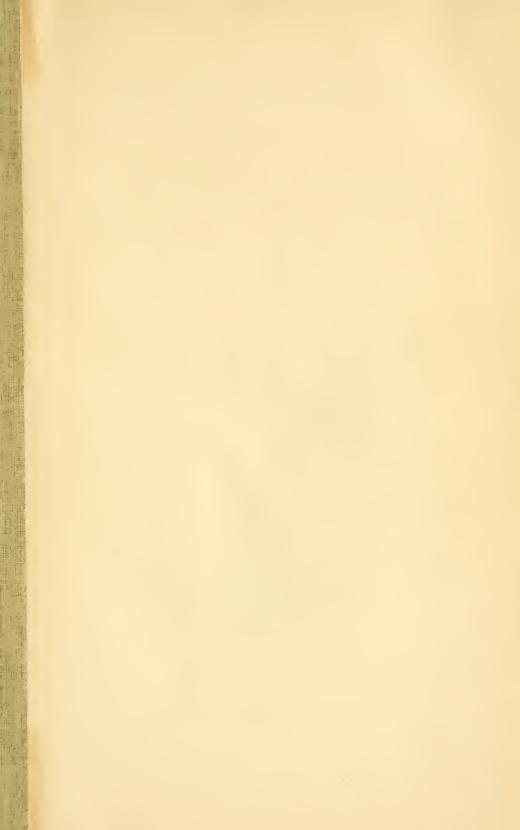
Household Refrigeration



ATEDED I FERRETTI

Northeastern University Library

Prof. Alfred J. Ferretti

•

Household Refrigeration

A COMPLETE TREATISE ON THE PRINCIPLES, TYPES, CONSTRUCTION, AND OPERATION OF BOTH ICE AND MECHANICALLY COOLED DOMESTIC REFRIGERATORS, AND THE USE OF ICE AND REFRIGERATION IN THE HOME

> UBY H. B. HULL, M.E. Refrigeration Engineer

Third Edition, Revised and Enlarged

PUBLISHERS: NICKERSON & COLLINS CO., CHICAGO

2000 48

Copyright, 1924, 1926 and 1927 Nickerson and Collins Co All rights reserved

Press of Ice and Refrigeration Chicago-New York

PREFACE TO THE FIRST EDITION

In developing this work on "Household Refrigeration," the first of the kind published, the author has endeavored to present a subject in its broadest sense.

Attention has been given to the production of refrigeration for any household or domestic purpose by both ice and mechanically cooled refrigerators. The work consists of a treatise on the principles, types, construction and operation of both ice and mechanically cooled refrigerators, including therein certain considerations on the use of ice and refrigeration in the home.

It is believed that this work will not only be found to be interesting and instructive to designers, manufacturers, dealers, and distributors, of both ice and mechanically cooled refrigerators, but also will be of interest to the householder, who employs refrigeration in either of the aforementioned systems.

The author has drawn extensively on his experience as a refrigeration engineer for material for this work. However, in the many instances, he has made use of the work of others, for which proper credit has been given. The author desires to gratefully acknowledge the assistance which has been extended to him by various associations, publishers, manufacturers, and others, during the preparation of the subject matter of this book.

H. B. Hull.

PREFACE TO THE THIRD EDITION

The industry of Household Refrigeration has made great strides in the interim since the preparation of the first and second editions of this work.

The use of the small refrigerating machine in homes is rapidly increasing each year.

The use of ice in the home is also gradually increasing.

The seasonal character of sales of both household refrigerating machines and ice is gradually becoming less marked.

Many countries in Europe are demanding ice and household refrigerating machines to assure proper food preservation in the home.

This edition contains descriptions of the latest models of both compression and absorption type household refrigerating machines and also includes recent improvements in refrigerator construction.

October, 1927.

H. B. HULL, Dayton, Ohio.

CONTENTS.

CHAPTER I. Refrigeration Units and Theory	Page 11
CHAPTER II. Ice for Refrigeration Purposes	17
CHAPTER III. Refrigerants	31
CHAPTER IV. Refrigerants—Tables	53
Снартек V. Heat Transfer	101
CHAPTER VI. Refrigerating Systems	125
CHAPTER VII. Household Refrigerating Machines, Compression Type	187
CHAPTER VIII. Household Refrigerating Machines, Absorption Type	299

CHAPTER IX. Types and Constructions of Household Refrigerators	Page 331
CHAPTER X. Operation of Ice Refrigerators	377
CHAPTER XI. Testing of Ice Refrigerators	399
CHAPTER XII. Preservation of Foods in the Home	437
CHAPTER XIII. Miscellaneous Tables	455

FOREWORD.

The problem of preserving food collected during times of plenty, for use when the source of supply fails, has been practiced by man from even the remotest ages. Among primitive races, food preservation was essential to avoid famine. In the modern civilized countries, the preservation of food is an important factor in maintaining a balance between the demand and supply for perishable foods. There is a special need of preservation in order to transport food to the large cities.

Chemical processes of animal and vegetable tissue actively continue in these foods even after the more obvious evidences of life has gone. Fruits ripen, grains mature, starches become sugars, flavors develop, and meat becomes tender. These changes are desirable and nutritively beneficial.

There are numerous artificial methods employed to restrain the activity of these processes in foods. The most important is by refrigeration or cooling. Some other methods are by drying, dehydrating, smoking, pickling, curing, preserving, and cooking.

Refrigeration is the method of food preservation which causes a minimum of alteration of the desirable food properties. The natural freshness and flavors are retained without abstracting moisture, and there is a minimum change in the physical, chemical, or nutritive qualities of the food.

Refrigeration was first used by the Egyptians, Greeks, and Romans, who cooled their wines and water in crude vessels which extracted some of the heat from the liquids through evaporation.

The first methods of preserving food by cooling were very crude—a hole in the ground or a stream of water served this purpose. In the early part of the nineteenth century, the ice box came into use. Natural ice was placed in the ice compartment. The melting of the ice produced a circulation of cold air which cooled the foods. This was a great improvement over previous methods of storing perishable foods.

Ice of the winter months was stored for this use in specially constructed buildings, located near the pond or lake supplying it.

The supply of natural ice was very uncertain. Transportation was difficult and ice was only available to limited localities.

The next important step in household refrigeration was the use of manufactured ice. Active work in the development of machines for producing ice in a commercial way was carried on from 1830-1870. The success of these machines permitted their use in even the warmest climates. In addition there were difficulties in transporting natural ice any great distance from its source. In regard to manufactured ice, the large loss in melting during months of storage and the time of transportation could be saved. The quality of the water used for making ice could be better controlled. The supply was more certain and could be regulated to meet the demand.

In addition to the increased use of manufactured ice, some improvement in the construction of household refrigerators was made. Better insulation was used, more sanitary linings and better air circulating systems designed. The temperature in the food compartments could be maintained from 20° to 30° lower than the room temperature.

During the last twenty years, the household refrigerating machine has been under active development. It is only within the last five years, however, that machines have been manufactured in quantities and proven a commercial success.

Mechanical household refrigeration is having an important influence on refrigerator cabinet construction. It is necessary to have better constructed and insulated refrigerators to operate satisfactorily, with the lower food compartment temperatures produced by the mechanical unit.

The cost of operation of the household machine is about the same as the cost of ice. When the interest of the investment and depreciation are considered they will usually cost more than ice. The increased sale of machines indicate that the advantages compensate for this difference in cost.

There are about 15,000,000 wired homes in the United States supplied with electric current. Less than 3 per cent of these have electrical refrigerating machines so there is a large potential market for this product. About 12,000,000 iced refrigerators are in use in the United States at the present time. There are about 9,000,000 wired homes in Europe.

The production of household refrigerating machines during recent years has been approximately as follows:

Previous to	1923 20,000
Year	1923 20,000
Year	1924 24,000
Year	1925 75,000
Year	1926
Estimate for year	1927600.000 to 800,000

The gas fired absorption type household refrigerating machine is being rapidly developed at the present time. The cost of operation of this type machine can be considerably less than the cost of the equivalent amount of refrigeration with ice. There are about 17,000,000 gas meters in use in the United States.

It is predicted that, in the near future, the automatic household machine will compete with ice, even on a cost basis in homes having electric current or gas service.

÷

CHAPTER I

REFRIGERATION UNITS AND THEORY

Heat Unit—A heat unit is an arbitrary standard or unit of measurement which expresses the capacity of a given body to absorb and retain heat energy under a given increase of its sensible heat. Water has a greater heat capacity than almost any other common substance and it has been used in framing the definition of a heat unit.

British Thermal Unit.—A British thermal unit (B.t.u.) is the quantity of heat required to raise the temperature of one pound of pure water one degree Fahrenheit at or near its temperature of maximum density, 39.1° F. For practical work it may be considered as the amount of heat required to raise the temperature of one pound of water one degree Fahrenheit.

Sensible Heat.—Sensible heat is the heat which goes to increase the temperature of a body without affecting its state, whether it be that of a solid, liquid or gas. Thus the addition of sensible heat to a body may be felt by the hand or be indicated by a thermometer.

Latent Heat.—Latent heat is the amount of heat that must be supplied to a body to change its state from a solid to a liquid, or from a liquid to change it to a gas. This heat separates the molecules of the substance and cannot be indicated by a thermometer since it produces no change in temperature. Every substance has a latent heat of fusion, required to convert it from a solid to a liquid, and another, a latent heat of vaporization required to convert it from a liquid to a gas or vapor. Experiments have shown that it requires 144 B.t.u. to melt one pound of ice at 32° F. into one pound of water at 32° F.; thus we have 144 B.t.u. as the latent heat of fusion of ice.

If heat is applied to one pound of water at 212° F. the water will remain at this temperature under atmospheric pressure until all of it has been evaporated into steam at 212° F. This has been found to require 970.4 B.t.u.; therefore, the latent heat of vaporization of steam at atmospheric pressure is said to be 970.4 B.t.u.

Specific Heat.—The specific heat of a substance is the ratio of its heat capacity to that of water. One pound of water requires one B.t.u. to raise its temperature one degree F. One pound of cast iron requires only 0.13 B.t.u. Therefore, the specific heat of cast iron is 0.13. The specific heat of ice is 0.504; of air, 0.240, of anhydrous ammonia, 1.10. The specific heat of materials usually stored in a refrigerator averages about 0.80.

Refrigeration.—Refrigeration is a term used to represent the cold produced or rather the amount of heat removed. It is measured by the latent heat of fusion of ice. The capacity of a machine in tons of "ice melting" or "refrigeration" does not mean that the machine would make that amount of ice, but that the cold produced is equivalent to the melting of the weight of ice at 32° F. into water at the same temperature.

One ton of refrigeration is equal to 144x2,000 or 288,000 B.t.u. per 24 hours, or 12,000 Bt.u. per hour or 200 B.t.u. per minute.

Absolute Pressure. — Absolute pressure is the pressure reckoned from a complete vacuum. Gauges in common use indicate the pressure, in pounds per square inch, above atmospheric which is 14.7 at sea level; this reading is called gauge pressure. To convert gauge pressure to absolute pressure, 14.7 pounds, per square inch, must be added to the gauge reading.

Absolute Zero.—Absolute zero is the point at which molecules lose all motion; in other words, the temperature at which

12

there is an absence of all heat. This temperature has not been reached but is assumed to be 460 degrees below 0° F.

Mechanical Equivalent of Heat.—The mechanical equivalent of heat has been determined by accurate experiment. If the heat energy represented by one B.t.u. be changed into mechanical energy without loss, it would accomplish 778 footpounds of work. One hp. represents 42.416 B.t.u. per minute.

Refrigerating Machine Capacity Rating.—In December 1920, the A. S. R. E. and A. S. M. E. adopted a standard method for rating the capacity of any refrigerating machine which is concisely as follows:

"The capacity of any refrigerating machine shall be expressed in terms of 2,000 lbs. ice melting effect for 24 hours (288,000 B.t.u.) with 5° F. saturation temperature in the suction side and 86° F. saturation temperature at the discharge side."

Heat and Temperature. — Heat is a form of molecular energy. All bodies are composed of large numbers of extremely minute particles, known as molecules. These molecules have an attraction for each other, which is greater in solids than in liquids and greater in liquids than in gases. These molecules are in a state of continuous and irregular motion, the rate of which depends upon the temperature, being more rapid at higher temperatures. Absolute zero is supposed to represent the condition of matter where there is no kinetic energy of the molecules, and therefore no temperature. Absolute zero is -460° F., or -273° C.

Heat, being a form of energy, may be converted into electrical, chemical or mechanical energy. The two terms, heat and temperature, are frequently confused. Heat is a measure of quantity. Two pieces of iron may have the same temperature, however if one piece is larger than the other it will contain a larger quantity of heat. A cake of ice may contain more heat than a smaller quantity of boiling water. Heat is constantly passing from warmer objects to colder ones, just as water always tends to flow down hill. There is no natural process in which heat passes from a colder to a warmer object without the expenditure of outside work. Temperature is a term used to denote the degree of hotness or coldness of a body and as explained above, it depends upon the amount of sensible heat contained in the body. Since our sensation of warmth and cold is not sufficiently accurate and trustworthy for technical purposes the physical change of expansion of a mercury, for example, accompanying its change in temperature has been agreed upon as a method of measuring temperature.

Theory of Refrigeration.—Refrigeration implies the reduction of the temperature of a body below the surrounding environment temperature. It further implies the maintaining of this temperature difference. This requires the constant extraction of heat from the space in which the temperature is already lower than the surrounding environment temperature.

Example.—The food compartment of a refrigerator is being maintained at a temperature of 45° F., and the room temperature is 70°. The refrigerator will continually absorb heat from the room. It is therefore necessary to "pump" this heat out of the refrigerator, as well as the heat supplied by placing relatively warm food or containers inside the refrigerator. To extract this heat from the 45° F. food compartment, it is necessarv to have a still colder object such as a cake of ice, a brine tank, or cooling coil to continually absorb heat. The ice melts and the heat in the refrigerator is used to supply the latent heat necessary to change ice into water. With a brine tank in which are immersed the evaporator coils, the heat in the refrigerator is used to vaporize the liquid refrigerant in the coils. and a small amount to superheat the gaseous refrigerant, after being vaporized. The refrigerant is then compressed, and this heat passes into the condensing medium which is usually water or air.

Refrigeration Constants.—A number of the commonly used refrigeration constants are shown in Tables I to IX inclusive. Table I contains the interrelation of tons of refrigeration, pounds of refrigeration, and heat units (B.t.u.).

Table II gives the units of refrigeration, tons of refrigeration, and pounds of refrigeration expressed in B.t.u. per day, hour, minute and second. Due to the fact that the British ton is 2,240 pounds, the corresponding British ton of refrigeration is therefore equal to 2,240X144=318,080 B.t.u. The corresponding American ton of refrigeration, 2,000X144=288,-000 B.t.u.

Table III gives the tons of refrigeration required per ton of ice made when approximately 20 per cent is allowed for the losses occurring in the ice freezing process. Some of the common properties of ice are given in Table IV, while the weights of water per cubic foot and per gallon are given in Table V. Table VI contains some useful hp. equivalents. Some of the useful atmospheric pressure equivalents are given in Table VII. Some average weights of cork insulation are given in Table VIII. The heat transmission through one square foot of surface is found by dividing the total heat in B.t.u. transmitted per hour by the production of the mean temperature difference, and the heat transfer rate expressed in B.t.u. per square foot per degree of temperature difference per hour. Some of the fixed points in thermometry and other temperatures are given in Table IX.

TABLE I.-CONVERSION FACTORS

	Tons	Pounds	B.t.u.
Ton of Refrigeration	1	0.0005	0.000003507
Pound of Refrigeration	2.000	1	0.007014
B.t.u	288,000	144	1

TABLE II .- TONS AND POUNDS OF REFRIGERATION

1 Ton Refrigeration = 288000 B.t.u. per o	lav
1 Ton Refrigeration $=$ 12000 B.t.u. per h	1001
1 Ton Refrigeration = 200 B.t.u. per	minute
1 Ton Refrigeration = 3 ¹ / ₃ B.t.u. per	second
1 Pound Refrigeration = 144 B.t.u. per o	day
1 Pound Refrigeration = 6 B.t.u. per	
1 Pound Refrigeration = 0.1 B.t.u. per 1	minute
1 Pound Refrigeration = .0013/3 B.t.u. per	second

TABLE III .--- RELATION OF REFRIGERATION TONNAGE TO ICE MAKING

Temperature of Condensing	Tons Refrigeration
Water degrees F.	Per ton ice making
50	
60	
70	
80	
90	1.74

HOUSEHOLD REFRIGERATION

TABLE IV .---- PROPERTIES OF ICE

Weight	per cubic	foot	 57.5 pounds
Specific	Heat		 0.504 B.t.u.
Latent	Heat		 .144 B.t.u.

TABLE V.-WEIGHT OF WATER

One mechanical horsepower = 33,000 foot pounds per minute One mechanical horsepower = 2545. B.t.u. per hour One mechanical horsepower = 746. watts

TABLE VII.—ATMOSPHERIC PRESSURE EQUIVALENTS

One Atmosphere = 14.67 pounds per sq. in. One Atmosphere = 33.9 feet of water One Atmosphere = 29.92 inches of mercury

TABLE VIII.-CORK INSULATION DATA

Weight per cubic foot, granulated = 6.5 pounds Weight per cubic foot, regranulated = 8.0 pounds Weight per cubic foot, corkboard = 12.0 pounds B.t.u. heat leakage of one square foot corkboard 6.5 x temp. difference

per 24 hours = -

Thickness in inches

TABLE IX .--- FIXED POINTS IN THERMOMETRY

	Fehrenheit Degrees
Absolute zero (theoretical)	-460°
Mercury freezes	-38°
Water freezes	to 50°
Room temperature	to 70°
Pasteurizing milk	145° 212°
Water boils	212

CHAPTER II

ICE FOR REFRIGERATION PURPOSES

Historical Data.-The practice of cooling bodies below the temperature of the atmosphere by the use of ice, has been followed for centuries. In the earlier times, the ice used for refrigeration purposes was natural ice, which formed on the rivers, lakes and ponds, during the cold winter months. The ice, after being harvested in the winter, was stored in caves in the ground, so that perishable foods could be preserved during the hot summer months. Coming up to modern times, we find, in the last half of the nineteenth century, due to improved methods of storing, harvesting, and distribution, that the use of natural ice for refrigeration purposes assumed a large proportion in the United States. Later, practically within the time of the present generation, means were devised whereby ice for refrigeration purposes could be procured by mechanical means in commercial quantities. Still later, within the last decade, attention has been directed to ways and means of producing refrigeration in the home by mechanical means directly.

At present this subject is receiving the attention of many inventors, engineers, manufacturers, and others. New and improved devices and processes are being developed constantly.

The National Association of Ice Industries has recently published a bulletin, entitled "The Romance of Ice," which contains an interesting review of the historical data on this subject. The following has been extracted from this bulletin:

HOUSEHOLD REFRIGERATION

THE ROMANCE OF ICE

Prologue.—Every product, every industry, every modern development has its "story." Perhaps the pages have not been turned back to that he who runs may read and be interested, but the story is there. Some of our greatest untold romances concern those taken-for-granted commodities which the public sees, uses, enjoys, without giving a thought to their interesting origin or the struggles of men in their development.

For example, ice is a necessity without which the public would really suffer. True the blasts of winter turn the waters of river, lake, and pond into ice; one long puff from Boreas' cheeks provides thousands of tons of ice each year, but twenty-six million American families cannot be supplied by Nature's manufactory alone.

Let's turn back the pages of history for a moment and see what happened in the world of yesterday to make ice now as readily accessible as coal or wood. These pages reveal real romance.

History.—The early Greek poet, Simonides, while at a banquet, observed that the liquor served to the other guests was cooled by snow. Whereupon he expressed his dissatisfaction in the following ode:

"The cloak with which fierce Boreas clothed the brow Of high Olympus, pierced ill-clothed man While in its native Thrace; 'tis gentler now, Caught by the breeze of the Pierian plain. Let it be mine: for no one will commend The man who gives hot water to a friend."

History's pages also show that the ancient Egyptians knew the secret of cooling by evaporation, as practiced by the native of India today—filling with water shallow trays of porous material placed on beds of straw, and leaving them exposed to the night winds, with the result that dawn finds a thin film of ice formed on the surface.

On a very early page we find that the Emperor Nero had slaves bring snow down from the mountains to cool his wines. Alexander the Great had trenches dug for storing snow. Hundreds of kegs of wine were cooled there, with the result that his phalanxes entering battle the next day didn't care much what became of them, just so it was a good battle.

Marco Polo, the great Italian navigator, brought recipes for water and milk ices from Japan and China in the thirteenth century.

When Catherine d'Medici left Florence, Italy, to go to France, in the sixteenth century, she took with her the best of the chefs to make sure that she would be supplied with frozen creams and ices every day. Sir Walter Scott told how Saladin, leader of the Mohammedan armies, sent a frozen sherbet to Richard the Lion Hearted, much to the amazement of that doughty monarch.

During the seventeenth century the French government made an unsuccessful attempt at government ownership when it licensed the business of farming snow and ice. The farmers who received government favor thereupon raised prices with such studious regularity that the people refused to buy and the Government was forced to relinquish its control of this commodity. Immediately thereafter supply and demand got into its stride and the business settled back into sanity.

As Lord Bacon commented in his Sylva Sylvarum:

"Heat and cold are Nature's two hands whereby she chiefly worketh, and heat we have in readiness in respect of the fire, but for cold we must stay till it cometh or seek it in deep caves or mountains, and when all is done, we cannot obtain it in any great degree, for furnaces of fire are far hotter than a summer's sun, but vaults and hills are not much colder than a winter's frost."

Bacon knew what a useful thing it would be if man could have the same command of cold as of heat. Scientist that he was, he undertook experiments into its possibilities. This led to unfortunate results, as he caught his death of cold by alighting from his carriage one winter day and stuffing snow into a chicken to see if it would keep.

The Italians, Spaniards, and Frenchmen have always been devotees of better living, and history is filled with interesting side lights on their uses of snow and natural ice.

Then we have the picture of the early fishmonger in England selling ice from his wagon, a practice which is continued to the present day.

The first record of American delivery of ice to the home is in 1802. The first commercial shipment of natural ice from America was exported from Boston by Frederick Tudor in 1805 when a shipload was sent to Martinique in the West Indies to help stay the ravages of yellow fever.

During this time all of the ice used was produced by Nature.

Natural and Manufactured Ice.—One of the most interesting phenomena of Nature is the formation of ice. We all know that cold is the absence of heat and that the freezing point of water is 32° F. When the air above a pond, lake, or river is below 32° F., the top layer of water is cooled and will sink because it is heavier than the warmer layers underneath. This continues until all the water is cooled to 39.1° F., at which point water reaches its greatest density. The top layer will then be cooled still further but remains on top and eventually will be reduced to the freezing point and ice will form. If the water undearneath the ice is not in motion, opaque ice will form. On moving bodies of water, as rivers and large lakes, clear ice forms. This is because each drop of water in freezing sets free the air it contains. The bubbles of air adhere to the surface of the newly frozen ice crystal. As more ice encloses the bubbles, the product becomes opaque. But where the water is in motion, the bubble is washed off the surface of the newly formed ice crystal and thus the ice forms, clear and hard.

But how about the actual manufacture of ice?

As Edwin F. Slosson of the Science Service, Washington, D. C., explains in his article, "Science Remaking Everyday Life:"

"The chronicle of the century of effort to approach the farthest north of temperature, absolute zero, is as fascinating as the contemporary struggle to reach the geographic pole and unlike the latter has proved profitable at every stage. When Fahrenheit in 1724 stuck his mercury thermometer into a mixture of salt and snow, he thought he had reached the lowest point possible and boldly scratched zero on the tube. But it was not long before scientists began to climb down the minus steps. In 1769 a Russian professor, taking advantage of a cold spell, froze mercury itself in a mixture of snow and nitric acid."

A hundred years ago, Faraday, working in the Royal Institution of London, succeeded in condensing ammonia gas to a liquid by applying pressure and then cooling it. When the pressure was removed, the liquid of course boiled off rapidly as a gas, absorbing heat in doing so. Any liquid absorbs heat when it turns into a gas.

This discovery proved of the greatest importance, both practically and theoretically. A solution of ammonia and water was used by Carre in 1858 in his ice making machine. The first Carre machine to reach the United States was shipped through the blockade of New Orleans in 1863.

In 1755 Dr. William Cullen invented the first machine which produced ice by purely mechanical means, his achievement being followed by those of Vallance of France (1824) and Jacob Perkins, an American then residing in England, who is given credit for the forerunner of the modern compression apparatus, his model being patented in England in 1834, with ether as the refrigerant employed. Other early workers in this field of science were Prof. A. C. Twining, of New Haven, Connecticut, and Dr. John Gorrie, of Appalachicola, Florida.

In the rotunda of the capitol at Washington, where each of the states has set statues of its most distinguished citizens, Florida has chosen this same Dr. Gorrie instead of any of its pioneer politicians or military geniuses. Too many men of various countries have con-

ICE AND REFRIGERATION PURPOSES

tributed to the gradual development of mechanical refrigeration for any one person to be entitled to exclusive credit for the invention, but Dr. Gorrie certainly deserves this place in our National Hall of Fame for the service rendered to the country when he took out the first American patent in 1850 for a practical process of manufacturing ice.

In the years of 1873-75 the first successful ammonia compression machines were introduced by C. P. G. Linde of Germany, and David Boyle of the United States. From 1875 to 1890 many new forms of apparatus were produced and certain improvements were made.

Until the year 1890 the practical utilization of the art of ice making and refrigeration had seemed to come to a standstill. But there occurred in the year 1890 an incident that awakened the general public to the possibilities of the use of mechanical refrigeration. This incident was the greatest shortage in the crop of natural ice that has ever occurred in the United States. To this unusual shortage may be accredited the impetus that started the rapid development and utilization of mechanical refrigeration. Since 1890 the ice making and refrigerating industry has grown by leaps and bounds.

Thanks to the manufacturers of the refrigerating machine, ice can be had at any time and anywhere that power can be obtained. The ice machines give us ice in any quantity at any time.

Manufactured ice is made in cans holding 300 to 400 pounds. The can is filled with pure water and is let down into a tank which is filled with brine. The brine is made of sufficient density to permit its freezing point to fall to zero Fahrenheit or below. The cans are arranged in regular order, in rows; between these rows of cans are continuous coils of closed pipe through which passes the ammonia, it being the most commonly used refrigerant. The ammonia starts out as a liquid and expands, turning into a vapor and finally into a gas as it absorbs heat from the brine which surrounds the coils

As the ammonia circulates through the pipes in the brine tank, it absorbs the heat from the brine and lowers its temperature to a point below the freezing point of water. As heat always travels from the higher to the lower temperature, the brine, in turn, absorbs heat from the water in the cans. When the temperature reaches a point low enough, the water begins to freeze and ice forms on the inside of the cans. As the freezing continues, the ice thickens until it finally closes to the center of the can and is a solid block. As the ice forms, any foreign matter in the water is forced to the center of the block. In order to manufacture clear ice, it must be made from distilled water or from "raw water," which is low in mineral content. The water must also be kept in motion just as Nature keeps the river water moving. By so doing, the particles of air and gases are liberated and

HOUSEHOLD REFRIGERATION

come to the top, thus allowing clear ice to be frozen. This is accomplished by conducting a stream of cold air into the can which keeps the water in motion. Frequently, in order to get a cake that is clear and clean all the way through, avoiding what is called a "core," the water is drawn from the center of the can before it is completely frozen and this cavity is refilled with distilled water.

What Ice Can Do.---When ice melts, it absorbs heat. Each pound changing from solid ice to liquid water absorbs as much heat as would be required to raise the temperature of one pound of water 144 degrees Fahrenheit. Indeed, the heat absorbing capacity of ice is so great that it has been made the standard of comparison and the units in which we measure this power are called British thermal units.

Ice is greedy to absorb heat. Therefore, if it is to do specific work, it must be protected from those warm objects which we do not desire cooled. For instance, in our home refrigerators ice is placed inside of what we term insulated walls.

A material which does not allow heat to pass through it is called an "insulator." To keep the ice from melting too rapidly, we build into the walls of the container some insulator which keeps away the atmospheric heat. The articles to be preserved for cooking or to be kept cold are put into the insulated space with the ice. Then the ice can absorb their heat, thereby cooling them, but turning into water in doing so. This is the principle of all ice refrigerators.

The better the insulation, the less heat can get into the refrigerator or ice box, and therefore, the less the ice meltage due to heat leakage. The warmer the articles put into the box, the more ice they will melt before they reach the same temperature as the ice box itself.

The temperature of ice is 32° F. If we had a perfect insulator one which would not allow any heat from outside to go through the refrigerator walls, the temperature of the inside of the refrigerator would be 32° F. also. However, all insulators allow some heat to pass; the best ones permit little, while the poor ones let much heat pass through. The poorer the insulation in the refrigerator, the higher will be its temperature and the more ice will be melted when the air outside is warm.

The question of proper air circulation in a refrigerator is one of vital importance. The heat enters the refrigerator in two ways; some through the walls of the box and some with the food to be cooled. The warm air travels to the ice, is cooled, drops down to the section directly under the ice and thence over the food, absorbing heat, moisture, and odors. The warmed air, being lighter, rises through the food chamber and again reaches the ice. Here the air is cooled, drops moisture because of its lowered temperature, and whatever odors may have been absorbed during its passage over the food are dissolved in the film of water on the surface of the melting ice and pass off in the meltage. Then the cooled, dried, and cleaned air is ready to make another trip through the food compartment.

The intelligent housewife utilizes these facts to the advantage of her family and her pocketbook. She sees that the ice compartment of the refrigerator is ready to receive the ice when the ice man brings it. Every minute it stays outside the insulated space it is absorbing heat from the air and melting.

Refrigeration is the ideal preservative and the housewife who really wants to economize on both food and ice keeps her refrigerator well filled at all times. This is a simple matter of household efficiency. When the ice gets low in the refrigerator, the walls naturally grow warm and just that much more ice is required to bring the temperature down again to a safe point where the constant circulation of cold air across the top of the ice, down its sides, down the side of the small food compartment, across the floor of the refrigerator, up through the food compartment and over the ice again purifies, and preserves through every inch of its journey.

Ice in Daily Living.—In a multitude of ways ice has entered into the daily life of the American people. It tinkles in the glass of water with which the master of the house quenches his thirst; it furnishes soft, clean water to shampoo milady's hair; and a small piece rubbed on her satiny cheek brings the blush of youth. In the laboratory the scientist depends upon it to chill his mixtures, aud, in the hospital the physician prescribes it to cure and to comfort. But most important of all is the use of ice to maintain freshness, wholesomeness, and high quality in foods, and, directly or indirectly, most of the ice produced is utilized for this purpose.

We are apt to think that the piece of ice in the home refrigerator is the ice which is doing the work of food preservation, which is true. But far behind the household refrigerator there is a long refrigerated channel through which foods travel from producer to consumer. For example, each refrigerator car holds from three to five tons of ice. We have a fleet of about 150,000 such cars. One filling of ice is seldom enough to protect the lading for the entire haul and, for long hauls such as from the Pacific to the Atlantic coast as much as ten tons of ice per car may be required. This means that millions of tons of ice each year are used to protect our foods while in transit.

And then, just think of the hundreds of thousands of butcher boxes, large and small, in which ice is the refrigerant.

How insignificant would apear the few ices and sherbets made by Catherine d'Medici's chef when compared with the great ice cream industry of this country. Though much of the ice cream manufactured in this country is frozen by mechanical means, yet millions of pounds of ice are required each year in the packing and handling of the product. Over 300,000,000 gallons of ice cream are manufactured each year, to say nothing of the large quantities made in homes where ice must be used in the freezing process.

Of all the foodstuffs kept from spoiling by means of ice none is of such importance as milk. Neither is there any food which depends to such an extent upon ice to maintain its purity. From the cooling of the milk with ice on the farm to the cracked ice in the container for the bottles on the milkman's wagon, milk is never for one moment from the cow to the consumer unaccompanied by its guardian and caretaker—ICE.

What the Ice Industry Is Doing .- More than 6,000 factories supply America today with over 42,000,000 tons of ice each year. In addition to this the harvesters of natural ice supply about 15,000,000 tons per annum. It is the duty of the industry to see that the American public is supplied with enough ice for all needs the year 'round. To fulfill this responsibility requires a large investment in money and men as well as sound business policy to serve the public economically and produce that reasonable profit which must accrue to every successful industry. For example, the city of New York uses each year 3,750,000 tons of ice. That the supply may not fail when warm weather comes and the demand increases manyfold, ice is manufactured and stored for months or until there is an accumulation of 200,000 tons which is not considered excessive as a margin of safety for the consumer. This is in addition to an average daily capacity for production in the ice plants of greater New York City of 23,000 to 24,000 tons. Similar precautions are taken the country over.

Not only the large city but the small town and the country side must find ice available should the need or the desire arise. Accordingly, we find small ice plants dotting the country from Canada to Mexico and from Coast to Coast. Longer and longer are the delivery routes and more and more frequent the supply stations. Into the depths of the Grand Canyon where it is eternally summer, ice is brought by burro back. On the banks of northern waters great houses store Nature's product that even in the North food may be preserved in warm weather.

To give an idea of the amount of equipment necessary and the volume of business carried on, it is interesting to note that manufacturers of ice in large cities such as New York may have as many as five hundred trucks and wagons in service, employ as many as one thousand men and manufacture as much as one million and a half tons of ice per year.

Such is the story of ice and the part it has played as the centuries have rolled on and man has become more and more the master of the elements about him. That he now holds the key which regulates temperature, has been a development successful only after toil and struggle.

But the benefits are available to all of us.

Properties of Ice.—Most substances on being cooled become denser, changing from vapor to liquid and then to solid form, each more compact than the preceding form. Water is an exception to this general law. Water upon being cooled behaves normally and becomes denser until cooled at 39°. Further cooling expands the water until 32° is reached, when it freezes. Ice forms with an expansion. If this were not so, lakes would freeze from the bottom up. One can skate on ice because the pressure melts the ice, making a thin film of water. It requires energy to change from a solid to a liquid as this is a property common to crystalline substances.

Ice freezes in crystals, hexagonal in shape. When ice is frozen in the ordinary can method, these prisms have the hexagonal side on the surface of the cake of ice. If there is no agitation of the water during the freezing process, these prisms will continue in straight surfaces from the outside of the cake to the center. When there is agitation of the water during the freezing, the crystals break and pile up, forming irregular lines and surfaces. This is the reason a sun test will melt a 300 lb. cake of ice frozen without agitation, from four to five hours sooner than it will melt a similar cake of ice frozen with water agitation. The light, air, and heat enter the cake frozen without agitation with much less resistance.

A cake of ice frozen with agitation has about one per cent greater density than a cake of the same size frozen without agitation.

One cubic foot of ice at 32° F. weighs 57.50 pounds.

One pound of ice at 32° F. has a volume of 0.0174 cubic feet or 30.067 cubic inches. The relative volume of ice to water at 32° F. is 1.0855. The specific gravity of ice is 0.922. The specific heat of ice is 0.504.

Quantity of Ice Required for a Dairy Farm.—The United States Department of Agriculture in Farmers' Bulletin No. 1078 gives the following information in reference to the quantity of ice required for a dairy farm:

The quantity of ice needed for a dairy farm depends on its location, number of cows milked, and methods of handling the product. In the Northern States, it has been found that with a moderately good ice house, where the shrinkage from melting is not more than 30 per cent, half a ton of ice per cow is sufficient to cool the cream and hold it at a low temperature for delivery two or three times a week. It must be understood, however, that suitable cooling tanks are necessary under this estimate. The half-ton-per-cow estimate for ice to be stored allows for a reasonable waste and also for ordinary household use. If whole milk is to be cooled the quantity of ice stored must be increased to one and a half tons per cow in the North and two tons per cow in the South. To meet the needs of the average family on a general farm, it will be necessary to store about five tons.

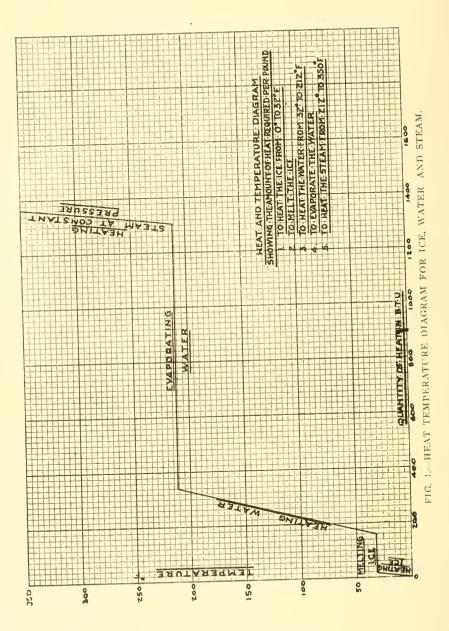
Cost of Harvesting Ice.—The United States Department of Agriculture in Farmers' Bulletin No. 1078 gives the following data on the cost per ton for harvesting ice:

The cost of harvesting ice also varies with local conditions. It is impossible, therefore, to give an estimated cost that will cover all cases. The ice-harvesting season fortunately comes at a time when there is the least work on the farm for men and teams, and consequently the actual money cost is usually not very great. Investigations have indicated that counting the full value of the men's time, the average cost of cutting ice is about 27 cents a ton. Add to this the cost of packing and hauling, and the average cost of a ton of ice is about \$1.50, when the ice house is near the source of supply. If the ice house is at a considerable distance the cost of hauling, of course, is increased, and the total cost of storing ice in some instances has amounted to \$3.00 or more a ton.

Refrigeration Required for Making Ice.—The refrigeration required to make a pound of ice may be calculated as follows, when the initial temperature of the water is 75° F.:

To cool water $(75^{\circ} \text{ F.} - 32^{\circ} \text{ F.})$	3.t.u.
Total	

These quantities are shown graphically by Fig I. An additional amount of refrigeration, equivalent to from 15 per cent to 20 per cent of the foregoing, must be allowed to cover the unavoidable losses during the freezing of the ice. The foregoing methods, together with an allowance of approximately 20 per cent for losses, were used for the calculation of the data given in Table III of Chapter 1.


Size of Ice Cans.—Recent survey of the different sizes of ice cans indicated there were being manufactured at present about fifty different sizes. Of course, a great portion of the ice manufactured in the United States is frozen in 300 lb. and 400 lb. cans. Table X gives the sizes of the so-called standard ice cans. These particular sizes are used in a great majority of the plants.

		- William and a second s			
Size of cake, in pounds	Size of top, inches	Size ot bottom, inches	Inside depth, inches	Outside depth, inches	Size of band, inches
50 100 200 300 400	8x 8 8x16 11 ¹ / ₂ x22 ¹ / ₂ 11 ¹ / ₂ x22 ¹ / ₂ 11 ¹ / ₂ x22 ¹ / ₂	$\begin{array}{r} 7\frac{1}{2}x7\frac{1}{2}\\ 7\frac{1}{4}x15\frac{1}{4}\\ 10\frac{1}{2}x21\frac{1}{2}\\ 10\frac{1}{2}x21\frac{1}{2}\\ 10\frac{1}{2}x21\frac{1}{2}\\ 10\frac{1}{2}x21\frac{1}{2} \end{array}$	31 31 31 44 57	32 32 32 45 58	$ \frac{\frac{1}{4} \times 1 \frac{1}{2}}{\frac{1}{4} \times 1 \frac{1}{2}} \\ \frac{1}{4} \times 2 $

TABLE X .---- STANDARD SIZES OF ICE CANS

Cutting of Ice Into Blocks.—The cutting of ice into blocks suitable for household refrigerators should be given special attention. The 25 pound unit system of cuts is in general use. The larger or 100 pound blocks are cut from the ends of the cake and the 50 pounds cuts are made by splitting the middle 100 pounds blocks. The 300 and 400 pound ice cakes usually have from five to ten per cent overweight to allow for loss in melting during storage and delivery.

Ice scoring machines are being used by the more progressive manufacturers. Some of the advantages of the ice scoring machines are: Insures customer of full weight, saves time in delivery, and gives blocks of suitable dimensions for standard ice compartment. The ice scoring machine has a series of saws which score the two largest faces at the same time. The scoring for a 300 pound block requires one horizontal and five vertical cuts.

Water.—Some of the dissolved solids found in ordinary tap water are as follows:

Silica, Carbonate of iron, Alumina, Carbonate of lime, Sulphate of lime, Carbonate of magnesia,

Sulphate of soda, Chloride of soda, Carbonate of soda, Chloride of lime, Chloride of magnesia.

The first six of this list are scale forming solids.

CHAPTER III

REFRIGERANTS

General Requisites.—The most desirable refrigerant should possess the following properties:

1. A high latent heat as well as a high ratio of the latent heat to the specific heat of the liquid, in order to produce a large refrigerating effect per cycle of operation.

2. A boiling point at ordinary atmospheric pressure low enough to obtain the temperature desired.

3. A condensing temperature at a relatively low pressure.

4. A low specific volume of vapor.

5. A high critical temperature.

6. A low ratio of compression.

7. A non-corrosive action on metals.

8. A chemical composition which is stable under working conditions and inert on lubricants and gaskets.

9. A non-inflammable and non-explosive nature even when mixed with air.

10. An inoffensive odor, non-injurious to health.

11. A behavior whereby its presence in small quantities may be visibly detected by a simple test.

12. A low cost of production for a product of necessary chemical purity for commercial use.

13. No affinity for constituents of the atmosphere whereby leaks might form gases or acids effecting the normal operation of the system.

14. A non-corrosive action on desirable bearing materials.

Refrigerants for Household Systems.—There are approximately 500,000 household refrigerating machines in operation in the United States. Sulphur dioxide is the refrigerant used in more than 75 per cent of these systems. Some of the other mediums employed are: methyl chloride, ethyl chloride, butane, isobutane, ammonia, propane, carbon dioxide, ether, air and water vapor.

Amonia is used in more than 90 per cent of the larger or commercial refrigerating plants.

Carbon dioxide is now used extensively for refrigerating systems in boats where formerly ethyl chloride and air machines were favored. Carbon dioxide and air machines are considered safer than machines with other refrigerants, in case of accident or fire. Carbon dioxide is used rather extensively in Europe for small household machines and its use in cooling theatres and public buildings is increasing in the United States.

Ether has some use in small hand operated machines which are manufactured in Europe and sold in the tropics.

Nitrous oxide has a limited use in the chemical industries when very low temperatures are desired.

Pressure of Condensation. — The condensing pressure should be comparatively low. Assuming 86° F. as the condensing temperature, the following pressures are obtained with the refrigerants in common use:

2.4 Lbs. Gauge
2.40 Lbs. Gauge
1.75 Lbs. Gauge
0.83 Lbs. Gauge
3.0 Lbs. Gauge
4.5 Lbs. Gauge
6.0 Lbs. Gauge
5.3 Lbs. Gauge
4.3 Lbs. Gauge

The high condensing pressure reached with carbon dioxide and even ammonia, necessitates very strong and well made apparatus. The carbon dioxide machines in use today are water cooled. The ammonia machines are also water cooled. Air cooled ammonia machines have been built but have not been used commercially. Sulphur dioxide machines have been placed on the market, both as water cooled and air cooled. The air cooled operate at a condensing pressure of 10 to 20 pounds higher than the water cooled type. Air cooling lowers the efficiency, but increases the simplicity of the refrigerating system. A study of the development of household machines indicates that it is very desirable to use air cooled condensers to obtain simplicity, lower initial cost, and lower installation costs. Air cooled condensers are now used almost universally in household machines of the compression type.

It has not proven practical to use air cooling for refrigerants operating at a condensing pressure of more than 150 lbs. gauge. It is usually necessary to centralize the piping with refrigerants having a condensing pressure of over 150 lbs. gauge and distribute the refrigeration by means of a brine system.

Pressure of Vaporization.— The following evaporating pressures are obtained with the refrigerants in common use at 5° F., evaporating temperature.

Ether Ethyl Chloride Sulphur Dioxide	-10.05 -2.88	Lbs. Lbs.	Gauge Gauge
Methyl Chloride Ammonia Propane	6.19 19.57 30.5	Lbs. Lbs. Lbs.	Gauge Gauge
Ethane Nitrous Oxide Carbon Dioxide		Lbs.	Gauge

The evaporating pressure has an important influence on the stuffing box. The packing is usually made to take up wear automatically. It is advantageous to have nearly the same pressure on both sides of the packing.

Sulphur dioxide operates at an evaporating pressure very close to atmospheric pressure, thus favoring this condition better than any of the other refrigerants in common use.

With a refrigerant such as ethyl chloride, which normally operates with a partial vacuum on the evaporator, it is very difficult to locate a leak as air could enter the system unnoticed, and would greatly reduce the efficiency of the apparatus.

Some household machines have all moving parts entirely enclosed, thus eliminating this packing gland difficulty. The compressors so far designed with a method of eliminating the packing gland include the design features which have not as yet proven practical in large quantity production. Other machines have an oil reservoir on both sides of the stuffing box, so that any small leak would be of oil either into or out of the compressor crank case. This would depend upon the pressure inside the crank case being above or below atmospheric pressure.

Latent Heat of Vaporization.—The latent heat of vaporization should be carefully considered in selecting a refrigerant for a household machine. One of the most difficult problems is the expansion valve, float valve, or liquid restriction device, which controls the rate of flow of liquid from the condensing to the evaporating side of the system. With a high latent heat of vaporization, this problem is more difficult, as it is then necessary to control through a more sensitive valve (the amount of liquid circulating per minute being less). In making this comparison it is also necessary to consider the condensing and evaporating pressures. These determine the pressure differential trying to force the liquid through the expansion valve.

This problem is more difficult with ammonia than with sulphur dioxide, as it is necessary to circulate three to four times more refrigerant in the sulphur dioxide system, because of its lower latent heat of vaporization, while the pressure differential between the condensing and evaporating sides are less than in an ammonia system. On larger refrigerating systems, the liquid control problem is less difficult; therefore, a refrigerant with a high latent heat of vaporization is preferred.

Carbon dioxide has a very low latent heat of vaporization, about half that of sulphur dioxide. However, the pressure differential is so great as to more than offset the advantage of having a lower latent heat.

The latent heat of vaporization of the household refrigerants in common use at 5° F. is:

Carbon Dioxide115.30	B.t.u.	per	Lb.
Nitrous Oxide121.4			
Sulphur Dioxide169.38			
Propane			
Ethane			
Ethyl Chloride177.0	B.t.u.	per	Lb.
Methyl Chloride178.5	B.t.u.	per	Lb.
Ammonia	B.t.u.	per	Lb.

Corrosion of Metals.—An important factor in choosing a refrigerant is the corrosive action on metals. Sulphur dioxide has no corrosive action on iron or steel, unless there is water present. Water and sulphur dioxide combine chemically as follows:

 H_2O plus $SO_2 = H_2SO_3$ Water plus sulphur dioxide=Sulphurous acid

Sulphurous acid is formed, which will attack iron This condition sometimes occurs. resulting in a so-called "frozen" compressor. The pistons will "freeze" to the cylinders so tightly that it is necessary to take the compressor apart and remove such material before operating again.

Sulphur dioxide has no chemical or corrosive action on copper or copper alloys, thus permitting the use of copper tubes for the condensing and cooling elements. This is an advantage, as the thermal conductivity of copper is seven or eight times greater than that of steel or iron. Copper or copper alloys cannot be used with ammonia when there is water present. Copper can be used with anhydrous ammonia. Copper lines are used on some absorption machines using a solid absorbent and charged with anhydrous ammonia.

Methyl chloride, ethyl chloride, butane, and carbon dioxide have no chemical or corrosive action on copper, copper alloys, iron or steel; therefore, these refrigerants may be used with any of these metals.

Testing for Gas Leaks.—Sulphur dioxide is one of the two refrigerants, ammonia being the other, with which it is possible to find leaks by means of a visible method called the "smoke" test.

The smoke test consists of placing aqua ammonia near the sulphur dioxide leak. A chemical reaction occurs and dense white smoke apparently issues from the opening.

 $SO_2 + H_2O = H_2SO_3$

 $2NH_4OH H_2SO_3 = (NH_4)_2SO_3 + 2H_2O$

 $(NH_4)_2SO_3$ is a white solid ammonium sulphite. A burning sulphur stick is used in testing for an ammonia leak.

A small alcohol flame is sometimes used in testing for an appreciable leak of methyl chloride. The flame is passed near the connections to be tested. A leak of methyl chloride will impart a green color to the nearly colorless alcohol flame. There is no danger of igniting an explosive mixture of methyl chloride and air in making this test. It is necessary to have at least 10 per cent and not more than 15 per cent of methyl chloride present by volume to form an explosive mixture with air. It is impossible to remain in a room for more than a minute or two with this concentration present because of the physiological effect upon breathing.

Another method used to find leaks of methyl chloride is to use a small electrically heated wire. The wire is heated to a dull red temperature. While the wire is being applied, the fumes of ammonia are brought near. If methyl chloride is present a fume will result, due to the decomposition of the methyl chloride to hydrochloric acid and carbon and the reconstruction of the hydrochloric acid set free with the ammonia.

Comparisons of Refrigerants for Household Machines.— From foregoing considerations it will be observed that the operating pressures, latent heat of evaporization, facility for testing for gas leakage, inflammability, corrosive action on

				under each		
Operating Pressures	Latent Heat of Vapori- zation	Testing for Gas Leaks	Inflamma- bility	Corosive Action on Metals	Danger of Breathing Small Con- centration of Gas in Air	Lubrica- tion
Sulphur dioxide	Carbon dioxide	Ammonia	Carbon dioxide	Methyl chloride	Carbon dioxide	Sulphur dioxide
Methyl chloride	Sulphur dioxide	Sulphur dioxide	Sulphur dioxide	Ethyl chloride	Ethyl chloride	Ammonia
Ammonia	Ethyl chloride	Methyl chloride	Ammonia	Ether	Methyl chloride	Methyl chloride
Ethyl chloride	Methyl chloride	Ether	Methyl chlori de	Carbon dioxide	Ether	Ether
Ether	Ether	Ethyl chloride	Ethyl chloride	Sulphur dioxide	Ammonia	Carbon dioxide
Carbon dioxide	Ammonia	Carbon dioxide	Ether	Ammonia	Sulphur dioxide	Ethyl chloride

 TABLE XI.--REFRIGERANTS FOR HOUSEHOLD MACHINES

 Relative Advantage for Use in Household Machines.

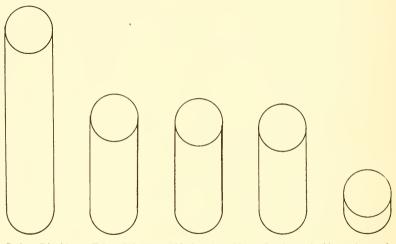
metals, danger of breathing, and lubrication, are the principle factors to be considered in the selection of a suitable refrigerant for household refrigerating machines. With these factors in mind, the author has prepared Table X1, to show the relative advantages of various refrigerants in household machines. These are listed in order of preference, under each of the headings for sulphur dioxide, ethyl chloride, ammonia, methyl chloride, ether, and carbon dioxide.

Characteristics Influencing Selections.—The following are some of the general characteristics influencing the selection of refrigerants:

1. The condensing pressure should be reasonably low at tap water or atmospheric air temperatures, depending upon the cooling medium used. The evaporating pressure necessary to freeze ice in a reasonable length of time should be close to atmospheric pressure, preferably above, to prevent gas leaks when a stuffing box is used. The ratio of compression between the condensing pressure and pressure of vaporization should be small in order to facilitate the functioning of the expansion valve.

2. A low latent heat of vaporization is preferred so that a larger amount of liquid refrigerant circulates to do the same amount of cooling. This makes the expansion valve or liquid control restriction less sensitive and permits the valve to leak more without affecting normal operation.

3. A refrigerant having a visible or "smoke" test for leaks is preferable as it is then not necessary to test every joint with oil or soap water. It is extremely difficult to find leaks if a refrigerant operates at a pressure less than atmospheric as air can leak into the apparatus affecting normal operation before the leak is detected.


4. A non-inflammable refrigerant is preferred in order to prevent danger in case of a gas leak in the refrigerating system in a home and also to prevent danger in case of fire.

5. A refrigerant is favored which does not have a corrosive or chemical action on metals. It is advantageous to be able to use copper and copper alloys for heat interchange apparatus on account of the higher rate of heat conductivity. Some refrigerants have a corrosive effect on metals when water or gases from the atmosphere are allowed to enter the refrigerating system.

6. Preference is given to the different refrigerants in accordance with the percentage of gas, which, when mixed with air, will not give discomfort when breathed for a considerable length of time.

7. It is preferable to use oil as a lubricant. It is desirable to eliminate the oil trap. The lubricant problem is more difficult when larger volumes of gas must be compressed, often necessitating a rotary compressor.

Amount of Refrigerant to Be Evaporated.—The relative amount of the liquid refrigerant to be evaporated to produce refrigeration at a given rate depends upon the relative latent heat of vaporization and sensible heat of the respective refrigerant. Generally, those refrigerants which have high latent heat of evaporization require a small amount of liquid to be evaporated to produce a given refrigerating effect. This is illustrated by ammonia, which has a fairly large latent heat of evaporization. On the other hand, certain refrigerants have

Carbon Dioxide Ethyl Chloride Methyl Chloride Sulphur Dioxide Ammonia FIG. 2-AMOUNT OF LIQUID REFRIGERANT TO BE EVAPORATED

low latent heats of evaporization, in which case, the sensible heat of the liquid corresponds to a large proportion of the available latent heat of evaporization. By sensible heat of liquid is meant the heat required to cool the liquid refrigerant from the temperature at the exit from the condenser, or at a point just before the expansion valve to the temperature existing in the evaporator. Carbon dioxide is one of the representative refrigerants which has a fairly small latent heat of evaporization. Fig. 2 shows graphically the amount of refrigerant which must be evaporated per minute to produce one pound of ice melting effect per 24 hours for carbon dioxide, ethyl chloride, methyl chloride, sulphur dioxide, and ammonia. Use of Refrigerants in the United States.—The various types of refrigerating plants using different refrigerants in the United States may be classified into large commercial plants, small commercial plants, marine installations, and household refrigerating machines. In a large commercial plant, it will be found that ammonia is used extensively; in small commercial plants ammonia is used extensively also; in marine installations, carbon dioxide is used extensively, and in the household machines, sulphur dioxide is used extensively. Table XII shows the use of the different refrigerants in the United States at present.

TABLE XII.----USE OF REFRIGERANTS IN UNITED STATES Table Showing Present Usage in U. S. for Various Types of Refrigerating Plants.

	Large Commercial Plants	Small Commercial Plants	Marine Installations	Household Machines
Ammonia (Compression) Sulphur Dioxide Methyl Chloride Ethyl Chloride . Carbon Dioxide . Air		Extensive None None None Limited None	Limited Very Limited Very Limited Very Limited Extensive Very Limited	Very Limited Extensive Limited Limited Very Limited Very Limited
Ammonia (Absorption) . Isobutane		Limited None	None None	Limited Limited

Comparative Cylinder Displacements .-- On account of the fact that the different refrigerants have different latent heats of evaporation and sensible heats of liquid, as well as specific volumes of vapors, it is evident that the cylinder displacements will be individual with each kind of refrigerant. Those refrigerants which have high refrigerating effects with corresponding low specific volumes of vapor, will require the minimum cylinder displacements, while those which have low refrigerating effects, and correspondingly large specific volumes of vapor, will require the maximum cylinder displacements. The converse of this may be stated by giving the refrigerating effect per cubic foot of cylinder displacement. Table XIII has been prepared to show the relative refrigeration per cubic foot of cylinder displacement for an evaporating temperature of 5° F., and a condensing temperature of 86° F. for some of the common refrigerants. From this table, it will be noted that ethyl chloride has a very small refrigerating effect per cubic foot of cylinder displacement, that carbon dioxide has a high refrigerating effect per cubic foot, and that sulphur dioxide, methyl chloride, and ammonia, have a medium refrigerating effect per cubic foot of cylinder displacement.

TABLE XIII—COMPARATIVE REFRIGERATION PER CU. FT. OF CYLINDER DISPLACEMENT

	S :lphur Dioxide	Ammonia	Methyl Chloride	Carbon Dioxide	Ethyl Chloride
Chemical Symbol Latent Heat at 5° F	SO_2 169.38	NH ₃ 565.0	CH ₂ CL 178.56	$\begin{array}{c} \text{CO}_2\\115.3\\ \hline \end{array}$	C ₂ H ₅ CL 177.0
Heat to Cool Liquid Refrigerating Effect perlb. Specific Volume Vapor at		$90.55 \\ 474.45$	$\frac{38.15}{140.41}$	$ 58.61 \\ 56.69 $	$34.7 \\ 142.3$
⁵ [°] F. (cu. ft. per lb.) Refrigerating Effect per cu. ft. Cylinder Dis-	6.421	8.15	4.53	0.2673	17.06
placement	22.17	58.22	31.00	212.08	8.35

For 5° F. Suction Temperature and 86° F. Condensing Temperature

Properties of Ammonia.—Ammonia is a colorless, gaseous compound of nitrogen and hydrogen. Its chemical formula is NH_3 , indicating that one atom of nitrogen unites with three atoms of hydrogen to form ammonia. Its boiling point at atmospheric pressure is —28° F. It has a melting point of —107.86° F.

Color and Odor. — Ammonia is a colorless, transparent liquid or gas. It has an extremely pungent, peculiar, and offensive odor which is easily recognizable and irrespirable.

Inflammability. — It does not support combustion. However, under high pressure it may form an explosive mixture when intermingled with oil vapor. It is decomposed into its elements by extreme heat and under such conditions, an explosive mixture may result. It is combustible when mixed with a sufficient proportion of air, being capable of exploding with considerable violence.

Corrosion of Metals.—It will attack copper and all of its alloys when water is present, but it has no chemical or corrosive action on iron and steel. Ammonium hydroxide has a

REFRIGERANTS

slight reaction on iron when in a very dilute concentration. With the higher concentrations used in ammonia absorption plants, no reaction occurs on iron.

Locating Leaks. — Ammonia leaks may be readily located by the "smoke" test which consists of placing a burning sulphur stick in the vicinity of the leak. A chemical reaction occurs and a dense white smoke apparently issues from the opening.

Stability Toward Heat.—It is a rather stable gas especially at temperatures under 300° F. However, the chemical bond is not as strong as with carbon dioxide and sulphur dioxide. A household compressor should always have a discharge gas temperature lower than 300° F.

Solubility in Water.—It is very soluble in water, the union of the two producing considerable heat and forming ammonium hydroxide until a certain concentration has been reached. The vapor may then be driven off by heating the ammonium hydroxide, and it is on this principle that the absorption system operates.

Properties of Butane.—Butane is one of the isomeric, inflammable gaseous hydrocarbons of the methane series. Its chemical formula is C_4H_{10} , indicating that four atoms of carbon unite with ten atoms of hydrogen to form butane. It has a boiling point of 31° F. at normal atmospheric pressure and a melting point of 211° F.

Color and Odor.—Butane is a colorless liquid or gas, with a slight ethereal odor and is slightly asphyxiating. The vapor is non-poisonous.

Inflammability. — It is inflammable, the gas burning with a yellow flame.

Corrosion of Metals. — It has no corosive effect on copper, copper alloys or iron, even in the presence of moisture.

Locating Leaks. — It is difficult to locate leaks as no easy sight test can be made.

Stability Towards Heat.—It is a stable gas which does not break up at temperatures encountered in normal operation. The critical temperature is 551.3° F.

Displacement Required. — The displacement required for a certain amount of refrigeration is about 7 per cent more than with sulphur dioxide.

Properties of Carbon Dioxide (Carbonic Acid Gas).—Carbon dioxide is a heavy, colorless gas; it is sometimes called carbonic acid gas. This is on account of the fact that the acid, carbonic acid, H_2CO_3 breaks down readily into water and carbon dioxide, CO_2 ; the latter is commonly called carbon dioxide or carbonic acid gas. It has a chemical symbol, CO_2 , which indicates that one atom of carbon unites with two atoms of oxygen to form carbon dioxide. At normal atmospheric pressure, it has a boiling temperature of —108.4° F. and if the liquid is sufficiently cooled, it is solidified into a snowlike substance, which evaporizes or sublimes at —160.6° F.

Color and Odor. — Carbon dioxide, sometimes called carbonic acid gas, is a colorless liquid or gas. It exists as a gas in very small quantities in the atmosphere and is non-odorous. It is harmless to breathe except in extremely large concentrations when the lack of oxygen would be noticed.

Inflammability. — It is not inflammable and does not support combustion.

Corrosion of Metals.—It has no corosive effect on copper, copper alloys or iron.

Locating Leaks. — It is difficult to locate leaks as no easy sight test can be made.

Stability Towards Heat.—It is a stable gas which does not break up at the temperature encountered in normal operation. This gas is very inert. The critical temperature is 87.80° F.

Solubility in Water. — It is slightly soluble in water, the percentage increasing at lower temperatures.

Displacement Required. — It requires about one-fourth the displacement of an ammonia machine to do the same amount of refrigeration.

Properties of Ethane.—Ethane is a gaseous hydrocarbon, and is a constituent of ordinary natural and illuminating gas. It is a second member of the methane series, and has the chemical symbol C_2H_6 . It has a boiling point of —126.9° F. and a melting point of —277.6° F.

Color and Odor. — Ethane is a colorless liquid or gas of the hydrocarbon series. The gas is non-poisonous. It has an ethereal odor and is slightly asphyxiating.

Inflammability. — It is inflammable, burning with a yellow flame.

Corrosion of Metals. – It has no corrosive effect on metals and does not form injurious acids with water.

Locating Leaks. — It is difficult to locate leaks as no easy sight test can be made.

Stability Towards Heat. — This gas is stable under the conditions of pressure and temperature required in refrigeration work.

Displacement Required. — The displacement required is about 40 per cent greater than with carbon dioxide.

Properties of Ether.—Ether is a light, volatile, inflammable gas, having a characteristic aromatic odor, and is obtained by the distillation of alcohol with sulphuric acid, and is thus sometimes termed "sulphuric ether." It has the chemical symbol $C_4H_{10}O$. Its boiling point is 94.1° F., and its melting point is —177.34° F.

Color and Odor. — Ether is a colorless gas or liquid with a strong ethereal smell.

Inflammability. — It burns with a luminous flame and explodes when mixed with air.

Corrosion of Metals. -- It has no corrosive action on metals

Locating Leaks.—It is difficult to locate leaks, especially on the evaporating side, as this is usually operating at a vacuum. Air leaking into the system would cause no damage from chemical action or corrosion; however, it would soon increase the condensing pressure, affecting the normal operation of the system.

Stability Towards Heat.—It is stable at the temperatures reached in the condensing element. The gas condenses during compression and superheats during expansion.

It is miscible with water.

Properties of Ethyl Chloride.—Ethyl chloride is a colorless and a very volatile liquid, having an aromatic odor. It is used widely as a local anaesthetic. Its chemical symbol is C_2H_5C1 . It has a boiling point of 53.96° F., and a melting point of -217.66° F.

Color and Odor. — Ethyl chloride is a colorless gas or liquid with a pungent ethereal smell and a sweetish taste.

Inflammability. — It is inflammable when mixed with a certain proportion of air. It burns with a green-edged flame. A certain quality of ethyl chloride has been produced in England which is claimed to be non-inflammable. This result is obtained by the addition of a certain amount of methyl bromide.

Corrosion of Metals. - It has no corrosive effect on metals.

Locating Leaks. — It is very difficult to locate leaks, especially on the evaporating side of the system, as the pressure of evaporization is considerably below atmospheric pressure.

Stability Towards Heat. — It is stable toward heat and does not fractionize at the temperatures reached in the condenser. The critical temperature is 361.0° F.

Solubility in Water.—It is slightly soluble in water and dissolves oils. Glycerine is used as a lubricant in some ethyl chloride systems.

Properties of Methyl Chloride. — Methyl chloride is the colorless, sweet-smelling gas which is obtained by the action of hydrochloric acid on methyl alcohol. It is easily liquefied by pressure and cold, and is used as a refrigerant and a local anaesthetic. It has a chemical symbol of CH_3Cl , and has a boiling point of —10.66° F., and a melting point of —143.68° F.

Color and Odor.—Methyl chloride is a colorless, transparent liquid or gas. The odor resembles that of chloroform; however, it is not so heavy and is less sweet.

Inflammability. — It is inflammable in concentrations of at least 10 per cent and not more than 15 per cent with air. It requires a spark or white hot wire to explode it even at these concentrations.

Corrosion of Metals.—It does not attack copper, copper alloys or iron.

Locating Leaks.—Methyl chloride operates with a pressure greater than atmospheric on both the condensing and evaporating units of the system. A large leak would force methyl chloride gas into the room where its presence might be noticed by the peculiar odor. One method of testing for leaks is by means of an alcohol flame, for methyl chloride gas will impart a green color to the nearly colorless alcohol flame.

Stability Towards Heat.—It is very stable towards heat. It requires a red heat to decompose it into hydrochloric acid, methane, hydrogen, etc. The critical temperature is 289.6° F.

Solubility in Water.—Three to four volumes of methyl chloride gas will dissolve into one volume of water at ordinary temperature and atmospheric pressure. Methyl chloride in the presence of water may form a solid crystalline hydrate $CH_{s}C1.6.H_{s}O$.

Properties of Propane.—Propane is one of the heavy gascous hydrocarbons of the paraffin series. It occurs, naturally, dissolved in crude petroleum. It has the chemical symbol C_3H_s , a boiling point of -48.1° F., and a melting point of -309.8° F.

Color and Odor.—Propane is a colorless liquid or gas of the hydrocarbon series. The gas is non-poisonous and is not dangerous to breathe until its density is sufficient to exclude the oxygen necessary during respiration. It has an ethereal odor and is slightly asphyxiating. Inflammability.—It is inflammable. The gas burns with a yellow flame.

Corrosion of Metals.—It has no corrosive action on any metals and does not form injurious acids with water.

Locating Leaks.—It is difficult to locate leaks as no easy sight test can be made.

Stability Towards Heat.—It is stable under the conditions required in refrigeration work. The critical temperature is 204.1° F.

Displacement Required.—The displacement required is practically the same as with ammonia.

Properties of Sulphur Dioxide.—Sulphur dioxide is a colorless gas, having a pungent, suffocating odor. It is produced by the burning of sulphur. It has a chemical symbol, SO₂, and a boiling point of 14° F., and a melting point of —98.86° F.

Color and Odor.—Sulphur dioxide is a colorless liquid or gas. The gas is non-poisonous.

Inflammability. — It is not inflammable and does not support combustion.

Corrosion of Metals.—It has no corrosive effect on copper, copper alloys or iron. If there is water present, sulphurous acid is formed which will have a chemical action on metals such as iron, zinc, or copper. The moisture should be under 0.3 per cent by volume for commercial use.

Locating Leaks.—It is easy to locate leaks by a smoke test, using ammonia water applied with a brush.

Stability Towards Heat.—It is a very stable gas which will easily withstand the temperature conditions encountered in normal operation. The critical temperature is 314.8° F. The critical pressure is 1141.5 pounds per square inch absolute.

Solubility in Water.—One volume of water dissolves 80 volumes of this gas at 32° F., and 47.3 volumes at 60° F.

Displacement Required.—It requires about 2.6 times the displacement of an ammonia machine for the same amount of refrigeration.

Air.—Air was used as the refrigerant in some of the early machines. It was compressed, cooled to room temperature, and then expanded in a cylinder. These machines were very inefficient because of the large volume of air handled, which together with the expansion cylinder, caused large friction losses. Air has a very low heat capacity per unit volume. Considerable difficulty was experienced with the moisture freezing and clogging valves. The advantages of using air such as safety from leakage do not compensate for the disadvantages stated above.

Two general types of air machines have been produced. These are the open and closed cycle. The open cycle type continually uses new air from the atmosphere. There is considerable trouble from condensing and freezing water vapor within the apparatus. The closed cycle eliminates this dis advantage.

Water as a Refrigerant.—Several machines have been developed using water as the refrigerant. At a low vacuum water boils at temperatures as follows:

Vacuum, ins. of mercury	29.67 40°F.	29.56 50° F.	
-------------------------	----------------	-----------------	--

It is difficult to produce a commercial pump to obtain such a low vacuum. The air in the water must also be discharged.

Sulphuric acid is used to absorb the water in some systems of this kind. A pump must be used to remove the air.

Small hand machines are made in Europe to operate on this system. They will cool a carafe of water in a few minutes or make a few pounds of ice in less than half an hour. This type of machine is used extensively in the tropics.

Non-Condensable Gases.—It is important to prevent the formation of non-condensing gases in a household ammonia absorption refrigerating machine. These gases are eliminated on the larger plants by frequent purging.

The United States Bureau of Standards has recently made a careful study of this subject and recommends the following method of eliminating, to a large extent, the formation of these gases: 1. The non-condensable gases found in ammonia absorption refrigeration machines are due to either or both of two causes, namely, (a) leaks of air into the system and (b) the corrosive action of the ammonia liquor on the metal of the plant.

2. When the foul air gas is mainly nitrogen, the gas is derived from air that has leaked into the system, and leaks should therefore be sought. The oxygen in the air is very quickly used up, and so will be present in only a very small percentage of its original amount. If the foul gas is hydrogen, the cause is corrosion by the ammoniacal liquor. A gas containing both nitrogen and hydrogen shows both causes to be present.

3. If a solution of sodium or potassium dichromate is added to the generator charge so that the charge in the generator will contain the salt to the extent of 0.2 per cent by weight, all foul gas formation from the corrosive action of the ammonia charge will be stopped. It is recommended that the dichromate be added in all cases, as it has been found that its presence decreases the very small amount of gas caused by even the highest grade ammonias.

Explosion Data on Gases.—The following explosion data on refrigerating and illuminating gases was taken from a report on refrigerating with gas presented at a meeting of the American Gas Association, 1925.

	Ammonia	Ethyl Chloride	Methyl Chloride	Illuminat- ing Gas
Relative parts of diffusion $(Air=1)$ Gas in mixture required for complete		0.658	0.750	1.240
combustion ($\%$)	21.83	6.05 o values a	10.69 vailable	$17.00 \\ 1094$
Explosion limits with air— High $(\%)$	26.8	14.0	15.0	21.0
Low $(\tilde{\gamma}_c)$ Explosion pressures with air (lbs.	13.1	4.3	8.9	7.0 95
sq. in) Time required to develop maximum pressure (seconds)	$54 \\ 0.175$	98 0.049	81 0.099	95 0.017
pressure secondormente	0.110	0.010	0.000	0.011

TABLE XIV-EXPLOSION DATA ON GASES

Relative Piston Displacement for Refrigerants.—As previously indicated, the relative piston displacement for the compressor cylinder depends upon a number of factors, such as a latent heat of evaporization, sensible heat of the liquid, relative specific volume, etc. Table XV has been prepared to show the comparative displacements of the various refrigerants indicated when compared with the displacement required by carbon dioxide.

TABLE XV.—RELATIVE PISTON DISPLACEMENT FOR VARIOUS REFRIGERANTS

Carbon dioxide	
Ammonia	$\dots = 3.6$
Methyl Chloride	= 6.8
Sulphur Dioxide	$\dots = 9.6$
Ethyl Chloride	= 25.4

Solubility of Sulphur Dioxide in Water.— Weights in grams of sulphur dioxide gas which will be absorbed in 1,000 grams of water when the partial pressure of the liquid at the given temperature equals 700 millimeters are as follows:

0° C. 10° C. 20° C. 30° C. 40° C. 228 162 113 78 54 (This was compiled from Landoit-Börnstein-Meyerhoffers "Physikalisch-Chemische Tabellen.")

Charging Refrigerants.—Refrigerants may be charged into refrigerating systems or thermostats in many different ways. Following are some of the principles used in this refrigerant charging process:

There are two simple methods of charging the liquid refrigerant from container A to container B in Fig. 3. It is assumed that the air has been exhausted from these containers and the connecting line. The container B may be at a higher elevation than A. By heating container A, the liquid is evaporated and slowly condenses in B. This is a slow process as sufficient heat must be applied to A to heat and evaporate the liquid refrigerant and enough heat must be extracted from B to condense the gas. Another method is to apply ice or cool B.

When the outlet pipe from C is below the liquid level in C the liquid refrigerant will pass to D in liquid form. It is only necessary to either warm C or cool D. This establishes a pressure difference which readily forces the liquid into container D.

In charging household systems, it is customary to first use a vacuum pump to eliminate the air and moisture from the refrigerating system. Then the refrigerant is charged in liquid

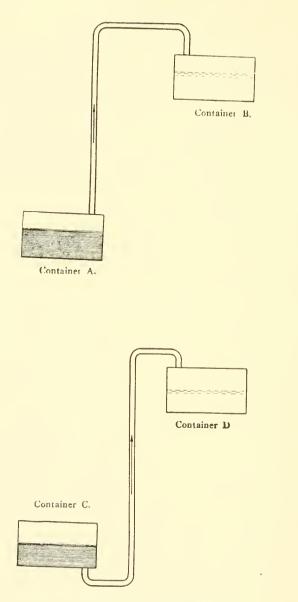


FIG. 3.-CHARGING OF REFRIGERANTS.

form. The amount of charge is regulated by weighing or using a glass liquid gauge on the charging receiver.

It is extremely dangerous to heat a cylinder containing liquid refrigerant. When the pressure drops in charging it is probably best to place the cylinder in a bucket of water in order to supply sufficient heat to evaporate the liquid refrigerant from the cylinder rapidly.

In charging a thermostat, it is very important to first eliminate the air. The best method is to use a vacuum pump, although it is possible to eliminate practically all of the air by repeatedly charging and discharging the thermostat bulb and line with the gas to be used. The liquid should fill about twothirds of the bulb. An overcharged thermostat may cause considerable trouble.

Method of Determining the Density of a Gas.—The volume of any gas may be approximately determined from its molecular weight at atmospheric pressure of 14.7 lbs. and 60° F., as follows:

> Weight per cu. ft. = $\frac{\text{molecular weight}}{376}$ Cu. ft. per pound = $\frac{376}{\text{molecular weight}}$

The volume of one cu. it. of sulphur dioxide gas at 14.7 lbs. atmospheric pressure and 60° F. would be found as follows:

$$\frac{64}{376} = 0.170$$
 lbs.

The volume in cu. ft. per pound is found as follows:

$$\frac{376}{64} = 5.87$$

TABLE X	KVIMOL	ECULAR	WEIGHT	OF	GASES
---------	--------	--------	--------	----	-------

Gas	Molecular	Weight		
Nitrogen—N ₂				
$Oxygen - O_2$				
Carbon Dioxide-CO2				
Sulphur Dioxide—SO		64		
Hydrogen—H , Ammonia—NH₃				
Air				

•

CHAPTER IV.

REFRIGERANTS-TABLES.

- 1. Properties of Saturated Ammonia-Temp.-Table XVII.
- 2. Properties of Saturated Ammonia-Pressure-Table XVIII.
- 3. Properties of Liquid Ammonia .- Table XIX.
- 4. Properties of Superheated Ammonia Vapors.-Table XX.
- 5. Properties of Saturated Vapor of Butane.-Table XXII.
- 6. Properties of Saturated Vapor of Carbon Bisulphide.— Table XXIII.
- 7. Properties of Carbon Dioxide.-Table XXI.
- 8. Properties of Saturated Vapor of Carbon Tetrachloride.— Table XXIV.
- 9. Properties of Saturated Vapor of Chloroform.—Table XXV.
- 10. Properties of Saturated Vapor of Ethane.—Table XXVIII.
- 11. Properties of Saturated Vapor of Ethyl Chloride.—Table XXIX.
- 12. Properties of Saturated Vapor of Ethyl Ether.—Table XXVI.
- 13. Properties of Saturated Vapor of Isobutane.—Table XXX.
- 14. Properties of Saturated Methyl Chloride Vapor.—Table XXXI.
- Properties of Saturated Vapor of Nitrous Oxide.—Table XXVII.
- 16. Properties of Saturated Vapor of Propane.—Table XXXII.
- Properties of Superheated Vapor of Sulphur Dioxide.— Table XXXIV.
- 19. Standard Ton Data.—Table XXXV.
- 20. Properties of Aqua-Ammonia (Percent Concentration Table).—Tables XXXVIII, XXXIX.
- 21. Solubility of Ammonia in Water.-Table XXXVI.
- 22. Heat of Association of Ammonia.-Table XXXVII.
- 23. Solubility of Gases in Water at Atmospheric Pressure.— Table XL.
- 24. Compressibility of Liquids.—Table XLI.

TABLE XVII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: TEMPERATURE TABLE.—(Continued.)

	Pres	sure.			Heat co	ntent.		Entro	py.	
Temp.	Absolute. Ibs./in. ^s	Gage. lbs./m.*	Volume vapor. ft ³ /lb.	Density vapor. lbs./ft.3	Liquid. Btu./lb.	Vapor. Btu./lb.	Latent heat. Btu./lb.	Liquid. Btu./lb.°F.	Vapor. Btu./lb.°F.	Temp. *F.
t	р	g. p.	1.	1/V	h	Н	L	8	S	t
-60 -59 -58 -57 -56	5.55 5.74 5.93 6.13 6.33	*18.6 *18.2 *17.8 *17.4 *17.0	44.73 43.37 42.05 40.79 39.56	$\begin{array}{c} 0,02235\02306\02378\02452\02528\end{array}$	$\begin{array}{r} -21.2 \\ -20.1 \\ -19.1 \\ -18.0 \\ -17.0 \end{array}$	589.6 590.0 590.4 590.8 591.2	$\begin{array}{c} 610.8\\ 610.1\\ 609.5\\ 608.8\\ 608.2 \end{array}$	$\begin{array}{r} -0.0517\\0490\\0464\\0438\\0412\end{array}$	$1.4769 \\ .4741 \\ .4713 \\ .4686 \\ .4658$	-60 -59 -58 -57 -56
55 54 53 52 51	6.54 6.75 6.97 7.20 7.43	*16.6 *16.2 *15.7 *15.3 *14.8	38, 38 37, 24 36, 15 35, 09 34, 06	0.02605 .02685 .02766 .02850 .02936	$ \begin{array}{r} -15.9 \\ -14.8 \\ -13.8 \\ -12.7 \\ -11.7 \end{array} $	591.6 592.1 592.4 592.9 593.2	$\begin{array}{c} 607.5\\ 606.9\\ 606.2\\ 605.6\\ 604.9\end{array}$	-0.0386 .0360 0334 0307 0281	$1.4631 \\ .4604 \\ .4577 \\ .4551 \\ .4524$	-55 -54 -53 -52 -51
-50 -49 -48 -47 -46	7.67 7.91 8.16 8.42 8.68	*14.3 *13.8 *13.3 *12.8 *12.2	$\begin{array}{c} 33.08\\ 32.12\\ 31.20\\ 30.31\\ 29.45 \end{array}$	$\begin{array}{c} 0.03023\\ .03113\\ .03205\\ .03299\\ .03395 \end{array}$	$\begin{array}{r} -10.6 \\ -9.6 \\ -8.5 \\ -7.4 \\ -6.4 \end{array}$	593.7594.0594.4594.9595.2	$\begin{array}{c} 604.3 \\ 603.6 \\ 602.9 \\ 602.3 \\ 601.6 \end{array}$	$\begin{array}{r} -0.0256 \\0230 \\0204 \\0179 \\0153 \end{array}$	$1.4497 \\ .4471 \\ .4445 \\ .4419 \\ .4393$	$ -50 \\ -49 \\ -48 \\ -47 \\ -46 $
-45 -44 -43 -42 -41	8.95 9.23 9.51 9.81 10.10	*11.7 *11.1 *10.6 *10.0 *9.3	$\begin{array}{c} 28.62 \\ 27.82 \\ 27.04 \\ 26.29 \\ 25.56 \end{array}$	0.03494 .03595 .03698 .03804 .03912	$ \begin{array}{c c} -5.3 \\ -4.3 \\ -3.2 \\ -2.1 \\ -1.1 \end{array} $	$595.6 \\ 596.0 \\ 596.4 \\ 596.8 \\ 597.2$	600.9 600.3 599.6 598.9 598.3	$\begin{array}{c c} -0.0127 \\0102 \\0076 \\0051 \\0025 \end{array}$	$1.4368 \\ .4342 \\ .4317 \\ .4292 \\ .4267$	-45 -44 -43 -42 -41
-40 -39 -38 -37 -36	10.41 10.72 11.04 11.37 11.71	*8.7 *8.1 *7.4 *6.8 *6.1	$\begin{array}{c} 24.86\\ 24.18\\ 23.53\\ 22.89\\ 22.27\end{array}$	0.04022 .04135 .04251 .04369 .04489	$ \begin{array}{c} 0.0\\ 1.1\\ 2.1\\ 3.2\\ 4.3 \end{array} $	597.6 598.0 598.3 598.7 599.1	597.6 596.9 596.2 595.5 594.8	0.0000 .0025 .0051 .0076 .0101	$\begin{array}{c} 1.\ 4242\\ .\ 4217\\ .\ 4193\\ .\ 4169\\ .\ 4144 \end{array}$	-40 -39 -38 -37 -36
35 34 33 32 31	$\begin{array}{c} 12.05\\ 12.41\\ 12.77\\ 13.14\\ 13.52 \end{array}$	*5.4 *4.7 *3.9 *3.2 *2.4	$\begin{array}{c} 21.68\\ 21.10\\ 20.54\\ 20.00\\ 19.48 \end{array}$	0.04613 .04739 .04868 .04999 .05134	5.3 6.4 7.4 8.5 9.6	$\begin{array}{c} 599.5\\ 599.9\\ 600.2\\ 600.6\\ 601.0\end{array}$	$594.2 \\593.5 \\592.8 \\592.1 \\591.4$	0.0126 .0151 .0176 .0201 .0226	1,4120 ,4096 ,4072 ,4048 ,4025	-35 -34 -33 -32 -31
-30 -29 -28 -27 -26	$\begin{array}{c} 13, 90 \\ 14, 30 \\ 14, 71 \\ 15, 12 \\ 15, 55 \end{array}$	*1.6 *0.8 0.0 0.4 0.8	$\begin{array}{c} 18.97\\ 18.48\\ 18.00\\ 17.54\\ 17.09 \end{array}$	$\begin{array}{c} 0.\ 05271\\ .\ 05411\\ .\ 05555\\ .\ 05701\\ .\ 05850\end{array}$	$ \begin{array}{c} 10.7\\ 11.7\\ 12.8\\ 13.9\\ 14.9 \end{array} $	$\begin{array}{c} 601.\ 4\\ 601.\ 7\\ 602.\ 1\\ 602.\ 5\\ 602.\ 8\end{array}$	590.7 590.0 589.3 588.6 587.9	0.0250 .0275 .0300 .0325 .0350	1.4001 .3978 .3955 .3932 .3909	$ \begin{array}{r} -30 \\ -29 \\ -28 \\ -27 \\ -26 \\ \end{array} $
$-25 \\ -24 \\ -23 \\ -22 \\ -21$	$\begin{array}{c} 15.98\\ 16.42\\ 16.88\\ 17.34\\ 17.81 \end{array}$	$ \begin{array}{c} 1.3 \\ 1.7 \\ 2.2 \\ 2.6 \\ 3.1 \end{array} $	$\begin{array}{c} 16.\ 66\\ 16.\ 24\\ 15.\ 83\\ 15.\ 43\\ 15.\ 05 \end{array}$	0.06003 .06158 .06317 .06479 .06644	$ \begin{array}{c} 16.0\\ 17.1\\ 18.1\\ 19.2\\ 20.3 \end{array} $	$\begin{array}{c} 603.2\\ 603.6\\ 603.9\\ 604.3\\ 604.6\end{array}$	587.2 586.5 585.8 585.1 584.3	0.0374 .0399 .0423 .0448 .0472	$1.3886 \\ .3863 \\ .3840 \\ .3818 \\ .3796$	$ \begin{array}{c c} -25 \\ -24 \\ -23 \\ -22 \\ -21 \end{array} $
-20 -19 -18 -17 -16	18.30 18.79 19.30 19.81 20.34	3.6 4.1 4.6 5.1 5.6	$\begin{array}{c} 14.68\\ 14.32\\ 13.97\\ 13.62\\ 13.29\end{array}$	0.06813 .06985 .07161 .07340 .07522	$\begin{array}{c} 21.4\\ 22.4\\ 23.5\\ 24.6\\ 25.6\end{array}$	$\begin{array}{c} 605.\ 0\\ 605.\ 3\\ 605.\ 7\\ 606.\ 1\\ 606.\ 4 \end{array}$	583.6 582.9 582.2 581.5 580.8	0.0497 .0521 .0545 .0570 .0594	$1.3774 \\ .3752 \\ .3729 \\ .3708 \\ .3686$	$ \begin{array}{r} -20 \\ -19 \\ -18 \\ -17 \\ -16 \end{array} $
-15 -14 -13 -12 -11	$\begin{array}{c} 20,88\\ 21,43\\ 21,99\\ 22,56\\ 23,15 \end{array}$	$ \begin{array}{r} 6.2 \\ 6.7 \\ 7.3 \\ 7.9 \\ 8.5 \end{array} $	$\begin{array}{c} 12.97\\ 12.66\\ 12.36\\ 12.06\\ 11.78\end{array}$	0.07709 .07898 .08092 .08289 .08490	$\begin{array}{c} 26.7 \\ 27.8 \\ 28.9 \\ 30.0 \\ 31.0 \end{array}$	$\begin{array}{c} 606.7\\ 607.1\\ 607.5\\ 607.8\\ 608.1 \end{array}$	580.0 579.3 578.6 577.8 577.1	0.0618 .0642 .0666 .0690 .0714	$1.3664 \\ .3643 \\ .3621 \\ .3600 \\ .3579$	$ \begin{array}{r} -15 \\ -14 \\ -13 \\ -12 \\ -11 \end{array} $
-10	23.74	9.0	11.50	0.08695	32.1	608,5	576.4	0,0738	1,3558	-10

• Inches of mercury below one standard atmosphere (29.92 in.).

REFRIGERANTS-TABLES

TABLE XVII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: TEMPERATURE TABLE.—(Continued.)

	Pres	sure.			Heat o	ontent.		Entro	py.	
Temp. *F.	Absolute. 1bs./10.3	Gage. Ibs./in.*	Volume vapor. It ³ /1b.	Density vapor. 1bs./ft.3	Liquid. Btu./ib.	Vapor. Btu./ib.	Latent heat. Btu./lb.	Liquid. Btu./lb.*F.	Vapor. Btu./lb.*F.	Temp. *F.
t	p	g. p.	T.	1/V	h	Η	L	8	S	t
-10 -9 -8 -7 -6	$\begin{array}{c} 23.\ 74\\ 24\ 35\\ 24.\ 97\\ 25.\ 61\\ 26.\ 26\end{array}$	9.0 9.7 10.3 10.9 11.6	11. 50 11. 23 10. 97 10. 71 10. 47	0.08695 .08904 .09117 .09334 .09555	$\begin{array}{c} 32.1\\ 33.2\\ 34.3\\ 35.4\\ 36.4 \end{array}$	$\begin{array}{c} 608.5\\ 608.8\\ 609.2\\ 609.5\\ 609.8\end{array}$	576. 4575. 6574. 9574. 1573. 4	0.0738 .0762 .0786 .0809 .0833	$\begin{array}{r} 1.3558\\.3537\\.3516\\.3495\\.3474\end{array}$	-10 -9 -8 -7 -6
$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $	$\begin{array}{c} 26.92\\ 27.59\\ 28.28\\ 28.98\\ 29.69\end{array}$	12. 212. 913. 614. 315. 0	10. 23 9. 991 9. 763 9. 541 9. 326	$\begin{array}{c} 0.\ 09780\\ .\ 1001\\ .\ 1024\\ .\ 1048\\ .\ 1072 \end{array}$	$\begin{array}{c} 37.5\\ 38.6\\ 39.7\\ 40.7\\ 41.8\end{array}$	$\begin{array}{c} 610.\ 1\\ 610.\ 5\\ 610.\ 8\\ 611.\ 1\\ 611.\ 4 \end{array}$	572.6 571.9 571.1 570.4 569.6	0.0857 .0880 .0904 .0928 .0951	1.3454 .3433 .3413 .3393 .3372	$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $
0 1 2 3 4	$\begin{array}{c} 30.\ 42\\ 31.\ 16\\ 31.\ 92\\ 32.\ 69\\ 33.\ 47 \end{array}$	$ \begin{array}{r} 15.7 \\ 16.5 \\ 17.2 \\ 18.0 \\ 18.8 \\ \end{array} $	$\begin{array}{c} 9.116\\ 8.912\\ 8.714\\ 8.521\\ 8.333\end{array}$	0. 1097 . 1122 . 1148 . 1174 . 1200	$\begin{array}{c} 42.9\\ 44.0\\ 45.1\\ 46.2\\ 47.2 \end{array}$	$\begin{array}{c} 611.8\\ 612.1\\ 612.4\\ 612.7\\ 613.0 \end{array}$	568.9 568.1 567.3 566.5 565.8	$\begin{array}{c} 0.\ 0975\\ .\ 0998\\ .\ 1022\\ .\ 1045\\ .\ 1069 \end{array}$	1. 3352 . 3332 . 3312 . 3292 . 3273	0 1 2 3 4
5 6 7 8 9	34. 27 35. 09 35. 92 36. 77 37. 63	$ \begin{array}{r} 19.6 \\ 20.4 \\ 21.2 \\ 22.1 \\ 22.9 \\ \end{array} $	8. 150 7. 971 7. 798 7. 629 7. 464	0. 1227 . 1254 . 1282 . 1311 . 1340	48. 3 49. 4 50. 5 51. 6 52. 7	$\begin{array}{c} 613.\ 3\\ 613.\ 6\\ 613.\ 9\\ 614.\ 3\\ 614.\ 6\end{array}$.565.0 564.2 563.4 562.7 561.9	0, 1092 1115 . 1138 . 1162 . 1185	$\begin{array}{c} 1.3253\\ .3234\\ .3214\\ .3195\\ .3176\end{array}$	5 6 7 8 9
10 11 12 13 14	38.51 39.40 40.31 41.24 42.18	$\begin{array}{c} 23.8 \\ 24.7 \\ 25.6 \\ 26.5 \\ 27.5 \end{array}$	$\begin{array}{c} 7.\ 304 \\ 7.\ 148 \\ 6.\ 996 \\ 6.\ 847 \\ 6.\ 703 \end{array}$	0. 1369 . 1399 . 1429 . 1460 . 1492	$53.8 \\ 54.9 \\ 56.0 \\ 57.1 \\ 58.2$	$\begin{array}{c} 614.\ 9\\ 615.\ 2\\ 615.\ 5\\ 615.\ 8\\ 616.\ 1 \end{array}$	561, 1 560, 3 559, 5 558, 7 557, 9	0, 1208 .1231 .1254 .1277 .1300	$\begin{array}{c} 1.\ 3157\\ .\ 3137\\ .\ 3118\\ .\ 3099\\ .\ 3081 \end{array}$	10 11 12 13 14
15 16 17 18 19	43. 14 44. 12 45. 12 46. 13 47. 16	$\begin{array}{c c} 28.4 \\ 29.4 \\ 30.4 \\ 31.4 \\ 32.5 \end{array}$	$\begin{array}{c} 6,562\\ 6,425\\ 6,291\\ 6,161\\ 6,034 \end{array}$	0. 1524 . 1556 . 1590 . 1623 . 1657	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 616.\ 3\\ 616.\ 6\\ 616.\ 9\\ 617.\ 2\\ 617.\ 5\end{array}$	557, 1 556, 3 555 5 554, 7 553, 9	0. 1323 . 1346 . 1369 . 1392 . 1415	$\begin{array}{c} 1.\ 3062\\ .\ 3043\\ .\ 3025\\ .\ 3006\\ .\ 2988 \end{array}$	15 16 17 18 19
20 21 22 23 24	$\begin{array}{c} 48.\ 21\\ 49.\ 28\\ 50.\ 36\\ 51.\ 47\\ 52.\ 59\end{array}$	33.5 34.6 35.7 36.8 37.9	$\begin{array}{c} 5,910\\ 5,789\\ 5,671\\ 5,556\\ 5,443\end{array}$	0. 1692 . 1728 . 1763 . 1800 . 1837	$\begin{array}{c} 64.7\\ 65.8\\ 66.9\\ 68.0\\ 69.1 \end{array}$	$\begin{array}{c} 617.8\\ 618.0\\ 618.3\\ 618.6\\ 618.9\end{array}$	553.1 552.2 551.4 550.6 549.8	0. 1437 . 1460 . 1483 . 1505 . 1528	$\begin{array}{c} 1.\ 2969\\ .\ 2951\\ .\ 2933\\ .\ 2915\\ .\ 2897 \end{array}$	20 21 22 23 24
25 26 27 28 29	$\begin{array}{c} 53.\ 73\\ 54.\ 90\\ 56.\ 08\\ 57.\ 28\\ 58.\ 50\end{array}$	$\begin{array}{c} 39.\ 0\\ 40.\ 2\\ 41.\ 4\\ 42.\ 6\\ 43.\ 8\end{array}$	$\begin{array}{c} 5,334\\ 5,227\\ 5,123\\ 5,021\\ 4,922 \end{array}$	0. 1875 . 1913 . 1952 . 1992 . 2032	$\begin{array}{c} 70.2 \\ 71.3 \\ 72.4 \\ 73.5 \\ 74.6 \end{array}$	$\begin{array}{c} 619.\ 1\\ 619.\ 4\\ 619.\ 7\\ 619.\ 9\\ 620.\ 2 \end{array}$	$\begin{array}{c} 548.9\\ 548.1\\ 547.3\\ 546.4\\ 545.6\end{array}$	0. 1551 . 1573 . 1596 . 1618 . 1641	$\begin{array}{r} 1.2879\\ .2861\\ .2843\\ .2825\\ .2808\end{array}$	25 26 27 28 29
30 31 32 33 34	59.7461.0062.2963.5964.91	45.0 46.3 47.6 48.9 50.2	4.825 4.730 4.637 4.547 4.459	$\begin{array}{c} 0.\ 2073 \\ .\ 2114 \\ .\ 2156 \\ .\ 2199 \\ .\ 2243 \end{array}$	75.7 76.8 77.9 79.0 80.1	$\begin{array}{c} 620.\ 5\\ 620.\ 7\\ 621.\ 0\\ 621.\ 2\\ 621.\ 5\end{array}$	$\begin{array}{c} 544.8\\ 543.9\\ 543.1\\ 542.2\\ 541.4\end{array}$	0. 1663 . 1686 . 1708 . 1730 . 1753	1, 2790 , 2773 , 2755 , 2738 , 2721	30 31 32 33 34
35 36 37 38 39	66. 26 67. 63 69. 02 70. 43 71. 87	51.6 52.9 54.3 55.7 57.2	4.373 4.289 4.207 4.126 4.048	0.2287 .2332 .2377 .2423 .2470	81. 2 82. 3 83. 4 84. 6 85. 7	$\begin{array}{c} 621.\ 7\\ 622.\ 0\\ 622.\ 2\\ 622.\ 5\\ 622.\ 7\end{array}$	540.5 539.7 538.8 537.9 537.0	0. 1775 . 1797 . 1819 . 1841 . 1863	$\begin{array}{c} 1.\ 2704\\ .\ 2686\\ .\ 2669\\ .\ 2652\\ .\ 2635 \end{array}$	35 36 37 38 39
40	73.32	58.6	3.971	0.2518	86.8	623.0	536.2	0. 1885	1,2618	40

HOUSEHOLD REFRIGERATION

TABLE XVII.—BUREAŬ OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: TEMPERATURE TABLE.—(Continued.)

	Pres	SUTP.			Heat o	entent.		Entro	opy.	
Temp. °F.	Absolute. lbs./in. ³	Gage. lbs./in.*	Volume vapor. ft.3/lb.	Density vapor. lbs./ft.3	Liquid. Btu./lb.	Vapor. Btu./lb.	Latent beat. Btu./Ib.	Liquid. Btu./lb.°F.	Vapor. Btu./lb.°F.	Temp. °F.
t	p	g. p.	V	1/V	h	Η	Ĺ	8	IS	t
40 41 42 43 44	73, 32 74, 80 76, 31 77, 83 79, 38	58.6 60.1 61.6 63.1 64.7	3, 971 3, 897 3, 823 3, 752 3, 682	$\begin{array}{c} 0.\ 2518 \\ .\ 2566 \\ .\ 2616 \\ .\ 2665 \\ .\ 2716 \end{array}$	86, 8 87, 9 89, 0 90, 1 91, 2	$\begin{array}{c} 623.\ 0\\ 623.\ 2\\ 623.\ 4\\ 623.\ 7\\ 623.\ 9\end{array}$	536.2 535.3 534.4 533.6 532.7	0.1885 .1908 .1930 .1952 .1974	$1.2618 \\ .2602 \\ .2585 \\ .2568 \\ .2552$	40 41 42 43 44
45 46 47 48 49	80, 96 82, 55 84, 18 85, 82 87, 49	$\begin{array}{c} 66.3\\ 67.9\\ 69.5\\ 71.1\\ 72.8 \end{array}$	$\begin{array}{c} 3.\ 614\\ 3.\ 547\\ 3.\ 481\\ 3.\ 418\\ 3.\ 355 \end{array}$	0. 2767 . 2819 . 2872 . 2926 . 2981	92.3 93.5 94.6 95.7 96.8	$\begin{array}{c} 624.\ 1\\ 624.\ 4\\ 624.\ 6\\ 624.\ 8\\ 625.\ 0 \end{array}$	$\begin{array}{c} 531.\ 8\\ 530.\ 9\\ 530.\ 0\\ 529.\ 1\\ 528.\ 2\end{array}$	0. 1996 . 2018 . 2040 . 2062 . 2083	$1.2535 \\ .2519 \\ .2502 \\ .2486 \\ .2469$	45 46 47 48 49
50 51 52 53 54	89, 19 90, 91 92, 66 94, 43 96, 23	74.5 76.2 78.0 79.7 81.5	$\begin{array}{c} 3.\ 294\\ 3.\ 234\\ 3.\ 176\\ 3.\ 119\\ 3.\ 063 \end{array}$	0, 3036 . 3092 . 3149 . 3207 . 3265	97.9 99.1 100.2 101.3 102.4	$\begin{array}{c} 625.\ 2\\ 625.\ 5\\ 625.\ 7\\ 625.\ 9\\ 626.\ 1 \end{array}$	527. 3526. 4525. 5524. 6523. 7	0. 2105 . 2127 . 2149 . 2171 . 2192	$1.2453 \\ .2437 \\ .2421 \\ .2405 \\ .2389$	50 51 52 53 54
55 56 57 58 59	98.06 99.91 101.8 103.7 105.6	83. 4 85. 2 87. 1 89. 0 90. 9	3.008 2.954 2.902 2.851 2.800	0. 3325 . 3385 . 3446 . 3508 . 3571	$\begin{array}{c} 103.\ 5\\ 104.\ 7\\ 105.\ 8\\ 106.\ 9\\ 108.\ 1\end{array}$	$\begin{array}{c} 626, 3\\ 626, 5\\ 626, 7\\ 626, 9\\ 627, 1 \end{array}$	$\begin{array}{c} 522.\ 8\\ 521.\ 8\\ 520.\ 9\\ 520.\ 0\\ 519.\ 0\end{array}$	0. 2214 . 2236 . 2257 . 2279 . 2301	$1.2373 \\ .2357 \\ .2341 \\ .2325 \\ .2310$	55 56 57 58 59
60 61 62 63. 64	$\begin{array}{c} 107.\ 6\\ 109.\ 6\\ 111.\ 6\\ 113.\ 6\\ 115.\ 7\end{array}$	92. 9 94. 9 96. 9 98. 9 101. 0	$\begin{array}{c} 2.\ 751\\ 2.\ 703\\ 2.\ 656\\ 2.\ 610\\ 2.\ 565\end{array}$	0.3635 .3700 .3765 .3832 .3899	109.2 110.3 111.5 112.6 113.7	$\begin{array}{c} 627.\ 3\\ 627.\ 5\\ 627.\ 7\\ 627.\ 9\\ 628.\ 0 \end{array}$	$\begin{array}{c} 518,1\\517,2\\516,2\\515,3\\514,3\end{array}$	0. 2322 . 2344 . 2365 . 2387 . 2408	$1.2294 \\ .2278 \\ .2262 \\ .2247 \\ .2231$	60 61 62 63 64
65 66 67 68 69	$117.8 \\ 120.0 \\ 122.1 \\ 124.3 \\ 126.5$	$\begin{array}{c} 103.\ 1\\ 105.\ 3\\ 107.\ 4\\ 109.\ 6\\ 111.\ 8\end{array}$	$\begin{array}{c} 2.520 \\ 2.477 \\ 2.435 \\ 2.393 \\ 2.352 \end{array}$	$\begin{array}{r} 0.3968 \\ .4037 \\ .4108 \\ .4179 \\ .4251 \end{array}$	114.8 116.0 117.1 118.3 119.4	$\begin{array}{c} 628.\ 2\\ 628.\ 4\\ 628.\ 6\\ 628.\ 8\\ 628.\ 9\end{array}$	$\begin{array}{c} 513.\ 4\\ 512.\ 4\\ 511.\ 5\\ 510.\ 5\\ 509.\ 5\end{array}$	$\begin{array}{c} 0.\ 2430 \\ .\ 2451 \\ .\ 2473 \\ .\ 2494 \\ .\ 2515 \end{array}$	$\begin{array}{r} 1.\ 2216 \\ .\ 2201 \\ .\ 2186 \\ .\ 2170 \\ .\ 2155 \end{array}$	65 66 67 68 69
70 71 72 73 74	128, 8 131, 1 133, 4 135, 7 138, 1	$\begin{array}{c} 114.\ 1\\ 116.\ 4\\ 118.\ 7\\ 121.\ 0\\ 123.\ 4 \end{array}$	$\begin{array}{c} 2,312\\ 2,273\\ 2,235\\ 2,197\\ 2,161 \end{array}$	$\begin{array}{r} 0.\ 4325 \\ .\ 4399 \\ .\ 4474 \\ .\ 4551 \\ .\ 4628 \end{array}$	$\begin{array}{c} 120.\ 5\\ 121.\ 7\\ 122.\ 8\\ 124\ 0\\ 125.\ 1\end{array}$	$\begin{array}{c} 629.1 \\ 629.3 \\ 629.4 \\ 629.6 \\ 629.8 \end{array}$	$\begin{array}{c} 508.\ 6\\ 507.\ 6\\ 506.\ 6\\ 505.\ 6\\ 504.\ 7\end{array}$	$\begin{array}{c} 0.2537 \\ .2558 \\ .2579 \\ .2601 \\ .2622 \end{array}$	$\begin{array}{c} 1.\ 2140 \\ .\ 2125 \\ .\ 2110 \\ .\ 2095 \\ .\ 2080 \end{array}$	70 71 72 73 74
75 76 77 78 79	$\begin{array}{c} 140.\ 5\\ 143.\ 0\\ 145.\ 4\\ 147.\ 9\\ 150.\ 5 \end{array}$	$\begin{array}{c} 125.\ 8\\ 128.\ 3\\ 130,\ 7\\ 133.\ 2\\ 135.\ 8\end{array}$	$\begin{array}{c} 2.\ 125\\ 2.\ 089\\ 2.\ 055\\ 2.\ 021\\ 1.\ 988 \end{array}$	$\begin{array}{c} 0.\ 4707\\ .\ 4786\\ .\ 4867\\ .\ 4949\\ .\ 5031 \end{array}$	$126. 2 \\ 127. 4 \\ 128. 5 \\ 129. 7 \\ 130. 8$	$\begin{array}{c} 629.\ 9\\ 630.\ 1\\ 630.\ 2\\ 630.\ 4\\ 630.\ 5\end{array}$	$503.7 \\ 502.7 \\ 501.7 \\ 500.7 \\ 499.7$	$\begin{array}{c} 0.\ 2643 \\ .\ 2664 \\ .\ 2685 \\ .\ 2706 \\ .\ 2728 \end{array}$	$\begin{array}{c} 1.\ 2065\\ .\ 2050\\ .\ 2035\\ .\ 2020\\ .\ 2006 \end{array}$	75 76 77 78 79
80 81 82 83 84	$\begin{array}{c} 153.\ 0\\ 155.\ 6\\ 158.\ 3\\ 161.\ 0\\ 163.\ 7\end{array}$	$\begin{array}{c} 138.\ 3\\ 140.\ 9\\ 143.\ 6\\ 146.\ 3\\ 149.\ 0 \end{array}$	$\begin{array}{c} 1,955\\ 1,923\\ 1,892\\ 1,861\\ 1,831 \end{array}$	$\begin{array}{c} 0.\ 5115\\ .\ 5200\\ .\ 5287\\ .\ 5374\\ .\ 5462 \end{array}$	$132.0 \\ 133.1 \\ 134.3 \\ 135.4 \\ 136.6$	630.7 630.8 631.0 631.1 631.3	498.7 497.7 496.7 495.7 494.7	$\begin{array}{r} 0,2749 \\ .2769 \\ .2791 \\ .2812 \\ .2833 \end{array}$	$1.1991 \\ .1976 \\ .1962 \\ .1947 \\ .1933$	80 81 82 83 84
85	166.4	151.7	1.801	0.5552	137.8	631.4	493.6	0, 2854	1.1918	85

REFRIGERANTS-TABLES

TABLE XVII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: TEMPERATURE TABLE.—(Continued.)

	Pres	sure.			Heat co	ntent.		Entro	py.	
Temp. *F.	Absolute. lbs./in.3	Gage. lbs./in.ª	Volume vapor. ft.3/lb.	Density vapor. lbs./ft. ³	Liquid. Btu./lb.	Vapor. Btu./lb.	Latent heat. Btu./lb.	Liquid. Btu./lb.°F.	Vapor. Btu./lb.°F.	Temp. °F.
٤	p	g. p.	V	1/V	h	H	L	8	S	t
85 86 87 88 89	166.4 169.2 172.0 174.8 177.7	$\begin{array}{c} 151.\ 7\\ 154.\ 5\\ 157.\ 3\\ 160.\ 1\\ 163.\ 0 \end{array}$	1.801 1.772 1.744 1.716 1.688	0.5552 .5643 .5735 .5828 .5923	$137.8 \\ 138.9 \\ 140.1 \\ 141.2 \\ 142.4$	$\begin{array}{c} 631.\ 4\\ 631.\ 5\\ 631.\ 7\\ 631.\ 8\\ 631.\ 9\end{array}$	$\begin{array}{r} 493.6\\ 492.6\\ 491.6\\ 490.6\\ 489.5\end{array}$	0.2854 .2875 .2895 .2917 .2937	1.1918 .1904 .1889 .1875 .1860	85 86 87 88 89
90 91 92 93 94	180.6 183.6 186.6 189.6 192.7	$\begin{array}{c} 165.9\\ 168.9\\ 171.9\\ 174.9\\ 178.0 \end{array}$	$\begin{array}{c} 1.661\\ 1.635\\ 1.609\\ 1.584\\ 1.559\end{array}$	$\begin{array}{c} 0.\ 6019\\ .\ 6116\\ .\ 6214\\ .\ 6314\\ .\ 6415\end{array}$	$143.5 \\ 144.7 \\ 145.8 \\ 147.0 \\ 148.2$	$\begin{array}{c} 632.\ 0\\ 632.\ 1\\ 632.\ 2\\ 632.\ 3\\ 632.\ 5\end{array}$	$\begin{array}{r} 488.5\\ 487.4\\ 486.4\\ 485.3\\ 484.3\end{array}$	0.2958 .2979 .3000 .3021 .3041	1.1846 .1832 .1818 .1804 .1789	90 91 92 93 94
95 96 97 98 99	$195.8 \\ 198.9 \\ 202.1 \\ 205.3 \\ 208.6$	181, 1 184, 2 187, 4 190, 6 193, 9	$\begin{array}{c} 1, 534 \\ 1, 510 \\ 1, 487 \\ 1, 464 \\ 1, 441 \end{array}$	$\begin{array}{r} 0.6517 \\ .6620 \\ .6725 \\ .6832 \\ .6939 \end{array}$	149. 4150. 5151. 7152. 9154. 0	$\begin{array}{c} 632.\ 6\\ 632.\ 6\\ 632.\ 8\\ 632.\ 9\\ 632.\ 9\\ 632.\ 9\end{array}$	483.2 482.1 481.1 4 80 .0 478.9	0.3062 .3083 .3104 .3125 .3145	$1.1775 \\ .1761 \\ .1747 \\ .1733 \\ .1719$	95 96 97 98 99
100 101 102 103 104	$\begin{array}{c} 211.9\\ 215.2\\ 218.6\\ 222.0\\ 225.4 \end{array}$	$197.2 \\ 200.5 \\ 203.9 \\ 207.3 \\ 210.7$	$\begin{array}{c} 1.419\\ 1.397\\ 1.375\\ 1.354\\ 1.334\\ \end{array}$	0.7048 .7159 .7270 .7384 .7498	$155. 2 \\ 156. 4 \\ 157. 6 \\ 158. 7 \\ 159. 9$	$\begin{array}{c} 633.\ 0\\ 633.\ 1\\ 633.\ 2\\ 633.\ 3\\ 633.\ 4\end{array}$	$\begin{array}{r} 477.8\\ 476.7\\ 475.6\\ 474.6\\ 473.5\end{array}$	0.3166 .3187 .3207 .3228 .3248	$1.1705 \\ .1691 \\ .1677 \\ .1663 \\ .1649$	100 101 102 103 104
105 106 107 108 109	$\begin{array}{c} 228. \ 9 \\ 232. \ 5 \\ 236. \ 0 \\ 239. \ 7 \\ 243. \ 3 \end{array}$	$\begin{array}{c} 214.2\\ 217.8\\ 221.3\\ 225.0\\ 228.6 \end{array}$	$\begin{array}{c} 1, 313 \\ 1, 293 \\ 1, 274 \\ 1, 254 \\ 1, 235 \end{array}$	0.7615 .7732 .7852 .7972 .8095	$161.1 \\ 162.3 \\ 163.5 \\ 164.6 \\ 165.8$	$\begin{array}{c} 633.\ 4\\ 633.\ 5\\ 633.\ 6\\ 633.\ 6\\ 633.\ 7\end{array}$	$\begin{array}{r} 472.3\\ 471.2\\ 470.1\\ 469.0\\ 467.9 \end{array}$	0.3269 .3289 .3310 .3330 .3351	$1.1635 \\ .1621 \\ .1607 \\ .1593 \\ .1580$	105 106 107 108 109
110 111 112 113 114	$\begin{array}{c} 247.0\\ 250.8\\ 254.5\\ 258.4\\ 262.2\end{array}$	$\begin{array}{c} 232.3\\ 236.1\\ 239.8\\ 243.7\\ 247.5\end{array}$	$\begin{array}{c} 1.217\\ 1.198\\ 1.180\\ 1.163\\ 1.145 \end{array}$	0.8219 .8344 .8471 .8600 .8730	$167.0 \\ 168.2 \\ 169.4 \\ 170.6 \\ 171.8$	$\begin{array}{c} 633.7\\ 633.8\\ 633.8\\ 633.9\\ 633.9\\ 633.9\end{array}$	$\begin{array}{r} 466.7\\ 465.6\\ 464.4\\ 463.3\\ 462.1 \end{array}$	0.3372 .3392 .3413 .3433 .3453	$1.1566 \\ .1552 \\ .1538 \\ .1524 \\ .1510$	110 111 112 113 114
115 116 117 118 119	$\begin{array}{c} 266.2\\ 270.1\\ 274.1\\ 278.2\\ 282.3 \end{array}$	$\begin{array}{c} 251.5\\ 255.4\\ 259.4\\ 263.5\\ 267.6 \end{array}$	1, 128 1, 112 1, 095 1, 079 1, 063	$\begin{array}{c} 0.8862 \\ .8996 \\ .9132 \\ .9269 \\ .9408 \end{array}$	$173.0 \\ 174.2 \\ 175.4 \\ 176.6 \\ 177.8 $	$\begin{array}{c} 633.9\\ 634.0\\ 634.0\\ 634.0\\ 634.0\\ 634.0\end{array}$	$\begin{array}{r} 460.9\\ 459.8\\ 458.6\\ 457.4\\ 456.2 \end{array}$	$\begin{array}{c} 0.3474 \\ .3495 \\ .3515 \\ .3535 \\ .3556 \end{array}$	$1.1497 \\ .1483 \\ .1469 \\ .1455 \\ .1441$	115 116 117 118 119
120 121 122 123 124	$\begin{array}{c} 286.4\\ 290.6\\ 294.8\\ 299.1\\ 303.4 \end{array}$	$\begin{array}{c} 271.7\\ 275.9\\ 280.1\\ 284.4\\ 288.7 \end{array}$	1.047 1.032 1.017 1.002 0.987	0.9549 .9692 .9837 .9983 1.0132	$179.0 \\ 180.2 \\ 181.4 \\ 182.6 \\ 183.9$	$\begin{array}{c} 634.0\\ 634.0\\ 634.0\\ 634.0\\ 634.0\\ 634.0\end{array}$	$\begin{array}{c} 455.\ 0\\ 453.\ 8\\ 452.\ 6\\ 451.\ 4\\ 450.\ 1\end{array}$	0.3576 .3597 .3618 .3638 .3659	$\begin{array}{r} 1.\ 1427\\ .\ 1414\\ .\ 1400\\ .\ 1386\\ .\ 1372 \end{array}$	120 121 122 123 124
125	307.8	293.1	0.973	1.028	185.1	634.0	448.9	0.3679	1.1358	125

.

TABLE XVIII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: ABSOLUTE PRESSURE TABLE.

				1						
				Heat o	ontent.			Entropy		_
Pressure (abs.), lbs./m. ²	Temp. °F.	Volume vapor. ft. ⁱ /lb.	Density vapor. lbs./ft.*	Liquid. Btu./lb.	Vapor. Btu./Ib.	Latent heat. Btu./lb.	Liqnid. Btu./lb. °F.	Evap. Btu,/ib.°F.	Vapor. Btu./lb.*F.	(abs.). bs./in.
p	t	r	1/V	h	H	L	8	L/T	S	р
5 0 5.5 6.0 6.5 7.0	$ \begin{array}{r} -63.11 \\ -60.27 \\ -57.64 \\ -55.18 \\ -52.88 \end{array} $	$\begin{array}{r} 49.\ 31\\ 45.\ 11\\ 41.\ 59\\ 38.\ 59\\ 36.\ 01 \end{array}$	0.02029 .02217 .02405 .02591 .02777	-24.5-21.5-18.7-16.1-13.7	$\begin{array}{c} 588.\ 3\\ 589.\ 5\\ 590.\ 6\\ 591.\ 6\\ 592.\ 5\end{array}$	$\begin{array}{c} 612. \ 8\\ 611. \ 0\\ 609. \ 3\\ 607. \ 7\\ 606. \ 2 \end{array}$	-0.0599 0524 0455 0390 0330	1.5456 .5301 .5158 .5026 .4904	1. 4857 . 4777 . 4703 . 4636 . 4574	5.0 5.5 6.0 6.5 7.0
7.5 8.0 8.5 9.0 9.5	-50, 70 -48, 64 -46, 69 -44, 83 -43, 05	$\begin{array}{c} 33.\ 77\\ 31.\ 79\\ 30.\ 04\\ 28.\ 48\\ 27.\ 08 \end{array}$	0.02962 .03146 .03329 .03511 .03693	$ \begin{array}{r} -11.3 \\ -9.2 \\ -7.1 \\ -5.1 \\ -3.2 \end{array} $	$\begin{array}{c} 593,4\\ 594,2\\ 595,0\\ 595,7\\ 596,4\end{array}$	$\begin{array}{c} 604,7\\ 603,4\\ 602,1\\ 600,8\\ 599,6\end{array}$	$\begin{array}{r} -0.0274 \\ -0.0221 \\ -0.0171 \\ -0.0123 \\ -0.0077 \end{array}$	1.4790 .4683 .4582 .4486 .4396	1. 4516 . 4462 . 4411 . 4363 . 4319	7.5 8.0 8.5 9.0 9.5
10-0 10.5 11.0 11.5 12.0	$\begin{array}{r} -41.\ 34\\ -39.\ 71\\ -38.\ 14\\ -36.\ 62\\ -35.\ 16\end{array}$	$\begin{array}{c} 25.\ 81\\ 24.\ 66\\ 23.\ 61\\ 22.\ 65\\ 21.\ 77\end{array}$	$\begin{array}{c} 0.\ 03874\\ .\ 04055\\ .\ 04235\\ .\ 04414\\ .\ 04593\end{array}$	$\begin{array}{r} - 1.4 \\ + 0.3 \\ 2.0 \\ 3.6 \\ 5.1 \end{array}$	$\begin{array}{c} 597.\ 1\\ 597.\ 7\\ 598.\ 3\\ 598.\ 9\\ 599.\ 4\end{array}$	598, 5 597, 4 596, 3 595, 3 594, 3	$\begin{array}{r} -0.\ 0034 \\ + \ .\ 0007 \\ .\ 0047 \\ .\ 0085 \\ .\ 0122 \end{array}$	$\begin{array}{r} 1.\ 4310 \\ .\ 4228 \\ .\ 4149 \\ .\ 4074 \\ .\ 4002 \end{array}$	$\begin{array}{r} \textbf{1. 4276}\\\textbf{. 4235}\\\textbf{. 4196}\\\textbf{. 4159}\\\textbf{4124} \end{array}$	$10.0 \\ 10.5 \\ 11.0 \\ 11.5 \\ 12.0$
12.5 13.0 13.5 14.0 14.5	- 33. 74 - 32. 37 - 31. 05 - 29. 76 - 28. 51	20, 96 20, 20 19, 50 18, 85 18, 24	0.04772 .04950 .05128 .05305 .05482	$ \begin{array}{r} 6.7 \\ 8.1 \\ 9.6 \\ 10.9 \\ 12.2 \end{array} $	$\begin{array}{c} 600.\ 0\\ 600.\ 5\\ 601.\ 0\\ 601.\ 4\\ 601.\ 9\end{array}$	$\begin{array}{c} 593.\ 3\\ 592\ 4\\ 591.\ 4\\ 590.\ 5\\ 589.\ 7\end{array}$	0.0157 .0191 .0225 .0257 .0288	1. 3933 . 3866 . 3801 . 3739 . 3679	1. 4090 . 4057 . 4026 . 3996 . 3967	12.5 13.0 13.5 14.0 14.5
15.0 15.5 16.0 16.5 17.0	$\begin{array}{r} -27,29\\ -26,11\\ -24,95\\ -23,83\\ -22,73\end{array}$	$\begin{array}{c} 17,67\\ 17,14\\ 16,64\\ 16,17\\ 15,72 \end{array}$	$\begin{array}{c} 0,05658\05834\06010\06186\06361\end{array}$	13. 6 14. 8 16. 0 17. 2 18. 4	602. 4 602. 8 603. 2 603. 6 604. 0	588, 8 588, 0 587, 2 586, 4 585, 6	0. 0318 . 0347 . 0375 . 0403 . 0430	$\begin{array}{r} 1.\ 3620\\ .\ 3564\\ .\ 3510\\ .\ 3456\\ .\ 3405 \end{array}$	1. 3938 . 3911 . 3885 . 3859 . 3835	15.0 15.5 16.0 16.5 17.0
17.5 18.0 18.5 19.0 19.5	$\begin{array}{r} -21,\ 66\\ -20,\ 61\\ -19,\ 59\\ -18,\ 58\\ -17,\ 60\end{array}$	15. 30 14. 90 14. 53 14. 17 13. 83	0, 06535 . 06710 . 06884 . 07058 . 07232	19. 6 20. 7 21. 8 22. 9 23. 9	$\begin{array}{c} 604.\ 4\\ 604.\ 8\\ 605.\ 1\\ 605.\ 5\\ 605.\ 8\end{array}$	584. 8 584. 1 583. 3 582. 6 581. 9	0, 0456 . 0482 . 0507 . 0531 . 0555	$\begin{array}{c} 1.\ 3354\\ .\ 3305\\ .\ 3258\\ .\ 3211\\ .\ 3166 \end{array}$	$1.\ 3810 \\ .\ 3787 \\ .\ 3765 \\ .\ 3742 \\ .\ 3721$	17.5 18.0 18.5 19.0 19.5
20 , 0 20, 5 21, 0 21, 5 22, 0	-16.64 -15.70 -14.78 -13.87 -12.98	$\begin{array}{c} 13.\ 50\\ 13.\ 20\\ 12.\ 90\\ 12.\ 62\\ 12.\ 35 \end{array}$	0. 07405 . 07578 . 07751 . 07924 . 08096	25. 0 26. 0 27. 0 27. 9 28. 9	$\begin{array}{c} 606.\ 2\\ 606.\ 5\\ 606.\ 8\\ 607.\ 1\\ 607.\ 4 \end{array}$	581. 2 580, 5 579. 8 579. 2 578. 5	$\begin{array}{c} 0.\ 0578\\ .\ 0601\\ .\ 0623\\ .\ 0645\\ .\ 0666\end{array}$	$\begin{array}{r} 1.\ 3122\\ .\ 3078\\ .\ 3036\\ .\ 2995\\ .\ 2955\end{array}$	$\begin{array}{r} 1.\ 3700\\ .\ 3679\\ .\ 3659\\ .\ 3640\\ .\ 3621 \end{array}$	20.0 20.5 21.0 21.5 22.0
22.5 23.0 23.5 24.0 24.5	-12.11 -11.25 -10.41 -9.58 -8.76	12.09 11.85 11.61 11.39 11.17	$\begin{array}{c} 0.\ 08268\\ .\ 08440\\ .\ 08612\\ .\ 08783\\ .\ 08955 \end{array}$	$\begin{array}{c} 29.\ 8\\ 30.\ 8\\ 31.\ 7\\ 32.\ 6\\ 33.\ 5\end{array}$	$\begin{array}{c} 607.\ 7\\ 608.\ 1\\ 608.\ 3\\ 608.\ 6\\ 608.\ 9\end{array}$	577.9 577.3 576.6 576.0 575.4	0.0687 .0708 .0728 .0748 .0768	$\begin{array}{r} 1.\ 2915 \\ .\ 2876 \\ .\ 2838 \\ .\ 2801 \\ .\ 2764 \end{array}$	$\begin{array}{r} 1.\ 3602\\ .\ 3584\\ .\ 3566\\ .\ 3549\\ .\ 3532 \end{array}$	22.5 23.0 23.5 24.0 24.5
25 . 0 25. 5 26. 0 26. 5 27. 0	$\begin{array}{rrrr} - & 7. & 96 \\ - & 7. & 17 \\ - & 6. & 39 \\ - & 5. & 63 \\ - & 4. & 87 \end{array}$	$\begin{array}{c} 10.\ 96\\ 10.\ 76\\ 10.\ 56\\ 10.\ 38\\ 10.\ 20 \end{array}$	0.09126 .09297 .09468 .09638 .09809	$\begin{array}{c} 34.\ 3\\ 35.\ 2\\ 36.\ 0\\ 36.\ 8\\ 37.\ 7\end{array}$	$\begin{array}{c} 609.\ 1\\ 609.\ 4\\ 609.\ 7\\ 609.\ 9\\ 610.\ 2 \end{array}$	$\begin{array}{c} 574.\ 8\\ 574.\ 2\\ 573.\ 7\\ 573.\ 1\\ 572.\ 5\end{array}$	0.0787 .0805 .0824 .0842 .0860	$1.2728 \\ .2693 \\ .2658 \\ .2625 \\ .2591$	$\begin{array}{r} \textbf{1. 3515}\\\textbf{. 3498}\\\textbf{. 3482}\\\textbf{. 3467}\\\textbf{. 3451} \end{array}$	25.0 25.5 26.0 26.5 27.0
27.5 28.0 28.5 29.0 29.5	$\begin{array}{rrrr} - & 4. & 13 \\ - & 3. & 40 \\ - & 2. & 68 \\ - & 1. & 97 \\ - & 1. & 27 \end{array}$	10. 02 9. 853 9. 691 9. 534 9. 383	0.09979 .1015 .1032 .1049 .1066	38.4 39.3 40.0 40.8 41.6	$\begin{array}{c} 610.\ 4\\ 610.\ 7\\ 610.\ 9\\ 611.\ 1\\ 611.\ 4 \end{array}$	$\begin{array}{c} 572.\ 0\\ 571.\ 4\\ 570.\ 9\\ 570.\ 3\\ 569.\ 8\end{array}$	0. 0878 . 0895 . 0912 . 0929 . 0945	$1.2558 \\ .2526 \\ .2494 \\ .2463 \\ .2433$	$\begin{array}{r} 1.\ 3436\\ .\ 3421\\ .\ 3406\\ .\ 3392\\ .\ 3378 \end{array}$	27.5 28.0 28.5 29.0 29.5
30. 0	- 0.57	9. 236	0. 1083	42.3	611. 6	569. 3	0.0962	1.2402	1.3364	30. 0

REFRIGERANTS-TABLES

TABLE XVIII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: ABSOLUTE PRESSURE TABLE.—(Continued.)

				Heat c	ontent.			Entropy.		
Pressure (abs.).]bs./in. ³	Temp. °F.	Volume vapor. ft. ⁵ /lb.	Density vapor. lbs./ft.3	Liquid. Btu./lb.	Vapor. Btu./lb.	Latent beat. Btu./lb.	Liquid. Btu./lb. *F.	Evap. Btu./b.°F.	Vapor. Btu./b.*F.	Pressure (abs.). lbs./in. ³
p	t	V	1/V	h	H	L	8	L/T	S	р
30 31 32 33 34	-0.57+0.792.113.404.66	9.236 8.955 8.693 8.445 8.211	0.1083 .1117 .1150 .1184 .1218	42.3 43.8 45.2 46.6 48.0	$\begin{array}{c} 611.\ 6\\ 612.\ 0\\ 612.\ 4\\ 612.\ 8\\ 613.\ 2\end{array}$	569.3 568.2 567.2 566.2 565.2	0.0962 .0993 .1024 .1055 .1084	1.2402 .2343 .2286 .2230 .2176	1.3364 .3336 .3310 .3285 .3260	30 31 32 33 34
35 36 37 38 39	5.89 7.09 8.27 9.42 10.55	$\begin{array}{c} 7.991 \\ 7.782 \\ 7.584 \\ 7.396 \\ 7.217 \end{array}$	0, 1251 . 1285 . 1319 . 1352 . 1386	$\begin{array}{r} 49.3 \\ 50.6 \\ 51.9 \\ 53.2 \\ 54.4 \end{array}$	613.6 614.0 614.3 614.7 615.0	564.3 563.4 562.4 561.5 560.6	0. 1113 .1141 .1168 .1195 .1221	$1.2123 \\ .2072 \\ .2022 \\ .1973 \\ .1925$	1.3236 .3213 .3190 .3168 .3146	35 36 37 38 39
40 41 42 43 44	$11.66 \\ 12.74 \\ 13.81 \\ 14.85 \\ 15.88$	7.047 6.885 6.731 6.583 6.442	$\begin{array}{r} 0.1419 \\ .1452 \\ .1486 \\ .1519 \\ .1552 \end{array}$	55.656.857.959.1 60.2	$\begin{array}{c} 615.\ 4\\ 615.\ 7\\ 616.\ 0\\ 616.\ 3\\ 616.\ 6\end{array}$	559.8 558.9 558.1 557.2 556.4	0.1246 .1271 .1296 .1320 .1343	1.1879 .1833 .1788 .1745 .1703	$1.3125 \\ .3104 \\ .3084 \\ .3065 \\ .3046$	40 41 42 43 44
45 46 47 48 49	16.88 17.87 18.84 19.80 20.74	$\begin{array}{c} 6.307\\ 6.177\\ 6.053\\ 5.934\\ 5.820 \end{array}$	0.1586 .1619 .1652 .1685 .1718	$\begin{array}{c} 61.3 \\ 62.4 \\ 63.4 \\ 64.5 \\ 65.5 \end{array}$	$\begin{array}{c} 616.9\\ 617.2\\ 617.4\\ 617.7\\ 618.0 \end{array}$	555.6 554.8 554.0 553.2 552.5	0.1366 .1389 .1411 .1433 .1454	$1.1661 \\ .1620 \\ .1580 \\ .1540 \\ .1502$	$\begin{array}{r} 1.3027 \\ .3009 \\ .2991 \\ .2973 \\ .2956 \end{array}$	45 46 47 48 49
50 51 52 53 54	21.67 22.58 23.48 24.36 25.23	5.710 5.604 5.502 5.404 5.309	0.1751 .1785 .1818 .1851 .1884	66.5 67.5 68.5 69.5 70.4	$\begin{array}{c} 618.2 \\ 618.5 \\ 618.7 \\ 619.0 \\ 619.2 \end{array}$	551.7 551.0.550.2 549.5 548.8	0.1475 .1496 .1516 .1536 .1556	1.1464 .1427 .1390 .1354 .1319	1,2939 2923 2906 2890 2875	50 51 52 53 54
55 56 57 58 59	26.09 26.94 27.77 28.59 29.41	$5.218 \\ 5.129 \\ 5.044 \\ 4.962 \\ 4.882$	0.1917 .1950 .1983 .2015 .2048	71.4 72.3 73.8 74.2 75.0	619.4 619.7 619.9 620.1 620.3	$\begin{array}{c} 548.0\\ 547.4\\ 546.6\\ 545.9\\ 545.3\end{array}$	0, 1575 , 1594 , 1613 , 1631 , 1650	1.1284 .1250 .1217 .1184 .1151	1.2859 .2844 .2830 .2815 .2801	55 56 57 58 59
60 61 62 63 64	30.21 31.00 31.78 32.55 33.31	4.805 4.730 4.658 4.588 4.519	0.2081 .2114 .2147 .2180 .2213	75.9 76.8 77.7 78.5 79.4	620.5 620.7 620.9 621.1 621.3	544.6 543.9 543.2 542.6 541.9	0.1668 .1685 .1703 .1720 .1737	1.1119 .1088 .1056 .1026 .0996	1.2787 .2773 .2759 .2746 .2733	60 61 62 63 64
65 66 67 68 69	$\begin{array}{c c} 34.06\\ 34.81\\ 35.54\\ 36.27\\ 36.99 \end{array}$	$\begin{array}{c} 4.453\\ 4.389\\ 4.327\\ 4.267\\ 4.208\end{array}$	0.2245 .2278 .2311 .2344 .2377	80.2 81.0 81.8 82.6 83.4	$\begin{array}{c} 621.5\\ 621.7\\ 621.9\\ 622.0\\ 622.2 \end{array}$	541.3 540.7 540.1 539.4 538.8	0.1754 .1770 .1787 .1803 .1819	1.0966 .0937 .0907 .0879 .0851	$\begin{array}{c} 1.2720 \\ .2707 \\ .2694 \\ .2682 \\ .2670 \end{array}$	65 66 67 68 69
70 71 72 73 74	37,70 38,40 39,09 39,78 40,46	$\begin{array}{c} 4,151\\ 4,095\\ 4,041\\ 3,988\\ 3,937 \end{array}$	0.2409 .2442 .2475 .2507 .2540	84.2 85.0 85.8 86.5 87.3	$\begin{smallmatrix} 622. \ 4 \\ 622. \ 6 \\ 622. \ 8 \\ 622. \ 9 \\ 623. \ 1 \end{smallmatrix}$	$\begin{array}{c} 538.\ 2\\ 537.\ 6\\ 537.\ 0\\ 536.\ 4\\ 535.\ 8\end{array}$	0.1835 .1850 .1866 .1881 .1896	1.0823 .0795 .0768 .0741 .0715	$1.2658 \\ .2645 \\ .2634 \\ .2622 \\ .2611$	70 71 72 73 74
75 76 77 78 79	41. 13 41. 80 42. 46 43. 11 43. 76	$\begin{array}{c c} 3,887\\ 3,838\\ 3,790\\ 3,744\\ 3,699 \end{array}$	0.2573 .2606 .2638 .2671 .2704	88.0 88.8 89.5 90.2 90.9	623.2 623.4 623.5 623.7 623.8	$\begin{array}{c} 535.\ 2\\ 534.\ 6\\ 534.\ 0\\ 533.\ 5\\ 532.\ 9\end{array}$	0.1910 1925 1940 1954 1968	1.0689 .0663 .0637 .0612 .0587	1.2599 .2588 .2577 .2566 .2555	75 76 77 78 79
80	44.40	3.655	0.2736	91.7	624.0	532.3	0.1982	1.0563	1.2545	80

HOUSEHOLD REFRIGERATION

TABLE XVIII.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: ABSOLUTE PRESSURE TABLE.—(Continued.)

		1								
				Heat co	ntent.	¥ . 4 4		Entropy.		
Pressure (abs.). lbs./in. ³	Temp. °F.	Volume vapor. ft. ³ /lb.	Density vapor. lbs./ft.ª	Liquid. Btu./lb.	Vapor. Btu./lb.	Latent beat. Btu./lb.	Liquid. Btu./lb. °F.	Evap. Btu./lb.°F.	Vapor. Btu./lb.*F.	Pressure (abs.), lbs./in.*
р	t	V	1/V	h	Н	L	8	L/T	S	р
80 81 82 83 84	44. 40 45, 03 45. 66 46. 28 46. 89	$\begin{array}{c} 3.\ 655\\ 3.\ 612\\ 3.\ 570\\ 3.\ 528\\ 3.\ 488 \end{array}$	0. 2736 . 2769 . 2801 . 2834 . 2867	91. 7 92. 4 93. 1 93. 8 94. 5	$\begin{array}{c} 624.\ 0\\ 624.\ 1\\ 624.\ 3\\ 624.\ 4\\ 624.\ 6\end{array}$	532.3 531.7 531.2 530.6 530.1	0. 1982 . 1996 . 2010 . 2024 . 2037	1.0563 .0538 .0514 .0490 .0467	$\begin{array}{c} \textbf{1.2545}\\ \textbf{.2534}\\ \textbf{.2524}\\ \textbf{.2514}\\ \textbf{.2504}\\ \textbf{.2504} \end{array}$	80 81 82 83 84
85 86 87 88 89	47, 50 48, 11 48, 71 49, 30 49, 89	3. 449 3. 411 3. 373 3 337 3. 301	0. 2899 . 2932 . 2964 . 2997 . 3030	95. 1 95. 8 96. 5 97. 2 97. 8	624. 7 624. 8 625. 0 625. 1 625. 2	529.6 529.0 528.5 527.9 527.4	0. 2051 . 2064 . 2077 . 2090 . 2103	1.0443 .0420 .0397 .0375 .0352	$1.2494 \\ .2484 \\ .2474 \\ .2465 \\ .2455$	85 86 87 88 89
90 91 92 93 94	50. 47 51. 05 51. 62 52. 19 52. 76	$\begin{array}{c} 3.\ 266\\ 3.\ 231\\ 3.\ 198\\ 3.\ 165\\ 3.\ 132 \end{array}$	0.3062 .3095 .3127 .3160 .3192	98. 4 99. 1 99. 8 100. 4 101. 0	$\begin{array}{c} 625.\ 3\\ 625.\ 5\\ 625.\ 6\\ 625.\ 7\\ 625.\ 8\end{array}$	526.9 526.4 525.8 525.3 524.8	$\begin{array}{c} \textbf{0. 2115} \\ \textbf{. 2128} \\ \textbf{. 2141} \\ \textbf{. 2153} \\ \textbf{. 2165} \end{array}$	1. 0330 . 0308 . 0286 . 0265 . 0243	$1.2445 \\ .2436 \\ .2427 \\ .2418 \\ .2408$	90 91 92 93 94
95 96 97 98 99	53.32 53.87 54.42 54.97 55.51	3. 101 3. 070 3. 039 3. 010 2. 980	0. 3225 . 3258 . 3290 . 3323 . 3355	101. 6 102. 3 102. 9 103. 5 104. 1	$\begin{array}{c} 625. \ 9 \\ 626. \ 1 \\ 626. \ 2 \\ 626. \ 3 \\ 626. \ 4 \end{array}$	524.3 523.8 523.3 522.8 522.3	$\begin{array}{c} 0.\ 2177\\ .\ 2190\\ .\ 2201\\ .\ 2213\\ .\ 2225 \end{array}$	1.0222 .0201 .0181 .0160 .0140	$1.2399 \\ .2391 \\ .2382 \\ .2373 \\ .2365$	95 96 97 98 99
100 102 104 106 108	56.05 57.11 58.16 59.19 60.21	$\begin{array}{c} 2.\ 952\\ 2.\ 896\\ 2.\ 843\\ 2.\ 791\\ 2.\ 741 \end{array}$	0. 3388 . 3453 . 3518 . 3583 . 3648	104. 7 105. 9 107. 1 108. 3 109. 4	$\begin{array}{c} 626.\ 5\\ 626.\ 7\\ 626.\ 9\\ 627.\ 1\\ 627.\ 3\end{array}$	521. 8 520. 8 519. 8 518. 8 517. 9	$\begin{array}{c} 0.\ 2237\\ .\ 2260\\ .\ 2282\\ .\ 2305\\ .\ 2327\end{array}$	1.0119 .0079 .0041 1.0002 0.9964	1.235623392323230723072291	100 102 104 106 108
110 112 114 116 118	$\begin{array}{c} 61.\ 21 \\ 62.\ 20 \\ 63.\ 17 \\ 64.\ 13 \\ 65.\ 08 \end{array}$	$\begin{array}{c} 2.\ 693\\ 2.\ 647\\ 2.\ 602\\ 2.\ 559\\ 2.\ 517 \end{array}$	0.3713 .3778 .3843 .3909 .3974	110, 5 111, 7 112, 8 113, 9 114, 9	$\begin{array}{c} 627.\ 5\\ 627.\ 7\\ 627.\ 9\\ 628.\ 1\\ 628.\ 2 \end{array}$	517. 0516. 0515. 1514. 2513. 3	$\begin{array}{r} 0.\ 2348 \\ .\ 2369 \\ .\ 2390 \\ .\ 2411 \\ .\ 2431 \end{array}$	0.9927 .9890 .9854 .9819 .9784	$1.2275 \\ .2259 \\ .2244 \\ .2230 \\ .2215$	110 112 114 116 118
120 122 124 126 128	66, 02 66, 94 67, 86 68, 76 69, 65	$\begin{array}{c} 2.\ 476\\ 2.\ 437\\ 2.\ 399\\ 2.\ 362\\ 2.\ 326 \end{array}$	0.4039 .4104 .4169 .4234 .4299	116, 0 117, 1 118, 1 119, 1 120, 1	$\begin{array}{c} 628.\ 4\\ 628.\ 6\\ 628.\ 7\\ 628.\ 9\\ 629.\ 0 \end{array}$	$\begin{array}{c} 512.\ 4\\ 511.\ 5\\ 510.\ 6\\ 509.\ 8\\ 508.\ 9\end{array}$	0. 2452 . 2471 . 2491 . 2510 . 2529	0.9749 .9715 .9682 .9649 .9616	$1.2201 \\ .2186 \\ .2173 \\ .2159 \\ .2145$	120 122 124 126 128
130 132 134 136 138	$\begin{array}{c} 70.\ 53\\ 71.\ 40\\ 72.\ 26\\ 73.\ 11\\ 73.\ 95\end{array}$	$\begin{array}{c} 2.\ 291\\ 2.\ 258\\ 2.\ 225\\ 2.\ 193\\ 2.\ 162 \end{array}$	0. 4364 . 4429 . 4494 . 4559 . 4624	$\begin{array}{c} 121. \ 1\\ 122. \ 1\\ 123. \ 1\\ 124. \ 1\\ 125. \ 1 \end{array}$	$\begin{array}{c} 629.\ 2\\ 629.\ 3\\ 629.\ 5\\ 629.\ 6\\ 629.\ 8\end{array}$	$\begin{array}{c} 508.\ 1\\ 507.\ 2\\ 506.\ 4\\ 505.\ 5\\ 504.\ 7\end{array}$	$\begin{array}{c} 0.\ 2548 \\ .\ 2567 \\ .\ 2585 \\ .\ 2603 \\ .\ 2621 \end{array}$	0. 9584 . 9552 . 9521 . 9490 . 9460	$\begin{array}{c} 1.\ 2132\\ .\ 2119\\ .\ 2106\\ .\ 2093\\ .\ 2081 \end{array}$	130 132 134 136 138
140 142 144 146 148	74.79 75.61 76.42 77.23 78.03	2. 132 2. 103 2. 075 2. 047 2. 020	0. 4690 . 4755 . 4820 . 4885 . 4951	126, 0 126, 9 127, 9 128, 8 129, 7	$\begin{array}{c} 629. \ 9 \\ 630. \ 0 \\ 630. \ 2 \\ 630. \ 3 \\ 630. \ 4 \end{array}$	$\begin{array}{c} 503.\ 9\\ 503.\ 1\\ 502.\ 3\\ 501.\ 5\\ 500.\ 7\end{array}$	$\begin{array}{c} 0.\ 2638 \\ .\ 2656 \\ .\ 2673 \\ .\ 2690 \\ .\ 2707 \end{array}$	$\begin{array}{c} 0.\ 9430 \\ .\ 9400 \\ .\ 9371 \\ .\ 9342 \\ .\ 9313 \end{array}$	$\begin{array}{c} 1.\ 2068\\ .\ 2056\\ .\ 2044\\ .\ 2032\\ .\ 2020 \end{array}$	140 142 144 146 148
150	78.81	1.994	0.5016	130. 6	630.5	499. 9	0. 2724	0. 9285	1.2009	150

REFRIGERANTS-TABLES

TABLE XVIII.--BUREAU OF STANDARDS TABLES OF PROPERTIES OF SATURATED AMMONIA: ABSOLUTE PRESSURE TABLE.--(Continued.)

				Heate	ontent.			Entropy.		
Pressure (abs.). 1bs./in. ³	Temp.	Volume vapor. ft. ^s /lb.	Density vapor. lbs./lt.*	Liquid. Btu./Ib.	Vapor. Btu./lb.	Latent heat. Btu./lb.	Liquid. Btu./lb. °F.	Evap. Btu./b.°F.	Vapor. Btu,/b.*F.	Pressure (abs.). lbs./in. ³
Р	t	V	1/V	h	Η	L	8	L/T	S	'p
150 152 154 156 158	78. 81 79. 60 80. 37 81. 13 81. 89	1. 994 1. 968 1. 943 1. 919 1. 895	0.5016 .5081 .5147 .5212 .5277	$130. \ 6 \\ 131. \ 5 \\ 132. \ 4 \\ 133. \ 3 \\ 134. \ 2$	$\begin{array}{c} 630.\ 5\\ 630.\ 6\\ 630.\ 7\\ 630.\ 9\\ 631.\ 0\end{array}$	499. 9 499. 1 498. 3 497. 6 496. 8	0. 2724 . 2740 . 2756 . 2772 . 2788	0, 9285 . 9257 . 9229 . 9202 . 9175	1. 2009 . 1997 . 1985 . 1974 . 1963	150 152 154 156 158
160 162 164 166 168	82, 64 83, 39 84, 12 84, 85 85, 57	$\begin{array}{c} 1.\ 872\\ 1.\ 849\\ 1.\ 827\\ 1.\ 805\\ 1.\ 784 \end{array}$	0. 5343 . 5408 . 5473 . 5539 . 5604	135. 0 135. 9 136. 8 137. 6 138. 4	$\begin{array}{c} 631.\ 1\\ 631.\ 2\\ 631.\ 3\\ 631.\ 4\\ 631.\ 5\end{array}$	496. 1 495. 3 494. 5 493. 8 493. 1	0.2804 .2820 .2835 .2850 .2866	0.9148 .9122 .9096 .9070 .9044	1. 1952 . 1942 . 1931 . 1920 . 1910	160 162 164 166 168
170 172 174 176 178	86, 29 87, 00 87, 71 88, 40 89, 10	$\begin{array}{c} 1.764\\ 1.744\\ 1.724\\ 1.705\\ 1.686\end{array}$	0.5670 5735 5801 5866 5932	139.3 140.1 140.9 141.7 142.5	$\begin{array}{c} 631.\ 6\\ 631.\ 7\\ 631.\ 7\\ 631.\ 8\\ 631.\ 9\end{array}$	492. 3 491. 6 490. 8 490. 1 489. 4	0. 2881 . 2895 . 2910 . 2925 . 2939	0.9019 .8994 .8969 .8944 .8920	1. 1900 . 1889 . 1879 . 1869 . 1859	170 172 174 176 178
180 182 184 186 188	89.78 90.46 91.14 91.80 92.47	$\begin{array}{c} 1.\ 667\\ 1.\ 649\\ 1.\ 632\\ 1.\ 614\\ 1.\ 597 \end{array}$	0.5998 .6063 .6129 .6195 .6261	$\begin{array}{c} 143.\ 3\\ 144.\ 1\\ 144.\ 8\\ 145.\ 6\\ 146.\ 4 \end{array}$	$\begin{array}{c} 632.\ 0\\ 632.\ 1\\ 632.\ 1\\ 632.\ 2\\ 632.\ 3\end{array}$	488.7 488.0 487.3 486.6 485.9	0. 2954 . 2968 . 2982 . 2996 . 3010	0. 8896 . 8872 . 8848 . 8825 . 8801	1. 1850 . 1840 . 1830 . 1821 . 1811	180 182 184 186 188
190 192 194 196 198	93. 13 93. 78 94. 43 95. 07 95. 71	$\begin{array}{c} 1.\ 581\\ 1.\ 564\\ 1.\ 548\\ 1.\ 533\\ 1.\ 517 \end{array}$	$\begin{array}{c} \textbf{0.}\ 6326\\ .\ 6392\\ .\ 6458\\ .\ 6524\\ .\ 6590 \end{array}$	$\begin{array}{c} 147.\ 2\\ 147.\ 9\\ 148.\ 7\\ 149.\ 5\\ 150.\ 2 \end{array}$	632. 4 632. 4 632. 5 632. 6 632. 6	$\begin{array}{r} 485.\ 2\\ 484.\ 5\\ 483.\ 8\\ 483.\ 1\\ 482.\ 4\end{array}$	0. 3024 . 3037 . 3050 . 3064 . 3077	0.8778 .8755 .8733 .8710 .8688	$1.1802 \\ .1792 \\ .1783 \\ .1774 \\ .1765$	190 192 194 196 198
200 205 210 215 220	96, 34 97, 90 99, 43 100, 94 102, 42	$\begin{array}{c} 1.\ 502\\ 1.\ 466\\ 1.\ 431\\ 1.\ 398\\ 1.\ 367 \end{array}$	0.6656 .6821 .6986 .7152 .7318	150, 9 152, 7 154, 6 156, 3 158, 0	$\begin{array}{c} 632.\ 7\\ 632.\ 8\\ 633.\ 0\\ 633.\ 1\\ 633.\ 2\end{array}$	$\begin{array}{r} 481.\ 8\\ 480.\ 1\\ 478.\ 4\\ 476.\ 8\\ 475.\ 2\end{array}$	0. 3090 . 3122 . 3154 . 3185 . 3216	0.8666 .8612 .8559 .8507 .8455	$\begin{array}{c} 1.\ 1756\\ .\ 1734\\ .\ 1713\\ .\ 1692\\ .\ 1671 \end{array}$	200 205 210 215 220
225 230 235 240 245	103.87 105.30 106.71 108.09 109.46	$\begin{array}{c} 1.\ 336\\ 1.\ 307\\ 1.\ 279\\ 1.\ 253\\ 1.\ 227 \end{array}$	0.7484 .7650 .7817 .7984 .8151	$\begin{array}{c} 159.\ 7\\ 161.\ 4\\ 163.\ 1\\ 164.\ 7\\ 166.\ 4 \end{array}$	$\begin{array}{c} 633.\ 3\\ 633.\ 4\\ 633.\ 5\\ 633.\ 6\\ 633.\ 7\end{array}$	473. 6 472. 0 470. 4 468. 9 467. 3	0, 3246 . 3275 . 3304 . 3332 . 3360	0. 8405 . 8356 . 8307 . 8260 . 8213	$\begin{array}{c} 1.\ 1651\\ .\ 1631\\ .\ 1611\\ .\ 1592\\ .\ 1573 \end{array}$	225 230 235 240 245
250 255 260 265 270	110. 80 112. 12 113. 42 114. 71 115. 97	$\begin{array}{c} 1.\ 202\\ 1.\ 178\\ 1.\ 155\\ 1.\ 133\\ 1.\ 112 \end{array}$	0.8319 .8487 .8655 .8824 .8993	$\begin{array}{c} 168.\ 0\\ 169.\ 5\\ 171.\ 1\\ 172.\ 6\\ 174.\ 1\end{array}$	633, 8 633, 8 633, 9 633, 9 633, 9	$\begin{array}{r} 465, 8\\ 464, 3\\ 462, 8\\ 461, 3\\ 459, 8\end{array}$	$\begin{array}{r} 0.\ 3388\\ .\ 3415\\ .\ 3441\\ .\ 3468\\ .\ 3494 \end{array}$	0. 8167 . 8121 . 8077 . 8033 . 7989	1. 1555 . 1536 . 1518 . 1501 . 1483	250 -255 260 265 270
275 280 285 290 295	117. 22 118. 45 119. 66 120. 86 122. 05	1.091 1.072 1.052 1.034 1.016	0.9162 .9332 .9502 .9672 .9843	$\begin{array}{c} 175.\ 6\\ 177.\ 1\\ 178.\ 6\\ 180.\ 0\\ 181.\ 5\end{array}$	634. 0 634. 0 634. 0 634. 0 634. 0	$\begin{array}{c} 458.\ 4\\ 456.\ 9\\ 455.\ 4\\ 454.\ 0\\ 452.\ 5\end{array}$	$\begin{array}{r} 0.\ 3519 \\ .\ 3545 \\ .\ 3569 \\ .\ 3594 \\ .\ 3618 \end{array}$	0.7947 .7904 .7863 .7821 .7781	1. 1466 . 1449 . 1432 . 1415 . 1399	275 280 285 290 295
300	123. 21	0.999	1.0015	182. 9	634. 0	451.1	0.3642	0.7741	1. 1383	300

HOUSEHOLD REFRIGERATION

TABLE XIX .-- BUREAU OF STANDARDS TABLE OF PROPERTIES OF LIQUID AMMONIA.

Bureau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1921

=		1							1	Variatioo		
				(.Ατ	SATURAT				Latent Heat of Pressure	of h with p (t Con-	Compress- ibility	
1	Temp.	Pressure (Abs.)	Pressure (Gage)	Volume	Density	Specific Heat	'Heat Content Above - 40°	Lateot Heat	Variation	atent) Btu./lb.	% Change in v	Temp.
	۰F	lb 'm ?	lh /in 2	,ft.³/lb.	lb./ft *	Btu /lb ∙ °F	Btu./lb	Btu./lb.	Btu./lb lb./in *	100 (bh)	lb./m.3	°F
	t	Р	g p	v _.	1) v	_ c	h	L	1	$-\overline{v}(\overline{s_{F}})_{t}$	$-\frac{100}{v}\left(\frac{\delta v}{\delta p}\right)_{t}$	t
	Friple point	0.88	$\frac{28}{28}$.1*	$\substack{0.01961\\.02182}$	$\begin{array}{c} 51.00\\ 45.83\end{array}$				(Propert	ies of solid at	nmooia)	-107.86 -107.86
	- 100 - 95 - 90 - 85 - 80	1.24 1.52 1.86 2.27 2.74	27.4° 26.8° 26.1° 25.3° 24.3°	0.02197 .02207 .02216 .02226 .02236	$\begin{array}{r} 45.52 \\ 45.32 \\ 45.12 \\ 44.92 \\ 44.72 \end{array}$	1.042 1.013 1.045	-63.0^{\dagger} -57.8^{\dagger} -52.6^{\dagger} -47.4^{\dagger} -42.2^{\dagger}	$\begin{array}{c} 633 \\ 631 \\ 628 \\ 625 \\ 625 \\ 622 \\ \end{array}$	from empir Bureau of Papers No represent v polation be	rures were ical equation Standards s. 313 and alues obtaioe yond the rar	s given in Scientific 315, and d by extra- bge covered	-100 -95 -90 -85 -80
	-75 -70 -65 -60 -55	3.29 3.94 4.69 5.55 6.54	23.2^{*} 21.9^{*} 20.4^{*} 18.6^{*} 16.6^{*}	0.02246 .02256 .02267 .02278 .02288	$\begin{array}{r} 44.52 \\ 44.32 \\ 44.11 \\ 43.91 \\ 43.70 \end{array}$	$\begin{array}{c c} 1.048 \\ 1.050 \\ 1.052 \\ 1.052 \\ 1.054 \\ 1.056 \end{array}$	-36.9^{\dagger} -31.7^{\dagger} -26.4^{\dagger} -21.18 -15.90	$619 \\ 616 \\ 613 \\ 610.8 \\ 607.5$	-0.0016 0016	erimental w 0.0026 .0026	ork. 0.00044 .00045	-75 -70 -65 -60 -55
	- 50 - 45 - 40 - 35 - 30	$\begin{array}{r} 7.67 \\ 8.95 \\ 10.41 \\ 12.05 \\ 13.90 \end{array}$	$ \begin{array}{r} 14.3^{*} \\ 11.7^{*} \\ 8.7^{*} \\ 5.4^{*} \\ 1.6^{*} \end{array} $	0.02299 .02310 .02322 .02333 .02345	$\begin{array}{r} 43.49\\ 43.28\\ 43.08\\ 42.86\\ 42.65\end{array}$	$1.058 \\ 1.060 \\ 1.062 \\ 1.064 \\ 1.066$	-10.61 -5.31 0.00 +5.32 10.66	$\begin{array}{r} 604.3 \\ 600.9 \\ 597.6 \\ 594.2 \\ 590.7 \end{array}$	$ \begin{array}{r} -0.0017 \\0017 \\0018 \\0018 \\0019 \end{array} $	0.0026 .0026 .0025 .0025 .0025	0.00046 .00047 .00048 .00050 .00051	- 50 - 45 - 40 - 35 - 30
	-25 -20 -15 -10 -5	15.98 18.30 20.88 23.74 26.92	$ \begin{array}{r} 1.3 \\ 3.6 \\ 6.2 \\ 9.0 \\ 12.2 \end{array} $	$\begin{array}{c} 0.02357\\.02369\\.02381\\02393\\.02406\end{array}$	$\begin{array}{r} 42.44\\ 42.22\\ 42.00\\ 41.78\\ 41.56\end{array}$	$1.068 \\ 1.070 \\ 1.073 \\ 1.075 \\ 1.078$	16.00 21.36 26.73 32.11 37.51	587.2 583.6 580.0 576.4 572.6	$\begin{array}{r} -0.0019 \\0020 \\0020 \\0021 \\0022 \end{array}$	0.0024 .0024 .0024 .0023 .0023	0.00052 .00054 .00055 .00057 .00058	$ \begin{array}{r} -25 \\ -20 \\ -15 \\ -10 \\ -5 \end{array} $
	0 5 10 15 20	30.42 34.27 38.51 43.14 48.21	15.7 19.6 23.8 28.4 33.5	0.02419 .02432 .02446 .02460 .02474	$\begin{array}{r} 41.34\\ \textbf{41.11}\\ 40.89\\ 40.66\\ 40.43\end{array}$	1 080 1.083 1.085 1.085 1.088 1.091	42.92 48.35 53.79 59.24 64.71	568.9 565.0 561.1 557.1 553.1	$ \begin{array}{r} -0.0022 \\0023 \\0024 \\0025 \\0025 \end{array} $	0.0022 .0022 .0021 .0021 .0020	0.00000 00062 .00064 .00066 .00068	0 5 10 15 20
	25 30 35 40 45	53 73 59.74 66.26 73.32 80.96	$39.0 \\ 45.0 \\ 51.6 \\ 58.6 \\ 66.3$	0.02488 .02503 .02518 .02533 02548	$\begin{array}{r} 40.20\\ 39.96\\ 39.72\\ 39.49\\ 39.24\end{array}$	${}^{1.094}_{1.097}_{1.100}_{1.104}_{1.108}$	$70.20 \\ 75.71 \\ 81.23 \\ 86.77 \\ 92.34$	$\begin{array}{r} 548.9 \\ 544.8 \\ 540.5 \\ 536.2 \\ 531.8 \end{array}$	$\begin{array}{r} -0.0026 \\0027 \\0028 \\0029 \\0030 \end{array}$	0.0020 .0019 .0019 .0018 .0017	0.00070 .00073 .00075 .00078 .00081	25 30 35 40 45
	50 55 60 65 70	$\begin{array}{r} 89.19 \\ -98.06 \\ 107.6 \\ 117.8 \\ 128.8 \end{array}$	$\begin{array}{r} 74.5\\83.4\\92.9\\103.1\\114.1\end{array}$	$\begin{array}{c} 0.02564 \\ .02581 \\ .02597 \\ .02614 \\ 02632 \end{array}$	39.00 38.75 38.50 38.25 38.00	$\begin{array}{c} 1.112 \\ 1.116 \\ 1.120 \\ 1.125 \\ 1.129 \end{array}$	$\begin{array}{r} 97.93 \\ 103.54 \\ 109.18 \\ 114.85 \\ 120.54 \end{array}$	$\begin{array}{c} 527.3 \\ 522.8 \\ 518.1 \\ 513.4 \\ 508.6 \end{array}$	$\begin{array}{r} -0.0031 \\0032 \\0033 \\0034 \\0035 \end{array}$	0.0017 .0016 .0015 .0014 .0013	0 00084 .00088 .00091 .00095 .00100	50 55 60 65 70
	75 80 85 86‡ 90 95	140.5 153.0 166.4 169.2 180.6 195.8	125.8 138.3 151.7 154.5 165.9 181.1	0 02650 .02668 .02687 .02673 .02707 02727	37.74 37.48 37.21 37.16 36.95 36.67	$\begin{array}{r} 1.133\\ 1.138\\ 1.142\\ 1.143\\ 1.143\\ 1.147\\ 1.151 \end{array}$	126.25 131.99 137.75 127.40 143.54 149.36	503.7 498.7 493.6 492.6 488.5 483.2	0.0037 0038 0040 .0040 0041 0043	0.0012 .0011 .0010 .0010 .0010 0009 0008	0.00104 .00109 .00114 .00115 .00120 .00126	75 80 85 86 90 95
	100 105 110 115 120	$\begin{array}{c} 211.9\\ 228.9\\ 247.0\\ 266.2\\ 286.4 \end{array}$	$\begin{array}{c} 197.2\\ 214.2\\ 232.3\\ 251.5\\ 271.7\end{array}$	$\begin{array}{c} 0.02747 \\ .02769 \\ .02790 \\ .02813 \\ .02836 \end{array}$	$\begin{array}{c} 36.40 \\ 36.12 \\ 35.84 \\ 35.55 \\ 35.26 \end{array}$	$\begin{array}{c} 1.156 \\ 1.162 \\ 1.168 \\ 1.176 \\ 1.183 \end{array}$	155.21 161.09 167.01 172.97 178.98	$\begin{array}{r} 477.8\\ 472.3\\ 466.7\\ 460.9\\ 455.0\end{array}$	$\begin{array}{r} -0.0045 \\ -0.0047 \\ -0049 \\0051 \\ -0053 \end{array}$	0.0006 .0005 .0003 .0001 .0000	0.00133 .00141 .00149 .00158 .00167	100 105 110 115 120
	125 130 135 140 145	$\begin{array}{r} 307 \ 8 \\ 330 \ .3 \\ 354 \ .1 \\ 379 \ .1 \\ 405 \ .5 \end{array}$	$\begin{array}{c} 293 \ 1 \\ 315 \ 6 \\ 339.4 \\ 364.4 \\ 390.8 \end{array}$	$\begin{array}{c} 0.02860 \\ .02885 \\ .02911 \\ 02938 \\ 02966 \end{array}$	$\begin{array}{c} 34 & 96 \\ 34 & .66 \\ 34 & .35 \\ 34 & .04 \\ 33 & .72 \end{array}$	1.189† 1.197† 1.205† 1.213† 1.222†	185† 191† 197† 203† 210†	449† 443† 436† 430† 423†	the pressure volume .0 density 14 content 43	.6 Ibs., epd 3 Btu.	lbs., the feet, the the heat	125 130 135 140 145
	150 155 160 165 170	$\begin{array}{r} 433 \ 2 \\ 462 \ .3 \\ 492 \ .8 \\ 524 \ .8 \\ 558 \ .4 \end{array}$	$\begin{array}{r} 418.5 \\ 447.6 \\ 478.1 \\ 510.1 \\ 543.7 \end{array}$	$\begin{array}{c} 0.02995\\.03025\\.03056\\.03089\\.03124\end{array}$	33.39 33.06 32.72 32.37 32.01	$\begin{array}{c} 1.23 \\ 1.24 \\ 1.25 \\ 1.25 \\ 1.26 \\ 1.27 \\ 1.27 \\ \end{array}$	$\begin{array}{c} 216 \\ 222 \\ 229 \\ 235 \\ 241 \\ \end{array}$	416† 409† 401† 394† 386†	giveo for grees in Ta		enneit de-	150 155 160 165 170
C	ritical	1.657.	1.642.3	.0686	14-6		433†	U	x	c:	α	271.4

Inches of mercury, at 32°F., below one standard atmosphere (29.92 in = 14.696 lbs. abs.) (Standard ton temperatures).

.

TABLE XX-BUREAU OF STANDARDS TABLES OF PROPERTIES OF

SUPERHEATED AMMONIA VAPORS Bureau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1925.

		The	American	Societ	y of Ref	rigeratin	g Enginee	ers, Ju	ly, 1925.		
	Abs. F Gage (Sat'n '	Pressure : Pressure Femp.—6	6 Ib./in. ² e 19.7* 53.11° F.)		Abs. P Gage (Sat'n '	ressure 1 Pressur Femp.—	0 lb./in. ² e 9.6* 11.34° F.)		Abs. P Gage I (Sat'n '	ressure 1: Press. 0.3 Femp.—2	1b./in.² 27.29° F.)
Tem. F.		Heat Content Btu./lb.	Entropy	Tem.	Volume ft. ³ /lb.	Heat Content Rtu./lb.	Entropy Btu./lb. F.	Tem. °F.	Volume ft.3/lb.	lleat Content Btu./Ib.	Entropy Btu./ib. F.
t	V	H_{-}	S	t	V	H	S	t	V_{-}	H	S
(at) (sat'n -50 -40 -30 -20 -10	(49.31) 51.05 52.36 53.67 54.97 56.26	(588.3) 595.2 600.3 605.4 610.4 615.4	(1.4857) 1.5025 1.5149 1.5269 1.5385 1.5498	(at) (sat'n) -40 -30 -20 -10	(25.81) 25.90 26.58 27.26 27.92	(597.1) 597.8 603.2 608.5 613.7	(1.4276) 1.4293 1.4420 1.4542 1.4659	(at) sat(n) -30 -20 -10 0	(17.67) 18.01 18.47 18.92	(602.4) 606.4 611.9 617.2	(1.3938) 1.4031 1.4154 1.4272
0 10 20 30 40	57.55 58.84 60.12 61.41 62.69	$\begin{array}{c} 620.4\\ 625.4\\ 630.4\\ 635.4\\ 640.4 \end{array}$	${}^{1.5608}_{1.5716}_{1.5821}_{1.5925}_{1.6026}$	0 10 20 30 40	28.58 29.24 29.90 30.55 31.20	$\begin{array}{c} 618.9 \\ 624.0 \\ 629.1 \\ 634.2 \\ 639.3 \end{array}$	$1.4773 \\ 1.4884 \\ 1.4992 \\ 1.5097 \\ 1.5200$	10 20 30 40 50 60	$ \begin{array}{r} 19.37 \\ 19.82 \\ 20.26 \\ 20.70 \\ 21.14 \\ 21.58 \\ \end{array} $	$\begin{array}{c} 622.5\\ 627.8\\ 633.0\\ 638.2\\ 643.4\\ 648.5\\ \end{array}$	1.43861.44971.46041.47091.48121.4912
50 60 70 80 90	$\begin{array}{c} 63.96 \\ 65.24 \\ 66.51 \\ 67.79 \\ 69.06 \end{array}$	$\begin{array}{c} 645.5\\ 650.5\\ 655.5\\ 660.6\\ 665.6\end{array}$	${}^{1.6125}_{1.6223}_{1.6319}_{1.6413}_{1.6506}$	50 60 70 80 90	$31.85 \\ 32.49 \\ 33.14 \\ 33.78 \\ 34.42 $	$ \begin{array}{c} 644.4\\ 649.5\\ 654.6\\ 659.7\\ 664.8\\ 070.0\\ 0 \end{array} $	$\begin{array}{c} 1.5301 \\ 1.5400 \\ 1.5497 \\ 1.5593 \\ 1.5687 \end{array}$	70 80 90 100 110	$\begin{array}{c} 22.01\\ 22.44\\ 22.88\\ 23.31\\ 23.74\\ 24.17\end{array}$		1.5011 1.5108 1.5203 1.5296 1.5388
100 110 120 130 140	$\begin{array}{c} 70.33 \\ 71.60 \\ 72.87 \\ 74.14 \\ 75.41 \end{array}$	$\begin{array}{c} 670.7\\ 675.8\\ 680.9\\ 686.1\\ 691.2 \end{array}$	${}^{1.6598}_{1.6689}_{1.6778}_{1.6865}_{1.6952}$	100 110 120 130 140	$35.07 \\ 35.71 \\ 36.35 \\ 36.99 \\ 37.62$	$\begin{array}{c} 670.0\\ 675.1\\ 680.3\\ 685.4\\ 690.6\end{array}$	$\begin{array}{c} 1.5779 \\ 1.5870 \\ 1.5960 \\ 1.6049 \\ 1.6136 \end{array}$	120 130 140 150 160	$24.60 \\ 25.03 \\ 25.46 \\ 25.88$	$679.6 \\ 684.8 \\ 690.0 \\ 695.3 \\ 700.5$	1.5478 1.5567 1.5655 1.5742 1.5827
150 160 170 180	$76.68 \\ 77.95 \\ 79.21 \\ 80.48$	$696.4 \\ 701.6 \\ 706.8 \\ 712.1$	$\substack{1.7038\\1.7122\\1.7206\\1.7289}$	150 160 170 180 190	$38.26 \\ 38.90 \\ 39.54 \\ 40.17 \\ 40.81$	$\begin{array}{c} 695.8\\ 701.1\\ 706.3\\ 711.6\\ 716.9 \end{array}$	$\begin{array}{c}1.6222\\1.6307\\1.6391\\1.6474\\1.6556\end{array}$	170 180 190 200 210	26.31 26.74 27.16 27.59 28.02 28.44	$\begin{array}{c} 705.8 \\ 711.1 \\ 716.4 \\ 721.7 \\ 727.0 \\ 732.4 \\ 737.8 \end{array}$	$\begin{array}{r}1.5911\\1.5995\\1.6077\\1.6158\\1.6239\\1.6318\end{array}$
				200	41.45	722.2	1.6637	220 230 240 250	$\frac{28.88}{29.29}$	743.2	$\substack{1.6397\\1.6475}$
Tem. F.	Abs. Pr Gage I (Sat'n '	essure 20 Press. 5.3 Femp.—1	1b./in.² 1b./in.² 16.64°F.)	Tem.	Abs. Pr Gage P (Sat'n	essure 25 ress. 10.7 Temp.—	15./in. ² 15./in. ² 7.96° F.)	Tem. °F.	29.71 Abs. Pr Gage P (Sat'n	748.6 ressure 30 ress. 15.3 Temp.—	1.6552 Hb./in. ² Hb./in. ³ D.57° F.)
$(at \\ sat'n) \\ -20 \\ -10 \\ 0 \\ 10 $	(13.50) 13.74 14.09	(606.2) 610.0 615.5 621.0	(1.3700) 1.3784 1.3907 1.4025	$ \begin{array}{r} (at \\ (at'n) \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{array} $	(10.96) 11.19 11.47 11.75 12.03 12.30	$(\begin{array}{c} 609.1 \\ 613.8 \\ 619.4 \\ 625.0 \\ 630.4 \\ 635.8 \end{array}$	(1.3515) 1.3616 1.3738 1.3855 1.3967 1.4077	$(at \\ sat'n)$ 0 10 20 30 40	(9.236) 9.250 9.492 9.731 9.966 10.20	$\begin{array}{c} (611.6) \\ 611.9 \\ 617.8 \\ 623.5 \\ 629.1 \\ 634.6 \end{array}$	(1.3364) 1.3371 1.3497 1.3618 1.3733 1.3845
20 30 40 50	$ \begin{array}{r} 14.44 \\ 14.78 \\ 15.11 \\ 15.45 \\ 15.78 \\ 15.78 \\ \end{array} $	$\begin{array}{c} 626.4\\ 631.7\\ 637.0\\ 642.3 \end{array}$	1.4138 1.4248 1.4356 1.4460	50 60 70 80	$\begin{array}{c} 12.57 \\ 12.84 \\ 13.11 \\ 13.37 \end{array}$		$1.4183 \\ 1.4287 \\ 1.4388 \\ 1.4487$	50 60 70 80	$ \begin{array}{r} 10.43 \\ 10.65 \\ 10.88 \\ 11.10 \\ 11.22 \end{array} $	$\begin{array}{c} 640.1 \\ 645.5 \\ 650.9 \\ 656.2 \end{array}$	$1.3953 \\ 1.4059 \\ 1.4161 \\ 1.4261$
60 70 80 90	$16.12 \\ 16.45 \\ 16.78 \\ 17.10$	$\begin{array}{c} 647.5\\ 652.8\\ 658.0\\ 663.2 \end{array}$	$1.4562 \\ 1.4662 \\ 1.4760 \\ 1.4856$	90 100 110 120 130	$\frac{13.64}{14.17}$	662.4 667.7 673.0 678.2	$\begin{array}{c} 1.4584 \\ 1.4679 \\ 1.4772 \\ 1.4864 \end{array}$	90 100 110 120	$ \begin{array}{c} 11.33\\ 11.55\\ 11.77\\ 11.99\\ 12.21\\ \end{array} $	$\begin{array}{c} 661.6 \\ 666.9 \\ 672.2 \\ 677.5 \\ 682.9 \end{array}$	$\begin{array}{c} 1.4359 \\ 1.4456 \\ 1.4550 \\ 1.4642 \\ 1.4733 \end{array}$
100 110 120 130 140	$\begin{array}{c} 17.43 \\ 17.76 \\ 18.08 \\ 18.41 \\ 18.73 \end{array}$	$\begin{array}{c} 668.5\\ 673.7\\ 678.9\\ 684.2\\ 689.4 \end{array}$	$\begin{array}{c}1.4950\\1.5042\\1.5133\\1.5223\\1.5312\end{array}$	140 150 160	$ \begin{array}{r} 14.69 \\ 14.95 \\ 15.21 \\ 15.47 \\ 15.77 \\ 15.47 \\ $		$1.4954 \\ 1.5043 \\ 1.5131 \\ 1.5217 \\ 1.5303 \\ 1$	130 140 150 160	12.43 12.65 12.87	688.2 693.5 698.8	1.4823 1.4911 1.4998
150 160 170 180	$\begin{array}{r} 19.05 \\ 19.37 \\ 19.70 \\ 20.02 \\ 20.34 \end{array}$	694.7 700.0 705.3 710.6 715.9	$1.5399 \\ 1.5485 \\ 1.5569 \\ 1.5653$	170 180 190 200	$ \begin{array}{r} 15.73 \\ 15.99 \\ 16.25 \\ 16.50 \\ 16.50 \\ \end{array} $	704.7 710.1 715.4 720.8	1.5387 1.5470 1.5552	170 180 190 200	13.08 13.30 13.52 13.73 13.95	704.2709.6714.9720.3	$ \begin{array}{c} 1.5083\\ 1.5168\\ 1.5251\\ 1.5334\\ 1.5334\\ 1.5115\\ \end{array} $
190 200 210 220 230	$20.66 \\ 20.98 \\ 21.30$	715.9721.2726.6732.0737.4	1.5736 1.5817 1.5898 1.5978	$ \begin{array}{r} 210 \\ 220 \\ 230 \\ 240 \\ \end{array} $	$\begin{array}{c} 16.50 \\ 16.76 \\ 17.02 \\ 17.27 \\ 17.53 \end{array}$	$726.2 \\ 731.6 \\ 737.0 \\ 742.5$	$1.5633 \\ 1.5713 \\ 1.5792 \\ 1.5870$	$210 \\ 220 \\ 230 \\ 240$	$14.16 \\ 14.38 \\ 14.59$	$\begin{array}{c} 725.7 \\ 731.1 \\ 736.6 \\ 742.0 \end{array}$	1.5415 1.5495 1.5575 1.5653
230 240 250	$21.62 \\ 21.94 \\ 22.26$	737.4 742.8 748.3	1.6057 1.6135 1.6212	250 260 270	$17.79 \\ 18.04 \\ 18.30 \\ 18.3$	747.9 753.4 758.9	$1.5948 \\ 1.6025 \\ 1.6101$	250 260 270 280	$\begin{array}{c} 14.81 \\ 15.02 \\ 15.23 \\ 15.45 \end{array}$	$\begin{array}{c} 747.5 \\ 753.0 \\ 758.5 \\ 764.1 \end{array}$	$\begin{array}{c}1.5732\\1.5808\\1.5884\\1.5960\end{array}$

Norre:—"V" is Volume of superheated Vapor, ft.⁴/lb.; "H" is Heat Content, Btu./lb, and "S" is Entropy, Btu./lb, °F, "and "S" is entropy, Btu./lb, °F, "superheated Vapor, ft.⁴/lb.; "H" is Heat Content, Btu./lb, and "S" is entropy, Btu./lb, °F, below one standard atmosphere (29.92 in. = 14,696 lbs, abs.)

.

TABLE XX—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SUPERHEATED AMMONIA VAPORS—Continued

Bureau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1925.

		The.	American	Socret				ers, Ju			
	Abs. Pi Gage P (Satin	ressure 3: ress. 20 lemp. 5	b./in. ² 3 lo./in. ² .89° F.)		Gage P	ressure 40 ress. 25. Temp. 1	$\frac{3 \text{ lb./in.}^2}{66^\circ 1^\circ}$		Abs. P Gage P (Sat'n	ressure 5 ress. 35 Temp. 2	3 lb./in. ³ 1.67 °F.)
Tem. F.		Hoot		Tem. °F'.	Volume ft. ^s /lb.	Content Btu./lb.	Entropy Btu./lo. F.	Tem.	Volume ft.³/1b.	Heat	Entropy
t	V	H	S	t	\overline{V}	H	S	t	V	H	S
(at sat'n) 10 20 30 40	(7.991) 8.078 8.287 8.493 8.695	$\begin{array}{c} (613.6) \\ 616.1 \\ 622.0 \\ 627.7 \\ 633.4 \end{array}$	(1.3236) 1.3289 1.3413 1.3532 1.3646	$(at \\ (a, n)) \\ 10 \\ 20 \\ 20 \\ 20 \\ 40 \end{cases}$	(7.047) 7.203 7.387 7.568	$(615.4) \\ (615.4) \\ (620.4) \\ (626.3) \\ (632.1) $	(1.3125) 1.3231 1.3353 1.3470	(at sat'n) 30 40 50	(5.710) 5.838 5.988 6.135	(618.2) 623.4 629.5 635.4	(<i>1.2939</i>) 1.3046 1.3169 1.3286
50 60 70 80 90	8.895 9.093 9.289 9.484 9.677	$\begin{array}{c} 638.9 \\ 644.4 \\ 649.9 \\ 655.3 \\ 660.7 \end{array}$	$\begin{array}{r} 1.3756\\ 1.3863\\ 1.3967\\ 1.4069\\ 1.4168\end{array}$	50 60 70 80 90	7.746 7.922 8.096 8.268 8.459	$\begin{array}{c} 637.8 \\ 643.4 \\ 648.9 \\ 651.4 \\ 659.9 \end{array}$	$\begin{array}{r} 1.3583 \\ 1.3692 \\ 1.3797 \\ 1.3900 \\ 1.4000 \end{array}$	60 70 80 90 100	$\begin{array}{c} 6.280 \\ 6.423 \\ 6.564 \\ 6.704 \\ \hline 6.843 \\ 6.990 \end{array}$	$\begin{array}{c} 641.2 \\ 646.9 \\ 652.6 \\ 658.2 \\ 663.7 \end{array}$	1.32861.33991.35081.36131.37161.38161.3914
100 110 120 130 140	$\begin{array}{r} 9.869 \\ 10.06 \\ 10.25 \\ 10.44 \\ 10.63 \end{array}$	$\begin{array}{c} 666.1 \\ 671.5 \\ 676.8 \\ 682.2 \\ 687.6 \end{array}$	${\begin{array}{c}1.4265\\1.4360\\1.4453\\1.4545\\1.4545\\1.4635\end{array}}$	100 110 1_0 1_0 1_0 1_10		$\begin{array}{r} 665.3 \\ 670.7 \\ 676.1 \\ 681.5 \\ 686.9 \end{array}$	${ \begin{smallmatrix} 1.4098\\ 1.4194\\ 1.4288\\ 1.4381\\ 1.4471 \end{smallmatrix} }$	110 120 130 140 150 160	$\begin{array}{c} 6.980 \\ 7.117 \\ 7.252 \\ 7.387 \\ 7.521 \\ 7.655 \end{array}$	$\begin{array}{c} 669.2\\ 674.7\\ 680.2\\ 685.7\\ 691.1\\ 696.6\\ \end{array}$	1.40091.41031.41951.42861.4374
150 160 170 180 190	$\begin{array}{c} 10.82 \\ 11.00 \\ 11.19 \\ 11.38 \\ 11.56 \end{array}$	$\begin{array}{c} 692.9 \\ 698.3 \\ 703.7 \\ 709.1 \\ 714.5 \end{array}$	${}^{1,4724}_{1,4811}_{1,4897}_{1,4982}_{1,5066}$	150 160 170 180 190	$9.444 \\ 9.609 \\ 9.774 \\ 9.938 \\ 10.10$	$\begin{array}{c} 692.3\\ 697.7\\ 703.1\\ 708.5\\ 714.0 \end{array}$	${}^{1.4561}_{1.4648}\\{}^{1.4735}_{1.4820}\\{}^{1.4904}$	170 180 190 200 210 220	7.788 7.921 8.053 8.185 8.317	702.1707.5713.0718.5724.0729.4	1.44621.45481.46331.47161.47991.4880
200 210 220 230 240	$11.75 \\ 11.94 \\ 12.12 \\ 12.31 \\ 12.49$	$\begin{array}{r} 719.9 \\ 725.3 \\ 730.7 \\ 736.2 \\ 741.7 \end{array}$	$\begin{array}{r} 1.5148 \\ 1.5230 \\ 1.5311 \\ 1.5390 \\ 1.5469 \end{array}$	200 210 220 230 240	$\begin{array}{c} 10.27 \\ 10.43 \\ 10.59 \\ 10.75 \\ 10.92 \end{array}$	$\begin{array}{c} 719.4 \\ 724.9 \\ 730.3 \\ 735.8 \\ 741.3 \end{array}$	$\begin{array}{c} 1.4987 \\ 1.5069 \\ 1.5150 \\ 1.5230 \\ 1.5309 \end{array}$	230 240 250 260 270	8.448 8.579 8.710 8.840 8.970 9.100	$\begin{array}{c} 725.4\\ 735.0\\ 740.5\\ 740.5\\ 746.0\\ 751.6\\ 757.2\\ 762.7\\ 762.7\\ \end{array}$	$1.4961 \\ 1.5040 \\ 1.5119 \\ 1.5197 \\ 1.5274$
250 260 270 280	$\begin{array}{c c} 12.68\\ 12.86\\ 13.04\\ 13.23\end{array}$	$\begin{array}{c} 747.2 \\ 752.7 \\ 758.2 \\ 763.7 \end{array}$	${}^{1.5547}_{1.5624}_{1.5701}_{1.5776}$	250 260 270 280	$\begin{array}{c} 11.08 \\ 11.24 \\ 11.40 \\ 11.56 \end{array}$	$\begin{array}{c} 746.8 \\ 752.3 \\ 757.8 \\ 763.4 \end{array}$	$\begin{array}{c} 1.5387 \\ 1.5465 \\ 1.5541 \\ 1.5617 \end{array}$	280 290 300 310	9.230 9.360 9.489 9.618	768.4 774.0 779.6	1.5350 1.5425 1.5500 1.5574
Tern. 1.	Abs. P Gage P (Sat'n	ressure 6 ress. 45. Temp. 30	0 lb./m.² 3 lb./in.² 0.21° F.)	Tem. °F.	Abs. P Gage P (Sat'n	ressure 7 ress. 55. Temp. 33	3 Ib./in. ² 7.70° F.)	Tem. °F.	Abs. Pl Gage P (Sat'n	ressure 80 ress, 65. Temp, 4-	$\frac{10./10.^{2}}{3.10./10.^{2}}$ $\frac{4.40^{\circ} F.}{10.00}$
$ \begin{array}{r} (at \\ sat'n) \\ 30 \\ 40 \end{array} $	(4.805) 4.933	(620.5) 626.8	(1.2787) 1.2913	(at) sat'n) 40	(4.151) 4.177	(622.4) 623.9	$(1.2658) \\ 1.2688$	(at) $sat'n)$ 50 60 50	(3.655) 3.712 3.812 3.909	(624.0) 627.7 634.3	(1.2345) 1 2610
50 60 70 80	5.060 5.184 5.307 5.428 5.547	$\begin{array}{c} 632.9 \\ 639.0 \\ 644.9 \\ 650.7 \\ 650.7 \end{array}$	1.3035 1.3152 1.3265 1.3373 1.3373	50 60 70 50 90	$\begin{array}{r} 4 & 290 \\ 4 & 401 \\ 4 & 509 \\ 4 & 615 \\ 4 & 719 \end{array}$	$\begin{array}{c} 630.4 \\ 636.6 \\ 612.7 \\ 648.7 \\ 654.6 \end{array}$	${\begin{array}{c}1.2816\\1.2937\\1.3054\\1.3166\\1.3274\end{array}}$	70 80 90 100 110	4.005 4.098 4.190	$\begin{array}{c} 640.6\\ 646.7\\ 652.8\\ 658.7\\ 664.6\\ \end{array}$	$1.2745 \\ 1.2866 \\ 1.2981 \\ 1.3092 \\ 1.3199 \\ 1.3199 \\ 1.3299 \\ 1$
90 100 110 120 130	5.665 5.781 5.897 6.012	$\begin{array}{c} 656.4 \\ 662.1 \\ 667.7 \\ 673.3 \\ 678.9 \end{array}$	$\begin{array}{r} 1.3479 \\ 1.3581 \\ 1.3681 \\ 1.3778 \\ 1.3873 \end{array}$	100 110 120 130 140	$\begin{array}{r} 4.822 \\ 4.924 \\ 5.025 \\ 5.125 \\ 5.224 \end{array}$	$\begin{array}{r} 660.4 \\ 666.1 \\ 671.8 \\ 677.5 \\ 683.1 \end{array}$	${ \begin{smallmatrix} 1.3378\\ 1.3480\\ 1.3579\\ 1.3676\\ 1.3770 \end{smallmatrix} }$	110 120 130 140 150	$\begin{array}{r} 4.281 \\ 4.371 \\ 4.460 \\ 4.548 \\ 4.635 \end{array}$	670.4 676.1 681.8 687.5	$ \begin{array}{r} 1.3303\\ 1.3404\\ 1.3502\\ 1.3598\\ 1.3692\\ \end{array} $
140 150 160 170 180	$\begin{array}{c} 6.126 \\ 6.239 \\ 6.352 \\ 6.464 \\ 6.576 \end{array}$	$\begin{array}{c} 684.4 \\ 689.9 \\ 695.5 \\ 701.0 \\ 706.5 \end{array}$	$1.3966 \\1.4058 \\1.4148 \\1.4236 \\1.4323$	150 160 170 180 190	5.323 5.420 5.518 5.615 5.711	$\begin{array}{c} 688.7\\ 691.3\\ 699.9\\ 705.5\\ 711.0\end{array}$	${\begin{array}{c}1.3863\\1.3954\\1.4043\\1.4131\\1.421\end{array}}$	160 170 180 190 200	4.722 4.808 4.893 4.978 5.063	$\begin{array}{c} 693.2 \\ 698.8 \\ 704.4 \\ 710.0 \\ 715.6 \end{array}$	$ \begin{array}{r} 1.3784 \\ 1.3874 \\ 1.3963 \\ 1.4050 \\ 1.4136 \\ \end{array} $
190 200 210 220 230	$\begin{array}{c} 6 & 687 \\ 6 & 798 \\ 6 & 909 \\ 7 & 019 \\ 7 & 129 \\ 7 & 238 \end{array}$	$\begin{array}{c} 712.0 \\ 717.5 \\ 723.1 \\ 728.6 \\ 734.1 \\ 734.1 \end{array}$	$1.4409 \\1.4493 \\1.4576 \\1.4658 \\1.4739$	$\begin{array}{c} \textbf{200} \\ 210 \\ 220 \\ 2^{2}0 \\ 2^{4}0 \end{array}$	5.807 5.902 5.998 6.093 6.187	$\begin{array}{c} 716.6 \\ 722.2 \\ 727.7 \\ 733.3 \\ 738.9 \end{array}$	${\begin{array}{r}1.4302\\1.4386\\1.4469\\1.4550\\1.4631\end{array}}$	210 220 230 240 250	5.147 5.231 5.315 5.398 5.482	721.3726.9732.5738.1743.8	$1.4220 \\ 1.4304 \\ 1.4386 \\ 1.4467 \\ 1.4547 \\ 1.4547$
240 250 260 270 280	$\begin{array}{c} 7.238 \\ 7.348 \\ 7.457 \\ 7.566 \\ 7.675 \\ 7.783 \end{array}$	$\begin{array}{c} 739.7 \\ 745.3 \\ 750.9 \\ 756.5 \\ 762.1 \\ 767.7 \end{array}$	$1.4819 \\ 1.4898 \\ 1.4976 \\ 1.5053 \\ 1.5130 \\ 1.5100 \\ 1$	250 260 270 280 290	$\begin{array}{c} 6.281 \\ 6.376 \\ 6.470 \\ 6.563 \\ 6.657 \end{array}$	$\begin{array}{r} 744.5 \\ 750.1 \\ 755.8 \\ 761.4 \\ 767.1 \end{array}$	$\begin{array}{r} 1.4711 \\ 1.4789 \\ 1.4866 \\ 1.4943 \\ 1.5019 \end{array}$	260 270 280 290 300	5.565 5.647 5.730 5.812 5.894	$\begin{array}{r} 749.4 \\ 755.1 \\ 760.7 \\ 766.4 \\ 772.1 \end{array}$	$1.4626 \\ 1.4704 \\ 1.4781 \\ 1.4857 \\ 1.4933 \\ 1$
290 300 310	$7.892 \\ 8.000$	773.3 779.0	1.5206 1.5281 1.5355 e of Super	300 310 320	6.750 6.844 6.937	772.7 778.4 784.1	1.5095 1.5169 1.5243	310 320	5.976 6.058	772.1 777.8 783.5	1.5008 1.5081

TABLE XX-BUREAU OF STANDARDS TABLES OF PROPERTIES OF

SUPERHEATED AMMONIA VAPORS-Continued Bureau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1925.

		The	American	Societ	y of Ref	rigeratin	g Enginee	ers, Ju			
	Abs. P. Gage P (Sat'n		3 lb./in. ² 0.47° F.)		Abs. Pr Gage P (Sat'n	ress. 85. Temp. 5	0 lb./in. ² 3 lb./in. ² 6.05° F.)		Abs. Pr Gage P (Sat'n	ressure 11 ress. 95. Temp. 6	0 lb./ln. ² 3 lb./ln. ³ 1.21° 1°.)
Tem.	Volume ft. ³ /lb.	Heat Content Btu./lb.	Entropy Btu./lb. F.	Tem. °F.	Volume ft.³/lb.	Heat Content Btu./lb.	Entropy Btu./lb. °F.	Tem.		Heat Content Btu./lb.	Entropy Btu./lb. F.
t	V	H	S	t	V	H	S	t	V	H_{-}	S
(at sat'n) 50 60 70 80 90	(3.266) 3.353 3.442 3.529 3.614	$(625.3) \\ 631.8 \\ 638.3 \\ 644.7 \\ 650.9$	$(1.2445) \\ (1.2571 \\ 1.2695 \\ 1.2814 \\ 1.2928$	$\begin{array}{r} (at \\ sat`n) \\ 60 \\ 70 \\ 80 \\ 90 \end{array}$	(2.952) 2.985 3.068 3.149 3.227	$\begin{array}{c} (626.5) \\ 629.3 \\ 636.0 \\ 642.6 \\ 649.0 \end{array}$	(1.2356) 1.2409 1.2539 1.2661 1.2778	$(at \\ sat'n) \\ 60 \\ 70 \\ 80 \\ 90 \\ 90$	(2.693) 2.761 2.837 2.910	(627.5) 633.7 640.5 647.0	(1.2275) 1.2392 1.2519 1.2640
100 110 120 130 140	3.698 3.780 3.862 3.942 4.021	$\begin{array}{c} 657.0 \\ 663.0 \\ 668.9 \\ 674.7 \\ 680.5 \end{array}$	$\begin{array}{r} 1.3038 \\ 1.3144 \\ 1.3247 \\ 1.3347 \\ 1.3444 \end{array}$	100 110 120 130 140	3.304 3.380 3.454 3.527 3.600	$ \begin{array}{c} 655.2\\ 661.3\\ 667.3\\ 673.3\\ 679.2\\ 685.0 \end{array} $	1.2891 1.2999 1.3104 1.3206 1.3305 1.2401	100 110 120 130 140 150	$\begin{array}{c} 2.981 \\ 3.051 \\ 3.120 \\ 3.188 \\ 3.255 \\ 3.321 \end{array}$	$\begin{array}{c} 653.4\\ 659.7\\ 665.8\\ 671.9\\ 677.8\\ 683.7 \end{array}$	1.2755 1.2866 1.2972 1.3076 1.3176 1.3274
150 160 170 180 190	$\begin{array}{r} 4.100 \\ 4.178 \\ 4.255 \\ 4.332 \\ 4.408 \end{array}$		$\begin{array}{r} 1.3539 \\ 1.3633 \\ 1.3724 \\ 1.3813 \\ 1.3901 \end{array}$	150 160 170 180 190 200	3.672 3.743 3.813 3.883 3.952 4.021	$\begin{array}{c} 690.8\\ 696.6\\ 702.3\\ 708.0\\ 713.7\end{array}$	$1.3401 \\ 1.3495 \\ 1.3588 \\ 1.3678 \\ 1.3767 \\ 1.3854$	150 160 170 180 190 200	3.386 3.451 3.515 3.579 3.642	$\begin{array}{c} 689.6\\ 695.4\\ 701.2\\ 707.0\\ 712.8\end{array}$	1.3370 1.3463 1.3555 1.3644 1.3732
200 210 220 230 240	$\begin{array}{r} 4.484 \\ 4.560 \\ 4.635 \\ 4.710 \\ 4.785 \end{array}$	714.7720.4726.0731.7737.3	${}^{1.3988}_{1.4073}_{1.4157}_{1.4239}_{1.4321}$	210 220 230 240 250	$\begin{array}{r} 4.090 \\ 4.158 \\ 4.226 \\ 4.294 \\ 4.361 \end{array}$	$\begin{array}{c} 719.4 \\ 725.1 \\ 730.8 \\ 736.5 \\ 742.2 \\ 747.9 \end{array}$	$\begin{array}{c} 1.3940 \\ 1.4024 \\ 1.4108 \\ 1.4190 \\ 1.4271 \end{array}$	210 220 230 240 250	3.705 3.768 3.830 3.892 3.954	$\begin{array}{c} 718.5 \\ 724.3 \\ 730.0 \\ 735.7 \\ 741.5 \\ 741.5 \\ 747.8 \\$	$1.3819 \\ 1.3904 \\ 1.3988 \\ 1.4070 \\ 1.4151$
250 260 270 280 290	$\begin{array}{r} 4.859 \\ 4.933 \\ 5.007 \\ 5.081 \\ 5.155 \end{array}$	$743.0 \\ 748.7 \\ 754.4 \\ 760.0 \\ 765.8$	${}^{1.4401}_{1.4481}_{1.4559}_{1.4637}_{1.4713}$	260 270 280 290 300	$\begin{array}{r} 4.428 \\ 4.495 \\ 4.562 \\ 4.629 \\ 4.695 \\ 4.695 \\ 4.761 \end{array}$	753.6 759.4 765.1 770.8	1.43501.44291.45071.45841.46601.4726	260 270 280 290 300	$\begin{array}{r} 4.015 \\ 4.076 \\ 4.137 \\ 4.198 \\ 4.259 \\ 4.319 \\ 4.370 \end{array}$	$\begin{array}{r} 747.2 \\ 752.9 \\ 758.7 \\ 764.5 \\ 770.2 \\ 776.0 \end{array}$	1.42321.43111.43891.44661.45431.4619
300 310 320	$5.228 \\ 5.301 \\ 5.374$	771.5 777.2 783.0	$1.4789 \\ 1.4864 \\ 1.4938$	$310 \\ 320 \\ 330 \\ 340$	$\begin{array}{r} 4.761 \\ 4.827 \\ 4.893 \\ 4.959 \end{array}$	776.6 782.4 788.2 794.0	$\begin{array}{c}1.4736\\1.4810\\1.4884\\1.4957\end{array}$	$ \begin{array}{r} 310 \\ 320 \\ 330 \\ 340 \end{array} $	4.379 4.439 4.500	$781.8 \\ 787.6 \\ 793.4$	$1.4693 \\ 1.4767 \\ 1.4841$
Tem. °F.	Abs. Pr Gage Pr (Sat'n	essure 12 ress. 105. Temp. 66	0 lb./in. ² 3 lb./ln. ² 6.02° F')	350 Tem. F.	5.024 Abs. Pr Gage Pi (Sat'n '	799.8 essure 13 ress. 115. Temp. 7	1.5029 0 lb./in. ² 3 lb./in. ² 0.53 F.)	350 Tem. °F.	4.559 Abs. Pr Gage Pi (Sat'n	799.3 essure 14 ress. 125. Temp. 7	1 4859 0 lb./in. ² 3 lb./in. ² 4.79° F.)
$ \begin{array}{r} \hline (at)\\sat'n)\\70\\80\\90\end{array} $	(2.476) 2.505 2.576 2.645	(628.4) 631.3 638.3 645.0	(1.2201) 1.2255 1.2386 1.2510	(at sat'n) 70 80 90	(2.291) 2.355 2.421	(629.2) 636.0 643.0	(1.2132) 1.2260 1.2388	(at sat'n) 80 90	(2.132) 2.166 2.228	(629.9) 633.8 640.9	(1.2068) 1.2140 1.2272
100 110 120 130 140	$2.712 \\ 2.778 \\ 2.842 \\ 2.905 \\ 2.967$	$\begin{array}{c} 651.6 \\ 658.0 \\ 664.2 \\ 670.4 \\ 676.5 \end{array}$	$\begin{array}{r} 1.2628 \\ 1.2741 \\ 1.2850 \\ 1.2956 \\ 1.3058 \end{array}$	100 110 120 130 140	2.484 2.546 2.606 2.665 2.724	$\begin{array}{c} 649.7\\ 656.3\\ 662.7\\ 668.9\\ 675.1 \end{array}$	${\begin{array}{r}1.2509\\1.2625\\1.2736\\1.2843\\1.2947\end{array}}$	100 110 120 130 140	2.288 2.347 2.404 2.460 2.515 2.520	$ \begin{array}{c} 6.17.8\\ 654.5\\ 661.1\\ 667.4\\ 673.7\\ 070.0 \end{array} $	$\begin{array}{c} 1.2396 \\ 1.2515 \\ 1.2628 \\ 1.2738 \\ 1.2843 \\ 1.2843 \end{array}$
150 160 170 180 190	$3.029 \\ 3.089 \\ 3.149 \\ 3.209 \\ 3.268$		$\begin{array}{r} 1.3157 \\ 1.3254 \\ 1.3348 \\ 1.3441 \\ 1.3531 \end{array}$	150 160 170 180 190	2.781 2.838 2.894 2.949 3.004	$681.2 \\ 687.2 \\ 693.2 \\ 699.1 \\ 705.0$	$1.3048 \\ 1.3146 \\ 1.3241 \\ 1.33^{2}5 \\ 1.3426$	150 160 170 180 190	2.569 2.622 2.675 2.727 2.779	679.9 686.0 692.0 698.0 704.0	$\begin{array}{c} 1.2945 \\ 1.3045 \\ 1.3141 \\ 1.3236 \\ 1.3328 \end{array}$
200 210 220 230 240	$3.326 \\ 3.385 \\ 3.442 \\ 3.500 \\ 3.557$	711.8717.6723.4729.2734.9	$\begin{array}{c}1.3620\\1.3707\\1.3793\\1.3877\\1.3960\end{array}$	200 210 220 230 240	$3.059 \\ 3.113 \\ 3.167 \\ 3.220 \\ 3.273$	$\begin{array}{r} 710.9 \\ 716.7 \\ 722.5 \\ 728.3 \\ 734.1 \end{array}$	${\begin{array}{r}1.3516\\1.3604\\1.3690\\1.3775\\1.3858\end{array}}$	200 210 220 220 240	2.8°0 2.880 2.9°1 2.981 3.030	$\begin{array}{c} 709.9 \\ 715.8 \\ 721.6 \\ 727.5 \\ 733.3 \\ \hline \end{array}$	$ \begin{array}{r} 1.3418 \\ 1.3507 \\ 1.3594 \\ 1.3679 \\ 4.3763 \\ 1.9946 \\ \end{array} $
250 260 270 280 290	$3.614 \\ 3.671 \\ 3.727 \\ 3.783 \\ 3.839$	$\begin{array}{r} 740.7 \\ 746.5 \\ 752.2 \\ 758.0 \\ 763.8 \end{array}$	$\begin{array}{c} 1.4042 \\ 1.4123 \\ 1.4202 \\ 1.4281 \\ 1.4359 \end{array}$	250 260 270 280 290	$3.326 \\ 3.379 \\ 3.431 \\ 3.483 \\ 3.535$	$\begin{array}{r} 739.9 \\ 745.7 \\ 751.5 \\ 757.3 \\ 763.1 \end{array}$	$\begin{array}{c} 1.3941 \\ 1.4022 \\ 1.4102 \\ 1.4181 \\ 1.4259 \end{array}$	250 260 270 280 290	3.080 3.129 3.179 3.227 3.275 2.292	739.2 745.0 750.8 756.7 762.5	$\begin{array}{c} 1.3846 \\ 1.3928 \\ 1.4008 \\ 1.4088 \\ 1.4166 \\ 1.4242 \end{array}$
300 310 320 3 30 3 40	$3.895 \\ 3.951 \\ 4.006 \\ 4.061 \\ 4.117$	769.6 775.4 781.2 787.0 792.9	$1.4435 \\ 1.4511 \\ 1.4586 \\ 1.4660 \\ 1.4734$	300 310 320 330 340	3.587 3.639 3.690 3.742 3.793	769.0 774.8 780.6 786.5 792.3	$1.4336 \\1.4412 \\1.4487 \\1.4562 \\1.4636$	300 310 320 330 340	3.323 3.371 3.420 3.467 3.515	$\begin{array}{c} 768.3 \\ 774.2 \\ 780.0 \\ 785.9 \\ 791.8 \\ 707.7 \end{array}$	$1.4243 \\1.4320 \\1.4395 \\1.4470 \\1.4544 \\1.4617$
350	4.172	798.7	1,4807	350	3.844	798.2	1.4709	350 360	$\begin{array}{c} 3.563 \\ 3.610 \end{array}$	797.7 803.6	1.4617 1.4690

TABLE XX-BUREAU OF STANDARDS TABLES OF PROPERTIES OF

SUPERHEATED AMMONIA VAPORS—Continued Burcau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1925.

Ga Ga	s. Press 50 lb./ii	sure	1	Ab	a Duogo		A 15	a Duran		A bu	s. Press	1170
13 (Sa 7	ge Pres 5.3 lb,/ t'n Ter 8.81° F	sure	Tem.	10 Ga 15	s. Press 50 lb./m ge Press 4.3 lb./ tt'n Ten 52.64° F	n.² sure in.²	13 Ga 15	s. Pres 70 lb./i ge Pres 5.3 lb./ it'n Ter 6.29° F	n. ² sure in. ²	18 Gag 165	5. 11655 60 lb./in 30 Press 5.3 lb./ t'n Ten 9.78° F	1. ² sure in. ²
V	H	S	t	V	H	S	V	H		V	H	<u> </u>
$\begin{array}{c} (1.994)\\ 2.0011\\ 2.0611\\ 2.118\\ 2.228\\ 2.2881\\ 2.2384\\ 2.2384\\ 2.2384\\ 2.2384\\ 2.2384\\ 2.5384\\ 2.5384\\ 2.5384\\ 2.5384\\ 2.5820\\ 2.435\\ 2.435\\ 2.435\\ 2.435\\ 2.435\\ 2.435\\ 2.435\\ 2.536\\ 2.726\\ 2.820\\ 2.820\\ 2.820\\ 2.820\\ 2.820\\ 2.820\\ 2.820\\ 3.004\\ 3.049\\ 3.095\\ 3.140\\ 3.095\\ 3.140\\ 3.095\\ 3.140\\ 3.095\\ 3.140\\ 3.095\\ 3.140\\ 3.230\\ 3.364\\ 3.310\\ 3.364\\ 3.300\\ 3$	$(630,6)\\631.4\\638.8\\645.9\\652.8\\659.4\\6675.6\\675.6\\675.6\\675.6\\696.9\\702.9\\714.8\\720.7\\726.5\\738.4\\755.0\\7732.5\\738.4\\755.0\\767.7\\773.6\\777.4\\785.3\\791.2\\803.0\\$	$\begin{array}{c} (1.2009)\\ 1.2025\\ 1.2161\\ 1.2252\\ 1.2410\\ 1.2526\\ 1.2526\\ 1.2526\\ 1.2526\\ 1.2549\\ 1.2949\\ 1.2949\\ 1.3947\\ 1.3142\\ 1.3327\\ 1.3142\\ 1.3326\\ 1.3350\\ 1.35304\\ 1.35304\\ 1.3530\\ 1.3675\\ 1.3840\\ 1.35304\\ 1.3530\\ 1.3675\\ 1.3840\\ 1.3520\\ 1.4078\\ 1.402\\ 1.4$	$\begin{smallmatrix} (at) \\ g(0) $	$\begin{array}{c} (1.872)\\ 1.914\\ 1.969\\ 2.023\\ 2.075\\ 2.1755\\ 2.224\\ 2.2365\\ 2.2524\\ 2.23419\\ 2.2411\\ 2.4507\\ 2.23419\\ 2.3411\\ 2.4507\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 2.591\\ 3.022\\ 3.0064\\ 3.148\\ 3.231\\ 3.221\\ 3.314\end{array}$	$\begin{array}{c} (csr.r)\\ 636.6\\ 643.9\\ 657.8\\ 6643.9\\ 657.8\\ 6643.9\\ 657.8\\ 6695.8\\ 670.9\\ 677.2\\ 689.7\\ 695.8\\ 7701.9\\ 7701.9\\ 7701.9\\ 7701.9\\ 7701.9\\ 7701.9\\ 7701.9\\ 7713.9\\ 7713.9\\ 7713.9\\ 7713.9\\ 7713.7\\ 749.4\\ 733.7\\ 749.4\\ 755.3\\ 7749.4\\ 755.3\\ 7749.4\\ 749.4\\ 755.3\\ 761.2\\ 7667.1\\ 773.0\\ 778.9\\ 779.6\\ 6808.5\\ 814.5\\ 808.5\\ 814.5\\ 820.4\\ 826.4\end{array}$	$\begin{array}{c} (1.1952)\\ 1.2055\\ 1.2386\\ 1.23811\\ 1.2429\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.25542\\ 1.35416\\ 1.3354\\ 1.33546\\ 1.33546\\ 1.35546\\ 1.35546\\ 1.35546\\ 1.35546\\ 1.35948\\ 1.35948\\ 1.35948\\ 1.35948\\ 1.35948\\ 1.34139\\ 1.35948\\ 1.34948\\ 1.4452\\ 1.4452\\ 1.4452\\ 1.44525\\ 1.44526\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.44547\\ 1.44526\\ 1.4466\\ 1.44740\\ 1.44810\\ 1.44810\\ 1.4810$	$(1.764)\\1.784\\1.837\\1.889\\1.938\\2.0081\\2.2127\\2.2127\\2.22260\\2.23460\\2.33439\\2.431\\2.473\\2.555\\2.678\\2.555\\2.678\\2.7598\\2.778\\2.578\\2.678\\2.998\\2.998\\2.9957\\2.998\\2.9957\\3.0065\\3.0114$	$(631,6)\\ 634.4\\ 6541.9\\ 6561.1\\ 662.8\\ 669.4\\ 675.9\\ 682.3\\ 700.8\\ 800.0\\ 800.0\\ 826.0\\ 8$	$\begin{array}{c} (1.1900)\\ 1.1932\\ 1.2087\\ 1.2287\\ 1.2256\\ 1.2452\\ 1.2563\\ 1.2563\\ 1.2563\\ 1.2563\\ 1.2573\\ 1.2573\\ 1.2573\\ 1.2573\\ 1.2573\\ 1.3516\\ 1.3356\\ 1.3356\\ 1.3356\\ 1.3556\\ 1.3556\\ 1.3556\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3592\\ 1.35761\\ 1.3576$	$\begin{array}{c} (1.667)\\ 1.668\\ 1.720\\ 1.770\\ 1.818\\ 1.865\\ 1.910\\ 1.955\\ 1.955\\ 2.2126\\ 2.2208\\ 2.2288\\ 2.2288\\ 2.3287\\ 2.407\\ 2.484\\ 2.523\\ 2.561\\ 2.590\\ 2.675\\ 2.713\\ 2.561\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.675\\ 2.713\\ 2.590\\ 2.690\\ 2.937\\ 2.900\\ 2.937\\ 2.$	$(632.0)\\(632.2)\\(632.9)\\(647.3)\\(654.4)\\(665.4)\\(668.10)\\(677.4)\\(668.10)\\(677.4)\\(692.6)\\(692.6)\\(7124.1)\\(724.1)\\(724.1)\\(724.1)\\(724.1)\\(724.1)\\(724.1)\\(724.2)\\(753.9)$	$(1.1850)\\1.1853\\1.1953\\1.2123\\1.2953\\1.2247\\1.2364\\1.2477\\1.2586\\1.2792\\1.2892\\1.2892\\1.3356\\1.3326\\1.3326\\1.3356\\1.3326\\1.3356\\1.3326\\1.3356\\1.3326\\1.3356\\1.3326\\1.3356\\1.3366\\1.3326\\1.3366\\1.3$
1 1 Ga	90 Ib./ i	n. ²	rem. F.	2 Ga 18	00 lb./i ge Pres 5.3 lb./	n. ² sure (in. ²	2 Ga 19	10 lb./i ge Pres 5.3 lb./	n.² sure (ln.²	2: Ga 20	20 lb./i ge Pres 5.3 lb./	n.² sure in.²
$\begin{array}{c} (r.5s1) \\ (r.5s1) \\ 1.663 \\ 1.710 \\ 1.755 \\ 1.799 \\ 1.842 \\ 1.925 \\ 1.966 \\ 2.005 \\ 2.045 \\ 2.084 \\ 4.123 \\ 2.005 \\ 2.045 \\ 2.045 \\ 2.045 \\ 2.044 \\ 2.334 \\ 2.334 \\ 2.334 \\ 2.334 \\ 2.334 \\ 2.421 \\ 2.493 \\ 2.384 \\ 2.421 \\ 2.493 \\ 2.565 \\ 2.601 \\ 2.767 \\ 2.774 \\ 2.774 \\ 2.774 \\ 2.774 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1 4507	400	$ \begin{array}{r} 2.534 \\ 2.568 \\ 2.601 \end{array} $	$\begin{array}{c} 758.5 \\ 764.5 \\ 770.5 \\ 776.5 \\ 782.5 \\ 788.5 \\ 794.5 \\ 800.5 \\ 806.5 \\ 812.5 \\ 818.6 \end{array}$	$\begin{bmatrix} 1.3869\\ 1.3947\\ 1.4023\\ 1.4099\\ 1.4173\\ 1.4241\\ 1.4320\\ 1.4392\\ 1.4464 \end{bmatrix}$	$\begin{array}{c} 2.080\\ 2.113\\ 2.147\\ 2.180\\ 2.213\\ 2.246\\ 2.279\\ 2.312\\ 2.345\\ 2.377\\ 2.409\\ 2.442\\ 2.474\end{array}$	745.8 751.8 757.9 769.9 775.9 781.9 787.9 784.0 800.0 806.0 812.0 812.0	$\begin{array}{c} 1.3884 \\ 1.3961 \\ 1.4037 \\ 1.4112 \\ 1.4186 \\ 1.4259 \\ 1.4331 \\ 1.4403 \end{array}$	$2.327 \\ 2.358$	$(635.4)\\(635.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(639.4)\\(7$	$\begin{array}{c} (671)\\ \hline$
	V (1.996) 2.001 2.001 2.011 2.011 2.011 2.011 2.011 2.011 2.011 2.228 2.2334 2.334 2.335 2.435 2.534 2.631 2.662 2.773 2.632 2.632 2.633 2.631 2.632 2.912 2.958 3.004 3.095 3.004 3.019 3.364 3.274 3.319 3.364 1.615 1.663 1.710 1.755 1.663 1.710 1.755 1.842 1.842 1.842 1.842 2.184 2.2361 2.2362<	V H (1.994) (539.5) 2.001 631.4 2.001 631.4 2.001 631.4 2.001 631.4 2.281 665.9 2.282 659.4 2.283 675.6 2.435 678.6 2.435 654.8 2.435 664.8 2.435 664.8 2.435 664.8 2.435 664.9 2.534 696.9 2.631 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.637 708.9 2.9912 744.3 2.905 777.1 3.004 761.8 3.005 777.1 3.364 803.0 1.900	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

NOTE:--"V" is Volume of Superheated Vapor, ft.3/lb.; "H" is Heat Content, Rtu./lb., and "S" is Entropy, Rtu./lb. °F.

TABLE XX.—BUREAU OF STANDARDS TABLES OF PROPERTIES OF SUPERHEATED AMMONIA VAPORS.—(Continued.)

		The	Americ	an Soc	iety of	Refrig	erating	Engin	eers, Ji	uly, 192	5.	
Temp.	Abs. P Gage Pr (Sat'n.	ressure 23 ressure 215 Temp. 10.	0 lb /in.² 5.3 lb./in.² 5.30° F.)	Abs. P Gage Pr (Sat'n.	ressure 240 essure 225 Temp. 10) lb /in ² .3 lb./in. ² 8.09° F.)	Abs. P. Gage Pr (Sat'n	ressure 250 essure 235 Temp. 110) lb./in. ² 5.3 lb./in. ² 5.80° F)	Abs. P G.s. 137 (Satin.	ressure 26 essure 24 Temp. 11	0 lb /in * 5.3 lb./in.* 3 12° F)
°F	V	Н	S	V	Н	S	V	Н	S	V	Н	S
(atsat'n)	(1.307)	(633.4)	(1.1631)	(1.253)	(633.6)	(1.1392)	(1.202)	(533.5)	(1.1555)	(1.155)	(633,9)	(1.161%)
110	1.328	637.4	1.1700	1.261	635.3	1.1621	1.010		1 1000	1 100		1 1617
120	1.370	645.4	$1.1840 \\ 1.1971$	$\frac{1.302}{1.342}$	$643.5 \\ 651.3$	$1.1764 \\ 1.1898$	$1.240 \\ 1.278$	$641.5 \\ 649.6$	$\frac{1.1690}{1.1827}$	1.182	$639.5 \\ 647.8$	1.1617 1.1757
140	1.449	660.4	1.2095	1.380	658.8	1.2025	1.316	657.2	1.1956	1.257	655.6	1.1889
150	1.487	667.6	1.2213	1.416	666.1	1.2145	1.352	664 6	1.2078	1.292	663.1	1.2014
160	1.524	674.5	1.2325	1.452	673.1	1.2259	1.386	671.8	1.2195	1.326	670.4	1.2132
170 180	1.559 1.594	681.3 687.9	$1.2434 \\ 1.2538$	1.487 1.521		$1.2369 \\ 1.2475$	$1.420 \\ 1.453$	678.7 685.5	$\frac{1.2306}{1.2414}$	$1.359 \\ 1.391$	677.5 684.4	$\frac{1.2245}{1.2354}$
190	1.629	694.4	1.2640	1.554	693 3	1.2577	1.486	692.2	1.2517	1.422	691.1	1.2458
200	1.663	700.9	1.2738	1.587	699.8	1 2677	1.518	698.8	1.2617	1.453	697.7	1.2560
210	1.696	707.2	1.2834	1.619	706.2	1.2773	1.549	705.3	1.2715	1.484	704.3	1.2658
220 230	$1.729 \\ 1.762$	713.5	$1.2927 \\ 1.3018$	$1.651 \\ 1.683$	712.6 718.9	$\frac{1.2867}{1.2959}$	$1.580 \\ 1.610$	$711.7 \\ 718.0$	$12810 \\ 12902$	$1.514 \\ 1.543$	710.7 717.1	$1.2754 \\ 1.2847$
240	1.794	726.0	1.3107	1.714	725.1	1.3049	1.640	724.3	1 2993	1.572	723 4	1.2938
250	1.826	732.1	1.3195	1.745	731.3.	1.3137	1.670	730.5	1.3081	1.601	729.7	1.3027
260	1.857	738.3	1.3281	1.775	737.5	1 3224	1.699 1.720	736 7	1.3168	1.630	736.0	1.3115 1.3200
270 280	1.889	744.4	1.3365 1.3448	1.805 1.835	743.6 749.8	$1.3308 \\ 1.3392$	$1.729 \\ 1.758$	$742.9 \\ 749.1$	1.3253 1.3337	$1.658 \\ 1.686$	742.2	1.3200 1.3285
290	1.951	756.5	1.3530	1.865	755.9	1.3474	1.786	755 2	1.3420	1.714	754.5	1.3367
300	1.982	762.6	1.3610	1.895	762 0	1 3554	1.815	761.3	1.3501	1 741	760 7	1.3449
310	2.012	768.7	1.3689	1.924	768 0	1.3633	1.843	767.4	1.3581	1.769	766.8	1.3529
320 330	$ \begin{array}{c} 2.043 \\ 2.073 \end{array} $	774.7	1.3767 1.3844	$1.954 \\ 1.983$	$\begin{array}{c} 771.1 \\ 780.2 \end{array}$	$\frac{1.3712}{1.3790}$	1.872 1.900	773.5	1.3659 1.3737	1.796 1.823	772.9	$1.3608 \\ 1.3686$
340	2.103	786.8	1.3921	2.012	786.3	1.3866	1.928	785.7	1.3814	1.850	785.2	1.3763
350	2.133	793.0	1.3996	2.040	792 4	1.3942	1.955	791.9	1.3889	1.877	791.4	1.3839
360	2 163	798.9	1.4070	2.069	798.4	1.4016	1.983	797.9	1.3964	1.904	797.4	1.3914
370 380	$\begin{array}{c} 2.193 \\ 2.222 \end{array}$	805.0 811.1	$1.4144 \\ 1.4217$	$2.098 \\ 2.126$	804.5 810.6	$1.4090 \\ 1.4163$	$2.011 \\ 2.038$		1.4038	1.930	803.5 809.6	$1.3988 \\ 1.4062$
390	2.252	817.2	1.4289	2.155	816 7	-1.4235	2.065	816.2	1.4183	1.983	815 8	1.4134
400	2.281	823.3	1 4360	2 183	822 8	1 4307	2 093	822.3	1.4255	.2.009	821.9	1 4206
	Abs P	ressure 27	0 lb /in 3	Abs P	resaure 28	0 lb./in *	Abs. P	ressure 29	0 lb /in *	Abs. P	ressure 30	0 lb /in *
Temp. °F.	Gage Pi	essure 254 Temp. 11	0 lb. /in.² 5.3 lb./in.²	Gage Pr	Tenip. 11	0 lb./in * 5.3 lb./in.*	Gage Pi	Temp. 12	0 lb /in.* 5.3 lb./in *	Gage Pi	Temp. 12	5.3 lb./ia
					1							
(atsat'n)	(1.112)	(633.9)	(1.1483)	(1.072)	(634.0)	(1.1449)	(1.034)	(034 0)	(1.1415)	(0.999)	(634.0)	(1.1383)
120	1.128	637.5	1.1544	1.078	635.4	1.1473	1.000	642 1		1.000		1.1.1.1
130 140	$1.166 \\ 1.202$	$645.9 \\ 653.9$	$1.1689 \\ 1.1823$	$1.115 \\ 1.151$	$644.0 \\ 652.2$	$1.1621 \\ 1.1759$	1.068 1.103	650.5	1.1554	$1.023 \\ 1.058$	$610.1 \\ 648.7$	1
150	1.236	661.6	1-1950	1.184	660.1	1.1888	1.136	658.5	1.1827	1.091	656.9	1 1767
160	1.26	669.0	1.2071	1.217 1.249	667.6	$\frac{1.2011}{1.2127}$	1.168	666.1	1 1952	1.123	664 7	1.1894
170	1.302	676.2	1.2185	1.249	674.9	1.2127	1.199	673.5	1.2070	1.153	672 2	1 2014
180 190	$1.333 \\ 1.364$	$\frac{683.2}{690.0}$	$1.2296 \\ 1.2401$	$1.279 \\ 1.309$	681.9 688.9	$\frac{1.2239}{1.2346}$	I.229 1.259	680_7 687.7	$1.2183 \\ 1.2292$	1.183 1.211	$679.5 \\ 686.5$	$\begin{array}{c} 1.2129 \\ 1.2239 \end{array}$
200	1.394	696.7	1.2504	1.339	695.6	1.2449	1.287	694.6	1.2396	1 239	693.5	1 2344
210	1.423	703.3	1.2603	1.367	702.3	1.2550	1.315	701.3	1 2497	1 267	700.3	1.2447
220	1.452	709.8	1.2700	1.396	708.8	1.2647	1.343	707.9	1 2596	1 294	706.9	1.2546
$\frac{230}{250}$	1.481 1.509	$716.2 \\ 772.6$	1.2794 1.2885	$1.424 \\ 1.451$	$715 \ 3 721.8$	$1.2742 \\ 1.2834$	$\frac{1.370}{1.397}$	$714.4 \\ 720.9$	$\frac{1.2691}{1.2781}$	$ \begin{array}{c} 1 & 320 \\ 1 & 346 \end{array} $	$713.5 \\ 720.0$	$1.2642 \\ 1.2736$
250	1.537	728.9	1.2975	1 478	728.1	1.2.24	1.423	727.3	1.2875	1.372	726.5	1.2827
260	1.565	735.2	1.3063	1.505	734.4	1.3013	1.449	733.7	1.2964	1.397	732.9	1.2917
270	1.592	741.4	1.3149	1.532	740.7	1.3099	1.475	740.0	1.3051	1.422	739_2	1.3004
280 290	$1.620 \\ 1.646$	$747.7 \\ 753.9$	$1.3234 \\ 1.3317$	$1.558 \\ 1.584$	747 0 753.2	$1.3184 \\ 1.3268$	$\frac{1.501}{1.526}$	$746.3 \\ 752.5$	- 1.3137 1.3221	$1.447 \\ 1.472$	745.5 751.8	1.3090
300	1.673	760.0	1 3399	1.610	759 4	1.3350	1.551	758 7	1 3303	1 496	758 1	1.3257
310	1.700	766.2	1.3480	1.635	765.6	1.3431	1.576	764.9	1.3384	1.520	764.3	1.3338
320	$1726 \\ 1752$	772.3 778.5	$1.3559 \\ 1.3647$	$1.661 \\ 1.686$	771.7 777.9	$\frac{1.3511}{1.3590}$	$\frac{1.601}{1.625}$	$771.1 \\ 777.3$	$1.3464 \\ 1.3543$	$1.544 \\ 1.568$	770.5	$1.3419 \\ 1.3498$
340	1 778	784.6	1.3047 1.3714	1.712	784.0	1.3667	1.650	783.5	1 3621	1.508 1.592	782.9	1.3498
350	1.804	790.8	1.3790	1.737	790.3	1.3743	1.674	789.7	1 3697	1 616	789-1	1.3653
360	1.830	796.9	1.3866	1.762	796.3	1.3819	1.698	795.8	1.3773	1 639	795.3	1.3729
	1.856	803.0	1.3940	1.787	802.5	1.3893	1.722	802 0	1.3848	1.662	801.5	1.3804
370			1 4014	1.811	808 7	1 3067	1 7.17	808 9			807 7	
370 380 390	$1.881 \\ 1.907$	$\frac{809.1}{815.3}$	$1.4014 \\ 1.4086$	$\frac{1.811}{1.836}$	808.7 814.8	1.3967 1.4040	$1.747 \\ 1.770$	$\frac{808.2}{814.3}$	$1.3922 \\ 1.3995$	$1.686 \\ 1.709$	807.7 813.9	1.3878 1.3951
380	1.881	809.1	1.4014 1.4086 1.4158					808.2 814.3 820.5	$1.3922 \\ 1.3995 \\ 1.4067$		807.7 813.9 820-1	1.3878 1.3951 1.4024

Bureau of Standards Circular No. 142, April 16, 1923. Rearranged and Extended for The American Society of Refrigerating Engineers, July, 1925.

NOTE:-"V" is Volume of Superheated Vapor, (t) lb.; "H" is Heat Content, Btu./lb., and "S" is Entropy, Btu./lb. °F.

HOUSEHOLD REFRIGERATION

TABLE XXI.-PROPERTIES OF SATURATED CARBON DIOXIDE VAPOR-CO₂ (Temperature Table)

Temp.	Pressure			Volume		Density		Heat Content Above 32° F.			Entropy From 32° F.			
°F.	Aba. Ib./in. ²	Gaget Atmoa. at./in. ²	Gaget lb./in. ³	Liquid ft.ª/lb.	Vapor ft.#/lb.	Liquid lb./ft.3	Vapor Ib./ft.3	Liquid Btu./lb.	Latent Btu./lb.		Liquid Btu./Ib.	Evap. Btu./lb-	Vapor Btu./lb.	Temp. •F.
2	P	a-g p	g p	v		1/0	1/V	h+	<i>L</i> =	H	8	L/T	S	t
$-22 \\ -21$	$212.9 \\ 216.7$	$13.48 \\ 13.74$	$\substack{198.2\\202.0}$		$0.4319 \\ .4242$	$\begin{array}{c} 64.52\\ 64.43\end{array}$	2.315 2.358	$-24.78 \\ -24.37$	$126.7 \\ 126.4$	102.0 102.0	-0.0533 0524	0.2898	0.2365	$-22 \\ -21$
-20 -19 -18 -17 -16	$\begin{array}{r} 220.6 \\ 224.4 \\ 228.4 \\ 232.3 \\ 236.4 \end{array}$	$\begin{array}{r} 14.00 \\ 14.27 \\ 14.53 \\ 14.80 \\ 15.08 \end{array}$	205.9 209.7 213.7 217.6 221.7	0.0155 .0156 .0156 .0156 .0156	0.4166 .4091 .4018 .3946 .3876	$\begin{array}{r} 64.34 \\ 64.25 \\ 64.15 \\ 64.05 \\ 63.94 \end{array}$	2.401 2.444 2.489 2.534 2.580	-23.96 -23.54 -23.13 -22.71 -22.30	$126.0 \\ 125.6 \\ 125.2 \\ 124.9 \\ 124.5$	102.0 102.1 102.1 102.1 102.2	-0.0514 0505 0495 0486 0476	0.2867 .2852 .2837 .2822 .2807	0.2353 .2348 .2342 .2336 .2331	-20 -19 -18 -17 -16
-15 -14 -13 -12 -11	$\begin{array}{r} 240.5 \\ 244.6 \\ 248.8 \\ 253.0 \\ 258.3 \end{array}$	$\begin{array}{r} 15.36 \\ 15.64 \\ 15.92 \\ 16.21 \\ 16.50 \end{array}$	$\begin{array}{r} 225.8 \\ 229.9 \\ 234.1 \\ 238.3 \\ 242.6 \end{array}$.0157 .0157 .0157	$ \begin{array}{r} 0.3807 \\ .3739 \\ .3673 \\ .3608 \\ .3544 \end{array} $	$\begin{array}{c} 63.84 \\ 63.73 \\ 63.61 \\ 63.49 \\ 63.37 \end{array}$	2.627 2.674 2.723 2.772 2.822	-21.88 -21.46 -21.03 -20.61 -20.18	$\begin{array}{c} 124.1 \\ 123.7 \\ 123.3 \\ 122.9 \\ 122.5 \end{array}$	102.2 102.2 102.3 102.3 102.3	-0.0467 0458 0448 0439 0429	0.2792 .2777 .2761 .2746 .2731	0.2325 .2319 .2313 .2307 .2302	-15 -14 -13 -12 -11
$ \begin{array}{r} -10 \\ -9 \\ -8 \\ -7 \\ -6 \end{array} $	$\begin{array}{r} 261.7 \\ 266.1 \\ 270.6 \\ 275.1 \\ 279.7 \end{array}$	$16.80 \\ 17.10 \\ 17.41 \\ 17.72 \\ 18.03$	$\begin{array}{r} 247.0 \\ 251.4 \\ 255.9 \\ 260.4 \\ 265.0 \end{array}$	0.0158 .0158 .0159 .0159 .0159	$\begin{array}{r} 0.3482 \\ .3420 \\ .3360 \\ .3301 \\ .3243 \end{array}$	$\begin{array}{r} 63.25 \\ 63.13 \\ 63.01 \\ 62.88 \\ 62.76 \end{array}$	2.872 2.924 2.976 3.029 3.083	-19.76 -19.33 -18.90 -18.47 -18.04	$122.0 \\ 121.6 \\ 121.2 \\ 120.8 \\ 120.3$	$102.3 \\ 102.$	-0.0420 0410 0401 0391 0382	0.2716 .2700 .2685 .2669 .2654	0.2296 .2290 .2284 .2278 .2278	-10 - 9 - 8 - 7 - 6
$ \begin{array}{r} -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $	$\begin{array}{r} 284.4 \\ 289.1 \\ 293.9 \\ 298.7 \\ 303.6 \end{array}$	$18.35 \\ 18.67 \\ 18.99 \\ 19.32 \\ 19.66$	$\begin{array}{r} 269.7 \\ 274.4 \\ 279.2 \\ 284.0 \\ 288.9 \end{array}$	0.0160 .0160 .0160 .0161 .0161	$ \begin{array}{r} 0.3186 \\ .3131 \\ .3076 \\ .3022 \\ .2969 \end{array} $	$\begin{array}{r} 62.63 \\ 62.50 \\ 62.37 \\ 62.23 \\ 62.09 \end{array}$	3.138 3.194 3.251 3.309 3.368	-17.61 -17.17 -16.73 -16.29 -15.85		102.3 102.3 102.3 102.3 102.3 102.3	-0.0372 0362 0353 0343 0334	0.2639 .2623 .2608 .2592 .2577	$\begin{array}{r} 0.2267\\ 2261\\ .2255\\ .2249\\ .2243 \end{array}$	$ \begin{array}{r} - 5 \\ - 4 \\ - 3 \\ - 2 \\ - 1 \end{array} $
0 1 2 3 4	308.6 313.7 318.7 323.9 329.1	$\begin{array}{r} 20.00\\ 20.34\\ 20.68\\ 21.03\\ 21.39 \end{array}$	$\begin{array}{r} 293.9 \\ 299.0 \\ 304.0 \\ 309.2 \\ 314.4 \end{array}$	0.0161 .0162 .0162 .0163 .0163	0.2918 .2867 .2817 .2768 .2720	$\begin{array}{c} 61.95 \\ 61.80 \\ 61.65 \\ 61.51 \\ 61.36 \end{array}$	3.427 3.488 3.550 3.612 3.676	-15.41 -14.96 -14.51 -14.07 -13.61	$\begin{array}{c} 117.7 \\ 117.2 \\ 116.7 \\ 116.2 \\ 115.8 \end{array}$	$102.2 \\ 102.2 \\ 102.2 \\ 102.2 \\ 102.2 \\ 102.1 \\$	-0.0324 0314 0304 0295 0285	0.2561 .2545 .2530 .2514 .2498	0.2237 .2231 .2225 .2219 .2213	0 1 2 3 4
‡5 6 7 8 9	334 .4 339.8 345.2 350.7 356.2	21.75 22.11 22.48 22.85 23.23	$\begin{array}{r} \textbf{319.7} \\ \textbf{325.1} \\ \textbf{330.5} \\ \textbf{336.0} \\ \textbf{341.5} \end{array}$	0.0163 .0164 .0164 .0165 .0165	0.2673 .2627 .2581 .2537 .2493	61.22 61.07 60.92 60.77 60.63	3.741 3.807 3.874 3.942 4.011	$-12.25 \\ -11.79$	$\frac{114.3}{113.8}$	102.1 102.0 102.0 102.0 102.0	-0.0275 0266 0256 0246 0236	0.2482 .2466 .2451 .2435 .2419	0.2207 .2201 .2195 .2189 .2183	5‡ 6 7 8 9
10 11 12 13 14	361.8 367.5 373.3 379.1 385.0	$\begin{array}{r} 23.61 \\ 24.00 \\ 24.39 \\ 24.79 \\ 25.19 \end{array}$	$347.1 \\ 352.8 \\ 358.6 \\ 364.4 \\ 370.3$	0.0165 .0166 .0166 .0167 .0167	0.2450 .2408 .2366 .2825 .2285	$\begin{array}{c} 60.48 \\ 60.33 \\ 60.18 \\ 60.03 \\ 59.88 \end{array}$	$\begin{array}{r} 4.082\\ 4.154\\ 4.227\\ 4.301\\ 4.377\end{array}$		$\frac{111.7}{111.2}$	101.9 101.9 101.8 101.7 101.7	-0.0226 0216 0206 0196 0186	0.2402 .2386 .2370 .2354 .2338	0.2176 .2170 .2164 .2158 .2151	10 11 12 13 14
15 16 17 18 19	$\begin{array}{c} 391.0\\ 397.1\\ 403.2\\ 409.4\\ 415.7\end{array}$	$\begin{array}{r} 25.60 \\ 26.01 \\ 26.43 \\ 26.85 \\ 27.28 \end{array}$	$382.4 \\ 388.5 \\ 394.7 \\ 401.0$.0168 .0168 .0169 .0169	0.2245 .2207 .2168 .2131 .2094	59.73 59.58 59.42 59.27 59.11	$\begin{array}{r} 4.454\\ 4.532\\ 4.611\\ 4.692\\ 4.775\end{array}$	- 8.515 - 8.038 - 7.557 - 7.076 - 6.591	109.6 109.0 108.5 107.9	101.6 101.5 101.5 101.4 101.3	0166 0156 0146 0136	.2305 .2288 .2272 .2255	$0.2145 \\ .2139 \\ .2132 \\ .2126 \\ .2119$	15 16 17 18 19
20 21 22 23 24	$\begin{array}{r} 422.0 \\ 428.4 \\ 434.9 \\ 441.4 \\ 448.1 \end{array}$	$\begin{array}{c} 27.71 \\ 28.14 \\ 28.58 \\ 29.03 \\ 29.48 \end{array}$	$\begin{array}{r} 413.7 \\ 420.2 \\ 426.7 \\ 433.4 \end{array}$.0170 .0171 .0171 .0172	0.2058 .2023 .1987 .1953 .1919	58.95 58.79 58.64 58.47 58.31	$\begin{array}{r} 4.859 \\ 4.944 \\ 5.031 \\ 5.120 \\ 5.211 \end{array}$	$\begin{array}{r} - 6.102 \\ - 5.610 \\ - 5.117 \\ - 4.621 \\ - 4.121 \end{array}$	106.7 106.1 105.6 104.9	101.2 101.1 101.0 100.9 100.8	-0.0126 0115 0105 0095 0085	.2222 .2205 .2188 .2171	.2106 .2100 .2093 .2087	20 21 22 23 24
25 26 27 28 29	454.8 461.6 468.5 475.4 482.5	$\begin{array}{c} 29.94 \\ 30.40 \\ 30.87 \\ 31.34 \\ 31.82 \end{array}$	440.1 446.9 453.8 460.7 467.8	0.0172 .0172 .0173 .0174 .0174	0.1886 .1853 .1821 .1789 .1758	58.14 57.98 57.64 57.47	5.303 5.396 5.492 5.589 5.688	$\begin{array}{r} - 3.618 \\ - 3.111 \\ - 2.601 \\ - 2.087 \\ - 1.570 \end{array}$	103.7 103.1 102.5	100.7 100.6 100.5 100.4 100.2	-0.0074 0064 0053 0043 0032	0,2154 ,2137 ,2120 ,2102 ,2085	0.2080 .2073 .2066 .2059 .2053	25 26 27 28 29

Mollier (Amagat), Hodsdon, Ice and Cold Storage, London (1914).

*Rearranged and symbols changed, to conform to A. S. R. E. Standard, by Editor A. S. R. E. Data. †Gage pressure supplied by Editor A. S. R. E. Data. ‡Standard ton temperatures.

REFRIGERANTS-TABLES

		-		CO ₂ (Temperature Table)—(Continued)										
Temp.		Pressure		Vol	ume	Der	sity	Hes Abo	t Conter ve 32° F.	.t	Ei Froi	ntropy n 32° F.		Temp.
	Abs. lb./in. ³	Gaget Atmos. st./in. ¹	Gaget lb./in 3	Liquid	Vapor ft 3/lb.	Liquid lb./ft.*	Vapor lb./ft.3	Liquid Btu./lb.	Latent Btu./lb.	Vapor Btu./lb.	Liquid Btu./lb.	Evap. Btu./lb.	Vapor Btu./lb.	°F
t	P	a-g p	8 P	U	V	1/0	1/V	h+	L =	Н	. 8	L/T	S	e
30 31 32 33 34	$\begin{array}{r} 489.6 \\ 496.8 \\ 504.1 \\ 511.4 \\ 518.9 \end{array}$	32.31 32.79 33.29 33.79 33.79 34.30	474.9 482.1 489.4 496.7 504.2	.0176		57.30 57.12 56.95 56.77 56.59	5.789 5.892 5.996 6.103 6.212	-0.525 0.000 +0.531	100.5	100.1 99.98 99.83 99.69 99.54		0.2067 .2049 .2032 .2014 .1996		30 31 32 33 34
35 36 37 38 39	526.4 534.0 541.7 549.5 557.4	$34.81 \\ 35.33 \\ 35.85 \\ 36.38 \\ 36.92$	511.7 519.3 527.0 534.8 542.7	0.0177 .0178 .0178 .0179 .0180	$0.1581 \\ .1554 \\ .1526 \\ .1499 \\ .1472$	$56.41 \\ 56.22 \\ 56.03 \\ 55.84 \\ 55.65$	$\begin{array}{c} 6.323 \\ 6.437 \\ 6.553 \\ 6.671 \\ 6.792 \end{array}$	$\begin{array}{r} 1.604 \\ 2.149 \\ 2.697 \\ 3.248 \\ 3.806 \end{array}$	97.77 97.07 96.35 95.62 94.88	99.38 99.22 99.05 98.87 98.69	0.0033 .0044 .0055 .0066 .0077	0.1978 .1959 .1941 .1922 1904		35 36 37 38 39
40 41 42 43 44	565.4 573.4 581.6 589.8 598.1	37.46 38.01 38.56 39.12 39.69	558.7 566.9 575.1 583.4	.0182 .0183	.1420 .1395 .1370 .1345	55.45 55.25 55.04 54.84 54.62	$ \begin{array}{r} 6.915 \\ 7.040 \\ 7.169 \\ 7.300 \\ 7.434 \\ \end{array} $	$\begin{array}{r} 4.367 \\ 4.932 \\ 5.503 \\ 6.080 \\ 6.664 \end{array}$	94.13 93.37 92.60 91.82 91.02	97.90 97.68	.0099 0111 .0122 0134	.1847 .1828 .1808	.1965 .1958 .1950 .1942	40 41 42 43 44
45 46 47 48 49	$ \begin{array}{c} 606.5\\ 615.0\\ 623.6\\ 632.3\\ 641.1\\ \end{array} $	$\begin{array}{r} 40.26 \\ 40.84 \\ 41.43 \\ 42.02 \\ 42.63 \end{array}$	$\begin{array}{c} 600.3 \\ 608.9 \\ 617.6 \\ 626.4 \end{array}$.0185 .0186 .0187	.1297 .1273 .1250 .1227	54.41 54.19 53.97 53.74 53.51	7.571 7.711 7.854 8.000 8.151	7.251 7.844 8.443 9.049 9.664	90.21 89.39 88.55 87.70 86.83	97.46 97.23 96.99 96.75 96.50	.0157 .0169 .0181 .0193		.1926 .1918 .1910 .1901	49
50 51 52 53 54	$\begin{array}{c} 650.0\\ 659.0\\ 668.1\\ 677.3\\ 686.5 \end{array}$	43.22 43.83 44.45 45.07 45.70	$\begin{array}{c} 644.3 \\ 653.4 \\ 662.6 \\ 671.8 \end{array}$.0189 .0190 .0191	.1182 .1160 .1138 .1116	53.28 53.04 52.80 52.55 52.30	8.304 8.461 8.622 8.787 8.957	$10.28 \\ 10.91 \\ 11.55 \\ 12.19 \\ 12.84$		96.24 95.97 95.69 95.40 95.10	.0218 .0230 .0243 .0255	.1645 .1624 .1602	.1884 .1875 .1867 .1858	50 51 52 53 64
55 86 87 58 59	695.9 705.4 714.9 724.6 734.3	$\begin{array}{r} 46.34 \\ 46.98 \\ 47.63 \\ 48.29 \\ 48.96 \end{array}$	690.7 700.2 709.9 719.6	0.0192 .0193 .0194 .0195 .0196	.1074 .1053 .1032 .1012	52.05 51.79 51.53 51.26 50.99	$9.132 \\ 9.313 \\ 9.497 \\ 9.686 \\ 9.880$	$13.49 \\ 14.16 \\ 14.84 \\ 15.53 \\ 16.22$	81.29 80.30 79.30 78.27 77.22	94.78 94.46 94.13 93.79 93.44	0.0268 .0281 .0294 .0307 .0321	.1558 .1536 .1513 .1490	.1839 .1830 .1820 .1811	55 56 57 58 89
60 61 62 63 64	744.2 754.2 764.3 774.5 784.7	$\begin{array}{r} 49.63 \\ 50.30 \\ 50.99 \\ 51.68 \\ 52.38 \end{array}$	739.6 749.6 759.8 770.0	0.0197 .0198 .0200 .0201 .0202	.0972 .0953 .0933 .0914	50.71 50.42 50.11 49.80 49.47	10.29 10.50 10.72 10.95	$\begin{array}{r} 16.93 \\ 17.65 \\ 18.38 \\ 19.13 \\ 19.88 \end{array}$	76.14 75.04 73.91 72.75 71.57	93.07 92.69 92.29 91.88 91.45	.0348 .0363 .0377 .0391	$0.1466 \\ .1442 \\ .1417 \\ .1393 \\ 1367$.1790 •.1780 .1770 .1759	60 61 62 63 64
65 66 67 68 69	795.1 805.6 816.2 827.0 837.8	$53.09 \\ 53.80 \\ 54.53 \\ 55.26 \\ 55.99$	780.4 790.9 801.5 812.3 823.1	0.0203 .0205 .0206 .0208 .0210	0.0894 .0875 .0856 .0838 .0819	$\begin{array}{r} 49.14 \\ 48.80 \\ 48.44 \\ 48.08 \\ 47.69 \end{array}$	$\begin{array}{c} 11.42 \\ 11.67 \\ 11.94 \\ 12.21 \end{array}$	$\begin{array}{c} 20.66 \\ 21.45 \\ 22.25 \\ 23.08 \\ 23.92 \end{array}$	$70.35 \\ 69.10 \\ 67.81 \\ 66.49 \\ 65.12$	$\begin{array}{c} 91.01 \\ 90.55 \\ 90.07 \\ 89.56 \\ 89.04 \end{array}$	0.0406 .0421 .0436 .0452 .0468	$0.1342 \\ .1315 \\ .1288 \\ .1261 \\ .1233$	0.1748 .1736 .1725 .1713 .1701	65 66 67 68 69
70 71 72 73 74	848.7 859.8 870.9 882.2 893.6	56.74 57.49 58.25 59.01 59.79	$\begin{array}{r} 834.0 \\ 845.1 \\ 856.2 \\ 867.5 \\ 878.9 \end{array}$	0.0211 .0213 .0215 .0217 .0220	0.0800 .0782 .0763 .0745 .0726	$\begin{array}{r} 47.29 \\ 46.87 \\ 46.44 \\ 45.99 \\ 45.53 \end{array}$	$ \begin{array}{c} 12.82 \\ 13.10 \\ 13.43 \end{array} $	$24.78 \\ 25.67 \\ 26.58 \\ 27.52 \\ 28.49$	$\begin{array}{c} 63.71\\ 62.25\\ 60.74\\ 59.17\\ 57.54 \end{array}$	88.49 87.92 87.32 86.69 86.03	0.0484 .0501 .0518 .0536 .0554	0.1204 .1174 .1143 .1111 .1079	0.1688 .1675 1661 .1647 .1633	70 71 72 73 74
75 76 77 78 79	$\begin{array}{r} 905.1 \\ 916.7 \\ 928.4 \\ 940.3 \\ 952.2 \end{array}$	$\begin{array}{c} 60.57 \\ 61.36 \\ 62.16 \\ 62.96 \\ 63.78 \end{array}$	$\begin{array}{r} 902.0 \\ 913.7 \\ 925.6 \\ 937.5 \end{array}$.0224 .0227 .0230 .0232	0.0708 .0689 .0671 .0652 .0633	$\begin{array}{r} 45.05 \\ 44.06 \\ 43.55 \\ 43.04 \end{array}$	$14.51 \\ 14.90 \\ 15.34 \\ 15.81$	$\begin{array}{r} 29.50 \\ 30.54 \\ 31.62 \\ 32.76 \\ 33.95 \end{array}$	55.83 54.05 52.17 50.20 48.11	85.33 84.59 83.80 82.96 82.06	0.0573 .0592 .0613 .0634 .0656	.1010 .0973 .0934 .0894	.1602 .1585 .1568 .1550	75 76 77 78 79
80 81 82 83 84	964.3 976.5 988.8 1001.0 1014.0	$\begin{array}{r} 64.60\\ 65.43\\ 66.27\\ 67.11\\ 67.97\end{array}$	961.8 974.1 986.3 999.3	0.0235 .0238 .0242 .0246 .0251	.0592 .0570 .0548 .0524	$\begin{array}{r} 42.50 \\ 41.95 \\ 41.30 \\ 40.62 \\ 39.81 \end{array}$	16.90 17.53 18.25 19.07	$35.21 \\ 36.54 \\ 37.98 \\ 39.53 \\ 41.25$	$\begin{array}{r} 45.88\\ 43.49\\ 40.90\\ 38.07\\ 34.90\end{array}$	81.09 80.03 78.88 77.60 76.15	0.0679 .0704 .0731 .0759 .0791	.0805 .0755 .0702 .0642	$.1509 \\ .1486 \\ .1461 \\ .1433$	80 81 82 83 84
86‡ 87 88	1027.0 1039.0 1052.0 1065.0 1071.0	69.70		0.0258 .0267 .0283 .0305 .0346	0.0500 .0474 .0446 .0401 .0346	38.76 37.41 35.34 32.79 28.90	21.09 22.42 24.95	43.18 45.45 48.32 52.78 59.23	31.29 27.00 21.52 12.84 0.00	74.47 72.46 69.84 65.62 59.23	0.0826 .0868 .0921 1002 1120	0.0575 .0495 .0394 .0235 .0000	.1363 .1314 .1237	85 86‡ 87 88 88,43

TABLE XXI.—PROPERTIES OF SATURATED CARBON DIOXIDE VAPOR— CO₂ (Temperature Table)—(Continued)

†Gage pressures supplied by Editor A. S. R. E. Data. ‡Standard ton temperatures.

TABLE XXII.-PROPERTIES OF SATURATED VAPOR OF BUTANE:-C.H10 Linde Air Products Company Laboratory. Refrigerating Engineering, June, 1926. A. S. R. E. Data Book.

Temp.	Pres	aure	Volu	me	De	usity	L H	leat Conte Above 0° 1	int F.	Epti From	opy 0°F.	Temp.
* F.	Abs. lb./in. ³	Gage lb./in.3	Liquid ft. ^s /lb.	Vapor ft.³/lb, V	Liquid lb./ft.* 1/o	Vapor lb./ft. ^a I/V	Liquid Btu./lb. h +	Latent Btu./lb. L =	Vapor Btu./lb. H	Liquid Btu./lb.°F.	Vapor Btu./lb.°F. S	• F. t
0 1 2 3 4	7-3 75 7.7 78 80	15.0° 14.7 14.3 13.9 13.6	0 02591 02593 .02596 .02598 .02601	11.1 10.9 10.7 10.4 10.2	38.59 38.56 38.52 38.49 38.45	0.0901 .0917 .0935 .0962 .0980	$\begin{array}{r} 0.0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{array}$	170.5 170.5 170.0 170.0 170.0 170.0	170.5 171.0 171.0 171.5 172.0	0.000 001 .002 .003 005	0.370 .370 370 370 370 370	0 1 2 3 4
5 6 7 8 9	6.2 8.4 8.6 8.8 9.0	13.2* 12.8 12.4 12.0 11.6	0.02603 02606 02608 .02610 .02612	9.98 9.78 9.57 9.37 9.16	38.41 38.38 38.35 38.31 38.28	0.100 .102 .104 .107 .109	2.5 3.0 3.5 4.0 4.5	169.5 169.5 169.5 169.5 169.5	172.0 172.5 173.0 173.5 173.5	0,006 007 008 ,009 ,010	0.370 370 370 .370 .370 .370	5‡ 6 7 8 9
10 11 12 13 14	9.2 9.4 9.7 9.9 10.1	$11.1^{\circ} \\ 10.7 \\ 10.3 \\ 9.9 \\ 9.5$	0.02615 .02617 .02619 .02622 .02624	8.95 8.78 8.59 8.41 8.22	$38.24 \\ 38.21 \\ 38.18 \\ 38.14 \\ 38.11 \\ 38.11 \\ $	0.112 .114 .116 .119 .122	5 .5 6.0 6.5 7.0 7.5	$168.5 \\ 168.5 \\ 168.0 \\ 168.$	174.0 174.5 175.0 175.0 175.5	0.011 .012 .013 .015 .016	0.370 .370 .370 .370 .370 .370	10 11 12 13 14
15 16 17 18 19	10.4 10.6 10.8 11.1 11.3	8.8* 8.5 8.0 7.5 7.0	$\begin{array}{c} 0.02627 \\ .02629 \\ .02632 \\ .02634 \\ .02636 \end{array}$	8.05 7.88 7.72 7.56 7.40	38.07 38.04 38.00 37.97 37.93	0.124 127 .130 .132 .135	8.0 8.5 9.0 9.5 10.0	$\begin{array}{r} 168.0 \\ 167.5 \\ 167.5 \\ 167.5 \\ 167.5 \\ 167.5 \end{array}$	176.0 176.0 176.5 177.0 177.5	0.017 .018 .019 .020 .021	0.370 .371 .371 .371 .371 .371	15 16 17 18 19
20 21 22 23 24	$ \begin{array}{c} 11.6\\ 11.8\\ 12.1\\ 12.4\\ 12.7 \end{array} $	6.3* 6.0 5.5 4.9 4.3	$\begin{array}{r} 0.02639 \\ .02641 \\ .02643 \\ .02646 \\ .02648 \end{array}$	$\begin{array}{c} 7.23 \\ 7.10 \\ 6.97 \\ 6.82 \\ 6.68 \end{array}$	37.89 37.86 37.83 37.79 37.76	0.138 .141 .143 .147 .150	$ \begin{array}{r} 10.5 \\ 11.0 \\ 11.5 \\ 12.0 \\ 12.5 \end{array} $	$\begin{array}{r} 167.0 \\ 167.0 \\ 167.0 \\ 166.5 \\ 166.5 \\ 166.5 \end{array}$	177.5 178.0 178.5 178.5 178.5 179.0	0.022 .023 .025 .026 .027	0.371 .371 .371 .371 .371 .371	20 21 22 23 24
25 30 35 40 45	$ \begin{array}{r} 13.0\\ 14.4\\ 16.0\\ 17.7\\ 19.6 \end{array} $	3.6* 0.6* 1.3 3.0 4.9	0.02651 .02664 .02676 .02689 .02703	$\begin{array}{r} 6.55 \\ 5.90 \\ 5.37 \\ 4.88 \\ 4.47 \end{array}$	37.72 37.54 37.37 37.19 37.00	0.153 .169 .186 .205 .224	$\begin{array}{c} 13.0 \\ 16.0 \\ 19.0 \\ 21.5 \\ 24.5 \end{array}$	$\begin{array}{r} 166.0 \\ 165.5 \\ 164.5 \\ 163.5 \\ 162.5 \end{array}$	179.0 181.5 183.5 185.0 187.0	0.028 .033 .039 .044 .050	0.371 .371 .371 .371 .371 .372	25 30 35 40 45
50 55 60 65 70	$\begin{array}{c} 21.6 \\ 23.8 \\ 26.3 \\ 28.9 \\ 31.6 \end{array}$	$ \begin{array}{r} 6.9\\ 9.1\\ 11.6\\ 14.2\\ 16.9 \end{array} $	0.02716 .02730 .02743 .02759 .02773	4.07 3.73 3.40 3.12 2.88	$ \begin{array}{r} 36.82 \\ 36.63 \\ 36.45 \\ 36.24 \\ 36.06 \\ \end{array} $	0.246 .268 .294 .321 .347	$\begin{array}{c} 27.0 \\ 30.0 \\ 33.0 \\ 36.0 \\ 38.5 \end{array}$	$\begin{array}{r} 161.5 \\ 160.5 \\ 159.5 \\ 158.5 \\ 157.5 \end{array}$	$\begin{array}{c} 188.5 \\ 190.5 \\ 192.5 \\ 194.5 \\ 196.0 \end{array}$	0.056 .061 .067 .072 .078	0.373 .373 .374 .374 .374 .375	50 55 60 65 70
75 80 85 86‡ 90	34.5 37.6 40.9 41.6 44.5	19.8 22.9 26.2 26.9 29.8	0.02789 .02805 .02821 .02825 .02838	2.65 2.46 2.28 2.24 2.10	35.86 35.65 35.45 35.40 35.24	0.377 .407 .439 .446 .476	41.5 44.5 47.5 48.5 51.0	156.5 155.0 154.0 153.5 152.0	198.0 199.5 201.5 202.0 203.0	0.083 .089 .094 .095 .100	0.375 .376 .376 .376 .376 .377	75 80 85 86‡ 90
95 100 105 110 115	$\begin{array}{r} 48.2 \\ 52.2 \\ 56.4 \\ 60.8 \\ 65.6 \end{array}$	33.5 37.5 41.7 46.1 50.9	$\begin{array}{r} 0.02854 \\ .02870 \\ .02889 \\ .02906 \\ .02925 \end{array}$	$1.96 \\ 1.81 \\ 1.70 \\ 1.58 \\ 1.48$	35.04 34.84 34.62 34.41 34.19	0.510 .552 .588 .633 .676	54.0 57.0° 60.5 63.5 66.5	$\begin{array}{c} 151.0 \\ 149.5 \\ 148.0 \\ 147.0 \\ 145.5 \end{array}$	$\begin{array}{c} 205.0 \\ 206.5 \\ 208.5 \\ 210.5 \\ 212.0 \end{array}$	$\begin{array}{c} 0.105 \\ .111 \\ 117 \\ 122 \\ .128 \end{array}$	0.377 .378 .380 .380 .381	95 100 105 110 115
120 125 130 135 140	70.8 76.0 81.4 87.0 92.6	56.1 61.3 66.7 72.3 77.9	0.02945 .02966 .02986 .03009 .03032	1.38 1.30 1.21 1.14 1.07	33.96 33.72 33.49 33.23 32.98	0.725 .769 .826 .877 .934	70.0 73.5 76.5 80.0 83.5	$143.5 \\ 142.0 \\ 140.5 \\ 139.0 \\ 137.5$	213.5 215.5 217.0 219.0 221.0	0.134 .139 145 .151 157	0.382 .382 .384 .385 .385 .386	120 125 130 135 140

* Inches of Mercury below one standard atmosphere (29.82 in. \approx 14,606 lbs./sq. in. abs) \$Standard Ton Temperatures.

REFRIGERANTS—TABLES

PROPERTIES OF SATURATED VAPOR OF SEVERAL REFRIGERANTS Starr, Practical Refrigerating Engineers' Pocket Book, Nickerson & Collins Co. TABLE XXIII.—CARBON BISULPHIDE—CS₂ TABLE XXIV.—CARBON TETRACHLORIDE, C CLA

Temp	Pres	aure	Volume Vapor	Density Vapor	Heat Co	ntentabo	ve 32° F.
1	Abso-	Gage			Liquid	Latent	Vapor*
op	lute lb/m*	ins. vac.	ft 3/1b	ft /lb3	Btu /lb	Btu./ib	Btu /lb
			V				
t	Р	g P°	V	1/V	h +	L =	H
0	1 10	27 7	53 76	0 0186	-8.60	165 5	156 90
51	1 28		48 07		-7 20	165 0	157 80
10	1 46	26 95	43 47	-0230	-560	164.5	158 90
15	1 67	26 52	38 91				159.60
20	1 89	$26_{-}07_{-}$	34 84	-0287	-3.00	163 2	$160 \ 20$
25		25 63	32.10	0 0324	-1.82	162.9	161_08
30	2.36	25.11	29 49	0339	-0.50	162 2	161 70
35		24 89	28 32	0353	0.00	162 0	162 00
40		23.75	23 52	0425	+2.05	161 2	163.25
45	3 40	$23 \ 00$	$22 \ 00$	-0454	2 40	160 7	163 10
50	3 90	21.95	20.60	0 0482	4.24	160.0	164 24
55	4 40	20.98	19 20	-0521	5 80	159 8	165 60
60	4 95	19 84	18 00	0555	7.20	159-2	166 40
65	5 40		15 00	0666	8.50	158 8	167.30
70	5 85		13 20	-0758			
75	6.50	16 69	11 80	-0874	10 80	157 5	165.30
80	7.30	15.07	10 40	0.0961	11.70	156.9	168.60
85	8 21	13 21	9.80				168 80
861*	8 40		9.15		12 84		168 94
90	9 15	11 29	8 30				169 40
95	10 00	9 54	7 60	1315	15 00	155.0	170 00
100	11 08	7 37	7 03	0 1369	16 15	154-4	170.55
105	12 30	4 89	6 40		17 40		171.20
110	13 50		5 80		18 30		
114 5	14 70	0 00	5 45		19-10		
115	14 80	0 10†	5 40	1851	19 25	152 6	171 85
120	16.10	1 40†	5 10	0 1960	20.01	152 0	172 01

∘F B /m	Guge Ins Vac	Volume Vapor	Density Vapor	Heat Con	tent abo	ve 32° 1
°F b /m	Ins		1			
°F Ib /m	uns Vac			Liquid	Latent	Vapor
1 100 /111	vac	ft 3/th	11/101			
				Btu /lb.	Btu./lb	Btu /lb
t p	8 P '	V	1/V	h +	L =	Н
20 0 40	29-1	69 5	0.01438	-2 00	94 45	92 45
25 56	28 8	61.0	01639	-1.20	91 00	92 80
30 60	28 7	53 0	01886	-0.25	93 70	93 45
32 64	28 6	52 6	-01917	0 00	93.60	93.60
40 84	28 2	10 0	02500	+1 60	93 20	94 80
45 0 95	28 0		0.02857	2.58	92.90	95.48
52 1 07	27.7	34 0	.03113	3.58	92 60	96.18
55 1 25	27 4	27 0	03703	4 40	92 30	96 70
60 1 42	27 0	24.0	04166	5.95	92.20	98.15
65 1 60	26 7	21 5	04651	6 50	91 70	98-20
70 1 85	26.2	19.5	0.05128	8.20	91 40	99.60
75 2.15	25.5	17 5	05714	8 50	91.05	99 53
80 2.40	25.0	16 0	06345	9 80	90.07	99 87
85 2.70	24 4	14.5	-06896	10.60	90 04	100 64
86 ‡* 2 78	24 2	14 2	07037	10 80		100 83
90 3.12	23 5	13.0	07692	11.60	90 02	101 62
95 3.60	22 6	11.0	0 0909	12 40	89 70	102.10
100 4 00	21.8	10.0	.1000	13.40	\$9.40	102 80
105 4 42	20_{-9}	9.0	1111	14 60	\$9.20	103 80
110 4.89	20.1	8.5	1176	15 80		104.50
115 5.35	19.1	8.0	1250	16 95	88-30	105.25
120 5.95	17.8	75	0.1333	18.06	\$7.90	105.90
125 6.50	16.7	70	1428	18.90	87.50	106 40
130 7 20	15.2	63	1587	19.95	87.10	107.05
135 7 90	13.9	55	1818	20.99		107.69
140 8 65	12 3	4.8	2066	21 46	86 32	107.78
170 14 70	0	2.8	0.3571	26 90	83 00	109 90

TABLE XXVII.-NITROUS OXIDE-N20

Density Heat

Temp Pressure Volume

TABLE XXV.-CHLOROFORM-CH Cls

1 1	P	g p*	V	$I_I V$	h	L	$-\mathcal{H}^*$
20	0.08	29 76	50 00	0.02012	-4.00	121 60	117 60
25	1 00	27 83	44.00	. 0227	-25	120 20	117 70
32				02626		120 60	120 60
50	2 03	25 79	23 65	04232	4 19	118 87	123.06
68	3 15	23.51	18 50	06505	8 40	117 14	125 54
861	4 80	20 15	10 50	0 0952	12 63	115 38	128 01
104				1403		113 63	
122	10.30					111 83	
140.5	14.70	0.00	4.95	. 2200		109 00	

TABLE XXVI.-ETHYL ETHER2-(C2H5)20

t	Р	g p	V	I/V	h	L	H*
0	1 3	27 28	38-0	0.0263	-18.00	171.0	153 00
5;	15	26 87		0285	-15-00		155 80
10	1.8	26.26	32.5	.0352	-12.00		158.43
15	-2.2	25.46	30.0	-0332	-9.50	170.2	161.70
20	2.5	24.84	27.0	.0372	-6.50	170.0	163.50
25	2.9	24.03	24.3	0.0417	-4 00	169.6	165.60
30	34	23.00	21 4	.0468	-1.50	169.4	167.90
35	3.9	22.00	19.3	0518	+1.40		170.20
40	44	21.09		.0588		168.4	172.40
45	4 9	19 97		.0666		168.0	174.60
50	5.5	18.72	13.2	0.0757	9.57	167.6	177.17
70	8.8	12.05	7.8	.1280	20 04	165.4	185 44
75	98	10.02	7.0	1430	23.40	164.8	188.20
80	10.9	7.33	62	1620	26.40	164 2	190.60
85	12.2	5.09	5 5	.1860	29.00	163.8	192,80
86*:	12 3	4 62	54	1880		163 5	193-00
90	13.4	2.72		0.1960	31.50	163.0	194.50
95	14.7	0.00	4.8	.2130	34.00	162.2	196 20
100	16-0	1.31	4.5	1.2220	36.50	161.5	197 50

							l.stent
	Abso- lute	Gage	Liquid	Vapor	Liquid	Vapor	
۰F	1b./m.2	lb./in.2	ft.3/lb.	ft.*/lb.	1b./ft.3	lb./ft.3	Btu. (b.
ŧ	р	g p*	v	· V	1,0*	I/V	L
- 130	14.2	0.5	0 01232	5.040	81.17	0 165	162.3
- 121	19 6	4 9	.01248		80 13	$0.165 \\ 23$	162.3 168.9
-112	26 8	12 0			79.11	. 30	165.6
$-10\bar{3}$	35.5		01280		$78.11 \\ 78.12$. 30	162.3
-94	47.3	$\frac{20}{32.6}$.01296		77 16	.40	158 9
-85	59.6		0.01312		76.22	0.66	155.0
-76					76.10	0.82	150.7
-67	92.3			0.9990		1.00	148.9
-58					71.02	1.20	145.8
-49	135.0	120/3	.01440	. 6960	69.44	1.40	142.5
- 40	160.0	-145.3	0.01472	0.6000	67.93	1.65	139.1
-31	190.0	175.3	.01504	.5120	66.49	1.95	135.6
-22	223.0	208.3	.01536		65.10	2.25	132.3
-13	257.0	242.3	.01568		63.77	2 50	129.0
-4	295.0	280.3	.01600		62.50	2.85	125 2
1+5	333.0	318.3	0.01632	0.3080	61.27	3 25	121 4
14	375.0				59.52	3.70	116.8
23	422.0	405.3	.01728		57 87	4 25	111.9
32	471.0				56.30	4 95	107 5
41	528.0					5.70	103 2
50	592.0	577.3	0.01920	0.1496	52 08	6,65	95.8
59	663.0				45.60		88 2
68	745.0	730.3	.02140		46.73		73.6
77	832 0				43.48		66 9
\$86	930.0	915.3	02560		39 06		51 1
95	1035.0	1020.3	0.03136				24.4
			.03498		28.58	23.50	13:2
97	1065 0	1040.3	.04080	.0408	24 51	24 50	0.0
				-		the de la familie de la	

HOUSEHOLD REFRIGERATION

								1
Temp.	Pres	sure	Specific	Volume	Den		Ifeat Content Above-40°	Temp
°F	Abs. lb./in.² p.	Gage lb./in.² g.p.	Liquid ft. ^s /lb. v	Vapor ft.³/lb. V	Liquid lb./ft. ^s 1/v	Vapor lb./ft. ³ 1/V	Latert Btu./lb.;L=	°F
$\begin{array}{c} -150\\ -145\\ -140\\ -145\\ -140\\ -135\\ -135\\ -135\\ -125\\ -125\\ -125\\ -125\\ -125\\ -125\\ -1105\\ -95\\ -95\\ -95\\ -765\\ -765\\ -850\\ -550\\ -765\\ -765\\ -350\\ -550\\ +40\\ -350\\ -225\\ -215\\ -105\\ -55\\ +105\\ +150\\ +250\\ +350\\ +555\\ +565\\ +565\\ +750\\ +75$	$\begin{array}{c} \textbf{7.0} \\ \textbf{8.0} \\ \textbf{7.0} \\ \textbf{8.0} \\ \textbf{7.11.2} \\ \textbf{13.2.5} \\ \textbf{11.2.5} \\ \textbf{13.5.5} \\$	$\begin{array}{c} *.15.6\\ *.13.6\\ *.13.6\\ *.10.1\\$	$\begin{array}{c} 0.02849\\ 0.02865\\ 0.02888\\ 0.02901\\ 0.02939\\ 0.02939\\ 0.02961\\ 0.02976\\ 0.0301\\ 0.0305\\ 0.0305\\ 0.0307\\ 0.0309\\ 0.0311\\ 0.0313\\ 0.0315\\ 0.0313\\ 0.0315\\ 0.0320\\ 0.0322\\ 0.0325\\ 0.0327\\ 0.0330\\ 0.0325\\ 0.0327\\ 0.0330\\ 0.0325\\ 0.0327\\ 0.0330\\ 0.0325\\ 0.0325\\ 0.0325\\ 0.0325\\ 0.0327\\ 0.0330\\ 0.0353\\ 0.0350\\ 0.0353\\ 0.0355\\$	$\begin{matrix} 16.7\\ 14.1\\ 12.1\\ 10.5\\ 8.85\\ 1.69\\ 6.89\\ 5.88\\ 5.27\\ 4.55\\ 4.13\\ 3.57\\ 2.86\\ 2.35\\ 2.10\\ 1.75\\ 1.63\\ 1.50\\ 1.39\\ 1.18\\ 1.18\\ 1.05\\ 0.819\\ 0.689\\ 0.629\\ 0.581\\ 0.538\\ 0.495\\ 0.495\\ 0.422\\ 0.389\\ 0.238\\ 0.279\\ 0.256\\ 0.238\\ 0.214\\ 0.163\end{matrix}$	$\begin{array}{c} 35,10\\ 34,90\\ 34,63\\ 34,47\\ 33,77\\ 33,60\\ 33,32\\ 33,32\\ 33,32\\ 33,32\\ 33,32\\ 32,8\\ 32,6\\ 32,2\\ 33,32\\ 32,6\\ 32,2\\ 33,32\\ 32,6\\ 32,2\\ 33,32\\ 33$	$\begin{array}{c} 0.000\\ 0.071\\ 0.083\\ 0.095\\ 0.113\\ 0.130\\ 0.145\\ 0.170\\ 0.220\\ 0.242\\ 0.280\\ 0.350\\ 0.350\\ 0.425\\ 0.477\\ 0.570\\ 0.615\\ 0.570\\ 0.615\\ 0.570\\ 0.615\\ 0.845\\ 0.875\\ 0.855\\ 0.$	$\begin{array}{c} 242\\ 240\\ 240\\ 238\\ 238\\ 236\\ 235\\ 233\\ 231\\ 229\\ 227\\ 225\\ 224\\ 220\\ 218\\ 214\\ 222\\ 220\\ 218\\ 216\\ 214\\ 212\\ 210\\ 208\\ 206\\ 204\\ 201\\ 199\\ 196\\ 199\\ 196\\ 199\\ 199\\ 199\\ 19$	$\begin{array}{c} -150 \\ -145 \\ -140 \\ -1435 \\ -135 \\ -125 \\ -125 \\ -120 \\ -115 \\ -110 \\ -100 \\ -95 \\ -85 \\ -80 \\ -85 \\ -80 \\ -85 \\ -70 \\ -85 \\ -70 \\ -85 \\ -70 \\ -85 \\ -70 \\ -85 \\ -70 \\ -85 \\ -70 \\ -85 \\ -70 \\ -35 \\ -20 \\ -10 \\ -25 \\ -20 \\ -15 \\ -10 \\ -25 \\ -20 \\ -15 \\ -10 \\ -25 \\ -20 \\ -15 \\ -10 \\ -25 \\ -20 \\ -15 \\ -10 \\ -25 \\ -20 \\ -15 \\ -10 \\ +15 \\ +25 \\ +30 \\ +46 \\ +15 \\ +50 \\ +65 \\ +775 \\ +85 \\ +85 \\ \end{array}$
*85 *89.8		657 703	0.0549 0.0775	$0.128 \\ 0.0775$	$ \begin{array}{c c} 18.2 \\ 12.9 \end{array} $	7.80 12.9	78 0	+89.8

TABLE XXVIII.- PROPERTIES OF SATURATED VAPOR OF ETHANE-C2H. (H. D. Edwards)

* Inches of mercury below one standard atmosphere (29.92 in.=14.697 lbs./sq. in. abs.) NoTE:-References: Vapor Pressures. From 7 to 32 lbs./sq. in. abs. by Maass & Wright, J. Am. Chem. Soc., 43, p. 1098, 1921. From 31 to 347 lbs./sq. in. abs. by Kuenen and Robson, Phil. Mag, (6) 3, p. 149, 1902. From 162 to 734 lbs./sq. in. abs. A. Hainlen, Lieb. Ann, 282, p. 229, 1894. Liquid and Vapor Densities, From-162° F. to-101° F. experimental data on liquid by Maass & Wright, J. Am. Chem. Soc., 43, p. 1104, 1921. Remainder of liquid and all of Vapor data as well as latent heats, calculated by The Laboratory of The Linde Air Products Co., Buffalo, N. Y. Probable accuracy of Density, Liquids, 1%; Vapor, 3%; Latent Heats, 10%.

TABLE XXIX.—PROPERTIES OF SATURATED VAPOR OF ETHYL CHLORIDE C_2H_5CI .

Hodsdon, 1919. Refrigerating World, Aug., (1922). Henning, Ohnes, Regnault and others; compiled by Starr. Practical Refrigerating Engineers' Hand Book, Nickerson & Collins Co., Chicago, 1922.

Tem.	Pre	ssure	Volu	ime	Dei	nsity		Reat Conte bove — 32°		
°F.	Abs. lb./in. ¹	Gage lb./in. ²	Liquid ft. ³ /lb.	Vapor ft.*/lb.	Liquid lb./ft. ³ 1/v	Vapor lb./ft. ³ 1/V	Liquid Btu./lb. h +	Latent Btu./lb. L=	Vapor Btu./lb. H	
-22 -13 -4 +±5 14 23 32 41 50 59 68 77 ±86 95 104	2.20 2.85 3.66 4.65 5.85 7.28 8.99 11.01 13.37 16.11 19.29 22.94 27.10 31.82 37.17	$\begin{array}{c} -12.5\\ -11.85\\ -11.04\\ -10.05\\ -8.85\\ -7.42\\ -5.71\\ -3.69\\ -1.33\\ +1.41\\ 4.50\\ 8.24\\ 12.40\\ 17.12\\ 22.47\end{array}$	0.01657 .01669 .01682 .01708 0.01708 0.01721 .01735 .01749 .01763 .01777 0.01792 .01807 .01807 .01822 .01838 0.01854	$\begin{array}{c} 34.4\\ 26.95\\ 21.33\\ 17.06\\ 13.77\\ 11.21\\ 9.21\\ 7.62\\ 6.36\\ 5.34\\ 4.51\\ 3.84\\ 3.29\\ 2.83\\ 2.44\\ \end{array}$	60.35 59.92 59.45 59.00 58.55 58.10 57.64 57.18 56.72 56.27 55.80 55.34 54.88 54.41 53.94	0.0291 .0371 .0469 .0586 .0726 0.0892 .1086 .1311 .1573 .1873 0.2215 .2604 .3043 .3536 0.4090	$\begin{array}{c} -23.1 \\ -19.2 \\ -15.4 \\ -11.6 \\ -7.7 \\ -3.8 \\ 7.7 \\ 11.6 \\ 15.4 \\ 19.2 \\ 23.1 \\ 26.9 \\ 30.8 \end{array}$	181.3 179.9 178.5 177.0 175.5 174.0 172.5 170.9 169.3 167.7 166.0 164.3 162.6 160.8 159.0	158.2 160.7 163.1 165.4 167.8 170.2 172.5 174.7 177.0 177.0 177.0 179.3 181.4 183.5 185.7 187.7 189.9	
$ \begin{array}{r} 113 \\ 122 \\ 131 \end{array} $	$43.16 \\ 49.88 \\ 57.36$	$\begin{array}{c c} 28.46 \\ 35.18 \\ 42.66 \end{array}$.01870 .01887 .01904	$2.13 \\ 1.86 \\ 1.63$	$53.47 \\ 53.00 \\ 52.52$.4704 .5382 .6135	$34.6 \\ 38.5 \\ 42.3$	$157.2 \\ 155.3 \\ 153.3$	$191.8 \\ 193.8 \\ 195.6$	
-22 -13 - 4 + 15 14	2.13 2.80 3.63 4.63 5.84	-12.57 -11.90 -11.07 -10.07 - 8.86	0.0163 .0164 .0164 .0167 .0169	34.2 26.5 20.9 16.7 13.5	61.5 61.0 60.6 60.1 59.7	0.029 .038 .048 .061 .074		193.0 192.0 191.0 190.0 188.5	170.0 172.5 175.5 178.5 181.0	
23 32 41 50	7.28 9.00 11.00 13.55	-7.42 -5.70 -3.70 -1.15	0.0169 .0170 .0172 .0174	$ \begin{array}{r} 11.0 \\ 9.1 \\ 7.6 \\ 6.25 \\ \end{array} $	59.2 58.8 58.3 57.9	0.091 .110 .132 .160	$3.85 \\ 0 \\ + 3.85 \\ 7.7 \\ - $	187.5 186.0 184.5 182.5	183.5 186.0 188.0 190.0	
54.5 59 68 77 ‡86 95	14.70 16.10 19.26 22.90 27.05 31.77	$0.00 + 1.40 \\ 4.56 \\ 8.20 \\ 12.35 \\ 17.07$.0175 0.0176 .0176 .0177 .0178 .0180	5.6 5.35 4.55 3.90 3.35 2.89	57.6 57.3 56.9 56.5 56.0 55.6	0.179 0.187 .220 .256 .299 .345	9.52 11.5 15.4 19.2 23.1 27.0	181.5 180.5 179.5 176.5 174.0 172.0	191.5 192.5 194.0 196.0 197.5 199.0	
104	37.11	22.41	0.0182	2.57	55.1	0.374	30.8	169.0	200.0	

Gage pressures table supplied by Editor A. S. R. E. Data Book. \$Standard ton temperatures.

.

1

HOUSEHOLD REFRIGERATION

TABLE XXX.—PROPERTIES OF SATURATED VAPOR OF ISOBUTANE— $$C_4H_{10}$$

Temp.	Pres	aure	Volu	me	De	nsity	F	leat Cant Above 0°	ent F.	Eot	ropy 0° F.	Temp.
° F.	Abs. lb./in.*	Gage lb./in.*	Liquid ft.*/lb.	Vepor ft.4/lb.	Liquid lb./ft.*	Vapor lb./ft.*	Liquid Btu./lb.	Latent Btu./lb.	Vapor Btu./Ib.	Liquid Btu./lb.ºF	Vapor Btu./lb.ºF.	° F.
ŧ	р	8 P	υ	V	1/0	1/V	h +	L =	н		S	ŧ
-20 -15 -10 - 5	7.50 8.30 9.28 10.4	14.6* 13.0* 11.0* 8.8*	$\begin{array}{r} 0.02610 \\ .02620 \\ .02635 \\ .02645 \end{array}$	11.00 9.90 8.91 7.99	38.35 38.15 37.95 37.80	0.0952 .101 .112 .125	-9.0 -7.0 -4.5 -2.5	165.5 164.0 163.0 162.0	$\frac{156.5}{157.0}\\ 158.5\\ 159.5$	$ \begin{array}{r} -0.020 \\ -0.015 \\ -0.010 \\ -0.005 \end{array} $	0.356 .354 .353 .351	-20 -15 -10 - 5
+ 1 2 3 4	11.611.912.212.512.8	6.3* 5.7* 5.1* 4.5* 4.0*	0.02660 .02663 .02667 .02670 .02672	7.177.026.876.726.57	37.60 37.55 37.50 37.46 37.43	$\begin{array}{r} 0.139 \\ .142 \\ .146 \\ .149 \\ .152 \end{array}$	$0.0 \\ 0.5 \\ +1.0 \\ 1.5 \\ 2.0$	160.5 160.0 160.0 160.0 159.5	160.5 161.0 161.5 161.5 161.5	0.000 .001 .002 .003 .004	0.350 .350 .350 .350 .350 .350	
5‡ 6 7 8 9	13.1 13.3 13.6 13.9 14.2	3.3° 2.7° 2.1° 1.5° 0.9°	0.02675 .02677 .02680 .02683 .02686	6.41 6.28 6.15 6.02 5.88	37.40 37.35 37.31 37.27 37.23	0.156 .159 .163 .166 .170	2.5 3.0 3.5 4.0 4.5	159.5 159.0 159.0 158.5 158.5	162.0 162.0 162.5 162.5 163.0	0.005 .006 .007 .009 .010	0.348 .349 .349 .349 .349 .349	5‡ 6 7 8 9
10 11 12 13 14	14.6 14.8 15.2 15.6 15.9	0.2* 0.1 0.5 0.9 1.2	0.02690 .02692 .02695 .02698 .02700	5.75 5.65 5.52 5.41 5.30	37.20 37.15 37.11 37.07 37.04	0.174 .177 .181 .185 .190	5.0 5.5 6.0 6.5 7.0	$\begin{array}{c} 158.5 \\ 158.0 \\ 158.0 \\ 157.5 \\ 157.5 \\ 157.5 \end{array}$	$\begin{array}{r} 163.5 \\ 163.5 \\ 164.0 \\ 164.0 \\ 164.5 \end{array}$	0.011 .012 .013 .014 .015	0.348 .348 .348 .348 .348 .348	10 11 12 13 14
15 16 17 18 19	16.3 16.7 17.0 17.4 17.8	1.62.02.32.73.1	0.02705 .02706 .02709 .02711 .02714	5.18 5.08 4.98 4.88 4.78	$\begin{array}{r} 37.00 \\ 36.96 \\ 36.92 \\ 36.88 \\ 36.84 \end{array}$	0.193 .197 .201 .205 .209	7.5 8.0 8.5 9.0 9.5	157.0 157.0 156.5 156.5 156.0	$\begin{array}{r} 164.5 \\ 165.0 \\ 165.5 \\ 165.5 \\ 165.5 \end{array}$	0.016 .017 .018 .019 .020	0.347 .347 .347 .347 .347 .347	15 16 17 18 19
20 21 22 23 24	18.2 18.6 19.0 19.4 19.8	3.5 3.9 4.3 4.7 5.1	0.02717 .02720 .02723 .02726 .02729	$\begin{array}{r} 4.68 \\ 4.59 \\ 4.50 \\ 4.41 \\ 4.32 \end{array}$	$36.80 \\ 36.76 \\ 36.72 \\ 36.68 \\ 36.64$	0.214 .218 .222 .227 .231	$10.0 \\ 10.5 \\ 11.0 \\ 11.5 \\ 12.5$	$\begin{array}{r} 156.0 \\ 155.5 \\ 155.5 \\ 155.5 \\ 155.5 \\ 154.5 \end{array}$	$\begin{array}{c} 166.0 \\ 166.0 \\ 166.5 \\ 167.0 \\ 167.0 \end{array}$	0.021 .022 .023 .025 .026	$ \begin{array}{r} 0.346 \\ .346 \\ .346 \\ .346 \\ .346 \\ .346 \\ \end{array} $	20 21 22 23 24
25 26 27 28 29	20.2 20.6 21.0 21.5 21.9	5.5 5.9 6.3 6.8 7.2	0.02730. .02735. .02737 .02741 .02744	4.24 4.15 4.07 4.00 3.93	36.60 36.56 36.53 36.48 36.44	0.236 .241 .246 .250 .254	$13.0 \\ 13.5 \\ 14.0 \\ 14.5 \\ 15.0$	$\begin{array}{r} 154.5 \\ 154.0 \\ 154.0 \\ 154.0 \\ 154.5 \\ 153.5 \end{array}$	$167.5 \\ 167.5 \\ 168.0 \\ 168.5 \\ 168.5 \\ 168.5 $	0.027 .028 .029 .030 .031	$\begin{array}{r} \textbf{0.346} \\ .346 \\ .346 \\ .346 \\ .346 \\ .346 \end{array}$	25 26 27 28 29
30 35 40 45 50	$22.3 \\ 24.6 \\ 26.9 \\ 29.5 \\ 32.5$	$7.6 \\ 9.9 \\ 12.2 \\ 14.8 \\ 17.8$	$\begin{array}{r} 0.02745 \\ .02760 \\ .02780 \\ .02795 \\ .02810 \end{array}$	3.86 3.52 3.22 2.96 2.71	$\begin{array}{r} 36.40\ 36.20\ 36.00\ 35.80\ 35.60 \end{array}$	0.259 .284 .311 .338 .369	$15.5 \\ 18.0 \\ 21.0 \\ 24.0 \\ 27.0$	$153.5 \\ 152.5 \\ 151.0 \\ 150.0 \\ 148.5$	$\begin{array}{r} 169.0 \\ 170.5 \\ 172.0 \\ 174.0 \\ 175.5 \end{array}$	$\begin{array}{r} 0.032 \\ .038 \\ .044 \\ .049 \\ .055 \end{array}$	$\begin{array}{r} 0.346 \\ .346 \\ .346 \\ .346 \\ .346 \\ .346 \end{array}$	30 35 40 45 50
55 60 65 70 75	35.5 38.7 42.2 45.8 49.7	20.8 24.0 27.5 31.1 35.0	$\begin{array}{r} 0.02825\\.02840\\.02855\\.02875\\.02875\\.02890\end{array}$	2.49 2.28 2.10 1.94 1.79	$\begin{array}{r} 35.40 \\ 35.20 \\ 35.00 \\ 34.80 \\ 34.60 \end{array}$	$\begin{array}{r} 0.402 \\ .439 \\ .476 \\ .515 \\ .559 \end{array}$	$\begin{array}{r} 30.0 \\ 33.0 \\ 36.5 \\ 39.5 \\ 43.0 \end{array}$	$147.5 \\ 146.0 \\ 144.5 \\ 143.5 \\ 142.0$	177.5 179.0 181.0 183.0 185.0	0.061 .067 .073 .079 .086	0.347 .348 .349 .350 .351	55 60 65 70 75
80 85 86‡ 90 95	53.9 58.6 59.5 63.3 68.4	39.2 43.9 44.8 48.6 53.7	0.02910 .02930 .02935 .02950 .02965	1.66 1.54 1. 52 1.42 1.32	34.35 34.10 34.10 33.90 33.70	0.602 .649 .658 .704 .758	46.5 50.0 50.5 53.5 57.5	140.5 139.0 139.0 137.5 136.0	187.0 189.0 189.5 191.0 193.5	0.092 .098 .099 .105 .112	0.352 .353 . 354 .356 .358	80 85 86‡ 90 95
100 105 110 115 120	73.7 79.3 85.1 91.4 98.0	59.0 64.6 70.4 76.7 83.3	$\begin{array}{c} 0.02990 \\ .03005 \\ .03030 \\ .03050 \\ .03075 \end{array}$	$1.23 \\ 1.14 \\ 1.07 \\ 0.990 \\ .926$	$\begin{array}{r} 33.45\\ 33.25\\ 33.00\\ 32.80\\ 32.50\end{array}$	$\begin{array}{c} 0.813 \\ .877 \\ .935 \\ 1.01 \\ 1.08 \end{array}$	61.0 65.0 69.0 73.0 77.0	$\begin{array}{c} 134.5 \\ 133.0 \\ 131.0 \\ 129.5 \\ 127.5 \end{array}$	$\begin{array}{c} 195.5 \\ 198.0 \\ 200.0 \\ 202.5 \\ 204.5 \end{array}$	0.118 .125 .132 .139 .147	$\begin{array}{r} 0.359 \\ .360 \\ .362 \\ .364 \\ .367 \end{array}$	100 105 110 115 120
125 130 135 140	104.8 112.0 119.3 126.8	90.1 97.3 104 6 112 1	$\begin{array}{c} 0.03095 \\ .03125 \\ .03145 \\ .03175 \end{array}$	0.867 .811 .760 .716	$32.30 \\ 32.00 \\ 31.80 \\ 31.50$	$1.15 \\ 1.23 \\ 1.32 \\ 1.40$	$ \begin{array}{r} 81.5 \\ 86.0 \\ 90.5 \\ 95.0 \\ \end{array} $	$\begin{array}{c} 126.0 \\ 124.0 \\ 122.0 \\ 120.5 \end{array}$	$\begin{array}{c} 207.5 \\ 210.0 \\ 212.5 \\ 215.5 \end{array}$	$\begin{array}{c} 0.154 \\ .161 \\ .169 \\ .176 \end{array}$	0.369 .371 .375 .377	125 130 135 140

Linde Air Products Company Laboratory. Refrigeration Engineering, June, 1926. A. S. R. E. Data Book.

• Inches of Mercury below ane standard atmosphere (29.82 in. = 14,696 lbs./sq. in. abs.) (Standard Ton Temperatures

74

TABLE XXXI.—SATURATED METHYL CHLORIDE (CH₃ Cl) VAPOR Calculated in English Units by Starr from work of Ohnes and Holst.

"Practical Refrigerating Engineers' Pocketbook" Published by Nickerson & Collins Co., Chicago.

Temp. Deg. Fahr.	Abs. Press. Lbs. per Sq. 1n.	Heat Content of Liquid	Heat of Vapor- iz a tion	Spec. Vol. Cu. Ft. per Lb.	Density Lbs. per Cu. Ft.
-40 -35 -30 -25 -20	$\begin{array}{r} 6.96 \\ 7.60 \\ 9.00 \\ 10.20 \\ 11.80 \end{array}$	$-34.0 \\ -31.5 \\ -29.0 \\ -26.7 \\ -24.5$	183.3183.0182.6182.0181.4	$ \begin{array}{r} 12.57\\ 11.00\\ 9.70\\ 8.60\\ 7.80 \end{array} $	$\begin{array}{c} 0 & 07955 \\ 0 & 0909 \\ 0 & 103 \\ 0 & 1162 \\ 0 & 1282 \end{array}$
-15 - 10 - 5 0 - 5 - 0 - 0	$\begin{array}{c} 13.00 \\ 15.10 \\ 16.80 \\ 18.00 \\ 20.70 \end{array}$	$\begin{array}{r} -22.3 \\ -20.0 \\ -17.5 \\ -15.1 \\ -12.8 \end{array}$	$180.9 \\ 180.3 \\ 180.0 \\ 179.2 \\ 178.3$	$\begin{array}{c} 7.00 \\ 6.25 \\ 5.60 \\ 5.05 \\ 4.53 \end{array}$	$\begin{array}{c} 0.1428\\ 0.1600\\ 0.1785\\ 0.1980\\ 0.2207 \end{array}$
$ \begin{array}{r} 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ \end{array} $	$\begin{array}{c} 23.00\\ 24.90\\ 28.50\\ 32.00\\ 35.00 \end{array}$	$ \begin{array}{r} -10 & 2 \\ - & 8 & 0 \\ - & 5 & 6 \\ - & 3 & 2 \\ - & 1 & 6 \\ \end{array} $	$177.8 \\ 177.03 \\ 176.05 \\ 175.8 \\ 174.8$	$\begin{array}{c} 4.15\\ 3.70\\ 3.25\\ 2.90\\ 2.71\end{array}$	0.2409 0.2702 0.3076 0.3448 0.3690
$32 \\ 40 \\ 50 \\ 60 \\ 65$	$\begin{array}{r} 36.62 \\ 42.90 \\ 46.50 \\ 62.00 \\ 68.00 \end{array}$	$0.0 + 3.7 + 8.5 + 13.2 \\ 15.5$	174.6 173.0 171.0 169.0 167.85	2.672.251.941.621.50	$\begin{array}{c} 0.3745 \\ 0.4444 \\ 0.5154 \\ 0.9803 \\ 0.6666 \end{array}$
70 75 80 85 90	73.10 80.00 87.00 94.30 104.00	$17.8 \\ 20.2 \\ 22.5 \\ 25.0 \\ 27.2$	166.8 165.6 164.2 163.0 161.6	$\begin{array}{c}1.39\\1.27\\1.15\\1.05\\0.995\end{array}$	$\begin{array}{c} 0.7194 \\ 0.7842 \\ 0.8695 \\ 0.9523 \\ 1.0051 \end{array}$
95 100 110	$110.10 \\ 119.50 \\ 137.50$	$29 \ 6 \ 31.8 \ 36.3$	$160.4 \\ 158.8 \\ 156.1$	0.938 0.855 0.77	$1.0661 \\ 1.1695 \\ 1.2987$

NOTE.—To get gauge pressures 14.7 lbs, are subtracted from the absolute pressures given in the tables. When the absolute pressure is below 14.7 lb, the absolute pressure is subtracted from 14.7 lbs, and this result is multiplied by 2.0355 (for approximate results, 2.0 may be used). This gives the vacuum in inches of mercury below the atmospheric pressure of 14.7 lbs.

Temp.	Pres	sure	Volu	me	De	nsity	H	leat Conte Above 0° 1	ent F	Ent From	10py 0°F.	Temp
°F	Abs. lb./in. ²	Gage lb./in *	Liquid ft.3/lb.	Vapor ft. ^{\$} /lb	Liquid lb./ft.*	Vapor lb./ft.3	Liquid Btu./lb.	Latent Btu /lb	Vapor Btu./lb.	Liquid Btu./lb °F	Vapor Btu /lb °F	° F.
ŧ	p	g p	υ	V	1,0	1/V	h +	L =	Н	s	S	t
-75 -70 -65 -60 -55		$\begin{array}{r} 17.0^{*} \\ 14.9^{*} \\ 12.7^{*} \\ 10.1^{*} \\ 7.3^{*} \end{array}$	$\begin{array}{c} 0 & 02660 \\ & 02674 \\ & 02688 \\ & 02703 \\ & 02717 \end{array}$	$\begin{array}{ccccccccc} 14 & 5 \\ 12 & 9 \\ 11 & 3 \\ 9 & 93 \\ 8 & 70 \end{array}$	$\begin{array}{r} 37.59\\ 37.40\\ 37.20\\ 37.00\\ 36.80 \end{array}$	$\begin{array}{c} 0 & 0690 \\ & 0775 \\ & 0885 \\ & 111 \\ & 115 \end{array}$	$ \begin{array}{r} -39 & 5 \\ -37 & 0 \\ -34 & 5 \\ -32 & 0 \\ -29 & 0 \end{array} $	$\begin{array}{c} 190 \ 5 \\ 189 \ 5 \\ 188 \ 0 \\ 187 \ 0 \\ 185 \ 5 \end{array}$	$\begin{array}{c} 151 \\ 0 \\ 152 \\ 5 \\ 153 \\ 5 \\ 155 \\ 0 \\ 156 \\ 5 \end{array}$	$\begin{array}{r} -0 & 092 \\ -0 & 086 \\ -0 & 080 \\ -0 & 074 \\ -0 & 067 \end{array}$	0 404 400 397 .393 391	-75 -70 -65 -60 -55
← 50 - 45 - 40 - 35 - 30	$\begin{array}{c} 12.6 \\ 14.4 \\ 16.2 \\ 18.1 \\ 20.3 \end{array}$	$\begin{array}{c} 4.3^{*} \\ 0.6^{*} \\ 1.5 \\ 3.4 \\ 5.6 \end{array}$	$\begin{array}{r} 0.02732\\ 02748\\ 02763\\ 02779\\ 02795\end{array}$	$\begin{array}{c} 7.74 \\ 6.89 \\ 6.13 \\ 5.51 \\ 4.93 \end{array}$	$\begin{array}{r} 36.60 \\ 36.39 \\ 36.19 \\ 35.99 \\ 35.78 \end{array}$	0 129 145 163 181 203	-26.5 -24.0 -21.5 -19.0 -16.0	$\begin{array}{c} 184.5 \\ 183.0 \\ 181.5 \\ 180.0 \\ 179.0 \end{array}$	$\begin{array}{c} 158.0 \\ 159.0 \\ 160.0 \\ 161.0 \\ 163.0 \end{array}$	$\begin{array}{c} -0 & 061 \\ -0 & 055 \\ -0 & 049 \\ -0 & 042 \\ -0 & 036 \end{array}$	0 389 386 384 382 380	- 50 - 45 - 40 - 35 - 30
-25 -20 -15 -10 - 5	22 7 25 4 28 3 31 4 31 7		$\begin{array}{c} 0 & 02811 \\ & 02827 \\ & 02844 \\ & 02860 \\ & 02878 \end{array}$	$\begin{array}{r} 4.46 \\ 4.00 \\ 3.60 \\ 3.26 \\ 2.97 \end{array}$	$\begin{array}{c} 35.58 \\ 35.37 \\ 35.16 \\ 34.96 \\ 34.75 \end{array}$	$\begin{array}{r} 0.224 \\ 250 \\ 278 \\ 307 \\ 337 \end{array}$	-13.5 -11.0 -8.0 -5.5 -2.5	$\begin{array}{c} 177.5\\ 176.0\\ 175.0\\ 173.5\\ 172.0\end{array}$	$\begin{array}{ccc} 164 & 0 \\ 165 & 0 \\ 167 & 0 \\ 168 & 0 \\ 169 & 5 \end{array}$	$\begin{array}{c} -0 & 030 \\ -0 & 024 \\ -0 & 018 \\ -0 & 012 \\ -0 & 006 \end{array}$	0 378 377 375 374 372	-25 -20 -15 -10 -5
$+ \frac{1}{2}$	$38.2 \\ 39.0 \\ 39.7 \\ 40.5 \\ 41.3$	23.5 24.3 25.0 25.8 26.6	0 02895 02899 02903 02906 02910	2.71 2.66 2.61 2.57 2.52	$\begin{array}{r} 34.54 \\ 34.49 \\ 34.45 \\ 34.41 \\ 34.37 \end{array}$	0.369 376 383 389 396	$ \begin{array}{c} 0.0 \\ 0.5 \\ 1 0 \\ 1 5 \\ 2 0 \end{array} $	$\begin{array}{c} 170.5 \\ 170.5 \\ 170.5 \\ 170.0 \\ 170.0 \\ 170.0 \end{array}$	$\begin{array}{c} 170.5 \\ 171 \\ 0 \\ 171 \\ 5 \\ 171 \\ 5 \\ 172 \\ 0 \end{array}$	$\begin{array}{c c} 0 & 000 \\ & 001 \\ & 002 \\ & 003 \\ & 004 \end{array}$	$\begin{array}{c} 0.371 \\ 371 \\ .371 \\ 371 \\ 371 \\ 371 \\ 371 \end{array}$	$+ \frac{1}{2} \\ + \frac{3}{4}$
51 6 7 8 9	42.1 12.9 43.7 44.5 45 3	27.4 28.2 29.0 29.8 30.6	0 02913 02916 02920 02924 02927	2 48 2.43 2 39 2.35 2.31	34 .33 34 29 34 25 34.20 34 16	0 403 411 418 426 433	+ 30 3.5 40 45 5.0	169 5 169 0 168 5 168 5 168 0	172 0 172 5 172 5 173 0 173 0	+ 0 006 007 008 009 010	0.370 .370 370 370 370 370	5‡ 6 7 8 9
10 11 12 13 14	$\begin{array}{r} 46.1 \\ 47.0 \\ 47.9 \\ 48.8 \\ 49.7 \end{array}$	$\begin{array}{c} 31.4\\ 32.3\\ 33.2\\ 34.1\\ 35.0 \end{array}$	$\begin{array}{c} 0 & 02931 \\ & 02935 \\ & 02939 \\ & 02943 \\ & 02946 \end{array}$	2.27 2.23 2.19 2.15 2.11	$\begin{array}{r} 34 & 12 \\ 34 & 07 \\ 34 & 03 \\ 33 & 98 \\ 33 & 94 \end{array}$	$\begin{array}{r} 0.441 \\ 448 \\ 456 \\ 465 \\ 474 \end{array}$	5.5 6.0 6.5 7.5 8.0	$\begin{array}{c} 168 \\ 0 \\ 168 \\ 0 \\ 167 \\ 5 \\ 167 \\ 0 \\ 166 \\ 5 \end{array}$	$\begin{array}{c} 173 \ 5 \\ 174 \ 0 \\ 174 \ 0 \\ 174.5 \\ 174.5 \end{array}$	0 012 013 014 015 016	0 370 370 .370 370 370 370	10 11 12 13 14
15 16 17 18 19	$\begin{array}{cccc} 50 & 6 \\ 51 & 6 \\ 52 & 5 \\ 53 & 5 \\ 54 & 5 \end{array}$	$ \begin{array}{r} 35 & 9 \\ 36 & 9 \\ 37 & 8 \\ 38 & 8 \\ 39 & 8 \\ 39 & 8 \\ \end{array} $	0 02950 02954 02959 02963 02966	$\begin{array}{ccc} 2 & 07 \\ 2 & 04 \\ 2 & 00 \\ 1 & 97 \\ 1 & 93 \end{array}$	33 90 33 85 33 80 33 75 33 71	$\begin{array}{r} 0 & 483 \\ & 491^{*} \\ & 500 \\ & 509 \\ & 518 \end{array}$	8.5 90 95 100 10.5	$\begin{array}{c} 166.5 \\ 166.0 \\ 166.0 \\ 165.5 \\ 165.5 \end{array}$	$\begin{array}{c} 175 \ 0 \\ 175 \ 0 \\ 175 \ 5 \\ 175 \ 5 \\ 176 \ 0 \end{array}$	0 018 019 020 021 022	0.369 .369 369 369 369	15 16 17 18 19
20 25 30 35 40	55.5 60.9 66.3 72.0 78.0	$\begin{array}{c} 40 & 8 \\ 46 & 2 \\ 51 & 6 \\ 57 & 3 \\ 63 & 3 \end{array}$	0 02970 02991 03012 03033 03055	$ \begin{array}{r} 1.90 \\ 1.74 \\ 1.60 \\ 1.48 \\ 1.37 \\ \end{array} $	$\begin{array}{r} 33.67 \\ 33.43 \\ 33.20 \\ 32.97 \\ 32.73 \end{array}$	$\begin{array}{c} 0.526 \\ 575 \\ 625 \\ 676 \\ 730 \end{array}$	$ \begin{array}{c c} 11.0\\ 14.0\\ 17.0\\ 20.0\\ 23.0 \end{array} $		$\begin{array}{c} 176 \ 0 \\ 177.5 \\ 179 \ 0 \\ 180 \ 5 \\ 182 \ 0 \end{array}$	0.024 030 .035 041 047	0.368 .368 .366 .366 .366 .366	20 25 30 35 40
45 50 55 60 65	$\begin{array}{c} 84 & 6 \\ 91 & 8 \\ 99 & 3 \\ 107 & 1 \\ 115 & 4 \end{array}$	$\begin{array}{r} 69 & 9 \\ 77 & 1 \\ 84 & 6 \\ 92.4 \\ 100 & 7 \end{array}$	0 03078 03102 03125 03150 03174	$1.27 \\ 1.18 \\ 1.10 \\ 1.01 \\ 0.945$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{r} 0.787 \\ .847 \\ 909 \\ 990 \\ 1.06 \\ \end{array} $	26.0 29 0 32.0 35.0 38.0	$\begin{array}{c} 157.5 \\ 156.0 \\ 154.5 \\ 153.0 \\ 151.5 \end{array}$	$\begin{array}{c} 183.5 \\ 185.0 \\ 186.5 \\ 188.0 \\ 189.5 \end{array}$	0 053 059 .065 070 .076	0.365 .365 .365 .364 .364	45 50 55 60 65
70 75 80 85 86‡	124 0 133 2 142 8 153 1 155 3	109 3 118 5 128 1 138 4 140 5	0 03201 03229 03257 03287 03292	0.883 825 770 722 717	31.24 30 97 30.70 30.42 30 38	1.13 1.21 1.30 1.39 1.40	41.0 44.0 47.5 50.5 51.0	149 5 148 0 146 0 144.5 144 0	190 5 192 0 193 5 195 0 195 0	0.082 088 093 099 100	0.364 364 .364 .364 .364 .364	70 75 80 85 86‡
90 95 100 105 110	$\begin{array}{c} 164 & 0 \\ 175 & 0 \\ 187 & 0 \\ 200 & 0 \\ 212 & 0 \end{array}$	$\begin{array}{c} 149 \ 0 \\ 160 \ 0 \\ 172 \ 0 \\ 185 \ 0 \\ 197 \ 0 \end{array}$	0 03317 03348 03381 03416 03453	$ \begin{array}{r} 0.673 \\ .632 \\ .591 \\ .553 \\ .520 \\ \end{array} $	$\begin{array}{c} 30.15 \\ 29.87 \\ 29.58 \\ 29.27 \\ 28.96 \end{array}$	$ \begin{array}{r} 1 & 49 \\ 1.58 \\ 1 & 69 \\ 1 & 81 \\ 1 & 92 \end{array} $	54.0 57.0 60.5 63.5 67.0	$\begin{array}{c} 142.5 \\ 140.5 \\ 138.5 \\ 136.5 \\ 134.0 \end{array}$	$\begin{array}{c} 196.5 \\ 197.5 \\ 199.0 \\ 200.0 \\ 201.0 \end{array}$	$\begin{array}{c} 0 & 105 \\ & 111 \\ & .116 \\ & 122 \\ & 128 \end{array}$	0 364 . 364 . 363 . 363 . 363 . 363	90 95 100 105 110
115 120 125	$\begin{array}{ccc} 226 & 0 \\ 240 & 0 \\ 254 & 0 \end{array}$	$\begin{array}{c} 211.0 \\ 225.0 \\ 239.0 \end{array}$	$\begin{smallmatrix} 0 & 03493 \\ & 03534 \\ & 03575 \end{smallmatrix}$	$0.488 \\ 459 \\ 432$	$28.63 \\ 28.30 \\ 27.97$	$ \begin{array}{ccc} 2 & 05 \\ 2 & 18 \\ 2 & 31 \end{array} $	70.5 73.5 77.0	$\begin{array}{c} 131.5 \\ 129.0 \\ 126.5 \end{array}$	$\begin{array}{ccc} 202 & 0 \\ 202 & 5 \\ 203 & 5 \end{array}$	$ \begin{array}{r} 0 \ 134 \\ . 140 \\ . 145 \end{array} $	0 363 . 363 361	115 120 125
* Inc 1 Sta	hes of Mer ndard Ton	ury helow of Temperatur	one standard : es.	atmosphere	(29.82 in.	= 14,696 lt	⊪./sq. in.	aba.)				

TABLE XXXII.-PROPERTIES OF SATURATED VAPOR OF PROPANE-C3H3 Linde Air Products Company Laboratory, Refrigeration Engineering, June 1926. A. S. R. E. Data Book.

TABLE XXXIII.--PROPERTIES OF SATURATED VAPOR OF SULPHUR DIOXIDE-SO2

David L. Fiske, Urbana, Ill.—1925. A. S. R. E. Data Book.

	p.		1				1	Heat Cast	
Teta.		ssure	Volu		i	unsity		Heat Conte Above - 4	0°
°F. t	Abs. lb./in.² p	Gage lb./in. ² g P	Liquid ft.³/lb. v	Vapor ft. ³ /lb. V	Liquid lb./ft. ³ 1/v	Vapor lb./ft.3 1/V	Liquid Btu./lb. h +	Latent† Btu./lb. L =	Vapor Btu./lb. H
	4.331	22.41^{*} 21.10*	$0.010440 \\ .010486 \\ .010532$	$\substack{19.23\\16.56}$	$ \begin{array}{r} 95.79 \\ 95.36 \\ 94.94 \end{array} $	0.04460 .05200 .06039	$ \begin{array}{r} 0.00 \\ 1.45 \\ 2.93 \end{array} $	$\begin{array}{c} 178.61 \\ 177.82 \\ 176.97 \end{array}$	$\begin{array}{c} 178.61 \\ 179.27 \\ 179.90 \end{array}$
	5.058 5.883 6.814 7.863 9.038	19.63^{*} 17.93^{*} 16.05^{*} 13.91^{*} 11.52^{*}	0.010580 .010627 .010674 .010721 .010770	$12.42 \\ 10.81 \\ 9.44$	$\begin{array}{c} 94.52 \\ 94.10 \\ 93.68 \\ 93.27 \\ 92.85 \end{array}$	0.06988 .08119 .09250 .1025 .1208	$\begin{array}{r} 4.44 \\ 5.98 \\ 7.56 \\ 9.16 \\ 10.79 \end{array}$	$176.06 \\ 175.09 \\ 174.06 \\ 172.97 \\ 171.83$	$\begin{array}{c} 180.50\\ 181.07\\ 181.62\\ 182.13\\ 182.62\end{array}$
0 1 2 3 4	$10.35 \\ 10.63 \\ 10.91 \\ 11.20 \\ 11.50$	8.85^* 8.27^* 7.34^* 7.11^* 6.50^*	0.010820 .010830 .010840 .010850 .010860	$\begin{array}{c} 7.280 \\ 7.099 \\ 6.923 \\ 6.751 \\ 6.584 \end{array}$	$\begin{array}{r} 92.42 \\ 92.33 \\ 92.25 \\ 92.16 \\ 92.08 \end{array}$	0.1374 .1408 .1444 .1481 .1591	$\begin{array}{r} 12.44 \\ 12.79 \\ 13.12 \\ 13.45 \\ 13.78 \end{array}$	170.63 170.38 170.13 169.88 169.63	$\begin{array}{r} 183.07 \\ 183.17 \\ 183.25 \\ 183.33 \\ 183.41 \end{array}$
5‡ 6 7 8 9	11 .81 12.12 12.43 12.75 13.08	5.87^* 5.24^* 4.61^* 3.96^* 3.29^*	0.010870 .010880 .010890 .010900 .010910	6.421 6.266 6.114 5.967 5.822	92.00 91.91 91.83 91.74 91.66	0.1558 .1596 .1628 .1676 .1717	$\begin{array}{r} 14.11 \\ 14.45 \\ 14.79 \\ 15.13 \\ 15.46 \end{array}$	169.38 169.12 168.86 168.60 168.34	.183.49 183.57 183.65 183.73 183.80
10 11 12 13 14	$\begin{array}{r} 13.42 \\ 13.77 \\ 14.12 \\ 14.48 \\ 14.84 \end{array}$	2.59^{*} 1.88* 1.17* 0.44^{*} .14	$\begin{array}{c} 0.010920\\ .010930\\ .010940\\ .010950\\ .010960 \end{array}$	5.682 5.548 5.417 5.289 5.164	$\begin{array}{c} 91.58 \\ 91.49 \\ 91.41 \\ 91.33 \\ 91.24 \end{array}$	0.1760 .1803 .1846 .1890 .1936	$\begin{array}{c} 15.80 \\ 16.14 \\ 16.48 \\ 16.81 \\ 17.15 \end{array}$	$\begin{array}{r} 168.07 \\ 167.80 \\ 167.53 \\ 167.26 \\ 166.97 \end{array}$	183.87 183.94 184.01 184.07 184.14
15 16 17 18 19	$\begin{array}{r} 15.21 \\ 15.59 \\ 15.98 \\ 16.37 \\ 16.77 \end{array}$.51 .89 1.28 1.67 2.07	$\begin{array}{r} 0.010971 \\ .010981 \\ .010992 \\ .011003 \\ .011014 \end{array}$	$5.042 \\ 4.926 \\ 4.812 \\ 4.701 \\ 4.593$	91,16 91.07 90.98 90.89 90.80	0.1983 .2030 .2078 .2127 .2177	$\begin{array}{r} 17.49 \\ 17.84 \\ 18.18 \\ 18.52 \\ 18.86 \end{array}$	166.72 166.44 166.16 165.88 165.60	$184.21 \\184.28 \\184.34 \\184.40 \\184.46$
20 21 22 23 24	$\begin{array}{r} 17.18 \\ 17.60 \\ 18.03 \\ 18.46 \\ 18.89 \end{array}$	$2.48 \\ 2.90 \\ 3.33 \\ 3.76 \\ 4.19$	0.011025 .011036 .011047 .011058 .011070	$\begin{array}{r} 4.487 \\ 4.386 \\ 4.287 \\ 4.190 \\ 4.096 \end{array}$	$\begin{array}{c} 90.71 \\ 90.62 \\ 90.53 \\ 90.44 \\ 90.33 \end{array}$	0.2228 .2280 .2332 .2387 .2441	$\begin{array}{r} 19.20 \\ 19.55 \\ 19.90 \\ 20.24 \\ 20.58 \end{array}$	$\begin{array}{r} 165.32 \\ 165.03 \\ 164.74 \\ 164.45 \\ 164.16 \end{array}$	$\begin{array}{r} 184.52\\ 184.58\\ 184.64\\ 184.69\\ 184.74\end{array}$
25 26 27 28 29	$\begin{array}{c} 19.34 \\ 19.80 \\ 20.26 \\ 20.73 \\ 21.21 \end{array}$	$\begin{array}{r} 4.64 \\ 5.10 \\ 5.56 \\ 6.03 \\ 6.51 \end{array}$	0.011082 .011093 .011104 .011116 .011128	$3.994 \\ 3.915 \\ 3.829 \\ 3.744 \\ 3.662$	$\begin{array}{r} 90.24 \\ 90.15 \\ 90.06 \\ 89.96 \\ 89.86 \end{array}$	0.2404 .2559 .2611 .2671 .2731	$\begin{array}{c} 20.92 \\ 21.26 \\ 21.61 \\ 21.96 \\ 22.30 \end{array}$	$\begin{array}{r} 163.87\\ 163.58\\ 163.28\\ 162.98\\ 162.68\end{array}$	$\begin{array}{r} 184.79 \\ 184.84 \\ 184.89 \\ 184.94 \\ 184.98 \end{array}$
30 31 32 33 34	$\begin{array}{c} 21.70 \\ 22.20 \\ 22.71 \\ 23.23 \\ 23.75 \end{array}$	7.00 7.50 8.01 8.53 9.05	$\begin{array}{r} 0.011140 \\ .011152 \\ .011164 \\ .011176 \\ .011188 \end{array}$	$\begin{array}{r} 3.581 \\ 3.503 \\ 3.437 \\ 3.355 \\ 3.283 \end{array}$	89.76 89.67 89.58 89.48 89.39	0.2800 .2854 .2909 .2980 .3046	$\begin{array}{c} 22.64 \\ 22.98 \\ 23.33 \\ 23.68 \\ 24.03 \end{array}$	$\begin{array}{r} 162.38\\ 162.08\\ 161.77\\ 161.46\\ 161.15 \end{array}$	$\begin{array}{c} 185.02 \\ 185.06 \\ 185.10 \\ 185.14 \\ 185.18 \end{array}$
35 36 37 38 39	$\begin{array}{c} 24.28 \\ 24.82 \\ 25.39 \\ 25.95 \\ 26.52 \end{array}$	$\begin{array}{r} 9.58 \\ 10.12 \\ 10.69 \\ 11.25 \\ 11.82 \end{array}$	$\begin{array}{r} 0.011200\\ .011212\\ .011224\\ .011236\\ .011236\\ .011248\end{array}$	$\begin{array}{r} 3.212 \\ 3.144 \\ 3.078 \\ 3.013 \\ 2.949 \end{array}$	\$9.29 89.18 89.09 89.00 89.00 88.90	0.3113 .3181 .3249 .3319 .3391	$\begin{array}{c} 24.38\\ 24.72\\ 25.07\\ 25.42\\ 25.77\end{array}$	$160.84 \\ 160.53 \\ 160.21 \\ 159.89 \\ 159.57$	185.22 185.25 185.28 185.31 185.34
40 41 42 43 44	$\begin{array}{c} 27.10 \\ 27.69 \\ 28.29 \\ 28.90 \\ 29.52 \end{array}$	$\begin{array}{c} 12.40 \\ 12.99 \\ 13.59 \\ 14.20 \\ 14.82 \end{array}$	$0.011260 \\ .011272 \\ .011284 \\ .011296 \\ .011308$	$\begin{array}{c} 2.887 \\ 2.827 \\ 2.769 \\ 2.712 \\ 2.656 \end{array}$	$\begin{array}{c} 88.81 \\ 88.71 \\ 88.62 \\ 88.52 \\ 88.43 \end{array}$	$\begin{array}{r} 0.3464 \\ .3538 \\ .3611 \\ .3687 \\ .3765 \end{array}$	$\begin{array}{c} 26.12 \\ 26.47 \\ 26.81 \\ 27.16 \\ 27.51 \end{array}$	$\begin{array}{r} 159.25 \\ 158.93 \\ 158.61 \\ 158.28 \\ 157.95 \end{array}$	$\begin{array}{c} 185.37\\ 185.40\\ 185.42\\ 185.44\\ 185.46\end{array}$
45 46 47 48 49	$\begin{array}{c} 30.15\\ 30.79\\ 31.44\\ 32.10\\ 32.77 \end{array}$	15.45 16.09 16.74 17.40 18.07	$\begin{array}{r} 0.011320\\ .011332\\ .011344\\ .011356\\ .011368 \end{array}$	$\begin{array}{c} 2.601 \\ 2.548 \\ 2.497 \\ 2.446 \\ 2.397 \end{array}$	$\begin{array}{c} 88.34\\ 88.24\\ 88.15\\ 88.05\\ 87.96 \end{array}$	$\begin{array}{c} 0.3844 \\ .3925 \\ .4005 \\ .4088 \\ .4172 \end{array}$	$\begin{array}{c} 27.86 \\ 28.21 \\ 28.56 \\ 28.92 \\ 29.27 \end{array}$	$\begin{array}{c} 157.62 \\ 157.29 \\ 156.96 \\ 156.62 \\ 156.28 \end{array}$	$\begin{array}{c} 185.48\\ 185.50\\ 185.52\\ 185.54\\ 185.55\\ 185.55\end{array}$
50 51 52 53 54	33.45 34.15 34.86 35.58 36.31	$\begin{array}{c} 19.45 \\ 20.16 \\ 20.88 \\ 21.61 \end{array}$	$0.011380 \\ .011392 \\ .011404 \\ .011416 \\ .011428$		87.87 87.78 87.67 87.60 87.51	0.4259 .4345 .4433 .4523 .4615	$\begin{array}{c} 29.61 \\ 29.96 \\ 30.31 \\ 30.66 \\ 31.00 \end{array}$	$\begin{array}{c} 155.95\\ 155.61\\ 155.27\\ 154.93\\ 154.59 \end{array}$	$\begin{array}{r} 185.56 \\ 185.57 \\ 185.58 \\ 185.59 \\ 185.59 \\ 185.59 \end{array}$

• Inches of mercury below nne standard atmosphere (29.92 in.) 14,696 lb. abs. † For Internal Latent heat see Re. Eng. Vol. II. No. 6,; p. 235. (Dec. 1924.) ‡ Standard ton temperatures.

78 HOUSEHOLD REFRIGERATION

-			DIOX	IDE—	$5O_2 - ($	Continu	ed)		
Tem.	Pre	ssure	Volu	ime		nsity		Heat Conte Above - 40	
°F. t	Abs. lb./in.² P	Gage lb./in. ² g p	Liquid ft. ³ /lb. v	$Vapor ft.^{3}/lb, V$	Laquid lb./ft. ³ 1/v	Vapor 1b./it.3 1/V	Liquid Btu./lb. h +	Latent Btu./lb. L =	Vapor Btu./lb. H
55 56 57 58 59	$ \begin{array}{r} 37.05 \\ 37.80 \\ 38.56 \\ 39.33 \\ 40.12 \end{array} $	$\begin{array}{r} 22.35 \\ 23.10 \\ 23.86 \\ 24.63 \\ 25.42 \end{array}$	0.011440 .011452 .011464 .011476 .011488	2.124 2.083 2.043 2.003 1.964	87.41 87.31 87.22 87.13 87.04	0.4708 .4801 .4894 .4992 .5092	$\begin{array}{r} 31.36\\ 31.72\\ 32.08\\ 32.42\\ 32.76\end{array}$	$\begin{array}{r} 154.24 \\ 153.89 \\ 153.54 \\ 153.19 \\ 152.84 \end{array}$	$\begin{array}{r} 185.69 \\ 185.61 \\ 185.62 \\ 185.61 \\ 185.61 \\ 185.60 \end{array}$
60 61 62 63 64	$\begin{array}{r} 40.93 \\ 41.75 \\ 42.58 \\ 43.42 \\ 44.27 \end{array}$	$\begin{array}{r} 26.23 \\ 27.05 \\ 27.88 \\ 28.72 \\ 29.57 \end{array}$	$\begin{array}{r} 0.011500\\.011512\\.011524\\.011536\\.011548\end{array}$	$\begin{array}{r} 1.926 \\ 1.889 \\ 1.853 \\ 1.816 \\ 1.783 \end{array}$		$\begin{array}{c} 0.5194 \\ .5294 \\ .5396 \\ .5507 \\ .5609 \end{array}$	33.10 33.44 33.79 34.14 34.49	$\begin{array}{r} 152.49 \\ 152.14 \\ 151.78 \\ 151.42 \\ 151.06 \end{array}$	185.59 185.58 185.57 185.56 185.55
65 66 67 68 69	$\begin{array}{r} 45.13 \\ 46.00 \\ 46.88 \\ 47.78 \\ 48.69 \end{array}$	$\begin{array}{r} 30.43 \\ 31.30 \\ 32.18 \\ 33.08 \\ 33.99 \end{array}$	$\begin{array}{c} 0.011560 \\ .011572 \\ .011585 \\ .011598 \\ .011611 \end{array}$	$\begin{array}{r} 1.749 \\ 1.716 \\ 1.683 \\ 1.652 \\ 1.621 \end{array}$	$\begin{array}{r} 86.50 \\ 86.41 \\ 86.32 \\ 86.22 \\ 86.12 \end{array}$	0.5717 .5827 .5943 .6054 .6170	$\begin{array}{r} 34.84\\ 35.19\\ 35.54\\ 35.88\\ 36.23\end{array}$	$\begin{array}{r} 150.70 \\ 150.34 \\ 149.98 \\ 149.62 \\ 149.25 \end{array}$	185.54 185.53 185.52 185.50 185.48
70 71 72 73 74	$\begin{array}{r} 49.62 \\ 50.57 \\ 51.54 \\ 52.51 \\ 53.48 \end{array}$	$\begin{array}{r} 34.92 \\ 35.87 \\ 36.84 \\ 37.81 \\ 38.78 \end{array}$	$\begin{array}{c} 0.011626\\.011639\\.011652\\.011666\\.011660\end{array}$	$\begin{array}{c} 1.590 \\ 1.557 \\ 1.532 \\ 1.503 \\ 1.476 \end{array}$	$\begin{array}{r} 86.02 \\ 85.92 \\ 85.82 \\ 85.72 \\ 85.62 \end{array}$	$\begin{array}{c} 0.6290 \\ .6423 \\ .6527 \\ .6657 \\ .6777 \end{array}$	36.58 36.93 37.28 37.63 37.97	$148.88\\148.51\\148.14\\147.77\\147.40$	$185.46 \\ 185.44 \\ 185.42 \\ 185.40 \\ 185.40 \\ 185.37 \\$
75 76 77 78 79	54.47 55.48 56.51 57.56 58.62	$\begin{array}{r} 39.77 \\ 40.78 \\ 41.81 \\ 42.86 \\ 43.92 \end{array}$	$\begin{array}{r} 0.011693 \\ .011706 \\ .011719 \\ .011732 \\ .011746 \end{array}$	$\begin{array}{c} 1.448 \\ 1.422 \\ 1.396 \\ 1.371 \\ 1.343 \end{array}$	$\begin{array}{c} 85.52 \\ 85.42 \\ 85.33 \\ 85.23 \\ 85.13 \end{array}$	$\begin{array}{c} 0.6907 \\ .7030 \\ .7163 \\ .7295 \\ .7446 \end{array}$	38.32 38.67 39.01 39.36 39.71	$147.02 \\ 146.64 \\ 146.26 \\ 145.88 \\ 145.50$	185.34 185.31 185.27 185.24 185.24
80 81 82 83 84	$59.68 \\ 60.77 \\ 61.88 \\ 63.01 \\ 64.14$	$\begin{array}{r} 44.98 \\ 46.07 \\ 47.18 \\ 48.31 \\ 49.44 \end{array}$	0.011760 .011773 .011786 .011800 .011814	$\begin{array}{r} 1.321 \\ 1.297 \\ 1.274 \\ 1.253 \\ 1.229 \end{array}$	$\begin{array}{r} 85.03 \\ 84.93 \\ 84.84 \\ 81.74 \\ 84.64 \end{array}$	0.7570 .7720 .7850 .7980 .8140	$\begin{array}{r} 40.05 \\ 40.39 \\ 40.73 \\ 41.08 \\ 41.43 \end{array}$	$\begin{array}{r} 145.12 \\ 144.74 \\ 144.36 \\ 143.97 \\ 143.58 \end{array}$	$185.17\\185.13\\185.09\\185.03\\185.01$
85 86‡ 87 88 89	65.28 66.45 67.64 68.84 70.04	50.58 51.75 52.94 54.14 55.34	0.011828 .011841 .011854 .011868 .011882	1.207 1.185 1.164 1.144 1.124	$\begin{array}{r} 84.54 \\ 84.44 \\ 84.35 \\ 84.25 \\ 84.15 \end{array}$	0.8285 .8440 .8590 .8740 .8998	$\begin{array}{r} 41.78 \\ 42.12 \\ 42.46 \\ 42.80 \\ 43.15 \end{array}$	143.19 142.80 142.41 142.02 141.62	184.97 184.92 184.87 184.82 184.77
90 91 92 93 94	$\begin{array}{c} 71.25 \\ 72.46 \\ 73.70 \\ 74.98 \\ 76.30 \end{array}$	56.55 57.76 59.00 60.18 61.60	$\begin{array}{r} 0.011896\\.011909\\.011923\\.011937\\.011937\\.011951 \end{array}$	$\begin{array}{c} 1.104 \\ 1.084 \\ 1.065 \\ 1.047 \\ 1.028 \end{array}$	$\begin{array}{r} 84.05\\ 83.96\\ 83.86\\ 83.77\\ 83.67\end{array}$	0.9058 .9225 .9390 .9551 .9730	$\begin{array}{r} 43.50 \\ 43.85 \\ 44.19 \\ 44.53 \\ 44.86 \end{array}$	$\begin{array}{r} 141.22 \\ 140.82 \\ 140.42 \\ 140.02 \\ 139.62 \end{array}$	$184.72 \\184.61 \\184.61 \\184.55 \\184.49 \\$
95 96 97 98 99	$\begin{array}{c} 77.60 \\ 79.03 \\ 80.40 \\ 81.77 \\ 83.14 \end{array}$	$\begin{array}{c} 62.90 \\ 64.33 \\ 65.70 \\ 67.07 \\ 68.34 \end{array}$	$\begin{array}{r} 0.011965 \\ .011979 \\ .011993 \\ .012008 \\ .012002 \end{array}$	$1.011 \\ .9931 \\ .9759 \\ .9591 \\ .9425$	83.57 83.47 83.37 83.27 83.17	$\begin{array}{c} 0.9890 \\ 1.007 \\ 1.025 \\ 1.043 \\ 1.061 \end{array}$	$\begin{array}{r} 45.20 \\ 45.54 \\ 45.88 \\ 46.22 \\ 46.56 \end{array}$	$139.23 \\ 138.83 \\ 138.43 \\ 138.03 \\ 137.62$	$184.43 \\ 184.37 \\ 184.31 \\ 184.25 \\ 184.18 \\ 1$
	84.52 91.85 99.76 108.02 120.93		$\begin{array}{r} 0.012037\\.012110\\.012190\\.012275\\.012360\end{array}$	$\begin{array}{r} 0.9262 \\ .8498 \\ .7804 \\ .7174 \\ .6598 \end{array}$	$\begin{array}{r} 83.07 \\ 82.57 \\ 82.03 \\ 81.46 \\ 80.90 \end{array}$	1.080 1.176 1.281 1.394 1.515	$\begin{array}{r} 46.90 \\ 48.88 \\ 50.26 \\ 51.93 \\ 53.58 \end{array}$	$\begin{array}{c} 137.20 \\ 135.14 \\ 133.05 \\ 130.92 \\ 128.78 \end{array}$	184.10 183.72 183.31 182.85 182.30
130 135	$126.43 \\ 136.48 \\ 147.21 \\ 158.61$	$\begin{array}{c} 111.73 \\ 121.78 \\ 132.51 \\ 143.91 \end{array}$	$\begin{array}{r} 0.012445 \\ .012530 \\ .012620 \\ .012720 \end{array}$	$\begin{array}{r} 0.6079 \\ .5595 \\ .5158 \\ .4758 \end{array}$		$1.645 \\ 1.787 \\ 1.947 \\ 2.102$	$55.31 \\ 56.85 \\ 58.47 \\ 60.04$	$\begin{array}{c} 126.51 \\ 124.39 \\ 122.15 \\ 119.90 \end{array}$	$181.82 \\ 181.24 \\ 180.62 \\ 179.94$

TABLE XXXIII.—PROPERTIES OF SATURATED VAPOR OF SULPHUR DIOXIDE—SO2—(Continued)

‡ Standard ton temperatures.

REFRIGERANTS-TABLES

TABLE XXXIV.—PROPERTIES OF SUPERHEATED VAPOR OF SULPHUR DIOXIDE—SO₂

			L. Fisk				J. Л.		. <i>L</i> . <i>D</i>			
Temp. °F.	Abs. Gage Pi (Sat'n.	Pressure 4 ressure 21. Temp. — 3	lb./in ² 7 in. vac. 32 60° F.)	Abs. Gage Pr (Sat'o.	Pressure 6 ressure 17. Temp. —	lb./in. ^r 7 in. vac. 19.37° F.)	Abs. Gage Pr (Sat'e.	Pressure 8 ressure 13. Temp	lb./iu. ² 6 in. vac. 8.99° F.)	Abs. F Gage P (Sat'o.	ressure 10 ressure 9.6 Temp. —	lb./in.* in. vac. 1.34°. F.)
t	Volume ft.³/lb. V	lleat Content Btu./lb. H	Eatropy Btu./lb.°F. S	Volume ft.ª/lb. V	Heat Content Btu./lb. H	Entropy Btu./lb.°F. S	Volume ft. ³ /lb. V	Heat Content Btu./lb. H	Entropy Btu./lb.°F. S	Volume ft.‡/lb. V	Heat Content Btu /lb. <i>H</i>	Entropy Btu./lb.°F. S
(at sat'n)	(17.30)	(179.57)	(0.42043)	(12.22)	(181.14)	(0.41151)	(9.220)	(182.23)	(0.40482)	(7.520)	(182.95)	(0.40000)
$ \begin{array}{r} -20 \\ -10 \\ 0 \\ 10 \\ 20 \end{array} $	18.40 18.83 19.27 19.70 20.14	$\begin{array}{r} 181.5\\ 183.0\\ 184.6\\ 186.1\\ 187.7\end{array}$	$\begin{array}{r} 0.42487 \\ .42836 \\ .43179 \\ .43516 \\ .43847 \end{array}$	$12.75 \\ 13.04 \\ 13.34$	184.3 185.9 187.5	$.41850 \\ .42198 \\ .42538$	9.516 9.751 9.983	183.7 185.4 187-1	0.40871 .41230 .41579	7.545 7.744 7.939	$183.2 \\ 185.0 \\ 186.7$	0.40046 .40432 .40802
30 40 50 60 70	20.57 21.00 21.42 21.85 22.27	189.3 190.9 192.5 194.1 196.7	$\begin{array}{r} 0.44161 \\ .44491 \\ .44806 \\ .45116 \\ .45421 \end{array}$	$\begin{array}{r} 13.63 \\ 13.93 \\ 14.23 \\ 14.52 \\ 14.71 \end{array}$	189,1190.7192.3193.9195.6	$0.42869 \\ .43196 \\ .43517 \\ .43833 \\ .44140$	10.21 10.44 10.66 10.88 11.10	188.8 190.5 192.2 193.8 195.5	$\begin{array}{r} \textbf{0.41922} \\ .42256 \\ .42582 \\ .42903 \\ .43216 \end{array}$	8.030 8.316 8.500 8.681 8.860	188.4 190.1 191.8 193.5 195.2	$\begin{array}{r} 0.41159 \\ .41505 \\ .41837 \\ .42161 \\ .42480 \end{array}$
80 90 100 110 120	$\begin{array}{r} 22.70 \\ 23.12 \\ 23.54 \\ 23.96 \\ 24.39 \end{array}$	$197.3 \\ 198.9 \\ 200.5 \\ 202.1 \\ 203.8$	$\begin{array}{r} 0.45722 \\ .46018 \\ .46311 \\ .46600 \\ .46885 \end{array}$	$\begin{array}{r} 15,11\\ 15,40\\ 15,69\\ 15,97\\ 16,26 \end{array}$	197.2 199.9 200.5 202.2 203.8	0.44443 .44741 .45035 .45326 .45613	$\begin{array}{c} 11.32 \\ 11.54 \\ 11.75 \\ 11.97 \\ 12.18 \end{array}$	197.1 198.8 200.4 202.1 203.7	$\begin{array}{r} 0.43524 \\ .43825 \\ .44123 \\ .44416 \\ .44705 \end{array}$	9.038 9.214 9.389 9.563 9.736	196.9 198.6 200.3 202.0 203.7	$\begin{array}{r} 0.42795 \\ .43104 \\ .43407 \\ .43705 \\ .43997 \end{array}$
130 140 150 160 170	$\begin{array}{r} 24.81 \\ 25.23 \\ 25.65 \\ 26.08 \\ 26.50 \end{array}$	$\begin{array}{r} 205.2 \\ 207.1 \\ 208.8 \\ 210.4 \\ 212.1 \end{array}$	$\begin{array}{r} 0.47167 \\ .47445 \\ .47720 \\ .47991 \\ .48259 \end{array}$	$\begin{array}{r} 16.54 \\ 16.82 \\ 17.09 \\ 17.35 \\ 17.62 \end{array}$	$\begin{array}{r} 205.3 \\ 207.1 \\ 208.8 \\ 210.4 \\ 212.1 \end{array}$	$\begin{array}{r} 0.45890 \\ .46176, \\ .46451 \\ .46722 \\ .46990 \end{array}$	12.39 12.61 12.82 13.03 13.24	$\begin{array}{c} 205.4 \\ 207.0 \\ 208.8 \\ 210.3 \\ 212.0 \end{array}$	$\begin{array}{r} 0.44990 \\45271 \\ .45543 \\ .45820 \\ .46089 \end{array}$	$\begin{array}{r} 9.908 \\ 10.08 \\ 10.25 \\ 10.42 \\ 10.59 \end{array}$	$\begin{array}{c} 205.4 \\ 207.1 \\ 208.8 \\ 210.5 \\ 212.2 \end{array}$	$\begin{array}{r} 0.44283 \\ .44565 \\ .44842 \\ .45116 \\ .45296 \end{array}$
180 190 200	26.92	213.8	0.48523	17.88 18.13 18.38	213.7 215.4 217.0	$0.47254 \\ .47514 \\ .47769$	13.46 13.66 13.88	213.6 215.3 216.9	$\substack{0.46353\\.46614\\.46871}$	10.76 10.93 11.10	213.8 215.4 217.0	0 45651 .45913 .46171
Temp. °F.	Abs. H Gage P (Sat'n.	Pressure 15 ressure 0.3 Temp, 14	i lb./in.* 0 lb./in.* 4.43° F.)	Abs. F Gage P (Sat'o.	ressure 20 ressure 5.3 Temp. 26	lb./in.* 0 lb./in.* 6.44° F.)	Abs. H Gage Pi (Sat'a.	Pressure 25 ressure 10. Temp. 36	i lb./ia.* 30 lb./in.* 5.33° F.)	Abs. I Gage Pr (Sat'o.	ressure 30 essure 15. Temp. 4	lb /in. ¹ 30 lb./in. ¹ 4.76° F.)
(al sal'n)	(5.110)	(184.17)	(0.39091)	(3.878)	(184.86)	(0.38329)	(3.123)	(185.26)	(0.37754)	(2.614)	(185.48)	(0.37269)
20 30 40 50 60	5.192 5.333 5.470 5.604 5.734	185.4 187.3 189.2 191.0 192.8	$\begin{array}{c} 0.39270\\.39672\\.40054\\.40424\\.40777\end{array}$	4.035 4.145 4.251	187.8 189.8 191.8	0.38959 .39346 .39719	3.181 3.273 3.363	186.1 188.4 190.6	0.37927 .38372 .38795	2.747	189.3	0.37969
70 80 90 100 110	5.862 5.988 6.112 6.233 6.353	195.6 196.4 198.2 199.9 201.6	$\begin{array}{r} 0.41116 \\ .41443 \\ .41765 \\ .42076 \\ .42383 \end{array}$	$\begin{array}{r} 4.354 \\ 4.454 \\ 4.552 \\ 4.648 \\ 4.742 \end{array}$	$193.7 \\ 195.6 \\ 197.5 \\ 199.3 \\ 201.1$	0.40080 .40429 .40758 .41093 .41415	3.451 3.536 3.618 3.696 3.772	192.7 194.7 196.7 198.6 200.5	$\begin{array}{r} 0.39198 \\ .39582 \\ .39945 \\ .40291 \\ .40625 \end{array}$	$\begin{array}{c} 2,830 \\ 2.907 \\ 2.980 \\ 3.052 \\ 3.122 \end{array}$	191.6 193.8 195.9 197.9 199.9	0 38428 .38848 .39236 .39603 .39955
120 130 140 150 160	$\begin{array}{c} 6.471 \\ 6.588 \\ 6.705 \\ 6.821 \\ 6.937 \end{array}$	$\begin{array}{c} 203.3 \\ 205.6 \\ 206.7 \\ 208.4 \\ 210.1 \end{array}$	$\begin{array}{r} 0.42682 \\ .42976 \\ .43264 \\ .43548 \\ .43825 \end{array}$	$\begin{array}{r} 4.834 \\ 4.925 \\ 5.015 \\ 5.104 \\ 5.193 \end{array}$	$\begin{array}{c} 202.9 \\ 204.7 \\ 206.5 \\ 208.2 \\ 209.9 \end{array}$	$\begin{array}{r} 0.41726 \\ .42027 \\ .42322 \\ .42613 \\ .42898 \end{array}$	$\begin{array}{r} 3.848 \\ 3.923 \\ 3.998 \\ 4.073 \\ 4.145 \end{array}$	$\begin{array}{c} 202.4 \\ 204.2 \\ 206.0 \\ 207.8 \\ 209.6 \end{array}$	$\begin{array}{r} 0.40949 \\ .41261 \\ .41568 \\ .41866 \\ .42156 \end{array}$	$\begin{array}{c} 3.189 \\ 3.254 \\ 3.318 \\ 3.381 \\ 3.443 \end{array}$	$\begin{array}{c} 201 \ 8 \\ 203 .7 \\ 205 .6 \\ 207 .5 \\ 209 .3 \end{array}$	$\begin{array}{r} 0.40293 \\ .40619 \\ 40935 \\ .41241 \\ .41539 \end{array}$
170 180 190 200 210	7.052 7.167 7.282 7.396	211.8 213.5 215.2 216.9	$\begin{array}{c} 0.44097 \\ .44366 \\ .44630 \\ .44889 \end{array}$	5.281 5.369 5.456 5.542 5.629	211.6 213.3 215.0 216.7 218.4	$\begin{array}{r} 0.43176 \\ .43449 \\ .43716 \\ .43977 \\ .44234 \end{array}$	$\begin{array}{r} 4.216 \\ 4.287 \\ 4.358 \\ 4.428 \\ .4.498 \end{array}$	$\begin{array}{c} 211.4 \\ 213.2 \\ 215.0 \\ 216.7 \\ 218.4 \end{array}$	$\begin{array}{r} 0.42439 \\ .42717 \\ .42988 \\ .43253 \\ .43413 \end{array}$	$\begin{array}{r} 3.504 \\ 3.565 \\ 3.625 \\ 3.685 \\ 3.744 \end{array}$	$\begin{array}{c} 211.1 \\ 212.9 \\ 214.7 \\ 216.5 \\ 218.3 \end{array}$	$\begin{array}{r} 0.41829 \\ .42112 \\ .42387 \\ .42657 \\ .42921 \end{array}$
220 230 240 250 260	· · · · · · · ·			5.715	220.1	0.44488	4.567 4.637 4.706	220.1 221.8 223.5	0.43769 .44023 .44275	$\begin{array}{r} 3.803 \\ 3.861 \\ 3.919 \\ 3.977 \\ 4.035 \end{array}$	$\begin{array}{c} 220.1 \\ 221.9 \\ 223.6 \\ 225.3 \\ 227.0 \end{array}$	$\begin{array}{r} 0.43180 \\ .43438 \\ .43691 \\ .43942 \\ .44188 \end{array}$

David L. Fiske, Urbana, Ill.-1925. A. S. R. E. Data Book.

Note: V is Volume of Superheated Vapor, ft.3/lb.; H is Heat Content, Btu./lb., and S is Entropy, Btu./lb. °F.

HOUSEHOLD REFRIGERATION

						-302						
Temp. °F.	Gaze Pr	Pressure 40 ressure 25 Temp. 58	30 lb./in.*	Gage Pr	Pressure 50 Pressure 35.2 Temp. 70	30 lb./ir.*	Gage Pr	ressure 60 essure 45 Temp. 80	30 lb. /m.2	Gage Pr	ressure 70 essure 55. Temp. 88	30 lb./in 1
	Volume ft.ª/lb.	Heat Content Btu./lb.	Entropy Btu./lb.°F.	Volume ft.º/lb.	Heat Content Btu./lb.	Entropy Ptu./lb.°F	Volume ft.3/lb.	Hest Content Btu./lb.	Eutropy Btu /lb.°F	Volume ft.3/lb.	Heat Content Btu./lb	Entropy Btu./lb.°F.
e	V	Н	S	. V	Н	S	V	Н	S	V	Н	S
(at sat'n)	(1.970)	(185.60)	(0.36470)	(1.577)	(185:45)	(0.35826)	(1.3144)	(185-16)	(0.35272)	(1.125)	(184.77)	(0.34789)
60 70 80 90 100	$\begin{array}{c} 1.980 \\ 2.064 \\ 2.121 \\ 2.185 \\ 2.246 \end{array}$	$\begin{array}{c} 185.9 \\ 188.7 \\ 191.3 \\ 193.6 \\ 196.1 \end{array}$	$\begin{array}{r} 0.36544\\.37064\\.37544\\.37992\\.38415\end{array}$	$1.668 \\ 1.723 \\ 1.775$	188.4 191.2 193.9	.36366 .36887 .37369	1.288	191 4	0.36403	1.181	187.6	0.35443
110 120 130 140 150	2.304 2.360 2.413 2.465 2.515	$\begin{array}{c} 198.3 \\ 200.4 \\ 202.5 \\ 204.6 \\ 206.5 \end{array}$	0.38810 .39183 .39541 .39881 .40209	$\begin{array}{c}1.825\\1.872\\1.917\\1.961\\2.003\end{array}$	$\begin{array}{c} 196.4 \\ 198.8 \\ 201.1 \\ 203.3 \\ 205.4 \end{array}$	0.37815 .38234 .38627 .38998 .39353	$ \begin{array}{r} 1.346 \\ 1.403 \\ 1459 \\ 1.514 \\ 1.563 \end{array} $	$194.3 \\197.0 \\199.5 \\201.9 \\204.2$	0.36906 .37375 .37810 .38217 .38603	$\begin{array}{c} 1.228 \\ 1.272 \\ 1.313 \\ 1.352 \\ 1.389 \end{array}$	191.6 194.8 197.6 220.3 202.9	0.36020 .36545 .37028 .37478 .37897
160 170 180 190 200	$\begin{array}{c} 2.565 \\ 2.614 \\ 2.662 \\ 2.709 \\ 2.755 \end{array}$	$\begin{array}{c} 208.5 \\ 210.4 \\ 212.3 \\ 214.2 \\ 216.0 \end{array}$	$\begin{array}{r} 0.40525\\.40831\\.41127\\.41416\\.41694\end{array}$	$\begin{array}{c} 2.044 \\ 2.084 \\ 2.123 \\ 2.161 \\ 2.199 \end{array}$	$\begin{array}{c} 207.5 \\ 209.6 \\ 211.6 \\ 213.4 \\ 215.4 \end{array}$	0,39691 .40015 .40327 .40628 .40919	$\begin{array}{c} 1.608 \\ 1.650 \\ 1.689 \\ 1.726 \\ 1.751 \end{array}$	$\begin{array}{c} 206.5 \\ 208.6 \\ 210.7 \\ 212.8 \\ 214.8 \end{array}$	$\begin{array}{c} 0.38963 \\ .39310 \\ .39639 \\ .39956 \\ .40260 \end{array}$	$\begin{array}{c} 1.424 \\ 1.457 \\ 1.489 \\ 1.521 \\ 1.551 \end{array}$	$\begin{array}{c} 205.3 \\ 207.6 \\ 209.9 \\ 212.0 \\ 214.1 \end{array}$	$\begin{array}{r} 0.38291 \\ .38662 \\ .39014 \\ .39348 \\ .39670 \end{array}$
210 220 230 240 250	2.800 2.845 2.889 2.933 2.977	$\begin{array}{c} 217.9 \\ 219.7 \\ 221.5 \\ 223.3 \\ 225.1 \end{array}$	$\begin{array}{c} 0.41966 \\ .42233 \\ .42494 \\ .42751 \\ .43007 \end{array}$	$\begin{array}{r} 2.237 \\ 2.274 \\ 2.311 \\ 2.347 \\ 2.383 \end{array}$	$\begin{array}{c} 217.3 \\ 219.2 \\ 221.1 \\ 223.0 \\ 224.9 \end{array}$	$\begin{array}{r} 0.41200 \\ .41477 \\ .41748 \\ .42015 \\ .42275 \end{array}$	$\begin{array}{c}1 & 785 \\1.819 \\1.853 \\1.885 \\1.917 \end{array}$	$\begin{array}{c} 216.8 \\ 218.7 \\ 220.7 \\ 222.6 \\ 224.5 \end{array}$	$\begin{array}{r} 0 & 40554 \\ .40839 \\ .41118 \\ .41391 \\ .41657 \end{array}$	$\begin{array}{c}1.580\\1.608\\1.636\\1.664\\1.691\end{array}$	216.1 218.1 220.1 222.1 224.1	$\begin{array}{r} 0.39978 \\ .40275 \\ .40564 \\ .40845 \\ .41120 \end{array}$
260 270 280 290	3.021	227.0	0.43262	$\begin{array}{ccc} 2 & 418 \\ 2 & 454 \\ 2 & 489 \end{array}$	$226.7 \\ 228.5 \\ 230.3$	0 42535 .42791 .43045	$\begin{array}{c} 1.948 \\ 1.979 \\ 2 010 \\ 2 040 \end{array}$	$\begin{array}{c} 226 \ 4 \\ 228 \ 2 \\ 230 \ 1 \\ 232 \ 0 \end{array}$	$\substack{0.41917\\42175\\.42431\\.42685}$	${}^{1.718}_{1.745}_{1.771}_{1.798}$	226.0 227.9 229.8 231.7	$\begin{array}{r} 0,41389\\.41653\\.41912\\.42167\end{array}$
300		••••					2 070	233 8	0 42935	1.824	233.5	0.42418
Temp. *F.	Gage Pr	Pressure 80 ressure 65. . Temp. 9	30 lb /in.*	Abs. P Gage Pr (Sat'n.	ressure 10 essure 85. Temp. 11	0 lb √in.‡ 30 lb./in.‡ 0.15° F.)	Abs P Gage Pre (Sat'n.	ressure 120 essure 105. Temp. 12) lb. /in.? 30 lb. /in.ª 1.52° F.)	Gage Pr	ressure 14 essure 125 Temp. 13	.30 lb./in.*
(at sat'n)	(0.9809)	(184.38)	(0,34357)	(0.7786)	(183,30)	(0.33603)	(0.6430)	(182.19)	(0.33954)	(0.5451)	(181.04)	(0.32388)
100 110	0.993	185.6 189.1	$0.34571 \\ .35214$									
120 130	$1.084 \\ 1.125$	192.5 195.7	.35797 .36330	$0.8190 \\ .8575$	187.3 191.0	$0.34296 \\ .34942$						
140	1.163	198 6	.36819	.8928	194 6	.35528	0.7085	190.1	0.34264	0.5734	185-1	0.33089
150 160 170 180 190	$\begin{array}{c} 1.199 \\ 1.232 \\ 1.263 \\ 1.292 \\ 1.320 \end{array}$	201.3 203.9 206.4 208.7 211.0	$\begin{array}{r} 0.37276 \\ .37692 \\ .38093 \\ .38461 \\ .38813 \end{array}$	$\begin{array}{c} 0.9255 \\ .9561 \\ .9848 \\ 1.012 \\ 1.038 \end{array}$	$\begin{array}{c} 197.9 \\ 200.9 \\ 203.7 \\ 206.4 \\ 209.0 \end{array}$	$\begin{array}{r} 0.36061 \\ .36558 \\ .37009 \\ .37431 \\ .37829 \end{array}$	$\begin{array}{c} 0 & 7403 \\ .7700 \\ .7972 \\ .8228 \\ .8470 \end{array}$	$\begin{array}{c} 193.9 \\ 197.4 \\ 200.6 \\ 203.7 \\ 206.7 \end{array}$	$\begin{array}{r} 0.34904 \\ .35484 \\ .36012 \\ .36494 \\ .36936 \end{array}$	$\begin{array}{r} 0.6055 \\ .6345 \\ .6613 \\ .6861 \\ .7092 \end{array}$	189 7 193.6 196.3 200.8 204.0	0 33777 .34442 .35041 .35588 .36088
200 210 220 230 240	$\begin{array}{r} 1.347 \\ 1.374 \\ 1.400 \\ 1.426 \\ 1.451 \end{array}$	$\begin{array}{c} 213.3 \\ 215.5 \\ 217.5 \\ 219.6 \\ 221.6 \end{array}$	$\begin{array}{r} 0.39150 \\ .39471 \\ .39780 \\ .40079 \\ .40369 \end{array}$	$\begin{array}{c} 1.062 \\ 1.086 \\ 1.109 \\ 1.131 \\ 1.152 \end{array}$	$\begin{array}{c} 211.5 \\ 213 \\ 216.1 \\ 218.4 \\ 220.5 \end{array}$	$\begin{array}{r} 0.38203 \\ .38556 \\ .38892 \\ 39214 \\ .39524 \end{array}$	$\begin{array}{c} 0 & 8699 \\ . & 8916 \\ . & 9124 \\ . & 9324 \\ & 9515 \end{array}$	$\begin{array}{c} 209.4 \\ 212.0 \\ 214.5 \\ 217.0 \\ 219.3 \end{array}$	$\begin{array}{r} 0.37348 \\ .37737 \\ .38104 \\ .38451 \\ .38785 \end{array}$	0.7309 .7513 .7707 .7892 .8070	$\begin{array}{c} 207 \ 1 \\ 210 \ 0 \\ 212.7 \\ 215.4 \\ 217.9 \end{array}$	0.36548 .36976 .37379 .37758 .38118
250 260 270 280 290	$\begin{array}{c} 1.476 \\ 1.500 \\ 1.524 \\ 1.547 \\ 1.570 \end{array}$	$\begin{array}{c} 223.6 \\ 225.6 \\ 227.6 \\ 229.5 \\ 231.5 \end{array}$	$\begin{array}{r} 0.40651 \\ .40926 \\ .41195 \\ .41459 \\ .41719 \end{array}$	${}^{1,173}_{1,194}_{1,213}_{1,232}_{1,251}$	$\begin{array}{c} 222 & 6 \\ 224 & 7 \\ 226 & 8 \\ 228 & 8 \\ 230 & 8 \end{array}$	$\begin{array}{r} 0.39824 \\ .40114 \\ .40397 \\ .40673 \\ .40944 \end{array}$	$\begin{array}{c} 0 & 9700 \\ .9880 \\ 1 .006 \\ 1 .023 \\ 1 .040 \end{array}$	$\begin{array}{c} 221 & 5 \\ 223 & 7 \\ 225 & 9 \\ 228 & 0 \\ 230 & 1 \end{array}$	$\begin{array}{r} 0.39106\\39416\\.39713\\40002\\.40284 \end{array}$	$\begin{array}{r} 0.8241 \\ .8405 \\ .8564 \\ .8720 \\ .8970 \end{array}$	$\begin{array}{r} 220.3 \\ 222.6 \\ 224.9 \\ 227.1 \\ 229.3 \end{array}$	$\begin{array}{c} 0.38461 \\ .38789 \\ .39105 \\ .39408 \\ .39701 \end{array}$
300 310 320 330	1.593	233.4	0 41974	$1.268 \\ 1.284 \\ 1.299 \\$	$ \begin{array}{c} 232.8 \\ 234.8 \\ 236.7 \\ \end{array} $	0.41207 .41464 .41716	$\begin{array}{c} 1.056 \\ 1.072 \\ 1.088 \\ 1.104 \end{array}$	$\begin{array}{r} 233.2 \\ 234.3 \\ 236.3 \\ 238.3 \end{array}$	$\begin{array}{c} 0.40558 \\ .40825 \\ .41085 \\ .41338 \end{array}$	$\begin{array}{c} 0.9017 \\ .9161 \\ .9302 \\ .9441 \end{array}$	$231.5 \\ 233.6 \\ 235.7 \\ 237.7$	$\begin{array}{r} 0.39985 \\ .40261 \\ .40529 \\ .40791 \end{array}$
.340							1.120	240.3	0 41583	0.9579	239.7	0.41049

TABLE XXXIV.—PROPERTIES OF SUPERHEATED VAPOR OF SULPHUR DIOXIDE—SO₂.—(Continucd)

Note: V is Volume of Superheated Vapor, ft.3/lb.; H is Heat Content, Btu. /lb., aud & is Entropy, Btu./lb. °F.

VARIOUS REFRIGERANTS (Saturated Vapors.) Ŀ. TABLE XXXV.-STANDARD TON DATA 86° and 5°

Compiled by Editor A. S. R. E. Data Book from various sources, including A. S. R. E. Circular No. 2. Properties of Refrigerants, and 4, S. R. E. Circular No. 9. Tables of Thermodynamic Properties of Refrigerants, A. S. R. E. Dutn Rook.

4. S. K. E. Urchtar No. 9. Japles of Jnermonynamic Frajerices of refrigerences of the second second second second	R-28 Nitrous Onide Ethane R-21 Nitrous Onide Ethane CiHa R-18 CiHa CiHa CiHa Nitrous Onide Sulphur Dioxide Ethyl Chloride CiHa CiHa CiHa	80° 5° 86° 5° 86° 5° 80° 5° 80° 5° 80° 5° 80° 5° 80° 5°	ØD0 3300 681.0 236.0 158 0 45.2 169.2 34.27 95.53 20.89 66.45 11.81 27.10 4.65 15.3 318.3 666.0 221.0 143.0 30.5 154.5 19.57 80.83 6.19 51.75 5.87* 12.40 -10.05 15.3 318.3 666.0 221.0 143.0 30.5 154.5 19.57 80.83 6.19 51.75 5.87* 12.40 -10.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.100 0.006 0.2575 0.1092 0.0445 0.0445 0.0445 0.0645 0.0445 0.0645 0.0445 0.0645 0.0445 0.364 0.3664 0.364 0.3664 0.364 0.3664 0.364 0.3664 0.364 0.3664 0.3645 0.3664 0.3645 0.3664 0	0.337 0.365 0.365 0.79 0.79 0.79 0.79 0.79 0.79 0.71 0.79 0.71 0.71 0.77 0.79 0.71 0.71 0.77 0.77 0.79 0.71 0.71 0.71 0.77 0.77 0.77 0.77 0.77	() 1.153 (-°) []1.199	$ \begin{array}{c} \begin{array}{c} 5459(-128,9^{\circ}\Gamma) \\ 5533 (-48,1^{\circ}\Gamma) \\ 15624 \end{array} \\ \begin{array}{c} 5853 (-48,1^{\circ}\Gamma) \\ 1.5297 \end{array} \\ \begin{array}{c} 5818 (-28,03^{\circ}\Gamma) \\ 0.59637 \end{array} \\ \begin{array}{c} 598 (-11,36^{\circ}\Gamma) \\ 0.59637 \end{array} \\ \begin{array}{c} 1.784 \\ 1.784 \end{array} \\ \begin{array}{c} 1.784 \\ 2.2638 \\ 1 \end{array} \\ \begin{array}{c} 2.31 (-9) \\ -9 \end{array} \\ \begin{array}{c} 2.31 (-9) \\ \end{array} \\ \end{array} \\ \end{array} $	718.0 661.5 1651.0 969.2 1141.5 784.0 89.8 204.1 271.2 289.6 314.8 361.0	44.016‡ 30.046‡ 49.062‡ 17.031‡ 50.481‡ 64.065‡ 64.497‡	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
numeriavi	R-2 Ammoni NH3		169.2 154.5	0.02691	$37.16 \\ 0.5643$	$\begin{array}{c} 138.9 \\ 492.6 \\ 631.5 \end{array}$		0.79			1651.0 271.2	17.031	-107.86 -28.0*
to concodo	Propane C:Ha		:					0.365	1.153 (°)	5853 (-48.1°F. 1.562†	661.5 204.1	49.062	-309.8‡ -48.1‡
ynamic L'r	R-21 Ethane C:Ha	50	236.0 221.0		$^{27.40}_{1.59}$	176.0		0.397	24 (50° F.)		718.0 89.8	30.046‡	-277.6‡ -126.9‡
T I nermoa	28 0 Dride		· · · ·			: :			1.2			1016	
ables o		1	980.0 915.3	0.0256 0.0726	39.06 13.80	51.1				1.5	::	44.	- 15
1.VO. 9. 1	Carbon Dioxide CO3	5°	0 334.4 3 319.7 7 21.75	0.0163	$\begin{bmatrix} 1 \\ 61.22 \\ 3.741 \end{bmatrix}$	$\begin{array}{c c} & 5 & -13.16 \\ & 0 & 115.30 \\ & 102.14 \\ \end{array}$	$\begin{array}{c c} 68 & -0.0275 \\ 95 & 0.2482 \\ 0.2482 \\ 0.2207 \\ \end{array}$	0.2025	1.3003 (32° F.)	1.5290†	1071.00 87.80	44.000‡	
ntar	Carbo	86°	1039.0 1024.3 69.7	0.0267	37.41	45.45 27.00 72.46	0.0868 0.0495 0.1363		. 1.30				
4. S. K. E. UNI	Refrigerant	Subject	Absolute pressure, lb./in. ² p Gage pressure, lb./in. ² g p Atmospheres gage, At/in. ² a g p	Volume-Liquid, ft. ³ /lbv.v. Volume-Vapor, ft. ³ /lbV	Density-Liquid, lb./ft. ³ 1/v. Density-Vapor, lb./ft. ³ 1/V.	Heat-Liquid, Btu./lbh Heat-Latent, Btu./lbE Heat-Vapor, Btu./lbHeat-Vapor, Btu./lb.	Entropy-Liquid, Btu./lb. °F Entropy-Evaporation, Btu./lb. °F Entropy-Vapor, Btu./lb. °F Compressibility-Liquid	Specific heat-Liquid	Specific heat-Vapor, cv Ratio, cp/cv	Specific gravity Liquid (water 1) Vapor (air 1)	Critical pressure, lb./in. ² Abs Critical temperature, ^o F	Molecular weight	Melting point (1 at.) ^o F Boiling point (1 at.) ^o F

~
-C -
26
2
\$1
11
0
5
<u> </u>
~
30
5
ā.
. 75
\geq
õ
-
10
3
Ľ,
ñ
3
- 0
37
E
2
1
2
Ř
E
5
-
EFR
Tr.
$\overline{\Omega}$
~
\mathcal{O}
5
Ξ
\bigcirc
-
2
1
12
_
H
Ξų.
۲Щ ۵
5° F
5° F
-
AND
AND
AND
A 86° AND
A 86° AND
A 86° AND
A 86° AND
A 86° AND
TA 86° AND
A 86° AND
A 86° AND
A 86° AND
GNA %08 ATAG NO
A 86° AND
GNA %08 ATAG NO
D TON DATA 86° AND
D TON DATA 86° AND
GNA %08 ATAG NO
DARD TON DATA 86° AND
ARD TON DATA 86° AND
DARD TON DATA 86° AND
ANDARD TON DATA 86° AND
ANDARD TON DATA 86° AND
ANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
ANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
STANDARD TON DATA 86° AND
ABLE XXXV.—STANDARD TON DATA 86° AND
ABLE XXXV.—STANDARD TON DATA 86° AND
LE XXXVSTANDARD TON DATA 86° AND

Carbon R-26 Carbon Shauphide Chlarotom Carbon Tetra- Dadma CitCla chonde CC1, Dadma	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
86° 5° 80° 5° 80° 5°	
5° 50° 5° 2.78 2.78 2.78 21.2° 21.2° 90.037 90.054 90.054 90.054	8
5° 8.0° 5° 2.7.8 2.7.8 5° 11.2° 0.07037 1 10.80 0.07037 1 10.80 10.80 1 10.81 1 1 10.81 1 1 10.81 1 1 10.81 1 1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
5° 80° 5° 80° 2.78 2.78 - - - 21.2* - - - - - 14.8 - - - 8.5 - 007037 - - 118 - 118	
86 ³ 5 ³ 80 ³ 5 ³ 80 ³ 80 ³ 80 ³ 840 1.28 4.80 2.78 6.9 12.82 2.0.15° 2.1.2° -7.8 19.82 4.807 10.30 14.8 8.5	
86° 5° 80° 5° 80° 6° 80°	
5° 86° 5° 86° 5°	

HOUSEHOLD REFRIGERATION

REFRIGERANTS-TABLES

					-				1					
Temp.	Amn Coa		Temp.			Press. Abe.	32	· F.	68	F.	104	• F.	2120	F.
		Vol.NH:			Vol.NH2			Vol.NH2						
°F.	Lb.H ₂ O	Vol.H1O	°F.	Lb.H ₂ O	Vol.H ₇ O	Lb./ia.3	Lb.H ₂ O	Vol.H2O	Lb.H ₂ O	Vol.H ₁ O	Lb.H ₃ O	Vol.H ₂ O	Lb.H ₁ O	Lb. H ₂ O
32.0	0.899	1180	122.0	0.284	373	14.67	0.899	1.180	0.518	0.683	0.338	0.443	0.074	0.097
35.6	.853	1120	125.6	.274	359	15.44	0.937	1.231	.535	.703	.349	.458	.078	.102
39.2	.809	1062	129.2	.265	348	16.41	0.980	1.287	.556	.730	.363	.476	.083	.109
42.8	.765	1005	132.8	.256	336	17.37	1.029	1.351	.574	.754	.378	.496	.088	.115
46.4	.724	951	136.4	.247	324	18.34	1.077	1.414	.594	.781	.391	.513	.092	.120
	0.684	898	140.0	0.238	312	19.30	1.126	1.478	0.613	0.805	0.404	0.531	0.096	0.126
50.0		848	143.6	.229	301	20.27	1.177	1.546	.632	.830	.414	.543	.101	.132
53.6	.646	802	145.0	.229	289	21.23	1.236	1.615	.651	.855	.425	.558	.106	.139
57.2	.611				277	22.19	1.283	1.685	.669	.878	.434	.570	.110	.140
60.8	.578	759	150.8	.211	265	23.16	1.336	1.754	.685	.894	.445	.584	.115	.151
64.4	.546	717	154.4	.202	200	25.10			1		1			1
68.0	0.518	683	158.0	0.194	254	24.13	1.388	1.823	0.704	0.924	0.454	0.596	0.120	0.157
71.6	.490	643	161.6	.186	244	25.09	1.442	1.894	.722	.948	.463	*.609	.125	.164
75.2	.467	613	165.2	.178	234	26.06	1.496	1.965	.741	.973	.472	.619	.130	.170
78.8	.446	585	168.8	.170	223	27.02	1.549	2.034	.761	.999	.479	.629	.135	.177
82.4	.426	559	172.4	.162	212	27.99	1.603	2.105	.780	1.023	.486	.638		
	0.408	536	176.0	0.154	202	28.95	1.656	2.175	0.801	1.052	0.493	0.647	1	1
86.0	.393	516	179.6	.146	192	30.88	1.758	2.309	.842	1.106	.511	.671	1	
89.2	.395	496	183.2	.138	181	32.81	1.861	2.444	.881	1.157	.530	.696		
93.2	.363	430	186.8	.130	170	37.74	1.966	2.582	.919	1.207	.547	.718		
	.350	459	190.4	.122	160	36.67	2.020	2.718	.955	1.254	.565	.742	1	
100.4	,550						1 2.020			1	1		1	
104.0	0.338	444	194.0	0.114	149	38.60	1		0.992	1.302	0.579	0.764		
107.6	.326	428	197.6	.106	139	40.53					.594	.780		
111.2	.315	414	201.2	.098	128									
114.8	.303	399	204.8	.090	118									
118.4	.294	386	208.4	.082	107				1					
1			(212.0	0.074	97)					1	1			1

TABLE XXXVI.—SOLUBILITY OF AMMONIA IN WATER.* Siebel—Compend of Mechanical Refrigeration. Nickerson & Collins Co., Chicago.

*For convenience the bodies of the above tables give the ammonia content of the saturated solutions at the various temperatures and pressures in both pounds of ammonia per pound of water and volumes of ammonia per volume of water.—Editor λ . S. R. E. Data Book.

TABLE XXXVIL-HEAT OF ASSOCIATION OF AMMONIA.*

Mollier-Starr's Practical Refrigerating Engineers' Hand Book. Nickerson & Collins Co., Chicago.

NH1 %	Btu./lb.NH1	NH3 %	Btu./lb.NH3	NH3 %	Btu./lb.NH3	NHa 5%	Btu./lb.NH2	NH1 56	Btu./lb.NH1	NH3 %	Btu./lb.NH1	NH3 5%	Btu./lb.NH2	NH1 %	Btu./lb.NH1	% "HN	Btu./lb.NH4	NH1 %	Btu./lb.NH4	NH, %	Btu./lb.NH#	NH. %	Btu./lb.NHs
0 1 2 3 4	347 344 340 337 333	5 67 8 9	$329 \\ 325 \\ 321 \\ 316 \\ 311$	10 11 12 13 14	307 303 298 294 289	15 16 17 18 19	$284 \\ 279 \\ 274 \\ 269 \\ 264$	20 21 22 23 24	$259 \\ 254 \\ 248 \\ 243 \\ 238 $	25 26 27 28 29	$232 \\ 226 \\ 221 \\ 215 \\ 209$	30 31 32 33 34	203 198 192 186 180	35 36 37 38 39	175 168 162 155 149	40 41 42 43 44	$142 \\ 135 \\ 128 \\ 121 \\ 113$	45 46 47 48 49	106 99 92 85 77	50 51 52 53 54	70 52 56 49 41	55 56 57 58 59 60 to	34 27 20 14 7 100-0

"The above table, "Heat of Association of Ammonia," gives the heat of association and disassociation of one pound of ammonia settering or leaving ammonia solutions of various strengths. The fold heat liberated or taken up respectively when a pound of ammonia is absorbed or driven out of ammonia solutions of various strengths in the heat of association plus the latent heat of reports theory or responding to the observed temperature or pressure. See tables of Properties of Andyerous Ammoora,

TABLE XXXV) Temperatures ^e F. correspondin Mollicr, Experiments; Macintire,	atures Experim	TABLE • F. corre tents; Ma	E XXX rresponc Macintir	TABLE XXXV111.—PROPERTIES OF AQUA-AMMONIA (Percent Concentration Table) Temperatures [•] F. corresponding to various percent concentrations (2 to 50%) and absolute pressures (10 to ollier, Experiments; Macintire, Computations, Starv's Practical Refrigerating Engineers' Hand Book, Nickerso	-PROP various putation	ERTIE percen 1.s, Star	[11].—PROPERTIES OF AQUA g to various percent concentratic Computations, Starr's Practical	AQUA- ntration ctical <i>K</i>	A-AMMONIA ms (2 to 50% Refrigerating	NIA (50%) ating E	(Percent () and abso Engineers'	t Conce bsolute 's' Han	OF AQUA-AMMONIA (Percent Concentration Table) concentrations (2 to 50%) and absolute pressures (10) s Practical Refrigerating Engineers' Hand Book, Nicker	n Tabié es (10 , <i>Nicke</i>		200 pounds.) 1 & Collins Co.	;) Co.
Pur cent.								Absol	Absolute pressure.	ure.							
NH3.	IO	н	12	13	14	15	īό	17	18	19	20	21	23	23	24	25	26
2	169.0	1	178.5	181.8	185.6	189.5		0.701	201.5	203.5		209.5					222.4
4	161.0	165	169.	173.3	177	180.9		188.4	191.5			200.9				210.5	212.8
6	I53.0	157.	101.		108.5	172.5		1.071	17.1 0			191.4	194.0	188.0	100.3	102.5	105.0
10 I	143.5		1.2C1	148		1521	158.8					173.9		179.I	181		186.0
12	120.0			140.6		147.8	151.3				163.I	165.6		170	172 9	175.0	177.2
14	120.5	124.				140.0					I55.5				105.1	107.4	2.601
16	113.0			125.4		132.6	130.0		142.0	144.0				154.0	150.9	159.0	101.3
18	I07.5		113.5			125.0				137.0		142.3	144.7	147.0	149.2	151.4	153.5
20	0.00							129.0		129.5			13/.0	139.5			143.1
22	92.0	95.5	66	103.0	100.5	10.01	113.3		1.011	114.5	117.0		122.4	124.8	127.0	120.4	131.5
26 26	2000		86.0		4				105.3	108.0		113.2	115.6				124.1
200	73.4		81	-00	87.8	00.7	80		98.80				108.7		113.3	115.5	117.3
30.	66.5		74.	77.5	80.9				92.1				101.8	<u> </u>	н		110.5
32	61.0	64.5	68.0	71.0				82.3	85.0				94.5			—	103.0
34	55.0		62.	65.6		71.6	74.3	20.8	10.4	81.7		80.5	80.5	0.06	92.0	94.0	00.00
36	49.0		50.	00.	03.0	00.00		2.17	13.0				9.70				2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
38	43.0			54.	57.0	00.00		05.5	0.00				0.07				04.0
40	37.0		44.			53.5	50.2	59.5	0.10				70.4			22	0.67
42	31.6		39	42	40.0	48.0	51.4	53.9	50.3				05.2	07.3	5.5	0.14	13.9
44	27.5	30.2	34.0	37.0	40.5	43.5	45.9	48.5	50.0		55.3	57.4	20.0			05.4	1.10
46	21.2			31.7	34.9	37.0	40.4	43.0	45.4			51.7	53.0			0.95	C-10
48	16.0	19		20.	29.0	32.0	34.9	37.4	40.0			40.5	40.5	50.5	52.4	40.	20.02
50	0.11	14.6		21.0	24.0	20.9	29.7	32.0	34.4			40.9	42.0	44.7	40.0	40.5	50.3

TABLE XXXVIII.-PROPERTIES OF AQUA-AMMONIA (Percent Concentration Table)-(Continued)

	43	254.2 2245.0 2255.5 255.5 2555.5 2555
	42	2252.5 2243.45 2243.45 2243.45 2243.45 2243.45 153.6 153.7 153.6 153.7 153.6 153.7 153.6 153.7 153.6 153.7 153.6 153.7 153.6 153.7 1
	41	$\begin{array}{c} {}^{251.0}\\ {}^{251.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{231.0}\\ {}^{233.0}\\ {}^{233.0}\\ {}^{233.0}\\ {}^{151.0}\\$
	40	240.4 240.3 2210.5 2210.5 2210.5 2212.5 2212.5 2212.5 22.5 22.5 2.5
	39	247.6 238.7 228.7 228.7 228.7 228.6 228.7 2210.6 2210.6 228.7 2210.6 170.7 155
	38	246.0 237.0 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 2286.5 1575.1 1575.1 1575.1 1575.2 1575.2 1575.2 1575.5 1575
	37	$\begin{array}{c} 244.2\\ 2255.3\\ 2255.3\\ 2255.3\\ 2255.5\\ 2255.5\\ 2255.5\\ 1008.4\\ 11582.3\\ 11582.3\\ 11558.9\\ 11582.3\\ 11558.9\\ 11582.3\\ 1152.8\\ 11$
sure.	Эç	242.4 233.5 233.5 233.5 233.5 205.9 1008.7 1171.8 1071.8 1121.4 1149.2 1149.2 1149.2 1144.5 1149.2 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1144.5 1088.5 1144.5 1144.5 1088.5 1088.5 1144.5 1088.5 1
Absolute pressure.	35	240.7 231.6 232.0 232.0 204.1 195.0 1170.0 100.0 10
Abso	34	238.9 222.8 220.1 220.1 220.1 103.0 100.00
	33	237.0 2287.0 2288.0 2005.3 2005.3 2005.3 2005.3 155.2
	32	235.1 235.1 235.1 235.5 1088.7 173.2 155.6 155.7 155.6 155.7
	31	233.1 233.1 2234.0 2245.5 2254.5 2255.5 2254.5 2255.5 2254.5 2255.5 2257.5 257.
	30	231.9 231.9 231.9 231.9 231.9 231.9 231.9 193.6 103.4 155.8 133.9 133.9 133.9 133.9 133.9 133.9 133.9 133.9 133.9 133.9 133.9 133.6 13.6 1
	29	229.0 210.0 210.0 220.0 220.0 220.0 220.0 220.0 157.4 157.4 157.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 137.3 157.0 100.0 100.0 177.00
	28	2256.9 217.79 2005.51 1909.55 1909.55 157.46 1757.46 1
	27	2124.6 2124.6 2125.6 2124.6 2124.6 2125.6 205.5 2125.6 2125.6 2125.6 2125.6 2125.6 25.6
Per cent.	NH3-	2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

-
2
51
2
£
2
0
Ũ
<u> </u>
-
່ນ
0
3
H
~
Ξ
10.
it
1
<u> </u>
1
č
11
0
Ú.
-
ent
Ū.
0
1
<u>م</u> .
3
-
NL2
Z
\sim
2
-
-
-
-
<7.4
\sim
DC
nör
ΩĘ
ΩĘ
ΩĘ
ΩĘ
ΩĘ
S OF AQ
ΩĘ
S OF AQ
TIES OF AQ
TIES OF AQ
TIES OF AQ
TIES OF AQ
S OF AQ
TIES OF AQ
TIES OF AQ
TIES OF AQ
TIES OF AQ
TIES OF AQ
1PROPERTIES OF AQ
1PROPERTIES OF AQ
1PROPERTIES OF AQ
1PROPERTIES OF AQ
CVIIIPROPERTIES OF AQ
CVIIIPROPERTIES OF AQ
CVIIIPROPERTIES OF AQ
CVIIIPROPERTIES OF AQ
XXVIIIPROPERTIES OF AQ
XXXVIII.—PROPERTIES OF AQ
XXXVIII.—PROPERTIES OF AQ
XXXVIII.—PROPERTIES OF AQ
BLE XXXVIIIPROPERTIES OF AQ
BLE XXXVIIIPROPERTIES OF AQ
ABLE XXXVIIIPROPERTIES OF AQ
BLE XXXVIIIPROPERTIES OF AQ

, The second								Absolu	Absolute pressure.	ire.							
ret ceut, NH3.	44	45	46	47	48	49	20	SI	52	53	54	55	56	57	58	59	8
2	255.6		258.6	260	261.5	262.9	264.3	265.8	267.1	268.4	269.8	271.2	272.4	273.8	274.9	276.0	277.9
4	246.4	247.9	249.5	250.8	252.2	253.6	255.0	256.4		259.2	260.4	261.7	262.9	264.0		266.6	
6	235.0		238.0	239	241.0	2.12.5	244.0	246.4	248	249.3	250.6	8	253.0	254.4	255.5	250.7	258.0
8	227.4		230.3		233.1	234.5	236.0	237.3	238.6	239.8	241.0	3	243.5	244.7	245.8		
IO	218.3		221.2		224.3	225.7	227.0	228.3	229.7		232.3	0	234.8	230.0	237.3	238.4	
12	209.3		211.9			215.9	217.2	218.4	219.8	221.0	222.4	223.5	224.0	225.7	220.8		229.2
I4	201.I		204.0	205.3	206.5	207.8	209 . I	210.2	211.7	212.4	214.0	215.2	210.3	217.4	218.5		220.8
16l	192.9				198.0	199.4	200.5	201.8	203.0	204.I	205.3	200.5	207.7	208.8	200.8		212.0
I8	184.0				189.4	190.7	192.0	193.1	194.4	195.5	196.7	8.761	198.9	200.0	201.0		
20	175.5					182.2	183.6	184.8	186.0	187.2	188.4	189.7	190.8	192.0	193.2		
22	168.3	169				174.6	175.9	177.0	178.2	179.5	180.6	181.7	182.8	183.9	184.9	185.9	
24	160.8					167.3	168.7	I70.0	171.2	172.4	173.6	174.8	175.8	0.771	178.0		
26	153.5		156.2			159.9	0.101	162.5	163.5	164.5	165.6	166.7	167.8	169.0	170.0		172.1
28	146.0					152.7	154.0	155.2	156.5	157.6	I58.8		o. 101	162.0	163.0		
30	I.38.8	140.1		142.6	143.8	145.1	146.1	147.3		149.7	150.8	151.8	152.9	I53.9	I54.9	155.9	157.0
32	132.1					138.1	I39.4	140.4	141.4	142.5	143.5		145.0	0.041	147.0	148.7	
34	125.0					131.0	132.0	133.0		135.2	136.3		138.3		140.5	141.4	
36	118.7	120.0	I2I.I	122.4		124.7	125.8	126.9	127.9	I 29.0			132.0	I33.0	134.0	135.0	
38	0.111			115.7		118.1	119.4	120.5	121.7	122.8	123.9	125.0	126.0		128.0	129.0	
40.	105.0	107.0	IOS.I	100.5		8.III	112.0	114.0	115.2	116.3	117.3		119.4	I 20.5	121.5	122.4	123.4
42	00.2			103.0		105.1	106.3	107.4	108.5	0.00I	110.6		II2.5	115.5	114.5	115.5	110.4
44	03.0			00.7		00.00	100.1	IOI . 2	I02.3	IO3.4	I04.4	IOJ.5	106.5	I07.4	108.3	109.3	110.3
46	86.0	88	80.4	00.5		02.8	04.0	0.5.0	96.1	97.2	98.3	99.4	100.3	IOI . 3	I02.3	103.3	104.2
48	81.5		83.8	84.0		87.I	88.3	80.4	90.4	01.5	92.5	93.5	94.5	95.5	96.5	97.5	98.5
20	75.0	77	78.1	70.3	80		82.6	83.7	84.8	85.9	86.9	87.9	88.8	89.8	90.8	91.7	92.6
	2			2		-	-	,	-		-		-	-		-	

86

Table)—(Continued)
Concentration
(Percent
AQUA-AMMONIA
OF
ATTINXXX
TABLE

Per cent, NH ₃ ,		-	-		-	-	-	-	-							,	
	61	62	63	64	65	66	67	88	69	70	11	72	73	74	75	76	11
	278.6		280.8	282.0	283.2	284.3	285.4	286.5	287.7	288.8	290.0	291.0	292.0	293.0	294.0	295.0	296.0
	268.0	270	271.2	272.3	273.5			276.9	277.9	278.9	280.0	281.0	282.0	283.0	284.0	285.0	285.9
	250.I	260.	261.4		263.6	264.8	265.0	267.0	268	260.0	270.0	271.0	272.0	273.0	274.0	274.9	275.9
	240.4	250.6		252.7	253.8	255.0		257.1	258.1	259.0	260.0	261.0	262.0	263.0	264.0	264.9	265.8
	240.0		243.0	244.I	245.2	246.3	247.4	248.4	249.5	250.5	251.3	252.3	253.2	254.I		255.	256.8
	230.2		232.5	233.5	234.5	235.7	236.8	237.9	238.9	240.0	240.9		242.7	243.7		245.5	240.5
	221.8	222.	223.9	- T.	226.0	227.0	228.0	229.0	230. I	231.2	232.0	233.0	234.0	234.9	235.8	230.8	237.7
	213.0	214.0	215.1	216.1	217.2	218.2	219.3	220.3	221.3	12	223.1	224.I	225.1	220.0	227.0	227.9	228.8
	204.2	205.2	206.3	207.3	208.4	209.5	210.5	211.5	212.5	213.5		215.3	210.3	217.2	2Ið.I	219.0	220.0
•	196.4	I97.4	198.4	199.4	200.3	201.3	202.2	203.1	204 · I	205.0	205	200.7	207.0	208.3	209.2	210.2	211.1
	I88.0	189.0	_	1.101	192.1	193.1	194.0	195.0	0.001	0.061	8.761	198.7	199.7	200.5	201.4	202.3	203.I
•	181.2	182.2	183.1	184.I	185.1	186.0	187.0	188.0	o.081	190.0	190.7	0.191	192.5	193.4	194.2	195.1	190.0
•	173.1	174.2	175.2	176.2	177.2	178.2	179.2	180.1	181.0	182.0	183.0	184.0	184.9	185.7	180.5	187.3	188.2
•	166.3		168.2	1.601	170.0	171.0	172.0	172.9	173.8	174.7	175.4	170.3		178.0	178.8		100.4
	158.0	159.0	159.9	160.9		162.8	163.7	164.6	165.5		107.2	108.1	0.001	6.001	170.8		172.4
	150.7	151.5	152.5	153.4	I54.2	I55.2	150.1	I57.0	157.9	158.8	159.7	100.5	101.4		103.1	0.401	_
:	143.4	I	145.3	146.2	147.2	148.I	149.0	150.0	151.0	÷.	152.7	153.0	154.5	155.3	150.0		Η.
	137.0	137.9	138.9	139.8	140.8	141.7	142.0	143.5	144.4	145.3	140.0	140.9	147.8	148.0	149.5	<u> </u>	151.0
•	131.0	131.9	132.8	133.7	I34.6	135.5	136.4	137.3	138.1	138.7	139.6	140.5	141.3	142.0	· ·	143	144.3
	124.3	125.2	1 26.I	127.0	128.0	128.9	129.8	130.5	131.4	132.3	133.0	133.9	134.5	135.4	130.2	137.0	137.8
		118.3	119.1	I 20.0	120.9	121.7	122.5	123.3	124.1		125.6	120.4	127.2	128.0	128.8	129.5	130.3
	111.2	I12.0	112.9	113.8	114.7	115.5	116.3	117.1	118.0	118.8	119.5	120.3	121.0	121.9	122.0	123.3	124.0
	105.1	106.0	I06.8	107.7	108.5	100.4	110.3	0.111	8.III	112.6	113.3	114.1	115.0		116.5	117.2	0·/11
•	00.4	100.2	I.IOI	0.101	102.8	103.6	104.4	IO5.3	0.001	106.7	107.5	108.2	0.001	109.8	110.4	III.2	8.111
	03.5	04.4	05 2	00 I	0.70	07.8	280	00 2	TOOLO	100.8	101 6	100 E	102 2	10.1.0	LON 1	101	100.2

	94	311.1 331.1 3300.7 2271.1 2271.1 2271.1 2271.2 2271.9 2273.9 2271.9 2271.9 2273.9 2271.9 2273.9 2271.9 2273.9 2271.9 2273.9 2773.0 2775.0 2775.0 2775.0 2775.0 2775.0 2775.0 2775.0 2775.0 2775
	93	310. 209. 289. 279. 279. 279. 279. 279. 279. 279. 27
	92	300.5 2599.5 2599.5 2599.5 2599.5 2599.5 259.5 2
	16	308.7 238.1 278.0 278.0 278.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 258.0 10000.0 1000.0 1000.0 1000.0 100000000
	6	307.8 287.4 277.3 2567.9 2587.0 2587.4 2587.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.9 2577.0 2577.
	89	306.5 236.5 236.5 257.0 257.0 257.0 257.0 257.0 257.0 233.0 189.5 189.5 189.5 189.5 189.5 189.5 189.5 189.5 189.5 114.3 114.3 1126.0 1126.0
	88	306.1 285.6
sure.	87	305.3 2345.4 2565.3 2565.3 2565.3 2565.4 2565.4 2565.4 2565.4 2565.4 2565.4 2565.4 2565.4 2565.4 257.4 257.4 1588.0 1588.0 1588.0 157.5 15
Absolute pressure.	86	304.4 233.9 233.9 254.7 254.7 254.7 254.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 257.7 172.0 2125.3 1729.0 2125.3 1729.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 157.7 1779.0 1777.0 17
Abso	85	203.5 203.5 203.5 203.5 203.5 253.8 253.8 253.8 253.8 253.8 255.9 255.9 255.9 255.9 255.9 255.9 255.9 255.9 1778.9 1779.9
	84	302.0 202.1 202.0 202.0 202.0 202.0 202.0 200.00
	83	301.7 231.7 231.7 271.2 271.2 252.0 252.0 252.0 255.0 255.1 105.2 105.1 105.5 1155.5 1155.5 1155.5 1155.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1156.5 1157.5 1
	82	200.8 200.8 200.8 200.4 200.5 200.4 233.2 207.1 1776.6 1179.6 1179.6 1179.6 1179.6 1179.6 1179.6 1179.6 1179.6 1179.6 1179.7 1179.6 1179.7 1179.6 1179.7 1
	81	299.9 289.9 289.9 250.3 250.3 250.3 250.3 250.3 250.3 250.3 250.4 101.4 101.5 101.5 1155.8 11
	80	2399.0 2399.0 2399.0 259.5 200.5 200
	79	298.0 287.7 287.7 257.7 258.7 259.5 257.8 257.8 257.5 277.5
	78	297.0 206.7 207.0 200.0 200.0 200.0 200.0 200.00
Per cent,	NH ₃ .	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE XXXVIII.—PROPERTIES OF AQUA-AMMONIA (Percent Concentration Table)—(Continued)

HOUSEHOLD REFRIGERATION

Table)—(Continued)
Concentration
(Percent
AQUA-AM MONIA
0F
XXXVIII.—PROPERTIES
TABLE

	III	3244.5 31244.5 31244.5 2033.4 2033.4 2233.5 2233.5 2253.9 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2253.0 2273.0
	OII	2233.7 323.7 333.7 333.7 232.5 222.5 252.9 254.9 254.9 254.9 105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.6 1105.7 1105.7 1105.6 1005.6 1005.
	109	2291.9 3123.0 3123.0 3123.0 2291.9 2291.9 2253.5 2273.5 22
	loß	221.2 221.2 221.2 221.2 221.3 221.3 221.3 221.3 222.5 223.5 225.5 25.5
	107	321.5 321.5 331.5 2200.4 2200.4 2201.6 221.1 225.0 252.7 225.7 225.7 225.7 225.7 225.7 225.7 225.7 225.7 225.7 225.7 2201.4 171.7 201.4 171.7 201.4 171.7 201.4 171.7 201.4 171.7 201.4 171.7 201.4 201.7 201.4 201.7 201.4 201.7 20
	Iob	320.8 320.5 330.5 2590.6 250.4 251.4 252.5 250.5 251.4 252.5 251.4 252.5 251.4 252.5
	IOS	320.05 320.05 2298.05 2298.05 2299.05 2299.05 2290.25 2500.250
ıre.	tor	319.3 308.7 308.7 208.1 208.5 208.5 208.5 208.5 208.5 208.5 208.5 209.6 1199.6 1199.6 1199.6 1199.6 1199.6 1199.6 1199.6 1199.6 1199.7 1199.6 1199.6 1199.7
Absolute pressure.	Io3	318.5 308.5 308.5 207.4 2287.4 2287.4 2287.4 207.6 207.6 207.6 109.0 109.0 109.0 109.0 109.0 109.0 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 1176.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 11776.5 1177777 117777777777777777777777777
Absol	102	317.7 307.7 307.7 307.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2286.7 2287.6 1088.6 1088.4 1098.4 1175.9
	IOI	316.8 306.3 306.4 255.8 2765.0 256.0 256.0 256.0 256.0 256.0 167.0 1197.0 1182.
	8I N	316,2 335,2 285,1 285,1 285,1 285,1 255,6 255,6 255,6 255,1 255,1 255,1 255,1 255,1 107,1 110
	8	315.4 304.7 2284.4 2284.4 2284.4 2255.5 2255.5 237.5 237.5 237.5 237.5 237.5 237.5 237.5 255.5 237.5 255.5 255.5 255.5 255.5 106.7 1174.0 1166.7 1174.0 1166.7 1174.0 1165.7 1175.8 1175
	86	314.5 304.5 304.5 203.6 223.5 224.1 254.7 254.7 254.7 254.7 254.7 254.7 254.7 254.7 254.7 254.7 255.7 105.0 155.0 155.1 115.2 115.2 115.7
	67	313.7 303.7 303.7 303.7 303.7 202.8 223.5 223.5 223.5 223.5 223.5 223.5 223.5 223.5 223.5 223.5 105.5 105.5 1105.5
	9¢	312.8 302.3 302.7 222.1 222.7 253.4 253.4 253.4 253.4 255.3
	95	312.0 281.5 281.5 281.5 281.5 281.5 281.5 282.0 282.0 283.6 193.6 171.3 183.6 171.3 171.3 200.7 178.6 177.5 200.7 178.5 177.5 200.7 178.5 177.5 200.7 177.5 200.7 177.5 200.7 177.5 200.7 177.5 200.7 177.5 200.7 177.5 200.7 177.5 200.7
Per cent,	"Hu	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

							Absol	Absolute pressure.	ıre.							
	113	tr	SII	116	117	118	611	120	121	122	123	124	125	126	127	128
10				1	1				3.31	332.0						
6	315.6	316.3	317.0	317.7	318.4	310.0	319.6	320.3	321.0	321.7	322.3	323.0	323.6	324.2	324.8	325.5
н									310	310.9						
. 2									300	300.9						
3									290	290.8						
H						278.0			280	280.6						
5						268.4			270	271.0						
3						259.1	259.8			261.6						
0						249.8	250.5									
H.			239.0	239.6		240.9	241.5		242.7	243.3						
+						232.2	232.8		234							
220.7						224.2	224.8									
9.						216.3	217.0									
5	205.0					208.1	208.7									
6						200.3	200.9				203					
4						192.9	193.4									
0																
9							178.7		179.8							
5																
0.																
6																
н		148.2									153.1	153.6	I 54.2			
0		141.7					144			146.0		147.0		148.0		
0	134.5	135.0	1.35.6					T 28. 4	T 28	T 20 4	140 O	111.5	141.0			
								+->(-		0.0++	D + -				

ΠC

E

HOUSEHOLD REFRIGERATION

q
10
ini
216
0
3
Ġ
pl
Гa
11
10
rai
- E
G
ŭ
ပိ
-
зt
- E
CT.
. (Pe
\sim
1
1
Z
9
\geq
N
A.
Å
P
Q
AQUA-AM
r
OF
\sim
S
Ē
1
- 2
H
_ <u> </u>
PRO
H
- 1
XXXVIII
Ξ
5
X
X
X
TABLE
3L
IV
E

	I30 I40 I41 I42 I43 I44 I45	333.0 343.6 344.2 344.8 345.4 346.0 346.5 335.7 332.4 334.0 335.7 332.6 332.5 333.7 334.0 335.6 333.5 333.7 334.0 334.6 335.2 325.6 337.3 335.7 336.7 336.1 301.6 301.8 302.4 323.8 313.9 313.9 314.4 301.6 301.8 302.4 302.9 303.4 304.0 304.5 2200.0 2015 2201.2 2201.2 203.7 294.3 203.2 203.7 294.3 204.5 202.5 203.2 202.5 203.0 203.7 294.3 204.5 202.5 203.0 203.7 294.3 204.5 202.5 203.0 203.7 294.3 204.5 202.5 203.0 203.4 304.0 304.5 2200.0 2015 202.2 202.5 203.0 203.7 294.3 204.5 203.6 205.0 202.5 203.0 203.7 294.3 204.5 203.6 205.0 202.5 203.0 203.7 294.3 236.7 237.2 235.7 245.7 246.2 246.2 246.7 2
essure,	138	342.4 342.4 331.6 331.6 330.0 200.3 200.5 200.5 200.6 200.6 201.4 200.5 201.2 200.5 201.2 200.5 201.2 200.5 201.2 200.5 201.2 200.5
Absolute pressure.	136 137	341.2 341.2 341.2 341.2 341.2 341.2 341.3 330.5 3319.8 3200 4 300 200 4 300 200 4 300 200 2 200
	134 135	339.9 340.5 329.2 329.9 338.4 308.7 338.4 308.7 2338.4 308.7 2338.5 288.5 259.4 208.8 259.4 209.6 259.8 259.4 259.8 259.4 259.4 209.4 199.6 199.5 199.6 187.2 2217.3 217.7 229.0 209.7 1179.5 189.2 1179.5 189.2 1165.5 166.0 1165.5 166.0 1165.5 166.0 1165.2 189.2 1152.8 152.5 139.2 189.2 139.2 189.2 189.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 190.2 19
	133	339.3 328.5 307.5 307.5 2297.5 2297.5 2277.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7
	131 132	3338.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 3328.0 1092.0 11992.
	129 130	336.7 337.4 335.7 337.4 325.1 325.4 325.1 325.4 325.1 255.6 255.9 285.6 2255.5 256.0 2255.5 256.0 2257.0 257.0 25
Per cent.	NH ₃ .	50 50 50 50 50 50 50 50 50 50

	162	313.6 303.2 303.2 223.3 2255.6 2255.6 2239.3 225.5 255
	ıóı	3313 2302 2302 2502 2502 2502 2505 2505 250
		0 1 4 0 0 0 0 1 4 0 0 0 H H D 0 D 0 0 10
	160	31 32 32 32 32 32 32 32 32 32 32 32 32 32
	159	312.1 301.7 301.7 202.0 282.0 273.5 273.5 265.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 255.3 2177.3 1177.3 1177.3 1177.3 1177.3 1177.3
	158	3111.6 301.2 201.2 201.2 201.2 2253.9 2253.9 2253.9 1983.3 2253.5 1983.3 2253.5 1983.3 2253.5 2253.5 1983.3 2253.5 2255.5
	157	3311.0 3300.7 3000.7 2253.1 197.8 2253.3 2253.3 1197.8 2253.3 2253.3 1197.8 2253.3 1197.8 2253.3 1197.8 1197.8 2253.3 1197.8 1197.8 2253.3 1197.8 2253.3 1197.8 2253.3 1197.8 2253.3 1197.8 2253.5 1197.8 2253.5 1197.8 2253.5 1197.8 2253.5 2253.5 1197.8 2253.5 2253.5 1197.8 2253.5 2253.5 2253.5 1197.8 2253.5 2255.5 2253.5 2255.5 255.
	ISÓ	3300.5 3300.5 3300.2 2300.2 2300.7 2300.7 2300.7 1007.4 1107.4 1107.4 1107.4 1105.7 1005.7 10
re.	155	330.0 2299.6 2280.9 2299.6 220.9 221.6 2225.6 2225.7 225.7 25.7
Absolute pressure.		40 00 0 0 0 0 0 0 4 4 4 0 4 0 4 0 0 0 0
solute	154	309 2570 2570 2570 2570 2570 2570 2570 2570
Ab	153	300,0 2008.5 2008.5 2009.5 2009.5 2009.5 1074.6 1074.6 107.5 100.5 107.5 100.5 100.5 100.5 100.5 100.5
	152	318.3 308.4 308.6 208.0 2288.3 2288.3 2288.3 2288.5 229.6 229.7 2250.9 224.7 2250.9 224.7 2250.9 224.7 2218.3 2218.3 2218.3 2218.3 2218.3 2218.3 211.0 27.0 211.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27
	ISI	33333 3377.8 2377.8 2787.7 2777.7 27777.7 27777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2777.7 2
	150	33333333333333333333333333333333333333
	149	33377-5 3377-5 33376-5 33377-5 22777-5 2277-5 277-5 777-5 2
	148	3337.5 3376.9 3376.9 3376.9 2757.6 2257.6 25
	147	3337.0 3337.0 3375.5 2255.5 255.5
	146	347.4 3335.7 3355.7 3355.7 3355.7 2255.7 2255.7 2255.7 192.6 192.6 192.6 192.6 192.6 192.6 192.6 192.7 192.6 192.7 192.6 192.7 192.6 192.7
Per cent.	NH ₃ .	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE XXXVIII.—PROPERTIES OF AOUA-AMMONIA (Percent Concentration Table)—(Continued)

92

HOUSEHOLD REFRIGERATION

TABLE XXXVIII.-PROPERTIES OF AQUA-AMMONIA (Percent Concentration Table)-(Continued)

	179	3322.2 331.6 331.5 231.5 231.5 233.5 233.5 233.5 233.5 233.5 233.5 233.5 233.5 233.5 233.5 233.5 225.4 192.4
		V00H4W00W0H44000NWNHH
	178	
	177	321.2 321.2 321.2 320.6 320.6 320.6 320.6 320.6 320.6 320.6 321.2 320.6 321.2 <t< td=""></t<>
	176	320.8 310.1 320.0 320.0 220.1 220.1 220.3 20.3
	175	320.3 320.5 280.5 280.5 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 280.6 100.4
	174	319.7 309.1 309.1 229.5 229.5 2210.3 2251.1 1 2251.1 1 2255.1 1 2251.1 1 2255.1 1 255.5 1 2255.1 1 255.5 1 255.5 1 2255.5 1 2255.5 1 2255.5 1 2255.5 1 255.5 1 255.5 1 2255.5 1 2255.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 1 2555.5 2 2555.5 2 2255.5 2
	173	319.2 319.2 308.6 208.5 228.5 258.5 258.5 258.5 259.9 255.5 254.2 255.5 254.2 255.5 254.2 255.5 254.2 255.5
sure.	172	318.7 308.1 208.1 208.5 2250.0 2255.0 255.0
Absolute pressure.	171	318.1 307.6 227.6 2278.0 2258.9 2258.9 2259.7 2255.7 200.7
Abse	170	317.6 307.1 207.1 207.6 2251.0 2151.0
	169	317.1 306.6 306.6 200.6 200.6 258.9 257.5
	168	316.6 306.1 306.1 2067.5 258.4 276.7 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 258.4 160.5 160.5 160.5 154.1
	167	316.1 305.6 305.6 205.8 258.0 258.0 258.0 2255.0 2055.0 20
	166	315.6 305.1 305.1 305.1 2855.5 2855.5 2855.5 2855.5 2855.5 2855.5 2856.5 2851.4 2411.1 232.9 2208.4 2411.1 173.9 173.9 173.9 1550.8 1550.8 1550.8 1550.8
	165	315.1 304.6 304.6 203.6 255.0
	164	314.7 304.1 304.1 204.1 204.2 2284.6 2285.6 2085.6
	163	314.1 203.7 203.7 203.7 203.7 203.7 256.0 256.0 256.0 239.7 239.7 239.7 239.7 239.7 239.7 239.7 239.7 256.0 256.0 256.0 256.0 256.0 21.6 17 186.0 177.8 22.5 22.5 22.5 16 177.8 22.5 22.5 22.5 22.5 16 177.8 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22
Per cent.	NH ₃ .	2 4 6 6 7 8 8 8 8 8 8 8 3 3 3 3 3 3 3 3 3 3 3 3

8

NH4. 180 181 183 184 185 2 180 181 183 183 184 185 4 0 </th <th></th> <th></th> <th>Abs</th> <th>Absolute pressure.</th> <th>ů</th> <th></th> <th></th> <th></th> <th></th>			Abs	Absolute pressure.	ů				
322.7 323.1 323.5 324.0 312.0 312.5 313.0 313.4 312.0 312.5 313.0 313.4 312.0 312.5 313.0 313.4 312.0 312.5 313.0 313.4 312.0 312.5 313.0 313.4 322.0 323.5 333.3 303.7 292.0 203.5 303.3 303.7 292.0 203.5 233.5 233.7 292.0 204.7 265.2 293.7 273.3 256.4 265.2 265.2 273.3 256.4 265.2 265.2 273.5 255.5 255.2 255.5 273.6 247.6 274.6 275.6 274.6 274.6 274.6 275.6 275.5 255.7 255.2 255.2 274.6 275.0 275.2 255.6 274.6 275.0 275.0 275.6 274.2 275.0 275.0 275.4 274.2 275.0 275.4		183	184	185	186	187	188	189	190
322.7 323.1 323.5 324.0 322.0 323.1 323.6 324.5 302.0 302.5 303.7 324.5 302.0 302.5 303.0 303.7 302.0 302.5 303.0 303.7 302.0 302.5 303.0 303.7 292.0 303.0 303.3 303.7 292.1 303.0 303.7 303.7 292.2 303.0 303.5 303.7 292.4 303.0 303.5 203.7 292.5 203.0 203.5 203.7 273.3 264.3 207.0 275.6 275.5 274.1 274.6 275.6 263.9 274.1 265.5 275.6 275.5 274.6 275.2 275.6 275.5 275.6 275.6 275.6 274.2 231.8 223.2 223.6 274.2 231.8 223.2 223.6 274.2 275.6 275.4 275.6 274.2 275.2 275.2									
322.7 323.1 323.5 324.5 312.0 312.5 313.6 324.5 312.0 312.5 313.6 314.5 302.0 302.4 302.9 303.4 303.5 302.0 302.5 303.0 313.4 313.9 302.0 302.4 302.9 303.5 303.7 202.0 302.5 303.0 203.5 203.5 203.1 282.4 302.9 303.7 204.2 273.3 255.5 203.0 203.5 203.7 274.1 274.1 274.6 275.6 255.6 233.9 256.5 256.5 257.0 257.6 257.6 233.9 256.5 257.6 257.6 257.6 257.6 233.9 256.5 257.6 257.6 257.6 257.6 233.9 239.2 257.6 257.6 257.6 257.6 233.9 239.2 257.6 257.6 257.6 257.6 231.1 231.8 248.2 257.4 223.6 253.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
322.7 323.1 323.6 324.0 324.5 302.0 302.5 303.1 313.4 313.4 313.4 302.0 302.5 303.0 303.7 313.4 313.9 292.0 302.5 303.0 303.7 313.4 313.9 292.0 303.0 303.7 303.7 303.7 313.4 292.0 303.1 303.7 303.7 303.7 303.7 282.4 282.9 303.0 203.5 203.7 284.2 284.2 283.7 283.3 264.3 274.6 275.6 275.6 275.6 275.6 263.9 264.3 274.1 274.6 277.6 275.6 275.6 275.6 265.5 255.5 255.6 275.0 275.6									
312.0 312.5 313.0 313.4 313.9 292.0 302.4 303.3 303.7 303.7 292.0 202.5 202.5 303.3 303.7 292.0 202.9 303.3 303.7 303.7 292.0 202.9 303.3 303.7 203.7 292.0 203.3 203.3 203.3 303.7 292.0 204.7 265.2 203.7 204.2 255.4 256.0 256.7 255.6 274.6 255.7 256.0 256.7 257.4 274.6 255.7 256.0 256.7 257.4 275.6 257.1 231.4 231.8 223.4 240.2 257.4 274.1 231.4 231.8 232.4 215.9 215.4 215.9 274.1 214.5 214.5 223.1 223.1 223.6 215.9 215.9 274.1 215.0 215.0 215.4 215.4 215.9 215.9 274.1 215.0 217.5 217.7 223.16 223.1	323.1	324.0	324.5	325.0	325.5	326.0	326.5	326.0	327.0
302.0 302.4 302.3 303.3 303.7 292.0 202.5 503.0 303.5 203.5 203.7 273.3 282.5 303.7 203.5 275.0 203.5 275.0 273.3 283.3 283.7 283.7 284.7 265.2 203.7 283.7 284.2 273.3 273.6 274.1 275.0 205.2 255.7 257.4 275.0 </td <td>312.5</td> <td>313.4</td> <td>313.9</td> <td>314.3</td> <td>314.7</td> <td>315.2</td> <td>315.7</td> <td>316.1</td> <td>316.5</td>	312.5	313.4	313.9	314.3	314.7	315.2	315.7	316.1	316.5
292.0 292.5 293.5 295.5 255.6 255.6 255.6 255.6 255.6 255.6 255.6 255.6 255.7 255.6 255.7 255.7 255.7 255.7 255.7 255.7 255.7 255.7 257.6 <td< td=""><td>302.4</td><td>303.3</td><td>303.7</td><td>304.2</td><td>304.6</td><td>305.I</td><td>305.6</td><td>306.0</td><td>306.5</td></td<>	302.4	303.3	303.7	304.2	304.6	305.I	305.6	306.0	306.5
285.4 285.9 283.3 284.2 273.3 254.3 254.1 264.2 263.9 264.3 264.7 255.6 263.9 256.5 256.5 255.6 263.9 256.5 255.6 255.6 263.9 247.2 247.2 257.0 257.4 263.9 256.5 256.5 255.6 255.6 273.0 233.3 240.2 257.4 248.9 238.9 230.3 230.8 240.2 257.4 231.1 231.4 231.8 232.6 232.6 231.1 231.8 232.4 215.0 215.4 215.4 231.1 231.8 232.4 233.8 232.6 231.1 231.8 232.4 235.3 235.6 231.1 231.8 232.4 235.6 235.6 205.3 190.7 200.5 207.9 215.9 192.8 190.7 200.5 207.9 215.4 192.8 193.7 193.6 193.4 116.7 171.3 172.4 177.4 177.4 177.4 171.3 177.4 177.4 1772.8	292.5	293.5	293.9	294.4	294.9	295.3	295.7	296.2	296.6
273.3 273.6 274.1 275.6 255.5 256.7 256.7 255.6 255.5 256.0 256.7 255.4 255.5 257.6 256.7 257.4 255.5 256.0 256.5 257.4 255.5 257.0 275.4 248.0 247.5 247.6 248.0 248.4 255.5 257.0 257.4 248.9 275.0 271.1 211.4 213.4 232.2 238.9 230.3 239.8 232.2 232.6 231.1 211.4 211.4 215.0 215.4 215.9 221.4 214.5 215.0 223.16 223.2 207.9 200.5 207.5 207.9 207.9 109.3 109.3 199.3 199.7 109.6 103.9 109.4 216.4 171.3 178.5 178.0 179.4 177.4 177.4 177.4	282.9	283.7	284.2	284.7	285.1	285.6	286.0	286.5	287.0
253:5 264.3 204.7 205.2 205.0 255:5 255.0 256.0 257.0 257.0 257.0 247.2 271.1 231.4 231.4 248.9 257.0 237.1 231.1 231.4 231.4 248.9 257.0 257.0 257.0 237.1 231.1 231.4 231.3 239.8 240.2 240.5 231.1 231.4 231.3 232.2 233.2 233.6 233.6 231.1 231.4 231.4 231.8 240.5 240.6 532.6 231.1 231.4 231.4 231.4 233.6 232.6 253.6 253.6 231.1 231.4 231.4 231.8 240.5 240.6 532.6 231.1 231.4 231.6 231.6 232.6 232.6 233.6 232.6 231.1 231.4 231.6 231.6 233.7 223.6 233.6 232.5 233.6 223.6 233.6 233.7 235.6 215.4 216.7 199.3 19	273.6	274.6	275.0	275.5	276.0	276.5	277.0	277.5	278.0
255.5 256.6 256.5 257.0 257.0 257.4 238.9 239.7 239.8 248.0 248.1 248.1 238.9 239.3 339.8 248.1 248.1 248.6 238.9 239.3 239.8 248.1 248.1 248.1 238.9 239.3 239.8 248.1 248.6 248.6 231.1 231.1.8 231.8 222.5 223.4 232.6 233.6 221.4 214.5 227.0 215.0 215.4 215.4 215.9 215.4 215.9 215.4 215.4 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.4 215.9 215.9 215.1 215.1 215.1 215.1 215.9 215.9 215.9 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 215.1 216.1 216.1 216.1 216.1 <td>264.3</td> <td>265.2</td> <td>205.0</td> <td>266.I</td> <td>266.5</td> <td>267.0</td> <td>267.5</td> <td>268.0</td> <td>268.5</td>	264.3	265.2	205.0	266.I	266.5	267.0	267.5	268.0	268.5
247,2 247,0 248,0 248,4 248,9 238,9 230,3 230,3 230,8 232,2 240,2 231,1 231,4 231,8 240,2 240,6 248,9 231,1 231,4 231,8 232,4 240,2 240,2 240,2 231,1 231,4 231,8 232,4 215,9 215,4 215,9 215,9 206,6 207,5 207,5 207,5 207,9 208,3 208,4 208,4 208,4 208,4 208,4 208,4 208,4 208,4 208,4 <td>250.0</td> <td>257.0</td> <td>257.4</td> <td>257.8</td> <td>258.2</td> <td>258.7</td> <td>259.I</td> <td>259.6</td> <td>260.0</td>	250.0	257.0	257.4	257.8	258.2	258.7	259.I	259.6	260.0
238.9 230.3 239.3 2340.2 240.2 231.1 231.4 231.4 231.4 232.5 222.5 231.4 231.8 232.2 233.5 214.2 214.5 231.4 233.5 235.6 214.2 214.5 207.5 207.9 223.5 206.8 207.2 207.5 207.9 208.7 199.7 109.7 200.5 200.7 208.7 185.3 193.6 103.6 104.3 109.7 171.3 178.5 178.0 179.4 175.8 171.3 171.7 177.4 177.4 177.8	247.6	248.4	248.9	249.3	249.7	250.2	250.6	251.0	251.5
231.1 231.4 231.4 231.8 232.2 232.5 222.0 222.5 223.0 223.4 233.8 233.4 214.2 214.5 215.0 215.4 215.9 214.2 215.0 215.4 215.9 215.9 200.3 109.3 1090.7 200.5 200.7 109.3 109.7 200.0 200.3 200.7 109.3 109.7 200.0 200.3 200.7 109.3 109.7 200.0 200.3 200.7 109.3 109.7 200.0 200.3 200.7 185.7 185.7 186.0 186.9 179.4 171.3 171.7 172.4 172.8	239.3	240.2	240.6	241.0	241.5	241.9	242.4	242.8	243.2
222.0 222.5 223.4 223.4 223.5 205.8 207.2 207.5 207.5 207.5 206.8 207.2 207.5 207.5 207.3 190.3 190.7 200.0 205.3 205.3 192.8 193.2 193.6 194.3 185.3 185.7 178.5 178.4 175.4 171.3 171.7 172.4 172.4 172.8	231.4	232.2	232.6	233.I	233.5	234.0	234.4	234.8	235.1
214.2 214.5 215.0 215.4 215.9 206.8 207.2 207.5 207.9 208.3 199.7 200.7 200.7 208.3 208.7 185.3 109.7 200.7 208.9 194.3 185.3 185.7 193.6 194.3 194.3 171.3 178.5 178.0 179.4 172.8 171.3 171.7 172.4 172.8 172.8	222.5	223.4	223.8	224.2	224.7	225.I	225.5	220.0	226.4
200.8 207.2 207.5 207.9 208.3 199.3 199.7 199.7 200.0 208.3 192.8 193.2 193.6 193.0 194.3 192.8 193.2 193.6 193.9 194.3 185.3 185.7 186.9 179.3 179.7 171.3 171.7 172.6 172.4 172.8	214.5	215.4	215.9	216.3	216.7	217.0	217.5	218.0	218.3
199.3 199.7 200.0 200.3 200.7 192.8 193.2 193.6 193.6 194.3 185.3 185.7 186.0 186.9 194.3 171.3 178.5 178.9 172.4 172.8 171.3 171.7 172.0 172.4 172.8	207.2	207.9	208.3	208.7	200.0	209.3	209.8	210.2	210.0
192.8 193.2 193.6 194.3 185.3 185.7 186.0 186.4 186.9 171.3 171.3 171.7 172.6 172.8	199.7	200.3	200.7	201.1	201.6	201.9	202.3	202.0	203.0
185.3 185.7 186.0 180.4 180.9 178.2 178.5 178.9 179.3 179.7 171.3 171.7 172.0 172.4 172.8	193.2	193.9	194.3	194.7	195.0	195.3	195.7	1.001	190.5
178.2 178.5 178.9 179.3 179.7 171.3 171.7 172.9 177.4 172.8	185.7	180.4	180.9	187.3	187.0	188.0	188.3	188.8	189.2
I71.3 I71.7 I72.0 I72.4 I72.8	178.5	179.3	179.7	180.I	180.5	180.9	I81.3	181.7	182.0
	171.7	172.4	172.8	173.3	173.6	174.0	174.3	174.7	175.2
104.9 105.3 105.8 100.0 100.4	105.3	166.0	166.4	166.7	167.1	167.5	0.701	I08.3	168.6
158.7 159.1 159.5 159.9 160.3	159.1	I 59.9	160.3	160.7	161.0	161.4	161.8	I62.0	162.4

TABLE XXXVIII.-PROPERTIES OF AOUA-AMMONIA (Percent Concentration Table)-(Continued)

Table)—(Continued)
Concentration
(Percent
AQUA-AMMONIA
OF
XXVIII.—PROPERTIES
EN
TABLE

Per cent,					Absolute Pressure.	Pressure.				
NH ₃ ,	IQI	192	193	194	195	961	197	198	199	300
2										
4										
0. 0										
10	327.7	328.2	328.5	320.0	329.4	329.9	330.3	330.7	331.1	331.6
12	317.0	317.3	317.9	318.3	318.7	319.1	319.6	320.0	320.0	320.7
14	307.0	307.4	307.9	308.4	308.8	309.3	309.8	310.3	310.7	311.1
16.	207.1	297.6	298.0	298.5	299.0	299.5	300.0	300.5	300.9	301.3
18	287.4	287.9	288.4	288.9	289.3	289.9	290.3	290.8	290.3	291.7
20.	278.3	278.9	279.3	279.9	280.3	280.8	281.3	281.7	282.1	282.7
22	268.9	269.3	269.8	270.3	270.7	271.2	271.6	272.1	272.5	273.0
24	260.5	260.9	261.4	261.8	262.3	262.7	263.0	263.6	264.0	204.5
26	251.9	252.3	252.8	253.0	253.5	253.9	254.4	254.8	255.3	255.8
28	243.7	244.0	244.5	244.9	245.4	245.8	248.3	240.7	247.2	247.5
30	235.6	236.0	236.4	236.8	237.2	237.7	238.2	238.7	239.0	239.3
32	226.9	227.3	227.7	228.2	228.7	229.1	229.5	230.0	230.4	230.8
34	218.7	219.2	219.6	220.0	221.4	220.8	221.2	221.7	222.0	222.5
36	211.0	211.3	211.6	212.0	212.4	212.9	213.2	213.7	214.0	214.4
38	203.3	203.8	204.2	204.5	204.9	205.2	205.0	200.0	200.4	200.8
40	0.791	197.3	197.7	198.I	198.4	198.7	199.2	I 199.4	6.99.9	200.I
42	189.5	190.0	190.3	190.7	1,191	191.5	0.1 <u>0</u> 1	192.3	192.7	193.0
44	182.4	182.8	183.2	183.5	183.9	194.3	184.7	185.1	185.5	185.9
46	175.5	175.9	176.3	176.7	177.1	177.4	177.9	178.3	178.7	0.071
48	0.001	169.3	169.7	170.1	170.5	170.9	171.2	171.7	172.0	172.5
50	162.8	163.2	163.5	163.9	164.2	164.7	165.0	I65.3	165.6	160.0
			2	2			,	-	-	

le
q
્ત્ય
ć
Ę
.9
atic
It
- 10
once
- 5
\mathcal{O}
- 42
ćn.
-rc
а,
~
2
50%,6,
п,
H
>
0
~
<
1.1
4
-
MC
I.M.C
AMM (
-AMM (
A-AMM (
UA-AMM(
DUA-AMM (
AQUA-AMM(
AQUA-AMM(
JQV
JQV
JQV
OF AQUA-AMM(
OF AQU
S OF AQU
S OF AQU
OF AQU
JES OF AQU
JES OF AQU
JES OF AQU
JES OF AQU
OPERTIES OF AQU
OPERTIES OF AQU
JES OF AQU
PROPERTIES OF AQU
IX.—PROPERTIES OF AQU
PROPERTIES OF AQU
XIX.—PROPERTIES OF AQU
XIX.—PROPERTIES OF AQU
UX
XXXIX.—PROPERTIES OF AQU
ABLE XXXIX.—PROPERTIES OF AQU
XXXIX.—PROPERTIES OF AQU

Accuracy: To first decimal place of degrees. Boiling temperatures shown make continuously smooth curves with those of the preceding table. Temperatures ° F, corresponding to various percent concentrations (50 to 100%) and absolute pressures (1 to 155 pounds).

	25	49.0 45.5 39.0 36.0	$33.0 \\ 30.0 \\ 24.5 \\ 22.0 \\ 22.0 \\ 33.0 \\ $	19.0 17.5 13.0 10.5	1+++ 0.55555555	1 1 1 1 1 1 1 1 1 1
	20	39.0 35.0 28.0 28.0	23.0 20.0 17.5 12.5	10.0 ++ 3.5 +1.0	1 1 1 8.5 8.5	- 10.5 - 112.0 - 114.5 - 16.5
	15	25.5 24.5 20.5 17.0 15.0	11.5 8.5 7.9 7.9 7.9	-1.0 -2.5 -10.0 -10.0	-11.5 -13.0 -15.0 -17.0	-20.5 -22.0 -23.5 -27.5
	10	+10 0 + 7 0 + 1 - 1 - 1 - 5	- 4.0 - 7.0 - 9.0 - 11.5 - 14.0	-165 -185 -205 -225 -24.5	-26.5 -28.5 -32.5 -34.5	
2	6	++ 7.0 - 1 + 4.0 - 5.0	-7.5 -10.0 -12.0 -14.5 -17.0	-195 -235 -235 -27.0 -27.0	-30.0 -32.0 -34.0 -37.0	
Pounds Absolute Pressure	80	+++	-11.0 -13.5 -16.0 -17.5 -20.5	$\begin{array}{c} -23 \\ -25 \\ -25 \\ -29 \\ -31 \\ 0 \end{array}$		1 4 4 5 0 1 4 4 5 0 1 4 8 5 0 1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	t a	+ 1 0 - 4 0 - 10 0 - 12.5	-15 0 -18 0 -20 0 -22 0 -24.0	-27 0 -29 0 -31 5 -33 0 -35 0	-37.0 -38.5 -40.0 -42.5 -44.0	-45.5 -47.5 -49.0 -52.0
Pounds Ab	9	-16.0 -12.5 -17.5	-20 0 -22.5 -25.0 -27.0 -29.0	-31.5 -33.5 -36.0 -38.0 -38.0 -39.5	-41.0 -42.5 -44.5 -47.0 -49.0	-50.5 -52.5 -54.5 -55.5 -57.0
a	5	-12.0 -16.0 -19.0 -21.0 -23.5	-26.0 -28.5 -31.0 -33.0 -35.0	-37.0 -39.5 -42.0 -43.5 -45.5	-47.0 49.0 53.0 -55.0	-56.0 -58.0 -59.5 -61.0
	4	-19.5 -22.5 -25.6 -30.5		-45.0 -47.0 -49.0 -51.0 -53.0	-54.5 -55.0 -57.5 -62.0	- 63 5 - 65 0 - 66 0 - 66 0 - 68 5 - 68 5
	3	-28.0 -31.5 -34.5 -37.0	-42.5 -44.5 -47.0 -50.0 -51.5	-53.5 -55.5 -57.5 -59.5 -61.5	-63.0 -65.0 -67.0 -67.0 -67.0 -71.0	-72.0 -74.5 -75.5 -75.0 -80.0
	3	40.0 44.0 47.5 50.0 52.0	-55.0 -57.5 -60.0 -62.5	-67.0 -69.0 -72.5 -74.5	-77.0 -79.5 -80.5 -81.5 -83.0	
	1	- 57.0 - 60.5 - 65.0 - 67.0	- 72 0 - 72 0 - 74 0 - 77 0 - 79 0	- 81.0 - 82.5 - 84.5 - 86.0 - 87.5	- 91 0 - 92.5 - 94 0 - 95 0 - 96.0	- 98.0 - 99.0 - 100.0
PER CENT	AMMONIA	52% 54% 56% 60%	66 66 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 88 70 70 70 70 70 70 70 70 70 70 70 70 70	72% 76% 80% 80%	822 847% 90%%%% 86%%%	92% 94% 96% 98% 100%

Von Strombeck, Mollier, Experiments; Starr, Computations. Starr's Practical Engineers' Hand Book.

96

HOUSEHOLD REFRIGERATION

ed.
inu
nt
ÿ
Ī
le)
Table)
Н
ion
rat
ent
nce
ů
lt
ce.
(Per
Ξ
%0,
50
ы
NO.
ABC
A
A,
Ĩ.
MO
V-AMN
-Y
ą
AQU.
OF
S
Ē.
LL
PROPER'
OP
R
1
X
XIXX
X
N
E.E
1
T

1 1	1	
	06	114 5 1000 5 10000000000
	85	111.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 11.5 11
	80	109.0 1000.0 100.0
	75	104 5 100 0 100 0 100000000
	70	90 34 34 34 34 34 34 34 34 34 34
Pounds Absolute Pressure	65	88888888888888888888888888888888888888
	60	91 92 93 93 94 95 95 95 95 95 95 95 95 95 95
	55	883 87 88 87 88 87 88 87 87 87 87
	50	12222222222222222222222222222222222222
	45	73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0
	40	70.0 10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0
	35	6 0 6 7 6 7 6 7 6 7 6 7 6 7 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9
	30	55 55 55 55 55 55 55 55 55 55 55 55 55
Per Cent	Ammonia	52 54 54 54 54 54 54 54 54 54 54

	140 145 150 155	
Pounds Absolute Pressure	135	7 5 5 5 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
	130	132.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 1
	125	134.5 134.5 135.5 155.5
	120	132.0 128.0 116.5
	115	129 129 129 129 129 129 129 129 129 129
	110	126 0 127 0 128 0 100 0 100 0 100 0 100 00
	105	124 0 126 0 127 0 128 0 128 0 128 0 128 0 129 0 120 0 100 00000000
	100	120 5 120 5 120 120 5 120 5 100 5 10 100 5 100 5
	95	118 118 118 118 118 118 118 118 118 118
Per Cent	Ammonia	3336253336363636363636363636363636363636

TABLE XXXIX.--PROPERTIES OF AQUA-AMMONIA, ABOVE 50%, (Percent Concentration Table)--(Continued).

=												
Per Cent					Pou	Pounds Absolute Pressure	e Pressure					
Ammonia	160	165	170	175	180	185	190	195	200	205	210	215
52%	150.0	152.5	154 0	157.0		160.0	161 5	163.5	165 0	167.0	168.5	170 5
54%	146.0	148.0	150.0	152.0		156.0	157 0	159.5	161.0	162.5	164.5	166.0
56%	142.0	144.0	146.0	148.0		151.5	153 5	155.0	157.0	158.5	160.0	162.0
58%	138.0	140.5	142.5	144.0		148.0	149 5	152.5	153 0	154.5	156.0	158.0
60%	134.0	136.5	138.5	140.5		144.0	146.0	147.5	149.0	151.0	153.0	154 0
62%	131.0	133.0	135.0	137.0		140.5	142.5	144.0	145.5	147.0	149.0	150.5
64%	127.5	130.0	131.5	133.5		137.5	139.0	140.5	142.0	144.0	145.5	147.0
66%	124.5	126.5	128.5	130.5		134.0	135 5	137.0	139.0	140.5	142.0	144.5
68%	121.0	123.0	125.0	127.0		130.5	132 5	134.0	135 5	137.0	139.0	140.5
20%	118_0	120.0	122.0	124.0		127.5	129.5	131.0	132.5	134.5	136.5	137.5
72%	115.0	117.0	119.0	121.0		124.5	126.5	128.0	129.5	131.0	132.5	134.0
74%	112.5	114.5	116.5	118.0		121 5	123.0	125.0	126.5	128.0	130.0	131.5
76%	110.0	112.0	113.5	115.5		119.0	120.5	122.0	124.0	125 5	127.0	123.5
78%	107.0	109.0	111.0	112.5		116.0	118.0	119.5	121.0	122.5	124.0	126.0
80%	104.5	106.5	108.5	110.0		114.0	115.5	117.0	118.5	120.0	121.5	123.0
82%	102.0	104.0	106.0	107 5		111.0	112.5	114 0	116.0	117.5	119.0	120.5
84%	99.5	101.5	103.0	105 0		108 5	110.5	112.0	113.5	115.0	116.5	118.0
86%	97.0	0.99	101.0	102.5		106.0	107.5	109 5	110.5	112.5	114 0	115.5
88%	95.0	96.5	98.5	100.5		103.5	105.5	107.0	108.5	110 0	111 5	113.0
20%	92.5	94.5	96.0	98.0		101 0	103.0	104.5	106 0	107.5	109.0	111.0
92%	90.5	92.0	94.0	95.5		0 .06	101.5	102.5	104.0	105.5	107 0	103.5
94%	87.5	0.06	91.5	93.5		96.5	98.5	100.0	101.5	103.0	105.0	106.5
96%	86.0	88.0	90.0	91.5		95.0	96.5	98.0	99.5	101.0	102.5	164.0
98%	0.18	86.0	88.0	89.5	92.0	93_0	94.5	96.0	97.5	0 ^{.00}	100.5	102.0
100%	82.5	85.5	87.5	89.0		92.5	94.0	95.5	97.0	0.79	98.5	160 0

(Continue "Lahle)_ Ē DPODEPTTES OF ADITA.AMMONIA AROVE 5000 シェンシン

5

TABLE	XLSOLUBILITY	OF	GASES	IN	WATER	\mathbf{AT}	ATMOSPHERIC
			PRESSUI	RE			

1 Vol. Water dis- solves Vols. Gas.	32° F.	39.2° F.	50° F.	60° F.	70° F.
Air	0.0247	0.0224	0.0195	0.0179	0.0171
Ammonia	1049.6	941.9	812.8	727.2	654.0
Carbon Dioxide	1,7987	1.5126	1.1847	1.0020	0.9014
Sulphur Dioxide	79,789	69.828	56.647	47.276	39.374
Marsh Gas	0.0545	0.0499	0.0437	0.0391	0.0350
Nitrogen	0.0204	0.0184	0.0161	0.0148	0.0140
Hydrogen	0.0193	0.0193	0.0191	0.0193	0.0193
Oxygen	0.049	0.0372	0.0325	0.0279	0.0284

TABLE XLI.-COMPRESSIBILITY OF LIQUIDS.*

Temperature Degrees F.	Ammonia	Sulphur Dioxide	Carbon Dioxide
32	0.000111	0.000118	0.000824
59	0.000130	0.000134	0.002259
77	0.000148	0.000149	0.008400

*Kälte Industrie, March, 1915.

CHAPTER V

HEAT TRANSFER

Heat Transmission.—Heat is transmitted through a substance when there is a temperature difference, and is caused by the natural tendency of heat toward a temperature equilibrium. The heat flow is always from a region of higher temperature to a region of lower temperature, and may occur in three ways: Conduction, radiation and convection.

The rate of heat transfer from one region to another, depends on the amount of surface, the difference in temperature and the material through which the flow occurs. The rate of transfer through various materials has been determined experimentally by many scientists, the most reliable of which are given in Table XLII as compiled by the Bureau of Standards.

From this table it will be noted that a coefficient "C" is given, which is the overall transmission of heat based on a unit of time, surface, thickness and temperature difference or B.t.u. per hour per square foot per inch of thickness per degree F. As the heat transfer is practically proportional to the thickness, the fundamental law can be expressed in a very simple formula:

(1) Transmission in B.t.u./Hr. = $\frac{\text{"C"}}{\text{thickness}} \times \text{average sq. ft.} \times \text{temperature difference}$

From the foregoing it will be noted, that if the temperature and area of a transmitting surface are known and held constant, the heat transfer depends upon conduction, radiation and convection.

HOUSEHOLD REFRIGERATION

TABLE XLII.—INTERNAL THERMAL CONDUCTIVITIES OF VARIOUS MATERIALS (C)*

		()			_
Material	Description	B.t.u. per 24 hours	B.t.u. per hour	Lb. per cu. ft.	
Air.	Ideal air space Asbestos paper and air	. 42	0.175	0.08	
Air Cell, 1/2 inch	spaces	. 11.0	0.458	8.80	
Air Cell, 1 inch	spaces Asbestos paper and air spaces	. 12.0	0.500	8.80	
Aluminum	Cast	. 24.000	1000.000 0.133	¹⁶² 0.21	
Aqua Ammonia	Cast	. 75.90	3.160	56.50	
Aspestos Min Du.	flexible	20.00	0.830	61.00	
Asbestos Paper	Asbestos and organic bino er	. 12. . 65.0	$0.500 \\ 3.700$	31.0 123.0	
Asbestos Wood Balsa Wood	Very light and soft—acros	SS 00.0		7.5	
	gram	0.05	$\begin{array}{r} 0.350 \\ 12.700 \\ 625.000 \end{array}$		
Brass		. 15.000	625.000 5.000	250. 131.	
Brick	Heavy	. 120	3.500	115.	
Brine.	Salt	. 27.1	1 130	73.4	
Cabot's Quitt	Heavy Light, dry Salt Eel grass enclosed in bu lap Fluffy finely divided min eral matter	. 7.7	0.321	16.0	
Calorax	. Fluffy finely divided mit eral matter . Infusorial earth powder. Neat Portland, dry . Powdered . Flakes . Anthracite, dry. . Of fine gravel . Of slag . Of granulated cork.	5.3	0 221	4.0	
Celite	. Infusorial earth powder.	7.4	$ \begin{array}{r} 0.308 \\ 6 250 \end{array} $	10.6	
Cement	. Neat Portland, dry	150.0	0.417	170. 11.8 15.0	
Charcoal	Flakes	14.6	0.613	15.0	
Cinders	Anthracite, dry	20.3	$ \begin{array}{r} 0.845 \\ 5.200 \end{array} $	40.0	
Concrete		125.0 109.0	$\frac{5}{4.540}$	$\begin{array}{c} 136.0 \\ 124.0 \end{array}$	
Concrete	Of slag	50.0	2.080	94.5	
Concrete	Of granulated cork	43.	1.790	7.5	
Copper		50.000	2083.000 0.337	556.0 5.3	
Cork	Regranulate 1/16-1/2 inc	1 8.1 1 8.0	0.333	10.0	
Corkboard	Granulated ½-3/16 inch Regranulate 1/16-½ inc No artificial binderlo	ow 	0 279	6.9	
Corkboard	No artificial binder A No artificial binder—hi density	gh 7.4	0,308	11.3	
Cotton Wool	Loosely packed	7.0	0.292		
Cvpress	. Across grain	16.0	0.666	29.0	
Fibrofelt	Loosely packed. Across grain. Felted vegetable fibers. Asbestos sheet coated wi		0.329	11.3	
	cement	15.0	0.625	$\begin{array}{c} 43.0\\ 26.0 \end{array}$	
Fire Felt Sheet	. Soft, flexible asbestos sh	eet 14.0 7.9	0.583 0.329	11.3	
Flaxinum	. Felted vegetable fibers . Argillaceous powder	17.0	0.329 0.708	$11.3 \\ 33.0$	
Glass		124.0	$5.160 \\ 7.420$	150.0 185.0	
Glass	About 3/16 inch. Dry, coarse. Dry, fine Across grain	178.0	25.000	166.0	
Granite	About 3/16 inch	7.5	0.313	8.1	
Gravel	. Dry, coarse	62.0	2.582 1.630	$115.0 \\ 91.25$	
Gravel	Dry, fine	39.0	0.294	9.4	
Ground Cork		54.0	2.250 0.246	17.0	
Hair Felt		5.9	0 246	17.0	
Hard Maple	Across grain	27.0 408	$1.125 \\ 17.000$	44.0 57.4	
Ice	Notural blocks	14.0	0.583	43.0	
Insulex	. Natural blocks. Asbestos and plas	ter	0.016	20.0	
	blocks-porous	22.0 d 7.1	0.916 0.296	29.0 11.9	
Insulite	. Cast.	d 7.1 7.740	321.500	450.0	
Iron	Wrought	11.600	483.000		
Kapok	Diocks—porous Pressed wool pulp—rigit Wrought Imp. vegetable fiber loosely packed Hair felt confined w building paper	5.7	0.238	0.88	
Keystone Hair	Hair felt confined w building paper	vith 6.5	0.271	19.0	
Limestone	Close grain	368	15.300 9.330	185.0 159.0	
Limestone	Hard	214.0	9.330	109.0	_
		0.0	alling Co ("hicago	

*From "Principles of Refrigeration," Nickerson & Collins Co., Chicago.

HEAT TRANSFER

Materia1	Description .	B.t.u. per 24 hours	B.t.u. per hour	Lb. per cu. ft.
Limestone	Soft	100.0	4.167	113.0
	Vegetable fiber confined with paper Mineral wool and vegeta	7.2	0.300	11.3
Mahogany	ble fibers Across grain	. 9.1 . 22.0	$0.379 \\ 0.916$	$12.5 \\ 34.0$
Marble	Hard	. 104	$18.530 \\ 4.330 \\ 2.55$	175.0 156.0
Mineral Wool.	Medium Packed Felted in blocks	. 69	$0.275 \\ 0.288 \\ 1.000$	12.5 18.0 38.0
Paraffin	Across grain "Parowax," melting poin 52° C 55° F	t . 38.0	1.582	56.0
Petroleum Plaster	55° F Ordinary mixed	. 24.7 132.0 . 90	$1.030 \\ 5.500 \\ 3.750$	50.0 105.0 83.5
Plaster	Board Various Stiff pasteboard	. 73	$3.040 \\ 0.417$	75.0
Pumice	Powdered	. 11.6	0.458 0.483	20.0
Pure Wool	• • • • • • • • • • • • • • • • • • • •	. 5.9	$0.246 \\ 0.246 \\ 0.263$	6.9 6.3 5.0
Pure Wool Rice Chaff		. 7.0	0.292 0.667	2.5 10.0
	Mineral wool and binder— rigid Soft	. 8.3	$0.346 \\ 7.875$	21.0 94.0
Rubberl Sand	Hard, vulc River, fine, normal	16.0 188.0	$0.667 \\ 7.830$	59.0 102.0
Sandstone	Dried by heating Dry	265	2.250 11.100 0.500	95.0 138.0 13.4
Sawdust	Ordinary Ordinary	25.0 17.0	1.040	16 0 8.0
Slag Wool		18.0	0.583 0.750	8.55 15.0
Tar Roofing	Silvered vacuum jacket	17.0	$3.130 \\ 0.707 \\ 0.004$	55.0
Virginia Pine Water	Across grain Still, 32° F	23.0	$0.958 \\ 4.166$	34.0 62.4
Wool Felt	Across grain	19.0 8.7	0.791 0.363	32.0 21.0

TABLE XLII.—INTERNAL THERMAL CONDUCTIVITIES OF VARIOUS MATERIALS (C)—(CONTINUED)*

Conduction.—Heat transfer by conduction occurs by means of molecular transmission due to the different intensities of irregular vibration of the molecules, causing the higher temperature or more rapid moving molecules to strike the lower temperature or slower moving molecules and cause them to move at the same rate. Due to friction, adhesion, etc., the intensity decreases as it passes from the faster to the slower molecules. The interchange of heat in this way may occur between different parts of the same body or between two separate bodies in actual contact.

When one end of a bar of iron is held in a fire the other end will soon become too hot to hold in the hand. The heat has been transferred by conduction. One end of a wooden stick can be held in the fire without the other end becoming warm. In general, metals are good conductors, while lighter weight materials are poor conductors, so that comparative transmission can be made from their densities. A recent theory for the better insulating properties of substances containing air cells, is that there is a very intense atomic resistance at the junction of a solid and gas, thus offering greater retardation to the molecular activity transfer.

Radiation.-Radiation is the transfer of heat by means of continuous and irregular ether vibrations and the transformation, in whole or in part, of the energy of light into heat energy by impact upon the surface of a substance. It is an electromagnetic phenomenon, in which the longest heat waves are about 0.042 centimeters while the shortest solar waves that can pass through the atmosphere are 0.00003 c.m. The range of the radio waves is about 3 meters to 20.000 meters. When heat or solar radiation strikes a body it is in general partly reflected, partly absorbed and partly transmitted. The part which is transmitted is nil in case of metals, unless they are made into exceedingly thin almost transparent foils, it is very small in case of water and ice and large in case of quartz, rock salt. etc. Thus in most practical cases part of the radiation is absorbed and part of it reflected, the amount of which is smaller the more dull and black the surface is. In the ideal limiting case which is closely approached by lampblack, the entire amount of radiation is absorbed.

The amount of heat transferred by radiation depends upon the character of the radiating surfaces; whether hot or cold, dark or light, temperature difference, absorbing properties, etc.

The blacker an object the more heat it will lose by radiation. Stoves and radiators intended to give out heat should be black. Cooking utensils, coffee urns, etc., should be bright, (tinned or nickeled) in order to lose as little heat as possible. A stove nickel plated all over will give out only about half as much heat as the same stove at the same temperature if black. A brightly tinned hot air furnace pipe may lose less heat than when covered with one or two layers of asbestos paper, as the surface of the asbestos paper radiates heat much more rapidly than the bright tin. The pipe should be black to prevent radiation to the inside surface of the asbestos paper, then the asbestos would be more effective. If asbestos paper of sufficient thickness is used, it will save heat, even on bright tin pipes.

Further it has been found experimentally that a body as it is heated radiates heat waves the amount of which is equal to the amount absorbed. The table below gives the radiating and absorbing power, and the reflecting power of a few common substances. It may be noted here that the radiating power is also called the emissivity.

TABLE XLIII.—HEAT ABSORBING, RADIATING, AND REFLECTING POWER OF SUBSTANCES

Substances	Absorbing & Radiating Power	Reflecting Power
Black body	0.90	0.00 0.10 .15
Ice Polished Cast Iron Polished Wrought Iron		.75 .77 .93
Polished Brass Copper Hammered Silver Polished	07	.93 .93 .97

According to Prevost's theory of heat exchanges a warm body radiates more heat to the surrounding cold bodies than it receives from them and thus its temperature drops, while a cold body also radiates heat but it radiates less than it receives, and, therefore, its temperature rises. According to this theory, a body in a refrigerator placed near the ice radiates heat no faster than it would to a warmer body, but it receives less from the ice in return and, therefore, becomes colder.

It is well established that the heat exchange by radiation between two bodies is given by:

 $H = E (T_2^4 - T_1^4) \times 16 \times 10^{10}$

Where H = B.t.u. per sq. ft. per hour.

 $T_1 \& T_2 =$ Absolute Temperatures of the two bodies in degrees F. E = An empirical constant called the emissivity of the surface considered: E = 1 for a black body.

Radiation Between the Sun and the Earth.—The heat and light from the sun come to us through space in a form of wave motion called radiation. The atmosphere offers considerable

obstruction to the passage of these waves. Even when the sky is very clear, rarely more than 65 per cent of the radiation penetrates to the surface of the earth, the part absorbed being expended in raising the temperature. The region near the upper limits of the atmosphere is one of intense cold. As the sun, having a much higher temperature than earth, radiates heat to the earth, so from the surface of the earth, heat is radiated to the much colder upper limits of the atmosphere.

The radiation of heat from the earth is continuous both day and night when there are no clouds or other obstruction between the earth and the upper atmosphere. During the day the amount of heat received from the sun is so much greater than the amount lost by radiation from the earth, that the temperature rises. After the sun sets, however, no heat is received to counterbalance the loss by outgoing radiation and the temperature falls.—(U. S. Department of Agriculture, Farmers' Bulletin, No. 1096).

Convection.—Convection is the transfer of heat by displacement of movable media; the heated medium moves and carries the heat energy with it. In other words heat is carried from one place or object to another by means of some outside agent, such as air or water or any moving gas or fluid. The hot air and hot water heating systems work on this principle. For example, in case of an ordinary household radiator, steam or hot water heats the radiator and it establishes a temperature differential between the metal and the adjacent laver of air, the laver of air is heated and consequently its density is reduced as compared to the cooler layers of air. Thus the denser and cooler particles of air begin to descend while the warmer and less dense particles begin to rise and a natural upward movement of heated particles sets in. If desired, however, the movement of these heated particles can be accelerated and the heat transfer greatly increased by means of a fan or blower. In the first instance we have natural convection and in the second forced convection. It is also clear that the increased heat transfer secured in the latter case is produced by the external mechanical work supplied and here as in all other engineering work we pay for what we receive.

The food and containers in a refrigerator are cooled mostly by convection. The circulating air is the medium used to transfer the heat from the food and walls of the food compartment to the ice. This process of heat transfer is continuous. The air in passing through the food compartment absorbs sufficient heat to increase its temperature about 10° F.

It is well known in a general qualitative way that heat flow by forced convection between a metal surface and a fluid depends upon the following:

- 1—The velocity of the fluid; the higher the velocity the higher the heat flow.
- 2-The temperature difference between the metal and the fluid; the higher this difference the higher is the heat flow.
- 3-The thermal conductivity of the fluid.
- 4-Diameter of the tubes around or in which the fluid is assumed to flow.
- 5-The density of the fluid.
- 6-The viscosity of the fluid.
- 7-The depth or length of the device measured along the path in which the fluid flows.
- 8-The temperature difference between fluid and body.
- 9-The character of the surface.

The values given in Table XLIV are for inside surface only, and are represented by the symbol K. Due to the more exposed outside surface and rapid movement of air, the coefficient for this is much larger, generally $2\frac{1}{2}$ to 3 times, so that K₂ can be used as 3 times K.

TABLE XLIV.—COEFFICIENTS OF RADIATION AND CONVECTION IN B.T.U. PER HR. PER ° F. SQ. FT.

Brick Wall	1.40	Glass 2.00
Concrete	1.30	Tile plastered on both sides 1.10
Wood	1.40	Asbestos board 1.60
Corkboard	1.25	Sheet asbestos 1.40
Magnesia board	1.45	Roofing 1.25

University of Illinois Engineering Experimental Station.

Comparison of Heat Insulators.—Table XLV gives a comparative idea of the thermal conductivity of insulators used in household cabinets. Air which cannot circulate and carry heat in that way (by convection) is one of the best heat insulators to be found. Cotton, wool, feathers, cork, etc., are good insulators because they contain a large amount of air in the cells or in the spaces between the fibers. Clothing keeps in the heat of the body chiefly because it contains air between the lay-

TABLE XLV.—COMPARISON OF THERMAL CONDUCTIVITY OF HEAT INSULATING MATERIALS USED FOR INSULATING HOUSE-HOLD REFRIGERATORS

Material	Relative Therma Conductivity
Vacuum jacket silvered	
Mineral wool (medium packed)	
Corkboard (low density)	
Ground cork (ordinary)	
Vegetable fibre (Linofelt)	
Granulated cork (about 3/16 inch)	
Eel grass (enclosed in burlap)	
Balsa wood (medium weight)	
Planer shavings	
White pine (across grain)	
Oak (across grain)	

ers and in the meshes of the cloth. When the enclosed warm air is displaced and is replaced by colder air, as is the case in windy weather, the clothing no longer keeps one so warm.

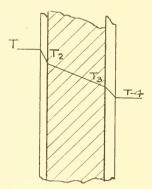


FIG. 4.—SHOWING RADIATION AND CONVECTION LOSSES.

If the clothing is close-fitting, there is less room for an air layer between the layers of the clothes and therefore, it is less warm.

To keep warm in cold, windy weather, the clothing should consists of loosely fitting garments, preferably of wool, with

108

some outside wrap which is nearly windproof, such as a very close woven cloth, or even leather or rubber. A fur coat is very much warmer if the fur is on the inside, where the wind cannot disturb the air which is held among the hairs.

Determination of Heat Loss Through a Wall or Refrigerator.—As shown in the previous paragraphs, heat is transmitted through a substance from higher regions to a lower region by means of conduction, radiation, and convection. Referring to Fig. 4 it can readily be seen that the drop from T_1 to T_2 is radiation and convection losses from the outer surface,

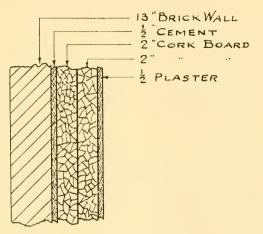


FIG. 5.—STANDARD WALL.

 T_2 - T_3 the losses or transmission by conduction through the material, and T_3 - T_4 convection and radiation from the cold air in the box to the inner surface. The convection and radiation drop is caused by a very thin layer or surface film surrounding each surface.

Fig. 5 shows a standard wall as used in many cold storage buildings and ice storages. The unit transmission through the combination wall can very easily be determined from the following formula:

B.t.u./ sq. ft./hr./°MD =
$$\frac{1}{\frac{1}{K_1 + \frac{X}{C} + \frac{X}{C_1} + \frac{X}{C_2} + \frac{1}{C_2}}$$

HOUSEHOLD REFRIGERATION

X being the thickness of the material, C the unit coefficient for each material as in Table XLII, K_1 and K_2 surface coefficients for the inner and outer surfaces respectively.

Substituting—B.t.u./sq.ft./hr./°MD=
$$\frac{1}{\frac{1}{1.10} + \frac{13}{5} + \frac{4}{.279} + \frac{1}{6.25} + \frac{1}{4.2}}$$
If this value is now used as the factor
$$\frac{\text{"C"}}{\text{thickness}}$$
 in the

fundamental formula (1) given on page 101 the total heat leakage through the walls can be obtained. It has been found that the resistance to heat flow at the surface, due to radia-

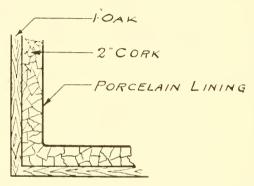


FIG. 6.-CROSS SECTION OF A STANDARD ICE BOX.

tion and convection is very small in comparison to internal thermal conductivity of the material itself, so that these two factors can be omitted, particularly when good insulation of normal thickness is used. This can be demonstrated by the omission of the factors K_1 and K_2 in the above formula resulting in a final value of .0585 instead of .0548 or $6\frac{3}{4}$ % greater.

Referring to Fig. 6, a cross section of a standard ice box is given. Assuming this to be a 9 cu. ft. refrigerator the outside surface would be 54 sq. ft. and the inside surface 34.5 sq. ft. or an average of 44.25 sq. ft.

The unit heat transmission would be

$$\frac{1}{2} = .1225 \text{ B.t.u./sq. ft./°MD/ hr.}$$

$$\frac{1}{279} = \frac{1}{1}$$

Substituting in our fundamental formula for thickness

B.t.u./hr. = $.1225 \times 44.25 \times 1^{\circ} = 5.42$

Actual tests on this box gave 5.75.

For practical results to obtain the compressor load, 50% should be added for opening door, warm edibles, making ice, etc.

Insulation.—The most important factors entering into the choice of an insulator are as follows:

- 1. Thermal conductivity.
- 2. Odorless and sanitary.
- 3. Compact.
- 4. Vermin and fire resistant.
- 5. Not easy to disintegrate or settle.
- 6. Durable in service.
- 7. Reasonable in cost.
- 8. Structurally strong and easy to ship, handle, and install.
- 9. Conform to variation on surface of lining.

1. Thermal Conductivity.—The best insulator that could possibly be found would be one that was an absolute non-conductor of heat. Since this has not been discovered as yet we must content ourselves with insulation which are good nonconductors, or in other words, transmit heat at a very slow rate. As heat loss through an insulated wall is a continuous process, it must be the aim to reduce this loss to a minimum by increasing the thickness to a maximum commensurate with desired results. This is a question of first or initial cost.

2. Odorless and Sanitary.—Since ordinary food products are stored in the refrigerator, it is evident that the insulation should be absolutely free from mould, rot, or odor and perfectly sanitary. The interior surfaces should be so constructed that they can be washed with water without effecting the insulation.

3. Compactness.—An insulation in order to be favorably considered must be compact or occupy a small amount of space for the equivalent heat loss prevention. If it can be made very thin, but at the same time give as good insulating value as

"(())

another 2 to 3 times as thick, it would naturally be given preference.

4. Vermin and Fire Resistant.—A desirable insulation should be of such nature that it will exclude vermin of all kinds, and should lend itself to fireproof construction of buildings. It should be slow burning and fire retarding and should not support a flame.

5. and 6. Not Easy to Disintegrate or Settle.—The durability of insulating materials depends upon the life of the materials used in their manufacture, the mode of manufacture and the waterproofness.

The insulation of a refrigerator is called upon to withstand constant changes of temperature and humidity. The ordinary refrigerator using ice usually has a rather poor water insulating material to protect the insulation. The greatest trouble is experienced around the ice compartment where water vapor will condense on the outside surface of the lining or rather between the lining and the insulation. If the insulation is installed very tightly against the lining, this condition is not likely to cause trouble. Moisture not only causes the insulation to deteriorate rapidly, losing to a large extent in heat insulating properties, but also may rust the lining and absorb food odors which will make the refrigerator very insanitary.

The moisture problem is especially important on mechanical refrigerators where freezing temperature or temperature below 32° F. are maintained in part of the cabinet. In this case a much lower room humidity will deposit moisture on the lining. There are very few ice refrigerators constructed which are insulated in a suitable manner to be used for the lower temperatures as usually supplied by mechanical refrigerating machines.

7. Reasonable in Cost.—An insulation to be universally used depends on such factors as a reasonable initial cost of material, cheap installation cost, minimum of repair charges, as well as a minimum amount of space for maximum retardation of heat flow.

112

8. Structurally Strong and Easy to Ship, Handle and Install. — Insulation should be compact and structurally strong so that it may be used in walls, ceilings, and floors of any type of construction. It should have sufficient strength to allow for shipment and for installation by ordinary workmen. These factors determine to a large extent, its application commercially.

9. Conform to Variations on Surface of Lining.—Due to unevenness of surfaces on which insulation is to be placed it is essential that elasticity, to a certain extent, be embodied in the insulator, or otherwise there will be resultant breaks when the non-flexible insulation is jammed against an uneven surface.

Air Spaces.—Many refrigerators use air spaces for insulation. Heat may be transferred across an air space by all three methods of heat transfer: radiation, convection and conduction.

A very high vacuum is necessary to appreciably lower the rate of heat transfer by convection. The heat transfer by convection is greater when there is a large temperature drop, as the air will then circulate more rapidly, carrying heat from one wall to the other.

Air is a very poor conductor of heat when compared with the usual insulating materials used in refrigerators. The conductivity B.t.u. per day per sq. ft. per deg. F. per inch thickness for various materials is given as follows:

Air, if radiation and convection could be prevented4.2
Mineral wool
Corkboard
Flaxlinum
White pine
Oak

This tabulation shows that the amount of heat transferred across air space by conduction is relatively low.

The amount of heat passing over an air space by radiation is very large when there is a large temperature differential between the two walls. The rate of heat transfer by radiation is proportional to the fourth power of the absolute temperature of the surface, enclosing the air space, providing the surfaces are perfect radiators or absorbers. The blacker the object the more heat it will lose by radiation. Bright tinned or nickeled objects lose very little heat by radiation. The vacuum bottle usually has bright polished surfaces to prevent heat entering the walls by radiation.

The United States Bureau of Standards gives the following tabulation on the heat conduction of air spaces, in which A is the width of the air space in inches, B is the heat conduction expressed in B.t.u. per square foot per degree F. per 24 hours for the corresponding thickness stated, and C, the heat conduction expressed in B.t.u. per square foot per degree per 24 hours per inch thickness:

А																							В																							С	
I/s	έ.																						5().																					1	6.	3
í																																															
3/																																															
I/																																															
5/8		1			•	•	• •	•	•	•••	•	•	• •		•	•	•	•	• •				2	5	1			•	•		•••	1	•		•	•					·				1	3	6
3/	Ş.•	1			•	1	• •	•	•	•••	•	•	•		•••	•	•	•	•	•	•••		22	5	•	•	•		•	•	• •	•	•	• •	•••	1	•	•	• •	•••	•	•		•••	16	6.4	1
7/8	•	•	•	•	•	• •	•••	•	• •	•••	•	•		•	•	•	•		• •	1	1		22	5	•	• •	•	•	1	•	• •	1	•	•••	•	•	• •	•••		•	•	•	• •		2	0	
1																																															
																							21																								
	5.	•	•	• •	٠	•	• •	٠	•	• •	٠	•	• •		•	•	٠	•	٠	•	• •	•	21		•	•	• •	•	•	•	• •	•	•	• •		٠	• •	• •	• •	٠	٠	•	• •	•	04	2	

The insulating value of air spaces is not proportional to the thickness of the spaces.

The heat loss between walls of materials such as wood, paper, etc., by radiation alone, is about 20 B.t.u. per day per square foot per degree F. for ordinary temperatures. At higher temperatures, the radiation loss is still larger. Air spaces are not good insulators on account of this radiation loss. This large heat loss by radiation may be greatly reduced by using polished surfaces for the walls between the air spaces. Perhaps the best way to reduce this loss is to use an insulating material such as cork, which eliminates the heat loss by radiation almost entirely.

One authority describes the use of a heat insulating material such as corkboard, as an air space insulation composed of an almost perfect heat radiation screen. Each air cell in the cork must radiate heat from one wall to another and as the temperature differential is small, the amount of heat transferred by radiation is nearly negligible. Insulating Effect of Air Spaces.—The insulating effects of air spaces, according to various authorities are given in Table XLVI. The effects are given in conductivities, expressed in B.t.u. per square foot per twenty-four hours per degree of temperature difference for various thicknesses of air spaces. It will be noted that the increasing of the thickness of the air space above a certain amount does not proportionately decrease the total conductivity.

Authority	Thickness	Conductivity B.t.u. per sq. ft. per 24 hrs. er Deg. Fahr. Temp. Diff.	
Prof. L. A. Harding, Pennsylvania State College Refrigerating World Prof. A. C. Willard, Railway Age Gazette	1 to 6 1	39.8 30.0 38.2	
Nusselt Willard & Lichty University of Illinois U. S. Bureau of Standards U. S. Bureau of Standards	7 3/4 1/2 1/3 1/3 1/2 1/3 1/2 3/4 7/8 1 2 3	42.5 11.0 50 32 26 23 22 22 22 22	Spaces greater give no additional value. Single and double box test. Corrugated asbestos pa- per enclosing air space. Air spaces bounded by sheets of insulating paper. Air spaces not wider than 34 inch retard heat about as well as an equal thickness of sawdust. A 3 inch air space has nearly the same value as as 1 inch space.
U. S. Bureau of Standards Pennsylvania State College 3 Wood & Grundhofer	1	21 4.2 5.36 7.68 5.28	No heat transferred by radiation or conduction Three air spaces. Three air spaces.
and 1 Comparison, if 3 Then	2 air spaces air space	1/2 in. each = 2 in. each = 1/2 in. each = 1 in. each =	= 79% = 59% = 100% = 88%

TABLE XLVI.---INSULATING EFFECT OF AIR SPACES

Types of Insulating Material.—As can be noted in Table NLII, many kinds of materials can be used for insulation. The most commonly used materials are corkboard, granulated cork, ground cork, mineral wool, rock cork, hair felt, kapok, lithboard, sawdust and shavings.

Cork.—Cork is the outer bark of a tree growing on the Spanish Peninsula and in Northern Africa. In its natural state, it is composed of a large number of minute air cells, separated by thin walls.

Corkboard is made by compressing pure granulated cork in molds and baking. The baking process improves the insulating value, first by driving off the sap, thus increasing the volume of confined air; second, by coating the surface of each separate granule with a thin film of the natural waterproof gum or rosin, which cements the whole mass together firmly. After the baking process, the boards are trimmed to size. Pure cork contains 43% wood fibre and 57% entrapped air.

A cheaper and inferior grade of corkboard may also be manufactured. In this process, granulated cork is mixed with hot asphalt and pressed into sheets.

The boards are 12''x36'' and are supplied in thicknesses $1-1\frac{1}{2}-2-2\frac{1}{2}-3-4-6''$. The weight varies from 7 to 12 lbs. per cubic foot, depending on the process. Regranulated cork of 8-20 mesh or fineness weighs 11 lbs. per cubic foot, and coarse granulated weighs 5 to 6 lbs. per cubic foot. The regranulated is baked and is made from savings trimmed from corkboard.

Because of its cellular structure, cork has little capillary attraction, which together with the coating of waterproof gum for binder, makes it practically impervious to moisture. It possesses essentially all of the requirements previously cited for a good commercial insulator and is therefore the most universally used.

Mineral Wool.—Mineral wool is a vitreous substance made of limestone which is melted at 3000° F. and then blown into fine fibres by high pressure steam. It is a soft, pliable and elastic material resembling wool or cotton, and due to the fibres crossing and interlacing in every direction small air spaces are formed which produce its insulating properties. Mineral wool boards are made by mixing the wool with a paraffin wax binder and other ingredients and then compressing it into sheets. These are usually 16x36 inches and are made from $\frac{1}{2}$ to 3 inches in thickness. The weight is approximately 18 lbs. per cubic foot in boards, but only $12\frac{1}{2}$ lbs. when loosely packed. The board contains about 90 per cent mineral wool and 10 per cent binder and consists of approximately 80 per cent entrapped air. Mineral wool board possesses many of the essentials of a good insulator but is inferior to corkboard as to structural strength, fire retardation and installation cost.

Flaxlinum or Linofelt.—This is a flax fiber product pressed into a continuous sheet and covered with a waterproof charcoal sheathing. It is customary to use two sheets of flaxlinum with a dead air space between them. This insulation is also made in .quilted sheets which are held in place by wooden strips.

Mineral Felt.—Mineral felt is a combination of mineral wool, asbestos, and hair felt. It is claimed that this material will not settle like other loose feltings.

Balsa Wood.—Balsa wood is being used to some extent for insulation on refrigerators. Its peculiar structure and qualities which make it suitable for this purpose were first realized about 1915.

The tree grows in certain parts of South America and the West Indies. It grows very rapidly to a height of from thirty to sixty feet and a diameter of from twelve to fifteen inches in four or five years. This rapid growth is probably the cause of the peculiar structure of the wood. The cells are large and remote from one another, and the cell walls are exceedingly thin, while in most other woods the cells are small, close together and have fairly thick walls. The balsa tree is now being cultivated in artificial groves. Balsa is a second growth wood which is always found in clearings. The trees seldom grow closely together.

In the natural state, balsa wood is not suitable for insulating material. Colonel Marr discovered a method of treating the wood which renders it waterproof, prevents rot and keeps it from changing shape. This process is a bath composed mostly of paraffin, performed in such a way that the interior cells are coated without clogging up the porous structure.

Lithboard.—Lithboard consists of mineral wool and vegetable fibers. It is made into boards by using a waterproofing binder and compressing. These boards have a composition of approximately 40 per cent vegetable fibres (flax) and 60 per cent mineral wool, and are generally 18''x48'' with a thickness of $\frac{1}{2}$ to 3". It weighs about $12\frac{1}{2}$ lbs. per cubic foot.

Rock Cork. — Indiana limestone with a certain specified content is heated up to 2800° F. and passed through a "V" shaped steam jet. The heavier particles of blown rock drop off right at the nozzle and are separated from the rock wool that is picked up from the blowing chamber. This rock wool still has some very small particles of blown rock in it. The rock wool is taken to an agitator and here the rest of the particles are removed. The rock wool now is mixed with an oil asphalt and some paper stock, at approximately 200° F. Water is introduced and acts as a carrier agent for the mixture. The mixture is poured into moulds, that have screens in the bottom through which it drains, and the mixture is allowed to settle. After the water has drained off the mould goes to a drying kiln and stays there for about 72 hours.

Rock cork does not undergo any sort of compression during the moulding process other than that due to its own weight. The rock cork now is in slabs and is planed down to any required thickness as desired. Rock cork weighs approximately 16 to 20 lbs. per cubic foot and possesses many of the requirements of a good insulator.

Selection.—In selecting an insulation for a proposed installation a number of factors must be taken into consideration :

- 1. Type of construction
- 2. Character of refrigerated products
- 3. Temperatures to be maintained
- 4. Thickness of walls
- 5. Location of plant.

The following table gives the most economic thickness of corkboard and other insulation of same unit transmission:

-20° to -10°	
-10° to -0°	
0° to 15°	
15° to 35°	
45° and above	

Heat Transfer in Apparatus.—The heat transfer taking place in a refrigerating apparatus is similar to that occuring through insulation, in that the flow occurs from a region of high temperature to a region of low temperature. Whereas, a very slow rate of infiltration through insulation was desired just the reverse is true in the apparatus; the fastest possible transfer is wanted. Generally this transfer of heat is accomplished between two fluids separated by a solid wall of good conductivity.

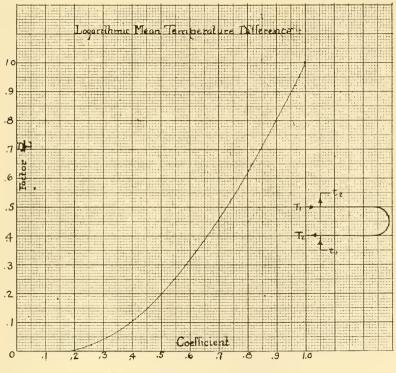


FIG. 7.-MEAN TEMPERATURE DIFFERENCE CURVE.

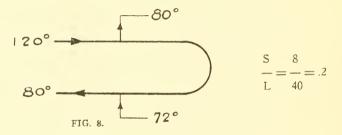
Since the heat transfer may occur by means of conduction, radiation or convection, the fundamental law of heat transfer holds, the same as for insulation; although the unit transmission as determined by experiment combines all three methods, as well as the kind of material and thickness of separating wall. The formula then becomes—(2). B.t.u./hr. = "C" x sq. ft. of surface \times temperature difference. (C is given in Table XLVIII.)

The *mean* temperature difference for apparatus is somewhat different than for insulation due to the fact that the temperatures on both sides of the insulation are comparatively constant, whereas in the apparatus they are changing constantly. Therefore in the first case an arithmetic degree mean difference can be used but a logarithmic mean temperature difference must be found in the latter case.

Due to the character of the formula as given by Hausbrand and its attendent higher mathematics this logarithmic degree mean difference method has been put in a simple curve form. making it available to everyone.

Thickness of Cork	For Use With	For Temperatures
1½ in.	Ice water, liquid ammonia, brine and other cold lines.	Above 25° F.
2 in. to 3 in.	Brine, ammonia and other cold lines.	0° to 25° F.
3 in. to 4 in.	Brine, ammonia and other cold lines.	Below 0° F.

 $T_1 =$ Inlet temperature of substance to be cooled $T_2 = Outlet$ temperature of substance to be cooled $t_1 =$ Inlet temperature of cooling substance $t_2 =$ Outlet temperature of cooling substance $T_1 - t_2$ and $T_2 - t_1 =$ Differences


S = Smallest difference

L = Largest difference

Factor - = Ordinate

Coefficient obtained from Curve = Abcissa

Coefficient \times largest difference = Mean temperature difference. Example: To cool milk from 120° to 80° with 72° water heated to 80° during the process.

120

Running across on the .2 factor line to the curve and then projecting the tright angles the coefficient .5 is obtained. Then the mean temperature difference is $.5 \times 40 = 20$.

If an arithmetical degree *mean* difference had been used the result would have been the difference of average temperatures of

$$\frac{(120+80)}{(2)} - \frac{(80+72)}{(2)} = 24$$

which would have been a 20 per cent error.

It has been found that for all practical purposes if $\frac{S}{-}$ is

greater than .5 an arithmetic degree *mean* difference can be used.

Coefficients of Heat Transfer in Apparatus. — In table XLVIII is given overall unit heat transfer coefficients, as determined by experiments. They hold good for the general wall thicknesses found in refrigerating apparatus and when the surface is comparatively free from frost scale, oil and other foreign matter.

The best heat transfer is obtained from liquid to liquid followed by liquid to gas and the worst transfer is from gas to gas. Copper has a considerably higher rate of transfer than steel while lead is very much worse than either. Some important factors on which the rate of heat transfer depends are:

- 1. Velocity of fluids
- 2. Density and kinds of fluids
- 3. Temperatures at which they are handled

4. Thickness and material of separating wall

5. Smoothness and cleanliness of wall as regards foreign substances, material, as well as gases.

As an example to show the amount of steel pipe to be installed in a small storage box having a load factor of 3000 B.t.u. hr. and held at a temperature of 40° with 15° average expansion through the coil, using the fundamental formula (2) :=

$$3000 = 2.5 \times \text{sq. ft.} \times (40-15)$$

sq. ft. = 48.

Mean Temperature Diffeence	30° Fup Gravity Air Circulation—About 180°, per min. 15°-11° Gravity Air Circulation—About 120°, per min. 10°-11° Gravity Air Circulation—About 120°, per min. 20°-11° Gravity Air Circulation—About 120°, per min. 20°-11° Gravity Air Circulation—About 120°, per min. 10°-11° Gravity Air Circulation—About 120°, per min. 10°-11° Gravity Air Circulation—About 120°, per min. 10°-11° Bravity Air Circulation. 10°-11° Britet Expansion 10°-20° Forced Air Circulation, 600°, per min. 10°-20° Forced Air Circulation. 10°-20° Forced Air Circulation. 10°-20° Forced Air Circulation. 11°-118° Madium Brue Agitation—I change in 10 min. 11°-218° No Brine Agitation—I change in 10 min. 11°-218° Brine Congeals on Submerged Expansion Coils 11°-218° Waditation—I change in 10 min. 11°-218° Brine Congeals on Submerged Expansion Coils 11°-218° Water Over Coils Atronout 30°, per second 11°-218° Water Over Coils Atronout 30°, per second 11°-218° Water Over Coils Atronout 30°, per second 11°-218°
Heat Transfer Coefficient	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$
Apparatus	Direct Exp. Coils. Direct Exp. Coils. Brine Coils. Brine Coils. Brine Coils. Brine Coils. Holdover Brine Tank. Holdover Brine Tank. Holdover Brine Tank. Holdover Brine Tank. Brine Coils. Brine Coils. Lice Tank Coils. Brine Cools. Correaling Tank. D. P. Brine Cooler. Water Cooler. Water Cooler. Water Cooler. Atmos. Condenser. Atmos. Condenser. Atmos. Condenser. Atmos. Condenser. Atmos. Condenser. Atmos. Condenser. Mater Cooler. Water Cooler.
Heat Transfer From To	Gas Cooling. Liq. Boiling. Gas Cooling. Liq. Boiling. Gas Cooling. Liq. Boiling. Gas Cooling. Liq. Warming. Gas Cooling. Liq. Warming. Liq. Cooling. Liq. Warming. Liq. Cooling. Liq. Boiling. Liq. Cooling. Liq. Warming. Vapor Cond. Liq. Warming. Liq. Cooling. Liq. Warming. Liq. Cooling. Liq. Warming. Liq. Cooling. Liq. Warming.

TABLE XLVIII.--HEAT TRANSFER COEFFICIENTS, IN B.T.U. PER HOUR PER SQ. FT. PER DEGREE TEMP. DIFF.*

*From "Principles of Refrigeration," Nickerson & Collins Co., Chicago.

HOUSEHOLD REFRIGERATION

Since it takes 2.3 ft. of $1\frac{1}{4}$ " pipe to make 1 square foot of surface, it will be necessary to use $48 \times 2.3 = 110$ ft.

From the foregoing it can readily be seen that many refrigerating problems are really heat transfer problems, and can be solved by either formula—1 or 2.

.

:

CHAPTER VI

REFRIGERATING SYSTEMS.

History and Principles of Refrigerating Systems.—The following chapter is devoted to historical data and the general principles underlying the operation of the principal refrigerating systems. The air refrigerating machine works on a principle of cooling by the absorption of sensible heat, and was one of the first types given consideration. Absorption refrigerating machines were also given early consideration.

The inherent advantages of the compression refrigerating machine, in which advantage is taken of the latent heat of evaporization, were early recognized and this type of system, consequently, was subjected to development and perfection at an early date. A chemical method for producing refrigerating effects has been used for centuries, but of course, the commercial application of such methods is limited, on account of the high cost of producing such refrigerating effects.

Following a discussion of the refrigerating systems, attention is given to the requirements of a household system, in which special attention is devoted to the design and construction of the different component parts of such systems.

Gorrie Air Machine.—The first air refrigerating machine was invented by Doctor Gorrie at New Orleans about 1850. Air was compressed in a cylinder and delivered to a chamber which was immersed in the cooling water. The pressure in the chamber was maintained at about 15 pounds per square inch above the pressure of the atmosphere. Water injection was used to partly cool the air during compression. Both air and water were delivered to the receiver. The air in the receiver was further cooled by the water on the outside. Then the air was expanded in another cylinder discharging at about atmospheric pressure. The expanding air was mixed with a quantity of brine which was injected into the expansion cylinder. The expanding air cooled the brine to about 20° F. This cold brine was used for ice making or refrigeration.

Kirk Air Machine.—Dr. Alexander Kirk invented a closed cycle air machine about 1861. This machine used a confined mass of air, operating always at pressure considerably above atmospheric pressure. Machines of this same type were made by Allen, an American, and Windhausen, a German.

Open Cycle Air Machine.—The open cycle air machine consists of two cylinders called a compression cylinder and an expansion cylinder. Air from the room which is to be cooled is taken in the compression cylinder. It is compressed and therefore warmed. This compressed air is then cooled by circulating water. This air is then made very cold by expansion to atmospheric pressure. Upon reaching this condition it is returned to the cold room.

Open cycle air machines of this type were proposed by Lord Kelvin and Professor Rankin about 1852. The first actual machine operating on this principle was made by Giffard in 1873. At a later date, machines of this type were made, namely the Bell-Coleman and other improved designs by Mr. Lightfoot, Messrs. Haslam and Hall.

The air machine has a relatively large power consumption and is only used to any large extent on ships.

Allen Dense Air Machine.—The dense air machine is used to some extent on boat installations.

In this system air is compressed to about 250 pounds and then cooled by the cooling water. This cooling is usually performed by a copper coil immersed in water.

The air is then passed through a moisture separator, after which it is conducted to the expansion cylinder. In this cylinder the air is expanded to about 60 to 70 lbs. pressure and a very low temperature.

The 70 lbs, air is then passed through an oil separator before being returned to the compressor to start another cycle. A primer pump is used to automatically supply make up air.

Machines of this type require considerable attention to eliminate trouble from ice forming within the evaporator, due to freezing the water vapor supplied by the make up air. Lubrication is rather difficult on a machine of this type.

This system of refrigeration has not proven successful for small household machines, although the use of air as a refrigerant has some important advantages in this particular field of refrigeration.

Low Pressure Air Refrigeration System.—A recent development in household refrigerating machines operates on the principle of accelerating the evaporization of ammonia or alcohol by blowing air through the liquid.

The air is compressed by a blower to a pressure of 10 to 15 lbs. gauge. The blower is usually direct-connected to the motor and operates at motor speed.

This process is claimed to operate at efficiencies better than those obtained in the usual compression system.

Water Vapor Absorption Machines.-In the absorption type machine, two substances are used which have an affinity for one another so that one unites or dissolves in the other when they are cold, but they separate readily when heated. Sulphuric acid when cold has a great affinity for water. Heating a sulphuric acid and water mixture drives off water vapor. This vapor is condensed by the cooling water. The acid is then cooled and reabsorbs the water vapor at a low temperature and a very low pressure. There is a very low vacuum during both parts of the cycle. The absorbing substance acts like a pump and maintains a low pressure during the cooling cycle. This principle was first used by Professor Leslie in 1810. A small machine of this type was made by M. E. Carré in 1875 for household work. It consisted of an air pump, and a chamber to contain the acid. A rod on the pump handle served to agitate the surface of the sulphuric acid. Mr. Windhausen made a large machine of this type in 1878. A small machine of this type is on the market at the present time, being manufactured by the Pulsometer Co., of Reading, Eng., and others.

Machines of this type have an overall thermal efficiency of about fifteen per cent which is lower than the compression type.

Ammonia Absorption Machines.—The ammonia absorption machine works on the principle of ammonia dissolving in water. One quart of water will dissolve about 500 quarts of ammonia gas. Ammonia has a higher vapor pressure than water and the absorbing is accomplished under a pressure considerably above atmospheric. Heating a water and liquid ammonia mixture drives off ammonia gas. This gas is condensed by the cooling water. The water is then cooled and reabsorbs the gas at a low temperature. In actual practice only part of the ammonia is driven off from the aqua solution.

The ammonia absorption machine was invented by F. Carré about 1858-1860. The original machine was a very crude affair, consisting merely of two vessels—one surrounded by cold water, the other containing the ammonia and water. The original patent in the United States was issued October 2, 1860, the reissue being dated February 18, 1873. The Carré machine, subsequently improved by Mignon and Rouart in France, Vass and Littmann in Germany, Reece, Mort, Nicolle, and others in England and Australia, marked a great era in mechanical refrigeration.

The Carré machine was the first one to obtain a foothold in the ice making industry in the United States. The first machine was shipped through the blockade in 1863 to Augusta, Ga., by Mr. Bujac of New Orleans. It was supposed to have a capacity of 500 pounds per day. Due, mainly, to the parties who had it in charge, the machine was not a success, and in 1866 it was shipped to Gretna, La., where it was run for exhibition and experimental purposes. Three other Carré machines, purchased by the firm of Bujac & Girarde, New Orleans, La., and installed in that city, also proved unsuccessful in operation.

128

In the fall of 1865, the firm of Mepes, Holden, Montgomery & Co. purchased the first of these machines and shipped it to San Antonio, Tex., and put it in operation under the supervision of D. L. Holden.

The absorption refrigerating machine is now manufactured by the Carbondale Machine Co., Columbus Iron Works, Henry Vogt Machine Co., York Manufacturing Co., and others in the United States. Messrs. Haslam and Hall now manufacture a machine of this type formerly developed by Messrs. Pontifex and Wood, in England. The overall thermal efficiency of the ammonia absorption system is about 25 per cent.

History of the Vapor Compression Machine.—The first machine of the vapor compression type was invented by Jacob Perkins, an American, and patented in England in August, 1834. It was further developed by Twining, who took out his English patent in 1850. This machine was not a commercial success.

It was not until 1857 that James Harrison of Geelong, Australia, made a compression machine using sulphuric ether which was of commercial value. Messrs. Siebe and Gorman later manufactured these machines in England. This refrigerant is not used today.

In April, 1867, Prof. P. H. Van der Weyde of Philadelphia, Pa., obtained patents for the use of naphtha, gasoline, petroleum, ether and condensed petroleum gas (chimogene) as refrigerants, and obtained patent on his compression refrigerating machine.

Mr. D. L. Holden, after his successful experience in San Antonio with the Carré ammonia absorption machine in 1865, purchased the patent rights of Prof. Van der Weyde and built his first compression machine at the Novelty Iron Works in New York City. Several other compression refrigerating machines using ammonia were built and installed by Mr. Holden in New Orleans, La., Bonham, Houston and Galveston, Tex.; Mobile, Ala.; Thibodauxville, La.; Selma, Ala., and Charleston, S. C. In September, 1869, and April 1870, and at various later dates, Mr. Holden obtained patents on his "regaled" ice making system. In 1868, Charles Tellier, of Passy, near Paris, took out patents on his compression apparatus, whose refrigerating agent was methylic ether, and which was designed to make ice and to refrigerate air and liquids. The date of his letters patent in the United States was June 5, 1869, and one of his machines was erected in the Old Canal Brewery, New Orleans, by George Metz, with the object of producing cold, dry air, and making ale and lager beer without the use of ice.

In the seventies appeared the inventions of Francis D. Coppet of New Orleans; Franz Windhausen, Germany; Prof. C. P. G. Linde of Munich, Bavaria; Raoul P. Pictet, Geneva, Switzerland; Thos. L. Rankin of Ohio; Martin & Beath, San Francisco; A. T. Ballentine of Maine; James Boyle of Texas, and David Boyle of Chicago.

In 1877 Mr. Enright designed and built a machine having a vertical double-acting compressor, and in the fall of the year one of this type was installed in the brewery of A. Zicgele of Buffalo, N. Y. In 1878 patents were issued to the inventor, not only for his double-acting compressor, but for the pipe joint commonly known as the Arctic.

Vincent constructed a chloride of methyl compression machine in 1878. M. Raoul Pictet invented a sulphurous acid machine about 1875. This machine is used in France and Switzerland. Dr. Carl Linde, of Munich, introduced the ammonia machine in 1876.

In 1878, the first compression machine made by C. J. Ball was erected at Dallas, Tex. Upon his retirement he was succeeded by his son, P. D. C. Ball, who conducted the business under the name of the Ice & Cold Machine Cc., until 1920, at which time the name of the company was changed to the Ball Ice Machine Co.

The first De La Vergne refrigerating machine was placed in the Hermann Brewery, New York City, in 1879. One of the inventors of the original apparatus, John C. De La Vergne, was engaged in the brewing industry in 1876, and in 1881 he formed the De La Vergne Refrigerating Machine Co., for the manufacture of the so-called De La Vergne-Mixer Machine, the second patentee being William M. Mixer of New York. The refrigerating department of the Frick Co. originated about 1881, when either Mr. Jariman or Mr. Ferguson of Baltimore, Md., submitted plans of machinery to George Frick, and plants were subsequently erected for several parties in that city.

About 1882 Peter Weisel, the founder of the business now conducted by the Vilter Manufacturing Co., Milwaukee, Wis., designed a double-acting horizontal refrigerating machine which the firm of Weisel & Vilter commenced to build in that year. The first machine was installed in the Cream City Brewery, Milwaukee.

In 1885 W. G. Lock, an engineer of Sidney, Australia, patented a compound compressor for ammonia consisting of two single-acting high and low-pressure pumps, side by side. Patents covering the idea were issued as early as 1867, and the Lock improvements, together with the St. Clair compound machine, manufactured by the York Manufacturing Co., were great improvements on the originals. Thomas Shipley, vice-president and general manager of the company, made a number of most important changes and improvements on the originals, and also patented other improvements on ice making and refrigerating plants.

The compression refrigerating machine is now produced by a number of the leading manufacturers in the United States.

The carbonic acid machine was patented by Raydt in 1881 and later by Windhausen in 1886. This type machine is made by Messrs. J. and E. Hall of Dartford, Eng., The Linde Co., Messrs. Haslam and Hall and the Pulsometer Co.

The carbonic acid machine was introduced in the United States in the early eighties, and is now manufactured by American Carbonic Co., Brunswick-Kroeschell Co., Frick Co., Norwalk Iron Works, Wittenmeier Machinery Co., and others.

Vapor Compression Machines.—Most of the mechanical refrigeration of today is performed by vapor compression machines. In this process, a liquid is used which can be alternately liquefied and vaporized.

1

The liquids in common use are ammonia, sulphur dioxide, methyl chloride, ethyl chloride, ether, and carbon dioxide. The refrigerating cycle may be divided into four different phases:

- 1. Throttling effect through expansion valve.
- 2. Vaporization process in cooling coils.
- 3, Compression of vapor in compressor.
- 4. Cooling and condensing of vapor in condenser.

Refrigeration is produced by the latent heat of vaporization of these substances, all of which have a relatively low boiling point. The vapor resulting from the vaporization of the liquid in the cooling element is conducted to the suction side of the compressor. This vapor usually reaches the compressor in a slightly superheated condition. The compressor then forces the gas into the condensing element, where it is liquefied by cooling, usually by means of water or air. The liquid refrigerant is then allowed to return to the cooling element through an expansion valve or a restricted orifice. This cycle is continuous.

The restricted orifice must always be sealed on the condensing or high pressure side with liquid refrigerant, in order to function properly.

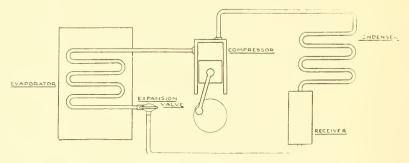


FIG. 9.—COMPRESSION REFRIGERATING SYSTEM.

The cooling element may operate either on a flooded or dry system. In the flooded system, a relatively large amount of the liquid is stored in the cooling element and a regulation of the restricted orifice keeps this amount nearly constant. In the dry system, the regulation of this orifice is usually controlled by the pressure of the low or evaporating side.

132

REFRIGERATING SYSTEMS

Statistics show that more than 90 per cent of all the refrigerating and ice making plants in the United States today are operated on the ammonia compression system. This is only true of the commercial or larger size plants as the household systems favor sulphur dioxide compression machines.

The compression refrigerating system is shown diagramatically by Fig. 9. The five essential parts shown are the compressor, condenser, receiver, expansion valve, and evaporator. An ordinary piston type of compressor is illustrated.

Chemical Methods.—It is a well known fact that when ice melts the temperature remains constantly at 32° F. Heat is supplied to cause this physical change of state from a solid to a liquid, and if the rate of heat supply be increased or decreased there will be no change in the temperature of the ice but simply a change in the rate of melting. Mixtures of some salts with ice and of certain salts with water or acids do not follow this same rule. For example, if salt is mixed with ice the rate of melting will tend to increase more rapidly than the heat is absorbed and the temperature will fall below that of melting ice. The temperature will be depressed a certain amount depending upon the per cent of salt used.

United States Department of Agriculture Bulletin No. 98 gives the temperature resulting from mixtures of ice and salt as follows:

Per Cent Salt	Degrees F.
Q	
5 10	
15	
20	
25	10.

The temperature of water may be lowered as much as 40° F. by dissolving ammonium nitrate in it. Ice may be formed in this way.

The lowering of temperature by means of ice and salt mixtures is shown graphically in Fig. 10. This figure illustrates how the temperature is reduced as the percentage of salt is increased. This chart is for ordinary salt, sodium chloride.

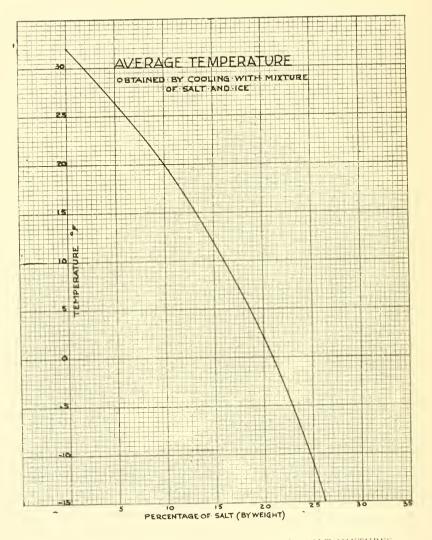


FIG. 10.---TEMPERATURES OBTAINED BY ICE AND SALT MIXTURES.

Water for Cooling Food.—Farmers' Bulletin No. 375 of the United States Department of Agriculture gives the following, in reference to cooling of foods, by means of water:

There are many ways of lowering temperature by utilizing the fact that water when evaporating draws off heat from surrounding objects. If a pitcher of water be wrapped with a cloth which is kept saturated and exposed to a draft of air, the temperatures of the water in the pitcher will be lowered by several degrees.

A receptacle in which food is placed may be cooled in the same way. Take a wooden box with a sound bottom made of one piece and invert it. Tack a layer of cotton batting over it and cover with some coarse cloth. It is now to be kept wet by some contrivance that will furnish an automatic drip. The writer used for this purpose an old aluminum pan which had in it a half dozen very tiny holes, and when filled with water it supplied just enough water to keep the cloth saturated. Under this box lettuce in cold water, a cold pudding, a pat of butter, and other food were placed and kept in good condition. A pan of milk lowered into another of cold water is kept from souring many hours longer than if it was unprotected from the surrounding air. Spring water of low temperature is used by many farmers' wives to keep milk and butter cool, and a "spring house" is a common thing on many farms, though less depended upon than was the case before ice houses, refrigerators and ice chests became so common.

It is also an old-fashioned practice to lower foods in covered pails into the well and suspend them not far above the surface of the water.

Requirements.—The requirements of a household refrigerating machine may be summarized as follows:

1. Maintain food compartments between $40-50^{\circ}$ F .automatically.

2. Freeze water and desserts in reasonable length of time.

3. Low initial cost.

4. Dependable operation without adjustments, hand controls, or service.

5. Simplicity of design.

6. Simplicity of operation.

7. Efficiency of operation.

8. Quietness of operation.

9. Prevent leakage at stuffing box

10. Accessibility for repairs.

11. Safety of operation of exterior moving parts, of electrical apparatus or fuel burners.

12. Adaptability for installing as a single unit with cabinet.

13. Freedom from wear of moving parts.

14. Positive operation of valves.

15. Insure necessary lubrication under all conditions of service.

16. Prevent misplacement of lubricant.

17. Limit the number of gasket and pipe connections whereby refrigerating gas might escape.

18. Protect compressor from damage of pumping liquid refrigerant or lubricant.

19. Insure necessary cooling of compressor and motor.

20. Protect metals from rust and corrosion.

The household refrigerating machine has been under development for the past forty years. This work includes problems in mechanical, electrical, and chemical engineering. It has proven very difficult to construct a machine which will start and stop itself at required intervals, which will be selfregulating and self-oiling under all conditions, and which will be fool-proof and of such simplicity that a servant can operate it.

The machine should be entirely automatic as the advantages gained over the use of ice are not sufficient to compensate for a manually controlled system. Machines have been proposed which would be started manually and stopped automatically. Other plants have been proposed which would operate all of the time, varying the speed of the compressor according to the temperature in the food compartment. These experiments have not proven successful commercially.

The machines should make ice in small quantities or freeze desserts for table use. This feature assures the user that it is functioning properly. Experience shows that thermometers placed in food compartments are seldom understood, but the fact that ice is frozen and stored in the brine tank or cooling element is convincing proof that the machine is operating satisfactorily. The time required to freeze ices or desserts should not be longer than five hours, the usual time between meals, unless there is a large ice storing capacity insuring a reserve supply.

A large amount of work has been done on compressor design and development. It has been estimated that 90 per cent of the experimental work performed on household refrigerating machines has been on compressor development. Many concerns have met with financial difficulties before emerging from the compressor development stage, while others have placed their machines on the market without taking time to develop the other important parts of the refrigerating system. Some very satisfactory compressors have been built and efforts are now being made to better the condensing, evaporating, ice making, and automatic control features.

In Europe and the tropics where labor is cheap and electricity is not available, there is a demand for hand operated machines. These are produced in large quantities, usually of a small refrigerating capacity, just sufficient to cool a carafe of water in a few minutes and make several pounds of ice in a half hour. The larger sizes will make 20 to 30 pounds of ice per hour. These are vacuum systems using sulphuric acid to absorb the water vapor, an improved form of the Carré sulphuric acid freezing machine.

Household refrigerating machines will not be used in large quantities until the mechanical features have been perfected, and until they operate at a cost comparable with that of buying ice. It is merely an improvement on existing conditions.

The initial cost must be low as the average family uses between 100 and 200 lbs. of ice weekly. The average yearly cost of ice would be about \$40.00.

The Compressor.—The reciprocating type of compressor is in general use with refrigerants such as sulphur dioxide, ammonia, methyl chloride, carbon dioxide, and high pressure air.

Blowers and turbine compressors are mostly used with refrigerants such as ethyl chloride, ether, formic-aldehyde, and low pressure air. With these gases, a relatively large amount of gas must be handled.

Herringbone gear compressors have been used to some extent on sulphur dioxide machines, but they have not as yet met with success commercially.

Sulphur dioxide compressors are used most extensively on household refrigerating machines. These compressors are usually of the single-acting type with two vertical cylinders, although some machines on the market today have one and others three vertical single-acting cylinders. They operate at from 250 to 500 r.p.m., the speed being limited mostly by noise and efficiency of the valves. The multi-cylinder compressors are favored in order to reduce the starting torque.

Some progress has been made with sulphur dioxide compressors operating at motor speed or about 1750 r.p.m. The cylinder on a machine of this type is usually less than one inch in diameter, for use with a 1/4-hp. motor. Most machines using these compressors have been of the double-acting single cylinder design. One manufacturer uses a four-cylinder compressor operating at motor speed.

The displacement in cu. in, per min, for a compressor of average efficiency necessary to produce the refrigerating effect equivalent to 100 lbs, of ice melting per day is approximately as follows:

Sulphur dioxide 1,200 to 1,800 Ammonia 450 to 670
C_{-} $(0.4c_{-}, 1.20)$
Carbon dioxide

An important part of the compressor design is the packing gland which seals the drive shaft. Most of the first models used a packing of fiber, asbestos, and graphite, forced against the shaft by means of a spring acting against a metal gland. The spring automatically compensates for wear. It is advantageous to have oil on both sides of a packing gland of this type.

A later development is to use a ring of metal containing graphite. This ring is forced by means of a spring against a collar turned on the shaft. This ring may be attached to one end of a metal bellows, thus having only one surface to seal instead of two if the metal bellows is not used.

It is a decided advantage to have the packing gland on the slower speed shaft when a reduced speed drive is used. Some machines are entirely or partly enclosed, thus eliminating the packing gland.

The design of a compressor includes a system of lubrication which should function under many different operating conditions. The lubricant usually has a tendency to locate and stay in the evaporating coils. This condition lowers the rate of heat transmission in the evaporator. The return of lubricant to the compressor through the suction line is usually the result of some temporary unusual working condition. It is difficult to design a refrigerating system in which the lubricant returns regularly from the evaporation element to the compressor.

The piston type compressor usually has surplus lubrication of the pistons and cylinders.

In the herringbone gear type compressor, it is necessary to have generous lubrication of the gears in order to pump gas. Small holes feed lubricant to the gears during part of their rotation. If too much lubricant is supplied it decreases the amount of gas pumped. Lubrication is one of the most difficult problems in the gear type compressor.

The rotary compressor presents a difficult lubricating problem as the blades usually wear rapidly when forced against a surface.

Discharge Pressure Pounds Gauge	Volumetric Efficiency Percent	Watt-minutes per cu. ft. Free Air Delivered per Minute
0	72.5	253
20	65.8	330
40	58.7	402
60	52.1	481
80	45.1	573

TABLE XLIX.—AIR PUMPING TEST ON A STANDARD TWO-CYLINDER AIR-COOLED SULPHUR DIOXIDE COMPRESSOR.

Using 1/4-hp., 110-volt, a. c. R. I. Standard Motor.

Table XLIX gives the results of an air pumping test on a standard two-cylinder air-cooled sulphur dioxide compressor. The test results give the volumetric efficiencies as the discharge pressure is increased from 0 to 80 pounds per square inch gauge. The resulting watt-minutes per cubic foot of free air delivered per minute are given also.

Table L gives similar results for an air pumping test on a standard three-cylinder air-cooled sulphur dioxide compressor.

HOUSEHOLD REFRIGERATION

Discharge Pressure Pounds Gauge	Volumetric Efficiency Percent	Watt-minutes per cu. ft. Free Air Delivered per Minute
0	70.8	238
20	61.3	342
40	56.6	432
60	52.5	526
80	49.7	620

TABLE L.—AIR PUMPING TEST ON A STANDARD THREE-CYLINDER AIR-COOLED SULPHUR DIOXIDE COMPRESSOR

Usin; 1/6-hp., 110-volt, a. c. R. I. Motor.

Table LI gives similar results for an air-pumped test on a herringbone-geared type compressor.

TABLE L1.—AIR PUMPING TEST ON HERRINGBONE GEAR TYPE COMPRESSOR.

Discharge Pressure Pounds Gauge	Cu. Ft. Free Air Delivered Per Minute	Watt-minutes per cu. ft. Free Air Delivered per Min
0	0.87	150
10	0.857	187
20	0.833	240
30	0.78	302
40	0.75	367
50	0.75	413
60	0.74	440
70	0.732	512
80	0.69	610

Used 1/4-hp., 110-volt a. c. R. I. Standard Motor (1,775 r.p.m.).

The Condenser.—The condenser is used to cool and liquefy the refrigerant gas as it leaves the compressor or blower. The customary cooling medium is either water or air.

Some systems use tap water from the city mains. A sufficient quantity of water should be used so that its outlet temperature is not more than 15° or 20° F. higher than the inlet or tap water temperature. If less water is used, an excessive condensing pressure will likely result. On large plants it is customary to use sufficient water for a 10° F. water inlet and outlet differential.

Some household systems use the same water over and over again. In a system of this kind, it is an advantage to conduct the warm water leaving the condenser to a well or tank which is in the ground. In this way the water is cooled during the periods when the machine is not in operation.

The water supply is sometimes regulated by a valve which opens automatically at a certain predetermined condensing pressure. Then as the condensing pressure increases, the valve opens wider allowing more water to flow through the condensing coil. This system compensates for different temperatures and pressure of condensing water and to some extent, for other variations in operating conditions. A machine operating on this principle requires still another control to prevent operation when water is not available, even though this water-regulating valve functions properly.

Another water control system in use is a valve which opens automatically when the machine is operating and closes during the inoperative periods. This valve does not regulate the amount of water used so that any change in pressure or temperature of the water supply is not compensated for automatically. This system may waste considerable water or may cause the plant to operate inefficiently at times.

The packing on automatic regulating water valves has given some trouble in service. This difficulty has been met by using a copper bellows or rubber diaphragm to seal the valve stem and eliminate the packing troubles.

There are three general types of water-cooled condensers in use: The submerged type, in which the pipe containing the refrigerant gas is submerged in the water, and the double-pipe condenser in which one pipe is inside a larger one. The refrigerant gas flows through the annular space and the water through the inside pipe. This gives the advantage of some cooling by the atmosphere. A condenser of this type is usually arranged to have counter-current heat flow, the cold water entering the liquid outlet at the end of the condenser. The other method is to submerge the cooling water pipe in the gas space itself. The refrigerant gas condenses on the pipe and drops into a sump or receiver.

When copper tubing is used for water-cooled condensers, the usual practice is to use from two to three square feet of cooling surface per 100 lbs. ice melting effect. On a small household plant, the average cost of water is less than two per cent of the total operating cost, so that it is usually practical to use tap water which wastes to the drain.

Air-cooled condensers are rapidly gaining favor for small household machines. Some of the more important advantages of the air-cooled condenser are: Lower initial cost, reduced cost of installation, simplified apparatus, no danger of water lines freezing in winter, and water cooling limits location of mechanical unit.

Air-cooled machines usually operate at condensing pressures, twenty-five to thirty per cent higher than on watercooled systems. This of course lowers the efficiency of the system, however the increased simplicity may compensate for this loss in efficiency.

There are two systems of air cooling in common use. In the dead air system a relatively large amount of condenser cooling surface is used. With the forced air system a smaller amount of condenser surface is used. A fan or blower forces the air over all or part of the condenser, thus procuring more efficient use of the cooling surface and permitting the use of less surface.

Machines using the dead air type condenser have been used mostly on installations where the mechanical unit is placed in the cellar. This assures a relatively low condenser temperature, averaging between 7° and 10° F. lower than the refrigerating cabinet environment temperature.

The usual practice on dead air-cooled condensers is to use from ten to twelve square feet condenser surface for each one hundred pounds ice melting refrigerating capacity. Less than half this surface is needed with forced air cooling, the exact amount depending upon the amount of air used and the efficiency with which it is used.

Some air-cooled systems use a large capacity condenser so that it also serves as a receiver for the liquid refrigerant. This feature eliminates pipe connections and adds to the simplicity of the machine.

Table LII gives capacities and horsepower for different sizes of Sirocco blowers. This table gives the cubic feet of air delivered per minute r.p.m. and brake hp., at various suction pressures, expressed in inches of water for some of the small blowers.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of Fan	Diameter of Wheel, Inches	Suction Pressure Inches of Water	Cubic Feet Air Deliv- ered per Minute	R. P. M.	Brake Horse Power
$\frac{1}{1}$	$\begin{array}{c} 00\\ 00\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7\frac{1}{2} \\ 7\frac{1}{2} \\ 7\frac{1}{2} \end{array}$	$ \begin{array}{c} \frac{1}{1} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} $	57 69 90 127 155 182 222 160 226 276 325 394 464 250 354 431	$\begin{array}{c} 3160\\ 3885\\ 1480\\ 2110\\ 2590\\ 3025\\ 3700\\ 1110\\ 1580\\ 1940\\ 2270\\ 2770\\ 3240\\ 885\\ 1265\\ 1555\\ \end{array}$	$\begin{array}{c} 0.0115\\ 0.0208\\ 0.0087\\ 0.0258\\ 0.0466\\ 0.0745\\ 0.137\\ 0.0155\\ 0.046\\ 0.083\\ 0.1325\\ 0.244\\ 0.381\\ 0.0242\\ 0.072\\ 0.1295\\ 0.207\\ 0.381\\ \end{array}$

TABLE L11. — SIROCCO BLOWER DATA, CAPACITIES AND HORSE POWER

The following are some of the leading characteristics of fans:

Capacity varies as speed Pressure varies as (speed)² Horsepower varies as (speed)³ Horsepower varies as (capacity)³ Horsepower varies as (pressure)³/² Horsepower varies as (diameter)² Speed varies inversely as diameter. Speed varies as density. Capacity varies as $\sqrt{}$ absolute temperature. Horsepower varies as $\sqrt{}$ absolute temperature.

Table LIII gives the results of some tests of exhaust fans. In this table, it will be observed that the size of the fan varies from three inches to sixteen inches, and the corresponding data are given for r.p.m, watts consumed, air velocity in feet per minute, air delivered in cubic feet per minute, cubic feet delivered per watt of electrical energy consumed, and characteristic of electric current.

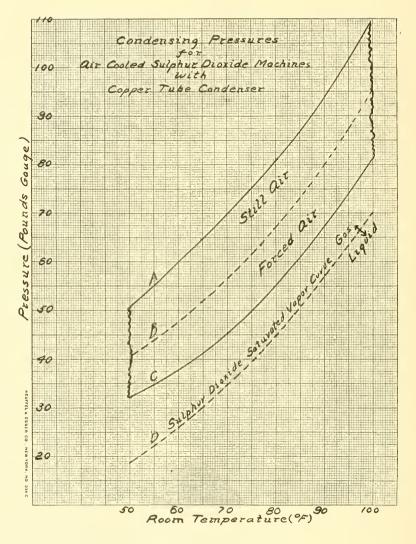


FIG. 11.—CONDENSING PRESSURE FOR AIR-COOLED SULPHUR DIOXIDE MACHINE.

Diameter Fan	Discharge Outlet	R.P.M.	Watts	Air Velocity per Minute	Air Deliv- ered Cu. Ft. per Minute	Cu. Ft. per Watt	110 Volt
	21/2 in.	2660	37	2355	80.1	2.16	D.C.
3 in.	$2\frac{1}{2}$ in.	2075	29	1775	80.3	2.08	D.C.
$4\frac{1}{2}$ in.	35/8 in.	1730	66	1780	125	1.89	A.C.
6 in.		1100	111	1680	201	1.82	A.C.
9 in.	9 in.	1610	38	815	360	9.48	D.C.
9 in.	9 in.	1550	66	1185	523	7.93	A.C.
12 in.	12 in.	1140	58	818	643	11.08	D.C.
		1620	48	520	489	10.18	A.C.
		1400	67	1170	921	13.7	A.C.
12 in.	12 m. 16 in.	1030	81.5	518	805	9.88	A.C.
16 in.	10 111.	1000	01.5	510	000		

TABLE LIII, ---- TESTS ON EXHAUST FANS.

Condensing Pressure for Air Cooled Compressors. — Fig. 11 shows the condensing pressure in pounds per square inch gauge for air-cooled sulphur dioxide refrigerating machines, equipped with copper tube condensers. The curves show graphically how the condensing pressure increases with the increase of the room temperature. The space between curves A and B shows the result when the proper tube condensers are exposed to still air, while the space between curves B and C shows the results when forced air circulation over the condenser is used. The curve D is the saturated vapor curve for sulphur dioxide and represents the corresponding condensing temperatures for the pressures shown on the left-hand side of the diagram. The relative distances between curve D and the curves A, B, and C show how nearly the condenser pressure approaches the theoretical possibilities.

Flintlock Condensers.—Fig. 12 shows a new type condenser developed for air-cooled electric refrigerators by Flintlock Corporation of Detroit, Michigan.

One lineal foot of this finned tubing has been found to have the equivalent cooling capacity of ten feet of copper tubing of equal size, when air is drawn through at an average velocity of 500 feet per minute.

Tests have proven that draw fans are more efficient than blow fans. Only that amount of air which can be drawn through the free area of the condenser need be handled by the fan. Fig. 13 shows a cross section of tubes also the internal fins. The construction is of brass tinned inside and out. The

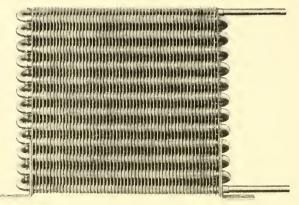


FIG. 12 .-- FLINTLOCK AIR COOLED CONDENSER.

tubes are an integral part of the fins. Heat transmission does not pass through a soldered joint.

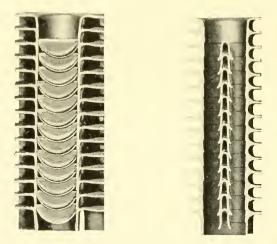


FIG. 13 .- CROSS SECTION OF TUBES-SHOWING INTERAL FINS.

Fig. 14 is a typical installation of this type condenser on a compressor unit.

Tubes and Spiral Fin Tubes.—The use of drawn seamless tubes or coils made into simple, or sometimes fairly compli-

REFRIGERATING SYSTEMS

cated forms, is very extensive throughout the refrigerating industry. Considering household machines, the conventional condenser and evaporator consists of many feet of seamless copper tubes, or steel tubes in case animonia is used as the refrigerant. The copper tubes used ordinarily are 1/4 inch outside diameter, 5/16 inch up to 1/2 inch outside diameter with a wall thickness of about 0.015 to 0.032 inch. These tubes



FIG. 14.-TYPICAL INSTALLATION OF FLINTLOCK CONDENSER.

have ample bursting strength, are soft, easy to work with and when formed into coils present an attractive appearance.

In some designs the tubing is flattened before or while it is being formed into a coil; the object in flatting the tubes is, of course, for a given tube spacing to increase the area of the air passages between the tubes. For example, if a coil is formed with 3/8 inch tubes the center lines of which are 5/8inch apart, the air passage between the tubes will be 2/8 or 1/4 inch. However, if the same tubes are flattened to a thickness of 3/16 inch the air passage will be increased from 1/4 inch to 7/16 inch. Further, if desired, the tubes can be placed closer together so that the air passage is still 1/4 inch as before, but the overall dimensions of the coil, consisting of a

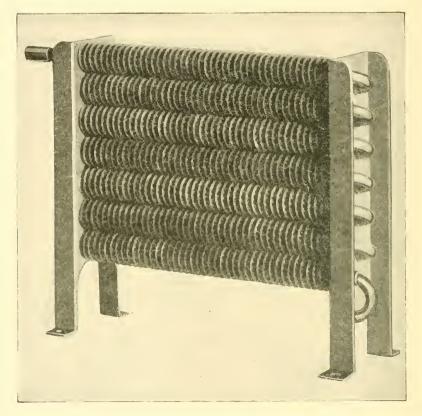


FIG. 15.—SPIRAL FIN TUBE CONDENSER.

given number of feet of tubing, will obviously be reduced. In any case it is clear that there is a definite gain in the use of flat tubes and whether or not this gain is sufficient to warrant the expense of flattening the tubes should be decided in each case.

Instead of using plain tubing for condensers, evaporators, etc., it is possible and very advisable under certain conditions

to use so-called spiral fin tubes. As the name indicates, a spiral fin, about 1/4 inch wide and 0.006 to 0.008 inches thick, is wound spirally around the tube and attached to it securely

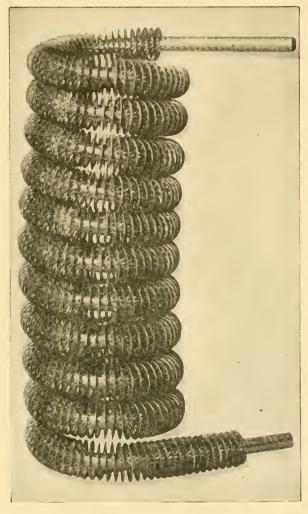


FIG. 16 .- SHOWING HOW SPIRAL FIN TUBE CAN BE SHAPED.

by means of solder. The finished product is known as a spiral fin tube. Such a tube can be wound and formed into various shapes as shown in Figs. 15, 16 and 17 showing typical con-

HOUSEHOLD REFRIGERATION

densers made by the McCord Radiator Company of Detroit, Mich.

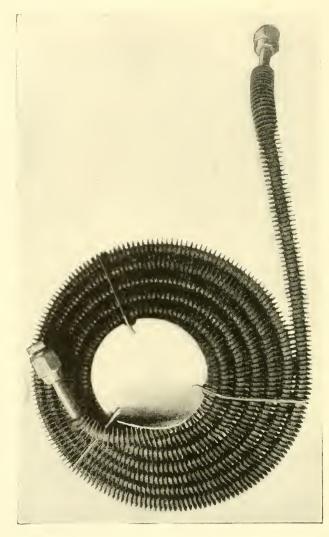


FIG. 17.—SPIRAL FIN TUBE.

A glance at Table LIV will show that the total outside surface of the spiral fin tubes is nearly seven times as large as the surface of the plain tubes from which they are made.

Since heat transfer from metal to a fluid such as air or brine depends upon the surface, it is clear that the spiral fin tube should have some advantage over the plain tube. This advantage is particularly large in such cases as that of condensing a refrigerant inside of a tube, over which a blast of air is directed by means of a fan or a blower. In a case of this kind the heat absorbed by the air per square foot of tube surface is very small compared to the heat transferred by the refrigerant to the tube. For example, if the latter is 20 times as large as the former it is clear that the factor limiting the overall heat transfer is the rate at which heat is absorbed by the air. However, suppose we increase the surface exposed to the air while the surface in contact with the refrigerant is maintained the same; then one square foot of the inner surface of the tube will furnish heat to seven square feet of the outer surface of the tube, instead of one square foot of the outer surface, and conditions will evidently be greatly improved.

Size	Width	No. Tubes	I. D. Tubes	No. Fins	Square Inch Radiating Surface
6" x 6" 7" x 7" 8" x 8" 9" x 9" 10" x 10" 10" x 12" 12" x 12" 14" x 14" 16" x 18"	1 1 4 " 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 1	$ \begin{array}{r} 18 \\ 20 \\ 24 \\ 26 \\ 30 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\ 36 \\ 32 \\ 36 \\$	$\begin{array}{c} 11 \\ 32 \\ 11 \\ 11$	$\begin{array}{c} 43\\ 50\\ 57\\ 64\\ 71\\ 71\\ 85\\ 99\\ 113 \end{array}$	$\begin{array}{r} 609\\ 814\\ 1114\\ 1364\\ 1682\\ 2016\\ 2415\\ 3778\\ 4937\\ \end{array}$

TABLE LIV-STANDARD SIZES OF FLINTLOCK CONDENSERS

The heat transfer from the condensing refrigerant to the tube can very aptly be compared to a boulevard 140 feet wide, terminating at a large square which would correspond to the tube which has a high conductivity; if this square connects only with one pavement, say 20 or 30 feet wide, we shall have the case of the plain tube, but if we have seven such streets radiating from the square, we shall have the case of a spiral fin tube.

HOUSEHOLD REFRIGERATION

If the temperature of the fin surface were the same as the temperature of the tube surface then a square foot of the fin surface would be equivalent to a square foot of the tube surface. But this is not the case, and therefore, a spiral fin tube having one square foot of tube surface and six square feet of fin surface will have an effective heat transfer capacity of $1 + (0.60 \times 6) = (1 + 3.6) 4.6$ instead of a capacity of (1 + 6) = 7, assuming that the efficiency of the fin surface is 60 per cent of that of the tube, while the plain tube would have a heat transfer capacity of one.

Another advantage of the spiral fin tube is the adaptability to compact designs. If 30 feet of spiral fin tubing replace 120 feet of plain tubing, as it has been done in practice, then it is clear that there will result compactness of design, and economy of space.

Further this compactness of design makes possible the improvement and control of the air flow through the coils. A very good example of this is Fig. 18 where the round condenser can be made to cover the fan and thus use its air blast very efficiently.

Calculation of the Surface of a Spiral Fin Tube.—Consider a 3/8 inch outside diameter tube wound spirally with a fin 1/4 inch wide and 1/6 inch pitch. The surface per foot length will be:

 $\pi 3/8 \times 12 = 14.18$ square inches per foot length of tube. Suppose that in winding the ribbon around the tube the outside diameter is maintained at (1/4 + 3/8 + 1/4) = 7/8 inch, and the excess material next to the tube is crimped. Then, the length of the ribbon, per turn will be practically, π (7/8) and its area, facing upward, π (7/8) (1/4). Thus the total fin or indirect surface, as it is sometimes called will be:

 $\pi 7/8 \times 1/4 \times 2 \times 6 \times 12 = 99$ square inches per foot length of tube. Where the factor 2 is introduced because there are two surfaces, one facing upward and the other facing downward; the factor 6 is used because we have 6 turns per inch length of tube and 12 in order to get the surface per foot length of tube. Adding the direct and indirect or fin surface we have

14.18 + 99 = 113.18 square inches per foot length. = 0.785 square feet per foot length.

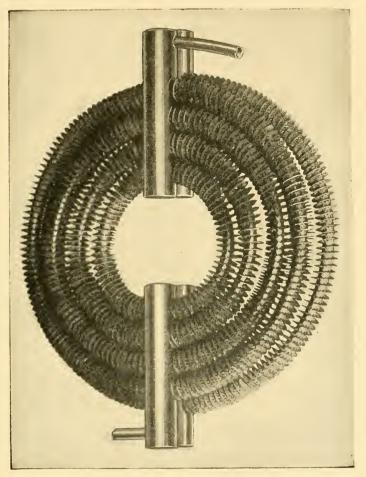


FIG. 18.—ROUND CONDENSER, DESIGNED TO COVER THE FAN.

Next suppose that instead of crimping the fin on the inside, we draw it through a die, and force it to assume a flat ringlike shape around the tube. The surface of the ring will be

> π (7/8)² (1/4) — π (3/8)² (1/4) or Approximately π (5/8) (1/4)

Where 5/8 is the average diameter of the ring and 1/4 its width. Thus the total indirect surface will be

 π 5/8 \times 1/4 \times 2 \times 6 \times 12 = 70.7 square inches per foot length.

The total surface of the spiral fin tube will be 70.7 + 14.18= 84.88 square inches per foot length. Thus the total surface

			Tube Sizes		
	5/16	3/8	7/16	$\frac{1}{2}$	5/8
Outside Diameter of Tubes, inches	0.312	0.375	0.437	(). 20 ()	0.625
Outside surface of tubes. square inches per foot length	11.78	14.18	16.49	18.85	23.56
Fins per inch length of tube	6	6	6	6	6
Width of fins, inches	0.187	0.250	0.250	0.250	0.250
Outside surface of fins when crimped, square inches per foot length	58.31	99.0	106.0	113.1	127.2
Total outside surface (crimped fins), square inches per foot length Square feet per foot length	70.09 4.85	$\frac{113.18}{7.87}$	$\frac{122.49}{8.50}$	$\begin{array}{c}131.95\\9.15\end{array}$	$150.76\\10.46$
Outside surface of fins when not crimped, square inches per foot length		70.7	77.7	85	99
Total outside surface (fins not crimped), square inches per foot length Square feet per foot length		$\begin{array}{c} 84.98\\ 5.9\end{array}$	$94.19\\6.54$	$\frac{103.85}{7.21}$	122.56, 8.72

TABLE LV-DATA ON COMMERCIAL FIN TUBES

of the crimped spiral fin tube is 113.2 square inches per foot length of tube, while that of the uncrimped spiral fin tube is 84.9 square inches or 75 per cent of the former.

Table LV gives in detail data on commercial spiral fin tubes, which were calculated as those outlined above.

The Evaporator.—There are two types of evaporator or cooling elements in general use. The type operating with an expansion valve is sometimes called the "dry" system. The

other type, in which a relatively larger amount of liquid refrigerant is retained in the evaporator, is the "flooded" system.

The "flooded" system has several important advantages. Heat transfer is more rapid through surfaces contacting with liquid than through surfaces contacting with a gas or a mixture of a gas and a liquid. The additional liquid refrigerant in the evaporator has a certain heat storage capacity which may prove advantageous.

A direct expansion system for a household machine usually requires a much smaller quantity of refrigerant. This is an advantage, if any danger is involved should the gas escape in the home. The direct expansion system has an advantage in giving an easier starting load when the machine is first placed in operation. This condition is very important when an air-cooled condenser is used. This system usually operates with a more uniform suction pressure, thus automatically regulating the refrigerating load more closely than with the flooded system.

It is customary to control the supply of liquid refrigerant to the flooded system by a float valve. A float on the liquid refrigerant surface drops when the liquid refrigerant is vaporized and removed by the compressor. This opens a valve, allowing sufficient liquid to enter the evaporator to maintain the liquid level required by the float to close the valve.

This valve may be placed in a reservoir forming part of the flooded evaporator, or in the liquid sump or reservoir below the condenser. When the valve is placed outside of the refrigerator, it is necessary to insulate the liquid line to the evaporator. In order to avoid this insulated line, most designs show this valve located in a header forming part of the cooling unit.

An evaporator in common use consists of pipes or tubes immersed in a solution of calcium or salt brine contained in a sheet-metal tank. This tank is placed in the ice compartment of a refrigerator and usually functions at a surface temperature colder than ice.

The average brine temperature found to be suitable for household refrigerators is about 20° F. The temperature may vary as much as 10° above or below this amount during the operating period without any objectionable results in operation. It has been found that with a 20° F. average brine temperature, ice and desserts can be frozen in quantities sufficient for household use within the shortest time intervals between meals, that is, five or six hours.

Experience has indicated that the food compartment of the average ice refrigerator will accommodate a large enough brine tank for the cooling with a 20° brine tank surface.

There are three principal factors involved in determining the amount of cooling performed by the evaporator:

- 1. Amount of effective evaporator surface.
- 2. Temperature of evaporator surface.
- 3. Rate of air circulation in the cabinet.

A brine tank will usually maintain a food compartment temperature under 50° F. under usual service conditions. If the brine tank has a surface equivalent to the average ice surface, it should, of course, produce lower food compartment temperatures, as the 20° F. brine tank surface is 12° colder than ice.

Some manufacturers use an evaporator made of pipes or tubing directly exposed to the air. This system eliminates the brine. Much difficulty has been experienced in making tanks to hold the brine solution, as there is a chemical and electrolytic action which frequently causes tanks to leak. This effect is especially bad with copper and solder exposed to the action of calcium chloride brine.

The brineless evaporator usually has a smaller heat storage capacity. However, with an automatic machine, this is not considered so important, as frequent operation is not objectionable. Sometimes this heat storage condition is improved by the addition of a heavy cast-iron sleeve to contain the ice trays and to also serve as a heat storage element.

A large amount of refrigerant is stored in the evaporator by some manufacturers to function as a heat storage capacity. When the heat storage capacity of the evaporator is relatively low, the cycles of operation are usually lengthened by increasing the temperature differential of the evaporating unit. A brine system might operate with a brine differential temperature of 4° (22° -18°). Nearly the same results would

be obtained on a brineless evaporator, say of half the heat storage capacity, but with a temperature differential of 8° $(24^{\circ}-16^{\circ})$. There would be some loss in efficiency in the latter case, as the compressor operates at lower efficiency at the lower suction pressure required to cool to 16° F. rather than 18° F.

It is very important to properly place the evaporator in the ice compartment. It should not project above or block the warm air flues. The warm air entering these flues should pass over the top of the evaporator with little or no restriction, so that it can drop along the four sides of the brine tank to replace the cold air passing out of the compartment. The sides of the evaporator should clear all side walls by at least two and, preferably, three inches. The clearance at the bottom should be at least three inches and preferably more.

The frost collecting on the evaporator sometimes interferes with the normal operating of the refrigerating system. As the evaporating surface is usually below 32° , moisture from the circulating air is deposited and freezes to the cold surfaces of the evaporator. This frost will gradually build up unless the evaporating surface temperature reaches 32° F. during the inoperative period of the cycle. This layer of frost acts as a heat insulator and increases the temperature in the food compartments. It is customary to stop the mechanical unit for certain periods every few weeks to permit this frost to melt off the evaporating surface.

It is an advantage to have an evaporator which will function so that the surface will have a high enough temperature to defrost each inoperative period of the refrigerating cycle. Some of the most important advantages are:

- 1. Eliminates food odors from cabinet.
- 2. Cooling element operates more efficiently.
- 3. Cooling effect more uniform.

The water vapor in the circulating air absorbs large quantities of gases and odors from the foods. Some of this water vapor is constantly being condensed on the surface of the cooling element. It is preferable to discharge this water to the drain as soon as possible. Freezing the water liberates a large per cent of the gases. Therefore the circulating air will be greatly benefited if the condensed water vapor is discharged to the drain each inoperative period.

		B.t.u. per pound water vapor
1.	To cool water vapor $(50^{\circ} \text{ to } 32^{\circ}) \dots \dots$	18
$\frac{2}{3}$	To condense water vapor To freeze water vapor	970
-3. -4.	To cool ice or frost $(32^{\circ}-20^{\circ})$	6
		1.1.20
	Total	1,138

It requires a relatively large quantity of heat to condense, freeze, and cool the water vapor deposited on the evaporator surface, as shown in the table on the preceding page.

The heat loss under Items 1 and 2 are necessary in order to have a dry food compartment with a relative humidity of approximately 60 to 80 per cent.

The heat loss under Items 3 and 4 could be saved by operating the evaporator at a surface temperature so that it will automatically defrost during the inoperative part of the cycle.

The efficiency of the evaporator surface for cooling the circulating air gradually decreases as the thickness of the layer of frost on it increases. The ice acts as a heat insulator. It is estimated that a layer of frost $\frac{1}{2}$ inch in thickness will decrease the effectiveness of the cooling surface about twenty per cent.

Much difficulty has been experienced in returning lubricant from the evaporator to the compressor. In the usual household system there is a tendency for the lubricant to enter the evaporator, while if no special method is used for its return to the compressor it may collect in excessive quantities in the evaporator. An excessive amount of lubricant in the evaporator will reduce its heat-absorbing efficiency. Some household plants have a special oil return system, while others use oil traps to prevent this condition. It is an advantage to have the evaporator located above the compressor so that any oil in the suction line will drain to the compressor.

The rate of heat transmission between the coil and the brine in a direct expansion type of brine tank is from ten to fifteen B.t.u. per square foot per degree F. per hour. In a

flooded type tank the rate of heat transfer is about double this amount.

When direct expansion coils are used to cool unagitated air the rate of heat transmission is $1\frac{1}{2}$ to 2 B.t.u. per square foot per degree F. per hour. With brine pipes the rate is 2 to $2\frac{1}{2}$ B.t.u.

In designing an evaporator it is of importance to note the relative thermal conductivity of the following materials:

Corkboard=	1.
Half inch air space $=$	1.54
One inch air space $=$	1.50
Water	15.
Brine (calcium or sodium)=	15. 5.4
Ice ====================================	00
Copper	00.
Copper	

Brine Tank Data.—Table LVI gives the properties of solution of calcium chloride in water. The gravity expressed in degrees Beaumé and in degrees salometer, per cent of calcium chloride, freezing point in degrees F., and the corresponding ammonia gauge pressure in pounds per square inch (corresponding to the freezing point) are given.

Table LVII gives data on the properties of solutions of common salt (sodium chloride) in water.

Table LVIII gives interesting brine tank data, relative to the heat-storing capacity and cost of various materials, which might be used to replace calcium chloride or sodium chloride brine. Specific gravity, specific heat, B.t.u. heat-storing capacity per pound of material in cents, and B.t.u. stored for each cent cost of material are given for some common substances, such as calcium and salt brine, water, cast iron, lead. copper, aluminum, concrete, sandstone, paraffin, oil, and kerosene. In reference to the heat stored per pound of material, it will be noted that water has the highest value. This is, of course, due to the high specific heat. Oil and kerosene are lowest, with approximately 0.4 B.t.u. per pound of material. In reference to the cost of material, it will be observed that the sandstone has the smallest cost, with sodium and calcium chloride brine next, and with aluminum as the highest cost. In reference to the B.t.u. stored for each cent cost of materials. it will be noted that lead has the lowest value, this being 0.006, and that sandstone is the highest, with the value of 4.4 B.t.u.

Specific Gravity at 60°F.	Per Cent Pure Calcium Chloride	Freezing Temp. Degree F.	Lbs. of Calcium Chloride Crystals (73 to 75%) in one Gal. of Brine	Weight, .bs. per Gal. at 60°F.
1 000 1 010 1 020 1 030 1 040	$\begin{array}{ccc} 0 & 00 \\ 1 & 40 \\ 2 & 30 \\ 3 & 80 \\ 5 & 00 \end{array}$	$\begin{array}{c} 32,00\\ 3150\\ 3050\\ 29,50\\ 2750\end{array}$		8 33 8 44 8 50 8 59 8 67
$\begin{array}{c} 1.050 \\ 1.060 \\ 1.070 \\ 1.080 \\ 1.090 \end{array}$	$\begin{array}{c} 6 & 20 \\ 7 & 20 \\ 8 & 20 \\ 9 & 60 \\ 10 & 60 \end{array}$	$\begin{array}{cccc} 26 & 00 \\ 24 & 75 \\ 23 & 75 \\ 22 & 50 \\ 21 & 00 \end{array}$	·····	8.76 8.84 8.92 9.00 9.10
$\begin{array}{c} 1 \ .100 \\ 1 \ .110 \\ 1 \ .120 \\ 1 \ .130 \\ 1 \ .140 \end{array}$	$11.80 \\ 12 80 \\ 13 80 \\ 15 00 \\ 16 00$	$\begin{array}{c} 18.50 \\ 16.50 \\ 14.50 \\ 12.00 \\ 10.30 \end{array}$	${\begin{array}{c}1.43\\1.60\\1.75\\1.88\\2.05\end{array}}$	$\begin{array}{c} 9.18\\ 9.25\\ 9.34\\ 9.42\\ 9.49\end{array}$
$1.150 \\ 1.160 \\ 1.170 \\ 1.175 \\ 1.180$	$\begin{array}{c} 17.20 \\ 18.30 \\ 19.20 \\ 19.85 \\ 20.20 \end{array}$	$\begin{array}{r} + 7 52 \\ + 3 75 \\ + 1 50 \\ - 1.50 \\ - 2.50 \end{array}$	2.18 2.35 2.50 2.56 2.65	$9.58 \\ 9.67 \\ 9.77 \\ 9.80 \\ 9.85$
1.190 1.200 1.210 1.220 1.230	$\begin{array}{c} 21.20\\ 22.20\\ 23.20\\ 24.20\\ 25.10\end{array}$	$ \begin{array}{r} - 5.50 \\ - 9.50 \\ - 14.00 \\ - 18.00 \\ - 23.50 \\ \end{array} $	2.80 2.95 3.10 3.30 3.45	$\begin{array}{c} 9 & 93 \\ 10.00 \\ 10.09 \\ 10.16 \\ 10.22 \end{array}$
$1.240 \\ 1.250 \\ 1.260 \\ 1.270 \\ 1.270 \\ 1.280$	$26.00 \\ 27.00 \\ 27.85 \\ 28.80 \\ 29.70$	$\begin{array}{r} -27.04 \\ -32.62 \\ -39.00 \\ -44.50 \\ -52.50 \end{array}$	$\begin{array}{r} 3.60 \\ 3.76 \\ 4.00 \\ 4.10 \\ 4.35 \end{array}$	$10.34 \\ 10.42 \\ 10.52 \\ 10.60 \\ 10.68$
1.290 1.300 1.310 1.320 1.330	$\begin{array}{c} 30.60\\ 31.60\\ 32.40\\ 33.40\\ 34.20 \end{array}$	$-54.40 \\ -42.50 \\ -32.50 \\ -17.00 \\ -4.00$	$\begin{array}{r} 4.50 \\ 4.70 \\ 4.90 \\ 5.10 \\ 5.25 \end{array}$	10.76 10.84 10.92 11.00 11.08
1.340 1.350	34.50 36.10	$^{+3.50}_{+14.37}$	5.40 5.60	11.16 11.23

TABLE LVI.—PROPERTIES OF SOLUTION OF CALCIUM CHLORIDE IN WATER

From "Practical Refrigerating Engineers' Pocketbook," Nickerson & Collins Co.

The freezing points of some brine tank solutions are given by Fig. 8. Curves showing the freezing points as the percentage by volume of solute are given for glycerin, denatured alcohol, calcium chloride, and one-half wood alcohol and onehalf glycerin.

Prime Mover.—Electric motors are used to drive practically all household refrigerating machines. Most of the machines

Specific Gravity at 39°F.	Per Cent of Sodium Chloride	Freezing Temp. Degree F.	Weight, Lbs. per Gallon	Specific Heat
$\begin{array}{c}1&010\\1&020\\1&030\\1&040\\1&050\end{array}$	$ \begin{array}{r} 1.5 \\ 2.6 \\ 4.0 \\ 5.2 \\ 6.5 \\ \end{array} $	$\begin{array}{c} 30.25\\ 28.40\\ 26.60\\ 25.20\\ 23.40\end{array}$	$\begin{array}{c} 8.44\\ 8.50\\ 8.59\\ 8.67\\ 8.76\end{array}$	$\begin{array}{c} 0.986 \\ 0.979 \\ 0.968 \\ 0.958 \\ 0.945 \end{array}$
$\begin{array}{c} 1.060 \\ 1.070 \\ 1.080 \\ 1.090 \\ 1.090 \\ 1.100 \end{array}$	7.8 9.1 10.4 11.8 13.0	$\begin{array}{c} 21.60 \\ 19.90 \\ 18.40 \\ 16.40 \\ 14.60 \end{array}$		0.93 6 0.922 0.912 0.902 0.886
$\begin{array}{c} 1.110 \\ 1.120 \\ 1.130 \\ 1.140 \\ 1.140 \\ 1.150 \end{array}$	$egin{array}{c} 14&1\\ 15.5\\ 16.8\\ 18.0\\ 19.2 \end{array}$	$13.4 \\ 11.6 \\ 10.0 \\ 8.6 \\ 7.0$	9.25 9.34 9.42 9.49 9.58	0.876 0.865 0.856 0.846 0.832
1.160 1.170 1.180 1.190 1.191	$\begin{array}{c} 20 \ 5 \\ 21 \ .8 \\ 23 \ .0 \\ 24 \ .3 \\ 24 \ .5 \end{array}$	5.93.82.41.0+ 0.8	$\begin{array}{c} 9.67\\ 9.77\\ 9.85\\ 9.93\\ 9.94\end{array}$	$\begin{array}{c} 0.824 \\ 0.817 \\ 0.806 \\ 0.794 \\ 0.792 \end{array}$
$\begin{array}{c}1.200\\1.204\end{array}$	25.6 26.0	+ 0.2 - 1.1	$\begin{array}{c} 10.00\\ 10.04 \end{array}$	0.776 0.771

TABLE LVII.—PROPERTIES OF SALT (SODIUM CHLORIDE) SOLUTIONS IN WATER

This table varies slightly from 4° F, to 20° F, from those usually published, which are considered more correct. The differences would affect only calculations on congealing tanks, as it is customary in ice making to make the brine as strong as possible, or near 25% or 26%.

From "Practical Refrigerating Engineers' Pocketbook," Nickerson & Collins Co.

TABLE LVIII.-BRINE TANK DATA

Relative heat storing capacity and cost of various materials which might replace calcium or salt brine.

Material	Specific Gravity	Specific Heat	B.t.u. Heat Storing Capacity per Pound of Material	Cost per Pound of Material Cents	B.t.u. Stored for Each Cent Cost of Materials
Salt brine	1.2	0.78	0.93	0.5	1.9
Calcium Brine	1.2	0.70	0.84	0.5	1.68
Water	1.0	1.00	1.00		
Cast Iron	7.1	0.13	0.92	5.0	0.18
Lead	11.4	0.03	0.34	6.0	0.006
Copper	8.9	0.093	0.83	20.0	0.041
Aluminum	2.6	0.22	0.57	30.0	0.019
Concrete	2.2	0.25	0.55	0.14	3.9
Sandstone	2.2	0.20	0.44	0.1	4.4
Paraffin	0.9	0.69	0.62	10.0	0.062
Oil	0.9	0.4	0.36	6.0	0.06
Kerosene	0.8	0.5	0.40	2.0	0.20

on the market today use ¼ horse power motors. This size motor with a reasonably efficient refrigerating system should be capable of refrigerating properly fifty cubic feet of food storage space. Refrigerating systems of this capacity in use today require from three to six times the amount of current necessary to perform this duty on a large commercial plant. More efficient machines should be developed; however, it is not necessary to very closely approach the efficiency of the large plant.

Some machines have been placed on the market using 1/6 horse power motors. This size has now proven successful for the smaller units up to twenty cubic feet of food storage space.

It is assumed that the food storage spaces are properly insulated. For food compartment temperatures of 40°-50° F., the insulation should be at least 3 inches thickness of corkboard or its equivalent.

The starting torque and the overload capacity are important features in the choice or design of the motor. The overload may be double the normal operating load and it may be necessary to operate at this overload for several hours. This condition usually occurs when the machine is placed in operation in a warm environment temperature. The starting torque is high when the unit is first placed in operation on account of the high pressure on the evaporating side of the system. In normal operation the starting torque may be greatly increased if either the expansion valve or the compressor discharge valve leaks. Air-cooled machines have a more severe starting condition than water-cooled machines especially when a dead air condenser is used.

It is customary to use repulsion-induction type of a.c. motors for driving household refrigerating machines because of their relatively high starting torque. Split-phase motors have been used to a very limited extent on some of the smaller machines.

Some machines have been made with the entire motor housed inside a gas tight metal casing, thus eliminating the packing of a drive shaft. Considerable difficulty has been experienced, however, in operating a motor enclosed with the

refrigerant gas. A later design has the stator outside a thin metal casing, the rotor being inside, thus eliminating packing a drive shaft.

Lubrication of the motor is an important feature as it usually operates from six to twelve hours a day. With this service condition, the motor should be oiled at least once a month. Some motors are oiled automatically through copper tube lines from a gear case pump; the oil is forced or splashed into the tube by the rotating gear. This method is only applicable on a direct-connected motor compressor unit.

The efficiencies of fractional horsepower alternating current motors of the repulsion-indution type at full rated load are usually within the following limits:

Horsepo	1	v	e	e r																		E	f	fi	ci	ie	ncy pe	r cent	
1/6								• •													•						. 50-60		
1/4								•						• •							•				•		. 60-75		
$\frac{I}{2}$		•	•		•		•	•	•	 •		•		• •	• •	 •	•	•	• •	 •					•	•	.65-80		

Direct current motors should have efficiencies considerably higher than given in this table.

It is customary to limit the normal operating load to 300 watts on the $\frac{1}{4}$ hp. and to 200 watts on the $\frac{1}{6}$ hp. size. These motors will usually stand 100 per cent overload for short periods of operation.

Table LIX gives the ampere ratings of alternating current motors of capacities ranging from $\frac{1}{4}$ to 5 hp. on both single and three-phase current, at 110 and 120 volts.

	SINGLE PHASE		THREE	PHASE
Horsepower	110 Volts	220 Volts	110 Volts	220 Volt
· 1/ /4	4	2		
$\frac{1}{2}$ $\frac{3}{4}$	7.5 10	$\frac{3.75}{5}$	4.4	2.2
1	12.5	6.25	8	4
$rac{11_2}{2}$	18	9	10.3	5.1
2	$\frac{24}{34}$	$12 \\ 17$	12.5	6.25
0 1	43	$\frac{17}{22}$	18 24	12^{9}
5	55	$\frac{22}{28}$	30	$\frac{12}{15}$

TABLE LIX-AMPERE RATING OF ALTERNATING CURRENT MOTORS

The Drive.—Some of the more important types of drives in use are: belt, gear, and direct.

The belt drive has several important advantages. It gives an easier starting torque than a direct-connected or gear drive. Some motors operate at a rather small load and therefore at a low efficiency, simply because they must be large enough to insure starting under all conditions of service. The belt also gives a certain protection to the motor, as it will sometimes slip or come off the pulleys with an excessive overload on the motor. Another important advantage of a belt drive is that it can be easily repaired or replaced without the services of an expert mechanic.

A belt drive generally costs less than a gear drive. The belt drive is easier to manufacture and assemble as it does not require such close limits on lining up the motor.

Some machines use a series of from two to five small belts. If one breaks it does not greatly affect operation. This multiple belt system has not proven very satisfactory in actual use, probably because one of the belts is usually driving more than its share of the load.

A belt drive is ordinarily from 95 to 98 per cent efficient. This is a much higher efficiency than is usually obtained with a gear drive.

An exposed belt drive is dangerous on a machine which starts automatically, and every precaution should be taken to safeguard it. One method of obtaining this result is to make the condenser coil of tubing and arranging it so as to form a guard around the belt and its pulleys.

Flat belts have been used on a large number of successful machines. They are generally made of either leather, canvas, or fabric.

An idler is generally used with a flat belt drive. It is necessary in order to increase the angle of contact on the motor pulley. The idler is usually operated by a spring or a weight. It also serves another purpose in automatically keeping the belt tight by compensating for any stretching of the belt in service. One cannot depend upon attention being given to a belt by the user, especially in the way of making adjustments. One of the difficult features on a flat belt drive is to insure necessary lubrication of the idler pulley. The V-type rubber or fabric belt as developed for use in driving the radiator fan on automobiles is being used with success on household plants. It has most of the features of a flat belt with the added advantage of not requiring an idler pulley. A belt of this type drives by means of friction on the side of the V-shaped groove. The inside face of the belt should not touch the pulley. These belts are generally of the endless type, they run quite loose and do not stretch enough in service to require any adjustment of pulley centers.

Spiral gear drives are used on compressors both with parallel and right angle shafts.

Spiral gears have an advantage over worm gears in that they do not require as close limits on shaft centers and can be made without a hob.

Gear drives produce end thrust on the shafts which is usually carried on a thrust or ball bearing. It is difficult to keep the end clearance on shafts, subjected to a thrust load, to a small enough limit so that the noise from end play on the shafts will not be objectionable.

The thrust bearings should be well lubricated. The starting torque may sometimes be greatly increased when the thrust bearings have not received instant lubrication on starting. This may occur when the thrust bearings are lubricated by a splash system which does not function until the machine has started to operate.

It has been difficult to build gear drives for the reciprocating type compressors so that excessive noise would not result on account of backlash caused by the necessary clearance between the teeth.

Gear drives usually operate at an efficiency of 70 to 90 per cent.

The direct-connected drive is in common use on machines having a gear or rotary pump and on machines with the moving parts enclosed in the refrigerant gas space. Most of the designers have placed the packing gland on the relatively slow-speed compressor shaft, as it is more difficult to pack the motor shaft which rotates at a much higher speed. When the motor or the moving part of the motor is enclosed in the gas space, this packing gland trouble is climinated. Difficulties have been experienced in starting machines which have a thin metal shell between the rotor and field of the motor, especially on three-phase, alternating-current motors.

The direct-connected unit has proven more successful commercially in Europe than in the United States.

Valves.—The suction and discharge valves should be designed for service, quietness, positive opening and closing action, and efficiency.

The suction valve is usually simply a port or slot in the cylinder wall which is uncovered by the piston during its relatively slow rate of travel at the end of the stroke. This type of valve has a relatively low efficiency but is free from service troubles, operates quietly, and is positive in action.

The port valve has a loss in efficiency due to the necessity of producing a vacuum in the cylinder, as the top of the piston returns on the suction stroke. The gas rushes in the cylinder at the end of the stroke during the short interval of time that the port is uncovered by the piston sometimes causing wire drawing, a further loss in efficiency.

The port valve can be used to good advantage on compressors with lapped pistons, as some difficulty has been experienced in using piston rings which must pass over ports in the cylinder walls.

A floating valve of the poppet type is used in the pistons of some of the larger compressors. These valves have not proven so successful as the port type, as a small particle of scale, sand, carbon or dirt can be deposited on the seat and will prevent the valve closing tightly. This frequently happens on a new machine and is prevented to a certain extent by placing a fine mesh screen in the suction line of the compressor.

Some designs use a slight rotating movement of the cylinder itself to uncover ports.

Many varieties of discharge valves are used. These are simply check valves permitting low-pressure gas to enter the cylinder on the suction stroke.

The poppet type valve has proven successful with a light spring to assist in closing. Disc steel valves are also used. These are more difficult to manufacture than the poppet type, however they make less noise. The steel spring flapper valve is used to a considerable extent. These valves require very close limits in manufacture. They give good service once they are assembled properly, and are not easily affected by corrosion or dirt.

The discharge valve should be capable of opening more than the normal lift, in order to discharge liquid refrigerant or lubricant which is sometimes pumped by the compressor.

An important feature to be considered in valve design, is to construct a valve which will give service for years without requiring adjustments or service of any kind. A service call is quite expensive and with most of the refrigerating gases in common use, such repairs can only be made by a trained service man. This is probably the fundamental reason for using port suction valves even at large loss in efficiency, by some of the most successful manufacturers.

Shut-off valves are very important in order to facilitate repairs to a certain part of the refrigerating system. It is customary to use three of these valves, one on the suction or inlet line to the compressor, one on the discharge line between the compressor and condenser, and the third between the condenser and expansion valve. The valves near the compressor usually have double seats so that they may be closed against a gauge or charging connection.

It is important to have the valve stem opening limited by a stop to prevent backing out the stem and thus losing some of the refrigerant. When the refrigerating system is not used for a period of weeks, it is sometimes advisable to close the two valves on the compressor, suction, and discharge lines, to prevent loss of refrigerant through the packing gland.

Alco Liquid Control Valve.—Fig. 19 is a cross-section of the automatic liquid control valve manufactured by the Alco Valve Company, at St. Louis, Mo.

The liquid refrigerant enters at F. In operation the valve needle J opens from the valve seat G and the liquid refrigerant discharges through tube K.

These discharge tubes are furnished in different sizes for different capacity machines.

Expansion of the refrigerant is prevented in the valve body by using the small discharge tube K. It is claimed that this feature eliminates the following troubles experienced with the regular type expansion valve.

- 1. Frost forming on the valve.
- 2. Water freezing on the diaphragm.
- 3. Oil congealing in the valve.
- 4. Scoring of pin or seat.

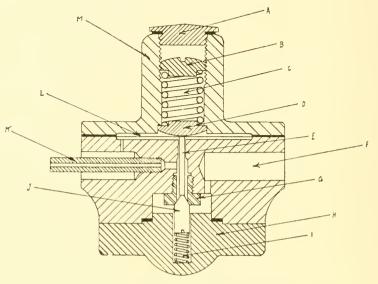


FIG. 19.—CROSS SECTION ALCO LIQUID CONTROL VALVE.

American Automatic Expansion Valve.—Fig. 20 shows the automatic expansion valve made by the American Radiator Company of Buffalo, N. Y.

These valves are designed for use with the following refrigerants: Methyl chloride, sulphur dioxide, ethyl chloride, or any refrigerant not having a detrimental effect on brass.

Fig. 21 is a sectional view of this valve. Adjustment is made by turning the adjusting screw, regulating the spring pressure against the bellows.

The valve closes against pressure, thereby eliminating chattering and wire drawing, and making the valve seat selfcleaning.

Pressure is on the outside of the bellows, a desirable construction feature.

Valves are supplied with 3/8-inch pipe thread or flanged connections.

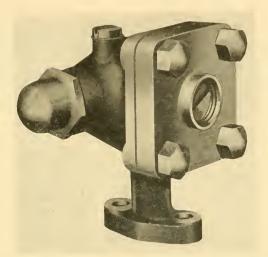


FIG. 20.-AMERICAN AUTOMATIC EXPANSION VALVE.

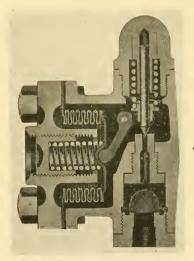


FIG. 21.—SECTIONAL VIEW OF AMERICAN AUTOMATIC EXPANSION VALVE.

American Float Valve and Refrigerating Section.-Fig. 22 shows the float valve which may be used either as a low or high pressure float.

HOUSEHOLD REFRIGERATION

The float is cylindrical, thereby making the valve more compact than is the case when the usual bulb type is used.

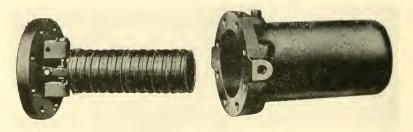


FIG. 22.—AMERICAN FLOAT VALVE.

A new style of domestic refrigerating section is now manufactured as in Fig. 23. This section is made in two types, one as illustrated, containing the float chamber, and a similar type

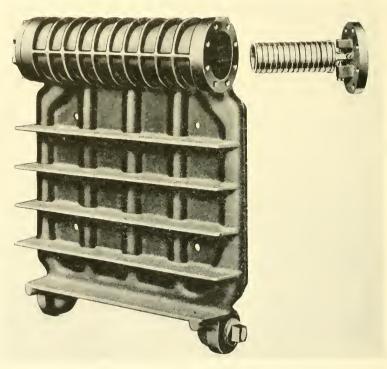


FIG. 23.-AMERICAN REFRIGERATING SECTION

without the float chamber. These are made for five or seven ice trays, each tray containing eight cubes, one cube wide and eight cubes deep.

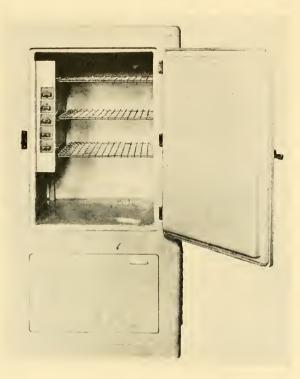


FIG. 24. - AMERICAN REFRIGERATING SECTION INSTALLED.

Fig. 24. shows one of these refrigerating sections installed in a cabinet. This design gives more space in the refrigerator for the storage of food than cooling units of conventional design.

Flow of Air Through Orifices. — Table LX gives the amount of free air in cubic feet which will flow through circular orifices in a receiver into air at atmospheric pressure, corresponding to various air gauge pressures in pounds per square inch in the receiver. The diameter of the orifices varies from 1/64 in. to 2 ins.

ORIFICE FROM RECEIVER INTO		INUTE (Cox)	
TIRCULAR ORIFICE FROM RECEIVER INTO	AIR FLOWING LINCOULD THE AND	ATMOSPHERE PER MINUTE (Cox)	
	TIRIC REFT OF FREE	TABLE LA. TOPIC THE	

.486 1.97 31.4 282. 502. 582. 582. .173 .71 .71 .71 .71 .2.80 .44.7 .11.2 .179. .280. .715. 25 ŝ .40 1.61 6.45 6.45 25.8 25.8 412. 231. 925. 8 .156 .632 .632 .632 .632 .90. .161. .252. .362. .363. .645. .645. .000 00 ŝ 00 .119 .485 .770 .770 .770 .770 .69. .123. .193. .378. .378. .378. .770. Air Gauge Pressure in Pounds 0 Pounds .295 1.19 4.76 76. 76. 304. 685. 930. 0 .9 Air Gauge Pressure 15 .103 .113 .1167 .167 .167 .665 60.70 605 .240. 326. 665. 960. 960. .26 1.05 1.05 4.20 67. 67. 664. 822. 00 0 .225 .914 .914 .58.2 .58.2 .58.2 .58.2 .522 .522. .522. .522. .523. .523. .523. .523. .523. .523. .523. .524. .525. .525. .525. .525. .525. .525. .525. .525. .525. .525. .525. .525. .526. .526. .526. .526. .526. .526. .527. .526. .527. .526. .527 C .0597 .242 .965 .3.86 15.40 .3.86 61.60 .61.60 .96.50 .96.50 .384 .580 .580 .985. 45 $\begin{array}{c} .190\\ .77\\ .77\\ .3.07\\ .12.27\\ .12.27\\ .49.09\\ .110.45\\ .196.35\\ .306.80\\ .32$ 40 Diameter of Orifice-Inches Orifice-Inches 5 274 1 28 C Diameter

172

HOUSEHOLD REFRIGERATION

Temperature Control.—The automatic temperature control is an important part of the refrigerating system.

The food compartments should be maintained at a temperature never warmer than 50° F. and never colder than 40° F. These temperature limits have been definitely established by experience. Perishable foods keep well at a temperature below 50° F. Food compartment temperatures below 40° F. will cause unnesessary heat losses even with a well-insulated cabinet, and the outside surface of the cabinet will frequently be damaged by sweating.

The automatic control should be arranged to freeze water or desserts in a reasonable length of time, and to constantly maintain the food compartment temperatures between 40° and 50° F.

It is desirable to freeze water or desserts in less than the shortest time interval between meals which is about six hours. An average brine temperature of 20° F. will freeze water in the ordinary cube form in from four to six hours. The temperature should not vary more than four degress from this value. It is more difficult to freeze desserts than water, especially if the ice tray grids are removed.

Some of the first mechanical refrigerators sold had the liquid tube of the thermostat line suspended in the cold air flue. This liquid tube was connected by tubing to a diaphragm or metal bellows which operated the motor switch.

A 1/4-hp. motor was generally used and this required a quick make and break type of switch. This was called the food compartment temperature control system.

Some of the volatile liquids used in these thermostat systems were: Sulphur dioxide, methyl chloride, ethyl chloride, and ether.

The usual method of operating the switch is by means of a violatile liquid. This liquid is trapped in a closed gas system, so that the liquid tube itself is always immersed in the brine or in close contact with the place where the temperature is to be regulated. The diaphragm or metal bellows can be placed above or below this liquid trap. The gas pressure in the closed system is always definitely determined by the temperature of the volatile liquid. The switch can be adjusted to operate at any desired temperature, within the working range of the liquid used.

An improvement in the brine temperature regulating system is to use an automatic damper in the cold air flue. This

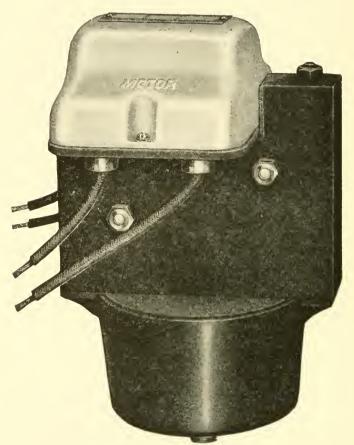


FIG. 25 .- PENN ELECTRICAL CONTROL.

damper opens and increases the air circulation when the food compartment temperature increases.

Another method of improving this temperature control, is to have the liquid tube located close to the last turns of the evaporating coil. Then if the evaporating coil frosts through, the liquid controlling the temperature in the thermostat will be rapidly cooled, thus stopping the compressor. Other manufacturers use a temperature control partly influenced by the temperature of the brine and partly by the temperature of the circulating air. This kind of regulation has advantages of both of the systems previously described.

Some machines are operated by a time clock. The clock operates a switch and can be set for a certain number of cycles per day. Usually this type of control is adjusted for a summer or winter condition. This system does not compensate for cold nights and gives rather unsatisfactory food compartment temperature regulation.

Some switches are operated by using a bimetallic thermostat. The small temperature differential, usually from 4° to 10° F., makes the design of a bimetallic thermostat a difficult problem. Switches of this type have not proven a success commercially.

An improvement in the bimetallic switch is being used now. It consists of mounting to a bimetallic member a glass tube, containing a small amount of mercury which flows from one end to the other. In this way a quick make and break contact is secured. These tubes have the air exhausted from them and contain an inert gas so that any arcing will not affect the mercury or terminal contact points.

Fig. 25 shows a switch made by the Penn Electric Machine Co., of Des Moines, Ia.

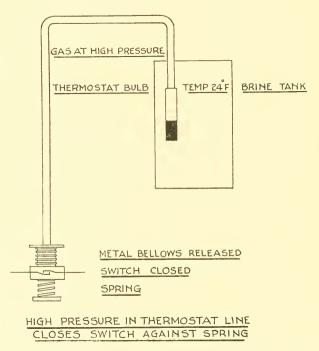
This switch is provided with a bellows type diaphragm, which can either be filled with a volatile fluid or attached to a bulb, which contains the volatile fluid and which causes the diaphragm to expand, closing the switch contacts when the temperature increases to the predetermined amount.

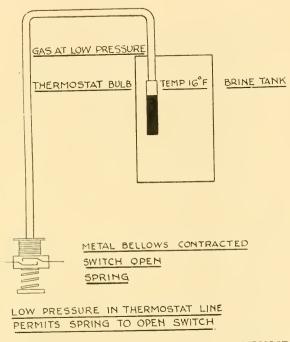
The switch may be placed inside or outside the refrigerator. When placed outside, the bulb containing the volatile fluid is inside at the desired location for proper temperature control. This installation simplifies the wiring connections.

The contacts are of the two-pole double break per line type. The switch is approved by Underwriters for use on motors up to 5 hp., 3-phase, 550-volts.

This type switch is compact, easily installed, and convenient for wiring. Thermostat Operation.—Figs. 26 and 27 show the operation of a volatile liquid thermostat.

The volatile liquid is contained in a tube immersed in the brine. Sufficient liquid is placed in this tube so that at the highest operating temperature there will still be liquid in the thermostat bulb. In this way, the pressure in the thermostat line is always the corresponding pressure for the temperture of the liquid in the bulb.




FIG. 26.—OPERATION OF VOLATILE LIQUID THERMOSTAT.

In Fig. 26 the brine temperature has increased to 24°, vaporizing some of the liquid in the thermostat bulb and increasing the gas pressure, until finally the metal bellows expands against the spring, closing the motor switch.

The motor then operates the compressor cooling the brine. The thermostat bulb is cooled decreasing the gas pressure in the thermostat system. The gas pressure is decreased as gas is condensed into liquid form in the thermostat bulb. Finally the pressure is lowered to a pressure so that the spring will compress the metal bellows and open the motor switch.

By adjusting the compression of the spring, the motor may be started or stopped at any desired brine temperature.

When too much liquid is charged into a thermostat system of this kind, the pressure will be a function of the thermo-

FIG. 27.—OPERATION OF VOLATILE LIQUID THERMOSTAT.

stat line temperature and the control will not operate satisfactorily.

If the volatile liquid charge is too small, all the liquid will vaporize at the higher brine temperature and the control will not function properly.

Air or foreign gases in the thermostat system will produce an abnormally high pressure at all times. Oil in the thermostat will cause a sluggish action.

Water Controls .--- When a water-cooled condenser is used with the compression type household machine, it is desirable to have the following controls.

Open the water valve when the compressor starts to operate.
 Close the water valve when the compressor shuts down.
 Regulate the amount of water supplied to the condenser com-

pensating for a warmer or colder tap water supplied to the condenser com-4. Regulate the amount of water supplied to compensate for different loads on the compressor.

5. Compensate for different water supply line pressures. 6. Prevent the compressor from operating when the water supply fails.

7. Permit the compressor to function normally when the water supply is again available.

A method of water control in common use is to open, close, and regulate the water valve by means of a diaphragm or metal bellows responsive to the condensing pressure.

The valve is set to open at a certain pressure slightly higher than the pressure ever obtained in the condenser during the inoperative part of the cycle. An increase in condensing pressure will open the water valve still more. This increase in condensing pressure may be due to an increased load on the compressor or to a higher tap water temperature or to a decrease in the water supply line pressure.

Another system of water control is to use a water valve opened and closed by means of a solenoid coil. This coil is placed in the motor circuit and holds the valve open while the compressor is operating. This system does not compensate for differential water temperatures and changes in the refrigerating load.

A water cooling system used to some extent consists of a valve opened by the centrifugal force of weights mounted on the compressor or motor shaft. This gives a control functioning in a way similar to the electric valve but entirely mechanical in operation. This system does not regulate the amount of water supplied, in accordance with the requirements due to changes in temperature, pressure, and load.

A dead water tank has been used to some extent. The condenser is immersed in a rather large tank of water. During the inoperative part of the cycle, this water is cooled to a temperature approaching that of the room. As a household machine usually operates about 25 per cent of the time, there is a sufficient time interval between runs for the condensing water to cool to nearly the room temperature.

Mercoid Control.—Fig. 28 and 29 shows a special control for domestic refrigerating machines made by the American Radiator Company of Buffalo and the Federal Gauge Company of Chicago.

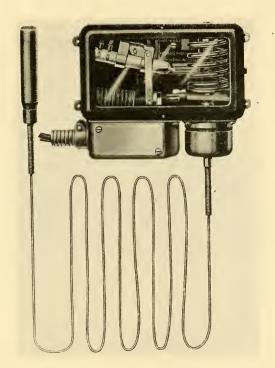


FIG. 28.-MERCOID CONTROL, FLEXIBLE TUBE TYPE.

The Mercoid Switch consists of a glass tube in which are sealed leads of special material. A quantity of mercury makes or breaks the circuit when the tube is tilted. Hermetically sealed within the tube are inert gases which stiffe the arc instantly. There is no oxidation or corrosion. The contact is permanently clean and instantaneous in operation.

Fig. 28 shows the remote control, flexible tube type. Fig. 29 shows the pressure type thermostat.

HOUSEHOLD REFRIGERATION

This control can be furnished to automatically open or close an electric circuit with a change in temperature. The circuit is controlled directly to the motor or other electric equipment.

Ordinary lighting or power current can be run through the control.

The operation of this control is very simple. A power element is expanded automatically by temperature, which in turn,

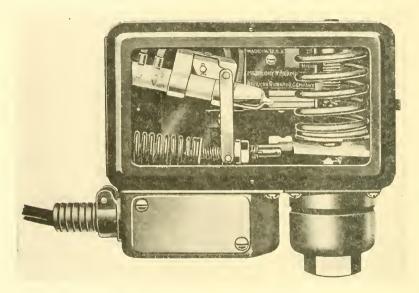


FIG. 29.—PRESSURE TYPE THERMOSTAT.

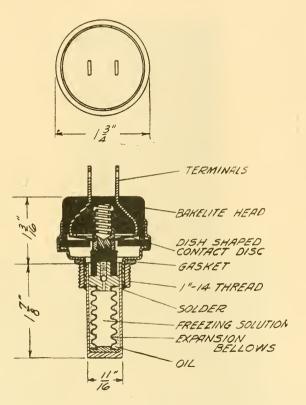
tilts the switch with a snap action. A spring throws the switch in the opposite direction as pressure or temperature decreases.

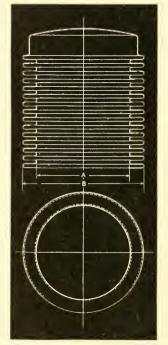
A special feature of the thermostatic power element is its dependability. The operation remains constant and does not change; years of service will not affect its power or sensitivity.

The power element consists of a seamless metallic bellows, the folds of which are so made that expansion and contraction will not affect the life of the metal. When used thermostatically the bellows contain liquids of various boiling points as determined by the desired operating temperatures.

Refrigerator Control Switch.—Fig. 30 is a sectional view of the electric refrigerator control unit made by the Automatic Reclosing Circuit Breaker Company of Columbus, Ohio.

The expansion bellows is filled with a freezing solution. When this solution freezes the bellows expand and close the




FIG. 30 .- SECTIONAL VIEW OF ELECTRICAL REFRIGERATOR CONTROL.

electric circuit by forcing the dish-shaped contact against the two electric terminal inserts.

There is no adjustment for temperature as this setting is obtained by changing the proportions of the materials used for making the freezing solution.

This design affords a control free from outside adjustments and of very simple construction. Multiflex Bellows.—Fig. 31 shows the seamless one-piece multiflex metal bellows made by the Bishop & Babcock Sales Company.

These bellows are used in many different parts of electrical refrigerating systems, usually in connection with the thermostat while some manufacturers use them to seal the compressor shaft.

A--Inside Diameter B-Outside Diameter. FIG. 31.--SEAMLESS ONE-PIECE MULTIFLEX METAL BELLOWS.

Table LXI gives standard sizes of bellows. Wall thickness can be supplied for external or internal pressure to 500 pounds per square inch.

The Fedders Manufacturing Company of Buffalo, New York, make appliances for household refrigerating machines.

Fig. 32 shows a condenser and receiver unit. The condenser consists of coils of copper tubing with a special type of copper fins to increase the cooling efficiency.

Outside Diameter	Inside Diameter	Free Movement	No. of Convolutions	Normal Length
$\frac{1''}{1\frac{1}{4}''}$	$\frac{3}{15}$ " " 15"	$\frac{1}{4}''$	18 16	$rac{1}{2} rac{1}{8}''$ 15 6''
$1\frac{74}{13}\frac{1}{8}''$ $1\frac{1}{2}'''$ $1\frac{5}{8}'''$	$16 \\ 1'' \\ 1\frac{1}{32}'' \\ 1\frac{3}{16}''$		18 18	$\frac{134''}{134''}$
$\frac{113}{2'}$	13/16'' 13/8''' 17/16''	3/8" 3/8" 7/16"	18 18 16	$1\frac{3}{4}''$ 2'' $2\frac{1}{16}''$
23/16'' 23/8'' 27/8'' $41/8'' 41/8'' 41/8'' $	$\frac{1\frac{1}{2}''}{1\frac{3}{4}''}$	3/8" 7/6" 3/"	14 15	$2^{1}_{16}''$ $2^{1}_{4}''$ $2^{1}_{4}''$ $2^{1}_{4}''$
$\frac{21/8''}{41/8''}$ $7\frac{3}{4}''$	$2\frac{1}{4}''$ $3\frac{3}{8}''$ $6\frac{7}{8}''$	$\begin{array}{c} & 3/4 \\ & 3/4'' \\ & 1/2'' \end{array}$	18 17 10	$3\frac{1}{8}''$ $2\frac{5}{8}'''$ $2\frac{3}{4}''$

TABLE LXI-STANDARD BELLOWS

Fig. 33 is a photograph of the expansion valve which may be used with any of the refrigerants in common use in household machines. A change of springs is necessary with very low pressure refrigerants.

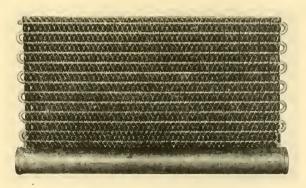


FIG. 32.-CONDENSER AND RECEIVER UNIT.

Fig. 34 is a tubular liquid strainer used in the inlet connection to the expansion valve. A liquid filter, Fig. 35, is used to filter out the small particles of scale or oxide which may accumulate in the refrigerating system. This filter contains two circular pieces of fine meshed screen with wool felt between them.

HOUSEHOLD REFRIGERATION

Fig. 36 shows a typical brine tank. These tanks are made of tinned copper with lock seams. The wall thickness of the copper is .028 inches. These tanks are made in standard sizes

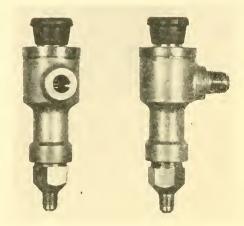


FIG. 33.-EXPANSION VALVE.

to suit the requirements of the different styles and types of refrigerators in use today.

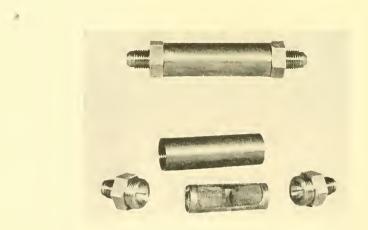


FIG. 34 .--- TUBULAR LIQUID STRAINER.

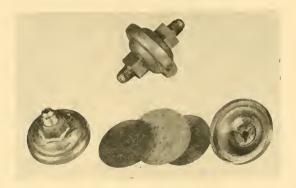


FIG. 35.—A LIQUID FILTER.

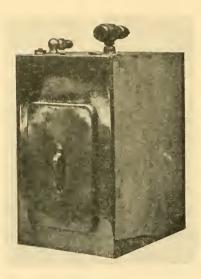


FIG. 36.—A TYPICAL BRINE TANK.

CHAPTER VII

HOUSEHOLD REFRIGERATING MACHINES COMPRESSION TYPE

Household Refrigerating Machines.—In this chapter, attention will be given to the general types and characteristic construction of a number of household compression refrigerating machines. The makes of the various household refrigerating machines which are described here have been selected promiscuously, and represent the characteristic design of the different classes of machines. It does not include descriptions of all of the different kinds of household machines, since, at present, there are several hundred different concerns producing or developing machines of this type.

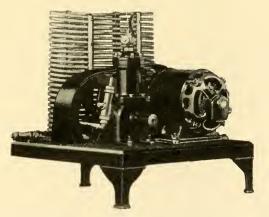


FIG. 37.-ABSOPURE AIR-COOLED MECHANICAL UNIT.

In the following, attention has been given to the mechanical design of the different parts of the compression type.

Absopure.—Fig. 37 shows a 1/4 hp. air-cooled mechanical unit used on the household machine manufactured by the Gen-

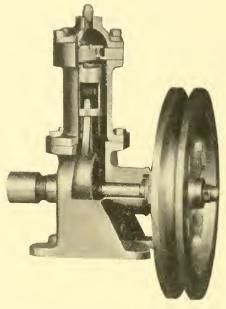


FIG. 38.—SECTIONAL VIEW OF ABSOPURE COMPRESSOR.

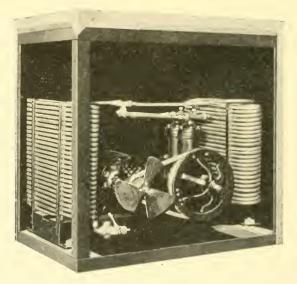


FIG. 39.—HALF-HORSEPOWER ABSOPURE CONDENSING UNIT FOR ICE CREAM CABINET.

COMPRESSION REFRIGERATING MACHINES

eral Necessities Corporation of Detroit, Michigan. This machine uses methyl chloride as the refrigerant.

A sectional view of the compressor is shown in Fig. 38. The motor drives the compressor by means of a "V" type belt. The discharge valve is of a disk type. The shut-off valves are made of forged brass.

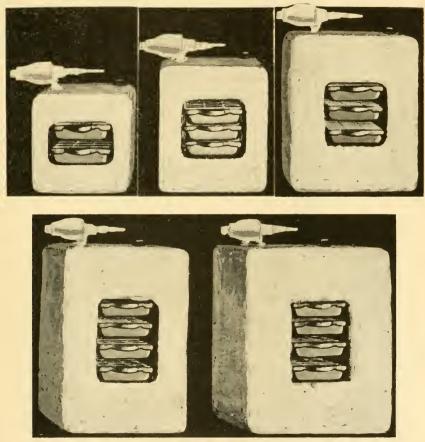


FIG. 40.-TYPICAL ABSOPURE FREEZING UNIT IN VARIOUS SIZES.

The $\frac{1}{2}$ hp. air-cooled mechanical unit is shown in Fig. 39. This is one of the condensing units used for ice cream cabinet work. The condensing unit is placed in a compartment which may be fastened to the ice cream cabinet.

HOUSEHOLD REFRIGERATION

Fig. 40 shows a typical freezing unit. These are made in sizes suitable for use in all types of household refrigerators.

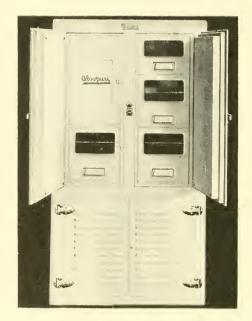


FIG. 41.-TYPICAL ABSOPURE REFRIGERATOR.

Fig. 41 is a typical refrigerator in which the mechanism may be installed as a complete self-contained unit.

Audiffren.—Fig. 42 gives a sectional view of the household machine manufactured by the Audiffren Refrigerating Machine Company of New York City. A view of a cabinet equipment with this machine is shown in Fig. 43.

This machine has an enclosed sulphur dioxide compressor. All of the operating parts are sealed up within this revolving "dumbbell," consisting of two bronze bells on a hollow shaft.

The Rotor consists of two hollow bronze bells connected by a hollow steel shaft. One bell containing the compressor also acts as the "condenser"; in the other the liquid boils off under reduced pressure and this is the "evaporator" where intense cold is produced. The hollow shaft contains a tube through which the liquid refrigerant is carried from the condenser to the evaporator, and an annular space around the tube through which the spent gas is drawn back by the compressor. Thus compressor, condensing surface, liquid receiver, oil separator, expansion valve and refrigerating surface are all represented in this hermetically sealed Rotor.

The compressor rides on the shaft inside of the spherical bell, being held in an approximately vertical position against the turning of the Rotor by means of a heavy lead counterweight. The compressor has two double acting, oscillating cylinders. The compressor pistons are driven by an eccentric secured to the shaft.

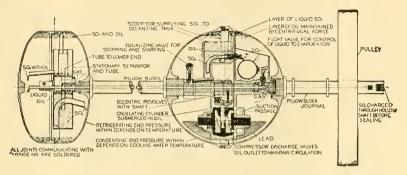


FIG. 42.-SECTIONAL VIEW OF AUDIFFREN HOUSEHOLD MACHINE.

As the Rotor revolves, this compressor, being held in position by the counterweight, draws gas from the evaporator, compresses and discharges it under pressure into the condenser bell within which the compressor is located.

The condenser bell runs partly immersed in cooling water and the compressed gas is cooled and condenses on the inner walls of this bell. The operating pressure is about 50 pounds per square inch, varying with the cooling water temperature.

The condensed refrigerant and the oil are held out against the shell of the condenser bell by centrifugal force and are finally caught by means of a small scoop mounted on top of the frame of the compressor and poured down into a decanting cup where the oil is separated and poured back over the compressor cylinders to lubricate and cool them. The refrigerant is then passed by means of a float valve, which serves for an

automatic "expansion valve," to the evaporator bell of the machine, again to boil off and continue its cycle.

The evaporator is a simple bell providing a chamber for the liquid to evaporate and produce cold. The lubricant that reaches the cold end of the machine is automatically separated and returned to the condenser end through the cylinders, providing internal lubrication for the cylinders and the pistons.

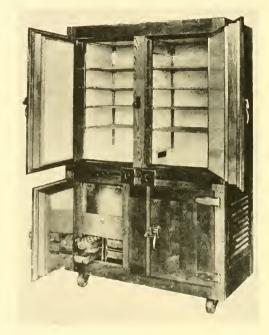
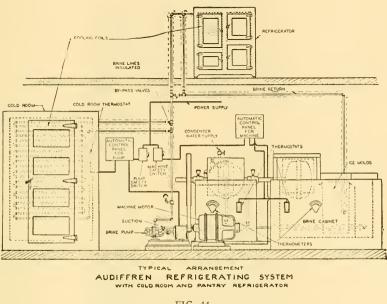


FIG. 43.-VIEW OF CABINET EQUIPPED WITH AUDIFFREN MACHINE.

The temperature and pressure in the condenser will, obviously, be dependent upon the temperature of the condensing water. Consequently the position assumed by the compressor under the control of the counterweight will be dependent upon the temperature of the condensing water. If the supply of condensing water gives out so that the temperature rises above the normal operating limit, the counterweight will finally rise to the horizontal position and any increase in pressure beyond this point will cause the counterweight to revolve with the machine, so that no increase of pressure beyond that for which the counterweight is designed can be caused by the operation of the machine. This acts as a safety device absolutely protecting the machine from dangerous pressures as a result of failure of condensing water. Until the law of gravity fails, this machine is absolutely safe.

To freeze ice, the ice cans are placed directly in the brine tank. To cool refrigerators, this cold brine is circulated through pipe coils placed in the refrigerators.



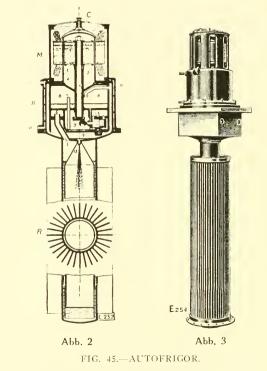

FIG. 44.

Fig. 44 shows a typical arrangement for cooling a large cold room, a pantry refrigerator and an ice making plant. A circulating brine system is used. During the last 15 years many systems similar to this have been used for large residences and country estates.

Autofrigor.—This machine, Fig. 45, is manufactured by Esher Wyss & Company of Zurich, Switzerland.

The refrigerant is methyl chloride. The compressor "5" is double-acting, operating at motor speed. Gas from the suction chamber "6" is compressed into the pressure chamber

"7." The compressed gas then passes through the vertical pipe to the high pressure gas chamber "8" and into the annular space surrounding the chamber. The condensed liquid collects in chamber "9." The gas is condensed by circulating water which enters by connection "11" and leaves by outlet "12." Nozzle "13" is used in place of an expansion valve to the evaporator "R."

The motor "M" has its rotor "3" enclosed by a steel shell "4," which seals the gas chamber "8." This machine is manufactured in several sizes.

Brunswick-Kroeschell.—Fig. 46 shows one of the small self-contained units made by the Brunswick-Kroeschell Company of New Brunswick, New Jersey, who have been making household refrigerating machines continuously for more than 25 years. Self-contained units are supplied for full automatic control, semi-automatic or manual operation.

COMPRESSION REFRIGERATING MACHINES 195

The ammonia or carbon dioxide system can be supplied for either direct expansion of the refrigerant or cooling through brine circulation.

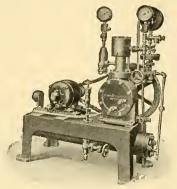


FIG. 46 .- SMALL SELF-CONTAINED BRUNSWICK-KROESCHELL UNIT.

Fig. 47 shows a large self-contained unit. This consists of a compression side, electric motor with its starting equip-

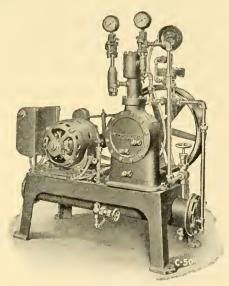


FIG. 47.-LARGE SELF-CONTAINED BRUNSWICK-KROESCHELL UNIT.

ment, special power transmission for short center operations, and interconnection for ammonia, water and electric supply;

these are all mounted on a cast iron pedestal and interconnected ready for service.

The compressor is of the enclosed, vertical, single acting type. Splash lubrication is used.

The condenser is of the shell and tube multi-pass type. Removable heads permit convenient cleaning of the condenser tubes when required in cases where the water leaves a sedi-

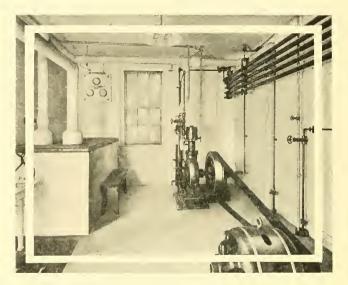


FIG. 48.—BRUNSWICK-KROESCHELL RESIDENCE INSTALLATION, INCLUDING ICE-MAKING SET.

ment. The shells are of ample size for the combined purpose of service as condenser and ammonia receiver.

Fig. 48 shows a typical residence installation including an ice-making set.

Carbondale.—Fig. 49 shows a self-contained unit made by the Carbondale Machine Company, Carbondale, Pa. Ammonia is the refrigerant used.

The compressor is of the vertical, single-acting type. Worthington feather valves are used in the compressor. The cylinder is ground and honed to size. All the bearings are of the die cast type and are interchangeable. The condenser is of the horizontal, tubular type with removable heads and straight tubes, making it conveniently cleaned and inspected. The water passes through seamless drawn steel tubes, which are expanded into forge welded heads.

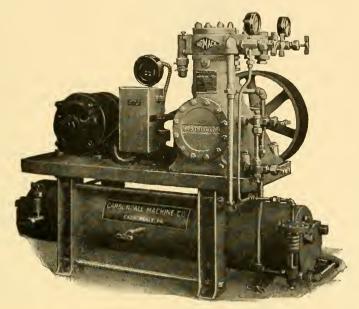


FIG. 49.—CARBONDALE REFRIGERATING UNIT.

The one ton unit is driven by a three horse power motor at 265 r.p.m. when operated at standard suction and discharge pressures. The same machine is rated at two tons when operated at 530 r.p.m. by a five hp. motor. This machine has a vertical compressor of $3\frac{1}{2}$ inch diameter and $3\frac{1}{2}$ inch stroke.

The unit is equipped with the following automatic devices:

Automatic starting panel. High pressure cut out switch. Ammonia pressure water control valve. Automatic expansion valve, with strainer.

The high pressure cut out is arranged with hand reset, so that in case it acts, the machine will not start itself until the cause for the high ammonia pressure is determined and corrected.

The thermostat operates at full voltage and is fitted for two connecting wires. The thermostat is very accurate, and with a properly designed room, or box, the temperature may be held within a few degrees of the desired temperature.

The water regulating valve is mounted on the front end of the condenser. It is of the pressure actuated type and controls the flow of water by the ammonia pressure of the condenser. When the ammonia pressure drops, the flow of water ceases; and as it rises, the flow is increased, thus obtaining maximum economy in the use of water.

The ammonia connections, both to this valve and to the high pressure cut out, are short and protected by other parts of this unit. Valves are provided in both connections, so that the appliance can be removed for repairs or adjustment.

The automatic expansion valve is of the spring and diaphram controlled type, selected for the service that it has given hundreds of users, and of a type that will operate satisfactorily under the most adverse conditions.

Champion.—The Champion Electric Icer is made by the Champion Electric Company of St. Louis, Missouri, a division of the Champion Shoe Machinery Company.

FIG. 50.--"JUNIOR" MODEL, CHAMPION ELECTRIC ICER.

Fig. 50 shows the Junior Model. This compressor is of the single cylinder reciprocating type. A belt drive is used.

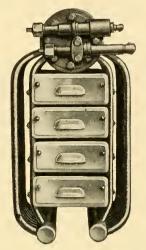


FIG. 51.—CHAMPION COOLING UNIT.

The cylinder block is lined with tool steel bushing hardened and ground. The pistons are semi-steel equipped with two piston rings. The crankshaft is drop forged in one piece.

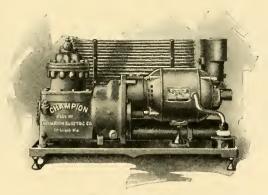


FIG. 52.—"SENIOR" MODEL, CHAMPION ELECTRIC ICER.

Large eccentric bearings are used which are of semi-steel. Model No. 6 Junior Compressor has $1\frac{1}{2}$ inch diameter cylinder, $1\frac{1}{6}$ inch stroke, and operates at 500 r.p.m. Model No. 8 Junior compressor has $1\frac{1}{2}$ inch diameter cylinder, $1\frac{1}{2}$ inch stroke, and operates at 500 r.p.m.

The condenser consists of a double coil of $\frac{1}{4}$ inch copper tubing. Natural air circulation is used for cooling the condenser.

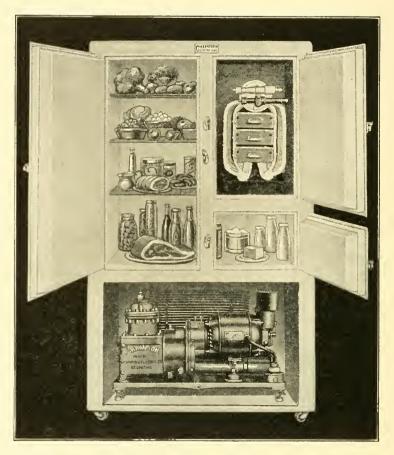


FIG. 53.-CHAMPION "SENIOR" MODEL WITH COOLING UNIT INSTALLED.

The automatic control is of the adjustable pressure type on the suction line.

The motor is 1/6 hp. and is of the induction-repulsion type. Fig. 51 shows the cooling unit which operates on the

flooded system. This uses direct expansion in open type coils. The refrigerant is sulphur dioxide.

Fig. 52 shows the Senior Model which consists of a twocylinder reciprocating type compressor geardriven. The $\frac{1}{4}$ hp. motor drives the compressor by means of completely enclosed gears. The gear drive consists of a composition pinion on the motor shaft, driving a helical cut semi-steel gear on crank shaft. All moving parts are enclosed and run in oil. The compressor has a $1\frac{1}{2}$ inch bore, $1\frac{1}{16}$ inch stroke, and operates at 500 r.p.m.

The condenser, automatic control and cooling units are similar in type to those used on the Junior Model.

Fig. 53 shows the Senior Model and cooling unit complete with the cabinet.

Chilrite.—This machine, Fig. 54 is made by the Narragansett Machine Company in Pawtucket, R. I.

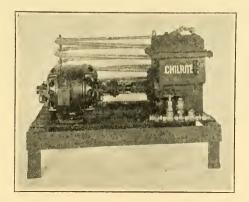
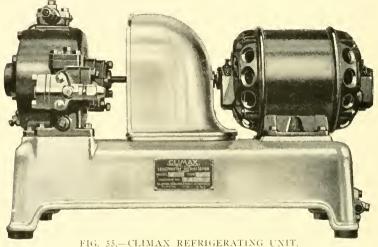


FIG. 54.—CHILRITE REFRIGERATING UNIT.

The compressor is of the multi-stage rotary gear type and uses sulphur dioxide as the refrigerant. The condenser consists of a coil of finned tubing.


The cooling unit is of the dry system consisting of a coil connected with an expansion valve and submerged in a tinned copper tank filled with alcohol and water. In some installations the tank is dispensed with and the open coil system is used.

HOUSEHOLD REFRIGERATION

The temperature is controlled by an immersion type of thermostat of the tilting tube variety.

The machine is made in three sizes using 1/6. 1/4 and 1/3 hp. motors and is adapted to operate with any standard make of cabinet

Climax.—Fig. 55 shows the self-contained refrigerating unit manufactured by the Climax Engineering Company of Clinton, lowa. The refrigerant used is methyl chloride.

The condenser, compressor and motor are all mounted on the same base. The compressor is direct connected to the electric motor. A rotary type of compressor is used, consisting of only three moving parts. The rotating element operates on bronze bearings submerged in oil, thus providing positive hibrication.

The refrigerating unit is made in four different sizes:

Model	Motor	Weight	Ice Melting Effect
Model G	½ hp.	86 Ibs.	75 lbs.
Model F	$\frac{1}{4}$ hp.	127 lbs.	150 lbs.
Model E	$\frac{1}{3}$ hp.	204 lbs.	300 lbs.
Model D	1/2 hp.	224 lbs.	500 lbs.

The condenser is of the radiator type and is mounted under the base. The air is drawn through the radiator and does dou-

ble duty by being blown against the compressor case. A float valve is used for the liquid control.

The operation of this unit is controlled by a thermostat or pressure control and is entirely automatic.

Coldmaker.—In Fig. 56 is illustrated the Coldmaker household refrigerating machine manufactured in Toledo, Ohio. The machine is installed in the basement or other out of the way place and the cooling coils are installed in the ice compartment of any box.

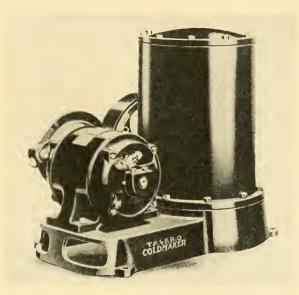


FIG. 56 .- COLDMAKER REFRIGERATING MACHINE,

Coldmaker consists of a water cooled ammonia system of automatic refrigeration. The compressor is motor driven by means of a flat leather belt.

The compressor has two cylinders, 1¹/₄ inches in diameter by 1¹/₄ inch stroke made of a semi-steel casting. Suction port openings are located near the center of the cylinders.

The pistons have long ports on each side to admit the suction gas. The suction valve is located in the upper end of the piston. The top end of the piston has four piston rings and the lower end three rings. The wrist pins are made of nickel steel. The eccentrics are made of gray iron castings and are cast integral at an angle of 180°. They are shrunk and pinned to the shaft. The shaft is made of forged steel and is ground to size after the eccentrics have been shrunk on.

The discharge valves are made of nickel steel, light in weight, and cup shaped. They give full area opening of the cylinder and permit the compressor to handle saturated gas or liquid without endangering the safety of the machine.

The suction valves, located in the head of the pistons, are made of nickel steel. They have a large suction area and operate with a minimum lift.

Both suction and discharge valves are provided with springs to hold the valves snugly to seats when the pressure is released.

The end plates containing the shaft bearings are made of semi-steel, bored and reamed accurately, and fitted with die cast bearings.

The stuffing box is provided with an oil gland, or ring, with soft packing on both sides. The gland has a direct connection with an oil reservoir, entirely separate from the oil in the crank case. This in reality, forms an oil storage in the center of the stuffing box, which keeps the packing soft and resilient, and effectively seals the stuffing box so that no gas can get past this oil seal. A threaded packing nut or gland forms the outer end of the stuffing box proper.

The rings are made of soft, close grained gray iron. Each ring is cast individually and the inner surface is left unfinished to give toughness and resiliency to the ring. The rings are cast eccentric.

The cylinder heads are made of semi-steel. The discharge port is located in the cylinder head. The water jacket surrounds the compressor, condenser and liquid receiver. Any leak which might occur will be absorbed by the water. The condenser is made of extra heavy $\frac{1}{2}$ inch steel pipe bent to shape and surrounding the compressor cylinders.

Some advantages of the water jacket surrounding the compressor, condenser and liquid receiver are:

1. It absolutely assures splendid operating conditions for the compressor, preventing any contraction or expansion of the metals.

2. It prevents the oil from vaporizing in the crank case.

3. The bearings are kept at a uniform temperature and prevented from overheating.

4. It keeps the stuffing box in excellent condition at all times.

5. It gives additional condensing surface on the receiver.

6. Provides a direct outlet to the sewer in case of leaks.

The expansion valve is of the diaphram pressure type. It is screened to prevent dirt and scale from getting to the valve seat.

The automatic control consists of a small 1/50 hp. motor which is reduced in speed by worm gears. One of these is directly connected to a rotating shaft, which contains on one end the rotary switch with three terminals corresponding to the three terminals on the thermostat, and the two terminals for the power motor switch. On the one end is fixed the water cock for regulating the flow of water to the condenser shell. As both switches and water valve are firmly fastened to the same shaft and rotate at the same time, it is plainly evident that both water and current must be on or off at the same time.

If the water supply fails, a diaphram pressure switch directly connected to the water line cuts off the motor instantly. If the pressure falls below a safe margin, the motor will not start again until the water pressure has been again restored to normal.

With alternating-current, a repulsion-induction motor is used, continuous duty type. With direct current, a compound wound continuous duty motor must be used. The size furnished is $\frac{1}{3}$ horse power, 1200 r.p.m.

The capacity of the Coldmaker with the usual allowances for compressor inefficiencies, plus an additional allowance because of the small size of the equipment, figures out approximately 279 pounds of refrigeration when operating 24 hours. The machine is rated at 250 pounds of refrigeration.

Cooke Refrigerating Machine.—The Cooke Household Refrigerating Machine is manufactured by Mr. George J. Cooke, Sr., of Chicago, Illinois.

The compressor is of the single cylinder, vertical, singleacting type. A cross-section and longitudinal section is shown in Fig. 57. The cylinder diameter is $1\frac{1}{2}$ inches and the stroke is $1\frac{1}{2}$ inches. The compressor operates at 450 r.p.m. normally. The suction value is of the port type; the discharge value is of the disc plate type. The compressor crank shaft and

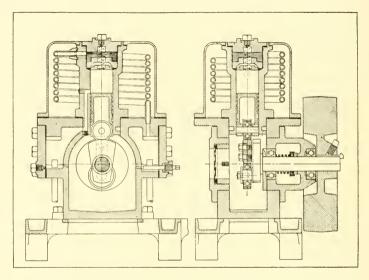


FIG. 57.—SECTIONAL VIEW OF COOKE REFRIGERATING MACHINE.

connecting rod are provided with ball bearings to reduce the friction losses to a minimum. The crank shaft is packed by means of the patented seal ring. The packing is submerged in oil while the machine is in operation. A small but heavy flywheel is keyed to the crankshaft. A glass-covered observation port is provided opposite the end of the crank shaft for observing the condition of the lubricating oil.

The condenser consists of a spiral pipe coil around the compressor cylinder, as shown by Fig. 57. An exterior casing encloses the water circulation for the condenser and water jacket for the compressor cylinder. The ammonia gas is **discharged** into the top of the spiral condenser coil and the liquefied ammonia drains out of the bottom of the coil into a combined ammonia receiver and oil trap which is cast integral with the compressor frame. An automatic oil return valve is used.

The compressor is driven by means of a $\frac{1}{4}$ hp. electric motor running at 1,750 r.p.m. It is belted to the compressor by a "V" type belt. Proper belt tension is obtained by mounting the motor upon a hinged base. The compressor and motor are mounted upon a substantial cast-iron base. The compressor and motor unit is 20 inches long, 10 inches wide, and 15 inches high overall and weighs 150 pounds.

The cooling element consists of a brine tank containing direct expansion coils. Trays are provided for the freezing of seventy-two $1\frac{1}{2}$ inch ice cubes for table use. The expansion value is of the angle standard orifice type, protected from foreign matter by a small strainer in the liquid line just ahead of the value. It is located just above the brine tank.

The machine is self-contained, simple in construction, and all parts are readily accessible. The operation of the machine is positively and automatically controlled by means of a mercoid electric switch which is actuated by a thermostatic element submerged in the brine of the main tank. The controls may be adjusted to maintain any reasonable temperature in the refrigerator. The condenser water supply is controlled by a diaphram valve which is actuated by the condenser pressure.

The total charge of the ammonia in the system is said to be $3\frac{1}{2}$ ounces. The capacity of the machine, it is claimed, is 350 pounds of ice melting effect per day. It may be installed on or adjacent to any refrigerator having a maximum of 35 cubic feet.

The refrigerating machine has in connection with it an ice cream freezer of the domestic size. This is mounted on the side of the refrigerator. The ice cream freezer has a brine tank containing a submerged spiral direct expansion coil. Operation of the freezer requires only a one-quarter turn of a hand lever located just above the main brine tank. It is claimed that one gallon of ice cream may be frozen in ten to fifteen minutes. **Copeland.**—Fig. 58 shows the household refrigerating machine made by Copeland Products, Incorporated, of Detroit, Michigan.

The compressor has one cylinder and is of the single-acting reciprocating piston type. The motor is $\frac{1}{6}$ hp. and drives the compressor by means of the "V" type belt.

The refrigerant used is Freezol or Iso-Butane, a hydrocarbon gas which is odorless, non-corrosive and non-poisonous.

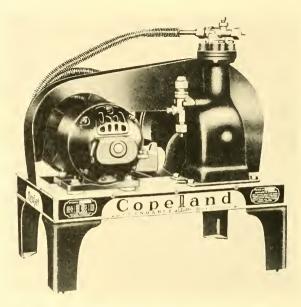


FIG. 58 .-- COPELAND REFRIGERATING UNIT.

The condenser is made of thin copper tubing and is cooled by forced air obtained by means of a fan attached to the motor shaft.

The cooling units are made entirely of copper and brass: Copper tubing is used for the expansion coils. This tubing encircles the ice tray sleeves, thus reducing the time required to freeze water or desserts. Cooling units are made in various sizes suitable for different sizes and types of refrigerating cabinets.

The expansion valve, Fig. 59, is located on top of the cooling unit and is of the balanced type using a diaphragm

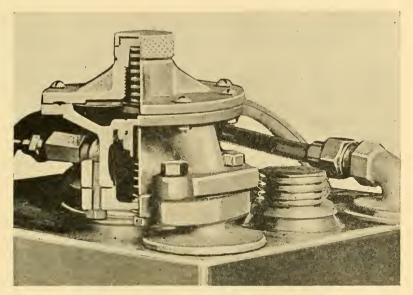


FIG. 59.—COPELAND EXPANSION VALVE.

FIG. 60.—COPELAND ONE-PIECE FREEZING UNIT AND MACHINE.

between the outside adjusting spring and the regulating needle inside the valve.

The temperature control is automatic and is obtained by means of a thermostat responsive to the cooling unit temperature.

A line of all-metal cabinets is supplied.

Fig. 60 shows the freezing unit and machine all in one piece, mounted on an insulated base which forms the top of the refrigerator. This unit sets down into the top of the refrigerator, resting on an insulated base, and forms an airtight seal with its own weight.

FIG. 61.-COPELAND CABINET AND REMOVABLE UNIT.

Fig. 61 shows the cabinet in which the removable unit operates. This cabinet is $62\frac{1}{2}$ inches high, $26\frac{1}{4}$ inches wide and 21 inches deep.

The exterior is covered with steel and the walls are insulated with $1\frac{1}{2}$ and 2 inches of solid cork. The exterior is of steel finished in white pyroxylin.

COMPRESSION REFRIGERATING MACHINES

The cooling unit has an ice capacity of 6.6 pounds and a capacity of 108 cubes at one freezing. The food space is $5\frac{3}{4}$ cubic feet and the shelf area is 8 square feet.

CP Refrigerating Machine.—Fig. 62 shows the self-contained refrigerating machine made by the Creamery Package Manufacturing Company, Chicago, Illinois.

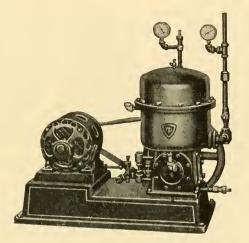


FIG. 62.—CREAMERY PACKAGE REFRIGERATING MACHINE.

The refrigerant used is ammonia. The compressor, liquid receiver, condenser, necessary valves, oil gauge and strainer are all mounted on one base. The compressor is of twin cylinder construction. The compressor has adjustable crank pin bearings, drop forged connecting rods and crankshafts, and improved type valves which are easily removable.

A $\frac{1}{2}$ hp. motor is used to drive the compressor. This machine has a capacity of $\frac{1}{4}$ ton refrigeration per day.

The machine is entirely automatic in operation. A thermostat is used to maintain any desired temperature.

Delphos.—Fig. 63 shows the complete self-contained refrigerating unit made by the Delphos Ice Machine Company, at Delphos, Ohio.

Ammonia is the refrigerant used. This unit consists of a complete high-side including a compressor, scale trap with

relief valve, oil trap, condenser, receiver, low and high pressure gauges, gauge and purge valves and electric motor. A cast iron base is used.

The compressor is of the enclosed crankcase type and all of the moving parts and bearings are lubricated by the splash of the eccentrics passing through the oil contained in the reservoir at the bottom.

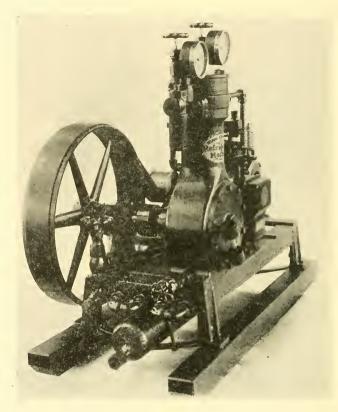


FIG. 63.—DELPHOS REFRIGERATING UNIT.

All the compressors are two cylinder with the exception of the three-fourths ton size which is single cylinder.

The ammonia condenser is of the double pipe, countercurrent type with all ammonia joints welded. The water pipes are connected by means of return bends and lip unions to permit ready access for cleaning and removing water sediment. This can be done without disturbing the ammonia. The condenser is made up of black steel pipe with steel heads securely welded. The condenser and receiver are mounted integral with shut-off valve placed between condenser and receiver.

Electrical Refrigerating Co.—Fig. 64 shows a cross-section view of the compressor used in the machine manufactured by

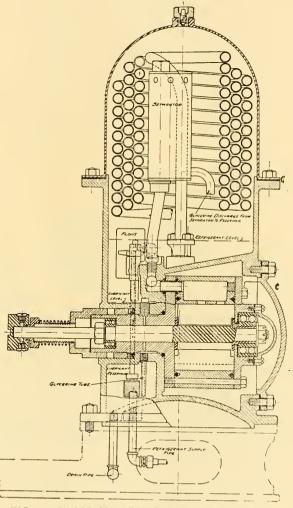


FIG. 64 .- WILLIAMS REFRIGERATING MACHINE.

the Electrical Refrigerating Company at Brooklyn, New York.

This is a water-cooled type using ethyl chloride as the refrigerant. The flow of the refrigerant is controlled by means of a float valve.

Four sizes of this machine were developed including $\frac{1}{4}$, $\frac{1}{2}$, 1 and 2 hp. Most of the parts of all these sizes are interchangeable in the same housing, the outside diameter of all compressors being the same while the variations in their capacity is obtained by changing the bore and depth dimensions.

The capacity of the larger size condenser is provided by increasing the height of the dome.

ElectrICE.—Fig 65 shows the top view of the rotary compressor used on the household refrigerating machine made by the American ElectrICE Corporation at Belding, Michigan.

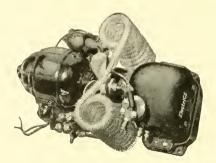


FIG. 65.—TOP VIEW OF ELECTRICE ROTARY COMPRESSOR.

The compressor is of the rotary type, using one set of gears operated at motor speed. The motor is direct connected to the compressor, eliminating the use of belts.

The compressor consists of two coils of thin tubing cooled by forced air obtained by means of a fan mounted on a motor shaft. The refrigerant control valve is mounted on the compressor base.

The motor control is responsive to a mercoid thermostat, starting and stopping the compressor, and is necessary to maintain a constant temperature in the refrigerator.

The ice-melting capacity of this unit is 125 pounds per twenty-four hours at 85° F. temperature.

Electro-Kold.—Figs. 66 and 67 show compressor units made by the Electro-Kold Corporation of Spokane, Wash. Compressor units are made in three sizes.

FIG. 66.—ELECTRO-KOLD COMPRESSOR UNIT.

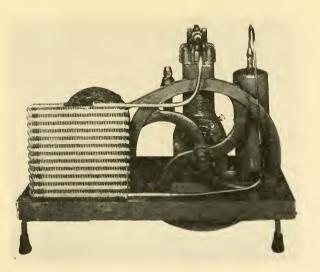


FIG. 67.-ELECTRO-KOLD COMPRESSOR UNIT.

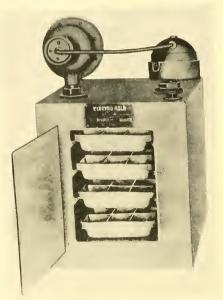


FIG. 68 .-- ELECTRO-KOLD FROST TANK.

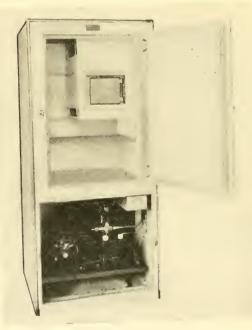


FIG. 69.-COMPLETE ELECTRO-KOLD SELF-CONTAINED UNIT.

The refrigerating capacity and size of motors are as follows:

Type	Size Motor	Number Cylinder	Refrigerating Capacity	
Type C	1⁄4 hp.	1	10 cu. ft.	
F	½ hp.	1	40 cu. ft.	
A	$\frac{1}{2}$ hp.		60 cu. ft.	

Sulphur dioxide is the refrigerant used.

The condenser consists of copper tubing and it is cooled by forced air.

A pressure control is used instead of a thermostat to regulate the operation of the machines.

Fig. 68 is a view of a typical frost tank with a capacity for cooling ten cubic feet of food space. It has four ice trays of eighteen cubes each.

Fig. 69 shows a complete self-contained unit. The exterior is of steel with Duco finish. The insulation is of $1\frac{1}{2}$ inch corkboard. Several other larger self-contained models are produced.

Everite.—The Everite Products, Inc., Dayton, Ohio, manufactures the motor driven air cooled refrigerating machine, Fig. 70.

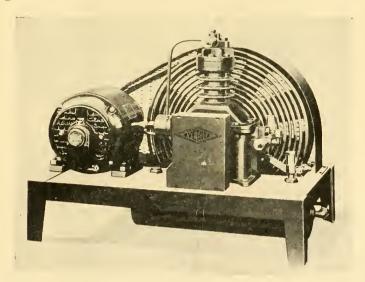


FIG. 70.-EVERITE REFRIGERATING MACHINE.

This machine may be used in the standard home refrigerator or in special all-steel, porcelain lined refrigerator cabinets furnished in five sizes from seven to twenty cubic feet food storage capacity.

Both single and double cylinder compressors operated by 1/6 and 1/4 hp. motors are manufactured. These have refrigerating capacity of twelve to twenty-five cubic feet respectively.

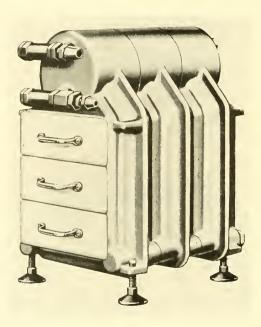


FIG. 71.--EVERITE FLOODED TYPE COOLING UNIT.

Commercial systems are also manufactured in $\frac{1}{4}$ and $\frac{1}{2}$ ton sizes.

Sulphur dioxide is the refrigerant used.

The Everite cooling unit, Fig. 71 is of the flooded type employing a float valve in its header. These are of cast construction built up in sections similar to a radiator which provides maximum cooling surface and permits the building up of suitable size cooling units for various size refrigerators from

the smallest to the largest within the capacity of the compressors.

The outstanding feature in this system is the condenser which is mounted directly in front of and covering the entire area of the fan pulley thus causing all the air drawn in by the fan to pass through the condenser rendering it very efficient and permitting neat and compact construction.



FIG. 72 .--- ALL-STEEL CABINET WITH EVERITE UNIT.

The control is the pressure type (no thermostat is used) thus eliminating difficulties usually experienced in this type of control.

Fig. 72 shows one of the all-steel cabinets supplied as a self-contained unit.

Frigidaire.—Two general types of Frigidaire household and commercial refrigerating machines are made by the Delco-Light Company at Dayton, Ohio. These are air-cooled and water-cooled units using sulphur dioxide as the refrigerant.

Fig. 73 shows the model "G" air-cooled condensing unit comprising the compressor, condenser, receiver, motor and automatic control, mounted on a steel base. The compressor

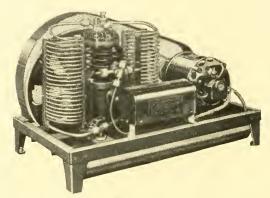


FIG. 73. -FRIGHDAIRE MODEL "G" AIR-COOLED UNIT.

is a two cylinder, vertical, single-acting type. The discharge valve is of the flapper valve construction. A disc suction valve is used in the top of the piston. An eccentric keyed to the shaft drives the pistons by means of the eccentric rods.

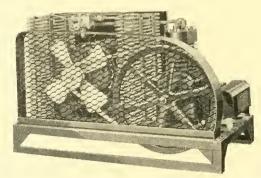


FIG. 74.-LARGER SIZE FRIGIDAIRE AIR-COOLED COMPRESSOR.

The compressor shaft is sealed by a special metal ring which automatically compensates for wear. The compressor pulley contains fan blades which force air over the copper condenser coils located on opposite sides of the compressor. The condenser coils are made of flattened copper tubing. The $\frac{1}{4}$ hp.

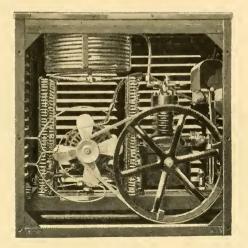


FIG. 75.—FRIGIDAIRE AIR-COOLED COMPRESSOR FOR HOUSEHOLD AND COMMERCIAL INSTALLATIONS.

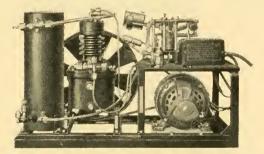


FIG. 76.—FRIGIDAIRE WATER-COOLED CONDENSING UNIT FOR COM-MERCIAL INSTALLATION.

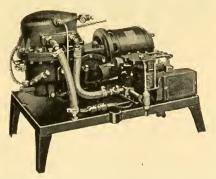


FIG. 77.—FRIGIDAIRE WATER-COOLED CONDENSING UNIT FOR COMMERCIAL INSTALLATION.

motor drives the compressor by means of a "V" type belt. The automatic control switch is actuated by a change of pressure on the low side of the refrigerating system.

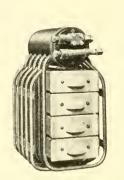


FIG. 78. — TYPICAL FRIG-Idaire cooling unit, Flooded principle.



FIG. 79.—TYPICAL FRIGIDAIRE COMMER-CIAL SIZE COOLING COIL, COPPER FINS.

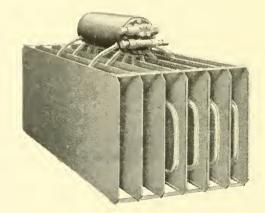


FIG. 80.—TYPICAL FRIGIDAIRE COMMERCIAL SIZE COOLING COILS, COPPER FINS.

Figs. 74 and 75 show larger sizes of air-cooled compressors used on household and commercial installations.

Fig. 76 and 77 are water-cooled condensing units used mostly for commercial work.

COMPRESSION REFRIGERATING MACHINES

Fig. 78 shows a typical cooling unit which operates on the flooded principle. The header contains a float valve which controls the supply of liquid refrigerant to the cooling unit. A series of copper coils terminate in the header. Copper

FIG. 81.—TYPICAL FRIGIDAIRE COMMERCIAL SIZE COOLING COILS, COPPER FINS.

sleeves are used inside the coils to accommodate the ice trays. This provides direct frost-coil cooling and the ice containers are of the self-scaling tray front type. Cooling coils are made

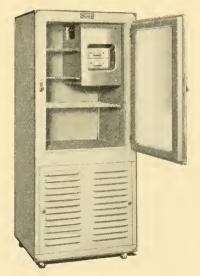


FIG. 82.—FRIGIDAIRE METAL CABINET.

in various sizes to fit in any household or commercial refrigerator.

Figs. 79, 80 and 81 show typical commercial size cooling coils with copper fins. The copper fins greatly increase the effective cooling surface. The copper tube is soldered to the fins and in some cases the copper tubes are flattened.

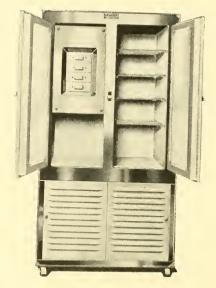
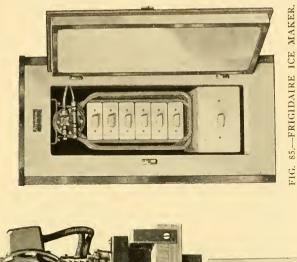



FIG. 83.-FRIGIDAIRE METAL CABINET.

FIG. 84.-FRIGIDAIRE METAL CABINET.

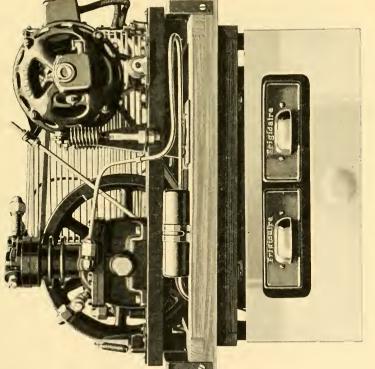


FIG. 86.—SPECIALLY DESIGNED FRIGIDAIRE MODEL

Figs. 82, 83 and 84 show typical metal cabinets. The refrigerating mechanism may be placed in the bottom of any of these cabinets. These are made with 5, 7, 9, 12 and 15 cubic feet of food compartment space. One line of cabinets is made with the exterior finished in white Duco on steel.

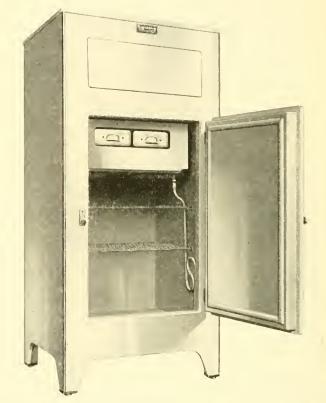


FIG. 87.-FRIGIDAIRE CABINET FOR SELF-CONTAINED UNIT.

Another complete line has the exterior of porcelain on steel, trimmed with monel metal. The front is of highly polished monel metal. These cabinets are insulated with corkboard and the linings, with the exception of one model, are made of porcelain on steel. The linings are of the one piece construction with rounded corners fitting flush above the door sills.

Fig. 85 shows the ice-maker which is used where a greater amount of ice is required than is provided by the cooling coil installed in a regular refrigerator. The ice-maker contains six large capacity freezing travs and a storage compartment underneath

Fig. 86 shows the specially designed model including the motor compressor, condenser, and cooling coils arranged as a self-contained unit. A copper finned cooling coil is used. The compressor is mounted on a special spring suspension to eliminate vibration and afford quietness in operation.

Fig. 87 shows the cabinet in which the self-contained unit is used

General Electric.-The General Electric Refrigerator is made by the General Electric Company of Schenectady, N. Y. Fig. 88 shows the complete refrigerating unit installed in a refrigerator cabinet.

The refrigerant used is sulphur dioxide. All moving parts are hermetically sealed in a drawn steel case containing the refrigerant-sulphur dioxide-and the lubricant. The condenser and evaporator coils are brazed to the steel casing. Specially developed insulated leads, similar to spark plugs, are used for the electrical connection to the motor. This construction permits complete enclosure and the elimination of the stuffing box through which gas or oil might leak. There is no external piping, cooling fan, belt or other external moving part.

The essential operating parts consist of:

1. A 1/2-hp., 110-volt, 60-cycle, split-phase motor mounted vertically. This motor is exceedingly simple in design and sturdy in construction-without brushes or other moving contacts.

2. A two-cylinder, single-acting compressor having oscilating cylinders.

3. A discharge valve of spring steel so arranged as to eliminate noise.

4. A copper tube condenser coil of circular cross section.

A float valve to regulate the amount of refrigerant passing to 5. the evaporator coils.

6. An evaporator coil of copper tubing immersed in the brine tank.

7. An automatic regulating control.

The cooling tank, which is suspended within the cabinet itself, is covered inside and out with white, fused-on vitreous

porcelain—long wearing and easy to clean. The freezing trays, having a capacity of seven pounds of ice cubes, can be slipped into compartment in the tank. These trays are

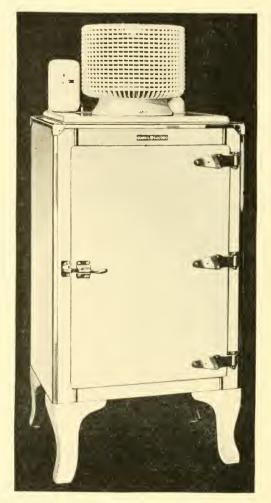


FIG. 88.—GENERAL ELECTRIC REFRIGERATOR.

of heavily tinned copper and are furnished with removable dividers to provide twenty-one cubes for each tray, or a total of sixty-three cubes for the three trays.

COMPRESSION REFRIGERATING MACHINES

Complete automatic temperature and current control are provided. A control box on the front of the unit contains a manually-operated switch for disconnecting the machine, for defrosting or any other purpose.

The control box also contains an automatic thermostatic switch for starting and stopping the machine in response to temperature changes, a relay for transferring motor connections from starting to running position and a thermal, timelimit relay for protecting the motor from overload damage, also a reset button for a resumption of operation.

The automatic control is so adjusted that a brine temperature is maintained between 16° and 24° F., thereby maintaining a continuous cabinet temperature of from 40° to 50° F., which is admittedly the most satisfactory temperature for food preservation.

Installation is extremely simple as the refrigerator need only be moved to the desired position and attached to the nearest electric outlet. It can be installed wherever it will prove most convenient as there is no special plumbing or permanent fixtures to be connected to it. The cooling tank is placed in the cabinet, filled with a solution of salt brine and the refrigerating unit set into place. It is thoroughly portable and can readily be moved.

Fig. 88 shows the Model P-5-2 installed in a 5 cu. ft. refrigerator. This cabinet is of white porcelain exterior and interior. The exterior has flat polished metal trim strips. The exterior dimensions are height overall, 65³/₄ inches; width over hardware, 28³/₈ inches; depth over hardware, 22⁷/₈ inches. (Legs may be removed and the height reduced 11³/₈ inches.)

The cooling unit contains one small tray for making ice cubes and one large tray for making cubes or frozen dessert. The total ice-making capacity is 56 cubes or approximately 7 pounds of ice. The food storage capacity is 5.37 cubic feet and the food shelf area is 7.9 square feet.

Hall Refrigerating Machine.—Fig. 89 shows the compressor of the ammonia machine manufactured by Thomas Hall & Son, Ltd., Rotherham, England.

The piston is of the truncated type and contains the suc-

tion valve. The discharge valve is of a special type. It is not affected by the heat of the compression. The valve is contained in a safety head which allows any liquid ammonia or oil to pass without damage.

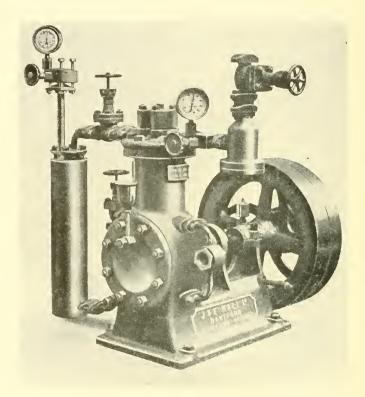


FIG. 89.—HALL REFRIGERATING MACHINE.

The crank case gland screws up like a nut, which prevents the gland from being pulled on one side and thus scoring the shaft. Metallic packing is used. The connecting rod is of forged steel. The dirt separator is fitted on the suction pipe, thus preventing any scale which may become loosened in the room coils from entering the machine and interfering with the working of the valves.

An oil sight glass is fitted in the end cover, which enables the level of the oil to be seen at a glance.

COMPRESSION REFRIGERATING MACHINES

The stop valves are double seating, allowing the valves to be packed while the machine is running. The machine is fitted with a purge valve on the cylinder head to enable air and foul gases to be purged out of the system.

An oil trap is fitted on the discharge and is equipped with an oil return valve which enables the oil carried over through the valve, to be returned to the crank case, thus preventing it from going into the system.

A liquid ammonia receiver is fitted underneath the condenser making a compact unit.

The method of cooling usually adopted is by means of direct expansion coils immersed in a brine accumulator tank, which acts as a reservoir of cold and keeps the room down in temperature after the plant has been stopped. For some requirements air circulation is added. For frozen meat, directexpansion coils are placed on the ceiling or on the walls.

This small size machine is capable of cooling a properly insulated cold room of 400 to 500 cubic feet to a temperature of 35° to 38° F.

Ice Maid.—The household refrigerating unit, Fig. 90, is made by the Lamson Company, Inc., at Syracuse, New York.

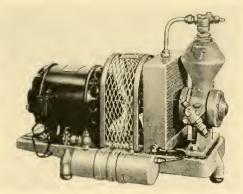


FIG. 90.-ICE MAID HOUSEHOLD REFRIGERATING UNIT.

The compressor is a direct connected rotary type running at motor speed and using ethyl chloride as a refrigerant. The compressor has a 2-bladed rotor mounted eccentric to the bore and is carried on annular ball bearings. The stuffing

box is of the sylphon bellows type, the bellows revolving with the shaft thereby carrying away any heat that may be generated by the seal.

The discharge valve is of the flapper valve type and consists of two flat steel discs riveted to the seat on one side. An efficient oil separator is an integral part of the oil reservoir, it is located in the dome of the pump and oil is fed by the pressure of the gas through holes drilled in the pump casting to the bearings and the rotor. This gives the effect of a full pressure system and is fully automatic, as the load on the pump increases the quantity of oil fed to the bearing also is increased. Oil is used as a lubricant increasing the efficiency of the pump considerably.

Suction and discharge shut-off valves are of the doubleseated type permitting removal of pump without losing the charge of refrigerant. A check valve of the flat disc type is located on the suction side of the pump to obviate the possibility of oil running back into the suction line.

The compressor is driven through a flexible coupling of the fabric disc type which is self-aligning. Coupling and fan hub are integral.

The motor is of the induction repulsion type, both $\frac{1}{3}$ and $\frac{1}{4}$ hp. being used. For remote control the motors run at 1750 r.p.m. and for self-contained installation they run at 1165 r.p.m. The motor is directly connected to the compressor by means of the fan and coupling assembly.

The condenser is of the Honeycomb Radiator type and has a cooling capacity equal to about 120 feet of $\frac{1}{2}$ -inch copper tubing. This is mounted between the pump and the fan. The fan running at motor speed throws a current of air directly through the radiator and thence around the pump. This direct positive cooling system is so effective that the machine usually operates under several pounds less head pressure than ordinary ethyl chloride systems using a copper tube condenser.

The compressor, radiator and motor are mounted as a unit on a rigid cast iron base. The base is drilled in such a manner that any standard motor that may be used can be mounted upon it readily. The base rides on sponge rubber balls which effectively absorb any slight noise or vibration.

COMPRESSION REFRIGERATING MACHINES

Attached to the side of the base is a receiving tank of a capacity sufficient to hold the entire charge of refrigerant, thus making the entire condenser available for condensing purposes.

The dimensions of the entire unit are 24 inches long, 18 inches high and 12 inches wide. Due to this extreme compactness, the standard unit may be mounted in much less space than that occupied by the average machine and this can be installed in the base of a comparatively small refrigerator,

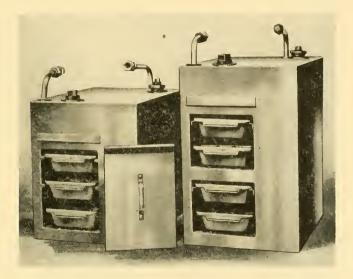


FIG. 91.-ICE MAID FREEZING UNIT.

without any changes whatsoever. The weight of the entire mechanical unit is approximately 100 pounds.

The freezing unit, Fig. 91, is of the brine tank type having a copper expansion coil of ell-shaped form and is equipped with compartment for ice trays. The tanks are nickel plated and are furnished in a variety of sizes sufficient to accommodate all standard refrigerators. The ice trays have a capacity of 24 cubes of ice.

The tray compartment is equipped with a cover which is so designed that it will not freeze to the tank and thus make it difficult to remove the ice tray.

The expansion valve is of the balanced type having only one spring which is the adjusting spring. It is constructed with a sylphon bellows and is fully automatic in its action. It is readily adjustable from the outside and is provided with an efficient means preventing moisture freezing and interfering with the operation of the bellows.

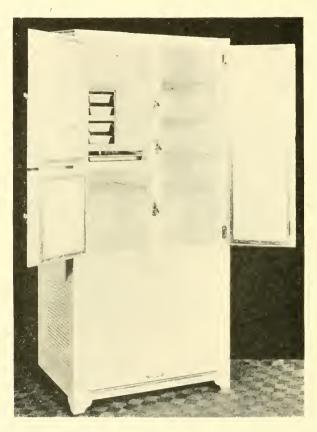


FIG. 92,-ONE OF THE TWELVE ICE MAID MODELS.

Control of the machine is effected by means of a mercoid switch located outside the refrigerator. It is connected to the refrigerator by means of a capillary tube which is attached to a bulb immersed in the brine, the other end of the tube being connected to a sylphon bellows actuating a tilting glass tube containing mercury, which makes or breaks the circuit as the bulb is tilted back and forth. A brine temperature of 16° or 20° is maintained.

This method of control gives uniform brine temperature regardless of outside temperature. Only one size compressor is furnished, but by substitution of butane for ethyl chloride comparatively large restaurant, butcher boxes and other commercial applications can be handled.

A complete line of refrigerators with self-contained units are furnished in both wood and all metal comprising twelve different models from 5 to 20 cu. ft. food storage capacity. Fig. 92 shows one of these models.

Installation is simple as there are no electric wires entering the refrigerator and the standard mechanical unit is readily installed either as a remote or self-contained unit.

Iroquois.—Fig. 93 shows the compressor-condenser unit, made by the Iroquois Refrigeration Company, associate of the

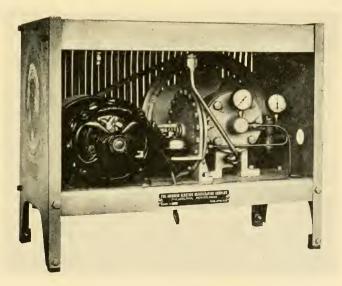


FIG. 93 .- FRONT VIEW, IROQUOIS COMPRESSOR CONDENSER UNIT.

Barber Asphalt Company of Philadelphia, Pennsylvania. Ethyl chloride is used as the refrigerant.

Fig. 94 shows the rotary type compressor used with this'

unit. The condenser, Fig. 96, is of the double header type consisting of a series of copper tubes arranged so as to form a guard for the compressor. The condenser is cooled by two

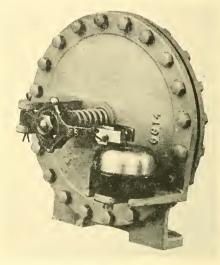


FIG. 94.—IROQUOIS ROTARY TYPE COMPRESSOR.

FIG. 95,—IROQUOIS PRESSURE CONTROLLED SWITCH.

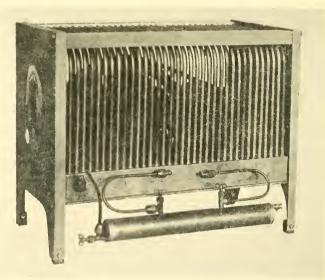


FIG. 96.-REAR VIEW, IROQUOIS COMPRESSOR-CONDENSER.

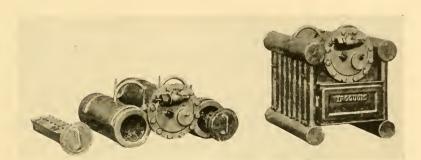


FIG. 97.-IROQUOIS COOLING UNITS. APARTMENT HOUSE UNIT AT LEFT.

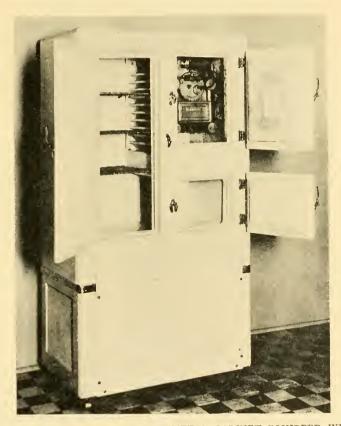


FIG. 98.—IROQUOIS SYPHON ALL-METAL CABINET EQUIPPED WITH COMPLETE SELF-CONTAINED REFRIGERATING UNIT.

fans, one on the motor shaft and the other on the compressor flywheel.

The automatic pressure controlled switch is shown in Fig. 95. This device consists of the powerful snap, switch actuated

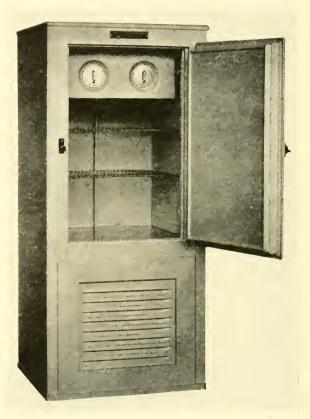


FIG 99.—IROQUOIS ELECTRICAL REFRIGERATOR, APARTMENT HOUSE TYPE.

by a diaphragm subjected to a pre-determined pressure in the cooling unit.

The cooling units, as Fig. 97, are constructed of heavy tinned copper and brass material. A float valve is used to control the flow of liquid refrigerant to the cooling unit.

Figs. 98 and 99 show a typical cabinet equipped with the refrigerating unit forming a complete self-contained model.

Isko—First Model.—The first model Isko machine is described as follows:

The motor operates the compressor and is controlled through the thermostat and the circuit breaker. When the refrigerator gets warm the themostat starts the motor, which runs until a predetermined low temperature is attained and then stops. The thermostat is located in the cooling coil where the greatest variation of temperature is, there being nearly 32° of variation under average conditions. The thermostat alternates on from 2° to 4° of variation.

Isko cools the refrigerator by abstracting the heat through the tinned copper ice-making coils in which liquid sulphur dioxide is being boiled by the heat extracted from the refrigerator.

This sulphur dioxide steam, unlike the steam with which we are most familiar, is cold (14° F.). This is sucked into the compressor at atmospheric pressure and elevated in both temperature and pressure to the corresponding temperature of the room.

In the condenser (which is a coil of pipe surrounding the apparatus as a guard), this warm sulphur dioxide steam loses its heat by radiation to the surrounding atmosphere, causing it to liquefy becase it is under pressure.

The liquid coming out of the bottom of the condenser is fed automatically into the tinned coil inside the refrigerator by means of an expansion valve, which works intermittently to step down these condenser pressures to a pressure above atmospheric pressure.

Moisture abstracted from the refrigerator is deposited on the coil, and freezes because the coil is at 14° F. The machine operates intermittently so that this frost does not accumulate. On the stand-still period the frost will melt and run off through the drain pipe of the refrigerator.

In the ice-making compartment it is possible in warm weather to make 32 cubes of ice in a day of twenty-four hours, automatically. Ice can be made in winter only when the refrigerator is in a well-heated room; otherwise the machine will run too small a percentage of the time.

The complete machine is supplied as a unit ready to run when connected to an electric light socket. The number 1

size will take care of an ordinary refrigerator not to exceed fifty-five square feet of internal exposed area when set over a hole thirteen inches by thirteen inches in the top of the refrigerator. The actual weight of the apparatus is 175 pounds.

Isko-Present Model.-The present model of the Isko ma-

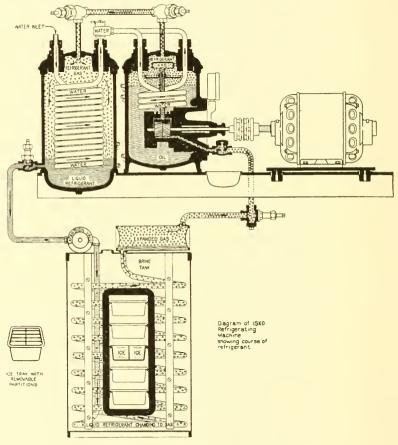


FIG. 100.-ISKO REFRIGERATING MACHINE.

chine is shown in Fig. 100. This machine was formerly manufactured in large quantities by the Isko Company at Chicago.

The compressor was of the herringbone gear type, operating at motor speed submerged in a sealed chamber of oil.

The gears were supplied with a small amount of oil to seal them so that they would compress the sulphur dioxide gas. this being the refrigerant used.

The cylinder and motor were mounted on a single base to be placed on the top of the refrigerator or in the basement. if desired. The motor was directly connected to the gear shaft through a flexible coupling.

Brine tanks were made in various sizes. An expansion valve was used, expanding into a copper tube immersed in the brine.

A small header was used on the suction line between the evaporating coil and the compressor to prevent frosting back to the machine

The condenser was water-cooled by means of a copper coil inside the condenser cylinder. Part of the cooling water circulated through a coil in the compressor cylinder, in order to cool the oil in which the gears operate.

Full automatic controls were used to maintain a uniform temperature inside the refrigerator.

Kelvinator.—Fig. 101 shows the Model Senior (2 cylinder) refrigerating machine made by the Kelvinator Corporation. Detroit, Michigan. This is a motor-driven refrigerating machine designed for installation with any refrigerator of standard construction of not over 70 cubic feet contents.

The condensing unit consists of the motor, compressor, and condensing coil mounted on a single base and is installed in the basement or other out-of-the-way place.

The compressor is of the reciprocating, single-acting type. Piston valves and discharge valves are of the disc type. The pistons slide in steel sleeves. Instead of a stuffing box a sylphon gas seal of self-aligning, self-lubricating, anti-friction metal is used. It is driven through a combined flywheel and fan by a "V" belt. The motor is of the repulsion induction type, 1/4 hp.

The condenser is a continuous coil of 1/2 inch seamless copper tubing wound spirally and charged with sulphur dioxide. It is air-cooled and therefore is not dependant on any water supply for its proper operation.

Fig. 102 shows the Model Junior (1 cylinder) refrigerating machine. This is similar to the Model Senior except that it is installed with refrigerators of not over 20 cubic feet contents.

The refrigerating element consists of the brine tank, the expansion coils inside the brine tank, the expansion valve, the thermo-coil and the thermostat. Eighteen standard sizes of brine tanks are made, one of which is shown in Fig. 103 and fit practically all ice chambers.



FIG. 101.--KELVINATOR TWO-CYLINDER REFRIGERATING MACHINE.

The brine tank is of sheet copper tinned on the outside. It has two to four freezing compartments, according to the tank size. Each 21-cube tray will freeze two and one-half pounds of ice, while the large tray will freeze an eight and one-half pound cake of ice. The tank is filled with a solution of calcium chloride. Expansion coils are placed in the tank in such a way as to surround each freezing compartment.

The liquid refrigerant is admitted to the expansion coils through an automatic expansion valve which lowers its pres-

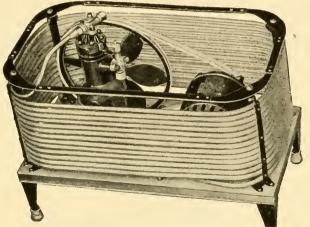


FIG. 102.-KELVINATOR SINGLE-CYLINDER MACHINE,

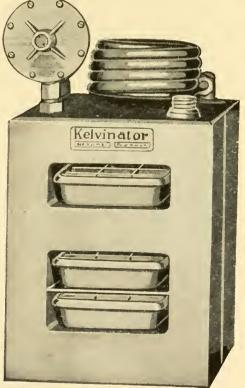


FIG. 103.-KELVINATOR COOLING UNIT,

sure from two inches of vacuum to three pounds per square inch, depending on the size of brine tank and number of feet of tubing in the expansion coil. The valve is of the balanced pressure type. Increasing pressure on the low side caused by the boiling refrigerant, acts against the pressure on the liquid side and automatically shuts off the supply of liquid when sufficient has been admitted. The valve automatically opens when the suction of the compressor sufficiently reduces the pressure on the low side.

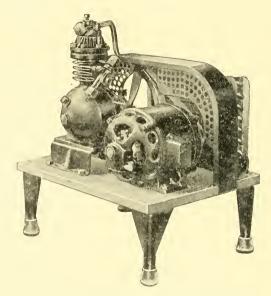


FIG. 104.-KELVINATOR CONDENSING UNIT.

The system is automatically controlled by the thermostat placed within the thermo-coil on top of the brine tank. The thermostat opens and closes the motor circuit as the temperature within the refrigerator falls and rises. It is of the sylphon type, a corrugated metal bellows filled with sulphur dioxide, which by the contraction and expansion caused by changing temperatures operates the quick make and break switch.

The actual running time of Kelvinator will vary, of course, with the room temperature, the quality and degree of refrigerator insulation, the size of refrigerator, etc. Under ordinary conditions, however, the machine will run 6 or 7 hours a day.

COMPRESSION REFRIGERATING MACHINES

The box temperatures will be at least 10° colder than ice would keep the same box. The reason for this is that the surface of the brine tank is kept constantly at 20° to 22° while the surface of a cake of ice is 32° F.

Fig. 104 shows the condensing unit Model 12800. This unit includes a ¹/₆ hp. motor driving a reciprocating type.

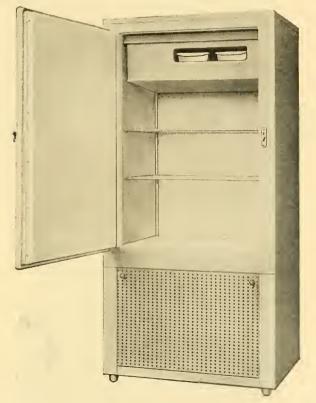


FIG. 105.—SPECIAL STEEL CABINET EQUIPPED WITH CONDENSING UNIT SHOWN IN FIG. 104.

single-cylinder compressor by means of a "V" type belt. The condenser is made of finned tubing. It is cooled with forced air circulation. A small receiver is used. The weight of this unit is 80 pounds.

This unit is supplied with a special steel cabinet. Fig. 105. The food storage space is 4.7 cubic feet and 7 square feet shelf area. The exterior is gray lacquer on steel. The lining

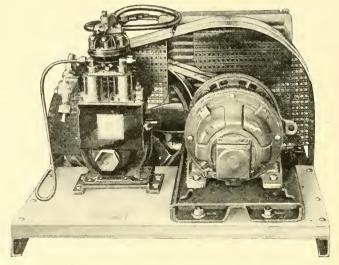


FIG. 106.—KELVINATOR TYPE "LB" LARGE CAPACITY AIR-COOLED CONDENSING UNIT.

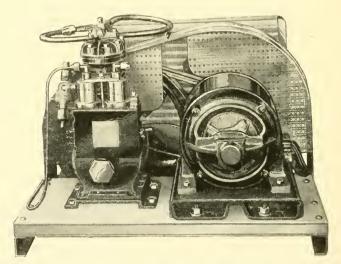


FIG. 107.—KELVINATOR, TYPE "BB".—COMPRESSOR HAS TWO CYLINDERS.

COMPRESSION REFRIGERATING MACHINES

247

is white enamel on galvanized iron. The hardware is nickelplated brass. The insulation is corkboard. The dimensions of the cabinet are:

	Width	Depth	Height
Overall	$26\frac{1}{2}$ in.	$22\frac{1}{2}$ in.	56½ in.
Food Compartment		15 <u>11</u> in.	24½ in.
Condensing Unit Compartment	26¼ in.	$19\frac{1}{32}$ in.	1632 in.

The cooling unit has two 15-cube ice trays. The shipping weight of this unit is 300 pounds.

Fig. 106 shows the type LB large capacity air-cooled condensing unit.

The compressor has one cylinder and is of the vertical, reciprocating, single-acting type. A 3/4 hp. motor drives the compressor by means of a "V" type belt. The condenser is of the radiator type. It is cooled by forced air circulation, from the fanned motor pulley. The wattage is approximately 800 at rated capacity.

A similar larger type BB, Fig. 107, is manufactured. The compressor has two cylinders. A $1\frac{1}{2}$ hp. motor is used. The wattage of this model is approximately 1200 at rated capacity. Both of these units have extensive use for apartment house installations.

Kold King.—Fig. 108 shows the household refrigerating machine manufactured by the Kold King Korporation at Detroit, Mich. It is reported this company is out of business.

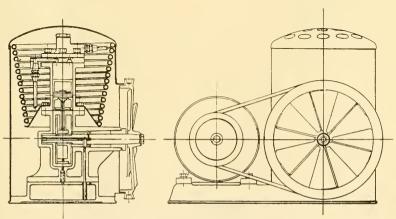


FIG. 108.-KOLD KING REFRIGERATING MACHINE.

A single-cylinder, sulphur dioxide compressor is used. The condenser is air-cooled and consists of sixty feet of copper tubing, forming a spiral coil around the compressor. A fan in the compressor fly wheel forces air over the condenser coil. The suction and discharge valves are of the flat steel flapper type. They are both located in the cylinder head plate. The compressor is driven by a ½ hp. phase, repulsion-induction motor. A "V" type belt is used for the means of driving.

A float valve system of expansion has been developed for regulating the cooling compartment. The thermostat is attached to the crank case and is controlled by pressure. A brine tank is used which is placed in the ice compartment of the refrigerator.

The mechanical unit is supplied to refrigerate any standard vabinet.

Lipman Refrigerating Machine.—Fig. 109 shows the household size refrigerating machine, which is made by the Lipman Refrigerator Car & Mfg. Company, Beloit, Wis.

This company has specialized for years in producing refrigerating machines using ammonia as a refrigerant and operating with full automatic controls.

The motor, compressor, condenser, water valve, and high pressure cut-out, are mounted on a simple base to form a compact unit. A "V" belt drive is used, thus eliminating the need of an idler pulley.

The condenser is water-cooled. The water valve is automatically opened when the machine is operating, by an attachment on the outer end of the compressor shaft. A safety feature is included so that the machine will not operate should the supply of cooling water fail.

The operation of the machine is controlled by a thermostat placed in the food compartment. The motor starts or stops automatically when the temperature in this compartment varies only a few degrees.

An expansion valve is used to control the supply of refrigerant to the cooling coil. The household model uses only a few ounces of liquid ammonia in the entire system.

This machine is supplied with a cooling element to be placed in the ice compartment of the customer's refrigerator. This cooling element consists of a direct-expansion coil and a sharp freezer of steel pipe in which ice cubes or frozen desserts may be made. A cast iron sleeve is inserted in the horizontal part of this direct-expansion coil to form the sharp freezer.

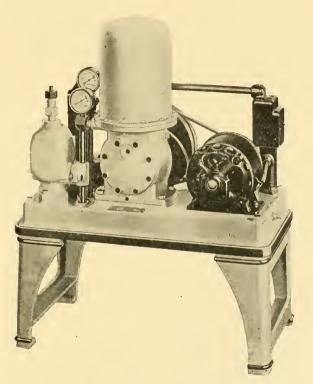


FIG. 109.-LIPMAN REFRIGERATING MACHINE.

Larger automatic machines are built for installations requiring a larger capacity machine.

Merchant and Evans.—Fig. 110 shows the electrical refrigerating system manufactured by Merchant and Evans Company of Philadelphia, Pa.

A low temperature liquefying gas is compressed (G), into coils (C), which are cooled by a fan on the pulley and thus

becomes a liquid which flows into the freezing chamber (F) through the Control Valve (V).

Here the liquid boils by absorbing heat from the interior of the box, cooling it to a temperature of 45° F. The thermostat

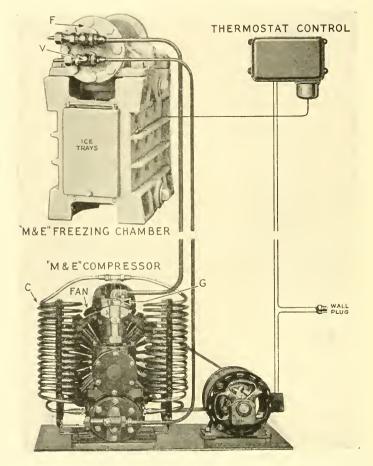


FIG. 110.-MERCHANT & EVANS ELECTRICAL REFRIGERATING SYSTEM.

then turns off the current automatically until the box temperature rises to 50° F. The thermostat then again starts the motor and the whole process is repeated until the box temperature again drops to 45° F. The compressor is a single cylinder of the single-acting vertical reciprocating type, with long stroke.

The condenser consists of two coils of copper tubing placed on opposite sides of the compressor. Fan blades in the compressor flywheel are used to force air over the two condenser coils.

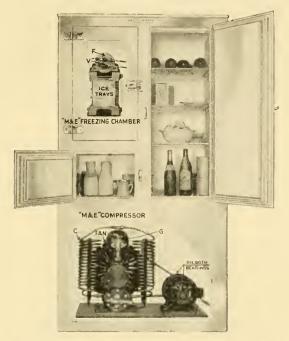


FIG. 111.-MERCHANT & EVANS REFRIGERATING SYSTEM INSTALLED.

The freezing chamber is made of galvanized cast iron and tested to 350 pounds pressure per square inch.

Fig. 111 shows a typical installation in a cabinet. Steel cabinets are supplied in sizes from 7 to 20 cubic feet inside capacity.

Norge.—The Detroit Gear & Machine Company manufacture an electric refrigerating machine for the Norge Corporation, Detroit, Michigan. This machine has been adopted for domestic use by McCray Refrigerator Company of Kendalville, Ind. The refrigerant used is sulphur dioxide.

252 HOUSEHOLD REFRIGERATION

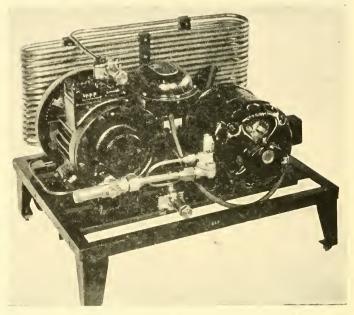


FIG. 112.-NORGE UNIT MOUNTED ON STEEL BASE.

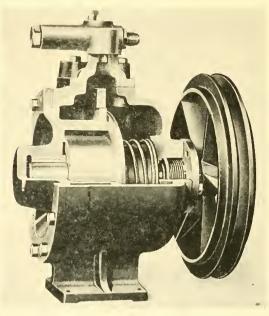


FIG. 113.-NORGE ROTARY TYPE COMPRESSOR.

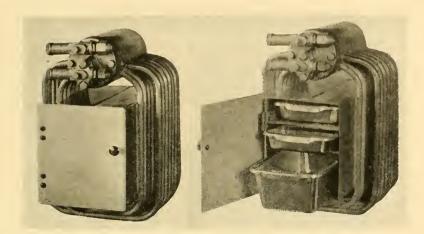


FIG. 114.—NORGE FREEZER COILS.

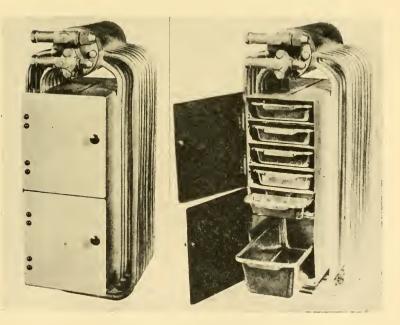


FIG. 115.—NORGE FREEZER COILS.

Fig. 112 shows the condensing unit consisting of the compressor, motor, condenser and automatic control mounted on a steel base.

The compressor, Fig. 113, is of the rotary type. The rotor is driven by an eccentric on the crank-shaft. It moves with a gyratory motion, opening the intake and permitting entrance

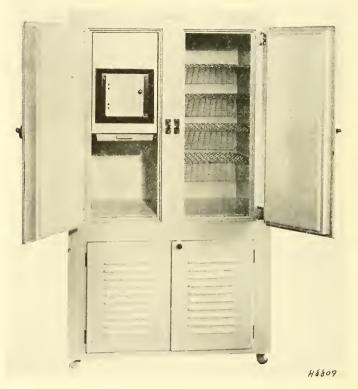


FIG. 116.—NORGE ELECTRICAL UNIT IN MCCRAY REFRIGERATOR.

of the Sulphur Dioxide gas into the compression space. The gas escapes through the discharge valve. An oscillating blade always maintains contact with the rotor, and separates the suction chamber from the discharge chamber. This blade, as well as all other moving parts, is submerged in oil under pressure. The rotor fits into the cylinder in such a way that it automatically adjusts and takes up whatever wear may occur.

Figs. 114 and 115 show freezer coils of various sizes. These are equipped with white enameled swing doors which cover the ice tray openings. This prevents frost forming in the trays and eliminates food odors from the freezing pans.

Fig. 116 shows an electrical unit installed in a McCray rev frigerator.

Odin.—The Odin refrigerating machine is made by the Automatic Refrigerating Company of Hartford, Conn.

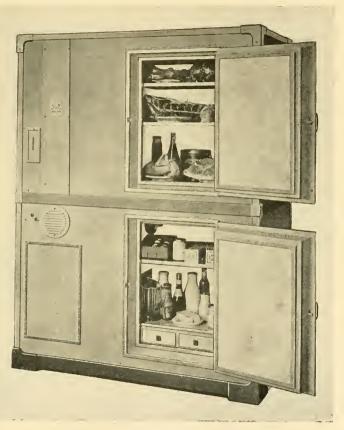


FIG. 117.—ODIN REFRIGERATING UNIT.

This machine uses air under very low pressure for a refrigerating medium. The machine is entirely automatic. A thermostat in the food compartment automatically starts and

stops the refrigerating machine. This system is air-cooled, thus eliminating cooling water connections.

The cabinet, Fig. 117, has fifteen cubic feet of food compartment space. An ice making compartment is included. This box has a gray enamel finish on the outside and porcelain fused on a metal lining.

Rice.—A complete line of fourteen distinct models of refrigerating units for domestic use are manufactured by Rice Products, Inc., of New York City.

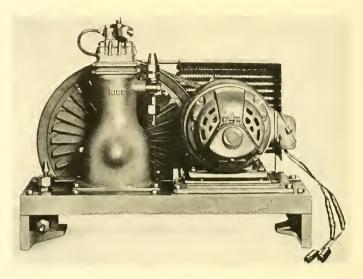


FIG. 118, -- RICE COMPRESSOR UNIT.

Nine of these are designed for installation in conjunction with refrigerators ranging from five to sixty cubic feet in size, and consist of a compressor unit and a cooling unit. The latter is placed in the ice compartment of the refrigerator to be cooled and the compressor unit can be placed in the basement immediately beneath the refrigerator or other convenient location. The compressor and cooling units are connected by two small copper tubes. Five models known as D-5, D-7, D-9, D-12, and D-15 are complete self-contained electrical refrigerators ready for electrical connection to the lighting mains.

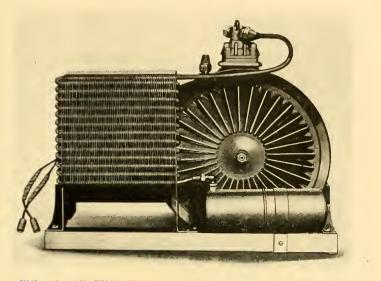


FIG. 119. ANOTHER VIEW OF THE RICE COMPRESSOR UNIT.

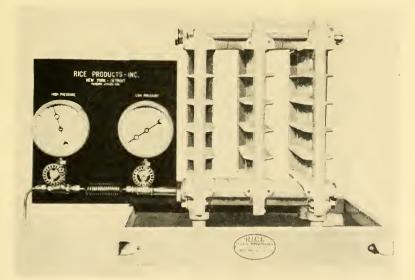


FIG. 120.-RICE GRID SECTIONS, MADE OF SEMI-STEEL CASTINGS, TONGUE AND GROOVE CONNECTED.

Fig. 118 and 119 show two views of the compressor unit. This consists of a compressor, motor, fly-wheel, fan pulley, belt, condenser, receiver with the necessary shut-off valves

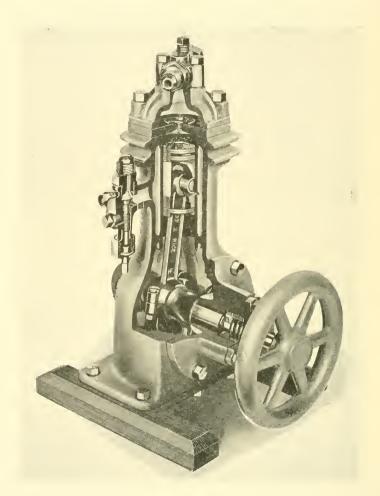


FIG. 121.—SECTIONAL VIEW OF RICE COMPRESSOR.

and strainer, all mounted on a substantial iron base. Both single and double cylinder compressors are furnished. The former is driven by $\frac{1}{4}$ hp. motor at 360 r.p.m. and the latter by a $\frac{1}{2}$ hp. motor at the same speed.

Fig. 121 is a sectional view of the compressor. Compressors are of the single-acting, vertical reciprocating type, air-cooled and lubricated by splash from the crankcase. They are belt driven by means of a moulded rubber and canvas "V" belt passing over the compressor fly-wheel which is 1434 inches in diameter. Crank shafts are of forged steel, heat treated and ground and are 144 inches in diameter on both types. Main bearings are of cast iron 13% inches x 144 inches. An approved ball thrust bearing, to take the thrust of the seal spring is provided. Connecting rod bearings are babbitt broached to size and measure $1\frac{1}{16}$ inches x 144 inches. Bunting (bronze) bushings are used in the wristpin bearings.

Pistons are of cast iron with suction valve mounted flush with the head. They are fitted with six piston rings; two in each of the three ring slots. Both suction and discharge valves are of the feather type, of new and improved design. Valves are individually lapped to their seats and are noiseless in operation. The discharge valve plate is a die casting.

A metallic stuffing box of special design has been provided. The seal ring is lapped to a seat formed by a shoulder on the crankshaft and is kept in contact by means of a sixty-pound spring. The bar and stroke on both compressors is $1\frac{13}{16}$ inches x $1\frac{13}{16}$ inches.

Motors are regularly supplied for either 110 or 220 volt, 60 cycle, single phase alternating or 110 or 220 volt direct current. Motors wound for other voltages, frequencies or phases can be furnished to order at additional cost. Motors, as regularly supplied, are furnished with sliding bases to facilitate belt adjustment and dispense with idlers.

Condensers are of the Flint-lock type and are mounted at the back of the compressor unit. They are cooled by a fan mounted directly on the motor-shaft. The condenser assembly is self-supporting and mounted on the base. Condensers furnished with the Type "A" Compressor Unit measure 9 inches x 9 inches. Those furnished with the Type "B" measure 12 inches x 12 inches. Compressor Units are finished in dark blue Duco. Dimensions are as follows, overall:

Type "A" 25 in. long 17½ in. deep 10¼ in. high Type "B" 29 in. long 18¾ iu. deep 19¼ in. high

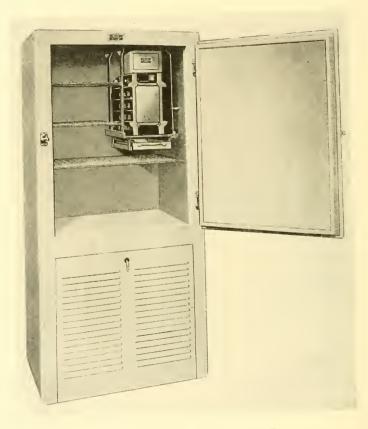


FIG.—122.—RICE METAL CABINET.

Net Weights: Type "A" 140 lbs. Type "B" 185 lbs.

The cooling unit, Fig. 121 consists of a series of grid sections made of semi-steel castings, tongue and groove con-

nected. These various sections can be assembled in grids to meet any domestic requirement.

Grids are galvanized both inside and out and are tested to 300 pounds air pressure under water and 350 pounds hydro-

FIG. 123.-RICE METAL CABINET.

static pressure. Grids are dehydrated under a vacuum at the factory and sealed prior to shipment.

Ice trays are of tinned copper and measure $10\frac{5}{8} \ge 3\frac{5}{8} \ge 1\frac{9}{16}$ inches deep and hold approximately one pound of water. Each tray is provided with a removable grid for forming cubes.

There are twelve $1\frac{1}{2} \ge 1\frac{1}{2} \ge 1\frac{3}{6}$ inch cubes per tray. This is the standard ice tray furnished with all cooling units

A particularly interesting feature consists in the elimination of the float or expansion valve, and the substitution therefor of a capillary tube, having no moving parts and no adjustment.

The thermostat is a Mercoid Control manufactured by the American Radiator Company. It is temperature controlled and is provided with both temperature and differential range adjustments. The circuit is controlled direct to the motor and accordingly no relays, transformers or other intermediate controls are required. Contacts are sealed within a glass tube containing an inert gas which prevents oxidation or corrosion, a common fault with most thermostatic controls.

Figs. 122 and 123 show typical metal cabinets. The standard construction is an exterior of steel finished in white Duco and an interior of porcelain on steel. Doors are provided with double gaskets. The insulation is of corkboard two inches thick sealed between interior and exterior metal with hydrolene cement. The cabinet specifications of the five self-contained models are as follows:

Model	D-5	D-7	D-9	D-12	D- 15
Width	273⁄4 in.	34½ in.	$34\frac{1}{2}$ in.	45 in.	54½ in.
Depth	243⁄4 in.	28½ in.	28½ in.	28½ in.	28½ in.
Height	60 in.	63 in.	69 in.	69 in.	69 in.
Weight	460 lbs.	530 lbs.	612 lbs	665 lbs.	781 lbs.
Gr. Capacity	6.5	10.3	12	16	19.3
Food Storage	5	7	9	12	15
Shelf Space	8.3	9.2	12.2	17	23.2
No. Cubes	36	48	60	72	120
Compr. Unit	Type "A"	Type "A"	Type "A"	Type "A"	Type "A"
Cool. Unit	No. 6	No. 10	No. 15	No. 25	No. 30

CABINET	SPECIFICATION	NS.
---------	---------------	-----

Sanat.—The Sanat machine, Fig. 124, is made by Sanat Refrigerating Co., Inc., 331 Madison Avenue, New York City.

The machine consists of a motor, a worm and worm gear drive, a compressor, a condenser, an expansion valve, a cooling tank, a temperature control, and the necessary piping and wiring to connect the units. The other elements are the refrigerant and the brine.

The refrigerant is chloric ether, a solution of ethyl chloride and alcohol. The pressure of condensation is relatively low, 16 to 20 pounds gauge.

A 1/4 hp. motor is used to drive the compressor by means of a worm and worm gear drive. Radial and thrust ball bearings are used for mounting the worm, and friction is thereby greatly reduced.

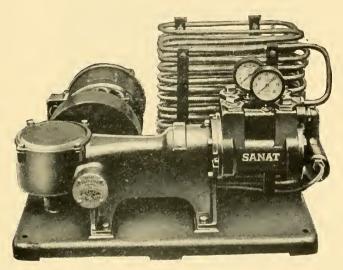


FIG. 124.—SANAT REFRIGERATING UNIT.

The compressor is a single cylinder, double acting, slow speed machine operating at forty strokes per minute, or eighty compressions. Poppet valves are used throughout—bakelite operating on brass seats, eliminating metal to metal contact with its attendant sticking. The bearings on the crank shaft and connecting rod are of hardened steel and amply large. The stuffing box is of the double gland stype. The compressor is lubricated automatically by the mineral oil which is formed when the refrigerant is expanded into the brine.

The condenser is air cooled and consists of a hundred feet of 3%-inch copper tubing. No forced draught is required over these coils to condense the refrigerant, therefore, the need for a fan is eliminated.

HOUSEHOLD REFRIGERATION

The expansion valve is a simple device which runs into the brine within a few inches of the bottom of the tank. This valve releases the chloric ether into the brine from the high to low pressures. The expansion member of this mechanism is a sylphon bellows, which expands or contracts through very narrow limits, thus eliminating or keeping adjustments to a minimum.

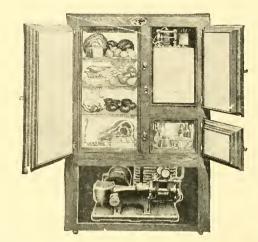


FIG. 125. --COMPLETE SANAT UNIT INCLUDING CABINET.

The cooling tank, made of y_8 -inch steel, occupies the space in the ice compartment of the refrigerator and contains the solution of calcium chloride brine and alcohol. The refrigerant is expanded directly into the brine causing an agitation which produces an even temperature throughout the brine and results in a constant crisp dry-cold in the refrigerator. A marked advantage of this system lies in the fact that the agitation resulting from the direct expansion of the refrigerant into the brine produces an emulsion, which is equivalent to a medium grade mineral lubricating oil. This lubricant is formed in small but sufficient quantities and is drawn back into the compressor and automatically solves the lubricating problem.

The temperature control operates on a ten volt circuit; a relay mounted in a convenient location being used to reduce the voltage from the usual home pressures. This arrangement requires the minimum of attention. The thermostat is governed by the temperature of the brine and can be set to operate accurately between small variations of temperature.

Fig. 125 shows a complete unit including the cabinet. Fig. 126 shows the eabinet with vegetable storage space at bottom as arranged when the machine is located in the basement.

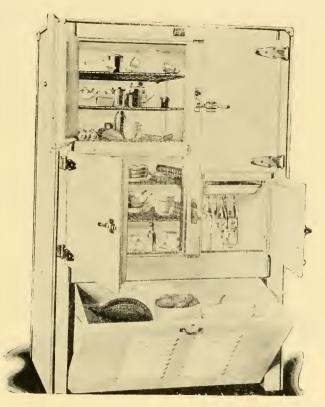


FIG. 126 .- SANAT METAL CABINET WITH VEGETABLE STORAGE.

Savage.—Fig. 127 shows the mercury refrigerating machine made by the Savage Arms Corporation, Utica, New York, suitable for ice cream cabinet and household fields.

Fig. 128 shows the machine with the condenser removed. This machine operates on a new system of mercury compression.

The screw pump, invented by Archimedes about 250 B C.,

using mercury as the compressing fluid, is the basis of the design. Following are the most important advantages:

There are no internal moving parts. There is no lubricant within the refrigerating cycle.

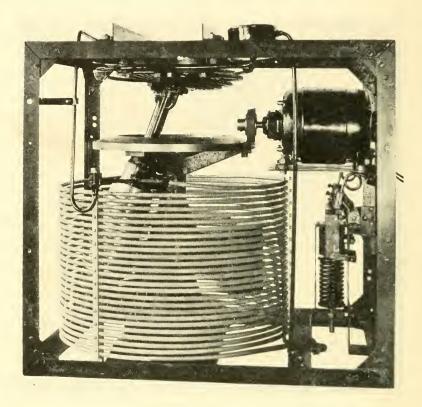


FIG. 127.—SAVAGE MERCURY REFRIGERATING MACHINE.

The drive is external to the refrigeration cycle, requiring no stuffing box or gland joint. The system is sealed by welding, and is leak proof.

The machine is exceptionally quiet in operation, due to purely rotary motion at relatively low speeds.

Mercury compression, because of its inherent freedom from power losses, makes possible an exceedingly low power consumption per unit of refrigeration.

Excessive pressures cannot be generated, since the critical point of the mercury compressor is reached only a few pounds above the working pressure of the machine. It then blows back, short circuiting itself.

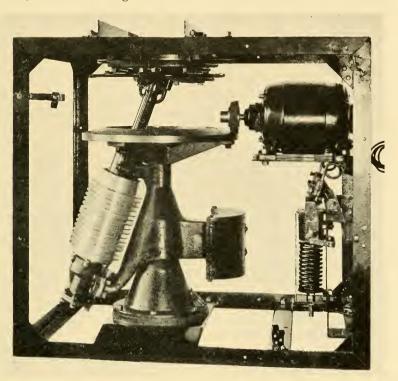


FIG. 128.—SAVAGE MERCURY REFRIGERATING MACHINE WITH CONDENSER REMOVED.

A force feed oiling system provides adequate lubrication to the four external bearings with oil storage capacity sufficient for many years of operation.

An automatic temperature speed control gives the machine added refrigerating capacity as the room temperature rises. The machine automatically operates at the most efficient speed for all room temperatures, an exclusive feature.

Service may be performed upon any mechanical or electrical part of the machine without disconnecting or disturbing the refrigeration system, and without losing any refrigerant.

HOUSEHOLD REFRIGERATION

It is obvious that there can be no piston leakage, since each mercury piston seals itself in the helical passageway. Neither can there be any clearance or re-expansion loss, since each gas volume is pushed completely through from the low to the high pressure chamber. There is no internal wear.

Fig. 129 is a typical cabinet for preserving ice cream. This cabinet is of angle iron frame construction with tongue and groove spruce flooring.

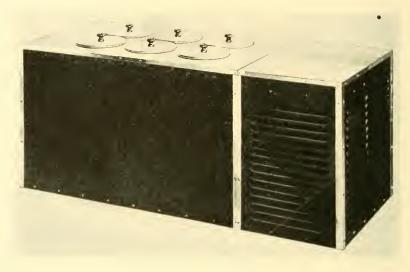


FIG. 129. SAVAGE ICE CREAM CABINET.

Cork insulation is used and all joints flooded with sealing compound. Two thicknesses of waterproof paper are used as an additional protection against air leakage. The lining is of heavy galvanized sheet steel. The top is of laminated wood, covered with non-corrosive metal. The sides are of black-enameled sheet steel, bound in by metal corner angles.

The cabinets may be installed either as a unit with the compressor or as a remote system. In the latter case the compressor unit is generally installed in the basement or in some other convenient place separate from the cabinet.

Servel.—Figs. 130 and 131 shows the Model 21-A refrigerating machine manufactured by the Servel Corporation

whose main offices are at 51 East 42nd Street, New York City. Methyl Chloride is the refrigerant used in this system.

The compressor, condenser, pressure control and 1/4 hp. motor are mounted on a pressed steel base. The 21-A is used in all complete Servel refrigerators, as well as all remote

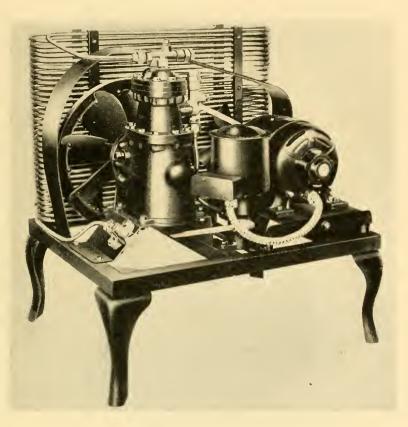


FIG. 130. -SERVEL MODEL 21-A REFRIGERATING UNIT.

household installations. The compressor is of the vertical, twin cylinder, single acting, reciprocating type. It is free from vibration and practically noiseless. The bore is $1\frac{1}{2}$ inch and the stroke $1\frac{1}{4}$ inch. The compressor runs at a comparatively low speed—375 r.p.m. The drive is accomplished through a "V" belt. Both the inlet and outlet valves are flapper valves. Leakage around the compressor shaft is prevented by use of a special sylphon seal of the rotating type.

The temperature control, Fig. 132, is accomplished by means of the action of the copper bellows connected to the low

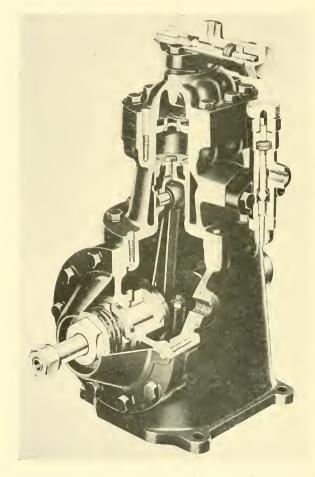


FIG. 131.—CUTAWAY VIEW OF SERVEL COMPRESSOR SHOWING MOVING PARTS AND SYLPHON PACKING.

pressure side of the system. The inflation and deflation of the bellows operates a quick make and break switch, opening and closing the motor circuit, and is adjustable for different pres-

sure to give any desired temperature. A special feature of the control device is that it limits the pressure of the suction gas to the compressor at the time of start so that no overload is placed on the motor.

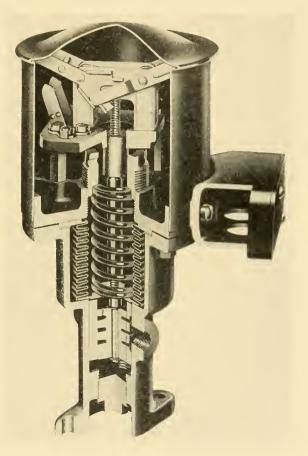


FIG. 132.—SERVEL PRESSURE CONTROL CUT OPEN TO SHOW OPERATION OF PISTON.

The condenser is trombone shaped, cooled by two fans running in opposite directions. The four bladed fan on the motor pulley blows directly into and across the condenser. The large fan on the compressor flywheel draws the air out of the condenser. Exhaustive tests show conclusively that

HOUSEHOLD REFRIGERATION

this arrangement is superior to two fans operating in the same direction and materially reduces the head pressure where boxes are so located as to make air circulation difficult. The motor mounting plate is of pressed steel and adapted to Gen-

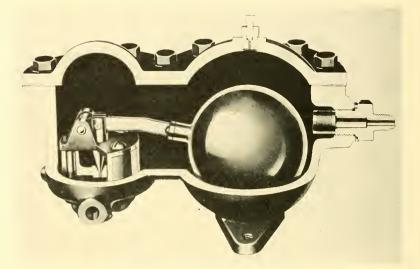


FIG. 133.—FLOAT VALVE, SERVEL REFRIGERATING UNIT.

eral Electric, Century, Emerson and Westinghouse motors. The adjusting of the motor for belt tension is controlled by one nut, making this a very simple operation.

In the complete refrigerator the float valve is placed in the machine compartment. The sturdy construction of this float is clearly shown in Fig. 133. When sufficient liquid methyl chloride has accumulated in the float it raises the ball, opens the needle valve and enters the expansion coils. A cylindrical screen is used as a strainer both on the inlet to the float and as a cage surrounding the needle valve. This prevents any foreign matter clogging the needle valve.

All shutoff valves are made from bronze forgings and are provided with caps which completely inclose the valve stem, thus eliminating leaks through the valve packing.

Fig. 134 shows the Model S-7, suitable for the family of medium size, one of the three all steel models now being man-

ufactured by Servel. The other two models are the S-5, for the small family, and the S-10, suitable for the more pretentious household. (Fig. 135 and 136.)

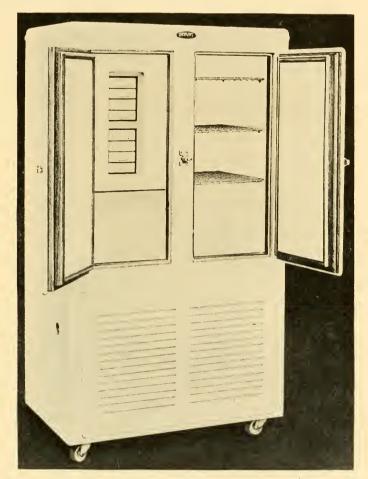


FIG. 134.—SERVEL ALL-STEEL REFRIGERATOR FOR MEDIUM SIZED FAMILY.

The cabinets are constructed of especially selected "Armco" Ingot Iron carefully lead-coated as a positive protection against rust. The metal shell is given an application of oil base primer coat, after which this coat is slowly and carefully baked on under a low temperature, producing a finish which will neither peel nor scale. Next, several coats of surfacer and two coats of genuine Du Pont White Duco Lacquer are applied and allowed to air dry. The slow process of air drying, while it creates an additional factory cost, pro-

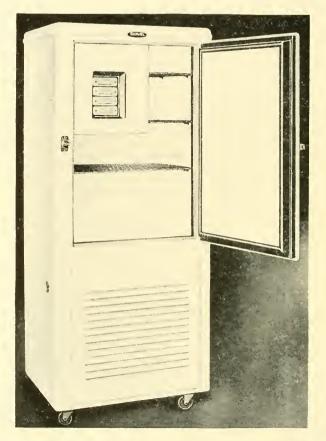


FIG. 135.—SERVEL ALL-STEEL REFRIGERATOR FOR SMALL FAMILY USE.

duces a much better appearing and more lasting finish than can ever be expected under artificial or forced drying.

The porcelian liners are of the box type, and are so constructed, with double lock flanges, that bolt holes or screw holes are entirely eliminated except those required for tank and shelf supports. This produces an absolutely sanitary liner and eliminates all chance of flaking of the porcelain finish, due to uneven strain such as results from the use of screws or bolts.

The chilling units are of tinned copper and have front

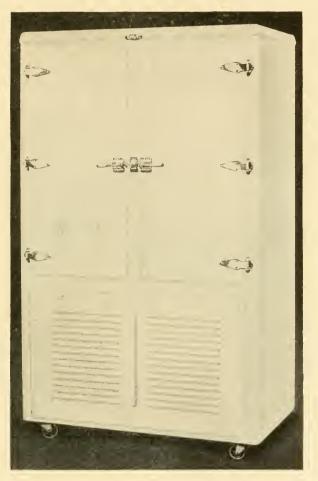


FIG. 136.—SERVEL ALL-STEEL REFRIGERATOR FOR LARGE SIZED FAMILY.

panels and ice-cube-tray fronts of genuine porcelain. Each ice-cube-tray holds 12 cubes.

The insulation is pure compressed corkboard thoroughly impregnated with hydrolene, 1¹/₂-inch thick on top and sides

on the S-5, 2-inch thick top and sides on the S-7 and S-10; with a 3-inch bottom thickness on all models.

All seams in the corkboard are filled with Hydrolene. Waterproof paper is then applied over the corkboard as added

FIG. 137.-SERVEL SEMI-COMMERCIAL REFRIGERATING UNIT.

seal against air leaks. An air space of $\frac{1}{4}$ -inch to $\frac{1}{2}$ -inch is used between the outer metal shell and the insulation surrounding the liner.

The semi-commercial machines are shown in Figs. 137

and 138. The 15-A is particularly adapted for ice cream cabinets and low temperature work. The rated capacity of the

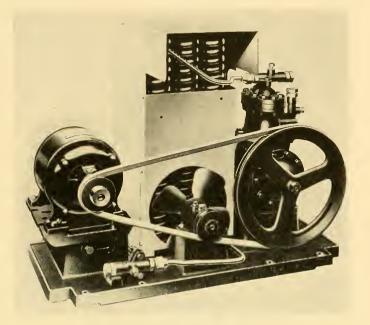


FIG. 138.—SERVEL SEMI-COMMERCIAL REFRIGERATING UNIT.

15-A is 350 lbs. The 18-A has a rated capacity of 300 lbs., and is used on large household or small commercial boxes.

Socold.—Fig. 139 shows the compressor unit used in the electric refrigerator manufactured by the Socold Refrigerating Corporation of Boston, Massachusetts. The refrigerant used is sulphur dioxide.

The compressor has two vertical cylinders. The pistons are driven by connecting rods operated by a walking beam. The drive shaft oscillates on an arc of 12 to 15 degrees each side of center at slow speed. A plate of special metal seals against a shoulder on this shaft. Thus the wear on the packing is very slight. The discharge valves are in the cylinder head and are made of three monel discs. The suction valves are single parts in the cylinder walls.

HOUSEHOLD REFRIGERATION

The condenser consists of a coil of one tube mounted on the same base with the compressor. Forced air cooling is obtained by a fan in front of the motor and in the compressor drive wheel.

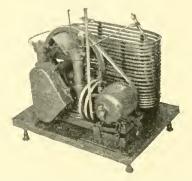


FIG 139.—SOCOLD REFRIGERATING UNIT.

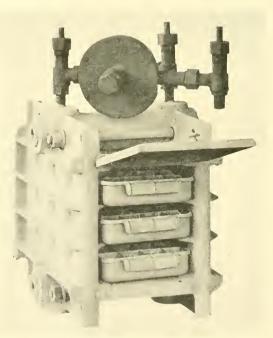


FIG. 140.—SOCOLD FROST UNIT OF HEAVY SEMI-STEEL CONSTRUCTION.

Fig. 140 shows the frost unit which is of heavy galvanized semi-steel construction and operates on the direct expansion system. An expansion valve of single construction is used to reduce the pressure of the liquid refrigerant.

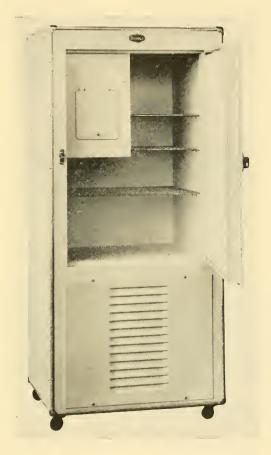


FIG. 141.—SOCOLD TYPICAL STEEL CABINET.

A Mercoid thermostat is used for temperature control. It is responsive to the temperature of the frost unit and not by temperature of the food compartments, which issues a constant supply of ice cubes without making seasonal adjustments necessary. The thermostat is set to maintain a temperature in the frost unit of from 20 to 24 degrees F. This

produces a temperature of from 45 to 50 degrees F. in the food compartment.

Fig. 141 and 142 show typical steel cabinets.

The construction provides one air and moisture tight steel

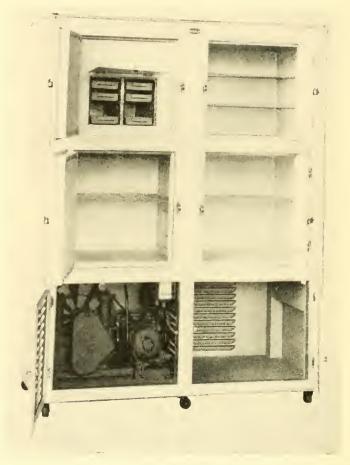


FIG. 142.—SOCOLD STEEL CABINET SHOWING REFRIGERATING AND FROST UNITS INSTALLED.

case inside another which will not permit the penetration of moisture and odors into the insulation.

-Balsam-wool is used to insulate the cabinets. This material is manufactured from the fibers of northern coniferous woods. The process is somewhat similar to that employed in

281

pulp making, as the wood is first reduced by mechanical means and then chemically treated so the wood fibers are separated from one another. The individual fibers are fine, hairlike, hollow tubes, and at this stage are saturated with chemicals that render them non-inflammable and proof against decay. These fibers are handled by air and felted into a fleecy mat bound together with cement. An important feature of this mat is that its fibers extend in all three cubical dimensions, with the result that the blanket is remarkably light in weight and contains millions of dead-air cells.

To increase the mechanical strength of the fibrous blanket, a layer of water-proofed Kraft paper is cemented to each side of the blanket with asphalt. This method of applying the liner does away with stitching and leaves the surface of the material impervious to water and air.

The cold storage type of balsam-wool is particularly adapted for these small boxes because it is easily fitted in around the corners, is odorless either wet or dry, and will not support mildew or mold. A complete line of cabinets in porcelain or white baked enamel are manufactured.

Universal Refrigerating Machine. — Fig. 143 shows the household compressor unit manufactured by the Universal Ice Machine Company of Detroit.

The refrigerant used is ammonia. A $\frac{1}{2}$ hp. motor drives the compressor by means of a "V" type leather belt and idler pulley. The compressor has a special type aluminum piston, designed to assure good lubrication and eliminate wear on the sides of the cylinders.

Disc plate suction and discharge valves are used. These are located in the head of the compressor and are easily accessible. The cylinder head is water jacketed. Metallic packing is used on the compressor crankshaft. The condenser is made of a double spiral coil with welded ends. Water flows through the inner coil.

Utility Refrigerating Unit.—Fig. 144 shows the mechanical unit used in the Utility Electric Refrigerator which is manufactured at Adrian. Michigan by the Utility Compressor Company. It is reported this company is now out of business.

HOUSEHOLD REFRIGERATION

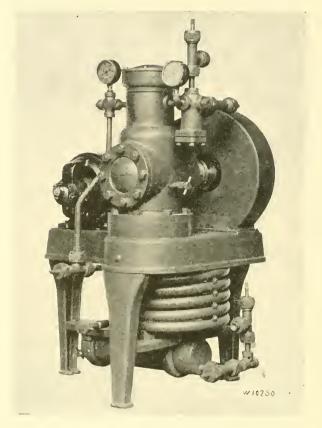


FIG. 143 .--- UNIVERSAL REFRIGERATING MACHINE.

The electric motor and pump are enclosed in the dome at the right, hermetically sealed. This eliminates a packing gland for the shaft of the compressor.

The thermostat and the cooling coils, which absorb the heat from the atmosphere in the refrigerator are situated in the chamber at the left.

The condenser is of the radiator type and is located behind the dome and coil chamber. This condenser is air-cooled. The complete mechanical unit is interchangeable and easily removed from the cabinet.

In case service is required, it is claimed that the complete mechanical unit can be removed and another put in place in

fifteen minutes. This eliminates the need of mechanics working on repairs in the home. The small door is for the ice freezing chamber.

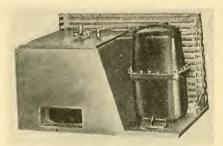


FIG. 144.—UTILITY REFRIGERATING UNIT.

The mechanical unit is placed in the upper part of a special cabinet. The cabinets are of white porcelain or natural wood exteriors. A one-piece porcelain lining is used. The cabinets are seventy inches high, thirty-eight inches wide, and twenty-three inches deep.

Ward. — Fig. 145 shows the condensing system of the household refrigerating machine made by the Ward Electric Refrigerator Corporation of Buchanan, Michigan.

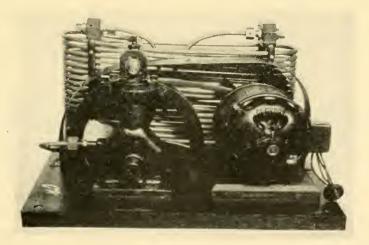


FIG. 145.—WARD HOUSEHOLD REFRIGERATING SYSTEM.

A ½ hp. motor drives the compressor by means of a "V" type belt. The condenser consists of a coil of copper tubing. Air is forced over the condenser by a fan on the motor shaft.

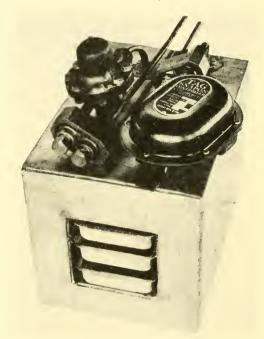


FIG. 146.-WARD EVAPORATING SYSTEM.

Fig. 146 shows a typical evaporating system consisting of a brine tank, expansion valve and necessary connections. The thermostat control is mounted on the brine tank.

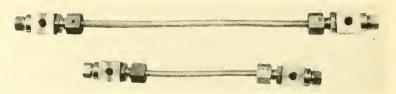


FIG. 147.—SHOWING SPLIT-VALVE CONNECTIONS, WARD REFRIGER-ATING SYSTEM.

The system is connected together by means of tubing containing split-valves on each end as in Fig. 147. This arrangement eliminates the need to dehydrate, pull a vacuum or charge the machine when making an installation. The valves on each end of the tubing are shut off when charged at the factory and after dealer has connected up same with machine, they are then turned on by a ratchet wrench which operates on the end of each valve and thus the dealer does not lose the charge when installing unit.

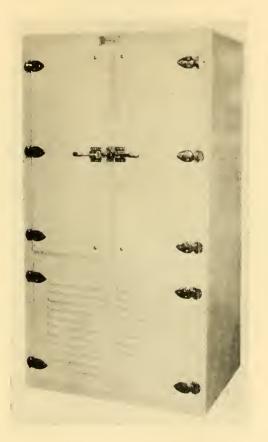


FIG. 148 .-- WARD STEEL HOUSEHOLD CABINET.

One of the cabinets is shown in Fig. 148. The cabinet has a steel exterior and is insulated with corkboard. Various sizes and types of cabinets can be supplied.

HOUSEHOLD REFRIGERATION

Warner.—Fig. 149 and 150 show compressor units made by the Warner Stacold Corporation of Ottawa, Kansas.

Air-cooled sulphur dioxide compressors are made in the

FIG. 149.- WARNER STACOLD COMPRESSOR UNIT.

following sizes: 1-cylinder compressors driven by $\frac{1}{6}$ and $\frac{1}{4}$ hp. motors; 2-cylinder compressors driven by $\frac{1}{4}$ and $\frac{1}{3}$ hp. motors; 3-cylinder compressors driven by $\frac{1}{2}$, $\frac{3}{4}$ and 1 hp. motors.

These compressors are of the slow speed reciprocating type. A special "V" belt is used. The compressors have crank shafts which operate with less friction than eccentrics.

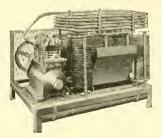


FIG. 150. WARNER STACOLD COMPRESSOR UNIT.

Ground removable cylinder sleeves are used. The commercial compressors have pistons equipped with 4 rings.

A series of 8 sizes of cooling tanks are made suitable for the various refrigerators.

Flooded type cooling coils are also made. These coils are used in apartment houses and commercial installations where

COMPRESSION REFRIGERATING MACHINES

it is necessary to have more than one cooling coil connected to one compressor.

Metal cabinets are manufactured from 4.6 to 10.5 cubic feet food storage space. These cabinets are insulated with cork. The exterior has a lacquer finish. The interior is of white enamel or porcelain.

Welsbach.—This machine, Fig. 151, is manufactured by the Welsbach Company at Gloucester, N. J.

The refrigerant used is "Alcozol," which has been developed in the Welsbach chemical laboratories. "Welcolub,"

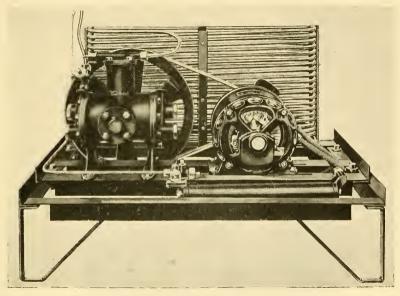


FIG. 151.-WELSBACH COMPRESSOR UNIT.

another product of the Welsbach laboratories, is used as the lubricant.

The compressor is of the horizontal, double acting type. The compressor cylinder has a bore of 3 inches, with a stroke of 1 inch. It operates at low speed—280 revolutions per minute. In normal operation in a 90° F. room the condensing pressure is 20 to 25 lbs., while the suction pressure is a vacuum.

General Electric and Century $\frac{1}{4}$ hp. motors are used, operating at 1750 revolutions per minute, with an average

connected load of 210 watts. The motor drives the compressor by means of a rubber-fabric "V" type belt.



FIG. 152. WELSBACH FREEZING UNIT.

The condenser is made of $\frac{3}{6}$ -inch copper tubing. Forced air cooling is obtained by means of a two-blade fan on a motor pulley, and fan blades in the compressor pulley. The condenser supplies liquid refrigerant to a receiver of sufficient size to hold the entire charge.

Fig. 152 shows the freezing unit made of tinned copper, containing a non-freezing solution of glycerine and water.

The expansion coils are made of $\frac{3}{8}$ -inch copper tubing, pancake winding. A downward pitch in the evaporator permits the drainage of circulated lubricant back to the compressor.

An expansion valve is used and automatically maintains a predetermined vacuum, regardless of the condensing pressure.

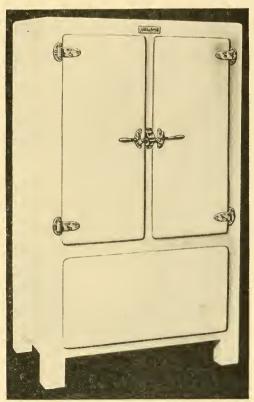


FIG. 153.-WELSBACH STEEL CABINET.

The automatic temperature control consists of a mercury switch mounted on a bi-metallic coil sealed in a bakelite case. The control is mounted on the upper right-hand corner of the cooling tank.

Fig. 153 shows a typical steel cabinet as manufactured by the Welsbach Company. Fig. 154 shows a typical hardwood cabinet made of 5-ply laminated wood, using flush panel con-

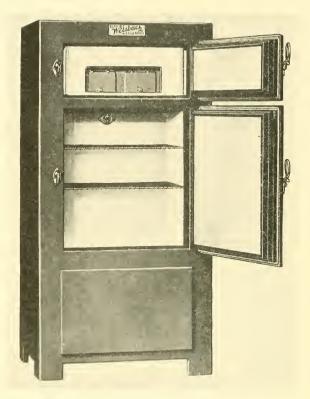


FIG. 154.—WELSBACH HARDWOOD CABINET.

struction. Both the steel and wood cabinets are supplied in various models. The dimensions, food storage space, number of trays and number of ice cubes vary with different models.

Whitehead.—Fig. 155 shows the compressor unit used with the household refrigerating machine manufactured by the Whitehead Refrigeration Company of Detroit, Michigan.

The compressor is of the reciprocating type. It is connected directly to the motor shaft and operates at motor speed, thus eliminating belts or gears. A flexible coupling is used to connect the motor and compressor shafts.

The condenser is made of finned tubing and is cooled by forced air. The fan is mounted on the compressor motor shaft.

Methyl chloride is used as the refrigerant. The receiver

FIG. 155 .-- WHITEHEAD COMPRESSOR UNIT.

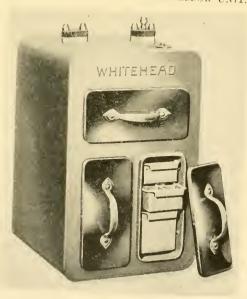


FIG. 156.-WHITEHEAD COOLING UNIT.

contains a visible gauge showing the amount of refrigerant contained in the receiver.

The temperature control is of the mercury tube type.

Fig. 156 shows a typical cooling unit. This is made in five sizes as follows:

Tank Size	Width	Depth	Height	Ice Box Capacity	Maximum Cube . Capacity per Freezing
1	10 in.	11 in.	10 in.	5-7 cu. ft.	96
2	10 in.	11 in.	13 in.	8-10 cu. ft.	96
3	10 in.	11 in.	16 in.	11-15 cu. ft.	144
4	11 in.	11 in.	19 in.	16-20 cu, ft.	144
5	11 in.	11 in.	23 in.	20-30 cu. ft.	192

Williams Simplex.—An air cooled refrigerating machine was developed for household use called the Williams Simplex. Ethyl chloride is used as the refrigerant.

The compressor is of the rotary type, directly connected to the motor shaft without employment of intermediary gearing or belting. The compressor has a volumetric efficiency ranging from 82 per cent to 85 per cent, and a mechanical efficiency comparing favorably with the best reciprocating types of many times greater capacity.

A ground steel collar is used to seal the drive shaft. This collar is self-aligning and automatically takes up wear, as it is attached to the compressor by means of a corrugated metallic tube. A spring, assisted by the condensing pressure, holds these members in firm contact. This forms a tight joint, which will run indefinitely without a tendency to wear or break down.

The compressor is mounted integrally with and supported by the motor. Positive pressure feed of lubricant is maintained to all moving elements of the compressor while in operation.

The compressor and condenser are cooled entirely by maintaining a current of air over their surfaces. The air is circulated by means of a Sirocco type of blower mounted between the motor and the compressor, the blower casing forming the supporting bracket for the compressor.

The air is first drawn through the condenser chamber which contains a continuous coil of copper tubing into which the refrigerant vapor is compressed, taking up the latent heat of vaporization; it then passes over the heat radiating fins of the compressor, from which it discharges through a flue extending through the top of the machine cover. Air is also simultaneously drawn from the opposite direction through and around the motor and discharged from the fan as above described.

The so-called flooded system is employed, in which the expansion or cooling coils are filled with liquid refrigerant. These coils connect into a vertical header from the top of which the vaporized refrigerant is drawn. This vapor, after being liquefied in the condenser, is discharged into a small chamber fitted with a float valve, which permits it to feed back into the expansion coils at the same rate at which it is being condensed.

These features are important, in that the radiating surfaces of the cooling coil have a much higher heat transmitting capacity when full of liquid. The ratio to the usual method of gas expansion at constant pressure is about 1.56 to 1.

A still more important advantage is that the expansion pressure is automatically varied to maintain constant balance between the compressor capacity and the radiating surfaces as the temperature changes. This provides maximum efficiency operating conditions throughout any range of temperature, while in the usual gas expansion method the pressure is necessarily set and held for the lowest temperature required, which is always the condition of lowest efficiency.

The machine is controlled by means of a thermostat, arranged to operate responsive to the temperature of the brine surrounding the coils in the brine tank. The switching apparatus and its actuating motor are located on the machine base, while the bulb of the instrument only is located in the tank. The advantage of placing the thermostat bulb in the brine tank is due to the fact that the maximum temperature change occurs in the brine.

A safety pressure switch is also used, which is operated directly responsive to the refrigerant condensing pressure.

The machine has a capacity when operating at 15° F. of about 150 lbs. ice equivalent per 24 hours. The power con-

HOUSEHOLD REFRIGERATION

sumption, including motor losses, is from 190 to 200 watts with direct current, and from 260 to 300 watts with alternating current, the difference being due to the larger losses in the alternating current motor.

Zerozone.—The Zerozone Household Electrical Refrigerating Unit is manufactured by the Iron Mountain Company of Chicago, Illinois.

This is an air-cooled compressor type unit using a cooling unit of the indirect type. The refrigerant used is sulphur dioxide.

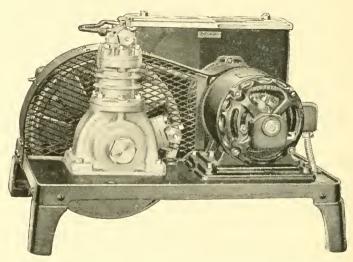


FIG. 157.—ZEROZONE ELECTRICAL REFRIGERATING UNIT.

The compressor unit consists of a one-cylinder reciprocating type compressor which is used on all well insulated refrigerators up to 20 cu. ft. and is shown in Fig. 157. The bore and stroke is 13⁄4 inch and the compressor operates at 330 r.p.m. The compressor is driven by a 1⁄4 hp. repulsion induction electric motor by means of a "V" type belt.

A two cylinder type compressor is used on all refrigerators from 20 to 50 cu. ft. and is shown in Fig. 158. The bore and stroke is $1\frac{3}{4}$ inch and the compressor operates at 265 r.p.m. driven by a $\frac{1}{3}$ hp. repulsion induction electric motor by means of a "V" type belt.

COMPRESSION REFRIGERATING MACHINES 295

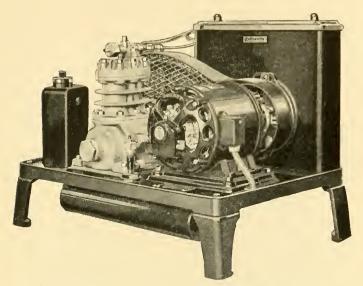


FIG. 158.—ZEROZONE TWO-CYLINDER TYPE COMPRESSOR.

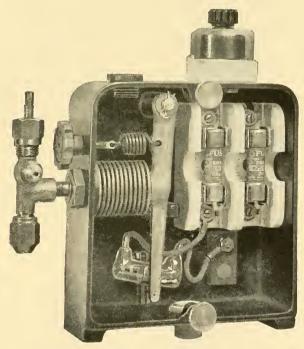


FIG. 159.-ZEROZONE AUTOMATIC CONTROL.

The condenser in each case is a double copper coil cooled by forced air by means of a fan attached to pulley end of the motor shaft.

The control used on the individual installation is an automatic thermostat, Fig. 159, and is responsive to the tempera-

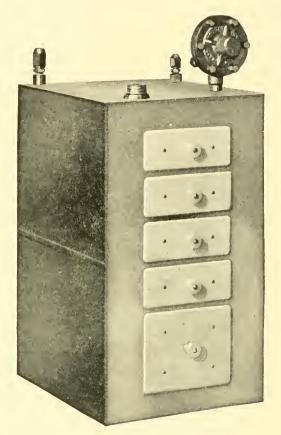


FIG. 160.-ZEROZONE COOLING UNIT.

ture in the cooling unit. The thermostat tube in the cooling unit connects to a sylphon which operates a mercury tube switch, by means of a suitable lever mechanism.

The control used on the Multiple installation is of the low pressure type, and is responsive to the pressures in the low side of the refrigerant system. This low pressure control, controls the operation of the compression unit itself, the temperature of each cooling unit in the multiple installation being controlled individually by a low side, thermostatic actuated valve, commonly referred to as a temperature governor.

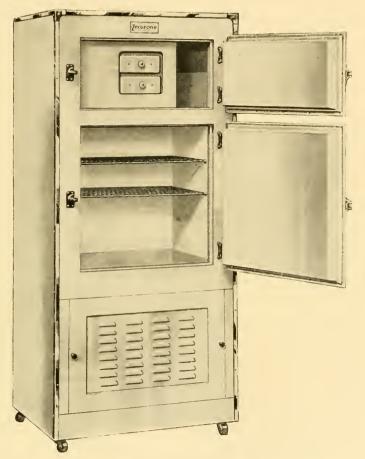


FIG. 161 .-- ZEROZONE SELF-CONTAINED METAL CABINET.

A diaphram type expansion valve is used to automatically meter the correct supply of liquid refrigerant to the expansion coils.

The cooling units are made of 20 ounce sheet copper, made in various sizes, one of which is shown in Fig. 160, and contains ³/₈-inch copper tubing for the expansion coil. The nonfreeze solution is calcium chloride.

Fig. 161 shows a typical self-contained cabinet, the exterior of which is metal, finished with white lacquer. Corkboard is used to insulate the walls and doors. The lining is of the one piece porcelain on steel type. The cabinets are made in various styles and sizes.

CHAPTER VIII

HOUSEHOLD REFRIGERATING MACHINES ABSORPTION TYPE

Household Absorption Refrigerating Machines.—In this chapter, attention will be given to the general types and charactertistic construction of a number of household absorption refrigerating machines.

Ice-O-Lator.—Fig. 162 shows an absorption type refrigerating machine manufactured by the Winchester Repeating Arms Company for the National Refrigerating Company at New Haven, Conn.

The "absorbent" which was the result of so many years of research by Prof. Keyes is the basis of the machine. Other absorbents have been known. Charcoal is an efficient absorbent and is frequently employed to absorb gases of various kinds. A good example is in gas masks. But charcoal cannot be employed in refrigeration because it is such a poor conductor of heat that no practical degree of efficiency can be obtained in the operation of a machine using it. You can get the gas into it well enough, but you can't get it out again without the expenditure of a prohibitive amount of energy. This absorbent combines the highest known absorbing qualities together with the quality of high heat conductivity.

Following are the qualities which the inventors set out to embody in their absorbent. They are the properties of an ideal material:

1. Cheapness and unlimited supply.

2. Should absorb at least 100 per cent of its own weight of refrigerant. 3. Should have a high heat conductivity in order to facilitate the removal of heat of absorption and also the application of heat for driving off the refrigerant.

4. Cellular, or porous structure, in order to present necessary working surface.

5. Stability. There should be no diminution of operating efficiency, or no disintegration or decomposition after continued use.

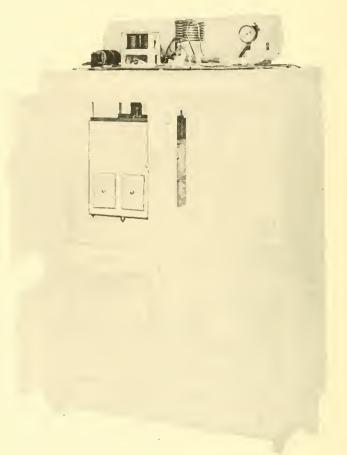


FIG. 162.—NATIONAL REFRIGERATING MACHINE.

In three years of continuous operation, no sign of decreased efficiency has developed.

A brief comparison with water, the best known absorbent, forms a favorable basis for comparison. Water compels the use of aqueous ammonia. This material is absolutely dry, making possible the use of pure anhydrous ammonia. Water absorbs 40 per cent of its own weight of ammonia. This material absorbs approximately 110 per cent of its own weight of ammonia gas and in addition loses its working charge on the application of about half the amount of heat necessary to drive the much smaller charge from water. Result—much less bulk and much more economical operation.

As the efficiency of the material has been steadily increased by constant scientific research since its discovery, there is considerable possibility that it may be still further increased.

The small household machine operates as follows: A steel tube is filled with a material which will absorb a large quantity of ammonia gas. When heat is applied the pressure is increased and the NH₂ gas is liberated and passes through a filter and check valve to the condenser. When the pressure reaches a point that corresponds to the temperature of the cooling water, condensation takes place and liquid NH, is delivered to the liquid valve float chamber. The purpose of this chamber is to insure complete condensation by the cooling water. The liquid NH, is then delivered through a small orifice and tube to the refrigerating chamber and coils. The heating continues until enough liquid NH, has collected in the refrigerating chamber and coils to make a contact by means of the float contacting mechanism at the top of the refrigerating chamber. When this contact is made the relay switching system is tipped to the opposite position, the heating circuit is broken, and the water is shifted by means of the valve from the condenser to the generator. As soon as the pressure over the material in the generator has dropped to the point which is less than the vapor pressure of the liquid ammonia in the refrigerating chamber and coils, boiling in this chamber commences and continues until all the liquid has evaporated. This evaporation may require from one hour to five hours depending upon the temperature in the refrigerator. When the temperature is high, the evaporation is very rapid and when it is low the boiling requires a much longer period of time. The temperature in the refrigerator, then is regulated by the rate of evaporation of the liquid. The brine tank maintains the

low temperature during the heat period when no refrigeration is taking place so that the temperature in the refrigerator is practically constant. When the entire quantity of liquid has evaporated a contact is made at the bottom of the refrigerating chamber which tips the relay to the heating position, the heating circuit is made, the water is shifted back to the condenser, and the cycle repeats.

Fig. 163 shows a diagramatic drawing of the gas-fired Ice-O-Lator. This model has electrical controls and is water-

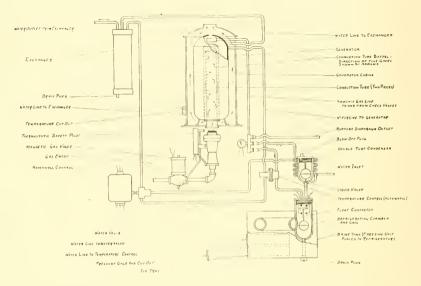


FIG. 163 .- DIAGRAMMATIC DRAWING OF THE GAS-FIRED ICE-O-LATOR.

cooled. The unit is placed in the cellar or any convenient place outside of the refrigerator cabinet.

The following information concerning the cost of operating this unit is of interest.

Illuminating or coal gas delivers 520 B.t.u. per cubic foot and natural gas an average of 1100 B.t.u. per cubic foot. One kw-hr. of electricity at 110 volts delivers 3415 B.t.u. Taking coal gas for comparison, 6.56 cu. ft. of gas is equivalent to one kw-hr. of electricity for heating purposes.

The cost of gas per 1000 cu ft. ranges from \$0.40 to \$1.50 in various localities. Many cities have a rate under \$1.00.

Natural gas, with about double the B.t.u. of coal gas, can be purchased for as low as \$0.40 per 1000 cu. ft. in some localities As against this, the cost of electricity averages about \$0.55 per kw-hr.

Heat for heat, the difference will readily be seen. At \$1.00 per thousand cu. ft. for coal gas the same number of B.t.u. can be obtained for three-fifths of a cent as from five and one-half cents' worth of electricity at the above rate.

The following table shows the approximate cost of operation, for the equivalent of 100 lbs. of ice refrigeration, of a machine using gas at the various rates.

Cost of Gas 1000 Cu.	F	ĩt																				0	f	F	Re	fr	ig	100 e r a	tio	bs n	
\$0.40				. ,	 	 					 						 									.\$	50.	05			
.80					 	 					 						 									. '		10			
1.00										 	 						 											12	5		
1.50					 	 					 						 											18	7		
2.00										 	 						 						•					25			
2.80										 	 			•	•	•	 			•		•	•		• •			35			

It will probably have been observed that the small household machine is cyclic and subject to peaks. Whereas this has not proven an objection in any of the machines at present in operation, still in the event that continuous refrigeration should be desired to meet some special conditions, such can easily be obtained by the use of two generators, one absorbing while the other distills.

Keith.—Fig. 164 shows an ammonia absorption type household refrigerating machine made by the Keith Electric Refrigerator Division of the Canada Wire and Cable Company, Ltd., at Leaside, Ontario, Canada.

Referring to Fig. 164, which shows the unit in the cooling position, on the left hand side in the generator, is about two quarts of ordinary "ammonia" as used in the home. Within the tank there is also a small electric heater. When the heater is started the gas is driven out of the water, just as you can see gas or bubbles of air driven out of the water in your tea kettle as it begins to boil. This gas is not very warm, as ammonia is easily driven off, and when it flows over into the pipes shown on the right hand of the illustration, it is chilled by a trickle of cold water which is flowing over the pipes of

1.

the condenser. When it is chilled, the gas is deposited on the inside of the condenser, about the same as dew is deposited by the chill of the morning air. This deposit is pure liquid ammonia.

When the condenser is nearly full of pure liquid ammonia, in approximately one hour's time, it begins to weigh more than the generator, and swings down, pulling the generator up and shutting off the electric heater. Almost immediately the pure liquid ammonia begins to evaporate and chills the

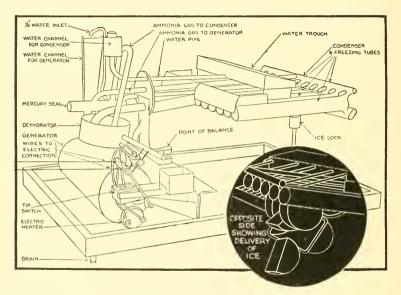


FIG. 164.—KEITH AMMONIA ABSORPTION TYPE REFRIGERATING MACHINE.

pipes to approximately zero temperature. This chills the surrounding air, which flows down into the food compartment of the refrigerator.

As the pure liquid ammonia evaporates, it flows back as a gas into the tank of water, where it is once more quickly absorbed. As soon as all the ammonia is returned to the generator, the pipes of the condenser naturally become lighter and the tank (or generator) heavier, and the unit gently tilts back to the original position, the electric heater starts and the operation commences all over again.

ABSORPTION REFRIGERATING MACHINES

2.

The operation, as has been explained is purely automatic, requiring no attention and maintains an even cold temperature at all times, ideal for the preservation of food. The amount of electrical energy consumed averages about $3\frac{1}{2}$ kilowatt hours per day for continuous operation, depending on the weather and other conditions.

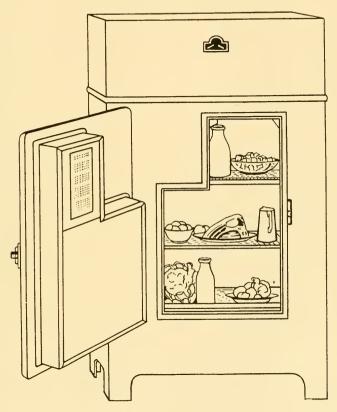


FIG. 165.—KEITH REFRIGERATING UNIT INSTALLED IN COMPARIMENT ON CABINET.

- Heater—900 watt resistance coil, porcelain core, inserted in steel tube through generator.
- lee lock—Holds the condenser down until all ammonia is in the generator. Is released by temperature rising above freezing point.
- Tip switch—A safety device to disconnect the electricity should the water be shut off.

Mercury seal—Contains mercury, which runs to lowest point with the tilting of the unit opening and closing the ammonia pipe to condenser.

Dehydrator—Eliminates water vapor from ammonia gas as it rises to the condenser.

The cabinet, Fig. 165, shows a complete self-contained unit with the machine in the compartment at the top.

Master.—An absorption machine of simple design is made by the Master Domestic Refrigerating Company, Inc., at Flushing, N. Y. It comprises a cylindrical generator, water cooled condenser and evaporator, connected by a single pipe to form the complete machine. It is made entirely from steel pipe and sheet steel.

Only water and ammonia are used as the means of producing refrigeration. These substances are charged in the generator in the correct proportions. Ammonia in the form of gas is released by applying heat to the generator. The gas is then cooled and liquefied in the condenser from which it flows by gravity to the evaporator in the cooling compartment of the refrigerator. By the subsequent cooling of the generator a reduction in the pressure is produced and the ammonia slowly evaporates thus producing the required refrigeration. The gas is re-absorbed by the cooled water in the generator. When the evaporation of the ammonia is practically completed a new cycle automatically begins.

The necessary reduction of the pressure is attained solely by the cooling of the generator, no check, float, or expansion valve, restricted orifice or other device is used in the machine and the pressure is always the same at any given time in all parts of the machine. The generator, condenser and evaporator freely communicate with each other at all times with pipe of full orifice.

The machine requires no attention as it is completely automatic. The automatic control consists of a power element actuated by the temperature of the generator, and a further power element which is placed in contact with the evaporator. The cooperation of these two power elements, by means of a simple mechanical principle, which is novel in its application to this machine, r_{C} ulates and establishes the heating and cool-

ing periods and assures the proper and continual functioning of the machine in a simple and positive maner.

Should for any reason the supply of water to the condenser be interrupted, the heating means is automatically 'cut off. Simple and effective means are provided for automatically returning to the generator any water which may be carried over by the ammonia gas to the evaporator.

The machine and refrigerator are built as a complete selfcontained unit, but, if desired, the machine may be installed outside of the refrigerator. Defrosting of the evaporator is automatic. Provision is made for an ample supply of ice cubes for table use.

The present machine is used to cool refrigerators of any size up to eight cubic feet inside capacity.

The Electrolux Servel. — The first practical continuous operating absorption refrigerating machine was made about the year 1860 by a Frenchman named Carre. His apparatus consisted first of a source of heat, generator, condenser cooling water, expansion valves, evaporator, absorber and pump. The heat liberated the ammonia gas from the aqua ammonia. so called "rich solution or strong liquid" leaving a weak liquid or water in the generator. The gas passing to the condenser is cooled off by the cooling water and condensed into a liquid. The liquid ammonia flows through the throttle or expansion valve into the evaporator, where the liquid ammonia is vaporized into a gas. During the evaporation heat is withdrawn from the surroundings, and thus cold is produced. The cold vapor passes into the absorber where it is spraved by weak liquid from the generator. By the expulsion of the ammonia from the aqua-ammonia solution in the generator, the remaining liquid is to a large extent water. This poor solution being exposed to the high pressure passes through an expansion valve into the absorber. In this way the poor solution,-meeting the ammonia vapors, absorbs them, so that in the bottom of the absorber a mixture collects as a "rich or strong solution." This solution is continually forced into the generator by the pump, which is operated by outside mechanical forces. A line drawn from the expansion valves through the pump separates the machine into a high pressure side and a low pressure side.

In the apparatus of Carre's there are two cycles. The ammonia circulates from the generator through the condenser, the vaporizer and the absorber back to the generator. It therefore passes through all four receptacles. The water circulates from the generator to the absorber and vice versa. The water therefore only passes through these two receptacles.

The Carre machine was built in great numbers, being used in breweries, distilleries and similar plants where large amounts of heat vapor was available for which at that time no particular use was made.

However as the steam technique further developed and afforded numerous uses for exhaust steam for other purposes, the employment of the absorption machine became less and less. This was further augmented by the high efficiency of the newly developed compressor system. Mechanical difficulties also played a role as with small units as were used, the expansion valves were necessarily small and the orifice was continually clogging up with dirt; then too the pumps were a source of constant maintenance and had to be operated by auxiliary power, independent of this source of heat used in evaporating the aqua-ammonia.

There therefore arose a demand for small continually operating absorption machines, from which the above said defects of the machine of Carre were eliminated, said machines to have neither expansion values nor pump, but which could be operated merely by the heat supply.

This was the aim of Geppert. In order to reach this aim he dispensed with the difference of the total pressure for the purpose of vaporization. With the same total pressure in the entire apparatus he tried to effect the vaporization necessary for refrigeration, as well as the reuniting of the ammonia gases with the water, and returning the mixture to the boiler without a pump or other mechanical energy. To this end. Geppert, in adition to the cooling medium (ammonia) and the absorbing liquid (water) used in the vaporizer a third medium, to wit, a gas, in the presence of which according to physical laws (due to the difference of so called partial pressures of the gases) liquid ammonia evaporates without a drop of the total pressure being required.

In the year 1899. Geppert built such an apparatus. In the boiler the ammonia gas is expelled as in the Carre machine. After being liquified in the condenser the liquid ammonia flows through a conduit into the upper pan of the evaporator. In this liquid is immersed a porous material which is so placed as to extend over the rim of the inner opening and extending completely under the pan. The porous material with its large exposed surface facilitates the evaporation of animonia in the presence of the second gas contained in the receptacle. The second gas used by Geppert was air. At a slight distance below the porous pad on the bottom of the upper pan is a bath of poor solution, which flows from the boiler, being cooled by passing through a cooler on its way to the absorber. It will thus be seen that Geppert combined the evaporator and absorber into one vessel. The ammonia gases resulting from the evaporation at the surface of the porous material diffuses downward through the second gas filling the receptacle and is then absorbed by the absorption liquid. The rich liquid then flows back to the generator where by the application of heat ammonia gas is again expelled.

The machine of Geppert is based on the theoretically correct idea that a pressure drop requiring throttle valves and pump becomes unnecessary in a refrigerating machine, if in the evaporator the liquid ammonia meets with a gas in whose presence the ammonia evaporates. The machine as designed refused to work and Geppert has himself seen the drawbacks of a design in which the ammonia has to diffuse through a thick layer of inert gas. This is apparent from other drawings later on submitted by him. In the next design he reduced the thickness of this layer and employed a fan to aid the evaporation, by having the lower parts of the fan blades dip into the liquid. By doing this he was able to further separate the cold evaporator from the warm absorber thereby reducing the refrigerating losses. The fan had to be operated by a motor and this was one of the pieces of equipment that Geppert had set out to eliminate. Another reason why the machine proved impractical was that when the ammonia vapors are absorbed

by water heat is liberated. The absorber therefore acts as a heater. Cooling water had to be provided in pipes located within the absorber. Notwithstanding this, heat liberated during the absorption rose into the evaporator space above, thus either entirely or partially counteracting the heat withdrawn from the surroundings by the evaporation of the ammonia. Effective refrigeration therefore cannot take place, or only in a very limited degree.

In the year 1901, Geppert attempted another design which was somewhat of an improvement over the two previous models. He still maintained the combined vaporizer and absorber. The receptacle was provided with a double wall, cooling water circulating in its hollow space. Into the receptacle is inserted a cylinder at a very slight distance from the inner face of the double wall of the receptacle. The cylinder contains salt water. The cylinder does not extend to the bottom of the receptacle. Into the free space flows from the boiler "poor solution." The operation was as follows:

The ammonia which had become expelled from the rich solution and liquified in the condenser flows through a small pipe to the outer surface of the wall of the cylinder, which wall is covered with porous material. There the ammonia becomes distributed and evaporates. Heat is therefore withdrawn from the salt water contained in the receptacle and cold is produced. The produced ammonia vapors diffuse through the small intermediate space to the opposite inner surface of the double wall of the receptacle. This surface is spraved by poor solution which by means of a small pump is continually pumped through the pipes from the lower portion of the receptacle upwards into the space between the double wall of the receptacle and the cylinder. The surface on which the poor solution flows down is cooled by the cooling water in the hollow space of the double wall. As the poor solution flows down, it absorbs the ammonia gases which are diffused in its direction from the opposite surface and thereby is enriched with ammonia. Thus the outer surface of the cylinder acts as a vaporizer, and the inner surface of the wall of the receptacle as an absorber. The absorber therefore, is, not like in his previous patent, below the vaporizer, but the absorber

and vaporizer located in one and the same vessel, at the same level side by side. It will be noted that Geppert had to take recourse to the pump, which is one of the pieces of equipment he started out to eliminate. While he succeeded in producing cold, with his last design, the efficiency was small—also he failed to attain one of his objects, namely to eliminate the pump.

After Geppert failed, no trace can be formed of any practical and useful small refrigerating machine of any importance, operating according to the absorption principle in a continuous manner, until the year 1922 when two students, Baltzar Carl Von Platen and Carl George Munters of the Royal Swedish Institute of Technology developed and designed a working model which dispensed with all moving and mechanical parts.

This unit was later developed by the Electrolux Aktiebolaget in Europe and the Electrolux Servel Corporation in the United States, so that today we have a workable and saleable refrigerating unit that is indeed marvelous. In order to develop the present day product a large laboratory for research work was established in Stockholm, Sweden, and in Brooklyn, New York. In these laboratories developments and experiments are taking place so as to develop new types for further commercial applications. How well this unit with refrigerator has been developed was evidenced at the American Gas Association Convention at Atlantic City, where three complete refrigerators and an exposed unit were presented for the inspection of the gas industry.

Platen-Munters, independent of Geppert had like him the idea to have in the entire system, by the introduction of a second gas, everywhere the same uniform total pressures and to effect the pressure difference required for the vaporization of the refrigerating medium. Contrary to Geppert, however, they carried out this idea in a manner which at once resulted in a practical solution. They recognized what has remained concealed to Geppert that in such a system into which is introduced a pressure compensating gas there occurs within the system inner fores, i. e., physical actions which can be utilized in order to effect the circulation required for such a system. Furthermore, they recognized that this peculiar action can be still considerably improved upon if the pressure compensating gas possesses special characteristics, for instance, as regards its specific weight differing considerably from that of the vapors of the refrigerating medium. There were ways of avoiding the pitfalls of Geppert.

First.—As regards the pump. By applying heat from a source the solution rich in ammonia, is made to boil in a tube and by the thermo-syhon action thus established, the liquid is raised from the lower level of the absorber to the high level of the generator.

Second.—Stagnation and poor circulation. Instead of using air as Geppert had done hydrogen gas was used. Absorber and evaporator are placed at about the same level or the latter somewhat higher than the former. When the ammonia vapor has been absorbed in the absorber, pure hydrogen flows through the upper pipe into the evaporator, where it mixes with the vapors from the evaporating liquid ammonia. The mixture of ammonia vapor and hydrogen being specifically lighter the greater its percentage of hydrogen, it follows that the column of gas in the evaporator will be heavier than that in the absorber. An automatic circulation of gas consequently takes place, giving an upward flow in the absorber and a downward flow in the evaporator. If instead of hydrogen, the inert gas had been nitrogen the flow would have been reversed.

The apparatus comprises the generator, condenser, evaporator, absorber, heat exchanger, thermo-syphon, which are interconnected by pipes. In all portions of the completely and tightly closed apparatus exists the same total pressure. The boiler is to a large extent filled with aqua ammonia (so called rich solution) only the upper vapor space of the boiler is free from liquid.

Into the bottom of the generator is inserted an electric heating element, connected to a source of electrical energy. From the upper free space of the generator leads a pipe to the condenser and said pipe continues on into the top of the evaporator. The latter is filled with hydrogen gas. At the bottom as well as at the top there is a connecting pipe to the absorber. The absorber is surrounded by a jacket through which circulates cooling water, which then passes to the condenser. From the bottom of the absorber a pipe runs to and coils around the heating element. In addition there is a pipe connecting the bottom of the generator with the top of the absorber. This pipe where it is horizontal surrounds the pipe which passes from the absorber to the upper space of the generator.

The apparatus is operated as follows: Current supplied to the heating element heats the rich solution in the generator. The ammonia gas expelled from the rich solution fills the upper free space of the generator and flows through the pipe into the water cooled condenser. Because of the cooling the hot ammonia gases are condensed to pure ammonia liquid. This liquid flows to the evaporator. There in the presence of hydrogen the liquid ammonia evaporates. Through the evaporation heat is withdrawn from the brine tank surrounding the evaporator and consequently cold is produced. The ammonia gases in the evaporator diffuse into the hydrogen, and the mixture, sinks downward, because as compared to the gas mixture in the absorber it is heavy. In its downward movement it passes on to the absorber. In this vessel the gas mixture meets with the water (poor solution) coming from the generator. The liquid level in the generator is higher than the "poor solution" pipe to the absorber; there is therefore, a continual flow of poor liquid into the absorber. In the absorber the poor solution absorbs from the gas mixture the ammonia gas and collects at the bottom of the absorber as "strong or rich liquid," while the lighter hydrogen free from ammonia ascends and through the pipe connecting the absorber with the evaporator, again enters the top of the evaporator.

The rich solution is conveyed through the coils of the pipe around the lower end of the heating element and is thereby preheated so that the ammonia gas bubbles around the pipe. These bubbles carry along globules of liquid, which thereby reach the upper portion of the generator, from which we began the cycle of operation.

Outside the cycle of the ammonia which takes place in all four vessels (generator, condenser, evaporator and absorber) there occurs in the apparatus still two other cycles. On the one hand the circulation of the water, or poor solution from the bottom of the generator, to the top of the absorber down to the bottom of that vessel as strong solution, then to the top of generator, through the thermosyphon pipe. On the other hand, the circulation of the hydrogen gas from the bottom of the evaporator to bottom of absorber, and from top of absorber to top of evaporator.

The above description covers the machine as originally designed. Rarely, has an invention required less time to perfect. On August 18, 1922, the first patent was deposited in Sweden and in 1925 a great number of refrigerating machines were in commercial service.

The Electrolux Servel Corporation has by exhaustive tests and experiments developed a machine somewhat different than the original Swedish design. These changes have practically doubled the "ice melting capacity of the machine" and have greatly increased its efficiency. They have in addition perfected the machine for gas heat instead of electric heat and have reduced the quantity of cooling water needed to properly operate the unit. In order to do this several changes had to be made to the apparatus.

1. Inner flue placed in generator to permit the use of a gas flame for heat.

2. Rectifier-to catch water that may be carried over with annuonia gas.

3. New type condenser-simplified construction.

4. Gas heat exchanger—placed between rectifier and the absorber and the evaporator, where the cold ammonia hydrogen mixture coming from the evaporator is warmed by the hot ammonia coming from the rectifier and the hot hydrogen from the absorber.

5. The liquid heat exchanger. The two pipes located between the absorber and the generator the one being placed inside the other, act as a heat exchanger on the counter flow principal, by means of this the hot, weak liquid, which flows from the bottom of the generator into the absorber, is pre-cooled by the comparatively cool strong liquid that flows from the absorber to the thermo-syphon. This solution is at the same time pre-heated before entering the generator.

The unit before being charged with ammonia, distilled water and hydrogen is given a careful air and hydraulic test under the most rigid factory supervision and after being charged is heremetically sealed by welding. The original charge does not have to be renewed, as there is no leakage. The unit is equipped with a thermostatic safety burner which automatically shuts off the gas supplied if for any reason the supply is interrupted. One of the features of the unit is that the operation involves absolutely no danger even if the condenser water supply should be interrupted for any length of time.

Inasmuch as there are no moving parts and being rigidly constructed, no serviceing is necessary, and that is saying a lot.

The refrigerator is a steel box of approximately $6\frac{1}{2}$ cubic feet of food space—finished with several coats of duco over baked white lacquer. The cooling section inside the box is of cast aluminum having five trays with a capacity of about fifty cubes. The box is insulated with three inches of high grade corkboard, thus bringing the thermal losses and operating costs down to a minimum. (From address delivered by F. E. Sellmann before the New York Section of the American Society of Refrigerating Engineers in October, 1926.)

The original ice melting capacity of the Swedish machine was about forty-five pounds per twenty-four hours while its thermal efficiency was about 18 per cent. The Swedish public were apparently content to utilize a manually controlled machine, the control simultaneously regulating both gas and water. It was found that in order to make the machine salable in this country it would have to be designed so as to operate and give sufficient refrigeration where room temperatures of 100° F. and cooling water of 90° F. were encountered. Tt further had to be developed so that the machine would have to give desired refrigerating effect automatically, and with controls making the unit serviceable for use with either manufactured gas, natural gas, electricity or oil. A laboratory was established in Brooklyn where exhaustive developments were made by united effort of engineers of the American and Swedish companies. During the next year these men were able to redesign the machine so as to bring about an ice melting capacity of seventy-five pounds per twenty-four hours and to raise the efficiency to $32\frac{1}{2}$ per cent when operated by gas. When operated electrically the efficiency rose to 38 per cent. The machine was also capable of producing sufficient refrigerating effect to take care of the designed refrigerator under conditions of 100° F. room temperature and 90° F. cooling water.

The maximum efficiency of the original Swedish unit was reached when an input of 730 B.t.u.'s per hour was furnished, while the maximum efficiency of the machine developed in America was reached when 1350 B.t.u.'s were used. The capacity reached its maximum at about 1300 B.t.u.'s with the Swedish machine, but with about 1650 for the American machine. These improvements both as to capacity and efficiency were brought about by many developments including a new type of rectifier, improved Thermo-syphon, and the use of a gas heater exchanger. The figures quoted above were furnished from tests conducted by the Consolidated Gas Company of New York.

As the efficiency and capacity increased with the increase in B.t.u.'s furnished the unit, it was therefore necessary to control the heat input so as to get a predetermined refrigerating effect. Using gas of 540 B.t.u, per cubic foot heating value the minimum gas required to assure satisfactory pumping through the Thermo-syphon was 11/2 cubic feet per hour and this flame had to be increased to a maximum of three cubic feet per hour when maximum refrigeration was desired. This meant therefore a development of a burner that would burn satisfactorily between the ranges of 115 cubic feet and three cubic feet per hour and that the burner in addition must be of the safety type so that, if for any reason the gas flame were extinguished that the gas supply to the burner would be automatically shut off. The first burner developed possessed these characteristics but was designed for a gas pressure of about $2^{1/2}$ inches of water and 540 B.t.u. gas. With the sending of reirigerating units into districts where gas pressures and B.t.u. values vary considerably it was necessary to develop burners suitable for both water coke-oven and natural gases and to test and approve gas pressure regulators.

As the minimum gas required at any time was $1\frac{1}{2}$ cubic feet per hour the gas thermostat was therefore designed so as to always allow that quantity of gas to pass through it, but when the thermostat acted on the gas supply it augmented gradually the flow until three cubic feet capacity was reached. The thermostat is of simple construction easily set and adjusted. It consists of a six inch bulb located within the food chamber. The operating mechanism of the thermostat is located in the machine compartment and is inter-connected by capillary tubing. The bulb is partly filled with a liquid which when expanded into a gas, actuates by pressure through the tube a diaphragm located in the body of the thermostat.

With operating the machine electrically, similar conditions must of course be taken care of so that the machine will continually pump. With this in mind a double heating element was developed which furnished a minimum wattage to keep up pumping but increased the wattage to take care of maximum load. From the consumption curve of the cooling water needed it will be noticed that after a certain amount of water had been used further increase in water consumption becomes unnecessary and wasteful. This therefore clearly indicated that no desirable control could be developed for controlling water simultaneously with the gas and that any water control developed would have to be designed using as a controlling factor a predetermined cooling water outlet temperature. Such a device was developed and with the outlet water temperature maintained at 90° F. the water consumption was practically halved as compared to that which was used prior to the development of this water control. The machine is now operating satisfactorily with about three gallons of water per hour with water inlet temperature of 70° F. The machine will operate and produce ample refrigerating effect with cooling water up to 90° F. With temperatures above this, the water would flow through unrestricted parts in the valve and the valve become unnecessary, but where cooling water is encountered below 90° F. the saving in water is very material. Those familiar with early tests must realize the material saving made in the water consumption and that the objections raised to water cooling, both as to waste of water and costs has been overcome.

The machine unit comprising the generator, evaporator, absorber, rectifier and gas heat exchanger is made of heavy steel tubing inter-connected by steel pipes, all joints being oxy-acetyline welded. This produces a completely sealed unit from which there is no danger of leakage. The units are designed to withstand a pressure of 3100 pounds per square inch although only about 200 pounds charging pressure is used, and a certain proportion of the run of units are tested to this pressure at the factory. Each unit, however, is subjected to a high pressure test in order to detect any possible imperfections in welding.

From time to time one hears many stories reflecting on the safety of gas-fired absorption machines. This all emanated from experiences of ten to fifteen years ago when a few gasfired intermittent absorption machines were being marketed. most of them of large capacity for commercial use. A few serious accidents practically eliminated further progress in this type of machine, and produced adverse legislation. The cause of this trouble was largely due to a lack of understanding as to the necessary safety devices that are required on a large intermittent machine. In other words, a machine of this kind requires automatic mechanism to shut off the fuel at the end of the boiling period, to apply cooling water at the right time both for condensing and absorbing purposes, and a pressure limiting device in the event that the gas fuel or condensing water did not function properly. The fact is these variously needed devices had not been properly perfected before the machines were marketed. Since that time there has been considerable progress made in small intermittent machines, so that in some cases for certain types of work the objections of the past have as a rule been overcome.

The Electrolux-Servel unit incorporates features which make safety devices not only unnecessary but undesirable. The fuel burns continuously, and continued operation of the maximum burner adjustment would merely produce an extremely cold box. In practice this is prevented by making the gas consumption depend upon box temperature. If, for any reason, the cooling water were to fail nothing would happen other than that the refrigeration would cease. The reason that no safety device is required to meet this condition is due to the design of the machine, which provides so much radiating surface, in proportion to the heating surface, that all parts, with the exception of the generator will throw off the heat as fast as it is applied, through all the surfaces as represented by the evaporator, heat exchanger, absorber, condenser and rectifier, and a state of equilibrium will be reached when these surfaces will throw off the heat at the same rate as heat is applied to the generator. These two features absolutely eliminate the need of any safety devices whatsoever for the purpose of safe operation.

For an entirely different reason, however, a fusible plug is installed on the absorber end of the gas heat exchanger. This was made at the suggestion of the New York Fire Department, as well as the National Board of Fire Underwriters, and is to provide for that emergency which would be brought about by intense exterior heat being applied to all parts of the machine as would be the case if a fire occurred in the room in which the refrigerator were installed. To meet this emergency the fusible plug set to melt at 200° F. would simply relieve the refrigerator charge. This is a precaution which would be just as important if the machine were simply filled with either water or air, as the unlimited heat supply would simply produce an internal pressure which would eventually rupture the machine. These facts are borne out by the approval of the machine by the National Board of Fire Underwriters' Laboratory in Chicago, and by recent changes in the proposed code for the city of New York.

This machine has long since passed its experimental stage. When first brought out into production 250 sample boxes were sold to the various gas and public utility companies for the purpose of having them conduct tests and determine if the machine and box were what they desired and what was claimed it would do. Apparently the machine and boxes designed met with instant approval as is evidenced by the large order placed for this machine. The machine lends itself to and is particularly suitable for apartment house service especially in large and congested cities where the fact that it is absolutely noiseless, safe and serviceless has been deciding factors in its reception.

The unit may also be used in specially built boxes of varying sizes, built to fit into particular niches as seems to be the growing demand in new apartment house construction. There is also a combination of a gas stove and refrigerator where a gas stove is mounted on a refrigerator box the same gas service line serving both. There are operating right now in the Eastern districts embracing environment of Metropolitan district of New York approximately one thousand machines. The servicing of these machines, in case it were necessary, would, of course, be done by the gas company, and from the information received they advise that so far they have not experienced any servicing whatsoever.

One question has undoubtedly occurred to a good many of you. "What effect has the gas flame with its products of combustion on the interior of the gas flue which passes through the generator?" In view of the fact that the gas flame is not extinguished but ranges in degrees from $1\frac{1}{2}$ cubic feet per hour to 3 cubic feet per hour results in the gas flue always being kept at a temperature higher than the dew point.

Numerous people have asked the question, "What corrosion will take place within the unit?" Before the unit is charged with ammonia, distilled water and hydrogen, a high vacuum is pumped. Practically all oxygen is therefore removed. The machine, of course, has not been in service more than a few years so we can go back no further—but machines that have operated for this length of time in Sweden have been cut open and no trace of corrosion has been found.

The dissociation of ammonia into nitrogen and hydrogen is an old story in absorption systems where numerous joints and connections are used. In the Platen-Munters Refrigerating unit—there are no joints, no possibilities of air leakages. Then, too, if there should be a tendency to break down the ammonia into nitrogen and hydrogen—it must be remembered that the unit has already a heavy charge of hydrogen and this would tend to repel the dissociation.

Another question that has apparently been causing some comment by refrigerating engineers has been the possibility of leakage of hydrogen through the steel. As long ago as about 1860 it became known that hydrogen is absorbed by certain metals and can be diffused through them. This matter has since this time been subject to a large number of investigations which have mostly centered on the diffusion of hydrogen through iron and steel, as this for several reasons is of considerable technical interest.

It was known from these investigations that gaseous hydrogen easily penetrates and diffuses into steel at red heat. This diffusion, however, is sharply reduced with the lowering of the temperature and has seldom been observed at a temperature below 300° C or 572° F., wherefore some investigators have assumed a discontinuity of the diffusion at this temperature, or a "hydrogen point" of the steel. On the other hand it was shown that hydrogen which had been introduced into the steel electrolytically would diffuse through the metal at even room temperature.

As the Platen-Munters refrigerating unit contains hydrogen at ordinary room temperature under relatively high pressure, it was desired to determine if any appreciable loss of hydrogen would occur under these conditions. Earlier investigations had indicated that the losses would be quite small, but as no figures were available regarding their actual magnitude, tests were arranged and conducted by Professors Borelius and Lindblom at the Royal Technical School at Stockholm.

Applying the data obtained to the Platen-Munters refrigerating unit, we find that no danger exists of loss of hydrogen through the wall of the apparatus. For instance, if we take a 60 cal. refrigerator which contains 1.5 gr. hydrogen and which will still operate if 0.3 gr. of this hydrogen were lost, we would find that it would take one hundred eighty years before sufficient hydrogen escaped making the apparatus inoperative. This certainly gives a wide margin of life.

Thousands of people have examined this machine, among them a large number of engineers; in fact, generally speaking, the more technical a person is, the greater appeal has been made by the machine. The fact that the machine is noiseless, free from moving parts, compact, economical in operation and has apparently unlimited life, cannot but make us reflect on its effect on domestic refrigeration.

When we consider that this machine is the first of its kind, and if we compare it with other developments in the past, we can readily visualize that the continuous absorption machine will also follow in the path of progress.

321

HOUSEHOLD REFRIGERATION

Does this not make us wonder if the absorption principle will not soon be a vital factor in domestic refrigeration? (From an address delivered by F. E. Sellmann at the American Society of Refrigerating Engineers meeting in May, 1927.)

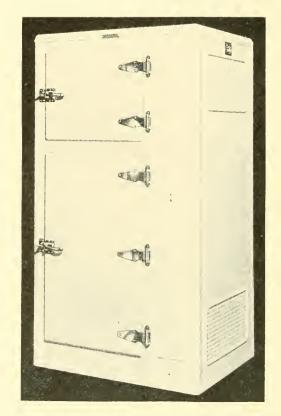


FIG. 166. ELECTROLUX SERVEL REFRIGERATOR CABINET.

Fig. 166 shows the refrigerator cabinet. The exterior is made of lead coated steel finished with white duco. Fig. 167 shows the cooling unit and food compartment space. The food capacity is $6\frac{1}{2}$ cubic feet. The box is insulated with three inches of corkboard. The lining is of porcelain and the cooling section is of cast aluminum having five trays with a capacity of fifty cubes of ice. Fig. 168 shows the machine mounted on the side of the cabinet. The water control valve is mounted on an outlet water line. The purpose of the water control is to throttle

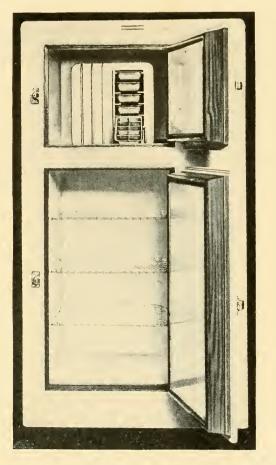


FIG. 167 .--- SHOWING COOLING UNIT AND FOOD COMPARTMENT SPACE.

the water used in the condenser so as to maintain a constant outlet temperature under all conditions of inlet temperature and pressure. The gas thermostat automatically regulates the supply of gas responsive to the temperature of the food compartment. A safety gas burner is used so that the gas supply is automatically shut off if for any reason the gas flame is extinguished.

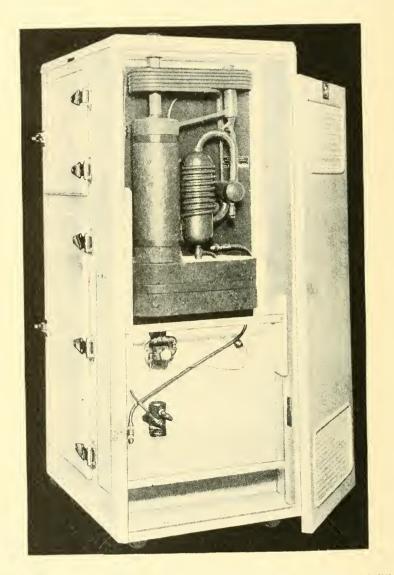


FIG. 168.—SHOWING ELECTROLUX SERVEL MACHINE MOUNTED ON SIDE OF CABINET.

ABSORPTION REFRIGERATING MACHINES

Sorco Gas Absorption Refrigerator.—The new Sorco Gas Absorption Refrigerator (Figs. 169 and 170) which is manufactured by the Gas Refrigeration Corporation, with sales office at 18 East 41st Street, New York City, has a great num-

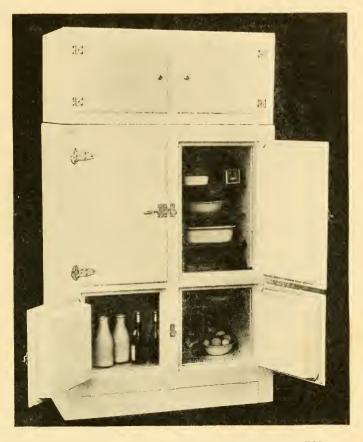


FIG. 169.—SORCO GAS ABSORPTION REFRIGERATOR.

ber of new features not shown in their old construction described heretofore.

The boiler absorber contains a solution of ammonia and water. As cold water attracts and absorbs or dissolves ammonia, the rate at which it does so and the amount it absorbs depend on the temperature of the absorbent. On the other

HOUSEHOLD REFRIGERATION

hand, hot water repels ammonia in the form of a gas. Hence during the heating period, ammonia is liberated from the boiler, liquefied in the condenser and fills the evaporator. During the refrigerating or absorbing period of the cycle which

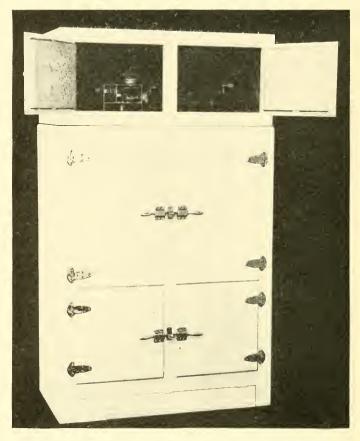


FIG. 170.--SORCO GAS ABSORPTION UNIT INSTALLED IN REFRIGERATOR.

may last from eight (8) to seventeen (17) hours, according to the required amount of cold, the liquid anhydrous ammonia gasifies from the evaporator and returns to the boiler absorber where it is reabsorbed by the weak liquor. The heat absorbed by the evaporating ammonia as well as the heat of association generated by the absorption of the ammonia gas in the weak liquor in the boiler absorber are carried off by the cooling water.

The patented construction and design of the Sorco Boiler Absorber are extremely simple as it contains no moving parts such as valves of any kind, floats, by-passes, packing or stuffing boxes or anything that can possibly get out of order. In all intermittent absorption machines ammonia gas must be expelled from the top of the liquid level and re-absorbed underneath the surface of the liquid. We accomplish this by an application of gas heat to the boiler as well as the absorber, at which time an over pressure is created in the absorber during the boiling period which keeps the aqua ammonia floating in the boiler compartment until a predetermined maximum is reached in the boiler when the required amount of ammonia gas is expelled to the condenser.

Shortly after the beginning of the absorption period the remaining weak liquor in the boiler flows back to the absorber to a lower pressure created by the cooling water flow which is diverted through the absorber at the same time the heat is turned off.

A number of novel patented features are embodied in the Evaporator construction. As shown in the diagram attached. there is no moveable part in the ammonia system which is hermetically sealed in steel vessels and seamless steel tubing welded to the tanks. As the same pressure exists during the boiling period in all parts of the evaporator a great part of the ammonia would condense in the cold evaporator which would warm it up so that the food compartments and the ice in the evaporator would melt. Condensation in the evaporator is reduced to a minimum in the construction shown. The first entering fluid ammonia fills above the coils. Condensation cannot take place in the coils as they never become empty. Condensation must then first take place in the evaporator in the reduced surface area inside the main upper vessel which quickly increases the temperature of this vessel at the beginning of the heating period. But as soon as the temperature of this main vessel reaches a certain temperature slightly above the cooling water temperature, condensation stops there automatically. This is due to the fact that only a small part of

327

the latent heat can escape through the air insulation between the main vessel and the housing of the evaporator. Condensation thereafter takes place only in the condenser. The evaporator housing remains unaffected by this heat which cannot circulate. The ice evaporator is able to make six (6) pounds of ice in form of 72 ice cubes, within the short time of two to three hours.

There is always a small amount of moisture in the distilled ammonia when it enters the evaporator during the heating period. This moisture not only has the tendency to increase the boiling point of the ammonia in the evaporator, thereby preventing the evaporator from reaching its minimum possible temperature, but it also would gradually accumulate in the evaporator because it does not evaporate back in the boiler absorber with the evaporating ammonia. The amount of moisture generally increases with increasing cooling water temperature and has to be removed automatically. The Sorco evaporator is equipped with a marvelously operating patented return suction tube cup which has no moveable part and is based on two functions. First, a continuously separating operation, and, second, a removing operation. The first one is performed by the ice tray supporting coils in combination with the vertical tube during the whole absorption period. The lower ends of these coils are over orifices in communication with the vertical tube, so that liquid circulation between the vertical tube and the two coils is avoided. At the start of the boiling period the remaining aqueous solution in the vertical tube and in the lower part of the coils is forced through an orifice into the sump at the bottom of the evaporator. Due to the drop in pressure shortly after the end of the boiling period a small predetermined amount of liquid in the tube cup is drawn back into the absorber. This takes place shortly after the end of each boiling period with an astonishing regularity and without returning an appreciable amount of ammonia.

The Soreo is now as formerly 100 per cent automatically operated. The attractive feature, however, is that electricity is no longer required to operate the control of the gas heated unit. The movement of the few parts in the patented control is so simple and slight, that noise and wear are reduced to practically nil. The two thermostatic power elements, one in the boiler and one in the evaporator, control the water flow by a snap action in a simple and unique manner. The starting and stopping of the boiling period as well as three different water flows are accomplished: First, the water flow during the boiling period; second, a strong flow during the first part of the absorption period through the absorber to cool the machine down quickly, and third, a minimum amount of water flows during the most of the absorption period to extract the heats of evaporation and association.

The advantages of this non-electric control are manifold. First, it regulates the length of the cycle automatically according to the required amount of cold. Second, it is completely foolproof-if for example the power element in the evaporator should not operate due to an overload in the evaporator, the control of the machine would automatically be operated by the thermostat in the boiler. The length of the absorption period would be determined by the rate of radiation from the boiler. This condition would last as long as there is an overload in the evaporator and thereafter the evaporator thermostat would automatically start its normal operation again. Third, it is selfstarting, that is, it does not matter during which operating condition the machine was shut off as it shifts automatically to the proper starting position. Fourth, the elimination of the necessity for any electric connections in the machine, or the elimination of the possible failure of the electric current. Fifth, the elimination of the possible failure of the many intricate electrical parts such as wiring, contacts, switches, pilot wires, etc., all of which also require an electrical knowledge in the servicing.

There is a safety pilot light which automatically lights the gas whenever it is turned on. Unburned gas cannot escape, due to the automatic gas shut-off of the safety pilot; if for instance, the pilot light should go out. The gas burner cannot be lighted unless cooling water flows through the system. As long as the cooling water flows through the system it is impossible to attain abnormal or dangerous pressures in the system, and in order to comply with the Safety Code there

329

is a rupture device which would exhaust the refrigerant with the cooling water in closed pipes at a safe pressure below the bursting pressure of the weakest part of the system, which bursting pressure is more than twelve times the maximum normal working pressure. The normal working pressure during the refrigeration period range from 10 to 35 pounds gauge. The maximum normal working pressures during the heating periods are from 125 to 175 pounds per square inch, all of which vary according to room and cooling water temperatures.

The machine can be manufactured in all sizes. One size is on the market which has an ice making capacity of about 23 pounds per cycle. The maximum capacity is therefore about 92 pounds in 4 cycles per 24 hours.

The Sorco machine automatically defrosts the evaporator each cycle. The box temperature increases 5 to 6 degrees Fahrenheit during the boiling period.

The Sorco needs little servicing as it contains no movable parts beside the control and every machine, even when it is continuously operating, must have a control unless it is not fully automatic.

The average operating cost of the Sorco refrigerator is 11 cents per day, on one dollar gas and water at one dollar per thousand cubic feet. The third of this cost is for water and two-thirds for gas.

The Sorco Model E consumes from 40 to 80 cubic feet of gas per day according to conditions and the required refrigerating effect. The average water consumption is under 200 gallous per day.

CHAPTER IX

TYPES AND CONSTRUCTION OF HOUSEHOLD REFRIGERATORS

Household Refrigerators.—The following pertains to the description of the general type and a detailed description of some of the leading household refrigerators on the market at present. The different makes of household refrigerators which are described have been selected promiscuously, and do not include all of the makes which are produced at present. However, the description of the following makes will convey an idea of the general types, as well as the various details of construction used in some of the leading makes at present. Special attention is given to wall construction, linings, outer case construction, construction of doors, etc.

Bohn.—In Fig. 171 is shown a typical refrigerator made by the Bohn Refrigerator Company of St. Paul, Minnesota, for electrical refrigeration.

The exterior is of white porcelain on steel. The lining also is made of porcelain. The walls and doors contain eleven insulating members, including two thicknesses of flaxlinum. The insulation is framed in with heavy members, insuring permanency of position and long life. It is so constructed as to present a complete refrigerator before the outer steel, porcelained case is installed. The porcelain steel case is added to beautify its appearance and as an added protection to the inner walls. The walls are $3\frac{1}{2}$ inches thick and the doors $3\frac{1}{4}$ inches.

Doors are built on the safe door principle, with several rabbets to hold back the air leakage and in addition are furnished with cushion gaskets.

HOUSEHOLD REFRIGERATION

All hardware is solid brass, nickeled in the company's plant. Corners are trimmed with solid brass tubing, heavily

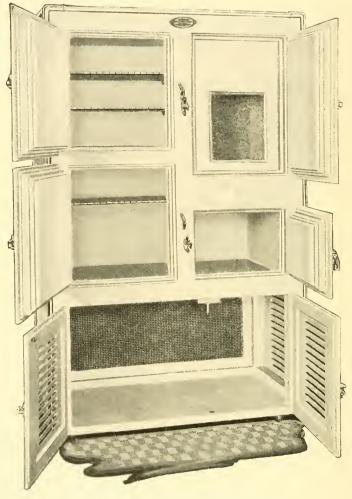


FIG. 171.---TYPICAL BOHN REFRIGERATOR.

nickeled. Underneath this trim are white wood mouldings, which seal the porcelain plates together—an additional moisture proofing. The food chamber lining is one-piece heavy steel, porcelained, with full rounded corners and rolled door edges. All porcelain steel, inside and outside, has one ground coat on both sides of the sheet and then two additional coats of white, each coat fused on separately, in its own plant, in ovens carrying two thousand degrees of heat.

The cooling chamber is lined with the highest quality galvanized steel with a copper alloy base.

The drain pipe is solid brass, with a spun copper funnel top and solid brass base, all heavily nickeled. The drain trap is double—a large opening if ice should be used, and an auxiliary, removable, smaller trap within the larger trap, for defrosting drainage. Defrosting drainage should be carried away from the inside of the refrigerator and never be left in a pan inside the refrigerator because of the high content of bacteria and food d cay in the melted frost. The provision shelves are meshed wire, heavily tinned.

There are proper circulation principles, inbuilt, leading the air in a complete circulating course throughout every part of the provision and cooling chambers.

Equipment includes a porcelain shield for cooling chamber door opening. Stud bolts in ceiling of cooling compartment with basket hanger, where necessary, and a sleeved hole in back; complete equipment for installation of cooling unit.

A full line of household refrigerators, with or without subbases, is manufactured.

The porcelain base may be used to house the refrigerating machine. When the machine is not placed in the base, the base can be used for the storage of water bottles, kitchen ware or canned goods.

Cavalier.—Fig. 172 shows the construction of a refrigerator made by the Tennessee Furniture Corporation, Richmond, Indiana. This view has the walls cut away to show steel frame construction. A structural frame of angle iron is used. The joints are electrically and acetylene welded.

There is an exterior case of porcelain enameled steel sheets, backed up by wall board and bolted to the steel frame. Next is a $\frac{3}{4}$ -inch air space, and $\frac{1}{2}$ inches of corkboard. The interior porcelain lining is encased in an airtight envelope of

insulation. The corkboard walls are entirely covered with a special preparation. Seal Tight, which is waterproof, closes all air-cells, and prevents deterioration.

A removable plate at the back of the ice chamber is for the convenience of those who wish to install an electric refrigerating unit.

Doors are made with a heavy wood case, to which the cork insulated door pans and wood moulding are firmly fastened.

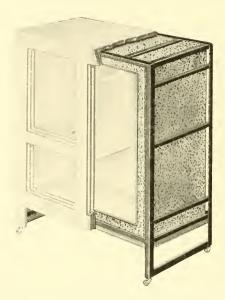


FIG. 172.—CAVALIER REFRIGERATOR, SHOWING CONSTRUCTION.

The door surface is covered with a metal case held firmly in place by flanges folded over the edge of the wood core. All doors are of the heavy, overlap type and are fitted with "Wirfs" insulating gaskets to prevent air leakage and to give cushion action at the door jamb.

Fig. 173 shows one of the white porcelain lining and exterior models. These refrigerators are so constructed that an electrical refrigerating unit may easily be installed.

HOUSEHOLD REFRIGERATORS

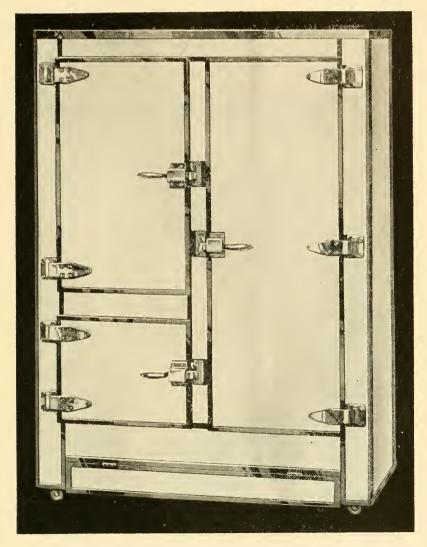


FIG. 173.—CAVALIER REFRIGERATOR, WHITE PORCELAIN EXTERIOR.

Crystal Refrigerator.—Fig. 174 shows an all-metal refrigerator made by the Crystal Refrigerator Company, Fremont, Neb.

Some new and interesting features of construction are incorporated in the design of this cabinet. The walls both outside and inside are made of one-piece. galvanized sheet metal with a hard, baked white enamel finish. Porcelain linings can also be supplied.

The walls are insulated with from 2 to 5 inches of pure

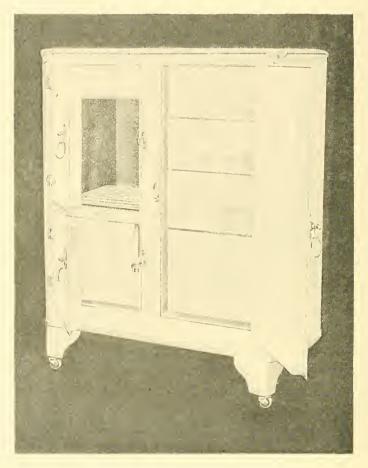


FIG. 174.—CRYSTAL REFRIGERATOR

granulated cork. A wooden frame is used to strengthen the walls and to support the door latches and hinges.

Aluminum moldings and corner pieces at the top and an aluminum band at the bottom add to the appearance and protect the enamel. Solid glass shelves are used. The ends of the shelves are square while the ends of the cabinet are oval, thus forming a passageway for the air circulation. Part of the air goes across the shelves and the balance to the bottom of the food compartment.

The doors are constructed of metal. The ice chest, shelves, and all inside parts can be easily removed for cleaning.

The trap is aluminum and located inside the refrigerator.

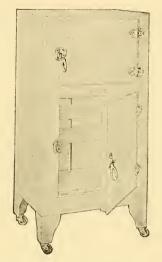


FIG. 175.—CRYSTAL STEEL REFRIGERATOR

Both apartment and side icer cabinets are built in ice capacities from 50 to 250 lbs. Cubical contents range from 3.6 cu. ft. to 20.2 cu. ft.

"White-Steel" Refrigerator, Fig. 175, shows an all-steel refrigerator of the square type by the Crystal Refrigerator Company, Fremont, Neb.

The walls are constructed the same as the Crystal but are not so heavy. They are insulated with $1\frac{1}{2}$ in. to $3\frac{1}{2}$ in. of pure granulated cork.

Wire shelves are used.

The doors are constructed of metal. The ice chest, shelves and all inside parts can be easily removed for cleaning. The trap is aluminum and located inside the refrigerator.

Made in apartment and side icing styles in ice capacities from 50 to 150 lbs. Cubical contents range from 4.2 cu. ft. to 9.6 cu. ft.

Jewett Refrigerator.—The Jewett Refrigerator Company of Buffalo, N. Y., has been building refrigerators since 1849. Fig. 176 shows a typical Jewett side icer cabinet.

FIG. 176.—JEWETT REFRIGERATOR.

The lining is of solid porcelain $1\frac{1}{4}$ in. thick. This lining is of earthenware which is fused at 2500° F. The ice compartment is lined with the same material. A modern pottery is used to make these linings and they form an ideal interior surface for a refrigerator. This lining has some heat insulating value and has a certain heat capacity which acts as a stabilizer of temperatures in the food compartment. The amount of ice in the refrigerator may vary consideraby without appreciable effect on the temperature of the food compartment. The doors are lined with white opal glass. The flues are formed in the porcelain linings and are of generous size insuring good circulation.

The drain, shelf supports, flues, and ice compartment floor are all cleverly molded into the lining, affording a simplicity

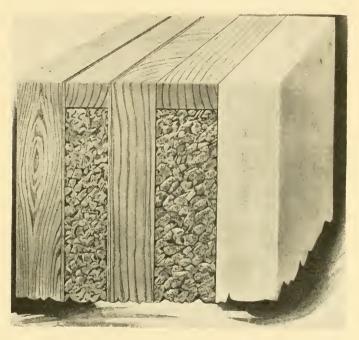


FIG. 177.-JEWETT REFRIGERATOR WALL SECTION.

of design which greatly adds to the appearance of the interior of the cabinet.

The insulation is shown in Fig. 177. The total thickness of this wall is $5\frac{3}{8}$ in. The interior case is of solid ash, doweled and glued; next comes two layers of waterproof insulating paper, then 1 inch of pure sheet cork, two more courses of heavy waterproof insulating paper, a course of $\frac{7}{8}$ in. tongued and grooved lumber. $1\frac{1}{4}$ in. of pure cork, one course of insulating paper and then $1\frac{1}{4}$ in. of solid porcelain lining. This

construction insures a wall of low heat conductivity, and a wall which will not be damaged by very low food compartment temperatures.

The ice is supported in a heavy mesh container, which is held by rods bolted firmly to the ceiling. This container is easily removed for cleaning.

FIG. 178.—JEWETT REFRIGERATOR.

The door construction is very rigid. The design includes a door of good appearance which will close tightly and not warp out of shape under severe humidity conditions. Cabinets are constructed with holes through the lining so as to accommodate mechanical refrigerating units.

Another line of refrigerators, Fig. 178, is made having a lining of one piece seamless steel coated with white vitreous enamel baked on at high temperature. The corners are rounded.

340

The insulation is 3 in. of pure sheet cork bonded to the lining with moisture-proof hydrolene. This prevents any dead air spaces between the lining and corkboard.

The exterior may be obtained in natural ash or white

FIG. 179.—SHOWING SPECIAL COMPARTMENT JEWETT REFRIGERATOR.

enamel finish. The partition around the ice compartment is easily removable. The shelves are made of heavy woven wire coated with pure block tin.

A special utility space, Fig. 179, is located directly under the ice compartment to be used for cooling bottles, storing extra ice cubes, or chilling fruit or vegetables.

HOUSEHOLD REFRIGERATION

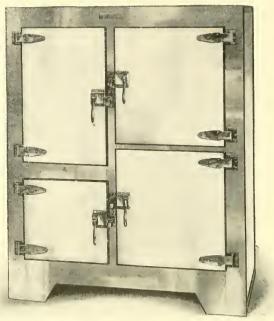


FIG. 180.—JEWETT REFRIGERATOR WITH MONEL METAL EXTERIOR.

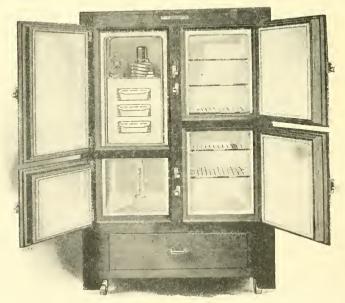


FIG. 181.—JEWETT REFRIGERATOR, NATURAL COLOR EXTERIOR FINISH.

Another line of refrigerators, Fig. 180, is made. This model has a porcelain enamel and monel metal exterior. The lining is of solid porcelain.

Two other standard exterior finishes are furnished. Natural color, brown ash, Fig. 181, with three coats of varnish, satin finish. The hardware is of solid cast brass. The other standard exterior finish is five coats of white enamel, with nickel hardware.

Cabinets are made in side and top icer types with ice capacities from 75 to 240 lbs. The Jewett Company also makes a specialty of building cabinets to order.

Leonard Refrigerator.—Fig. 182 shows a typical refrigerator as built by the Grand Rapids Refrigerator Company, Grand Rapids, Michigan.

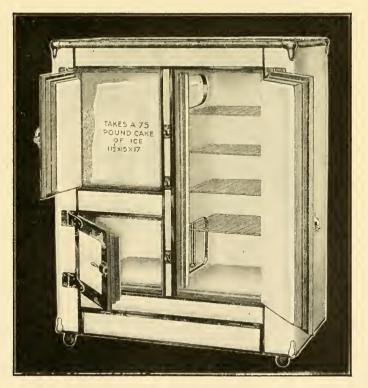


FIG. 182.-LEONARD REFRIGERATOR.

The Leonard refrigerator has been built for over 43 years and represents the latest cabinet construction for large quantity production.

The exterior case on the different models is made of porcelain on steel, white enamel on steel, 5-ply laminated wood or quarter-sawed oak.

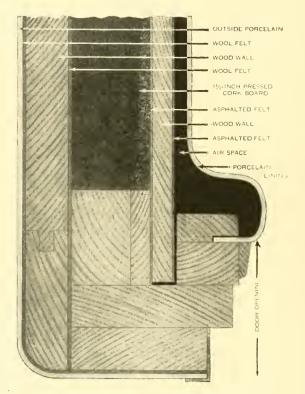


FIG. 183.-SECTION OF LEONARD REFRIGERATOR WALL.

The better grade of cabinets have corkboard insulation. A typical wall construction is shown in detail in Fig. 183.

One-piece porcelain linings are used. These linings are made of Armco ingot iron. The sheets of iron are first cut, punched, and welded, forming one piece of steel, thus producing a lining with a smooth, hard surface which eliminates cracks and sharp corners. They are next immersed in acid to remove all grease or dirt, through other cleaning processes and then thoroughly dried. The steel linings are then dipped in a dark-blue porcelain composition which is fused on to the steel at a temperature of about 1800° F. Two coats of white

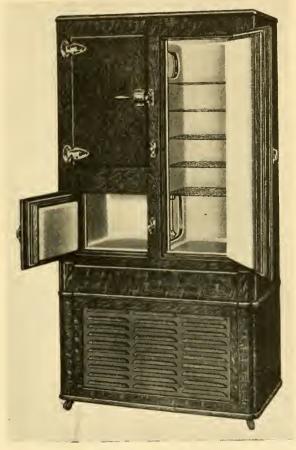


FIG. 184.—LEONARD OAK REFRIGERATOR WITH DETACHABLE BASE FOR ELECTRICAL REFRIGERATING UNIT.

porcelain are then applied and baked on in a similar way. This forms a white surface which is impervious to rust and disintegration.

The cold-air flue construction between the bottom of the ice chamber and the top of the small porcelain provision

chamber is such as to allow for a free circulation of air into and through the provision chambers, there being a circular opening in the porcelain lining.

Many different types and sizes of refrigerators are made with ice capacities from 20 to 495 pounds.

Fig. 184 shows an oak cabinet with a special detachable base for electrical refrigerating machines. In this refrigerator the necessary bolts and perforations have been inserted to make it convenient to install the cooling unit in the ice chamber.

This cabinet is made in all-porcelain, oak-porcelain, ashporcelain and steel-klad lines. Openings are provided for ventilation.

Many other different types and sizes of refrigerators are made with ice capacities for 20 to 495 pounds.

McCray Refrigerator.—The McCray refrigerator has been built at Kendallville, Indiana, for over thirty-five years. Fig. 185 shows one of the side-icer type McCray cabinets.

The standard exterior construction is quarter-sawed oak made of 5-ply laminated wood. The top and bottom of the refrigerators are so constructed that the plywood is not exposed to the outside.

The linings are made of one-piece porcelain enamel on steel. The inside of the doors is also covered with porcelain. Some of the larger refrigerators are made with both lining and exterior case constructed of $\frac{7}{16}$ -inch white opal glass. The floor is of hexagon vitreous tile laid in special cement.

The insulation consists of 2 inches of pure corkboard scaled with hydrolene cement. The wall section comprises:

- 1. Porcelain enamel lining.
- 2. Dead air space.
- 3. Inside wood lining.
- 4. Waterproof paper.
- 5. Two in. of corkboard sealed with hydrolene cement.
- 6. Waterproof paper.
- 7. Exterior case of 5-ply laminated wood.

Every model has studs in the ceiling of the ice compartment on which cooling units may be hung for electrical refrigeration. A sub-base for any stock model may be supplied so that the electrical refrigerating unit may be installed under the refrigerator cabinet. This base is slatted to permit using an air-cooled refrigerating machine.

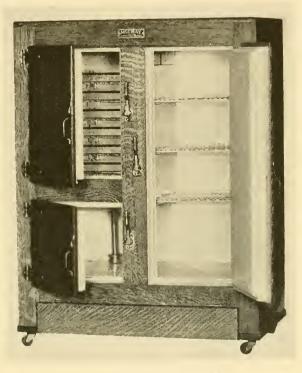


FIG. 185.-MCCRAY REFRIGERATOR.

Cabinets of various types with ice capacities from 60 to 840 pounds are made.

Fig. 186 shows one of the all-metal exterior refrigerators for electrical refrigeration.

The exterior of these all-metal refrigerators is covered with automobile steel. The joints of this steel are braced together making this exterior practically one piece. A pyroxyline lacquer white finish is applied making a beautiful white exterior. This is the same finish as used by high-grade automobile body manufacturers.

HOUSEHOLD REFRIGERATION

The doors are flush paneled. They have a 34-inch raise, and are provided with gaskets which make this refrigerator practically air tight. The hardware and hinges are of heavy

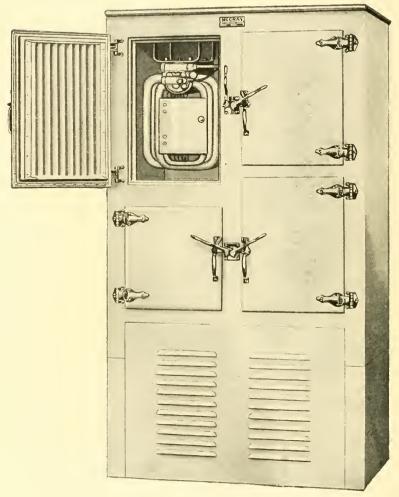


FIG. 186 .- MCCRAY ALL-METAL REFRIGERATOR FOR ELECTRICAL UNIT.

brass, nickel plated. Fasteners are of the self-closing type. All refrigerators are mounted on piano casters.

The interior of these all-metal exterior refrigerators is of the highest quality one-piece porcelain. The insulation consists of 2 inches of pure corkboard, all joints being carefully sealed with hydrolene cement.

Reol Refrigerator.—The accompanying illustration shows the Reol, manufactured by the Reol Refrigerator Company of Baltimore, Md., in process of construction. The section in

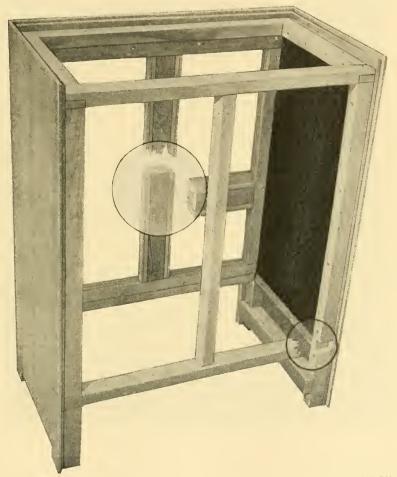


FIG. 187.-THE REOL REFRIGERATOR IN PROCESS OF CONSTRUCTION.

the small ring shows the mortised and tenoned method of joining the framework. A view of the finished refrigerator is also shown.

HOUSEHOLD REFRIGERATION

The framework of the Reol Refrigerator is very strong, very rigid, and very durable. It is made with ash, corner posts in one continuous piece from top to bottom. The lower ends of the corner posts extend about 8 inches below the floor

FIG. 188.-REOL REFRIGERATOR.

of the refrigerator, to form a sanitary base. The framework of the Reol is mortised and tenoned, glued, and fastened solidly together to form a rigid foundation on which to build up the completed refrigerator.

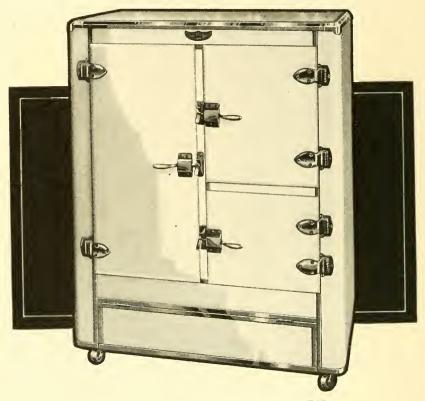
The exterior finish is of solid oak, free from knots and

imperfections, with the long boards of the side panels held together with deep tongues and grooves. The oak is filled, stained, and rubbed down coat after coat, to a hard satin smoothness, beautiful and enduring.

The insulation in the Reol Refrigerator consists of pure corkboard 2 in. thick, securely fastened to the framing. The insulation is continuous over all of the refrigerator surfaces. and is broken only by the casings of the doors on the sixth surface. The corkboard is covered with a coat of protective water-proofing on both sides, to prevent any possibility of dampness getting into it either from the outside or the inside, thus eliminating decay or odors.

The food compartment is lined with vitreous porcelain which is extremely durable and sanitary. It does not chip unless exposed to hammer blows and it will last a lifetime if given just ordinary good care. Snow white, glassy, and free from all imperfections and discolorations.

The hardware used on the Reol is of solid brass, heavy and durable. It is handsome in appearance, and will give a real lifetime of service.


The doors of the Reol contain the same insulation as the sides of the box, and in the same amount. They are made specially air tight with a series of rabbets on the door, which fit into corresponding ledges in the door casings. As a further precaution, around the uttermost ledge is a gasket of rubber and compressible cotton wick. When the door is closed, the gasket compresses and keeps the warm air out.

Rhinelander Refrigerator.—The refrigerator shown in Fig. 189 is manufactured by the Rhinelander Refrigerator Company, Rhinelander, Wisconsin.

The exterior is of white porcelain with trim strips of polished metal. Fig. 190 shows the interior of the same cabinet. Other models are made with hardwood exteriors in various finishes.

The lining is of the one-piece porcelain type. Cabinets are also made with white enamel linings. Corkboard is used to insulate the walls and doors. Fig. 191 is one of the refrigerators designed for mechanical refrigeration units. This cabinet has a white porcelain interior lining with exterior case of steel, white lacquer finished. It is cork insulated. The equipment includes hanger bolts and pipe opening in the rear.

The different models include side and top icers, grocery and meat refrigerators of ice capacities from 50 to 575 pounds.

F'G. 189 .--- RHINELANDER REFRIGERATOR.

-

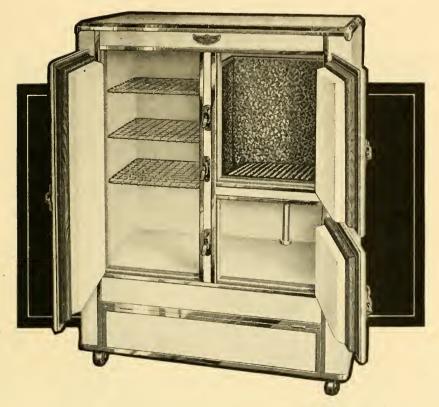


FIG. 190.--INTERIOR OF REFRIGERATOR SHOWN ON OPPOSITE PAGE.

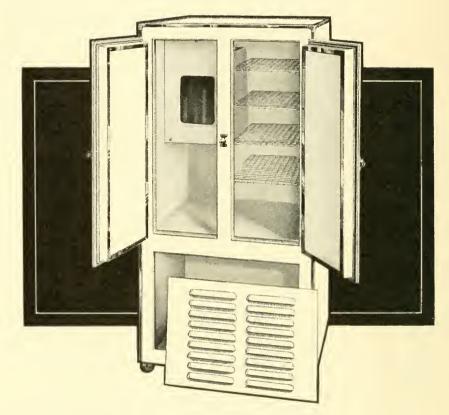


FIG. 191.-~RHINELANDER REFRIGERATOR DESIGNED FOR MECHANICAL UNIT.

Seeger Refrigerator.—Fig. 192 shows a typical refrigerator made by the Seeger Refrigerator Company of Saint Paul, Minnesota, for electrical refrigeration.

The exterior and interior are of white porcelain on steel. They are equipped with porcelain defrosting pan and insu-

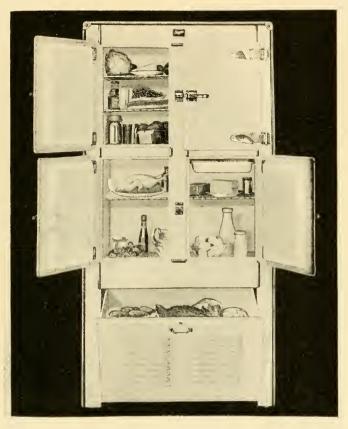


FIG. 192.—SEEGER REFRIGERATOR FOR MECHANICAL UNIT.

lated removable porcelain baffle wall. The insulating material used is corkboard.

Vegetable storage compartments can be supplied for all models. These are shipped as separate units complete with fittings. The vegetable storage compartment opens forward like a flour bin. The insulation consists of waterproof insulating paper, heavy insulating board and pure sheet corkboard, hydrolene sealed, 2 inches or more in thickness.

White Frost.—Fig. 193 shows one of the White Frost refrigerators manufactured by the Home Products Corporation, Jackson, Michigan, who have been building them for twentyfive years.

FIG. 193.-WHITE FROST REFRIGERATOR.

It is built of special rust-resisting steel and insulated with pure granulated cork in sealed air space. Cork is introduced by a special method to prevent settling. The construction is all steel. The seams and joints are sealed to be permanently air and moistureproof.

This cabinet is round with revolving food shelves, making entire shelf area accessible for storage. Shelves and ice chamber lift out for cleaning.

Construction makes it easy to maintain correct refrigeration temperatures and secure efficient circulation of pure, cold. dry air to each part of the food chamber.

The illustration shows a water-cooler type. Two sizes are available of 100 and 50-pound ice capacity. Each size is furnished with or without water-cooling system. The cabinets are finished in lacquer or white or grey enamel.

Wall Construction.—Fig. 194 shows a refrigerator wall using mineral wool insulation and a metal lining. The air

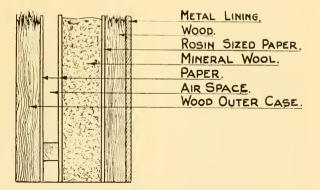


FIG. 194.-TYPICAL REFRIGERATOR WALL CONSTRUCTION

space is placed well out from the inside lining. With usual service conditions, the air space in this position would be effective as a heat insulator.

Fig. 195 shows another wall using mineral wool and air spaces. The air spaces are placed near the inside lining. Water vapor in the dead air spaces would condense, collecting on the surface of the lining. This design is very poor from an insulation standpoint.

Fig. 196 shows a solid wall insulated with corkboard. The inside wooden frame strengthens the cabinet and prevents breaking the opal glass lining in shipment. The wooden frame

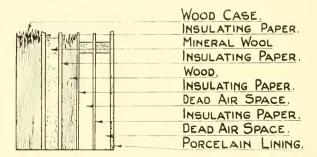


FIG. 195.-TYPICAL REFRIGERATOR WALL CONSTRUCTION

also provides a place for the screws necessary to hold the lining in place. This construction is used on some of the best quality cabinets.

Fig. 197 shows a wall construction used for a cabinet with a composition lining. The lining must be well supported to

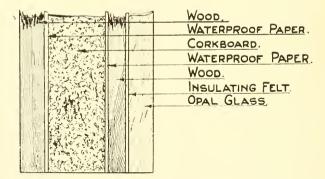


FIG. 196.-TYPICAL REFRIGERATOR WALL CONSTRUCTION

prevent breakage in shipment. This type lining because of its large heat holding capacity, tends to keep the food compartment temperature uniform.

Fig. 198 shows a wall using fiber board insulation. This type cabinet is easily assembled at the expense of being poorly insulated. The dead air space near the lining would condense

HOUSEHOLD REFRIGERATORS

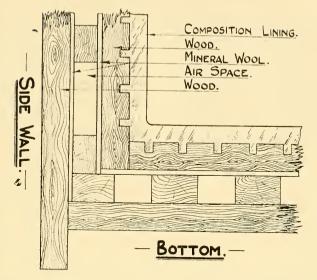


FIG. 197 .-- TYPICAL REFRIGERATOR WALL CONSTRUCTION

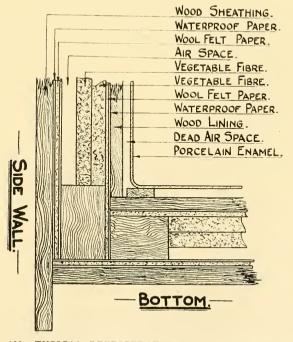


FIG. 198,-TYPICAL REFRIGERATOR WALL CONSTRUCTION

water vapor which would, in time, wet the insulation, thus lowering its efficiency. The solid wooden corners produce large heat losses by conduction from the outside case to the lining.

Linings.—The lining is a very important part of the household refrigerator. It represents from 10 to 25 per cent of the total cost of the refrigerator.

The lining material should have a smooth, hard, and preferably white surface. The surface should be stain and acidproof and must not chip, crack, discolor, peel or craze. The surface should be such that dirt or grease will not adhere to it. The material itself should be free from joints and cracks, non-porous and should not absorb moisture or odors. It is also desirable to have a material suitable for making rounded corners.

Following is a list of the different linings in common use in refrigerator construction:

> Baked white porcelain on sheet iron. Solid porcelain. Solid stone. White opal glass. Galvanized iron. Enamel on steel. Wood spruce, oak, pinc. Ceramic tile (floor). Rust resisting metal. Cement.

Porcelain on Iron Lining.—The standard lining for refrigerators is porcelain on iron. The sheet iron for the base is carefully selected, otherwise blisters may result. The sheet is cut, punched, and formed. The necessary welding is performed. It is then treated with acid to remove all grease and dirt. Sometimes other "pickling" baths are used. The lining is then dipped into a bath of blue porcelain. This porcelain composition usually consists of feldspar, borax, china clay, and other chemicals, in accordance with carefully prepared and tested formulas.

These materials are fused or melted in a smelting furnace. The melted mass is drawn off into a tank partly filled with

360

water. When it comes in contact with the water, it is instantly cooled and broken into small pieces of porcelain grit. This is placed in a revolving mill and ground as fine as flour. When taken from the mill it is thinned to cream-like consistency, and then taken to the dipping room where it is poured into metal vats.

The steel linings are first dipped into dark blue liquid, both inside and outside being covered with this first coat. This blue coat renders the surface impervious to rust and disintegration.

After the linings are dipped they are placed in drying chambers of high temperature where they remain for several hours to remove the moisture. If the moisture is not removed, the coating would run off when the lining is placed in the furnace.

After drying, these linings are placed on compressed air machinery in front of the furnace. The operator, who is forced by the intense heat to stand some distance from the furnace, by means of compressed air levers, raises the furnace doors and sends the linings forward in the furnace, where the porcelain is melted and fused onto the steel at a temperature of about 2000° F.

Two more coats of white porcelain are usually applied to the interior of the lining, the second being dried and melted on as above described before the third is applied.

This type lining gives a very good surface which fulfills most of all the various requirements. The surfaces, however, are not flat, as the baking process causes the metal to expand and warp. Considerable difficulty is experienced by the porcelain cracking at corners and welded joints.

Solid Porcelain Linings.—Solid porcelain linings are used in some of the better grade refrigerators. They are very heavy and require a solidly constructed cabinet to prevent breaking the lining in shipment. Most of the refrigerators using solid porcelain linings have an extra frame work of wood to make a rigid construction necessary with this type of lining. The walls are more than one inch thick.

The manufacture of solid porcelain linings is an art to which modern machinery has given very little assistance. The clay is very carefully selected and is molded by hand in a form. These are placed in drying rooms for weeks where the temperature is gradually increased. The enamel is then applied with a brush; many coats are required with a period for drying between each coat, then several coats of glaze are applied. The linings are placed in the kiln and each one must be completely enclosed with fire brick. The baking lasts for about one week and a temperature of 2500° F. is reached. This entire process requires several months, so that this type lining is expensive to make, and is not well suited to quantity production.

The solid porcelain lining has a rather large heat storage capacity and the temperature in the food compartment will not change quickly with an increase or decrease in the amount of ice. These linings have an irregular surface on the insulation side so that it is necessary to apply a loose insulating material to fill up these irregularities.

White Opal Glass.—White opal glass lining has extensive use in refrigerators. The usual construction is to use the white opal glass lining on the sides, ceiling and doors. It is not suitable for the floor. Vitreous tile is usually used for lining the floors as it stands the rather severe service much better. Opal glass in common use is $\frac{1}{16}$ inch or $\frac{1}{16}$ inch thick. This type of lining presents a flat surface on both sides and this lessens insulation troubles. The corners and joints are usually covered with strips of metal. Other manufacturers use cement and in some cases wooden strips are used to cover the joints. White opal glass is used to line the doors in cabinets having solid porcelain linings.

Galvanized Iron.—Galvanized iron is not used to any great extent for linings except on a few of the cheaper boxes. It has been found that this material does not resist corrosion and rust as well as the other linings. Some manufacturers use galvanized iron for lining the ice compartments; however, it is losing favor even for this service.

Wood Linings.-Wood linings are being used more extensively even on some high-grade cabinets. An odorless wood is used. The surface keeps dry. The wood lining must be carefully made to avoid crevices between the boards. Some manufacturers use a white enamel paint over the wood, while others use varnish.

General Considerations.—The one-piece porcelain or steel lining is gradually losing favor with the refrigerator manufacturers. This is probably due to the difficulty of making and handling these linings. When the porcelain coating cracks or chips at corners it cannot be repaired satisfactorily.

An additional disadvantage is experienced in assembling cabinets with the single-piece lining. The insulation and outer walls of the cabinet must be built around the lining.

Sheet porcelain is now being used extensively for lining cabinets. Metal strips are used to hold the sheets in place and to seal around the corners. With this method of construction, it is possible to make the various cabinet walls on benches in quantities. The final assembly of the cabinet is then a simple process, requiring very little labor. This method of construction is preferable for quantity production.

Outer Case Construction.—The outer wall of most refrigerators is of wood. The best wood for this purpose is ash. Oak, fir, spruce, and pine are also used to some extent.

Most manufacturers use a panel wood construction for the outer case. These panels have a clearance at the edges great enough to allow for expansion and contraction, due to temperature and humidity changes. A careful study of these panels in service will show that they actually expand or contract, frequently breaking the paint or finish around the edge of the panel.

Some advantages of panel construction are:

1. Constructed of short pieces of light boards reducing waste lumber.

2. Less weight.

3. Heavy wall at corners where it is needed for structural strength.

4. Panels properly proportioned give an attractive appearance.

5. Reduces warping troubles.

Some of the more expensive cabinets use a veneer panel which it is claimed eliminates warping. Metal outer cases are used, such as porcelain enamel on steel, baked white enamel on steel, sheet steel zinc plated with a white baked enamel surface, white opal glass and monel metal.

Some troubles are experienced with the metal boxes in joining the lining with the outer case at the doors. There is usually a large heat loss here, and trouble with the moisture collecting on the outer metal case around the doors. Sheet steel is being used extensively for the outer case, the usual finish is white duco enamel.

Doors.—The door construction is a very important part of refrigerator design. The frame for the door and the door opening is usually of wood several inches thick. This double wooden frame has a poor heat insulating property, which is less than half that of corkboard. Figs. 199, 200, 201, and 202 show methods of refrigerator door construction in common use.

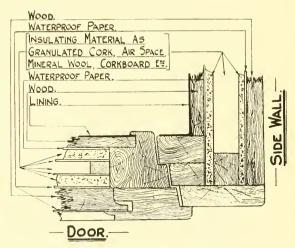


FIG. 199.-TYPICAL REFRIGERATOR WALL AND DOOR CONSTRUCTION

The insulation is usually less on the front of a refrigerator than on any other side. This has been determined by tests using thermo-couples on the outside surface of the cabinet to obtain the surface temperature. Another indication of insufficient insulation around the doors is the fact that moisture condenses on these parts first when there is a high room humidity.

The door heat loss is especially large when metal is used to line the door frame or the edges of the door itself. There is need for a new material to make the door opening frame and the door frame. Wood does not have sufficient heat

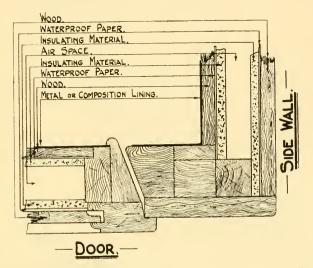


FIG. 200.-TYPICAL REFRIGERATOR WALL AND DOOR CONSTRUCTION.

insulating property. Following are some of the more important points to be considered in door design:

1. Increased heat loss by conduction through solid or metal framework.

2. Heat loss due to doors not closing tightly causing too rapid ventilation with outside air. This loss is especially large if the door does not fit properly at the top and bottom and varies according to the room or environment humidity, being greater with higher humidity.

3. Damage to the finish and the exterior surface around the doors caused by the condensation of moisture.

4. Warped doors due to constant changes in moisture, temperature and humidity, and the difference in these conditions on the outside and inside surfaces of the door.

5. Heat loss due to improper design of angle and clearance allowing large air wedge between edge of door and frame.

The refrigerator door has to stand a severe surface condition of humidity and temperature. The humidity frequently attains such conditions as 90 per cent on one side and 40 per cent on the other. The temperature usually has a differential of from 20 to 40 degrees on the outside and inside of the box. Ash is one of the best woods to use for this severe service.

Various kinds of gaskets are available for making a tight seal around the door. Some of the materials for this purpose are rubber, felt, rubberized cotton, and thin copper metal strips. The high grade boxes do not depend upon gaskets for a close fit. Most gaskets are affected by moisture or lose their resiliency after a few months of service. Gaskets are used very effectively on large cold storage doors where it is not practical or necessary to make a good wood-to-wood fit. When a well-made door is fitted properly it will close tightly on all four sides against a strip of ordinary writing paper.

Some manufacturers use a series of steps in the door and

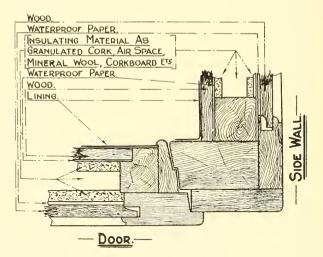


FIG. 201.-TYPICAL REFRIGERATOR WALL AND DOOR CONSTRUCTION.

the door frame. The better boxes have only one or two steps and fit well against the outside surface of the box. No attempt is made to fit closely between any of the other surfaces.

The door-facing strip should have a slope on the side of the door opposite the hinges. This slope is usually applied to the other three sides of the door and door opening, although this is entirely unnecessary except for symmetry. The angle of this slope is easily determined by the radius from the center of the hinge to the inside of the door stop on the opposite side.

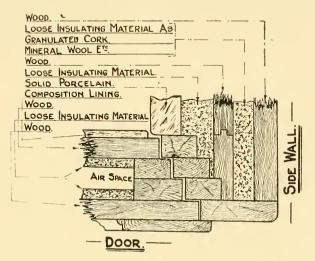


FIG. 202.-TYPICAL REFRIGERATOR WALL AND DOOR CONSTRUCTION.

The door construction is one of the most difficult problems encountered in making an all-metal box. Even at a room humidity of 50 or 60 per cent, condensation will probably form around the doors of an all-metal box. This may damage the exterior finish of the metal.

The door to the ice compartment should always have an opening at least 12 inches wide. This will allow the thickest end of a manufactured cake of ice, $11\frac{1}{2}$ inches on a 300-pound size and $11\frac{5}{8}$ inches on a 400-pound cake, to enter without chipping.

Shelves.—The shelf arrangement is an important design feature frequently neglected in refrigerator construction.

The ratio of shelf area to food storage volume is a good method of checking this part of the design.

Tables LXII and LXIII show that the top icer and ell type refrigerators have practically the same shelf surface for the same rated ice capacity.

HOUSEHOLD REFRIGERATION

Shelves are usually made of small mesh wire heavily tinned. Glass shelves are used to a limited extent. Some

Rated	Ice Capacity (Pounds)	50	75	100
		Shel	f Area Square Fe	et
Box	1	4.8	6.2	7.0
* 6	2	4.2	5.1	5.9
6.6	3	4.9	5.4	7.2
44	4	4.0	5.6	8.1
6.6	5	3.4	4.3	6.1
44	6	3.6	6.5	7.8
"	7	5.2	5.3	5.4
Aver	age	4.3	5.6	6.8

TABLE LXII .- SHELF AREA OF TOP ICER REFRIGERATORS.

All of these boxes have three shelves.

shelves are constructed of small steel bars welded together into a unit and heavily tinned. Some of the advantages of wire shelves are:

- 1. Cheapness of construction.
- 2. Light weight.
- 3. Easily removed and cleaned.
- 4. Allow free air circulation.
- 5. Permit seeing through them to locate articles underneath.
- 6. Surface not damaged by heavy food containers.
- 7. Do not rust or corrode readily.

TABLE LXIII .--- SHELF AREA OF ELL TYPE OF REFRIGERATORS.

Rated Ice Capacity (Pounds)	75	100	200
	Shelf	Area Square Fe	et
Box 1	5.8	8.7	16.0
" 2	6.6	8.3	10.5
" 3	5.3	6.0	12.0
·· 4	6.2	6.5	16.0
" 5	5.6	7.8	10.0
" 6	5.0	8.5	16.2
·· 7	4.0	7.4	18.0
Average	5.5	7.6	14.1

Some refrigerators are made with shelf supports adjustable for height. It has been found in actual service that this

368

feature is not used, as the owner evidently does not appreciate the advantage of spacing the shelves to conform with certain requirements.

TABLE LXIV.-INSULATORS USED IN REFRIGERATORS.

Wood42Air Space28Paper28Granulated Cork13Mineral Wood12Corkboard8Flax Composition6Felt Paper2Cocoa Fiber1Vegetable Fiber1Fel Grass1Hairfelt1Wood Fiber1Sea Grass1	_		
Paper28Granulated Cork13Mineral Wood12Corkboard8Flax Composition6Felt Paper2Cocoa Fiber1Vegetable Fiber1Eel Grass1Hairfelt1Wood Fiber1		11000	
Granulated Cork13Mineral Wood12Corkboard8Flax Composition6Felt Paper2Cocoa Fiber1Vegetable Fiber1Eel Grass1Hairfelt1Wood Fiber1		The optice	
Corkboard8FlaxComposition6FeltPaper2CocoaFiber1VegetableFiber1EelGrass1Hairfelt1WoodFiber1		ruper monthematic	
Flax Composition6Felt Paper2Cocoa Fiber1Vegetable Fiber1Eel Grass1Hairfelt1Wood Fiber1			
Felt Paper2Cocoa Fiber1Vegetable Fiber1Eel Grass1Hairfelt1Wood Fiber1			8
Cocoa Fiber1Vegetable Fiber1Eel Grass1Hairfelt1Wood Fiber1			2
Eel Grass 1 Hairfelt 1 Wood Fiber 1			1
Hairfelt 1 Wood Fiber			1
Wood Fiber 1			1
Sea Grass 1			1
		Sea Grass	1

The shelf spacing in cabinets using mechanical refrigeration is usually closer than on refrigerators using ice. This close spacing is permissible because of the colder temperature and more active circulation.

Materials for Refrigerators. — The insulating materials used in 50 standard refrigerators are listed in Table LXIV.

The foregoing indicates the number of times each insulating material was used in the construction used by 50 different manufacturers.

Table LXV shows the woods used in 50 standard refrigerators for outside case and linings:

Oak	
Ash	
Fir or Spruce	
Yellow Pine 1	
White Pine 1	
Black Ash 1	
Poplar 1	
Cypress 1	
Birch 1	

TABLE LXV.-WOODS USED IN REFRIGERATORS.

Table LXVI gives a list of some of the woods which are suitable for refrigerator construction. The botanical name and locality where such wood grows are included also.

Common Name	$\begin{array}{l} H = Hard \\ S = Soft \\ or Coniferous \end{array}$	Botanical Name	Locality Where Grown
Ash, black	Н	Fraxinus nigra	Mich. Wis.
Ash, Oregon	Н	Fraxinus oregona	Oregon
Ash, white, forest g		Fraxinus americana	Ark. W. Va.
Ash, white, second		Fraxinus americana	New York
Basswood	H	Tilia americana	Penn. Wis.
Beech Birch	H H	Fagus atropunicea	Ind. Penn.
Birch, sweet	Ĥ	Betula lenta	Pennsylvania
Birch, yellow Birch, black	H	Bet ula lutea	Penn. Wis.
Birch, white	Ĥ		
Butternut	Ĥ	Juglans cinerea	Tenn, Wis.
Butternut, white wa		Jugians cincica	i enn. wis.
Buttonwood, sycam			
Chestnut	Н	Castanea dentata	Md. Tenn.
Cottonwood	H	Populus deltoides	Missouri
Cottonwood, black	Н	Populus trichocarpa	Washington
Cypress, bald	S	Taxodium distichum	La. Mo.
Cypress, yellow	ŝ	Chamaescyparis	
		nootkatenis	Oregon
Douglas fir—also c: Oregon pine	S	Pseudotsuga taxifolia	Wyoming. Mo Wash. Ore.
Dogwood, flowering	ς Η	Cornus florida	Tennessee
Dogwood, western	Н	Cornus muttallii	Oregon
Elm, gray	Н		
Fir, white	S	Abies concoler	
Fir, red	S S S		
Fir, yellow	S		T
Gum, black	H H	Nyssa sylvatica	Tennessee
Gum, red		Liquidambar styraciflua	Missouri
Gum, sap	H	<i><u>a</u></i> a a a a a a a a a a	NT7 T 1
Hackberry	H	Celtis occidentalis	Wis. Ind.
Hemlock, black	S S	Tsuga mertensiana	Montana Tonna Wi
Hemlock, eastern	S	Tsuga canadensis	Tenn. Wis. Washington
Hemlock, western	S H	Tsuga heterophylla	Tennessee
Locust, black Locust, honey	Ĥ	Robinia pseudacacia	Mo. Ind.
Maple, Oregon	H	Gleditsia triacanthos Acer macrophyllum	Washington
Maple, red	Ĥ	Acer rubrum	Penn. Wis.
faple, silver	Ĥ	Acer saccharinum	Wisconsin
laple, sugar		Acer saccharum	Ind. Pa. Wis.
Maple, rock	Ĥ		
laple, hard	H		
laple, soft	Ĥ		
)ak, Ćalifornia black		Quercus californic a	Cal. Oregon
Oak, canyon live	H	Quercus chrysollpsis	California
Dak, chestnut	Н	Quercus Prinus	Tennessee
)ak, cow		Quercus nichaurii	Louisiana
	TT	Ouercus laurifolia	Louisiana
)ak, laurel		2	
	H (Quercus garryana Quercus minor	Oregon Ark. La.

TABLE LXVI.-WOODS MOST SUITABLE FOR REFRIGERATORS.

370

.

HOUSEHOLD REFRIGERATORS

Common Name	$\begin{array}{l} H = Hard \\ S = Soft \\ or Coniferous \end{array}$	Botanical Name	Locality Where Grown
Oak, red	Н	Quercus rubra	Ark. La. Ind. Tennessee
Oak, Spanish hig	hland H	Ouercus digitata	Louisiana
Oak, Spanish low		Quercus pagodaefolia	Louisiana
Oak, white	H	Quercus alba	Ark. La. Md.
Oak, willow	Ĥ	Ouercus phellos	Louisiana
Oak, yellow	Ĥ	Õuercus velutina	Ark. Wis.
Oak, English	Ĥ	2000	
Pine, jack		Pinus heterophylla	Florida
Pine, longleaf	š	Pinus palustria	Fla. La. Miss
Pine, Norway	š	Pinus resinosa	Wisconsin
Pine, pitch	S S S S S S S S S S S S S S S S S S S	Pinus rigida	Tennessee
Pine, shortleaf	Ŝ	Pinus echinata	Ark. La.
Pine, sugar	Ŝ	Pinus lambertiana	California
Pine, table mount	ain S	Pinus pungens	Tennessee
Pine, western whi	te S	Pinus monticola	Montana
Pine, western yell	ow S	Pinus ponderosa	Colo. Mont.
			Ariz.
			Wash. Calif.
Pine, white	llow S llow S S S	Pinus st robus	Wisconsin
Pine, northern ye	llow S		
Pine, southern ye	llow S		
Pine, Georgia	S		
Pine, spruce	S		~
Poplar, yellow	H	Liriodendron	Tennessee
		tulipifera	
Poplar, white	Н		
Poplar-also calle	ed II		
whitewood	. н		
Redwood, Califor			
Sassafras	н	Sassafras sassafras	Tennessee
Spruce, Engelman	in S	Picea engelmanni	Colorado
Spruce, red	5	Picea rubens	N. H. Tenn.
Spruce, litka	nn S S S S	Picea sitchensis	Washington
Spruce, white	H H	Picea canadensis	N. H. Wis.
Sumac, staghorn	H	Rhus hirta Platanus anaidantalia	Wisconsin
Sycamore	S	Platanus occidentalis	Ind. Tenn.
Tamarack Willow, western	H	Larix laricina Salix lasiandra	Wisconsin
whitew, western	11	Sanx fastanura	Oregon

TABLE LXVI.—WOODS MOST SUITABLE FOR REFRIGERATORS—(Cont'd)

Ice Capacity of a Refrigerator.—The ice capacity of a refrigerator is an arbitrary figure at the best, inasmuch as the pieces of ice that are put into it vary considerably in size and so make more or less waste space. Ice capacities in refrigerators are usually figured in the following way:

The cubic inches of ice chamber divided by 1,728 gives total cubic feet and this multiplied by 57.5, which is the weight

of a cubic foot of ice, gives the total ice capacity in terms of pounds of ice. From this deduct 25 per cent, considered as a fair allowance for waste space or irregular shaped ice, and the remainder is the figure of ice capacity of a refrigerator.

Total Inside Volume Cubic Feet.	Average Rated Ice Capacity Pounds.	Maximum Rated Ice Capacity Pounds.	Minimum Rated Ice Capacity Pounds.
4-5	58	75	.40
5—6	81	110	50
6—7	93	110	50
78	103	125	50
8-10	126	200	65
10-12	142	200	75
12-16	177	250	85
1 6 —20	204	300	150
2024	244	375	170
24-30	284	350	235
3040	310	425	190
40—60	420	550	300

TABLE LXVII.--RATED ICE CAPACITIES OF REFRIGERATORS. Summary of Data on 473 Different Standard Models. (Side Icers.)

Table LXVII gives the rated ice capacities of refrigerators obtained from the data on 473 different standard models of side icer refrigerators. Data are given for refrigerators having volumes varying from 4 cubic feet to 60 cubic feet. It is interesting to note the difference in the minimum rated ice capacity, average rated ice capacity, and the maximum rated ice capacity. Table LXVIII gives similar rated ice capacities from data on 88 different models of the top icer lift lid icing door construction.

Total Inside Volume Cubic Feet.	Average Rated Ice Capacity Pounds.	Maximum Rated Ice Capacity Pounds.	Minimum Rated Ice Capacity Pounds.
3—4	56	120	40
45	69	151	65
5—6	92	117	75
6—7	106	133	69
78	133	188	100
8—9	105	110	100
910	124	150	100
10—11	150	150	150

TABLE LXVIII.--RATED ICE CAPACITIES OF REFRIGERATORS. Summary of Data on 88 Different Models (Top Icers, Life Lid Icing Door).

Table LXIX gives additional rated ice capacities of refrigerators. The data in this table was obtained from an average of information on 282 different models of the top icer construction, including both lift lid and front door icers.

Total Inside Volume Cubic Feet.	Average Rated Ice Capacity Pounds.	Maximum Rated Ice Capacity Pounds.	Minimum Rated Ice Capacity Pounds.
3-4	62	120	40
45	74	151	55
5—6	85	135	60
6—7	101	190	65
78	122	188	60
89	121	165	75
9	144	175	100
10-11	165	224	125
11-12	142	220	110
12-15	194	235	160
15-22	224	420	150

TABLE LNIN. RATED ICE CAPACITIES OF REFRIGERATORS.

Summary of Data on 282 Different Models (Top Icers Including Lift Lid and Front Door Icers.)

Table LXX gives the rated ice capacities of refrigerators obtained from 194 different standard models of the top icer construction, with the icing door on the front.

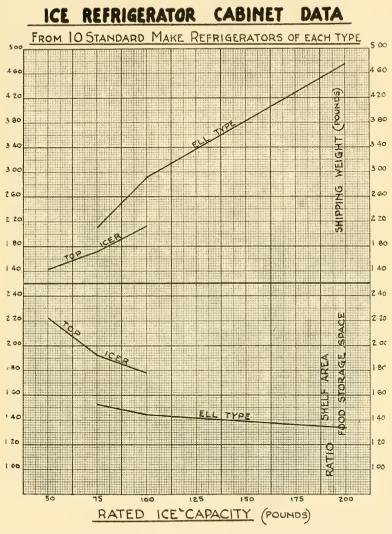
TABLE LXX.-RATED ICE CAPACITIES OF REFRIGERATORS Summary of Data on 194 Different Standard Models. (Top Icers, Icing Door on Front).

Total Inside Volume Cubic Feet.	Average Rated Ice Capacity Pounds.	Maximum Rated Ice Capacity Pounds.	Minimum Rated Ice Capacity Pounds.
34	59	100	50
45	81	104	55
5—6	95	135	60
6—7	113	190	65
7—8	120	176	60
8—9	125	165	75
910	154	175	140
1011	172	224	125
11-12	142	220	110
12-15	194	235	160
15-22	224	350	150

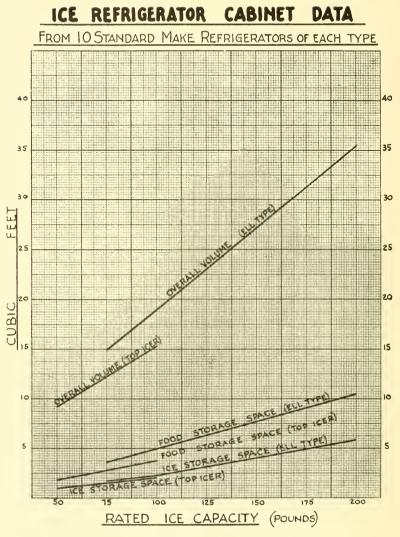
Table LXXI gives some interesting information on ice refrigerators of the ell type construction. Three sizes, 75, 100, and 200 pounds rated ice capacity, are included. It is interesting to note the variation of shelf area, per cent of ice storage space used at rated ice capacity, per cent of inside volume used for ice storage, and the ratio of the shelf area to the food storage volume. Similar ice refrigerator cabinet data

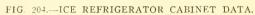
Rated Ice Capacity	Pounds	}	75	1	100	200
	Width Inches		32.0		34.6	43.4
Outside Dimensions	Depth		18.6		20.6	24.6
	Height		43.0		46.4	56.0
	Width Inches		12.4		$13.1 \\ 15.0$	17.3
Ice Compartment	Depth		$13.6 \\ 17.3$		19.7	18.9 26.1
	Height		14.9		19.2	35.5
Total Volume Overall Food Storage Space	Cu. Ft. Cu. Ft.		3.6		5.0	10.5
Ice Storage Space	Cu. Ft.		1.7		2.2	5.9
Shelf Area.	Sq. Ft.		5.5		7.2	14.1
Percent Ice Storage Space						
used at Rated Ice Capa			77.1		79.6	59.1
Percentage of Inside Vol	ume		32.		31.	36.
for Ice Storage	-)		214		293	477
Shipping Weight (Pounds Ratio of Shelf Area to F			₩1 .		270	-1//
Storage Volume	000		1.53		1.45	5 1.3

TABLE LXXI.-- ICE REFRIGERATOR CABINET DATA: ELL TYPE.


This table is computed from ten standard refrigerators with baked porcelain one piece linings.

are given in Table LXXII for refrigerators of the top icer construction, having rated ice capacities of 50, 75, and 100 pounds. These data are shown graphically by Figs. 203 and 204.


TABLE LXXII.--ICE REFRIGERATOR CABINET DATA: TOP ICER.


Rated Ice Capacity		Pounds	50	75	100
	Width	Inches	23.4	26.3	29.1
Outside Dimensions	Depth		16.3	17.7	18.9
	Height		41.4	43.7	48.1
	Width	Inches	15.8	18.9	21.7
Ice Compartment	Depth		10.8	12.4	13.3
*	Height		10.3	11.7	12.9
Total Volume Overall	Cu. Ft.		9.1	12.3	15.3
Food Storage Space	Cu. Ft.		1.94	2.9	3.8
Ice Storage Space	Cu. Ft.		1.02	1.59	2.15
Shelf Area	Sq. Ft.		4.3	5.6	6.8
Percent Ice Storage Spa					
used at Rated Ice Cap			85.8	82.4	81.3
Percent of Inside Volur	ne				
used for Ice Storage			34.5	35.5	36.2
Shipping Weight, pound	S		143	173	215
Ratio of Shelf Area to					
Food Storage Volume	•		2.22	1.93	1.79

This table is computed from ten standard refrigerators with baked porcelain one piece linings.

CHAPTER X

OPERATION OF ICE REFRIGERATORS.

Temperature.—The usual method of solving the household refrigeration problem is by the use of ice in any of the standard type refrigerators.

The refrigerator using ice will have a temperature in the food storage compartments 20 to 30 degrees lower than room temperature.

The better type refrigerators with very good insulation will approach the 30 degree temperature difference when there is a good supply of ice.

A temperature difference of about 10 degrees between the coldest and warmest part of the food storage compartments is necessary to insure good circulation of the enclosed air. In this way heat is transferred from the food to the ice compartment. This heat transfer is mostly by convection, the circulating air acting as the carrier.

The coldest part of the food storage space is the lower part directly under the ice compartment. The circulating air becomes warmer as it rises in the food compartment, absorbing heat from the walls, food and food containers.

The temperature in the warmest part of a refrigerator should never be higher than 50° F. for the proper preservation of food.

The temperature of the coldest air dropping into the food compartment is usually between 40° and 50° F., depending upon the amount of ice, the type and construction of the box and the temperature of the air entering the top of the ice compartment. The melting ice, of course, is always at a temperature of 32° F.

It is necessary to have a well-insulated refrigerator to obtain by the use of ice a temperature suitable for the storage of perishable food products.

The desirable temperatures which are recommended for refrigerators by different authorities are given in Table LXXIII. The authorities quoted are as follows: New York Tribune Institute, United States Department of Agriculture, Dr. L. K. Hirschberg, and Dr. John R. L. Williams.

It will be further noted that the recommendations for the most desirable temperatures for refrigerators varies from 40° to 50°, with 45° as an average.

Operating Conditions.—The effect of room temperature on the amount of refrigeration required for a refrigerator can be easily approximated.

For example, if the average operating condition is at 45° F, food compartment temperature in a 70° F, room, the temperature difference is 25° F. The increase in refrigeration required in higher temperature rooms would be as follows:

Food Compartment Temperature	Room Temp.	Tempera- ture Diff.	Increase in Refrigeration required per cent
45	70	25	
45	80	35	40
45	90	45	80

Usually at a higher room temperature the food compartment temperature will be higher and the increase in refrigeration will be somewhat less than the amount indicated by this table.

Circulation of Air.—There is a constant circulation of air in refrigerators as long as the ice lasts. For the preservation of food, it is equally as necessary to have good air circulation as it is to maintain a low temperature in the food compartment. No matter how cold the air is, it will not preserve the food properly unless the air is in active circulation.

378

OPERATION OF ICE REFRIGERATORS 379

Temperatu Recommen Deg. F.	re ded Authority	Published in	Extracts.
40°—50°	New York Tribune Institute	New York Tribune	40° to 50° averaging 45° ; these are the aims of a super refrig- erator. A temperature of 40° to 45° is considered ideal for home refrigerator purposes. It should not go above 50° .
50° or less	U. S. Depart- ment of Agriculture	Farmers' Bulletin No. 1207	The best temperature for keep- ing milk is 50° or less. If a ther- mometer placed inside a refrig- erator registers more than 50°, the fault cannot be laid entirely to the quality of the milk. Even a temporary rise in the tempera- ture of milk will help the devel- opment of bacteria.
45° or Tess	Dr. L. K. Hirshberg	Chicago Evening Post	Refrigerators, ice boxes, cold storage, etc., which keep food well below 45°, help to keep it free of any great increase and growth of bacteria.
40°50°	U. S. Depart- ment of Agriculture M. H. Abel	Farmers' Bulletin No. 375	If on a warm summer day you put your hand into an ice box well filled with ice you may think that the temperature is very low, and yet it is in all probability nearer 50° than 40° F. The ice box no matter how well cooled, is and must be damp, and dampness is one of the requirements for bacterial growth.
50° or less	U. S. Depart- ment of Agriculture J. T. Brown	Bulletin No. 98	Proper refrigeration is of the utmost importance in the pres- ervation of milk. Without thor- ough cooling it is impracticable to keep milk for any consider- able length of time in a condi- tion that would justify its use for household purposes. It should be cooled to 50° F. or below.
50° or less	John R. Williams, M. D.	Report at 3rd. Int. Ref. Con- gress	A box or room for the storage of perishable foods to be at all efficient, must have a tempera- ture not in excess of 50° F., pre- ferably below 45° F.

TABLE	LXXIII	DESIRA	BLE	TEMPERATURE FOR	REFRICERATORS

It is a well-known fact that cold air falls while warm air rises. The cold air cooled by contact with the surface of the ice is carried down by its own weight, forcing ahead of it warmer air in other parts of the food compartment. This warmer air taking heat from the food, food containers and walls, rises to the top of the refrigerator where it passes into the ice compartment. It is cooled again and repeats this cycle, thus establishing continuous circulation.

Circulation is very important as it distributes the cool air to all parts of the refrigerator. The circulating air in passing the ice loses some of the moisture and the odor which it has taken up from the food.

The opening for the air to enter and leave the ice compartment should be as large as possible as the maximum velocity of the circulating air is relatively quite low.

Government tests on nine standard refrigerators of average quality or better, give the rate of air circulation as 10.1 to 21.4 cubic feet per minute at 60° F.

Melting ice has a temperature of 32° and the best circulation which can be obtained will not keep the warmest part of the food compartment at a temperature less than 50° in a room of 90°. Therefore, it is desirable to have as rapid a circulation as possible.

A good indication of the rate of air circulation in the refrigerator is the difference in temperature between the lower or coldest, and the upper or warmest part of the food compartment. This value is usually 10° or 15° in the average household refrigerator of from 50 to 150 pounds ice capacity.

Some typical refrigerator boxes are shown in Figs. 205 and 206 with arrows indicating the path of the circulating air. A gain in efficiency can be made by having the warm air flues against the exterior wall getting the path of the cold air in the center of the box. This will make an appreciable saving in the amount of ice used.

It is advantageous to have the ice compartment so constructed that the ice will never project above the lower level of the warm-air opening into this compartment. Careful tests have shown that there is a real gain in efficiency by doing this.

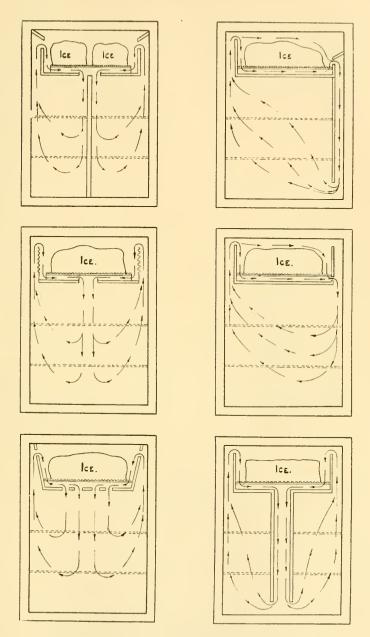


FIG. 205.—AIR CIRCULATION IN REFRIGERATORS.

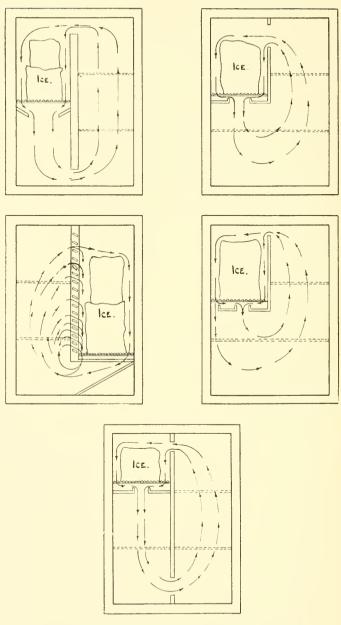
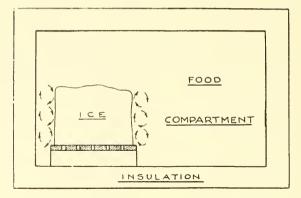
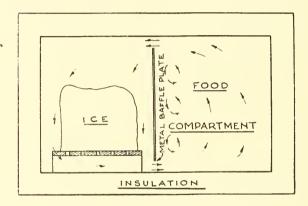


FIG. 206.--AIR CIRCULATION IN REFRIGERATORS.

Good air circulation in a refrigerator prevents the mixing of food tastes to a large extent. Foods such as onions, lemons, and brussels sprouts, which have the property of mixing their tastes with other foods, should be placed in the upper part of the refrigerator as most of the gases will then be absorbed by the water on the surface of the ice.

Circulation in Ice Chambers. — Fig. 207 shows various methods of producing circulation in a refrigerator.


In the upper figure there is no baffle plate. Local circulation is produced near the surface of the cake of ice. This condition is not satisfactory for storing food as the humidity would be unusually high in the food storage compartment. This construction causes food odors and favors high temperatures.


The center figure shows a metal baffle plate. This improves the condition in the food compartment. The baffle plate would probably be covered with condensation on the food compartment side. This construction would insure lower and more uniform temperature in the food compartment than obtained with the previous method.

The lower figure shows an insulated baffle plate. This is the ideal construction, affording a still better condition of lower and more uniform temperature, lower humidity and good air circulation. The baffle plate usually requires insulation equivalent to one-half or one-third of that used in the walls of the cabinet.

Air Circulation Tests.—A simple method of measuring the rate of air circulation is to place an anemometer in a flue opening in various positions to find the average velocity. Knowing the velocity of the air through this opening and its area, the amount of air circulating can be calculated.

A heat balance method is sometimes used to determine the approximate rate of circulation. The heat loss through the walls is determined by an ice-melting test. It is then assumed that this loss is due to the circulating air carrying the heat by convection from the walls of the cabinet to the ice. The heat transfer by radiation and conduction from the walls to the ice is relatively small and therefore not consid-

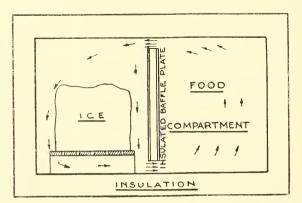


FIG. 207.-AIR CIRCULATION IN ICE CHAMBERS.

ered. The temperature difference of the circulating air entering and leaving the ice compartment can easily be determined by thermometers in the flue openings.

The following equation will approximate the amount of air circulating per hour:

Pounds of Ice Melted per hour × 144	Pounds of = Air circu- \times Specific lating per Heat	Temp. XDiffer- ence
Pounds of Air circulated per hour = -	hour Pounds of Ice Melted	l per hour $ imes$ 144
	$0.24 \times \text{temp. difference of}$ leaving ice compa	

The humidity of the circulating air will have an effect on its heat-carrying capacity. However, this is a relatively unimportant factor and is not usually considered, as this difference in the final result is less than other variables which are not taken into account.

Air circulation tests on a well-insulated cabinet cooled with a mechanical system show that the circulation through the food compartment varies from 1.0 to 5.0 feet per minute. As the flue opening has an area equivalent to 1/10 of the food compartment, the rate of air circulation through the flue opening varies from 10 to 50 feet per minute.

Humidity.—Humidity is the water vapor in the air. Atmospheric air always contains a certain amount of water vapor mixed with it. Air at a certain temperature and pressure can contain a definite amount of water vapor. When this amount is exceeded, the excess water vapor will condense.

Perfect refrigeration depends as much upon dryness as it does upon cold. It is very essential to have a circulation of so-called "dry" air in order to properly preserve food in a refrigerator. It is just as important that the humidity be low as it is that the temperature be low. A practical example is the poor results obtained by keeping foods in the ordinary ice chest where there is considerable moisture and poor air circulation. Foods will spoil more rapidly in an ice chest than in the ordinary refrigerator, even though the temperature in the ice chest be as low or even lower than that in the refrigerator. Most cellars are unsuitable for storing perishable foods because of the dampness or high humidity in the air.

One hundred cubic feet of air at atmospheric pressure can contain the definite amounts of water vapor at the temperatures given in Table LXXIV.

Temperature Deg. F.	Weight of Water Vapor per 100 cu. ft. of air.
32	
40	
50	0.0587
60	
70	0.1145
80	0.1564
100	0.2850

TABLE LXXIV .--- WATER VAPOR IN AIR.

The amount of water vapor which the air can contain increases with the temperature and decreases with pressure.

Relative humidity is the per cent of water vapor actually present in the air in relation to the maximum amount of water vapor which the air can contain at a definite pressure and temperature.

Example: Suppose atmospheric air at 80° F, had a relative humidity of 60 per cent. The amount of water vapor in each 100 cubic feet of air would be

 $\frac{60}{100}\times 0.1564$ or 0.09384 pounds

The relative humidity inside a refrigerator is highest where the cold air drops out of the ice compartment. The relative humidity is lowest at the top of the food compartment where the warm air enters the ice compartment. There is a gradual increase between these two points as the circulating air becomes warmer.

The average relative humidity within the food storage compartment in refrigerators using ice is from 50 to 80 per cent. The humidity is increased by placing in the refrigerator foods or liquids which have a high moisture content.

In summer the humidity in the kitchen is usually higher than in the refrigerator. Opening the refrigerator doors will then temporarily increase the humidity inside. *Example:* Assume a refrigerator of 10 cubic feet inside capacity containing 50° air at 60 per cent relative humidity. The kitchen temperature is 80° with 80 per cent humidity. The refrigerator doors are left open long enough to replace half the cold dry air with warm vapor laden room air. What is the loss in refrigeration by this change?

Cool 5 cu. ft. dry air 80° to 50°: 5 cu. ft. or $5 \times 0.071 = 0.355$ pounds. $0.355 \times 0.238 \times 30 = 2.5347$ B.t.u.

Amount of water vapor cooled: At 80 degrees 0.001564 pounds per cu. ft. $5 \times 0.001564 \times 0.80 = 0.006256$ lbs.

Cooling water vapor $(80^{\circ} \text{ to } 50^{\circ})$: 30 × 0.006256 = 0.18768 B.t.n.

Amount of water vapor condensed: At 50° and 60 per cent humidity $5 \times 0.000587 \times 0.60 = 0.001761$ pounds 0.006256 - 0.001761 = 0.004495 pounds

Heat required to condense 0.004495 lbs. of water vapor: $0.004495 \times 1000 = 4.495$ B.t.u.

Total heat loss:	
Cooling air	B.t.u.
Cooling water vapor	B.t.u.
Condensing water vapor4.495	B.t.u.
Total	B.t.u.

This problem shows the important part humidity plays in ordinary household refrigeration problems.

The results of the humidity tests in a mechanical household refrigerator are shown in Table LXXV. From the second and third columns of Table LXXV, it will be observed that the food compartment relative humidity increased gradually as the relative humidity of the room increased, although not in the same proportion. The temperatures of the room, top of food compartment, and bottom of food compartment were maintained approximately constant during the test.

Humidity Test.—This test was made on a well-insulated cabinet, cooled with a brine tank. The temperature of the brine during the test varied from 18° F. to 22° F. Several tests similar to this one indicate that the relative humidity of the food compartment can be approximately determined by computation. It is only necessary to know the temperature of the cooling element and the temperature of the food compartment. The air in contact with the cooling element is nearly saturated with moisture.

TABLE LXXV.--HUMIDITY TEST ON A MECHANICAL HOUSEHOLD REFRIGERATOR.

To determine the effect on the food compartment humidity when the humidity in the room is gradually increased.

Percent Relative Humidity		Temperature			
Time	Room	Food Compart- ment-Bottom	Room	Top Food Compartment	Bottom Food Com- partment
9:30 A. M.	28	28	80	54.5	-14
9:45	35	29	80	54	44
10:15	40	34	81	53.7	44
10:45	45	40	80	53.5	43.6
11:15	50	42	80	53.3	43
11:45	55	45	80	53.1	42.5
1:30 P. M.	60	48	80	52.8	42.5
2:00	65	49	80	52.8	42.5
2:30	70	50.5	80	53	42.5
3:00	75	51.5	80	53	42.5
4:00	80	52.5	80	53	42.5
5:00	85	52.5	80	53.5	42.7
6:00	90	54	80	53.8	43
6:15	93	54.2	80	54	43.1
Following Day	, -	0 1.0	00		1011
4:00 P. M.	90	56.5	80	53.3	43

With a 20° F. brine tank temperature, the circulating air passing through the cold-air flue is at least 10° F. warmer than the brine-tank temperature, as only part of this air actually comes in contact with the 20° F. brine-tank surface.

If we then assume that the air is saturated with moisture at a temperature of 10° F. warmer than the surface of the cooling unit, this value will closely approximate the actual condition in service. Then knowing the higher temperature at any part of the food compartment, the relative humidity can easily be obtained from the humidity tables.

The warmer air having a greater water vapor capacity therefore, the per cent relative humidity gradually decreases as the circulting air passes up through the food compartment.

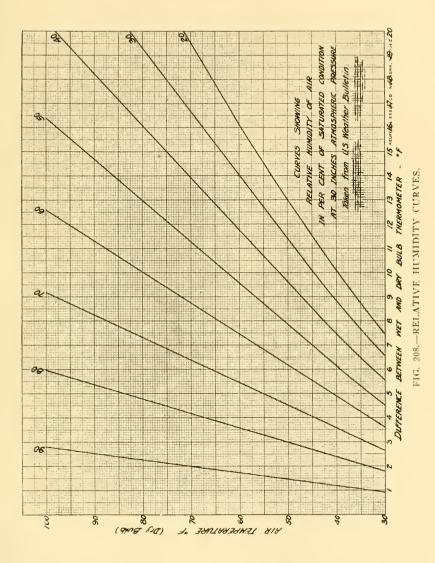
Desirable Humidity Indoors.—Humidity control in homes is becoming more and more important, especially in localities where the outdoor temperature in winter drops to below freezing. The average relative humidity in heated rooms ranges from 10 to 20 per cent in winter. This is a dryness greater than that of the deserts. The relative humidity should not be below 40 per cent for good conditions in regard to health and comfort. The usual practice in buildings where the humidity is controlled is to regulate the relative humidity to between 40 and 50 per cent.

Temp. Deg. F.	Weight of the Air in Pounds	Weight of the Vapor in Pounds	Weight of Mixture in Pounds
0	0.0863	0.00079	0.08709
12	0.0840	0.000130	0.084130
22	0.0821	0.000202	0.082302
32	0.0802	0.000304	0.080504
42	0.0784	0.000440	0.078840
52	0.0766	0.000627	0.077227
60 62	0.0751	0.000830	0.075930
62	0.0747	0.000881	0.075581
70	0.0731	0.001153	0.074253
72	0.0727	0.001221	0.073921
82	0.0706	0.001667	0.072267
92	0.0684	0.002250	0.070650
100	0.0664	0.002848	0.069248
102	0.0659	0.002997	0.068897
112	0.0631	0.003946	0.067046
122	0.0599	0.005142	0.065042
132	0.0564	0.006639	0.063039
142	0.0524	0.008473	0.060873
152	0.0477	0.010716	0.058416
162	0.0423	0.013415	0.055715
172	0.0360	0.016682	0.052682
182	0.0288	0.020536	0.049336
192	0.0205	0.025142	0.045642
202	0.0109	0.030545	0.041445
212	0.0000	0.036820	0.036820

TABLE LXXVIWEIGHT	PER CUBIC	FOOT OF AIR,	WATER AND SATU-
RATED MIXTURES O			
TEMPERATURES	AND UNDER	ORD1NARY A	TMOSPHERIC
PRESSURE	OF 29,921 IN	CHES OF MER	CURY.

Table LXXVI gives the weight per cubic foot of air, water and saturated mixture of air and water vapor at different temperatures, and under the normal atmospheric pressure of 29.921 inches of mercury for tempertures ranging from 0° F. to 212° F. The second column shows how the weight of the dry air in the mixture decreases when the temperature increases. The last column shows how the total weight of the mixture in pounds decreases with the increase in temperature.

The relation of the air temperature and the difference between the wet and dry bulb thermometer readings, as affecting the relative humidity of air, is shown by Fig. 208. The various curves in this figure, labed 20, 30, 40, 50, 60, 70, 80, and 90, are relative humidity curves of air in per cent of the saturated condition at 30 inches of mercury as the atmospheric pressure. The data shown on this figure were taken from reports of the United States Weather Bureau. The air temperature which is plotted on the left-hand side of the diagram corresponds directly to the temperature of the drybulb thermometer. The figure shows graphically how the relative humidity increases with the relative increase of the dry-bulb temperature and the relative increase of the difference between the wet and dry-bulb thermometer readings.


Placing of Food and Ice in Refrigerators.—The National Association of Ice Industries has recently published bulletins in reference to the operation of household refrigerators, in which attention is given to "Where to Place Food in Household Refrigerators" and "How to Use Ice." These bulletins have been extracted as follows:

WHERE TO PLACE FOOD IN THE HOUSEHOLD REFRIGERATOR

The home refrigerator is really the food warehouse of the family, just as the great, clean cold warehouses in the big cities are the refrigerators of the people of the cities, to keep food clean, sound, and wholesome, between the time the refrigerator car brings it from the country and the time that the people are ready to eat it. Just as the house manager must keep some food supplies for the near future, so must the food distributing industry in the cities keep a food supply ahead of food consumption. One is just a magnification of the other.

The big warehouses have great rooms where low temperatures which do not vary the year around, are adapted to the kinds of food to be kept. For instance, eggs are kept at 29° to 31° F., while butter is frozen hard and kept about 5° below zero. All the rooms are very clean.

Just so should we plan for the home refrigerator. The refrigerator should be spic and span. Everything that goes into it should be as clean as possible. This will help in two ways: First by keeping out bacteria, and second, by making the cleaning of the refrigerator a much more simple matter.

391

Foods requiring the lowest temperatures obtainable should be placed in the coldest part of the food chamber, while those commodities which do not demand such care may be placed in less cold locations.

Let us consider the placing of food in the refrigerator on this basis. First, look critically at the construction of your refrigerator. Is it an "over-head" or a "top-icer" type? In an "over-head" icer type, the coldest place is in the middle of the top shelf where the cold air drops down from the ice chamber, and the warmest place is on the sides of the lower shelves where the warmed air travels back to the ice chamber. In a refrigerator of the "side-icer" type, the coldest part is in the compartment directly under the ice chamber.

Keep Air Ducts Open.—When food is placed in the household refrigerator, be careful not to shut off the exit of cold air from the ice and the entrance of warm air into the ice chamber. There must be circulation in order to insure a steady supply of clean, dry, cold air. For this reason, leave enough room between containers on the shelves to enable the air to flow freely.

How to Use the "Side-Icer."—Foods that are delicate and absorb odors should be placed directly under the ice chamber where they will be coldest and get fresh, clean cold air. Milk, butter, meat broths, and moist cooked foods such as cereals, custards, and cream sauces come under this head.

Of all the perishable foods going into the refrigerator, milk needs the most intelligent care. It is an ideal medium for bacterial growth at favorable temperatures. Because milk is a food depended upon by young children and invalids, the decomposition of products produced by bacteria should be especially guarded against. Fortunately low temperatures are excellent deterrents to bacterial multiplication and unless the milk freezes—which does not happen until below 28° F., they do not alter it either chemically or physically. Therefore, place the milk in the coldest part of the refrigerator which, as stated before, is just below the cold air down drop. Milk bottles may take some dirt into this most important compartment of the refrigerator. They should be washed, but care must be taken that the cap is not soaked nor water permitted to remain on the cap because if it gets wet, bacteria can easily enter the bottle.

Next to milk, meat broths are probably the most delicate foods to be cared for. They should be placed, while hot, in sterilized containers, covered tightly, and allowed to cool to room temperature, then placed in as cold a location as your refrigerator affords. In fact, all these delicate foods should be placed in sterilized covered containers.

Butter should be placed here for two reasons. First, the temperature tends to hold back rancidity; second, butter absorbs odors and flavors very readily. Therefore, give it a tight container or hold it in the original package.

Drinking Water.—During warm weather some people want drinking water cold but not iced. Choose clean containers such as quart fruit jars, fill them with water and place them just below the ice chamber. Sometimes spring water is purchased or the water supply must be boiled to make it fit for human consumption. If water must be boiled do so, then put it into sterilized containers, let it cool to room temperature and place the covered jars in the refrigerator just under the ice chamber. This gives a supply of well cooled water.

Desserts.—Jellies, charlottes, and heavy cream desserts go in the coldest compartment until they are set, then if space is scarce they may be transferred to the meat compartment.

Meats.—Uncooked meats should have the next coldest place. Always remove the paper wrapper from the meat when it comes from the market. Paper left on meat sticks, and becomes very difficult to remove, and a slime may develop. Place the meat on a clean dish and put it on the bottom of the food compartment. Cooked meats dry out very quickly, so if you wish to keep them in the best condition, put them in tightly covered containers. Space is valuable in this compartment, so use containers that are relatively high and narrow. Use as few plates as possible. While large pieces of meat, such as roasts and poultry, must be put on plates, many meats such as steaks, chops and meat for stews, may be placed in tall containers that require less room. This applies in general to all parts of the refrigerator. If containers that are as tall as will fit well on the shelves are used, the space in the refrigerator will be utilized to much better advantage.

Fish.—Fish may be kept in the refrigerator safely if it is placed in a tightly covered vessel. The purchase of a white enameled container for this purpose will be a wise one because fish should be a frequent food in the home.

Left-overs.—The question of left-overs is a very important one. They should be placed in the coldest location space permits if they contain cream sauces or custards, or are some delicate vegetable such as asparagus. All others should go in the meat compartment or directly over it. In any case, do not place the left-overs in the refrigerator in the dishes in which they were served at the table. It is hard on the china and also takes up more room than is necessary. Try putting left-overs in the various jars that accumulate in the household irom the purchase of mayonnaise and other products, adapting the size of the jar to the quantity to be salvaged. Save these small portions, mix them with originality and imagination, two of the finest ingredients in the food catalog, and utilize them as attractive dishes for lunch or supper or even another dinner.

Berries and Cherries.—On the shelf above the meat compartment place berries and cherries. They are especially subject to a white mold which causes quick decay. Dry cold air checks the growth of this mold. Do not wash the berries until ready to use them. Put them in a well-ventilated container, such as a wire sieve with the handle removed, or in the original wooden box if clean and dry, but remember not to crowd the berries, for they will resist mold longer if the dry air can circulate freely around them.

Eggs.—On the same shelf place eggs and such fruits and vegetables as do not have a decided odor or flavor. Contrary to the general opinion, eggs do not need the coldest place in the refrigerator. It they are placed on the middle shelf of the food compartment they will keep well.

Vegetables and Fruit.—Try washing lettuce and celery when it comes from the market. Shake it free of water, and then put it in a tightly covered jar. It will keep fresh and crisp for days and does not get broken so readily as when stored in a towel or paper. It also makes a neater appearance in the refrigerator. Try, also, keeping new carrots, fresh peas, string beans, and other succulent vegetables cold until needed for use. Set the bunch of asparagus in a shallow pan of water and give it refrigerator room.

Place all foods with strong odors high up in the food compartment where the air current strikes them just before it returns to the icc chamber. Then the odors will be absorbed by the film of water on the melting ice and pass off with the meltage. Foods such as melons, oranges, peppers, cabbages and apples are on this list. They all dry out readily so do not remove the oiled or tissue paper wrapper that comes on the fruit.

How to Use the "Over-head" Icer.—When the ice in the refrigerator is above the food compartment, the cold air outlet may be a long narrow opening at the back of the ice chamber, or there may be an opening in the middle of this floor through which the cold air is discharged. Generally the warmed air rises along the side walls and passes through ducts or flues into the ice chamber. The path which the air takes shows us where to place the various foods depending upon their susceptibility to the effect of temperature.

Of course the coldest place is just under the cold air drop and the warmest is usually at the extreme edge of the bottom shelf. The top shelf in this type of construction just reverses the "side-icer" rule and is our low temperature location. Each succeeding shelf shows a slight increase in temperature, but, ordinarily, the extremes of high and low are not so far apart as when ice is placed in the upper side quarter.

With these fundamentals clearly in mind, we readily see that milk, butter and broths and other very delicate products should have the middle portion of the top shelf; meats, fish and the delicate desserts should occupy the middle of the shelf just below, while fresh vegetables and rather resistant foods should be placed on the floor of the refrigerator. Foods with pronounced odors such as cabbage, oranges and apples should be placed near the side walls where the air currents are traveling quickly to the ice chamber. There they discharge their load of heat and odors and the moisture which the expanding air gathers from the food.

Don't forget that the well constructed refrigerator, well filled with ice, maintains an active circulation and so causes some evaporation of moisture. Therefore, heed the advice about keeping the tissue paper wrapping on such fruits as oranges and apples.

Remember too, that the wrapped orange has never been touched by human hands. Good fruit handling demands gloves on all pickers and graders. Just think! Forty-seven per cent of our people are engaged, in one way and another, in the feeding of us all. It is one of the wonders of the modern world—this production and distribution of foods. The home refrigerator is the last link in the long chain necessary for the proper distribution of food.

HOW TO USE ICE.

We are all interested in knowing about the proper use of ice—how to get the most benefits from its use—how to make sure of food and health protection, but how much thought, frankly, have you ever given to the importance of using ice the year round? If yours is the average family, you have given it little thought indeed, because the average family lets the weather decide its use of ice.

The people in the business know that the high-climbing thermometer will always be the greatest ice salesman, but we also know that more and more thoughtful people are using ice every month and day in the year.

Ice is the only certain, sure, positive protector of food's purity no matter whether the day be New Year's or the Fourth of July. Doctors will tell you this. Domestic science authorities confirm the fact. No cellar, window box or back porch can keep and protect the foods which cost so much more than the few cents of ice needed to keep them properly.

You are taking chances when you try to keep food outside of a well-iced refrigerator. You are exposing it to all manner of dangerous, sickness-breeding bacteria. You are exposing it to dust, grime and the unevenness of temperatures that never gives real food preservation.

How to Keep Food Properly.—A refrigerator furnishes an even, bacteria-destroying low temperature. The housewife who tries to keep food in any other way is continually risking the family health. Bacteria multiply in all foods when the temperature is above a safe point. Most authorities agree that the dividing line between danger and safety in food temperatures is 50 degrees. Only in a refrigerator will you find the low temperature that precludes danger of contamination, spoilage and germs.

How to Gain Real Economy.—While many housewives grant the fact that food can be kept properly in refrigerators—and in that way alone—they fail to keep their food properly by taking less ice than they need. They let the ice chamber get so low that it is frequently less than half full. Then the refrigerator cannot do its part; it takes ice and plenty of it to obtain proper refrigeration. Also, from the pocketbook standpoint, ice melts rapidly when the supply gets low more rapidly than when you keep the ice chamber comfortably filled. If you let your refrigerator get warm, it takes much more ice to chill it again than it would to keep it cold. Ice is an article you cannot economize on by skimping.

Simple Rules for Preventing Waste.—Keep the ice chamber of vour refrigerator well filled. The ice melts more slowly.

Have the refrigerator large enough. Do not crowd it full of food. It is not the size of the box so much as the quality of food which consumes the ice.

Keep the refrigerator in a cool spot, away from draft.

Close the doors tightly to prevent warm air from seeping in. Open the doors as little as possible.

Don't put any food on the ice or in the ice chamber; leave the ice uncovered.

You may have been told that wrapping your ice in newspapers, cloths or blankets, tends to keep it from melting. This practice is bad, because it prevents the free circulation of air around the ice, and that in turn prevents the purification of the air. The whole surface of the ice is needed to purify the air properly.

Never put hot food in the refrigerator. Let it cool a bit first.

It is a great mistake to have too small a refrigerator for the amount of food in it. There is not room for enough ice. The food is a heating element, and melts the ice faster than the ice can chill the food. Too much crowding of food also obstructs the air circulation so essential to keeping the flavor fresh and appetizing. **Placing the Refrigerator.**—Your refrigerator may look stout and tough, but in reality, great care must be taken to see that it is properly placed. Few people realize the importance of this.

Place the refrigerator where it won't overheat or be exposed to moisture, draft or sudden changes of weather.

A porch, even though protected, and a cellar are bad places for it. The best place is in the kitchen near the rear entrance. This may not be as convenient as a little nearer the working section; but it saves the iceman crossing your kitchen. The ideal arrangement, of course, is an outside icer opening on the porch.

Opening and Closing Refrigerator Doors.—One of the quickest ways of spoiling the efficiency of your refrigerator as a preserver of food is to open the doors too often and keep them open too long. Tests have shown that in opening the door the temperature inside rises at least two degrees.

Some housewives open the box every time they want a single article of food, instead of taking out several articles at once which may be needed about the same time.

Refrigerator doors should be kept tightly closed. When not quite shut they leave a crack between the door and its frame and warm air seeps in or the cold air pours out. Under such conditions, it is impossible to keep the inside cold. It is also bad for the doors. The meeting of warm air on one side and cold on the other develops moisture and that makes the door warp and swell. This "sweating" is especially noticeable on warm, damp days.

Keeping the Refrigerator Clean.—It is very important to keep your refrigerator spotlessly clean. That is literally true. A single drop of spilled milk or of other food can contaminate a refrigerator in a few days. One drop of milk can develop millions of bacteria if the temperature is right for it.

In cleaning a refrigerator use a sponge or soft cloth and clean water. Don't use any sponge or cloth and any water. You do not have to give your refrigerator a weekly hot scald. You can clean it thoroughly with lukewarm or cold water and washing soda, followed by a rinse with clear cold water and then a thorough drying. Hot water heats the wall unnecessarily. Be sure to leave them perfectly dry. Moisture is bad.

A friction powder or steel wool may be used on the ice compartment and drain only. The drain is the most difficult part to clean; use a long handled brush with steel wool packed into it.

To be thoroughly clean a refrigerator should have no cracks or crevices in which dirt or germs can lodge. It is almost impossible to clean them out. In purchasing a new refrigerator, be sure to get one that may be easily and thoroughly cleaned. . 6

CHAPTER XI.

TESTING OF ICE REFRIGERATORS.

Constant Temperature Room. — A constant temperature room is necessary to accurately test the heat leakage of a refrigerator. Electrical thermostats and heaters are of considerable value for tests of this kind. It is easily possible to maintain a room temperature which will vary not more than 1° F.

Fig. 209 shows an arrangement which has proven very satisfactory for a constant temperature room. The electrical heaters are screened so that radiant heat will not pass directly from the heaters to the outside surface of the refrigerator being tested. It is always difficult to measure radiant heat. With high room temperature, the heaters must be on a greater percentage of the time, therefore the heat exchange by radiation would increase greatly unless the heaters are screened. An asbestos curtain is used for this purpose. There is a circulation of air as indicated by the arrows, insuring a uniform temperature in different parts of the constant temperature room.

Fig. 210 shows another arrangement for a constant temperature room using a double wall. The heaters are placed between the walls and the warm air circulates under the floor, over the ceiling and along the walls. This method reduces variation in radiation and convection, due to using the heaters in order to operate at a high room temperature.

In order to obtain accurate results, it is best to use as little electrical heat as possible and yet keep the temperature of the test room constant. In this way the heat losses due to radiation and abnormal convections are reduced to a minimum.

It is also desirable to control the humidity of the constant temperature room. This factor is not as important on a heat insulation test as with an ice melting test.

Ice Melting Method.—A simple method of measuring the heat leakage is by the ice melting method. The refrigerator

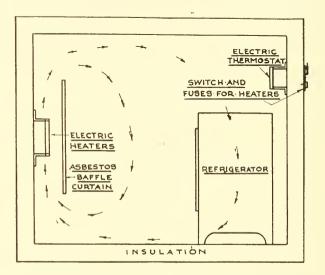


FIG. 209.- CONSTANT TEMPERATURE TESTING ROOMS.

must be in use at least 24 hours in order to have the lining and insulation cooled to about the same temperature as they will be during the test. The author has found that a cabinet insulated with three inches of corkboard required three days to establish a temperature equilibrium in the walls.

A weighed block of ice is then placed in the ice compartment, noting the shape of the block so that on a subsequent test a similar shape can be used. Then after a certain period, say 24 to 48 hours, the ice block is weighed again to detect the amount of ice melted. Suppose the pounds of ice melted per 24 hours to be W. Then the heat leakage for the cabinet H

TESTING OF ICE REFRIGERATORS

would be $144 \times W$ in B.t.u. per 24 hours. The heat leakage h, per sq. ft. per degree F. per day would be:

 $144 \times W$

Sq. ft. mean area X (room temp. - average cabinet temp.)

Temperatures should be taken of the coldest and warmest part of the food compartment. It is very important to have

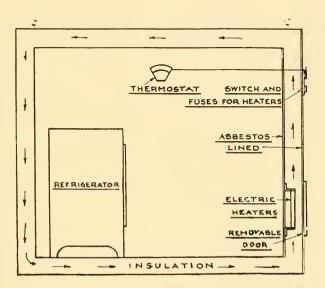


FIG. 210.-CONSTANT TEMPERATURE TESTING ROOMS.

a certain amount of dishes and food on the shelves in making a test if the actual service conditions are desired. Service conditions can be closely duplicated by having plates of potatoes in 10 or 20-pound units. Two or three times a day a certain number of cold units are removed from the cabinet and the same number of warm units (at room temp.) are used to replace them.

Some of the more important variable factors entering into a heat leakage test by ice melting are as follows:

- 1. Constantly changing weight, surface and form of ice cake.
- 2. Circulation is affected by size and position of ice cake.
- 3. The water from the melting ice may assist in cooling cabinet.

The instruments required for a test are thermometers, preferably of the recording type. If regular glass stem mercury thermometers are used, it is advisable to place them in a small flask filled with oil. The flask should have a cork with the thermometer held in place in a small hole through the cork. This eliminates the error of reading a rapidly rising temperature when the door of the cabinet is opened.

Electrical Heater Method.—The electrical heater has advantages over the ice-melting method of testing the heat leakage of a refrigerator cabinet. The circulation is not changed by a different shape of the ice cake, and the rate of heat supply may be kept quite uniform and may be measured accurately even without opening the doors of the cabinet under test.

Suppose an ice test indicates that a cabinet would be used with an average food compartment temperature of 45° F. in a 75° F. room. The temperature differential through the wall is therefore 30° F. To conduct a heat test, say in an 80° F. constant temperature room, a heating element is placed in the cabinet so that it will have the same wall differential temperature of 30° F. Therefore, the food compartment temperature is maintained at 80° F. plus 30° F. or 110° F.

If the electrical heating element requires 20 watts in order to maintain this 30° F. temperature difference through the walls of the cabinet, then the total heat leakage in B.t.u. per 24 hours= $20 \times 24 \times 3.416$ =1640. (1 watt hour of electrical energy is equivalent to 3.416 B.t.u.)

The heat leakage is usually rated by the number of B.t.u. lost per square foot per degree temperature difference per day. Suppose the average surface of the inside and outside walls to be 20 sq. ft., then

 $\frac{1640}{30 \times 20}$ =2.73 B.t.u. heat leakage per sq. ft. per degree F. per 24 hours.

Sources of Heat Losses in Refrigerators.—The following pertains to a test on an ice refrigerator to determine rate of ice melting due to heat loss of insulation, opening doors, and changing food.

The object of this test was to determine the relative amount of ice melted by the three principal heat losses which occur in an average household refrigerator. These are:

1 Heat transfer through the insulated walls.

Opening doors allowing warm air to enter, and cold air to drop 2 out of the refrigerator.

3. Changing food or placing in the refrigerator, food and dishes to be cooled.

The refrigerator was a top icer with panel construction throughout and had the following specifications:

OutsideCompartmentFoodCompartmentIceCompartmentDoorOpeningIceCompartmentDoorOpeningVolumeFoodCompartment5.7CubicfeVolumeIceCompartment3.2CubicfeTotalInsideSurface28.9square	28 16½ 26 14 . eet eet feet	Depth 21 153/4 16 ¹ /2	Width 29 22 ¹ / ₂ 20 ¹ / ₂ 20 ¹ / ₂
Total Inside Surface28.9 squareTotal Outside Surface40.0 square			

The insulation consisted of the following :

- Oak case. 1.
- $\frac{1}{2}$ -inch mineral wool. 2 air spaces. 2.
- 3.
- 4. Layers insulating paper.
- 3/8-inch spruce wall. 5.
- Porcelain on steel lining. 6.

The rated ice capacity of the refrigerator was 120 pounds and the net weight of the refrigerator was 280 pounds. The flue opening was 11% inches wide on both sides of the ice compartment and extended the total depth of the compartment. There was a 2-inch air space under the ice shelf.

The test was conducted in a constant temperature room. The room had double walls on all six sides. The effect of heat transfer by radiation from the electric heaters used to maintain a constant temperature was eliminated by placing the heaters between the double walls of the room. The operation of these heaters was controlled by a thermostat. The humidity of the room was controlled by an electric humidostat.

It was found necessary to maintain constant condition of temperature and humidity for several days before an accurate

reading could be obtained of the amount of ice melted for each particular test condition.

Throughout the entire test, the room temperature was maintained at 75° F., while the relative humidity was maintained at 40 per cent. The quantity of ice, as well as the ice surface exposed, was kept as nearly uniform as possible throughout the test.

The refrigerator was first operated without any food changes or door opening process. The food compartment was empty so that the heat losses were due entirely to the heat transfer through the insulation of the cabinet. Of course, a very small percentage of this heat loss was caused by cooling and dehumidifying warm air which leaked into the cabinet, replacing cold drier air which leaked out, and a small loss due to heat transfer by radiation which could not easily be measured.

The food change test was then conducted, the food which, in this case, was potatoes, being changed three times each day. The potatoes were removed at the temperature of the food compartment, while the potatoes placed in the box at each change were at room temperature. The food change consisted of removing a china plate weighing 2.4 pounds holding 8.6 pounds of potatoes, and then placing a similar quantity of plate and potatoes in the food compartment.

Finally, a door opening test was conducted in conjunction with the food changing test. This approximated the average household service condition, indicating the difference between a laboratory test and actual household service conditions.

During this test, the relative humidity of the room was maintained at 40 per cent, while the relative humidity in the lower part of the food compartment of the refrigerator varied from 62 to 68 per cent.

The results of the ice-making tests indicated that 93 per cent of the ice was melted, due to heat transmitted through the insulation, 4 per cent was required for cooling the food at the rate of 33 pounds per day, and that 3 per cent was lost in the opening of the doors which occupied one minute per hour, or a total of ten minutes during the test. These losses are shown graphically by Fig. 211. The foregoing data, together with Fig. 211, illustrate the great importance of having a refrigerator efficiently insulated.

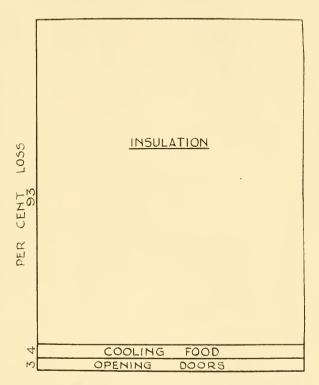


FIG. 211.-COMPARISON OF REFRIGERATOR HEAT LOSSES.

Effect of Room Humidity.—The following test was on an ice refrigerator to determine the effect of room humidity on the rate of ice melting. The refrigerator used in this experiment was the top icer described in the previous report. The test was conducted in a constant temperature room in which the humidity could be regulated and controlled very closely. The room temperature was maintained at 75° F. during the entire test which lasted 22 days.

During this test the food storage space in the refrigerator contained only a recording thermometer and a recording humidostat. The quantity of ice as well as the amount of ice surface was maintained as nearly constant as possible. The following results were obtained with two different conditions of room humidity:

D	Per cent Relativ	ve Humidity	Ice melted
Room Temperature Degrees F.	Food Compartment	Room	per day, pounds
75	65	40	17.75
75	65	75	22.56

This test shows that the rate of ice melting was increased about 27 per cent, simply by changing the relative humidity of a 75 degree room from 40 to 75 per cent. This difference would be greater in actual service conditions as the doors are opened more frequently and sometimes not closed tightly, thus greatly increasing the amount of air leakage.

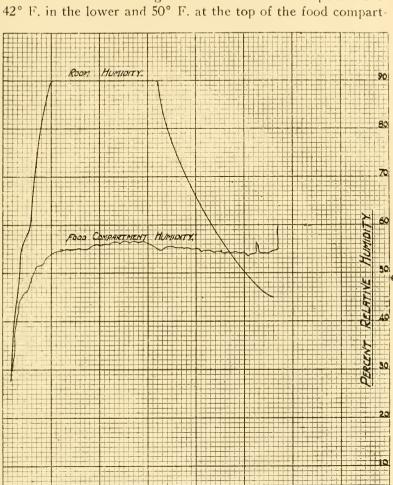
It is therefore very important in refrigerator tests to know the relative humidity both of the air inside the refrigerator and of the room in which the refrigerator is located.

Room or refrigerator environment air is constantly leaking into the upper part of a refrigerator, replacing the cold air leaking out of the lower part. This warm air circulates and is cooled to the food compartment temperature by coming in close contact with the ice or cooling element. Heat must be absorbed, either by melting ice or evaporating the liquid refrigerant, to counteract the following heat losses:

Heat losses due to air leakage or refrigerator ventilation.

1. To cool incoming dry air.

2. To cool moisture of incoming air.


3. To condense part of moisture of incoming air.

4. To frecze the condensed moisture. In a mechanical refrigerator the surface temperature of the cooling element is usually below 32° F.

5. To cool the frozen moisture.

It is then readily understood that with a nearly constant supply of warm room air entering the refrigerator, it will require more heat to cool and dehumidify to the same dryness the 75 per cent humidity air than it would to cool and dehumidify the 40 per cent humidity air.

Humidity Diagram for Room and Refrigerator.—Fig. 212 shows the relation between room and food compartment humidities. This test was made in a constant temperature room held at 86° F.

The mechanical refrigerator maintained a temperature of

FIG. 212.—RELATIVE HUMIDITY IN REFRIGERATOR.

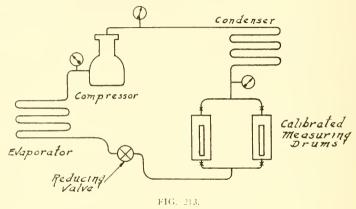
- AM. -

- P.M. -

TIME. 0 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

- PM. --

- AM. ----


- P.M -

The refrigerator contained only the recording instrument. ments. The average brine tank temperature was 20° F.

The test was started with a warm refrigerator so that the temperature and humidity of both room and food compartment were equalized.

Calorimeter Testing.—There is a great difference of opinion as to the proper method of determining the exact or comparative rating of household and small commercial compressor units.

From tests compiled by various manufacturers of household machines, the simplest and by far the most practical for every day usage, was found to be actual measurement by volume of the refrigerant circulated, usually in a calibrated drum with sight glass, located directly under the condenser. By using the pressure on this drum at the beginning and end of the test, the mean pressure is obtained for determining the exact density of the liquid from authoritive tables on refrigerants.

After the actual pounds of refrigerant circulated has been found, the net available B.t.u. per pound of refrigerant can be determined from the table. This value multiplied by the pounds circulated gives the total B.t.u. of refrigerating work done in the evaporator.

As numerous tests have demonstrated, superheating of the suction gas to the compressor has very little effect on compressor capacity under normal operating conditions, so that the volume of gas per pound of liquid can be obtained from the refrigerant table for the suction pressure noted near the compressor. This volume per pound multiplied by the pounds circulated will give the volume of gas handled by the compressor. If the volume of gas handled by the compressor is divided by the piston displacement of the compressor for the same interval of time, the actual efficiency of the compressor is obtained. It has been found that the error between this determination method and the use of a calorimeter or B.t.u. measurement box around the evaporator is practically negligible, and is much simpler.

As a general rule, the determination which is most desired by all users of refrigeration is how much power must be paid for at the end of each month for holding the refrigerator at a temperature which best conserves food. The problem then becomes, how many kilowatts or their equivalent B.t.u.s must be paid for in power consumption for a definite number of B.t.u.s actually abstracted from the refrigerator?

If a unit B.t.u. per hour abstraction is used as a basis, the machine requiring the minimum B.t.u. input for this work would be the most efficient overall, which, in the end, is the determining factor, provided the machines rate equal mechanically in construction. This value has been given the name "Performance Factor" and from the consumer's viewpoint is the most important, if other considerations such as appearance, size, arrangement. ice cubes. etc., are basically equal. A unit of comparison sometimes used is B.t.u. per Watt hour.

From the manufacturer's standpoint, however, the problem is somewhat different, as it is the individual parts and their efficiencies which affect him, so that each piece of equipment, compressor, evaporator, condenser or motor must be brought up to its maximum efficiency, which in turn will automatically take care of the overall efficiency or "Performance Factor."

Looking at it from this angle the testing must include such factors as discharge pressure, compressor r.p.m. and size, size and type evaporator, size condenser and quantity of air to be blown over it, type drive, type motor and size, arrangement of parts, noise, vibration, lubrication, control, type suction and discharge valves, kind of refrigerant, etc.

Tests are subject to a great many variations which cause duplication of determined data to often be a difficult problem. In tests on a refrigerator load some of the variables that occur would be: door leakage, air circulation, insulation efficiency, cooling chamber shape and size, location of cooling unit with its shape, size and arrangement, and the important factor of frost accumulation.

As one or more of these variables are always present, test results are subject to numerous interpretations, consequently the least possible number of variation factors that can be included in a test, the more correct will be the analyzed results.

If comparative tests are to be run, the factors entering into the results need only be considered and held the same for all tests and the resultant values will give a true comparison.

When running a comparative test on various makes of equipment and boxes, it is assumed that each manufacturer has made each part of his apparatus as efficient as he knows how, commensurate with cost, consequently the "Performance Factor" test appears to be the most logical and at the same time, the most acceptable method of true accomplishment.

A comparative method for determining compressor efficiency and at the same time, a very simple one, is the so called "Pump up" test. By using the same receiver on the discharge side of the compressor, and finding the interval of time necessary to pump a pressure of, say, 75 pounds on the receiver, a quick and comparatively accurate comparison is obtained on compressors of the same bore, stroke and r.p.m.

This method can be carried somewhat further and by reducing the volume of 75 pounds compressed air to 0 pounds or atmospheric intake pressure, assuming the temperature to remain the same, the volumetric efficiency of the compressor can be found by dividing this volume by the actual piston displacement for the "Pump up" time interval.

Another method for obtaining approximate compressor efficiencies, is by means of metering the discharge of air through an air meter for atmospheric intake and varying discharge pressures, using compression ratios for conversion into an equivalent amount of refrigerant gas.

A suggestion for standard conditions of testing for all makes of household refrigerating equipment would be the power consumption of the motor, where an average temperature of 45° is maintained in the food compartment with 80° average outside air temperature. Another test should be made with an average outside temperature of 100°.

Earlier Research on Refrigeration in the Home.—Research on refrigeration in the home was carried out by John R. Williams, M. D., to obtain data in order to present a paper before the Third International Congress of Refrigeration, on the subject of "A Study of Refrigeration in the Home and the Efficiency of Household Refrigerators."

Dr. Williams has obtained some interesting information in reference to the construction of household refrigerators in actual use, the temperatures prevailing in the rooms and in the refrigerators, the relative amounts of ice used, etc. Dr. Williams' paper was as follows:

A STUDY OF REFRIGERATION IN THE HOME, AND THE EFFICIENCY OF HOUSEHOLD REFRIGERATORS.

The problem of preserving fresh food from decomposition is one which every household is called upon to solve. The cheapest, most efficient, and most available agency for this purpose is refrigeration or storage at low temperature. In the home the pantry, cellar or an ice-box is depended upon to furnish the low temperature required for proper food preservation.

There is scientific as well as practical basis for this use of cold. It has been demonstrated by laboratory experts that bacteria, which are the cause of food decomposition, are markedly retarded in their growth by temperature below 45° F., and that temperatures between 45° and 50° inhibit to a slightly less extent the propagation of these organisms. Above 50° F. bacteria multiply prolifically. This means that foods favorable for the growth of bacteria, as milk, meat, etc., undergo very slight decomposition when kept at temperatures ranging below 50° F., but above that temperature they spoil very rapidly It follows, therefore that a box or room for the storage of perishable foods, to be at all efficient, must have a temperature not in excess of 50° F., preferably below 45° F.

Even the most favored cities in the United States, in the matter of climate, have periods of from 5 to 7 months when the temperature averages above 50° F. Thus the northern city of Rochester for more than six months of the year has a mean monthly temperature above 50° , as will be seen by the following tabulation, showing the mean monthly temperature of Rochester, N. Y., from 1872 to 1911, inclusive, for the warm months of the year:

	Degrees F.	Degrees F.
May		August
June		September
July		October

During these warm months, artificial means must or should be employed to protect fresh foods from decomposition. House temperatures, even in the cellar, are rarely much lower than those of the outside air. The mean temperature for the month of August, 1912, was 68.9°., while the average temperature of 266 cellar bottoms was 63° F. The importance of these facts will be better appreciated when it is understood that nearly half of the homes in Rochester rely upon the cellar for the protection of their perishable foods. In an investigation of more than 5.450 homes, it was discovered that 2,450 families do without ice the year round and depend upon the cellar or pautry to afford the proper temperature conditions for food preservation. Yet in the study of cellar temperatures in several hundred homes not one was found having a temperature below 55° F. Pantries and kitchens were observed to be even warmer, for not one of either was found having a temperature below 60° F. The obvious conclusion from this investigation is that every home should have artificial means of refrigeration.

As has just been indicated, about 55 per cent of the homes in Rochester use ice during a part of the year, and most of these homes are provided with some kind of an ice box. The endeavor was made to determine how efficient are these refrigerators, and also to learn with some accuracy to what extent ice is used, its cost, etc. Investigation of the problem was undertaken in various sections of the city, each differing from the others in social or economic conditions. These distinctions are indicated in the accompanying tables. Upwards of 100 homes in each district were studied in the following manner:

A trained investigator, equipped with a set of accurate and delicate thermometers and other measuring devices, visited the homes and made the observations. Cellar temperatures were taken approximately twelve inches from the cellar bottom; refrigerator temperatures were taken in the food chamber. Each temperature observation lasted at least fifteen minutes. In making the test the refrigerator door was opened, the instrument placed inside, and the door closed as quickly as possible. When a box was low in ice, or when conditions were discovered which affected the validity of the test, another observation was made on the following day or the questionable data was rejected.

In this study of ice boxes, a large number were examined and the data from 300 accepted as trustworthy. Of these, only 123 had temperatures below 50° F., the other 177 registered above that temperature and were therefore worthless for preserving food.

The main reason for the inefficiency of these refrigerators is to be found in their defective construction and insulation. Most of them are wooden boxes built of half inch lumber, and are lined with tin, galvanized iron, or zinc. The walls vary in thickness from less than two inches to more than four inches. The space between the metal lining and the wooden sides is supposed to contain some insulating material, as felt, mineral wool, vegetable fibre, or some preparation of cork. In many of them nothing more is to be found than a sheet or two of paper. Since the efficiency of a refrigerator depends in large part on the character and thickness of the insulating material. consideration must be given to these factors.

It has been proven both experimentally and practically that confined air is the best insulator. The property of retarding or resisting the transmission of heat by an insulating agent rests largely in the fact that air is incarcerated within its fibers or cells. The more completely the air is confined, the more efficient is the insulation. An insulating agent, to be of value, must not permit of the circulation of air, nor must it absorb moisture. Moisture and air currents are fatal enemies to good insulation. A refrigerator wall which contains a space large enough to permit of air circulation, will be found defective because the air then carries the heat by convection. Wood, telt, mineral wool, charcoal, sawdust, etc., are fairly efficient when they are dry, but as soon as they absorb moisture, as most of them do, their efficiency markedly declines. When there is inferior or inadequate insulation in the wall of the refrigerator, the heat percolates through, warms the air next to the metal lining and thus favors the condensation of moisture on the metal within the wall. The poorer the insulation, the greater is the precipitation of moisture. This dampness not only serves to corrode the metal lining, but also becomes the medium for the growth of germs and filth. If the insulation has the property of absorbing moisture, as have most of the cheap insulating agents, this water of condensation is soaked up and the efficiency of the insulation is correspondingly lowered. Furthermore, this absorbed moisture serves to warp and rot the wood casing, with the result that doors become ill fitting, permitting warm air to leak into the box, still further lowering the efficiency of the refrigerator, besides uselessly melting the ice. Some manufacturers avoid the corrosion of the metal lining by the use of glass, tile, or vitreous enameled metal. The manufacturers of shoddy boxes are imitating these by coating the cheap metal linings with white paint. Such refrigerators usually have little or no insulation, and are worthless for food protection.

The conditions just described were commonly noted in the examination of refrigerators, particularly in the cheap boxes found in the homes of working people. Many were discovered where the door could not be closed tightly. The effect of these evils is evidenced in Tables LXXVII and LXXVIII. The average temperature inside of the food chamber in practically all of the cheap boxes was above 50° F, and the lowest temperatures noted, taken usually soon after icing and under the most favorable conditions, were not low enough to be of dependable value. A properly constructed and operated ice box, with reasonable ice consumption, should constantly maintain a difference of at least 25 degrees between the temperature of the food chamber and that of the outside air when the latter is 70° F. or thereabout. As the outside temperature goes down, this difference will diminish. A box which will not maintain an average difference of more than 20 degrees is not much good, and those with even smaller differences.

TABLE LXXVII.—SHOWING TEMPERATURE OF REFRIGERATORS, LIVING ROOMS AND CELLLARS DURING MONTH OF AUGUST, 1912. ROCHESTER, N. Y.

	F	lefrig	erators		Liv	ving R	ooms	1	Cellar	'S
	45°	50°	00°	09 °	60°	200	°02	550	000	•09
Section	Below	45° to	51° to	Above	Below	60° to	Above	Below	Below	Above
Well-to-do American	29	43	62	4	0	64	61	0	6	78
American laboring	3	17	19	10	0	24	21	0	22	31
lewish laboring	9	20	47	8	0	28	63	0	0	- 73
German-American laboring	1	0	49	2	0	4	18	0	4	- 29
Italian laboring	0	1	6	0	0	0	7	0	0	1(
Totals	42	81	153	24	0	120	170	0	32	253

Since the writer undertook to study the problem of home refrigeration, he has been deluged with inquiries as to the best makes of ice boxes and how it can be determined whether or not a given box is a good one. The answer is neither casy nor simple because the problem deals with the combined complexities of economies and the physics of refrigeration. It seems worth while, however, to discuss simply and briefly the technical questions involved.

The amount of money a family can afford to pay for a refrigerator or for proper insulation depends largely upon the cost of ice. If ice can be procured for nothing, then there is little need to pay much to prevent it from wasting. If, however, it is costly, then it will be found economical to pay for good refrigerator construction. The average retail price of ice in Rochester is \$8.50 per ton, and this will be used as a basis of calculation in the following discussion. Next in order of importance to the cost of ice, is the cost and efficiency of the insulating agent used in the wall of the box. The purpose of the insulation is to prevent the passage of heat from the outside to

TESTING OF ICE REFRIGERATORS

the inside of the box. As said before, the chief value of an insulator depends upon the amount of air entrapped within its cellular structure, and upon its freedom from moisture. If an insulator disintegrates so as to lose its cellular character or air spaces, its efficiency correspondingly declines. If it becomes wet, its value is almost cut in two. In the study of an ideal refrigerator for the home, two factors must be seriously considered, the cost of ice and the cost and efficiency of insulation.

TABLE LXXVIH.—SHOWING	THE COMPARATIVE	TEMPERATURE OF
DIFFERENT MAKES	OF REFRIGERATORS	IN USE IN
ROCHESTE	R. N. Y. AUGUST, 191	2

Total Boxes Examined	Average Tempera- ture Inside Box, Deg. F.	Average Tempera- ture Outside Box.	Average Differ- ence, Deg. F.	Grade of Box	Insulation.
39	48.4	70.9	22.5	Best	1½-in. mineral wool, 1½-in. flax and paper, 3-in. board.
9	46.3	69 .0	22.7	Best	1-in. mineral wool, 3-7%-in. boards, 1/2-in. felt.
7	45.5	69.1	23.6	Best	1-in. vegetable fiber, 2-7%-in. boards, felt sheathing.
6	47.6	69.7	22.1	Best	1½-in. board, ¼-in. vegetable fiber.
7	52.2	69.7	17.5	Medium	
13	51.7	70.4	18.7	Medium	
13	52.7	72.3		Medium	
11	54.5	73.6	191	Medium	Paper, 2-7%-in. boards.
21	53.7	731	19.4	Cheap	Paper, air space, 7/8-in. boards.
6	54. 9	70.0	15.1	Cheap	Paper, and board.
8	52.6	73.8	21.2	Cheap	Paper, and board. Air space.
9	52.2	68.9	16.7	Cheap	Paper, air space.
6 8 9 6 7 7	57.0	74.4	17.4	Cheap	Paper, air space.
7	56.6	71.5	14.9	Cheap	Paper, air space.
	50.9	66.5	15.6	Cheap	Home-made boxes, built-in boxes and
22	510	71.3	20.3	Mixed	those unnamed.
104	53.3	71.3	18.	Mixed	Miscellaneous boxes, more than 70 different makes.
Acres 100					

The average working man who uses a refrigerator spends between \$5.00 and \$10.00 for the ice he uses during the four or five warm months of the year. See Table LXXIX showing the amount spent for ice by various classes of people. Well-to-do families spend between \$15.00 and \$40.00 a year for ice. The cost to families in moderate circumstances varies between these extremes.

Refrigerators in the homes of working people cost, at retail, between \$10.00 and \$20.00. In the homes of those in better circumstances, ice boxes costing from \$25.00 to \$150.00 are to be found. Most of the low-priced boxes are built more with regard to appear-

415

HOUSEHOLD REFRIGERATION

ance than efficiency. The majority of them contain practically no insulation. It is not within the province of this paper, nor has the writer the qualifications which would enable him to intelligently discuss the cost of making refrigerators, but it is within the scope of this discussion to consider the economic value to the consumer of improving the quality of the boxes now in use.

TABLE	LXXIX SHOWING	PRICE	PAID FOR	ICE	PER	YEAR.
	DATA FR	OM 321	FAMILIES.			

Section	Under \$5.00	\$5.00 to \$10.00	\$10 to \$15.00	\$15 to \$20.00	\$20.00 and over
Well-to-do	6	36	33	13	34
American laboring Jewish laboring German-American laboring Italian laboring	34 22 8 4	16 72 14 0	5 10 1 0	1 6 1 0	4 1 0 0
Total	74	138	49	21	39

NOTE: By this table it will be seen that working people spend from less than \$5.00 to \$10.00 or more for ice in the four or five months of the year in which they use it. Those in better circumstances spend correspondingly more. At least 60 per cent of this money is wasted and lost in the inefficient and uneconomical refrigerators in use. Were this loss applied to the purchase of a good ice box, these families in a short time would have adequate and economical refrigeration, in place of the present wasteful and unsanitary methods.

This point can best be illustrated by considering a specific example. In Table LXXX is shown the relation between the amount of insulation, ice consumption, and cost of operation. The refrigerator is of medium size (42x30x18), of good make, and, as ice boxes go, is well insulated. It retails for about \$20.00, more or less, depending upon the trimmings. To be efficient, this box should maintain a fairly constant temperature of 45° F. within the food chamber. To do this, it must maintain an average difference of 20 degrees temperature between the inside and outside of the box. To overcome the heat radiation from a box of this size, and with the kind of insulation within its walls, it would require an ice meltage of approximately 158 pounds per week, or 3,400 for the five warm months. This ice would cost the consumer, at current prices, \$14.45.

If one inch of high grade insulation were added to the walls (corkboard is used as an illustration and is the basis of calculation), it would reduce the quantity of ice necessary to maintain this temperature difference to 90 pounds weekly, or 1,950 pounds for the summer. This would mean a saving of 1,450 pounds in ice and \$6.15 in cost of operation. This added insulation would increase the initial cost of the ice box about \$3.50, but it would pay for itself in about three months.

If two inches of corkboard were added to the insulation in box No. 1, the weekly ice meltage to overcome the radiation would amount

416

to but 65 pounds, or 1,370 pounds for the summer. This would mean a saving of about one ton of ice during the summer and would reduce the ice bill \$8.65. To get this increased efficiency would add approximately \$5.80 to the initial cost of refrigerator. Obviously, a good refrigerator will pay for itself in the ice it saves in three or four years.

TABLE LXXX.—SHOWING HOW THE EFFICIENCY OF A REFRIGERATOR MAY BE INCREASED, THE COST OF OPERATION REDUCED AND THE SAVING TO THE CONSUMER BY ADDING MORE INSULATION.

	THE SHOTING TO THE	oonbenan					
Box No.	Insulation Ileat Transmission Factor Per Sq. Ft. Wall Surface, B.t.u.	Ice Meltage for 15(Days to Maintain Temperature Differ- ence of 20° F.	Ice Meltage Per Week.	Cost of Ice for 150 Days at \$8.50 Per Ton.	Cost of Added Insu lation.	Ice Saved by Added Insulation.	Money Saved by Less Ice Consump- tion.
1	2-7%-in. boards, 2 sheets water-						
2	proof paper, 1-in. mineral wool4.60 Insulation of box	3,400 lbs.	158 lbs.	\$14.45			
2	No. 1, plus 1-inch corkboard2.64 Insulation of box	1,950	90	8.30	\$3.50	1,450	\$6.15
3	No. 1, plus 2-inch corkboard1.85	1,370	65	5.80	5.80	2,030	8.65

NOTE: Were the refrigerators in Rochester brought up to a state of efficiency they would save in lower ice bills to the consumer at least \$350,000 yearly.

Conclusions: Neither the cellar nor pantry in the home are sufficiently cold to keep perishable foods from spoiling during the warm months of the year; therefore, every home should have a good refrigerator.

Only about half the homes in the city have refrigerators; the other half are compelled to depend upon the inadequate protection afforded by the cellar.

The majority of domestic refrigerators are inefficient because they consume too much ice and do not maintain a temperature low enough to prevent food from spoiling.

The chief explanation of their inefficiency is to be found in the lack of sufficient and proper insulation.

There are a large number of shoddy refrigerators on the market which contain no other insulation than a sheet or two of paper. They are sold chiefly to working people who can ill afford to use them, because they are both unsanitary and grossly uneconomical in the consumption of ice. The waste from ice meltage because of improper insulation of refrigerators in Rochester homes (population of city, 230,000) amounts to 60,000 tons yearly, or about \$350,000.

At least \$100,000 more is wasted yearly in the present competitive system of delivery.

Unnecessary waste is now making refrigeration cost consumers from three to five times as much as it should.

There are certain simple directions which will be of assistance in selecting a refrigerator. If they are observed, the purchaser can at least avoid being defrauded.

One should insist upon seeing a section of the wall of the refrigerator which he contemplates buying. Honest manufacturers are always willing to let customers know the character of their wares.

Do not buy a box which does not bear the name and address of the maker, nor one sold only under the name of a retail dealer. If the manufacturer is ashamed to acknowledge his handiwork, you are justified in suspecting fraud.

Section	Less than 2 in.	2 in. to 2¼ in. ,	2½ in. to 2¾ in. inclusive	3 in. or more.
Well-to-do American laboring		36 23	34	19
Jewish laboring		42	8	1
German-American laboring		13	3	1
Italian laboring		0	0	0
Totals	35	114	49	24

TABLE LXXXI.-SHOWING THICKNESS OF WALLS OF REFRIGERATORS.

Do not buy a box which contains less than three inches of good insulation, not including the wooden cases or the metal or tile lining.

Beware of impossible "vacuum," doubtful "dead air space," and no-good paper insulation.

Money invested in insulation will be returned many times in the saving of ice bills. Added insulation means not only economy in ice consumption, but also lower temperature in the refrigerator and the less spoiling of food.

A refrigerator is of little value which will not operate with reasonable care and ice consumption at 45° F. during the summer months.

There is a big field for the manufacturer who will put on the market an efficient ice box which can be sold at a price within the means of people in moderate circumstances.

TESTING OF ICE REFRIGERATORS

Not one cellar was found cold enough to prevent the rapid decomposition of milk and meat. Living rooms were found to be even worse, therefore refrigerators are really a necessity. Only forty-two refrigerators of 300 examined were found as cold as they should be, while 177 of them were above 50° F., at which temperature they are of little value.

Section	50 lbs. or less	75 lbs.	100 lbs.	200 lbs.	201 to 300 lbs.	301 lbs.	plus Total
Well-to-do	0	3	24	79	28	15	149
American laboring	11	16	18	32	3	4	84
Jewish laboring	5	18	8	26	3	0	60
German-American laboring	3	5	10	19	0	0	37
Italian laboring	4	0	0	5	0	0	9
Totals	23	42	60	161	34	19	339

TABLE LXXXII.—SHOWING A NUMBER OF HOMES USING VARIOUS AMOUNTS OF ICE WEEKLY.

A good refrigerator should maintain an average inside temperature of not higher than 45° F., because food spoils rapidly at 50° F. This means a temperature difference of from 20° to 30° during the summer. A box which will not average 20° difference for the five warm months, with a reasonable consumption of ice, is no good. All of the better class of refrigerators use some efficient insulation. None of them use enough. The poorer makes use little or none, excepting a sheet or two of paper. Some manufacturers attempt to obtain cheap insulation by creating small air chambers of paper and wood, which they call "dead air space," a physical and practical impossibility in refrigerator construction. Such boxes are usually worthless.

A properly constructed ice box, to be economically operated, should have a wall of efficient insulating material at least six inches thick. Such a box at the current prices of ice, will have a theoretical efficiency of about 80 per cent. The 149 refrigerators whose wall thickness is less than 2¼ inches, even were they made of the best possible construction, could not have an efficiency above 40 per cent. The remaining seventy-eight refrigerators with walls averaging less than three inches, could not have an efficiency of above 50 per cent. As a matter of fact, with the shoddy and imperfect insulating materials used, most of the ice boxes in common use rate far below their theoretical efficiency.

It is interesting to note that Italian working people use very little ice. It was observed that they avoid very largely the use of perishable foods requiring refrigeration in the home. Thus, condensed milk is used largely in place of fresh milk and preserved meat in place of fresh meat. Jewish people use much milk and therefore much ice.

HOUSEHOLD REFRIGERATION

Unfortunately these people get the benefit of not much more than 20 to 30 per cent of the ice they buy because of the defective ice boxes. There are about 55,000 families in Rochester. They use approximately 100,000 tons of ice yearly in their homes. Beyond all question more than 60,000 tons of this ice is wasted, entailing a loss to these consumers of at least \$350,000.

Section E		3 mo.	4 mo.	5 mo.	6 mo.	7 mo.	8 mo.	9 to 12 mos.
Well-to-do0	2	5	15	22	24	15	8	33
American laboring1	6	10	14	21	3	4	4	3
Jewish laboring0	4	16	26	47	15	5	1	1
German-American laboring1	1	4	8	15	0	0	0	1
Italian laboring0	0	2	0	0	0	0	0	0
Totals2	13	37	63	105	42	24	13	38

TABLE LXXXIII.—SHOWING NUMBER OF MONTHS ICE IS USED-DURING YEAR BY HOMES IN VARIOUS SECTIONS OF ROCHESTER.

NOTE:-This table shows, among other things, the seasonal character of the use of ice. This adds greatly to the cost of distribution, because it necessitates a large investment in equipment, most of which is idle during one-half of the year.

There is a different dealer for each five to fifteen consumers on every street in Rochester, a tremendously wasteful and uneconomical method of distribution. If an economical system of distribution were to replace the present method, a saving could be made to the consumer of at least \$1.00 per ton or \$100,000 yearly for the whole city.

TABLE LXXXIV.—SHOWING THE OVERLAPPING OF ROUTES OF DEALERS IN THE DISTRIBUTION OF ICE.

Street	Number of consumers	Number of dealers supplying consumers
Dartmouth		5
Baden		8
Frank	17	7
Kenwood		6
Adams :		7
Oxford		3

Table LXXXV gives a summary of the data on weekly amounts of ice, cost of ice per year and relative temperatures. From the "Study of Refrigeration in the Home and the Efficiency of Household Refrigerators," by John R. Williams.

420-

TESTING OF ICE REFRIGERATORS

Weekly Amounts los	:	Cost	of Ice pe	r Yea	35
50 lbs or less	7%	Under \$5			
51 to 75					
76 to 100					
101 to 200		\$15 to \$20			
201 to 300		\$20 and o	ver		
301 and over		1			
					100%
	100%				
	TEMPER	ATURES			
In Refrigerators	Living	Rooms			Cellars
Below 45°14%	Below 60°	0%			0%
45 to 50°27%				60°	
50 to 60°51%	Above 70°		Above	60°	
Over 60° 8%					

TABLE LXXXV.--DATA FROM STUDY OF HOUSEHOLD REFRIGERATORS IN ROCHESTER, N. Y.

Bureau of Standards' Tests on Refrigerators.—The United States Bureau of Standards has conducted certain tests on refrigerators. This was reported in the Bureau of Standards Circular No. 55. The following extract and Table LXXXVI gives the principal data in this bulletin:

TABLE LXXXVI.---RESULTS OF TESTS OF REFRIGERATORS.

Refrigerator Number	Room Temperature	Coldest Inside Temperature	Warmest Inside Temperature	Weight of Ice Melted per Hour	Heat Transmission per Hour B.t.u. per Sq. Ft. per Deg. F.	Air Circulation, Cu. Ft. per Min.	Inside Volume	Average Weight of Ice in Box During Test.
1 2 3 4 5 6 7 8 9	Deg. F. 92.1 91.8 91.3 90.0 89.6 91.1 91.5 92.0 93.1	Deg. F. 52.7 57.2 49.3 46.6 49.5 55.9 46.9 44.1 51.8	Deg. F. 64.4 72.1 70.7 69.8 66.2 64.0 66.6	Lbs. 1.50 1.78 1.63 1.43 1.41 1.54 1.63 1.59 1.65	0.14 0.21 0.19 0.14 0.15 0.18 0.15 0.14 0.19	at 60° F. 21.4 19.6 12.7 10.1 12.1 18.5 13.8 13.0 18.5	Cu. Ft. 16.5 18.1 18.0 16.5 18.2 17.1 17.3 19.0	Lbs. 42.2 37.1 41.1 43.2 41.2 42.7 41.8 41.7 40.7

Table LXXXVI gives some results of tests on nine refrigerators of average quality or better, where the air in the refrigerator averages nearly as much warmer than the ice as it is cooler than the air outside; thus, with a room at about 90° , the lowest temperatures inside the refrigerators range from 44° to 57° and the highest 64° to 72° . It has been found (Bulletin No. 98 of United States Department of Agriculture) that in milk kept at 60° , about fifteen times as many bacteria will develop in one day as in milk kept at 50° F., and much the same is true of many other foods. It is important, therefore, to find the coldest places in a refrigerator (usually near where the air leaves the ice chamber) and use these places for foods such as milk and meats which need to be kept as cool as possible to prevent spoiling.

The outside dimension of the refrigerators listed in Table LXXXVI averaged 24 inches deep, 40 inches wide, and 50 inches high.

The figures in the column headed "Heat transmission" gives the amount of heat in British thermal units (B.t.u.) that passes through every square foot of the outside surface of the refrigerator in an hour when the room temperature is one degree F., higher than the average inside temperature of the refrigerator. If the room temperature were ten degrees higher than the inside of the refrigerator, ten times this amount of heat would pass through every square foot of the walls.

The sixth column of Table LXXXVI, headed "Heat Transmission," illustrates the relative merits of the different refrigerators, since it tells directly how much cooling is wasted, that is, how much heat enters the refrigerator through the walls per hour for each square foot of wall, and for each degree difference in temperature between the inside and outside. For instance, to hold the average temperature inside refrigerator No. 1, 30 degrees below the temperature outside would require two-thirds as much ice for No. 2. To be sure, No. 2, though a much poorer refrigerator, used only about one-fifth more ice than did No. 1, but its inside temperature was not nearly so low, and therefore it would not have kept food fresh so long as No. 1.

Slow melting of the ice does not necessarily indicate a good refrigerator. Unless the ice melts, it can absorb no heat, and is therefore of no use in a refrigerator. Protecting the ice in a refrigerator by covering it up is a good way to save ice but a poor way to save food. The only proper way to use less ice is by using a refrigerator with better insulated walls, and by opening the doors as seldom and for as short a time as possible.

N. Y. Tribune Institute Tests.—The N. Y. Tribune Institute reports the ice consumption, as determined by twentyseven tests on well known standard refrigerators, to be between 0.00407 and 0.0100 pounds of ice melted per hour per cubic foot of food storage space, per degree of difference in temperature between room and refrigerator. These values in B.t.u. would be 0.58608 and 1.44 respectively. The results of these tests are shown by tables LXXXVII and LXXXVIII. Tests of Balsa Refrigerators.—Household refrigerators of an improved design constructed entirely of balsa wood, with an interior and exterior coating of a magnesite composition applied in plastic form, were built by the American Balsa Co. The tests described in the following were made on the 100-lb. ice capacity side icer type, by Dr. M. E. Pennington in February, 1923. The results are shown graphically in Figs. 131, 132, and 133. The summary of the performance test of the balsa refrigerator of the household type is shown in Table LXXXIX. From the last column of this table, it will be noted that an average of 3.16 B.t.u. were transmitted per 24 hours per degree of temperature difference per square foot of radiating surface.

Insulation	Average Room Tem: perature Deg. F.	Average Food Com- partment Tempera- ture Deg. F.	Average Ice Con- sumption Pounds per Hour.	Radiation Area Sq. Ft.	Heat Loss B.t.u. per Hour	Heat Loss B.t.u. per Sq. Ft. per Day per Degree Temperature Difference
Fibre Board and Air	74.6	55.3	0.746	33	123	4.7
Granulated	$\begin{array}{c} 69.6 \\ 71.0 \end{array}$	43.1	0.826	44.5	127	2.6
Cork and Wood		45.4	1.085	44.5	168	3.5
Flaxinum, Wood, Felt and Paper	68.1 71.0 7.9 79.7	46.6 47.5 49.7 49.8	0.691 0.792 1.279 1.539	33 33 40.6 40.6	108 125 198 253	3.85 4.05 4.0 4.9
Fibre Board and Air	69.3	47.0	0.763	28.2	120	4.6
	70.8	47.6	0.750	28.2	118	4.4
Mineral Wool, Paper	67.5	47.6	0.739	36.9	117	3.8
and Wood	68.4	48.0	0.741	36.9	117	3.7
Wool Felt, Paper,	67.6	48.2	0.582	21.2	92	5.4
Air and Wood	66.7	46.5	0.511	21.2	80	4.5
Flax Fibre, Wood	69.3	47.8	0. 891	39.9	141	4.0
and Air	70.5	48.0	1.085	39.9	171	4.6
Iron, Cork, Air and Wood	72.3	47.2	0.828	32	124	3.7

TABLE LXXXVII.-TESTS BY NEW YORK TRIBUNE INSTITUTE.

Note:-Radiation area is the average between the outside and inside surfaces of the cabinet. The heat loss includes both the effect of melting ice and heating the resulting ice water.

HOUSEHOLD REFRIGERATION

Test Method .	Average Room Tem- perature Deg. F.	Average Food Com- partment Tempera- ture Deg. F.	Radiation Area Sq. Ft.	Heat Loss B.t.u. per Hour	Heat Loss B.t.u. per Sq. Ft. per Day per Degree Temperature Difference
	Test A, Fi	bre Board	and Air		
Ice	55.3	74.6	33.	123.	4.6
Non-Circulating Hea	t 102.	77.	33.	169	4.9
Tes	t B, Granu	lated Cork	and Wo	od	
Non-Circulating Hea		71.4	35.2	185.5	4.6
Circulating Heat	95.	68.0	35.2	215.	5.4
Test (C, Granulat	ed Cork, A	ir and V	Vood	
Ice	47.2	72.3	32.	124.	3.75
Circulating Heat	104.	62.6	32.	221.	4.0

TABLE LXXXVIII.--- ICE REFRIGERATOR TESTS BY NEW YORK TRIBUNE INSTITUTE

Note:—Each set of readings is the average value of two tests. Radiation area is the average between the outside and inside surfaces of the cabinet. Heating element is shielded to reduce heat loss to walls by radiation. In heat tests a "dummy" ice cake was used to offer similar resistance to

In heat tests a "dummy" ice cake was used to offer similar resistance to air circulation as in ice melting test. A small fan was used in the circulating heat test. These tests indicate that the non-circulating heat method of testing gives results corresponding very closely to the results by the ice melting test. The electric heating element is placed in the food compartment and, of course, produces some air circulation inside the cabinet. The electrical has many advantages over the ice melting method.

The purpose of the test was to determine ice meltage, box temperatures, and efficiencies under several conditions of icing as indicated in the three following tests:

Test "A" was an average of four consecutive 24-hour test periods. Ice was replaced at beginning of each test period by new cake of same approximate, original weight. Results graphically shown on Fig. 211.

Test "B" was an average of two consecutive 48-hour periods. Ice replaced at beginning of each test period by new cake of same approximate original weight. Results graphically shown on Fig. 212.

Test "C" was a continuous 96-hour test period without re-icing. The results are graphically shown on Fig. 213.

Box Specifications .- Box was designed and built by the American Balsa Co., for the National Association of Ice Industries, Dr. M. E. Pennington, consulting and advisory technical expert for the association:

DIMENSIONS OF REFRIGERATOR

Width	Depth	Height
Outside dimensions over all		50 -in.
Inside dimensions		385/8-in.
Ice compartment (Including Baffle)14 ¹ / ₈ -in.	155/8-in.	27 -in.

424

TESTING OF ICE REFRIGERATORS

Mill-	compartment		-in.	155/8-in.	115/8-in.
MILLE	compartment	16	:		385/8-in.
Food	compartment		-111.	15/8-111.	50%g=m.

DOOR OPENINGS IN REFRIGERATOR

Width	Depth	Height
Ice compartment		25 -in. 10½-in.
Milk compartment		385/8-in.

The box is lined and covered by American Balsa Company's synthetic stone, applied directly to 2-inch Balsa insulation, making a seamless lining and covering finished in white enamel inside and out. Baffle, shelves ice tray and pan, bunker and drain pipe are entirely removable.

The tests were made at the Bronx Plant of the American Balsa Co., in experimental refrigerator test room where room temperatures could be reasonably controlled.

Temperature Observations.—Room temperatures and averages were determined from S. & B. recording thermometer. Reading averaged hourly from recording chart. Leads & Northrup resistance thermometers and reading box were used to determine all box temperatures. These thermometers read to 0.1 degree and were calibrated before and after tests. Box temperatures were observed at the following locations:

- 1. Warm air inlet.
- 2. Middle food compartment.
- 3. Bottom food compartment.
- 4. Cold air drop.
- 5. Middle milk compartment.
- 6. Middle top shelf.

Average temperature, middle food compartment, was determined by averaging middle milk compartment and middle top shelf compartment temperatures. This average temperature was used in all calculations.

Ice Meltage.—Rates of ice meltage were determined from actual meltages, by removing ice from box at end of 24-hour periods and weighing. After weighing, cake was replaced or new cake substituted as conditions of test demanded. Check meltages were taken by weighing drip water, but these figures were not used in calculations. Readings were taken at 9 a. m. and 10 a. m., at noon and at 3 p. m. and 5 p. m. Twenty-four hour test and ice weighing intervals were from 10 a. m. to 10 a. m.

Results.—Results of tests are shown graphically in Figs. 214, 215 and 216 and Table LXXXIX, and comprise the complete results of this test, which is the American Balsa Company's Laboratory Experiment No. 258.

HOUSEHOLD REFRIGERATION

B.t.u. Loss per 24 Hrs. per Deg. per Sq. Ft. Rad. Surf.	3.13 3.24 3.10
Ice Melted per Hr. per Deg. per Sq. Ft. Rad. Sunf.	.000907 .000934 .000895
Ice Melted per Hr, per Deg. per Cu, Ft. Food Comp. Vol.	.00397 .00409 .00392
Ice Melted Lbs. per Hr.	.802 .802 .737
Average Temperature Difference	28.6 27.7 26.5
Average Food Compartment Temperature	43.6 44.1 45.3
Average Room Temperature	72.1 71.7 71.8
Duration of Test IIrs.	96 96
Rad. Surf. Total Inside Area	$31.02 \\ 31.01 \\ 31.01 \\ 31.02$
Per Cent Ice to Food Compartment	48.8 48.8 48.8
Per Cent lee Comp. to Total Vol.	32.8 32.8 32.8
Vol. Food Comp. Cu. Ft.	7.08 7.08 7.08
Vol. Ice Comp. Cu. Ft,	3.45 3.45 3.45 3.45
Total Vol. Cu. Ft.	$10.53 \\ 10.53 \\ 10.53 \\ 10.53$
lce Cap. Lbs.	Test A
	Ice Melted per Hr, per Deg. per Sq. Ft. Rad. Suif. Ice Melted per Hr, per Deg. per Cu, Ft. Food Comp. Vol. Ice Melted Lbs. per Hr. Average Temperature Difference Average Food Compartment Temperature Average Room Temperature Duration of Test Hrs. Rad. Suif. Total Inside Area Per Cent Ice to Food Compartment Per Cent Ice Comp. to Total Vol. Vol. Food Comp. Cu. Ft. Vol. Ice Comp. Cu. Ft. Total Vol. Cu. Ft.

426

FIG 214.-BALSA REFRIGERATOR TEST CHART.

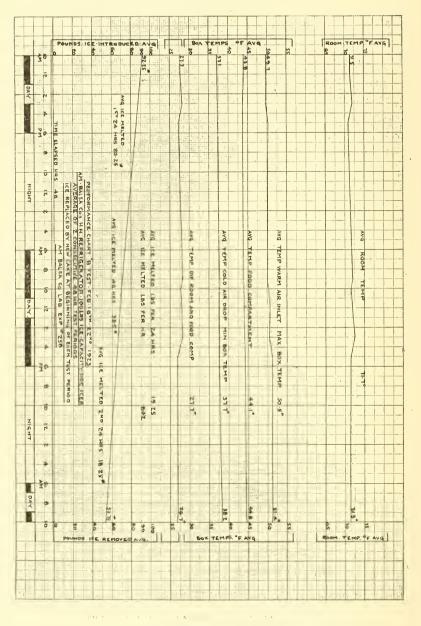


FIG. 215 .- BALSA REFRIGERATOR TEST CHART.

TESTING OF ICE REFRIGERATORS

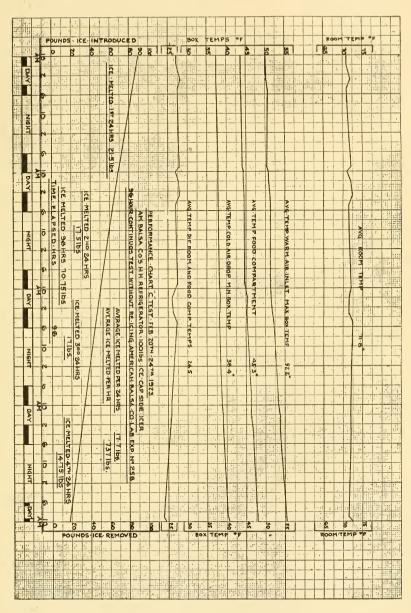


FIG. 216 .- BALSA REFRIGERATOR TEST CHART.

429

Tests at University of Illinois.—An exhaustive test in the University of Illinois laboratories compared three refrigerators purchased from the stock of local dealers. One was with granulated cork insulation, while the other two used mineral wool and other insulations. The lower melting rate per hour, proved that the refrigerator with its granulated cork insulation was the most economical refrigerator for general use. The figures are as follows:

	0		ours ested	Ice Melt	Melt Rate Per Hour
No. 2. (N	Graulated Cork) Aineral Wool) Aineral Wool)	 1199	hours	71 lbs.	0.592 lbs.

Assuming that a refrigerator is used for six months of each year, and that the ice will cost fifty cents per cwt., the cost of the ice for the year will be as follows:

Tests by Good Housekeeping Institute.—The Good Housekeeping Institute, conducted by the Good Housekeeping Magazine of New York City, reports the following result of a test on Bohn Syphon refrigerator:

The refrigerator is well-constructed throughout, and provided with a one-piece seamless lining with rounded corners, that is, a smooth, hard surface, easily kept clean and in a sanitary condition. In tests of one hundred consecutive hours duration, the following results were obtained.

Average Food	Average	Averae Ice
Compartment	Room	Consumption
Temperature	Temperature	Lbs. Per Hour
45.5 F.	75.1 F.	0.750
41.2 F.	68.1 F.	0.613

The method of rating was as follows:

Construction
Efficiency of DesignVery Good
Efficiency of OperationVery Good
Initial CostMedium
Upkeep CostLow

The refrigerator scores 94 points.

The detailed specifications of this cabinet are as follows:

	Width Inches	Depth Inches	Height Inches
Outside	36	21	47
Large Provision Chamber	.13¼	141/4	32

Small Provision Chamber 15	141/4	93⁄4 18
Ice Chamber 133/4	153/8	18
Ice Chamber Door Opening 111/4		147⁄8
Ice Chamber Capacity, 100 pounds		
Shipping Weight, 335 pounds	•	
Total Volume Overall		
Food Storage Space	4.7	Cu. Ft.
Ice Storage Space		
Shelf Area	6.7	Sq. Ft.
Insulation: Wood, flax fibre, dead air space, wool fo waterproof paper.	elt, paper, ar	nd

The pounds of ice melted per hour per cu. ft. food storage space per degree temperature difference were as follows:

First	Test	 0.0054
Secon	d Test	 0.00484

Tests on Ice Refrigerators.—The following data, on testing of ice refrigerators, has been published by the Davison All-Steel Refrigerator Co., in Montreal, Canada. The room temperature during the test was 68° F.; one piece of ice weighing initially sixteen pounds was used, and the refrigerator tested was the Frost River type No. 24. The piece of ice lasted for sixty-eight hours and the lowest temperature obtained in the food chamber was 48° F., the insulation consisting of linofelt and air space. The outside volume of the refrigerator was seventeen cubic feet. The food compartment was 5.65 cu. ft. The shelf area was 8.2 sq. ft. and the total shipping weight was 162 pounds.

Date	Time	Temperature of Food Chamber	Amount of Ice
May 9	2 P. M.	66	16 Pounds
	10 P. M.	54	
	2 P. M.	52	
	4 P. M.	52 (Temp. Ice Chamber 42)	
May 10	12 Noon	50	
	Midnight	50	
	7 P. M.	48	
May 11	7 A. M.	48	
ĩ	12 Noon	49	
May 12	7 A. M.	58	
-	12 Noon	60 Out of Ice	

TABLE XC .- REFRIGERATOR TEST.

Tests on Average Household Refrigerators.—Table XCI gives the result of the tests on fifteen average household refrigerators used in homes. From this, it is interesting to note that the average temperature inside of the refrigerator

at the middle shelf was 55°, that the average number of pounds of ice consumed per day was 29.6 and that the average cost of ice per day per refrigerator was 14.8 cents.

TABLE XCI.—TEST ON FIFTEEN AVERAGE HOUSEHOLD REFRIGERATORS IN USE IN HOMES.

Refrigerator Score Card.—A refrigerator score card for the purpose of comparing different kinds of refrigerators has been prepared by F. O. Riek, of the Rhinelander Refrigerator Co., who has used some data and suggestions contained in a score card for refrigerators originally published in the Chicago Tribune by Dr. W. A. Evans, and is as follows:

REFRIGERATOR SCORE CARDS

Name	of manufacturer		
Name	or other method of designating refrigerator		
		-	-
	Points of Score	Perfect	Score
1.	Temperature of Food Chamber	45	
2.	Ice Economy or Efficiency	20	
3.	Humidity	8	
4.	Circulation	7	
5.	Interior Finish	12	
	Drainage		
	Exterior Finish		
	-		
	Total	100	

Explanation of Score Card:

1. Temperature Test: Standard conditions for test demand refrigerator to be in a room free from drafts and at an even temperature. Box should not contain food. Door should not be opened except when taking readings. Refrigerator should be cold throughout. Have the ice chamber full. Place thermometer in the center of the food chamber. Make four readings at intervals of not less than one hour. Take room temperature four times.

Rate as follows:	
When temperature is: 40° F. 45 50 55 60	The score will be under: 45 43 36 23 9
over 60	0

2. Ice Economy: Refrigerator should be cold when test is begun. Weigh ice at the beginning of test. Weigh ice left at termination of test. Obtain data:

(a) Temperature of food chamber.

(b) Temperature of room.

(c) Square feet of surface exposure calculated on exterior dimensions.

To determine substitute in the following formula:

I 144	where R equals "efficiency" of rate of heat trans-
R=	mission which may be defined as the number of
S (T-t)	B.t.u. which pass through one square foot of surface
	daily when the difference between the surface is 1° F.
	I equals the number of pounds of ice melted daily.
	144 equals B.t.u. required to melt one pound ice.
	S equals surface exposure.
	T equals average atmospheric temperature.
	t equals average temperature of food chamber

Rate as follows:

Where	R	equals	1.13	rate	20
				rate	
			2.00	rate	16
			2.33	rate	14
				rate	
				rate	_
			5.00	rate	0

3. *Humidity*: In making humidity tests a wet and dry bulb thermometer should be used. At least four readings are to be taken at intervals of one hour.

See Bureau of Standard tables for readings calculated upon differences in temperatures of wet and dry thermometers. Score as follows:

Percentage humidity ranges

55	to	65	rate 8.	.0
65	to	75	rate	.5
45	to	55	rate 7.	.5

433

40	to 45	rate			 	 	 7.2
75	to 80	rate			 	 	 6.4
30	to 40	rate			 	 	 6.0
80	to 85	rate			 	 	 4.8
20	to 30	rate			 	 	 4.8
85	to 95	rate			 	 	 2.4
90	and	over	rat	е.	 	 	 0.0
20	and u	ınder	ra	te	 	 	 0.0

4. Circulation of Air: Note Whether the box can be ventilated. Credit for possibility for ventilating. Credit for probability that cold air will pass from ice to food and air returns from the food to the ice. If any wall is moist substract at least two. If air cannot reach ice, subtract two.

5. Interior Finish: Ease of cleaning refers to cleaning of food chamber, all shelves therein, and the drain pipes. If ease of cleaning is ideal, value six. If finish is hard and non-absorbent, value three, If color is white, value five,

6. Drainage: A. See that the trap in the drain pipe works. there is proper trapping, value two. If there is proper tubing, value one

- B. Construction of Refrigerator:
 - 1. Arrangement of chamber-show diagram.
 - 2. Temperature maintained.
 - a.-Ice chamber. b .- Food chamber side.
 - c.-Food chamber below.
 - 3. Insulation-show diagram.
 - 4. Economy of space in food chambers.
- C. Cost:
 - 1. First Cost.
 - 2. Maintenance Cost
- D. Manufacturer's Claims: Does the manufacturer over-emphasize minor details in advertising his refrigerator?

Determining the Efficiency of a Refrigerator Wall.*-To determine the heat transmission value of a wall in B.t.u.'s per square foot per degree Fahrenheit temperature difference, it

References: Lynde, "Household Physics." Bureau of Standards Circular No. 55, Measurements for the Household. Manufacturers' Catalogs.

Good Housekeeping Institute. Good Housekeeping Magazine, May, 1914. A study of Refrigeration in the Home and the Efficiency of Household Refrigera-tors.-J. R. Williams.

^{*}From Rhinelander "Handbook of Refrigeration."

is necessary to know three things. That is, when structure of wall is not known.

These three factors are:

1. Square feet of surface exposure calculated the mean transmission surface on exterior dimensions and also interior surface.

2. The weight of ice melted in 24 hours.

3. The difference between the average temperature of inside refrigerator food chamber and room temperature.

To find the average or "mean transmission surface" get, first of all, the square feet of surface calculated on exterior dimensions. Then get total square feet inside by measuring inside surface. Average of two square surfaces—exterior and interior is mean transmission surface.

The weight of ice melted is determined by weighing the empty water pan at start of test, then at conclusion of 24 hour test weighing the water and pan, deducting the initial weight of empty water pan.

To get temperature tests outside and inside standard conditions for test require refrigerator to be in a room free from drafts and at fairly even temperature. Box should not contain food. Doors should not be opened; except when taking readings. Refrigerator should be thoroughly chilled, at least 48 hours before making test. Have ice chamber full. Place thermometer in the center of food chamber and make at least four readings at about three hour interval. Take room temperature at same time. Average all food temperatures and outside room temperature and then find difference between the two averages.

Use following formula:

X equals
$$\frac{J \quad 144}{S \quad (T-t)}$$

I equals ice melted.

144 equals B.t.u. required to melt one pound of ice or Latent Heat. S equals mean transmission surface.

T equals average room temperature.

t equals average temperature of food chamber.

X equals number of B.t.u.'s passing through one square foot of surface per degree Fahrenheit temperature difference.

.

.

CHAPTER XII.

PRESERVATION OF FOODS IN THE HOME

Influence of Temperature on Bacteria in Foods.—Temperature has an important influence on the growth of bacteria. Most bacteria, yeasts, molds, and related organisms grow best at a temperature between 68° and 122° F., and do not grow at a temperature below 45° to 55° F. Cold retards their growth and tends to preserve these microorganisms as well as the food unchanged. It is well known that foods removed from cold storage are inferior in keeping qualities to the corresponding fresh foods. Freezing decreases the number of bacteria but does not immediately kill them. Most molds are easily destroyed by freezing.

Bacteria will multiply in milk as long as it is not frozen entirely solid. Milk of good quality will stay sweet and in perfect condition for more than a week if it is held at a temperature slightly above the freezing point. The temperature at which it is held determines the rate and kind of decomposition which takes place. Milk should stay sweet when stored properly for at least ten days.

Heating milk to 212° F. for about fifteen minutes will kill all except a few spores of bacteria. Several heatings are necessary to kill all vegetative cells.

Most of the living bacteria in butter diminish when it is refrigerated—a few kinds may multiply. There is a slow increase in acidity. The bacteria and chemical composition remain practically the same in frozen butter. The keeping qualities of butter depend largely upon the cleanliness and the quality of the materials used in making it. Fruits and vegetables are usually adapted to preservation for short periods at ordinary temperatures. The best storage conditions for them is at temperatures slightly above the freezing point and a humidity of 60 per cent saturation. A higher humidity favors the development of molds.

Bacteria do not multiply in ice as they have nothing upon which to feed. When liquids are frozen solid the number of bacteria decreases very slowly.

Effect of Refrigeration Upon Foods.—Cold does not destroy the microbes in food but retards their activity and growth. The decomposition of foods is caused by the action of their own enzymes and more frequently by the activity of bacteria, yeast, and molds.

Fruits and vegetables should be stored at a temperature slightly above 32° F. and in a humidity at about 60 per cent of saturation, in order to diminish evaporation without developing molds. The best storage condition to prevent the development of bacteria and molds, is to keep the fruits and vegetables in a very constant humidity and a very constant temperature, slightly above 32° F.

Laboratory tests prove that the bacteria which cause food decomposition have their growth greatly retarded below a temperature of 45° F. Between 45° and 50°, they grow at a slightly greater rate, and above 50° F. the bacteria multiply prolifically. Perishable foods should be stored in a temperature not over 50° F. and preferably below 45° F.

It is important that foods be used shortly after they are removed from cold storage. Cold foods often condense moisture from the atmosphere on their surface, and it is well known that their keeping qualities are then inferior to corresponding fresh foods.

Ice and Its Relation to Food.—Dr. Leonard Keene Hirschberg, writing in the *Chicago Evening Post*, gives the following on the use of ice as a means of preservation of food:

Ice checks the growth of living things to the extent that it almost causes the smallest forms of vegetable and animal creation to cease to exist as life. Usually, it does not kill, but it produces a condition of latent life, like the winter sleep of bears, beavers, snakes, and other creatures.

Ice thus becomes a help to man. It checks the birth, growth, multiplication, vitality, virulency, and noxious activity of bacteria, molds and other such living things which spoil foods, and especially those such as the typhoid bacilli.

The reason milk and so much food spoils in summer is because these unseen colonies of bacteria and other vegetation multiply and incubate in the warmed food. Its texture, appearance, color, taste, flavor, odor, and value thus depreciate.

Bacteria are everywhere on even the cleanest hands, but many more are on soiled hands and dirty nails. Flies, ants, roaches, dust, wind, and water carry them.

Ice keeps down the growth of bacteria, but you can only prevent them from spoiling food or causing disease by being sure of pure milk, pure water, sterile vessels, and dishes. You should scald everything, including linens.

Even where foods are apparently not spoiled, such germs as those of dysentery, scarlatina, colds, tuberculosis, typhoid, diphtheria, influenza, botulism, and others may be germinating, just as a seed does in summer in fertile soil.

Scrupulous cleanliness or surgical cleanliness means more than soap and water cleanliness. It means freedom of everything from germs by asepsis and sterlization.

Sunlight, harmless disinfectants, sterlization or boiling keep down to a minimum the growth of germs.

Ice boxes, refrigerators, cold storage, porous earthenware, coolers, vacuum jacketed bottles, and other measures to keep food in summer well below 45°, all help to keep it free of any great increase and growth of bacteria.

Perhaps more difficult to keep and most important in the summer kitchen is milk. If there are infants about, their very lives depend upon milk free of bacteria.

Sour milk is not the only milk teeming with bacteria. Indeed, the sweetest and richest milk is often alive with deadly germs, which becomes planted in the little one's intestines.

Unless milk goes directly into sterlized bottles from a cow whose hide is made germ-free by disinfectants, by the time it passes through hands, cans, bottles, and nipples it has millions of dangerous bacteria in it.

The only safe way to keep milk in summer is to boil it twenty minutes and put it on ice at once, and keep it there until given to the child. In summer especially, but also in the winter, ice should not be spared around the house. It is one of the cheapest and most useful of modern conveniences. As a health preserver, it is seldom given its due need of praise.

Care of Milk in the Home.—Farmers' Bulletin No. 1207 of the United States Department of Agriculture gives the following dissertation on the care of milk in the home:

No matter how well milk has been handled up to the time it is delivered to the consumer, it can not be expected to keep well if it is then carelessly treated. Milk should be kept clean, covered, and cool, these three points, consumer as well as producer should never disregard.

In towns and cities, the best way of buying milk is in bottles. In this form it can be kept clean and cool more easily during delivery and is much more convenient to handle. Dipping milk from large cans and pouring it into customers' receptacles on the street with the incident exposure to dusty air, is bad practice. Drawing milk from the faucet of a retailer's can is not quite so bad as dipping, but the milk is not kept thoroughly mixed and some consumers will receive less than their share of cream. By whichever of these methods the milk is measured, it should be delivered personally to some member of the household, if possible, or a covered vessel may be set out, such as a bowl covered with a plate, or better still a glass jar, used for no other purpose, with a glass lid but without a rubber. Under no circumstances should an uncovered vessel be set out to collect thousands of bacteria from street dust before the milk is poured into it. Money and paper tickets are often more or less soiled; hence neither should be put into the can, bowl or jar.

Sometimes milk is delivered as early as 4 o'clock in the morning, remains out of doors in a place exposed to sunshine and perhaps accessible to cats and dogs until 9 or 10 o'clock. This is wrong. If the milk cannot conveniently be brought into the house at once, the delivery man should be asked to leave it in a sheltered place or in a covered box provided for the purpose. Even a temporary rise in the temperature of milk will help the development of bacteria that have been held in check by keeping the milk cool, and domestic animals rubbing against a milk container may contaminate it with bacteria dangerous to health.

As soon as possible after delivery, milk should be put in a cool, clean place and kept there until used. It deteriorates by exposure to the air of pantry, kitchen, or nursery. Unless it is in the bottle into which it was put in the dairy, it should be poured into a freshly scalded vessel and covered.

The best temperature for keeping milk is 50° F. or less, and good milk kept that cool should remain sweet for 12 hours at least, and ordinarily 24 hours or more, after it reaches the consumer. If ice cannot be obtained, an iceless refrigerator or some such device is a help even though a temperature as low as 50° F. can rarely be maintained in it.

In the ordinary refrigerator, unless the milk container is in actual contact with the ice, the milk will be colder at the bottom of the refrigerator than in the ice compartment, for cold air settles rapidly. The refrigerator should be kept clean and sweet at all times. Inspecting it thoroughly at least once a week is a good plan, to see that outlet for water from the melting ice is open and that the space under the ice rack is clean. Also the food compartments should be scalded every week. A single drop of spilled milk or a particle of neglected food will contaminate a refrigerator in a few days.

Sometimes in very hot weather housekeepers complain that, in spite of all precautions, milk sours quickly, even in the refrigerator, which, although cool in contrast with the heat outside, is really not cold enough to check the growth of the bacteria in milk. If a thermometer placed inside registers more than 50° F., the fault cannot be laid entirely to the quality of milk.

Milk should be kept covered to exclude not only dirt and bacteria but also flavors and odors, which it readily absorbs. It should be kept away from foods of strong odor, such as onions, cabbage, or fish.

Bottled milk should be kept in the bottles in which it is delivered until needed for use. In fact, from a sanitary standpoint, serving milk on the table in the original bottles is excellent practice. In any case a milk bottle, especially the mouth, should be cleaned carefully before the milk is poured from it, and only what is needed for immediate use should be poured out at a time. This bottle should be kept covered with a paper cap or an inverted tumbler as long as there is milk in it.

New milk should never be mixed with old unless it is to be used at once; the old milk is likely to contain a larger proportion of bacteria. Some persons even go so far as to say that milk or cream that has been exposed to the air by being poured into other vessles for table or cooking use should not be poured into the general supply.

As soon as a milk bottle is empty, it should be rinsed first in cold water, and then in warm water until it appears clear; then set bottom up to drain. It should not be used for any other purpose than for milk.

All utensils with which milk comes in contact should be rinsed in cold water, washed, and scalded with water at or near the boiling point every time they are used. It is a good plan to set them away unwiped. In no case should they be cleaned in water that has been used for other dishes since it was scalded.

The Application of Refrigeration to Milk.—The following data on the application of refrigeration for cooling and storing milk is taken from United States Department of Agriculture Bulletin No. 98:

Effect of Freezing on Milk.—While the action of cold on milk at a temperature above the freezing point has no other effect than that of varying the density and viscosity at a temperature below the freezing point, it changes the chemical and physical composition.

According to Kasdorf, when raw milk which was partly frozen at a temperature of 10.5° F., in the ordinary container, during transportation, it was found that ice first formed around the sides and at the bottom of the can; the central core contained most of the casein, sugar, and other mineral ingredients, while most of the fat was found in the top layer of the liquid portion.

When milk has been frozen gradually, without agitation, and thawed out, clots will be found floating in the liquid, composed mostly of albumen and fat, which may be dissolved by cooking; on the other hand, if the milk is preserved in a frozen condition for three or four weeks, these clots will be very hard to dissolve, and the difficulty experienced in dissolving them increased as the length of time the milk is preserved in a frozen state. For this reason, the freezing of milk, for the purpose of transportation, has hitherto been little used.

If the milk is held at 32° F., for a few days, some types of bacteria may grow and multiply slowly. With a good quality of milk, i. e., that containing few bacteria, it may take weeks or even months for them to gain great headway. What few bacteria develop at low temperatures are of different species from those ordinarily found at the higher temperatures, and they may produce marked changes in the chemical composition of the milk, without especially changing its appearance. Consequently, it is unsafe to assume that milk which has been held for several days at a low temperature is in good condition. According to Pennington, milk exposed continually to a temperature of 29° to 32° F., causes, after a lapse of from 7 to 21 days, the formation of small ice crystals which gradually increase until the milk is filled with them, and there may be an adherent layer on the walls of the vessel. The milk does not freeze solid. In spite of the fact that the milk was a semi-solid mass of ice crystals, an enormous increase in bacterial content took place. Though the bacterial content was numerically in the hundreds of millions per cubic centimeter there was neither taste nor odor to indicate that such was the case. Neither did the milk curdle when heated, and the unfitness of the milk for household purposes would not ordinarily be detected until the lactic acid bacteria decreased in numbers and the putrefactive bacteria began to develop.

Influence of Temperature on the Bacteriological Flora of Milk.— Each species of bacterium found in milk and each particular variety has an upper and lower temperature limit beyond which it does not grow, and a certain temperature, called the optimum, at which it grows best.

The optimum temperature of most forms occurring in milk is between 70° and 100° F. As the temperature of milk is lowered, the rate of growth is diminished until at 40° F., the multiplication is very slow, and at a temperature just above the freezing point the development practically ceases; in fact, there is an apparent decrease in the number, at least for a short time. The action of cold at this temperature, however, does not totally destroy life in the bacteria, but causes them to lie dormant. When the temperature of the milk is raised, they again begin to multiply. As an illustration of the relative variation in the growth of bacteria in milk held at different temperatures, one writer gives the data found in Table XCII, in which "I" is assumed to represent the number of bacteria in the fresh milk, and the relative numbers which will be found at the end of 6, 12, 24, and 48 hours, at the two temperatures, are shown in the succeeding columns. The figures are based on a number of actual counts and illustrate the effect of a difference of 18 degrees on the multiplication of bacteria. If the milk had contained at the beginning 1.000 bacteria, the part held at the lower temperature would have contained at the end of 24 hours only 4,100 bacteria, while the other would have contained at the same stage 6.128.000. Table XCIII from Bulletin 133 (Extension Bulletin 8) of the Agricultural Experiment Station of Nebraska, illustrates the importance of holding cream at low temperatures.

Milk Held at			of Bacteria 24 hrs.	
50° F 68° F	 A	1.0	4.1 6,128.	6.2 357,499.

TABLE XCII.—MULTIPLICATION OF BACTERIA IN MILK HELD AT DIFFERENT TEMPERATURES.

Rogers, Lore A., Bacteria in Milk. U. S. Department of Agriculture, Farmers' Bulletin 490. Washington, D. C.

Influence of Time on the Bacteriological Flora of Milk.—The influence of temperature and time bear certain definite relations to each other; hence, a study of one necessarily includes a study of the other. Table XCIV serves to illustrate the effect of time as well as tem-

perature on the keeping qualities of milk. If the table is read downward, we note the effect of temperature and if read across, the effect of time. When milk is first drawn from the cow it usually contains bacteria, even though it is produced under sanitary conditions, and if held at the ordinary temperature of the surrounding air, in a short while the bacteria will grow and increase in numbers so rapidly, that when such milk reaches the consumer it will contain many thousand bacteria per cubic centimeter.

TABLE XCIII.—THE EFFECT OF TEMPERATURE ON THE GROWTH OF BACTERIA IN CREAM.

Temperature of Time Cream Held	Number of Bacteria per C. C.	Tem perature of Cream	Time Held	Number of Bacteria per C. C.
Degrees Fahr. Hours	D	egrees Fahr	Hours	
3210	3,300	70	11	188,000
5010	11,580	80	11	2,631,000
6010 ¹ / ₂	15,120	90	111½	4,426,000

Conn furnishes an example of milk, giving the following results:

	Bacteria	per c. c.
Milk	drawn at 59° F.	153,000
After	1 hour	616,000
66	2 hours	539,000
6.6	4 hours	680,000
64	7 hours	1,020,000
**	9 hours	2,040,000
48	24 hours	35,000,000

According to Park, two samples of milk maintained at different temperatures for 24, 48, 96 and 168 hours, respectively, showed the development of bacteria as indicated in Table XCIV. The first sample was obtained under the best possible conditions, while the second sample was obtained in the usual way. When received, the first sample contained 3,000 bacteria, and the second 30,000 per cubic centimeter.

In Table XCIV, it will be noted that at 32° F., there is an actual decrease in the number of bacteria in both samples of milk during the 168 hours, while at all other temperatures there is an increase in the numbers of bacteria. Ordinarily, the consumer receives milk when it is from 24 to 48 hours old; hence, it becomes an easy matter to deliver the milk in good condition, providing the milk is produced under sanitary conditions and is properly cooled and held at a temperature of 50° F., or below. An examination of the tables and figures will show how intimately the two influences of time and temperature act and interact in relation to the multiplication of bacteria in milk.

444

From the foregoing, it is obvious that proper refrigeration is of the utmost importance in the preservation of milk. In fact, without thorough cooling, it is impracticable to keep milk for any considerable length of time, in a condition that would justify its use for household purposes. It should be cooled at 50° F. or below as quickly as possible after it is drawn from the cow, as such cooling will at once check the increase of bacteria.

Temperature	24 Hours	48 Hours	96 Hours	168 Hours
32° F. (0 C.)	2,400	2,100	1,850	1,400
	30,000	27,000	24,000	19,000
39° F. (4 C.)	2,500	3,600	218,000	4,200,000
	38,000	56,000	4,300,000	38,000,000
42° F. (5 C.)	2,600	3,600	400,000	
	43,000	210,000	5,760,000	
46° F. (6 C.)	3,100	12,000	1,480,000	
	42,000	360,000	12,200,000	
50° F. (10 C)	11,600	540,000		
	89,000	1,940,000		
55° F. (13 C.)	18,800	3,400,000		
	187,000	38,000,000		
60° F. (16 C.)	180,000	28,000,000		
the million of	900,000	168,000,000		
68° F. (20 C.)	450,000	25,000,000,000		
	4,000,000	25,000,000,000		
86° F. (30 C.)	1,400,000,000			
040 D (05 C)	14,000,000,000			
94° F. (35 C.)	25,000,000,000			
	25,000,000,000			

TABLE XCIV.—EFFECT OF TIME AND TEMPERATURE ON THE GROWTH OF BACTERIA IN MILK.

Bacteria in Milk.—Farmers' Bulletin No. 1207 of the United States Department of Agriculture gives the following discussion on the development and growth of bacteria:

Besides the chemical compounds, milk also contains large numbers of minute organisms called bacteria. Few, if any, are normally present in the milk within the udders of clean, healthy cows, but they are so abundant everywhere in the air, especially about the stable and barnyard, and cling in such numbers to the bodies of the cows, that they are almost always found in milk as soon as it leaves the udders or even just inside the teats. Utensils that have not been sterilized are another very common source of bacteria in milk. Bacteria reproduce very rapidly in a favorable medium, such as warm milk, and the number present becomes very large unless measures are taken to hinder their increase. The amount in milk of a given age varies of course with the conditions. A great many kinds of bacteria have been found in milk, each of which occasions a special set of changes as it develops. Perhaps the most prevalent kinds are those that cause the ordinary souring of milk and are the first to produce any noticable change in the taste and odor. In their growth they feed upon the milk sugar and convert it into lactic and volatile acids, which give slightly soured milk its peculiar taste and odor. When enough of this lactic acid has formed it acts upon the casein, causing it to separate into loose, light flakes and to form, upon standing, the ordinary "clabbered" milk. Other bacteria developing in sour milk may give it a strong, unpleasant odor or flavor, and still others, which occur occasionally color it very brightly or give it a slimy or ropy consistency. Some of the products of bacterial action on milk are desirable, however,—for instance, those that give to butter and cheese the characteristic flavors and odors.

Since there is frequently more or less dirt in freshly drawn milk (most of it fine particles of litter and manure that fall into the pail from the body of the cow), milk should always be strained directly after the milking is over. Of course, the amount of dirt varies with the condition in which the cow and her surroundings are kept. Under ideal dairy conditions only very small quantities are found, while milk from untidy establishments may contain enough in a quart to form a noticeable sediment. Milk with enough dirt to be visible indicates a badly kept dairy and should not be tolerated. Moreover, visible dirt does not tell the whole story; some of the manure that falls into milk is dissolved and it sometimes carries disease-producing bacteria. Consumers should always insist upon having clean milk, and they should also remember that cleanliness should not stop at the dairy but should be scrupulously maintained at every step of the way to the final consumption of the milk.

Ice Chests.—Mrs. Mary Hinman Abel, under the heading "Care of Food in the Home." gives the following considerations in reference to ice chests and refrigerators:

There are many varieties of ice chest or refrigerator, all built on one of two general plans. In one kind, both ice and food are kept in one large compartment. In the other, the ice is placed in a top compartment, below which are cupboards for the food; the principle here utilized is that cold air seeks a lower level and that the air cooled by the melting ice will sink to the shelves below. It probably better utilizes a given amount of ice, for the further reason that the ice compartment may remain tightly closed except when being filled. In both cases, the air space between the outside wall and the zinc lining is filled with some non-conducting material as cork or asbestos. It is of great convenience to have the ice chest built against the outer wall of kitchen or pantry, so that it may be filled from the outside by means of a small door cut for that purpose. In such a case, it is of course advisable to choose a wall on which there is little or no sunshine. The ice box may also be drained by a pipe leading to the outside and then properly cared for, thus saving much labor in the emptying of pans. It is not considered safe to connect it with the house sewer, because of the danger of sewer gases backing into it, even if a good trap is provided.

Care of Ice Chests.—Farmers' Bulletin No. 375 of the United States Department of Agriculture gives the following instructions in reference to care of ice chests:

If on a warm summer day you put your hand into an ice box well filled with ice you may think that the temperature is very low, and yet it is in all probability nearer 50° than 40° F. As low a temperature as 40° or 45° is only to be obtained in a very well-constructed box with a large receptacle for ice, and then only for a short time after it is filled. A box that maintains but 60° is, however, very useful in keeping food from day to day.

The ice box, no matter how well cooled, is and must be damp, and dampness is one of the requirements for bacterial growth. It must be remembered, also, that some varieties of bacteria grow at low temperatures. Therefore, the interior of an ice chest should be wiped every day with a dry cloth and once a week everything should be removed, so that sides, shelves, and drain may be thoroughly scalded. The water must be actually boiling when it is poured in, and the process repeated several times.

It must 'be remembered that refrigerator ice is often dirty, and that it may bring in putrefactive or even typhoid bacilli, for most bacteria are resistant to low temperature and are not destroyed by freezing. On this account, no food should be brought in direct contact with it, nor should it be put into drinking water, unless its purity is above suspicion.

All cooked food should be cooled as soon as possible before being placed in the ice box. Butter may be kept from taking up the flavors of other food by keeping it in a tightly covered receptacle. Milk requires more access of air, but in a clean ice box in which no strongsmelling food is kept, milk should remain uninjured in flavor for twelve to twenty-four hours. If vegetables or other foods of pronounced odor are kept in glass jars with covers, or in covered earthenware receptacles, there will be a fewer odors to be communicated. Portions of canned food should never be put into the ice box in the tin cans. Such food does not of necessity develop a poisonous product, as has sometimes been claimed, but experiments show that

447

ptomaines are particularly liable to develop in such cases. Casting out this somewhat remote possibility, the "tinny" taste acquired by such keeping is enough to condemn the practice.

Foods that are to be eaten raw, such as lettuce and celery, should be carefully cleaned before being placed in the ice box, and may with advantage be wrapped in a clean, damp cloth. If they are to be kept for some days they should, however, be put in without removing the roots, the further precaution being taken to wrap them carefully in clean paper or to put them into grocers' bags.

Keeping of Vegetables, Fruits, and Meats.—The Farmers' Bulletin No. 375 of the United States Department of Agriculture gives some additional considerations in reference to the keeping of vegetables, fruits, and meats in the home. These are as follows:

The following hints regarding the keeping of different kinds of food may be found useful:

Potatoes are kept without difficulty in a cool, dry, and dark place. Sprouts should not be allowed to grow in the spring.

Such roots as carrots, parsnips, and turnips remain plump and fresh if placed in earth or sand filled boxes on the cellar floor.

Sweet potatoes may be kept until January if cleaned, dried, and packed in chaff so that they will not touch each other.

Pumpkins and squash must be thoroughly ripe and mature to keep well. They should be dried from time to time with a cloth and kept not on the cellar floor, but on a shelf, and well separated from each other.

Cabbages are to be placed in barrels, with the roots uppermost. Celery should be neither trimmed nor washed, but packed, heads up, in long, deep boxes, which should then be filled with dry earth.

Tomatoes may be kept until January, if gathered just before frost, wiped dry, and placed on straw-covered racks in the cellar. They should be firm and well-grown speciments, not yet beginning to turn. As they ripen they may be taken out for table use, and any soft or decaying ones must be removed.

Apples, for use during the autumn, may be stored in barrels without further precaution than to look them over now and then to remove decaying ones; but if they are to be kept till late winter or spring they must be of a variety known to keep well and they must be hand-picked and without blemish or bruise. They should be wiped dry and placed with little crowding on shelves in the cellar. As a further precaution they may be wrapped separately in soft paper.

Pears may be kept for a limited time in the same way, or packed in sawdust or chaff; which absorbs the moisture which might otherwise favor molding. e.

Oranges and lemons are kept in the same way. Wrapping in soft paper is here essential, as the uncovered skins if bruised offer good feeding ground for mold. Oranges may be kept for a long time in good condition if stored where it is very cold, but where freezing is not possible. Lemons and limes are often kept in brine, an old-fashioned household method.

Cranberries, after careful looking over to remove soft ones, are placed in a crock or firkin and covered with water. A plate or round board placed on top and weighted serves to keep the berries under water. The water should be changed once a month.

In winter, large pieces of fresh meat may be purchased and hung in the cellar. Thin pieces, as mutton chops, are sometimes dipped in mutton suet, which keeps the surface from drying and is easily scraped off before cooking.

Turkeys, chickens, and other birds should be carefully drawn as soon as killed and without washing hung in the coolest available place.

Smoked ham, tongue, beef, and fish are best put in linen bags and hung in the cellar.

Salt pork and corned beef should be kept in brine in suitable jars, kegs, or casks, and should be weighted so as to remain well covered. A plate or board weighted with a clean stone is an oldfashioned and satisfactory device.

Eggs may be packed for winter use in limewater or in waterglass solution, methods which are described in an earlier bulletin of this series. Many housekeepers have good success in packing them in bran, in oats, or in dry salt, but according to experiments summarized in the aforementioned bulletin, the preference is to be given to the 10 per cent solution of water-glass. Exclusion of the air with its accompanying microorganisms and the prevention of drying out are what is sought in all cases. Packed eggs are not equal to fresh eggs in flavor, but when they are well packed are of fairly good quality and perfectly wholesome.

Apples.—The United States Department of Agriculture, in Farmers' Bulletin No. 1160, gives the following information in reference to the keeping of apples:

Apples will stand a temperature several degrees below freezing (32° F.). The danger point is at about 28° F. The effect of freezing is to cause brown spots which extend to the surface and are easily seen. These spots may appear on any part of the apple, but usually occur at places where the water content is highest. Freezing has about the same effect on either green or ripe fruit. Slightly frozen apples may be thawed out slowly without injury except to the quality. Apples should be packed in barrels, allowing good ventilation when stored for long periods. Some of the common diseases of apples are: Scab, blotch, fruit spot, Jonathan spot, bitter pit, drought spot, stig-

nonose, water core, bitter, anthracnose, black rot, altervaria rot, blue mold, pink rot, spongy dry rot, brown rot, gray mold, soft scald, and scald.

Drinking Water.—The desirable temperature for drinking water is 45° to 50° F. Tests have proven that at this temperature it is a mild heart stimulant and slightly reduces the internal temperature of the body. When drinking water colder than 45° F. is used there is danger of cramps.

The amount of drinking water required in industrial plants is usually considered to be approximately 1/4 gallon per man per working hour. This amount is based on using fountains and includes the waste.

The amount of refrigeration required to cool drinking water varies from 0.0003 to 0.0005 tons refrigeration per hour per man.

Fig. 217 shows the refrigerating effect due to placing one, two, and three cubes of ice in a glass of drinking water. The weight of the water in the glass was 0.4 lbs.; the weight of the ice cube was 0.1 lb.; the size of the glass was three inches in diameter at the top, 2.3 inches in diameter at the bottom and five inches high; the room temperature was 75°, and the glass was placed on a wooden table. Inasmuch as 50° is the desirable temperature for the water, it will be observed that this temperature is practically obtained by the use of two cubes of ice per glass of water. It is further noted from Fig. 134, that the use of three cubes of ice, maintained the temperature of the water at a fairly low temperature at a considerable length of time, and that one cube does not produce the desirable refrigerating effect.

Specific and Latent Heat of Foods.—Table XCV gives the specific heats and latent heats of some of the common foods. The second column gives the specific heat of the foods before freezing, expressed in B.t.u. per lb., while the third column gives the corresponding specific heat after freezing. The latent heat of fusion which is liberated during the freezing process is given in the last column of this table.

Ice Cream Making in the Home.—The National Association of Ice Industries has recently published a small bulletin entitled "Ice Cream Making and Appliances in the Home," which was prepared by M. A. Pennington, director of Household Bureau. The following extract on the subject of "Ice Cream Making in the Home" is taken from that bulletin:

The most satisfactory temperatures for the freezing of ice cream range from about 16° F. to about 6° F. These temperatures are ob-

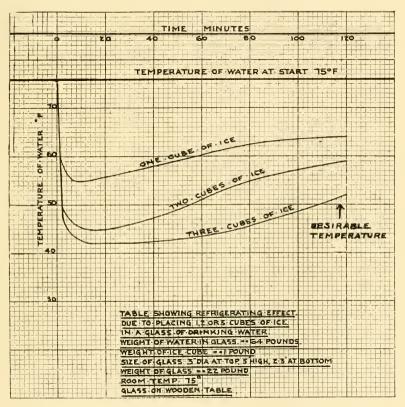


FIG. 217.-REFRIGERATING EFFECT OF ICE IN DRINKING WATER.

tained by the use of from 12 to 17 per cent of salt by weight, which is from 12 to 1 to 8 to 1 parts by volume. For uniformly good results, the ice and salt must be really measured, not just dumped in.

A great variety of flavors and ingredients can go into the making of ice creams and ices. Very palatable and nourishing "creams" can be made from very inexpensive materials. Again, however, proportions must be exact and directions must be followed.

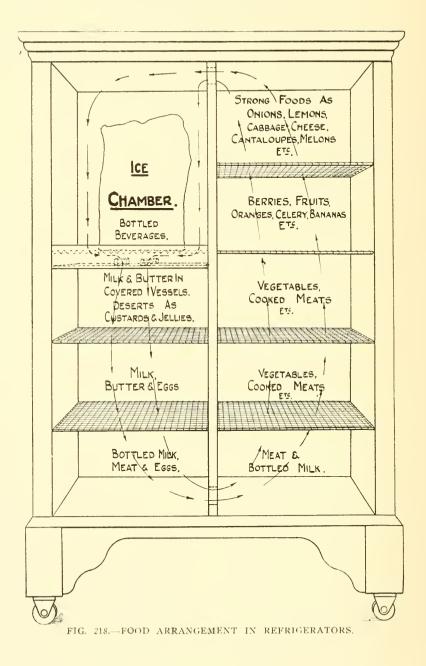
The ice cream freezers on the market would seem to be sufficiently varied in capacity, operation, and price, to fill the need of

451

most individuals. The woman with the longer pocket-book can make the electric current do the churning for her. By substituting for the extra money outlay, exact attention to small details of manipulation

Fr Apples Beans (green) Beef (fresh) Beer Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	Before eezing .92		Latent	
Beans (green) Beef (fresh) Beef (salt) Beer Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.92	After Freezing	Heat	
Beef (fresh) Beef (salt) Beer Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream		*****	*****	
Beef (fresh) Beef (salt) Beer Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.91			
Beer Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.75	.40	100	
Berries Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.60			
Butter Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.90			
Cabbage Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.91	*****		
Cantaloupes Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.60	.84	84	
Carrots Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.93	.48	129	
Cherries (fresh) Cherries (dried) Cheese Chicken Celery Cider Cream	.92	******	·	
Cherries (dried) Cheese Chicken Celery Cider Cream	.87	.45	118	
Cheese Chicken Celery Cider Cream	.92			
Chicken Celery Cider Cream	.84	*- ** **		
Celery Cider Cream	.64			
Cider Cream	.80	.42	105	
Cream	.91	*****		
	.90			
D	.68	.38	84	
Dates	.84	******	*****	
Eggs	.76	.40	100	
Eels	.69	.38	88	
Fish (fresh)	.80	.42	100	
Fish (dried)	.58		*****	
Fruits (dried)	.89	0 1 ministr		
Game	.80	.40	105	
	.92		*****	
Grape Fruit	.92			
Ice Cream	.78	.42	80	
Lemons	.92			
Lobster	.81	.42	108	
Milk	.90	.47	124	
	.67	.81		
Onions				
	.91			
	.91 .9 2			
Peaches	.91 .92 .84	.44	114	
Pears	.92			

TABLE XCV.-SPECIFIC AND LATENT HEATS OF FOODS.


PRESERVATION OF FOODS IN THE HOME

	Specific 1	Heat	Latent
Article	Before Freezing	After Freezing	Heat
Pigeon	.78	.41	102
Pork (fresh)	.50	.30	70
Potatoes	.80	.42	105
Poultry	.80	.40	102
Sausage	.70		
Sausage (smoked)	.60		
Strawberries	.92		
Veal	.70	.39	90
Watermelons	.92		
Wines	.90		

TABLE XCV.—SPECIFIC AND LATENT HEATS OF FOODS.—(Continued).

and using mixtures, comparatively rich in cream, the crankless type of freezer can be made to produce excellent results. The athletic woman, who doesn't mind turning a crank nor shifting a staunchly made tub around, can get a freezer that will withstand hard knocks and long wear and tear; while the kitchenette apartment woman can buy a little, light appliance, that takes almost no room and is so inexpensive that she can leave it behind when she moves without qualm of conscience. First of all, the woman must understand her own problem well enough to make an intelligent selection. Such understanding can only come from a knowledge of the facts of the case.

Food Arrangement in Refrigerators.-Fig. 218 shows one of the suggested arrangements of food in household refrigerators. From this, it will be noted that the foods are stored with reference to two considerations. In the first place, special consideration is given to the temperature in different parts of the refrigerator. Those foods requiring the lowest temperatures are placed immediately under the ice compartment, and in the bottom part of the refrigerator, while those which require a higher temperature are placed in the top food compartment. A second consideration is the storing of foods which give off characteristic odors. Foods such as onions. lemons, cabbage, cheese, etc., are placed in the uppermost food compartment, so that the air in passing directly into the ice chamber from this food compartment, carries with it the odor from such foods. Thus the air allows part of the odors to be condensed and eliminated.

CHAPTER XIII.

MISCELLANEOUS TABLES.

Miscellaneous Tables.—The following miscellaneous tables may be classified into two divisions. In the first division are those tables which are especially related to the design, construction, and operation of both ice and mechanically cooled household refrigerators. In the second division are those which are only indirectly related to the subject of "Household Refrigeration." They pertain mostly to physics and mechanics.

Table XCVI gives some summer temperatures for the different states in the United States. The second column gives the average summer temperature in degrees F., while the third column gives the maximum temperature in degrees F. Some temperatures by months in various cities of France are given in Table XCVII. The temperatures in this table are degrees Centigrade. The average annual humidities for various cities in the United States are shown by Table XCVIII. Table XCVIX shows average summer and yearly tap water temperatures for a number of cities.

Table C gives the domestic water rates for a number of cities in the United States. This table includes the population of the various cities, the highest domestic rate per gallon of water, and the minimum annual water charge.

Table CI gives some average figures for the household consumption of water per year for a number of cities. It will be noted that the average consumption of water for the cities stated per household is 6369 cubic feet. This is equivalent to 17.5 cubic feet per day or 131 gallons per day.

State	Average Summer Temp. Deg. F.	Maximum Summer Temp. Deg. F.
Arizona	92	120
Oklahoma	83	114
Texas	83	112
Louisiana	83	110
Arkansas	83	106
Georgia	82	108
Connecticut	82	106
Delaware	82	100
North Carolina	81	102
South Carolina	81	109
Florida	81	109
Alabama	81	
		105
Mississippi	81	105
Missouri	80	113
Tennessee	80	107
Kansas	79	116
Nevada	79	110
Maryland	79	106
Utah	79	106
New Mexico	79	105
Iowa	78	111
Kentucky	78	97
California	77	117
Virginia	76	104
Nebraska	75	112
West Virginia	75	102
Pennsylvania	74	105
Colorado	73	106
Ohio	73	105
Indiana	73	104
Illinois	73	102
New Jersey	73	102
Washington	71	114
New York	71	104
	71	104
Michigan Maasa abuqatta	70	104
Massachusetts	70	
New Hampshire		105
Wisconsin	70	103
Wyoming	69	108
Rhode Island	69	99
Maine	68	105
Montana	67	106
North Dakota	67	102
South Dakota	67	102
Vermont	65	102
Minnesota	63	102
Idaho	63	94
Oregon	62	99

TABLE XCVI.—SUMMER TEMPERATURES IN THE UNITED STATES. (U. S. Weather Reports.)

.

Table CII gives the quantities of water which are discharged by house service pipes in gallons per minute. This table is for various diameters of pipes, with certain initial water pressures, no back pressure, and through 100 feet of service pipe.

Table CIII gives the list of cities which use electric current different from the standard alternating current, 60 cycles and 110 or 220 volts.

	Angers Degrees C.	Auxerre Degrees C.	Bordeaux Degrees C.	Chaumont Degrees C
January	4.	2.	5.	0.5
February	5.	4.	6.	2.
March	7.	б.	8.5	2. 5.
April	10.5	10.5	11.5	9.5
May	14.	13.	14.5	13.
June	17.	18.	17.5	16.5
July	19.	19.5	20.	18.5
August	19.	19.	20.	18.
September	15.5	15.5	17.5	14.5
October	11.	10.5	13.	9.5
November	7.	6.	8.5	5.
December .	4.	2.	5.	1.1
Average	11.0	10.5	12.0	9.5

TABLE CXVII.—TEMPERATURES BY MONTHS IN FRANCE. (1912-1917 Inclusive.)

From French Government Weather Reports.

Summer and Winter Tap Water Temperatures.—Table C shows the relative importance of tap water temperature and density of population in the important cities of United States and Canada.

It is readily seen that the summer water temperatures are mostly under 75° F., while 80° includes nearly all of the important cities.

In winter 65° is the maximum temperature reached in nearly all of the larger cities.

In some parts of Texas summer tap water temperatures as high as 120° are reported.

(C. D. 110		
Average Annual Humidities for	Various Cities of	United States.
City	8 a. m.	8 p. m.
Albany, N. Y.	78	72
Albany, N. C.	85	71
Asheville, N. C.	79	65
Atlanta, Ga. Atlantic City, N. J.		79
Atlantic City, N. J.	80	66
Augusta, Ga.	82	
Baltimore, Md.	72	66
Daltimole, Mu.	73	70
Boston, Mass.	74	68
Hartford, Conn.		77
lacksonville, Fla.	83	77
Key West, Fla.	78	//
	83	
Macon, Ga.	75	72
New Haven, Conn.	75	62
New York, N. Y.		75
Norfolk, Va.	80	66
Philadelphia, Pa.	74	
Portland, Me.	75	73
Portialid, Mc.	74	71
Providence, R. I.	81	75
Savannah, Ga.	76	68
Washington, D. C.		77
Wilmington, N. C.	81	
Birmingham, Ala.	79	65
Birningham, Ma.	84	78
Galveston, Texas	84	74
Mobile, Ala.	82	64
Montgomery, Ala.		72
New Orleans, La.	83	75
Pensacola, Fla.	80	
San Antonio, Texas	81	53
San Antonio, reade	84	76
Tampa, Fla	77	73
Buffalo, N. Y.	80	63
Chattanooga, Tenn.		71
Chicago, Ill.	78	62
Cincinnati, Ohio	76	
Classical Obio	77	70
Cleveland, Ohio	79	66
Columbus, Ohio	80	71
Detroit MICh.	81	71
Duluth, Minn.		70
Grand Rapids, Mich.	82	64
Indianapolis, Ind.	77	
Thulanapons, indi	76	61
Louisville, Ky.	80	67
Dayton, Ohio	78	72
Milwaukee, Wis.		62
Milwaukee, Wis. Nashville, Tenn.	80	66
Pittsburgh, Pa. Rochester, N. Y. Syracuse, N. Y.	77	
Dechector N V	75	71
Kochester, IV. I.	77	
Syracuse, N. I.	79	69
Toledo, Ollio	80	65
Davenport, Iowa		63
Des Moines, Iowa	80	62
Kansas City, Mo.	77	
Mansas City, Mo.	79	65
Memphis, Tehn.	77	63
Memphis, Tenn. St. Louis, Mo.	80	63
St. Paul, Minn.	79	65
Springfield, Ill.	79	
Opt		

TABLE XCVIII.—RELATIVE HUMIDITIES IN VARIOUS CITIES. (U. S. Weather Reports.)

MISCELLANEOUS TABLES

	cportor) (continued	
Average Annual Humidities fo	r Various Cities of	United States.
City	8 a. m.	8 p. m.
Fort Worth, Texas	78	
Lincoln, Neb.	79	59
Oklahoma City, Okla.	80	59
Omaha, Neb.	78	60
Sioux City, Iowa	81	61
Wichita, Kan.	78	61 57
Denver, Colo.	63	41
El Paso, Texas	54	26
Helena, Mont.	68	50
Phoenix, Ariz.	54	28
	64	37
Pueblo, Colo.	72	39
Reno, Nev.	60	45
Salt Lake City, Utah	00 50	40
Santa Fe, N. Mex.	58 77	
Spokane, Wash.		50
Los Angeles, Cal.	78	62
Portland, Ore.	86	63
Sacramento, Cal.	82	52
San Diego, Cal.	79	70
San Francisco, Cal.	87	72
Seattle, Wash.	87	67

TABLE XCVIII.—RELATIVE HUMIDITIES IN VARIOUS CITIES. (U. S. Weather Reports.)—(Continued).

City	Average Summer Temp. Deg. F.	Average Yearl y Temp. Deg. F.
Augusta, Ga.	81	66
Atlanta, Ga.	81	62
Albany, N. Y.	76	56
Allentown, Pa.	60	57
Akron, Ohio	74	55
Birmingham, Ala.	80	65
Buffalo, N. Y.	71	52
Boston, Mass.	69	54
Columbus, Ohio	74	56
Charleston, W. Va.	70	40
Cleveland, Ohio	72	56
Cincinnati, Ohio	80	62
Cambridge, Mass.	70	50
Cedar Rapids, Iowa	68	5 5
Dayton, Ohio	70	60
Detroit, Mich.	67	50
Davenport, Iowa		56
Duluth, Minn.	55	45
Des Moines, Iowa	65	58
Decatur, Ill.	73	53
Erie, Pa.	70	53
East Orange, N. J.	58	58
Elizabeth, N. J.	60	50
Fort Wayne, Ind.		50
Gary, Ind.	62	52

City	Average Summer Temp. Deg. F.	Average Yearly Temp. Deg. F.
Grand Rapids, Mich.	74	55
Galveston, Texas	85	80
Hamilton, Canada	55	43
Haverhill, Mass.	58	40.7
Johnstown, Pa.	65	50
Johnstown, 1 a.		
Jackson, Miss.	65	45
Jacksonville, Fla.	82	76
Kansas City, Kan.	77	62
Lincoln, Neb.	60	55
Louisville, Ky.	70	60
Little Rock, Ark.	70	50
Los Angeles, Cal.	62	60
Lowell, Mass.	56	54
Lexington, Ky.	67.8	57.4
Lawrence, Mass.	60	55
Milwaukee, Wis.	52	50
Montrool Onto Con		50
Montreal, Ont., Can.	67	51
Minneapolis, Minn. Mt. Vernon, N. Y.	72	54
Mt. Vernon, N. Y.	73	55
Malden, Mass.	69	54
Mobile, Ala.	70	60
New Brunswick, N. J.	60	57
New York, N. Y.	65	55
New Haven, Conn.	65	58
Nashville, Tenn.	75	60
	80	
New Orleans, La.		65
New Bedford, Mass.	69	55
Oklahoma City, Okla.	75	60
Ottawa, Ont., Can.	77	54
Omaha, Neb.	86	60
Oakland, Cal.	70	55
Providence, R. I.	74	53
Portland, Maine	70	50
Patterson, N. J.	60	50
Powtuckot P T	72	55
Pawtucket, R. I.		
Pittsburgh, Pa.	72.5	52.8
Portland, Ore.	50	42
Pasadena, Cal.	63	57
Roanoke, Va.	60	60
Rochester, N. Y. Richmond, Va. Rockford, Ill.	69	51
Richmond, Va.	74	70
Rockford, Ill.	58	58
Springfield, Mass.	64	49
Superior, Wis.	60	47
Springfield, Mo.	65	60
Spokane, Wash.	52	50
Salt Lake City, Utah	50	45
Sommerville, Mass.	69	53.5
Springfield, Ohio	58	57
St. Joseph, Mo.	77	54
St. Paul, Minn.	65	54
Sioux City, Iowa	51	49
St. John, N. B.	65	51

.

TABLE XCIX.-TAP WATER TEMPERATURES.-(Continued).

City	Average Summer Temp. Deg. F.	Average Yearly Temp. Deg. F.
Seattle, Wash.	55	49
Toledo, Ohio	76.4	56
Terre Haute, 1nd.	76	57
Tacoma, Wash.	60	40.5
Troy, N. Y.	70	60
Utica, N. Y.	68	55
Waterbury, Conn.	71	54
Winnipeg, Man., Can.	70	56
Woonsocket, R. I.	70	50
Worcester, Mass.	72	68
Washington, D. C.	75.4	60.5
Youngstown, Ohio	90.8	68.7

TABLE XCIX.-TAP WATER TEMPERATURES.-(Continued).

TABLE C.—DOMESTIC WATER RATES.
(American City Magazine.)

City	Population	Highest Domestic Rate per 1,000 Gal.	Minimum Annual Charge
Mobile, Ala. Montgomery	69,151 43,464	15c 15c	6.00 12.00
Los Angeles, Cal. San Diego	578,000 74,683	13.3c 14.7c	9.00
Stockton	40,296	25c	12.00
Colorado Springs, Colo.	30,105	15c	12.00
Bridgeport, Conn. Hartford Meriden	143,538 138,036 29,842	18c 16c 15c	10.00 5.00 7.50
New Britain Norwich Stamford	59,316 29,685 35,086	10c 26.7c 20c	5.00 5.00 6.00
Wilmington, Del.	110,168	10c	10.00
Washington, D. C.	437,571	10c	5.65
Miami, Fla.	29,549	20c	12.00
Atlanta, Ga. Augusta Savannah	200,616 52,548 83,252	13.3c 25c 12c	9.60 9.00
Honolulu, Hawaii	83,327	10c	6.00
Boise, Idaho	28,000	27c	12.00
Bloomington, Ill. Cicero Decatur Evanston	28,725 44,995 43,818 37,215	35c 13.3c 8c 6.8c	3.25 6.00 4.00 6.00

	(IIIntrican City I		
City	Population	Highest Domestic Rate per 1,000 Gal.	Minimum Annual Charge
Peoria	76,121	30c	3.20
Quincy	35,978	50c	10.00
Rock Island	35,177	18.7c	8.10
Evansville, Ind.	85,549	20c	2.00
Fort Wayne	86,549	16c	6.00
Richmond	26,765	20c	6.00
South Bend	70,983	12c	7.20
Terre Haute	66,083	25c	9.00
Cedar Rapids, Iowa	45,566	25.3c	9.00
Council Bluffs	36,162	35c	6.00
Des Moines	126,468	30c	4.00
Sioux City	71,227	25c	None
Topeka, Kan.	50,022	45c	4.80
Covington, Ky.	57,121	24c	8.00
Lexington	41,534	25c	6.00
Louisville	234,891	40c	12.00
New Orleans, La.	387,408	10c	3.00
Shreveport	43,874	25c	7.80
Bangor, Maine	25,978	33.3c	12.00
Biddeford	28,000	26.7c	16.00
Baltimore, Md. Cumberland Hagerstown Hyattsville	738,826 29,837 28,066 50,000	8.7c 7c 30c 12c	8.00 6.00 4.00
Brookline, Mass. Brockton Cambridge Chelsea Chicopee Everett Fall River Fitchburg Haverhill Lawrence Lowell Lynn New Bedford Quincy Revere Salem Somerville Springfield Taunton Waltham Worcester	37,748 66,138 109,694 43,184 36,214 40,120 120,485 41,013 53,884 94,270 112,759 99,148 121,217 47,876 28,823 42,529 93,091 129,563 37,137 30,915 179,754	16c 25.3c 10c 14.7c 20c 16.7c 28c 24c 21.3c 24c 28c 20c 15c 33c 20c 15c 33c 20c 20c 16c 30c 25c 27c 20c	None 5.00 6.00 10.00 6.00 None 5.00 10.00 8.00 10.00 5.00 8.00 10.00 3.00 6.00 None 6.00 5.00 4.00

 TABLE C.—DOMESTIC WATER RATES.—(Continued).

 (American City Magazine.)

MISCELLANEOUS TABLES

	(
City	Population	Highest Domestic Rate per 1,000 Gal.	Minimum Annual Charge
Battle Creek, Mich. Bay City Highland Park Jackson	36,164 47,554 46,499 48,374 57,327	13c 10c 70c 13.3c 16c	3.00 6.00 5.00 3.20 7.80
Lansing Saginaw	61,903	11c	10.00
Duluth, Minn. Minneapolis St. Paul	98,917 380,498 234,595	20c 8c 8c	6.00 3.60
Joplin, Mo.	29,855	35c	12.00
Lincoln, Neb.	54,934	15c	6.00
Manchester, N. H. Nashua	78,384 28,379	13.3c 24c	$\begin{array}{c} 8.00\\ 16.00\end{array}$
Belmar, N. J. Camden Jersey City Kearney Montclair Newark New Brunswick Paterson	$\begin{array}{c} 25,000\\ 116,309\\ 279,864\\ 26,724\\ 28,810\\ 414,216\\ 32,779\\ 135,866\end{array}$	23.3c 25c 12c 20c 30c 13.3c 20c 30c	10.50 8.00 None 6.76 10.00 6.00 15.00 12.00
Albany, N. Y. Binghamton Buffalo Elmira Jamestown Kirgston Mt. Vernon New York City N. Y. C. Brooklyn N. Y. C. Queens	113,344 66,800 506,775 45,305 38,917 26,688 42,726 5,621,151 2,022,262 1,72,775 1,75	13.3c 10c 8c 40c 20c 22.2c 40c 13.4c 13.3c	4.00 10.00 6.00 14.00 12.00 None
N. Y. C. Queens N. Y. C. Richmond Niagara Falls Poughkeepsie Rochester Rome Schenectady Syracuse Troy Utica Yonkers	$172,775 \\ 115,959 \\ 50,760 \\ 35,000 \\ 295,750 \\ 26,341 \\ 88,723 \\ 171,717 \\ 72,013 \\ 94,156 \\ 100,226 \\ 100,226 \\ 115,999 \\ 100,226 \\ $	13.3c 8c 26.7c 14c 20c 7c 14.8c 40c 21.3c	None 6.00 1.00 4.00 5.00 3.00 4.00 8.00
Charlotte, N. C. Wilmington	46,338 33,372	26c 21.6c	6.00 13.00
Akron, Ohio Cincinnati	208,435 410,247	16c	4.80

TABLE C.—DOMESTIC WATER RATES.—(Continued). (American City Magazine.)

City Population Highest Pomestic Rate per 1,000 Gal. Minimum Admash Charge Cleveland Columbus 796,836 5.3c 2.50 Dayton 152,559 12c 6.60 Lakewood 41,732 12c 5.40 Lorain 37,295 2.00 8.00 Mansfield 27,824 26.7c 6.00 Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26.7c None Zanesville 91,258 32c 7.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106.70 72 Chester 58,030 34.5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia				
Columbus 237,031 16c 4.00 Dayton 152,559 12c 6.60 Lakewood 41,732 12c 5.40 Mansfield 27,824 26.7c 6.00 Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26.7c Nome Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 73,502 106.70 .72 Chester 58,030 34,5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 12.00 Philtsburgh 588,193 18c 8.00 Chester 237,595 20c 8.	City	Population	Highest Domestic Rate per 1,000 Gal.	
Columbus 237,031 16c 4.00 Dayton 152,559 12c 6.60 Lakewood 41,732 12c 5.40 Mansfield 27,824 26.7c 6.00 Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26.7c Nome Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 73,502 106.70 .72 Chester 58,030 34,5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 12.00 Philtsburgh 588,193 18c 8.00 Chester 237,595 20c 8.	Cleveland	706.836	5 3 0	2 50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		237 031		
Lorain 37,295 2.00 8.00 Mansfield 27,824 26,7c 6.00 Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26,7c None Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 72,075 25c 9.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106,70 .72 Chester 58,030 34.5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 9.00 Knoxville, Tenn. 77,818		152 550		
Lorain 37,295 2.00 8.00 Mansfield 27,824 26,7c 6.00 Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26,7c None Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 72,075 25c 9.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106,70 .72 Chester 58,030 34.5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 9.00 Knoxville, Tenn. 77,818		41 732		
Massneld $27,824$ $26,7c$ 6.00 Newark $26,718$ $24c$ 6.00 Springfield $60,840$ $10c$ 4.00 Steubenville $28,508$ $40c$ 5.00 Toledo $243,109$ $13.3c$ 8.50 Youngstown $132,358$ $26.7c$ NoneZanesville $29,569$ $15c$ 6.00 Oklahoma City, Okla. $91,258$ $32c$ 7.00 Tulsa $72,075$ $25c$ 9.00 Portland, Ore. $258,288$ $10.7c$ 6.00 Allentown, Pa. $73,502$ 106.70 $.72$ Chester $58,030$ $34.5c$ 6.96 Harrisburg $75,917$ $5.7c$ 4.00 Johnston $67,327$ $27c$ 12.00 Philadelphia $1,823,158$ $13.3c$ 8.00 Newport, R. I. $30,255$ $40c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Dallas $158,977$ $25c$ 15.00 El Paso $77,543$ $27.5c$ 15.00 Galveston $44,255$ $26.7c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$		37 295		
Newark 26,718 24c 6.00 Springfield 60,840 10c 4.00 Steubenville 28,508 40c 5.00 Toledo 243,109 13.3c 8.50 Youngstown 132,358 26,7c None Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 72,075 25c 9.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106,70 .72 Chester 58,030 34,5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Nashviile 118,342 <td>Mansfield</td> <td>27 824</td> <td></td> <td></td>	Mansfield	27 824		
Springfield $60,840$ $10c$ 4.00 Steubenville $28,508$ $40c$ 5.00 Toledo $243,109$ $13.3c$ 8.50 Youngstown $132,358$ $26.7c$ NoneZanesville $29,569$ $15c$ 6.00 Oklahoma City, Okla. $91,258$ $32c$ 7.00 Tulsa $72,075$ $25c$ 9.00 Portland, Ore. $258,288$ $10.7c$ 6.00 Allentown, Pa. $73,502$ 106.70 $.72$ Chester $58,030$ $34.5c$ 6.96 Harrisburg $75,917$ $5.7c$ 4.00 Johnston $67,327$ $27c$ 12.00 Philadelphia $1,823,158$ $13.3c$ 8.00 Newport, R. I. $30,255$ $40c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Dallas $158,977$ $25c$ 6.00 El Paso $77,543$ $27.5c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$ 6.00 Lynchburg $29,956$ $28.8c$ 7.20 Bellingham, Wash. $25,570$ $23.3c$ 12.00 Spokane 104.437 <td>Newark</td> <td>26,718</td> <td></td> <td></td>	Newark	26,718		
Steubenville 28,508 40c 500 Toledo 243,109 13.3c 8,50 Youngstown 132,358 26.7c None Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 72,075 25c 9.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106.70 .72 Chester 58,030 34.5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 1	Springfield	60.840		
Toledo243,10913.3c8.50Youngstown132,35826.7cNoneZanesville29,56915c6.00Oklahoma City, Okla.91,25832c7.00Tulsa72,07525c9.00Portland, Ore.258,28810.7c6.00Allentown, Pa.73,502106,70.72Chester58,03034.5c6.96Harrisburg75,9175.7c4.00Johnston67,32727c12.00Pittsburgh588,19318c8.00Newport, R. I.30,25540c400Providence237,59520c8.00Charleston, S. C.67,95724.7c12.00Sioux Falls, S. D.25,17640c9.00Knoxville, Tenn.77,81818c10.08Memphis162,35133.3c12.00Nashville118,34217.7c6.00Dallas158,97725c15.00Fort Worth106,48260c13.80Galveston44,25526.7c3.00Waco38,50037.5c9.00Salt Lake City, Utah118,1107.3c6.00Danville, Va.25,00010c6.00Lynchburg29,95628.8c7.20Bellingham, Wash.25,57023.3c12.00Spokane104,43710c9.60	Steubenville	28.508		
Youngstown132,35826.7cNoneZanesville29,56915c6.00Oklahoma City, Okla.91,25832c7.00Tulsa72,07525c9.00Portland, Ore.258,28810.7c6.00Allentown, Pa.73,502106,70.72Chester58,03034.5c6.96Harrisburg75,9175.7c4.00Johnston67,32727c12.00Philadelphia1,823,15813.3c8.00Newport, R. I.30,25540c8.00Providence237,59520c8.00Charleston, S. C.67,95724.7c12.00Sioux Falls, S. D.25,17640c9.00Knoxville, Tenn.77,81818c10.08Memphis162,35133.3c12.00Nashville118,34217.7c6.00Dallas158,97725c15.00Fort Worth106,48260c13.80Galveston44,25526.7c3.00Waco38,50037.5c9.00Salt Lake City, Utah118,1107.3c6.00Lynchburg29,95628.8c6.00Lynchburg29,95628.8c7.20Bellingham, Wash.25,57023.3c12.00Spokane104,43710c9.60	Toledo		13.3c	
Zanesville 29,569 15c 6.00 Oklahoma City, Okla. 91,258 32c 7.00 Tulsa 72,075 25c 9.00 Portland, Ore. 258,288 10.7c 6.00 Allentown, Pa. 73,502 106.70 .72 Chester 58,030 34.5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44	Youngstown			
Tulsa72,07525c9,00Portland, Ore.258,28810.7c6.00Allentown, Pa.73,502106.70.72Chester58,03034.5c6.96Harrisburg75,9175.7c4.00Johnston67,32727c12.00Philadelphia1,823,15813.3cPittsburgh588,19318c8.00Newport, R. I.30,25540c8.00Providence237,59520c8.00Charleston, S. C.67,95724.7c12.00Sioux Falls, S. D.25,17640c9.00Knoxville, Tenn.77,81818c10.08Memphis162,35133.3c12.00Nashville118,34217.7c6.00Dallas158,97725c15.00El Paso77,54327.5c15.00Fort Worth106,48260c13.80Galveston44,25526.7c3.00Waco38,50037.5c9.00Salt Lake City, Utah118,1107.3c6.00Danville, Va.25,00010c6.00Lynchburg29,95628.8c7.20Bellingham, Wash.25,57023.3c12.00Seattle315,65213.3c6.00Spokane104,43710c9.60	Zanesville	29,569		
Tulsa72,07525c9,00Portland, Ore.258,28810.7c6.00Allentown, Pa.73,502106.70.72Chester58,03034.5c6.96Harrisburg75,9175.7c4.00Johnston67,32727c12.00Philadelphia1,823,15813.3cPittsburgh588,19318c8.00Newport, R. I.30,25540c8.00Providence237,59520c8.00Charleston, S. C.67,95724.7c12.00Sioux Falls, S. D.25,17640c9.00Knoxville, Tenn.77,81818c10.08Memphis162,35133.3c12.00Nashville118,34217.7c6.00Dallas158,97725c15.00El Paso77,54327.5c15.00Fort Worth106,48260c13.80Galveston44,25526.7c3.00Waco38,50037.5c9.00Salt Lake City, Utah118,1107.3c6.00Danville, Va.25,00010c6.00Lynchburg29,95628.8c7.20Bellingham, Wash.25,57023.3c12.00Seattle315,65213.3c6.00Spokane104,43710c9.60	Oklahoma City, Okla.	91,258	32c	7.00
Allentown, Pa. 73,502 106,70 .72 Chester 58,030 34,5c 6.96 Harrisburg 75,917 5.7c 4.00 Johnston 67,327 27c 12.00 Philadelphia 1,823,158 13.3c 8.00 Newport, R. I. 30,255 40c 8.00 Providence 237,595 20c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.	Tulsa	72,0 7 5	25c	9.0 0
Chester $58,030$ $34.5c$ 6.96 Harrisburg $75,917$ $5.7c$ 4.00 Johnston $67,327$ $27c$ 12.00 Philadelphia $1,823,158$ $13.3c$ Pittsburgh $588,193$ $18c$ 8.00 Newport, R. I. $30,255$ $40c$ Providence $237,595$ $20c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Dallas $158,977$ $25c$ 15.00 Fort Worth $106,482$ $60c$ 13.80 Galveston $44,255$ $26.7c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$ 6.00 Lynchburg $29,956$ $28.8c$ 7.20 Bellingham, Wash. $25,570$ $23.3c$ 12.00 Seattle $315,652$ $13.3c$ 6.00 Spokane 104.437 $10c$ 9.60	Portland, Ore.	258,288	10.7c	6.00
Chester $58,030$ $34.5c$ 6.96 Harrisburg $75,917$ $5.7c$ 4.00 Johnston $67,327$ $27c$ 12.00 Philadelphia $1,823,158$ $13.3c$ Pittsburgh $588,193$ $18c$ 8.00 Newport, R. I. $30,255$ $40c$ Providence $237,595$ $20c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Dallas $158,977$ $25c$ 15.00 Fort Worth $106,482$ $60c$ 13.80 Galveston $44,255$ $26.7c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$ 6.00 Lynchburg $29,956$ $28.8c$ 7.20 Bellingham, Wash. $25,570$ $23.3c$ 12.00 Seattle $315,652$ $13.3c$ 6.00 Spokane 104.437 $10c$ 9.60	Allentown, Pa.	73.502	106.70	72
Harrisburg $75,917$ $5.7c$ 4.00 Johnston $67,327$ $27c$ 12.00 Philadelphia $1,823,158$ $13.3c$ Pittsburgh $588,193$ $18c$ 8.00 Newport, R. I. $30,255$ $40c$ Providence $237,595$ $20c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Dallas $158,977$ $25c$ 15.00 Fort Worth $106,482$ $60c$ 13.80 Galveston $44,255$ $26.7c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$ 6.00 Lynchburg $29,956$ $28.8c$ 7.20 Bellingham, Wash. $25,570$ $23.3c$ 12.00 Seattle $315,652$ $13.3c$ 6.00 Spokane 104.437 $10c$ 9.60	Chester			
Philadelphia 1,823,158 13.3c Pittsburgh 588,193 18c 8.00 Newport, R. I. 30,255 40c 20c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437			5.7c	
Philadelphia 1,823,158 13.3c Pittsburgh 588,193 18c 8.00 Newport, R. I. 30,255 40c 20c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437		67.327	27c	
Pittsburgh $588,193$ $18c$ 8.00 Newport, R. I. $30,255$ $40c$ Providence $237,595$ $20c$ 8.00 Charleston, S. C. $67,957$ $24.7c$ 12.00 Sioux Falls, S. D. $25,176$ $40c$ 9.00 Knoxville, Tenn. $77,818$ $18c$ 10.08 Memphis $162,351$ $33.3c$ 12.00 Nashville $118,342$ $17.7c$ 6.00 Austin, Texas $34,876$ $20c$ 6.00 Dallas $158,977$ $25c$ 15.00 Fort Worth $106,482$ $60c$ 13.80 Galveston $44,255$ $26.7c$ 3.00 Waco $38,500$ $37.5c$ 9.00 Salt Lake City, Utah $118,110$ $7.3c$ 6.00 Danville, Va. $25,000$ $10c$ 6.00 Lynchburg $29,956$ $28.8c$ 7.20 Bellingham, Wash. $25,570$ $23.3c$ 12.00 Seattle $315,652$ $13.3c$ 6.00		1.823,158	13.3c	
Providence 237,595 20c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		588,193		8.00
Providence 237,595 20c 8.00 Charleston, S. C. 67,957 24.7c 12.00 Sioux Falls, S. D. 25,176 40c 9.00 Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Newport, R. I.	30.255	40c	
Sioux Falls, S. D. 25,176 40c 9,00 Knoxville, Tenn. 77,818 18c 10,08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Providence			8.00
Knoxville, Tenn. 77,818 18c 10.08 Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Charleston, S. C.	67,957	24.7c	12.00
Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 6.00 El Paso 77,543 27.5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Sioux Falls, S. D.	25,176	40c	9.00
Memphis 162,351 33.3c 12.00 Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 6.00 El Paso 77,543 27.5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Knoxville, Tenn.	77.818	18c	10.08
Nashville 118,342 17.7c 6.00 Austin, Texas 34,876 20c 6.00 Dallas 158,977 25c 25c El Paso 77,543 27.5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Memphis	162.351	33.3c	
Dallas 158,977 25c El Paso 77,543 27,5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		118,342		
Dallas 158,977 25c El Paso 77,543 27,5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Austin, Texas	34.876	20c	6.00
El Paso 77,543 27.5c 15.00 Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		158.977	25c	
Fort Worth 106,482 60c 13.80 Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		77,543	27.5c	15.00
Galveston 44,255 26.7c 3.00 Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		106,482	60 c	
Waco 38,500 37.5c 9.00 Salt Lake City, Utah 118,110 7.3c 6.00 Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 6.00 Richmond 171,667 13.5c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60		44,255		
Danville, Va. 25,000 10c 6.00 Lynchburg 29,956 28.8c 7.20 Richmond 171,667 13.5c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Waco		37.5c	9.00
Lynchburg 29,956 28.8c Richmond 171,667 13.5c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Salt Lake City, Utah	118,110	7.3c	6.00
Lynchburg 29,956 28.8c Richmond 171,667 13.5c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Danville, Va.		10c	6.00
Richmond 171,667 13.5c 7.20 Bellingham, Wash. 25,570 23.3c 12.00 Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Lynchburg		28.8c	
Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Richmond	171,667	13.5c	7.20
Seattle 315,652 13.3c 6.00 Spokane 104,437 10c 9.60	Bellingham, Wash.	25,570		
Spokane 104,437 10c 9.60 Tacoma 96,965 13.3c 6.00	Seattle	315,652		
Tacoma 96,965 13.3c 6.00	Spokane	104,437		
	Tacoma	96,965	13.3c	6.00

.

TABLE C.—DOMESTIC WATER RATES.—(Continued). (American City Magazine.)

City	Population	Highest Domestic Rate per 1,000 Gal.	Minimum A nnual Charge
Charleston, W. Va.	39,608	30c	12.00
Clarksburg	27,869	35c	9.00
Huntington	50,177	20c	9.00
Wheeling	54,322	15c	
Kenosha, Wis. La Crosse	40,472 30,363	16c	6.00
Madison	38,378	20c 10c	4.00
Milwaukee	457,147	8c	4.00
	437,147	00	None
St. John, New Brunswich	k 60,000	None	12.00
Sydney, Nova Scotia	27,000	25c	8.00
Brantford, Ontario	32,700	35c	4.00
London	60,000	16.8c	8.00
Ottawa	112,000		0.00
Toronto	499,278	13.8c	
Montreal, Ouebec	694.000	12.8c	
Quebec	120,000	60c	

TABLE C .-- DOMESTIC WATER RATES .-- (Continued),

TABLE CI.-AVERAGE HOUSEHOLD CONSUMPTION OF WATER.

City	Cubic Feet Per Year
Boston, Mass.	6,000
Cincinnati, Ohio	6,000
Cleveland, Ohio	9,000
Dayton, Ohio	3,600
Flint, Mich.	7,200
Grand Rapids, Mich.	8,000
Milwaukee, Wis.	5,300
Peoria, Ill.	6,400
Pontiac, Mich.	8,000
Richmond, Ky.	2,400
Rockford, Ill.	8,400

Average: 6,391 cubic feet yearly, 17.5 cubic feet per day, 131 gallons per day.

TABLE CII.—QUANTITY OF WATER DISCHARGED FROM HOUSE SERVICE PIPES IN GALLONS PER MINUTE. Through 100 Ft, of Service Pipe, No Back Pressure.

Pressure in Main Lbs. per sq. in.	1/2	Nominal 5⁄8	Diameter 3⁄4	of Pipes in	1 Inches.	2
30	4.94	8.65	13.8	28.2	77.7	15.9
40	5.76	10.0	15.8	32.6	90.0	184.
50	6.44	11.2	17.7	36.4	100.5	206.
60	7.04	12.3	19.4	39.9	110.	225.
75	7.85	13.8	21.7	44.6	123.	252.
100	9.12	15.9	25.1	51.6	142.	291.
130	10.4	18.1	28.6	58.8	162.	352.

HOUSEHOLD REFRIGERATION

Location.	D. C.	A. C.	Cycles	Volts
Mobile, Ala.	x	х	60	118
Little Rock, Ark.	x	х	60	110
Los Angeles, Cal	x	х	50	110-220-440
Pasadena, Cal.		х	50	115
Glendale, Cal.		х	50	110-220
Canon City, Colo.		х	30	120
Denver, Colo.	х	х	60	110
Bridgeport, Conn.	x	х	60	110
Hartford, Conn.	x	x	60	110-220
Wilmington, Del.	х	х	60	110-115
Atlanta, Ga.		х	25 & 60	110-220
Savannah, Ga.	x	x	60	110
Chicago, Ill.	x	x	60	115
Alton, Ill.		x	25	110
Indianapolis, Ind.	x	x	60	118
Richmond, Ind.	x	x	60	116 A. C. & 500 D. C
Des Moines, Iowa	x	x	60	115-230
Sioux City, Iowa	x	^	00	104
Topeka, Kan.	x	x	60	104
	x		60	110-220
New Orleans, La. Portland Maine		x	60	
Portland, Maine Poltimoro Md	x	х	60	116
Baltimore, Md.	x	х		120
Boston, Mass. (Detroit, Mich.	x	х	60	113
Creater Minn	х	х	60	120 & 240
Crookston, Minn.	x	х	60	110
Kansas City, Mo.	х	х	60 & 25	110 & 220
Kearney, Neb.		х	60	125
Portsmouth, N. H.		х	60 & 25	117
Portsmouth, N. H. New Egypt, N. J. Albany, N. Y.	х		10	220
Albany, N. Y.		х	40	115
Borough of Brooklyn	х	х	25 & 62.5	120
Borough of Manhattan	х	x	60	110 A. C. & 120 D. C
Niagara Falls, N. Y.		x	25	110
Rochester, N. Y.	x	х	60 & 25	117
Syracuse, N. Y.		х	25 & 60	110
Spray, N. C.	х			220
Cincinnati, Ohio	х	х	60	118
Toledo, Ohio	х	х	60 & 25	110
Portland, Ore.	x	x		120-240
Altoona, Pa.	х	x	60	110
Philadelphia, Pa.	x	х	60	110
Scranton, Pa.	х	х	60	115
Columbia, S. C.		х	40	115
Dallas. Texas	x	x	60	110-220
Galveston, Texas	x	х	60	110
Galveston, Texas Rutland, Vermont		х	25 & 60	115
Norfolk, Va.	x	x	60	112
Milwaukee, Wis.	x	x	25 & 60	120-240
Laramie, Wyo.	x	x	60	110
Brandon, Canada	x	x	60	120
Hamilton, Ontario, Can.		x	662/3	110-220
Stratford, Ont.		X	25	110-220
Toronto, Ont.		x	25	115
voionio, ont.		~	20	440

TABLE CIII.—CITIES USING ELECTRIC CURRENT DIFFERENT FROM THE STANDARD A. C. 60 CYCLES, 110-220 VOLTS. (Cities of 50,000 population or over.)

466

.

TABLE CI11.-CITIES USING ELECTRIC CURRENT DIFFERENT FROM THE STANDARD A. C. 60 CYCLES, 110-220 VOLTS.--(Continued.) (Cities of 50,000 population or over.)

D. C.	A. C.	Cycles	Volts
	x	64	104
	х	100	104-1040
	x	125	104
		50	210-3000
	х	50	210
х		$62\frac{1}{2}$	110
	х	133	104
iana	x	125	104
		D. C. A. C. X X X X X	D. C. A. C. Cycles $ \begin{array}{ccccc} x & 64 \\ x & 100 \\ x & 125 \\ 50 \\ x & 50 \\ x & 62\frac{1}{2} \\ x & 133 \\ \end{array} $

TABLE CIV.—TEMPERATURE CONVERSION CENTIGRADE TO FAHRENHEIT.

C.	F.	R.	C.	F.	R.	C.	F.	R.
+100° 99 98 97 96 95	$\begin{array}{r} +212.0^{\circ}\\ 210.2\\ 208.4\\ 206.6\\ 204.8\\ 203.0 \end{array}$	+80.0° 79.2 78.4 77.6 76.8 76.0	$+53^{\circ}$ 51 50 49 48	$+127.4^{\circ}$ 125.6 123.8 122.0 120.2 118.4	$+42.4^{\circ}$ 41.6 40.8 40.0 39.2 38.4	$+ 6^{\circ} \\ + 3^{\circ} \\ + 3^{\circ} \\ 1$	$+42.8^{\circ}$ 41.0 39.2 37.4 35.6 33.8	$+4.8^{\circ}$ 4.0 3.2 2.4 1.6 0.8
94 93 92 91 90	$\begin{array}{c} 201.2 \\ 199.4 \\ 197.6 \\ 195.8 \\ 194.0 \end{array}$	75.274.473.672.872.0	47 46 45 44 43	116.6 114.8 113.0 111.2 109.4	37.6 36.8 36.0 35.2 34.4	Zero - 1 2 3 4	$\begin{array}{c} 32.0 \\ 30.2 \\ 28.4 \\ 26.6 \\ 24.8 \end{array}$	Zero - 0.8 1.6 2.4 3.2
89 88 87 86 85	$192.2 \\ 190.4 \\ 188.6 \\ 186.8 \\ 185.0 \\$	$\begin{array}{c} 71.2 \\ 70.4 \\ 69.6 \\ 68.8 \\ 68.0 \end{array}$	$42 \\ 41 \\ 40 \\ 39 \\ 38$	$107.6 \\ 105.8 \\ 104.0 \\ 102.2 \\ 100.4$	$33.6 \\ 32.8 \\ 32.0 \\ 31.2 \\ 30.4$	5 6 7 8 9	$\begin{array}{c} 23.0 \\ 21.2 \\ 19.4 \\ 17.6 \\ 15.8 \end{array}$	4.0 4.8 5.6 6.4 7.2
84 83 82 81 80	183.2 181.4 179.6 177.8 176.0	$\begin{array}{c} 67.2 \\ 66.4 \\ 65.6 \\ 64.8 \\ 64.0 \end{array}$	37 36 35 34 33	98.6 96.8 95.0 93.2 91.4	$29.6 \\ 28.8 \\ 28.0 \\ 27.2 \\ 26.4$	$10 \\ 11 \\ 12 \\ 13 \\ 14$	$14.0 \\ 12.2 \\ 10.4 \\ 8.6 \\ 6.8$	8.0 8.8 9.6 10.4 11.2
79 78 77 76 7 5	$\begin{array}{r} 174.2 \\ 172.4 \\ 170.6 \\ 168.8 \\ 167.0 \end{array}$	$\begin{array}{c} 63.2 \\ 62.4 \\ 61.6 \\ 60.8 \\ 60.0 \end{array}$	32 31 30 29 28	89.6 87.8 86.0 84.2 82.4	$25.6 \\ 24.8 \\ 24.0 \\ 23.2 \\ 22.4$	15 16 17 18 19	5.0 3.2 1.4 -0.4 2.2	12.0 12.8 13.6 14.4 15.2
74 73 72 71 70	$\begin{array}{c} 165.2\\ 163.4\\ 161.6\\ 159.8\\ 158.0 \end{array}$	59.2 58.4 57.6 56.8 56.0	27 26 25 24 23	80.6 78.8 77.0 75.2 73.4	21.6 20.8 20.0 19.2 18.4	20 21 22 23 24	$4.0 \\ 5.8 \\ 7.6 \\ 9.4 \\ 11.2$	16.0 16.8 17.6 18.4 19.2
69 68 67 66 65	$\begin{array}{c} 156.2 \\ 154.4 \\ 152.6 \\ 150.8 \\ 149.0 \end{array}$	55.2 54.4 53.6 52.8 52.0	22 21 20 19 18	$71.6 \\ 69.8 \\ 68.0 \\ 66.2 \\ 64.4$	17.6 16.8 16.0 15.2 14.4	25 26 27 28 29	$13.0 \\ 14.8 \\ 16.6 \\ 18.4 \\ 20.2$	20.0 20.8 21.6 22.4 23.2
64 63 62 61 60	$\begin{array}{c} 147.2 \\ 145.4 \\ 143.6 \\ 141.8 \\ 140.0 \end{array}$	51.2 50.4 49.6 48.8 48.0	17 16 15 14 13	62.6 60.8 59.0 57.2 55.4	13.6 12.8 12.0 11.2 10.4	30 31 32 33 34	22.0 23.8 25.6 27.4 29.2	24.0 24.8 25.6 26 4 27.2

HOUSEHOLD REFRIGERATION

C.	F.	R.	С.	F.	R.	C.	F.	R.
59 58 57 56 55 54	$\begin{array}{c c} 138.2 \\ 136.4 \\ 134.3 \\ 132.8 \\ 131.0 \\ 129.2 \end{array}$	$\begin{array}{r} 47.2 \\ 46.4 \\ 45.6 \\ 44.8 \\ 44.0 \\ 43.2 \end{array}$	12 11 10 9 8 7	$53.6 \\ 51.8 \\ 50.0 \\ 48.2 \\ 46.4 \\ 44.6$	9.6 8.8 8.0 7.2 6.4 5.8	35 36 37 38 39 40	$\begin{array}{c} 31.0\\ 32.8\\ 34.6\\ 36.4\\ 38.2\\ 40.0 \end{array}$	28.0 28.8 29.6 30.4 31.2 32.0

TABLE CIV.—TEMPERATURE CONVERSION CENTIGRADE TO FAHRENHEIT.—(Continued).

Fahrenheit degrees = $1.8 \times \text{Centigrade degrees} + 32^\circ$. Centigrade degrees = (Fahrenheit degrees) - $32^\circ \div 1.8$.

TABLE CV .-- DECIMAL EQUIVALENTS OF FRACTIONS OF ONE INCH.

	1/64015625	33/64 — .515625
	1/3203125	17/3253125
	3/64 — .046875	35/64546875
1/16	— .0625	9/16 — .5625
	5/64 — .078125	37/64 — .578125
	3/32 — .09375	19/32 — .59375
	7/64 — .109375	39/64 — .609375
1/8	125	5/8625
	9/64 — .140625	41/64 — .640625
	5/32 — .15625	21/32 — .65625
- 14 4	11/64171875	43/64671875
3/16		11/166875
	13/64203125	45/64703125
	7/3221875 15/64234375	23/32 — .71875 47/64 — .734375
1.74	25	3/475
1/4	$\frac{-2.25}{17/64265625}$	49/64765625
	9/3228125	25/3278125
	19/64296875	51/64 — .796875
5/16		13/16 — .8125
5/10	21/64328125	53/64 — .828125
	11/3234375	27/32
	23/64359375	55/64 — .859375
3/8	375	7/8 — .875
	25/64 — .390625	57/64 — .890625
	13/3240625	29/3290625
	27/64 — 421875	59/64 — .921875
'7/16		15/169375
	29/64 — .453125	61/64953125
	15/3246875	31/3296875
	31/64484375 1/25	63/64984375
	1/2	11.

Degrees Centigrade	Degrees Fahrenheit
0.55	0.10
0.1	0.18
0.11	0.20
0.17	0.30
0.2	0.36
0.22	0.40
0.28	0.50
0.3	0.54
0.33	0.6
0.39	0.7
0.4	0.72
0.44	0.8
0.5	0.9
0.55	1.0
0.6	1.08
0.7	1.26
0.8	1.44
0.9	1.62
1.0	1.80

TABLE CVI.—TEMPERATURES, CENTIGRADE AND FAHRENHEIT FRACTIONAL EQUIVALENTS.

TABLE CVII.-PRESSURE EQUIVALENTS.

Unit	Equivalent Value in Other Units
1 lb. per sq. inch =	$ \left\{ \begin{array}{l} 144 \ \text{lbs. per square foot.} \\ 2.0355 \ \text{in. of mercury at } 32^\circ \ \text{F.} \\ 2.0416 \ \text{in. of mercury at } 62^\circ \ \text{F.} \\ 2.309 \ \text{ft. of water at } 62^\circ \ \text{F.} \\ 27.71 \ \text{in. of water at } 62^\circ \ \text{F.} \\ \end{array} \right. $
1 atmosphere (14.7 lbs.) =	$ \left\{ \begin{array}{l} 2116.3 \text{ lbs. per square foot.} \\ 33.947 \text{ ft. of water at } 62^\circ \text{ F.} \\ 30 \text{ in. of mercury at } 62^\circ \text{ F.} \\ 29.922 \text{ in. of mercury at } 32^\circ \text{ F.} \end{array} \right. $
1 inch of water at 62° F. =	$ \left\{ \begin{array}{l} 0.0361 \ \text{lb. per square inch.} \\ 5.196 \ \text{lbs. per square foot.} \\ 0.0736 \ \text{in. of mercury at } 62^\circ \ \text{F.} \end{array} \right. $
1 inch of water at 32° F. =	$\left(\begin{array}{c} 5.2021 \text{ lbs. per square foot.}\\ 0.036125 \text{ lb. per square inch.} \end{array}\right)$
1 foot of water at 62° F. =	$\begin{cases} 0.433 \text{ lb. per square inch.} \\ 62.355 \text{ lbs. per square foot.} \\ 0.883 \text{ in. of mercury at } 62^\circ \text{ F.} \end{cases}$
1 inch of mercury at 62° F. =	$= \begin{cases} 0.49 \text{ lb. per square inch.} \\ 70.56 \text{ lbs. per square foot.} \\ 1.132 \text{ ft. of water at } 62^{\circ} \text{ F.} \\ 13.58 \text{ ins. of water at } 62^{\circ} \text{ F.} \end{cases}$

Unit	Equivalent	Value in Other Units
1 Kilowatt Hour Equals=	$\begin{cases} 1,000 \\ 1.34 \\ 2,654,200 \\ 3,412 \\ 367,000 \end{cases}$	Watt Hours Horse-Power Hours Foot-Pounds per Hour Heat Units per Hour Kilogram Meters
1 Horse-Power Equals =	$\left\{\begin{array}{c} 746\\ 0.746\\ 33,000\\ 550\\ 2,545\\ 42.4\\ 0.707\end{array}\right.$	Watts Kilowatt Foot-Pounds per Minute Foot-Pounds per Second Heat Units Per Hour Heat Units Per Minute Heat Units per Second
1 British Thermal Unit Equals =	$\left\{\begin{array}{c} 1,055\\778\\107.6\\0.000293\\0.000393\end{array}\right.$	Watt Seconds Foot-Pounds Kilogram Meters Kilowatt Hour Hors e -Power Hour
1 Pound of Water Evap- orated from and at 212 degrees Fahren- heit Equals =	$\begin{cases} 0.283\\ 0.379\\ 970.4\\ 103,900\\ 751,300 \end{cases}$	Kilowatt Hour Horse-Power Ho u r Heat Units Kilogram Meters Foot-Pounds

TABLE CVIII.—POWER EQUIVALENTS.

TABLE CIX .-- METRIC CONSTANTS.

EQUIVALENT OF LIQUIDS

One cubic meter of water		Imperial gallons.
One cubic meter of water	51028	Cubic inches.
One cubic meter of water	1000	Kilograms.
One cubic meter of water	1	Ton (approximate.)
One cubic meter of water	1000	Litres.
One cubic meter of water	2204.	pounds.
Column of water 1 foot high	0.434	pounds per square inch.
Column of water 1 meter high	1.43	pounds per square inch.
Column of water 2.31 feet high		pound per square inch.
One imperial gallon of water	277.274	Cubic inches.
One imperial gallon of water	10	pounds.
One cubic inch of water	0.3607	
One cubic foot of water	62.35	pounds.
One cubic foot of water	0.577	Hundredweight.
One cubic foot of water	0.028	Ton.
One pound of water	27.72	Cubic inches.
One pound of water	0.1	Imperial gallon.
One pound of water	0.4537	Kilograms.
One litre of water	0.22	Imperial gallon.
One litre of water	61	Cubic inches.
One litre of water	0.0353	Cubic feet.

TABLE CIX.-METRIC CONSTANTS.-(Continued).

METRICAL EQUIVALENTS (WEIGHTS AND MEASURES)

	Meters	Reciprocals
Inch	0.02539954	39.37079
Foot	0.3047945	3.280899
Yard	0.91438348	1.093633
Pole		0.1988424
Chain		0.0497106
Furlong		0.004971
Mile		0.0006213

METRICAL EQUIVALENTS (WEIGHTS AND MEASURES)

1 1 1 1	Cubic inch	281 452 76 39 31	feet. square centimeters. square feet1.196 square yard. centimeters. cubic feet.
1	Kilogram	05 1	oounds

TABLE CX.—AVERAGE TAP WATER TEMPERATURES OF (SUMMER) FOR CITIES OF UNITED STATES AND CANADA.

City	State	Deg. F.	Population
Youngstown	Ohio	90.8	132,358
Dallas	Tex.	90	158,976
Omaha	Neb.	86	191,601
Galveston	Tex.	85	42,000
Jacksonville	Fla.	82	91,543
Atlanta	Ga.	81	200,616
Augusta	Ga.	81	52,548
Cincinnati	Ohio	80	401,247
Birmingham	Ala.	80	172,270
New Orleans		80	387,408
Kansas City		77	345,000
Ottawa		77	112,000
St. Joseph		77	77,735
Toledo		76.5	243,109
Albany		76	113,344
Washington		75.4	437,571
Nashville		75	118,342
Oklahoma City		75	91,258
Charleston		75	71,500
Providence		74	275,000
Columbus		74	237,031
Akron		74	208,435
Richmond	Va	74	158,700
Grand Rapids		74	137,634
Springfield		74	129,563
Decatur		73	43,618
Mount Vernon		73	42,726
Pittsburgh	Pa	72.5	588,193
C'eveland		72	796,836
Minneapolis		72	380,498
Worcester		72	179,741
		72	64.248
Pawtucket Buffalo		71	505.875
		71	91,410
Waterbury		70	1.823.158
Philadelphia		70	1,020,190

TABLE CX.—AVERAGE TAP WATER TEMPERATURES—(SUMMER) FOR CITIES OF UNITED STATES AND CANADA.—(Continued.)

City	State	Deg. F.	Population
Louisville	Ку.	70	234,891
Oakland	Cal.	70	216,361
Dayton	Ohio	70	153,830
Paterson	N. J.	70	135,856
Winnipeg	Can.	70	135,430
Cambridge	Mass.	70	109,450
Erie	Pa,	70	93,372
Troy	N. Y.	70	78,000
Little Rock	Ark.	70	64,997
Mobile	Ala.	70	60,124
Woonsocket	R. 1.	70	43,496
Charlestown	W. Va.	70	39,608
Boston		69	749,923
Rochester		69	295,750
New Bedford	Mass.	69	121,217
Somerville	Mass.	69	93,033
Malden	Mass.	69	49,103
Utica	N. Y.	68	94,136
Cedar Rapids	Iowa	68	45,566 41,534
Lexington	Ку.	67.8	41,534
Detroit	Mich.	67	993,739
Montreal	Can.	67	466,197
Milwaukee St. John New York Brooklyn	Wis.	67	457,147 60,000
St. John	N. B.	65.5	60,000
New York	N. Y.	65	5,621,151
Brooklyn	N. Y.	65	
SL I dui	LVL J LL LL .	65.5	235,595
Des Moines	lowa	65	126,468
San Francisco	Cal.	65	508,410
New Haven	Conn.	65	162,390
Johnstown	Pa.	65	67,327
Jackson		65	48,374
Pasadena	Cal.	65	45,334
Los Angeles	Cal.	62	575,490
Gary	Ind.	62	55,453
Tacoma	Wash.	60	96,965
Elizabeth	N. J.	60	95,682
Elizabeth Lawrence	Mass.	60	94,270 73,502
Allentown Portland	Pa.	60	73,502
Portland	Maine	60	69,000
Lincoln	Neb.	60	69,000 54,934
Roanoke	Va,	60	50,842
Seattle	Wash.	60	315,362
Rockford		58	65,651
Springfield	Ohio	58	60,840
Haverhill	Mass.	58	53,884
East Orange	N. J.	58	50,587
Lowell	Mass.	56	112,479
Davenport	lowa	56	56,727
Duluth	Minn.	55	98,917
Hamilton	Can,	55	81,881
Peoria	111.	54	76.121
Spokane	Wash.	52	104,204 71,227
Sioux City	lowa	51	71,227
Portland	Ore.	50	258,288
Salt Lake City	Utah	50	118,110
Galveston	Tex.	80	42,000
Jacksonville	Fla,	76	258,288 118,110 42,000 91,543
Youngstown	Ohio	68.7	132,358 52,548
Augusta	Ga,	66	52,548
New Orleans	La.	62	387,408 172,270
Birmingham	Ala.	65	172,270
Birmingham Charleston	S. C.	65	74,500
Cincinnati	Ohio	62	401,247
Cincinnati Kansas City	Mo.	62	401,247 345,000
Atlanta	, Ga	62	200,616
Philadelphia	D.	61	1,823,158
I maderpina	er ere diel,	01	

TABLE CX.—AVERAGE TAP WATER TEMPERATURES (WINTER) FOR CITIES OF UNITED STATES AND CANADA.—(Continued.)

Los Angeles	.Ohio Ky. .Neb. Tenn. Okla. N. Y. Ala. Mass. Va. Conn. Ky. Ky. Ky. Cal. Ind. N. J. Cal. Ohio Obio Obio Obio	60 60 60 60 60 60 60 60 60 60 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57	575,490 153,830 234,891 191,601 118,342 91,258 78,000 60,124 129,563 50,842 162,390 126,468 65,651 50,710 73,502 24,000 41,534 508,410 73,502 24,000 45,334 66,082 24,000 45,334 60,880 796,836 243,109 113,344 237,031 56,727 5,621,151
Louisville Omaha Nashville Oklahoma City Troy Mobile Springfield Roanoke New Haven Des Moines Rockford Last Orange Lexington San Francisco Allentown Terre Hante New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Davenport New York New York Davenport New York	Ky. Neb. Okla. N. Y. Va. Mass. Va. Conn. Va. Conn. Ky. Ky. Ky. Cal. N. J. Cal. Ohio Ohio Ohio Ohio	60 60 60 60 60 60 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	153,830 234,891 191,601 118,342 91,258 78,000 60,124 129,553 50,842 162,390 126,468 65,651 50,710 41,534 508,410 73,550 66,082 24,000 45,334 60,840
Omaha Nashville Oklahoma City Troy Mobile Springfield Roanoke New Haven Des Moines Rockford East Orange Lexington San Francisco Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Davenport New York Prooklyn Nencolumbus Davenport Nencolumbus Akron	Neb. Tenn, Okla. Okla. N. Y. Ala. Mass. Conn, I.lowa Ill. Ra. Ra. Ra. Cal. Chio Ohio Ochio Can, Ohio	60 60 60 60 60 60 60 58 58 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	191,601 118,342 91,258 78,000 60,124 129,563 50,842 162,390 126,468 65,551 50,710 41,534 508,410 73,5502 66,082 24,000 45,334 60,840
Nashville Oklahoma City	Tenn. Okla. Va. Mass. Va. Conn. Va. Va. Va. Va. Va. Ky. Ky. Ky. Kg. Ind. N. J. Cal. Ohio Obio Obio	60 60 60 60 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	191,601 118,342 91,258 78,000 60,124 129,563 50,842 162,390 126,468 65,551 50,710 41,534 508,410 73,5502 66,082 24,000 45,334 60,840
Oklahoma City	Okla. N. Y. Ala. Mass. Va. Conn. Iowa Ill. N. J. Cal. Cal. N. J. Cal. Ohio Ohio Ohio Ccan. V. Y.	60 60 60 60 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	91,238 78,000 60,124 129,563 50,842 126,468 65,651 50,710 41,534 508,410 73,552 66,082 24,000 45,334 60,840
Troy	N. Y. Ala, Mass, Va, Conn. I.lowa IN, N. J. Ra, Ra, Ra, Cal. .Ohio Ohio Ohio Ohio Ohio	60 60 60 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	91,238 78,000 60,124 129,563 50,842 126,468 65,651 50,710 41,534 508,410 73,552 66,082 24,000 45,334 60,840
Mobile Springfield Roanoke New Haven Des Moines Rockford East Orange Lexington San Francisco Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Davenport New York Brooklyn Akron	Ala. Mass. Va. Conn. .Iowa III. N. J. Cal. 	60 60 58 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	60,124 129,563 50,842 162,390 126,468 65,651 50,710 41,534 508,410 73,552 66,082 24,000 45,334 60,840
Springfield Roanoke New Haven	Mass. Va. Conn. .Iowa III. Ky. Pa. Ind. N. J. Cal. Cal. .Ohio .Ohio .Can. V. Y. .Ohio .Ohio	60 60 58 58 57 57 57 57 57 57 57 57 57 57 57 57 57	65,651 50,710 41,534 508,410 73,502 66,082 24,000 45,334 60,840
Roanoke New Haven Des Moines Rockford East Orange Lexington San Francisco Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Davenport New York Brooklyn Lincoln Akron	Va. Conn. Jowa III. N. J. Cal. Pa. Ind. N. J. Cal. .Ohio .Ohio .Ohio .Can. V. Y. .Ohio	60 58 58 57.4 57 57 57 57 57 57 57 57 57 57 57 57 56 56 56	65,651 50,710 41,534 508,410 73,502 66,082 24,000 45,334 60,840
New Haven Des Moines Des Moines Rockford East Orange Lexington San Francisco Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Albany New Port Des Mork New York Brooklyn N Lincoln Alkoro	Conn. Iowa Ill. N. J. Ky. Cal. Pa. Ind. N. J. Cal. Ohio .Ohio .Ohio .Can. V. Y. Ohio .Ohio	58 58 58 57,4 57 57 57 57 57 57 57 57 57 57 56 56 56	65,651 50,710 41,534 508,410 73,502 66,082 24,000 45,334 60,840
Des Moines	.Iowa Ky. 	58 58 57.4 57 57 57 57 57 57 57 57 57 56 56 56	65,651 50,710 41,534 508,410 73,502 66,082 24,000 45,334 60,840
Rockford East Orange Lexington San Francisco Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Davenport New York Neoklyn Lincoln	III. N. J. Ky. Pa. Pa. Ind. N. J. Cal. .Ohio .Ohio .Ohio .Can. V. Y. .Ohio	58 57.4 57 57 57 57 57 57 57 56 56 56 56	65,651 50,710 41,534 508,410 73,502 66,082 24,000 45,334 60,840
Lexington	Ky. Cal. Ind. Ind. N. J. Cal. .Ohio .Ohio .Can. V. Y. .Ohio	58 57.4 57 57 57 57 57 57 56 56 56 56	41,534 508,410 73,502 66,082 24,000 45,334 60,840
Lexington	Ky. Cal. Ind. Ind. N. J. Cal. .Ohio .Ohio .Can. V. Y. .Ohio	57 57 57 57 57 57 57 56 56 56	41,534 508,410 73,502 66,082 24,000 45,334 60,840
Allentown Terre Haute New Brunswick Pasadena Springfield Cleveland Toledo Winnipeg Albany Columbus Davenport New York Brooklyn Lincoln Akron	Pa. Ind. N. J. Cal. .Ohio .Ohio .Can. J. Y. .Ohio	57 57 57 57 57 56 56 56	508,410 73,502 66,082 24,000 45,334 60,840
Terre Hante	lnd. N. J. Cal. .Ohio .Ohio .Ohio .Can. V. Y. .Ohio	57 57 57 56 56 56 56	73,502 66,082 24,000 45,334 60,840
Pasadena	Cal. Ohio Ohio Ohio .Can. V. Y. Ohio	57 57 56 56 56 56	24,000 45,334 60,840
Pasadena	Cal. Ohio Ohio Ohio .Can. V. Y. Ohio	57 57 56 56 56	45,334 60,840
Springfield Cleveland Toledo Winnipeg Albany Columbus Davenport New York Brooklyn Lincoln Akron	Ohio Ohio Ohio Can. V. Y. Ohio	57 56 56 56	60,840
Cleveland Toledo Winnipeg Albany Davenport Davenport New York Brooklyn Lincoln Akron	Ohio Ohio Can, V. Y. Ohio	56 56 56	20 C 0 0 C
Toledo	Ohio .Can. J. Y. .Ohio	56 56	79 6, 836
WinnipegN AlbanyN ColumbusN DavenportN New YorkN BrooklynN LincolnN Akron	.Can. J. Y. Ohio	56	243 100
AlbanyN ColumbusN DavenportN New YorkN BrooklynN LincolnN Akron	N.Y. Ohio	56	243,109
Columbus Davenport New York N Brooklyn N Lincoln Akron	.Ohio		135,430
Davenport	.Unio	56	113,344
New York	Tome	56	237,031
Brooklyn Lincoln Akron	J V	56 55	56,727
Lincoln Akron	J V	55	5,021,151
Akron	Neb	55	54,934
Th	Ohio	55	208 425
Pawtucket	RI	55	208,435 64,248 94,136
UticaN	I. Y.	55	94 136
Oakland	Cal.	55	216.361
Cedar Rapids	Iowa	55	216,361 45,566
Grand Rapids	fich.	55	137,634
Lawrence	lass.	55	94,270
New Bedford	lass.	55	121,217
Boston	V. Y.	55	137,634 94,270 121,217 42,726 749,923
Ottawa	Con	54 54	749,923
St. Joseph	Mo.	54 54	112,000 77,735 49,103
Malden	dase	54	//,/33
Minneapolis	Ainn	54	380 408
St. PaulN	finn.	5 4 54	235 595
Waterbury	lonn.	54	91 410
Lowell	Tacc	54	112,479
Sommerville	1200	53.5	49,103 380,498 235,595 91,410 112,479 93,033 275,000 93,372 43,618
Providence	R. I.	53	275,000
Erie	Pa.	5 3	93,372
Decatur	<u>m</u> .	53	43,618 588,193 505,875 55,433
PittsburghN BuffaloN	Pa.	52.8	588,193
Gary	. Y.	52	505,875
Montreal	Com	52	35,433
RochesterN	. Y.	51 51	466,197 295,750
St. JohnN	; [†] .	51	60,000
Detroit	fich	50	003 730
Elizabeth	J. T	50	993,739 95,682
Ft. Wayne	Ind	50	86.549
Little Rock	4-1-	50	86, 549 64,997
Johnstown	Pa	50	67,327
Cambridge	lass.	50	67,327 109.450
Portland M	aine	50	69,000
PatersonN	. T.	50	69,000 33,856
Spokane W	ach	50	104,204 43,496 457,147 315,362
Woonsocket	C. I.	50	43,496
Milwaukee Seattle	W1S.	50	457 147

2.0

HOUSEHOLD REFRIGERATION

TABLE CX.—AVERAGE TAP WATER TEMPERATURES (WINTER) FOR CITIES OF UNITED STATES AND CANADA.—(Contined.)

City	State	Deg. F.	Population
Council Bluffs	Iowa	49	36,162
Sioux City	Iowa	49	71,227
Superior	Wis.	47	39.674
Salt Lake City	Utah	45	118,110
Duluth	Minn.	45	98,917
Jackson	Mich.	45	48,374
Hamilton	Can.	45	81,881
Portland	Ore.	42	258,288
Haverhill	Mass.	40.7	53,884
Tacoma	Wash.	40.5	96,965
Charleston	S. C.	40	71,500

TABLE CNI.-DENSITY AND WEIGHT OF WATER. (Rosetti Table and D. K. Clark Manual).

Temperature Deg. F.	Relative Density	Weight per Cubic Foot
32	0.99987	62.416
35	0.99996	62,421
39.3	1.00000	62.424
40	0.99999	62.423
43	0.99997	62.422
45	0.99992	62.419
50	0.99975	62.408
55	0.99946	62.390
60	0.99907	62.366
70	0.99802	62.300
80	0.99669	62.217
90	0.99510	62.118
100	0.99318	61.998
110	0.99105	61.865
120	0.98870	61.719
130	0.98608	61.555
140	0.98338	61.386
150	0.98043	61.203
160	0.97729	61.006
170	0.97397	60.799
180	0.97056	60.586
190	0.96701	60.365
200	0.96333	60.135
212	0.95865	58.843
230		59.4 (Sat. Pressure)
250		58.7
270		58.2
290		57.6
298		57.3
338		56.1
366		55.3
390		54.5

TABLE CX11.-WEIGHT OF VARIOUS SUBSTANCES PER CUBIC FOOT.

Name	Pounds	Name	Pounds
Mercury	847.7	Tobacco	80.
Brine	77.4	Oil, average	
Milk		Eggs	
Sea water		Fruit	
Pure water		Butter	
Linseed oil		Fat	58.5
Whale oil		Oak, white	
Sugar		Pine, yellow	
Soap		Vinegar	
Salt		Beef fat	
Dry fruits		Hog Fat	
Lime		Hard coal	
Olive oil		Stone	
Turpentine		Masonry	
Petroleum		Sand	
Naphtha		Cast iron	
Alcohol		Wrought iron	
Benzine		Brass	
Wine		Charcoal	
Ash		Lead	
Ice		Beer	
Earth		Snow	
Soft coal		011011	0.2

TABLE CXIII.—VOLUME AND WEIGHT OF DRY AIR AT DIFFERENT TEMPERATURES.

Under a Constant Atmosp. Pres. of 29,92 ips. of mercury, the vol. at 32° Fahr, being 1.

Temp. Deg. F.	Volume	Weight per cu. ft.
0	.935	0.0864
12	.960	0.0842
22 32	.980	0.0824
32	1,000	0.0807
42	1.020	0.0791
52	1.041	0.0776
62	1.061	0.0761
72	1.082	0.0747
82	1,102	0.0733
92	1.122	0.0720
102	1.143	0.0707
112	1.163	0.0694
122	1.184	0.0682
132	1.204	0.0671
142	1.224	0.0659
152	1.245	0.0649
162	1.265	0.0638
172	1.285	0.0628
182	1.306	0.0618
192	1.326	0.0609

*From Hoffman's Handbook for Heating and Ventilating Engineers, published by McGraw Hill Co., Inc.

Name	Spec. Heat	Name	Spec. Heat
Cast iron	0.130	Coal	0.241
Brass	0.094	Sulphur	0.202
Mercury	0.033	Coke	
Tin	0.056	Alcohol	0.659
Zinc		Oil	0.310
Chalk		Vinegar	
Stone		Strong brine	
Masonry		Ice	
Oak wood		Water	
Pine		Air	0.238
Glass			

TABLE CXIV.—SPECIFIC HEATS, WATER AT 32° F. = 1. (Frick Co.)

TABLE CXV.—COEFFICIENTS OF EXPANSION FOR VARIOUS SUBSTANCES.

Substance	Coefficient of Linear Expansion in inches per Deg. F.
Aluminum	0.00001140
Brass	0.00001140
Drass	
Brick	
	from 0.00000550
Cement and Concrete	
Copper	0.00000961
	from 0.00000399
Glass	to 0.00000521
Gold	
Granite	
Iron, cast	
Iron, wrought	
Lead	
Marble	
	from 0.00000206
Masonry	
Mercury	0.00000334
Platinum	0.00000494
Porcelain	0.00000200
	from 0.00000400
Sandstone	
Steel, untempered	
Steel, tempered	
Tin	
Wood, pine	
Zinc	0.00001634

	Specific Heat		
Name of gas	Constant Pressure	Volume Constant	
Air	0.23751	0.16902	
Carbon dioxide	0.21700	0.15350	
Carbon monoxide	0.24500	0.17580	
Hydrogen		2.41226	
Nitrogen		0.17273	
Oxygen	0.01.000	0.15507	

TABLE CXVI .- SPECIFIC HEATS OF GASES.

TABLE CXVII.—COEFFICIENTS OF EXPANSION AND COEFFICIENTS OF TRANSMISSION OF SOLIDS AND LIQUIDS.

Substance	Coefficient of Expansion	Coefficient of Transmission
Antimony	0.00000602	0.00022
Copper	0.00000955	0.00404
Gold	0.00001060	**********
Wrought Iron	D.00000895	0.00089
Glass	0.00000478	0.0000008
Cast Iron	0.00000618	0.000659
Lead	0.00001580	0.00045
Platinum	0.00000530	
Silver	0.00001060	0.00610
Tin	0.00001500	0.00084
Steel (soft)	0.00000600	0.00062
Steel (hard)	0.00000689	0.00034
Nickel steel 36%	0.00000003	**********
Zinc	0.00001633	0.00170
Brass	0.00001043	0.00142
Ice	0.00000375	0.000024
Sulphur	0.00006413	
Charcoal	0.00007860	0.000002
Aluminum	0.00002313	0.00203
Phosphorus	0.00012530	****
Water	0.00008806	0.000008
Mercury	0.00003333	0.00011
Alcohol (absolute)	0.00015151	0.000002

*From Hoffman's Handbook for Heating and Ventilating Engineers, published by McGraw Hill Co., Inc.

		CHAID ID NOTACIWAWINI INTI	OF GUIDEN	
	Pressure	Constant Volume	Coefficient of Cubical Expansion at 1 Atmosphere	Coefficient of Trans- mission
	0.23751	0.16847	0.003671	0.0000015
	0.21751	0.15507	0.003674	0.0000012
Hvdrogen	3.40900	2.41226	0.003669	0.0000012
Nitrogen	0.24380	0.17273	0.003668	0.0000012
ed stea	Superheated steam 0.4805	0.346	0.003726	
acid	Carbonic acid0.2170	0.1535		0.00000122
Hoffman	's Handbook	for Heating a	nd Ventilating	*From Hoffman's Handbook for Heating and Ventilating Engineers. published

TABLE CXVIII.—COEFFICIENT OF EXPANSION AND COEFFICIENTS OF HEAT TRANSMISSION OF GASES.*

*From Hoffman's Handbook for Heating and Ventilating Engineers, publi by McGraw Hill Co., Inc.

TABLE CXIX.-STRENGTH OF MATERIALS.

							٩						
1 minut		Elas	clastic Limi	t.		D	Itimate Strengt	gth	-	E	actory	actory of Safety	
- marchian	Tension	-	Comp.	_	Shear	Tension	Comp.		Shear	Steady	V I	ariable	Shock
Brick							3000		1000	15		25	30
Stone							0009		1500	15		25	30
				_	Ľ. 600			Ĺ	600				
Timber	3000		3000		T. 3000	10000	8000	Ŀ	3000	∞		15	15
Cast Iron	6000		20000		20000	15000	80000		20000	9		15	20
Wrowsht Ir.	25000		25000		40000	50000	50000		40000	4		∞	10
Strucel, Stl.	35000		35000		50000	60000	00009		50000	4		∞	10
Cast Stl.	50000		50000		80000	70000	20000		60000	S		∞	15

478

Melting Specific Specific Metal Point Heat Gravity Degrees F. Aluminum 2.56 0.218 1216 6.71 Antimony 0.051 1166 Arsenic 5.67 0.081 1472 3.78 0.047 Barium 1562 Bismuth 9.80 0.031 518 8.60 Cadmium 0.056 610 Caesium 1.87 0.048 79 Calcium 1.57 0.170 1481 Cerium 6.68 0.045 1152 Chromium 6.50 0 1 2 0 2741 8.50 Cobalt 0.103 2714 Columbium 12.70 0.071 8 93 Copper 0.093 1981 5 90 0.079 Gallium 86 1 93 0.621 Glucinum Gold 19.32 0.031 1945 7.42 Indium 0.057 311 22.42 Iridium 0.033 4172 7 86 0.110 Iron 2768 6.20 Lanthanum 0.045 1490 11.37 0.031 Lead 621 0.54 Lithium 0.941 367 1.74 0.250 Magnesium 1204 8.00 0.120 Manganese 2237 13.59 Mercury 0.032 -38 8.60 Molvbdenum 4532 0.072 8.80 Nickel 0.108 2642 22.48 Osium 0.031 4530 Palladium 11.50 0.059 2822 21.50 Platinum 0.032 3191 Potassium 0.86 0.170 144 Rhodium 12.10 0.058 3452 Rubidium 1.53 0.077 100 Ruthenium 12.26 0.061 3270 10 53 0.056 Silver 1762 Sodium 0.97 0.290 207 Strontium 2.54 1472 10.80 Tantalum 0.036 5252 6.25 Tellurium 0.049 825 Thallium 11.85 0.033 578 Thorium 11.10 0.028 7.29 0.055 450 Tin 3.54 0.130 Titanium 3362 19.10 Tungsten 0.034 5432 18.70 0.028 Uranium 4352 5.50 0.125 Vanadium 3182 3.80 Yttrium 786 7.15 0.094 Zinc 4.15 Zirconcium 0.066 2700

TABLE CXX.-PHYSICAL CONSTANTS OF METALS.

11	water per ft. of length. lbs.	10000 100000 100000 100000 10000 10000 10000 10000 10000 100000
Con-	tents in gals.per ft. of length,	0006 0026 0027 0057 0057 0057 0538 0538 0538 0538 0538 0558 0558 0558
No. of	thr'ds per in. of screw.	21111111 221111111 221111111 221111111 22111111
Wt ner		2241 2522 25241 25222 25241 25222 25241 25222 25241 25222 25241 25222 25241 25222 25241 25222 25
Length	contain- ling one cu. ft., ft.	13833.3 13833.3 15833.3 15833.3 1586.9 1660.9 1660.9 1660.9 14557 114557 114557 114557 114557 114557 114557 114557 11455 119051 11905 1190
Length of pipe per sq. ft. of	Inter- nal surface, ft.	411 411 411 411 411 411 411 411
Length per sq	Exter- nal surface, ft.	7.44 7.675 7.675 7.675 7.675 7.675 7.675 7.6444 7.64477 7.6447777777777
reas.	Metal. sq. in.	0717 16459 16459 16459 16459 16459 16459 16559 1779 17794 17794 17795 1779
Transverse areas.	Inter- nal, sq. in.	$\begin{array}{c} 0573\\ 1041\\ 11941\\ 11941\\ 11942\\ 11942\\ 11942\\ 1111\\ 11942\\ 11112\\ 1112$
	Exter- nal, sq. in.	129 2289 2554 25555 25556 25556 25566 25575 25575 25575 25575 25575 25575 25575 25575 25575 25575 25575 2575
Clrcumference	Inter- nal, in.	
Clrcum	Exter- Inter- nal, in. nal, in.	$\begin{array}{c} 1 & 272 \\ 1 & 21696 \\ 2 & 1696 \\ 2 & 2159 \\ 5 & 5928 \\ 5 & 5928 \\ 1 & 21566 \\ 1 & 12566 \\ 1 & 12566 \\ 1 & 12566 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 12556 \\ 1 & 1255 \\ 1 & 12$
	rnick- ness, in.	068 098 098 098 098 098 098 098 098 098 09
er.	Actual inter- nal, in.	255 257 257 257 257 257 257 257
Diameter.	Nomi- Actual nal, in- ex- ternal, ternal, in.	447 447 447 447 447 447 447 447
	Nomi- nal, in- ternal, in.	NAXXXX XX X X X X

TABLE CXXI.-DIMENSIONS OF STANDARD PIPE.

480

HOUSEHOLD REFRIGERATION

PIPE.
<i>TRONG</i>
EXTRA
A AND DOUBLE EXTRA S'
AND
OF EXTRA
OF
KIIDIMENSIONS
E CXXI
TABLE

ſ		1	
Nomi-	in lbs. per ft.	201120 20120 20120	1.7 5.2554
Length of pipe in ft. per sq. ft. of	Internal surface.	$\begin{array}{c} 18.632\\ 12.986\\ 9.07\\ 7.046\\ 7.0109\\ 4.0109\\ 2.5556\\ 11.949\\ 1.327\\ 1.327\\ 1.37\\ 1.37\\ 664\end{array}$	$15.667 \\ 9.049 \\ 6.508 \\ 4.317$
Length of pipe in ft. per sq. ft.	External surface.	9,433 5,675 5,657 5,657 5,657 2,637 2,637 2,031 2,031 1,023 1,023 3,537 2,537 1,023 3,555 3,5577 3,5577 3,5577 3,55777 3,557777777777	$\begin{array}{c} 4.547 \\ 3.637 \\ 2.904 \\ 2.304 \end{array}$
'ea.	Metal. sq. in.	.033 .033 .068 .161 .139 .161 .139 .219 .231 .323 .231 .323 .231 .323 .211 .323 .271 .323 .271 .323 .271 .323 .271 .323 .271 .323 .271 .323 .271 .393 .271 .393 .271 .393 .271 .393 .273 .193 .269 .3.055 .1967 .6.12 .133 .6.12 .133 .505 .134 .505 .3505 .505	$ \begin{array}{c} 507 \\ \hline 1.087 \\ 1.549 \end{array} $
Transverse area.	Internal, sq. in.		.047 .139 .271 .615
Tr_{2}	External, sq. in.	1229 2229 2554 2554 2554 2556 1.558 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.492 6.472 7.566 15.566 15.566 7.576 6.492 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 6.472 7.5766 7.7776 7.7776 7.7766 7.7776 7.7766 7.7776 7.7766 7.77777777	$\begin{array}{c} .554 \\866 \\ 1.358 \\ 2.164 \end{array}$
Circumference.	Internal, in.		$\begin{array}{c} 766\\1.326\\1.844\\2.78\end{array}$
Circum	External, in.	12% 1.272 .644 .129 10% 2.129 .229 .229 10% 2.131 .223 .358 8% 2.131 1.703 .554 8% 4.139 2.312 .356 7.461 5.966 1.395 2.164 6% 5.966 1.723 6.432 7.461 6.073 4.43 2.835 6 1.903 1.643 2.835 7.461 6.073 4.43 2.835 9 032 10.549 1.2566 11 0 12.566 10.549 15.963 18 0 12.566 10.549 15.964 18 000 17.477 15.120 24.306 18 000 17.477 15.064 34.472 22 000 17.477 15.064 34.472 22 000 17.473 15.064 34.472 22	$\begin{array}{c} 2.639 \\ 3.299 \\ 4.131 \\ 5.215 \end{array}$
Nearest	wire gauge, No.	112% 10% 89% 66% 66% 66% 000 000 000 000	00 00 1 1 1
- JoidT	ness, in.	D	.298 .314 .364 .388
	Actual inter- nal, in.	$\begin{array}{c} \begin{array}{c} 2205\\ 2205\\ 2225\\ $	244 422 587 885
Diameter.	Actual exter- nal, in.	405 675 675 675 66 675 66 675 66 675 66 65 65 65 65 65 65 65 65 65 65 65 65	$ \begin{array}{c} .84 \\ 1.05 \\ 1.315 \\ 1.66 \end{array} $
Dia	Nominal inter- nal, in.	<u>чччою</u> 24.00 222222 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2	XX X X

	01112880 011112880 011112880 011112880 011112880 011112880 011112880 011112880 011112880 011112880 011112880 0111112880 0111112880 0111112880 0111112880 0111112880 0111112880 0111112880 0111112880 0111112880 01111112880 01111112880 01111112880 01111112880 01111112880 01111112880 01111112880 01111112880 01111112880 01111112880 011111112880 01111112880 01111111111
	$\begin{array}{c} 15,667\\ 9,049\\ 6,317\\ 6,317\\ 2,317\\ 2,361\\ 2,361\\ 2,361\\ 2,361\\ 2,361\\ 2,361\\ 2,361\\ 2,176\\ 1,217\\ 1$
ons.	$\begin{array}{c} 4.547\\ 2.637\\ 2.637\\ 2.004\\ 2.004\\ 2.01\\ 1.608\\ 1.828\\ 1.228\\ 1.931\\ 2.845\\ 2.845\\ 6.87\\ $
I Dimensions	$\begin{array}{c} 507\\ 1727\\ 1.549\\ 1.549\\ 1.549\\ 2.686\\ 2.686\\ 2.524\\ 6.772\\ 8.18\\ 8.18\\ 8.18\\ 11.34\\ 15.896\end{array}$
of Standard	$\begin{array}{c} .047\\ .139\\ .139\\ .139\\ .1794\\ .17294\\ .12.965\\ .18.666\\ .1$
PE-Iable	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
KUNG PI	$\begin{array}{c} 766\\ 1.326\\ 1.326\\ 2.484\\ 2.484\\ 2.653\\ 2.653\\ 2.155\\ 2.662\\ 2.15\\ 3.15$
EATRA SI	$\begin{array}{c} 2.639\\ 2.299\\ 4.1131\\ 5.299\\ 5.969\\ 7.461\\ 10.996\\ 112.566\\ 114.177\\ 17.477\\ 17.477\\ 20.813\end{array}$
DUBLE	11 0000 3%4,4,4,4,0000 3%4,4,4,4,1,1,1,0000000000000000000000000
-	$\begin{array}{c} \begin{array}{c} 233\\ 314\\ 364\\ 386\\ 566\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 642\\ 668\\ 668\\ 668\\ 668\\ 668\\ 668\\ 668\\ 66$
	$\begin{array}{c} 2244\\ 5835\\ 11,2587\\ 11,2585\\ 11,258\\ 22,284\\ 22,284\\ 4,875\\ 4,875\\ 4,875\\ \end{array}$
	$\begin{array}{c} 1.84 \\ 1.05 \\ 1.315 \\ 1.66 \\ 2.375 \\ 2.375 \\ 2.375 \\ 3.57 \\ 3.56 \\ 3.56 \\ 5.56 \\ 6.625 \end{array}$
	6014333555111 XX XX X X

Gauge No.	13	14	15	16	17	18	19	20	21	22
Wall Thickness										
nches	0.095	0.083	0.072	0.065	0.058	0.049	0.042	0.035	0.032	0.028
Outside 1										
Diameter										
of Tube										
Inches										
1/8				0.048	0.047	0.045	0.042	0.038	0.036	0.03
3/16			0.101	0.097	0.091	0.082	0.073	0.065	0.060	0.05
1/4	0.178	0.168	0.155	0.146	0.135	0.120	0.106	0.091	0.084	0.07
5/10	0.250	0.231	0.210	0.195	0.178	0.156	0.138	0.118	0.109	0.09
3/8	0.322	0.294	0.265	0.245	0.223	0.193	0.169	0.144	0.133	0.11
1/16	0.395	0.357	0.319	0.293	0.267	0.231	0.202	0.171	0.157	0.13
1/2	0.466	0.420	0.374	0.342	0.311	0.268	0.233	0.197	0.182	0.16
5/8	0.610	0.546	0.483	0.441	0.399	0.342	0.297	0.250	0.230	0.20
34	0.754	0.672	0.591	0.540	0.486	0.416	0.360	0.303	0.278	0.24
1	1.04	0.92	0.81	0.73	0.66	0.57	0.48	0.408	0.376	0.33

TABLE CXXIII.—COPPER TUBES. Weight per Lineal Foot,

NOTE: Stubs or Birmingham gauge used.

Formula for determining the proper thickness of copper tubing is given as follows:

 $T = \frac{P \times D}{6,000} + .0625$ Where T = thickness in inches P = working pressure D = Inside diameter of the tube in inches

This was prescribed by Board of Supervising Inspectors of Steamboats. (1911).

Decimal Gauge	Iron 480 lbs. per cu. ft.	Steel 489.6 lbs. per cu. ft.	U. S. Gauge numbers
0.002	0.08	0.082	
0.004	0.16	0.163	
0.006	0.24	0.245	38-39
0.008	0.32	0.326	34-35
0.010	0.40	0.408	32
0.012	0.48	0.490	30-31
0.014	0.56	0.571	29
0.016	0.64	0.653	27-28
0.018	0.72	0.734	26-27
0.020	0.80	0.816	25-26
0.022	0.88	0.898	25
0.025	1.00	1.020	24
0.028	1.12	1.142	23
0.032	1.28	1.306	21-22
0.036	1.44	1.469	20-21
0.040	1.60	1.632	19-20
0.045	1.80	1.836	18-19
0.050	2.00	2.040	18
0.055	2.20	2.244	17
0.060	2.40	2.448	16-17
0.065	2.60	2.652	15-16
0.070	2.80	2.856	15
0.075	3.00	3.060	14-15
0.080	3.20	3.264	13-14
0.085	3.40	3.468	13-14
0.090	3.60	3.672	13-14
0.095	3.80	3.876	12-13
0.100	4.00	4.080	12-13
0.110	4.40	4.488	12
0.125	5.00	5.100	11
0.135	5.40	5.508	10-11
0.150	6.00	6.120	9-10
0.165	6.60	6.732	8-9
0.180	7.20	7.344	7–8
0.200	8.00	8.160	6–7
0.220	8.80	8.976	4-5
0.240	9.60	9.792	3-4
0.250	10.00	10.200	3

TABLE CXXIV.—SHEET METAL DIMENSIONS AND WEIGHTS. Wt, per sq. ft. in lbs,

From Hoffman's Handbook for Heating and Ventilating Engineers, published by McGraw Hill Co., Inc.

11 1 . Th	Page 12
Absolute Pressure	12
Absolute Zero	12 187
Absopure Machine	299
Absorption Machines Absorption Machines, Ammonia	128
Absorption Machines, Ammonia Absorption Machines, Water Vapor	127
Air, Circulation of	378
Circulation Tests	383
Cooled Compressors, Condensing	
Pressure for	145
Pressure for Flow through a Circular Orifice	
(Table) Flow through Orifices Machine, Allen Dense	. 172
Flow through Orifices	171 126
Machine, Allen Dense	120
Machine, Gorrie	120
Machine, Open Cycle	126
Properties of	47
Pumping Test on a Compresor	
Properties of Pumping Test on a Compresor (Table)	140
Refrigerating system, Low Pres-	-
sure	127
Spaces	113
Spaces, Insulating Effect of	115
Weight and Volume of (Table).	. 475
Alco Liquid Control Valve American Radiator Automatic Expan	107
sion Valve	. 168
sion Valve American Radiator Evaporator American Radiator Float Valve	169
American Radiator Float Valve	169
Ammonia Absorption Machine	. 128
Ammonia, Heat of Association of	
(Table) Properties of Aqua Solutions	. 83
Properties of	. 40
(Toble) (Toble)	. 99
(Table)	, 62
Properties of Saturated	01
(Table)	4. 61
Properties of Superheated Va-	
(Table)	, 6 7
Solubility in Water (Table)	. 83
Amount of refrigerant to be Evapora-	
ted Ampere Rating of A. C. Motors	. 38
(Toble) Ampere Rating of A. C. Motors	163
(Table)	449
Application of Refrigeration to Mill	: 443
Apples Application of Refrigeration to Mill Atmospheric Pressure Equivalents	
(lade)	. 10
Audurren Machine	. 190
Automatic Reclosing Circuit Breaker	
Company Control	. 181

в

Bacteria in Foods	437
Bacteria in Milk	445
Balsa Refrigerator Tests, (Table)	426
Balsa Wood	117
	164
Belts	
Berries	394
Blower_Data (Table)	142
Bohn Refrigerator	331
Brine Tanks	156
Brine Tank Data	156
Brine Tank Data (Table)	161
Brine Tank, Fedders	184
Brunswick-Kroeschell Refrigerator	194
brunswick-Kroesenen Kerrigerator	124
Bureau of Standards Tests on Re-	
frigerators	421
B. t. u	11
Butane, Properties of	41
Properties of (Table)	70

_

Coloriation for Colorial Riv Weil	age
Calculation for Spiral Fin Tubes Calorimeter Testing Carbon Bisulphate Properties of	152
Calorimeter Testing	408
Carbon Bisulphate Properties of	
Carbon Dioxide	42
Carbon Dioxide, Properties of Satu-	
Carbon Dioxide	69
Carbon Tetrachloride Properties of	
(Table)	71
Carbondale Machine	196
Carbondale Machine Care of Ice Chests	447
Carre	
Carre	20
Carre Machine Cavalier Refrigerator	128
Cavalier Refrigerator	333
Champion Machine	198
Champion Machine Characteristics of Refrigerants	37
Charging Refrigerants Cherging Refrigerants Chilrite Machine Chloroform, Properties of (Table) Choice of Heat Insulators Circulation of Air Circulation in Ice Chambers Climax Machine	49
Chemical Methods of Refrigeration.	133
Chilrite Machine	201
Chloroform, Properties of (Table)	71
Choice of Heat Insulators	111
Circulation of Air	378
Circulation in Ise Chembers	383
Circulation in Ice Chambers	
Climax Machine	202
Coefficient of Heat Transfer in Ap-	
paratus Coefficient of Radiation and Convection	121
Coefficient of Radiation and Convection	
	107
Coldmaker Machine	203
Coldmaker Machine Comparison of Heat Insulators Comparative Cylinder Displacement.	107
Comparison of Refrigerants	36
Comparative Cylinder Displacement	39
Comprassor	137
Compressor Condenser Condenser Flintlock Condenser, McCord Condensing Pressure for Air-cooled	140
Condenser	
Condenser Funtlock	145
Condenser, McCord	150
Condensing Pressure for Air-cooled	
Compressor Conduction of Heat	145
Conduction of Heat	103
Constant Temperature Room	399
Convection	106
Convection Control, Automatic Circuit Breaker	
Company	181
Company Control Switch Control. Penn Electric	181
Control. Penn Electric	175
Cooka Machina	206
Cooke Machine	
Copeland Machine	208
Copper Tubing (Table)	482
Copeland Machine Copper Tubing (Table) Cork Cork Insulation Data (Table)	116
Cork Insulation Data (Table)	16
Corrosion of Metals	35
Corrosion of Metals Cost of Harvesting Ice Cost of Ice (Table)	26
Cost of Ice (Table)	416
Creamery Package Machine	211
Crystal Refrigerator	335
Cullen Machine	20
Cullen Machine Cutting Ice Into Blocks Cylinder Displacement (Table)	20
Cultured Displayer Blocks	
Cymuer Displacement (Table)	40

D

Decimal Equivalents of Fractions of	
One Inch (Table)	468
Delivery of Ice (Table)	420
Delphos Machine	211
Density of Water (Table)	474
Desirable Humidity Indoors	388
Desirable Temperature for Refriger-	
ators (Table)	379
Desserts	393
Determination of Heat Losses thru	
a Refrigerator Wall	109
Direct Expansion System	155
Discharge Valves	166
Discharge Valves	166

485

.

	Page

Displacement, Comparative Cylinder.	39
	10
	49
	465
D Construction	
Gear	105

Е

Efficiency of Refrigerator Wall	434
Efficiency of Refrigerator with In-	
creased Insulation	417
Effect of Refrigeration on Foods	438
Effect of Room Humidity on Re-	
frigerator Tests	405
Eggs Different from	394
Electric Current Different from 466	
Standard (Table)	467
Electrical Heater Method of Test-	
ing Refrigerators	402
Elistrical Refrigerating Company	213
Electrica Machine	214
Electro Kold Machine	215
Et. Anolusy Servel Machille	307
Equivalents, Horsepower	16
	43
Exhand Properties of (IdDIC)	72
Ethor	43
Eshel Chloride	44
Ethyl Chloride, Properties of	= .
(Table)	73
Ether Properties of (lable).	
Execorator	
Evolution lists on trases	
E La Machino	
Exhaust Fan Tests (Table)	. 14

\mathbf{F}

Fans	143
Fans	184
Fedders Brine Tank	182
Condenser and Receiver	183
Expansion Valve	
Liquid Filter	182
Liquid Strainer	182
Fin Tubing (Table)	154
Fin Lubing (Labic)	393
Fish	117
Flaxlinum	145
Flintlock Condensers	151
Flintlock Condenser Data (ladie)	155
Elooded System	
Elem of Air thru Ornnees	171
Food Arrangement in Refrigerators.	
Food Attangement in Restore	453
	7
Foreword	219
Frigidaire Machine	157
Frost on Evaporator	448
Fruits. Keeping of	440

G

	325
Cases Coefficients of Expansion and	476
Heat Transmission (Table)	470
Explosion Data	47
Non-condensible	100
Solubility in Water (Table)	476
Specific Heat of (Table) General Electric Machine	227
Geppert Machine	308
Good Housekeeping Institute Rc-	• • •
frigerator Tests	430
Gorrie	20
Grand Rapids Refrigerator Company.	343

H

п	_
	Page
	. 299
Iall	
leat, Absorption and Kaulation of	. 105
(Table)	
and Temperature	• A.C
Conduction of	. 100
Inculation	. 10/
T at at a second s	
Losses in a Refrigerator	. 402
Losses through Refrigerator Wal	109
Losses inrough Kerngerator tra	. 113
Mechanical Equivalent of	
Sensible	
Specific	• 1
Transfer (Coefficient (laule)	14.
Transfer in Apparatus	
Units	. 11
History and Principles of Refrig-	
History and Principles of Refins	. 126
erating Systems	17
History of Retrigeration	
History of Value Compression	
Uorcenower Equivalents (lable) .	10
Household Refrigerators	331
Household Refrigerating Machine	
Requirements	133
Kegunements	. 395
Ilow to Use Ice	
Humidity	
Discrem for Koom and Keins	
erator	
Desirable Indoors	000
Effect on Refrigerator lests .	403
in United States (Table)4	JO. TJ.
Tests	. 387
1ests	
Tests on Household Refrigerat	. 38
(Tahle)	

I

1 The Deletion to Food	22
	10
and Salt Mixtures, Temperatures	34
	27
	71
Los Conscity of a Keirigeralui,	46
Ice Chest	26
	52
Les Cream Making in the nume	27
The Cutting into KIOCKS contractions	25
tor Dairy Faims	95
	24
Loo Melting Method of Icsuing NC	100
	19
Lee Natural	25
	16
Properties of (Table) Ice Refrigeration in the Home	411
Ice Refrigeration in the Home.	1.1.1
Ice Refrigerator Cabinet Data.	374
	431
	419
Ice Used in Homes (Table)	231
	299
Ice-O-Lator	
Illustrations	188
Absopure Compressor Absopure Condensing Unit for	
Ice Cream Cabinet	188
	189
Absopure Mechanical Unit	187
Absopure Refrigerator	190
Air Circulation in Refrigerators	
Air Circulation in Rein. 381, 382,	384
Alco Liquid Control	168
American Automatic Expansion	
Value	169
Amorican Float Valve	170
American Refrigeration Section	
American Reffigeration 170.	171

Illustrations (Continued) Amount of Liquid Refrigerant Used Arrangement of Food in Re- frigerators	Page
Arrangement of Food in Re-	38
Arrangement of Food in Ke- frigerators Audiffren Cabinet with Machine. Audiffren Refrigerating System. Autofrigor Machine Balsa Refrigerator Test Chart 	454 192
Audiffren Household Machine	192 191 193
Autofrigor Machine System.	193
Balsa Refrigerator Test Chart	1.74
Rohn Refrigerator	429 332
Brine Tanks	185
Brunswick-Kroeschell Ice Making	196
Brunswick-Kroeschell Ice Making Installation Brunswick-Kroeschell Machine Calorimeter Testing Carbondale Machine Cavalier Refrigerator Champion Cooling Unit Champion Cooling Unit Champion Senior Model Champion Senior Model Champion Senior Model Chilrite Machine Climax Machine Coldmaker Machine Coldmaker Machine Comparison of Refrigerator Heat Losses Compression Refrigerating System Condenser and Receiver Unit. Condenser Pressure for Air Cooled SO ₂ Machines. Constant Temperature Testing Room	195
Calorimeter Testing	408
Carbondale Machine	$\frac{197}{335}$
Charging of Refrigerants	50
Champion Cooling Unit	$\frac{199}{198}$
Champion Machine	200
Champion Senior Model	199
Chilrite Machine	201 202
Coldmaker Machine	203
Comparison of Refrigerator	105
Compression Refrigerating System	405 132 183
Condenser and Receiver Unit	183
Cooled SO ₂ Machines	144
Constant Temperature Testing	1 7 7
Room	401
Room	206
able Unit	210
Copeland Expansion Valve	209 208
Copeland Machine Copeland Machine Copeland One Piece Freezing Unit and Machine Creamery Package Machine Crystal Refrigerator Drinking Water Cooled By Use of Ice Cubes Icectrical Refrigerator Control. Electrica Refrigerator Control. Electrice Machine Electro-Kold Frost Tank Electro-Kold Self-contained Unit Electroloux Servel Cabinet	
Creamery Package Machine	209
Crystal Refrigerator 336,	211 337
Delphos Machine Drinking Water Cooled By Hus	212
of Ice Cubes	450
Electrical Refrigerator Control	181
Electro-Kold Frost Tank	214 216
Electro-Kold Machine	215
Unit	216
Unit Electrolux Servel Cabinet 22, 323, Everite Cooling Unit Everite Cabinet and Cooling	
Everite Cooling Unit	324 218
Everite Cabinet and Cooling	
Unit	219 217
Unit Everite Machine Expansion Valve Flintlock Air-Cooled Condenser	184
Flintlock Air-Cooled Condenser	
Frigidaire Cabinet	147 224
Frigidaire Cabinet and Self- contained Unit	
Frigidaire Cooling Coils 222	226
Frigidaire Ice Maker	223 225
Frigidaire Machine	221
contained Unit Frigidaire Cooling Coils222, Frigidaire Ice Maker Frigidaire Machine220, Frigidaire Self-contained model. General Electric Refrigerator Hall Machine	221 225 228
Hall Machine	230
Ice. Water and Steam	28
Humidity Curves	28 391
General Electric Refrigerator Hall Machine Heat Temperature Diagram for Ice, Water and Steam Humidity Curves Humidity in Refrigerator Ice Refrigerator Cabinet Data 375, Icemaid Cabinet Icemaid Freezing Unit	407
view and generator Cabinet Data	376
Icemaid Cabinet	376 234 2 3 3
accurate incoming Unit	600

ų

Illustrations (Continued) Icemaid Machine Ice-O-Lator Absorption System Iroquois Cabinets	Page
Icemaid Machine	231
Iroquois Cabinets	238
1roquois Compressor	236
Iroquois Cooling Units	Page 231 302 238 236 237 235 236
Iroquois Switch	236
Isko Machine	240 342
Jewett Wall Section	339
Keith Absorption Machine	304
Kelvinator Cabinet	245
Kelvinator Condensing Unit	245 244 243
Jewett Wall Section Keith Absorption Machine Keith Cabinet Kelvinator Cabinet Kelvinator Cooling Unit Kelvinator Large Capacity Con- densing Unit Kelvinator Machine Leonard Refrigerator Leonard Refrigerator Lipman Machine Liquid Filter Liquid Strainer McCray Refrigerator Mechant & Evans Cabinet	243
densing Unit	246
Kelvinator Machine242, Kold King Machine	243 248
Leonard Refrigerator	345
Leonard Wall Section	344 249
Liquid Filter	185
Liquid Strainer	184
McCray Retrigerator	348
Curve	119
Merchant & Evans Cabinet	251 250 179
Mercoid Control	179
National Absorption Machine	300
Norge Freezer Coils	254
Norge Machine	254 253 252 255
Operation Volatile Liquid Ther	255
mostat	177 174
Penn Electric Control	$174 \\ 180$
Radiation and Convection Losses	108
Mean Temperature Difference Curve	350
Rein Refrigerator	351
Rice Cabinet	354 261
Rice Compressor	258 257
Rice Machine	257 265 263 268
Sanat Cabinet	265
Savage Ice Cream Cabinet	263
Savage Machine	267
Seamless Metal Bellows Seeger Refrigerator	182
Servel Cabinets 273, 274,	273
Seamless Metal Bellows Seeger Refrigerator Servel Cabinets273, 274, Servel Commercial Machine.276, Servel Compressor Servel Float Valve Servel Machine Servel Pressure Control Socold Cabinet279, Socold Frost Unit Socold Machine	267 182 355 275 275 270 272 269
Servel Float Valve	272
Servel Machine	269
Socold Cabinet	271 280 278
Socold Frost Unit	278
Socold Machine	278
a 111 111 111 111 111 111 111 111 111 1	326
Spiral Fin Tube Condenser	152
Standard Ice Box Construction.	153 110
Socold Cabinet	109
and Salt Mixtures	134
Universal Machine	134 282 283
Wall Construction	283
	367 2 8 5
Ward Evaporating System	285
Standard Wall Construction Temperatures Obtained by Ice and Salt Mixtures Universal Machine Wall Construction 	284 283 284 286
Ward Valve Connections	284
Warner Midemine	280

	Page
Welsbach Cabinet	290
Welsbach Freezing Unit	288
Welsbach Machine	287
White Frost Refrigerator	356
Whitehead Cooling Unit	291 291
Whitehead Machine	213
Williams Machine Zerozone Automatic Control	295
Zerozone Cabinet	297
Zerozone Cooling Unit	296
Zerozone Machine	295
Influence of Temperature on Bac-	
teria in Foods	437
Insulating Effect of Air Spaces	115
Insulation for Cold Pipes (Tables)	120
Insulation for Refrigerators	369
Iroquois	235
Isko	240
Isobutane, Properties of (Table)	74

J

Jewett Refrigerator 338

K

Keith	Ahse	rption	Ma	ch	ir	e				303
Kelvin										
Kirk .										
Kold	Kino									217

L

Latent Heat	11
of Evaporization	34
of Foods	452
Leonard Refrigerator	343
Linde	21
Linings	360
Galvanized Iron	362
Porcelain on Iron	360
Solid Porcelain	361
White Opal Glass	362
Wood	362
Lipman Machine	248
Liquids, Compressibility (Table)	100
Lithboard	117
Low Programs Air Defrigention	11/
Low Pressure Air Refrigerating	1.25
System	121

М

Machine, Vapor Compression	131
Manufactured Ice	21
Master Machine	306
Materials for Heat Insulation	115
Materials for Insulating Refrigerat-	110
	200
ors	369
McCord Condensers	150
McCray Refrigerator	346
Meats	448
Care of in the Home	440
Mechanical Equivalent of Heat	113
Mercoid Control	179
Merchant & Evans	249
Metals, Corrosion of	35
Method of Determining the Density	00
of a Gas	51
Methyl Chloride	44
Properties of (Table)	75
Metric Constants	471
Minoral Falt	117
Mineral Felt	
Mineral Wool	116
Miscellaneous Tables	455
Molecular Weight of Gases (Table)	51
Multiflex Bellows	182

N

	age
National Refrigerator	299
Natural Ice	19
New York Tribune Tests on Re-	
frigerators	422
Nitrous Öxide, Properties of	
(Table)	
Non-condensible Gases	
Norge Machine	251

0

Odin Machine	255
Open Cycle Air Machine	126
Operating Conditions	
Operation of Ice Refrigerators	
Orifice, Flow of air Thru	
Outer Refrigerator Wall Construc-	
tion	

Р

Penn Electric Control	
L'enni Licente Control	175
Posting	20
Perkins Physical_Constants of Metals	20
Physical Constants of Metals	180
(Table)480, Pipe Dimensions (Table)480, Piston Displacement for Refriger-	479
Pipe Dimensions (Table)480,	481
Piston Displacement for Refriger-	
ants	48
Placing of Food in Refrigerators	390
Platen-Munters Machine	311
Power Equivalents (Table)	470
Prosecure	32
Pressure	
Absolute	12
Equivalents (Table)	470
of Condensation	32
of Evaporization	32
Pressures for Air-cooled Compres-	
SOTS	145
Prevost's Theory	105
Prime Mover	160
LINE MOVEL	100
Principles of Refrigerating Sys-	1.2.5
Principles of Refrigerating Sys- tems	125
Principles of Refrigerating Sys- tems Propane	45
Principles of Refrigerating Sys- tems Propane Properties of (Table)	45 76
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air	45 76 47
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air	45 76
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air	45 76 47
Principles of Refrigerating Sys- tems. Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water	45 76 47 40
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table)	45 76 47 40 160
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide	45 76 47 40 160 42
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane	45 76 47 40 160 42 41
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane	45 76 47 40 160 42 41 43
Principles of Refrigerating Sys- tems. Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane	45 76 47 40 160 42 41 43 43
Principles of Refrigerating Sys- tems. Propane . Properties of (Table) . Properties of Air . Calcium Chloride in Water (Table) . Carbon Dioxide . Butane . Ethane . Ether . Ethyl Chloride .	45 76 47 40 160 42 41 43 43 44
Principles of Refrigerating Sys- tems Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 44 44 16
Principles of Refrigerating Sys- tems Propane Properties of (Table) Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ether Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 44 44 16 44
Principles of Refrigerating Sys- tems Propane Properties of (Table) Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ether Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 44 44 16
Principles of Refrigerating Sys- tems Propane Properties of (Table) Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ether Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 44 44 16 44
Principles of Refrigerating Sys- tems. Propane Properties of (Table) Properties of Air Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ether Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 43 44 16 44 45
Principles of Refrigerating Sys- tems Propane Properties of (Table) Ammonia Calcium Chloride in Water (Table) Carbon Dioxide Butane Ethane Ethane Ether Ethyl Chloride Ice,	45 76 47 40 160 42 41 43 43 44 44 16 44

R

Radiation	104
Radiation Between Sun and Earth	105
Rated Ice Capacities of Refrigerators	
(T'ables)	373
Refrigerants	
Air	47
Ammonia	40
Amount to be Evaporated	- 38
Butane	41
Carbon Dioxide	42
Character of	37
Charging of	49
Comparison of	36
Constants	14

Refrigerants (Continued) Ethane Ether Ethyl Chloride for Household Systems31 General Requisites Methyl Chloride	Page
Ethane	43
Ethyl Chloride	44
for Household Systems31	, 36
General Requisites	31
Methyl Chloride	44
Sulphur Dioxide	46
Use in United States (Table)	39
Refrigerated Cars	23
Refrigerating Conversion Factors	15
Machine Capacity Rating	127
Methyl Chloride Propane Use in United States (Table) Refrigerated Cars Machine Capacity Rating Systems, Low Pressure Air Refrigerating Machines Absource	127
Refrigerating Machines Absopure Audiffren Autofrigor Brunswick-Krocschell Carbondale Champion Chilfrite Climax Coldmaker Cooke Coopeland Creamery Package Delphos Electrical Refrigerating Co Electro-Kold Electro-kold Electrolux-Servel Everite Frigidaire General Electric Hall Leemaid	187
Audiffren	190
Autofrigor	193
Brunswick-Kroeschell	194 196
Carbondale	196
Chilrite	201
Climax	202 203 206 208
Coldmaker	203
Cooke	206
Copeland	208
Creamery Package	211
Flectrical Refrigerating Co	213
Electro-Kold	215
Electrolux-Servel	211 213 215 307 217
Everite	217
Frigidaire	219
Hall	229
Icemaid	231
Ice-O-Lator	299
Iroquois	235
Isko	240
Electrolux-Servel Everite Frigidaire General Electric Hall Icemo-Lator Iroquois Isko	241
Kold King	247
Lipman	248
Master	306
Merchant & Evans	249
National	251
Odin	255
Rice	256
Oun Rice Sanat Savage Servel Socold Socod Universal Utility	251 255 256 262 265 268
Davage	200
Servel	208
Sorco	325
Universal	281
Utility	281
Ward	283
Warner	287
Whitehead	290
Williams Simplex	292
Zerozone	291
Refrigeration by Chemical Methods.	133
History of 17	411
per Cubic Foot Cylinder Dis	
placement (Table)	40
Required to Make Ice	26
Tonnage1	2, 15
Retrigerator Control Switch	307
Servel Socold Sorco Universal Utility Ward Ward Welsbach Whitehead Williams Simplex Zerozone Refrigeration by Chemical Methods. History of 17. in the Home. per Cubic Foot Cylinder Dis placement (Table) Required to Make Ice. Tonnage 17. Bors, Opening and Closing. Heat Losses How to Clean. Insulation (Table) Placing of Score Card Tests by New York Tribune In strute 223 Wall Construction	403
How to Clean	. 397
Insulation (Table)	. 369
Placing of	. 397
Score Card	. 432
stitute 423	426
Wall Construction	. 359

Pa	age
Wall Construction (Table)	
Refrigerators	
Bohn	331
Ouburier fifthere for the fifthere for t	333
Cijotai tottottottottottottotto	335
Jenece to the tener to the tener to the tener	338
Liconara filtereteretereteretereteretereteretereter	343
McCray	346
	349
	351 355
Seeger	356
White Frost	220
Ice Making (Table)	15
Relative Piston Displacement for Re-	10
frigerants	48
Requirements of Household Refrig-	10
erating Machines	135
Research on Refrigerator in the	
Home	411
	256
Rock Cork	118

\mathbf{S}

Sanat Machine	262
Savage Machine	265
Savage Machine	355
Savage Machine Seeger Refrigerator Selection Insulation	118
Selection Insulation	11
Sensible Heat	
Servel Machine Sheet Metal Dimensions and Weights	268
Sheet Metal Dimensions and Weights	
(Table) Shelves Shelf Area of Ell Type Refrigerator	483
Shelves	367
Shelf Area of Ell Type Refrigerator	368
Shelf Area of Top Icer Refrigerator	000
(Table)	368
(Table) Side Icer Type Refrigerator	392
Side icer Type Keingerator	374
Socold Refrigerator	277
Sorco Absorption Machine Specific and Latent Heat of Food	325
Specific and Latent Heat of Food	
(Table) 451,	452
Specific Heat	12
Specific and Latent Heat of Food (Table)	152
Standard Pollows (Table)	183
Standard Denows (Table)	100
Standard Ion Data of Various Re-	00
irigerants (Table) SI	, 82
Strength of Materials (Table)	478
Suction Valve	166
Sulphur Dioxide	46
Sulphur Dioxide Properties of Saturated (Table)	
77	. 78
77 Properties of Superheated Vapor (Table)	, /0
(T-LL) 70	00
(Table)	80
Summer Temperatures in the United	101
States (Table)	456
Tables	
Air Flow through Circular Orifice	172
Air Pumping Test on a Compressor	
sor	140
Ampere Rating of A. C. Motors	163
Atmospheric Pressure Equival-	
anta	16
ents Bacteria in Milk443, 444, Balsa Refrigerator Test Blower Data Brine Tank Data Coefficients of Expansion and Unet Transmission of Gases	445
Bacteria in Milk	
Balsa Refrigerator Test	426
Blower Data	143
Brine Tank Data	
Coefficients of Expansion and	161
	101
Heat Transmission of Gases.	476
Heat Transmission of Gases.	
of Expansion and Heat Trans-	4 7 6
of Expansion and Heat Trans- mission of Solids and Liquids	
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub-	476 477
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub-	476 477 477
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub-	476 477 477 107
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub- stances	476 477 477 107 100
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub- stances of Radiation and Convection Compressibility of Liquids	476 477 477 107 100 15
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub- stances of Radiation and Convection Compressibility of Liquids	476 477 477 107 100 15 482
of Expansion and Heat Trans- mission of Solids and Liquids of Expansion for various Sub- stances	476 477 477 107 100 15

HOUSEHOLD REFRIGERATION

Page

Tables (Continued) Cost of Ice..... Cylinder Displacement Decimal Equivalents of Fractions 416 46 of One Inch..... 468 of One Incl. Delivery of Ice.... Density of Water. Desirable Temperature for Re-frigerators Displacement for Various Refrig-420 461 379 49 Isobutane Methyl Chloride Nitrous Oxide 74 75 71 Sodium Chloride in Water... Sulphur Dioxide, Saturated 76 161

 Sulphur
 Dioxide, Saturated

 Vapor
 77, 78

 Sulphur
 Dioxide, Superheated

 Vapor
 79, 80

 Rated
 Capacities of Refrig-erators

 Terrigerants
 60

 Household
 36

 chines Refrigerants, Use in United 36 States Refrigeration per Cubic Foot of Cylinder Displacement Refrigerator Tosulation Refrigerator Tusulation Refrigerator Tests by Bureau of Standards 139 40 15 369 421

Page
 Fage
 Fage

 Cables (Continued)
 by New York Institute...423, 424

 Refrigerator Wall Construction. 418
 Sheet Metal Dimensions and
 Weights Shelf Area of Ell Type Refrig-483 tion Water, Average Household Con-

 Woods Suitable for Refrigerator Construction
 370

 Woods used in Refrigerators.
 369

 Tap Water Temperatures (Table)
 173

 Temperature Control
 173

 Temperature Conversion (Table)
 173

 Temperatures Obtained by Ice and Salt Mixtures (Chart)
 377

 Temperatures of City Water Supply.
 457

 Temperatures in France (Table)
 457

 Temperatures of Refrigerators in Use in Homes (Table)
 457

 Temperatures of Refrigerators Liv-ing Rooms and Cellars (Table)
 415

 ing Rooms and Cellars (Table) Tests on Refrigerators by Bureau of Standards (Table) 421 Theory of Refrigeration 11

Tons an	d Pounds	of	Refriger	ation	age
(T Tubes, S Types of	able) piral Fin Insulating	Ma	terial	.146,	15 152 115

U

Unit of Heat	11
Universal Machine	281
University of Illinois Refrigerator	
Tests	430
Use of Refrigerants in United States	39
Utility Machine	281

V

Valves										
Alco Liquid	С	on	tre	51.			 			167
Discharge										166
Expansion .										168
Float,										
Suction										166
Vapor Compressio	nc	N	lac	chi	n	es	 			131
Vegetables										448

W

Wall Co	Instruction	57
Ward .		 83
Warner		286

P	age
Water	- 29
As a Refrigerant	47
Capacity of Service Pipes	
(Table)	465
Controlo	178
Controls	
Density of (Table)	464
For Cooling Food	135
Rates (Taole) 461	-465
Temperatures (Table)457.	461
Temperatures of Cities in the	
United States and Canada	
(Table)	474
Vapor Absorption Machines	127
	386
Vapor in the Air (Table)	
Weight of Dry Air (Tahle)	475
of Various Substances (Table).	474
of Water (Table)	16
Welsbach Machine	287
What Ice Can Do	22
Whitehead Machine	290
White Frost Refrigerator	356
Williams Simplex Machine	292
Wood Poleo	117
Wood, Balsa	117
Woods Suitable for Refrigerator	
Construction (Table)	370
Woods Used in Refrigerators (table)	
	369

Z

Zerozone,	Machine	 294

GOOD BOOKS YOU SHOULD HAVE

These are Leading Works on Ice Making, Refrigeration and Cold Storage

The Compression Refrigerating Machine By GARDNER T. VOORHEES. An analysis of the many practical and theoretical studies involved in the action of the compression refrigerating ma- chine, including its thermodynamics and its indicator diagram, with a study of ice making. Accompanied by a large number of illustrations and original charts of great value arranged for convenient reference. Cloth\$6.50 Morocco\$7.50
The Absorption Refrigerating Machine, Elementary Theory and Prac- tice (Second Edition) By GARDNER T. VOORHEES. A complete practical, elementary treatise on the absorption system of refrigeration and its general fundamental principles of operation. Cloth\$2.50 Morocco\$3.50
The Absorption Refrigerating Machine, Advanced Practice and Theory By GARDNER T. VOORHEES. A complete technical treatise on absorp- tion refrigerating systems containing not only the fundamental principles but also detailed data for the design and construction of the absorption machines for all working conditions. Cloth\$5.00 Morocco\$6.00
Refrigerating Machines, Compression—Absorption By GARDNER T. VOORHEES. Comparison of capacities and economies of compression and absorption systems, and of combined compression and absorp- tion systems. Cloth\$2.00 Morocco\$2.50
Indicating the Refrigerating Machine (Second Edition) By GARDNER T. VOORHEES. A textbook on the application of the in- dicator to the ammonia compressor and steam engine, with practical instructions relating to the construction and use of the indicator and reading and computing indicator cards. \$2.50 Morocco\$3.50
Practical Refrigerating Engineer's Pocketbook By JOHN E. STARR, dean of the refrigeration engineering profession. This pocketbook is an elementary treatise, supplemented with numerous tables containing valuable data on the design, construction and operation of mechanical refrigerating systems. Cloth\$2.50 Morocco\$3.50
Principles of Refrigeration By W. H. Motz. A complete treatise on fundamental principles of operation of ice making and refrigerating machinery, properties and values of principal media used in modern refrigerating apparatus; transmission of heat, functions and values of insulating materials; construction and operation of various parts of refrigerating apparatus and application of refrigeration to its varied uses. Cloth\$5.00 Morocco\$6.00
Refrigeration Memoranda (10th Edition) By JOHN LEVEY. A collection of useful information and tables gathered from engineering room practice, in plain, everyday, engine-room language. Flex- ible leather, vest pocket size. Revised and enlarged. Morocco
Ammonia Compression Refrigerating Machine By W. S. DOAN. A description of the ammonia compression system presented in a practical manner. Especially prepared for the operating engineer and the student by an operating engineer of twenty-five years' experience. Cloth\$2.50 Morocco\$3.50

Household Refrigeration (Third Edition, revised and enlarged) By H. B. HULL. The only treatise published on the principles, types, construction and operation of both ice and mechanically cooled refrigerators and the use of ice and refrigeration in the home. Cloth......\$3.50 Morocco.....\$4.50

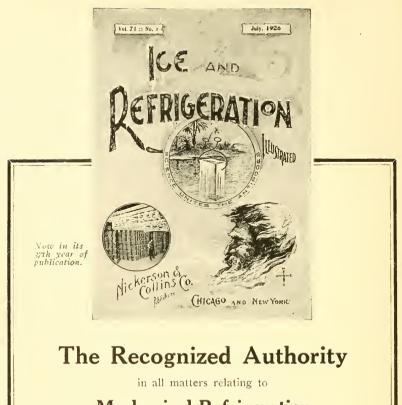
The Modern Packing House (Second Edition, revised and enlarged) By F. W. WILDER and DAVID I. DAVIS. A complete treatise on the design, construction, equipment and operation of meat packing houses, according to present American practice, including formulae for the manufacture of lard and sausage, the curing of meats, etc., and methods of converting all by-products into commercial articles.

Packing House and Cold Storage Construction By H. PETER HENSCHIEN. A general reference work on the planning, construction and equipment of modern American meat packing plants with special reference to the requirements of the United States Government and a complete treatise on the design of cold storage plants, including refrigeration insulation and cost data. Fully illustratd. Cloth.....\$5.00 Morocco.....\$6.00

Cork Insulation

By P. EDWIN THOMAS. A complete textbook on cork insulation, for students, engineers, contractors, managers and owners. The origin of cork and history of its use for insulation; complete directions for the proper application of corkboard insulation in ice and cold storage plants and other refrigeration installations; the insulation of household refrigerators, etc. Cloth......\$3.50 Morocco.....\$4.50

Law of Draymen, Forwarders and Warehousemen


Selling Ice By WALTER R. SANDERS. A compilation of all the good articles pub-lished on the subject written by men who have spent most of their lives selling and increasing the sale of ice. Selling ice from wagons, at platform, cash-and-carry stations, ice depots and in carloads. Sales methods dsecribed. Advertis-ing ice. \$3.50 Morocco......\$4.50

Ice Delivery

By WALTER S. SANDERS. A complete treatise on the delivery of ice to the consumer, compiled by a man who has had twenty years' practical experience from the back step of an ice wagon to the assistant general managership of a \$1,000,000 company. Dealing with inefficiency and waste in delivery methods and how to remedy them, organization, personnel and duties of employees, oper-ation, costs, accounting systems, service, equipment. Cloth......\$3.50 Morocco......\$4.50

Ice and Refrigeration Blue Book and Buyers' Guide (10th Edition) The only directory of the ice making, cold storage, refrigeration and auxiliary trades. A complete list of ice factories, cold stores, packing houses, breweries, dairies, creameries, meat markets, hotels, restaurants, and all estab-lishments using mechanical refrigeration in the United States and Canada, in-cluding valuable statistical data concerning the refrigerating industries. Cloth......\$12.00 Morocco.....\$14.00

NICKERSON & COLLINS CO., Publishers 5707 W. Lake Street, Chicago

Mechanical Refrigeration

A monthly Review of the Ice, Ice Making Refrigerating, Cold Storage and Kindred Industries

THE oldest publication of its kind in the world and the only medium through which can be obtained all the reliable, technical and practical information relating to the science of mechanical ice making and refrigeration. It is invaluable to anyone owning, operating, or in any way interested in ice making, cold storage or refrigerating machinery.

The advertising sections contain the illustrated announcements of the leading manufacturers of ice making and refrigerating machinery, accessories and supplies.

SUBSCRIPTION PRICE:

In	U_{\cdot}	S. and	Possessions.	 	\$3.00	per year
In	all	other of	countries	 	4.00	per year

NICKERSON & COLLINS CO.

Publishers, 5707 West Lake Street, Chicago

Demco, Inc. 38-293

solitorethereetiges	
and the second sec	TP492.6 H8 1927 Household refrigeration; a complete treatise on the principles, types, construction, and operation of both ice and mechanically cooled domestic refrigerators, and the use of ice and refrigeration in the home, by H. B. Hull 3d ed., rev. and enl. Chicago, Nickerson & Collins co. [c1927] 491 p. incl. illus., tables, diagrs. 24 cm. 0-18855, M
	BNU 1.2 OCT 78 1721658 NEDDbp 27-23768

