radius of the cross-section of the pillar is

z = r sin. 46° 50' = 0,729 r.

To resist rupture by crushing, the radius of the cross-section

of the pillar at the top must be r = y —jp, and this radius must

always be employed for all points, where the formula for breaking

across gives smaller values for z.

If the pillar stands with its base unretained, as is represented

in Fig. 437, the calculation must be made in the same manner for

one-half ( ~ ) of it. The maximum radius r is, of course, that of

the cross-section in the middle, and it corresponds to the formula

§ 288, Hod^kinson's Experiments.—The recent experi-

ments of Mr. HodgkinsoiT upon the resistance of columns to

breaking across (see Barlow's report in the " Philosophical Trans-

actions/' 1840) confirm, at least approximatively, the correctness

of the formulas deduced in the foregoing pages. According to this

experimenter the formula

. \2 if \2 if 64 \2 if 12

for prismatical columns with circular or square cross-sections is

correct for wood when we introduce a particular value for E; but,

on the contrary, it can be employed for wrought iron only when

we substitute for cV the power d 3
'™, and for cast iron it is suffi-

ciently correct when d* and V are replaced by the powers d3
'
55 and V>\

The chief results of Hodgkinson's experiments upon prismatic

pillars with circular and square cross-sections are given in the fol-

lowing table. The coefficients given in it refer to the case when
the pillars are cut off at both ends at right angles to their longitu-

dinal axis and repose upon these bases. When the ends are rounded

so that these extremities of the columns are not prevented from

assuming any inclination, these coefficients are nearly three times

as small. If, on the contrary, the column is fixed at one end and

the other capable of turning, the coefficient is but half as great as

in the first case. If, finally, one end of the pillar is fixed and the
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other capable of being turned and of sliding, the proof load is but

one-tenth of that of the first case, where both ends are fixed.

TABLE OF THE FORCES NECESSARY TO RUPTURE COLUMNS BY
BREAKING THEM ACROSS.

In the column for English measure d and I are given in inches,

I in feet, and P in tons of 2240 pounds. In that for the French
measures, on the contrary, d and b are given in centimetres, I in

decimetres, and P in kilograms, and in the last column d and ~b are

expressed in inches, I in feet, and P in new pounds.

Mr. Hodgkinson also found that cast-iron pillars, with round
ends, were sooner crushed than broken across, when I < 15 d, and
when the ends were fiat as long as I was < 30 d. Dry wood possesses

double as much strength as timber just felled. When employing
this formula for calculating the working load of columns, we employ
a coeflicient of security of \ to T\2 or a factor of safety of from 4 to 12.

Hence, with sextuple security, we can put for cast-iron pillars,

when d and I are given in inches,

d^ _ 44,16

F ~
6

and d = 0,0173 (P ?v)°>2817
inches.

For icrought-iron pillars we have, when we adopt the same
coefficient of security,

P = 3210 -~ tons and

d = 0,01028 (P V) °- 817
inches.

P = Ml10,
6

12'
,73,55

38>3V 502,688 ~Y
~
r tons,
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For pillars of oak wood, employing a coefficient of security of

Ttf>

P = 157,08 (»> tons,
d y

b = 0,2822 (P f-)l and c? = 0,2472 (P £
2
)i inches.

190,92 ~
Finally, for pillars offir tvood, we have

P = 112,46 (j\.F= 112,40 ^
& = 0,307 (P f-)i and d = 0,269 (PJ 2

)1.

Example.—For a cylindrical fir post, 11 inches thick and 12

inches long, fixed at both ends, the proof load is

P = 190,92 I !-
2
l Y= 1S4.S02 tons.

12 = 144

(.14

If the ends of such a pillar are capable of moving freely, the proof load

P — i P = 44,934 tons, while according to the theoretical formula wc
have P

t
= 53900 lbs. = 25,402 tons. (S33 Example 1 of § 2CG.)

.

§ 239. More Simple Beterirdiiati:n cf tho Proof Load
of Columns.—The foregoing formulas for the bending and

breaking across of pillars are calculated upon the assumption that

the force P is applied exactly at tho end A of the longitudinal axis

of the pillar. Now since in practice this is scarcely ever perfectly

true, and since the action of the force ocases to be central as soon

as the pillar bends, it is advisable, in determining the proof load

of a beam, to take into consideration from the beginning the

eccentricity of the point of application of the force. Assuming
that the point of application D of the force P is at a distance

D A — c from the end A of the axis A B, Fig. 441, of the column

and that the deflection B O = a of the pillar is small,

compared with c, we can consider the elastic curve

formed by the axis of the pillar to be a circle, whose

1
2 a

P (a + c)f = WE, whence

P (a + c) r = 2 WE a, as well as

pr c_

-p r

WEc

radius is r = But now

a =
2 WE and

a + c =
2 WE- PI2

'

If F denotes the cross-section of the pillar and e half its thick-

ness, measured in the plane A B l5, the uniform strain produced

in each cross-section by the force P is
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«
P
P'

and the strain produced at the exterior surface by the moment
P {a + c) of the force is

S>
P(a + c) 2 PEce

JF ~ 2 WE -PI''

and consequently the maximum strain in the pillar is -

2EFce \

2 WE-PP}'*r * * °2 ~~ F +
2 PFP -Pf =J('+

p =

Putting S = to the modulus proof strength J7

, we have

P(3"JP^- PZ2 + 2EFce) = (2 TFP- P V~) F T.

Now if P Z
2
is small compared with (W + F c e), we can put

2 WEFT FT
, or

2 JE'(]'F+/^)+l'7 2'f . Pec PP
+

JP
+

2 1FP
'

PPP === r- , in which <p and i/> are empirical numbers.

^ + v>^ v

The civil engineer Love (see " Memoire sur la Eesistance du fer

etdelafonte, etc.," Paris, 1852) deduced from the experiments of

Hodgkinson the values = 0,45 and t/> = 0,00337 ; hence we have

FTP = X FT= —
1,45 + 0,00337 (jV

from which the following table for the coefficient

X
1,45 + 0,00337 (IV

is
has been calculated.

1

d~
IO 20 3°

0,223

40 50
<

0,101

60 7o 80
!

90
i

IOO

X= 0;5S9 o,357 0,146 o
3
o735 0,0556 0,04350,0347 0,0285

These values of % must be multiplied by the modulus of proof

strength T for compression, when the modulus of proof strength

for long pillars is to be determined for a given ratio of length.

General Morin gives, after Eondelet, the following table, which

35
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furnishes too great values for %, when the pillars are of medium
length.

*

d
I 12 24 36 48 60 72

X = I
5
6

I 1

3
1

6
J A

Example—1) What load can a pine post bear, whose length is 15 feet

and whose thickness is 12 inches ? According to the table upon page 404,

the modulus of proof strength for a short pillar is T = 2600 ; but since the

I

ratio of the length to the thickness is -= =^ we have

1 1

X =
1,45 + 0,00337 . 15*

=
2,208

=
°'458 '

whence we obtain the modulus of proof strength % T = 0,453 . 2600 =
1178 pounds ; hence the proof strength of the pillar is

Ttdr
P= 1178-.-

4
1178 . 0,7854 . 144 = 133000 pounds.

If we employ a factor of safety 3, we can put

P = 133000
44300 pounds.

2) How thick must a hollow cylindrical pillar of cast iron, 25 feet

long, be made, when it stands vertical and is required to support a

load P = 100000 pounds ? Assuming the diameter d
x
of the hollow part

to be three-fifths of the exterior diameter (d) of the pillar, we can substi-

tute in the theoretical formula *

P=^ . -^(§226),

j»4 —

—

10 16 L (|)
4
] =s 0,0544 d\ whence we obtain

-v
4PZa

0,0544 7T
3 E

Substituting in this expression P = 100000, P

it
3 = 31, and, instead of E,

| =™o = 1432000)

we obtain the required thickness of the pillar

(25 . 12)
a = 90000,

d -v
400000 . 90

0,0544 . 31 . 1422 -vi
coooooo

6864 . 237

187500 = 11,07 inches.
0,0527 . 237

If we make d = 11,25 inches, we obtain d
t
= 0,6 . 11,25= 6,75 inches.
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Accordiog to our last formula we have, "when we assume

1 - ?* - 25

for the required cross-section of the pillar

. „ l\ . „™,o„ /Z\ 2

~l
p 3,556.100000 355600

^ = [1,45 + 0,00337
[j] ]Y = "

T
= y »

and putting, according to § 212,

rr,
18700 „„„„T = —5— = 6200 pounds,

o

we obtain

335600
i^ = _ = 57,35, and therefore, since

D/&0U

F=l f - d
t
*) = [1 - (f)

2
] ~ = 0,16 ^ d\

the required exterior diameter of the pillar

Assuming d = 11 inches, we obtain

^ = 0,6 d = 0,6 . 11 = 6,6 inches.

CHAPTER V.

COMBINED ELASTICITY AND STRENGTH.

§ 270. Combined Elasticity and Strength.—A body is

often acted upon at the same time by two forces, e.g. a tensile and

a bending one, etc., by which, a double change of form is produced,

as, e. G., an extension and a bending. We call the force with which,

a body resists this two-fold change of form its combined elasticity

and strength, and we will proceed to investigate the most important

cases of this kind.

Properly speaking, the case (§ 214) of the bending of a body

A KB O, Fig. 442, is really one of combined strength ; for the

force iP = P, which acts at the end A of the body, can be re-

solved into a couple (P, — P) and a force ~S~P — P. The former,

which alone we have previously considered, tends to bend the por-

tion A S of the body, and the latter tends to tear this piece from
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the remaining portion S B.

Fig. 442.

The latter force can be resolved into

two components

Px
— P cos. a

111
an<^

P2
= P sin, a

(§ 215), one of which

acts at right angles to

the direction of the fibres

and the other in the di-

rection of the axis of the

fibres. The latter com-

ponent combines with

the strain in the fibres

produced by the bend-

ing and increases the ex-

tensions upon the side of

the tensile strains and

decreases the compres-

sion upon the other side.

The magnitude of the

extension of each fibre

ffi =

RS=KN,
etc., whose length = 1,

by the tensile force P
M sin. a is (§ 204)

P sin. a

FE
F denoting the cross-section N of the body.

If at this distance from the line JVt 1} Fig. 443, which deter-

mines the ends of the fibres, that have been extended by the bend-

ing, we draw a line N~3 2 parallel to it, it will form the boundary

of the fibres which have been submitted to both causes of change

of length, and it will cut the original limit in a point S.:, which

corresponds to the fibre, that is unchanged in length, and conse-

quently gives the new or true position of the neutral axis. The

distance S S2 = ei of this neutral axis' from the original one, which

corresponds to the moment of flexure, is determined by the pro-

portion
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ss, sir

whence e x
=

NN; 1'^
e
~ o'

o
x
.

But we have also - = - (§ 235),

lience

0i r o
x

P r sin. a

FE
The radius of curvature r, of

the neutral axis determined in

this more accurate manner is

greater by the quantity (e
} ) than

that of the neutral axis previously considered ; hence we have

/-. x A, P sin. a\
r, = r + d = r (1 + a

x ) = r \1 4- —p-^-y

The angle a, which the variable cross-section N
x Ox

or JV2 0%

forms with the direction of the force P, is equal to the tangential

angle a (found in § 216) ; hence, as this angle is small, we can put

p (r
sin. a — a =

2 WE
or, since

WE
P x (§ 215),

r sin. a = r a — -, from which we obtain
2x

_ P (F - x-)
Bl ~ 2FEx

Hence for the point B, where the beam is fixed and for which

x — I, we have e x
— 0, and for the point A at the other end, where

P T P (P — x2
)

x =z 0, e L
= —zr- = oo ; on the contrary, for x — ^ _, ^—- we

' J ' 2FEe
have e x

= e ; consequently the neutral axis coincides at B with

the original one, and in passing from B to A it separates more and

more from it, until, finally, it reaches the concave side of the body,

and, if prolonged beyond the body, at the end A it is at an infinite

distance from the other axis.

The maximum extension produced by the flexure is

P ex
WE'G ==
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and that produced by the tensile force P sin. a is

P sin. a

FE
hence the total extension is

E \

'e x sin. a

E \W + ~F~
J.

and, if the latter has reached the limit of elasticity -=-, we can put

(ex sin. a\ _

and the proof load is

WTP --=
WT

e x + -= sin. a
Jo

e x +
p (r - x-)

as we. have already found.

Fia. 444.

2 FE
For a moderate deflection, which is all these girders are gene-

rally exposed to, this value is a minimum for x = l} and it is

wvr ~ el'

Remark.—If the girder, as, e.g., A A
t

Z?,

Fig. 444, 1., II., III., is acted upon by two

forces, two or even three displacements of

the neutral axis from the centre of gravity

may take place. If the two forces act in

the same direction as represented in Fig.

444, I., this displacement on one side of the

cross-section A
x

is determined by the

formula

' P r sin. a

&x
= FE~'

and, on the contrary, on the other side by

the formula

(P + Pt
)r sin. a

e
2
=

-jfE
'

At the point of application A
t
this dis-

placement changes from

P r sin. a
,A Vi:rf e i = ~FE~~ t0

A^V2 = e
2 = (—p—) ei>

when we pass from one side to the other,

on the contrary, at the fixed point B, where a = 0, we have e
2 = 0.



§271.] COMBINED ELASTICITY AND STRENGTH. 551

If the two forces act in opposite directions and the moment

P
1
.A^B = P

1
l
1

of the negative force is greater than the moment

P . ITB = P(l
t + I)

of the positive one, in which case the girder is bent in two opposite

directions, which meet in a point of inflection F, the neutral axis consists

of three branches U Vt> V2 W2
and Wt

B (Fig. 444, II.), which are not

continuous, and the normals at the point of inflection F is an asymptote

to the last two of these curves ; for here r = co and consequently

Pr sin. a

'
ei=-FF- = ™-

If, although the forces act in opposite directions, we have P (I + l
t ) > Px

lu
as represented in Fig. 444, III., the displacement of the neutral axis upon

one side of A x
is

.——

-

Prsin.a
A

t V1
=e

1
=

and that upon the other is

^ A, V2
— <?

2
—

FE

(P — P
t
)rsin a

F~E '

and at the cross-section through A
t
there is a break in the two branches

U Vx and Fs B of the neutral axis, the value of which is

P
1
r sin. a

V. V, FE

Fig. 445.

§ 271. Eccentric Pull and Thrust—If a column A B, Fig.

445 and 446, acted upon by a tensile or compressive force, whose

direction, although parallel to, is not that of the- longitudinal axis

of the body, the combined elasticity and strength will come into

play. This eccentric force can, as we know, be replaced by a force

P in the direction of the axis,

and a couple (F, — P), whose

lever arm c is the distance O A
of the point of application of the

force Pfrom the axis of the body,

and whose moment is therefore

= P c. The force A P = P in

the line of the axis produces in

all the fibres the constant strain

«
p

-
1

13

rV

d
m3 ^A

<

+? P

F'

cross-section of

in which F denotes the

the body; the
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couple, on the contrary, bends the body in a curve, whose radius

is determined by the well-known formula (§ 215) P x r — WE.
in which we must substitute for the moment of the force the

WE
moment P c of the couple. Consequently r = -=— is constant,

when IF or the cross-section Fis constant, and therefore the curve

formed by the axis of the body is an arc of a circle.

If c is the maximum distance of the fibres from the neutral axis

passing through the cross-section of the body, we have the maxi-

mum strain produced in the body by the couple

_Pcc
°2 — }y >

and hence the total strain is

S = Sx + $2 = -p H =-,

consequently, when we put this equal to the modulus of proof

strength T, or assume that the most remote fibre is strained to the

limit of elasticity, we obtain

-
~ F "*" W \ W J F'

Hence the proof load of the pillar is

FTP =
Fee7

L + ~w
;

e.g., for one with a rectangular cross-section, the dimensions of

which are b and h,

FTP =
1 + x

and for one with a circular cross-section, whose radius is r,

P - _ F-l_
i +

r̂

From this we see that the strength 'of a body is tried much
more severely by an eccentric pull or thrust than by an equal one

acting in the direction of the longitudinal axis of the body.

If the column is prevented from bending by a support upon the

side, as, e.g., B A C, Fig. 447, represents, P remains of course

= FT.
If the force acts at the periphery of a parallelopipedical pillar

A B, Fig. 448, and at the distance c — ~ from the axis, we have
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FT = IFT;

Fig. 447. Fig. 448. Fig. 449.

1+3
and the proof load is but one-fourth of what it would be if the

weight were applied in the prolongation of the axis of the body

(Fig. 449).

For a cylindrical pillar, with

a force acting at the circum-

ference, we have c = r, and

consequently

F TP =
{-fl

=--{FT,

i.e., but one-fifth what it would

be if its point of application was

in the axis of the body.

These formulas can be applied

to rupture by extension, com-

pression and breaking across ; it

is only necessary for each species

substitute a diiferent coefficient of ultimateof separation to

strength, or put
FK F

1 +
Fc_e

W
Fee'

Fig. 450.

in which K
x
denotes the modulus of rupture by compression (or

extension) and K% that for breaking across.

§ 272. Oblique Pull or Thrust.—The theory of combined

elasticity and strength is particularly applicable to the case, where

the direction of the force P forms an acute angle R A P = 6 with

the axis of the beam A B, Fig. 450. One of the two components

R = P cos. S acts as a tensile force

and the other P sin. S as a bending

one upon the body, and the strain

a P cos. 6
Si = ~~F~~9

produced in the whole cross-section

by the first component combines with

the strain

P sin. d . I e

W~e '

produced by the moment P I sin. d of the second component in

the outside fibres, and causes the strain

n*

S.2 =
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or more simply

T

& + & = --—- + w
f

cos. 6 I e sin. d\

nr +
w~)'

Hence the required proof load is

FTP =
A .

Fle
' Acos. o ^——- sin. oW

or, inversely, the required cross-section is

i'" = ^- I cos. o -!—77T- m». o
J,

Or, if we substitute a modulus of proof strength T}
for bending

different from that (T) for extension we have

„ „ (cos. 6 Fle . A

For a paraUelopipedical girder we have

Fe 6

W
F--

and for a cylindrical one

Fe 4

, and consequently

IF

P (*£ +

whence

6 £ sm (J
>.

F =P^ + rTx

sin. 6

.

The same formula holds good for the case represented in Fig.

451, in which the first component R produces compression in the

girder. If here again 6 denotes
Fig. 451. ^1Q ang] e? which the direction

i'iMi!gj;|gg of the force P makes with the

axis of the girder, the values of

the components are

R = P cos. d and
j\r = p siii. 6.

In order to find the proof

load of the girder, we must com-

bine the strain produced by R
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with the greatest strain

„ _ P I e sin. d*- w
produced by the bending, and then we must substitute in the

formula

m -. I cos. S le sin. 6\

w P ( . Fie . A
T7 \

C0S'

~~W
Sin

'
I

just found, instead of T, not the modulus of proof strength for ex-

tension, but that for compression.

In both the cases treated above the displacement of the neutral

layer of fibres from the centre of gravity is

_ ffj _ Sx _ W cotg. d
ei TV, e ~B,

e ~ Fox '

which, E.G., for parallelopipedical beams, becomes

^ h cotg. 6

It is also easy to see that by the combination of the maximum
extension or compression with the extension or compression of the

fibres, which is equally distributed over the entire cross-section of

the body, there is produced an extension or compression

Si ± So P /cos. 6 I e sin. 6\

If we introduce the modulus of proof strength T and for the

T
sake of security employ for wood and iron only —, we obtain

3

1) for wood in both cases

p 780 F _ _I??^__

cos. o + -7- sin. o cos. o h sin. o
h r

2) for cast iron, in the first case (Fig. 450)

3640 F 3640 F

cos. o + — sin. o cos. o -f sin. o
11 r

and in the second case (Fig. 451)

9360 F 9360 FP =
cos. o + -=- sin. o cos. o -\ sin. o

11 r
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§ 273. The case just treated occurs often in practice. If, e.g.,

a weight P is hung from a girder A B, Fig. 452, which is inclined

to the horizon, we have, when the angle of inclination of the direc-

tion of the axis is P A R = <S, the tensile force R = P cos. 6 and
the bending force N' = P sin. 6, and therefore

FTP =
cos. o + — sin. o

h
Fig. 452. Fig, 453.

If, as is represented in Fig. 453, not only the direction of the

stress P is inclined to the axis of the body, but also its point of

application lies without it, in calculating the proof load we must,

consider the point of application transported to D in the pro-

longation of the axis A B of the girder, i.e. we must substitute in

place of the length BA = l the length BD = B A + A D = I +

—
k, in which the horizontal distance C A is denoted by c. and

sin. o J

the angle C D A, formed by the axis of the girder with the verti-

cal, is represented by S.

In like manner, for the pillar A B, Fig. 454, which ia inclined

at an angle 6 to the vertical, we have the proof load

FT FT
cos. o -f — sin. o

h

4:1
9

cos. 8 -\ sin. 6
r

in which we must substitute the modulus of proof strength for

compression, while in the former case we should employ that for

extension.

If a loaded girder A A, Fig. 455, is not freely supported, but

wedged between two walls, a decomposition of the forces takes

place into components producing compression and into compo-

nents producing a flexure. If the terminal surfaces A, A of this
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beam form an angle 6 with its cross-section, and if a force P acts

in the middle B of the girder, the reactions of the walls upon the

ends of the girder are Q and Q, and these forces are inclined at an

Fig. 454. Fig. 455.

angle d to the horizon and give a resultant C P — — P, which

balances the force P.

Hence

P = 2Q cos.AC P = 2 Q sin. d,

or inversely

* 2 sin. 6

The reactions of the walls can he decomposed into a compres-

sive force In the direction of the axis of the girder

P cos. 6R
and into a force

N

Q cos. 6 = —

Q sin. 6 =

-7 = k P cotg. d
2 sin. 6 J

P
2

?

which is perpendicular to the latter and produces a bending ; con-

sequently we have

I.E.

T = P cotg. 6 Pie
2F T

4 W

*

and the proof load of the girder is

2 FTP --=-

cotg. 6 + I
Fie
W

The condition of affairs is the same, when an inclined prop A B,

Fig. 456, carries a lead which has been dumped upon it. But here

Q can be resolved into a force Q }
at right angles to the axis of the
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Fig. 456.

prop and into a forco JV; at right angles to the side (in miners'

language, the floor). Neglecting, for greater safety, the friction of

the loose masses of stone upon
the floor and denoting the angle

formed by the terminal surfaces

of the prop with its cross-section

by (5, and the inclination of the

floor B C to the horizon by ft we
obtain Q x

— Q sin. j3 and

2 F T

(see

e =

cotg. 6 -f- i
-
w
-

240), and therefore

2 FT
[cotg. d +

F I

W sin. ft

Example—1) "What must be the dimensions of the cress-section of the

inclined girder A B, Fig. 452, which is made of pine and is 9 feet long and

whose direction forms an angle of 60° with the horizon, when it bears at

the extremity A a weight P = 6000 pounds? The formula

FTP =
cos. 6 + -=- sin. o

h

gives, when we substitute P = 6000 pounds, T = 780, d = 90° — 60° =

30° and I = 9 . 12 = 108 inches, and assume =- =
-f,

F=bh=*.h? = 6000/
:- I COS, 30° +

7i
2 = 10,77 (•866 +

780 \

648 . 0,50G

ij?j „„. »•), ,«

).»,33 +

C

489

15,37 inches,

h f

Approximative^, we have

h = V3489 = 15,17,

more accurately

7i = V3489 + 9,33 . 15,17 = V§631

and
, consequently

I == \ h = 10,98 inches.

2) At what distance from each other must two 12 inches thick collars

A B of a so-called overhand stoping ABC, Fig. 456, be laid, when the

gob is piled 60 feet high upon it in a vein 4 feet thick, dipping at 70°, if

we assume that the weight of the gob is 65 pounds per cubic foot ? De-

noting the required distance by x, we have the weight upon each collar
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Q = 4 . 60 . 65 x = 15600 x, and consequently the pressure upon each

collar is

Q t
= Q sin. 70° = 15600 x sin. 70° = 15600 . 0,9397 x = 14659 x lbs.

If the ends A A of the collar form an angle of 70° with the axis, or if

$ = 20°, we have

2FT 2.113,1.780 176436
14b5J x — - _— g -

,

cotg. 20° + -j 2,747 +—

—

and therefore

176436
1,12 feet = 13,44 inches.~~

10,747 . 14659

The required distance between the two collars is therefore

x — d = 1,44 inches.

(§ 274.) Flexure of Girders Subjected to a Tensile

Force.—The normalproofloadP of a girderA B, Fig. 457, is dimin-

ished by the application of a small force in the direction of the axis

only when the girder is short. If, on the contrary, the length of the

Fig. 457
girder and the tensile

force exceed certain

limits, the moment of

the latter acts in the

opposite direction to

the moment of the

bending stress, thus di-

minishing the deflec-

tion of the body and increasing its proof load.

If we put again the co-ordinates of the elastic curve A S B,

Fig. 457, formed by the axis of the girder, A K — x and K S—y,
We have the moment of the forces in reference to a point S in the

axis P x — Q y,

we can therefore write (according to § 215)

(Px- Qy)r = WE,
substituting

dx

in which a denotes the tangential angle 8 T K, and denoting, in

/~~P~ /~Q~
order to simplify the expression, y if~et ty p, and y -r^^by#,we

obtain the equation

, dx (P x — Q y) dx . . a
. ,
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Now making

1) u= 2
-

n

[§274.

Fig. 458.

-H (meqx + n £-?J
),

c-/;

in which m and n de-

note constants, to be

determined, and e the

base of the JSTaperian

system of logarithms

(see Introduction to the

Calculus, Art. 19), we
obtain

2) a = -? = £ — (m e7 * — n e^ x
)q,' ax q"

v /i?

and since the differential of the last equation, viz.,

d a = — (m e7 + n s~? x

) q
3 d x,

when substituted in equation 1), gives the" above fundamental
formula . v

d a = (y--zr)rf<J v= ~ (f v- f y) d x,

the correctness of the above expression for y is proved. j>

Since for x = we have y = 0, we obtain by substituting these

values in 1 ) the following equation • "*~

= 0— (m e° + n e°), I.E.,'

m + ;a = 0,

and since for a? = I, a = 6, we obtain by substituting these values

in 2) the equation

— ~ — (m e
ql — n e~q

l

) #,
~*

and substituting the value n — — m taken from the foregoing

equation, we have

V

whence

m =

mq (£>
l + e"9

'),

jpP

?
3 (e" + £-*')

and the moment of the forces is

P x — Qy= Qm («** - e~?I
)

The latter is certainly a maximum for the fixed point J5, the

co-ordinates of which are x — A C ~ I and y — B C = a, and

then its value is
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Pl-Qa = —(---
l

—).

If q Z is a proper fraction, that is, if the girder is short and the

force in the direction of the axis is small, we can put

w

. , , , f i
2

q* r

and also

hence we have the moment of the forces

= P Z (1 _.yr)=.pr(i-3^f).

If, on the contrary, the force Q is so great that q I becomes at

least = 2, we can then neglect

whV it occurs with eq V and therefore we can put
7 I _ e-9

< £? '

777=1,1

, £7 < _|_ £-7 * £?

so that the rax>ment of the forces becomes simply

.

• ,,_,.=£

=

f/«
(§ £75.) «3?roo£ Load of a Girder Subjected to a Ten-

sile Force.—By the aid of the moments of the forces P and Q,

f
found in the foregoing paragraph, we can determine by the method,

which we have so often employed, the proof load of the girder.

The force Q produces a tension per unit of surface

oi - F
in the direction of the axis of the body, and the moment PI — Qa
of the two forces P and Q produces" a tension in the fibres at the

maximum distance e from the neutral axis, which, is

(Pl-Qa)e
Sq — w

hence the total tension is

36
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When the latter reaches the limit of elasticity, S = T, and we
can put

If the modulus of proof strength ^ for compression is different

from that T for extension, we have

rr

-

_ £ .

QPi-gg)*
-/1 - i?

+
If

in which e denotes the maximum distance of the compressed fibres

from the neutral axis. In both cases we must substitute

so that the required proof load of the body becomes either

?7* a. c—?'\

or

^ - Ve" -«-*'/ V FT) e '

^ ~ W'-r»'/ V ^ FTJ e *

For a sww&# tensile force Q we can put

so that, when we take into consideration the extension only, we

have

_ (FT-Q)W I _QT_\ / _G_\ JTT
/i GMm ~\ dWF/\ FT) le'

Without the tensile force Q the proof load of the body would be

P _ WT

hence we have the ratio

P
Pi

from which it is easy to see, that the proof load is increased or

o or
diminished by Q, as ~-^ is greater or less than jL , lb., as

~^7 is greater or less than -^-.

When the tensile force is great, in which case we can put

\
l + ZWEl\ FT!'
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we have the proof load

P =
\ FT! y E e

V Q — -^7-^7. By differentiating the latter and putting the differ-

This expression becomes a maximum with the expression

— V~Q~
3

Q — -^7-^7. By differentiating the latter and
]

ential equation obtained equal to zero, we obtain

Q

This maximum value is

FT

-.tV
FWT
3E e'

and the ratio of the latter to the proof load P, of a girder, which

is not subjected to a tensile force, is

P, ~" 3 Y
3 WE 3 r

3 W
For a parallelopipedical beam, whose height is h and whose

width is l, we have F = bli, W — -srr and e = | h, whence

P1 3 h V E 3h
If the beam is of wood,

T 1

and therefore

° ~ E 600'

_ = 4 4/JL L — 0544 -
Px

3 r 600 * h ~ U,UJ4:4 ^
E.G., for

I
= 80, P = 1,632 P,

;

the girder carries nearly two-thirds more than when it is not sub-

jected to a tensile force.

*F°r
A ~ ~544~ = 18>4=

' ^ w P>
and for vames of

J
smaller

than 18,4, P, is smaller than P, and the proof load P of the beam
is diminished by the stress Q.

§ 276. Torsion Combined with a Tensile or Com-
pressive Force.—If a column A B, Fig. 459, is acted upon at

the same time by a, force Q, whose direction is that of its axis, and
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by a couple (P, — P), which tends to twist it, both the elasticity

of torsion and that of extension (or compression) come into play.

The result of the combination of these two elasticities may be in-

vestigated as follows : If the strain per unit of surface produced

by the force Q is Sx
= — and that produced by the moment of

torsion at the distance e from the longitudinal axis of the body is

P a e
St = —TTr~, we can assume, that a parallelopipedical element

J

Fig. 460.

% :5

h. JD c

Xu>
-Z -St

A B CD, Fig. 460, of the body, is acted upon by the normal forces

A B . Sx and — CD . S.2 upon A B and CD and by the couple

(A B .S», — CD. S*) along A B and CD and by the opposite

couple (BC . Z, - ~AD . Z) along B C and A D. If the diagonal

plane A C forms an angle i/> with the axis of the body or with the

direction of the strain S
x , the components of the forces Sx , Sa and

Z upon one side of A C are

A B . Sx sin. ip, A B . S2 cos. ip, and B C . Z sin. %
and consequently the total normal force upon A C is

'A~U . S = ~AB . Sx
sin. $ + AB . S2 cos. i> + B~C. Z sin. $,

or, since the moment of
(
B C . Z, — A D . Z) is equal to the mo-

ment of (Z~B . S* - ~CD. S,), i.e.

A B . B C. Z = B C. A B . S2 or Z = S.2,

A C . S = A B . S
t
sin. i/> 4- (A B cos. $ + B C sin. V>) S,y

so that, finally, the normal strain upon the unit of surface of

•A Gib
'
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a AB „ . .
f
(AB .BO. a „S = j-g . & sin. V 4- [j-jy cos. i> + -j-q sin. Vj &

But -j-~- = siw-. ?/> and -p-^ = cos. i/», whence

# =• /Si (sk t/>
2

) + 2 S3 sk V c05 - V* = & (sin- VO
2 + & sk 2 V

= Sx

(

1 ~^ 2 ^
) + &m 2 V (compare § 259).

This equation gives a maximum value for S, when to#. 2 t/> —
2 iSj __ _. n ,

2 $2 _j rt ,
/Si

or gift* 2 i/j = and cos. 2 ip= —

&
^and this maximum value is

«A -

+ &
) +

2 *'_

Substituting the above values for /Si and & in this equation,

we obtain the required maximum strain

Now, since the body should resist with safety the actions of

these forces P and Q, we must put Sm — to the modulus of proof

strength !Tor

2i^
+ r V&W +

V IF /" '

from which we obtain the equation of condition

QT(P a eV'

\ WJ T* - F
The allowable moment of torsion is therefore

and the allowable force in the direction of the axis is

In order to find the dimensions of the cross-section correspond-

ing to the forces P and Q, we put

W= _ Pa

when the force producing torsion is the greater, and, on the

contrary,
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QF =
' T \ W I

when that in the direction of the axis is the greater.

For a parallelopipsdical column, whose dimensions are b and A,

we have

F=bh,W= {¥ + V) %£ and e = i V¥T~h\ consequently

e 6 / _qt_ T\ bh T)
* bh

r __ ,
, Q Q_ r

1
_ /

6 Pa. y^-i

r__^ /PrA^rL1

\VWW-bhT)\*
(b

% + h%)T\bh)

If we know the ratio v = - of the dimensions, we can calculate

the dimensions themselves by means of this formula.

For a pillar with a square base b = li, and therefore

hz V% P
6 TV h'T/ '

*= I [>-• (w)T-

For a cylindrical pillar or shaft we have

jtf
7 = 7r r8

, TT = -^-, and e = r, whence

f-'jzrj?-'-^ -^r—»

-

- f = Q,. and r = i/3I h _ ^)V*
T V 7T r* )
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Fig. 461.

If the force Q in the direction of the axis is a compressive one,

the formulas found above still hold good ; for

not only the direction of the force -S
x
(Fig.

461) is opposite, but also the forces #2 and Z
can be assumed to act in the opposite direc-

tion, when we wish to obtain the maximum
resultant 8m.

Example.—If a vertical wooden shaft weigh-

ing 10000 pounds is- subjected to a moment of tor-

sion P a = 72000, the required radius, assuming

T — 400 pounds, is

3/2P«/ Q W _ 3/0,6366 . 72000/ 10000 W
r ~ V Trf ~ V^TJ - V 400 V

1 ~ 4ooV?/

= V"0~636TTl80 (l - 7

^P)~\

Approximatively, we have

r^= VilA$ = 4,85, whence

7,958 7,958

rl "23,52
= 0,3383, and

1

V 0,6617
= 1,071,

so that the required radius is, more accurately,

r = 4,85 . 1,071 ~ 5,194 inches,

and consequently the diameter of the shaft is

d = 10,39 inches.

§ 277. Flexure fend Torsion Combined.—Cases often oc*

cur where a girder or shaft is acted upon at the same time by a

bending force and a twisting couple. Horizontal shafts are gen-

erally submitted to both of these actions. In order to investigate

the relations of the combined action of

these two forces, let us imagine a pris-

matic body A B CD, Fig. 462, fixed at

one end B D, to be acted upon at the

other end by a bending force Q and

at the same time by a twisting couple

(P, - P). If I is the length A C of

the shaft, \\\ the measure of the mo-

ment of flexure and <?, the maximum
distance of an element of the cross-sec-
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tion from the neutral axis, we have the maximum strain produced

in the direction of the axis by the force Q

St = -~ v- (compare § 235).
W\

If, on the contrary, a denotes the lever arm //K of the couple

(P, — P), IF the measure of the moment of torsion and e the

greatest distance of any element of the cross-section from the axis

C D of the body, we can put the maximum shearing strain pro-

duced by the couple

a Pae

Now here, as We can easily understand, the strain #, = ~^~

takes the place of the absolute strain #, = ~ of the foregoing par-

agraph, and therefore we can put for the maximum strain in the

whole body A B C D, Fig. 462,

i -
%
-w- + 1 \-j-^) + \-w~h

from which we obtain the equation of condition

(P_aeY_ T .2 _ Ql,e,T
V W /

~ " W\ '

The allowable moment of torsion is therefore

i) fa - —v J-

Wi
-

c
y Wl r

ana the bending force is

2) Q — - Wi
|
T 2 - (—Sr-) 1, from which we obtain either

W Pa

y 1
Wi

Wx Q h

=:> 01'

1 T\Wt
For a square shaft

— = —-— and —- = —, whence
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73 §VlPaL 6GJA-* AV^-fr-V-TTT) ' and

ti- v T
^i ^^j ,

as well as

»=^m-tt-)T.
while, on the contrary, for a cylindrical shaft,

— = —— and— = —— ; hence we can put
e 2 ex 4:

r

r - n ~T V ~ ^?~Tl '
and

569

as well as

-V -T V~ t^t) '

Fig. 463.

Very often it is not a couple, "but a force P, acting eccentrically

to the axis, which produces the torsion in the body B CD, Fig. 463.

Since such a force can be decomposed into an

equal central force C P — + P and into a

couple (P, — P), whose lever arm is the dis-

tance C A between the axis GD of the body

and the line of application of the force P, we
have here a case of combined strength, al-

though there is no other force Q; for the

twisting produced by the couple (P, — P),

combines with the bending produced by the

axial force + P. The above formulas can

be employed directly for determining the

thickness of such a body, when we substitute in them P I — Q l
x
.

If, in addition to the eccentric force P, there is another Q,
whose moment is Q l

x , we must substitute instead of P I, P I -f Ql»
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Fig. 464

§ 278. Bending Forces in Different Planes.—If a girder
or shaft B C, Fig. 464, is acted upon by two bending forces ft and

ft2, whose directions Cx ft and Ca ft,
although at right angles to the axis C\ B
of the body, are not parallel to each

other, the portion C, B of the body will

be bent by two couples (ft, — ft) and

( ft> ~ ft), the resultant of which must
be found, when we wish to determine

the nature and magnitude of the bend-

ing. If lx and L denote the arms of the

forces ft and Q» in reference to the fixed

point B, ft l
x and ft2 h are their mo-

ments, and if a is the angle formed by the

directions of the forces, when passing

through the same point, we have, according to § 95, the moment
of the resulting couple

R c = V{Q X hf + (ft l,Y + T(ft *,) (ft h) cos. a,

and for the angle j3, which the plane of this couple makes with that

of the couple (ft, — ft),

ftZ*
sin. (3

—
Be

In order to find the intensity and the plane of this couple

(B, — R), we can reduce the force Q.2 from C\ to Cx , combine the

reduced force Q = ftj,

it

by means of the parallelogram of forces

with the force ft and thus determine the resultant R
x ; the pro-

duct Rx l
x
= R c is the value of the moment of the resulting couple

and the angle ft Cx
R is the angle (3, which the plane of this couple

forms with that of the couple (ft, — ft). This plane is of course

that in which the body is bent, and by the aid of the moment R
x l

x

= R c, just found, we obtain the maximum strain in the body

Rce
S = w

or, putting this equal to the modulus of proof strength T, we have

^ = f(ft ftr + £& V'+' 2 (Or W(ft'fe) cos. a.
c

If a twisting couple (P, — P), whose moment is P a, also acts

upon this body A B, the maximum strain becomes

« _ T _ Rce x A
/(Bcc x\\ (PaeV
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in which W\ denotes the measure of the moment of flexure, W that

of torsion, ex
the greatest distance of any element of the body from

the neutral axis and e that of any element from the longitudinal

axis of the body at D.

From the above we obtain

(P_a*\\_nn ^^
\ W I W

= t*- [(a ?o
2 + (ft hY+ % (ft w (ft y «* o]^

By the aid of the formulas of the foregoing paragraph the

required dimensions of the cross-section of the body can be found

by substituting in them instead of Q I the sum ft lx + ft l2 .

If only one bending force ft acts upon the body and if at the

same time it is acted upon by a single twisting force P instead of

a couple (P. — P), this force P can be resolved into a twisting

couple (P, — P) and a force P acting upon the axis, so that

instead of Q2 12 we must substitute in the latter formula P I

Final Remark.—Although there is no portion of mechanics which has

been the subject of so many experiments as the elasticity and strength of

bodies, yet much remains to be investigated and many points are still

uncertain. Experiments upon this subject have been made by Ardant,

Banks, Barlow, Bevan, Brix, Busson, Burg, Duleau, Ebbels, Eytelwein,

Finchan, Gerstner, Girard, Gauthey, Fairbairn and Hodgkinson, Lagerjhelm,

Musschenbrock, Morveau, Navier, Rennie, Rondelet, Tredgold, Wertheim,

etc. The older experiments are discussed at length in Eytelwein's " Hand-

buch der Statik fester Korper," Vol. II., and also in Gerstner's "Handbuch
der Mechanik," Vol. I. A copious treatise on this subject by v. Burg is

given in the 19th and 20th volumes of the Jahrbucher des Polytechn.

Instituts zu Wien. Theories which differ somewhat from those given in

this work are also to be found in this treatise. The experiments of Brix

and Lagerjhelm have already been mentioned (page 394}. New and very

varied experiments upon the reacting strength of different kinds of stone

by Brix are reported in the 32d year (1853) of the transactions of the

" Verein zur Beforderung des Gewerbefleiszes in Preussen." A simple

theory of flexure by Brix is to be found in the treatise " Element-are Berech-

nung des Widerstandes prismatischer Korper gegen die Biegung," which is

printed separately from the transactions of the Preussischen Gewerbeve-

reins. Wertheim's latest experiments upon elasticity have already been

mentioned (page 396). An abstract of Hoclgkinson's experiments is to

be found in Moseley's "Mechanical Principles of Engineering and Archi-

tecture." Hoclgkinson's principal work, the title of which is " Experimen-

tal Researches on the strength and other properties of cast iron, etc.," was

published by John Weale in 1846. A French translation of it by Pirel
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appeared in Tome IX., 1855, of the " Annales des Ponts et Chaussees," and
an abstract of it by Couehe in Tome XX., 1855, of the " Annales des
Mines." Tredgold has published a treatise upon the strength of cast iron

and other metals. The following works are also recommended for study.

Poncelet's " Introduction a la Mecanique Industrielle," Part I., Navier's

Resume des Le;ons sur l'application de la Mecanique, Part I., translated

into German by Westphal under the title " Mechanik der Bankunst," to

which Yv
rork Ponceiet ha3 made some additions in his theory of the resist-

ance of rigid bodies (see his Manual of Applied Mechanics, Vol. II., trans-

lated into German by Schnuse). We would also recommend particularly

the " Resistance des Materiaux " (Lecons de Mecanique Pratique), by A.

Morin, which has been much used in preparing this work. We may men-
tion further the " Theorie cler Holz-und Eisenconstructionen mit besonderer

Rucksicht auf das Bauwesen," by George Rebhan, Vienna, 1856, the work
of Moll and Reuleaux (already quoted in page 469) upon " die Festigeit

der Materialien," a " Memoire sur la Resistance du Fer et de la Fonte, par

G. H. Love, Paris, 1852," as well as Tate's work upon the strength of mate-

rials as applied to tubular bridges, etc. The theory of combined elas-

ticity and strength was first treated by the author in " der Zeitschrift fur

das gesammte Ingenieurwesen (dem Ingenieur), by Bornemann, etc., Vol. I.

In the first volume of the new series of this magazine (Civilingenieur.

1854) the graphic representation of the relative strength is treated by Mr.

Bornemann, and the results of the experiments made by Bornemann and

by Lemarle are also given.

The theory of elasticity and strength will be treated of again when we
discuss the theory of oscillation and of impact.

Mr. Fairbairn's Useful Information for Engineers, I. and II. Series, gives

the results of many experiments upon the strength of wrought iron of dif-

ferent forms, as well as upon stone, glass, etc. From a theoretical point

of view, we can particularly recommend, "Lecons sur la theorie mathe-

matique de l'elasticite des corps solides," par Lame, " A Manual of Applied

Mechanics," by W. J. Rankine, the "Cours de Mecanique appliquee," I.

Partie, by Bresse, and the " Theorie de la resistance et de la flexion plane

des solides," par Belanger. The treatise of Laissle and Schublen, " Ueber

den Bau der Briiskentrager," is a fair exponent of the state of science upon

this question, when it was written, and is therefore to be recommended.

Ruhlmann's ' : Grundziige der Mechanik," 3. Auflage (1860), contains also

a treatise upon the resistance of materials worth reading.

The " Civilingenieur " and the " Zeitschrift des deutschen Ingenieur-

vereins " contain several valuable treatises upon the theory of elasticity

and strength, particularly those by Grashof, Schwedler, Winkler, etc., as

well as several good translations from the French and English of Barlow,

Bounieeau, Fairbairn, Love, etc. The results of many experiments by Fair-

bairn, Karmarsch, Schonemann, Volkers, etc., are also given in these journals.



FIFTH SECTION,

DYNAMICS OF RIGID BODIES,

Fk

CHAPTER I .

THEORY OF. THE MOMENT OF INERTIA.

§ 279. Kinds of Motion.—Tho motion of a rigid body is

either one of translation, or of rotation, or a combination of the two.

In the motion of translation (Fr. mouvement de translation ; Ger.

fortschreitende or progressive Bewegimg) the spaces described

simultaneously by the different parts of the

body are parallel and equal to each other

;

in the motion of rotation (Fr. mouyement
do rotation; Ger. drehencle or rotirende

Bcwegung), on the contrary, the parts of

the body describe concentric arcs of circles

about a certain line, called the axis of rota-

tion (Fr. axe de rotation ; Ger. Umdre-
hungsaxe). Every compound motion can

be considered as a motion of rotation around

a movable axis. The latter is either varia-

ble or constant. The piston D E and the

piston-rod B F of a pump or steam engine,

Fig. 465, have a motion of translation, and

the crank A C has a motion of rotation.

The connecting rod A B has a compound
motion ; for one of its extremities B has a

motion of translation, while the other A
has a motion of rotation. The axis of rota-

tion of a cylinder, which is roiling, is con-

jsf

/
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stant, while that of the connecting rod A B is variable ; for its

position is determined by the intersection M of the perpendicular

B K to direction C B of the axis of the piston-rod and of the pro-

longation of the crank A (see § 101).

§ 280. Rectilinear Motion.—The laws of motion of a mate-

rial point, discussed in § 82 and § 98, are directly applicable to a

rectilinear motion of translation. The elements of the mass J/„

Ms, M3, etc., of a body, moving with the acceleration p, resist the

motion, by virtue of their inertia, with the forces Mx p, M«p, M3 p,

etc. (§ 54), and since the motions of all these elements take place

in parallel lines, the directions of these forces are also parallel ; the

resultant of all these forces due to the inertia is equal to the sum
M,p -f J\Lp + Mzp + ...== (Mi + Ms + M3 + . .

.)p = Mp,
when M denotes the mass of the whole body, and the point of ap-

plication of the resultant coincides with the centre of gravity. In

order to set in motion a body, whose mass is M and whose weight

is G — Mg and which in other respects is free to move, we re-

quire a force

Z = Mp±^,
9

whose direction must pass through the centre of gravity 8 of the

body.

If, in consequence of the action of the force P, the velocity c is

changed to the velocity v while the space s is described, the energy

stored by the mass is (§ 72)

Example.—The motion of the piston and piston-rod of a pump, steam-

engine, blowing-machine, etc., is variable ; at the beginning' and end of its

stroke the velocity is = 0, and near the middle of it it is a maximum. If

the weight if ihe piston and piston-rod = G, and if the maximum velocity

at the middle of its stroke = v. the energy stored by them in the first half

of the stroke and restored in the second half is

If Q = 800 pounds and v — 5 feet, we have

L = 0,0155 . 5 2
. 800 = 810 foot-pounds.

Now if half the stroke of the piston is s =. 4 feet, we have the mean

force, which is necessary to produce the acceleration of the piston in the

first half of the stroke and which the piston exerts in the second half, when

it is retarded,
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310 = 77|: pounds.

Fig. 466.

P^-

2 g s 4

§ 281. Motion of Rotation.—If the motive force P of a

body A B, Fig. 466, does not pass through its centre of gravity S,

the body turns around that point, and at the

same time moves forward exactly as if the force

acted directly at the point S, as can be shown in

the following manner. Let us let fall from the

centre of gravity S a perpendicular S A upon

the direction of the force and continue it in the

other direction until the prolongation S B is

equal to the perpendicular S A, and let us sup-

pose that two forces + ^ P and — \ P, which

balance each other and are parallel to P, are applied at B. The
force + A P combines with half the force P acting in A and gives

rise to the resultant

Px
= ±P + iP=:P

applied at the centre of gravity, while, on the contrary, the force

— IP forms with the other half Q P) of the force P applied in A
a couple ; hence the force P, applied eccentrically, is equivalent to

a forceP x
— P, which is applied at the centre of gravity, and which

moves this 'point and with it the body, and to a couple Q P, —
\ P), which causes the body to turn around its centre ofgravity 8
without producing a pressure upon it. The statical moment of

this couple is
"" =iP.JTT+ lP.inr=P.lfA-Fa,

or equaj to the statical moment of the force P applied in A in

reference to the centre of gravity S; the resulting rotation would

therefore be the same if the centre of gravity S were fixed and P
alone were acting.

If a body A B, Fig. 467, is compelled,

by means of guides D E, D x EXi to assume

a motion of translation, the eccentric force

A P = P produces the same effect upon

the motion of the body as an equal force

acting at the centre of gravity, and the

couple Q P, — ^ P) is counteracted by

the guides. If a is the eccentricity S A
cf the force P, or the distance of its direc-

tion from the centre of gravity S of the

body, and if b denotes the distance //K

Fig. 46<
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between the perpendiculars to the guides at the diagonally opposite

points Pand G and (N, — N) the couple, with which the body

acts on the guides, we have, by equating the moment of the

couples (1P,~| P) and (JV, - N)9

N b — P a, and therefore

a

I
JSf P.

Fig. 4(

Fig. 469.

If, finally, the body A Z>, Fig. 468, is prevented from moving
forward by the fixed axis C, the eccentric force

A P — P produces the same effect upon the

rotation of the body about this axis C as a

couple Q P, - i P) with the arm 2 aA =
2 OB = 2 a, or with the moment h P . 2 a —
Pa; for the remaining central force O P^ =
P, = P is counteracted by the bearings of the

axis (compare § 130).

§ 282. Moment cf Inertia.—During the rotation cf a body

A B, Fig. 469, about a fixed axis C, all pointsMl9 J/2 , etc., of it de-

scribe equal angles at the centreM
x
CNx

= 3L C i\T2, etc., = §*, which, when the

radii C D
x
= CD?, etc., — one (1) are

equal, correspond to the same arc

Dl Bx = A E» etc, = 4, =
Q̂

- x.

Since the velocity is determined by

the quotient of the clement 6 of the space

and the corresponding clement r of the

time, the annular velocity (Fr. vitesse an-

gulaire, Ger. Winkelgeschwindigkeit), i.e. the velocity of those

points of the body which are situated at a distance equal to the

unit of length (e.g. a foot) from the axis of rotation, is therefore

one and the same for the whole body, and its value is

and in like manner the angular acceleration, or the acceleration of

the rotating body at the distance = unity from the axis of rota-

tion, is the same for the whole body, and its value is
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o) denoting the increase of angular velocity in the element of

time r.

In order to find the spaces sl9 s29 etc., the velocities vl9 v29 etc.,

and the accelerations p X9 p29 etc., of the points MX9 M29 etc., of the

body, which are situated at the distances C Mx
— rl9 C M2 = r2,

etc., from the axis of rotation C9 we must multiply the angular

space (/>, the angular velocity w, and the angular acceleration p by

ri, r29 etc. ; thus we obtain

s x
= <j> rX9 s2 = (p rS9 etc.,

v x
= o) rl9 v2 = o) r29 etc., and

p x
= k rl9 p 2 = /c r29 etc.

If the whole mass M of the body is composed of the parts MX9

M29 etc., which are at distances equal to the radii rX9 r%9 etc., from

the axis of rotation C
9
the forces with which these elements of the

mass resist the rotation are

P^ — Mxp x
= kM

x r x , P2 = M2p 2 = fcM, r2, etc.,

an*l their moments are

. Pj rx
= kMx r

2

, P2 ra = n M2 r2

2

, etc.,

and the moment necessary to cause the body to rotate with the

angular acceleration a is

Pa — aMx rx

2

9 + k M2 r2

2 + ...

= k (Mx r x

2 + M2 r2

2 + Mz r3

2 + . . .).

In like manner (according to § 84) the energy stored by the

elements MX9 M^"etc., while they acquire the velocities vX9 v29 etc., is

A x = iM1 v1

2 = i(o2M1r1

2

9

A.2 = i M2 v2 = i w
2M2 r29 etc.,

and therefore the work done in communicating to the whole body

the angular velocity cj is

A=A X + A 2 + ...

= io)
2 {Mx r x

2 + M2 r2

2 + M3 r3

2 + ...).

The force of and the energy stored by a body in rotation de-

pends principally upon the snm of the products Mx r
2

-f M2 r
2 +

Mz r
2

. + ... of the different elements MX9 M29 etc., of the mass and

of the squares of the distances rX9 r29 etc., from the axis of revolu-

tion. This sum is called the moment of inertia (Fr. moment d'in-

ertie, Ger. Tragheits-, Drehungs- or Massenmoment), and we will

hereafter denote it by M r
2
or IF. Hence the moment of the force,

by which the mass M — Mx -f M2 + . . ., whose moment of

inertia is

W = 31 r
2 = Mx r x

2 + M2 r,
2 + . .

.,

37
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has imparted to it the angular acceleration k, is

1) Pa = icMr* = n W,

and, on the contrary, the work done in putting the mass M in ro-

tation with the angular velocity o> is

2) P s = i ^ Mr = ^w2 W.

If the initial angular Telocity of the mass was e, the work done

in increasing it to w is

Ps = J w
2 W- i e

2 W=
-i

(o)« - e
2

) W.

"We can also determine from the work done and the initial ve-

locity e the final velocity w ; it is

= v
/
e +

2P
W

Example.—If the body A B, Fig. 469, movable about a fixed axis C
and in the beginning at rest, possesses a moment of inertia of 50 foot-

pounds, and if it is set in rotation, by means of a rope passing round a

pulley, by a force P = 20 pounds, which describes the space s = 5 feet,

the angular velocity produced is

t /2Ps . /% . 20 . 5 ,-

i.e., every point at the distance of a foot from the axis of rotation de-

scribes, after this work has been done, 2 feet in each second. The time of

one revolution is

2 7T

t =— = 3,1416 seconds,
o

and the number of revolutions in a minute is

W= T =
M416 =

19
'
1 -

If the angular velocity « = 2 feet, just found, is transformed into a ve-

locity e '= f foot, the work performed by the body is

P
±

s
t
= [2

2 - (|-)
2
] .

-V°-
= (4 — &) . 25 =|| . 25 = 85,93 foot-pounds,

e.g., it has lifted a weight of 10 pounds 8,593 feet high.

§ 283. Reduction of the Mass.—If the angular velocities of

two masses Mx and M9 are the same, if, e.g., they belong to the

same rotating body, their living forces are to each other as their

moments of inertia IF: == Mx rx and Wo = M« n2

, and. if the latter

are equal, both masses have the same living force. Two masses

have, then, equal influence upon the state of motion of a rotating

body, and one can be replaced by the other, without causing a

change in that state, when their moments of inertia Mx rx and

M2 r* are equal, or when the masses themselves are to each other

inversely as the square of their distances from the axis of rotation.



§ 283.] THEORY OF THE MOMENT OF INERTIA. 579

With the aid of the formula Mx rx
= M2 r? we can reduce a mass

from one distance to another, i.e. we can find a mass M», which at

the distance rs has the same influence on the state of motion of the

rotating body as the given mass Mx at the distance rx, and this

mass is x _Ml rf_Wl

M-2 —
o.
—

^T>

i.e., the mass reduced to the distance rs is equal to the moment of

inertia of the mass divided ly the square of that distance.

Two weights Q and Qx, fixed upon a disc A C B, Fig; 470, at

the distances G B = Z> and C B x
— a from

the axis of rotation X X, have the same

influence upon the movement of the disc

in consequence of their inertia, when Q x a
2

- Q ]f or Q x
= —— . If, therefore, a force

P, whose arm is G A = G Bx
— a, causes

a body, whose weight is Q and whose dis-

tance from the axis of rotation is G B = b,

to rotate, we must reduce the latter to the

arm a, of the force P and put instead of Q,

and the mass moved by P is

M={p +
QV

'ffy

consequently the acceleration of the weight P is

_ Force _ P P a'

Mass P + Q
V PcC- + Q V

and the angular acceleration is

p Pa
ic = -- — —

a
-^g-Pa* + QV

Example.—If the weight of the rotating mass is Q = 360 pounds, its

distance from the axis of rotation is l = 2,5 feet, the weight acting as

moving force is P = 24 pounds and its arm is a = 1,5 feet, the mass

accelerated by P is

M=
[
P +

(S)

!

«] : g = °'031
(
24 + T •

36
°)
= °'(

= 31,74 pounds,

and the acceleration of the weight is

24
P = gp^4 = 0,756 feet,

,031 . 1024
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on the contrary, that of the mass Q is

5 5 5 . 0,756 nMJf
'*

L

q = a' P
=

3
P= 3 =

'

6 feet
»

and the angular acceleration is

k = £ = 0,504.
a

, After four seconds the angular velocity is

w = 0,504 . 4 = 2,016 feet,

and the corresponding space described is

}rlot= M!*jLii_ = 4 032 feet,
2

' '

hence the angle of rotation is

__
^0o2

^ lg()0 __ 1 ^ ^ 1800 __ 2310 1#
7T

and the space described by the weight P is

pt* 0,756 .42

J = Y'= ~2—5 — C
>
048 feet -

§ 284. Reduction of the Moments of Inertia.—If the

moment of inertia of a body or of a system of bodies in reference

to an axis passing through the centre of gravity 8 of the body is

known, the moment of inertia in reference
Fig. 471.

^ any ther axis, parallel to the former, can

easily be determined. Let 8, Fig. 471, be

the first axis of rotation, which passes through

the centre of gravity, and D the other axis

of rotation, for which the moment of inertia

is to be determined ; let 8 D = dhe the dis-

tance between the two axes and 8 JVX = xx

and N
x
M

x = . yx
the rectangular co-ordinates of an element Mx of

the mass of the whole body. The moment of inertia of this ele-

ment in reference to D will be

= M
X .D MS = Mx

{D NS + JVi MS) = Mx [(d + xtf + yS]

and in reference to 8
= M

x . 8MS = Mx {8NS + NX MS) = Mx {xS + yS),

and, therefore, the difference of these moments is

= Mx {d
2 + 2dxx + xS + yS) - Mx (xS + yS) = Mx d

2 + 2M, dxx.

For another element of the mass it is

= M2 d
2 + 2M2 dxt,

for a third it is

— Mz d
2 + 2Mz dxz,

and, therefore, the moment of all the elements together is

= (M
x + M2 + M3 + . . .) d

2 + 2 d (Mx x x + 3L x2 + Mz xz + . . .)•
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Bat Mx + M2 + . . . is the sum M of all the masses and Mx xx
4-

M, x.2 + Mz xz is the sum M x of the statical moments ; hence it

follows that the difference between the moment of inertia Wx of

the whole body in reference to the axis D and its moment of inertia

W in reference to 8 is

Wx
- W— Md2 + 2dMx.

But since the sum of the statical moments of all the elements

upon one side of every plane passing through the centre of gravity

is equal to that of the moment of those on the other, the alge-

braical sum of all the moments is = 0, and we have M x = 0, and

consequently

Wx
- W=M<F,

lb Wx=W + M d\

The moment of inertia of a body in reference to an eccentric axis

is equal to the moment of inertia in reference to a parallel axis

passing through the centre of gravity plus the product of the mass

of the body by the square of the distance of the two axes from each

other.

We see from this that of all the moments of inertia in reference

to a set of parallel axes that one is the least, whose axis is a line

of gravity of the body.

§ 285. Radius of Gyration.—It is very important to deter-

mine the moment of inertia for various geometrical bodies ; for the

values thus deduced are frequently employed in the different calcu-

lations in mechanics. If the bodies, as we will hereafter suppose,

are homogeneous, the different portions Ml9M59 etc., of the mass, are

proportional to the corresponding portions V19 F2, etc., of the vol-

ume, and the measure of the moment of inertia, or as it is generally

called, the moment of inertia, can be replaced by the sum of the

products of the portions of the volume and the square of their

distances from the axis of rotation. In this sense we can also

determine the moment of inertia of lines and surfaces. If we
imagine the entire mass of a body concentrated in one point, we
can determine the distance of the same from the axis, if we sup-

pose that the moment of inertia of the mass, which is thus concen-

trated, is the same as it was, when distributed through the whole

space. This is called the radius of gyration (Fr. rayon d'inertie,

Ger. Drehungs- or Tragheitshalbmesser). If IF is the moment of

inertia, M the mass and Tc the radius of gyration, we have

M h2 = W9 and therefore

"W=/
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We must also remember that this radius does not give a definite

point, but only a circle, in whose circumference the mass can be

distributed arbitrarily.

If in the formula Wx
= W + M cV we substitute W = M F

and W\ = M k*, we obtain

Jc* •= h* + d\

i.e., the square of the radius of gyration in relation to any axis is

equal to the square of the radius of gyration in reference to the line

of gravity parallel to that axis plus the square of the distance of

the two axes from each other.

§ 286. Moment of Inertia of a Rod.—The moment of inertia

of a rod A B, Fig. 472, which revolves about an axis X X passing

through its middle S, is determined in the fol-

lowing manner. Let the cross-section of the

rod be = F and half its length be = /, and the

angle, which its axis makes with the axis of

K
B rotation, i.e. A 8 X, be = a. Let us divide the

half length of the rod into n parts, the contents

TP 1

of each of which are : the distances of the
n

different portions of it from the centre S are

12131
-, —, —, etc., hence their distances from the
n n n

— I
axis of X X, such as M X, are = - sin, a,

1%

— sin. a, — sin. a, etc., and the squares of the
n n

latter ar
ilsin.aY . (I sin. a\°

rt
(lsin.av>

Multiplying these squares by the contents — of an element
lb

and adding the products thus obtained, we obtain the moment of

inertia of the rod

F_

n

F l
3
sin. a2

T = El V

(

l sin. a\*
|
4

/I sin, a
y ^ 9

/I sin, ay
{ ^ 2

(I
s

4- 2
2 + 3" + . . . + n') y

n

but since l
2 + 2

2 + 3
2 + . . . + w = r
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we have

W = F F sin.
2 a

Now cince F lis the volume of the half rod, which we treat as

the mass M of the body, we have

W= i MV sin.
2
a.

The distance of one end of the rod from the axis XX is

A C=BD = a = l sin. a,

and, therefore, we have more simply

which formula applies to the entire rod, when we understand by

M the mass of the whole rod.

The moment of inertia of a mass Mx at the end A of the rod is

Mx a
2

; if, therefore, we make Mx
— \ if, Mx has the same moment

of inertia as the rod. Hence, so far as the moment of inertia is

concerned, it makes no difference whether the mass is equally

distributed along the rod, or whether one-third of it is concentrated

at the end A. If we put W = M ~kr, we obtain Jc
2 —

-J
a

2

, and,

therefore, the radius of gyration of the rod is

Jc = a V\ = 0,5773 . a.

If the rod is at right angles to the axis

of rotation a = I, and consequently

W= I Ml2
.

If, finally, the rod does not lie in the

same plane as the axis of rotation, if the

shortest distance between the axis of rota-

tion and the axis of the rod is

ss1 = c c:= DD
X
= cl,

and if the normal distances A C — B D of

the ends A and B of the rod from the axis

CD, passing through the centre of gravity

S of the rod and parallel to C\ B x is «, we
have {according to § 284) the moment of,

inertia of the rod

W1 = W + i Ma" - M(d2 + i a2

).

§ 2S7. Rectangle and Parallelopipedon.—The momentj

of inertia of plane surfaces are found in exactly the same way as

their moments of flexure W = Fx z? + F2 z{ + . . . We can, con-
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sequently, employ here the values of W, found in the last section

for various surfaces, as their moments of inertia W.

For the rectangle A B G D, Fig. 474, the moment of inertia in

reference to the axis X X, which runs

parallel to one side and through the

middle S of the figure, is, according to

§226, bj?
W " 12"'

h denoting the width A B = G D paral-

lel to the axis of rotation and li the

length A D = B C of the surface,

But the area of this surface can be re-

garded as the mass M, and therefore

we have

W = Mh> M {h

12 ~ 3 V2/
?

I.E. equal to that of one-third of this mass concentrated at the dis-

liixmceSF=S G
2
from the axis of rotation.

If this rectangle turns upon an axis Z Z, which is at right

angles to its plane and which at the same time passes through the

middle S of the figure, we have, according to § 225,

Mlf
12

M(d\
3

W Mb" _ M {V + ft
8

) _ M r/hY /b\
2
i

+
12 "~ 12"" ~ 3 LW +

\2/J

Fig. 475.

d designating the diagonal A C = B D of the rectangle. We can

imagine here also one-third of the whole mass to be concentrated

at one of the corners A, B . . .

Since a regular parallelopipedon B E F, Fig. 475, can be decom-

posed by parallel planes into equal

rectangular slices, this formula is

applicable, when the axis of rota-

tion passes through the centres of

two opposite surfaces. It 'follows

also that the moment of inertia of

the parallelopipedon is equal to the

moment of inertia of one-third of

its mass applied at one of the corners A.

-x
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§ 288. Prism and Cylinder.—By the aid of the formula for

the moment of inertia of a parallelopipedon, we can also calculate

that of a triangular prism,. The diagonal plane AD F divides the

parallelopipedon into two equal triangu-

lar prisms, whose bases ABB, Fig. 476,

are right-angled triangles. The moment
of inertia for a rotation about an axis

X X, passing through the middles G and

K of the hypothenuses, is = .^ M cV.

Now if we employ the rule given in

§ 284, we obtain the moment of inertia

in reference to an axis Y Y passing through the centres of gravity

SaadL81

W = &M& -M. G 8' -*(£ GB

-*[£- @i
I.E.

W= i-s Md\
and it follows also that the moment of inertia in reference to the

edge B His

Wx
= W + M.-SB*"= -J

g M cV + M (J df = T% M d*

= iMd%
d denoting the hypothenuse A D of the triangular base.

For a prism A D F E, Fig. 477, whose bases are isosceles- tri-

angles, the moment of inertia in reference to an axis XX, joining

the centres of gravity of the bases, is Wt

= J M d*, d denoting the side AD —
A E of one of the bases; for this surface

can be divided by the perpendicular A B
into two right-angled triangles. Now if

the altitude A B of the isosceles triangles,

which form the bases, is = li, we have the

moment of inertia of this prism in refer-

ence to the axis Y Y passing through the

centres of gravity of the bases

W= ^Md" - Jf(|)
9

=-af(i<p-i/V)

in
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and, finally, the moment of inertia in reference to the edge, passing

through the points A and F of the bases, is

w1
= w + m (| ny = m (^ - A2

+ *£}

^

= JJf(J# + A*).

By the aid of the latter formula, we can calculate the moment
of inertia of a regular right prism A D F K, Fig. 478, which re-

volves about its geometrical axis. Let CA
= C B = r be the radius of base or of one

of the triangles composing the base, h the al-

titude CN of one of these triangles-^ C B,

andM the mass of the whole prism, then, ac-

cording to the last formula, when we substi-

tute r for d, we have

W=i3l(^- + 7r).

The regular prism becomes a cylinder, when h becomes equal

to r, and the moment of inertia of the cylinder in reference to its

geometrical axis is

(r2
\W= 5 M\j + r

2

}
= \Mr\

The moment of inertia of a cylinder is equal to the moment of

inertia of half the mass of the cylinder concentrated upon its cir-

cumference, or equal to the moment of inertia of the whole mass at

the distance

b = rV$= 0,7071 . r.

If the cylinder A B D F, Fig. 479, is holloiv, we must subtract

the moment of inertia of the hollow space

from that of the solid cylinder. Let I

denote the length, r the radius C A of

the exterior and r2 that G of the interior

cylinder, then we have, according to the

above formula, for the moment of inertia

of the hollow cylinder

:
i n (n

2
. n2- ri . r{) I — 1 n (rj

4- n>
4

) I

= i rr (r
2 - r2

2

)
(rx

8 + r}) l = ±M (r,
2 + r{)

;

for the volume of the body, which may also be considered as its

7*1 -f* r*

mass, is = tt (r
2 — r.

2

) I If r denotes the mean diameter

and l the width r x
— r.2 of the annular surface, we have

Fig. 479.

-X-

W=^(M1 r1

2 -M,r,

%
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§ 289. Cone and Pyramid.—With the aid of the formula

for the moment of inertia of a cylinder we can

calculate those of a right cone and of a pyramid.

Let A C B, Fig. 480, be a cone turning upon its

geometrical axis and let r = D A = D B be the

radius of its base and h = CD its altitude, which

coincides with the axis. If by passing planes

through it, parallel to the base and at equal dis-

tances from each other, we divide it into ii slices,

we obtain n discs, whose radii are

r r
2 -, 3 -
n ii

and whose common height is -
; the volumes of

ii

these slices are

n (ay * - i^y * „ (^sy \
\iil '

ii' \ 11 I '
ru \n I ' n'

and consequently their moments of inertia are

~ (
?iy jl rr (iiy a n i^iy

etc.,

, etc.

The sum of these values gives the moment of inertia of the entire

cone

W
it r h

2nb

i.e., since l
4 + 2

i
-f 3

4 +
n r~ h

(l
4 + 2

4 + 3
4 + . . . + 11%

ii* — — and the mass of the cone is
5

M =

W= nr'h 3^

10

re r
2 h Mr\

Fig. 481.

x

k

10 10 3 10

In like manner we have under the same cir-

cumstances for a right pyramid ACE, Fig. 481,

whose base is a rectangle,

W = i Md\
in which formula d denotes the half D A of the

diagonal of the base.

We obtain, by subtracting one moment of

inertia from another, the moment of inertia of a

frustum of a cone (A B E F, Fig. 480) in refer-

ence to its geometrical axis X X.
Ifwe denote the radiiD A and O Fhj 1\ and r»

and the altitudes CD and C O by lh and 7h, we have
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I; K (T**fc-n^ = ia W - r2

5

),

or, since the mass is

M -h
x

g (n
2

ft, - r2

2
h,) = ^~ (r,

1

r*),

W

§ 290. Sphere.—In the same manner the moment of inertia

of a sphere, revolving upon one of its diameters D E — 2 r, is

determined. Let us divide the hemisphere A D B, Fig. 482, by

planes parallel to its base A C B, into n

equally thick slices, such as G K H, etc.,

and let us determine their moments. The

square of the radius G K of one of these

slices is

GK* = TTG" - CW=r - Cir\
and, therefore, its moment of inertia is

i 7T. -(r2 - GK
n v

77 r

2w v

^* 2 f S ^ ?? t*

Substituting successively for C K, -, —, —,,etc, to — and

adding the results, we obtain the moment of inertia of the hemisphere

-2nlnr of ' 3
+ W " 5 J

I.E., TT
?7 r

(i-l + i)
4?rr

JN"ow since the contents of a hemisphere are Jf= | n r
3

, we can

put W= |.|77r3 .r2 = | 3/r
2

,

and if we consider if as the mass of the whole sphere, the formula

still holds good.

The radius of gyration is

1c = r VI ~ 0,6324 . r ;

two-fifths of the mass of the sphere, at a distance equal to the

radius of the sphere from the axis of rotation, has the same moment

of inertia as the entire sphere. The formula

W=%M r
holds good also for any spheroid whose equatorial radius is = r.

(See §123.)
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If the sphere revolves about another axis at the distance d from

the centre, we must put the moment of inertia

W = M (d
2 + | r

2

).

§ 291. Cylinder and Cone.—The moment of inertia of a

circle A B D E, Fig. 483, in reference to an axis passing through

its centre C and at right angles to the plane of the circle, since all

points are at a distance C A = r from the axis, is

W=Mr\ _
and consequently that in reference to a diameter X X or Y Y
(compare § 231) is

Wx =1 W= -J
Mr2

.

On the contrary, the moment of inertia of a circular disc

A B D E, Fig. 483, which revolves about its diameter B E, is

found to' be, like the moment of flexure of a cylinder,

_ 7T r
4 _ Mf_-

~T~ ~ 4
'

consequently the radius of gyration of this surface is

Je = r V\ = I r,

i.e., half the radius of the circle.

Fig. 483. Fig. 484.

Y

A

From this we can calculate the moment of inertia of a cylinder

A B D E, Fig. 484, which revolves around its diameter F 67, which

passes through its centre of gravity S. Let I be the half height

A F and r the radius A = C B of the cylinder, then the volume

of one half of it is = n r
2

1, and if we- pass through it planes

parallel to the base and at equal distances from each other, we
it r" Ji

decompose this body into n equal parts, each of which is = —

—

lb

I 21
and the first of which is at a distance -, the second at a distance—

,

n n

the
31

third at a distance —, etc., from the centre of gravity S. By

means of the formula in § 284, we obtain the moments of inertia

of these discs or slices
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^["• + G,)*Ff'[

•-fb - *mi
m

etc..

whose sum is the moment of inertia •

r

28 + 3
2 + + «3

)]

o/ 7iajf £7*6 cylinder. This formula holds good for the w7*0fc cylinder.

when Ji" denotes its mass.

The moment of inertia of a right prism A B D, Fig. 485, in

reference to a transverse axis XX passing through the centre of

gravity S is determined in a similar way. Let h be the radius of

gyration of the base A B of the prism in reference to an axis N N,

passing through the centre of gravity C of the base and parallel

to XX, and let I denote the half length or height C S = D 8 of

the prism ; we have the required moment of inertia in reference

to the axis XX
W = M{¥ + | J

1

).

Fig. 486.

-X

In like manner we find for the right cone A B D, Fig. 486,

whose axis of rotation passes through its centre of gravity at right

angles to its geometrical axis C D,

§ 292. Segments.—The moment of inertia of a paraboloid "of

revolution BAD, Fig. 487, which revolves around its axis of

revolution A C, is determined in a similar manner to that of a

sphere. If the radius of the base is C B — C D = a, and the

altitude GA = h, and if we divide the body into slices of the

height -, we have their contents
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1

591

h= - 7T

n
h 2

2 h 3
a\ etc.,

n ' n n ' n n

for the squares of the radii are as the altitudes or distances from

the vertex A. Erom this we obtain the moments of inertia of the

successive disc-shaped elements of the body, which are

h . n ai h tt 4 a* h n 9 a*

n ' 2 ' ni9 n ' 2 '
ri* n

-, etc.,

and consequently the moment of inertia of the whole paraboloid is

:~ (1
S

2n
7T a2 h

2nz

a
-

3
=lMa?;

for the volume of this body is M tt a? h

2 '

Fig. 487.

This formula may be applied to a low

segment of a sphere.

If the altitude h of such a segment is

not very small compared with a, we have

for the moment of inertia of one of its

slices

h
. V (2 r - hY

2 n 2 n
h

4rA' + h%= -—
. (4 r

2 ¥
2 n K

in which r denotes the radius of the sphere.

Now if we substitute for h successively the values -,
, — , etc.,J

n' n' n'
we obtain the moment of inertia of the segment of the sphere

15 rh + S h%=w^
The volume or the mass of the segment of the sphere is

M=TT7i i (r-ih),
and therefore

W=T:h>(r-ih).^(r-^h+^.v^%)

%Mh [r~ T%h +

generally it is sufficiently correct to put

.
' TT=| Mh{r- 1%h) = \M(a2 + \h*).

This formula is applicable to the ~bo~b of a pendulum.
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§ 293. Parabola and Ellipse.—For the surface A B D,

Fig. 488, of a parabola, if, instead of the surface F} we substitute

the mass M or change F into M, and if Ave

denote the chord A B by s and the height

of the arc CD by li, we have (according to

§ 233) the moment of inertia in reference

to the geometrical axisX Xoi this surface

Ms*
Fi =

20 '

and that in reference to the axis Y Y,

passing through the centre of gravity S at

right angles to X X, is

Hence the moment o£ inertia in reference

to an axis, passing through 8 at right angles to the surface of the

parabola, is

r= m + r, = J/ (£ + t%f) = i Jf[(jy+«4
For such an axis, passing through the vertex Z> of the parabola,

the moment is, since D S = f h (§ 115),

IT, ±= IF + J/ (! A)' = iM [(|)° + y ft'}

and, on the contrary, the moment in reference to an axis passing

through the centre G of the chord is

w* =w+m (| hy = i m
[(^-)

2

+ f iA.

This formula is also applicable to aprism whose bases are para-

bolas, e.g. a working-beam, which consists of two such prisms

oscillating about an axis passing through their middle C.

The moment of inertia of an ellipse ABA i?, Fig. 489, whose

semi-axes are C A = a and C B = £, in

reference to the axis B B, is (according

to § 231)

_tra*b _ Jf#9

Ml ~~4~ ~ ~1T?

and that in reference to the axis A A is

_ - a V _ Mb*n,-
4

-
4 ;

hence the moment of inertia in reference
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Fig. 490.

to an axis, passing through the centre C at right angles to the plane

of the figure, is

W= Wx + W,--=\ Mia 1 + ¥).

(§ 294,) Surfaced and Solids of Revolution.—The mo-

ments of inertia of surfaces and solids ofrevolution can be determined

with the aid of the Calculus by means of the following formulas.

1) If a zone or belt P Q ft Px, Fig. 490, whose radius is M P
= y and whose width is P Q = d s, is

caused to revolve around its geometrical

axis A C, we have (according to § 125) its

area

d = 2 n y d s,

and its moment of inertia is

y
1 d — 2 n y

3 d s;

hence the mement of inertia of the whole

stifface of revolution A P P
x
in reference

"to its axis A C is

W= UnJ
t

y
3
ds.

'
2) For a slice P Q Qx P x, whose volume is d V = rr y* d x, the

moment of inertia in Reference to the axis A G is (according to

§ 288)
%

d V-.y* _~y* dx
2 ~ ~~2 '

and consequently the moment of inertia for the whole solid of rev-

olution A P Px is

Jrl
If A P is an arc of a circle, in which case the surface generated

by its revolution is a spherical cup or zone, we have

y
1 = 2 r x — x* and y ds = r dx,

and consequently the moment of inertia of this zone is

W= 2 ttJ*(2 r x - x*) r d x — 2 n r U rfx d x -Jx
n

-dx\

— 2 Trr (r x* — -— I,

or, if we substitute h for the altitude A M = x, we have

W=2r:rh2
(r -

|)
= M h (r -

|),

since \he area or mass of the zone is M — 2 n r h>

38

L/V d x.
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For the entire surface of the sphere h = 2 r, and therefore

W = 1 Mr\
If, on the contrary, A P is the arc of an ellipse, and conse-

quently the solid of revolution A P P
x generated by the rotation

of the plane surface A P M a segment of an ellipsoid of revolution,

we will have

and therefore its moment of inertia in reference to the axis A C is

W^l.-^f&ax-xydx

== ^—i I (^ ^
2
x* — 4c ax3 + x*) cl

x

e.g. for the entire ellipsoid, in which case x — 2 a,

W = T% 7T J
4 « = | . 1 7T a ¥ . 5

a = I if J
9

;

for the contents of this body are expressed by — . f n as = | 7r a J*

(compare § 123).

3) If the belt P Q Qx Px revolves about an axis passing through

A at right angles to its geometrical axis A C, we have (see § 284

and § 291) its moment of inertia

= d (x
2 + ly") = 2 n (x* + ± tf) y d s,

and, therefore, the moment of inertia of the whole zone A P Px is

W - 7t f(2 x2 + f) y d s.

4) If the entire disc P Q Qx Px revolves around this same axis

passing through A, its moment of inertia is

d V (* + \ f) =tt f (x
2 +

-I f) dx,

and, therefore, that of the entire body A P Px is

If = it f(z* + | f) y
1 d x.

For a paraboloid of revolution (see § 292), we have, when we
denote its altitude A Mhj h and the radius of its base MP by a,

y
1 _ x

and consequently the moment of inertia in reference to the axis of

ordinates passing through A is

W=TJ r + i ir)
xdx = -A~\i x + ATT/'
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or, when we substitute x = h,

W=ina2
h (h

2 + \a2)=±M (¥ + } a
2

),

since the volume of this body is = ± tt a2 h (comp. § 124).

Hence we have the moment of inertia of this body in reference

to an axis, passing through the centre of gravity S at right angles

tokA C
W1 = iM(hi»"+ j a') - {i\

% Mh% = I Mia
2 + J ¥).

§ 295. Accelerated Rotation of a Wheel and Axle.—
The most frequent applications of the theory of the moment of

inertia are to machines and instruments ; for rotary motions

around a fixed axis are very common in them. Since throughout

this work we shall meet with very many applications of this theory,

we shall treat here but a few simple cases.

If two weights P and Q act by means of two perfectly flexible

strings upon the wheel and axle A C DB, Fig. 491, if their arms are

CA — a and D B = b and if the jour-

nals are so small that the friction can

be neglected, the machine is in equi-

librium, when the statical moments

P . G A, and Q . D B, are equal to

each other, or when Pa— Qb. If,

Fig. 491.

on the contrary, the moment of the

weight P is greater than that of ft

or?fl> Q b, P will fall and Q will

rise ; on the contrary,* if P a < Qb,

Let us therefore seek the relations of

taking, e.g., Pay Qb. The force,

which acts with the arm b and corresponds to the weight Q, pro-

duces a force , whose arm is a and which acts in opposition to

the force corresponding to the weight P, so that the motive force

m action at A isP — -*—,

P will rise and Q will fall,

the motions in this case,

Qb

The mass—, reduced from the arm b to

9 .

the arm a, is—Ti hence the mass moved by the force P Qb
g a

is

M

or, if the moment of inertia of the wheel and axle is W Gh"
and
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therefore the mass of the same reduced to A is

[§ 295.

more accurately

Gk*—r, we nave
gtf

=
(
P + V~ +

tf)
: V= <Pa' + V +GV):ga>

Hence the acceleration of P or of the circumference of the

wheel is Qb
motive force * a

P = _ I 9*

ffa>

mass Pa2 + Qb2 + Gk2

- Pa—Qh
~ Pa2 + QV+ GW

hence the acceleration of the rising weight Q or of the circum-

ference of the axle is

b P a- Q
P .gb.Pa*+ Qb* + Gfc

The tension of the cord, to which P is attached, is

Pp _

g V gl v

and that of the cord, to which Q is attached, is

and, therefore, the pressure on the hearings is

76),

S + Sl = P + Q-ll + ^l P + Q
(Pa-QbY

Pa* + Qb* + G V
The pressure on the bearing of a wheel and axle, when in rota-

tion, is consequently less than when it is standing still.

From the accelerations p and q the other relations of the mo-

tion can be found ; after t seconds the velocity of P is

v = p t

and that of Q is

v, = qt;
Fig. 492. the space described by P is

s = Ipt*
and that by Q,

* = 2 g ?•

Example.—Let the weight upon the

wheel, Fig. 492, be P=60 pounds and that

on the axle, Q = 160 pounds ; let the arm

of the former be G A = a = 20 inches

and that of the latter5 5 = 5 = 6 inches,

and let the axle be composed of a massive cylinder, weighing 10 pounds,
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and the wheel of two rings, one weighing 40 pounds and the other 12

pounds, and of four arms, weighing together 15 pounds ; finally, let the

radii of the large ring A E be = 20 and 19 inches and those of the smaller

one F G be = 8 and 6 inches. Required the conditions of motion of this

machine. The motive force at the circumference of the wheel is

fc
P _ - Q = 60 - /o . 160 = 60 — 48 = 12 pounds,

a
and the moment of inertia of the machine, when we disregard the masses

of the ropes and journals, is equal to the moment of inertia of the axle,

which is WW 10 . 6 2

= T" = ~2~~ = 180
>

plus the moment of the smaller ring, which is

= B t
(r

t
» + V) _ 12. (8* +6*) = eoo
2 2

plus the moment of the larger ring, which is

= JV(r 3
g +r4

s)

= 40.(202 + 192) = ^m
2 2

plus the moment of the arms, which is, approximately,

_ A(rS -V) _ A (rt
» + r

t
rK + rA ») _ 15 . (19» + 19 . 8 + 8*) OQQR~ 8(r4 -rt )

~ ~~~ ~~3
~

3
~ 2885

;

hence, by addition, we obtain

Q &s = 180 + 600 + 15220 + 2885 = 18885,

or, taking the foot as the unit of measure,

18885 '„,

= ^44- =131
'
14

The whole mass, reduced to the radius of the wheel, is

60 + 160.0,09 + -

i^-j. 0,031

= (60 + 14,4 + 47,21) . 0,031 = 121,61 . 0,031 = 3,76991 pounds.

Hence we have the acceleration of the weight P, or that of the circum-

ference of the wheel,

p-\q
18

P Pa*+ Qb* + gjfc»
' 9 '

8,7 6991 ~ 3
'
183 feet

;

a 2

and, on the contrary, that of Q is

g = -# = &. 3,183 = 0,955 feet;
Ob

the tension on the rope to which P is hung is

8 = (l -^ . P = (l - |g?) . 60 = (1 - 0,099) . 60 = 54,06 pounds,

and that of the rope supporting Q is

#i= (l 4- -V Q = (1 + 0,955 . 0,031) . 160 = 1,03 . 160 = 164,8 pounds

;

consequently the pressure on the bearings is 8 + 8
t
= 54,06 + 164,8

= 218,86 lbs., or, if we include the weight of the machine, it is = 218,80
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-f 77 = 295,86 pounds. At the end of 10 seconds P has attained the ve-

locity v = p t = 3,183 . 10 = 31,83 feet, and has described the space s =
V~ = 31,83 . 5 = 159,2 feet, and Q has been raised up 8t = - 3=0,3 .159,2

til Gj

= 47,76 feet.

§ 296. The weight P, which imparts to the weight Q the ac-

celeration

P ab - QV
q P a* + Q b* + G ¥ ' 9:

can be replaced by another P1? without changing the acceleration

of Q, when the arm of the latter is al9 in which case we have

P
l a l

- Qb Pa - Qb
Pi a? + Q V + GJ? ~ P a? + QF + G V

If we designate the quantity r—-

-

—-=— by c, we obtain

Qb{b + c) + GV
d x

C (X\ — p j

and the required arm of the lever

i/(l)-„ = *.*- «»<» + -)«'*

-P.

We find, also, by the differential calculus, that the greatest ac-

celeration is imparted to Q by P, when the arm of the latter cor-

responds to the equation P a" — 2 Q a b = Q V + G k°; or when

~ - p • r Vp/ p
The foregoing formulas become very complicated, when we take

into consideration the friction of the journals and the rigidity of

the ropes. If we denote the resistance due to both of these, reduced

to a radius r, by F, we must substitute, instead of the motive force

b b + FtP Q, the expression P — — — , and then we have the
a * * a

acceleration of Q
(Pa- Fr)b-Qb

and

q ~ Pa 2 + QF + GV '
g

Qb + Fr //<g& + Pr
y [

QF + G &

Example—1) If the weights P = 30 pounds and Q = 80 pounds act

with the arms a = 2 feet and h = $ foot upon a wheel and axle, and if the

moment of inertia of this machine is G 7j
2 = 60, the acceleration of the

rising weight Q will be
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gp , 2 .
1 _ 80 . ft)

' 30-20 32^2

q ~ 30 . 2
2 + 80 .

(i) 2 + 60 ' g ~ 120 + 20 + 60
' ' 20

= 1,61 feet.

Now if we wish to produce the same acceleration with a weight P
t
=

45 pounds, the arm of P
x
must be

C ^i/(C Y 8O.HI + <0 4- 60

but _ 200
c ~ 60-40 ~ 10

'

hence / 32
«
1 =5±|/25- — = 5 ± £ . 11,358 = 5 ± 3,786

= 8,786 or 1,214 feet.

2) The acceleration of Q is a maximum when the arm of the force or

radius of the wheel is

4- . 80 t //40V 30 + 60 4 J
/l6 24 4 + V40

^Vv+r (3o)
+ -^o— =

3
+ r t + t = "it~

= 3,4415 feet,

and this maximum acceleration is then

/ 30. 1

"~
V30 . (3

,7207 - 20 \ 31,621 QQQ

,4415)
2 4- 80/ * 435,32

3) If the moment of the friction and of the rigidity of the ropes be

Ft = 8, we must substitute, instead of Q 5, Q l + Ft = 40 + 8 = 48,

whence it follows that

48
" = 30

+ i/(!ljy+ 1 =i ^ + v5
'
22? = 3

3
886 fe^

and that the corresponding maximum acceleration is

80.1,948- 8.1-20 .34,29 o _
? T 30 . (3,8867T80— ^ " 533 *

°V ~ 2'°7 fect

§ 297. Atwoo&'s Machine.—The formulas for the wheel

and axle found in § 295 are applicable to the simple fixed pulley;

for if we put h — a, the wheel and axle becomes & fixed pulley. Ee-

taining the same notations that we employed in the foregoing

paragraphs, we have the acceleration with which P sinks and Q
rises

(P - (?) a3

P -V ~ (P + Q) a2 + G V' 9'

or, taking the friction into consideration,

_ (P- Q)a'-Far
P ~ q ~ (P + Q) a* + G ¥ ' g'

In order to diminish the friction, the axle G of the pulley A By

Fig. 493, is placed upon the friction-wheels D E F and D
x
Ex Fx

.

^Tow if the moment of inertia of these wheels is -G x kx
* and their
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radius is D E = B x Ex
— au we have, when F designates the fric-

tion reduced to the circumference of the axle C,

(P - Q)o; - Far
P = q =

67 lr
a{

ff>

(P + Q) c;

for the moment of inertia of these friction rollers, reduced to their

circumference or that of the axle of the wheel, is —

Inversely we have the acceleration of gravity

(P + Q) a? + G ¥ + Gt
^4-

('{

9 = P-

Fig. 493.

(P - Q) dz - Far
When the difference P — Q, of the two weights is small, the

acceleration p is small and the motion is

consequently very slow ; hence the resist-

ance opposed to the weights by the air

is unimportant, and the acceleration of

gravity can he determined with a certain

degree of accuracy by means of such an

apparatus, while the determination of it by

observations upon a body falling freely is

impossible. Experiments of this kind were

first made by an Englishman named At-

wood (see Atwood's treatise on Kectilinear

and Eotary Motion), and for this reason

the apparatus is known as Atwood's Ma-

chine. The scale H K, along which the

weight P falls, serves to measure the

distance fallen through. Erom the spaces

fallen through and the corresponding time

t we obtain
2.5

V f

but if during the fall we remove the motive

force by causing the weight L L, which is

made in the shape of a ring and is equal to the force, to be caught

by the fixed ring JViV^the remainder of the space s„ through which

the weight P falls, will be described uniformly, and the velocity,

which is determined by the time t
x
(which can be observed by

means of a good watch), is

Pv =
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and the acceleration is

601

P =?
tti

If we make tx
= t = 1, we obtain directly by the experiment

p = *,. Substituting this value of p in the above-mentioned

formula, we obtain the acceleration g of gravity.

Fig. 494.

§ 298. Accelerated Motion of a System of Pulleys or

Tackle.—The accelerations of the weights P and Q, which are

supported by a system composed of a fixed pulley A B, and a loose

pulley E G, Fig. 494, are found in the following

manner. Let the weight of the pulleys A B and

E G be-= G and G1} their moments of inertia G k 2

and Gx h*, their radii C A — a and D E• = ax and

their masses reduced to the circumference M =

a certain distance s, Q + Gx rises
-J

s (§ 164), the

-^ and if, = -^.^|.
«2

# «!
If the weight P sinks

work done is therefore P s

in sinking the weight P has acquired the velocity v,

{Q+G,)~. Now if

then the velocity - is communicated to Q + #i, the velocity of the

pulley A B at the circumference is v and the pulley E G acquires

v
at its circumference the velocity - ; for in rolling motion the mo-

tions of translation and of rotation are equal to each other. The
sum of the living forces, corresponding to the masses and velocities, is

— . v* +
9

Q+G
x

9 •(0 ffa 9

putting the half of it equal to the work done, we obtain the equation

V 2 / \ 4 a2 4 a* J 2 g

Hence the velocity corresponding to the space s, described by P, is

tg (' - *p)
p +

+ Gx
G ¥ GJcl

4
+

a"
+

4«!
2
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have p i

<2+ £i

For the accelerationp we have p s = ~, and therefore

p = * \

, 4
+

a2 +
4 a* I

The acceleration of Q + ^ is^ 2
= -§, and the rotary accelera-

tion of 6^ is also the same. The tension on the rope B E, which
unites the two pulleys, is

for the force I P -f
—

—

\ -L is expended in producing the accel-

eration of P and # ; the tension on the rope G II, which is

fastened at one end, is, on the contrary,

Gx h 2 p
.

«i 2#
for the pulleyE G is set in rotation by the difference 8 — Sx

of the

tensions on the rope.

Example.—The weights P = 40 pounds and Q = 66 pounds hang

upon the system of pulleys or tackle represented in Fig. 494, and each of the

pulleys weighs 6 pounds ; required the acceleration of each of the weights.

The motive force is

Q+G
t

._ 66 + 6
P s

—i = 40 — -

—

zr-— = 4 pounds.

The masses of these pulleys, reduced to their circumferences, are

and the total mass is

hence the acceleration of the sinking weight is

,_"_*. i,
16 "g 16 - 8a

'
3 615

'
3 - 2 036 feet^ ~ 247 •

4 ? ~ 247 - 247 T 247 ~ v'°bb te6t
'

and that of the rising weight is

pt = | = 1,043 feet

The tension of the rope B E\s

S = P- (p + -f- )
- = 40 - 43 . |^| = 40 - 2,785 = 37,215 pounds,

and that of the rope G His

S
t
= S - y . -^ = 37,215 - 3 .^ = 37,118 pounds.
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§ 299. The motion is more complicated, when the pulley E 67,

Fig. 495, hangs only upon a cord wound around it. Let us sup-

pose that P sinks with the acceleration p, and that Q
Fig. 495. rjses with the acceleration q, then the acceleration of

B the motion at the circumference of the loose pulley is

Now if we put the tension of the cord A E, = S, we

obtain

\ a
1

J g
and

S-(Q+ 6,) = {Q+G1)j;

for, according to § 281, we can assume, that 8 acts at the centre of

gravity D of E G. Finally we have

s _ G, h;
2

q,

a? ' g

'

since we can assume that the centre of gravity D is fixed and that

the pulley is put in rotation by 8.

The last three formulas give the accelerations

P-8 (S-(Q + GM
,

SaS
? =J^Z g

'
q =

I Q+Gl )$™d(?i==Gj? g;

a%

substituting all three in the equation qx
— p — q, we obtain

8 a? _ P- 8 _ 8- (Q + G1 )

G x
k? g ~

p G¥_ CJ Q+G x

9i

a?

whence it follows that the tension of the rope is

2 P a' + G ¥
S

(w +^) (Pft2+ ^)2 + ^
From this value of 8 we find by the application of the above formula

the accelerations of the weights P and Q.

If we neglect the mass G of the fixed pulley and put Q = 0,

we obtain simply

S* = 2Ptt2
. Gx lc? _ _ %PG X h?

P («1

9 + k?) a? + Ga- 1c?
~ G

x k? + P («i
2 + hi)'

If the end of the cord A E, instead of passing over the pulley,

is lixed, we have the acceleration p = 0, and therefore q x
— —

q,

and the tension
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for Q = 0, we have

^ __L_L_~
a,

2 + Tcf

If the rolling body G x is a massive cylinder, we have

G\^\ _ x n
a? ~ * ^

and the tension in the first case is

2P G1S

and in the second r

If in the first case the weight P must rise, we have p negative

and S> P, i.e.,

2 P ft jfcx
* >P^ y^

2 + P2

(i
2 + j^),

or simply

P ^ x +
fe»'

in order that Gx shall sink it is necessary that S < Gl} or that

P '

&/
Example.—If the rope G Hof the system of pulleys in the example of

§ 298, Fig. 494, suddenly breaks, the rope B will be, for an instant at least,

stretched by a force

.

P +
a2 2 . 40 + 3

Jb =

Gfc*ir*).(**V).*«
» + *»«- + »t>

83.72 5976 „„.„
= 25.43 + 73 = 1147 = WK>P««»»*-

Hence the acceleration of the sinking weight P is

/ P-S \ /40 - 5,210\ on 34,79
* = / - -«s \ 9 = 1 ,n , o ) • 32,2 = -43- • 32,2 = 26,05,

and that of the sinking pulley is

«
=(W) '

"(^°) • 32
'
3 =¥ • 33

'*
=^ **

and the acceleration of rotation of this pulley is

Sl =^. g = !£*. 82,2 = 55,98 feet.
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§ 300. Rolling Motion of a Body on a Horizontal

Plane.—If a round body A C D, Fig. 496, is pushed forward with

a certain initial velocity

Frc. 496. c upon the horizontal

path D E, it will, in

consequence of the fric-

tion upon this path, as-

sume a motion of rota-

tion, the Telocity of

ivnich will gradually increase ; its acceleration p is determined by

the formula

Force _ <f>
G a* _ 4>jf

¥ g'

Mg the weight,

P Mass MW
in which (p denotes the coefficient of friction, G
<p G the friction, M¥ the moment of inertia and a the radius CD
of rotation of the body. The velocity of rotation at the distance

O D from the axis c, engendered by this acceleration in the

time t, is

of
v =jpt — ipr—gt.

On the contrary, the forward motion of the body suffers a re-

tardation q, which is determined by the formula

Resistance 6 G

/
= -m^T" = ir = ^'

hence the velocity of this motion after t seconds is

v x
= c — qt = c — <pgt.

Now if we put v
x
— v, or

a2

<p-^gt = c-(pgt,

we obtain the time after which the velocity of rotation becomes
equal to that of translation and the rolling of the tody begins.

This time is

c Jc
1

c
t =

(*+*);
+ ¥

At the end of this time the common velocity is

= 17^0* = a' c

and the space described by the centre C of the body is

- (
c + Cl

\ - 2 a* + ¥ I F J— __(% <** +¥)&
S ~ V 2 I a' 4- ¥' 2 ' a

2 + Jc
2

'

<f>
g~ (a

2 + F) 2
2<j> g
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If the coefficient of rolling friction was = 0, the body A

would roll on forever with the constant velocity c x
— -= r„ upon

Cl + K
the horizontal plane without coming to rest ; but since the rolling

f G
friction -— constantly opposes this motion (see § 192), the body,

a

after describing a certain space s l} will come to rest. At the end

of this space i

of the energy

f G s
of this space the work -

1

of this friction has consumed the whole

Gc> GV c? __ /a'+F\ G c?m% (j a? 2 g \ a? J 2g

stored by the mass of the body, and therefore we can put

f G s
x _ (a? + ¥\ Oc 1 \

a "
\ a" J 2 g

'

hence the space

a? + ¥ c? a" c*

fa 2g f(a* + F)2g
is described in the time

2 5! cC' + &2
c

x
ac

*i =
ci fa'g fg
£2 £2

For a rolling ball — = '§, and for a cylinder -^ = ^ (see § 290).
d a

c c*
In the latter case t = \

-—, d = f c, s = J and Sj = |
9 # * 9 9

f*g

CHAPTER II.

THE CENTRIFUGAL FORCE OF RIGID BODIES.

§ 301. The Normal Force.—The force of inertia manifests

itself not only when the velocity of a moving body changes, but also

when there is a change in the direction of the motion ; for a body.
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by virtue of its inertia, moves uniformly and in a straight line (see

§ 55). The action of inertia, when the direction changes continu-

ally, i.e. when the motion of a body takes place in a curved line,

and particularly in a circle, will be the subject discussed in this

chapter.

If a material point moves in a curved line, it is at every point

subjected to an acceleration, which causes it to deviate from its

former direction. This acceleration has already been treated of in

phoronomics under the_ name of the normal acceleration. Let the

radius of curvature of the path of the moving body be = r and its

velocity v, then the normal acceleration is

P (§ 42).

Now if the mass of the point == M9 the acceleration corres-

ponds to a force

which we must consider as the original cause of the continued

change of the direction of motion of the point. If the point is

acted upon by no other (tangential) force than the normal one, its

velocity will be constant and = c, and therefore the normal force

r

is dependent only upon the curvature or radius of curvature, i.e.

smaller for a smaller curvature or for a greater radius of curvature,

and greater for a greater curvature or for a smaller radius of curva-

ture. When the radius of curvature is doubled, the normal force

is but one-half as great as before. If a material point M
9
Fig. 497,

is obliged to pass over a horizontal

plane in a curved line ABB FII
9

ifwe neglect the friction, the point

will have in all points the same ve-

locity and the pressure against the

side wall in every position will be

equal to the normal force. While

the point describes the arc A B
M <*

pressure

Fig. 497.

this is = while
a

it describes B D it is = M &

E~B
for the arc D F it is =

A
MV
~QD

and
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M r2

for the arc FH, = =, G A, E B, G D and K F denoting theKF
radii of curvature of the portions A B, B D, D F and FH of the

path.

§ 302. Centripetal and Centrifugal Forces.—If a material

point or body moves in a circle, the normal force acts radially

inwards, and for this reason it is called the centripetal force (Fr.

force centripede, Ger. Centripetal- or Anmiherungskraft), and the

force in the opposite direction, i.e. radially outwards, with which

the body through its inertia resists the former force, has received

the name of the centrifugal force (Fr. force centrifuge, Ger. Centrif-

ugal-, Flieh- or Schwungkraft). The centripetal force is the one

which acts upon the body inwards, and the centrifugal force is the

resistance of the body, which acts in the opposite direction. In the

revolution of the planets around the sun, the attraction of the sun

is the centripetal force ; if the moving body is compelled to describe

a circle by a guide, such as is represented in Fig. 497, the guide

acts by its resistance as the centripetal force and opposes the centrif-

ugal force of the body. If, finally, the revolving body is connected

by means of a string or rod with the centre of rotation, then it is

the elasticity of the rod, which puts itself in equilibrium with the

centrifugal force of the body and acts as the centripetal force.
ri

If G is the weight, and therefore 31 = — the mass of the re-

9
volving body, r the radius of the circle, in which the revolution

takes place, and v the velocity of revolution, we have, according to

the last paragraph, for the centrifugal force

Gv-

g r
= 2,

G
P

,,2

or P : G = ..

%g

i.e., the centrifugal force is to the weight of the tody as double the

height dice to the velocity is to the radius of rotation.

If the motion is uniform, which is always the case when no

other force (tangential force) besides the centripetal force acts

upon the body, we can then express velocity v == c in terms of the

duration t of a revolution by patting c = -£— = ^-r— , and the° time t
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expression for the centrifugal force becomes

„ I^TtrVM 4tt2 __ 4tt2

„P - \—r-\ — = —sr.Mr — —-, . Or.
\ t J r t

z

g t*

Since 4 tt
2 = 39,4784, and in feet - = 0,031, we have, in a more

convenient form for calculation, the value of the centrifugal force

39,4784 ,, , onoo G rMr = 1,2238 . -&- pounds,

The number u of revolutions per minute is often given, in which

case, substituting for t,—, we have

3Q 4.784.
P = -- ^ nn ifMr = 0,010966 ifMr = 0,0003399 if G

r

pounds.

We have also P =z 4,0243 --f = 0,001118 vf G r kilograms.

2 7T

Since— is the angular velocity w, we can also write

P = <J .Mr.

Hence it follows that for equal times of revolution, i.e. for the

same number of revolutions in a given time or for the same angular

velocities, the centrifugal force increases as the product of the mass

and the radius of gyration ; and if the other circumstances are the

same, it is inversely proportional to the square of the time of revolu-

tion, or directly proportional Jo the square of the number of

revolutions and to the square of the angular velocity.

Example—1) If a body, weighing 50 pounds, describes a circle of 3 feet

radiii3 400 times in a minute, the centrifugal force is P — 0,0003399 .

400 2
. 50 . 3 = 3,399 . 16 . 50 . 3 = 339,9 . 24 = 8158 pounds.

If this body is connected with the axis by a hemp rope, the modulus
of ultimate strength of which is (§ 212) 7000 lbs., we should put 8158 =

8158
7000 . F, and therefore the cross-section of rope should be F =

=-firxR
= -

1,165 square inches, and its diameter should be

r _ a/^P r—a — V — = 0,5642 . V4,660 = 0,5642 . 2,159 = 1,22 inches.

In order to have triple security, we must make d = 1,22 V3 =
1,22 . 1,732 = 2,11 inches.

2) From the radius of the earth r =f 20f- million feet, and the time of

39
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revolution or length of day t = 24 hours = 24 . 60 . 60 = 86400 seconds,

we obtain for the centrifugal force of body upon the earth at the equator

20750000 G _ 2539 1
P _ 1,2238 .—

g6400
, _

g642
. (or -

29Q
. 6r,

24
but if the day were 17 times as short, or -= = lh. 24' 42", this force would

be 17 2 = 289 times as great, and the centrifugal force would be nearly

equal to the weight G of the body. At the equator, in that case, the cen-

trifugal force would be equal to the force of gravity, and the body would

neither fall nor rise.

3) The centrifugal force arising from the revolution of the moon around

the earth is counteracted by the attraction of the latter. If G is the weight

of the moon and r is its distance from the earth, and t the time of revolu-

tion around the latter, the. centrifugal force of this body is

G r= 1,2238 . -7T-.

Now let a be the radius of the earth, and let us assume that the force

of gravity at different distances from its centre is inversely proportional to

the nth. power of this distance ; we have the weight of the moon or the

attraction of the earth _ „ fa\
n

and putting both forces equal to each other ,

,2238 .

-JJ-.

But - = -,f= 1251 million feet, t = 27 days 7 hours 42 minutes =
r 60

39342 minutes = 39342 . 60 = 2360520 seconds, whence

/ 1 \*_ 1,2238 . 1251 _ _J^ _ /Jl\
2

\Q0/
~ ~393,42

. 36 ~ 3600
~~

\60/
'

hence n = 2, i.e. the attraction of the earth (or gravity) is inversely pro-

portional to the square of the distance from its centre.

§ 303. Mechanical Effect cf the Centrifugal Force.—

If the path CAB, Fig, 498, in which the body M moves, is not

at rest, but turning upon an axis C, it

imparts to the body a centrifugal force

P, by virtue of which it either gives out

or absorbs a certain amount of mechanical

effect. The former occurs when, in mov-

ing in its path, it departs from, and the

latter when it approaches the axis of rota-

tion C. Let if be the mass of the body,

w the constant angular velocity with which

the path, e.g. a top (Fr. sabot, Ger. Krei-

sel), turns around its axis C, and let z de-

(:-)"=^
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note the variable distance OM of the body, which is moving in

the path CAB', we have the centrifugal force of the body
P= u*Mz,

and the work done by this force, while the body describes an ele-

ment M of its path and the radius C M is increased by an
amount N = £ is

Let us imagine the radius z to be composed of n parts, each — £
then if we put z = n £ and assume that the body begins to move
at the centre of rotation C, we obtain the work done by the cen-

trifugal force of the body, while the body is describing the space
A M, during which time the distance of the body is gradually

increasing from to z. By substituting successively in the last-

equation, instead of z, the values ?, 2 £ 3 £ . . . n £ and then adding
the values thus found, we obtain this mechanical effect

A = g>
2M£(£+2 £+3 ?+. . .+ *C)=^r (1 + 2 + 3 + . . . +*),

or, since l + 2 + 3+...+w, when the number of members is

great, = —, we can write

•W
2

A =<o*MS>~ == \tfM%\

Now the velocity of rotation of the top at the distance CM- z

from its axis is

V =r*l z,

hence we can write more simply

A = ±Mv* = ~-G,
2 g

when we substitute, instead of the mass of the body, the weight
G = Mg.

If the body begins its motion, not at C, but at any other point
A without the axis of rotation, and at a distance C A — z\ from
C, where the velocity of rotation is

Vt
= 0) Zi,

the work | w2 M z? done by the centrifugal force while the body is

passing from (7 to A must be omitted, and we have the work done
by the centrifugal force while the body passes from A to M

A=±g)°- 3fz2 - I w2 Mif = | cj
2MO2 - z?)

If a body moves in a rigid path or groove, which revolves about
a fixed axis, the vis viva of this body is increased or diminished by
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•the product of the mass (M) and the difference of the heights due

/ V
2

Vx \
to the velocities of revolution (-— and -— ) at the two ends A

and M of the path. The increase takes place when the motion is

from within outward, and the decrease when the motion is from

without inward.

§304.

Fig. 499.

v*^

If a body begins its path A 31 B upon a top ABC,
Fig. 499, at A with a relative velocity c,,

and leaves the top at B with the relative

velocity cs, and if the velocities of rotation

of the top in A and B are v x and v2, the

energy stored by the body in describing

the path A M B, supposing no other force

to act upon it, is

£2 C\" p Vi V\~ p
*g %v

=== r̂/ and therefore

a — cs VS — Vy

or

+ v 2
, v?,

and consequently the velocity of exit is

c, = Vet + v.* - vf = Vet + w2
(r2

2 - rt),

w denoting the angular velocity of the top and r2 and r, the dis-

tances G A and O B of the points (A and B) of entrance and exit

from the axis of rotation C.

The relative velocity of exit c x is determined in like manner,

when the body enters at B upon the top with the relative velocity

c2 and moves upon it from without inwards. It is then

Cl = Vet -W - Vi) = ^ct - "2
[rt - rt).

Since the body in describing the path A MB has, besides its

relative velocity (c) in the path, also the velocity of rotation v of

the path, it must be introduced at A with an absolute velocity

A w x
— w 19 which is determined in intensity and direction by the

diagonal of the parallelogram constructed with c x
and v i} and the

body leaves at B with an absolute velocity B w* = w,, determined

by the diagonal of the parallelogram B c2 w.2 v,, constructed with

the relative velocities c2 and v3.

The energy restored, or stored, by the body in describing the

path A M B on the top, which has been gained or lost by the

top, is
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«0i
8

If a body should transmit all its energy —- G to the top, while
z 9

describing the path A M B, the absolute velocity of exit must be

w2 = 0, and c2 must be not only equal to v2 but also exactly oppo-

site to it ; the path must therefore be tangent to the circumference

afc-ff.

Example.—If the interior radius of the top, represented in Fig. 499, is

GA = rt
— 1 foot and the exterior one C B = r2

= 1£ feet and if it

revolves 100 times per minute, the angular velocity is

co = ~ = 3,1416 . ~ = 10,472 feet,

and consequently the velocity at the interior circumference is

v ±
= w 7*! = 10,472 feet, and at the exterior one

v 2
= 6> r2

= 10,472 . 1,5 = 15,708 feet.

Now if we cause a body, whose velocity is w
t
= 25, to enter the top at

J., in such a direction that the angle w
1
Av

x
formed by its absolute mo-

tion with the direction of revolution is a — 30°, we have for the relative

velocity c1? with which the body begins its motion on the top,

Cl
2 =V +V - 2 v

t
w

x
cos. a = 109,66 - 453,45 + 625,00 = 281,21,

and therefore

c
±
= 16,77 feet.

If the body is to enter without impact, we must have for the angle

v
t
A c

x
— j3 formed by the path with the inner circumference of the top

sin, /3 to
1

sin. a ~ cx

25 sin. 30°

whence /? = 48° 12' |-.

For the relative velocity of exit c2 we have

c
?; = V + V -V = 281,21 + 109,66 [(f)

3 - V] = 418,28,

and consequently

c2 = 20,45 feet.

And, on the contrary, for the absolute velocity of exit w 2 , when the canal

or groove A M B forms with the exterior circumference an angle 6 = 20 9

or v 2 B c2 = 160°, we have

*V =V + V - 2 c
2
v
2
cos. 6 = 418,28 + 246,74 - 603,72 = 61,30,

and consequently

io
2
= 7,80 feet.

Finally, the heights due to the velocities are

w*-
1 nn<m n«*> «™ ^ , , Wf
^- = 0,0155 . 625 == 9,69 feet, and -?- = 0,0155 . 61,31 = 0,95 feet,

and the amount of mechanical effect imparted to the top by a body, whose

weight is G, while passing over the top, is
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-J~2 ) G = (9,69 - 0,95) # = 8,74 <?,

or, if its weight G = 10 pounds,

J. = 8,74 . 10 = 87,4 foot-pounds.

Remakk.—The foregoing theory of the motion of a body on a top is

directly applicable to turbine wheels.

§ 305. Centrifugal Force of Masses of Finite Dimen-
sions.—The formulas for the centrifugal force found in the fore-

going paragraphs are not directly applicable to an aggregate of

masses or to a mass of finite extent ; for we do not know what

radius r of gyration must be substituted in the calculation. To
determine this radius, the following

method may be adopted. Let C Z,

Fig. 500, be the axis of rotation and

CXand C J^two rectangular co-ordi-

nate axes and let M be an element of

the mass and MK = x, ML = y and

MX = z its distances from the co-or-

dinate planes Y Z, X Z and X Y.

Since the centrifugal force P acts in the

direction of the radius, we can transfer

its point of application to its point of

intersection with, the axis of rotation.

If we decompose this force into two components in the directions

of the axes CXand G Y, we obtain O Q = Q and O R = R, for

which we have

O Q:0 P = O L: O 3/ and OP : P = K : O M,
whence

Q = - P and R =
r

y
p,

r designating the distance O M of the element of the mass from

the axis of rotation. If we proceed in the same way with all the

elements of the mass, we obtain two systems of parallel forces, one

in the plane X Z and the other in the plane Y Z, and each of

which acts at right angles to the axis C Z. Employing the indices

1, 2, 3, etc., to distinguish the various elements of the mass, i.e.

putting them = M
x , Mo, Mz, etc., and their distances == xx, x2, xZi

etc., we have the resultant of one system of forces

Q = ft + ft
'+ ft +

M
+
P^

+ +

(J/i x
}
+ 3L x, + ...),
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and that of the other

R = R\ + R$ + = G? (if, yx + M, y2 + . . .)•

If, finally, we put the dis-

tance ft, 0o, etc., of the

elements of the mass from

the plane of X Y, — zx, z2,

etc., we obtain for the points

of application U and V of

these resultants the ordi-

nates U = u and C V= v

by means of the formulas

(ft + (?» + •••)*

• = ft *i + ft 22 + • •

.

and (7?!+ i?2 + . . .) « =
Rx zx + i22 ^2 + • • •? whence

MX Xx
ZX + Jf2 £2 22 + . . .

if, xx + IT, x2 + . . .

_ ift yx zx + M,y,z2 + ...

Rx + R,+ . . . " Mx yx + M'*y2 + ...

Hence we see that generally the centrifugal forces of a system

of masses or of finite bodies can be referred to two forces, which

cannot be combined so as to give but a single resultant when u

and v are unequal.

Example.—Let the masses of a system be

M
x
= 10 pounds, M

2
= 15 pounds, M

3
= 18 pounds, MA = 12 pounds,

and their distances

xt
= inches, x

2
= 4 inches, xz

= 2 inches, aj4 = 6 inches,

and

ft %\ + ft «, + . . .

ft + ft + ..

By 2l + i?2 #2 + • • •

2/l
= 3 y, = i

«« = 3

= 3

=
then the resultants of the centrifugal forces are

Q = w 2
. (10 . + 15 . 4 + 18 . 2 + 12 . 6) = 168 . cj

2

R = u* . (10 . 3 + 15 . 1 + 18 . 5 + 12 . 3) = 171 . or

and consequently their distances from the origin G are

10 . . 3 + 15 . 4 . 3 + 18 . 2 . 3 + 12 . 6 . 288 1*

md

10.0 + 15.4 + 18.2 + 12.6
= i^=y=1

»
7i4kches,

and

10.3.2 + 15.1.3 + 18.5.3 + 12.3.0 375 125 n , nn . ,

• =
it). 3 + 15. 1 + 18. 5+T2T1T =171= -57

=M08inch«.

The difference of these values of u and v shows that the centrifugal,

forces cannot be replaced by a single force.
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Fig. 502.

306. If the elements of the mass lie in a plane of rotation..

i.e. in a plane X C Y, Fig. 502,

which is at right angles to the

axis of rotation, as M1} M.2 . . ., do,

their centrifugal forces will give

a single resultant ; for their di-

rections cut each other at one

point C of the axis C Z. If we
retain the notations of the last

paragraph, we obtain the re-

sulting centrifugal force in this

case

F=VQ2 +R2 = o)Vpi
jc 1+Jlf^+...) I + (jf1y1 + M,y,+ ..,)*].

Now if CK — x and C L = y are the co-ordinates of the

centre of gravity of the system of masses M = Mx + M2 + . .
.,

we have
Mx xx + M2 x2 + .. . —.Mx
Mx yx + M,y2 + . . . = My,

whence it follows that the centrifugal force is

F = cj
2 VlPx2 + M*tf - (f 3fVx°- + f = rfMr,

in which r = Vx* + y
1 designates the distance S of the centre

of gravity from the axis of rotation C Z.

For the angle P CX — a, formed by this force with the axis

C X, we have . R My y
tang, a — -— — —^ = £

;

J Q Mx x 7

consequently, the direction of the centrifugal force jiasses through

the centre of gravity of the system, and that force is precisely the

same as it would he if all the elements of the mass were concentrated

at the centre of gravity.

For a disc A B at right angles to the axis of rotation Z Z,

Fig. 503, the centrifugal force is also ==

to
2 M r, ifM denotes its mass and r the dis-

tance C S of its centre of gravity from the

axis. If the centres of gravity of the ele-

ments of the mass of a body lie in a plane of

rotation, or if this plane is a plane of symme-

try of the body A D F F19
Fig. 504, the cen-

trifugal forces of the elements of the mass of

the body can be combined so as to give a

single resultant acting at the centre of gravity of the body, and

'
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this resultant corresponds to the distance of this point S from the

axis of rotation and can therefore ^be determined by the formula

P = w2 Mr.
Fig. 504. Fig. 505.

• Z

r?%S

-z

In order to find the centrifugal force of a body A B D E,

Fig. 505, let us divide it into disc-shaped elements by planes per-

pendicular to the axis Z Z, and then find their centres of gravity

Sl3 Si9 etc. ; we can then determine by the aid of the latter the cen-

trifugal forces, by decomposing these into their components in the

directions of the axes C X and C Y and by combining the compo-

nents in the plane zCJ,we obtain the resultant Q, and by com-

bining those in the plane Z C Y, we obtain their resultant R.

If the centre of gravity of all the discs lie in a line parallel to

the axis of rotation, we have x = xx
— x2, etc., and y = yx

= y2, etc..

and therefore r = rx
= r5, etc., whence it follows that the centrif-

ugal force of the whole body is

P = a)
2 (Mx r + 'M% r +......) Mr,

and that the distance of the point of application from the plane

XFis
(M, zx + M2 %+...) r M

x z, + M« z2 +
z — — z.

(M
x + Mi -f . . .) r Mx + Mi + . .

.

From these equations we see that the centrifugal force of a body,

which can be divided into discs, whose centres of gravity lie in a

line parallel to the axis of rotation, is equal to the centrifugal force

of the mass of the body concentrated at its centre of gravity, and

the point of application of this force is at the centre of gravity.

Hence we can find in this manner the centrifugal forces of all

symmetrical todies (see § 106), whose axis of symmetry is parallel

to their axis of rotation, and also that of all solids of revolution.

whose geometrical axis is parallel to the axis of rotation. If the

axis of rotation and the geometrical axis coincide the resulting

centrifugal force is = 0.
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Example.—The dimensions, heaviness and strength of a mill-stone

ABBE, Fig. 506, are given ; required the angular velocity o when the

stone is torn apart by the centrifugal force. Putting the radius of the

millstone = r 1? the radius of its eye

= r 2 ,
its height A B — H L = Z,

its heaviness = y and the modu-

lus of ultimate strength = K, we
have the force necessary to tear the

stone apart in a diametral plane

P=2(r
1 -r 2

)lK,
the weight of the stone

G= TT{r
t

' — r
3

2
) ly,

and the radius of rotation for each

half of the stone, i.e. the distance

of its centre of gravity from the

—

P

—

Z

axis of revolution (see § 114),

_4_
3tt

''i
~ r

2

At the moment of tearing apart the centrifugal force of one-half the stone

is equal to the breaking load of the stone, and we have

J.\~ = 2(r
1
-r 2)lK,

9

I.E., « .f(V - r3
3

)-f = 2 (r
t
- r

2
)l K.

Cancelling 2 I on both sides of the equation, we have

r (r^ - r 2
s

) y
r (^» + r± r2 + t» 3

2

) y

Now if r
x
=2 feet = 24 inches, r

2
= 4 inches, K = 750 pounds and

the specific gravity of the stone = 2,5, or the weight of a cubic inch of it

y = —' ' * = 0,09028 pounds, we have the angular velocity, when
172o

the tearing begins,

-^ 12 . 32,2 . 750

688 . 0,09028
= V:

5375.16,1

43 . 0,09028
= 118,3 inches.

If the number of revolutions in a minute = u. we have o = -wk~ and
60

1129$.
30 w . 30 . 118,3

inversely u = , or in this case, ==

Generally the number of revolutions of such a stone is 120 or about nine

times less. For a fly-wheel we can put r±
2 + rt

r
2 + r

2
2 = 3 r2

, r denoting

the radius of the middle of the ring, and consequently we have

. / a K k /g~K
u = y —— or v = w r = y .

§ 307. If all the parts M19 M^ of a system of masses, Pig. 507,

or the centres of gravity of the elements of a body are in a plane
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Fig. 507.

passing through the axis of rotation, the centrifugal forces form a

system of parallel forces and can be referred to a single force. Let

the distances of the elements of the

mass from the axis of rotation ZZhe
Ox Mx

= rx, 2 M2 = r2, etc.,

then the centrifugal forces are

Px
= g)

2 M
x r x , P2 = w2 M2 r,, etc.,

and their resultant is

Px
= w2 (M

x rx + M2 r2 + . .
.)

= v* Mr,
r denoting the distance of the centre

of gravity of the whole mass M from

the axis of rotation. The distance

of the centre of gravity from the axis

of rotation must be considered here as the radius of rotation. In

order to find the point of application of the resulting centrifugal

force P, we substitute the distance of the elements of the mass

from the normal plane, viz., C Ox — zx, C 2 = zi9 etc., in the formula

CO = z = Mx
r x

zx + Mi r2 z2
4-

Mx rx + M2 r2 + . .

By the aid of the formula P — of Mr the centrifugal forces

of solids of revolution and of other geometrical bodies can be deter-

mined, when the axis of these bodies is in the same plane as the axis

of revolution.

For a rod A O, Fig. 508, whose length is A C — I and whose

angle of inclination A C Z to the axis

of rotation is = a, we have

r = K S = \l sin a,

and consequently the centrifugal force

P — w2
. \ M I sin. a

;

but in order to find the point of appli-

cation of this force, we must substi-

tute in the expression

Fig. 508.

2 Mor . — x
n

a . x cos. a

= G)'

M
x sin. a cos. a

M
for the moment — of the rod successively, instead of x, the ele-
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12131 *

inents -, — , —, etc., and add tlie expressions thus obtained to-
10 it lb

gether. In this manner we find

M PP u - w2 — sin. a cos. a — (l
2
-f 2

2 + 3
2 + . . . + n*)

n n _

— \ w2 M F sin. a cos. a,

hence the arm C L = O or

u = \ a)
2 MT sin. a cos. a : £ or if Z s£w. a = § Z cos. a,

and the distance of the point from the end C of the rod, which

lies on the axis, is

= 1 J.

If the rod J. i?, Fig. 509, does not reach the axis, we have

P = -\ c<)
2 F li sin. a — -*- w2

i^
7
Z2

2
sin. a

= \<f Fsin. a (I? - /2
2

),

and the moment
P u — i w2 F si?i. a cos. a (l^ — I?)

;

for the mass of G A (= cross-section multiplied by the length) is

= Fix and the mass of C B, = F

l

2 .

It follows, therefore, that the distance of the point of applica-

tion from the point of intersection G with the axis is

CO * V'~ V xxCO = l +
(Zl

'

I* -I* 12 1

I denoting the distance G S of the centre of gravity and lj — l9 the

length of the rod.

Z Fig. 509. Fig. 510.

This formula holds good also for a rectangular plate A B D E,

Fig. 510, which is divided into two similar rectangles by the axial

plane G O Z, and whose plane is at right angles to this axial plane

;

for the points of application of the centrifugal forces of the slices.
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obtained by passing planes through it perpendicular to C Z, are

in the medial line F G. Now if the distances C F and C G of the

two bases A B and F E from the origin G are Ix and Z£, we have

here also

CO = %
7

3 — 7*

= 1 + (h ~ h

Fig. 511.

s •

i* _ y " ' 12 J

In like manner the centrifugal force of a right cone ABB,
with a circular base, Fig. 511, which turns about an axis C D

passing through its apex, is found by

substituting in the formula P — w2 M r

for r the distance K S of the centre of

gravity S of this body from C Z. If h

denote the altitudeKB of the cone, and

a the angle B C Z formed by the base

of. the cone with the axis of rotation,

we will have

KS = BScos.B SK- § h cos. a,

and consequently the required centrifu-

gal force is

P = cj
2 M | h cos. a.

The point of application of this

force is determined by the co-ordinates

D B = u and B — v, for which we
find with the aid of the Calculus, under

the supposition that the axis of rotation C Z does not pass through

the cone, the following expression

v = i hcoS:a[l + (^^f],
r denoting the radius KA — KB of the base.

§ 308. If all the different parts of the body lie neither in a

plane normal to the axis of revolution, nor in one containing that

axis, the resulting centrifugal forces

Q = cj
2 (Mx xx + Ms x.2 + . . .) and R = w2 {M

x yx + 3L y, + . .
.)

will not give a single force, but it is possible to replace them by a

force

P= VJF+TI? = <•>'M r,

applied at the centre of gravity, and by a couple composed of Q
and R. If we apply at the centre of gravity four forces + Q and — Q
as well as + R and — R, which balance each other, the positive

forces will give the resultant

and
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Fig. 512.

P = VQ? + R\
while the negative ones — Q and — R, together with the centrifu-

gal forces applied at U and V (see Fig. 501) form the couples

(Q,— Q) and (R, — R), which can be combined so as to form

a single couple.

In order to understand better this referring of the centrifugal

forces of a revolving body to

one force and one couple,

let us consider the following

simple case. The rod A B,

Fig. 512, which revolves

about the axis Z Z, is paral-

lel to the plane YZ and its

end A reposes upon the axis

C X. Let us denote the

length A B of the rod by I

its weight by G, the angle

A B B1} formed by the rod

with the axis of rotation, by

a and its distance CA from

the plane Y Z, which is also

its shortest distance from

—2
the axis Z Z by a. Now if

ME is an element— of the rod,
n

and y = A 27s the horizontal projection of its distance A E from

the end A, we have the components of the centrifugal force P, of

this element

-
M

ft = w2
. — . CAY1 n

— a and Rx
= cj

2
. — ,AEXn n

or . — y,

and their moments in reference to the plane X C Y of the base,

since the distance of the element from this plane X Y is

Ex E — A Ei cotg. a = y cotg. a, are

<?i «i

M M

R1 Zi = w2
. — y* . cotg. a

— . C A .E,E = 6>
2

. — a y cotq. a and

M
n

The resultant of all the components parallel to X Zia

M
Q=z Q, + Q2 + . . . = n . w2

. — a = w2
. Ma,

7(i



§ 308.] THE CENTRIFUGAL FORCE OF RIGID BODIES. 623

and its moment is

M
Qu = QiZt + § 2 z2 + . . . = G)

2
. — a cotg. a (ijx + y2 + . . .),n

I sin. a 2 I sin. a 3 1 sin. a .

or, since yx
=

, y2
== ,yz

=
, etc., and cotg. a

.

n n n
sin. a = cos. a, we have

(ltt = us
. — a cos. a. . - (1 + 2 + 3+...+w) = G)

s
.—« cos. a - .

—
w n n n Z

— J a)
2

. M a I cos. a.

The distance of the point of application of this component from

the plane X Y of the base is

„ ~ liJMal cos. a
t

_

Sx S = u = z-^ = $ I cos. a,
g)

2 M a

I.E., this point coincides with the centre of gravity of the rod.

The resultant of the components parallel to Y Z is

MR = Rx + 22, + . . . - o)
2

. — (y, + y, + . . .)n

„ if Z sm. a ri* , „ ,, 7 . , .,= or . — .
—- = -S orM I sin. a, and its moment is

n n A

M— . cotg. a (y> + #+.....)

if Z
2

/(7 sm. a) 2
(2 ? sk a)'~ \if . /(7 sm. a) 2
(2 ? sk a)"= O)

2
.— . c^~

(sk a) 2
cotg. a (1 + 4 + 9 + ...+ n")

, M f . n*— or . — . —r2 sin. a cos. a .
—

-

w ?r 3

= | w2 if F sin. a cos. a.

Hence the distance of the point of application of this force

from the plane X Y is

_ -. \ o2 Ml2
sin. a cos. a n ,Ov = V = : r-irp- : = ^ I COS. a,

±0)' Ml sin. a 3 '

i.e. this point lies at a distance (| — J) I cos. a = i I cos. a verti-

cally above the centre of gravity, or, in general, S — | of the

length of the rod A B.

From the two components Q — cj'
j M a and B = \ of Ml

sin. a, it follows that the final resultant, which acts at the centre

of gravity of the rod, is

P = V Q
2 + B2 — «9 MV a2 + \ rsin7a~2,

that the couple is (B, — B), and that its moment is
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R. 80 = 1^ Ml sin. a .
i I cos. a

= j% g)
2 M r sin. a cos. a = ^L w2 2f F sin. 2 a.

§ 309. Free Axes.—The centrifugal forces of a body revolv-

ing uniformly upon its axis generally exert a pressure upon the

axis, yet it is possible for these forces to balance each other, in

which case the axis is subjected to no pressure from them. As ex-

amples of this case we may mention solids of revolution turning

around their axis of symmetry, or geometrical axis, the wheel and
axle, water wheels, etc. If a body in this condition is acted upon
by no other forces, it will remain forever in revolution, although

the axis is not fixed. This axis of rotation is therefore called a

free axis (Fr. axe libre, Ger. freie Axe). From what precedes, we
know the conditions, which are necessary when an axis of rotation

becomes a free axis. It is necessary that not only the two re-

sultants Q and R of the forces parallel to the co-ordinate planes

X Z and Y Z, but also that the sums of the moments of each of

the two systems of forces shall be = 0, whence it follows that

1) Mx xx + M2 x, + . . . = 0,

2) Mx yx .+ M, y> + . : - = 0,

3) Mx
x

x zx + M3 x.2 Zi + . . . = and

4) Mi yt zx + M,
fr2 z2 + . . . = 0.

The first two conditions require the free axis to pass through

the centre of gravity of the body or system of masses. The two

latter, however, give the elements required for determining the po-

sition of this axis. It can also be proved that every body or system

of masses has at least three free axes, and that these axes are at

right angles to each other and intersect each other at the centre of

gravity of the system.

The higher mechanics distinguishes from the free axes other

axes, which may intersect each other at any point of the system and

which are called principal axes (Fr. axes principaux, Ger. Hanpt-

axen). It is also proved that the moment of inertia of a body in

reference to one of the principal axes is a maximum, and in rela-

tion to the second it is a minimum, and in relation to the third it

has a mean value, and that for a point which lies in the free* axes

the principal axes are parallel to the free axes, i.e. to the principal

axes passing through the centre of gravity.

§ 310, Free Axes of a System of Masses in a Plane.

—

If the parts of a mass arc in a plane, e.g., if they form a thin plate
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or plane figure, then the straight line, passing through the centre

of gravity of the entire mass at right angle to that plane, is

a free axis of the mass ; for in this case the mass has no radius

of rotation, and therefore the only possible centrifugal force is = 0.

In order to find the other two free axes, we employ the following

method. Let S, Fig. 513, be the centre of gravity of a mass and

let U U and V V be two co-ordinate

axes in the plane of the mass and let us

determine the elements of the mass by

means of co-ordinates parallel to these

axes, e.g. the element Mx by the co-or-

dinates MX N= ih andMx O — v,x. ISTow

ifXX is one free axis and Y Y an axis

at right-angles to the same and if the

angle USX, which the free axis makes

with the axis of co-ordinates S U and

"which is to be determined, = </>, then

putting for the co-ordinates of the elements of the mass in refer-

ence to XX and Y Y, xx, x2 . ... and yx , «/?,..., e.g. for ,thos3 of

the mass Mx Mx K = x
x
andM

x L = yx ,

we obtain » -w

x
x
=.M

x K=8R +RL—S cos. <p+0Mx
sin. 4>=u x cos. + vx si*. 4>,

y x
~ M

X L= -0 R + F= ^8 sin. <£ + M
t cos. (j>

— — u
x
sin. <j> 4- v

x cos. </>,

and therefore the product "*

x
x yx

— (u x cos. -f- vx sin. (j>) . f— u x sin. <p -f vx cos. #)

= — («i
a — vx ) sin. (j> cos. <j> + u

x v x (cos. </>

2 — sin. 0*),

or, since sin. <p cos.
<f>

== ^ sin. 2 <p and cos. </>* — sin, </>

2 = cos. 2
<f>r

xx yx
= — -\ (u x

— vx ) sin. 2 <p + u x v x cos. 2 </>,

and therefore the moment of the element Mx is

MMx xx yx
= ~ (w,

3 — v x )
sin. 2 <£ + Mx u x v x cos. 2 </>,

and in like manner the moment of the element M2 is

MM2 x2 y.2 = (u? — v2 ) sin. 2 $ + M,\ u 2 v2 cos. 2 <£, etc.,

and the sum of the moments of all the elements or the moment of

the entire mass itself is

M
x xx y x + M2 x2 y2 + ...— — i sin. 2 <p [(Mx u{ + M2 u 2 + .

.

.)

- (M
x v? + Ms v? + ...)] + cos& $ (Mx u x vx + Ma u 2 v2 + . . .).

40
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In order that XX shall be a free axis, this moment must be
= ; we must therefore put

-\ sin. 2 <p [{M, u? + M% u3
* + ...)- (J*l v? + Mt v? + . .

.)]

— cos. 2 4> (ifj u
x i\ + M9 Us va + . . .) = 0,

from this we obtain the equation of condition

tang. 2<f> =
sim 2 ^ - 2 (ifl Ul Vl + M* u* * + ••)
co*. 2 (Jf

, u? + Jf2 w8

a + ...)- (*i t'i
2 + -3/i v2

2 + . .
.)

_ Double the moment of the centrifugal force

Difference of the moments of inertia.

This formula gives two values for 2 0, which differ from each

other 180°, or two values of differing 90° from each other ; this

angle therefore determines not only the free axis X X, but also

the free axis Y Y perpendicular to it.

§ 311. The free axes of many surfaces and bodies can be given

without any calculation. In a symmetrical figure, e.g., the axis of

symmetry is a free axis, the perpendicular at the centre of gravity

is the second, and the axis at right-angles to the surface of the

figure the third free axis. For a solid of revolution A B, Fig. 514,

the axis of rotation Z Z is one free axis and in like manner ever}7

normal XX, Y Y . . . to this line and passing through the centre

of gravity is another. For a sphere every diameter is a free axis, and

for a right parallelqpipedon ABB, Fig. 515, bounded by 6 rectan-

Fig. 514 Fig. 515.

Z Z

gles they are the three axes X X, Y Y and Z Z, passing through

the centre of gravity perpendicular to the sides B D, A B and A D,

and parallel to the edges.

Let us now determine the three axes for a rhomboid A B C D,

Fig. 516. We begin by passing two rectangular co-ordinate axes

U U and V V through the centre of gravity, so that one is paral-
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lei to the side A B of the rhomboid, and by decomposing the rhom-

boid by parallel lines in 2 n equal strips, such as F G. Now if one

side A B = 2 a and the other A D — 2b and the acute angle A D C
between two sides = a, we have the length of the strip E G,

situated at a distance S E == x

from U%
=KG+EK=a+x cotg. a,

and that of the other part E F
= a — x cotg. a,

and since - sin. a is the width of
n

both, we have the areas of these

strips

b sin. a
{a -r x cotg. a) and

sin. a
(a — x cotg. a)

;

n n

and consequently the measures of the centrifugal forces of the two

portions in reference to the axis V V are

b sin. a . x , * b sin. a x ,
(a + x cotg. a) A (a + x cotg. a) = m— (# + x cotg. ay

n 2n
and

b sin. d
17" (a — # eofr?. «)

2

,

and their moments in reference to the axis U U are

bsin.a V2 i bsin.a , , ..—7T (a + # cota. a)
2 x and —7r (a — x cotq. ay x.

2 n v ^ ' 2 n K J
'

Since the two forces act in opposition to each other in reference

to V V, by combining their moments we obtain the difference

b x sin. a t 2 _ „—- (# + a; cottf. ay — (a — x cotq. aY\ — - ab x' cos. a.

b sin. a 2b sin. a
If we substitute in this formula successively

3 b sin. a

n

n n

,etc, and add the results, we obtain the measure of the

moment -of the centrifugal force of one-half the parallelogram

1
cos. a .

IJ^ (l*+2*+3*+...+n*)=%aFsinUcos.a. '

n w
% ab 3

sin* a cos.

3 »•

and for the whole parallelogram we have
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M
x u x

i\ + Mi u* v2 + . . . = i a ¥ sin? a cos. a.

The moment of inertia of one strip F G in reference to V T^is

_ b sin. a / (a + x cotg. a)
3

(a — x cotg. a)\
~ n I

"3 + ~3
J

= ^-j—1 («" + 3 a £2
cotg." a ) = | — sin. a (a* + 3 x> cotg} a).

a v -j.., ,. « . -, bsin.a 2 b sin. a Z bsin.a .

Substituting for x successively , , , etc.,

and summing the resulting values, we obtain the moment of inertia

of one-half the rhomboid, which is

= | a b sin. a (or + ¥ cos.
2
a),

and for the whole rhomboid it is

= | aft sin. a (a? + ¥ cos.
2 a).

In reference to the axis of rotation U U the moment of inertia

of the parallelogram is

= 4 a b sin. a = | a b
z
sin? a (see § 287),

o

and the required difference of the moments is given by the equation

(If, u? + 3L xuj + ...)- (if, v? + M2 v.? + . .
.)

= 4 a b sin. a (a- + ¥ cos.
2
a) — | a¥ sin? a

=
l ab sin. a [a? + ¥ (cos? a — sin? a)~]

= | a b sin. a (a? + ¥ cos. 2 a).

Finally, we have for the angle U SX — <j>, which the free axis

XX makes with the co-ordinate axis U U or with the side A B,

according to § 310,

2 (Mx ux %\ + M2 u3 v.2 .+ . . .)
tang. 2 (Ml u? + M2 u? + ...)-W v? + M% v? + . -. )

2 . | a ¥ sin? a cos. a ¥ sin. 2 a

| a b sin. a (a? + ¥ cos. 2 a) a? + ¥ cos. 2 a

For the rhombus a — b, and

sin. 2 a 2 sin. a cos. a 2sin.acos.a .

tang. 2 <b— — cr- — 5 r—r- = —r 5 = tana, a,
1+ cos. 2 a 1 -\- cos: a — sin: a 2 cos. a °

or 2 = a and = jr.

Since this angle gives the direction of the diagonal, it follows

that the diagonals are free axes of the rhombus.
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Example.—The sides of the rhomboid A B G D, Fig. 516, are A B =
2 a = 16 inches, and B C = 2 I = 10 inches, and the angle A B C= a =
60°

; what are the directions of the free axes %

Here we have

tang. 2 <p

5 2
sin. 120° 25 sin. 60° 25 . 0,86603

-X

82 + 5 2
cos. 120° 64— 25 cos. 60° 64-25 . 0,5

= 0,42040 = tang. 22° 48; or tang. 202° 48'

;

hence it follows that the angles of inclination of the first two free axes to

the side A B are d> = 11° 24' and 101° 24'. The third free axis is perpen-

dicular to the plane of the parallelogram. These angles determine the free

axes of a right parallelopipedon with a rhomboidal base.

§ 312. Action upon the Axis of Rotation.—If a material

point M, Fig. 517, revolves with a variable motion around a fixed

axis G, the latter must coun-
FlG

-
517- teraet not only the centrifu-

gal force, but also the force

of inertia of this point. While

the centrifugal force acts ra-

dially outwards, the force of

inertia acts tangentially either

in the opposite os in the same

direction's the movement of

rotation, according as the ac-

celeration of this motion is

positive or negative (Retard-

ation). We can therefore as-

sumethat the centrifugal force

MN — G N— N acts directly upon the axis C, and that the force

of inertiaMP— — P is composed of a couple (P, — P) and an

axial force, — P, and consequently the entire force, acting upon the

axis, G R = R is represented by the diagonal of a right-angled

parallelogram formed of N and — P. If r is the distance CM of

the mass M from the axis of rotation (7, w the angular velocity and

\t the angular acceleration, we have, according to § 302 and § 282,

and P — k M r,

and therefore the required resultant is

R = VN* + P 8 Vo>4 + K2 Mr,
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and for the angle R G N — 0, made by this force with- the

direction CM of the centrifugal force, we have

4 \ ~ P P K

Since in consequence of the acceleration tc, o) is variable, the

centrifugal force iVand the resultant R are variable.

In order to combine the centrifugal forces and the forces of

inertia of the masses M
y , Jf2, etc., we decompose each of these forces

into two components parallel to the directions of two axesXX and

Y Y, then if we combine them by algebraical addition, so as to

obtain two forces acting in the direction of each axis, we have only

to determine the resultant of these two forces. If x and y are the

co-ordinates CK and C L of the material point M in reference to

the co-ordinate axes XX and Y Y, we have the two components

of the centrifugal force N
N, = - N= w2 MxwA

r

N, = y- X = iSMy9

and, on the contrary, those of the force of inertia

pl
—%P = k Mymd

r

and therefore the entire force in the axis XX is

Q = Ny + Pi = ^ Mx + k My,

and that in the axis Y Y is

R = N, - P2 = w2 My - it Mx.

If we have a system of points or masses M\, M3, etc., which ara

revolving about a fixed axis C, Fig. 518, and if the co-ordinates of

these points in reference to the axis XX are

CKx
— x 19 CX2 = xz, etc.,

and those in reference to the axis Y J" are

C Lx
— 'y

lf C X2 = y», etc.,

the entire force in the direction of the first axis is

Q = w2M
x
x

x + itM
x yx + o)

2M2 x.2 + it M, y2 + .

.

., i.e.

Q = or (M, Xi + M, x2 + . . .) + it (M
x y x -V Jf2 y2 + . . .)>

and that in the direction of the other axis is

R = g)
2 (M, y x + M2 y2 + . . .)

- it (M, xx + M2 x, + . . .).
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Now if we denote the entire mass M{
4- M2 + . . . by M and

the co-ordinates of its centre of gravity in reference to the axes

XX and Y Y by x and y, we have (see § 305)

Fig. 518.

—

Y

-x cW* i * i Q X

R
>

~4_i

' \ i
lj^T/ J

S

\ L.____Sn 2

L 2

pKi

i

j/^*m 2

J/l xx + ifs ^2 + . • • = Mx
M

x y, + M,y, + ... = My,

and therefore, more simply,

Q = g)
2 Mx -f k If?/ and

i? = G)
2 if ?/ — itM x.

From Q and J? we obtain the resultant

S = V Q
2 + E%

and for the angle X C 8 =
<f>

of its direction

Since if # and if y are the statical moments of the centre of

gravity, it follows that in determining the pressure S upon the axis

of a system of masses, situated in one and the same plane of revo-

lution, we can consider the whole mass to be concentrated at the

centre of gravity ; and since the distance of the centre of gravity

of the system of masses from the axis of rotation is

r = Vx2

-h y~,

we have also

S = ^[(cfMx + fcMyY-h {rf My- kMx) %

]

= M |/[V (x
2 + f) + it

2
(x

2
4- y

2

)]

= MVtfTlc* Vx2 + y
x = ^w4 + k* . Mr

Remark.—If a triangle ABC, Fig. 519, revolves about its corner Uy

and if the other comers A and B are determined by the co-ordinates
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(*u Vx) and (x2i Vz)> we nave
>
according to § 112, the co-ordinates of it

centre of gravity S
x

x + %
2

Fig. 519.

i—

X

CS
±
=x =

'6

and
ft a _ „ _ V± +-V2
& 2 — y — —g—

,

and the mass, if we measure it by its super-

ficial area, is

j|f _.
x

*> Vz
~ X

2 Vi

a

Its moment of inertia in reference to the axis

of rotation C can be determined by the for-

mula

6 V «! — xs
' y

. -y s
3

\

M= -q (V + *i «2 + «
a
2 + 2/ x

2 + y4 y 2 + 2/ 2
2
).

This formula is also applicable to a ?%A« prism, whose base is the tri-

angle ABC.
Example.—A right prism with the triangular base A B C is caused to

revolve around its edge C by a force which acts uninterruptedly, so that

at the end of the time t = 1 it has made u = -| revolutions ; required not

only the moment of this couple, but also the action of this motion upon

the axis C. Let tlie base of this body be determined by the co-ordinates

x
x
= 1,5, yt

= 0,5 ; x
2
= 0,4, y 2

= 1,0 feet,

and let its length or height be I == 2 feet, and its heaviness y = 30 pounds.

From these data we calculate, first, the area of the base

x
x Vz - x

z Vx !>5 •
i*F =

and the mass of the whole body

Fl y

C,4.0,5 1,3 _— = ~- == 0,6o square feet,

M =

Now
9

= 0,031 . 0,65 . 3 . 30 = 1,209 pounds.

"j™ *C*j •Z'o ~"j~ •vo 2,25 + 0,60 + 0,16 = 3,01 and

Vx
1

+VxV2 + V2 = 0,25 + 0,50 + 1,00 = 1,75,

hence the moment of inertia of the body is

W= (3,01 + 1,75) ~ = 4,76 .
i|^ - 0,95914.

In consequence of the constant action of the couple, the movement of

rotation is uniformly accelerated, and consequently the angular velocity of

the body at the end of the time t = 1 second is (see § 10)

2s 2 .2 rru 2.2.5tt
t t

and the mechanical effect required is

= 31,416 feet,
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A = I o>- W= I (31,416)
2

. 0,95914 = 473,3 foot-pounds.

The angular acceleration is

o = 31£? = sl;416feetj
t J.

and therefore the moment of the couple

Pa = k W= 31,416 . 0,95914 = 30,13 foot-pounds.

The distances of the centre of gravity S of the base from the co-ordi-

nate axes XX and T T are

«1 + x» 1,5 + 0,4

3 3
= 0,6333 and

Vi+V. = 2,5+1,0 = 0,5000,
o o

consequently the distance of the centre of gravity from the axis is

C S = r = VaT+1/"2 = 0,6511.

Besides we have

<j
4 = 31,416 4 = 974090 and

,c = 31,416 2 = 987,

whence

Vgj
4 + /c

2 = V975077 = 987,46,

and the pressure upon the axis increases during the accelerated rotation from

P = KMr = 31,416 . 1,209 . 0,6511 = 24,73 pounds

to

R = Vw4 + /c
2 .Mr = 987,46 . 1,209 . 0,6511 = 777,33 pounds.

If after one second of time the couple ceases to act, the motion of rota-

tion of the body becomes uniform, and the pressure upon the axis from

that moment consists only of the centrifugal force, which is

N = gt M r = 986,96 . 0,7872 = 776,94 pounds.

The pressure upon the axis, which increases gradually from 24,73 to

777,33 pounds, is in the beginning at right-angles to the central line of

gravity G 8, but approaches more and more this line as the velocity

increases, so that at the end of the time t = 1 second, it makes but an

angle <£ with that line, and this angle is determined by the expression

P 24 73
tang. , = _ = _-^ = 0,03183,

for which $ = 1° 49'. If the couple ceases to act, the direction of the

axial force N = 776,94 pounds, coincides of course with the central line of

gravity C S and revolves with this line in a circle. If instead of the couple

a single force P acts with the arm a upon the body, another pressure equal

to this force P must be added to the pressure on the axis.
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Fig. 520.

§ 313. Centre" of Percussion.—If the different portions

MXi M2, etc., Fig. 520, of a system of revolving masses are not in

one and the same plane, the

directions of the forces

ft = w2 M
x xx + icM

x yx,

ft = of Jf2 x.2 + k M.2 y3, etc.,

no longer coincide with the

co-ordinate axis XX, but

lie in the co-ordinate plane

X Z, and those of the forces

B x
= w2 M

x yx
— k M

x xx ,

R2 = w2 if2 y2
— nM2, xi9 etc.,

no longer lie in the axis

Y Y, but in the co-ordinate

plane Y Z. The system of

forces ft, ft, etc., and R
x , R„

etc., give, according to § 305,

the resultants

Q — ft + ft + . . . and

R = R
X

4- R% + . .

.

Now since the lines of ap-

plication U Q and V R do

not generally lie in the same

plane, but cut the axis C Z
of rotation at different points ZJand V, it is impossible to obtain a

single resultant by combining them, but we can refer them to a

single force and a couple. The components are, of course, as above,

Q = or (M
x
xx + M,x2 + ...) + « (M

x yx + M2 y, + . .
.)

and

Mx + tc My

R — G?(M
x y x + M2 y2 + ...) — tc (M

x
xx + M2 x2 + . . .)

= w2 My -f- tcMx,

M denoting the entire mass Mx -f M2 + . . . and x and y the dis-

tances of its centre of gravity S from the co-ordinate planes Y Z
and JT Z.

Now if we put the distances of the masses M
x , Mi9 etc., from the

plane of rotation X Y, which is perpendicular to the axis of rota-

tion Z, equal to zly z2, etc., we obtain, as in § 305, the distances

of the points of application U and V of the forces Q and R from

the origin C.
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_ ft Zx + ft sa + .

.

.

u ~ ft + ft -f . .

.

_ ^ (ffi si ^
i + 2̂ g2 ga + « ) + « (^i yi %1 + -^ gfc ^ + * . .)

W* (j^ + ^2^2 + ...) + « (
i¥l#l + ^#2 + • • •)

and

Rx zx
4- i22 z2 + . .

.

" ~ Rx + i?7+ • • •

- ^W .Vi 'A + M,ysZs + ...)— ic (Mx
xx zx + Jf8 a;2 z8 + . . .)

wa
(i/T^! + i/o «/2 + . . .) — fc (ifa & +: Jfs #2 + . . .)

If the axis (7 Z is retained at two points A and B (the pillow

blocks), which are at the distance G A = lx and C B = k from

the origin of co-ordinates, the force Q is decomposed into two com-

ponents

and the force R into the components

Now the pressure upon the bearing A is

S\ = ¥X? + Y
x%

and that upon the bearing B is

S9 = VX? + Y,\

If the acceleration of the rotation is produced not by a couplo,

whose moment is P a, but by a force P, whose arm is a, a third

pressure equal to the force P is added to the two axial forces Q
and R. If we cause this force P to act, at the distance F = a

from the axis of rotation, parallel to the axis G Y and perpendicu-

lar to the plane X Z, and if we assume that its line of application

is at a distance G
F

'
= H = b from the co-ordinate plane X Y,

the force R only will be increased by an amount P} and the portion

of it F, at the bearing A will be increased by

and the part K2 at the bearing B by
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If Mx xx + M2 X* + . . . = 0,

Mx yx + Jf,y, *-"..
. = 0,

Jii »! js, + Jfs a?2 % + . . . = and

Mx yx zx + Ma yt za + . . . = 0,

C Z is a /re<3 arm, and not only the forces Q and i?, but also

their moments Q u and R v become = ; and we can, therefore,

conclude that when a system of masses rotates about a free axis

not only the centrifugal forces, but also the moments of inertia

balance each other (compare § 309).

Let us assume tint the system of masses is at rest, lb., w = 0,

or let us neglect tha action of the centrifugal force upon the axis

of rotation, then we have more simply for the pressures in the axes

Q = « My = k [Ml yi + M9 y3 + . . .) and

R =s
.

«- k Mx — — k (Mx %i + M^x.2 + .

.

.), and also

Qil s= it (Mx y x Zi + Ma y9 Z2 + . . .) and

Rv——k (Mx xx zt + Mi x3 zi + .

.

.).

"When the plane ofXZ is plane of symmetry and consequently

e j&la&e of gravity,

Fig. 521.

Mx yx
4- M2 y2 + ..„=0

and

Mx yx zx + M2 y2 z3 + ... = o,

and, therefore,

Q =
and also

Q u =. 0.

Now if we require that

the force of rotation

a

shall be counteracted by the

force of inertia R, so that

there shall be no action iLipon

the axis of rotation, we :must

have

P + R ==

and

P b + R v = 0,

I.E.,



§ 313.] THE CENTRIFUGAL FORCE OF RIGID BODIE.S. 637

k W — k (Mx xx + M, x, + ...) =

and
k Wb — k (Mx xx

zx -f M.2 x, z2 •) = o,

and consequently

W Mx rS + Mt r{ + . .

.

Mx Mx x, + M« x2 + .

and

• - (-

M
x x v

zx -f Ma x2 z.2 + . . .

)..

_ Moment of inertia

Statical moment

M
x
x

x
zx + M, x2 z2 +

W I
"

M\ x
x + Mo x2 + . .

.

_ Moment of the centrifugal force

Statical moment.

These co-ordinates determine a point 0, which is called the

centre of percussion (Fr. centre de percussion ; Ger. Mittelpunkt

des Stosses) ; for every force of impact P, whose direction passes

through this point and is at right angles to the plane of symmetry

X Z of the body passing through the axis of rotation or fixed axis

G Z
t
will he completely balanced, when the collision takes place,

by the inertia of the mass, without producing any action upon the

axis of the body.

Example—1) The moment of inertia of a straight line or rod G E,

Fig. 522, of uniform thickness throughout, which at one end G meets the

axis G Z at a given angle Z G E, when M is its mass

Fig. 522. and r the distance D E of its other end from the axis

of rotation, is

W = M h" = 4 M r 3 (see § 286),

and, on the contrary, the statical moment is

and finally the moment of the centrifugal force, since,

if li denotes the projection GD of the length G E of the

rod on the axis of rotation G Z, we have

GO,

or

M
t
xt z

x
- Mt V, M9

x2 z
2
= - 3I

2 <V, etc.,

Mx
x

x
z
t +M2

x
2
z
2 + . . . = - (Mt ^2+ Jf2V + • • •) = ~ • £ Mr"=^Mhr.

Therefore, the co-ordinates of the centre of percussion of this rod are

determined by the formulas
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F a —
Moment of inertia -J- Mr
Statical moment

and
-}Mr

Moment of centrifugal force -*- Mlir
\MrStatical moment

and this centre is situated at £ of the length E of the rod from the end

C and £ of the same from the end E.

2) The moment of inertia of a surface ABC, Fig. 523, whose form is a

right-angled triangle, which turns around its base C A.

is, when we denote the mass by M and its base and

perpendicular C A and C B by li and r,

Fig. 523.

_hr* _ h r

12*
= ~2~ -} Mr" (see § 229),

and its statical moment, since the centre of gravity S

r
is at a distance - from the axis G A, 13

o

Mx r= Mr

consequently the distance of the centre of percussion

of this surface from this axis is

F = a = lMf__ ±

\Mr ~ ~
2
~

For an element K L of the triangle, whose shape is that of a strip,

whose length is x and whose width is -, and which is situated at a dis-
TV

tance CK = z from the apex C, the moment of the centrifugal force is

Mxz — - x . 4 xzy

er, since - = v, or x = j- z,

h /rVMxz =KW
Substituting for z successively the values 1 f-j, 2 (

-J,
3 (-) . . . »'(-)?

and adding the values thus obtained for Mx z, we have the total moment

Ti (r

* &
of the centrifugal forces

Mx x, z
t + M2 x2

z 2 + . . . = i I [jj
(V + 2 3 + 3 3 +

= %Mrh,
and, therefore, the distance of the centre of percussion from the comer

Cis

\Mr 4
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Fig. 524.

\

CHAPTER III.

OF THE ACTION OF GRAVITY UPON THE MOTION OF BODIES
IN PRESCRIBED PATHS.

§ 314. Sliding upon an Inclined Plane.—A heavy body can
be hindered in many ways from falling freely. We will, however,
consider but two cases here, viz., the case of a body supported by
an inclined plane and the case of a body movable around a hori-
zontal axis. In both cases the paths of the bodies are contained in
a vertical plane. If a body lies upon an inclined plane, its weight
is decomposed into two components, one of which is normal to the
plane and is counteracted by it, and the other is parallel to the
plane and acts upon the body as a motive force. Let G be the
weight of the body A B C D, Fig. 524, and a angle of inclination of

the inclined plane FHE to th<?

horizon, according to § 146 tfr

normal force is

iV = G cos. a,

and the motive force is

P = G sin. a.

The motion of the body can
be either a sliding or a rolling

one. Let us consider the former

case first. In this case all the
parts of the body participate equally in its motion, and have there-
fore a common acceleration^?, determined by the well-known formula

_ force P G sin. a
p -^> = M= —G—'$ = $ sm ' a

>

hence P '• g — sin. a : 1,

i.e., the acceleration of a body upon an inclinedplane is to the accel-

eration of gravity as the sine of the angle of inclination of the plane
is to unity. But on account of the friction this formula is seldom
sufficiently accurate. It is, therefore, very often necessary in prac-
tice to take the friction into consideration.

If a body moves upon a curved surface the acceleration i«
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Fig, 525.

variable, and is in every point equal to the acceleration correspond-

ing to the plane, which is tangent to the curved surface at that

point.

§ 315. If a body slides down an inclined plane without fric-

tion and its initial velocity is — 0, then, according to § 11, the

final velocity after t seconds is

v — g sin. a . t = 32,2 sin. a . t feet = 9,81 sin. a . t meters,

and the space described is

s~- $ g sin. a . f = 16,1 sin. a . f feet == 4,905 sin. a . f meters.

When a body falls freely vx
== g t and sx

= £ g f, and we can

therefore put

v : vx
= s : $i = sin. a : 1,

I.E., the final velocity and the space described by a body sliding upon

the inclined plane are to the velocity and the space described by a

body falling freely as the sine of the angle of inclination of the plane

is to unity.

In the right-angled triangle F G H, Fig. 525, whose hypothenuse

F G is vertical, the base isFH=FG sin.F G H =
F G sin. F II R = F G sin. a, when a denotes the

inclination of the base to the horizon, and therefore

FH: FG = sin. a:l;

the body, therefore, describes the vertical hypothenuse

F G and the inclined base F H in the same time.

Hence the space described by a body upon an inclined

plane in the time, in which, if falling freely, it would

describe a given space, can be found by construction.

Since all the angles FHx G, F Ho^G, etc., inscribed in a semi-

circle FH% G, Fig. 526, are right angles, the semicircle subtended

by F G will cut off from all inclined

planes beginning at F the distances

F Hl} F HQ, etc., described simultane-

ously with the diameter. For this rea-

son we say that the chords or diameter

of a circle are described simultaneously

or isochronously. This is true not only

wheal the chords, as, e.g., F Hx , F II2,

etc., begin at the highest point F, but

also when the chords, as, e.g., Kx
G, Iu G,

etc., end at its lowest point G; for we

Fro. 52G.
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can draw through F the chords FK1} FK2, etc., which have the

same length and position as the chords G H^ G H«, etc.

§ 316. From the equation

v"
1

v"
1

s — tt— = = = for the space described,
2p 2 g . sin. a x

we obtain

s sin. a — tr—, and inversely,

v = V2 g s sin. a.

Now 5 sin. a is the height FR (Fig. 527) of the inclined plane

or the vertical projection li of the space FH — s. If, therefore,

several bodies, whose initial velocities are = 0, descend inclined

Fig. 527. planes F H, F ffl} etc., of different inclina-

tions, but of the same height, their final

velocity will be the same and equal to that

acquired by a body falling freely through

the distance F R (compare § 43 and § 84).

H H From the equation s — £ g sin. a . t" we

obtain the formula for the time

_ A/ 2 s 1 a/2 s sin. a _ 1 /% h

* g sin. a sin. a g sin. a' * g '

If a body falls freely through the height FR — h, the time is

tx
= y — , whence

t : tx
— 1 : sin. a = 5 : h = F II': F R.

The time required by a body to descend an inclinedplane is to the

time offalling freely through the height of this plane as the length

of the plane is to its height.

Example—1) The top Fof an inclined plane F II, Fig. 528, is given,

and we are required to determine the other extremity II, which is situated

in such a position upon a line A B that a body descending the plane will

reach this line in the shortest time. If through F we draw the horizontal

line F G until it cuts A B, and make G H = G F, we obtain in H the

point required, and in FE the plane of the quickest descent; for if we
pass through F and II a circle, to which the lines FH and G II are tan-

41
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Fig. 528.

gents, the chords F

K

u F iT
2 , etc., described simultaneously, are shorter

than the lines F

H

t , F

H

2 , etc., drawn from i^to

the line A B\ consequently the time required to

descend this chord is less than that required to

descend these lines, and the inclined plane F H,

which coincides with that chord, is the plane of

quickest descent.

2) Required the inclination of the inclined

plane F ff, Fig. 527, which a body will descend

in the same time as it will fall freely through the

height FB and move with the acquired velocity

upon a horizontal plane to H. The time required

to fall through the vertical distance FB = 7iU

*-*¥ and the velocity acquired is

v = V2 gh.

If no velocity is lost in passing from the vertical to the horizontal mo-
tion, which is the case when the corner B is rounded off, the space B H
= h cotg. a will be described uniformly and in the time

t9 =
h cotg. a h cotg. a = J cotg,••^

The time in which a body will descend the inclined plane i3

, = _L a/11.
sin. a r g

Now if we put t = t
x + t

2 , we obtain the equation of condition

tang, a= 1 -f f cotg. a or —^— = tang, a -f §-.

sin. a u
sin. a

Resolving this equation, we obtain tang, a = f . In the corresponding

inclined plane the height is to the base is to the length as 3 is to 4 is to

5, and the angle of inclination is a = 36° 52' 11".

3) The time in which a body will slide down an inclined plane, whose

base is a, is

V g sin. a V g sin. a cos. a r g sin. 2 a

this is a minimum when sin. 2 a is a maximum, i.e. = 1 ; then 2 a = 90

or a° = 45°. Water flows quickest down roofs whose pitch is 45°.

§ 317. If the initial velocity of a body upon an inclined plane

is c, we must employ the formula found in § 13 and § 14 ; hence,

when a body ascends an inclined plane, we have the velocity

v = c — g sin, a . i,

and the space described
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s — c t — | g sin. a . f,

and for a body descending the inclined plane we must put

v — c -\- g sin. a . i and s = c t + ^ g sin. a . f.

In both cases, however, the following formula

v
2 - & . 7

v
1 - & v2

c
9

s = -
-. , or s sin. a = fi

2 g sin. a' 2g 2 g 2 g
is applicable.

The vertical projection (h) of the space (s) described upon the in-

clined plane is always equal to the difference of the heights due to the

velocities.

When two inclined planes F G Q and G H R, Fig. 529, meet in

a rounded edge, a body descending the plane will experience no

impact in passing from one to the other

;

hence, if we have such a combination of

planes, there will be no loss of velocity,

and the following rule will be applicable

to the case of a body descending these

planes: height of fall equal to height due

to velocity. We can easily understand that

when a body ascends or descends a series of such planes or a curved

line or surface, its motion will take place according to the same law.

Example—1) A body ascends, with an initial velocity of 21 feet, an

inclined plane, the inclination of which is 22°. What is its velocity and

what is the space described after 1|- seconds ?

The velocity is

v = 21 - 32,2 sin. 22° . 1,5 = 21 — 32,2 . 0,3746 . 1,5 = 21 - 18,09

= 2,91 feet,

and the space is

c -f v 21 + 2,91 . 23,91 .

3

s = -j-.t= ^— . f = -~— = 17,93 feet.

2) How high will a body, whose initial velocity is 36 feet, rise upon a

plane inclined at 48° to the horizon ? The vertical height is

h = £- = 0,0155 . v
2 = 0,0155 . 362 = 20,088 feet,

~ y

and therefore the entire space described upon the inclined plane is

h 20,088
8 = -. = —4-3-0 = 27,031 feet

sin. a sm. 48 '

and the time required to describe it is

, 2.8 2.27,031 27,031 '

t =
~T~

=
36 = "IS" = w seconds-

§ 318. Sliding upon an Inclined Plane when the Fric-

tion is taken into Consideration.—The sliding friction has
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great influence upon the ascent or descent of a body upon an in-

clined plane. From the weight G of the body and from the angle

of inclination a we obtain the normal pressure

N = G cos. a,

and consequently the friction

F = </> JV = G cos. a.

If we subtract the latter from the force Px
— G sin. a, with which

the gravity pulls it down the plane, there remains the motive force

P — G sin. a —
<f>
G cos. a,

and we have for acceleration of a body moving down the inclined

plane

force (G sin. a — d> G cos. a\ . . .

p — = (
—

I a = [sm. a — <b cos. a) a.1 mass V G I
J v J u

For a body ascending an inclined plane the motive force is neg-

ative and = G sin. a + $ . G cos. a, and the acceleration p is also

negative and = — (sin. a -f cos. a) g.

If two bodies placed upon two different inclined planes F G and

Fig. 530.
FH

>
Fig

*
53 °> are united b7 a perfectly

c flexible cord, which passes over a pulley

A Cy
it is possible that one of the bodies

will descend and raise the other. De-

noting the weight of these bodies by G
and or,, and the angles of inclination

^GS- of the inclined planes, upon which they

rest, by a and a
x , and assuming that G

descends and draws up Gx, we obtain the motive force

P = G sin. a — Gx sin. a
x
— G cos. a — <j> Gx cos. a

x

= G (sin. a — (j) cos. a) — Gx (sin. a
x -f (p cos. a

x ),

and the mass moved

9
and therefore the acceleration with which G descends and Gx

ascends is

_ G (sin. a — <p cos. a) — Gx
(sin. a

x + </> cos. a,)

p - G~VG\ ' g'

Since the friction, which is a resistance, cannot produce mo-

tion, we must have, if G descends and G x ascends,

G (sin. a — <p cos. a) > Gx (sin. a
x + 6 cos. a^), or

G sin. «! + </> cos. a
x G sin, (a, + p)^ •„„ ~ j „ ~~r I'E. 77- ,>

(?i S4W. a — </> cos. a ' '• '

(?, m (a ~ p)'
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If, on the contrary, Gx descends and G ascends, we must have

Gx ^ sin. a + cos. a

G sin. «i — cos. a'

G sin. a
x
— 9 cos. a

x G sin. (a
x
— p)

G x
sin. a + <j> cos. a' ' ' Gx sin. (a + p)

'

As long as the ratio -^ is within the limits
(xx

sin. a, -\- d) cos. a
x

.. sin. a
x
— d> cos. a

x—r— ^ — and —-. -7
, or

si?i. a — </> cos. a sin. a + <p cos. a

sin. (a
x

4- p) -, sin. (a^ — p)—

—

-, V and -—.—
) ~,

sin. (a — p) sin. (a + p)

the friction will prevent any motion.

Example—1) A sled slides down an inclined plane covered with snow,

150 feet long and inclined at an angle of 20 degrees, and on arriving at the

bottom it slides forward upon a horizontal plane until the friction brings

it to rest. If the coefficient of friction between the snow and the sled is

= 0,03, what space will the sled describe upon the horizontal plane (the

resistance of the air being neglected) ?

The acceleration of the sled is

p = (sin. a — £ cos. a) g = (sin. 20° — 0,03 . cos. 20°) . 32,2

= (0,3420 - 0,03 . 0,9397) . 32,2 = 0,3138 . 32,2 = 10,104 feet,

and therefore its velocity on arriving at the bottom of the inclined plane is

B = V2j)8 = V2. 10,104 . 150 = V3031,2 = 55,06 feet.

Upon the horizontal plane the acceleration is

p t
= — 6 g = — 0,03 . 32,2 = — 0,966 feet,

and therefore the space described is

V- 3031,2 .,
- „

*> = <r^=i^ = 1569feet -

The time required to slide down the inclined plane is

2 a 300
A

-

t = — =
ft Ap = 5,45 seconds :

v 55,06 '

that required to slide along on the horizontal plane is

Fig. 531. t
t
= ~± =

J^? = 57 seconds,

and therefore the duration of the entire journey is

t + t
x = 62,45 seconds = 1 minute 2,45 seconds.

2) A bucket K, Fig. 531, which, when filled, weighs
250 pounds, is drawn up a plane, 70 feet long and in-

clined at an angle of 50°, by a weight O = 260 ; what
time will be required when the coefficient of the fric-

tion of the bucket upon the floor is 0,36 ?
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The motive force is

= G — (sin. a + $ cos. a) K = 260 — (sin. 50° + 0,36 cos. 50°) . 250

= 260 - 0,9974 . 250 = 10,6 pounds,

and therefore the acceleration is

10,6 10,6

^ = 250T260
=

510 = °'0208feet '

the time of the motion is

t = j/y = j/^g = V 6731 = 82,04 sec. = 1 min. 22 sec,

and the final velocity

2 s 140 , _ „
" = T =

lT2-
=1

'
70feet -

§ 319. Rolling Motion upon an Inclined Plane.—When
a wagon runs down an inclined plane, it is the friction on the axle

which offers the principal resistance to the acceleration. If G is

the weight of the wagon, r the radius of the axle and a that of the

wheel, we have

—- N— ^— G cos. a,
a a

and therefore the acceleration

p = \sin, a — -— cos. a) g.

If a round tody A B, as, e.g., a cylinder or a sphere, etc., rolls

down an inclined plane F II, Fig. 532, we have at the same time a

motion of translation and of rotation. As
the acceleration of translation p is generally

equal to that of rotation (§ 169), if we put

the moment of inertia of the rotating body

= G lc
A and the radius C A of rotation = a.

we obtain for the force A K = K, with

which the roller (in consequence of the mu-

tual penetration of its surface and that of

the inclined plane) is set in rotation,

K = v •
—-•
ga-

But the force K opposes the force G sin. a, which tends to

cause the body to slide down the plane, and therefore the motive

force for the motion of translation is

P = G sin, a — K,

and its acceleration is

G sin, a — K
p = g_ .g
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Eliminating K from the two equations, we obtain

n . Gk*
G p — G g sin. a — .p,

CL

and consequently the required acceleration

a sin. a

For a homogeneous cylinder F = 1 a2

(§ 288), and therefore

a sin. a

but for a sphere k2 = § a2

(§ 290), and therefore

a sin. a
P = J-+T 7T iff sm- a

i

the acceleration of a rolling cylinder is but | and that of a rolling

sphere is but f as great as that of a body sliding without friction.

The force which produces the rotation is

7T _ ff sin. a G k* __ G k2
sin, a~

k* * g a2
~

' a2 + &2

a?

As long as this force is less than the sliding friction (p G cos. a,

so long will the body descend the plane with a perfect rolling

motion. But if

J5T> G cos. a, i.e., if tang, a > tj> (1 -f — j,

the friction is no longer sufficient to impart a velocity of rotation

equal to that of translation ; the acceleration of translation

becomes, as in the case of sliding friction,

G sin. a — d> G cos. a . .

p = ~ . g ~ (sin. a — d) cos. a) g,

and that of rotation

d> G cos. a a1

^twf?-.'** ******
If the weight of a wagon is G, the radius of its wheels a and

their moment of inertia G k?, we will have

v
n 7 9

G sin, a — $ - G cos. a — K
& = P 5— and p = i

—— •

. a,* g a?
I G J
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I.E.,

P

T
g {sin, a — <p - cos. a)

1 + "W
Example—1) A wagon, which, when loaded, weighs S600 pounds and

whose wheels are 4 feet high and have a moment of inertia of 2000 foot-

pounds, rolls down a plane whose inclination is 12° ; required the accelera-

tion, when the coefficient of friction upon the axles is <j> = 0,15 and the

thickness of the axles is 2 r = 3 inches.

Here we have

W = ^p=.S = °>- «* *l =w & = ***
and therefore the required acceleration is

__82,2 (sin. 12°- 0,0094 . cos. 12°) _ 32,2 . (0,2079 — 0,0094 . 0,978)
P ~~ '

1 + 0,139
~~

LT39

32,2.0,1987 .=—1^39— = 5
>
617feet-

2) With what acceleration will a massive roller roll down a plane whose

angle of inclination is a = 40° ?

If the coefficient of sliding friction of the roller upon the plane is

(ft = 0,24, we have

*(l +-J)
=0,24(1 + 2) =0,72.

Now tang. 40° = 0,839, and tang, a is therefore greater than <j> ( 1 + =^\,

and the acceleration of the rolling motion is smaller than that of the mo-

tion of translation.

The latter is

p = (sin. a - <pcos. a)g = (0,648 - 0,24 . 0,7660) . 32,2 = 0,459. 32,2

= 14,78 feet, and the former is

p x
= 0,24 . 2 . 32,20 cos. 40° = 15,456 . 0,776 = 11,99 feet.

§ 320. The Circular Pendulum.—A body suspended from

a horizontal axis is in equilibrium as long as its centre of gravity

is vertically under this axis ; but if we move the centre of gravity

out of the vertical plane containing the axis and abandon the body

to itself, it assumes an oscillating or vibrating motion (Fr. oscilla-

tion, Ger. Schwingende Bewegung), i.e., a reciprocating motion iu

a circle. A body oscillating about a horizontal axis is called a

pendulum (Fr. pendule, Ger. Pendel or Kreispendel). If the

oscillating body is a material point, and if it is connected with the

axis of rotation by a line without weight, we have a simple or

theoretical pendulum (Fr. p. simple, Ger. einfaches or mathema-
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tisclies P.) ; but if the pendulum consists of a body or of several

bodies of finite dimensions, it is called a compound pendulum (Fr.

pendule compose, Ger. zuzamniengeseztes, physisches or materielles

Pendel). Such a pendulum can be considered as a rigid combina-

tion of a number of simple pendulums, oscillating around a

common axis. The simple pendulum has no real existence, but it

is of great use in discussing the theory of the compound pendu-

lum, which can be deduced from that of the simple one. If the

pendulum, which is suspended in C, Fig. 533, is moved from its

vertical position C M to the position C A and left to itself, by

virtue of its weight it will return towards CM with an accelerated

motion, and it will arrive at the point M
Fig. 533. w^li a velocity, the height due to which is

equal to D M, In consequence of this

velocity it describes upon the other side

the arc M B — M A, and rises to the

height D M. It falls back again from B
to M and A and continues to move back-

wards and forwards in the arc A B. If we

could do away with the friction on the

axis and the resistance of the air, this

oscillating motion of the pendulum would continue forever ; but

since these resistances can never be entirely removed, the arc in

which the oscillation takes place will gradually decrease until the

pendulum comes to rest.

The motion of the pendulum from A to B is called an oscilla-

tion (Fr. oscillation, Ger. Schwuug or Pendelschlag), the arc A B, the

amplitude (Fr. amplitude, Ger. Swingungsbogen), and the angle

measured by half the amplitude is called the angle of displacement.

The time in which the pendulum makes an oscillation is called the

time, duration, or period of an oscillation (Fr. duree d'une oscilla-

tion, Ger. Schwingungszeit or Schwingungsdauer).

§ 321. Theory of the Simple Pendulum.—In consequence

of the frequent use of the pendulum in common life, viz. for clocks,

it is important to know the duration of an oscillation ; its demon-

stration is therefore one of the most important problems in

Mechanics. To solve this problem, let us put the length of the

pendulum A C = M 0== r, Fig. 534, and the height of rise and

fall during an oscillation MD = h. Assuming that the pendulum
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lias fallen from A to G, and making the vertical height D H of fall

corresponding to this motion = x, we have the velocity acquired

at £
v = V2 g x,

and the element of time, during which
Fig. 534 c the element of its path GK is described,

G K GK
v V%gx

If we describe from the middle pf

MB == h with the radius OM = OB =
± h the semicircle MNB,v?e can cut from

the latter an elementary arc NP, which

will have the same altitude P Q =
KL = RHa&GK, and whose relation

to the latter can be very simply ex-

pressed. In consequence of the sim-

ilarity of the triangles G K L and G G H we have

GK __ C_G_

K L~G If
and in consequence of the similarity of the triangles N P Q and
NH

NP _ 0_N
P Q ~ TIP

dividing the first of these proportions by the second and remem-
bering that K L = P Q, we obtain the ratio of the above elements

of the arcs

G_K _ G G.NH
NP ~ GH. ON'

From a well-known property of the circle we have

GlP = MH{2 CM- MB) and NH" = MH.D II,

whence it follows that

G K C G. V~BH r Vx
NP ON.^OM-MII i^V2r-(h-x)

and the time required to describe an element of the path is

r Vx NP 2r

i h |/2 r - \h - x) V2 gx hV2g[2r-(h - x)]

NP

r 2r
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Generally in practice the angle of displacement is small, and
7i (jc J? cp

then x—, 7T- and —^— are such small quantities, that we can
2 r 2 r 2 r

neglect them and their higher powers and put

x/r NP

The duration of a semi-oscillation or the time within which the

pendulum describes the arc A M is equal to the sum of all the

elements of the time corresponding to the elements G K or N P.

Now since j- . y - is a constant factor, we can put the sum equal

to = y - times the sum of all the elements forming the semi-
h g

^
°

circle D N M, i.e., =-y- times the semicircle (-^-), or
lb

(J
\ Z I

1 .fr n h tt ./r

The same time is required by the pendulum for its ascent ; for

the velocities are the same but opposite in direction, hence the

duration of a complete oscillation is double the latter, or

t = 2t 1
= n l/-.

f
(J

(§322.) More Exact Formula for the Duration of an
Oscillation of the Circular Pendulum.—In order to determine

the duration of an oscillation with greater precision, as is some-

times necessary, when angles of displacement are large, we caii

transform the equation

I 1 /1 - l-^p
f Y^~x V 2r I

r yi
7i
—

f 2 r

into the series

-, , , h — x ., Hi — xV

and then we have the time in which an element of the path is

described

L
1 + a %r + *-\ 2r /

+
•••J

r g- h
'



652 GENERAL PRINCIPLES OF MECHANICS. [§ 322.

Putting the central angle D N =
(f>% or the arc

Fig. 535. D K= DO.c[> = 7Lt
2~'

we obtain the height

M Or- HO ==

h

MH= h -x

+ - COS. = (1 + COS. <p)

and therefore the element of time

A

4r

N~JP

9 h '

2

T = [l + i • (1 + COS. (p)

+ l(i + CM.0)»(A)
t

+ ...] t
/:

or, since

(1 + cos. 0)
2 = 1 + 2 cos. + (cos. <t>)

2 = 1 + 2 cos. +L±^!i
= | + 2 cos. -f ^ cos. 2 0,

h
r = j"l + J (1 + cos. 0) _L + j (J + 2 cos.

+ (A + ..0(i)~U + ...]v].^

. I h V NP cos. 2 0\ ,/r

••Hr?/ —s—P*
NPcos.

+ .(* + -.-.) ^
Now the sum of all the elements JV"P is = the axcD N

P

<p h
, JVP cos. </> is = iV $ and the sum of all the N Q is = the

ordinate NH = - sin. 6 and also the sum of all the
7
— -—

2 r h

is = sin. 2
(f>,

therefore the time required to describe the arc A G is

<.=(N-A+*^->+[j^+ife)>-]*-*
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The time required to describe the arc A M is, since we have

here — n, sin. <p = sin. n and sin. 2 </> = sm 2 rr = 0,

V

As the Telocity decreases in the same manner, when the pen-

dulum ascends on the other side, as it increased during the descent,

the time required for describing the entire arc or the duration of

the complete oscillation is

- -«- [• «>• h * fit-y £)•

If the pendulum oscillates in a semicircle, we have li = r, and

consequently the duration of an oscillation is

In the most cases in practice the amplitude of the oscillations

i3 much less than a semicircle, and the formula

\ 8 r /
r a

t

9
is sufficiently accurate.

If the angle of displacement be denoted by a, we have cos. a

r — h h h lxl „= 1 or - = 1 — cos. a, and tnereiore
r r r

h
1

1 — cos. a

Vr ~ * ' ^ 2
i(sin.$;

from the latter formula we can determine the correction to be

applied for any given amplitude. If, for example, this angle is

a == 15°, we have

~ = i (sin. I5-)' = 0,0042G
;

and, on the contrary, for a = 5°

i= 0,00047;

for this last amplitude the duration of an oscillation is

t = 1,00047 . 77 \r~.
9
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Consequently if the amplitude is less than 5°, we can put with

sufficient accuracy the duration of an oscillation

t ^ 7T V- = JL= Vr =e 0,554 Vr.
9 Vg

§ 323. Length of the Pendulum.—Since in the formula

9
the angle of displacement does not appear, it follows that the

duration of small oscillations of a pendulum does not depend upon
this angle, and that pendulums of the same lengths, when their

amplitudes, although different, are small, oscillate isoclironally or

have the same duration of oscillation. A pendulum, when its am-

plitude is 4 degrees, make an oscillation in (almost) the same time

as when it is 1 degree.

If we compare the duration t of an oscillation with the time U

of the free fall, we find the following relation. The time required

by a body to fall freely a distance r is

hence

t:tt
='tr:V5;

the duration of an oscillation of a pendulum is to the time required

by a body to fall freely a distance equal to the length of the pen-

dulum as the number n is to the square root of 2. The time re-

quired to fall the distance 2 r is

therefore the duration of an oscillation is to the time required to fall

a height equal to twice the length of the pendulum as tt is to 2.

If we put the durations of the oscillations of two pendulums,

whose lengths are r and rl9 equal to t and t1} we obtain

t:t1 = VT: V7,.

When the acceleration of gravity is the same, the durations of the

oscillations are proportional to the square roots of the lengths of the

pendulums. Now if n is the number of oscillations made by one

pendulum in a certain time, as, e.g., in a minute, and n x the num-

ber made in the same time by another pendulum, we have

n n{
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and inversely n : nx
s= \Tr x : V r ,

'

i.e. ^ number of oscillations is inversely proportional to the square

root of the length of the pendulum. A pendulum four times as

long as another makes but one-half as many oscillations in the

same time.

A pendulum is called a secondpendulum (Fr. pendule a seconde,

Ger. Secundenpendel), when the duration of its oscillation is a

second. Substituting in the formula t = it 4/ —, t = 1, we obtain
9

the leogth of the second pendulum r = -™- ; for English systemJ. LUC OC^/UUU £/&UA.lU.J.U.UJ. /

of measures
r 3= 3,26255 feet = 39,1506 inches,

and for the metrical system

r = 0,9938 metres.

By inverting the formula t == rr y —>we obtain g = ( -) r, by

means of which we can deduce from the length r of the pendulum

and the duration t of its oscillation the acceleration g of gravity.

We can determine the value of g more simply and more accurately

in this manner than with Atwood's machine.

Remark.—By observations upon the pendulum, the decrease of the force

of gravity, as we proceed from the equator to the poles, has been proved,

and its intensity determined. This diminution is caused by the centrifugal

force arising from the daily revolution of the earth upon its axis, and also

by the increase of the radius of the earth from the poles to the equator.

The centrifugal force diminishes the action of gravity at the equator-^ of

its value (§ 302), while at the poles the action of the centrifugal force is null.

By observation upon the pendulum we can determine the acceleration of

gravity at the place of observation. This acceleration, when denotes the

latitude of the place, is

g = 9,8056 (1 — 0,00259 cos. 2 (3) metres;

therefore at the equator, where ,3 = and cos. 2/3 = 1, we have,

g = 9,8056 (1 - 0,00259) = 9,780 metres,

and at the poles, where J3 = 90°, cos. 2 (3 = cos. 180° = — 1,

g = 9,8056 . 1,00259 = 9,831 metres.

Upon mountains g is smaller than at the level of the sea.

§ 324. Cycloid.—We can put a body in oscillation or cause it

to assume a reciprocating motion in an infinite number of ways.

Any body moving in such a manner is called a pendulum. We
distinguish several kinds of pendulums, as, for example, the circu-

lar pendulum, which we have just discussed, the cycloidal pendulum,

where the body, by virtue of its weight, swings backwards and for-
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wards in a cycloid, and the torsion pendulum or torsion balance,

where a body oscillates in consequence of the torsion of a string or

wire, etc. We will here discuss only the cycloidal pendulum.

The cycloid (Fr. cycloide, Ger. Cycloide) A Px D, Fig. 536, is a

curve described by a

Fig. 536. point A of a circle

A P B, which rolls

upon a straight line

B D. If this gene-

rating circle rolls for-

ward the distance

B B, =. C Cx and

comes into the posi-

tion A
x 7?„ it turns

through the arc A P
= A x P\ = B B

x
— P P„ and the ordinate M P

x
corresponding

to any abscissa A M is = ordinate M P of the circle plus the arc

A P, which the circle has turned. In this rolling the generating

circle turns always upon its point of tangency to the base line B D
;

if it is in A , Bu it turns about Bx, and thus describes the element

Px Qx of an arc of the cycloid; consequently the chord B x P x
gives

the direction of the normal and the chord A
x
P

x that of the tangent

Px Tat the point Px of the cycloid. The prolongation P Q of the

chord A P reaching to the ordinate Qx is equal to the element

Px Qx of the cycloid ; since the space P R due to the motion of ro-

tation is equal to that R Q due to the motion of translation, P Q is

the base of an isosceles triangle, and is equal to twice the line P JV,

which is cut off by the perpendicular R N\ PN is finally the dif-

ference of the two neighboring chords A R and A P, and conse-

quently the element Px Qx of the cycloid is equal to twice the

difference (A R — A P) of the chords. Since the successive ele-

ments of the cycloid compose the arc A Px, and the sum of the

differences of the chords the entire chord A P, we have the length

of the arc A P
x
of the cycloid equal to twice the chord A P of the

generating circle. The diameter of the circle is the chord corre-

sponding to the semi-cycloid, and the length of the semi-cycloid is

therefore twice the diameter (2 A B) of the generating circle.

§ 325. Cycloidal Pendulum.—From the properties of the

cycloid, found in the foregoing paragraph, we can easily deduce the

theory of the cycloidal pendulum, or the formula for the duration

of an oscillation of a body vibrating in the arc of a cycloid. Let
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A KM, Fig. 537, be half the arc of the cycloid, in which a body

oscillates, and M E the generating circle, whose radius is C E =

Fig. 537.

E

M — r. If the body has described the arc A G or fallen from

the height D H = x (compare § 321), it has attained the velocity

v = V2 g x, with which it describes the element G K of the arc in

the time
GK GK
v VYgx

In consequence of the similarity of the triangles G L iTandFHM,
we have

GK
KL

FM_
MW

or, since FM* = MH. ME,
GK VMH.ME VM E
KL MH VWh'

and in consequence of the similarity of the triangles JSf P Q and
NH

NP ON
P Q~ NH7

or, sinceslF =

NP
P Q
KL =
GK
NP~

= MH.D H,
ON

Now
VMH.DH
P Q, hence by division we

VME VMH.DH
VMH N

have

VME .D H
N

or, since N, half the height fallen through, = 1>ME =
DH = X,

GK
NP~

V2rx 2V2rx

2 r and

42
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If we substitute G K ==

G K

2 V2rx
% . iyP in the formula

V2g
, we obtain

2V2rx .NP
h y a*

NP.
V2gxJi **> ' 9

The time required to fall from A to M is the sum of all the

values of t, obtained by substituting for NP all the divisions of

the semicircle D N M, or

h Y a
times the semicircle D JVM 64

U = ^•'iA

Hence we have the time required to describe the arc A M

and since the time for ascending the arc M B is equal to it, we have

for the time required to describe the wJwle arc A M B

Since this quantity is entirely independent of the length of the

arc, it follows that the times of the oscillations for all arcs of the

same cycloid are mathematically exactly equal, or that the cycloidal

pendulum is perfectly isochronal. If we compare this formula with

the formula for the duration of the oscillations of a circular pen-

dulum, we find that the durations are the same for both pendulums,

when the length of the circular pendulum is four times the radius

of the generating circle of the cycloid.

Remake:.—In order to make a body suspended by a flexible cord oscil-

late in a cycloid and thereby to form a cycloidal pendulum, we must hang

the same between two arcs C and C t ,

Fig. 538, of a cycloid, so that during

each oscillation the cord will unwind

from one and wind upon the other arc.

It can easily be shown that, when the

cord COP wraps and unwraps, the end

P describes a cycloid equal to the given

one, but in an inverted position. The

length of the semi-cycloid is G A —
CD = 2 A B and the arc A is = the

straight line P, which has been un-

wound ; but the arc A — twice the

chord A F — 2 G 0, and therefore
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P G = G = AF and RN = A E. Describing upon BR = AB a

semicircle B KR and drawing the ordinate N P, we have KR = P O
and, therefore, also

PK = GR = AR — A a = A R— F = arc J. .FP — arc 4 jP =
arc B F = arc D -8T,

and, finally, jVPis = the ordinate NK of the circle plus the correspond-

ing arc B K\ NP is therefore the ordinate of a cycloid B P A corre-

sponding to the generating circle B K R.

Upon the application of cycloidal pendulums to clocks, see " Jahrbii-

cher des polytechn. Institutes in Wien," Vol. 20, Art. II. Also Precfatl's

technologist e Encyclopadie, Bd. 19.

(§ 32S.) The Curve of Quickest Descent.—It can be proved

by the Calculus that fclie cycloid, besides the property of isoclironism

or tautoclironism, possesses also that of brachystonism, i.e. it is the

fine in which a body descends from one given point to another in

the shortest time.

We can prove this (as Jacob Bernoulli did) in the following

manner.

Let the relative position of two points A and B, Fig. 539, be

given by the vertical distance A C = a and the horizontal one

B C — o, and that of a horizontal

line D E by the vertical distance

A D — h; required the point K, in

which a body falling from A to B
must intersect the line D Em order

to reach B in the shortest time. If

the body arrives' at A with the ve-

locity v
9 the velocity at K is

Fig. 539.

N M

vx = Vv2 + 2 g h
;

and supposing that A, if and B are

infinitely near each other, or that a, h and h are very small com-
pared to v, we can assume that A K is described uniformly with

the velocity v and K B uniformly with the velocity v1} or that the

time, in which A K B is described, is

t
AK KB
v vx

Denoting I^Khj z, we have

A K = VW + z
2 and K B = V{a

and therefore

hy + {b - zf,
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, _ Vlf + z
l

,
j/(g - fr)

a + (b - zf
T — ~p •

V v
x

This quantity will be a minimum, when we make its first dif-

ferential coefficient

d t z b — z

But

d z v 4/#» + # Vi |/(a _ /^ + (& _ 2)*

= 0.

KB

and
VA2 + .fiT.4

= cos, A KD = cos. ^

5 -* 5 £ = cos. KB L = cos. <px,

V\a - hf + (& - *)
2 # ^

and </>! denoting the inclination of the paths A K andK Bto the

horizon ; hence we have for the equation of condition

cos.
<f) _ cos. 0!

V vx

Putting the heights due to the velocities v and v»M A — y and

JSfK = y1} or

v = V2g y and Vj = l
7^ # ^j,

our equation becomes

cos. 4> _ cos. 0j

Vy ~ Vyx
'

and if we apply this formula to the case of a curved line SAKE,
cos cb

it follows that for every point of this curve the quotient —'-—- must
Vy

be a constant quantity, such as
V2r

This property corresponds to a cycloid S G M, Fig. 540 ; for

we have for an element G K of this curve
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_ GJL _ Fff _ VMH.EH _ JEH _ J y_
cos. - g-g - FM - VMHJSM - V e M " r 2 r

and therefore

cos. </>

Vy V2r

r denoting tlie radius CM— G E of the generating circle E F M.

An arc S G of a cycloid is therefore the arc in which a body

descends in the shortest time from one point 8 to another point 67.

§ 327. The Compound or Material Pendulum.—In order

to determine the duration of an oscillation of a compound pendulum

or of any body A B, Fig. 541, oscillating about a horizontal axis G,

we must first find the centre of oscillation (Fr. centre
Fig. 54L

d'oscillation, Ger. Mittelpunkt des Schwunges or

JJI^ Schwingungspunkt), lb*, that point K of the body

||f which, if it oscillates alone around G or forms a

simple pendulum, has the same duration of oscilla-

tion as the entire body. We can easily perceive

that there are several such points in a body, but we
generally understand by it only that one, which

n
lies in the same perpendicular to the horizontal

axis as the centre of gravity does.

From the variable angle of displacement K G F = <p we obtain

the acceleration of the isolated point K, which is

= g sin.
;

for we can imagine that it slides down a plane, whose inclination is

KHE = KGF—
(f>.

If M ¥ is the moment of inertia of the

entire body or system of bodies A B, M s its statical moment, lb.

the product of the mass and the distance G S = s of its centre of

gravity from the axis of oscillation G, and r the distance CK of.

the centre of oscillation from the axis of rotation or the length of

the simple pendulum, which vibrates isochronally with the material

pendulum A B, we have the mass reduced to K
MW

and therefore the rotary force reduced to this point is

_ s

r

consequently the acceleration is

=
S

r
M&
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force s , r . _, Mh2 M s r
p = = - M q sin. (p :

—-r- — -,-^TT . q sin. 6.
1 mass r u T r8 MJc 1 J Y

In order that the duration of an oscillation of this pendulum

shall be the same as that of the simple pendulum, it must have in

every position the same acceleration as the other ; hence

Ms r . .

-grp- . g sin. $ = g sin. <j>.

This equation gives

^ __ M k* _ moment of inertia

Ms statical moment
We find, then, that the distance of the centre of oscillation from

the point about which the rotation takes place, or the length of the

simple pendulum having the same duration of oscillation as the com-

pound pendulum, is. equal to the moment of inertia of the compound

pendulum divided by its statical moment or the moment of its weight.

Substituting this value of r in the formula t = tt 1/ —, we ob-

tain for the duration of an oscillation of a compoundpendulum

t - 7TV Mg'S
- y gs9

or more accurately

V 8r/ f g s

By inversion we obtain from the duration of an oscillation of a

suspended body its moment of inertia by putting

MV =
(^)

2

. Mg s or ¥ = {^j g s.

Remark—1) In order to determine the moment of inertia M Jo
2 of a

body from the duration of one of its oscillations, it is necessary to know its

statical moment M g s = G s. The latter is found by drawing the body

A C, Fig. 542, out of its position of equilibrium by means of a rope A B D,

which passes over a pulley and to which a weight P is suspended, The

perpendicular C if, let fall from the axis C upon the direction of the rope

A B, is the arm a of the weight P, and Pa is equal to the moment G . GE
of the weight G, which acts vertically at the centre of gravity 8. Denoting

by a the angle V G S = C S &, which the body is raised by the weight P,

we have

C~H = G S sin. a = s sin. a,

and therefore

G s sin. a = P a,

from which we deduce the required statical moment

CL
P(l

G s = -. .

Sin. a
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2) A very simple and useful pendulum A D F, Fig. 543, may be made

of a ball of lead A about 1 inch in diameter, suspended by a siik thread,

Fig. 542. Fig. 543.

E

A

whose upper end is fastened into a ferrule D by a clamping screw. This

ferrule has upon its end a screw, which passes through the arm E F
and is made fast by a nut O, when the arm has been screwed into a

door-frame or some other solid support. If the length is G A — 0,2485

or nearly \ meter, then this pendulum will beat half-seconds for almost

an hour, although the arcs in which it oscillates will continually decrease.

Example—1) If the point of suspension of a prismatical rod A B,

Fig. 544, is at a distance G A = l
1
from one end A and G B = l

9

from the other B, its moment of inertia, when F denotes its cross-sec-

tion, is (§ 286)

M^ = iF(lt
s + l2

s

),

and its statical moment is

3fs = $F(l
1

'
i -l

3 -);

nence the length of the simple pendulum, which oscillates isochronally,

is

M Jc

Fig. 544.

B
M

+ h P + 3 d2

Qd '" Ms ~ s
'h

2 -l
2
2

'

I denoting the sum l
± + l

z
and d the difference l

l
— l2 .

rod should beat half-seconds, we must make
If this

r = !... -^ ==; £,. 39,15 = 9,79 inches,

and if the rod is 12 inches long we must put

144 + 8 *„*._ 19,58 <* =

hence

9,79

d =

Qd
48,

19,58 — V 191,3764 19,58 - 13,83= 2| inches

;

from which we obtain
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l + d 6+l^
r
= 7AandZ

J

-d = 6 - %& = 4TV2
-•-!«» -io ---; 2

2) If Cr is the weight and I the length of the rod of a pendulum with

a spheroidal bob A B, Fig. 545, and if K is the weight and r
t the diam-

eter MA = MB of the latter, we will have

_ i-gP+*tg + f-1 )» + fr1
']

J-ffl.+ JTCJ + rJ
"

If the wire weighs 0,05 pounds and the ball 1,5 pounds, and

if the length of the wire is 1 foot and the radius of the, ball 1,15

inches, we have the distance of the centre of oscillation of this

pendulum from the axis of rotation

0,05 . 12 2 + ^(13,15 2 + | . 1,15
3

) _ 2,4 + 260,177

|- . 0,05 . 12 + 1,5 . 13,15
~~

0,3 + 19,725

262,577 _, . ,= 13,112 inches.

r =

20,025

If we neglect the wire, r = 260,177
== 13,190 inches, and if we assume

The

19,725

the mass of the ball to be concentrated at its centre r = 13,15 inches,

duration of an oscillation of this pendulum is

t = - y- = 0,554 j/
1^—- = 0,554 Vl^926 = 0,5791 seconds.

§ 328. Reciprocity of the Point of Suspension and the

Centre of Oscillation.—The point of suspension and the centre

of oscillation are reciprocal (Fr. reciproque ; Ger. wechselseitig).

i.e. one can be changed for the other, or the pendulum can be sus-

pended at the centre of oscillation "without changing the duration

of the oscillation. This can be proved, by the aid of what was

said in § 284, in the following manner. Let W be the moment of

inertia of the compound pendulum A B, Fig. 546, referred to an

axis of rotation passing through its centre of grav-

ity S, for an axis of rotation passing through C,

which is at a distance O S = s from the centre of

gravity S, we have

% = W+ Ms",

and therefore the distance of the centre of oscilla-

tion from the axis of rotation C is

Wi W + M s* _ W
T ~ Ms~ Ms ~ Ms

Denoting the distance K S = r — s of the centre

of oscillation K from the centre of gravity by sly we obtain the

W
equation s s, = ^, in which s and s :

present themselves in the

Ftg. 543.

+ s.
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Fig. 547

A

A

same manner, and therefore can be changed for one another. This

formula is consequently applicable not only to the case, where s

expresses the distance of centre of rotation and s^ that of the cen-

tre of oscillation from the centre of gravity, but also to the case,

where s expresses the distance of the centre of oscillation and s,

that of the centre of rotation from the centre of gravity. There-

fore becomes the centre of oscillation, when K becomes the point

of suspension. We employ this property in the revers-

able pendulum A B, Fig. 547, first suggested by Bolmen-

berger and afterwards employed by Kater. It is provided

with two knife-edge axes C and K, which are so placed,

that the duration of an oscillation remains the same,

whether- the pendulum is suspended from one axis or the

other. In order to avoid changing the position of the

axes in reference to each other, two sliding weights are

applied to it, the smaller of which can be moved by a

small screw. If by sliding the weights we have brought

them to such a position, that the duration of an oscilla-

tion is the same, whether the pendulum be suspended in

C or K, we obtain in the distance G K the length r

of the simple pendulum, which vibrates isochronally with

the reversable pendulum, and the duration of the oscilla-

tion is given by the formula

9

§ 329. Rocking Pendulum.—The roclcing of a body with a

cylindrical base can be compared to the oscillation of a pendulum.

This rocking, like every other rolling motion, is composed of a mo-
tion of translation and one of rotation, but we can consider it as a

rotation about a variable axis. This axis of rotation is the point

of support, where the rocking body ABC, Fig. 548, rests upon

the horizontal support H II. Let

the radius CD — C P of the cylin-

drical base A D B be = r and the

distance C 8 of the centre of gravity

S of the whole body from the centre

C of this base be = s, then we have

for the distance S P — y of the cen-

tre of gravity from the centre of rota-

tion, corresponding to the angle

SCP =
<f>,

fa
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y- — r" + s* — 2r s cos. = (r — s)" -f 4 r s (sin. -^-j.

If we denote the moment of inertia of the whole body in reference

to the centre of gravity S byM ¥, we obtain the moment of inertia

in reference to the point of support P

W = M [¥ + f) = Jf[> + (r -sy + 4 r 5 (sm. |-V],

for which for small angles we can putM [h' + (r — s)
2 + r s

2

] or

even M\_¥ + (r — s)
2
]. Eow since the moment of the force =

G . SN = Mg . C 8 sin. = M g s sin. 0, we have the angular

acceleration for a rotation around P
moment of force Mg s sin. g s sin.

moment of inertia M [k' + (r — s)~] h2 + (r — «s)
£
*

For the simple pendulum it is = -———,when r x
denotes its length.

If they should oscillate isochronally, we must have

g s sin. <p _ g sin, _ if 4- (r — s)
2

&a + (/--s)
a ~ ""

1^~ 9 LEv r
*

~
s

"

The duration of an oscillation of the roclcing body is, therefore,

Fig. 549. = „|A = -/¥ + (r — s)
2

9 <J*

This theory is applicable to a pendulum A B, Fig. 549,

with a rounded axis of rotation C M, when we substitute

for r the radius of curvature CM of this axis. If instead

of the rounded axis a knife-edge axis D is used, the dura-

tion of an oscillation would be

jJv + dW _ „ 4/F+"F?
* " " ^ ~<7

• D 8 ~ nV
g {s~-r x)

when the distance CD of the knife-edge D from the cen-

^W) tre G of the rounded axis is denoted by x. The two pen-

dulums will have the same duration of oscillation, when

Jf + (s - x)
2 ¥ + (r - s)

2 « &2 + ?'
2

9s £- = ^ i-
s or • — x = — 2 r

;

s — x s s — x s
7,2 7.2 £3 ^

putting approximative^ = — H j- anĉ neglecting r , we
s — x s s

obtain 2 r s
2

s
2 - ¥

Remark.—The conical pendulum will be discussed in the third part,

in the article upon the " Governor."

In the appendix to this volume the subject of oscillation is treated at

length.
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CHAPTER IV

THE THEORY OF IMPACT.

§ 330. Impact in General.—On account of the impenetra-

bility of matter, two bodies cannot occupy the same space at the

same time. If two bodies come together in such a way that one

seeks to force itself into the space occupied by the other, a recipro-

cal action between them takes place, which causes a change in the

conditions of motion of these bodies. This reciprocal action is

what is called impact or collision (Fr. choc, Ger. Stoss).

The conditions of impact depend, in the first place, upon the

law of the equality of action and reaction (§ 65); during the im-

pact one body presses exactly as much upon the other as the other

does upon it in the opposite direction. The straight line, normal

to the surfaces, in which the two bodies touch each other, and

passing through the point of tangency, is the direction of the

force of impact. If the centre of gravity of the two bodies is upon

this line, the impact is said to be central; if not, it is said to be

eccentric. When the bodies A and B, Fig. 550, collide, the impact

is central ; for their centres of gravity $ and S.2 lie in the normal

NN'to the tangent plane. In the case represented in Fig. 551 the

impact of A is central and that of B eccentric ; for $ lies in and

$2 without the normal line or line of impact N N.

When we consider the direction of motion, we distinguish direct

impact (Fr. choc direct, Ger. gerader Stoss) and oblique impact (Fr.

choc oblique, Ger. shiefer Stoss). In direct impact the line of im-
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Fig. 553.

pact coincides with the direction of motion ; in oblique impact the

two directions diverge from each other. If the two bodies A and

B, Fig. 552, move in the directions

Si Cx and S.2 Co, which diverge from

•the line of impact N N> the impact

which takes place is oblique, while.

on the contrary, it would have been

direct if the directions of motion had

coincided with N N.

We distinguish, also, the impact

offree todiesfrom that of those par-

tially or entirely retained.

§ 331. The time during which motion is imparted to a body or

a change in its motion is produced is, it is true, very small, but by

no means infinitely so ; it depends not only upon the force of im-

pact, but also upon the mass, velocity and elasticity of the colliding

bodies. We can assume this time to consist of two parts. In the

first period the bodies compress each other, and in the second they

expand again, either totally or partially. The elasticity of the

body, which is brought into action by the compression, puts itself

into equilibrium with the inertia, and thus changes the condition

of motion of the body. If during the compression the limit of

elasticity is not surpassed, the body returns to exactly its former

shape, and it is said to be perfectly elastic ; but if the body, after

the impact, only partially resumes its original form, we say it is

imperfectly elastic; and if, finally, the body retains the shape it as-

sumed under the maximum of compression or possesses no ten-

dency to re-expand, we say that the body is inelastic. This classi-

fication of impact is correct within certain limits only ; for it is

possible that the same body will act as an elastic one when the im-

pact is slight, and as an inelastic one when the impact is violent.

Strictly speaking, perfectly elastic and perfectly inelastic bodies

have no existence ; but we will hereafter consider elastic bodies to

be those which apparently resume their original form, and inelastic

bodies to be those which undergo a considerable change of form in

consequence of the impact.

In practical mechanics the bodies, such as wood, iron, etc.,

which are subjected to impact, are very often regarded as inelastic,

because they either possess but little elasticity or lose the greater

part of their elasticity in consequence of the repetition of the im-
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pact. It is very important in constructing machinery, etc., to avoid

impacts as much as possible. If this cannot be done, we should

diminish their intensity or change them into elastic ones ; for they

give rise to jars or concussions and cause the machinery to wear

very fast, and in consequence a portion of the energy of the ma-

chine is consumed.

§ 332. Central Impact.—Let us first investigate the laws of

the direct central impact of bodies moving freely. Let us suppose

the duration of the impact composed of the equal elements r, and

the pressure between the bodies during the first element of time to

be = Pi, during the second to be = P
2 , during the third to be

= P3, etc. Kow if the mass of the
FlG - 558 - body A, Fig. 553, = Mti we have the

corresponding accelerations

_ P, P,
-* Pl ~ Ml lh ~ M

x

£

»"—=«

p3 ,

p. =
Tfi

, etc.

But, according to § 19, the vari-

ation in velocity corresponding to p
and to an element of the time r is

k =pt;

hence the elementary increments and diminutions of velocity in

the foregoing case are

_P,r P, r _ P3 r
«, - -jF-, «s - -^-, * -- jgr-, etc.,

and the increase or decrease in velocity of the mass Mx after a cer-

tain time is

K
X + ff9 + Kz + -

-'. = (Pi + P2 + P3 + . . .)
jj 9

and the corresponding variation in velocity of the body B, whose

mass is JL, is

= (p, + p2 + p3 + .

.

.) £.

The pressure acts in the following or impinging body in oppo-

sition to the velocity c, producing a diminution of velocity, and
after a certain time the velocity, which the body still possesses, is
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The pressure acts upon the body B, which is in advance and which
is impinged upon, in the direction of motion, its velocity c3 is

increased and becomes

v, = c2 + (P1 + P2 + P3 + .. •)
-J;

Eliminating from the two equations (P2 + P2 + P3 + . . •) t,

we have the general formula

I. J/i (cx
— vx ) = Ifo (v, — c2), or

it »! + if, v2 = it c, + jf2 <?2.

The product of the mass of a body and its velocity is called its

momentum (Fr. quantite de mouvement ; Ger. Bewegungsmoment),

and we can consequently assert that at every instant of the impact

the sum of the momentums (M
x v x + M2 vs) of the tiuo bodies is the

same as before the impact tooh place.

At the instant of greatest compression, the two bodies have the

same velocity v, hence if we substitute this value v for v x and v2 in

the formula just found, we obtain

Mx v + M3 v = Mx cx + M, c,,

from which we deduce the velocity of the bodies at the moment of

greatest compression

_ Mx ft + M, d
V ~ ~ M

x + M9
'

If the bodies A and B are inelastic, i.e. if after compression

they have no tendency to expand, all imparting or changing of

motion ceases, when the bodies have been subjected to the maxi-

mum compression, and they then move on with the common
velocity

Mx cx + ifs c2

v = Mx + M2

Example—1) If an inelastic body B weighing 30 pounds is moving

with a velocity of 3 feet and is impinged upon by another inelastic body

A weighing 50 pounds and moving with a velocity of 7 feet, the two move

on after the collision with a velocity

50 . 7 + 30 . 3 350 + 90 44 11 ^ ^ L

* = -50T30— = —80— = T = Y = 5* feet

2) In order to cause a body weighing 120 pounds to change its velocity
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from g =
1J-

feet to v = 2 feet, we let a body weighing 50 pounds strike

it ; what velocity must the latter have ? Here we have

(v - Co) M2 n (2 - 1,5) .120 n 6 „ rt
•

±
Cl - • + ^-3^-* = 2 + i ^ - 2 + 5 = 3,2 feet.

§ 333. Elastic Impact.—If the colliding bodies are perfectly

elastic, they expand gradually during the second period of the im-

pact after having been compressed in the first one, and when they

have finally assumed their original form, they continue their mo-

tion with different velocities. Since the work done in. compressing

an elastic body is equal to the energy restored by the body, when
it expands again, no loss of vis viva is caused by the impact of

elastic bodies. Hence we have for the vis viva the following equa-

tion

II. JT, v x
" + M2 v2

2 = M
x c? 4- M2 c2\ or

M
x fa

2 - v?) = M2K - c,
2

).

From equations I. and II. the velocities v x and v2 of the bodies

after the impact can be found. First by division we have

V — Vi _ v2 — c2

Ci — Vx V2
— Co

'

I.E.,

Ci + Vi = v2 4- Co, or v2
— v

x
— c

%
— c2 ;

substituting the value

V.2 :=̂ Cx ~r V\ ~~~ Co,

deduced from the last equation, in equation I., we have

Mx v x + Mo vx
4- Mo fa - c2) = Mx cx + Mo c2, or

(
Mx + Mo) v x

= (M
x + M2) cx -%Mo (cx

- c2),

whence

2 Mo (cx
- c2) .

V
* = C>--M7VM^

Hence if the bodies are inelastic, the loss of velocity of one

body is

__ __ _ Mx cx
4- M2 Co _ Mo (cx

- Co)
Cl V ~ Cl M

x + Mo ~
Jlf, 4- J/s

'

and when they are elastic, it is double that amount, or
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C, v, —_ 2 31, (c, - gg )

31, + 31,

and while for inelastic bodies we have the gain in velocity of the

other body

_ 31, c, + 31, c, _ _ 31, (c, - go)
Ci ~

31, + 31,
C
* ~ 31, + Jip

for elastic bodies it is

2 Jix ( Cl
- Ca )

or double as much.

V
*

~ C"-
31, TW'

Example.—Two perfectly elastic balls, one weighing 10 pounds and

the other 1G pounds, collide with the velocities 12 and 6 feet. What are

their velocities after the impact? Here M
t
= 10, c

t =12, M2
= 16 and

c
2
= — 6 feet, and the loss of velocity of the first body is

2 . 16 (12 + 6) 2 . 16 . 18 '

, „

*—i = 10 ; 16 =—^e— = 22
>
154 feet-

and the increase of the velocity of the other is

8
=13,846 feet.-« ~s 26

The first body, therefore, rebounds after the collision with the velocity

vt =12— 22,154 = — 10,154 feet, and the other with the velocity v
2
= — 6 +

13,846 = 7,846 feet. The vis viva of these bodies after the impact is

= JfiV + M2
v 2

2 = 10 . 10,154 2 + 16 . 7,846
s = 1031 + 985 = 2016 or

the same as that before impactM1 c
x + M3

c
2
= 10 . 122 + 16 . 6

2 = 1440 +
576 = 2016.

C — «
If the bodies were inelastic, the first body would lose but —

2

= 11,077 feet of its velocity and the other would gam -?—-—- = 6,923
2

feet; the velocity of the first body after the impact would be 12 — 11,077 =
0,923 feet, and that of the second — 6 + 6,923 = 0,923 ; a loss of me-

chanical effect

[2016 - (10 + 16) 0,923 2
] : 2 g = (2016 - 22,2) . 0,0155 = 30,9 foot-pounds,

however, takes place.

§ 331:. Particular Cases.—The formulas found in the fore-

going paragraph for the final velocities of impact are of course

applicable, when one of the bodies is at rest, or when the two

bodies move in opposite directions and towards each other, or

when the mass of one of the bodies is infinitely great compared

to that of the other, etc. If the mass 31* is at rest, we have c, —
and therefore for inelastic bodies
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M
x cx

v = M
l + M9

"
and for elastic ones

2 Ma (h Mx
- M2v*- c>-

Mx + M%
~ MTTm^ and

V, = + -, --,- : ^CX.

2 M
x cx 2 M

x

Mx + M,~ Mx + M9

If the bodies move toivards each other, c« is negative, and there-
fore for inelastic bodies

ti
M

x
c

x
- M,c, . . _ ,.~ —M 4- W—'

an Mastic ones

11 Cl

.

M
x +M2

and t 9 - - c2 + ^ +
_.

If in this case the momenta of the bodies are equal, or J/, $ =
M, <?2, when the bodies are inelastic, v = 0, i.e., the bodies bring
each other to rest, but if they are elastic,

2 (3L, cx + My c
x )

* ~ Cl STTS; = Cl " 2 Cl = ~ ^ and

the bodies after the impact proceed in the opposite direction with
the same velocity they originally had. If, on the contrary, the
masses are equal, we have for inelastic bodies

C\ ~~ Cc,

and for elastic ones

v x
— — c-i and v* = cx,

i.e., each body returns with the same velocity that the other body
had before the impact. If the bodies move in the same direction,

and if the one in advance is infinitely great, we have for inelastic

bodies

Mu c,

M%

and for elastic ones

v x = cx
-2 (cx - c,) =2c2

~ eX9 v3
= Co + = c2 ;

the velocity of the infinitely great body is not changed by the
impact. If the infinitely great body is at rest, or if c« = 0, we have
for inelastic bodies

v = 0,
and for elastic ones

i\ — — cx , v* = ;

here the infinitely great body remains at rest; but in the first case

v = -~" = c2,
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the impinging body loses its velocity completely, and in the second

case it is transformed into an equal opposite one.

Example—1) With what velocity must a body weighing 8 pounds

strike a body weighing 25 pounds in order to communicate to the latter a

velocity of 2 feet ? If the bodies are inelastic, we must put

*
=
WT+M*'™

,3==
8T25'

whence we obtain c
x
= -3^ = 8£ feet, which is the required velocity ;

if

they were elastic, we would have

v 2
= * ^ -, whence c

t
= ^ = 4£ feet.

2) If aball Mt ,Fig. 554, strikes with the velocity et the mass M2
=n M

t ,

p ,.r . which is at rest, if the second mas6

_.
'

' strikes a thirdMz
= nM2 = n2 Mu

^3 M with the velocity imparted to it by

the impact, and if this third mass

4 strikes a fourth if4 = n M3
=

nz Mlt etc., we have, when these

masses are perfectly elastic, the velocities

2 Mt 2 2M2 _ __2_ _
^ = Mt + n Mx

Cl =
1~+~n'

C» c
» ~M~^~M2

2 " 1 + n ' **
'

(rfs)VH^)*
If, for example, the weight of each mass is one-half that of the pre-

ceding one, we have the ratio of the geometrical series formed by the

masses
n = £,

hence

•f =*«„•, = (tf«i,«4 =(*)«» -^io = (D
9
'i = lB,32. Cl .

§ 335. Loss of Energy.—When two inelastic bodies collide,

a loss of vis viva always takes place, and therefore they do not

possess so much energy after the impact as before. Before the im-

pact the vis viva of the masses Mx
and i)f2, which move with the

velocities c
x
and c2> is

Mx c? + M2 c2\

irat-after the impact they move with the velocity

Ml c x + M, c, ,

v =z ———

—

~— anaM, -f M3
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their vis viva is

M
x
v* + M^v";

by subtraction we obtain the loss of vis viva caused by the impact

K = M, (cx
* - v

2

) + M, (c2

2 - v
2

)

— 3f
x (d + v) (cx

- v) - M, (c, + v) (v - c2), but

Mx (cx
- v) = 31, (v - c2) = jjf-^Tj^-"

whence

If the weights of the bodies are Gx and G„ or if

i^ = ^ and if, = -,
9

we have the loss of energy or the work done

A ^ (cx
- c,Y G

x
G,

G
X
G,

%g G
x + G.;

We call -^ 77- the harmonic mean between G
x and G,. and we

(r
x + Cr2

can assert that the loss of energy, caused ~by the impact of two inelastic

todies and expended in changing their form, is equal to the product

of harmonic mean of the tivo masses and the height due to the differ-

ence of their velocities.

If one of the masses 31, is' at rest, we have the loss of

mechanical effect

cl G
x
G,

Ji ~2g'G
x + GJ

and if the moving mass 31
x
is very great, compared to the mass at

rest, <72 disappears before G
x and the formula becomes

We can also put

K = Mx (c* - v*) + M, (c2

2 - v*)

=3f
x {cx

i-2cx v + v'
i + 2c x v-2v') + 3f2 (c2

'i-2c,v + v
i + 2c,v~2vi)

= 3fx (c
x
- vf + 2 3I

X v (cx -v) + M, (c, -v)* + 2 M,v (c2
- v)

= Mx (cx
- v)

2 + Mt (c, - vf ;

for Mx (cx
— v) = 3f, (v — c2).

From this we see that the vis viva lost by the inelastic impact is
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equal to the sum of the products of the masses and the squares of

their gain or loss of velocity.

Example—1) If in a machine 16 impacts per minute take place be-

tween the masses

1000
,1 i itr

120° ruM. = lbs. and M9 = -—- lbs.,1
9

2
9

whose velocities are c
t
= 5 feet and c2 = 2 feet, the loss of energy, in con-

sequence of these impacts, is

(5 - 2)
2 1000 . 1200

Ar u ' ~~%g ' ~~S200— = A •
9

:

°>0155 ™™ =' 20
>
39 foot -lb9-

per second.

2) If two trains of cars, weighing 120000 and 160000 pounds, come into

collision upon a railroad when their velocities are c
±
= 20 and c

2
= 15

feet, a loss of mechanical effect, which is expended in destroying the loco-

motives and cars, ensues ; its value is

'20 + 15\ 2 120000 . 160000 o ^ o A ^ ' 1920000 „ OAftnAA »= 35 2
. 0,0155 .—^—=1302000 foot-lbs.

_ /20 +JL5\
2

280000 28

§ 336. Hardness.—If we know the modulus of elasticity of

the colliding bodies, we can find also the compressive force and the

amount of compression. Let the cross-section of the bodies A and

B, Fig. 555, be Fx and Fi9 their length

A and ?2, and their moduli of elasti-

city be Ei and E2 . If they impinge

upon one another, the compressions
^ produced are, according to § 204,

and /l2 =Al ~ ft Ex

and their ratio is

_F
1
_E1 i

Fx Ex

* 4*

F, Ei

WW WW
If, for the sake of simplicity, we denote ~^j—• by Hx

and

by H2, we obtain

and

h

P P
Xx

== -== and A2 = -=,
xzi He,

E,

e;
Calling, witli Wbewell (see the Mechanics of Engineering,

§ 207), the quantity
F E

the hardness (Fr. durete raideur, Ger.
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Harte) of a body, it follows that the depth of compression is in-

versely proportional to the hardness.

C
If the mass M — — impinges with the Telocity c upon an im-

movable or infinitely great mass, all its vis viva is expended in com-

pressing the latter body, whence, according to § 206,

But the space a is equal to the sum of the compressions X
x and

P P
,1

2, and we have X
x
= = and k2 = jy, whence

J±
x

li2

or inversely p _ Hx H2

Substituting this value of P in the above equation, we obtain the

equation of condition

or A/Hx + H, G

by the aid of which the values P, X
x and A 2 can be calculated.

Example.—If with a sledge, that weighs 50 pounds and is 6 inches long

and the area of whose face is 4 square inches, we strike a lead plate one

inch thick, and the area of whose cross-section is 2 square inches, with a

velocity of 50 feet, the effect can be discussed as follows. Assuming^ =
29000000 as the modulus of elasticity of iron and E2 = 700000 as that of

lead, we find the hardness of the two bodies to be

_ P
t
E

t 4. 29000000

l
x

~ 6

F9 E9 2 . 70000(

= 19333333 and

E2
= -*=-* = —i— = 1400000.

i2 1

Substituting these values in the formula

= c y-
E

t + H* _#
H

x
E

2 g
'

and putting the weight of the sledge = 4.6. 0,29 = 7 pounds, or

— = 7 . 0,031 = 0,217,
g ' '

we have for the space described by the sledge in compressing the lead

rA . / 20733333 . 0,217 M /b,44991
°°V 19333333 ."1400000

= D°1/ 37^^=0 '
0204 ^ches= 0,245 lines.

2706666
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Hence the pressure is

H
t
H

2 19333333.1400000 A
"

.+.<P =H^rrk;' a =
20733333 • 0,0204 = 26632 pounds

;

the compression of the hammer is

P 26632
** = W

%
= 19333333 = °>00U incheS = °'016 line3

'

and that of the lead

P 26632 -_. ,

Hi = 1400000 = °'°19 mcheS = °>2381llies-A. =

§ 337. Elastic -inelastic Impact.—If two masses Jlf, and Jf2

are moving with the velocities c x
and c2 in the same direction, their

common velocity at the moment of maximum compression is, ac-

cording to § 332,

_ Mx cx + Mi c2

V ~ Mx + W~>
and the work done during the compression, according to § 335, is

_ (cx
- c8

)' Mx Ma _ (d - c2 )

2 G x G,

2 * M
x + M9

~~ %g '

' Gi 4- Oj
but this mechanical effect can be put

whence we obtain for the sum of the compressions of the two

masses

/ \ a / G\ G<2 Hx + Ho

from which the compressive force P and the compressions X
x
and

A 2 of the two masses can be found.

If the bodies are inelastic, they remain compressed after the

impact; but if one only is inelastic, the other resumes its original

form in a second period, and the work done in expanding produces

another change of velocity. If, for example, the mass M\ =
C— is elastic, the work done in the second period of the impact is

pa'-i p°- i
(
h

x
h,

y2^*. -i'H
1
-2H

x
\H

x + H.J
°

_ (gi - c,Y G x G2 2T9

%g ' G
x + G a

' H
x + H*

'

We have, therefore, when the velocities after the impact are i\ and

vQ, the formulas
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Mx
v

x + Mi v, — Mx c x + Mo c2 andMM HMx v? + M% v.? = Mx
c? + Mt c* + (c, - c 2)

2

. j^Yli; * B^+StMM MM H

I.E.

M
x
vx

* + Mt v.? = Mx
c> + M% c* - (c

x - c2)

2
. jj^gj .

;gpjr5^

If we put the loss of velocity Ci — vt = x, we have the gain in

velocity

_ Mx
x

and the last equation assumes the following form

:

M, Hx

x(Zc
l
-x)-x(2ci + ^)-(cx -cJ

Mi +m_.^ + ^
or

-^T
*"

~

3 (c '

"

C2) * + (<" ~

°

!)
• *7T^ • h.Th*

=

J/
Multiplying by M / jr? aQ(* remembering that

^ = 1 - H*

0,

H
x + II~ ^ IIX + ///

we obtain the quadratic equation

M,
, ,,/ M2 \

3

x ~ 3 <<" - ^ m^m, x + (Cl - Cs) \mTmJ
v x

' \MX + JV #i -f H«
or

J72/ M, V / J/", V
[x - (e, - c5) WT-MJ = (ft - <#

\WTrW) x + jg*

by resolving which we obtain the loss of velocity x of the first body

Cl - Vl = {Cx - c

;
)^—^ [l + V -j^^-jj}

and the gain of velocity of the other

va - c, = (c x - *) jgr—jj: (l + V j^Th;)
Example.—If we assume that in the example of the foregoing para-

graph the iron sledge is perfectly elastic and that the lead plate is perfectly

inelastic, we obtain the loss of velocity of the hammer, which weighs 7

pounds and falls with the velocity of 50 feet, since we must put c2 = and
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/ / II2 \ I J 1400000 \

= 50 (1 + 0,26) = 63 feet

;

hence the velocity of the sledge after the blow is

v
x
= c

t
- 63 = 50 - 63 = - 13 feet.

The velocity of the lead plate, which is retained, of course remains = 0.

§ 338. Imperfectly Elastic Impact.—If the colliding,

bodies are imperfectly elastic, they expand only partially in the second

period of the impact and the mechanical effect expended in pro-

ducing the compression in the first period is not entirely restored

in the second period. If X
x and A 2 again denote the amount of

compression and P the pressure (called also the force of distorsion),

we have the mechanical effects expended during the compression

= i P X
x and h P Xj, and if during the expansion but the ^th

part or more generally during the expansion of the first body

but the /^th and during that of the other but the // 2th part of the

mechanical effect is restored, the entire loss of mechanical effect is

A = i P [(1 - ih) X
x + (1 - fi,) AJ,

P P
or, putting X

x
= — and A2 = —

,

The force with which the bodies react in the second period is

called the force of restitution.

But according to the foregoing paragraph we have

p H
x
H,a'

A/
T~Mjf* W+~H>p = h~^h^ g ^ ^ ~ ^ VmTTm, ' ~^W>

hence the required loss of mechanical effect is

(d - g,)
2 M

X
M, R

x m (1 - px 1 - fi 9
\

2 ' M
x -v M2

' H
x + H, \ H

x

+
Ho )

_ (c x
- ctf M

X
M, / _ \H H, + fi, H\

% ' M
x
+ M, \ H

x + H, )'

To find the velocities v
x
and Vo after the impact, wo employ the

equations

M
x v x + Jf2 v.2 d= M

x
cx + Mo Co and

M
x vS + M, vS = Mx

c x

* + M9 Co
2

M
x
Mo (l- lh)IL+(l-^II,

{Cl C*} * M
x + M,' H

x + IP

which we must combine and resolve. In exactly the same manner

as in the last paragraph the loss of velocity of the first body is found

to be
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* - * = (« - ^ a^jrif, I
1 + y #; + £, >

and £7*0 ##m m velocity of the body, which is in advance,

*2 - * *= (* - ft) gjpp^ (1 + J/ Hi + Hi }
These two formulas include also the laws of perfectly elastic

and of inelastic impact. If we substitute in them \i
x
= /j>.2

'= 1, we

obtain the formula already found for perfectly elastic bodies, and

if we assume p, = fi2 = 0, we obtain the formulas for inelastic im-

pact, etc. If both bodies are equally elastic, or \i
x
= fi,, we have

more simply

and

C'- V
' =^-^M^K {1 + Vll)

If the mass HL is at rest and infinitely great, it follows that

Cl — i\ — ©, (1 + V y), i.e.,

v x
= — cx V \x, or inversely

- - (0
If we cause a mass M

x
to fall from a height h upon a rigidly

supported mass Ms, and if it bounces back to a height hi, we can

determine the coefficient of imperfect elasticity of the body by the

formula h x

" = ¥'

Newton found in this way for ivory,

f* = (i)
2 = If = 0,79,

for glass

^ = (j§)
2 = 0,9375 2 = 0,879,

and for cork, steel and wool

fi = (|)
2 = 0,555

2 = 0,309.

We assume, in this case, that the falling body is a sphere and

that the body upon which it falls is flat.

General Morin by causing cannon balls, weighing from 6 to 20

kilograms, to fall upon masses of clay, wood and cast-iron, which

were suspended from a spring balance or spring dynamometer

found that for clay and wood \i is nearly = 0, and that, on the

contrary, for cast-iron it is nearly = 1, i.e. that the impact of
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bodies of former substances can be considered as inelastic and that

of those of the latter substances as perfectly elastic (see A. Morin,

Notions fondamentales de Mecanique, Art 67-70).

Example.—What will be the velocities oftwo steel plates after impact, if

before the impact their velocities were c
t
= 10 and c

t
— —6 feet, and if one

weighs 30 and the other 40 pounds ? Here we have
16.= (10 + 6) . ft (1 + |) = 16 . f .V 14,22 feet,

hence the required velocities are

®i = ci ~ 14
>
23 =

v„ = c 9 + 10,66 =
and

10 - 14,22 = - 4,22 feet

- 6 + 10,66 = 4,66 feet.

Fig. 556.

§ 339. Oblique Impact.—If the directions of motion Sx
C

x

and $> C3 of the two bodies A and B, Fig. 556, diverge from the

normal NN to the tangent plane,

an oblique impact takes place. The
theory of oblique impact can be re-

ferred to that of direct impact by

decomposing the velocities Sx Cx
= c

x

and S.2 C = c2 into their components

in the direction of the normal and

tangent ; the components in the di-

rection of the normal produce a

direct impact, and are, therefore, changed exactly as in the case of

direct impact, while the velocities parallel to the tangent plane

cause no impact, and, therefore, remain unchanged. If we combine

the normal velocity of any body, obtained according to the rules

for direct impact, with the tangential velocity, which has remained

unchanged, the resultant is the velocity of the body after the im-

pact. Putting the angles formed by the directions of motion with

the normal equal to a
x and e2, or Cx $ N •= a

x and Co S% N— a,, we

obtain for the normal velocities Sx Ex
and Ss E.2 the values c x cos. a,

and Co cos. a
2 and, on the contrary, for the tangential velocities Sx

Fx

and 8.2 F2 the values c x sin. a
x
and c2 sin. a2 .

The normal velocities are changed by the collision, the first one

becoming

Vl ~ Cx cos. a
x
— (cx cos. c

x
— Co cos. a.) ^ \

'2

^ (1 -f Vy),

and the second

If*
Co cos. a.2 + (c, cos. a

x
— c2 cos. a2) (1 + ^),M

x + Mt

in which M
x
and M.2 denote the masses of the two bodies.
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From vx and c x sin. a
x
we obtain the velocity Sx

G
x of the first

body after the impact

wx
= Vv

x
* + c x sin? a l9

and from v.2 and c2 sin. a.2 the velocity S* G* of the second body

zv.2 = Vv<? + c-2 sin? a
2 ;

the angles formed by the directions of the velocities with the

normal are given by the formulas

, c, sin. a
x

c, sin. a.2
tang. f3 x

=— and tang. (3.2
=

,
VX V.y

& denoting the angle Gx Sx N and (3.2 the angle G2 S2 JV.

Example—1) Two balls, weighing 30 and 50 pounds, strike each other

with the velocities c
±
= 20 and c

2
= 25 feet, whose directions form the

angles a
t
= 21° 35' and a 2 = 65° 20' with the direction of the normal to

the tangent plane; in what direction and with what velocity will these

bodies move* after the impact ? The constant components are

c
x

sin. a
x
— 20 . sin. 21° 35' = 7,357 feet and

c2 sin. a 2
= 25 . sin. 65° 20 ; = 22,719 feet,

and the variable ones are

c
±

cos. a
x
= 20 . cos. 21° 35' = 18,598 feet and

c
z

cos. c
3 = 25 . cos. 65° 20' = 10,433 feet.

If the bodies are inelastic, we have // = 0, and therefore the normal

velocities after the impact are

v
x
= 18,598 — (18,598 - 10,433) . ^ = 18,598 — 5,103 = 13,495 feet and

p
a
= 10,433 + 8,165 . | = 10,433 + 3,062 = 13,495 feet.

Hence the resulting velocities are

w t = Vl3,495 2 + 7,357 2 = V236,24 = 15,37 feet and

w 2 = Vl3,495 2 + 22,7192 = V69^27 == 26,42 feet;

and their directions are determined by the formulas

7 357
tang. pt = j^j^, log. tang. (i

x
= 0,73653 — l,fi%

= 28° 36' and

22.719 ,
tang. p 2 = ^g^, log. tang. (3 2

= 0,22622, /?3
= 59° 17'.

§ 340. Impact against an Infinitely Great Mass.—If the

mass A, Fig. 557, strikes against another mass, which is infinitely

great, or against an immovable object B B, or if c, = and
M,, = 00 , we have

i\ = c, cos. a
x
" — cx cos. a

x (1 + Vy) — — c
x
cos. a

x
V\jl and

* = + c, cos. a, ^iiL+j£) = 0+0 = 0,
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Fig. 557.

if in addition \l = 0, we have v
x
= 0, but if \i = 1, v

x
= — Cj cos. a

x ,

i.e., when the impact is inelastic, the normal force is comjrfete-

ly annihilated, but, on the contrary,

when it is perfectly elastic, the normal

force is changed into an equal opposite

one. The angle formed by the di-

rection of motion after the impact

with the normal is determined by the

N equation

c, sin. a
x

<?i sin. a x

tang. ft =
v x

c, cos. a
x Vfi

for inelastic bodies

tang. ft

and for elastic ones

tang. a
x

s= — tang

oo ; i.e. ft = 90°;

to#. ft :== — tang. a
x, i.e. ft = — o^

After an inelastic body has impinged upon an inelastic obstacle,

it moyes on with the velocity cx sin. a
x in the direction of the tan-

gent plane. When an elastic body has impinged upon an elastic

obstacle, it moves on with its velocity unchanged in the direction

8 G, which lies in the same plane as the normal N N and the

original direction X 8, and makes with the normal the same angle

G 8N that the direction of motion before the impact made with

it. The angle X 8 N, formed by the direction of motion before

the impact with the normal or perpendicular, is called the angle of

incidence (Fr. angle d'incidence ; Ger. Einfalls-winkel), and the angle

G 8 W, formed by the direction of motion after the impact with

the same, is called the angle of reflexion (Fr. angle de reflexion ; Ger.

Austritts- or Reflexionswinkel) ; we can therefore assert that when

the impact is perfectly elastic, the angles of incidence and of reflexion

lie in the same plane as the normal and are equal to each other.

When the impact is imperfectly elastic, the ratio Vfi of the

tangents of these angles is equal to the ratio of the velocity pro-

duced by the expansion to the velocity lost by the compression.

By the aid of this law we can easily find the direction in which
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Fig. 558.

a body A, Fig. 558, must strike against an immovable obstacle

B B, when we wish it to take a given direction S Y after the im-

pact. If the impact is elastic, we let fall

from a point Y of the given direction

a perpendicular Y upon the normal

N N and prolong it until the pro-

longation Y
x

is equal to the per-

pendicular itself; S Yx is then the

direction in question ; for, accord-

ing to the construction, the angle

N S Y = N S Y If the impact is

imperfectly elastic, we must make Yx
= Vy. . Y; then Yx 8

is the required direction, for

tang. a
x Yx

V]l,
. tang. Pi Y

If we let fail the perpendicular Y R upon the line 8 R parallel

to the tangent plane and make the prolongation RX Y,

8X will be, as we can easily see, the required direction of incidence.

Remark.—The principal application of the theory of oblique impact

is to the game of billiards. See " Theorie Mathematique des effets du jeu de

billard, par Coriolis." According to Coriolis, when a billiard ball strikes

the cushion the ratio of the velocity of recoil to the velocity of impact is =
0,5 to 0,6 or (i is = 0,5

2 = 0,25 to 0,6
2 == 0,36. By the aid of these values

the direction, in which a ball A must strike the cushion B B when it is

to be thrown back towards a point Y, can be determined. We let fall

from Fthe perpendicular YIt to the line of gravity parallel to the cushion,

prolong the same a distance B X = y - = ±£. to ^ f its length, and

draw the line Y
x
X; the point of intersection B is the point towards which

the ball must be driven, when we wish it to rebound towards Y. The twist

of the ball causes this relation to vary somewhat.

§ 341. Friction of Impact.—When oblique impact occurs,

the pressure between the colliding bodies gives rise to friction, in

consequence of which the components in the direction of the tan-

gent plane are caused to vary. The friction F of impact is deter-

mined in the same way as that of pressure. If P denote the

pressure of impact and the coefficient of friction, then F — </> P.

It differs from the friction of pressure in this only, that, like the

impact itself, it acts but for an instant. The changes in velocity
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produced by it are not, however, immeasurably small ; for the

pressure P during impact (and therefore the portion </> P of it) is

generally very great. Denoting the impinging mass by M and the

normal acceleration produced by the force of impact P hyp, we
have

P = Mp and F — (j> 31p,
and also the retardation or negative acceleration of the friction

during the impact

F a

i.e. times that of the normal force. Now the duration of the ac-

tion is the same for both forces ; therefore the change of velocity jt?ro-

cluced hy the friction is <j> times the change of the normal velocity

'produced by the impact.

If a mass M falls vertically upon a horizontal sled, and if the

velocity c of this mass is entirely lost by the collision, the retarda-

tion of the motion of the sled, whose mass is M19 is

F 4>Mp
M+ M

l

~ M+M?
and consequently the loss of velocity is

</> M
v = ,/, \T c.M + Mx

Morin has proved the correctness of this formula by experiment

(see his Notions fondamentales de Mecaniqne).

If a body strikes an immovable mass B B at an angle a, Fig.

559, the change in the normal velocity is, according to the last

paragraph,

Fig. 559.
w = c cos

'
a ^ + ty>

hence the variation produced in the

G -F ftp S* tangential velocity is

l\ B? '•

z=. <p iv — <p c {1 + Vfi) cos, a.

\ /#
s
)d§|rf

/
I

Afterthe impact the component csin.a

** E
x \?*M0mm *e N becomes

/ \
I c sin. a — <p c (1 + Vji) cos. a

= [sin. a — (j) cos. a (1 + Vfi)] o;

for perfectly elastic bodies it is

= (sin. a — 2 <j> cos. a) c,

and, on the contrary, for inelastic bodies it is

= (sin. a — (j> cos. a) c.
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The friction very often causes the bodies to turn around their

centres of gravity, or if, before the impact, a motion of rotation ex-

ists, it is changed. If the moment of inertia of a round body A in

reference to its centre of gravity 8 is = M h2

, and if its radius S C
== a, we have the mass of the body reduced to the point of tan-

gency C
Mk1

and therefore the acceleration of the rotation produced by the fric-

tion i^is

Pi - *r z,2 . ~>- M p ry— *!> #>
F (j>Mp _
T? :a% ~M If : a2 '

and the corresponding change of velocity is

<p -p . w = <j> -p (1 4- Vji) c cos. au\

For a cylinder — = 2, and for a sphere -=^ = §, therefore, it fol-

lows that the changes of velocity of rotation of these round bodies,

produced by impact against a plane, are

Wx — 2 (b (1 + Vji) cos. a and w =
-J (f> (1 + Vv) cos. a.

Example.—If a billiard ball strikes the cushion with a velocity of 15

feet, in such a manner that the angle of incidence a = 45°, what will be

the conditions of motion after the impact ? Putting for V/m its mean value

0,55, we have the normal component of the velocity after the impact

= — -J)l. cms.a= — 0,55 . 15 . cos. 45° == — 8,25 . Vf= — 5,833 feet,

and assuming, with Coriolis, <j> = 0,20, we obtain the component of the ve-

locity parallel to the cushion, which is

= c sin. o — 9 (1 + V^) c cos. a = (1 — 0,20 . 1,55) . 10,607 = 0,69 . 10,607

= 7,319 feet,

and consequently for the angle of reflection we have

7 319
tang. = ^3 = i'2548 or P = 51 °

*?"i

hence the velocity after impact is

=—^L = 9,360 feet.
cos. 51 2? ;

'

The ball also acquires the velocity of rotation
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Fig. 560.

| p . 1,55 . 10,607 = 8,220 feet

about its vertical line of gravity.

Since the bail does not slide, but rolls upon the billiard table, we must
assume that, besides its velocity c = 15 feet of translation, it has an equal

velocity of rotation, and that this can also be resolved mto the components
ccos. a = 10,607 and c sin. a = 10,607.

The first component corresponds to a rotation about an axis parallel to the

axis of the cushion, and becomes

c cos. a — | (1 + V^) c cos. a = 10,607 — 8,220 = 2,387 feet

;

the other component c sin. a = 10,607 feet corresponds to a rotation about

an axis normal to the cushion and remains unchanged.

§ 342. Impact cf Revolving Bodies.—If two Iodics A and

Z>, Fig. 560, revolving around the fixed axes G and K, impinge upon

one another, changes of velocity take

place, which can be determined from

the moments of inertia M
x k* and

M.2 k2

2
of these bodies in reference to

their fixed axes by the aid of the

formulas found in the preceding para-

graphs. If the perpendiculars G H
and K L, let fall from the axes of .ro-

tation upon the line of impact, be

denoted by a x and a2, wT
e will have the

masses reduced to the extremities H and L of these perpendicular

to the line of impact = —1—p- and —^--, substituting these values

forMx and M.2 in the formula for central impact, we obtain the vari-

ations of velocity of the points H and L (§ 338).

ci - v
x = (c, - <•,) „, 7. , . „ , , iirirrrz* i

1 + v
I
1
)

ih — c,

o2)

Mx k{ : a? + M2 k.{ : a.2

i¥2 k
2 a{

Mx k{ a.2
2 + M, k? a x

M
x k x

2
: a{

Mx k x

2
: a{ -f M2 k{ : a,

Mx
k* a.{

(1 + V f-i) and

(i + VJ)

i + /To,Mx ki a.2
~ + M, ki ax

in which c x and c 2 denote the velocities of these points before the

impact.

To introduce the angular velocities, let us denote the angular

velocities before the impact by ej and e.2 and those after the impact
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by o)
x and w

2> thus we obtain cx
== a x

e\, c2 = a2 e2, v x
= ax

cj
x and

v2 = «2 w2j and the loss of velocity of the impinging body is

e, - «, = «, («, *, - a2 ,,)Wh;t a/+ \%k , a , (1 + V fl,

and the gain in velocity of the impinged body is

The angular velocities after impact are

and

* <* e
'
~ a

>^ M^uf+M Ĵ^ <X +^

®i = £2 + «a («i e, — tfo e2) (1 + V l-t)

M
x k?

Mx hi a? + M2 lei a?
If both bodies are perfectly elastic, we have \l — 1, or

1 + 4Tp=%i

and if they are inelastic, \i = 0, or

1 + ^ = 1.

In the latter case the loss of vis viva occasioned by the impact is

Example.—The moment of inertia of the shaft A G, Fig. 561, in refer-

ence to its axis of rota-
FlG ' 561 - tion,£is

the arm G C of the shaft

is two feet and that K G
of the hammer is 6 feet, and the angular velocity of the shaft at the mo-
ment it impinges upon the hammer is = 1,05 feet ; how great is the velocity
after the impact and how much mechanical effect is lost by each blow, sup-
posing both bodies to be completely inelastic ? The required angular
velocity of the shaft is

. nK 4 . 1,05 . 150000 / 60 \
Wl = W* ~ 40000. 36-+ 150000.4 = 105

I
1 " 20i)

=^ '
°'706

= 0,741 feet,

and that of the hammer is

2.6. 1,05 . 4 . G G
204

also = «i • ^0 - = 0,741 . § = 0,247 feet

44
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i.e., three times as small as that of the shaft. The loss of mechanical effect

for each impact is

(2 . 1,05
2

) 40000 . 150000 _ _ a
600000

2 g ' 40000 . 36 + 150000 . 4
~" °'°lDD ^1)2

' TuT~M
n ^~~ . ,, 150000 10253,25= 0,0155 . 4,41 -gj— = gp- = 201,05 foot-pounds.

§ 343. Impact of an Oscillating Body.—If a body A,
Fig. 562, which has a motion of translation and is

unretained, impinges upon a body B C K, movable

around an axis K, we can find the velocities after

impact by substituting in the formulas of the pre-

ceding paragraph instead of ax
e

l and a x
o)

x the ve-

locities of translation c x and v
x
and instead of

M k*—:ltl tne mass Mx of the first body ; the other no-

tations remain unchanged. The velocity of the

first mass after the impact is therefore

and the angular velocity of the second is

w2 = e
2 + a.2 (c

x
— a2 e2) (1 + V y) .

If the mass M2 is at rest, or if e2 = 0, we have

* *= cx
- o, (1 + VJ) Mx a:! + Mi k?

and

0)2 = C
x (1 + V /x) Mx a2

2 + M2 hf'

If Mi is at rest, i.e., if the oscillating mass impinges upon it,

we have cx
— 0, and hence

Mx a2
* + M2 k?

and

M
x a2t-^^wb)

The velocity, which is imparted to a mass at rest by another

by a blow, depends not only upon the velocity of the blow and the

.masses of the bodies, but also upon the distance K L — a2 at which

the direction of the impact is situated from the axis K of the body

which is capable of rotation. If the free body impinges upon the

oscillating body, the angular velocity of the other becomes
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6>,= C,(1 + V>) M
x a2

2 + M2 k?
and if the oscillating body strikes against the free one, the latter

acquires the velocity

/i . a/~\ M
*
?C *

' a*

both velocities increase, therefore, when
a, 1

Mx a? + M* k?

k?

or

3f
x a, + —VI

increases, or 3fx a* + M.2
— decreases.
Cv-2

Substituting for #2, a ± x, x being very small, we obtain for

the value of last expression

a ± x

or, since the powers of x are very small,

,
_ _. M2 k2 /_ x x* \3f

x
a±3fx x + --*-Ml =f- + — =F...J,

a \ a a J

= Mx a + ~-± ± [M
x V1 ) x + • •

M k*
"Now if a is to correspond to the minimum value ofM

x a.2 +

Itf

Fig. 563.

«2

the member ±1.21/1 V^j x must disappear; for its sign is

different, when a is increased a quantity (z) from what it becomes,

when a is decreased by a quantity (— x) ; hence we must have

/ _ _ _3fs k?\

\
i ~ ~~ir~)

x =
>
La»

ifc£l/&
2

—V^~ = -^i> and consequently

v. jk;
- y m

x

Now if one body strike against the other at

this distance («), the latter assumes its maximum
velocity, which is

D«
:

=(i + ^)^-|/| = (i + ^)^)

when the oscillating body is impinged upon; and

when the free body receives the blow.
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/w
The extremity L of the distance or lever arm a = k2 \ —-,

which corresponds to the maximum velocity, or the point, where

the latter line intersects the line of impact, is sometimes, though
incorrectly, called the centre of percussion ; a more correct term

would be the point ofpercussion.

We should be careful not to confound it with the centre of per-

cussion (§ 313), whose distance froni the axis of rotation is ex-

pressed by the equation __ Ma k^ _ k*

M2 s s'

in which s denotes the distance of the centre of gravity of the mass

M9 from the axis of rotation. If the direction N JV of the impact

of the masses Mx
and if2 passes through the centre of percussion,

the reaction upon the axis of rotation becomes .= 0.

In order, for example, to prevent a hammer from jarring, i.e.

reacting upon the hand, which holds it, or upon the axis, about

which it turns, it is necessary that the direction of the blow shall

pass through the centre of percussion.

If a suspended body KB is struck by a mass Mx with force P

at the point of percussion, or at a distance a — 7c» y -~ from the

axis K, the reaction upon the axis is

Py
= P -i- R = P - kM,s (see § 313).

Since P == ——— --, we have the angular acceleration k = „
7 a

and tt M2 s = - *

1%
P ; hence the required reaction is

Example—1) The centre of percussion of a prismatical rod G A, Fig.

564, which revolves about one of its ends, is

Fig. 564. at a distance

CO = a = \^ = %r = %CA
r

from the axis. Now if we grasp the rod at

one end and strike with the point 0, which is

at the distance CO = f C A, upon an obstacle, we will feel no recoil.

The point of percussion, on the contrary, is at a distance r y 5-5F" from

C\ and if the mass of the body struck Mx
= M

2 , we have this distance

=— = 0,5774 r. The rod A must therefore strike a mass at rest at this

V3
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distance from C, when we wish to communicate the greatest possible ve-

locity to the latter.

2) The distance of the centre of percussion of a parallelopipedon

B D E, Fig. 565, from an axis X X, which is parallel to four of its sides

and is at a distance S A = s from the centre of gravity, and about which

the body rotates, is

s
2 + i-

d?

Fig. 565.

v
(«" + i <*")

jf*.

Fig. 566,

d denoting the semi-diagonal C D of the sides,

through which the axis XX passes (§ 287). If the

force of impact passed through the point of per-

cussion, we would have

and the reaction upon the axis would be

\ Vs2 + $di r Mj'

§ 344. Ballistic Pendulum.—The principles discussed in the

preceding paragraphs are applicable to the theory of the ballistic

pendulum of Eobins (Fr. pendule ballistique ; Ger. ballistische Pen-

del). It consists of a large mass M, Fig. 566, which is capable of

turning around a horizon-

tal axis C. It is set in os-

cillation by means of a

cannon-ball, which is shot

against it, and serves to

determine its velocity. In

order to render the im-

pact as inelastic as possi-

ble, upon the side where

the ball strikes, a large

cavity is made, which from

time to time is filled with

fresh wood or clay, etc.

The ball remains, there-

fore, after every shot,

sticking in this mass, and

oscillates together with

the whole body. In order

to determine the velocity
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of the ball, it is necessary to know the angle of displacement ; to

determine this angle, a graduated arc B D is placed under it, along

which a pointer, placed directly below the centre of gravity of the

pendulum, moves.

According to the foregoing paragraph, the angular velocity of

the ballistic pendulum, after the impact of the ball, is

__ M
x
a* cx

M
x
denoting the mass of the ball, Ms h? the moment of inertia

of the pendulum, cx the velocity of the ball and cu the arm C G of

the impact or the distance of the line of impact NN from the axis

of rotation. If the distance GM of the centre of oscillation M of

the entire mass, including the ball, from the axis of rotation 0, i.e.

if the length of the simple pendulum, oscillating isochronously

with the ballistic one, = r, and the angle of displacement E G D
= a, the height ascended by a pendulum oscillating isochronously

will be (2sin, ~\ :

hence the velocity at the lowest point of its path i3

v — V% g h — 2 V~g r sin. -,

and the corresponding angular velocity

v d a/(J •
a

o = - = 2 y - . sin. -
;

r 7
r 2

equating these values of the angular velocity, we have

M
x
a? + M9 7c,

2 ./g .a
d = w . 2 y J- . sin. 5.M

x a,
r r 2

Now, according to the theory of the simple pendulum,

r .
_ moment of inertia _ Mx a.* + M, hi

statical moment (3fx + M2) s
'

s denoting the distance G S of the centre of gravity from the axis

of rotation ; hence it follows that

M
x a? + M2 Tc? = (Mi + M2 ) s r and

IM
X + M\ s ./ . a

2 (

—

-^—-) . — V a r . sin.
\ M, I «o

JM
x

J
" a,

J 2

If the pendulum makes n oscillations per minute, the duration

of an oscillation is

if* G0"
i u * a/— 6Q/;

• 9 .
rcy — = — , and therefore V a r = -;

g n

'

J nn
hence the required velocity of the ball is
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c, = Mx
4- 3fs 120 g s

sin.
2

Example.—If a ballistic pendulum weighing 3000 pounds is set in os-

cillation by a 6-pound ball shot at it, and the angle of displacement is 15°,

if the distance s of the centre of gravity from the axis = 5 feet and the

distance of the direction of the shot from this axis is = 5,5 feet, and,

finally, if the number of oscillations per minute is n = 40, the velocity of

the ball, according to the above formula, is

3006 120 . 32,2 . 5 . „ 501 . 3864 . sin. 7° 30'

"575 u° = = 1828 feet.

Fig. 567.

6 * 40 . 3,1416 . 5,5
""""

' * 44 . 3,1416

§ 345. Eccentric Impact.'—Let us now examine a simple

case of eccentric impact, where the two masses are perfectly free.

If two bodies A and B E, Fig. 567, strike each other in such a

manner that the direction NN of the impact

passes through the centre of gravity &x of one

body, and beyond the centre of gravity S of

the other, the impact will be central for one

body and eccentric for the other. The action

of this eccentric impact can be found accord-

ing to the theorem of § 281, if we assume, in

the first place, that the second body is free

and that the direction of impact passes

through its centre of gravity S, and, in the

second place, that this body is held fast at

the centre of gravity, and that the force of impact acts as a rotesting

force. Now if c\ is the initial velocity of A, c that of the centre of

gravity of B E, and if the two velocities become i\ and v, we have,

as in § 332, Mx v, +' M v = Mx 'cx + M c. If, further, e is the

initial angular velocity of the body B E, in turning about the axis

passing through its centre of gravity perpendicular to the plane

JV N S, and if, in consequence of the impact, this becomes o>
? de-

noting the moment of inertia of. this body in reference to S by

MF, and the eccentricity or the distance 8 K of the centre of

gravity S from the line of impact by s, we have

Mi v, + —5- . s (o = M
x c

x +
Mlc

s e.

s' S'

If the bodies are inelastic, both points of tangency have the

same velocity after impact, then v
x
= v + s 0). Determining from

the foregoing equations v and 0) in terms of vi9 and substituting the

values thus obtained in the last equation, we obtain

Mx fo_- fh)
, „ ,

My s
n
-
(c.y - v,)

M '

C + M~WVx = + s e,
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from which we determine the loss of velocity of the first body

31¥ (c, — c - s e)
Cl Vl ~

(31, + 31) W + 31, s
2-'

the gain in velocity of translation of the second

311 k' (c, — c — s e)
V ~ ° ~

(31, + 31) ¥ + 31, s
2 '

and its gain in angular velocity

_. 31, s (c, — c — s e)
03 ~ e ~ Im, + 31) ¥ + 31^'

When the impact is a perfectly elastic one, these values are

doubled, and when it is imperfectly elastic, they are (1-4- V\i) times

as great.

Example.—If an iron ball A, weighing 65 pounds, strikes with a ve-

locity of 36 feet the parallelopipedon B E, Fig. 567, which is at rest and

is made of spruce, if this body is 5 feet long, 3 feet wide and 2 feet thick,

and if the direction of impact i^i^is at a distance SK = s = If feet from

the centre of gravity S, we obtain the following values for the velocities after

the impact. If the specific gravity of spruce is = 0,45, the weight of the

parallelopipedon is = 5 . 3 . 2 . 62,4 . 0,45 pounds = 842,4 pounds. The

square of the semi-diagonal of side B D F parallel to the direction of the

impact is

(I)
2 + (I)

2 = 7,25,

whence (according to § 287), ,

jfc" = i
. 7,25 = 2,416,

gMtf = 842,4 . 2,416 = 2035,2,

and g (Mt + M) ¥ = 907,4 . 2,416 = 2192,3

;

hence the velocity of the ball after the impact is

Mh% e
x

A, 2035,2

\ 2192,3 + 65 . 1,75V\ + M) # +.M
±

/ 20°>5 2\= 36 (l - |~y = 36 . 0,149 = 5,364 feet,

and that of the centre of gravity of the body struck is

M
x

It? c
x _ 157,08 . 36

9 ~ (M
x + M) F- + Mx

s
2 ~ 2391,4

and finally the angular velocity is

Mx
s e± _ 113,75 . 36

= 2,364 feet;

= 1,712 feet.
(M

x + M) W + Mx
s 3 2391,4

§ 346. Uses of the Force of Impact.—The weight of a body

is a force which depends upon its mass alone and increases uni-

formly with it ; the force of impact, on the contrary, increases not

only with the mass, but also with the velocity and with the hard-

ness of the colliding bodies (see § 336 and § 338), and it can-therefore

be increased at will. Impact is consequently an excellent method of
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obtaining great forces with, small masses or weights, and it is very

often made use of for breaking or stamping rock, cutting or com-

pressing metals, driving nails, piles, etc. On the other hand, im-

pact occasions not only a loss of mechanical effect, but also causes

the different portions of the machine to wear rapidly or even to

break, and the durability of the structure or machine is seriously

affected by it. For this reason it is necessary to make the dimen-

sions of those parts of the machine larger than when the latter are

subjected to extension, compression, weight, etc., without impact.

If a rigid body A B, Fig. 568, strikes upon an unlimited mass

D C of soft matter, it compresses the latter with a certain force,

whose mean value P is determined by means
of the depth of the impression K L — s,

when we put the work done P s during

the compression equal to the energy of the

mass of the striking body. If M be the

mass, or G = g M the weight, of this body
A B and v the velocity with which it strikes

upon CD C, we will have

*** =£*
and the required force with which the soft matter will be com-
pressed is

z
' s 2 gs

Dividing this force by the cross-section of the body F, we obtain

the force with which each unit of surface of the soft material is

compressed and which such a unit can bear without giving way,

.=,-jP. v\ G
P ~ F ~

% g ' F a

For safety we only load such a mass with a small portion of p,

for example with one-tenth part (
~

).

The bodyM acquires its velocity v by being allowed to fall freely

from a height li = ~. If we substitute this height, instead of ^-,

in the foregoing formula, we have

P — ~^~, or for the unit of surface p = ^—

.

6 F s
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The force or resistance P, with which soft or loose granular

masses oppose the penetration of a rigid body A B, is generally

variable and increases with the depth s of the penetration. In

many cases we can assume it to increase directly with s, i.e., that

it is null at the beginning and double at the end what it is in the

middle. Now since the value of P, deduced from the above

formula, is the mean value, the resistance or proof load P
x
of soft

materials is twice as great as the value P obtained by the formula,

I.E. P1==2P = ——

.

Example.—If a commander A B, Fig. 568, whose weight G = 120 lbs.

falls upon a mass of earth from a height h = 4 feet, and if the latter is

compressed \ an inch by the last blow, a surface of this material equal to

the cross-section of the stamper will support a weight

P = Gh 120 . 4
23040 pounds.

Fig. 569.

Now if the cross-section F of the commander is f- square feet, the force

per square foot supported by this mass of earth would be

P 23040 „
rt

. OA
P = -p = -y-

2
-g- = 18432 pounds;

instead of which, for the sake of safety, we should take but TV p = 1843,2

pounds.

§ 347. Pile-driving.—If we drive piles

such 'as A B, Fig. 5G9, into earth or any

other soft material C D C, we increase its

resistance much more than we would by

simply stamping it. Such piles (Fr. pieux

;

Ger.Pfahle) are from 10 to 30 feet long, 8

to 20 inches thick, and are provided with

an iron shoe B. The body 31, the so-called

ram (Fr. mouton ; Ger. Eammklotz, Eamm-

bar or Hoyer), which is allowed to fall from

3 to 30 feet upon the top of the pile, is gen-

erally made of cast iron, more rarely of oak,

and weighs from 5 to 20 hundred weights.

If the ram falls the vertical distance h, the

velocity with which it strikes the pile is

c = V% g h,

G and that of the pile«a? and if its weight
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= Gu we have, when we suppose that both bodies are inelastic, the

Telocity of the same at the end of the impact (see § 332)

Gc
v ~ g+g;

hence the corresponding height due to the velocity is

VL I
G V °L - (

G V 7

2g ~ \G+gJ ' 2g~~ \G + Gj
Now if the pile sink during the last blow a distance s, the re-

sistance of the earth and the load which the pile can support is

or more correctly, since the weight G + G x
of the pile and ram act

in opposition to the resistance of the earth,

In most cases G -f- G x
is so small, compared to P, that we can

neglect the latter part of the formula.

If the weight G
x
of the pile is much smaller than the weight G

of the ram, we can write

Gc

and simply P = - G.

The foregoing theory suffices in practice, when the resistance P
is moderate and, consequently, the depth s of the impression is

not very small ; for in that case the compression of the pile, etc.,

can be neglected. If, on the contrary, the resistance P is very

great and, consequently, the depth s of the impression very small,

the compression a of the pile can no longer be regarded as null, and

must therefore be introduced into the calculation.

The pile of course does not begin to sink until the force of

impact has become equal to the resistance P of the earth. Now
P P TP 7?

ifH = —=— and H
x
= ~^——

- denote the hardness of the ram and

that of the pile (in the sense of § 336), the sum of the compressions

of the two bodies, when the force of impact .is P
9
is

a — H^ Hx

~ Vff H
x
) ]

deal effect expendand the mechanical effect expended in producing this com-

pression is
pa

2'
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Now if this first impact of the two bodies causes the velocity c of

the ram to become v, its mass M = — performs the work

L = j M* - j J/V = (* - f
5

) f = pf^-) <?;

hence we can put

b^) Met +
l?;) T'

from which we obtain

2g
"=

2# Vff * ^/ 2 G'

consequently the velocity of the ram, when the pile begins to pen-

etrate the earth, is

2 6T

We infer from this that a pile (and also a bolt or nail in a wall)

will begin to enter the resisting obstacle when

% g ^ \H + HJ r
or when the weight of the ram and its velocity have the proper re-

lation to the resistance of the earth. During the penetration of

the pile the force of impact and, consequently, the compression of

the pile, etc., diminish as long as the velocity of the ram exceeds

that of the pile ; when both attain a common velocity vx and the

force of impact becomes a maximum, the bodies begin to expand

again. During this expansion not only the velocity of the ram,

but also that of the pile becomes gradually = ; the pressure be-

tween the two bodies becomes again P, and consequently at the

&
moment, when the pile ceases to penetrate, the whole energy s

—
* 9

G of the ram is consumed by the work

H
2

expended in compressing, and by the work

P s

done in driving the pile to the depth s.

Hence we have

"Hi
ff = " = (i +

sr) £ * r *

(h+i)



§347.] THE THEORY OF IMPACT. 701

and therefore the load which corresponds to the depth of penetra-

tion s is

p = VWTx) W 2 VSWI 2j
G + s - s

}
/ 1 l \ p 2

If the compression 1-^- + -j^r] — is considerably smaller than

the space s described by the pile, we can write simply

c* G Gh ,,P = =
, or, more accurately,

Z g s s

Gh
1 . 1 \GJi

2s

Comparing the work done in driving in the pile

Gh

* + (i + i)

P s

><£(w +
ir)

with the work done G h in raising the ram, we see that the former

approaches the latter more and more as ( -== + -j=\ —— becomes

FE FX EX

smaller or as the hardness II— —;— of the ram and that II
X
= -—

—

'
l\

of the pile become greater, i.e. the greater the cross-sections F and

F
x
and the moduli of elasticityE and Ex of these bodies are and the

smaller the lengths are.

The action of the weights of the two bodies can be entirely neg-

lected, since they generally form but a small portion of the resist-

ance P. We can also neglect the energy, which the bodies possess

in consequence of their elasticity (although the latter is imperfect)

after the pile has come to rest ; for the body, which is thrown back

by their expansion, is generally, upon falling again, incapable of

overcoming P and setting the pile in motion. For safety's sake,

the pile, which has been driven in, is loaded with only T\ part of

the resistance P, just found, or perhaps with even less. According

to some late experiments . made by Major John Sanders, U. S. A.,

at Fort Delaware (communicated by letter) we can put, approxi-

matively, the resistance

3s'

Example.—A pile, whose cross-section is 1 foot = 144 square inches,

whose length is 25 feet = 25 . 12 = 800 inches, and whose weight is 1200

pounds, is driven by the last tally of ten blows of a ram, weighing 2000
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pounds and falling 6 feet = 72 inches, 2 inches deeper, what is the resist-

ance of the earth ? If we neglect the inconsiderable compression of the

cast iron and put (according to § 212) the modulus of elasticity of wood
Et

= 1,560000, we obtain

Now since G h

*(^ + i)
= + h 300

HJ ' 2F
1
B

1 2 . 144 . 1,560000
~~

1497600"

2000 . 72 = 144000 inch-pounds and the depth of the pen-

etration after one blow is s = & = 0,2 inches, we obtain for the determina-

tion of P the following equation

:

P 2

+ 0,2 P = 144000 or P 2 + 299520 P = 215654400000.
1497600

Resolving this equation, we obtain

P= — 149760 + V 238082457600

According to Sanders' formula

Gh 144000 nAnnnnp=
37

= -^- = 240000
'

338177 pounds.

while the old formula, on the contrary, gives

G2 h G G h _ 2000 144000

3200 *

"P =
(G + G

2)s~ G+ G t
' s 0,2

= |. 720000

= 450000 pounds.

From P = 338177 pounds we obtain

/ 1 1 \ P2

\W + W) T = 76365 "^-pounds,

and therefore the height from which a ram weighing 2000 pounds must

fall in order to move the pile is

/ 1 1 \ P3 76365 n

'

n . ,

* = [W + E~) 20
=

"2000
= 38

'
2 mcheS'

§ 348. Absolute Strength of Impact.—By the aid of the

moduli of resilience and fragility (see § 206) we can

easily calculate the conditions under which a prismatical

body A B, Fig. 570, will he stretched to the limit of elas-

ticity or broken by a blow in the direction of its axis. If

G be the weight and c the velocity of the impinging

body, the work done, when the prismatical body, whose

weight we will denote by Gx, is struck, is

Fig. 570,

A

G 2

Gi

G + Gx

'

or denoting the height due to the velocity

have more simply

L =

*9
by h, we

G'h

g+ g;
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This mechanical effect is chiefly expended in stretching the rod

A B, upon which the second body hangs ; if, therefore, H is the

hardness, I the length, F the cross-section, E the modulus of elasti-

city, P the force of impact and X the extension of the rod produced

by it, we have

and consequently
FE _ G*h
TT - G+ Gx

'

from which the extension A of the rod, caused by this impact, can

be easily calculated.

If the rod is to be extended only to the limit of elasticity, we
have, when A denotes the modulus of resilience (§ 206),

L = A V=AFl,
and therefore . ^ , G2 hA Fl = G+ G>

the velocity of impact c = V 2 g h, which is necessary to stretch it

to the limit of elasticity, is determined by the height

, G + G
t

h = —^—.AFl
If we are required to find the conditions of rupture of the rod,

we must substitute, instead of the modulus of resilience A, the

modulus of fragility B.

We see from this that the greater the mass of the rod is, the

greater is the blow it can bear. Hence we have the following im-

portant rule, that the mass of bodies subjected to impacts should

be made as great as possible.

Since G and G x fall the distance X during the impact, it is more
correct to put

£ =^ + <* +^
or for the case, when the limit of elasticity is reached,

A f=gTg1 -i+(
g+ g^V

in which j — o expresses the extension corresponding to the limit

of elasticity.

If, finally, we wish to take into consideration the mass and

weight G2 of the rod, we have, since its centre of gravity sinks but
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A **~.e+?H+*'T + <° + * + ****
We have a similar instance of the action of impact, when a

f1
c-

moving massM — —, Fig. 571, puts another mass Mx
= — in mo-

j y

Fig. 571

: i fIf v~~^l

:...• f^?)—St-}<&—*

tion by means of a chain or rope. If c is the velocity ofM at the

moment, when the chain is stretched, v the velocity with which

both bodies move after the impact* we have again

Mc G Gx

V ~ M + Ut
~ G + G t

'

while, on the contrary, the work expended in stretching the chain is

.fo
MM, & GG

X

M + M, ' 2 G + G x

If, therefore, this chain, etc., is to be stretched only to the limit

of elasticity, we must put

F denoting the cross-section and I the length of the chain.

Example— 1) If two opposite suspension-rods of a chain bridge sup-

port a constant weight of 5000 pounds, wnich is increased 6000 pounds by

a passing wagon, if the modulus of resilience A of wrought iron is 7 inch-

pounds and if the length of the suspension-rods is 200 inches and their

cross-section 1,5 square inches, we have the dangerous height of fall

, AFl(G+G t )
7.2.1,5.200.11000 7.11 77 .

* = ^ =
86000000

= -60" = 60 = ^8 mdieS -

If the wagon passes oyer an obstacle 1,3 inches high, the suspension-rods

would already be in danger of being stretched beyond the limit of elas-

ticity.

2) If a full bucket or loaded cage in a shaft is not gradually set in mo-

tion, but if by means of the rope, which has been hanging loosely, it is sud-

denly brought to a certain velocity by the revolving drum, the rope will

often be stretched beyond the limit of elasticity, and sometimes even
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broken. If the mass of the drum and shaft, reduced to the circumference

. , a 100000
of the former, is m = — =

, the weight of the full bucket or cage

is Q t
= 2000 pounds, and the weight of the rope = 400 pounds, then if

the weight of a cubic inch of rope is = 0,3 pounds, its volume will be

"-% 400 4000 ,

.

-q-qT == —

o

-
- cubic inches,

and, finally, if the modulus of fragility of this rope is = 350 pounds, we
have the height due to the velocity, which will break the rope,

h-BFl G+ G±
-r-0

400° 10000° + 20QQ _ 1400000 102~
' G G

t
~ ' S ' 100000 . 2000 ~ 3 '

* 200000

= 238 inches = 19,83 feet,

and, therefore, the velocity of the rope at the beginning of the strain is

c = V2^ = V 64,4 . 19,83 = 35,74 feet.

§ 349. Relative Strength of Impact—The foregoing the-

ory is also applicable to the case of a prismatic body B B, Fig.

572, supported at both ends and exposed to the blows of a body
A, which falls from the height A C = h upon its middle C. Let

— = M be the mass of the falling body and Mx that of the body

B B, reduced to its middle C, then the energy of the bodies after

the impact is

Jb = 3P M
2 M + MX 2g M + Mt

7-Mg M
M+M

1

Oh.

The mass M
x of the beam B B can be determined in the follow-

ing manner. Let <9, be the weight, I half the length B D, Fig.

573, of this beam, x the abscissa B N and y the corresponding

ordinate N O of the curve, formed by B B at the moment of

greatest flexure, and, finally, let a denote the maximum deflection

CD of this curve. If we imagine B C to be divided into n (an infi-

nite number of) parts, the weight of an element O of the rod will

45
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ri

be —, and therefore the mass of an element of the rod, reduced
n

from N to D, is

~ ng' \C D/ n g a*

But, according to § 217,

Px
I

x-\

p*tf /„ ..*-*
,

z 4

\ ., . p2 ?

iat the element of the mass

9 Gx x* (l* - f P x2
4-
y)

9 W 2 E"
whence it follows that the element of the mass of the rod is

±ngf
Now if instead of x we substitute successively -, 2 -, 3 - . . .

—
J n n n n

and add, etc., the values thus obtained, we obtain the mass of the

rod B B, reduced to its middle C,

If we substitute this value, we can put the work done by the

impact

t _ M r j,-
°'' h

^ ~ M+ Mx

•' fr* - + |i <?,'

and obtain the condition of bending to the limit of elasticity (see

§ 335),

El - G"
]l

A
• 3 « ~ a + u g;

If the beam is a parallelopipedon, we -have

^and therefore

. AV^G + iiG,) ...
T7

. (7,

h = V#2
—

'
or PutfanS Fl = y

If we substitute B instead of A,, the expression becomes

_ BGjjG + MGi)
11 ~

9 y ^
and gives the height, from which the weight G must fall in ordei

to break the parallelopipedical rod.
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Example.—From what a height must an iron weight G = 200 pounds

fall, in order to break by striking it in the middle a cast iron plate 36

inches long, 12 inches wide and 3 inches thick, which is supported at both

ends ?

The modulus of fragility

B = 14,8 inch-pounds

(see § 211), and the volume of the plate is

Vx
= I h I = 12 . 3 ." 36 = 1296 cubic inches,

and, since a cubic inch of cast iron weighs y = 0,259 pounds, its weight is

G
x
= 1296 . 0,259 == 335,7 pounds

;

the required height is

_ 14,8 . 335,7 (200 + tf . 356,4) . .

71 =
97 o^tsTIooIo

= 18* inches '

§ 350. Mechanical Effect of the Strength of Torsion.—
We can also investigate the action of impact in twisting shafts.

According to § 262 the mechanical effect which is required to pro-

duce a torsion a in a shaft, whose length is I and the measure Of

whose moment of flexure is W, is

Pa g _ a2
. W C _ P1

a" I

2 ~~ 2 1 ~~2WC
we can also put

L =
fo V- (see § 264)'

e denoting the distance of the most remote fibre from the neutral

axis and 8 the strain in that fibre.

If we substitute for 8 the modulus of proof strength T, and for

T a T—y= —- the modulus of resilience A, we obtain the work to be

performed in stretching the remotest fibre to the limit of elasticity

t a Wl

and the mechanical effect necessary to rupture the shaft by wrench-

ing, when we substitute for the modulus of resilience A the modu-
lus of fragility 5; its value is

L-B Wl

n r*
For a cylindrical shaft W == -~

s- and e = r, hence

T A A Tr , _ B •

1 B ~
y • *

= y j
= y *

* r l = y
when V = n r

2
I denotes the volume of this shaft.

For a shaft with a square cross-section, the length of whose side

is b, we have
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and consequently

W = -7T and e = b V T9

Z^y^^FandA^yF.
If a revolving wheel and axle, whose mass reduced to the point

G G . .

of impact is M = — , impinges upon a mass Mx
— —, which is at

rest, with the velocity c, both will move on after the impact with

the velocity

consequently the mechanical effect

T
GG

' l-
G + Gx'2g'

which is expended iu twisting the axle and bending the arms of the

wheel, is lost (see § 335).

But L is also the sum of the mechanical effects expended in

producing the torsion of the axle and in bending the arms of the

wheel, etc., I.E.,

r \ Wl
A
Wx l

when A x
denotes the modulus of resilience, Wx the measure of mo-

ment of flexure and e x the distance of the exterior fibre from the

neutral axis (see § 235) ; we can therefore put

A Wl A, Wx lx
_* G G

x &
n t~

%e? G + Gx 2 a

If the shaft is cylindrical, we have —j- = v, and if it is four-

sided, we have —j- = —, when V denotes its volume ; and for the
B o

four-sided arm we have -^\ = ~, where Vx
denotes the volume

o c>x y

of the arm.

Hence for a cylindrical shaft we have

2
r

9 G + G
x 2(f

and, on the contrary, for a four-sided shaft

A r +
Â

ri =
GG

'

&

3 9 ' G+ <?, 2 g
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The volumes Fand Vx have a certain relation to each other,

which can be expressed as follows. The moment of flexure of the

arms is equal to the moment of torsion of the shaft.

Hence
WT _ Wx Tx

e e
x

'

njP _ tf_T
___ b x K? Tx

] 16 3 1/2
~ 6

'

T and Tx
denoting the moduli of proof strength for torsion and

bending and d the diameter of a round, and b the length of the

sides of a four-sided shaft, while li
x
is the thickness and b x

the sum
of the widths of all the arms of the wheel.

But we have also V == ^—r- I = Fl and Vx
= bx li x lXi and

therefore

'nd'lA b x h x l
x
A x

GG
X c

2

"8— + —^— = ^TGX
2~g

and

^
7v> 7 A j_ * 7̂ ?

' ^i _ ^ C
*

Now if the ratio v = -^ of the dimensions is given, we can cal-
li x

culate. the thickness d or h of the shaft or the thickness li x and the

width b x of the arms by means of equations (1) and (2). We must

introduce into this calculation

1) for cast iron

T2 1Q06 2

A = 3,16 and A = _^=^—-^ = 0,640 inch-lbs,

2) for wrought iron

T' 59743

A, = 6,23 and A = -, = ^-^^^ = 1,983 inch-lbs.,

3) and for wood, the mean value

rn-2 3Q5 2

A. = 2,17 and A = ^ =^^ = 0,132 inch-lbs.

Example.—Let the mass of the wheel, etc., of a tilt-hammer, reduced to

the point of application of the cam, beM— pounds, and the mass of

25000
the hammer reduced to the same point be M = pounds, and let the
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distance from the wheel to the ring, in which the cams are set, be I = 15

feet = 225 inches, and the length of the arms of the wheel be lx = 10 feet ==

120 inches. Now if the hammer, every time it is lifted, is struck with a

velocity of 2 feet, how thick must the shaft and the arms of the wheel be

made in order to sustain this impact without being damaged ? If the shaft

and arms are of wood, we have

**£:.= m±fr
and if the number of arms is n = 16, we can put

l
x
= v.n h

t
= 0,707 . 16 7i

t
= 11,3 . h 1}

whence we obtain

= K V-
w -a.su,;

6 . 395 . 7T

But

and also

E Al = 0.132. 225- = 11,66,
o o

\A t l
t
= i . 2,17 . 120 = 28,9,

gg; c- 20000 . 25000 5000000

OVGl '2v=
12

'
°-01 °5

•

4
• 200000 + 25000 = °>744

' "225"

= 16533 inch-pounds

;

hence we have the equation of condition

(2,9)° . 11,66V + 11,3 . 28,9 Jq* = 16533, i.e.

98,1 h
t
- + 326,6 ht

9 = 16583,

hence the required thickness of the arm

./16533 nnI . ,
7l

i =V 424T
= 6

'
24 mches

the width of the arm
b
t
= 0,707 ti

t
= 4,41 inches,

and the thickness of the shaft

d = 2,9 h
1
= 18,1 inches.

For the sake of security we make the dimensions considerably larger.

Remark.—It is only of late years that much attention has been paid to

the strength of impact. We find something in regard to it in Tredgold's

work on the strength of cast iron, in Poncelet's " Introduction a la

Mecanique Industrielle," and in Riihlmann's " Grundziige der Mechanik

und Geostatik." The discussion in the latter work is based principally

upon Hodgkinson's experiments on the resistance of prismatic bodies to

impact, upon which subject an article by Bornemann is to be found in the

u Zeitschrift fiirdasgesammtelngenieurwesen" (the Ingenieur).

The experiments of Hodgkinson agree essentially with the foregoing

theory of the strength of impact; they apply particularly to relative
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strength, and were made in the following manner : large weights swinging

like pendulums were caused to strike against rods supported at both

G2 h
ends. The formula L — -^ t—^t, which we found by assuming that the

(x + $ (x
t

impact was perfectly inelastic, was verified completely ; the mechanical

effect L was found not to depend upon the nature of the colliding bodies.

Equally heavy bodies of different materials (cast iron, cast steel, bell metal,

lead) produced, when they fell from the same height, equal -deflections of

the same rod (of cast iron or cast steel) ; the deflections were almost ex-

actly the same as those given by the theory for a perfectly elastic rod.

Final Remark.—For the study of the Mechanics of rigid bodies, be-

sides the older works of Euler, Poisson, Poinsot, Poncelet, Navier and

Coriolis, and those of Whewell, Mosely, Eytelwein and Gerstner, the follow-

ing are recommended

:

Duhamel, Cours de Mecanique, Paris, chez Mallet-Bachelier, 1854;

Sohnke, Analytische Theorie der Statik und Dynamik, Halle, 1854 ; Broch's

Lehrbuch der Mechanik, Berlin, 1854 ; Morin, Lecons de Mecanique pra-

tique, Delaunay, Traite de Mecanique rationelle, Paris, 1856 ; Rankine, A
Manual of Applied Mechanics, second edition, London, 1861—a valuable

work, too little prized in England. A translation of a new Monograph
upon impact, by Poinsot, has lately appeared in the third year of Schlo-

mich's Zeitschrift fur Mathematik und Physik.



SIXTH SECTION,

STATICS OF FLUIDS

CHAPTER I.

OF THE EQUILIBRIUM AND PRESSURE OP WATER IN VESSELS.

§ 351. Fluids.—We consider fluids to be bodies composed of

material points, whose coherence is so slight that the smallest force

suffices to separate them from each other (§ 62). Many bodies

"which are met with in nature, such as air, water, etc., possess

this distinguishing property of fluids in an eminent degree, while

others, on the contrary, such as oil, tallow, softened clay, etc., pos-

sess a less degree of fluidity. The former are called perfectly, and

the latter imperfectly fluid, or viscous bodies. Certain bodies, as,

E.G., dough, lie midway between the solids and the fluids.

Perfectly fluid bodies, of which only we will treat in the discus-

sion which is to follow, are at the same time perfectly elastic, i.e.

they can be compressed by extraneous forces, and when these forces

are removed, they reassume the primitive volume. But the amount

of change of volume corresponding to a certain pressure is very dif-

ferent for different fluids ; while in liquids this change is quite un-

important, in gaseous or aeriform fluids it is very great, and they

are therefore called elastic or compressible fluids. On account of

the slight degree of compressibility of liquids, they are treated in

most of the researches in hydrostatics (§ OG) as incompressible or

inelastic fluids. As water is the most generally diffused of all

liquids and is the most generally employed in practical life, we

regard it as the representative of all these fluids, and in the re-

searches in the mechanics of liquids we speak only of water, with
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the tacit understanding that the mechanical relations of other

liquids are the same.

For the same reason, in the mechanics of elastic fluids we speak

only of common atmospheric air.

Remark.—A column of water, whose cross-section is one square inch,

is compressed by a weight of 14,7 pounds, corresponding to the weight of

the atmosphere, about 0,00005 or one fifty millionth of its volume, while a

column of air under the same pressure occupies but one-half of its primi-

tive volume. See Aime " Ueber die Zusammendriickung der Fliissigkeiten"

in Poggendorff's Annalen, Erganzungsband (to Vol. 72), 1848. According

to the formula P = j F E (§ 204), we have, when P = 14,7 pounds, F =

/L 5 1
1 square inch and T = ^t^t™ — 7^7^\, the modulus of elasticity of water^

I 100000 20000' J

P IE = — = 14,7 . 20000 = 294000 pounds.
Jo A

§ 352. Principle of Equal Pressure.—The characteristic

property of fluids, by which they are principally distinguished from

solid bodies and which forms the basis of the theory of the equili-

brium of fluids, is the capacity of transmitting the pressure exerted

upon a 'portion of their surface unchanged in all directions. In solid

bodies the pressure is transmitted only in its own direction (§ 86)

;

if, on the contrary, water is subjected to pressure on one side, the

same pressure is exerted throughout all the mass of fluid and can

consequently be observed at all parts of the surface. In order to

convince ourselves of the correctness of this law, we can employ

an apparatus filled with water, like
Fig. 574. n ^ i • ±. ithe one whose horizontal cross-sec-

tion is represented in Fig. 5 74. The

tubes A E, B F, etc., which are of

the same size and at the same dis-

tance above the base, are closed by
~*^p pistons, which are easily movable

and which fit the tubes perfectly

;

the water will then press upon each

of them, by virtue of its weight, ex-

actly as much as upon the others.

Let us for the present disregard

this pressure and regard the water as imponderable. If we exert

against one of the pistons A a certain pressure P, the water will
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transmit the same pressure to the other pistons B, C, D, and to

preserve the equilibrium or to prevent these pistons from moving
backwards, an equal opposite pressure P (Fig. 575) must be exerted

against each of the other pistons. We are therefore authorized to

assume that the pressure P exerted upon a portion A of the surface

produces a strain which is propagated not only in the straight

line A C, but also in every other direction B F, D H, etc., upon any

equally large portions C, B, D of the surface.

Fig. 575. Fig. 576.

If the axes of the pipes B F, C G, etc., Fig. 576, are parallel to

each other, the forces acting on the pistons can be combined so as

to give a single resultant ; if n is the number of the equally large

pistons, the total pressure upon them will be

P
x
= nP;

in the case represented in the figure

Pt
= 3 P.

Now the aggregate area Fx
of the surfaces B, C, D, upon which

the pressures are exerted, is also = n times the area F of one

Px F
x

n is therefore not only = -^-, but also -p, or inof the pistons;

general

ft
and P

x

Fx

P.p - F ^ f
JSTow if we cause the tubes B, C, D to approach each other,

until they form, as in Fig. 577, a single one, and if we close the

latter by a single piston, F
x
becomes a single surface and P

x
is the

pressure exerted upon it ; hence we have the general law : the

pressures exerted by afluid upon the different parts of the walls of

the vessel are proportional to the areas of those parts.
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Fig. 577

This law corresponds also to the principle of virtual veloci-

ties. If the piston A D = F, Fig. 578, moves a distance A A x
= s

inwards, it presses

the prism of water

F s out of its tube,

and the piston B B
— F

x
moves out-

wards the distance

BB
x
— sx and leaves

behind it the pris-

matical space F
x s x.

Now as we have

assumed that water can be neither expanded nor compressed, its

volume must remain the same after the pistons have been moved,

or the increase F s must be equal to the decrease Fx s x . But the

equation Fx s x
= F s gives

f ~
s:

and by combining this proportion with the proportion

we obtain

P
1
_F\

P F

P ~
s x

>

hence the mechanical effect Px s x
= P s (see § 83).

Example.—If the diameter of the piston A D is 1|- inches and that of

the piston B E is 10 inches, and if the pressure exerted by the former upon

the water is 36 pounds, that exerted upon the latter piston is

Fx r, !<>
2

36 = —- . 36 = 1600 pounds.F "
1,5

2

If the first piston moves 6 inches, the second moves but

F 9.6
h = y s =

400"
= ^ = °'185 inc]ies -

Remark.—In the following pages we will meet with many applications

of this law, e.g., to the hydraulic press, water pressure engines, pumps, etc.

§ 353. Pressure in the Water.—The pressure exerted by

the particles of water against each other

must be estimated in exactly the same

manner as the pressure of the water against

the wall of the vessel. The pressures upon

both sides' of any surface E C G, which di-

vides the water in a vessel B G IT, Fig. 579,

into two parts, when equilibrium exists,

are equal. Now as a rigid body counter-

Fig. 579.



16 GENERAL PRINCIPLES OF MECHANICS. [§ 353.

Fig. 580.

acts all forces whose directions are at right angles to its surface,

the conditions of equilibrium will not be disturbed, when one-half

E G H of the liquid becomes rigid, or if its limiting surface

becomes a wall of the vessel. If the fluid

half E B G in one portion C D = F, of

the imaginary surface of separation E C G
exerts a pressure Px upon the rigid half

E G H, the latter counteracts this pres-

sure completely and will react with an equal

opposite pressure (—Pi) upon C D = F
x .

Since the conditions of equilibrium will

not be changed, when this mass of water

E G H becomes fluid again, the latter will react with an equal

pressure (— P) upon the mass of water E B G; hence the pres-

sure of the water upon both sides of a surface C D = F is also de-

termined by the proportion

P ~ F?

when all the water is pressed in a surface A B = F by a force P.

Hence the pressure upon any given surface F1 in any arbitrary

position is

r
* - F r'

The law of the transmission of pressure in water, expressed by

the last proportion, is only applicable when we consider water as

an imponderable fluid, and it must therefore be modified, when it-

is required to determine in addition the pressure arising from the

weight of the water. If we imagine a part of the water in a vessel

CD E, Fig. 581, to become rigid and to have the form of an infi-

nitely thin horizontal prism A B,

it is easy to see, that the pressures

of the water, that remains fluid,

upon the sides of the rigid part

balances the weight G of the prism

and that the horizontal pressures

upon the vertical bases A and B
of this part counteract each other.

These pressures (P and — P) must

therefore be equal and opposite to

each other. Since the state of equilibrium is not changed, when

A B again becomes fluid, it follows that the pressures cf the

Fig. 581.
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7

Fig. 532.

water against the vertical elements A and B of the surface, which

are situated m one and the same horizontal plane, must be equal

to each other, and since the pressure upon an element does not

change, when its inclination or direction changes, it follows that

the water in a horizontal layer, as, e.g., G H, K L, etc., exerts the

same pressure 111 all directions and in all positions.

If we imagine a vertical prism A B, whose cross-section is infi-

nitely small, to become rigid in the mass of water C II K, Fig. 582,

we can conclude from the conditions of its equi-

librium with the remaining liquid that the

pressures exerted by the latter upon the vertical

sides of the prism balance each other and that

the weight G of the latter body is in equilibrium

with the excess P, — P of the pressure Pj upon

lower base B above the pressure P upon the

upper base A. Hence P
x
— P — G, i.e. the

pressure P 2 of the water upon any elementary

surface B is equal to its pressure P upon an ele-

ment A, of equal size aud situated above it, plus

the weight G of a column of water A B, whose

base is one or other elementary surface and

wdiose height is the vertical distance between the

two elements. According to what precedes this

rule is not only applicable to two elements,

situated vertically above one another, but can also be emplo}red

for determining the pressure upon the walls of the vessel ; for the

twb pressures P and P
x
are transmitted unchanged in the hori-

zontal planes G II and K L. Hence the pressure i? upon an ele-

mentary surface B, K or L of the horizontal plane K L is equal to

the pressure P upon an equally great element A, G or // in a

higher horizontal plane plus the weight of the column of water,

whose base is this element F and whose height is the distance

A B = h of the horizontal planes G II and K L from one another.

If y is the heaviness of water, this weight is

G = Ph y, and therefore P, = P + G = P + Fli y.

If the areas of the elements of surface are unequal ; if, e.g., the

area of the upper one (in G II) is F and that of the lower one

(in K L) is Fr, the pressure upon the latter is

Pl = §(P+FIi y) = &P + F,hy.

By means of the same formula the pressure P upon an element
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Fin the horizontal plane G //can be determined, when the exterior

pressure P upon an element of the surface CD = F , which is at

a distance h above or below G II, is known. It is

P = ~-P„±Fhy.
1

Since the pressures upon equal elements in a horizontal plane

are equal to each other, it follows that the foregoing formula is

applicable to horizontal surfaces of finite dimension, as, e.g., where

the water serves to transmit the force P,

which acts upon a horizontal piston F,

Fig. 583, to another horizontal piston Fv

This formula

Fig. 583.

P,= Jp + tf Ay = *(y^>r)
gives directly the pressure P

x upon this

surface, when li denotes the vertical height

GD between the surfaces of the two pistons.

P P
If we denote the pressures — and ~

upon the units of surface by p and jpl9 we

have more simply

Pi — P + h 7>

Example.—If the diameters of the two pistonsF andFt of a hydrosta-

tic press ACS, Fig. 583, are d = 2|- inches and d
t
= 9 inches, and if they

are situated at the distance CD = h = 60 inches above one another, and

if the larger piston is to exert a pressure i^ = 1600 pounds, we have the

force which must be applied to the smaller piston

F
w P

t
-Fhy =

=& 1600 Z 23
A * 4=""

62,5

d?

60

1728
123,46 — 10,66 = 112,8 pounds.

§ 354. Surface of Water.—In consequence of the action of

gravity upon water, all the elements of it tend to descend, and

really do so when they are not prevented. In order to keep a quan-

tity of water together, it is necessary to confine it in a vessel. The

water in a vessel ABC, Fig. 584, can only be in equilibrium when

the free surface IIR is at right angles to the direction of gravity, or
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Fig. 584.

horizontal ; for so long as this surface is curved or inclined to the

horizon there will be elements of the water, such as E, which, be-

ing situated above the others, will, in consequence of their great

mobility and their weight, slide down those

below them as upon an inclined plane. Since,

when the distances are very great, the direc-

tions of gravity cannot be considered as paral-

lel lines, the free surface or the surface of the

water in a very large vessel, e.g. in a large sea,

will not, under these circumstances, form a

plane surface, but a portion of the surface of a

sphere. If another force acts, in addition to gravity, upon the ele-

ments of the water, then, when equilibrium exists, the free surface

of the water is at right angles to the resultant of this force and that

of gravity.

If a vessel ABC, Fig. 585, is moved forward with the constant

acceleration p, the free surface of the water forms an inclined plane

D F; for in this case every element E
of this surface is drawn vertically down-

wards by its weight G and in a horizon-

tal direction by its inertia P = - G, the

... °
two forces giving rise to a resultant R,

whose direction forms, with that of

gravity, a constant angle R E G = a.

This angle is at the same time the angle D FH formed by the

surface of the water (which is at right angles to the resultant) with

the horizon. It is determined by the equation

tang, a = — =2
9

If, on the contrary, a vessel ABC, Fig. 586, is caused to re-

volve uniformly about its vertical axis X X,

the surface of the revolving water forms a

hollow A C, whose cross-section through

the axis is a parabola. If (o is the angular

velocity of the vessel and of the water in it,

G the weight of an element E of the water,

and y its distanceME from the vertical axis,

we have the centrifugal force of this ele-

ment
-X B
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^="'^(§302),

and therefore for the angle BEG — TEM — 0, formed by the

resultant with the vertical or by the tangent E T to the profile of

the water with the horizontal line M E,

tang. = -^ = —*-

From this formula we see that the tangent of the angle, formed

by the tangent line with the ordinate, is proportional to the ordi-

nate. Since this is one of the properties of the common parabola

(see § 157), the vertical cross-section A C of the surface of the
'

water is a parabola, whose axis coincides with the axis of rotation

XX '

If the velocity of rotation of the water in the vessel A B D?~Fig<

c
2 G

588, were constant and = c, we would have F ——— , and there
yy

fore tang. = ----- ; hence the subtangent of the curve, formed by

the cross-section A E B of the water, M T'
— m = — or constant.

9
According to Article 20 of the Introduction to the Calculus, the

equation of such a curve is
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y = r e'
1 = r c'

JI ~~,

r denoting the ordinate of the beginning A.

If we cause a vessel ABU, Fig. 589, to move uniformly in a

vertical circle around a horizontal axis C, the surface of the water

will assume a cylindricalform, with a circular cross-section D E II.

If we prolong the direction of the resultant E of the weight G and

of the centrifugal force F of an clement E until it cuts the vertical

line C K, passing through the centre of rotation, we obtain the two

similar triangles ECO and E F E, for which wc have

CO _ F_E &_
m

E C ~ EF ~ F ;

but if we put the radius of gyration E C = y and retain the last

notations, we have F — -, whence it follows that the line

9
293G £ 894,G—-„— teet = —=— meters,
u u

CO _ 9
9 \~ uj

Fig. 590.

u denoting the number of revolutions per minute. Since this value

of C is the same for aH the elements of the water, it follows that

the resultants of all the elements of the water forming the cross-

section D E II are directed towards 0, and that the cross-section,

which is at right-angles to all these directions, is the arc of a circle

described from 0. Hence the surfaces of the water in the buckets

of an overshot water-wdieel are always cylindrical ones, described

from the same horizontal axis.

§ 355. Pressure upon the Bottosn.—The pressure in a

vessel A B C D, Fig. 590, is a minimum immediately below the

surface, increases with the depth, and is

a maximum at the bottom. This, al-

though a consequence of § 353, can also

be proved as follows. Let ug suppose

that the area of the surface II i? of the

water is F and that a pressure P is ex-

erted uniformly upon it, e.g. by the at-

mosphere lying above it or by a piston,

and let us imagine the entire mass of

water to be divided by very many hori-

zontal planes, such as H
x
Ex , II, i?2 , etc., into equally thick layers.

If F
x
is the area of the first layer IIX En , X its thickness, and y the

heaviness of water, wc have the weight of the first layer #, = Fx
a y,.

and that portion of. the pressure in Hx E :
produced by the pressure

4:6
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P upon the surface of the waterH R^ according to the principles

enunciated in § 352, is

Adding both these pressures, we obtain the pressure in the horizon-

tal section H
x
Ex

P F

Dividing by Fx, we obtain the equation

Hx Ex
referred to the unit of surface, we have

px = p + A y.

The pressure in the following horizontal layer H* R2 is deter-

mined exactly in the same manner as the pressure in the layer

H
x Ei, but we must not forget that the initial pressure upon an

clement of the surface is in this case px
=

ft, + A y, while in the

first case it was p& Hence the pressure in the horizontal- layer

~ and ^~ denote the pressures p and p x
in II E and

K2 E 2 is

p* = Pi + x y = Po + * y + * y = p* + 2 x y>

Fig. 591. in like manner the pressure in the third

layer H6 E± is

in the fourth

== p + 4 A y,

and in the nth.

-Po + n a f.

But n % is the depth K = h of this

nth layer below the surface of the water

;

we can therefore put the pressure upon each unit of surface in

*4he nth horizontal layer

p = 2\ + h y (compare § 353).

We call the depth h of one element of surface below the level

<of the water its head or height of ivater (Fr. charge d'eau ; Ger.

.Druckhohe), and we find the pressure of the water upon any unit

of surface by adding to the pressure applied from without the

weight of a column of water, whose base is unity and whose height

is the head of water. When a surface is horizontal, as e.g. the

bottom C D (Fig. 591), the head of water h is the same for all

positions, and if its area is = F, the pressure of the water upon it is
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P= (p + hy)F= Fp + Fh y = F + Fit y,

or, if we neglect the external pressure, P — F h y. The pressure

of the water upon a horizontal surface is therefore equal to the iceight

of the column of water Fh above it.

This pressure of the water upon a horizontal surface, e.g. upon

the horizontal bottom or upon a horizontal portion of the wall of a

vessel, is entirely independent of the form of the vessel ; whether

the vessel A 0, Fig. 592, is prismatic as m «, or wider above than

below as in b, or wider below than above as in c, or inclined as in

d, or with spherical walls as in e, etc., the pressure upon the bottom

is always equal to the weight of a column of water, whose base is

the bottom of the vessel and whose height is its depth below the

level of the water. Since the pressure of water is transmitted in

all directions, this law is also applicable when the surface, as e.g.

B C, m Fig. 593, is pressed from below upwards. Each unit of

surface of the layer of water B K
y
touching B C, is subjected to the

pressure of a column of water, whose height is H B = R K — h,

and the pressure against the surface C B is = F h y, F denoting

the area of that surface.

Fig. 592. Fig. 593.

fiHiillg

J>

D C D C C

Hence it follows that the water in the communicating tubes

A B Cand DBF, Fig. 594, will stand at the same height, when

in equilibrium, or that the surfaces A B and E F will be in the

same horizontal plane. In order to preserve the equilibrium it is

necessary that the layer of water H R shall be pressed downwards

by the column of water E R above it as much as it is pressed up-

wards bv the mass of water below it. Since in both cases the
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surface pressed upon is the same, the head of water must be the

same, and the level of the water at A B must be at the same height

above H R as that at E F.

§ 356. Lateral Pressure.—The formula just found for the

pressure of water against a horizontal surface, is not directly appli-

cable to a plane surface inclined to the horizon ; for in this case the

head of water is different at different points.

The pressure p = h y upon every unit of surface within the

horizontal layer at the depth h below the surface of the water acts

in all directions (§ 352), and, consequently, at right angles to the

walls of the vessel, by which* (§ 138) it is entirely counteracted.

Now if F
}
is the area of an element of the side ABC, Fig. 595,

and h
x
its head of water Fx Hx, we have the pressure perpendicular

to it

if Fc, is the surface of a second ele-

ment and he, its head of water, we have

the normal pressure upon it

F, = F,hy;
and in like manner for a third ele-

ment
P, = Fz 7h y, etc.

These normal pressures form a

system of parallel forces, whose result-

ant P is the sum of these pressures,

T ~F

' P = (F,lh + FJu + ...)y.

is the sum of the statical moments of

Fx> F2, etc., in reference to the surface A B of the water and
= F h, when F denotes the area of the whole surface and h the

depth S of its centre of gravity S below the surface of the water

;

hence the entire normal pressure against the plane surface is

P = Fhy.
If we understand by the head of ivater of a surface the depth of

its centre of gravity below the surface of the water, the following

rule will be generally applicable, viz. : the pressure of ivater against

a plane surface is equal to the weight of a, column of water, whose

lose is the surface and whose height is its head of water.

We must here observe that this pressure does not depend upon
the quantity of water above or in front of the surface pressed, thus,

But F
t
h

x + F, h2 +
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E.G., if the other circumstances are the same, a wall A B CD, Fig.

596, has to resist the same pressure whether it dams up the water of a

small trough A C EF or that of a large dam ACGH or that of a

lake. From the width A B = CD = b and the height A D ..=

B C = a of the rectangular wall we obtain the surface of the same

Fig. 596.

F'
— a b and the head of

water S = ~, and, there-

^iss^^=f^r =:. -"rr^l^mf fore, the pressure of the wa-

-I!! ter against it is

I r> 7
a

, - 7
• P = «.Z> . - y = A « 6> y.

The pressure increases

therefore with the width and with the square of the height of the

surface pressed upon.

Example.— If the water in front of a sluice gate, made of oak, 4 feet

wide, 5 feet high and 2£ inches thick, stands 3£ feet high, how great a force

is required to lift it ?

The volume of this gate

4 . 5 . /¥ = -2/ cubic feet.

Assuming the heaviness of oak, saturated with water, to be according to

§ 61, 02,5 . 1,11 = 69,375 pounds, the weight of this gate is

G = s£
. C9,375 = 25 . 11,5625 = 289,06 pounds.

The pressure of the water against the gate and the pressure of the lat-

ter against its guides is

p — i (7)2 . 4 . 62,5 = 49 . 31,25 = 1531,25 pounds

;

putting the coefficient of friction for wet wood (§ 174) <p = 0,68, we have

the friction of the gate upon its guides

F= <pP = 0,68 . 1531,25 = 1041,25.

Adding to the latter the weight of the gate, we have the force necessary to

draw it up
= 1041,25 + 289,06 = 1330,31 pounds.

357. Centre of Pressure of Water.—The resultant P =
Fli y of all the elementary pressures F

x
h x y, F2 7i 2 y, etc., has, like

the resultant of any other system of parallel forces, a definite point

of application, which is called the centre of pressure. By retain-

ing or supporting this point the whole pressure of the water

upon a surface will be held in equilibrium. The statical moments
of the elementary pressures jP, li x y, F» 7i.2 y, etc., in reference to the

plane of the surface of the water ABO, Fig. 595, are

F
x
h x y . hi = F

x
h

x y, F.2 Ji, y . lu = F2 h* y, etc.,

and the statical moment of the entire pressure of the water in

reference to this plane is
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(Fx h x

2 + F hi + . . .) y.

Denoting the distance KM of the centre M of this pressure from

the surface of the water by z, we have the moment of the pressure

of the water

P z = (F
x % + F, lu + . . .) z y,

and by putting these moments equal to each other we obtain the

distance of this centre M below the surface of the water

1)
F

x
h{ + F9 ?h

2 + .

F
x h x + F\ lu + 7

or =- F
x h x

2 + F% hi 4-

Fh
when, as above, F denotes the area of the entire surface and h the

depth of the centre of gravity below the surface of the water.

In order to determine completely this point of pressure, we
must find its distance from another line or plane. If we put the

distances Fx G x, F» G.2, etc., of the elements F
x , Fit etc., of the sur-

face from the line A C, which determines the angle of inclination

of the plane, = yx, y2, etc., we have the

moments of the elementary pressures

in reference to this line

- F
x
h x y, y, F, 1l2 y, y, etc.,

and the moment of the entire surface

= (Ahifi 4- F9 h 9 y9 + ...)?;
denoting the distance M N of this

centre M from that line by v, we
have also this moment
= (F

x 7h + K_ lu 4- . . .) v y.

Equating these two moments, we

obtain the second ordinate

n _ F1 h x y x + F2 h 9 y9 + .

.

. _ F
x
h

x y x + F9 h 9 y9 + ...

'
V F

x
h

x + F% lh + . .

.

" ' F h

If a denote the angle of inclination of the plane A B C to the

horizon, x
x , x.2, etc., the distances E

x
F

x , F.2 F2, etc., of the elements

/<
7

„ Ft, etc., and u is the distance L M of the centre of pressure M
from the line of intersection A B of the plane with the surface of

the water, we have h x
= x

x
sin. a, h2 = x.2 sin. a, etc., and also z = u

sin. a ; substituting these values of z and v in the expression, we

obtain

Moment of inertia
u =

F
x
x{ + F2 x? 4- . .

F
x
x

x 4

F
x
xx y x

F2 x, + .

4- F9 x.2 y«

Statical moment
and

Fx
x

x + F« x +
Moment of the centrifugal force

Statical moment
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We find then the distances u and v of the centre of pressure

from the horizontal axis A Y and from the axis A X, formed by

the line of dip, when we divide by the statical moment of the sur-

face with reference to the first axis, in the first place, the moment of

inertia in reference to the same axis, and, in the second, the mo-

ment of the centrifugal force of the same in reference to both axes.

The first distance is also that of the centre of oscillation from the

line of intersection with the surface of the water. Besides it is

easy to perceive that the centre of pressure of water coincides per-

fectly with the centre of percussion, determined in § 313, when the

line of intersection A Y of the surface with the surface of the

water is regarded as the axis of rotation.

§ 358. Pressure cf Water against Rectangles and Tri-

angles.—If the surface pressed upon is a rectangle A C, Fig. 598,

with a horizontal base line C D, the centre M of pressure is found

in the line of dip K L, which bisects the base line, and it is at a

distance equal to two-thirds of this line from the side A B, which

lies in the surface of water. If the rectangle, as in Fig. 599, does

Fig. 598. Fig. 593. Fig. GOO.

not reach the surface; of the water, then, if the distance K L of the

lower line C D from the surface of the water = /, and that K
of the upper one A B, = la, we have the distance KM of the cen-

tre of pressure from the surface of the water

u -% ll 5L

.

* I* ~ V
The distance KM of the centre of pressure M of a right-angle

triangle ABC, Fig. 600, whose base A B lies in the surface of the

water, from A B (Example § 313) is

i F T
U ~ \F.l

= U,

when I denotes the altitude B C of the triangle.

The distance of this point M from the other side B C is, since

this point lies in the line C 0, which bisects the triangle and



728 GENERAL PRINCIPLES OF MECHANICS. [§ 358.

runs from the apex C to the middle of the base, N 31 = v= J $,

b denoting the base A B.

If the apex is situated at the surface of the water, as in Fig.

601
?
and if the base A B is below the apex, we have

KM = u = -=

WM= v =

\ FV
\Fl

b

I and

Fig. 602.

— 3 h

If the whole triangle ^4 i? 6", Fig. 002, is immersed in the water,

and the base A B is at a dis-

tance A H — h and the apex

C at the distance C H = l
x

from surface H R, we deter-

mine the distance MK of the

centre of pressureM below the

surface of the water H R by

means of the formula

h -l2Y
3

w =

(' - Hr*)
I 'm (*i - ^)

2 + 1 (2 4 + ?0
2

*i

a + 2 Z, I 4- 3 7/

Fig. 603.

i (2/ + /,) 2 (/, + 2/,)

The centre of pressure of other plane figures can be determined

in the same manner.

Example.—What force Prnust we employ to raise a circular clack-

valve A B, Fig. 603, which is movable

about a horizontal axis D ? Let the

length of this valve be = 1|- feet, its di-

ameter^! B be == li feet, and the distance

of its centre of gravity S from the axis D
be D 8 = 0,75 feet, and its weight be

O = 35 pounds; further, let the distance

D H of the axis of rotation D from the

surface of the water, measured in the

plane of the valve, be = 1 foot and the

angle of inclination of this plane to the

horizon be a = 68°.

The surface upon which the pressure

is exerted is

25F =
4

,4 . p = 1,2272 square feet,
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and the head of water or depth of its centre G below the water level is

C = h = H G. sin. a = (IIB + DC) sin. a = (RD + D B + B G) sin. a
,

= (1 + 0,23 + 0,625) sin. 68° = 1,875 . 0,9272 = 1,7385 feet,

and, therefore, the pressure of the water upon the surface A B — F\s

Q = Fhy = 1,2272 . 1,7385 . 62,5 = 133,34

;

the arm I of this force with reference to the axis of rotation D is the dis-

tance D M of the centre of pressure M from it, hence

b = HM- HD.
But we have

HM = H c + ilia = i-875 + 47W5 •

( lj=
1

-
9271 fet

>

whence h = 1,9271 — 1,0000 = 0,9271 feet,

and the required statical moment of the pressure is

Q b = 133,34 . 0,9271 = 123,62 foot-pounds.

The arm of the weight of the valve is

D K = D~8 cos. a = 0,75 . cos. 68° = 0,75 . 0,3746 = 0.2810 feet,

and therefore its statical moment is

= 35 . 0,2810 = 9,84 foot-pounds.

By adding these moments, wre obtain the entire moment necessary to

open the valve
Pa= 123,62 + 9,84 = 133,46 foot-pounds.

Now if the arm of the force, which opens the valve, is D N = a = 0,75

feet, the intensity of that force must be

„ 133,46 • .,
P = - , -„.- = 177,95 pounds.

0,7o L

§ 359. Pressure upon Both Sides of a Surface.—If a plane

surface A B, Fig. 604, is subjected upon doth sides to the pressure

of water, the two resultants of the pres-

sures on the two sides give rise to a

new resultant, which, as they act in

opposite directions, is obtained by sub-

tracting one from the' other.

If F is the area of the portion A B
subjected to pressure on one side of the

surface, and h the depth A S of its

centre of gravity below the surface of

the water, and if F
x
is the area of the portion A x

B
x
on the other

side, which is subjected to the pressure of the wr
ater, and fo}

the

depth A x Si of its centre of gravity below the corresponding surface

of the water, the required resultant will be

P = Fhy - F
x lh 7 = {Fh - F

x
h

x ) y.

If the moment of inertia of the first portion of the surface with

reference to the line, in which the plane of the surface cuts the first
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surface of the water, = F F, we have the statical moment of the

pressure of the water upon one side

= Fk*y,
and if the moment of inertia of the second portion of the surface,

with reference to its line of intersection with the other surface of

the water, = F
x k x

2

, we will have in like manner the statical mo-
ment of the pressure of the water on the other side, with reference

to the axis in the second surface of the water,

Putting the difference of level A A
x
of the two surfaces of the

water = a, we have the increase of the latter moment, when we pass

from the axis A
x
to the axis.Ai

= Fx h x
a y,

and consequently the statical moment of the pressure F
x h x y, in

reference to the axis A in the first surface of water, is

= F
x 1c? y + Fx ht . a . y = {F\ k? + F, a h

x ) y.

Hence it follows that the statical moment of the difference of

the two resultants is

= {F¥ - F
x h4

3 - a Fx li
x ) y,

and the arm of this difference or the distance of the centre of

pressure from the axis in the first surface of water is

Fk* - F
x
k? -aFx li

xU ~ Fh-F
x h x

If the portions of surface which are subjected to pressure are

equal, as is represented in Fig. 605, where the whole surface A B
— F is submerged, we have more simply

Fm - G05 ' P = F(h-h)y,
K___k| and since W = hf + % a li x + a' (see § 224)

|slll|l|| H
t

I?, and h — h x
= a, we have

^^^^^^^^^^ In the latter case the pressure is equal to

the weight of a column of water, whose base

is the surface pressed upon and whose height is the difference of

level RH
y
of the water on the two sides of the surfaces, and the centre

of pressure coincides with the centre of gravity S of the surface.

This law is also correct when the two surfaces ofwater are subjected to

equal pressure, e.g. by means of pistons or by the atmosphere ; for if

the pressure upon each unit of surface = p and the height of the

corresponding column of water is I = - (§ 355), we must substi-
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tute, instead of h, h -f- 7, and instead of hls h x + I; by subtraction

we obtain the pressure

P = (/* + 2 - [A, + q) .Fy = (7* - ]h ) Fy.
For this reason we generally neglect the pressure of the air in
hydrostatical experiments.

Example.—The depth A B of the water in the head-bay, Fig. 606, is

7 feet, the water in the chamber of the lock rises 4 feet upon the gate, and
the width of the canal and lock-chamber is

7,5 feet ; what is the resulting pressure upon
the gate of the lock ?

Here

F = 7 7,5 = 52,5 square feet,

7,5 = 30,0 square feet,

7 4h= -.7=^,*! =3=2 feet,

JV=4

2* 2'"" 1 2

a = 7 - 4 = 3 feet,

hence the required resultant is

P = (Fh - F
t
h
t ) y = (52,5 . ~ - 30 . 2V 62,5

= 123,75 . 62,5 = 7734,4 pounds,
and the depth of the point of application below the surface of the water la

52,5.
49

30.
16

3.60

52,5 .--60
S3

517,5

123,75
= 4,182 feet.

Fig. 607.

§ 360. Pressure in a Given Direction.—In many cases we
wish to know but one part of the pressure, viz. : that exerted in a

certain direction. Tn order to find such a component, we decom-

pose the normal pressure MP = P on the surface A B = F, Fig.

607, into two components, one in the given direction MX and one

at right angles to it, viz. :
%

MP, = Px and M P, = P,.

Now if a is the angle P M X
formed by the direction of the normal

pressure with the given directionMX
of the component, the components

will be

P
x
— P cos. a and P., = P sin. a.

If we project the surface A B upon

a plane perpendicular to the given di-

rection M X, we have the area of the projection B C
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Fx
= F\cos. A B C,

or, since the angle of inclination A B C of the surface to its pro-

jection is equal to the angle P MX = a, formed by the direction

of the normal pressure and that of its component P1}

Fi—'F cos. a, and inversely

Pi
cos. a — —-

;F '

the required component is therefore

F,

Now, since the value of the normal pressure is P = F h y, we
have Px

= Ft h y,

I.E., the pressure exerted ly water in any direction upon a surface is

wqual to the weight of a column of water, ivhose base is the projection

of the surface at right angles to the given direction and ivhose height

is the depth of the centre of gravity of the surface leloiv the surface

of the wafer.

In most eases in practice we are only required to determine

the vertical or a horizontal component of the pressure of the

water against the surface. Since the projection at right angles to

the vertical direction is the horizontal projection and that at right

angles to a horizontal direction is a vertical one, we find the ver-

tical pressure of the water against a surface by treating its hori-

zontal projection as the surface subjected to pressure, and, on the

contrary, the horizontal pressure of the water in any direction by

treating the vertical projection, or elevation, of the surface at right

angles to the given direction as the surface pressed upon, and in

both cases we must regard the depth 8 of the centre of gravity

8 of the surface below the surface of the water as the head of water.

Hence, if we wish to determine in the case of a prismatical em-

lanhnent or dam A B D E, Fig. 608, the horizontal pressure of

the water, we must con-

sider the longitudinal

elevation A C, and if

the vertical pressure is

to be determined, the ho-

rizontal projection B C
of the surface A B must

be considered as the sur-

face pressed upon. Put-

ting the length of the
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dam — I, its height A C — h and horizontal projection of the slope

B O — a, we have the horizontal pressure of the water

H=lh. ?

^y = ih*ly

and its vertical pressure

V — al . ^ y — ^alliy.

Now if the width of the top of this dam is A E — b, the hori-

zontal projection of the other slope D F'
= a

x
and the heaviness of

the material of the dam = yx, the weight of the dam is

G =
(
b +^) hl7l>

and the entire vertical pressure of the dam upon its horizontal base is

V+ 0= J a Ih y,+ (j + £±£) h I y, = [-} a y + (b +^) y,] h I,

Putting the coefficient of friction = </>, we have the friction or

force necessary to push the dam fomuard

F=<p{V+ G) = [iay+ (b +^) y,] <t>
h I.

When the horizontal pressure pushes the embankment forward,

we must have

i V l y = [i y a + (b +
(^) y,] . <t>

h I,

or more simply

h = $ L + (2 b + a + a,) —\

If we wish to prevent the dam from being moved, we must make

li < <p la + (2 b + a + a,) —V or

»'>• * [(?-•)
I;

-(*•+*)}

For the sake of greater security we assume that the water has

penetrated below the base of the dam to a great extent, and for

this reason, in the worst case, we must consider that an opposite

pressure = (b + a -f a x ) I h y is acting from below upwards

;

'hence we must put

li < [(2 b + a + ck) (-- - l) - at].

Example.—If the density of the clay composing the dam is nearly

double that of water, or

^- = 2 and ^ - 1 = 1,
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we can write simply

h < </> (2 b + a).

It has been found by experiment that a dam resists sufficiently, when
its height, top and the horizontal projections of its slopes are equal to

each other. Hence, if we substitute in the last formula

h = b = a, we obtain <j> = |-,

for which reason in other cases we must put

h = ±[(2b + a + a,) (?± -lj-a^
and for clay dams in particular

h = £ (2 b + a), or inversely

3 h- a
d = —2-'

If the height of the dam is 20 feet and the angle of inclination of the

slope is a = 36°, the horizontal projection is

a = h cotg. a = 20 . cotg. 36° = 20 . 1,3764 = 27,53 feet,

and therefore the width of the top of the dam must be

60-27,53 *m
','

A
b = —— = 16,24 feet.

§ 361. Pressure upon Curved Surfaces.—The law of the

pressure of water in a given direction, deduced in the foregoing

paragraph, is applicable only to plane surfaces or to a single ele-

ment of a curved surface, but not to curved surfaces in general.

The normal pressures upon the different elements of curved sur-

faces can be decomposed into.components parallel to a given direc-

tion and into others perpendicular to the first. The first set of

parallel components forms a system of parallel forces, wrhose result-

ant gives the pressure in the given direction, and the other set of

components can also be combined so as to form a single resultant,

but the two resultants are not capable of further combination,

unless their directions intersect each other (§ 97). Hence we are

generally unable to combine all the pressures upon the elements

of curved surfaces so as to form a single resultant ; there are, how-

ever, cases where it is possible.

If Gi, G», G3, etc., are the projections and hx, 7i.1} 7i 3, etc., the

heads of water of the elements F19 F?, F3, etc., of a curved surface,

the pressure of the water in the direction perpendicular to the

plane of projection is

P = (G l h l + G*fa+ G3 h3 + ...)y,

and its moment in reference to the plane of the surface of the water is

Pu = (G
]

Ji
x

* + G, h{ + G3 h? + . . .) y.

If we can decompose the curved surface subjected to the pressure
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into elements, which have a constant ratio to their projections,

le., if we can put

-^ = ~ = -^ etc. = n, we will have
-Fl -fr* -tz

Gx
— --, Gi = — , etc., and therefore

n n

-r, IFX lh ,
F2 h2 ,

\ (F
x h, + Fa h2 + . . .\ Fh\ h

t

\ IFX lh + Fs h2 + . . .\ Fh

JP denoting the area and h the depth of the centre of gravity of the

entire surface below the level of the water. But we have

F=Fx +F,+... = nG, + n &:+. .. = n (Gt + G, + ...)= nG,
G denoting the area of the projection of the entire surface ; hence

t>
Fh nlP = —- y — Ghyyn

as in the case of a plane surface, or the pressure of water in one

direction is equal to the weight of a prism of ivater, whose base is

the projection of the curved surface upon a plane perpendicular to

the given direction and ivhose height is the depth of the centre of

gravity of the curved surface below the surface of the water.

Thus, e.g., the vertical pressure against the side of a conical

vessel A C B, Fig. 609, which is filled with wrater, is equal to the

weight of a column of water, whose base is the
Fig. 609. kage f ^e cone anc[ whose height is two-thirds

C the length of the axis CM ; for the horizontal

/k projections of the surface of a right cone, as

M \\ well as the surface itself, can be decomposed

M I ||k into elementary triangles, and the centre of

i^Jm "si"' t»\ir gravity S of the surface of the cone is at a dis-

IHii 'iBlk tance from the apex of the cone equal to two-

Mjjj: T' ^IjKm thirds of its height h (§ 116). If r is the radius
Â ~ ——i^^B of the base and h the height of the cone, we

have the pressure upon the base = tt r h y and

the vertical pressure upon the sides = | tt r
2 h y ; now as. the base

and the side are united together and the pressures are in opposite

directions, it follows that the force with which the entire vessel is

pressed downwards is

=s(l— l).irf*Ay=aJirf*.y
.

= the weight of the entire mass of water. If we cut the base loose

from the conical portion of the vessel it wall exert a pressure upon

its support = rr r
2 h y, and to prevent the side of the vessel from

being raised by the water we would have to exert a pressure upon

it = I 7r r
2 h y.
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Remakk.—The pressure exerted by the steam of a steam-engine or the
water of a water-pressure engine is perfectly independent of the shape of

the piston. No matter how much we may increase the

surface pressed upon by hollowing out or roundino- the
piston, the force, with which the water or steam moves
the piston, remains the same and is equal to the product
of the cross-section or horizontal projection of the piston

and the pressure upon the unit of surface. If the piston

A B, Fig. 610, is funnel-shaped and if its greater radius

is G A — GB — r and its smaller G D= G E = rx . the

pressure upon the base is = tt r 2 p and the reaction

upon the conical surface is = tc (r 2 — r^)p\ hence the

resulting pressure is

P = tt r2 p — it (r 2 ') p = 7T r
1

~ the cross-section of the cylinder multiplied by the pressure upon the

unit of surface.

§ 362. Horizontal and Vertical Pressure.—Whatever may
be the form of a curved surface A B, Fig. 611, the horizontal pres-

sure of the water against it is always equal to the weight of a

column of water, whose base is

the vertical projection A B of

the surface at right angles to the

zl

given direction and whose height

is the depth S of the centre

of gravity S of this projection

below the surface of the water.

The correctness of this assump-

tion is shown directly by the

formula

P = (G i h l + G*hi-+ ...)r>

when we remember that the heads of water hx, h*, etc., of the ele-

ments of the surface are also the heads of water of their projections

or that G
x ht + G2 h^ + . . . is the statical moment of the entire

projection, i.e., the product G h of the vertical projection V multi-

plied by the depth h of its centre of gravity below the surface of

the water. Hence we must again put

P = ah y
and remember that h is the head of water of the vertical projection.

The vertical section, by which we divide a vessel and the water

contained in it into two equal or unequal parts, is at the same time

the vertical projection of both parts, the horizontal pressure upon

one part of the vessel is proportional to its vertical projection
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multiplied by the depth of its centre of gravity below the surface

of the water; consequently the horizontal pressure upon one portion

A B of the wall of the vessel is exactly as great as the horizontal

pressure upon the opposite portion A
x
B

x , which acts in the opposite

direction, and the two pressures balance each other. The vessel

will therefore be subjected to equal pressure in all directions by the

water contained in it.

The vertical pressure Px
= Gx h x y of the water against an ele-

ment F
x , Fig. 612, of the wall of the vessel is, since the horizontal

projection G x
of the element can be regarded as the cross-section,

Fig. G13. and the head of water h x as the height, or Gx li x

IT ppvTJR as the volume, of a prism, equal to the weight

<Q-
j Of a column of water H F

x , extending above

the element to the plane H R of the surface

of the water. Hence the elementary surfaces,

which form a finite portion A B of the bot-

tom or wall of the vessel, support a pressure

HSlil §11] which is equal to the weight of the columns

UU fg/ of water above them, i.e. to the weight of the

column of water above the entire portion.

Putijng its volume equal to V{, we obtain

the vertical pressure of the water

P = V
X y.

The vertical pressure upon another portion

f A x Bx
of the wall of the vessel, which lies

vertically above the former and which limits the volume A X
BX
H"=

K, is

Q= r.f;

but if the two portions are rigidly connected together, the result-

ant of the two forces, which acts vertically downwards, will be

R=(P- Q) = (Vx
- V,)y = Vy

~ to the weight of the column of ivater contained between the two

surfaces. If we apply this rule to the entire vessel, it follows that

the entire vertical pressure of the ivater against the vessel is equal to

the weight of the ivater contained in it

If we make an opening in the side of the vessel H B R, Fig.

613, I and II, that portion of the pressure, which corresponds to

the cross-section of this opening, is wanting and the pressure upon

the surface F opposite to it remains unbalanced. If the opening

(as in I) is closed by a stopper K, which is prevented from yielding

by a resisting object L on the outside, an equal distribution of the

47
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horizontal pressure upon the walls of the vessel no longer takes

place, but, on the contrary, the vessel is moved forward with a

force P = F7iy9
which is counteracted on the opposite side by

Fig. 613.

I II

Fig. 614.

the stopper. If the stopper is removed and the water allowed to

flow through the opening 0, as in II, the reaction of the discharg-

ing water increases this pressure P from F h y to P x
= 2 F h y,

as will be shown hereafter.

Example.—The vertical pressure P
t
upon the lower hemispherical sur-

face A B B, Fig. 614, is equal to the weight of a column of water bounded

above by the surface of the water H B and below

by the hemispherical surface. If r is the radius G A
= CB of this surface and h the height G of the

surface of the water above the horizontal plane A B,

which limits it, the volume of the hemisphere ABB
will be Vx

= § 7T r3
, and that of the cylinder above

A B, V2
= 7r r2 h ; hence

P±
- (F,+ V2 ) y = (f tt f'+tt r" It) y = (fc+ f TOTrr3

y.

The pressure, which is directed vertically upwards
upon the upper hemisphere A EB, is, on the contrary,

and therefore the entire vertical pressure

P = P, r y
is equal to the weight of water in the entire sphere.

The horizontal pressure upon one of the hemi-

spheres BAB and B B E, which join each other in

the vertical plane B G E, is measured by the weight of a prism, whose

base is B G E = tt r" and whose height is G = 7i; this pressure is

B = tt r~ h y.

§ 363. Thickness of Pipes.—The application of the theory

of the pressure of water to the determination of the thickness of

pipes, boilers, etc., is of great importance. In order that these

vessels shall sufficiently resist the pressure of the water and not be
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broken, their wr.lls must be made of a certain thickness, which de-

pends upon the head of water and the internal diameter of the

vessel. The rapture of the pipe may be caused either by a trans-

verse or by a longitudinal tearing. The latter form of rupture is

most likely to occur, as will appear from the following discussion.

If the head of the water in a pipe = h or the pressure upon the

unit of surface of the pipe is p — h y, the width of the pipe M If

= 2 CM — 2 r, Fig. 615, and the cross-section of the body of

water m it F = rr r
2

, the pressure, which is exerted upon the sur-

face of the end of the pipe and which must be sustained by the

cross-section of the tube, is

P = Fp — 7t r* h y = it r
2

p.

JSTow if the thickness of the pipe is A D = B E = e, its cross-

section is

= rx (r + e)
2 - it r

2 — 2 tt r e + e
2 = 2 n r e (l + ^-\

and if we denote the modulus of proof ctrength of the material, of

which the pipe is composed, by T, the proof strength of the entire

tube in the direction of the axis is

Fig. 615. P = (l + £\ 2 tt r e T.

SL__.^R Hence we can put

Dyg?HQ§g^ (1 + FT;;
) 2nr e T= nrp, or

m^WImm (1 + 4-\ 2 e T = r p (
see § 205

) 5

feF^jgfe^gggf the resolution of this equation gives

^^ff^^^^^W ^ne thickness

^Sgi«^/ rp

-J Te

Sir.

of the pipe, for which we can generally write with sufficient accu-

racy

r p _rhy
e ~ Tt ~ Tt'

The mean pressure, which the water exerts upon a portion cf

the wall A M B, whose length is I and whose central angle is

A C B = 2 a , is, since the projection of this portion at right

angles to the line CM passing through the centre is a rectangle,

whose area is A B . I — 2 r I sin. a,

P — 2rl sin. a .p = 2 r I h sin. a . y.
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This force is held in equilibrium by the forces of cohesion R,

Rm the cross-sections ATI) . I and B E . I = e I of the wall of the

pipe; it is therefore equal to the sum 2 Q of the components

D Q = Q and E Q — Q of the latter forces, which are parallel to

the line C M. Now if we put R — el J7

, we obtain

Q = R sin. ARQ — R sin. A C 31= el T sin. a,

and therefore

2 e I T sin. a — 2 rip sin. a, i.e. e T = rp;

hence the required thickness of the pipe is

_ r p __ rhy
& — rnT — rp 9

which is entirely independent of its length.

v p
Since the first calculation gave e only = -^~, it follows that

to prevent a longitudinal tear we must make the wall twice as

thick as would be necessary to prevent a transverse one.

From the formula
r p _ rhy

just found, it follows that the thickness of similar pipes must be

proportional to the width and to the head of water or pressure upon

the unit of surface. A pipe, which is three times as wide as

another and which has to bear a pressure five times as great as the

first, must be fifteen times as thick.

We must give to holloiv spheres which sustain a pressure p upon

each unit of surface the thickness

r p

for here the projection of the surface pressed upon is the great

circle tt r, and the surface of separation of the ring is 2 n r e

/l + _1_\ or approximative^, when the thickness is small, = 2 tt re.

The formulas just found, give for p = also e = ; hence

pipes, which have no internal pressure to resist, can be made infi-

nitely thin ; but since every pipe in consequence of its own weight

must sustain a certain pressure and also must be made of a certain

thickness to be water-tight, we must add to the value found a

certain thickness e in order to have a pipe, which under all circum-

stances will be strong enough. Hence for a cylindrical tube or

boiler we iiave
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rhy

or more simply, if d is the interior width of the tube, p the pressure
in atmospheres, eacli corresponding to a column of water 34 feet

high, and p a coefficient determined by experiment,

e — e
x + fi p d.

It has been experimentally determined that for tubes made of
Sheet iron . . . . e = 0,00086 p d + 0,12 inches,

Cast iron e = 0,00238 p d + 0,34 "

Copper e = 0,00148^^ + 0,16 "

Lead e — 0,00507 p d + 0,21 "

Zinc, e = 0,00242 j? d + 0,16 «

Wood e = 0,0323 ^> <:? -f 1,07 "

Natural stone . .
'.. e = 0,0369 ^ tf + 1,18 "

Artificial stone . . . e = 0,0538 jp tf + 1,58 «

Example.—If a vertical water-pressure engine has an inlet cast-iron
pipe 10 inches wide inside, how thick must its walls be for a depth of 100,
200 and 300 feet ? For a depth of 100 feet this thickness is 0,00238 .^ . 10 + 0.34 = 0,07 + 0,34 = 0,41 inches ; for a depth of 200 feet =
0,14 + 0,34 = 0,48 inches ; and for a depth of 300 feet = 0,21 + 0,34 =
0,55 inches. Cast-iron conduit pipes are generally tested to 10 atmo-
spheres, in which case we have

e = 0,0238 d + 0,34 inches,

and for pipes of 10 inches internal diameter we must make the thickness

e = 0,24 + 0,34 = 0,58 inches.

Remark—1) In the second part of this work the thickness of tubes ex-

posed not only to hydrostatic pressure, but also to hydraulic impact, will

he calculated.

2) In the sscond part the thickness of the walls of steam-boilers will be
treated. Upon the theory of the thickness of pipes, we can consult the

treatise of Geh. Regierungsrath Brix in the proceedings of the " Vereins

zur Beforderung des Gewerbefleisses, in Preussen," year 1834, and Wiebes
'•'Lehre von den einfachen Maschinentheilen," Vol. I, and also Rankine's
" Manual of Applied Mechanics," page 289, and Scheffler's " Monographien
iiber die Gitter- und Bogentrager, und iiber die Festigkeit der Gefassicande."

The technical relations and the testing of pipes are treated in Hagen's
" Handbuch der Wasserbaukunst," Part 1st, and also in Geniey's " Essai

sur les moyens de conduire, etc., les eaux," and in the "Traite theoretique

et pratique de la conduite et de la distribution des eaux," par Dupuit,
Paris. 1854.
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CHAPTER II.

EQUILIBRIUM OF WATER WITH OTHER BODIES.

§ 364. Upward Pressure, Buoyant Effort.—A body im-

mersed in water is subjected to pressure upon all sides, arid the

question arises, what is the magnitude, direction, and point of

application of the resultant of all these pressures ? Let us imagine

this resultant composed of a vertical and two horizontal compo-

nents, and let us determine them according to the rules of § 362.

The horizontal pressure of the water against a body is equal to the

horizontal pressure against its vertical projection ; but every eleva-

tion A C, Fig. 616, of a body is at the same time the projection of

the rear part ADC and of the fore part A B C of its surface, and

consequently the pressure P upon the hind part of the surface of a

body is equal to the pressure — P upon the fore part ; and as the

directions of these pressures are opposite, their resultant is == 0.

Since this relation exists for any given horizontal direction and its

corresponding vertical projection, it follows that the resultant of

all the horizontal pressures is equal to zero, and that the body A C,

which is under water, is subjected to equal pressure in all horizontal

directions, and therefore has no tendency to move horizontally.

Fig. GIG.

In order to find the vertical pressure of the water upon a body

A B D, Fig. 617, immersed in it. let us imagine it to be decomposed
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into the vertical elementary prisms A B, C B, etc., and let us de-

termine the vertical pressure upon their bases A unci B, C and B,

etc. Let the lengths of these columns be Z„ l2, etc., the depths

H B, KB of their upper ends B, B below the surface of the water

R be Ih, h2, etc., and their horizontal cross-sections be Flf F.2 , etc.,

then we have the vertical pressures which act from above down-
wards upon their ends B, B, etc.,

ft, Q,, etc., = F
x 7h y, F, h2 y, etc.,

and, on the contrary, the vertical pressures which act from below

upwards against the ends A, G, etc., are

P„ P2, etc., = F
t (lh + lx) y, F9 (h, + l2) y, etc.

By combining these parallel forces we obtain the resultant

p = p
t + A + ...- (a + ft + ..-) .

- F, (h
t + I) y + 2̂ (A,

+'
'« y + ....- ^ fc y - ^7> 2 y-...

= (#'* + *w.+ .y.)y=vy,
in which V denotes the volume of the immersed body or of the

water displaced by it. IIen<-e the upward pressure or buoyant effort,

with which water tends to raise up a body immersed in it, is equal to

the iveight of the water displaced or of a quantity of water which has

the same volume as the submerged body.

Finally, in order to determine the point of application of this

resultant, let us put the distances E F
x , E F„, etc., of the elemen-

tary columns A B, G B, etc., from a vertical plane X equal to

at, a<2, etc., and let us determine their moments in reference to this

plane. If S. is the point of application of the upward thrust, which

is called the centre of buoyancy, and E S = x its distance from

that plane, we have
V y x = F

x l
x y . ax + F, 1, y . a2 + . . .,

and therefore

_ F, I, a, + F, h a, + . . . _ V
x
a, + V.2 a, 4- . .

.

X ~ F
}

I, + F.2 1, + .77~ Vx + V, + . . .
'

Vx, V<2, etc., denoting the contents of the elementary columns. Since

(according to § 105) the centre of gravity of a body is determined.

by exactly the same formula, it follows that the point of application-

S of the upward thrust coincides with the centre of gravity of the

water displaced. The direction of the buoyant effort is called the*

line of support ; when it passes through the centre of gravity of the?

body, it is called the line of rest.

§ 365. Upward Pressure, or Buoyant Effort, when the;

Body is Partially Surrounded by Water.—If a body, such as

ABB, Fig. 618, is not entirely surrounded by the water A II R,
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and the surface A B, whose area is F, is united to the wall of the

vessel, or if the body, where its cross-section is A B = F, passes

through the wall of the vessel, the pressure which the water would

have exerted upon this surface A B, if the body was free or in con-

tact with the water alone, is absent.

If we denote the head of water upon

A B, i.e. the depth of its centre of grav-

ity below the surface of water II R, by

h, the pressure of the water upon A B
will be P = F li y ; and if V

x
denotes

the volume of water displaced by A BD,
the buoyant effort of the water, or the

force, with which the body would tend

to rise if it were free, is P
x
= V

x y.

However, since the pressure upon

A B is wanting, the entire action of the

water upon the body is the resultant B
of Px

= V
x y and - P = - F h y.

In order to determine this resultant, we prolong the vertical line

of gravity of the water displaced and the right line passing through

the centre 31 of the pressure perpendicular to A B until they meet

at the point C; then, assuming the forces P x and — P to be ap-

plied at this point, we combine them by means of the parallelogram

of forces and obtain the resultant C R = R.

If the inclination of the surface A B to the horizon as well as

the deviation of the force P from the vertical = a, the angle

formed by the directions of the forces P and — P x with each other

will be = M C Px
— 180 — a, and therefore the resultant, which

measures the whole effect of the pressure of the water upon the

body A B D, will be

R = VPS + P2 - 2 P Px cos.a

= y W? -i- (Fhy - 2 V
x
Fh <mZ

According to the principle of action and reaction, the body will

react with a pressure — R upon the water. If V is the volume

of the water in the vessel or V y its weight G, the pressure, which

acts vertically downwards upon the vessel, is

Q = V y + P
x
= (F + Vx ) y, i.e. Q = V y,

when V = V
Q + V

x
denotes the volume of the space occupied by

the water and the body A B D.

Combining this with the pressure P = Fli y, we have the entire

pressure sustained by the vessel
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Rx
= VQ< + P* -2 QPcos.a

Fig. 619.

= y VT- + (Fhf -2VFh cos. a.

If the surface A B were horizontal or a = 0°, we would have

R = ( Vx
- Fh) y and R

x
=

(
V - Fli) y.

If also V
l
= 0,R would be = - Fh y (see §'355).

§ 368. Equilibrium of Floating Bodies.—The buoyant

effort P upon a body floating or immersed in water is accompanied

by the weight G of the body, which acts in the opposite direction,

and the resultant of the two forces is

R= G- Por = (e"-l; Vy,

in which e denotes the specific gravity of the body.

If the body is homogeneous, its centre of gravity and that of the

water displaced coincide, and this point is consequently the point

of application of the resultant R = G — P; but if the body is

heterogeneous, the two centres of gravity do not coincide and the

point of application of the resultant does not coincide with either

of them. Putting the horizontal distance S H, Fig. 619, of the two

centres of gravity from each other = b

and the horizontal distance S A of the

required point of application A from the

centre of gravity S of the water dis-

placed, = a, we have the equation

Gb = R a,

whence we obtain

67_5 _ Gb
~~R

~~ G - P
If the immersed bod}^ is abandoned to

the action of gravity, one of three cases

may occur. Either the specific gravity

c of the body is equal to that of the water, or it is greater, or it is

less. In the first case the buoyant effort is equal to the weight, in

the second it is smaller, and in the third it is greater. While in

the first case the buoyant effort and the weight are in equilibrium,

in the second case the body will sink with the force

G - Vy = (e - 1) Vy,

and in the third case it will rise with the force

Vy -J G ±= (1 - e) Vy.

The body will continue to rise until the volume Vx
of the water

displaced by the body and limited by the plane of the surface of the

a =
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water

Fey
has the same weight as the entire body. The weight G =
of the body A B, Fig. 620, and the buoyant effort P b*

Vi y form a couple, by which the body is turned

until the directions of these forces coincide or

until the centre of gravity of the body and the

centre of buoyancy come into the same vertical

line, or until the line of support becomes a line

of rest. From the equality of the forces P and

G we have the expression

F, = > V, or -p = j.

The line passing through the centre of gravity of the floating

body and the centre of buoyancy is called the axis of floatation (Fr.

axe de flottaison ; Ger. Sclrwimmaxe), and the section of the float-

ing body formed by the plane of the surface of the water is called

the plane of floatation (Fr. plan de flottaison; G-er. Schwimme-

bene). From what precedes we see that airy plane, which divides

the body in such a manner that the centres of gravity of the two

portions will be in a line perpendicular to it, and that one portion

of the body will be to the whole as the specific gravity of the body

is to that of the liquid, will be a plane of floatation of the body.

§ 367. Depth of Floatation.—If we know the form and

weight of a floating body, we can calculate beforehand by the aid

of the foregoing rule the depth of immersion. If G is the weight

of the body, we can put the volume of the

water displaced

f. = £,
7

ifwe combine this with the stereometric formula

for this volume V
x , we obtain the required

equation of condition.

For a prism A B C, Fig. 621, whose axis is

vertical, we have Vx
= F y, when F denotes the

cross-section and y the depth C D of immer-

sion ; hence it follows that

G _ G GliF ii — — and y = -^^ = -=—

,

J y J Fy V y

in which Y denotes the volume and h the length of the floating

prism.

For a pyramid ABC, Fig. 622, floating with its apex below

Fig. 621.
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the surface of the water, we have, since the contents of similar

pyramids are proportional to the cubes of their heights,

=! = yr, and consequently the depth of immersion, is

CD = y = hV-
F,

>vz.
in which. V denotes the volume and li the height of the pyramid.

Fig. 622. Fig. 623.

A E B c

-
-r

For a pyramid, ABC, Fig. 623, floating with its base under

water, we obtain, on the contrary, the distance C D = y x
from the

apex to the surface of the water by putting

V
V - y?

, whence yx
= h \' 1

1 = hyiV '
" r V " "

r " Vy.
For a sphere A B, Fig. 624, whose radius is C A = r,

we have therefore, in this case, to

solve the cubic equation
Fig. 624.

f 3rf + -- =

in order to find the depth of the

immersion D E = y of the

sphere.

If a cylinder A K, Fig. 625,

floats with its axis horizontal and

its radius is A C = B C — r, we have, when a denotes the central

angle A C B of the immersed arc, for the depth of immersion D E
y = r (1 — cos. ^ a)

;

now in order to find the arc awe must put the volume of the water
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displaced = sector (--~-) minus the triangle f o"/? multiplied

by the length B K —I of the cylinder, or

Fig. 625. (
a ~ sin

'
c

) ^ = y
fmrn^ and resolve the equation

Illlll . 2 G
il_ ^1 a — sin, a =

,

=^-
, _: . -^===P °y approximation with reference

• ==^ — >
——^^

- Example—1) If a wooden sphere

10 inches in diameter, which is float-

ing, is immersed 4\ inches in the water, the volume of the water displaced is

^ o 77 . SI . 7 567 . 77 nnn „„,_.. -,Ft
= rr (f)

2
(5 — -I)

= — = —g— = 222,66 cubic inches,

while the volume of the sphere itself is

ttcP « . 103

„nnn t . . ,— - = —-— = o23,6 cubic inches.

Therefore 523,6 cubic inches of the material of the sphere weigh as much
as 222,68 cubic inches of water, and the specific gravity of the former is

222,66 „ lnt.

£ = -w- =
'
425 -

2) How deep will a wooden cylinder 10 inches in diameter sink, when

floating, if its specific gravity is e = 0,425 ? Here

a — sin. a tt r* I . e y * .„„ „ ™„,>
- = —=-= - = rr e = 0,425 . tt = 1,3352.
2 I r z

y

Now the table of segments in the " Ingenieur," page 154, gives for the area

= 1,32766 a segment of a circle, whose central angle is a =

166°, and for
^' ° = 1,34487 an angle a = 167" ; we can, therefore,

put the angle at the centre, corresponding to the sector 1,3352

„. - 1M. +
1

'
888a0 ~ 1

'
82766 V - 166° +

754° - 166° 26'° - 166 + piiCT - 1,32766
• 1 - 166 + j^j - 166 26.

The depth of immersion is, therefore,

y = r (1 — cos. \ a) = 5 (1 — «?*. 83° 130 = 5 . 0,8819 = 4,41 inches.

§ 368. The most important application of the above principle

is to the determination of the depth of immersion of boats and

ships. If the boats have a regular form this depth can be calcu-

lated by geometrical formulas ; but if the form is irregular, or if its

equation is unknown, or if it is composed of very many forms, the

depth of immersion must be determined by experiment.
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An example of the first case is furnished by the boat A CE G H,
represented in Fig. 626, whose sides are plane surfaces. It con-

Fig. 626.

sists of a parallelopipedon A C F and two four-sided pyramids

G E F and B G H~, which form the bow and stern, and its plane

of floatation is composed of a parallelogram K L P and of two

trapezoids L MN and KP Q R which limit the space, from

which the water is displaced and which can be decomposed into a

parallelopipedon K T, into two triangular prisms U VMN
and WX Pi Q, and into two four-sided pyramids G VM and BX E.

Let us put the length A D = B C of the central portion = I, its

width A G = b and its height A B = li, the length of each of the

two beaks = c and the depth of immersion under water, i.e. B K
— C L — y. It follows that the immersed portion K C T of

the middle piece is

= BG.7TS.~CL = I by.

Putting the width G TJ of the base of the pyramid G V M, = x

and the height of this pyramid = z, we have

T — - = %, whence
b c h

hence the volume of this pyramid is

- ,*y*- 3h>,

and those of the two pyramids (G V

M

and B X E) together are

_ 2
b_°y

z

The cross-section of the triangular pyramid U V IV is

= i yg = yt and the side MX = V

by= b-
h ('7.fi.



750 GENERAL PRINCIPLES OF MECHANICS. [§369.

hence the contents of the two prisms V UN and X W Q together

are

Finally, by adding the volumes first found, we obtain that of

the water displaced

V- bill + 3 *£i£ + h-lt - l^L - (l +
CJL _ 1 *jt\ l y

Now if the gross weight of the boat = ft we must put

J J
c

J
b cy

By resolving this cubic equation we obtain from the gross

weight G of the boat its depth y offloatation.

Example— 1) If the length of the middle portion of a boat is I = 50

feet, the length of each terminal pyramid is c = 15 feet, the width b = 12

feet and the depth h = 4 feet, the total load for an immersion of 2 feet is

G = [50 + 15 . f - 1 . 15 . (f)"] .12.2. 62,5

= [50 + 7,5 - 1,25] 24 . 62,5 = 84375 pounds.

2) If the gross weight of the above boat was 50000 pounds, we would

have for the depth of immersion

y* _ 12 y
2 - 160 y + 213,33 = 0.

From this we obtain

y =
213,33 + ^ ~

12 r = 1,333 + 0,00625 tf
- 0,075 tf,

approximative^, y = 1,333 + 0,00625 (1,333)
3 — 0,075 (1,833)

2

= 1,333 4- 0,0148 - 0,1333 = 1,215, and more exactly

y = 1,333 + 0,00625 (1,215)
3 - 0,075 (1,215)

2 = 1,2338 feet.

Remark.—In order to find the weight of the cargo, vessels are provided

on both sides with a scale. The divisions' of the scale are generally deter-

mined empirically by finding the immersion for given loads. This subject

will be treated more at length in the third volume.

§ 369. Stability of Floating Bodies.—A body floats either

in an upright or inclined position, and with or without stability.

A body, e.g. a ship, floats in an upright position, when at least one

of the planes passing through the axis of floatation is a plane

of symmetry of the body, and in an inclined position, when the

body cannot be divided into two symmetrical parts by any plane

passing through the axis of floatation. A floating body is in stabk
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equilibrium, when it tends to maintain its position of equilibrium

(compare § 141), i.e. if work must be done to move it out of this

position, or if it returns to its original position of equilibrium after

having been moved from it. A body floats in unstable equilibrium,

when it passes into a new position of equilibrium as soon as it has

been moved from its original one by being shaken, by a blow, etc.

If a body A B C, Fig. 627, which was floating in an upright

position, is brought into an inclined one, the centre of buoyancy &
moves from the plane of symmetry and assumes a position Sx

in

the half of the body most immersed. The buoyant effort P — V y,

which is applied at S\, and the weight of the ship G — — P, which

is applied at C, form a couple which will always turn the body

(see § 93). No matter around what point this rotation takes place,

the point C, yielding to the weight G, will always sink, and the

point Si or another M, situated in the vertical line S
t
P, yielding

to the action P, will rise, and the axis or plane of symmetry E F
will be drawn downwards at G and upwards at M, and therefore

the body will right itself when M, as iu Fig. 627, is above C, and,

on the contrary, it will incline itself more and more when, as is

represented in Fig. 628, M is situated below C. Hence the stability

of a floating body, such as a ship, depends upon the point M, where

the vertical line, which passes through the centre of buoyancy S: ,

cuts the plane of symmetry. This point is called the metacentre

(Fr. metacentre ; Ger. Metacentrum). A ship or any other body

floats with stability when its metacentre lies above its centre of

gravity, aud without stability when it lies below it; it is in indif-

ferent equilibrium when these two points coincide.

The horizontal distance G D of the metacentre M from the

centre of gravity C of the ship is the arm of the couple formed by

P and G — — P, and its moment, which is the measure of the
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stability, is = P . 6r #. If we denote the distance (7 if by c, and

the angle SM S19
through which the ship rolls or through which

its axis is turned, by </>, we have for the measure of the stability of

the ship
S = P c sin. 4>

;

it increases, therefore, with the weight, with the distance of the

metacentre from the centre of gravity of the ship and with the

ansde of inclination.o

§ 370. Determination of the Moment of Stability.—In

the last formula
S — P c sin. <p,

the stability of the ship depends principally upon the distance of

the metacentre from the centre of gravity of the ship, and it is,

therefore, important to obtain a formula for the determination of

this distance. While Jhe ship ABE, Fig. 629, passes fropa its

upright to its inclined position,

the centre of buoyancy S moves to

Si} and the wedge-shaped space

H 11^ passes out of the water

drawing the wedge-shaped piece

R Ri into it, and the buoyant

effort on one side is diminished

by the force Q, acting at the cen-

tre of gravity F of the space

H Hi and upon the other side

it is increased by an equal force Q,

acting at the centre of gravity G
of the space R i?,. Therefore

the force P applied at 8X
replaces

the force originally applied at #and the couple (Q, — Q), or, what

amounts to the same thing, an opposite force — P, acting in £„

balances the force P applied at S together with the couple (Q, - Q),

or more simply a couple (P, — P), whose points cf application are

8 and Sl9 balances the couple ( Q,
- Q). Now if the cross-section

HE R = Hx E R x
of the immersed portion of the ship = F and

the cross-section H Hx
= R i^ of the space, which is drawn

out the water on one side and immersed on the other, = F
x ,

if the

horizontal distance K L of the centres of gravity of these spaces

from each other = a and the horizontal distance M T of the centres

of gravity S and 8\ from each other, or the horizontal projection

pKfSEI
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8 Si of the space described by 8, during the rolling, = s, we have,

since the couples balance each other,

F
xF s = Fx a, whence s = -= a and

M T s F
x a

SM = -,
sin. (p sin. <j> F sin. </>'

The line CM = c, which enters as a factor into the measure

of the stability, is = C 8 + 8M ; denoting, therefore, the distance

C 8 of the centre of gravity G of the ship from the centre of buoy-

ancy 8 by e, we obtain the measure of the stability

8 = P c sin. = P (—^

—

V e sin. (p).

If the angle through which the ship rolls is small, the cross-

sections H H
x and R Rx can be treated as isosceles triangles.

If we denote the width H R = Hx Rx of the ship at the surface of

the water by b, we can put

F
x
= 1 . 1 1) . 1 b cp =

-J V </> and K L = a = 2 . § | = | b,

as well as sin. $ = (p; hence the measure of the stability of the

ship is

If the centre of gravity C of the ship coincides with the centre

of buoyancy 8, we have e — 0, whence

and if the centre of gravity of the ship lies above the centre of

buoyancy, c, on the contrary, is negative and

Mi&-*W
It also follows that the stability of a ship becomes null, when e

is negative and at the same time = 7^-^.
L/C M

We see from the results obtained that a ship's stability is greater

the wider the ship is and the lower the centre of gravity is.

Example.—The measure of the stability of a parallelopipedon A D,

Fig. 630, whose width A B = Z>, whose height A E = h and whose depth

of immersion EH = y is, since F = ~b y and e = 5—

,

48
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or if the specific gravity of the material of which the parallelopipedon is

composed be put = e

From this we see that the stability ceases

when
53 = 6 h2 e (1 — e), i.e., when

I

h
= V6 e (1 - e).

For e = £ we have

7| = Vf = 1,225.

If in this case the width is not at least 1,225 times the height, the paral-

lelopipedon floats in unstable equilibrium.

371. Inclined Floating.—The formula

F
x aS = P l~ ± e sin. )

for the stability of a floating body can also be employed to determine

the various positions of floating bodies ; for if we put S — 0, we
obtain the equation of condition of the position of equilibrium, and

by resolving it we obtain the corresponding angle of inclination.

We have, therefore, to resolve the equation

—— ± e sin, <j> =
Jo

in reference to (p.

In the case of a parallelopipedon A B D E, Fig. 631, the cross-

section ,F is =3 H R D E — Hx Rx D E = b y,b denoting the

width A B — H R and y the depth of immersion EH = D R,

and the cross-section
FlG

-
ra1 - Fx

= HOIIx
= ROR

x

is a right-angled triangle, whose base

is OE=OR = ±?>
t

A^gj f§l|jk and whose altitude is

I
*_ Hff1

=zRR
1
= J l tang. $,

---_''• u- whence

iU ' _" F
x
= I ¥ tang. (p.

- % ~-
~'-—— — --

__ _V.,::-' j=^-_~ Now since the centre of gravity 7>
(

j=y=ET^i_^—e^~ is at a distance
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from the base // R and at a distance (7 == f H' = \b from
the centre 0, it follows that the horizontal distance of the centre

of gravity F from the centre

= JT = W + JV JT = ZJcos. + i-
7
TJ sin.

=
I 5 cos. + i & ta/7. #£& 0,

and the arm of the lever is

a - jfX = 2 0~Z =s I h cos. + ib &££.
6 Y S

COS.(j>

Hence the equation of condition of the inclined position of

equilibrium is

I h
2
tanq. $ (I b cos.- 4- 4 £ sin} 0)

j

: — e sin, = 0.
y cos. ^ '

sin. (f)

or, substituting
—

'— = tang. 0,
COS. (p

sin. [(j\ 4- Jj tang.' 0) b* - e y\ = 0,

which equation is satisfied by

sk = and by

tar/. 0=^2 l/-^ - 1.

The angle — 0, determined by the first equation, is applicable

to the body when in an upright position, and that, given by the

second equation, to the body when floating in an inclined position.

If the latter case is possible, -Q must be > TV. Now if h is the

height and e the specific gravity of the parallelopipedon, we have

y = e h and e = -—-$ = (1 - e)
h

whence it follows that

tang. = \% y y—-—'-—
• — 1

;

and the equation of condition for inclined floating is

b ' y
6 e (1 - s)

Example 1) If the floating parallelopipedon is as high as wide, and if

its specific gravity is s = -J, we have

tang. 6 = V2 VsTi — 1 == V3 — 2 = 1, whence == 45°.

2) If the height h = 0,9 of the width b and the specific gravity is again .

£, we have

tang. $ = V3 . 0,81 - 2 = V0,43 = 0,6557, whence = 33° 15'.
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§ 372. Specific Gravity.—The law of the buoyant effort or

upward thrust of water can be made use of to determine the heavi-

ness or specific gravity of bodies. According to § 364 the buoyant

effort of the water is equal to the weight of liquid displaced ; hence,

if we denote by V the volume of the body and by yx the heaviness

of the liquid, we have the buoyant effort P = V y x . Now if y2 is

the heaviness of the material of the body, we have its weight

Q — Vy«, whence the ratio of the heavinesses is

y.2 _ £

i.e., the heaviness of the immersed tody is to the heaviness of the

fluid as the absolute tueight of the lody is to the luoyant effort or

loss of tueight during immersion.

G P
Hence y.2 = -p- yi and yx

= -^r 7^ or ^ 7 denotes the heaviness

of water, e, the specific gravity of the fluid, and e2 that of the body,

we have, putting y1
= e1 y and y2 = e2 y,

G ,
P

e = t=t £
i and et = -=- e2-P Cr

If we know the weight of a body and its loss of weight when

immersed in a liquid, we can find from the heaviness or specific

gravity of the liquid the heaviness and specific gravity of the ma-

terial of which the body is composed, and, inversely, from the

heaviness or specific gravity of the latter, the heaviness and specific

gravity of the former.

If the liquid in which we weigh solid bodies is water, we have

e, = 1 and yx
= y — 1000 kilograms = 62,425 pounds; the former

when we employ the cubic meter and the latter when we employ

the cubic foot as unit of volume ; therefore in this case the heavi-

ness of the body is

_ G_ absolute weight ^ heaviness of water? .

/2 ~ P y
loss of weight

* J

and its specific gravity is

G _ absolute weight
2 ~" P ~~

loss of weight

In order to find the buoyant effort or loss of weight, we employ,

as we do when determining the weight G, an ordinary balance. To

the under side of one of its scale-pans is attached a small hook, from

which the body is suspended by means of a hair, wire or fine thread

before it is immersed in the water, which is contained in a vessel

placed under the dish of the scale. A scale thus arranged for
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weighing under water is generally called a hydrostatic balance (Fr.

balance hydrostatique ; Ger. hydrostatische Wage).

If the body whose specific gravity is to be determined is less

dense than water, we can combine it mechanically with some other

heavy body, so that the compound mass will tend to sink in the

water. If the heavy body loses in the water a weight P2 and the

compound mass P x ,
the loss of weight of the lighter body is

P = Px
- P,

Now if G denotes the weight of the lighter body, we have its spe-

cific gravity G G
£s - p ~ p^t;

If we know the specific gravity e of a mechanical combination

of two bodies, and also the specific gravities e
t and e2 of the compo-

nents, we can calculate from the weight G of the whole mass, by

means of the well-known principle of Archimedes, the weights G
x

and G.2 of the components.

We have Gx + G2 = 67, and also

C P G
volume h volume —- = volume — , or

e
i y e2 y £ 7

G, G, = G

Combining the two equations, we obtain

\e e 2 / \e
l

e2 /

\e e
x l \£ 2 £

x

'

Example—1) If apiece of limestone weighing 310 grams becomes 121,5

grams lighter in water, the specific gravity of this body is

E = 1217
= 2

'
5°

2) In order to find the specific gravity of a piece of oak, a piece of lead

wire, which lost 10,5 grams in weight when weighed in water, was wrapped
around the piece of wood, which weighed 426,5 grams. The compound
mass was 484,5 grains lighter in the water than in the air ; hence the spe-

cific gravity of the wood is

426,5 _ 426,5
£ ~ 484,5 - 107 " "474" ~ °'9 '

3) An iron vessel completely filled with mercury weighed 500 pounds,

and lost, when weighed in water, 40 pounds. If the specific gravity of the

cast iron is = 7,2 and that of the mercury is = 13,6, the weight of the

empty vessel is
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e
«
= 500 (m - Ad : (h - m) = 50° (0 '

08 - °'07353) :

500 . 0,00647 8235 , „
(0,1388 - 0,0735) = —^5T

- = Wi = 49,5 pounds,

and the weight of the mercury contained in it is

S
= 500 . (0,08 - 0,1388) : (0,07353 - 0,1388) = ~°^^- =~
= 430,2 pounds.

Remark—1) We can determine the specific gravity of fluids, loose

granular masses, etc., by simply weighing them in the air ; for by enclosing

them in vessels, we can obtain any desired volume of them. If the weight

of an empty bottle is = G, and when filled with water it is = G
t , and if,

when filled with some other liquid, its weight is (r», the specific gravity

of the latter liquid is

£ ~ G t -G'

In order, e.g., to obtain the specific gravity of rye (in bulk), we filled a

bottle with grains of rye, and, after shaking it well, weighed it. After

subtracting the weight of the bottle, that of the rye was found to be

= 120,75 grams, and the weight of an equal quantity of water was 155,65

;

hence the specific gravity of the rye in bulk is

- 12°^-0 77G
""155,05 '

'

and a cubic foot of this grain weighs

0,776 . 62,5 = 48,5 pounds.

2) The problem, first solved by Archimedes, of determining from the

specific gravity of a composition, and those of its components, the propor-

tion of each of the components, is of but very limited application to chem-

ical combinations, alloys of metals, etc. ; for in such cases a contraction

generally, and an expansion sometimes, takes place, so that the volume

of the composition is no longer equal to the sum of the volumes of the

components.

§ 373. Hydrometers, Areometers.—We generally employ

for the determination of the density of fluids areometers or hydrom-

eters (Fr. areometres ; Ger. Araometer, Senkwagen). These instru-

ments are hollow, symmetrical about an axis, have their centre of

gravity very low down, and give, when we float them in any liquid,

its specific gravity. They are made of glass, sheet brass, etc., and,

according to the uses they are applied to, arc called hydrometers,

lactometers, salinometers, alcoholmeters, etc. There are two kinds

of areometers, viz.: those ivith zveights (Fr. a volume constant; Ger.

Gcwichtsaraometer), and the graduated areometers (Fr. a poids
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Fig. 633.

Fig. 634.

constant; Ger. Scalenaraometer). The first are often used to de-

termine the weight or specific gravity of solid bodies.

1) If V is the volume of the part of an areometer ABC, Fig.

632, which is under water, when the latter floats vertically im-

mersed to a point 0, G the weight of the whole apparatus, P that

of the weights placed upon the dish A, when the apparatus floats

in water, whose heaviness = y, and P, their weight when the ap-

paratus floats in another liquid whose density is y„ we will have

Vy = P + G,

Vjx = P. + G.

Hence the ratio of the heavinesses or

specific gravities of these liquids is

n _p,+ g
y ' P + cr

2) Let P be the weight, which must

be placed upon the dish in order to im-

merse the areometer ABC, Fig. G33,

to a point 0, and let P, be the weight,

which must be placed upon the dish A
with the body to be weighed in order

to produc3 the same immersion, then

we have simply

Gt = P- P,.

But if we must increase P
x
by P2 when

the body to be weighed is placed in the

lower dish C, which is under water, in

order to preserve the same depth of im-

mersion, the upward thrust is = Pa and

the specific gravity of the body is

G
x

P - Px

e = p2

= -P7"
The hydrometer with the dish sus-

pended below is employed for the de-

termination of the specific gravity of

solid bodies, such as minerals, etc., and

is calleqj. Nicholson's hydrometer.

3) If we put the weight of an areom-

eter B C with a graduated scale A L\,

Fig. 634, = 67, and the immersed vol-

ume, when it floats on water, = V, we have G = V y. If the-

areometer rises a distance X = x. when immersed in another
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liquid, we have, when the cross-section of the shaft is denoted by

F, the volume immersed

= V — F x, and therefore G — ( V — F x) y,.

Dividing the two formulas by each other, we obtain the heaviness

of the liquid

V {, F \ y
ri = -tt
—wz • r

-
'-f')-rV-J'x'-'-.V VI 1-fiaf

F
in which \i denotes the constant quotient ==.

If the liquid in which the areometer floats is lighter than water,

it will sink in it a distance x, and we will have

G =
(
V + F x) y, and therefore

— V
7l ~

1 + flX

F
In order to find the coefficient fi = -=r, we increase its weight

by an amount P, e.g. by pouring mercury in the areometer at the

upper end, so that it passes to the bottom of it, rendering the ap-

paratus so much heavier that, when floating in water, a consid-

erable portion of the length of the stem, to which the scale is

applied, is immersed. Putting P = F' I y, I denoting the immer-

sion produced by P, we obtain

- l_ J— P
^ ~ V ~ Vly ~ G T

Example— 1) If an areometer, weighing 65 grams, must have 13,5

grams removed from the dish in order to float at the same depth in alcohol

as it had done in water, the specific gravity of alcohol is

= 65 ~ 13 '5 = 1 _ 0,208 == 0,792.
bo

2) The normal weight of a Nicholson hydrometer is 100 grams ; that

is, we must place 100 grams upon the dish in order to sink the instrument

to 0, but we must take away 66,5 grams after having laid a piece of brass

which we wish to weigh upon the upper dish, and 7,85 grams had to be

added when the brass was removed to the lower dish. The absolute weight

of the brass is then 66.5 grams and its specific gravity is

3) A graduated areometer, weighing 75 grams, rises, after 31 grams of

the substance, with which it was filled, has been removed, a distance I — 6

inches = 72 lines ; the coefficient p is therefore

= 75^71 = >
00574-
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It was then refilled until its weight became again 75 grams, when it was

placed in a solution of salt ; it fhen rose a distance of 29 lines ; the sjDecific

gravity of the liquid is therefore

= 1 : (1 - 0,00574 . 29) == 1 : 0,833 = 1,2.

Remark.—A more extended treatment of this subject belongs to the

province of chemistry, physics and technology.

§ 374. Liquids of Different Densities.—If several liquids

of different densities exist in a vessel at the same time without

exerting any chemical action upon one another, they will place

themselves, in consequence of the ease with which their particles

are displaced, above each other in the order of their specific gravi-

ties, viz : the most dense at the bottom, the less

dense above it and the least dense on top. When
in equilibrium the limiting surfaces are hori-

zontal ; for so long as the limiting surface E F
between the masses ifand N, Fig. 635, is inclined

so long will there be columns of liquid, such as

G Ky -G-l KXi etc., of different weights above the

horizontal layerHR ; hence the pressure upon

this layer cannot be the same everywhere and

consequently equilibrium cannot exist.

The liquids arrange themselves also in the communicating tubes

A B and CD, Fig. 636, according to their specific gravities above

one another, but their surfaces A and D G do not lie in one

and the same horizontal plane.

Fig. 635.

If F is the area of the cross-section H R of a piston, Fig. 637,

in one leg A B of two communicating tubes and li the head of

water or the height EH of the surface of the water in the second

t ube CD above H R, we have the pressure upon the surface of the

piston

P = Fliy.
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If we replace the force, exerted by the piston, by a column of

liquid H A B, Fig. G36, whose height is li x and whose heaviness

is yi, we have

equating the two expressions we obtain

fa yx = h y,
or the proportion

h ~ jL

TJicrefore the heads or the heights of the columns of liquid,

measuredfrom the common plane of contact of two different liquids,

which are in equilibrium in two communicating tubes, are to each

other inversely as the heavinesses or specific gravities of these liquids.

Since mercury is about 13,6 times as heavy as water, a column

of mercury in communicating tubes wijl hold in equilibrium a

column of water 13,6 times as long.

CHAPTER III.

OP THE MOLECULAR ACTION OF WATER.

§ 375. Molecular Forces.—Although the cohesion of water

is very slight, it is not null. The molecules (Fr. molecules ; Ger.

Theile or Molekule) not only cohere together, but also adhere to

other bodies, e.g., to the sides of a vessel, so that a certain force is

necessary to destroy this union, which we call the adhesion (Fr. ad-

herence; G-er. Adhiision) of the water. A drop of water, which

hangs from a solid body, demonstrates the existence of the cohe-

sion and of the adhesion of the water. Without cohesion the

water could not form a drop and without adhesion it could not

remain hanging from the solid body
;
gravity is here overcome not

only by the cohesion, but also by the adhesion. The actions, arising

from the combination of the forces of cohesion and adhesion, are

called, to distinguish them from the actions of inertia, of gravity,

etc., the molecular actions. Capillarity or the raising or depressing

of the surface of water or mercury in narrow tubes or between plates,

placed close together, is an important instance of molecular action.

§ 376. Adhesion Plates.—The cohesion and adhesion of

water have been determined by means of adhesion plates. To
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accomplish this object, such a plate is suspended (instead of the

scale pan) at one end of the beam of a balance, which is brought

into equilibrium by means of weights ; the vessel containing the

liquid to be examined is then caused to approach gradually, until

the surface of the liquid comes in contact with the plate. Weights

are now gradually placed upon the dish at the other end of the

beam, until the plate is torn away from the surface of the water.

The results of such experiments depend particularly upon the fact

whether the plate is moistened by the water or not. In the first

case after the contact a thin sheet of water remains hanging to the

plate ; henc3 in tearing the latter from the wrater, we overcome not

the adhesion, but the cohesion of the water. Hence the force

necessary to tear different plates from the surface of the water

does not depend upon the nature of the material, of which

the plates are composed. Other liquids, on the contrary, require

different forces to be applied to the adhesion plates. Du Buat

found that the adhesion between water and tin plate was from 65

to 70 grains per square inch (old Prussian measure). This gives a

force of about 5 kilograms for a square meter, or 1,024 pounds per

square foot. Achard found values differing but little from the

above for lead, iron, copper, brass, tin and zinc. Gay Lussac ob-

tained the same results with a glass disc, and Huth with different

kinds of wooden plates.

If, on the contrary, the surface of the disc is not moistened by

tha surface of the water, the results obtained are totally different

;

for in this case it is not the cohesion,, but the adhesion of the water

which is overcome. It appears that the duration of contact has a

great influence upon the force necessary to tear the disc loose, e.g.,

Gay Lussac found that, with a glass plate 120 millimeters in diam-

eter, a force varying from 150 to 300 grams, according as the dura-

tion of contact was long or short, was necessary to tear it loose from

a surface of mercury.

Remark.—In Frankenhehn's "Lehre der Concision' the phenomena of

cohesion, as, e.g., those presented when moistened plates are torn from the

surface of water, are called " Synaphy," and, on the contrary, the phenomena

of adhesion, as, e.g., those occurring during the separation of unmoistened

plates from the surface of a liquid, " Prosaphy."

§ 377. Adhesion to the Sides of a Vessel.—If a drop

of water spreads itself out upon the surface of another body and

moistens it, the adhesion is in this case predominant ; but if, on
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the contrary, the drop retains its sjDherical form upon the surface'

of a solid or fluid body, the cohesion is the strongest. The com-

bined action of these two forces upon the surface of a liquid near

the walls of the vessel is particularly remarkable ; the water rises

up and forms a concave surface when the cohesion is less powerful

than the adhesion, and the wall becomes moistened in consequence :

the surface of the water, on the contrary, is curved downwards in

the neighborhood of the walls of the vessel and forms a convex

surface when the side of the vessel is not moistened or when the

cohesion is predominant.

These phenomena can be easily explained as follows.

A molecule E in the surface HR of the water (Fig. 638) is

drawn downwards in all directions by the surrounding water, and

the resultant of all these attractions is a single force A acting ver-

tically downwards ; on the contrary, a molecule E at the vertical

wall B E, Fig. 639, of the vessel is acted upon by the wall with a

Fig. 638. Fig. 639.

Fig. 640.

horizontal force P and by the water filling the quadrant B E
with a force A, whose direction is inclined downwards to the hori-

zon ; the direction of the resultant R of these two forces is at

right angles to the surface of the water (see § 354). According as

the attractive force of the wall of the vessel is greater or less than

the horizontal component A r of the mean force of cohesion A of

the water, the resultant R will assume a di-

rection either from without inward or from

within outward. In the first case (Fig. 639)

the surface of the water at E rises along

the wall, and in the second case it descends

along the wall B E, as is represented in Fig.

640.

These relations change, when the water reaches to the brim of

the vessel ; for the direction of the attractive force of the wall of

the vessel is then different. If, e.g., the surface of the water E 0.

Fig. 641, which in the beginning reached to the brim C of the vessel

B C 0, is caused to rise gradually by adding water, the inclination

of the force of adhesion to the horizon will gradually increase, and

> piUttHttgHii

B|
W^-L . 1_ 1 ;/«4
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its horizontal component will, in consequence, gradually decrease,

until it becomes less than the horizontal component A
l of the force

of cohesion A. Consequently the form of the surface of the water

Fig. 641.
at ^ changes continually, until its con-

cavity becomes a convexity and the de-

pression below the brim of the vessel be-

comes an elevation, which must attain a

certain height before the water will flow

over the side of the vessel.

§ 378. Tension of the Surface of the Water.—Since each

molecule in the surface H R, Fig. 638, of a liquid is attracted down-

wards by the mass of liquid below it with a force A, we can assume

that a condensation and a coherence among the molecules of the

liquid upon the surface will be the result and that a certain force

will therefore be necessary to overcome this coherence or to tear

the surface of the liquid. This coherence of the surface of a liquid

shows itself not only whenever a foreign body is dipped into it,

but also whenever the surface
Fig. 642. f^e ftquj^ "becomes curved,

as, e.g., in the neighborhood

of the wall of the vessel. If

we assume with Young that

the tension or cohesion of the

surface of a liquid is the same

in all parts of it, we can de-

duce, as Gelieimer Oberbau-

ratli Hagen has proved, from

that hypothesis all the laws

Fig. 643. °f capiHary attraction which

coincide best with the results

of experiment.

In the neighborhood of a

plane wall D 67, Figs. 642 and

643, the surface of the liquid

forms a cylindrical surface

DA H, which is convex either

upwards or downwards. If P
is the normal force upon an

element A E B — a cf this

surface, 8 the tension of this
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S>^

element and r its radius of curvature C A — C B, we have, in

consequence of the similarity of the triangles EPS and ABC,
P _AB_a

Fig. 644. -$ - -^-j - -,

and, therefore, the normal or

bending force is

P==-S.
r

]STow if the element A E B
of the surface is at the vertical

distance R — y above or

below the surface of the water

which is free from the influ-

ence of the wall D G, and if y
denotes the heaviness of the

liquid, we have, according to

(§ 356) the well-known law of

hydrostatics, the pressure of

the water upon the element

AB = a

P= oyy;
we can therefore put

ij y y =, - 8 and

Fig. 645.

y
S

r y
Hence the depression or elevation of an element of the surface

of a liquid in reference to the free or unaffected part of this surface

is inversely proportional to the radius of curvature.

§ 379. In the vicinity of a curved wall, E.G., of a vertical cylin-

drical surface, the surface of the water forms a surface of double

curvature and the column of water below the rectangular clement

F G H K, Fig. 646, of the surface is solicited by two forces P
x
and

P2) one of which is the resultant of the tensions S{, Sx
in the nor-

mal plane ABE, parallel to the side EG == IT K; the other is

the resultant of the tensions S2, S2 in the normal plane CD E,

parallel to the side G H'
= F K, The former plane corresponds

to the greater and the latter to the least radius of curvature
;
put-

ting the two radii = rx and r9 and the length of the sides F G = <7,

and GH — <j» and denoting the tension for a width

we have the tensions acting in the two planes

unity by 8,
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Si = c» S and #> — c
x 8

and the normal forces resulting from them

= ^L^i andPi = G, s 01

ft

— Sar 0*

p> ~ °l s
0, — Sa

x
a,

and their resultant is

V rt rJ

Fig. 646.

n
If here also y denote the

height of the elementFGHK
of the surface (which may he

regarded as a rectangle, whose

area is o
x

<r2 ) above the low-

est or general surface of the

water, we have the force, with

which this element is drawn
normally upwards or down-
wards by the water above or

below it,

P = y 0i 02 y

;

equating the two values for

P, we obtain

yo
l
c2 y==So1

a,(-~ + —

V

^(1 + Sv'
whence

y

When the wall is cylindrical the elevation (depression) of the

surface of the water above (below) the general water level is at

every point proportional to the sum of the reciprocals of the maxi-
mum and minimum radii of curvature. This formula contains

also that of the foregoing paragraph ; for if the normal section

CED is a right line, we have

rf = co , whence

i- = and

y = ~- —

(§380.) Curve cf the Surface of Water.—The curve

formed by the vertical cross-section of the surface of the water
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Fig. 647.

near a plane wall, can be found, according to Hagen, in the follow-

ing manner. Let A R, Fig. 647, be the surface of the water

attracted by the vertical wall B K,

H R the general level of the water,

and let the point of intersection H of

the two surfaces be the origin of co-

ordinates. Let us put the co-ordinates

of a point of the surface A R,H'M
— x and M — y, the arc A = s

9

the tangential angle TM = a, and

the elements Q, Q P and P re-

spectively = d x, d y and d s.

a
Since y = — , and, according to

Article 33 of the Introduction to the

Calculus,

and d y = — d s sin. a, we have

8 sin. a . d a
y

d s

da
Sda
y ds

8
y dy

or

8

y d y = — sin. a . d a,

by integrating which we obtain

8 fi y*.= — / sin. a . d a — Con. - - cos. a.
- u y U y

Since for the point R, a and y are both = 0, we have

= Con. — — cos. 0, whence Con. — — and
. r r

. 2 8 M , 4 8 (1
ir — (1 — cos. a) = ^~

hence

cos. a) 4 8 , .

- = (sin.
2 y v i*)\

y
7

sin. ^ a.

For a — 90°, we have sin. A a = sin. 45° = r i
; hence the

maximum elevation of the water immediately against the wall is

7i — 2 y — • V± = V , or inversely
y

~
y

8— = ±V and
7

1). y = h V2 sm.
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Differentiating this expression, we obtain

d y - I h V% cos. ±a.da-hV% cos. \a,d a,

and since d y = — d x . tang, a, it follows that

dx^-hVh^^.da^-kV-i.'-^^^.da
tang, a -

sm> a
u "

~ -hVl. C
-
OS'i a

[(cos.$ay- (8in.iay\
2 ' 2 sin. 2 a • cos. -S a

2 sin. h a

= — h V\ . \-^~ sin. i a) d a.
\sm. J> a ~ /

But now

/ sin, i a . d a = — 2 cos.' \ a and
r da
/
——;— = 21 tana. \ av sin. la ^ J 4

(see Introduction to the Calculus, Art. 29)

;

hence we haye f

x= — hV±(l tang. { a + 2 cos. \ a) F Con,

K"ow since for 2 = 0, a° = 90°, tang. jo = fcm<j. 22,V° = 4/2 — 1

and eos. £ a = ^J, it follows that

Ow. = h V\ [I ( V% - 1) + 2 */J], and

= A [1 - V% . cos. i a - VI I ( V2 + 1) to,/. I a].

For a = we have *

cos.U = 1 and £ to#. |a= — 00

,

and therefore '

x = + co
;

// i? is consequently the asymptote, which the section A R of
the surface of the water continually approaches.

Remark.—If we invert the formula (1) and put

sin. \ a = ~ \l\

we can calculate for every value of y, first a and then by means of (2) the
corresponding value of x.

49
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The measurements made by Hagen to test this theory, show that it

agrees very well with the results of experiment. They were tried with a

dead polished brass plate upon spring water, and gave the following results.

y measured in lines

x " "

x calculated

1,37

0,00

0,70

0,31

0,49

0,63

0,64

0,94

0,24

1,26

1,28

0,18

1,57

1,56

0,12

1,88

1,95

0,07

2,50

2,47

0,04

3,13

3,01

0,016

3,74

3..90

These values are given in Paris lines. From h = 1,37 lines we calcu-

q
late — = 0,94 and the minimum radius of curvature r = 0,68 lines. Plates

of boxwood, slate, and glass gave the same results.

§ 381. Parallel Plates.—The water between two plates

BE, BE, Fig. 648, which are placed near each other, rises not

ohly on the outside, but also between them
and the cross-section of its surface is nearly a

semi-ellipse. One semi-axis of the elliptical

cross-section is the half width G A = a, the

other semi-axis O B = h is equal to the differ-

ence A F — B G = k2
— 7h of the maximum

and minimum elevations of the elliptical sur-

face ABA above the general water level.

According to the "Ingenieur," page 171, the

radius of curvature of the ellipse at A is

v_ = {ih- h xy
a c

r x
—

, and that at B is

o (h2
- h x )

'

hence we have, according to § 378, the elevation of the surface of

the water at A

h - — •
aS

'

2 ~~ r x y ~ (7h-h,yy
and, on the contrary, that at B

A .- (
h

* - ^) s
r.2 y ~

a* y '

lh

or

Subtracting the latter equation from the former, we obtain

j 7 _ S / a h<x — h\

i = £ (
a— _ 1)
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whence

a ly \y }>

a y y 8 + a" V
and, finally, the ratio

lh _ a2

y _ 2 8
8 ~ a

''Y
If a is very small, we can put

7, 7
1 #
a y

the elevation of the surface of the water is then inversely proportional
to the distance of the plates from each other.

We have, however, more accurately,

a y

1 8
i a.

7
By inversion we obtain

These formulas agree very well with the results of observation,

especially when -=- does not reach i.

•h

Hagen found, from his experiments with two parallel plane
plates in spring water, as a mean

lh = 1,55, h2 = 2,09, and A = 1,38 Paris lines,

and by calculation

q— = 1,04, h, = 2,12, and A - 1,44 Paris lines.

More recent experiments (see Poggendorff's Annalen, Vol. 77)
gave for

a - 0,360; 0,5875; 0,7575 lines,

Tix- 2,562; 1,429; 1,068 lines, and

— = 0,949; 0,907; 0,917 lines,
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i.e. as a mean value

— = 0,9243 and S = 0,01059 grams.
r

(Compare the foregoing paragraph.)

§ 382. Capillary Tubes.—We can easily calculate the height

to which the surface of water will . rise in narrow vertical tubes,

called capillary tubes' (Fr. tubes capillaires ; Ger. Haarrohrchen), by

starting from the formula

J y \n rj

of § 379 as a basis and assuming that the sur-

face (the meniscus) forms a semi-spheroid

A B A> Fig. 649, whose circular base A A coin-

cides with the cross-section of the tube. Ifwe

retain the notations of the foregoing paragraph,

i.e. if we put the radius A of the tube = a

and minimum and maximum heights B G
and A F of the water in the tube above the

general level of the water H R, = h x and h,

we must substitute in

(, = ^(i + IU = „andn = ^^, and in
y \rx

S
y \fi rj ha — h\

obtain

h =m * j>
and

y \a (h — 7h)

7
2S (h - Jh)

fh ~ y a*
*

Subtracting the last equation from the one preceding it, we

obtain

s a
y \y \a

+

or

and also

1 = A ( I + "
y \a (h9 — hi) {Jh — hi)

2 (h, - h xy
a"

-h)\
7~ /'

>

a +?)(** -*>)*- s
(*•-*)* ="

If a is small wo can put



§ 382.] THE MOLECULAR ACTION OF WATER. 773

2 1— (h, — 7h)
3

(hi — hi)'-
a * 'a

whence it follows that

h2
— hi = a;

assuming h2
— li

x
— a + 6 and putting (h2

— hi)
1 = a1 + 2 a d,

and also (h2
— hi)

3 = a* + 3 a1
d, we obtain

(i + V)
{aZ + 3 a*

6) ~ \ ^ + 2 a d) = a>

or

z
s

whence it follows that

*=-2
3 y J+4fl ' or approximative!^ d = - |-|,

Hence we have

whence

77 r«^ -hi — a- ~,

2S
7 «2

\ 4 £7 a '
<y J

and

_ l/t a \- 1 [I + ± (i + I^Tl*~ J
\
a

(a - ^-Y )~ J a'\
+ iS/i

y La a \ 2 £7J a y 2

2%e wea» elevation in capillary tubes is inversely proportional

to the ividth of the tube.

We have also for the determination of S the formula

S , 7
a*

y 4

Observations made by Hagen with capillary tubes in spring

water gave the following results :

Width of tube 'a, lines 0,295 0,336 0,413 0,546 0,647 0,751 0,765

Elevation 7^, " 10,08 8,50 6,87 5,17 4,28 3,72 3,59

Measure of ) 8
tension > y '

* 1,508 1,455 1,458 1,478 1,473 1,512 1,494
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According to these experiments the mean values are
a
— = 1,482 and S = 0,0170 grams.

The variations in these values are due to the fact that the ten-

sion S of the surface of the water diminishes with the time, and is

much smaller in water that has been boiled, than in fresh. "We

can now assume that the tension of the water in every strip 1 line

wide is S = 0,0106 to 0,0170 grams.

§ 383. The foregoing theory is also applicable, when the wall is

not moistened oy the liquid ; here, however, it is not an elevation

but a sinking of the surface which takes place, and the latter is

concave instead of convex. The vertical force P, which is due to

the difference of level B G and acts from below upwards, is balanced

by the tensions S and S of the surface ABA, Fig* 650, of the

liquid in the tube. The force of adhesion of the solid body does

not, according to the foregoing theory, come into play in this case.

If we make the force, with which the wall of the tube attracts

to itself the column of fluid B G, Fig. 651, proportional to the

circumference of the tube, if, e.g., for 'a cylindrical tube we put this

force P — fi 2 tt a, in which \i denotes a coefficient, We have

7T a2

h = 2 fi rr a,

and, therefore, the mean elevation of the water in the tube is

h = *A
a

For two parallel plates, on the contrary, we have P = 2 \i I and

P — 2 a hi y, I denoting the undetermined length of the column

of water, and, therefore,

i.e., half as great as in a tube, when the distance 2 a of the plates
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from each other is equal to the diameter of the tube. This agrees

also with the results of the last paragraph.

According to Hagen7

s experiments the strength or tension of

the surface of liquid does not depend upon its degree of fluidity,

but it increases in intensity, the more the liquid adheres to other

bodies. According to others, particularly Brunner and Franken-

heim (see Poggendorf ?
s Annalen, Vols. 70 and 72), the height li, to

which water rises in capillary tubes, increases and S consequently

diminishes, when the temperature of the liquid is augmented. For

alcohol-S is about one-half and for mercury about eight times the

strength of the surface of water.

Remark—1) Hagen found by measuring and weighing drops of liquid,

which tore themselves loose from the base of small cylinders, about the

same Talues as he did by his observations upon capillary plates. In like

manner the experiments with adhesion plates have furnished results, which

coincide very well with the former, when we assume that the force neces-

sary to tear the plate loose is balanced by the weight of the cylinder of

liquid raised and by the tension urjon the surface of this cylinder.

2) The number of treatises upon capillary attraction is so great that we

cannot cite them all here. The greatest mathematicians, such as La Place,

Poisson, Gauss, etc., have given their attention to it. A complete account

of the older literature is to be found in Frankenheim's " Lehre von der Co-

hesion." The treatise which was specially used in preparing this chapter is

the following: "Ueber die Oberflache der FKissigkeiten," by Hagen, a

memoir read in the Royal Academy of Science in Berlin, in 1845. A new
physical theory of capillary attraction, by J. Mille, is contained in Vol. 45

of PoggendorrT's Annalen (1838). Here also belong Boutigny's Studies

of Bodies in a Spheroidal Condition.
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CHAPTER IV

OP THE EQUILIBRIUM AND PRESSURE OF THE AIR.

§ 38$. Tension of Gases.—The atmospheric air, which sur-

rounds us, as well as all other gases (Fr. gaz ; Ger. gase) possess, in

consequence of the repulsion between their molecules, a tendency

to expand into a greater space. "We can therefore obtain a limited

quantity of air only by enclosing it in a perfectly tight vessel. The

force with which the gases seek to expand is called their tension

(Fr. tension ; Ger. Spannkraft, Elasticitat or Expansivkraft). It

shows itself by the pressure exerted by the gas upon the walls of

the vessel enclosing it, and- diners from the elasticity of solids or

liquids in this : it is in action, no matter what the density of the

gas may be, while the expansive force of solids and

liquids is null, when they are extended to a certain de-

gree. The pressure or tension of the air and other

gases is measured by barometers, manometers and valves.

The barometer (Fr. barometre ; Ger. Barometer) is em-

ployed principally to measure the pressure of the atmo-

sphere. The most common kind is the so-called cistern

barometer, Fig. G52 ; it consists of a glass tube, closed

at one end A and open at the other B, which, after be-

ing filled with mercury, is turned over and placed with

its open end under the mercury contained in the vessel

C D. After the instrument has been inverted, there

remains in the tube a column B S of mercury, which

(see § 374) is balanced by the pressure of the air upon

the surface II R. Since the space A 8 above the col-

umn of mercury is free from air, the column has no

pressure upon it from above, and the height of this

column, or rather that of the mercury in the same,

above the level H B of the mercury in the vessel can

be employed as a measure of the pressure of the air.

In order to measure easily and correctly this height,

an accurately graduated scale is added, which can be

moved along the tube and which is sometimes provided with a

movable pointer S.
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Remark.—It is the province of physics to give more detailed descrip-

tions of different barometers, to explain their use, etc. (See Muller's Lehr-

buch der Physik mid Meteorologie, Vol. I.)

§ 385. Pressure of the Atmosphere.—By means of the

barometer it has been found that in places situated near the level

of the sea, when the atmosphere is in its average condition, the

pressure of the air is balanced by a column of mercury at a tem-

perature of 32° Fahr., 76 centimetres long or about 28 Paris inches

= 29 Prussian inches = 29,92 English inches. Since the specific

gravity of mercury at 32° temperature is 13,6, it follows that the

pressure of the air is equal to the weight of a column of water

0,76 . 13,6 = 10,336 metres = 31,73 Paris feet = 32,84 Prussian

feet = 33,91 English feet. We often measure the tension of the

air by the pressure upon the unit of surface. Since a cubic centi-

metre of mercury weighs 0,0136 kilograms, the atmospheric pres-

sure or the weight of a column of mercury 76 centimetres high, the

base of which is 1 square centimetre, is

p = 0,0136 . 76 = 1,0336 kilograms.

But a square inch is 6,451 square centimetres, and therefore the

mean pressure of the air is also measured by 1,0336 . 6,451 = 6,678

kilograms = 14,701 pounds upon a square inch = 2116,9 pounds

upon a square foot. Assuming the exact height of the barometer

to be 28 Paris inches = 29 Prussian inches, we obtain for the

pressure of the air upon one square inch 14,103 Prussian pounds

and upon the square foot 2030 Prussian pounds.

The standard usually adopted, where the English system of

measure is used, is 14,7 pounds upon the square inch, which cor-

responds to a column of mercury about 30 (exactly 29,922) inches

and to a column of water about 34 (exactly 33,9) feet high. It is

very common in mechanics to take the pressure of the atmosphere

as the unit and to refer other tensions to it; they are then given in

pressures of the atmosphere, or simply in atmospheres. Thus a

column of mercury 30 . n inches high, or a weight of 14,7 . 11 Eng-

lish pounds, corresponds to the pressure of n atmospheres, and, in-

versely, a column of mercury li inches high to a tension -— =

0.03333 li atmospheres and the tension -~ — 0,06803 p atmo-
14,7

spheres to a pressure ofp pounds upon a square inch. Besides the

7) /n

equation ^t^kk •== jj-z gives the formulas for reduction

h = 2,0355 p inches and p — 0,4913 h pounds.



778 GENERAL PRINCIPLES OF MECHANICS. [§ 386.

For a tension of h inches = p pounds the pressure upon a sur-

face of F square inches is

P = Fp = 0,4913 Fh pounds

= Fli y = 2,0355 Fp inches.

Example—1) If the level of the water is 250 feet above the piston of a

water-pressure engine, the pressure upon the piston is

250 »A \= -gj- = 7,4 atmospheres.

2) If the air in a blowing-cylinder has a tension of 1,2 atmospheres, the

pressure upon every square inch of the same is

= 1,2 . 14,7 = 17,64 pounds,

and upon the piston, whose diameter is 50 inches,

= 7^- . 17,64 = 34636 pounds.

TC 50 2

Since the atmosphere exerts an opposite pressure
'—

'-j— . 14,7 = 28863

lbs., the force of the piston is .

P = 34636 — 28863 = S773 pounds.

§ 386. Manometer.—In order to determine the tension of

gases or vapors which are enclosed in vessels, we employ instru-

ments, which resemble barometers and are called ma-

nometers (Fr. manometres ; G-er. Manometer). These

instruments are filled with mercury or water and are

either open or closed ; in the latter case the upper part

may be free from air or filled with it. The manome-
ter with a vacuum above the column of mercury, as is

represented in Fig. 653, is like the common barometer.

In order to be able to measure with it the tension of

the air in a gasholder, a tube C E is added to it, one

end of which C opens into the gasholder and the other

end E enters above the level of the mercury II R into

the case HD R of the instrument. The spaceHER
above the mercury is thus put in communication with

the gasholder ; the air existing in this space assumes

the tension of the air or gas in the gasholder and

presses a column of mercury B S into the tube, which

balances the tension of the air that is to be meas-

ured.

The syphon manometer ABC, Fig. 654, which is

open at the end J, gives the excess of the tension of the

gas in a vessel above the pressure of the atmosphere

;

for that tension is balanced by the combination of- the pressure of

the atmosphere upon S and of the column of mercury R S. If I

Fig. 653
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is the height of the barometer and h that of the manometer, or the

distance R 8 between the surfaces H and S of the quicksilver in

the two legs of the manometer, the pressure of the air which is in

communication with the short leg will be expressed by the height

of the column of mercury

b, = b + h,

or by the pressure upon a square inch

p = 0,4913 (b + h) pounds,

or, if b is the mean height of the barometer,

p = 14,7 + 0,4913 li pounds.

The cistern manometer A B C D, Fig. 655, is more common
than the syphon manometer. Since in the former the air acts

upon the column of liquid through the medium of a large mass

of mercury or water, the vibrations of the air are not so quickly

Fig. 654 Fig. 655. Fig. 656.

A

communicated to the column of liquid, and consequently the meas-

urement of the column, which is less agitated, can be made more

easily and more accurately. In order to facilitate the reading of

the instrument, a float, which communicates by means of a string,

passing over a pulley, with a pointer, which is movable along the

scale, is often placed on top of the mercury in the tube.

Manometers $an also be used for the purpose of measuring the

pressure of water and other liquids ; in this case they are called

piezometers (Fr. piezometres ; G-er. Piezometer). -

By the aid of a valve D E, Fig. 656, the tension of the gas or

steam, contained in a vessel M N, can be determined, although not

with the same accuracy, by placing the sliding weight G in such a po-

sition that it balances the pressure of the steam. If C S = s is the

distance of the centre of gravity of the lever from the axis of rota-

tion C, C A ~ a the arm of the lever of the sliding weight andQ
the combined weight of the valve and lever, we have the statical

moment, with which the valve is pressed downwards by the weights,
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— Q a -r Q s;

now if the pressure of the gas or steam upwards = P, the pressure

of the atmosphere downwards = Px and the arm of the lever C B
of the valve = h, we have the statical moment with which the

valve tends to open
= (p - p,) b,

equating the two moments, we obtain

Pb — P
1 h = Ga-t- Q s, and consequently,

Ga + Q sP-Px + ^ .

If r denote the radius of the valve D E,p the interior and p x

the exterior tension, measured by the pressure upon a square inch,

we have P = n r
2p and Px

= rr r
2

p 1} whence

,
Ga + Qs

V = Pi + TT •

Example—1) If the height of the mercury in an open manometer is

3,5 inches and that of the barometer 30 inches, the corresponding tension is

h — I + h
t
= 30 + 3,5 = 33,5 inches, or

p = 0,4913 . h = 0,4913 . 33,5 = 16,46 pounds.

2) If the height of a water manometer is 21 inches and that of the

barometer is 29 inches, the corresponding tension is

21
h = 29 + -r^ = 30,54 inches = 15,0 pounds.

lo,o

3) If the statical moment of a safety valve, when not loaded, is 10 inch-

pounds, if the arm of the lever of the valve, measured from the valve to

the axis of rotation, is 5 = 4 inches and its radius is r = 1,5 inches, the

difference of the pressures upon the valve is

150 + 10 160

* ~ ** =
^(1,5)*. 4 = r? = 5

'
66 pounds -

If the pressure of the atmosphere were p t
= 14,6 pounds, the tension

of the air under the valve would be

p = 20,26 pounds.

§ 337. Mariotte's Law.—The tension of a gas increases with

the condensation ; the more we compress a certain quantity of air,

the greater the tension becomes, and the more we expand or attenu-

ate it, the less the tension becomes. The relation between the

tension and the density or volume of gases is expressed by the law

discovered by Mariotte (or Boyle) and named after him. It asserts,

that the density of one and the same quantity of air is proportional to

its tension, or, since the spaces occupied by one and the same mass

are inversely proportional to their densities, that the volumes of one

and the same mass of air are inversely proportional to their tensions.
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Fig. 657.

A t

If a certain quantity of air is compressed into half its original

volume, that is if its density doubled, its tension becomes twice as

great as it was in the beginning, and if, on the contrary, a certain

quantity of air is expanded to three times its original volume, its

density is diminished to one-third of what it was, and its original

tension is also diminished in the same proportion. If the space

below the piston E F of a cylinder A C, Fig. 657, is filled with

ordinary atmospheric air, which in the beginning

acts with a pressure of 14,7 pounds upon each

square inch, it will act with a pressure of 29,4

pounds, when we move the piston to Ex Fx
and

thus compress the inclosed air into one-half its

initial volume ; the pressure will become 3 . 14,7

= 44,1 pounds, when the piston in passing to

E2 F2 describes two-thirds of the entire height.

If the area of the surface of the piston is one

square foot, the pressure of the atmosphere against it is = 144 . 14,7

— 2116,8 pounds ; hence, if we wish to depress the piston one-half

the height of the cylinder, we must place upon it a gradually

increasing weight of 2116,8 pounds, and if we wish to depress it

two-thirds of the height of the cylinder, 2 . 2116,8 = 4233,6 pounds

must gradually be added, etc.

We can also prove Mariotte's Latv by pouring mercury into the

tube 6r2 H, which communicates with the cylindrical air vessel

A 0, Fig. 658. If we begin by cutting off a certain volume A C
of air, of the same tension as the exterior air, by

means of a quantity D E FH of mercury, and

if we then compress it by pouring in quicksilver,

until it occupies one-half, one-quarter, etc., of its

original volume, we will find that heights Gx Hx,

G2 H^ etc., of the surface of the mercury in the

tube are equal to the height of the barometer h

multiplied by one, three, etc. Consequently, if

we add the height corresponding to the pressure

of the atmosphere, we find that the tension is

double, quadruple, etc., that of the original

volume.

The correctness of the law of Mariotte in regard to expansion

can easily be proved by dipping a cylindrical tube (of regular cali-

bre) A B, Fig. 659, vertically into mercury (water) and, after

properly closing the upper end A, expanding the enclosed volume

Fig. 658.
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Fig. 659.

of air A E (I) by carefully drawing up the tube so that the air

shall occupy a yolume A x
E

x
(II). The densities of the air in

the spaces A E and A
x Ex are in-

versely proportional to the heights

A and A
x Cx , and its tensions are

directly proportional to the differ-

ences between the height b of the

barometer and the heights CD and

Gx A of the columns D E and A Ex

of mercury standing above the level

H R of the mercury ; hence, accord-

ing to Mariotte's law,

A G _ l-Cx D x

A
X CX

'" I- CD'
which can be verified by observing any given immersion of the

tube A B.

If h and li x or p and p x are the tensions, y and y x
the corre-

sponding densities or heavinesses, and V and Vx the corresponding-

volumes of the same quantity of air, we have, according to the

above law,

*v V 7} if)— = —1 = -=- — J— or V y = Vx yx and Vx p x
= V p, whence

Ti V h x p x

' ' in iri *'

yx
= A y = Si y and V

x
= A V = £- V.n h p h x p x

By means of these formulas we can reduce the density and also

the volume of the air of one tension to those of another.

Remabk.—It is only when the pressures are very great that variations

from the law of Mariotte are observed. According to Regnault, when the

volume V of atmospheric air at one meter pressure becomes the volume

V19 the pressure is

p = y* [l - 0,0011054 /2jl _ 1 \ + 0,000019381 (?-)'] meters,

so that for .... -^ = 5

we have p = 4,97944

10

,91622

15

14,82484

20

19,71988 meters.

Example 1) If the manometer of a blowing machine marks 3 inches,

30 + 3
and the barometer stands at 30 inches, the density of the blast is —^— —

33—r- = 1,1 times as great as that of the exterior air.

30

2) If a cubic foot of air, when the barometer stands at 30,05 inches,
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62 4^5
weighs - '

pounds, what is its weight when the barometer stands at 34

inches Its weight is

62,425 34 42,449 = 0,09173 pounds.
770 * 30,05 ~ 462,77

3) How deep can a diving-bell (Fr. cloche a plongeur ; Ger. Taucher-

glocke) AB G D, Fig. 660, be immersed in water, when the water is not to

rise in it above a certain height GH= y. In the

beginning the bell with its opening GB stands

above the level of the water R B, so that the

whole space V is rilled with air at a pressure

equal to that of a column of water, whose height

is = 1). If afterwards the bell sinks to a

depth O G = x and a volume W of water is

thus introduced into it, the volume of the in-

closed air, when none is pressed back through

the hose, becomes V — TFand the height of the

water barometer becomes d + x —
5 + x — y V

IF

whence we obtain

x = y — l +
VI
v—w = y +

hence

Wb
V- W

If the mean cross-section of the lower part of the bell

W' = F' y and therefore

Fl

F, we can put

/ Fl \

-V^^T^F-y)-
If the height of barometer = 34 feet of water, the volume of the bell F=

100 cubic feet, the mean cross-section of the lower half F — 20 square

feet, and the height, to which the water is to be admitted, is y = 3 feet, the

volume of this water is W= F y — 20 . 3 =60 cubic feet; hence that of

the confined air is V W = 40 cubic feet, and its density is = -jt- = 2|-

times that of the exterior air, and the corresponding depth of immersion is

x = 3 +
6°;

A
84 = 3 + 51 = 54feet.

40

§ 388. Work Done by Compressed Air.—The energy stored

by a given quantity of air when it is compressed to a certain degree,

as well as that restored by it when it expands again, can not be de-

termined at once ; for the tension varies at every moment of the

expansion or compression. We must therefore seek out a particular

formula for the calculation of this quantity. Let us imagine a

certain quantity of air A F to be shut off in a cylinder A C, Fig.

661, by a piston E F, and let us calculate what mechanical effect is
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necessary to move the piston a certain distance E E
x
= F Fx . If

the initial tension = p and the initial height of the space in the
cylinder A E — s, and if, on the contrary, the tension after the

space EEx has been described = p x and the height
Ex A of the remaining volume of air = su we have
the proportion

Fig. 661.

jpx'ip — s K

: si3 whence^ P-

While the piston describes a very small portion

Ex Ez = a of the space, the tension p x can be re-

garded as constant, and the work done is = Fp
x
a =

F p s o—
, F denoting the area of the piston.

s x »

According to the theory of logarithms,* a very small quantity

x =7(1 + x) = 2,3026 log. (1 + x),

I denoting the Naperian and log. the common logarithm ; conse-

quently we can put

Fps— ~ Fp s l( 1 + —

)

Sx » Sx'

= 2,3026 Fp slog.l1 + —
But now

•-)

,
(
, + iH(!L

iH
L)="*' + ''>-"'

hence the elementary work done is

Fp s Fp s [I (sx + a) - I Sx].

Let us imagine the whole space E Ex to be composed of n parts,

such as o, i.e., let us put E Ex — n a, we will then find the work

corresponding to all these parts by substituting in the last formula

successively, instead of sx, the values Sx + a, s x
4- 2 o, sx + 3 a, . .

.

up to Sx + (n — 1) a, and instead of s x + o, the values s x + 2 a,

s
x + 3 cr, etc, up to s x + n a or s, and if we add the values de-

duced, we will obtain the whole work done while the space s — s
x

is described

* According to the series ex
. x" x

+ . ..(see §19^

and also the Introduction to the Calculus, Art. 19) for a very small %, we

have ex = 1 + x, and therefore

I (1 + x) = x.
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A = Fp s

I {si + o) — I sl

I (s1 + 2 a) - l(Sl + a)

l(sl + Sa) -I (Sj + 2 a)

l(s! + no) - I
[Sl + (n - 1) a]

= Fp s\l (sx -h n a) — I s2]

= Fp s (Is - l 8l ) = Fp sl
(^);

for the first term in each line is cancelled by the second term in

the next.

Since — = -^- = ~, we can pnt the work done
Si h p r

If we make the space described by the piston s — s x
= #, we

find for the mean value of the pressure on the piston, when the air

is compressed in the ratio

h — Pi
h ~ p'

x r x \pi
Putting F — 1 (square foot) and s = 1 (foot), we obtain the

following formula for the work done

This formula gives the mechanical effect necessary to transform
a unit of volume (1 cubic foot) of air from a lower pressure or ten-

sion p to a higher one px, and in so doing to compress the air into

a volume of I—J cubic feet. On the contrary,

A=pj(^ = 2,S026pJog.(^)

expresses the work done by the unit of volume of a gas which passes
from a greater tension p 1 to a lesser one p.

In order to compress a quantity of air, whose volume is V and

whose tension isp, into a volume Vx of the tension.^ = ~ p, the

work to be done is Vp I (yj, and if, on the contrary, the volume-

50
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Vi of the tension p x becomes a yolume V, whose tension is p =

— pl9 the energy restored is

Remark.—The mechanical effect necessary to produce moderate dif-

ferences of tension (p ±
— ^>), or small changes of volume (V1

— V) can be

expressed more simply by the formula

or more accurately by the aid of Simpson's rule, when z denotes the press-

ure at the middle of the path——- of the piston, by the formula

K^M^—1

)•

But now

JL -
* - 2 s 2 2p t

p ~
\ (* + «i)

~ i + s
t
~

1
j>_ ->+#"?

whence it follows that

Example—1) If a blowing machine changes per second 10 cubic feet

of air, at a pressure of 28 inches, into a blast at a pressure of 30 inches,

the work to be done in every second is

A = 17280 . 0,4913 .28. I l^*\ = 237711 .(115 — 1 16)

= 237711 . (2,708050 - 2,639057) = 237711 . 0,068993

= 16400,4 inch-pounds = 1366,7 foot-pounds.

The approximate formula, given in the remark, gives for this work

(30 8 2 28\

28
+

~fs~
~

so) = 39618
'
5

'
°'41387

= 16396,9 inch-pounds = 1366,4 foot-pounds.

2) If under the piston of a steam-engine, whose area is F = n . 82 =
201 square inches, there is a quantity of steam 15 inches high and at a ten-

sion of 3 atmospheres, and if this steam, in expanding, moves the piston

forward 25 inches, the energy restored and transmitted to the piston is, if

we assume Mariotte's law to be true for the expansion of steam,

A = 201.S. 14,70 . 15 I Z
15

^
25

)
= 132961,5 I f

= 132961,5 . 0,98083 = 130413 inch-lbs. = 10866 foot-lbs.,

and the mean force upon the piston is, when we neglect the friction and
the opposing pressure,
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P = 130413

25
= 5217 pounds.

Fig. 662.

§ 389. Pressure in the Different Layers of Air.—The air

enclosed in a vessel has a different density' and tension at different

depths; for the upper layers compress those below them, upon
which they rest ; the density and tension are the same in the same

horizontal layer only, and both increase with the depth. In order

to find the law of this increase of the density from above down-

wards, .or of the decrease from below upwards, we make use of a

method similar to that employed in the foregoing paragraph.

Let us imagine a vertical column A E, Fig. 662, whose cross-

section A B = 1 and whose height A F = s. Putting the heavi-

ness of the lowest layer = y and its tension = p, and

the heaviness of the upper layer E F
9
— yt and its

/tension = p X9 we have — = —

.

7 P
If a denotes the height EEx of the layer Ex

F, its

weight, which is the decrease of the tension corre-

sponding to ff, is

hence by inversion we obtain

p v

r ih
or, as in the foregoing paragraph,

a= p
l
t1 + i_\ = p

y \ pj y
If we substitute in it for p\ successively px + v, p x + 2 v, px + 3 v,

etc., up to p = p x + (n — 1) v and add the corresponding heights

of the layers of air or values of a, we obtain, exactly as in the fore-

going paragraph, the height of the entire column of air

(
1 + j)=l P(?> + ")-**.]•

or also

P
(*) = »*»* %•({),y \IJ y

when b and d x denote the tensions and p andp x the corresponding

heights of the barometer in A and F.

Inversely, if the height s is given, the corresponding tension

and density of the air can be calculated. We have
il _sy_

p y p P
£- = — = e , or yx

= y e

Pi Ti
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ill which e — 2,71828 denotes the base of the Naperian system of

logarithms.

Remark.—This formula is employed for the measurement of heights

by means of the barometer, a subject which is treated in the " Ingenieur,"

page 273. If we neglect the temperature, etc., we can write as a mean value

a = 60346 log. (^\ feet.

Example 1) If we have found the height of the barometer at the foot

of a mountain to be 339 and at the top 315 lines, the height of the moun-

tain given by these observations is

s = 60346 log. (#f|) = 60346 . 0,031889 = 1924 feet.

2) For the density of the air at the top of a mountain 10000 feet high,

we have

lan J-. — 1_0 0.0
1 "*

,, — 6 34& = 0,165711, whence -£- 1,465 and 7± =
1

= 0,683;

Fig. 663.

1,465

its density is therefore 68$- per cent, of that of the air at its foot.

§ 390. Stereometer and Volumeter.—Mariotte's law finds

a practical application in the determination of the volumes of pul-

verent and fibrous bodies, etc., by means of the so-called stereometer

and volumeter.

1) Say's Stereometer.—If the glass tube CD, which is immersed

in mercuryHD R and at the same time is in communication with

the closed vessel A B, Fig. 663, I,, is

raised up without being drawn entirely

out of the mercury (II), then, in conse-

quence of the expansion of the enclosed

air, a column GE of air enters into the

tube and a column of mercury D i^wili

remain behind in the tube, by the aid

of which the diminished tension of the

enclosed air balances the pressure of the

atmosphere.

Now if V is the volume of the space

A B C, Vi the required volume of the

body K, which is placed in it, V the

volume of the column of air C E,~b the

IP height of the barometer and h that of

the column of mercury D E, we have,

according to Mariotte's law, since the same quantity of air occupies

the volume V — Vly when the tension is h, and the volume V —
F, + V, when the tension is b — h,
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K- b-h

v.

Fig. 664.

r - vx + v b

hence the required volume of the hody is

^-(¥)
If we know the volume V , and if, when making the experi-

ment, we draw the tube so far out of the water that the length and

consequently the volume V of the column of air in the? tube CD
becomes a certain definite one, and if we observe also the height b

of the barometer and that h of the column of mercury D E, we can

calculate by means of this formula the volume Vx of the body K.

2) RegnauWs Volumeter.—If the space A B C D, Fig. 664, which

is filled with atmospheric air and which contains also the body E,

whose volume Vx is to be determined, is shut off

by the cock G from the exterior air, and if, by

opening the cock E, we let out so much mercury

from the tube D E that its level descends from

M to JV", we can again employ (according to

Mariotte's law) the above formula

r„- yx _ i—ii
V -V

1 +V~ b
'

in which we denote the volume of the space

A B CD by V , that of the mercury drawn off

by V and the height MN of the same by li. It

follows, exactly as in the above case, that the

volume of the body in A is

1

° \ h

In order to fill the tube D E with mercury

again for the purpose of making a new measure-

ment, we put that tube D E in communication

with the reservoir of mercury G II by turning

the cock E.

3) Kopp's Volumeter.—The pressure of the

air enclosed in the space A B C D, Fig. 665, is

the same as that of the exterior air, when the

surface of the mercury D G touches the lower

opening D of the manometer D E. If by means

of a piston P we press the mercury into D G,

a certain height and its surface reaches the point

Jr.

rises to
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S, the enclosed air will be compressed and the mercury will rise a

certain distance h in the manometer, which distance can he read off

upon the scale. If again V
Q
is the volume A B C D of the air,

V
x the required volume of the body placed in it and V the volume

of the mercury, which has been pressed into the air-vessel, Ave have

in this case

Va
- V, 1) +h

an

Fig. 66

V - V
x
-V b '

cl, therefore, the required volume of the body

The constant volumes V and V
x are determined for each par-

ticular instrument by filling them with mercury and weighing the

quantity which they hold.

§ 391. Air Pump.—(Fr. machine pneumatique ; Ger. Luft-

pumpe.) If we raise the piston K, Fig. 666, of an air pump when
the stop-cock is in the position (I) and

push it down when the stop-cock is in

position (II), it acts as an exhausting or

rarefying pump ; if, on the contrary, we

raise the piston when the stop-cock is in

position (II) and depress it when it is in

position (I), it acts as a compressing or

condensing pump. In the first case the

air in the receiver A is more and more

rarefied by the reciprocating motion of the

piston K in the cylinder D, and in the

latter case it is rendered more and more

dense.

1) The Exhaust Pump.—-If V is the

volume of the receiver, measured to the

cock H, V
x
the clearance between H and

the lowest position of the piston, and C the volume described by

the piston K, which is also measured by the product F s of the

surface Fo£ the piston and the space s described by it, the pressure

b of the air originally contained in the receiver becomes, according

to Mariotte's law, at the end of a single stroke of the piston

Since upon the return of the piston the clearance remains filled

with air at the pressure of the exterior air b, if the pressure of the
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air in the receiver at the end of the second stroke is denoted by K,

we will have
(V+ V

x + C)b,= Vb
x + Vx b

- VF+F
1 + 67 " + (F+^+6') 2 + F+F

1 + <7

In like manner for the tension b3 at the end of the third stroke

we find

(V+ V
x + C) h = Vb, + F

a
b, and therefore

x __ /
r_ y F2 F,5 rr,ft

3 \f + v
x + c) ' (v + vx + cy ^ (v + v

x + (7)
a

f^ _ / v y ft -i- r/
F

^+ F+Fl+ (7 \r+ Fi + C7 ^L\r+ f,+ c/

+ v+v
x + c

+
J r+^+ff

and from the foregoing we see that the pressure bn, after n strokes,

will be

r l
v Y

-1

/" -
F

V~
s

4- 1
Vib

V V
If we denote -=—==—-^ by £> and r——^—- by #, we will have

&» = p* h + (i + p +f + •
. • + p

n~ x

) q h
or, since the sum of the geometrical series in the parenthesis is

p
n — 1 1

—
' if= * — — -=—— (see Ingenieur, page 82), the required final

tension is simply

<-\r*te£l'YP
For n — oo

, p
n becomes = 0, and consequently the smallest possi-

ble tension is

* - _J_L - _Zl1_
n ~

1 -p ~ c + f;

2) The 'Condensing Pump. If we adopt the same notations as

for the exhaust pump, we have here for the tension of the air at

the end of the first single stroke

(V + FJ) hx = (V + Ft.+ -<7) h whence 6, = (^—y1^) 0;

and for that £2 at the end of the second stroke
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(V + V
x ) b2 =Vb x + (V

x + C) b, whence

7
(F+ v

x
4- qfa r; + c

(F + f,)
2 7"T+ f/

= (-vrvj b + (rft: + x
) ^r^

*

In like manner the tension at the end of the third stroke is

found to be

(
V + Vx) h = V fc-+ ( Pi •+ ^) J, and therefore

or putting

v + vx

~~^ v + f;
~~ qx

In general, we have for the tension at the end of the ^th stroke

of the piston

K — [pi* + (1 -r !h + V? + • • • + i?i
n_1

) #i] #, or, since

*-fr
; -:g^»

For n — oo
, ^j

n — and

7
g,ft F, + <7

7On = r-^ == W b.
1 - jh Vx

This is of course the greatest tension that can be produced by

this condensing pump.

If the clearance Vx were = 0, we would have for the exhaust

pump q — 0, whence

1 — »,"
and, on the contrary, for the condensing pumpp x

= 1 and —
= w, and consequently

&• = (1 + n ?0 * =. (l
. .+ .

*» y) &-

Example.—If the volume of the receiver of an air pump is F = 1000

cubic inches and the clearance is 10 cubic inches, while the volume of the

cylinder is 300 cubic inches, the tension of the air after 20 strokes is

1) when ratifying, since

p = j^ = 0,76336 and
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0,76336- + L-3L^ . 0,0076336j 5

= (0,0045143 + 0,0321126) l = 0,076269 5;

on the contrary,

2) when condensing, in which case

Pi =^ = 0.99010 and

310
Si = TT^m = 0;30693,

1010
~~ ->—j

520 _ /o
5
990:

1 - 0,9901'
r

1 — 0,9901

= (°'
81954 +

0^09901 '
°'30693

)
l = G

>
414 K

§ 392. G-ay-Lussac's Law.—The 7zca£ or temperature of

gases has an important influence npon their density and tension.

The more the air enclosed in a vessel is warmed, the greater its

tension becomes, and the more the temperature of a gas, contained

in a vessel closed by a piston, is raised, the more it will expand and

drive the piston before it. Gay-Lussac's experiments, repeated

more recently by Budberg, Magnus and Regnault, have shown that

for the same density the tensions, and for the same tensions the

volume, of one and the same quantity of air increases with the

temperature. We can place this law by the side of that of Mariotte

and call it Gay-Lussac's Law. According to the latest researches

the increase of the tension of a given volume of air, when heated

from the freezing to the boiling point of water, is 0,367 times the

original tension, or if its temperature is raised that much, the vol-

ume of a given quantity of air is increased 36,7 per cent., when the

tension remains constant. If the temperature is given by the cen-

tigrade thermometer, in which the distance between the freezing

and boiling points of water is divided into 100 degrees, the expan-

sion for each degree is = 0,00367, and for the temperature t° it is

— 0,00367 t, or if, on the contrary, we use Keaunmr's division of

the same space into 80 degrees, we have the expansion for each de-

gree = 0,00459, or for a temperature of t, = 0,00459 t.

In England and America the Fahrenheit thermometer is gene-

rally used, in .which the boiling point is 212° and the freezing-

point is 32° ; hence the increase for each degree is = 0,00204, and

for f it is 0,00204 (t - 32).

This ratio or coefficient of expansion 6 = 0,00367 or = 0,00204

is strictly correct for atmospheric air alone; its value for other

gases is generally smaller, and it varies slightly with the tempera-

ture for atmospheric air.
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If a mass of air, originally of the volume V , is warmed from

the freezing point to t degrees without changing its tension, its

yolume becomes

V = (1 + 0,00367 t) V = [1 + 0,00204 (t - 32°)] V
,

and if it reaches the temperature tl9 the volume becomes

F = (1 + 0,00367 U) V = [1 + 0,00204 (tt
- 32°)] V ;

hence the ratio of the volumes is

V (1 + 0,00367 t) _ 1 + 0,00204 {t - 32°
) #

F ""
(1 + 0,00367 *,)

~
1 .+ 0,00204 (t

}
- 32°)

'

on the contrary, the ratio of the densities or heavinesses is

y JF _ 1 + .0,00367 ft _ 1 + 0,00204 (ft
- 32°)

yx
~ F ~~

1 + 0,00367 t
~~~

1 + 0,00204 (tf - 32°)'

or generally

y_ F _ 1 + <Sft _ 1 + 6 (ft - 32°)

yr ~ V~l+6t~l + 6(t~ 32°)*

When a change in the tension also occurs, if p is the tension at

the freezing point, p that at the temperature t and p x
that at ft, we

have

V= (1 + 0,00367 ^ F ,

F = (14- 0,00367 ft) & F ,

F _ 1 + 0,00367 t 2h

F "~
1 + 0,00367 ft

*
jtf

y 1 + 0,00367 ft p

and

or
yx 1 + 0,00367 t p{

y 1 + 0,00367 ft 5

7i 1 + 0,00367 1 o x

JL L- 1 + °>0Q36? * r.

% ~ & ~ 1 + 0,003677, ' y,"

When £ is given in degrees of Fahrenheit's thermometer, we must

substitute in the latter formulas for 0,00367 t, 0,00204 (t - 32°).

Example.—If 800 cubic feet of air, at a tension of 15 pounds and

at a temperature of 50° Fahrenheit, are brought, by means of the blow-

ing engine and warming apparatus of an iron furnace, to a temperature

of 393° and to a tension of 19 lbs, its volume will be

_ 1 + 0,00204. (392-32) l5 _ 1,734 1200
1 ~ F+ 0,00204 ."(50 - 32) * " ' ~ 1,0367 ' ~W.U . 800 = t^^= .

—— = 1056 cubic feet

Remark.—The formula

y_ _ Vt
l + 6t

t _ 1 + 6 {t t
- 32)

yt
~~~ V ""

1 + d t 1 + 6 (t - 32)"
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can be employed for solids and for some liquids ; but for every solid we

must substitute a different coefficient of expansion, e.g.,

Centigrade. Fahrenheit.

for cast iron, 6 = 0,0000336 = 0,0000187,

for glass, 6 = 0,0000258 == 0,0000143,

for mercury, 6 = 0,0001802 = 0,0001001.

§ 393. Heaviness of the Air.—By the aid of the formula

at the end of the last paragraph, we can calculate the heaviness y
of the air for a given temperature and tension. Kegnault, by his

recent weighings and measurements, found the weight of a cubic

meter of atmospheric air, at the temperature 0° of the centigrade

thermometer and at a tension corresponding to height of 0,76

meters of the barometer, to be = 1,2935 kilograms. Since a cubic

foot (English) = 0,02832 cubic meters and 1 kilogram = 2,20460

pounds English, the heaviness of air under the given conditions is

= 2,20460 . 0,02832 . 1,2935 = 0,08076 pounds English.

If the temperature is = t° centigrade, we have for the French

measure 1,2935 , .,

and for the English system of measures and Fahrenheit's ther-

mometer _ 0,08076
7 ~ 1 + 0,00204 (t - 32°)'

If the tension differs from the mean tension, or if the height of the

barometer is not 0,76 meters, but 1)> we have

1,2935 1) 1,702 . I
7 ~~

1 + 0,00367 t ' 0,76
~

1 + 0,00367 t
m°%™m*>

or, since in England and America the height of the barometer is

generally given in inches, and since 0,76 meters = 29,92 English

inches,

_ 0,08076 I _ 0,002699 b
"

1 + 6,00204 {t - 32°) ' 29,92
~"

1 + 0,00204 (t - 32°)

Very often wre express the tension by the pressure p upon the

square centimeter or inch, and then we must introduce the factor

Vriflgg
or ifw> ky doing which we obtain

1,2935 p 1,2514 p , .,

kilograms, or
1 4- 0,00367 t 1,0336 1 + 0,00367 t

_ 0,08076 _p_ _ 0,005494 p
7 ~ 1 + 0,00204 (t - 32)

' 14,7
~

1 + 0,00204 (t - 32)
S*

For the same temperature and tension, the density of steam is

about f of that of atmospheric air ; hence for steam we have
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7 =
0,8084 0,7821 p

1 + 0,00367 t 1,0336

0,050475

1 + 0,00367 t

_j» 0,003434 >
14,7

kilograms, or

pounds.
' ~ 1 + 0,00204 (t - 32) ' 14,7 1+0,00204 (t-'32)

Example—1) What is the weight of the air contained in a cylindrical

regulator 40 feet long and 6 feet wide, when it is at a temperature of 50°

and its tension is 18 pounds ? The heaviness of this air is

0,005494 . 18 0,098892

y = ~1^867— = T^6^ = °>°9539 P°UndS'

and the capacity of the reservoir is

V = 77 . 32
. 40 = 1131 cubic feet;

hence the air enclosed in it weighs

Vy = 0,09539 . 1131 = 107,9 pounds.

2) A steam-engine uses per minute 500 cubic feet of steam at a temper-

ature of 224,6° F. and at a tension of 39 inches = 0,4913 . 39 s= 19,161

pounds ; how much water is needed to produce this steam ? The heavi-

ness of the steam is

0,003434 . 19,161 0,06580 AA , wo ,

ono =0,04724 pounds;
1 + 0,00204 . 192,6 1,8

hence the weight of 500 cubic feet of steam is

Vy = 500 . 0,04724 = 23,62 pounds.

§ 394. Air Manometer,—From the results obtained in the

Fig 667 last paragraphs, the theory of the air or closed manom-

eter can be deduced. It is composed of a barometer

tube A B, Fig. 667, of regular calibre, the upper part

of which is filled with air and the lower part with

mercury, and of a cistern GEE, which also contains

mercury and is put in communication with the gas or

vapor. From the heights of the columns of air and

mercury in A B, the tension can be calculated in the

following manner. The instrument is generally so

arranged that the mercury in the tube and in the

cistern are upon the same level, when the tempera-

ture of the enclosed air is t = 10° Cent. = 50° Fahr.

and the tension in the space E R is equal to the

mean height of the barometer I = 0,76 meter = 29,92

inches.

If, when the height of the barometer is b, a column

of quicksilver rises from the cistern E R into the

tube to a height lix, and if the length A S of the re-

maining column of air is = h„ the tension of the

latter is
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and, therefore, the height of the barometer of the air in E R
bl = hl+z = Jh + (^-JA

2

)
b.

Now if a change of temperature takes place, i.e., if the tem-

perature at the time when h x and 7i.2 were observed, was not as in

the beginning = t, but = tx, we have for the tension of the column
of air A 8

1 + 0,00204 (t
t
- 32)

z = (H4)
1
-

1 + 0,00204 {t - 32)
and, therefore, the required height of barometer is

- l 1 + 0,00204(^-32) li
x
4- h 2

1 ~~ h +
1 + 0,00204 (t - 32) '

7^2

For 6 == 29,92 inches and t = 50° Fahr.

b
x
= li x + 28,86 [1 + 0,00204 (*, ,- 32)] ^

^ == 7^ 4- 1u denoting the total length of the tube, measured from

its upper end A to the surface H R of the mercury. From the

height of the barometer b inches we obtain the pressure upon each

square inch (English)

* =w ;" + 14>7
• IS t

1 + °'00304 ft - 32
>]I

= 0,4913 A, + 14,179 [1 + 0,00204 (t
x
- 32)]~ lbs.

_ ... 1 + (5 fc - 32) .™tmS
1 + 6 (t- 32)

= * WG haVe

(61 — 7ii) (h — 7^) — ju h b, and therefore

7 h + li J (b
x + h\* ';

i

By the aid of this formula we can calculate the values of the

divisions of a scale, upon which the pressure b can be read off from
the height of the manometer.

Example.—If a closed manometer 25 inches long, at a temperature of

69,8° Fahr., shows a column of air 12 inches long, the corresponding height

of barometer is

b
t = 25 - 12 + 28,86 (1 + 0,00204 . 37,8) §§ == 13 + 28,86 . 1,07707 . ff
= 13 + 64,76 = 77,76 inches, and the pressure on a square inch is

pt
= 0,4913 . 77.76 = 38,20 pounds.

§ 395. Buoyant Effort or Upward Thrust of the Air.—
The law of the buoyant effort of water against a body immersed in
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it, discussed in § 364, can of course be applied to bodies in the air.

If V is the volume of the body and y the heaviness of the air, in

which it is placed, the buoyant effort, according to this law, is

P — Vy; if the body has the apparent weight G (in the air), its

true weight (in vacuo) is

1= G + Vy.

If, further, yx is the heaviness of this body, we have also

Gx
= V y } , and therefore

ri

V = —, so that we can put
7i

Gx yGx
= G H — or G

x (yx
— y) = G y„ whence it follows that

\yx
- y)

If the body is weighed upon a scale by a weight ft, whose

heaviness is y2, the following equation

a = (_M e
• - (A)

holds good ; if we divide the last two equations by each other, we

obtain the ratio of the weights

ft __ y, y2 - 7
1 -

72

G, "
y 2

'

Ti
- 7

1 -.7.'

7i

or, approximatively, and generally iiccurately enough

ft

ft" 7i 72
+ r

fe--l>
or also

ft

ft
~

£, e
a, and £2 denoting the specific gravities of the air, of the body

weighed, -and of the weight itself.

In many cases — and — are such small fractions that they can
£

j £o

be neglected and the true weight can be put equal to the ap-

parent one.

Remake:.—The law of the buoyancy of the air can be employed to de-

termine the force, with which, and the height, to which an air-lalho/t

(Fr. aerostat ; Ger. Luftballon) A B, Fig. 668, will rise. If Vh the vol-

ume of the balloon, G its total apparent weight, including the car, etc., y.,

the heaviness of the external and y 2
that of the enclosed air, we have the

buoyant effect

P = Vy x
= Vy z + G, and therefore
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V(n -y 2)
= G;

the necessary volume of the balloon is

Fig. 668. V =
G

7x — 7z

and the heaviness of the external air, when
the balloon attains the greatest height, is

G
7l=72 + y>

From this heaviness, by means of the

formula

found in § 389, we can determine the great-

est height s, to which the balloon will rise,

by substituting for y the heaviness of the

air at the point of beginning, which must

be calculated according to § 393.

Example 1.—What is the ratio of the

true weight of dry hard wood to its appa-

rent weight, when it is weighed by means of brass weights at a tempera-

ture of 32° and when the height of the barometer is 29 inches. The den-

sity of the air is, according to § 393,

7 = 0,002699 . 29 = 0,07827 pounds, that of the wood

y x
= 0,453 . 62,425, and that of brass

72 = 8,55 . 62,425 (see § 61),

consequently the ratio required is

0.
= 1 +

0,07827
• (ois - i) = * + °'001254

•

2>m = 1
'
00262 -

Thus we see that one thousand pounds of wood lose about 2-f pounds

in consequence of the buoyancy of the air.

Example 2.—If the diameter of a spherical balloon is 30 feet and the

heaviness of the matter with which it is filled is y 2
= 0,017 pounds, and

if the weight of the balloon with the car and load is G = 500 pounds, the

heaviness of the air at the place, where the balloon ceases to rise, is

G 6 G 3000
7i=72 +y = 7, + -^ = 0,017 + -^ = 0,017 + 0,03537

— 0,05237 pounds.

Now if the density of the exterior air at the starting-point is 0,0800

pounds, we have
7 / 7 \ _ /8000\ _© \5237/

0,4948,

and if we assume the ratio ofthe pressure per square foot to the heaviness of

the air, i.e. - = 26210, we obtain the maximum height to which the balloon

will rise = t i
(l\ = o63io . 0,4948 = 12969 feet,

7 \rJ



SEVENTH SECTION,

DYNAMICS OF FLUIDS

CHAPTER I

THE GENERAL THEORY OF THE EFFLUX OF WATER FROM
VESSELS.

§ 396. Efflux.—The theory of the efflux (Fr. ecoulement i

Ger. Ausfluss) of fluids from vessels forms the first grand division

of hydrodynamics. We distinguish, in the first place, the efflux of

water and the efflux of air, and, in the second place, efflux under

constant and under variable pressure. We will begin with the

efflux of water under constant pressure. We can regard the pres-

sure of water as constant, when the same quantity of water enters

the vessel as is discharged from it, or when the quantity of water

discharged is very small, compared with the capacity of the vessel.

The principal problem to be solved is to determine the quantity of

water or the discharge (Fr. depense; Ger. Wassermenge), which

passes through a given aperture or orifice (Fr. orifice ; Ger. Oeff-

nung) under a given pressure and in a given time.

If the discharge per second = Q, we have the discharge in

t seconds, when the pressure is constant,

V=Qt.
But if we wish to find the discharge per second, we must know

the size of the orifice and the velocity of the effluent molecules of

the water. To simplify our researches, we assume that the mole-

cules flow in parallel straight lines, and, consequently, form a pris-
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matic stream, vein or jet of water (Fr. veine, courant de fluide

;

Ger. Wasserstrahl). If F is the cross-section of the stream and v

the velocity of the water, or that of every one of its molecules, the
discharge Q per second forms a prism, whose base is F and whose
height is v, and, therefore, we have

Q — F v units of volume
and

G = F v y units of weight,

y denoting the heaviness of the effluent water or liquid.

Example—1) If water flows through a sluice gate, the cross-section of
which is 1,7 square feet, with a velocity of 14 feet, the discharge per
second is

Q = 14 . 1,7 = 23,8 cubic feet,

and the hourly discharge is

= 23,8 . 3600 = 85680 cubic feet.

2) If 264 cubic feet of water are discharged in 3 minutes and 10

seconds through an orifice, the area of winch is 5 square inches, the mean
velocity of the liquid is

264 264

Ft
Hi'

180
5 . 190

144
- = 40 feet.

Fig. 669.

§ 397. .Velocity of Efflux.—Let us imagine a vessel A C,

Fig. 669, which is full of water, to be provided with an orifice rF,

which is rounded upon the inside and is

very small, compared to the surfaceHR of

the water, and let us put the head of water

F G (Fr. charge d'eau ; Ger. Druckhohe),

which is to be regarded as constant during

the efflux, = li, the velocity of efflux — v,

and the discharge per second == Q, or its

weight = Q y. The work, which this quan-

tity of water can perform while sinking

through the distance h, is = Q li y, and the

energy stored by the discharge, whose weight

is Q y, in passing from a state of rest to the

Q y (§ 74). If no loss of mechanical effect takesvelocity v, is
*9

place during the passage through the orifice, the quantities of work-

are equal to each other, or h

51

Qy = ^-er,i.

h ==
if

8?
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and inversely

in meters

[§39-

v = V2 g h,

h — 0,0510 v* and v = 4,429 Vh,

and in feet (English),

h = 0,0155 v
2 and v = 8,025 fX

TAe velocity of the effluent water is the same as that of a body

which has fallen freely through a height which is equal to the head of

water.

The correctness of this law can also be shown by the following

experiment. If in the vessel A C F, Fig. 670, we make an orifice

directed upwards, the jet FK will rise verti-

cally and will nearly reach the level H R of

the water in the vessel, and we can assume

that it would actually reach it, if all impedi-

ments (such as the resistance of the air, the

friction upon the sides of the vessel, the dis-

turbance caused by the falling back of the

water upon itself, etc.) were removed. Since

a body which rises vertically to the height h

has an initial velocity

v = V2g h,

it follows that the velocity of efflux must be

v — 4/2 g h.

For another head of water h x
the velocity

of efflux is

v,= V2gh»
hence we have

v : i\ ~ Vh : V h x ;

the velocities of efflux are, therefore, to each other as the square roots

of their heads of ivater.

Example— 1) The discharge per second through an orifice whose area

is 10 square inches, under a head of water of 5 feet, is

Q — Fv = 10 . 12 V 2 g A=120 . 8,025 V5 = 963 . 2,236=2153 cubic inches.

2) In order that 252 cubic inches of water shall pass in one second

through an opening of 6 square inches, the head of water must be

/252V 0,0155•y
2 _ 1 / QV_ 0,0155h= 2o~2o\W/~ "T2~

*

V 6 /
. 422 = 2,28 inches.

12
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§ 398. Velocities of Influx and Efflux.—If the water flows

in with a certain velocity c, we must add to the mechanical effect

Ji Qy the energy — Q y, possessed by the influent water and cor-

responding to the height li, = ^-, due to the velocity; hence wc

must put

(h + hi) Q 7

and the velocity of efflux

%9 Q y, or h + Ji! = v

*ft

v = Y2 g (h + h,) = ¥2 g h + c\

'If the vessel is maintained constantly full, the quantity of the
influent water is equal to the discharge Q, and we can put G c —
Fv, in which G denotes the area of the cross-section H R (Fig.

F
669) of the water that is flowing in. Putting c =~ v, we obtain

h =
*g \Gl2a L

J

whence

fJF

,G) J2/

Wli

* - ©"
According to this formula, the velocity increases with the ratio

of the cross-sections, and it is a minimum and = V% g h, when

the cross-section F of the orifice of discharge is very small, com-
pared with that G of the orifice of influx, and it approaches nearer

and nearer to infinity, the smaller the difference between the two

F_

G

orifices becomes. IfF == G or '

-=- = 1, we have v
V%g h = 00,

Fig. 671.

• '

and also c = oo ; this infinite value must be understood
thus

:
if a vesselA G, Fig. 671, is without a bottom, water

must flow in and out with an infinitely great velocity or

the stream of liquid G F will not fill the orifice of exit

Go
FCD. Putting v = -TT , we obtain

b m c

h = \(V)- A tt and therefore F = G —
t\F) \%g

*/*.+ *£*
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which expression shows that the cross-section F of the discharging

stream is always smaller for a finite velocity of influx than that G
through which the water flows in, and that it therefore does not fill the

orifice of efflux, when the latter is larger than

•:1 +
%gh

Remark. -The correctness of the formula

which was first established by Daniel Bernoulli, was afterwards much

disputed. I have endeavored to prove in the " Allgemeinen Maschinen-

encyclopadie," by Hulsse,inthe article " Efl&ux" (Ausfluss), how unfounded

were the representations, which were made.

Example.—If water flows from a vessel, whose cross-section is 60 square

inches, through a circular orifice in the bottom 5 inches in diameter under

a head of water of six feet, its velocity is

8,025 V6 8,025 . 2,449

tMsr vr-(W V0,8931

19,653

~0,945
= 20,79 feet.

§ 399. Velocity of Efflux, Pressure and Heaviness.—The

formulas, which we have found, hold good so long only as the pres-

sure of the air upon the surface of the wTater is the same as that

upon the orifice of efflux ; but if these pressures differ, these formulas

must have an addition made to them. If the sur-

face H B, Fig. 672, is pressed upon by a piston K
with a force P„ as occurs, e.g., in fire engines, we

can imagine this force to be replaced by the pres-

sure of a column of water. If Ti x
is the height

L K of this column and y the heaviness of the

liquid, we can put

Px
= Q lh y.

Substituting for li the head of water h -f Ai == h +
P P

-t-t-^-j which has been increased by 7^ = -p^, we ob-
G Y J Gy

tain for the velocity of efflux

= V a g (h + -J4
If we denote the pressure

upon each unit of the surface Gbjp l9 we have more simply

when we assume -^ to be very small
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Pi

G P»

and therefore

n=y»ff(h +
fj.

Finally, if we denote the pressure of the water at the orifice of

efflux hyp, we can put

P (*.+ ?)* or

h .+ — = -, whence

v = y *g p

Hence the velocity of efflux is directly proportional to the square

root of the pressure upon the unit of surface and inversely to the

square root of the density or heaviness of the liquid. When the

pressure is the same, a liquid four times as heavy as another dis-

charges one-half as fast as the latter. Since air is 770 times

lighter than water, it would, if it were inelastic, flow out under the

same pressure V770 = 27-f times faster than water.

This theory is also applicable to the case where the effluent

water is subjected to the pressure of a column of another liquid.

If above the level H R of the water HER
in a vessel A C D, Fig. 673, there is still

a column of liquid H Rly whose height

Q G
x
— h and whose heaviness = y„ while

that of the water is = y, we can replace

the latter by a column of water whose

Ti
height is — h x without changing the pres-

sure upon H R or causing the velocity v

of the water, which is passing through the

opening F, to vary. Hence if h is the

head E G of water, I.E., the height of the

surface of separation H R above the orifice F, we have the height

due to velocity

2<7
h + Z± K
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and therefore

[§ 399.

i/

/

2g(h + ^7h).

Fig. 674.

Now if yi < y or 7^ + — ~h x < 7^ + 7/,, the jet i^
7
A", which rises

vertically, will not reach the leyel Hx Rx L x of the surface of the

liquid.

If the surface of separation H R, Fig. 674, is not above, but a

certain distance E F — h below the

orifice F of the vessel ADC, while the

surface Hx Rx
of the liquid H

x
D R is

at the height G G x
— h

x
above the sur-

face of separation II R, we have

v' = Ti

%ff 7
and therefore the velocity of the jet

h x
— h

\/^gWlH - /)

ft, yThis supposes — h
x > h, or— > -

From this it is easy to see that the jet

F K, which is projected vertically up-

wards, can rise above the surfaceH
x Rx

of

the liquid H
x
D R. If G M = -^ Ji

x
is

the head of the liquid, reduced to that of water, M gives the level

to which the jet will nearly reach.

If the water does not discharge freely, but under ivater, a dimi-

nution of the velocity of efflux takes place owing to the opposite

pressure. If the orifice F of the vessel A C,

Fig. 675, is at a distance F G — h below the

upper level H R of the water and at a dis-

tance F G x
— li\ below the lower level H

x
R

x ,

we have the pressure from above downwards

p = h y,

and the opposite pressure from below up-

wards

hence the force; which produces the efflux, is

p - ]h = (h - li
x ) y

Fig. 675.

A B
ipiiiiaiif

H
[:mm

-F-

H.
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and the velocity of efflux is

" = V2g(£-^£l) = rt7(h A.).

When water discharges under water, we must regard the differ-

ence of level h — li x between the surfaces of water as the head of

water.

If the water at the orifice of efflux is pressed

upon with a force p and at the surface or ori-

fice of influx with a force p } , we have in general

f
/
2g(h + Pi-P

7
)

This case occurs when water flows from one

closed vessel ABC into another closed one

D E, Fig. 676. Here h is the height F G of

the surface of the water H R above the orifice

F, p x
the pressure of the air in A H R and p

the pressure of the air or the steam in D E.

Example—1) If the piston of a fire engine is 12

inches in diameter and it is pressed down in the

cylinder with a force of 3000 jDOimds, and if there are

no resistances in the pipes and hose, the water will

pass through the nozzle of the hose with a velocity

= \/zg V-± = \/Zrj
a\~ = 8

'
025 </.

3000

62,5

.025 -/64 .
- = 62,74 feet

if the stream is directed vertically upwards, it will reach a height

h = 0,0155 . v- = 61,007 feet.

2) If water flows into a space in which the air has been vanned, e.g.,

into the condenser of a steam engine, while its upper surface is pressed

upon by the atmosphere, we must employ the last formula for the velocity

of efflux, viz.,

. =A(* +«^.
If the head of water is h = 3 feet, the height of the barometer of the exte-

rior air 29 inches and that of the enclosed air 4 inches, we have

Pl
~ p = 29 — 4 = 25 inches = 2,083 feet of mercury

= 13,6 . 2,083 = 28,33 feet of water,
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hence the velocity of the water flowing into the space, which is filled with

rarefied air, is

v = 8,025 V3 + 28,33 = 8,025 V 31,33 = 44,92 feet.

3) If the water in the feed-pipe of a steam boiler stands 12 feet above

the level of the water in the boiler and if the pressure of the steam in the

latter is 20 pounds and that of the exterior air is 15 pounds, the velocity

with which the water enters the boiler is

v = 8,025 y 12 +
(15 — 20) . 144

62,5
= 8,025 |/l2 -

I . 144

"62,5

= 8,025 V12 - 11,52 = 5,56 feet.

§ 400. Hydraulic cr Hydrodynamic Head.—If the water

in a vessel is in motion, it presses less against the sides of the ves-

sel than when it is at rest. "We must, therefore, distinguish the

hydraulic or hydrodynamic from the hydrostatic head of water.

If p x is the pressure upon each unit of the surface of the water

H-i Ri — Gi, Fig. 677, p the pressure at the orifice F and h the

head of water F G i9 we have the velocity of efflux

01

h +
7

['-'©]£>
now if in another section H2 i?2 = G.2, which is at a distance

F Gs = hx above the orifice, the pressure is

= p,, we have in like manner
p,— p r\, /F \

2"

Fig. 677.

Jh +

If we subtract these two equations from each

other, we obtain

h - h, +
y ~l\G/ \GjJ2g'

Fv .

Pi

7

or, if we denote the head of water Gx G2 of the

layer H2 B.2
= G.2 by lu, we have for the hydro-

dynamic head at H2 i?2

pi - MIX - f-Yl J£
y WgJ \GjJ2y

But -~- is the velocity v
x
of the water at the upper surface G x

.

Fv
and -yr the velocity v2 of the water in the cross-section G.2,

we

can, therefore, put
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^ = ^ + J,2
\2 a 2 at'

The hydraulic head — at any position in the vessel is equal to

the hydrostatic head — + lu, diminished uy the difference of the

heights due to the velocities of the water at this point and at the inlet

orifice. If the free surface Gx of the water is very great, we can

neglect the velocity of influx and put

£=£+"*,
7 y %g

hence the hydraulic head is less than the hydrostatic head by an

amount equal to the height due to the velocity of the water. The

quicker the water moves, the less it presses upon the sides of the

pipe. For this reason pipes often burst or leak for the first time,

when the motion of the water is checked, when the pipes clog, etc.

By means of the apparatus A B C D, represented in Fig. 678,

the difference between the hydraulic and

the hydrostatic head can be ocularly dem-

onstrated. If from the cross-section G2

we carry a tube E R upwards the latter

will fill with water, which will rise above

the levelHRoi the water, when G2 > G
x
or

Vo < vx ; for, since the pressure px
upon

the surface of the water is balanced by the

pressure of the air upon the mouth of the

tube, we can put the height, which meas-

ures the pressure in G2>

7 \2g 2gt

If, on the contrary, the cross-sec-
2g 2g J

.

tion 673 < G19 the water flows more rapidly through G x , and we
have for the height of column of water in the tubeEx , inserted at Gz,

tV
and x is > h.2 when ^—- < —

-

y = 7h
\2a 2 at'9 *9>

which is less than h 3, so that the water does not rise to the level

H R of trj. If, finally, G4 is very small and the corresponding ve-
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locity very great, ^ —-• can be > 7i4, and tlie corresponding
Kg Kg

hydraulic head z will be negative, lb. the

pressure of the air on the outside will be

greater than that of the water within.

Hence, if a tube is carried downwards and

its end placed under water, a column of

water Ec, K will rise in it, which, together

with the pressure of the water, will bal-

ance the atmospheric pressure. If the

tube is short, the water in the vessel K,

which, in this experiment, should be col-

ored, will rise in the tube, enter the reser-

voir A B G D and flow, with the other

water, out at F.

Remark.-

Fig. 680.

-If the vessel ACE, Fig. 680, consists of a reservoir A G and

of. a narrow vertical tube C E, the hydrodynamic head is

negative in all parts of this tube. If we do not regard the

pressure of the atmosphere p t1 the pressure of the water at

the orifice of efflux is = ; for here the entire head of water

is expended in producing the velocity v = V 2 g h ; on the

contrary, for a position D E, which is at a distance G
t
G =

h
t
under the water level, the hydraulic head is

= h
t
— li = — (h — 7i

± ),

or negative ; if, then, a hole were bored in this tube, no water

would escape, but, on the contrary, air would be sucked in

and discharged at F. This negative pressure is a maximum
directly under the reservoir, since h

2
is here a minimum.

§ 401. Rectangular Lateral Orifices.—By the aid of the

formula

Q = Fv = FV%gh,
the discharge per second can be calculated only when the orifice is

horizontal, since in that case the velocity is uniform in the whole

cross-section F; but if the cross-section is inclined to the horizon,

if, E.G., the opening is in the side of the vessel, the molecules of

water at different depths flow out with different velocities, and the

discharge can no longer be regarded as a prism ; hence the formula

Q = F' v = F'V% g h cannot be applied directly. The general for-

mula is

Fx
V'2gh

x + FiV%gh* +Q = F,V2g/h + F2 V2g/h+ Fs V2 g li,

= VTg (F, Vh + F2 VT, + F, Vts + .),
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Fig. 681.

in which Fl} F„, Fz . . . denote the areas and h1} h2, hz . . . the heads

of water of the various portions of the orifice.

The simplest case is that of efflux through a notch in the side,

toeir or overfall, Fig. 681. The notch D E G H in the wall, through

which the efflux takes place, is rec-

tangular; let us denote its width

D E = G H by b and its height

Dff= E G hjh. If we decom-

pose this surface b Ji, by horizontal

lines, into a great number n of hor-

izontal strips of equal width, we can

consider the velocity to be constant

for each of them. Since, if we pro-

ceed from above downwards, the

heads of water of these strips are

h 2h 3h—, — , —, etc.,
n n n

we have for the corresponding ve-

locities

a/o h a/\ 2 h a/ 2 g ' ~n~>
etC,?

and since the area of each of these strips is

the corresponding discharges

, h b h ,

o . - — — , we have
n n

° h a/ « h oh J ^ 2 h bh J'— y 2 g . -, — y 2:g . — , — yn f ° n n n n

hence that of the whole section is

o 3 h
I2g. —, etc.;

nVn

Since (as is given in the Ingenieur, page 88)

VT + ^ + V3 + . . . + Vn,

or

1^ + 2* + 3* + . . . + ni
1 + T

= |*l = | w V%

it follows that the required discharge is
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b hY2gJi
%n V^i = ^bh V¥gh = ib V%gh\

If we understand by the mean velocity v that velocity, which must

exist at all points of the overfall, when the same quantity of water

passes through the whole cross-section with a uniform velocity as docs

pass through with the variable velocity, ice can put

Q = b h v, whence it follows that

v = *

Fig. 682.

i.e. the mean velocity of water flowing out through a rectangular

notch in the side of a vessel is f the velocity at the sill or lower edge

of the notch.

If the rectangular orifice K G, Eig. 682, with the horizontal

hase G H, does not reach to the level

of the water, we find the discharge

through it by regarding it as the dif-

ference between two notches in the

' side DEG //andDEL K. If A,

is the depth E G of the lower and

A2 = E L that of the upper edge, we

have for the discharges through these

notches

%b\flgh
x\

and

hence the discharge through the rec-

tangular opening G HK L\&

Q = lbV2gh 1*-lbV2gk2
* = lb V%lj (hf - V),

and the mean velocity of efflux is

v = Q
b (h

x
— A 2)

= ibV2g.
hf -
h

x
— A

2

If h is the mean head of water EM — l\
x
+ h.2

, or the depth of

the centre of the orifice below the level of the water, and a the

height KH— L G = h
x
— k.2 of the orifice, we can put

V2
(- -r (' - ti

, or approximative^

[)--©> g h.



§ 40:3.] THE EFFLUX OF WATER FROM VESSELS. 813

Example.—If a rectangular orifice of efflux is 3 feet wide and 1J feet

high and the lower edge is 2f feet below the level of the water, the dis-

charge is

Q = f . 8,025 . 3 (2,75! - 1,51 ) = 16,05 (4,560 - 1,837)

= 16,05 . 2,723 = 43,7 cubic feet.

According to the approximate formula

• = [l ~ A (pi)] • 8
>
025 V^5 = (1 - 0,0036) 11,698

== 11,698 - 0,042 = 11,656 feet,

and the discharge is, therefore,

Q == 3
.

' £ : 11,656 = 43,710 cubic feet.

Remake:.—If the notch in fhe wall is inclined to the horizon at an

fi — Ji

angle S. we must substitute for the height of the orifice -*-.—-~ instead of&
sin. d

Ti
t
— h

2 , and therefore we must put

If the cross-section of the reservoir, from which the water is dis-

charging, is not much larger than the cross-section of the orifice, we must

F
take into account the velocity of approach v

x
= -^ v of the water and put

§ 402. Triangular Lateral Orifice.—Besides rectangular lat-

eral orifices, triangular and circular ones also occur in practice.

We will next discuss the discharge through a triangular orifice

BEG, Fig. 683, with a horizontal base E G and with its apex D
at the level of the water H B. If we put the base

Fig. 683. EG = h and the height D E = h and if we divide

the latter into n equal parts and pass through these

divisions lines parallel to the base, we divide the

entire surface into small strips, whose areas are

b h 2 b h 3 b ' h , , , . , r- . -, -—
. -, — . -, etc., and whose heads o{

n n n n n n

water are -, —, — , etc. The discharges through them are
n n n & °

bh A /n %2bh A /Z 2U bh A /a 3h ,~ry2f/ -, —r- V 2 a— , —5- y 2g—, etc.,
ri*

f J n n2 f J n ' n- r J n .

by summing these we obtain the discharge of the whole triangular

orifice
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111 y2g-(l + 2\/ 2 + Si/ 'd+... + n\/ n)

Hi V 2gli

n V
(II + 22 + 31 + . . . + »t),

——

—

-
)
= | j$,

If the base J9 iT of the orifice D G K lies in the surface of the

water and the apex G is at the depth h below it, we haye the cor-

responding discharge, since that through the rectangle D E G K
is I h li VYgli,

Q = %dh \r2gli-%lli V2gh= T\bh V2gh.
The discharge through a trapezium A B C D, Fig. 684, whose

upper base A B — l x lies in the surface of the water, whose lower

base is CD — d 2 and whose height is D E = li, is found by com-

bining the discharge through a rectangle with those through two

triangles, and it is

Q = JM VJJli + T% {h x
- fc) h VYfh

= j% (2 l) x + 3 J2) A YYgli.

Fig. 684. Fig. 685.

HA E F BR xx k OHA
IB

BR
H

Further, the discharge through a triangle (7 i> i?, Fig. 685,

whose base is D E = d x , whose altitude is M = h
x and whose

apex C is situated at a depth G = h below the level HR of the

water, is Q = discharge through ABC minus that through A E
= T

4
5 I h VTgli - T\ (2 h + 3 50 h

x VYglh

=3 T
2
5 VT^ [2 5 (M - M) - 3 J, WJ

Since the width A B = 1) is determined by the proportion

iidii: h : (h — k
x ), it follows that

2V~2g. l x

Fig. 686. Q
15

/2A(M -At)_
3

v

\ h — h
x J

(
2hl-5hh

x
h-h ShA2V~2g .h (%Kl—hKk

x%

15 A- A,

Finally, we have for the discharge through a

triangle A G D, Fig. 686, whose apex lies above

its base,
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H-

W) -

-5 k, hi

2V2g . I, /2M-5hhJ + 3 h,

15

2 h.h

H h — Aj

15 \ h — h x )

Example.—What is the discharge through the square orifice AB C D,

Fig. 687, whose vertical diagonal A C= 1 foot, when the corner A reaches'

to the level of the water ? The discharge through the upper half of the

.square is

Q = f b V27X3 = f . 1 . 8,025 Vf = 1,605
#
. 0,7071 = 1,135 cubic feet,

and that through the lower half

2 b \/2~g /2 M — 5 Ti ~kx %. + 3 \i \
Qt = 15 \ h — 7i

t

8,025 /2 - 5 (|)i + 3 (£)f

15

32,10

15
(2 - 1,7678 + 0,5303)

= 2,14 . 0,7625 = 1,632 cubic feet,

consequently the total discharge is

Q = 1,135 + 1,632 = 2,767 cubic feet.

§ 403. Circular Lateral Orifices.—The discharge for a cir-

cular aperture A B, Fig. 688, can only be determined by means

of approximate formnlas obtained in the follow-

Fig. 688.
jng manner. Let us decompose the circular ori-

H_JI g_ B fice by concentric circles into small rings of

equal width and let us consider each ring to be

composed of elements, which may be regarded as

parallelograms. If r is the radius, b the width

and n the number of elements of one of these

2 7T r
rings, is the length of one of these elements

n
and its area is

2-nro

Now if h is the depth O G of the centre C below the level of the

water H R and 4> the angle A C K, which measures the distance of

the element K from the highest point A of the ring, we have for

the head of water of this element

KJST= C a - C L = h- r cos. <p,

and therefore the discharge through this element

2 n r b if
-—— —

= \2 g (h — r cos. </>).
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But

V h — r cos. <p

= Vhh - I ~ cos.<t> - I (~) cos.
2
^ + . . .1

- VI [l ~i'| cos.fl> - t's (—} (1 -f- cos. 2 0)+...],

and therefore the discharge through this element is

= ~^ ^^

t

1 -i- j «**.- A (jj
(i + ««-2 *) + •••}

The discharge through the whole ring is found by substituting

in the parenthesis instead of 1, n . 1 = n, and instead of cos. </> the

sum of all the cosines of (j> from <f>
— to

<fi
= 2 tt, and instead of

cos. 2 the sum of all the cosines of 2 </> from 2
r
<£ = 0to2</> = 4 7r.

Since the sum of all the cosines of a full circle is equal to 0, these

cosines disappear, and we have the discharge through the ring

2rrrbV2gh\l-Js
^'-...'j

T T 2 V 3 V
If, instead of b. we substitute — , and instead of r, —, —, — tom m m m
, we obtain the discharge through each of the rings, which form

the entire circle, and finally the discharge through the entire circu-

lar aperture is

§=2rrr4/p(^(l + 2 + 3+... +m)-^^(r + 2
2 + 3

3 +...+m3

))

J \m 2 m h 4/

= IT ^*^*[i- A- ({]("-...»}

or more exactly

a = ^^t* [i - a ©' - wb (£)- • • •}

If the circle reaches to the leyel of the water, we have

Q = T
9^ 77 r

2 V2JJ = 0,964 i^
7 4/2*7^,

when F = n r' denotes the area of the circle.

Moreover, it is easy to understand that in all cases, where the

head of water at the centre is equal to or greater than the diameter

of the orifice, we can put the value of the entire series = 1 and

Q = FV2j~h.
This rule can also be applied to other orifices and also to all
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cases, where the depth of the centre of gravity of the orifice below
the level of the water is as great as the height of the aperture ; wc
can then regard the depth k of this point as the head of water and
put Q=FV2gk.

If we consider that the mean of all the cosines of the first

2
quadrant is = - and that of all those of the second quadrant is

2
'= - -, or that the mean of the first and second quadrant = 0, the

discharge for the upper semicircle, determined in the manner
shown above, is

and that through the lower semicircle is

in which F denotes the area of the aperture.

The formulas for Q, Qt and Q.2 hold good also for elliptical

orifices with horizontal axes ; for the discharges, when the other

circumstances are the same, are proportional to the widths of the

apertures and the width of an ellipse is proportional to the width

of an equally high circle (see Introduction to the Calculus, Art. 12).

Example.—What is the hourly discharge through a circular orifice 1

inch in diameter, when the level of the water is one line above the top of it ?

Here we have

£=«; hence(0
2

= ff =0,785,

and 1 - Vf (£) =.1 - 0,023 = 0,977,

and consequently the discharge per second is

Q = ^-^
• 12 . 8,025 j/^ • 0,0977 = ~

. 8,025 . 0,977 V7=1G,29 c inches,

per minute = 977,4 cubic inches, and per hour = 83,94 cubic feet.

§404. Efflux from a Vessel in Motion.—The velocity of
efflux changes when a vessel, originally at rest or moving uni-

formly, is set in motion, or when a change in its condition of

motion takes place, since in this case every molecule of the water
acts upon those surrounding it not only by its weight, but also<

by its inertia. 52
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Fig. 689.

If the vessel A 0, Fig. 689, is moved loith an accelerated motion

vertically upwards, while the water flows through an opening F in

the bottom, the velocity of efflux, is

augmented, and if it descends with an

accelerated motion, the velocity is dimin-

ished. If the acceleration is p, every

molecule M of the water presses not

only with its weight M g, but also with

its inertia M P> an(i in fcne nrst case We

must put the force of each molecule

equal to (g + p) M, and in the second

case equal to (g — p) M, or instead of

g, g ± p- Hence it follows that

and that the velocity of efflux is

-%= (g^p)^

v =j V% (g ± p) h.

If the vessel rises with the velocity g, we have

v = V2 . 2gh = 2 Vgh,

and the velocity of efflux is 1,414 times as great as it would be if

the vessel stood still. If the vessel falls by its own weight or

with the acceleration g, v-is, —.Vo = and no water runs out. If

the vessel moves uniformly upwards or downwards, v remains ==

VWgliy but if its rise is retarded, v becomes =V2{g—p) h, and if

its fall is retarded, v is = 4
72 ( g + p) A.

If the vessel, from which the water flows,

is moved horizontally or at an acute angle

to the horizon, the surface (see § 354) be-

comes oblique to the horizon and a varia-

tion of the velocity of efflux is the result.

If a vessel A C, Fig. 690, is caused to

revolve about its vertical axis X X, its sur-

face will assume, according to § 354, the

shape of a parabolic funnel A B, and at

the centre M of the bottom the head of

water M is smaller than near the edge,

and the water will flow more slowly through

an orifice at the centre than through any

other equally large aperture in the bottom.

If h denotes the head of water M at the centre M, the velocity
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of efflux through an aperture at that point will be = VWg~h • but
if y denotes the distance M F = XP of an aperture F from the
axis XX and w the angular velocity, we have, since the subtan-
gent TN of the arc P of the parabola is equal to twice the abscissa

X, the corresponding elevation of the water above the centre

ON=±TN= IP X. tang. XP T,

consequently if we substitute tang. X P T = tang. = ~-S- (see

§ 354) and denote the angular velocity a h of F by tv, we can put

X = x = ± y .
—£ =a —£- =± —

.

z3
9 *9 %g

Hence the velocity of efflux through the orifice Fis

v = */%g(h + <g) = V2gh + w\

This formula holds good for a

vessel of any shape, even when it

is closed on top, like A G, Fig. 691,

in such a manner that the fun-

nel DOG cannot be completely

formed. Here also h is the depth

M of the orifice below the vertex

of the funnel and v the velocity

of rotation of the aperture. It will

be employed repeatedly in the dis-

cussion of reaction wheels and tur-

bines in another part of the work.
Example—1) If the vessel A C, Fig. 689, which when filled with water

weighs 350 pounds, is drawn upwards by a weight G of 450 pounds by
means of a cord passing over a pulley, it rises with an acceleration

_ 450 — 350 _ 100
P ~ 450 + 350 *

"

aud the velocity of efnux is

800
• ff — I ff,

v = V2 {g -j- p) h = V2 . |- gh = Vf gh.
How if the head of water were li = 4 feet, the velocity of efilux would-be

v = V9 . g = 3 V32,2 = 17,02 feet,

2) If the vessel A C, Fig. 691, which is filled with water, makes 100
revolutions per minute and if the orifice F is 2 feet below the level of the
water at the centre and at a distance from the axis XX, = 3 feet, the
velocity of efilux is

s = V2 g h + w 2 = j/64,4

= Vl28,8 + 987 = vTil5\8 = 33,4 feet.

If the vessel stands still, we have v = Vi~28,8 == 11 35 feet.

2 +
/ 3 . 7r . loo

y
I 30 /

128,8 + 100
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CHAPTER II.

OF THE CONTRACTION OF THE VEIN OR JET OF WATER WHEN
ISSUING FROM AN ORIFICE IN A THIN PLATE.

Fig. G92.

§ 405. Coefficient of Velocity.—The laws of efflux, deduced

in the last chapter, coincide almost exactly with the results ob-

tained in practice, so long as the head of water is not very small,

compared to the width of the aperture, if the orifice of efflux is

gradually widened inwards and joins bottom or sides without

forming an angle or edge. The experiments made with polished

metal mouth-pieces by Michelotti, Eytelivein and others, and also

by the author, haye shown that the real effective discharge is from

96 to 99 per cent, of the theoretical one. The mouth-piece A D,

Fig. 692, which is represented in one-half its natural size, gaye

under a pressure of 10 feet 98 per cent.,

under a pressure of 5 feet 97 per cent, and

under a pressure of 1 foot 96 per cent, of

the discharge calculated theoretically (Ex-

periments with large orifices, see Unter-

suchungen in dem Gebiete der Mechanik

und Hydraulik, Zweite Abtheil.). If the

efflux through such a mouth-piece is to be

as free from disturbance as possible, the

rounding must not be in the form of a

circle, but in that of a curve A D — B C,

the curvature of which gradually decreases from within outwards

(from A towards D). Since in this case the stream has the same

cross-section F as the orifice, we can assume that the diminution

of the discharge is caused by a loss of velocity arising from the

friction of the water upon, or its adhesion to, the inner surface of

the mouth-piece and from the viscosity of the water. Hereafter

we will call the ratio of the real or effective velocity to the theo-

retical velocity v =. V% ah the coefficient of velocity (Fr. coefficient

de vitesse ; Ger. Geschwindigkeitscoefficient) and we will denote

; it by 0. Thus the effective velocity of efflux in the simplest case is

ri = <p v — ((> ¥2 g h,
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and the effective discharge is

Q = Fv
x
= (j>Fv = (j>FV2gk.

Substituting for </> its mean value 0,975, we obtain (in English
feet)

Q = 0,975 .FVTgh = 0,975 . 8,025 FVh = 7,824 F VI.

The vis viva of a quantity Q of water, issuing with the velocity

• Qy
vlf is . Vi\ by virtue of which it can perform the mechanical

v
* *

effect Q y . —-. But since the weight Q y in descending from the

height h = ^— performs the work Q y . h = § y -^-, it follows that

the loss of mechanical effect of the water during the efflux is

I.E.,

L = 0,049 . —, or 4,9 per cent.
^#

The water, which issues from the vessel, will therefore perform

4,9 per cent, less work by virtue of its vis viva than by virtue of its

weight, when falling from the height h.

Remark.—The author has tested the law of efflux, expressed by the

formula v = V2 g h, under very different heads, viz., from the very great

head of 100 meters to the very small one of 0,02 meters. A well rounded
mouth-piece 1 centimeter wide gave for the heads

h = 0,02 meters . .

,

0,50 meters 3,5 meters 17 meters 103 meters

<p = 0,959 0,967. 0,975 0,994 0,994

See Civilingenieur, New Series, Vol. 5, first and second numbers.

§ 406.. Coefficient of Contraction.—If the water issues from
an orifice in a thin plate (Fr. orifice en mince paroi ; Ger. Mim-:
dung in der dunnen Wand), and if the other circumstances are the

same, a considerable diminution in the discharge takes place. This
diminution is due to the fact that the directions of the molecules

of the water, which are passing through the orifice, converge and
produce a contracted stream or vein (Fr. veine contracted ; Ger.

contrahirter Wasserstrahl). The measurements of the stream, ma do
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by several experimenters and more recently by the author himself,

have shown that the stream, at a distance from the orifice equal to

half its width, experiences its maximum contraction, and that its

thickness is 0,8 of the diameter of the orifice. If Fx is the cross-

section of the contracted vein and F that of the orifice, we have

therefore

F = 0,8
2 F = 0,64 F

The ratio -A of these cross-sections is called the (oefficient of

contraction (5?r. coefficient de contraction ; G-er. Contractionscoeffi-

cientj, and is denoted by a ; from what precedes we see that its

mean value for the efflux of water through an orifice in a thin

plate is a = 0,64.

So long as we have no more accurate knowledge of the law of

the contraction of the stream, we can assume that the stream flow-

ing through a circular orifice A*A, Fig. 693, forms a solid of rota-

tion A E E A, whose surface is generated by the revolution of the

arc yl E of a circle about the axis C D of the stream. Puttino; the

diameter A A of the orifice = d
Fm

-
693 - and the distance C D of the con-

tracted section EE from the orifice

= -.7 cl, we obtain the radius

• MA = ME = r

of the generating arc A Ebj means

of the equation

AW* = EHT(2 ME- EN)
(V d L d\

or^ = To\
2r

-To)>
^
'WIS- from which we obtain

r = 1,3 d.

The velocity of efflux through orifices of this kind is about

i\ = 0,97 v.

The contraction of the stream of water owes its origin to the

fact that not only the water immediately above the orifice flows

out, but also that the water all around flows in and is discharged

with it. The filaments of water begin to converge within the

vessel, as is shown in the figure, and the contraction of the stream

is caused by the prolongation of this convergence. We can con-

vince ourselves cf this fact by employing a glass vessel and putting

into the water small bodies, such as saw-dust, bits of sealing-wax,

"::is!if^^
*n

i
i ; i

i i ! S
| i i Jr
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etc., of nearly the same specific gravity as the water, and allowing

them to flow out with it.

§ 407. Contracted Vein of Water.—If the water flows

through triangular, quadrangular, etc., orifices in a thin plate, the

stream assumes particular forms. The most striking phenomenon
is the inversion of the stream or the change in position of its cross-

section in reference to the cross-section of the orifice, in conse-

quence of which a corner of the former cross-section comes into

the same position as the middle of one of the sides of the orifice.

Thus the cross-section of the stream, issuing from a triangular ori-

fice ABC, Fig. 694, is, at a certain distance from the latter, a

three-pointed star DBF; that from a square orifice A BCD,
Fig. 695, is a four-pointed star E F G H\ that from a pentagonal

Fig. 694.

Fig. 69^

orifice A B C D E, Fig. 696, is a five-pointed starE G HK L, etc.

The cross-sections are very different at different distances from the

orifice; they decrease for a certain distance and then increase again,

etc. ; the stream consists, therefore, of ribs of variable width and

forms, as can be best observed when the pressure is very great,

bulges and nodes similar in form to the cactus plant. If the ori-

fice A B C D, Fig. 697, is rectangular, the cross-section at a small

distance from the aperture forms also

a star or cross, but at a greater dis-

tance it assumes more the form of an

inverted rectangle E F.

Bidone observed the discharge

from various kinds of orifices ; Pon-

celet and Lesbros have made the

only accurate measurements of the

stream issuing from square orifices

(see the Allgemeine Maschinenency

klopadie, article "Ausfluss"). The
last measurements have led to a small

coefficient of contraction 0.503.
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Measurements of the water discharged through smaller openings

have given greater coefficients of contraction; they indicate that

the coefficients are greater for oblong rectangles than for rectangles,

which approach the square in form.

§ 408. Coefficient cf SfHux.—If the effective velocity of

water issuing from an opening in a thin plate was equal to the

theoretical v = V~2g h, we would have for the effective discharge

Q =z a Fv = a FVZgJi,
a ^denoting the cross-section of the stream at the point of maxi-

mum contraction, where the molecules of water move in parallel

lines ; but this is by no means true. It appears, from experiment,

that is smaller than a F V2 g h and that we must multiply the

theoretical discharge F V% g h by a coefficient smaller than the co-

efficient of contraction, in order to obtain the real discharge. We
must therefore assume that, when water issues from an orifice in a

thin plate, a certain loss of velocity takes place, and consequently

a coefficient of velocity <j> must also be introduced; hence the effec-

tive velocity of efflux is

Vx = (p v =
(f>
V% g h.

The effective discharge is

Q l
= F1

.v
l
= aF.<t>v = a(f>Fv = a<l>F ¥%g L

Let us call the ratio of the real discharge Q x
to the theoretical or

hypothetical discharge Q the coefficient of efflux (Fr. .coefficient de

depense; Ger. Ausflusscoefficient) and let us denote it hereafter

by \i ; then we have

ft =M Q=vFv = jj,F tftfh,

and therefore .

:

jtt = a <p,

i.e. the coefficient of efflux is the product of the coefficient of velocity

and the coefficient of contraction. '

Repeated observations, and particularly the measurements of

the author, have led to the conclusion that the coefficient of efflux

is not constant for all oriflces> in a thin plate, that it is greater,

for small orifices and small velocities of efflux than for large

orifices and great velocities and that it is much greater for long.

narrow orifices than for those whose forms are regular or circular.

For square orifices, whose areas are from 1 to 9 square inches,

under a head of from 7 to 21 feet, according to the experiments of
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Bossut and Miclielotti, the mean coefficient of efflux is \i — 0,610

;

for circular orifices from h to 6 inches in diameter and under a head

of from 4 to 21 feet, it is p = 0,615 or about T
8

.

5
. The values, which

were obtained by Bossut and Michelotti from their observations,

differ materially from each other ; but they do not appear to de-

pend upon the size of the orifice or upon the head. According to

the experiments of the author, under a head of 0,6 meters, the co-

efficient of efflux is for a circular orifice

1 centimeter in diameter \i == 0,628
'

2 centimeters "
- = 0,621

3
"

' " ....... = 0,614

4 " " =0,607.

On the contrary, under a head of 0,25 meters, with the same orifice,

1 centimeter in diameter, he found . . . . - \i= 0,637

2 centimeters " " .... = 0,629

3 " " « .... =0,622 ' ,

4 " " « .... =0,614.

We see from these results of experiment that the coefficient of

efflux increases when the size of the orifice and the head of water

diminish. If we assume as mean values \i = 0,62 and a = 0,64,

we obtain the coefficient of velocity for efflux through an orifice in

a thin plate ^ = g =^
Cu

or about the same as for efflux through mouth-pieces rounded in-

ternally.

Remauk—1) Experiments made by Buff (seePoggendorff's Annalen.

Vol. XLVI) show that the coefficients of velocity for small orifices and

small heads or velocities are considerably greater than for large or medium
orifices and velocities. An orifice of 2,084 lines in diameter gave, under a

head of 1| inches, /x = 0,692 and, under a head of 35 inches, fi = 0,644.

On the contrary, an orifice 4,848 lines wide, under a head of 4J inches,

gave fi = 0,682 and, under a head of 29 inches, ix = 0,653. The author

also obtained similar results.

2) For efflux under water, according to the experiments of the author,

the coefficients of velocity are nearly li per cent, smaller than for efflux

into the air.

§ 409. Expsriniexits.—The coefficient of efflux \i correspond-

ing to a certain mouth-piece can be determined, when we know the

discharge V, which passes through the known cross-section F of

the orifice under a head of water h in a certain time t ; here we

have
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V= fiFV2gh.t,

and inversely
fi = Ft V2gh

In order to find its two factors, viz. : the coefficient of contrac-

tion and that of velocity, it is necessary to measure either the cross-

section Fx
= a F of the stream or to determine the velocity of

efflux i\ = <j) v = <j> V2 g h by means of the range of the jet.

Neither measurement can be made with sufficient accuracy unless

the stream is thin and the cross-section is circular.

The circular cross-section Fx of a jet can be determined very

simply by means of the apparatus represented in Fig. G98. It is

composed of a ring and four sharp-pointed set-

screws A, B, C, D, which screw in towards each

other. The screws are directed towards the

centre of the cross-section of the stream and are

turned until their points touch its surface ; the

rjng is then removed from the stream and the

distance between the opposite points of the

screws is measured ; the mean clx of these two

distances is assumed to be the diameter of the

stream. ISTow if d is the diameter of the cross-section of the orifice,

we have Fx

a = —F
and therefore a

a

If we measure the range i?(7=Z>ofajet^li?, Fig. 699, which

issues horizontally from the mouth-piece S A, which is at a certain

height A ~ a above the ground, we have, according to § 36, the

velocity of efflux

Fig. 699.

=m
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and since v
x
= v = i'2 # /i, we obtain

o
* 4^- *

v '. ± ah 2Va!i
whence

\i 2 V ah
(j) f£ £

The determination of v is more certain when, instead of a and

b, we measure the horizontal and vertical co-ordinates of three

points of the parabolic axis of the stream; for the axis of the

mouth-piece may have an unknown inclination to the horizon.

The most simple method of proceeding is to stretch a horizontal

thread D F above the stream and to hang three plumb-lines from

three points D, F, and F, which are at equal distances from each

other ; we then measure the distances D G, E H, and FK of the

axis of the stream from D F. If D F — x is the horizontal dis-

tance of the extreme points from each other, if the vertical dis-

tances D G, E H, and FK = z, z
Y , and z,, and if we take G as the

origin of co-ordinates, we have the co-ordinates for the point H
.>:, ~a L = D JEJ= \D F—% and y x

=LM=EH- D G = *, - z,

and for the point K
,\, = GM= DF= xsai&y, = MK= FK- D G = z, - z.

According to § 39, if a denotes the angle of inclination of the

axis of the stream at G,
a x?

Vi = -i tana, a -f -—| — , and also9
'

s 2 v* cos? a

ax 2

y^ x,tang.a +— r̂a,o*

yi -xx tang.a= ¥^ â9
^

ff ^
y, — x, tang, a = —4- ^—

:

J -
-

J 2 v{ cos. a'

whence, by division, we obtain, since x, — 2 sb,,

?/, — xx tang, a 4 y x
— y»

x
9— = 4. and therefore tang, a — —2i-—£-.

y, — x, tang, a **

x

If in one of the foregoing formulas, instead of— <r— , we put 1 +
cos. a

!rng: a, and for tang, awe substitute the last expression, we obtain

the required formula for the velocity of efflux
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•.,. J^'^^V (1 + tang, a3

) g xx

2 (y* — x tang. a) cos* a r 2 (2 y, — 4 yx)

F 4(y,-2 yi ). '

Hence the coefficient of velocity is

y*f= _!i = ^- = i A" + (4 yx

v "
V2JJ1

" 8h{y2 -2yl)

'

Example 1) The following measurements of an uncontracted stream,

•which issued from a well-rounded orifice 1 centimeter wide, were made :

x = 2,480 meters,

yx
=zt —z = 0,267 — 0,1135 = 0,1535 meters,

y 2
=z

2
—z = 0,669 — 0,1135 = 0,5555 "

and the head of water was h — 3,359 meters. From these data we find

the coefficient of velocity to be

2,48
2 + 0,059^ _ / 6,185

8 . 3,359 . 0,2485 ~ V 26,872 . 0,2485
~°'96°-

-

Since no contraction took place, a = 1 and therefore fi = <p. The results

of measurements given in the remark to § 405 agree well with this value.

2) The measurements of a perfectly contracted stream, which passed

through a circular orifice in a thin plate, were, for a head of water k =
3,396 meters, the following

:

x = 2,70 meters,

y± = z± — z = 0,2465 — 0,1115 = 0,1350 meters,

y2
= z

2
— z = 0,6620 - 0,1115 = 0,5505 "

whence it follows that

/ 2,703 + 0,01" _ y
~~~7^9~01

V 8 . 3,396 . 0,2805
~~ r 27,168 . 0,2805 '

From the measurement of the discharge \i was calculated to be = 0,617

;

hence the coefiicient of contraction was a = - — 0,631, which agreed very

well with the measurement of the cross-section of the stream.

§ 410. Rectangular Lateral Orifices.—The most accurate

experiments upon efflux through large lateral rectangular orifices

are those made at Metz by Poncelet and Lesbros. The width of

these apertures were 2 and in some cases 6 decimeters and their

heights were different, varying from 1 centimeter to 2 decimeters.

In order to produce a perfect contraction, the orifice was made in a

brass plate 4 millemeters thick. From the results of these experi-

ments,'these .savants have calculated, by interpolation, the tables,

which are given at the end of this paragraph, and which can be

employed for the measurement or calculation of discharges.

If h is the width of the orifice K L, Fig. 700, and if ft, and />..
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arc the heights E G and E L of the level of the water above the

lower and upper horizontal edge of the orifice, we have, according

to § 401, the discharge

If we introduce the height of the orifice G L = a = h x
— h

and the mean head of water EM
matively

f

li

7i, 4- lu

2
, we have approxi-

a

and, therefore, the effective discharge is

a

(»-

ft = n Q = (l

—)
3 If)

(j, = fiif

96

If we put

^-96
we have more simply

Q l
= [j. x

a I? V2 g h,

and as it is more convenient to employ

this simple formula for the discharge,

the values of filt and not those of a

are given.

Since the water in the neighborhood

of the orifice is in motion, it stands

higher immediately in front of the

wall, in which the aperture is made

;

for this reason two tables are given,

one to be used, when the heads of water are measured at a distance

from the orifice, and the other, when they are measured directly at

the wall of orifice. "We see from both these tables that, with some

exceptions, the less the height of the orifice and the head of water

is, the greater the coefficient of efflux is.

If the width of an orifice is different from those given, we
must employ these coefficients to calculate the discharge, as we
have no other experiments to base our calculations upon. That

we are not liable to great error can be seen by comparing the co-

efficients for the orifices, whose widths are 0,6 meters, with those.

whose widths are 0,2 meters, for the same head of water. If

the apertures are not rectangular, we determine their mean height

'and width and substitute in the calculation the coefficient corre-

sponding to these dimensions. It is always better to measure the

h )ad of water at a great distance from the orifice and to employ
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the first table than to measure it immediately at the orifice, where

the surface of the water is curved and less tranquil than at a dis-

tance from it.

Example—1) What is the discharge through an orifice 2 decimeters

wide and 1 decimeter high, when the surface of the water is 1|- meters

above the upper edge ? Here we have

h. + li 9 1,6 + 1,5
h = 0,2, a = 0,1, h = -±-=—- = ? - = 1,55 meters,

and, therefore, the theoretical discharge is

Q = 0,1 . 0,2 V2~<7 Vl,55 = 0,02 . 4,429 . 1,245 = 0,1103 cubic meters.

But Table I gives for a = 0,1 and li
2
= 1,5, fit

— 0,611, hence the

real discharge is

Q = 0,611 . 0,1103 = 0,0674 cubic meters.

2) What is the discharge through a rectangular orifice in a thin plate,

whose height is 8 inches and whose width 2 inches, under a head of water

of 15 inches above the upper edge ? The theoretical discharge is

Q = f.
.
i

. 8,025 Vf = 0,8917 . 1,1547 = 1,0296 cubic feet.

But two inches is about 0,05 meters and 15 inches about 0,4 meters,

we can therefore take the value ju
t
= 0,628, corresponding to a = 0,05 and

h
2
= 0,4, and put the required discharge

Qt
= 0,628 . 1,0296 = 0,647 cubic feet.

3) If the width is 0,25 meter, the height 0,15 and the head of water

7i
2
= 0,045, we have

Q = 0,25 . 0,15 . 4,429 V0,12 = 0,166 . 0,3464 = 0,0575 cubic meters

;

the height 0,15 corresponds, for 7i
2
= 0,04, to the mean value

0,582 + 0,603
li t
= • = 0,5925,

and, for 7i 2
= 0,05, to

0,585 + 0,605
Pi
=

2
=

'

Now since h
2
= 0,045 is given, we substitute the new mean

0,5925 + 0,5950 A _,-? -

3
—

'

= 0,594

as coefficient of efflux, and we obtain the required discharge

Q x
= 0,594 . 0,0575 = 0,03415 cubic meters.

Remakk.—The coefficients of velocity do not change sensibly for a rec-

tangular orifice, when we change the height into the width or vice* versa,

as is demonstrated by the following experiments of Lesbros (see his u Ex-

periences Hydrauliques, Paris, 1851").

An orifice 0,60 meters wide and 0,02 meters high, under a head of water

from li = 0,30 to 1,50 meters, gave

fi±
= fi =± 0,635 to 0,622,

and, on the contrary, when it was set on edge, or when the height was 0,60

meters and the width 0,02 meters,

fi t
= 0,610 to 0,626 and

ft — 0,638 to 0,627.
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§ 411. Overfalls.—If the water flows through an overfall, weir
or notch (Fr. deversoirs; Ger. TTeberfalle) in a thin wall, as, E.G., FB,

Fig. 701, the stream is contracted

Fi&. 701. on three sides and a diminution

A iMmaiM,n,lM ilil il, l iii:iiii lil m; ,:„,„ n.:i

iB of the discharge is produced. The
discharge through this orifice is

Here the head of water EH = A
is to be measured, not at the edge,

but at least three feet from the
wall in which the notch is cut ; for the surface of the water is de-

pressed immediately behind the.orifice, and the depression increases

continually towards the orifice, and in the plane of the orifice its

value G R is from 0,1 to 0,25 of the head of water F R, so that the
thickness F G of the stream is but 0,9 to 0,75 of the head of water.

Many experiments have been made upon efflux of water through
notches in a thin plate, and the results, although very multifarious,

do not agree as well as could be desired. The following tables con-
tain the results of the experiments of Poncelet and Lesbros.

1. TABLE OF COEFFICIENTS OF EFFLUX FOR OVERFALLS
TWO DECIMETERS WIDE, ACCORDING TO PONCELET AND
LESBROS.

Head of water h
in meters. 0,01 0,02 0,03 0,04 0,06 0,08 0,10 0,15 0,20 0,22

Coefficient

of efflux 0,424 0,417 0,412 0,407 0,401 0,397 0,395 0,393 0,390 0,385

2. TABLE OF THE COEFFICIENTS OF EFFLUX FOR OVERFALLS
SIX DECIMETERS WIDE.

Head of water h
in meters.

1
*

0,06
!
0,08 0,10 0,12 0,15 0,20

0,395

0,30 0,40 0,50 0,60

Coefficient

|
of efflux 0,412:0,409 0,406 0,403 0,400 0,391 0,391 0,391 0,390

Hence for approximate determinations we can put \i
x
= 0,4.

53
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Eytelwein found, by his experiments with overfalls of great width,

the mean value of \i
x
to be = § p = 0,42, and Bidone \h = i 0,62

= 0,41, etc. The most extensive experiments were made by d'Au-

bnisson and Castel. From these d'Aubuisson concludes that for

overfalls, whose width is not greater than -| that of the canal or of

the wall in which the weir is placed, we can put \i — 0,60 or f fi =

0,40 ; that, on the contrary, when the overfall extends across the

whole wall or has the same width as the canal, we must take fi =
0,665 or \i

x
= 0,444; that, finally, when the relations between the

width of the notch and that of the canal differ from the above, the

coefficient of efflux is very varied, the extremes being 0,58 and 0,66.

The experiments made in 1853 and 1854, at Hanswyk, upon over-

falls 3 to 6 meters wide under a head of 0,1 to 1,0 meters gave

fi = 0,64 to 0,65 or § fi = 0,427 to 0,433 (see the " Zeitschrift des

Archit- und Ingen-Vereins fur Hanover, 1857")- Tne researches

made by the author upon the efflux of water through overfalls re-

fer the variation of these coefficients of efflux to certain laws, which

will be noticed further on (§ 417).

Example—1) The discharge per second of an overfall, 0,25 meters

wide under a head of water of 0,15 meters is

Q = 0393 . I h \f2jli = 0,893 . 4,429 . 0,25 (0,15)1 = 0,435 . 0,0581

= 0,02527 cubic meters.

'

2) What must be the width of an overfall, which under a head of water

of 8 inches will discharge 6 cubic feet -of water ? Here we have
/

x Q 6
~-rnr = 3,434 feet." K^J¥ "

0,4 . 8,025 ^y 3,210 . 0,5443

If according to Eytelwein we take ^ = 0,42, we have

1 = p7T0^443
= 3

'
271 '

§ 412. Maximum and Minimum Contraction.—When wa-

ter flows through an orifice in a plane surface, the axis of the ori-

fice is at right angles to the wall of the vessel and we have a me-

dium contraction ; if, however, the axis of the orifice or of the

stream forms an acute angle with the portion of the wall of the

vessel containing the aperture, the contraction is smaller, and if

the angle between this axis and the inner surface of the vessel is

obtuse, the contraction is greater. The first case is represented in

Fig. 702 and the second in Fig. 703. This difference of contrac-

tion is, of course, due to the fact that in the former case the

molecules of the water, which are flowing towards the orifices, are
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deviated less, and in the latter case more, from their primitive di-

rection, while passing through this aperture and forming the vein.

The contraction is a minimum, i.e., null, if, by gradually con-

tracting the wall surrounding the orifice, the water is prevented
from flowing in upon the side and, on the contrary, a maximum
when the direction of the wall is opposite to that of the stream, so

that certain molecules must describe an angle of 180 degrees in

Fig. 704.

A B
IIMiiillililiililBl

order to reach the orifice. Both cases are represented in Figures
704 and 705. In the first case the coefficient of efflux is nearly 1,

viz.
: 0,96 to 0,98, and in the second case, according to the measure-

ments of Borda, Bidone and of the author, its mean value is = 0,53*

In practice, variations of the coefficients of efflux, produced by
convergent walls, often occur, particularly in the case of sluices,

which are inclined to the horizon, as is shown in Fig. 706. Pon-
celet found for such an orifice the coefficient of efflux \i = 0,80,
when the gate was inclined at an angle of 45°, and,, on the contrary^
\i is only = 0,74, when the inclination is 634 degrees, i.e., for a

Fig. 706.
. Fig. 707.

slope of one-half to one. For the overfall, represented in Fig. 707,

where, as in Poncelet's sluice, contraction takes place upon one

side only, the author found \i — 0,70 or \i
x
= f \l = 0,467 for an

inclination of 45°, and ^ = 0,67 or /i
x
= 0,447 for an inclination

of 634 degrees.

According to M. Boileau (see his Traite de la mesure des eaux
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Eytelwein found, by his experiments with overfalls of great width,

the mean value of \h to be = f fi == 0,42, and Bidone ^ = § 0,62

= 0,41, etc. The most extensive experiments were made by d'Au-

buisson and Castel. From these d'Aubuisson concludes that for

overfalls, whose width is not greater than | that of the canal or of

the wall in which the weir is placed, we can put \i — 0,60 or | fi =
0,40 ; that, on the contrary, when the overfall extends across the

whole wall or has the same width as the canal, we must take \i =
0,665 or \i

x
— 0,444; that, finally, when the relations between the

width of the notch and that of the canal differ from the above, the

coefficient of efflux is very varied, the extremes being 0,58 and 0,66.

The experiments made in 1853 and 1854, at Hanswyk, upon over-

falls 3 to 6 meters wide under a head of 0,1 to 1,0 meters gave

\i = 0,64 to 0,65 or § \l = 0,427 to .0,433 (see the "Zeitschrift des

Archit- und Ingen-Vereins fur Hanover, 185T). The researches

made by the author upon the efflux of water through overfalls re-

fer the variation of these coefficients of efflux to certain laws, which

will be noticed further on (§ 417).

Example—1) The discharge per second of an overfall, 0,25 meters

wide under a head of water of 0,15 meters is

Q = 0393 . I h V271 = 0,393 . 4,429 . 0,25 (0,15)! == 0,435 . 0,0581

= 0,02527 cubic meters.

'

2) What must be the width of an overfall, which under a head of water

of 8 inches will discharge 6 cubic feet -of water ? Here we have

h _ Q °
== -—TTTr = 3,434 feet." f*W2Tv~ M 8

>
035 V(fy 3,210 . 0,5443

If according to Eytelwein we take ^ = 0,42, we have

1 = 3^^443 = 3
'
371 '

§ 412. Maximum and Minimum Contraction.—When wa-

ter flows through an orifice in a plane surface, the axis of the ori-

fice is at right angles to the wall of the vessel and we have a me-

dium contraction ; if, however, the axis of the orifice or of the

stream forms an acute angle with the portion of the wall of the

vessel containing the aperture, the contraction is smaller, and if

the angle between this axis and the inner surface of the vessel is

obtuse, the contraction is greater. The first case is represented in

Fig. 702 and the second in Fig. 703. This difference of contrac-

tion is, of course, due to the fact that in the former case the

molecules of the water, which are flowing towards the orifices, are
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deviated less, and in the latter case more, from their primitive di-

rection, while passing through this aperture and forming the vein.

The contraction is a minimum, i.e., null, if, by gradually con-

tracting the wall surrounding the orifice, the water is prevented

from flowing in upon the side and, on the contrary, a maximum
when the direction of the wall is opposite to that of the stream, so

that certain molecules must describe an angle of 180 degrees in

Fig. 704.

order to reach the orifice. Both cases are represented in Figures

704 and 705. In the first case the coefficient of efflux is nearly 1,

viz. : 0,96 to 0,98, and in the second case, according to the measure-

ments of Borda, Bidone and of the author, its mean value is = 0,53.

In practice, variations of the coefficients of efflux, produced by
convergent walls, often occur, particularly in the case of sluices,

which are inclined to the horizon, as is shown in Fig. 706. Pon-
celet found for such an orifice the coefficient of efflux \i = 0,80,

when the gate was inclined at an angle of 45°, and, on the contrary,

\i is only — 0,74, when the inclination is 63^ degrees, i.e., for a

Fig. 706. Fig. 707.

D C D

slope of one-half to one. For the overfall, represented in Fig. 707,

where, as in Poncelet's sluice, contraction takes place upon one

side only, the author found [i = 0,70 or \i
x
= § \i = 0,467 for an

inclination of 45°, and ^ == 0,67 or \i
x
= 0,447 for an inclination

of 63 J degrees.

According to M. Boileau (see his Traite de la mesure des eaux
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courantes) we can put for an overfall, which is inclined upwards

in such a way that the horizontal projection is -§ the vertical, or

that the angle of inclination is 71J degrees, the coefficient of efflux

= 0,973 times the coefficient of efflux for an overfall with a vertical

wall. TTe also find from the experiments of Boileau that, for ver-

tical overfalls placed at an angle to the direction of the stream, we
must put, when the angle is 45°, the coefficient of efflux = 0,942

and, when the angle is 65°, only 0,911 times the coefficient of efflux

for the normal overfall ; the whole length of the edge, over which

the water flows, being of course considered as the length of the

orifice.

Example.—If a sluice gate, -which is inclined at an angle of 50 degrees

and closes a trough 2J feet wide, is raised i foot and if the surface of the

water then stands permanently 4 feet above the bottom of the trough, the

height of the orifice is

a 5= \ sin. 50° = 0,3830,

the head of water is

% = 4 _ i
. 0,3830 = 3,8085 feet,

and the coefficient of Telocity is ft = 0,78, hence the discharge is

Q = 0/78 . 2,25 . 0,3830 . 8,025 V3,8085 = 10,52 cubic feet.

§ 413. Scale of Contraction.—TJie more the direction of the

water which flows in from the sides differs from that of the stream,

the greater is the contraction of the vein.

"When a stream flows through the orifice C, Fig. 708, in a plane

thin plate, the angle 6, formed by its axis or direction of motion

Fig. 708.

with that of the molecules of water which flow in from the side, is

a right angle
( ^ )

; when the orifice A is formed by the thin edge

of a tube, this angle 6 is two right angles
(
n

) ; when we have

a conical divergent mouth-piece B, 6 is between ± ~ and rr;

when the discharge takes place through a conical convergent
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month-piece, 6 is between and - ; and when a cylindrical month-

piece E well rounded off internally is used, it is = 0.

In order to discover the law, according to which the contraction

diminishes Yv
Tith the angle d, the author made a series of experi-

ments with a great number of mouth-pieces 2 centimeters wide and

under different pressures (from 1 to 10 feet) ; the results of these

experiments are given in the following table

:

180° 157i 135° 90° 45° 22|-°

0,577 0,632"0,684 0,7530,882 0,924 0,9490,966

This table gives, it is true, only the coefficients of efflux \i .corre-

sponding to different angles of deviation d; the coefficients of

contraction are from 1 to 2 per cent, greater, since a small loss of

velocity always takes place during the efflux. In order to prevent

any loss of vis viva, when the water enters the mouth-pieces D and

E, the latter are rounded off at the entrance. The friction, to be

overcome by the water in passing along the walls of the mouth-

piece, will be determined in the following chapter.

Remake:.—According to the calculations of Prof. Zeuner (see Civilin-

genieur, Yol. 2d, page 55) of the results of the aboye experiments, we can

put
fts
= nkir (1 + 0,33214 {cos. 6y + 0,16672 (cos. c5)

4

)

//j. _ denoting the coefficient of efflux for an orifice in a plane thin plate,

for which the maximum deviation of the elements of the water during efflux

is = f 77=90°, and /^on the contrary, denoting the coefficient of efflux for

an orifice in a conical thin plate, where the maximum deviation of the

elements of the water upon entering is 6.

§ 414. Partial or Incomplete Contraction.—We have as

yet studied only the case, where the water flows in from all sides of

the opening and forms a stream contracted upon all sides ; we must
now consider the case, where the water flows in from but one or

more sides to the orifice, and consequently produces a stream which
is incompletely contracted. In order to distinguish these condi-

tions of contraction from each other, we will call the case, where

the stream is contracted on all sides, complete contraction, and the

case, where the stream is contracted upon a part only of its

periphery, partial or incomplete contraction (Fr. contraction incom-

plete; Ger. unvollstandige or partielle Contraction). Incomplete

contraction occurs whenever an orifice in a thin plane plate is
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surrounded upon one or more sides by a plate placed in the

direction of the stream. In Fig. 709 there are represented four

orifices a, ft, c, d of equal magnitude in the bottom A of a vessel.

The contraction of the water flowing through the orifice a in the

middle of the bottom is complete, for in this case the water can

flow in from all sides ; the contraction of the stream in passing

through ft, c or cl is incomplete, for the water in these cases can

flow in from only three, two or one side. In like manner,

when a rectangular lateral orifice extends to the bottom of the

vessel, the contraction is incomplete ; for that upon the side of the

base is wanting ; if further the opening extend to the bottom and

sides of the trough, there will be contraction upon one side only.

Incomplete contraction manifests itself in two ways. First, it

gives an inclined direction to the stream ; and secondly, it causes a

greater discharge.

Fig. 709. Fig. 710. -

t

c

.

d

,i

If, e.g., the lateral orifice F, Fig. 710, reaches to the bottom

O I), so that no contraction can take place there, the axis F G of

the stream will form an angle H F G of about 9 degrees with the

normal F H to the plane of the orifices. This deviation of the

stream becomes much greater when two adjoining sides are con-

fined. If the orifice has a border upon two opposite sides, the con-

traction at those points is thereby prevented, and this deviation of

the stream does not take place, but at a certain distance from the

orifice the stream becomes wider than it would have done, if it had

not been confined upon those sides. Although a greater discharge

is obtained when the contraction is incomplete, yet it is generally to

be avoided, since it is always accompanied by a deviation in the

direction and by a great increase in the width of the stream.

Experiments upon the efflux of water, when the contraction is

incomplete, have been made by Bidone and by the author.
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Their results show that the coefficient of efflux increases very

nearly with the ratio of the length of the border to the entire peri-

phery of the orifice ; but it is easy to perceive that this relation is

different, when the periphery is nearly or entirely surrounded by a

border, in which case the contraction is almost or totally done away

with. If we put the ratio of the portion with a rim to the entire

periphery = n and denote by k an empirical quantity, we can put,

approximatively, the ratio of the coefficient n-n of efflux for incom-

plete contraction to the coefficient ^ for complete contraction

Li — i + % n
}
and consequently \l

9
— (1 + k, n) \i .

Bidone's experiments gave for small circular orifices ic = 0,128,

and for square ones k = 0,152 ; those of the author gave for small

rectangular orifices re. =0.134, and for larger ones (Poncelet's mouth-

pieces) 0,2 meter wide and 0,1 meter high tc = 0,157 (see the Maga-

zine "der Ingenieur," vol. 2d). In practice rectangular orifices

with rims are almost the only ones employed ; we will assume for

them, as a mean value, k = 0,155, and consequently put

fin = (1 + 0,155 n) j» .

For a rectangular lateral orifice, whose height is a and whose

width is 1). we have n — ttv tt? when there is no contraction
2 (a + b)

upon the side l, if, e.g., this side is upon the bottom ; n = 4, when

one side a and one side Z> are provided with rims ; and n = r-7 tt,1
2 (a + b)

when the contraction is prevented upon the side b and upon the

two sides a, the latter case occurs, when the orifice occupies the

entire width of the reservoir and extends to the bottom.

Example.—What is the discharge through a vertical sluice 3 feet wide

and 10 inches high, when the head of water is 1A- feet above the upper

edge of the orifice and the lower edge is at the bottom of the trough, so

that there is no contraction upon that side ? The theoretical discharge is

§ = {|;3. 8,025 VI,5 + fV = I • 8
>
035 Vl,9166 = 27,77 cubic feet.

According to Poncelet's table for perfect contraction /a = 0,604, but

we have
3 9

Q
71 ~

2 (3 + if)
~ 18 + 5 ~ **'

hence for the present case of incomplete contraction

fin = (1 + 0,155 . ?%) . 0,604 = 1,060 . 0,604 = 0,640

and the effective discharge is

Q = 0,640 Q = 0,640 . 27,77 = 17,77 cubic feet
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§ 415. Imperfect Contraction.—The contraction of the vein

depends also upon this fact, viz, : whether the water is sensibly at

rest in front of the orifice or whether it arrives there with a certain

velocity ; the faster the water approaches the orifice of efflux, the

less the stream is contracted, and consequently the greater is the

discharge. The various relations of contraction and efflux, given

and discussed in what precedes, are applicable only where the ori-

fice is m a large wall, in which case we can assume that the water

arrives at the orifice with a very small velocity ; we must now
investigate the relations of contraction and efflux, when the cross-

section of the orifice is not much smaller than that of the approach-

ing water, in which case the water arrives with a velocity, which is

not neghgable. In order to distinguish these two cases from each

other, let us call the contraction which occurs, when the water

above the orifice is at rest, perfect contraction and that which

occurs, when the water is in motion, imperfect contraction (Fr, con-

traction imparfaite ; . Ger. unvollkommene Contraction). The

contraction during efflux from the vessel A C, Fig. 711, is imper-

fect ; for the cross-section F of the orifice is not
Fig. 711. much smaller than that G of the water approach-

es b ing it or the area of the wall C D, in which thisMllii!*
y j

'? |

orifice is placed. If the vessel was of the form
'

:.
.'!

| i.

i!

i} A B C1 D x and the area of the base Cx DA was
',

I ; ;

l

'J much greater than that of the orifice F, the

^\ipi;f : efflux would take place with perfect contraction.

fcftfjtm i The imperfectly contracted stream is distm-

'

|§|p Q-~CX guished from the perfectly contracted one not

ail only by its size, but also by the fact that it is not

so transparent and crystalline as the latter is.

If we denote the ratio of the area F of the orifice to that G of

W
the wall in which it is situated, or -^r, by n, the coefficient of efflux for

perfect contraction by fi and that for imperfect contraction by fin,

we can put with great accuracy, according to the experiments and

calculations of the author,

1) for circular orifices

fin = fi [1 + 0,04564 (14,821" - 1)],

2) and for rectangular orifices

lin = (i [1 + 0,0760 (9" -1)]*

* Experiments upon the imperfect contraction of water, etc., Leipzig, 1843.
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In order to facilitate the calculations which are required in

practice, the corrections — of the coefficient of efflux in con-

sequence of the imperfect contraction have been arranged in the

following tables

:

TABLE I.

The corrections of the coefficients of effluxfor circular orifices.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

Un ~ U
0,007 0,014 0,023 0,034 0,045 0,059 0,075 0,092 0,112 0,134

n 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

Vn — fJ- a

00

0,161 0,189 0,223 0,260 0,303 0,351 0,408 0,471 0,5460,631

TABLE II.

The corrections of the coefficients of effluxfor rectangular orifices.

n 0,05 0,10 0,15 0,20 0,25' 0,30 0,35 0,40 0,45 0,50

U-n — /"o 0,009 0,019 0,030 ft 049. 0,056 0,071 ft ftSS 0,107 0,128 0,152
N

n 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

U-n — £i„

0,178 0,208 0,241 0,278 0,319 0,365 0,416 0,473 537 0,608
#0

The upper lines in these tables contain various values of the

F
ratio -^r of the cross-sections, and immediately below are the corre-

sponding additions to be made to the coefficient of efflux on account

of the imperfect contraction, E.G., for the ratio n — 0,35, i.e., for

the case, where the area of the orifice is 35 hundredths of the area

of the entire wall, in which the orifice is made, we have for a cir-

cular orifice jin — /n

!h
0,075,

and for a rectangular one == 0,088 ; the coefficient of efflux for



842 GENERAL PRINCIPLES pF MECHANICS [§ 416.

perfect contraction must be increased in the first case 75 thou-

sandths and in the second 88 thousandths, when we wish to obtain

the corresponding coefficient of efflux for imperfect contraction.

If the coefficient of efflux were = 0,615, we would have in the

first case

iu035 = 1,075 . 0,615 = 0,661

and in the second case

fi0>35 = 1,088 . 0,615 = 0,669.

Example.—What is the discharge through a rectangular lateral orifice

F, which is 1| feet wide and \ foot high, when it is cut in a rectangular

wall C D, Fig. 712, 2 feet wide and 1 foot high, and when the head of

water EH = 7a., where the water is at

rest, is 2 feet. The theoretical dis-

charge is

Q = 1,25 . 0,5 . 8,025 v2
= 5,0156 , 1,414 = 7,092 cubic feet,

and the coefficient of efflux for perfect

contraction is, according to Poncelet,

N = 0,610,

but the ratio of the cross-sections is

F _ 1,25 . 0,5

G 2. 1

= 0,312 we have, according to Table II, page 841.

= 0,071 + f| (0,083 - 0,071) = 0,071 + 0,004 0,075

hence the coefficient of efflux for the present case is

,«o,3i2 = 1..075 , fx = 1,075 + 0.610 = 0,6557.

and the effective discharge is

Qr = 0,6557 . Q = 0,6557 . 7,092 = 4,65 cubic feet

§ 416- EfSux of Moving "Water.—"We have heretofore

assumed that the head of water was measured hi still water ; we

must now discuss the case where the head of water can be meas-

ured only in water, which is approaching the orifice with a certain

velocity. If we assume the orifice to be rectangular and denote

the width by b, the head of water in reference to the two horizon-

tal edges by Z>, and h* and the height due to the velocity of ap-

proach c of the water by k, we have the theoretical discharge

Q = I & *®g [(*« + *)t - (h, + *)§].

This formula cannot be directly employed for the determination

of the discharge, since the height due to the velocity

& 1 IQ

%g %gw
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depends also upon Q, and, if we transform it, we obtain a compli-

cated equation of a high degree ; it is much simpler, therefore, to

put the effective discharge

Qi = \i
i a 1) V2 g h

and to understand by ps not a simple Coefficient of efflux, but a co-

efficient depending principally upon the ratio of the cross-sections.

This case is often met with in practice, e.g., when we wish to

measure the quantity of water which passes through a ditch or

canal ; for we can seldom dam up the water by means of a trans-

verse wall B C, Fig. 713, to such a height that the area F of the

orifice, through which the water

is discharged, will be but a small

fraction of the cross-section of the

stream which approaches it, and

it is only in the latter case that

the velocity of approach is very

small compared to the mean ve-

locity of efflux.

In the experiments made by the author with Poncelet's orifices

the head of water was measured 1 meter back from the plane of the

orifice ; they gave

Fig. 713.

ft
0,641

(J)
= 0,641

G
denoting the ratio of the cross-sections, which should not

be much greater than 4, ££ denoting the coefficient of efflux for

perfect contraction, taken from Poncelet's table, and /^ the coeffi-

cient of efflux for the present case. Let b be the width and' a the

height of the orifice, 'h l
the width and a{

the depth of the stream

of water and 7i the depth of the upper edge of the orifice below the

level of the water, then we have the effective discharge

Qi
= ^.al[i + 0,641 (||)

8

]
\f%7(h + |).

The following table is useful in abridging calculations in practice.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

fJ-n — ,«

0,002 0,006 0,014 0,026 0,040 0,058 0,079 0,103 0,130 0,160

Example.—In order to find the amount of water brought by a ditch 3

feet wide, a transverse wall, containiug a rectangular orifice 2 feet wide and
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1 foot high is put in it, and the water is thus raised so that, when its level

becomes constant, it is at a distance of 2i above the bottom and If feet

above the lower edge of the orifice. The corresponding theoretical dis-

charge is

'Q = ah \IZ~gli = 1,2. 8,025 VT,25 = 10,05 . 1,118 = 17,94 cubic feet.

As the coefficient of efilux for perfect contraction is 0,602 and the ratio

of the cross-sections is

_ E- - —- 1 • 2
71 ~~

~G
~~

aj>~ ~ 2,25 , 3

we have the coefficient of efilux in the present case

tin =(l + 0,641 . 0,296
2

) fi = 1,056 . 0,602 = 0,6357,

and the effective discharge

Q±
= 17,94 . 0,6357 = 11,4 cubic feet.

§ 417. The contraction is also imperfect when water is dis-

charged through overfalls (like that in Fig. 714), if the cross-

0..

Fig. 714
section F of the stream pass-

ing over the sill C is a notable

fraction of the cross-section G
of the approaching water. The
overfall may extend over but

a portion or over the whole of

the canal or ditch. In the

latter case, as there is no contraction upon the sides of the orifice,

the discharge is greater than through orifices of the first kind.

The author has made experiments upon these cases of efflux and

deduced from the results obtained formulas, by means of which the

coefficient of efflux can be calculated with sufficient accuracy, when
jp

the ratio n — 77- of the cross-sections is known.

Let h be the head of water EH above the sill of the overfall,

a x the total depth of water, h the width of the overfall, and b x
that

of the approaching water ; we have then

n
F lil .

Gr a x 0i

1) for Poncelefs overfall

= 1,718
Ih a)' 1,718 n"

on the contrary,

2) for an overfall occupying the lohole width of the ditch or trough

^~ Mo = 0,041 + 0,3693 ?z
2

;
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hence the discharge in the first case is

a = i ft .

»
[i + 1,718

(
~~y ] v%jw,

and in the second case,

'

ft = | ft; * [l,041 + 0,3693 (
Aj

2

J
^^

& denoting the head of water EH above the sill F of the overfall,

measured at a point about one meter back of it.

In the following tables the corrections ———
° for the simplest

ft

values of n are given.

TABLE I.

Corrections of the coefficients of effluxfor Poncelefs overfalls.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

Vn — H ()

0,000 0,000 0,001 0,003 0,007 0,014 0,026 0,044 0,070 0,107

TA.BLE II.

Corrections for overfalls extending over the entire width, or without lateral

contraction.

n 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50

!4a — M„

^0
0,041 0,042 0,045 0,049 0,056 0,064 0,074 0,086 0,100 0,116 0,133

Example.—In order to determine the amount of water carried by a

canal 5 feet wide, we place in it a transverse partition with the upper edge

beveled outwards and we allow the water to flow over this. After the

upper water had ceased to rise, thte height of its surface above the bottom

of the canal was 3|- feet and above the sill 1£ feet ; the theoretical dis-

charge was therefore

Q = | . 5 . 8,0"(!)•- 49,14 cubic feet.

1,5
The coefficient of efflux is in this case, since — = ^- —

f-
and fx = 0,577,

a j o,5

,H = [1,041 + 0,3693 (f)
2
] . 0,577 = 1,110 . 0,577 = 0,64,

and therefore the effective discharge is

Q t
= 0,64 . Q = 0,64 . 49,14 = 31,45 cubic feet.
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§ 418. < Leshros's Experiments.—We are indebted to Mons.

Lesbros for a great number of experiments upon the efflux of wafer

through rectangular orifices in a thin plate; the crifipes, being

provided internally and externally with rims, afforded examples of

both partial and incomplete contraction (see his " Experiences hy-

drauliques sur les lois de l'ecoulement de l'eau"). We will give

here only the principal results of his experiments with a rectangu-

lar orifice 2 decimeters wide. The orifices, which were surrounded

with borders of different kinds, are distinguished from each other

in Fig. 715 by the letters A, B, C, etc.

Fig. 715.

G

_

II

A denotes the ordinary mouth-piece without any rim or border

(as in § 410)

;

B denotes a similar mouth-piece with a vertical wall upon the

inside perpendicular to the plane of the orifice and at a distance

of 2 centimeters from one side of it

;

C denotes the first mouth-piece enclosed on the inside by two

such walls

;

B the orifice A, provided on the inside with two vertical walls,

which converge towards each other at an angle of 90° and cut

the plane of the orifice at an angle of 45° and at a distance of

2 centimeters from the side of it

;

E the orifice A with a horizontal wall, which passes across the

reservoir and reaches exactly to the lower edge of the orifice

;

F the orifice B,

G the orifice C, and

H the orifice B with a horizontal rim or wall, as in E. which

completely prevents the contraction at the lower edge of the

orifice.



§ 418.] CONTRACTION OF THE YEIN OR JET OF WATER. 847

TABLE OF THE COEFFICIENTS OF EFFLUX FOR FREE EFFLUX
THROUGH THE ORIFICES A, B, C, ETC.

er

above

edge

of

measured

:he

plane

:e. U3
Coefficient of efflux for the orifices.

Ill If
3
O

Head the
thee back ofth

'5 A B C D E F G
1

Meters. Meters.

0,020 \ , 0,572 0,587 — 0,589 o.599 — —
0,050 0,585 o,593 0,631 o,595 0,608 0,622 — 0,636
0,IOO o,59 2 0,600 0,631 0,601 0,615 0,628 0,639

0,200 0,598 0,606 0,632 0,607 0,621 0,633 0,708 o,643|

0,500 -0,200 - 0,603 o
;
6io 0,631 0,611 0,623 0,636 0,680 0,644;

I,000 0,605 0,611 0,628 0,612 0,624 0,637 0,676 0,642

1,500 0,602 0,611 0,627 0,611 0,624 0,637 0,672 0,641

2,000 0,601 o,6io 0,626 0,611 0,619 0,636 0,668 0,640

3,000 •* V 0,601 0,609

0,627

0,624 0,610 0,614 0,634 0,665 o,63 8|

0,67s;0,020 0,616 0,647 0,631 0,664 0,663

0,050 0,625 0,630 0,646 0,632 0,667 0,669 0,690 0,677

0,100 0,630 0,633 0,645 0,633 0,669:0,6740,688 0,677

0,2 00 0,631 0.635 0,642 0,633 0,6700,6760,687 0,675

0,500 " 0,050 < 0,628 0,634 0,637 0,632 0,6680,676 0,682 0,671

1,000 0,625 0,628 0,635 0,627 0,666 0,672 0,680 0,670

1,500 0,619 0,622 0,634 0,621 0,665^,670 0,678 0,670

2,000 0,613 0,616 0,634 0,615 o,664 ! o,67o 0,674 0,669

3,000 J v. 0,606 0,609 0,632 0,608 0,662 0,669 0,673 0,668
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II.

TABLE OF THE COEFFICIENTS OF EFFLUX THROUGH THE ORI-

FICES A, B, C, ETC.,

With external shoots or uncovered canals of the same dimensions as

the orifice (Fr. cananx de fuite ; Ger. anssere Ansatzgerinnen).

The shoots fitted the orifice exactly, and consequently the bev-

eling of the sides and bottom of the month-piece was done away

with. They were either horizontal and 3 meters long or (in the

experiments marked with *) inclined ^ of their length, which was

but 2,5 meters.

y o a

! " o £ „;

u 3Jlo
° S 3 s

ragS!
CJ 3 5 &

Meters.

0,020

0,050

j 0,100

I

0,200

0,500

1,000;

1,500

2,000|

3,000

Coefficients of efflux for the orifices.

Meters.

> 0,200 -

B G E E*

0,480,0,489 0,496

0,5110,517,0,531

0,542 0,545 0,563

o,574

0.599

0,601 0,609 0,628

0,601 0,6100,627

o,6oi!o,6iojo,626

o,6oijo,6o9 0,624

0,480,0,527

°>5iojo,553 0,509

0,538,0,5740,534

n 0,566:0,59210,562

0,592,0:6070,591

F* G G

0,546 0,528

0,602 0,621

o,6oo'o,6iO;0,6oi

0,602 0,610

0,602 0,609

0,604

0,604

0,020
*->

0,050

0,100

0,200

0,500 0,050 <

1,000

1,500

2,000

3,000 J

r ,0,4880,555

0,577 0,600

0,624 0,625

0,6310,633

0,601 0,6080,602

0,569 0,560.0,593

0,617

0,632

0,638

0,589

0,608

0,589

o,59i

0,615 0,601

0,617 0,604

H

0,617

0,616

0,557,0,487

0,6030,571

0,628 0,605 °}^3 20,609

0,637.0,617

0,604

0,602

0,641

0,642

0,641

0,488

0,520

0,552

0,582

0,613

0,623

0,624

0,624

0,622

0.585 0,483 o,579|0,5 12 - 0,494

0,6140,5700,61^0,582,0,62510,577

0,628,0,621:0,639 0,616

0,643.0,6370,649:0,629

10,625 0,630

50,624 0,627

0,6350,626

0,63s 0,62s

0,619 0,622 0,634 0,627

0,6340,623

0,632 0,618

0,613 0,616

[ 0,606 0,609

0,645,0,623

0,6520,630 0,650 0,647 0.656 0,636

0,651 0,633 v- 6 ^ 1 0,6490,656 0,638

0,650 0,632 0,651 0,647)0,6560,637

0,650 0,631 0,651 0,644*0,656 0,635

0,649 0,628 0,651 o.639
!

o,656 0,632
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Example.—What is the discharge through an orifice 2 decimeters

wide and 1 decimeter high, when the lower edge is 0,35 meters below the

level of the water and upon a level with the bottom of the vessel, 1) for

free efflux, and 2) for efflux through a short horizontal shoot ? We have

in this case the orifice E, aud the head of water above the upper edge is

= 0,35 — 0,10 = 0,25 meters. Table I gives, when the. head is = 0,20 and

the height of oriice = 0, 20, the coefficient of efflux ft = 0,621, and, on

the contrary, when the height of the orifice is = 0,05 meters, ft = 0,670

;

hence for the first case of the problem we can put

0,621 + 0,670
ft
= = 0,645.

Table II gives, on the contrary, by interpolation, for a head of water

0,25 meters above the upper edge of the orifice, the following values for ft.

0,566 + & (0,592 — 0,566) = 0,570, and

0,617 + £> (0,626 - 0,617) = 0,619;

hence in the second case we can put

0,570 + 0,619
ft
= g = 0,594.

The cross-section of the orifice is

F—al = 0,20 . 0,10 = 0,020 square meters;

the mean head of water is

h = 0,350 — 0,050 = 0,300 meters

;

and, consequently, the theoretical discharge is

Q = F \/¥gli = 0,02 V2 . 9,81 . 0,3 = 0,02 V5,886

= 0,02 . 2,425 =0,0485 cubic meters.

The effective discharge is in the first case

Q t
= fi x Q = 0,645.0,0485= 0,0313 cubic meters,

and, on the contrary; in the second case, i.e., when a shoot is added,

Q = fi 2 Q = 0,594 . 0,0485 = 0,0288 cubic meters.

According to the formula ftn = (1 + 0,155 n) fi Q
of § 414, we can put for

efflux with partial contraction fia = ft y = (1 + 0,52) // = 1,052 ft , since

|. = i. of the periphery of the orifice is surrounded by a border. But for

such an orifice with complete contraction we have, according to Table I,

page 831, fi = 0,616 ; hence

Hk
= 1,052 . 0,616 = 0,648,

and the discharge is

Q t
= fi% Q = 0,648 . 0,0485 = 0,0314 cubic meters,

i.e., a little greater than that obtained by employing Lesbros's table.

§ 419. M. Lesbros has also experimented upon efflux through

overfalls, employing the same orifices A, B, C, etc., but not allow-

ing the water to rise to the upper edge of the orifice. The principal

results of these experiments are to be found in the following tables..

54
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TABLE I.

Table of the coefficients of efflux (| fi) for free efflux through

overfalls or notches.

Head of water Coefficients of efflux for the orifices.

above the sill,

measured where
i

_^» ^ • —
the water is still. A B G D E F G

Meter.

0,015 0,421 0,450 0,450 0,441 o,395 o,37i 0,305

0,020 0,417 0,446 o,444 o,437 0,402 o,379 0,318

0,030 0,412 o,437 o,435 0,430 0,410 0,388 0^337

0,040 0,407 0,430 0,429 0,424 0,411 o,394 o,352

0,050 0,404 0,425 0,426 0,419 0,411 0,398 0,362

0,070 0,398 0,416 0,422 0,412 0,409 0,402 o,375

0,100 o,395 0,409 0,420 0,405 0,408 0,405 0,382

0,150 0,-393 0,406 0,423 0,403 0,407 0,407 0,383
0,200 o,390 0,402 0,424 0,403 0,405 0,408 0,383
0,250 o,379 0,396 0,422 0,401 0,404 0,407 0,381

0,300 o,37i 0,390 0,418 o,398 0,403 0,406 o,378
i

Table of

TABLE II.

coefficients of efflux (f fi) for efflux through weirs ivith

short shoots or open canals.

[Head of wa-
ter above the

Coefficients of effl jx for the orifices.

sill, measur-
ed where the

'water 1;- still. A B G D E F G //

Metei.

i 0,015 o,375 0,388 0,400 — — .

—

|

0,020 0,196 0,368 0,383 o,395 0,208 0,201 o,i75 0,190
;

;030 0,234 0,358 o,373 0,385 0,232 0,228 0,205 0,222|

0,040 0,263 o,35i 0,365 o,379 0,251 0,250 0,234 0,250

0,050 0,278 0,346 0,360 o,375 0,268 0,267 0,260 0,272!

0,070 0,292 o,343 0,352 o,37i 0,288 0,289 0,285 296 1

0,100 0,304 0,340 o,345 0,369 0,302 0,304 0,299 0,3I3|

0,150 0,315 o,335 0,340 0,367 0,314 0,3l6 0,313 o,3 2
7j

0,200 0,319 0,331 0,338 0,366 0,323 0,32 2 0,322 o,335

0,250 0,321 0,328 0,336 0,364 0,329 0,326 0,329 o,34i

0,300 0,324 0,326 o,334 0,361 0,332 0,329 0,332 o,345

A comparison of the coefficients in Table I and Table II shows

that the discharge through orifices provided with shoots is smaller

than that through those without them, and that the difference is

greater, the smaller the head of water is ; we also see, by comparing
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the columns C and C*, E and E*, F and F*} and G and G* in the

tables of the last paragraph, that the inclined shoot creates less dis-

turbance in the efflux than the horizontal one.

Remark 1.—A different theory of the efflux of water is advanced by G.

Boileau in his " Traitc sur la mesure des eaux courantes." According to

it the velocity of the effluent water is the same at all parts of the cross-sec-

tion and depends upon the depth of the upper limiting line of the vein at

the plane of the orifice below the level of the water in the reservoir.

Boileau employs the same formula for overfalls, in which case he must

know of course the height of the stream in the plane of the orifice. Later,

in the 12th volume of the 5th series of the Annales des Mines, 1857, M.

Clarinval has given another formula for efflux through overfalls in which no

empirical number /i appears, but instead of f ft he substitutes the factor

a y
in which h denotes the head of water and a the thickness of

V2 (A3 - ay
the stream above the sill of the overfall. See the " Civilingenieur,'' Vol.

5th. I consider the hypothesis upon which this formula is based to be

incorrect.

Remark 2.—Mr. J. B. Francis gives in his work " The Lowell Hydraulic

Experiments, Boston, 1855," the following formula for efflux through a

wide overfall or weir.

Q = 3,33 (I — 0,1 n h) English cubic feet,

in which h denotes the head of water above the sill of the weir, I its length,

and n either or 1 or 2, according as the contraction of the vein is pre-

vented upon both, one or none of the sides. Since for the English system

of measures

V2~ff = 8,025,

we have

The experiments, upon which this formula is based, were made with

weirs 10 feet wide and. under heads of water from 0,6 to 1,6 feet. The edge

of the weir was formed of an iron plate beveled down stream, the reservoir

was 13,96 feet wide, and the sill was 4,6 feet above its bottom. See the

Civilingenieur, vol. 2, 1856.

Bakewell's experiments upon efflux through weirs or overfalls give

results differing in some respects from the above. (See Polytech. Central

Blatt, 18th year, 1852.)

Remark 3.—At the sluice-gate of the wheel at Remscheid, Herr Ront-

chen found fi = 0,90 to 0,93.. See Dingler's Journal, Vol. 158.

A new edition of Mr. J. B. Francis' work has been recently published by

D. Van Nostrand, New York.— [Tb.]
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CHAPTER III.

OF THE FLOW OF WATER THROUGH PIPES.

§ 420. Short Tubes.—If we allow the water to discharge

through a short tube, or pipe, called also an ajutage, (Fr. tuyau

additionel ; Ger. kurze Ansatzrohre), the condition of affairs is

entirely different from that existing, when the water issues from

an orifice in a thin plate or from an orifice in thick wall, which is

rounded off on the outside. If the short tube is prismatic and 2^
to 3 times as long as wide, the stream is uncontracted and non-

transparent and its range and consequently its velocity is smaller

than when it issues, under the same circumstances, from an orifice

in a thin plate. If, therefore, the tube K L has the same cross-

section as the orifice F, Fig. 716, and if the head of water is the

Fig. 716.

same for both, we obtain at R L a troubled and uncontracted or

thicker stream and at FH a clear and contracted or thinner one

;

we can also see that the range E R
Fm - m -

is smaller than the range D H.

This condition of efflux exists only

when the length of the tube is the

given one ; if the tube is shorter,

e.g. as long as wide, the vein K R,

Fig. 717, does not touch the sidss

of the tube, the latter has then no

influence upon the efflux, and the

stream issues from it as from an

orifice in a thin plate.

Sometimes it happens, when the length of the tube is greater,
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Fig. 718.

that the stream does not fill it ; this occurs when the water has

no opportunity of coming in contact with the sides of the tube
;

if in this case we close for an instant the outside end of the tube

with the hand or with a board, the stream will fill the tube and we
have the so-called discharge of a filled tube (Fr. a gueule bee

;

Ger. voller Ausfluss). The vein is contracted in this case also, but

the contracted portion is within the tube. We can satisfy our-

selves of this by employing glass tubes like K L, Fig. 718, and by

throwing small light bodies

into the water. Upon so do-

ing, we observe that near the

entrance K there is a motion

of translation in the middle of

the cross-sectionF1} but that,

on the contrary, at the peri-

phery of the same the water

forms an eddy. It is, however,

the capillarity or adhesion of

the water to the walls of the tube, which causes it to fill the end FL
of the tube completely. The pressure of the water discharging

from the tube is that of the atmosphere, but the contracted cross-

section Fx
is only a times as great as that F of the tube ; the

velocity vx at that point is therefore - times as great as the velocity

of efflux v and the pressure of the water at Fx is smaller than that

at the end of the tube, which is equal to the pressure of the atmo-

sphere. If we bore a small hole in the pipe near Fx no water will

run out, but air will be sucked in and the discharge with a filled

tube ceases, when the hole is enlarged or when several of them are

made. We can also cause the water in the tube A B to rise and

flow through the tube K L by making it enter the latter at Fv

The discharge with a filled tube ceases for cylindrical tubes, when

the head of water attains a certain magnitude (see § 439, Chap. IV).

§ 421. Short Cylindrical Tubes.—Many experiments have

been made upon the efflux of water through short cylindrical tubes,

but the results obtained differ quite sensibly from each other. It

is particularly Bossut's coefficients of efflux which differ most from

those of others by their smallness (0,785). The results of the ex-

periments Michelotti with tubes 11
;

to 3 inches in diameter, under

a head of water varying from 3 to 20 feet, gave as a mean value
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\i ~ 0,813. The results of the experiments of Bidone, Eytelwein

and d'Aubuisson differ but little from those of the latter. But,

according to the experiments of the author, we can adopt for short

cylindrical tubes as a mean value \i = 0,815. Since we found this

coefficient for an orifice in a thin plate = 0,615, it follows that,

when the other circumstances are the same, %\\ = 1,325 times as

much water is discharged through a short pipe as through an ori-

fice in a thin plate. These coefficients increase, when the diameter

of the tube becomes greater and decrease a little, when the head

of water or the velocity of efflux increases. According to some,

experiments of the author's, made under heads varying from 0,23

to 0,6 meters, we have for tubes 3 times as long as wide

When the width is 1 2 3 4 centimeters.

fi = 0,843 0,832 0,821 0,810

According to this table the coefficients of efflux decrease sensi-

bly as the width of the tube increases. In like manner Buff found

with a tube 2,79 lines wide and 4,3 lines long that the coefficient

of efflux increased gradually from 0,825 to 0,855, when the head

of water decreased from 33 to 11 inches.

For the efflux of water through sliort parallelopipedical tubes

the author found the coefficient to be 0,819.

If the short tube K L, Fig. 719, is partially surrounded by a

border or rim in the inside of the vessel, if, E.G., one of its sides

is flush with the bottom GD of the vessel and if partial contrac-

tion is thus produced, according to the experiments of the author,

the coefficient of efflux is not sensibly increased, but the water

Fig. 719.

iiip|B
Fig. 720.
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moves with different velocities in different parts of the cross-sec-

tion, viz., upon the side G more quickly than upon the opposite one.

If the face of the tube is not in the surface of the plate but

projects into the vessel, like E, F, 67, Fig. 720, it is then called an

interior sJiort tube. If the face of the tube is at the least 5 times as

wide as the bore of the tube, as at JEJ, the coefficient of efflux remains

the same as if the face were in the plane of the wall, but if the

face of the tube is smaller, as at F and 67, the coefficient of efflux

is smaller. According to the experiments of Bidone and of the

author, if the face is very small, it is 0,71, when the stream fills the

tube ; on the contrary, it is = 0,53 (compare § 113), when it does

not touch the internal surface of the tube. In the first case (F)

the stream is troubled and divergent like a broom, but in the.

second (G) it is compact and crystalline.

§ 422. Coefficient of Resistance.—Since the stream of water

issues from a short prismatical tube without being contracted, it

follows that the coefficient of contraction of this mouth-piece a —
unity and that its coefficient of velocity = its coefficient of efflux \i.

The vis viva of a quantity of water Q, which issues with a velocity

Q y m iy
v, is —- v

2
, and its energy is —- Q y (see § 74). But the theoreti-

9 *> 9
v

cal velocity of efflux is —, and therefore the theoretical energy of

the water discharged is — .
—- . Q y. Hence the loss of energy

9 A
(J

of the quantity Q of water during the efflux is

For efflux through orifices in a thin plate, the mean value of

6 is 0,975 ; hence the loss of energy is

[(tssJ- *]£«* = o,o53 |l Qri

for efflux through a short cylindrical pipe, on the contrary, <p —
0,815, and the corresponding loss of energy is

I.E., nearly 10 times as much as for efflux through an orifice in a

thin plate. Consequently if the vis viva of the water is to be made

use of, it is better to allow it to flow through an orifice in a thin

plate than through a short prismatical tube. If, however, we:

L\ 0,815/
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round off the edge of the tube, where it is united to the interior

surface of the vessel, so as to produce a gradual passage from the

vessel into the tube, the coefficient of efflux is increased to 0,9G

and at the same time the loss of energy is reduced to 8^ per cent.

For short tubes or ajutages, which are rounded off or shaped inter-

nally like the contracted vein, we have \i — cf> = 0,975, and the

loss of mechanical effect is the same as it is for an orifice in a thin

plate, viz., 5 per cent.

The loss of mechanical effect
(
—j —

1
J — Q y corresponds to a

head of water ( —= — 1 )
-— ; we can therefore consider that the loss

\0 /%g'

of head due to the resistance to efflux isG -
')

V
*9

and we can

)
^~ > which increases with the square

assume that, when this loss has been subtracted, the remaining por-

tion of the head is employed in producing the velocity.

/I
This loss 3 = (

—
\0

2

/ *g
of the velocity, is known as the height of resistance (Fr. hauteur

de resistance ; Ger. Widerstandshohe) and the coefficient — — 1,

by which the head of water must be multiplied in order to obtain

the height of resistance, is called the coefficient of resistance. Here-

after we will denote this coefficient, which also gives the ratio of

the height of resistance to the head of water, by £ or the height

v"
of resistance itself by z = £ . ^. By means of the formulas

? = 1 and

<P
=

ifilffliiiii

we can calculate from the coefficient

of velocity the coefficient of resistance,

or the latter from the former.

If the velocity of efflux v is the

same, the head of water of an orifice

K, Fig. 721, whose coefficient of resist-

ance is is h =
%g

and the head

ofwater of the orifice L, through which

the water flows with this theoretical
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velocity, is li x
= —, consequently the first orifice must lie at a dis-

tance K L = z — li — h, = (--- — l) ^*L = £ S~ below the second
\ / 2 ff 2 g

one. This distance z is called the height of resistance. If they

have the same cross-section i^and there is no contraction at either

orifice, the discharge Q = F v is the same for both.
,

Example—1) What is the discharge under a head of water of 3 feet

through a tube 2 inches in diameter, whose coefficient of resistance is

£ = 0,4. Here

(p = - = 0,845 ; hence
Vl,4

v = 0,845 . 8,025 V3 = 11,745 feet;

F = (^)
2 - = 0,02182 square feet,

and consequently the required discharge is

Q = 0,02182 . 11,745 = 0,256 cubic feet,

2) If a tube 2 inches wide discharges under a head of 2 feet 10 cubic

feet of water in a minute, the coefficient of efflux or velocity is

$ = ?= == — = L_ = 0,673,
F\l2,gh 60 . 0,02182 . 8,025 V 2 1,05 V 2

the coefficient of resistance f = (_—_\ — 1 = 1,208,

and the loss of head, caused by the resistance of the tube, is

' = f
ft =

1
'
308

•£ = 1
'
208

•
°'°155 (!)' = °.°187

- «* = L093 fet -

§ 423. Inclined Short Tubes or Ajutages.—When the

tubes are applied to the vessel in an inclined position or when
they are cut off obliquely to the axis, the discharge is less than

Fig ,*?.2
when they -are inserted, into the vessel at

right angles or cut off at right angles to

their axis ; for in this case the direction of

the water is changed. The author's extended

experiments upon this subject have led to

the following conclusions. If 6 denotes the

angle L KN, formed by the axis of the tube

K L, Fig. 722, with the normal K N to the plane A B of the

orifice, and if £ denotes the coefficient of resistance for tubes cut

off at right angles, we have for the coefficient of resistance of in-

clined tubes
£•= £ + 0,303 sin. 3 + 0,226 sin.' el

Assuming for £ the mean value 0,505, we obtain
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for 5° = O 10 20 30 40 5o 60 deg.

the coefficients of

resistance £ L
—

the coefficient of
efflux ijl ± =

0,505

0,8l5

0,565

0,799

0,635

0,782

0,713

0,764

o,794

o,747

0,870

o,73 r

I

o,937

0,719

Hence, e.g., the coefficient of resistance of a short tube, the

angle of deviation of whose axis is 20°, is £ = 0,635 and the coeffi-

cient of efflux is

ft Vl,635
= 0,782,

and, on the contrary, when the deviation is 35°, the former is

= 0,753 and the latter = 0,755.

These inclined tubes are generally longer than those we have

previously considered, and they must be longer when they are to

be completely filled with water. The foregoing formula gives only

that part of the resistance due to the short tube at the inlet

orifice, that is, three times as long as the tube is wide. The resist-

ance of the remaining part of the tube will be given further on.

Example.—If the j3laiie of the orifice A B of the discharge-pipe K L<

Fig. 723, as well as the inside slope of the dam, is inclined at an angle of 40°

to the horizon, the axis ofthe tube

will form an angle of 50° with

that plane ; hence the coefficient

of resistance for efflux through

the entrance of this pipe is C =
0,870, and if the coefficient of re-

sistance for the remaining longer

portion is 0,650, we have the coefficient of resistance for the entire tube

C = 0,870 + 0,650 = 1,520,

and therefore the coefficient of efflux is

1 1

Fig. 723.

= 0,630.^ Vl + 1,520 V2,520

If the head of water is 10 feet and the width of the pipe 1 foot, the

discharge is

Q = 0,630 . ^ . 8,025 V10 12,56 cubic feet.

§ 424. Imperfect Contraction —If a short tube K L, Fig.

724, is inserted in a plane wall, whose area G is but little larger

than the cross-section F of the tube, the water will approach the
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Fig. 724.

mouth of the short tube with a velocity, which we cannot neglect,

and the stream which enters it is imperfectly contracted ; hence

the velocity of efflux is greater than

. when the water can be considered to

be at rest at the mouth of the tube.

T T?
p|^£; ~ jgBiW5 Now if 77- = n is the ratio of the cross-

section of the tube to that of the wall

and jte the coefficient of efflux for perfect

F
contraction, in which case we can put -^ = 0, we have, according

to the experiments of the author, for the coefficient of efflux with im-

perfect contraction, when we put the ratio of the cross-sections = n,

^-^ = 0,102 n + 0,067 n2 + 0,046 n% or

fin = jLtJl + 0,102 n + 0,067 n 2 + 0,046 n%

If, e.g., we assume the cross-section of the tube to be one-sixth

of that of the wail, we have

^ = lh (1 + 0,102 . I + 0,067 . 3
!

g + 0,046 . 3{g)

= fi (1 + 0,017 + 0,0019 + 0,0002) = 1,019 [i
,

or putting fi = 0,815

fiL
= 0,815 . 1,019 = 0,830.

M»
-

1\The values
ft

of the correction are given in the following

tables, which are more convenient for use.

TABLE OF THE CORRECTIONS OF THE COEFFICIENTS OF
EFFLUX, ON ACCOUNT OF IMPERFECT CONTRACTION, FOR
EFFLUX THROUGH SHOBT CYLINDRICAL TUBES.

n 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50'

(In — fJ-

0,006 0,013 0,020 0,0270,035 0,043 0,052 0,060 0,070 0,080:

n 0,55 0,60 0,65 1 0,70
i

0,75 0,80 0,85 0,90 0,95

0,198

1,00

(fa

0,090 0,102 0,114 0,127 0,138 0,152 0,166 0,181 0,227
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When the water is discharged through short parallelopipecUcal

tubes, these corrections are about the same.

The principal applications of these corrections are to the efflux

of water through compound tubes, as, e.g., in the case represented

in Fig. 725, where the short tube K L
is inserted into another short tube

G K, and the latter into the vessel

A C. Here, when the water enters

the smaller from the larger tube, the

stream is imperfectly contracted, and

the coefficient of efflux is determined

by the last rule. If we put the coef-

ficient of resistance corresponding to this coefficient of efflux = £,,

the coefficient of resistance for its entrance into the larger tube

from the reservoir = £ the head of water = h, the velocity of

F
efflux = v and the ratio -^ of the cross-sections of the tube = n,

(jT

or the velocity of the water in the larger tube — n v,y?q have the

formula

ft = (1 j- n* K -f- £) ~—, and therefore

v =
Vl + » f + £

Example.—What is the discharge from the vessel represented in Fig.

725, when the head of water is h = 4 feet, the width of the narrow tube 2

inches and that of the larger one 3 inches ? Here

n = (f)
3 = |, whence ft == 1,069 . 0,815 = 0,871

«nd the corresponding coefficient of resistance

zt = (pti)

2

~ 1 = °'818; but we liaYe

C= 0,505 and n2
C = U • °,5°5 = 0,099,

whence it follows that

1 + »" C + ft = 1 + 0,099 + 0,318 = 1,417,

and the velocity of efflux

_ 8,025 . VI 16,05

Vl,417 Vl,41~7
13,48.

Finally, since the cross-section of the tube is F =
1y4

= 0,02182 square feet,

it follows that the discharge is

Q = 13,48 . 0,02182 = 0,294 cubic feet.
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§ 425. Conical Short Tubes or Ajutsges.—The discharges

from conical mouth-pieces or short conical tubes are different from
those obtained from cylindrical or prismatic ones. They are either

conically convergent or conically divergent. In the first case the

outlet orifice is smaller than the
FlG

- 72G. inlet, and in the second case the

inlet is smaller than the outlet.

The coefficients of efflux through

the former tubes are greater and

those of efflux through the latter

smaller than for cylindrical tubes.

The same conical tube discharges

more water when we make the

wider end the orifice of discharge, as in If, "Fig. 726, than when
we put it in the wall of the reservoir, as is represented at L in the

same figure ; but the ratio of the discharge is not as great as that

of the openings. When authors such as B. Yenturi and Eytelwein

give greater coefficients of efflux for conically divergent than for

conically convergent tubes, it must be remembered that the smaller

cross-section is always considered as the orifice. The influence of

the conicalness of the tubes upon the discharge is shown by the

following experiments, made under heads of from 0,25 to 3,3

meters, with a tube A D, Fig. 727, 9 centimeters long. The width

of this tube at one end was D E = 2,468,

at the other A B = 3,228 centimeters,

and the angle of convergence, i.e. the angle

~£=~S33^0 A B, formed by the prolongation of the

opposite sides A E and B D of a section

through the axis of the tube, was =40° 50'.

When the water issued from the narrow opening, the coefficient of

efflux was = 0,920 ; but when it issued from the wider opening, it

was = 0,553. If we substitute in the calculation the narrower

orifice as cross-section, we find it = 0,946. The stream, in the first

case, when the tube was conically convergent, was but little con-

tracted, dense and smooth; in the second case, where the mouth-

piece was conically divergent, the stream was very divergent and

torn and pulsated violently. Yenturi and Eytelwein have experi-

mented upon efflux through conically divergent tubes. Both these

experimenters also attached to these conical tubes cylindrical and

conical mouth-pieces, shaped like the contracted vein. With a

compound mouth-piece, like the one represented in Fig. 728, the

Fig. 727.
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diverging portion K L of which was 12 lines in diameter in the

narrowest place and 21A lines at the widest, and 8y§ inches long,

and whose angle of convergence was 5° 9', Eytelwein found \i ==

1,5526, when he treated the narrow end as the orifice, and, on the

contrary, \i = 0,483 when, as was proper, he treated the larger end

1 5526
Fig. 728. as ^ne orifice« However, -|—- = 2,5 times as much

water is discharged through this compound mouth-

piece as through a simple orifice in a thin plate, and

1 5526
^ = 1,9 times as much as through a short

cylindrical pipe. When the velocities and the angle of divergence

are great, it is not possible to produce a complete efflux, even by at

first closing the end of the mouth-piece.

The author found with a short conically divergent mouth-

piece 4 centimeters long, whose minimum and maximum widths

were 1 and 1,54 centimeters and whose angle of divergence was
8° 4', under a head of 0,4 meters, \i = 0,738 when the internal edge

was rounded off, and \l = 0,395 when it was not.

§ 426. The most extensive experiments upon the efflux of

water through conically convergent tubes are those made by d'Au-

buisson and Castel. A great variety of tubes, which differed in

length, width and in the angle of convergence, were employed.

The most extensive were the experiments with tubes 1,55 centi-

meters wide at the orifice of efflux and 2,6 times as long, i.e., 4 cen-

timeters long ; for this reason we give their results in the follow-

ing table. The head of water was always 3 meters. The discharge

was measured by a gauged vessel, but in order to determine not

only the coefficient of efflux, but also the coefficients of velocity

and contraction, the ranges of the jet corresponding to the given

heights were measured, and from them the velocities of efflux were

calculated.

v
The ratio ———

•

of the effective velocity v to the theoretical
V2gh

one V2 g li gave the coefficient of velocity <j>, the ratio -= of
* V2gh

the effective discharge Q to the theoretical discharge F \
f
2 g h the

coefficient of efflux p, and, finally, the ratio of the two coefficients,

i.e., —, determined the coefficient of contraction a.
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This determination is not accurate enough, when the velocities

of efflux are great ; for in that case the resistance of the air is too

great.

TABLE OF THE COEFFICIENTS OF EFFLUX AND VELOCITY FOR
EFFLUX THROUGH CONICALLY CONVERGENT TUBES.

Angle of
convergence.

Coefficient of

efflux.

!

Coefficient of

velocity.

Angle of
convergence.

Coefficient of
efflux.

Coefficient of

velocity.

o°o' 0,829 0,829 13° 24' 0,946 o,963

i°36' 0,866 0,867 14 28' 0,941 0,966

3° 10' 0,395 0,894 16 36' 0,938 0,971

4° io' 0,912 0,910 19 28' 0,924 0,970

5° 26' 0,924 0,919 .1

21° 0'
0,919 0,972

7° 5«' 0,930 0,932
t

23 0,914 o,974

8° 58' 0,934 0,942 29° 58' 0,895 o,975
O >

IO 20 0,938 0,95 I 40° 20' 0,870 0,980

12° 4' .0,942 0,955
|

48° 50' 0,847 0,984

According to this table, the coefficient of efflux attains its maxi-

mum value 0,946 for a tube, whose sides converge at an angle of 134°,

that, on the contrary, the coefficients of velocity increase continu-

ally with the angle of convergence. How the foregoing table is to

be employed in practice, is shown by the following example.

Example.—What is the discharge through a short conical mouth-piece

14- inches wide at the orifice of efflux and converging at an angle of 10°, when
the head of water is 16 feet ? According to the author's experiments, a

cylindrical tube of this width gives p = 0,810, dAubiiisson tube, however,

gave fi — 0,829, or 0,829 — 0,810 — 0,019 more ; now, according to the

table, for a tube converging at 10°, fi= 0,937 ; it is therefore better to put

for the given tube ft = 0,937 — 0,019 = 0,918 ; whence we obtain the

discharge

7t _ ,— 0,918. 8,085-

w

Q = 0,918 . ^-^ . 0,825 Vl6 = -* ^' 0,3616 cubic feet.

§ 427. Resistance of Friction.—The longer prismatical or

cylindrical pipes are, the greater is the diminution of the discharge

through them ; we must therefore assume that the walls of the

pipes by friction, adhesion or by the water's sticking to them resist

the motion of the water. As we might suppose, and in accordance

with maiiy observations and measurements, we can assume that
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this resistance of friction is entirely independent of the pressure,

that it is directly proportional to the length I and inversely to the

diameter d of the pipe, i.e., it is proportional to the ratio -,. It has

also been proved that this resistance is greater when the velocities

are great and less when they are small, and that it increases, very

nearly, with the square of the velocity v. If wT
e measure this

resistance by a column of water, which must afterwards be sub-

tracted from the total head h, in order to obtain the height neces-

sary to produce the velocity,..we can put this height, which we will

hereafter call the height of resistance offriction,

£ denoting here an empirical number, which we can style the co-

efficient offriction. Hence the loss of head or of pressure in conse-

quence pf the friction of the water in the pipe is greater, the greater

the ratio -^ of the length to the width and the greater the height

due to the velocity— is. From the discharge Q and the cross-

j

section of the tube

F.= * d *

4
we obtain the velocity

"=¥&
.

and, therefore, the height of resistance of friction

h-K l
~ -MMrif 1 f

4V 19:
.h

' d ' 2 g W cVJ ~ h
' 2 g

' W * d*

'

If we wish to conduct a certain quantity Q of water through a

pipe with as little loss of head or fall as possible, we must make
the pipe as short and as wide as we can. If the width of the pipe

is double that of another, the friction in the former is (J)
5 = ^

that in the latter.

If the cross-section of the pipe is a rectangle, whose height is a

and whose width is b, we must substitute

1 __ j
rrd _

1
periphery*_ , 2 (a + b

) _ cl + b

d ~ 4 "

\ n d' ~ 4 ' area ~ '

l
' a'b 2 a b

'

whence wT
e have

7 — r Ha + b) v*
11 ~"

2 a b
%

%g
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By the aid of these formulas for the resistance of friction in
pipes, we can find the discharge and the velocity of efflux of the
water conveyed by a pipe of a given length and width, under a
given pressure! It is also of no consequence whether the tubeK L,
Fig. 729, is horizontal or inclined upwards or downwards, so long

as we understand by the

A
FlG

-
?39 -

.
head of water the depth

o ~n R L of the centre L of

the mouth of the pipe

below the level H of

the water in the reser-

voir.

If h is the head of water, hx the height of resistance for the ori-
fice of influx, and h, the height of resistance for the remaining part
of the tube, we have

& g 4> g
[

If Co denotes the coefficient of resistance for the orifice of influx
and £ the coefficient of resistance of friction of the rest of the tube,
we can put

*9
h = + £

v
+ r.

d
or

and

2?

1) li

•

2) v

(l + ?..+ ?
d) 2g'

/ I
i + «i + f- a •

From the latter formula we obtain the discharge Q = F v.

For very long* tubes 1 -f^ is very small, compared with ( -
fc

and we can write more simply

7? =^S-^ or Aversely,

2gh.

§ 428. The coefficient of friction, like the coefficient of efflux,

is not perfectly constant; it is greater for low velocities than for
high ones, i.e. the resistance of friction of the water in tubes does
not increase exactly with the square, but with another power of the
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velocities. Prony and Eytelwein have assumed that the head lost

by the resistance of friction increases with the simple velocity and

with the square of the same, and have established for it the formula

A = (a v + P v>) L

in which a and (3 denote constants determined by experiment. In

order to determine these constants, these authors availed themselves

of 51 experiments made at different times by Couplet, Bossut, and

du Buat upon the flow of water through long tubes. Prony de-

duced from them

h = (0,0000693 v -V 0,0013932 v
2

) L

Eytelwein,

h = (0,0000894 v + 0,0011213 v") -,

d'Aubuisson assumes

li = (0,0000753 v + 0,001370 v*) ~ meters.

The following formula, proposed by the author, coincides better

with the results of observation ; it is

h = (a + -A) I
*

and is founded upon the assumption that the resistance of friction

increases at the same time with the square and with the square

root of the cube of the velocity. We have, therefore, for the coeffi-

cient of resistance

Vv

and for the height of resistance of friction simply

* =sf -357

For the determination of the coefficient of resistance $ or of the

auxiliary constants a and (3 the author availed himself of not only

the 51 experiments of Couplet, Bossut, and du Buat, employed by

Prony and Eytelwein, but also of 11 experiments made by himself

and one by a M. Gueymard, of Grenoble. The older experiments

were made with velocities of from 0,043 to 1,930 meters, but by the

experiments of the author this limit has been extended to 4,648

meters. The widths of the pipes in the older experiments were

27, 36, 54, 135, and 490 millimeters, and the newer experiments
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were made with pipes 33, 71, and 275 millimeters in diameter. By
the aid of the method of least squares, the author found from the

63 experiments

; = 0,01439 +
0,0094711

Vv
or

0,0094711\ I v*—

—

) -j'7r~ meters,

Vv / d 2ff
h = A),01439

or for the English system of measure

Lmion 0,017155W v
5

h = (0,01439 + — ) -
7

. 5-

.

Remark—1) If we take into consideration some other experiments made
by Professor Zeuner with a zinc tube 2|- centimeters wide, and with a ve-

locity of from 0,1356 to 0,4287 meters, we obtain

C = 0,014312 +
0,010327

v being given in meters.

2) Newer experiments upon the flow of water with great and very great

velocities were made by the author hi 1856 and 1858 (see the " Civilinge-

nieur," Vol. V, Nos. 1 and 3, as well as Vol. IX, No. 1). The results of

these experiments are contained in the following table :

Nature-of the tubes.

Narrow glass tubes

Wider glass tubes

Narrow brass tubes

The same made shorter....
The same under very great pressure

Wider brass tubes

The same made shorter....
The same under very great pressure

: Wider zinc tubes

I The same shorter

The same still shorter ....
The same still shorter ....

Width of the
tubes (d).

1.03 ctm.

1,43 "

1.04 "

1,04
"

1,04
"

1,43
"

1,43 "

1,43
"

2,47
"

2,47
"

2,47 "

2,47
"

Mean velocity of
the water in the
tubes (v).

Coefficient

of friction (.

8,51 meters. 0,01815

10,18 u 0,01865
|

8,64 u 0,01869
|

12,32 a 0,01784
|

20,99 a 0,01690
|

8,66
u 0,01719

12,40 a 0,01736 1

21,59 a 0,01478

3,19 a 0,01962

4,73 a 0,01838
i

6,24
u 0,01790

9,18 a 0,01670 !

i
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The values in the last column again show that the coefficient of resist-

ance C ft>r the friction of water in tubes decreases not only as the velocity

(v) increases, but also, although more slowly, as the width (d) of the pipe

becomes greater. However, for high velocities, the formula

„.,,™ 0,0094711
; = 0,01439 + '

vv

agrees tolerably well with the numbers found by experiment, e.g., for

v — 9 meters

C = 0,01439 + 0,00316 = 0,01755

and for v = 16 meters

C = 0,01439 -|- 0,00237 = 0,01676.

These coincide very well with the values in the last table, which corre*

spond most nearly to them.

Remark 3.—M. de Saint -Tenant found that the well-known formula

for the resistance of water in tubes agrees better with the results of experi-

ment, when we assume the height due to the friction to increase not with

d- or —, but with ©V. (See his " Menioire sur des formules nouvelles pour

la solution des problemes relatifs aux eaux courantes.") According to him

we must put

h = ~. 0,00029557 «V = 0,00118228 \ . ©¥ = 0,023197 ®-?.^ £-.
d ' a ' d 2g

The assumption of a fractional exponent for v is not at all new ; "Woltmann

put vl instead of v° and Eytelwein proposed ©If instead of v* (see the

author's article upon Efflux [Ausfluss] in the "allgemeine Maschinenency-

clopadie " of Hulsse.

Remark 4.—New and very extended experiments upon the motion of

water in pipe3 have been made by Monsieur H. Darcy (see the report to

the Academy of Sciences at Paris in the Comptes rendus, etc., Tom. 38,

1854, " sur des recherches experimentales relatives au mouvement des

eaux dans les tuyaux "). Mons. Darcy deduces from these experiments,

where the velocity is not less than 2 decimeters, the formula

= (0,000507 + '
000

;
0647

)^.

= (0,01989+ g )-d ^meters;

hence the coefficient of resistance should be

rt ^™ 0.0005078
C = 0,01989 + ——

j
.

This formula, however, is not sufficiently accurate for small velocities.

§ 429. To facilitate calculation the following table of the

coefficients of resistance has been arranged. We see from it that the

variation of this coefficient is not insignificant, since for a velocity
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of 0,1 meter it is = 0,0443, for one of 1 meter, = 0,0239 and for

one of 5 meters, = 0,0186.

TABLE OF THE COEFFICIENTS OF FRICTION OF WATER.

Decimeters.

0,0239

0,0211

0,0199

0,0191

0,0443 0,0356

0,0234 0,0230

0,02090,0208

0,01980,0197

0,01910,0190

0,0317 0,0294 0,0278

0,0227!0,0224]0,0221

0,0206'0,0205J0,0204
0,0196|0,0195i0,0195

0,0190.0,018910,0189

6 8

0,0266 0,0257 0,0250

0,0219 0,0217i0,0215

0,0203 0,0202 0,0201

0,0194 0,0193 0,0193

0,0188io,0188 0,0187

0,0244

0,0213

0,0200

0,0192

We find in this table the coefficients of resistance correspond-

ing to a certain Telocity by searching for the whole meters in the

vertical columns and for the tenths of a meter in the horizontal

column and then moving horizontally from the first number and

vertically from the last, until we arrive at the point where the two

motions meet. e.g. for v = 1,3 meters, £ = 0,0227 ; for v = 2,8,

£ = 0,0201.

For the English foot we can put

V 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

i

0,068(1 0,0527 0,0457 0,0415 0,0387 0,0365 0,0349 0,0336 0,0325

i

V 1 H n 2 3 4 6 8 12 20

s 0,0315 ),0297 0,0284 0,0265 0,0243 0,0230 0,0214 0,020 5 0,0192 0,0182

Remark.—A more extensive and more convenient table is to be found

in the Ingenieur, pages 442 and 443.

§430. Long Pipes.—In considering the motion of water in

long pipes or combinations of pipes, the three principal questions

to be solved are the following.

1) The length I and the width cl of the pipe aud the quantity

Q of water to be conducted may be given and we may be required

to find the necessary head. In this case we must first calculate

the velocity

Q
v = SL =±Q

F ~cV
1,2732

d
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and then search in one of the last tables for the value of the coef-

ficient of friction £, corresponding to this value, and finally we

must substitute the values d, /, v, £ and £ (£ denoting the coeffi-

cient for the orifice of influx) in the first principal formula

* = (
1 + ft + .

f S)sy
2) The length and width of the pipe and the head of water

may be given and the discharge may be required. The velocity

must be found by means of the formula

¥2 a li

v ~

n+i+:
9.\

JSTow as the coefficient of resistance is not perfectly constant,

but varies somewhat with v, we must first find v approximatively

in order to be able to calculate £ from it.

From v we determine

Q =^ v = 0,7854 cV v.

3) The discharge, the head of water and the length of the pipe

may be given, and we may be required to determine the necessary

width of the pipe.

4 2 /4<>\ 2 1
Since v — —^ or v = (

—- . -=, we have

Zgh.(£jXcP = (1 + Qd + SI;

hence the width of the pipe is

F 2 # A \ 77 /

But since (
-

)
= 1,6212 and 1 -f £ as a mean = 1,505 and for

the English system of measures -=— = 0,0155, we can put
Z g

I

d = 0,4787 V (1,505 . d + $ 1) ^ feet.

This formula can only be used to obtain approximative values

;
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for not only the unknown quantity d, bnt also the coefficient £,

4
which depends npon the velocity v = —=, occurs in it.

Example 1) YVhat must the head of water be, when a set of pipes 150

feet long and 5 inches in diameter is required to deliver 25 cubic feet of

water per minute ? Here we have

25 122

v = 1,2732 -g^-ga- = 3,056 feet,

and therefore we can make £ == 0,0243 ; hence the head of water or total

fall of the pipes must be(1 50 12\
1,505 + 0,0243 .

-jj— J . 0,0155 . 3,0562

-= (1,505 + 8,748) 0,0155 . 9,339 = 1,484 feet.

2) What is the discharge through a set of pipes 48 feet long and 2

inches in diameter, under a head of 5 feet ? Here

8,025 V5 17,945
v =

V . KnK
'

r 48 . 12 Vl,505 + 288 . C
l,o05 + C

2

For the present, assuming C = 0,020, we obtain

17,945 17,9459= v-^r^- = G
'
G;

but v = 6,6 gives more correctly C = 0,0211, and therefore we have

17,945 17,945 _ R _ . ,— 6,52 feet,

Vl,505 + 288 . 0,0211 V7,58S

and the discharge

Q = 0,7854 (^X 6,52 = 0,142 cubic feet = 245,4 cubic inches.

3) What must be the diameter of a set of pipes 100 feet long, which are

to discharge one half of one cubic foot of water per second under a head

of 5 feet ? Here

d = 0,4787 V (1,505- d + 100 O . £ . (£)
2 = 0,4787 Vp75#V 5£

Assuming for the present C = 0,02, we obtain

d = 0,4787 V0,075 d+~0
i
100, or approximative^

d = 0,4787 V0,100 = 0,30 ; hence we have more accurately

d = 0,4787 V6,0225 + 0,100 = 0,4787 Vo,lS25

= 0,3145 feet = 3,774 inches.

This diameter corresponds to the cross-section

F= 0,7854 . 0,3145 2 = 0,0777 square feet;

the velocity is consequently

Q 0,5
» = -jgT = o7o777

= M35 feet,

and the coefficient of resistance f = 0,212. Substituting the latter n\ ^
correct value, we obtain

d = 0,4787 \AU285 = 0,318 feet = 3,82 inches.
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Remahk 1.—Experiments made by the author with ordinary wooden
pipes 2£ and 4£ inches in diameter gave coefficients of resistance 1,75 times

greater than those for metal pipes, given in the tables in the foregoing par-

agraph. "While avc have, when the velocity is 3 feet, for metal pipes f
—

0,0243, forwoodenpipes its value is = 0,0243 . 1,75 . 0,042525 ; in example 1

v/e found for a metal pipe 150 feet long the bead to be 1,484 feet, but for a

wooden pipe under the same circumstances it would be

h = (1,505 + 0,042525 . 360) 0,0155 . 9,339 = 16,81 . 0,1448 = 2,43 feet.

According to D'Arcy's Experiments, the coefficient of resistance f in-

creases very considerably with the roughness of the walls of the pipe, and

if the walls are very rough it is doubled or even trebled. The author

found more recently the same result.

Remark 2.—The temperature also has an important influence upon the

resistance of water in pipes. Experiments have been made upon this sub-

ject by Gerstner (see his " Handbuch der Mechanic," Vol. II), and more

recently by Geh. Rath Hagen (see his " Abhandlungen iiber den Einfluss

der Temperatur auf die Bewegung des Wassers in Rohren," Berlin, 1854).

The experiments of the latter, made, it is true, with very narrow tubes

(d = 0,108 to 0,227 inches), have shown that under the same circumstances

the velocity of the water in pipes does not decrease indefinitely with the

temperature, but that for every tube there is a certain temperature for

which this velocity is a maximum. For the experiments without this

maximum, Hagen finds the following formula :

li = m I r
-1

'
85

.

1
'
75

, and

m = 0,000038941 - 0,0000017185 V*,

in which the temperature t is expressed in degrees of the Reaumur ther-

mometer, and the head h, the length I, the radius of the tube r and the

velocity v in inches (Prussian).

(§ 431.) Conical Pipes.—The resistance of friction in a conical

pipe A D, Fig. 730, can be found in the following manner. Let us

denote the semi-angle of convergence of the walls of the
Fig. 730.

pipe A CL = B O Lhj 6, the diameter of the inlet

C orifice by d1} that of the outlet by d2, the length K L
A of the pipe by I, and the velocity of efflux at D E by v.

I
j \ At a distanceKM= x from the outlet of the tube

/ I \ the diameter of the tube is

NO=y=DE+%KMtang. 6 = cl, + 2 x tang. 5,

hence for the velocity to at that point, since

w df ,— = —=, we can put
v y

d? v
W — —5 V ==

(l + y^tang.tf
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For an element N P R of the tube, whose length is

cos. o cos.o

the height of resistance of the friction is

7
, __ r

d x w* _ r
d x v

u

c/l -^'
Jc^sTd ' 2g

~ q ' 77 2a;7 A1
* 2^J y cos. As.s{l + ^tung.6)
2

d x

f72 cos. o ( 1 + — to^. o

)

hence the height of resistance of friction for the whole tube is

h b
2a do Jo2$ d>

Jo
(l +

2^tan
f/.6fcos.6

But
r dx

fl + -=- tang. 6) cos. <5

„ (l H—=- tana. 6) , whence we obtain
8 sin. o \ d2

J
I

P dx

°

(1 -\—=- tang.
6
J cos. 6

2 sin. di

do

sin

d»

.61 \dj J Zsin.dl \djj8 sin. 6l \ d2 J J 8 sin. dL \ dx J 1

since d.2 + 2 I tang. S expresses the diameter dx
of the inlet orifice.

Consequently the required height of resistance is

1 in.dl
1

\dj J2 g do ' 8 si:

If the inlet orifice is much larger than the outlet orifice, we can

put I— ) = 0, and consequently

b
siw. 6 2 g b 2 ^
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the resistance of friction in this case does not depend at all upon

the length of the tube.

Example.—If the angle of convergence of the outlet portion of the

nozzle A K, Fig. 731, of a fire-engine is 2 6 = 5°, that of the inlet portion

.4 B, 2 6
X
— 18°, the width of the outlet d

2
= 7 lines, and the width of the

inlet dx
= \\ inches = 18 lines, and if its whole length AK = I = 6 inches

= 72 lines, what is.its coefficient of resistance ? Putting the length of the

outlet portion BK = l
x
and that of the inlet portion A B — l

2 , we have

I = l
x + l2 and l

x tariff. 6 + l
2 tariff. 6

X

or in figures

+ l
2
= 72 and l

x
tang. 2|° + l

2 tariff. 9° = iJ-, or

Fig.

C|

m.

0,04362 l
x + 0,15838 l

2
= 5,5.

Hence l
x
= 51,54 and l

2
= 20,46 lines and the width at B

s

where'tbe conical surfaces meet each other, is

d3 =d2 +2lx tariff. 6 = 1+2. 51,54 . 0,04362 = 11,53 lines.

Since this place is rounded off, we can put d
s
= 13 lines;

hence for the outlet piece

b-m 1

sin.

and for the inlet portion

MSI

= [1 - (TV)
4

] . cosec. 2|°

= 0,9159 . 22,926 = 21,08,

cosec. 6
X
= [1 — (ff)

4
] . cosec. 9°

= 0,7795 . 6,392 = 4,98.

Therefore the height of resistance for the entire nozzle is

2~9
=
|[

21 ,08 + 4, 88.(|)]

=
| [21,08 + 4,88.(1)]^= 21, 27

- 2
'7f "27 ;

if we substitut
1

Q
2ff

7i = 0,054

= 0,0155 and assume f = 0,02, we have

i.e. aboutyV the height due to the velocity, which result coincides very wel

I

with the results of experiments with such a nozzle.

§ 432. Conduit Pipes.—The outlet at the end of a system

of pipes is either under water or in the air. Both cases are repre-

sented in Figures 732 and 733. In the first case we must regard

as the head li the difference of level R C of the two surfaces of

water, and in the second case the vertical distance R O of the out-

let orifice below the level H of the water in the reservoir. If the
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tube is everywhere of the same width cl, the formulas found in

§ 430 can be applied directly ; but if the tube is enlarged or nar-

Fig. 732. Fig. 733. •

HA "

R
/

•

II <%

1 vol
M "r%

s^- ^JJ

rowed at any point, we will have several different velocities in the

pipe, and therefore the resistance of friction for each portion of

the pipe must be calculated separately. Such a case is presented

by the pipes in Fig. 733, which lead to a fountain or jet d'eau, in

which case the mouth-piece is narrower than the pipe B L M,
which conveys the water. If we put', as we generally do, the ve-

locity of efflux = v, the width of the orifice of efflux — d, the

width of the pipe == dl} we have the velocity of the water in the pipe

n dh
and if we denote by I the length of the pipe B L M and by £ the

coefficient of friction, we have for the corresponding height of

friction , r
l

x
v* _ lx

I d V v
2

1 ~ ^ d^g ~^~d1 \dj ' Tg
$ow if £ is the coefficient of friction for the inlet orifice K and

£ that for the outlet orifice 0, it follows that the loss of head caused

by the first is _
' v x

2 _ ( d V v2

K -^2~g-^\dJ'2]?>
and, on the contrary, that occasioned by passing through the

second is . „ v
2

hence we have the entire head

and inversely the velocity of efflux

(#+<]&

/ 2 g h

(^4)(f)1 + +'?

If we wish the jet to rise to the greatest height, the orifice or

mouthpiece must not only cause as little resistance as possible, but

also allow the water to issue from it with its fibres nearly parallel,

so that they may form, while rising, a stream which will hold tc-
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Fia. 734.

getlier as long as possible, and consequently be less disturbed by

the air than a stream which was more or less torn when it left the

orifice. For this reason we prefer a short, cylindrical or slightly

conical mouth-piece, with the orifice of influx rounded off, to an

orifice in a thin plate or to the orifices of the form of the con-

tracted stream, although the former cause a greater loss of velocity

than the latter. The nodes and bulges, which a stream which has

passed through the latter orifices forms or tends to form, give the

air a much better chance to penetrate it than a cylindrical stream.

§ 433. Jets of Water.—So long as the stream K L N, which

flows vertically downwards through a horizontal orifice K, Fig. 734,

remains continuous and is not broken up

by the air, its cross-section L decreases

more and more as the distance K L — x

from the orifice increases. If c is the ve-

locity of efflux and v the velocity at L, we

have
v* = 2gx + c\

denoting by F the cross-section of the ori-

fice of efflux and by Y that of the stream

at L, we have the following equation

Fc = YvoYF2
c

n
- = Y 2

v\

from which we deduce the equation

. Y n
' (& + 2gx) = Fc\ or

F2 &
~~ & + 2gx

for the form of the cataract of Newton (see

Newton's Principia Philosophise, Vol. II,

Sect. VII). If the cross-section of the

orifice K is a circle, whose diameter is d,

the cross-section at L forms a circle, whose

diameter is y and for which^ve can put

tr

c*dA

+ 2gx*

d

or

Vi - 9-3-*

Experiments upon the internal consti-

streams of water havetution of falling
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been made by Savart. See PoggendorlPs Annalen der Physik,

Vol. 33.

The cross-section of a stream MS, which rises vertically

from a horizontal orifice M, increases gradually with its distance

M = x from the orifice M\ for here the velocity of the water

at is

v — Vc~ — 2 g x, and therefore

c
i -2gx'

hence we have for the diameter of the cross-section at

c' cV d
r =

%g£
ory^-r

tf
2gx

Denoting the height due to the velocity— by li, we have sim-

ply and generally

d

V:1 ± h

This formula becomes incorrect at its limits ; according to it,

e.g. in the rising stream for x — h or at the apex S, the diameter

of the stream would be

d
y = «

VI

d

1
= = "'

This, however, is not the case ; for the various fibres of water,

of which the stream is composed, are not really at rest at the

highest point, but possess a small velocity radially outwards. If

the stream of water

A C, Fig. 735, is in-

clined to the horizon,

this formula
d

y

Fig. 735.

V c
1

M ^S

AA \t>
1i I3

v.1 ± h

x

is still applicable, when
we substitute instead

of x the vertical projec-

tion N of the stream

A 0. If the jet flows
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out of the orifice at an angle v to the horizon, its maximum height

B O is

c
2
(sin. vY 7 , . Vj i, „

a = —^ '- = h (sin. vy (see § 39).

Therefore its diameter (at the vertex C) is

d d d

,/^ a ^1 — (sin. vY Vcos. v

In the descending portion CD of the stream, y becomes gradually

smaller and smaller, and when the stream reaches the horizontal

plane A D, from which it started, y becomes again = d, if the air

has produced no disturbance in the motion of the stream.

§ 434. The height s, to which a vertical jet of water will rise,

&
is approximatively equal to height due to the velocity li = —

—

, only

when the velocity of efflux (c) is small. From the experiments

made by the author (see the experiments upon the height of rise

of jets of water with different mouth-pieces in the 5th vol. of the

Zeitschrift des Vereins deutscher Ingenieure), the following facts

concerning jets of water were ascertained.

1) The resistance of the air for small velocities of efflux, viz.,

from 5 to 20 feet, or for heights of rise of from 1 to G feet, is so

small that the height of rise of the jet may in this case without

c"
appreciable error be put equal to the height due to the velocity—

.

2) If the height due to the velocity does not exceed 75 feet or

the velocity of efflux 56 feet, the ratio of the height of rise to the

height due to the velocity can be expressed by the formula

s_ 1_
li
~ a + j3 li + 7 7f'

in which a, (3 and y denote empirical coefficients to be determined

for each mouth-piece.

3) For jets, which issue from orifices in a thin plate, the con-

stant a can be put = 1 ; hence we can assume that the resistance

during the passage through the orifice is almost null, when the

velocities are small, and that it is measurable only when the

velocities are great. The coefficient of resistance for these orifices

is therefore not constant, but increases from zero gradually with
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the Telocity; the value £ = 0,97, given in § 408, can only be con-

sidered as a mean one.

4) For the same Telocity of efflux the height of rise increases

with the thickness of the stream, or with the width of the orifice

;

consequently the resistance of the air is smaller for thick than for

thin streams. The height of rise increases, therefore, not only with

the head, but also wit]i the thickness of the stream.

5) Under the same circumstance a stream, issuing from a circu-

lar orifice, rises higher than one discharged from an aperture of a

different shape (square, etc.)

6) If the Telocities of efflux and the widths of the orifices are

the same, those streams which are not contracted rise higher than

those which are, not only because the former are thinner, but also

because the latter, in consequence of their contractions and expan-

sions, oppose less resistance to the penetration of the air.

If the other circumstances and relations are the same and if the

Telocities of efflux are not Tery small, the jets issuing from short

cone-shaped and longer conical tubes or ajutages with an internal

rounding off attain the greatest height.

Mariotte concluded from his experiments upon the height of

rise of jets of water (see Meining's Translation of Mariotte's Prin-

ciples of Hydrostatics and Hydraulics) with orifices in a thin plate

4 to 6 lines in diameter and under heads of from 5 h to 35 feet that

the head or height due to the Telocity, necessary to produce the rise

s, must be

whence

It = s + -— Paris feet,

1 + JL = 1 + 0,003333 s.
o\)\)

The Tery extensive and varied experiments of the author, made
under heads of from 3 to 70 feet, give, on the contrary, for circular

orifices in a thin plate, when their diameter was

1) 1 centimeter

- = 1 + 0,0035305 h + 0,00005406 li\ and when it was
s

2) 1,41 centimeters

- = 1 + 0,00237191 h + 0,00005609 h%
s

h being given in English feet.
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"With a conical mouth-piece ABC, Fig. 736, 15 centimeters

long and 1 centimeter wide at the outlet

C and 3 centimeters wide at the inlet

orifice A, which was well rounded off, the

following result was obtained

:

Fig. 73.1

7
s
= 1,0453 + 0,0001137 h

+ 0,00007981 h\

and, on the contrary, with the truncated

mouth-piece A B, Fig. 737, whose width

was 1,41 centimeters at the outlet B, the

result was

h
4) - = 1,0216

7
s

0,0007294 h

+ 0,00003036 7r.

By the aid of these formulas the follow-

ing table of the heights of jets has been

calculated.

Height due to velocity h

Height of jet according to (1) .

.

" " " (2)..
" " " (3) .

.

" " " (4)..

10

9.61

9,715

9,48

9,69

20 )0 40 50 60 '0

18,31 25,98132,58 38,12 42,66 46,30

18,69 26,75J33,77,39,72 44,63 48,58
18,53|26,77!33,97!39,98'44,79!48,47

19,08;28,02j33,39j44,09 51,08|57,31

Example.—If the pipe conducting the water to a fountain is 350 feet

long and 2 inches in diameter, and if the conical orifice is \ inch wide, how
high would the jet rise under a head of 40 feet, provided all the resist-

ances, except the frictiou, are small enough to be neglected?

Here if we put

fl = 0,025, C = 0,5,(|-)

4
= dy =^ and A =J = 2100,

the height due to the velocity of efflux is

, _ v 2 hn 40

i + ('*<-i)&
1 + (0,5 + 0,025 . 2100) . jfa

40

1,207
= 33,14 feet,

and therefore the height to which the jet will rise in still air is
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33,14

Fig. 738.

1,0216 + 0,0007204 h + 0,00003036 *A
2 ~ 1,0216 + 0,02417 + 0,03334

33,14
= l^l = 30

>
71feet-

§ 435. Piezometer.—The head, lost by the water which is

passing through a set of pipes ABODE, Fig. 738, in conse-

quence of contractions in

the conduit, friction, etc.,

can be measured by means
of the columns of water

maintained in the vertical

tubes B K, CM, D O which
are attached to the pipe

;

when they serve for this

purpose only, they are called

piezometers (see § 386).
If v is the velocity of the water at the point B, Fig. 738, where

a piezometer is inserted, I the length and d the width of the por-
tion ABot the pipe, h the head of water or depth of the point B
below the level of the water, £ the coefficient of resistance for the
entrance of the water from the reservoir into the pipe and £ the
coefficient of friction, we have the height of the piezometer, which
measures the pressure in B,

On the contrary, if the length of the portion B (7 of the pipe is

h and the fall is hl9 we have the height of the piezometer at G

Hence the difference of the heights of the piezometer is

2i = h + h - (l -

7. y 1\ V'

and, inversely, the height of resistance of the portion B C of the
pipe is

I

d'2g fa + z
i = fall of this portion of the pipe plus

the difference of the heights of the piezometers.

We see from this example that the«piezometer can be employed
to measure the resistances, which the water has to overcome in
passing through the pipes. If any obstacle, if, e.g., a small body
sticks fast in the pipe, its presence will be shown immediately by
the sinking of the column of water jn the piezometer, and the dis-
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tance it sinks will indicate the amount of this resistance. The re-

sistances occasioned by regulating apparatuses, such as cocks, valves,

etc. (a subject which will be treated in the following chapter), can

also be expressed by the height of the piezometer. Tims the

piezometer at D is lower than at G not only on account of the fric-

tion of the water in the portion CD of the tube, but also on ac-

count of contraction in the pipe produced by the valve gate 8. If,

when the valve-gate is completely open, the difference N of the

heights of the piezometers — lh and if, when the gate is pushed in

a certain distance, it is = lu, the difference, or sinking,- h x
— ks,

gives the height of resistance due to the passage of the water

through the valve gate.

Finally, the velocity of efflux of the water can be calculated

from the height of the piezometer. If the height of the piezometer

P Q = z, the length of the last portion of the tube D E —I and

the width of the same = d, we have

I v-%—$-. — and therefore the velocity of efflux is

/d 2gz

Example.—If the height of the piezometer P Q = z upon the system

of pipes in Fig. 738 is f feet, if the length of the pipe B E, measured from

the piezometer to the outlet orifice, is I = 150 feet and if the diameter of

the tube is 3£ inches, it follows, when the coefficient of resistance £ = 0,025,

that the velocity of efflux is

v = 3,025 ^^-ri £]£= = 8,025.0,2415 = 1,94 feet,
150 . 12 ' 0,025

and the discharge

Q = | . (^|V . 1,94 = 0,129 cubic feet.

Eemakk.—The motion of water in a pipe BCD, Fig. 739, can easily

Fig. 739.

D^sJ

be disturbed by air, which may be given off from the water or enter the

pipe from without. In order to prevent either case from occurring, we must
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take care that the pressure at every point shall be positive, or rather that

it shall exceed the atmospheric pressure, or that there shall be a columo

of water G E in every piezometer. The height of this column is

= K - (i + Co + fy
~

h
x
denoting the head G at (7^ the length of the portion B G of the pipe

and v the velocity of the water in the tube. It is, therefore, necessary that

K>(l +h^m
that, e.g., the head of water in the receiving reservoir shall at least exceed

the height due to the velocity of the water in the pipe. Otherwise the

pipe may suck in air in an eddy.

i + ?„ + ?-§-

We can also puts, > j- A, % denoting the entire fall BK

of the pipe and I its entire length B G B.

If we wish to prevent the air from accumulating in the pipe, we may

lay the pipe in such a position that it will rise slightly in the direction in

which the water is moving. The air will then be carried along with the

water.

CHAPTER IV

RESISTANCE TO THE MOTION OF WATER WHEN THE CONDUIT
IS SUDDENLY ENLARGED OR CONTRACTED

§436. Sudden Enlargement.— Changes in the cross-section

of a pipe or any other conduit produce a change of velocity. The

velocity is inversely proportional to the cross-section of the stream

;

the wider the vessel is, the smaller is the velocity, and the narrower

the vessel is, the greater is the velocity of the water flowing through

it. If the cross-section of a vessel changes suddenly, as, e.g., that

of the tube ACE, Fig. 740, does, a sudden change of velocity,

F ,*
40

accompanied by a loss of vis viva

and a corresponding diminution

of pressure, takes place. This

loss is calculated in exactly the

same manner as the loss of me-

G chanical effect occasioned by the

impact of inelastic bodies (see § 335). Every element of the water,
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which passes out of the narrower tube B D into the wider one D G,

impinges against the more slowly moving current in this pipe and

after the impact moves forward with it. Exactly the same phe-

nomena occur when solid inelastic bodies collide ; these bodies

also move forward after the impact with a common velocity. Now
we have found that the loss of mechanical effect occasioned by

the impact of inelastic bodies is

T = fri - v.Y Gl G%

2g -Gx +G;
and since in this case the impinging element 6r, is infinitely small

compared to the mass of water G^ impinged upon, we can put

and consequently the corresponding loss of head is

, _ (v, - O 2

Hence, ly the sudden change of velocity, a loss of head is caused,

which is measured ly the height due to this change of velocity.

Now if the cross-section of the one pipe A C, — F
x , that of the

other pipe C E, which is united to it, = F, the velocity of the water

in the first tube = v x and that in the other = v, we have

Fv

,and therefore the loss of head in passing from one tube to the

other is

* - ft - ') h
;

and the corresponding coefficient of resistance, which was first

found by Borda, is

The head

* - ft f'2g>

which we have just found, cannot of course be lost without pro-

ducing any effect; we must rather assume that the mechanical

effect corresponding to it is employed in separating and communi-

cating a vibratory motion to the elements of the water, which before

formed a continuous mass, and in forming the eddies W, W.

The experiments made by the author confirm this theory. If
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the tube D G is to be maintained full of water it must not be very

Fm. 741. short or much wider than the tube

D E A C. The loss is done away with
when, as in Fig. 741, the edges are

rounded off so as to cause a gradual
passage from one tube into the other.

Example.—If the diameter of one of the portions of the compound
pipe, Fig. 740, is twice that of the other, then *- = (*)«= 4, the coefficient

of resistance C = (4 - 1)» = 9 and the corresponding height of resistance

for the passage from the narrower to the wider tubes is'-= 9 . ll. if the

velocity of the water in the latter pipe is = 10 feet, it follows^ that the
height of resistance is = 9 . 0,0155 . 10 2 = 13,95 feet.

§ 437. Contraction.—A sudden change of velocity also takes
place, when the water passes from a vessel A B, Fig. 742, into a
narrower pipe D G, particularly if at the place of inlet CD there
is a diaphragm with an opening, whose cross-section is smaller than
the cross-section of the pipeD G. If the area of this orifice = F

x and
if a is the coefficient of contraction, we have the cross-section of the
contracted stream F, = a ft; and if, on the contrary, F is the
cross-section of the pipe and v the velocity of efflux, we find the
velocity of the water at the contracted cross-section F% by means
of the formula

F

hence the loss of head in passing from F2 to For from v, tov is

n == fa ~ VY = (JL _ iV *_
2ff \a

x
F

x V 2ff
f

and the corresponding coefficient of resistance is

MA-)'
Fig. 743. Fig. 743.

A

D

B B
If the diaphragm is absent, we have a common short pipe, IV

743, and then F = F
x and * *'
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or inversely

i *t - ')"•

l + V<;

Assuming a = 0,64, we obtain

M^) = ^= '316 -

C is increased by the resistance at the entrance into the tube and

by the friction of the water in the exterior portion of the tube to

0,505 (§ 422).

From experiments made with a short tube, the inlet orifice of

which was contracted as is represented in Fig. 742, the author has

been led to the following conclusion : The coefficient of resistance

for the passage of the water through the diaphragm and into the

wider tube can be expressed by the following formula:

but we must put
\a F,

X
)

'

for 5!
= 0,1 0,2

J

0,3

l

0,4
J

0,5 0,6 0,7 0,8 0,9 1,0

i

a =
I

0,616 0,614 0,612 0,6100,607 0,605J0,603
i

0,601 0,598
i

0,596

1

and consequently

C-= 231,7 19,78|9,612|5,256 3,077 1,8761,169 0,734 0,480

If, e.g., the narrow cross-section is half that of the pipe, the co-

efficient of resistance is £ = 5,256, IE. the passage through this

contracted orifice occasions a loss of head 5| times as great as the

height due to the velocity.

Example.—What is the discharge through the apparatus represented

in Fig. 742, -when the head is 1|- feet, the diameter of the contracted circu-

lar orifice 1| , and that of the pipe CE,= 2 inches ? Here we have

—*- = (-V\ = (£)» = & = 0,56 and therefore a = 0,606, and

/
"

16 ,\
2 /1G - 5,454V _ /10,546\ 2 _

C = V9Jp06 " V
=

I 5,454 j ~ V 5,454 j
"^



§488.] RESISTANCE TO THE MOTION OF WATER, ETC. 887

Now if we put li — (1 + C) jr- , we obtain the velocity of efflux

^/2gh 8,025Vl,5
v = = ——=— = 4,51,

Vl + C V4,74

and consequently the discharge is

Q = ^L- v= | . 4 . 13 . 4,51 = 54,12 . tt = 170 cubic inches.

§ 438. Influence of Imperfect Contraction.—In the case

considered in the last paragraph, where the water comes from a

large vessel, the contraction can be considered as perfect; but if

the cross-section of the vessel, or that of the stream which arrives

at the narrow orifice, is not very great compared to the cross-sec-

tion jPi, Fig. 744, of that orifice, the contraction is imperfect, and

the coefficient of resistance is consequently smaller than in the case

just considered. If the notations previously employed are retained,

we have again the height of resistance or the head lost in passing

through Fx

but we must substitute variable values for a, which increase with

Fx

the ratio -^ of the cross-section of the narrow orifice to that of the
Gr

pipe, which conducts the water to it. If a diaphragm is placed in

Fig. 744. Fig. 745.

A D T;
iss:

A

13

-_.—.-___,-.....

a pipe A G, Fig. 745, of constant diameter, the same reasoning

holds good ; but the coefficient a depends upon -p

According to the author's experiments, we must substitute in

the formula for the coefficient of resistance

MA-)"
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*£ = 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

j

a ±
= 0,624 0,63210,643

1

0,659 0,681
0,712J0,755

0,813 0,-892|l,000|

whence it follows that

|

£ = 225,9 47,77 30,83 7,801 3,753 1,7960,797 0,290 0,0600,000

Fig. 747.

If ty rounding off the edges the contraction is diminished ot

prevented, the loss of head be-
Fm

'
^™- comes smaller, and it can be done

A B——J-^-E^j^ away with, almost entirely, by in-

WM^> troducing into the pipe a piece,

which widens gradually and is

shaped like M N, Fig. 746.

Example.—What head is necessary, if the apparatus represented in Fig.

747 is required to deliver 8 cubic feet of water per

minute ? Let the width of the diaphragm F
t
be :=

X£ inches, the width of the discharge-pipe D 67, = 2

inches, and the width of the vessel A (7, = 3 inches,

then we have

F /l v\
2

p? ^yo) —h "whence a = 0,637; now

F / 2 \
2

and the coefficient of resistance

r-/ 16
lV-/10

-
2G7

V- 3 207Q ~ \9 . 0,637
1)-[ 5,7337 " '

Hence it follows that the velocity of efflux ia

4 Q 4.8 19,2
f,=r ^5 = 60. ff (i)»=

— = 6
'
U3feet

'

and, therefore, the required head is

h = ( 1 -j- l) -|~ = 4,207 . 0,0155 . 6,1122 = 2,43 feet.
\ / A g

§ 439. Relations of Pressure in Cylindrical Pipes.—By
the aid of Borda's formula we

can calculate the various rela-

g tions of the pressure in a dis-

FrT^&.Y charge pipe, the diameter of

which is not constant. Let p l

G be the pressure and v
y
the ve-
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locity of the water at Fu and p the pressure and v the velocity of
the same at F, then we have

p V
(
v, - vy Pi tf

7 *9
+ ~~^7~ =

y
+ 2?

and therefore

Pi -P ,

v* - v? + fa - ^)
2 _ p fa - v) v

7 7 2# ~y £ > or

(
But the total head is

/i -2^ + -^^-L1 + U-VJ^
hence we have also

Pi = P _ 2 fa - y) y

y
" 7 ^

2 + fa - v)
2

*

r
1 +

<f

When a stream of water, Whose cross-section is F, flows into the

free air, - is = to the height I of the water barometer, and there-

fore the height of the piezometer at Fx is

So long as p remains positive, the water will discharge at E G
with the cross-section F filled; if, on the contrary, p becomes
negative, the supposed condition of efflux ceases to exist and the
water flows through the exterior tube C F, as if it were not there,

with the theoretical velocity i\ — V% g h.

In order to have a full discharge at E G, it is necessary that

2
S\ ~ h
—~p r

2
< h or that

i+
fe-

1
)

s<-

If, then, the limits of the head h, given by this formula, are sur-

passed, the discharge with a full cross-section ceases.
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These formulas are also applicable to the case of the pipe C E,
Fig. 742, with a diaphragm ; but here we must substitute instead

F\, a
x F, ; hence, for efflux with a filled tube, we must have

7
a +

7i<
I ~ / F

\o, F
x )

agm, we 1

hence w

e - v

If we remove the diaphragm, we have a simple short pipe C E,

Fig. 743, and then Fx
= .F; hence we must put

;
X +

§-;)
If we 'substitute a = 0,84 or 1 = 0,5625, we obtain the

limit of discharge with filled cross-section through these pipes

& 1*4- 0,3164 • * ln
b
<

2.0,5625
»
La-j< V17"

If we assume Z> = 34 feet, it follows that when the head is

greater than 1,17 . 34 ±= 39,8 feet, the efflux with a full cross-

section through a short pipe ceases.

The results of the author's experiments coincide perfectly with

the above conclusions (see the article upon the efflux of water under

great pressure in the 9th volume of the " Civilingenieur").

This limit is reached more quickly, when the water discharges

into rarefied air; for in that case b is less than 34 feet. If, e.g., the

height of the water barometer in this space was three feet, the

efflux with filled cross-section for a short pipe would cease when
the head became h == 1,17 . 3 = 3,51 feet.

If the water flows through a pipe ACE, Fig. 749, which is

gradually enlarged, the height of the piezometer . at the inlet

portion A B is

p x __p v? - v* _ p r(F\> ,-] v~ _p r;F_\> -i

consequently, if we put - = I,

-t = K(S)-*>
We must have, therefore,

©
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when the efflux takes place with a filled cross-section. If we put

1,17 or - = 0,8547, we obtain the ratio of the cross-section, for

which, under a head h

section ceases, viz.
*

39,8 feet, the efflux with filled cross-

- = V 1 + 0,8547 = 1,362.

Fig. 750.

§ 440. The Relations of Pressure in Conical Pipes.—The
relations of efflux and pressure in a cylindrical pipe C E, with or

without diaphragm, undergo the following modifications, when an-

other mouth-piece or another tube E 67 H K, Fig. 750, is added to

the former. Let F denote the

cross-section, v the velocity and p
the pressure of the water at the

outlet H K, Fx
the cross-section of

the inlet, a Fx that of the con-

tracted stream of water, i\ the ve-

locity and p x the pressure of the

water in the latter ; in like man-

ner let F2 he the cross-section of the tube, where the stream of

water again touches the wall, n the velocity and p9 the pressure

of the water at that point. Then we have

2l = I + t —, and therefore

Pi

y

7 7

Jh _ v-2 (#1

7

= P +
«

7

^) = £ + t
9 *9 (J

t'l Vo p v
2 — 2 v x Vt + v*

V %y

or, since we can put a Fx
z\ = F.2 v,

Fv
aFx

7

and

['

=s F v, or

_ Fv

%F
+

\FJ J 2 qa Fx Fo \ny J '4 g

Xow the head necessary to produce the required velocity of

efflux is

from which it follows that
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2

1% 44a

1--ML +aF
x
F, ©

J

1^

F9 a Fx F,
+

F*
/ F _ FV- y _1_ / 1 IV

+
[a F

x
Fj Fs + UF, FJ

2 n i \

a F
x
F, \F,

+
F*J

h

I.E. Zi h

or, when the water is discharged into free air,

_ aff^, \F
X

^ F *J

Zl ~
JL. / i__ if
i 2̂

+ U i^ W
If the efflux takes place with full cross-section, we must have,

according to what precedes, .

JL /
1 JLY

h F 2 + \a F
x

Fj

<lF
x
f, \f2 ^ f;j

' \a F
x
F% F{1 I \a Fx F2 J

By the aid of the foregoing formula the relations of the efflux

through the conical tubes A B D E, Figs. 751 and 752, can be

Fig. 751. Fig. 752.

H88 -v+Q

given by substituting for F9 the cross-section of the pipe, where the

stream touches the wall. If 6 denotes the semi-angle of diver-

gence A C B of one, or the semi-angle of convergence of the other

tube, and if we assume that the length Fx F, of the eddy is equal to

the width A B = cl of the orifice, we have the width of pipe, where

the stream reaches its wall,

dQ = cL H= 2 dx
tang. A = (1 ± 2 tang. 6) dx ,
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and therefore the ratio of the cross-sections

in which the positive sign is to be employed for the divergent pipe

in Fig. 751 and the negative sign for the convergent one in Fig.

752, e.g. for 6 = 2\ degrees, 2 tang. 6 = 0,0875 and

:p = (1 db 0,0875)
2
either = 1,1827 or 0,8327

;

hence the velocity of efflux in the first case is

and, on the contrary, in the second

t^ -^(srl/i «•«©'
The corresponding coefficient of efflux

1
u = ——==r

V 1 + 0,514
(J)'

for the divergent tube is, of course, considerably smaller than the

coefficient of efflux

1

VI + 0,1308
[~J

of the convergent tube.

If, e.g., the tubes were three times as long as wide at the inlet

orifice, we would have in the first case

(yf= (1 + 6 tang. (S)
4 = 1,2625* = 2,5405 and

u = — — 0,659, and, on the contrary, in the second case
V 2,306

(C)V (1-6 tang. (5)
4 = 0,7375

4 = 0,2958 and

a = : = 0.981 (compare § 425).
V 1,0387 '

If the efflux through these pipes takes place with filled cross-

section, we must have
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1 +

b
< 2F I

I F _ FV
UTF, fJ

2F F r /FV}'

or in the first case, when

F 1,5939 __ , F 1,5939

aF
1 W -*•--*

<
1 + 1,1429

2

1,1827

2,3062

1,3477,

= 0,592,
b ^ 6,7112 - 2,8163 3,8949

and the head li must be less than 34 . 0,592 = 20,1 feet.

§ 441. Elbows.—A particular kind of impediment is opposed

to the motion of water in pipes, when the latter are bent or form

elbows. These resistances cannot be determined with safety by

theory and must, therefore, like so many of the phenomena of

efflux, be studied by experiment. If a pipe A G B, Fig. 753, forms

an elbow, the stream separates itself from the inner surface of the

second branch of the pipe m consequence of the centrifugal force
;

when this piece is short, the efflux with full cross-section ceases,

and the discharge is, therefore, smaller than from an equally long

straight pipe. If the exterior portion G B of the elbow A G B,

Fig. 753. Fig. 754.

Mr-

Fig. 754, is longer, an eddy S is formed beyond G, and, when the

tube is again filled, the velocity of efflux v is smaller. This dimi-

nution of the velocity of efflux must be treated exactly in the

same manner as the resistance produced by a contraction in the

pipe. If F is the cross-section of the tube and Fx that of the con-

tracted vein, we have the coefficient of contraction of the latter

F_

Fi
and, therefore, the corresponding coefficient of resistance

a ==
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Mi -')-€-*
The coefficient of contraction a, and consequently the corre-

sponding coefficient of resistance £, depends upon the semi-angle of

deviation d = ACB = BCE=iBCF, Fig. 753, and accord-

ing to the experiments of the author, made with, a tube 3 centi-

meters in diameter, we can put

£ =? 0,9457 sin.
2 6 + 2,047 sin.' 6.

The following table contains a series of coefficients of resistance,

calculated for different angles of deviation.

6°= 10 20 30 40 45 50 55 60 65 70

c= 0,046 0,139 0,364 0,740 0,984 1,260 1,556 1,861 2,158 2,431

We see from this table that the vis viva of water in pipes

is considerably diminished by the elbows. If, e.g., the elbow

makes a right angle or d == 45°, we have the loss of head occa-

sioned by it

;J = f .|l = 0,984.^ > .

^

or nearly as much as the height due to the velocity.

When the pipes are narrower, £ becomes considerably greater,

E.G., for an elbow 1 centimeter in diameter and with an angle of

deviation of 90°, £was found == 1,536. See the author's " Experi-

mentalhydraulik."

If to one elbow A C B, Fig. 755, another elbow is joined, as is

shown in Fig. 756, and Fig. 757, a peculiar, but at the same time

Fig. 755. Fm. 756. Fig. 757.

m

easily explicable, phenomenon of efflux is observed. The second

elbow B D E, Fig. 756, which turns the stream to the same side

as the first one A C B, produces no further contraction of the
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stream, and, therefore, for efflux with full cross-section £ is no

greater than for a simple elbow A C B. But if the elbow B D E,

Fig. 757, turns the stream to the opposite side, the contraction is

a double one, and the coefficient of resistance is consequently twice

as great as for a single elbow. If, finally, B D E is so joined to

A C B that D E stands at right-angles to the plane A B D, £ then

becomes about V2 times as great as for the single elbow A B.

Example.—If a system of pipes KL JST, Fig. 758, 150 feet long and 5

inches in diameter, which should
Fig. 758. discharge 25 cubic feet of water,

contains two elbows, the required

head will be

h = (1,505 + 8,712 + 2 . 0,984) £-

— 12,185 . 0,1448 = 1,76 feet.

(Compare Example in § 430.)

§ 442. Bends.

—

Curved pipes, when the other circumstances

are the same, cause much less resistance than elbows. They also

cause, in consequence of the centrifugal force of the water, a par-

tial contraction of the stream ABB, Fig. 759, so that, when the

bend is not terminated by a long straight pipe, the cross-section

F
x of the stream at its outlet is smaller than that F of the pipe.

But if the bend A B D, Fig. 760, is terminated by a long straight

Fig. 759. Fig. 760.

A

pipe D E, an eddy F is formed and an efflux with filled cross-sec-

tion again takes place at the expense of the vis viva of water. If

the coefficient of contraction -A = a, we have for the coefficient

of resistance of the bend.

= (;-•)"

The coefficient of contraction a depends upon the ratio - of the

radius B M — E M = a, Fig. 759, of the pipe to its radius of cur-
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vature OM = r, and it can be determined approximatively in the

following manner. If v is the velocity of the water npon entering

the bend and t>, that of the contracted vein, we have v
x
F

x
= v F,

F
whence i\ = — v, and, therefore, the head which measures the

pressure in B E is

h-
2g LU/

±hg
This height, multiplied by 1 and y, gives the pressure of the stream

of water in all directions upon the unit of surface at E

P—[©'- ']£-[©- i]f>
Since the centrifugal force of the water acts upon the convex

side in opposition to the pressure p, it is possible that it may bal-

ance the latter completely. - But in this case the exterior air would

enter and separate the stream entirely from the convex side, as is

shown in Figs. 759 and 760. The centrifugal force of a prism of

water, whose length is B E = 2 a and whose cross-section is 1, is,

when the radius of curvature is CM == r,

q = -—
• .2 ay.

9 r

!Now if we putp = q, we have the condition of separation of the.

stream from the wall of the pipe

a2
r

'

and consequently the coefficient of contraction

r
s.r + 4: a'

hence the coefficient of resistance for efflux with a full pipe is

')••

As this calculation is based upon a mean velocity and a mean'

radius of curvature, it will, of course, give but an approximate

value of a and £
From his own experiments and from the results of some obser-

vations made by Du Buat, the author has deduced the following

empirical formulas for the coefficients of resistance of water in

passing through bent pipes

:

1) for bends with circular cross-sections

S = 0,131 + 1,847 (-'

57
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2) for bends with rectangular cross-sections

? - 0,124 + 3,104 g)\

The following tables are calculated according to these formulas:

TABLE I.

Coefficients of the resistance due to the curvature ofpipes with circular cross-

sections.

a

r
~ 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

1,978£ = 0,131 0,138 0,158 0,206 0,294 0,440 0,661 0,977 1,408

TABLE II.

Coefficients of the resistance due to the curvature of pipes with rectangular

cross-sections.

a

r
~ 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

<r
= 0,124 0,135 0,180 0,250 0,398 0,643 1,015 1,546 2,271 3,228

From the above tables we see that for a circular pipe, whose

radius of curvature is twice the radius of its cross-section, the coef-

ficient of resistance = 0,294, and that for a pipe, whose radius of

curvature is at least 10 times the radius of the cross-section, the

coefficient = 0,131.

In order to check the contraction of the stream of water in a

bend A B D, Fig. 761, the cross-section of the pipe must be grad-

ually diminished in such a manner that the ratio of the cross-sec-

tion D H — Fx of the outlet orifice to that B E - F oi the inlet

1
shall be a =

Fig. 763.
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If one bend B D, Fig. 762, is terminated by another, -which

turns the stream further in the same direction, if, e.o., the axis of

the pipe forms a semicircle, like B D E, Fig. 763, the contraction

is not changed and a and £ have the same values as for the pipe in

Fig. 762, which forms but a quadrant. If, on the contrary, a bend

D E, Fig. 764, which turns the stream in the opposite direction, is

attached to the first one, an eddy F is formed between the two and

a second contraction of the stream takes place, by which the resist-

ance (£) is nearly doubled.

Fig. 764. Fig. 765. Fig. 766.

A a A

The resistance to water flowing through bends can be dimin-

ished by enlarging the cross-section of the pipe, as in B D E, Fig.

765, or by inserting in it a thin partition, like S in B D E, Fig.

766 ; for in the first case the velocity v, and in the second the ratio

- is smaller, and consequently the coefficient of resistance £ is ren-

dered less.

Example.—If the system of pipes B L if, Fig. 767, in the second ex-

ample of § 430, contains 5 bends

Fig. 767. each of 90°, and if the radius of

curvature of each is 2 inches, we
have

r 2)

and according to the first of the

foregoing tables, the correspond-

ing coefficient of resistance C,
—

0,294; consequently for the 5

bends 5 C = 1,47 ; hence the velocity of the water issuing from the pipe,

instead of

17,945
_ = 6,52 feet, is

V7
5
582
17,945 17,945

V 7,582 + 1,47 V9,052
5,964 feet,
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so that the discharge per second is now
Q = 0,7854 . ^e . 5,964 = 0,1301 cubic feet = 224,81 cubic inches.

§ 443. Valve-Gates, Cocks, Valves.—In order to regulate

the discharge of water from pipes and vessels, we employ various

kinds of apparatus, such as cocks, valve-gates, and valves, by means

of which we produce a contraction in the pipe, which occasions a

resistance to the passage of the water, the value of which is deter-

mined in the same manner as the losses of head in the foregoing

paragraph. As the stream of water is subjected to changes of

direction, is divided, etc., the coefficients a and £ can only be

determined by experiments made for that purpose. Such experi-

ments have been made by the author,* the principal results of

which are given in the following tables

:

TABLE I.

The coefficients of resistance for the passage of water through valve-gates

or slide-valves (Fr. tiroirs; Ger. Schieber or Schubventile) in parallels-

pipeclical

Ratio of the cross

sections~ = 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1

|
Coefficient of re-

sistance C =
0,00 0,09 0,39 0,95 2,08 4,02 8,12 17,8 44,5 193

TABLE II.

The coefficients of resistance for the passage of water through valve-gates

or slide-valves in cylindrical pipes.

Relative height of opening 1
8

2
"8 1

4
8 1

6
8" *

Ratio ofthe cross-sections

=

1,000 0,948 0,856 0,740 0,609 0,466 0,315 0,159

Coefficient of resistance f= 0,00 0,07 0,26 0,81 2,06 5,52 17,0 97,8

* Experiments upon the efflux of water through valve-gates, cocks, clacks,

and valves, made and calculated by Julius Weisbach, or under the title " Un-

tersuchungen im Gebiete der Mechanik und Hydraulik, etc.," Leipzig, 1842.
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TABLE HI.

The coefficients of resistance for the passage of water through a cock (Fr.

robinet ; Ger. Hahn) in parallelopipedical pipes.

Angle that the cock is

turned 6 —
5° 10°

0,849

0,31

15'

0,769

0,88

20°

0,687

1,84

25°

,0,604

3,45

30°

0,520

6,15

35°

0,436

11,2

40°

0,352

20,7

45°

0,269

41,0

50°

0,188

95,3

55°

0,110

275

663

Ratio of the cross-sec-

tions = 0,926 »

Coefficient of resist-

ance = 0,05 00

TABLE TV.

The coefficients of resistance for the passage of water through a cock in a

Angle that the cock is turned 6 = 5° 10° 15° 20° 25° 30° 35°

0,458Ratio of the cross-sections = 0,926 0,850 0,772 0,692 0,613 0,535

Coefficient of resistance = 0,05 0,29 0,75 1,56 3,10 5,47 9,68

Angle that the cock is turned 6 — 40° 45° 50° 55° 60° 65° m°

Ratio of the cross-sections == 0,385 0,315 0,250 0,190 0,137

206

0,091

Coefficient of resistance = 17,3 31,2 52,6 106 486 00

* TABLE V.

The coefficients of resistance for the passage of water through t7irottle-valves

(Fr. valves; Ger. Drehklappen or Drosselventile) in pcvrallelopipedical

Angle thatthe valve is turned 6 = 5° 10° 15° 20° 25° 30° 35°

Ratio of the cross-sections = 0,913 0,826 0,741 0,658 0,577 0,500 0,426

Coefficients of resistance = 0,28 0,45 0,77 1,34 2,16 3,54 5,7

1
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Angle that the valve is

turned 6 = 40° 45° 50° 55° 60° 65° 70° 90°

Ratio of the cross-sec-

tions = 0,357 0,293

15,07

0,234 0,181 0,134 0,094

158

0,060

Coefficients ofresistance = 9,27 24,9 42,7 77,4 368 oo

TABLE VI

Coefficients of resistance for the passage of water through throttle-valves in

cylindrical pipes.

Angle that the valve is turned 6= 5° 10° 15° 20° 25° 30° 35°

Ratio of the cross-sections — 0,913 0,826 0,741 0,658 0,577 0,500 0,426

!
Coefficient of resistance = 0,24 0,52 0,90 1,54 2,51 3,91 6,22

Angle that the valve is

turned 6 ==
40° 45° 50° 55° 60° 65° 70° 90°

Ratio of the cross-sec-

tions = 0,357 0,293 0,234 0,181 0,134 0,094 0,060

00Coefficient of resistance = 10,8 18,7 32,6 58,8 118 256 751

§ 444. With the aid of the coefficients of resistance, given in

the above tables, we can find not only the loss of head for a certain

position of the valve-gate, cock or valve, but also the position we
must give to these apparatus in order to produce a certain velocity

of efflux or a certain resistance. Of course, such a determination

will be more accurate, the more the regulating apparatus resembles

that used in the experiments. Besides, the values given in the

above tables are not correct, when the water, after passing the con-

tracted orifice produced by the apparatus, does not fill the pipe

again. In order that the efflux with a filled cross-section shall take

place, it is necessary, when the contraction is great, that the pipe

shall have a certain length. The cross-section of the parailelopiped-

ical pipe was 5 centimeters wide and 2-\ centimeters high, and the

diameter of the cylindrical pipe was 4 centimeters. With the slide'
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valve or valve-gate, Fig. 768, the cross-section is merely narrowed,

and its shape in one pipe is a simple rectangle Fu Fig. 769, and in

Fig. 768.

K

A _J|I D

pH:::V:v/:":
:
-v.

IV ••
i;-—

the other a crescent Fl9 Fig. 770. When cocks are employed, as in

Fig. 771, there are two contractions and two changes of direction,

and the resistance is therefore in this case very great. The cross-

A
Fig. 772.

i>

i,-_
zzKZzIlllil
B c

sections of the maximum contractions have very peculiar forms.

The stream is divided by the throttle-valve (or disc and pivot valve),

Fig. 772, into two parts, each of which passes through a contracted

orifice. The cross-sections of the contracted openings are rec-

tangular in parallelopipedical pipes and crescent-shaped in cylin-

drical ones. The following examples will sufficiently explain the

use of the foregoing tables.

Example—1) If in a system of cylindrical pipes 3 inches in diameter

and 500 feet long a valve-gate is introduced, and if it is raised f of the

entire height, so as to close | of the diameter, what will be the discharge

through it under a head of 4 feet ? According to what precedes we can

put the coefficient of resistance for the entrance of the water into the pipe

( = 0,505 and the coefficient d of resistance of the pipe according to

Table II, § 443, = 5,52, whence it follows that the velocity of efflux is

8,025 V4 8,025 . 2 16,05

/ I V7,025 + 500". 4 C V?,025 + 2000 f
1,505 + 5,52 + C^

If we put the coefficient of friction £ = 0,025, we obtain

16,05

V57,025
= 2,125 feet.
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But the velocity v = 2,125 feet corresponds more accurately to £ = 0,0265,

hence we have more correctly

16
'
05
= = 2,07 feet,

V60,025
and the discharge per second is

Q = | . 9 . 12. . 2,07 = 55,89 n - 176 cubic inches.

2) A system of pipes 4 inches in diameter discharges under a head of

5 feet 10 cubic feet of water per minute ; at what angle must a throttle

valve, placed in them, be turned to cause a discharge of 8 cubic feet per

minute ? The initial velocity is

10 . 4 6
= 6o7Mlr

=
s = 1

>
91feet

'

and that after turning the valve

= T8„ . 1,91 = 1,528 feet.

The coefficient of efflux in the first case is

- =--^-0,107,
/2 g h 8,025 V5

hence the coefficient of resistance is

=
~i?~

1 = ~10" ~ 1 = 86
'
34

'

and the coefficient of efflux in the second case is

- T
s-

. 0,107 - 0,0856
;

hence the coefficient of resistance is

=
0~"TG' 7 1 = 135

>
5

>

and the coefficient of resistance of the throttle valve

C = 135,5 — 86,84 = 49,16.

Now Table VI, § 443, gives for the angle 6 — 50°, £ — 32,6 and for the

angle 6 — 55°, C, = 58,8 ; we can, therefore, assume that, when the vaive

16,56
is placed at an angle of 50 4- „„ 9 • 5 =53 10', the required quantity

of water will be discharged. If we take into consideration the fact that

the coefficient of friction changes from 0,0268 to 0,0283 when the velocity

decreases from 1,91 to 1,528, we have more correctly

283
C = 135,5 - 86,34— - 135,5 - 91,2 - 44,3,

and consequently the angle that the valve must be turned

» = 50' + Jg 5° = 52» 14'.

§ 445. Valves.—The knowledge of the resistance produced by

valves (Fr. soupapes ; Ger. Ventile) is of the greatest importance.

Experiments have also been made by the author with them.

Those most commonly employed are the .puppet valve and the
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c?tfc& valve, which are represented in Figs. 773 and 774. In both

cases the water passes through an aperture in a ring R 67, which

Fig. 773. Fig. 774.

]J

is called the seat. The puppet valve K L, Fig. 773, is provided

with a spindle, which runs in guides and which permits the valve

to move only in the direction of its axis ; the clack K L, Fig. 774,

on the contrary, opens by turning like a door. We see that in

both apparatuses not only the ring, but also the valve are obstacles

to the motion of the water.

The ratio of the aperture in the seat of the puppet valve, with

which the experiments were made, to that of the pipe was 0,356,

and, on the contrary, the ratio of ring-shaped surface around the

open valve to the cross-section of the pipe was = 0,406, hence we
F

can put as a mean ~ = 0,381. By observing the efflux for differ-

ent positions of the valve it was found that the coefficient of resist-

ance decreased with the lift of the valve, but that this decrease was

very inconsiderable, when the lift exceeded one-half the width of

the orifice. Its value for this position was = 11, and the height

of resistance or loss of head was

v denoting the velocity of the water in the full pipe. This num-
ber can be used to find the coefficients of resistance corresponding

to other relations of cross-section. If we put in general

HA-')'
'

we obtain for the case observed

I = 0,381 and ? = (
* -lV=ll,

and therefore

0,608,

0,381(1+ VH) 4317.0,381

and finally the general expression for the coefficient of resistance
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Mowi-iM1
'
645 ^- 1)-

If, e.g., the cross-section of the aperture is one half that of the

pipe, the coefficient of resistance becomes

= (1,645 . 2 - l)
2 = 2,29

2 = 5,24.

In the experiments with clack-valves the ratio of the cross-

F
section of the aperture to that of the pipe, i.e., -=, was = 0,535.

The following table shows how the coefficients of resistance de-

crease as the opening increases.

TABLE OF THE COEFFICENTS OF RESISTANCE FOR
CLACK-VALVES.

Angle of opening 15°

90

20°

62

25°

42

30°

30

35°

20

40°

14

45°

9,5

50°

6,6

55°

4,6

60°

3,2

65°

2,3

70°

1,7Coefficient of resistance..

By the aid of this table the coefficient of resistance for clack-

valves can be calculated approximative^, when the relations of the

cross-sections are different. We must adopt the same method as

we did for puppet valves.

Example.—A force-pump delivers every time the plunger descends in

4 seconds 5 cubic feet of water, the diameter of the column pipe in which

the puppet-valve is placed is 6 inches, the interior diameter of the valve-

ring is 3i inches, and the maximum diameter of the valve is 4-|- inches

;

what resistance is to be overcome by the water in passing through this

valve ? The ratio of the cross-sections for these apertures is

(¥)'= (tV)
2 = 0,34,

and the ratio of the ring-shaped contraction to the cross-section of the

tube is = 1 - (M)
2

= 1 -
(I-)

2 = 0,44

;

hence the mean ratio of the cross-sections is

F
± _ 0,34 + 0,44 _

~F ~ 2
~

' '

and the corres]:>ondmg coefficient of resistance

The velocity of the water is

5

4 -z-(i)
2

20= —- = 6,37 feet,
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the height due to the velocity is = 0,680 feet, and consequently the height

of resistance is = 10,4 . 0,630 = 6,55 feet. The amount of water raised in

a second weighs £ . 62,5 = 78,125 lbs. ; the mechanical effect consumed

by the passage of the water through the valve in that time is therefore

= 6,55 . 78,125 = 511,72 foot-pounds.

§ 446. Compound Vessels.—The foregoing theory of the re-

sistance due to the passage of water through contractions, is also

applicable to the discharge from compound vessels. The apparatus

A D, represented in Fig. 775, is divided by twTo walls, which contain

the orifices Fx and F2 , into three communicating

vessels. If the dividing walls were absent and

the edges at the passage from one vessel to the

other rounded off, we wTould have, as in the case

of a simple vessel, the velocity of efflux

Fig. 775.

E
^

v = -— y

in which 7i denotes the depth of the orifice below

the level of the water and £ the coefficient of re-

sistance for the passage of the water through the orifice F.

But since when the water has passed through the orificesF
x
and

F2 the cross-sections a Fx and a F9 change suddenly into the cross-

sections G
x and G2 of the vessels C D and B C, and according to

§ 437 the resistances thus produced are

and

we ha\

?1
%\g

~~ \a Fx
/ \ G ) 2 g

~ \F
X G /' 2g

vl _ /JL _ V (
aFX v— - l*L -

aFY —
>.2g ~ \a F, J \ G x

J 2g ~ \F2 G x
/

' 2 g'

v}- y v» f. y IF aFV IF aFViv'
%g^ 2~g ~ 1

1 + ^ + \Fx

~~g) +U """^7 -%'^^27/^2g
whence wre obtain the velocity of efflux

V~2~gh

V " IF aFV (F aF\
y l + ^ +

{F
x -~G-)

+ \F.--Grl
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In the compound vessel, represented in Fig. 776, from which

the water is discharging, the same conditions exist, but perhaps

we must here consider the fric-

tion of the water in the com-

municating tube C E. Let ?bc

the length, t/the diameter, £the

coefficient of friction of thin

tube, and i\ the Telocity of the

water in it, then we have for

the head lost by the water in

passing from A C to G L

*=[> + £
or, since the velocity i\ =

a F
F,

i\

[i+e-^yftfm9
If we subtract this height from the total head h, there remains the

head in the second vessel 7i.2 = li — li x \ hence the vel'ocity of

efflux is

V2~gT> Y2gh

VlTJo vW[r+ (!_,), 4]©-
This determination becomes very simple when the apparatus is

like the one represented in Fig. 777

;

for in this case we can assume the

cross-sections 67, Gl9 672 to be infi-

nitely large, compared to the cross-

sections of the orifices F, F
x, F„.

The first difference of level H, or

the height of resistance for the pas-

sage through F1} is

7, _L (iiY- (iIX *
1 ~ 2ff\aJ~ \a

x
Fj ' 2 i

Dnd diffe:

issage thi

\a,Fj

g \ a
x
! \a

x j?\/ a <f

and in like manner the second difference of level O x Hx or the

height of resistance for the passage through F* is

V"

*?
in which a, a

x
and a2 denote the coefficients of contraction for the

orifices F, F
x
and F,, Hence
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V2gh
v =

and the discharge is

a F V%gh
Q =

^&j-m
Vxgli

It is easy to see that under the same circumstances compound

vessels, or reservoirs, discharge less water than simple ones.

Example.—If in the apparatus, Fig. 776, the total head or the depth

of the centre of the orifice F below the level of the water in the first vessel

is = 6 feet, if the orifice is 8 inches wide and 4 inches high and if the

reservoirs are united by a pipe 10 feet long, 12 inches wide and 6 inches

high, what will be the discharge ?

The mean width of the trunk is

4-1.0,5 „,_ ^_J 3^10
2

d — —z—r—— = | feet, hence -= = —-— = 15.
2 . 1,5

3
' d

Putting the coefficient of friction £ = 0,025, we obtain

I

£ - = 0,025 . 15 = 0,375,

and adding £, = 0,505, the coefficient for the entrance into prismatical

pipes, we have

l + (-_ lj+f-=l + 0,505 + 0,375 = 1,88.

Since -=- = ' * '— = 0,2845, it follows that the coefficient of resist-
Jb

x
12 . o

ance for the entire pipe is = 1,88 . 0,2845 2 = 0,152, and if we put the

coefficient of resistance for the passage through F, = 0,07, we obtain the

velocity of efnux

8
'
025V«= 17,78 feet.

Vl,07 + 0,152 V 1,222

The contracted cross-section is 0.64 . 1 . \ = 0,32 square feet, and there-

fore the discharge is

Q = 0,32 . 17,78 = 5,69 cubic feet.
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CHAPTER V.

OF THE EFFLUX OF WATER UNDER VARIABLE PRESSURE.

§ 447. Prismatic Vessels.—If a vessel, from which water is

issuing through an orifice in the side or bottom, receives no sup-

ply of water from any other source, the level of the water will

gradually sink, and the vessel will finally "become empty. Now if

the discharge Q into the vessel is greater or less than that

\l FV'2gh from it, the water level will rise or sink, until the head

becomes h = — I „ ) , and afterwards the head and velocity of

efflux will remain constant. Our problem now is to determine Ike

dependence upon each other of the time, of the rising or sinking of

the surface of the ivater and, if it occurs, of the emptying of the

vessel, ivhen the latter has a given form and size. The most simple

case is that of efflux through an orifice in the bottom of a prismatic

vessel, which receives no supply of water. Let x be the variable

head F P, F the area of the orifice and G the cross-section of the

vessel A C, Fig. 778, then the theoretical velocity of efflux is

Fig. 778.

n

-y««ir

v = V%gx,

and the theoretical velocity of the sinking surface

of the water is

F F , .

and the effective velocity

fiF

G J

In the beginning x = F' — h, and at the end of the efflux

x = 0, the initial velocity is therefore

•uF
,

and the final velocity

c, = 0.

We see from the formula

*=v*££f'a*,
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that the motion of the surface of the water is uniformly retarded,

and that the retardation is p =
( *~r ) 9 \ we a^so know (§ 14)

that this velocity will be = and that the efflux will cease after a

time.

p g
I.E.

2 G Vh

We can also put

t = 2 Gh 2 G h 2 V
V>FV2 9 h Q Q'

and consequently we can assume that a volume V = G h of water

will be discharged through an opening F in the bottom under a

head decreasing from h to in double the time that it would, if the

head were constant and equal to h.

As the coefficient of efflux \i is not perfectly constant, but in-

creases when the head diminishes, we must employ a mean value

of this coefficient in our calculations.

Example.—In what time will a parallelopipedical box, whose cross-

section is 14 square feet, empty itself through an orifice in the bottom,

which is circular and 2 inches in diameter, when the initial head is 4 feet ?

Theoretically the time required would be

2. 14 VI 2.14.144.2 8064 Q . n//n K . ._

%M».;.g)'
= ~^^~ =p^ = 319" )9 = 5mln.l 9,9 Sec.

At the end of half the duration of the efflux the head is = (!)
2 h =

i
. 4 = 1 foot, but the coefficient of efflux for an orifice in a thin plate,

corresponding to a head = 1 foot, is fi = 0,613 ; hence the real duration

of the efflux is

319" 9— „ „-,o
~ = 521",8 == 8 minutes 41,8 seconds.

0,61o

§ 448. Communicating Vessels.—Since for an initial head

li
x
the duration of efflux is

f
__ 2 GVh,

1
~

f
zFi/2g

and for an initial head lu the duration is

_ 2 GVh
to ,

\iF. VWg
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it follows that by subtraction we obtain the time during which the

head changes from h x to h i9 or the level of the water sinks a dis-

tance h x
— h2 ; its value is

2 G
t =

(
Vh

t
__ i/jh) y

p F . VYg
or, when the dimensions are expressed in feet,

G
9 —{Vh Vlh).

On the contrary, when the duration of the efflux is given, we
determine the distance s = h x

— h.2 that the surface of the water

sinks by means of the formula

(jl V%~g .F
\Vh- t) , or

s =
/i

2 G 7'

I
^1 -

1

i^
)•4 £

The same formulas are applicable to the case of a vessel C D,

Fig. 779, filled from another vessel A B, in which the level of the

Fig. 779. water is constant. If the cross-section

of the communicating pipe or orifice

= Fy that of the vessel to be filled = G
and initial difference of level Ox

of

the two surfaces of water = h, we have,

since in this case the level of the water

in the second vessel rises with a uni-

b formly retarded motion, the time re-

quired to fill it or the time in which the second surface of the

water rises to the level H R of the first

2 GVh
~

fi F . VY~g
and in like manner the time in which the distance O x

= h x be-

tween the surfaces of the water becomes 2 = k 2, or during

which the level of the water rises a distance O x
0>2 = s = li x

— li*_,

2 G _ •_.

Example 1) How much does the surface of the water in the last exam-

ple (§ 447) sink in 2 minutes ? Here we have

ht =±,t
F

2.60 = 120, £-=.4- 144'

and if we assume also p = 0,605, it follows that

h - l it nr FtY A 0,605 . 8,025 . tt 120V

2 714 .144 /
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(2 - 0,605 . 8,025 . ^)
3= 1,546 2 = 2,3901 feet,

and that the required distance that it sinks is

s = 4 — 2,3901 = 1,6099 feet.

2) What time does the water require to rise in a pipe C Z>, Fig. 780, 18

inches in diameter, so as to overflow, when the

pipe communicates with a vessel A B by means

of a short pipe li inches in diameter, .and when
the surface of the water G is in the beginning

at a distance O H = 6 feet below the constant

level ofthe waterA and at a distance O C = 4|
We mustfeet below the top G of the pipe,

substitute in the formula

2 67 / _
* ==

F )>

2. 144 W6 - Vl,5) =

/W2j7
6 — 4,5 = 1,5,

• 144 and fi = 0,81 ; thus we obtain

288 . 1,2248
>4,3 seconds.

0,81 . 8,025 '
1
~'

0,81 . 8,025

§ 449. If the first vessel A B, Fig. 781, from which the water

passes into the second, receives no water, and if its cross-section #,

cannot be considered as infinitely greed,

compared to the cross-section G of the

other vessel O D, we must modify our cal-

culation. If the variable distance Gx Ox of

the first surface of the water above the

level H B, at which the water in both ves-

sels stands after the efflux, = x and the

distance G O of the other surface of the

water below the same plane = y, the

variable head will be x -f y and the corresponding velocity of

efflux will be v = V2 g {x -f y), or, since the quantity of water

G x
x- Gy,

v = l/a^(i+-|)y-

The velocity with which the surface of the water rises in the sec-

ond vessel is 11F /x.P-A A G \

hence the corresponding retardation is

"it (> 1V -c 9,

58
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and the duration of efflux is

-ZGVy

Substituting instead of x and y the initial difference of level li,

that is, putting x + y = h or [1 -f ^\ y = A, we obtain

* = :
tf>

and the time in which the two surfaces of water come to one

level is

2 GVh 2 GG, Vh
t ==

44)c^ pw+wj**
The time during which the difference of level changes from li

to /&! is, on the contrary,

"_ 2 G Gx {Vh- VJ1 )

~ HF(G + <?,) V2^'
Example.—If the cross-section G± of the vessel, from which the water

flows into the other, is 10 square feet and the cross-section G of the vessel

receiving the water is 4 square feet, if the initial difference of level be-

tween the two surfaces of water is 3 feet, and if the cylindrical pipe which

forms the communication is 1 inch in diameter, the time in which the two

surfaces of water will reach the same level is

2 . 10 . 4 . V3 320 . 72 . V~3~
t =

0,82 . 8,025 .j.~i
8,025 . 7 77

= 276 seconds.
14

4* 144

§ 450. Notch in the Side.—If the water issues through a

notch, overfall or weir D E from a prismatic vessel ABO, Pig.

Fig. 782. 782, into which there is no water dis-

charged, the duration of the efflux is

found in the following manner. Let us

denote the cross-section of the vessel

by G, the width E F of the notch by b,

and the heightE Ehj li, and let us di-

vide the whole orifico' of efflux into

small strips, the length of each being
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5

I and the height -. If the head is constant, the discharge per sec-

ond is

C1
1?

dividing the contents of a layer of water by the latter, we ol

tain the corresponding duration of the efflux

Gli

I finlV 2g h*

for which we will write 7= . hr$.
%\inhV%g

In order to obtain the duration t of the efflux of a quantity

G (li — h^ or to determine the time during which the level of the

water above the sill sinks from D E = h to D Ex
= h^ let us put

lh = — h, i-E. let lh consist of m parts, and let us substitute in the

last equation, instead of Ji -*, successively

and then add the results found. In this manner we obtain the re-

quired time

3 G li rlmh\-* (m + 1 ,V~* /nli\~^

[('^rM^ '•)+••©"*]
SfinbVJg

3 G li h~* r , . _, x , ,-,-= .
—

,
\m-i + (m + l)~l + . . • + w-ll

2[tnl)V2c/ w '

[
(1-1 + 2-f + 3-1 + . . . + fr*)

'- (1-1 + 2-! + 3-S + . . . + m-i)
],

or
;
according to the Ingenieur, page 88,

3 Gh-i in-* +1 m-* + 1 \

~ 2pn-*b V2g \~ 3 + 1 -* I + V
= ^J^L= . 2 («-* - »-*) = -

t

- 8.g_ r(»r_ ii

- _±« r(» *y+_ *4i =-^ (JL _ 1
).

If we put li x
= 0, we obtain and also ^ — 00 ; hence the

\ li x

time required for the water to sink to the level of the sill will be

infinitely great.
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Example.—If the water issues from a reservoir 110 feet long and 40

feet wide, through an overfall 8 inches wide, in what time will the level

of the water fall from 15 inches above the sill to 6 inches above it ? Here

we have
3. 110 . 40 / 1 1 \ _ 19800

,025 1/-A5 VT257 ~
H 8,025 ^2 - Vp

ft . fv 8

19800 haiao i^an 4A^ 19800.0,5198 1282,5
(1,4142 — 0,8944) = 6

' = seconds.
8,025 a

v
' '

J
8,025 /x (i

If we assume as the coefficient of efflux /z = 0,60, we have for the real time

of discharge

1282 5
t = — ~* = 2137,5 seconds = 35 minutes 37,5 seconds.

Remake.—For a rectangular orifice in the side we can put approxima-

tivelv

2 G
t = ((v^ _ VT2)

- |g (VV^ - V^)),

in which F and G denote the cross-sections of the orifice and of the vessel,

a the height of the orifice, %
±
the initial head, and h2 the head when the

discharge ceases. If 7i
2
= -, the orifice becomes a notch and the formula

for overfalls must be employed.

§ 451. Wedge-Shaped and Pyramidal Vessels.—If the

vessel A B F, Fig. 783. from which the water is discharged, forms

a horizontal triangular prism, the time in
Fig. 783. which it will empty itself is found in the

/gm^^^==B following manner. If we divide the height

z^^^^^^ff^Mr, CE — li into n equal parts and pass hori-

^^^^^^^^^m
1

zontal planes through the points of divi-

sion, the whole mass of water will be

\BB|IB§1|||| divided into equally thick horizontal layers,

c whose common length isA D = Iand whose

width diminishes from the surface down-

wards. If the width D B of the upper layer = I, the width Dx
Bx

of another layer situated at the distance O Ex
— x above the orifice

x
F, which is located at the lower edge of the prism, is y = j b,

h ~b I x
and its volume is ii I . - = ——. But the discharge in the unitJ n n 6

of time is

© = li FV2gx;

hence the small time, dining which the water sinks a distance -,

b I x „ ./- I I

r = : u F \% a x = = . xK
n njiFVZg
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Finally, since the sum of all the xi from x = - to x = — is
n n

(3- in hi,

we have the time of discharge of the whole prism of water

— . I n Jfi = 3

n\MF¥%g

•/ — 4

\iFV%cj

V

.hi = 4
p F V%$ K

, I.E.

in which V = hblh denotes the total volume of the water and

c = V'2gh the initial -velocity. In this case it requires 4 more

time to empty the vessel than if the velocity c were constant.

If the vessel A B F, Fig. 784, forms an upright paraboloid, we

have the ratio of the radii KM'

— y and

CD = I

y _ Vx
t

hence the ratio of the horizontal section

Gx through K to the base A D B — G is

Fig. 784.

G V

r _Gx
h

, and therefore

the volume of the layer of water is

— n h _ Gx
1

' n ~ n
'

As this expression coincides exactly with that found for the trian-

gular prism, we can put here also

or, since V = l G h (§ 124, Example),

" 3 fiFc

This formula can also be employed in many other cases for the

approximate determination of the duration of efflux, E.G., for de-

termining the time required to empty a clam. It is applicable,

whenever the horizontal sections increase in the same ratio as the

distances from the bottom.
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Fig. 785. If
? finally, we have a pyramidal vessel

ii^lli^=^B ABF
9 Fig. 785, to deal with, then

T =

G x : G — x* : 7r, and, therefore, G x
=

the volume of the layer Hx R x
is

Gjli _ G_xr_

n
"•

' %h'
and the time necessary to discharge the latter is

Gx9 „./,^- G
n h

:pFY2gx . X*.
n i*

F ]l V2 g

But since the sum of all the x* from x = - to x = — is
n nm =-••«"

we have the time necessary to empty the entire pyramid

G . ,i n Gte
t — lwfll = £ -m .,—

.

- = g
40*

f^^Y2g 5 vFVZgti
or, putting J Gli — V,

° \i F c

Since in this case the initial velocity gradually diminishes from

c to 0, the duration of the efflux is \ greater than if the velocity

remained invariable and equal to c.

Example.—What time will a clam, the area of whose surface is 765000

square feet, require to empty itself, when the discharge pipe enters at the

deepest place and is 15 inches in diameter and 50 feet long, and when the

depth is 15 feet? Theoretically

V
x

765000 .15 19584000

~tt. 8,025 yiJ
. 8,025 Vl5= 200568 seconds. 4 ' V4>

But the coefficient of resistance for the entrance of the water into the

pipe, which is cut off at an angle of 45°, is

; = 0,505 + 0,327 (see § 428) = 0,832,

and the resistance of friction for the pipe is

= 0,025 -= . r- = 0,025 .

50

hence the complete coefficient of efflux for the same is

li = — -—
:
= Lt== = 0,594,

*g"

V2,832A + 0,832 + 1

and the required duration of efflux is

t -= 200568 : 0,594 = 337655 seconds = 93 hours 47 minutes 35 seconds.
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452. Spherical and Obelisk Shaped Vessels.-—By the

aid of the formulas, deduced in the foregoing

Fig. 786. paragraph, we can find the duration of the

efflux from spherical, obelisk shaped, pyrami-

dal, etc., vessels.

1) The time required to empty a segment

ggy of a sphere A F B, Fig. 786, which is filled

with water, whose radius A = C F' = r and

whose height F G = h,is

nh>

V F V2gh
- = A 7T

f*
F V2g

or, if an entire sphere is to be emptied, in which case h = 2 r,

(10 r - 3 h) M
P F V2~g

t = 16 n r
2 V2

16fiFY2g

and for a hemisphere, where h = r, t = 14 n r
2 Vr

Here the

depth F G x
=

IbiiF ^-
g

horizontal layerHx Rx
= Gh corresponding to the

x, is

tc. . h 2 tt r h x tt h x~
tt x (2 r — x)

n n n

v = V2 g x, the duration of the

tt h

hence, if the velocity of efflux is

discharge will be
2nr7i _

n\iF ^Yg '

.

™ f
J< F V2g

Since the first part of this expression coincides with the formula

for the emptying of prismatic vessels and the second part with

that for the emptying of pyramidal vessels, if we in the first

case substitute 2 tt r h for h I and in the second re h2
instead of G,

we obtain by the aid of the difference of times required to empty a

prismatic and a pyramidal vessel

bill , . „ on
t=z$ .

Fig. 787.

_ and t=%.
\
lF V2gh P F V2gh

the time, in which a segment of a sphere

will empty itself, as was found above.

2) For a vessel A C K, Fig. 787, shaped

like an obelisk or a pontoon, we can employ

the above formulas ; for we can consider it

to be composed of a parallelopipedon A EK„

of two prisms BEN and D E N and of a

pyramid GEN (compare § 121). Let l be
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the width A D of the top, ft that K L of the bottom, I the length

A B of top, k that K Noi the bottom and h the height i^
7

of

the vessel. Then we have the surface A G of the water

& J = fci + ft
(*"- h) +h(b~ ft) + (I -I,) (1) - ft),

in which ft ^ is the base of the parallelopipedon A E K,b x (I — I)

and ^ (b — ft) the bases of the prisms BEN and DEE and

(Z - ?0 (J - ft) that of the pyramid C E N
Fig-. 788. ^ow ^e tjme required to empty the paral-

A
. ., ^ lelopipedon is

\ % \ % / // ^na^ required for the triangular prisms is

\| \1 / ^ _= o [ft (Z - ZQ + lx (b- ft)] 4^

K and finally that required to empty the pyra-

mid is

(Z - Z,) (5 - ft) VA
fc=s

hence the time required to empty the entire vessel is

t = t\ + ^2 + tz

[30 ft Z, + 10 ft(Z-Zx) + 10 Z, (£-ft) + 6 (Z- Z,) (£-ft)]
!5 ^ ^ Y2 g

= [3 5 Z + 8 ft Zx + 2 (5 Zx + ft Z)] —^—=9

When -y-
1 = =- the vessel is a truncated pyramid. Putting in

this case the base bl — G and the base ft Z
x
= #i, we obtain

* = (3 + 8 ft + 4 ^G^)—2^—

.

15 /* F V2g

It is easy to see that this formula will hold good for any trian-

gular or polygonal pyramid.

Example.—An obelisk-shaped reservoir is 5 feet long and 3 feet wide on

top and at a depth of 4 feet, where a short pipe 1 inch in diameter and 3

inches long is inserted in it, it is 4 feet long and 2 feet wide ; how long a

time will be required for the water to sink 2| feet ? The time required to

empty it is, assuming ft = 0,815,

2 V4
t= [8. 4. 2 + 3. 5. 3 + 2 (3. 4 + 5. 2)]

15. 0,815 .?.QJ
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153 . 4 . 4 . 144 A 2304= 153 .
-—--_——- = 153. 7,475= 1144 sec.

15 . 0,815 . 8,0.25. tc
' 12,225 . 8,025 tt

At the level 4 — 2f = 1J feet above the tube I = l
t + § = 4f and

b = \-\- f = 2f feet; hence the time required to empty the vessel, when
it is filled to that height, is

tl =[8.4. a + 8 .V .y + 2(2.V + 4.W]. r8 0)gl5 ^= 603 seconds.

The difference of these times gives the time. (541 seconds) in which the

surface of the water will sink 2J- feet from the top.

§ 453. Irregularly-shaped Vessels.—If we are required to

find the duration of efflux for an irregularly-shaped vessel H F E,

Fig. 789.

Pig. 789, we must employ some method of approximation, such as

Simpson's Rule. If we divide the whole quantity of water into 4

equally thick layers and denote the heads corresponding to the

different horizontal sections ft, ft, ft, ft, ft, by 7i , Jix? 7i 2, li Z9 h4,

we obtain, according to Simpson's Kule, the duration of the efflux

t = h - h__ / <?,_ +
4ft + 2ft^ + £0? + _ft_\

niiFVTg \VT
Q

VT
k

VT9
V~h z VTf

If we divide it into six layers, we have

f= h-K_ t ft^ , 4ft
{

2g
2| 4ft

;

2ft
{

4ft
{

ft

The discharge in the first case is

V = J~^ (ft + 4 ft + 2 ft h 4 03 + 4), and in the second
l/&

F - ^g^-
6

(ft + 4 ft + 2 ft + 4 ft + 2 ft + 4 ft + ft).

If the form and size of the reservoir is not known, we can cal-

culate the discharge Fby observing the heights h , lh, etc., of the

water at equal intervals of time. If t is the whole duration of the

efflux, we have for orifices in the side and bottom

V = P FtfH ( VT + 4 VT, + 2 VT, + 4YT3 + *%),

and for overfalls or notches

y = i ^|- ^ff( VV + 4 V^? + 2 VA? + 4 V^"3 + V^5

).



17,0
a G, = 410000

15,5
u

<? 3
= 325000

14,0
u ff, = 265000
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Example.—In what time will the surface of the water of a dam sink 6

feet, when the discharge-pipe is a semi-cylinder 18 inches wide, 9 inches

high, and 60 feet long, and when the cross-sections of the surfaces of the

water are

for a head of 20 feet, G = 600000 square feet,

" " 18,5 u G
t

=-. 495000
u a

a a

a a

Now F = £ . (|)
2 = 5^ = 0,8836 square feet. If we put, as in the Ex-

ample of § 451, the coefficient of resistance for the entrance of the water in

the pipe = 0,832 and that of the friction, = 0,025 -, = 0,025 . 60 . 1,091 =

1,6356, we obtain the coefficient of efflux

H =
1- = 1 = 0,537, and

Vl + 0,832 + 1,6356 V3,4685

nF-Jzj = 0,537 . 0,8836 . 8,025 = 3,808.

Now we have

ffj =~ = 134170,% =~ = 115090,
VA V20 V^ Vl8,5

1L^J^ = 99440, -^ =S = 82550,
VA

g
Vl7 VA

3 Vl5,5

—
d=r =—=- = 70830 ; hence the duration of the efflux is

V^4 Vl4

(134170 + 4 . 115090 + 2 . 99440 + 4 . 82550 + 70830)
12.3,808

1194440= T-— = 156833 seconds = 43 hours 33 minutes 53 seconds.
7,616

The discharge is

V - ^ . (600000 4- 4 . 495000 + 2 . 410000 + 4 . 325000 + 265000)

4965000 ooon .AA , • » ,— __—— = 2882500 cubic feet.
2

§ 454. Influx and Efflux—If, while water is flowing out of

the vessel, other water is flowing into it, the determination of the

time in which the level of the water will rise or sink a certain dis-

tance becomes much more complicated, and we are generally obliged

to content ourselves with an approximate result. If the discharge

per second into the vessel Q x > \i FV2~gh, the water will rise, and

if Qi < P F ¥% g h, it will sink. But the level of the water be-

comes constant, when the head is increased or diminished, until it

becomes
1 / V

equal to Tc = ^— (--4) • The time t, during which the
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variable head x is increased a small quantity £ is determined by the

equation Qx % = ft r — \i F V2 g x . r,

and, on the contrary, the time, in which the surface of the water

sinks a distance £ is determined by the equation

Gl g = pFV2gi.T- ftr.

Hence we have in the first case

, and in the second

r =
Q,-\iFV2gx

0i s

{
iFV2gx- ft

By employing Simpson's Eule, we obtain the time of discharge/

during which G
Q
becomes successively G1} G3f etc., and the head h

becomes h x, lip . .
.,

K-KV G
+

4(2,
|

2 G,

12 L^ FVYgh, - ft iiFV2jh,~Q
x pFVWTu - ft

4^3 G4 -i

: -- - + ~^=
J,

t=

li FV2 g lh - ft fi FV2 g lh - ft

F
ft

or if we denote —rz by V h , we have more simply

12
f*

J?
7 V2# L 4/

1~ _ Vic VTX
- VT V% - V &"

4^3 ,
G,

4-
/
_ tn— 1.

^7z. - Vy^JVliz
- Vh Vlh- Vh

If the vessel is prismatic and its cross-section is constant

and = G, we have (see the author's " Experimentalhydraulik,"

§ 0, XII)

for the time, in which the head h changes to h x
.

'

7 7
VA - Vh Vh - Vh

bmce for 7^ == a;,
—

-

= — == = oo,

Vh- Vh °

it follows that the level of the water becomes permanent after an

infinite time has elapsed.

For a notch in the side we have the following formula

3 ft L
( Vh,- VhY (& + Vhh + *0

J ' 3 * + (2 4/K+ V*) (2 i/7,. + i/'iAY
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»—~7=) and I denotes the Naperian logarithm
i lit A/9, rJ

l S
^3 P b |/2 g>

and tangr1 y the arc whose tangent is #.

According as h § /z- or the discharge into the vessel

& 5 1 P & ^27^,
a rising or a sinking of the water in the vessel takes place. The

state of permanency occurs, when li x
— h, but in this case the cor-

responding time t becomes = go .

Example.—In what time will the water in a parallelopipedical box

12 feet long and 6 feet wide rise 2 feet above the sill of a notch in the side

|- foot wide, when the discharge into it is 5 cubic feet per second ? Here

we have h = and consequently more simply

GTc r.

~ 3 Q±
[_'

+ 12 tang.
VSh

t

2 V& + Va.
]

Now G = 12 . 6 = 72 feet, Q ±
= 5, h

1
= 2, 1 = J, ^ = 0,6, and

7j =
(f . 0,6 . i . 8,025)

3=
2}133;

hence the time required is

72 . 2,1330 ["_ 4,1330 + V4,2660 ,—

3. 5 [> Via tow^
-1

(t-
Vg

4142 + 2,9210(1,4142 - 1,4605)
2

10,238 (7,969 — 1,776) = 10,238 . 6,193 = Q3T\ seconds.

)]

Fig. 790.

§ 455. Locks and Sluices.—We can make a useful applica-

tion of the principles just enunciated to the filling and emptying

of locks and sluices (Fr. ecluses ; Ger. Schleusen). We distinguish

two kinds of locks, name-

ly, the single and the

double. The single lech

consists of a chamber B,

Fig. 790, which is sepa-

rated from the water in

the head lay A by the

gateHF and from that

in the tail bay C by the

gate R S. The double

loch, Fig. 791, on the

contrary, consists of two

chambers with an upper

gate K L, a middle one

HF, and a lower one R S.
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1) If we put the mean horizontal cross-section of the chamber

of a single lock = 67, the distance
X of the centre of the open-

ing in the upper gate below the surface HR of the water in the

head bay = hl} its distance Ox 2 above the water in the tail bay = 7i2

and the cross-section of the orifice in the gate = F, we have the

time necessary to fill the lock to the middle of the orifice, during

which the head is constant,

t
G ?h

1

P F VtgTh
and the time necessary to fill the remaining space, during which

there is a gradual diminution of head,

f = 2 Glh

hence the time required to fill the whole lock is

, = ,i + fc = («*+»Jg
P F VYg h

If the orifice in the lower gate is entirely submerged, the head

decreases gradually during the emptying from 0^ = h x + h* to

2ero, and the time of emptying the lock is, therefore,

2 67 Vht + lu

\l F |/2 g
But if, on the contrary, a part of the orifice lies above the

lower water level, we have to consider two quantities of water, one

discharged above and the other below the water. Putting the

height of the portion of the orifice above the water = a1} the height

of that below the water = «9 and the width of the orifice = t, we
obtain the duration of the efflux by means of the formula

.
2 67 (h + h 3)

p z VJTj («i yih + 7h - -|i + «« Vih + /*,)

2) In the double lock (Fig. 791) the head in the upper cham-

ber which is cut off from the head bay gradually diminishes during

the efnux into the second chamber. If 67 is the horizontal cross-

section of the first chamber, and if the initial head Ox
= li x

is diminished to X O x
= x, while the water in the lower chamber

rises to the middle of the orifice in the gate a distance Ox 0.2 = h»

we have the time corresponding to it

4 =?^ (**;-**
But the discharge is
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G (fii
— x) — Gih2 ; hence

x = hi — yt 1h an^-

2G I _1 A f1
Gjt\

= -44^= ( VWX - VgT~^~gJi2).

\
lF V2g

The time in which the water in the second chamber rises to a

level with that in the first, or in which the water in the two cham-

bers assumes a common level, is, according to § 449,

2GGl
Vx _ 2 Gr V~G VGh x

- G
x
li,

U ~
l
LF(G+G,)V%-g'~ M^tf + tfi)^ ?

and the whole time required to fill it is

Example.—What time is necessary to empty and fill a single lock of

the following dimensions : mean kngth of the lock = 200 feet, mean width

= 24 feet or G =* 200 . 24 = 4800 square feet ; distance of the centre of

the orifice in the upper gate from both surfaces of water = 5 feet, width

of both orifices = 2fc
feet, height of the orifice in the upj)er gate == 4

feet, and height of the orifice (entirely submerged) of the lower gate = 5

feet ? Substituting in the formula

t = (2 h
t + h

2 ) G

ht
= 5, 7ts

= 5, G = 4800, /i = 0,61-5, F = 4.2% = 10 and VJ$7 = 8,025,

we have for the time required to fill it

_ 3.5.4800_ = 14400_ = 65 ^ = 1Q^ ^
1 ~ 6,15 . 8,025 V5 1,23 . 8,025 V5

If we substitute in the formula

t _ 2G ^i + \ a = 4800, h
± + h 2

= 10, F = 5 . 2|- = 12,5, we have

fiF^f¥g

the time necessary to empty the lock

/ = .
: = 492 seconds = 8 minutes 12 seconds.1

0,615 . 12,5 . 8,025

§ 456. Apparatus for Hydraulic Experiments.—By means

of the apparatus represented in Fig. 792, we can not only show by

more than 100 experiments the most important phenomena of

efflux, but also prove in figures the most important of its laws-

The apparatus consists of a discharging vessel ABC, which is

provided with three orifices Flf F3, Fz , whose centres are at dis-
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tances from the mean level of the water, which are to each other

as the squares 1, 4, 9. To these orifices various mouth-pieces and

pipes can be applied, and in order to do this without being dis-

Fig, 792.

A A

turbed by the water, we close the orifice by means of a particular

kind of valve H2, Hs, to which is attached a rod passing through a

stuffing box in the back of the apparatus. In the upper and wider

part A B of the apparatus two pointers Zx and Z^ which are

directed upwards, are placed.- These serve as fixed points, the one

marking the beginning and the other the end of the experiment.

The water which is discharged is caught in a vessel, which before

each experiment is placed on top the discharging reservoir, into

which its contents are emptied by opening an orifice that is gen-

erally closed by a stopper.

In order to find by the aid of this apparatus the coefficient of

efflux fi for different mouth-pieces and tubes, we must observe by

means of a good stop-watch the time t, in which the water-level

sinks from one pointer to the other, or within which the head h,

becomes hs ; if, then, i^is the cross-section of the orifice and G h
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area of the sinking surface of the water, we have the coefficient of

efflux (see § 448)

2 G ( V7i\ - Vhi)
a — 1 :___ iL

FtV2g
and the corresponding mean head

This apparatus is provided with a collection of mouth-pieces and

tubes, viz., square, rectangular, circular and triangular orifices in a

thin plate with or without an internal rim, short cylindrical and

conical tubes, long straight tubes of different diameters, elbows,

bends, etc., which can be inserted in the different openings Flf F.2y
Fz . By means of an apparatus with the above accessories we can

show in a few hours all the phenomena and laws of efflux ; with it

we can study not only the perfect and imperfect and complete and

incomplete contraction, but also the different degrees of the con-

traction of the jet, and we can make ourselves acquainted with the

resistance of friction, with that of elbows and bends, and also, by

observing jets of water and the sucking up of water, with the

positive and negative * pressure of water. We will always find

results which agree pretty well, and sometimes extraordinarily

well, with the coefficients given by experiment Qi, 0, a, £). In our

apparatus G — 0,125 square meters, the usual diameter of the

orifices and tubes is 1 centimeter, and for the lower orifice

h
x
— 0,96 meters and lu = 0,84 meters. (A detailed description of

this apparatus and of the experiments, etc., which can be made
with it, is given in the author's "Experimentalhydraulik")

The following example shows how well observations with this

apparatus agree with the well-known experiments on a large scale.

With a short cylindrical tube placed in the lower aperture, t was

== 33, and with a long glass tube, for which the ratio -^ = 124, t

was found to be == 56; from this we deduce in the one case

!h -= 0,815 and £, = \ - 1 = 0,504,
Lli

and in the other
1 >

H -= 0,480 and & = ^ - 1 = 3,332;
f-h

hence

?, - fi = 3,332 - 0,504 = 2,828,
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and therefore the coefficient of friction for the tube is

( =
f

(fi - ft) = *§§ = 0,0228.

According to the first table in § 429, for the mean Telocity v =
1,84 meters, with which the water was discharged from the tube,

£ = 0,0215; the results agree, therefore, yery well. By means

of these experiments, we can satisfy ourselves that the velocity of

efflux of the water does not depend at all upon the inclination of

the tube, but upon the head of water above the orifice of discharge.

The duration of efflux is the same, no matter whether the long tube

is inserted in the lower or middle opening, provided its orifice of

discharge is at the same depth below the surface of the water in the

reservoir.

This apparatus has recently received many additions, so that we
can now make with it experiments upon the efflux of water under

constant pressure, upon the efflux of air, and also upon the pressure,

impact, and reaction of water.

Closing Remark.—A very complete list of the works upon the subject

of efflux of water and upon the motion of water in tubes is given in the

" Allgemeine Machinenencyclopadie," Yol. I, Art. " Ausfluss." We will

mention here, among the later works, Gerstner's " Handbuch der Me-

chanik," Vol. 2, Prague, 1832 ; d'Aubuisson's " Traite d'Hydraulique a

.rusage'des Ingenieurs," II edit. 1840; EytelWein's u Handbuch der Me-
chanik fester Korper und der Hydraulik," 3d edition, 1842 ; Sckeffler's

" Principien der Hydrostatik und Hydraulik," Braunschweig, 1847. The

older works of Bossut and du Buat upon hydraulics are always of value on

account of their practical treatment of the subject. " Die Experimental-

hydraulik, eine Anleitung zur Ausfiihrung hydraulischer Yersuche im
kieinen," by J. Weisbach, Freiberg, 1855, is particularly adapted for teach-

ing and for the practical study of hydraulics. Ruhlmann's "Hydrome-
chanik" is also to be recommended. The more recent works of Lesbros,

Boileau, Francis, etc., have been mentioned before (§§ 378, 380 and 387).

We can also recommend Rankine's "Manual of Applied Mechanics," as

well as Bresse's " Cours de Mecanique Appliquee," II. But two parts of

the hydraulic experiments of the author have as yet appeared, and they are

1) " Experiments upon the efflux of water through valve-gates, cocks,

clacks, and valves ;" and

2) "Experiments upon the incomplete contraction of water during

efflux, etc., Leipzig, 1843."

Several new treatises by the author upon hydraulics are contained in

the "Civilingenieur," the "Zeitschrift des Deutschen Ingenieurvereines,"

etc.

59
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CHAPTER VI.

OP THE EFFLUX OF THE AIR AND OTHER FLUIDS FROM VESSELS
AND PIPES.

§ 457. Efflux of Mercury and Oil.—The general formula

v = V%fl (see § 397)

for the yelocity v of efflux of water under a pressure, measured by

the head h, holds good (see § 399) also for other liquids, such as

quicksilver, oil, alcohol, etc., and can also be employed for the ef-

flux of air and other aeriform fluids, when the pressure is not yery

great. If y denotes the heaviness of the fluid and p its pressure

upon the. unit of surface, we have in like manner h =£, and

therefore

v = \/2gK
7

If we measure the pressure by means of a piezometer, filled with

a liquid whose density is y1? the height of the column of liquid is

hence p = h x y19 and therefore

v = V2g^h 1
=V2j^h

i,

Ti
in which e, =— denotes the ratio of the heaviness of the liquid in

r
the piezometer to that of the fluid which is being discharged.

This agreement of the laws of efflux for different fluids is not

confined to the velocity alone, but extends to the contraction of

the fluid vein. Streams of mercury, oil, air, etc., when passing

through an orifice in a thin plate, are contracted in almost exactly

the same manner as a stream of water. Some experiments made

by the author upon the efflux of mercury, oil and air, have shown

conclusively this agreement (see the Polytech n. Centralblatt, year

1851, page 386). These experiments gave

1) "With a circular orifice in a thin plate 6,5 millimeters in di-
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ameter, under heads of 91,5 millimeters and 329 millimeters, the

coefficients of efflux

For water. Mercury. Rape-seed oil.

li = 0,709 0,670 0,674

From the above table it appears that the contraction of streams

of mercury and rape-seed oil is a little greater than that of a stream

of water.

2) With a shorty well-rounded, conoidal mouth-piece, whose di-

ameter d was 6,6 m. m. and whose length was double the diameter

(J
=z 2 d), the following values were found

For water. Mercury.

Rape-seed oil.

At a temp. 12$° C. At a temp. 39" C.

p --= 0,942 0,989 0,430 0,665

3) A short cylindrical pipe, which was not rounded off inside,

whose_ diameter was d = 6,76 millimeters and which was three

times as long as wide (I = 3 d), gave the following values

:

For water. Mercury.

Rape-seed oil.

At a temp. 12^° C. At a temp. 39 C.

(i = 0,885 0,900 0,363 0,604

From these experiments we find that mercury flows through

short mouth-pieces and pipes but little faster than water, and that,

on the contrary, the velocity of rape-seed oil increases visibly with

the temperature and is less than that of water. The great differ-

ence between the velocity of water and oil is due to the greater ad-

hesion of the oil to the walls of the pipe.

4) The following values of the coefficient of resistance £ were

obtained with a glass tube 6,64 millimeters in diameter and 86

times as long as wide (I) and with an iron tiibe 6,78 millimeters in

diameter and 85 times as long as wide (II).
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For water. Mercury.

Rape-seed oil.

At a temp. 12^° C. At a temp. 39 C.

I. f = 0,0271 0,0277 39,21 2,722

II. ? = 0,0403 0,0461 54,90 5,24

According to this last experiment the coefficient of resistance

of mercury in an iron or glass tube is a little greater, and, on the

contrary, that of rape-seed oil many times greater than that of

water. We also see from these tables that the coefficient of resist-

ance of the rape-seed oil diminishes as the temperature or degree of

fluidity increases. These experiments also show that the coefficient

of resistance for the iron tube is much greater than for the glass

tube, which is due to the greater smoothness of the latter.

§ 458. Velocity of Efflux of Air.—If we assume that the

air does not change its density during the efflux, the well-known

formula for the efflux of water from vessels can also be applied to

the efflux of air. If p is the pressure of the

exterior air and p x and y x the pressure and

heaviness of the air inside the vessel A B,

Fig. 793, we can put for the velocity of ef-

flux of the latter (see § 399)

Fig. 793.

M

v = y %g
(pi - p)

Ti

But (according to § 393), ifp is the pressure in kilograms upon

a square centimeter of surface, y the weight of a cubic meter of air,

and r its temperature

p _ 1 + 0,00367 . r

y
~

1,2514

or, ifp is referred to a surface of one square meter,

p _ 10000

r 1,2514

hence it follows that

(1 + 0,00367 t) = 7991 (1 + 0,00367 t)
;
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V ~ = V f = V7991 VI + 0,00367 t,

or replacing 0,00367 by 6

\/P- = 89,39 VI + 6 t, and v = 89,39 jA # (1 + 6 t) (l - £\

|/(1 + 6 T) (x I396

or for the English system of measures

v = 161,9 j/2 g (1 + d r) (l - ^
= 1299|/(l+c5r) (l -

J),
r being expressed in degrees of the centigrade thermometer.

If 5 is the height of the barometer and li that of the manom-
eter (M), we have also

2- = -A- or 1 - 2- = -A_
p, b + h

9

pt b + h
9

and consequently the velocity of the issuing air

v = 396 1/(1 + <$ r) -
r meters

= 1299 V(l + (J t) ^-^ feet,

or approximatively, when the height of the manometer is small, by

putting

1

v = 396 (l - A\ |/(l + 6 r) | meters

= 1299(l-A)|/
(
i + (5 T) |feet.

Remark.—On account of the ordinary humidity of the atmosphere, it is

advisable in practice to take 6 = 0,004.

§ 459. Discharge.—If F is the cross-section of the orifice, we

have the effective discharge, measured at the pressure in the reser-

voir, j?i or b + h,
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ft = Fv = F\/% g Hl - *-) = FV%gL^l -'*

^i/2 ,V, j

y
Y b + h

9

e.g., for atmospheric air

ft = 396 F y ^
1 * ^

^
)A

ci

& + A

= 1299 F \/<^±Al±A cuhic feet.
b + h

If we reduce this quantity of air to the pressure of the exterior

air p or b, we obtain

- * | y* J ' & + fc
r

y y \ * b)V
e.g., for atmospheric air

Q = 396 .P y (1 + d r) /l +
|) | cubic meters.

(J
= 1299 .F 1/(1 + d r) /l + ^j

~ cubic feet.

Example.—The air in a large reservoir is at a temperature of 120° C
and at a pressure corresponding to a height of the manometer of 5 inches,

while the barometer marks 29,2 inches ; what will be the discharge through

an orifice 1§- inches in diameter ?

The theoretical velocity of efflux is

/ 5~ /T 4404 5
9 = 1299 y (1 + 0,00367 . 120) -^ = 1299 y -'

g4 g

' = 596 feet, and

the cross-section of the orifice is

^ = -r = 1 . (g) = 256
= °'01227 SqUare f66t;

hence the theoretical discharge, measured at the pressure in the reservoir, is

Q t
= Fv = 596 . 0,01227 = 7,313 cubic feet,

and, on the contrary, at the exterior pressure the volume is

q = L+i q _ |4? . 7?3i3 = 8,565 cubic feet.

§ 460. Efflux according to Mariotte's Law.—If we suppose

that the air does not change its temperature during the discharge,
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we can assume that it expands according to the law of Mariotte

(see § 387), and therefore that the quantity of air Q in passing from

the pressure^ to the pressure^ performs the work Qp 1 1^\. If

we put this work equal to the energy— Q y stored by Q y during
2 g

the efflux, we obtain the following formula

*g~ y \p)'

hence the velocity of efflux is

°-v*W¥)->
Now, as in the foregoing paragraph, for the metrical system of

measures - = „ _„., . ; hence we have here also
y 1,2514

v = 396 \/{l + dr)l (£\ = 396 |/(1 + d r) I (^y-) meters,
P

and

v = 1299 Y(l + 6r)l^\ = 1299 |/(1 + 6 r) I fi-j-~) feet,

in which b denotes the height of the barometer in the exterior air

and h the height of the manometer for the confined air, r the tem-

perature of the latter in degrees centigrade and d == 0,00367 the

well-known coefficient of expansion of air, Now the theoretical

discharge per second is

Q = Fv = F)/2g£l(&)

** 1299 F\/(l + dr)l
(

&41-) cubic feet,

or, when reduced to the pressure of the air in the reservoir,

V
Pi

V
Pi

V J
7 \pl

b + h
7 J

y V b 1
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h
If the excess of pressure of the air in the reservoir, or j, is very

small, we can put

'm-'('+»-j-i©'
(see the Ingenieur, page 81), and therefore, approximative!?,

while according to the first formula for the efflux (see § 459)

We see that if we assume that air in flowing out expands

according to Mariotte's law, we obtain a smaller discharge than

when we consider that the air acts exactly like water and does not

expand at all. This difference diminishes with j. and in both cases

for very small values of =-, we have
_____ *

Q=zFY2g£. J± = 1299 F \/(1 + 6 t) ~ cubic feet.

§ 461. Work Done by the Heat.—The logarithmic expres-

sion, found in § 388, for the work done during the compression or

expansion of air is correct only, when we assume that, while the

change of volume or density is taking place, the temperature of

the air does not alter ; but this is correct only, when the change

takes place so slowly that the heat in the confined air has time

enough to communicate any excess to the walls of the vessel and

to the exterior air. But if the change of density takes place so

quickly that it is accompanied by a change of temperature, when
the air is compressed, the temperature is elevated and when it is

expanded, it is lowered. Under these circumstances the tension

cannot change according to the law of Mariotte alone. If p and

Pi are the pressures, y and yx the heavinesses and r and t, the tem-

peratures of the same air, we have, according to § 392, the formula

__ = 1 + ^ Tl -_
p ~ 1 + 6 r ' y'

Now if during the sudden change of pressure the temperature

varies in the ratio

L±_j_ - /_y
1 + 6 r ' \yr
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we can put

li - /L±AriV- AM*
y ~

\1 + 3t)-\p)'

or

Fig. 794.

If in a cylinder A G, Fig. 794, a prism of air, whose initial

height is E B — s, whose initial tension is p
and whose heaviness is y, is cut off by a piston

E F, and if, by suddenly raising the piston a

distance x, we cause the density of this mass

of air to become y and its tension to become

z, we have, according to the last formula,

z

p
and therefore

©= fe)'

(ih)" r-

In order to move the piston, whose area

we will for simplicity put equal to the unit

of surface, through an element of its path

the work, which must be done, is

z o
\5 — Xj

p g = p a s§ (s — x)—i

Substituting instead of x successively 1 a, 2 a, 3 a . . . and put-

ting s = n o and the height of the prism of air, when the piston

has described the space E E19 Ex B = s x
— m a, we have for the

work done by the piston in moving the distance E E
x

Ax—po $\ [s-t + (s — (7)-t + (5 — 2 ff)~* + ... + (s — m <r)H
I]

(c7)-f + (2 (7)-i + (3 (t)-I + ... + (% tr)-i ) •

- K*)-1 + (2 ^)~H (3 <7)-l+ ... + (m a)-?]
J

pas"
\ - [(tr)-i + (2 (7)-!+ (3 (j)-i+ . . . + (m

' ~d (
— (1-i + 2-f -f:

3-1 + . . . + m-i)
I

*

Now, according to page 88 of the Ingenieur, when m and n are infi-

nitely great numbers, we have

1-I-+2H
f + 3-I + ... + w-f=^= - —

,

and
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l"i + 2-t + 3-1 + . . . + «rl = - ~;
hence

-•"KM
If by raising the piston another distance 5 we wish to force the

compressed mass of air A Ex into a space E, where the pressure is

the work to be done will be

a _ P sl

the exterior air presses upon the piston during the whole of its

course with a force p and transmits to it the mechanical effect

Az = p s. Hence the total mechanical effect necessary to compress

the volume of air (1 . s) and force it into the space R is

and consequently the work done in compressing a volume of air

from the pressure p to p x is

while, according to Mariotte's law, we should put

and for perfectly incompressible fluids we have

If, on the contrary, the quantity Vx y, of air at the pressure p x

is brought back by sudden expansion to the pressure p and the

density

**&•

.

or to the volume

the work done by air is



§4C2.] EFFLUX OF THE AIR AND OTHER FLUIDS, ETC. 939

ErAMPLE.—If a blowing engine converts per second 10 cubic feet of

air at a pressure & = 28 inches of the barometer into a blast at the pressure

I + h = 30 inches, it requires, according to the formula,

*r»M(&)»--i}
since the pressure per square foot is

p = lU. 0,4913 & = 144 . 0,4913 . 28 = 1981 pounds,

the mechanical effect

a = 30
.
1981 (y% "~ 1

)
= 59430 (r ii

- 1
) = 5943

• °'2326

= 1382 foot-pounds.

The logarithmic formula (see Example 1, § 388) gives A = 1386,7 foot-

pounds, and that for water

A = Vp (^ - l) = 19810 (^|
- l) = ^p = 1415 foot-pounds.

§ 462. Efflux of Air, when the Cooling is taken into

consideration.—The energy A = 3 Q l p 1 1 — f— )

3

L which is

restored during the sudden expansion of Qx to Q, can be put equal

to the work Qx y1 . ^— done in overcoming the inertia of the masa
z 9

Q y¥—!- of air when the latter assumes the velocity v.

Erom the equation

we^deduce the following formula for efflux

:

2g yx L \pJ A

hence we have in meters
-^>^m-m
v=U^V%g(l + 6r)[l-{^f]

= 685,8|/(l + «5r)[l-(|-)*}

and in English feet

v = 280,4 VV7(1 + <5 r) [l - g-)*]

.
= 2250 y (1 + d t) [l - /^-Y] feet.
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The tension of the issuing air is that of the exterior air jtr; its

heaviness is / p \*

* = *(*)'
and its temperature is tp y

T _ T (py \JJ
~

and the theoretical discharge from an orifice, whose area is F, is

= 280,4 Ff 2 </ (1 -f tf r) [l - /£Y] cubic feet,

in which^1? % and r
x denote the pressure, heaviness and tempera-

ture of the confined air.

Keduced to the pressure in the reservoir, this discharge is

• =£•*=(£)'* = '©'*»..$[.-($
and, finally, reduced to the pressure of the exterior air and to the

temperature of the air in the vessel or to the heaviness y —

If we put — = —^—, in which ~b denotes the height of the ba-r
p b

&

rometer in the exterior air and b + h that of the barometer in the

confined air, we obtain

9-*S&R¥f\H*f- 1
'l

= 280,4 ^t'rjfff-f*!'-!]
= 8860.71/(1. + 6r) ^+*j*JjL+^Tq cnMo feet

'

In most cases t is very small, and we can put • •
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and therefore

In the application of this formula to fans, blowing engines, etc.,

in which cases t < h âe theoretical discharge, measured at the ex-

terior pressure and the interior temperature, is simply

= 89,39 Fy2g(l + dr)^ = 396 Fy (1 + 6 r) ~ cubic meters

= 161,0 Fy 2 g (1 + 3 r) ^ = 1299 Fj/(l + <J r) | cubic feet.

Example.—In the case treated in the Example of § 459, where b = 29,2,

Ttd 2

h = 5 inches, r = 120° and F — -j~ — 0,01227 square feet, we have the

discharge according to the last formula, measured at the pressure of the

external air,

Q = 1299 F 4/1,4404 .^ = 1299 F Vp466

= 645,1 F = 645,1 . 0,01227 = 7,915 cubic feet,

while previously (§ 459) we found, according to the formula for water,

Q — 8,565 cubic feet, and according to the logarithmic formula in § 460,

we have

Q = 1299 F 4/1,4404 Z?4| = 1299 i^Vo,2277

= 619,9 . 0,01227 = 7,606 cubic feet.

§ 463. Efflux of Moving Air.—The formulas for efflux

already found are based upon the supposition that the pressure p
or the height h of the manometer is measured at a place, where the

air is at rest or moving very slowly ; but if we measure p x
and 7^ 1

at a point, where the air is in motion, if, e.g., the manometer Mx

is in communication with the air in a pipe C F, Fig. 795, we must
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take into consideration, in determining the velocity of efflux, the

vis viva of the approaching air. If c be the velocity of the air pass-

ing the orifice of the manometer, we must put

If F denotes the cross-section of the orifice and G that of the

tube or of the stream, which passes the orifice of the manometer,

the discharge of air is Q x yx
= G cy x

= F vy*; hence

c Fy, F (p\i
,- = t^- = —

- K- ) ana
v Gyx G \pj

«- [•-©'©']£ -«*[»-(5n.
and the required velocity of efflux is

v =
> - ffl'& '

or approximatively, whenp x is not much greater than p,

v =

r^r^-^ f

Here, as in the case of the efflux of water, the velocity of efflux

F
Fig. 795. increases with the ratio -~- of

*f A M x the cross-section of the ori-

hl>

fice to that G of the pipe or

moving stream of air. We see

from this that, under the same

circumstances, the height pl

:

----•:. ) of the manometer decreases

as the diameter of the tube

diminishes, or as the velocity of the air in the pipe increases.
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If we denote by p the tension in the reservoir, where the air is

at rest, we have also

and if we eliminate v from the two expressions, we obtain

i - fcy

(JLV

the two expression

1

If h denotes the height of the barometer in the free air, li that

of the manometer connected with the reservoir and F the area of

the orifice of efflnx, we have, finally, the theoretical discharge,

measured when its heaviness is

161,9 F
1 w

= 1299 F
\t*"r)i

"(J)'
Example.—The height of a quicksilver manometer, which is placed

upon a pipe 3£ inches in diameter through which air is passing, is 2£ inches,

while the air is discharged through a circular orifice 2 inches in diameter

at the end of the pipe : what is the velocity of discharge, assuming the

barometer in the external air to stand at 27$- inches and the air in the pipe

to be at a temperature of 10° C ? Here

Vl + dr = Vl,0367 = 1,018, |/| = V^ = V^" = 0,3015 and

F = n r" = 3,141 : 144 = 0,02181 and

/ _ W\*__ V492 - 16 2
46,314

49 49

hence the discharge is

= 0,9452

;

Q = 1299 F.
1,018

94gf

015 = 421,8 F = 9,20 cubic feet.

For the corresponding tension p in the reservoir, we have

0,0287 „ nnn < n ,



944 GENERAL PRINCIPLES OF MECHANICS. [§464.

— = 0,90788, p = 1,103 jp and l + \ - 1,103 I
Jro

and consequently the height of the manometer in the reservoir is

h = 0,103 I = 0,103 . 27,5 = 2,83 inches.

§ 464. Coefficients of EfQus.—The phenomena of contrac-

tion, which, we have studied for the efflux of water, are also met
with in the efflux of air from vessels. If the orifice of efflux is in

a thin plate, the stream of air lias a smaller cross-section than the

orifice, and the effective discharge Q x is consequently smaller than

the theoretical Q, or the product F v of the cross-section F of the

orifice and the theoretical velocity v. This diminution of the dis-

charge is owing principally, as we can observe in a stream of

smoke, to the contraction of the stream of air, and we can, there-

F
fore, as in the case of water (see § 406), call the ratio a — ~ of

the cross-section Fx of the stream of air to that F of the orifice

the coefficient of contraction,

the ratio (j> = — of the effective velocity i\ to the theoretical v

(see § 408)
the coefficient of velocity.

,and the ratio \i —
jf-
= -—-^ — a ej> of the effective discharge Qx

to the theoretical discharge Q
the coefficient of efflux.

As in the case of water the coefficient of velocity
tf>

for the ef-

flux of air through an orifice in a thin plate is nearly = 1, and

therefore, so long as we have no measurements of the stream of air,

we must put the coefficient of efflux fi = a
<f)

equal to the coefficient

of contraction a. The older experiments upon the efflux of air

through orifices in a thin plate vary very considerably from each

other. The experiments of Koch, calculated according to the

formula for water by Buff, gave for circular orifices from 3 to 6

lines in diameter, when the height of the water manometer was

from 0,2 to 6,2 feet, \i = 0,60 to 0,50; on the contrary, the experi-

ments of d'Aubuisson, calculated in the same way, give for circular

orifices 1 to 3 centimeters in diameter, when the height of the

water manometer is between 0,027 and 0,144 meters, \i = 0,65 to

0,64. Poncelet also found, upon calculating the experiments of

Pecqueur by the same formula, for an orifice 1 centimeter in diam-

eter, under an excess of pressure of 1 atmosphere, or of a column
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of water 10 meters high, \i = 0,563, and for a similar one 1,5 cen-

timeters wide, fi = 0,566. The more extended experiments of the

author, calculated according to the last formula

\&

gave the following results

:

1) When the diameter of the orifice d = 1 centimeter and the

ratio of the pressures was

Q = f\} - i
Si -
yvV

Pi

p

b + h
~

b ~ 1,05 1,09 1,43 1,65 1,89

1

2,15 !

'

"

1

fj,
= 0,555 0,589 0,692 0,724

j

0,754

1

0,788 !

i

2) When the diameter of the orifice cl — 2,14 centimeters, foi

I + h

b
1,05 1,09

i

1,36
|

1,67 2,01

fi = 0,558 0,573 0,634 0,678 0,723

1

3) When the diameter of the orifice d = 1,725 centimeters, for

\ b + h

i

b
= 1,08 1,37 1,63

!

i

r = 0,563 0,631 0,665

4) When the diameter of the orifice cl = 2 centimeters, for

b +h
b

1,08 1,39

fi
== 0,578 0,641

The coefficient of contraction for efflux through an orifice in a

thin plate increases sensibly with the head. But if the formula for

water is employed, there is much less variation ; this formula gives

ii tiearlv V — , e.g. for -- = 2 ; V% = 0,707 times as great as the
.

J r
Pi p



946 GENERAL PRINCIPLES OP MECHANICS. [§465.

last formula. According to the first table, for <Z =* 1 and P\ %

0,754 + 0,788 *„„.,*, v , ,.
,

- ,

H = 5
= 0,771 ; hence, according to the water formula,

l_i = 0,707 • 0,771 — 0,555, which is nearly the same value as Pon-

celet found.

For efflux through a circular orifice 1 centimeter in diameter,

situated in a conically convergent wall, the angle of convergence

being 100 degrees, the author found for

b + h

b
~ 1,31 1,66

n = 0,752 0,793

In like manner with the same orifice in a conically divergent

ivall, the angle of divergence being 100 degrees, the author obtained

for

b + h

b
1,30 1,66

fi = 0,589 0,663

§ 465. The variability of the coefficient of contraction a = fi

for the efflux of air through an orifice in a thin plate also affects,

according to the well-known formula

1 1
p z=z ch —

t

—
,
(see § 422),

vi+i -v^i-i)
the coefficient of efflux for short pipes. According to the experi-

ments of Koch, cited above, we have for such tubes 3 to 4 lines

in diameter and from 4 to 6 times their diameter in length, when
the pressure is 0,3 to 6,2 feet of the water manometer, \i = 0,74 to

0,72, while, on the contrary, d'Aubuisson gives for similar tubes, 1

to 3 centimeters in diameter, 3 to 4 times as long as wide, and

under a pressure equal to 0,027 to 0,141 meters of the water ma-
nometer, jit = 0,92 to 0,93; and Poncelet found for cylindrical

pipes 1 centimeter in diameter and from 2^ to 10 centimeters long,

under twice the atmospheric pressure, fi = 632 to 0,650.

The experiments made by the author, on the contrary, have led

to the following results

:
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1) A short cylindrical tube or ajutage, 1 centimeter in diameter

and 3 centimeters long, gave for

b + h

b
1,05 1,10 1,30

[l =3 0,730 0,771 0,830

2) A similar tube, 1,414 centimeters in diameter and three times

as long as wide, gave for

b + h

b
1,41 1,69

p = 0,813 0,822

3) A similar pipe, 2,44 centimeters ivide and three times as long,

gave for

• %-^A = 1,74,^ = 0,833.

The increase of the coefficient of efflux as the pressure increases

is explained by the simultaneous increase of the coefficient of

contraction.

The short pipe (1), when its inlet orifice was slightly rounded

off, gave as a mean value for its coefficient of efflux y, = 0,927,

which is much greater than that for a similar pipe which is not

rounded off.

4) A short pipe, with its inlet orifice well rounded off, 1 centi-

meter wide and 1,6 centimeters long, gave for

b + h

b
1,24 1,38 1,59 1,85 2,14 ,

li = 0,979 0,986 0,965 0,971 0,978

The advantage of the formula for efflux

Q ~^F\%g-^- over the others
r p

is shown by the fact that this coefficient approaches very nearly

(as it should do) unity.

The older formula gives of course for great pressures much
smaller values for ft.
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On the contrary, the logarithmic formula (see § 460) gives much
greater values which may sometimes even exceed unity.

A short conical pipe, rounded off at the inlet orifice, gave nearly

the same values for fi9 and a short conical tube, which was not

rounded off, and which was 1 centimeter in diameter and 4 centi-

meters long, and whose angle of convergence was 7° 9', gave for

b + h

b ~ 1,08 1,27 1,65

\x
— 0,910 0,922 0,964

Koch and Buff found with a similar tube, whose exterior diam-

eter was 2,72 lines and the angle of convergence of whose sides was

6°, under a head of 0,3 to 6,2 feet of the water manometer \i = 0,73

to 0,85, and according to d'Aubuisson a similar pipe, whose orifice

was 1,5 centimeters in diameter, gave under a pressure measured

by a height of from 0,027 to 0,144 meters of the water manometer,

it — 0,94. The old or water formula was employed in the calcu-

lations.

The complete nozzle A C, Fig. 736, § 434, consisting of a

conical tube with an angle of convergence of 6°, which was 14,5

centimeters long, 1 centimeter wide at the outlet and 3,8 centi-

meters wide at the inlet, which was well rounded off, gave for

I + h

b
1,08 1,45 2,16

fi = 0,932 0,960 0,984

By experiments upon the influx of air into vessels, Saint-

Venant and Wantzel found for a short mouth-piece, rounded off

internally in the form of a quarter of a circle, when the calcula-

tions were made according to the new formula, ft = 0,98, and for

an orifice in a thin plate, \.i == 0,61.

If the pressures are small, as is the case in the ordinary fan,

h

b

we employ the new formula for efflux

where t < |, we can substitute, according to what precedes, when

y 2
P\ b

Q rr fi F y 2 g ^ . ~ = 1299 \i F y (1 + 0,004 r) ~ cubic feet,
/; h

h
as a mean

1) for an orifice in a thin plate, p 0,56,
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2) for a short cylindrical pipe, \i — 0,75,

3) for a well rounded off conical mouth-piece, \i = 0,98,

4) for a conical pipe, whose angle of convergence is about G°.

\i = 0,92.

Example.—If the sum of the areas of two conical tuyeres of a blowing
machine is 3 square inches, the temperature in the reservoir is 15°, the

height of the manometer in the regulator is 3 inches and the height of the

barometer in the exterior air is 29 inches, we have the effective discharge,

measured at the pressure of the exterior air,

Q = 1299 ft F Y(l + 0,004 r) ~

= 1299 . 0,92 •
— j/(l + 0,004 .15)^ = 24,9 jA^p?

= 24,9 . 0,331 = 8,242 cubic feet.

§ 466. Coefficient of Friction of Air.—If air moves through

a long pipe C F, Fig. 796, it has, like water, a resistance offriction

Fig. 796.

\
ft :h Mi M a

to overcome, and this resistance can be measured by the height of

a column of air, which is determined by the expression

I v*
Z -S'TYg>

in which, as in the case of water pipes, I denotes the length, d the

diameter of the pipe, v the velocity of the air, and £ the coefficient

of resistance of friction, to be determined by experiment.

Girard's experiments upon the movement of air in pipes gave a

coefficient of resistance f= 0,0256, those of d'Aubuisson, as a mean,

£ = 0,0238, while according to the experiments of Buff the mean
value of £ = 0,0375. Poncelet, on the contrary, found from the

data furnished by the experiments of Pecqueur, when the ratio of

pressure is Si = 2, p = 0,0237.

The experiments of the author, calculated according to the new

formula, gave the following results:

1) A trass tvM, 1 centimeter wide and 2 meters long, gave for
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velocities of from 25 to 150 meters £ gradually decreasing from

0,027260 to 0,01482.

2) A glass tube of the same length, when the velocities were

about the same, gave £ = 0,02738 to 0,01390.

3) A brass tube, 1,41 centimeters wide and 3 meters long, gave

s ~ 0,02578 to 0,01214.

4) and a similar glass tube, £ = 0,02663 to 0,009408.

5) Finally, a zinc tube, 2,4 centimeters wide and 10 meters

long, gave, for velocities of from 25 to .80 meters, ? — 0,2303 to

0,01296.

From what precedes we may conclude that it is only when
velocities are about 25 meters or 80 feet, that the coefficient of re-

sistance £ can be put = 0,024, and that it becomes smaller and

smaller as the velocity of the air in the pipe increases.

Approximatively we can write, when the velocity is expressed

. 0,120 . ...
'."

, ,> 0,217 ',
in meters, c, = —— or when it is expressed m feet £ = —-=-. The

Vv Vv
general relations of the flow of air in pipes are very similar to those

of water.

The resistance, caused by clboivs and bends, is to be treated in

the same way as in the case of water.

In the author's experiments a rectangular clboiv, 1 centimeter in

diameter, gave £ — 1,61, and a similar one, 1,41 centimeters in

diameter, gave £ = 1,24, and a pipe like the former, when bent in

the shape of a quarter of a circle, gave £ = 0,485, and one like the

latter, bent in the same way, gave f == 0,471.

§ 467. Motion of Air in Long Pipes.—By the aid of the

coefficient £ of the resistance of friction of a pipe B F, we can cal-

culate the velocity of efflux and the discharge for a given length

and width of the pipe.

If lh is the height of the manometer M3 at the end of the pipe

O F, Fig. 797, directly behind the mouth-piece F, whose coefficient

Fig. 797.

M

of resistance is % == —r

'— 1, and if d denote the diameter of the
f-h'
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7T£?
3

pipe and dx
that of the orifice, whose area is therefore F

x
— ——, we

have, according to what precedes, the discharge

-^--,cub.ft

or, inversely, for the height h2 of the manometer

Pi h —
y," * "L1 {dJUgi^Fj

But the height of the manometer at the entrance of the pipe is

*• = * + * 3*?
I denoting the length of the pipe between M\ and Mif and v the

velocity of the air in this pipe; hence we have

K'.b "L1
\d) yZg\i x

Fj + q d2g>°
T>

ituting v =
(~J

vx and vx
= -~,

Pi Al

hence the discharge is

Q = F
x

fr-mh<HiJh-M>

— 1299 -r-5-1 / =-
A
— -=—— cubic feet

^<$iih*<m
If, finally, the height h of the manometer M in the reservoir

A B is known, we have, when we denote the coefficient of resist-

ance for the entrance C by £ and substitute —
s
— 1 + £, since at

the entrance into the pipe the head £ ^— is lost,

and consequently the discharge
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Q

+ i + f

i

(1 + 0,04 t)
*

- 1299 ^p- 1 / -^-- ,
,'• ; J cubic feet.

i^m) f'l+fi

If the point ivhere the air enters the pipe is a distance s fofow; or

aiovs the point where it is discharged from it, we must subtract

7i h
from or add to the quantity — . j in the numerator under the rad-

ical sign a quantity s.

Example.—The height of a quicksilver manometer, which is placed

upon a regulator at the head of a system of air pipes 320 feet long and 4

inches in diameter, is 3,1 inches, the height of the barometer in the free

air is 29 inches, the width of orifice in the conically convergent end of the

pipe is d
t
= 2 inches, and the temperature of the compressed air in the

regulator is r = 20° C. ; what quantity of air is delivered through these

pipes?

Here (1 + 0,004 r) 7 - 1,08 .
|'- = 0,11545,

II A/9

c\ = 0,024 . 320 . 3 = 23,04, ^*= (^= A = 0,0625,

Fi =^ = I (i>
2 =

8

4tr- = °>021817 s <luare ***

;

hence the required discharge is

/ 0,11545Q= 1299. 0,021317 f -

(0,778 + 23,04) 0,0625 + 1,330

= 28,34 ]/Ym^~%m = 28
>
34 V6,040954 = 5,735 cubic feet.

§ 468. Efflux when the Pressure Diminishes.—If there

is no influx of air into a reservoir, from which an uninterrupted

discharge of air is taking place through an orifice in it, the density

and tension gradually diminish, and consequently the velocity of

efflux becomes less and less. The relations of this diminution to

the time and to the discharge can be determined in the following

manner.
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Let the volume of the reservoir be V, the initial height of the

manometer he = h , and its height at the end of a certain time I be

= h1} and let that of the barometer in the free air be = b ; then

the quantity of air originally in the reservoir, reduced to the

pressure of the exterior air, is

_ V(h + h )~
b

and at the end of the time t it is

V (ft + fa)

b
;

hence the discharge in the time t, reduced to the external pressure,

is _ V (b + h
Q) V(b + fa) _ V(h — fa)

b b
~

b
"

But we have also

x denoting the mean height of the barometer during the time i of

efflux ; hence

t = P(*.-*iL. = v (K - jO,
{x)-k

Now if we put fa — ma and fa = n o, we have the mean value

(a)-* = ^t?'(lr» + 2-*. +'.-.. + m-i) - (1~* + 2~* + . . . + n~l)m—n K
. . 1 \ 1

= _(cr)-4 M* _ w* \ = 2 (*)-* /V^ _ VTA
fri—ft\| 2 / m — w v o a)

2(VT - Vh,) = 2 (^
(m — ra) a h

nence the required time of efflux is

2{Vh - Vfa) 2 (VT - V\). T= —A-
7
—?

v = —^—r-—y
-(seelngemeur,p.

(m — n) g fa — fa
x b ?r

•

= 2 V(Vfa- Vfa) _ 2 V
(/£-V£).

This determination is sufficiently correct only when the reser-

voir (V) is large, or when the orifice of efflux, as well as the

pressure, is small, in which case the cooling of the air in the reser-

voir is very slight.

Example.—A cylindrical regulator 50 feet long and 5 feet in diameter is

filled with air at a pressure corresponding to the height li = 10 inches of

the manometer and at a temperature of 6° C. Now if the air issues from

an orifice 1 inch in diameter into a space where the barometer stands at

27 inches, the question arises, in what time will the manometer sink to 7
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inches and what will be the discharge in that time ? The volume of the

regulator or boiler is

V = t • 5 2
. 50 = 1250 . j = 981,75 cubic feet, and

4 4

Y 2g
])

>- = 1299 Vl + 0,00367 . r = 1299 Vl,02202 = 1313 and

* =
I (iV)

2 =
g^e

= 0,005454 square feet.

Now if we put the coefficient of efflux y. = 0,95, we have the required

duration of the efflux

2 . 981,75 . 0,09942
1 = >5. 0,005454:1313

= 28
'
69 SeC°nds -

Remark.—A more general theory of the efflux of air and steam will be

given in the second volume.

Final Remark.—Experiments upon the efflux of air have been made

by Young, Schmidt, Lagerhjelm, Koch, d'Aubuisson, Buff, and more re-

cently by Saint Yenant, Wantzel, and Pecqueur. In reference to the ex-

periments of Young and Schmidt, see Gilbert's Annalen, Yol. 22, 1801, and

Vol. 6, 1820, and PoggendorPs Annalen, Yol. 2, 1824 ; for those of Koch

and Buff, see the '• Studien des Gotting'schen Yereines bergmannischer

Freunde," Vol. 1, 1824; Vol. 3, 1833; Yol. 4, 1837; and Yol. 5, 1838

;

also Poggendorf 's Annalen, Yol. 27, 1836, and Yol. 40, 1837. See also

Gerstner's " Mechanik," Yol. 3, and Hiilsse's "Algemeine Maschinenency-

klopadie," Article a Ausfluss.
1
' Lagerhjelm^s experiments are discussed in

the Swedish work "Hydrauliska Forsok af Lagerhjelm, Forselles och

Kallstenius," 1 Delen, Stockholm, 1818. The experiments of d'Aubuisson

are to be found in the " Annales des Mines," Vol. 11, 1825 ; Vol. 13, 1826

;

Vols. 3 and 4, 1828; and also in d'Aubuisson's "Traite* d'Hydrauliquc."

The experiments of Saint-Yenant and Wantzel are to be found in the

" Comptes rendus hebd. des seances de l'Academie de3 Sciences, a, Paris,

1839." The latest French experiments arc discussed by Poncclet in a

"note sur les experiences de M. Pecqueur relatives a. l'ecoulement de l'air

dans les tubes, etc.," which is contained in the Comptes rendus, and an

abstract of it is to be found in the Polytechnische Centralblatt, Yol. 6,

1845. From these experiments Poncelet concludes that air follows the

same laws of efflux as water. The greater number of these experiments

were made with very narrow orifices, for which reason they scarcely fulfill

the requirements of practice. Unfortunately these experiments do not

agree as well as could be wished, and the coefficients found by d'Aubuisson

differ very sensibly from those calculated from Koch's experiments. Com-

parative experiments upon the efflux and influx of air and upon the efflux

of water are given in the author's " Experimental-Hydraulik." The re-

sults of the latest experiments of the author, which were made upon a

large scale, are given in the 5th volume of the Civilingenieur.
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, CHAPTER VII.

OF THE MOTION OF WATER IN CANALS AND RIVERS.

§ 469. Running Water.—The theory of the motion of water

in canals and rivers forms the second part of hydraulics. Water

flows either in a natural or in an artificial led (Fr. lit ; Ger. Bett).

In the first case the channel is a river, creek, rivulet, etc., in the

second case it is a canal, ditch, race, trough, etc. In the theory of

the motion of running water this difference is of hut little im-

portance.

The led of th&stream consists of the bottom of the channel

(Fr. font du lit ; Ger. Grundbett or Sohle) and of the two laiiks

or shores (Fr. bords ; Ger. Ufer). If we pass a plane through the

stream pf water at right angles to the direction, in which it is

flowing, we obtain a transverse section (Fr. section ; Ger. Quer-

Bchnitt). The line bounding this section is the tranverse profile

which is composed of the water profile or wetted perimeter and of

tbc air profile. A vertical plane in the direction of the stream

gives us the longitudinal section or profile (Fr. profit ; Ger. Profit)

of the latter. The slope of the stream (Fr. pente ; Ger. Abhang) is

the angle formed by its surface with the horizon. The relative

slope is the fall in the unit of distance. The slope is determined

for any definite distance by the fall (Fr.

chute ; Ger. Gefalle), which is the vertical

distance of one of the extremities of a cer-

tain portion of the stream above the other.

In the portion A D = I, Fig. 798, B C is

the bottom of the channel, D H = h the

fall and the angle D A II = 6 is the slope. ' The relative slope is

sin. d 2= -, or approximatevely S = -.

Remark.—The fall of creeks and rivers varies very much. The Elb

falls in a German mile (4-£ English miles) from Hohenelbe to Podiebrad

57 feet, from there to Leitmeritz 9 feet, from there to Miihlherg 2,5 feet.

Mountain streams fall from 8 to 80 feet per mile. For particulars see

- Vergleichende liydrographische Tabellen, etc., von Stranz." The fall in

canals and other artificial channels is much smaller. The relative slope is

generally less than 0,001, it is often 0,0001 and even less. More details

Upon this subject will be found in the second part.

A H
~^L_

isirr[P

bBSS
ifcfP v C
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§ 470. Different Velocities in a Gross-section.—The ve-

locity of the water is far from being uniform in all points of the

same transverse section. The adhesion of the water to the bed of

the channel and the cohesion of the molecules of water cause the

particles of water nearest to the sides and bed of the channel to be

most hindered, in their motion. For this reason, the velocity

decreases from the surface towards the bed of the channel and it is

a minimum at the shores and bottom. The maximum velocity in

a straight river is generally found in the middle or in that portion

of the surface, where the water is the deepest. That portion of the

river, where the water has its maximum velocity, is called the line

of current or axis of the stream and the deepest portion of the bed

is called the mid-cliannel.

When the stream bends, the axis of the stream is general near

the concave shore.

The mean velocity of the water in a cross-section, according to

§ 396, is

Q _ Discharge per second

F ~ Area of the transverse section'

"We can also determine the mean velocity from velocities cly c2, cz,

etc., in the different portions of the transverse section and the

areas Fly F2, FS3 etc., of the latter. We have here

Q =± Fx d + ,F% c2 4- F* Cs + . .

.

and, therefore, also

- F
*
Cl 'h F* c* + ' •

C ~ & + & + ...'

Besides the mean velocity we introduce the mean depth of ivater,

i.e., that depth a, which a transverse section would have, if its

area was the same and the depth was uniform instead of being

variable and equal to ax, a2, as, etc. Here we have

__ F Area of the transverse section

h Width of the transverse section*

If the widths of the elements corresponding to the depths «„ «2,

az, etc., Fig. 799, are b» #2, h3, etc., we
Ete. 799. haye

J|
fr . 1>i

^ fe y |>3 ^g^ F — a x
b x + a2 h + . . .,

toHLj .!. I ^M «i o x t-. a* K 4- . .

.

a =
o, -f I* + . .

.

Finally, the mean velocity is
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a x b x cx
4- (h hi Co -f . . .

c —
a x b x + a* b 2 + . . .

7

and, when the widths b x, b 2, etc., of the portions are the same,

a\ c x + a* Co + . .

.

c = —

—

.

ax -f cio -j- . .

.

A river or creek is in a state of permanency (Fr. permanence

;

Ger. Beharrungszustande) or it has a fixed regimen, when the same

quantity of water passes through each of its cross-section in the

same time, i.e., if Q or the product F c of the area of the cross-

section and the mean velocity is constant for the whole length of

the portion of the river under consideration. Hence we have the

simple law : when the motion of the water is permanent the mean

velocities of two transverse sections are to each other inversely as the

areas of these sections.

Example—1) In the transverse section A B C D, Fig. 799, of a canal,

we have found the widths of the divisions to he

\ = 3,1 feet, b
2
= 5,4 feet, l z = 4,3 feet,

the mean depths to be

a
x
= 2,5 feet, a

2
= 4,5 feet, a

3
= 3,0 feet

2nd the corresponding mean velocities to be

c
1
= 2,9 feet, c

2
= 3,7 feet, c

3
= 3,2 feet.

Here we can put the area of the section

F = 3,1 ; 2,5 + 5,4 . 4,5 + 4,3 . 3,0 = 44,95 square feet

and the discharge

Q = 3,1 . 2,5 . 2,9 + 5,4 . 4,5 . 3,7 + 4,?

from which we obtain the mean velocity

Q 153,665
c = = 3,419 feet.F 44,95

2) If a ditch should carry 4,5 cubic feet of water with a mean velocity of

45
2 feet per second, we must make the area of its transverse section -~ = 2,25

a

square feet.

3) If the same river is at one place 560 feet wide and as an average 9

izzi deep, and if it moves with a mean velocity of 2J feet, the mean velocity

at another place, where it is 320 feet wide and as a mean 7,5 feet deep, is

560 . 9
C =

32077;5-
2

>
25=4

'
725leet -

§ 471. Mean Velocity.—If wc divide the depth of the water

at any point into equal parts and lay off the corresponding veloci-

ties as ordinates, we obtain a scale A B, Fig 800, of the velocities

of the stream. Although it is very probable that the lav/ of this

scale, or of the change of velocity, is expressed by a curve, as
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e.g. according to Gerstner, by an ellipse, etc., yet without risking

a very great error we can substitute a

straight line, i.e., assume that the velocity

diminishes regularly with the depth ; for

this diminution of the velocity is always

slight. According to the experiments of

Ximenes, Brunnings and Funk, the mean
velocity in a perpendicular line is

cm — 0,915 c ,

c denoting the maximum velocity or that of the surface of the

water. The diminution of the velocity from the surface to the

middle M is therefore

c - cm = (1 - 0,915) c m 0,085 c ,

and we can put the velocity at the bottom, or at the foot of the

perpendicular,

cn = c - 2. 0,085 c = (1 - 0,170) c = 0,83 c .

If the total depth is a, we have, if we assume the scale of velocity

to be represented by a straight line, for a depth A N = x below

the water the velocity

v = c
9
- (c - cn) ^ = (l - 0,17

|j
c .

Now if co9 c£ c<2 are the velocities at the surface of a profile,

whose depth is not very variable, we have the corresponding veloci-

ties at the mean depth

0,915 c , 0,915 ci, 0,915 c„

and therefore the mean velocity in the whole transverse section

e = 0,915
C
°
+ Cl + C

* %" '
+ C

\
n + 1

If, finally, we assume that the velocity diminishes from the line

of current or axis of the stream towards the shores in the same

manner as towards the bottom, we can put the mean superficial

velocity c + cx + . .

.

+ cn __
. _____ _ u?yi5 Co ,

thus we obtain the mean velocity of the whole transverse section.

c = 0,915 . 0,915 . c = 0,837 c ,

i.e., 83 to 84 per cent, of the maximum velocity.

Prony deduced from the experiments of du Buat, which, how-

ever, were made in small ditches, the following formula, which is

perhaps more correct in such cases, ,

/2,372 + c \
'

/ 7,78 + c \ , ,

cm = (j/tts ) o, meter = [.= '
. ,

° ) c feet.
\3,153 + cj °

\ 10,34 + cj
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Hence for mean velocities of 3 feet we have

cm = 0,81 c .

If the flow of the water is impeded by a contraction of the

transverse section, the level of the water will be raised, and cin be-

comes still greater.

Example.—If the velocity of the water in the axis of a river is 4 feet,

and if its depth 6 feet, we have the mean velocity in the corresponding-

perpendicular
cm = 0,915 . 4 = 3,66 feet,

the velocity at the bottom

= 0,83 . 4 = 3,32 feet,

the velocity 2 feet from the surface

v = (1 - 0,17 . |) 4 = (1 - 0,057). 4 = 3,772 feet

and, finally, the mean velocity of the entire transverse section

c — 0,837 . 4 = 3,348 feet

;

on the contrary, according to Prony, we would have

Remark.—This and the following subjects are treated at length in the

Allgemeine Maschinenencyklopaclie, Article " Bewegung des Wassers."

New experiments and new views upon the same subject are to be found in

the following work :
" Lahmeyer, Erfahrungsresultate uber die Bewegung

des Wassers in Flussbetten und Canalen, Braunschweig, 1845." Accord-

ing to Baumgarten's observations (see Annales des Ponts et Chaussees,

Paris, 1848, and also polytechnisches Centralblatt, No. 14, 1849) the values

given by this formula, when the velocities are great (above 1,5 meters), are

too large and we must put in such cases

. /2,372 + c \ rt o
g"=

13,153 + J -0^o meters.

Owing to the resistance of the air the maximum velocity of the water is

to be found a little below the surface of the water. From this point of

maximum velocity the velocity diminishes as the square of the depth ; hence

the scale of velocity corresponds to a parabola. In like manner, according

to Boileau (see his Traite sur la mesure des eaux), the velocity decreases

as the square qf the distance from the axis of the stream. If c
Q
denotes the

velocity in the axis of the stream, the velocity at the horizontal distance x

from it will be
c* = c — ft x

1

,

in which fi denotes an empirical number, which is different for different

streams.

§ 472. Most Advantageous Transverse Profile.—The
resistance, offered by the bed of the stream in consequence of the

adhesion, viscosity and friction of the water, is proportional to

the surface of contact, and consequently to the wetted perimeter
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j), or to that portion of the profile which forms the bed. Now since

the number of filaments of water passed by any transverse section

increases with its area, the resistance to each filament is inversely

proportional to the area, and consequently to the quotient — of the

wetted perimeter divided by the area F of the entire transverse

section. In order to have the least resistance from friction, we

must give the profile such a shape that -~ shall be as small as pos-

sible, i.e., that the wetted perimeter p shall be a minimum for a

given area, or that the area shall be a maximum for a given wetted

perimeter p. When the apparatus which conducts the water is

closed on all sides as in the case of pipes, p is the perimeter of the

entire transverse section. JSTow among all figures of the same

number of sides, the regular one, and among all the regular ones,

the one with the greatest number of sides has the smallest perim-

eter for a given area; hence in conduits closed on all sides the

resistance is smaller the more regular the shape of their transverse

section is, and the greater the number of sides is. Since the circle

is a regular figure of infinite number of sides, the resistance of

friction is the smallest when the transverse section is of that form.

When the aqueduct is open on top, the case is different ; for the

upper surface is free, or in contact with the air alone, which, so

long- as it is still, offers little or no resistance to the water. We
must, therefore, in determining this resistance of friction, neglect

the air profile.

In practice we employ in canals, ditches, troughs and flumes

only rectangular and trapezoidal profiles. A horizontal line E F,

Pig. 801, passing through the centre M of the square A C, divides

Fig. 801. the area and perimeter into two equal parts, and

p, c what has been said of the square is true for these

halves; hence, among all rectangular profiles,

the half square A E, or that which is twice as

\ wide as high, is the one which causes the smallest

^ resistance of friction.

In like manner, the regular hexagon ACE,
Fig. 802, is divided by a horizontal line C F iiito two equal trape-

zoids, each of which, like the entire hexagon, has the greatest

relative area, and consequently among all trapezoidal profiles, the

half of the regular hexagon, or the trapezoid A B C F, with, the

JL
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angle of slope B C M = 60°, is the one which causes the least

resistance of friction.

In like manner, the half of a regular octagon A D E, Fig. 803,

the half of a regular decagon, etc., and finally the half circle A I) B,

Fig. 804, are, under the proper circumstances, the most advan-

Fm. 803. Fig. 804.

tageous profiles for canals, etc. The trapezoidal, or half hexagonal,

cross-section causes less resistance than the half square or rec-

tangle, the ratio of whose sides is 1 : 2 ; the relative perimeter of

the hexagon is smaller than that of the square. The half decagon

offers still less resistance, and with the semicircle the latter is a

minimum. The circular and square profiles are employed only

for troughs made of iron, stone, or wood. The trapezoid is em-

ployed in canals, which are dug out or walled up. Other forms

are rarely used, owing to the difficulty of constructing them.

§ 473. When canals are not walled up, but ouly dug in the

earth or sand, an angle of slope of 60° is too great or the relative

slope cotg. 60° — 0,57735 too small; for the banks would not be

sufficiently stable ; we are therefore compelled to employ trapezoi-

dal transverse profiles, in which the inclination of the side to the

base is smaller than 60°, perhaps only 45° or even less. For a trapezoi-

dal cross-section A B C D, Fig. 805, which has the same area and

perimeter as the half square, the relative slope is = -§, and the

angle of slope is 36° 52'. If we divide the height B E into three

equal parts, the bottom B C is equal to two of them, the parallel

top A D is equal to 10 and each side A B — G D is =• 5 parts.

In many cases we make the relative slope = 2 ; in which case the

angle is 26° 34', and sometimes it exceeds even 2.

In any case the angle of slope B A E — 0, Fig. 80G, or the slope

A V — cotang. 6 is to be considered as a given quantity, dependent
x> E
upon the nature of the ground in which the canal is excavated,

and therefore we have only to determine the dimensions of the pro-

61
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file which will offer the least resistance. Putting the width B of

Fig. 805.

E_. "_ ..D

A E
the bottom == b, the depth B E = a and the slope -g-=, = v; we

have the wetted perimeter of the profile p =
AB + BC+CD=:b + % V'tfT^'a* = & + 2 aV\ -f v\

and the area of the same

F = ab + v a a — a{b + v a),

or inversely

b =t v a,
a

whence the ratio

Substituting instead of a, a + x, in which a; is a small quan-

tity, we have

i? a + x F v

a \ a a"/ F

In order that this value, not only for a positive but also for a

negative value of x, shall be greater than the first value

\ + § (2 \^tt - v%

or that — shall be a minimum, it is necessary that the members

with the factor x shall disappear or that

2 Vv % + 1 --4=°'
jo a

whence the required depth of the canal is

F_

1
or, since v = cotang. d and tV + 1

sm. 0'
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Fsin.0
a =

2 - cos. 0.

Hence for a given angle of slope 9 and for a given area, the

most advantageous form for the transverse profile is determined by

the formulas usin.OF
and b — a cotang. 0.

2 — cos. a

Consequently the width A D of the top is

F
d 1
= b + 2va — ha cotang. 6,

a
and the ratio

<p_ _ b_ 2a _ 1 (2 - cos. 0) a _ 2

~F ~ F + F sinfd ~ a
+

Fsin.0 ~ a
Example.—What dimensions should be given to the transverse profile

of a canal, when the angle of slope of its banks is to be 40° and when it is

to carry a quantity Q = 75 cubic feet of water with a mean velocity of

3 feet.

Here
75F = — = — = 25 square feet, and therefore the required depth is

. / 25 sin. 40°
M ../ 0,64279 „ nn „a = v fr=z*w = 5 V Woe = 8

>
609 feet

-

the width at the bottom is

25
b =.- g-^ — 3,609 cotang. 40° = 6,927 - 4,301 = 2,626 feet,

the horizontal projection of the slope of the shore is

v a = a cotang. = 3,609 cotang. 40° = 4,301,

the width on top is

l
x
= o + 2 a cotang. 6 = 6,927 + 4,301 = 11,228 feet,

the wetted perimeter is

p = o + 4^ = 2,626 + .

7,8^ = 13,855 feet,
1 sin. d

' sm. 40

and the ratio which determines the resistance of friction is

V 2 2 „ Jn

T = « = po9 = °>5043

;

TVe have for a transverse profile in the shape of the half of a regular

hexagon, where 6 = 60°, a = 3,80 feet, b = 4,39, l
x
= 8,78 andjp =_- 13,16

feet, and therefore p 13,16

~F
= ~~25~ ~ '°~G -

§ 474. Table cf the Most Advantageous Transverse

Profiles.—The following table gives the dimensions of the most

advantageous transverse profiles for different angles of slope and for

given transverse sections

:
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Angle of
slope 9.

I o
9

6o<

45'

1 4o
(

3^5

35

3°
(

Relative
slope v.

_/-o _ /

26° 34'

Semi-
circle

o,577

1,000

1,192

*,333

1,402

1,732

DIMENSIONS OF THE TRANSVERSE PROFILES.

Depth a.

0,707 iG^

0,760 \Hf

.0,740 V^

0,722 Yf

0,707 Vt^

0,697 v^

0,664 ^~F

0,636 l
7^

0,798 sl?

Width of bot-
tom b.

1,414 Yf

0,877^
0,613 v^

0,525 Yf

0,471^
0,439 *fF

0,356 V^

0,300 I F

Horizontal pro-
jection of slope
v a.

O

0,439 Yf

0,740 Yf

0,860 i^F

0,943 Yf

0,995 Yf

1,150 Vf

1,272 Yf

Width at the

top b-\- zv a.

1,414 Yf

1,755^
2,092 Yf

2,246

1

7^

2,357 </f

2,430 y>

2,656 vT7

2,844 ^~F

1,596 4^

Quotient

p __ -nt

2,828

Yf
2,632

2,704

\F
2,771

4^
2,828

2,870

Yf
3,012

3,144

Yf.
2,507

19

We see from, the above table that the quotient ~ is a minimum

2 507
and = '

for the semicircle, that it is greater for the half
YF

hexagon and still greater for the half square, and for the trapezoid

with its sides sloping at an angle of 36° 52\ etc.

Example.—What dimensions are to be given to a transverse profile

whose area is to be 40 feet, when the banks are to slope at an angle of 35"

According to the foregoing table

the depth is a = 0,B97 Vlo = 4,408 feet,

the lower breadth is h = 0,439 V40 = 2,777 feet,

the horizontal projection of the slope v a = 0,995 V40 = 6,293 feet,

the upper breadth ~b
x
= 15,363,
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and the quotient is

L = m. = 0,4538.F V40

§ 475. Uniform Motion.—The motion of water in channels

is for a certain distance either uniform or variable ; it is uniform,

when the mean velocity in all the cross-sections is constant, and, on

on the contrary, it is variable, when the mean velocity and also the

area of the cross-sections change. We will now treat of uniform

motion.

"When the motion of water is uniform for a distance AD — I

Fig. 807, the entire fall h is employed in overcoming the friction

upon the bed, and the water flows away
with the same velocity, with which it

A —H arrived, i.e., a height due to a velocity is

I-— - ,

.

-P neither absorbed nor set free. If we meas-
"''

; -.C ure this friction by the height of a column

of water, we can put the latter equal to

the fall. The height due to the resistance of friction increases

with the quotient ~, with I and with the square of the mean ve-

locity c (§ 427) ; hence the formula

l
)

/l -^> F - 2 g
holds good, in which £ is an empirical number, which is called the

coefficient of the resistance offriction.

By inversion we have

To determine the fall from the length, the transverse profile

and the velocity, or inversely, to determine the velocity from the

fall, the length and the transverse profile, it is necessary to know
the coefficient of friction £ According to Eytelwein's calculation

of the 91 experiments of du Buat, Brunings, Funk and Woltmann,

£ = 0,007565, and therefore

h = 0,007565 .

l

4r • S~-F 2 g
If we put g = 9,809 meters or 32,2 feet, we obtain for the

metrical svstem

%. e and c = 50,9 \/
Fi

h = 0,0003856 -^ . & and c = 50,9 fF p I
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and for the English system of measure

h = 0,00011747 -f & and c ~ 92,26 V-^-.} F ' r pi

For conduit pipes -^ === -j
—

-^ = -r ; hence the formula for

pipes is

h = 0,03026 | . ^-,

wliile we found more correctly (§ 428) for medium velocities in

the same

h = 0,025 \ . ^-.

The friction upon riyer beds is, therefore, as might be expected,

greater than in metal conduit pipes.

Example—1) How much fall must a canal, whose length is I — 2600

feet, whose lower width is 5 = 3 feet, whose upper width is l
t
= 7 feet

and whose depth is a = 3 feet, have in order to carry 40 cubic feet of

water per second ? Here

p z= 3 + 2 V22
- +" 3a = 10,211, F = ™ +

' -- = 15 and c ~ f£ = f ;

hence the required fall is

2600 . 10,211 , 0,305422 . 10,211 . 64
ft = 0,00011747 . jg-i— (§)

2 = -? -—^ = 1,48 feet.

2) What quantity of water will be delivered by a canal 5800 feet long,

when the fall is 3 feet, its depth 5 feet, its lower breadth 4 feet and its

upper breadth 12 feet ? Here

H - i±l^T5 = m* = o 42015 •

F ~
5.8 40

u,4/jU1°'

hence the velocity is

T~ 92,26 92,26
92,26

,42015 . 5800 V0,14005 . 5800 V81^29
02 26

=W = 3
-
237 feet>

and the quantity delivered is

Q = Fc = 40 . 3,237 = 129,48 cubic feet.

§ 476. Coefficients of Friction.—The coefficient of friction,

for which we assumed in the foregoing paragraph the mean yalue

0,007565, is not constant for rivers, creeks, etc., but, as in the case

of pipes, increases slightly, when the velocity diminishes, and

decreases, when the velocity increases. We must therefore put

or to some similar formula.
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The author in the article quoted in the remark of § 471 found

from 255 experiments, most of which were made by himself, for

English measures .

f = 0,007409 (l + -^-°),

and for the metrical system of measures

f= 0,007409 (l+°^5
?).

We see that this formula gives for a velocity c — 8| feet the

above-quoted mean value £ = 0,007565. In order to facilitate cal-

culation, the following tables for the metrical system have been

prepared

:

Velocity c = 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0795

0,9 meters.

Coefficient ofre-
sistance c = 0,0

1175 0958 0885 0849 0828 0813 0803 0789

Velocity c — 1
|
1,2 1,5 2 3 4 5 meters.

Coefficient of resistance

<r
= o,o

0784 0777
:

0771 0763 0755 0752 0750

For English system of measures we can employ the following

table.

Velocity c = 0,3 0,4 0,5 0,0 0,7 0,8 0,9
|

1 n o 3 5 7 10 15 feet

'Coefficient of rc-
' sistance £ = 0,0

1215 1097 1025 0978 0944 0918 0899 0883

i

0S3G 0812 0788 0769 0761 07551 07504

These tables are directly applicable to all cases, where the velo-

city c is given and the fall is required, and when formula No. 1 of

the foregoing paragraph is employed. If the velocity c is unknown,

or if that is the required quantity, the tables can only be employed

directly when we have an approximate value of c. The simplest

vay to proceed is. to determine c approximatively by one of the

formulas

c = 50,9 i/^4 meters or c = 92, 26 V ^f feet,
Y pi r pi

then find £ by means of the table, and substitute the value so found

in the formula
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cl - * F
-

c = i/J^~ .2gh.

From the velocity c we determine the quantity of water Q = F c.

If the quantity of water and the fall are given, as is often the

case in laying out canals, and it is required to determine the trans-

verse profile, we must substitute -^ = —— (see table, § 474) and

c = iV in the formulaF
h = 0,007565 ^ . /-, and putF 2 g

r

m I Q
l

Ji = 0,007565 -

—

~r9 from which we obtain
Agl< s

F = (o,007565 -^-?-T, I.E. in meters
\ 2 g 7i /

F = 0,0431
(

m
;̂

2

)

5

, and in English feet

^^0,0268(^)1
From this we obtain the approximative value

c - F '

if we take the corresponding value of f from the table, we can cal-

culate more accurately

Luce more co

and p — m VF,

g
from which we deduce more correct values for

as well as for a, b, etc.

Example—1) What must be the fall of a canal 1500 feet long, whose

lower breadth is two feet, whose upper breadth is 8 feet, and whose depth

is^ feet, when it is required to convey 70 cubic feet of water per second ?

Here

p = 2 + 2 V4* + 3 a = 12, F = 5 . 4 = 20, c ~ %% = 3,5

;

hence

C = 0,00784 and

« nn„^ 1500 . 12 3,52 86,436
h = 0,00784 —— . -J-- = —1—

- = 1,34 feet.
20 2 g 2g
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2) What quantity of -water is carried by a creek' 40 feet wide, whose

mean depth is 4*- feet, and whose wetted perimeter is 48 feet, when it falls

10 inches in 750 feet ? Here we have approximative^

40,5710"_ jgjg
46 . 750 . 12

""
V230 " * jl

;

hence we can assume C= 0,00765.

We have now more correctly

c
1 Fh 4,5.40.10 1

-— = -=-.—
•
= 7v- AA^/» g ~i/> ry rft Tn ~ TT7??tf = 0,5683 and c — 6,05 feet.

2g (,lp 0,00 1 65 .46 . 750 . 12 1,7595 '
'

The quantity of water carried is

, Q = Fc = 4,5 . 40 . 6,05 = 1089 cubic feet.

3) It is required to excavate a ditch 3650 feet long, which, with a total

fall of one foot, shall carry 12 cubic feet of water per second. What must

be the dimensions of the transverse section when the form is a regular hex-

agon ? Here m = 2,632 (see table, § 474) ; hence we have approximatively

F = 0,0268 (2,632 . 3650 . 144) § = 7,66 square feet, and

12
C=

7,66
= 1

'
567 -

Here we must take C = 0,0083, and, therefore,

F= (0,0083 . 2,632 .
—~^- V= 7,95 square feet.

From this we obtain the depth

• a = 0,780 -IF = 2,14, the lower width

h = 0,877 </¥= 2,47, and the upper width

^=2.2,47 = 4,94.

Remark—1) According to Saint Tenant, we can put accurately enough

li = 0,000401 -f, . t>H = 0,000401 . 2 g . Wr . -%- .
~- meters

:

' F ' J F 2 g

hence the coefficient of resistance is

C = 0,000401 . 2 g . v-& = 0,007887 p-iV,

e.g. for v = 1 meter

C = 0,007887
and for v = \ meter

C = 0,007887
n
V4 = 0,007887 . 1,134 = 0,008945.

(Compare § 428, Remark 3.)

2) A table, which abridges these calculations, is given in the Ingenieur,

pages 460 and 461.

§ 477. Variable Motion.—The theory of the variable motion

of water in channels can be referred to the theory of uniform mo-

tion, when we consider the resistance of friction upon a small por-

tion of the length of the river to be constant and put the corre-

sponding head
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- r
lJt JL

We must also take into consideration the vis viva corresponding.to

the change of velocity.

Let A BCD, Fig. 808, be a short portion of the channel of a

river, whose length A D = I, and whose fall D H = h; let v be

the velocity of approach and %\ that with which the water flows

away. If we apply the laws of efflux to
Fig. 808. an e]ement J) at the surface of the

^~-~-r—j .? water, we have for its velocity v x

> V\ v

"

,

^ but an element E, which is situated

below the water, has on one side, it is

true, a greater head A G = E H, but it is pressed back by the

water below it with a head D E; hence the effective fall, which

produces motion, is only D II — EH — ED, and consequently

the following formula holds good for any element:

2g >

if we add the resistance of friction, we obtain

in which p, i^and v denote the mean values of the wetted perim-

eter, the transverse section and the velocity. If F denote the area

of the upper and Fx that of the lower transverse section, we can put

F = -^——? and Q = F v = F
x v

: , whence

^-v_ i r/oy /eyi_/i M^ and

v* v? + v? (1_ 1_\ _Q[_
F F + F

x
\F*

+ m F + >,'

from which we obtain

a) e =

Bv the aid of formula 1) we can calculate from the quantity of

water carried, the length and transverse sections of a section of river
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or canal the corresponding fall 7^ and by the aid of formula 2) from

the fall, length and cross-ssction the quantity of water carried. In

order to obtain greater accuracy we should calculate these for sev-

eral small portions of the channel of the river and then take the

arithmetical mean of the results. If the total fall only is known,

we must substitute this value instead of h in the last formula and

instead of

Jl _l jl jl
-* 1

-1 »

in which Fn denotes the area of the last cross-section, and instead of

f ~±V— i- + -)
. ^0 + ^1 vf * JiT

the sum of all the similar values for the different portions of tho

channel of the river.

Example.—A creek falls 9,6 inches in 300 feet, the mean value of its

wetted perimeter is 40 feet, the area of its ripper transverse section is 70

square feet, and that of its lower is 60 square feet. Required the discbarge

of this brook. Here

_ 8,025 V0^8

~
i 7* 1 AAA-—* 300.40 / 1 T\
A/ . l. 0,007o85 .

1 \

* 603 70s ^
' 130 W +

70V

= 354| cubic feet.

V0,0000731 + 0,0003385 v0,0004096

The mean velocity is ——^_ — — 5 45 feet ; hence it is more cor-F + Fx
130

rect to put C = 0,00768 instead of 0,007565,

and therefore we have more accurately

"78 = 352,5.

V 0,0000731 + 0,0003416

If the same stream has at another place the same amount of water in it

and falls 11 inches in 450 feet, and if the area of its upper transverse section

is 50 and that of its lower 60 feet, the mean length of its wetted perimeter

being 36 feet, we have

" 8,025 VogTeT
/~1 1 450 . 36 / l

-
1~\

V SP - 5P + °'00768
• "TKT [W + 5P)

= 8
-
025/rpsTP® = 8°5* cubic feet-

The mean of the values is

O = 2- -? = 330 cubic feet.
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§ 478. In order to obtain the formula for the depth of the

water, let us put the upper depth = a and the lower = #,, the slope

of the bed = a, and consequently the fall of the bed = I sin. a.

The fall of the stream is then

h = a — a x -f I sin. a
;

hence we have the equation

a
>

- * - \w.
"wn =

L
f f-vf, b? +w w-9

~ sm
-
a
\

whence we deduce
/I 1 \ £

2

^ =
a

° " r/i ~ U> ~ir:)Tg
Q

2

sin. a.

By the aid of this formula we can determine the distance I,

which corresponds to a given change a — a
x
in depth. If the in-

verse problem is to be solved, we must resort to the method of

approximation, i.e., we must calculate first the lengths l
x and L cor-

responding to the assumed changes a — a x and a, — a2 of depth,

and then we must find by a proportion the change of depth corre-

sponding to the given length I (see Ingenieur, Arithmetic, § 16,

V, page 76).

The formula can be simplified, when the width b of the stream

is constant. In this case we can put

<£. (^o - F
x )
(F + Fx ) vl

2g F
x

* '2g

(a±
-
La^1± a

J) _
vj_

imativel = 2(^ . <

and in like manner

\FS F:)2g F?F:

_p /i_
,

_i\ £. _p{F; + f;-) vi_

F + Fx
\F:

+ F
X
V 2g (F + Fx ) Fx

>

' 2 g

P ^0
approximatively = —y . —-, from which we obtain

aQ
o a g

1 =

and consequently

a — a x

^-^f-i-Jy
y P V »

C . -S • ^— sin -
a

aJ) 2g
I

1 _ A 5!sl
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By the aid of this formula, we can obtain directly, for a given

distance I, the corresponding change (a — a,) of depth of the stream.

• Example.—A horizontal ditch 800 feet long and 5 feet wide is required

to convey 20 cubic feet of water per second ; the depth of water at the

entrance is 2 feet, what will be its depth at the end of the ditch ? Let us

divide the entire length of the ditch into two equal sections and determine

by the last formula the fall for each of them.

Here sin. a = 0, I =— = 400 and 5 = 5; for the first section, v =
20

{)
—p = 2 ; hence f= 0,00812 and a — 2 ; now since p = 8£, it follows that

o 7QQ8
a —a ±

= —
n ~\ ~*

I • 400 =-~- = 0.183 feet.
lo,l

Now for the second section a
x
= 2 — 0,183 = 1,817 and p is about

20
8,2, v

t
= 777,-7^ = 2,201 ; the fall in the second section will be

8,2 2,20r
0,00812

9,085' 2 q \ tnn 0,2205 n t1 400 = 7^0=0,240;
2 2,201* 0,9172

~~
1,817 "

~~2~g~

lience the entire fall is

= 0,183 + 0,240 = 0,423

and the depth of water at the lower end is

= 2 - 0,423 = 1,577 feet = 18,92 inches.

§ 479. Floods and Freshets.—When the water level in

rivers or canals changes, it is accompanied by changes in the ve-

locity and in the quantity of water carried. A rise of the water

level not only increases the cross-section, but also causes a greater

velocity and, therefore, for a double reason a greater discharge ; in

like manner a fall of the water level causes both a diminution of

velocity and of cross-section, and consequently a two-fold diminu-

tion of the quantity of water. If the original depth = a and the

present one = ax
and the upper width of the canal = b, we can

put the increase of the cross-section = b (ax
— a) ; hence the

cross-section, when the water level has risen a distance a x
— a, is

F
x
— F + b (oi — a) and consequently

Ei — 1 a.
h

(
ai ~~ a

)

F~ L+ F >

and we can put approximatively

/F ~ ^ 2 F '
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If the original wetted perimeter == p, the present one *= p x and

the angle of slope of the banks == 6, we have

2 (ax
— a) ,

V\ = P H —•-

—

n-2 , whence1 r
sin. 6

p p sin.

^ = 1 +
«
L
-«

r
p p sin. a

j/Z = x _ %L^JL
Pi p sin.

Now the Telocity for the original depth of water is

c — 92,26 y —p and for the present depth it is c x
~ 92,26 \ — . -

;

hence

h -. a/El a/jl -= Yi x * (g i

~
f/)\ A _ gi ~ g\

c
r F * r p x \

"*" 2 F )\ p sin. Of

= 1 + (cti — a) (=-^ — -—=

—

7),v J
\2 F p sin. 0/V

and the relative change of velocity is

,.c
x
— c . .lb 1 \

On the contrary, the ratio of the quantity of water carried by

the river is

i'
7

c \ F / L v ' \2 F p sin. 6/J

v /3 5 1 \= 1 + (a x
— a) (—^- — —t—j. ,v ' \2 F p sin. By

and the relative increase in tlie quantity of water is

3)
ft_zo =(ai _ 0) (ii: 1

).7
(>

v ' \2 F p sin, 6/

We can put less accurately, but in many cases, particularly for

wide canals with little slope, sufficiently so, F — a b and neg-

lect—=

—

-x, in which case we have more simply
psm.Q l J

ft
— c

te ^ fli — <g

and
Qi—Q _ 3

ctx — a

c
2 a Q ~ a

According to these formulas the relative change in the velocity

is half as great and that in the quantity of water -g as great as the

relative change in the depth of the water.

The foregoing formulas are only applicable, when the motion
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of the water in its channel is permanent, in which case the depth

of the water is constant, but they do not hold good when the depth of

the water is variable. The mean velocity in the same transverse sec-

tion is greater, when the water is rising, and smaller, when the

water is falling than when the depth of the water is constant

;

hence in the first case more water and in the second case less water

passes through than when the motion is permanent.

Example—1) If the depth of the water increases ^, the velocity is in-

creased -^g- and the quantity of water ¥
3
o of its original value.

2) If the depth decreases 8 per cent., the velocity is diminished 4 per

cent, and the quantity of water 12 per cent.

3) By the aid of the more accurate formula

Qi-Q __, -/to 1 \

Q ~ r*" a)
\2F p sin. op

we can construct a water-level scale K M, Fig. 809, upon which we can

read off the quantity of water passing in a canal for any depth K £, when

we know the quantity of water for a certain mean
Fig. 809. depth.

we have

If 5 = 9 feet, h
t
= 3 a = 3, and 6

F =
(9 + 3) 3

2
= 18 square feet,

V = 3 + 2.3. 72 == 11,485, and

sin. = VJ =s ,707; hence

- e— = (fti -n&m) K ~ a) = (0 '
750 ~ 0,128) (a

*

_ a>

= 0,627 («i
- a).

If the quantity of water corresponding to the mean water level is Q =
40 cubic feet, we have

Qi = 40 + 40 . 0,627 {a
t
- a) - 40 + 25 (a

t
- a).

l?a±
— a = 0,04 feet = 5,76 lines, Q t

= 41 cu. ft. ; if at
— a"= 0,08

feet = 11,52 lines, Qx
= 42 cu. ft. ; if a

t
— a = — 0,04 feet, ^ = 39 cu. ft.,

etc., a scale, whose divisions are L M — L N = 5,76 lines apart, would

give the quantity of water to a cubic foot. The accuracy of course di-

minishes as the difference of the depth of water from the mean depth in-

creases.

Remark.—The construction of mill-races, canals for bringing water, as

well as the location of dams, weirs, etc., will be treated of at length in the

second volume.

Final Remark.—The author has discussed at length the subject of the

motion of water in canals and rivers in the Allgemeine Encyklopiidie,

Vol. II, Article " Bewegung des Wassers in Canalen und Fliissen," and has

given there a list of the treatises upon this subject up to 1844. Rittinger's

tabulated synopsis of the experiments upon the motion of water in canals

is contained in the "Zeitschriffc des osterreichischen Ingenieurvereins,''

year 1855.
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CHAPTER VIII.

HYDROMETRY, OR THE THEORY OF MEASURING WATER

Fig. 810.

§ 480. Ganging.—The discharge of a running stream within

a certain time is measured either by gauged vessels, by a dis-

charging apparatus, or by hydrometers. The most simple method

is that by means of gauged vessels, but this is only applica-

ble to small quantities of water. The vessel is most frequently

composed of boards, and is therefore parallelopipedical in form, and

to increase its strength, it is generally bound with iron hoops. The

manner of calculating the exact contents of this vessel is given in

the Ingenieur, page 208. The water is brought to the vessel by a

trough E F, Fig. 810, at the end of which is placed a double clack,

by means of which the water can

be made to flow into the vessel or

alongside of it. In order to deter-

mine accurately the depth of the

body of water, we employ
^
a scale

K L. If, before we begin the

measurement, we lower the pointer

Z until it touches the surface of

the water, which, perhaps, may
only cover the bottom, and read

off on the scale the depth of the

ivater, we obtain the depth Z Z
x
of the water to be measured by

subtracting the former reading from that given by the scale, when
the pointer Z, after the completion of the observation, is brought into

contact with the top of the water. The clack must of course be so

arranged before the experiment that water shall discharge alongside

of the vessel. If we are satisfied that the influx into the trough

lias become constant, we observe the time upon a watch held in the

hand and turn the clack around so that the water will discharge into

the vessel; when the vessel is full, or partially so, we observe again

upon the watch the time and return the clack to its original posi-

tion. From the mean cross-section j^and the depth Z Z^ — s of

the body of water, we calculate the total discharge V — F s, which,
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when divided by the duration of the influx, which is the difference

i of the two times observed upon the watch, gives the discharge per

second

Eemark.—If we wish to know at any time the discharge of a variable

stream of water, we can employ the apparatus represented in Fig. 811,

which is often met wTith in salt

works. Here there are two meas-

uring vessels A and B, which are

alternately filled and emptied. The

water, which is brought to them
by the pipe F, passes through a

short tube G G, which is rigidly

connected with the lever JDE which

turns about G. If one of the ves-

sels, as, e.g., A, is filled, the water

flows through a small trough H
and fills the little bucket M, which

then draws the lever down and the

pipe G G comes into such a position as to carry the water into B. The

valves and P are opened by cords passing around pulleys and attached

to the lever. The opening of the valves is assisted by iron balls, which

give the last impulse to the lever when it is descending. The buckets M
and N contain small orifices, through which they empty themselves after

the lever has turned. A counter attached to the apparatus gives the num-

ber of strokes, which can be read off at any time. Other apparatuses of

the same sort, which were employed by Brown, are described in Dingler's

Polyt. Journal, Vol. 115. In reference to a new apparatus for measuring

water by Noeggerath, see Polyt. Centralblatt, 1856, No. 5. Compare also

the works of Francis, Lesbros, etc., which have been cited. See also further

on, § 506.

§ 481. Regulators of Eiflus.—Very often small and medium
discharges are measured by causing them to pass through a known

orifice under a knowm head. From the area F of the orifice and

the' head 1) wre determine, by the aid of the coefficient of efflux, the

discharge per second

Q = \i F VWgli.

Poncelet's orifices are the best for this purpose ; for their coeffi-

cients of efflux are known (§ 410) with great accuracy for different

heads, but they are only applicable, when the discharge is a medium
one. The author employs in his measurements of water four such

orifices, one 5, one 10, one 15 and one 20 centimeters high and all

62
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Fig. 812.

A _ D

g''!W
:

l

i:",
l

|'liii'IHi:ii:'<&

20 centimeters wide. These orifices are cut out of brass plates,

which are placed upon wooden frames such as A 0, Fig. 812, and

these frames can be fastened to any wall by means of four strong iron

screws. But in many cases we must employ much

larger orifices for which the coefficients of efflux have

not been determined so certainly ; and very often we

can only employ oyerfalls or notches, which are even

less accurate. But in any case we should endeavor

to produce both perfect and complete contraction.

Hence, if the orifice is in a thick wall, we should bevel it off upon

the outside. The corrections to be applied for partial and incom-

plete contraction have been sufficiently explained in §§ 416, 417.

In order to measure the quantity of water in a trough, we first

put the mouth-piece in its place and then wait until the head

becomes permanent. In order to measure the head, we can em-

ploy either the fixed scale K L with a pointer, Fig. 813, or the

movable one E F, Fig. 814. If we wish to observe the efflux directly

Fig. 814.

Fig. 815.

at the -sluice gate, it is advisable to attach to the guides two brass

scales B C and D E, Fig. 815, with the pointers F and G by'means

of which we are able to read off with more cer-

tainty the height of the orifice. It is always bet-

ter, when measuring water, to employ a new

sluice gate and new guides which are properly

beveled outwards.

The most simple way of measuring the water

in a trough is to place a board OF, Fig. 701.

leveled at the top, across it and to measure the

overfall which is produced. If the ditch or trough is long and

nearly horizontal, considerable time will elapse before the flow be-

comes permanent, and it is, therefore, advisable before beginning
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Fig. 816.

the measurement to put in another board, which will prevent for

some time the efflux of the water and thus hasten its rise to the

height necessary for a permanent now.

In order to measure the discharge of a creek, we can construct

a dam A B, Fig. 816, of boards and

allow the water to flow through an

opening C in it, or we can employ a

simple overfall or weir (this subject

will be treated more at length in the

second volume).

k Remark.—The most simple method
"~-~—------^-r of determining the head is to observe the

position of the pointer, first, when its point touches the surface oF the

water, while the flow is permanent, and secondly, when it touches the sur-

face of the still water which is on a level with the top of the sill. The

difference of the two observed heights is the head of water or the height

of the water above the sill. We must be careful in observing the last

height of the pointer to pay attention to the action of the capillary attrac-

tion, in consequence of which the level of the water may be 1,87 lines

above or below the sill, before efflux over the latter will begin (see § 380).

§ 482. TTe can easily measure the quantity cf water carried by

a canal or trough A B, Figs. 817 and 818, in the following raan-

Pig. 817.

Fig. 818.

—XT

ner : a board, the lower edge of which has teen beveled, is inserted

in the trough in such a manner as to leave an opening between it

and the bottom of the latter, through which the water will pass.

This method has an advantage over that in which overfalls are

employed, viz. : the water, which is clammed back, comes to rest

better, and we can, therefore, measure the head more accurately.

When it is possible to have a free efflux, as in Fig. 817, we should

prefer it, since greater accuracy can be obtained, but when the
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quantities of water are large, it is not possible to prevent the water

from rising, and we are obliged to be satisfied with an efflux

under water, such as is represented in Fig. 818. If the trough

ends but a short distance from the orifice, i.e., if it forms a shoot,

the water flows through it almost freely and we have one of the cases

of Lesbros' experiments (§ 418). If a denote the height and h the

width of the orifice, h the head measured to the middle of the ori-

fice and fi the coefficient of efflux, taken from Table II, § 418, we
have the discharge

Q = p. a I V% g h.

If, on the contrary, the trough is long, or if the water, which is

flowing away, is so obstructed that its surface becomes horizontal,

the water will pass all portions of the cross-section of the orifice

with the same velocity, which is that corresponding to a head equal

to the difference of level of the water A above and the water B
below the orifice, and we have only to substitute in the latter

formula for h the difference of level.

If the water flows into the air, or if the surface of the lower

water, as in Fig. 817, does not rise above the upper edge of the

orifice, we must substitute for an orifice with beveled or with

rounded edges
\i = 0,965,

and consequently, when the depth of the stream is a and its width o,

Q = 0,965 a b V2gh,
or more accurately, when a x is the depth of the approaching water

and a that of the water flowing away (see § 39S),

Q = 0,965 a I \/ ĝ h

-&
When the efflux takes place under water, in which case the lower

surface of the water is above the upper edge of the orifice (see Fig.

818), an eddy is formed behind the wall of the orifice, by which the

efflux is considerably interfered with. According to several experi-

ments of the author, for an orifice with a sharp edge we must put,

as a mean value, \i — 0,462,

and, on the contrary, when the edge is rounded off in the shape ofa

quadrant, \i — 0,717.

Example.—In order to find the discharge of a trough A B, Fig. 818, a

sharp-edged board GD was placed in it and an efflux under water was

thus produced ; the following observations were then made. Width of

orifice or trough & = 3 feet, height of orifice or distance G E of the edge G
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Fig. 819.

of the board above the bottom of the trough a = 6 inches, length of the

pointer Z above the orifice hx = 0,445 feet, length of the pointer Z
x
below

the orifice h
2 = 1,073. Hence the difference of level is

h = ]h - h
i = 1,0"3 - 0,445 = 0,628 feet,

and the required discharge is

Q = 0,462 . 8,025 . 3 . 0,5 V/i
2 -Tt

= 5,56 VO^kS = 4,40 cubic feet.

§ 483. If the coefficient of efflux were always the same for sim-

ilar cross-sections, the triangular or two-sided notch A B C, Fig. 819,

would have a great advantage over the notch with a horizontal sill

;

but this assumption, as we have seen in the

case of circular apertures, is not correct for

small orifices, and only approximatively so for

large ones. Professor Thomson, of Belfast,

recommends such notches as useful for measur-

ing water. From the width A B = b and the

height GD = h, we obtain the discharge

Q = ft^ ^^P (see § 402),

and ifwe put, with Prof. Thomson, the coefficient of efflux fi = 0,019,

Q z= 0,33 ^ V2gh - 0,132 I h
3

cubic feet.

Orifices, so shaped that the discharge through them shall be

proportional to their height, are useful in measuring water. If they

are provided with a sluice-gate the height of the opening is the

measure of the discharge. Let the head above the upper edge of

such an orifice A B
%

CD, Fig. 820, be O A = h, the length of this

. edge be A B = b, that of the lower edge,

C D = bl7 and the height of the orifice,

A D = a. . Horizontal lines at the distance

Fig. 820.

- from each other will divide this orifice
n

into strips of equal height, and the dis-

charge —- through each of them should be

the same. For the upper strip, whose width

is 1) and for which the head is h, we have

£ =U V2glh
n n J

and, on the contrary, for another strip at a distance O M = x be-

low the surface of the water, whose width MN = y,
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n n J ?

equating these two values of— , we obtain
n

y Vx — b VJi, or

!=#
The curve B N C, which bounds the orifice on the side, belongs

to one of the system of curves discussed in Article 9 of the Intro-

duction to the Calculus; its asymptotes are the horizontal line

Fand the vertical one X.

From Q, li and a we obtain

1) the upper width of the orifice h = —

—

.

a V%gh

2) the width of orifice at the depth x,'y ==J> y - -,
X

3) the lower width of the orifice b x
= b y -

r
.

' r k + a
The area of the orifice is

F= 2 I ( Vh (h + a) - 7i),

and consequently the mean head is

z = L(QX= ( i V h

2g\Fl \y%(h;±a)-lJ ' 2
*

If the orifice is provided with a sliding gate, when it is raised a

distance D If = a19 it gives an orifice of efflux M C> the discharge

through which is Qx
— — Q.

§ 484. Prony's Method.—As considerable time often elapses

before the flow of the water, which has been dammed back, be-

comes permanent, the following method, proposed by Prony, can

often be employed with advantage. We begin by closing the

orifice completely by means of a sluice-gate, and we wait until the

water has risen to a certain height, or as high as circumstances

will permit ; we then open the gate enough to allow more water to

be discharged than is arriving, and we measure the height of the

water at equal intervals of time, which should be as small as pos-

sible ; finally, we close the orifice again perfectly and observe the

time tx in which the water rises to its former height. 3NTow during

the lapse of the time t + t
x
the same quantity of water has of

course arrived and been discharged; hence the quantity of water

which arrives in the time t + t x
is equal to the discharge in the
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time t If the heads, while the level of the water was sinking, were

7i , fa, 7i.2, h 3 , ftnd h^ we have the mean velocity

v = ~^- ( V~h + 4 V~h, + 2 VJ2 + 4 VT3 + VT4) (see § 453),

and if the area of the opening of the slnice is F, the discharge in

the time t is

V = flFt^ 9
( ¥J . -f- 4 Y~hx + 2 *% .-f 4 VJh + VT4) ;

•

hence the quantity of water arriving in a second is

Example.—In order to measure the quantity of water in a brook, which

we wish to employ to turn a water-wheel, the stream was dammed up by a

wall of boards, as is represented in Fig. 816, and after opening the rec-

tangular orifice in it, we made the following observations : initial head, 2

feet; after 30", 1.8 feet; after 60", 1,55 feet; after 9C, 1,3 feet; after 120",

1.15 feet; after 150,", 1,05 feet; and after 180", 0,9 feet; width of the ori-

fice = 2 feet, height = \ foot, time required for the water to rise to former

level 110". In the first place the mean velocity is

o Q05 _
fl-= ;^r^(V2 + 4'/l,8 + 2Vl,55 + 4Vl,3 + 2 VIJ15 + 4Vl,05 + V0

;
9)

= 0,4458 (1,414 4- 5,364 + 2,490 + 4,561 + 2,145 + 4,099 + 0,949)

= 0,4458 . 21,022 = 9,372 feet.

But F = 2 . I = 1 square foot, the theoretical discharge is, therefore,

= 9,372 cubic feet. If we assume that the coefficient of efilux = 0,61, we
obtain the required quantity of w?.ter

Q = ^oVno *

9
'
373 = 3

'
548 cubic feeL

§ 485. Water-inch.—"When we are required to measure small

quantities of loater, we often allow it to discharge under a given

head through circular orifices in a thin plate, which are one inch

in diameter. We call the discharge through such an orifice, under

the smallest pressure, i.e. when the surface of the wTater is one line

above the uppermost part of the orifice, a water-inch (Fr. ponce

d'eau ; Ger. Wasserzoil or Brunnenzoll). The French assume that

a water-inch (old Paris measure) corresponds to a discharge in 24

hours of 19,1953 cubic meters, or

in 1 hour, 0,7998 cubic meters, and

in 1 minute, 0,01333 cubic meters

;

but the older data, given by Mariotte, Couplet, and Bossut, differ

considerably from the above. According to Hagen, the water-inch

(for Prussian measure) discharges 520 cubic feet in 24 hours, or

0,3611 cubic feet in a minute. Prony's double ivater modulus (or
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" nouveau pouce d'eau"), which corresponds to an orifice 2 centi-

meters in diameter, under a pressure of 5 centimeters, and which

discharges 20 cubic meters in 24 hours, has not been adopted gen-

eraily.

The observations can be made with more certainty when we

have a greater head ; it is simpler to make this head equal to the

diameter 1 inch of the orifice. According to Bornemann and Ko-

ting, such a water-inch passes daily 642,8 cubic feet (Prussian) of

water (see the Ingenieur, page 4G3).

The apparatus, by which we measure the water with the aid of

the water-inch, is represented in Fig. -821. The water to be meas-

ured is discharged from the
Fig. 821.

pj.pe j^ |n^ „ D0X _#
?
from

which it passes through

holes, made in the parti-

tion C D below the level

of the water, into the box

F; from it the water is

discharged through circu-

lar orifices F one inch in

diameter, which are cut

out of sheet iron, into the

reservoir 67. To preserve the level of the water 1 line above the

top of the orifice we must have a sufficient number of holes, a por-

tion of which are closed by stoppers. We employ for more accu-

rate determinations in addition the orifice F1 which allows J, 4 of

a water-inch to pass through. When the quantity of water is very

great, we divide it into several portions and measure in this way
but one portion, as, e.g., a tenth. This division is easily accom-

plished by conducting the water into a reservoir with a certain

number of orifices on the same level and catching the water deliv-

ered from one of the orifices only in the above apparatus.

Remark.—We can also employ cocks and other regulating apparatuses

for measuring water, when we know the coefficients of resistance corre-

sponding to every position. If h is the head, F the cross-section of the pipe

and fi the coefficient of efflux for the cock, when fully open, we have the

discharge

Q = /iFv^gk,
or inversely

Q 1 ' /F\*
[i = jjry== and — = -1 . 2 g h.
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Now if we put the coefficient of resistance for a certain position of the

cock, which may be taken from one of the tables given previously, = f,

we have the corresponding discharge

/ 2gh fiF\/:2g7i QQt=F
1 + £ Vl + p £ Vl + ^ s

Q

Vi + iffi 2 gh
"We can construct from the above formula a convenient table, and we

have only to glance at it when we wish to know the discharge correspond-

ing to a certain position of the cock. If, e.g., il == 0,7 and F
x
= 4 square

inches, we have

n 0,7 . 4 . 12 . 8,025 VA nnt
-

. / A
Q >
=—7TTWF~ = mMvttw^ cubic ***«

or, if A is constant and = 1 foot,

,49?

Q =
2G9.64

VI + 0,49 C

Now if the cock is turned 5
C

10°, 15°, 20°, 25°, etc., the coefficients of

resistance are 0,057, 0,293, 0,758, 1,559, 3,095, and the corresponding dis-

charges are 206, 252,1, 230,2, 203, 170 cubic inches.

§ 486. In order to regulate the efflux through an orifice F,

Fig. 822, we employ either a cock or valve A, Fig. 822, which is

Fig. 822. Fig. 823.

regulated by means of a lever and a float IT, so that the same quan-

tity of water is discharged through B as through F.

The discharge of water from a reservoir B D E, Fig. 823,

through a lower orifice or tube D can be regulated by means of* a

wide overfall B, since a moderate change in the quantity of water,

discharged through A, will produce but a slight change in the

height of the water above the sill B ; hence the augmentation of

the head of the orifice of efflux will be inconsiderable.

Let F denote the area of the orifice D, h the height of the sill

of the overfall above the middle of the orifice and h
x
the height of
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the surface of the water above the same sill. We have the dis-

charge through D
Q = p F vzjZjrvK),

when the coefficient of efflux is fi. Substituting the head li
x above

the weir, which can be determined from the discharge g„ the width

l)i and the coefficient of efflux \i
x by means of the equation

Qi — | th h V% 9 h\ } or by the formula

we obtain the expression

from which it is easy to see that Q varies less with Q lt the greater

the value of h is and the greater the width b x of the overfall is.

The width ~b of the overfall can be easily increased by giving it

a curved form like BOB, Fig. 824. The discharge through the

orifice D is then almost
Fis. 824. constant, although the

I quantity of water now-

A ::

:

.'v ;.:-^:
^-—--^v,^T

--

r

-...- ]ng jn maybe very va-

-,- -, .-_-. t- :

- riable ; for the height of

j
\

—
'
ri

yj02J. the water above the long

W I - ; curved sill is always

small compared with the

height of this sill above

the orifice of efflux.

Remark.—Such an apparatus for dividing the water was constructed

of sheet iron for the Wernergraben at Freiberg by OberTcunstmeister Schwam-

krug. It discharges through a rectangular orifice D, which is 5 feet long'

and 1 foot high, almost invariably 40 cubic feet of water per second, while

the remaining water passes over the overfall, the sill of which lies 2 feet

above the upper edge of the orifice, and flows on in the ditch to where it

is wanted.

§ 487. Hydrometric Goblet.—We can employ to measure

small quantities of running water the small vessel, represented in

Fig. 825, which I have called the hydrometric goblet. This instru-

ment consists of a tube B, 12 inches long and 3 inches in diameter

with a funnel-shaped mouth-piece A, and of a vessel D, 6 inches

high and G inches wide, which is united to B by an intermediate
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conical piece C. This vessel has an orifice L L in the side, in

which we can insert month-pieces containing different sized circu-

lar orifices in a thin plate. The instrument is held by means of

the handle H under the water 8, which is being discharged, e.g.,

from the pipe E, and the water thus caught

is allowed to discharge itself through the ori-

fices L L. In order to tranquilize the water

in the vessel a fine sieve or wire gauze is

placed in the reservoir D, and in order to ob-

serve the head of the water a glass tube P,

which is placed close to a brass scale and ends

a half an inch from the bottom of the vessel,

is added to it. From the observed head, the

known cross-section of the orifice and the

corresponding coefficient of efflux, we can cal-

culate the discharge by means of the formula

= ft F VYgli.

If we prepare a small table, we can spare

ourselves this calculation and the only opera-

tion, which we are required to perform, is a

simple interpolation between the values in the

table. If d is the diameter of the orifice,

F = and therefore

&'-¥* Y2gh V¥~a . cV Vh.

The discharge Q is double,when the cross-section or cT~ is double,

or when the head is four times as great. If we so arrange the in-

strument that the maximum head shall be four times the minimum

;

if, E.G., the former is 12 and the latter 3 inches, and if we employ a

series of orifices whose diameters form the geometrical series

d, V% d, 2 d, 2 V% d, 4 d, etc.

i.e. d, 1,414 d, 2 d, 2,828 d, 4 d, etc.,

we obtain a means of measuring all discharges from the minimum
given by the smallest orifice with the diameter d under the smallest

head, to the maximum, given by the largest orifice with the diam-

eter Vn . d under the greatest head 4 li.
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If we assume for

[§ 437.

I. n. in. IV. V. VI. VII.

d = l

= 0,1250

£V2
= 0,1768

i

= 0,2500
i'V2

= 0,3535
*

i= 0,5000

£V2
= 0,7071

1 inch
= 1,0000

a = 0,690 0,675 0,660 0,647 0,635 0,627 0,620

we can calculate the follovring useful table.

Table of tlie hourly discharge in cubicfeetfor thefollowing orifices.

Head h in inches. I. II. in. IV. V. VI. VII.

3 0,85 1,66 3,25 6,37 12,51 24,70 48,85

4 0,98 1,92 3,75 7,36 14,44 28,52 56,40

5 1,10 2,14 4.19 8,23 16,15 31,89 63,06

6 1,20 2,35 4,60 9,01 17,69 34,93 69,08

7 1,30 2,54 4,96 9,73 19,10 37,73 74,61

8 1,39 2 72 5,31 10,41 20,42 40,33 79,77
|

9 1,47 2,88 5,63 11,04 21,66 42,78 84,60

10 1,55 3,03 5,93 11,65 22,84 45,09 89,18
j

11 1,63 3,18 6,22 12,20 23,95 47,30 93,53

12 1,70 3,32 6,50 12,74 25,01 49,40 97,69

13 1,77 3,46 6,77 13,26 26,04 51,42 101,68

The manner of using this table is shown by the following

example.

Example.—In order to determine the quantity of water furnished by a

spring, the water from it was caught in a hydroniecric goblet, and it was

found that a state of permanency occurred when the efflux took place

through the orifice V (one half inch in diameter) under a head of 10,4

inches. According to the table for h = 10 inches

Q = 22,84 cubic feet per hour,

and for h = 11 inches

Q = 23,95 cubic feet,

consequently the difference for one inch is 1,11 cubic feet, and for 0,4 inches
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0,4 . 1,11 = 0,444. Hence the discharge under the head h = 10,4 inches is

Q = 22,84 + 0,444 = 23,284 cubic feet.

§ 488. Floating Bodies.—The discharge of large creeks,

canals and rivers can only be measured by means of hydrometers,

which indicate the velocity. The simplest of these instruments are

floating bodies (Fr. flotteurs ; Ger. Schwimmer). We can use any

floating body for this purpose, but it is safer to employ bodies of

medium size and of but little less specific gravity than the water

itself. Bodies whose volumes are about -J
ff
of a foot are quite large

enough. Very large bodies do not easily assume the velocity of the

water, and very small bodies, particularly when they project much
above the level of the water, are easily disturbed in their motion by

accidental circumstances, such as the wind, etc. A simple piece of

wood is often employed, but it is better to cover the wood with a

light-colored paint; hollow floats, such as glass bottles, sheet-

iron balls, etc., are better; for we can fill them partially with water.

Floating balls are, however, most generally employed. They are

made of sheet brass and are from 4 to 12 inches in diameter; to

prevent their being lost sight of, they are covered with a coat of

light-colored oil paint. Such a floating hall A, Fig. 826, gives the

velocity at the surface only, and often only that in the axis of the

stream. By uniting two balls A and B, we can find also the

velocity at different depths. In this case one ball, which is to be

submerged, is filled with water, and the other contains enough to

prevent more than a small portion of it from projecting above the

level of the water.

The two balls are

united by a string,

wire or thin wire

chain. We first de-

termine by a single

ball the superficial

velocity c
Q,

and we

then determine the

mean velocity c of the two connected balls ; now if Ave denote the

velocity at the depth of the second ball by c l ,
we can put

c = C
° ' °\ and, therefore, inversely, c, = 2 c - c .

If we unite the balls successively by longer and longer pieces

of wire, we obtain in this way the velocities at greater and greater
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depths. The mean velocity of a perpendicular is determined by
allowing the second ball to swim near the bottom and putting

c + Cl
.

C ~ ~~^>
it is more accurate, however, to take the mean of all the observed

velocities m the perpendicular as the mean velocity.

To obtain the mean velocity m a perpendicular, a floating staff

A x Bx, represented in Fig. 828, is often employed, and it is very

F ^ so
convenient, when it is used for meas-

urements in canals and ditches, to have

^r-^g^ ffi^^ggg .f^z-iys^ ^ made of short pieces which can be

. §|pi^MSjjggjjfjkQi^i; screwed together. The one used by

Fg^.j#^^|^0^i~O ^ne author is composed cf 15 hollow

'J~ ~2z^ pieces, each one decimeter long. In

s-i-=- i ~ order to make it float nearly perpen-

1jlll|||i§|l|ll|§
' dicularly, the lower part is filled with

^-^ --^S^H^., 'r3^^^^ enough shot to prevent more than the

head from projecting above the water.

The number of pieces to be screwed together depends, of course,

upon the depth of the canal.

We observe, when using the floating staff and the connected

balls, that, when the movement of water in channels is not impeded,

the velocity at the surface is greater than that at the bottom ; for

the top of the staff and the uppermost ball are always in advance.

It is only when the channel is contracted, as, e.g., by piers of

bridges, that the opposite phenomenon is observed.

Remabx.— Generally, and particularly with large floating bodies such

as ships, etc , the velocity of the floating body is somewhat greater than

that of the water ; this is owing less to the fact that the body, in floating,

slides down an inclined plane formed by the surface of the water, than to

the fact that it does not participate, or at least only partially so, in the ir-

regular internal motion of the water , this variation is, however, so slight,

when the floating bodies are small, as to be negligible.

§ 489. Determination cf the Velocity and of the Cross-

section.—Yv
r
e find the velocity of a floating ball by observing by

means of a good watch with a second-hand or by means of a half-

second pendulum (§ 327)' the time t, in which it describes the dis-

tance A B — s, Pig. 829, which has been previously measured and

staked off on the shore. The required velocity of the sphere is then

s
c = -. In order that the time t shall correspond exactly to the

z
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c c> o

' Is^SSSPIE
-

distance measured on the shore, it is necessary to put two rods C
and B, by means of a suitable instrument, in such a position upon

the other side of the river that the
FlG m -

lines C A and D B shall be perpen-

dicular to A B. Placing ourselves

behind A, we note the instant the

float K, which has been placed in the

water some distance above, arrives at

the line A C, and then passing. be-

hind B, we observe upon the watch the instant that the float ar-

rives at the line B D; by subtracting the time of the first observa-

tion from that of the second, we obtain the time t, in which the

space s is described. In order to determine the discharge Q = Fc,

we must know, besides the mean velocity c, the area F of the cross-

section. To find this area, it is necessary to know the width and

the mean depth of'the water. The depth is measured by a gradu-

ated sounding-rod A B, Fig. 830, the cross-section of which is

elongated and the foot of which is formed by board ; when the

depth is great, we can make use of a sounding-chain, to the end of

which an iron plate is attached, which, when the measurement is

being made, lies upon the bottom. The width and the abscissas or

distances from the shore corresponding to the depths measured are

Fig 830. Fig. 831.

easily found for canals and small creeks E F G,

Fig. 831, by stretching a measuring chain A B or

laying a rod, etc., across the stream. When the

river is wide, we make use of a plane-table 3L

placed at a proper distance A from the cross-

section E F, Fig. 8S2, to be measured. If a o

upon the plane-table is the reduced distance A
* f the fixed points A and from each other, and if we have placed

c, o in the direction A 0, and thus made the direction a f of the

width, which had been drawn, previously to putting the plane-table

in position, parallel to the line A Fto be measured off, each line

of sight towards the points E, F, G, etc., in the transverse profile

cuts off upon the table the corresponding points c, f, g, and
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a c, af9 a g, etc., are the distances A E, A F, A G, etc., upon the

reduced scale. When using the sounding-rod to measure the

depth, it is, therefore, not necessary to measure the distance of

the corresponding points from the

shore ; for the engineer, who is at

the plane-table, can sight at the

sounding-rod, when it is placed in

the line E F.

Now if the width E F, Fig. 831,

of a transverse profile is made up

of the portions &i, 52, h, etc., and

if the mean depths of these por-

tions are a» a«, a>, and the mean velocities cly c2, cz, etc., we have

the area of the cross-section

F — a v o x + a,
7
o» + «3 di + . .

.,

the discharge

Q = a x hcx + a, h c, 4- a3 b z c3 + .. .,

and finally the mean velocity

f

Fig. 832.

~^f

^^T-i'pr^rEE
3-^^--— ~.'~7Z7—-=^~^=X=^

-s

-m
|

-—--.
.- .:- ...

' -—

-
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„.- -^-=--= 1=^--.- -»_.__^ --' --=-"—

A
I :

—

ol.
)

C= F = ci] ~b x c-i + a* 1-2 c« 4- •

«i b\ + 2 hi H- . .

.

Example.—Upon a pretty straight anc? constant portion of a river tha

following observations were made :

Feet.

At the centre of the divisions ofthe width
|

5

the depths were I 3

the mean velocities were
I 1,1

Feet.
I

Feet.

12 ! 20

Feet. Feet.

6 11

2,8

15

2,4 2,1

The area of the cross-section is

F= 5 . 3 + 12 . 6 + 20 . 11 + 15 . 8 + 7 . 4 = 455 square feet,

the discharge is

Q = 15 . 1,9 + 72 . 2,3 + 220 . 2,8 + 120 . 2,4 + 28 . 2,1 = 1156,9 cubic feet,

and the mean velocity is

1158,9
c =

455
= 2,54 feet.

§ 490. Woitmann's Mill or Tachometer.—The best hy-

drometer is Woitmann's tachometer or Woitmann's Mill (Fr. Moulinet

de Woltmann ; Gcr. hydrometrisches Fliigeirad von Woltmann),

Fig. 833. It consists of a horizontal shaft A B with from 2 to 5



§ 490.] HYDROMETRY, ETC. 993

surfaces or vanes F, inclined to the direction of the axis ; when
immersed in water and held opposite to the direction of motion, it

Fig. 833.

indicates by the number of its revolutions the Telocity of the run-

ning water. To enable us to count the number of revolutions the

shaft has cut upon it a certain number of threads of an endless

screw O, which work into the teeth of a cog-wheel D, which indi-

cates, by means of a pointer and figures engraved upon the wheel,

the number of revolutions of the wheel F. As we often wish to

register a great number of revolutions the shaft of the cog-wheel

carries a pinion, which takes into another cog-wheel F, upon which

we can read off, as upon the hour-hand of a watch, multiples.

(e.g., five or tenfold) of the number of revolutions of the vanes.

If, for example, both cog-wheels have 50 teeth and the pinion has.

10, the second wheel will turn one tooth, while the first moves five,

or the shaft of the vane wheel makes five turns. When the pointer'

of the first wheel, is at 27 = 25 + 2 and that of the second at 32,.

the corresponding number of revolutions of the vane-wheel is

= 32 . 5 + 2 = 162,

The entire instrument with a sheet iron vane is screwed to a

63
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pole, so that it may easily be immersed and held in the water. In

order to prevent the gearing from turning except during the time

of the observation, its shafts run in bearings placed upon a lever

G 0, which is pressed down by means of a spring, so that the teeth

of the first cog-wheel do not take into the endless screw except

when the string G E is drawn upwards. The number of revolu-

tions in a given time is not exactly proportional to the velocity of

the water ; hence we cannot put v = a . u, in which u is the num-
ber of revolutions, v the velocity and a an empirical number, but

we must put

v = v
Q -b a u,

or more accurately

v — t\ + ob u 4- fi u
2

. . .,

or still more accurately

v = a it -f Vv* + (3 u%

in which v denotes the velocity of the water, when it ceases to

move the vanes, and a and j3 are numbers to be determined by

experiment. The constants v , a, [3 must be determined for each

particular instrument. By their aid a single observation gives the

velocity, but it is always safer to make at least two and then take

their mean value as the true one.

Example.—If for a tachometer v = 0,110 feet, a == 0,480 and (3 = 0,

then v = 0,11 + 0,48 w, and if we have found the number of revolutions

of the fan to be 210 in 80 seconds, the corresponding velocity of the

water is

* = 0,11 + 0,48 .

2

g
i°- = 0,11 + 1,26 = 1,37 feet.

Remark 1.—The constants y0) a and j3 depend principally upon the

angle of impact, i.e., upon the angle formed by the surface of the vanes

with direction of the motion of the water and also with the direction of

the axis of the wheel. If we wish to make, when the velocities are small,

pretty accurate observations, it is advisable to make the angle of impact

large, i.e., about 70°. It is also desirable to have vane-wheels of different

sizes and of different angles of impact, so that when the depth or velocity

of the water is greater or smaller we can employ one or the other.

Remark 2.—If the tachometer had no resistance to overcome in turn-

ing, the vanes A B, Fig. 834, would describe the space G C
t
= C B

tang. G D G
x
while the water describes G D; hence, if we denote by v

the velocity of the water and by <J the angle of impact O G B = G JD <7
t ,
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we have undei

Fig. 835.

bhis supposition tlie mean velocity of rotation of the vane-

wheel
n

x
= i) tang. 6,

from winch it is easy to see thai,

when r denotes the mean radius of

the vane-wheel, the number of revo-

lutions is

i\ v tang. c5

U =
~2Vr

=
2-r '

and that, consequently, it is directly

proportional to the velocity v of the

of impact and inversely to the mean radius of the vane-wheel.

Remark 3. —In order to determine the superficial velocity of water we
also employ a small wheel made of metal, like the one represented in Fig.

835, and we allow only the lower part to be immersed in the water. The

number of revolutions is given by a train of wheels, exactly as in the

tachometer.

§ 491. In order to determine the constants or the coefficient*

of a tachometer, it is necessary to hold the instrument in running

water, the velocity of which is known, and to observe the number
of revolutions. Although only as many observations as there are

constants are required, yet it is safer to make as many observa-

tions as possible, particularly with very different velocities, and

to employ the method of the least squares (see Introduction to the

Calculus, Art. 36) and thus do away with the accidental errors

of observation. The velocity of the water may be determined by ii

floating sphere, or we may catch the water in a gauged vessel and

divide the quantity of water caught by the cross-section. If the

floating sphere is employed, the air must be still and the water must

move uniformly and in a straight line. The vane-wheel must be

immersed at several points along the path described by the Heating

sphere, and to insure perfect accuracy, the diameter of the sphere

should be about equal to that of the vane-wheel.

The second method of determination by catching the water, in

which the mill is immersed, in a gauged vessel possesses many
advantages. For this purpose, and for adjusting hydrometers

generally, it is very desirable to have at one's disposition a

hydraulic observatory, which consists of a gauged vessel, a trough.

and a discharging vessel or reservoir. We can then give the

water any desired velocity; for we can regulate not only the

entrance of the water into the trough, but also, by inserting boards.
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we can regulate at will the Telocity in it. In making the observa-

tion, we have but to insert the tachometer at different parts of the

cross-section of the trough, to measure the depth of this section by

a scale, and then to gauge the quantity of water, which has passed

through in a given time (§ 480). The area of the cross-section is

obtained by multiplying the mean depth by the mean width, and
the discharge Q is calculated from the mean cross-section of the

receiving reservoir and the depth of the water, which has flowed

into it, by means of the formula

*-
t

>

finally,-from Q and F we deduce the mean velocity of the water

= * = *?.
F Ft

The corresponding number u of revolutions of the vane-wheel

is the mean of all the revolutions observed when we inserted the

instrument in different parts of the transverse profile.

If by experiment we have determined a series vx, v«, vB, etc., of

mean velocities and the corresponding numbers of revolutions, we
obtain, by substituting them in the formula

v = v + a u,

or in the more accurate one

v = a u + H2 + if,

as many equations of conditions for the constants v , a, (3, as we
made observations, and we can find from them the constants them-

selves either by employing the method given in Art. 36 of the In-

troduction to the Calculus, or by dividing these equations into as

many groups as there are unknown constants, and combining them

by addition into as many equations of condition as are necessary

for the determination of voi
a and (3.

If we assume the passive resistances of the instrument to be

small enough to be neglected, we can put v = a u and determine

a by moving the instrument forward in still water and observing

the number n = u t of revolutions made in describing the space

s = v I; then

_ V _ V t _s
u
~

~ ut~~ ri

Remark—1) If we employ the simple formula with two constants, we
can put, according to the method of least squares,

__ 2 (?r) S (x) -Sfe y) S (y) _ 2 (x
9
) 2 (y) - S (x y) S (x)

"° ~ '
2 (*») 2 {f) - [2 (x y)Y

~ 2 (ar) 2 (if) - [2 (x y)f
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1 «
in which x = - and y = -, and the sign 2 denotes the sum of all the

values of the same kind as that which follows it, e.g.11 1
S \X) — + — -f — -f . .

*i ®a «,

1 « t 1 W„ 1 M,
2 far v) = .— .

- - + — .— + — . — 4- . .

.

Example.—We have observed with a small tachometer that for the ve-

locities

0,163, 0,205, 0,298, 0,36G, 0,610 meters

the number of revolutions per second were

0,600, 0,835, 1,467, 1,805, 3,142,

and we wish to determine the constants corresponding to this instrument.

By the aid of the formula given in the Remark, we obtain, since

s ^ = oi + o;k-
+ --- = 18

<

740
'

0,600 0,835
S(^ = 0,168 + 0^05

+ - = 22
>
759

'

2 w = (oi§)'+ (o;k-)
3+

• •

•

=

83
-
246

>

5,233, and

0,600 0,835
*('*> =

(0^1637
+

T0^05?
+ .--80,961,

_ 105,233 . 18,740 - 80,961 . 22,759 _ 129,5 _
V
° ~ 82,846 . 105.233 - (80,961)

2 ~ "2162 ~ '

hence the formula for this instrument is

= 0,060 + 0,1703 u.

Substituting u = 0,6, we obtain

v = 0,060 + 0,102 = 0,162

?* = 0,835 gives

it = 1,467,

u = 1,805,

and finally, w = 3,142,

a = 0,060 + 0,535 = 0,595.

The calculated values therefore agree very well with the observed ones.

Remark—2) We can also, according to Lapointe, insert the tachometer

in a cylindrical pipe, and thus obtain the velocity of the water flowing

through it. The counting apparatus can be placed outside of the pipe

and connected with the vane-wheel by means of a shaft. Lapointe calls

this instrument une tube jaugeur (see " Comptes rendues," T. XXV, 1848;

v = 0,060 + 0,142 = 0,202

v = 0,060 + 0,249 = 0,309

x = 0.080 + 0,307 = 0.367
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also Polytechn.'Centralblatt, 1847). Fig. 836 gives an ideal representation

of the tachometer in a pipe. The vane-wheel in

this case also puts a shaft B E in rotation by

means of an endless screw ; the former passes out

of the pipe B It, in which the water to be

measured flows, through a stuffing-box F into

the case G H of the counting apparatus, the ar-

rangement of which may be very varied.

Remaek—8) The French have but lately be-

gun to give sufficient attention to the tachometer.

A, complete treatise upon this instrument, by
Baumgarten, is to be found in the " Annales des

pouts et chaussees," T. XIV, 1847, and an abstract

of it in the "Polytechnisches Centralblatt, 1849." Baumgarten recommends

a screw-wheel and adds several remarks, which agree very well with our

experiments, made many years ago. A new tachometer, without wheels

and with a long screw, is described by Boileau in his " Traitc de la mesure

des eaux courantes."

Fig. 837.

§ 492. Pitot's Tube.—The other hydrometers are more im-

perfect than the tachometer ; for they are either less accurate or

more difficult to use. The simplest instrument of this kind is

Pitot's tube (Fr. la tube de Pitot; Ger. Pitot'sche ROhre). It con-

sists of a bent glass tube A B C, Fig. 837, which is held in the

water in such a manner that the lower part is

horizontal and opposite to the motion of the

water. By the impulse of the water a column

of water will be forced into the tube and held

above the level of the* water, and this rise D E
is proportional to the impulse or to the velo-

city of the w"ater which produces it; this rise

or difference of level can therefore serve to

measure the velocity of the water. If the height

D E above the exterior surface of the water

= h and the velocity of the water — v, we can put

h =
%9\?

in which fi is an empirical number, or inversely

v — fi V
7
2 g h, or more simply

v — xb Yh.
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Fig.

In order to find the constant i/>, we hold the instrument in the

water where the velocity is known to be v
x ; if the rise is — h i} wc

v
have the constant i/> — —7=? which can he employed in other cases,

¥ fa

where the velocity is to be determined by this instrument.

In order to facilitate the reading off of the height h, the instru-

ment is composed of two tubes A B and C D, as is represented in

Fig. 838 ; from one of the tubes a pipe proceeds in the direction of

the stream, and from the other two pipes F and J£ at right-angles

to that direction, but by means of the same cock

both tubes can be closed at once. If we draw the

instrument out of the water, we can easily read off

the difference of height K L — li of the columns

of water upon the scale placed between them. In

order to prevent the water from oscillating in the

tubes, it is necessary to make their mouths narrow

;

and in order that the cock may be shut quickly and

certainly, it is provided with a crank and a rod

H S, which is represented in the figure principally

by a dotted line and terminates near the handle of

the instrument.

Remark—1) Although Pitot'stube is not so accurate

as the tachometer, yet, on account of its simplicity, it

can be highly recommended. The author has discussed

this instrument at length in the " Polytechmsches Cen-

tralblatt, 1847," and gives there a series of numbers, de-

termined by experiment, and the values of the coefficient

\\> deduced from them. With line instruments, when the

velocities were between 0,32 to 1,24 meters, we found

2) Duchemin recommends Pilot's tube with a float.

Since the latter must be pretty wide, it dams the water

back to a certain extent, so that it cannot be employed for narrow canals

(see Duchemin: " Recherches experim. sur les lois tie la resistance des

fluides
1
'). Boileau describes in his work, cited in § 412, a new kind of

Pitot's tube, which is provided with a small gauged vessel ; the velocity

is measured by the quantity of water pressed above the surface of the

water.

§ 493. Hydrometric Pendulum.—-The hydromeiric pendu-

lum (Fr. pendule hydrometrique ; Ger. Stromquadrant or hydro-
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metrisches Pendel) was principally employed by Ximenes, Michelotti,

Gerstner, and Eytelwein to measure the velocity of running water.

This instrument consists of a quadrant

A B, Fig. 839, divided into degrees and
parts of a degree, and of a string attached

to its centre C, at the other end of which is

fastened a metal or ivory ball K, 2 or 3

inches in diameter. The velocity of the

water is given by the angle A C E formed

by the stretched string with the vertical,

when the plane of the instrument is placed

in the direction of the stream, and the

ball is immersed in the water. Since the angle cannot easily exceed

40°, this instrument often has the form of a right-angled triangle,

and the graduation is then marked upon the base. In order to

place the zero line vertical, we can either place a level uf)on the

instrument or we can employ the ball itself by allowing it to hang
out of the water and then turning the instrument' until the string

corresponds with the zero line. For velocities less than 4 feet we
can employ an ivory ball ; for greater velocities, however, we must

use heavy balls of metal. On account of the vibrations of the ball,

not only in the direction of the motion of the water but also in

that at right angles to it, it is always difficult to read off the angle,

and the result is never free from uncertainty; this instrument

cannot therefore be considered to be a perfect one.

The dependence of the angle of deviation, for a ball that is not

deeply immersed, upon the velocity of the water can be determined

in the following manner. The weight G of the ball and the im-

pulse of the water P — \i F v% which increases with the cross-

section i^of the ball and the square of the velocity v, give rise to

a resultant R, which is counteracted- by the string and is deter-

mined by the angle of deviation 6, for which we have

, P i-t'Fv
2

G G '

or inversely

, G tanq. 6 , / G .n -*

v — -—— and v = y —==, . Viang, o,
u F } \iF u

'

I.E.,

v = ijt Vtang. d,

in which \jj is an empirical coefficient, which must be determined
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iii the manner stated above (§ 491) before the instrument can be

used.

§ 494. Rheometer.—The remaining hydrometers, such as

Lorgna's water-lever, Xinienes' water-vane, Michelottrs hydraulic;

balance, Brunning's tachometer and Poletti's rheometer, etc., t;re

difficult to use and partially uncertain. The principle of ,all oi"

them is the same; they consist of a balance and of a surface,

which is subjected to the impact of the water; the former serves

to measure the impulse P of the water against the former, but

since the impulse is = p F v
1

, we have inversely

/ P
pF = ipVP,

in which i/> is an empirical constant, dependent upon the magni-

tude of the surface subjected to the impulse of the water.

The Eheometer, which has been lately proposed by Poletti, docs

not differ essentially from Michelotti's balance and consists of a

lever A B, Fig. 840, movable about a fixed axis C, and of a second

arm CD, upon which a surface, or, according to

Poletti, a simple rod, which is to be subjected

to the impact, is screwed. In order to balance

the force of impact of the water, shot or weights

are put into the sheet iron box, which is sus-

pended at A upon the lever, and to balance

the empty apparatus in still water, weights

are hung at B, the extreme end of the arm

C B. From the weights added at G and the

arms of the lever A — a and OF = b, we

obtain by means of the formula P 1) — G a the

impulse

P = %G and v =v5=v\iF
a G
m b F =z ijj VG]

in which i/> denotes an empirical constant.

A hydrometer constructed upon the same principle, in which

the impulse of the water is balanced by the force of a spring (hy-

drometre dynamometrique) is described by Boileau in his treatise

upon the measurement of water.

Remark 1.—The last-mentioned hydrometers are discussed at length in

Evtelwein's " Halidbuch der Mechanik," Vol. II, in Brunning's " Abhand-

lunsr iiber die Geschvrindigkeit des fliessenden Wassers," in Venturoli
1

s
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•• Elementi di Meceanica, e d'ldraulica," Vol. II. Concerning Poletti's

Rheometer, see Dinglers Polytechn. Journal, Vol. XX, 1826. Stevenson's

hydrometer is Woltmann's tachometer, see Dingler's Journal, Vol. LXV,
1842. The water-meters and gas-meters constructed like reaction wheels

will be treated in the following chapter.

Remark 2.—A work to be particularly recommended for practical

purposes is the " Hydrometrie ocler practische Anleitung zum Wasser-

messen von Bornemann, Freiberg, 1849. :
' Boileau's work has already been

mentioned several times (see § 412, etc.).

CHAPTER IX.

OF THE IMPULSE AXD RESISTANCE OF FLUIDS.

Fig. 841.

piili^wiiiiimn;av

§ 495. Reaction cf Water.—The total pressure of the still wa-

ter in a vessel is, according to § 382, reduced to a vertical force equal

to the weight of the mass of water; but if the vessel A F, Fig. 841,

has an opening F, through which

the water issues, this force under-

goes a change not only because' a

portion of the wall of the vessel is

absent, but also because the water,

which issues from the orifice, like

every other body, which changes

its conditions of motion, reacts by

virtue of its inertia. The change

in the motion of a body may consist

either of a change cf velocity, or

of a change of direction, and, there-

fore, the reaction (Fr. reaction ; Ger. Eeaction) of the issuing water

may be due not only to an acceleration but also to a constant

change in the direction of the water, which is approaching the

orifice.

AYe can make ourselves acquainted with the complete reaction

of the water in a discharging vessel in the following manner.

Let c be the velocity of the water, which is issuing from the

orifice F. c
x
the relative velocity of the water at the surface As
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Or the area of this surface and h the head of water A D at the ori-

fice. Then we have

£ = * +£2g 2g>

and the discharge

Q = Fc = Gcx .

If we imagine the vase A F, Fig. 841, to move forward in a

horizontal direction with a velocity v, we must put for the absolftfe

velocity c2 of the water entering the vessel

c; - c{ + v\

and if the angle of inclination of 'the axis of the stream to tho

horizon is E F c = a, we have for the absolute velocity w of the

effluent stream

iv' — C* + v
Q — 2 c v cos. a.

Xow the actual energy of the water before efflux is

*=(&+*).«7-(^'.+,*)*ir
it after efflux it is

iv* ~ (& 4- v
s — 2 c v cos. a\ ~

g \'
r

\ *g
hence the energy withdrawn from the water and transmitted to

the vessels is

T r T (c-c — c- + 2 cv cos. a \

C" C{ ,

or, since —- = h,

r c v cos. a _.

L = Q y. v

The horizontal component of the reaction of the water is

Z c COS. a ~ff=-= § y.
v g

Since Q — F c, we have also

c* c
2

II — — F y co.s. a == 2 .
—- .F y cos. a — 2h Fy cos. a,

9 % 9

and therefore, when the direction of the stream is horizontal, as in

Fig. 842,

H== 2hFy.
Therefore, the reaction of a horizontal stream is equal to the

weight of a column of water, whose cross-section is that of the stream

and whose height is double that (2 h) due to the velocity.
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Remark.—Mr. Peter Ewart, an Englishman, has recently made experi-

ments to prove the correctness of this law (see " Memoirs of the Manchester

Philosophical Society," Vol. II, or the " Ingenieur, Zeitschrift fur das ge-

sammte Ingenieurwesen," Vol. I). He hung

the vessel H R i^upon a horizontal axis C\

Fig. 842, and measured the rtacLon by a lent

lever ABB, upon which the vessel acted by

means of a horizontal rod A 67, which pressed

against the vessel exactly opposite to the ori-

fice F. For efflux through an orifice in a thin

plate, he found

If we put the cross-section

F
t
= 0,64 F

and the effective velocity of discharge

v t
= 0,96 v

(see § 405), we obtain by the theoretical formula

*-
,. F± y = 2 . 0,

or about the same that was given by experiment. With an orifice shaped

1,73 <-— F y. and the coefficient
2 g

Fig. 843.

like the contracted stream, he found P
of efflux or velocity = 0,94. Since in this case Ft

= F&nd v
x
= 0.94 ,

we have theoretically

v 9 v 2

P= 2.0M 9— Fy = lJll .— Fy,
' 2g ' ' 2 g

which agrees very well with the result of the experiment.

§ 496. If we imagine the discharging vessel A F, Fig. S43, to

be moved vertically upwards with a velocity v, we have for the

absolute velocity of the water which

enters it

a2 = v — c„

and, on the contrary, for that of the

water issuing from it (the same no-

tations being employed as in the

foregoing paragraph)

W\= c* + v* '+ 2 c v cos. (90° -f- a)

= & + v* — 2 c v sin. a.

Hence the total energy of the

volume of water Q per second is

f(v — c

k 2g
In + h)Qj,

and, on the contrary, that of the water discharged is

L, = {c> 2 c v sin. a) Q : 2 g
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consequently the mechanical effect imparted by the water to the

vessel is

L = L
x <.-<

2 v cx + Cy — c' + 2 c v sin. a

c c
or, since h = —- — -?-,

2# 2/

*9

(c sin. a — C]) v_____

a) e y,

<>%

and the corresponding vertical force is

Tr L (c sin. a — cA n / . F\ c

= (sw. a — -^-j — F y = lsin. a — —J . 2 7. _Fy.

If the orifice of efflux is small, compared to the surface G, we
F

have -— = 0, and, therefore, the vertical component of the reaction

V — 2 li F y sin. a.

According to the foregoing paragraph the horizontal compo-

nent of this force was
H = 2 k F y cos. a

;

hence the total reaction of the water is

R _ V V2 + IF = 2 h Fy,
and its direction is exactly opposite to that of the motion of the

effluent water.

If F — 67, i.e., if the water flows through a pipe of uniform
F

width, we have — = 1, and therefore
Gr

V _ («„. a - 1)". 2 fr-Fy — - (1 - sin. a) .2hFy;
in this case V does not act upwards hut downwards, and the total

reaction is

R — VV* + H* = 1/W ay + (1 -^slnTaf .2h Fy
Fig. 844. _ V2~Jl~^'sin. a) .2hFy

= ^h Fy sin. (_5° - -|).

For a = — 90°, i.e., when the pipe forms a

semicircle, R = 4 h F y

If a — + 90°, we have the case represented in

Fig. 844, where H = and

. r'=^.0y.=,(l-J).V*_'y,

A Ipr

.

M !
i P

i i

;

V'-''
;

'

<

'

'!/V\ '

:

:
.' -•/

Dw^.V:!/ Sp
•t ,:

'l$>\ £-?\

iJ
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consequently, for— = 0, we have

V = B~ %hFy.

The total weight of the water in the vessel will be diminished

that much, when the water is allowed to flow out.

§ 497. Impulse and Resistance cf "Water.—Water or any

other fluid, when it impinges upon a solid body, imparts a force or

impulse to it, and thus produces a change in its state of motion.

The resistance (Fr. resistance ; Ger. Widerstand), which water

makes to the motion of a body, is not essentially different from mi-

pulse. The examination of these two forces constitutes the third

chief division of hydraulics. We distinguish from each other first,

the impact of an isolated stream (Fr. choc d'une veine de fluide

;

Ger. Stoss isolirter Wasserstrahlen) ; secondly, the impact of a

bounded stream (Fr. choc d'un fluide defini; Ger. Stoss im be-

grenzten Wasser oder Gerinne) ; and thirdly, the impact of an unlim-

ited stream (F. choc d'un fluide indefini ; Ger. Stoss im unbegren::-

ten "Wasser). Impact of the first sort takes place when a stream

discharged from a vessel encounters a body, as, e.g., the bucket of

an overshot water-wheel ; impact of the second sort occurs, when
the water in a canal or trough strikes against a body which en-

tirely fills the cross-section of the latter, as, e.g., the float of an

under-shot water-wheel. Finally, impact of the third kind occurs,

when running water strikes upon a body immersed in it and the

cross-section of the latter is but a small part of that of the stream,

as, e.g., the float of a wheel in an open current.

We distinguish also impact against bodies at rest and bodies in

motion, against curved and plane

surfaces ; the latter may be either

direct or oblique.

We will now consider a more

general case, viz. the impact of an

isolated stream against a surface

of revolution, moving in the direc-

tion of the motion of the stream,

which coincides with the direction

of the axis of the surface.

§ 498. Impact of an Isolated

Stream.—Let B A B, Fig. 845, be

Fig. 845.
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a surface of revolution, A P its axis, and F A a stream of water

moving in the direction of the axis of the latter and impinging

against it; let us put the velocity of the water = c, that of the

surface — v, and the angle B T P, which the tangent D T to the

end B of the generatrix or each fibre B D of the stream of water,

which leaves the surface, makes with the direction B E of the axis,

== a, and let us assume that the water does not lose any vis viva in

consequence of the friction while passing over the curved surface.

The water impinges upon the surface with the velocity c — v and

then passes over the surface with that velocity and leaves it in a

tangential direction T B, T B, etc., with the same velocity. From
the tangential velocity B D = c — v and from the velocity B B
— v in the direction of the axis, we obtain the absolute velocity

B C ~ c
x
of the water, after it has impinged upon the surface, by

the well-known formula

d = V(c — v)' + 2 (c — v) v cos. a + v'\

Xow a discharge Q can produce by its vis viva a mechanical

&
effect— . Q y, when it loses its entire velocity c; hence the energy

Z g

remaining in the water is = -— . Q y, that transmitted to the sur-

. .

Z 9
face is

\c~ — (c — v)
2 — 2 (c — v) v cos. a — v~] n
~W*-

2 c v — 2 v' — 2 (c — v) v cos. a _

P v =, (1 - cos. a) itriAl Q y>

and the force or impulse in the direction of the axis is

P = (1 - COS. a) —— y.v /

g
If the surface moves with a velocity v, which is in the opposite

direction to that of the water, we will have

P = (1 - cos. a) ^±A q y

and if the surface does not move or if v — 0, the impulse or hydrau-

lic pressure in the direction of the axis is

P = (1 - cos. a)j.Qy.
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From this it follows that the impulse of one and the same mass

of water, ivhen the other circumstances are the same, is proportional

to the relative velocity c =F v of the ivater.

If the area of the cross-section of the stream is F, the volume

of the impinging water is F (c q= v) ; hence

p = (i

or for v = 0,

cos. a) i '- Fy ;
/ g

P = (1 _ cos. a) — Fy.

If the cross-section of the stream remains the same, the impulse

against a surface at rest increases with the square of the velocity of

the ivater.

§ 499. Impact against Plane Surfaces.—The impulse of

the same stream of water depends principally upon the angle a, at

which the water moves off from the axis after the impact; ifis

null when this angle = 0, and, on the contrary, a maximum and

_ o (c =F v)

9
Qy

Fig. 847.

=ffij
->P

when this angle is 180° or when its cosine = — 1, in which case, as is

represented in Fig. 846, the

wrater quits the surface in a di-

rection opposite to that in which

it struck it. In general the im-

pact is greater against concave

than against convex surfaces;

for in the former case the angle

is obtuse and its cosine negative

and 1 — cos. a becomes 1 + cos. a.

Usually the surface is, as is represented in Fig. 847, plane and

therefore a = 90° or cos. a = and the impulse

p = (g =F v)

O
When the surface is at rest, we have

Qr

9 9 3<7
Fy = 2 Fhy.

The normal Impulse of ivater against a plane surface is equal to

the iveight of a column of water, the cross-section of whose base is

equal to the cross-section of the stream, and whose height is twice

mlocity {%h^%.~ \thai due to the i\
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Fig. 848.

UMI
|=£3^s
fe^sdl

The results of the experiments made upon this subject by

Micheioin, Vines. Langsdorf, Bossut, Morosi and Bidone were

about the same, when the cross-section of the impinged surface was

at least 6 times that of the stream

and when this surface was at a

distance not less than twice the

thickness of the stream from the

orifice. The apparatus employed

consisted of a lever like Folettrs

Eheometcr (§ 494), upon one end

of which the stream impinged,

•the impulse was balanced at the

other end by weights. The ap-

paratus employed by Bidone is

represented in Fig. 848. B C is the surface subjected to the action

of the stream, G the scale-pan for receiving the weights, D the axis

of rotation, and K and L are counter weights.

Remark.—The most extensive experiments upon the impulse of water

were made by Bidone (see "' Memoire de la Reale Accademia delle Scienze

cli Torino," T. XL, 1888). They were made with a velocity of at least 27

feet and with brass plates of from 2 to 9 inches in diameter. Bidone gen-

erally found the normal impulse against a plane surface somewhat greater

than 2 Fh 7 ; but this increase is to be ascribed to the increase of the arm

of the lever, in consequence of the falling back of the water. See Duchemin :•

liecherches expcrimentales sur les lois de la resistance des fluides (translated

into German by Schnuse). When the impinged surface was very near the

orifice, Bidone found P to be only 1,5 F h 7. When the impinged surface

was of the same size as the stream, in which case the angle of deviation a.

is acute, according to du Buat and Langsdorf, P is only = Fli 7. Bidone

and others have found that the impulse during the first instant was nearly

twice the permanent impulse. Comparative experiments upon the impulse

and reaction of water have been made by the author with a reaction wheel.

See his " Experimentalhydraulik" and the " Civilingenieur," Vol. I, 1854.

By more recent'experiments upon the impact of isolated streams of air

and water (see Civilingenieur,Vol. VII, No. 5, and Vol. VIII, No. 1), the

author found the effective impulse of an isolated stream of air or water

against a normal plane to be 92 to 96 per cent, of the theoretical force P =
c Q v—— , that, on the contrary, the impulse of such a stream against a hollow

surface of rotation by which the direction of the stream is made to deviate

an angle 6 = 134°, is but 83 to 88 per cent, of the theoretical force P —

c (1 - cos. <5)
^

9

64
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§ 500. Maximum Work done by the Impulse.—The me-

chanical effect

P v = (1 - cos. a) (
c ~ v

)
v
Q y

depends principally upon the velocity v of the impinged surface

;

e.g. it is null not only for v = c, but also for v = 0; hence it fol-

lows that there must be a velocity, for which the work done by the,

impulse is a maximum. It is evident that this is the case when
(c — v) v is a maximum. If we consider c to be half the periphery

of a rectangle and v to be its base, we have its height = c — v and

its area — (p — v) v: now the square is that rectangle, which has

the greatest area for a given periphery ; hence (c — v) v is a maxi-

mum, when (c — v) = v, i.e., v =-, and we obtain the maximum

mechanical effect of the impulse, when the surface moves in the

direction of the stream with half the velocity of the latter ; the

work done is then

P v = (1 — cos. a) .
i

. — . Q y = (1 — cos. a) .
i Q h y.

*g
Now if a — 180°, I.E., if the motion of the water is reversed by

the impact, we have the work done

= 2.iQhy = Qhy;
but if a — 90°, I.E., if the stream strikes against a plane surface,

the work done is but -]- Q h y, in this case the water transmits to

the surface but one-half of its actual energy, or but one-half of the

mechanical effect corresponding to its vis viva.

Example—1) If a stream of water, the area of whose cross-section is 40

square inches, delivers 5 cubic feet per second and strikes normally against

a plane surface, which moves away with a velocity of 12 feet, the impulse is

-^ Q y = (^p - is) . 0,031 . 5 . 62,5 = 6 . 0,031 . 312,5

= 58,125 pounds,

and the mechanical effect transmitted to the surface is

Pv = 58,125 . 12 = 697,5 foot-pounds.

The maximum effect is obtained, wheu

c
,

5.144 ;^2 =^T = 9feet
'

and it is

L = \ . £- . Qy= -} .
18"2

. 0,0155 . 5 . 62£ = 81 . 0,155 . 62,5 = 784,6875
2 g

foot-pounds

;

the corresponding impulse or hydraulic pressure is

„ 784,6875
P = — 87,19 pounds.

y

__ (c—v) „ /5 .144
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2) If a stream FA
y
Fig. 849, the area of whose cross-section is 64 square

inches, impinges with a velocity of 40 feet upon an immovable cone,

whose angle of convergence B A B — 100°, the
Fig. 849. hydraulic pressure in the direction of the stream is

p=(l — cos.
1

9
Qy

= (1 — COS. 50°) .40. 0,031 .

61 An
144

-

4° 62 ,5

= a - 0,64279)
„ nA 10000

.1,24.

= 0, 35721 . 1377,8 = 492,16 pounds.

Fig. 850.

§ 501. Impact of a Bounded and of an Unlimited
Stream.—If we surround the periphery of a plane surface B B,

Fig. 850, with borders B D, B D (Fr. rebords ; Ger. Leisten), which

project beyond the surface struck by the water, the

water will be deviated from its course at an obtuse

angle as in the case of concave surfaces, and the

impulse is greater than when the surface is plane.

The action of this impact depends principally upon

the height of the border and upon the ratio of the

cross-section of the stream to that of the enclosed

surface. In an experiment, where the stream was

one inch thick and the cylindrical border 3 inches in diameter and

3^- lines high, the water flowed from the surface in nearly the oppo-

site direction and the impulse was

in all other cases this force was smaller,

attain the theoretical maximum value 4

It is impossible ever to

F y in consequence
c

%7g

Fig. 851.

of the friction of the water upon the surface and upon the border.

In the case of the impact of the bounded stream FAB, Fig.

851, there is also a border ; it is, however, only partial and includes

but a portion of the periphery; it

limits, moreover, both the stream and

the impinged surface. The imping-

ing stream is turned in the direction

of the portion of the periphery, which

has no border, and is therefore de-

viated 90° from its original direction
;

hence the formula, which we found for the isolated stream,
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P = (c - v)
Qy =m cFy,

9 '
' ^ 9

holds good here. If the surface B B, Fig. 847, against which the

stream strikes, moves away with a velocity v in a direction, which

forms an angle 6 with the original direction of the stream, the ve-

locity of this surface in the direction of the impact is

vx
= v cos. d

;

hence the impulse is

p = (c-v cos, d)

9
V/

and the work done by it per second is

,- „ (c — v cos. S) v cos. d r.

L = P v, = —L- Q y.

The principal application of this formula is to the impact of an

unlimited stream, in which case

Q — F (c — v cos. 6), and therefore

P = (c — v cos. 6)'-

~~9~ Fy.

§ 502. Oblique Impact.—There are several cases of oblique

impact, viz. : where the water after impact flows away in one, in

two or in more directions. If, as in the case of the impact of a

bounded stream, the surface A B, Fig. 852, has a border upon

three sides so that the water can flow away in one direction only,

we have the hydraulic pressure of the water against the surface in

the direction of the stream

cos. a)
(c - v)

Qr
Fig. 853.

But if the impinged plane B C, Fig. 853, has a border upon

two opposite sides only, the stream divides itself into two unequal

parts, the angle of deviation a of the larger part Q x
is less than

that 180° — a of the smaller part Q, and the total impulse in the

direction of the stream is

P — (1 — cos. a) . ~«,r + (l +cos.a).
C

~j
V-Qi7
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= Z^-) [(1 - cos. a) Q L + (1 -f cos. a) Q s] y.

But the conditions of equilibrium of the two portions of the

stream require that the pressures

(p Aj\ (p Qj\

- (1 — cos. a) Q 1 y and '- (1 -f cos. a) Qa y
j j

shall be equal to each other ; hence

(1 — cos. a) (?! = (1 + cos. a) Q2,

or, since Q = Q1 + ()8, we can put

(1 — cos. a) Qx
— (1 -f- cos. a) (Q — Q,\ i.e.

~ /l + cos. a\ (1 — cos. a\
Qi =

{
-^ j Q and & =

( J
Q,

so that the total impulse in the direction of the stream is

P^^^1.2(l-cos.a) {1+CT
a)Q

7
9 %

P = sift, a C> y.

Dividing the work done by the impulse in a second

£, = ±> v = v szft. a.Oy
<7

by the velocity A i\ — i\ = v sin. a, with which the surface recedes

in a normal direction, we obtain the normal impulse

,, (c — v) v sin.
2 a (c — v). _

iV = ~ Qy = 8171. a . Q y,
g v sin. a * '

g
° J

which consists of the parallel impulse
(n qj\p= JSfsin. a = - sin.

2 a. Or,
9

and of a lateral impulse

a nr (C — V) . „ C — V. nr.

S = Ncos. a = - sin. a cos. a . Q y = —— sin. 2 a Q y.

9 %9
TJie normal impulse is proportional to the sine, tlie parallel im-

pulse to the square of the sine of angle of incidence, and the lateral

impulse to the sine of double this angle.

If, finally, the oblique surface, which is struck, has no border,

the water can flow away in all directions and the impulse is still

greater; for a is the smallest angle which the fibres of water can

make with the axis ; hence every fibre which does not move in the

normal plane exerts a greater pressure than those which do. If Ave

assume that the angles of deviation of one portion Ql9 which corre-
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Fig. 854.

spends to the sectors A B and DOE, Fig. 854, are F — a

and = 180° — a, that those of the other portion Q*, which cor-

responds to the sectors A E
and B D, are K=0 H
~ 90°, and that the two por-

tions produce equal parallel im-

pulses, we can put

t->
c — V /~> '2P = Q x y sin. a
a

+
v

9
?»%

and, since Q x sin.
2 a = Q,2 and

Q = Q\ + (?2> it follows that

&(1 +sm.a>)= ft
and that the total parallel impulse is

«A 2 § y sm 2 a _ 2 sm. 8 a c — v_ lc-v\ iQt
\ <7 / 1 + • er-

Siw.* a 1 + sw.2 a *

g

Although this assumption is only approximatively correct, yet

the results of the latest experiments by Bidone agree very well

with it.

Remark.—Prof. Brock, in hi3 Mechanics, page 614, finds for oblique

impact against a circular surface

P = rjj — a) tang, a (——) Q y, and

JV = tang, a I. cotg. — I - - ) Q y.

§ 503. Impact of Water in Water.—If a certain quantity

Q of water discharges with a velocity A c = c into a vessel D E
:

Fig. 855, which is moving with a velocity Av — v, a part only

Fig. 853. L
x
— —— y of its actual energy L

Af

y will be expended in producing

and maintaining the eddy A B,

which is due to the loss of velocity

c x .
Ifwe denote by a the angle v A c,

made by the direction of the stream

with that of the motion of the ves-

sel, we have

c* + v* Acv cos. a,
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and, therefore, the mechanical effect lost in consequence of the

eddv T Q (c
2 + v

2 — 2 c v cos. a)

As the volume Q of water participates in the motion of the vessel,

its velocity v is the same as that of. the latter, and the energy,

v-
which it still possesses, is L 2 = ~— y; hence the energy which is

6 g
transmitted to the vessel and expended in moving it forward, is

L == L — Ij
x
— I/ 2

(& — (c~ 4- v
2 — 2 c v cos. a) — v*\ ~ 2cvcos. a— 2 v

2
~= (- r

- )Qy = ^— Qr

(c cos. a— v)v -.

= g
Qy'

and the force with which the vessel is urged forward in the direc-

tion of its motion by the water which flows into it is

^ = v = (-—--) ^
Now the discharge per second, which impinges against the

vessel, is Q = F c, F denoting the cross-section of the stream at

its entrance ; hence we have

„ (c cos. a — v) c „
p = y y'

and for the case when the vessel is at rest, or when v = 0,

c~ co^ a c
2

P = — Fy — 2—- F y cos. a = 2 Fh y cos, a,

9 %g
c"

in which h denotes the height -— due to the velocity.

The mechanical effect is a maximum for v = I c cos. a and it is

T , & cos.
2 a , ;

Q y = J Qliy cos. a.
"I 'Z C\

2 g
If the direction of the stream is the same as that of the motion

of the vessel, a = 0, and we have

T (c — V) V
L = - Q y and

9
Lm=iQhy.

In this case but half the total energy Q li y of the water is utilized

(compare § 500).

§ 594. Experiments with Reaction Wheels.—The best

method of proving the above theory of the impact and reaction of

water is to make use of a reaction wheel A A B, Fig. 856, with a
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vertical axis of rotation C D (see the author's " Experimental-Hy-

draulik," § 48, etc.). The water which turns the machine enters

into the receiver A A of the wheel nearly tangentially through two

Fig. 8

lateral canals E, E, and is discharged through two lateral orifices

F, F in the ends of the revolving tubes R, R. In order to maintain

the efflux of water constant and the rotating force invariable, the

pipe which conveys the water to the reservoir G is provided with a

cock H; from the reservoir the water is conveyed by the pipe K L

to the chamber E E, into which the canals E, E open. While the

machine is in operation, the cock // must be turned in such a

manner that the surface of the water in the reservoir G shall

always touch the end of the pointer Z.

When we wish to determine the reaction of the effluent water,
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a thin string S, to one end of which a weight is attached, is passed

over a pulley and then wrapped round the central tube R. The
quantity of water discharged is measured in the reservoir, from

which the water flows into the pipe with the cock II, by observing

the area A of the surface of the water and the distance a which it

sinks during the experiment. If the duration of the observation is

= t, we have the discharge per second

and if the fall, i.e. the vertical distance between the surface of the

water in the reservoir G and the orifice of discharge of the wheel

= li, the total energy of the water discharged per second is

n A ahyL = Q h y = —j-^.

Xow if the machine has raised the weight G a distance s in the

time f, the work really done by the wheel in a second is

T _ Gs

and we can now compare these two values, the second of which is

always the smaller.

§ 505. Theorj? of the Reaction 'Wheel.—The total fall h.

in such a wheel consists of the fall li x from the surface of the water

to the point E, where the water enters the wmeel, and of the fall

lu from the latter point to the orifice, by which the water leaves the

wheel. From li x we calculate, by means of the formula c
}
— V2 g 7it ,

the velocity with which the water enters the wheel, and from h.:,

according to § 304, by means of the formula

c = Y2 <j h, + v
2 - v,

2

the velocity with which it quits it, when the velocities of rotation

vx and v of the wheel at the points of entrance and exit are known.

Since the direction of this reaction of the water, which acts as the

rotating force, is opposite to that of the velocity of discharge, the

absolute velocity of the water upon leaving the wheel is

to = c — V,

and its square

iv* = c
2 — 2cv + v

2 = 2gJh - 2cv + 2v* - vf;
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hence the energy of the effluent water is

The water, which enters the wheel with the relative Telocity

u\ = Ci — vu loses (according to § 43G) by the impact the energy

and consequently of the total energy

Qhy= Q fa + lh ) y,
only the portion

is transmitted to the wheel.

In order to obtain the greatest amount of work from the wheel

we must have w = or v .= p and wx
— or i\ = c1? and therefore

_L = ha or i\ = V% g ho, as well as
%g ^ -'

7^- = lh or Vi — V% a h x
.

In this case, therefore, li x
= 7i.2 = -J

7i and the corresponding

maximum effect of the machine is

z» = <?y-™= Qy.~ = 2Q?'iy=Qhy,
J J

i.e., equal to the total energy of the water.

If r
x
denotes the distance of the point of entrance and r that of

the orifice of exit of the wheel from the axis, we have

— — —, whence i\ == — v,
v r r

and, m general, the rate of work of the wheel

so that the rotating force, measured at the distance r, is

• v g \ r 1

If the arm of the suspended weight or load is a, which in the ap-

paratus represented is very u early the radius of the central tube B,

we have G a — P r, and, therefore, the weight to be attached and

to be raised during the rotation of the wheel is

a = - P = 5-£ \(c - v) r + d r,l
a g a

or for c == r and cj = i\,
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g a g a

If F denote the area of the orifices of efflux and F
x that of those

of influx, we have

Q — F c — Fx
c 1? and therefore

w _ e _ e
1 ~~

r~
~"

"Tat
1^? and

^i r2 # 7*/

c V% g h, + v
l - i\

2 % 9 *» + v* ~ <
For v = c and Vj = cl9 in which case li x

— h% — | h, we have

Q = Fv, and therefore

on the contrary, for v = 0, Q — F V2 g h.2, and therefore

(7 V r /

If we allow the water to enter the wheel slowly, we can put

Cj = and ^ = and the /orce 0/ tf7ae reaction in the last case

becomes

p = *Vy = 2|Vy =
g 2g

as we found above.

Since in these calculations we neglected the passive resistances,

the experiments with the machine represented do not give the

values for the force found above, but values which are a few per

cent. less. However, the results of experiments carefully made
with such a wheel agree very well with the theory just demonstrated.

When we wish to make use of this machine to test the theory

of the impact of water, we begin by removing the chamber E E so

as to allow the water to enter near the centre without any velocity

of rotation, and we then fasten opposite to the orifices in. the re-

volving tubes the plates 0, 0, small vessels, etc., which are sub-

jected to the impact of the water discharged. The rotating force

is then equal to the difference between the reaction within the

wheel and the impulse without it. We find, in accordance with

the theory, that the wheel stands still, when the stream issuing

from it impinges upon a plane plate at right angles to the direction

of the water, or when it flows into a vessel filled with water. If the

stream strikes obliquely against plane-plates or against convex sur-

faces, the wheel moves in the direction of the reaction, and if it is

received by a concave surface, the wheel turns in the direction in

which the water issues from the orifice.
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§ 508. Water-meters. — More recently water-meters (Fr.

compteurs hydrauliques ; Ger. Wassermesser) have been much
used for measuring running water. They are put in motion by

the reaction of the water discharged, and consist essentiall}- of a

reaction wheel or turbine. An ideal representation of the cross-

section of such a wheel is given in Fig. 857. The water to be

measured flows through a tube A into the centre of the wheel B B,

and passes through 4 ca-

Fig. 857. iials CB9 CB ... to the

exterior circumference,

where it is discharged

into the case D E, from

which it is conveyed

away by a tube E F. The
shaft W of this wheel

carries a pointer Z, or

rather a train of wheel-

work, which indicates the

number of revolutions

of the wheel, and by it

the volume of the water,

which flows through it in any given time ; for this volume is pro-

portional to the number of revolutions. If h denotes the height of

a column of water which measures the loss of pressure of the water

in passing through the wheel, Q the discharge per second, c the ve-

locity of efflux, and v the velocity of the wheel in the opposite

direction, we have c
2 — v* = 2 g h, and the rate of work of the

wheel
- v)L = v Qy (see § 505).

If R is the resistance of the wheel, in consequence of the fric-

tion on the bearings, etc., we can put L = R v9 and from it we

obtain the formula
fc — v\R -(D"*»

or, if F denotes the sum of the areas of all the orifices of efflux, so

Q
that Q = F c or c =

F , we can put

Qy
v )
—-. from which we obtain

/ a
g_R

Qy
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If R were null, or at least very small, we could put v — —, or

assume the velocity v of rotation to be proportional to the discharge

Q, which indeed it should be. If, on the contrary, R = \p v, or if

the resistance of the wheel increase with v, we will have

til - 9V + = -^7, or

v — Q
•-, approximatively =

J/' \ Q y/'

If, then, the resistance R of the wheel is not very small, the

velocity of rotation of the wheel is less than when R is null or

negligible, and the instrument indicates too small a discharge.

If we put v = 0, we obtain for a discharge Q the correspond-

ing velocity of efflux

gR
Q o y

and we can then put, approximatively at 1

v — c — c and
rt-F r u

ist,

Q = F (v + «J 30
+ Co = F> W + Q ,

r denoting the radius of the wheel, u the number of its rotations

and \x a coefficient to be determined by experiment.

Within the last few years Siemens's water-meter lias come into

very general use; its principal parts arc represented in cross-

section in Fig. 858. The water which enters from A passes

Fig. 85a
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Fig. 859.

through, the pipe B B into the wheel C C and is carried by the

revolving tube D D into the case E E, from which it is carried off

by the pipe F. The shaft W of the wheel passes upwards through

a stuffing-box and sets a train of wheel-work in motion by moans

of an endless screw fastened to its end. The wings h, h upon the

wheel assist in regulating its motion of rotation by the resistance

Which they experience in moving in the water.

The reaction wheel can be constructed in such a manner that

every time it makes a revolution it will allow a certain quantity of

water to pass through. To accomplish this object, the wheel B A B,

Fig. 859, is partially immersed in water,

so that, when turning, the spiral tubes

are alternately filled with air and water.

Here also the water is conducted by a

pipe into the centre of the wheel, and

from thence by spiral pipes into the

free space of the case E F, from which

it 'flows away through the pipe F. The

surface of the water in the interior of

the wheel is at a distance h above that

of the water in the case ; hence, if the

wheel turns in the direction indicated

by the arrow, as soon as the orifice D
arrives at the level of the water in the

interior, the water begins to discharge, and in so doing reacts with

a certain force P, by which the rotation of the wheel is main-

tained. If Fis the volume of the water contained in one of the

spiral pipes, and n the number of these canals, the discharge per

second, when the number of rotations per minute of the volume of

n ii V
the water is u. is Q = __ .

b[)

Remabk.—An account of Siemens' water-meter is given in the " Zeit-

schriffc des Yereines deutscher Ingenieure," Vol. I, 1857, in which Jopling's

water-meter (in which the water is gauged) is also described. See also the

paper :
" Siemens and Adamson's Patent Water Meter." A very peculiarly

constructed water-meter of the nature of a reaction wheel is described in

the "Genie industrielle," Tome XXI, No. 126, 1861, under the name:
<k Compteur hyclraulique pour la mesure d'ecoulement des liquides par

Guyet." Two water-meters are described in the English work " Hydrau-

lia," by W. Matthews. A compteur Jiydraulique used at the railroad station

at Chartres is described in the " Bulletin de la Societe d'encouragement,"

51 year (1852) Uhler's apparatus for measuring fluids is treated of in
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Fig. 860.

Dingler's Journal, Vol. 1G1. A description of an apparatus for measuring

the quantity of spirit made in distilleries is contained in the " Mittheilim-

gen des Gewerbevereines for Hannover," new series, 1881.

For a description of several kinds of water-meters, see " The Transac-

tions of the Institution of Mechanical Engineers," 1856 (Tr„).

§ 507. Gas-meters.—The so-called wet gas-meters (Fr. conip-

teurs a gaz ; Ger. Gasmesser or Gasuhren) are, like certain water-

meters, small wheels with spiral canals, which are more than one-

half immersed in water and are put in motion by the reaction of

the gas passing through them ; each spiral canal transfers a certain

volume of gas from the inside to the outside. The essential parts

of such a gas-meter are shown in the two sections of Fig. 8G0.

The gas, which arrives,

enters by a bent pipe A
into the interior of the

measuring wheel B B,

in which it depresses

the surface of the water

a certain distance 7i,

which depends upon

the tension of the gas

passing through the in-

strument. From this

central chamber it enters successively the spiral canals, fills them
almost entirely and, finally, passes out through the orifices at the

circumference into the case G 67, from which it is conducted by a

pipe If to the point, where it is to be used. As we wish every

spiral canal of the measuring wheel to carry over a certain definite

quantity of gas at each revolution, we must so arrange the appa-

ratus that at least one of the orifices of a canal shall always be

under water ; for in that case, when the gas is filling the canal,

there is no efflux, and during the efflux no gas can enter it. The
volume of gas T

r
,
passed by one spiral canal, is consequently a defi-

nite one, and we can, therefore, put the discharge per minute

V ~ ""60"'

when the wheel makes n revolutions per minute. If we denote the

height of the barometer in the gas leaving the machine by 5, that

in the gas entering it is b + h, and, therefore, according to Ma-
riotte's law, the quantity of air in one spiral canal, measured at the

pressure of the gas after it lias left the measuring wheel, is
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r, = (^i) v.

consequently the quantity of gas, which passes from the wheel into

the exterior case when the outlet of one of the spiral canals rises

from the water, is

b

When this quantity streams into the case the mechanical effect

set free is . T7. , lb 4- hA

(see § 388), and since -=- is small, we can put

C-f")=<(> + ';M
hence, if the heaviness of the substance, with which the manometer

is filled, is y, we have p = (b + li) y — b y, and therefore A —Vh y.

One portion of this mechanical effect is expended in turning

the wheel, and the rest in producing an eddy. The first portion

is determined by the expression

_ (c - V) v hA>- ^ 'b
v ^

ill which li denotes the mean height of the manometer, c the mean
velocity of efflux, v the velocity of the wheel at its circumference

and yx the heaviness of the gas discharged. If R is the resistance

of the wheel, reduced to its circumference, and r its radius, we
have the required mechanical effect

2 rrr
A i
= E .

, and therefore we can put
n

(c — v) v li Tr 2 ~ r . 60 v— . -j V yx
— E, or since 2 ~ r = -,

g b n u

c - v h _ 60 E
"7 'b Tl ~, n u-.'

hence it follows that the velocity of rotation, corresponding to the

distance li between the two surfaces of water, is

7iVy 1

' nu
and that the number of revolutions of the meter per minute is

'80 7 WqbR\
tt r \ n u V h yx

t

Approximatively we have c = y 2 g—-, when y denotes the
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heaviness of the substance with which the manometer is filled.

The volume of gas passing per minute is

Q = **
V,v

60
'

and it is proportional to the number of revolutions u.

§ 508. ttewer Gras-meters.—Instead of placing the spiral

canals of a gas-meter in a plane perpendicular to the axis, we can

wind them round it like the thread of a screw. The action of

such a gas-meter is shown by the two sections I and II, Fig. 861, in

which D D represents the surface of the water at the front and EE
Fig. 861.

that at the back of the measuring wheel, which is a horizontal

drum. The orifice A of the spiral canal A B opens into the

chamber, which is in front of the drum, and receives the gas, which
is arriving; the orifice B, on the contrary, delivers the gas into

the chamber at the back of the drum, from which it is carried off

by a pipe. In Fig. 861, I, the different positions of a spiral canal,

viewed from in front of the wheel, are represented. Fig. 861, II,

on the contrary, represents the various positions of the canal as

seen from the rear of the wheel. In consequence of the rotation

of the wheel, "in the direction indicated by the arrow, around the

horizontal axis C, the inlet orifice A in (I, 1) is just emerging from
the water in front, while the outlet B is just entering the water in

the rear, in (I, 2) and (I, 3) the arcs A 0, A of gas have entered
through the orifice A, and in (I, 4) the orifice has re-entered the
water, so that after a certain quantity V has been received into the
canal, the entry of the gas is cut off. Shortly afterwards the orifice^
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B rises, as is represented in (II, 1), from the water in the rear of

the drum and the discharge of the gas, which had previously been

taken in, begins, and it is in full operation in the positions (II, 2)

and (II, 3). When a new revolution begins, B re-enters the

water in the rear of the drum, as is represented in (II, 4), and the

gas again begins to fill the canal. During half a revolution of the

spiral canal A B, an arc of gas A (1, 4), which is at the greater

tension h + h, enters the former and during the second half of

the same it is transferred to the space beyond the wheel, where the

pressure is less. In passing from the greater pressure to the less,

the mechanical effect A —Vhyisset free ; a portion of this is

expended in moving the wheel, as was shown in the foregoing

paragraph. The general arrangement and action of such a gas-

meter can be better understood from the ideal representation in

Fig. 862. The gas is first introduced by means of a bent tube A
into a chamber B B, which communicates in the middle around

the axis of rotation C with the water in the case E F G, but upon
the exterior circumference, where the spiral tubes enter it, it is air-

tight. The drawing shows the spiral canal HX to be receiving

gas from B B and the canal L M, which a short time before had

received a certain volume of gas, to be discharging it at M into the

upper space in the case E F 67, from which it is carried away by

the pipe F. By this arrangement of the meter the gas in the first

chamber is cut off entirely by the water from that in the rear

chamber, and, therefore, the packing, which causes great loss of

force, is rendered unnecessary. The other end D of the axis C D
of the wheel has a couple of turns of a screw cut upon it, by means

of which the train of wheels of the counting apparatus is set in

motion.
Fig. 862. Fig. 863.

G r^:M:... '

,,:,:^yP _ ^2



§ 503.] THE IMPULSE AND RESISTANCE OF FLUIDS. 1027

Fra. 864.

Crossley's gas-meters, which have come into very general use,

are constructed according to the principles explained above ; but

their spiral canals are not tube-shaped, but real chambers or cells

with spiral partitions and with triangular inlet and outlet orifices,

which are made by bending out the end surfaces. Fig. 863 is a

perspective view of such a wheel with the cover removed ; it con-

sists of 4 pieces of sheet iron like that represented in Fig. 864.

A
: , A i7 A& A± are the inlet orifices, B19 B* . . . the outlet orifices

and C19 C9, Cz . . . the partitions of the measuring wheel which

turns around the axis D D. Fig. 865 is an elevation of the gas-

meter with the exterior drum or case ; we observe at K the bent

tube, which conducts the gas into the chamber, and at Z the pipe,

which carries off the gas

from the upper space A A
of the case of the meter.

The gas does not flow di-

rectly into Ky but the pipe

E carries it first into a cham-

ber F, from which it passes

through the conical valve i

into the chamber G, where

it enters the upper part of

the vertical pipe H, through

which it is conducted into

the bent tube K. The sur-

face of the water in the

chamber G reaches exactly

to the top of the pipe H,

through which the super-

fluous water overflows into

a reservoir L. In order, on

the other hand, to prevent

the water from sinking too

low, a float is placed in the

chamber, which, when it

sinks, carries the valve i with

it and closes the opening,

when the float has sunk a

certain distance. The dis-

charge of gas then ceases en-

tirely, and we are thus noti-
U/6faj&///YAiS2//- ' ('-

>'

'
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fied that it is necessary to fill the meter with water through an

orifice M, that opens into a chamber N, which communicates, at

the bottom only, with the water space.

Fio\ 866 is transverse elevation of the front of such a meter, in

which are to be seen not only the chamber N with the orifice My

but also the clockwork of the counting apparatus, which is set in

motion by an endless screw upon the axle of the drum and a ver-

tical shaft with a cog-wheel upon it.

An important resistance to the motion of Crosley's gas-meter is

that occasioned by the entry and exit of the water through the

narrow triangular orifices. We can calculate from the area F of

an inlet or outlet orifice and from the discharge per second, which

can be put equal to the volume Q of the gas, the velocity of exit

Fig. 866.

I \

Q

A6o/sy//'/.
/ACAys//MS^

and entrance i\ — ¥=, and consequently the corresponding loss of
F

mechanical effect per second

9 w 9
Remark.—Particulars upon the subject of gas-meters can be found in

Schilling's " Handbuch cler Steinkohlengasbeleuchtung," and HeerenTs

article " die Einrichtung cler Gasuhren " in the " Mittheilungen des Ge-

werbevereins fiir das K. Hannover," year 1859. A new gas-meter by Han-

sen is described in the " Journal der Gasbeleuchtung," 1861.
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§ 509. Action of Unlimited Fluids.—If a body has a mo-
tion of translation in an unlimitedfluid, or if a body is placed in a

movingfluid, it is subjected to a pressure, which is dependent upon
the form and size of the body as well as upon the density of the

fluid and the velocity of one or other of the masses ; in the former

case it is called the resistance and in the latter the imjmlse of the

fluid. This hydraulic pressure is principally due to the inertia of

the water, whose condition of motion is changed when it comes

into contact with a rigid body, and also to the force of cohesion of

the molecules of water, which are partially separated from and

moved upon each other.

If a body A C, Fig. 867, is moved in still water, it pushes a

certain quantity of water, the pressure of which is increased, before

it. As the body progresses the quantity of water on one side is

increased, while upon the other it is constantly flowing away, and

the particles lying immediately contiguous to the surface A B
Fig. 867. Fig. 868.

assume a motion in the direction of this surface. If a stream of

water encounters an obstacle A C, Fig. 868, which is at rest, the

pressure of the water in front of it is increased, the molecules of

water are diverted from their original direction and move along

the front surface A B. WJjen the particles of water have reached

the edges of the front surface, they turn and follow the sides of

the body, until they arrive at the back surface, where they do not

immediately reunite, but assume first an eddying motion. We see

that the general relations of the motion of the molecules, which

surround the body, are the same for the impulse of water as for the

resistance to a body moving in the water ; but there is a difference

in the eddies, when the body is short ; for in the latter case the

eddies occupy less space than in the former. The velocity of the

molecules of water increases gradually from the centre of the front

• surface to the edges, where a contraction generally takes place and

where the velocity is a maximum, it decreases as the water passes

along the sides and becomes a minimum when the water arrives

at the back surface and begins its eddying motion.
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§ 510. Theory of Impulse and Resistance.—The normal

pressure of still or moving water upon a body moved or immersed

in it is very different at different points of the body. This pres-

sure is a maximum at the centre of the front surface and a mini-

mum in the centre of the rear surface and at the beginning of the

sides ; for at the first point the water flows towards the body, and
at the latter points it flows away from it. If the body is, as we
will suppose in what follows, symmetrical in reference to the

direction of motion, the pressures at right angles to this direction

balance each other, and we must, therefore, consider only the

pressures in the direction of the motion. But since the pressure

upon the rear surface acts in an opposite direction to those upon
the front surface, it follows that the resulting impulse or resistance

of the water is equal to the difference oetween the pressures upon the

front and lack surfaces.

Although we cannot determine a priori the intensity of this

pressure, yet, as the circumstances are very similar to those of the

impact of an isolated stream, we can at least assume that the gen-

eral law of the impact of an unlimited stream does not differ very

much from that of an isolated stream. If F is the area of surface

which an unbounded stream, whose heaviness is y and whose velo-

city is v, encounters, we can put the corresponding impulse or hy-

draulic pressure _, .. v* „

in which l, denotes an empirical number dependent upon the shape

of the surface. This formula can be applied not only to the front,

but. also to the rear surface. But in the latter case, where the

water tends to separate itself from the body, the expression becomes

negative. Now if Fh y is the hydrostatic pressure (§ 690) against

the front and against the back surfaces of a body, the total pressure

against the front surface is

P^Fhy + ^.—Fy,
and that against the back surface is

P^Fhy-^.^Fy;
hence the resulting impulse or resistance of the water is

when we put f, + £2
== £.

This general formula for the impulse and resistance of an un-

limited stream is also applicable to the impulse of wind and to the
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resistance of the air. Here, however, besides the differed > of the

aerodynamic pressures upon the front and rear surfaces, a difference

in the aerostatic pressure also exists, which is due to the fact that

the air at the front surface has a greater heaviness (y), in conse-

quence of its greater tension, than that at the rear surface. For
this reason, at least when the velocities are great, as in the case of

musket and cannon balls, the coefficient of resistance of the air is

greater than that of water.

Kemark.—A peculiar phenomenon attends the impulse and resistance

of an unlimited medium (water or air), viz., a certain quantity of water or

air attaches itself to the body, the influence of which is shown by the vari-

able motion of the body, which, e.g., is very evident in the oscillations of

a pendulum, The quantity of air or water which attaches itself to a sphere

is 0,6 the volume of the sphere. For a prismatic body, moving in the di-

rection of its axis, the ratio of these volumes is

= 0,13 + 0,705 ~,
in which I denotes the length and F the cross-section of the body. This

ratio, which wras first determined by du Buat, has been fully confirmed by

the later experiments of Bessel, Sabine and Bailly.

§ 511. Impulse and Resistance against Surfaces.—The

v"
coefficient C of resistance, or the number by which the height >r—

\ . . .

J
due to the velocity must be multiplied, in order to obtain the height

of the column of water which measures the hydraulic pressure, is

very different for bodies of different form ; it is determined approx-

imatively only for plates, which are placed at right angles to the

stream. According to du Buat's experiments and those of Thi-

bault, we can put for the impulse of water and air against a plane

surface at rest £ = 1,8G, while, on the contrary, we can assume with

less certainty for the resistance of the air and water to a plane sur-

face in motion £ == 1,25. In both cases about two-thirds of the

action is upon the front and about one-third upon the rear surface.

The values, found for the resistance offered by the air to a body re-

volving in a circle by Borda, Hutton, and Thibault, vary much
from each other. The latter found with a rotating plane surface,

the area of which was 0,1 square meter, the resistance

P = 0,108 Fv\ whence

C = 0,108 .
*JL = 0,108 .^ = 1,70.
7 1>^°

This coefficient is, according to these experiments, almost con-
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stant, when the angle a formed by the surface with the direction

of the motion is not less than 45°. When the ansfle is less thano
45°, the coefficient diminishes with this angle of impact, and for

a = 10°, £ is only = 0,53. According to the researches of Didion,

etc., we have for the resistance of rotating plane surfaces, whose

areas are 0,2 . 0,2 = 0,04 square meters,

£ - (0,1002 + 0,0434 v~') .^ = 1,573 + 0,681 v'%

in which v must be given in meters.

For a plane surface, whose area was one square meter, Didion

found, when the motion was vertical, the coefficient of resistance

S = (0,084 + 0,030 v-") . %& = 1,318 + 0,505 v~\

while Thibault, on the contrary, found for such surfaces, when
their area was 0,1 to 0,2 square meters,

? = (0,1188 + 0,030 «r2
) . 1? = 1,805 + 0,505 v~\

The foregoing formulas hold good only when the motion of tile

surface is uniform ; if the motion is variable, they require an ad-

dition. If the velocity of a body which is moving in a resisting

medium changes, the quantity of the fluid moved by the body or

carried along with it varies ; the resistance is, therefore, dependent

upon the acceleration p. According to the experiments of Didion,

etc., with a surface whose area was 1 square meter, and with one

whose area was ] square meter, which were moved in a vertical line,

the resistance was

P = (0,084y + 0,030 + 0,104^) F; hence

$ = [0,084 + (0,030 + 0,104 p)ir*] .
?-?

= 1,318 + (0,505 + 2,574)y-2
.

"We must also remember that for variable motion the mean
square of the velocity is different from the square of the mean
velocity.

The impulse and resistance of an unlimited medium is increased

when the surfaces are hollowed out or provided with borders ; but

we have as yet no general data concerning the subject.

For a parachute, whose cross-section was 1,2 square meters and
whose mean diameter was 1,27 meters and whose depth was 0,430
meter, Didion, etc., found for an accelerated motion, during which
the hollow surface was in front,

P = (0,103 tf + 0,070 + 0,142 p) F, whence

K = 2,559 + (1,099 + 2,229 p) v~\
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§ 512. Impulse and Resistance against Bodies.—The im-

pulse and resistance of water against prismaticcd bodies, whose axis

coincides with the direction of motion, decrease when the lengths

of the bodies increase. According to the experiments of du Buat

and Duchemin, the impulse upon the front surface is constant, and
the action upon the rear surface alone is variable. The coefficient

£ = 1,186 corresponds to the former; but when the relative

lengths are I _

~v¥~ '
' '

the total action is

f = 1,86; 1,47; 1,35; 1,33.

If the ratio between the length and the mean width V~F be-

comes greater, the coefficient £ again increases in consequence of

the friction of the water upon the sides of the body. The reverse

is true of the resistance of the water. In this case, according to

du Buat, the constant action against the front surface is £ = 1, and

the total action for

-*==--= 0, 1, 2, 3, is

VF
$== 1,25; 1,28; 1,31; 1,33;

so that for a prism three times as long as wide the impulse of the

water is the same as the resistance.

The experiments of Newton, Borda, Hutton, Yince, Desaguil-

liers and others with round and angular bodies leave much uncer-

tain and undetermined. It appears that for moderate velocities the

coefficient of resistance of spheres can be put = 0,5 to 0,6. But
when the velocities are greater and the motion takes place in the

air, we can put, according to Eobins and Hutton, for the velocities

v = 1, 5, 25, 100, 200, 300, 400, 500, 600 meters,

£ = 0,59 ; 0,63 ; 0,67 ; 0,71 ; 0,77 ; 0,88 ; 0,99 ; 1,04 ; 1,01.

Duchemin and Piobert have given particular formulas for the

increase of this coefficient of resistance. According to Piobert the

resistance to a musket ball in the air is

P = 0,029 (1 + 0,0023 v) Fv2 kilograms, whence

$ = 0,451 (1 + 0,0023 v).

For the impulse of water against a ball, Eytelwein found

<T = 0,7886,

while, on the contrary, according to the experiments of Piobert,

etc., made with cannon balls 0,10 to 0,22 meters in diameter, the

resistance to the balls in water is

P = 23,8 F v* kilograms ; hence we can put

£=0,467.
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The coefficients of resistance for bodies partially immersed are

different from those for bodies entirely surrounded by water. For

a floating prismatic body five to six times as long as wide and mov-

ing in the direction of the axis, £ should be put equal to 1,10. If

the body is sharpened in front by two vertical planes like ABC,
Fig. 869, £ increases with the angle A C A — /3, and we have

for (3 = 180° 156° 132° 108° 84° co° 36° 12°

f = 1,10 1,06 0,93 0,84 0,59 0,48 0,45 0,44

If, on the contrary, the rear portion A G B} Fig. 870, is sharp-

ened, and if the angle B G B — (3, we have

Fig. 869. Fig. 870.

for0 = 180° 138° 96° 48° 24°

S = 1,10 1,03
I

0,98 0,95 0,92

When both front and rear portions of the floating body are

sharpened, £ becomes still smaller. For river steamboats, £ = 0,12

to 0,20 and for large ocean steamers, £ — 0,05 to 0,10.

Remark.—This subject is treated at length by Poncelet in his "Intro-

duction" cited above, and by Duchemin and Thibault in their " Richerches

experimentales, etc." The subject of the resistance to floating bodies, par-

ticularly ships, and also that of the impulse of the wind against wheels,

will be treated in the second and third volumes.

Example.—If, according to Borda, we put the resistance and impulse

at right angles to the axis of a cylinder -*- that against a parallelopipedon,

which has the same dimensions as it, we have the coefficient of resistance

? = i . 1,28 = 0,G4

and the impulse against the same

= \ . 1,47 = 0,735.

If we apply these values to the human body, the area of the cross-

section of which is 7 square feet, we find the resistance and impulse of the

and
0,64 . 0,0155 . 7 . 0,086 v* 0,00597 v-

: 0,00686 v\
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For a velocity of 5 feet, the resistance of the air is, therefore, only

0,00597 . 25 = 0,1492 pounds, and the corresponding work done per

second is = 5 . 0,1492 = 0,746 foot-pounds ; for a velocity of 10 feet, the

resistance is 4 times and the expenditure of mechanical effect 8 times as

great, and for a velocity of 15 feet the resistance is 9 times and the work done

27 times greater. If a man moves with the velocity 5 feet against a wind,

whose velocity is 50 feet, he has to overcome a resistance 0,00686 . 552 =
20,75 pounds, which corresponds to a velocity of 50 -f 5 = 55 feet, and

to perform an amount of work equal to* 20,75 . 5 = 103,75 foot-pounds.

§ 513. Motion in Resisting Media.—The laws of the mo-

tion of a body in a resisting medium are not very simple ; for the

force in this case is variable, increasing with the sqnare of the

velocity. From the force P, which is drawing the body onwards,

and from the resistance Px
= % .—- F y, offered by the medium,

we obtain the motive force

P, = P-P, = P-S.?-
g
Fy,

but since the mass of the body is M = —, its acceleration is

or if we denote ^ by —=, or put y ~tt- == w, we have
2 g P J w2

*
f

£ Fy '

The maximum velocity which the body can assume is

v=w = V jjfy

If the motive force P is constant, the motion approaches grad-

ually a uniform one; for the acceleration becomes smaller and

smaller as v increases.

Now the velocity v increases, when the acceleration is p, in an

element of time r a quantity k = p r, hence we can put

P
[> - (m 2 g r, or inversely

G
T = P

fp-en
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In order to find the time, corresponding to a given variation of

velocity, let us divide the difference vn — v between the initial and
the final velocities in n parts and put such a part

n
and then calculate from it the velocities

Vi = v + k,v3 = v
Q + 2 k,v3 = v + 3 k, etc.,

substituting these values in Simpson's formula, we obtain the

required time, when we assume four divisions,

I) f =- ® Vn ~~ Vn * 1

P \%gr
l-feJ 1 r

The space described in an element r of time (§ 19) is

g = v r, or since we can put r = -^

ff = —, or

V K G
a = -

(-)
Pg

By employing Simpson's rule we find the space described, while

the velocity changes from v to vn, to be

^» — ^0 / n ,
±Vl

a,
V-£f -fe)'

2v2 4^

x_(M 2 i_(M* x_(M !

\w/ Aw/ > \w/
The calculation is of course more accurate when we make 6, 8,

or more divisions. This formula allows us to take into account

the variability of the coefficient of resistance, which is necessarv for

high velocities. For the free fall of a body in air or water P = G,

the apparent weight of the body, and for motion in a horizontal

plane P = 0, or more correctly, equal to the friction / G. Since

this is a resistance, it must be introduced as a negative quantity in

the calculation ; hence we must put
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P = - (P + i>,) and

* "[>&)•#*
Since in this case there can be no question of an increase, but

only of a decrease of velocity, we must substitute v — vn in the

above formulas instead of vn — v
Q
.

When a body is impelled by a force, such as its own weight, the

motion approaches more and more to a uniform one, and after a

certain time it may be considered as such, although it never will be

v'
1

really so. The acceleration p becomes = 0, when £— F y = P ,

or when

f $Fy
A body falling freely in air approaches more and more to this

result without ever attaining it.

Example.—Piobert, Morin and Didion found for a parachute whose

depth was 0,31 times the diameter of the opening, the coefficient of resist-

ance C == 1,94 . 1,37 = 2,66. From what height can a man weighing 150

pounds descend with such a parachute weighing 10 pounds and with a

cross-section of 60 feet, without assuming a greater velocity than that he

attains when he jumps down 10 feet ? The latter velocity is v = 8,025 V 10

= 25,377 feet, the force P = G = 150 + 10 = 160 lbs., the surface F = 60

feet, the heaviness y = 0,0807 pounds and the coefficient of resistance

f = 2,66, hence

1 _ 2,66 . 60 . 0,0807 _ 1,33 . 3 . 0,0807 _
w* ~ 64,4.160

'-
64^74 ~ °'00125

and \ = 0,00125 . 25,3772 = 0,805.w2 ' ' '

If we assume six divisions, we obtain

1 - —, = 0,977639 ; 0,91055 ; 0,79875 ; 0,64222 ; 0,44097 ; 0,195,

and %- = 0; 4,328; 9,290; 15,886; 26,343; 47,958, and 130,138;

w2

hence, according to Simpson's rule, we have the mean value

= (1.0+4. 4,326 + 2 . 9,290 + 4 . 15,886 + 2 . 26,343
• 474 084

+ 4 . 47,958 + 1 . 130,138) : (3 . 6) = ' = 26,338

;

18

and the required space, through which he can fall, is

*>n — ®„ ..•„„ «. * v 25,377 —

1 -
- times the mean of r = '

* — . 26,338 = 20,76 ft

g . v 66,6

w
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The corresponding duration of the fall, since the mean value of

t ==

= (1.0+4. 1,023 + 2 . 1,098 + 4 : 1,252

+ 2 . 1,557 + 4 . 2,268 + 1 . 5,128) : 18 = 1,589, is

25,377

32,2
. 1,589 = 1,25 seconds.

Remark.—If the coefficient of resistance is constant, we obtain by the

aid of the Calculus for the case of a body falling freely

and

in which

/eft-l\ fert-l\ ,/~ G

/(*/*'+ 1A ^_ _ (
{en* + m

CFy

- 7 ( ^ \
W*

\tfi~T*) ' 27'

Fig. 871.

and e denotes the base of the Naperian system of logarithms and I the Na-

perian logarithm.

§ 514. Projectiles.—We liaye already studied the motion of

projectiles in vacuo and found in § 39 the path or trajectory to be

a parabola. We can now investigate this

motion in a resisting medium, e.g., the

motion of a body projected in the air.

The path of a body projected through

air is certainly not a parabola, as is the case

when it is projected in vacuo, but an un-

symmetrical curve ; the portion of the tra-

jectory, where the body is rising, is not so

steep as that where it is falling, as can be

seen from what follows. During the instant r the body, which is

rising with a velocity v in the direction A T, Fig. 871, describes,

in consequence of its inertia, the space

A = s = v r,

and, in consequence of gravity, the vertical space

0P=*=£

and the first space is diminished by the resistance ^ ~- F y of
%9

the air an amount, which can be determined by the expression
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Fy

<t," = Z 2G
If we put £ --- ~ \i, we have more simply

-.2 _a

Q = \jl

2

The fourth corner R of the parallelogram P Q R, constructed

with P and Q, gives the position which the body occupies at

the end of the time r, while P is the place which the body would

have occupied at that moment, if the air offered no resistance.

The path A R of the projectile passes, therefore, below the para-

bola, which the body would have described in vacuo.

In like manner we have for a body descending with the initial

velocity v in the direction A T, Fig. 872, the spaces described si-

multaneously in the time r

A = vt,

OP g —, and

Q = tiv* ~2'

and from the above we obtain again the position R occupied by the

body at the end of this time, and the position P which it would

have occupied, if its motion had taken place in vacuo. The path A R
described in this case passes also below the parabolic path A P,

which the body would have followed, if the air opposed no resistance.

If the angle of inclination, at which a body rises with the initial

Fig. 873.

velocity v from A, is TA X = a, Fig. 873, the initial co-ordinates

or velocities in the direction of the axes are
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u = v cos. a and

w = v sin. a,

and we have for the position R of the moving body, after an instant

r, the abscissa

A M — x = A Q cos. a = lv r — ) cos. a

= [1 —J vrcos.a,

and the ordinate

MB - y = A Q sin. a - Q R = (l - ^~h v r sin. a - g-~.

The velocity in the direction of the abscissa is

R ux
= u x

= v cos. a — fi v
2 r cos. a = (1 — \x v r) v cos. a,

and that in the direction of the ordinate is *

E wx
= w x

= v sin. a — [iv*t sin. a — g- =(1 — fivr) v sin. a—g r.

From the two velocities we obtain the angle of inclination

T
X
R Xx

— a x of the path at R by means of the formula

tang. a
x
— —• = tang, a —

(1— 'fiv r) vcos. a'

and the velocity in the direction of the curve is

Rvx =Vi= Vux + iv x
— V\l—[iv t)V— 2(1— \iVT)vgr sin. a +g

i
r'

2
.

By repeated application of this formula, we can find the course

of the whole trajectory of the projectile. If, e.g., we substitute in

the above formulas for x and y, instead of a and v the values for a
x

and Vi obtained from the last equation, we obtain the co-ordinates

x
x and yx of a new point referred to R, etc.

Example.—A massive cast-iron cannon-ball, whose diameter is 2 r = 4

inches, is projected at an angle of elevation a = 25° with a velocity v =
1000 feet ; required the position of the same after^ T

2
o, T

3
o,
of a second, etc.

Since the weight of a cubic foot of air is 0,080728 pounds and that of a

cubic foot of cast iron is 444 pounds, we have

Fy Trr2
y y 0,080728

"=80- f=|^ f =*^ f =»- 6 --^5^?= 0,000409084 fi

and, therefore, for v = 1000 feet, for which £ = 0,9 (see § 512), we have

H = 0,0003682.

If we take r = 0,1 seconds, we obtain

x — (1 — 0,0003682 . 1000 . 0,05) 100 cos. 25° = 0,98159 . 90,63 = 88,96 feet,

y = 0,98159 . 100 sin. 25° - 33,2 . -^ =0,98159 . 42,26 - 0,16=41,32 feet,

and
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Ung. «i = tang. 25° -
(1 , ffflff. 906,8

=
°'46681 ~ O^ewSop

= 0,46631 — 0,00369 = 0,46262

;

hence the angle of elevation is

a = 24° 50',

and the velocity in the curve is

v t
= V(0,96318 . 1000)

2 — 2 . 0,96318 . 1000 . 32,2 . 0,04226 + (3,22)
2

= V927716 — 2621 + 10 = V925105 = 961,82 feet.

If we again take r = 0,1 second, we have, since for v = 962 feet, f =
0,^88, and consequently /i = 0,88 . 0,000409094 = 0,00036,

xx
= (1 -> 0,00036 . 961,8 . 0,05) . 96,18 cos. 24° 50'

= 0,9827 . 96,18 . 0,9075 = 85,77 feet,

yx
= 0,9827 . 96,18 sin. 24° 50' - 0,161 = 39,53 feet,

and
3 22

tang. a
2 = tang. 24° 50' -

o^537796l^,. 24° 50'

= 0*46277 - 0,00382 = 0,45895,

whence
c= 24° 89' and

v — V(0,96537 . 961,8)
a — 2 . 0,96537 . 961,8 . 32,2 . 0,04200 + (3,22)

2

= V862099 - 2511 + 10 = V859598 = 927,14 feet.

Assuming once more r = 0,1 and v = 927 feet, we have f = 0,87

ft = 0,87 . 0,000409094 = 0,0003559,
and therefore

x2
= (1-0,0003559 . 927 , 14 . 0,05) . 92,71 cos. 24° 39' =0,9835 . 92,71 . 0,9089

= 82,87 feet and

y2
= 0,9835 . 92,71 sin. 24° 39' - 0,156 = 37,87 feet.

The position of the projectile in reference to the point of beginning is

determined after 0,3 seconds by the co-ordinates

x + Xi + X2 = 88,96 + 85,77 + 82,87 = 257,60 feet and

y + Vl + y2
= 41,32 + 39,53 + 37,87 = 118,72 feet.

If the pir offered no resistance and gravity did not act, we would have

x + x
t +x2

=ctcos. a = 1000 . 0,3 . cos. 25° = 300 . 0,9063 = 271,89 feet and

y + y% + y 2
=ctsin. a = 300 . sin. 25° = 300. 0,4226 = 126,78 feet.

If we neglect the resistance of the air only, we have

x + x
t + x

2
= 271,89 feet and

of2 00
y + y% + y2

= 126,78 -~~ = 123,78 - 32,2 . -^- = 126,78- 1,449

= 125,33 feet.

6Q



APPENDIX.

THE THEORY OF OSCILLATION.

(§ l.) Theory of Oscillation.—-A body has an oscillatory or

vibratory motion (Fr. niouvement oscillatoire ; Ger. schwingende

Bewegung) or is in oscillation or vibration (Fr. oscillation ; Ger.

Schwingung), when it describes repeatedly the same path backwards

and forwards in equal times. We meet with many examples of

oscillatory motion in nature besides that of the pendulum. The

most general cause of such a motion is a force which attracts or

impels the oscillating body towards a certain point. Thus, E.G.,

gravity sets the pendulum in oscillation. If a body, previously at

rest, can yield without impediment to the action of the force, which

impels it towards a certain point, the oscillation takes place in a

straight line; otherwise it will oscillate in a curve, as a pendulum

does, where the action of gravity is continually interfered with,

the body being united to a fixed point. In like manner, if the

direction of the initial velocity of the body is different from that

of the motive force, the oscillations will also take place in curved

lines.

The simplest and most common case is that where the force is

proportional to the distance of the bodyfrom a certain point C. Let

C, Fig. 874, be the seat of the force, lev

the position of the body when the force

is = 0; let J. be the point where the

motion begins, and let if be the variable

position of the body. If we denote the

distance M by x, and by \i a constant,

determined by experiment, we have the

acceleration of the body at M
p = fix,
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and since x decreases an amount d x, when the space A M is in-

creased by the same quantity, we have for the velocity v of the

body (see §20, III)

]v5 = — I p d x = — \i I x d x — — --—h Con.

But at A, v — and x is a definite quantity C A = a ; we have,

therefore,

= — ^r- + Con., and

v* = p (a
2 — x"),

or the \elocity itself

v = Vp(a2 - x'!).

When the body arrives at C, x = and v is a maximum, and

its value is then

Upon the other side of C, v gradually decreases, and at the dis-

tance x = C B = — a from C it becomes again = ; the body

then returns with an increasing velocity to C. This return takes

place in accordance with exactly the same law as the first motion;

at C, v = — c, and at A, v = 0. Thus the motion repeats itself in

the space A B = 2 a, which for this reason is called the amplitude

of the oscillations (Fr. amplitude des oscillations ; Ger. die doppelte

Schwingungsweite).

(§ 2.) The time in which the oscillating body describes a certain

space A M = x->, Fig. 875, can be determined in the following

manner. If in the element d t of the time the element of the path

MN — d Xi = — d x is described, we have (§ 20, I)

d x
x
— v d t, i.e. d x = — V\i

(
ar — x") d t,

and, therefore, inversely

, , d x
dt =

Vp{a*-a?)
Now if we describe upon A B, with a radius C A = C B = a,

a circle A D B, Va2 — x2,

will be represented by the ordinate M
= y, and, therefore, we will have

7 , d x
dt = ——

.

\\i . y
If we put the arc D 0. corresponding to the abscissa CM = x,

equal to s, and its differential Q — — d s, we have, in conse-

quence of the similarity of the triangles Q R and C if, in
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which R= — d x, OQ= — ds,M = y, and C' = a, the pro-

portion

-7- = -, and, therefore,

— = — ; hence it follows that
y a

(It
ds

M N P C

=-/ tfs s

, and

+ Cbw.

But at the point A, where the motion begins, t = and s is

equal to the quadrant D A ~ \ix a; consequently

= - ±\ tt a
+ Con.,

and the time required by the body to come from A to M is

2 7t a s 1 /n s

Vjj> . a Vfi . a Vp\%
The period of half an oscillation, i.e. the time required by the

body to pass from the point A to the position of rest C, for which

t =
>

0, is
* =

2l/>

and the period of a complete oscillation, or the time required to

describe the whole distance A B = 2 a, is

7T

After the time
t =

VfJL

2n

the body has made a double oscillation and returned to the point A.

The time required by the body to describe the space 2 A B —
4 a is the same, no matter from what point M we begin to count

;

for the time in which the body goes from M to B and back is

arc OB= 2.

and that in which it goes from 31 to A and back is

= 2

V(j> . a

;o A an

arc A
Vp.a

consequently the time required to describe the space 2 MB +
2MAis
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_ arc (OB + A) _ 2 . tt a

1045

2.
2tt

We see tliat the period of an oscillation does not depend upon
the amplitude. If we start from the point C, we can put the time,

which corresponds to the distance CM— xP

s
t =

Vy, . a

or, since

t = -r= sm." 1
-, and inversely

k = a sin. (t V\i), and

v=Vy ^a* -a2
[sin. (t Vji)]

2= Vy . a VI - [sin. {t Vfi)]
2

= Vji . a cos. it VjJl).

Remahk.—Tlie foregoing theory of oscillation is applicable to the cir-

cular pendulum G 31, Fig. 876, if the arcs in which it oscillates are small.

At A the acceleration of the point, which is oscil-

Fig. 878. lating in the arc A 31 B, is

c . „ -rv DA
p = gsin. A CD — ------

. g.

or, since for small displacements we can put D A
= MA,

DA
P = MA

If we denote G A by r and 31A by x, we obtain

gx

r'P

and by comparing it with the formula^ = /* #, we find

Hence the period of an oscillation is

7T^: (compare § 321).

(§ 3.) Longitudinal Vibrations.—The most common cause

of oscillatory motion, which is then called vibration, is the elasti-

city of bodies. The most simple case is that presented by a rod,

string or wire C, Fig. 877, stretched by a weight 67. If we move

this weight from its position of rest C a certain distance C A *= a

in the direction of the axis of the string and abandon it to itself.
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then, in consequence of the elasticity of the string, etc., it will be

raised to C, where it arrives with a velocity c and above which it

ascends, by virtue of its vis viva, to a point B, from

which it falls again, etc. When at rest, the weight Gig. 877.

lo

|
B1

1^1

is balanced by the elasticity -- FE (see § 204) of the
i

rod, and consequently the motive force is

F = ~FE G = 0, or T FE - G.

But if the weight G is at a lower point N, whose

distance from C is C iV= x, the motive force becomes

P =*+£**

~D\

>rN

I

FE
I

G = j FE + y FE— G

x,

P = 67

and if it is at a higher point Q, this force is

If we neglect the mass of the rod, the acceleration, with which

the weight G returns towards (7, is

P FE
P ~ G u

~

FEg
Gl '

—fTT g x, and consequently we have

when we put p = p x and denote the length of the rod by I, its

cross-section by F and its modulus of elasticity by E. As this

formula corresponds to the case treated in the foregoing paragraph,

the period of a simple vibration is

Vg
V FE'

If instead of F we substitute the weight of the rod Gx
= Fly

fit

and instead of E the modulus of elasticity L — —, expressed in

t

VJl
Y FEg

units of length, we obtain

V9

J

G
G~L
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If, on 'the contrary, we observe the period t of the simple vibra-

tions, we can calculate the modulus of elasticity by putting
"

7T
2 Gl _ 7T

2 r &

These formulas also hold good, when the vibrations of the rod

are produced by simply attaching the weight (at B) ; in this case

the semi-amplitude on each side of C is

5
a

7

while in the other case we assumed a < A.

A complete vibration is a double oscillation.

—

[Tb.]

Example.—If an iron wire 20 feet long and 0,1 inch thick is put in

longitudinal vibration by a weight G = 100 pounds and if the period of

a complete vibration is $ of second, we have t = -j
1
^, and consequently the

modulus of elasticity

E = 0,031 . 7T
2

. 182
. -°^r^-— = 0,031 . 800000 . 182

. tt

(0,1) . TT

= 24800 . 324 . tt = 25000000 pounds.

(§ 4.) The foregoing formula is also applicable to the case,

where the weight acts by compression upon a stiff prismatical rod.

It also holds good, when the weight applied at the end of the rod

has an initial velocity v. According to the principle of mechanical

effect, when the height of fall of G is h, we have

G h + G-— = -FE.- = -
7rr . h% and, therefore,

Z (j I Z Z I

~" FE + y \FE/ + FE ' zcj

After the weight G has described this space, it has lost all its

velocity, and in consequence of the elasticity it rises again to A,

where it arrives with the velocity v. In consequence of its vis

v
2

viva G -—, it compresses the rod and rises to a height li
x
before

* 9
returning and beginning a new vibration. For this second dis-

tance we have
v* FE

G 7r-=z Grlh + -7TT- hi
2

, and, therefore,
2 g 2 1

, Gl Jl G I V 2GI v*
tlx ~~'FE'ry \¥e) + YW'2g

By adding li and li x we obtain the total amplitude of the

vibration

O 7-7 9 a// GIW 2GI V
*
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hence the simple displacement is

=Am 2GI v
x

F E 2g
F

E

Since in this case also p = —p-j g x = ji x, we have as above

for the period of an oscillation or simple vibration

Yg
r FE

If the initial velocity v of the weight G
x is caused by a falling

weight G (Fig. 878), we have the case treated in § 348. If the

weight G strikes with the velocity c, and if we suppose
Fig. 878. ^e impact to be inelastic, we have the initial velocityof

G + G, GcV=
G^-G~>

hence the maximum displacement is

a - JW+ fr ) *y ,

z^i ?
7 V

\ FE J
"*"

(G + G
X
)FE' 2f

and the period of a simple vibration is

n ./(G + G^l

Vg * &

The elements of the rod also participate in the vibra-

tions of G or G -f- G19 but their amplitude decreases as

the position of the element approaches the point of suspension.

For an element Cx , Fig. 877, situated at a distance C\ — x from

the point of suspension, the amplitude is

x
y =

i

a '>

while the period of its vibration is the same as that of G ; for it

does not depend upon y or a. Hence the vibrations of all the ele-

ments of the rod are isochronous, but their amplitudes decrease

gradually from G towards 0.

§5. Transverse Vibrations.—The elasticity of flexure and

of torsion cause vibrations of the same nature as those just treated.

If a rod or spring C (Fig. 879) is fixed at one end and deflected

at the other G by a weight G, we have, according to § 217, the

deflection

P FHC=a = 3~WE>
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inversely the force, with which the rod is bent, is

1049

Fig. 879. P = 3 WE a

Now if this force is re-

placed by a weight G, 'at-

tached at C, and if a is in-

creased or diminished a dis-

tance C A = C B = x, we

haye the force, with which

the rod will be driven back to its position of rest by its elasticity

3 WE{a + x)

V
G = 3 WE(a-hx) 3 WE 3WE

a = —==— &

:

Z
3

Z
3 "- I

hence the acceleration is, when we consider the mass of G alone,

P 3 WE
P=G9 =

GF
3 WE
GF

g x, and, sincep = jw #,

9-

The relation between j? and x allows us to employ the formulas

of (§ 2), consequently the period of an oscillation or simple vibra-

tion is , _ _^_
_?r_ ,/ G F

vj,~ vy ZWE'
If the rod H 0, Fig. 880, is supported at both ends and loaded

in the middle C with a weight G, we have, according to § 217,

_PF
Fig. 880.

B

a =

GF
_

48 WE'

48 WE 9

and, therefore, the duration

of a simple Vibration

Vg

If we take the weight Gx of the rod into consideration, we must

substitute in the first case, Fig. 879, instead of G9
G + \ Gl9 and

in the second case, Fig. 880, instead of G, G + \ G
x
.

From the observed duration of an oscillation or simple vibra-

tion we can calculate the modulus of elasticity, in the first case by

the formula _ _ / irV (
G + j GA

E - It/ \~djw~f

or, if n = j denotes the number of simple vibrations per second,
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Example.—A pine rod 1 centimeter square is supported at two points

100 centimeters apart, and its centre is deflected a distance a = 3,2 centi-

meters by a weight G = 1,37 kilograms. According to this experiment

the modulus of elasticity of pine is

PI* 1,37.1000000
^ = 4§W= 48.^.3,2 =mm kll0°ramS '

while in the table on page 370 we find E = 110000.

The rod was then firmly fixed at one end, was loaded at the other with

a weight G = 0,31, and put in vibration. It was found that the number

of simple vibrations in 35 seconds was 100. The weight of the rod was

G
t
= 0,044 kilograms ; hence G + I G

x
= 0,321 kilograms and

w - /*Y (
G+ * GA 73 _ /

3
i
141V moo°

W"\ ?gW I
"

\ 0,35/' 981.&
80,57

.

1281000

981
= 105260 kilograms,

or about the same value of E as was found by the experiment upon flexure.

Fig. 881.

§ 6. Vibrations Due to Torsion.—The formula t = —-=. can

also be applied to the torsion balance or torsion rod (Fr. balance de

torsion ; Ger. Torsionspendel), i.e. to a thread or rod B O, Fig.

881, oscillating about its axis, in consequence of its torsion. Gen-

erally the rod is provided with a loaded

arm O C
: , by means of which the origi-

nal torsion of the thread is produced,

by bringing this arm from its position

of rest C (7, into the position A A v

The torsion drives the arm back to

G Ci, and the latter, by virtue of its in-

ertia, moves further on until it comes

into the position B B^ from which it

returns to G Cx and A A lf etc. We
found previously (§ 262) the moment
of torsion of a prismatic body to be

Pa = a W

c

we know, therefore, from this formula, that it is inversely propor-

tional to the length O D = I of the rod and directly proportional

G
to the angle of torsion MB G = a; now if — k* is the moment of

» 7.2 ri

inertia of the arm G B Cly
—= — is the mass if reduced to the ends
a 9

G and Cx of the arm, and the acceleration of this point is
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P =
aWc F G aaW C g

M~~ la ' d2

g G ¥ I

If we denote the arc CM = a a, corresponding to the length

of the arm D A = D O = a and to the variable angle of displace-

ment CDM = a, by x, we obtain the expression

WCg
P

V

GUI
_ WCg

' GVl

x, and we can again put p — fix, or

The period of an oscillation or simple vibration is, therefore,

Vp Vg v WC '

no matter whether the amplitude A GB = A x Cx
Bx is large or small.

Inversely, we have

W C = -^ G ¥ I,

gf
and, therefore, the moment of torsion

Pa = ^.a GJc\
gt

Eemark.—The above formulas for the vibrations produced by the

elasticity of rigid bodies are not correct unless the displacement during

the vibration is within the limit of elasticity. Great care should be

taken to avoid as much as possible vibrations in the various parts of

machines; for the energy expended upon them is lost to the machine.

For this reason the parts should be united to each other with precision,

and what is known as lost motion is to be avoided, as it gives rise to con-

cussions and vibrations.

§ 7. Density cf the Earth.—The
theory of the torsion-rod can be directly

applied to the determination of the mean

heaviness or specific gravity e of the earth.

If we cause a heavy sphere K to approach

the weight G, which is fastened upon the

end of the arm ADA,, Fig. 882, the

latter will be attracted towards the former

a certain distance A M = x ; the attrac-

tion R ofK balances the force of torsion

P, when G occupies the position M ; one

of the above forces can, therefore, be de-

termined from the other. Now if we re-

move the heavy sphere K and allow the

Fig. 882.
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torsion-rod to vibrate, we can observe the period of the vibrations,

and from it we can calculate the force of torsion. According to

the foregoing paragraph, the period of a simple vibration is

•n- _^j force of torsion Pa2

VJt x mass of torsion-rod
~~ G Jf

when G k2
denotes the moment of inertia and a the length of the

arm of the torsion-rod ; inversely, the twisting or attractive force is

,

p _ Q'Vp _ I
1 G V x _ **_ GFx _ rr_ G ¥ a

gal ~ go? ~ g t
2 ' a2 ~gt 2 ' a

'

and the moment of torsion corresponding to the angle of torsion a is

*Pa= ?L.aGk\

"Now if the forces, with which the bodies attract each other, vary

directly as their masses and inversely as the squares of their distances

(see § 302, Example 3), we can compare the attraction P, exerted

upon the body by K, with the weight Q of the small body which is

placed upon the torsion rod; for the weight is the measure of

attractive force of the earth; thus we obtain

P _ K:s2

Q ~ E:r2'

in which s denotes the distance MK of the centres of the two

masses G and K from each other, r the radius of the earth and E
its weight. If we solve the above equation, we obtain the latter

weight -, K Q r
2

and if we substitute E — § rr r5

. e y, we have the mean heaviness

of the earth

_ 3E 3KQr2 3KQ 3KQ g f g-

yi "~ ey ~4 7rr3 "" 4/n-Pr3
s
a ~~ 4tnPrs*~ ±tt r s

3 '

it* GATa?

or if we introduce the length of the second pendulum I = ~ (see

§323), _ 3 Kit2 Qa2

Ti - e 7 - 4 w r a-y Q tf
»

hence the mean specific gravity of the earth is

_ 3 Kit2 Qa2

~
4-rr r x s

2 ' Gh2

y
If we put approximative^ G h2 = Q a2

, we obtain more simply

. Kit2

£ =
* 7T r x s~ y

Cavendish found in the first place with the torsion rod, or

Coulomb's torsion balance, as it is called, e == 5,48 ; or, according to

Button's revision, e = 5,42.
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Eeicli found afterwards, with the aid of the mirror apparatus of

Gauss and Poggendorff, £ = 5,43. Baily, on the contrary, found

by experiments upon a larger scale, e = 5,675.

When Eeich repeated his experiments he found e= 5,583. (See

" Neue Versuche mit Drehwage, Leipzig, 1852.") The mean
density of the earth is, therefore, according to these experiments,

about equal to that of specular iron.

Remark.—The following works may be consulted in reference to the

manner in which the density of the earth was determined :
" Gehler's

physikal. Worterbuch," Bel. Ill ; the treatise of Reich " Yersuche liber die

mittlere Dichtigkeit der Erde, Freiberg, 1838 ;" and that by Baily, " Ex-

periments with the Torsion Rod for Determining of the Mean Density of

the Earth, London, 1843."

§ 8. Magnetic Needle.—The torsion-balance may also be

employed to find the directing force or the moment of rotation of a

magnet or of a magnetic needle (Fr. aiguile aimantee ; Ger. Magnet-

nadel). If we replace the transverse arm of the balance by a

magnetic needle or by a bar magnet M D Mx, Fig. 883, it will as-

Fig 883 sume a position in which the directing force is

A ,r balanced by the twisting force. If the non-mag-

"/"/$ netic arm, when at rest in A A l9 forms an angle

I // A D N' = a with the magnetic meridian N S,

1/ and if the bar magnet MMx assumes such a posi-

W tion that its axis forms an angle M D N = 6

Jf with the meridian JV S, we have Rx
= R sin. 6, in

// which formula Rx denotes the component of the

// directing force R, which is parallel to JV S. This
S V

/....J component tends to turn the needle, and is bal-
3

'
1 anced by the force of torsion. The latter force

P, on the contrary, is proportional to the angle of torsion MD A =
a — 6, and we can, therefore, put

P = P
1
(a-6);

hence we have R sin. 6 = P {a — 6), and consequently

when the variation or angle of deviation d is small.

A"ow according to the foregoing paragraph the force of torsion

is expressed by the formula

p_.J^ G 7.-
2 x __ n*_ G ¥ a (a- 6) __ tS_ G ¥ (a - 6)

g t ' a* g f
'

a'
2 ~

g f
'

a

and we can calculate from the period t of an oscillation, etc., of the
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non-magnetic torsion-rod the directive force of the magnetic needle

by the formula
/a — 6\ _P a-d 7r GF

The moment of this force, when we assume that it is applied at

a distance D M = a from the axis of rotation and when the varia-

tion is MD N = 6, is Rx a = R a sin. 6, approximatively, for

small variations,

= R a d = (a - 6) . -^ . Q h\
gt

This moment (R a sin. 6) is a maximum and = R a for

sin. 6 = 1, i.e.? when the magnetic needle is at right angles to the

magnetic meridian, and, on the contrary, a minimum and == 0,

when 6 = 0, i.e., when the axis of the magnet needle coincides with

the magnetic meridian.

§ 9. Magnetism.—Since the directive force of the magnetic

needle causes no pressure upon the axis, I.E., the needle has no

tendency to move forward, but only a tendency to turn, when its

axis does not coincide with the magnetic meridian, it follows that

the entire action of the earth upon the magnet must consist of a

couple —, — —, the maximum moment of which is R a. ISTow

7? 7?

since every couple —, — can be replaced by an infinite number
Z Z

of other couples ( -^, ~ ), I -^, —

—

2

J,
etc., whcse moments

R a, Ri ax, R^ a.2, etc., are equal to each other, it follows that nei-

ther R nor a, i.e., neither the directive force nor the point of appli-

cation, but only the moment R a is determined. This tivisiing

moment depends, in addition, upon two factors, ii x and S, f-h corre-

sponding to the magnetism of the earth and 8 to that of the bar or

needle ; hence we can put

R = fa S and R a = \i
x S a.

The measure fi t of the magnetism of the earth for a needle

vibrating horizontally (the case under consideration) is only the

horizontal component of the intensity \l of the entire magnetism

of the earth ; for the vertical component \i.
2 is counteracted by the

support of the needle. If i is the angle of dip or inclination or the

angle formed by the magnetic axis of the earth with the horizon,

we have the horizontal component
\i

x
= \i cos. i

;

on the contrary, the vertical one

fj.2
= \i sin. i,
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and, finally, the twisting moment of a magnetic needle is

R a sin. 6 =
fj,

cos. i . S a sin. 6,

the maximum value of which is

R a — \i S a cos. u

§ 10. Oscillations of a Magnetic Needle.—We can calcu-

late the moment of rotation of a magnetic needle from the period

of its oscillations. If we moye the suspended needle M D Mv, Fig.

884, from its position of rest, where the force of torsion and the

directive force of the magnet are in equilibri-

um, so that its new position shall make a small

angle M D C = <j> with its former one, either

the magnetic directing force R is increased by

R <p and the force of torsion Px is diminished

by Px 0, or the reverse takes place ; in either

case their resultant

(R + Pi) ^
or its moment

(R + P x ) $a = (R+ P
x ) x

drives the needle back to its position of rest.

If G k* is the moment of inertia of the needle> the acceleration,

corresponding to this force, is

(R + P
x)ax

* CTa

P GV
if we put it = fix, we obtain

I'R + P,

9

ah
and the period of an oscillation is

-X-./ Gk%

Vp (R + Px)ag

GV

a — 6

GJc2

of the force of torsion to the

- ^r
g

Y (P + PO d
P 6

or, if v denotes the ratio ^- =-

magnetic force,

Vg (1 + v)Ra

If we have found t by observation, we can find by inversion the

moment of rotation of the needle, which is
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7T
2 G F

gt 2
1 4- v

If the force of torsion is small, i.e., if the position of repose

nearly coincides with that of the magnetic meridian, we can

neglect v and put

t = —p y -^— and
\/g

f Ra

Ra = ^~.Gh\
gt

We can also substitute for R a its value, which has been given

above, and express the moment of rotation by the formula

7T
2

At 8 a cos. l — ——
. G ¥.

gt-

For a dipping needle, which oscillates in the plane of the mag-

netic meridian, we have, on the contrary,

77
2

\i 8 a = —-,
. G Tc

2

,

9
.

and for a needle, whose axis lies in the magnetic meridian and

which, therefore, tends to place itself in a vertical position we have

u, S a sin. i — —- . G 7c
2
.

gt'

7T
2

In the formula fi S a cos. i — —
jz

. G h% \i S a cos. i is a product

of four factors ; however, since the inclination i can be determined

by observing a magnetic needle, and since S a cannot be decom-

posed into two definite factors, we have to only resolve the product

\i S a into the factors \i and 8 a. How this can be done by ob-

serving the declination of the needle will be shown in the sequel.

§ 11. Law of Magnetic Attraction.—The forces, with which

the opposite poles of two magnets attract and the similar poles

repel each other, are inversely proportional to the squares of their

distances from each other. We, can convince ourselves very easily

of this fact by observing a small magnetic needle, which has been

set in oscillation near a large bar magnet. The bar magnet is

placed in a horizontal position and in the plane of the magnetic

meridian, its north pole being directed to the north and the south

pole towards the south ; we then place a small variation compass

in the prolongation of the axis of the bar magnet. If the distance

s of the pivot of the needle from one pole of the bar magnet is
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much less than its distance from the other pole, we can disregard

the action of the latter upon the needle and we can assume that,

in consequence of the action of the nearer pole, the coefficient y of
the magnetic force of the earth is increased a certain amount k

x or
K2. If the period of the oscillations of the needle is = t, when the
bar magnet is removed, and, on the contrary, if it is = t„ when
the nearer pole of the bar magnet is at a distance s, from the pivot
of the needle, and == t2, when the latter distance is = s2, we have

y ° 9J g t2

whence we obtain by division

- = Ti and —
- = -n

;

resolving the last two equations, we obtain

t
*

l

) ^1 and ks = {—JT-
1
} Pi, and, finally,

_ f - fx
% f _ ^

or, if we substitute instead of t, U and t2 the number of oscillations
60" 60" , 60"

n =—, nx = —- and ws = —-,
ix t2

k
x \ k2 = n? — n2

: n2

2 — n\
If the action of the bar magnet upon the magnetic needle is

inversely proportional to the square of the distance, we must have
also

«, : #2 = &*
: s*, and therefore

n? - ri> __ si
n.2

2 -n% ~~ ~8?

which is confirmed by the observations.

§ 12. The actions of a bar magnetN 8 upon a magnetic needle
n s are simplest, when the bar magnet is placed at right-angles to
the magnetic meridian in such a manner that the pivot of the
compass n s, Fig. 885, lies either in the prolongation ofN 8 or in the
line which is perpendicular to N S9 Fig. 886, and passes through
its middle C. If for the present we put the force, with which a
pole of N8 acts upon a pole of n s, when their distance apart is

unity, = K, we have in the first case, Fig. 885, when a denotes the
length JSf S and e the distance Cd between the centres O and d
of the two bodies N 8 and n s, the force, with which the north*
pole n is attracted by 8,

67
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P =
, approximatively =

S n2 (e-haf
and the force, with which n is repelled by N, is

Fig. 885. Fig. 886.

K
JSTn* (e+ia)2 '

hence the resultant of P and P
x is

N

(e + i fl )« - (g - i a)
8

(« + i a)
2

(« r 4 «)
2
Z

(e + i ay (e - ± a)
2'

or, if 4 « is small compared to #,

_ 2aeiT _ 2aX

In like manner we find the resultant of the attraction and

repulsion of the south pole s

n _ %aK
V-

e
> ;

hence the moment of the couple, formed by these forces, is

_ %alK
qi ~

e* >

when I denotes the distance between the two poles of the needle.

For the second case (Fig. 886), on the contrary, the attraction

and repulsion at s are

K K
and those at n are

P =

hence the resultants are

K
JSs

K
Sri* Nn*
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and § =

Now if J a and \ I are considerably smaller than e, we can sub-

stitute for N s = 8 s and JV n = 8 n the mean value N d = 8 d

and for the latter the approximate value C d = e; thus we obtain

e = <>, =^
and, therefore, the moment of the couple, formed by Q and Q19

I.E., it is one-half as great as in the foregoing case, a result which

is perfectly corroborated by observation.

But the force K is itself a product of the intensity k of the

magnetism of n s and the intensity 8 ofN 8, i.e., K = k 8; hence

we have in the first case

~ 2 k 8 a ,'..,! -, n k 8a
Q = 3 ,

and m the second case Q = —r-.

§ 13. Determination of the Magnetism of the Earth.—
If in both the above-mentioned cases the magnetic needle n s is

abandoned to the action of the larger magnet, the former will

assume a new position n s, Fig.

887, in which the force Q, with

which the bar magnet acts upon
the needle, is balanced by the

force R, due to the magnetism of

the earth. If 6 is the variation

N d n = 8 d s of the needle from

the magnetic meridian, we have

for the components of Q and R,

which balance each other,

Qx
= Q cos. 6 and Rx

= R sin. d
;

hence Q cos. 6 = R sin. 6 and

tang. 6 = -|,

or, if we put, according to the last paragraph, either

~ 2 k S a ~ tc 8 a
Q = .3

or Q = -jt>

and, according to § 9 of the Appendix, R = fa k, we obtain either
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. 2 rt $ a 2 8a ± . 8 a
tana, o = - = v, or tana, a =—5.J

p. x
k e

3
ih Q fa e

z

By inversion we obtain the ratio of the magnetic moment of the

bar to the intensity of the magnetism of the earth ; for in the first

case we have

— = -i e
3 tang. <5, and in the second case, — — e

z
tang. 6.

By observing the period of the oscillations of the bar magnet,

we obtain (according to § 10) the product

f
i
l JSa= -^ GJc2

;
gir

by combining the two equations, we deduce the magnetic moment

of the bar, which is

7T

either 8a— TTr ^i & Jc
2
e

3
tang, 6

n .

or 8 a = 7^= VG Jc
2
e
%
tang. 6,

and the measure of the horizontal component of the magnetism of

the earth, which is either

n a / 2 G k2
cotanq. 6 ir ' A /G k'

2
cotanq.d

ft rm v
.

°\
or -m v—~*''

the first formula being applicable to the case represented in Fig.

885, and the second to the case represented in Fig. 886. If we
divide by the cosine of the angle of dip or inclination (i), we obtain

the total intensity of the magnetism of the earth

fi
——

.

COS. I

In order to obtain a clear idea of the coefficient or measure ji of

the magnetism of the earth, we must put in the formulas

E a = fi 8 a and Q I
—

Ti
—, a = I = e = 1,

e

and also a — 8 = 1 ; thus we obtain R a = fi and Q I = 1 ; hence

1) the measure \i of the intensity of the magnetism of the earth

is that moment, with which a magnetic needle, whose magnetic mo-
ment is = unity, will be turned by the magnetism of the earth ; and

2) the magnetic moment of a magnetic needle is = unity when
that needle communicates to another similar and equally powerful

magnetic needle, placed in the position represented in Fig. 886 at

the unit of distance from it, a moment = unity (1 millimeter-milli-
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gram). According to Weber, if the acceleration of gravity were
1 millimeter, we would have

in Gottingen \i = 1,774 millimeter-milligrams,

in Munich p = 1,905 " "

in Milan \i == 2,018 " «

but, since the acceleration of gravity in Central Europe is 9810

millimeters, the true values are 4/9810 = 99 times less.

Remark.—We would recommend to those who wish to make a more
extended study of magnetism, besides Miiller-Pouiilet's "Lehrbuch der

Physik ;" Lamont's " Handbuch des Erdmagnetismus" (Berlin, 1849), and

Gauss and Weber's " Resultate aus den Beobachtungen des magnetischen

Vereins," Gottingen and Leipzig, 1837 to 1843; also the " Experimental-

physik" of Quintus Julius, and Mousson?

s "Physik auf Grundlage der

Erfahrung," etc.

§ 14. Waves.—In discussing the longitudinal and transverse

vibrations of prismatical bodies, we have heretofore (§ 3, 4 and 5)

neglected the mass of these bodies and considered only that of the

wTeight, which produced the strain in the bodies. Hereafter, on the

contrary, we will not consider any such weight, but suppose that

the body is put in vibration by a sudden blow or by a force, which

acts for an instant only ; we must, therefore, take into account the

inertia of the vibrating body alone. As the most simple case is

that offered by longitudinal vibrations, we will, therefore, treat that

first.

From what precedes, we know that all the parts of a prismatical

Fig. 888.

Mn Ms

rod BM4, Fig. 888, are put in vibration, when this body is extended

or compressed by a force P, acting in the direction of its axis. Not
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only the element 31 at the end, but also every other element

M\, Ms, Mz .... of the rod vibrates back and forth in a certain

space B D, B x
D

x ,
B.2 D2 . . . which is called the amplitude of the

vibration ; we can also assume, when the rod is very long, that this

space is the same for all the elements. Although the time in

which an element makes a vibration is the same for all parts of the

rod, we cannot, therefore, assume that all these elements M, M» M,,

etc., are simultaneously in the same phase of motion, e.g., that they

are all at the same time in the middle of a vibration, but we should

rather suppose that time will be required to communicate the mo-»

tion proceeding from M to the succeeding elements, and that the

farther an element is situated from the origin P of the motion, the

later it will enter upon the same phase of motion. It is, therefore,

possible that at the instant, when the element M has made a com-

plete vibration B D forward and back, the element Mz has made

but one-half of its forward movement and has arrived at Cz , and

that the element M4 is just beginning a vibration. The latter will

therefore vibrate isochronously with M. The velocity with which

the same phase of motion advances in the body is called the velocity

of propagation (Fr.vitesse de propagation; Ger. Fortpflanzungs-

geschwindigkeit) of the vibrations of the body. The aggregate of

all those elements between M and M4, which are in the different

phases of a complete vibration or which are included between two

elements Jfand M4, which are in the same phase, are called a wave

(Fr. ondulation ; Ger. Welle) of the vibrating body, and the dis-

tance M M4 is called the length of the wave. A wave consists of a

back part B D 2 which contains the returning elements, such as

Mx , M3 .... and of the wave front A I?4, which comprehends the

advancing elements if3, M± . . . ; B D 2 is also called the rarefied

and D2 B4 the condensed portion, since all the elements in B D 2 are

extended and those in D2 B4 are compressed.

§ 15. The phases of the motion and of the velocity in a wave can

be very well represented by serpentine lines, such as F Cx G2 C3 II4
and B Ml R2 JV3 B4, Fig. 889, 1 and II. At the moment when 31

begins a new vibration at B, its displacement is a maximum and

its velocity is — ; at the same time M
x
is in the position of rest,

and consequently its displacement is = and its velocity is a max-

imum ; both of these facts are shown by the above curves ; for the

first curve (that of the displacement) (I) passes at B at a distance

equal to the amplitude B F = B C above the axis B D± and cuts
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this axis at Clt while, on the contrary, the second curve (that of the

velocity) (II) cuts the axis at B and at Ci passes at a distance

Cy
MXi equal to the maximum velocity, above the axis. At the

same moment the element M.2 is upon the other side of the position

of rest C3 and at the maximum distance from it, and its velocity,

like that of M, is = ; this is also shown by the two curves ; for

one passes at D2 at a distance equal to the amplitude A 6r2 below

the axis, and the other cuts it at that point, so that the ordinate

which corresponds to the velocity is = 0. .In like manner the

phases of the motions and of the velocities of the elements M3, M4 ,

etc., are represented by these curves. Since, e.g., the first curve

cuts the axis at Gz and the second passes below that point at a dis-

tance equal to the maximum value Cz Nz, we know that the ele-

ment M3 at this moment passes through the position of rest with

the maximum velocity in the positive direction. If we wish to

know the phase of the motion of any other element if2, situated

between My Mx , M4, etc., at the moment when the elementMn be-

gins a new vibration, we have only to let fall from it a perpendicu-

lar upon the corresponding curve. The portion B 8 of this per-

pendicular lying between the curve and the axis corresponds to the

displacement of this element, and the portion T U, between the

second curve and its axis, gives its velocity. Since both ordinates

are directed downwards, we know that both the displacement and

the velocity are-positive, i.e. their direction is that of the velocity

of propagation.

If the element M were at D, i.e. about to begin its return mo-
tion, the displacements of the other elements of the wave would be

represented by the dotted line J Oi X2 Cz L4, and their velocities

Fig. 889. .
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by the ordinates of the dotted curve D 0, B2 Q~ D*. The period

of a double oscillation or that of a complete vibration, i.e. the time

t, in which the space B D -f D B is described, is equal to the time

in which a vibration is propagated through the length MM4
= I

of a wave ; if, therefore, c is the velocity of propagation, we have
the total length of the wave

B B4 = I = c.2t = 2ct.

The length of the back part of the wave is

B A = ?i = B B.2 + B,D, = ct -f A,

and that of the wave front is

A B4 = l2 = A A - B, A = c t - X,

in which X denotes the amplitude of a vibration.

Remark.—The phenomena accompanying the interference of waves can

be shown by the aid of the curves of vibration. Let us consider two sys-

tems of equal waves, which are advancing in opposite directions, and let

A B OB ^and F G HI K, Fig. 890, be the curves, who33 ordinatei rep-

Fig. 890.

resent the displacements. The displacements of an element, which be-

longs to two waves, produce a mean displacement, which is determined in

exactly the same manner as the resultant of two motions (see § 28), that is,

by adding algebraically the two component displacements. Hence at the

two points M and iV, where the two curves meet each ether, the ordinates

are doubled, and, on the contrary, at the points and (), where the curves

pass at equal distances from, but on opposite sides of the axis A E, the or-

dinates cancel each other, and the resultant of the two wave curves is a

third curve FB B H S D Q K, whose ordinates give the displacements

of all the elements in the axis A E. While the two systems of wavesA B Q
and F G H are moving towards each other, the position of the wave-curve

FB B 0, etc., of course changes; out it is easy to understand that the

points of no motion and Q do not change ; for the ordinates of these

points of the two component curves are always equal and opposite. These

points are called the nodes.

(§ 16.) Velocity of Propagation.—The velocity ofpropaga-

tion of waves can be determined in the following manner. Let us

imagine the vibrating body B 0, Fig. 891, to be composed of an

infinite number of elements, the cross-section of each being A and
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its length B G — G D = d x, and let us assume that the phase of

the motion of an element B G — A d x is propagated completely

to the following G D — A d x
Fig. 891. in the elementary time d t, or

B c j) JLYNN that the phases of the motion

>-
| ]TT~~ are propagated in the direc-

tion of the axis of the body

d x
with the velocity c — -tj. Let us assume that the elements B G

and C D oscillate from G to JSf in the time t, and thus come into

the position MN' = d x
x
and N = d x<, and let us denote the

corresponding displacement G N\>y y. If the surface of separation

of the two elements, which before d t seconds was at JVj, comes

after d t seconds to JV"2, the corresponding spaces described by these

elements are

NNx
— d yx and JV JV2 = d y2,

and their velocities are

v - ^andi; - ^2
-

hence the retardation is

F dt dt2
'

Since d t seconds before the moment, when the elements B C
and G D occupied the positions MN and N 0, JVj was in the same

phase as now is, we have G J¥x
= D 0; and since d t seconds

later N2 is in the same phase as M, it follows also that G J\
r
2 = B M.

From these two equations we obtain

N
A

= DO-DNl
= DO- (CNi - CD) = CD and

JOi = CN%
- CM= GN2 - (BM-B C) = B C; hence

NN^dy^W, 0- NO=CD- NO= dx-dx2 &n&

Wn, = dy2 = MN2 - MJST= B G-3IJSr= dx - dx
x
.

The element d y of the space is equal to the compression

dx — d x2 of the element N 0, and the element d y2 of the space

is equal to the compression d x — d x
x of the element M N. If

we denote by E the modulus of elasticity of the vibrating rod, the

strains of the elements MN and N produced by this compression

= ldxjdx\ AE = pKAE and
\ dx I dx

\ (t X I Co X



1066 GENERAL PRINCIPLES OF MECHANICS. [§16.

If we subtract the former from the latter, we obtain the retard-

ing force

\ dx J

If y is the heaviness of the elements B C, C D, etc., of the rod, or

A d x . "v

A d x . y the weight, and —'-— the mass of such an element, its

acceleration at Nx
is

P_ = (dyx -dyA A E i = gE_ dy
x
~dy^

"' M \ dx I ' A d x . y y d x2
'

equating the two values ofp, we obtain

*'*-**
= "-

•

d
-h7 dy

-. whence
d t y d x"

dx2 gE . gE—- = *—, ore2 = --—;
dt* y y

hence the velocity ofpropagation of the waves (velocity of sound) is

j/lE

in which formula L denotes the modulus of elasticity expressed in

units of length.

Example.—If we assume the modulus of elasticity of spruce wood to be

E = 1870000 pounds and the weight of a cubic foot of it to be = 30

pounds, we obtain the velocity of propagation in it

c = y
1U

'

g^

70— . g = V48 . 187000 . g = 17000 feet,

i.e. about 15 times as great as in air.

Remark:.—This formula for the velocity of propagation is applicable

not only to a stretched string, but also to water and to the air. If p de-

note the pressure of the air upon the unit of surface, we have, according

to Mariotte's law, the tensions corresponding to the ratios of compression

dx dx

Q
_pdx

__ pdx iQ_^> ^ a! _ pdx
2 ~~dx

2
~dx — dy

±
x ~dx

t
~dx — dy

2

and, therefore, the motive force upon an element, whose cross-section is A, is

P-AfQ _ c\ - (d yi -dy 9
)Apdx

mr ~
^

2 l} ~ (dx-dy
t
)(dx-dy

2y
now since ~~ is a small fraction, we can put {dx — d y^) {dx — d y2 )

=
ct x

dx* and

P = (^^i -dy 2
)Ap

dx
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This expression agrees exactly with the former one when we substitute

p instead of E\ hence the velocity of sound in air is

-V^fc

7

When the theory of heat is discussed in the second volume, it will be

shown that a coefficient must be added to this formula in consequence of

the change of temperature, which necessarily accompanies tbe change of

density of the air. Since the heaviness of the air is proportional to the

pressure p, they both disappear from the formula and the temperature

alone remains. We generally assume for air

c = 333 Vl + 0,00367 . r = 1092,5 VI + 0,00367 . r feet.

Example.—If (according to the Remark of § 351), when a column of

water is compressed by a force of 14,7 pounds, its volume is diminished

0,000050 of its original volume, its modulus of elasticity is

J=opio = 284000 Pomds'

and the velocity of sound in water is

,

/~ 294000 . 144 , / n 1693440
M

c = j/ 32,2 .—^— =y 32,2 .
-im- = 4673 feet,

or about 4,3 times that in air.

(§ 17.) Period of a Vibration.—We can now find the period

of a vibration by obtaining the equation, which expresses the de-

pendence of the amplitude of the vibration upon the time and
upon the abscissa x, which determines the position of the vibrating

element when it is at rest. Now y is certainly a function of t as

well as of x ; we can, therefore, put y = (t) and y = ip (x).

By differentiating the first equation, we obtain the variable ve-

locity of vibration d y A , ,.

and in like manner, by a second differentiation, the corresponding

acceleration • dv '

...

P = j-
t
= 4>, (0,

in which (p x (t) and
<f> 2

(t) denote other functions of t (compare § 19).

The second function gives the ratio

which determines the strain ; from it we obtain the latter

S= AE. cl

ft = AE.1> x
(x);

ct x

hence the motive force of the element of the mass d M— A d x - is
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ax ax
and the corresponding acceleration is

dS gE

in which ip
x (x) and ip 2 (#) denote other functions of x.

If we equate the two values oip9 we obtain

<f>2 (t) = -— . ip2 (x), or, since -— = c%

The integral of this differential equation is

y = <j) (t) = i)> (x) = F(ct + x) +f(ct - x),

in which F and/are undetermined functions of the quantities con-

tained in the parentheses ; for

cb
x (t) = ^jf^ = cFl (ct + x) + cfx (ct~ x),

<j>2 (t) = d^^ =& F*{ct + x) + c\f, (ct-x)

= & [F* (ct + x)+fi (ct — x)\ and

^(x) = d W &ft = Fx {ct + x) -fx (ct-x) and

^(x)= d[
^ t

(x)] = F*(ct + x) +Mct- x),

and, therefore, we have really

</>2 (t) = & . Va («)•

Although the function

y=z F(ct + x) +f(ct - x)

is an indeterminate one, yet, when we have more definite data in

regard to the vibrating body, it can be employed to determine the

period of the vibrations. A few examples of how this may be done

will now be given.

Remark.—If we eliminate d t from the formulas d y = v dt and d x =

c d t, we obtain the expression -=-^ = -, or since -~ expresses the conden-
Co a) C Co to

1)

sation a of the vibrating element of the body, we have a = - ; the simul-
c

taneous condensation at every point of the vibrating rod is proportional to

the velocity of vibration of that point.
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(§ 18.) Determination of the Modulus of Elasticity.—Let
us assume that the vibrating body, whose length is I, is fixed at

both ends. In this case we have not only for x = 0, but also for

x = /, y = ; hence

F (d) + / (ct) = and F {ct + I) +f{c t-l) = 0.

From the first equation we obtain / = — F, which, when sub-

stituted in the second equation, gives

f(ct + I) -f{ct- I) = 0,i.v.f{ct f I) = f{ct-l),
or, if we put c t — I = c tx,

f{ctx + 2l)=f{ct x).

The function, therefore, assumes the same value when c t x is in-
o 7

creased by 2 I or when the time is increased by t x
— — ; hence the

c

period of a complete vibration or double oscillation is

c
f gE

If, in the second place, we assume the body to be free at both

ends, we have for x = and x — I, 8 = and ^i (%) = ; hence

F
i (ct) -A (d)=0 and Fx {ct + I) -f (ct-l) = 0.

We have, therefore,

/. - Fx and/, (ct + l)=f{ct-l), or/ {ctx + 2 1) =f (c t x ),

and consequently the period of a complete vibration is

i x
—

c

If the body is free at one end andfixed at the other, we have for

x = 0, y = 0, and for x = I, S — 0; hence

F(ct) +f(ct) = Oand Fx {ct + I) -f(ct - I) = 0,

from which it follows that / = — Ftmdfi = — F
x, and therefore

/, {ct + I) +fi {ct - I) = 0, or/, {ctx +2l) = -f {ct,).

We see from the latter formula that the body, after the time t
x
—

2 I—, will assume the opposite state of motion, and that it will con-
c

sequently make a complete vibration in double that time, 2 t
x
=

4 I—
. The period of the complete vibration is, therefore,

c

U ~
c
~* iy

gF>
or double that in the first two cases.
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By means of these formulas we can calculate from the period t

of a complete vibration or from the number n of vibrations, which

a prismatical body makes in a given time, the modulus of elasticity

E = (—) .*-, and the velocity of propagation or the velocity of

sound in it, c = —

.

Example.—An iron wire, which was 60 feet long and was fixed at both

ends, was put in longitudinal vibration by means of friction in the direc-

tion of its axis. The number of complete vibrations was 1637 in a second

;

what was the modulus of elasticity of the wire and what was the velocity

of propagation in it ? According to one of the above formulas, we have

for the modulus of elasticity, expressed in units of length,

L = 1 PJ)'= l (2 n If = <if^f- = 99870000 inches,
g \t J g

K
' 32,2 . 12

and if a cubic inch of this iron weighs 0,28 pound, the modulus of elasti-

city, expressed in pounds, is

E = 99870000 . 0,28 = 27960000 pounds (compare the table, § 212).

The velocity of propagation, or the velocity of sound in it, is

c=z^/g L = V32,2 . 99870000 . TV = V 16,1 . 16645000 = 16370 feet,

or, assuming the velocity of sound in the air to be c = 1092 feet, we have

16370 _

If the vibrating wire is very long, the period of a vibration depends

upon the length of the wave or upon the distance I between two nodes,

21
and it is always t ±

= — . This time determines the pitch of the note pro-
G

duced by the vibrating wire ; the greater or smaller t
t

is, the lower or

higher the note is. The intensity of the sound, on the contrary, increases

with the amplitude of the vibration. For spherical waves, in which sound

propagates itself in air and water, c and t remain unchanged, and it is only

the amplitude of the vibration, or the intensity of the sound, whicli

diminishes.

(§19.) Transverse Vibrations of a String.—The transverse

vibrations of a string or elastic rod can be treated in the same

manner as the longitudinal ones. As the simplest case is that of a

stretched string (Fr. corde ; Ger. Saite), we will discuss that first.

Let A D B, Fig. 892, be any position of the vibrating string, A
and B the two fixed points, I = A B the length of the string, G its

weight and S the tension, which is to be regarded as constant.

Now if A N—x andNO = u be the co-ordinates of any point of
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the string, and if we resolve the tension 8 at it into two components

K and P, one parallel to A B, and the other perpendicular to it,

Pi

Fig 892.

s
1

o2
k

-R N

T U Ki

^^ >^^
T

..
_,..•*'*

we can regard the latter as the motiye force a one end of the

element Q. If the arc A == s is increased by the element

Q = d s, and if the corresponding increase of the ordinate y is

Q T = d y, P, 8,d y and d s are the homologous sides of two sim-

ilar triangles OPS and Q T 0, and we can put

P
8

QT___dy p _dyOQ ~ ds'°
TJr ~ ds'°'

But another force Px
— R U

8 = dyx

8, which is one of the
Q R'~ ' ds

components of the opposite tension, acts in the opposite direction

upon the same element Q ; hence the motive force, which moves

the element Q back to the axis A B, is

The mass M of this element is proportional to its length

Q = d s; now if we suppose the amplitude y of the oscillation

to be small, we can assume that the mass is proportional to the

dx G
element T — Q U = d x of the abscissa, or that M — 1T- . —

.

'•••* P
If we make this assumption, we have the acceleration with which

the element approaches its position of rest A B
P-P

l
_dy~dyl g 81

P = ds . dx a
or, if we put d

M
dx,

_ d y — d y x g 81
P ~ Tx* * ~G~'

Now y is some function of x, e.g.
\f)

(x) ; hence -~ is another

dy_T1 dy1 _ Ody_ _ J [»(»)] k &^function ^ (x) and ^ ^
function ip.

2 (x) of this quantity, and

d x
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P = V>» (
x

)

gSl
G

'

Since y is also a function of the time t, i.e. y — 6 (t), the Te-

locity with which the element Q returns to its position of rest is

d ii

v — -vy =f <f>i (t), and the corresponding acceleration is

P dt fc (0-

If we equate these two values of p, we obtain, as in § 17 of the

Appendix, the differential equation

and we can put here, as we did there,

y = 0(0 = ^(x) = F(ct + x) +f(ct
v=c[F

l {ct + x) + /, (c t - x)].

Since here also for x = and x = I, y and v = 0, we have

again/ = - J7 and f {c t + I) = f (c t - I), or/ (c £ + 2 Z) =
/ (c A) ; hence the period of a complete vibration or double oscil-

lation is

x) and

*
G— = 2 Z V~-v or, if we put G = A ly,

c
r

g SI 1

The period of vibration of a string is therefore directly propor-

tional to the length I and to the square root of the weight of the unit

of length, and it is inversely proportional to the square root of the

tension S of the string.

Example.— Since half the period of the vibration corresponds to that

of the next octave, a string will give, according to this formula, the octave

of the fundamental tone, when it is shortened one-half or supported in the

middle, or when it is stretched four times as much, or when it is replaced

by another whose unit of length weighs one-fourth as much as that of the

first one.

(§ 20.) Transverse Vibrations of a Rod.—The period of vi-

bration of an elastic rod or spring

A B (Fr. lame; Ger. Stab), Fig.

893, which is fixed at one end,

can be determined in the follow-

ing somewhat circuitous man-

ner. According to § 226, if r

denotes the radius of curvature

of the rod at a certain point O,

Fig. 893.
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determined by the co-ordinates CN= x
l and N = yXi the moment

of flexure of the arc A = s x is

M = .

r

If we put the force, with which an element Q, which corre-

sponds to the co-ordinates C R = x and R Q = y, approaches the
axis or position of rest G B, = P d x, or its moment

= N R . P dx = (x
x
— x) P d x, we obtain

= J (xi — x) P d x.

But
«/

' & ~ x
)
p dx = fo

' Px
x dx-f

Xl

Pxdx

= x
x f

l Pdx~ f
1

Pxdx,
e/ o 1/ o

or, if we put / ' P dx = Ply and therefore

£
l Pxdx=

J^
1

Pdx.x = P
x xx -f*

X

P
x dx,

/ (x
x - x) P d x = / P

x dx\ hence we have also

WE /«.— =
./,

p"*-r-

Now we know that r = -j^j—^ (see Art. 33 of the In-

traduction to the Calculus), or, since we can put, when the deflec-
tion is small, d s = d x,

d x ,f = ttj. \\ hence
a {tang, a)

by differentiating which, we obtain

-WB.d(d^^) = P
1 dx.

If we put y = $ (x), tang, a = g = £ (x),^f^
s= i/>a (a;) and tf

( TS )
= ^3 ^> we obtain the e(luation

by differentiating which again, we find

<?P
1
= - W#rfft(a;),L»p-#-i== - WE d fa (x), or

P=-WM^. = -WMi,l{x).

68
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In order that the spring shall vibrate symmetrically, we can as-

sume that P is proportional to y, or that P = — K y\ hence Ave

have

WE i/>4 (x) = Ky, or fa (*) = -jjr# . y = Vy*

when we denote Tir -^ by 7c\WE - J

This differential equation fa (2) = 7c
4 y corresponds to the equa-

tion y = ip (x) = A cos. (7c x) + B sin. (7c x) + C e
kx + D e~

hx
\

for by successive differentiations we obtain

fa (x) = 7c [— A sin. (7c x) + B cos. (7c x) + C e
kx — D e~

kx
\

fa (x) = F [- A cos. (7c x) - B sin. (Tex) + C

e

kx + D e~
k%

fa (%) = &3
[-4 sm (& x) — B cos. (7c x) + C e

kx — D c~
k
*], and

i/>4 (x) = 7c
4 [A cos. (7c x) + B sin. (Tex) + Cekx + D e~

kx
\

so that we have really

fa (x) = 7c
A
y.

(§ 21.) The period of vibration t of the elastic rod is found, as

force
above, by substituting p — fa (0 = . But the force acting

mass
upon an element is

= P dx = — Ky dx — — WE 7c
i

y d x,

and, when the cross-section is F and the heaviness is y, the mass is

y—Fdx—\ hence
9

x tA 9 WE 7c*

*»« = - Fy .y = -v?y,

when we denote the expression ^ by /r.

This differential equation corresponds to the simple formula

y = (p (t) = sin. (fi t + t),

in which r expresses any arbitrary time of beginning ; for by dif-

ferentiation we obtain

d 1/

v = j-j = fa (t) = \i . cos. (fi t 4- t) and

d v
P = j-r = 02 (0 = — V? • W. (A* # + T)> LE.,

0, (*) = _ ^ y.

If in the equation y = sin. (p t + t) we take r = 0, we obtain

?/ = sm (jtt t) ; hence for ju. t = 0, tt, 2 tt, etc., y = 0, and conse-

quently
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U — — is the period of a simple vibration and

9 _ 9 — / W -v

t — —- = -jj y w .p is the period of a complete vibration.

In order to calculate the period of a vibration, we must know
rp

not only the quantity h, but also the ratio -^

If the rod is cylindrical and its radius = r, we have

7i
= 4 (see § 231),W \ n r

4
r

2

and if it is a parallelopipedon, whose width is b and whose height

is h, F Hi 12 , e oor s

F = ^TF =
w

(see § 226) -

We have, therefore, for the first rod

r¥ y
g E y

and for the second

* =^/3r
h¥ f g E

The quantity k is found in the following manner from the

equation

y = A cos. (h x) + B sin. (h x) -f e
kx + D e^ x

.

If we substitute in this formula the corresponding values x — I

and y = 0, we obtain

1) = A cos. (hi) + B sin. (h T) + C e
kl + D e~* l

.

If we perform the same operation in the equation

tang, a = —^ == ip
l
(x), we obtain

2) = - A sin. (h I) + B cos. (h I) + c
hl + D e~hl.

Since the moment of flexure at the end A of the rod = and

consequently the radius of curvature r = oo , or t/>2 (a;) = and

^3 (#) = 0, it follows that

= - A cos. - B sin. + C e° + D <r°, i.e., - A + (7 + D = \
and

= ^1 sk 0-5 cos. + CV - D <r°, i.e., - I? + (7- D = 0,

whence 3) A — C + D and

4) B = C-D.
If we eliminate A and 5 from these four equations, we have

(C + D)cos.(lcT) + {C - D) sin. (1c I) +Cekl + D e~kl = 0, and

-(#+/)) sm, (£ Z) + (tf - D) cos. (ft + Cckl - D e~kl = 0';
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from which we obtain by addition

Ccos.(hl) -Dsin.(hl) + Ce* l =0,
and by subtraction

, Dcos. (JcT) + C sin. (hi) + De~hl = 0, or

C [cos. (h I) + **
'] = Z> sin. (h I) and

D [cos. (h I) + e~ hr
] = - Csin. (h I) ;

hence we have by division

cos. (h I) + e
7: l

sin. (h T) ,

=

—

n—i — ——n--7T fT, whence
sin. (h I) cos. (hi) + e

2 + cos. (h I) (e
hl + e~kl) = 0, or

2
COS. (h = - ^ + g

-Tf

The smallest of the different values, which correspond to the

different tones that the rod can give out and which depend upon

the number of nodes, is h I — 1,8751 ; the greater are, on the

contrary, nearly 3tt 5tt I'tt
10 l ~ ~2~'

~X>
~2~> etC *

If we are required to find from the observed period t of the

complete vibration the modulus of elasticity E, we have generally

to consider but the smallest value ; we must, therefore, put

1,8751 : 72 3,516
h — —=— and h = —^~ ;

hence for a cylindrical rod

y( 4*- \»_ y I 4 rr V Y_ y P
* -

g XrVt)~ g l3,516r*/ " W '*
g r P

and for a parallelopipedical one

" 3g\h/c2 t/dg \d,oWht) ~ ' ' g W.f
Remark 1.—If we compare with each other the formulas

t = —.~ V ~ and t.=2L </

-

y-=
rklf gE J x f g E

for the transverse and longitudinal vibrations of one and the same rod, we
obtain the proportion

I 2 3,516
,

?3
ft_ ,

t:t
1
=~: -s— L. i.e., «:*! = — : 0,o596 ?r

Werfcheim found by experiment that this proportion was correct for

cast steel and brass.

Remark 2.—The transverse vibrations of an elastic rod are discussed

by Seebeck in a " Abhandlung tier Leipziger Gesellschaft der Wissenschaften"

Leipzig, 1849. and also in the ' ; Programme der tecbnischen Bildungsan-

stalt in Dresden," for the year 1846. Wertheim's experiments upon the

elasticity of the metals and of wood by means of transverse and longitu-
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dinal vibrations are discussed at length in " Poggendorff's Annalen,"

Ergunzungsband II, 1845.

Eemark 3.—The period of vibration or rather the number of vibrations

of a rod in a given time cannot generally be determined directly on

account of their rapidity
; we must, therefore, employ various artifices to

do it. We can determine it either, as Chladni, Savart, etc., did, by the

pitch of the note produced by the vibration, or we can employ the method
first proposed by Duhamel, which consists in causing the rod to describe

by means of a small point a wave-line upon a revolving glass plate, which

is covered with lamp black. A chronometric apparatus, to which a flying

pi?iio?i, such as used in the striking works of town clocks, is attached, is

employed to produce a regular motion of rotation. An account of this

apparatus is to be found in Morin's " Description des appareils dynamo-

metriques, etc., Paris, 1838," as well as in his "Notions fondamentales de

me*canique.'' Wertheim determined the number of vibrations in a given

time by allowing another body, such as a tuning-fork, whose number of

vibrations was known, to vibrate at the same time with the rod to be ex-

amined. If we cause both bodies to trace wave-lines upon the lamp-black

and then count the number of waves corresponding to the same central

angle, the ratio of these numbers will give the ratio of the numbers of

vibrations. The longitudinal vibrations are generally accompanied by

small transverse ones; the rod describes, therefore, a corrugated wave-

line. By counting the small waves contained in one large wave of the

main wave-line, we can easily compare the number of longitudinal vibra-

tions with the number of transverse ones.

§ 22. Resistance to Vibration.—The forces, which cause the

vibrations of a body, are very often accompanied by passive resist-

ances, wrhose influence must be examined more particularly. If

such a resistance is constant, as, e.g., the friction of a pendulum

upon its axis or that of a magnetic needle upon its pivot, it has no

influence upon the period of the oscillations, but their amplitude

is diminished at every stroke. For the case in § 1 (Appendix), in

which the motive force is proportional to the distance x from the

position of rest or centre C of the motion A B, Fig. 894, we can put

p = fj,x=ti(a — x,),

in which xx denotes the space A M de-

scribed. If we. take into consideration

the diminution h of this space, in con-

sequence of the friction, we have, when

the body is describing the first half

A G of its path,

p = ii (a — h — x
} ),
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and when it is describing the second half C B
p — —p\x{

— {a + h)];

the influence of the friction Tc consists, therefore, in this alone,

that for one-half of the path a must be replaced by a — h and for

the other by a + k, and that the whole space described in one

oscillation must be changed from 2 a to 2 a — 2 k, i.e. the ampli-

tude of the oscillation will be diminished a certain quantity 2 h at

each oscillation. Finally, since the amplitude does not enter into

the formula y
t — ---=,

VfJL

Jc can have no influence upon the period of the oscillations.

The case is different with the resistance of the air. The latter,

when the velocities, as in the case of the pendulum, are small, is

more nearly proportional to the simple velocity than to its square,

as was shown by Bessel's researches upon the length of the simple

pendulum (Abhandl. der Akademie der Wissensch. zu Berlin, 1826).

This is explained by the fact that this resistance is increased prin-

cipally by the condensation and rarefaction of the air in front and

behind the vibrating body, which increase with the velocity v of

the body (see § 510 and Appendix, § 17, Eemark). In accordance

with this assumption, we can put the acceleration of the vibrating

body
p = — (ji x -f v v) or p 4- v v + \i x = 0,

when we assume the bod}' to be moving from the point of repose

and measure the space from that point.

If we put

* =fW, r =% =/. (0 and ?' = || =/, (t),

we can write also/2 (t) + vj\ (t) + [if(t) = 0, which corresponds

to the integral equation

x — \b cos. (ip t V/*) -f b x sin. (f t 4>)] e~ T,

in which b and &, denote constants to be determined and if> =
/ ^

•y 1 — 7-. Now for t = 0, x = 0, whence b = ; hence we have

more simply

x = b x
sin. (ipt Vii) e~'T.

Since this value becomes == 0, when ip t V/i = tt, the period of

an oscillation or simple vibration is
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• n 7T 1 1
t — ~, - = — , I.E.^ /,_* ^ /:

4 r 4 ^
times as great as if the resistance of the air were not present.

Remark.—It is easy to explain why bodies which are set in vibration

make smaller and smaller oscillations and finally come to rest. This effect

is due to two causes, the resistance of the air and the imperfect elasticity

of the vibrating body ; in consequence of the latter fact, the contraction

and expansion of the body, particularly within a short space of time, is not

proportional to the forces acting upon it.

§ 23. Oscillation of Water.—The simplest case of the wave

motion of water is that presented by its oscillations in two communi-

cating tubes A BCD, Fig. 895. Let us assume that both have

the same cross-section, and let us imagine
Fig. 895.^ ^he surface f the water in one leg to be

raised a certain distance H A = x above the

position it occupies when at rest, and that in

the other leg to be depressed an equal dis-

tance R D = x. "We have here the motive

force

P = A.2xy,

and if I denotes the entire length A B C

D

A ly— HB C R of the water, the mass moved is M = ; hence the
9

acceleration with which the surface of the water rises or falls is

— *L — 2Ax y - \9jH_V ~ M ~ Aly 9 ~
I '

Since this formula corresponds exactly to the law of oscillation

p — jj, x, discussed in § 1 and § 2 of the Appendix, we have for the

period of an oscillation

Since the period ofthe oscillations of the simple pendulum, whose

length is ^, is

% y
the oscillations of the water in the communicating tubes are iso-

chronous with those of this pendulum.

If both legs of the tube A B C D, Fig. 896, are inclined, i.e. if
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the axis of one of the tubes forms an angle a and that of the other

an angle j3 with the horizon, the space A H = D R — x, which

the surface of the water describes upwards in one and downwards

in the other leg, corresponds to the difference of level

z = x sin. a + x sin. P — x (sin. a + sin. 13)
•

hence the force is

Fig. 896. P — Ayx (sin. a f sin, (3),

^\ K ^ the acceleration is

Jmx "t d? g (sin. a + sin. (3) . xH $T "I '*W R ' P ~
1

'

:j\ ^F and the period of the oscillations is

' g (sin. a + sin. fi)

'

If, finally, the tubes are of different widths, the determination of

the period of the oscillations becomes much more complicated. Let

A be the cross-section and I the length of the middle tube, a
x, A x

and lx the angle of inclination, the cross-section and the length of

one lateral tube, and a2, ^4 2 and 72 the angle of inclination, the cross-

section and the length of the other; finally, let us suppose that the

surface of the water in the axis of one tube has risen a distance x

and that the surface of the water in the axis of the other has sunk

a distance xs. "We have then

A x xx
= Ac, x.

2f
whence x« = -1

x,A o

and the motive force, reduced to A
x,

A\ yP — A x (xx sin. ax -f x2 sin. a2) y = —— (A.2 sin. a
x + A

x sin, a 2) xx.

A-2

The mass of the water in the middle tube is constant and equal

Aly .

to -, and, since the ratio of its velocity to that of the force is

if

-A the mass reduced to the point of application is

The mass of the water in the first leg is

= 1
^

1 '—, and that in the second
9

_ A* (l2 — s8> y

9
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or, reduced to the point of application of the force

_ (AX A, (k - x,) y
\Aj g

Finally the mass moved by P is

- Ai -

9 It + ~j;~ + -ir)M

**?(.l
g \A

- ill rl- g U
and the acceleration is

P

, l>i l2 Xx

A x A 2 A;

h

A
x xx\

A\ A 2

+.(i-3?k,4
sin. ax sin.

~a;~ + ~ar)
gxx

ll U /I 1 V A '

If the cross-sections of the two tubes were the same, we would

have A 1 = A.2, and therefore

(sin. a
x + sin. o2) g xx _ (sin. a

x + sin. a,) g x
x

4
+ "Z

;j

and the period of the oscillations

t n J A
x l + A (lx + h)

g A (sin. a
x
'+ sin. a.

2
)'

Eemark.—In consequence of the friction and of the resistance due to

the bend in the tube, these formulas must, of course, be modified (com-

pare Appendix, § 25).

§ 24. Elliptical Oscillations.—If a body, which is driven with

an acceleration p = y, z= fi . G M towards a fixed point C, Fig. 897,

possesses an initial velocity c9 whose

direction differs from that of the

force, the oscillations no longer take

place in a straight line, but in an

ellipse, as we will now proceed to

prove. Let the direction of the mo-

tion at the point of beginning A be

at right angles to the distance C A
— a and let the corresponding ve-

locity be ==? c. If we pass the co-ordi-

nate axes through C, one upon and the other at right angles to
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C A y
and denote the co-ordinates CK and KM by x and y, we

have for the components q and r of p = /x z, which are parallel to

the axes, since - = - and - = -,

p z p z

q = fi x and r =
fj> y.

If u and v are the components of the velocity w of the body M,

which are parallel to the axis, we have, according to § 1 of the

Appendix,

u — Vfi (a
2 — x-)

;

and at the same time

c- — v* = z I r dy = 2 \i I y dy = py
9

, whence v = Vc* — fi y\

Since for y = b, v — 0, it follows that

= c
a — fi b

2

; hence c = b Vy. and v = V\i (p* — y
2

).

d x d ii

But now u — -T7 and v = -~, and therefore
dt at

u d x . /a2 — x* d x d y

v dy ' V-if Va2 -x2 Vb2 - y
2

.-«© *®

A-f:*Mf
hence (according to Art. 26, Y, of the Introduction to the Calculus)

• -xVsinr1 - = sinr1 - + Con.
a a

or, since for x = af y = 0,

. j a . ,

s^. - == $^. - + Con., or

sinr1

1 = sinr 1

-f C'o»., i.e., — = Con. and

, jc . y tt

sin. - = sin. ~- + —, or
a b 2

. .x . . y TT

sin. -— sin. T = —-.

« b 2

When the difference of two arcs is —, the sine of one is equal

to the cosine of the other, i.e.,
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Since this is the equation of an ellipse, it follows that a point,

which is impelled or attracted towards C with an acceleration p z,

will describe an ellipse, whose semi-axes are C A — a and C B = b.

We have also

dt=—^-— -

'
lM—— • hence the time is

v Vp (b* - f)

Y -sin. j.t = y -sin.
i

j, or inversely,

y = b sin. (t Vp) and x = a cos. (t V^i).

The time, in which the body will describe a quadrant of the ellipse,

is found by putting y = b, and it is

t {
= y - sin. = = y - sin.

1
1

p op " %Vp
The time, in which the body describes half the ellipse, is

Vp
and the period of a complete revolution or of a complete vibration is

or exactly the same as it would be, if the motion were a rectilinear

reciprocating one. It follows also that

u = Vp (a' - a?) = ^p (a' - a' [cos. (t Vp)J
2

) = p a sin. (t Vp)

and

v — Vp (b* — y~) — pb cos. (t Vp) ;

hence the velocity of revolution is

w = Vu2 + V2 = p ^{a sin. t Vp)' + (b cos. t Vp)\

Finally, we can put

a + b ,, ,,-. a — b
x = cos. (t Vp) -\ -— cos. (t Vp) and

2 v r/
2

y — —-— sin. (t Vp) —— sin. (t Vp)
;

now since the first members

—
5
— cos. (t Vp) and—-— sin. (t Vp)

correspond to a uniform motion in a circle, whose radius is —-—

,

z

and since the two other members correspond to an opposite uni-
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form motion in a circle, whose radius is —-— , we can also assume

that the elliptical motion of the point is composed of two circular

ones, i.e., that the point describes uniformly a circle, whose radius

is —-—, while the centre of the latter moves uniformly in a circle,

, ,. . a + b
whose radius is —-—

.

If h = 0, the oscillation takes place in a straight line, out we
can imagine it to be composed of two equal opposite circular

motions.

§ 25. Waves of "Water.—According to the accurate obser-

vations of the Weber brothers, an example of elliptical oscillation

is presented by the motion of waves of water (Fr. ondes ; Ger.

Wasserwellen). Not only every particle on the surface, but also

every particle below it describes in the wave motion an ellipse.

On account of the resistance on the bottom the ellipses below the sur-

face of the water are smaller than those at it, and in general they de-

crease with the distance from that surface. The different elements

in the surface of the water, as well as those in any other plane

parallel to it, are at the same moment in different phases of mo-

tion ; while an element A, Fig. 898, is beginning its path at (0),

Fig. 898.

an element B is already at (1), a second is at (2), a third D
at (3), a fourth E at (4) ; at this moment the vertical section

of the surface of the water is a cycloidal or trochoidal curve

A BGDEFGHJ. Before the wave motion began, the ele-

ments were at the centres K, L . . . N of their trajectories and

formed the horizontal surface KN of the water ; during the wave

motion, on the contrary, part of the elements are above and part

are below this line, and all have, of course, a tendency to return to
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their positions of rest K, L , . . N. The oscillations are, however,

elliptical so long only as the waves remain unchanged; if they de-

crease gradually in magnitude, the path of each element becomes

narrower and narrower and no longer forms an ellipse, but a spiral

line. On the other hand, when the waves are forming or increas-

ing in size, the elliptical trajectory is formed gradually from a

spiral line.

After one instant A has moved in its trajectory to (1), B to (2),

G to (3), etc., and the wave-form has been moved forward in conse-

quence through the horizontal distanceKL between two elements

;

after a second instant A is at (2), B is at (3), G is at (4), and the

wave-form has again advanced the distance K L — L M; thus, as

the elements of the water revolve, the wave-form advances more

and more, and when an element has made a complete revolution,

the wave has advanced its own lengthK N. When an element has

made half a revolution, as is shown in Fig. 899, the place of the

Fig. 899.

wave-crest is occupied by a trough or sinus, and that of the latter

by a crest. This advance of the wave-form does not, of course,

consist in any particular motion of the water, but in the forward

motion of the same phase, e.g., in the forward motion of the crest

J (Fig. 898) of the wave to 0, P, etc. If the period of a revolu-

tion t of an element of the water and the length A J— s of a wave

arc known, we can calculate the velocity ofpropagation by means of

"the formula a ,== -.
T

The height of a wave, or the sum of the height of the crest and

the depth of the trough is equal to the vertical axis 2 b of the

ellipse, in which the elements of the water revolve ; the length G G
of the trough exceeds the half length of the wave by the length 2 a

of the horizontal axis of the ellipse, and the length of the crest is, of
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course, that much shorter than half the wave length. Hence the

cross-section of the trough of a wave is larger than that of the wave-

crest ; now since this is impossible in consequence of the invariabil-

ity of the volume of the water, the centre of the elliptical trajectory

must be somewhat above the surface of the water when it is at rest.

§ 26. Webers' Experiments.—According to Webers' experi-

ments, the path described by a particle of the water at the surface

of a wave is a slightly compressed ellipse ; according to Enry, on

the contrary, the particles of water in sea-waves describe upright

ellipses. Both axes of the elliptical path decrease as the depth

below the surface increases, and according to Weber the horizontal

axis decreases more rapidly than the vertical one. The wave ap-

pears not to be propagated in a vertical direction ; elements verti-

cally below each other are, according to the observations of the

Weber brothers, in the same phase at the same time ; on the con-

trary, those situated in a horizontal line form a complete series of

the different phases of the motion. From the experiments cited

above, it appears that the period of revolution of an element, or the

time in which a wave is propagated its own length, depends prin-

cipally upon the ratio of the two axes of the path. The greater

the ratio of the horizontal axes 2 a to the vertical one 2 b, the

greater is the period of revolution. The particles, which lie deeper,

describe their paths more quickly than those at the surface ; from

this we must conclude that the wave length diminishes towards

the bottom.

The velocity of propagation c = - of a wave depends, since the

time of revolution t increases with the ratio j, not only upon the

length s, but also upon the height b. If a wave is propagated be-

tween two parallel walls, E.G. in a canal, its width remains con-

stant, its height b diminishes and its length increases in such a

manner that the only change in the velocity of propagation is that

resulting from the friction of the water upon the walls. If, on the

contrary, a wave can propagate itself freely in all directions, and if

,

it forms a wall which recedes into itself, its length and width are

both increased at the expense of its height, and the wave becomes

gradually flatter and flatter until in a short time the eye is no longer

able to distinguish it. If such a wave is not originally circular it

will gradually approach the circular form as it advances. Accord-

ing to Webers' experiments, the height diminishes in arithmetical
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progression when the wave advances in geometrical progression.

The velocity of propagation of such a wave diminishes gradually,

the farther the wave is propagated. If, on the contrary, a wave is

propagated from without inwards and is contracted more and more

in consequence, its height, length and velocity gradually increase.

There is, therefore, a great difference "between the waves of water

and those of sound. In the latter the velocity of propagation de-

pends upon the elasticity and density of the medium alone ; in the

former, on the contrary, it is a function of the length and height.

If the undulations of the water are produced by a force which acts

almost instantaneously, e.g., by the immersion and quick with-

drawal of a solid body, the particles of the water describe elliptical

paths which gradually decrease, or rather spiral lines, which draw

themselves together more and more, and the periods of revolution

become smaller and smaller. The origin of a whole series of waves,

which become smaller and smaller, is to be attributed to these rela-

tions of motion. As the waves are propagated farther and farther,

those which follow are increased in size by those which have pre-

ceded them, and those most in advance in a short time become so

flat as to be invisible. This running together of the waves gives

rise to systems of small waves, which present themselves like teeth

upon the front surface of the main wave. These small waves or

teeth advance, according to Poisson and Cauchy, with uniformly

accelerated motion.

§ 27. Hagen's Experiments.—According to the latest in-

vestigations of Oeh. Oberlaurath Hagen (see the " Seeufer-und

Hafenbau von G. Hagen, Berlin, 1863," 1 Vol., which forms the

third part of that author's " Wasserbaukunst f also his treatise

upon waves in water of uniform depth ; Berlin, 1862), the particles

of water of waves in deep water describe with constant angular

velocity circles, whose diameters decrease as the depth increases, and

at the bottom they are infinitely small. A filament of water, which

when at rest is vertical, will oscillate, in consequence of the wave

motion, backwards and forwards about this vertical line, its base

remaining fixed very much as a stalk of wheat is moved by the

wind. The line of the wave or the curve which unites the points,

which are in the same phase of revolution and which, when the

.water is at rest, is a straight line, is therefore a prolate cycloid,

that becomes more and more prolate as the depth increases ; at

the bottom it is nearly a straight line and at the surface it ap-
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proaches the common cycloid. From the radius r of the common
cycloid, whose value for high sea-waves rises to 50 feet, we obtain

the length of the wave I = 2 n r, its velocity of propagation

c = V¥J~r = j/^,

the period of a wave

"
' c~* y

g ~ y g'

and the angular velocity with which the molecules of water describe

their elliptical paths, w = -.

The centre of the circle, in which a particle which is situated

lower down revolves, is determined from the radius % of this circle

and from its distance y from the centre of the first circle, whose

radius is r, by means of the formula

y = n( r

z ).

By inversion we obtain z = r <T~, in which e = 2,71828 de-

notes the base of the- Naperian system of logarithms. We can

easily understand from this that the circles of oscillation decrease

very rapidly with the depth; for r = 10 feet, at the depth y = 50

feet, z = 10 . e-°'
2 = 3,50 feet, and at the depth y = 200 feet,

z = 10 . e- '
05 == 0,15 feet.

When the waves are of small constant depth, as Mr. Scott

Eussel had already remarked, the horizontal motions of the parti-

cles of water, which lie above one another, are equally great ; the

filament of water, which was originally vertical, remains so during

the wave motion, but its length and thickness vary. The different

particles describe closed curves of equal horizontal diameters and

of variable vertical ones, which decreases gradually with the depth

;

they are, however, ellipses only when we suppose that the height

of the wave is infinitely small compared to the depth of the water.

When the depth of the water is finite and the height of the

waves is great, the laws of the motion of the waves are very com-

plicated.

§ 28. Interference of Waves of "Water.—If two tcater-

ivdves cross each other, the same general phenomena occur as in

the case of waves of air and other fluids ; after they cross each other,

each wave continues its motion as if they had not met ; but accord-
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ing to Weber's observations, it is accompanied by a small loss of time,

so that a wave requires a little more time to pass from one point to

another when it passes through another wave than when it is prop-
agated freely. If two crests come together, a crest twice as high as

the first is produced, and in like manner when two troughs meet, a
third, twice as deep, is formed. According to Weber's experiments,

the ratio of the height of the simple wave to that of the compound
one is 1 : 1,79. When two waves interfere, or when a wave-crest

coincides with a trough of a wave, the two counterbalance each
other, and the point where this occurs remains at the same level as

the surface of the still water. The paths of the single particles,

when two waves meet, become straight lines, which are vertical at

the crest, but at a distance from it their positions are such that

they are inclined towards the crest.

If a wave of water impinges against a solid wall, it will be re-

jected by it as if it came from a point as far behind the wall as

that from which the wave started is in front of it, and the reflected

wave will pass through the one which is arriving exactly in the

same manner as any two waves, which cross each other, do.

In Fig. 900, 1, II to V, the phenomena, which are presented

Fig. 900.

when a wave A B CD E is reflected by a rigid wall M JSf, are re-

presented. In I the crest CD E of a wave is arriving at the wall

69
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J/i^and the reflection begins in the form of a wave Gx Dx Ex ; in

II the top of the crest D of the wave has arrived at the wall and

has combined with the half Dx
Ex of the reflected crest of the wave

;

half a crest G G of almost double the height is thus produced. In

III the trough A B G of the wave has just reached the wall, while

the reflected crest Gx Dx Ex is passing over it ; an interference is

thus produced which causes the wave to disappear entirely. In IV
the bottom B of the trough of the approaching wave coincides with

the bottom Bx of the trough of the reflected wave ; a trough A S
of double the depth is thus formed. Finally, in V the approaching

wave A B GB E is reflected completely by the wallMN and thus

changed into the wave A X BX Gx Bx Ex, which moves in the oppo-

site direction.

Fig. 901.

When the waves are reflected by a wall, the paths of the mole-

cules undergo the same changes as when two waves cross each

other; here also, in the neighborhood of the wall, the horizontal

component of this motion is more and more balanced, and, on the

contrary, the vertical one is increased more and more, so that near

the wall the path becomes a vertical line, and farther from it an

inclined one. If the wave strikes obliquely against the wall, it will

be reflected, like every elastic body, at the same angle at which it

struck. If a wave strikes but partially against an obstacle, the
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phenomena of inflexion are produced, new waves being formed at
the extreme ends of the obstacle.

Finally, stationary waves of water, like those of a string or any
other solid body, are formed when two waves of the same length,
which originate at two points situated at a distance apart equal to
1, 3, 5, 7 . .

.
times the fourth part of the length of a wave, cross

each other. IsbABCDEFQH, Fig. 902, 1 and II, be one, and
A

X
BX CX D x

E
x Fx Gx Hx the other wave. • At the points K, L, M, N,

where the two systems of waves are at the same distance from, but
on opposite sides of the middle line, the motions counteract each
other and fixed points of interference are produced; on the con-
trary, above and below the points 0, P, Q, R, where the two wave-
lines cut each other and the paths are therefore doubled, the tops
of the crests and the bottoms of the troughs are alternately formed.

Fig. 90S.

Remark.—The most complete treatise upon the motion of waves is the
following

:
" Wellenlehre auf Experimente gegrundet, etc.," by the brothers

G. H. Weber and W. Weber, Leipzig, 1825. A good abstract of it is con-
tained in the " Lehrbuch der Mechanischen JSTaturlehre," by August. Mul-
ler's " Lehrbuch der Physik und Meteorologie," Vol. I, can also be con-
sulted. The treatises of Laplace, Lagrange, Flaugergues, Gerstner and
Poisson are reviewed and criticised in Weber's work. Cauchy's " Wellen-
Theorie" and Bidone's " Versuche " are discussed at length in " Gehler's
Physikalisches Worterbuch," Art. " Wellen." Einy's wave theory has been
translated by Wiesenfelcl and published under the title " Feber die Be-
wegung der Wellen und liber den Bau am Meere und im Meere," Vienna,
1839. Hagen's work has already been cited, § 27. The theory of water-
waves has been treated by Airy in an article upon " Tides and Waves," in
the Encyclopedia Metropolitana.



TRANSLATOR'S APPENDIX.

C INCE the last German edition of the present volume was issued

the author has published in the " Civilingenieur" several articles

upon subjects, which have been treated in the foregoing pages.

As they contain much valuable information and give the results

of a very great number of very careful experiments, a brief abstract

of the matter contained in some of them will be given here. Those

which will first be noticed are three articles upon the efflux of

water, viz.

:

(1) the different methods of experimenting upon the efflux of

water under a constant head (Die verschiedenen Methoden der

Versuche iiber den Ausfluss des Wassers unter constantem Drucke.

X Band, 1 Heft);

(2) experiments upon the efflux of water under a very small

Ihead (Versuche "iiber den Ausfluss des Wassers unter sehr kleinem

Drucke. X Band, 3 und 4 Heft)

;

(3) the relations of compound efflux, considered theoretically

and illustrated by experiment (Die zusammengesetzten Ausfluss-

verhaltnisse theoretisch entwickelt und durch Versuche erlautert.

XI Band, 2 und 3 Heft).

Article No. 1 begins with a description of the various methods

adopted by different experimenters to maintain a constant head in

the main or discharging reservoir. Smeaton returned the water,

which was discharged, to the reservoir by a hand-pump and thus

maintained the water level constant in the former. Christian em-

ployed a large weighted cask, which was suspended by a rope ; as

the water was discharged from the reservoir, the cask was allowed

to sink so. as to displace exactly the same quantity of water as had

flowed out of the reservoir. In Prony's experiments the escaping

water was caught in a vessel, which was connected with two paral-
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lelopipedical cases (made of sheet-metal). The latter floated upon

the water in the main reservoir, and the apparatus was so arranged

that the increase in weight of the vessel caused the floats to dis-

place exactly the same quantity of water as had been discharged.

The impulse of the escaping water will interfere with the working

of this apparatus, unless proper precautions are taken. Hachette

(see his " Traite elementaire des Machines ") passed a hollow tube

through the bottom of the reservoir ; by sliding the tube up or

down the level of the water in the reservoir could be changed. If

the volume of the water, which entered the reservoir, exceeded the.

discharge, the excess escaped over the top of the tube. A slight

variation of level, of course* took place. The author tried several

different methods of obtaining the same result. The first, which

to a certain extent resembles Smeaton's, was to feed the discharg-

ing reservoir from the main reservoir by means of a pipe, in which

an ordinary cock was placed. An assistant is stationed at the cock,

by turning which he maintains the surface of the water in the

discharging reservoir at a constant level, which is marked by a

fixed pointer in the reservoir. The second method he employed

was Christian's. He used a hollow float made of sheet-metal ; its

weight could be regulated by filling it partially with sand. By
allowing the float to sink as the water was discharged, the surface

of the water was maintained at a constant level, which was indi-

cated by a pointer. The volume of the float gives the discharge.

This method is not so accurate as that last described (by means of a

cock), and it is not so simple as it appears at first sight ; for the

size of the float must vary with that of the orifice. The floating

syphon gives more accurate results than Prony's apparatus, de-

scribed above. It consists essentially of a T-shaped syphon with

two lateral pipes, by which the water enters, and of a larger central

pipe, by which it leaves the apparatus. Each of the lateral pipes

passes through a water-tight cylinder of sheet-metal, which is open

on top and floats upon the water. These two floating cylinders

support the syphon ; by filling them partially with water we can

immerse the inlet orifices of the syphon as deep as we please, and

the outlet orifice can be brought to any desired distance below the

level of the surface of the water in the reservoir. As the surface

of the water in the reservoir sinks, the whole apparatus descends

with it, and the head or distance of the outlet orifice below the

level of the water remains constant.

The author has also applied the principle of Mariotte's flask to
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maintaining a constant head, or constant velocity of efflux. The
discharging reservoir is a cylindrical vessel, which is provided with

two orifices or openings, but which is in all other respects air-tight.

One of these openings is in the top and the other is upon the side

near the bottom. A tube or pipe, which is open at both ends, fits

in the orifice in the top by means of an air-tight ground joint, in

which it can slide up and down. The orifice in the side was so

arranged that mouth-pieces of various kinds and sizes could be

inserted in it. The vessel is first filled with water through the

upper orifice and the pipe is then inserted and pushed down a cer-

tain distance, depending upon the head we wish to have ; the ori-

fice of efflux is then opened and the water in the tube sinks until

air begins to pass under the bottom of the tube and rise to the top

of the vessel. The head is now constant and is measured by the

difference of level between the orifice of efflux and the bottom of

the tube. In order to prevent the air, which enters through the

tube, from causing too much disturbance, the bottom of the tube

is surrounded by a cylinder of wire-gauze. A glass tube, which is

open on top, enters the vessel at the bottom and is turned ver-

tical upwards, serves to measure the'pressure. The same principle

can be applied in another form. An air-tight vessel, which is

filled with water, has a pipe inserted in the side near the bottom
;

this pipe passes below the level of the water in the discharging

vessel. Another pipe, which is smaller and is made principally of

India-rubber, enters the air-tight vessel near the top, and the other

end of it is placed so as just to touch the surface of the water in the

discharging reservoir. If the level of the water in the latter sinks,

air enters the tube and water is discharged from the air-tight ves-

sel, in consequence of which the surface of the water in the dis-

charging reservoir rises and seals the mouth of India-rubber tube

and the flow of water into the main reservoir ceases. The objec-

tion to this method is the unsteadiness of the surface of the water,

which renders it difficult to measure the head with accuracy. In

order to render it more steady Geli. Oberbaurath Hagen had two

small holes made in the side of the large tube just above the outlet

and in addition employed an intermediate vessel.

A series of experiments, made with the aid of the different ap-

paratus just described, gave the following results. The water was

discharged through an orifice in a thin plate 1 centimeter in

diameter.
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Nature of the head.

Gradually decreasing,

Constant

a

a

u

Description of the apparatus.

Author's-ordinary ap-
paratus for experi-

ments upon efflux . ,

Level maintained by
a cock

Level maintained by
a floating body . . ,

Level maintained by
Mariotte's flask . . .

Level maintained by
apparatus last de-

scribed

Head in meters.

A, =0,1700
h
z
== 0,0500

A = 0,100

Average of the above five experiments

Value ofH

0,6647

0,6776

0,6576

0,6518

0,6654

By the aid of one of the above-described apparatus, experiments

upon efflux with constant influx can be made. The formula to be

employed (see page 923) is

The discharging reservoir which was used in these experiments

was the apparatus represented upon page 927.; by means of Mari-

otte's flask, the discharge per second into the former was main-

tained constant during each experiment. In these experiments

the surface of the water in the discharging reservoir either rose or

fell. By preliminary experiments, the coefficients of efflux for the

orifices in both vessels were determined.

In the first experiment the surface of the water in the discharg-

ing reservoir rose. The observed duration of efflux was t = 170,25

seconds ; that calculated by the above formula from the data given

by the experiment was t = 170,5 seconds.

In the second experiment the surface of the water sank ; the

observed time was t = 213,2 seconds, the calculated was 213,9

seconds.

Another case, which often occurs in practice, is that represented

in Pig. 776, page 908, when the reservoir A C is very large com-

pared to G L. The water passes from the large reservoir A C
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through a pipe, into the reservoir G L, from which it is discharged

through the orifice F into the air. By prolonging the discharge

pipe of Mariotte's flask so that it will reach below the surface of

the water in the discharging reservoir (Fig. 792), the level of which

surface is variable during the experiment, we obtain an example

of this case. The formula for the duration of efflux, which must

be employed, is

t = = 1 11 F['2 ( Vh - Vx) +

V Vh + Vk Vx- Vk'-* L

1

\Vh
x + Vk x V y - VkJ l)

in which G denotes the cross-section of the main discharging res-

ervoir, F the area of the orifice in the main reservoir, /* its coeffi-

cient of efflux, F
x
the cross-section of the outlet orifice of Mariotte's

flask, \.i
x
its coefficient of efflux, h x the height of the surface of the

water in the main reservoir above the orifice in it, h the height of

the constant water level in Mariotte's flask above the variable one

in the main reservoir, x What h becomes in the time t, y what h x

becomes in the time tx , and 7i = h + h x
= x + y; Jc is the value

of x, when the flow becomes permanent, i.e.

h= (v x
F,yih

(fMFY + (ih Fxf
and

]c
x
— 7i

Q
— fa

In the first experiment the surface of the water in the main

reservoir sank; the observed value of t was 116,33 seconds and the

calculated value was 116,67 seconds. In the second experiment

the level of the water rose ; the observed time was t — 157,5 seconds,

and the calculated value of t was 158,18 seconds.

No. (2.) Experiments upon the Efflux of Water under
a very small head.—From previous experiments by the author

and others, we know that for an orifice in a thin plate one centi-

meter in diameter,

1, when the head is 103,578 meters, ju = 0,600

2, " " 13,574 " \i = 0,632

3, " " 0,909 " a = 0,641 I

4, " " 0,101 " fi = 0,665,
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and that for a brass tube 1 centimeter in diameter and 2 meters

long, the coefficient of resistance

1, when the velocity is v = 20,99, is £ = 0,01690

2, « " r-a* 12,32, is £ = 0,01784

3, * " v = 8,64, is £ = 0,01869

4, . " « v = 2,02, is £ = 0,02725

5, " « 0= 0,57, is ? = 0,03646;

but we have no experiments which show how the coefficient of

efflux increases, when the head is very small (e.g. 1 to 2 centime*

ters). It is also important to know how C, increases, when the

velocity of the water is very small (e.g. 0,1 meter). In the above-

mentioned article the author gives a detailed description of a very

extended series of experiments, undertaken for the purpose of dis-

covering the above relations. The discharging reservoir was a

wooden trough 2,25 meters long, 0,45 meters wide, and 0,190 me-
ters deep. It was necessary to make the reservoir as long and wide

as possible ; for the surface of the water could, of course, sink but

a very short distance during the experiment. The author then

gives a description of the various methods and apparatus employed

to determine with accuracy the cross-section of the orifices and the

head of water. This portion of the article, although of the greatest

interest, would be out of place here.

The table on page 1098 gives the results of the experiments

with orifices in a thin plate and with other mouth-pieces.

The temperature ofthe water was between 15° and 18° Centigrade.

From the 8 experiments with orifices in a thin plate (No 1 to

No. 5), whose diameters varied from 0,405 to 2,529 centimeters, we
see that the contraction diminishes, when the head is small, as it

does wljen the head is large, not only with the head, but also with

the diameter of the orifice.

From the data given in the table on page 1098 and at the be-

ginning of the article, the following table has been arranged.

Head ft 0,020 0,101 0,909 13,574 103,578

Coefficient of efflux ft 0,711 0,665 0,641 0,632 0,600

The experiments under Nos. 6 and 7 show that in this case also

the coefficient of contraction for an orifice in a thin conically con-

vergent wall is greater than that for an orifice of the same size in a



1098 GENERAL PRINCIPLES OF MECHANICS.

L-COOOrlL-ODrlrtCtcO;

ddrtrtrtdddddodddddoddoo
rflHT-iC-.i-iHnmt<«WW lM01-

ioooooooowg^iot-i

^j-OQOi-THi-wwSQOosaocsTfiiO'^ffioococoinHMiHffiMeortooo'^ooKmwQOinHi-iNcijsit-ioM

t- 1- 1- ^ir©<D©»co»fflroRw^»i;i-L-QO>-L-i-^ e&St^oiS 31 enS ao 35 »a ia^i So
oVoVddo'o'o'oVdoVo'o'dddoVdo'dddddo'dddddoVoVdo'ddo'o'o'dd'

8 §SS S S S
1606 oo co

i-Teoio cT ©

P o v
5 S-. « § I I S s II 3 ssssso o -^ o_ »o.>fl.

-i-T cT t-T i-T 7-^i-T

g II

g ©

0)

1 &
r>o «

o
© o
fcC ©
u in

a
• •> es

rt ...

"3

fl

if)
fl

> B>

P
o

T3

>1 >J

3 c3
© ©

«
& ©

o©
O
© ft

c3 ci :g

.3 g P
o

©
F|

a 3 c3
o

o o
PI

Sh O
rt cl ©
7! Pi W
©

g
o

O o aa

II f
«t-i II ©

0) ©
&d bo,

5 £>
'5* '^

'

05 {;.

th «t eo-tfm «o t- co 3 J3 S SSS S & SI S3 £8



TRANSLATOR'S APPENDIX. 1009

thin plate, and that it is less for an orifice in a conically divergent

wall than for the latter. In experiment No. 18 a free contracted

stream could not be obtained. The efflux took place with a filled

tube and the stream pulsated quite violently.

It was also observed that the discharge was not increased as

much by rounding off the inlet orifices of the ajutages, when the

head was small as when it was great.

The table on page 1100 contains the results of experiments with

long tubes made of glass, brass and zinc. Preliminary experiments

were made to determine the coefficients of resistance of the inlet

and outlet mouth-pieces combined. By subtracting the coefficients

thus found from those obtained for the long tube and inlet and

outlet mouth-pieces together, the author deduced the coefficient of

resistance for the tube alone.

These experiments showed the coefficient of resistance £ of the

water to be very great, when the velocity is small. This coeffi-

cient £ is nearly the same for glass and brass tubes.

To the table

for v = 20,99, ? = 0,01690
a

we can now add

= 12,32, £ = 0,01784

= 8,64, £ = 0,01869

= 2,02, £ = 0,02725

= 0,485, ? = 0,03453,

for v = 0,2028, ? = 0,0587

" = 0,0890, ( = 0,1420.

The third portion of the article is devoted to an account of a

series of experiments upon the flow of water through bends and

elbows under a very small head. The coefficient of resistance for

the inlet and outlet portion was first determined as in the experi-

ments, the results of which are given in the last table. The table

on page 1101 contains the coefficients of resistance for the flow of

water through elbows and bends under small heads.

We see from the last table that the coefficients of resistance of

elbows are much greater than those for bends of the same diameter,

when both cause the direction of the motion of the water to change

90° and when the radius of curvature of the axis of the bend is

equal to the diameter of the tube.

The third article (No. 3), which is cited above, is very long,

covering 68 columns of the Civilingenieur. As it would be impos-

ible to condense the matter contained in it in the limited space
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which is at our disposal, we will content ourselves with an enumer-

ation of the subjects treated. They are

—

(1.) The simultaneous discharge of water through two orifices,

when the head diminishes.

(2.) The variable discharge of water from one vessel into a sec-

ond, in which the orifice is submerged, while a constant quantity

of water is continually discharged into the first vessel.

(3.) The variable efflux of water through a notch, either with or

without influx.

(4.) Efflux of water from a prismatical vessel, with free influx

into the latter from another prismatical vessel.

(5.) Efflux of water from a prismatical vessel, with influx under

water from another prismatical reservoir.

These cases are treated at length ; the formulas are first deduced

and then tested by very careful experiments. Any one interested

in the subject of hydraulics . will find this article worthy of his

most attentive perusal.

We would also call attention to the following articles by the

author upon subjects connected with hydraulics.

" Hydrometric experiments upon the application of the formulas

of Daniel Bernouilli (page 804) and Charles Borda (page 884), as

well as upon the use of a new water-meter; also upon the friction

of water in conical pipes and upon the play of jets d'eau" ("Hydro-

metrische Yersuche iiber die Anwendung der Eormeln von Daniel

Bernouilli und Charles Borda, so wie "iiber den Gebrauch eines

neuen Wassermessers (einer Wasseruhr) ; ferner iiber die Eeibung

des Wassers in conischen Bohren und iiber das Spiel von springen-

clen Wasserstrahlen," Civilingenieur, Band XIII, 1 Eeft). " Com-
parative hydrometric measurements by means of a tachometer, a

large rectangular orifice of efflux and a large overfall extending

across the whole wall," (" Vergleichende hydrometrische Messungen

mittels eines hydrometrischen Flugelrades, einer grosseren rec-

tangularen Ausflussmiindung und eines grosseren "iiber die ganze

Wand weggehenden Uberfalls," Civilingenieur, Band XIII, 5 and 6

Heft).

The latter article contains an account of Schwamkrug's water-

divider, mentioned upon page 986.

I. " The quicksilver differential piezometer and its application

to the determination of the difference of the pressure of the water

in a set of conduit pipes."
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II. "The water piezometer with a micrometer, as well as its

application to the determination of the pressure of gas in pipes,

etc."

III. "A supplement to the article cited aboye upon the differ-

ent methods of experimenting upon efflux under a constant head."

("I. Das Quecksilber-Differentialpiezometer, etc, II. Das Wasser-

piezometer mit Mikrometer, etc. III. Eine Erganzung der Ab-

handlung uber die verschiedenen Methoden der Ausflussversuche

unter constantem Drucke." Civilingenieur, Band XV, 2 Heft.)

The translator would also call attention to two articles by the

author upon " experimental mechanics/' which form a part of a yet

unpublished work upon that subject. The titles of the articles are

:

(1.) " Experiments to accompany lectures upon the elasticity

and strength of solid bodies " (" Versuche bei Vortragen uber Elas-

ticity und Festigkeit fester Korper," Civilingenieur, Band IX,

5 Heft), and

(2) "Experiments to accompany lectures upon Mechanics"

("Versuche bei Vortragen uber Mechamk," Civilingenieur, Baud

XIV, 6 Heft).

The first article contains a description of the apparatus used

by the author in experimenting before the students at Freiberg

upon flexure and torsion. By means of this apparatus, which is

very simple and easily constructed, the professor can show to the class

almost all the phenomena of flexure and torsion. He can also de-

termine the moduli of rupture and of elasticity not only by observ-

ing the deflection and angle of torsion, but also by allowing the

body to be experimented upon to vibrate and counting the number
of vibrations. The modulus of resilience and that of fragility can

also be determined. No. (2) contains an account of some modifi-

cations of the above apparatus, by means of which experiments

upon the theory of couples (including their composition and de-

composition) can be made. This is followed by the description of

a simple reversable pendulum, by means of which the value of g
can be determined in the lecture-room with little difficulty. The
author then takes up the subject of the elasticity of rigid bodies.

He discusses four cases of double flexure : first, that of a prismati-

cal rod of a rectangular cross-section, bent by a force, whose direc-

tion forms an angle 6 (which is not 90°) with one of the sides of

the cross-section; secondly, that when the cross-section of the rod

is a right-angled triangle and the direction of the force is perpen-

dicular to the base of the triangle : thirdly, that when the rod is
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acted upon by two forces, whose lines of action do not lie in the

same plane ; and fourthly, that when the beam is bent in the shape

of an elbow and loaded at the extreme end with a weight (the

crank is an example of this case). The article closes with an ac-

count of some experiments with compound girders.

Those engaged in teaching will find the last two articles full of

valuable information ; but a translation of them would occupy too

much space here.

In conclusion, we would mention an article upon " the flexure

of a homogeneous prismatical measuring rod, supported in two

points, as well as the shortening of its length, produced by it, dis-

cussed in as elementary a manner as possible " (" die Biegung eines

in zwei Punkten unterstiitzten homogenen prismatischen Mess-

stabes, sowie die durch dieselbe hervorgebrachte Verkiirzung seines

Langenmaasses, auf moglichst einfache Weise ermittelt von Julius

Weisbach," Civilingenieur, Band XII, 4 Heft).
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Beam, 418, 422, 427, 430.
" subjected to a tensile force, 559.

Bed of a river, 955.
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Centrifugal force, 608.
" of water, 719, 720.

" " work done by, 610.

Centripetal force, 608.

Chain bridge, 292.
" friction, 358, 361.

Cinematics, 154.

Circle, 34.
" centre of gravity of an arc of

a, 216.
" osculatory, 87, 142, 415.

Circular functions, 70.

Cistern barometer, 776.
" manometer, 779.

Clack valves, 900, 905.

Cloistered arch, 243.

Cocks, 900, 903.

Cohesion, 371, 762.

force of, 163.

Collar bearings, 347.

Columns, proof load of, 532.

Combined elasticity and strength,

373, 547.

Communicating pipes, 723, 761.

Components, 129, 174, 177, 1071.

Component velocities, 129.

Composed forces, 174.
" motions, 126.

Composition and decomposition of ve-

locities and accelerations, 131, 132.

Composition and decomposition of

forces, 174, 177, 179, 195, 207.

Composition and decomposition of

couples, 202.

Compound discharging vessels, 907.
" pendulum, 661.

Compressed air, work done by, 783,

936.

Compression and extension, 374.
"

elastic and permanent,
376.

strength of, 372, 373.

Concavity, 39, 55.

Conduit pipes, 874.

Conical pivots, 347.
" tubes or pipes, 872.
" valves, 905.

Connecting rod, 537, 573.

Constant factors, 41, 61.

force, 166.
" members, 41. 61.
" quantities, 33, 41.

Contracted vein or stream of water,

821, 823.

Contraction, coefficient of contraction.
822, 944.

Contraction, complete and incomplete
or partial, 837.

Contraction, perfect and imperfect, 840,
858, 887.

Contraction, scale of, 836.
Convexity, 39, 55.

Coordinates, 34.

oblique, 79.

Cosine and cotangent, functions of, 71.
Couple, 200, 412.

" axis of a, 205.

Crank, 121.

Cross-section, 376, 676, 801, 955.
" weak, dangerous, 495.
" sudden variation of, 883.

Curvature, radius of, 87, 142, 413.

Curve, elastic, 414, 417.

Curved surfaces, 40.

Curves, convex, concave, 39, 44, 54
" quadrature of, 78.
" rectification of, 85.

Curvilinear motion, 141, 145, 189.

Cycloid, cycloidal pendulum, 655, 65G.

Cylinder, hollow, 443.

Dam, 732.

Daniel Bernouilli, 804.

Decomposition and composition of

couples, 202.

Decomposition and composition of

forces, 174, 177, 179, 195, 207.

Decomposition and composition of
velocities and accelerations, 131, 132.

Density of bodies (specific gravity), 161.

Dependent variable, 33.

Deviation, angle of, 895.

Differential, 38.
" ratio or quotient, 39.

Directive force of the magnetic needle,

1053.

Discharge, 800, 933.

Discharge-pipe of a dam, 858, 922.

Displacement, angle of displacement,

530, 649.

Diving-bell, 783.

Ductility, 372.

Dynamics, 155, 165.

E.

Earth, magnetism of the, 1054, 1059.

Efflux, coefficient of, for water, 824.
" " " " air, 944.
" from moving vessels, 817.
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Efflux of air from vessels, 932, 984,

939 941.
" of different fluids, 805, 930.
" of moving water, 842.
" of water under water, 806.
" of water from vessels, 800.
" under variable pressure, 910,

952.
" velocity of, 800.
" with filled tube, 853.

Elastic curve, 414, 417, 522.
" extension, 375, 404.
" fluids, 712.

Elasticity, 163, 371, 1045.

limit of, 371, 376.

modulus of, 378, 407, 1049.

Elbows, 894.

Elevation, angle of, 136.

Ellipse, 50, 284.

Ellipsoid, 594.

Elliptical oscillation, 1081.

Emptying of a vessel, 910.

Energy, 168.
" of discharging water, 801.

Envelope, 139.

Equality of forces, 156.

Equilibrium, 155.

kinds of. 249, 250, 264.

indifferent, 250. 266.

Evolute, 88.

Expansive force of steam, 35.

Expansion by heat, 793.

coefficient of, 793
" of the air, 781.

Exponential function, 63.

Extension, elastic and permanent, 375,
394.

" experiments upon, 398.

Fall of a stream, 955.
" of bodies, 35, 113, 639, 659.

Filling and emptying locks, 924.

Final velocity,- 108.

Flexure, 409.

strength of, 373, 450.

moment of, 412, 414, 432, 436.

Flotation, axis of, plane of, 746.

Floating, depth of floatation, 745, 749,

756.
" bodies, floating spheres, 989.

staff, 990.

Fluids,. 162, 712.

Force, direction of a, 163.
Force, living, 171, 173.

Forces, measure of, 158.
" moment of, 195, 414.
" normal, 143, 607.

tensile, 374.

Forces, 154, 155, 163, 205.
" equality of, 156.

Fragility, modulus of, 383, 453.
Free axes, 624.

Freshet or flood, 973.

Friction, resistance of friction, 809.

angle of, 314.
" balance, 317.

coefficient of, 313.
" coefficient of, of air in pipes

949.
" coefficient of, ofwater in pipes.

864.
" coefficient of, of water in riv-

ers, 965.

cone of, 314.
" height of resistance of, 864.

kinds of, 310.

laws of, 311.

of axles, 311, 316.
" rolling; 353.
" upon inclined plane, 828.

wheels, 336.
" • work done by, 313, 335.

Fulcrum, 256.

Function (xn), 44.

Functions, 33.

Funicular machine, 280.

polygon, 286.

G.

Gases, aeriform bodies, 776.

Gas-meters, 1023.

Gauging, 976.

Gay-Lussac's law, 793.

Geostatics, geodynamics, geomechan-
ics, 165.

Girder, 418, 422, 427, 430, 464.
" hollow and webbed, 437, 477.

Goblet, hydrometric, 986.

Gram, kilogram, 157.

Graphic representation, 84, 122.

Gravity, 113, 154, 163.
" centre of, 213.
" determination of the centre of,

214.
" plane of, line cf gravity, 213.
" specific, 161.

Gudgeons, 311.

Guldinus, properties of, 241.

Gyration, radius of, 581, 608.

H.
Hard, 372.

Hardness, 676.

Head of water, height of water, 722
801, 809.
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Heat, force of, 163.

Heat, work done by, 936.

Heaviness, 180.
" mean, of the earth, 1051.

of air, 795.
" " steam, 795.

" water, 160.

Height due to the velocity, 115, 809.

of rise, height of fall, 116, 878.

Horizontal and vertical pressure, 732,

736, 742.

Hydraulic observatory, 995.

Hydraulics, 165.

Hydrometers, Hydrometry, 976, 989.

Hydrometric goblet, 986.

pendulum, 999.

Hydrostatic balance, 757.

Hydrostatics, hydrodynamics, 165.

Hyperbola, 51, 80.

I.

Impact, different kinds of, 667, 668.

direct, 667.
" duration of, 668.
" elastic, 668.

friction of, 685.
" imperfectly elastic, 680.
" line of impact, 667
" oblique, 668, 682.
" strength of, 702, 705.

Impulse, 1002, 1006.

of air or wind, 1030.
" water, 1006, 1011, 1029.

Incidence, angle of, 634.
Inclination, angle of, 314, 639.

Inch, water, 983.

Inclined plane, 272, 274, 639.

Inertia, 157.
" force of, 157, 163, 574.
" moment of, 576.

Inflexion, 1091.
" point of, 55, 424.

Integral, integral calculus, 60.

formulas, 73.

Integration by parts, 76.

Intensity of a force, 164.
" the earth's magnetism,

1060.

Interference of waves, 1064, 1089.
Interpolation, 98.

Isochronism, 640, 658, 659.

Jets of water, 876.

Journals, trunnions, gudgeons, axles,

305, 311, 345.

K.

Eater's pendulum, 665.
Kilogram, 157.

Knee lever, 257.

Knife edges and points, 352.
Knots, 281.

I.

Law of Gay-Lussac, 793.
" " Mariotte, 37, 780.

Laws of nature, 35.

Length of a wave, 1064, 1085.

Lesbros' experiments, 846.

Lever, arm of, 195.
" bent, 257.
" kinds of, 255, 256, 343,

Limit of elasticity, 371, 376.

Line of current, mid-channel, 956.
" " gravity, 213..
" " impact, 667.
" " rest, 743.
" " support, 743.

Load, proof, 379.
" eccentric, 480.

Locks, 924.

Logarithm, 64.

Longitudinal vibration, 1045.

Loss of mechanical effect in impact,

674, 883.

M.

MacLaurin's series, 57.

Magnetic force, 163, 1056.

needle, 1053.

Magnetism, 1054, 1059.

of the earth, 1054.

Malleability, 372.

Manometer, 776, 778.

Mariotte's law, 37, 78C.

Mass, 158.
" moment of, 577.

Material pendulum, 661.
«* point, 165.

Matter, 156.

Maximum and minimum, 53.
" " contraction,

834.
" " tension, 515.

Mean, arithmetical, 97.
" harmonic, 675.

Mechanical effect, 168, 187, 209.
" " loss of, during im-

pact, 674, 883.
" " of compressed air,

783, 936.
" of friction, 813, 335.
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Mechanical effect of heat, 936.
" of inertia, 171,577.

" " of the centrifugal

force, 612.

Mercury, efflux of, 930.

Metacentre, 751.

Metal springs, 506.

Method of least squares, 95.
" " interpolation, 98.

Mid-channel, line of current, 956.

Modulus of elasticity, 378, 407, 1049.
" u

. logarithms, 65.
" proof strength, 380, 457,

529.
" " resilience and fragility,

383, 453.
" " rupture, or of ultimate

strength, 380, 452.

Molecular action, 762.

Molecules, molecular forces, 163, 762.

Moment, magnetic, 1054, 1060.

of a couple, 200, 201.
" " inertia, 577.

" parallel forces, 207.

statical, 195.

Momentum of a body, 670.

Motion, absolute and relative, 105, 149.
" accelerated, retarded, 106.

curvilinear, 141, 145, 189.
" in resisting media, 1035.
" kinds of, 573.

of air in pipes, 950.
" " water in channels, 955, 969.
" " water in pipes, 869.

" translation, 573.

phases of, 1062.
" rectilinear and curvilinear,

105.
" simple and composed, 126.
" uniform and variable, 106.

N.

Naperian logarithms, 64, 80.

Natural philosophy, 154.

Nature, laws of, 35.

Neil's parabola, 86.

Neutral axis, surface, 410.

Nicholson's hydrometer, 759.

Normal, 87.
" acceleration. 143, 607.

force, 189, 607.
Notches, overfalls, weirs, 811, 914.
Numbers, natural series of, 59.

0.

Obelisk, efflux from an, 919.

Obelisk, centre of gravity of, 234.

Oblique coordinates, 79.

Observatory, hydraulic, 995.

Oil, efflux of, 930.

Ordinates, 34.
" acceleration along the, 146.

" velocity along the, 145.

Orifices in a thin plate, 821, 930, 944.
" inlet and outlet, 875, 880.
" of efflux, 800.
" rectangular, 812, 828, 842, 846.

Oscillation, 649, 1042.

amplitude of an, 649, 1043.
" centre of, 661.

period of an, 649, 1043, 1067.
" of a pendulum, 649.
" of the magnetic needle,

1055.

of water, 1079.

Overfalls, notches, weirs, 811, 833, 844,

849, 914.

P.

Parabola, 3, 87, 133, 291, 302.

Parabolic motion, 134, 141.

Paraboloid, 591, 720.

Parallel forces, 199.
" plates, 770.

Parallelogram of accelerations, 132.
" forces, 177.

" " motions, 127.
" " velocities, 128.

Parallelopipedon of velocities, 132.

Pendulum, ballistic, 693.

bob of a, 591.

compound, 649, 661.
" hydrometric, 999.

Eater's, 665.
" oscillation of a, 649.
" reversable, 665.
" rocking, 665.
" simple, mathematical, 648,

661.

Perfect fluids, 712.

Percussion, centre of, 637, 692.

point of, 692.
Period, periodic motion, 106, 121.

Permanency, state of, of running wa,
ter, 957.

Permanent extension or set, 375, 394.
Phoronomics, 105, 154.

formulas of, 119.

Piezometer, 779, 881.
Pile driving, 698.

Pipes, long, 863.
" thickness of, 738.

Piston rod, 538, 573.
Pitot's tube, 998.

Pivots, friction of, 345.
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Plane, inclined, 272, 323.

of revolution, 248.

Pneumatics, 165.

Point of application, 183, 192.
•' inflexion, 54.

" " suspension, 249, 664.

Polyhedron, centre of gravity of, 231.

Poncelet's orifice of efflux, 828.

theorem, 341.

Position, 105, 150.
" relative, relative motion, 150.

Pound, 157.

Powers, natural series of, 64.

Pressure, hydraulic, hydrodynamic,
808.

hydrostatic, 713, 723, 724.
" in water, 724.
" of the atmosphere, 777, 787.
'* on the bottom, 721.
"

vertical, horizontal, 732.

Principal axes, 624. •

Principle of equal pressure, 713.

Profile, longitudinal and transverse,

955.
" transverse, of running water,

955.

Projectile, path of a, 1038.

Projectiles, height attained by, range
of, 136.

" motion of, in the air, 136.
" motion of, in vacuo, 1038.

Pronv's method of measuring water,
982.

Proof load, proof strength, 379. 451.
" moment of, 451, 472.

Proof strength, modulus of, 380, 457,
529.

Propagation, velocity of, 1062, 1085.

Properties of Guldinus, 241.

Prosaphy and synaphv, 763.

Pull, traction, 156, 374.

Pulley, fixed and movable, 303, 304,

368, 601.

Puppet valve, 905.

a
Quadrature of curves, 78.

Quantities, constant and variable, 33.

Quicksilver, efflux of, 930.

Quotient f , 93.
" differential of a, 43.

I Reaction, 164.

J
" of effluent water, 1002.
" wheel, 1015.

Rectification of curves, 85.

,
Reduction of a force, 255.

" masses, 578.
" the mcment of flexv.it,

432.
" the mcment of inertia.

• 580.

Reflection, angle of, 684.

I

Regulating apparatus, £00.

! Representation, graphic, 34, 122.

|

Resilience, modulus cf, 8£3. 453.

J

Resistance, coefficient of, £c6, 884.

height of, 856.

of water, 1G28.
" to buckling cr breaking

across, 525.
" to compression, 376, 592.

Resistances, 155, 809.

passive, 1077.

Rest, absolute, relative, 1C5.

Resultant, 174, 177, 194.

Revolution, axis of, 205, 248, 573, C29.

plane of, 248.
"

solids and surfaces cf, 238,

241, 242, 593, 626.

Rheometer, 1001.

Rigidity of cordage and chains, S61, SC3.

of hemp and wire ropes, 8G4.

366.

River, bed of a, 955.

Rocking, rocking pendulum, 6G5.

Rod, vibration of a, 1012.

Rolling down an inclined plane. 6-LQ.

friction, 353.
" of bodies, 605.

Rotary motion, 210, 211.

Rotation, axis cf, 205, 248, 573, 629.

plane of, 248.

time cf, 609.

Running water, 955.

Rupture by breaking across, 585.

modulus of, C81, 452.
" plane of, cress-section cf. 495.

R.

Radius of curvature, 87, 142, 413.
" gyration, 581, 609.

Ram. 698.

Scale of velocities of a stream. 957.

Set, permanent extension, 375, 394.

Shearing force, 412, 510.

strength of, 373, 406.

Shoots, efflux through, 848. 850.

Short pipes, conical, 861, 891.
" " conical convergent. 861.
" " conical divergent. 862.

" cvlindrical 853, 888.
" efflux through, 852, 854.
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Short pipes, inclined, 857.
" " interior, 855.

Simpson's rule, 81.

Sine, curve of, 71.
" function of the, 70.

Sliding, 310, 689.
" down an inclined plane when

friction is considered, 643.

Slope of a stream, 955.

Soft, 372.

Sound, velocity of, 1066.

Sounding rod, sounding chain, 991.

Specific gravity, 161, 755.

Sphere, 227, 236, 588, 605, 646, 747, 918.

Spheroid, 237, 588.

Springs, spring dynamometer, 503.

force of, 163. .

Statics, 155, 165.

Stability, 250, 264, 269.
" of floating bodies, 750.

Steam, expansive force of, 35.
" heaviness of, 795.

Steel springs, 506.
" tempered and annealed, 402.

Stereometer, 788.

Straight line, 49.

Strength, 372.
" of buckling or breaking

!

• across, 535.

ultimate, 379, 380.

String, vibrations of a stretched, 1070.
i

Subnormal, 87.

Subtangent, 40, 66, 292.

Surface, neutral, 410.

of water, 719.

Surfaces, curved, 40.

Symmetrical bodies, 215.

Symmetry, axis of, plane of, 215.

Syphon manometer, 778.

Tachometer, Woltmann's, 992.

Tangent, tangential angle, 39, 47, 146.
" function of, curve of, 71.
" plane, 40.

Tangential acceleration, 144.

force, 189.
" velocity, 146.

Tantochronism, 659.

Temperature, 793.

Tension, 281, 775, 776, 793.
" horizontal and vertical, 287.

Theorem, Poncelet's, 341.

Thickness of boilers and pipes, 738.

Throttle-valve, 901, 903.

Top, 610.

Torsion, 372, 523.
" angle of, 524.

Torsion balance, 1050.

elasticity of, 373, 523.
" moment of, 524.
" pendulum, vibrations due to

torsion, 1050.

strength of, 378, 528.

Traction, pull, 156, 374.

Tractrix, 850.

Translation, motion of, 573.

Transverse vibrations, 1048, 1070.

profile of running water,

955, 959.

Trigonetrical functions, 70.

lines, 72.

Twisting couple, 564.

Tubes, conical, convergent, 861.
" " divergent, 862.
" short, efflux through, 852, 854.

" conical, 861, 891.
" cylindrical, 853, 888.

'•' " inclined, 557.
" " interior, 855.
" long or pipes, 863.

U.

Ultimate strength, modulus of, S80,
452.

Unguents, 310.

Uniform motion, 108.

Uniformly accelerated, uniformly re-

tarded motion, 107", 108,

112.
" varied motion, 107.

Unit of weight, 157.
" " work, 169.

Upward thrust, buovant effort, 742,

797.

V.

Valve-gate, 900, 903.

Valves," 776, 779, 904.
" clack, 900, 905.
" puppet, 905.

throttle, 901, 903.

Variable, variable quantity, 33.

dependent, 33.
" independent, 33.

motion, 106, 117.
" of running water,

969.

Velocity, 107.
" along the abscissas, 146.
" along the ordinates, 146.

coefficient of, 824, 944.

final, 108.

height due to the. 115, 809.
initial, 108.
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Velocity, mean, 121, 124, 956.

of propagation, 1062, 1085.

of running water, 956.

of sound, 1066.

sudden variation of, 885.

virtual, 187, 209, 212, 275.

Vibration of a stretched string, 1070.
" of an elastic rod, 1072.

Virtual velocity, 185, 209, 212, 275.

Vis viva, principle of, 171, 174.

Volume, 156.

Volumeter, 789.

w.

Water, apparatus for measuring, 976.
" efflux of, 800.
" heaviness of, 160.

height of in communicating
tubes, 723, 761.

" hydraulic pressure of, 808.

hydrostatic pressure of, 722.
" inch, 983.
" jets of, 138.
•< meters, 1020.
" running, 955.

stream of, 801, 821.
" surface of, 718, 765, 767.

Water, waves of, 1084.
Waves, 1062.

" crest and trough of, 1085.
height of, length of, 1085.
of water, 1084.

Web, 478, 479.

Wedge, 277,329, 496.

Weight, absolute, 156, 159, 161.

unit of, 157.

Weir, overfall, notch, 811, 833, 844,

849, 914.

Wheel and axle, 305, 567, 595.

Work done by a force, mechanical ef-

fect, 168, 187, 209.
" " friction, 313, 335.
" " heat, 936.
" " inertia, 171, 577.

" unit of, 169.

Working load, 380.

X.

Ximenes' experiments on friction, 318.
" water vane, 1001.

Zone, 593.
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" The work before us is an attempt to give a basis for sound reform in this

feature of railroad engineering, by throwing ' additional light upon the

method of calculating the maxima strains that can come upon any part of a

bridge truss, and upon the manner of proportioning each part, so that it shall

be as strong relatively to its own strains as any other part, and so that the

entire bridge may be strong enough to sustain several times as great strains

as the greatest that can come upon it in actual use.' "

—

Scientific American.
" The author has presented his views in a clear and intelligent manner, and

the ingenuity displayed in coloring the figures so as to present certain facts

to the eye forms no inappreciable part of the merits of the work. The reduc-

tion of the ' formulas for obtaining the strength, volume, and weight of a cast-

iron pillar under a strain of compression,' will be very acceptable to those who
have occasion hereafter to make investigations involving these conditions. As
a whole, the work has been well done."

—

Railroad Gazette, Chicago,

Allan's Theory of Arches.
18mo. Boards. 50 cts.

THEORY OF ARCHES. By Prof. W. Allax, formerly of

Washington and Lee University. Illustrated.

" This little volume is an amplification and explanation cf Prof. Rankine's
chapters on this subject."
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Shreve on Bridges and Roofs.

8vo, 87 wrod-cut illustrations. Cloth. $5.00.

A TREATISE ON THE STRENGTH OF BRIDGES AND
ROOFS—comprising the determination of Algebraic formulas

for Strains in Horizontal, Inclined or Rafter, Triangular, Bow-
string, Lenticular and other Trusses, from fixed and moving

loads, with practical applications and examples, for the use of

Students and Engineers. By Samuel H. Shrete, A.M., Civil

Engineer.

"On the whole, Mr. Shreve has produced a hook which is the simplest,

clearest, and at the same time, the most systematic and with the best math-
ematical reasoning of any work upon the same subject in the language."

—

Railroad Gazette.

" From the unusually clear language in which Mr. Shreve has given every

statement, the student*will have butliimself to blame if he does not become
thorough master of the subject."

—

London Mining Journal

" Mr. Shreve has produced a work that must always take high rank as a

text-book, * * * and no Bridge Engineer should be without it, as a

valuable work of reference, and one that will frequently assist him out of

difficulties."

—

Franklin Institute Journal

The Kansas City Bridge.
4to. Cloth. $6.00

WITH AN ACCOUNT OF THE REGIMEN OF THE MIS-
SOURI RIVER, and a description of the Methods used for

Founding in that River. By 0. Chanute, Chief Engineer, and

George Mobison, Assistant Engineer. Illustrated with five

lithographic views and twelve plates of plans.

Illustrations.

Views.—View of the Kansas City I tion Works, Pier No. 3. IV. Founda-
Bridge, August 2, 1869. Lowering i tion "Works, Pier No. 4. V. Founda-
Caisson No. 1 into position. Caisson tion "Works, Pier No. 4. VI. Caisson
for Pier No. 4 brought into position. No. 5—Sheet Piling at Pier No. 6

—

View of Foundation Works, Pier No. Details of Dredges—Pile Shoe—Beton
4. Pier No. 1.

\
Box. VII. Masomy—Draw Protec-

Plates.—I. Map showing location
j

tion—False Works between Piers 3
of Bridge. II. Water Record—Cross

j

and 4. VIII. Floating Derricks.

Section of River—Profile of Crossing
|
IX. General Elevation—176 feet span.

—Pontoon Protection. III. Water I X. 248 feet span. XI. Plans of Draw.
Deadener—Caisson No. 2—Founda

i
XII. Strain Diagrams.
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Clarke's Quincy Bridge.

4to. Cloth. $7.50.

DESCRIPTION OF THE IRON EAILWAY Bridge across the

Mississippi River at Quincy, Illinois. By Thomas Curtis Clarke,
Chief Engineer. Illustrated with twenty-one lithographed
plans. •

.

Barba on the Use of Steel.

12mo. Illustrated. Cloth. In Press.

THE USE OF STEEL IN CONSTRUCTION. Method of

Working, Applying, and Testing Plates and Bars. By J.

Barba, Chief Naval Constructor. Translated from the

French, with a Preface, by A. L. Holley, P.B.

Whipple on Bridge Building.

8vo, Illustrated. Cloth. $4.00.

AN ELEMENTARY AND PRACTICAL TREATISE ON
BEIDGE BUILDING. An enlarged and improved edition of

the Author's original work. By S. Whipple, C. E., Inventor of

the Whipple Bridges, &c. Second Edition.

The design has been to develop from Fundamental Principles a system easy
of comprehension, and such as to enable the attentive reader and student to

judge understanding^ for himself, as to the relative merits of different plans
and combinations, and to adopt for use such as may be most suitable for the
cases he may have to deal with.

It is hoped the work may prove an appropriate Text-Book upon the subject
treated of, for the Engineering Student, and a useful manual for the Practic-

ing Engineer and Bridge Builder.
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Stoney on Strains.

New and Revised Edition, with numerous illustrations,

Eoyal 8vo, 664 pp. Cloth. $12,50.

THE THEORY OF STRAINS IN GIRDERS and Similar Struc-

tures, with Observations on the Application of Theory to Practice,

and Tables of Strength and other Properties of Materials. By
Bindon B. Stoney, B. A.

Roebling's Bridges.

Imperial folio. Cloth. $25.00.

LONG AND SHORT SPAN RAILWAY BRIDGES. By John

A. Roebling, C. E. Illustrated with large copperplate engrav-

ings of plans and views.

list of Plates

1. Parabolic Truss Railway Bridge. 2, 3, 4, 5, 6. Details of Parabolic

Truss, with centre span 500 feet in the clear. 7. Plan and View of a Bridge

over the Mississippi River, at St. Louis, for railway and common travel. 8, 9,

10, 11, 13. Details and View of St. Louis Bridge. 13. Railroad Bridge over

the Ohio.

Diedrichs' Theory of Strains.

8vo. Cloth. $5.00.

A Compendium for the Calculation and Construction of Bridges,

Roofs, and Cranes, with the Application of Trigonometrical

Notes. Containing the most comprehensive information in re-

gard to the Resulting Strains for a permanent Load, as also for

a combined (Permanent and Rolling) Load. In two sections

adapted to the requirements of the present time. By Jonx Died-

eiciis. Illustrated by numerous plates and diagrams,

" The want of a compact, mriversal and popular treatise on the Construc-

tion of Roofs and Bridges—especially one treating of the influence of a varia-

ble load—and the unsatisfactory essays of different authors on the subject,

induced me to prepare this work."
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Bauerman on Iron.

12mo. Cloth. $2.00.

TREATISE ON THE METALLURGY OF IRON. Contain-

ing outlines of the History of Iron Manufacture, methods of

Assay, and analysis of Iron Ores, processes of manufacture of

Iron and Steel, etc., etc. By II. Batjerxaist . First American

edition. Revised and enlarged, with an appendix on the Martin

Process for making Steel, from the report of Abram S. Hewitt.

Illustrated with numerous wood engravings.

" This is an important addition to the stock of technical works published in

this country. It embodies the latest facts, discoveries, and processes con-

nected with the manufacture of iron and steel, and should be in the hands of

every person interested in the subject, as well as in all technical and scientific

libraries."

—

Scientific American.

Link and Valve Motions, by W. S.

Ancliincloss.
Sixth Edition. 8vo. Cloth. $3.00.

APPLICATION OP THE SLIDE VALVE and Link Motion to

Stationary, Portable, Locomotive and Marine Engines, with new
and simple methods for proportioning the parts. By William

S. Auchincloss, Civil and Mechanical Engineer. Designed as

a hand-book for Mechanical Engineers, Master Mechanics,

Draughtsmen and Students of Steam Engineering. All dimen-

sions of the valve are found with the greatest ease by means of

a Printed Scale, and proportions of the link determined without

the assistance of a model. Illustrated by 37 wood-cuts and 21

lithographic plates, together with a copperplate engraving of the

Travel Scale.

All the matters Ave have mentioned arc treated with a clearness and absence

of unnecessary verbiage which renders the work a peculiarly valuable one.

The Travel Scale only requires to be known to be appreciated. Mr. A. writes

so ably on his subject, we wish he had written more. London En*
gineering.

"We have never opened a work relating to steam which seemed to us better

calculated to give an intelligent mind a clear understanding of the depart-

ment it discusses.

—

Scientific American.
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Slide Valve by Eccentrics, by Prof.

C. W. MacCord.
4to. Illustrated. Cloth, f4.00.

A PEACTICAL TEEATISE ON THE SLIDE VALVE BY
EOCENTEICS, examining by methods, the action of the Eccen-

tric upon the Slide Yalve, and explaining the practical proces-

ses of laying out the movements, adapting the valve for its

various duties in the steam-engine. Eor the use of Engineers,

Draughtsmen, Machinists, and Students of valve motions in

general. By C. TV. MacCord, A. M., Professor of Mechanical

Drawing, Stevens' Institute of Technology, Hoboken, N J.

Stillman's Steam-Engine Indicator.
12mo. Cloth. $1.00.

THE STEAM-ENGINE INDICATOK, and the Improved Mano-

meter Steam and YaCuum Gauges ; their utility and application

By Paul Stillman. New edition.

Bacon's Steam-Engine Indicator.
12mo. Cloth. $1.00. Mor. $1.50.

A TEEATISE ON THE EICHAEDS STEAM-ENGINE IN-

DICATOE, with directions for its use. By Charles T. Porter.

Eevised, with notes and large additions as developed by Amer-

ican Practice, with an Appendix containing useful formulae and

rules for Engineers. By E. \Y. Bacon, M. E., Member of the

American Society of Civil Engineers. Illustrated. Second Edition

In this work, Mr. Porter's book has been taken as the basis, but Mr. Bacon

has adapted it to American Practice, and has conferred a great boon on

American Engineers.

—

Artisan.

Steam Boiler Explosions.
18mo. Boards. 50 cts.

STEAM BOILEE EXPLOSIONS. By Zeraii Colbuek.
" It is full of practical information, and serves to show in a most marked

manner how very little one's knowledge upon the subject has advanced during
the past ten years."

—

N. Y. Times.
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G-illmore's Limes and Cements.

Fifth Edition. Revised and Enlarged.

8yo. Cloth. $4.00.

PEAOTICAL TREATISE ON LIMES, HYDRAULIC CE-

MENTS, AND MORTARS. Papers on Practical Engineering,

U. S. Engineer Department, No. 9, containing Reports of

numerons experiments conducted in New York City, during the

years 1858 to 1861, inclusive. By Q. A. Gillmore, Lt.-Col.

TJ. S. Corps of Engineers, Brevet Major-General IT. S. Army.

With numerous illustrations.

" This work contains a record of certain experiments and researches made
under the authority of the Engineer Bureau of the "War Department from

1858 to 1861, upon the various hydraulic cements of the United States, and

the materials for their manufacture. The experiments were carefully made,

and are well reported and compiled. '

—

Journal Franklin Institute.

G-illmore's Coignet Beton.
8ro. Cloth. $2.50.

COIGNET BETON AND OTHER ARTIFICIAL STONE. By
Q. A. Gillmore, Lt.-Col. U. S Corps of Engineers, Brevet

Major-General U. S. Army. 9 Plates, Views, etc.

This work describes with considerable minuteness of detail the several kinds

of artificial stone in most general use in Europe and now beginning- to be

introduced in the United States, discusses their properties, relative merits,

and cost, and describes the materials of which they are composed

The subject is one of special and growing interest, and we commend the work,

embodying as it does the matured opinions of an experienced engineer and
expert.

Gillmore on Roads.

12mo. Cloth. In Press.

A PRACTICAL TREATISE ON THE CONSTRUCTION
OF ROADS, STREETS, AND PAVEMENTS. By Q. A.

Gillmore, Lt.-Col. TJ. S. Corps of Engineers, Brevet Major-

General TJ. S. Army.
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Williamson on the Barometer.
4to. Cloth. $15.00.

ON THE USE OF THE BAEOMETEE ON SUEYEYS AND
EECONNAISSANCES. Part I. Meteorology in its Connec-

tion with. Hypsometry. Part II.. Barometric Hypsometry. By
E. S. Williamson, Bvt. Lieut.-Col. U. S. A., Major Corps of

Engineers. With. Illustrative Tables and Engravings. Paper

No. 15, Professional Papers, Corps of Engineers.

" San Francisco, Cal., Feb. 27, 1867.

" Gen. A. A. Humphreys, Chief of Engineers, IT. S. Army :

" General,—I have the honor to submit to you, in the following pages, the

results of my investigations in meteorology and hypsometry, made with the

view of ascertaining how far the barometer can be used as a reliable instru-

ment for determining altitudes on extended lines of survey and reconnais-

sances. These investigations have occupied the leisure permitted me from my
professional duties during the last ten years, and I hope the results will be

deemed of sufficient value to have a place assigned them among the printed

professional papers of the United States Corps of Engineers.

" Very respectfully, your obedient servant,

"B. S. WILLIAMSON,
"Bvt. Lt.-Col. U. S. A., Major Corps of IT. S. Engineers."

Yon Ootta5s Ore Deposits.
8vo. Cloth. $4.00.

TKEATISE ON OEE DEPOSITS. By Bernhard Yon Cotta,

Professor of Geology in the Royal School of Mines, Ereidberg,

Saxony. Translated from the second German edition, by

Erederick Prime, Jr., Mining Engineer, and revised by the

author, with numerous illustrations.

" Prof. Von Cotta of the Freiberg School of Mines, is the author of the

best modern treatise on ore deposits, and we are heartily glad that this ad-

mirable work has been translated and published in this country. The trans-

lator, Mr. Erederick Prime, Jr., a graduate of Freiberg, has had in his work

the great advantage of a revision by the author himself, who declares in a

prefatory note that this may be considered as a new edition (the third) of his

own book.

" It is a timely and welcome contribution to the literature of mining in

this country, and we are grateful to the translator for his enterprise and good

judgment in \mdertaking its preparation ; while we recognize with equal cor-

diality the liberality of the author in granting both permission and assist-

ance."

—

Extractfrom Review in Engineering and Mining Journal.
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Plattner's Blow-Pipe Analysis.

Second edition. Revised. 8vo. Cloth. $7.50.

PLATTNER'S MANUAL OF QUALITATIVE AND QUAN-
TITATIVE ANALYSIS WITH THE BLOW-PIPE. From
tho last German edition Revised and enlarged. By Prof. Tn.

Richteh, of the Royal Saxon Mining Academy. Translated by

Prof. -II. B. Cornwall, Assistant in the Columbia School of

Mines, New York ; assisted by John H. Caswell. Illustrated

with eighty-seven wood-cuts and one Lithographic Plate. 560

pages.

" Plattner's celebrated work has long- been recognized as the only complete

book on Blow-Pipe Analysis. The fourth German edition, edited by Prof.

Kichter, fully sustains the reputation which, the earlier editions acquired dur-

ing- the lifetime of the author, and it is a source of great satisfaction to us to

know that Prof. Richter has co-operated with the translator in issuing the

American edition of the work, which is in fact a fifth edition of the original

work, being far more complete than the last German edition."

—

Sillimari's

Journal.

There is nothing so complete to be found in the English language. Platt-

ner's book is not a mere pocket edition ; it is intended as a comprehensive guide

to all that is at present known on the blow-pipe, and as such is really indis-

pensable to teachers and advanced pupils.

" Mr. Cornwall's edition is something more than a translation, as it contains

many corrections, emendations and additions not to be found in the original.

It is a decided improvement on the work in its German dress."

—

Journal of
Applied Chemistry.

Egleston's Mineralogy.
8vo. Illustrated with 34 Lithographic Plates. Cloth. $4.50.

LECTURES ON DESCRIPTIVE MINERALOGY, Delivered

at the School of Mines, Columbia College. By Professor T,

Eglestox.

These lectures are what their title indicates, the lectures on Mineralogy
delivered at the School of Mines of Columbia College. They have been
printed for the students, in order that more time might be given to the vari-

ous methods of examining and determining minerals. The second part has
only been printed. The first part, comprising crystallography and physical

mineralogy, will be printed at some future time.
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Pynchon's Chemical Physics.
New Edition. Revised and Enlarged.

Crown 8vo. Cloth. $3.00.

INTRODUCTION TO CHEMICAL PHYSICS, Designed for the

Use of Academies, Colleges, and High Schools. Illustrated with

numerous engravings, and containing copious experiments with

directions for preparing them. By Thomas Ruggles Pynchon-

,

M.A., Professor of Chemistry and the Natural Sciences, Trinity

College, Hartford.

Hitherto, no work suitable for general use, treating of all these subjects

within the limits of a single volume, could be found ; consequently the atten-

tion they have received has not been at all proportionate to their importance.

It is believed that a book containing so much valuable information within so

small a compass, cannot fail to meet with a ready sale among all intelligent

persons, while Professional men, Physicians, Medical Students, Photograph-

ers, Telegraphers, Engineers, and Artisans generally, will find it specially

valuable, if not nearly indispensable, as a book of reference.

" We strongly recommend this able treatise to our readers as the first

work ever published on the subject frse from perplexing technicalities. In

style it is pure, in description graphic, and its typographical appearance is

artistic. It is altogether a most excellent work."

—

Eclectic Medical Journal.

" It treats fully of Photography, Telegraphy, Steam Engines, and the

various applications of Electricity. In short, it is a carefully prepared

volume, abreast with the latest scientific discoveries and inventions.'

—

Hart-

ford Courant.

Plympton's Blow-Pipe Analysis.
12mo. Cloth. $1 50.

THE BLOW-PIPE : A Guide to Its Use in the Determination

of Salts and Minerals. Compiled from various sources, by

George W. Plymptok, C.E., A.M., Professor of Physical

Science in the Polytechnic <Institute, Brooklyn, "N. Y.

" This manual probably has no superior in the English language as a text-

book for beginners, or as a guide to the student working without a teacher.

To the latter many illustrations of the utensils and apparatus required in

using the blow-pipe, as well as the fully illustrated description of the blow-

pipe flame, will be especially serviceable."

—

New York Teaclier.
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TJre's Dictionary,

SiactJi Edition.

London, 1872.

3 vols. 8vo. Half Russia. $32.50.

DICTIONARY OF ARTS, MANUFACTURES, AND MINES.
By Andrew Ure, M.D. Sixth edition. Edited by Robert Hunt,

F.R.S., greatly enlarged and rewritten.

Gases in Coal Mines
18mo. Boards. 50 cts.

A PRACTICAL TREATISE ON THE GASES MET WITH
IN COAL MINES. By the late J. J. Atkinson, Govern-

ment Inspector of Mines for the County of Durham, England.

Watt's Dictionary of Chemistry.
Supplementary Volume.

8vo. Cloth. $9.00.

This volume brings the Record of Chemical Discovery down to the end of

the year 1889, including' also several additions to, and corrections of, former

results "which have appeared in 1870 and 1871.

%* Complete Sets of the "Work, New and Revised edition, including above

supplement. G vols. 8vo. Cloth. $62.00.

Rammelsberg's Chemical Analysis.
8vo. Cloth. $2.25.

GUIDE TO A COURSE OF QUANTITATIVE CHEMICAL
ANALYSIS, ESPECIALLY OF MINERALS AND FUR-
NACE PRODUCTS. Illustrated by Examples. By C. F.

Rasmelsberg. Translated by J. Towler, M.D.

This work has been translated, and is now published expressly for those

students in chemistry whose time and other studies in colleges do not permit

them to enter upon the more elaborate and expensive treatises of Fresenius

and others. It is the condensed labor of a master in chemistry and of a prac-

tical analyst.
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Eliot and Storer's Qualitative
Chemical Analysis.

New Edition, Mevised.

12mo. Illustrated. Cloth. $1.50.

A COMPENDIOUS MANUAL OF QUALITATIVE CHEMI-
CAL ANALYSIS. By Chakles W. Eliot and FhankH. Stoher.

Revised with the Cooperation of the Authors, by William Kip-

ley Nichols, Professor of Chemistry in the Massachusetts Insti-

tute of Technology.

" This Manual has great merits as a practical introduction to the science

and the art of which it treats. It contains enough of the theory and practice

of qualitative analysis, " in the wet way,
;

' to bring out all the reasoning in-

volved in the science, and to present clearly to the student the most approved

methods of the art. It is specially adapted for exercises and experiments in

the laboratory; and yet its classifications and manner of treatment are so

systematic and logical throughout, as to adapt it in a high degree to that

higher class of students generally who desire an accurate knowledge of the

practical methods of arriving at scientific facts."

—

Lutheran Observer.

" "We wish every academical class in the land could have the benefit of the

fifty exeroises of two hours each necessary to master this book. Chemistry

would cease to be a mere matter of memory, and become a pleasant experi-

mental and intellectual recreation. "We heartily commend this little volume

to the notice of those teachers who believe in using the sciences as means of

mental discipline."

—

College Courant.

Craig's Decimal System.
Square 32mo. Limp. 50c.

WEIGHTS AND MEASUEES. An Account of the Decimal

System, with Tables of Conversion for Commercial and Scientific

Uses. By B. P. Craig, M. D.

" The most lucid, accurate, and useful of all the hand-books on this subject

that we have yet seen. It gives forty-seven tables of comparison between the

English and French denominations of length, area, capacity, weight, and the

Centigrade and Fahrenheit thermometers, with clear instructions how to use

them ; and to this practical portion, which helps to make the transition as

easy as possible, is prefixed a scientific explanation of the errors in the metric

system, and how they may be corrected in the laboratory."

—

Nation.
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Nugent on Optics.

12mo. Cloth. $2.00

TKEATISE ON OPTICS ; or, Light and Sight, theoretically and

practically treated ; with the application to Fine Art and Indus-

trial Pursuits. By E. Nugent. With one hundred and three

illustrations.

" This book is of a practical rather than a theoretical kind, and is de-

signed to afford accurate and complete information to all interested in appli-

cations of the science."

—

Round Table.

Barnard's Metric System.
8vo. Brown cloth. $3.00.

THE METEIO SYSTEM OF WEIGHTS AND MEASUEES.
An Address delivered before the Convocation of the University of

the State of New York, at Albany, August, 1871. By Fredekice:

A. P. Barnard, President of Columbia College, New York City.

Second edition from the Revised edition printed for the Trustees

of Columbia College. Tinted paper.

" It is the "best summary of the arguments in favor of the metric weights

and measures with which we are acquainted, not only because it contains in

small sj>ace the leading facts of the case, hut because it puts the advocacy of

that system on the only tenable grounds, namely, the great convenience of a

decimal notation of weight and measure as well as money, the value of inter-

national uniformity in the matter, and the fact that this metric system is

adopted and in general use by the majority of civilized nations."

—

The Nation.

Butler on Ventilation.

18mo. Boards. 50 cts.

VENTILATION OF BUILDINGS. By W. F. Butler.
Illustrated.

" As death by insensible suffocation is one of the prominent causes which
swell our bills of mortality, we commend tbis book to the attention of philan-
thropists as well as to architects."—Boston Globe.
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Harrison's Mechanic's Tool-Book.
12mo. Cloth. $1.50.

MECHANIC'S TOOL BOOK, with practical rules and suggestions,

for the use of Machinists, Iron Workers, and others. By W. B.

Hakriscxn-

, Associate Editor of the "American Artisan." Illustra-

ted with 44 engravings.

" This work is specially adapted to meet the wants of Machinists and work-

ers in iron generally. It is made up of the work-day experience of an intelli-

gent and ingenious mechanic, who had the faculty of adapting tools- to various

purposes. The practicability of his plans and suggestions are made apparent

even to the unpractised eye by a series of well-executed wood engravings."

—

Philadelphia Inquirer.

Pope's Modern Practice of the Elec-
tric Telegraph.

Ninth Edition. 8vo. Cloth $2.00.

A Hand-book for Electricians and Operators. By Fiuxk L. Pope.

Seventh edition. Revised and enlarged, and fully illustrated.

Extract from Letter of Prof. Morse.

" I have had time only cursorily to examine its contents, but this examina-

tion has resulted in great gratification, especially at the fairness and unpre-

judiced tone of your whole work.

" Your illustrated diagrams are admirable and beautifully executed.

" I think all your instructions in the use of the telegraph apparatus judi-

cious and correct, and I most cordially wish you success."

Extract from Letter qf Prof. G. W. Hough, of the Dudley Observatory.

" There is no other work of this kind in the English language that con-

tains in so small a compass so much practical information in the application

of galvanic electricity to telegraphy. It should be in the hands of every one

interested in telegraphy, or the use of Batteries for other purposes.''

Morse's Telegraphic Apparatus.
Illustrated. 8vo. Cloth. $2.00.

EXAMINATION OE THE TELEGEAPHIC APPAEATUS
AND THE PEOCESSES IN TELEGAPHY. By Samuel E.

B. Moese, LL.D., United States Commissioner Paris Universal

Exposition, 1867.
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Sabine's History of the Telegraph..
12mo. Cloth. $1.25.

HISTORY AND PROGRESS OF THE ELECTRIC TELE-
GRAPH, with Descriptions of some of the Apparatus. By
Robert S.ibixe, C. E. Second edition, with additions.

Contexts.—I. Early Observations of Electrical Phenomena. II. Tele-

graphs by Frictional Electricity. III. Telegraphs by Voltaic Electricity.

IV. Telegraphs by Electro-Magnetism and Magneto-Electricity. V. Tele-

graphs now in nse. VI. Overhead Lines. VII. Submarine Telegraph Lines.

VIII. Underground Telegraphs. IX. Atmospheric Electricity.

Haskins' Galvanometer.
Pocket form. Illustrated. Morocco tucks. $2.00.

THE GALVANOMETER, AND ITS USES; a Manual for

Electricians and Students. By C. H. Haskiks.
" We hope this excellent little work will meet with the sale its merits

entitle it to. To every telegrapher who owns, or uses a Galvanometer, or

ever expects to, it will be quite indispensable."

—

The Telegrapher,

Culley's Hand-Book of Telegraphy.
8vo. Cloth. $5.00.

A HAND-BOOK OF PRACTICAL TELEGRAPHY. By
R. S. Culley, Engineer to the Electric and International

Telegraph Company. Fifth edition, revised and enlarged.

Foster's Submarine Blasting.
4to. Cloth. $3.50.

SUBMARINE BLASTING in Boston Harbor, Massachusetts-

Removal of Tower and Corwin Rocks. By John G. Foster,

Lieutenant-Colonel of Engineers, and Brevet Major-General, U.

S. Army. Illustrated with seven plates.

List of Plates.—1. Sketch of the Narrows, Boston Harbor. 2.

Townsend's Submarine Drilling Machine, and Working Vessel attending.

3. Submarine Drilling Machine employed. 4. Details of Drilling Machine

employed. 5. Cartridges and Tamping used. 0. Fuses and Insulated Wires

used. 7. Portable Friction Battery used.
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Barnes' Submarine Warfare.

8vo. Cloth. $5.00.

SUBMAEINE WAEFAEE, DEFENSIVE AND OFFENSIVE.
Comprising a full and complete History of the Invention of the

Torpedo, its employment in War and results of its use. De-

scriptions of the various forms of Torpedoes, Submarine Batteries

and Torpedo Boats actually used in War. Methods of Ignition

by Machinery, Contact Fuzes, and Electricity, and a full account

of experiments made to determine the Explosive Force of Gun-

powder under Water. Also a discussion of the Oifensive Torpedo

system, its effect upon Iron-Clad Ship systems, and influence upon

Future Naval Wars. By Lieut.-Commander John S. Barnes,

U. S. N. With twenty lithographic plates and many wood-cuts.

" A book important to military men, and especially so to engineers and ar-

tillerists. It consists of an examination of the various offensive and defensive

engines that have been contrived for submarine hostilities, including- a discus-

sion of the torpedo system, its effects upon iron-clad ship-systems, and its

probable influence upon future naval wars. Plates of a valuable character

accompany the treatise, which affords a useful history of the momentous sub-

ject it discusses. A great deal of useful information is collected in its pages,

especially concerning the inventions of Scholl and Vekdu, and of Jones'

and Hunt's batteries, as well as of other similar machines, and the use in

submarine operations of gun-cotton and nitro-glycerine."—N. Y. Times.

Randall's Quartz Operator's Hand-
Book.

12mo. Cloth. $2.00.

QUAETZ OPEEATOE'S HAND-BOOK. By P. M. IUxraxl.

New edition, revised and enlarged. Fully illustrated.

The object of this work has been to present a clear and comprehensive ex-

position of mineral veins, and the means and modes chiefly employed for the

mining and working of their ores—more especially those containing gold and»

silver.
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McCulloch's Theory of Heat.
8vo. Cloth. In Press.

AN ELEMENTARY TREATISE ON THE MECHANI-
CAL THEORY OF HEAT, AND ITS APPLICATION
TO AIR AND STEAM ENGINES. By Prof. R. S. Mo
CULLOCH.

Benet's Chronoscope.

Second Edition.

Illustrated. 4to. Cloth. $3.00.

ELECTRO-BALLISTIC MACHINES, and the Schultz Chrono-

scope. By Lieutenant-Colonel S. Y. Benet, Captain of Ordnance,

U. S. Army.

Contents.—1. Ballistic Pendulum. 2. G-uu Pendulum. 3. Use of Elec-

tricity. 4. Navez' Machine. 5. Vignotti's Machine, with Plates. 6. Benton's

Electro-Ballistic Pendulum, with Plates. 7. Leur's Tro-Pendulum Machine

8. Schultz's Chronoscope, with two Plates.

Michaelis' Chronograph.

4to. Illustrated. Cloth. $3.00.

THE LE BOIILENGE CHRONOGRAPH. With three litho-

graphed folding plates of illustrations. By Brevet Captain E.

Michaelis, Eirst Lieutenant Ordnance Corps, U. S. Army.

" The excellent monograph of Captain Michaelis enters minutely into the

details of construction and management, and gives tables of the times of flight

calculated upon a given fall of the chronometer for all distances. Captain

Michaelis has done good service in presenting this work to his brother officers,

describing, as it does, an instrument which bids fair to be in constant use in

our future ballistic experiments.'

—

Army and Navy Journal.
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Silversmith's Hand-Book.
Fourth Edition.

Illustrated. 12mo. Cloth. $3.00.

A PEACTICAL HAND-BOOK EOE MINEES, Metallurgists,

and Assayers, comprising the most recent improvements in the

disintegration, amalgamation, smelting, and parting of the

Precious Ores, with a Comprehensive Ingest of the Mining

Laws. Greatly augmented, revised, and corrected. By Julius

Silveesmith. Fourth edition. Profusely illustrated. 1 vol.

12mo. Cloth. $3.00.

One of the most important features of this work is that in which the

metallurgy of the precious metals is treated of. In it the author has endeav-

ored to embody all the processes for the reduction and manipulation of the

precious ores heretofore successfully employed in Germany, England, Mexico,

and the United States, together with such as have been more recently invented,

and not yet fully tested—all of which are profusely illustrated and easy of

comprehension.

Simms' Levelling.

8vo. Cloth. $2.50.

A TEEATISE ON THE PEINCIPLES AND PEACTICE OF
LEVELLING, showing its application to purposes of Eailway

Engineering and the Construction of Eoads, &c. By Frederick

W. Simms, C. E. Erom the fifth London edition, revised and

corrected, with the addition of Mr. Law's Practical Examples for

Setting Out Eailway Curves. Illustrated with three lithographic

plates and numerous wood-cuts.

" One of the most important text-books for the general surveyor, and there

is scarcely a question connected with levelling for which a solution would be

sought, but that would be satisfactorily answered by consulting this volume."

—Mining Journal.

" The text-book on levelling in most of our engineering schools and col-

leges."

—

Engineers.

" The publishers have rendered a substantial service to the profession,

especially to the younger members, by bringing out the present edition of

Mr. Simms' useful work."

—

Engineering.
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Stuart's Successful Engineer.
18mo. Boards. 50 cents.

HOW TO BECOME A SUCCESSFUL ENGINEER: Being

Hints to Youths intending to adopt the Profession. By
Bernard Stuart, Engineer. Sixth Edition.

"A valuable little book of sound, sensible advice to young men who
wish to rise in the most important of the professions."

—

Scientific American.

Stuart's Naval Dry Docks.
Twenty-four engravings on steel.

Fourth Edition.

4to. Cloth. $6.00.

THE NAVAL DRY DOCKS OF THE UNITED STATES.
By Chakles B. Stuart. Engineer in Chief of the United States

Navy.
List of Illustrations.

Pumping Engine and Pumps—Plan of Dry Dock and Pump-Well- Sec-

tions of Dry Dock—Engine House—Iron Floating Gate—Details of Floating
G-ate—Iron Turning Gate—Plan of Turning Gate—Culvert Gate—Filling
Culvert Gates—Engine Bed—Plate, Pumps, and Culvert—Engine House
Poof—Floating Sectional Dock—Details of Section, and Plan of Turn-Tables
—Plan of Basin and Marine Railways—Plan of Sliding Frame, and Elevation
of Pumps—Hydraulic Cylinder—Plan of Gearing for Pumps and End Floats
—Perspective View of Dock, Basin, and Railway—Plan of Basin of Ports-

mouth Dry Dock—Floating Balance Dock—Elevation of Trusses and the Ma-
chinery—Perspective View of Balance Dry Dock

Free Hand Drawing.
Profusely Illustrated. 18mo. Boards. 50 cents.

A GUIDE TO ORNAMENTAL, Figure, and Landscape Draw-
ing. By an Art Student.

Contents.—Materials employed in Drawing, and how to use them—On
Lines and how to Draw them—On Shading—Concerning lines and shading,
with applications of them to simple elementary subjects—Sketches from Na-
ture.
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Minifie's Mechanical Drawing.
Ninth Edition.

Royal 8vo. Cloth. $4.00.

A TEXT-BOOK OF GEOMETEICAL DRAWING for the use

of Mechanics and Schools, in which the Definitions and Rules of

Geometry are familiarly explained ; the Practical Problems are

arranged, from the most simple to the more complex, and in their

description technicalities are avoided as much as possible. With

illustrations for Drawing Plans, Sections, and Elevations of

Buildings and Machinery ; an Introduction to Isometrical Draw-

ing, and an Essay on Linear Perspective and Shadows. Illus-

trated with over 200 diagrams engraved on steel. By Wm.
Minifie, Architect. Eighth Edition. With an Appendix on the

Theory and Application of Colors.

" It is the best work on Drawing that we have ever seen, and is especially a

text-book of Geometrical Drawing for the use of Mechanics and Schools. No
young Mechanic, such as a Machinist, Engineer, Cabinet-Maker, Millwright,

or Carpenter, should be without it."

—

Scientific American.

" One of the most comprehensive works of the kind ever published, and can-

not but possess great value to builders. The style is at once elegant and sub-

stantial. '

—

Pennsylvania Inquirer.

" "Whatever is said is rendered perfectly intelligible by remarkably well-

executed diagrams on steel, leaving nothing for mere vague supposition ; and

the addition of an introduction to isometrical drawing, linear perspective, and

the projection of shadows, winding up with a useful index to technical terms."

— Glasgow Mechanics' Journal.

^W The British Government has authorized the use of this book in their

schools of art at Somerset House, London, and throughout the kingdom.

Minifie's Geometrical Drawing.
JSew Edition. Enlarged,

12mo. Cloth. $2.00.

GEOMETEICAL DEAWING. Abridged from the octavo edition,

for the use of Schools. Illustrated with 48 steel plates. New
edition, enlarged.

'• It is well adapted as a text-book of drawing to be used in our High Schools

and Academies where this useful branch of the fine arts has been hitherto too

much neglected."

—

Boston Journal.
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Bell on Iron Smelting.
8vo. Cloth. $6.00.

CHEMICAL PHENOMENA OF IEON SMELTING. An ex-

perimental and practical examination of the circumstances which

determine the capacity of the Blast Furnace, the Temperature

of the Air, and the Proper Condition of the Materials to be

operated upon. By I. Lowthian Bell.

Battershall's Legal Chemistry,
Illustrated. 12mo. Cloth. In press.

LEGAL CHEMISTEY. A Guide to the detection of Poisons,

Falsification of Writings, Adulteration of Alimentary and

Pharmaceutical Substances ; Analysis of Ashes, and Examina-

tion of Hair, Coins, Fire-Arms, and Stains, as applied to

Chemical Jurisprudence. For the use of Chemists, Physi-

cians, Lawyers, Pharmacists, and Experts. Translated with

additions, including a list of books and memoirs on Toxi-

cology, etc., from the French of A. Naquet. By J. P. Bat-

tershall, Ph.D., with a Preface by C. F. Chandler, Ph.D.,

M.D., LL.D.

Zing's Notes on Steam.
Nineteenth Edition.

8vo. Cloth. $2.00.

LESSONS AND PEACTICAL NOTES ON STEAM, the Steam-

Engine, Propellers, &c., &c., for Young Engineers, Students, and

others. By the late W. E. King, IT. S. N. Eevised by Chief-

Engineer J. W. King, IT. S. Navy.

" This is one of the best, because eminently plain and practical treatises on

the Steam Engine ever published. '

—

Philadelphia Press.

This is the thirteenth edition of a valuable work of the late W. H. King,

IT. S. N. It contains lessons and practical notes on Steam and the Steam En-

gine, Propellers, etc. It is calculated to be of great use to young marine en-

gineers, students, and others. The text is illustrated and explained by nu-

merous diagrams and representations of machinery. —Boston Daily Adver-

tiser.

Text-book at the U. S. Naval Academy, Annapolis.
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Burgh's Modern Marine Engineering.

One thick 4to vol. Cloth. $25.00. Half morocco. $30.00.

MODEKN MARINE ENGINEERING, applied to Paddle and

Screw Propulsion. Consisting of 36 Colored Plates, 259 Practical

Wood-cut Illustrations, and 403 pages of Descriptive Matter, the

whole being an exposition of the present practice of the follow-

ing firms : Messrs. J. Penn & Sons ; Messrs. Maudslay, Sons &
Field ; Messrs. James Watt & Co. ; Messrs. J. & G. Eennie

;

Messrs. P. Napier & Sons ; Messrs. J. & W. Dudgeon ; Messrs.

Pavenhill & Hodgson ; Messrs. Humphreys & Tenant ; Mr.

J. T. Spencer, and Messrs. Forrester & Co. By N. P. Bubgh,

Engineer.

Principal Contents.—General Arrangements of Engines, 1 1 examples

—G-eneral Arrangement of Boilers, 14 examples — General Arrangement of

Superheaters, 11 examples—Details of 'Oscillating Paddle Engines, 34 ex-

amples—Condensers for Screw Engines, both Injection and Surface, 20 ex-

amples—Details of Screw Engines, 20 examples—Cylinders and Details of

Screw Engines, 21 examples—Slide Valves and Details, 7 examples—Slide

Valve, Link Motion, 7 examples— Expansion Valves and Gear, 10 exam-

ples—Details in General, 30 examples—Screw Propeller and Fittings, 13 ex-

amples - Engine and Boiler Fittings, 28 examples - In relation to the Princi-

ples of the Marine Engine and Boiler, 33 examples.

Notices of the Press.

"Every conceivable detail of the Marine Engine, under all its various

forms, is profusely, and we must add, admirably illustrated by a. multitude

of engravings, selected from the best and most modern practice of the first

Marine Engineers of the day. The chapter on Condensers is peculiarly valu-

able. In one word, there is no other work in existence which will bear a

moment's comparison with it as an exponent of the skill, talent and practical

experience to which is due the splendid reputation enjoyed by many British

Marine Engineers."

—

Engineer.

" This very comprehensive work, which was issued in Monthly parts, has

just been completed. It contains large and full drawings and copious de-

scriptions of most of the best examples of Modern Marine Engines, and it is

a complete theoretical and practical treatise on the subject of Marine Engi-

neering."—American Artisan

.

This is the only edition of th<> above work with the beautifully colored

plates, and it is out of print in England.
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Bourne's Treatise on the Steam En-
gine.

Ninth Edition.

Illustrated. 4to. Cloth. $15.00.

TEEATTSE ON THE STEAM ENGINE in its various applica-

tions to Mines, Mills, Steam Navigation, Hailways, and Agricul-

ture, with the theoretical investigations respecting the Motive

Power of Heat and the proper Proportions of Steam Engines.

Elaborate Tables of the right dimensions of every part, and

Practical Instructions for the Manufacture and Management of

every species of Engine in actual use. By Jonx Bourse, being

the ninth edition of " A Treatise on the Steam Engine," by

the "Artisan Club." Illustrated by thirty-eight plates and five

hundred and forty-six wood-cuts:

As Mr. Bourne's work has the great merit of avoiding unsound and imma-
ture views, it may safely be consulted by all who are really desirous of ac-

quiring trustworthy information on the subject of which it treats. During

the twenty-two years which have elapsed from the issue of the first edition,

the improvements introduced in the construction of the steam engine have

been both numerous and important, and of these Mr. Bourne has taken eare

to point out the more prominent, and to furnish the reader with such infor-

mation as shall enable him readily to judge of their relative value. This edi-

tion luis been thoroughly modernized, and made to accord with the opinions

and practice of the more successful engineers of the present day. All that

the book professes to give is given with ability and evident care. The scien-

tific principles which are permanent are admirably explained, and reference

is made to many of the more valuable of the recently introduced engines. To
express an opinion of the value and utility of such a work as The Artisan

Club's Treatise on the Steam Engine, which has passed through eight editions

already, would bo superfluous ; but it may be safely stated that the work is

worthy the attentive study of all either engaged in the manufacture of steam

engines or interested in economizing the use of steam.

—

Mining Journal.

IsherwoocVs Engineering Precedents.
Two Vols, in One. 8vo. Cloth. $2.50.

ENGINEEEING PEECEDENTS EOE STEAM MACHINESY.

Arranged in the most practical and useful manner for Engineers.

By B. F. Isherwood, Civil Engineer, U. S. Navy. With illus-

trations.
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Ward's Steam for the Million.

New and Revised Edition,

8vo. Cloth. $1.00.

STEAM FOE THE MILLION. A Popular Treatise on Steam
and its Application to the Useful Arts, especially to Naviga-

tion. By J. H. Ward, Commander U. S. Navy. New and re-

vised edition.

A most excellent -work for the young engineer and general reader. Many
facts relating to the management of the boiler and engine are set forth with a

simplicity of language and perfection of detail that bring the subject home
to the reader.—American Engineer.

Walker's Screw Propulsion.

8vo. Cloth. 75 cents.

NOTES ON SCBEW PEOPULSION, its Rise and History. By
Capt. W. H. Walker, U. S. Navy.

Commander "Walker's book contains an immense amount of concise practi-

cal data, and every item of information recorded fully proves that the various

points bearing upon it have been well considered previously to expressing an

opinion.

—

London Mining Journal.

Page's Earth's Crust.

18mo. Cloth. 75 cents.

THE EARTH'S CEUST : a Handy Outline of Geology. By
David Page.

" Such a work as this was much wanted—a work giving in clear and intel-

ligible outline the leading facts of the science, without amplification or irk-

some details. It is admirable in arrangement, and clear and easy, and, at the

same time, forcible in style. It will lead, we hope, to the introduction of

Geology into many schools that have neither time nor room for the study of

larsre treatises."

—

The Museum.
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Rogers' Geology of Pennsylvania.

3 Vols. 4to, with Portfolio of Maps. Cloth. $30.00.

THE GEOLOGY OF PENNSYLVANIA. A Government Sur-

vey. With a general view of the Geology of the United States,

Essays on the Coal Formation and its Fossils, and a description

of the Coal Fields of North America and Great Britain. By

Henry Darwin Eogers, Late State Geologist of Pennsylvania.

Splendidly illustrated with Plates and Engravings in the Text.

It certainly should be in every public library >,aroug-hout the country, and

likewise in the possession of all students of Geology. After the final sale of

these copies, the -work will, of course, become more valuable.

The work for the last five years has been entirely out of the market, but a

few copies that remained in the hands of Prof. Rogers, in Scotland, at the

time of his death, are now offered to the public, at a price which is even

below what it was originally sold for when first published.

Elliot's European Light-Houses.
51 Engravings and 21 Wood-cuts. 8vo. Cloth. $5.00.

EUROPEAN LIGHT-HOUSE SYSTEMS. Being a Report of

a Tour of Inspection made in 1873. By Major George H.

Elliot, Corps of Engineers, U.S.A., member and Engineer

Secretary of the Light-house Board.

Sweet's Report on Coal.
8vo. Cloth. $3.00.

SPECIAL REPORT ON COAL ; showing its Distribution, Classi-

fication, and Cost delivered over different routes to various points

iu the State of New York, and the priucipal cities on the Atlantic

Coast. By S. H. Sweet. With maps.

Colburn's Gas Works of London,
12mo. Boards. GO cents.

GAS WOBKS OE LONDON. By Zerah Colbuen.
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j
The Useful Metals and their Alloys

;

Scoffren, Truran, and others.
Fifth Edition.

j
8to. Half calf. $3.75.

THE USEFUL METALS AND THEIR ALLOYS, including

MINING VENTILATION, MINING JURISPRUDENCE
AND METALLURGIC CHEMISTRY employed in the conver-

sion of IRON, COPPER, TIN, ZINC, ANTIMONY, AND
LEAD ORES, with their applications to THE INDUSTRIAL
ARTS. By John Scoffken, William Trurax, William Clay,

Robert Oxlaxd, William Eairbairx, W. C. Aitkin, and Wil-

liam Yose Pickett.

Collins" Useful Alloys.

18mo. Flexible. 75 cents.

THE PRIYATE BOOK OE USEFUL ALLOYS and Memo-

randa for Goldsmiths, Jewellers, etc. By James E. Collins

This little book is compiled from notes made by the Author from the

papers of one of the largest and most eminent Manufacturing G-oldsmiths and

Jewellers in this country, and as the firm is now no longer in existence, and the

Author is at present engaged in some other undertaking, he now offers to the

jmblic the benefit of his experience, and in so doing he begs to state that all

the alloys, etc., given in these pages may be confidently relied on as being

thoroughly practicable.

The Memoranda and Receipts throughout this book are also compiled

from practice, and will no doubt be found useful to the practical jeweller.

—Shirley, July, 1871.

Joynsons Metals Used in Construction.
12mo. Cloth. 75 cents.

THE METALS USED IN CONSTBUCTION : Iron, Steel,

Bessemer Metal, etc., etc. By Eeancis Herbert Joynsox. Il-

lustrated.

" In the interests of practical science, we are bound to notice this work
;

and to those who wish further information, we should say, buy it ; and the

outlay, we honestly believe, will be considered well spent."— Scientific

Review.
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Prescott's Proximate Organic .

Analysis.
12mo. Cloth. $1.75.

OUTLINES OF PROXIMATE ORGANIC ANALYSIS
5 for the Identification, Separation, and Quantitative Deter-

mination of the more commonly occurring Organic Com-

pounds. By Albert B. Prescott, Professor of Organic

and Applied Chemistry in the University of Michigan.

Prescott's Alcoholic Liquors.
12mo. Cloth. $1.50.

CHEMICAL EXAMINATION OF ALCOHOLIC LI-

QUORS. A Manual of the Constituents of the Distilled

Spirits and Fermented Liquors of Commerce, and their

Qualitative and Quantitative Determinations. By Albert

B. Prescott, Professor of Organic and Applied Chemistry

in the University of Michigan.

Greene's Bridge Trusses.
8vo. Illustrated. Cloth. $2.00.

GRAPHICAL METHOD FOR THE ANALYSIS OF
BRIDGE TRUSSES, extended to Continuous Girders

and Draw Spans. By Charles E. Greece, A.M., Pro-

fessor of Civil Engineering, University of Michigan. Illus-

trated by three folding plates.

Butler's Projectiles and Rifled
Cannon,

4to. 86 Plates. Cloth. $7.50.

PROJECTILES AND RIFLED CANNON. A Critical

Discussion of the Principal Systems of Rilling and Projec-

tiles, with Practical Suggestions for their Improvement, as

embraced in a Report to the Chief of Ordnance, .U.S.A. By
Capt. John" S. Butler, Ordnance Corps, U.S.A.
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Peirce's Analytic Mechanics.

4to. Cloth. $10.00.

SYSTEM OF ANALYTIC MECHANICS. By Benjamin
Peiece, Perkins Professor of Astronomy and Mathematics in

Harvard University, and Consulting Astronomer of the

American Ephemeris and Nautical Almanac.

" I have re-examined the memoirs of the great geometers, and have striven

to consolidate their latest researches and their most exalted forms of thought

into a consistent and uniform treatise. If I have hereby succeeded in open-

ing to the students of my country a readier access to these choice jewels of

intellect ; if their brilliancy is not impaired in this attempt to reset them ; if,

in their own constellation, they illustrate each other, and concentrate

a stronger light upon the names of their discoverers , and, still more, if any

gem which I may have presumed to add is not wholly lustreless in the collec-

tion, I shall feel that my work has not been in vain."

—

Extract from the Pre-

face.

Burt's Key to Solar Compass.
Second Edition.

Pocket Book Form. Tuck. $2.50.

KEY TO THE SOLAR COMPASS,, and Surveyor's Companion

;

comprising all the Rules necessary for use in the field; also,

Description of the Linear Surveys and Public Land System of

the United States, Notes on the Barometer, Suggestions for an

outfit for a Survey of fonr months, etc., etc., etc. By W. A.

Burt, U. S. Deputy Surveyor. Second edition.

Chauvenet's Lunar Distances.

8vo. Cloth. $2.00.

NEW METHOD OF CORRECTING LUNAR DISTANCES,
and Improved Method of Finding the Error and Rate of a Chro-

nometer, by equal altitudes. By Wm. Chatjvenet, LL.D., Chan-

cellor of Washington University of St. Louis.



D. VAJST NOSTRAND. 35

Jeffers' Nautical Surveying.
Illustrated with 9 Copperplates and 31 Wood-cut Illustrations. 8vo.

Cloth. $5.00.

NAUTICAL SURVEYING. By William N. Jeffebs, Captain

U. S. Navy.

Many books have been written on each of the subjects treated of in the

sixteen chapters of this work; and, to obtain a complete knowledge of

geodetic surveying requires a profound study of the whole range of mathe-

matical and physical sciences ; but a year of preparation should render any

intelligent officer competent to conduct a nautical survey.

Contents.—Chapter I. Formulae and Constants Useful in Surveying

II. Distinctive Character of Surveys. III. Hydrographic Surveying under

Sail ; or, Running Survey. IV. Hydrographic Surveying of Boats ; or, Har-

bor Survey. V. Tides—Definition of Tidal Phenomena—Tidal Observations.

VI. Measurement of Bases—Appropriate and Direct. VII. Measurement of

the Angles of Triangles—Azimuths—Astronomical Bearings: VIII. Correc-

tions to be Applied to the Observed Angles. IX. Levelling—Difference of

Level. X. Computation of the Sides of the Triangulation—The Three-point

Problem. XL Determination of the Geodetic Latitudes, Longitudes, and

Azimuths, of Points of a Triangulation. XII. Summary of Subjects treated

of in preceding Chapters—Examples of Computation by various Formulae.

XIII. Projection of Charts and Plans. XIV. Astronomical Determination of

Latitude and Longitude. XV. Magnetic Observations. XVI. Deep Sea

Soundings. XVII. Tables for Ascertaining Distances at Sea, and a full

Index.

List of Plates.

Plate I. Diagram Illustrative of the Triangulation. II. Specimen Page

of Field Book. III. Running Survey of c Coast. IV. Example of a Running

Survey from Belcher. V. Flying Survey of an Island. VI. Survey of a

Shoal. VII. Boat Survey of a River. VIII. Three-Point Problem. IX.

Triansrulation.

Coffin's Navigation.
Fifth Edition.

12mo. Cloth. $3.50.

NAVIGATION AND NAUTICAL ASTEONOMY. Prepared

for the use of the U. S. Naval Academy. By J. H. C. Coffin,

Prof, of Astronomy, Navigation and Surveying, with 52 wood-

cut illustrations.
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Clark's Theoretical Navigation.

8vo. Cloth. $3.00.

THEORETICAL NAVIGATION AND NAUTICAL ASTRON-
OMY. By Lewis Clark, Lieut-Commander, U. S. Navy. Il-

lustrated with 41 Wood-cuts, including the Vernier.

Prepared for Use at the IT. S. $aval Academy.

The Plane Table.

Illustrated. 8vo. Cloth. $2.00.

ITS USES IN TOPOGRAPHICAL SURVEYING. From the

Papers of the U. S. Coast Survey.

This work gives a description of the Plane Table employed at the U. S.

Coast Survey Office, and the manner of using it.

Pook on Shipbuilding.

8vo. Cloth. $5.00.

METHOD OF COMPARING THE LINES AND DRAUGHT-
ING VESSELS PROPELLED BY SAIL OR STEAM, in-

cluding a Chapter on Laying off on the Mould-Loft Floor. By
Samuel M. Pook, Naval Constructor. 1 vol., 8vo. With illus-

trations. Cloth. $5.00.

Brunnow's Spherical Astronomy.

8vo. Cloth. $6.50.

SPHERICAL ASTRONOMY. By F. Bkttnsow, Ph. Dr. Trans-

lated by the Author from the Second German edition.
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Yan Buren's Formulas.
8vo. Cloth. $2.00.

INVESTIGATIONS OF FORMULAS, for the Strength of the

Iron Parts of Steam Machinery. By J. D. Vax Buren, Jr., C. E.

Illustrated.

This is an analytical discussion of the formulae employed hy mechanical

engineers in determining the rupturing or crippling pressure in the different

parts of a machine. The formulae are founded upon the principle, that the

different parts of a machine should be equally strong, and are developed in

reference to the ultimate strength of the material in order to leave the choica

of a factor of safety to the judgment of the designer.—Silliman's Journal.

Joynson on Machine Gearing.
Svo. Cloth. $2.00.

THE MECHANIC'S AND STUDENT'S GUIDE in the Design-

ing and Construction of General Machine Gearing, as Eccentrics,

Screws, Toothed Wheels, etc., and the Drawing of Rectilineal

and Curved Surfaces ; with Practical Rules and Details. Edited

by Eraxcis Herbert Joynsox. Illustrated with 18 folded

plates.

" The aim of this work is to be a guide to mechanics in the designing and

construction of general machine-gearing. This design it well fulfils, being

plainly and sensibly written, and profusely illustrated.'"

—

Sunday Times.

Barnard's Report, Paris Exposition,
1867.

Illustrated. 8vo. Cloth. $5.00.

REPORT ON MACHINERY AND PROCESSES ON THE
INDUSTRIAL ARTS AND APPARATUS OF THE EXACT
SCIENCES. By E. A. P. Barnard, LL.D.—Paris Universal

Exposition, 1867.

" "We have in this volume the results of Dr. Barnard's study of the Paris

Exposition of 18G7, in the form of an official Report of the Government. It

is the most exhaustive treatise upon modern inventions that has appeared
since the Universal Exhibition of 1851, and we doubt if anything equal to it

has appeared this century." — Jo urnnl Applied Chemistry.
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Engineering Facts and Figures.
18mo. Cloth. $2.50 per Volume.

AN ANNUAL REGISTER OF PROGRESS IN MECHANI-
CAL ENGINEERING AND CONSTRUCTION, for the Years
1803-64-65-66-07-68. Fully illustrated. 6 volumes.

Each volume sold separately.

Beckwith's Pottery.
8vo. Paper. 60 cents.

OBSERVATIONS ON THE MATERIALS and Manufacture of

Terra-Cotta, Stone-Ware, Fire-Brick, Porcelain and Encaustic

Tiles, with. Remarks on the Products exhibited at the London

International Exhibition, 1871. By Arthur Beckwith, Civil

Engineer.

" Everything- is noticed in this book which comes under the head of Pot-

tery, from fine porcelain to ordinary brick, and aside from the interest which

all take in such manufactures, the work will be of considerable value to

followers of the ceramic art."

—

Evening Mail.

Dodd's Dictionary of Manufactures, etc.

12mo. Cloth. $2,00.

DICTIONARY OF MANUFACTURES, MINING, MACHIN-
ERY, AND THE INDUSTRIAL ARTS. By George Dodd.

This work, a small book on a great subject, treats, in alphabetical ar-

rangement, of those numerous matters which come generally within the range

of manufactures and the productive arts. The raw materials—animal, vege-

table, and mineral—whence the manufactured products are derived, are suc-

cinctly noticed in connection with the processes which they undergo, but not

as subjects of natural history. The operations of the Mine and the Mill, the

Foundry and the Forge, the Factory and the "Workshop, are passed under re-

view. The principal machines and engines, tools and apparatus, concerned in

manufacturing processes, are briefly described. The scale on which our chief

branches of national industry are conducted, in regard to values and quantities,

is indicated in various ways.



D. VAN NOSTRAND. 39

Stuart's Civil and Military Engineer-
ing of America,

8vo. Illustrated. Cloth. $5.00.

THE CIVIL AND MILITARY ENGINEERS OF AMERICA.
By General Charles B. Stuart, Author of " Naval Dry Docks

of the United States," etc., etc. Embellished with nine finely

executed portraits on steel of eminent engineers, and illustrated

by engravings of some of the most important and original works

constructed in America.

Containing sketches of the Life and Works of Major Andrew Ellicott,

James Geddes (with Portrait', Benjamin "Wright (with Portrait), Canvass

White (with Portrait), David Stanhope Pates, Nathan S. Koberts, Gridley

Bryant (with Portrait), General Joseph G. Swift, Jesse L. Williams (with

Portrait), Colonel William McPee, Samuel II. Kneass, Captain John Childe

with Portrait', Frederick Harbach, Major David Bates Douglas (with Por-

trait), Jonathan Knight, Benjamin H. Latrobe (with Portrait), Colonel Char-

les Ellet, Jr. ^with Portrait), Samuel Porrer, William Stuart Watson, John

A. Roeblin<?.

Alexander's Dictionary of Weights
and Measures.

8vo. Cloth. $3.50.

UNIVERSAL DICTIONARY OF WEIGHTS AND MEAS-
URES, Ancient and Modern, reduced to the standards of the

United States of America. By J. H. Alexander. New edition.

1 vol.

"Asa standard work of reference, this book should be in every library ; it

is one which we have long wanted, and it will save much trouble and re-

search."

—

Scientific American.

Blake's Ceramic Art.

8vo. Cloth. $2.00.

A REPORT ON POTTERY, PORCELAIN, TILES, TERRA-
COTTA, AND BRICK. By William P. Blake, United

States Commissioner Internal Exhibition at Vienna, 1873.
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Saeltzer's Acoustics.

12mo. Cloth. $2.00.

TEEATISE ON ACOUSTICS in Connection with Ventilation.

With, a new theory based on an important discovery, of facilitat-

ing clear and intelligible sound in any building. By Alexander

Saeltzer.

" A practical and very sound treatise on a subject of great importance to

architects, and one to which there has hitherto been entirly too little attention

paid. The author's theory is, that, by bestowing- proper care upon the point

of Acoustics, the requisite ventilation will be obtained, and vice versa.—
Brooklyn Union.

Myer's Manual of Signals.

New Edition. Enlarged.

12mo. 48 Plates full Roan. $5.00.

MANUAL OF SIGNALS, for the Use of Signal Officers in the

Eield, and for Military and Naval Students, Military Schools,

etc. A new edition, enlarged and illustrated. By Brig.-Gen.

Albert J. Myeii, Chief Signal Officer of the Army, Colonel of

the Signal Corps during the War of the Rebellion.

Larrabee's Secret Letter and
Telegraph. Code.

18mo. Cloth. $1.00.

CIPHER AND SECRET LETTER AND TELEGRAPHIC
CODE, with Hogg's Improvements. The most perfect secret

Code ever invented or discovered. Impossible to read without

the Key. Invaluable for Secret, Military,' Naval, and Diplo-

matic Service, as well as for Brokers, Bankers, and. Merchants.

By C. S. Laekabee, the original inventor of the scheme.
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Rice & Johnson's Differential Func-
tions.

12mo. Cloth.

ON A NEW METHOD OF OBTAINING THE DIFFEE-
ENTIALS OF FUNCTIONS, with especial reference to the

Newtonian Conception of Rates or Velocities. By J. Mi^ot
Eice, Prof, of Mathematics in the U. S. Navy, and W. Wool
set Johnson, Prof, of Mathematics in St. John's College,

Annapolis.

Pickert and Metcalf's Art of Graining,
1 vol. 4to. Cloth. $10.00.

THE AET OF GEAINING. How Acquired and How Produced,

with description of colors and their application. By Charles

Pickert and Abraham Metcalf. Beautifully illustrated with- 42

tinted plates of the various woods used in interior finishing.

Tinted paper.

The authors present here the result of long experience in the practice of

this decorative art, and feel confident that they hereby offer to their brother

artisans a reliable guide to improvement in the practice of graining.

Porter's Steam-Engine Indicator.
Third Edition. Revised and Enlarged. 8vo. Illustrated. Cloth. $3.50.

A TREATISE ON THE EICHAEDS STEAM-ENGINE
INDICATOE, and the Development and Application of Force

in the Steam-Engine. By Charles T. Porter.

One Law in Nature.
12mo. Cloth. $1.50.

ONE LAW IN NATUEE. By Capt. H. M. Lazelle, U. S. A.

A New Corpuscular Theory, comprehending Unity of Force,

Identity of Matter, and its Multiple Atom Constitution, applied

to the Physical Affections or Modes of Energy.
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Ernst's Manual of Military En-
gineering.

193 Wood Cuts and 3 Lithographed Plates. 12mo. Cloth. $5.00.

A MANUAL OF PEACTICAL MILITARY ENGINEER-
ING. Prepared for the use of the Cadets of the U. S. Military

Academy, and for Engineer Troops. By Capt. 0. H. Ernst,
Corps of Engineers, Instructor in Practical Military Engi-

neering, TJ. S. Military Academy.

Church's Metallurgical Journey.
24 Illustrations. 8vo. Cloth. $2.00.

NOTES OF A METALLURGICAL JOURNEY IN
EUROPE. By John A. Church, Engineer of Mines.

Blake's Precious Metals.
8vo. Cloth. $2.00.

REPORT UPON THE PRECIOUS METALS: Being Statisti-

cal Notices of the principal Gold and Silver producing regions

of the World. Represented at the Paris Universal Exposi-

tion. By William P. Blake, Commissioner from the State

of California.

Clevenger's Surveying.
Illustrated Pocket Form. Morocco Gilt. $2.f

A TREATISE ON THE METHOD OF GOVEhi*.
SURVEYING, as prescribed by the United States Congress,

and Commissioner of the General Land Office. With com-

plete Mathematical, Astronomical and Practical Instructions,

for the use of the United States Surveyors in the Eield, and

Students who contemplate engaging in the business of Public

Land Surveying. By S. R. Clevenger, U. S. Deputy Sur-

veyor.

" The reputation of the author as a surveyor guarantees an exhaustive

treatise on this subject."

—

Dakota Register.

" Surveyors have long needed a text-book of this description.

—

The Press.



I>. VAN NOSTBAND.

Bow on Bracing.

156 Illustrations on Stone. 8vo. Clotb. $1.50.

A TREATISE ON BRACING, with its application to Bridges

and other Structures of Wood or Iron. By Robert IlEisRY

Bow, C. E.

Howard's Earthwork Mensuration.

8vo. Illustrated. Cloth. $1.50.

EARTHWORK MENSURATION ON THE BASIS OF
THE PRISMOIDAL FORMULA. Containing simple and

labor-saving method of obtaining Prismoidal Contents direct-

ly from End Areas. Illustrated by Examples, and accom-

panied by Plain Rules for practical uses. By Conway R.

Howard, Civil Engiueer, Richmond, Va.

"Major Howard has given in this book a simple, yet perfectly accurate
method of ascertaining the solid contents of any prismoid. The calculation

fr^ : areas is corrected by tables well arranged and few in number ; and he
accuracy of the prismoidal formulae with scarcely more trouble than
% end areas.

[. D. WHITCOMB,
ChiefEngineer Chesapeake and Ohio It. R.

E. T". D. MYERS,
ChiefEngineer Richmond, Fredericksburg, and Potomac R. R. y *

Mowbray's Tri-Nitro-G-lycerine.

8vo. Cloth. Illustrated. $3.00.

TRI-NITRO-GLYCERINE, as applied in the Hoosac Tunnel,

and to Submarine Blasting, Torpedoes, Quarrying, etc. Being

the result of six years' observation and practice during the

manufacture of five hundred thousand pounds of this explo-

sive, Mica Blasting Powder, Dynamites ; with an account of
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the various Systems of Blasting by Electricity, Priming Com-
pounds, Explosives, etc., etc. By George M. Mowbray,
Operative Chemist, with thirteen illustrations, tables, and
appendix. Third Edition. Ee-written.

Wanklyn's Milk Analysis,

12mo. Cloth. $1.00.

MILK ANALYSIS. A Practical Treatise on the Examination

of Milk, and its Derivatives, Cream, Butter and Cheese. By
J. Alfred Wakklyn, M. E. C. S.

Toner's Dictionary of Elevations.

8vo. Paper, $3.00. Cloth, $3.75.

DICTIONARY OF ELEVATIONS AND CLIMATIC EEG-
ISTEE OF THE UNITED STATES. Containing, in addi-

tion to Elevations, the Latitude, Mean Annual Temperature,

and the total Annual Bain Fall of many localities ; With a

brief Introduction on the Orographic and Physical Peculiari-

ties of North America. By J. M. Toxer, M. D.

Adams. Sewers and Drains,

{In Press.)

SEWERS AND DEAINS FOE POPULOUS DISTRICTS.

Embracing Eules and Formulas for the dimensions and con-

struction of works of Sanitary Engineers. By Julius W.

Adams, Chief Engineer of the Board of City Works, Brooklyn.
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