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Introduction

The aim of this book is to widen the amateur astronomer’s
understanding of his subject by explaining in the simplest possible
terms the ‘calculations’ behind the most important astronomical
laws and principles. Descriptive astronomy, which is well covered
by a wide range of publications, excludes to a lesser or greater extent
the numerical side of the subject, while textbooks of mathematical
astronomy are not designed for the amateur astronomer, unless of
course he happens to be a mathematics graduate! This book fills
the gap in assuming no more knowledge on the part of the reader
than a grasp of ‘school’ arithmetic and geometry.

A knowledge of numerical astronomy is essential for the reader
who aspires to become an active, serious astronomer. Even those
astronomers who actively dislike anything to do with mathematics
should profit from reading this book, simply because it provides
something to do on those frustrating evenings when observation
is impossible; observations, after all, have to be interpreted sooner
or later. In schools, the book provides examples for all age groups
of what can be done outdoors, and of course provides all the
necessary numerical information for those taking elementary
examinations, such as the British GCE Ordinary Level Astronomy
and the astronomy part of the Nuffield Ordinary Level Physics.

The book can be read straight through, some readers progressing
faster than others. But there is nothing like working through a
number of examples to convince oneself that a particular principle
has been understood fully. So for those who wish to consolidate
tt_leir understanding of the text, exercises and separate answers are
given in the appendix. Schools will naturally make greatest use
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of these exercises, which have been tested and tried in various
classes for a wide variety of different types of reader. Optional as
the exercises are, however, they do contain information supple-
mentary to the main text, and so each group should at least be
read before proceeding to the next chapter, even if the exercises
are not actually worked out at the same time.

It is not intended that the absolute beginner should choose this
as the first book to read; it is meant to be helpful to those who
have read one or more of the popular descriptive astronomy
books. Nevertheless, there are accounts of familiar topics and
these are explained as concisely as possible whenever they are
about to be used.

As for precision, angles may be measured to the nearest degree
or to a hundredth part of a second; an arithmetical quantity can
be worked out to two or ten decimal places. The two kinds of
precision are linked: there is no point in calculating to ten figures
if the observation on which it was based is known to only two.
When a law or a definition is given, can it be regarded as absolutely
correct? Perhaps so, within limits; but once it is tested with
instruments or mathematics which are of real precision, departures
from the law may become evident. In this book we are concerned
with principles, and with measurements of the kinds which can
be made by amateur astronomers and navigators. Therefore, it
has not been thought necessary to give complicated numerical
examples, and it may be safely assumed that the laws and definitions
are correct. Similarly it has not been thought necessary always to
give seconds of time, minutes of arc and so on where a principle
can be explained without them, for there is no point in burdening
the reader with unnecessary arithmetic.

Metric measurements are used in this book because the Inter-
national Astronomical Union has requested astronomers to adopt
SI units, and they are also being introduced into school science
examinations.

1
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THE EARTH

The Earth, as is well known, is a sphere rotating about a diameter
known as the polar axis. A plane through the centre and at right
angles to the axis cuts the surface in a line called the equator,
The Earth is not, however, a perfect sphere. The length of the
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polar axis is 12 714km, whereas at the equator the diameter is
12 756km, but in this book we can regard it as a sphere.

To an astronomer, his position on the Earth’s surface is
important, and it is defined by two measurements, or co-ordinates,
known as latitude and longitude. The plane of a great circle abouta
sphere passes through the centre and divides the sphere into two
hemispheres; the equator is an example. Fig 1 shows two great
circles through the poles, passing through X and G respectively.
These are meridians. To an observer at X the meridian is his north
and south line, though to the astronomer it is not just a line on
the ground but a vertical plane reaching to the sky. His meridian
provides one of his co-ordinates, but to give it a number there
must be a starting point. By international agreement in 1884 the
meridian through Greenwich (G) was chosen as the zero, and the
longitude of a place is the angle (f) between the meridian planes
through Greenwich and the place concerned. It is measured in
degrees up to 180 east and west of Greenwich: thus X is in longitude
6°E. Latitude is the angle at the centre measured north or south
along the meridian, from the equator to the place concerned: thus
X is in latitude ¢°N. The line joining places of equal latitude is a
parallel of latitude. This is a small circle, the plane of which
divides the sphere into unequal parts. North and south latitudes
are sometimes written -+ and —, and so are west and east longitudes.
The position of X would then be lat +¢°, long. —6°.




ANGLES

Everyone is familiar with degrees, 360 to a circle. A degree is
divided into 60 minutes of arc, and the minute into 60 seconds.
As an example of writing this down, this book is being written in
latitude 51°28'53"N. However, angles sometimes have to be
expressed in radian measure. In Fig 2, AB and CD are arcs of
circles having O as centre. The angle 0 is defined as the ratio
% , and in this particular diagram

20 mm

100 mm

0= = (-2 radian.

Figure 2

The ratio CD/OD must be the same, of course, as it refers to the
same angle. In radian measure, a full circle is 2sr, where = is the
number 3-1416 (approximately 4%), used for calculating circum-
ferences and areas. Thus

360° = 27 radians; 1°= 32_6% and x°= % radian.
(It follows, too, that 60’ and 60 x 60" also equal 7rx/180.) In reverse:
27 radians = 360°; x radians = 180x/= degrees.

Referring again to Fig 2, we now know that AB/OB = CD/OD,
where AB and CD are arcs. When an astronomer is observing the
angular size of a celestial object it is usually small and the arcs are
therefore indistinguishable from straight lines. Thus AB would be
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the linear diameter of the object and OB its distance away, and by
the rules for similar triangles we again have

AB_CD  dalso AB_OB
OB OD CD OD’
Say, for example, that you find that a disk 2cm in diameter just

covers the Moon when placed 230cm from the eye. The value for
the angular diameter of the Moon would be:

arc 2
angle = tadius =230 " 0-0087,
and this becomes
180 x 60

3:1416

It is not really necessary to work out the 0-0087 separately.
What would be the linear diameter of the Moon if its distance
is taken to be 370 000km? Using the rules of similar triangles:
diameter diameter

S of Moon in km = e

0-0087 x =299,

of disk in cm,

diameter of Moon = “2‘32_6 x 370 000 = 3 218km.

Before leaving the matter of angles, it must be pointed out that
when adding or subtracting them it is sometimes necessary to
subtract or add 360. For instance:

147° + 202° = 349° but 147° + 232° (—360°) = 19°.

Similarly, as we shall see later, when adding or subtracting times
it may be necessary to subtract or add 24 hours.




THE MOTION OF THE EARTH

There is nothing at rest in the universe, so whenever we talk about
motion there must be a stated or inferred frame of reference. At
this moment we are probably inferring that the floor is at rest,
and any motion around the room is ‘relative to the floor’. Taking
the Earth as the fixed point, the Sun appears to move around it
once a year, passing through the twelve constellations of the
Zodiac along a line called the ecliptic. If we take the Sun as fixed,
then the Earth is in orbit around it; the plane containing the orbit—
the paper on which it might be drawn—is the plane of the ecliptic.
These two modes of thought are called geocentric (Earth-centred)
and heliocentric (Sun-centred), terms which will turn up again.

The Earth’s axis of rotation is roughly at right angles to this
plane, but differs from perpendicularity by an angle of 23}°; this
quantity is the inclination of the axis, and is also known as the
obliquity of the ecliptic, € (23°26'35", 1970). A spinning top remains
upright as long as the spin is fast enough, and if it is a well-made
gyroscope top it will maintain the direction of the axis of spin
pretty well even when not quite upright. The Earth also maintains
its axis of spin; the axis produced above the north pole points to
the celestial pole, near which is the familiar Pole Star. When,
however, the axis of spin of the gyroscope top is not vertical, or
if the balance of a vertical one has been deliberately disturbed by
adding a very small weight to one side of the frame, an additional
phenomenon appears. The axis will show what might be called ‘a
systematic wobble’, its end slowly tracing out a circle in space.
This phenomenon is known as precession, and the Earth has it too.
The axis is inclined at 23}° to the perpendicular to the ecliptic
(Fig 3), but its direction relative to the stars moves around this
perpendicular once in 26 000 years—too slowly to worry us at
present.

The apparent size of the Sun is not constant, so the Sun’s
distance from the Earth is not constant either; it varies from
147 x 105 to 152 x 10°km, the mean distance being 1496 million
km or approximately 93 million miles. The points in the orbit at
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which the Earth is nearest and farthest from the Sun are perihelion
and aphelion respectively, collectively called the apses. The orbit,
therefore, is not a circle with the Sun at the centre. It is very nearly
a circle with the Sun off-centre (eccentric), and is actually an
ellipse with the Sun at one focus. As the ellipse plays a very
important part in astronomy, it is important to understand
thoroughly its properties and construction.




follow are derived from it in mathematics books. The constant is
" the eccentricity e. (In a circle, e = 0.) Thus,

! THE ELLIPSE PF 5. AT
r PQ " e, and similarly AD =
The ellipse is a symmetrical oval, as shown in Fig 4. In the case of 3 y : i
. the Eartplf': orbit{ISchh is much nearer a circle %han as drawn in ;l'hhere l:r: émg%doio?;}:i; xﬂaﬁiﬁmﬁf ::;lt:lfet;?;jusﬁ;ocems
i ihelion i e cen d s ; s
' this figure, the Sun would be at 7. The perihelion is at 4, and the s e 207800 B A B s bt B i et A

its distance from F is a — ae and from F’ a + ae, so the sum is 2a.

" ¥ Thus FP+PF’'=2q and as B is equidistant from both foci,
' Q B B FB=a.
I
I
1
i

A R ik F_ 14
DF (Focus) |
o 1
I
: .
1
' q (P’
. V0 B'
Figure 4

perihelion distance FA-is in astronomical tables represented by g.
AA' is the major axis, and the semi-major axis CA is a in the tables
and is also the familiar mean distance of 93 million miles. BB’
is the minor axis and CB is represented by b. An ellipse is a curve
such that for any point on it (P in Fig 4) the ratio of its distance
from a fixed point, called the focus, to its perpendicular distance
from a fixed straight line, called the directrix, is a constant with
a value less than 1. This is a definition; the additional facts which

8 9




DRAWING AN ELLIPSE

There are three main methods in drawing an ellipse, given  and e.

Method 1
Draw the major axis (Fig 4) and insert F, the Sun in the case of a
planet orbit. AF is a—ae; insert A (if a= 10cm and e= 06,

Y

i

D A|F1 K

AN A

Figure 5

AF=10—10x06=4cm). DA is AF+e; insert D (DA =
4+06=67cm). Draw a number of lines (Fig 5) per-
pendicular to the axis, of which YY” is one. With centre F and
radius DK x e (DK is equal to the perpendicular distance PQ)
draw arcs to cut your perpendicular in P and P’. These are two
points on the curve. Repeat for other lines until you have enough
points to draw the ellipse. This method is recommended when
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only a part of the orbit is wanted, such as that of a comet wht?n
near the Sun, but is inconvenient for getting a complete orbit.

ethod 2 :

Eliace your paper on a drawing board or a flat sheet of thufk
cardboard. Draw the major axis. (Fig 4.) Insert F. FF’ = 2ge (in
the previous example, 2 x 10 x 0-6 = 12cm); insert F'. Through _F
and F’ stick pins into the board. Prepare a loop of cotton or thin
string of length, after the knot has been tied, eqt_ml to 2a—|_- 2ae.
Place the loop over the two pins, draw it tight with t}ae point of
your pencil, and then move the pencil around the pins keeping
the loop tight all the time.




N p——

Method 3

An alternative to Method 2 that is more trouble but also more
accurate (see Fig 6). Draw the major axis and insert F. FC = ae;
insert C and through it draw a perpendicular to the axis. With
centre F and radius a draw arcs to cut the perpendicular at B and
B’; these are the ends of the minor axis. With centre C draw
circles of radii @ and CB. Draw any radius CR, cutting the circles
at N and O. Through N draw a line parallel with the major axis,
and through O one parallel with the minor axis; their intersection
P is a point on the ellipse. Repeat until enough points have been
obtained to draw the curve. When drawing a line through a series
of points, always keep the hand on the inside of the curve and
move the paper as may be necessary. The reader should be able to
see for himself what properties of the ellipse have been used in

methods 1 and 2, but to justify method 3 requires more mathematics

than is assumed in this book (see Note 3, page 104. Notes 1 and

2 give yet another method of drawing an ellipse.)
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THE EARTH'S ORBIT FROM FIRST
PRINCIPLES

The ellipses just considered have been drawn from data already
known, the size being determined by a and the shape-by e. An
alternative way, when these quantities are not known, is to work
from observational material. Measurement along the line of the
ecliptic is called celestial longitude, and is made eastward up.to
360° from a starting point known as the First {’m‘m of Af';es,
denoted by the sign . How that point is chosen will be explained
when we come to the celestial sphere in Chapter 3. In the table
below, column A gives the position of the Sun as seen from the

TABLE 1

Date A B Date A B
§ 099° 31-5

1970 Jan1 280° 326 1970 July 1 :
Feb 1 312 32:5 Aug1 128 3}?
Mar 1 340 323 Sep1 158 3 .

Apr1 011 32:0 Oct 1 187 32
May 1 040 31-8 Nov1 218 323
June 1 070 316 Dec 1 248 325

h, geocentric longitude. The direction of the Earth relative to
glaertSug, ket'iocemr:’lf longitude, will be tinj;s :&180°.t:eca\;s:1 ;:;
imaginary observer on the Sun is viewing the opposi wa,
the ;‘;ma:{ine. Column B gives the corresponding s;mgular diameters
of the Sun as seen from the Earth. From Fig 2 it should be clear
that as the diameter represented by AB is constant, the angle
must be inversely proportional to the distance AO, ang!, what
comes to the same thing, the distance is directly proportlona! to
the reciprocal of the diameter. The information has.been compiled
from the Astronomical Ephemeris, as it would be.dlﬁicult,_ but n?t
impossible, to get it from personal observation. (Tricker in

13




The Paths of the Planets deals with this kin

including the observational side.) : 91‘ T T
'_l"ake a large sheet of paper, put the Sun S near the middle

(Fig 7) and rule SZ as a zero line. As an example of procedure

take March 1. The heliocentric position of the Farth will bt;

340 — 180 = 160°. Measure this angle anticlockwise, ZSX. Find

P

A
Figure 7

th? recipfoeal of 323 from a table book, a slide rule or by common
arithmetic; 1/32:3 comes to 0-031. Now choose a multiplying

points. By trial, locate and draw the longest diameter through S.
This is the major axis PA; mark the mid-point C. Or: The orbit
is very nearly a circle, so use a large compass, or improvise with
a pin and a piece of string, and draw the circle which most nearly
fits the points. The centre and radius must be found by trial, but
an approximate centre to start from can be found from the inter-
section of the perpendicular bisectors of two chords (broken lines
in Fig 7). The line CS produced can be taken as the major axis.
Note that Fig 7 is illustrative only; it is on too small a scale to have
been drawn from the above table.

Having drawn the orbit, measure the angle ZSP, where P is the
end of the major axis nearer to S; this is the longitude of the
perihelion, @ (another form of pi), in astronomical tables. Measure
a (half the major axis) and CS. From CS = ge calculate e. When
you have done so, and not until, check from the table on page 61.
We have now found the shape and orientation of the Earth’s orbit,
but not its real size, as the multiplying factor was an arbitrary one,
not a scale of kilometres.

factor suitable for your paper. If we choose 1000 the reciprocal
becomes 31-0, and this expressed in cm would be a reasonabll: size.
It_ must n9t be less than this; use a larger multiplier if the paper
will take it. Ma.ke SY =31-0cm. Then Y is a point on the orbit.
Proo?ed similarly with the other eleven points. Then either:
keeping your hand on the inside draw a smooth curve through the

14




THE MOON

The Earth is accompanied by a satellite, the Moon, which is a
sphere of diameter 3 476km situated at a mean distance of
384 000km. As this distance is very small compared with the radius

of the Earth’s orbit, the path of the Moon relative to the Sun is °

very much the same as that of the Earth and, like it, is always
concave to the Sun. The two orbits are interlaced; at new moon
that of the Moon is nearer the Sun, and at full moon it is the further
one. The ellipse which we regard as the orbit of the Earth is really
that of the combined centre of gravity of the two bodies, the
barycentre, but remembering the remarks in the introduction
about precision we will not pursue this topic further.

Relative to the Earth, the Moon is moving in an ellipse with the
Earth at one focus; the nearest and farthest positions are called
perigee and apogee. As with the Sun, its angular diameter varies
with distance, and its geocentric longitude relative to the stars
can be measured. Thus the orbit can be drawn in the same way as
the last exercise, and data for doing so will be found in Exercise 16.
The orbital eccentricity is larger than that of the Earth, so you will
have a better chance of getting it right.

The time taken to go around the Earth, measured against the
background of stars, is the sidereal period, which is 27-32 days.
The Moon also rotates on its axis in 27-32 days, so by the time
it has made half a rotation it is on the opposite side of the Earth
and we see the same hemisphere of our satellite as we did before—
the only side we ever see without a space ship. A phenomenon
known as libration does enable us to see a little more than one
hemisphere, but this will be left to your other reading. Your other
reading should by now have explained the phases of the Moon,
so that you will realise that ‘new moon’ occurs when the longitude
of the Moon is the same as that of the Sun—as seen from the
Earth they are in the same direction, though not necessarily in
the same straight line. The next new moon is not 27-32 days later;

the sidereal period is not what we ordinarily call a month. The
Moon moves around the ecliptic at an average speed of 360/27-32 =
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-18 degrees per day. At the same time the Sun is travellmg at
;201126‘15 58?98?degries per day. Thus the Moon is gaining on
the Sun by 12°-19 per day. From one new moon to the next it
must gain 360°, and this would take 360/12+19 = 29-54 days. This
is the synodic period, or a lunar month. A furthe_:r thought about
the 12° eastward motion with respect to the Sun is that the ?doo.n
will cross the observer’s meridian later each day by the time it

Figure 8

takes the Earth to rotate the extra 12°. This will be 24/360 x 12 =
0-8 hour or 48 minutes. Hence the very general statement that
moonrise and high tide get 50 minutes later each day—very general
because both moonrise and high tide are affected by other factors
as well this average 12°. :
Suppose you vng':h to know what the phase of the Moon will be
on some future date. A friend is coming on Friday and hopes to
see the Moon through your telescope. ‘What shall T be ablt;: to
show him? “Where will the terminator (boundary between light
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and darkness) be on that evening?" Proceed as follows, Fig 8.
E is the Earth, ES is the direction of the Sun, and the orbit of the
Moon is drawn as a circle. Let T be the time in days which has
elapsed since new moon (position N). Then the Moon will have
moved by 12T°, so make the angle NEM = 12T°. Draw a circle
about M and another on EM produced. Through M draw a
perpendicular to ES, cutting circle M at X. Then X is the boundary
of the illuminated hemisphere. Through X draw a line parallel
with EM, and sketch in the terminator as shown. The terminator
is really an ellipse, which is difficult to draw on a small scale, so
if you want an accurate one measure a and b and draw the ellipse
on a larger scale by method 3, page 12. A final word about this
daily 12°, It is an average value, for the motion of the Moon is
not uniform, so small discrepancies will occur between your
predictions and what you observe.

The orbit of the Moon does not lie in the plane of the ecliptic,
but is in a plane of its own inclined at about 5° with it. The two
planes intersect in a straight line through the Earth meeting the
orbit in two points called nodes. Where the Moon travels from
south to north of the ecliptic plane is the ascending node, represented
by the symbol £; where it moves south again is the descending
node . Just to complicate the issue, the node line is not fixed in
space, but rotates in a westerly direction in a period of 186 years.
Eastward motion in our sky, or anti-clockwise rotation when
viewed from a very distant space ship over the north pole, is said
to be direct, and the reverse is retrograde. In our present Earth-
centred frame of reference the Sun has a direct motion of 360° per
year, and the nodes a retrograde one of 360/18-6 = 19°-4 per year.
Thus they separate at a rate of 379°+4 per year; relative to the nodes
the Sun moves 379-4/365 x 29-5 = 30°-6 per synodic month from
new moon to new moon or 15°-3 from new to full. These facts have
an important bearing on eclipses.

At new moon the longitudes of the Sun and Moon are equal
(conjunction) and at full moon they differ by 180° (opposition), but
there will not normally be an eclipse at either, because of the
inclination of the Moon’s orbit. Theoretically the events would
have to occur exactly on the line of the nodes for an eclipse to
happen, but as the Sun and Moon are not points but have a finite
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size, about 1° each, there is some latitude—the new or full moon
need be only near the node. Solar eclipses can occur within about
16° of a node, and lunar within about 10°, These are rough average
values to work with; the actual values are outside the ‘precision
limit’ of this book (see Note 4, page 105). If new moon occurs
when the Sun is within the 32° arc in Fig 9 (16° on either side of
the node) there will be a solar eclipse, position A. From one new
moon to the next, 294 days later, the Sun moves on by less than
32°, so if there is no eclipse in one lunation there must be one in

32° 20° A

Figure 9

the next. If there is an eclipse at A, then while the Moon is going
round to its full position the Sun moves on 15°3; it is still Withi!:l
the 20° arc, so a lunar eclipse occurs at B. On the other hand, if
A were a few degrees further on, B would fall more than 10° from
the node and there would be no second eclipse. If A were sliglftly
earlier than shown, just within the solar limit, the Sun’s position
30°+6 on at the next new moon would still be within the limit, fmd
another solar eclipse would occur. Thus there must be one echp§e
and there might be two or three. Six lunations later the Sun will
have moved 6 x 30-6 = 183-6° and is in the eclipse zone at the other
end of the node line; there is another eclipse ‘season’. So, then,
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minimum two (both solar), maximum six. Twelve lunations =
12 x 29} = 354 days, and as this is just less than a year it is possible
for one eclipse of a third set to fall within a year, absolute maximum
seven. The limiting cases do not happen very often; there were
seven in 1935 and two in 1969. Penumbral eclipses of the Moon
have not been considered in this discussion, and are hardly noticed
when they do occur; and it is assumed that distinction between
total and partial eclipses is known from previous reading. There
are other interesting things about the arithmetic of eclipses, and
readers wishing to go deeper into the subject should refer to more
detailed works.

Time

SIDEREAL, SOLAR AND MEAN TIME

TIME-ANGLE CONVERSION

LONGITUDE AND TIME

SIDEREAL-MEAN TIME CONVERSION

THE YEAR




Timing an object when it is crossing th.e ma.eridiar'x is called
observing a transit, and is done in observatories with an instrument
called a transit circle, shown diagrammatically in Fig 10.'The
telescope is mounted on an east-west axis between t_wo pillars
so that its motion is confined to the north-south vertical plane,

¥..JO EQUATOR (70 POLE

E~WAXIS—

Figure 10

that is, to the meridian. There are crosswires in the eyepiece:, fmd
when a star is seen on the central vertical wire it is on the meridian,
no matter what the altitude of the star may be. The telescl_)pe
carries a vertical graduated circle so that its position in the vert:c;?l
plane can be recorded (Fig 10). It reads zero when the' teles.cope is
at 90° with the celestial pole; all stars passing across its axis must
also be 90° from the pole—they lie on the celestial equator. As with
much other technical equipment, the operation of a modern
observatory transit instrument is now largely automatic, thereby
eliminating personal errors on the part of the observer.
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SIDEREAL, SOLAR AND MEAN TIME

The rotation of the Earth upon its axis has been the basis of time
measurement for very many centuries, the ‘day’ being the interval
between two successive transits of the same object. If that object
is a star, the interval is the sidereal day, divided into hours, minutes
and seconds in the usual way. The sidereal clock in the observatory
shows these hours, but as with longitude we must specify a zero
point. For this purpose the zero is the same as for celestial longitude
(page 13), the First Point of Aries. When ¢y is crossing the meridian
the sidereal clock reads Oh. When the clock reads 3h, o will have
moved westward by 3 x 15 = 45° and is said to have an Aour angle
of 45° or of 3h, whichever expression happens to be the more
convenient. Thus sidereal time, as indicated by a sidereal clock,
is defined as the hour angle of the First Point of Aries (H.A.or).
The actual measurement of hour angle, in degrees along the
celestial equator, does not concern us in this chapter—we shall
look at the clock,

Suppose that we are observing the transit of the Sun. A transit
is observed; one sidereal day later the transit telescope will again
point in the same direction in the heavens, but not at the Sun,
for that body has in the interval moved just about a degree to the
east of its original position. The second transit of the Sun will
not occur until the Earth has rotated another degree, which takes
4 minutes. Thus the solar day is approximately 4 minutes longer
than the sidereal day. When the Sun is on the meridian the solar
time is traditionally 12h, not zero, so apparent solar time as
recorded by a sundial is the hour angle of the true Sun (HATS) +
12h. Itis called ‘apparent’ because it is what appears on the sundial;
apparent noon was the moment of the shortest shadow in Fx. £
but this is not the solar time by which we normally reckon. The
Sun’s daily motion along the ecliptic is not uniform; the 0-986 of a
degree in the last chapter and the ‘another degree’ in this paragraph
are average values. Neither is the Sun normally on the celestial
equator, whereas ¢ is. Thus the solar days are not uniform in
length, and are incompatible with mechanical clocks and the
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terribly time-conscious era in which we live. The true Sun has
been replaced by a fictitious body called the mean Sun which moves
along the equator at a uniform daily rate, making all days the
same length. Thus our clocks keep mean time, which can be
defined as the hour angle of the mean Sun (HAMS) + 12h. As
everyone knows, local times in different places do not agree, on
which more later. For announcing or recording astronomical
events a standard time must be specified, and that of Greenwich,
Greenwich Mean Time (GMT), has been adopted for astronomers
and navigators the world over, though astronomers now call it
Universal Time (UT) (see Note 5, page 105). In this book we shall
sometimes use one name and sometimes the other so that the
reader becomes thoroughly familiar with both. Mean time is, of
course, based ontherotation of the Earth, and the steadilyimproving
time-keeping devices in the laboratories have revealed irregularities
even in that. Mean time is not absolutely uniform, so computers
(meaning human ones, though it applies also to the electronic
variety) work with a perfectly uniform system called Ephemeris
Time. The difference is small, and ordinary astronomical work
and navigation is done in GMT (UT); it is mentioned here only
in case the reader comes across the expression elsewhere and
wonders what it means.

The actual observer cannot look at the fictitious mean Sun; he
must use the real one, so he will need to know the difference
between apparent and mean solar time. This difference is known
as the equation of time. There is some inconsistency over the use
of + and —; in this book we shall call it + when the sundial is fast
compared with the clock. Thus it is the quantity to be added to
mean time to get apparent time:

mean time + E = apparent time
or E = HATS — HAMS.

If the sundial shows 11 am when local mean time is 10-55, then
we must add 5 minutes to the clock, and the equation is +5m.
To take an example, when is the Sun true south if the equation of
time is —7m? This means that the sundial is 7m slow and the
clock will read 12-07 by the time the Sun is on the meridian; or
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—7m = 12h 00m — HAMS,
HAMS = 12h 00m + 7m = 12h 07m.

When extracting the equation of time from an almanac, first find
the note—there is sure to be one—stating how the compilers have
applied the sign. It is becoming more usual to tabulate the mean
time of the transit of the true Sun (= 12h apparent solar time) for
the meridian of Greenwich, which is probably what you really
want to know. The equation of time is zero four times a year;
on these four dates local mean time is the same as sundial time.
(For explanation see one of the more advanced books, such as
Barlow and Bryan.) The general behaviour of E is given in Table 2.

TABLE 2

Approx. date Sign of E Sundial Difference

Feb 11 — slow 14m
Apr 15 0 correct 0
May 14 + fast 4m
June 14 0 correct 0
July 26 — slow 6m
Sep1 0 correct 0
Nov 3 e fast 16m
Dec 25 0 correct 0
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TIME-ANGLE CONVERSION

In one sidereal day the Earth rotates 360° with respect to a star,
so in one sidereal hour the rotation is 360 <+ 24 = 15°, In one mean
time day, it is true that with respect to the stars the Earth has
rotated by more than 360° and has taken longer in doing it.
Nevertheless the rotation is still 360° with respect to the mean sun,
and that will be 15° per mean time hour. Some people are not
satisfied that the 15° per hour applies to either kind of time, but
it does. It is frequently necessary to convert angle into time and
vice versa.

Example 1: Convert 5h 14m 29s into arc.
15° per hour 5x15=75°
1° per min. 1x14= 3°30
3 persec. $x29=T}= i -
78° 37" 15"
Example 2: Convert 18°20'16" into time.
4 min. per 1° 4x 18=72=1h 12m
4sec.perl’ 4x20=80=  1m20s

Hrsec.perl” 4 x16= 1-06
1h 13m 21s
An alternative method is
hm s of time| - e deg. min. sec. of arc
«~+15

but you are less likely to make mistakes if you set out the work
in full as in the examples.
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LONGITUDE AND TIME

Everyone knows that time is not the same everywhere. In Fig 11
the circle is the Earth’s equator, the centre is the N pole, and the
radial lines are meridians. The Sun is presumed to be on the right

ZONE

Figure 11

of the diagram, so at Greenwich, G, the time is 12h. At Ottawa, O,
it is certainly not, and will not be until the Earth has rotated by
the longitude of 75° (actually 75°43"). This will take 5h, so the
time at Ottawa is 12 — 5 = 07h. In the case of Moscow, M, long.
37°34’E, it is afternoon; their meridian passed the Sun some time
ago. Converting the longitude to time we get 2h 30m 16s, so when
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it is noon at Greenwich the local mean time (LMT) in Moscow is
2h 30m 16s. In general

+ long. E
LMT = GMT{_ foug. &
when longitudes are expressed in time. If we use the conventional
signs + for west and — for east we get the even more general
equation
GMT = LMT -+ long.

This seems to be the moment to let out a bee that has been buzzing
in the writer’s bonnet for some forty years as a physics teacher,
Don’t become a slave to the god Formula. So often the immediate
reaction to any problem has been: ‘Please, sir, what’s the formula ?’
Think what you are doing; mechanically substituting in a formula
may get an answer, but will not get understanding. In time con-
versions, always begin with the question: ‘Is the time I want earlier
or later than the one I've got?

For administrative convenience a whole area keeps standard
time regardless of the LMT of the various places. Great Britain,
for instance, nominally keeps GMT throughout. Very large areas,
such as the oceans, the USA and the USSR are divided into 15°
strips each keeping the time of its central meridian. For example
(Fig 11) longitude 105°W is 7h behind Greenwich, and in Zone +7,
from 974° to 1123°, all clocks should read 7h slow on GMT. If an
amateur astronomer sees a meteor at 01h 43m, he knows the event
to be at 0lh 43m + 7 =08h 43m UT. Similarly a resident near
long 90° in Zone —6 must subtract 6 from the LMT of his zone
to get UT. If he made his observation at O1h on Aug 1 his UT
would be 19h on July 31. In general

GMT (UT) = zone mean time + zone number.

In countries of ordinary size it is usual to use national boundaries
rather than the zone meridians to mark their standard time, and in
some cases the time kept is not that of the zone concerned. Britain
is in Zone 0, but for many years we have kept Greenwich + 1 in the
summer months (summer time). Astronomers do not use it, but
they must remember that in summer their watches are an hour
fast.
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Let us now consider meridian 180° (Fig 11 again). A is just inside
Zone —12, and B in Zone +12. If it is 12h on Tuesday the 8th at
Greenwich, for A it is, say, 23h 594m on Tuesday and Wednesday
is about to begin. It happens to be his birthday, so he can hop
over the meridian to B and have Tuesday all over again, for the
time there is Oh 034m. On the other hand B, who has a Tuesday
appointment with his dentist, can hop over the line and in a few
seconds it will be Wednesday the 9th. Meridian 180° is the Inter-
national Date Line, but with variations to avoid inhabited areas
(and trickery with birthdays and dentists). When ships cross the
line from west to east, like A, the calendar is put back one day,
and when crossing from east to west, like B, it is put on one day.




SIDEREAL-MEAN TIME CONVERSION

Our daily routine is governed by mean time and our study of the
night sky by sidereal; it is therefore necessary to be able to change
from one to the other. For choosing a star map, and ordinary naked
eye or binocular observation, we need it only to the nearest half
hour or so, and it can be estimated without the use of an almanac.
When the Sun in its annual journey around the ecliptic passes
in March, both will be on the meridian about the same time; the
sidereal time will be Oh but the solar time 12h. When the longitude
of the Sun is 180° on September 23 the sidereal time of its transit
will be 12h, so sometime on that day (for an estimate like this it
does not matter when) the mean and sidereal clocks will agree.
We have seen that the sidereal clock gains 4m a day, which is just
about 2h a month, so we can allow 2h for each complete month
and 4m for each extra day, and ignore the different lengths of the
two kinds of hour.

Example: estimate the sidereal time at 19h 30m on Feb 2

Sep 23 at Oh ST= Oh Om
Jan 23 at Oh (+4 months) 8 0
Feb 2 at Oh (+10 days) 40
19h 30m add (and -24) 19 30

4h 10m

For more accurate work, such as setting the circles of an equa-
torial telescope, the starting point is the sidereal time at Greenwich
at the previous midnight (Oh UT), as given in an almanac. The
sidereal day is 23h 56m 4s mean time, so a sidereal clock gains
3m 56s per day, or in one hour 236 < 24 = 9-8s. For the present
purpose we can call it 10s per hour and neglect parts of an hour.
(If you wish you can add another second for each 6m, though this
is an over-correction. Almanacs usually include tables for applying
these corrections.)
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Example 1: Find the sidereal time on Feb 2 at 19h 30m GMT.

Feb 2 at Oh UT, from almanac ST= 8h47m 35s
Mean time interval 19h 30m

add 10s per hour 3m 10s
Sidereal interval 19h 33m 10s 19h 33m 10s
add (and —24) 4h 20m 15s

Compare with the estimate made for the same date and time.
Example 2: At what GMT on Feb 2 will it be 3h 15m 10s ST?

Sidereal time required 3h 15m 10s

Sidereal time at Oh UT 8h47m 5s

Sidereal interval: subtract (and +-24) 18h 28m 35s
subtract 10s per hour 3m 0Os

Mean time interval since Oh whichis 18h 25m 5s
the required mean time

Suppose that you were not on the Greenwich meridian, but
in long. 3°W? At 19h 30m GMT your LMT will be 19h 30m less
4 x 3m = 19h 18m, and this becomes the mean time interval (in
Example 1) from local midnight to the time of observation. If,
like this, you are not far from the Greenwich meridian, the sidereal
time will not change much between Greenwich midnight and
yours, but for more distance places proceed as follows.

Example 3: Find the sidereal time at 19h 30m LMT in long. 77°E.

77° converted to time = 5h 8m
GMT is earlier by 5h 8m = 14h 22m
By the method of Example 1 (check it yourself)
Greenwich sidereal time = 23h 11m 25s

add long. E(and —24) 5h 8m Os
Local sidereal time = 4h 19m 25s

Notice that the error which would have occurred by using Example
1, with the local mean time as the interval, is less than a minute—
but then 77° is less than half-way around the world.
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THE YEAR

We have already noted that the celestial equator is everywhere 90°
from the poles, and that ¢ lies on the equator. When the Sun
passes that point it too is on the equator, and this mid position
between the poles makes day and night equal in length. The event
is called an equinox, and this one in March heralds the beginning
of spring; there is another in September marking the first day of
autumn. There are four named ‘markers’ along the ecliptic, the
dates being approximate:

Longitude 0° springequinox Mar 20
90° summer solstice June 21

180° autumn equinox Sep 23

270° winter solstice Dec 22

The tropical year is the interval between one spring equinox and
the next; it is 365-242 days, or 365d 5h 48m 46s. This is longer
than the civil year of 365 whole days, so the exact time of an
equinox will get later year by year. Here for instance is a series for
the autumn event:

1960 September 23d 01h 00m

1961 06h 43m
1962 12h 35m
1963 18h 24m
1964 00h 17m

At first sight it looks as though it had moved on to September 24
by 1964, and if nothing was done about it the first day of autumn
would reach Christmas in a comparatively short time. But of
course something was done about it: 1964 was a leap year with
an extra day on February 29, and so the 00h 17m was in fact back
on the 23rd. Since 1931, when it was 24d 00h 20m, this equinox
has fallen regularly on the 23rd. It was 22d 23h 26m in 1968, but
for some time to come three out of four September equinoxes will
still be on the 23rd, which is convenient for the sidereal time
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estimate on page 30. The insertion of an extra day'every fourth
year goes back to Roman times and forms the Julian calendar.

Now, the year exceeds an exact number of days by 5h 48m 46s,
and in four years this amounts to 23h 15m 4s. Putting in an extra
day of 24h overcorrects by just about 45m in four. years. In 100
years this adds up to 183h, so the century leap day is omitted, the
year remaining 365 days instead of taking 366. This has cut 5}h
too much out of the century; in four centuries it has become 21h
and the leap year day is put back. This is the Gregorian calendar
(see Note 6, page 105) which we now use, in spite of an error of
3 hours in 400 years! The rule for a leap year is that the las.t two
figures of the date shall be divisible by 4. The century year is not
a leap year unless the first two figures are divisible by 4; thus 1900
was not a leap year, but 2000 will be.
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Books on mathematical astronomy nearly always begin with this
chapter, and for users already fully accustomed to mathematical
thought it is a very natural and logical starting point (see Note 7,
page 105). This book is unorthodox in this respect, and readers will
approach the conception of the celestial sphere already familiar
with some of the terms used. It is rather like assembling a puzzle
after some of its parts have previously been examined. They will
be restated in their new setting, possibly from a different point of
view, but before going on to the new setting it would be well to
revise them in their former context. Here they are, with page
references:

Latitude and longitude 3 Celestial longitude 13
Meridian 3 Celestial equator 22
Ecliptic and its plane 6 Sidereal time 23
Celestial pole 6 Hour angle 23
First Point of Aries 13 Equinox 32

The sky overhead looks like a dome on which we see the stars.
A planetarium is a dome, a hemisphere, on which the star images
are projected. Imagine the floor of the planetarium to be made
of glass, below which is the other hemisphere: the whole thing
would then be a model of the celestial sphere, the observer in the
middle, representing the Earth, and the stars all around in every
direction,

Study Fig 12. It shows the celestial sphere with the Earth in the
middle; the Earth is marked with its axis, the equator, the obser-
ver’s meridian and the direction of rotation. The intersections of
the Earth’s axis with the celestial sphere, ie the points in space
vertically over the poles, are the celestial poles (NS). The line
around the heavens vertically over the equator and everywhere
90° from the poles is the celestial equator (Q). The annual path of
the Sun through the constellations is the ecliptic (C); the plane of
the equator is inclined to the plane of the ecliptic by 231° (approx.;
€, page 6). The motion of the Sun along the ecliptic is anticlockwise
as seen from above, ie from left to right in the front of the sphere.
The equator and ecliptic cut in two points, the equinoctial points.
The one at which the Sun moves northwards in March is called
the Vernal Equinox, and is also known as the First Point of Aries
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it is actually in Pisces); it is represented by the Siglil Pl
%tahgrlxgelz' one, the A:tumnal Equinox or the First Point of I:Jbra,
is marked =. This First Point of Aries has been Psed S0 far' simply
as an arbitrary zero of longitude and siderea.l time; now it has a
more definite meaning. When ¢ is in transit over thF mcr_rd:an
the sidereal clock reads Oh. The star X will not transit until the

Figure 12

Earth has turned through the angle «. The time interval corre-
sponding to this angle is the Right Ascension (symbol_a, alpha)
and is one co-ordinate used to fix a position on the oel?stlal sphere.
When X does reach the meridian, the reading of the s:defeal clock
will be the same as the R.A. of X. Thus the Right.Asoensmn (R.A.
or o) of a body is the sidereal time of i.ts transit. The other co-
ordinate required to fix X is its angular distance ) nor_th (or south,
when it is given a — sign) of the equator along a great circle through
the poles; this is called Declination (3, delta). In the observatory
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these two co-ordinates are measured with the transit circle men-
tioned at the beginning of the last chapter.

Turn to Fig 13. Imagine that you are in the planetarium facing
the south horizon, and that the lines of R.A. and declination as
well as the stars have been projected onto the dome; this usually
can be done in a planetarium. The sidereal time is evidently 2h,
for R.A. 2h is on the meridian (a). The star A, in R.A. 22h 30m,
dec. +15°, passed the meridian 3} hours ago, so the local hour
angle (LHA, b in the figure) of the star is said to be 3h 30m. Hour

Figure 13

angles can also be expressed in degrees (page 26), and at 15° per
hour it would be 524°. Star B will not transit for another 2 hours;
that is to say, 22 hours have elapsed since it last did transit, so its
hour angle is 22h. The line of R.A. through the star, such as that
through B, is called its hour circle. All objects on that line have
the same hour angle, all will transit at the same time, and all have
the same R.A. on star maps. The great circle marked NXS in
Fig 12 is the hour circle of X. The measurement ¢ in Fig 13 is the
hour angle of Aries (H.A.P); it is 2h in time units and was used
in Chapter 2 as the definition of sidereal time. These hour angles
change with time, but the measurement d, the sidereal hour angle
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(SHA) does not and is an alternative co-ordinate to R.{L The
sidereal hour angle of a star is the angle from the hour circle of
Aries to that of the star, measured westward along the equator
up to 360°; to find it, convert R.A. into degrees and subtract

from 360.

Example: g
RA. 6h20m=6x15+4%x20=95
SHA =360 — 95 = 265°

The measurement e is the meridian altitude of the equator.

Fig 14 contains the same information as Fig 1_3, but is drawn
in the plane of the equator. Compare it carefully with Tal?le 3,and
if necessary re-read the last paragraph with the new dlsfgram_—
the lettering is the same. The last two lines, the relationships
between LHA and the other factors, are important.
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TABLE 3

Star A B
Right Ascension 22h 30m
Sidereal time (a) 02h 00m g;ll: %
Lc_)cal lllour angle (b) 03h 30m 22h 00m
Ditto, in degrees 52° 30" 330°
H.our angle of Aries (c) 30° 30°
Sidereal hour angle (d) 22° 30" 300°

Local hour angle in time = sidereal time — R
ocal b —R.A. (+24h)*
Ditto, in degrees =H.A.r + SHA (—-—360(")‘ .

* If necessary of course.

Fig 15 represents the plane of the meridian, still i
arium. The altitude of the pole (a) is equal to’ the l;?ittl?;eptl}?::;';
observer (page 1_12). The meridian altitude of the equator (b) is the
complement of it, and therefore equals 90° — latitude. When the
stars A and B are on the meridian, and only then, their altitudes
(c and d) will be (90° —lat.) +dec., declination being negative

for B. In latitude 52°N their meridian altitudes would be 38° + 15°
and 38° — 15° respectively, and less than that when not on the
meridian. In general therefore

Meridian altitude =
co-latitude of the observer + declination of the object.

Z is zenith, the point overhead. The zenith distance () of an object
at any time is the complement of the altitude at that time, because
¢+ e=90° The complement of declination is called the polar
distance (f); if this is less than the altitude of the pole the object
will be circumpolar and will never set. Throughout this book
‘transit’ and ‘crossing the meridian’ means between the pole and
the south point of the horizon. More precisely this is upper cul-
mination or upper transit. A circumpolar star crosses the meridian
again, between the pole and the north point, at lower culmination
or transit. For observers in the southern hemisphere, north and
south would be interchanged in this context.

Hour angle is important; the astronomer needs it for setting his
telescopes, and the navigator uses it. It contains two elements: the
positions of the stars on the celestial sphere, which can be tabulated
more or less permanently, and a variable part which must be
tabulated on a calendar basis. The ‘permanent’ part is not quite
permanent. Owing to precession (page 6) the First Point of Aries
moves westward along the ecliptic at a rate of 50" per year. Thus
star atlases carry the date or ‘epoch’ for which the co-ordinates
were drawn and such information in the Nautical Almanac is
revised regularly. This precession of the equinoxes also accounts
for ¢ now being in the constellation Pisces. The calendar part is
what the almanac must do, giving sidereal time or H.A.< for the
meridian of Greenwich. But what if the observer is not on the
meridian of Greenwich, longitude 0°? Fig 16 is the plane of the
equator and O the centre of the Earth. The meridians through
Greenwich, G, and two other places, A and B, are shown by radial
lines. The hour angle at Greenwich (GHA) for the star S is a.
As S is very distant compared with the radius of the Earth, it is
permissible and convenient to measure all angles at the centre, so
OS is the direction of the star for all observers. The local hour
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Figure 16

;ngle (LHA) at_A (d) is the GHA plus the east longitude c; the
HA at B (d) is GHA minus the west longitude e. In gel;eral
LHA = GHA - longitude,

west longitude being positive and east negative.
Example:
given that GHA = 90°
. in long. 60°E LHA = 90 — (- 60) = 150°
oo in long. 110°W LHA =90 — 110 + 360 = 340°
e er should draw diagrams to illustrat
any questions subsequently done; it is a safe;ut::se—fi}tu}:lgll:ﬁ; ?;g

easy to get additions and subtractions the wr ;
: : A
there is no picture of what you poety ng way round if

Now let us link all these things together, Fig 17. The observer
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is at O. NPZS is his meridian, P being the pole and Z the zenith.
X is a star. PZX is a spherical triangle made up of arcs of three
great circles and measured in degrees. A great circle through the
zenith and perpendicular to the horizon is @ vertical circle (the
meridian, for instance, is one), and it is along vertical circles that
altitudes are measured. The azimuth of a body is the angle between
the vertical circle through the pole and that through the body,
measured through east up to 360°. This system of 0-360° from

Z

Figure 17

the north point, the same as true bearing, is not invariably followed.
If you find the term elsewhere, check what system is being used.
In this diagram the azimuth A4 is 360—angle PZX; if X were east
of the meridian PZX would itself be the azimuth. As PZ is the
hour circle on the meridian and PX that through the star

angle ZPX is the LHA = GHA — longitude,

angle ZXP is of no particular interest,

arc PZ is the zenith distance of P, = 90 — latitude,
arc PX is the polar distance of X, =90 — declination,
arc ZX is the zenith distance of X, = 90 — altitude.
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Thus the triangle contains two measurable quantities, altitude and
azimuth; two tabulated quantities, GHA and declination; two
positional quantities, latitude and longitude. The solution of this
triangle by spherical trigonometry is the mathematical part of a
navigator’s work, and will be found in text books of navigation.
The Sun, Moon and planets are not fixed on the celestial sphere,
and this introduces another variable. In the Nautical Almanac,
however, it has been included with the time element, and GHA for
these bodies is tabulated, together with GHA v, for short intervals
of time throughout the year. Users of other almanacs must deduce
their GHA from R.A. and sidereal time.

Figure 18

Fig 18A is the same celestial hemisphere, but showing different
information. The vertical circle EZW is called the prime vertical,
EQW is the familiar celestial equator, a plane perpendicular to
OP. Notice that it meets the horizon at the points E and W; thus
an object on the equator (such as the Sun at an equinox) will rise
exactly east, be above the horizon for half a day, and set exactly
west. An object with a positive declination will have a diurnal
path parallel with the equator but north of i, meeting the horizon
north of the prime vertical at R and T. The angle ROE is the
amplitude, the angle along the horizon from the prime vertical to
the point of rising or setting. It is of interest to the navigator and
tables are available to him. The reader can imagine for himself
the behaviour of an object with a negative declination. If the
sphere were viewed from above the zenith it would look rather

4+

like Fig 18B, which is the conventional way of representing the
same information (and lettering) as before.

The measurement of altitude, which a navigator does with a

S
o

d

A Hl

e

Figure 19

sextant, involves several other considerations. The ﬁrst. is the
geographical altitude of the observer, Fig ]9..The qbserv_er is ::i (;%
at a height 4 above the spherical surfa_ce. !—hs: I}Oflzon, inste: o
being at right angles to the radius as is O'H’, is the tangent OP,
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and its length d when  is small compared with the radius R of the
Earth can be calculated from the relationship d = v/2Rh.

Example: What is the distance of the horizon for an observer

50 metres above sea level, taking the radius of
ek g of the Earth to be

d=v2x 6370 x 0:05 = V637 = 25-2km.

This would apply to a sea horizon, for irregularities in a land
sulrface would nullify a calculation of this kind. The observed
alqtude of the star S is the angle POS, which is greater than the
altitude H'O’S’ (= HOS) obtained from sea level by the angle
HOP. This angle is called the dip of the horizon, and allowance
must be made for it when altitude is being used in navigation;
tables are available to help. Sunset at sea level would occur whet;
the §un falls below the line O’H’, but the observer at O will still
see it until it passes OP; his day will be lengthened. The angle
POH = angle PCO’, and since & is very small compared with the
radius CO’ the arc PO’ =the line OP = v/2Rh. Then the dip

D=2 _V2Rk [2h ..
radivs . R R fadian.

Let us try it on our 50m friend.

_ [2x005 . 0:00396 x 180
D= [Z22 Ti 000396 radian = ——— " 0723,

The corresponding time would be 023 x 4 = 0-94min; but as the
patl_n of the setting Sun is not ordinarily perpendicular to the
horizon, the delay in sunset would be greater than this.

The second consideration is refraction in the atmosphere. This
should have turned up qualitatively in your previous reading in
astronomy or geography, and quantitatively it is rather involved
asit is affected by atmospheric conditions as well as by the zenith
distance of the object concerned. Very briefly, the image of the
heavenly I::ody is displaced towards the zenith by about ¥ degree
at the horizon (we can just see the whole of the Sun when it is
suppos.ed to have set), decreasing rapidly with altitude, and
becoming zero at the zenith itself,
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The third consideration applies in practice only to observation
of the Moon. In discussing Fig 16 we transferred our viewpoint
from the surface of the Earth to the centre, assuming that the
objects concerned were so distant that GS and OS were parallel.
The distance of the Moon is not enough to justify this assumption.
In Fig 20, when the Moon M is observed from O, the zenith
distance is ZOM, whereas if it were observed from C it would be
the smaller angle ZCM. From the properties of triangles, ZOM =
ZCM + OMC. The correction required is the angle OMC, which
is called the parallax. Parallax is greatest when the Moon is on
the horizon, O'; then the angle at the Moon

__arc CO X% radius of the Earth
"~ radius O'M  distance of the Moon
6370 180

e —_— = 2.
= 384000 3140 0>

P

This quantity, known as horizontal parallax, will vary inversely
as the distance of the Moon, so it is tabulated in the almanac.
H.P. can be defined as the angle subtended at the Moon by the
semi-diameter of the Earth or, as has now become possible, half
the angular diameter of the Earth as seen from the Moon. Parallax
other than on the horizon can be found by multiplying the H.P.
by the sine of the zenith distance. Other bodies can have parallax
too, but it is only for the Moon that it is important; the parallax
of the Sun is about 8”8 and that of the stars immeasurably small.

So far the co-ordinates used have been based on the equator,
and for the last page or two on the horizon. For planetary studies,
as in the next chapter, it is more convenient to work from the
ecliptic. Celestial longitude (X) has already turned up, and is
measured eastward from <P along the ecliptic; celestial latitude ( B)
is the angular distance north (+) or south () of the ecliptic along
a great circle through the object. Thus there are three systems used
in this book: R.A. and declination, using hour circles intersecting
at the poles; azimuth and altitude, using vertical circles intersecting
at the zenith; longitude and latitude, using circles perpendicular
to the ecliptic and intersecting at the poles of the ecliptic. These
poles are situated in Draco and Dorado, and about them the
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Figure 20

celestial poles make their precessional circuit in 26 000 years at a
radius of 233° (see Fig 3). The conversion from one system to
another is a problem in spherical trigonometry outside our present
scope. (See Davidson or Smart.)

Now, before going on to the exercises, read very carefully
through this general example and if there is any step which you
do not fully understand turn back to the appropriate page and
revise it.

Example: The star Procyon, « = 07h 37m 44s, § = +05°18'117, is
observed in transit at 23h 52m 29s LMT in 0 =-21°01'48",
¢ =-+52°13'05" on a day when the sidereal time at Oh UT was
07h 40m 15s. Find the error in the observer’s clock and the meridian
altitude of the transit.

h m s
1 Longitude to time,  4m per 1°=84m = 01 24 00
p. 26 4sper 1l =4s 04
Hsperl” 03
01 24 07

2 R.A.to Greenwich Observer'sST=R.A.= 07 37 4
ST, pp. 37, 31 Greenwich ST earlier by 01 24 07

Greenwich ST 06 13 37
3 STtoUT,p.31 Sidereal time at Oh UT 07 40 15

Sidereal interval (subt) 22 33 22

less 10s per hour (220) 03 40
Mean time interval = UT 22 29 42
4 UTtoLMT,p.28 addlong. E 01 24 07
LMT 23 53 49
5 Clock error Reading of clock 23 52 29
Error 01 20
Correction to be applied +01 20

6 Meridian altitude, 90° 00" 00"
p. 41 Latitude 52 13 05
Co-latitude (subt) 37 46 55
add declination +05 18 11
Altitude required 43 05 06
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Note that verification of Greenwich time need not be done at
Greenwich, and that mean time and sidereal time do not involve

observation of the mean sun or of <, which, having no material
existence, are not observable.

4
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APPARENT MOTIONS

The reader will already be familiar with the composition of the
solar system, and should also be aware of the apparent behaviour
of its members in the night sky. The topic is quite fully treated in
most descriptive books. Just as a precaution, however, we will
have a quick look at apparent motions before going on to the
numerical work. The orbits of Mercury and Venus lie within that
of the Earth, and the remainder outside it; the orbit of an inner
planet is shown in Fig 21A and that of an outer one in Fig 21B.

Owing to the motion of the Earth, the Sun apparently moves
eastward along the ecliptic and carrying the orbit of Venus with
it. We must ignore this, imagine the Earth to be at rest at E, and
consider the effect of the motion of the faster-moving Venus
relative to the Earth. When Venus is at 1 it has the same longitude
as the Sun: superior conjunction. As it moves towards 2 it becomes
visible to the east of the Sun, sets after it and is therefore an evening
star, and almost the whole of the illuminated hemisphere is
presented. At 3 the angular distance from the Sun is at its maximum
of about 46°, and the visible planet is half illuminated : maximum
eastern elongation. Between 3 and 4 a crescent phase is exhibited,
and at 4 the longitude is again the same as the Sun’s: inferior
conjunction. From 1 to 4 the planet has been getting nearer,
apparently larger, and brighter in spite of the decreasing phase,
maximum brightness occurring soon after 3 when the elongation
is about 40°. After 4 the planet is west of the Sun and rises before
that body as a morning star; 5 is maximum western elongation,
Mercury behaves in the same way, but the maximum elongation
is only about half that of Venus, making the planet much more
difficult to observe.

The outer planets have an eastward motion of their own, but
we will ignore it and consider the effect of the motion of a faster
Earth relative to a fixed planet at P. When the Earth is at 1 the
planet is in conjunction. As the Earth moves towards 2, the planet
becomes visible to the west of the Sun as a morning star, and its
elongation increases all the time to 90° at 2 (quadrature) and
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180° at 3 (opposition). Now, the motion of the Earth between 1
and 2 will cause an additional eastward motion of P relative to the
background of stars, but after 2 the Earth will begin to overtake
the planet. We all know that if a train begins to gain on another
on a parallel track, an observer in the former will see the latter
begin to go backwards; in the same way P has an apparent westerly
motion impressed upon it. This soon more than counteracts its
natural eastward motion, so for a time before and after opposition
the motion of an outer planet is retrograde among the stars, with
a statlonary point at each end of this stage. At opposition the
planet crosses the meridian at midnight; after that event it is seen
to the east of the setting Sun (instead of to the west of the rising
one) and is classed as an evening star. From 1 to 3 the distance
between the Earth and P gets shorter, slowly at first and more
rapidly towards opposition, so the brightness of the object increases.
There is a slight phase effect, which is greatest in position 2, when
the extreme west limb of P is unilluminated. This defect of illumina-
tion has a maximum of only about 12% of the diameter of Mars,
and is negligible for the more distant planets. Maximum defect
occurs again, of course, at 4.

Apparent motions will be further studied in the exercises at the
end of the book, so back to the arithmetic.

THE PERIOD OF A PLANET

A planet has two periods, one relative to the Earth and agot!mr
relative to the Sun. The interval between two successive similar
conjunctions is the synodic period, and in that time an inner planet
must gain 360° on the Earth, or the Earth gain 360° on an outer
planet. Working only to the nearest day, the sidereal periods, once
around the Sun measured against the stars, of the Earth and Venus

are 365 and 225. Thus Venus moves
360
5 degrmperdayandthel!arth%sperday

. 360 360
Therefore Venus gains 235~ 365 degrees per day.

360 360
To gain 360° would take 360 - (225 36 5) = S days.

360 360 s s 8
s s(zzs 365) ST 2257365
and
365 x 225
B T

The actual value of the synodic period of Venus is 584 days. For
the periods of the inner planets we have

1 1 1
synodic _ sidereal  sidereal (Earth)’
The reader should prove for himself that for an outer planet
1 1 AR
synodic sidereal (Earth) sidereal”
The synodic period, the interval between successive occurrences
of the same Sun-Earth-planet configuration (or pattern) is the

measurable one, and the sidereal period in the table books the
derived one.

55




Example: Oppositions (i.e. transits nearest to midnight) of Mars

g:c};r‘;ed on 1967 April 15 and 1969 May 31. Find the sidereal
riod.

S R
Daysto 1967 May1 16 77365 P
77

1968 May1 366 s

1969 May1 365 GNP e 1y

1969 May 31 30 P 365 777
Synodic period 7 777 x 365

P= T = 688 days.
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KEPLER'S LAWS

The history of the gradual unravelling of the mystery of the planets
from the earliest times to Kepler and Newton is a fascinating
story and a ‘must’ for any student of astronomy. If you have not
yet read it put it next on your book list. (In this connection attention
is drawn to Nuffield Physics Background Book: Astronomy, to be
published by Longman/Penguin early in 1972. It was specially
written to show the development of a scientific theory in Year 5
(O level) of the Nuffield Science Teaching Project.) Here we go
straight on to Kepler’s conclusions (1609-1618), Fig 22.




Law 1: The orbit of a planet is an ellipse having the Sun at one
focus.

You have already drawn, from first principles, the orbits of the
Earth and Moon (Exercises 15 and 16) and, assuming them to be
ellipses, have measured their eccentricity. Readers who understood
the note on page 104 can use the equation there quoted to test one
or more points on these orbit drawings, which are supposed to
have been preserved for further use. x and y are the co-ordinates
of any point, measured parallel with and perpendicular to the
major axis. @ and b are the semi-major axis (already measured)
and semi-minor axis (to be measured, and do not be surprised if
it is almost the same as a), substitute in the equation and see how
nearly it comes to 1.

Law 2: The motion of the planet is such that the radius vector
from the Sun to the planet sweeps out equal areas in equal times.

The equal times are represented by 7 in the diagram and the
equal areas are shaded. The areas are equal to 4 x length of
arc x radius; apply this to your Moon orbit, which is already
divided into sectors of # =2 days. Work out several of the areas
and see how nearly they are equal; do not expect perfection. It
should be clear both from the figure and the formula that the longer
the radius the shorter the arc, and consequently the less the velocity
of the planet. This is the cause of the variable motion of the Sun
in the ecliptic and of the Moon in its path, for while approaching
perihelion a body will be accelerating, and slowing down when
leaving it.

Law 3: The squares of the period times of the several planets
are directly proportional to the cubes of their mean distances
from the Sun.

Using the lettering of Fig 22, this becomes
P}xal e P} _af
P} < a3 P} @
where P is the sidereal period, the time taken for one revolution
in the orbit, and a the semi-major axis of the ellipse which, as

we know from Chapter 1, is the mean distance. Kepler did not
know the actual mean distances; we can look them up in tables,
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but that is not allowed at this stage because the law.bas been
involved in making the tables. Kepler did know 'the distance of
certain planets relative to that of the Earth, that is on a s?ale of
Earth-distance = 1, and in the case of Venus so do we. In Fig 21A
the angle SE3 is known by observation to be 46°, and ;f we assume
that the orbit of Venus is nearly a circle, the line of mght_ l?.3 \afﬂl
be a tangent to it and angle E3S = 90°. (In any argument it is wise
to consider carefully what is a fact and what is assumed.) Then
the ratio

Venus distance S3 . e SE3 =sin46 =072.
Tistance SE sine of the angl

Now, taking the ratio Earth/Venus and working to slide rule
accuracy, we get:

o 3
ﬂ,:(@) — 1393 =269 and
a

072

The 365 days is derived from observations of the Sun, and the 225
calculated from the observed synodic period of Venus, 50 we have
not used the law in any respect while trying to illustrate it.

Kepler’s third law makes it possible to dmw_ t];e whole system
of planets on a scale of Earth-distance = 1, and_ it is the scale com-
monly used for solar system studies. Investigating planetary orbits
and their laws from first principles, and preferably from personal
observation, is the main theme of Tricker’s book. The Earth-
distance is called the astronomical unit (A.U.) and is of funda-
mental importance. If any one distance in the solar system can be
measured in linear units, such as kilometres, then there would
be a scale for the whole of it, but the A.U. itself cannot be measured
directly. The horizontal parallax of the Moon (page_ 47) cag'be
measured by, say, simultaneous observations of its position
among the stars as seen from widely separated points on the
Earth’s surface, and from this the distance can be calculate_d. The
parallax of the Sun cannot be found in this way; for one thing the
angle is very small, and moreover there is no background of stars
against which to measure it. The distance of one_of the nearer
planets can be so measured, and if the positions in their orbits

p? (365

2
21 (222) - 1622 =263,
P2 225) G
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of the Earth and the planet at the time are known, the scale wi
be determined and the A.U. can be calculated. d::'r the la.stm
hundred years Mars and Eros have been used against the stars
and \fenus agaipst the disk of the Sun on several of the ra.re’
occasions when it was exactly between us and the Sun at inferior
conjunction—an event called a ‘transit of Venus’. A recent
measurement was that of the distance of Venus by radar methods
in 1964. Thc value of the astronomical unit is included with the
accompanying table of planetary data.

PLANETARY ORBITS 1: JUNIOR

The orbits will be drawn as concentric circles and the only problem
is to make them the correct radius (see Table 4). Choose any
length for 1 astronomical unit, the guiding factor being the size

TABLE 4
ELEMENTS OF THE PLANETARY ORBITS

Name 1 2 3 4 5 6 7 8

Mercury 0-387 88d 077 0206 048 7-0 048 4
Venus 0723 2254 131 0007 076 34 265 160
Earth 1000 365d 102 0017 notapplicable 100 0995
Eros* 1446 642d 122 0223 304 108 — —
Mars 152 687d 336 0093 049 18 013 0524
Jupiter 520 119y 014 0048 100 13 203 0083
Saturn 9-54 295 092 0056 113 25 043 0033
Uranus 192 84 170 0047 074 08 184 0012
Neptune 301 165 044 0009 131 18 239 0006
Plutof 39-8 251 223 025 110 17 195 0004

1 Mean distance, a, in astronomical units. 1A.U. = 149 000 000km or
92 957 000 miles. Use 150 x 10¢ unless otherwise instructed.

2 Sidereal period, P, in days or years.

3 Longitude of the perihelion, @, in degrees.

4 Eccentricity, e.

5 Longitude of the ascending node, £, in degrees.

6 Inclination to the plane of the ecliptic, i, in degrees.

7 Lonsitudeof!heplanetonl.lanIWO.meeEanhuﬁsisapprothtely
theumeemymr,butfortheommammtalmanacmustbeuwd.m
accompanying exercises are for 1970.

8 Mean daily rate, n, in degrees.

* An asteroid, or minor planet.
1Elementsforlmo;mnmmﬁvmmmemtofthetable.

of your paper in relation to the largest orbit you want to draw.
Suppose that it is to be Jupiter; the table of planetary orbits gives
the distance to be 5-2A.U. If you choose 2cm to the unit, that
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wPuld give 10-4cm radius, calling for paper not less than 25cm
wide; _the Earth orbit would be 2cm radius, of course. If you had
that size of paper for the example in Fig 23 your Earth radius
could be 10cm, and that of Venus would be 0:723 x 10 = 7-23cm
Draw the orbits; mark the Sun S at the centre; draw S as thé
zero of longitude. The questions to be answered are these: if
Venus crossed the meridian at 14h on April 10, and the telescope

one-third of the way between April 1 and May 1, at E;
join ES. Venus crossed the meridian two hours after the
Sun, so it must be 30° to the east of it; make SEA = 30°.
This cuts the orbit of Venus twice, but as the planet is not
a crescent it cannot be at the nearer intersection. Therefore
V is the position of Venus. For an outer planet there would
be only one intersection.

(ii) Draw EB parallel with Sop. Then angle BEV is the longitude
A as seen from the Earth, 51° in this example.

(iii) Star maps do not normally show longitudes, but the
adjacent table gives to the nearest degree the longitude at
which the ecliptic crosses each hour of R.A. From this,
long. 51° lies between R.A. 3h and 4h, say at 3h 20m.
Reference to a star atlas shows that this is on the boundary
between Aries and Taurus; and as the main planets are
never very far from the ecliptic, that is where Venus will be.

S (iv) Measure EV; use your scale to convert to A.U., which in
Fig 23 comes to 1-35. 1A.U. = 150 x 10°km, so the distance
of Venus is 1:35 x 150 x 105 =202 x 10°%km.

TABLE 5
LONGITUDE ON THE ECLIPTIC AT EACH HOUR OF R.A.

RA. Long RA. Long. RA. Long

5 th 16° %  133° 17h  256°

Figure 23 2 32 10 148 18 270

3 47 11 164 19 284

h - _ )8 4 62 12 180 20 298
S ‘ga“, it was not a crescent, find (i) the positions of the 5 76 13 19 2 38
Earth and Venus in tJ_:l_t_air orbits, (ii) the longitude of Venus as 6 90 14 212 22 328
seen from the Earth, (iii) the constellation in which it would lie, A .. 820w 8l 1o

and (iv) its distance from the Earth in kilometres.

(i) The table on page 13 shows that the geocentric i
qf the Sun on April 1 and May 1 aregelol“ and ;gfgr;tsltdpec-es
tively, so the heliocentric longitudes of the Earth are
11 + 180° and 40 + 180°. These are measured anti-clockwise
from Sy, and are shown in Fig 23. April 10 would occur
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PLANETARY ORBITS 2: SENIOR

3&3 orbits will be drawn as eccentric circles, and to enable this
a done a table of the elements of the planetary orbits is provided
t 1s reccommended that the student make two large drawings ori

Figure 24

good-quality paper, one for Me Venus

and the other on a smaller scale il:;:?l;’e Earth,a}::rgeat%irMmE
planets-—pl}:s .Pluto if space allows. Then if these d:awingsgr::e
fzomp!eted in m?: they can be used as the bases of the exercises
instead of drawing fresh ones every time. As an example of the
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procedure Fig 24 has been drawn for the Earth and Mars, but it is
too small to be truly to scale (the eccentricity has been exaggerated).

Mark the Sun, S, in the middle of a large sheet of paper and
draw S as zero longitude. From column 3 of the table find the
longitude of the perihelion, @ = 336°; plot this angle and draw the
major axis through S. Choose a scale to suit the paper. Suppose
you took 10cm to the A.U.; then as a from column 1is 1-52, the
radius of the orbit of Mars will be 1-52 x 10 = 15:2cm, and the
paper will have to be about 35cm wide. A larger scale is desirable.
From column 4 the eccentricity is 0093, and CS=a x 0-093
(page 9) measured on the axis away from the perihelion. With
centre C and radius a draw the orbit. From column 5 take the
longitude of the ascending node and insert § at 49° and 9§ 180°
further on. The orbit from §, anti-clockwise to ¥ is north of the
plane of the ecliptic (and above the plane of the paper); this should
be indicated by doubling or thickening the line. Now consider
the situation on 1970 June 1. Column 7 of the table gives the
longitude of the planet on Jan 1 to be 13°; insert J. Column 8
gives the daily rate to be 0-524 deg., and from Jan 1 to June 1 is
151 days. Thus the planet will have advanced from J by 0-524 x 151
=79°; insert M. This position will not be quite correct, for the
daily motion is not uniform and we have used an average value,
but it is near enough to locate the planet among the constellations
(see Note 8, page 105). The orbit and position of the Earth are
dealt with in the same way. Through E draw the line EA parallel
with S and measure the angle AEM. This is the geocentric
longitude of Mars, 82°. Star maps do not normally mark longi-
tudes, but the table on page 63 shows that long. 82° on the ecliptic,
near which the planet would be, is just about R.A. 5h 30m; then a
star map will show that Mars is just passing from Taurus into
Gemini on June. 1 To find its distance from the Earth, measure
EM in terms of your scale of A.U.; it is about 2-53,and as 1A.U. =
150 x 106km, the distance of Mars on that date was 2-53 x 150 x
106 = 380 x 10%km.

The planets do not stray very far from the ecliptic, but are
normally not actually on it in lat. 0°, and their latitude can be
estimated by a geometrical method, Fig 25. P is the position of the
planet as so far determined in the plane of the ecliptic, P’ its real
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position in a north latitude and E the Earth. i i
to the line of the nodes, so AT N

angle PQP’ = inclination i = I;,—g radian.
Also angle PEP’ = latitude B = % radian.
Dividing B_FP PP'_PQ

A_s the angles are now in ratio we can use degrees instead of radians
without converting; i is in column 6 of table 4; PQ and PE can
bt_e measured frf)m your orbit drawing. Applying it to Mars in
Fig 24, the ratio MQ/ME =043, i = 1°-8 from the table, and

B =043 x 1-8 =0-78. This is about +47" it i
ke ut +47’, + because it is north

THE ORBIT OF A COMET

The orbit of a comet has elements generally similar to those of a
planet, but the eccentricity is high and the resulting ellipses, far
removed from the circle, are sometimes very long and narrow.
For a short-period comet having a small orbit lying, for instance,
within the orbit of Jupiter, the whole of it can be drawn, and
method 2 (page 11) is convenient. For large orbits we need only
the end near the Sun, and method 1 should be used. A long-period
comet may have an orbit which is actually, or very nearly, a
parabola, and in this case the element a becomes useless and is
not given. Instead the perihelion distance ¢ is quoted, e=1, and
ellipse method 1 must be used for drawing it.

As an example, Fig 26 shows the orbit of Comet 1927 VI, for
which the elements (in the order in which we shall use them) are:

N =66° w=210° a=49 e=076
T=1970 Nov17 P=109years i=11°

S is the Sun. For reasons which will appear later, it is convenient
to start with the line joining the nodes, drawn horizontally through
S with the ascending node on the right; then measure , =66°
clockwise to locate the usual Sov. For a planetw was the longitude
of the perihelion measured from " ; w for a comet is the argument
of the perihelion measured from §, in the direction of motion, so
take 210° anti-clockwise from § to locate Sw. This is the axis of
the ellipse. Choose a suitable scale of astronomical units and so
express a in centimetres or inches. Use & and e to draw the ellipse;
method 1 was used, but 2 could be. On the same scale draw the
orbit of the Earth and any other planets you want; concentric
circles will do. T is the date of perihelion passage; deduce the
position of the Earth in the usual way, and insert the Earth and
the comet for the date 7. P is the period of the comet, 10-9 years
for a complete circuit. The inclination i of the plane of the orbit
to that of the ecliptic has so far been ignored, but in this case,
being only 11°, it does not make much difference toa representation
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node line from the descending node side. The two cards can now
be interlocked as shown in Fig 27A; cut out a cardboard wedge
(27B) to hold them at the correct angle i.

As angles of inclination get larger the comet card gets steeper,

on paper..The ephemeris of a comet, as issued by the British
Astronomical Association, gives the distances of the comet from
the Earth (4) and from the Sun (r). The latter can be used, with
your compasses or dividers, to mark the positions of the cm;aet in

its orbit on the various dates.
Many comets have high inclinations, and cannot be shown

|\I|23C|)7 B SA_U :

Figure 26

sa_v.t:sfac_torily in the ecliptic plane; they must be shown three-
dlmensl.onally. Instead of paper you need two thin cards of the
same width. The node line (with which the drawings start) is where
the.t.wo planes concerned intersect; draw this, and the exact
position of the Sun, on both cards. On the ‘ecliptic’ card draw Sy
and any planet orbits you want, and cut a narrow slot exactly
flalf-wa'.y across the node line on the ascending node side. On the
comet’ card draw Sw and the comet orbit, and cut a slot in the
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and if i passes 90° you will have something like Fig 27C. Your
comet orbit is now disappearing in the sandwich, and ought to
be on the other side of the card. Thus when, right at the start, you
notice i > 90°, the comet card (including the slot) must be prepared
as a ‘mirror image’ by putting the ascending node on the left. It is

(@)

(b)

-} - R
3
S
B

wise in these circumstances to put the Sun at the mid-point of the
node line, or there may be difficulty in getting correct register
when the cards are put together. The angle of the wedge will now
be 180° —i. Notice that in Fig 27A the direct-moving (anti-
clockwise) comet passes to the north of the ecliptic card at the
ascending node. So it does when you have assembled 27C, but as
§ is now on the left when viewed from above the motion is
clockwise—it is a retrograde comet. Inclination greater than 90°
is the convention for indicating retrograde motion.

A meteor stream has an orbit similar to that of a comet, so we
will close this section with a little problem about meteors. The
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elements of a certain meteor stream are: §) =233°, w=179°
g =099, i=163° (e =0-91). Estimate the date of the encountel,'
and the direction from which the meteors should come.

Draw the node line, Fig 28, and measure 233° clockwise from
8§ to locate Sy (as we are working on one sheet, there is no need
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to use the mirror image). The value of i shows that the motion is
retrograde, so in measuring w = 179° from &, in the direction of
motion it will be clockwise to fix the line Sw. When e is as high
as this the curve near the focus is hardly distinguishable from a
parabola for which e = 1, so the orbit can be drawn as such using
ellipse method 1. When the orbit of the Earth is drawn it can be
seen that it almost touches that of the meteors at E, the perihelion,
so the shower would be expected when the Earth were there. The
heliocentric longitude of E= »SE = 56°; geocentric longitude
of the Sun on that day = 56° + 180° = 236°; the table on page 13
shows that to occur about November 18. The Earth and the
meteors will be meeting almost head-on along the tangent TE.
Draw EA parallel with Sov; then AET =long. of T =145
Reference to page 63 shows that this is not quite R.A. 10h, and
as the meteors are approaching their descending node they would
be a few degrees north of the ecliptic. Now look at a star atlas and
see where the radiant is; an approximate position, of course.
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GRAVITATION

Every material body attracts every other with a i
gravity, and their behaviour is the resultant of {E::: :I?J%I;l;ic:r“
realise h_ow.r many astronomical bodies there are, even i;1 the solaﬁ
sy§tem, it is obvious that the subject is very complex as well
!:emg of fundamental importance. All that will be attempted in thés
mtro.cluctory book is to remind the reader of some elemen ”
physics and consider a few astronomical examples of it m
El:y&cs can be amplified from any good ‘O level’ text book. In
ese examples we shall assume that the dominant force is the
only one,.somethjng that the mathematical astronomer cannot do—
he must incorporate the ‘perturbations’ caused by neighbouring
bodies. ':J.'he results will be approximations and the methods not
ngcessaniy those used in the profession. Gravitation is associated
;:lh btg:nn:me of Newtoll:; his work was published in 1687 but
one years earli istori i
poors. reagnen er—see the historical book which you
We begin with his laws of motion.

Law 1: Every body continues in its
aw 1 - state of rest or of uni
motion in a straight line unless acted upon by a force. PR

msfe hda:]j a]::ady noticed that astronomical bodies are not at
and that their motions are neith i ioht:
e ol o4 er uniform nor straight; they

Law 2: The rate of change of momentum of a body is directly

proportional to the applied force, and 0 s
of that force. , and takes place in the direction

Momentum, in common speech, conveys the di i
stopping something. In mechanics it is the progua mas??frztycit?
so a rate of change of momentum is mass x rate of change i:;
velocity. _Ra*te of change in velocity is acceleration, positive when
velof:lty is increasing and negative when decreasing. The speci-
fication of a motor car may state that 60mph can be attained in
15 seconds, a rate of change or acceleration of 4mph per second.
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Note that time units have come in twice. Any freely falling (no
or negligible air resistance) body near the Earth’s surface increases
its velocity by 9:81 metres per second in each second of its fall,
so the acceleration due to gravity (g) is 9-81 metres per second
per second, written 9-81m s—2. Force, then, is directly proportional
to mass x acceleration, and units of force have been defined in
such a way that

Force = mass x acceleration.

If the mass be 1kg and the resulting acceleration Im 572, the force
being applied is by definition 1 newton, the SI unit of force. (Older
physics books use cgs units; the unit of force is the dyne, which
will give a mass of 1g, an acceleration of lcm s72.)

Law 3: To every action there is an equal and opposite reaction.

This means that forces work in both directions; itis quite possible
for a cork to pull the corkscrew out of its handle instead of the
corkscrew pulling the cork out of the bottle. The attraction of the
Earth for the Moon maintains the latter in orbit, but at the same
time the attraction of the Moon for the Earth deviates it from a
uniform ellipse around the Sun, as was mentioned in Chapter 1.

All freely falling bodies have the same acceleration, g; therefore
the force of gravity on each must be proportional to its mass. As
forces act both ways, it may be presumed that the forces are
proportional to the Earth’s mass also, and that the corresponding
acceleration at the Moon’s surface would be less—which astro-
nauts’ tales confirm. The force is likely to become less with
increasing distance, so let us compare, as Newton did, according
to tradition, in 1666, the familiar g with the acceleration of the
Moon. (Usually not in ‘O level’ text books, though the formal
statement (which follows) of the law of gravitation probably is.)
When you swing a weight around on the end of a string you can

feel a force along the string. From law 3 we know, therefore, that
the string must be exerting a force on the weight, also along the
string. This force must cause an acceleration, and it is this accelera-
tion towards the centre which causes the weight to move in a
circular path—a change in velocity can be a change in direction,
not necessarily a change in the distance covered in unit time.
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It is shown in books on mechanics that this acceleration is given
by the relationship @ = v?/r, where v is the linear velocity in a
circular orbit and r the radius of that orbit. Now the linear velocity
of the Moon is

circumference in metres _ 2x314x384 x lo‘m
sidereal period in seconds  27-3 x 24 x 3 600

Hence

4 x3-14% x 384 x 10°
- (273x24x3 600)?

This is less than g at the Earth’s surface by the factor

0-00272 1
981 3603

A uniform sphere, which we are assuming the Earth to be, acts
gravitationally towards external bodies as if all its mass were at
the centre, and as the radius of the Earth is 6 370km the distance
of the Moon is greater than that of the surface by the factor
384 000/6 370 = 60-28. Evidently the force decreases much more
rapidly than the distance increases. Suppose we square the
distances: 384 000%/6 370% = 60-28? = 3 634. Considering the as-
sumptions and averaging which have been used, the agreement is
good enough to accept; the force is inversely proportional to the
square of the distance. We can now state Newton’s Law of Gravita-
tion: the force of attraction between two bodies is directly propor-
tional to the product of their masses, and inversely proportional
to the square of the distance between them.

In mathematica Iform it can be written

F Ep'j;i or F= Gj;ZM

where G, not to be confused with g, is the general gravitational
constant. Its value, as determined by laboratory experiments, is
667 x 107*! SI units (6:67 x 10~%cgs).

Now we have a means of calculating the mass of the Farth.
A mass of 1kg has an acceleration of 9-81m s™ , 80 from F=ma

DZ
@ =0-00272m s~2.
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the force acting upon it is 9-81 newtons. Substituting in the
gravitation formula we get

667 x107" x M x 1
98l =——c=00000  ’

2 281X 6370000° _ 57 1024k = 597 x 10%! tonnes,
= T66Tx 10T

ich is just about 6 x 10?! ordinary British tons. :
Whg:v:;l:'it :m of gravitation can be used to e_xplam_ Kepler’s
Jaws. Only the third law will be considered here, asit provides som;
helpful equations. Let M be the mass of the central body an
M’ the orbiting one, then

GMM’ F _GM
F= 7 and a=3r=pz"

But

v (4xD\ 1 _4=’D
o= (D) <552

— GM 4x*D o fﬂ_g
§ Al 4’ T2

As G, 4=* and M are constant for any one central body, so is
D?|T?, which is the third law.

éVe now have a means of finding the mass of the Sun.. Let S anc}
E be the masses of the Sun and Earth, D and dthe_dlsta.nc?s()dt;
the Sun and Moon, and T and ¢ the Fon_-espondmg periods.
Rearranging the last equation and substituting S and E for M
we get: for Sun-Earth
4r* D}

o

4n? d?

Gt?’
dividing we get ;
8. 0.8 N AL
- o (3) (@)
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SRR s multiplying factors such as years to days) amtl‘ leaves :vi f;lrte!g
S (150 x 105\* /27-3\* numerical expression. (Thus physics students amiliar e
E™ (384 X 10’) " (ﬁ) =3 0, theory of dimensions need not worry, as some of the wri

have done, about the apparent impossibility of the final equation.)

Take the Sun as the unit of mass: m =1, m’ is negligible
takctheA.U.asthennitoft_iistance: d=1
take the year as the unit of time: t=1

o
and the expression becomes M + M =7

Thus the mass of the sun is 333 000 times that of the Earth, and
it can be converted into kilograms if required.

Take another example of this useful process. Triton, the
principal satellite of Neptune, is 0-0024A.U. from the planet and
has a period of 5-88 days. Find the mass of Neptune (data for
Neptune on page 61).

Neptune—TritonI:{V_ ¥ d*xT1?
Sun-Neptune S ¢2x D?

2 (00024 3 (165 X 365\
301 588

Thus Neptune is 5-3 x 10~* compared with the Sun, and in terms
of the Earth that gives (53 x 105) x (3-3 x 10%) = 17-5.

We have assumed so far that the orbiting object is moving
around an immovable centre, which it is not, but only very nearly
so when its mass is insignificant compared with that at the centre.
This certainly will be the case for the Earth and Sun, but not for
the Earth and Moon. The Earth’s attraction for the less massive
Moon puts it into a large orbit; the Moon’s attraction for the
Earth puts it into a small one (radius 4 800km). A more correct
relationship is

which is a general one; it applies not only ip the solar system, but
takes us to the stars, and will turn up again in the next chapter.

=0-000 053.

GM+M) D
N

JSor any pair of orbiting bodies. Let
Gm+m) da°

4n? &
apply to the Sun-Earth system; dividing
M+M D¢
m+m'  d*T*
Similar quantities must be in similar units, of course; then the
process of dividing removes all units (without introducing any

76



e ————:

-_-__*..,,,,*
——
—

ARTIFICIAL SATELLITES

Nearly three centuries ago Newton showed that if a gun be set
on a very high mountain outside the atmosphere and a shot fired
parallel with the surface at a sufficiently high velocity, then it
would go right around the Earth and be what we now call an
fzmﬁcial satellite. Of course there is no such mountain, and there
is no such gun, but using modern rocketry the result was achieved
in 1957, and artificial satellites have now become almost common-
place. The details will be found in the ‘space books’—works on
astronautics—and all that is appropriate here is a quick look at
the principle.

Ifa v_ehicle at a distance d from the Earth’s centre be projected
tangt'ent:a.lly with a velocity », then if also the acceleration due to
gravity at that distance be v?/d it will go into a circular orbit
(page 74). But the acceleration is GM/d? (page 75), so

v _GM 02 M
- o ot A

tllJ."s':»:ample: If the altitude were 630km, d = 7 000km or 7 x 10°m
en :

y2 667 x 107! x 597 x 10% _ 667 x 597 x 107
7 % 10 " 7 ’

v="7540m s = 7-54km s~'.

This is the circular velocity at an altitude of 630km: near the
Earth’s surface it would be a little greater because d is smaller.
As an alternative, which the reader can try for himself if he likes
apply Kepler’s third law in the form :

period? ; iod?
s for satellite = E?%:c’ for Moon.

T_his will give the period of the satellite, and by dividing it into the
circumference of the orbit the velocity can be obtained.
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Suppose that the velocity of projection were a little less than
the circular one. Then the acceleration due to gravity would be
greater than that necessary to maintain the circular motion; the
satellite would therefore be drawn inwards into an elliptical orbit
taking it nearer to the Earth on the far side—the point of projection
would be apogee. If this applied to our example, an altitude of
630km is hardly outside the atmosphere, so the perigee is certainly
not. This means that air resistance will check the velocity still
further and generate heat. The object will tend to spiral inwards,
getting hotter, and eventually to incandescence and, unless re-entry
has been specially provided for, to disintegration.

If, on the other hand, the velocity of projection were greater
than the circular value, gravity would be insufficient to hold the
vehicle to a circle. An elliptical orbit would again result, but with
the point of projection as perigee, and the higher the velocity
the more remote apogee would be, perhaps as far as the orbit of
the Moon. A rendezvous with the Moon itself would take us
outside the limitation laid down earlier in the chapter—that we
shall consider only one controlling gravitational force. Readers
of the Apollo story will realise the importance to that achievement
of the gravitational field of the Moon.

The greater the velocity of projection the further off the apogee
and the more remote the far focus of the ellipse, until the distance
of the latter becomes infinity and the ellipse has turned into a
parabola. This is an open curve: the vehicle will never return.
The parabolic velocity of projection is also called the velocity of
escape, the velocity at or above which a body will escape from
the bond of the Earth’s gravity. Text books on physics show that
it can be calculated from the relation v* = 2GM/d.

Applying it to the previous example (starting altitude 630km):

2 x 667 x 107! x 597 x 10** =“2 % 667 % 597 x 107
7 x 108 7 ’

v=10670m s = 10-7km s~

=

If the acceleration due to gravity, g, is known the formula can be
made even simpler, for g=GM/d?. Thus GM/d=dg and so

v? = 2dg.
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At the Earth’s surface g = 9-81m s™? and d = 6 370km, so
v* =2 x 6 370 000 x 9-81
v=11180ms ' =11-2kms™'.

Notice that this is greater than the value at an altitude of 630km,

so it requires less energy to despatch an interplanetary probe
from a ‘parking orbit’ than from the surface of the Earth.

5
Stellar Topics

—————————————————— A ——

STAR CHARTS

STELLAR MAGNITUDE
STELLAR PARALLAX
ABSOLUTE MAGNITUDE
MASS OF BINARY STAR
DOPPLER EFFECT




This is not a chapter in the sense that there is a consistent theme
running through it. It is really a miscellaneous collection of odds
and ends largely concerned with stars. As students and amateurs
need to use star charts we will begin with these, and assume that
the reader is going to draw some as well as use them.
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STAR CHARTS

Asin geography there is the problem of projection, that of depicting
a part of the celestial sphere on a flat sheet of paper, a process that
inevitably involves some distortion. As with geographical atlases,
star atlases use different systems according to the areas which
they are trying to show. We shall use only two.

The middle heavens can be shown quite adequately with rect-
angular co-ordinates, illustrated in Fig 29. The lower scale is R.A.,
which for observers in the northern hemisphere increases from
right to left; the upper scale is SHA, increasing by 15° per hour
of R.A. in the opposite direction. The vertical scale on the right
is declination, 15° being made the same length as 1 hour of R.A.
The horizontal zero line is the celestial equator, the vertical one
the hour circle of Aries, and their intersection the First Point, .
Most star maps mark the ecliptic (the broken line through )
but not latitude and longitude; they are included here for illustra-
tive purposes and for use in one of the exercises. Junior drawing
exercises can well be done on squared paper, using the scales
suggested in Exercise 93 for small areas of sky and half that for
larger ones. The axes should be drawn as in Fig 29, but of course
for the particular range required—not just a copy. Seniors would
do better to work on a larger scale on plain paper, ruling their
own graticule (pattern of squares) at any convenient scale. In this
case it is a great help to draw Fig 29A on thin card, to the same
scale as your chart, and cut it out. Place it on your paper so that
dec. 0° is on the equator; set the required minute of R.A. against
the hour line of R.A. one greater than you want (eg for 2h 40m
set 40m on the card against IIT on the chart); put your pencil
against the required declination, and that is the spot. If you
use a pencil in the left hand, draw the degrees on the left side of
the card and set the minute of R.A. against the hour actually
required.

For high latitudes polar co-ordinates must be used, Fig 30;
a polar map is normally circular and the diagram is just an illustra-
tive slice. Polar graph paper is expensive, so most users will have
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to draw their own. (Schools possessing a spirit duplicator can
prepare a stock.) Lines of R.A. radiate from the pole, 15° per hour
apart, and are numbered clockwise for the northern hemisphere
and anti-clockwise for the southern. The concentric circles are
parallels of declination, and can be on any convenient scale.
Fig 30A shows the card for measuring intermediate positions; for
a southern map the minute scale should be numbered in the
opposite direction and set to the hour actually required.

A star chart must indicate the magnitudes of the stars as well
as their positions, and the method of using dots of different sizes
is the commonest. As an aid to uniformity, make a stencil by
drilling holes of different sizes in a plastic set-square; when using
it your pencil must be needle-sharp or your star images will be
neither uniform nor round. Include a key of magnitudes on the
chart.

It has already been pointed out (page 41) that the pattern of
R.A. and dec. is slowly changing owing to precession, and that a
good star atlas bears its date or ‘epoch’. Suppose, for instance,
that an observer receives the position of a comet in the co-ordinates
of 1970 and he wishes to find its position among the stars. His
star atlas is Epoch 1920. He must therefore convert the 1970
comet to match the 1920 stars, and this he does by calculation or
by the use of tables and graphs. Calculation in Smart; also,
together with graphs etc, in J. B. Sidgwick, Amateur Astronomer’s
Handbook, London 1955. A simple table has been included in the
1971 edition of the annual Handbook of the BAA. As the correction
amounts to only about 1° in a lifetime it is outside the ‘precision
limits’ of this book. The stars themselves are not quite fixed on
the celestial sphere, but changes due to this individual proper
motion are usually smaller than the general precessional one.
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STELLAR MAGNITUDE

The stars were classified in magnitudes many centuries ago. The
twenty or so brightest stars were called 1st magnitude, meaning
1st class; then came about fifty of mag. 2, 2nd class, and so on.
Thus the brightest stars have the lowest magnitude number. The
ratio in apparent luminosity is about 23, so if the Pole Star is
mag. 2, mag. 1 is about 24 times as bright and mag. 3 about 1/21.
If two stars differ by two magnitudes their luminosities differ by
2-5 x 2:5=6-25; 3 mag., 2:5° =156; 4 mag., 2-5* = 39; 5 mag.,
2-5% =98, or just about 100. Thus the faint naked-eye stars of the
5th magnitude (some people say that the 6th can be reached with
the naked eye, but that calls for good sight and a very clear sky)
are just about 16 times fainter than the Pole Star. These figures
can be used for making rough estimates.

Example 1: What is the magnitude of a star 20 times brighter
than the Pole Star? Three magnitudes gives a factor of 156, so
in this case the difference is rather more than 3; call it 3-3. Then
subtracting 3-3 from 2 leaves —1-3; very bright stars have negative
magnitudes.

Example 2: How much fainter than the Pole Star is magnitude 9
(just about visible with binoculars) ?

The difference in magnitude is 7. A difference of 5 means a
factor of 100, and a further difference of 2 gives another 6-25.
Thus the star is fainter by 6-25 x 100 = 625.

Needless to say, stellar magnitudes do not fall into precise
groups, like the sizes of ball bearings. A nearer analogy is that of
pebbles which have passed one riddle, but not the next; the selection
includes every possible size between the two limits of wire mesh.
It is therefore necessary to use a decimal subdivision of the
magnitudes.

Now let us put this on a definite mathematical basis. A difference
of 5 magnitudes is by definition 100. Then the light ratio between
one magnitude and the next will be the fifth root of 100, which is
2512 instead of the 24 of the last paragraph. Let /, and /, be the
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apparent luminosities of two stars and m, and m, their magnitudes.
If , is greater than L, m, will be greater than m,, for the brighter
the star the smaller its magnitude number. Then the ratio

? = 251 2ms=m),

2

To solve this we must take logarithms:

log(%) = (my — m,)log2:512
=(my —m,) x 04,

Now apply it to the two examples previously done, giving the
Pole Star a more correct value of 2:1 (= m,, the fainter star, in
example 1 and m, in 2).
1) log20 =(2:1 —m,) x 0-4
1-301 = (2-1 —m,) x 0-4
1-301
21 -m =W=3‘25
my =—1-15

) log (:—;) =(9—-21) x 0-4

=276

? = antilog 2:76 = 575.

2
In the ratio /,/, always put the brighter on the top line, or there
will be arithmetical troubles with the logarithms.

A double star is two in the telescope but one to the eye; let us
consider how their magnitudes combine. The star Mizar has
components of mag. 2:40 and 3-96. In order to keep the ratio
I,/1, greater than 1 we will compare them with a star of mag. 4,
an imaginary one fainter than either and which we will call &

log (;l) ~(4—24)x04 log (%) ~(4—396) x 04
] '8
1, = 4365 x 1, L=1038 x 1,
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The total brightness / = (4:365 + 1-038) x /,. Then

log G.) = log 5403 = 07326 = (4 — m) x 0-4
183=4—m
m=217
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STELLAR PARALLAX

The parallax of the Moon was defined as the angle subtended at
the Moon by the radius of the Earth (page 47). The parallax of a
star is the angle subtended at the star by the radius of Earth’s orbit.
As the Earth moves from E, to E,, Fig 31, the position of the
near star S against the background of more distant stars moves
from P, to P,. The displacement, from which the angle of parallax
o can be deduced, is very small, but can be measured down to
about 0"-01. Parallax measured in this way is called trigonometrical
parallax, to distinguish it from indirect methods of which you
may have read elsewhere.

The astronomers’ unit of distance is based directly on the
parallax: if the parallax is 1 second of arc, the distance is 1 parsec
(pc). So far no star as near as this has been found; the nearest star,
Proxima Centauri, has a parallax of 0"-763 and a distance of
1/0-763 = 1-31pc.

Now in radian measure
arc r g
o Bl
But,

4 314
1 ofa.rcn—-—-—-——-——moX 3600rad.(page4)
S0
180 x 3 600
lpc= B - e 206 300A.U.
In km it becomes 206 300 x 150 x 106 = 3-095 x 10'3,
The popular unit of distance is the light year, the distance light,
having a velocity of 3 x 10°m s, will travel in a year. This is

3 x 10° x 3 600 x 24 x 365 = 9-46 x 10'%km

3-095 x 103

= TR RNy,

1pc therefore
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The above have been worked to our usual three-figure accuracy
and therefore differ slightly from the ‘table book values’, which
are as follows:
1 light year = 9-4607 x 10'?km
1 parsec = 3-0857 x 10'*km or 206 300A.U. or 3-2616 light years.
A note should be added that the symbol # is used for stellar
parallax, as well as for the more usual circumference/diameter

ratio. Both have turned up in this section, but the latter is rep-
resented only in the numerical form 3-14,

ABSOLUTE MAGNITUDE

So far we have compared the luminosities of stars as we see them,
but if we find that one star is twice as bright as another it does not
follow that it is really twice as bright, for it might be nearer. To
get a ratio of true luminosities the astronomer calculates what
the magnitudes would be if the stars concerned were both at a
distance of 10 parsecs, and then uses those to find the ratio. The
absolute magnitude of a star is the magnitude which it would have
if its distance were 10 parsecs. Let L and M be the luminosity and
magnitude at this distance, and / and m the values at its actual
distance of d pc. If L is greater than /, then M will be less than m,
SO we can write

%- 2512030,

Now the intensity of light varies inversely as the square of the
distance between the source and the observer, so we can write

L_a&
1 10%°
Hence
dz

. (m=M) BN —
2:512 102

(m — M)log2-512 = 2logd — 2log 10
(m— M) x 0-4=2logd — 2

—M=>5logd—5—m
or
M=m+5~-5logd

Example: The apparently brightest star is Sirius, mag. —1-44,

distance 2:7pc. Compare its true luminosity with that of Spica,
mag. 0:97, dist. 65pc.

93



First find their absolute magnitudes:
Sirius Spica
M=-144+5—5log27 M=097+5—5log65
=3-56 — 5 x 04314 =597 -5 x 1-813
=356 — 2:16 = +1-40 =597 — 9:06 = —3-09
Then
Spica = 2.5]2(14+309)
Sirius

Si Si

So Spica is 63 times as luminous as Sirius. It is nearly double the
diameter and has twice the surface temperature.

The astronomer has means of inferring absolute magnitude
from physical characteristics such as spectrum and variability,
and he can use this for finding distance—particularly useful when
it is too great for the trigonometrical method.

Example: Find the distance of Regulus, given that its apparent
and absolute magnitudes are 1-34 and —0-8 respectively.
—0-8=1-34+5—5logd
Slogd=1-14
logd=1+43
d = antilog 1-43 = 27pc
There are other ways of reckoning magnitudes besides the visual.
For example, photographic comparison gives different results
from visual, because the response of a photographic film to
different colours is not the same as that of the eye. This, however,

does not affect the foregoing work provided that you know which
system you are using—and keep to it.

log (513) —449 % 04=180 P — antilog 180 = 63.

THE MASS OF A BINARY STAR

Double stars have already turned up. When the two components
are near enough to each other to be observed in motion, the term
binary star is used. They are, of course, both in motion about the
common centre of gravity, like the Earth-Moon system, but also
like the Earth-Moon system it is quite valid to regard the lesser
star to be in orbit about the greater. The period and the angular
separation can be observed, though the latter will not be the true
separation a because the orbit is likely to be inclined to the line
of sight and what we see is the projection of it onto the celestial
sphere. However, when the pair has been observed for a period of
years the true value of @ can be found. Turn back to Fig 31. S
and S’ are the two components, a the true angular separation and
m the parallax. We have already seen that d=1/= in A.U.; it is
also equal to S8’/a. Thus
1 8§

Zu walawy
m a m

The last chapter included the universal form of Kepler’s third

law,
v
M+M = T2

when M is in sun-masses, D in A.U. and T'in years. For the binary
star SS’ is D, the observed period is T, so the mass of the system
can be found.

Example: The binary system Rigil Kent (« Centauri) has a
parallax of 0”732, a true separation of 17"-7 and a period of 80-1
years.

. @ 1
SS =;=0_—73-=242A.U.,

(242

@1y~ 2-2 sun-masses.

M+M =
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The ‘table book value’ for this star is almost exactly 2, but 2:2
happens to be the average value for binary stars in general.

This calculation, in reverse, is another of the indirect methods
of ﬁndmg stellar distances. By assuming that the pair is an average
specimen with M + M’ =2-2 and combining it with the observed
pe-nod T, the separation SS’ in A.U. can be calculated. Comparing
this with the observed true angular separation @ we can find the
pan;l!lax from S§8’ = a/, or the distance in A.U. from d=SS'/a.
Trying this out will be left to the student (Ex. 142).

THE DOPPLER EFFECT

It is assumed here that previous reading has provided some
knowledge of the nature of electromagnetic waves and of the
spectrum. If not, this section will be unintelligible and should be
omitted. The Doppler effect is a well-known phenomenon in
sound: the change in pitch of the note heard from a low-flying
aircraft as it passes overhead. As it approaches, the apparent
wavelength is shorter and the pitch higher than their real values,
and the opposite when receding. The same applies to light and
radio waves from celestial objects. A velocity of approach gives a
shorter wavelength, so spectral lines are displaced across the
band of colour towards the blue end; a recession gives a lengthen-
ing of the waves and a displacement towards the red. The colours
themselves do not move and we can regard them as created in the
eyes and brain of the observer.

Let the source emit f waves per second (the frequency). If
each wave has a length of A, at the end of one second the leading
wave will have travelled /" x A; this is the velocity, which we will
call ¢. Therefore
<
7
Now suppose that the source is moving towards the observer
with a velocity v; the tail of the wave train is chasing its head.
This means that the f waves have been compressed into a length
¢ — v, so the apparent wavelength seen by the observer is (¢ — v)/f.
The difference

c=fA or A=

But

Dividing, we get




The difference A — X’ is often expressed as 8] so the final formula
becomes
8

A

If the source were receding the train of waves would be stretched

out giving an apparent wavelength (c + v)/f, X’ now being greater
than A. Then

ole

; c+v ¢ v

PR GO
and we should get the same final formula as before (see also
Note 9, page 106).

The velocity of electromagnetic radiation is 3 x 10°m s™'.
Radio wavelengths are normally expressed in metres, so direct
division gives frequency in cycles per second, a unit now called
the hertz,

Example: To find the frequency of 3m waves.

Wavelengths in visible light, ultra violet etc., are very short in
comparison and are usually expressed in dngstrém units, one such
unit being 107'°m. The line known as H« has a wavelength of
6 562A; before finding the frequency this must be changed to
6 562 x 107'°m, and as this is 0-0000006562m the words ‘very
short” were quite justified. Conversion to metres is not necessary
when using the formula for Doppler shift, as the wavelengths are
used in ratio and units have disappeared.

Example: What would be the displacement of the He line if

the source were approaching with a velocity of 1000km s™!
(10°m s™)?

SA 10¢ 10° x 6 562
—6—5—62 = W A = W— == 2].‘8A to blue.
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Symbols and Abbreviations

= -s

b First Point of Aries |
= First Point of Libra |
2 Ascending node, longitude of

bl Descending node, longitude of

R Degrees, minutes and seconds of arc |
o (alpha) Right ascension |
B (beta) Celestial latitude |
8 (delta) Declination F
4 (delta) Distance of comet from Earth

e (epsilon)  Obliquity of the ecliptic 3

0 (theta) Terrestrial longitude, angles in general

A(lambda)  Celestial longitude, wavelength

a (pi) circum./diam. = 3-1416, stellar parallax
w (‘curly’ pi) Longitude of perihelion (planet)

@ (phi) Terrestrial latitude

w (omega) Argument of perihelion (comet) !

a Semi-major axis of ellipse, mean distance

A m unit

AU, Astronomical unit

b Semi-minor axis of ellipse

¢ Velocity of light \

cgs Centimetre-gramme-second system of units

e Eccentricity

E Equation of time

/ Frequency )

g Acceleration due to gravity

G Gravitational constant

GCT Greenwich civil time

GHA Greenwich hour angle

GMAT Greenwich mean astronomical time

GMT Greenwich mean time

hms Hours, minutes and seconds
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HA.
HA.r
HAMS

Sﬂﬁgg““*2=5

Hour angle

Hour angle of Aries

Hour angle of mean Sun
Hour angle of true Sun
Horizontal parallax

Hertz, or cycles per second
Inclination to the ecliptic
Light year

Local hour angle

Local mean time

Mean time

Mean daily motion of planet
Parsec

Period of revolution
Perihelion distance
Distance of comet from Sun
Right ascension

Sidereal hour angle
International units (Systéme Internationale d'Unités)
Sidereal time

Universal time
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Almanacs

The Astronomical Ephemeris is the standard work for astronomers, but
is unnecessarily large and expensive for likely users of this book. The
Nautical Almanac is specially arranged for use in navigation, and some
of the material is presented in a form not very convenient for the ordinary
astronomer; if it happened to be available it could be used. Whitaker's
Almanack is a general reference annual, but with some eighty pages or
so of astronomical information it covers most of the amateur’s needs
as far as numerical astronomy is concerned. The Handbook of the British
Astronomical Association is prepared specially for observers of the
various heavenly bodies; it contains some of the information which is
in Whitaker and much which is not. The contents of these two, so far
as it applies to the present book, is listed below. The Handbook can be
obtained from the British Astronomical Association, Burlington House,
London, W.1, and the other three from booksellers.

The Astronomical Ephemeris and The American Ephemeris is a joint
British-American production, and is therefore available on both sides
of the Atlantic. In North America the equivalent of the BAA Handbook
is The Observer’s Handbook, published by and obtainable from The
Royal Astronomical Society of Canada, 252 College Street, Toronto 2B,
Ontario. The content of the Canadian handbook is not quite the same
as that of the British one but its: purpose is to serve the practical amateur
observer. Several annual books supplying numerical data are also
published in the United States and readers in that country should seek
advice from their local astronomical society.

HANDBOOK WHITAKER INFORMATION
Equation of time Daily to 1s —
Sidereal time at Oh UT Daily to 1s 4-day intervals to 0-1m

Mean time transit of r Daily to 1s
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INFORMATION WHITAKER HANDBOOK
Sun:
R.A. and dec. Daily 4-day intervals
longitude - 4-day intervals
semi-diameter — 4-day intervals
transit of true sun Daily to Im 4-day intervals to 0-1m
ising and setting Daily 5-day intervals
Moon:
R.A. and dec. Daily —
rising and setting Daily —
phases Included Included
perigee and apogee Included Included
H.P. and semi-diameter | Daily Twice a lunation
longitude of 1st of each month | —
Eclipses during the year | Included Included
Planets:
time of transit Every 3-10 days —_
Every 5-10 days while
R.A. and dec. Every 3-10 days .
distance, magnitude - ] ;}I;:eplm is observ-
elements of orbits — Included
Comets expected during — Elements and
the year ephemerides
Co-ordinates of the Included —
principal stars
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Notes

Note 1

An accurate method of drawing an ellipse is shown in Fig 32. Draw the
axis and put in C and F, remembering that CA =a and CF =ge.
Find b either geometrically as on page 12 or from b =aV'1 — ¢*. Draw
the right-angled triangle so that LM = a and MN = b. (Squared paper
is useful here.) With centre C and radius a describe a circle. Draw a
number of perpendiculars to the axis cutting the circle, YKY” being
one such line. On LM make LV = KY; draw the perpendicular VW;
make KP = KP'=VW. Then P and P’ are two points on the ellipse.
Plot other pairs of points in the same way.

Note 2
The equation for the ellipse is

o

sipt

whence the ordinate
yng\/a’-—x’ (= KP when x = CK).

For a circle
x4y =a?
whence

y=+va?—x* (=KY when x = CK).
Thus if P is on the ellipse the ratio KP/KY would be equal to b/a. It is,
because we have made

KP_Vw_ b
KY LV a
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L
MV
Figure 32
Note 3
In co-ordinate geometry the equation for the ellipse is
X »
#Ztpmi

when the centre C is taken as origin. In Fig 6 the co-ordinates of P are
x = acosf horizontally and y = bsinf vertically. Substituting in the
equation we get
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a*cos® 0 b*sin?f
o Sl o

Thus P satisfies the equation and does lie on the ellipse.

cos? 0 +sin?0 = 1.

Note 4

The inclination is variable, the angular sizes of the Sun and Moon are
not constant, and their motions in their orbits are not uniform. (See
Barlow and Bryan.)

Note 5

Users of old records should know that until 1925 Jan 1, GMT was
reckoned from noon, and was therefore simply HAMS. This reckoning
was then renamed Greenwich Mean Astronomical Time (GMAT),
and for some years what we now know as GMT or UT was called
Greenwich Civil Time (GCT).

Note 6

The Gregorian calendar was adopted in England in 1752, when there
was an accumulated error of 11 days. To correct this, Sept 2 was followed
by Sept 14. Anyone calculating a time interval which overlaps this
period must remember not to include ‘the lost eleven days’. Another
trap for the historian is the fact that 1752 began on Jan 1, whereas under
the then existing calendar, 1751 was not due to end until March 25.
Three months belonged to both years and must not be counted twice.

Note 7

Teachers embarking on this chapter will find it helpful to have a chalk-
board globe, as some pupils have difficulty in changing a two-dimen-
sional diagram into a three-dimensional conception. The construction
of a permanent celestial sphere is described by Tricker. For juniors, the
‘Tancock flask’ (Fig 33) is helpful. By ignoring the glass on the near
side, they can imagine that they are inside the sphere and watch rising
and setting, circumpolar stars, and other aspects of this chapter.

Note 8

The angle from the perihelion to the point obtained (the angle wSM)
is the mean anomaly, and the true anomaly is found by adding a quantity
called the equation of centre. In terms of the ‘precision limits’ of this
book the correction is small, though it can rise to 10° for Mars and
over 20° for Mercury. Readers with a little trigonometry may like to
estimate the equation of centre in degrees from (360e¢sin M)/m, where
M is the mean anomaly. Stetson gives tables for this correction.
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Figure 33

Note 9

This formula is valid only if 8)/A, commonly represented by z, does not
exceed abm_:t 0-15, which corresponds with a velocity of the source
nearly one-sixth that of light. For higher velocities than this the principle
of relativity demands a more complex relationship.
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Exercises

EXERCISES ON CHAPTER 1

Group 1: Practical

1

To find the meridian from first principles.

Mount a vertical rod AB (Fig 34) on a smooth horizontal
surface, 30-50cm high if you are working on a table and about
150cm out in the yard. It is common knowledge that the Sun is
highest, and hence the shadow cast by the rod shortest, when
crossing the meridian. From this it follows that equal shadows
will be formed at equal times before and after the shortest.
Sometime before noon mark the direction of the shadow BC
and measure its length. Then either repeat every few minutes
until you find the shadow lengthening again, when the shortest
recorded position will mark the meridian, or leave it until
sometime after noon, and then test it until you find the length
BD the same as the first measurement. Bisect the angle between
this shadow and the first one. A string tied at B and knotted at
C gives a simple way of finding when BD is the same length as
BC.

To check the daily motion of the Moon.

Make two cardboard screens, each with a vertical slot in it.
Place them so that the two slots are over the meridian and
about 30cm apart. Time as near as you can when the west limb
of the Moon can be seen through both slots, and remember to
check your watch with a time signal. Repeat for several evenings
and compare with the remarks on page 17. This is easiest to do
in the summer evenings when the Moon is low in the sky.

To find your latitude.

Make a simple clinometer, Fig 35A, unless a proper one is
available. Look at the Pole Star through the slots, taking care
that the plumb-line hangs free. When all is steady, nip the thread
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agaigst the protractor with your finger and thumb, take it to
the Ilgl-lt and read the angle. The altitude of the pole is equal to
!‘.he latitude of the place, Fig 35B. The observer is at O and OH
is his horizon; angle OCE is his latitude. As the pole is very
distant CP and OP’ are parallel, so the corresponding angles
ZO¥’ (the zenith distance) and OCP (the co-latitude) are equal,
Therefore their complements, altitude HOP’ and latitude OCE,
are equal. The Pole Star is not quite at the pole, but just under
a degree from it, so your result would not ordinarily be exact
even if your observation were perfect.
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(a)

PROﬂEiC?O‘i’/E H /z
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O (b)

Figure 35

Group 2: Recalling Previous Reading

4
5

Grou
7

Explain how the inclination of the Earth’s axis causes the
seasonal changes in our climate.

Draw a diagram illustrating the phases of the Moon. Indicfm
in particular (i) first quarter, (ii) a waning crescent, (iii) waxing
gibbous. At what time of day would you look for each of these
three?

Show by di of the shadows the formation of (i) a solar
ecﬁmb}r(h)mm eclipse. Distinguish between partial and
total eclipses in each case.

p 3: General
The ellipticity of a planet is defined as the difference between the
equatorial and polar radii expressed as a fraction of the equa-
torial. Calculate the ellipticity from the figures on page 3.
Use an atlas to find the latitude and longitude of (i) Edinburgh,
(i) Montreal, (iii) Los Angeles, (iv) Sydney, (v) Moscow,
(vi) Johannesburg. ;
Convert into degrees and minutes (i) 0-3 radian, (i) 1'1 radian;
convert to radians (iii) 30°, (iv) 47°28’.
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10
11

12
13
14
15
16

17

18

19

21

22

Find the angular diameter in minutes of arc of an object 10cm
in dlamcter when viewed from a distance of 20m. e
Write a shorf account of the two principal motions of the Earth
fmd the relationship between them. What do you understand by
Smframehal?_f rnc;fereng:B}'l)ave you used one in this question ?
W ellipses by method 1, gi i)a=
Eu 02, I(ii) a=10cm, e = 0-7. e R
raw ellipses by method 2, given that (i) @ = =0
gil).aa=6cm,e=0-9. (i) a=6cm, e=01,
w ellipses by method 3, given that (i) @ = 5cm, b =
gi) ” qths:m’ i 8t t@)a b = 3cm,
raw the orbit of the Earth by the method described on page
Retain your drawing for further use. Deduce e and . e
gi tt:li; u;etho:l:lrgf gagefl 3 ;lraw the orbit of the Moon and find e.
our drawing for future use. A = geocentri i
B = angular diameter. oo

Date A B Date A B
1970 1970
Nov 1 245° 310 Nov 15 080° ’
3 272 315 17 106 35'42
5 299 32:0 19 131 299
7 327 323 21 154 296
9 356 32:5 23 178 29.7
11 025 324 25 202 301
13 053 319 27 228 308

The Moon crossed the ecliptic from S to N on the 7th and from
N to S on the 20th. Insert the approxima: itions
111:01:1& Aoy p te positions of the
rom the table on page 13 find the dates nearest to (i) apheli
(ii) perihelion, and, from the table in Ex, 16, (ifi) perigee.
@'?tﬁp;%“' . 16, (iii) perigee,
i erence to the same tables, what would you see if th
&g:;:_passed c't;ntr;.{ly across the Sun on 1 Nov ?y g
1s meant by the synodic and sidereal peri
gd wlg e periods of the Moon
raw the phases of the M i
iyt oon (i) 5 days and (ii) 17 days after
Make an accurate drawing of an evening crescent moon when
the illuminated part is one-quarter of the diam 1
Ee'thodp?,, diameter not less than 8cm). gk agey
sing Fig 2 and similar triangles calculate the length of the
Earth’s shadow, taking the diameters of the Earth:itd Sun to
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24

v

be 12700 and 1 390 000km respectively and the distance of
the Sun to be 150 x 10°%km. (In questions 22 and 23 you can
assume that the lengths of the shadows and the Earth-Moon
distance are small enough to neglect when added to or subtracted
from the distance of the Sun.)

(i) Find the length of the Moon’s shadow, using data from
Ex. 22 and taking the diameter of the Moon to be 3 500km.
(ii) What is the diameter of the shadow at the nearest point on
the Earth’s surface if the eclipse takes place on a day when the
Moon is 380 000km from the Earth, centre to centre? Radius
of the Earth 6 350km.

Starting from the result of Ex. 22, (i) what is the diameter of the
Earth’s shadow at the distance of the Moon, 380 000km? If
the period of the Moon is 27d 8h what is (ii) its velocity in km
per hour? (iif) What is the maximum time for which the Moon
(diam. 3 500km) can be completely immersed in the Earth’s
shadow ?

In Fig 6 the new and full moons are not 180° apart. Why not?
What eclipses would you expect to take place if the new moon
occurred (i) 15° before the node, (ii) 12° after the node?

EXERCISES ON CHAPTER 2

Group 1: Practical

27

To find the meridian, using an almanac.

From the almanac find the time of transit of the true sun.
Find your longitude from a map, the larger the scale the better;
convert it to time units (page 26). If you are west of Greenwich
the transit will be later, so add the longitude; if east, subtract.
Check your watch against the BBC time signal or the telephone,
so that you can deduce exact GMT (UT) from it. Over a smooth
level surface hang a plumb-line from a stand of some sort. At
the exact predicted time of solar noon mark the direction of the
shadow of the line. It is helpful if this meridian could be marked
somewhere permanently so that it is always available in future.

A school might build a brick pillar about 3 feet high, topped
with a smooth and truly horizontal slab of slate or concrete
about 2 feet square. It is useful as a telescope stand as well as
for meridian experiments.

To find the meridian, using the map only.

Choose a distant object which you can locate on the Ordnance
Map (1 inch or 2% inch). Rule a line through the object and your
point of observation. Place the map on a horizontal surface
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30

31

with the observing slits made for Ex. 2 standing on the line.
Turn the map and the slits until you can see the object through
them; the map is now ‘set’. The grid lines will be very nearly
parallel with the meridian, and somewhere in the margin there
will be a note giving the difference, if any, between grid north
and true north. If some readily identifiable object is actually
on your meridian make a note of it; you can then use it to locate
the meridian any time in daylight.

To find the meridian, using a compass.

The compass must be a good one, with a scale of degrees
marked on a revolving card. From the Ordnance Map find the
magnetic variation in your area, and correct it (as instructed on
the map) for the lapse of time since it was printed. Place the
compass on a horizontal surface and let it come to rest. If the
variation is x°W, then the true north will be x°E of the arrow
on the compass card, and vice versa. There must be no ironwork,
such as an iron fence, within about 10 feet of your point of
observation. This method is the least reliable of the series, as
magnetic variation can differ locally from the area value given
on the map. Magnetic variation is also called declination; if
the term turns up anywhere be careful not to confuse it with
astronomical declination, which is to be used in the next
chapter.

To attempt to measure the equation of time.

Find your longitude from a map, convert to time, and cal-
culate the GMT of 12h LMT (page 28). Check your watch so
that you can read correct GMT from it. Place your pair of
verﬁcalslits(Ex.Z)onthemeridian. and record the time at
which the bright bar of light passing through the first slit falls
exactly on the second. Do not look at the Sun. The difference
between your observed time, the time of apparent noon, and
12h LMT is the equation of time. The observation is easiest to
makcinthcwinterwhentheSunislowinthesky. This exercise
is less satisfactory than it sounds; don’t be disheartened if the
result is poor, and do consider carefully and write down your
difficulties and their possible causes. We shall return to this
problem at a later stage.

To make a sundial.

Fig 36 illustrates the idea. ABCD is a horizontal plane and
MM the meridian. OPQ is a rod pointing to the celestial pole
and therefore in the plane of the meridian ; it iscalled the gnomon.
PCD is a plane perpendicular to the rod and therefore in the
plane of the celestial equator (page 22). As the Sun moves
across the sky in a direction parallel with the equator the
shadow of the rod moves across PCD at the same rate of 15°
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Figure 36

per hour. At noon the shadow falls on PR, an hour later on
PS;, another hour and it is on PS; and so on. §,,S,... are the
points at which the shadow strikes the horizontal plane ABCD
and will enable the shadow lines to be drawn on that plane.
PCD has now served its purpose. Imagine it to be rc_»tatod
about CD until P falls on T, and that it is transparent; it will
then make Fig 37, which we are about to draw.

Draw a triangle OPR so that OR is about the same length as
the diameter of the dial you intend to make, angle ROP is equal
to the latitude of the place at which you are going to use it, and
angle OPR is 90°. Draw a horimn}al lin; oT acro‘ss gtltm of

uality paper which is very long from top to om—
lg:::e?thantysug;:t-ed by Fig 37B. Make OR and RP t!:e same
length as they are in the triangle. At R draw a long straight lm:
at right angles to OT. At P make the ang_lu RPS, =15°,
S1PS; = 15°, and so on, on both sides of PR. Join §,,S;...t0o O.
Draw a circle of the size of the intended dial, as shown, and
where OR, O8;,... cut the circle, ink in and number the hour
marks. If you care to make 5° angles from P you could ha_wo
20-minute graduations and then subdivide those py eye. Stick
the triangle OPR on to strong cardboard or 'thm wood and
cut it out; the part to the right of the wavyhz}ecannowba
discarded. This is the gnomon; mount it vertically on your
baseboard (the ‘carpentry’ of the job is left to you). Cut out your
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graduated circle and divide it into halves along the line OR.
Stick these to the baseboard, one on each side of the gnomon,
and with O level with its foot. It is then ready for use. Place it
on the meridian; make simultaneous readings of the dial and
GMT once a day for at least a month. Plot the differences

P

(q)

Figure 37

sundial-GMT on graph paper with differences as ordinate
(vertical) and date as abscissa (horizontal). Explain the shape
that you find. (As an alternative to drawing, or when RS
becomes inconveniently long, the graduation marks can be
calculated from the formula tan@ = sinlat. x tan15n, where n
is the time interval in hours on either side of the meridian and
6 the corresponding angle at O.)
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32

To find your longitude.

Experimentally it is the same as Ex. 30. The difference between
your GMT of transit and the Greenwich transit of the true sun
from the almanac is your longitude in time, Convert into arc.

Group 2: Recalling Previous Reading

33

34

35

36

What is the relationship between Greenwich Mean Time,
British Standard (Summer) Time, and the reading of the sundial
in the churchyard ?

There have been reports in the press about hazards to the health
of the business man who makes frequent air journeys between
Europe and America, and consequently suffers from abrupt
changes in the timing of his daily routine. What changes, and
why do they occur?

What changes in the appearance of the night sky would you
expect to see between (i) 7 pm and 11 pm on the same evening,
(ii) 8 pm on March 1 and 8 pm on September 1?

Why do we sometimes have a February 29, and what would be
the consequence if we did not ?

Group 3: General

37
38

39

41
42
43

Define sidereal time, solar time and time. How do they
differ, and why ?

What is meant by the equation of time? If its value is +8m, at
what time will the Sun be observed to cross the Greenwich
meridian ?

Suppose that the day (sunrise to sunset) is exactly 10 hours long,
and that the equation of time for that day is —6m. What will
be the times of sunrise and sunset as recorded by (i) a sundial,
(ii) a mean time clock? Is it right to say that mornings and
afternoons are equal in length?

Draw a graph showing the changes in the equation of time
throughout the year. Take date horizontally, E vertically above
and below the axis, plot the eight values given on page 25, and
join them by a smooth wave-like curve. From the graph find
(i) the value of E on March 1, (ii) the dates on which E = —6m.
Suggested scales: 1 inch to a month and % to a minute, or
2cm to a month and 3mm to a minute.

Convert the following times into angles: (i) 13h, (ii) Sh 36m,
(iii) 11h 04m 28s.

Convert the following angles into time: (i) 120°, (i) 60°12’,
(iii) 81°37°45".

If GMT is 12h what is the local mean time (i) in long. 80°E,
(ii) at Harvard, USA, long. 71°34'W, (iii) Sydney, Australia,
long. 151°09'E?
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45

47

49

50

If it is 12h LMT at Harvard, long. +71°34’, what is the LMT
(i) at Greenwich, (ii) at Palomar Observatory, long. +116°52"?

If it is 22h UT on 8 July what is the local time and date (i) at
Greenwich, (ii) in zone +5, (iii) in zone —5?

If an aircraft leaves London at 11 pm British Summer Time
and takes 7 hours to fly to New York (long. approx. 75°), at
what LMT does it land?

Estimate the sidereal time at (i) 20h UT on 1 March, (ii) 04h 30m
on 23 August.

Calculate the sidereal times at (i) 20h UT on 1 March, (ii) 04h
30m UT on 23 August, given that the sidereal times at Oh UT
were 10h 33m and 22h 03m respectively.

On a day when the sidereal time at Oh UT was 6h 40m, what will
it be at 22h 15m LMT (i) at Armagh Observatory, long. +6°39’,
(ii) Radcliffe Observatory, long. —28°12"?

Given that the sidereal time at Oh UT is 04h 00m, (i) at what
GMT will the sidereal time be 11h 45m, (ii) at what LMT in
long. 100°E will the sidereal time be 11h 45m?

EXERCISES ON CHAPTER 3

Group 1: Practical

51

52

Improvised equipment has been assumed as usual, but institutions
possessing a transit, a theodolite, or a sextant will be able to
reach a higher degree of accuracy.

To find latitude with a shadow stick.

You require the same rod or post as used in Ex. 1. By the
method of Ex. 27 calculate the mean time of solar noon, and
while using the almanac extract the declination of the Sun.
Atexact noon measure the length of the shadow. Then the height
of the stick divided by the length of the shadow is the tangent
of the meridian altitude; if tangents are not available, draw to
scale and measure the angle. Meridian alt. = (90° — lat.) + dec.
Calculate the latitude.

To find meridian altitude with the clinometer.

Adequate protection for the eyes is important; dark glasses,
smoked glass or old photo negatives are not really good enough.
(Teachers with large classes are advised to make no exception
to the rule ‘never look at the Sun’ and omit this exercise and
the next.) Red and blue gelatine filters (Strand Electric 14 and
20) bound together with sticky tape will do for short periods of
ngked—eye work. If one edge is left unbound the combination
will slip like an envelope over one of the sighting slots of the
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53

55

56

clinometer made for Ex. 3. Measure the altitude of the lower
limb of the Sun, and add 3}°, its semi-diameter, to get the
altitude of the centre. (If a sextant has been used, take a more
suitable semi-diameter from the table on page 13.) Deduce the
latitude from your result.

To time the transit of the Sun by direct observation.

Make a dark sleeve for the slits used for Ex. 2. Time the
instant when first the preceding (west) limb is in line with the
slits and then the following limb. Take the average and use it
to calculate the equation of time as in Ex. 30.

To find latitude and longitude from a star.

Choose a bright star for which R.A. and dec. can be found
from an almanac or elsewhere. Find the UT of its transit over
the meridian slits, and immediately afterwards measure the
meridian altitude with the clinometer. From the UT find the
Greenwich sidereal time (page 31); the R.A. is the local ST} the
difference is longitude in time; convert to angle. The latitude
can be found in the same way as in Ex. 51. The use of a simple
pair of slits is limited to objects at low altitude, say up to 30°.
A possible alternative is a pair of plumb-lines (provided that
there is no wind) as they can be much taller. Better still is to
design for yourself and make a sighting device which will move
up and down like a transit telescope.

To find the R.A. and dec. of a star.

This is the same as Ex. 54 except that you assume your own

co-ordinates and determine those of the star.
To make an equatorial theodolite. (The name is Dr Tricker’s.
A more elaborate form is described in his book, and another
will be found in Min. Ed. Pamphlet 38, Science in Secondary
Schools, HMSO 1960.)

Make the object shown in Fig 38; details are left to you, for
much of the pleasure of making things is in planning how to
do it. For the purpose of illustrating parts of this chapter stiff
cardboard will do, pins being used as pivots with corks behind,
and circles hand-graduated in units of 10°. If some accuracy in
measurement is intended wood must be used, and commercially
made degree scales such as circular protractors. Angle ABC is
equal to 90° — lat., so when the edge AB is placed along the
meridian on a level surface the upper face will be in the plane
of the equator. D is a disk pivoted at the centre and graduated
in degrees anti-clockwise from 0 to 360°; it is read at the mark E.
Mounted perpendicular to D and along the 0-180° diameter is
another disk, F, marked in four 90° arcs, the line of the zeros
being parallel with CB. G is a sighting alidade pivoted at the
centre of F.
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Place it horizontally on the meridian and using its two axes
of rotation set the alidade so that the two points are in line with
a star (or until the Sun casts a shadow of the southerly point on
to the northerly one). Then scale F, read at either of the openings
H, will be the declination; the sign should be obvious—it is
south or negative in the diagram. The reading at E is the hour
angle. But LHA in arc = H.A.¢ + SHA, and LHA in time =

B ~>wnoRTH

Figure 38

sidereal time ~ R.A. Hence SHA or R.A. can be found when
you have calculated sidereal time (page 31).

An alternative exercise is to find out the LHA and dec. for
some celestial object at some convenient observing time, set
tht-: scales, and see if at the appointed time you can locate the
object. This is the principle of the equatorial telescope; here
however there is a scale for sidereal time adjacent to scale D,
and once this has been set the driving mechanism of the telescope
maintains it for as long as desired.

To record the direction and time of sunset.
Each day for as long a period as possible observe the time and
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direction of the setting Sun, the point where the upper limb
finally vanishes. Use a compass and correct for variation as in
Ex. 29. Tabulate: Date; GMT; azimuth of sunset; amplitude,
expressed in degrees N or S of due west.

Group 2: Recalling Previous Reading

58
59

Describe the path of the Sun across the sky in June and in
December as seen from (i) the UK, (ii) Australia.

What is meant by the ‘circumpolar stars’ ? Name some circum-
polar constellations, and explain any changes which you would
observe if you travelled from the UK to (i) the Arctic Circle,
(ii) the Cape of Good Hope.

What and where are the Tropics of Cancer and Capricorn, and
what is their astronomical significance ?

Group 3: General

61
62
63
64
65
66
67
68

69

70

What are sidereal time and Right Ascension ? Show clearly how
they are related to each other.

Define meridian altitude, declination, zenith distance, polar
distance. Point out any relationships between them.

What is meant by sidereal hour angle ? Convert R.A. (i) 06h 30m,
(ii) 18h 12m into SHA in degrees.

When the sidereal time is 10h find the local hour angle (in time
units) of R.A. (i) 16h 32m, (ii) 22h 10m, (iii) 03h 50m.

When the sidereal time is 07h 41m 32s find the LHA of (i)
Capella, R.A. 05h 14m 28s, (ii) Regulus, R.A. 10h 06m 47s.
Find the local hour angle of objects of GHA 70° and 270° in
longitudes (i) 90°W, (ii) 60°E.

If the sidereal time at Greenwich is 16h 46m, find the LHA of
a star in R.A. 05h 26m observed in long. 15°W.

If the GHA of a star is 53°17°28”, what will be the LHA at the
same instant in (i) Rome, long. 12°27°06"E, and (ii) Toronto,
long. 79°33'54"W ?

The co-ordinates of Greenwich and Dublin are respectively
0=0° ¢=-+51°28"38" and 0 =-+06°20"18", ¢ =+53°23'13".
Find (i) the sidereal time at Greenwich when Capella, « = 05h
14m 28s, 8 =-+45°58’10", is in upper transit at Dublin. Find
also the meridian altitude of this star (ii) at Dublin, (iii) at
Greenwich.

The solstices are the points on the ecliptic of greatest angular
distance from the equator; the Sun passes them about June 21
and Dec 22. What is the declination on these dates, and what
would be its meridian altitude when observed from (i) Man-
chester, lat. +-53°29’, and (ii) Cape Town, lat. —33°56?
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72

73

74
75

76

77

78

79

80

81

85

What are the maximum and minimum meridian altitudes of the
Moon, seen from latitude 52°N? At what times of year would
you expect them to occur, and would they be regular annual
phenomena ?

What is azimuth? What are the altitude, azimuth and zenith
distances of an object on the celestial equator (i) when it is
rising, (i) when it is crossing the meridian, the latitude being
50°N?

A star has R.A. 05h 30m, dec. +50°. What is the sidereal time of
lower culmination, and what would then be its altitude for an
observer in latitude 52°N ?

Reconsider the last question for an observer in latitude 32°,
If the upper culmination of a star occurs at 07h 27m UT, what
is the time of the next lower culmination ?

In latitude 52°, if the altitude of a star at lower culmination is
10° what will it be at the upper ? What do you notice about the
average of the two altitudes when both are measured from the
north?

Explain the meaning of the astronomical triangle PZX.

The Sun crosses the meridian at a certain place at 12h 05m UT
and at an altitude of 45°, on a day when a sundial at Greenwich
is 10m fast and the declination of the Sun is +5°. Find the
latitude and longitude of the observer.

Draw a celestial hemisphere with the observer’s horizon
horizontal and in latitude 50°N. Insert the points N, S, E, W,
the pole, the zenith, the equator, the approximate position of
% at 21h LMT on September 23, and a star at R.A. 18h, dec.
+30.

Draw a celestial hemisphere as in the last exercise. Insert the
equator and the daily paths of the Sun on June 21 and Dec. 22
What do you think would be the approximate azimuth of the
rising and setting points on these two dates? What would be
the corresponding amplitudes ?

Draw a celestial sphere showing the poles, equator and ecliptic.
Label the points o and =. On the equator write X at about
R.A. 6h, Y atabout SHA 120°, and on the ecliptic Z at long. 90°.
Repeat Ex. 79 for an observer in lat. 30°S.

The first two *soft landings’ on the Moon were made by Luna 9
and Surveyor 1. Their camera lenses were respectively 60cm and
160cm above the surface. Assuming that the surface was uniform
(which it was not) and that the radius of the Moon is 1740km,
how much further could Surveyor see?

Given that theradius of the Earth is 6370km, what is the distance
of the Moon on a day when the horizontal parallax is 54’?
Draw a celestial sphere, showing the equator and the poles, and
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the ecliptic and its poles. What are (i) the R.A. and dec. of t!'le
poles of the ecliptic, (ii) the longitude and latitude of t_he cv.-:Iu;t.:al
poles? Draw any great circles which you have used in thinking
this out.

EXERCISES ON CHAPTER 4

In certain cases junior and senior have been differentiated

Grou
86

86A

p 1: Practical _ )
Observe the planets regularly for as long a period as posmblg,
loeatethemasweﬂasyoumamongthestars,an_dreoordtheu
positions on a star map. For Venus, Mars, and Jupiter when near
opposition, intervals should not be longer than a week. (If an
equatorial theodolite is available you might like to measure their
positions and plot them on squared paper.)

Instead of estimating the position of a planet by eye, measure
its distance from two neighbouring stars by means of a cross
staff, Fig 39, the instrument used for such work by early

Figure 39
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navigators. AB slides along CD and D is held close to the eye,
so the further AB the greater the angle subtended by it. A little
light will be needed to see the cross piece against the dark sky,
say by working a few yards from a lighted window. A laboratory
rule can be used for CD.

To determine the angle: (a) AB/DE = angle in radians
‘(!provided that the angle is fairly small, see p. 4); convert to

egrees,

Example: If AB = 10cm and DE = 60cm,
angle ADB = g = 0167 radian = 9-"6‘;—"_”0 =9°.55.

(b) If you are familiar with trigonometrical tables, EB/ED =
tan the half angle BDE, and the example becomes

tan BDE = % =00835 BDE =4°46

ADB =2 x 4°46’ = 9°32’ = 9°-53

(c) Use a plain rod for CD and calibrate in degrees, using the
following table. To find DE multiply AB by the number in
column 2. By using two different lengths of the cross piece, as
shown in the diagram, you can make two scales such as 1-7°
on one side and 7-30° on the other.

6 %cotif [} $cotif
1® 573 - i 63
2 287 10 57
3 191 12 47
4 14-3 15 3-8
5 11-4 18 31
6 95 20 2-8
7 82 25 22
8 71 30 1-8

By the method of Ex. 2 find the time of transit of one of the
planets, and hence fix its position on your orbit diagram (Ex.
100). Repeat at intervals, and so follow the motion of the planet
along its orbit.

Either by the method of Ex. 53-54 find the sidereal time of
transit of a planet and of the Sun on the same day; these will
be their R.A., or measure their R.A. with the equatorial
theodolite. Find their longitudes from the table on page 63
and insert them on your orbit chart, Ex. 104 or 105. (Remember

that heliocentric longitude of the Earth = geocentric longitude
of the Sun + 180°,) o
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Group 2: Recalling Previous Reading
89

90

91

Grou
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93

Describe several ways of recognising a planet in the sky.
Explain the meaning of this imaginary extract from the ‘Stars
of the Month’ in a newspaper: ‘Venus is an evening star and
reaches elongation on the 7th. Mars, in superior conjunction
on the 18th, will not be observable this month. Jupiter is still a
morning star until opposition on the 29th.’

Why are there phases of Venus but not of Jupiter?

p 3: General

The following table gives monthly positions of the Sun for a
year and for Venus for two years (such a table is called an
ephemeris). Plot the points on squared paper; number the
points as you go along, in pairs from 1-24; join with smooth
lines, preferably in different colours; on the Venus track write
‘morning star’ and ‘evening star’ as appropriate. (As a shorter
exercise plot 1970 July to 1971 March only.) Suggested scales
on foolscap size paper and arranged like the specimen map on
page 84: % inch to an hour of R.A., 7% inch to a deg. of dec.;
lcm to an hour, 2mm to a deg. In each case the dec. scale is
three times that of R.A. On this scale the graph for the Sun is
nearly the same every year and need not be drawn twice; give
the same points both sets of numbers, 1-12 and 13-24.

st SUN VENUS 1970 VENUS 1971
of R.A. Dec. R.A. Dec. R.A. Dec.

Jan 18h 44m -23°  18h 19m -233° 15h 33m -154°

Feb 20 57 -17 21 05 -18 17 39 =20
Mar 22 46 -8 23 20 -6 19 53 -19%
Apr 00 40 +4% 01 41 +10 2 20 -11
May 02 31 +15 04 06 <214 00 35 <42

June 04 34 422 06 50 +25 02 57 +15%
July 06 38 +23 09 19 +17%4 05 29 +23
Aug 08 43 +18 11 31 +3% 08 13 . -+

Sep 10 39 +8% 13 26 -111 10 45 +9%
Oct 12 27 -3 14 59 -22% 13 02 -5%
Nov 14 23 -14 15 14 -24 15 30 -19
Dec 16 26 -21% 14 30 -14 18 10 -—24%

Here is the ephemeris for Jupiter for one year (1970).

Jan 14h 02m-11 May 13h 53m—10 Sep 14h 03m—113
Feb 14 14 —-12 June 13 41 -9 Oct 14 24 -133
Mar 14 16 =12 July 13 38 -9 Nov14 50 -15%
Apr 14 07 -114 Aug 13 46 —-10 Dec 15 16 -17
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96

98

100J

101

102)

103

1048

Scales: 3 inches to an hour of R.A.; % inch to a deg. of dec.;
6cm to an hour, 4mm to a deg. These are equal scales. Plot
the points, join by a smooth curve, write the date against each
point, and estimate the date of opposition.

The synodic period of Venus is 584 days. Calculate the sidereal
period.

Jupiter was in opposition on 1969 March 21. Calculate the date
of the next one. Sidereal period 11-9 years (4 333 days).

Use these satellites of Uranus to illustrate Kepler’s third law:
131 000km, 1-41d; 192 000km, 2-52d; 268 000km, 4-14d;
586 000km, 13-5d.

The distances of the satellites of Mars are: Phobos, 9 370km,
and Deimos, 23 600km. If the period of Phobos is 7-65 hours,
what is that of Deimos ?

A ‘hovering’ artificial satellite remains over the same region of
the world because it has a period of 1 day. Given that the
distance of the Moon is 384 000km, its period 27-3 days, and
the radius of the Earth 6 370km, find the altitude of the satellite
above the surface.

Write the numbers 0, 3, 6, 12 etc. doubling each time until you
have eight altogether. To each add 4, making 4, 7,.... Under-
neath write the distances of the planets, omitting Eros, from
page 61. Study the list; can you see a better way of writing it ?
(This is known as Bode’s Law; it is doubtful whether it has any
theoretical significance.)

Draw the orbits of Mercury, Venus, Earth and Mars as explained
on page 61. Show the planets in the positions they would occupy
on July 1 if their transit times were Mercury 11h 35m, Venus
14h 45m, Mars 12h 47m. Mercury was after and Venus before
elongation.

Transits on June 1 were Jupiter 21h 00m, Saturn 10h 18m,
Uranus 19h 40m, Neptune 23h 00m. Draw their orbits and that
of the Earth as explained on page 61 and find the positions of
the planets.

Draw the orbits of the Earth and of Venus. Venus crossed the
meridian at 09h 12m on Dec 16; place it in its orbit, measure its
geocentric longitude, and state in what constellation it would
be. Inferior conjunction was on Nov 10.

Draw the orbits of the Earth and Jupiter. Jupiter crossed the
meridian at 17h 08m on Aug 1; place it in its orbit and measure
its distance from the Earth in astronomical units.

Using the instructions on page 61 and the data on page 61, draw
the orbits of the four nearer planets (excluding Eros) and place
them in their orbits for 1970 July 1. Do not place Mercury, as
the daily rate varies too much.
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1058
1065

1078

108S

109

1108

11

112]

1138

114

1158

1168

10

The same as 104, but for the Earth and the four great planets
on June 1.
The maximum elongation of Mercury varies considerably.
Using drawing 104, by inspection and a few trial measurements
find the greatest and least values.
Using drawing 105 find the longitude and latitude of Saturn on
1970 Mar 5, and with the help of the map on page 84 convert
to R.A. and dec.
Using drawing 104 find the longitude and latitude of Venus on
1970 June 13, and deduce the constellation in which it would lie.
If the necessary data is available and by junior or senior methods
as appropriate, find the positions and constellations of the
naked-eye planets for tomorrow. Consider which ought to be
visible in the evening sky and in what direction. When to-
morrow comes, go out and look for them.
Add the orbit of Eros to drawing 104. If its nearest approach
to the orbit of the Earth is 21 x 10°km, find a value for the
astronomical unit.
Adonis, like Eros in the last question, is an asteroid, but with
such a large eccentricity that it must be drawn as an ellipse.
Add as much as you can of it either to drawing 100J (the peri-
helion of the orbit is in long. 32° a=20, e=0-78); or to
drawing 104S (w=32°, 2, =1353° i=1° e=078, a=20,
g = 0-44, P = 2-5y). Choose for yourself the method of drawing
the ellipse.
Draw the orbit of Encke’s comet from instructions on page 67.
= 335° w =185° a=2:21, e =0-85. Draw the orbit of the
Earth (a circle will do) on the same paper, and mark the position
of the planet when the comet was at perihelion on 1971 Jan 19.
Ellipse method 2 suggested.
Draw the orbits of Encke’s comet, the Earth and Mars, three-
dimensionally, on two cards from the data in 112 and i = 12°,
Planet orbits can be drawn as concentric circles for this exercise
and method 4 (p. 103) is suggested for the ellipse. The distance
of the comet from the Sun on 1970 Nov 30 was 1:13A.U. Mark
the positions of the Earth and the comet on this date. The period
of this comet is 3-3y.
Draw the orbit of Halley’s comet and on the same paper those
of the Earth and Jupiter. Draw it as a parabola by ellipse
method 1 to a distance of about 6A.U. from the Sun. = 58°,
@ = 112° measured clockwise (see page 69), g =0-587,e=1.
The same as 114 but three-dimensionally; i = 162°. Indicate
the directions of motion of the comet and the planets. The
eccentricity is really 0-97; the period of this comet is 76y.
Working on drawing 104S find the approximate date and
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direction (radiant) of a meteor shower having these elements:
. =138° w = 155° g =096, e = 0:96, i = 116°.

State Newton's law of gravitation and Kepler’s third law, and
derive a relationship between them.

What is the force between masses of 8kg and 2g when placed
80mm apart? (G=67 x 10~ S.I). In what unit is your
answer? Suggest why the experimental determination of G
calls for a high degree of refinement.

Satellite IT of Jupiter is at a distance of 0-0044A. U, and its period
is 3-6 days. The mass of the satellite is 1/40 000 of that of its
primary. Find a value for the mass of Jupiter; in what units is it ?
By reference to the table on page 61 what is the distance of
Saturn from the Earth at the time of opposition (i) in A.U.,
(ii) in km ? If the angular diameter of the rings is then 46” what is
(iii) their diameter in km ? (Hint on page 5.)

An object is projected tangentially (at right angles to the
direction of the Earth) from a point X, situated 10 000km from
the centre of the Earth, with a velocity of 7-0km s~*, Show
whether the orbit will be (a) circular, (b) an ellipse within the
circle, (c) an ellipse outside the circle. If the answer is (b) or (c)
state the position of perigee.

Calculate the velocity of escape from the surface of the Moon,
assuming that its mass is 1/80 of that of the Earth (p. 74).
(Radius of Moon 1 740km; G = 6-67 x 10~! 8.I. units.)

EXERCISES ON CHAPTER 5

Group 1: Practical

124

If an equatorial theodolite (Ex. 56) is available use it to fix the
positions of all the stars in a constellation and draw a chart
from your results. This exercise is discussed in detail by Tricker.
The following stars are very near to integral (whole number)
magnitudes. If a star atlas is available locate them in the sky as
opportunity allows; they are fairly well spread.

Mag. 4 ¢« Leonis, 7 Cygni

Mag. 3 e Persei, y Bootis, 8 Cygni

Mag. 2 Polaris, Hamal (« Arietis), £ Orionis
Mag. 1 Spica, Pollux, Fomalhaut

Mag. 0 Vega, Capella, Arcturus, Rigel

The nearest to —1 is the southern star Canopus, —0-71; Sirius
is —1-47.
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Fig 40 shows two groups of stars with the magnitudes of some
of them written alongside. Find these groups in the sky and
estimate the magnitudes of stars not so labelled.

126

Figure 40

Fig 41 is the constellation of Lyra, 8 of which is variable; the
magnitudes of the other stars are quoted. As often as possible
for four or five weeks try to estimate the magnitude of j; for
instance, if you consider it to be brighter than 8 but less bright
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than £, call it 44. Regular variable star observers can work to 127 128
about a fifth of a brightness interval. Plot your results on graph R.A Dec. Meg. RA. Dec.

paper, with date horizontal and magnitude vertical. Can you g Mag.
deduce a period ? When you have finished (but not before) look
for the light curve of this star in other books. 17 2011 2 12 —82 1
30 9-5 4 15 —69 4
11 11 20-8 v 22 -23 3
12 156 3 22 +6-3 2
19 63 4 30 0 2
21 10-8 4 32 +99 4
47 14-8 2 34 -1-2 2
36 =27 4
38 20 2
45 -97 2
52 +7-4 1
06 20 -17-9 2
43 —16'6 -1

129  Draw a chart of the principal south circumpolar stars, using
the polar system. Link up stars belonging to the same con-
stellation and write in names and Greek letters. (« Eridani,
Achernar; « Carinae, Canopus; & Crucis, Acrux; « Centauri,

Rigil Kent).
Star R.A. Dec. Mag.
all —
Hydrus B 00h 23m 77°5 3
o 0yl 5% 61-8 3
¥ 03 48 74-4 3
Y 330 Eridanus o 01 46 575 2
Reticulum o 04 14 62:6 3
Figure 41 Dorado « 33 551 3
Pictor o 06 48 619 3
Group 2: General Carina = 22 527 -1
Questions marked L involve the use of logarithms. & 08 20 59-3 2
127-8 Draw charts, on the rectangular system, of the stars listed below. B 09 13 69-5 2
Name any stars or constellations which you recognise. ¢ 15 59-0 2
q 10 15 61-1 3
127 128 (/) 41 64-1 3
R.A. Dec. Mag. R.A. Dec. Mag. Vela ) 08 43 54-5 2
all + K 09 21 54-8 3
Crux 8 12 12 585 3
09h 43m 24°0 3 04h 33m +16°4 1 o 23 628 1
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130

131L
132L
133L
134A
134BL
135
136
137L

138L

139L
140L

141

R.A. Dec. Mag.
all -
Centaurus A 11 34 62-7 3
€ 13 37 532 3
B 14 00 60-1 1
o 36 606 0
Circinus o 38 64-8 3
Triangulum A. y 15 14 68-5 3
B 50 633 3
o 16 43 689 2
Ara 4 54 559 3
B 172k 555 3
o 28 500 3
Pavo a 20 21 569 2
Toucan [ 22 15 60-5 3

The magnitudes of the naked-eye stars run from —1 to +5.
Estimate the ratio of brightness which this means.

Calculate the brightness ratio between (i) the twins, Castor 1-56,
Pollux 1-15; (ii) the top two, Sirius —1-47, Canopus —0-71.

The star Algol (8 Persei) varies in magnitude from 2-2 to 3-5.
‘What brightness ratio is this?

Castor is a double star of mag. 1-56. If the brighter component
has a magnitude of 2-0 what is that of the fainter?

If one star is 300 times as bright as another, estimate the
difference in magnitude.

As above, with ‘calculate’ instead of ‘estimate’.

(i) What is the distance in parsecs of a star having a parallax
of 0”-02? Aldebaran has a parallax of 0”-048; find its distance in
(ii) parsecs, (iii) astronomical units.

(i) What is the parallax of a star 32-6 light years away ? (ii) If the
distance of Regulus is 85 light years what is its parallax ?
Calculate the absolute magnitude of (i) Antares, apparent mag.
092, distance 122pc; (ii) Canopus, apparent mag. —0-71,
distance 92pc.

The apparent stellar magnitude of the Sun is —26-8. Taking its
distance to be 1/206 000pc calculate its absolute magnitude.
(log 1/206 000 = 6686 = —5-314.)

Using results from the last two questions find the ratio by which
Canopus is brighter than the Sun.

The absolute magnitude of Acrux, deduced from spectroscopic
observation, is —3-8 and the apparent magnitude is 0-8. Find
its distance (i) in parsecs, (ii) in light years.

Sirius is a binary star with a period of 50 years, true separation
7"+6 and parallax 0"-38. Calculate the mass of the system.
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A binary star has a period of 34 years and a true separation of
1”-35. Assuming the mass to be 2-0 sun-masses, calculate
(i) the parallax, (ii) the distance in parsecs.

What is the frequency of (a) the 2lcm line used by radio
astronomers, (b) the sodium line at 5 890A ?

If a spectral line known to be 5 000A is observed at 50204,
what is the velocity of the source?

The K line of calcium has a wavelength of 3 934A. What would
be the observed wavelength in the spectrum of a galaxy receding
with a velocity of 15 000km s~ ?
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Answers

p. 113

p. 119

7
8

10
16
17

BR%

41

0-0033. The ‘table book value’ is 335

i) ¢=-+5556", 6=+3°11"

(i) =-+45°30°, +73°35 i

(iii) =-+34°07", +118°18'

Giv) =-33°50°, —151°10°

(v) =-+55°45, 3734

(vi) =-26°11, -28°05"

g}) I o] fourth figure doubtful

(iii) 0-524

(iv) 0-828

172

L =328°; e = 0055

() Julyl

(i) Jan1

(iii) Nov 9

(iv) Nov23

Annular eclipse

1 368 000km

(i) 377 800km

(ii) 38:5km

(i) 9170km

(i) 3 640km per hour

(iii) 0-6h or 36m

(i) solar-lunar-solar

(ii) one solar only

11h 52m mean time, 12h solar time

(i) 07h,17h

(ii) 17h 06m, 17h 06m

Almanac values for 1970:

i -12m27s

(ii) Jan 6, Mar 25, July 17, Aug 3 (the maximum being
—6m 26s on July 26)

(i) 195°

(i) 84°

(iii) 166°07"
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p. 123

42

43

2 83 & & 2

3

72

74

75
76

78

@) Sh
(i) 4h00m 48s

(iii) 5h 26m 31s

() 17h20m

(i) 7h 13m 44s

(iii) 22h 04m 36s

G) 16h46m 16s

(i) 8h 58m 48s

(i) 22hJuly 8

(i) 17h July 8

(i) 03h July 9

00h LMT (midnight)
() 6h24m

(i) 2h30m

(i) 6h36m 20s

(i) 2h33m 40s h ;
@) 4h 58m 40s The additional correction

. the bottom of page 30
(i) 4h58m20s[ 2
() 7h43m 50s has not been used.

(ii) 7h44m 50s
(i) 262°30"
@ 87
(i) 17h28m
(ii) 11h 50m
(iii) 6h 10m
(i) 2h27m 04s
(ii) 21h 34m 45s
(@) 340° 180°
(i) 130° 330°
10h 20m or 155°
(i) 65°44'34"
(i) 333°43'34"
(i) 5h39m 49s
(ii) 82°34'57"
(iii) 84°29'32"
(i) June 60°01’, Dec 13°01”
(ii) June 32°34’, Dec 79°34’
ing e=23°26"35" the answers would be 59°57'35",
13°04'25", 32°37°25*, 79°30'35")
661° in northern winter, 93° in summer
No, on account of the motion of the Moon’s nodes
(i) alt.= 0, az.= 90° zd =90°
(i) 40°, 180°, 50°
17h 30m, 12°
No lower culmination because the zenith distance is greater
than the altitude of the pole
19h 25m UT
86° from the south horizon. This would be 94° from the north,
and the average of 94 and 10 is 52, the latitude of the observer
Lat. 50°N, long. 3°45'W
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83

85

94
95

98

100 to
116

Suppose you guessed the June rising and setting to be 30°N
of E and W; then the azimuths would be 060° and 300° and
amplitudes both 30°N. The December values would be 120°,
240°, 30°S. The calculated amplitude is 38°

Horizon distances 2:36 and 1-45km, giving a difference of
0-91km

405 600km

(i) R.A. 18h, dec. 661°N; R.A. 6h, dec. 661°S

(ii) Long. 90°, lat. 664°N; long. 270°, lat. 663°S

225 days

Simple calculation in whole days gives Apr 23; it was actually
1970 Apr 21

The ratios d*/T? come to 1-13, 1-11, 1-12, 1-10 x 10*s

30-6 hours

42 350km from the centre; altitude 35 980km

0 3 6 12 24 48 96 192

4 7 10 16 28 52 100 196

039 072 10 1-5 52 9:5 192
The space at 28 represents the asteroid belt

Geometrical constructions as described will not give exact
results, but to check whether they are reasonable, almanac or
calculated values are given below. Some answers are sketched
in Fig 42
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100

101

102
103
104
105
106
107
108

110
116

118

119
120

121
122
125

126
130
131

132
133
134
135
136
137
138
139
140

141
142

143

144
145

Heliocentric longitudes: Mercury 067°, Venus 197°, Earth
279°, Mars 115°

Heliocentric longitudes: Jupiter 214°, Saturn 043°, Uranus
187°, Neptune 239°

Heliocentric long. 105°, geocentric long. 225°, in Libra
Heliocentric long. 219°, distance 5-51A.U.

Same as Ex. 100

Same as Ex. 101

About 18° to 28°

Geocentric long. 036°, lat. —2°; R.A. 02h 15m, dec. +11°
Geocentric long. 116°, lat. +2°; in Gemini at R.A. 07h 52m,
dec, +23°

1A.U. = 149 000km

The scattered Perseid stream is encountered from about
July 25, R.A. 02h 40m, dec. +56°, to about Aug 17, R.A.
03h 10m, dec. +58°; maximum Aug 12

1-68 x 10~'° newton. The force between laboratory masses
such as these is very small and difficult to measure,

0-000 876 sun-mass or 292 earth-masses

(i) 854A.U.

(ii) 1-28 x 10°%km

(iii) 285 600km

Case (c); perigee at X

2:39%km s

Leo: p4-1,  3-58, £ 3-65, 8 258, 6 3-41, 0 413

Cygnus: B 3-1, ¥ 2-32, € 2:64, v 4-04, 0 4-28, £ 3-40

Mag. 3-4 to 4-3; period 12-9 days

250 approx.

(i) 146

(i) 2-01

331

2-75

619

(i) 50pc

(ii) 20-8pc

(iii) 4-3 x10°A.U.

@ 0™1

(i) 0038

@i —451

(i) —5-53

+4:77

26 000

(i) 83-2pc

(i) 272L.y.

3-2 sun-masses

@i 07102

(ii) 9-8pc

(a) 1-43 x 10°Hz or 1 430 megacycles per sec

(b) 51 x 10'Hz

12 x 10°m s~ or 1 200km s™!

4130A
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Abbreviations, 99 Circular velocity, 78
Absolute magnitude, 93 Circumpolar stars, 41
Acceleration, 73; of the Moon, 73  Civil time, Greenwich, 105
Almanacs, 101 Civil year, 32
Altitude, 43; measurement of, Clinometer, 111

111, 120; meridian, 41; of Pole Colatitude, 112

Star, 112 Comet orbits, 67
Amplitude, 44; to measure, 123 Conjunction, 18, 52
Angles, 4 Coordinate systems, 47
Angle-time conversion, 26 Cross-staff, 125
Angstrém unit, 98 Culmination, 41
Anomaly, 105
Aphelion, 7 Date line, 29
Apogee, 16 Dates, astronomical, viii
Apparent solar time, 23 Declination, 31; magnetic, 116
Apses, 7 Defect of illumination, 54
Argument of perihelion, 67 Descending node, 18
Aries, First Point of, 13, 36 Dip of the horizon, 46
Artificial satellites, 78 Direct motion, 18
Ascending node, 18 Doppler effect, 97

Astronomical time, Greenwich,
105

Astronomical triangle PZX, 43

Astronomical unit, 59

Azimuth, 43

Barycentre, 16

Binary star, mass of, 95
Bode’s Law, 128

British Summer time, 28

Calendar, 33, 105

Celestial equator, 22, 36; latitude,
47; longitude, 13; longitude
compared with RA, 63; pole,
6, 36; sphere, 36-50; sphere,
model of, 105

Double star, magnitude of, 88
Dyne, 73

Earth, 2; orbit of, 7, 13

Eccentricity, of ellipse, 9; of
planetary orbits, 61

Eclipses, 18

Ecliptic, 6, 36

Elements of planetary orbits, 61

Ellipse, drawing an, 10, 103;
properties of, 8

Ellipticity of a planet, 113

Elongation, 52

Ephemeris, 127

Ephemeris time, 24

Epoch, 41, 86

Equation of centre, 105

141



Equation of time, 24; to measure,
116

Equator, celestial, 22, 36

Equatorial theodolite, 121

Equinoxes (equinoctial points),
32, 36; precession of, 41

Escape velocity, 79

Evening star, 52

First Point of Aries, 13, 36; of
Libra, 37
Frame of reference, 6

Geocentric, 6

Gravitation, 73-77; acceleration
g 73; constant of, G, 74;
Newton’s law of, 74

Great circle, 3

Greenwich Astronomical time,
105; Civil time, 105; hour angle,
41; mean time, 24; meridian, 3

Gregorian calendar, 33, 105

Heliocentric, 6

Hertz, 98

Horizon, distance and dip of, 46
Hour angle, 23, 38; of Aries, 38
Hour circle, 38

Inclination of Earth’s axis, 6; of
comet orbits, 68; of Moon’s
orbit, 18; of planetary orbits, 61

Julian calendar, 33
Kepler’s laws, 57-60

Latitude, 3; to measure, 111, 120;
celestial, 47

Law of gravitation, 74; Bode’s,
128

Laws, Kepler’s, 57

Libra, First Point of, 37

Light year, 90

Linear diameter of celestial ob-
Jects, 5

Local hour angle, 38

Local time, 28

Longitude, 3; to measure, 119,
121; in relation to time, 27

Longitude, celestial, 13; in re-
lation to RA, 63

Magnitudes, stellar, 87-89; abso-
lute, 93; of double stars, 88;
stars of integral, 130

Mass of binary stars, 95; of
Earth, 74; of planet, 76; of
Sun, 75

Mean time, 24; conversion to
sidereal, 30

Meridian, 3; to locate, 111, 113

Meridian altitude, 41; to measure,
120

Meteor orbits, 69

Momentum, 72

Month, 16

Moon, 16-20

Morning star, 52

Motion, apparent of planets, 52;
direct and retrograde, 18; of
Earth, 6; of Moon, 16, 111;
Newton’s laws of, 72

Newton’s law of gravitation, 74;
laws of motion, 72

Newton (unit of force), 73

Nodes, 18

Obliquity of the ecliptic, 6

Opposition, 18, 54

Orbits, of comets, 67; of Earth,
7, 13; of meteors, 69; of Moon,
16; planetary, 61-66 (details
under planetary)

Parabola, to draw a, 67

Parallax, horizontal or lunar, 47;
stellar, 90; of Sun, 47

Parsec, 90

Perihelion, 7

142

Perigee, 16

Perturbation, 72

Phases, of Moon, 16; of planets,
52,54

Planetarium, 36-40

Planetary orbits, 61-66; elements
of, 61; junior drawing, 61;
senior drawing, 64

Planets, apparent motion of, 52;
observing, 125

Polar distance, 41

Pole, celestial, 6, 36

Poles of the ecliptic, 47

Pole Star related with latitude, 112

Precession, 6, 41, 86

Precision, viii

Prime vertical, 44

Quadrature, 52

Radian measure, 4

Refraction, atmospheric, 46

Retrograde motion, 18, 54; comet,
69

Right ascension, 37

Satellites, artificial, 78-80
Semi-major axis, 8
Shadow stick, 111, 120

Stationary point, 54

Summer time, 28

Sun, apparent motion of, 6; mass
of, 75; protection from, 120

Sundial, 116

Symbols, 99

Synodic period, 17, 55

Theodolite, equatorial, 121

Time, 22-33; angle conversion, 26;
ephemeris, 24; equation of, 24;
Greenwich, 24; Greenwich As-
tronomical and Civil, 105; local
mean, 28; longitude and, 27;
mean, 24; sidereal, 23; sidereal-
mean conversion, 30; solar,
apparent, 23; summer, 28;
universal, 24; zone, 28

Transit, circle, 22; upper and
lower, 41; of Venus, 60

Triangle PZX, 43

Trigonometrical parallax, 90

Tropical year, 32

Universal time, 24

Variable star, 131
Velocity, circular, 78; of escape,

Sidereal hour angle, 38; period, 79; deduced from spectrum, 97
version to mean, 30 Vertical circle, 43; prime, 44
SI units, viii
Small circle, 3
Solar time, 23 Year, 32
Solstices, 32
Spherical triangle, 43 Zenith distance, 41, 112
Star charts, rectangular, 83; polar, Zodiac, 6
83 Zone time, 28
143
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ASTRONOMY & SPACE

This new journal appeared in June under the stimulating editorship
of Patrick Moore. It is primarily intended for the amateur astrono-
mer, although it contains substantial original articles of a high stan-
dard that will be of interest to the professional. Many of the features
are topical, with up-to-date commentary on space exploration and
current notes for observers, but the main articles will have a lasting
reference value. The principal contributions are illustrated with
plates and diagrams, and the journal also contains book reviews and
‘Notes and News’. Astronomy & Space is an international periodical
with a very wide appeal. The study of astronomy and the explora-
tion of space have enjoyed an enormous growth ef interest during
the past decade, and the journal provides a forum for the latest
writing in this exciting field.

Quarterly Subscription £2.50
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