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PEEFACE

The present work is a revised edition of “Mechanics for

the Upper School” which was published in 1919 and which
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changes made have been suggested by those who have had
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have been re-arranged, some omitted, and others have been

introduced. A large number of new diagrams and other illus-

trations have been added.

As will be seen, the subject is approached from the ex-

perimental and observational side, and considerable space is

devoted to practical applications. Throughout the book there

are references to the automobile, the aeroplane and other

subjects of special interest to our modern youth. Indeed in

some instances perhaps the criticism may be offered that too

much attention has been given to details of some machines,

but such information is just what our alert young people

desire, though it is not intended for the purpose of written

examinations.
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MECHANICS
CHAPTER I

Measurement op Length and of Time

1. Introduction—Divisions of Mechanics. Mechanics is

that branch of physical science which deals with the behaviour

of bodies under the action of forces. Mechanical contrivances

were invented before the dawn of recorded history. It is

certain that the builders of the mighty monuments of ancient

times could not have accomplished their work without much
help from mechanical devices. Undoubtedly at first men lifted

heavy objects by main strength and transported them by
carrying or by dragging them over the ground. Then someone

discovered the action of the lever and also found that it was

easier to drag a sledge if it were mounted on rollers. From
such simple expedients the knowledge of mechanical principles

and the way to apply them have grown throughout the

centuries until now we throw steel bridges across wide raging

rivers, harness waterfalls to light our cities hundreds of miles

away, and construct aeroplanes which defy even the perils of

the polar regions.

There are two main divisions of Mechanics, namely. Static's

and Dynamics. The former treats of bodies in a state of rest

or equilibrium; the latter deals with bodies in motion.

2. The Need for Accurate Measurement. It is often

remarked that this is the age of science. The small beginnings

of the railway and the steamboat can be traced back almost a

century, but their great development has taken place during

the last fifty years. The ordinary telephone, the wireless

telegraph and telephone, the electric dynamo and transformer,

1



2 MEASUREMENT OF LENGTH AND OF TIME

the phonograph, the aeroplane, the automobile and many-

other mechanical conveniences -which are common to-day,

were entirely- unknown sixty years ago.

These are what we call practical applications of science and

it is evident that we cannot have the application until the

principles, or laws, of science on which it is based have been

discovered and enunciated. Again, the discovery of these

principles is made in the physical or chemical laboratory,

usually by people who have no thought that their work will

have practical application, though few scientific discoveries

fail to be utilized at some time.

Now in making a scientific investigation into any problem

we cannot make much progress unless we are able to measure

accurately the various quantities with which we have to deal.

In astronomy the methods of making accurate measurements

of time and angle and length were devised at an early date,

and that branch of science reached mature development long

before any other branch. But in later times physics and

chemistry have enormously increased their boundaries,

through the development of accurate methods of measure-

ment. We have learned to measure, with great precision, the

various effects produced by heat or electricity or sound, and
have thus been able to state the exact laws according to

which they act. Let us consider briefly some of the simpler

kinds of measurements.

3. Measurement of Length—The Metric System. The
commonest of all measurements is that of length. Whether
we design a bridge, pile a cord of wood, purchase cloth or

construct a watch, we must measure various lengths, some-

times with great accuracy. It is very necessary to have

accurately fixed standards.

There are two systems of units in common use,—the Metric

and the English. In the former the fundamental unit of

length is the metre. This was intended to be one ten-millionth

of the distance from the north pole to the equator, measured
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on the meridian through Paris, and years were consumed in

trying to make a metal bar which should be of exactly this

length. The task was completed in 1799. But since then

further measurements of the earth have been made and it

has been shown that the bar is a little shorter—perhaps a

hair’s-breadth—than it was intended to be. So now we define

the metre without reference to the earth at all; it is the

distance between two lines on a metal rod which is preserved

in the International Bureau of Weights

and Measures at Sevres, near Paris.

The measurements are to be taken when
the rod is at the temperature of melting

ice. Many copies of this standard have

been made and supplied to various

nations. The bars are made of a hard

and durable alloy composed of platinum

90 per cent, and iridium 10 per cent. p,<,. i._view of end and

and their form is shown in Fig. 1
. tL^TbS

the end of the metre is a short

The metric system is almost uni-

(HairSij^

K

versally used in scientific experiments, tom of the bar.

and it has often been proposed that the British Empire and
the United States should use it in ordinary life, as is done in

almost all other nations; but little progress has been made to

this end in the last fifty years.

4. Divisions and Multiples of the Metre. The metre is

divided decimally, thus

:

metre = 1 decimetre (dm.)

yV dm. = 1 centimetre (cm.)

yV cm. = 1 millimetre (mm.)

1 m. =10 dm. = 100 cm. = 1000 mm.

For greater lengths, multiples of ten are used, thus;

10 metres = 1 decametre. 10 hectometres = 1 kilometre (km.)

10 decametres = 1 hectometre. 1 km. = 1000 m.

The decametre and the hectometre are not often met with.
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6. The English System. In this system the fundamental

unit of length is the yard. It is said to have represented

originally the length of the arm of King Henry I (1100-1135),

but such a definition is not accurate enough for present-day

requirements. The crude manner in which this unit was
specified at that time, compared with the precise way in which

it is fixed and reproduced now, may serve to illustrate the

growth in the appreciation of science in the last 800 years.

The yard is now defined as the distance, at 62° F., between

the centres of two transverse lines ruled on two gold plugs in a

bronze bar, which is pre-

served in London, Eng-

land, in the Standards

Office of the Board of

Trade of Great Britain.

The bronze bar is 38

inches long and has a

cross section one inch

square (Fig. 2). At a, a,

wells are sunk to the mid-depth of the bar, and at the bottom

of each well is the gold plug or pin, about tV inch in diameter,

on which the line defining the yard is engraved.

Fig. 2.—Bronze yard, 38 in. long, 1 in. sq. in sec-
tion; a, a, are small wells in the bar, sunk to mid-
depth.

The other units of length in ordinary use, such as the inch,

the foot, the rod, the mile, are derived from the yard.

Unfortunately, however, they are not obtained by dividing

into tenths or by multiplying by tens, and so calculations in

the English system are much longer and more tedious than in

the metric system.

6. Relations between the Two Systems. In Great Britain

the relation between the metre and the inch is officially stated

to be,

1 metre = 39.370113 inches, or 1 yard = 0.914399 metre;

in the United States the metre is taken as the fundamental

standard and other lengths are referred to it. By law,

1 metre = 39.37 inches, and hence 1 yard = 0.914402 metre.



DERIVED UNITS 5

Thus the U.S. yard differs from the Imperial yard by only

3 parts in 900,000, and they may be considered identical.

The following relations hold

:

1 cm. = 0.3937 in.

1 m. = 39.37 in. = 1.094 yd.

1 km. = 0.6214 mi.

Approximately 10 cm.

30 cm.

1 in. = 2.54 cm.

1 ft. = 30.48 cm.

1 mi. = 1.609 km.

4 in.

1 ft.

8 km. = 5 mi.

In Fig. 3 is shown a comparison of centimetres and inches.
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,/ \3 .4 5 .6 ,7

Mil lllll!l|llll|ll{lllllll{ll| 1 llllll|llllllllll lllliliiliil^ 1 n ' p 1 ‘

1

'T'

Inches

(
1

I

j

V| 1
1

]

( I

r 1 T
1

[

1 j

1
1

r l

| 1

1

1 [
1

1 2

1
]

r j'l
1

3 1

Fig. 3.—Comparison of inches and centimetres.

7. Derived Units. The ordinary units of surface and of

volume are at once derived from the lineal units. The

imperial gallon is defined as the volume of 10 pounds of

water at 62° F., or is equal to 277.274 cu. in. (The U.S. or

Winchester gallon = 231 cu. in.). The litre contains 1000 c.c.

The following relations hold

:

1 sq. yd. = 0.836 sq. m. 1 hectare = 100 ares

1 acre = 4840 sq. yd. = 2.47 acres

= 4046.87 sq. m. 1 cu. in. = 16.387 c.c.

1 sq. m. = 10.764 sq. ft. 1 c.dm. = 61 024 cu. in.

1 are = 100 sq. m. 1 gal. = 4.546 1.

= 119.60 sq. yd. 1 1. = 1.76 pt.

8. Measurement of Lengths. Having fixed our units of

length let us consider how to measure lengths with them and

with what degree of accuracy we need to work. Suppose you

wish to purchase a certain quantity of cloth at a dry-goods

store. The clerk unrolls the cloth, and, placing it alongside

his yard-stick (which is a reproduction, more or less accurate.
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of the original standard yard) measures off the amount
ordered. In this case the measurement is not very accurate,

each yard of the cloth might easily be in error by half an

inch. The skilful cabinet-maker must be much more accurate

in the use of his 2-foot rule when he makes a piece of fine

furniture. But in some mechanical operations a still greater

degree of accuracy is demanded. In the manufacture of

steel balls for ball bearings, they should not differ by ro oVo xr

inch and they should not vary from a perfect sphere by

tWooo inch. How shall we make these accurate measure-

ments?

9. Micrometer Screw

Gauge. Suppose we

wish to determine accu-

rately the thickness of a

wire or of a metal plate.

A suitable instrument

Fig. 4.—Micrometer wire gauge. tO USe is the SCreW

gauge, illustrated in Fig. 4. A is the end of an accurately

made screw which works in a nut inside B, and can be moved
back and forth by turning the cap or thimble C which is

attached to it and which slips over D. Upon D is a scale,

while the bevelled end of C is divided into a number of equal

parts, by which the fractions of a revolution are measured.

By turning the cap the end A moves forward until it reaches

the stop B, and then the edge of the cap should be even with

zero on the main scale and the zero mark on the circular scale

should be opposite the longitudinal line of the main scale.

In order to measure the diameter of a wire we turn the

screw back until the wire can just pass between A and B, and

then from the graduations on D and C we find the diameter

required.

Suppose the pitch of the screw to be ^ mm. and that each

division of the main scale is 1 mm. Then with one revolution
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of C the end A moves through | mm. Now if there are 50

divisions on the bevelled end of C it is evident that when the

screw turns through one division the end A moves through

X i = T¥TT mm. Such an instrument will measure to mm.

As an example let us consider the reading shown in Fig. 4.

The distance between B and A is evidently 9 mm. + a fraction

of a millimetre. Since 47 on the circular scale is opposite the

longitudinal line of the millimetre scale, the cap has been

turned a certain number of complete revolutions plus x%V of

a millimetre. The reading is therefore either 9.47 or 9.97 mm.
and a close inspection shows that the latter is the correct

reading.

Sometimes the pitch of the screw is tV inch and there

are 25 divisions on the head C, in which case one division =

X xV = ToVo inch.

10. Vernier Calipers. But it may happen that the object

which we have to measure is too large for our gauge,—for

example, a cylinder or a sphere an inch or more in diameter
(through gauges have been made which will measure several

inches)
;
or perhaps the degree of accuracy demanded is not

so great. In this case we might use the vernier caliper, one
pattern of which is illustrated in Fig. 5. As will be seen,

there are two graduated scales, the main scale S, on the bar
of the instrument, and the vernier scale V, on a jaw which
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slides upon the bar. When the two jaws are in contact zero

on the vernier scale should coincide with zero on the main scale.

The vernier scale is used to measure fractions of a division

of the scale S, and is usually constructed so that n of its

divisions are equal to n— 1 divisions of the main scale. In

taking a measurement the vernier is pushed along until the

object to be measured will just pass between the two jaws.

Let the reading be that shown in the figure and suppose

10 vernier divisions are equal to 9 scale divisions and that the

latter are millimetres. Then 1 division on the vernier is

clearly 0.9 mm., and the difference between one scale division

and one vernier division is 0.1 mm.
Now consider the enlarged image of the scale and vernier

(Fig. 6). It is clear that the length AB, which represents the

Fig. 6.—Scale and vernier.

diameter of the circular block in Fig. 5, is equal to 16 mm. +
a fraction of a millimetre.

To find this fraction, look along the vernier and see where

a line on it coincides with a line on the scale. It is seen that

division 7 on the vernier coincides with the line c on the scale.

Then the fraction to be measured, namely the distance aB,

is equal to the difference between the 7 divisions of the scale

in the space ac and the seven divisions of the vernier in the

space BC. But the difference between one scale division and

one vernier division is 0.1 mm. Hence the fractional part is

7x0.1 or 0.7 mm., and the entire space AB is therefore 16.7

mm. or 1.67 cm.

For any other vernier the calculation is similar.

Of course there are other devices for the accurate measure-

ment of lengths, each being designed for the special purpose

in view, but in every case the screw or the scale or whatever
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is the essential part of the instrument must be carefully

compared with a good standard before our measurements can

be of real value.

11. Unit of Time. The earth is our great time-measurer, the

period of a rotation being denoted a day. Imagine a plane to

be drawn through the point where one stands and also through

the axis of the earth. This is the observer’s meridian plane,

and as the earth turns on its axis this plane turns with it.

During every rotation this meridian plane will come to the

sun (and, in succession, to every other body in the sky)

though to all appearances the sun comes to the meridian, not

the meridian to the sun.

The interval from the moment when the centre of the sun

is on the meridian until it next arrives there is called an

apparent solar day. Unfortunately, however, these apparent

solar days are not all of equal length, the reason why being

fully given in works on astronomy. Taking the average of

the lengths of all the apparent solar days, we obtain a mean
solar day, and this is chosen as the fundamental unit of time.

It is divided into 24 equal parts, each being an hour; the

hour is divided into 60 equal parts, each being a minute; the

minute is divided into 60 equal parts, each being a second.

Thus the day contains 24x60x60 = 86,400 seconds.

Mean solar time is the kind which is measured off by our

ordinary clocks and watches. In the chapters which follow

the second will be more frequently used than the day.

PROBLEMS AND EXERCISES
(For table of values see section 6)

1. How many millimetres in 2^ kilometres?

2. Change 186,284 miles to kilometres.

3. Change 760 mm. into inches.

4. Lake Superior is 602 feet above sea level. Express this in metres.

5. Express, correct to a hundreth of a millimetre, the difference between
12 inches and 30 centimetres.
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6. Find in inches the diameter of the bore of the 42-centimetre gun.

7. The distance from Toronto to Montreal is 333 miles. Express this

distance in kilometres.

8. Fig. 7 shows a four-inch scale divided into tenths of an inch and an

attached vernier scale. Find as exactly as you can the reading of the

zero of the vernier, and give reasons for your answer.

0 5 10

i 1 1 M i 1

1

1 1 1

1

c

Ml M
1

M II

1 1

1 1 1

1
1

1 II 1 1 1 1
1

1

1 1 1 1

) j

1 1 1 1
1

1

1 1 1

1 . 4

Fig. 7.

9.

Read the barometer vernier shown in Fig. 8 in inches and in centi-

metres, explaining how you reach your results.

10.

Give the two vernier readings shown in Fig. 9, explaining how you
obtain your results.

Fig. 9.
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11.

In the circular scale vernier shown in Fig. 10, twenty divisions on

the vernier A, are equal to nineteen divisions on the main scale. The

numbers on the main scale represent degrees. Find the reading in degrees

and minutes.

12.

What is the reading of the micrometer gauge in Fig. 11? (Each

division of the main scale represents 1 mm. and there are 100 divisions on

the circular scale; 1 revolution of the screw = 1 mm.)

13. How would you use an ordinary rule to measure the thickness of a

page of this book?

14. Devise a method for measuring the length of a curved line.



CHAPTER II

Velocity

12. Bodies in Motion and at Rest. Let us look out of the

window as we travel in a railway train. The fences and the

telegraph poles seem to be continually displaced backward,

but our experience leads us to consider the earth, with these

objects fixed in it, to be at rest while the train moves forward

over it. Perhaps an automobile comes along upon a road

parallel to the railway and keeps abreast with the train. We
can see its wheels spinning round and we say that it, also, is

moving over the earth. But let us fix our attention only on

the upper part of the motor-car and not look at the ground

at all; would we say that the motor-car is moving? No, it

appears to be at rest. Or look at the other people travelling

with you; are they at rest? You agree that both they and

you are moving over the ground, but with regard to you they

seem to be at rest. Thus an object may be in motion with

respect to one body and, at the same time, at rest with respect

to another.

13. Definition of Motion. When, then, is a body said to be

in motion? Consider a line joining the rear of the train to a

point on the track. As we travel forward this line continually

increases in length, and so we may say that if the length of the

line joining one body with another is changing, one body is

moving with respect to the other. As to the motor-car, the

line drawn from it to the train remains of constant length and,

as far as the above definition is concerned, each is at rest with

respect to the other.

Next, look at two children on a merry-go-round or “teeter-

ing” on a plank over a log. The line joining them is not

changing its length, and yet each child will say that the other

12
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is in motion. In this case the length of the line does not change

but the direction does, and so we finally reach the following

definition

:

Motion.—One point is in motion with respect to another

point when the line joining the two points changes in length

or direction.

We have spoken of the earth as being at rest, but a moment’s

thought assures us that it is not absolutely at rest. It rotates

on its axis and so every particle of it is in motion with respect

to the sun and the stars. In addition it revolves about the

sun, and, still further, the sun with the entire solar system is

moving through space with respect to the stars. Indeed the

motion of any particle of the earth is extremely complicated

when we consider its motion with respect to the stars in the

sky. It is quite evident that we cannot consider any point as

absolutely at rest and so must consider the motion of one

point with respect to another. Usually, however, in dealing

with the motion of bodies we consider the earth to be at rest.

14. Velocity,—Average, Uniform, Variable. The road from

Toronto to Hamilton is a very good one and a trip by auto-

mobile is very pleasant. Let us take one, and we can make
a study of velocity on the way. Starting from Toronto at

10.00 a.m., we pass Port Credit (13 miles) at 10.45, Oakville

(21 miles) at 11.10, and reach Hamilton (40 miles) at 12 noon.

Thus we have passed over 40 miles in 2 hours, and we say

our average velocity or speed during the entire trip was 20

miles per hour.

. , .
Distance

Average velocity =——
Time

Of course we kept watching the speedometer all the way
and we saw that its reading changed very often. Sometimes

it said 5, then 10, 20, and perhaps 35 miles an hour, or, when
the motor had to stop, it fell to 0. Now, while the reading

on the speedometer was constant we realized that we were
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travelling at a uniform velocity, by which we mean that we
were passing over equal distances in equal times (no matter

how short the intervals of time).

Suppose that over a 5-mile stretch of level road we kept the

speedometer perfectly steady, and we found that it required

12 minutes to go this distance. Then, since the velocity was
uniform, the rate was

5 miles in 12 minutes,

which = 25 miles in 60 minutes, or 1 hour.

But generally the speedometer did not remain constant for

many seconds at a time, and we realized that we were travel-

ling with variable velocity, in other words, the distances passed

over during successive seconds of time were not the same.

15. Graphical Representation of Velocity. If a body is

moving with a uniform velocity of 6 feet per second it will

traverse 6 feet in 1 second, 12 feet in 2 seconds, etc. This

Fig. 12a.—Graph for uniform Fig. 126.—Graph for variable
velocity. velocity.

state of affairs is shown graphically in Fig. 12a, in which

horizontal distances (abscissas) represent time and vertical

distances (ordinates) represent spaces traversed. The dots

A, B, C, represent the distances covered in 1, 2, 3,

...... seconds and we see that they lie in a straight line.
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The space-time graph for a body moving with uniform velocity

is therefore a straight line.

Suppose, however, that the body moves 1, 3, 5, 7, 9, 11

feet in successive seconds, and that we represent this condition

graphically as in Fig. 126. The points A', B', C' are

not in a straight line and we conclude that a curved or broken

line represents non-uniform or variable velocity.

The average velocity for the 6 seconds is F'M' (36 ft.)

divided by OM' (6 sec.), or 6 ft. per sec.

Considering the separate seconds we see that the greater

the velocity the steeper is the slope of the line for that par-

ticular second.

16. Velocity at a Point. We have still more to learn from

our motor trip. There was a hill which we decided to Take’

on high gear. Having rapidly descended the other hill we
began the up-grade with the speedometer indicating 30 miles

per hour, which gradually fell until at the top it indicated 10

miles per hour. The entire time required to go up was 20

seconds and the distance was 200 yards.

Now the speed was changing all the time and yet we know
that at every point of the 200 yards the car had a definite

rate of motion or velocity. Also, to each point of the 200

yards corresponded a definite moment of time in the 20

seconds. Hence, we can say that at every point of the course

and at every moment of the time the body had a definite

velocity. It is difficult to explain this statement in any
simpler terms, but the meaning becomes more definite when
we discuss how to measure the velocity at a point.

Let us consider how a traffic officer computes the velocity

of an automobile which he suspects of breaking the speed

limit. He marks two points, say 220 yards apart, and starts

his stop-watch as the car passes the first point and stops the

watch when the car arrives at the second. If he finds the

time to be 10 seconds, the motorist is likely to appear in court
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to answer a charge of driving at the rate of 45 miles per hour.

This rate, however, is not necessarily the velocity at either

of the two marked points; it is the average velocity for the

interval. The driver might have been travelling at the rate

of 60 miles per hour at the first point and still have secured the

calculated average velocity by a judicious application of the

brakes.

It is evident then that in measuring the velocity at a point

the space traversed should be as small as possible. In taking

the time for a very short distance some more accurate timing

device than a stop-watch must be used.

17. Measure of Velocity at a Point. Let AB (Fig. 13)

A C, B
t-H

a b
Fig. 13.—Finding velocity at C.

We wishrepresent the 220 yards traversed at varying speed,

to measure the velocity at the point C.

We can arrange two electrical contacts 1 foot apart, one 6

inches in front of C, the other 6 inches back

of C, such that as the car passes over them it

will make, by means of an electrical device,

a record on a moving strip of smoked paper

upon which a tuning fork is writing a wavy
line as shown in Fig. 14. Let the fork make
200 complete vibrations per second, that is,

each complete wave represents sec., and

let c, d be the marks recorded as the car

passed over a, b (Fig. 13) respectively. These

are just 3 full waves apart, and consequently

the car passed over 1 foot from a to & in 2^
sec. We easily calculate that 1 foot in sec.

is equivalent to 45xy miles per hour.

This is the average velocity during the

2x 0 sec. and does not express exactly the velocity at C. If

Fig. 14.—Trace of

a tuning fork used
in measuring a short
interval of time.
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next we take a space of ^ foot with C in the middle of it and

determine the average velocity when passing over it, we shall

be still nearer the desired result. It is evident that the shorter

the space we take, the nearer we approach the velocity

desired. Hence we say that if s is an infinitely small length

containing C and t is the infinitely short time taken to pass

over s, the

velocity at C = -
V

Some writers make a distinction between velocity and

speed, the latter term being used to mean simply rate of

motion, the former including direction as well as rate. Thus
two velocities would not be considered equal unless they were

equal in absolute amount and the motion was in the same

direction. This distinction is very useful in a full treatment

of motion, but in this book we shall deal almost entirely with

motion in a straight line and no sharp distinction between the

terms will be made.

QUESTIONS AND PROBLEMS

1. Define motion, uniform velocity, variable velocity, average velocity.

2. Explain what is meant by “velocity at a point.”

3. Find the equivalent, in feet per second, of a speed of 60 miles per

hour.

4. An eagle flies at the rate of 30 metres per second; find the speed in

kilometres per hour.

5. Express in miles per hour a velocity of (1) 40 feet per second, (2)

100 yards per minute.

6. A point moves at the rate of 50 miles in 1^ hours. What is its

velocity in feet per second?

7. Find the ratio of velocities of (1) 60 miles per hour and 44 feet per

second, (2) 5 miles per 6 minutes and 10 feet per f second.

8. One body moves over 30 yards in 7 minutes, and another over 12

feet in 5 seconds. If their velocities are uniform, compare them.

9. A velocity of 20 miles per hour is v times a velocity of 30 feet per

second. What is vl
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10. A body has a uniform velocity of 8 feet per second. What is its

displacement in 11 hours?

11. A body is moving with a uniform velocity of 20 cm. per second.

What is its displacement in metres in 10 hours?

12. A body moves uniformly in a straight line at the rate of a feet per

second. What is its displacement in miles in h hours?

13. A body is moving uniformly at the rate of c cm. in s seconds. How
far does it go in h hours?

14. The velocity of a train is 15 miles per hour. Find (1) how many
minutes it will take to go 50 yards, (2) how many seconds it will take to

go 25 feet.

15. The velocity of a point is a feet per 6 seconds. How long does it

take it to go c miles?

16. A sledge party in the Arctic regions travels northward, for ten

successive days, 10, 12, 9, 16, 4, 15, 8, 16, 13, 7 miles, respectively. Find

the average velocity.

17. If at the same time the ice is drifting southward at the rate of 10

yards per minute, find the average velocity northward.

18. A point has displacements of 9 cm., 10 cm., 11 cm., and 12 cm. in

four consecutive seconds. Find its average velocity (1) for four seconds,

(2) for the first three seconds, (3) for the last three seconds.

19. A point is displaced 5 cm., 3 cm., 1 cm., —1cm., —3 cm. in five

consecutive seconds. What is its average velocity (1) for the five seconds,

(2) for the first three seconds, (3) for the last three seconds, (4) for the

middle three seconds?

18. Composition of Velocities. Suppose a passenger to be

travelling on a railway train which is moving on a straight

track at the rate of 15 miles per hour, or 22 feet per second.

While sitting quietly in his seat he has a velocity relative to

the ground of 22 feet per second.

Next let the passenger rise and move along the corridor of

the train at the rate of 4 feet per second. If he moves towards

the engine his resultant velocity with respect to the ground

is evidently 26 feet per second while if he moves towards the

rear of the train the resultant velocity is 18 feet per second.

If, however, the motion of the passenger is not in the

direction of the motion of the train, the calculation of the
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resultant velocity becomes more complicated. It may be

illustrated by the following example:

R
Fig. 15a.—Showing how to add to- Fig. 156.—The parallelogram of velocities,

gether two motions of a ring on a rod. Velocities AC, AB together == velocity AD,

Let a ring U (Fig. 15a) slide with uniform velocity along a

smooth rod AB, moving from A to 5 in 1 second. At the

same time let the rod be moved in the direction AC with a

uniform velocity, reaching the position CD in a second. The
ring will be at D at the end of a second.

At the end of half a second from the beginning the ring will

be half-way along the rod, and the rod will be in position 2,

half-way between AB and CD. It is evident that between

the two motions the ring will move uniformly along the line

AD, travelling this distance in 1 second.

From this illustration we can at once deduce the law of

composition of velocities.

Let a particle possess two velocities simultaneously, one

represented in direction and magnitude by the line AB, the

other by AC. (Fig. 156.)

Complete the parallelogram ABDC. Then the diagonal

AD will represent in magnitude and direction the resultant

velocity.

If the direction of AC is at right angles to that of AB, the

magnitude of the resultant velocity is easily obtained since

AZ)2 = A 52 -f AC2. When the velocities are not at right

angles, the calculation of the resultant velocity requires a

simple application of trigonometry which will be found in

Sec. 109. In the meantime students will find it instructive to

solve a few problems graphically using a rule and protractor.



20 VELOCITY

PROBLEMS

1. Suppose a vessel to steam directly east at a velocity of 12 miles per

hour, while a north wind drifts it southward at a velocity of 5 miles an

hour. Find the resultant velocity. (Draw a line AB in an easterly direc-

tion 12 cm. long, to represent the first component velocity; AC, in a

southerly direction 5 cm. long, to represent the second. Complete the

parallelogram, ABDC which in this case is a rectangle, and find the length

of the diagonal AD).

2. A ship moves east at the rate of 7| miles per hour, and a passenger

walks on the deck at the rate of 3 feet per second. Find his velocity

relative to the earth in the following three cases: (1) when he walks toward

the bow, (2) toward the stern, (3) across the deck.

3. A ship sails east at the rate of 10 miles per hour, and a north-west

wind drives it south-east at the rate of 3 miles per hour. Find the resultant

velocity.

(Draw a line in the easterly direction 10 inches long, and lay off from

this, by means of a protractor, a line in the south-east direction, 3 inches

long. Complete the parallelogram and measure carefully the length of

the diagonal.)

4. Find the resultant of two velocities, 20 cm. per second and 50 cm.

per second, (a) at an angle of 60°, (b) at an angle of 30°. (Carefully draw
diagrams, and measure the diagonals.)

5. A particle has three velocities given to it, namely, 3 feet per second

in the north direction, 4 feet per second in the east direction, and 5 feet

per second in the south-east direction. Find the resultant. (Carefully

draw a diagram.)



CHAPTER III

Inertia and Force

19. Newton’s First Law of Motion. Walking along the road

day after day, we see a stone beside the path, but one morning

it is gone! Now if some person should tell you that the stone

of itself moved away you would consider him not in his right

mind. Such an occurrence is entirely contrary to all our

experience.

Sometimes we hear stories of how, in a dimly-lighted room,

when several people had laid their hands upon a table, it

began to move and to give certain mysterious ‘Tappings.”

Whatever truth there may be in some of these reports, we

may be sure that the table did not of itself get up on its legs

and walk about. We know that such things do not happen!

Lifeless bodies at rest, when left to themselves remain at rest.

Again, in playing base-ball or cricket, when the batter

strikes a ‘hot grounder’ the ball rolls for a long distance

before it comes to rest, and the smoother the field the farther

it rolls. If the ball is driven along a cement-paved street it

goes still farther; and if we try the experiment on a long

stretch of smooth ice it seems almost as if the ball will never

stop. The friction of the surface brings it to rest at last, but it

is easy to believe that if we could construct a flat level surface

which would be entirely without friction, a body started upon

it would go on in a straight line at the same rate forever.

If one could travel far out into space, away beyond the

influence of any celestial body, and could there launch an

object, large or small, it would continue to move in a straight

line with the velocity initially given to it for all time—unless

it should come under the influence of some other body.

21
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In the preceding paragraphs statements have been made
which everyone recognizes to be in accordance with his

experience, and which may be taken as axioms, that is, self-

evident truths. Now, in 1687, Sir Isaac Newton published

his great book entitled, “The Mathematical Principles of

Natural Philosophy,’’ which is generally considered to be the

greatest scientific book ever published. At the beginning of

this he states his famous three laws of motion. The First

Law is as follows:

Every body continues in its state of rest, or of uniform

motion in a straight line, unless it is compelled by external

Force to change that state.

This is at once seen to be a concise summing-up of the

universal experience of man.

20. Force. In the above examples the stone and the table

were put in motion; we conclude, then, that a force entirely

external to them acted upon them. Similarly with the rolling

ball; it gradually travelled more slowly, and the change in

its motion was due to the force of friction, which was quite

external to it.

If a body is allowed to fall freely, we know that it moves
in a straight line but with increasing velocity, and we say

therefore that a force acts upon it. In this case it is the force

of gravity or the attraction of the earth. If a body is pro-

jected outwards there is a change both in the velocity and in the

direction of motion—both produced by the force of gravity.

It is well, then, to have clearly in mind:

(i) If a body changes from being at rest to being in motion;

(ii) if the speed of a body is changed; or

(iii) if the direction of motion is changed, even without

change in speed; then force is acting on the body.

21. Inertia. It used to be a familiar trick on April Fool’s

day to place an old hat near the path to tempt the unsuspecting

passer-by to kick it. Now a vigorous kick will change the
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hat’s condition of rest into motion with a considerable velocity;

but if there happens to be a brick under the hat —well, it is

quite a different matter! It is much more difficult, or requires

a much greater muscular effort, to set in motion the hat-and-

brick than the hat alone. We say the former has much greater

inertia.

A body possessing great inertia requires a great effort, that

is, a great force, to put it in motion; and an equally great

force is needed to stop the body if it is in motion. Moreover,

the more rapidly we change the motion of the body the greater

is the required force.

There is no danger in stopping a football going down the

field, but a cannon ball (cannon balls were formerly spherical)

of the same size would simply plough through all the players

on a field and would do great damage.

An empty barrel has little inertia, and when rolling down
an incline can easily be stopped, but look out for it if it is

filled with flour or oil or other heavy substance.

22. Resistance to Change of Motion. Many simple experi-

ments illustrate the inertia of bodies.

Lay a book upon a sheet of paper on a table. By a quick

jerk the paper can be pulled out, leaving the book practically

where it was before.

Pile a number of blocks as in Fig. 16

and attach a cord to one near the bottom.

A vigorous pull on the string will remove

the block to which it is attached and
leave the others in the pile as before. It

required a considerable force to pull out

the block, on account of its inertia; and
the other blocks remained behind on account of their inertia.

These experiments illustrate the inertia shown by a body
when it is at rest. It might be remarked that inertia is not

confined to inanimate objects. Human beings very frequently

Fig. 16.—Illustrating inertia.



24 INERTIA AND FORCE

exhibit it, but in this case it is usually called ‘laziness.’

Indeed ‘inertia’ is a Latin word, and ‘laziness’ is its English

translation. But the inertia of a lifeless body differs from the

laziness of a living person in the fact that it requires as great

a force to stop the former when it is in motion as to start it

from rest, but not so in the case of the latter!

As illustrations of the inertia of a body in motion the

following may be mentioned:

When a locomotive leaves the rails and is quickly brought

to rest the cars behind still continue their motion forward and

usually do great damage.

If one is standing up in a street car when it is turning a

corner it is well to hold to a strap or other support, as one’s

body tends to continue in the original direction of motion.

In jumping over a ditch you take a run, leap into the air,

and the inertia of your body carries it forward.

When shovelling coal or snow you start its motion and its

inertia causes it to continue until it reaches where you want it

to go.

We see then that the Inertia of a body is that property

by which the body opposes any change in its condition of

rest or of uniform motion in a straight line.

EXERCISES

1. Suspend a heavy ball (Fig. 17) by a thread

not much stronger than will sustain the load. By
means of a similar thread, attach a light ring or

handle to the lower part of the baU. Grasp the

ring and pull steadily downwards until one of

the threads breaks.

Which thread breaks? Why should this thread

rather than the other break?

Now suspend the ball and ring as before. Again

grasp the ring, and, with a quick jerk, pull sudden-

ly downward.

Which thread now breaks? Why?Fig. 17
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2.

Suspend a heavy weight, say 10 pounds, by a stout cord 15 or 20

inches long. Tie a fine thread around the middle of the weight and give

it a sudden pull sideways.

What change takes place in the condition of (a) the thread, (b) the

weight?

Tie the thread again around the weight, and, by means of a series of

well-timed, gentle pulls, set the weight swinging to-and-fro. When it is

going through a fairly wide arc, try to stop the weight at its lowest position

by suddenly tightening the thread when it reaches this point.

Describe the action of both weight and thread. Explain.

3. Lay a card over the mouth of a bottle (Fig. 18), and place

coin on the card above the

opening. Suddenly drive the

card off by striking it with

the finger.

What becomes of the coin?

Explain its behaviour.

4. Explain each of the fol-

lowing:

() A rider is liable to be unhorsed if the horse

shies or stops suddenly.

() A person who steps from a rapidly moving

car is in danger of being thrown to the ground. It is

less dangerous to step out in the direction in which the

car is moving than in the opposite direction.

(c) A circus rider can pass over a rope extended

across the ring and regain his footing on his horse by leaping

up when he comes to the rope.

a small

(d) The outside bank is worn away when a river takes a sharp turn.

(e) “So suddenly did the motor-car stop that one of the occupants of

the front seat was pitched through the windshield and those in the rear

seat were propelled over into the front seat.”—(From a newspaper).

(/) A well-loaded automobile, or a steamship with a full cargo, rides

more smoothly than if it is without load.

(g) When a locomotive runs off the track, or in a collision between two
trains, great damage is done by the cars telescoping one another.

5.

Why does a base-ball player let his hands move backwards as he

catches the ball?
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23. Mass. What is there in a body which gives to it this

characteristic property known as inertia? We are accustomed

to say that it is its mass, though it is impossible to define or

explain what mass is. Frequently the mass of a body is said

to be the quantity of matter in it, but that does not really

explain it, as we do not know what matter is. Such a

definition would not supply a method of measuring the mass

of a body.

The mass of a body is proportional to its inertia. Let us

try the following experiment. A, B, C, D are cubes of the

and strike them in succession with equal blows. The cork

cube starts off with considerable speed and probably goes off

the table. Its resistance to being moved is slight, or its inertia

is small and so is its mass. The cement block may move a

couple of feet, the iron possibly a foot but the lead one only

a few inches. In this way we can arrange the masses in

order and, indeed, get some idea of one in terms of the others.

It is actually by comparing the effect of a force on various

masses that we can compare them. As we shall see later, the

force we usually employ is the attraction of the earth.

24. Units of Mass. There are two units of mass in common
use. In the metric system the fundamental unit is the kilo-

gram. The world’s standard kilogram is a cylinder of platinum-

iridium alloy almost exactly 1^ inches in diameter and in

height (Fig. 20). It is preserved at Sevres, France. A large

number of equal standard masses have been made and dis-

tributed to different nations.

Fig. 19.—Comparison of masses.

same size, made of cork,

cement, iron and lead, re-

spectively, and all painted

precisely alike (Fig. 19).

From their outward ap-

pearance one cannot judge

their relative masses, but

let us take a light ruler



UNITS OF MASS 27

The kilogram is divided decimally as follows:

kilogram = 1 gram.

= 10 decigrams.

= 100 centigrams.

= 1000 milligrams.

The original kilogram was intended to

represent the mass of 1000 c.c. (1 litre) of

water when at its maximum density (at

4° C.)

Fig. 20.—Stand-
ard kilogram, made
of an alloy of plati-

num and iridium.
Height and dia-
meter each 1.5

inches.

Hence 1 c.c. water = 1 gram-mass.

In the English system the pound is the fundamental unit.

The standard pound is a certain piece of platinum, which

is preserved in the Standards Office in London, England. Its

form is shown in Fig. 21.

Unfortunately the pound is not divided

decimally, and the calculations which

involve the pound are more complicated

than those in the metric system.

In the English system

F,o.21-I„,perMSta„.
‘ = 7^ '

dard Pound Avoirdu-
pois. Made ofplatinum.
Height 1.35 inches; 1 ounce = 7^ pound = 437.5 grains,
diameter 1.15 inches. lu
“P.S.” stands for par-
liamentary standard. Originally a grain of wheat was taken

from the middle of the ear, and, after being well dried, was

used as a standard grain.*

The relation of the pound to the kilogram is officially stated

by the British Government to be

*In addition we have two other sets of weights. Troy weight is used in weighing gold,

silver, and precious stones. 24 grains = 1 pennyweight (dwt.), 20 dwt. = 1 ounce (oz.).

12 oz. = 1 lb. Thus 1 lb. troy = 5760 grains.

Apothecaries’ weight is used in mixing medicines. 20 grains = 1 scruple (sc.), 3 sc. = 1

dram (dr.), 8 drs. = 1 oz., 12 oz. = 1 lb. Apothecaries’ pound = Troy pound.
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1 kilogram = 2.2046223 pounds avoirdupois.

1 gram = 15.4323564 grains.

1 ounce avoir. i= 28.349527 grams.

Approximately, 1 kg. = 2^ lb.

1 oz. = 28^ grams.

EXERCISES

1. Find how many times the area of a circle contains the area of the

square on the radius by the following method:

Cut out from the same sheet of paper as accurately as possible a square

of side 6 cm. and a circle of radius 6 cm. Weigh each carefully. Divide

the weight of the circle by the weight of the square. Taking tt = 3.1416,

find your percentage of error.

2. By weighing find the metric equivalent of an ounce weight.

3. Measure off 50 cm. of iron stove-pipe wire, weigh it and calculate the

weight in grams per centimetre in length. Why use 50 cm., not 5?

4. Take another piece of the same wire, of unknown length, weigh it,

and from the weight per centimetre determined in the last experiment,

calculate the length of the wire. Verify your result by measuring its

length with a metre scale.

What is your percentage of error?

5. Counterpoise a beaker on a balance and run into it from a burette 100

c.c. of water. Weigh the water.

What is the mass of the water?

What is the mass of one cubic centimetre of it?

6. Find the diameter of a capillary tube by the following method:

Weigh the tube empty, run into it a thread of mercury about 10 cm.

long and weigh again. From the weight of the mercury calculate its

volume (1 c.c. mercury = 13.59 gm.), then find the area of cross-section of

the mercury column and finally the diameter.

25. Gravitation Units of Force. It was noted in Section

19 that, whenever the motion of a body is being changed,

a force is acting on it. But force may be developed without

motion being produced. For example, if we exert a muscular

effort and pull one end of a spring rigidly fastened at the

other end, we stretch it, but there is no motion of the spring

as a whole. If we pull with a greater force, we stretch it still

more. The stretch is proportional to the force.
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Now take a standard pound-mass and hang it from the end

of the spring. The spring is stretched a

certain amount, and we know therefore that

a force must be developed in the spring. This

force is due to the pull or attraction of the

earth on the pound-mass, and is called the

weight of the mass. Next, suspend two

standard pound-masses; the spring is stretched

twice as much, the pull of the earth on them,

(that is, their weight) being twice as great.

If, further, we have a pointer attached to the

spring which moves past a fixed scale (Fig. 22)

by adding a succession of masses, we can

calibrate the scale, and, in this way, construct

an instrument for measuring the magnitude of

forces similar to the familiar spring-balance. The unit force

we make use of is, therefore, the pull of the earth on a mass

of 1 pound, or, briefly stated, 1 pd.-wt. This is called the

gravitational unit of force. In the metric system the corres-

ponding unit of force is, of course, 1 gram-force or 1 gram-wt.,

which is defined to be equal to the attraction of the earth on a

mass of 1 gram, or, briefly, it is equal to the weight of 1 gram.

26, Mass and Weight. Suppose we take the spring with

the standard pound-mass on the end of it (Fig. 22) to various

places on the surface of the earth,—for instance, to Halifax,

which is at sea level, to Lake Superior which is 602 feet above

the sea, or to the summit of Mount Robson which is 13,000

feet above sea level; or let it be taken up several miles in a

balloon. Will the spring in every case show the same amount
of stretch, that is, be of the same length? With a sufficiently

sensitive spring it will be found that the amount by which it is

stretched is altered with its position on the earth’s surface and
with the height of the balloon. The attractive force exerted

by the earth is the same as if the entire mass of the earth were

concentrated at its centre, and the farther we get from the
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centre the less is the pull of the earth on a given mass (see

Chapter VII).

Now the mass of the standard pound obviously does not

change,—it is the same body wherever it may be. Hence,

since the stretch of the spring varies with the position of the

body, the pull on the lower end of the spring, in other words

the weight of the standard mass, must change. A clear

distinction must therefore be made between mass and weight.

A gram-mass is a certain quantity of matter which remains

the same wherever it is taken
;
while a gram-weight or a gram-

force varies with the position of the mass on the earth’s sur-

face, continually diminishing as it is taken up above sea level.

27. Absolute Unit of Force. Although the variation in

the weight of a gram or of a pound at various places on the

surface of the earth is not great, it would never do to choose

as an absolute standard a

force which has not the

same value at all places.

Our absolute standard unit

of force is defined in terms

of the ability of a force to

change the motion of a

body. Before discussing

this further we must con-

sider certain other matters,

which form the subjects of

the next two chapters.

28. Comparison of

Masses. Masses may be

compared

:

(a) By the spring-

balance, at the same place.

If two bodies produce the same stretch in the spring, their

masses are equal as explained in Sec. 25 above.

&w
n ^

Ao

B
J

Fig. 23.—A simple and convenient balance.
When in equilibrium the pointer P stands at
zero on the scale O. The nut n is for adjusting
the balance and the small weights, fractions of
a gram, are obtained by sliding the rider r along
the beam which is graduated. The weight W, if

substituted for the pan A, will balance the pan B.
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(b) By the common balance.

A good balance should have arms precisely equal in length,

and the pans should also be precisely the same.

Upon pan A (Fig. 23) place a standard kilogram. That

pan at once descends. This is due to the fact that the earth

exerts an attractive force on the kilogram, and this force is

proportional to its mass.

By carefully filing a piece of metal one can make an-

other body which when put on B will just balance the body

on A, and the masses of the two bodies will be equal.

With care one can produce two bodies which will have equal

masses and each equal to one-half the original kilogram.

Continuing this process, we can make a set of “weights”

having any fractional masses we desire.

Next put any body on A, and by adding to B weights from

one set we can balance A and thus determine its mass.

QUESTIONS

1. State Newton’s First Law of Motion. Define force, inertia, mass.

2. What is meant by a pound weight? A kilogram weight?

3. What causes the variation in a pound weight as one moves over the

surface of the earth. Where should it be greatest and where least?

4. Distinguish clearly between weight and mass.

5. A spring balance calibrated in Toronto is taken to the equator and a

piece of lead is put on the hook. The indicator points to 1 kilogram. Is

the true mass of the lead greater or less than 1 kilogram? Where would
the indicator point if the same piece of lead were placed on the hook at the

north pole?

6. How would you use a spring balance to duplicate a 200 gm. “weight”?

7. Would an equal-arm balance in New Orleans give accurate results if

the “weights” were made in England? Give reasons for your answer.

8. How would you duplicate a “weight,” (1) if the arms of the balance

are not of equal length, (2) without using a balance of the above type

(Fig. 23) at all?
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Acceleration

29. Accelerated Motion. A person is not afraid to jump

from a verandah to the ground, but hesitates to do so from the

top of a high fence, and he would simply refuse to leap from

an upstairs window unless it were done to save his life. The

reason is obvious enough. The greater the distance a body

falls through the air, the faster it moves, and in falling only a

few feet a person may acquire a velocity great enough to

injure him when he strikes the ground.

On going down a grade, even though the engineer shuts off

the steam, the train continually gains in speed and the brakes

may have to be set in order to observe the instruction “safety

first. ’’ If a stone is thrown upwards its velocity gradually

diminishes until the stone stops and it then comes downwards

with continually increasing velocity.

When the velocity of a body is changing, the motion is said

to be accelerated. If the velocity is diminishing we more

often say that the motion is retarded, but a retardation may
be considered a negative acceleration.

30. How Acceleration is Expressed. We are all familiar

with the term acceleration as used in connection with the

velocity of an automobile.

Let us suppose that at a given instant the speedometer of a

car (Fig. 24) reads 10 miles per hour and that by pressing the

accelerator we succeed in making the speedometer read 25

miles per hour at the end of 5 seconds. Then the gain in

velocity has been 15 miles per hour in 5 seconds and if the

32
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acceleration was uniform we can express it otherwise as 3

miles per hour per second. But 3 miles per hour is equivalent

to 4.4 ft. per sec. Hence the

acceleration can also be stated

as 4.4 ft. per sec. per sec.

Beginners sometimes have diffi-

culty with the two time “labels”

but the difficulty clears up when

it is realized that in expressing

an acceleration we must state

how much the velocity changes

in unit time.
Fig. 24.—Speedometer.

Acceleration is rate of change of velocity.

PROBLEMS

1. A railway train changes its velocity uniformly in 2 minutes from

20 kilometres an hour to 30 kilometres an hour. Find the acceleration in

centimetres per second per second.

2. A stone sliding on the ice at the rate of 200 yards per minute is

gradually brought to rest in 2 minutes. Find the acceleration in feet and

seconds.

3. A point is moving with a uniform acceleration of 10 feet per second

per second. (1) What is the total change in velocity in a minute? (2)

What is the measure of the acceleration in feet per second per minute?

4. What velocity will a body acquire in half-an-hour if the acceleration

is (1) 10 centimetres per second per minute, (2) 10 centimetres per second

per second?

5. A point is travelling with an acceleration of 12 feet per second per

hour. Find (1) what will be its change in velocity in a minute, (2) the

measure of its acceleration in feet per second per second.

6. A train acquires a velocity of 30 feet per second in one hour. If its

velocity is uniformly accelerated, find (1) the velocity which it will acquire

in one minute, (2) the measure of its acceleration in feet per second per

second.

7. A point is travelling with an acceleration of 12 feet per second per

hour. How long will it take to acquire a velocity of 2 feet per second?
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8. A train, moving with a uniform acceleration, acquires a velocity

of 75 feet per second in a quarter of a minute. How long will it take to

acquire a velocity of 100 yards per minute?

9. A point, moving with a uniform acceleration, acquires a velocity

of 60 feet per second in 10 minutes. What is the measure of its acceleration

in (1) feet per second per minute, (2) yards per second per minute, (3)

feet per second per second, (4) yards per second per second?

10. A point travelling with a uniform acceleration, has its velocity

increased 50 metres per second each minute. What is the measure of

the acceleration in (1) metres per second per minute, (2) centimetres per

second per minute, (3) metres per second per second, (4) centimetres per

second per second?

11. A train moving with a uniform acceleration, acquires an additional

velocity of 60 feet per second each minute. Find (1) the measure of its

acceleration in feet per second per second, (2) the measure of the velocity

it acquires each minute in feet per minute, (3) the measure of the acceler-

ation in feet per minute per minute, (4) the measure of the acceleration

in feet per minute per second.

12. A point is moving with a uniform acceleration and acquires an
additional velocity of 20 cm. per second each second. Find the measure

of the acceleration in (1) centimetres per second per minute, (2) centi-

metres per minute per minute, (3) metres per minute per minute, (4) metres

per minute per second, (5) metres per second per second.

13. What is the measure of an acceleration of 30 feet per second per

second when the units of displacement and of time are respectively (1)

the foot and the second, (2) the foot and the minute?

31. Measuring the Velocity of a Body. In Fig. 25 is

shown a small car or trolley mounted on light wheels which

Fig. 25.—Measuring the velocity of the car.

turn with very little friction. It is about 2 feet long and 2|

inches wide. When given a smart push on a level roadway

the car runs for a considerable distance with almost uniform
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speed. A metal bridge is fastened to the board and a flat

steel spring is attached by one end to the bridge. The other

end of the spring carries a soft brush which can be filled with

ink. A long strip of paper is tacked on the top of the car

and upon this the brush traces a record of the motion of

the car.

First push the car along under the brush when the spring

is at rest. The tracing on the paper is a long straight line.

Next start the brush vibrating and give the car a quick push.

It moves along approximately uniformly and the tracing on

the paper has a wavy form like that shown in Fig. 26.

Fig. 26.—Uniform velocity.

(Before pushing the car, raise one end of the board slightly

so that the car will not stop if started but will not start of

itself. In this way allowance is made for the friction un-

avoidably present).

It is evident that while the car moved through a distance

AB or CD the spring made a complete vibration. If, then,

we know the period of the spring, that is, the time required

for a complete vibration, we can determine the speed of the

car. For example, if the period is ^ sec. and AB is 8.4 cm.,

the velocity (supposed uniform) is 42 cm. per second.

32. Study of Acceleration. Next raise one end of the board

and allow the car to run down. Sometimes a trigger arrange-

ment allows one to start the car moving and the brush

vibrating at the same time, but in the experiment from which

the following results were obtained the brush and car were

started simply by hand.

In Fig. 27 is shown a trace obtained when the inclination

of the board to the horizon was about 3°. The period of the

spring was | sec., and it is clear that the car moved through
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the distances AB, BC, CD during successive vibrations.

By means of a metre stick it was found that the

distances AB AC AD AE AF AG AH AK
were 1.10 3.73 7.81 13.35 20.38 28.91 38.80 50.12 cm.

These are shown in column i. From these, by subtraction,

we obtain

the lengths AB BC CD DE EF FG GH HK
to be 1.10 2.63 4.08 5.54 7.03 8.53 9.89 11.32 cm.

These are given in column ii.

Now during the first vibration, while the car moves from

A to B its velocity is increasing, and since it passes over 1.10

cm. in ^ sec. its average velocity = 1.10 x 5 = 5.50 cm. per

sec. If the velocity of the car is increasing uniformly this

average velocity will be precisely the velocity at a, the mid-

point of the vibration or xV sec. from the beginning. If the

increase in the velocity is not perfectly uniform the velocity

at a will be approximately 5.50 cm. per sec.

During the second vibration the car travels from B to C, a

distance of 2.63 cm., and the average velocity is 2.63 x 5 =
13.15 cm. per sec. This may be taken as the velocity at h,

xV sec. from the beginning.

Continuing this process for all the vibrations we find the

velocitiesSitabcdefgh
are 5.50, 13.15, 20.40, 27.70, 35.15, 42.65, 49.45, 56.60 cm. per sec.

These are given in column iii.

We find, then, that at a the velocity of the car is 5.50 cm.

per sec., and at b, sec. later, the velocity is 13.15 cm. per sec.

During this fifth of a sec. the increase in the velocity = 13.15

— 5.50 = 7.65 cm. per sec. At c the velocity is 20.40 cm. per

sec. and the increase in the previous fifth of a second = 20.40

— 13.15 = 7.25 cm. per sec. Proceeding in the same way, we
obtain the increase in the velocity during the successive fifths

of seconds to be

7.65, 7.25, 7.30, 7.45, 7.50, 6.80, 7.15 cm. per sec.
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These are given in column iv.

The measure of the acceleration is the rate of change of the

velocity, or the change of velocity 'per unit of time. While

the car was passing from a to 6 (Fig. 27) the change in the

velocity was 7.65 cm. per sec. The time taken to gain this

was ^ sec., and hence the acceleration was
^ 7.65 cm. per sec. per i sec., which is

the same as 38.25 cm. per sec. per sec.

The acceleration as determined from the next ^ sec. was

7.25 cm. per sec. per ^ sec.

or, 36.25 cm. per sec. per sec.

So on for the rest of the values. They are given in columns

IV and V.

33. Was the Acceleration Uniform? On examining these

values we see that they are approximately equal. Now make a

graph as shown in Fig. 28, in which horizontal distances

(abscissas) represent time, and vertical distances (ordinates)

represent velocity. The dots a', h',c' ... . represent the velo-

cities at a, 6, c ... . (Fig. 27). Looking along them it is seen

that they lie very nearly on a straight line. There are two

reasons why they are not exactly on a straight line:—First,

the acceleration may not have been perfectly uniform;

second, there are unavoidable errors in all physical measure-

ments. However, the velocity-time graph for a body moving

with absolutely uniform acceleration is a perfectly straight

line.

If we average the values in column iv we obtain 7.30.

We conclude, therefore, that the acceleration was very

nearly uniform and that its value was approximately

7.30 cm. per sec. per ^ sec.,

or, 36.5 cm. per sec. per sec.

On producing the line in Fig. 28 backward past a', it is

found to cut the ‘Time line” about 2V sec. to the left of 0, and
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this indicates that the car began to move about 2V sec. before

the point A on the curve was reached.

Time in seconds.

Fig. 28.—Graph showing uniform acceleration.

Moreover we see that the velocity of the car at the point A
was about 2 cm. per sec.

PROBLEMS

1. On putting blocks under one end of the plane (Fig. 25) until its

inclination to the horizon was about 4^° a tracing was obtained on which
the following measurements were made

:

AB =2.29, AC = 7.12, AD = UA3,AE =24.29, AF =36.55, AG = 51.34 cm.

From these deduce the approximate velocities at a, 6, c ... . (Fig. 27),
and then the mean acceleration in cm. per sec. per sec. Then from a graph
as in Fig. 28 find how long before the instant represented by A on the curve
the car started to move.

2. With an inclination of about 6^° the following values were obtained:

AB =2.92, ^C = 9.45, = 19.58, = 33.22, =50.55 cm.

Make similar use of these values.
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3. In a laboratory experiment a body moved along a horizontal plane

and the distances travelled over in successive intervals each of one-tenth

of a second, were:

5.0, 8.2, 11.2, 14.4, 17.5, 20.7 cm.

Find the average acceleration in cm. per sec. per sec.

34. Space, Acceleration, Velocity, Time. Let a body move
with a uniform acceleration of a cm. per sec. per sec., and

suppose that its velocity at a given instant is u cm. per sec.

At the beginning, velocity v = u cm. per sec.

At the end of 1 second, velocity v = u a “ “

“ “ 2 seconds, “ v = u 2a “ “

“ “ 3 “ “ V = u -j- 3a “ “

and “ “ t
“ “ V = u ta

“ “

Here the gain in velocity in 1 second is a cm. per second;

the gain in t seconds is at cm. per second; and the velocity at

the end of the t seconds is the original velocity + the gain, i.e.,

v = u + at (1)

If the initial velocity is zero, we have u = 0, and

V = at.

Next let us find the space traversed. It is evident that

Space s = Average velocity x time,

or s = i (Initial + Final velocity) X time.

If now we desire an equation involving s, u, a and t we can

obtain it by eliminating v from (1) and (2).

/u u at\
Thus s —

2
/

or s = ut -f I atL (3)

By eliminating t from (1) and (2) we obtain

fu v\ (v — u\
" = V—

or 2as —

y2 = u2 -b 2asor (4)
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35. Examples. In the last section there were developed

four equations relating to the motion, in a straight line, of a

body which is travelling with uniform acceleration. By using

them it is easy to solve problems involving u, v, a, s and t.

It will be noted that each equation deals with four of these

quantities, and consequently if three out of the four are given

the fourth is readily found.

Example 1.

—

A body moving with uniform acceleration changes its

velocity from 10 cm. per sec. to 100 cm. per sec. in 5 sec. Find the accel-

eration.

Here u — 10 cm. /sec.

V = 100 cm. /sec.

t = 5 sec.

a = ?

But V = u -j- ai.

.-. 100 = 10 -1- a X 5,

Whence a = 18 cm. /sec. /sec.

Example 2.—A body passes a point with a velocity of 30 cm. per sec. and

is subject to an acceleration in the opposite direction of 10 cm. per sec.

per sec. When will it be 40 cm. from the point?

Here u = 30 cm./ sec.

a = —10 cm. /sec. /sec.

s = 40 cm.

t = ?

But 6' ~ ut ^
.'.40 = 30 5 tS

5 i2 _ 30 i _|_ 40 = 0.

^2 - 6 ^ 4- 8 = 0 .

Factoring, (t~2) (<— 4) = 0.

Whence t = 2 or 4 sec.

Let us consider the meaning of these two values. The conditions are

represented in Fig. 29. The body will be at B, 40 cm. from the point A in

2 seconds. At the end of 3 seconds it will be at rest at C. It will then
start hack and will be at B once more at the end of 4 seconds.
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The time when it reaches C is obtained as follows:

V = u-\- at,

or 0 = 30 - 10 t;

Whence t = 3 seconds.

The space AC is given by s —ut+ ^ at^,

or s = 30 X 3 - X 10 X 9,

= 45 cm.

A

u=3dcm^/S€c.

5

40cm:-- -
>•.

Fig. 29.—Motion of a body in the line AC.

c

v=o

For the velocity at B on the "out” journey,

V = u -\- at,

or V = 30 — 10 X 2 = 10 cm./sec.

For the velocity at B on the "in” journey,

V = u at,

or y = 30 — 10 X 4 = — 10 cm./sec.

These two values are equal in magnitude but are opposite in direction.

PROBLEMS

(In solving these problems, it is advisable to write down the known and unknown
quantities as in Sec. 35. A glance will then show which equation should be used. A
diagram is often helpful.)

1. What is the initial velocity of a point, which, moving with g, uniform

acceleration of 10 centimetres per second per second, acquires in 10 seconds

a velocity of 200 centimetres per second?

2. A body, moving at a certain instant with a velocity of 30 miles per

hour, is subject to a uniform acceleration in the opposite direction, and

comes to rest in 11 seconds. What was the measure of its velocity, in

feet per second, 5 seconds before it stopped?

3. Find the initial velocity of a point which moves with a uniform

acceleration of 20 centimetres per second per second, and acquires a

velocity of 15 centimetres per second in 10 seconds. Interpret the result.

4. The velocity of a point increases uniformly in 20 seconds from 100

centimetres per second to 200 centimetres per second. Find (1) the
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measure of the acceleration in centimetres per second per second, (2) the

velocity 3 seconds after it was 150 centimetres per second, (3) when the

body was at rest.

5. A point, which has an acceleration of 32 feet per second per second,

is moving with a velocity of 10 feet per second. At the same place and

at the same time another point, which has an acceleration of 16 feet per

second per second, is moving in the same direction with a velocity of 170

feet per second. Find (1) when the two points will have equal velocities,

(2) when the velocity of the second will be double that of the first.

6. A body, moving, with a velocity of 5 centimetres per second, has a

constant acceleration of 10 centimetres per second per second, in the

direction of its motion. Find (1) how far it will go in 10 seconds, (2) how
long it will take to go 10 centimetres.

,

7. A body starts with a velocity of 15 centimetres per second, and has

a constant acceleration of 10 centimetres per second per second in the

opposite direction. When and where will it come to rest?

8. A body, starting from rest, moves with a uniform acceleration of 20

feet per second per second. Find (1) how far the body goes in 4 seconds,

(2) how far it goes in 5 seconds, (3) how far it goes in the 5th second.

9. A body starts with a velocity of 6 feet per second and has a uniform

acceleration of 3 feet per second per second in the direction of its motion.

At the end of 4 seconds the acceleration ceases. How far does the body
move in 10 seconds from the beginning of its motion?

10. With what uniform acceleration does a point, starting from rest,

describe 640 feet in 8 seconds?

11. A point, starting from rest and moving with a uniform acceleration,

has a displacement of 66 feet in the 6th second. What is the measure of

the acceleration in feet per second per second, and what is its displacement

in the 7th second ?

12. A train, having a velocity of 20 feet per second, attains a velocity

of 30 miles per hour in passing over 128 feet. If the train is moving with a

uniform acceleration, what is its acceleration ?

13. A trolley car, moving at the rate of 24 feet per second, is stopped

with a uniformly decreasing motion in a space of 9 feet. What is the

acceleration of the car ?

14. A particle starts with a velocity of 23 feet per second, and its velocity

is uniformly decreased at the rate of 8 feet per second per second. Find
how long it will take to describe a distance of 30 feet, and how much
longer to come to rest.
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36. Further Study of Motion on an Inclined Plane. The motion of a

ball rolling down an inclined plane may be studied by means of the

apparatus shown in Fig 30. It consists of a board 5 or 6 feet long in which
is a circular groove 4 inches wide and having a radius of 4 inches. The
surface is painted black and is made very smooth. Along the middle of

the groove is scratched or painted a straight line; and near one end of the

board is fastened a strip of brass, accurately at right angles to the length

of the groove and extending to the middle of it. The board must be

accurately made to give satisfactory results.

Fig. 30.—Apparatus to illustrate motion with uniform acceleration.

Lay the board flat on the floor, and place a sphere (a steel ball 1 in.

to 1| in. in diameter), at one side of the groove and let it go. It will

run back and forth across the hollow, performing oscillations in approxi-

mately equal times. By counting a large number of these and taking the

average, we can obtain the time of a single one.

Next let one end of the board be raised and over the groove dust (through

4 or 5 thicknesses of muslin) lycopodium powder. Put the ball alongside

the brass strip at one side of the groove and let it go. It oscillates across

the groove and at the same time rolls down it, and the brass strip insures

that it starts downwards without any initial velocity. By blowing the

lycopodium powder away a distinct curve is shown like that in the upper

part of Fig. 30.

It is evident that while the ball rolls down a distance AR it rolls from

the centre line out to the side of the groove and back again; while it rolls

from B to C, it rolls from the centre line to the other side of the groove

and back again. These times are equal and each is about ^ sec. In the

same way CD, DE, EF and FG are each traversed in the same interval.

This inverval is one-half of a complete oscillation and sometimes it is

better to take the spaces traversed during complete oscillations. Such

spaces are AC, CE, EG. By laying a metre scale along the middle of

the groove the distances AB, AC, AD, may be measured.

The following are measurements obtained with 1 inch and inch

balls, rolling down a board 6 feet long. In the third, fifth and seventh
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columns are shown the ratios of AB, AC, AD, AE, AF, and AG' to AB,
which are referred to below.

1 inch ball

End raised 20 cm.
1^ inch ball.

End raised 22 cm.
1^ inch ball.

End raised 22 1 cm.

cm. Ratio. cm. Ratio. cm. Ratio.

AB 4.55 1.0 4.40 1.0 4.45 1.0

AC 18.80 4.1 18.35 4.2 18.65 4.2

AD 40.40 8.9 39.50 9.0 40.25 9.0

AE 70.28 15.4 70.90 16.1 72.95 16.4

AF 111.90 24.6 108.45 24.6 111.00 24.9

AG 161 . 30 35.4 157.10 35.7 161.00 36.2

The curves recording the motion in this experiment are quite similar to

those obtained with the trolley, and if we know the period of oscillation

of the ball we can calculate the acceleration.

EXERCISES

1. Taking the time of a complete oscillation as ^ sec., find the average

acceleration in each of the above cases, as in Sec. 32.

2. Compare the value of a obtained above with that calculated by using

the equation s = ut ^ aC. Take AG as s.

37. Space Traversed. Applying the formula s = ut +
and designating the time of a half oscillation by x, we obtain

the following theoretical values:

AB = ^ aa;2, = IX AR,
AG=ia(2a;)2= 4xiax2= 4XAR,
AD = ^ a {2t x)^ = 9X^ ~ 9 X AB,
AE — ^ a {4lxY = 16 X ^ ax“^ = 16 X AB, etc.,

i.e., the spaces AB, AC, AD, AE, etc., are proportional to 1, 4,

9, 16, etc., or the distance is proportional to the square of the

time.

The actual measurements of the spaces are given in the

above table, and also the ratios obtained on dividing each space

by the first one. These ratios are very close to the theoretical

values 1, 4, 9, 16, 25, etc., the discrepancies being due to imper-

fections in the board and small errors in measurement.
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Acceleration due to Gravity

38. Bodies attracted by the earth. “Whatever goes up

must come down” is a truth learned in early childhood.

Whether the body be set free when high up in the air or

when near the earth’s surface, it begins to fall at once and

does not cease until it reaches some obstacle which blocks the

descent. We recognize also that at whatever place we may
be the body descends in the vertical direction, that is, along

a line perpendicular to the earth’s surface at that place. Now
the earth is (very approximately) a sphere and a vertical line

at the equator makes a right angle with the vertical at the

pole. It is clear that we can describe the motion of a falling

body as being along the radius of the sphere.*

We ‘explain’ this phenomenon of falling bodies by saying

that it is due to the attraction of the earth, which apparently

tries to draw all bodies to its centre.

It was Galileo (1564-1642) who, as a result of experimental

investigation, stated accurately the laws followed by bodies

moving under the attraction of the earth. He showed that

the acceleration of a falling body is uniform and is indepen-

dent of the nature or the quantity of matter in it. Since his

time it has been shown experimentally that the acceleration

of gravitation, while constant at any one place, varies with

the position of the place on the earth’s surface.

39. All Bodies falling freely have the same Acceleration.

Galileo asserted that all bodies, if unimpeded, fall at the same

rate. Now, common observation shows that a stone or a

*0n account of the earth being in rotation and also since it is not a perfect sphere this

statement is not strictly accurate, but it is very approximately so.

46
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piece of iron, for instance, falls much faster than a piece of

paper or a feather. This is explained by the fact that the

paper or the feather is more impeded by the resistance of the air.

From the top of the Leaning Tower of Pisa (see Sec. 153), Galileo

allowed balls made of various materials to fall, and he showed that they

fell in practically the same time. Sixty years later,

when the air-pump had been invented, the statement

regarding the resistance of the air was verified in the

following way. A coin and a feather were placed in a

tube (Fig. 31) four or five feet long and the air was
exhausted. Then, on inverting the tube, it was found

that the two fell to the other end together. The more
completely the air is removed from the tube, the

closer together do they fall.

If a ‘'guinea and feather” tube (Fig. 31) is not

available the following simple experiment may be

performed:

—

Cut a paper disc slightly smaller than a quarter of a

dollar, place it on the quarter and hold the coin between

the thumb and forefinger, with its flat face horizontal.

On releasing it the coin and the paper disc fall to the

ground at the same rate. Here the falling coin prevents

the air resistance from acting on the paper, and the

true effect due to gravity is obtained.

40. Determination of Acceleration due to Gravity. The

method which naturally suggests itself for determining the

magnitude of the acceleration due to gravity is to time the

fall of a body over a measured distance. In doing this, how-

ever, the velocity is gained so rapidly that it is difficult to

measure the time with sufficient accuracy.

For example, we might stand on a bridge over a deep

ravine and use a stop-watch to find how long it takes a stone

to drop to the river below. The distance could then be

determined by lowering another stone tied to the end of a

ball of string, after which the string could be measured with

a metre stick.

Fig. 31.—Tube
to show that a coin
and a feather fall in
a vacuum with the
same acceleration.



48 ACCELERATION DUE TO GRAVITY

Example.—Let the distance be 50 metres and the time see.

Then using the equation,

s = Mi + ^ al%

250
5000 = i a X

a = 976.5 cm. per sec. per sec.

An error of one-fifth of a second in determining the time would in this

case result in an error of about 13 per cent, in the deduced value of a.

41. Measurement of “g” in the Laboratory.. A simple

form of experiment is illustrated in Fig. 32. P is a straight

wooden rod about 4 feet long

swings on a pin p in a block

B on the wall. A metal ball

b is attached to a silk thread

which passes over a round

disc C mounted eccentrically.

First, let the rod hang ver-

tically, and turn C until the

ball hangs just clear of the

rod near the top. Then lower

the ball and test if it hangs

just free of the rod near the

bottom. By turning a small

weight d this latter adjust-

ment can be made, since a

motion in d slightly changes

the position of the rod.

Cover about 20 cm. of the

right-hand face of the rod with

white paper, and by means of

rubber bands fasten carbon

paper over this with the ink-

face inwards. Then pull the

rod aside as shown in Fig. 32.

a movable pin B the centre of

the same level as a mark on th

a hole near one end and it

By having the thread pass over

the ball may be made to be on

e block B.
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Then burn the thread near C, thus releasing b and P at the

same time. At the moment when the pendulum is rapidly

passing through its middle position it will strike the ball and

a mark will be made on the white paper. By measuring

from the centre of this mark to the mark on B the distance

the ball has fallen can be determined.

Next, pull the pendulum aside and count the number of

swings in 30 sec., or the time required for any number of

swings. Repeat both parts of the experiment and take the

average of the values of the distance and the time of swing.

Example:—From a number of counts, 31 complete oscillations of the

pendulum - 57 sec., or oscillation = 0.46 sec.

Average of measured distances = 104.3 cm.

Here the ball falls 104.3 cm. in 0.46 sec.

Average velocity = ^ 226.7 cm. per sec.

This is the velocity at half-time, or 0.23 sec. after the start.

In 0.23 sec. velocity gained = 226.7 cm. per sec.

“ 1
“ “ “ = 986 cm. per sec.

This is the measure of the acceleration.

This result might have been obtained somewhat more briefly by using

the relation s = | gi^, in which g is the acceleration of gravity.

Here, s = 104.3 cm.

t = 0.46 sec.

, 2 X 104.3
and g

— = 986 cm. per sec. per sec.

42. Pendulum Method for Finding “g”. When it is desired

to determine with accuracy the value of g at any station a

special form of pendulum is used. The period i of a complete

oscillation of a simple pendulum depends upon its length I

and the value of g. If the amplitude is small the relation

connecting these quantities is

If we can measure t and I, we can deduce the value of g.

*The determination of this formula involves mathematics too advanced for this text.
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Let us fasten a lead ball of about one inch diameter to a

piece of thin fishing-line and set up a simple pendulum

(Fig. 33) by clamping the other end of the line so that the

distance from the point of support to the

centre of the ball is about 100 cm. By pulling

the bob aside through a short distance and

taking the time for at least twenty complete

oscillations, the time for one complete oscil-

lation may be determined. If I = 100 cm.,

t will be found to be nearly 2 sec.

Then, from the formula,

4 7t2 Z 4 X 9.87 X 100
^ -

4

= 987 cm. per sec. per sec.

This experiment should be repeated using

different lengths of string.

In a number of countries measurements of g

have been made at many stations, since in

this way the form of the earth can be deter-

mined. This work is called a gravimetric survey.

At the equator, gf = 978.1
;
at the pole, 983.1

;
at Washington,

980.1; at Toronto, 980.6.

For middle latitudes the value may be taken as 981; using

feet and seconds as units, g = 32.2.

Fig. 33.—

a

simple pendulum.

PROBLEMS
(Unless otherwise stated, take as the measure of the acceleration of gravity, with centi-

metres and seconds, 980; with feet and seconds, 32.)

1. A body falls freely for 6 seconds. Find the velocity at the end of

that time, and the space passed over.

2. The velocity of a body at a certain instant is 40 cm. per sec., and
its acceleration is 5 cm. per sec. per sec. What will be its velocity half-

a-minute later?

3. What initial speed upwards must be given to a body that it may
rise for 4 seconds?

4. The Eiffel Tower is 300 metres high, and the tower of the City Hall,

Toronto, is 305 ft. high. How long will a body take to fall from the top

of each tower to the earth?
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On the moon the acceleration of gravity is approximately one-sixth

that on earth. If on the moon a body were thrown vertically upwards
with a velocity of 90 feet per second, how high would it rise, and how long

would it take to return to its point of projection?

6.

A body moving with uniform acceleration has a velocity of 10 feet

per second. A minute later its velocity is 40 feet per second. What is

the acceleration?

7. A body is projected vertically upward with a velocity of 39.2 metres

per second. Find

(1) how long it will continue to rise;

(2) how long it will take to rise 34.3 metres

;

(3) how high it will rise.

8. A stone is dropped down a deep mine, and one second later another

stone is dropped from the same point. How far apart will the two stones

be after the first one has been falling 5 seconds?

9. A balloon ascends with a uniform acceleration of 4 feet per second

per second. At the end of half-a-minute a body is released from it. How
long will it take to reach the ground?

10. A train is moving at the rate of 60 miles an hour. On rounding a

curve the engineer sees another train ^ mile away on the track at rest.

By putting on all brakes a retardation of 3 feet per second per second is

given the train. Will it stop in time to avoid a collision?

11. A body drops vertically from rest. What velocity will it have (1)

at the end of 5 seconds, (2) when it has fallen 1600 feet?

12. A body is thrown vertically downward with an initial velocity of

100 feet per second. Find what velocity the body will have (1) at the

end of 10 seconds, (2) when it has fallen 900 feet.

13. A body is thrown vertically upward with an initial velocity of

4900 centimetres per second. Find its velocity (1) at the end of 3 seconds,

(2) when it has risen 117.6 metres.

14. A body falls from rest for 4 seconds. Find the distance fallen (1)

in the four seconds, (2) in the fourth second, (3) when it has a velocity of

100 feet per second.

15. A body is thrown vertically downward with an initial velocity of

1470 centimetres per second. Find the distance traversed in the fourth

second.

16.

A body is thrown vertically upward with an initial velocity of 100

feet per second. Find the height to which it will rise.
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17. A body is projected vertically upward with an initial velocity of

160 feet per second. Find the distance traversed (1) in 5 seconds, (2) in

the 5th second.

18. A body is
.
thrown vertically upward with an initial velocity of 50

feet per second. What is its height when its velocity is 30 feet per second?

19. A stone is thrown vertically into the shaft of a mine with a velocity

of 5.4 metres per second, and reaches the bottom in 4 seconds. What is

the depth of the mine?

20. A particle is projected vertically upward with a velocity of 96 feet

per second. In what time (1) will its velocity be 48 feet per second, (2)

will its displacement be 144 feet?

21. A body drops vertically from rest. Find (1) when its velocity is

2450 centimetres per second, (2) when the body is 99.225 metres from

the point from which it dropped.

22. A stone is projected vertically downward with a velocity of 100

feet per second. Find (1) when its velocity is 292 feet per second, (2)

when it is 900 feet from the point of projection.

23. With what velocity must a body be thrown vertically upward (1)

that it may rise for 3 seconds, (2) that it may have a velocity of 30 feet

per second at the end of the 3rd second, (3) that it may rise 100 feet?

24. With what velocity must a body be thrown vertically downward

(1) that it may have a velocity of 100 feet per second at the end of the

2nd second, (2) that it may describe 204 feet in 3 seconds?

25. A body, thrown vertically upward, passes a point 173 feet from the

point of projection with a velocity of 50 feet per second. How much
further will it go, and what was the velocity with which it was projected?

43. Path of a Projectile. Suppose a person to be at the top

of a tower 64 ft. high. If he drops a stone it will fall vertically

downwards and will reach the ground in 2 sec. If now it is

thrown outwards in a horizontal direction, will it reach the

ground as quickly?

In this case a force acting in a horizontal direction gives

the body a velocity in that direction, and the question is, will

that force in any way change the action of the force of gravity?

Can the horizontal velocity alter in any way the vertical

velocity?



EFFECT OF AIR RESISTANCE 53

The best way to answer this question is to test it by experi-

ment. Many pieces of

apparatus have been de-

vised for this purpose,

one of the simplest being

shown in Fig. 34.

A and B are two up-

right supports through

which a rod R can slide. Fm. 34.—The bail C. following a curved path.
reaches the floor at the same time as D which tails

iS is a spring so arranged vertically.

that when R is pulled back and let go it flies to the right. D is

a metal sphere through which a hole is bored to allow it to slip

over the end of R. C is another sphere, at the same height

above the floor as D.

The rod R is just so long that at the moment it strikes C,

the sphere D is set free. Thus C is projected horizontally

outwards while D drops directly down.

By pulling R back to different distances, different velocities

can be given to C, and thus different paths described, as shown

in the flgure.

It will be found that, no matter which of the curved paths

C takes, it will reach the floor in the same time as D takes.

It is evident that the horizontal distance travelled by C
can easily be found if we know its initial height above the

ground and the velocity with which it was projected hori-

zontally. For example, with the measurements given in the

first paragraph of this section, if the horizontal velocity were

100 ft. per sec., the horizontal distance travelled would be

200 ft.

The curve traced out by the body C is a parabola.

44. Effect of Air Resistance. In actual cases, especially

when the velocity is high, the resistance of the air causes the

path to deviate considerably from a true parabola.



54 ACCELERATION DUE TO GRAVITY

In the United States during the Great War experiments were

made on the path of a bomb when dropped from an aeroplane.

Each bomb was fitted with a strong electric light, and when

dropped at night looked like a bright shooting star. The path

of the light was photographed by two cameras placed 2630

ft. apart. 'By an electrical arrangement equally spaced

moments of time were simultaneously marked on the plates

in the two cameras, and it thus was possible to determine,

with an error of less than 2 ft., the position of the bomb in the

air at the end of successive seconds.

In one experiment a 50-lb. bomb was dropped from an

aeroplane when it was 5539 ft. above the ground and travelling

horizontally at the rate of 98 ft. per sec. The distances in

feet which the bomb had travelled forward (a:) and downward

(y) at the end of successive seconds of time are given in the

accompanying table and from them the path of the bomb
(Fig. 35) was plotted.

t

sec.

X

ft.

y
ft.

t

sec.

X

ft.

y
ft.

0 0 0 11 1065 1912

1 98 16 12 1158 2268

2 196 64 13 1251 2652

3 294 144 14 1343 3064

4 392 256 15 1433 3502

5 490 400 16 1523 3965

6 587 576 17 1611 4453

7 684 782 18 1698 4965

8 780 1019 19 1783 5499

9 875 1287 19.075 1790 5539

10 970 1585
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EXERCISES

(a) From the values of x and y plot on graph paper the path of the bomb.

Plot also the path if there had been no air resistance. Compare.

(6) From the values of x find

0 500 1000 1500 2000 the distance the bomb went

forward (horizontally) during

each successive second and

hence deduce the average

velocity forward during each

second. Then, using time for

abscissas and velocity for or-

dinates, draw a graph.

(c) From the values of y find

the distance the bomb went

downwards (vertically) during

each successive second, and de-

duce the average velocity down-

wards during each second. Then,

using time for abscissas and

velocities for ordinates, draw a

graph.

(d) By comparing the average

velocities each second down-

wards deduce the change of

velocity from one second to the

next. This is the acceleration.

Was it uniform?

1000

1500

2000

2500

3000

3500

4000

4500

5000

PROBLEMS
(Take g = Z2 ft. or 980 ci

per sec.)

5500

1. From a window 16 ft. above

the ground a ball is thrown in a

horizontal direction with a veloc-

ity of 50 ft. per sec. Where
will it strike the ground?

2. A cannon is discharged in a

horizontal direction over a lake from the top of a cliff 19.6 m.
above the water, and the ball strikes the water 2500 m. from the shore.

500 1000 1500 2000
Horizontal distance in feet

Fig. 35.—Path of a bomb
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Find the velocity of the ball outwards, supposing it to be uniform over the

entire range.

3. An aeronaut when 2112 ft. above the earth’s surface and rising

vertically at the rate of 16 ft. per sec., throws an object in a horizontal

direction with a velocity of 40 ft. per sec. How long will it take to reach

the earth and where will it strike?

4. How far would the bomb in Fig. 35 have dropped and how far would
it have travelled horizontally in 19 seconds if there had been no air

resistance?

5. How long would it have taken the bomb to drop 5539 feet if there had

been no air resistance? How far would it have moved horizontally in this

time?

6. Neglecting air resistance, how far in advance of his target must a

pilot, flying with a ground speed of 90 miles per hour at a height of 576

feet, release a bomb in order that it may strike the target?

7. Plot on a piece of squared paper the path of the projectile in problem 3.

8. Plot the path of the projectile in problem 6.



CHAPTER VI

Force

45. Mass and Velocity. A lead bullet has small mass (about

half-an-ounce) and if thrown against a wooden wall it will do

little or no damage; but if fired from a modern rifle, with a

speed of 2,000 feet per second, it will pass through several

feet of wood and can do great damage. A small mass, when

combined with a great velocity, can produce a great result.

Sometimes a large vessel on entering a lock of a canal fails

to stop, and though its speed may be quite small (no greater

than a walk) it breaks through the strong gates of the lock.

A great mass, even though moving with a small velocity, can

produce a great effect.

When a person wishes to drive a nail he does not choose a

light wooden stick for the purpose but takes a hammer with

massive steel head, and if the nail is a large one he gives to

the hammer a great velocity.

In ancient times the walls of fortifications were broken

down by means of the battering-ram. This was a long heavy

log suspended in a horizontal position by ropes and made
to swing back and forth in a lengthwise direction. When
vigorously operated by a large number of men even the

strongest wall could not stand against the continued blows of

the end of the log.

In each of the above illustrations it was the combination of

mass with velocity which produced the result named, and of

course the greatest effect is obtained when a great mass is

moving with a great velocity.

Now the word momentum is used to express the combina-

tion of mass with velocity. Thus, by definition.

Momentum = Mass x Velocity,

M = mv.

57

or
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No definite name has been given to unit of momentum;
we simply speak of a body having so many units of momentum.

^

46. Force, Time and Momentum. It is pleasant to spend

some weeks during the summer beside the water. Often some
friends will come to call upon you, and you go down to the

landing to bid them good bye as they are leaving in a row-

boat. Suppose the boat and its occupants to weigh 480

pounds. Taking hold of the end of the boat you push with a

force of 25 pounds (that is, the force required to lift a 25-lb.

mass) for 3 seconds and give the boat a velocity of 5 ft. per sec.

Had you pushed for only 1 sec. the velocity given, of course,

would have been i of 5 = if ft. per sec. This is the gain of

velocity in unit of time, or the acceleration.

On another day you push on a motor-boat, the mass of

which is 2400 lb. (5 times as great as the row-boat). You
apply the same force but the boat moves much more slowly.

How long will it require to give it the same velocity? You
find that it takes 15 sec., just 5 times as long. Observe,

however, that in the same time the momentum acquired by
the motor-boat is equal to that acquired by the row-boat.

Similarly, for the same applied force, a heavily loaded

automobile gains speed more slowly than the same Car when
lightly loaded. Moreover if we wish to stop a moving auto-

mobile quickly a great force is needed, while a smaller force

will produce the same change in momentum if applied for a

longer time.

It is evident then that the change in momentum is pro-

portional to the magnitude of the force applied and to the

length of time it is applied.

47. How Force is Measured. The magnitude of a force is

measured by the rate at which it changes momentum.

F B

u cm/sec. V cm/sec.

Fig. 36.—Diagram to illustrate change in momentum.
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Let a body of mass m grams have a velocity at A (Fig. 36)

in the direction AB, of u cm. per sec., and let a force F act

on it in the direction AB, with the result that after a time t sec.,

it has a velocity at 5 of y cm. per sec.

Then, by our definition of force,

F IS proportional to ^ j

or F = k
^ where k is some constant.

t

But v= u at.

Hence F = k

If, now, we agree to define unit force as that force which

gives unit mass unit acceleration

1 = fc X 1 X 1, or = 1.

Therefore, under this definition of unit force

F = ma,

or, alternatively,

_ mv — mu

48. Newton’s Second Law. The method of measuring

force described in the preceding article was first defined by
Newton in his Second Law of Motion which may be stated

thus:

“Change of motion is proportional to the impressed motive

force and takes place along the straight line in which that

force is impressed”.

In the definitions at the beginning of his “Principia,’’

Newton states that by “motion” he means the product of

mass and velocity or what we now call momentum. Also he

makes it clear that force is to be measured by the change of

motion (momentum) produced in a given time.

We may, then, recast the Second Law as follows:
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Rate of change of momentum is proportional to the im-

pressed force and takes place in the direction in which the

force acts.

Stating this algebraically

^ . mv — mu
F - k

^ ;

or if we define unit force as that force which in unit time

produces unit change of momentum,
mv — mu

^ =—

i

which reduces to

F = ma.

It should be noted also that, under our definition of unit

force.

Ft = mv — mu.

This form of the equation is useful in cases where the force

acts only for a short time, as in the case of a bat hitting a

ball. In such cases each body is said to be acted on by an

impulse which is equal to the change in its momentum.
We have then

Impulse = force x time = change in momentum.

49. Verification of Newton’s Second Law. Arrange the

trolley as in Fig. 37. Before attaching the light cord, however,

raise the left-hand end of the board slightly so that the car

Fig. 37.—Showing that acceleration is proportional to force.

will just not start of itself but will continue moving
when started. This is to allow for friction. Now rjir]

join the cord to the car, let it pass over a pulley

and attach a small weight w to it. This weight will keep a
constant tension in the cord during the motion of the car which
should move with uniform acceleration. Use different
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weights for w and obtain tracings with each. The experiments

must be made with great care. The masses of the wheels

and the pulley should be as small as possible, and it is difficult

to get rid entirely of friction.

First, let us keep constant the mass which is accelerated

and find how the acceleration varies with the applied force.

Let w consist of two 50-gram weights and let the mass of

the car be 1300 gms.

Then the force producing acceleration is the pull of the earth

on the 100-gm. mass and the total mass accelerated is 1400 gm.

From the tracing shown in Fig. 38a, the acceleration is

found to be 70 cm. per sec. per sec.

Next, remove one of the 50~gm. weights from w and place it

in a slot in the car. The force now producing motion is the

pull of the earth on a 50-gm. mass and the total mass acceler-

ated is still 1400 gm. (1350 gm. + 50 gm.). By measuring

the tracing in Fig. 385, the acceleration is found to be 35

cm. per sec. per sec.

Evidently, then, twice the applied force produces twice the

acceleration, if the mass accelerated is kept constant; and a

series of similar experiments would always show that

a oc F, if m is constant.

Next let us investigate the effect of varying the mass

accelerated while the applied force is kept constant. By
placing masses in the slots provided in the trolley for this

purpose, the mass of the car is increased to 2700 grams,

while w is again made 100 gm. The mass accelerated is now
2700 -f 100 = 2800 gm

,
and the applied force is the pull of

the earth on a 100-gm. mass.

It is found that we again obtain the curve in Fig. 385 and

that the acceleration is again 35 cm. per sec. per sec.
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We conclude, then, that if the applied force is kept constant,

doubling the mass accelerated results in the acceleration

being halved, or, more generally,

a oc —
,
if F is constant.m

Combining the two results

F
a oc — or ma oc Fm

or F = k ma.

This is Newton’s Second Law
stated algebraically.

50. Measurement of Force. We
are now in a position to discuss

more fully the units used in measur-

ing a force. We have already

stated two exactly equivalent de-

finitions of unit force:

(1) Unit force is that force

which in unit time produces unit

change in momentum.

(2) Unit force is that force which

gives unit mass unit acceleration.

61. Absolute Units of Force. In

the metric (or C.G.S.) system, the

units of length, mass and time are

1 cm., 1 gm., and 1 sec., respec-

tively. The unit of force is called

a dyne.

By definition,

1 dyne force is that force which

in 1 second produces 1 (metric)

unit change in momentum;

whence

^ , mv — mu
t (m dynes) =

j

’

(b)

Fig. 38.—Tracings obtained with
a force, (a) of 100 grams-wt., (6) of
50 grams-wt.
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where m is measured in grams, v and u in cm. per sec. and t

in seconds.

Or alternatively,

1 dyne force is that force which gives 1 gram mass an

acceleration of 1 centimetre per second per second

;

whence

F (in dynes) = m (in grams) X a (in cm. per sec. per sec.).

In the British (or F.P.S.) system the units of length, mass

and time are 1 foot, 1 pound and 1 sec., respectively. The
unit of force is called a poundal.

By definition,

1 poundal force is that force which in 1 second produces 1

(British) unit change in momentum

;

whence

„ j . mv - mu
F (m poundals) = ^ >

where m is measured in pounds, v and u in ft. per sec. and t in

seconds.

Or, alternatively,

1 poundal force is that force which gives 1 pound mass an

acceleration of 1 foot per second per second

;

whence

F (in poundals) = m (in pounds) X a (in ft. per sec. per sec.)

These units are called ‘'absolute” because they do not

depend on any particular place on the earth, or indeed, in the

universe. Should one be transported to the moon he could use

dynes and poundals as units of force just as we do on the earth.

PROBLEMS

1. What force expressed in poundals will give a mass of 25 pounds an

acceleration of 25 feet per second per second?

2. A force of 225 poundals gives a certain mass an acceleration of 15

feet per second per second. Find the measure of the mass.
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3. Find the magnitude of the force expressed in dynes in each of the

following cases:

(1) The force which will produce in a mass of 20 grams an acceleration

of 10 cm. per sec. per sec.

(2) The force which will produce in a mass of 5 kg. an acceleration

of 5 cm. per sec. per sec.

(3) The force which will produce in a mass of 30 grams an acceleration

of 10 metres per sec. per sec.

(4) The force which will produce in a mass of 10 kg. an acceleration

of 20 cm. per min. per min.

(5) The force which, acting on a mass of 3 grams for 12 seconds, will

impart to it a velocity of 120 cm. per sec.

(6) The force which, acting on a mass of m grams for t seconds, will

impart to it a velocity of v cm. per sec.

4. Find the acceleration expressed in cm. per sec. per sec. in each of

the following cases:

(1) A force of 10 dynes acts on a mass of 10 grams.

(2) A force of 15 dynes acts on a mass of 5 kg.

(3) A force of 9800 dynes acts on a mass of 5 grams.

5. Find the mass of the body acted upon by the force in each of the

following cases:

(1) A force of 5 dynes produces in a body an acceleration of 10 cm.

per sec. per sec.

(2) A force of 10 dynes acting for 5 seconds imparts to a body a velocity

of 20 cm. per second.

(3) A force of 30 dynes produces in a body an acceleration of 5 metres

per min. per min.

(4) A force of 1,960,000 dynes acting for 2 minutes imparts to a body

a velocity of 60 cm. per sec.

6. A mass of 400 grams is acted on by a force of 2000 dynes. Find

the acceleration. If it starts from rest, find, at the end of 5 sec., (1) the

velocity generated, (2) the momentum.

7. A force of 10 dynes acts on a body for 1 min., and produces a velocity

of 120 cm. per sec. Find the mass, and the acceleration.

8. Find the force which in 5 sec. will change the velocity of a mass of

20 grams from 30 cm. per sec. to 80 cm. per sec.

9. A force of 50 poundals acts on a mass of 10 lb. for 15 sec. Find

the velocity produced, the acceleration and the momentum.
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10. Two masses, 3w and 5m, are acted on by forces which produce

in their motions accelerations of 7 and 9 respectively. Compare the

magnitude of the forces.

11. A force acts on a mass of m grams. Compare the acceleration with

that produced by the same force acting on a mass of (1) nm grams,

(2) - grams.

12. A force is capable of producing in a certain mass an acceleration of

b cm. per sec. per sec. and in another mass an acceleration of he cm. per

sec. per sec. Compare the masses.

62. Gravitation Units of Force. However, we live on the

earth and the force with which we are best acquainted is the

force of gravity. It is quite natural, therefore, that there

should have arisen a unit of force which depends upon gravity.

In the metric system, as was stated in Sec. 25, the unit is the

gram-force, and it is defined thus:

1 gram-force = the attraction of the earth on 1 gram-mass;

or, it is the weight of 1 gram-mass.

Thus a gram-force and a gram-mass are quantities of

entirely different kinds. A gram-mass is a certain quantity

of matter, which will remain the same wherever it may be

taken; while a gram-force varies with one’s position on the

earth’s surface and would change entirely if one should go off

into space.

We can compare a dyne with a gram-force in the following

way:

Allow a gram-mass to fall freely. Its acceleration is g cm. per sec. per sec.

Thus,

1 gm.-force acting on 1 gm.-mass gives it an acceleration of g cm. per sec. per sec.

But 1 dyne “ “ 1
“ “ “ “ 1

“ “ “

Hence, 1 gm.-force = g dynes.

g = 980 (approx.), and hence 1 dyne =
-gl-o- (approx.) of the weight of

1 gram of matter, or a little more than the weight of 1 milligram mass.

In the English system the gravitation unit of force is the

earth’s attraction on 1 pound-mass, or the weight of 1 pound-
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mass. Thus 1 pound-mass differs in nature from 1 pound-

force and it is convenient to write 1 pound as “1 lb.” when
referring to mass, and ‘T pd.” when referring to force or

weight.

If 1 lb. mass is allowed to fall freely its acceleration is grft. per sec. per

sec.

We can then say,

1 pd.-force acting on 1 lb. mass gives it an acceleration of g ft. per sec. per sec.

But 1 pdl. “ « 1 " “ “ “
1

“ “ «

Hence, 1 pd.-force = g poundals.

Here, g = 32 (approx.), and 1 pdl. = of wt. of 1 lb. mass (approx.)

= wt. of i oz. (approx.)

53. Examples. 1. A trolley (Fig. 39), weighing 1300 gm., is placed on

a horizontal track and is put in motion by a mass of 100 gm. hanging from

the end of a light horizontal string attached to the trolley and passing

over a light pulley at the end of the track. Neglecting friction and the

mass of the string and pulley, find

(a) the acceleration with which the trolley moves;

(b) the tension in the string.

1^ 1300 pnt^

Fig. 39.—A trolley problem.

lOOgm.

(a) The force producing motion is the pull of the earth on the 100 gm.
mass = 100 X 980 dynes. The total mass accelerated = 1300 -f 100 =
1400 gm.

But F = ma;

.-. 100 X 980 = 1400a,

or a = 70 cm. per sec. per sec.

(Question: Why do we not take into account the pull of the earth on the

trolley?)
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(b) (1) Considering the motion of the trolley only, we can think of it

moving with an acceleration of 70 cm. per sec. per sec. because of a tension

of T dynes in the string.

But F = ma,

T = 1300 X 70 = 91,000 dynes.

(2) Considering the motion of the 100 gm. mass only, we find it subjected

to the following forces:

Downward 100 X 980 = 98,000 dynes.

Upward T’ dynes.

Hence resultant downward force causing it to move with an acceleration

of 70 cm. per sec. per sec. = (98,000 — T) dynes.

But F = ma',

98,000 - r = 100 X 70,

or T = 91,000 dynes, as before.

2. A light string has masses of 230 gm. and 260 gm. attached to its ends.

The string is placed over a light “frictionless” pulley (Fig. 40). Find

(a) the acceleration with which the system moves;

{h) the tension in the string.

Note: The tension of the string acts vertically up-

wards in each part of the string. It causes the 230 gm.
mass to rise in spite of gravity and retards the free

fall of the 260 gm. mass.

(a) The force producing motion is the difference

between the weights of the two masses, i.e., 30 gm., or

30 X 980 dynes. The total mass accelerated = 490
gm.

Now F =ma.

Hence, 30 X 980 = 490 a,

or a = 60 cm. per sec. per sec.

(b) (1) Considering the 260 gm. mass only, we find

it acted on by the following forces:

Downward 260 X 980 dynes.

Upward T dynes.

The resultant downward force causing it to move with an acceleration of

60 cm. per sec. per sec. = 260 X 980 — T dynes.

But F = ma.

.*. 260 X 980 - T = 260 X 60,

T = 239,200 dynes.

260gm.

Fig. 40.—Prob-
lem with weights on
a cord.

whence
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(2)

Considering the 230 gm. mass only, we have the following forces:

Downward 230 X 980 dynes,

Upward T dynes.

The resultant upward force causing it to move with an acceleration of

60 cm. per sec. per sec. = T — 230 X 980 dynes.

But F = ma.

T - 230 X 980 = 230 X 60,

or T = 239,200 dynes, as before.

PROBLEMS

1.

Express:

(1) A force of 10 kg. in dynes.

(2) A force of 10 dynes in grams force.

(3) A force of 12 pounds in poundals.

(4) A force of 320 poundals in pounds.

2. A mass of 25 pounds lies on a table. Find the force it exerts on

the table in (a) pounds, (b) poundals.

3. A mass of 5 kg. is acted on by a force which imparts to it an accelera-

tion of 100 cm. per sec. per sec. Find the force in (a) dynes, (6) grams.

4. A certain force acts on a mass of 150 grams for 10 seconds, and

produces in it a velocity of 50 metres per second. Compare the force

with the weight of a gram.

5. A certain force acts on a mass of m gm. and generates in it an acceler-

ation a cm. per. sec. per sec. Find the mass which the force would support.

6. How long must a force of 5 units act upon a body in order to give

it a momentum of 3000 units?

7. What force acting for one minute upon a body whose mass is 50

grams will give it a momentum of 2250 units?

8. A force of 980 dynes acts vertically upward upon a mass of 5 grams,

at a place where g = 981 cm. per sec. per sec. Find the acceleration of

the body.

9. A mass of 10 kg. is acted upon for one minute by a force which

can support a mass of 125 grams. Find the momentum which it will

acquire.

10.

A falling weight of 160 grams is connected by a string to a mass of

1800 grams lying on a smooth fiat table. Find the acceleration and the

tension of the string.
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11. A mass of 3 kg. is drawn along a smooth horizontal table by a

mass of 4 kg. hanging vertically. Find the displacement in 3 seconds

from rest and the tension of the string.

12. A body of mass 9 grams is placed on a smooth table at a distance

of 16 cm. from its edge, and is connected by a string passing over a pulley

at the edge with a body of mass 1 gram. Find (1) the time that elapses

before the body reaches the edge of the table, (2) its velocity on leaving

the table.

13. A mass of 10 grams hanging freely draws a mass of 60 grams along

a smooth table. Find (1) the displacement in 5 seconds, (2) the displace-

ment in the 8th second, and (3) the velocity acquired between the 7th

and the 12th seconds.

14. Two masses of 100 and 120 grams are attached to the extremities

of a string passing over a smooth pulley. If the value of g is 979 cm. per

sec. per second, find the velocity after 8 seconds and the tension of the

string.

15. A mass of 52 grams is drawn along a table by a mass of 4 grams

hanging vertically. If at the end of 4 seconds the string breaks, find the

space described by each body in 4 seconds more.

16. Masses of 800 and 180 grams are connected by a string over a

smooth pulley. Find the space described in (1) 5 seconds, (2) the 5th

second.

17. To the ends of a light string passing over a small smooth pulley

are attached masses of 977 grams and x grams. Find x so that the former

mass may rise through 200 cm. in 10 seconds, {g = 981).

18. If bodies whose masses are mi and are connected by a string

over a smooth pulley, find the ratio of mi to m2 if the acceleration is g.

54. Force Produced by a Fluid in Motion. A wind is

simply a portion of the atmosphere in motion and when it

strikes a surface a force is exerted upon it,—sometimes

sufficient to do great damage, as shown by the destruction

caused by a tornado. The force from a current of air can

cause a windmill to rotate and thus pump water or grind

grain, while the force from a current of water can put in

motion great turbine water-wheels, sometimes with the power

of several thousand horses. A stream of water from a fire-

hose can break a window, tear up shingles or do other things.
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Whole hills have been removed by directing streams of water

against them, thus loosening the earth and then carrying it

away.

Consider a cube of matter 1 cm. to the edge and having mass 1 gram.

If a force of 1 dyne act at right angles to one face of this for 1 sec. it will

be given a velocity of 1 cm. per sec., and it will possess 1 unit of momentum.

If this matter were water the dyne force would give it unit of momentum
as before.

Next imagine 1 c.c. of water (1 gm. mass) to be projected perpendicularly

against a surface with such a speed that its forward momentum is destroyed

in 1 sec. Then it will exert upon the surface a force of 1 dyne.

Suppose that a stream of water with area of cross-section 1 sq. cm.,

moving with a speed of 3 metres per sec., falls at right angles upon a wall,

and suppose further that its forward momentum is completely destroyed

by the impact.

In this case a cylinder of water (Fig. 41)1 sq. cm. in section and 300 cm.

long strikes a surface and has its momentum destroyed in 1 sec. The

volume of this cylinder = 300 c.c. and its mass = 300 grams. As its

velocity = 300 cm. per sec., its

Momentum = 300 X 300 = 90,000 C.G.S. units,

and this is destroyed in 1 sec.

The force against the surface must therefore

= 90,000 dynes = 92 gms.-wt. (nearly).

At first sight it would appear that we should be able to say that the

pressure is 90,000 dynes per sq. cm. Experiment, however, has shown that

this is incorrect, on account of the spreading out of the stream when it

hits the wall. Actually the pressure at the centre of the stream is 45,000

dynes per sq. cm. and the pressure decreases as the distance from the

centre increases.
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Examples.— (1) A stream of water 1 sq. cm. in cross-section, moving

with a speed of 20 metres per sec., strikes a wall at right angles. Find

the force exerted against the wall.

Vol of water striking wall in 1 sec. = 2000 c.c. = 2000 grams.

Its velocity = 2000 cm. per sec.

Hence, its momentum = 2000 X 2000 = 4,000,000 units, and this is

destroyed in 1 sec.

But the force = rate of change of momemtum

Hence force = 4,000,000 dynes,

= 4077 gm.-wt. (approx.).

(2) A hose delivers 600 gallons per minute with a speed of 60 ft. per

sec. against a wall which it strikes at right angles. Find the force against

the wall.

600 gal. per min. = 10 gal. per sec.

= 100 lb.
“ “

Mass of water striking wall in 1 sec. = 100 lb.

Its velocity = 60 ft. per sec.

Momentum destroyed in 1 sec. = 100 X 60

= 6000 F.P.S. units.

Hence force = 6000 poundals

= 187.5 pd.

55. General Formula. It will be useful for us to obtain

the general formula for the force produced by a jet striking

a surface at right angles.

Let the velocity of the jet = v cm. per sec. and let its area of cross-

section = 1 sq. cm. Then a cylinder of fluid v cm. long and 1 sq. cm. in

cross-section will fall upon 1 sq. cm. of the surface in 1 sec. Let p = density

of the fluid.

Mass of fluid = pv grams.

Velocity = v cm. per sec.

Hence, momentum = pv^ units, which is destroyed in 1 sec.

Consequently Ft = pv^

and as f = 1, F = pv^ dynes.

In the F.P.S. system, F = pv^ pdl.
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It is to be observed that the force is not proportional to

the velocity, but to its square.

In the case of a jet of water of area of cross section A
striking a surface at right angles the total force = Apv^

dynes (or pdl.) provided the area of the surface is at least

four times the area of the jet. It has been found from actual

experiment that if the area is less, not all of the forward

momentum of the fluid is destroyed and the formula no

longer holds.

66. Force Produced by an Air Current. Similarly forces are

produced by currents of air, but as the density of air is much
less than that of water the forces are ordinarily much smaller.

Example:—Consider a column of air 1 sq. ft. in cross-section and
travelling 30 miles per hr., striking a large surface at right angles.

Now 30 m.p.h. = 44 ft. per sec.

The hir in a cylinder 44 ft. long and 1 sq. ft. in cross-section will have its

momentum destroyed in 1 second.

Its volume = 44 cu. ft.

and its mass = 44 X 0.08 lb.

The momentum = 44 X 0.08 X 44 (F.P.S.) units,

= 154.9 units.

Hence, the force = 154.9 pdl.

= 4.8 pd. (approx.).

If, however, we consider a wind striking the obstacle, not

all of the forward momentum is destroyed by the impact and

we cannot obtain the total thrust by simply multiplying the

area of the surface in square feet by the force produced by
the unit air column just considered.

For flat plates, it has been found experimentally that

F = kAV^ pd.,

where k = 0.00328 for plates 5 ft. or more in diameter.

A = area of plate in sq. ft.

and V = velocity in miles per hour.
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For a wind blowing with a velocity of 30 m.p.h. the force on

a plate whose area = 100 sq. ft. would be

F = 0.00328 X 100 X 900 pd.,

= 295.2 pd.

whereas, if the theoretical formula held, the force would be

100 X 4.8 = 480 pd.

PROBLEMS
(For wind problems, use F = 0.00328 AV^ pd., where A = area in sq. ft.,

and V = velocity in m.p.h.)

1. A jet of water, 5 sq. cm. in section and moving with a velocity of

20 m. per sec., strikes a board at right angles. Find the force against

the board.

2. A fire-hose delivers 400 gal. of water per minute at a speed of 20 ft.

per sec. The water strikes a fence at right angles. Find the force exerted

on the fence.

3. A wind with a velocity of 40 mi. per hr. strikes at right angles a

sign 30 ft. long and 6 ft. high. Find the total force against the sign.

4. The wind-shield of an automobile has an area of 3 sq. ft. and is set

vertically. Find the total force exerted by the air against the wind-

shield when the car has a velocity of 30 miles per hour.

5. Find the force exerted on the same wind-shield when the car is being

driven at 35 miles per hour against a wind blowing 15 miles per hour.



CHAPTER VII

Gravitation

67. Why does a body fall to the Earth? We have seen in

Chapter V that the earth attracts bodies on it, so that they

move with an acceleration of about 978 cm. per sec. per sec. at

the equator and about 983 cm. per sec. per sec. at the poles.

No one has yet found out why bodies tend to fall toward the

earth, but we now know that this phenomenon is only a

particular example of the action of a universal law. The same

force which makes a stone fall to the earth, determines the

path of the moon in its journey round the earth and also the

orbits of the planets as they revolve round the sun.

58. The Motion of the Planets. For many centuries it was commonly

believed that the earth was immovable and was at the centre of the uni-

Fig. 42.—Diagram to illustrate Kepler’s Laws. S is the sun at one focus
of the ellipse, F is the other focus, C is the centre, P is perihelion, A is aphelion.
CP or CA, that is one half of the axis-major, is the mean distance. F is a
planet moving in the elliptical orbit and M is a moon revolving about it.

Suppose the planet moves from a to b, or c to d, or e to / in the same length of
time, say 30 days, then the shaded areas are equal. (The diagram is not drawn
to scale; the orbits of the planets are more nearly circular).

verse, and that the sun and the other heavenly bodies revolved about it.

This view is known as the Ptolemaic theory or hypothesis, since it was

74
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proposed and supported by Claudius Ptolemy in a great work which he

composed about 150 A.D. At last, however, it was overthrown, being

superseded by the theory put forward by Nicolaus Copernicus (1473-1543),

and hence known as the Copernican theory. According to it, the sun

is the central body of our system, and the planets, of which the earth is

one, revolve about it in circles. Following Copernicus came a famous

Danish astronomer named Tycho Brahe (1564-1601). He was an en-

thusiastic observer, and, although he lived before the telescope was
invented, he made many accurate measurements of the positions of the

planets in the sky, especially of the planet Mars. These observations

were placed in the hands of his pupil, John Kepler (1571-1630), who spent

many years studying them and at last deduced from them three simple laws

of planetary motion, as follows:

(1) The orbit of each planet is an ellipse (not a circle as Copernicus

thought) with the sun in one of its foci (Fig. 42).

(2) The radius vector (i.e., the line joining the sun and the planet)

describes equal areas in equal times.

(3) The square of the periodic time of a planet is proportional to the cube

of its mean distance. (The mean distance is the semi-axis major of the

elliptical orbit)

.

These laws form the basis of mathematical astronomy.

Kepler did not assign any reason why the planets should move in

accordance with these laws, but he simply found that they must move
thus in order to satisfy Tycho’s observations.

59. Newton’s Law of Gravitation. Contemporary with

Kepler was Galileo Galilei (1564-1642), a distinguished Italian

astronomer and physicist. He invented one form of telescope

in 1609 and with it made many discoveries which strongly

favoured the Copernican theory. In addition, he made many
experiments in mechanics and stated some of its fundamental

principles, thus effectually preparing the way for his successors.

It was felt by scientific men that there must be some physical

principle which would supply the reason for Kepler’s laws,

and for fifty years the matter was a favourite subject for

conjecture and discussion. At last Isaac Newton (1642-1727)

proved that if we start with the simple hypothesis that the

sun attracts each planet with a force which is inversely

proportional to the square of its distance, Kepler’s laws must
necessarily follow.
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On further consideration Newton was led to the view that

each body attracts every other body in the same way that the

sun attracts the planets. This is known as the Principle of

Universal Gravitation and may be stated as follows

:

The attraction between any two bodies varies directly

as the product of their masses and inversely as the square

of the distance between them.

Let mi, m 2 be the masses of the two bodies, r the distance

between them.

The force of attraction is proportional to

where is a numerical constant.

60. Application to the Earth. Consider a mass m at A on

the earth’s surface (Fig. 43), and let

the mass of the earth be M.

Then, according to Newton’s Law,

the force of attraction between the

two bodies is proportional to ikf x m.

But what is the distance between

them? They are actually in contact.

Now it can be shown by mathematical calculation that a

homogeneous sphere* attracts as though all the matter in it

were concentrated at its centre. This point is its centre of

mass. Indeed every body has a centre of mass and the dis-

tance between two bodies is to be understood as the distance

between their centres of mass. The centre of mass of a body

coincides with its centre of gravity (see Chapter XV).

If m is a pound-mass on the earth’s surface, the attraction

of the earth on it is 1 pound-force or 1 pound-weight.

* A spnere is homogeneous when it is similar in all directions from the centre. It may
differ at different distances from the centre but it is the same at the same distance.
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If m is a gram-mass, the attraction is 1 gram-force or 1 gram-

weight.

If the mass of m is 100 grams, the attraction is 100 grams-

force.

If the mass of the earth could be doubled without altering

its radius, the attraction would be doubled, since the force is

proportional to the product of the masses.

Again, suppose the pound-mass to be at B, 2 radii or 8000

miles from C. The attraction is now not but ^2 or | of a

pound-weight or pound-force.

If it were 6000 miles or f of the radius, the force =

of a pound-weight.
^

Read Section 26 again.

61 . Example of Newton’s Law—Attraction on the Moon. Let us calcu-

late the weight of a pound-mass on the surface of the moon.

The moon’s diameter is 2163 miles and the earth’s is 7918 miles, but

for ease in calculation we shall take these numbers as 2000 and 8000

respectively (Fig. 44).

Assuming, then, the radius of the moon to be ^ that of the earth, its

volume is that of the earth, and if

the two bodies were equally dense the

moon’s mass would also be of the

earth’s mass. But the density of the

moon is only that of the earth and
consequently the mass of the moon is

that of the earth.

Therefore the attraction on a pound-

mass at a distance of 4000 miles from the

moon’s centre would be -gf ^ of a pound-force.

But the distance is 1000 miles, or ^ of this, and the attraction on this

account would be 4^ or 16 times as great.

Hence, attraction = 16 X = -g (approx.) pd.*

Hence, if we could visit the moon, retaining our muscular strength,

we would lift 600 pounds with the same ease that we lift 100 on the earth.

Fig. 44.—Attraction on the moon is

one-sixth that on the earth.

* A more accurate calculation is

^ _ 6489 _ 1

\7918/ ^ V2I63/ 10 “ 39590 “ 6.101"
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If you can throw a base-ball 100 yards here, you could throw it 600 there.

On the surface of the sun, so immense is that body, the weight of a
pound-mass is 27 pounds-force.

QUESTIONS AND PROBLEMS

1. If the earth’s mass were doubled without any change in its dimen-

sions, how would the weight of a pound-mass vary?

Could one use ordinary balances and the same weights as we use now?

2. The attraction of the earth on a mass at one of its poles is greater

than at the equator. Why is this?

3. A spring-balance would have to be used to compare the weight of a

body on the sun or the moon with that on the earth. Explain why.

4. Find the weight of a body of mass 100 kilograms at 6000, 8000,

10,000 miles from the earth’s centre.

5. The diameter of the planet Mars is 4230 miles and its density is

that of the earth. Find the weight of a pound-mass on the surface of

Mars. §

Fig. 45.—A modern laboratory form of Cavendish’s apparatus. The
horizontal glass case which contains the silver spheres is seen between the large
lead balls; the long vertical tube encloses the quartz suspension and the mirror.
Light from the lamp at the right enters the right-hand aperture, strikes the
mirror and is reflected to a scale through the front aperture.
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62. The Cavendish Experiment. The mass of the earth is

so great that its attraction upon a mass at its surface is easily

detected and measured, but between ordinary bodies the

attraction is extremely small and to measure it is a task of

great difficulty.

The first successful attempt to determine experimentally

the attraction between two known masses was made in 1798

by Henry Cavendish,* an eccentric but very able English

physicist and chemist. Fig. 45 shows the general appearance

of a modern laboratory form of the apparatus which he used,

while Figs. 46 and 47 show more of the details.

AB (Fig. 46) is a light wire, about 5

cm. long, on the ends of which are silver

spheres, each of mass approximately 1

gm. It is supported by a rod D with a

small mirror C on it, and the whole is

suspended by a fine fibre of quartz E
about 60 cm. long. Such an apparatus

is called a torsion pendulum. When it is

turned through an angle about the

vertical and let go it is brought back by the torsion of the

fibre and continues to oscillate for some time. It is very

sensitive to air currents and is protected by a glass case. If we
know the dimensions and mass of each part of the pendulum
and observe the time required for an oscillation we can cal-

culate the force required to turn it through any given angle.

The angle through which the pendulum turns can be deter-

mined from the motion of a beam of light reflected from the

mirror C to a graduated scale.

The pendulum is so hung that the arm AB is between

two rods L, M (Fig. 47), on which slide two large lead spheres

F, G, about 8 cm. in diameter and weighing about 3 kg.

First, suppose the lead spheres are in the positions F, G.

It is evident that the pull of F on A will be greater than the

E

Fig. 46.—Elevation of

Cavendish’s Apparatus.

* Cavendish was the first to recognize hydrogen as a distinct substance.
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pull of (t on A
and the pull of G on B
F on B. Consequently the

arm AB will turn through
^

a small angle in the clock-

wise direction. Next, let

F and G be moved into the

positions H and K. It is
^

clear that now AB will

turn in the contra-clock-

wise direction.

(indeed the latter may be neglected)

will be greater than that of

OB

M

Fig. 47.—Plan of Cavendish’s Apparatus.

By measuring the deflection of the spot of light on the scale

when the large spheres are shifted, the angle of rotation of the

pendulum is found. The force which produces this is the

attraction of the lead spheres on the silver spheres. If the

mass of a lead sphere is M grams, that of a silver sphere is m
grams and the distance between their centres is r cm., the

force of attraction.

dynes.

We know F from the angle through which the pendulum

is turned, and we know M, m and r, and hence k can be

determined.

63. Results of Experiments. The experiment has been

repeated frequently, with many variations in the apparatus.

A very careful series of experiments was conducted by C. V.

Boys, 1890 to 1893, who obtained the value 0.000,000,064,8

for k when F is measured in dynes. In other words. Boys
found that two small spheres, each containing 1 gram of

matter,* when placed with their centres 1 cm. apart, attract

each other with a force of 0.000,000,064,8 dyne = tf.Wo.oto'

dyne (approximately).

64. “Weighing the Earth.” Having determined the gravi-

tation constant k, it is possible to calculate what must be the

* A lead sphere 5.5 mm. in diameter (the size of a large pea), contains 1 gram of matter.
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mass of the earth in order that it may exert the attraction

upon a body at its surface which we have observed.

The earth acts for purposes of attraction as if all its mass

were concentrated at its centre, and we know that it attracts

a mass of 1 gram at its surface with a force of approximately

980 dynes.

From the equation F = k we have, then,

qsn = 1
.

15,000,000
’

where M is the mass of the earth in grams and R its radius

in cm. Taking the radius of the earth as approximately

6370 km., we obtain

M
980 = ’

15 X 10« X (6370 X 10^)2

whence ilf = 6 x 10^^ grams (approx.),

= 6.6 X 1021 (approx.).

65. The Density of the Earth. Knowing the mass of the

earth and its volume we can easily find its density. Cavendish

found it to be 5.45 gm. per c.c.; Boys found 5.53 gm. per c.c.

This is about twice the density of substances in the crust of

the earth; consequently (as we might expect), its density is

greater as we descend below the surface.

66. Von Jolly’s Experiment. The simplest method of finding the mass

of the earth is that devised by Von Jolly at Munich in 1881.

The apparatus (Fig. 48) consists of a very accurate balance equipped

with two sets of scale pans, the lower pans being suspended from the upper

by long wires. Two equal spherical masses, m\ and m2 ,
will, of course,

balance one another if both are placed in the upper pans or in the lower

pans. If, however, they are placed as in the figure, the attraction of the

earth on mi will be greater than on m2 because mi is nearer the centre of

the earth.

The masses are placed as shown and equilibrium is restored by placing

an additional small mass a on the upper pan. A large mass M is then

brought underneath the lower pan and quite close to it. This large mass is

so far from m2 that the attraction between M and m2 is negligible and
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equilibrium is disturbed because of the attraction between ikf and m\.

Equilibrium is again restored by the addition of the small mass h to the

upper pan.

It is evident now that the pull of M on mi
is just equal to the pull of the earth on h.

Hence

= k
M m.i

where E is the mass of the earth, R is its

radius, and d is the distance between the

centres of m\ and M.

Therefore „ M mi

and E follows since all of the quantities on

the right hand side of the equation are

known.

In Von Jolly’s experiments

mi = 5.00 kg.

M = 5775.2 kg.

h = 0.589 mg.

d — 56.86 cm.

R = 6366 km.

whence E = 6.15 X 10'^ gm.

This is about 2 per cent, too great but

the difficulty in determining b with greater

accuracy readily accounts for the error.

PROBLEMS
1. Find the gravitational attraction be-

tween two 11,000-ton ocean liners which

are 100 metres apart. (Take 1 kg. = 2.2 lb.).

2. Calculate the attraction between two

lead spheres, each having a mass of 10 kg.,

placed with their centres 20 cm. apart.

0
Fig. 48.—Von Jolly’s

apparatus for determining
the mass of the earth.



CHAPTER VIII

Action and Reaction

67. Newton’s Third Law. On pressing together the thumb
and a finger the force exerted by the thumb upon the finger

is obviously equal to that exerted by the finger upon the

thumb; or the action of the thumb upon the finger is equal to

the reaction of the finger upon the thumb.

Again, consider a small vessel which is experiencing some

difficulty in coming up to a dock. Someone in the vessel

throws a rope to a person standing on the dock. He pulls

steadily upon it and slowly the boat is brought in to the dock.

In this case by exerting muscular effort a tension is produced

in the rope, and it is evident that this pulls the boat in one

direction and with an equal force pulls the man in the opposite

direction. The action of the man upon the boat is equal and

opposite to the reaction of the boat upon the man.

Someone may ask, if such is the case, why does not the man
move towards the boat just as the boat moves towards the

man? The answer to this becomes clear if we consider the

man and the boat separately.

The forces acting upon the boat are:

(i) the pull of the rope in one direction, and

(ii) the friction of the water in the opposite direction.

The former is greater than the latter and so the boat moves
forward.

The forces acting upon the man are:

(i) the pull of the rope in one direction, and

(ii) the friction of the dock on which he stands in the

opposite direction.

The pull of the rope is not sufficient to overcome the friction

of the dock and so he remains where he is.
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But if two boats are floating on still water and a line is

thrown from one to a person in the other, when he pulls on it

each boat will move towards the other. In this case the

friction of the water is not sufficient to balance the pull of

the rope in the opposite direction and both bodies move.

A magnet attracts a piece of iron; does the iron attract the

magnet? Lay the magnet on one piece of wood and the iron

on another and float them on the surface of water. There is

no doubt about what happens, each moves towards the other.

We are thus led to conclude that.

Reaction is always equal and opposite to action;

or in other words.

The actions of two bodies upon each other are always equal

and in opposite directions.

This is Newton’s Third Law of Motion.

68. Impact of Two Bodies. Suspend two exactly similar

ivory or steel balls, A and B, side by side, as in Fig. 49.

Draw A aside to C and let it go. Its

velocity continually increases until it

strikes B, when it suddenly comes to

rest while B starts off.

Repeat the experiment and observe

closely the distance through which B
swings. It will be found to move to

D, approximately as far from R as C
is from A. From this we conclude

that B starts off with approximately the velocity which A has

when it strikes B. The momentum possessed by A is thus

transferred to B.

The action of A consists in exerting a force upon B which

gives to R a certain velocity, that is, produces a certain

momentum. The reaction of R consists in exerting on A an

equal force in the opposite direction. As the balls are exactly

Fig. 49.—The action of A on
B is equal to the reaction of
B on A.
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similar this force gives to A an equal backward velocity which

brings it to rest.

In this particular case the momentum of A is handed on,

practically without loss, to so that in the impact of A and

B there is no change in the amount of momentum possessed

by the two bodies in the horizontal direction from left to

right.

If the balls are of wood the transfer of momentum is not

complete. A loses some but not all of its momentum, and B
gains the amount that A loses. If made of wax or putty they

may stick together, but in every case what momentum A loses

B gains.

69. Law of Conservation of Momentum. Next, try an

experiment with tv/o trolleys (Fig. 50). First raise one end

Fig. 50.—Experiment with two cars and a single tracing.

of the track until the cars will just run down with uniform

velocity when they are started. This is to allow for friction.

Place B at rest and arrange a vibrating brush so that it

will write a tracing upon A just before A strikes B and for

some time afterwards. Also arrange that when A strikes B
they will be automatically coupled together and so must move
off with the same velocity.

Find the masses of A and B by weighing them and from
the tracing find the velocity of A before impact and of the

two combined after impact.

Let mi = mass of A,

m2 = mass of B,

u = velocity of A before impact,

V = velocity of A and B after impact.
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Then momentum before impact = rriiu,

and “ after “ = (mi + m^v.

Now the action of A on B is to give to B a momentum in the

horizontal direction from left to right, and the reaction of B
on A reduces the momentum of A by the same amount, and so

the entire momentum in the direction named should be the

same after and before impact, or

miu = (mi + m2)v.

Example.—In Fig. 51 is shown a tracing obtained with two cars,

each having a mass of 1.12 kg. The long waves of the tracing give

Fig. 51.—Tracing giving velocity before and after impact.

the velocity before impact. The wave-length comes out 10.0 cm., which

is the distance travelled in •§ sec., or the velocity was 50.0 cm. per sec.

The short waves give a velocity after impact of 4.9 X 5 = 24.5 cm.

per sec., and the mass moving at this velocity = 2.24 kg.

Hence, before impact momentum = 1.12 X 50.0 = 56.0 units,

after
“ " = 2.24 X 24.5 = 54.9 “

These are approximately equal.

Again, try this experiment but do not use the automatic

coupling. A brush for each car will be required as in Fig. 52.

Fig. 52—Experiment with two ears and two tracings.

Have B at rest, start A with a smart push, and at the same

time start both brushes vibrating. There will be a tracing on

A showing its velocity before and after impact, and one on B
showing its velocity after impact.

Let mi = mass of A,

ux and = its velocities before and after impact,
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m2 = mass of B,

V = its velocity after impact.

Then by the impact A loses m\{ui — U2) units of momentum
and B gains m2V units.

According to the Third Law these quantities should be

equal.

Example.—The following are the results of an experiment:

Two cars, each = 1.12 kg.

Velocity of A before impact = 10.7 X 5 = 53.5 cm. per sec.

“ “ A after “ = 2.8 X 5 = 14.0
“ “ “

“ “ B “ “ = 8.1 X 5 = 40.5 “ “ “

Momentum lost by A = 1.12 (53.5 — 14.0) = 44.2 units

“ gained “ B — 1.12 X 40.5 = 45.4 “

These quantities are approximately equal.

The experiments with the trolleys can be varied in many
ways, by loading with different masses and giving different

velocities.

Thus we arrive at the principle of Conservation of

Momentum

:

In all cases of impact between two bodies, the momentum
lost by one body is equal to that gained by the other, or the

total amount of momentum after impact is equal to the total

amount before impact.

70. Examples.

Fig. 53.—Mechanism of a field gun. A, charge; B, shell; G, gun supported on cradle
on which it slides; C, inner cylinder containing oil, which recoils with gun; P, stationary
piston with holes through which oil passes slowly to check recoil;^, ruiining-up spring
coiled around C ;

E, elevating screw ; T, trail
; S, spade.
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The field gun shown in Fig. 53 provides an interesting example of action

and reaction.

The force of the explosion, resulting from the ignition of the charge A,

drives the shell B forwards and the gun G backwards at the same time.

This force acts on shell and gun until the shell leaves the muzzle. The
spade S, at the end of the trail T, keeps the carriage from running back-

wards, while the recoil of the gun is reduced to zero in about four feet by
the action of the hydraulic buffer shown beneath the gun. The coil

spring R, which is compressed during recoil, then returns the gun to its

firing position.

Since the same force acts on gun and shell for the same time, the forward

momentum of the shell as it leaves the gun will be equal to the backward

momentum of the gun.

Numerical Problems.

(1) If the shell weighs 18 lb. and has a muzzle velocity of 2000 ft. per sec.,

find the velocity of recoil of the gun which weighs 1200 lb.

Momentum of shell = 18 X 2000 units,

“ “ gun = 1200 X V
“

Hence 1200 v = 36,000, or y = 30 ft. per sec.

(2) If the force of the explosion acts on the shell for -gV sec., find the

average force in tons.

From Newton’s Second Law:

Ft = mv — mu,

Hence F X ~ 36,000,

or F = 720,000 pdl.

_ 720,000 _ ^ ^

32 X 2000

PROBLEMS AND QUESTIONS

1. On stepping from a row-boat to the shore the boat moves backward,

but on stepping from a steamboat no backward motion is noticeable.

Why is this?

2. The bow of a row-boat is just touching a pier and a boy in the stern

walks towards the bow with the intention of stepping onto the pier.

What happens as he is moving forward? If he stops before he reaches the

bow what happens?

3. If the sphere B (Fig. 49) has a mass twice as great as A, what will

happen (1) when A and B are of ivory? (2) when they are of sticky putty?
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4. A hollow iron sphere is filled with gunpowder and exploded. It

bursts into two parts, one part being one quarter of the whole. Find the

relative velocities of the fragments.

5. A rifle weighs 8 lb. and a bullet weighing 1 oz. leaves it with a

velocity of 1500 ft. per sec. Find the velocity with which the rifle recoils.

6. A gun weighing 6 tons fires an 18-lb. shell with a muzzle velocity

of 1500 ft. per sec. Find the velocity of the recoil.

7. A shell of mass 12 lb. is discharged into a box of sand suspended

by a rope and weighing 900 lb., and the combined mass begins to swing

with a velocity of 25 ft. per sec. Calculate the velocity of the shell.

8. A railway train of mass 200 tons and moving at 6 ft. per sec. strikes

a freight car of mass 40 tons standing still, and is automatically coupled

to it. Find the speed with which the entire train begins to move.

9. A base-ball weighing 5 oz. and travelling forward at the rate of 40 ft.

per sec. is struck and driven directly backward at the rate of 60 ft. per

sec. What is the change in momentum? If the bat was in contact with

the ball for -gV sec. find the average value of the force exerted by the bat.

10.

A 16-lb. shell leaves the muzzle of a gun with a velocity of 2000

ft. per sec. If the force of the explosion acts on the shell for sec., find the

average force in tons. If the mass of the gun is 1000 lb., find the velocity

of recoil.

71. Centrifugal and Centripetal Force. Tie a metal ball

securely to the end of a string and whirl it about in a circle.

You feel a distinct pull on the hand, and the faster the ball

moves the stronger is the pull. We recognize that there is a

tension in the string. Owing to this tension there is a pull

upon the hand and an equal pull on the ball. Considering

the hand and the ball as two bodies acting 3/

upon each other through the string connect- T
ing them, we may say that the action of /
the hand upon the ball is equal to the reaction ;

of the ball upon the hand and in the opposite \

direction.

Suppose that at some moment the ball is Fig. 54.—Motion

at M (Fig. 54) . The direction of its motion

at this instant is along the line MT which is the tangent to

the curve at M
;
and if the string were to break the ball

would move off in the line MT. But the string constrains
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the ball to move out of this straight line path and to go along

the curved path. Consequently it exerts a force on the ball

in accordance with Newton’s First Law of Motion. This

force is always directed (along the string) towards the centre

0 and since it appears to cause the body to seek the centre

it is known as the centripetal force. The force acting upon
the hand is directed from the centre and is called the centri-

fugal force.

The pull on the hand leads most persons to think of a

whirled body as endeavouring to fly off radially from the

centre, but such is really not the case. The body, according to

Newton’s First Law, simply tries to continue in the straight

line in which it at any moment may be considered as moving.

It is clear also that the greater the mass of the whirled body,

the greater is its inertia and consequently the greater is the

centripetal force required to make it move in its curved course.

The grandest examples of bodies moving under centripetal

forces are to be found in the solar system. If the attraction

of gravitation should cease, the planets and their satellites

would move off in straight lines.

The centripetal force is the force required to overcome the

inertia of a body when it is being deflected from a rectilinear

into a circular path.

The centrifugal force is the reaction opposing the centri-

petal force; it is the resistance which the inertia of a body

in motion opposes to whatever deflects it from its rectilinear

path.

72. Experiments with Rotating Bodies. The apparatus shown in

Fig. 55 is called a whirling table. By means of it various bodies can be

rotated rapidly.
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The factors on which the magnitude of the centrifugal force depends

may be investigated by the apparatus illustrated in Fig. 56. A
is a mass of about 500 gm. which

can move vertically on the sup-

port B. Two pieces of silk cord are

attached to A and pass over the

pulleys F. Masses of 10 gm. and

20 gm. slide on the horizontal

rods R and may be attached to the

cords by clamping screws.

(1) Attach the 10-gram masses to

the cords at about the middle of the

horizontal rods and rotate the ap-

paratus first slowly and then more
rapidly. At a certain rate of speed

the centrifugal force is sufficiently

great to raise the mass A. Next clamp the 20-gram masses to the strings

at the same points. It will be found that A rises when the apparatus is

rotating at a slower speed.

(2) Attach the masses to the cords at points nearer the ends of the

horizontal rods. It will be found that a slower rate of rotation is sufficient

to cause A to rise.

It is evident, then, that the magnitude of the centrifugal force depends

on the mass rotated, on the angular velocity, and on the distance of the

rotating mass from the centre of rotation.

Actually

F = k m (j>^ r

where F is the centrifugal force, is a constant, m is the mass rotated,

oj is the angular velocity* and r is the radius of rotation.

73. The Shape of the Planets. The apparatus shown in

Fig. 57 consists of two thin steel circles attached to collars

at A and B. The collar at A is fixed in position on the

vertical rod AB while that at B slides freely on the rod. When
rotated rapidly the rings bulge out at the equatorial region

and flattening occurs along the axis of rotation. The centri-

fugal force exerted by a mass at C is greater than that

exerted by an equal mass at D rotating with the same angular

velocity.

* The angular velocity is measured in radians per second, n radians = 180 degrees.
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Now the earth is somewhat flattened at the poles. It is

believed that at one time the earth was in a plastic condition

and that the flattening is due to its rota-

tion upon its axis. The equatorial dia-

meter is 7926.6 miles and the polar diameter

7899.6 miles. The difference is 27 miles

which is about part of the diameter.

This is so slight that if a person could

observe the earth from a point far out in

space the eye could not detect the flatten-

ing.

But the flattening is much greater in the case of some of the

other planets. Jupiter’s equatorial diameter is 88,200 miles,

its polar, 83,000 miles, or jV part less. The flattened form of

the planet is easily observed in the telescope. Jupiter rotates

on its axis in 9h, 55m., from which we deduce that a point

on its equator moves with a velocity 29,437 miles per hour!

We should not be surprised at the flattening.

The planet next in order from the sun and second in size in

the system is Saturn. Its equatorial diameter is 75,000 miles,

and polar diameter 68,000 miles, or tV part less. Thus its

flattening is greater than that of Jupiter, but it is not usually

Fig. 58.—Shapes and relative sizes of the earth, Jupiter and Ball of Saturn.

SO easy to detect, chiefly on account of the wonderful rings

which surround the ball of the planet. Every fifteen years,

however, the rings are turned edgewise to us and then the

flattening is very evident. In Fig. 58 the shapes and the

relative sizes of the earth, Jupiter and Saturn are shown.
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PROBLEMS

1. Calculate the linear velocity of a point on the earth’s equator, taking

the diameter as 7926.6 miles and the period of rotation as 23 h. 56 m.

2. Do the same for Saturn, taking the diameter as 75,000 miles and

the period as 10 h. 14 m.

74. The Centrifuge. Place upon the spindle of a rotator

a glass globe (Fig. 59a), containing

some coloured water and a little

mercury, and start it rotating.

Both liquids creep up and form a

band at the equator, with the

heavier substance next the glass

(Fig. 59b).

If we consider equal sized par-

ticles of water and mercury at the

same distance from the axis of rotation, then, since the mass of

the mercury is much greater than that of the water, the centri-

petal force required to keep the mercury in this circle is

greater than that needed for the water. The centripetal

force is provided by the reaction of the walls of the globe

transmitted through the liquid. If, then, there is a force just

sufficient to hold the water in the circle it will not be great

enough to retain the mercury, which consequently will move
farther away from the axis of rotation.

The very useful instrument shown in Fig. 60 is called a

centrifuge. Near the ends of its two arms are suspended two

metal tubes closed at the lower end, and within these are

placed glass tubes containing the substance to be investigated.

The metal tubes can swing back and forth about horizontal

pivots near the open end.

Inside the body of the instrument are multiplying gears,

and when the handle is turned the tubes can be made to

revolve very rapidly, often more than 2,000 times per minute.

This causes the tubes to point directly outwards from the

axis of rotation and the heavier portion of the substance is

Fig. 59.—Apparatus to illustrate
the action of a centrifuge.
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driven to the bottom of the tubes. This apparatus is

useful in testing blood and some other liquids.

In the Babcock milk
tester, used for determining

the amount of butter-fat in

milk, the fat is separated

by a centrifugal machine

similar to the above.

75. The Cream Separa-

tor. Milk consists of a

liquid with small globules

of fat distributed through

its mass. Not very many

Fig. 60.-A centrifuge. years ago the Ordinary

practice was to place the

milk in pans and allow the globules, which are lighter than the

liquid, slowly to rise and collect at the surface as cream.

This was then skimmed off and afterwards churned into

butter. It has been found, however, that the cream can be

taken from the milk much more completely and in a small

fraction of the time by means of the now familiar cream

separator.

The essential portion of the machine is a steel bowl which

is rotated very rapidly. That used in a well-known type of

separator is illustrated in Figs. 61, 62, 63, 64. The outside

of the bowl, together with the gears for rotating it, is shown

in Fig. 61. The lower part (see Fig. 62) is hollowed out under-

neath and is heavier around the rim, so that the bowl rests

upright when placed on the end of a vertical axis, which is

shown beneath. The conical shell of the bowl fits snugly into

the lower part and rests on a rubber washer. By screwing

down the nut at the top the bowl is made milk-tight.

In Fig. 62, is shown the arrangement within the bowl.

The central shaft is a projection upwards from the lower

part of the bowl. It is hollow, thus forming a tube,
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Fig. 61.—Bowl and gears of the separator.

and in the wall of the

tube are slots opening

into three enclosed

gutters which lead

into the bowl and end

at some distance
from the shaft. (See

2, 2, in Fig. 62). A
series of conical ‘discs^

pressed from thin

sheet-metal fit over

the shaft. In these,

holes are punched,
being arranged to be

just above the ends

of the gutters.

The operation of

the machine is some-

what as follows:—The
bowl is put into very

rapid rotation and the

milk is admitted at 1.

It passes down and
comes out of the open-

ings 2, 2, and is thus

delivered between the

discs some distance from

the axis of the bowl.

The centrifugal action

causes the heavier liquid

portion of the milk to go

outwards along the

under surface of the

discs, and collect at the

outer wall of the bowl.

eurcrr

CREAM QUTtET

'SKIMMIUOJIJTLET

Fig. 62.—Inner view of separator bowl.
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The cream finds its way inwards along the upper surface

of the discs (Fig. 63). In this way the cream gathers at the

Fig. 64.—Separator, with electric

motor.

centre and rises and, passing through 3, 3, comes out at the

square outlet in the cap at the top. The skim-milk rises at

the outer wall of the

bowl and finds its way
out of a rectangular

opening beneath that for

the cream. The cream

and the skim-milk spurt

out into vessels placed

over the top of the bowl

(see Fig. 64) and pass off

by way of spouts leading

from these vessels. The
entire operation requires

only a few minutes.

The speed is very high,

ranging (in the type of

machine shown here)

from 6000 revolutions per

f

1
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Fig. 65.—An extractor used in drying clothes.
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minute for the larger sizes to over 8000 for the smaller ones,

and on account of this high speed the machine must be well

made and must be kept well oiled and in good order.

76. The Extractor. Centrifugal action is used extensively

in drying clothes in laundries, in drying sugar and other

crystals and in extracting honey from the comb.

Fig. 65 illustrates an extractor used in drying clothes.

The wet clothes are placed in the perforated cylinder C
which is made to rotate at a high speed by the belt B
which drives the pulley P. The water is thrown through

the holes in C, strikes the walls of the outer cylinder D
and runs off through a waste pipe attached to the trough T.

The other extractors mentioned are similar in construction.

EXERCISES AND PROBLEMS
1. In a separator (Fig. 61) the crank revolved 60 times per minute,

the large gear-wheel on the crank-shaft had 177 teeth, the small pinion

into which it meshed had 19 teeth, the large worm wheel on its shaft had

103, and the worm screw on the axis supporting the bowl had 7 teeth.

Calculate the revolutions per minute of the bowl.

2. In another machine the crank revolved 48 times per minute and the

teeth on the gears were

247, 19, 93, 8, respectively.

Find the revolutions per

minute of the bowl.

3. Explain the action

of the steam engine gover-

nor, a model of which is

shown in Fig. 66. P is

the steam pipe leading

from the boiler to the

cylinder and F is a valve

actuated by the lever L
which connects with the

sliding collar C.

4. Why does a cyclist

lean as he goes round a

corner?
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5. Explain the action of a “sling” used to throw a stone.

6. Why does a car skid in rounding a corner if the street is slippery?

7. Draw a diagram to show how the mud flies off a rotating car wheel.

8. Explain the action in the circus performance known as “looping the

loop”.

9. A man stands on a platform balance and swings a pail of water in a

vertical circle. Will the reading of the balance vary? Explain.

10. Does the rotation of the earth affect the weight of a body? If so,

where will the effect be greatest? Will it be shown on an ordinary balance

or a spring balance?

11. Why are railway tracks and highways banked at the curves?

12. Explain the tendency of belts on high-speed pulleys to slip.



CHAPTER IX

Work, Energy, Power

77. Meaning of ‘Work’ in Mechanics. When water is

drawn from a well by means of a bucket on the end of a rope,

or when bricks are hoisted during the erection of a building,

or when land is ploughed, or when a blacksmith files a piece

of iron, or when a carpenter planes a board, it is recognized

that work is done.

Let us analyse these operations. In the case of drawing

water from the well, the water is attracted towards the earth,

and the person pulling on the rope must exert upon the

bucket a force just sufficient to overcome this attraction, that

is, the weight of the bucket. The bucket is then displaced

through a certain distance in the direction in which the force

acts. When a force acts upon a body and causes it to move

in the direction of the force we say that the force does work,

though it would be more accurate to say that the agent

exerting the force does work. The force in this case which

resists the motion and which is overcome is gravity and it is

customary to say that the work is done against gravity. We
might also describe the production of work by stating that

when motion takes place against resistance work is done.

In the raising of the bricks the circumstances are precisely

similar to those just described. A force acts upon the bricks

and displaces them in the direction of the force and the force

does work.

In the other three cases a force has to be exerted sufficient

to overcome the resistance opposed to it, a resistance similar

to friction. The force is applied to the object (plough, file,

plane) which moves in the direction of the force.

99
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We thus see that the work done depends upon two factors,

(i) the force acting on the body;

(ii) the distance through which the body moves in the

direction of the force.

As a force acts at a point in a body it is rather more accurate

to speak of the motion of the point of application of the

force than of the motion of the body as a whole.

It is evident that if a force twice as great is exerted, twice

the work will be done.

Also, if the displacement of the body is doubled the work

will be doubled.

Hence, if jP = force, and s = space moved through,

the work done, W = Fs.

This is a very important formula,

Work done = force exerted x displacement.

It must be clearly understood that unless motion takes

place no work is performed from the standpoint of mechanics.

The iron pillars supporting a building may be exerting great

force but they are not doing any work. Atlas may hold up
the world on his shoulders but he does not perform any work

in doing so.

Work is done when a mass is moved with acceleration

because force must be exerted to produce this acceleration.

No work is necessary to keep a body moving with uniform

velocity unless gravity or friction or resistance of some other

sort has to be overcome. Anyone who has turned the crank

of a cream separator or who has ridden a bicycle up a hill or

against a wind will recognize the truth of these statements.

78. Units of Work. By choosing various units of force and

of length we obtain different units of work.

If unit of force = 1 pound-force or pd.-wt.,

and unit of length = 1 foot.

then unit of work = foot-pound (ft.-pd.).
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Thus, 1 foot-pound is the work done when a force of 1

pound is exerted through a distance of 1 foot.

This gravitation unit, the ft.-pd., is in general use by British

and American engineers.

The corresponding metric engineering unit is the kilogram-

metre, and as 1 kg. = 2.205 pd., and 1 m. = 3.28 ft.,

1 kg.-m. = 2.205 x 3.28 = 7.23 ft.-pd.

In more purely scientific work the absolute units of force

are used.

In the British (F.P.S.) system the absolute

unit of force = 1 poundal,

unit of length = 1 foot,

and hence unit of work = 1 foot-poundal (ft.-pdl.).

Now, 1 pd.-force = g pdl. {g = 32),

and consequently 1 ft.-pd. = g ft.-pdl.

In the C.G.S. system the absolute

unit of force = 1 dyne,

unit of length = 1cm.,

and hence, unit of work = 1 dyne-cm.

To this unit has been given the special name erg.

Thus, 1 erg of work is done when 1 dyne force is exerted
through a space of 1 centimetre.

Now, 1 gm.-force = g dynes (g = 980),

and hence, 1 gm.-cm. of work = g ergs,

and 1 kg.-m. of work = 98,000,000 ergs.

An erg is a very small quantity and another unit, introduced

through its convenience in electrical calculations, is often used,

namely the joule, which = 10,000,000 or 10^ ergs.
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79. How to Calculate Work. A bag of flour, 98 pounds,

has to be carried from the foot to the top of a cliff, which has

a vertical face and is 100 feet high.

There are three paths from the base to the summit of the

cliff. The first is by way of a vertical ladder fastened to the

face of the cliff. The second is a zig-zag path 300 feet long,

and the third is also a zig-zag route, 700 feet long.

To perform this task a person, if he were strong enough,

might strap on his back the mass to be carried and climb

vertically up the ladder, or he might take either of the other

two routes. The distances passed through are 100 feet,

300 feet, 700 feet, respectively, but the result is the same in

the end, the mass is raised through 100 feet against gravity.

The force required to lift the mass is 98 pounds-force, and it

acts in the vertical direction. The distance in this direction

through which the body is moved is 100 feet, and therefore the

Work = 98 X 100 = 9800 foot-pounds.

Along the zig-zag paths the effort required to move the

mass is not so great but the length of path is greater and the

total work is the same in the end.

Again, let a loaded sleigh be drawn on a level road a dis-

tance 5 ft. by a force F pd. acting in a direction making an

angle 0 with the horizontal (Fig. 67).

Fig. 67.—Calculation of work done in drawing a sleigh.

Here the displacement of the body is 5 ft., but it is not in

the direction of the force.

The force F may be resolved into components P and Q
(Fig. 67), where P = F cos 6,Q = F sin 6. (See Sec. 111).

The force Q is perpendicular to the direction of motion, and

hence does no work.
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The force P is in the direction of motion, and the work done

by it = P X s = (P cos 6) X s.

Examples. (1) Let F = 25 pd., 6 = 20°, s = 1 mile = 6280 ft.

Work done = 25 X cos 20° X 5280 = 12,403 ft.-pd.

(2) A canal horse tows a boat by means of a rope which is inclined

30° to the direction of motion. The tension of the rope is 100 pd. Find

the work done in going 2 miles.

Work = 100 X cos 30° X 5280 X 2 = 91,435 ft.-pd.

(3) A force is applied to a mass of 10 kg. and gives it a uniform accelera-

tion of 60 cm. per sec. per sec. It moves through a distance of 5 metres.

Find the work done by the force.

We must first determine the magnitude of the force, and it will be best

to use C.G.S. units throughout.

Mass m = 10,000 grams.

Acceleration a = 60 cm. per sec. per sec.

Hence force F = ma = 600,000 dynes * (Sec. 48)

and work done = 600,000 X 500 ergs,

= 300,000,000 ergs = 30 joules.

80. The Inclined Plane. Let us investigate experimentally

the work done in moving a body up an inclined plane.

In Fig. 68, C is a well-oiled

car connected to a weight P by
a string which passes over a

light “frictionless” pulley. The
string between the car and the

pulley is parallel to the plane.

Set the inclined plane at an

angle of about 30°. Place a

weight of (say) 200 gm. in C and

adjust P until C just moves up
the plane without acceleration. This can be done by attaching

a pail to the cord and using sand, water or shot to increase

the weight. Let Pi be the weight in this case. Then lighten

P until C just moves down the plane. Let P 2 be the weight

now. Take ^(Pi + P 2)
= P as the weight required to

balance C if there were no friction.
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Let W be the total weight of the car and its load.

It is evident that when C passes from one end of the plane

to the other it rises through a distance h, the height of the

plane, and hence the work done against gravity is Wh; while P
passes through a distance I, the length of the plane, and so

does work PL

The distances h and I may be measured with a metre rod.

In the following table are some values obtained by
experiment

:

Pi P2
P

= l(Pl+ P2) 1 PI W h Wh

181.5 gm.
261.9

159.5 gm.

226.5

170.5 gm.

244.2
1

76 cm.

76

12958

18559

468.9 gm.
669.4

27.7 cm.

27.7

12988

18542

In every case PI = Wh within the limits of experimental

error.

We conclude, then,, that the work done on W is equal to the

work done by P (neglecting friction).

Neglecting friction, the work done by the engine of an

automobile in driving it up a hill at uniform speed is equal

to the work which would be done in lifting the car vertically

through a distance equal to the height of the hill.

Question.—In view of the last statement, why is so much labour spent

to lessen the grade of hills on highways?

PROBLEMS

1. A force of 10 pounds acts through a space of 10 feet. Find the work
done in (a) foot-pounds, {b) foot-poundals.

2. A force of 20 pounds acts through a space of 32 feet. Find the

work done in (a) foot-pounds, (b) foot-poundals.

3. Find the work done in exerting a force of 1000 dynes through a

space of 1 metre.

4. A block of stone rests on a horizontal pavement. A spring-balance,

inserted in a rope attached to it, shows that to drag the stone requires a

force of 90 pounds. If it is dragged through 20 feet, what is the work

done?
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5. The weight of a pile-driver, of 2500 pounds mass, was raised through

20 feet. How much work was required?

6. A coil-spring, naturally 30 centimetres long, is compressed until it

is 10 centimetres long, the average force exerted being 20,000 dynes.

Find the work done. Find its value in kilogram-metres, {g — 980)

.

7. Two men are cutting logs with a cross-cut saw. To move the saw

requires a force of 50 pounds, and 50 strokes are made per minute, the

length of each being 2 feet. Find the amount of work done by each man
in one hour.

8. To push his cart a banana man must exert a force of 50 pounds.

How much work does he do in travelling 2 miles?

9. Find the work done in raising 1000 litres of water from a well

10 metres deep.

10. Supposing that a man, whose weight is 100 kg., in walking raises

his whole mass a distance of 10 cm. at every step, and that the length

of the step is 50 cm., find how much work he does in walking 500 metres.

11. A ladder 10 metres long rests against a vertical wall, and is inclined

at an angle of 60° to it. How much work is done in ascending it by a

man weighing 80 kg.?

12. How much work is done in lifting 8 kg. to a height of 12 metres

above the surface of the moon, where g is 150 cm. per sec. per sec.?

13. A circular well 1.4 metres in diameter is 10 metres deep. Find

the work expended in raising the material, supposing that a cubic metre

of it weighs 2500 kg.

14. The cylinder of a steam engine (see Sec. 92) has a diameter of 14

cm. and the piston moves through a distance of 20 cm. Find the work
done per stroke if the pressure of the steam in the cylinder be constant,

and equal to 5 kg. per square centimetre.

81. Definition of Energy. In preparing the foundation for

a bridge, a wharf or other structure, frequently piles are

driven into the ground, and the method of doing this is

well known. After sharpening one end of a log it is stood up-

right and then a heavy iron mass is raised to a considerable

height and allowed to fall upon the upper end of the log.

This is repeated time after time, and with each blow the log

sinks farther into the earth, until at last it is down far

enough. In Fig. 69 is shown a pile-driver.
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Now to thrust the log into the earth requires a great force

and therefore in driving it home
considerable work is performed.

The ability to do this work is

possessed by the mass of iron

moving with the velocity it has

acquired in falling. A mass in

motion is able to do work.

A hammer moving with some

speed is able to drive in a nail

against considerable resistance;

and a rifle bullet of mass but half

an ounce, moving with very great

velocity, can penetrate almost

anything in its path, and thus

perform much work.

Ability to do work is called

Energy,

Again, the velocity possessed

by the pile-driver weight

arises from its having fallen from a height. By doing work

on this body, against the force of gravity, it is given an

advantageous position and we can look on it as possessing

energy by virtue of its position. The source of the energy,

however, does not reside in the body but rather in its separa-

tion from the earth. The body and the earth form a system

and by changing the shape of the system energy is given to it.

By the performance of work we give the body energy of

position, and as it falls its energy of position is changed into

energy of motion, which is used up in doing work.

We see then that there are two kinds of energy:

(i) Energy of position, or potential energy (P.E.).

(ii) Energy of motion, or kinetic energy (K.E.).

Fig. 69.—A pile-driver. The
heavy mass W is raised by the
cable C which passes around the
drum D, driven by the engine. On
falling, W drives the pile P into
the ground.
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As another example of a body possessing energy of position,

a spring wound up may be mentioned. It is able to drive a

clock, or a phonograph, or do other kinds of work.

82. How to Measure Energy. Since energy is the ability

to do work it can be measured in the same units as are used

in measuring work.

Suppose a mass m grams to be lifted through a height h cm. (Fig. 70).

B Qm

h

A

Force exerted = m gm.-force == mg dynes.

Displacement of body = h cm.

Hence work done = mgh ergs.

Now allow the mass to fall. Upon reaching the former

level A it will have acquired a velocity v such that

= 2gh, OY gh = ^ (Sec. 34)

The P.E. possessed by the body at B is mgh ergs (the

work expended in putting it there), and if we assume for

the present that this energy of position is completely

changed into energy of motion on reaching A,

the K.E. at A = mgh ergs.

But gh = ^
and therefore the K.E. — ^ mv^ ergs.

In the F.P.S. system,

let mass = m lb., and velocity = v ft. per sec.

Then K.E. = ^ mv^ ft.-pdl. = ^ ft.-pd.

since 1 pd.-force = g pdl. {g = 32) (Sec. 52)

Fig. 70.—The
potential energy
at height B is

equal to the kin-
etic energy on
reaching A.

83. More General Solution. In the last section the expression for

the K.E. was obtained on the assumption that it was developed through

the force of gravity, but as the result is very important it is desirable

to show that we reach the same formula for any force.

Imagine that we have been transported far off in space, away from the

earth or any other body.

Let a force F dynes act for t seconds on a mass m grams initially at

rest at A (Fig. 71).

A 5 B—-O
0 V

Fig. 71.—The calculation of kinetic energy.
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Let it move from A to R and let the velocity at R be y cm. per sec., and
the space traversed be s cm.

The force F dynes acts on the mass which moves through a space s cm.,

and hence the force does Fs ergs of work. Consequently at the end of the

time the body possesses K.E. = Fs ergs.

But F = ma.

Hence K.E. = mas.

Also, 2as,

= 0 -f- 2as.

Hence as = -|-y2,

and K.E. = ^mv^ ergs.

Whenever, then, a body of m grams is moving with a velocity of v cm.

per sec. it possesses ergs of kinetic energy.

If the initial velocity of the body is u cm. per sec. and the final velocity v,

Then work done = Fs ergs, as before.

But Fs = mas,

mv^ mu^

In this case the work done is equal to the difference between the kinetic

energy at R and at A.

84. Examples. (1) Find the K.E. of 1 kg. after falling 1 metre.

In this case force acting on mass = 1000 X 980 dynes.

Distance fallen through = 100 cm.

K.E. acquired = work done = 983 X 1000 X 100,

= 98,000,000 ergs.

(2) A mass of 6 kg. is moving with a velocity of 60 cm.

per sec. What is its K.E.? If brought to rest by a con-

stant force in a distance 100 cm., what is the force?

Here, mass m = 6000 gm., velocity y = 60 cm. per sec.

K.E. = mv^ = 10,800,000 ergs.

Also, if F = opposing force in dynes,

Fs = ^ my2, and F = 108,000 dynes.
Fig. 72 .

(3) In Fig. 72 let Af = 14 lb., ly = 1 lb. Find the velocity, and the

acceleration, when the masses have moved through 2 ft.
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Mass M rises and gains P.E. = 14 X 2 ft.-pd.

= 14 X 2 X 32 ft.-pdl.

Mass M has also gained K.E. = X 14 X “

Mass M + w has lost P.E. = 15 X 2 X 32 “

“ “ gained K.E. = X 15 X "

Considering the two masses as one “system,” there has been no change

in the total energy, or the loss = the gain.

Hence, 15 X 2 X 32 = 14 X 2 X 32 + | X 14 X + i x 15 X
and = 128/29, or v — 2.10 ft. per sec.

Also = 2as, and a = 1.10 ft. per sec. per sec.

o

Fig. 73.—Finding velocity
at lowest point B.

(4) A mass m grams hangs at the end of a

light cord I cm. long. It is drawn aside through

the angle 6 from position OB to OA (Fig. 73),

and allowed to swing. Find its velocity at its

lowest point.

In position A the energy of the mass is entirely

potential.

P.E. = m X BC gm.-cm. = mg X BC ergs.

When in position B its P.E. has been com-
pletely changed into K.E. and = ^ mv"^ ergs.

Hence, ^ = mg X BC or — 2g X BC.

Hence, the velocity at B is the same as if the

mass had simply fallen freely through a distance

CB.

(5) If OA — 100 cm. and 6 = 60°, find the velocity at B.

P.E. at A = mgh = m X 980 X BC,

= m X 980 (100 - 100 cos 60°),

= m X 980 X 50 ergs.

Now K.E. at R = ^ mv^.

Hence ^ mv^ = m X 980 X 50,

or = 2 X 980 X 50,

and y = 140 \/5 cm. per sec.

85. Transformation and Transference of Energy. Energy
has been defined as ability to do work, and anything from
which we can get work is a source of energy. We must
therefore consider falling water, coal, an electric current, the

sun, as among our sources of energy. We thus see that energy
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appears in many forms. The various effects due to heat,

light, sound and electricity are simply manifestations of it.

In dealing with the motion of bodies we were led to believe

that there are two distinct forms of energy, namely, energy of

position and energy of motion. Now it is difficult to deter-

mine accurately the nature of some of the forms of energy

met with, but the farther the investigation proceeds the more
firmly becomes the conviction that all energy can be considered

to be either potential or kinetic. When sound is produced the

particles of air or other substance are in vibration. Heat and

light are believed to be due to vibrations of some material

particles, and similarly electricity is conceived to possess

energy in the potential or the kinetic form, or perhaps both

at the same time.

The utmost that a machine, whether a living body or an

inanimate thing, can do is to transform energy from one form

into another or transfer it from one body to another. It can

never create it. The energy of coal when burned in the

furnace is changed into the energy of heat, and this is changed

into the energy of steam. The steam drives the engine, which

can pump water, saw wood or make a dynamo generate an

electric current. The energy of the current may be conveyed

to another place and there produce heat or light or chemical

action or drive a motor.

It has been established, or at least made extremely pro-

bable, by numerous careful experiments extending over many
years, that there is no change in the total amount of the energy

in our universe. This is now looked upon as one of the grand

laws of nature and is known as the law of the Conservation of

Energy.

We start with a definite amount of energy in the coal, and

if it were possible to keep a strict account of the different

forms into which it is changed and the amount in each form

and could add them all together, we would have at last

precisely the same total that we had at the beginning.
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It should be observed, however, that energy may be in

existence without being available for use. Thus there is much
heat energy in the ocean but we cannot at present make any

commercial use of it. When a railway train is brought to

rest, the energy of motion of the train is changed by the

friction into heat energy, which is radiated or conducted away
and is lost to us. In any ‘system’ the tendency is towards

dissipation and degradation of its energy to a condition where

it cannot be used.

The law of the Conservation of Matter has been accepted

for many years and is the basis of analytical chemistry.

Matter can be changed into many forms but the sum total

remains the same. It cannot be created or destroyed.

Force, on the other hand, is of an entirely different nature.

On pulling a string, tension is developed in it, which disappears

when we let go. Matter and energy are bought and sold

but force cannot be. We are concerned not with the force

but with the results produced by the force, that is, with the

work done.

86. The Ballistic Pendulum. We can apply the Law of

Conservation of Energy to the problem of finding the velocity

of a projectile by means of the ballistic pendulum.

In Fig. 74, A is a spring gun which fires the ball B into the

hollow cylinder C where it is retained by a spring catch.

The cylinder is supported by a light rod D pivoted freely at F.

When the gun is fired the pendulum swings through an arc of

about thirty degrees and remains at its extreme position by
reason of a pawl attached to C which engages with a ratchet E.

(See upper smaller diagram).

By measuring the height of a mark on C in its new position,

above the original position of the mark, we can calculate the

gain in potential energy; and this potential energy must be

equal to the kinetic energy at the beginning of the swing.
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Let the mass of B be mi gm.

and “ “ ‘‘ C “ m2 gm.

Let the new position be h cm. above the old.

Then the gain in P.E. = (mi + m2) gh ergs.

Let the velocity at the beginning of the outward swing be

Vi cm. per sec.

Then the K.E. at the beginning of the swing

= i (mi + m2) V2^ ergs.

Hence ^ (mi + m2) = (mi + m2) gh,

and V2 = V2gh cm. per sec.

Let the velocity of B be V\ cm. per sec. before impact.

By the Law of Conservation of Momentum
mi Vi = (mi + m2) V2,

(mi + m2) V2
or Vi — cm. per sec.;

mi ^ ’

and since mi, m2 and V2 are known, Vi is easily calculated.
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A form of ballistic pendulum is used for finding the velocity

of a rifle bullet.

Numerical Example.

Let h = 8.5 cm.

Also

Then

m 2 = 223.0 gm.

mx = 68.0 gm.

Vi = \/2gh = -\/2 X 980 X 8.5 = 129.1 cm. per sec.

(mx -j- m2 ) Vi /68 -f" 223\ 129.1=
m,

= (— ^ -T-
= 552.4 cm. per sec.

PROBLEMS

1. A mass of 64 pounds is moving with a velocity of 10 feet per second.

Find its kinetic energy in (1) foot-poundals, (2) foot-pounds.

2. A mass of 10 grams is thrown vertically upward with a velocity of

980 cm. per second. Find its kinetic energy (1) at the instant of projec-

tion, (2) at the end of one-half second, (3) at the end of one second, (4) at

the end of two seconds.

3. Find the kinetic energy of a cannon-ball whose mass is 10 lb. dis-

charged with a velocity of 50 yards per second.

4. A stone of mass 6 kg. falls from rest. What will be its kinetic energy

at the end of five seconds?

5. A 100-gram bullet strikes an iron target with a velocity of 400

metres per second and falls dead. How much kinetic energy has the

bullet lost?

6. A stone whose mass is 100 lb. is carried to the top of a wall 40 feet

high. What potential energy does the stone possess? If the stone is

dropped, what kinetic energy will it have when it strikes the ground?

7. A hammer whose mass is one pound strikes a nail with a velocity

of 20 feet per second. Find the kinetic energy possessed by the hammer
when it is about to touch the nail. If it drives the nail a distance of 1^

inches, find the average force in pounds exerted by the hammer upon the

nail.

8. A cricket ball, whose mass is 100 grams, is given by a blow a velocity

of 20 metres per second. What is the measure of the work done?
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Calculate the kinetic energy possessed by a stone whose mass is

1 kg. after it has fallen from rest through a space of 1 metre.

10. Find the energy required to project a golf ball whose mass is 43

grams a distance of 100 metres vertically upwards.

11. A stone whose mass is 100 pounds falls freely from a point 400 feet

above the ground. Find in foot-pounds (1) its kinetic energy, (2) its

potential energy, at the end of the fourth second.

12. A mass of 20 pounds hanging at the end of a light cord 16 feet in

length is drawn aside through an angle of 90° and then let go. Find

(1) its kinetic energy in foot-poundals, (2) its velocity, when it reaches

its lowest point.

13. A bullet weighing 2 oz. is fired into a bag of sand weighing 19 pd.

14 oz., suspended from a cord 10 ft. long, and remains imbedded in the

sand. If the bag swings to one side until the cord makes an angle of 30°

with the vertical, find the velocity with which the bullet struck the bag.

14. Compare the kinetic energy of a meteor 1 gm. in mass, travelling

25 miles per sec., with that of a 1-ton truck moving at 45 miles per hr.

(1 kg. = 2.2 lb.).

87. Power. In stating the amount of work done the ques-

tion of time does not enter at all. A man could dig a big cellar

quite as well as a steam shovel can, if he were given time

enough, but when he got through, the need for the building

to be erected over it might be past. In ordinary life we
must consider time, or the rate at which work is performed.

The Power or Activity of an agent is its rate of doing

work.

88. The Horse-power; the Watt. The chief use of the

steam engine at first was to pump water from the mines.

Horses had been utilized for this as well as for many other

purposes, and it was natural that James Watt,* after making

the engine really efficient, should rate it in terms of the power

of a horse. In order to do this he made experiments with

strong dray-horses and finally he decided to call a horse-power

the ability to perform 33,000 ft.-pd. of work in 1 minute, or

550 ft.-pd. in 1 second. As a matter of fact, this is much

*Watt died in 1819, more than one hundred years ago. The story of his life is very
interesting.
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greater than any ordinary horse can continuously perform, but

it would seem that Watt was anxious that purchasers of his

engines should be satisfied with their capabilities, and that they

should be able to do more than their name would demand.

In the C.G.S. system the unit of power is the ability to do

1 erg per second, but this is an extremely small quantity and

it is more convenient to choose a unit 10,000,000 times as

great. This unit is called a watt.

1 watt = 10,000,000 ergs per second,

= 1 joule per second.

1000 watts = 1 kilowatt (k.w.).

The horse-power can be expressed in watts as follows:

1 ft. = 30.48 cm.,

1 pd. = 453.59 gms.-wt. = 453.59 X 981 dynes.

Hence, 550 ft.-pd. = 550 X 30.48 X 453.59 X 981 ergs,

= 746 X 10^ ergs,

= 746 joules.

Hence, 1 h.p. = 550 ft.-pd. per sec. = 746 watts = f k.w. (approx.),

and 1 k.w. = h.p. = l|h.p. (approx.).

A Watt is the power of an engine which can do 1 joule,

or 10^ ergs, of work per second.

A Horse-Power is the power of an engine which can do

650 ft.-pd. of work per second or 33,000 ft.-pd. per minute.

89. Experimental Determination of Horse-power. The
usual method of determining the power of a motor or engine

is to make it do work against the friction produced by a

stationary belt which passes around a pulley driven by the

motor. The work done can be measured and hence the

power can be found. This is called the brake method of

determining horse-power.

Suppose we wish to find the h.p. of a small water motor.

The apparatus may be arranged as in Fig. 75. First, the

bar at the top is pushed up until each balance reads about 300
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gm. Then the water is turned on, and after the motor has

attained full speed the reading on

each balance is taken. The speed

of the motor must also be found.

This is done by means of a revolu-

tion counter (Fig. 76). The num-
ber of revolutions the motor makes

in (say) 30 sec. is observed and the

number per second calculated.

Further, the circumference of the

pulley must be measured.

Fig. 76.—A revolution counter.

Let the reading on one balance be 550 gm.; that on the

other, 50 gm.; the revolutions per sec. be 25; and the cir-

cumference of the pulley be 20 cm.

Then the friction = 550 — 50 = 500 gm.

In 1 revolution the motor does work against this force

through a distance equal to the circumference of the pulley.

Hence, work done per sec.

= F X s,

500 X 980 X 20 X 25 ,= = 24.5 joules,

and the power = 24.5 watts.

By varying the tension of the cord and along with it the

friction produced we can find a certain speed at which the

motor develops its maximum horse-power.

90. Power of Heat Engines. Both steam and gas engines

convert heat energy into mechanical energy, the motion being
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produced by the force exerted by an expanding gas against a

piston moving in a cylinder. The steam engine is an external

combustion engine, because the fuel is burned outside the

cylinder; while the gas engine is an internal combustion

engine since the fuel is burned inside the cylinder.

The mechanical efficiency of any machine

Work output

Work input
X 100%;

and the mechanical efficiency of a steam or a gas engine

Brake horse-power mno/
Indicated horse-power

^

The brake horse-power is determined by a method similar

to that described in the preceding section; while the indicated

horse-power is found by considering the pressure in the

cylinder, the area of the piston, the length of stroke and the

number of working strokes per minute.

The mechanical efficiency of heat engines may be as high as

about 85% but the thermal efficiency, or ratio of the mechanical

work done to the heat energy contained in the fuel, is much
lower, ranging from a maximum of 17% for steam engines to

about 30% for oil engines.

91. Power of a Gas Engine. The method of determining the power
and efficiency of a gas engine is shown diagrammatically in Fig. 77.

Let us assume that the engine is of the four-stroke cycle type. As the

piston A moves to the right, the explosive mixture is drawn into the cylinder

B from the carburetor through the intake valve C. On the return stroke

of the piston the mixture is compressed in the cylinder. Then the mixture

is fired by the spark at the spark-plug D, and the explosion pushes the

piston to the right again. On the next return stroke of the piston the

exhaust valve E opens and the burned gases escape. The cycle,—intake

stroke, compression stroke, power stroke and exhaust stroke,—then

repeats. The motion of the piston is communicated to the fly-wheel F
by the connecting rod G which is attached to the crank H.

The brake horse-power is determined as already described in Sec. 89,

from the known values of the weight W, the reading of the balance S, the

circumference of the fly-wheel, and the number of revolutions per second.
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To determine the input we must know the force behind the piston and
the distance the piston moves during each stroke. The latter is easily

measured, while the former is determined by an instrument called an

indicator. In the diagram is shown a Crosby pattern indicator attached

to the cylinder.

The gas pressure in the cylinder acts against the piston J and forces it

upward against the back pressure of the spring K. The movement of J
is recorded by a pencil point P on a sheet of paper wrapped around the
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drum L, and the drum is made to rotate by a cord M attached by links

to the moving piston. The slack of the cord is taken up by a spring inside

the drum.

It is evident that the pencil point will indicate the pressure inside the

cylinder at every part of the stroke. A diagram for a complete cycle is

shown in Fig. 78. Here AB and BC are lines made during the exhaust

and intake strokes. These are nearly horizontal because the pressure is

approximately atmospheric. CD indicates what happens during the

compression stroke. The explosion occurs at D,' followed by the sharp

rise of pressure shown between D and E. Between E and A the pressure

gradually decreases as the piston moves to the right.

The average pressure is obtained by dividing the area of the diagram

by its length and multiplying the quotient by the spring factor.

Let P = average pressure in pounds per square inch,

A = area of engine piston in square inches,

L = length of stroke in feet,

N ~ number of explosions per minute.

Then work done per minute = Fs,

and the indicated horse-power

PALM ft.-pd.,

PALN
33,000'

Example.

Input:

Average pressure

Diameter of piston

Explosions per min.

Length of stroke

Indicated horse-power

Output

:

100 pd. per sq. in.,

7 inches.

= 14 inches.

Xi X i X X 90

33,000
= 12.25 h.p.

Weight attached to belt, W = 150 pd..

Reading of balance = 10 pd..

Diameter of fly-wheel = 4 ft.,

Revolutions per min. = 180.

Brake horse-power
140 X

33,
= 9.6 h.p.

9.6

12.25
X 100 = 78.4%.Mechanical efficiency
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92. Power of a Steam Engine. The essential working parts of a simple

steam engine are shown in Fig. 79.

turned through a right angle to show the pulley P and the bevel gears).

One of the main differences between this engine and the gas engine

described in the preceding section is that both ends of the steam engine

cylinder are closed. The steam passes from the boiler into the steam-chest

A and thence, first into one end and then into the other end of the cylinder,

according to the position of the slide-valve B. As the piston moves in

one direction the slide-valve moves in the opposite direction, being actuated

by the eccentric C. As the piston is driven forward by the steam from the

boiler, the steam on the other side of the piston escapes into the air, or

into a condenser, through the exhaust pipe D. The speed is controlled by

the governor G, which actuates the valve V.

The brake horse-power is found by the same method as is used in the

case of the gas engine.

In calculating the indicated horse-power indicator diagrams must be

taken for both ends of the cylinder, and in applying the formula

I.H.P.
PALN
33,000

it is evident that N will represent the number of single strokes of the

piston, while in the gas engine it represented the number of explosions

per minute.
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PROBLEMS

1. At what rate (measured in horse-power) is work being done when
1100 pounds of water are lifted every second from a well 100 feet deep?

2. Find the horse-power of an engine that will pump every hour 660

tons of water from a mine 600 feet deep.

3. Water flows into a mine 990 feet deep at the rate of 100 cubic feet

per minute. What is the horse-power of the engine that will keep the

mine dry? (A cubic foot of water weighs 62.5 pounds).

4. It is estimated that 700,000 tons of water pass over Niagara Falls

every minute, and fall 160 feet to the lower level. If it were permissible

to take one-tenth of the water for commercial purposes, what horse-power

could be developed therefrom?

5. A motor is capable of hoisting 1320 tons of coal from the bottom of

a mine 1200 feet deep per hour. Find its horse-power.

6. A force of 10 dynes acting on a mass moves it through 60 cm. in 10

seconds. What is the power?

7. A force of 30 dynes acting on a mass moves it through 2 metres in

a minute. What is the power?

8. A mass of 20 grams is lifted vertically a distance of 1 metre in 196

seconds. What is the rate of working?

9. It is found that six million dynes are required to keep a street-car in

motion, while it passes over 1 kilometre in 10 minutes. Determine the

rate of working in watts.

10. A force of ten million dynes is required to draw a car along a track

at the rate of 36 kilometres per hour. What is the rate of working in

watts?

11. A man pumps 600 kilograms of water from a well 10 metres deep

in 49 minutes. At what rate, measured in watts, is he working?

12. Calculate the horse-power of a steam engine which will raise 1,200

kilograms of water per minute from a well 149.2 metres deep.

13. A man whose mass is 60 kilograms walks up a hill 298.4 metres

high in 14 minutes. What is the average power which he exerts compared
with a horse-power?

14. A boy can carry 300 litres of water to the top of a hill 80 metres

high in 1 hour. State in watts his rate of working.

15. If 596,800 litres of water flow per minute over a dam 6 metres

high, what is the power of the fall?



122 WORK, ENERGY, POWER

16. A hoist used in the erection of a building raises in 2 hours 30,000

bricks, each weighing 5 pounds, and 2000 feet of lumber, weighing 3

pounds per foot, through a height of 50 feet. Calculate the work done.

Calculate also the horse-power developed by the engine running the

hoist, supposing 20 per cent, of the energy developed to be lost in friction.

17. A street-car, of mass 18 tons, is propelled at 10 miles per hour up a

hill rising 1 foot in 100 feet measured along the track. Neglecting friction,

find the horse-power developed by the motors.

18. An engine is drawing a train whose mass is 360,000 kilograms up a

smooth inclined plane of 1 in 30, at the rate of 22,380 metres per hour.

What is the horse-power of the steam engine?

19. A man cycles up a hill, rising 1 in 14, at the rate of 6000

metres per hour. The mass of the man and the machine is GO kilograms.

At what rate is he working?

20. A train consists of 30 cars, and each car with its load weighs 14,920

kg., the resistance to motion on a level track is at the rate of 15 kg. per

1000 kg. of load. Find in horse-power at what rate an engine is working

that hauls this train at the rate of 30 km. per hour.

21. What is the horse-power of an engine which keeps a train whose

mass is 60,000 kg. moving on a horizontal track at a uniform rate of

44,760 metres per hour, the resistance due to friction, etc., being -g^ of

the weight of the train?

22. An engine, whose horse-power is 1000, pumps water from a depth

of 1000 feet. Find the number of tons raised per hour.

23. An engine of 98 horse-power, working 10 hours a day, supplies

3000 houses with water, which it raises to a mean level of 149.2 metres.

Find the average supply to each house.

24. The piston of a steam engine is 10 inches in diameter and the

stroke is 16 inches long. If the average pressure of steam on this piston

throughout the full length of the stroke is 70 pd. per square inch, and if

the engine makes three double strokes (backward and forward movements)

per second, determine its horse-power.



CHAPTER X

Some Transformations of Energy

93. Heat a Mode of Motion. Until almost the middle of

the last century it was the generally accepted belief that heat

was a subtle fluid called caloric, which was distributed amongst

the molecules of a body. When a piece of iron was hammered
the caloric was driven out from its hiding place and revealed

itself in a rise in the temperature of the iron.

An interesting investigation into the nature of heat was

made in 1798 by Count Rumford.* While engaged in boring

cannon at the arsenal in Munich he was surprised at the great

amount of heat generated in the operation, and in order to

make a thorough inquiry into the matter he prepared a hollow

bronze cylinder which he mounted so that it could be rotated

by horse-power while a blunt steel tool was pressed against

the bottom inside. In one experiment the cylinder was

immersed in about 20 pounds of water. The temperature

steadily rose and in 2| hours the water actually boiled.

Rumford found that as long as he kept the machine going the

heat continued to be produced and he concluded that as the

supply was inexhaustible heat could not be a material sub-

stance but must be a form of motion.

94. Relation between Heat and Mechanical Work. Though
heat could be obtained at the expense of mechanical work,

the precise relation between these two was not determined

until Joule published the results of experiments which he

began in 1840. If the work is really all spent in producing

heat, then with every form of experiment one should obtain

* Rumford’s name was Benjamin Thompson. He was born in 1753 at Woburn, near
Boston, Mass., went to England in 1775, and at the close of the Revolutionary War went
to Bavaria in 1783. He was made Count by the Elector of Bavaria and chose his title

from the name of a small town (now called Concord) in New Hampshire.

123
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the same amount of heat for a given amount of work. The
quantity of work which is required to create one unit of heat

is called its mechanical equivalent.

The essential features of one method used by Joule to

determine this mechanical equivalent is illustrated in Fig. 80;

but it should be understood that the

actual apparatus used was much
more complicated, and the method
of calculating the results included

many corrections difficult to make.

A paddle-wheel is made to revolve

in a vessel A, filled with water, by
the descent of a weight C on the end

of a cord which is wound about B.

A thermometer T measures the rise

in temperature. The heat generated

is calculated from the mass of the

water and its rise in temperature, and the amount of work
which is equivalent to it is measured by the weight C and the

distance through which it falls.

As the result of many careful and tedious experiments

Joule calculated that the mechanical equivalent of one British

thermal unit (that is, the heat required to raise 1 pound of

water through 1° F.) was 772 foot-pounds of work. Later

investigations by Rowland and others give the value as

778 foot-pounds for 1 B.T.U.,

which is the same as

427 gram-metres for 1 calorie,

or, 4.187 X 10^ ergs for 1 calorie.

One calorie is the amount of heat required to raise 1 gram of

water through 1° C.

95. Determination of the Mechanical Equivalent. By
means of the apparatus shown in Fig. 81 the mechanical

equivalent may be determined rapidly and with considerable

mining the mechanical equi-
valent of heat.
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accuracy. C is a drum made of thin brass which can be rotated

about the horizontal axis B. On the other end of this axis

is the driving wheel A which can be turned by hand or

driven by a small electric motor M through reduction gearing

G. The number of revolutions made by the drum is auto-

matically recorded by the counter N. Around the drum is

wound a silk belt, making one and one-half complete turns.

Unequal adjustable weights E and F are suspended from the

ends of this belt and a light spring balance D is added to

secure stability of equilibrium.

Fig. 81 .—Callendar’s apparatus for determining the mechanical equivalent of heat.
The electric motor shown in the picture is not essential. It may be dispensed with and
the machine driven by hand.

A measured quantity of water is poured into the drum C.

A thermometer T is inserted through a hole in the centre of the

face of the drum. Its stem is bent almost at a right angle

so that the bulb may be fully immersed in the water, and any
rise in the temperature of the water is shown by the reading

on the thermometer. As the drum revolves the friction of the
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belt upon its circumference warms it and the heat is conducted

to the water within.

If W ergs be the work expended in rotating the drum
and H calories be the heat generated, then

Mechanical Equivalent of Heat =
W/H = J ergs per calorie.

First, let us calculate the work expended

in rotating the drum. Consider a drum
(Fig. 82) with a belt over it with weights

M, m grams on its ends, and suppose the

drum to be rotated in the direction of the

arrow, thus keeping the weights in equi-

librium. Then it is evident that the weight

m added to the friction of the belt balances

the weight M.

Hence the friction = M — m grams.

Now in one rotation of the drum work

has been done against this friction through

a distance equal to the circumference of

the drum.

Let circumference of drum = c cm.

and the number of rotations = n.

Then the work done,

W = {M — m) nc gram-cm.

= {M — m) ncg ergs.

Next, calculate the heat produced.

Let mass of drum = w<i grams,

and its specific heat = s.

Then its water equivalent = W 2 S grams.

Let mass of water = wi grams,

and rise of temperature = T° C.

Then heat generated, H = (wi w^s) T calories.

W {M - m) ncg
Hence, J = —- = ;

—— ergs per calorie.H {wi + W 2 S) T

Fig. 82.—The drum
rotates in the direction
of the arrow and fric-

tion of the belt sustains
the weight M.
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Example.—From an actual experiment.

M — m = 1935 grams

c = 47.5 cm.

n = 410 revolutions

g = 980

Wi = 300 grams

W 2 = 403.1 grams

s = .092

T = 2.6° C.

From which J = 4.23 X 10^ ergs per calorie.

Question.—Why is a silk belt used rather than one of leader or of

metal?

96. Alternative Method of Determining J. A different form of apparatus

for the determination of the mechanical equivalent is shown in Figs. 83
and 84. The calorimeter consists of a conical brass vessel A (Fig. 83),

37 grams

carefully ground to fit a second conical brass vessel B. The latter is

mounted in a bakelite insulating cup C, fastened to the upper end of the

shaft D, which may be rotated by a belt passing around the pulley E
(Fig. 84). A revolution counter F is geared to the shaft.

The inner vessel, which contains the water, stirrer and thermometer,

is held stationary during the experiment by weights G, attached to a cord

which passes over the light pulley H. The other end of the cord is fastened
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to the circumference of the fibre disc K which engages with two studs a, a

in the top of A. An annular weight L provides pressure between the cups.

When the shaft is rotated heat is developed because of the friction

between the outer rotating brass vessel and the inner stationary one.

The rubbing surfaces are kept lubricated by a few drops of thin oil which

reduces the friction to a suitable value.

Fig. 84.—General appearance of double-cone form of mechanical
equivalent apparatus.

The two brass vessels, with stirrer, are weighed and placed in position

in the bakelite cup. A is then nearly filled with water at a temperature

about eight degrees below that of the room. The disc and weights are

placed in position and the thermometer is inserted in the calorimeter.

After a few preliminary turns to ascertain the correct mass to place at G
so that it will sia,y just suspended when the shaft is rotating, the reading of

the thermometer is taken very carefully and the reading of the revolution

counter noted. The shaft is then rotated, usually by a hand-driven wheel,

until the temperature rises as much above room temperature as it was
below when the first reading was taken. This final temperature must also

be taken very accurately. The two brass vessels, with water and stirrer,

are again weighed to determine the weight of the water.
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The mechanical equivalent is then determined as in the following

example:

—

Heat Developed

Weight of vessels and stirrer 260 gm.

Water equivalent of vessels and stirrer (260 X 0.090) . .23.4 gm.

Water equivalent of thermometer* 0.5 gm.

Weight of water 22.1 gm.

Total water equivalent 46.0 gm.

Initial temperature 15°C.

Final temperature 25°C.

Heat developed = 46.0 X 10 = 460 cal.

Work Done

In calculating the work done it is evident that the same results could

have been obtained if the outer vessel had been held stationary and the

inner one had been made to rotate by letting G descend such a distance as

would cause the disc and inner cup to rotate the number of times indicated

by the revolution counter.

Number of revolutions 1760

Circumference of disc ..s o.o « « » . . . 75 cm.

Weight oiG 150 gm.

W = Fs,

= 150 X 980 X 1760 X 76,

= 1940.4 X 10^ ergs.

Hence J = ^ 40q^
= 4.24 joules per calorie.

PROBLEMS

(Take J = 778 ft.-pd. per B.T.U. or 4.19 X 10^ ergs per calorie)

1. A stone weighing 5 kg. drops from a height of 100 metres and strikes

a pile of sand. Find the heat developed in calories.

2. The Falls of Niagara are 166 ft. high. Find the rise in temperature

due to the impact of the water on the rocks below, assuming that all its

mechanical energy is changed into heat energy. (Consider a mass of 1 lb.).

* In calculating the water equivalent of the thermometer only that part actually in
the water need be considered.
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3. A jet of water is driven with a velocity of 150 metres per sec. against

a wall. If the mechanical energy is used up in heating the water, find its

rise in temperature.

4. How much heat is generated when a train of 200 tons moving with

a velocity of 60 miles per hr. is brought to rest by the brakes?

5. Find the heat developed when a motor car weighing 3000 lb. and
moving at 30 miles per hr. is brought to rest by the action of the brakes.

6. In an experiment a 5 h.p. motor in 1 min. raised the temperature

of 1 gal. of water through 22° F. Calculate the ft.-pd. expended per

B.T.U. What per cent, is the result in error?

7. If 1 lb. of good coal can raise the temperature of 60 lb. of water

from 0° to 100° C. find the energy in ft.-pd. in 1 lb. of coal. If the efficiency

of a steam engine is 8 per cent., what must be the consumption of coal

per hr. to produce 150 h.p.?

8. The heat energy available in a certain sample of coal is 14,500 B.T.U.

per lb. If all of this could be converted to mechanical energy, how many
horse-power hours would be produced by burning one ton of the coal?

9. If the atmosphere were removed and the sunlight fell perpendicularly

upon the earth’s surface, each square centimetre would receive in 1 min.

approximately 2 calories of heat. Assuming that 40 per cent, of the sun’s

radiation is lost by absorption in the atmosphere, find in k.w. the energy

falling upon 1 sq. metre of the deck of a steamer when the sun is directly

overhead.

10. In an experiment with Callendar’s apparatus the following observa-

tions were made:—Number of revolutions, 305; circumference of drum,

48.5 cm.; M = 4000 gm.; m = 50 gm.; mass of water, 250 gm.; mass of

brass drum, 380.5 gm.; initial temperature, 16.4°C.; final temperature,

21.4°C. Taking specific heat of brass = .090, find the mechanical equiva-

lent of heat as determined by this experiment.

11. If 300 gm . of water are placed in the drum of the Callendar apparatus

whose dimensions are given in Question 10, how much should the tem-

perature of the water and drum increase in 400 revolutions of the drum?

97. The Electrical Circuit. Let us consider some of the

transformations of energy which take place in the electrical

circuit shown in Fig. 85.

In the battery A chemical energy is transformed to electrical

energy, which in turn is changed into heat and light energy

in the bank of lamps B and to heat and mechanical energy in

the motor C.
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The current flows through the circuit because there is a

difference in potential, or electrical pressure, between the

terminals of the battery. Water flows in a pipe from a place

of high pressure to one of low pressure; electricity flows from

a place of high potential to one of low potential. Difference of

pressure in the pipe corresponds to difference of potential in

Fig. 85.

—

A is a battery, B a lamp rheostat, C a motor.

a conductor. Indeed the words pressure or tension are often

used by electricians when they mean potential.

The strength of the current depends on this difference of

potential and also upon the resistance of the circuit. A pipe

of large section corresponds to a conductor of large section.

There is little resistance to the flow in either case. A pipe

of small section or one filled with sand corresponds to a

conductor having a high resistance.

Current strength is measured in amperes, potential dif-

ference in volts and resistance in ohms. Ohm’s Law defines

the relation connecting these units:

^ . , , , ,
P.D. between ends of conductor

Resistance of a conductor =— :
; ;

Current flowing through conductor

^
Total E.M.F. in circuit

Resistance oi a circuit = — —:
; ^—: r-

Current flowing through circuit

If C is the measure of the current in amperes, E the electro-

motive force in volts and R the resistance in ohms,

R =^,or E = CR,otC =

Fig. 86 shows how the resistance of a wire C may be

measured by obtaining the P.D. between its ends by means
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of the voltmeter E, and the current flowing through it by the

ammeter D.

Fiq. 86.—Measuring the resistance of the wire C by means of a
voltmeter E and an ammeter D. .A is a battery and B a rheostat.

98. Measurement of Electrical Energy. Current Strength is

rate offlow. The amount of water delivered by a pipe depends

on the rate of flow and upon the time of flow.

Quantity of water = rate of flow x time of flow.

Rate of flow may be measured in gallons -per-second, quantity

in gallons.

Next consider the quantity of electricity which passes a

cross-section of a wire carrying a current in a given time, and

as before we have

Quantity of electricity = current strength x time of flow,

or Total amount = rate of flow x time of flow.

If the current is expressed in amperes and the time in seconds,

the quantity will be given in coulombs; a coulomb being

defined to be the amount of electricity which passes a point

in an electrical circuit in one second when the strength of the

current is one ampere

.

The ampere corresponds to gallons-per-second, the coulomb

to gallons.

The word coulomb is not often heard in ordinary electrical

practice, but ampere-hour, a quite similar term, is commonly

used in specifying the capacity of storage cells. A battery

having a capacity of 100 ampere-hours is one which can deliver

100 amperes for 1 hour, or 50 for 2 hours, etc.

The work which a stream can do depends upon the quantity

of water which flows and the distance through which it falls.

The work done in an electric circuit depends upon the quantity
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of electricity which passes through it and the P.D. (difference

in potential) between the terminals of the circuit.

The volt and the coulomb are so chosen that 1 coulomb of

electricity passing between two points whose P.D. is 1 volt

does 1 joule of work.

Suppose A and B (Fig. 87) are the terminals of a dynamo
which maintains a P.D. of 1 volt

between A and B and causes a

current of 1 ampere to flow

through the circuit D. Then in 1

second 1 coulomb will flow from

A to B and 1 joule of work will

be done. The power required to

Fig. 87.—A generator driving
electricity through a circuit D.

perform 1 joule of work per second is 1 watt.

If the dynamo maintained a P.D. of 110 volts and supplied
*

a current of 20 amperes, the power required (or the output of

the dynamo) = 110 X 20 = 2200 watts.

Hence power (in watts) = P.D. (in volts) x current (in amp.)

Also,

and power (in h.p.) =

1000 watts = 1 kilowatt (k.w.)

1 h.p. = 746 watts = f k.w. (nearly, see Sec. 88),

P.D. (in volts) X current (in amps.)

746

Again, by Ohm’s law C = E/R or E = CR.

Hence, power = EC watts,

= C^R watts,

where R is the resistance of the circuit in ohms.

99. Power Required for Electrical Appliances. Let us

consider how to find the power required to operate an electric

toaster or any other appliance.

Connect the apparatus as shown in Fig. 88 and take the

readings of the ammeter A and voltmeter V. Let these be

5 amperes and 110 volts. Then electrical energy is being
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transformed to heat energy in the toaster at the rate of

5 X 110 = 550 joules per second and the power being used is

550 watts.

Fig. 88.—Finding the power required to operate an electric toaster.
A. ammeter; V, voltmeter; T, toaster.

100. Efficiency of Electric Lamps. The efficiency of an

electric lamp is usually determined in watts per candle-power.

The old 16-c.p. carbon lamp required f ampere at 110

volts, the power being ^ x 110 = 55 watts. The efficiency of

such a lamp is 55 -j- 16 = 3.4 watts per c.p.

The ordinary 50-watt tungsten lamp gives about 32 c.p.,

and the efficiency = 50 32 = 1.6 watts per c.p.

It is easy to understand why the tungsten lamps have

almost entirely superseded those with carbon filaments. If

the lamp is filled with an inert gas, such as nitrogen, the

efficiency is still higher, namely about 1 c.p. per watt. In

these lamps the filament can be raised to a higher tempera-

ture and a slight rise in temperature causes a large increase in

radiating power.

101. The Electrical Equivalent of Heat. It is possible to

determine the mechanical equivalent of heat by using an

electric current. If the current is not effecting chemical

change or doing mechanical work (such as driving an electric

motor), it is simply heating the conductor through which it

flows. If we measure the work required to cause the

current to flow and at the same time measure the heat arising

from it, we can deduce the mechanical work which is equiva-

lent to one unit of heat.
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A simple arrangement for determining the electrical equiva-

lent of heat is shown in Fig. 89. The heating device is an

8-c.p. carbon lamp placed in a beaker or calorimeter containing

water. The experiment is performed as follows

:

Weigh the calorimeter, add enough water at a few degrees

below room temperature to cover the glass part of the lamp

when it is placed in the calorimeter and weigh again. Connect

the lamp, ammeter and voltmeter as in the diagram and

Fig. 89.—Finding the mechanical equivalent of heat.

place the lamp in position in the calorimeter. Take the tem-

perature carefully, note the time and turn on the current.

Keep the water stirred with the thermometer and let the cur-

rent flow until the temperature of the water is as much above

room temperature as it was below at the beginning of the ex-

periment. Note the readings of the voltmeter and ammeter
every minute and calculate the average power in watts. Note
the temperature and the time when the current is turned off.

Calculate the number of calories of heat gained by the calo-

rimeter and water and also the number of watt-seconds

(joules) of electrical energy used. Divide the latter by the

former.

Numerical Example.

Weight of calorimeter (copper) 80 gm.

Weight of water in calorimeter 100 gm.

Initial temperature of water 10°C.

Final temperature of water 30°C.

Average current 0.28 amperes

Average difference of potential 110 volts

Time 5 min.
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Heat developed = 80 X 20 X 0.094 + 100 X 20,

= 2150.4 calories.

Electrical energy expended = 110 X 0.28 X 300 = 9240 joules.

9240
Electrical equivalent of heat = 215^ = 4.29 joules per calorie.

102 . The Continuous Flow Calorimeter. A more elaborate piece of

apparatus for determining the electrical equivalent of heat is shown in

Fig. 90.

In the long glass tube H a helix of resistance wire (manganin) is fixed

with its ends connected to binding-posts Ci, Ci. Into the ends of the

tube, thermometers T\, T 2 are inserted. The aim is to have a constant

current of water flowing through H and heated by a constant current of

electricity passing through the hehx. The constant current of water is

obtained from a cistern B, mounted on a stand. This contains two con-

centric chambers. The tube E carries water from the tap (or other source)

into the outer chamber, while the tube M runs from the outer chamber to

one end of the tube H. A third tube F leads from the inner chamber to

the sink. The supply of water through E is adjusted so that the outer

chamber is always full and a small amount flows over into the inner

chamber and runs away through F. In this way a constant head of water

is maintained and the flow through H is steady.
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The cistern can be raised to increase the current through H. With this

apparatus the usual rate of flow is about 60 c.c. per minute, and it is

desirable that the initial temperature of the water should be about as

much below the temperature of the room as the final temperature is above

it. If such is the case no correction for radiation need be made.

The water runs off through the tube D and is collected in a graduated

glass, from which the amount flowing in any interval may be read.

Fig. 91 shows the electrical connections. The strength of the current is

measured by an ammeter A placed in series with the helix, and the current

may be obtained from

a commercial source or

from storage batteries,

a suitable resistance B
being inserted to re-

duce the current suffi-

ciently. A voltmeter

F, with terminals
joined to Ci, Cz gives

the P.D. between the

ends of the helix.

Let the P.D. = E volts, the current = C amperes, and the duration

of an experiment = t seconds.

Then the work done = ECt joules,

= ECt X 10^ ergs.

In the t seconds suppose M grams of water have been caught and let

the rise in its temperature be T° C.

The heat evolved, H = MT calories, and if 1 calorie is equivalent to

J ergs

H = MTJ ergs.

Hence, MTJ = ECt X 10^

, ECt X 10^
or J = ergs per calorie.

Example .—In the following table are given the readings in an experiment.

Ammeter
Reading

C

Voltmeter
Reading
E

Flow of
Water

c.c. per min.

Temp, of
Inflowing
Water

Temp, of
Outflowing
Water

Rise
in

Temp.

Temp.
of

Room

2.12 21.2 63.8 13.25° C. 23.70° C. 10.45° C. 18.6° C.
2.12 21.2 61.0 12.70 22.90 10.20 18.7
2.12 21.2 61.0 12.15 22.50 10.35 18.7

Av. 2.12 21.2 61.9 12.70 23.00 10.33 18.7

Fig. 91.—A, ammeter; B, lamp rheostat; C 1C 2 , helix;

V, voltmeter.
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Hence, J = 2.12 X 21.2 X 60 X 10^

61.9 X 10.33
= 4.23 X 10'^ ergs per calorie.

PROBLEMS

1. An electric motor which actually developed 2 h.p. required 16.5

amperes at an E.M.F. of 110 volts. Find the efficiency of the motor.

2. What is the resistance of a 40-watt, 110-volt lamp? How many
such lamps can be operated by a 5 k.w. dynamo?

3. What horse-power engine would you order to operate a dynamo
whose maximum load is to be 25 sixty-watt lamps?

4. In an electric furnace a current of 8000 amperes at 50 volts is used;

find the calories generated per second.

5. A heating coil having a resistance of 50 ohms is connected to a

100-volt circuit and is placed in 1000 gm. water at 0°C. Find the tem-

perature of the water 10 min. later.

6. A 16-c.p. electric lamp whose resistance is 220 ohms is connected

to a 110-volt circuit and is immersed in 500 grams of water for 20 min.

Find the increase in the temperature of the water.

7. A current of 5 amperes at 110 volts pressure is passed through an

electrical heater on which is placed a beaker containing 100 gm. water.

If it takes 10 minutes to bring the water from 10° C. to 100° C., what per-

centage of the energy passes into the water?

8. Water flows steadily at the rate of 30 c.c. per min. through a glass

tube in which is a wire coil. The temp, of the water on entrance is 13.25° C.,

and on exit 20.65° C., and the p.d. between the ends of the wire is 25 volts.

Find the resistance of the wire.

9. An electric tea-kettle requires 8.6 amperes at 110 volts and in 10

min. can raise 1.5 litres of water from 15° to 100° C. What percentage

of the energy supplied is used in actually boiling the water?

10.

In a power station 4 engines, each of 150 h.p., drive 2 dynamos,

each of which delivers 150 amperes at 540 volts, and 2 others, each of

which delivers 225 amperes at 270 volts. Calculate the efficiency of the

arrangement.

103. The Buying and Selling of Energy. We are accus-

tomed to dealing in flour, sugar, lumber, and other things

which we can see and handle, but energy, though invisible and

intangible, is quite as real a thing and can equally well be
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bought and sold. Energy is ability to do work, and it is as

reasonable that we should pay for any energy which is supplied

to us as for the objects produced thereby.

Further, it is clear that the charge for energy should depend

upon

(i) the rate at which it is supplied;

and (ii) the length of time it is supplied.

A man is a source of energy and the pay for his services

should be according to his ability and the length of time he

works, that is, per man-power-hour, or per man-power-day.

We have shown in Sec. 98 that in an electrical circuit the

power (in watts) = P.D. (in volts) x current (in amperes).

The charge for the use of this power should evidently

depend upon the time it is supplied. Power when used for a

time does work. The unit of

electrical work or energy is the

watt-hour or (since that is

rather small) the kilowatt-hour.

One kilowatt-hour is the elec-

trical energy expended when 1

kilowatt power is used for 1

hour.

Near the place where the

electric current enters the house

a watt-meter (or more correctly,

kilowatt-hour meter) is placed,

and as the current passes through

this it makes a light disc rotate.

The number of rotations shown

on the dials depends upon the

voltage, the magnitude of the

current and the length of time

it is flowing. Consequently the
'• *' instrument indicates the kilo-
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watt-hours of energy supplied. An officer reads the dials

periodically and the account for the energy used is then sent

to the customer.

Figure 92 shows how the meter is connected to the line and
load wires.

PROBLEMS

1. Express 1 k.w.h. in joules.

2. An electric range takes 10 amperes at 220 volts pressure. Find the

cost of using it for 2 hours at 5c. per k.w.h.

3. A watt-hour meter registered 2 k.w.h. in 2 hours when the E.M.F.

was 110 volts and the current flowing through the load was 10 amperes.

Find the error in the meter reading.

4. An electric fan requires 0.25 ampere at an E.M.F. of 110 volts. How
much will it cost to run it for five days, 10 hours per day, in a town where

electric energy costs 8c. per k.w.h.?

5. A 32-c.p., 120-volt lamp requires 1.25 watts per candle. Find the

current which passes through the lamp and the cost of using it for 5 hours

at 5c. per k.w.h.

6. In an advertisement for electric heaters the following phrases are

found:—“615 watts per hour.” “consumes only 960 watts per hour,”

“consumes only 1250 watts per hour.” Criticise these statements.

Q/n "
104. The Hydro-Electric System of Ontario. The buying

and selling of energy is well illustrated in the operations of

the Hydro-Electric Power Commission of Ontario which,

during recent years, has extended its distribution lines to

many parts of the province. This great public utilities

organization is managed for the benefit of the people, and

is rapidly providing electric energy to the cities, towns,

villages and farms of the country.

The Commission owns a number of power stations and

transmission systems throughout the Province and controls

others, and in some cases purchases power for distribution

from independent supply corporations. Its largest source of

energy is, of course, the Niagara River. A diagram repre-

senting the transformations of the current from the time it is
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generated at Queenston until it

reaches the consumer is given in

Fig. 93.

From the generating and trans-

forming stations the energy is sent

over the transmission or distribu-

tion lines built by the Commission,

and is sold to the various munici-

palities at rates depending on the

distance from the station and on

the amount taken. Thus, Toronto

pays about $24.55, Yiondon $24.66,

Guelph $24.94, Owen Sound $30.10,

Clinton $34.82, per horse-power per

year.*

These places then sell the energy

to the citizens for lighting, for heat-

ing (as in stoves, toasters, flat-irons,

etc.), and for driving motors (as

in manufacturing, operating eleva-

tors, etc.), the rate being adjusted

to the service and the place. The
charges are practically always per

kilowatt-hour, and some typical

accounts are given in the problems

below.

The manner of charging for

electrical energy varies somewhat
with the companies supplying it.

The Hydro-Electric Power Com-
mission divides its rates under

three headings:

*The figures given are for 1930. The rates
vary slightly from year to year.
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() Domestic service, which includes all energy used for

domestic or household purposes.

() Commercial service, for stores, churches, hotels, etc.

(c) Power service, which includes all other services.
’

In each case there are certain fixed charges depending on

the size of the installation or the amount of energy used.

PROBLEMS
(The following examples, taken from the accounts of an Ontario town, will illustrate

the methods used in charging for electrical energy.)

Domestic Service

—

1. Name, First Citizen. Date, June 1, 1919.

Meter reading, June 1, 1919 5601 k.w.h.

Previous reading. May 1, 1919 5314 “

Consumption 287 “

Consumption charge

69 k.w.h. at 4.5c. per k.w.h $3.10

218 “ “ 2.25c.
“ “ 4.90

Service charge

2300 sq. ft. at 3c. per 100 sq. ft 69

Total bill. $8.69

10% discount if paid within 10 days 87

Net bill. $7.82

Explanation .—The floor space in this house, measured in a specified

manner, was 2300 sq. ft. There is a fixed charge of 3c. per 100 sq. ft. per

month. The charge for consumption is 4^c. per k.w.h. for all up to 3

k.w.h. per 100 sq. ft. (or 69 k.w.h.) and 2^c. per k.w.h. for all above this.

2. Name, Second Citizen. Date, June 1, 1919.

Meter reading, June 1, 1919 588 k.w.h.

Previous reading. May 1, 1919 576 “

Floor space, 1800 sq. ft. Make out the bill.

3. Make out the bills for the above persons at the Toronto rates, which

are as follows:

For first 3 k.w.h. per 100 sq. ft 2c.

For all additional k.w.h Ic.

Service rate 3c. per 100 sq. ft.; discount 10%.
Minimum monthly bill 83c. gross.
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Commercial Service

—

4.

Name, Third Citizen. Date, June 1, 1919.

Installed load, 2970 watts.

Meter reading, June 1, 1919 8007 k.w.h.

Previous reading. May 1, 1919 7596 “

Consumption 411 “

Consumption charge

89 k.w.h. at 9c. per k.w.h $8.01

208 “ “ 4.5
'' “ 9.36

114 “ “ .09
" “ 10

Total bill 17.47

10% discount if paid within 10 days 1.75

Net bill $15.72

Explanation '.—The "installed load” is the capacity of all the lights

installed. A charge is made for the entire installed load for the first 30

hours (30 X 2.970 = 89 k.w.h.) at 9c. per k.w.h., and for the next 70

hours at per k.w.h. For all additional consumption the charge is

.09c. per k.w.h.

5. Name, Fourth Citizen. Date, June 1, 1919.

Installed load, 1042 watts.

Meter reading, June 1, 1919 2384 k.w.h.

Previous reading. May 1, 1919 2359 "

Make out the bill.

6. Name, Fifth Citizen. Date, June 1, 1919.

Installed load, 745 watts.

Meter reading, June 1, 1919 2924 k.w.h.

Previous reading. May 1, 1919 2890 "

Make out the bill.

7. Make out bills for the above three persons at the Toronto rates.

as follows:

For first 70 hours of installed load 4c. per k.w.h.

For next 70 " “ “ “
2c.

"

For all additional consumption Ic.
"

Minimum monthly bill 83c. gross

Discount, 10%.
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Power Service

—

8. Name, Sixth Citizen. Date, June 1, 1919.

Connected load, 50 h.p.

Meter reading, June 1, 1919 25,040 k.w.h.

Previous reading. May 1, 1919 14,100 “

Consumption 10,940 “

Consumption charge

First 50 hours use, 1865 k.w.h. at 4.7c. per k.w.h $87.66

Second 50 “ “ 1865 “ “3.1 “ “ ... 57.82

Remaining consumption, 7210 k.w.h. at .15 per k.w.h. 10.81

Service charge

50 h.p. at $1 per h.p. per month 50.00

206.29

25% local discount 51.57

Total bill 154.72

10% discount if paid in 10 days 15.47

Net bill $139.25

Explanation :—In this case the “connected load or maximum demand”
is 50 h.p. = 37.3 k.w. and the customer is charged for the full load for

50 hours (37.3 X 50 = 1865) at 4.7c. per k.w.h. The charge for the full

load for the second 50 hours is at 3.1c. per k.w.h. The charge for the

remainder is .15c. per k.w.h.

In addition he pays a service charge of $1 per h.p. of “connected load”

per month.

The “local discount” is a discount depending on the number of hours

per day which the power may be used, in this case, 18 out of the 24 hours.

9. Name, Seventh Citizen. Date, June 1, 1919.

Meter reading, June 1, 1919 79,920 k.w.h.

Previous reading. May 1, 1919 77,450 “

Connected load, 19^ h.p.

Local discount 10%; prompt payment discount 10%.
Make out the bill.

10. Make out bills for the above two persons at Toronto rates, as

follows:

First 50 hours use per month, 1.5c. per k.w.h.

Second “ “ “ .75c.
“ “

All additional .33c.
“ “

Service charge, $1.25 for first 10 h.p., $1 for all additional.

No local discount; discount for prompt payment, 10%.



CHAPTER XI

Composition of Forces

106. Addition of Forces in the Same Direction. When an

automobile gets stuck on the road all hands step out and try

to release it. Two may pull on the bumper in front while

three may push at the rear, and thus move the car to the

hard level track again. But in place of the five people we
might get a good team of horses to do the job for us.

The forces exerted by the men are all in the same direction,

all aiming to cause the car to move forward, and it is perfectly

evident that the single force exerted by the team of horses is

equal to all the forces exerted by the men added together.

For instance, if the forces exerted by the men were 150, 125,

160, 100, 165 pounds, respectively, the force exerted by the

horses must have been the sum, or 700 pounds.

The resultant of a number of forces acting on a body is

that single force which would produce the same effect as

the other forces.

We see then that the resultant of a number of forces acting

in the same direction upon a rigid body is equal to the sum
of the individual forces.

106. Forces Inclined at an Angle. But if several forces act

upon a body in directions inclined to one another it is not so

easy to see what the resultant force will be. As usual in a

scientific problem, it is wise to study it experimentally.

Suspend two spring-balances A and B from nails or hooks

in a horizontal bar (Fig. 94) which may conveniently be the

frame above the blackboard.* Tie three strings together at 0
and attach the other ends of two of them to the hooks of the

* If it is more convenient, pulleys may be used instead of the spring-balances. The
strings pass over the pulleys and masses of P and Q pounds are attached to their ends.
See Fig. 99.

145
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balances. On the third string hang a weight W pounds. This

string will take a vertical direction and the tension in it will be

W pounds. The tensions in the other strings will be given by

the readings on the spring-balances. Let A show P pounds

and B show Q pounds. It is plain that the knot at 0 is kept

Fig. 94—How to demonstrate the law of Parallelogram of Forces.

in equilibrium by the three forces, P acting along OA, Q along

OB and W acting vertically downwards.

The force W may be looked upon as balancing the other

forces P and Q, and hence if R is the resultant of P and Q
(that is, the single force which is equivalent to P and Q acting

together), it must be equal in magnitude to W but be acting

in the opposite sense, that is, upwards.

Now draw on the blackboard immediately behind the strings

(or in some other convenient place), lines parallel to the strings

OA, OB, and make OC, OD as many units long as there are

pounds shown on A, B, respectively.

Then carefully complete the parallelogram OCED and

measure the diagonal OE. It will be found to be in the

vertical and to be W units long.

Now we know that the resultant of P and Q acts vertically

since it balances the vertical force W. Hence the line OE
represents the resultant of P and Q in both direction and

magnitude.
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A slightly different form of the experiment is as follows:

Fasten three cords (fish-line) to a small ring, and hook spring-balances

on the other ends of the cords (Fig. 95). By means of pins in the top of

the table, over which the rings of the balances may be placed, or in any

other convenient way, exert force on the balances so that the cords are

under considerable tension. The balances should move free of the table top.

Pin a sheet of paper under the strings

and mark a dot precisely at 0, the

centre of the ring; also make dots

exactly under each string and as far

from 0 as possible.

Read each balance. Then loosen

them, and when they are lying on the

table observe if the index returns to

zero. If it does not, a correction to the

reading on the balance must be made.

With great care draw lines from O
through the points under the cords,

and on these lines take distances pro-

portional to the tensions of the corres-

ponding strings. Thus, if the tensions

be 1000, 1500, 2000 grams, take

lengths 10, 15, 20 cm. or 4, 6, 8 inches.

Fig. 95—Diagram illustrating the
Parallelogram of Forces.

Using any two of these lines as adjacent sides, complete a parallelogram

taking care to have the opposite sides accurately parallel. Draw the

diagonal between these sides and carefully measure its length. Compare
it as to length and direction with the third line.

From these experiments we deduce the proposition known

as the Parallelogram of Forces: If two forces acting

at a point are represented in magnitude and direction by

two sides of a parallelogram, then their resultant will be

represented, in magnitude and direction, by the diagonal

between the two sides.

PROBLEMS AND EXERCISES

1. Taking a line one centimetre in length to represent a gram-force,

draw aline to represent a force of 12.3 grams acting (1) in a horizontal

direction, (2) in a vertical direction, (3) in a direction making an angle of

45° with the horizontal.
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2. Taking a line three-quarters of an inch long to represent a pound-

force, draw a line which represents a force of 5|- pounds acting in a direc-

tion making an angle of 60° with the vertical.

z s d—It

Fiq. 96.

3. li AB (Fig. 96) represents a force of 60 grams, what force will be

represented by (1) AC, (2) BC, (3) BD, (4) AD, (5) CD? (Measure in

centimetres).

4. If BC (Fig. 96) represents a force of 24 pounds, what force will be

represented by (1) AB, (2) AC,

(3) AD, (4) BD, (5) CD?

5. If CD (Fig. 96) repre-

sents a force of 3 kilograms,

what force will be represented

by (1) AB, (2) AC, (3) AD,
(4) BC, (5) BD?

6. If 2 cm. in length repre-

sents a force of 3 grams, what

are the magnitudes of the forces

represented by AB, BC, CA,
the sides of the triangle ABC (Fig. 97)? (Measure in centimetres).

7. If AB (Fig. 98) represents a force of 4 pounds, what are the magni-

tudes of the forces represented hy AD, AE and ED? (Measure in inches)

.

8. Find the greatest and the least resultants of two forces whose

magnitudes are 15 grams and 20 grams.

9. Find the greatest

and least resultants of two

forces whose magnitudes

are P -H Q and P — Q.

10. Find the resultant

of forces of 15 pounds and

36 pounds, acting at right

angles to each other.

11. Find the resultant

of two forces of 12 kilo-

grams and 35 kilograms

acting at a point, the one

acting north and the other east.

12. The resultant of two forces acting at right angles is 82 pounds. If

one of the forces is 80 pounds, what is the other?
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13. A force of 5P acts in a northerly direction, and the resultant of it

and another force acting at the same point in an easterly direction is 13P.

What is the other force?

14. Determine the resultant of the following forces acting concurrently

at the same point:—12 pounds N., 24 pounds E., 7 pounds S., and 36

pounds W.

15. A weight is supported by two strings. If the strings make an angle

of 90° with each other, and the tension of the one is 9 pounds, while that

of the other is 12, what is the weight?

16. A boat is moored in a stream by a rope fastened to each bank. If

the ropes make an angle of 90° with each other, and the force of the stream

on the boat is 500 pounds, find the tension of one of the ropes if that of the

other is 300 pounds.

107. Triangle of Forces. Let us arrange again the apparatus

used in demonstrating the Parallelogram of Forces (Fig. 99).

Since the forces P, Q and W are in equilibrium, the resultant

of P and Q must act vertically upward and must equal W in

magnitude.

Fig. 99.—How to demonstrate the Triangle'of Forces.

On the blackboard, or on a sheet of paper, draw a line FG
(Fig. 99a) parallel to OA and make it P units long. From G
draw GH parallel to OB and make it Q units long. Then
measure FH. It will be found to be W units long and it will

also be found to be parallel to OW. Hence FH represents the

resultant of P and Q in direction and magnitude.
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Indeed it is evident that the triangle FGH is simply the

half-parallelogram OCE and we may make the following

statement

:

If two forces acting at a point are represented in direction

and magnitude by two sides of a triangle taken in order,

their resultant will be represented in direction and magnitude

by the third side taken in the reverse order.

Again, the three forces P, Q and W are in equilibrium and

FG, GH and HF represent P, Q and W, respectively, in

direction and magnitude (Fig. 996).

Expressing this in general terms, we may state

:

If three forces acting at a point can be represented in

direction and magnitude by the sides of a triangle taken in

order, they will be in equilibrium.

This is known as the Triangle of Forces.

108. Examples.

1. Can a particle be kept at rest by a system of forces, 4, 3 and 8 pounds,

acting on it?

If the particle can be kept in equilibrium by these forces a triangle can

be drawn whose sides are 4, 3 and 8 units long.

But this is impossible since the sum of any two sides of a triangle must

be greater than the third side.

Fiq. 100.—Lines showing the directions of three forces in equilibrium.

2. Draw lines to represent the direction of forces of 4, 5 and 3 gm. acting

at a point and producing equilibrium.
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Since the forces are in equilibrium a triangle with sides 4, 5 and 3 units

long will show the directions in which the forces act.

Let ABC (Fig. 100a) be this triangle (constructed geometrically).

Let O (Fig. 1006) be the point at which the forces actually act. Draw OD,
OE and OF parallel to AB, BC and CA, respectively. Then the 4-gm.

force acts along OD, the 5-gm. force along OE and the 3-gm. force along OF.

It should be clearly understood that the forces are actually acting at the

point O and not along the sides of the triangle ABC. These sides merely

represent the forces in direction and magnitude.

EXERCISES AND PROBLEMS

1. Can a particle be kept at rest by each of the following systems of

forces acting on it?

(1) 4 pounds, 3 pounds, 7 pounds.

(2) 1 gram, 3 grams, 5 grams.

(3) 4 pounds, 3 pounds, 2 pounds.

(4) P Q, P — Q, P, when P is greater than 2Q.

2. Draw lines to represent the directions of the following forces acting

in one place at a point, when each system is in equilibrium;

(1) 4 grams, 5 grams, 3 grams.

(2) Three forces each equal to P.

(3) 2P, P, V3P.

(4) 5 grams, 9 grams, 4 grams.

o 3. Forces 5P, 12P, 13P keep a particle at rest. Show that the direc-

tions of two of the forces are at right angles to each other.

c 4. Find the directions in which three equal forces must act at a point

to produce equilibrium.

<s> 0 . Forces A + B, A — P, and \/2{A^ + B^) keep a particle at rest.

Show that the directions of two of the forces are at right angles to each

other.

6. A mass of 10 pounds hangs at the end of a string 2 feet long. If the

mass is held aside by a horizontal force so that the string makes an angle

of 30° with the vertical, find the horizontal force and the tension of the

string.

7. If the 10-pound mass in the preceding question is pulled aside until

the string makes an angle of 60° with the vertical, find the horizontal force

and the tension in the string. Does the length of the string affect the

result?
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8. A mass of 20 pounds is supported by a cord 5 feet long. What is the

tension of the cord? If the mass is pulled aside by a horizontal force until

it takes up a new position 1 foot higher than the original position, find the

magnitude of the force and also the new tension in the cord.

109. Calculation of Resultant. Suppose two forces

P and Q, acting on a body, at a point 0 in it, to be represented

in direction and magnitude by OA, OB (Fig. 101a, 1016), and

let the angle between them be 0.

Then completing the parallelogram, the resultant R is

represented by OC and we wish to calculate its magnitude.

From C drop a perpendicular upon OA, meeting it (produced if

necessary) in D.

In Fig. 101a we have

OC2 = OZ)2 +
= {OA + AVy + DC\
= OA2 + 2 OA.AD + AD^ + DC\
= OA2 + AC2 + 2 0A.AP,
= OA2 + AC2 + 2 OA.AC cos 6,

= OA2 + OR 2 + 2 OA.OB cos 6.

i?2 = P2 + Q2 + 2 PQ cos 6.

In Fig. 1015 we have

OC2 = OP2 -t- DC^
= {OA - DAY + DC\
= OA2 -20A.AD + AP2 + dC^,
= OA2 + AC2 -2 OA.AD,
= OA^ + AC 2 _ 2 OA.AC cos Z DAC,
= OA2 + AC2 _ 2 OA.AC cos (180-0),

= OA2 + OB^ + 2 OA.OB cos 6.

P2 = p2 ^ Q2 2 PQ cos 6 as before.
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Hence the magnitude of the resultant of two forces P and Q
whose lines of action make an angle 0 with one another is

given by the equation

R2 = P2 + Q2 + 2PQ cos d.

PROBLEMS

t> 1. Find the resultant of the following forces:

(1) 36 pounds and 60 pounds at an angle of 60°.

(2) 10 pounds and 10 pounds at an angle of 45°.

(3) 10 pounds and 10 pounds at an angle of 150°.

(4) 30 pounds and 80 pounds at an angle of 120°.

(5) 2 pounds and 7 pounds at an angle of 30°.

(6) 2 pounds and 3 pounds at an angle of 135°.

(7) 3 pounds and 16 pounds at an angle of 15°.

(8) 4 pounds and 11 pounds at an angle of 75°.

(9) P acting toward the west and P\/2 toward the northeast.

o 2. Prove that the resultant of two forces, P and P + Q, acting at

an angle of 120°, is equal to the resultant of two forces, Q and P + Q,

acting at the same angle.

3. Find the resultant of two forces represented by the side of an

equilateral triangle and the perpendicular on this side from the opposite

angle.

4. Six posts are placed in the ground so as to form a regular hexagon,

and an elastic cord is passed around them and stretched with a force of

50 pounds. Find the magnitude and the direction of the resultant pressure

on each post.

c 5. Two forces of two pounds each, acting at an angle of 60°, have the

same resultant as two equal forces acting at right angles. What is the

magnitude of these forces?

6. The resultant of two forces which act at an angle of 60° is 13 grams.

If one of the forces is 7 grams, find the other.

o 7. A particle is acted upon by two forces, one of which is inclined at

an angle of 80° to the vertical, and the other at an angle of 40° to the

vertical and on the other side of it. If one of the forces is 10 pounds,

and the combined effect of the two is 2\/31 pounds, find the other force.

8. If one of two forces acting on a particle is 5 kilograms, and the

resultant is also 5 kilograms, and at right angles to the known force, find

the magnitude and the direction of the other force.
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9. The resultant of two forces, P and Q, is Q\/3, and its direction

makes an angle of 30° with the direction of P. Show that P is either

equal to Q or 2 Q.

0 10. Show that when two forces act at a point their resultant is always

nearer the greater force, and the greater the angle between the forces the

less is their resultant.

11. If a uniform heavy bar is supported in a horizontal position by a

string slung over a smooth peg and attached to both ends of the bar, prove

that the tension of the string will be diminished if its length is increased.

12. A weight is suspended by means of two strings of equal length

attached to points in the same horizontal line. Show that if the lengths

of the strings are increased their tension is diminished.

110. Resolution of Forces. Sometimes in felling a tree a

rope is tied to the trunk, as high up as possible, and then

pulled. This is done in order to make the tree topple over

and also to cause it to fall in a safe direction (Fig. 102). Now

Fig. 102—A pull along the rope pulls the tree over and also pulls
it vertically downwards.

it is evident that the tension in the rope has the effect not

only of pulling the tree over but also of pulling it vertically

downwards. This latter force does not help in the removal of

the tree at all.
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It seems, then, that the same effect upon the tree could be

produced if we substituted for the force along the rope two

other forces, one in the horizontal, tending to topple the tree

over, and the other in the downward vertical direction.

The magnitudes of these component forces can be deter-

mined from a consideration of the parallelogram of forces.

Suppose the pull on the rope is 100 pounds. Draw a line AB
parallel to the rope and make it 5 inches long, and from B
draw horizontal and vertical lines meeting the vertical and

horizontal lines through A in the points D and C. The
lengths oi AC and AD will represent the magnitudes of the

forces in the horizontal and vertical directions.

For example, if the lengths of AC, AD are 4 and 3 inches,

respectively, the horizontal force is 80 pounds and the vertical

force is 60 pounds.

These two forces are said to be components of the 100-pd.

force in the horizontal and vertical directions, and the force

is said to be resolved into these two components.

It is well to observe, however, that a force can be resolved

into components in any two directions. We need only repre-

sent the original force by the diagonal of a parallelogram, and

the two components will be represented by the two adjacent

sides.

111. Calculation of Components. A force R is represented

in magnitude and direction by the line OC (Fig. 103) ;
we wish

to find the components

P, Q of the force in the

directions OA, OB, where

OA is at right angles to OB.

Let angle COA = a and angle

COB = /§.

Draw CA perpendicular to 2^03 —Finding the component of a force

OA, and CB perpendicular to in any direction.

OB.

Then OA and OB will represent P and Q, respectively, in magnitude.
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Now = cos a, or OA = OC cos a, whence P = R cos a;

OB
and -Q^ = cos /?, or OB = OC cos whence Q = R cos /3.

We thus see that the component of a force resolved in any

direction is equal to the product of the force into the cosine of

the angle between the direction of the force and the new
direction.

But since a + = 90°, (3 = 90 — a,

and Q = R cos (3 = R cos (90 — a) = R sin a.

PROBLEMS

1. Find the resolved part of a force of 10 pounds in a direction making

an angle with the direction of the force of (1) 30°, (2) 45°, (3) 75°.

«2. Find the horizontal and the vertical resolved parts of a force of 20

pounds, \/hich makes an angle of 30° with the horizontal.

3.

Find the resolved part S.W. of a force of 12 pounds S.

o4. A force of 100 pounds is resolved into two equal forces at right

angles to each other. What is the magnitude of either force?

5. The resultant of two forces acting at right angles is 16 pounds, and

makes an angle of 30° with one of the components. Find the magnitude

of the components.

6. The horizontal resolved part of a force making an angle of 30° with

the horizontal is 4 pounds. Find the vertical resolved part.

7. A horse, in towing a canal boat, pulls with a force of 200 pounds.

If the tow-rope is horizontal and makes an angle of 5° with the direction

of the canal, find the magnitude of the force that would have to be applied

in the direction of the canal to draw the boat.

8. The handle of a lawn mower is inclined at an angle of 30° to the

ground. If a man pushes along the handle with a force of 20 pd., how much
of the force is effective in moving the mower along the ground?

9. A block of wood is placed on a board inclined at an angle of 20° to

the horizon. If the block weighs 10 pounds, how much of this can be

considered as tending to make the block slip down the plane?

10.

A boy pulls on the rope attached to his sled with a force of 30 pd.

If the rope makes an angle of 25° with the ground, find the vertical and

horizontal components of the force.
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112. Translation and Rotation. It should be observed,

however, that very generally when several forces act upon a

body they tend ndt only to cause the body to move as a

whole or to give it a motion of translation, but also to make
it turn about an axis as well, that is, to give it a motion of

rotation. This turning effect of a force will be considered

more fully in the next chapter.

^113. The Sailing Ship. The sailing of a ship in a direction almost

opposite to that from which the wind is coming has long been considered

an interesting example of the resolution of forces.

Let the ship be moving with a velocity of V ft. per sec. in the direction

CD, and let the sail AB make with CD the angle 6. Let the velocity of

the wind = v ft. per sec. in a direction making an angle a with the sail.

(Fig. 104a).

It is assumed that the keel or centre-board prevents drifting sideways.

Resolving the velocity of the wind, we have (Fig. 104a)

V cos a along the surface of the sail,

and V sin a at right angles to the sail.

Again, the sail’s motion in the direction CD = F ft. per sec.

This may be resolved into two components (Fig. 1046),

V cos 6 along the plane of the sail,

and V sin 6 at right angles to the sail.

Consequently the velocity of the wind with respect to the sail, in the

direction at right angles to the sail,

= V sin a — F sin 0 ft. per sec.;
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and the force at right angles to the sail

= k X area X density X (velocity) ^ (Sec. 56)

= kA X 0.08 {v sin a — F sin By poundals,

where A: is a constant depending on the shape of the sail and A is its area

in sq. ft.

Now the only part of this which is effective in driving the ship forward

is that component in the direction CD, which

= kA X 0.08 (y sin a — F sin BY sin B pdl.

= kA X 0.0025 (v sin a — F sin By sin B pd.

Example.—Find the total force on a sail 120 sq. ft. in area if the sail

is set at 30° to the central line of ship, the wind is directly across the ship

with a velocity of 5 mi. per hr., and the ship is moving at rate of 7 mi.

per hr. Take k = 0.7.

Here, a = 60°, B = 30°, v = 7.33 ft. per sec., and F = 10.27 ft. per sec.

Total force = 0.7 X 120 X 0.0025 (7.33 sin 60° - 10.27 sin 30°)^ pd.

= 0.309 pd.

This example shows that the velocity of a ship may be greater than

the velocity of the wind, which causes the motion. This has often been

remarked in the case of an ice-boat, which meets with little resistance and
can make great speed.
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Moment or a Force

114. Moment of a Force. If you have to turn a nut which is

rusted tight you can exert the greatest turning effort by

using a wrench with a long handle. Again if you wish to

turn a wheel which is

hard to move you do

not take hold of the

hub, but of the rim (^.e.,

as far as possible from

the axis), and you exert

a force at right angles

to the spoke where you

take hold. Similarly, in

stormy weather, in order

to keep the ship on her

course the wheelsman

grasps the wheel by the

pins at the rim and

^exerts a force at right

angles to the line joining the axis to the point where he takes

hold (Fig. 105). If a machine is driven by a crank the longer

the crank is the greater is the turning effort which can be

exerted.

From our experience we know that the turning effect upon
the wheel is proportional to the force exerted and also to the

distance from the axis of the point where the force is applied.

Let F = the force applied,

p = the perpendicular distance from the axis to the line

AR of the applied force.

159

Fig. 105.—The moment of a force depends on
the force applied and its distance from the axis
of rotation.
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By experience we know that the power to turn the wheel

depends directly on F and on p, and is therefore proportional

to Fp. This product Fp is called the moment of the force F
about the axis. The moment of a force about a point is the

turning effect of the force about the point. It is measured by

the product of the force and the perpendicular distance

drawn from the point to the line of action of the force.

If the direction of the force F is not perpendicular to the

line joining its point of application to the axis, the moment is

clearly not so great, since part of the force is spent uselessly in

pressing the wheel against its axis. In Fig. 105, if AC is the

new direction of the force, then p', the new perpendicular, is

shorter than p, and hence the product Fp' is smaller.

115. Experiment on Moments. The tendency of forces to

produce rotation about a point may be studied experimentally

by using the apparatus shown in Fig. 106. A5 is a metre

stick provided with a

slider F which carries a

knife edge by which the

stick is supported. The
slider is moved until the

metre stick just bal-

ances in a horizontal

position. The masses P and W are then suspended from the

stick by loops of thread and adjusted until the stick balances

once more.

Five or six experiments should be made, changing the masses

and their distances from F and tabulating the results as

follows

:

p
Arm of P
FD

Moment of P
P X FD W

Arm of W
FC

Moment of W
W XFC

200 gm.

300 “
35 cm.

40 “
7,000

12,000

500 gm.

400 “
14 cm.

30 “
7,000

12,000

A (
r ji/'

i9 E
1 . 1 , 1 1 1 1 1 1

1*!!!
1 1 1 1 1 1 1 1 , 1

1 1
o

Fig. 106.—Testing the principle of moments.
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It will be found that in every case the moment of P about F
equals the moment of W about F.

The experiment may be varied by attaching a third mass Q
on the same side of F as P. In this case both P and Q will

tend to produce rotation in a clockwise direction, while W
Will tend to cause contra-clockwise rotation. On taking

moments it will be found that the sum of the clockwise

moments equals the sum of the contra-clockwise moments.

116. The Principle of Moments. In the experiments just

described the lines of action of the forces were parallel. Fig.

107 shows how apparatus may be arranged so that the forces

are not parallel.

Fig. 107.—Testing the principle of moments.

AP is a wooden strip about 100 cm. long pivoted at A to

the top of the blackboard. A chalk mark is made along one

edge of the strip when it is hanging freely. Cords fastened

to the hooks of the spring-balances E and F are then attached

at C and D and adjusted until the strip takes up its original

position again. P and Q, the readings of the spring-balances,

are then taken and the perpendiculars p and q measured.

The moment of P about A is Pp, tending to make the rod

rotate in a clockwise direction; while the moment of Q about A
is Qq, tending to produce contra-clockwise rotation. Since

the rod is in equilibrium Pp should be found equal to Qq.
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Example.—In an experiment

P = 700 gm., p = 73 cm.; Pp = 51,100,

Q = 1,000 gm., 5 = 51 cm.; Qq = 51,000.

A slightly different arrangement of the experiment is shown

in Fig. 108.

AjB is a wooden strip pivoted at its

centre O on a horizontal board. To
reduce friction a greased washer is placed

under the strip at the pivot. Cords are

attached at A and B and passed over

smooth-running pulleys at the edge of the

board. The weights P and Q are fastened

to the ends of the cords and the perpen-

diculars p and q measured after the system

has taken up a position of equilibrium.

The moments Pp and Qq will be found

Fig. 108.—Alternative apparatus for
testing the principle of moments.

equal within the limits of experimental error, as before.

These and similar experiments lead us to a conclusion

called the Principle of Moments: When a body free to turn

about a point is in equilibrium, the sum of all the clockwise

moments about that point must equal the sum of all the

contra-clockwise moments about the point; or, the algebraic

sum of the moments about the point equals zero.

Clockwise moments are usually considered negative and

contra-clockwise moments positive.

117. The Wheel and Axle. The principle of moments is well

illustrated in the ap-

paratus known as the

wheel and axle (Fig.

109a).

A mass W, fastened to

one end of a cord which

is wound about a cylin-

der A (or B), called the

axle, is raised by a force

P applied to a cord which is wound about the circumference

of a wheel C, joined to the axle.

Fig. 109.—The wheel and axle; (a) general appear-
ance; (6) diagram to explain its action.
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If P is just sufficient to balance W, its moment about the

axis of the cylinder must be equal to the moment of W about

the axis (Fig. 1096).

Let r and R be the radii of the axle and of the wheel,

respectively.

Then, W X r = P X R,

or W/P = R/r.

Thus by taking a large wheel and a small axle the mass

W can be lifted by a small force P.

Before hay-forks were invented this principle was used by

many farmers to facilitate the unloading of hay and grain.

The rack of the loaded wagon was attached to ropes wound
around a strong axle resting on beams near the top of the barn

and was raised to the level of the mow by the team pulling

on a rope passing over a large wheel fastened to the axle.

PROBLEMS

1. A metre stick just balances at the 50-cm. mark. Masses of 50 and

100 gms. are then attached on opposite sides of the fulcrum and the stick

balances once more. If the 50-gm. mass is at the 10-cm. mark, where is the

100-gm. mass?

2. A boy pushes on the pedal of his bicycle with a force of 30 pounds.

If the crank, which is 8 inches long, is horizontal and if the push is vertical,

what is the moment of the force? Find the moment if the direction of the

push makes an angle of 60° with the crank.

3. A uniform metre stick just balances at the 50-cm. mark when masses

of 50, 100 and x grams are attached at the 10, 20 and 90-cm. marks,

respectively. Find x.

4. A uniform plank is pivoted at its centre and just balances when two

boys weighing 100 and 120 lb. are on opposite sides of the fulcrum. If

the heavier boy is 5 feet from the fulcrum, where is the other?

5. If the wheel (Fig. 109) has a diameter of 6 inches and the axle a

diameter of 1.5 inches, what force applied to the cord which passes around

the wheel will support a mass of 10 lb. attached to the cord wound around

the axle?

6. A force of 12 acts along a median of an equilateral triangle whose
side is 18. Find the measure of the moment of the force about each angle

of the triangle.
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7. A force of 6 acts along one side of an equilateral triangle whose side

is 10. Find the measure of its moment about the opposite angle.

8. A force of 20 acts along a diagonal of a square whose side is 8a/2.

Find the measure of its moment about each of the four angles.

9. The connecting-rod of an engine is inclined to the crank-arm at an

angle of 30°. Compare the moment of the force to turn the shaft when
in this position with the moment when in the most favourable position.

10. ABCD is a square, whose side is 2 ft. long. Find the moments

about both A and D, of the following forces:—(1) 3 pounds along AB,

(2) 9 pounds along CB, (3) 2 pounds along DA, (4) 11 pounds along AC,

(5) 1 pound along DB, (6) 20 pounds along DC.

11. ABCD is a rectangle, the side AB being 12 cm. and the side BC 5

cm. long. 0 is the intersection of the diagonals. Find the algebraic sum
of the moments about (1) A, (2) 0, of the following forces:—^14 dynes

along BA, 19 dynes along BC, 3 dynes along CD, 4 dynes along AD, 10

dynes along AC, and 9 dynes along DB.

12. At what point of a tree must one end of a rope whose length is 50

feet be fixed, so that a man pulling at the other end may exert the greatest

moment tending to pull it over?

118. The Centre of Gravity of a Body. In performing the

experiment described in Sec. 115, care was taken to balance

the metre stick before attaching the weights. A uniform rod

or stick will balance on a pivot or fulcrum placed at its centre.

A non-uniform rod, such as a fishing-rod, balances at a point

closer to the thicker end. This point of balance is called the

Centre of Gravity of a body and the action of gravity on the

body produces no turning effect or moment about this point.

From the standpoint of moments we can consider the whole

weight of the body as being concentrated at the centre of

gravity.

The problem of determining the centres of gravity of

various bodies will be considered in a later chapter.

119. Resultant of Parallel Forces in the same Direction.

This may be illustrated by the following experiment

:
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Weigh a metre stick and find C, its centre of gravity.

Attach it to spring-balances by loops of thread placed

at A and B (Fig. 110 ). Suspend a weight IF from the rod

by a thread tied at C.

See that the rod is hori-

zontal and take the read-

ings Pi, P2onthe balances;

measure also the distances

h and 1

2

of the weight

from Pi and P^. Repeat

for different positions of A
and B.

O O

£ h I
1 1 1 1 1 ll 1 1 1 1 1 1 1 1 1 1 lL 1

A
1V

B

Fig. 110.—Finding the resultant of parallel

forces.

Since W is suspended from the centre of gravity of the rod,

it is evident that we can consider the total weight at C as

being W w where w is the weight of the rod.

Tabulate the results as follows:

—

Pi P 2 Pi + P 2 W + w Pi X h P 2 X h

200 gm.

300 “
100 gm.

200 “
300 gm.

500 “
300 gm.

500 “
4000

6000

4000

6000

It will be found that Pi + P^ = W + w and that Pi xh —

P2 X I2 in every case. Now W + w balances Pi and P2;

hence the resultant of Pi and P2 must be equal to W + w
and must act at C vertically upward, that is, parallel to Pi

and P2.

Also Pi X li is the moment of Pi about C and P2 X h is

the moment of P2 about C, and these moments have been

found equal. We conclude then that the resultant of two

parallel forces acting in the same direction is equal to the

sum of the forces and its point of application is so situated

that the moments of the two forces about the point are equal.
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Another method of performing the experiment is shown

Q in Fig. 111.

f^.

£
Fig. 111.—Finding the resultant of parallel

forces.

Support the rod at its centre

of gravity C by a weight w
passing over a pulley. Attach

spring-balances at A and B and
hang a weight W at any point

of the stick.

Take the readings Pi, P2 of the spring-balances and read the distances

Zi, Z2 of the balances from the weight.

No matter where W is placed, we shall find

Pi + P2 = W,

and Pi X Zi = P2 X Z2.

Next, arrange that the metre stick shall not be horizontal,

but in the position AB
(Fig. 112). It will be found

to be in equilibrium still,

with the balances showing

the same readings.

From C drop perpen-

diculars on the line of

action of Pi, P 2 and let

their lengths be pi, p 2 -

Then moment of Pi about C = Pi X pi,

and moment of P 2 about C = P 2 X P 2 ,

and these are equal.

Fig. 112.—Forces on a rod not horizontal.

But from similar triangles pi/p 2 = h/h,

and so Pi X h = P 2 X h, as before.

Hence the resultant of Pi, P 2 has the same magnitude as

before and its point of application is unchanged.

120. Couples. Attach a string to each end of a rod

lying on a table, and pull on these with equal forces

P in parallel directions (Fig. 113). The rod moves forward

in the direction of the force.
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Next, pull with equal forces but in opposite senses (Fig.

114). Now the rod simply turns about a vertical axis without

moving forward as a whole.

Two equal unlike parallel forces are called a couple.

Fig. 113.— Motion
of translation only.

Fig. 114.— Motion
of rotation only.

Fig. 115.— Motion
of rotation only.

Fig. 116.—Transla-
tion and rotation.

Let us calculate the moment of this couple about any

point 0 in the rod (Figs. 114 and 115). It is evident

that the total turning effect is

Px + Py = P (x y) = Pd,

where d is the perpendicular distance between the lines of

action of the forces. Moreover it is evident that the mag-
nitude of the moment is independent of the position of 0.

Next, pull one end of the rod with a force P, and the other

with a greater force Q (Fig. 116). This force Q may be con-

sidered as made up of two components,

P, and Q — P.

The two forces P, P will form a couple and will produce

rotation of the rod, while the force Q — P will produce a

motion of the rod as a whole, or a translation, in the direction

of the force.

121. Examples. 1. Find the magnitude and point of application of the

resultant of two parallel forces of 5 pd. and 10 pd. acting in the same

direction at points 30 inches apart.

Let the forces act at A and B as indicated in Fig. 117, and let C be

the point at which a force W must act to produce equilibrium.
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Let AC = X] then CB = 30 — a;.

Now TF must equal 5 + 10 == 15 pd. and therefore E, the resultant, =

15 pd. (upwards). Moreover, taking moments about C,

i

x" 30-x

A C B

W
Fig. 117.—Finding the resultant of like parallel forces.

5 X X = 10 (30 - x),

or 15x = 300,

whence x = 20 inches.

It is instructive to obtain x by taking moments about A or B.

Since the rod is not turning about A, the clockwise moments about A
must equal the contra-clockwise moments.

Hence TFx = 10 X 30,

or 15x = 300,

or a; = 20 inches, as before.

4pd
30'

2. Find the magnitude and point of application of the resultant of two

parallel forces of 4 pd. and 7 pd. acting in opposite directions at points

30 inches apart.

Let the forces act

at A and B (Fig.

118) in the direc-

tions indicated.

Then it is evident

that to produce
equilibrium there

must be acting an

additional upward force of 7 — 4 = 3 pd. If we can determine where this

force must act to produce equilibrium, we shall know where the resultant

acts.

C\

7p±

Fig. 118.—Finding the resultant of unlike parallel forces

If we place this force between A and B and consider moments about B,

there will be an unbalanced clockwise moment, since both the 4-pd. force

and the 3-pd. force will tend to produce clockwise rotation about B, There

would also be an unbalanced clockwise moment about B if the force were

applied to the left of A.
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Hence the force must be applied to the right of B, at some point C.

Let BC = X.

Since we have equilibrium, the rod is not turning about B (or any other

point). Taking moments about B,

4 X 30 = 3 X X,

whence a; = 40 inches.

We could choose the point A equally well.

Taking moments about A,

7 X 30 = 3 (30 + x),

whence dx - 120,

and a: = 40 inches, as before.

Hence R = 3 pd. acting vertically downwards at C which is 40 inches

from B.

In these examples the following rules have been followed:

1. Construct a diagram showing the forces acting, repre-

senting each force by a straight line and its direction by an

arrow.

2. Indicate on the diagram where a force must be applied

and in what direction it must act to produce equilibrium. The
resultant will act at the same point but in the opposite direction.

3. Solve for the unknown quantities by writing the equa-

tions which must hold in order that there may be no translation

and no rotation.

PROBLEMS

1. Find the magnitude and point of application of the resultant of

two parallel forces of 3 dynes and 2 dynes acting in the same direction at

points 5 cm. apart.

2. Two men of the same height carry on their shoulders a pole 6 feet

long, and a mass of 120 pounds is slung on it, 30 inches from one of the

men. What portion of the weight does each man support?

3. Two men support a weight of 112 pounds on a pole of negligible

weight which rests on the shoulder of each. The weight is twice as far

from the one as from the other. Find what weight each supports.

4. A man carries two buckets of water by means of a pole which he

holds in his hand at a point three-fifths of its length from one end. If

the total weight carried is 40 pounds, how much does each bucket weigh?
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5. Two men, one stronger than the other, have to remove a block of

stone weighing 270 pounds by means of a light plank whose length is 6

feet; the stronger man is able to carry 180 pounds. How must the stone

be placed on the plank so as to allow him that share of the weight?

6. A plank weighing 10 pounds rests on a single prop at its middle

point; if the single prop is replaced by two others, one on each side of it,

3 feet and 5 feet from the middle point, find the pressure on each.

7. A light rigid rod 20 feet long is supported in a horizontal position

on two posts 9 feet apart, one post being 4 feet from the end of the rod;

from the middle point of the rod a weight of 63 pounds is suspended.

Find the pressures on the posts.

8. Find the magnitude and point of application of the resultant of

two opposite parallel forces of 17 dynes and 25 dynes acting at points 8

centimetres apart.

9. The resultant of two parallel forces is 15 pounds, and acts at a

distance of 4 feet from one of them whose magnitude is 7 pounds. Find

the position and magnitude of the second force, when (1) the forces are

in the same direction, (2) when opposite.

10.

Find the magnitude and point of application of the resultant of two

opposite parallel forces of 10 pd. and 15 pd. acting at points 4 feet apart.



CHAPTER XIII

Equilibrium of a Rigid Body

122. Translation and Rotation. As has been remarked

(Sec. 112) when forces act upon a body they may tend to give

it a translation or a rotation or both at the same time. A
body is translated when its centre of gravity (see Chap. XV)

is displaced
;
it is rotated when any lines drawn in the body

change their directions.

Consider a body acted upon by forces P, Q, R, S, etc., acting

in one plane, as in Fig. 119.

Fi 3. 119.—Equilibrium of a rigid body.

If the body is in equilibrium, of course there is no translation.

Consequently if the forces are resolved along any two axes

XOXi and YOYi at right angles to each other, the com-

ponents in the direction OX must balance those in the

direction OXi and the components in the direction OY must

balance those in the direction OY i.

Also, there is no rotation. Consequently the clockwise

moments about any point A must balance the contra-clock-

wise moments about this point.

171
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We have then two general conditions for the equilibrium

of a body acted upon by a number of forces in one plane:

—

1. If all the forces acting on the body be resolved along

any two directions at right angles, the algebraic sum of the

resolved parts along each of these directions must equal zero.

2. The algebraic sum of the moments of the forces about

any point must equal zero.

By making use of these two general principles many
problems of equilibrium may be solved.

123. First Example. A uniform plank 13 feet long, weighing 40 pounds,

rests on two trestles placed 12 feet apart, each trestle being placed six

inches from an end of the plank. Find the weight carried by each trestle

when a man weighing 150 pounds stands on the plank 4 feet from one

trestle.

jpd. ISOpa.

Fig. 120.

(1) Fig. 120 is a diagram of the system of forces acting on the plank and
keeping it in equilibrium. P and Q are the reactions of the trestles on the

plank.

(2) Since all of the forces are parallel we do not need to resolve them.

We see immediately that the up forces must equal the down forces.

Hence P Q ~ 190.

(3) Since there is no rotation the contra-clockwise moments about any

point must equal the clockwise moments about the same point.

Taking moments about A,

Q X 12 = 40 X 6 -f 150 X 8,

whence Q = 120 pd.

and P = 190 - 120 = 70 pd.

In calculating moments the point A was chosen so that P would not

appear in the equation. The point B would be equally satisfactory. If

any other point were taken, both P and Q would appear in the equation

but we could still solve for P and Q by using the other equation, namely,

P + Q = 190.
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Experiment.—Weigh a metre stick and find its centre of gravity.

Support it by means of two spring balances attached to loops of thread

placed at the 10 and 90-cm. marks. Attach a mass of 50 gm. to a loop

placed at the 60-cm. mark and adjust the balances until they are vertical

and the stick horizontal. Take the readings of the balances and compare

with results calculated mathematically as in the above example.

PROBLEMS

1. A uniform beam is of length 12 metres and mass 50 kg., and from

its ends are suspended bodies of masses 20 and 30 kg. respectively. At

what point must the beam be supported that it may remain in equilibrium?

2. A lever with a fulcrum at one end is 3 feet in length. A mass of

24 lb. is suspended from the other end. If the mass of the lever is 2 lb.

and acts at its middle point, at what distance from the fulcrum will an

upward force of 50 pd. preserve equilibrium?

3. Masses of 7 lb., 1 lb., 3 lb., and 5 lb. are placed on a rod, supposed

weightless, 1 foot apart. Find the point on which the rod will balance.

4. A bar 16 cm. long is balanced on a fulcrum at its middle. On the

right arm are suspended 4 grams and 3 grams at distances of 5 cm. and

7 cm., respectively, from the middle, and on the left arm 5 grams at a

distance 5 cm. from the middle and w at the end. Determine w.

5. A light rigid bar 30 feet long has suspended from its middle point

a mass of 700 lb., and rests on two walls 24 feet apart, so that 1 foot of

it projects over one of them. A mass of 192 lb. is suspended from a point

2 feet from the other end. What is the pressure borne by each of the wails?

6. Six parallel forces of 7 dynes, 6 dynes, 5 dynes, 4 dynes, 3 dynes

and 2 dynes are applied to a rigid rod at points 1 cm. apart. Find the

magnitude and position of the resultant.

7. Five parallel forces 1, 6, 3, 4, 8 dynes act 1 cm. apart on a straight

horizontal rod. How much must be added to the 1-dyne force in order

that if the rod is supported where the force of 3 dynes acts it may
remain horizontal?

8. Four parallel forces 3, 2, 5, 7 dynes act at right angles to a straight

rod, at points 6 cm. apart. Where must a force of 17 dynes act in

order to maintain equilibrium?

9. A straight uniform heavy rod of length 6 feet has masses of 15 and
22 lb. attached to its ends, and rests in equilibrium when placed across a
fulcrum distant 2-^ feet from the 22-lb. mass. Find the mass of the rod.

10.

A straight rod of negligible weight 2 feet long rests in a hori-

zontal position between two fixed pegs, placed 3 inches apart, one of
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the pegs being at one end of the rod. If a mass of 5 lb. is suspended at

the other end, find the pressure on each of the pegs.

11. A heavy uniform beam, whose mass is 40 kg., is suspended in a

horizontal position by two vertical strings attached to the ends, each of

which can sustain a tension of 35 kg. How far from the centre of the

beam must a body, of mass 20 kg., be placed so that one of the strings

may just break?

12. A heavy tapering rod, having a mass of 20 lb. attached to its smaller

end, balances about a fulcrum placed at a distance of 10 feet from the end.

If the mass of the rod is 200 lb., find the point about which it will bal-

ance when the attached mass is removed.

Equilibrium. Let us consider the

special case of three co-planar

forces, not parallel, acting on a

body and keeping it in equilibrium.

Let P, Q and S (Fig. 121)

represent the lines of action of the

forces.

Any two of these lines of action

will meet in a point. Let the lines

of action of P and Q meet in the

point 0.

Then the resultant of P
and Q will also pass through

the point 0 and consequently

the line of action of S, which

just balances this resultant,

must also pass through the

point 0.

We arrive then at the

following conclusion:

When three co-planar
forces, not parallel, are in

equilibrium, their lines of

action must meet in a point.

Fig. 122.—A rigid body in equi-
librium under the action of three
co-planar forces.

124. Three Forces in

Fig. 121.—Three forces in equi-
librium meeting in a point.
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125. Experiment. The apparatus shown in Fig. 122 illustrates the

principle just stated.

AB is a metre stick with holes drilled at A, B and C. AB is a

light metal strap pivoted to the metre stick at A and to the wall at

D and carrying a pointer on the end remote from A. The weight W is

suspended from the centre of the stick C by a metal strap to which

another pointer is attached as shown in the figure. A cord BE keeps the

stick in position.

The forces acting on the stick are:

(1) the tension of the string acting in the direction BE]

(2) the combined weight of stick and W acting at C in a direction

indicated by the pointer FC;

(3) the reaction of the pivot A acting at A in a direction indicated

by the pointer DR.

It will be found that the directions of the pointers meet at a point on

BE no matter what the length of BB is made.

126. Reactions of Smooth Surfaces. Let AB he a heavy-

bar pivoted at A and having the end B resting against a

perfectly smooth surface BD.

It is evident that BD is exerting

a force on the bar at B since it is

preventing gravity from turning

the bar about A. We call this

force the reaction of the surface.

Since the surface is smooth this

reaction must be at right angles to

the surface.

For, suppose it could act in any

other direction, BE for example.

Then the reaction R could be

resolved into a component P along

the surface and a component Q at

right angles to the surface.

But the component P along the surface would mean that

friction exists, which is contrary to the assumption that the

surface is smooth.

Fig. 123.—Study of the reaction
of a smooth surface. AB is a heavy
bar pivoted at A. The end B rests
against a smooth surface BD.
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127. General Rules. In the solution of problems the follow-

ing general rules will be found useful.

1. Construct a diagram of the system of forces which keep

the body at rest, representing each force by a straight line

and its direction by an arrow. In drawing lines to represent

the lines of action of the various forces the following facts

should be observed

:

() The reactions of smooth surfaces are at right angles to

these surfaces.

() When three forces, not parallel, are in equilibrium their

lines of action must meet in a point.

2. Equate to zero the algebraic sum of the components of

the forces in each of two convenient directions at right angles.

These relations will furnish two equations.

In choosing the directions for resolution, the solution is

generally simplified by resolving along and at right angles to

the directions of unknown forces. Forces not to be determined

may thus be eliminated.

3. Equate to zero the algebraic sum of the moments of the

forces about some convenient point. A third equation is thus

furnished. If additional equations are required, they are

obtained from the geometrical relations of the figure.

In choosing the point about which

moments are to be taken, it is gener-

ally advisable to choose a point

common to the directions of as many
forces as possible. In this way also

unknown forces not to be determined

may be eliminated.

128. Second Example. A weight of 10 lb.

hangs at the end of a string attached to a

peg. If the weight is held aside by a

horizontal force so that the string makes
an angle of 30° with the vertical, find the

horizontal force and the tension of the string.

The forces act as in Fig. 124.

Fig. 124.—Equilibrium of a
weight on the end of a string.
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Solution I .—Resolving

following equations:

whence

and

vertically and horizontally, we obtain the

r cos 30° = 10

P = T cos 60°

10, or T = —
7= pd.,

V3

( 1 )

(2)

Solution II .—Taking moments about A and taking AO — 21, we have

P X AB = 10 X OB,

whence P X ZV3 = 10 X /, and P =

Also rpz = P2 -f 102,

= if 0 + 100,

whence T

Solution III .—The sides OA, AB and BO of the triangle OA B represent

T, 10 and P in direction, and must consequently represent them in mag-
nitude also.

ly/% represents 10 pd.,

whence

and

,
10

,

I represents pd,,

20
,

21 represents — pd.
V 3

Therefore
10

, ,
20

,

pd. and T = — pd.
V3^ V3

Experiment.—Verify the results

obtained in the above example by
setting up the apparatus shown in

Fig. 125. The cords may very

conveniently be attached to hooks

at the top and side of the black-

board. The 30° angle may be

obtained by using a large protractor

or by making AO = 2AC. Use a

plumb-line to fix CO and a pro-

tractor, set square, or level for OD.

Take the readings of the spring

balances and compare with the

values of F and T obtained mathe-

matically.
Fig. 125.—Experimental verification

of results obtained mathematically.
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Fig. 126.—Equilibrium of

forces acting on a rod.

129. Third Example. AB (Fig. 126) is a rod 10 feet long pivoted at

A to a vertical wall and kept in position by a

horizontal cord BC 6 feet long. Neglecting

the weight of the cord and rod, find the

tension of the cord and the reaction of the

point A when a mass of 10 pounds is sus-

pended from B.

The forces acting at B and producing

equilibrium are T pounds in a horizontal

direction, 10 pounds in a vertical direction

and R pounds acting along AB.

Solution I.—The sides of the triangle

BCA are parallel to the lines of action of the

forces and will consequently represent the

forces in magnitude.

In this case 8 feet represents 10 pd.,

and hence 6
“

and 10
" “ 12^

“

Therefore T = 7^ pd. and R = 12^ pd.

Solution II.—Taking moments about A,

10 X 6 = T X 8,

whence T = 7^ pd.;

also R = resultant of 7|- pd. and 10 pd. acting

at right angles to each other,

whence R^ = (7^)^ + 10^

and R ^ 12^ pd.

Solution III.-—Since we know the sides

of the triangle BCA,

sin Z ABC = 0.8 and cos Z ABC = 0.6.

Resolving the forces at B horizontally

and vertically and applying the conditions

for equilibrium,

T = Rcos Z ABC = 0.QR ....{!)

10 ^ R sin Z ABC = 0.8 72 .... (2)

From (2) R = = 12^ pd.,

and from (1) T

Experiment.— Set up the experimental

crane shown in Fig. 127. AB is a, com- Fig. 127 -Experimental crane for
° verifying the equilibrium of forces

pression balance by which the thrust acting on a rod.



PROBLEMS 179

along AB may be measured. Set AB at an angle of about 30 degrees

with the wall and make BC horizontal. Read the balances before attach-

ing the 10-lb. mass to B and after attaching it, keeping AR at the

same inclination and keeping BC horizontal for both readings. Find

the increase in each reading due to attaching the 10-lb. mass and

compare these values with the values of R and T calculated mathe-

matically as in the above example.

PROBLEMS

1. A mass of 10VO lb. hangs at the end of a string attached to a peg.

If the mass is held aside by a horizontal force, so that the string makes an

angle of 30° with the vertical, find the horizontal force and the tension

of the string.

2. A mass is hung at the end of a string attached to a peg. If the

mass is held aside by a horizontal force, so that the string makes an angle

of 60° with the vertical, compare the tension of the string and the weight

of the mass.

3. A mass of 10 lb. is supported by two strings, one of which makes an

angle of 30° with the vertical. If the other string makes an angle of 45°

with the vertical, what is the tension of each string?

4. A string fixed at its extremities to two points in the same horizontal

line supports a smooth ring weighing 2 pounds. If the two parts of the

string contain an angle of 60°, what is the tension of the string?

5. A mass of 12 lb. is supported by two strings, each of which is 4

feet long, the ends being tied to two points in a horizontal line 4 feet apart.

What is the tension of each string?

6. A picture hangs symmetrically by means of a string passing over

a nail and attached to two rings fixed to the picture. What is the tension

of the string, if the picture weighs 6 pounds and the angle contained by
the two parts of the string is 90°?

7. A string is tied to two points. A ring, mass W, can slip freely

along the string, and is pulled by a horizontal force P. If the parts of

the string when in equilibrium are inclined at 90° and 45° respectively to

the horizon, find the value of P.

8. A uniform bar, the weight of which is 100 pounds, is supported in

a horizontal position by a string slung over a peg and attached to both

ends of the bar. If the two parts of the string contain an angle of 120°,

find the tension of the string.

9. A ball weighing 20 pounds slides along a perfectly smooth rod

inclined at an angle of 30° with the vertical. What force applied in the
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direction of the rod will sustain the ball, and what is the pressure on the

rod?

10. A body, the weight of which is 20 pounds, rests on a smooth plane,

inclined to the horizon at an angle of 60°. Find (1) what force acting

horizontally will keep the body at rest, (2) the reaction of the plane.

11. A spar ABy 10 feet long, is freely hinged to a mast at its lower end A.

The upper end B is fastened to a horizontal

rope attached to a point on the mast 6 feet above

A . Find the tension set up in the rope and the

thrust produced along the spar when a mass of

1200 pounds is suspended from B.

12.

A horizontal boom A Bis hinged at A and

is kept in position by a cable attached to B
and to a point vertically above A. The angle

between the cable and boom is 30°. Find the

tension in the cable and the thrust along the

boom produced by suspending a mass of one

ton from B.

130. Fourth Example. A uniform beam AB,
17 feet long, whose mass is 120 lb., rests with one

end against a smooth vertical wall, and the other

end on a smooth horizontal floor, this end being

tied by a cord 8 feet long to a peg at the bottom

of the wall. Find (1) the tension of the cord,

(2) the reaction of the wall, (3) the reaction of

the floor.

The forces acting on AB (Fig. 128) are

() Its weight, 120 pd., acting vertically downwards at its middle point C.

() The reaction of the floor, Ri, acting perpendicularly to the floor

at A. (The reaction of a smooth 'urface is at right angles to itself).

(c) The reaction of the smooth wall, R 2 ,
acting perpendicularly to the

wall at B.

(d) The tension of the cord, T, acting parallel to the floor at A.

In this case there are four forces acting and we cannot conclude that

they meet at a point.

Equating to zero the algebraic sum of the horizontal forces.

T - = 0 (1)

Equating to zero the algebraic sum of the vertical forces,

- 120 = 0 (2 )

or Ri = 120 pd.

Fig. 128.—A beam
resting upon a smooth
wall and a smooth floor.
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Equating to zero the algebraic sum of the moments of the forces

about A,

RiX AD - 120 X AE = 0 (3)

or 122 X 15 - 120 X 4 = 0,

whence Rz — 32 pd.

From (1) T = R^ — 32 pd.

131. Fifth Example. A uniform beam AB, 17 feet long, whose mass is

120 lb., rests with one end B against a smooth vertical wall and is pre-

vented from slipping by a peg driven into the

ground at its lower end A, which is 8 feet from

the bottom of the wall. Find (1) the reaction

of the wall and (2) the reaction of the peg-

ground corner.

The forces acting on AB (Fig. 129) are

(1) Its weight, 120 pd., acting vertically down-
wards at its middle point C.

(2) The reaction of the wall R 2 acting perpen-

dicularly to the wall at B;

(3) The reaction of the peg-ground corner acting

through D, the point where the line of action

of the weight of the beam meets B 2 .

Solution I.—Taking moments about A,

B 2 X 15 = 120 X 4,

whence R 2 — 32 pd.

Also, since R 2 and 120 are at right angles,

72i2 _ + 12Q2,

whence Ri = 8\/241 pd.

Solution II .—Since DE, EA and AD are parallel to the lines of

action of 120, R 2 and Ri, respectively, the triangle DEA can be considered

a triangle of forces and its sides will represent 120, R 2 ,
and Ri in

magnitude.

But DE = 15 ft., EA = 4: ft. and AD = ft.

Hence 15 ft. represents 120 pd.

1 ft. 8 “

4 ft.
« 32 “

ft. 8V241 pd.

Therefore B 2 = 32 pd. and Ri = 8V^ pd.

Fia. 129.—A beam rest-
ing against a smooth wall
and kept from slipping by
a peg.
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Solution III.—The horizontal component of Ri = Ri cos Z DAE,
the vertical component of Ri = 72 1 sin Z DAE.

4 15
But cos Z DAE = sin Z DAE = —=r;

V241’ V241’

4 15
Hence Ri X -7=- = Ri, and Ri X '“t^ = 120,

V241 V241

whence Ri = 8V241 pd.,

and 7^2 = 32 pd.

PROBLEMS

1. A uniform beam 32 feet long, whose mass is 200 lb., rests with one

end on a smooth horizontal plane and the other end against a smooth

vertical wall. If a cord 16 feet long connects the lower end with the

foot of the wall, find (1) the tension of the cord, (2) the pressure against

the wall, (3) the pressure on the plane.

2. A ladder, the weight of which is 90 pounds, acting at a point one-

third of its length from the foot, is made to rest against a smooth vertical

wall, and inclined to it at an angle of 30°, by a force applied horizontally

at the foot. Find the force.

3. A uniform ladder, 40 feet long, whose mass is 180 lb., rests with

one end against a smooth vertical wall and is prevented from slipping by

a peg in the ground. Find the pressure against the wall and at the ground

if the inclination of the ladder to the horizon is 60°.

4. A uniform beam, 12 feet long, whose mass is 50 lb., rests with one

end A at the bottom of a vertical wall, and a point C in the beam 10 feet

from A is connected by a horizontal cord CD with a point D in the wall 8

feet above A. Find (1) the tension of the cord, (2) the pressure against

the wall-ground corner.

5. A ladder, 14 feet long, whose mass is 50 lb., rests with one end against

the foot of a vertical wall; and from a point 4 feet from the upper end a

cord which is horizontal runs to a point 6 feet above the foot of the wall.

Find the tension of the cord and the reaction at the lower end of the

ladder.

6. A uniform heavy beam AB, whose mass is W, rests against a smooth

horizontal plane C

A

and a smooth vertical wall CB, the lower extremity

A being attached to a string which passes over a smooth pulley at C
and sustains a mass P. Find the pressure on the plane and the wall.
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MISCELLANEOUS PROBLEMS
1. A uniform rod is suspended from a peg by two strings, one attached

to each end. The strings are of such lengths that the angles between

them and the rod are 30° and 60° respectively. Find the tensions of the

strings, the mass of the rod being one kilogram.

2. A straight lever is inclined at an angle of 60° to the horizon, and a

mass of 360 lb. hung freely at the distance of 2 inches from the fulcrum

is supported by a force acting at an angle of 60° with the lever, at the

distance of 2 feet on the other side of the fulcrum. Find the force.

3. A rod AB movable about a hinge A has a mass of 20 lb. attached

at B. B is tied by a string to a point C vertically above A and such that

CB is six times AC. Find the tension of the string B C.

4. A heavy uniform rod AB whose mass is W is hinged at A to a fixed

point, and rests in a position inclined at 60° to the horizon, being acted

on by a horizontal force F applied to the lower end B. Find the reaction

of the hinge and the magnitude of F.

5. A light rod is hinged at one end and loaded at the other end with

a weight of 6 pounds. The rod is supported in a horizontal position by a

string which is attached to the loaded end, and which makes an angle of

30° with the rod. Find the tension of the string and the reaction of the

hinge.

6. A carriage wheel, whose mass is W and radius r, rests upon a level

road. Show that the least horizontal force F applied at the centre which

will be on the point of drawing the wheel over an obstacle of height h is

„ WVi‘^rh - h^)

r — h

Interpret the result, (a) when r = h, (6) when r is less than h.

7. A body, the weight of which is 100 pounds, rests on a smooth plane

inclined to the horizon at an angle of 30°. What force acting at an angle

of 30° to the plane will keep the body at rest? What is the pressure on

the plane?

8. Two weights of 2 pounds and \/6 pounds, respectively, rest, one on

each of two inclined planes which are of the same height and are placed

back to back. The weights are connected by a string which passes over

~a smooth pulley at the common apex of the planes. If the first plane

makes an angle of 60° with the horizon, find (1) the tension of the string,

(2) the pressure on each plane, (3) the inclination of the second plane to

the horizon.

9. A ring, mass 9 lb., slides freely on a string of length a\/2 whose

ends are fastened to two points at a distance a apart in a line making

an angle of 45° with the horizon. Find the tension of the string in the

position of equilibrium.



CHAPTER XIV

Friction

132. Friction is Resistance to Motion. The word friction

has already been used a number of times in the preceding

chapters, as it is hardly possible to discuss the motion of a

body without taking friction into account. In this chapter

we shall study more closely some of its effects.

A heavy railway train may be running on a level track at

the rate of a mile a minute, but if the steam is shut off the

train will slow down and at last will come to rest. This is

due to the friction in the bearings of the wheels and in the

rolling of the wheels on the rails.

The machinery in a great factory may be “humming,” but

immediately after the “power” is turned off at twelve o’clock

the wheels slow down and come to rest in a few seconds.

Friction is the resistance to the motion of a body when it

slides or rolls over another body.

133. Friction Depends on the Surfaces in Contact. It is a

common observation that the friction between two bodies

depends upon the nature of the substances and the conditions

of the surfaces which are in contact.

A sleigh may be drawn easily on a good road but when

going over the planks or the rails at a railway crossing the

horses have to exert much more of their strength, and if the

ground is bare in some places the passengers may have to get

out, to diminish the weight and so reduce the friction.

To slide a heavy plank over another requires more force if

the surfaces are rough than if they are planed smooth.

184
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134. The Cause of Friction. In the case of many surfaces

the irregularities on them can be seen with the unaided eye,

but even the smoothest surface when

examined with a good microscope is

seen to be covered with little pro-

jectlOnS with hollows between them, surfaces showing roughness as seen
. - under a microscope.

Hence when two surfaces are pressed

together there is a kind of interlocking of these projections,

which resists the motion of one surface over the other

(Fig. 130).

135. Experimental Study of Friction. A simple apparatus

like that shown in Fig. 131, enables us to investigate the laws

of friction.

A flat block M rests on a board, which should be made as

nearly horizontal as possible, and a cord attached to M passes

over a pulley and bears a pan

on the end of it. The block

can be loaded to any desired

amount and weights can be

put on the pan.

Let the horizontal board and the block M be both of dry

pine. Clean the surfaces by rubbing with fine sand-paper and

then wipe the dust off carefully. Also rub the block back and

forth upon the board. These operations are to give the sur-

faces a clean and permanent condition.

Weigh M and also the pan. Put a weight IF on ilf and a

smaller one on the pan, and let the weight of the pan and

the mass on it be P. Then the block is pulled by a force

P and (supposing there is no motion) sufficient friction between

M and the board is called into action to balance P.

1 M r

Fig. 131.—Experiment to find

the coefficient of friction.
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Continue adding weights to the pan, doing it carefully

and avoiding jerks, until at last the block begins to move.

Record the weight of the pan and its contents. This gives us

the limiting value of friction for this particular experiment.

Repeat the experiment several times, and take the average of

the several weights of the pan and its contents.

Let this average = F\ also let w = weight of the block

M, and W = the weight upon it.

F
Then find the value of = This is called the staticW+w

coefficient of friction.

By increasing the weight upon M and obtaining the corres-

ponding values of the force required to start the motion we

secure a series of values of the coefficient of friction.

Next, try the same experiments, but, instead of being very

careful in placing the weights on the pan, gently tap the

board or give a slight jerk each time a new weight is put on.

Continue to adjust the weights on the pan until the block

moves forward with approximately uniform motion.

As before, obtain several values of F with each value of W,

F
and then calculate the value of for each average valueW + w

of F. This quantity is now called the kinetic coefficient of

friction, the word ‘kinetic’ meaning ‘producing motion.’

The kinetic is considerably smaller than the static coeffi-

cient, which simply indicates that it is harder to start a

body moving than to keep it moving when once motion has

begun.

In the following table are given sample results for pine on

pine, the grain of the block being parallel to that of the

board.
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COEFFICENT OF FrICTION , PiNE ON PiNE.W + w’

Block 15 cm. square, weight, 0.21 kg.

W + w
in Kg.

Static Kinetic

F in Kg. Coeft. F in Kg. Coeft.

0.71 0.26 0.36 0.20 0.28

1.21 .47 .38 .33 .27

1.71 .58 .34 .38 .22

2.21 .88 .40 .53 .24

2.71 .87 .32 .70 .26

3.21 .96 .30 .72 .22

3.71 1.41 .38 .93 .25

4.21 1.47 .35 1.18 .28

4.71 1.51 .32 1.08 .23

5.21 1.94 .37 1.30 .25

Average

.

. . 0.35 0.25

136. The Laws of Friction. From the results in the table

above we deduce

(1) The limiting friction varies directly as the normal force

(often called the thrust) between the surfaces in contact.

(2) The static coefficient is considerably greater than the

kinetic coefficient of friction; or the friction at starting is

greater than when uniform motion is maintained.

Next, take a block of the same material of different area,

either larger or smaller. We find that the force required to

cause motion in the case of a given value of W is the same as

before, and we conclude that

(3) The limiting friction is independent of the extent of

the surfaces in contact.
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In this case the pressure per square inch is different but the

total force of the block upon the board is the same as before

when the area of the block was different.

There is another law which we cannot investigate with

this apparatus but which is important. It is as follows:

(4) For moderate speeds the friction is independent of the

rate of motion.

This means that whether a machine is running rapidly or

slowly the friction of the rubbing surfaces is approximately

the same. However, this law is only approximately correct

since, in general, friction with high speed is less than with

slow speed of the moving surfaces. Thus when the engine

driver sets the brakes on a train moving 60 miles per hour,

the ‘grip’ on the wheels is not so powerful as when the speed

is reduced to 20 miles or less per hour.

137. Meaning of Coefficient of Friction (Static). In the

experiments described in Sections 135 and 136, the surfaces

were being pressed together by the pull of gravity on the block

and its load. If we were to place the block against a vertical

plane, however, the force of gravity would no longer be

effective in holding the surfaces together to cause friction.

For friction to exist in this case, the block would have to be

pressed against the plane by some other force.

In every case, however, the

coefficient of friction is the ratio

of the limiting friction to the

normal force between the two

surfaces.

138. Another Method of

Determining the Coefficient of

Friction. Place the block with

its load upon the board and

slowly raise one end of the

board until the block slides

B

Fig. 132.—Finding the coefficient of
friction with the inclined plane.
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down with uniform motion, the board being tapped to allow the

block to start freely. Let the inclination be 0 degrees (Fig. 132).

Consider the forces acting on the block and producing

equilibrium when the block is just on the point of moving.

We have

(1) W the weight of the block acting vertically downwards

along OA .

(2) R the normal reaction of the board acting along OB.

(3) F the force of friction acting along OC.

Resolving W along the board and at right angles to it and

applying the conditions of equilibrium,

F = TF cos (90 — d),

= W sin d.

R = W cos d.

But R is equal to the normal force or thrust between the

block and the board.

Hence coefficient of friction = ^ = tan 6>
R Tr cos 0

Now measure the inclination with a protractor and the

tangent of the angle = the coefficient of friction.

The tangent of the angle 6 can also be found by measuring

the height CE and the horizontal distance DE, since tan 6 =
ECIDE.

The angle 6 is called the angle of friction or the angle of

repose.

Example.—Pine on Pine. By experiment it is found that 6 = 14°.

From the mathematical tables (see page 378) tan 14° = 0.25 = coeffi-

cient of friction.

139. Magnitude of the Coefficients of Friction. Since the

surfaces of the bodies rubbing together are continually

changing, the following values of the coefficients of friction

must be considered as only roughly approximate

:
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Table of Coefficients of Friction

Wood on wood, dry 0.25 to 0.50
“ “ “ soapy 0.20

Metals on oak, dry 0.50 to 0.60
“ " “ soapy 0.20

Leather on oak 0.27 to 0.38

Metals on metals, dry 0.15 to 0.20
“ “ “ wet 0.30

Iron on stone 0.30 to 0.70

Wood on stone 0.40

The familiar stone-boat (Fig. 133) is made of wood or iron

turned up in front, and is used for transporting stones, a barrel

of water or perhaps a plough from one part of the farm to

another. When drawn over a dirt road the coefficient of

friction is from 0.5 to 0.7. This is a large fraction of the

weight, but yet the stone-boat is found useful for such jobs

as those mentioned.

Fig. 133.—A stone-boat.

In launching a ship an abundance of soft soap is placed on

the wooden ways down which the wooden cradle carrying the

ship slides. From the above table the coefficient in this case

is seen to be 0.20, which = tan 11^°. Hence, if the ways

make this angle with the horizontal the ship will slide down

of itself when once the statical friction at starting has been

overcome.

140. Rolling Friction. The resistance experienced by a body

when rolling upon a surface is called rolling friction although

in nature it is quite different from the resistance due to sliding.
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Rolling friction is much smaller in magnitude than sliding

friction. One may not be able to slide a heavy box over the

floor and yet may move it without difficulty if rollers are put

under it.

Consider the rolling of a

wheel on a soft substance

like india-rubber; it does

not simply touch it (Fig.

134a) but sinks down, making a hollow with a mound on each

side (Fig. 1346). As the wheel moves forward the mound
behind practically disappears, but that in front continues

there, and indeed is somewhat larger than when the wheel is

at rest. The wheel is all the time trying to climb out of the

hollow but it never succeeds in doing so.

In the case of hard substances, like steel, the mound is small,

but it exists, never-

theless; and indeed

under a heavy load

the wheel itself is

slightly flattened. An
examination of rail-

way tracks will give

sufficient proof of the

deformation of steel

under heavy loads.

The indentation in

the surface can be re-

duced by increasing

the diameter of the

wheel and by widen-

ing its tire. As self-

binders and farm
tractors have to pass —Front wheel of an automobile equipped

' with tapered roller bearings.

over soft soil their

driving wheels are large and broad.

Fig. 134.—Illustrating rolling friction.
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In the ball bearings and roller bearings now so commonly
used in automobiles and other high-class machines the surfaces

in contact are made very hard, thus reducing the rolling

friction. In Fig. 135 is shown the front wheel of an auto-

mobile equipped with roller bearings, while Fig. 136a illus-

trates a well made ball bearing.

It is to be noted, however, that while an ordinary carriage

wheel rolls over the ground, there is sliding friction in the

hub—at the point C in Fig. 1366.

141. Lubrication. The amount of friction can be greatly

reduced by lubricating the surfaces in contact. The oil or

other substance used forms a thin film between the surfaces

and in place of one solid rubbing upon another one layer of

liquid moves over another and there is much less friction.

142. Utility of Friction. But we must not think of friction

simply as a waster of energy and an unmixed evil. As a

matter of fact we make great use of it.

If it were not for friction we could not drive pulleys by
means of belts, and nails and screws would be useless. Thread

and yarn would not hold together and textiles could not be

woven. The experience of walking on smooth ice or on a

polished floor suggests the difficulty of moving about if

friction were altogether absent. Drivers of automobiles on

Fig. 136a.—Ball bearing. A,
inner race which fits on axle.
B, outer race, which fits inside hub.

Fig. 136 6.—Section through
a carriage hub, showing an ordin-
ary bearing.
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slippery streets have good reason to appreciate the value of

friction as an aid to locomotion.

143. Examples. 1. A mass of 20 lb. resting on a rough horizontal plane

is on the point of moving when acted upon by a force which makes an angle

of 30° with the plane. If the coefficient of friction is 0.2, find the force.

In the diagram (Fig. 137) P is the applied force, F is the force of friction

and R is the normal reaction of the plane on the body.

Resolving P vertically and hori-

zontally and applying the condi-

tions.of equihbrium,

F = P cos 30°, F

or ^ = (1)

R + P cos 60° = 20,

^ P Fig. 137.—Friction on a horizontal
or P + - = 20 (2) surface.

Since the coefficient of friction = 0.2,

F = 0.2 P, or P = P/5, or P = 5P (3)

Substituting this value of P in (2),

But

Hence

or

5P -f
2
= 20.

F = P.
V3

P =
40

5V3 + 1

40 (5v/3 - 1)

74
4.14 pd.

2. A mass of 10 lb. rests on a rough plane inclined at an angle of 30°

to the horizon. What force must be apphed parallel to the plane so that

the body may be on the point of moving up the plane, the coefficient of

friction being 0.25. \

In the diagram (Fig. 138) P is the

applied force, F is the force of

friction, acting down the plane

since the body is on the point of

moving up the plane, and P is the

normal reaction of the plane.

Resolving along the plane and at

right angles to it.

J0\

\

Fig. 138—Friction i

'lOpd.

on an inclined plane.
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R = 10 cos 30°, or R = 5V3
P = F + 10 cos 60°, or P = F + 5

( 1 )

(2)

Also, since the coefficient of friction = 0.25,

F = 0.25 P, or F = P/4 (3)

From (1) and (3)
4

Substituting this value of F in (2)

P = 5 (VS 4- 4)

4
= 7.165 pd.

QUESTIONS AND PROBLEMS

1. Explain the utility of friction in

(a) Locomotive wheels on a railway track.

(b) Leather belts for transmitting power,

(c) Brakes to stop a moving car.

2. The current of a river is less rapid near its banks than in mid-

stream. Can you suggest a reason for this?

3. What horizontal force is required to drag a trunk weighing 150

pounds across a floor, if the coefficient of friction between trunk and floor

4. Give two reasons why it is more difficult to start a heavily-laden

cart than keep it in motion after it has started?

5. A brick, 2x4x8 inches in size, is slid over ice. Will the distance

it moves depend on what face it rests upon?

6. A mass of 10 pounds rests on a rough horizontal plane. If the

coefficient of friction is 0.2, find the least horizontal force which will move
the mass. Find also the reaction of the plane. (The reaction is the resultant

of the normal reaction and the force of friction).

7. A force of 5 pounds is the greatest horizontal force that can be

applied to a mass of 75 pounds resting on a rough horizontal plane without

moving it. What is the coefficient of friction?

8. A mass of 10 pounds is resting on a rough horizontal plane, and is

on the point of moving when acted on by a force which makes an angle of

45° with the plane. If the coefficient of friction is 0.5, find the force.

9. A body resting on a rough horizontal plane is on the point of moving

when acted on by a force equal to one-half its own weight inclined to the

plane at an angle of 30°. Find the coefficient of friction.

is 0.3 ?
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10. A body placed on a rough plane is just on the point of sliding down

when the plane is inclined to the horizon at an angle of (1) 60°, (2) 45°,

(3) 30°. What is the coefficient of friction in each case?

11. A body placed on a rough inclined plane is on the point of sliding

when the plane rises 3 feet in 6 feet measured along the slope. What is the

coefficient of friction?

12. A mass of 20 lb. rests on a rough plane inclined at an angle of 30°

to the horizon. What force must be applied parallel to the plane that it

may be on the point of moving up the plane, the coefficient of friction

being 0.1?

13. A body, the mass of which is 30 lb., rests on a rough inclined plane,

the height of the plane being 3/5 of its length. What force must be

applied to the body parallel to the plane that it may be on the point of

moving up the plane, the coefficient of friction being 0.75?

14. The load on the driving wheels of a locomotive is 60 tons and the

coefficient of friction between rails and wheels is l/6. What is the

greatest force the locomotive can exert? If its entire mass is 75 tons,

what is the greatest speed it can give to itself in 10 sec.?

15. A mass of 14 lb. when placed on a rough plane inclined to the

horizon at an angle of 60° slides down unless a force of at least 7 pounds

acts up the plane. What is the coefficient of friction?

16. A mass of 20 lb. is on the point of moving up a rough plane inclined

to the horizon at an angle of 45° when a horizontal force is applied to it.

Find the horizontal force, if the coefficient of friction is 0.1.

17. A body, the mass of which is 4 lb., rests in limiting equilibrium

when the inclination of the plane to the horizon is 30°. Find the force

which, acting parallel to the plane, will support the body when the inclina-

tion of the plane to the horizon is 60°.

18. A body placed on a rough plane inclined to the horizon at an angle

of 30° is just on the point of moving upward when acted upon by a horizon-

tal force equal to its own weight. Find the coefficient of friction.

19. If the smallest horizontal force which will move a mass of 3 lb. along a

horizontal plane is \/3 pounds, find the greatest angle at which the

plane may be inclined to the horizon before the mass begins to slide.

20. An automobile weighing 3500 lb. climbs a hill rising 1 in 7 at 30 mi.

per hr. If the coefficient of friction is 0.01, find the horse-power developed.

21. Show that in order to relieve a horse in drawing a sleigh the traces

should be so inclined as to make the angle of friction with the ground.



CHAPTER XV

Centre of Gravity

144. A Unique Central Point in Every Body. The meaning

of centre of gravity has already been briefly explained (Sec.

118) ;
it is discussed more fully in the present chapter.

When one side of a carriage is somewhat lower than the

other we experience an uncomfortable sensation, as we know
that there is a definite position beyond which we must not go

or the carriage will upset.

Next, consider a rectangular block of wood, or a brick,

resting on a fiat surface. Gradually raise one side until the

middle point of the block is just over the line along which it

touches the surface. This is a critical position, and if the body
is turned any more it will topple over on another face. Try
with the new face. When the central point gets beyond the

line of support, over the block falls to a new position of rest.

Again, push a book or a piece of board slowly over the edge

of a table. It rests safely on the table until it reaches a cer-

tain definite position, when it is seen to totter, and if pushed

any farther it falls. When in the tottering position draw a

line on the underside along the edge of the table. Now turn

the object about and push it over the edge again, drawing

another line when it is in its critical position. Repeat this

several times and then look at the lines drawn. They all meet

very approximately in a point, and thus it is seen that as soon

as that particular point gets beyond the line of support the

body falls over into a new position.

Our everyday experience leads us to believe that there is a

unique central point in a body, and if that point goes beyond

a certain position the body moves over into a new position of

rest.

196
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146. Experiments with a Thin Flat Body. Support an

irregular-shaped sheet of metal, or a piece of cardboard, at A
(Fig. 139a), by hanging it on a pin or in some other convenient

way. Have a cord attached to the pin, with a small weight on

the end of it. Chalk the cord

and snap it on the plate, thus

making a straight white line

across it. Next support the

body at B (Fig. 1396), and

obtain another chalk line. Let

it cut the first line at G.

Support the plate at other

places and get other lines on

it. All the lines cut at a single

point—the point G—which must be a unique point in the

plate.

Now try to balance the plate on the end of a finger. You
find the plate balances if it is supported at G. But it is simply

the weight of the plate that the finger has to overcome, and

we conclude, then, that the entire weight of the body may
be considered as concentrated at a point. This point is

called the Centre of Gravity of the body. The abbreviation

C.G. will be used for Centre of Gravity.

146. Composition of Forces due to Gravity. A body con-

sists of a very great number of

particles, and according to the

principle of Universal Gravitation

the earth attracts every particle

with a force which we call its

weight. The lines of action of these

forces are directed to the centre of

the earth, but since that point is

4000 miles away the directions of

the forces may be taken to be

parallel.

Fig. 140.—The weight of a body
acts at its centre of gravity.

gravity of a flat body.
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These forces will have a single resultant acting at a definite

point fixed in the body as can fie seen in the following way:

The two forces Fi, F 2 ,
acting on particles at A, 5 (Fig, 140),

will have a resultant, Fi + F 2 ,
acting at a point in AB so

situated that the moment of Fi about the point equals' the

moment of F 2 about the point. Further, if the body moves
into another position the magnitude and point of action of this

resultant will be unchanged. (Sec. 119).

Next, combine this resultant with a third force Fz, and

obtain the point of action of Fi + F 2 + Fz, the resultant of the

three forces.

Then combine this resultant with a fourth force; and con-

tinuing in this way we at last reach a single resultant of all

the forces acting at a definite point in the body.

The sum of all these separate forces is the weight of the

body and the point of application of the resultant force is

the centre of gravity of the body.

147. To Find the Centre of Gravity of a Body of any Form.

Suspend the body by a cord attached to any point A (Fig. 141)

in it. Then there are two forces acting on the body, namely,

the weight acting downwards at G and the

tension of the string acting upwards at A.

These are equal in magnitude and form a

couple. They cause the body to rotate until G
is directly beneath A, in which case the line

of action of the weight coincides with the

direction of the string, and the tension of the

string will just balance the weight of the

body. The body will then be in equilibrium.

Thus, if the body is suspended at A and

allowed to come to rest the direction of the

supporting string will pass through the centre

of gravity.

Next attach a cord at B and hang up the body as before.

Fig. 141.—How to
find the centre of
gravity of a body of
any form.
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The direction of the cord will again pass through the C.G.;

that point, therefore, will be where the two lines intersect.

This experimental method may be employed to determine

the C.G. of any kind of body at all, and indeed in many cases

it is the only available method. But when the body is of

simple form it is often easy to determine the position of the

C.G. from geometrical considerations. (Sec. 150).

148. Centre of Gravity of Weights on a Rod. Let AB
(Fig. 142) be a light rod, of negligible weight and 40 cm. long,

[lOkg.

Fig. 142.—To find centre of gravity of three weights in a straight line.

with 1 kg. at A, 4 kg. at C, 30 cm. from A, and 5 kg. at B
(Fig. 142). We have to find the C.G. of the system.

Let the centre of gravity be at G, x cm. from A.

Then for the three weights, 1, 4, 5 kg. at A, C, B, respec-

tively, we can substitute their sum 10 kg. at the C.G. Now
if we apply an upward force of 10 kg. to the rod at G the rod

will be in equilibrium. Since the rod is in equilibrium the

sum of the clockwise moments about any point is equal to the

sum of the contra-clockwise moments about the same point.

Taking the point A as our imaginary turning point, we have

the following equation of equilibrium:

lOx = 1x0 + 4x 30 + 5x 40,

= 320;

whence x = 32 cm.

(To the student: G might appear a more natural turning point. If G is

taken, however, difficulty will be encountered in determining which

moments are positive and which are negative, since the exact location of G
is not known.)
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PROBLEMS

1. Masses of 2 lb., 4 lb., 6 lb., 8 lb., are placed so that their centres of

gravity are in a straight line, and six inches apart. Find the distance of

their common centre of gravity from that of the largest mass.

2. Two masses of 6 lb. and 12 lb. are suspended at the ends of a uniform

horizontal rod, whose mass is 18 lb. and length 2 ft. Find the centre of

gravity.

3. A uniform rod, 1 ft. in length and mass 1 oz., has an ounce of lead

fastened to it at one end, and another ounce fastened to it at a distance

from'the other end equal to one-third of its length. Find the centre of

gravity of the system.

4. Four masses of 3 lb., 2 lb., 4 lb., and 7 lb., respectively, are at

equal intervals of 8 in. on a lever supposed weightless, 2 ft. in length.

Find where the fulcrum must be, in order that they balance.

5. A uniform bar, 3 ft. in length and of mass 6 ounces, has three rings,

each of mass 3 ounces, at distances 3, 15 and 21 in. from one end. About
what point of the bar will the system balance?

6. A ladder, 50 ft. long and of mass 100 lb., is carried by two men; one

lifts it at one end, and the other at a point 2 ft. from the other end. The

first carries two-thirds of the weight which the second does. Where is the

centre of gravity of the ladder?

7. A pole, 10 ft. long and mass 20 lb., has a mass of 12 lb. fastened

to one end. The centre of gravity of the whole is 4 ft. from that end.

Where is the centre of gravity of the pole?

8. Four masses, 1 lb., 4 lb., 5 lb., and 3 lb., respectively, are placed

2 ft. apart on a rod 6 ft. long, whose mass is 3 lb. and centre of gravity

2 ft. from the end at which the 1 lb. is placed. Find the centre of gravity

of the whole.

9. A cylindrical vessel whose mass is 4 lb. and depth 6 in. will just

hold 2 lb. of water. If the centre of gravity of the vessel when empty is

3.39 in. from the top, determine the position of the centre of gravity of

the vessel and its contents when full of water. (Think of the vessel as

lying on its side, when taking moments.)

10.

A cylindrical vessel, without lid, one foot in diameter and one foot

in height, is made of thin sheet metal of uniform thickness. If it is half

filled with water, where will be the common centre of gravity of the

vessel and the water, assuming the mass of the vessel to be one-fifth the

mass of the contained water?
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11. A uniform iron bar weighs 4 pounds per foot of its length. A weight

of 5 pounds is hung from one end and the rod balances about a point which

is 2 ft. from that end. Find the length of the bar.

149. Centre of Gravity of Weights in a Plane. The method

of moments may be applied to

masses distributed over a

plane.

Let ABCD (Fig. 143) be a

uniform square board with

sides 26 inches long and of

mass 8 lb., and let masses 4, 6,

5, 3 lb. be placed at the cor-

ners A, B, C, D. We wish

to find the C.G. of the system.

Let the C.G. be at G, and be x inches from AD and y inches from DC.
The total mass = 26 lb. If, then, we apply an upward force of 26 pd. at G
we shall obtain equilibrium.

First, think of the board as being hinged along the line AD.

Taking moments about AD, the masses 4 and 3 are on the line AD and

give no moments about AD.

Moment of 6 = 6 X 26 = 156

Moment of 5 = 5 X 26 = 130

Moment of board == 8 X 13 = 104

Moment of whole = 390

But moment of whole = 26 X :r = 26 x

Therefore 26 x = 390,

and a; = 15 inches.

Next, think of the board as being hinged along the line DC.

Taking moments about DC,

Moment of 4 = 4 X 26 = 104

Moment of 6 = 6 X 26 = 156

Moment of board = 8 X 13 = 104

Moment of whole = 364

But moment of whole = 26 X y = 26 ?/.

Therefore 26 y = 364,

and y = 14 inches.

Hence, the C.G. is at G, 15 in. from AD and 14 in. from CD.
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In this example moments were taken about AD and DC, but

any other lines might be chosen. As an exercise, solve the

problem by taking moments about BC, CD.

PROBLEMS

1. Masses of 1, 1, 1 and 2 lb., are placed at the angular points of a square.

Find the position of their centre of gravity with reference to the 2-lb. mass.

2. Masses of 2 lb., 1 lb., 2 lb., 3 lb., are placed at A, B, C, D respectively,

the angular points of a square. Find the distance of the centre of gravity

from the centre 0.

3. Masses of 1, 4, 2, 3 lb., are placed at the corners A, B, C, P of a

rectangle; a mass of 10 lb. is also placed at the intersection of the diagonals.

If AJ5 = 7 in. and BC = 4 in., find the distance of the centre of gravity

of the whole from A.

4. At the angular points of a square, taken in order, there act parallel

forces in the ratio 1 : 3 : 5 : 7. Find the distance from the centre of the

square of the point at which their resultant acts.

5. Masses 5, 7, 10 are placed at three angles of a square whose

sides are 4 ft. Find the distance of their centre of gravity from 5.

6. Three masses 3, 4, 5 lb. are placed at the angles of an equilateral

triangle whose sides are 12 inches. Find the distance of the centre of

gravity of the whole from the least mass.

7. ARC is a triangle right-angled at A, AB being 12 and AC 15 inches

in length. Masses in the ratio 2:3:4 are placed at A, C, and B respec-

tively. Find the distances of their centre of gravity from B and C.

8. Prove that the centre of gravity of an equilateral triangular lamina

coincides with that of three equal masses placed at its angular points.

150. Centre of Gravity of Simple Geometrical Figures.

(1) A uniform straight bar. For a uniform straight bar AB

g g
seems evident that the

... ‘ vj C.G. is at its mid-point.

Fig. 144.—Centre of gravity We may, however. Consider it as
of a uniform rod.

^

made up of equal particles uni-

formly distributed from one end to the other. The C.G. of

equal particles at A and B will be half-way between, at G.

In the same way the C.G. of the particles next to A and B
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will be at G; and continuing in this way we find the C.G. of

all to be at G.

(2) A uniform parallelogram. This may be considered as

made up of uniform thin rods, such as LM, parallel to the

side Ai? (Fig. 145). The C.G.

of LM is at its mid-point g,

and the mid-points of all such

rods will be on a line EF,
mid-way between the sides

AD, BC. The C.G. of the

parallelogram is evidently in

this line.

In the same way we may
consider the parallelogram

as made up of uniform rods parallel to AD, and the C.G. of

each will be on the line KH, midway between AB, DC) and

the C.G. of the parallelogram will be somewhere in KH.

Hence, the C.G. of the parallelogram is where EF and KH
intersect, that is, at G. This is the geometrical centre of the

parallelogram, and is where the diagonals meet.

(3) A triangular plate. The plate may be considered to

be made up of a series of thin rods like LM, parallel to the

side BC (Fig. 146), and the C.G. of each rod is at its mid-point

g. The median line AE (that is, the line joining A to the

mid-point of the opposite side BC) bi-

sects all such rods, and hence the C.G.

of the triangle is on this line.

In the same way it can be shown that

the C.G. is on the median line BE and
also on the median line CD. Conse-

quently it must be at G where these

three lines intersect.

^ , ,
From geometry we know that EG -

Fig. 146.—Finding the
, ^ i i

centre of gravity of a triangle. ^ EA, DG = 3 DC and FG = ^FB.

Fig. 145.—Finding the centre of
gravity of a parallelogram.



204 CENTRE OF GRAVITY

(4) Other geometrical forms. It may be of interest to know
the positions of the C.G. in some familiar geometrical forms.

The C.G. of a pyramid or a cone is on the line joining the

vertex to the C.G. of the base and one-fourth of the way up.

The C.G. of a solid hemisphere is f of its radius from the

flat face, that is, from its geometrical centre. The C.G. of

a hemispherical shell is half-way between centre and circum-

ference.

151 . Example. In Fig. 147 ABCD is a rectangle whose middle point is

E. The sides AB and BC are 6 in. and 4 in. long, respectively. If the

triangle BEC is removed, find the centre

of gravity of the remainder.

Let F and H be the middle points of

AD and BC, respectively.

Since the figure ABECD is symmetrical

with respect to FH, it is evident that the

C.G. lies somewhere on this line. Let G
be the C.G.

The C.G. of the rectangle ABCD is at E
and the C.G. of the triangle EEC is at K
where HK = 1 in. (Sec. 150).

Taking AD as an imaginary axis of rotation, it is evident that the

moment of the triangle BEC about AD -{-moment of ABECD about

AD = moment of rectangle ABCD about AD.

The masses of these figures are proportional to their areas. Let m =
mass of the triangle BEC and let FG = x. We have then as our equation

of moments,

m X 5 -{- 3m X x = 4m X 3,

whence x = 2^ in.

PROBLEMS

1. An isosceles triangle has its equal sides of length 5 cm. and its base

of length 6 cm. Find the distance of the centre of gravity from each of

the angular points.

2. If the angular points of one triangle lie at the middle points of the

sides of another, show that the centres of gravity of the two are coincident.

3. The equal sides of an isosceles triangle are 10 ft.; and the base is 16

ft. in length. Find the distance of its centre of gravity from each of the

sides.

Fig. 147.—Finding the C.G.
of ABECD.
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4. The sides of a triangle are 3, 4, and 5 ft. in length. Find the distance

of the centre of gravity from each side.

5. The sides of a triangular lamina are 6, 8, and 10 ft. in length. Find

the distance of the centre of gravity from each of its angular points.

6. The sides AB, AC of a triangle ABC, right-angled at A, are respec-

tively 18 and 12 in. long. Find the distance of the centre of gravity

from C.

7. An equilateral triangle is described upon one side of a square whose

side is 16 in. Find the distance of the centre of gravity of the figure so

formed from the vertex of the triangle, the vertex being without the square.

8. The length of one side of a rectangle is double that of an adjacent

side, and on one of the longer sides an equilateral triangle is described

externally. Find the centre of gravity of the whole.

9. A piece of cardboard is in the shape of a square ABCD with an

isosceles right-angled triangle described on the side R C as hypotenuse.

If the side of the square is 12 in., find the distance of the centre of

gravity of the cardboard from the line AD.

10. An isosceles right-angled triangle is described externally on the side

of a square as hypotenuse. Find the centre of gravity of the whole figure.

11. A square is described on the base of an isosceles triangle. What is

the ratio of the altitude of the triangle to its base when the centre of

gravity of the whole figure is at the middle point of the base?

12. AR CD is a square whose middle point is E and whose side = a. If

the triangle ECD is removed, find the centre of gravity of the remainder.

13. E and F are the middle points of the sides AB, AC of an equilateral

triangle ABC. If the portion AEF is removed, find the centre of gravity

of the remainder.

14. ABCD is a square, 0 its centre, E and F the middle points of AB.
AD. If ARE is cut away, find G, the centre of gravity of the remainder,

15. From a square piece of paper ABCD a portion is cut away in the

form of an isosceles triangle whose base is AR and altitude equal to one-

third AB. Find the centre of gravity of the remaining portion.

16. ABCD is a rectangle, E the middle point of CD', the triangle ADR
is cut away. Find the centre of gravity of the remainder.

162. The three States of Equilibrium. The centre of gravity

of a body will always descend to as low a position as possible,

since the potential energy of a body tends to become a

minimum.



206 CENTRE OF GRAVITY

Consider a body in equilibrium, such as the cone A (Fig.

148), and suppose that by a slight motion this equilibrium is

disturbed. Then, since the body tends to return to its former

position, its equilibrium is said to be stable. In this case the

slight motion raises the centre of gravity, and on letting it go

the body tends to return to its original position.

If, however, a slight disturbance lowers the centre of gravity,

as in B (Fig. 148), the body will not return to its original

position, but will take

up a new position in

which the centre of

gravity is lower than be-

fore. In this case the

equilibrium is said to be

unstable.
Fig. 148.—Stable, unstable and neutral equili-

brium illustrated by a cone. Sometimes a body,

such as a cone resting on

its curved surface, (C Fig. 148), rests equally well in any posi-

tion in which it may be placed. In this case the equilibrium is

said to be neutral.

An egg standing on end is in unstable equilibrium; if rest-

ing on its side, the equilibrium is stable as regards motion in

an oval section and neutral as regards motion in a circular

section (Fig. 149). A uniform sphere rests anywhere it is

placed on a level surface; its

equilibrium is neutral.

A round pencil lying on its side

is in neutral equilibrium; balanced

on ifc! pnH if 1 C! nncif hViIp A piiItp Fig* 149. An egg in stable, un-on IDS ena, ll is unsiaoie. a cuoe, neutral equilibrium.

or a brick, lying on a face, is stable.

The degree of stability possessed by a body resting on a

horizontal plane varies in different cases. It increases with

the distance through which the centre of gravity has to be

raised in order to make the body tip over. Thus, a brick
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lying on its largest face is more stable than when lying on its

smallest.

153. Condition for Equilibrium. In the case of a body

resting on a surface there are two forces acting on the body,

—

(i) The weight of the body acting vertically downwards

through its centre of gravity;

(ii) The reaction of the surface, which is the resultant of the

various forces upwards exerted by the surface upon the body.

If the body is in equilibrium it is

evident that these two forces must

be equal in magnitude and must

act in the same line but in opposite

directions.

Consider the body in Fig. 150.

The reaction of the surface on

which it is resting acts upwards

somewhere within the area of the

base. This area is called the sup-

porting base. If the centre of gravity of the body is at (ri, then

the vertical line through the centre of gravity falls within the

supporting base and the body is in stable equilibrium. For if

the body is tipped slightly in a clockwise direction about the

point A, the weight of the body, acting vertically downwards
through Gi, produces a contra-clockwise moment which tends

to restore the body to its original position when it is released.

If, however, the centre of gravity is at (j 2 ,
the weight of the

body acting vertically downwards through G 2 produces an

unbalanced clockwise moment which makes the body topple

over.

If the centre of gravity is at G3 ,
vertically above A, the

body will be jusi on the 'point of toppling.

Consider the stool C in Fig. 151. The reactions of the surface

are at the points where the feet rest on the surface, and the

resultant of these reactions must be a single force within the

Fig. 150.—If the C.G. is at O,,
the body is stable, if at G2 , the
body will topple over.
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area formed by a cord drawn closely about the legs. The
stool is in stable equilib-

rium because a vertical line

through its centre of

gravity falls within the

supporting base.

This is seen to be the fiq. i5i.—a and c are in stable equilibrium;
, . . 5 is not, it will topple over.

case also in A (Fig. 151),

but it is not so in B, and consequently the cylinder B will

topple over.

In Fig. 152 both the

rectangle in A and the

wagon in B are in the

critical position since the

vertical lines from their

respective centres of

Fig. 152.—The rectangle in ^ and the wagon in gravity are just paSSing
B are just on the point of toppling over.

i i i i •

through the boundaries of

the supporting bases.

We see then that a body in stable

equilibrium may be tipped without

toppling over, until the vertical line

through its C.G. just passes through

the boundary of the supporting base.

The famous Leaning Tower of Pisa (Fig.

153) is an interesting case of stability of

equilibrium. It is circular in plan, 51 feet

in diameter and 172 feet high, and has eight

stages, including the belfry. Its construction

was begun in 1174. It was founded on

wooden piles driven in boggy ground, and

when it had been carried up 35 feet it began

to settle to one side. The tower overhangs

the base upwards of 13 feet, but the centre

of gravity is so low down that a vertical

through it falls within the base and hence

the equilibrium is stable.

Fig. 153.—The Leaning Tower
of Pisa. It overhangs its base
more than 13 feet, but it is stable.
(Drawn from a photograph.)
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QUESTIONS AND PROBLEMS

1. Why is a pyramid a very stable structure?

2. Why is ballast used in a vessel? Where should it be put?

3. Why should a passenger in a canoe sit on the bottom?

4. A pencil will not stand on its point, but if two pen-knives are fasten-

ed to it (Fig. 154) it will balance on one’s finger. Explain why this is so.

5. If a heavy uniform lamina, in the shape of an equilateral triangle,

is suspended from any of its angles, show that the opposite

side is always horizontal.

6. If a right-angled triangle is suspended from either

of the points of trisection of the hypotenuse, show that it

will rest with one side horizontal.

7. The wheels of a hay cart are 5 ft. apart and the

centre of gravity of the cart and load is 6 ft. above the

ground and midway between the wheels. How much
could either wheel be raised without the cart falling over?

8. How many coins of the same size, having the thick-

ness the diameter, can stand in a cylindrical pile on an

inclined plane of which the height is -g- the base, if there is

no slipping?

9. A number of cent pieces are cemented together so that each just

laps over the one below it by the ninth part of its diameter. How many
may be thus piled without falling?

10. A square table, whose mass is 10 kg., stands on four legs placed

respectively at the middle points of its sides. Find the greatest mass

which can be put at one of the corners without upsetting the table.

11. A circular table, of mass 50 lb., rests on three legs attached to

three points in the circumference at equal distances apart. When the

table rests on a horizontal plane what is the least mass which when placed

on it will be on the point of upsetting it?

12. A brick is laid with a quarter of its length projecting over the edge

of a wall; a brick and a quarter are laid on the first with a quarter of its

length over the edge of the first brick; a brick and a half laid on this and
so on. Prove that four such courses can be laid, but that if the fifth

course is added the mass will topple over.

Fig. 154.—
Why is the pen-
cil in equili-

brium?



CHAPTER XVI

Machines

154. Object of a Machine. It is frequently necessary to

raise the axle of an automobile in order to renew a tire, and
everyone knows how easy this is when you have a suitable

machine.

Or perhaps a barrel of oil or of flour is to be loaded on a

wagon. It is too heavy to lift, but it can easily be put in

place by rolling it up a plank.

Again, an electric current may be at your disposal. By
suitable contrivances you can make it sew your clothes or

separate the cream, or print the newspaper, or do a thousand

other tasks.

In each case we use a suitable machine, and the function of

the machine is to transfer energy from one place to another,

or transform it from one kind to another.

The six simple machines, usually known as the mechanical

powers, are the lever, the pulley, the wheel and axle, the

inclined plane, the wedge and the screw. All other machines,

no matter how complicated, are only combinations of these.

Since energy cannot be created or destroyed, but is simply

changed from one form to another, it is evident that, neglecting

friction, the amount of work put into or done upon a machine

is equal to the amount which it will perform. Furthermore,

since in every machine which man can make some friction is

unavoidably present, it is clear that more work must be done

in driving the machine than will be its output. Many attempts

have been made to invent a machine which will continue

to deliver as much work as is spent upon it, and indeed

sometimes more work has been expected from a machine

than has been spent upon it. Such attempts have always

210
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failed, and if the law of Conservation of Energy is true such

efforts cannot possibly succeed. If there is only five gallons

of gasoline in your tank, that is all you can use,—unless you

put more in. It is the same with stores of energy.

The efficiency of a machine is the ratio of the output to

the input, usually expressed as a percentage.

155. The Lever; First Class. The lever is a rigid rod

movable about a fixed axis called the fulcrum. Levers are

of three classes.

In Fig. 155 is shown

a lever of the first

class. By applying a

force P at A a force

sufficiently great to

balance the force W is

obtained at B, the

lever turning about the fulcrum F.

Fig. 155.—A lever of the first class. The fulcrum F is

between the applied force P and the weight lifted W.

The relation between the forces P and W follows from the

principle of moments, and it can be determined experimentally

as follows:

Lay a metre rod on a prism with the 50 cm. mark exactly

over the edge of the prism (Fig. 156). If it does not balance

add bits of lead or plas-

ticine to the lighter end

until it does. Put blocks

under the ends to reduce

the vibrations.

"s TTra
Fig. 156.—Investigating the law of the lever

of the first class.

Suspend a mass W from some graduation, noting its distance

from F. This distance BF is one arm of the lever, and the

product W X BF is the moment of W about P.

Move the mass P until it just balances W and note the

length of the arm AF. The moment of P = P X AF. Make
5 or 6 readings, changing masses and distances each time.
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Then compare the values of TF x BF and P X AF for each

set of readings. They will be found to be equal.

Applying this result to either figure we see that

Force obtained x its arm = Force applied x its arm,

Force obtained . i- ^ ^
or V = inverse ratio of length of arms.

Force applied

This is called the Law of the Lever, and the ratio W/P is

called the Mechanical Advantage.

Suppose, for instance, AF = 36 inches, BF = 4 inches.

Then W/P = AF/BF — 36/4 = 9, the mechanical ad-

vantage.

It is evident that the mechanical advantage of a lever of the

first class may be greater than, equal to, or less than 1 accord-

ing to the position of the fulcrum.

Fig. 157.—Shears, lever of the
first class.

There are many examples of levers of the first class. Among
them are the common balance, a pump handle, a pair of

scissors (Fig. 157), a claw-hammer (Fig. 158).

The law of the lever can be deduced by applying the principle of energy.

Suppose the end A (Fig. 159)

to move through a vertical dis-

tance a and the end B through a

vertical distance 6. It is evident

that

Fig. 159.—The principle of energy applied to a/6 = AiF/BiF = AF/BF.
the lever.

Now the work done by the force

P, acting through a distance a is P X a, while the work done on

raising W a distance 6 is IF X 6.
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Neglecting all considerations of friction or of the weight of the lever,

the work done by the applied force F must be equal to the work accom-

plished. P a = Wh,
- and the mechanical advantage W/P = a/h = AFjBF, which is the law

of the lever.

166. The Lever; Second Class. In levers of the second

class the weight to be lifted, or the resistance to be overcome,

is placed between the point where the force is applied and the

fulcrum.
\P B FA lever of this class is shown in i l . - -i-

Fig. 160. The force P is applied at

A, and the force obtained, or the

resistance overcone, is at B, be- fig. leo.—a lever of the second

tween A and the fulcrum F.

The law in this case can be determined experimentally as

follows:

Find the position of the centre of gravity P of a metre stick

by balancing it on the

adjustable knife-edge
shown in Fig. 161. Sup-

port it at this point.

Now attach a weight W
to the rod, noting its dis-

tance from the fulcrum F
Fig. 161.—Demonstrating the law for a lever and obscrve the reading P

of the second class. • . i

of the spring-balance when
the stick is horizontal. Make 5 or 6 readings, varying the

value of W and the point where it is placed.

Compare the products

P X AF and WxBF: they

will be found equal; and we
have, as in the first class.

Mechanical Advantage

W/P = AFIBF, a ratio

which is greater than 1.

P

Fig. 162.—Applying the principle of energy.
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If we apply the principle of energy we have (Fig. 162)

:

Work done by P = Pa; work done on IF = IF 6,

and these must be equal, or P a = IF 6.

Hence, IF/P = ajh — AiF/BiF = AF/BF, the law of the lever.

Examples of levers of the second class: nut crackers (Fig.

163), trimming board (Fig. 164), safety valve (Fig. 165),

wheel-barrow, oar of a row-boat.

Fig. 163.—Nut-crackers, lever of
the second class.

Fig. 164.—Trimming board for cutting paper
or cardboard

; a lever of the second class.

Fig. 165.—A safety-valve of a steam boiler. (Lever of the second
class). L is the lever arm, V the valve against which the force of
the steam acts, P the applied force which keeps the steam from
escaping, F the fulcrum.

167. The Lever; Third Class. In this case the force P is

applied between the fulcrum and the weight to be lifted.

(Fig. 166).

To investigate this ar-

rangement experimentally

the apparatus shown in

Fig. 167 may be used. A
wire loop is placed around

the metre stick at its

centre of gravity and is fastened to the table as indicated.

w
Fig. 166.—A lever of the third class.
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As before, compare the products P X AF and W X BF for

various values and positions of W.

These will be found to be equal, and

W/P = AFIBF, the law of the lever.

Notice that the weight

lifted is always less than

the force applied, or the

mechanical advantage is

less than 1.

Examples of levers of

this class: sugar-tongs

(Fig. 168), the human fore-

arm (Fig. 169); treadle of

a lathe or a sewing machine.

Fig. 168.—Sugar-tongs, lever
of the third class.

Fig. 167.—Demonstrating the law of the
lever of the third class.

Fig. 169.—Human forearm, lever
of the third class. One end of the
biceps muscle is attached at the
shoulder, the other is attached to
the radial bone near the elbow, and
exerts a force to raise the weight
in the hand.

PROBLEMS

1. Explain the action of the steel-

yards (Fig. 170). To which class of

lever does it belong? If the distance

from R to O is \\ in., and the shding

weight P when at a distance 6 in. from
the zero mark balances a mass of 5 lb. on
the hook, what must be the weight of P?

If the mass of the hook is too great

to be balanced by P, what additional

attachment would be required in order to weigh it?

2. A hand-barrow (Fig. 171), with the mass loaded on it, weighs
210 pounds. The centre of gravity of the barrow and load is 4 feet
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from the front handles and 3 feet from the back ones. Find the
amount each man carries.

3. To draw a nail

from a piece of

wood requires a

pull of 200 pounds.

A claw-hammer is

used, the nail being

1^ inches from the

fulcrum 0 (Fig.

158) and the hand
being 8 inches from

0. Find what force

the hand must exert

to draw the nail.

Fia. 171.—The hand-barrow. 4. A cubical block

of granite, whose

edge is 3 feet in length and which weighs 4500 lb., is raised by thrusting

one end of a crow-bar 40 inches long under it to the distance of 4 inches,

and then lifting on the other end. What force must be exerted?

5.

A wheelbarrow with its load (Fig.

172), weighs 120 lb.; the horizontal

distances of the handles and of the

C.G. of the loaded barrow from the

centre of the wheel are 4 ft. and 18 in.,

respectively. Find the force which

must be applied to each handle to lift

the legs of the barrow off the ground.
Fig. 172.—A wheel-barrow.

6. In the safety valve (Fig. 165) the distance from the fulcrum to the

valve is 4 in. and from the fulcrum to the weight 18 in. If the weight P
is 20 lb., what force must the steam exert to be just on the point of escaping?

7. In using the “triple-beam” balance shown in Fig. 173, the slider D
gives grams from 0 to 100 in steps of 10 gm.; E gives single grams from 0

to 10 and F centigrams from 0 to 100. The removable hangerG is equivalent

to 100 gm. added to the pan. AB measures 7.5 cm. and BC 25 cm.

(1) What must be the mass of the hanger G to balance 100 gm. placed

on the pan?

(2) If the slider D has a mass of 50 gm. how far must it be moved from

its zero position to balance 80 gm. placed on the pan? What must

be the distance between the 0 and 100 gm. marks?
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168. The Pulley. The pulley is used sometimes to change

the direction in which a force acts, sometimes to gain

mechanical advantage, and sometimes for both purposes.

The pulleys used in experiments should be of very light

construction and with well-made bearings, in

which there is little friction.

A single fixed pulley, such as is shown in

Fig. 174, can change the direction of a force

but cannot give a mechanical advantage greater

than 1. P, the force applied, is equal to the

weight lifted, W.

By this arrangement a lift is changed into a

pull in any convenient direction. It is often

used in raising materials during the construction

of a building.

Fig. 174.—

a

fixed pulley
simply changes
the direction of
force.



218 MACHINES

By inserting a spring-balance, S, in the rope, between the

hand and the pulley, one can show that the force P is equal

to the weight W.

In order to apply the principle of energy, suppose the hand
to move through a distance a, then the weight rises through

the same distance.

Hence, P x a = W x a,

or P = W,
as tested by the spring-balance.

If the friction is not negligible, pull on the balance until W
rises slowly and uniformly. Then the difference between the

weight W and the reading on the balance will give the mag-
nitude of the friction.

169. A Single Movable Pulley. Here the weight W (Fig.

175) is supported by the two portions B and C, of the rope.

Fig. 175.—With
a movable pulley
the force exerted is

only half as great
as the weight lifted.

Fig. 176.—With a
fixed and a movable
pulley the force

_

is

changed in direction
and reduced one-half.

Fig. 177.—
One fixed and
one movable
pulley. Usual
arrangement.

and hence each portion supports half of it.

Thus the force P, which is indicated by the balance S, is

equal to ^ W, and the mechanical advantage is 2.

This result can also be deduced from the principle of energy.

Let a be the distance through which W rises. Then each

portion, B and C, of the rope, will be shortened a distance a,

and so P will be applied through a distance 2a.
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Then, since P x 2a = W X a,

W/P = 2, the mechanical advantage.

For convenience a fixed pulley is generally used in addition

as in Figs. 176 or 177.

Here when the weight rises 1 inch, B and C each shorten 1

inch and hence A lengthens 2 inches. That is, P is exerted

through twice the distance through which W rises, and W/P =

2, as before.

160. Other Systems of Pulleys. To obtain greater

mechanical advantage

various combinations of

pulleys may be used.

Two are shown in Figs.

178, 179, the latter one

being very common. In

Fig. 178 the pulleys are

arranged in tandem
while in Fig. 179 they

are mounted side by

Y side as shown in greaterH detail in Fig. 180.

Here there are six Fig- familiar
combination for multiply-

portions of the rope sup- ‘“g 6 times,

porting W, and hence the tension in each portion is i W.
Hence, P = i IF,

or a force equal to i TF will hold up IF. This entirely neglects

friction, which in such a system is often considerable, and it

therefore follows that, to prevent IF from descending, less

than i TF will be required. On the other hand, to actually

lift IF the force P must be greater than i IF. In every case

friction acts to prevent motion.

Let us apply the principle of energy to this case. If IF rises

1 foot, each portion of the rope supporting it must shorten

1 foot and the force P will act through 6 feet.

Fig. 178.—Combina-
tion of 6 pulleys; 6
times the force lifted.
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Then, work done on W = W X 1 foot-pounds.
“ “ by P = P X 6

These are equal, and hence

TF = 6 P
or W/P = 6, the mechanical advantage

Fig. 180 .—Single, double and triple pulleys^

PROBLEMS

1. A clock may be driven in two ways. First, the weight may be

attached to the end of the cord; or secondly, it may be attached to a

Fig. 181.—The Fig. 182.—An easy method Fig. 183.—Find pressure
Spanish Burton. to raise one's self. of the feet on the floor.

pulley, movable as in Fig. 203, one end of the cord being fastened to the

framework, and the other being wound about the barrel of the driving

wheel. Compare the weights required, and also the length of time the

clock will run in the two cases.
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Find the mechanical advantage of the system shown in Fig. 181.

This arrangement is called the Spanish Burton.

Fig. 184.—A hay-fork being used in building a stack.

3. What fraction of his weight must the man shown in Fig. 182 exert in

order to raise himself?

4. A man weighing 140 pounds pulls up a weight of 80 pounds by

means of a fixed pulley, under which he stands (Fig. 183). Find his

pressure on the floor.

5. Show how you would thread the rope through the pulleys in Fig.

178 to obtain a mechanical advantage of 5. (If necessary leave a

pulley idle).

6. Fig. 184 shows a hay-fork being used to lift hay from a wagon to a

stack. If the load on the fork weighs 500 pd. what pull must the team

exert? If the distance from the wagon to the car is 25 feet, what

work is done by the team in raising the loaded fork? (Neglect friction.)

161. The Wheel and

Axle. This machine
(Fig. 185) has already-

been considered from

the standpoint of mom-
ents in Sec. 117. Let us

now apply the principle

of energy to its action.

It is evident that in one complete rotation the weight P will

descend a distance equal to the circumference of the wheel,

Fig. 185.— The wheel and axle. (a) general
appearance; (6) diagram to explain its action.
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while the weight W will rise a distance equal to the circum-

ference of the axle.

Hence P x circumference of wheel = W X circumference of

axle. Let the radii be R and r, respectively; the circumferences

will be 27TjR and 27rr, and therefore

P X 27tP = W X 27T7',

or PR = Wr,

and the mechanical advantage, WjP = P/r, as before.

162. Examples of Wheel and Axle. The windlass (Fig. 186)

is a common example, but in place of

a wheel, handles are used. Forces are

applied at the handles and the bucket

is lifted by the rope, which is wound
about the axle.

If P = applied force, and W = weight

Fig. 186.—Windlass used in

drawing water from a well.

^ ^ _ length of crank
lilted, - -

j-adius of axle

The capstan, used on board ships

for raising the anchor is another example (Fig. 187).

The sailors apply the force by pushing against bars thrust

into holes near the top of the

capstan. Usually the rope is too

long to be all coiled up on the

barrel, so it is passed about it

several times and the end A is

held by a man who keeps that

portion taut. The friction is

sufficient to prevent the rope from

slipping. Sometimes the end B is

fastened to a post or a ring on

the dock, and by turning the capstan this portion is shortened

and the ship is drawn in to the dock.

Fig. 187.—Raising the ship’s anchor
by a capstan.
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163. Differential Wheel and Axle. This machine is shown

in Fig. 188. It will be seen that the rope

winds off one axle and on the other.

Hence, in one rotation of the crank the

rope is lengthened (or shortened) by an

amount equal to the difference in the

circumferences of the two axles; but

since the rope passes round a movable

pulley the weight to be lifted, attached to

this pulley, will rise only one-half the

difference in the circumferences.

Let R and r be the radii of the two axles and let I be the

length of the crank.

Fig. 188.—Differential
wheel and axle.

Then P x 2xZ = W {2ttR — 27rr)
— >

21

R — r

Thus by making the two drums which form the axles

nearly equal in size we can make the difference in their

circumferences as small as

we please, and the mechanical

advantage will be as great as

we desire.

164. Differential Pulley.

This is somewhat similar to

the last described machine

(Figs. 189, 190).

Two pulleys, A and B, of

different radii (Fig. 189), are

a«»>‘Se7acSn“; fastened together and turn *5
the differential pulley, the Same angular veloc- the differential pulley.

ity. Grooves are cut in the pulleys so as to receive an
endless chain and prevent it from slipping.

Suppose the chain is pulled by a force P until the two
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pulleys have made a complete rotation. Then P will

have moved through a distance equal to the circumference

of A, and it will have done work = P x circumference of A.

Also, the chain between the upper and the lower pulley will

be shortened by the circumference of A, but lengthened by
the circumference of B, and the net shortening is the difference

between these two circumferences.

But the weight W will rise only half of this difference.

Hence, work done on W
= TF X ^ difference of circumferences of A and B,

and therefore
W
P

circumference of A
^ difference of circumferences of A and B

PROBLEMS

1. A man weighing 160 pounds is drawn up out of a well by means of a

windlass (Fig. 186) the axle of which is 8 in. in diameter, and the crank 24

in. long. Find the force required to be applied to the handle.

2. Calculate the mechanical advantage of the windlass shown in Fig.

191. The length of the crank is 16 in., the small wheel has 12 teeth and the

large one 120, and the diameter of the drum about which the rope is

wound is 6 in.

If a force of 60 pounds be applied to each crank how great a weight

can be raised? (Neglect friction).
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3. In the experimental crane shown in Fig. 192, the small gear wheel has

12 teeth and the large one 72. The diameter of the drum is 5 in. and of the

grooved wheel 10 in. Neglecting fric-

tion, what force P must be applied

to the cord around the grooved wheel

to support 200 lb. attached to the rope

passing around the drum?

165. The Inclined Plane. If

we wish to load a heavy box or

barrel on a wagon it is often

convenient to

slide or roll it up
a plank which

has one end on

the ground and

the other on the

wagon. The re-

lation between

the force exerted

and the resist-

Fig. 192.—An experimental crane.

of the apparatus shown in Fig.

discussed in Sec. 80.

193,

ance overcome
can be investi-

gated by means

which has already been

If W is the weight of the car C
and P the applied force which will

just make C move up the plane

without acceleration, it is evident

from the principle of energy that

PI should equal Wh ii there were

no friction. An experiment to

verify this relation has been des-

cribed fully in Sec. 80.

Hence, W/P = l/h,
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or the theoretical mechanical advantage is the ratio of the

length to the height of the plane.

Taking friction into account, the mechanical advantage is

not so great, and to reduce the friction as much as possible

the body may be rolled up the plane.

Exercise.—Obtain the relation WjP = Ijh by considering the forces

acting on C when it is just on the point of moving up the plane. Resolve

the forces along the plane and at right angles to it and write the equations

of equilibrium. (Neglect friction).

166. The Wedge. The wedge is designed to overcome great

resistance through a small space.

Its most familiar use is in splitting

wood. Knives, axes and chisels are

also examples of the wedge.

The resistance W (Fig. 194) to

be overcome is considered to act at

right angles to the slant sides BC,

DC, of the wedge, and when the wedge has been driven in,

as shown in the figure, the work done in pushing back one

side of the split block will be IF x AE, and hence the work for

both sides is IF x 2 AE.

But the applied force P acts through a space AC, and thus

does work P X AC.

Hence, IF X 2AE = P x AC,
and W/P = ACI2AE.
This is the mechanical advantage, and it is evidently greater

the thinner the wedge is.

This result is of little practical value, as we have not taken

friction into account, nor the fact that the force P is applied

as a blow, not as a steady pressure. Both of these factors are

of great importance.

167. The Screw. The screw consists of a grooved cylinder

which turns within a hollow cylinder or nut which it just fits.

The distance from one thread to the next is called the pitch.

Fig. 194.—The wedge, an appli-
cation of the inclined plane.
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The law of the screw is easily obtained. Let I be the length

of the handle by which the screw is turned (Fig. 195) and

P the force exerted on it. In one rotation of the screw the

end of the handle describes the circumference

of a circle with radius I, that is, it moves

through a distance 27tI, and the work done

is therefore „ ^ ,P X 27rl.

Let W be the force exerted upwards as the

screw rises, and d be the pitch. In one rota-

tion the work done is

W xd.

Hence, W x d = P x 27tI,

or W/P = 2irl/d,

or the mechanical advantage is equal to the ratio of the

circumference of the circle traced out by the end of the handle

to the pitch of the screw.

In actual practice the advantage

is much less than this on account

of friction.

The screw is really an applica-

tion of the inclined plane. If a
Fig. 196.—Diagram to show that ...»

the screw is an application of the triangular piece 01 paper, as in
inclined plane.

Wrapped about a cy-

linder (a lead pencil, for instance), the hypotenuse of the

triangle will trace out a spiral like the thread of a screw.

Fig. 195.—The
jack-screw.
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Examples of the screw are seen in the letter press (Fig. 197),

and the vice (Fig. 198).

Fig. 199.—An experimental jack-screw.

Fig. 199 shows an experimental

jack-screw by which the actual

mechanical advantage may be

measured and compared with the

theoretical value.

ILLUSTRATIVE PROBLEMS

1. Why should shears for cutting

metal have short blades and long

handles?

2. In the driving mechanism of a self-

binder, shown in Fig. 200, the driving-

wheel A has a diameter of 3 ft., the

sprocket-wheels B and C have 40 teeth

and 10 teeth, respectively. The large

gear-wheel D has 37 teeth and the small

one E has 12 teeth, and the crank G is

3 in. long. Neglecting friction, what
pull on the driving-wheel will be re-

quired to exert a force of 10 pounds on

the crank C? (Find the number of

Fig. 200.—The driving part of a self-binder. The driving-wheel A is

drawn forward by the horses. On its axis is the sprocket-wheel B, and
this, by means of the chain, drives the sprocket-wheel C. The latter

drives the cog-wheel D which, again, drives the cog-wheel E, and this

causes the shaft F with the crank G on its end to rotate.
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revolutions of the crank for one revolution of the driving-wheel and apply

the principle of energy.)

3. Explain the action of the levers in the scale shown in Fig. 201.

Fig. 201.—Diagram of multiplying levers in a scale for weighing hay,
coal and other heavy loads. In the figure is shown one-half of the
system of levers, as seen from one end. The platform P rests on knife-
edges i)i, Z)2, the former of which is on a long lever, the latter on a short
one. The knife-edges F^, at the end of these levers are supported by
suspension from the brackets C, C which are rigidly connected with
the earth.

If HF^ = 12 ft., = 4 in., MV = 36 in., KM = 3 in., what

weight on V would balance 2000 pounds of load (wagon and contents)?

In the scale E'^F^ = E'^F^, and F^D'- = F^D^, so the load is simply divided

equally between the two levers.

4. If the crank arm of the bicycle (Fig. 202) is 7 in. long, and if the wheel

has a diameter of 28 in., find the tangential force exerted on the road by
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the tire when the rider pushes downwards with a force of 50 pd. upon the

arm when it is horizontal, the numbers of the teeth on the sprocket-wheels

being 28 and 8, respectively. Find the force when the arm makes 30° with

the horizontal. How far does the bicycle travel during one revolution of

the crank?

Fig. 203.—Train of wheels
used in a standard clock. One
end of the weight-cord is

fastened to the frame of the
clock and the other is wound on
the barrel B\ this drives the
great wheel G, which has 144
teeth; this turns the pinion c,

which drives the centre wheel.
C, having 96 teeth; this turns
the pinion t which drives the
third wheel T, having 90 teeth;
this turns the pinion e which
drives the escape-wheel E, with
30 teeth. All the pinions have
12 leaves or teeth.

5. In the train of

wheels shown in Fig.

203, let the diameter

of the barrel B be 2

in. and that of the

escape-wheel E be

in., and let the

weight W be 10

pounds. Neglecting

friction, what force

must the fingers exert

to prevent the escape-

wheel from turning?

If friction consumes

half the power, what
force will be required?

6. In the automo-

bile crane, (Fig. 204)

the small gear wheels

have 12 teeth and the large ones 42 teeth. The
diameter of the drum around which the chain is

wound is 5 in. and the length of the handle is 14

in. The two lower wheels are rigidly attached to a common shaft; the

crank and small upper wheel are also attached to a common shaft about

which the drum and large upper gear connected to it can turn freely on
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roller bearings. Neglecting friction, what force must be applied to the

handle to support one ton attached to the hanging pulley?

7. Fig. 205 shows a three-horse evener used when three horses are

to be attached to a binder or other farm implement.

Fig. 205.—A three-horse evener.

(1) If AC = 40 in. and CB = 19 in., find the pulls exerted by the single

horse at A and by the team at B to overcome a resistance of 295

pd. at C.

(2) U DE = 21 in. and EF = 19 in., find the pulls exerted by the horses

attached at D and F.
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8. Find the mechanical advantage (neglecting friction) of the auto-

mobile jack shown in Fig. 206. The crank arm A is 10 in. long, the small

gear wheel has 10 teeth, the large one 26 teeth and the pitch of the screw

is in.

168. Automobile Transmission. The automobile, considered

as a whole, is an excellent example of a high-class machine,

but some parts of it are especially interesting. Two of these

are the ‘transmission’ and the ‘differential.’

By means of the transmission the driver of the car can

go forward with different speeds, can go backwards, or can

stand still while the engine continues to run.

169. Selective Type of Transmission. When it is desired

to have three (or more) speeds forward the selective type of

transmission illustrated in Fig. 207 is used.

The shaft which comes from the engine enters the square

opening in the shaft H, which, beyond the bearing, has the

gearM fixed upon it. This shaft terminates just beyond M,
but in the same line with it is the shaft E, which for some

distance has a square section and which at D is attached to

the driving shaft leading back to the rear wheels.

Mounted parallel to E is the countershaft C on which are

four gears D, S, L, R. The gear D is always in mesh with M
and consequently always rotates when the shaft H does.
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The gears A and B can be shifted forward or backward on

the square shaft E, by means of the sliding rods F, G. In

order to obtain first, or low, speed, the gear B is shifted for-

ward until it meshes with L. Thus M turns D and L turns

B which turns the driving shaft. For second, or intermediate,

speed the gear A is shifted backwards until it meshes with S.

The speed will now be greater since S is larger than L, and A
is smaller than B. For third, or high, speed the gear A is

shifted forward until the little projections or ‘dogs’ d fit

between similar dogs on M. In this case the shaft E, and

hence the driving shaft, turns at the same rate as the shaft H.

Fig. 207.—The selective type transmission, by which
three forward speeds can be obtained.

In order to reverse, the gear B is shifted backwards until

it meshes with a small idle gear I (seen better in the left-hand

portion of the figure). In this caseM turns D, R turns I, and

I turns B in the opposite direction.

The shifting of the gears is accomplished by moving a lever,

the lower end of which fits into the notches m, n according to

the way the lever is moved.

170. The Differential. This is placed on the rear axle and

its object is to permit the two rear wheels to turn indepen-

dently. Such an arrangement is very necessary, since in
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turning around one of the rear wheels moves much farther

than the other. Without the differential it would be almost

impossible to turn sharply as one wheel would have to slide

on the road.

Fig. 208 gives a view of the differential as seen from

above, and facing the front of the car. The pinion A on

the end of the driving shaft S meshes with the large gear

wheel is a strong metal case

or ‘housing’ C which rotates

with the wheel. In the walls of

this are pins d, d upon which

gears Z), D can turn, and these

mesh with gears E, E, one of

which is fixed on the left axle L,

the other on the right axle R.

Imagine the housing C to be

turning in such a way that the

upper part of the figure is

moving from the observer. Then
the gears D, D will drag E, E
in this direction and the two
axles L and R will drive the

car forward. D, D do not rotate

on their axes d, d at all.

But suppose the large left wheel is fast and cannot move.

Then the left gear E does not move, and as D, D are carried

about by the housing they must rotate on their axes, and this

rotation will simply double the rate of rotation of the R axle.

PROBLEMS

1. If the pinion A has 11 teeth and the larger gear into which it meshes

has 40 teeth, compare the revolutions per minute of the wheels with those

of the driving shaft. (Fig. 208).

2. If the wheels of the car are 30 in. in diameter find the revolutions

per minute of the engine when the car is going forward at 30 miles per hour.

wheel. Upon this latter

Fig. 208.—The “differential” of

an automobile.



CHAPTER XVII

Pressure and Its Transmission

171. Pressure : How Measured. With the idea of pressure

we are all familiar. In a pile of books each presses the one

below it; or when a piece of wood or metal is held in a vice

the jaws of the vice press upon the surface of the object.

Many other illustrations could be given, and it is to be

observed that in every case pressure acts upon a surface.

Cut from a thin board three square blocks having edges ^ inch, 1 inch

and 3 inches, respectively, and lay them on a table (A, B, C, Fig. 209).

These are so very light that we may neglect the forces exerted by them
upon the table. Now place the 10-pound weight W upon B; there is

pressure thus produced upon the table and as the area of the surface acted

upon is 1 square inch we say the pressure is 10 pounds per square inch.

Next, place the weight upon C. The area of the surface of the table

now acted upon is 9 square inches, and we say the pressure on it is 1^
pounds per square inch.

Finally place the weight on T. In this case the area acted upon is

square inch; so the pressure is 10 pounds per ^ square inch or 40 pounds

per square inch.

In each case the total force exerted is the same but the pressure, or the

force per square inch, differs, being in the three cases in the proportion

1 : 9 : 36.

In specifying a pressure always give the force on unit area

;

as, pounds per square inch, grams per square centimetre, or

tons per square yard.

235
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172. Solids, Liquids, Gases. The distinguishing properties

of the three states of matter are

:

Solids have definite volume and definite shape.

Liquids have definite volume but no definite shape.

Gases have neither definite volume nor definite shape.

A liquid offers no permanent resistance to forces tending to

change its shape. It will yield to even the smallest force if

continuously applied, but the rate of yielding varies with

different liquids and it is this temporary resistance which

constitutes viscosity.

The term fluid is applied to either a liquid or a gas.

1

1

173. Pressure of a Fluid. It is a matter of common
experience that a fluid exerts a force upon the surface with

which it is in contact. A wooden tank, such as we often see

above buildings for fire-protection purposes, or beside the

railway for supplying water to the locomotives, is bound with

strong iron bands to prevent the water from pushing the

staves outwards. Note, also, that the bands

are closer together near the bottom than

higher up, indicating that the pressure at

the bottom is greater than near the top.

Consider a vessel like that in Fig. 210,

having a piston inserted in the bottom. A
force must be applied upwards on the piston

to prevent the water from pushing the piston

out. Let the force upwards required to balance the pressure of

the water be 10 pounds, and the area

of the piston be 5 square inches.

Then the pressure of the water on

the piston is 2 pounds per square

inch.

Next consider the case of a piston

of the same size inserted in the side of the vessel (Fig. 211).

As remarked above, the water exerts a force upon the piston.

Fig. 210.—Pressure at

the bottom of a vessel.

Fig. 211.—Pressure at the side
of a vessel.
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If we adjust the depth of the water so that, as before, the

force required to balance the pressure of the water is 10

pounds, then the average pressure of the water on the piston

is 2 pounds per square inch. In this case it is necessary to

say average pressure because of the fact of experience men-

tioned above, that the pressure depends upon the depth and

so is not uniform over the surface of the piston. The manner
in which the pressure varies with the depth will be taken up

in the next chapter.

174. Pressure at a Point. We have just seen that pressure

in a fluid varies from place to place, and we often use the

phrase pressure at a point. Let us look into the precise

meaning of the phrase.

When we say that the pressure at a point is 5 pounds per

square inch we mean that if we had a square inch, against

every point of which the fluid exerted the same thrust that it

exerts at B, then the thrust against the square inch would be

5 pounds.

Consider a very small surface of area A, containing the

point, so small indeed that the pressure upon it may be

considered uniform all over it. Let F be the total force

exerted upon the area A. Then the force P on unit area

= FIA. This is the pressure at the point.

Suppose we press upon the hand with the flat end of a

lead pencil with such a force that the pressure is 5 pounds

per square inch. It is easily seen that the force applied is not

equal to 5 pounds nor is the surface acted upon equal to a

square inch. But if

F = applied force in pounds,

and A = area acted upon in square inches,

then pressure = F/A = 5 pounds per square inch.

175. Transmission of Pressure by Fluids. One of the most
characteristic properties of matter is its power to transmit

force. The harness connects the horse with its load; the piston
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and connecting rods convey the pressure of the steam to the

driving wheels of the locomotive. Solids transmit pressure

only in the line of action of the force. Fluids act differently.

If a globe and cylinder of the form shown in Fig. 212 is filled

with water and a force exerted

on the water by means of a

piston, it will be seen that

the pressure is transmitted,

not simply in the direction in

which the force is applied, but

in all directions; because jets

of water are thrown with

velocities which are appar-
Fig. 212. — Pressure n -i

applied to the piston ently equal from all the aper
transmitted in all direc-
tions by the liquid tUreS
within the globe.

Fig. 214.—Transmission of pressure
by a gas (air).

Fig. 213.—Trans-
mission shown to be

. equal in all direc-
ll the conditions are tions by pressure

modified by connecting with

the globe U-shaped tubes par-

tially filled with mercury, as

shown in Fig. 213, it will be

found that when the piston is

inserted, the change in level of

the mercury, caused by the

transmitted pressure, is the same

in each tube. This would show
that the pressure applied to the

piston is transmitted equally in

all directions by the water.

Next, let us use the apparatus

shown in Fig. 214. The cylinder

C, about 5 inches in diameter,

is provided with a tightly-fitting

piston L. On this a heavy

weight (50 pounds) is placed.

One end of a piece of heavy

rubber tubing is attached to C



PRESSURE ON A SURFACE 239

while the other end, by means of an ordinary bicycle tire

valve, is joined to the bicycle pump P. On working the

pump the weight is raised with very little effort. Careful

experiments with similar apparatus show that, neglecting

friction, if the area of L is 50 times that of the piston

of the pump, only one pound force need be applied to the

pump to raise the 50-pound weight.

Again, consider the vertical section of a closed vessel filled

with some fluid, say, water, and fitted with pistons of equal

area as shown in Fig. 215. Let a force P pounds be applied to

the piston A. This will

produce a force within the

water which will be trans-

mitted by the water to

every surface with which

it is in contact.

The piston A will exert a

thrust of P pounds upon

the surface of the water in

contact with it and this

thrust will be transmitted not only to C, which is directly

opposite A, but also to D, which is alongside C, to B which is

at one end of the vessel, and to E which is at the top beside A.

The pressure is transmitted by the fluid in all directions and
undiminished in intensity.

If the pistons C and D were merged into a single one the

thrust on it would be 2P pounds, or the thrust is proportional

to the area of the surface.

If the area of the piston A is 5 square inches and the force

applied to it be 10 pounds, there will be a pressure of 2 pounds
on every square inch of the inner surface of the vessel.

176. Pressure of a Fluid at Right Angles to the Surface.

From the fact that a fluid transmits pressure perfectly, that is,

in every direction and without diminution, we must conclude

that its particles are perfectly free to move about amongst

Fig. 215.—Diagram illustrating transmission
of pressure.
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themselves, that the slightest force applied to a liquid can

displace its particles.

It must follow that when a fluid is at rest its pressure is

at right angles to the surface upon which it acts. This can

be proved in the following way.

If it were possible, let the pressure at A (Fig. 216) upon the

side of the vessel be not at right angles to

the surface, but in the direction E. Resolve

the force into two components, Q at right

angles to the surface and P parallel to the

surface. The force Q is balanced by the re-

action of the side of the vessel, but P is

is at 'right angles '"to unopposed and it must cause a sliding of the

particles of the liquid along the surface in

the direction AB. But this is impossible as, by hypothesis,

the fluid is at rest.

We must, therefore, conclude that the pressure of a fluid is

at right angles to the surface upon which it acts.

We are now in a position to state the following law:

Pressure exerted anywhere upon a mass of fluid filling a

closed vessel is transmitted undiminished in all directions,

and acts with the same force on all equal surfaces and in

a direction at right angles to them.

This is known as Pascal’s Law or

Principle,

177. Mechanical Applications.

The transmission of pressure by a

liquid equally in all directions is

utilized in the hydraulic press and

the hydraulic jack. Fig. 217 illus-

trates the general principle of action

of these machines. D and E are

two hollow cylinders connected by fio. 2i7.-iiimtratmg the hy-

a tube C and partly filled with water
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or oil. A and B are two pistons, fitted into D and E respec-

tively. Any force applied to A is transmitted by the liquid

to B, and as the pressures on A and B are undiminished in

intensity, the total forces exerted by the liquid upon A and B
are proportional to their areas. Thus, if the area of A is

1 square inch and that of B is 10 square inches, then a weight

of 1 pound on A will sustain a weight of 10 pounds on B.

For a description of Bramah’s Press, see Sec. 237 and for a

picture of the hydraulic jack see Fig. 219.

178. Pressure at a Point in a Fluid. Consider a vessel filled

with fluid (Fig. 218), and let the area of the piston A be one

unit, say, 1 square inch. Let C be any point within the mass

of the fluid, and imagine it to be at the

centre of a circular plane area mn (seen

edgewise). Let the area of mn be 1

square inch.

If the piston is pushed inwards with

a force of P pounds, the liquid will

transmit a pressure of P pounds to

every square inch of the inner surface of

the vessel; also, each face of mn will be

subjected to a force of P pounds.

Now the magnitude of this force does not depend on the

direction in which the area mn is turned, that is, the pressure

at C is the same in all directions.

The pressure at a point in a fluid is the same in all directions.

In this discussion no mention has been made of the pressure

due to gravity acting upon the fluid. The law holds true,

however, no matter what the source of the pressure may be.

PROBLEMS AND EXERCISES

1. A fluid thrust of 1728 pounds is uniformly distributed over a surface

whose area is 3 sq. ft. Find the measure of the pressure at a point in the

surface (1) when the unit-area is 1 sq. in., (2) when it is 1 sq. ft., the unit

of force in each case being 1 pound.

fluid.
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2. The pressure is uniform over the whole of a sq. yard of a plane

area in contact with a fluid, and is 7776 pounds. Find the measure of the

pressure at a point (1) when the unit of length is 1 in., (2) when it is 3 in.,

the unit of force in each case being the pound.

3. The thrust of a fluid against a circular plane, diameter 14 cm.,

is 770 kg. ;
if the pressure is uniform, find the measure of the pressure at a

point (1) when the unit-area is 1 sq. mm., (2) when it is 1 sq. dm., the unit

of force in each case being the gram.

4. A rectangular surface, length 50 cm. and width 4 cm., is subjected

to a uniformly distributed fluid thrust of 4 kg. Find the measure of the

pressure at a point (1) when the unit of length is 1 mm., (2) when the unit

of length is 2 mm.
;
if the unit of force is the gram.

5. If the area of a piston inserted in a closed vessel is 3^ sq. in., and

if it is pressed with a force of 35 pounds, find the thrust which it will

transmit to a surface of
7-f-

sq. in.

6. A closed vessel is filled with liquid, and two circular pistons, whose

diameters are respectively 2 cm. and 5 cm. inserted. If the thrust on

the smaller piston is 50 grams, find the thrust on the larger piston when
they balance each other.

7. A closed vessel is filled with fluid and two circular pistons whose

diameters are respectively 3 in. and 7 in. inserted; if the thrust on the

larger piston is a pounds, find the thrust on the smaller.

8. The diameter of the large piston of a hydraulic press is 100 cm. and

that of the smaller piston 5 cm. What force will be exerted by the press

when a force of two kilograms is applied to the small piston?

9. The diameter of the piston of a hydraulic elevator is 14 in. Neglect-

ing friction, what load, including the weight of the cage, can be lifted when
the pressure of the water in the mains is 75 pd. per sq. inch?

10. The horizontal cross-section of the neck of a glass bottle, just

capable of sustaining a pressure of 11 pounds to the sq. in., is 2f sq. in.

It is filled with a fluid supposed weightless, and a piston is inserted into

the neck. What is the least force that must be applied to the piston to

break the bottle?

11. If the diameter of the small piston (Fig. 217) is 5 cm., and that of

the larger one 2.5 metres, and if the small piston is pushed with a force

of 8 gm., what force will it transmit to the large piston?

12. In the same machine the horizontal cross-section of the small piston

is 3 sq. cm.; with what force must it be pushed that it may sustain a force of

7.25 kg. applied to a piston whose horizontal cross-section is 7 sq. dm.?
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13. Find the mechanical advantage of the hydraulic jack shown in

Fig. 219. The diameters of the large and small pistons are f in. and ^ in.,

respectively; the

distances from the

fulcrum to the

small piston and to

the end of the

handle are 1 in. and

36 in., respectively.

Find, also, the force

-E^eriment with two
liquids.

which must be exerted on the end of the

handle in order that the jack may raise a

mass of 1 ton.

14. Pour a small quantity of mercury

into a tube of the form shown in the

Fig. 220. Now pour some water into the

larger branch.

(1) What changes take place in the levels of the mercury in the two

branches? Why?

(2) How much water do you suppose must be put into the smaller

branch to bring the mercury to the same level in each branch? Give

reasons for your answer. Verify by pouring water into the smaller

branch.

(3)

How does the weight of the water in the large branch compare

with that in the smaller one when the mercury is restored to the same

level in each tube?



CHAPTER XVIII

Equilibrium of Fluids Under Gravity

179. Liquids are Attracted Towards the Earth. Anyone
who has carried a pail of water need not be told that water is

heavy. Every particle of it is attracted towards the earth

and it is for this reason that liquids must be held in non-

porous vessels, though these need not be covered as the liquid

keeps to the bottom.

If bricks be laid one upon another there is a pressure upon

the surface of any brick produced by those bricks above it.

The one at the bottom has to bear the weight of all those

above it. So it is in a vessel containing a fluid. The lower

layers have to support all the fluid above them and we would

expect them to be under pressure. Also there must be

pressure upon the bottom of the vessel and, on account of the

nature of the fluid, upon its sides as well. In the previous

chapter we learned that within a fluid the pressure at a point

is the same in all directions.

180. Force Within the Liquid. If we pierce a hole in the

side or bottom of a vessel filled with water, the water rushes

out and the farther the hole is below the surface the more

quickly does the liquid escape. It is an old camper’s experi-

ment to obtain cold water from the bottom of a lake by
lowering a bottle closed by a cork and so arranged that the

water will force it into the bottle when it gets low enough

down. These results show in a general way that the pressure

depends upon the depth.

181. Relation between Pressure and Depth. To demon-

strate that the pressure within a liquid increases with the

depth, let us perform the following experiment:

244
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Prepare a pressure gauge of the form shown in Fig. 221 by
stretching a rubber membrane over a thistle-tube A

,

which is

connected by means of a rubber

tube with a U-shaped glass tube F,

partially filled with coloured water.

The action of the gauge is shown by
pressing on the membrane. The

pressure is transmitted to the sur-

face of the water in F by the air

in the tube and is measured by

the difference in level of the water

in the branches of the U-tube.

Now place A in a jar of water

(which should be at the tempera-

ture of the room), and gradually

push it downward (Fig. 221). The Fig. 221 .—Apparatus to show that

changes in the level of the water

in the branches of the U-tube

indicate an increase in pressure with the increase in depth.

Careful experiments show that this pressure increases from

the surface downward in direct proportion to the depth.

Now, by means of the wire F, turn the thistle-tube A in

different directions, the centre of the membrane being kept

all the time at the same depth, and observe the levels in the

U-tube. They remain steady. Evidently the upward, down-

ward and lateral pressures are equal at the same depth.

We find therefore that the pressure is equal in all directions

at the same depth.

182. Pressure Independent of Shape of Containing Vessel.

In our proof of the law that the pressure within a liquid

varies with the depth nothing was said about the shape of

the containing vessel or the quantity of liquid present. It

will be useful to investigate if this matter should be taken

into consideration.
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In the case of a vessel with vertical sides the pressure on

the bottom is obviously the weight of the liquid. But what
if the sides are not verti-

cal? We can settle the

question by means of

the apparatus shown in

Fig. 222. A, B, C, D
are tubes of different

shapes but made to fit

into a common base. E
is a detachable bottom

held in position by a

lever and weight.

Fig. 222.—Pressures on the bottoms of vessels

of different shapes and capacities.

Fig. 223.—Alternative apparatus for showing that
pressure does not depend on the shape of the vessel.

the same for all the various vessels.

First, screw the cylin-

drical tube A in position

and place a suitable

weight on the scale-pan.

Then let us pour water

into the vessel until at

last the pressure due to

the water pushes the

bottom down and allows

the water to escape.

With the pointer mark
the height reached by
the water when this

happens. Now repeat

the experiment using B,

C, D in succession. We
observe that the height

of the water when the

bottom drops down is
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Thus we see that the pressure on the bottom of a vessel

produced by liquid in it depends only on the depth of the

liquid, not at all upon the shape of the vessel or the amount

of liquid in it.

An alternative form of apparatus used in demonstrating this

principle is illustrated in Fig. 223. The thrust of the water

is shown on the dial D; the reservoir R may be raised or

lowered in order to bring the water to the proper level.

183. Pressure at Points in the Same Level. Let A and B
(Fig. 224) be two points in the same level in a liquid and let

these points be the centres of the

ends of a very small cylinder of

the liquid.

Let us consider the forces acting

upon this cylinder.

We have

(1) its weight acting vertically

downward and consequently at

right angles to AB the axis of the cylinder.

(2) the thrusts of the liquid (external to the cylinder) on the

two ends of the cylinder, acting at right angles to the ends.

(3) the thrust of the liquid on the curved surface of the cylinder

acting at right angles to it and consequently at right

angles to the axis.

Now the only forces tending to make the cylinder move
endwise are the thrusts on the ends, and since the cylinder is in

equilibrium these thrusts must be equal. Hence the pressure

at A must equal the pressure at B.

The pressures at points in a liquid in the same horizontal

plane are therefore equal.

184. Free Surface of Liquid a Horizontal Plane. Let us

investigate the relation of C and D, two points situated

vertically above A and B (Fig. 224), on the surface of the

liquid.

Fia. 224.—Pressures at
points in the same level are
equal.
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Let AC = hi units and let BD = h 2. units. Then since

pressure is proportional to depth,

pressure at A = khi,

pressure at 5 = kh^.

But pressure at A = pressure at B.

Hence khi = fc/12
,
or h\ = /i 2 -

But A and B are in the same level and therefore C and D
are in the same level.

Now C and D are any two points on the surface of the

liquid (since A and B are any two points in the same horizontal

plane in the liquid).

It follows then that the free surface of a liquid at rest under

the action of gravity is a horizontal plane.

Fig. 225.—Surface of a liquid in connecting
tubes in the same horizontal plane.

185. Surface of Liquid in Connecting Vessels. Pour water

into a series of vessels, A, B, C, D, E (Fig. 225) of different

shapes, connected together

so the liquid can pass freely

from one to another. The

water will rise in them so

that all their surfaces will

be in the same horizontal

plane.

The reason for this can easily be given. Consider the

vessels A and B, and let a and b be two points in the liquid

on the same horizontal plane. Now by
hypothesis the liquid is at rest and there-

fore the pressure at a toward b is equal to

that at b towards a since there is no motion

from one to the other; but these pressures

are equal only when a and b are at the

same depth below the surface of the liquid.

But the line ab is horizontal, and hence

the surface of a liquid at rest is horizontal.

It may be well, however, to consider fig. 226.—Diagram to
,1 . c ii rr ‘j. show that the surface is

this matter a little further. It it were horizontal.
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possible, suppose the surface of the liquid in a vessel not hori-

zontal but inclined as in Fig. 226; and let a and 6 be on the

same horizontal plane, b being on the surface and a below it.

At a there is a downward pressure proportional to the depth

ac, which pressure is transmitted in all directions. At h there

is no fluid pressure; consequently the water particles will be

forced toward b and the surface there will rise while that at c

will sink until they all reach the same level.

186. “Water Seeks its Own Level.” This is a familiar

statement, and the cause of the water seeking its own level is

the force of gravity. The water moves until its surface is at

right angles to the direction of the force of gravity. Over a

small area we consider the force of gravity to act in parallel

vertical line's and the surface then would be a horizontal plane.

But the force of gravity is directed towards the centre of the

earth, and over an area of the earth’s surface of considerable

size, the radii of the sphere cannot be taken as parallel. As

the surface of the water is at right angles to the directions of

the force, that is, the earth’s radii, the free surface of the

liquid must be spherical. But the curvature is so slight that

we do not notice it in the case of a pail of water, while

when the body is a large one, like a great lake or the ocean,

the curvature is evident enough.

187. Calculation of Pressure: Examples. 1. What is the pressure at

a point, (a) 2 m. below, (6) 30 ft. below, the surface of water?

(a) Consider 1 sq. cm. of horizontal area at a depth of 2 m. Then the

thrust upon this surface is equal to the weight of a vertical column of

water standing upon it and reaching to the surface. Its volume = 200

C.C., and its weight = 200 gm. Hence the pressure = 200 gm. per

sq. cm.

(b) Taking 1 sq. ft. of horizontal area at a depth of 30 ft., the vol-

ume of the vertical column upon this = 30 cu. ft., and its weight = 30 X
62.5 pd. = 1875 pd. Hence the pressure is 1875 pd. per sq. ft.

2. A tube is 10 m. long and 1 sq. cm. in cross-section. One end is

screwed into the upper face of a cylindrical vessel of radius 7 cm. and

height 2 cm. (Fig. 227). The tube and vessel are filled with water. Find
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the weight of the water; also the pressure - per sq. cm. as well as the

whole thrust downwards upon the bottom.

Fig. 227.-Pres-
sure, depth, and
volume.

The volume of the cylinder = X 7^ X 2 = 308 c.c.

The volume of the tube = 1000 c.c. Total volume =
1308 c.c. and the weight of the water = 1308 gm. or

1.308 kg.

The bottom is 1002 cm. below the surface of the water.

Consider a column standing on 1 sq. cm. and reaching up-

ward 1002 cm.; its volume = 1002 c.c. and weight 1002 gm.

Hence the pressure = 1002 gm. per sq. cm. The area of

the base = X 7^ = 154 sq. cm. Hence the whole

thrust = 154 X 1002 = 154,308 gm. or 154.308 kg.

We can solve the problem in a slightly different way.

The thrust on the bottom will be equal to the weight

of a column of water 154 sq. cm. in cross-section and 1002

cm. high or 154,308 c.c. Hence the whole thrust = 154,308

gm. The pressure = 154,308 154 = 1002 gm. per sq.

cm., as before.

A-

188. Hydrostatic Paradox. The result just given illustrates

the peculiar fact that by means of a small amount of a liquid

we can obtain a very great pressure. In the case considered,

if the liquid were conceived to become solid and to stand on

the bottom of the vessel, the whole thrust downwards on the

bottom would be its weight, or 1.308 kg.; but if the same

matter is in the form of a liquid, the

thrust downwards on the bottom is

154.308 kg. This result appears

paradoxical, that is, seemingly ab-

surd or contradictory.

Fig. 228 will help us to explain it.

Consider a vessel of the shape shown,

filled with water.

Let AB = X cm. and EF = ycm.

and let the area of the bottom = a

sq. cm.

Ef X

I

Fig. 228.—Explanation of the
hydrostatic paradox.

Then at the level KB the pressure = x gm. per sq. cm.
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This pressure is transmitted, according to Pascal’s Principle

to every square centimetre of the bottom.*

But, in addition to this pressure on the bottom, we have a

pressure of y gm. per sq. cm. because of the water below the

level KB.

Hence the pressure on the bottom is {x + y) gm. per sq. cm.

and the whole thrust is (x + y)

a

gm.

Consequently the whole thrust on the bottom is equal to

the weight of liquid which would just fill the entire space

HDFGy that is, the weight of a column of liquid standing on

DF and reaching to the surface.

PROBLEMS

1. If the pressure of a liquid at a depth of 14 ft. 3 in. is 6 pd. to the

sq. in., find the pressure at a depth of 21 ft. 8 in.

2. If the pressure at a depth of 5.6 metres is 2.8 gm. per sq. mm.,

what is the pressure at a depth of 7.5 cm.?

3. If the pressure on a sq. in. at a depth of 40 cm. is 10 pd., find the

pressure 6 cm. lower down.

4. What is the pressure in gm. per sq. cm. at a depth of 100 m. in

water? (Density of water, one gram per c.c.).

5. The area of the cross-section of the piston P
(Fig. 229), is 120 sq. cm. What weight must be

on it to maintain equilibrium when the water in

the pipe B stands at a height of 3 m. above the

height of the water in ^?

6. The water pressure at a faucet in a house

supplied with water by pipes connected with a dis-

tant reservoir is 80 pd. per sq. inch when the

water in the system is at rest. What is the vertical

height of the surface of the water in the reservoir

above the faucet? (1 lb. water = 27.73 cu. in.)

7. Find the measure in pd. per sq. in. of the

pressure at a point 72 ft. below the surface of a pool

of water. (Density of water, 62^ lbs. per cu. ft.)
Fig. 229

*It may help the student, if he imagines a thin weightless piston across the vessel at the
level KB.
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8. A reservoir of water is 100 m. above the level of the ground-floor

of a house. Find the pressure in gm. per sq. cm. of the water at a point

in a water-pipe at a height of 10 m. above the ground-floor.

9. The pressure at a point within a body of water under the action of

gravity is 100 pd. per sq. in. If the weight of a cu. ft. of water is 1000 oz.,

find the depth of the point below the surface.

10. The water in a canal lock rises to a height of 10 ft. against one

side of a vertical flood-gate whose breadth is 12 ft. Find the thrust against

it.

(In this case the pressure varies directly with the depth and hence the

average pressure is equal to the pressure half-way down, that is, 5 ft.

below the surface. The width is uniform and consequently the total force,

or thrust, is equal to the area X average pressure.)

11. A rectangular box 2 cm. long, 1.5 cm. wide, and 8 mm. deep, is

filled with water. Find the total force on (1) the bottom, (2) a side, (3)

an end.

12. A rectangular vessel 80 cm. long, 20 cm. wide, and 60 cm. deep,

supposed weightless, is placed on a horizontal table. Into its upper face

is let perpendicularly a straight tube which rises to a height of 2 m. above

this face, the internal cross-section of the tube being 1 sq. cm. The vessel

and the tube are filled with water. Find the total force on (1) the bottom

of the vessel, (2) a side, (3) an end, (4) the upper surface, (5) the table.
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Buoyancy; Archimedes’ Principle

189. Buoyant Force of a Liquid. We know very well that

a liquid exerts an upward force upon a body which is either

partially or completely immersed in it. A cork or a sea-gull

bobs about on the surface of a lake, a heavy log floats on the

river and is towed to the saw-mill, and even the great ship of

ten thousand tons is supported by the water. In all these

cases the object floats; its weight is entirely overcome by the

upward force due to the water.

But an upward force is exerted also when the body is fully

immersed. An expert swimmer can keep a drowning person

from sinking, though out of the water he might not be able

to lift the body at all. Sometimes in fishing, a heavy stone is

attached to a rope and let down as an anchor. On pulling it

up, to go to another place, comparatively little effort is needed

as long as it is in the water, but it becomes decidedly heavier

Let us find out

by experiment
just how much
of a body’s weight

is apparently lost

when it is immer-

sed in a liquid.

190. The Prin-

ciple of Archi-

medes. A suit-

able form of ap-

paratus for the

purpose is shown
in Fig. 230. A is

253

as soon as it comes to the surface.
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a metal cylinder, closed at both ends, which fits exactly into a

hollow socket B. Hook the cylinder to the bottom of the soc-

ket, suspend them from one end of the beam of a balance, and

add weights to the other end to bring the balance to equili-

brium. Next, surround A with water, as shown in the figure.

The buoyancy of the water upon A destroys the equilibrium.

Now carefully pour water in the socket B. It will be found

that when B is just filled, equilibrium will be restored. The

buoyant force is equal to the weight of the water displaced

by the body.

This result has been obtained with water, but we might

have used any other liquid, and it must also hold for a gas.

The apparatus just described is designed especially to

demonstrate the law of buoyancy but we can easily dispense

with it.

By means of a fine thread suspend a heavy body, such as

a stone or a piece of iron, from one end of the balance and

find its weight by placing weights on the

other end. Let its weight be 158 grams.

Then surround the body with water

as in Fig. 231 and weigh again. Let the

weight now be 137 grams. The buoyant

force of the water is thus 158 — 137 = 21

grams. Next, lower the body into an

overflow can (Fig.

232) and catch

the overflow in a

beaker or other

vessel whose
weight has been

carefully deter-

mined. Weigh again and by subtraction find the weight of

the water which has been displaced by the body. It will be

found to be 21 grams.

Fig. 231.—Finding the ap-
parent loss in weight when a
Dody is immersed in a liquid.

Fig. 232.—Overflow
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If an overflow can is not available, lower the body into the

water in a graduate and note the rise in the water. It will

be found to be 21 c.c., the weight of which is 21 grams.

We therefore conclude:

The buoyant force exerted by a fluid upon a body immersed
in it is equal to the weight of the fluid displaced by the body;

or, in slightly different words,

A body when weighed in a fluid loses in apparent weight an

amount equal to the weight of the fluid which it displaces.

This is known as the Principle of Archimedes.

It is stated that King Hiero of Syracuse, Sicily, suspected

that his crown was not made of pure gold but contained some

silver, and he asked the great scientist Archimedes (287-212

B.C.) to determine if such was the case. It is evident that if

the volume of the crown were known, the weight, if of pure

gold, could easily be calculated. If its actual weight was less,

some substance lighter than gold must be combined with it.

The solution of the problem was suggested to Archimedes by
the buoyant action of the water when he was in a bath.

According to tradition he leaped from the bath and rushed

through the streets crying, “Eureka! Eureka!” (I have found

it! I have found it!)*

191. Theoretical Proof by Calculation. Archimedes’ prin-

ciple is so important that a simple proof by
calculation will be given. Consider a solid in

the form of a cube to be immersed in water

with its upper face horizontal (Fig. 233).

Let the edge of the cube be 3 cm. in

length and the upper face be 2 cm. below

the surface.
Fig. 233.—Buoyant force of

Evidently the thrusts on the vertical a liquid on a solid,

sides balance, and the resultant vertical force due to the water

* See “A Short History of Science” by Sedgwick and Tyler (N.Y., 1918), page 113.
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will be equal to the difference between the thrusts on the

bottom and the top.

Now the thrust on the top is equal to the weight of a

column of water standing on 9 sq. cm. and reaching to the

surface, that is, having a height of 2 cm. The volume is 18 c.c.

and the weight is 18 grams.

The thrust on the bottom (upwards) is equal to the weight

of a column of water standing on 9 sq. cm. and reaching to the

surface, that is, having a height of 5 cm. The volume is 45

c.c. and the weight is 45 grams.

Resultant thrust = 45 — 18 = 27 grams upwards.

But the volume of the cube is 27 c.c. and the weight of the

water displaced by it = 27 grams.

192. Principle of Flotation. It is obvious that if the weight

of a body immersed in a liquid is greater than the weight of

the liquid displaced by it, the body will sink; but if less, the

body will rise until it reaches the surface. Here it will come

to rest when it has risen so much above the surface that the

weight of the liquid then displaced is equal to the weight of

the body.

The weight of a floating body is equal to the weight of the

liquid which it displaces when floating.

It should also be observed that two parallel forces cannot

be in equilibrium unless they act in the same straight line but

in opposite directions. In the case of the floating body the

weight acts downwards through the centre of gravity of the

body, while the buoyant force acts upwards through the centre

of buoyancy (that is, the centre of gravity of the fluid dis-

placed). Consequently when floating the centre of gravity

of the body must be in the same vertical line as the centre of

buoyancy.
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PROBLEMS AND QUESTIONS

(Take 1 cu. ft. water = 62.5 lb.)

1. A cubic foot of marble which weighs 160 pounds is immersed in

water. Find (1) the buoyant force of the water on it, (2) the weight of

the marble in water.

2. Twelve cubic inches of a metal weigh 5 pounds in air. What is the

weight when immersed in water?

3. If 3500 c.c. of a substance weigh 6 kg., what is the weight when
immersed in water?

4. A piece of aluminium whose volume is 6.8 c.c. weighs 18.5 gm.

Find the weight when immersed in a liquid twice as heavy as water.

5. A body whose volume is 2f cu. ft. weighs 420 pounds. Find its

weight when of its volume is immersed in water.

6. A substance whose volume is 3-g- c.dm. weighs 7f kg. Find its

weight when of its volume is immersed in a liquid one-half as heavy

as water.

7. One c.dm. of wood floats with f of its volume immersed in water.

What is the weight of the cube?

8. A c.c. of cork weighs 250 mg. What part of its volume will be

immersed if it is allowed to float in water?

9. A cu. in. of pine floats with f of its volume in water. Find its

weight.

10. A c.c. of poplar floats with VI of its volume out of water. Find

its weight.
^

11. The weight of cu. feet of elm is 124 pounds. What part of its

volume will be immersed if it is allowed to float in water?

12. The weight of 6|- c.dm. of cork is if kg. If it is allowed to float in

water, how many c.dm. will remain above the surface?

13. A piece of wood whose mass is 100 gm. floats in water with f of

its volume immersed. What is its volume?

14. A piece of wood weighing 100 pounds floats in water with f of its

volume above the surface. Find its volume.

15. What is the least force which must be applied to a cu. ft. of larch

which weighs 30 pounds that it may be wholly immersed in water?

16. A c.dm. of cork, weighing 480 gm., floats just immersed in water,

when prevented from rising by a string attached to the bottom of the

vessel containing the water. Find the tension of the string.
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17. A cylindrical cup weighs 35 gm., its external radius being 1-| cm,,

and its height 8 cm. If it be allowed to float in water with its axis vertical,

what additional weight must be placed in it that it may sink?

18. A cylinder of wood, 8 in. long and weighing 15 pounds, floats

vertically in water with 3 in. of its length above the surface. What is the

tension of the string which will hold it just immersed in water?

19. The cross-section of a boat at the water-line is 150 sq. ft. What
additional load will sink it 2 inches?

20. A scow with vertical sides is 25 ft. long and 12 ft. wide, and it sinks

2^ in. when a team of horses walks on it. Find the weight of the team.

21. Why will an iron ship float on water, while a piece of the iron of

which it is made sinks?

22. A vessel of water is on one scale-pan of a balance and counter-

poised. Will the equilibrium be disturbed if a person dips his fingers into

the water without touching the sides of the vessel? Explain.

23. A piece of coal is placed in one scale-pan of a balance and iron

weights are placed in the other scale-pan to balance it. How would the

equilibrium be affected if the balance, coal and weights were now placed

under water? Why?

24. A block of wood 1 in. square and 6 in. long is tied at one end to

the bottom of a tank on the inside. Mercury is poured into the tank until

the block, when standing vertically, is just half immersed; then water is

poured in until the block is entirely covered.

() Does the tension of the string that holds the block down change as

the water is being poured in? Give reason for the answer.

() Would the tension of the string have been different had mercury

been used instead of water? Why?



CHAPTER XX

Density and Specific Gravity

193. Mass per Unit Volume. Obtain cylindrical pieces of

brass, iron and wood, having flat ends; also a cylindrical

vessel such as a tin can.

Measure the diameters and lengths of the cylinders in cm.

and calculate their volumes. Also measure the internal

diameter of the can and its height up to a mark, in inches,

and calculate its volume.

Weigh the cylinders in grams and calculate the mass per

c.c. of each of the substances.

Weigh the vessel in pounds; then fill with water up to the

mark and weigh again. Calculate the mass of the water per

cu. in.

Examples.— (a) Cylinder of iron. Diam. = 2.34 cm.

Length = 8.42 “

By calculation, volume = 3.62 c.c.

By weight, mass = 273.03 grams.

Whence mass of 1 c.c. of iron = 7.54 grams.

(b) Tin vessel. Diam. = 3.12 in.

Height = 4.00 in.

By calculation, volume = 30.58 c. in.

By weight, mass = 1.10 lb.

Whence mass of 1 c. in. of water = 0.036 “

and “ of 1 c. ft.
“ “ = 62.2 “

The mass per unit volume of a substance is its density.

Thus, the density of the iron used is 7.54 grams per c.c.; that

of water is 0.036 lb. per cu. in. or 62.2 lb. per cu. ft.*

194. Density and Specific Gravity. As we have just seen,

the density of a body is its mass per unit volume.

* More accurately, 62.4 lb. per cu. ft. at 4° C. It is usual, however, to take 1 cu. ft. of
water as 62.5 lb. or 1000 oz. For table of densities, see Appendix.

259
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The specific gravity of a substance is the ratio which the

weight of a given volume of it bears to the weight of an equal

volume of water.

weight of body
Or, specific gravity = —r . ^ , r ^weight of equal volume of water

As this is just a ratio it is expressed by a simple number,

and is independent of any system of units; but it is related to

density in the following way:

Let W pd. = weight of a given volume (say 1 cu. ft.) of

the substance

and w pd. = weight of the same volume of water.

W
Then sp. gr. = —

>

w

_ density of substance

density of water

If now we use the C.G.S. system of units the density of

water = 1 gm. per c.c.; and the number which expresses the

specific gravity will also be the measure of the density. This,

however, will not be the case if we use the F.P.S. units, as

then the density will be the number of pounds per cu. ft.,

while the specific gravity will be the same as before.

Example.—Suppose the volume of a piece of cast-iron is 50 c.c. and

that its weight is 361 gm. Find its specific gravity and its density.

The weight of 50 c.c. of water = 50 gm.

Therefore the sp. gr. of the iron 7.22, which is the measure

of the weight in grams of 1 c.c. of iron, or its density.

In the F.P.S. system the specific gravity is the same, but the density =

62.5 X 7.22 = 451.25 pounds per cu. ft.

PROBLEMS

1. Find the mass of 140 c.c. of silver if its density is 10.5 gm. per c.c.

2. The specific gravity of sulphuric acid is 1.85. How many c.c. must

one take to weigh 100 gm.?
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3. A piece of granite weighs 83.7 gm. On dropping it into the water in

a graduated vessel, the water rises from 130 c.c. to 161 c.c. (Fig. 234).

Find the density of the granite.

4. A tank 50 cm. long, 20 cm. wide and 15 cm. deep is

filled with alcohol of specific gravity 0.8. Find the weight of

the alcohol.

5. A rectangular block of wood 5 x 10 x 20 cm. in

dimensions weighs 770 gm. Find the density.

6. The specific gravity of pure milk is 1.086. What is the

density of a mixture containing 500 c.c. of pure milk and 100

c.c. of water?

7. A body whose mass is 60 gm. is dropped into a graduated tube

containing 150 c.c. of water. If the body sinks to the bottom and the

water rises to the 200 c.c. mark, what is the density of the body?

196. Specific Gravity of a Solid Heavier than Water.

The specific gravity of a solid body can easily be found by an

application of Archimedes’ principle.

Suspend the body whose specific gravity is to be determined

from one end of a balance by means of a fine thread and find

how much it weighs in air. Then bring the vessel containing

water under the body and raise it until the body is fully

immersed (Fig. 231, Sec. 190). Weigh again.

Let m gm. = wt. of the body in air,

and mi gm. = wt. of the body in water.

Then m — mi gm. = loss of weight in water,

= wt. of an equal volume of water.

771

Hence, sp. gr. =
,

m — mi

= density in gm. per c.c.

Example.—A piece of iron weighed in air 263.5 gm., and in water 226.4

gm. Find its specific gravity.

Here loss of weight in water = 37.1 gm.,

= wt. of equal vol. of water.

„ 263.5
Hence, sp. gr. = = 7.10,

o7.1

and the density of the iron = 7.10 gm. per c.c.

m

161

130
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196. Specific Gravity of a Solid Lighter than Water.

Select a heavy body which will cause the light body to sink

in the water when attached to it, and proceed as follows:

1st. Weigh the body in air. Let the weight = m grams.

2nd. Attach the sinker to hang below the body. Weigh
both, with the sinker only in the water. Let this

weight = mi grams.

3rd. Weigh them when both are in the water. Let the

weight = m 2 grams.

Now the only difference between the 2nd and 3rd operations

is that in the former the body is weighed in air, in the latter

in the water. The sinker is in the water in both cases.

Hence, mi — m 2 = buoyancy of the water on the body,

= wt. of the water displaced by the body,

171

and the sp. gr.
mi — m2

197. The Specific Gravity Bottle. The specific gravity

bottle, one form of which is shown in Fig. 235, is specially

adapted for finding the specific gravity of liquids. The
procedure is as follows:

1st. Weigh the bottle empty = m grams.

2nd. Weigh it filled with water = mi “

3rd. Weigh it filled with the liquid = m 2
“

Then the water which fills the bottle

weighs mi — m grams,

and the liquid which fills it weighs m 2— m “

Then the sp. gr. of the liquid =
mi — m

Example.—A bottle empty weighed 21.10 gm.; when filled with water,

71.22 gm.; when filled with alcohol, 61.73 gm. Find the sp. gr. of the

alcohol.

Weight of water filling bottle = 50.12 gm.

Weight of alcohol filling bottle = 40.63 “

40-63 .

Fig. 235.—
Specific grav-
ity bottle.

Hence,
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198. Specific Gravity of a Liquid by Archimedes’ Principle.

In finding the specific gravity of a liquid by Archimedes’

principle take a heavy body (say, a glass stopper) and weigh

it in air, when immersed in water and when immersed in the

liquid.

Let weight of sinker in air = m grams
“ “ “ “ water = mi “

“ “ “ “ liquid = m 2
“

Then weight of water displaced by sinker = m — mi grams

and “ “ liquid
“ “ “ = m - mg “

Then the sp. gr. of liquid = ^
m — mi

This also expresses the density of the liquid in grams per c.c.

Example .—A glass stopper weighed 100 gm. in air, 60 gm. in water and

70 gm. in gasoline. Find the sp. gr. of the gasoline.

Wt. of water displaced by stopper = 40 gm.
“ “ gasoline “ “ “ = 30 “

30
Hence, sp. gr. of gasoline = = 0-75-

EeII

199. The Hydrometer. The approximate specific gravity of

a liquid is a quantity which it is often necessary to determine

quickly and for this purpose an instrument

known as a hydrometer has been devised.

The principle underlying its action may be

illustrated as follows. Take a straight rod of

wood, of cross-section 1 sq. cm. and (say) 25 cm.

long, and bore a hole in one end. After inserting

enough shot to make the rod float upright in

water, plug up the hole. After this, mark on

one of the long faces a centimetre scale, and dip

the rod in hot paraffin to render it impervious to

water. Now place the rod in water (Fig. 236)

and suppose it to sink to a depth of 16 cm. Then
the weight of the rod = weight of water dis-

placed = 16 grams.

Fig. 236 .-

Illustration of
the
the :

:
principle of

i hydrometer.
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Again place it in a liquid whose density is to be determined,

and suppose it to sink 20 cm.

Then the volume of the liquid displaced = 20 c.c.,

and this = wt. of the rod = 16 grams.

Then the specific gravity of the liquid = if =
0.80.

It is evident, also, that the rod could be marked
so as to indicate the specific gravity directly. Thus,

for readings 12, 16, 20 cms.

the sp. gr. is 1.25, 1.00, 0.80.

For commercial purposes the hydrometer is

usually constructed in the form shown in Fig. 237.

At the end of a slender stem is a float A, and a

little chamber C which contains mercury and makes
the instrument take an upright position when in a

liquid. The graduations are either on the outside of the stem

or on a paper within it. The weight and volume are so

adjusted that the instrument sinks to the mark at the

lower end of the stem when in the densest liquid to be

tested, and to the mark at the upper end when in the

least dense liquid. The scale is marked so as to in-

dicate directly any density between the limits chosen.

By making the float A much larger than the stem

the instrument is rendered more sensitive.

As the range of an instrument of this class is

necessarily limited, special instruments are con-

structed for use with different liquids. Thus one

instrument is used for testing the density of milk,

another for the acid in a storage battery, and so on.

That for testing a storage battery is illustrated in

Fig. 238. The lower end is thrust into the battery

and, by pressing the rubber bulb and letting it go,

enough acid is drawn into the tube to float the

hydrometer. The depth to which it sinks shows storage

the general condition of the liquid in the battery. hydrometer.
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PROBLEMS

1. A body whose mass is 6 gm. has a sinker attached to it and the

two together weigh 16 gm. in water. The sinker alone weighs 24 gm. in

water. What is the density of the body?

2. A body whose mass is 12 gm. has a sinker attached to it and the

two together displace when submerged 60 c.c. of water. The sinker alone

displaces 12 c.c. What is the density of the body?

3. A uniform wooden rod 5 cm. square and 30 cm. long is loaded so that

it floats upright in water with 20 cm. below the surface. If the rod were

placed in alcohol (s.g. 0.8) what length of it would be below the surface?

4. If a body when floating in water displaces 12 c.c., what is the

density of a liquid in which when floating it displaces 18 c.c.?

5. A piece of metal whose mass is 120 gm. weighs 100 gm. in water and

104 gm. in alcohol. Find the volume and density of the metal, and the

density of the alcohol.

6. A hydrometer floats with -f of its volume submerged when floating

in water, and
-f-

of its volume submerged when floating in another liquid.

What is the density of the other liquid?

7. A cyUnder of wood 8 in. long floats vertically in water with 5 in.

submerged, (a) What is the specific gravity of the wood? (b) What is

the specific gravity of the liquid in which it will float with 6 in. submerged?

(c) To what depth will it sink in alcohol whose density is 0.8?

8. A mass of lead is suspected of being hollow. It weighs 2486 gm.
in air and 2246 gm. in water. What is the volume of the cavity? (s.g. of

lead = 11.3.)

9. How much silver is contained in a gold and silver crown whose

mass is 407.44 gm., if it weighs 385.44 gm. in water? (Density of gold

19.32 and of silver 10.52 gm. per c.c.).

10. The mass of a piece of limestone (sp. gr. = 2.637) is 256.34 gm.

What is its apparent weight in water?

11. The apparent weight of a mineral when weighed in water is 195.46

gm. If its specific gravity is 2.678, what is its mass?

12. Find the apparent weight of 5 c.c. of gold (sp. gr. = 19.3) in mer-

cury (sp. gr. = 13.6).

13. What is the least weight that must be placed upon a cu. ft. of cork

(sp. gr. = 0.25) that it may float totally immersed in a liquid whose
specific gravity is 0.9?

14. What is the least weight that must be placed upon a piece of wood
weighing 20 pounds and floating with f of its volume immersed in a liquid

whose specific gravity is 1.5 that it may be totally immersed?
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15. A cylinder of cork weighs 10 gm. and its specific gravity is 0.25.

Find the least force that will immerse it (1) in water, (2) in a liquid whose

specific gravity is 0.75.

16. A body (sp. gr. = 0.5) floats on water. If the weight of the body is

1 kg., find the number of c.c. of it above the surface of the water.

17. A body floats in a fluid (sp. gr. = 0.9) with as much of its volume

out of the fluid as would be immersed if it floated in a fluid (sp. gr. 1.2).

Find the specific gravity of the body.

18. A cubical block of woo'd (sp. gr. = 0.6) whose edge is 1 ft. floats,

with two faces horizontal, down a fresh water river out to sea, where a fall

of snow takes place, causing the block to sink to the same depth as in the

river. If the specific gravity of the sea water is 1.025, find the weight of

the snow on the block.

19. A ship, of mass 1000 tons, goes from fresh water to salt water. If

the area of the section of the ship at the water-line is 15,000 sq. ft., and

her sides vertical where they cut the water, find how much she will rise,

taking the specific gravity of sea water as 1.026.

20. A beaker partly full of water is balanced accurately on the scales;

then a piece of lead (sp. gr. = 11) weighing 66 gm., held by the hand at

the end of a fine thread, is lowered into the water without touching the

glass. What weight must be added to the opposite side to restore equi-

librium?

21. A, B, and C are three beakers filled to the top with water:

(1) A block of wood weighing 30 gm. (sp. gr. = 0.4) is placed in A.

(2) A piece of lead measuring 3 c.c. (sp. gr. =11) rests at the bottom

of B.

(3) The lead and wood are fastened together and

placed in C.

Find the change (if any) that has taken place in

the weight of each beaker, giving full explanation in

each case.

200. Liquids in a Bent Tube. It is pos-

sible to find the density of one liquid with

respect to another by means of a bent tube,

provided the liquids do not mix.

Pour the liquids in and allow them to come

to equilibrium (Fig. 239). Let A and B be

their free surfaces and C their common surface.
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It is evident that the liquid AC is not so dense as the

other.

Let di, di (gm. per c.c.) be the densities, and hi, h^ (cm.)

be the heights of the free surfaces above the horizontal

plane CD drawn through their common surface.

Since the liquids are in equilibrium, it is evident that

the pressure at C = the pressure at D.

The pressure per sq. cm. at C = the weight of a column of

liquid of density d\ gm. per c.c., having a cross-section 1 sq.

cm. and height hi cm.

= di X hi gm. per sq. cm.

Similarly the pressure per sq. cm. at D
= d^X hi gm. per sq. cm.

Hence, di x hi = di x hi,

or di/di = hijhi.

Hence, when the liquids are in equilibrium their densities

are inversely as the heights of their free surfaces above their

common surface.

Example.—Let the column AC be oil and the rest water. By measure-

ment hi - 20 cm., hi = 18 cm.

Hence, density of oil, d\ = density of water,

= 0.9 gm. per c.c.

PROBLEMS

1. Two liquids which do not mix are contained in a bent tube. If

their specific gravities are 1.2 and 1.8 respectively, and the height of the

first above their common surface is 15 in., find the height of the other.

2. In a bent tube a column of mercury (sp. gr. 13.6) is balanced by a

column of alcohol (sp. gr. 0.8). If the height of the former is (1) 4 cm.,

(2) 10 cm., (3) 15 cm., what in each case is the height of the latter?

3. Two tanks are connected by a pipe. Into one tank is poured salt

water (sp. gr. 1.03), and into the other a very light oil (sp. gr. 0.5). The
oil is found to be 5 ft. above their common surface. Find the height of

the water.
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4. Mercury and ether are poured into a bent tube. The mercury

stands 5.25 cm. when the ether stands 100 cm. above their common sur-

face. If the density of the ether is 0.715 gm. per c.c., what is the density

of the mercury?

5. Two liquids that do not mix are contained in a bent tube. The
difference of their levels is 40 cm. and the height of the denser above their

common surface is 70 cm. Compare their densities.

6. If water and a denser liquid which does not mix with it are placed

in a U-tube, the internal cross-section of which is 1 sq. cm., the difference

of their levels is found to be 4 cm., and the height of the liquid above

their common surface is 10 cm. What is the specific gravity of the liquid?

REVIEW QUESTIONS

1. State Pascal’s Principle. How would you demonstrate the truth of

the Principle ?

2. State three laws governing the pressure in a liquid at rest under the

action of gravity.

3. What is meant by the “hydrostatic paradox”? Explain it.

4. State Archimedes’ Principle and tell how you would demonstrate it

experimentally.

5. State the principle of flotation. How would you verify it?

6. Distinguish between density and specific gravity.

7. How would you use Archimedes’ Principle to find:

(a) the s.g. of a substance heavier than water;

(b) the s.g. of a substance lighter than water;

(c) the s.g. of a liquid?

8. How could you find the specific gravity of mercury by using a

specific gravity bottle, if the mercury at your disposal filled only part of
’

the bottle?
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Pressure of the Air—The Barometer

201. Air has Weight. Though we cannot see the air, we

are fully convinced that it is a substance which actually exists

and is quite as real as the solid soil or the water of the ocean.

The air offers a resistance to the rapidly moving automobile

or railway train; and were it not a real substance the aeroplane

could not soar upon it or driveitself forward by its propeller.

Sometimes great trees are blown over or mountainous waves

are raised upon the sea. These disturbances are not due to

some imaginary force but are caused by real masses of matter

sweeping forward over the surface of the earth.

However, the air is so thin and fluid that we might almost

expect it to escape the laws of weight. We speak of a thing

being as ‘flight as air”; but it is not difficult to demonstrate

that air has weight and that its weight is not so small as

many people seem to think.

From an ordinary (not gas-filled) electric light bulb the air

has been carefully removed and the space within is almost a

perfect vacuum. Take one of these bulbs (one with a broken

filament) and, having heated the butt-end in a flame, remove

the brass plug. Then, by means of a delicate balance, weigh

the glass portion which is left. Next make a scratch on the

sharp glass tip with a file and then by a smart tap break off

the tip. This will make a hole in the bulb and the air will

rush in and fill it. Now weigh the bulb, including the tip,

again. The weight will be distinctly greater than before.

Example .—The following measurements were made

:

Weight of bulb at first. ...... .24.572 gm.

Weight of bulb + air 24.755 “

Increase in weight 0.183 “

269
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An attempt was also made to measure the capacity of the bulb and
then to calculate the weight of 1 litre of air.

On forcing the bulb down into water in a graduate the entire volume
was 160 c.c. Now the density of glass is about 2.5 grams per c.c. and the

mass of the bulb is 24.572 grams; hence, the volume occupied by the

glass = 24.572 ^ 2.5 = 10 c.c. (approx.).

Consequently the capacity of the bulb = 160 — 10 = 150 c.c.

Hence, 150 c.c. of air weighed 0.183 grams.

The temperature was 19.5° C. and the barometer read 73 cm.

Using the laws of expansion of a gas, we find that the weight of 1 litre

at 0° C. and 76 cm.

1000 X 0.183 292.5 76

150 ^ 273 ^ 73
1.36 grams.

The experiment to determine the weight of a given volume

of air can be performed more satisfactorily with the gas flask

shown in Fig. 240. It can be connected to an air-pump for

removing the air from the globe, or to one

for forcing air into it; and a stop-cock

allows the vessel to be made air-tight.

First, let the air be removed from the

vessel and the stop-cock closed, and then let

it be weighed. Then admit air and weigh

again. Finally, cautiously force air into it

and weigh a third time. The third weight

will be greater than the second and the

second greater than the first. The capacity

of the flask can be determined by filling

it with water and weighing it.

Fig. 240.—Globe for
weighing air.

By observing the temperature of the gas, the pressure to

which it is subjected and the barometric pressure, the weight

of the gas at standard temperature and pressure can be

determined. Careful experiments show that

1 litre of air at 0° C. and 76 cm. pressure = 1.293 grams.

From this we find that 1 cu. ft. = 1.28 ounces or 12 cu. ft.

= 1 lb. (approximately). Consequently the air in a room 20

X 24 X 15 ft. weighs 600 lb. It is not so light after all.
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202. Pressure of the Atmosphere. The reason why the

air is heavy is because it is attracted to the earth by the

force of gravity, and just as liquids exert pressure upon all

surfaces with which they are in contact, so must the air do

the same. The bed of the ocean is subjected to enormous

pressure by the water above it, and in the same way the

surface of the earth must sustain a pressure from the aerial

ocean which rests upon it. As we have seen, the pressure in

the water is directly proportional to its depth; in the atmos-

phere the pressure becomes less the higher above the earth one

goes. Thus the pressure at sea-level at

Halifax, N.S., or Victoria, B.C., is greater

than in the Rocky Mountains.

That the atmosphere exerts pressure can

be demonstrated by many simple experi-

ments. Tie a piece of thin sheet rubber

over the mouth of a thistle-tube (Fig. 241)

and exhaust the air from the bulb by
suction or by means of an air-pump. As
the air is exhausted the rubber is pushed

inward by the pressure of the outside air. Again,

fill a bottle with water, and place a sheet of

' writing paper over its mouth. Then, holding the

paper in position with the palm of the hand,

invert the bottle (Fig. 242). The pressure of

the atmosphere against the paper prevents the

water from running out. Numerous other ex-

periments can be performed to show the same

effect.

If one end of a tube is thrust into water and

the air is withdrawn from it by suction, the water

rises in the tube. This phenomenon was known for ages and

was accounted for by the simple statement that nature abhors

a vacuum. In 1640 the Grank Duke of Tuscany dug a deep

Fig. 241. — Rubber
membrane forced in-

wards by the pressure of
the air.

Fig. 242.—De-
monstrating at-
mosphereic pres-
sure.
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well, but found that the water could not be raised more than

32 feet above its level in the well. He applied to the aged

scientist Galileo for an explanation, and though the latter had

proved that air had weight he did not connect that fact with

the problem. He simply inferred that the horror felt by nature

had its limitations. After his death the problem was solved by
his pupil Torricelli, who was made, by the Grand Duke,

professor of mathematics in the Academy of Florence, in

succession to Galileo. Torricelli showed definitely that the

reason why water rose in the pump only to a height of 32 feet

was because the pressure of the atmosphere was not able to

push it up any higher.

PROBLEMS AND EXERCISES

1.

Fill a tumbler and hold it inverted in a dish of water as shown in

Fig. 243. Why does the water not run

out of the tumbler into the dish?

2. Take a bent glass tube of the form

shown in Fig. 244. The upper end of it

is closed, the lower open. Fill the tube

with water. Why does the water not

run out when it is held in a vertical

position?

3. Why must an opening be made in

the upper part of a vessel filled with a

liquid to secure a proper flow at a faucet inserted at the bottom?
Can the water be emptied from a flexible rubber bag if the bag
has a single small opening in it?

4. Fill a narrow-necked bottle with

water and hold it mouth downward.

Explain the action of the water.

5. On the tin top upon a pot of jam is

sometimes seen the instruction:—“To open,

puncture and push up at edge.” Give the reason

for this.

6. Boil water in a flask A arranged as in Fig.

245, conducting the steam through the tube B
into cold water C. Remove the heat. Observe

Fig. 243 .
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and explain what happens. Next remove the tube D, plugging the

hole in the cork through which it passes. Repeat the experiment and

explain what happens.

7. Explain the action of a fountain-

pen filler or medicine dropper (Fig. 296).

8. A new half-gallon tin can had half

an inch of water placed in it. This

water was boiled vigorously for two

minutes or longer, the can was removed

from the heater, and the cap screwed

on tightly while the steam was still (o) (6)

escaping. The action which took place fig. 246.— (o) Can before cooling;

when the can cooled is shown in Fig. 246. cooling.

Explain.

9. A flask weighs 280.60 gm. when empty, 284.19 gm. when filled with

air and 3060.60 gm. when filled with water. Find the weight of 1 litre of air.

203. Torricelli’s Experiment.

Torricelli reasoned that since

a water column rises to a height

of 32 ft., and since mercury

is about 14 times as heavy as

water, the atmosphere would be

able to support a mercury

column only about of 32 ft.,

or approximately 28 in. in

height. Under his direction

Vincenzo Viviani, one of his

pupils, performed an experiment

similar to the following:

Take a glass tube about 1

metre (39 inches) long (Fig. 247),

closed at one end, and fill it with

mercury. Then, stopping the

open end with the finger, invert

it and place it in a vertical position, with the open end under

the surface of the mercury in a bowl. Remove the finger. The

Fig. 247.—Mercury column sus-
by the pressure of the air.
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mercury will fall in the tube, and, after oscillating up and

down, will come to rest with the surface of the mercury in the

tube between 28 and 30 inches (71 and 76 cm.) above the

surface of the mercury in the bowl.

The experiment resulted precisely as Torricelli expected, and

conclusively showed that the column of mercury was sustained

by the pressure of the atmosphere upon the surface of the

mercury in the bowl. The empty space above the mercury is

called a Torricellian vacuum.

When a report of this experiment reached France it created

a sensation among the scientists there, but it was not repeated

by them until 1646, as no suitable tubes were available before

that date. In that year the experiment was performed by
Pierre Petit, of Rouen, in conjunction with the great Pascal,

who concluded ‘‘that the vacuum is not impossible in nature,

and that she does not shun it with so great a horror as many
imagine.” Pascal reasoned that if the mercury column is

simply held up by the pressure of the air the column should

be shorter at a higher altitude. He asked his brother-in-law,

Perier, who resided at Clermont, in the south of France, to

test it on the Puy-de-D6me, a near-by mountain over 1000

yards high. Using a tube about 4 ft. long, which had been

filled with mercury and then inverted in a vessel containing

mercury, Perier found that the column fell over 3 inches

(8 cm.) on going to the summit. Later Pascal tried the experi-

ment at the base and the top of the tower of Saint-Jacques-

de-la-Boucherie, in Paris, which is about 150 feet high. There

was a difference of 2 lines (about 0.5 cm.).

204. The Barometer. In his experiments Torricelli says he

aimed “not simply to produce a vacuum, but to make an

instrument which shows the mutations of the air, now heavier

and dense, now lighter and thin”; and the modern mercury

barometer, which is designed to measure the pressure of the

atmosphere, is similar in principle to that constructed by

Torricelli. Two forms of the instrument are in common use.
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205. The Cistern Barometer. This is simply a convenient

arrangement of the original Torricellian experiment. The

bowl, or cistern, and the tube are permanently mounted

on a board, and a scale, engraved on the metal case protecting

the glass tube, shows the height of the mercury

in the tube above the surface of the mercury

in the cistern.

A common form of the instrument is shown in

Figs. 248, 249. The cistern has a flexible leather

bottom which can be raised or lowered by a screw

C, in order to adjust the level of the mercury.

Before taking the reading, the screw is turned until

the tip of the pointer P (which is the

zero of the scale on the case) just

touches the mercury. To do this, the

level is slowly changed until the image

of the tip just reaches the tip itself.

The height of the column is then

read directly from the scale on the

case, the reading being made with

accuracy by the assistance of a

vernier.

In constructing a barometer of this

kind the mercury must be very pure,

since impure mercury has a different

specific gravity and besides it ad-

heres to the glass. Also, all bubbles

of air and of moisture must be care-

fully removed. In order to do this

the mercury is boiled. First, the tube

is filled about one-third full of mercury which is then boiled

over a charcoal fire or a large gas flame. Then more is added

and the boiling continued, until at last the whole is thoroughly

boiled. The temperature of boiling is so high (357° C.) that

all the air and the moisture are completely removed. The

Fig. 248.—
The cistern
barometer.

Fig. 249.—Sec-
tion of the cistern.
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operation is sometimes shortened and made easier by a

suitable arrangement whereby an air-pump removes much of

the air and the moisture, and also causes the mercury to boil

at a lower temperature.

206. The Siphon Barometer. This barometer consists of a

tube of sufficient length, sealed at one end and

bent into U-shape at the other (Fig. 250). When
filled with mercury and held in an upright

position the mercury in the long closed tube falls

until the atmospheric pressure on the open end

is just sufficient to balance a column of mercury

extending from the level in the open tube to the

level in the closed tube. A scale is attached to

or engraved upon each branch. The upper scale

gives the height of the mercury in the closed

branch above a fixed point and the lower scale

gives the distance of the mercury in the open

branch below the same point. The sum of the
Fiq. 250.—Siphon two readings is the height of the barometric

barometer. ° ®

column.

207. The Aneroid* Barometer. In this barometer no liquid

is used. The air presses upon the flexible corrugated cover of

Fig. 251.—Aneroid barometer.

*Aneroid, from Greek a = not, neros = wet.
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a circular, air-tight metal box A (Figs. 251, 252) from which

the air has been partially exhausted. The cover, which is

usually supported by a spring S, responds to the pressure of

Fig. 252.—Simplified diagram of aneroid COVer is Very Small but

mitted to an index hand 5 by a system of delicate levers and

a chain, or by gear wheels. The circular scale is graduated

by comparison with a mercury barometer.

The aneroid is not so accurate as the mercury barometer,

but it is very portable and very sensitive and is in very

common use. It is specially serviceable in determining dif-

ferences of level. A good aneroid will indicate a fall in pressure

in going from the cellar to the attic of a house.

the atmosphere, being

forced in when the pressure

is increased and coming

outwards when it is de-

creased. The movement of

it is multiplied and trans-

Fiq. 253.—Barograph or self-recording barometer.

On the face of the aneroid barometer is often seen the

words, “stormy, rain, change, fair, very dry.’’ They have
little meaning, and the barometer by itself cannot indicate
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with certainty the nature of the coming weather. However,

there are some laws which have been found to hold. If the

barometer falls rapidly we may expect strong winds; and if

it is low, rain or snow is likely to fall. If it is rising, fine

weather is probably coming, and if it stays high and steady,

fine weather is likely to continue. The barometer is highest in

calm, clear, cold winter weather. Barographs, or self-registering

barometers, have been devised on the principle of the aneroid.

In these an index carries a pen which makes a continuous

record upon a strip of paper on a revolving drum. (Fig. 253).

208. Calculation of Atmospheric Pressure. If we know
the barometric height at a given place we can calculate the

pressure of the atmosphere there. For example,

suppose the barometer stands at 76 cm. (Fig. 254).

Then the pressure of the atmosphere at A is equal

to the pressure of the mercury at B. Consequently

to find the atmospheric pressure in grams per sq.

cm. we have only to find the weight of a column

of mercury 1 sq. cm. in section and 76 cm. in

height, that is, the weight of 76 c.c. of mercury.

Now mercury expands as its temperature rises,

and consequently the weight of 1 c.c. of mercury

depends on the temperature. The following table

gives the values for three temperatures

:

Temperature. Wt. of 1 c.c. Wt. of 76 c.c.

— 2° C. = 28°.4 F. 13.600 grams. 1033.600 grams.

0 32 13.596 ‘‘ 1033.296 “

25 72 13.534 “ 1028.584 “

In a barometer like that illustrated in Fig. 248 the scale is

engraved on the brass case. Now this case increases in

length as the temperature rises, and if we desire to determine

accurately the pressure of the atmosphere we must make
allowance for this too. It is usual to read the height of the

mercury and also the temperature indicated by the ther-

mometer attached to the case, and then to reduce the reading

Fig. 254.
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to zero, that is, to determine what the reading would be if

the temperature fell to zero. If, further, it is desired to

compare the atmospheric pressures at various places, as is

done in the Meteorological Service, it is usual also to reduce

the readings to sea-level, that is, to determine what the

readings would be if the barometers were lowered down deep

holes until they reached the level of the sea. In order to

facilitate these reductions, tables have been prepared from

which the corrections to be applied for various temperatures

and altitudes may be found without much labour.

To illustrate the amount of these corrections the following

example is given;

Temperature 72° F. = 25° C.

Altitude 1000 ft. = 304.8 metres.

in. mm.
Reading of barometer 28.900 735.6

Correction for temperature: -.113 -3.0

28.787 732.6

Correction for altitude -bl.02 +25.8

Reading at freezing point 1

1 1 1 1
29.807 758.4

and sea-level
J

PROBLEMS
(In the following questions the density of mercury is to be taken as 13.6 gm. per c.c. or

as 7.858 oz. per. cu. in. = 848 lb. per cu. ft.)

1. Find the atmospheric pressure per sq. in. when the mercury baro-

meter stands at 30 in.

2. Find the pressure of the atmosphere on a square centimetre when
the mercury barometer stands at 76 cm.

3. Three barometers are constructed to use liquids whose specific

gravities are respectively 7.2, 2.9, and 11.8. Find the atmospheric pressure

on a sq. inch (1) when the first barometer stands at 4.8 ft., (2) when the

second stands at 11.52 ft., (3) when the third stands at 87.63 cm.

4. Three barometers are constructed to use liquids whose specific

gravities are respectively 13.6, 5.17, and 2.06. Find the atmospheric

pressure on 1 sq. cm., (1) when the first barometer stands at 70 cm., (2)

when the second stands at 2 m., (3) when the third stands at 5 m.
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If in ascending a mountain the barometer falls from 30 in. to 20 in.,

find the decrease in the total force exerted by the atmosphere on an area

of 10 sq. ft.

Fig. 254a—Vertical section of a
bottle on the plate of an air-pump.

(a) What force will be re-

quired to lift the bottle off?

(b) What is the pressure

exerted by the bottle on the

plate?

209. Determination of

Heights by the Barometer.

Since the pressure of the

atmosphere decreases with

the elevation above sea-

level it is evident that

the barometer may be used

to measure the difference

between the altitudes of

two places. Aneroid baro-

meters are actually used

to determine heights in

reconnaissance surveying,

and the altimeter of an

6. The density of mercury being 13.6

gm. per c.c., find the pressure of the

atmosphere in dynes per sq. cm. when the

barometer stands at 75 cm.

7. The outer diameter of the mouth of

the bottle shown in section in Fig. 254a

is 1^ in. and the inner diameter is 1 in.

The bottom of the bottle is 4 in. in dia-

meter. The mouth, which is ground

smooth, is placed upon the plate of an

air pump and the air is removed from

within. If the bottle weighs 1 pd. and

the barometer stands at 30 in..

Fig. 255.—Atmospheric conditions at different
heights.
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aeroplane consists of an aneroid barometer calibrated in feet

of elevation.

If the density of the air was uniform, its pressure, like that

of liquids, would vary directly with its depth; but the air is

very compressible and the lower layers are much denser than

those above them. As a consequence the relation between

barometric height and altitude is somewhat complicated.

It has been found that for small elevations a fall of 1 inch

in the mercury column corresponds to a rise of 900 ft. in

elevation.

For heights less than 1000 metres (3280 ft.) the following

formulas have been found to hold:

Let H, h be the barometric heights at the lower and upper stations,

and T, t be the temperatures at the lower and upper stations.

Then, if T is in degrees Fahr.,

Difference in height = 52,494

If T is in degrees centigrade,

Difference in height = 16,000 metres.

Fig. 255 shows roughly the conditions of atmospheric

pressure at heights up to 24 miles.

210. Buoyancy of Gases. It is evident that Archimedes’

principle applies to gases as well as to liquids. A simple

experiment to demonstrate the buoyant force

of air is illustrated in Fig. 256. A hollow metal

or glass globe A is suspended from one end of

a short balance beam and is counterpoised by
a small weight B. If the air exerts a buoyant
force, as in a liquid, the force upward on A
must be greater than that on B, and if the air

be removed from about the balance the globe

A should sink. On putting the apparatus

under the receiver of an air-pump and ex-

hausting the air, the globe at once sinks.
Fia. 256.—Buoy-
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A gas exerts upon a body immersed in it a buoyant force

which is equal to the weight of the gas displaced by the body;

and, of course, if this buoyant force is greater than the weight

of the body, the body will rise.

211. Balloons and Air-Ships. The use of air-ships or

balloons is made possible by the buoyancy of the air. A
balloon is a large, light, gas-tight bag filled with some gas

lighter than air, usually hydrogen or illuminating gas. Helium

is the ideal gas for the purpose as it will not take fire, but up

to the present comparatively little of this gas has been

available. In Fig. 257 is illustrated the great British air-ship

Fig. 257.—The British air-ship R-34, the first to cross the ocean. It left East Fortune,
Scotland, July 2, and reached Long Island, N.Y., July 6, 1919. Time of flight, 108 hours.
The return was made in 75 hours. Length, 672 ft.; diameter, 79 ft.; volume 2,000,000
cu. ft.; crew and passengers, 30.

R-34, which, during the summer of 1919, made the journey

from Great Britain to the United States and back. By means

of propellers these air-ships can be driven in any desired

direction.
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A balloon will continue to rise so long as its weight is less

than the weight of the air which it displaces, and when there

is a balance between the two forces, it simply floats at a

constant height. In the case of an ordinary balloon the

aeronaut maintains his position by adjusting the weight of

the balloon to the buoyancy of the air. When he desires to

ascend, he throws out ballast. To descend he allows gas to

escape and thus decreases the buoyancy. The power air-

ships can be made to rise or sink or turn to the right or left by
means of suitable elevators and rudders.

It will be interesting to compare the lifting powers of a

balloon filled with different gases. Let its capacity be 80,000

cu. ft. (1699 cu. metres). If it were spherical the diameter

would be 48.6 ft. Balloons were originally nearly spherical in

shape, though most nowadays are in the form of a ‘sausage.’

The weight of 1 cu. m. of hydrogen = 0.09 kg.; of helium, 0.18 kg.;

of illuminating gas, 0.75 kg.; of air, 1.29 kg. (at standard pressure and

temperature).

Hence the weight of 1699 cu. m. of hydrogen = 152.9 kg.; of helium,

305.8 kg.; of illuminating gas, 1274.3 kg.; and the same volume of air

weighs 2191.7 kg., which is the buoyant force of the air (neglecting the

volume of the material of the balloon and its basket)

.

The lifting force, therefore, if the balloon is filled with

Hydrogen = 2191.7 - 152.9 - 1938.8 kg.

Helium = 2191.7 - 305.8 = 1885.9 “

Illuminating gas = 2191.7 — 1274.3 = 917.4 “

Thus the lifting power of helium is about while that of

illuminating gas is y that of hydrogen.

212. Height of the Atmosphere. There are several ways
of obtaining an estimate of the height of the atmosphere, but

no means of determining that height accurately. From twi-

light effects a height of about 40 miles has been calculated.

It would seem that above this height the air ceases to reflect

light, but other evidence shows that it extends far beyond.

Meteors, or shooting stars, which consist of small masses of

matter made incandescent by the heat produced as they rush
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through the atmosphere, have been observed at heights of

over 100 miles. The aurora borealis, or northern lights, is

probably a phenomenon in our atmosphere, and measurements

of brilliant displays seen in the north of Norway show that it

usually attains a height of 110 km. (70 mi.) and sometimes

as much as 600 miles.

QUESTIONS AND PROBLEMS

1. Why should the gas-bag be subject to an increased strain from the

pressure of the gas within as the balloon ascends?

2. Aeronauts report that balloons have greater buoyancy during the

day when the sun in shining upon them than at night when it is cold.

Account for this fact.

3. If the volume of a balloon remains constant, where should its

buoyancy be the greater, near the earth’s surface or in the upper strata

of the air? Give reasons for your answer.

4. An aluminium block is placed on one pan of a balance and a lead

weight on the other and they are in equilibrium? The whole is put in a

vessel and the air removed from it. Describe what happens and explain

why. What would happen if the balance were lowered into water?

5. The volume of a balloon is 2,500 cu. m. and the weight of the gas-bag

and car is 100 kg.; find its lifting power when filled with hydrogen gas,

the density of which is 0.0000899 gm. per c.c. while that of air is 0.001293

gm. per c.c.

6. Find the lifting power of the same balloon when filled with helium,

which is twice as dense as hydrogen.

7. If the balloon were filled with illuminating gas, which is 8 times as

dense as hydrogen, would it rise? If so, find the lifting power.

8. A balloon had a capacity of 80,000 cu. ft. The gas-bag, net about it,

and the basket together weighed 985 pounds. How great a load could it

carry when filled with hydrogen? (1 cu. ft. air = 0.08 lb.; of hydrogen =
0.0056 lb.)

9. The ordinary balloons used during the Siege of Paris in 1870 had a

capacity of about 70,000 cu. ft. and the weight of the balloon and car was
about 1000 pd. Find the lifting power when filled with coal gas whose

density is 0.4 that of air.



CHAPTER XXII

Boyle’s Law and The Kinetic Theory of Gases

213. Compressibility and Expansibility of Gases. We have

already referred to the fact that gases can be compressed and

that they will expand if allowed to do so. Indeed this is the

distinguishing feature of a gas. A solid has both a definite

volume and a definite shape; a liquid has a definite volume

but no definite shape,—it will take the shape of the vessel

which holds it; but a gas has neither definite volume nor

definite shape (Sec. 172). If a quantity of gas is introduced into

a closed vessel it will spread out and go into every corner of it,

no matter what the shape may be. If the stopper be removed

from a bottle containing ammonia we soon smell the pungent

odour of ammonia gas everywhere in the room; or if hydrogen

sulphide be introduced into a building

(for instance, in natural gas) it before

long reveals its undesired presence in all

parts of the house.

In its efforts to escape, the gas exerts

a pressure against the walls of the vessel

enclosing it. This can be illustrated in

the following way. Place a toy balloon

or a half-inflated rubber from a football

under the receiver of an air-pump and

operate the pump. (Fig. 258.) As the

air about the bag is continually removed, the bag expands;

and when the air is admitted again the bag resumes its former

volume.

To account for this we imagine the bag to be the seat of

two contending factions,—the troops of molecules within

endeavouring to keep back the invading hosts of molecules

without. Incessantly they rush back and forth, perpetually

285

Fig. 258—When the air

is removed from the receiver
the toy balloon expands.
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striking against the surface of the bag. As the enemies are

withdrawn by the action of the pump, the defenders within

gain the advantage and, pushing forward, enlarge their

boundary which at last, however, becomes so great that the

outsiders can again hold it in check.

The never-ceasing impact of the molecules of the gas

against a surface produces the pressure exerted by the gas.

This view of a gas is known as the Kinetic Theory of Gases,

QUESTIONS AND EXERCISES

1.

Arrange apparatus as shown in Fig. 259. By suction remove a

portion of the air from the flask, and, keeping the rubber tube closed by

pressure, place the open end in a dish of water. Now open

the tube. Explain the action of

the water.

2.

Guericke took a pair of

hemispherical cups (Fig. 260)

about 1.2 ft. in diameter, so

constructed that they formed a

hollow air-tight sphere when
their lips were placed in contact;

and at a test at Regensburg be-

fore the Emperor Ferdinand III

and the Reichstag, in 1654,

showed that it required sixteen

horses (four pairs on each hemisphere), to pull the hemispheres apart

when the air was exhausted by his air-pump. Account for this.

Fig. 260. Fig. 261.

Fig. 262.

3. If an air-tight piston is inserted into a cylindrical

vessel and the air exhausted through the tube (Fig.

261), a heavy weight may be lifted as the piston rises.

Explain this action.

4. A rubber tube with thin walls collapses when used

for connecting an air-pump with a vessel from which the

air is being withdrawn. Explain.

5. A bottle partly filled with water is closed with a

perforated cork and connected by a bent tube with an

uncorked bottle as shown in Fig. 262. Explain what
happens when this arrangement is placed under the

receiver of an air-pump and the air is exhausted.
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214. Effect of a Rise in Temperature. If we place the

rubber bag used in the last experiment in an oven, it expands,

showing that the pressure upon the inner surface of the bag

has increased. Now there are the very same molecules

within—no increase in the number—and we must conclude

that a rise in temperature causes the molecules to move

with greater speeds, and this produces the increased pressure.

A very good analogy is the action of a number of bees

placed in a closed vessel provided with a glass window through

which their movements can be observed. At low temperatures

the bees are quite dormant but as the vessel is gradually

heated they become very active indeed.

215. Relation Between Volume and Pres-

sure of a Gas—Boyle’s Law. It is a

matter of importance to know the change

produced in the volume of a given mass

of gas when it is subjected to different

pressures. This relation was first determined

experimentally in 1660 by the distinguished

Irish chemist, Robert Boyle (1627-1691).

The apparatus shown in Fig. 263 is suitable

for the investigation of this relation.

Two glass tubes, A and B, are supported in

such a way that either may be raised or

lowered. The upper end of A is closed, that

of B is open, and their lower ends are joined

by a heavy rubber tube. The rubber tube

and part of A and B are filled with mercury.

The tube A is of uniform bore and the volume

of the air may be taken proportional to the

length of the tube occupied by it, this being

obtained from the scale against which it is Law^%pafatu^°^^A®.

placed. tube.
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First, adjust the amount of mercury so that when it is at

the same level in both glass tubes A is about half-full of

air, which should be dry.

Read the barometer and record its height in cm. of mercury.

When the mercury is at the same level in both tubes the

air is under the pressure of one atmosphere, i.e., the pressure

shown by the barometer.

Now lower B as far as it will go. Do this rather slowly.

The temperature of the gas should remain the same, and a

rapid change in volume produces a change in the temperature.

Then read the levels of the mercury in the two tubes. The
level of the mercury in the open tube is below the level of

that in the closed tube and the pressure to which the im-

prisoned gas is subjected is now 1 atmosphere minus the

difference in the levels of the mercury. Raise B a few centi-

metres and take the readings again. Continue this until B
is as high as it can go. When the level of B is above that of A
the pressure on the imprisoned air is 1 atmosphere plus the

difference in level.

The tube A should not be handled for fear of raising the tem-

perature of the inclosed air; and, as has already been remarked,

the air should not be compressed or expanded quickly.

The following results were obtained with such an apparatus:

Level of Mercury in Difference
between

the
Levels

Height
of

Barometer

Total
Pressure In
cm. of Mer-
cury = P

Length of
Air in

Tube = V
Product
PxV

Closed Tube Open Tube

46.2 7.6 -38.6 74.6 36.0 30.1 1083.6

51.6 21.0 -30.6 44.0 24.7 1086.8

55.3 32.3 -23.0 51.6 21.0 1085.7

59.2 48.1 -11.1 63.5 17.1 1085.8

61.7 61.7 0.0 74.6 14.6 1089.2

63.8 76.3 + 12.5 87.1 12.5 1088.7

65.5 91.9 +26.4 101.0 10.8 109(L.8

66.9 107.7 +40.8 115.4 9.4 1084.7

68.0 124.8 +56.8 131.4 8.3 1090.6

68.5 132.7 +64.2 138.8 7.8 1082.6

Reading of top of closed tube, 76.3 cm.
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From this experiment we learn that the pressure and volume
vary in such a way that the product P X F is constant. If

the pressure is doubled the volume becomes half as great, if

the pressure is multiplied threefold, the volume becomes one-

third, etc. In other words,

If the tempera-

ture is kept con-

stant, the volume

of a given mass of

air varies inversely

as the pressure to

which it is sub-

jected.

This relation is

generally known as

Boyle’s Law, In

France it is called

Mariotte’s Law,
because it was in-

dependently dis-

covered by a

French physicist

named Mariotte
(1620-1684), fourteen years after Boyle’s publication of it in

England.

Fig. 264 shows the graph obtained by plotting the results

given in the above table. This curve, whose equation is P F =
a constant, is a rectangular hyperbola.

216 . Alternative Boyle’s Law Experiment. Fig. 265 illustrates another
form of apparatus suitable for demonstrating Boyle’s Law.

It consists of the large reservoir A to which are connected the glass tube
B, which is closed at the top and the metal tube C on which is mounted the
pressure gauge The large cylinder is partly filled with a light oil which
rises in B and C when air is pumped into A through the valve E. The
volume of the air in B is given by the scale mounted alongside B and
the corresponding pressure is read on the pressure gauge. Pressures less

Fig. 264.—Graph showing how volume of a gaa
changes with the pressure.
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than atmospheric may be obtained by exhausting air from the space

above the oil in A.

This piece of apparatus is easily manipulated, the use of mercury is

avoided and it is not necessary to read the barometer. If a good pressure

gauge is used the results compare very favourably

with those obtained by the method previously

described.

PROBLEMS

Fig. 265.—Ahrens’ apparatus
for Boyle’s Law.

1. A tank whose capacity is 2 cu. ft. has gas

forced into it until the pressure is 250 pd. per

sq. inch. What volume would the gas occupy

at a pressure of 75 pd. per sq. inch?

2. A gas-holder contains 22.4 litres of gas

when the barometer stands at 760 mm. What
will be the volume of the gas when the barometer

stands at 745 mm.?

3. A cylinder whose internal dimensions are:

length 36 in., diameter 14 in., is filled with gas at

a pressure of 200 pd. per sq. inch. What volume

would the gas occupy if allowed to escape into the

air when the barometer stands at 30 in. (Take

density of mercury as 848 lb. per cu. ft.).

4. Twenty-five cu. ft. of gas, measured at a

pressure of 29 in. of mercury, is compressed into

a vessel whose capacity is 1^ cu. ft. What is the

pressure of the gas?

5.

A mass of air whose volume is

150 c.c. when the barometer stands at

750 mm. has a volume of 200 c.c. when

carried up to a certain height in a

balloon. What is the reading of the

barometer at that height?

6. A piston is inserted into a cylindrical vessel 12 in. long, and forced

down within 2 in. of the bottom. What is the pressure of the inclosed

air if the barometer stands at 29 in.?

7. The density of the air in a gas-bag is 0.001293 gm. per c.c. when

the barometer stands at 760 mm.; find its density when the barometric

height is 740 mm.
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8. An open vessel contains 100 gm. of air when the barometer stands

at 745 mm. What mass of air does it contain when the barometer stands

at 755 mm.?

9. Oxygen and other gases, used for welding and other purposes, are

stored in steel tanks. The volume of a tank is 6 cu. ft., and the pressure

of the gas at first was 15 atmospheres. After some had been used the

pressure was 5 atmospheres. If the gas is sold at 6 cents a cu. ft., measured

at atmospheric pressure, what should be charged for the amount consumed?

10.

In one form of sounding apparatus a slender glass tube closed at

one end is lowered, open end down, to the bottom of the ocean, and an

ingenious arrangement allows one to see to what height the water has

risen in the tube. Suppose that the tube is 45 cm. long and the water

rises to within 1.5 cm. of the closed end.

() What pressure (in atmospheres) has the inclosed air been subjected to?

() Taking the barometric height to be 76 cm.; the sp. gr. of mercury

to be 13.6 and that of sea-water to be 1.026, find the depth of the water.

217. Explanation of Boyle’s Law. This law naturally

follows from the kinetic theory of gases. Suppose a certain

quantity of a gas is in a cylinder closed by a piston, and let

the gas at first occupy any definite

volume (Fig. 266a). The molecules

dart about in all directions and
maintain a pressure upon the inner

surface, which exactly balances the

downward push of the piston. Next,

let the piston be thrust down until

the volume is one-half as great

(Fig. 2666). Then the number of

molecules within this space is twice

as great as before and the blows

delivered against its sides are twice

as numerous, and consequently the pressure exerted by the

gas is twice as great. In the same way, if the volume is

reduced to ^th part, the pressure exerted will be n times as

great.

'////}///////.

(a) (6)

Fig. 266.—Pressure in B is

twice that in A.



292 BOYLE’S LAW AND KINETIC THEORY OF GASES

A/,

Let successive volumes be

Then corresponding pressures are p, 2p, 3p, np.

Now p X V = 2p X = 3p X iv = np X^Vy

that is, the pressure X the volume is constant = k (say).

Then p = k}
,
or p varies inversely as v.

Now if the volume of a gas is reduced to its density

becomes 2 times as great; if to its density is 3 times as

great; if to ^th, its density is n times as great. From this

we see that the density varies inversely as the volume.

Consequently we say that the pressure exerted by a gas is

directly proportional to its density.

This is simply another statement of Boyle’s Law.

218. The Speed of the Molecules. The average speed of the molecules

of a gas at a given temperature may be calculated in the following way.

Consider a cubical vessel (Fig. 267), 1 cm. to the edge, containing a certain

quantity of gas which, of course, exerts equal

Q £ pressures on all the surfaces. Though the

motions of the particles are indiscriminately

in all directions, striking one surface and reboun-

ding from it to strike another or perhaps to

collide with another molecule; yet it seems

reasonable to assume that the pressures on the

six sides of the cube would be maintained if the

molecules were divided into three equal sets; one

set moving continually back and forth parallel

to A5 and keeping up a bombardment against

the two sides perpendicular to AB; the second

moving parallel to AC and bombarding the two sides perpendicular to

AC; the third moving parallel to AD and bombarding the two sides per-

pendicular to AD; and the molecules all moving with a speed which is

the average of all the speeds.

Let us consider the first set, namely those moving parallel to AB, and

taking n to be the total number of molecules in the cube, the number of the

first set will be ^n.

B

y' y
Fig. 267.—Speed of

molecules of gas in a
cubical vessel.

Let the speed of the molecules be T cm. per sec., and the mass of each

be m grams. Each moving molecule will possess a momentum mV.

Suppose a molecule to strike against the side CD with speed V; we
assume that it rebounds with the same speed. In this way a momentum
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mU in one direction on impact is changed into one of equal amount in

the opposite direction, or the change of momentum at one impact = 2 mV.
Now the speed is V cm. per sec., and the molecule will travel across the

2
cube and back, a distance of 2 cm., in the -p^th part of a sec. In 1 sec.

V . V
it will do this times, that is, each molecule will make

^
impacts against

a side every second, and as in each impact there is a change of momentum
of 2mV, it is clear that in 1 sec. upon each side 1 sq. cm. in area there will

be produced a change of momentum,

y
X

2
X 2mV = ^nmV^.

This gives rise to a pressure p (say) upon the side.

According to Newton’s Second Law,

Force = Rate of change of momentum.

In the present case, force = p (dynes per sq. cm.),

time = 1 sec.

Change of momentum = ^nmV^ units.

Hence, p = ^nmV^ dynes per sq. cm.

Now nm = entire mass of the molecules in 1 c.c.,

Hence,

= p, the density of the gas.

p = ipV^ or V =

This velocity is not strictly the average of all the velocities but is the

square root of the mean square velocity.

We see then that p varies as /> if F is constant, that is if the temperature
is constant. This is Boyle’s Law.

Let us now calculate the velocity for a gas,—for example, hydrogen,
under standard pressure and temperature.

For hydrogen, p = 0.0000899 gm. per c.c.

Also p = 1033.296 X 980 dynes per sq. cm. (Sec. 208),

and hence 13 X 1033 296 X = 183,820 cm. per sec.
0.0000899

In the same way the velocity for any other gas may be calculated.
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Table of Molecular Velocities

Gas Velocity

Hydrogen

Nitrogen

Oxygen
Carbon Dioxide

1838 m. = 6032 ft. per sec.

493 “ = 1618 “ “ “

461 “ = 1514 “ ‘‘ “

393 “ = 1291 “ “ “

For a fuller treatment of the kinetic theory of gases see Maxwell's ‘‘Theory of Heat,”
Chapter XXII, or Edser’s “Heat for Advanced Students,” Chapter XIII.

PROBLEMS

1. 22.4 litres of nitrogen, oxygen and carbon dioxide weigh 28, 32 and

44 gm., respectively. Find the molecular velocities for each of these

gases and compare with the values given in the above table.

2. Find the velocity of a molecule of helium taking the density of helium

as twice that of hydrogen.



CHAPTER XXIII

Air-Pumps and Air Appliances.

219. Air-Pump. In Fig. 268 is shown the construction of a

common type of pump used for removing the air from a vessel.

Fig. 268—Common form of air-pump. AB, cylindrical barrel of pump;
R, receiver from which air is to be exhausted; C, pipe connecting barrel

with receiver; P, piston of pump; V\ and Vi, valves opening upwards.

Its operation is as follows;—When the piston P is raised, the

valve Vi, in it, remains closed, due to its own weight and the

pressure of the air above it. The air in R expands, and some

of it passes by way of the pipe C, into the lower portion of the

barrel, lifting the valve V2 in doing so. When the piston des-

cends, the valve V2 remains closed, and the air in the barrel

passes up through the valve Fi and escapes outside. Thus at

each up-and-down stroke a fraction of the air is removed from

the receiver, R. The pump will continue to act until the air

on expanding from R is no longer able to lift the valve V2 ,
or

when the pressure of the air below the piston is insufficient to

raise the valve Fi. It is evident, therefore, that only a partial

vacuum can be obtained with a pump of this kind. To secure

more complete exhaustion, pumps have been constructed in

which the valves are opened and closed automatically as the

295
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piston moves, but even with these the air cannot all be

removed from the receiver, since at each double-stroke the air

in it is reduced only by a fraction of itself.

220. The Geryk or Oil Air-Pump. This pump is much
more efficient than that just described. Its action is as

follows;—The piston J (Fig. 270), made
air-tight by the leather washer C and by
being covered with oil, moves up and down
in the cylinder. The tube A, opening into

Fig. 269.—^An oil air-pump with two
cylinders.

Fig. 270.—^Vertical
section of a cylinder of
an oil air-pump.

the chamber B surrounding the cylinder, is connected to the

vessel from which the air is to be removed. On rising, the

piston pushes before it the air in the cylinder, and on reaching

the top it pushes up G about \ inch, thus allowing the im-

prisoned air to escape through the oil into the upper part of the

cylinder, from which it passes out by the tube D.

When the piston descends the spring K, acting upon the

packing 7, closes the upper part of the cylinder, and the piston

on reaching the bottom drives whatever oil or air is beneath

out through the tube F, or allows it to go up through the

valve E, into the space above the piston.
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Oil is introduced into the cylinder at L. When the pump
has two cylinders they are connected as shown in Fig. 269.

With one cylinder the pressure of the air can be reduced to J

mm. of mercury, while with two a reduction to 5^0 mm., it is

claimed, can be quickly obtained.

221 . Rotary Air-pump. This new type of pump (Fig. 271) will exhaust

air to a pressure of 0.001 mm. It is of light weight, and is reliable and quiet

in operation. It is also much more rapid in its action than the ordinary

air-pumps.

Within the outer case of the pump is a fixed hollow cylinder provided

with an inlet tube E and an outlet F, which is fitted with a valve L.

Fig. 271.—A rotary air-pump. In I, II, III is shown a vertical section of the
cylinder at different stages of a rotation.

Inside this cylinder is a second cylinder mounted eccentrically on an axle

which is driven by a large pulley. As the inner cylinder rotates, it is always

in contact with a portion of the outer cylinder. A metal plate C works up
and down through a slot cut in the outer cylinder, always resting on the

rotating cylinder. The pump case is filled with oil so that only the inlet

tube E projects.

In position I the space H is in communication with the inlet tube E,

which is connected to the vessel from which the air is being removed.

As the cylinder rotates in the direction of the arrow to position II, the air

in H is cut off from that in the vessel and is compressed, while air from the

vessel expands into the space J. In position III most of the air in H has

been driven out through the valve L while the space J is nearing its
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maximum size. As the rotation continues, position / is reached again

and the cycle repeats.

222. The Condensation Vacuum Pump. The wonderful uses made
of highly-exhausted glass bulbs in investigations into the nature of matter,

in the production of X-rays, in the wireless telegraph, in the radio, and
for other purposes, has led to the invention of several kinds of high-vacuum

pumps. A recent and rapid type, known as Langmuir’s condensation

pump, is constructed on a new principle, which may be explained with the

help of Fig. 272.

A metal cylinder A is provided with two openings, B and C. The latter

is connected to the vessel to be exhausted and the former is joined to

an auxiliary pump which, itself, must be able to produce a vacuum of
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about 0. 1 mm. Within the cylinder is a funnel-shaped tube F which rests

* on the bottom of A. Suspended from the top of A is a cup E, inverted

over the upper end of F. A water-jacket J surrounds the wall of A from

the level of R to a height somewhat above the lower edge of the cup E.

Mercury is placed in the cylinder, as indicated at D.

By applying heat to the bottom of the cylinder the mercury is caused to

evaporate. The vapour passes up through F, and, being deflected by E, is

directed downwards and outwards against the water-cooled wall of A.

The gas as it comes from the vessel which is being exhausted enters the

pump at C, passes down between E and A and at P meets the stream of

mercury vapour which forces it down along the wall of A and out of the tube

B where the auxiliary pump takes it and removes it. The mercury which

condenses on the water-cooled wall falls downwards and returns to D,

ready to be vaporized again.

A detailed drawing of one form of the pump is given in Fig. 273. In the

base is a simple electric heater which produces the mercury vapour.

Around the wall of the pump and just inside the outer casing is a coiled

tube through which water is kept running. The ends of this tube are seen

projecting outwards near the base. The tube leading to the auxiliary

pump is higher up on the left, while the tube from the vessel which is being

exhausted is at the top. The outer appearance of the pump is shown in

Fig. 274.

The pump as just described is constructed of metal but it is often made
of glass, in a quite different shape. It is very rapid in its action and there

is no lower limit to which the pressure may be reduced. Pressures lower

than T^V'o'o of a dyne per sq. cm., or 0.000,000,007,5 mm. of mercury

have been produced.

223. Air-Compressors.

that used for inflating rub-

ber tires. Its construction

is seen in Fig. 275. When
the piston P is pushed

down, the air in the cylin-

der is forced through the

valve V into the inner tube

of the tire T, the valve

immediately closing to

check the air from going

back. On lifting the piston

The simplest compression pump is

Fig. 275.—Air-compressor for pneumatic tire.

a partial vacuum is produced in the
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cylinder and the air from outside enters, going past the soft

cup-shaped leather forming a part of the piston. When the

piston is moving downward this leather is pressed against the

inside of the cylinder, thus preventing the air from escaping.

Each downward stroke forces more air into the tire until at

last it becomes sufficiently hard. In a bicycle tire the pressure

seldom exceeds 45 pounds per square inch, while in automobile

tires the pressures run from 30 to 90 pounds.

Another style of compressor is illustrated in Fig. 276. A
motor A drives the wheel B on the opposite end of whose axis

is the crank disc C to which the connecting rod D is attached.

This causes the solid piston E to move up and down in the

cylinder F. As the piston rises, air is drawn in through the

intake I and goes past the valve G into the cylinder. As it

descends, this air is forced through the valve H into the tank

K. The air is rapidly driven into K and the pressure, which is

measured by the gauge L, quickly rises. If a vessel is connected

with I, air will be removed from it, but this pump is not suited

for producing a high vacuum.

224. Examples. 1. The capacity of the receiver of an air pump is R c.c.

and that of the cylinder or barrel C c.c. Assuming that there are no leaks
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and neglecting the force needed to lift the valves, find the pressure in the

receiver after n strokes, if the pressure at first is atmospheric.

At the end of the first up-stroke the R c.c. of air in the receiver has

expanded to fill a volume of {R -|- C) c.c.

Let the new pressure = Pi.

Then by Boyle’s Law,

Pi X (P + P) = A X R, where A is atmospheric pressure,

or Pi - ^ ^ ^
A.

We have now in the receiver R c.c. at pressure Pi. At the end of the

second up-stroke the R c.c. of air in the receiver again expands to fill a

volume of {R + C) c.c.

Let the new pressure = P 2 .

Then P 2 X (P -h P) = Pi X P,

= (r^) = (r^)A-
Similarly the pressure at the end of n strokes is given by

2. The capacity of the receiver of an air-compressor is P c.c. and that of

the cylinder C c.c. Find the theoretical pressure after n strokes, taking

the original pressure in the receiver as one atmosphere.

At the end of the first compression stroke we have compressed into P c.c.

a mass of air which formerly occupied {R C) c.c. at atmospheric pressure.

Let the new pressure = Pi.

Then by Boyle’s Law,

or

Pi X P = A X (P -f- P),

P. -

At the end of the second compression stroke we have compressed into P
c.c. a mass of air which originally occupied (P 2P) c.c. at its original

atmospheric pressure.

Let the new pressure = P 2 .

Then P 2 X P = A X (P + 2P),

PjiJPP 2 - ^ A.

Similarly the pressure at the end of n strokes is given by

P “b ^P .

or
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PROBLEMS

1. The capacity of the receiver of an air-pump is twice that of the

barrel; what fractional part of the original air will be left in the receiver

after (a) the first stroke, (b) the third stroke?

2. The capacity of the barrel of an air-pump is one-fourth that of the

receiver; compare the density of the air in the receiver after the first

stroke with the density at first.

3. The capacity of the receiver of an air-compressor is ten times that of

the barrel; compare the density of the air in the receiver after the fifth

stroke with its density at first.

4. The capacity of the barrel of an air-pump used to exhaust a litre

flask is 250 c.c.; compare the density of the air in the flask after the second

stroke with its original density.

5. The capacity of the barrel of an air-compressor used to force air into

a tank, whose capacity is one litre, is 200 c.c.; compare the density of the

air in the tank after the fifth stroke with its density at first.

225. Pressure Gauge. The construction of this useful

device is shown in Fig. 277. The action depends on the fact

that if air or water is forced into a bent tube the tube tends to

straighten out. The gauge is attached to a tank or a pipe by

the nipple G. Within the case is a bent metal tube AA (the

middle portion not being visible in the diagram). When
air or water is forced into it under

pressure, it tries to straighten out.

Now the lower end is rigidly fixed,

but the upper end is free to move,

and the higher the pressure in the

tube the greater is the motion of

this end. By means of a metal

strip B this end is joined to the

short arm of the lever C which

turns about the pin D. On the

other end of C are teeth which mesh with the small pinion E,

and the hand F is on the end of the axis of the pinion. Hence

as the free end A moves, its motion is multiplied and trans-

mitted to the hand which moves around the dial. The spring

H takes up any loose motion in the mechanism.

Fig. 277.—Pressure gauge.
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226. Air-Brakes. One of the many uses of compressed air

is to set the brakes on railway trains. Fig. 278 illustrates the

principal working parts of the Westinghouse air-brakes in

common use in this country. A steam-driven air-compressor

pump A and a tank B for compressed air are attached to the

locomotive. The equipment on each car consists of (i) a cylin-

der C in which works a piston, directly connected, by

a piston-rod D and a system of levers, with the brake-shoe G,

(ii) a secondary tank E, and (hi) a system of connecting pipes

and a special “triple-valve” F which automatically connects

B with E when the air from B is admitted to the pipes, but

which connects E with the cylinder C when the pressure of the

air is removed.

When the train is running, pressure is maintained in the

pipes and in the tank E, and the brakes are free; but when

the pressure is decreased, either by the engineer or by the

accidental breaking of a connection, the inrush of air from E
to C forces the piston forward and sets the brakes against

the wheels. To take off the brakes, the air is again turned

into the pipes, the valve F then connects B with E and the air

in C is allowed to escape, while the piston is forced into its

original position by a spring.
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The principle of the action of the triple-valve is illustrated in Fig. 279.

When the air pressure is in the pipes the

piston R and the slide valve S are pushed

to the left. The cylinder C is now con-

nected to the atmosphere through the

opening 0, while air passes around R
into the tank E. When the pressure in

the pipes is removed R and S move to the

right and E and C are connected.

227. Diving-Bell. This is made
of steel or iron, heavy enough

to sink in the water when the open side is downwards,

Fig. 280.—Laying a stone foundation with a diving-bell.

and large enough to accommodate two or more workmen. In

Fig. 280 is shown how blocks of stone or cement are placed

JbE

Fig. 279.—Diagram to explain
the principle of “triple valve.”
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when a pier of a bridge is being constructed. The bell is let

down from a boat or from a wooden staging built over the

water. From an air-compressor on the boat air is forced into

the bell, thus preventing the water from entering it and also

supplying the men with fresh air to breathe. Surplus air

escapes at the lower edge of the bell.

228. Pneumatic Caisson. The pneumatic caissons used in

laying the foundations of bridges, piers, elevators, etc., are

operated on the same principle as the diving bell. A section

of a typical caisson is shown in Fig. 281. The sides of the

caisson are extended upward and are strongly braced to keep

back the water.

Masonry, or con-

crete, C, D, placed

on top of the

caisson, presses it

down upon the

bottom, while

compressed air,

forced through a

pipe P drives the

water from the

working chamber

and also sustains

the men. To
leave the caisson

the workman
Fia. 281.—Section of a pneumatic caisson. i iclimbs up and

passes through the open door B into the air-lock L. The door

B is then closed and the air is allowed to escape from L until

it is at atmospheric pressure. Then door A is opened and the

workman climbs out. In order to enter, this procedure is

reversed. Material is hoisted out in the same way or is

sucked out by a mud-pump. As the earth is removed, the

caisson sinks, until at last the solid rock is reached. The entire
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caisson is then filled with solid concrete, and a permanent

foundation for a dock or bridge is thus obtained.

229. Diving Suit. The modern diver is incased in an air-

tight weighted suit. (Fig. 282). He is

supplied with air from above, through pipes

or from a compressed-air reservoir attached

to his suit. The air escapes through a

valve into the water.

Manifestly the pressure of the air used

by a diver or a workman in a caisson must

balance the pressure of the outside air, and

the pressure of the water at his depth.

The deeper he descends, therefore, the

greater the pressure to which he is sub-

jected. The ordinary^ limit of safety is

about 80 feet; but divers have gone much
deeper than this. In March, 1915, a United

States submarine sank in the harbour of

Honolulu. A diver went 288 feet under

water and walked along the top of the ship,

and in the course of salvaging it he made five

descents to a depth of 306 feet.

Fig. 283 shows a recently designed flexible armoured

suit, which carries its own air supply. A telephone

instrument is mounted in the helmet so that the diver

is in constant communication with his assistants on the

surface. The sleeves terminate in a pair of iron claws

which are operated from the inside. A record depth of

361 feet has been obtained by using this suit.

The armour makes it possible to supply air at atmos-

pheric pressure since the pressure of the water is

carried by the suit. The diver is able to remain longer

at great depths and can be brought to the surface more

quickly, without injury, than when wearing the

ordinary suit.
Fig. 283.—Flexible

armoured diving suit.
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230. Some Other Uses of Compressed Air. Another useful

application is the pneumatic drill, used chiefly for boring holes

in rock for blasting. In it the steel drill is held in the end of

a cylinder within which a piston is made to move back and

forth by allowing compressed air to act alternately on its two

end faces. Each time the piston moves forward it delivers a

vigorous blow upon the end of the drill, and as it does this

several times per second the drill enters the rock quite rapidly.

The pneumatic hammer, which is similar in principle, is used

for riveting and in general foundry work. Steam could be

used in place of air, but the pipes conveying it would be hot,

and water would be formed from it.

By means of a blast of sand, projected by a jet of air, castings

and also discoloured stone and brick walls are cleaned.

Figures on glass are engraved in the same way. Tubes for

transmitting letters or telegrams, or for carrying cash in our

large retail stores, are operated by compressed air. It is used

also for spraying trees, for spray-painting and for many other

purposes which cannot be mentioned here.

231. Vacuum Appliances. The vacuum cleaner (Fig. 284)

is an extremely useful practical application of air currents.

The motor A drives the fan B which creates a current of air

in through the opening C. If the opening is placed against a

carpet the air rushing in through the carpet carries with it
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dust and other dirt. This dirt is trapped in the bag D while the

air passes out through its cloth walls.

The Westinghouse vacuum brake is used on heavy motor

trucks and busses. Its construction is somewhat similar to

the compressed air brake (Fig. 278) but the piston is actuated

by producing a vacuum on one side of the piston. The normal

air pressure on the other side then moves the piston and sets

the brakes.



CHAPTER XXIV

Water Pumps and the Siphon

232. Water Pumps. From very early times pumps have

been employed for raising water from reservoirs, or for forcing

it through tubes. It is certain that the suction pump was in

use in the time of Aristotle (born 384 B.C.). The force-pump

was probably the invention of Ctesibius, a mechanician who
flourished in Alexandria in the second century B.C. To
Ctesibius is also attributed the ancient fire-engine, which

consisted of two connected force-pumps, spraying alternately.

233. Suction or Lift-Pump. The
construction of the common suc-

tion-pump is shown in Fig. 285.

During the first strokes the suction-

pump acts as an air-pump, with-

drawing the air from the suction

pipe BC. As the air below the

piston is removed its pressure is

lessened, and the pressure of the air

on the surface of the water outside

forces the water up the suction pipe,

and through the valve Vi into the

barrel. On the down-stroke the

water held in the barrel by the

valve Vi passes up through the

valve V2 ,
and on the next upstroke

it is lifted up and discharged ^lindncal barrel; RC, suction-pipe;

through the spout G, while more S^/fs^iole ifS”*''
water is forced up through the valve

Vi into the barrel by the external pressure of the atmosphere.

309
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It is evident that the maximum height to which water,

under perfect conditions, is raised by the pressure of the

atmosphere cannot be greater than the height of the water

column which the air will support. Taking the relative density

of mercury as 13.6 and the height of the mercury barometer as

30 inches, this height would be ft X 13.6 = 34 feet. To this

height, then, above the level of the water in the well, the

atmosphere can raise the water, and, of course, for the pump
to lift the water higher its piston must be immersed in this

water column. Consequently the pump rod must extend

downwards within 34 feet of the level of the water in the well.

As a matter of fact, on account of the air within the water and

the vapour from the water, the piston should be within 25

feet of the surface of the water in the well.

234. Force Required to Operate the Pump. Let us investigate the force

which is needed to operate the pump when the water in the cylinder stands,

say, 2 feet above the piston and the water in the well is 22 feet below the

piston.

Let the area of the piston be 12 sq. in. and let the atmospheric pressure

be A pd. per sq. in.

Then the down-thrust on the piston

= 12 (A -f pressure due to 2 ft. of water).

But the up-thrust on the piston

= 12 (A — pressure due to 22 ft. of water).

Hence, the resultant down-thrust on the piston

= 12 (pressure due to 24 ft. of water)

= 125 pd.
144

The handle of the suction pump is usually a lever of the first class and the

force which must be applied to the end of the handle is consequently much
less than the tension in the piston rod which we have calculated.

The tension in the piston rod is of course greater than 125 pd. by the

amount of the friction and the weight of the piston and piston rod.

235. Force-Pump. When it is necessary to raise water to a

considerable height, or to drive it with force through a nozzle,

as for extinguishing fire, a force-pump is used. Fig. 286

shows the most common form of its construction. On the up-
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stroke a partial vacuum is formed in the barrel, and the air

in the suction tube expands and passes up through the valve

Vi. As the plunger is pushed down, the air is forced out

through the valve V2 . The pump, therefore, during the first

strokes acts as an air-pump. As

in the suction-pump, the water

is forced up into the suction pipe

by the pressure of the air on the

surface of the water in the

reservoir. When it enters the

barrel it is forced by the plunger

at each down-stroke through the

valve V2 into the discharge pipe.

The flow will obviously be inter-

mittent, as the outflow takes

place only as the plunger is

descending. To produce a con-

tinuous stream, and to lessen the

shock on the pipe, an air cham-

ber F is often inserted in the

discharge pipe. When the water

enters this chamber it rises above

the outlet G, which is somewhat
smaller than the inlet, and

Fig. 287.—Double-action force-
pump. P, piston; Vi, V2, inlet
valves; V 3 , V4 , outlet valves.

Fig. 28S.—Force-pump. AB, cylin-
drical barrel; BC, suction-pipe; P.
piston; F, air chamber; Vi, valve in
suction-pipe; V2, valve in outlet pipe;
G, discharge pipe; R, reservoir from which
water is taken.

compresses the air in the chamber.

As the plunger is ascending, the

pressure of the inclosed air forces

the water out of the chamber in a

continuous stream.

236. Double-Action Force-Pump.

In Fig. 287 is shown the construc-

tion of the double-action force-

pump. When the piston is moved
forward in the direction of the

arrow, water is drawn into the
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back of the cylinder through the valve Fi, while the water in

front of the piston is forced out through the valve F3. On the
backward stroke water is drawn in through the valve V2 and
is forced out through the valve F4. Pumps of this type are

used as fire engines, or for any purposes for which a large

continuous stream of water is required. They are usually

worked by steam or other motive power.

237 . Hydraulic Press. This machine is ordinarily used
whenever great force is to be exerted through short distances,

as in pressing goods into bales,

extracting oils from seeds,

making dies, testing the

strength of materials, etc.

Its construction is shown in

Fig. 288 . A and B are two
cylinders connected with each

other and with a water cistern

by pipes closed by valves Vi

and V2. In these cylinders

pistons Pi and P2 work

through water-tight collars.

Pi being moved by a lever. The bodies to be pressed are

held between plates C and D. When Pi is raised by the lever,

water flows up from the cistern through the valve Fi and fills

the cylinder A. On the down-stroke the valve Fi is closed

and the water is forced through the valve F2 into the cylinder

B, thus exerting a force on the piston P2, which will be as

many times that applied to Pi as the area of the cross-section

of P2 is that of the cross-section of Pi. It is evident that by
decreasing the size of Pi, and increasing that of P2, an

immense force may be developed by the machine.

PROBLEMS AND EXERCISES

1. What is the greatest height to which water can be raised by a common
pump when the mercury barometer stands at 76 cm., the sp. gr. of mercury

being 13.6?

Fig. 288.—Bramah’s hydraulic press.
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2. How high can siilphuric acid be raised by a common pump when the

mercury barometer stands at 27 in., the sp. gr. of sulphuric acid being

1.8 and that of mercury being 13.6?

3. How high can alcohol be raised by a lift-pump when
the mercury barometer stands at 760 mm. if the relative

densities of alcohol and mercury are 0.8 and 13.6

respectively?

4. Neglecting friction and the weight of the moving
parts, find the force which must be applied to the piston

rod in a common pump (Fig. 285) to raise the piston

when the water stands 1 ft. above the piston and the water

in the well is 17 ft. below the piston. The diameter of

the piston is 3§ in.

If the handle is straight and the distances from the

piston rod and the end of the handle to the fulcrum are

5 in. and 30 in., respectively, what force must be applied

at the end of the handle to raise the piston?

5. Connect a glass model pump with a flask
,
as shown in Fig- 289

Fig. 289. Fill the flask (a) full, (6) partially full of water,

and endeavour to pump the water. Account for the result in each case.

6. The area of the piston of the force pump shown in Fig. 286 is 12

sq. in. The water in the well is 20 feet below the level of the piston and the
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pump is being used to deliver water to a tank 30 ft. above the level of the

piston. Find the force which must be applied to the piston, (1) on the

up-stroke of the piston, (2) on the down-stroke of the piston.

7. In the experimental hydraulic press shown in Fig. 290, the distances

from the fulcrum to the small piston and to the end of the handle are as

1 to 6.25. The diameters of the pistons are as 1 to 4. Find the mechanical

advantage of the press.

8. If the area of the small piston (Fig. 290) is 0.1 sq. in., what force

must be applied at the end of the handle in order that the pressure gauge

may read 2500 pd. per sq. in.?

9. What will be the up-thrust on the large piston under the conditions

given in problem 8?

238. Siphon. If a bent tube is filled with water, and placed

in a vessel of water and the ends unstopped, the water will

flow freely from the tube, so long as

there is a difference in level in the

water in the two vessels. A bent tube

of this kind, used to transfer a liquid

from one vessel to another at a lower

level, is called a siphon.

To understand the cause of the flow

consider Fig. 291.

The pressure at A tending to move
the water in the siphon in the direction AC

= the atmospheric pressure — the pressure due to the

weight of the water in AC;

and the pressure at B tending to move the water in the siphon

in the direction BD
= the atmospheric pressure — the pressure due to the

weight of the water in BD.

But since the atmospheric pressure is the same in both cases,

and the pressure due to the weight of the water in AC is less

than that due to the weight of the water in BD, the force

tending to move the water in the direction AC is greater than

the force tending to move it in the direction BD; consequently

Fig. 291.—The siphon.
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a flow takes place in the direction ACDB. This will continue

until the vessel from which the water flows is empty or until

the water comes to the same level in each vessel.

239. The Aspirating Siphon. When the

liquid to be transferred is dangerous to

handle, as in the case of some acids, an

aspirating siphon is used. This consists of

an ordinary siphon to which is attached an

offset tube and stopcock, as shown in Fig.

292, to facilitate the process of filling. The

end B is closed by the stopcock and the

liquid is drawn into the siphon by suction

at the mouth-piece A. The stopcock is then

opened and the flow begins.
Fig. 292.—The aspirat-

ing siphon.

PROBLEMS AND QUESTIONS

1

.

Upon what does the limit of the height to which a liquid can be

raised in a siphon depend?

2. Over what height can (a) mercury, (6) water,

be made to flow in a siphon?

3. How high can sulphuric acid be raised in a

siphon when the mercury barometer stands at 29

in., taking the relative densities of sulphuric acid

and mercury as 1.8 and 13.6, respectively?

4. Upon what does the rapidity of flow in the

siphon depend?

5. Arrange apparatus as shown in Fig. 293.

Let water from a tap run slowly into the bottle.

What takes place? Explain.

6.

Natural reservoirs are sometimes found in the earth, from which

the water can run by natural siphons faster than it flows into them from

above (Fig. 294). Explain why the discharge through the siphon is

intermittent.*

*Such intermittent springs exist near Atkins, in the mountain region of southwestern
Virginia; near Giggleswick, in Yorkshire, England; and in Germany.

Fig. 293.—Intermittent
siphon or Tantalus cup.
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Arrange apparatus as shown in Fig. 295. Fill the flask A partly

full of water, insert the cork, and then invert, placing the short tube
in water. Explain the cause of the phenomenon observed.

8.

A boat on

the beach is full

of water. How
could you empty
it with the help

of a suitable
length of rub-

ber hose? Could

Fig. 294.-A intermittent spring. y^u use the same
method to get

the bilge water out of a boat floating on water?

Explain.

9.

Find the greatest height over which a liquid of

density Pi can be carried by a siphon when the

height of the barometer is h, the density of the liquid

used in the barometer being p.
Fig. 295.

10.

What would be the effect when the siphon is working of making a

hole in it (Fig. 291), (1) at C, (2) between A and C, (3) at D, (4) between

C and D, (5) between D and J5?



CHAPTER XXV

Surface Tension

240. Surface Tension Met With Everywhere. In studying

the behaviour of liquids of all sorts, whether contained in

ordinary vessels, or in the body of an animal or a plant,

whether at a low or a high temperature, we continually meet

with a peculiar phenomenon which has been found to be of

great importance in the various processes of nature. It is

especially prominent when the quantity of liquid is small.

Numerous experiments, many of them easily performed,

illustrate the effect and we shall examine some of them.

241. Formation of a Drop. On slowly forcing water from

a medicine dropper, it gradually gathers at the end, becoming

more and more globular, and at last

breaks off and falls. (Fig. 296.) We
can see that the drop is approximately

spherical. When mercury falls on the

floor it breaks up into a multitude of

shining globules which retain their

shape indefinitely. Why do they not

flatten out?
Fig. 296.—A drop of water as-

If melted lead is poured through
-mes the globular form,

a sieve at the top of a tower it forms into drops which harden

on the way down and which finally appear as solid spheres

of shot.

While in some cases we can see the drops growing, the final

separation from the mass of liquid is ordinarily so sudden and

the subsequent motion is so rapid, that it is impossible to trace

the successive stages. The drops, also, are usually quite small.

In the following experiment, however, the process of formation

317
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Fig. 297.—Aniline
oil drop forming in

water.

is so slow and the drop is so large that the effect of surface

tension can be conveniently observed.

Aniline is an oily liquid which at ordinary temperatures is

denser than water. When poured into water it does not mix
with it, but falls to the bottom, and the

colour assumed by the aniline renders the

surface between the water and the aniline

clearly visible at a considerable distance.

However when heated above 80° C. it rises

to the surface of the water.

Into a beaker about 9 inches high and 4^

inches in diameter pour water to the depth

of about 7 inches. Then add about 80 c.c.

of aniline. Place the beaker above a

burner and heat gently until a temperature

of about 80° is reached.

The hot aniline now rises to the surface, spreads out, and,

coming in contact with the air, is cooled and collects in the

form of a drop, an inch or more in diameter, hanging down

from the mass at the surface. As the drop grows in size a neck

is formed, which, after a while, gets thinner at two places;

and when it breaks away the large drop is followed by a small

one which is known as Plateau’s spherule (Fig. 297). If the

temperature is maintained at about 80° the drops ^
will continue to be formed.

Observe the oscillations in the form of the

drop as it descends.

If time is not available to perform this experiment the

aniline oil may be placed in a small separating funnel, the

tube of which is just below the surface of water in a large

test tube. When the tap is opened slightly a fairly large

drop of aniline forms slowly at the mouth of the tube and

finally breaks away. Similar results may be obtained by
placing water coloured with a little fluorescin in the funnel

and mineral oil or coal oil in the tube (Fig. 298).

Fig. 298.-Water
drop forming in
mineral oil.
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Various stages in the development of a drop of water are

illustrated in Fig. 299.

Another beautiful experiment, due to the Belgian physicist

Plateau, referred to just above, is as follows:

Put water in a beaker and then carefully pour alcohol on

top of it. About 40 per cent, of water to 60

per cent, of alcohol is best, but there may be

considerable variation from this proportion.

Now introduce olive oil into it by means of

a pipette* (Fig. 300). If it is of the same

density it will neither sink nor rise on account

of gravity. It assumes a spherical form as

though an enveloping skin was trying to fig.soo.—

a

sphere

.
of olive oil in a mix-

compress the oil into a smaller space. For ture of water and
• 111 c

alcohol.

a given volume, a sphere has less surface area

than a body of any other form.

One of these olive oil spheres may be kept in a stoppered

bottle for years. It will probably rise to the top or sink in

time but the addition of a little alcohol or water to the mixture,

as the case may demand, will cause the sphere to float midway
between top and bottom as before.

242. A ‘Skin’ on the Surface. Many other experiments

strongly suggest that liquids are enclosed in a thin skin or

membrane, which continually tends to contract.

(1) Fill a wine-glass or a small tumbler brimful of water, and then

carefully drop into it coins, buttons or other bits of metal. The water

*For useful hints see “Soap Bubbles” by C. V. Boys.
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slowly rises above the top of the glass, appearing to be restrained within a

skin which clings at its edges to the glass. The surface becomes more and
more convex until at last the skin breaks and the water runs over the edge.

(2)

Place a clean, dry sewing needle on the surface

of water by lowering it so that both ends will touch

the surface at once. In doing this use a fine wire bent

in the form shown in Fig. 301. With a little care it

can be done. The surface is made concave (Fig.

302) by laying the needle on it, and

in the endeavour to contract and

smooth out the hollow, sufficient force

is exerted to support the needle,

though its density is 7^ times that of

water. When once the water has wet

the needle the water rises against the

metal and now the tendency of the surface to flatten out will draw the

needle downwards.

Fig. 301.—Stirrup
for placing a needle on
the surface of water.

Fig. 302.—
Needle on the
surface of water
kept up by sur-
face tension.

If the needle is magnetized, it will act when floating like a comnass

needle, showing the north and south direction.

This experiment may be varied by using a safety razor blade in place of

the needle.

(3)

A wire sieve is wet by water, but if it is covered with paraffin wax, the

water will not cling to it. Make a dish out of copper gauze having about

twenty wires to the inch; let its diameter be about six inches and height

one inch. Bind it with wire to strengthen it. Dip it in melted paraffin

wax, and while still hot knock it on the table so as to shake the wax out

of the holes. An ordinary pin will still pass through the holes, and there

will be over 10,000 of them. On the bottom of the dish

lay a small piece of paper and pour water on it. Fully

half a tumblerful of water can be poured into the vessel

and yet it will not leak. The water has a skin over it,

which will suffer considerable stretching before it

breaks. Give the vessel a jolt, the skin breaks and the

water at once runs out. A vessel constructed as

described will also float on the surface of water.

(4)

When a brush is dry, the hairs spread out as in

Fig. 303a, but on wetting it they cling together (Fig.

303c). This is due to the surface film which contracts

and draws the hairs together. That it is not due simply

to being wet is seen from Fig. 303b, which shows the brush in the water

but with the hairs spread out.

a b c

Fig. 303.—a, dry;
b, in water; c, wet.
Surface tension
holds the hairs of
the brush together.
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A bit of aluminium-leaf or gold-leaf rests quietly on the

surface of water, though the former is 2j, and the latter 19,

times as dense as the water. In both cases they are not heavy

enough to break through the skin on the surface. Remember,

however, that this surface layer is not a skin in the ordinary

meaning of that term. It is made of liquid, though it is

reasonable to suppose that the constitution of the surface

layer is somewhat different from that of the rest of the

liquid.

243. Surface Tension in Soap Films. The surface tension

of water is beautifully shown by soap bubbles and films. In

these there is very little matter, and the force of gravity does

not interfere with our experimenting. It is to be observed,

too, that in the bubbles and films there is an outside and an

inside surface, each under tension.

In an inflated toy balloon the rubber

is under tension. This is shown by

pricking it with a pin or untying the

mouth-piece. At once the air is forced

out and the balloon becomes flat. A
similar effect is obtained with a soap

bubble. Let it be blown on a funnel,

and the small end be held to a candle

flame (Fig. 304). The outrushing air at

once blows the flame aside, which shows

that the bubble behaves like an elastic

bag.

There is a difference, however, between the balloon and the

bubble. The former will shrink only to a certain size
;
the latter

first shrinks to a film across the mouth of the funnel and then

runs up the funnel ever trying to reach a smaller area.

Again, take a ring of wire about 2 inches in diameter,

with a handle on it (Fig. 305). To two points on the ring tie

Fig. 304.—Soap-bubble
blowing a candle flame
aside.
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a fine thread with a loop in it. Dip the ring in a soap solution,*

and obtain a film across it with the loop

resting on the film. This film is a thin

layer of water bounded by two surfaces,

the soap making it more permanent. Now
puncture the film within the loop: The
film which is left contracts, becomes as

thread on a soap-film. Small as possible and thus draws the loop

into a circle, since the area of a circle is

greater than that of any other surface having an equal

perimeter.

As in the bubble, the surface acts like a stretched sheet of

india-rubber, but there is a further difference between them.

The tension in the sheet of rubber depends on the amount of

stretching, and may be greater in one direction than in

another; whereas the tension in the soap film remains the

same however much the film is extended, and the tension at

any point is the same in all directions along the film.

244. The Cause of Surface Tension. Surface tension effects

are due to cohesion. A little consideration would lead us to

expect the molecules at the surface to act in a manner some-

what different from those in the interior of a liquid. Let a be a

molecule well within the liquid (Fig.

306) . The molecule is attracted on all

sides by the molecules very close to it,

within its sphere of action, which is

extremely small, and as the attraction

is in all directions it will remain at
, T.T j *1 1 1 7 1 • 1 Fig. 306.—^Behaviour of mole-

rest. Next consider a molecule b which cules within the liquid and at its

is just on the surface. In this case

there will be no attraction on b from above except by air

molecules, which may be neglected, but the neighbouring

molecules within the liquid will pull it downwards. Thus
there are forces pulling the surface molecules into the

*See method of preparation, page 347.
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liquid, bringing them all as close together as possible, so that

the area of the surface will be as small as possible. It is for

this reason that the water forms in spherical drops, since,

as has been remarked, for a given volume, the sphere has

the smallest surface.

It should be noted that surface tension effects are not limited

to surfaces of separation between liquids and air; they exist

wherever there is a surface of separation, whether between li-

quid and gas, liquid and liquid, liquid and solid, or gas and solid.

QUESTIONS

1. It is not easy to pour water from a tumbler into a bottle without

spilling it, but by holding a glass rod as in Fig. 307, the water runs down
into the bottle and none is lost. The glass rod may
be inclined, and the water still follows it. Explain

the action.

2. Water may be led from the end of an eaves-

trough into a barrel by means of a pole almost as

well as by a metal tube. Why is this?

3. Some insects are able to run about on the sur-

face of water, often quite rapidly. Explain.

4. Why does the end of a stick of sealing-wax

or of a rod of glass assume a rounded form when
heated in a flame?

5. Explain why a tent sheds rain in spite of the

many small openings between the threads of the

fabric. Why will rubbing the hand over the inner surface of the tent

while it is raining cause a leak?

Fig. 307.—How to
utilize surface tension
in pouring a liquid.

245. Units by which Surface Tension is Measured. Let

us consider next the units by which we shall measure this

force called surface tension.

Fig. 308.—Diagram to illustratehow the surface
tension of a liquid is designated.

In Fig. 308 is shown a

strip of paper, 5 cm.

wide, stretched length-

wise with a force of 300

gm. Across a section
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AB oi the strip—like a tug-of-war tending to separate the

strip into two pieces—is a tension of 300 gm., which is 60 gm.
per linear cm.

A stretched surface may be considered to be composed of

strips like this and the Surface Tension is measured in units

of force per unit of length, usually dynes per cm.

246. Surface Energy. To inflate a rubber balloon or a

bicycle tire, or to blow a soap-bubble requires an expenditure

of work; and when these bodies contract they exert a force

and thus can do work.

The fact that a soap-film will contract and exert a force can be well

shown as follows; Bend a wire into a rectangular shape (Fig. 309) and
dip it into a soap solution. On
taking it out it is covered with a

film. Flold it horizontal and

across it lay a thin straight

wire mn; then puncture the side

Q of the film. The two sur-

faces (the upper and the lower)

of the film P which is left exert

a pull on the wire in the direc-

tion shown by the arrow, and
draw the wire over to the end ah,

thus reducing the area of the film to as small dimensions as possible.

Take hold of the ends of the wire and pull the wire out and release it

again and again.

By an experiment somewhat similar to this the magnitude of the surface

tension may be determined (see Sec. 250).

Fig. 309.- -The wire mn is drawn to the left by the
tension of the film.

It is evident that the greater the width cd of the rectangle,

the greater will be the entire force drawing the wire in the

direction of the arrow, i.e., at right angles to the axis of

the wire. (Two parallel strips of stretched sheet rubber, each

one centimetre wide, will exert twice the force which one

of them exerts.)

Let the width cd of the rectangle be I cm., and let the pull

exerted by each surface of the film, on each cm. of the movable

wire, be T dynes. This force per centimetre which a single

liquid surface exerts is called the Surface Tension of the
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liquid. Then the entire force exerted upon the wire by the two

surfaces of the film = 2Tl dynes. If the length ad of the film

is k cm., the work which the film P can do in contracting =

2Tlk ergs.

Just as we say that a bent bow or a stretched sheet of

rubber possesses potential energy, so we can say that the film

possesses potential energy, and its amount is equal to the

work which it can do in contracting, that is, 2Tlk ergs. But

its area = 2lk sq. cm. Hence the potential energy per sq.

cm. = 2Tlk 2lk = T ergs.

Again, if one takes hold of the wire and moves it to the

right (Fig. 309) a distance x cm., thus increasing the area of

the film by 2lx sq. cm., the work which one does is 2Tlx ergs,

and the work done per sq. cm. = T ergs.

Hence we have the relation: The measure of the surface

tension of a liquid is equal to the measure of its potential

energy per sq. cm. of the surface
;
or it is equal to the measure

of the work done in enlarging the surface of the liquid one

unit of area.

Or, in more particular terms: If the surface tension is T
dynes per linear cm., then the surface energy is T ergs per

sq. cm. and the work done in enlarging the surface by one

sq. cm. is T ergs.

The question of surface tension arose chiefly through the

consideration of the rise of liquids in capillary tubes, i.e., tubes

so fine as to admit only a hair (Latin, capillus, a hair); but

the subject of surface tension is a very broad one with numer-

ous applications. Hence, it is better to use the name surface

tension than the name capillarity, by which it is sometimes

known.

Example.—If ad (Fig. 309) measures 10 cm. and dc, 6 cm., find the force

exerted on the wire mn by a soap film whose surface tension is 28 dynes

per cm. Find also the potential energy of the whole surface of the film

due to surface tension.

Force on wire = 2 X 28 X 6 = 336 dynes.

Potential energy = 28 ergs per sq. cm.,

= 2X 28 X6X 10 = 3360 ergs.
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PROBLEMS
(Take T for a soap solution as 28 dynes per cm.)-

1. If ah (Fig. 309) measures 5 cm., what force is needed to pull the wire

mn to the right? How much work is done in pulling it a distance of 6 cm.?

2. Calculate the work done in blowing a soap bubble 10 cm. in diameter.

3. Find the work done in expanding a bubble from 3 cm. to 10 cm. in

diameter.

247. Angle of Contact or Capillary Angle. If a plate of

glass is held vertically in water, the liquid in the surface,

Fig. 310.—Angle of contact of water and mercury.

where it touches the glass, is drawn up above the level of the

general surface {a, Fig. 310). If the glass be lifted from

the water some water will cling to it. The water is said to

wet the glass. If the glass be held in mercury the liquid

surface in contact with the glass is depressed (6, Fig. 310),

and if the glass be removed from the mercury none of the

mercury will adhere to it. Mercury does not wet glass.

The angle which the tangent to the liquid surface where it

meets the surface of the solid makes with the common surface

of the liquid and the solid is called the angle of contact or the

capillary angle (6, Fig. 310).

The size of this angle depends on the third medium, above

the liquid. Thus if oil is used instead of air the angle is much
altered. It also depends very materially on the condition of

the surfaces. The slightest contamination on the surface of

water or on the solid will alter the angle considerably. Figure

310 a illustrates the usual condition for water and glass.
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With perfectly clean water and glass the angle of contact

BAG is very small, probably zero, but with slight contamina-

tion it may reach 90°, i.e., it does not rise on the surface of the

glass at all. Figure 310 6 illustrates the effect with mercury

and glass. Here the angle of contact is obtuse, varying from
129° to 143°.

248. Level of Liquids in Fine Tubes. If a small glass tube

is held upright in water the liquid rises within the tube and,

Water. Mercury.

Fig. 311.—Level of liquid in a 6ne tube.

both inside and outside, the surface curves upwards where it

touches the glass (Fig. 311). This effect can be observed

more easily if a little colouring matter (fluorescin, for example)

is added to the water. If mercury is used instead of water,

Fig. 312.—Showing the elevation of Fig. 313.—Showing the depression of
water in capillary tubes. mercury in capillary tubes.

the liquid within the tube takes a lower level than that

outside, and the surface at the glass curves downwards instead
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of upwards. In these experiments the glass should be per-

fectly clean.

It is interesting to observe the effect with tubes of various

sizes.

Fig. 312 shows capillary tubes having different internal

diameters connected to a tube of large diameter. It will be

seen that in each of the capillary tubes the level is above that

of the water in the large tube and that the finer the tube the

higher is the level of the water. With alcohol the liquid rises,

though not so much, but with mercury the liquid is depressed.

The behaviour of mercury is shown in Fig. 313. In this case

the finer the tube, the greater is the depression of the mercury.

249. Calculation of the Rise of Liquid in a Tube. Consider

a tube held vertically in a liquid which wets it. The liquid

^\j r
rises on the outside slightly, but on the

inside to a considerable height (Fig. 314).

The phenomenon is “explained” by

stating that the attraction of the mole-

cules of the liquid for those of the glass

is greater than the attraction of the mole-

cules of the liquid for each other. The

surface of the liquid meets the glass along

an inner circumference of the tube, and the
. 1 • T 1 I

314.—Surface ten-

attraction exerted, across this line, between sion supports the column
- in the tube.

the surface molecules oi the liquid and

those of the glass, is sufficient to support the raised column.

The action may be likened to the weight of the ink in the

small rubber bag of a self-filling fountain pen, being supported,

when the pen is held point upward, by the cement which

fastens the bag to the nib-holder.

Let T denote the surface tension in dynes per cm.

r “ “ radius of tube in cm.

h “ “ mean height of column in cm.

P
“ “ density of the liquid in gm. per c.c.

0
“ “ angle of contact.
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The force T acts in a direction making an angle 6 with the

vertical; hence its component in the vertical direction is

equal to T cos d.

The surface of the liquid pulls the inner surface of the tube

inwards and downwards, acting in the direction of the tangent

to the liquid surface where it touches the tube, and the

reaction of the tube lifts the liquid upwards.

The length of the line of contact of the liquid and inner

surface of the tube = 2 tv r cm., and hence the total force

upwards in the direction of the axis of the tube

= 2 TV rT cos 6 dynes.

This balances the weight of the raised column of liquid,

which == Tvr‘%pg dynes.

Equating the total force upwards to the total force down-
wards, we have

Tvr^pg = 2 TV rT cos 6,

and T
hprg , 2T cos 0
^

,
or h =

2 cos 6 prg

From this we see that hoc or the height to which the

liquid is drawn up is inversely proportional to the radius

of the tube. In the case of a liquid, such as mercury, which

is depressed, the depression is inversely proportional to the

radius of the tube.

In a glass tube of radius 1 mm. the water rises about 1.4 cm.

Hence in one of radius toVo nam. the rise would be 14 metres.

It has been surmised that the distribution of sap in plants is

partially due to capillary action, but this will not account for

the rate at which water rises in trees.

The tube of a barometer should be large, otherwise a correc-

tion for capillarity is necessary. If the tube has a diameter of

2 mm. the mercury is depressed 4.6 mm., but if it is 2 cm.

(about 0.8 inch) or greater, the correction for depression is so

small that it may be neglected.
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250. Measurement of Surface Tension. One of the sim-

plest methods of finding the surface tension of a liquid is

shown in Fig. 315.

Construct the fork-shaped arrangement a from a piece of

wire, making the distance between the parallel prongs about

6 cm.

Fig. 315.—Measuring the surface
tension of a soap solution.

Measure the distance between the prongs of the fork care-

fully and then suspend it from one

arm of a balance. Place a beaker of

soap solution under the fork so

that the cross-bar of the fork is

about one-half centimetre above

the liquid when the beam is hori-

zontal (Fig. 315).

Raise the beaker in order to wet

the fork; then lower it, break the

film and weigh carefully.

Repeat the operation without

breaking the film and weigh again.

Subtract these two weights to find the pull exerted by the

film on the cross-bar. Reduce this to dynes and divide the

force in dynes by twice the distance between the prongs

(because of the two surfaces of the film). This gives the

surface tension in dynes per centimetre length of film.

Repeat the experiment with different sized forks and also

with distilled and tap water. When using water the distance

between the cross-bar and the surface of the water must be

less and it is more difficult to get the film

to last long enough to make the weighing,

but a little patience will produce very

good results. Compare the results with

those given in Sec. 252.

For water, alcohol and other liquids

whose films do not last long, the circular Fig. 316.—Finding sur.

ring 01 platinum wire (Fig. 316) gives more ring of platinum wire.
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satisfactory results. In this case the force in dynes is divided

by twice the circumference of the ring.

261. Capillary Tube Method. A common method of measur-

ing the surface tension of a liquid is to observe the rise (or fall)

of the liquid in a capillary tube and then use the formula

T = hprg

2 cos o'
(Sec. 249.)

This requires the angle of contact to be known. For water

and some other pure liquids it may be taken as zero, in which

case T = ^ hprg.

The radius of the tube may be found by weighing the tube

before and after a column of mercury has been placed in it.

Since the density of mercury is known, the volume of the

mercury is easily calculated and by measuring the length of

the column, its area of cross-section and radius follow.

If we assume the surface tension of distilled water to be

known, the surface tensions of other liquids may be found

easily without calculating r.

Place the lower end of the capillary tube in

distilled water in a beaker and measure the

distance to which the water rises in the tube

above the level of the water in the beaker (Fig.

317). In doing this apply the mouth to the

upper end of the tube and draw the water up
until it rises nearly to the top and then allow

it to settle to its final position.

Wash the tube out well with the next liquid

to be used and repeat the measurement.

Then if hi is the height for water and pi its

density and /12 is the height for the second liquid

and p 2 its density, the surface tension of the

liquid = Hi P2

hi Pi
X the surface tension of water.

Fig. 317 .
—

Comparing the
surface tensions
of different
liquids.
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The surface tension of distilled water is about 73 dynes per

centimetre length.

Assuming this, find the surface tensions of a soap solution

and tap water and alcohol.

252. Table of Surface Tensions. The value of the surface

tensions of various liquids when in contact with air, water or

mercury are given in the following table:

Table of Surface Tensions at 20° C. (In Dynes per cm.)

Liquid Density
(gm. per

c.c.)

Tension i

th

Air

of Surface S
e Liquid frc

Water

eparating
>m

Mercury

Water 1 73 392

Mercury 13.6 520 392

Carbon Bisulphide 1.27 31 42 387

Chloroform 1.49 28 27 415

Alcohol, Ethyl. . .

.

0.79 24 364

Olive Oil 0.91 35 19 317

Turpentine 0.89 29 12 241.

Petroleum 0.80 30 29 271

A soap solution made according to the directions on page 347

has a surface tension of approximately 28 dynes per cm. when
in contact with air. The value for tap water (Toronto) is

not materially different from that of distilled water.

PROBLEMS

1. If the distance between the prongs of the fork (Fig. 315) is 5 cm.

and if the pull exerted by the film is 0.286 gm., find the surface tension of

the soap solution.

2. If the circumference of the platinum ring (Fig. 316) is 8 cm. and if the

additional weight due to the pull of the film when distilled water is used,

is 1.192 gm., find the surface tension of the water.

3. Calculate the heights to which pure water, alcohol and turpentine

will rise in capillary glass tubes (a) 1 mm., (b) 0.2 mm., in diameter.

4. Calculate the depression of mercury in the tubes, taldng $ = 140°.
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5. If distilled water rises to a height of 10 cm. in a capillary tube, how

high will chloroform rise in the same tube?

6. Two parallel plates, separated by a space d, stand vertically in a

liquid, having density p, surface tension T and angle of contact 6. Show

that the height h to which the liquid will rise is

2T cos 0

Qpd

Compare this with the height in a

cylindrical tube whose diameter is equal

to the distance between the plates.

(Consider the equilibrium of a portion

of the liquid between the plates 1 cm. in

length.)

7. If two lantern slide cover glasses are

bound together, slightly separated at one

edge and placed in a shallow vessel con-

taining coloured water, the water climbs

between the plates as shown in Fig. 318.

253. Attraction and Repulsion between Bodies on the

Surface of Water. It has often been noticed that bubbles,

small sticks and straws floating on still water appear to

attract each other. They gather in groups or become attached

to the edge of the containing vessel. This effect can be easily

illustrated by means of two discs sliced off a cork, placed on

the surface of the water. When they get within a certain

distance (about 1 cm.) they run together. If the water does

not wet either body they will still attract each other; but

when two bodies, one of which is wet and the other is not, are

brought near together they will appear to repel each other.

These actions can be explained in the following way. Let

P and Q be two plates suspended by threads near together in a

liquid.

First, let the liquid wet both plates (Fig. 319). Let a, a be

points on the surface of the liquid at its ordinary level, away
from the plates, and c be a point on the same level in the

liquid between the plates. As the liquid is in hydrostatic

equilibrium the pressures exerted by the liquid at these three

Fig. 318.—^Water rises between
the two plates of glass which touch
along one edge.

Explain the action.
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points must be equal, each being equal to that of the atmos-

phere. If one ascends from c towards h the pressure diminishes,

while if one descends below c the pressure increases. Conse-

quently the pressure of the liquid between the plates is less

than that of the atmosphere which presses on the outer surface

of the plates, and the plates will be pushed together, as in-

dicated by the arrows.

Next, take two plates which are not wet by the liquid

(Fig. 320). These may be plates of glass, or aluminium,

covered with paraffin. Here the pressures at a, a, as also at c

between the plates, are all equal, each being that of one

atmosphere. Hence the pressures at h, b in the outer liquid

Fig. 319.—If both of the Fig. 320.—It both plates Fig. 321.—If one plate ia

plates are wet they are are not wet they are at- wet and the other is not
attracted. tracted. they are repelled.

are greater than the pressure on the same level between the

plates, and the plates will consequently be pushed together

as before.

This may be demonstrated also by means of two short iron

rods floating on the surface of mercury.

It should be noted that no change in pressure occurs in

crossing the level surface of a liquid but there is an abrupt

change of pressure in crossing the concave or convex surface

between the plates.

Finally, let the liquid wet one plate but not the other.
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When the plates come sufficiently near together the surface

of the liquid between the plates assumes the form shown in

Fig. 321. It then has no level portion.

The tension of the surface on the outside pulls the plates

with the force T in the horizontal plane and although the

surface curves upwards to meet the plate the horizontal pull

is the same as though the horizontal surface continued right

up to the plate. This tends to draw the plates apart. The
tension of the surface between the plates exerts an equal force,

but in a direction making, let us say, the angle a with the

horizontal. Resolving this in the horizontal plane, the force

drawing the two plates together is T cos a, and as this is

smaller than T acting in the opposite direction, the plates will

be drawn apart.

The above results can be neatly illustrated in the following

way:

Obtain two hollow glass balls about 2 cm. in diameter and

cover one with paraffin. Attach a weight to each (with wax
or otherwise) so that they may float rather more than half

immersed. They will appear to repel each other. If both are

clean glass or both paraffined they will attract each other.

If the glass balls are not available, flat corks may be used

instead.

254. Small and Large Bubbles. The following experiment

illustrates the fact that the pressure within a small bubble is

greater than that within a larger one.

AB (Fig. 322) is a U-shaped glass

tube with a side tube attached to its

centre and provided with taps at C,

D and E. The tubes have an internal

diameter of about one-quarter inch

and are flared out to about one-half

inch diameter at A and B. (Short

pieces of glass may be joined by
rubber tubing and pinch-cocks may be used instead of taps).

Fig. 322.—Apparatus for
showing that the pressure in a
small bubble is greater than
that in a larger one.
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The tap E is closed and a small bubble is blown at A with

C and D open. Then D is closed and a larger bubble is

blown at B with E open. C is then closed and D opened,

providing communication between the two bubbles. The

large bubble at B becomes still larger and the small one shrinks

to a flat film across the tube.

A similar action takes place with large and small drops of

water. This may be shown as follows:

Take a capillary tube bent in the form of a U, and fill it by

drawing water through it. Then put a large drop of water on

one end of the tube and a small drop on the other. Note which

drop gains in size. What conclusion can be drawn regarding

the pressures in the two drops?

255. Calculation of Pressure in a Bubble or Drop. Consider the soap

bubble represented in Fig. 323. There is a state of equilibrium between

the internal pressure tending to make it expand
and the surface tension effect tending to make it

contract.

Let the internal pressure be P dynes per sq. cm.

and the surface tension T dynes per cm. Let the

radius of the bubble be R cm. Since the film is

very thin R may be taken as both the internal and
external radius.

The two halves of the bubble A and B are similar

to the two halves of a child’s hollow rubber ball

cemented together around the equatorial circle.

In the case of the bubble the “cement” consists of the force of surface

tension, T dynes per cm. length of the equatorial circle. Since there is an

inner and an outer surface the total force tending to hold one half of the

bubble to the other half

= 2X2 ttR X T dynes.

The internal pressure, P dynes per sq. cm., acts everywhere at right angles

to the surface but we can consider the surface as the limiting condition of

the “stair-step” arrangement shown at C, when the number of steps

becomes infinite.

The thrust tending to push one of the hemispheres away from the other

is obviously equal to the sum of all the thrusts on the horizontal parts of

Fig. 323.—Calcula-
tion of pressure in a
bubble.
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the steps in the surface of the hemisphere

= P X (sum of all the areas of horizontal parts)

= P X (area of equatorial circle)

= P X ttRK

Hence, P X = 2 X 2ttR X T,

p 4P
•

or P = -.

In the case of a water drop the same argument holds except that we have

only one surface and consequently

P X ttR^ = 2ttR X T,

p 2P
or P = _.

For both bubbles and drops, then, the pressure is inversely proportional

to the radius of the sphere.

This pressure due to a curved surface accounts for the sudden change of

pressure as we cross the surface of separation in a capillary tube or in a

liquid between parallel plates (Sec. 253).

The pressure calculated is, of course, pressure in excess of ordinary

atmospheric pressure.

QUESTIONS AND PROBLEMS
(For surface tensions see Sec. 252.)

1. When a soap bubble bursts the water from it is thrown in every

direction. Account for this.

2. Why are small drops of mercury resting on a horizontal surface more
nearly spherical than larger ones?

3. Two drops of mercury 1 mm. and 2 mm. in

diameter, respectively, coalesce. Compare the

pressure within the liquid due to surface tension in

the two original drops and in the one formed by
their union.

4. One soap bubble, 8 cm. in diameter, is on one

end of a U-tube, and another, 3 cm. in diameter, is

on the other end. Find the pressure in each bubble.

If there is a free passage from one to the other,

which one will increase in size?

5. A soap film in position A across a 60° funnel (Fig. 324) is moved to

position B, x cm. from A, by blowing air through the stem of the funnel.

Find the work done against surface tension if the radius at A is r cm.
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256. Experimental Illustrations of Surface Tension. (1) If small

fragments of camphor are placed upon the surface of clean water they at

once move about almost as if alive. The camphor dissolves slowly in the

water, and the surface tension of a solution of camphor is smaller than that

of pure water. Consequently if the camphor dissolves more rapidly at

one side of the fragment than at the other, the surface tension on the first

side will be diminished and the greater surface tension on the other side

of the fragment will draw the fragment away.

This can be easily shown by rinsing a glass at the tap, filling it with

water, and then scraping with a pen-knife small fragments of camphor

which are allowed to fall upon the surface. They dart about, but if the

surface of the water be touched with the finger the movements will likely

cease, being arrested by the grease from the finger communicated to the

water. Very little grease is required. Lord Rayleigh found that 0.8

milligram of ofive oil on a circular surface 84 cm. in diameter was sufficient.

From this he calculated that an oily film 2 millionths of a millimetre in

thickness is sufficient to arrest the camphor movements.

(2) The surface tension of alcohol is much smaller than that of water

(see Table p. 332). Scatter lycopodium powder over the surface of a thin

layer of water, and then place a drop of alcohol on the surface. At the

place where the alcohol is, the tension is immediately reduced, equilibrium

is destroyed and the superficial film of the liquid is set in motion. This

will be shown by the lycopodium powder. If the water is very shallow

this motion will drag the water away from the place where the alcohol is,

and will lay bare the bottom of the vessel.

(3) Rinse a glass under the tap and fill it with water, and scatter

lycopodium powder as in the last experiment. Now touch the middle

of the surface with a finger which has been rubbed against the hair. Enough

grease will come off the finger to contaminate the water, and reduce its

surface tension, and the surface layer will be drawn away from the place

where the finger touched the surface. A patch will be entirely free from the

powder.

(4) Hold a drop of ether close to the surface of water. The vapour

of the ether condenses on the surface, reduces the surface tension and causes

an outward motion, producing a dimple on the surface.

(5) Pour clean water on a level board so as to form a shallow pool

2 inches wide and 2 or 3 feet long. Near its middle lay a scrap of paper

and on one end place a cake of soap (Fig. 325).
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The paper is soon seen to move

Here the soap in dissolving

weakens the surface film, and

the tension in the other por-

tion draws the surface layer

away from the soap.

along the surface away from the soap.

(6) Cut a piece of paper into „ „ „ . . ,

, , f n ^ /TT FiQ. 325.—Soap reduces the surface tension,
the shape of a fish (Fig. 326).

On its tail put a drop of amyl alcohol (or of

fusel oil) and place it on the surface of

clean water. The fish swims about in a

Fig. 326.—The paper fish moves very interesting way. Why does it stop

Fig. 327.—The paper
spins about.

Cut the shape of an S from paper (Fig. 327), and put a drop of amyl
alcohol on each end of it. It spins about like a

pin-wheel.

By using a shallow dish and a vertical attach-

ment these motions can be projected on the screen.

Where the amyl alcohol is placed, the surface film

is weakened, and the tension in the other parts of the

surface draws the surface film away from these

places, causing the motion of the pieces of paper.

(7) A is a glass bulb, with a small one beneath

it, on the end of a small glass tube (Fig. 328).

Mercury in the lower bulb makes the tube float

upright in water. At d is a piece of wire gauze

attached (by wax) to the small tube.

When floating in water a considerable part of

the large bulb A is above the surface, and it requires

quite a force to push it down.

Now press it down until the gauze touches the

surface. The water wets it and clings to each wire.

This tension will be sufficient to hold the tube down
in the water.

While down put a few drops of ether (or alcohol)

on the surface of the water. At once the gauze

Fig. 328.—Surface ten-
breaks away and rises as shown in the figure.

sion upon d can hold the Adding the ether weakens the surface tension,
bulb down.

The size of the piece of gauze will depend on the

size of the bulb and the amount of mercury holding it down; but it will be
easy to find suitable dimensions.
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A simpler form of the apparatus is shown in Fig. 329. It consists of

a hat-pin through a cork, with a piece of lead to keep it upright. In

place of the wire gauze a cardboard disc d may be used. This can be

pared down until it is just able to hold the cork down.

In this case the disc is held by the tension exerted only

around its edge, while with the gauze the surface clings to

each wire and so the total tension is greater.

(8) Two simple methods of removing grease from cloth

are based on surface tension. The fatty oils have a greater

surface tension than benzine. Hence if one side of a

grease-spot on a piece of cloth is wetted with benzine the

tension is greatest on the side of the grease. Consequently

the portions consisting of a mixture of grease and benzine

will be drawn towards the grease and away from the

benzine.

In order to cleanse the grease-spot, first apply the

benzine in a ring all round the spot, and gradually bring

it nearer to the centre of the spot. The grease will be

chased to the middle of the spot and if a fibrous sub-

stance such as blotting-paper is placed in contact with the cloth, the grease

will escape into it. If the benzine had been applied to the centre of the spot

the grease would have been spread out into the cloth.

The second method is to apply a hot iron to one side of the cloth and
blotting-paper to the other. The surface tension diminishes as the tem-

perature rises. Hence the grease draws away from the hot iron and escapes

into the blotting-paper.

Try these two methods.

d

Fig. 329. —
Simpler form of
of apparatus,
but not so satis-
factory.
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CHAPTER XXVI

Some Applications of Surface Tension

I .—In Agriculture

257. Action of the Water in the Soil. Surface tension

undoubtedly plays an important part in supplying moisture to

the soil. If a lump of loaf-sugar is placed with one corner in

water, the liquid gradually rises and spreads until it completely

permeates the lump. The soil behaves similarly. Like the

sugar, it is composed of small particles with spaces between

them. If water falls upon it, some will pass down through it

and run away, but a considerable amount will cling to the

surfaces of the particles and gather in the spaces between

them. If water is supplied at the side or underneath, as

sometimes in irrigation, the water spreads upwards and

throughout the mass and much of it remains there owing to

surface tension.

268. Evaporation at. the Surface. The water at the upper

surface evaporates, and its place is supplied, as far as possible,

by water drawn up by surface tension. The depth from

which water can be raised by capillary action differs in

different soils and for different conditions of the soil. The
finer the texture is, the higher the possible rise.

Experiment has shown that capillary movement can take

place through a column 5 feet in height. In this case the

soil must be moist to begin with. On the other hand, if the

soil is well dried the capillary rise may be less than 1 foot.

It has been shown, also, that evaporation from soil takes

place entirely from the layers very near the surface.

341
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269. Retaining the Moisture in the Soil. The problem of

preventing the rise of the water to the surface and its loss by

evaporation is a very important one, especially in those

countries where there is no rainfall for months in succession

or where the entire yearly rainfall is small, not more than ten

of fifteen inches.

It has been found that if a soil after a rain is exposed to

very arid conditions, with a high surface temperature and a

hot dry wind, the soil at the surface will lose water much

faster than it can be brought up from below by capillary

action, and a layer of dry soil may be formed on the surface

which will be so dry that it will act as a protecting covering.

One of the most effective means of conserving soil moisture,

however, is by “mulching,” i.e., by covering the surface of the

soil with some loosely packed material, such as straw, leaves or

stable manure. The spaces between the parts of such sub-

stances are too large to admit of capillary action, and hence

the water conveyed to the surface of the soil is prevented

from passing upwards any further, except by slow evaporation

through the mulching layer. A loose layer of earth spread

over the surface of the soil acts in the same way, and the

same effect may be attained by hoeing the soil or stirring

it to the depth of one or two inches with harrows or other

implements.

In the semi-arid regions of the United States, Argentina,

the Canadian West and other countries, in which the average

rainfall lies between 10 and 20 inches, good crops of selected

grain can be grown by proper cultivation.

In some cases only one crop can be grown in alternate years,

the year of no crop being used to preserve the moisture in the

soil. In our Canadian West during a dry season it is found

that land which was “summer fallowed” the year before

produces the heaviest crop.
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II .—In Dyeing

260. The Process of Dyeing. There is great variety both

in the materials to be dyed and in the colouring matter to be

applied to them, and we are not surprised to find that the

phenomena observed in the process of dyeing are very compli-

cated. No single hypothesis as to the nature of the action

taking place will account for all the results obtained.

In some cases chemical action undoubtedly takes place; in

others the process is probably physical, and there is evidence

that capillary action or surface tension is of great importance.

The experiments which follow suggest ways in which the

dye is transferred to the fabric:

(1) Into vessel A (Fig. 330) pour clean water, and into vessel B a

weak solution of saponine (1 gram of saponine

to 500 c.c. of water).

Hold a capillary tube in A. The water rises

^ to a level a. Then remove the tube and hold it

in B. The liquid now rises only to level b,

considerably below level a.

This shows that the saponine solution has a

smaller surface tension than clean water has.

Now draw the solution in B up to the level c

and let it go suddenly. The column rapidly

falls to level a and then settles less rapidly

down to h.

While falling from c to a the liquid at the

^^'tion^iTthe°surffcr^^ surface is being renewed constantly, and so the

constitution of the surface layer is very approxi-

mately the same as that of the solution generally, which is little different

from pure water. However, in a few seconds some of the saponine concen-
trates at the surface and produces a reduction in the surface tension. This
gradual reduction is seen in the slow sinking of the column to its final

height.

From this experiment we get a very important result.

When a substance, on being dissolved in water, reduces its

surface tension, there is a concentration of the substance in

the surface layer.
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This conclusion, indeed, is predicted from theoretical con-

siderations based on the laws of thermo-dynamics, and it can

be verified by many other experiments. A system always

endeavours to change so as to have the least possible potential

energy. When such a substance goes into the surface it

reduces the surface energy, thus contributing to a reduction

in the total potential energy.

It is to be observed that the surface layer is

excessively thin, so that the actual amount of

matter concentrated there need not be great.

(2) Make a solution of methyl violet (1 gram to 4 litres

of water). About one-third fill a large separating funnel

(Fig. 331). Shake vigorously, causing froth to gather

above the liquid.

Let it stand 4 or 5 minutes, to allow the liquid between

the bubbles to run down. Then drain off all the liquid

which has collected. Call this solution A.

Next, let it stand for 4 or 5 minutes more, to allow the

froth to settle, and then draw off the liquid formed from

it. Call this solution B.

Now make a solution of 1 c.c. of A to 20 c.c.

of water, and pour in one side of a double glass

vessel with plane sides (Fig. 332).

Make a solution of 1 c.c. of B to 20 c.c. of

water, and pour in the other side of the vessel.

Place the vessel in the lantern, and project

on the screen, or hold it in front of a piece of

white paper or up to the window. Fig. 332.—The solution

It will be found that the second solution is of a colour tLn°theo^^^
deeper

slightly deeper colour than the first.

This result is explained as follows:—Methyl violet, when

dissolved in water, reduces the surface tension of the water,

and any substance which does that concentrates at the surface.

The bubbles of froth have much surface compared to their

mass, and the methyl violet is concentrated on their surfaces.

Hence, the liquid formed from the bubbles contains more of

the dye per c.c. than does the liquid first drained off.

Fig. 331. —
Froth of a solu-
tion of methyl
violet above the
liquid.
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In performing this experiment be sure that the proportions

in the two solutions compared are accurately the same as the

final difference in colour is only slight. Use a 1 c.c. and a 20

c.c. pipette, previously rinsing out with some of the liquid to

be measured.

If froth does not form on the solution, make a new one with

fresh water.

(3) Place a drop of a weak solution of red ink on white filter or blotting

paper, and observe how it spreads. When the action has ceased it will be

found that the red colouring matter has spread a certain distance, but the

water in the solution has gone a considerable distance farther.

Many solutions of salts or of dyes exhibit this phenomenon, the water

diffusing amongst the fibres of the paper and leaving the dissolved sub-

stance behind upon the fibres.

Still more striking and beautiful effects are obtained with solutions

of two dyes. Make a dilute solution of picric acid and crocein scarlet,

and put several drops on white filter paper (supported on the top of a

beaker) . When the spreading has ceased there will be seen a large spot of

red with a yellow fringe, and this surrounded by clear water. The picric

acid diffuses more freely than the scarlet.

A solution of acid magenta and indigo sulphate of soda will give an

indigo spot fringed with magenta.

Instead of putting drops on the paper, a strip of filter paper may be

suspended with its lower end in the solution. The clear liquid rises highest,

and usually one colour higher than the other, if two are present.

These experiments are easy to perform, and the results are beautiful

and suggestive.

The action illustrated in the above experiments is almost

certainly present in some cases of dyeing. The coloured

solution comes in contact with the surface of the material to

be dyed
;
the tension of the surface there is reduced and the

colouring matter concentrates at the surface and is deposited

on the material. Probably, with some materials, the water of

the coloured solution passes freely through the capillary

spaces, leaving the particles of the dye behind on the material.
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III .—In Filtration

261. The Action of Filters. Filters can be divided into two
classes.

In filtering solid impurities, or a precipitate, from a liquid,

the filtering material (paper, cloth, sand, etc.) has interstices

through which the liquid can pass but the solid particles

cannot. Surface tension does not enter here.

It has been known for many years that neutral filters, such

as sand in layers, will remove colouring matter and, to some
extent, salts in solution. This filtering action is undoubtedly

intimately connected with the large amount of surface of the

particles presented to the liquid, the greater the surface the

stronger being the action.

In Experiment 4, above, the red matter in the ink was
held back while the pure water flowed on.

The action in these cases is certainly a surface phenomenon,

probably explainable in the same manner as the phenomena
of dyeing just described above.

It may be well to remark, however, that in the purification

of water by filtration other considerations enter. For a long

time this was looked upon as a mechanical process of straining

out the solid particles and thus rendering turbid water clear.

But now it has been shown that in sand-filtration of water on

a large scale an essential feature is the presence, in the upper

surface layer of the sand, of colonies of bacteria forming jelly-

like masses. Not until a fine film of mud and microbes has

been formed upon the surface of the sand are the best results

obtained.

IV .—Effect on Waves

262. Everyone has noticed the brilliant colours produced by
the spreading of a drop of oil over the surface of water. The
oil spreads because its surface tension is less than that of

water.
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In a storm, the waves may be calmed to a certain extent by

pouring oil on the water. The wind acting on a portion of this

oil layer tends to drive it forward and so to expose a compara-

tively pure water surface, which has a stronger surface tension.

As a result there is a backward pull tending to neutralize the

forward motion of the wave. The persistence of the smooth

lane of water showing the track of a steam-ship is probably

due to the effect of small quantities of oil and other matter

left on the surface by the passage of the ship.

Solution for Soap-Films and Bubbles

A solution of Castile soap and rainwater, with some Price’s glycerine

added to make the film last longer, will probably answer all purposes;

but for the very best results a specially prepared solution is desirable.

The following is the recipe recommended by Reinold and Rucker and

by Boys. Fill a stoppered bottle three-fourths full with distilled water,

add one-fortieth by weight of fresh oleate of soda, and leave for a day to

dissolve. Nearly fill the bottle with Price’s glycerine, and shake well.

Leave the bottle a week in a dark place, and then with a siphon draw off

the clear liquid from under the scum into a clean bottle, add a drop or two

of strong ammonia solution to each pint, and keep carefully in the stoppered

bottle in a dark place, filling a small working bottle from it when required,

but keeping the stock bottle undisturbed and never putting any back into

it. Do not warm or filter the solution and never leave the stopper out or

expose the liquid to the air.



CHAPTER XXVII

The Flow of Fluids

263. Services Obtained from Flowing Fluids. From an

economic point of view the study of the laws of flowing fluids

is of great importance. Immense stores of energy are present

in the waters of our rapid rivers, and in order to utilize it we
must know the laws according to which they move. In the

systems of waterworks in our cities and towns the water is

pumped into iron pipes, from which it is drawn for domestic

use, for running elevators and water motors, and for other

industrial purposes.

Air and steam, forced through pipes, are used for actuating

drills, for driving turbine and ordinary engines, for applying

the brakes on railway trains and street cars, for heating

buildings, and for numerous other purposes.

Again, our winds are currents in the air, their motion being

shown in the swaying of trees, and in the sweeping onward of

clouds in the sky or of clouds of dust and smoke at the surface

of the earth.

It is, therefore, evident that a knowledge of the laws in

accordance with which fluids move is of the highest value.

The phenomena, however, are very complicated, and the

determination of their laws is a matter of difficulty.

264. Unsteady and Steady Flow. Consider the water

moving forward in a river with a very irregular channel or

flowing in a pipe which has a varying diameter, and which,

perhaps, has abrupt changes in direction. If we could colour

the particles of water in successive cross-sections, thus render-

ing it possible to trace their motions, we would probably be

surprised to see the extraordinary way in which some of them
eddy about instead of simply moving forward. The particles

near the shore and bottom of the river, or near the surface of

348



UNSTEADY AND STEADY FLOW 349

the containing pipe, are continually being thrown into eddies.

Such turbulent motion is called Unsteady Flow.

But it is evident that if the source of supply is perfectly

constant, and if there are no abrupt changes in the channel,

the flow will be continuously steady and successive particles

passing any point will follow approximately the same paths.

For example, if a vessel is kept constantly full by allowing

water to run uniformly into it from a reservoir, and if the water

is permitted to escape from an opening anywhere in the vessel,

the motion of the particles which pass any fixed point in the

vessel will be the same at all times. If a water-sprite could

stand in the liquid and mark each particle as it came along in

a certain direction to that point, all of these particles would

be seen to follow the same curved path.

By Steady Flow we mean that at any point in the stream

the conditions remain constant with respect to time
;
and the

lines imagined to be drawn in the liquid so as to be at each

point in the direction of the flow, or, in other words, the lines

along which the particles travel, are called Stream Lines.

Thus, consider steady flow through a pipe with a contrac-

Fig. 333.—Stream lines in a pipe.

tion, or throat, in it (Fig. 333). The fine lines indicate the form

of the stream lines.

Let us consider the stream lines drawn through a closed

curve a (Fig. 334) in the liquid.

A particle of the fluid which com-

mences to move along one of these

lines will continue to do so. It is

Fig. 334.—

a

tube of flow. evident that these lines of flow

taken together form a tube; it is called a Tube of Flow.
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Since the line of flow, or stream line, passing through a

point indicates the direction of flow at that point it is evident

that two lines of flow cannot cross each other. If they did

the motion at the point of intersection would have two direc-

tions, but in steady motion the movement of the particles at a

point are continually in a single definite direction.

Such being the case, there can be no flow across the bounding

walls of the tube, and the particles which are within the

tube at one time will continue within it. The particles com-

posing a cross-sectional layer will continue to be a cross-

sectional layer.

Actually perfectly steady flow is seldom, if ever, met with in

engineering, but in water mains, water turbines, power canals

and hydraulic machinery in general, the flow is made as steady

as possible. Unsteady flow means wasted energy.

266. Height to Which a Jet will Rise. In the apparatus

shown in Fig. 335, the water escapes from a small orifice. The

jet rises nearly to the level of the free surface of the liquid in

the vessel, and we suspect at once that

if there were no losses through friction

the jet would rise exactly to that level.

Now if a body falls through a height h

it attains a velocity v where v = -\/2gh.

In the same way, if the body is thrown

upward, and rises to a height h the

initial velocity = \/2gh.

In the case of the jet of liquid, if h is

the depth of the orifice below the free

surface in the vessel, the velocity of efflux = \/2gh.

This relation is rigidly true only for a perfect liquid, or one

which flows without friction.

Fig. 335—Height of a jet of
water.
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266. Flow of Liquid from an Opening in a Vessel. The

result obtained in the last section can be deduced from the

principle of energy.

Let the opening be at a distance h

cm. below the surface of the liquid

(Fig. 336). Let the density of the

liquid be p, the area of the free surface

be A sq. cm., and the velocity of the

outflowing liquid be v cm. per sec.,

that is, a small speck of dust in the

liquid at the opening would be carried

forward at this rate.

Suppose that in a very short time

the level of the free surface falls a very small distance x cm.

Then the

Volume of escaped liquid = Ax c.c.

Its mass = pAx grams.

And if its velocity = v cm. per sec..

Its kinetic energy = ^pAxv^ ergs (see Sec. 82).

This kinetic energy must be gained at the expense of the

potential energy of the liquid. Now each layer has fallen

through a height x cm., or the entire volume has fallen

through this distance. The mass is pAh grams, and its

weight is pAhg dynes. Hence the

Decrease in potential energy = pAhgx ergs.

Therefore, ^pAxv^ = pAhgx,

or = 2gh,

and V = V2gh;

that is, the velocity is the same as that which would be

acquired by falling through the distance of the opening below

the free surface.

This is known as Torricelli’s Law. It was formulated by

him in 1643, more than 200 years before the principle of the

conservation of energy had been established.

Fig. 336.—Calculation
of velocity of outflow.
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This result was obtained on the assumption that the liquid

was perfect, that there was no friction in the passage of one

layer over another, or in other words, that it had no viscosity.

As a matter of fact, water, ether, alcohol, mercury and such

liquids possess very little viscosity, and the law is very nearly

fulfilled by them. In the case of water the velocity is not

quite that given by theory, a small amount of the energy

being transformed into heat. The velocity is approximately

X

267. The Contracted Vein. The rate at which liquid is

escaping, however, cannot be found from knowing the area of

the opening and the velocity v of the efflux. Just outside the

opening the jet contracts somewhat, and we must take the

area of a cross-section where it is least. The size and shape

of the cross-section is modified by the shape of the opening,

and the area in general can be determined only by experiment.

When the opening is a sharp-edged round orifice in a plane

surface the area of the jet is on the average of that of the

opening, or the cross-section of the jet is about f of the area

of the opening.

Fig. 337.—Discharge from three different circular orifices: a, sharp edged; b, curved;
c, short tubular aperture.

The reason for this contraction will be seen by referring to

Fig. 337a. The stream lines are converging as they approach

the orifice and continue to converge for a short distance past

the opening, with the result that the water in the central part

of the orifice has difficulty in escaping. The velocity of efflux

calculated in the preceding section is the velocity at the

contraction.
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Figs. 3376 and 337c show the form of discharge from other

types of circular orifices.

Experiment.—Test the rate of flow from orifices of different shapes,

circular, square, triangular. This can conveniently be done by making an

opening of some size (say in. in diameter) near the bottom of a tank,

and then placing over this plates with orifices of different shapes in them.

The experiment in each case should continue only a short time so that the

flow may be nearly uniform. The rate of flow can be determined by taking

the time and observing the fall of the water in the tank, or better, by

catching the water and measuring it.

Also compare the flow through a circular orifice in a thin plate with

that through a short tubular orifice of the same internal diameter.

PROBLEMS

(In the following problems, the density of water is to be taken as 62.5 lb. per cu.

ft.; the velocity coefficient as 0.98 and the contraction coefficient as 0.62.)

1. In a water-works system the pressure is maintained by the water in

a stand-pipe 100 feet high, situated on a hill, 50 feet above the valley.

Find the pressure, in pounds per square inch, on the ground floor of a

house in the valley.

2. If the stand-pipe is 30 metres high and the hill 20 metres above the

valley, find the pressure in dynes per square cm., and also in kilograms

per sq. cm.

3. A large tank, 3 metres high, is kept full by water continually running

into it, and a small round opening, 1 cm. in diameter, is made at the

base. At what rate will the water escape?

4. A can contains oil to a depth of 18 inches, and a small round hole ^
inch in diameter is punched through it at the base. At what rate will the

oil begin to run out?

268. Energy of a Liquid Under

Pressure. A liquid possesses

potential energy by virtue of its

being submitted to pressure,

and the amount of this energy

can be calculated in the follow-

ing way.

Let A (Fig. 338) be a tank in

which is water under a pressure Fig. 338.—Energy due to pressure.
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of p grams, or pg dynes, per sq. cm., and let P be the piston

of a pump by which water is forced into the tank. Let a sq.

cm. be the area of the piston. The total thrust on the piston

is ap grams, or apg dynes, and when it moves inwards

through a distance x cm., it does apx gm.-cm., or apgx ergs, of

work.

In doing so it forces ax c.c. of water into the tank, which

must possess as potential energy the energy expended in

placing it where it is. This potential energy due to pressure

will be called pressure energy.

Hence, ax c.c. have apx gm.-cm., or apgx ergs, of P.E., and 1

c.c. has p gm.-cm., or pg ergs, of P.E.; i.e., the measure of the

pressure energy per unit of volume possessed by a liquid is

the same as the measure of the pressure to which it is

subjected.

Thus, if a liquid is under a pressure of 10,000 dynes per sq.

cm., each c.c. of it possesses 10,000 ergs of pressure energy.

If the pressure is 60 pounds per sq. ft., each cu. ft. possesses

60 ft.-pd. of pressure energy.

Examples of this effect are often seen. When water from

the city waterworks, at a pressure of, say, 100 pounds per sq.

inch, is admitted to the cylinder of an elevator in a high

building, it performs work in raising the car of the elevator to

the upper stories of the building. Or, when pumped into the

cylinder of a hydrostatic press, immense pressures are pro-

duced, which are used in compressing bales, etc.

269. Energy of a Liquid in Motion. Let a liquid be flowing

with a velocity of v cm. per sec., and let m grams be the mass

of 1 c.c. (Le., the density) of the liquid.

Then the kinetic energy per c.c. = \mv^ ergs.

If the velocity is v ft. per sec. and density is p lb. per cu. ft.,

then the kinetic energy per cu. ft. = ^pv"^ ft.-poundals,

= ft.-pounds,

since 1 pound force = g poundals.
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270. Rate of Flow of a Liquid. First, consider steady flow

in a tunnel or a pipe of uniform cross-section (Fig. 339). Let

the area be a sq. cm., and the velocity be v cm. per sec.

Then the amount which flows

past any point in 1 sec. is av c.c.

In practical engineering work the

rate of flow is usually stated in cu.

Fig. 339.—Rate of flow = area ft. Or CU. metres per SeC.
multiplied by velocity.

Next, let the pipe have a con-

tracted portion or throat, as in Fig. 340.

Let the area of

the cross-section at

Ai be eti sq. cm., the

velocity there be Vi

cm. per sec., and the

pressure there Pi Fig. 340.—The velocity of a liquid is inversely proportional
1 to its cross-section.
dynes per sq. cm.

ki A i let the corresponding values of these quantities be

«2, V 2 , P2.

Now the same quantity flows past and A 2 during 1 sec.

Hence vi = U 2 V 2 .

But ai is greater than a 2 ]
hence, V 2 is greater than Vi, and

we have the law: The velocity of the liquid is inversely

proportional to the area of the cross-section.

271. Relation between Pressure and Velocity. Suppose

the tube in which the liquid is flowing is horizontal as in

Fig. 340, and that its central axis is at a height of h cm. above

the ground. Let us consider the motion of 1 c.c. of the liquid

along the axis, from the centre of the section at Ai to the

centre of that at A 2 .

Its energy at Ai = pi + -|- pvi^ + pgh ergs (1)

Its energy at A 2 = P 2 + ^pv 2
^ + pgh ergs (2)

But these must be equal, and therefore

Pi + i" + pgh = P 2 + i- pv 2
^ + pgh (3)

= the corresponding expression for any section.
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Hence, the quantity

P + ¥ + PO^ i® ^ constant for any section (4)

The relation (3) can be written

Pi - P2 = ip(V22 - Vl^) (5)

But since the area at A 2 is smaller than that at Ai, the

velocity ^2 is greater than the velocity Vi, and also is

greater than Hence, pi is greater than p2, and we obtain

the law that when the velocity increases the pressure

diminishes.

The pressure exerted by the liquid at a contracted portion

of the pipe is less than where the pipe is larger. This is

entirely contrary to the view commonly held. Most people

think that when the liquid enters a contracted portion its

particles are squeezed together and it exerts a greater pressure

against the walls of the pipe. This view, however, is quite

erroneous.

The relation between pressure and velocity given in (4)

above is a simple case of a law of hydraulics known as

Bernoulli’s Principle.

272. Experimental Illustrations of Bernoulli’s Principle.

(1) Obtain a glass tube, blown as illustrated in Fig. 341, having two

Fig. 341.—Apparatus to illustrate relation between pressure and velocity.
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larger portions separated by a smaller neck, with a small tube rising from

each of these portions. The large portions should have a diameter as

great as possible, and their lengths should be several times as great as

their diameters. If the tube is too small, friction considerably affects the

flow, and if the expanded portions of the tube are too “bunty” the water is

thrown into eddies and the flow is far from being steady.

Connect to a tank T which is kept full of water, or attach directly to a

water tap.

First, hold a finger over the end F. There will be no flow, and the

water in the tubes A, B, C will rise to the line mn, assuming the same level

as in T.

Next, let the water run freely. Now if the particles of water are crowded

together as the sections of the cone get smaller, and are thus subjected

to increased pressure, this would be shown in the water level in the tubes.

We might expect that in B to be highest and that in A or C lowest; but

such is not at all the case. They assume the levels shown in the figure.

They are slightly lower than they would be if the water moved entirely

without friction.

Observe that the pressures at a, b, c, etc., are those due to a ‘head’

hi, h 2 , hz, etc. (cm.) respectively. Then if the corresponding pressures

are pi, p 2 , P3 ,
etc. (dynes per sq. cm.) and if the tube is horizontal, we have

the relations

Pi + = P 2 + = (similarly for each section) = constant.

Note.—If the tube is joined directly to the water tap it is advisable to

connect A, B and C by short pieces of rubber tubing and a glass T-tube

in order to prevent the water from overflowing. The differences in the

height of the water in the tubes will indicate the differences in the pressures

at a, h and c.

In place of the glass tubes shown in Fig. 341, an apparatus such as

illustrated in Fig. 342 may be used.

This consists of two zinc or tin cones

soldered together, 3 inches in diameter

at the common base and tapering to ^
inch at the ends. The shorter is 3

inches, and the other 12 inches long.

Three openings are in the longer cone.

In these can be inserted corks through

which glass tubes pass. The water a- ^ ^

should flow as shown m the figure. trate Bernoulli’s nrinciple.
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A third convenient form of the apparatus is shown in Fig. 343. It is

made of glass. One end of a U-tube is fused

into the wide portion and the other end into the

narrow portion of the tube. On causing the

water to flow through, it rises in both arms of

the U-tube, but higher in that portion joined to
,

the wide part of the tube. The experiment shows
that the pressure of the air within the U-tube,

exerted upon the surface of the water in the

Fig.343.—Another convenient ^wo arms, is greater than an atmosphere, but
form of apparatus. it is the same in both arms.

(2) Another interesting experiment is illustrated in Fig. 344. A piece

of glass tubing about 6 inches long and one-half inch in diameter is drawn

out at the middle to form a constriction. The
upper end is connected to the water tap by a piece

of pressure tubing and the water is turned on slow-

ly. When a certain rate of flow is reached a

hissing sound is heard and the water in the lower

half of the tube and in the beaker presents a foggy

appearance.

The velocity in the constricted portion of the

tube becomes great and the pressure correspond-

ingly small. The reduction in pressure causes the

air dissolved in the water to separate out and also

causes a certain amount of boiling of the water at

the constriction. A similar effect is sometimes

noticed at a partially-opened tap.

Fig. 344.— Water
at room tempera-
ture boiling at a
constriction in a tube.

273. The Venturi Water Meter. The object of this instru-

ment is to measure the rate of flow in a water-main. Its

P,v,a,

Fig. 345.—Venturi water meter.

construction is shown in Fig. 345.

Between points A and C a throat is

inserted, the change in the area of

the pipe being gradual in order

to avoid eddies. The areas of the cross-sections at A and
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B are carefully measured and connections to pressure gauges

or a manometer are inserted at these points. Now if we know
the areas of these cross-sections and the difference between

the pressures there, we can determine the flow in the pipe.

To do so we must use the formula

Vi — P2
= — Wi^),

where pi, Vi are the pressure and velocity at A and p 2 , y 2 those

at B.

Since pi - P 2 = hp{v 2
^ — Vi^),

Pi - P2 = ip»i"|(^) - l}-

But Ei = (Sec. 270),
V 1 (I 2

Now, Pi — p 2 is given by the difference of level h of the

mercury in the manometer and p, ax and «2 are known. The
velocity Vx follows, and this multiplied by ax gives us the rate

of flow in the pipe.

Example.—In a small Venturi meter, the diameter at A is 10.5 cm. and
the diameter at B is 3.5 cm. Find the rate of flow of the water when

Pi — P 2 = 50 cm. of mercury.

50 cm. of mercury = 50 X 13.6 X 980 dynes per sq. cm.

Hence, 50 X 13.6 X 980 = i X 1 X t^i^ (9^ - 1),

whence V\ — 129.08 cm. per sec.

(

XO 2

— 11181.5 c.c. per sec.

= 11.1815 litres per sec.

This meter was invented in 1887 by Clemens Herschel, an
American engineer. He named it after Venturi, an Italian,

who in 1797 described an experiment illustrating the principle

on which it is constructed. There are other forms of water
meters, but this one is especially convenient in the case of

very large water-mains. In large meters the pressures are

recorded automatically as in the barograph (Sec. 207).
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PROBLEMS
1. At what velocity must the water flow in a canal 30 feet wide and 8

feet deep to discharge 1000 cu. ft. per second?

2. If the canal narrows through a rock cutting to 25 ft. in width, find

the velocity through the cut.

3. Find the work done in pumping 20 gallons of water into a boiler in

which the pressure is 50 pounds per square inch. (1 gal. = 277.3 cu. in.).

4. Water in a pipe is under a pressure of 60 pounds per square inch

and is flowing at the rate of 5 feet per second. Find the energy per cubic

inch. (Neglect potential energy due to gravity).

5. If the pressure is 5 kilos, per sq. cm., and the rate of flow is 2 metres

per second, find the energy per c.c.

6. In a Venturi meter the diameters at the wide section and at the throat

are 30 and 10 cm. respectively. Find the rate of flow when the difference

in the pressures is 360 gm. per sq. cm.

7. Taking the diameters to be 12 and 4 in. and the difference of pressure

to be that of a head of 12 ft. of water, find the rate of flow.

8. In a glass tube 9 cm. in diameter is a throat 3 cm. in diameter and a

U-tube is fused in as shown in Fig.

346. The U-tube contains mercury

and when thewateris flowing through

the pipe, the difference in the mer-

cury levels is 10 cm. Calculate the

flow in c.c. per sec.

9. A large elevated tank supplies

water to a house through a pipe of

section 10 sq. cm.

(a) Find the pressure in the pipe

6 metres below the level of the waterin the tank, when no water is flowing.

(b) Find the pressure at the same point (neglecting friction) when water

is being drawn from the lower end of the pipe at the rate of 400 c.c. per

second.

(c) Why does the rate of flow from one faucet diminish when a second

one is opened?

274. Examples of the Flow of a Gas. The laws according

to which a compressible fluid, such as a gas, flows are much
more complicated; but when the variations in the pressure

are not too great the relation between the pressure and the

velocity still holds.
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(1)

Examine a Bunsen burner. The gas escapes from a small hole A
(Fig. 347) in the base of the burner with a high velocity. The pressure,

consequently, is reduced, and air rushes in through

the opening B in the lower part of the tube, and the

mixture of gas and air burns with a non-luminous

flame at the top of the tube.

(2)

In Fig. 348 a tube is fixed in a flat disc, the

end of the tube being flush with

the surface of the disc. A light

disc of metal or cardboard is

held near it by means of three

metal pins which move freely

through the lower disc. If a

vigorous current of air is blown

through the tube when it is held

vertically, the lower disc will

rise up to the other one. In

this case the air spreads out in

the space between the discs

radially from the tube. As it

spreads out its velocity is di-

minished and the pressure increased. Now at the rim the pressure is

approximately that of the atmosphere, and so at the centre it must be less

than one atmosphere. Hence, the atmospheric pressure on the lower

side pushes the disc upward.

Fig. 347. -

burner (unscrewed to
show construction.)

Fig. 348.—On blow-
ing through the tube
the lower disc rises.

A very simple form of the apparatus is shown in Fig. 349. A glass

tube is pushed through a cork until its end is flush with the lower side. A
thin layer of cork, with a pin through it to prevent it moving aside, will be

drawn up to the thicker cork when a current of air

is blown through the tube.

The above effect was first observed in some iron

works in France, about 1826. One of the forge-

bellows opened in a flat wall, and it was found that a

board presented to the blast was sucked up against

the wall.

(3)

The simplest way to exhibit the effect,

however, is due to Faraday. By means of the palm
of the left hand hold snugly up against the palm of

the right hand a piece of tissue paper 3 or 4 inches

square, and then blow through the opening between the first and second

fingers against the middle of the paper. Instead of being blown away.

Fig. 349.—Simple form
of apparatus.
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the paper will be sucked up to the hand. After a few trials the experiment

will be easily performed.

(4) Another simple experiment is shown in Fig. 350. T is a short,

wide glass tube. Through a

cork in one end is a glass tube

A drawn out to a small opening

a. Through a cork in the other

end a wider tube B is inserted.

At the bottom is a manometer

C filled with coloured water.

On blowing through A the

liquid in C rises. Explain

this. Fig- 350.-Experiment to test Bernoulli’s principle.

276. The Jet Pump. The principle of the jet pump is

illustrated in Fig. 351. Water is led from a reservoir A by a

pipe B which tapers at C. The velocity here is great and the

pressure is reduced until below that of the atmosphere, which,

acting upon the surface of the water in D, forces it up the

pipe a. It mixes with the water flowing from C, and the

combined stream flows on by the tube E to the reservoir F,

which, however, cannot be higher than A. Thus the water is

pumped from D up to F.
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A simple apparatus for showing the action of this pump is

illustrated in Fig. 352.

The tube B is attached

to a water tap (or a

supply of compressed

air), and the tube A is

placed in the liquid to

be pumped. To start
Fig. 352.—A simple form of jet pump.

the pump it may be necessary to fill it with water.

In Fig. 353 is shown a practical form of the pump. The
water which supplies the energy for pumping enters at A. It

discharges at C, and the water from D is

carried on by the pipe E to the pipe F.

276. The Bunsen Filter Pump. Appliances

for producing a suction current of air are

known as aspirators. One of the commonest
of these is the Bunsen filter pump, a

vertical section of which is shown in Fig.

354. Water is forced through the tube-

nozzle N, which gradually tapers and then

expands again. At the place where its section

is least there is joined on an off-set tube A,

which is connected to the vessel from which

the air is to be removed. An explanation often given is

3. 354.—The Bun-
sen filter pump.
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that the water rushing with great velocity through the

narrow passage reduces the pressure there, causing the air to

flow in through A and be carried off by the water. But
recent investigations show that Bernoulli’s principle alone

cannot account for the efficiency of the pump. Moreover the

motion below the constriction is quite turbulent while

Bernouilli’s principle holds only for steady flow.*

In all probability the water stream, because of friction and

viscosity, carries along a layer of air on its surface as it passes

the constriction. Then the water stream breaks up into drops

which act as “pistons” in carrying the air before them. The
small baffle near the bottom of the pump helps to set up this

action.

277. The Atomizer. The atomizer is an instrument for

reducing a liquid to a fine spray. Its construction is shown

in Fig. 355. On pressing the bulb B
an air-blast is forced in a jet from

the fine opening A. It crosses the

top of the tube C, and as its velocity

is great the pressure just above the

top of C is much reduced. The

pressure of the atmosphere on the

surface of the liquid D forces it up

the tube, and as it escapes it is

blown into a fine spray.

The atomizer has many practical applications. It is used to

obtain a fine shower of perfume, or a flne spray of oil in oil-

burning engines. Artists render permanent their charcoal

or crayon drawings by spraying them with a solution of

mastic in alcohol. The alcohol evaporates and leaves the

picture covered with a thin transparent varnish of mastic.

The atomizer is often used also in medical practice.

*“The Bunsen Aspirating Pump,” by W. C. Baker, Queen’s University, Kingston, in

’’Physical Review,” September, 1919.
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278. The Steam Injector. This is an application for supply-

ing steam-boilers with water, especially used with locomotives

but not exclusively so. It was invented in 1858 by Giffard, a

French engineer. The steam and water within the boiler are

under considerable pressure, but by means of the injector the

steam from the boiler, or even steam at a lower pressure, is

able to force water into the boiler.

In Fig. 356 is shown a longitudinal section of the injector.

Steam enters at A and blows through the round orifice C.

Feed water flows in at B, and, meeting the steam at C, causes

it to condense. In this way a vacuum is produced at C, and

the water rushes in with great velocity down into the cone D,

its velocity being increased by the steam from C striking it

from behind. In the lower part of the nozzle E the stream

expands; in doing so it loses velocity and gains pressure, and

at the bottom the pressure is so great that it enters the boiler

through a check valve which opens

only in the direction of the stream.

An overflow pipe F, by providing a

channel through which steam and

water may escape before the stream

has acquired sufficient energy to

force its way into the boiler, allows

the injector to start into action.

In the actual instrument there

are certain valves for regulating

the flow of the steam and the

water which are not shown in the

diagram.

The mechanical efficiency of the

injector is much lower than that of

the steam pump, but it has the

advantage of working when the engine is still and of heating

the feed water before delivering it to the boiler.
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279. The Ball Nozzle. This is illustrated in Fig. 357.

At the end of a tube is a hollow cup in which a ball fits

I
snugly. If a vigorous current of air or steam

is forced through the pipe its velocity at a,

where it leaves the pipe, is greater than at the

edge of the cup where it escapes into the

atmosphere. Hence, the pressure at a is less

than at the edge of the cup, and the latter

is the pressure of the

atmosphere. Conse-

quently the atmo-
spheric pressure on

^
the side of the ball

O
opposite a will pre-

vent the ball from

leaving the cup.

280. Forced Draught.

order to keep a

locomotive moving,

steam must be generated rapidly, and to do this a fierce fire

must be maintained. To secure such a fire the exhaust

steam from the cylinder C of the engine is discharged

through a contracted nozzle A, a little distance below the

base of the smoke-stack B, which is usually flared out

like an inverted funnel (Fig. 358). The steam escapes

with high velocity. This reduces the pressure greatly and

produces a powerful aspiratory effect, which draws in great

quantities of air through the fire-box and the boiler tubes D,

thus keeping up an intense fire.

Other Illustrations of Bernoulli’s Principle

281. Curve of a Ball. The curve given to a ball by a “cut”

in tennis, by a “slice” in golf or by a skilful pitcher in base-

ball can also be accounted for by Bernoulli’s Theorem.

Fig. 358.—Forced draught in a
locomotive.
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Fig. 359.—The curve of a ball.

In order to explain the effect it is more convenient to

consider the ball as standing still while a current of air is

forced past it, than to take the air as standing still and the

ball to be rushing through it. From a mechanical point of

view the conditions are equivalent—there is a motion of the

ball relative to the air.

The essential requisite

to produce a curve is to

give the ball a spin as well

as a motion forward. Let

the ball be spinning about

a horizontal axis in the

direction shown by the

two curved arrows (Fig. 359), and let the air current be in the

direction from right to left. The ball in its spinning carries

round with it some of the air near its surface. At b the air

carried round by the ball will unite with the motion of the

outer air current, while at a it will oppose the outer air

current. Consequently the velocity of the air current at h

will be greater than at a, and the pressure at a will be greater

than that at h. Hence,

the ball will move across

the air current in the

direction from a to b, as

shown by the arrow A,

If now we consider the

air to be at rest and the

ball to be moving from

left to right and having

the same spin as before,

it will curve up, as shown
by the broken line B.

That the pressure of the air on one side of the

ball is greater than that on the opposite side can

be shown by the following experiment.

A (Fig. 360) is a wooden cylinder or ball about two inches in diameter

Fig. 360.—Apparatus to test the theory
of a curving ball.
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mounted on a rotator. The manometer BC contains coloured water and

its arms are connected by rubber tubing to two short tubes D and E, held

by clamps on opposite sides of A and within about ^ in. of it. The air-

blast from the fan F is directed on the cylinder when stationary and the

tubes are adjusted until the manometer remains steady with the water at

the same level in the two branches. On rotating the cylinder rapidly in

the direction shown by the arrow the water at C rises and that at B sinks

showing that the pressure at D is less than that at E.

A roughened cylinder will be found to produce a greater difference in

level than a smooth one since it carries more air with it.

(If the difference in level does not show up well when the manometer is

vertical it should be placed in a nearly horizontal position where it will be

much more sensitive. The tubes used should not have too great a diameter.)

282. Light Ball in a Jet of Steam or Air. A
light ball (made of celluloid, or a j^ennis ball), may
be held in equilibrium by a jet of air or steam as

illustrated in Fig. 361. The ball is under the action

of three forces: its own weight W; I, the force

of impact of the fluid against the ball; and P,

an excess of atmospheric pressure over the pressure

on the other side of the ball, due to the high

velocity of the escaping fluid. With a few trials a

position can usually be found for the ball where the

three forces are in equilibrium, and the ball remains

there.

Where a supply of compressed air is not available
by a jet of air. action may be shown by using a bent glass

tube of about \ in. internal

diameter. Air blown through

this by the mouth will sup-

port a sphere of cork about

1 cm. in diameter (Fig. 362).

A fine wire stuck in the cork

will serve as a guide to keep

the ball from rolling to the

floor when the velocity of

the air jet slackens.
Fig. 362.—Simple apparatus for showing

a ball supported by a jet of air.
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0 0-

Fig. 363. — Balia
pushed together
when a current of
air is directed upon
them.

283. Two Balls in a Current of Air. If two light balls are

suspended side by side in a current of air

from an electric fan (Fig. 363) the wind-

current between the balls is greater than that

on the other side of them. The air-pressure

on the outer sides is therefore greater than that

in the space between, and the balls are conse-

quently pushed toward each other.

284. Two Ships Steaming Side by Side.

If a ship is anchored in a river the water

flows past it, the particles moving in definite

stream lines. If the vessel is moving forward

through still water, there is a similar relative

motion between it and the water, and the

resulting stream lines are similar to those in the other case.

If two ships are steaming side

by side (Fig. 364) the water

streams past them more swiftly

in the space between than on the

outer sides. On account of this

increased velocity the pressure

exerted by the water against the

inner sides of the ships is less

than that against the outer sides,

and the ships are pushed toward

each other. One might expect the water between the ships

to be heaped up, but such is not the case, its level is helow

the level at other places. Large ships should not manoeuvre
too close to each other; accidents have occurred through

ships being apparently drawn together in the manner just

described.
QUESTIONS

1. How should a pitcher make a base-ball spin to produce (a) an in-

curve, (b) an out-curve?

2. In the Flettner rotor-ship, large vertical cylinders are made to rotate

by an auxiliary engine and the wind acting on these cylinders tends to drive

the ship in a direction at right angles to the wind. Explain the action.

Fig. 364.—Ships drawn together
when steaming side by side.



CHAPTER XXVIII

The Aekoplane; Hydraulic Power

285. .The Aeroplane. The aeroplane is justly considered

one of the greatest triumphs of modern mechanics and the

theory of its action provides an interesting example of the

resolution of forces, in addition to many problems involving

the flow of air.

Fig. 365.—

K

modern monoplane.

Fig. 365 shows the principal parts of a monoplane.

A powerful engine A, mounted at the nose of the aeroplane,

drives the propeller or air-screw R, by which the aeroplane is

pulled through the air in much the same way as the rotation

of an auger causes it to sink' more deeply into the wood.

Most of the lifting effect is caused by the action of the resulting

air stream against the plane Q which has a concave under

surface and a convex upper surface. Near the ends of the

wings the ailerons T> are hinged to the trailing edge of the main
plane.

At the rear of the fuselage E the stabilizer F is mounted,

and to this are hinged the elevators G. The rudder H is

370
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hinged to the tail fin I. The tail skid J prevents damage to the

tail in landing and also acts as a brake.

In taking off, the propeller is made to rotate at a high speed

and the reaction of the air on it causes the plane to move

forward. The resulting effect on the main plane, stabilizer,

elevators and rudder is the same as if there was a strong wind

blowing in the opposite direction against them.

While the aeroplane is running along the ground the tail

lifts off the ground because of the action of the air stream on

the stabilizer and elevators. Usually the latter are depressed

to assist in this action. As soon as sufficient speed is attained

the pilot raises the elevators which results in a lowering of the

tail and a corresponding increase in the angle of incidence of

the air stream against the main plane. This causes the aero-

plane to climb, while depressing the elevators at any time

results in the plane losing elevation.

To turn to the right the rudder is deflected to the right,

while at the same time the right aileron is raised and the left

one lowered. This action of the ailerons produces banking,

that is, a dipping of the right wing and a corresponding raising

of the left wing. Banking offsets the bad effects of centrifugal

force in the same way that banking a railway track at a

curve enables the train to take the curve at a high speed

without being thrown off the track.

It is evident, then, that in all parts of the plane, including

the propeller, we have examples of the action of an air stream

against an inclined plane. This action in the case of the main

plane will be considered more in detail in the next section.

In order to decrease “parasitic” air resistance, structural

parts such as the fuselage, struts and landing gear, which do

not contribute to the lift, are given stream-line form as far as

possible.
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Fig. 366 shows how great an effect the shape of a body has

on the air flow around it. In Fig. 366a the body has good

stream line form and there is an absence of eddies. In Fig.

Fig. 366.—Air flow around bodies with, (a) good stream-line form, (6) poor stream line
form. The arrows show the direction of the air stream; the dots represent areas of
negative pressure.

3666 there are many eddies and also an area of partial vacuum
or “negative pressure/’ both of which retard the motion of

the body.

286. Forces Acting on the Main Plane. Consider a plane surface AB
(Fig. 367) inclined to the horizontal at an angle 6 moving from right to

Fig. 367.—Finding the pressure upon an aeroplane.

left with a velocity v ft. per sec. The pressures upon it due to the air are

precisely the same as if the plane was held fixed and a current of air was
directed against it from left to right with a velocity v.

This is equivalent to a stream of air with a velocity

V cos 0 along the plane,

and V sin 6 at right angles to the plane.

The former is assumed to slip without friction along the plane and
so cannot produce any pressure on its surface. The latter exerts a force

R = h A p {v sin 6)^ pdl. (Sec. 56),

= k A X 0.08 {v sin 6y pdl.,

= k A X 0.0025 (v sin 6^ pd.,

where k is a, constant depending on the shape of the plane and A is its

area in sq. ft.
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The pressure R may be resolved into two components (Fig. 367),

P = R cos 0, vertically upward,

Q = R sin 0, horizontally to the right.

Consequently as the plane is rushing forwards there is developed a

lifting force P, and a resistance to the motion Q which must be overcome

by the engine. These forces are called “lift” and “drag” respectively.

In the actual construction of aeroplanes the wings are made arched,

like a bird’s wing, and this increases the lifting power (Fig. 368).

Moreover, about seventy-five per cent, of the lifting effect is due to the

decreased pressure on the top surface of the plane produced by the air

currents in that region. This area of negative pressure, B, is indicated

by dots in the diagram.

287. The Hydraulic Ram. The hydraulic ram (Fig. 369) is an interesting

device for utilizing the inertia of a moving column of water. It consists of a
reservoir A fed by a natural stream, and from this a pipe B of considerable

length leads the water to a lower level where it rushes against and closes a
valve c. The inertia of the column carries it onward, and, pushing upward
the valve d, some of the water enters the chamber C and thence goes into
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the pipe P, which runs up to a tank in the attic of a house or in some other

elevated position. Immediately after coming to rest the water rebounds,

and the valve c drops. This allows some water to escape, and the column

starts moving in the pipe B again, and the operation is repeated. The pipe

B should be comparatively long and straight. The greater part of the

water escapes at c, but a fall of (say) 4 feet can raise the remaining portion

to a height of perhaps 30 feet.

288. The Hydraulic Air Compressor. An application of the principles

involved in the flow of fluids is to be seen in the great air compressor at

Ragged Chutes, on the Montreal River, eight miles south-west from Cobalt,

the centre of a great mining region in Northern Ontario.

A cement dam 660 feet long across the river raises the level of the

water. By a large tube A (Fig. 370) the water is led into two vertical

pipes P (only one shown in the figure), 16 feet in diameter into each of

which is fitted a framework holding 66 intake pipes a, a, 14 inches in

diameter. The water-line is about 10 or 12

inches above the top of the nest of intake pipes.

In descending the water forms a vortex in the

mouth of each pipe through which air is drawn
down into the shaft below. Thus air and water

are mixed together. At b the pipe is reduced to

9 feet and near the bottom, at c, is enlarged to

11 1 feet in diameter.

The water drops 350 feet, falling on a steel-

covered cone B, from which it rushes into a

Fig. 370.—Taylor air compressor at Ragged Chutes on Montreal River (section).

horizontal tunnel over 1000 feet long, the farther end d of which is 42

feet high. In this large channel the water loses much of its speed and the

air is rapidly set free, collecting in the upper part of the tunnel. At e

the tunnel narrows and the water races past and enters the tail-shaft T,

300 feet high, from which it flows into the river again.

The air entrapped in the tunnel is under a pressure due to about 300

feet of water, or about 125 pounds per square inch. From d a 24-inch

steel pipe leads to the surface of the earth, and from here the compressed

air is piped off to the mines.

Other air compressors on the same principle are to be found at Magog,

Quebec; at Ainsworth, B.C.; at the lift-lock at Peterborough and at the
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Victoria Mines in Michigan; but the one near Cobalt is the largest in

existence.

289. Water Power. From early times men have used

water-wheels to transform the energy of falling and running

water into useful work. Many forms have been invented,

the most modern and most efficient being the Impulse or Pel-

ton Wheel and the Reaction Turbine.

290. The Impulse Wheel. The small water-motor (Fig.

371) used for driving washing-machines and other household

appliances is an example of the impulse wheel. The water,

under considerable pressure, comes to

the motor by the pipe A and issues

from the small nozzle with high velocity.

The impact of the water on the cup-

shaped buckets of the wheel cause it

to rotate with great speed. Having

done its work the water leaves the motor

by the pipe C.

Pelton wheels are generally used where

the fall of the water is very great, say above 1000 feet. They
have been constructed with diameters as great as 10 feet, and

sometimes the buckets are arranged in pairs about the

periphery of the wheel so that two jets of water side by side

may add their effects. An impulse wheel using a single jet

has been made to develop over 20,000 horse-power.

Fig. 371.—The Pelton water-
wheel.

291. The Reaction Turbine. This type of water-wheel is

now being almost universally installed in large power plants

where only a moderate head of water is available. Some
of the finest examples are to be found in the neighbour-

hood of Niagara Falls, among the largest being those of the

Hydro-Electric Power Commission of Ontario.

Fig. 372 shows the general arrangement of the Commission’s

power plant at Queenston. Water from the Niagara River

several miles above the Falls is conducted by a canal 13 miles
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long to the top of the clilf at Queenston where it is delivered

through a steel penstock A to the 60,000 horse power turbine B
which is directly connected by a vertical shaft 30 inches in

diameter, to the 45,000 kilowatt generator C immediately

above it. The electricity is generated at a pressure of 12,000

volts and is “stepped up” to a pressure of 110,000 volts by the

transformer D from which leads off the transmission line E.

The water after passing through

the wheel drops through the draft-

tube F and escapes to the river by
the tail-race G.

In Fig. 373 is shown a hori-

zontal section of the turbine.

The water from the pen-

stock is delivered into the

\ spiral-case A, from

which it passes
through a series

of adjustable

guide
vanes B
which

Fig. 372.—Arrangement of Hydro-Electric power plant at Queenston.

the inward flow of the water and also direct it against the

blades of the “runner” C in a direction best adapted to produce

rotation. D is the shaft of the runner. The water moves

through the runner inwards and downwards and the blades

are curved to take advantage of both motions. On leaving

the runner the water passes out through the draft-tube into

the tail-race.

Figure 374 shows the guide vanes and the mechanism by

which they are controlled. Fig. 375 gives a good idea of
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the enormous size of the runner and also shows how the

blades are curved. The runner is of cast steel. Its outside

diameter is 10 ft. 5 in., its weight is 42,000 lbs. and it ro-

Fig. 373.—Horizontal section through
the turbine showing spiral-case A, guide
vanes B and runner C.

Fig. 375.—^The runner or rotating part
of the turbine. Note its great size and
the curvature of the blades.

tates 187| times per minute. The power house at Queens-

ton contains 10 turbines similar to the one just described,

developing a total of nearly 600,000 horse power.

Fig. 374.—Part of the spiral case is removed showing the guide vanes. The mechanism
for controlling them is seen above.
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Sines, Cosines and Tangents

Sine of angle CAB = BC/AC,
Cosine of angle CAB = AB/AC,
Tangent of angle CAB = BC/AB,
Cos A = Sin (90° - A).

For example, Cos 20° = Sin 70° = 0.9397

Angle Sine Cosine Tangent Angle Sine Cosine Tangent

0 ° 0.0000 1.0000 0.0000 30 °
0.5000 0.8660 0.5774

1 0.0175 0.9998 0.0175 31 0.5150 0.8572 0.6009

2 0.0349 0.9994 0.0349 32 0.5299 0.8480 0.6249

3 0 .0523 - 0.9986 0.0524 33 0.5446 0.8387 0.6494

4 0.0698 0.9976 0.0699 34 0.5592 0.8290 0.6745

5 0.0872 0.9962 0.0875 35 0.5736 0.8192 0.7002

6 0.1045 0.9945 0.1051 36 0.5878 0.8090 0.7265

7 0.1219 0.9925 0.1228 37 0.6018 0.7986 0.7536

8 0.1392 0.9903 0.1405 38 0.6157 0.7880 0.7813

9 0.1564 0.9877 0.1584 39 0.6293 0.7771 0.8098

10 0.1736 0.9848 0.1763 40 0.6428 0.7660 0.8391

11 0.1908 0.9816 0.1944 41 0.6561 0.7547 0.8693

12 0.2079 0.9781 0.2126 42 0.6691 0.7431 0.9004

13 0.2250 0.9744 0.2309 43 0.6820 0.7313 0.9325

14 0.2419 0.9703 0.2493 44 0.6947 0.7193 0.9657

15 0.2588 0.9659 0.2679 45 0.7071 0.7071 1.0000

16 0.2756 0.9613 0.2867 46 0.7193 0.6947 1.0355

17 0.2924 0.9563 0.3057 47 0.7313 0.6820 1.0724

18 0.3090 0.9511 0.3249 48 0.7431 0.6691 1.1106

19 0.3256 0.9455 0.3443 49 0.7547 0.6561 1.1504

20 0.3420 0.9397 0.3640 50 0.7660 0.6428 1.1918

21 0.3584 0.9336 0.3839 51 0.7771 0.6293 1.2349

22 0.3746 0.9272 0.4040 52 0.7880 0.6157 1.2799

23 0.3907 0.9205 0.4245 53 0.7986 0.6018 1.3270

24 0.4067 0.9135 0.4452 54 0.8090 0.5878 1.3764

25 0.4226 0.9063 0.4663 55 0.8192 0.5736 1.4281

26 0.4384 0.8988 0.4877 56 0.8290 0.5592 1.4826

27 0.4540 0.8910 0.5095 57 0.8387 0.5146 1.5399

28 0.4695 0.8829 0.5317 58 0.8480 0.5299 1.6003

29 0.4848 0.8746 0.5543 59 0.8572 0.5150 1.6643

30 0.5000 0.8660 0.5774 60 0.8660 0.5000 1.7321



APPENDIX 379

Sines, Cosines and Tangents

—

Continued.

Angle Sine Cosine Tangent Angle Sine Cosine Tangent

61° 0.8746 0.4848 1.8040 76° 0.9703 0.2419 4.0108

62 0.8829 0.4695 1.8807 77 0.9744 0.2249 4.3315

63 0.8910 0.4540 1.9626 78 0.9781 0.2079 4.7046

64 0.8988 0.4384 2.0503 79 0.9816 0.1908 5.1446

65 0.9063 0.4226 2.1445 80 0.9848 0.1736 5.6713

66 0.9135 0.4067 2.2460 81 0.9877 0.1564 6.3138

67 0.9205 0.3907 2.3559 82 0.9903 0.1392 7.1154

68 0.9272 0.3746 2.4751 83 0.9925 0.1219 8.1443

69 0.9336 0.3584 2.6051 84 0.9945 0.1045 9.5144

70 0.9397 0.3420 2.7475 85 0.9962 0.0872 11.4301

71 0.9455 0.3256 2.9042 86 0.9976 0.0698 14.3007

72 0.9511 0.3090 3.0777 87 0.9986 0.0523 19.0811

73 0.9563 0.2924 3.2709 88 0.9994 0.0349 28.6363

74 0.9613 0.2756 3.4874 89 0.9998 0.0175 57.2900

75 0.9659 0.2588 3.7321 90 1.0000 0.0000 Infinity

Densities of Substances, in Grams per Cubic Centimetre

Alcohol, ethyl 0 . 791

Alcohol, methyl 0.810
Aluminium, cast 2.56
Aluminium, wrought .... 2.72
Benzine 0.90
Bismuth 9.80
Brass wire (70Cu+ 30Zn) 8.70
Cadmium, cast 8.56
Cedar (average) 0.53
Cobalt, cast 8.60
Cork (average) 0.24
Copper, cast 8.88
Copper, wrought 8.90
Diamond 3.5
Glycerine 1.26
Gold, wrought 19.34
Ice 0.90
Iridium 22.10
Iron, gray cast 7.08
Iron, wrought 7.85

Lead, cast or wrought ... 11.34
Maple (average) 0.68
Marble 2.65
Mercury 13.60
Nickel 8.60
Oak (average) 0.75
Paraffin 0.89
Petroleum 0 . 878
Pine, white (average) ... 0.42
Pine, red (average) 0.59
Platinum 21.45
Sea-water 1 . 025
Silver, cast 10.45
Silver, wrought 10.56
Steel, wire 7.85
Sulphuric acid 1.84
Tin, cast 7.29
Tungsten 19.12
Uranium 18.49
Zinc, cast 7.10
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For further information on Mechanics the student

referred to the following bibliography.

R. W. Angus, Hydraulics for Engineers.

C. V. Boys, Soap Bubbles.

Briggs and Bryan, Matriculation Mechanics and Hydrostatics.

John Cox, Mechanics.

C. V. Durell, a School Mechanics {in 3 parts).

J. Duncan, Applied Mechanics for Beginners.

J. Duncan, Steam and Other Engines.

R. L. Daugherty, Hydraulics.

Edwin Edser, General Physics for Students.

W. D. Eggar, Mechanics.

R. T. Glazebrook, Mechanics and Hydrostatics.

W. D. Hills, Mechanics and Applied Mathematics {in 2 parts)

Sir O. Lodge, Pioneers of Science.

L. S. Marks, Mechanical Engineers Handbook.

E. Nightingale, Experimental Hydrostatics and Mechanics.

V. W. Page, Everybody’s Aviation Guide.

Encyclopedia Brittanica; 14th Edition, Various Articles.



ANSWEES
Page 9. 1. 2,500,000 mm. 2. 299,730.96 km. 3. 29.921 in. 4. 183.49 m.

5. 4.80 mm. 6. 16.535. 7. 535.797. 8. 2.37 in. 9. 76.390 cm.; 30.088 in.

10. 17.4; 0.166. 11. 8° 44'. 12. 4.59 mm.

Page 17. 3. 88 . 4. 108. 5. (1) 27tt, (2) SA- 6 . 48f. 7. (1) 2; 1, (2)

11:6. 8. 5:56. 9. ||-. 10. 60 miles. 11. 7200. 12. if a6. 13. 367 m.

14. (1) T 4 , (2) l^V 15. ff^^’ 15. 11 miles/day. 17. 2xx i^iles/day. 18.

(1) 10.5 cm. /sec.; (2) 10 cm. /sec.; (3) 11cm. /sec. 19. (1) 1 cm. /sec.;

(2) 3 cm. /sec.
; (3) 1 cm. /sec.

; (4) 1 cm. /sec.

Page 20. 1. 13 m.p.h. 2. 14 ft./sec.; 8 ft./sec.; 11.4 ft./sec. 3.12.30

m.p.h. 4. 62.45 cm. /sec.; 68.06 cm. /sec. 5. 7.55 ft./sec.

Page 33. 1. 2ixcm./sec./sec. 2. —xV ft-/sec./sec. 3. 600 ft./sec.; 600.

4. (1) 300 cm. /sec., (2) 18,000 cm. /sec. 5. (1) f ft./sec.; (2) 6. (1)

0.5 ft./sec.; (2) xi^o- 7. 10 min. 8. 1 sec. 9. (1) 6; (2) 2; (3) xVl (4)3V-

10. (1) 50, (2) 5000, (3) f, (4) 83f . 11. (1) 1, (2) 3600, (3) 3600, (4) 60.

12. (1) 1200, (2) 72,000, (3) 720, (4) 12, (5) f. 13. (1) 30, (2) 108,000.

Page 39. 1. 62.5 cm. /sec. /sec.; .08 sec. 2. 90.06 cm. /sec. /sec.; .06 sec.

3. 314 cm. /sec. /sec.

Page 42. 1. 100 cm./sec. 2. 20. 3. -185 cm./sec. 4. (1) 5, (2) 165

cm. /sec., (3) 20 sec. before its velocity was 100 cm./sec. 5. (1) 10 sec.,

(2) 3f sec. 6. (1) 550 cm., (2) 1 sec. 7. (1) 1.5 sec., (2) 11.25 cm. from

starting point. 8. (1) 160 ft., (2) 250 ft., (3) 90 ft. 9. 156 ft. 10. 20 ft./sec.

/sec. 11. (1) 12, (2) 78 ft. 12. 6 ft. /sec. /sec. 13. —32 ft. /sec. /sec.

14. 2 sec.; f sec.

Page 45. 1. 81.25 cm. /sec. /sec.; 76.33 cm./sec./sec.; 78.08 cm./sec./sec.

2. 80.65 cm./sec./sec.; 78.55 cm./sec./sec.; 80.50 cm./sec./sec.

Page 50. 1. 192 ft./sec.; 576 ft. 2. 190 cm./sec. 3. 128 ft./sec. 4. 7.82

sec.; 4.37 sec. 5. 759f ft.; 33|- sec. 6. f ft. /sec. /sec. 7. 4 sec.; 1 sec.;

78.4 m. 8. 144 ft. or 44.1 m. 9. 15 sec. 10. Yes; 29f ft. to spare. 11. (1)

160 ft./sec., (2) 320 ft./sec. 12. (1) 420 ft./sec., (2) 260 ft./sec. 13. (1)

1960 cm./sec., (2) 980 cm./sec. 14. (1) 256 ft., (2) 112 ft., (3) 156| ft.

15. 49 m. 16. 156i ft. 17. (1) 400 ft., (2) 16 ft. 18. 25 ft. 19. 100 m.

20. (1) li sec. and 4i sec., (2) 3 sec. 21. (l)2isec., (2)4isec. 22. (1)

6 sec., (2) 5 sec. 23. (1) 96 feet/sec., (2) 126 ft./sec., (3) 80 ft./sec. 24.

(1) 36 ft./sec., (2) 20 ft./sec. 25. (1) 39xV ft., (2) 116.49 ft./sec.

381
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Page 55. 1. 50 ft. from the house. 2. 1250 m./sec. 3. 12 sec.; 480

ft. from point on earth directly below, the balloon. 4. 5776 ft.; 1862 ft.

5. 18.606 sec.; 1823.39 ft. 6. 792 ft.

Page 63. 1. 625. 2. 15 lb. 3. (1) 200 dynes, (2) 25,000 dynes, (3)

30.000 dynes, (4) 55f dynes, (5) 30 dynes, (6) y dynes. 4. (1) 1 cm. /sec./

sec., (2) cm./sec./sec., (3) 1960 cm./sec./sec. 5. (1) ^ gm., (2) 2^
gm., (3) 216 gm., (4) 3920 kg. 6. 5 cm./sec./sec.; 25 cm. /sec.; 10,000

units. 7. 5 gm.; 2 cm./ sec. /sec. 8. 200 dynes. 9. 75 ft. /sec.; 5 ft./

sec./sec.; 750 units. 10. 7:15. 11. (1) n : 1, (2) 1 : w. 12. c:l.

Page 68. 1. (1) 9,800,000, (2) gV, (3) 384, (4) 10. 2. (a) 25, (h) 800.

3. (a) 500,000, (6) 510.2. 4. 3750 : 49. 5. ~ gm. 6. 10 min. 7. 37.5

dynes. 8. 785 cm./sec./sec. 9. 7,350,000 units. 10. 80 cm./sec./sec.;

144.000 dynes. 11. 2520 cm.; 1,680,000 dynes. 12. -f-sec.; 56 cm. /sec.

13. (1) 1750 cm., (2) 1050 cm., (3) 700 cm. /sec. 14. 712 cm. /sec.; 106,800

dynes. 15. 8960 cm.; 1120 cm. 16. (1) 7750 cm., (2) 2790 cm. 17. 985 gm.

18. 5:3.

Page 73. 1. 2 X 10^ dynes. 2. 4lf pd. 3. 944.64 pd. 4. 8.856 pd. 5.

24.6 pd.

Page 78. 1. Doubled. 4. 44|, 25, 16 kg. 5. 0.37 pd.

Page 82. 1. 68.03 gm. 2. dyne.

Page 88. 4. 3:1. 5. 11.72 ft./sec. 6. 2i ft./sec. 7. 1900 ft./sec.

8. 5 ft./sec. 9. 31.25 F.P.S. units; 24.4 pd. 10. 10 tons; 32 ft./sec.

Page 93. 1. 1040.5 m.p.h. 2. 23,025.1 m.p.h.

Page 97. 1. 8224.5. 2. 7254.

Page 104. 1. (a) 100 ft.-pd.
; (6) 3200 ft.-pd. 2. (a) 640 ft.-pd.

; (6) 20,480

ft.-pd. 3. 100,000 ergs. 4. 1800 ft.-pd. 5. 50,000 ft.-pd. 6. -aTs" kg.-m.

7. 150,000 ft.-pd. 8. 528,000 ft.-pd. 9. 98,000 joules. 10. 98,000 joules.

11. 3920 joules. 12. 144 joules. 13. 1,886,500 joules. 14. 1509.2 joules.

Page 113. 1. (1) 3200 ft.-pdl.; (2) 100 ft.-pd. 2. (1) 4,802,000 ergs, (2)

1,200,500 ergs, (3) 0, (4) 4,802,000 ergs. 3. 112,500 ft.-pdl. 4. 7203 joules.

5. 8000 joules. 6. 4000 ft.-pd.; 4000 ft-pd. 7. 200 ft.-pdl.; 50 pd. 8. 20

joules. 9. 9.8 joules. 10. 42.14 joules. 11. (1) 25,600 ft.-pd.; (2) 14,400

ft.-pd. 12. (1) 10,240 ft.-pdl.; (2) 32 ft./sec. 13. 1482 ft./sec. (approx.).

14. 598,950 ft.-pd.; 136,125 ft.-pd.
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Page 121. 1. 200. 2. 400. 3. 187.5. 4. 678,787.87. S. 1600. 6. 60 erg/

sec. 7. 100 erg/sec. 8. 10,000 erg/sec. 9. 100. 10. 1000. 11. 20. 12. 39.2.

13. 0.28 h.p. 14. 65i. 15. 784 h.p. 16. 7,800,000 ft.-pd.; 2.44 h.p. 17. 9.6.

18. 980. 19. 70 watts. 20. 735. 21. 196. 22. 990. 23. 600 litres. 24. 80.

Page 129. 1. 1169.4 cal. 2. 0.213° F. 3. 2.68° C. 4. 62,211 B.T.U.

(nearly). 5. 116.6 B.T.U. 6. 750; 3.6% low. 7. 8,402,400 ft.-pd.; 441.8

lb. 8. 11,394.9. 9. 0.838 k.w. 10. 4.03 joules per cal. 11. 5.36° C.

Page 138. 1. 82.2%. 2. 302.5 ohms; 125. 3. 2^ h.p. (allowing for

losses). 4. 95,465 cal. 5. 28.6° C. 6. 31.5° C. 7. 11.43%. 8. 40.3 ohms.

9. 94.1%. 10. 63.3%.

Page 140. 1. 3,600,000. 2. 22c. 3. 0.2k.w.h. 4.11c. 5.^ amp.; 1 c.

Page 142. 2. 97 c. 3. 13.83; 75 c. 5. $2.03. 6. $2.27. 7. $11.14;

90 c; $1.22. 9. $62.97. 10. $106.42; $37.54.

Page 147. 3. (1) 180 gm.; (2) 120 gm.; (3) 150 gm.; (4) 210 gm.; (5)

30 gm. 4. (1) 12 pd.; (2) 36 pd.; (3) 42 pd.; (4) 30 pd.; (5) 6 pd. 5. (1)

6 kg.; (2) 18 kg.; (3) 21 kg.; (4) 12 kg.; (5) 15 kg. 6. 4.5 gm.; 7.5 gm.;

6gm. 7. 2.2 pd.; 2.5 pd.; 2 pd. 8. 35gm.;5gm. 9. 2P;2Q. 10. 39 pd.

11. 37 kg. 12. 18 pd. 13. 12 P. 14. 13 pd. 15. 15 pd. 16. 400 pd..

Page 151. 1. (1) Yes; (2) No; (3) Yes; (4) Yes. 4. 120° apart. 6. 5.77

pd.; 11.55 pd. 7. 17.32 pd.; 20 pd.; No. 8. 20 pd.; 15 pd.; 25 pd.

Page 153. 1. (1) 84 pd.; (2) 18.477 pd.; (3) 5.176 pd.; (4) 70 pd.; (5)

8.789 pd.; (6) 2.125 pd.; (7) 18.915 pd.; (8) 12.64 pd.; (9) P pd. north.

3. y's/7 times force represented by side of triangle. 4. 50 pd. acting to-

wards centre. 5. -\/6 pd. 6. 8 grams. 7. 12 pd. 8. 5\/2 kg. at 135°

with first force.

Page 156. 1. (1) 5a/3 pd., (2) 5\/2 pd., (3) 2.58 pd. 2. loVS and 10 pd,

3. 6\/2 pd. 4. 50V2 pd. 5. 8VS and 8 pd. 6. fVS pd. 7. 199.23 pd.

8. 17.32 pd. 9. 3.42 pd. 10. 12.68 pd.; 27.19 pd.

Page 163. 1. At 70-cm. 2. 240 units; 120\/3 units. 3. 125 gm. 4.

6 ft. from fulcrum. 5. 2.5 pd. 6. 0; 108; —108. 7. 30\/3* 8. 0; 160; 0;

-160. 9.1:2. 10. (1)0, -6; (2) 18, 18; (3) 0, 0; (4) 0, -11V2; (5)\/^0;

(6) 40,0. 11. (1) -201.47; (2) -62i 12. 25V2 ft. from ground.
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Page 169. 1. 5 dynes acting 3 cm. from smaller force. 2. 70pd.;50pd.

3. 37^ pd.; 74f pd. 4. 24 and 16 pd. 5. 2 ft. from stronger man. 6. 6^
pd.;3fpd. 7. 42 and 21 pd. 8. 8 dynes acting 25 cm. from smaller force.

9. (1)8 pd. 7.5 ft. from smaller force; (2) 22 pd. 2xt ft- from 7-pound force.

10. 5 pd. 8 ft. from larger force.

Page 173. 1. 6.6 metres from 20 kg. mass. 2. 1^ ft. from fulcrum.

3. if ft. from 7-lb. mass. 4. 2 gm. 5. 267f pd.; 624f pd. 6. 27 dynes at

a point ify cm. from end. 7. 6 dynes. 8. llfy cm. from 3-dyne force.

9. 5 lb. 10. 35 lb.; 40 lb. 11. One-quarter of the length of the beam.

12. 11 ft. from smaller end.

Page 179. 1. 10 pd.; 20 pd. 2.2:1. 3. pd.;-j^~^pd. 4.—|r'
l-fV3 1 +V3 v3

5. 4V3pd. 6. 3V2pd. 7. W{V2-1). 8. 100 pd. 9. 10V3 pd.; 10 pd.

10. (l)20V3pd., (2)40pd. 11. 1600 pd.; 2000 pd. 12. 4000 pd.; 2000V3
pd.

100 100
Page 182. 1. (1) —^ pd., (2)—^ pd., (3) 200 pd. 2. 10V3pd, 3. 30V3

v3 v3
pd.;30V^pd. 4. (l)22f pd., (2)54.8pd. 5. 46f pd.; 68.4 pd. 6.W;P.

Page 183. 1. fkg.; ^kg. 2. 10V3 pd. 3. 120 pd. 4.
V13 W
2V3

5. 12pd.;6V3pd. 7.^ pd.;^ ^^P^-

(2) 1 pd.; V3 pd.; (3) 45°. 9. 3V3 pd.

Page 194. 3. 45 pd. 6. 2 pd.; 10.198 pd. 7. yV- 8- 4.714. 9.

v3

10. V3; l;i. 11. i. 12. 11.732 pd. 13. 36 pd. 14. 10 tons; 42§
Vo Vo

ft. / sec. 15. 0.732. 16. 24| pd. 17. |V3 pd. 18. 0.268. 19. 30°.

20. 42.77 h.p.

Page 200. 1. 6 in. 2. 10 in. from the 12-lb. mass. 3. 4f in. from the

end. 4. 8y in. from the 7-lb. mass. 5. 15 in. from end. 6. 28f ft. from first

man. 7. 6f ft. from 12-lb. mass. 8. 3y ft. from 1-lb. mass. 9. 3.26 in. from

the top. 10. 3.3 in. from the base. 11. 5 ft.

Page 202. 1. f of diagonal from 2-lb. mass. 2.0G=\OD. 3. 4.34 in.

4. \ of the side of the square. 5. 3.6 ft. (nearly). 6. 7.8 in. (nearly).

7. 8y in.; lly in.
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Page 204. 1. 2f cm.; 3.283 cm. 3. 2 ft.; 3;^ ft.; 3^ ft. 4. ft.; 1 ft.;

ft. 5. 3^ ft.; 5.696 ft.; 4.807 ft. 6. 10 in. 7. 18.04 in. 8. At the centre

of the base of the triangle. 9. 7|- in. 10. of the side of the square from

the middle point of the base. 11. V3:l. 12. g
from 13. f height from

base. 14. OG—-^x OC. 15. In the straight line drawn parallel to BC from

the middle point of AB and at a distance ff of the side of the square from

this point. 16. Distances from AD and AB are A

B

and ^ AD.

Page 209. 7. llf ft. 8.120. 9.10. 10.10 kg. 11.50 1b.

Page 215. 1. ll lb. 2. 90 pd., 120 pd. 3. 37i pd. 4. 225 pd. 5. 22.5

pd. 6. 90 pd. 7. (1) 30 gm.; (2) 12 cm.; 15 cm.

Page 220. 1. 1:2; 1:2. 2. 4. 3. 4. 60 pd. 6. 250 pd.; 12,500 ft.-pd.

Page 224. 1. 26f pd.; 2. 53^; 6,400. 3. 16f pd.

Page 228. 2. 20^pd. 3. 4-|-7lb. 4. 7y pd.; 6.186 pd.; 25^ ft. 5. Y-^-g-pd.;

^2 pd. 6. 14.58 pd. 7. (1) 95 pd.; 200 pd.; (2) 95 pd.; 105 pd. 8. 653f

Page 234. 1.11:40. 2. 1221.82 (nearly).

Page 241. 1. (1) 4; (2) 576. 2. (1)6; (2) 54. 3. (1) 50; (2) 500,000. 4.

(1)

0.2; (2)0.8. 5. 80 pd. 6. 312| gm. 7. yV- 800 kg. 9. 11,550 pd.

10. 30i pd. 11. 20 kg. 12. 31xt gm. 13. llOi; 18.14 pd.

Page 251. 1. 9.122 pd. 2. 0.0375 gm. 3. 11.5 pd. 4. 10,000. 5. 36 kg.

6. 184.87 ft. 7. 3li. 8. 9 kg. 9. 230|ft. 10. 37,500 pd. 11. (l)2.4gm.,

(2) 0.64 gm., (3) 0.48 gm. 12. (1) 416 kg., (2) 1104 kg., (3) 276 kg., (4)

319.8 kg., (5) 96.2 kg.

Page 257. 1. 62.5 pd.; 97.5 pd. 2. 4.57 pd. 3. 2.5 kg. 4. 4.9 gm. 5.

295 pd. 6. 7 kg. 7. 600 gm. 8. i. 9. 0.413 oz. lO.^iZl^gm. 11. 0.881.
n

12. 5 c.dm. 13. 133^ c.c. 14. 4f cu. ft. 15. 32|- pd. 16. 520 gm. 17.

42 gm. 18. 9 pd. 19. 1562.5 lb. 20. 3906i pd.

Page 260. 1. 1.47 kg. 2. 54.05 c.c. 3. 2.7 gm. per c.c. 4. 12 kg. 5.

0.77 gm. per c.c. 6. 1.072 (nearly) gm. per c.c. 7. 1.2 gm. per c.c.

Page 265. 1. ygm. perc.c. 2. xgm.perc.c. 3.25 cm. 4. f gm. per c.c.

5. 20 c.c.
; 6 gm. per c.c.; 0.8 gm. per c.c. 6. f gm. per c.c. 7. f ; f ;

6y
inches. 8. 20 c.c. 9. Gold, 386.4 gm.; silver, 21.04 gm. 10. 159.14 gm.

11. 311.9 gm. 12. 28.5 gm. 13. 40flb. 14. 13^ lb. 15. (1) 30 gm.;

(2) 20 gm. . 16. 1000. 17. 0.514. 18. 15 oz. 19. 0.64 in. 20. 6 gm.

21. (1) None, (2) 30 gm. increase, (3) None.
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Page 267. 1. 10 in. 2. 68 cm.; 170 cm.; 255 cm. 3. 2.427 ft. 4. 13.619.

5.11:7. 6.1.4.

Page 272. 9. 1.291 gm.

Page 279. 1. 14.756 pd. 2. 1033.6 gm. 3. (1) 15 pd., (2) 14| pd., (3)

14.72 pd. 4. (1) 952 gm., (2) 1034 gm., (3) 1030 gm. 5. 7066f pd. 6.

999,600. 7. (a) 27.05 pd.; (b) 27.54 pd. per sq. in.

Page 284. 5.2907.75 kg. 6.2683 kg. 7. Yes; 1334.5 kg. 8. 4967pd.

9. 2360 pd.

Page 290. 1. 6f cu. ft. 2. 22.85 litres. 3. 75,314.7 cu. in. 4. 483^ in. of

mercury. 5. 562^ mm. 6. 174 in. of mercury. 7. 0.00125 gm. (nearly)

per c.c. 8. 101.34 gm. 9. $3.60. 10. (a) 30 atmospheres; (b) 292.148 m.

Page 294. 1. 492.97 m. /sec.; 461.13 m. /sec.; 393.24 m. /sec. 2. 1299.82

m./sec.

Page 302. 1. (a) |, (6) 2. |. 3. f. 4. if- 5. 2:1.

Page 312. 1. 10.336 m. 2. 17 ft. 3. 12.92 m. 4. 75.19 pd.; 12.53 pd.

6. (1) 104^ pd.; (2) 156i pd. 7. 100. 8. 40 pd. 9. 4000 pd.

Page 315. 2. (b) 13.6 times height of mercury barometer. 3. 219^

inches. 9. —

'

Pi

Page 326. 1. 280 dynes; 1680 ergs. 2. 17,600 ergs. 3. 16,016 ergs.

Page 332. 1. 28.028 dynes/cm. 2. 73.01 dynes/cm. 3. (a) 2.98 cm.;

1.24cm.; 1.33 cm. (b) 14.90 cm.; 6.20 cm.; 6.65 cm. 4. 1.20 cm.; 5.98 cm.

5. 2.57 cm. 6. Height in tube twice height between plates.

Page 337. 3. 2:1:
^ 28 dynes/sq. cm.; 74f dynes/sq. cm. 5.

1.04'

— (x2+2V3xr)7’ ergs.
O

Page 353. 1. 65.1 pd./sq. in. 2. 4,900,000 dynes/sq. cm.; 5 kg./sq. cm.

3. 366.07 c.c. /sec. 4. 0.877 cu. in. /sec.

Page 360. 1. 4^ ft./sec. 2. 5 ft. /sec. 3. 23,108^ ft.-pd. 4. 5.014

ft.-pd. (nearly). 5. 4,920,000 ergs. 6. 66.41 litres/sec. 7. 2.43 cu. ft./sec.

8. 3.674 litres/sec. 9. (a) 600 gm./sq. cm.; (6) 587,200 dynes =599.2

gm./sq. cm. (g = 980).



INDEX

A

Acceleration, definition of, 33; uni-

form, 38; relation among space,

acceleration, velocity, time, 40;

due to gravity, 46.

Action and reaction, equal, 84.

Aeroplane, 370.

Air has weight, 269.

Air-brakes, 303.

Air-compressors, 299.

Air-pump, 295; the Geryk, or oil,

296; rotary, 297; the condensa-

tion vacuum, 298.

Angle of contact, 326.

Archimedes’ principle, 253.

Atmosphere, pressure of, 271; cal-

culation of pressure of, 278;

height of, 283.

Atomizer, 364.

Automobile transmission, 232; selec-

tive type of, 232; the differential,

233.

B
Babcock milk tester, 94.

Ball nozzle, 366.

Balloons and Air-Ships, 282.

Barometer, 269; the cistern, 275;

the siphon, 276; the aneroid, 276;

determination of heights by, 280.

Bernoulli’s principle, 356; experi-

mental illustrations of, 356.

Boyle’s law, 289; explanation of,

291.

Bramah’s press, 312.

Bubbles, pressure in, 336.

Bunsen, burner, 361 ;
filterpump, 363.

Buoyancy, 253; of gases, 281.

Buoyant force of a liquid, 253.

C
Caisson, pneumatic, 305.

Capillarity, same as surface tension,

325.

Capillary angle, 326.

Cavendish experiment, 79.

Centre of gravity, 164; to find, of

a body of any form, 198; of

weights on a rod, 199; of weights

in a plane, 201; of geometrical

figures, 202.

Centrifugal and centripetal force,

90; practical applications of, 93.

Centrifuge, 93.

Cleaner, vacuum, 307.

Coefficient of friction, 186; methods

of determining, 185, 188; static

and kinetic, 186; magnitudes of,

189.

Composition of forces, 145.

Compressed air, uses of, 303.

Compressibility and expansibility

of gases, 285.

Condition for equilibrium of a body

resting on a surface, 207.

Conservation, of momentum, 87 ;
of

energy, 110; of matter. 111.

Contracted vein, 352.

Copernican theory, 75.

Couple, 167.

Crane, experimental, 225; automo-

bile, 231.

Cream separator, 94.

Curve of a ball, 366.

D
Density, definition of, 259; and

specific gravity, 259.

Density of earth, 81.
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Differential, wheel and axle, 223;

pulley, 223; of automobile, 233.

Diving-bell, 304.

Diving suit, 306.

Dynamics, meaning of, 1.

Dyne, definition of, 62.

E
Electrical circuit, 130.

Electrical energy, measurement of,

132.

Energy, definition of, 106; kinds

of, 106; how to measure, 107;

transformation and transference

of, 109; conservation of, 110;

some transformations of, 123;

electrical measurement of, 132;

the buying and selling of, 138; of

liquid under pressure, 353; of

liquid in motion, 354.

Engine, gas, 117; steam, 120.

Equilibrium, of a rigid body, 171;

general rules for finding, 176;

three states of, 206; stable, un-

stable and neutral, 206; condi-

tions for, of a body resting on a

surface, 207; of fluids under

gravity, 244.

Extractor, 97.

F
Flattening of the planets, 91.

Flotation, principle of, 256.

Flow, of fluids, 348; unsteady and

steady, 348; tube of, 349.

Flow of liquid from an opening in

a vessel, 351; rate of, 355.

Force and inertia, 21; gravitation

units of, 28, 65; absolute units

of, 30, 62; measurement of, 62;

centrifugal and centripetal, 90;

moment of, 159; within a liquid,

244.

Forced draught, 366.

Forces, composition of, 145; paral-

lelogram of, 147; triangle of, 149;

resolution of, 154.

Friction, defined, 184; dependent

on the surfaces in contact, 184;

cause of, 185; experimental study

of, 185; coefficient of, 186; laws

of, 187; rolling, 190; utility of,

192.

G
Galileo, 46.

Gases, buoyancy of, 281; compres-

sibility and expansibility of, 285;

kinetic theory of, 286; speed of

molecules, 292.

Gauge, pressure, 302.

Gravity, determination of ‘g,’ 47.

Gravitation, 74; Newton’slaw of, 75.

Guinea and feather experiment, 47.

H
Hay-fork, 221.

Heat, a mode of motion, 123; and

mechanical work, relation be-

tween, 123; determination of

mechanical equivalent, 124; elec-

trical equivalent of, 134.

Horse-power, definition of, 115.

Hydra^ic, jack, 243; press, 312;

ram, 373; air-compressor, 374.

Hydro-electric system, 140.

Hydrometer, 263.

Hydrostatic paradox, 250.

I

Impact of two bodies, 84.

Impulse, 60; wheel, 375.

Inclined plane, 103.

Inertia, and force, 21.

Injector, the steam, 365.

J

Jack-screw, 227; automobile, 232.

Jet pump, 362.

Joule, definition of, 101, 133.
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K
Kepler’s laws, 75.

Kilowatt-hour, 139.

Kinetic theory of gases, 286.

L
Length, measurement of, 2.

Level of liquids in fine tubes, 327.

Lever, 211.

Liquid, surface horizontal, 247; in

connecting vessels, 248; in a bent

tube, 266; in fine tubes, 327;

calculation of rise in a tube, 328.

M
Machines, 210.

Mass, definition of, 26; unit of,

26; and weight, 29; comparison

of masses, 30.

Measurement, of length and time,

1; English system, 4; of velocity,

16; of force, 28, 30, 62; of work,

100; of energy, 107; of power,

115; electrical energy, 132; of

pressure, 235; of surface tension,

330.

Mechanical equivalent, determina-

tion of, 124.

Mechanical powers, 210.

Metre, definition of, 3; divisions

and multiples of, 3.

Metric system, 2.

Micrometer screw gauge, 6.

Molecules, speed of, 292.

Moment, of a force, 159.

Moments, experiment on, 160.

Momentum, 57 ;
conservation of, 87.

Motion, definition of, 12; acceler-

ated, 32; Newton’s first law of,

21; Newton’s second law of, 59;

Newton’s third law of, 83; of

translation and of rotation, 157,

171.

N
Newton’s, first law of motion, 21;

second law of motion, 59; third

law of motion, 83; law of gravi-

tation, 75.

P
Parallel forces, resultant of, 165.

Parallelogram of forces, 147.

Pascal’s law or principle, 240.

Pendulum, simple, 50; ballistic. 111.

Planets, shape of, 91.

Pound, force and mass, 29.

Poundal, 63, 66.

Power, definition of, 115; units of,

115; experimental determination

of, 115; of heat engines, 116.

Pressure, produced by a fluid in

motion, 69; how measured, 235;

of a fluid, 236; of a fluid at a

point, 237; transmission of, by a

fluid, 237; of a fluid at right

angles to the surface, 239; of a

liquid, proportional to depth,

245; independent of shape of

containing vessel, 245; calcula-

tion of, 249; of the atmosphere,

271; calculation of, 278; gauge,

302.

Principle, Pascal’s, 240; Archi-

medes’, 253; of flotation, 256;

Bernoulli’s, 356.

Projectile, path of, 52.

Ptolemaic theory, 74.

Pulley, 217.

Pump (see Air-pump), the suction

or lift-pump, 309; the force-

pump, 310; the double-action

force-pump, 311; the jet, 362;

the Bunsen filter, 363.
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R
Reaction turbine, 375.

Relations between Metric and Eng-

lish systems, 4.

Resolution of forces, 154; calcula-

tion of components, 155.

Rest and uniform motion, 21.

Resultant, force, 145; to find, of two
forces acting at a point, 147;

calculation of, 152; of parallel

forces, 165.

Rise of liquids in a tube, calcu-

lation of, 328.

Rotating bodies, experiments with,

90.

Rotation, motion of, 157, 159, 171.

S
Sailing ship, force on, 157.

Screw, 226.

Siphon, 314; the aspirating, 315;

the intermittent, 315.

Space, acceleration, velocity, time,

40; traversed in successive inter-

vals, 45.

Specific gravity, definition of, 260;
of a solid heavier than water,

261; of a solid lighter than water,

262; of liquid, by the Specific

Gravity Bottle, 262; by Archi-

medes’ principle, 263; by the

hydrometer, 263.

States of equilibrium, the three, 206.

Statics, meaning of, 1.

Stream lines, 349. ‘

Surface of liquid in connecting

vessels, 248.

Surface energy, 324.

Surface tension, 317; in soap films,

321; measurement of, 330; ex-

perimental illustrations of, 338;
some applications of, in agricul-

ture, 341; in dyeing, 343; in

filtration, 346; effect on waves,

346.

T

Time, unit of, 9.

Translation, motion of, 157; 171.

Transmission, automobile, 232.

Torricelli’s, experiment, 273; Law,

351.

Triangle of forces, 149.

Turbine, reaction, 375.

U
Unit, of length, 2; of time, 9; of

mass, 26; gravitation of force,

28; absolute, of force, 30; of

work, 100; of power, 115.

V
Vacuum appliances, 307.

Velocity, 12; average, uniform,

variable, 13; graphical representa-

tion of, 14; at a point, 15;

measure of, at a point, 16; of

molecules of a gas, 292.

Velocities, composition of, 18.

Venturi water meter, 358.

Vernier calipers, 7.

Von Jolly’s experiment, 81.

W
Water pumps, 309.

Water meter, Venturi, 358.

Watt, definition of, 115, 133.

Wedge, 226.

Weighing the earth, 80.

Wheel and axle, 162, 221.

Work, meaning of, in mechanics,

99; units of, 100; how to calcu-

late, 102.

Y
Yard, definition of, 4.






