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PREFACE

Tu1s book is intended for students taking a first-year course
in Astronomy in the Universities and for all those interested
in the subject who feel the need for a more solid foundation
than the many descriptive books can provide. Now that such
large numbers of our young men in the naval and air forces
are required to have some knowledge of Astronomy in its
application to Navigation, I hope that the book will be of value
to them as an introduction to the Service manuals in which
greater emphasis is naturally laid on more technical matters
than on a complete exposition of the foundations of Astronomy.

The mathematical treatment throughout is of an elementary
nature and the reader’s mathematical attainments need not go
beyond a knowledge of the simple trigonometrical funections.
Certain sections marked by an asterisk can be omitted on a
first reading.

The book is provided with numerous examples designed to
illustrate points of theoretical or practical interest; the
majority are of a straight-forward nature. In working out
the examples the student is recommended to draw diagrams,
whenever possible, appropriate to the problems concerned.
The examples are intended to be worked out with the usual
4-figure logarithmic tables ; it may be remarked in this con-
nection that slight discrepancies in some of the answers (as
compared with those printed at the end of the book) may be
anticipated, for the fourth significant figure will generally be
liable to an error of 1 or 2 units, and angles, given in degrees
and minutes, will usually be subject to a discrepancy of 1 or
2 minutes of arec.

The examples in the text are based on the Nautical Almanac
for 1940 ; in this (or similar) annual publication the student
will find detailed instructions as to its use. In the almanacs,
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British and foreign, there is considerable diversity as regards
the symbol for the standard Greenwich time for which the
elements of the heavenly bodies are tabulated ; G.M.T. (Green-
wich Mean Time), G.C.T. (Greenwich Civil Time) and U.T.
(Universal Time) are all used ; in this book, as in my Spherical
Astronomy, 1 use G.C.T.

While the book was going through the press, the Astronomer CONTENTS
Royal (Dr. H. Spencer Jones) announced the final result for CHAPTER ] PAGR
the:lvi'.a.lue of t.;:le solar parallax—the fruit of ten years’ work— I. THE GEOMETRY OF THE SPHERE - - - - 1
and fortunately it was possible to bring the book up to date i .
in this very important matter. P TI. Tee CELESTIAL SPHERE - . 5 - 16
The Greek alphabet is printed, as an Appendix, for general III. RiGHT ASCENSION - - - - - - - 40
reference. ' TV Mk R STk U AD IR DegeTivey S O87 VNG
In conclusion, I have to acknowledge the valuable help of V. THE SOLAR SYSTEM AND THE LAW OF GRAVITATION - 79
my assistant, Dr. T. R. Tannahill, in preparing the manuscript ,
for press and in checking the answers to the examples. I am VI. ATMOSPHERICAL REFRACTION - - - - - 106
;lso g}ate:iﬂl to the officials and staff of the Glasgow University VII. PARALLAX e T e Ay M S S e e Al
ress for i i
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CHAPTER I
THE GEOMETRY OF THE SPHERE

1. Introduction.

A fundamental department of astronomy is concerned with
the relative directions in which the heavenly bodies (the sun,
moon, planets, stars) are seen by an observer. As one views
the heavens on any clear night, the stars—and any other
heavenly body visible—appear to be situated on the surface of
a vast sphere the centre of which is the particular observer
concerned. We can then describe the relative directions of the
several stars as being defined, at a given instant, by the posi-
tions which they appear to occupy on the celestial sphere, as it
is called. As we are not concerned in many problems with the
distances of the heavenly bodies from us, but only with their
directions, the radius of the celestial sphere may be chosen in
any way we wish. Our first discussion is devoted to the
properties of the sphere.

2. The great circle.

Geometrically, a sphere is a solid body bounded by a surface
every point of which is equidistant from a certain point called
the centre. A straight line joining the centre to any point on
the spherical surface is called a radius.

Any plane passing through the centre of the sphere cuts the
surface in a circle whose centre is the centre of the sphere ;
such a circle is called a great circle. In Fig. 1 a great circle
ABCD is shown. Let POQ be the diameter of the sphere
drawn at right angles to the plane of the great circle; the
extremities P and @ of this diameter are called the poles of the
great circle ABCD. Let OA and OB be the radii of the sphere
(or of the great circle) corresponding to two points 4 and B
on the great circle. Then these points divide the great circle

A* S.A.



2 FOUNDATIONS OF ASTRONOMY

mnto two circular arcs, namely AB and BCDA ; in the figure,

the former is, by inspection, less than a semi-circular arc and the .

latter is greater. If 0 de-
notes the angle subtended
at O by the smaller arc 4B
and s the length of the arc
AB, we have, denoting the
radius of the sphere by R,

e=Hp, ......... (1)

In this formula 0 is ex-
pressed in circular meas-
ure, that is, in radians, If
't.he radius, R, of the sphere
is taken to be unity, the
length, s, of the are AB is
Q . now given by

8o that the length of a great circle arc on a apkej-=? ........... o
S a gre e of unit radi

8 equal to the angle (in circular measure) which this arc mbte;zj

at the centre of the sphere. For example, if AZ)\B:E radians,*
3 2

we see that the length of the great circle arc 4B of the unit
sphere is also g

P

The length of a great circle
_ \ arc such as 4B is ofte
to as the anguk_ur distance of A from B. It is ?mpir?ﬁ?e tg

on the surface of the sphere.

In practice it is not alwa i
_ ¥8 convenient
;i; a great circle are, such as 4B, in circn]arto ;Xe?:u;; th?nl:tl:aitdh
express 4B in degrees, minutes and seconds so t.l,mt if AE;

L
s = radians we describe it simply as 60°.

Consider now a plane passing through the diameter POQ

* radians = 180 (w =3-1416 or, approximatel 3* hanoe
, ’ P i
x Vs H
1 rﬂdl.ﬂnEﬁi 17’ 45 5206,285 , or 3438’ approz)'lma.bely
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(Fig. 1) and passing also through 4 ; this plane cuts the sur-
face of the sphere in a great circle of which only the semi-circle
PAQ is shown. Since OP is perpendicular to the plane of the
great circle ABCD, it is perpendicular to any straight line in

this plane ; hence POA is a right angle. We can express this
otherwise by saying that the great circle arc AP subtends a
right angle at the centre of the sphere. Thus we can write

,ép=g or AP=90°.

In other words, the angular distance of the pole of a great circle
from any point on that great circle is 90°.

8. Spherical angle.
In Fig. 2 let PAQ and PBQ define two great circles having
the common diameter POQ and let AB be the great circle* of
which P and @ are the poles.
Let PU be the tangent at P
to the great circle AP and
PV the tangent to the great
circle BP. The angle UPV
is defined to be the spherical
angle at P between the great
circles AP and BP. Now
PU, being a tangent, is per-
pendicular to the radius OP
of the great circle AP ; also
PU lies in the plane of the
great circle. Again, since P
is the pole of the great circle

AB, OP is perpendicular to Fio 02
0A. 1t follows that PU is L
parallel to OA. Similarly, PV is parallel to OB. Hence the

angle UPV is equal to the angle AOB. Accordingly, the
* We shall usually refer to a great circle in terms of an arc ; thus, for

example, we designate the great circle of which AB is an arc as the
great circle AB. There is no ambiguity in this procedure, since a circle
is uniquely specified if two points on its circumference, not at the
extremities of a diameter, and its centre are given.
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4 FOUNDATIONS OF ASTRONOMY

spherical angle at P—which we denote by APB—is equivalent
to the arc of the great circle, of which P is the pole, intercepted
between the great circles defining the spherical angle.

4. Spherical triangle.

A spherical triangle is bounded by three arcs of great circles.
In Fig. 3, ADEC, DBCF and ABEF are three great circles.
The figure ABC is called
a spherical triangle. The
elements of a gpherical
triangle consist of three
spherical angles and three
sides. Thus, in the spheri-
cal triangle ABC' we have
the three spherical angles
BAC, ABC and ACB and
the three sides are defined
by the three great circle
ares AB, BC and CA4.

The definition of a spher-
Fro. 3. ical triangle includes the

stipulation that each of the
sides shall be less than 180°, For example, in Fig. 3we have two

great circle ares AB and BEF A joining 4 and B ; but the figure

as AB and BEFA together amount to 360° (the circumference
of a great circle) the latter arc, BEFA, is greater than 180°.
The following are the essential properties of any spherical
triangle :
(1) Any two sides are together greater than the third side,
(2) The sum of the three angles of a spherical triangle is
greater than two right angles.
(3) Any angle is less than two right angles.

5. Small circle.

A plane which cuts a sphere but which does not pass through

the centre of the sphere intersects the spherical surface jn a
circle called a small circle.

THE GEOMETRY OF THE SPHERE o

Consider a plane cutting the sphere in a curve 'BC‘D., as drawn
in Fig. 4. We shall first prove that this curve is a 8]1‘0_16.- Let
O be the centre of the sphere and let 04 be the perpendicular
from O to the given plane.
Join A to any point B on the
curve of intersection; join
OB. Now, since 0A is per-
pendicular to the given plane,
it' is perpendicular to any
straight line in the plane ; in R
pa.rti%zula.r, 04 is perpen- i\\\%\\\\\\& :
dicular to AB. Hence, by
Pythagoras’ theorem,

O0B*=04%+ARB*. ...(3)

But OB is the radius of the
given sphere and is therefore _
a constant ; again, 04 is the o
perpendicular from O to the Fia. 4.
given plane and is also a con- b :
stant. Hence, by (3), AB is a constant. Aocorq.mgly, the ocus
of B, that is, the locus of the points of intersection of the given
plane with the sphere, is a curve lying in the plane, every point
of the curve being at a constant diat;aince from the point 4.
is a circle and its centre is 4. ;
ThI]’IrBngeE OA to meet the sphere in P and let the great circle
be drawn through P and B. Then P is the pole of the small
cwf:tBI? fl)l.ld r denote the radii of the sphere and of the small
circle respectively. The great circle arc PB subtends the angle

W
A

G o
BOP at the centre of the sphere and, as BAO is 90°,

A~ “AB
gin BOA = O'E "
But BOA is the same as BOP and this angle defines the spherical
arc PB; also, OB=R and AB=r. Hence
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This formula shows that PB is constant for all positions of B
on the small circle.
The great circle are, such as PB, between the pole of the

small circle and any point on the latter, is called the angular
radius of the small circle.

8. Length of a small circle arc.

In Fig. 4 consider the arc BC of the small circle. Let ZF be
the great circle of which P is a pole (the other pole is shown at
Q). The great circles PB and PC meet the great circle EF in
E and F respectively. Then, by (1),

810 BO=1 X BAC, verevoeeooeeoooen (6)
arc BF =R x EOF. ...................... (7)

Now AB and OF lie in the plane of the great circle PBE and,
as these straight lines are each perpendicular to 04, we see
that 4B and OE are parallel. Similarly, 4C and OF are

parallel. It follows that BAC =EOF. Hence, from (6) and (7),
by division,

arc BC »

m=§  MEssssesssrEssEaNssaRsR e Enn s (8)
Using (5), we then have

arec BC

P ! i St oty o (9)

This last formula gives the length of the small circle are BC
in terms of the corresponding great circle arc EF and of the
angular radius PB of the small circle.

We can write (9) in a slightly different form ; since PB + BE
=90° we obtain

BC
E"F,:m L ! , SR (10)

7. Application to the earth.
The earth is one of the sun’s family of planets ; its form is so
nearly spherical that, in this book, we shall make the simple

assumption that it is actually a sphere. It has been found by
what are essentially survey methods that its radius is 3960 miles.

THE GEOMETRY OF THE SPHERE 7

We can apply the principles described in the previous sections
to the specligjcztion of positions on the earth’s surface. It is
known that the earth spins
about a diameter—called the
polar diameler or polar axis
—which is represented in
Fig. 5 by POQ, the earth’s
centre being at 0. We call
P the morth pole and @
the south pole. The great
circle CDK of which P and
Q are poles is the terrestrial

Consider a point 4 on the
earth’s surface. The semi-
circle PAQ passing through
A and terminated by the :
poles P and @ is called :1 Fic. 5.
meridian. By internation _
agreement, t};w meridian which passes through a certain
telescope (the Airy transit instrumenf.) at the Roya.l Qbserva-
tory, Greenwich, is regarded as the prime meridian ; itis shown
as PGQ in Fig. 5.

8. itude. )
Vlﬁ?i):h? the prime meridian as basis, we can now spemi:y.t,ho
position of any other meridian such as PAQ. Let the man_dmns
through 4 and G meet the equator in C t.md D respectively.
Then the position of the meridian PAQ wﬂ.h_ reference to 131\3
prime meridian PGQ is defined by the equatorial arc DC, which
is the same as the spherical angle BPA at P between the two
meridians. The equatorial arc DC or the spherical angle BPA
is called the longitude of A ; a meridian such as that through A
is generally designated a meridian of longitude. _In Flg{-.hﬁ
another meridian PHKQ is shown on the other side of he
prime meridian and its longitude is represented by the equa.i:,onal
arc DK. To distinguish between the tw? cases, t]::e longltudz
of such a point A is designated west longitude and is measure -
in the direction of the arrow between D and C; the range o
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8 FOUNDATIONS OF ASTRONOMY

west longitudes is from 0° to 180°, If, for example, DC is 60°,
the longitude of 4 is designated 60° W,

Also, the longitude of such a point as H is designated east
longitude and is measured in the direction of the arrow between
D and K ; the range of east longitudes is from 0° to 180°. 1If,
for example, DK is 50°, the longitude of H is written 50° E.

The plane passing through the polar axis and @ divides the
sphere into two hemispheres ; that in which 4 lies is called the
western hemisphere and that in which H lies is the eastern
hemisphere.

9. Latitude.

When we know the longitude of such a point as 4 we can
specify its meridian completely. To specify the position of A4
on the sphere we further require to define its position on the
semi-circle PAQ. Now the equator divides the sphere into two
hemispheres—the upper one of Fig. 5 containing the north
pole P is called the northern hemisphere, and the lower, con-
taining the south pole @, is called the southern hemisphere. In
the figure, 4 is in the northern hemisphere and its position on
the meridian PAQ will be specified if we know the arec C4 of
the meridian intercepted between the equator and the given
point A4 ; the are CA4, or the angle COA, is called the latitude
of 4. If the place concerned, such as 4, is in the northern
hemisphere, it is said to have a north latitude ; if the place is
in the southern hemisphere, it is said to have a soufh latitude.
The latitude is measured in degrees.

In this way the position of a place on the earth’s surface can
be specified completely by means of longitude and latitude. It
is to be remembered that this method of defining the position
of the place depends on the choice of a particular semi-circle
(the prime meridian) and a particular great circle (the equator)
for the purpose of reference.

10. Parallel of latitude.

A small circle such as ABC (Fig. 6) of which P is the pole is
called a parallel of latitude ; the equator is shown as DEF and
the Greenwich meridian as PGHQ. If ¢ denotes the latitude
of 4, all points on the parallel of latitude, 4 BC, will have the

THE GEOMETRY OF THE SPHERE 9

same latitude ¢. Since the great circle arc I.JAD jﬁ 90°, the
angular radius, P4, of the parallel of latitude is (90° —¢).

In particular, the arc
PA is called the colatitude

P
of A, so that we have the .
relation
colatitude = 90° - latitude.

Now consider two posi-
tions, 4 and B, on the
same parallel of latitude
and both west of Green-
wich. The longitude of 4
is measured by the equa-
torial arc HD and the
longitude of B by the arc \ .45
HE. The equatorial arc Q
ED is then the difference Fic. 6.

itude of A and B,
ghﬁ:’;mwe denote by diff. long. By (10), the arc AB of the
parallel of latitude is given by

AB
—— =cos BE =cos ¢,
) )

or AB=(diff. long.) €08 . .eeevriiriiiaians (11)

If two places (for example, 4 and B in Fig. _6) are in the
western hgmisphere, the ooneapondipg diff. long. is obta%t:d biy;‘
simple subtraction of the two longltm_ies conc:smed. " 461:8“?'
the longitudes of 4 and B are respectively 78 W an L :
the diff. long. is 32°. A similz;;r procedure holds if the two

are in the eastern hemisphere. ;

pll;lrogs find the diff. long. between two places, one in .we%t
longitude and the other in east longitude, a.a_A and C 1:11 'Elgt.ha’
we proceed as follows. The longitude of 4 is measure yh :
arc AD and the longitude of C' by the are HF. :I‘he lengz' 1?

the are F'D which contains the point of_ intersection, H, of zhe
Greenwich meridian with the equator is thus the sum o 1;hee
longitudes of 4 and C. If this arc FHD is less than 180 ’FH_?)
FHD is the diff. long. between 4 and C. If, however,
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excoeds 180°, the diff. long. between 4 and € is measured by
the arc FX YD, which is 360° - FHD. The following examples
illustrate the procedure.

Ex. 1. Long.of A= 58°W Ex. 2. Long.of A= 68°W
Long. of C= 84°E Long. of 0=166° E
diff. long. =142° Sum  =234°

diff. long. =126°

11, Nautical mile.

The distance measured along the great circle joining two
points which subtend one minute of arc (1°) at the earth’s
centre is the nautical mile. Now the length of the circumference

of any great circle is 27, where » is the radius, or 2w . 3960

miles, on taking » to be 8960 miles.* But the circumference sub-

tends 360° at the earth’s centre or 360 x 60 minutes of arc. Hence

27 % 3960 x 5280
360 x 60

The above definition of the nautical mile and the preceding
caleulation are based on the assumption that the earth is a
sphere. However, the earth is not quite spherical and the strict
definition of a nautical mile shows that it varies according to
latitude, being 6046 feet at the equator and 6108 feet at the
poles. But, in practice, this variation is nearly always ignored
and the nautical mile is taken, in round figures, to be 6080 feet.
We then have

1 nautical mile =

feet = 6082 feet.

1 nautical mile = 6080 feet,

In the sequel, it will be sufficient to assume that a nautical
mile is the distance, along any great circle, between two points
which subtend 1’ at the earth’s centre and that a nautical mile
is equivalent to 6080 feet.

12. Departure. '

In Fig. 6, consider the points Z and D on the equator ; then
the number of nautical miles between £ and D is simply the
number of minutes of arc in the equatorial arc ED. It follows
from (11) that the distance between 4 and B, in nautical miles,
measured along the parallel of latitude is (diff. long.) x cos ¢,
in which diff. long. is expressed in minutes of arc and ¢ is the

* This refers to the statute mile which is equal to 5280 feet.

THE GEOMETRY OF THE SPHERE 11

Jatitude of 4 or B. This distance is called the departure and is
measured in nautical miles. Thus we have
departure = (diff. long.) X c08 @. ....cevruanens (12)

i i between 4 (lat.
ix. 3. ship steams along the parallel of latitude (
SO0 35N, i?mg. '56° 28’ W) and B (lt. 40° 35" N, long. 24° 60° W); to
i departure between 4 and B.
ﬁngyﬂ::b:r%cﬁng the longitudes of 4 and B we have :
diff. long.=31° 38’=(31 x 60)" + 38’ =1898".

Hence, by (12),

departure = 1898 cos 40° 35". | Caleulation :
The calculation is shown opposite. log 1898 =3-2784
Th ult is log cos 40° 35" =1-8805
e res $
departure = 1442 nautical miles. log. dep. = 3-1589
13. The knot.

The speed of a ship is generally reckoned in kn9ts, one k:rf.
being defined as one nautical mile per hour. If in Ex. 3 ;
time required by a ship to steam at ?onatant speed between ‘
and B along the parallel of latitude is 72-1 hours, the speed is

. knots, that is, 20 knots; here the departure (=1442

;iultioal miles) is the distance travelled along the parallel.
14.* Formulae of spherical trigonometry.

We first prove a formula
connecting the three sides
of a spherical triangle with
any one of the angles. ]'Let.
ABC (Fig. 7) be a spherical
triangle in which the sides
BC, CA and AB are denoted
by a, b and ¢ respectively.
Taking 4 to be the angle
to be associated with the
three sides, we show that

cos @ =cos b cos ¢
+sin b sin ¢ cos 4. T
The spherical angle 4 is

* Sections and examples throughout the book marked with an
asterisk miay be omitted on a first reading.
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defined as the angle between the tangents AD and AE drawn
at 4 to the great circles 4B and AC. Let the radii OB and
gﬁ‘ of;1 t‘g} sphere p;:eet the tangents at D and E. Join DE

en 1s a plane triangle in which th is A.
Hence, by a well-known formula, g R

DE*=AD*+AE*-24D . AB cos M. .......... (13)

Similarly, ODE is a plane triangle in which

A the DOE i

glg‘ a.nt,:;le ;I;il:lended at the centre, O, by the greazfl:imlgﬁlarlz
» Dby definition, this angle is «.

e B e gle is a. Hence we have, for the

DE*=0D*+0E?-20D . OF cosa. ............ (14)
On subtracting (13) from (14) we have
20D . OF cos a=(0D? - AD?) +(OE? - AE?)
+24D . AE cos A. ...... (15)

In the plane triangle AOD, the an is 90° si .
) gle DAO is 90° since DA, bein
a tangent to the t circle 4 ;i : s g
radius 0A. Heng.e& cirde 45 8t 4, is porpendioular to the
OD?-AD*=04:,
Similarly, OE: - AR* =042

Then (15) becomes
OD .OF cos a=0A%+AD . AE cos A,

_04 04 AD 4E

OD-OE+5~5--O-*—E GOSA. ....... (16)
Now in the plane triangle ADO (ri

n th ght-angled at 4), the angle

DO0A is simply f;h;e angle subtended at O by the great cirgle
arc AB ; thus DOA =¢. Hence

04 ABY
OD—‘COS c, a—D-=Bm 3

or cos @

Simﬂa.rlz,\ from the plane triangle AOE (right-angled at 4), in
which AOK =p,
04 AE

0_E=cos b, @=si:n b.

THE GEOMETRY OF THE SPHERE 13

Inserting these ratios in (16), we obtain
cosa=cos bcosc+sinbsinccos 4. ............ (17)

This is the fundamental formula of spherical trigonometry,
usually known as the cosine-formula.

The formula (17) is a relation involving all three sides (that
is a, b and c¢) and one angle—in this instance 4—of the spherical
triangle.

There are clearly two other formulae of a similar nature
involving B and C'; they are :

cos b=cosccosa+sinecsinacos B, ............ (18)
cos c=cosacos b+sinasinbeos C. ............ (19)

Problem 1. 1If, in a spherical triangle, two sides and the
included angle are known, the third side can be calculated.
For example, if we are given b, ¢ and A, the third side, @, can
be calculated by means of (17).

Problem 2. If, in a spherical triangle, all three sides are
known, each angle can be calculated in turn. For example,
from (17), we have—on rearranging—

L (20)
sin b sin ¢

from which 4 can be calculated. Similarly B and C can be
calculated by means of (18) and (19), each formula being
modified as in (20).

We give for reference * certain other formulae which can be
derived from (17), (18) and (19).
S ol i) ol ne migis ad (21)
gina sinb sine

Sine formula.

This formula has to be used with care. If, for example, a, b
and B are known, the formula gives sin 4 from which there
are found two values of 4, one less than 90°, say 4,, and the
other 180° — A4,. Unless it is known from other circumstances
that 4 is, say, less than 90°, the formula should not be used in
calculations.

* Proofs will be found in the author’s Spherical Astronomy (Cambridge
University Press).
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Analogues of the cosine-formula.
sin a cos B=cos bsin ¢ —sin b cos ¢ cos A, ......... (22)
sin a cos C'=cos ¢sin b —sin ¢ cos b cos A. ......... (23)

There are clearly two others of a similar nature involving B on
the right-hand side and two others involving C.

Four-parts formula. This is a formula

. involving two sides and two angles, taken

¢ in order, for example, ¢, B, a and C in

Fig. 8. Of these one side, a, is between the

two angles B and C and is called the inner

A

i side; the remaining side, ¢, is called the
v C other side. Similarly, B is the inner angle

Fic. 8. and C the other angle. The formula is :
08 @ ¢os B=sin @ cot ¢ ~sin Beot €, ........... (24)

which can be expressed as :
cos (inner side) cos (inner angle)
=sin (inner side) cot (other side)
—sin (inner angle) cot (other angle). ............ (25)

Formula (20) can be expressed in alternative forms, one of
which is as follows. Let

2s=a+b+c;
then
. A [sin (s-b)sin (s—c)
sin o = Smbsime e (26)
Thus, if all three sides of a spherical triangle are given, any one
of the angles can be calculated. .

Applications of some of the formulae in this section will be
made later to certain astronomical problems.

EXAMPLES

1. Find the difference of longitude between two places 4 and B,
given that their longitudes are :

(i) 4, 36° W; B, 48° W, (iv) 4, 52° 30' E; B, 140° 45’ W.
(ii) 4, 20°E; B, 175° E, (v) 4, 34°28° W ; B, 165° 52’ E.
(iii) 4, 47° 38" W ; B, 28°25'E.
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9, Find the difference of latitude between two places 4 and B, given
that their latitudes are :

(i) 4, 20°N; B, 38° N. (iii) A4, 52° 30° N ; B, 20° 478,
(ii) 4, 37° 66’ 8 ; B, 23° 27’ 8. %

3. If, in Example 2, A and B are on the same mgaridian, find ‘the
distance betweenlji and B (a) in nautical miles, (b) in statute miles.
[1 statute mile = 5280 feet.]

4, A ship steams along the parallel of latitude between A 'a:nd B;
find the digta.nce Bt«oameg in nautical miles given that the positions of
A and B are :

(i) A (38°N, 42° W) ; B (38° N, 15° W).

(i) 4 (42° S, 63° W) ; B (42° 8, 10° E}}._
(iii) 4 (20° N, 170° E) ; B (20° N, 140° W). i
(iv) 4 (32° 15’ N, 130° 20" W) ; B (32° 15" N, 146° 35’ E).

5. A ship steams eastwards along the parallel of latitude t_‘n_)m A to
B at 15 knots. Find the longitude of B, given that the position of A
and the duration of the run are as follows :

(i) 4 (42° N, 50° W) ; 3 days 10 hours.
(ii) A (45° 30’ 8, 59° W) ; 4 days 4 hours.
(iii) A (35° 40’ N, 162° BE) ; 2 days 20 hours.

6.* In the spherical triangle 4BC,

(i) given b=32° 12, ¢=>56° 40", A=40° 33, find a, B and C.
(ii) given b=103° 17/, ¢=27° 19’, A =36° 15’, find @, B and C.
(iii) given a=82° 11, b=59° 34", C=111° 47/, find ¢, 4 and B.
(iv) given a=15°23’, ¢=33°53’, B=27° 58, find b, C and A.

7.* Find the great circle distances between 4 and B from the follow-
ing data :

A B
Latitude Longitude Latitude Longitude
(i) 37° N, 59°W ; 119 N; 122: W:
(ii) 52° N, 64° E ; 16° S, ; ]50 W; -
(iii) 12° 37" N, 171° 43" E; 25° 13’8, 1090 57’ E.
(iv) 62° 41’8, 13°33' E; 12217 N, 45° 44’ W,



CHAPTER 1I

THE CELESTIAL SPHERE

15. Zenith and horizon.
We consider in this chapter some principles of fundamental
character in relation to the specification of the positions of
heavenly bodies on the

;N Z (Zenith) celestial sphere.
gLy In Fig. 9 the earth
S< A o (OBserver) is represented by the

sphere, its centre being
C' ; the axis about which
it rotates is PCQ. We
suppose that an observer
is situated at O, in north
latitude. The prolonga-
tion of the radius CO de-
fines the direction of the
observer’s zenith ; this
direction is indicated by
0Z and it may be re-
garded as determined by
a plumb-line held by the
observer at O.

The plane through O and perpendicular to OZ is the plane of
the celestial horizon for the observer at O.

Fia. 9.

16. T'he north celestial pole.

We are all familiar with the daily and nightly movements of
the heavenly bodies, from east to west, across the celestial
sphere, and we ascribe these movements to the effect of the
earth’s rotation about its polar diameter. In the northern
hemisphere there is one bright star visible (Polaris or the Pole-

-
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star) which appears to maintain its position from hour to hour
and to be unaffected by the diurnal motion, as the visible effect
of the earth’s rotation is called. We conclude that the Pole-
star must be in the direction PP, given by the prolongation of
the earth’s axis (Fig. 9). As we can assume that any star is at
an infinite distance (as compared with the dimensions of the
earth) Polaris will be seen by the observer at O in the direction
OP,, where OP, is parallel to CP,. The direction OP, defines,
for the observer, the direction of the north celestial pole. We
have found it convenient to use the Pole-star to illustrate the
definition of the north celestial pole ; actually, the Pole-star is
a little over a degree away from the latter and the strict defini-
tion of the north celestial pole, for an observer at O, is that
position on the celestial sphere, of which O is the centre, whose
direction from O is parallel to the earth’s axis of rotation.

In Fig. 9, POBQ is the meridian of longitude for the observer
at 0, B being its intersection with the terrestrial equator.
Accordingly, the are BO (or the angle OCB) measures the
latitude, ¢, of the observer. Since PC is perpendicular to CB,
the angle PCO is 90° -4, that is, the colatitude of 0. Also

P0%=PC0, sinco OP, and CP are parallel ; hence P;07 is
also the colatitude (90°—¢), that is, the angle between the
direction of the zenith and the direction of the morth celestial
pole is 90° — .

Let ON be-drawn in the plane of the observer’s meridian of
longitude, POBQ, and perpendicular to OZ. Then the angle
P,ON is called the altitude of the north celestial pole. Since

PON =90° - P,0Z=90° - (90° - $) =4,

we have the result :
altitude of the pole =latitude of observer. ............ (1)

17. The observer's celestial sphere (north latitude).

We now consider the celestial sphere for an observer at O
(Fig. 10); we assume as before that the observer’s latitude is
north.

We first draw the direction, OZ, of the zenith Z upwards in
the diagram to correspond with the fact that it is vertically
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upwards for the observer; P is the north celestial pole, OP
being parallel to the earth’s axis of rotation.

The great circle, NWYSE, of which Z is the pole, is the
celestial horizon, or simply the horizon. The upper hemisphere
is the visible hemisphere ;
in general, we are not con-
cerned with the lower
hemisphere.

Any semi-great circle
through Z, such as ZYU,
is called a wertical circle,
or simply a vertical. In
particular the vertical
passing through the pole
P cuts the horizon in the
north point, denoted by N.
The position of any ver-

- tical * such as ZXY can

Fe. 10. then be specified with

regard to the principal

vertical, ZPN, either by means of the spherical angle NZY

(or PZX) or by the arc NWY measured along the horizon ;

this angle or arc is called the azimuth (west) and its value ranges
from 0° for the vertical ZN to 180° for the vertical ZS.

—
We have seen that the direction ON on the horizon is defined

—
as the north direction ; the opposite direction 0S is the south
direction (Fig. 10). Let EOW be a diameter of the horizon at
right angles to NOS. The points £ and W are defined to be
the east and west points respectively ; these points are placed
in the diagram according to the convention that if we imagine

-
ourselves facing the north point (that is, along ON) the east
point is towards our right hand and the west point towards our
left hand. The points N, Z, S and W are generally known as
the eardinal points.
The verticals passing through the east and west points are called

* It is usually suflicient to consider only the part of the vertical in the
visible hemisphere.
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3 icals ; i i istinguish them as prime
the prime verticals ; in particular, we d}stmgmsh t :
-z-erti;ﬁ east (that is ZE) and prime vertical west (that is ZW).

18. Horizontal sysiem of coordinates. + il

Consider the position of a heavenly body at a given instant at

X on the celestial sphere for an observer in north la.tltu_de. We
distinguish two cases for the purpose of diagrammatic repre-
sentation. .
Case 1 : heavenly body in western hemisphere (N. M) In t]_ns
case the vertical circle through X meets the horizon in a point
Y on the semi-circle N WS
(Fig. 11). As we have
seen, the position of the
vertical ZXY is specified
with reference to the ver-
tical ZPN by the azimuth
(west), which we denote
by A. Thus in Fig. 11
the azimuth (west) is the
arc NY measured along
the herizon westwards
from N or, alternatively,
the angle PZX in the
spherical triangle PZX.
Also A can have any value Fe. 11.
between 0° and 180°. ’ ]

The position of X on the vertical ZXY is specified if we
know the are YX (equivalent to the angle YOX). We define
Y X to be the allitude of X and denote it by a. .

Since the arc ZY is 90°, Z being the pole of the horizon,
ZX =90°-XY=90°-a. The arc ZX is called the zenith
distance * of the heavenly body X and is denoted by z. Thus

e DIOR A AN, e LR AR TR (2)

Accordingly, we can specify the position of a heavenly body at
a given instant by the spherical coordinates (4, c.r.) or (4, 2).

The small circle LXM of which Z is the pole is a parallel of
altitude.

* Abbreviated to Z.D.
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Also, NP is the altitude of the north celestial pole and,
accordingly, if ¢ is the observer’s north latitude, NP =4¢.
Hence

PR b ot 3)

Case 2: heavenly body in easlern hemisphere (N. lat.). We
represent Z and the horizon as before and place Z in the middle
of that part of the horizon shown by the heavy line (Fig. 12).

With the convention as to the cardinal points the north

= —
point, N, must be situated as indicated (O to the right of ON).
As the observer is in north
latitude the north celestial
pole, P, must be situated
on the principal vertical
ZN. The observer’s lati-
tude ¢ being known we
can now insert P in the
. diagram so that NP=¢.
Also, the south point S
can now be indicated.
The position of the ver-
tical ZX'Y with respect to
the principal vertical ZN
is then specified by means
Fic, 12. of the arc NY on the
horizon or by thespherical
angle PZX ; this is the azimuth (east) which we denote by 4;
the value of A lies between 0° and 180°. As before, the altitude,
@, is defined by the arc ¥ X of the vertical through X ; also the
zenith distance, z, of X is the arc ZX.

19. Rules for drawing diagrams (observer in north latitude).

1. Insert Z at top of diagram and draw the horizon.

2. (a) If the heavenly body is in the western hemisphere,
insert W as in Fig. 11; N and & are then inserted according
to the convention relating to the cardinal points.

(b) If the heavenly body is in the eastern hemisphere, insert
E as in Fig. 12; N and 8 are then inserted according to the
convention relating to the cardinal points.
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3. Tn both cases, the north celestial pole, P, must be on the
vertical ZN ; insert P on this vertical so that NP =d.

4. Draw the vertical through the position, X, of the heavenly
Do b st the sl PE 8 the spherical
triangle PZX and is called a.zimuthi (west) or azimuth (east)
according as the heavenly body is in the western or eafterﬁ
hemisphere. In each case, the value of A lies between 0° an

180°.

er’s meridian.
mﬁbm suppose that the observer’s la!situde is north. In
Fig. 13 let RWT be the great circle of which P and @ are the
poles ; this great circle is
the celestial equaior, or,
simply, the equator.

It is clear that we can
specify the position of a
heavenly body on the cel-
estial sphere, at a given in-
stant, with the equator as
reference plane. For con-
venienceof explanation we
shall take the heavenly
body to be a star.

Tt is easily seen that the
equator meets the horizon ;
in the eastandw%atpointa. Fic. 13.

in Fig. 13, W denotes, }

g;?h]:ﬂgment, one of the points of intersection of the equator
and horizon, the angular distance of W (a point on t.hfa horizon)
from Z is 90° ; also, the angular distance of W (a point on the
equator) from P is 90°; thus W is the pol.e of the great c:rcl.e
through Z and P and hence WX is 90°; it follows that W is
the west point. We can establish a similar result for the east
Poﬁy semi-great circle whose extremities are the-p?las P and
Q is called a celestial meridian or, simply, a meridian. Thus
the semi-great circle PXQ is the meridian of the star, X.
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) Tlole mend.um passing through the observer's zenith (PZRSQ .
in Fig. 13) is the observer’s meridian ; as this is of fundamental
Importance, it is shown in the figure by a heavy line.*

21. The diurnal motion,

We know from simple observation that the stars appear to
tmv_el across the sky from east to west ; this is the diurnal
m:atwn, resulting from the earth’s rotation. Moreover, this
diurnal motion has no effect in increasing or decreasing the
angular distance between any two given stars, as is obvious in
a general way from simple observation. If we think of the
pf)le, P, as being indicated by a star, it follows that the great
circle arc PX remains constant as X moves across the celestial
sppere. Accordingly, X describes a small circle UX V of which
P is the pole and which is parallel to the equator ; the direction
of motion of X is shown by the arrow near X.

When the star is on the observer’s meridian at U, it is said
to mfmit or culminate. It is easy to show that at meridian
tra.nilt (t}{;:;s is,fathU ) the star has its maximum altitude ; for,
any two sides of the spherical triangle PZX bein ter th
the third side, we have . sl P

PZ+ZX>PX;

now, PX =PU, since U and X are on the small circle of which
P is the pole, and consequently

PZ+ZX>PU:;
that is, PZ+ZX>PZ+2U.

Hence ZX > ZU, so that the meridian zenith distance, ZU, is
less_l than the zenith distance ZX ; accordingly, the meridian
altitude, SU, is greater than the altitude YX.

22, Eguatonal system of coordinates (hour angle and declination).

: In this system of coordinates, the equator is the principal
ou'cl_e .of reference and the observer’s meridian is the principal
meridian. The position of a star at X is then specified by (a)
the .a.ngle ZPX between the observer’s meridian and the
meridian through X and (b) the arc JX measured from the

* The student is strongly recommended to mark distinctively the
observer’s meridian in every diagram in which it appears. .4
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equator to X along the star’s meridian (Fig. 13). The angle
ZPX—or its equivalent, the equatorial arc RJ—is called the
hour angle of the star ; we denote it by H.

The arc JX is called the declination (denoted by 38); the
declination is positive or north if X is between the north celestial
pole and the equator, and negative or south if the star is between
the south celestial pole, @, and the equator. The small circle
UXHYV along which the star appears to travel owing to the
diurnal motion is a parallel of declination. The angular distance
PX of the star from the north celestial pole is called the north
polar distance (N.».D.), which is clearly related to the declina-
tion by the formula

WP D mOOIR A (4)

In this formula, § is used algebraically ; for example if
8=+ 30° (or 30° N), N.p.D.=90°-30°=60° ; if
8= —40° (or 40° S), N.P.D. =90° — ( —40°) =130".

23. Hour angle.

We now consider hour angle in greater detail. As the stars
appear to move westwards across the celestial sphere, hour
angle is measured westwards from the observer’s meridian from
0° to 360° or, as is more usual, from 0b to 24 in terms of hours,
minutes and seconds. The relation between the degree-system
and the hour-system of specifying angles is shown by the
following :

1k =15°. 1° =4m,
1m=15". 3'n=4s,
18 =15". 18
1" =—-

' 15

When the star is on the observer’s meridian, its hour angle is OB,
Immediately after transit at U (Fig. 13) the diurnal motion
carries the star westwards and as the earth’s rotation is uniform,
the star will appear to move along the parallel, UXV, of
declination at a uniform rate; consequently, its hour angle
increases uniformly. It is this fact which forms the basis of
" the measurement of time. .

When the star reaches the horizon at H it is said to set.
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Thereafter between H and V it is below the horizon (and there-
fore invisible). At V its angular distance below the horizon—
in this case, NV—is a maximum and at V its hour angle is
180° or 12", We thus have the rule :

When a star is in the western hemisphere of the celestial sphere—
that is, when its azvmuth iswest—its hour angle is between 0" and 12,

Conversely, if a star’s hour angle is between O and 121, it lies
in the western hemisphere of the celestial sphere, that is lo say, ils
azimulh s west.

After reaching V, the
star passes into the eastern
hemisphere and we follow
its progress in Fig. 14, in
which the observer’s mer-
idian is shown by a heavy
N line. At V thestar’s hour
angle is 127, and thereafter
the star moves uniformly
along the small circle
VKXU in the direction of
the arrow. At K the star
P is said to rise. At X the

-~ star’'s hour angle, H, is
122 +are 7'J. Now 7'J =T'R — RJ and, since 7T'R is 12" (a semi-
circle of the equator), we have -

H=12b4 (120 - RJ)=24b — RJ.

As RJ is the same as the angle ZPX in the spherical triangle
PZX, we obtain

P
H =242 _ ZPX,

s
o e EE R P Hire .. iy dbistirkit (5)

Following the star’s motion beyond X, we see that it reaches
the observer’s meridian at U, its hour angle there being 24" or
0bh,  We have the rule :

If a star is in the eastern hemisphere—that is, if its azimuth is
east—its hour angle is between 128 and 24" ; conversely, if a
star’s hour angle is between 12 and 244, il lies in the eastern

" hemisphere and its azimuth is east.
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24, Meridian zenith distance. .
In Figs. 13 and 14 the star’s zenith distance, when it is on

the observer’s meridian, is ZU. Now PU is the star’s N.p.D.,
o that by (4)

PU =90° -38.
Also, PZ=90°-¢. As ZU=PU - PZ, we obtain

BTy 3% s N s B i (6)
In this formula, & is to be used in its algebraic sense.

Ex. 1. Given ¢=>50° N, 8=20° N=+20°; then
Mer. z.p.=50° - 20°=30°.

Ex. 2. Given ¢=>50°N, §=20°8= —20°; then
Mer. z.p.=50° - (- 20°)="70°.

25. Circumpolar stars.
Stars which are above the horizon, for a given observer, for

all values of the hour angle are called circumpolar stars. In
Fig. 15, NF is the parallel of declination passing through the
north point, N, of the hori-

zon and the corresponding P
declination is 'R or T'N.
The condition that a star
of declination & should be
circumpolar is evidently

8> NT.

Lsdie

Now

NT =PT - PN =90° - ¢.

Hence the condition is
$>90°-¢. ...... (7)

Consider two typical cir-
cumpolar stars, X and X ,, Fic. 15.
their parallels of declina- _
tion being UX V and LX , M respectively. The points at which
their hour angles are zero (the stars are then on the observer’s
meridian) are U and L ; the transit or culmination is then said
to be upper transit or upper culmination.

When the hour angle is 128 the star X is at ¥ and the star
8.A.

B
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X,at M; theya.mthensaidtotmnaitbelowpolsorto be at
lower culmination.

Tt will be noticed from Fig. 15 that the upper culmination of
a circumpolar star can take place either on the south side of
the zenith (as at U for star X) or on the north side of the
zenith (as at L for star X,). The additional condition for
culmination on the south side of the zenith is evidently PU >PZ,
that is, 90° —8>90° —¢ or ¢ >8; and the additional condition
for culmination on the north side of the zenith is PL<PZ,
that is, 90° —8<90° — ¢ or 8 >¢. -

The relation between latitude, declination and the zenith
distance of culmination in any particular case is best worked
out from the appropriate diagram.

Ex. 3. QGiven ¢=50°N; 8= +45°; to find the star’s z.n. at upper
and lower culmination. By (7) the star is circumpolar and, as ¢>3,

the star’s upper culmination is on the south side of the zenith. We
take the parallel of declination, UXV, in Fig. 15 to apply to this star.

Then ZU=PU-PZ=90°-5—-(90° =) =¢—8. .ce0vvviecereea(8)
Hence z.p. of upper culmination is 50° — 45° or 5°.
Again, ZV=PZ+PV=90°-¢+90°-3= 180° —p—8. wuvevnirnnns (9)

Hence z.p. of lower culmination is 180° — 50° — 45° or 85°.

Ex. 4. Given ¢=50°N, 8= +T75°

By (7) the star is circumpolar and, as § >¢, the star’s upper culmina-
tion is on the north side of the zenith. We take the parallel of declina-
tion, LX ,M, in Fig. 15, to apply to this star.

Then ZL=PZ-PL=90°-¢-(90°-8)=8-¢.
Hence z.p. of upper culmination is 75° - 50° or 25°.

Again, ZM = PZ + PM =90° - ¢ + (90° - 8) = 180° - ¢ - 8.
Hence z.p. of lower culmination is 180° — 50° — 75° or 556°,

28. Determination of latitude.

The zenith distance of a circumpolar star at upper and lower
culmination can be accurately measured by an instrument
called a transit instrument or meridian circle. Suppose that the
star’s upper culmination is south of the zenith as in Ex. 3 of
the previous section.

From (8) and (9) we have

ZU=¢-8; ZV=180°=¢=0. ..ccccoeeennnn (10)
By subtraction we obtain
20 =180°+ZU =ZV, ccocevvuunnreinnnnnen (11)
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“.'hich determines ¢ when ZU and ZV are derived from observa-
tions (?re leave out here the consideration of the necessary
corrections to be applied to the actual observations).

27. Determination of declination (circumpolar star).
By adding the equations (10) we obtain

28 =180° - ZU - ZV,

which determines 8 for a circumpolar star culminating south of
the zenith, ZU and ZV being obtained from observations.
The results for stars culminating north of the zenith are
obtained in a similar way.
If the latitude is known, we obtain 8 easily by simply measur-
i;lg (t::; star’s zenith distance ZU at upper culmination so that,
y »
L g T T e (A (12)

28. Diagrams for an observer in south latitude.

(a) Star west. Wherever an observer, O, may be on the sur-
face of the earth his zenith is directly overhead. As in previous
diagrams we draw 0Z ;
upwards (Fig. 16) and in-
sert the horizon in the
celestial sphere ; as the
star is west we place the
west point, W, as shown ;
the remaining cardinal
points N, 8, and E are
then inserted according
to the usual convention.
Just as in northern lati-
tudes the north celestial
pole is in the visible or
upper hemisphere, so for
an observer in south lati- 8
tude the south celestial pole will be above the horizon. We
shall denote the south celestial pole by P, (instead of Q, as we
have hitherto done). If ¢, denotes numerically the observer’s
south latitude, P,Z=90°~¢, ; this enables us to place P; in
the diagram, between Z and 8, for the south celestial pole
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is situated on the vertical through S; we then draw the
equator.

Meridians are defined, as before, to be semi-great circles ter-
minated by P, and P ; the meridian passing through the zenith
is the observer’s meridian (shown by & heavy line as P,ZRNP).

Consider a star, X, in the western hemisphere of the celestial
sphere ; P,XP is the star’s meridian and ZXY its vertical.
Now, wherever the observer may be, the diurnal motion carries
a star from the observer’s meridian westwards. The angle ZP,X
in the spherical triangle P,ZX, or the equatorial arc RJ,
measured westwards from the observer’s meridian to meet the
star’s meridian (in the direction shown by the arrow), is defined
as before to be the hour angle, H, of the star. For the star
west, H lies between 0" and 12h,

In Fig. 16, JX is the declination and as X, in the figure, is
between the equator and the south pole, P,, its declination is
south or negative. The declination is north or positive if the
star is on the same side of the equator as the north pole P.

The position of X is thus specified by its hour angle H and
its declination 3.

Tts position can also be specified with the horizon as reference
circle. Thespherical angle
P,ZX in the triangle
P,ZX, or the arc SY
measured on the horizon
from the south point, is
the azimuth and in this
case it is west. Also, YX
is the altitude and ZX the
zenith distance. The star
sets at H.

(b) Star east. In this
case, we place B as shown
in Fig. 17 ; then N, S and
W are inserted according
to the usual convention.
P,ZNP is the observer’s
meridian. The diurnal motion carries the star westwards from
the observer’s meridian, along the half, VKXU, of the parallel
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of declination ; at ¥ the star’s hour angle is 12" and its angular
distance below the horizon is then a maximum. Thereafter it
moves along the parallel VKU, rising at K and reaching the
observer’s meridian at U. At X its hour angle is 12" +spherical
angle VP,X or 12b +equatorial are 7J. Now 7J=TR-JR.
Hence

H=24h—JR,
or H =24d —gpherical angle ZP,X.

Thus for a star in the eastern hemisphere the hour angle lies
between 12h and 24b. The star’s declination is measured by
J X, as before.

The azimuth is the spherical angle P,ZX in the spherical
triangle P,ZX or the arc 8Y measured eastwards from the
south point ; in this case the azimuth is east. As before, Y.X
is the altitude and ZX the zenith distance.

29, General rules.

1. In ALL cases, hour angle is measured westwards from the
observer’s meridian.

2. If a star is in the western hemisphere—that is, when its
azimuth is west—its hour angle is belween O® and 12b ; con-
versely, if the hour angle is between 0% and 12V the star’s azimuth
is west ; the hour angle is the spherical angle ZPX (Fig. 13) or
ZP,X (Fig. 16) in the triangle PZX or P,ZX.

3. If a star is in the eastern hemisphere—that is, when its
azimuth is east—its hour angle is between 12% and 24" ; con-
versely, if the hour angle is between 128 and 24», the star’s

azimuth is east ; the star’s hour angle is 245 - ZPX (Fig. 14) or
94h — ZP\X (Fig. 17) with reference to the spherical triangle PZX
or P,ZX.

4. For an observer in north latitude the azimuth is measured
from the north point westwards or eastwards, and the azimuth is
then the spherical angle PZX.

5. For an observer in south latitude the azvmuth is measured

from the south point westwards or eastwards, and the azimuth is
then the spherical angle P, ZX.
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80. T'he standard, or geocentric, celestial sphere.

The dimensions of the earth are so small compared with the
distance of even the nearest star that the directions of a given
star as seen by two observers at widely different positions on
the earth’s surface can be regarded as parallel (the actual
deviation from parallelism is far beyond the power of detection
of even the most accurate instruments). Now the north polar
distance of a star is the angle between the direction of the star
and the direction defined by the earth’s axis of rotation, and
it follows in consequence that
the north polar distance of
the star as measured by an
observer O is the same as the

ured by another observer 0.
Since N.P.D.=90°-8, the
star’s declination as we have
defined it is independent of
the observer’s position on the
earth’s surface.

But the situation is differ-
ent if we are dealing with a
near object such as the moon,
or sun, or a planet. Consider
such a near body, M, and for
simplicity suppose that at a
given instant it is on the
meridian of an observer,

Fro. 18. 0O, on the earth’s surface

(Fig. 18). The sphere repre-

sents the earth, centre U, and PCP, is the axis of rotation.

Let OA be parallel to P,CP. Since M is on the observer’s

meridian, the line joining C' and M cuts the earth’s surface at

0, lying on the terrestrial meridian POP,. Thus 04, 0Z, OM
and CM are coplanar ; hence

AOM = A0Z + ZOM. ................... (13)
Now AOM is the N.p.D. of M, as previously defined for an

observer at O; we denote AOM by po. Also, since 04 is

north polar distance as meas-

THE CELESTIAL SPHERE 31

P
parallel to CP, Aa.Z =P80, that is to say, AOZ is the co-
latitude, ¢, of the observer. Hence (13) becomes

)
D=L HOML i s (14)
~ -~ ~~

Also, ZOM =0CM +0MC,
so that (14) becomes

p.,=c+08M+9 ...................... (15)
in whmh we have written 6 for OMC But

c+ 0CM = PCM

hence Po =PCM . hiiag, Rk (16)

)

Now PCM, being the angle between the earth’s polar axis
and the direction of M from the earth’s centre, C, is indepen-
dent of the observer ; on the other hand, @ clearly depends on
the observer’s position for it is the angle between the direction
of M as viewed from O and the direction of M from C. Thus
the north polar distance p,
(and, consequently, the
declination) as previously
defined varies according to
the observer. This fact
would create intractable
difficulties as regards the
tabulation in the Nautlical
Almanac (where informa-
tion relating to the heaven-
ly bodies is given) of the
declination ofsuch bodies as
the sun, moon and planets.

We define the north polar
distance of M to be the

-~
angle PCM ; the declination of M is then 90°-PCM. This
procedure is equivalent to regarding the earth’s centre, C, as
the centre of the celestial sphere, which can now be drawn as
shown in Fig. 19. The direction of the observer’s zenith is

Fie. 19.
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CZ, and the celestial horizon (or, simply, horizon) is the great
circle of which Z is the pole ; the plane of the celestial equator
is identical with the plane of the terrestrial equator ; as before,
the observer's meridian is the meridian PZP,, passing through
the observer’s zenith. The declination of a heavenly body X—
whatever its distance from the earth—is the arc JX ; altitude,
zenith distance, azimuth and hour angle are all defined as
before.

The sphere as drawn in Fig. 19 is the standard, or geocentric,
celestial sphere, and in subsequent pages when we refer to the
celestial sphere it is the standard celestial sphere that must be
understood. ;

8l. Relation between the horizontal and equatorial systems of
coordinates.

Fig. 20 shows the celestial sphere for an observer in north

latitude ¢, which we shall assume to be known. We specify

Fie. 20. Fia. 21.

the coordinates of a heavenly body X in the horizontal system
by its azimuth 4 and zenith distance z (or its altitude @) and
in the equatorial system by its hour angle H and declination 8.

There are two principal problems. In the first it is assumed
that 4 and z are obtained from observations and it is required
to calculate H and 8 ; in the second problem it is assumed that
H and § are known and it is required to calculate 4 and 2.
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In these and similar problems we are concerned with the
spherical triangle PZX (Fig. 21); if the latitude is south, we
are concerned with the triangle P,ZX.

Problem 1. Given ¢, 4 and z; to calculate H and 3.

L)

We require to find PX and ZPX in the triangle PZX. We
are given two sides (PZ and ZX) and the contained angle PZX ;
the third side PX is given by the fundamental formula (17),
p.- 13:

~~
cos PX =cos PZ cos ZX +sin PZ sin ZX cos PZX, «.(17)

from which (= 90° — PX) is obtained. Fora northern latitude,
as in Fig. 20, 3 is positive or north if PX< 90°, and negative or
south if PX>90°; for a southern latitude 8 is positive or
north if P,X >90° and negative or south if P,X<90°.

To caleulate H we have now all three sides known ; in par-
ticular, the two sides PZ and PX contain the hour angle H.
Hence we can write

L
cos ZX = cos PZ cos PX +sin PZ sin PX cos ZPX....(18)

This formula determines ZPX. If the star is west, as in Fig. 20,

S P i
H=ZPX ; if the star is east, H =24 - ZPX.

The formulae (17) and (18) can be readily expressed in terms
of ¢, 4, z, H and 3, but the reader is recommended to draw the
celestial sphere, as in Fig. 20, and to insert, at first, the
numerical values (in degrees) of the several sides and angles as
they are given or calculated.

H can be found by use of an alternative formula, for z, 4,
PZ and H are four consecutive parts and by formula (25),
p' 14’

eos PZ 00 PZX —sin PZ oot ZX ~sin PZX cot H ....(19)

from which H can be determined.

Problem 2. Given ¢, H and 3 ; to calculate z and A.

We are thus given two sides PZ, PX and the contained angle
ZPX (which is H if the star is west and 24b — H if the star is
east). The third side ZX is given by

-~
cos ZX =cos PZ cos PX +sin PZ sin PX cos RN, e (20)

B* 8.A.
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and P/Z\X is then found from

cos PX =cos PZ cos ZX +sin PZ sin ZX cos PZX
or by

........ (21)

N L) N :
cos PZ cos ZPX =sin PZ cot PX —sin ZPX cot PZX. ...(22)

Ex. 5. Given ¢=>50° N, 4=48° (west) and z=70°; to calculate &
and H.
Wo have PZ=40°, ZX =70° and PZX =48°. Hence by (17)
cos PX =cos 40° cos 70° + sin 40° sin 70° cos 48°,
which we write as
cos PX=U+V,
where U = cos 40° cos 70° and V =sin 40° sin 70° cos 48°. The caleula-
tions of U and V are shown below :
log cos 40° =1-8843

log sin 40° =1-8081
log cos 70°=1-5341

log sin 70°=1-9730
log cos 48°=1-8255
o log U=1-4184 - log V=1-6066

. U=0-2620 s V=0-4042

Hence
cos PX = 02620 + 0-4042 = 0-6662,
from which PX =48° 14',
The declination, §, is then 90° - 48° 14/, that is, +41° 46’ or 41° 46’ N.
We caleulate H by means of (18), leaving as an exercise to the student
the caleulation of H by the alternative formula (19).
Inserting the values of ZX, PZ and PX in (18) we have
cos 70°=cos 40° cos 48° 14’ +sin 40° sin 48° 14’ cos H
which we write as
oo A T MEOOR H. x. i s s (23)
The calculation proceeds as follows :
log cos 40°=1-8843

log sin 40°=1-8081
log cos 48° 14’ =1-8235

log sin 48° 14’ =1-8726

. log L=1-7078 :. log M=1-6807
. L=0-5102 o M=04794
Hence, from (23),
_ 08 70° L _0-3420 - 0-5102 _
R e L
! 01682 log 0-1682 = 1-2258
el - o log 0-4794 = 1-6807
= - 0-3508 1-5451
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As the star is in the western hemisphere, H must lie between 0" and
125 or, in degrees, between 0° and 180°. Also, since cos H is negative,
H must lie between 90° and 180°. Now

cos (180° - H)= —cos H.
Hence cos (180° — H) = + 0-3508,
from which we obtain
180°- H= 69° 28’,

00 that H=110° 32’
=105°+ 5° 30"+ 2/,
that is, H= 7h22m g,

32. Hour angle al sunsel.

In Fig. 22, drawn for an observer in north latitude, let UX 14
be the parallel of declination of the sun supposed to be of south
declination. The sun reaches the celestial horizon at X when it
sets. In the spherical triangle PZX we have ZX =90° a
circumstance which simplifies the formulae.

To find H we have by the fundamental formula

-~
cos ZX =cos PZ cos PX +sin PZ sin PX cos ZPX,
P
and since cos ZX =0, and ZPX =H, we obtain
cos H= —cot PZ cot PX. .......cccocunnns (24)

It is easily deduced from the diagram that for north latitude
and south declination the
hour angle at sunset is
less than 6% and from a
similar diagram represent-
ing the eastern hemisphere
the sun’s hour angle is
greater than 18" at sun-
rise. Hence the sun is
above the horizon for less
than 120,

Similarly it can be
deduced that for north
latitude and north declina-
tion the sun is above the
horizon for more than 12b,
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Corresponding results can be readily obtained for south
latitude.

Ex. 6. Given ¢=50°N, §= -20°; to find the sun’s hour angle at
sunset. The data apply qualitatively to Fig. 22.

We have PZ=40°, PX=110°
H is caleulated by (24), in which
cot PZ=cot 40°=tan 50°,
cot PX =cot 110°= - tan 20°.
Thus cos H =tan 50° tan 20°, log tan 50° =0-0762
Hence H=64°17" log tan 20°=1-5611

=60°+4° 15"+ 2/, .. logcos H =T1-6373
or H=4h }7m 8s,

88. Azimuth al sunset.

To find the azimuth, 4, or PZX, we have from Fig. 22 by
the fandamental formula

cos PX =cos PZ cos ZX +sin PZ sin ZX cos PZX.
Now cos ZX = cos 90° =0 and sin ZX = sin 90°=1 ; hence
cos PX =sin PZ cos 4,

or 008A=T---.-_

Ex. 7. Given ¢=50°N, §= -20°; to find the sun’s azimuth at
sunset,

cos 110°  sin 20°
From (25) 008 A =™ ~En 0"
o g D20 log sin 20°=1-5341
or cos (180 -A}“sin_ﬂ)“ log sin 40° = 1-8081

Hence 180° - A= 57° 51/,
so that A=122° ¢.
and the azimuth is west.

. log cos (180° - 4)=1-7260

34. Hour angle and azimuth at sunrise.
Fig. 23 applies to north latitude with the sun (of south

declination) rising at X. With the data of the previous two
sections, we have

PZ=40° - ZX=90° and PX =110°,
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so that the spherical triangle PZX is the same as in the examples
of these sections ; accord-

ingly
-
ZPX —4b 17m g5,
PZX =122°9'.

But if H is now the hour
angle at sunrise,

ZPX —24n — H.
Hence

Z

H=19h 42m 528,

Also, the azimuth, A, is
122° 9" and it is east.

Fia. 23.

85. T'rue bearing. :

In Fig. 24 we represent the celestial horizon with the cardinal
points N, B, S and W. .

Let Y, and Y, be the points of intersection on the horizon of
the verticals through two
heavenly bodies X, and
X

The true bearing (1.B.)
of X, is defined to be the
angle between ON and
0Y, measured eastwards
from ON. The range of
true bearing is 0° to 360°.
Thus 7.B. of X,=NOY,
(about 70° in Fig. 24).

Similarly, the true bear-
ing of X, is NOY,,
measured from ON eoast-
wards, which is the angle
subtended by the arc
NESY, Thus 1.B. of X,=180°+80Y, (about 220° in
Fig. 24).

The relation between true bearing and azimuth is summavised

Fic. 24.
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in the following rules, which follow from the principles stated
and from the definition of azimuth.
Rule 1. Observer in north latitude.
For star east, T.B.=Azimuth (east).
For star west, T.B.=360° — Azimuth (west).

N
[NOY,, in Fig. 24, subtended by the arc NWY, is the
azimuth (west) ]
Rule 2. Observer in south latitude.
For star east, T.B.=180°— Azimuth (east).

Pt )
[80Y,, in Fig. 24, is the azimuth (east).]
For star west, T.B.=180°+ Azimuth (west).

[SOY, in Fig. 24, is the azimuth (west).]

In any given case, the student is recommended to derive the
relation between the true bearing and azimuth from a diagram
rather than to memorise the rules given.

The method of specifying directions, with reference to the
horizon, in terms of true bearing is used in graduating the dials
of gyro-compasses with which most ships nowadays are pro-
vided. For example, a ship’s course is described, say, as 170°
or 325°, and the true bearing of an object such as a lighthouse
is specified in a similar way.

EXAMPLES

(In the examples below, ¢ denotes the latitude of the observatory,

8 the declination of the heavenly body, H the hour angle, 4 the azimuth,
and z the zenith distance.)

1. The aliitude of a star is 30° ; what is its zenith distance?
2. The zenith distance of a star is 38° 20" ; what is its altitude?

3. Find, for latitude ¢, the zenith distance at upper transit of stars
of given declination, as follows :

5 p 8
(i) 30° N ; 20° N. (iv) 22°39'S; 37° 42’ N.
(ii) 50° N ; 20° S. (v) 34° 50’ N ; 62° 37’ N.

(iii) 38°25°8; 35°14’8. (vi) 45°28'S ; 21° 14’ N.

4, A and B are two places on the same meridian. At A the zenith
distance at upper transit of a star is 35° 40’ and at B the zenith distance
similarly is 25° 20°. How far apart are 4 and B (i) in nautical miles,
(ii) in statute miles? Assume that the star’s transits are on the same
side of the zenith.
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5. 1f ¢ is 38° N, which of the following stars are circumpolar?
(i) §=22°N; (ii) $=22°8; (iii) 5=55°N; (iv) §=35°N.
8. If 4 is 42° N, find the zenith distance at lower culmination of the
following stars : :
(i) 8=562°N; (ii) 8=48°N; (iii) =656 N.
7. If ¢ is 52° S, find the zenith distance at lower culmination of the
following stars :
(i) 6=42°8; (ii) 8=55"8; (iii) 8="T2°8.
8. For Sirius, 5=16° 38’ 8. Find the altitude at transit if
(i) $=40°N; (i) =40°S.
At what latitude is Sirius just eircumpolar?

9. What is the altitude of Capella (5=45° 56" N) at lower transit if
at upper transit the star is in the zenith of the place?

itudes of Dubhe at u and lower transits (both transits
ar: g;ar'lt}?:?] tt;e zenith) are 79° 25?2;1;1 23° 35’ ; find the declination of
Dubhe and the latitude.
11. Convert the following into degrees, ete. :
(i) 13b 16m; (if) 68 37m; (iii) 14b 10™ 48¢; (iv) 70 35™ 20%.
12. Convert the following into hours, etc. : 3
(i) 73°; (ii), 148° 80’; (iii) 65° 38"; (iv) 139° 24".
18. Draw the c.s. for a place in latitude 45° N and show the positions
of two stars X and Y, data as follows :
X: H=3b 5=+20°; Y: A=50°W, z=60°
Estimdte from your diagram the approximate values of 4 and z for X
and of H and 3 for Y.
14. Draw the o.s. for a place in latitude 45° N and show the positions
of two stars X and Y, data as follows :
X: H=22h, 5=-20°; Y: A=120°E, z="170°
Estimate from your diagram the approximate values of A and z for X
and of H and § for Y.

i data for the stars X and ¥ in examples 13 and 14
drtifv tltlj:l:elgesm spheres for a place in latitude 45° S and make estimates
of the values of 4 and z for X and of H and § for Y.

16. What is the latitude of the place for which the celestial horizon
coincides with the celestial equator?

17. A star’s declination is 0°. Show that in all latitudes it sots at
the west point. What is its hour angle then? / :

18.* Calculate the quantities which you are asked to estimate in
examples 13, 14 and 15.

19.* Calculate the sun’s hour angle and azimuth at sunset for a place
in latitude 50° N when its declination is (i) 20° N, (ii) 15° 8.

20.* Calculate the sun’s hour angle and azimuth at sunrise for a
place in latitude 42° S when ite declination is (i) 15° N, (ii) 20° S.

]




CHAPTER III

RIGHT ASCENSION

86. Introduction.

In the previous chapter we have seen that the position of a
star at any instant can be specified by its hour angle and
declination. Disregarding, for the present, small changes in a
star’s declination due to causes which will be dealt with later,
we take the declination of a star to be constant from day to
day. The hour angle, however, increases at a uniform rate,
which is simply the rate at which the earth rotates on its axis ;
expressed differently, the star’s meridian moves away from the
observer’s meridian westwards at a uniform rate. Moreover,
this rate is the same for all stars.

If we consider two stars with different hour angles we see
that the angle between the
two meridians on which the
stars lie remains unaltered
during the diurnal motion.
If we regard one of these
meridians (say, that through
the first star) as a standard
meridian the position of the
second star can be uniquely
specified, in relation to all
the stars in the sky, with
reference to the equator and
this standard meridian in

. terms of declination and the
Fro. 96 angle between the two mer-

- idians. This latter angle—
which we denote by «—may be regarded as analogous to the
terrestrial longitude of a place with reference to the Greenwich

B

qu.ra ‘br
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meridian as standard meridian, except in this respect, that « will
be measured -eastwards from the standard meridian from 0° to
360° or, as is more usual, from 08 to 24P,

In Fig. 25 we represent the celestial sphere of stars with the
earth’s centre, C, as centre of the sphere. Let PVP, be the
selected standard meridian meeting the equator in V. We can
regard V, if we please, as a particular star of declination zero.
The meridian of a star X is PXJP,. The diurnal motion carries
X westwards (in the direction of the arrow near X) and it also
carries V in the same direction. But the angle between the
meridians through ¥V and X remains constant, that is, VJ
remains constant.

VJ, measured eastwards from V, is called the right ascension
of the star X and, as previously stated, is denoted by «.

It remains to specify more particularly the equatorial star,
or point, ¥ from which right ascension is measured ; this is
done by means of the sun.

37. The sun.

We shall suppose, for simplicity, that an observer in north
latitude ¢ measures the meridian zenith distance of the sun
day by day during the year. When the sun is on the meridian,
that is, when its hour angle is Ob, it is then appareni noon ;
when the sun’s hour angle is 12h, it is apparent midnight.

By the method of section 27 as summarised in formula 12
we can find by observation the sun’s declination, 8, on any day
of the year. It is found that 3 alters from day to day during
the year ; it is 0° on or about March 21, thereafter increasing
to & maximum value of 23°27' N on or about June 21, then
decreasing to 0° on or about September 21 and reaching its
greatest southerly value—23° 27’ S—on or about December 21,
from which date it decreases in numerical value until it is 0°
again on or about March 21. The interval during which these
cyclical changes occur is the year.

38. The ecliptic. ;

It is found that the sun appears to move eastwards against
the background of the stars at a rate (which is not quite con-
stant) of about 1° per day. A similar phenomenon is easily
observable, without instrumental aid, in the case of the moon,
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which moves eastwards among the stars at the average rate of
about 13° per day ; we interpret this sequence of changes by
saying that the moon revolves about the earth in a path, or
orbit, which is deduced, by further considerations, to be nearly
circular. In the same way the sun appears to move round the
earth in an orbit which is also nearly circular.* Moreover, this
apparent orbit of the sun, relative to the earth, lies in a plane
called the plane of the ecliptic. Hence the sun appears to de-
seribe a great circle on the celestial sphere, with the earth as
centre, in the course of a year ; this great circle is the eclipiic.
'_I'he changes in the sun’s declination which we have mentioned
in the preceding section show that the ecliptic must be inclined
at an angle to the equator.

) In Fig. 26 we have the equator with its pole, P. The ecliptic
is shown with its pole at K. The equator and the ecliptic
intersect in the two

points designated v and

== The yearly apparent

motion of the sun, against

the background of the stars,

being easterly, is in the

direction BrA==B. It

is easily seen that when

the sun is on the semi-

circle v.4 == its declina-

tion is north; on the

semi-circle = By, its de-

clination is south.

The point ¢ at which
the sun’s declination
- P’ changes from south to
north is called the Vernal Equinoz, or the First Point of Aries,
so called because, when this nomenclature was first adopted
about 2,000 years ago, this point of intersection of the ecliptic
with the equator lay in the constellation of Aries (the Ram).
The sun is at & on or about March 21. At A4, on the ecliptic

t.ln: For a m?im pmci:lse;tatf{x:::]?t, see]sect.ion 45. Also, the motions of
moon and sun, relative e earth, are elaborated i i
in section 68. : = o apeion
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and 90° from 7, the sun’s declination is evidently & maximum ;
thus 4 corresponds to June 21. Similarly, = and B correspond
to September 21 and December 21 respectively.

= is called the First Point of Libra, or the Autumnal Equinox ;
A and B are respectively the summer solstice and the winter
solstice.

39. Right ascension.

In defining the Right Ascension of a star such as X (Fig. 26)
we use as reference point the First Point of Aries (v )—this is the
precise definition of ¥ in Fig. 25. Thus for the star X, the
right ascension « is the arc °J measured eastwards from P—
that is, in the direction JF.

For a given star the right ascension, o, and the declination,
8, are constant (we ignore at present certain small changes in
these coordinates). Thus a star is definitely specified if « and
5 are known. These coordinates are given, for the brightest
stars, in the Nautical Almanac and for other stars in star-
catalogues.

When the sun is at &, its right ascension is zero and it will
be easily seen from Fig. 26 that as the sun moves along the
ecliptic (for example, from o to 4) its right ascension increases.
This is the reason for measuring right ascension in the eastward
direction.

The inclination of the ecliptic to the equator, that is, the
spherical angle A is called the obliquity of the ecliptic, which
we denote by e. Since ¢ is the pole of the great circle PAF,
the obliquity is also given by the arc F4 and also by KP.
But FA is the sun’s maximum declination during the year ;
hence the value of the obliquity is 23° 27'.

40. Sidereal time. '
If we think of v as being identified with a star, we see that
o shares in the diurnal motion like any other star. Consider
Fig. 27 for an observer in north latitude. The First Point of
Aries is a point (or a star) lying in the equator and at a given
instant we suppose its position to be as shown in the figure.
The dotted great circle is the ecliptic at this instant. The hour
angle of o is the arc RW« measured westwards from the
observer’s meridian. The hour angle of < at the given instant
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and for the given observer is called the sidereal time for the
observer’s meridian, or the
Z local sidereal time.

When < is at R (on the
observer’s meridian), the
hour angle of <y is O® and
consequently the local
sidereal time at this in-
stant is Ob. The interval
between two consecutive
passages of ¥ across the
observer’s meridian—due
to the diurnal motion—is
called a sidereal day, which
is subdivided into sidereal

Fra. 27. hours, minutes and sec-
onds as follows :
1 sidereal day =24 sidereal hours.
1 sidereal hour =60 sidereal minutes.
1 sidereal minute =60 sidereal seconds.
A sidereal day measures the period of rotation of the earth
about its axis.

A sidereal clock is a clock keeping the sidereal time for the
meridian of the observatory ; if the clock is correctly set, its
dial—which is graduated from Ob to 24b—shows 0" when < is
on the meridian. We shall later show how the clock is ““ set
in accordance with this principle.

41, An important formula.
_In F1g 27 let PXP, be the meridian through a star X, at a
given instant, meeting the equatorin J. We have :

—
Hour angle of star =H.AX.=RJ.
¥ =
Right ascension of star =r.A.X.=7J.

Local sidereal ime =LA, of =RV ............ 1)
But RJ +¢J =Ry. Hence
H.A.X. +R.A.X. =local sidereal time. ........ (2)

This is & formula of fundamental importance.
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42. Setting of an equalorial telescope.

This instrument can be set on a given star provided its hour
angle and declination at a given instant are known. Assuming
that the observatory’s sidereal clock keeps the correct sidereal
time appropriate to the observatory’s meridian, we can easily
calculate the hour angle of the star by means of (2), the right
ascension of the star being taken from the Nautical Almanac or
a star-catalogue. The declination is also taken from the same
source. The telescope can rotate about the polar axis of the
instrument which is set parallel to the earth’s axis of rotation ;
a scale enables the correct hour angle to be set and a clock-
work moves the telescope in the same direction and at the
same rate as the diurnal motion. The telescope can also rotate
about its ““ declination axis ”” and a scale enables the correct
declination to be set. The star ought now to be in the field of
view and, with the clock-work in action, it remains in the field
of view for as long as the star is above the horizon. For a more
detailed account of the equatorial telescope, see Chapter XV.

Ex. 1. «=23h45m 385 and local sidereal time = 14h 32m 41s; to find
the star’s hour angle.
Local sidereal time - 14bh 32m 4]s
T e
Hour angle - - 10 47 3
by subtraction, using (2).

Ex. 2. «=21h 16= 585 and local sidereal time = 8t 53 48s.

Local sidereal time -  8h 53m 48s
P 21 16 58
Hour angle - - 11 36 50

In this example « is greater than the local sidereal time ; we therefore
add 24b to the latter, making it 32k 53m 483, from which we now subtract
« in accordance with (2).

43. Setting of the sidereal clock.

Assume that the right ascension, «, of a certain star is
known. By means of the transit instrument we can determine
the instant, by the clock, when the star is on the observer’s
meridian. At this instant the star’s hour angle is 0" ; hence,
by (2),

Local sidereal time of transit =c. ............... (3)
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Thus at the moment of transit the sidereal clock should show
the star’s right ascension. As it is mechanically impossible to
construct a clock to keep time with perfect accuracy, the clock-
time of transit will generally differ from the true sidereal time ;
the transit observation will then provide the means of deter-
mining the clock-error, which will be fast or slow according as
the clock-time is in advance of or behind the true sidereal time.

From frequent observations, the rate at which the clock-
error increases or decreases—these rates are gaining or losing
rates respectively—can be easily determined.

Ex. 3. The observed times of consecutive transits of a star whose
right ascension is 13 51m 14s-3 are 13b 50m 36s-5 and 18h 50m 37s-1; to
find the rate of the clock.

At the first transit, the elock-error is

13b 50m 36s-5 — 13b 51m 145-3 or 378 slow.
Similarly at the next transit, the error is 3752 slow. In one sidereal

day the clock evidently gains 0s6; its gaining rate is thus 0s-6 per
sidereal day.

EXAMPLES
(In the examples below, « denotes right ascension ; the obliquity of
the ecliptic is 23° 27".)

1. What are the sun’s right ascension and declination on (i) March 21,
(ii) June 21, (iii) September 21, (iv) December 217

2. What is the sun’s hour angle at (i) sunset, (ii) sunrise on March 21?
Do these hour angles depend on the latitude?

3. The sun is in the zenith of a place at meridian transit, its declina-
tion being 15° N. Find the latitude of the place.

4, What is the sun’s declination if it is in the zenith of a place in
latitude 12° S at meridian transit?

b. Draw the celestial sphere for a place in latitude 45° N at local

sidereal time 6b. Sketch the position of the ecliptic at this instant and
show the sun’s position if its r.A. is 3h.

6. Draw the celestial sphere for a place in latitude 45° 5 at local
sidereal time 18h, Sketch the position of the ecliptic at this instant
and show the sun’s position if its R.a. is 22h,

7. Find the latitudes at which the ecliptic is perpendicular to the
horizon at some time during the day ; what is then the local sidereal
time?
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8. Calculate the hour angles of certain stars from the following data :
Local sidereal time

(i) 3h20m 35 5b d4m 558
(i) 15 55 13 7 59 50
(iii) 21 50 20 3 4 5
(iv) 8 10 34 12 19 22
9. Find the values of « for certain stars given the following :
Hour angle Local sidereal time
(i) 2b 18m 59s Jb 45m 17s
(i) 19 41 27 17 48 39
(i) 15 22 44 19 256 16
(iv) 7 11 12 5 22 55

10. The observed times (by a sidereal clock) of consecutive transits
of a star for which «=5" 12m 155-2 are 5b 11m 48s-7 and 5b 11m 49s-2,
Find the error of the clock at each transit and also its rate.



CHAPTER IV

MEAN TIME

44, Apparent solar time.

So far as the heavenly bodies are concerned the sun is the
one which has by far the greatest influence in regulating
human activities ; for example, our waking hours are mostly
those when the sun is above the horizon and our sleeping hours
when it is below the horizon. Before the invention of clocks,
the passage of time was indicated by the diurnal motion of the
sun as shown, for example, by the sun-dial. The year, too, is
a solar unit of time based on the sun’s apparent motion on
the celestial sphere, relative to the earth, and measured as the
interval required by the sun to make a complete circuit of the
ecliptic.

The rotating earth is our natural clock, and the measurement
of time is based on the diurnal motion of either a star (or the
vernal equinox) or the sun. In the first case we are concerned
with sidereal time—of the greatest importance in the observa-
tory, but of little relevance in our ordinary workaday activities ;
in the second, we are concerned with apparent solar time. We
say that an interval of one hour of apparent solar time corre-
sponds to the increase of one hour in the sun’s hour angle, and
that one apparent solar day is the interval between two con-
secutive transits of the sun over a given meridian. Suppose
we have a sidereal clock keeping sidereal time accurately ; it
is found from transit observations of the sun that the length
of the apparent solar day, as measured by the sidereal clock,
varies unmistakably from day to day during the year. The
sun is consequently an irregular time-keeper and unsuitable for
the uniform measurement of time. This unsuitability is due to
two causes. First, the sun appears to move at a non-uniform
rate in the ecliptic (see Fig. 26), that is to say, the line joining
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the earth’s centre to the sun’s centre does not sweep out equal
angles in equal times. Second, the sun’s apparent orbit is in
the plane of the ecliptic and not in the plane of the equator ;
the measurement of time is the measurement of hour angle
which is fundamentally related to the equator and not to the
ecliptic. To avoid the irregularities of apparent solar time, a
fictitious body called the mean sun is introduced which moves
uniformly along the equator, its rate of motion being the
average, throughout the year, of the gun’s angular motion
in the ecliptic. In defining the mean sun more specifically,
we require to consider the sun’s apparent orbit in some
detail.

45. The sun’s apparent orbit.
Relative to the earth, the sun appears to move around the
earth in a path, called an ellipse, shown in Fig. 28 ; this is a

more precise statement than that required, at the time, in
section 38. The curve is symmetrical about two perpendicular
diameters AOB and UOV, called the major axis and minor axts
respectively, O being the cenire of the ellipse. 04 or OB is
called the semi-major axis (denoted by a) and OU or OV the
semi-minor axis. Associated with the given ellipse are two
points, C and F, on the major axis and equidistant from O,
called the foei. If @ is any point on the ellipse, the sum of the
distances CG and FG is constant (equal to 2a) for all positions
of @ on the ellipse ; this may be regarded as the fundamental
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property of the ellipse. The ratio of OC to OA is called the
ecceniricity of the ellipse, denoted by e. Then

SR, ey TR (1)

The sun’s apparent orbit is described with reference to the earth
which is situated at one of the foci (we have assumed the earth
to be at € in Fig. 28). The sun is shown at S and the direction
in which it moves in its orbit (as viewed from a point on the
same side of the ecliptic as the north celestial pole) is shown
by the arrows. The distance C'S of the sun from the earth is
called the geoceniric distance of the sun and the line CS is
called a radius vector. When the sun is at A, the geocentric
distance is a minimum and 4 is called perigee ; by (1),

O ametfl ). (0535 Sb S it At ly )

When the sun is at B, it is furthest from the earth ; this point
is called apogee, and by (1)

GEwEE) L sl ., (3)

The sun is in perigee about January 1 and in apogee about
July 1. The eccentricity of the orbit is about % ; hence the
ellipse does not differ very greatly from a circle, as mentioned
in section 38.

Let H be the sun’s position in the apparent orbit when its
declination is furthest south, that is, on or about December 21.
We draw the perpendicular chords ZCK and JCL. If we refer
to Fig. 26 (p. 42), we see that the arc of the ecliptic between
the winter solstice and the vernal equinox is 90°; hence J
corresponds to the sun’s position on March 21. Similarly, K
and L correspond to the sun’s position on June 21 and September
21 respectively.

The sun’s non-uniform angular motion in its apparent orbit
may be illustrated by means of Fig. 28. Suppose that the
angle SCJ is equal to the angle BCK ; then the time required
by the radius vector C'S to move through the angle SCJ is not
equal to the time required by the radius vector CK to move
through the angle KCB; this is an example of the general
rule for an elliptic orbit that equal angles are, in general, not
described in equal times.
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48. Dynamical mean sumn.

To avoid the complications produced by the non-uniform
angular motion of the sun in its apparent orbit, we introduce a
fictitious body, called the dynamical mean sun, D, in Fig. 28,
the corresponding position of the sun being at S. Although we
are only concerned with the direction as given by CD, we may
suppose for simplicity that the dynamical mean sun moves
around C in a circle of radius . We assume, first, that when
the sun is in perigee (that is, at 4), the dynamical mean sun is
at D,, on the prolongation of €4 ; and, second, that D moves
uniformly along its circular path, completing the circuit in the
same time as that required by the sun to move around the
apparent orbit. Thus the radius vector, CD, moves through
360° in a year (that is, 365} days) at a constant rate called the
mean angular motion ; this is denoted by n. Thus, if n is
measured in degrees, the unit of time being the day,

The angle SCA is called the sun’s frue anomaly, denoted by
v, and the angle DCA is the mean anomaly, denoted by M ; it
is to be remembered that when the sun is at S, the correspond-
ing position of the dynamical mean sun is at D. The difference
(v — M) between the true and mean anomalies is called the
equation of the centre. If we measure the time ¢ (in days) from
the moment that the dynamical mean sun is at D,, the mean
anomaly is nf and the equation of the centre is » —n¢. From the
known eccentricity of the ellipse, v can be calculated for time ¢,
and so the equation of the centre can be found at any instant.

Since < is the point on the ecliptic giving the direction of
the sun at the vernal equinox, its direction is represented in
the plane of the apparent orbit by the direction of C'J, as shown
in Fig. 28. The angle 7»CS, measured from Cer in the direction
of the arrows, is the sun’s frue longitude (denoted by L) and
the angle ®»CD is the sun’s mean longitude (denoted by I).
Also, the angle vCA is called the longitude of perigee (denoted
by @,). In each case the longitude concerned is measured, from
0° to 360°, from C¢ in the direction of the sun’s motion, as
shown by the arrows.
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The semi-major axis, a, the eccentricity, e, and the longitude
of perigee, @,, specify the size, shape and position of the orbit,
the latter with reference to the direction of the vernal equinox ;
they are elements of the apparent orbit.

47. The mean sun.

At a particular time on a given day let the sun’s direction
from the earth’s centre, C, be represented by S on the celestial
sphere ; let D be the corresponding position of the dynamical
mean sun ; the direction of perigee is represented by 4. We
have seen that D, by defini-
tion, moves round C' with
uniform angular motion in
the ecliptic. We define a
second fictitious body, M,
moving round the equator
with the same angular motion
as D and we suppose that,
when D is at <v, M is also at
°r. Hence, in the figure,
M =D. This fictitious
body, M, is called the mean
sun. It describes the com-
plete circuit of the equator,

Fic. 29. against the background of

the stars, in the same time

required by the dynamical mean sun, D, to describe a complete

circuit of the ecliptic, that is, a year ; the angular motion of
M is thus n, as given in (4).

Let the meridian through S (Fig. 29) meet the equator in B.
Then B is the sun’s right ascension, which we denote by
R.A.Q; also vM is the right ascension of the mean sun,
denoted by r.A.M.8. ; the difference, namely BM, is called the
equation of time (E.T.)*, and is given algebraically by

BT =EAMS, —RIACL e a i ani. (5)

It is found that during the year the equation of time varies

* In older textbooks, .1. is defined by
E.T.=R.A.® - R.AM.S.
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between —141m and +16}m approximately. We shall later
discuss the equation of time more fully.

48, Mean time.

Consider now the standard celestial sphere for an observer in
north latitude. At a given instant we shall suppose the vernal
equinox and the mean sun, M, to be situated as shown in Fig.
30. At this instant the hour angle of ¢ is R (measured west-
wards from the observer’s meridian), and this is the observer’s,
or the local, sidereal time. Owing to the diurnal motion,
moves with uniform ang-
ular motion in the direc- Z
tion of increasing hour
angle, that is, in the
direction RWT ; also, M
moves, relative to ¢ and
in the opposite direction,
with uniform angular mo-
tion, . Since the diurnal
angular motion is very
much greater than n, the
meridian of M will move
westwards from the ob-
server’s meridian with a
uniform angular motion Fra. 30.
somewhat less than the
diurnal motion. The mean sun, M, thus fulfils the necessary
condition for the uniformity of time-measurement.

The interval between two consecutive transits of the mean
gun, M, over a given meridian is called a mean solar day,
divided into 24 hours of mean solar time with further sub-
divisions into minutes and seconds.

The hour angle of the mean sun, H.A.M.S., measures mean
solar time (M.8.T.) or, simply, mean time. When the H.a.M.s.
is Ob, it is mean noon, and when the m.A.M.8. is 128, it is mean

From Fig. 30, RM +rM=Rv. Hence

H.A.M.S. + R.A.M.8. = Looal sidereal time. .......... (6)
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Also, if X denotes a star, we have the formula (2), p. 44 :
H.A.X +R.A.X =Local sidereal time. .............. (7)
Hence, from (6) and (7) :
HAX 4+ RAX =HAMS. +RAMS. .cocvvenennn, (8)

49. Calculation of R.A.M.S.

We shall measure intervals of time in terms of the mean
solar day as unit. It is assumed that we know the instant, ¢,,
when the sun is in perigee (4 in Fig. 29), and also the value of
the longitude, =,, of perigee. We assume that the sun requires
365} mean solar days to complete the circuit of the ecliptic ;
the mean angular motion, #, is given by
i _ 360°
365}
We can now calculate the instant, ¢,, when the dynamical
mean sun reaches <, for Ay =n(t,~t,); also Ay =360°-m,

—
(the longitude of perigee is measured in the sense v DS in Fig.
29) ; hence, with =, known, we obtain ¢, from

n per mean solar day. .............euu (9)

1
tg =t1 +£(360° st WI).

If ¢; is the instant when the mean sun reaches the position M
(Fig. 29), then ?

that is,

cPM=ﬂ(£s —tg),

R.AM.S. =n(ly —1,).

Hence, for a given #;, we can calculate the corresponding value
of R.A.M.S.

50. The relation between the hour angle of a heavenly body for the
Greenwich meridian and any other meridian.

In Fig. 31 we represent the earth with centre C' and polar
axis pCp,. Let g denote the position of Greenwich and 4 the
position of an observer in west longitude, \. We draw also the
standard celestial sphere with C' as centre. The plane of the
terrestrial meridian pgp, cuts the celestial sphere in the celestial
meridian PGU and the plane of the terrestrial meridian php,
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cuts the celestial sphere in the celestial meridian PHV. It is
evident that the spherical
angles GPH and gph are

-~~~
equal. But gph is the west

P

longitude, A; hence GPH =A.

Now consider a heavenly
body X with PXY as its
celestial meridian. The
spherical angle GPX is the
hour angle of X for the
Greenwich meridian; we
denote it by ¢.n.4.X. Also,
the angle HPX is the hour

Fie. 31.
angle of X for the observer which we denote simply by m.A.X.

W BEER R A Bk, ooivocasinisinniniiia (10)
For example, if A=32° W =2t 8m W and 1.4.X =6 45m, then,

by (10), ¢.H.A.X =8h 53m,

It is easily seen that (10) holds for an observer in east longitude
provided we regard east longitudes as negative.
Thus, if the observer’s longitude is 2t 8m East and

H.A X =6t 45m,

G.H.A.X =6h 45m — 2h gm —4h 37m,
We regard (10) as a general formula, A to be taken positive if
the longitude is west, and negative if the longitude is east.
Formula (10) is true whatever the heavenly body may be.
We consider the following cases.
(a) X is the mean sun. Let ¢.H.A.M.S. denote the hour angle
of the mean sun for the Greenwich meridian. Then
GHAMSB. =HAMS. +A «ooovvainiiaiisnna (11)
(b) X s the vernal equinox. Then
GH.AYY =H.ASY +A.
But ¢.H.A. is the sidereal time at Greenwich and H.A.%v is the
local sidereal time ; hence '
Greenwich sidereal time =Local sidereal time + . ...(12)

we obtain
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This formula gives the relation between the Greenwich and
observer’s sidereal clocks. :
(¢) X is the sun. Then

GHAOSRADEN L ILIVLINR. (13)
(d) X is a star. Then the appropriate formula is (10).

51. The civil day.

A civil day is defined, for obvious reasons of convenience, to
begin at mean midnight and to end at the following mean mid-
night; a clock keeping mean solar time accurately thus
registers O at mean midnight and 24" or 0" at the next mean
midnight. But mean midnight has been defined as the moment
when mH.A.M.S. is 128, and this can only mean the m.A.M.8. for a
given observer. It would obviously be impracticable for every
owner of a watch to carry about with him the mean time
appropriate to the particular longitude in which he found him-
gelf, and so the mean time of a country such as Great Britain-
is legally defined to be the mean time of a standard meridian
—in this case, the meridian of Greenwich. Thus, before the
introduction of Summer Time (see p. 62) any mean time clock
in Great Britain keeps, or tries to keep, the mean time appro-
priate to the meridian of Greenwich. This mean time is some-
times called Greenwich Civil Time (¢.0.1.), sometimes Greenwich
Mean Time* (6.m.1.), and sometimes Universal Time (U.T.)
—the last from the fact that the Greenwich meridian is
internationally regarded as the standard meridian for the
earth.

Since the G.H.A.M.S. is 128 at mean midnight and the Green-
wich mean time clock then registers O, we obtain the following
relation between 6.H.A.M.8. and G.0.T. (or its equivalents) :

G.H.AMS.=G.0.T, £128, ........ccovniians (14)
In this formula we take whichever sign is more convenient.

Ex. 1. Given G.H.A.M.S.= 14h,
Then ¢.c.T.=14h— 12h=2h,

Ex. 2. Given G.H.A.M.S.=5h,
Then @.0.7.=5b+12b= 17h,

* Only since 1025 in this significance.

-
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In particular, at mean noon at Greenwich, the a.c.r. is 12h,
The time of an event that occurs before mean noon is, in civil
usage, generally denoted by the letters A.m. ; for example, 9 A.M.
is, for the Greenwich meridian, equivalent to ¢.c.r. 9, The
time of an event occurring after mean noon is denoted by the
letters p.r. ; for example, 9 P.M. means 9" after mean noon
and is the same as G.c.r. 120+ 9% or 21h,

52. T'ime zones.

For the purpose of keeping the equivalent of civil time at
sea, it is convenient to divide the earth’s surface into zones
bounded by meridians of
longitude at intervals of 15°
(or 1b) apart ; within a zone
the mean time appropriate to
its central meridian is kept.
For example, the zone be-
tween the meridians of 7}° E
and 7}°W (or, in time-
measure, 02 30m E and 0k 30m |
W) is the Greenwich Zone
(designated Zone 0) of which
the Greenwich meridian is
the central meridian. This
zone is shown in Fig. 32, the
boundaries being the merid-
ians PAP, and PBP,. The
next zone to the westward of the Greenwich Zone lies between
the meridians of 0® 30m W and 1* 30m W; its central meridian
is 10 W and the zone is designated Zone + 1. Similarly, if PO, P,
in Fig. 32 is the meridian of 5 W, the zone between the
meridians PCP, and PDP, (4:30m W and 5" 30™ W respec-
tively) is designated Zone +5. In the same way zones to the
eastward of the Greenwich Zone are centred at 1" E, 2h E, ete.,
and these zones are designated Zone —1, Zone -2, ete. The
only exception to this hourly division into zones concerns the
meridian of 128 E. Now, this meridian is the same as that of
120 W and, according to our definition so far, Zone -12 is
identical with Zone +12. To prevent confusion, the kalf of

c 8.A.
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the hourly zone lying in the eastern hemisphere—that is, be-
tween the meridians 110 30m E and 12k E—is called Zone - 12
and the half in the western hemisphere—between the meridians
of 112 30m W and 120 W—is called Zone +12. This is illus-
trated in Fig. 33.
The meridian of 12" E is called the date line * (Fig. 33) ; it
is the meridian where a given day, say February 14, first begins.
A similar procedure, in principle, applies to the keeping of
time within the boundaries
W30w Ww 1030w of a country. Forexample,
Germany, Austria, Italy,
-2 zovls ete., keep Mid-European
_______ e o e ) (N Time which is associated
s with the meridian of 1M K ;
the boundaries of the zone,

hom h hom
1030e. e 1130e

aare Ve however, need not be the
ﬁ'ﬁ o meridians of 2 E and 1}4E,

but are governed by the
geographical extensions of the country concerned. In very
large countries such as the U.S.A. and Siberia more than one
zonal belt is involved. As regards the U.S.A., for example,
there are four zones associated with the meridians (west) of
5h, @b, 70 and 8"; again, for uniformity, a particular state
keeps throughout its borders the time associated with the
standard meridian, even although part of its territory extends
into a neighbouring zone. In some countries and islands the
longitude of the standard meridian is not chosen to be an exact
number of hours east or west; for example, the civil time
of the Federated Malay States is based on the meridian of
T 20mE ; the civil time for India (except Calcutta) corresponds
to the meridian of 52 30m E, while Calcutta time is associated
with the meridian 5 53m 20s-8 E.

The mean time of a country associated with a particular
meridian, as in the examples mentioned above, is generally
designated Standard Time; however, in this book, we shall
refer to any standard time, at sea or on land, as simply Zone

* The actual date-line is slightly different from the meridian of 12b E
where the latter passes through the eastern end of Siberia and certain
groups of islands forming geographical or political units.
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T'ime and the Zone will be designated by the longitude of its
central or standard meridian.

53. Zone time.

The civil day in any zone or country begins at the mean
midnight associated with the central or standard meridian and
ends at the following mean midnight ; thus, the m.a.as. for
the central or standard meridian at mean midnight is 12b.

We use the term Zone T'ime (z.1.) to denote the civil mean
time, appropriate to the particular zone concerned, together
with the day of the year. Thus we write

z.7. 148 35m January 15

to denote an event occurring 14 35m after the midnight which
begins the civil day, January 15, for that zone.

As g.0.1. is simply the zone time for Zone 0, we shall adopt
the same convention for G.c.t. as for z.r., that is to say, we
shall associate it with the particular date at Greenwich when an
event occurred ; thus we write, for example,

G.C.T. 19h 28m 525 February 24.

It is convenient to have a name for ¢.c.r. used in this sense ;
we call it the Greenwich Date (a.p.).

The question arises as to the convention for specifying the
beginning of any particular day with reference to the standard
time zones. Consider, for example, the date February 22.
This day first begins at the date line so that the appropriate
7.T. (Zone —12)is Ot February 22 ; at this instant the m.A.M.S.
for the meridian 12! E is 121, and hence, by (11), the correspond-
ing G.H.A.M.S. is 0" ; the civil day, February 22, at Greenwich
begins 12 hours later—that is, when the ¢.1.A.M.8. has increased
to 128, This is a particular example of a general principle
which we investigate in detail in the next section.

54. Relaiion between zone time (with date) and G.C.T.

Let PAP, be the date line (longitude — 122 E) and PGP, the
Greenwich meridian. Suppose that a civil day—say, February
14—is beginning at the date line. At this instant, the m.a.M.s.
for the date line is 12" and, as the mean sun moves in the
celestial equator, the line joining the earth’s centre to the mean
sun cuts the earth’s equator at M,, where AM,=12b; M, is
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thus on the Greenwich meridian. For convenience we refer to
M, as the position of the mean sun at the beginning of February
14 for the date line.

Let PBP, be a meridian with east longitude. The civil day,
February 14, will not
begin for the meridian
PBP,until the mean sun
has moved from M, to
M,, where M,M,=AB
and the arc BM M, is
12, Thus, with the
mean sun at M, the
Zone Time (with date)
for the meridian PBP,
is 04, February 14.

In the same way, the
civil day, February 14,
at Greenwich will not
begin until the mean sun

Fic. 34. has moved from M, to
M,, M, being coincident
with 4. Thus, with the mean sun at M,, the G.c.r. (with
date) is Ob, February 14. The interval between Zone Time 0Ob,
February 14, for the meridian PBP, and ¢.c.t. 08, February 14,
is the interval required by the mean sun to move from M, to
M,. But the arc M .M is the same as the arc M B, that is, the
easterly longitude of the meridian PBP, which we shall suppose
to be 92 E ; thus the interval concerned is 9. Hence at G.0.T.
ob, February 14, the Zone Time (with date) for the meridian
PBP, is 98, February 14.

After a further interval of, say, 4" the ¢.c.1. becomes 4%,
February 14, and the Zone Time for PBP, becomes 13,
February 14. .

It is evident that the relation between .c.T. and the Zone
Time for PBP, (each with the appropriate date attached) is
given by ’

(o b D St e e A g (15)

where ) is the easterly longitude of PBP,, an east longitude
being taken as negative as in the formulae (10) to (13).
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In the same way, the day February 14 begins in a place of
longitude 20 W, say, 2 hours after the beginning of the civil day
February 14 at Greenwich. Thus, for Zone +2, z.T. oh, Feb-
ruary 14 corresponds to G.c.r. 2%, February 14, and z.T. 5%,
February 14, will therefore correspond to e.c.r. 7, February
14. Again, the relation between Zone Time and G.c.T. (each
with date) is evidently given by (15), in which A is taken
positive for zones in west longitude.

55. The Greenwich date.

The official British astronomical publication is the Nautical
Almanae, in which certain information concerning the sun,
moon, planets and a selection of stars is given for G.c.r. 0" on
each day throughout the year ; in some instances, the informa-
tion is tabulated at intervals of one hour, or of two hours, for
each civil day at Greenwich.* For example, if the moon has
been observed by a navigator in the Indian Ocean at an instant
corresponding to G.c.T. 100 45m, January 24, and if the moon’s
declination is required for the reduction of the observation, the
appropriate value of the declination can then be obtained by
interpolation between the entries in the almanac for a.c.m, 100
and @.c.1. 11t for the day January 24. It is thus of the utmost
importance that the observer should know the Greenwich Date
at which an observation was made ; it is assumed that he knows
the corresponding Zone Time with date. In the following
examples, 3 to 5, it is required to find the Greenwich Date,
given the Zone Time (with date) and the Zone. -

Ex. 3. Zone -4 ; zmr. 8hd4m May 22.
We arrange the work as follows, applying formula (15).
Z.T. 8b 44m May 22
Zone -4
@.D.=G.C.T. 4b44m May 22
Ex. 4. Zone +11; z.r. 22h 35m July 10.
z. 22h 35w July 10
Zone + 11
G.D. 33h 35m July 10
or @.D.=G.C.T. 9h35m July 11

* The Nautical Almanac uses * ¢.a.r.” instead of ““ c.c.r.™; the
American Nautical Almanac uses ** v.1. or 6.c.T.”



62 FOUNDATIONS OF ASTRONOMY

Ex. 5. Zone -8; z.r. 5b 23m June 28.

z.T. 5h 23m June 28=  29b 23w June 27
Zone - - . - 8

Ex. 6. A ship in Zone + 12 is on the point of i i
crossing the date line
at z.1. 4, February 20 (according to the time- ing for Zone + 12).

m?t is the Zone Time (with date) after the ship has crossed the date

We use the Greenwich Date as an intermediary.
Before crossing :  z.1. 4b February 20
Zone +12
G.D. 16h February 20, using (15).
After crossing :  6.p. 16k February 20

Zone ~12
For Zone - 12, z.m. 28h February 20, using (15)
or Z.T, 4h February 21.

By crossing the date line from west to east the ship has thus passed

instantaneously from February 20 to February 21. 4

mlzngssamatv}:ayntia::on?uﬁltforaahipcmmingthedatelinafmm
to west, the new date will be, , April 10 if

pr = yve R o say, April 10 if the date before

56. Summer time.

In many countries mean time clocks are advanced, in normal ..
years, by one hour on a date in April fixed by statute, and
restored to the normal system of time-keeping on some date in
October usually (this applies to countries in the northern hemi-
sphere ; an analogous principle applies to countries in the
southern hemisphere). For example, British Summer Time
(B.8.1.) is one hour ahead of a.c.T. so that

G.C.T. =B.S.T. — 1h,

If we compare this with (15) we see that B.s.1. is simply the
zone time for the Zone —1; in other words, B.s.7. is the mean
time appropriate to the meridian of 1" East.

As a war measure in Great Britain, B.s.T. was, in 1940,
extended to apply to the whole of the year. Also, in 1941 the
clocks were advanced an additional hour between May 3 and
August 9, the clocks thus keeping the time of Zone - 2.
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57. Greenwich mean time chronometers.

These are accurate instruments keeping 6.c.T. and used for
noting the exact time of an observation made, for example, on
board ship or in field-survey work. In practice no chronometer
can be expected to keep mean time perfectly, and the error
between G.c.r. and the time shown by the chronometer is
obtained by means of the daily Wireless Time-Signals. The
errors are designated “fast on ¢.c.1.” or “slow on c.o.T.”.
When the chronometer error has been applied, it is then neces-
sary to attach the correct civil day at Greenwich to the cor-
rected G.c.7. so that the particular elements required, such as
the sun’s declination, may be obtained from the Nautical
Almanac.

The correct Greenwich Date is found easily if the approzimate
z.7. of the observation is noted.

Bx. 7. The chronometer time of an observation made by a navigator
in Zone — 10 was 22b 13m 4s ; the approximate z.1T. was 8h 10m April 20 ;
chronometer error, 1m 23s fast on ¢.c.r. To find the correct G.D.

We first find the approximate .. as follows :

Approximate z.T. 8h 10m April 20

Zone - - - =10

Approximate 6.p. 22n 10m April 19.  ...............(4)
Then, chronometer time - 22h 13m 4s

Error (fast) - - -1 23

Correct G.D.=6.C.T. 22h 11m 4]s April 19, ............ (b)

The approximate @.D. in line (a) contains the correct date ;
this date (April 19) must be atlached to the G.c.T. in line (b).

If the sun’s declination for the time of the observation is sub-
sequently required, it is obtained from the Nawlical Almanac
for the correct ¢.p. in line (b).

In this example it is assumed that the chronometer has a
24-hour dial. If, however, the chronometer dial is graduated
from Ob to 120 only, as in ordinary watches, a reading such as
3" 10m may mean either G.c.T. 3% 10™ or @.c.T. 15" 10™ (omit-
ting the chronometer error) ; in other words, we are uncertain
as to whether we have to add 12 to the chronometer reading or
not. This difficulty is resolved by remembering that in line (a)
—we refer to the example worked out above—we have the
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approximate ¢.0.T. without ambiguity and hence line (b) must

be made to correspond. Thus if, in the previous example, the

ﬁl;ronrom:(ﬁr tglne given by a 120 chronometer is 10t 13™m 45, we
ve 121 to this reading to make line (b) a approxi-
mately with line (a). i

58. H.A.M.S. for an observer in a given longitude.
We suppose that an observer, say at sea, notes the time of an
bservation by means of a Greenwich Mean Time chronometer
f:.nd that he also notes the approximate z.1. By the procedure
illustrated in the preceding section, he obtains the correct .p.
at which his observation was made. Now G.c.T. and ¢.H.A.M.S.
differ by 12b, so that, by (14),

G.O.T. =G.H.AMS. £12b, ... ...(16)
This enables the ¢.H.A.M.8., corresponding to the time of the
observation, to be found.

If A is the observer’s longitude, supposed known, we obtain
the 1.a.M.8. for the observer by means of (11), namely,

GHAME, =FAME, +A, .ocormnrnaraassonss (17)

A being positive for west longitudes and negative for east
longitudes.

Ex. 8. An observer in longitude 56° 30" W, keeping the i

A mean
of Zone +4, made an observation at a.p'proximn.t?ggg!ﬂ 30m Ma;rmsn e‘
chronometer time, 1b 28m 565 ; error of chronometer 0m 155 slow or;
G.c.t. To find m.a.ans, for the observer.

Approx. z.1. - 21k 30w May 8

Zone - - - + 4

Approx. G.p. - 25b 30m May 8
that is, 1k 30m May 9

Chronometer time 1k 28m 565

Error (slow) - + 15

G.D.=0.0.T. - 1h 29m 11s May 9

Hence
G.H,AM.S, is 13h 29m 11s (see Note 1)
Long. (W) 3h 46m 0s (see Note 2)
H.AMS8, - 9h 43m 115 (see Note 3)

Note 1. From (16), by adding 12b to c.c.r.

Note 2. In time measure, 56° 30" =45+ 11}° = 3b 46m,

Note 3. From (17); Ais + 3 46w, since the longitude is west.
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59. Equation of time.
In section 47, formula (5), we defined the equation of time
as follows :
E.T. =R.A.M.S. —R.A.O.

Since H.AM.S. +R.A.M.8. =Local sidereal time
and mA.0O +R.A.Q =Local sidereal time,
we have, by subtraction,
R.AM.S. =RA.O=HA.Q —H.AMS,,
whence BT, =H.A.Q —HAMS.. creeereiariinnains (18)

Fig. 35 shows the obser-
ver's celestial sphere with
the sun, ©, and mean sun,
M, at a given instant. The
meridian through the sun
meets the equator at Y.
Now

RY =H.A.0,

and RM=H.A.M.S.

Hence, by (18), MY is the
equation of time. Also, by
(18), E.1. is positive if H.A.O
is greater than H.A.M.S. and
negatwe if HAQ is less Fic. 35.
than #.A.M.S.

The values of .. throughout the year are tabulated in

the Nautical Almanac, and the particular value to be used
is that which corresponds to the Greenwich Date of the
observation.

Fig. 36 shows how the equation of time varies throughout
the year. It will be noticed that the equation of time vanishes
four times during the year—on or about April 16, June 14,
September 1 and December 25.

The values tabulated in the Nautical Almanac are obtained
from (18) by calculation.

C.

S5.A.
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my
+10 |—

Fic. 36.

60. Calculation of the sun’s hour angle.
. We ﬁret calculate the observer’s m.a.n.s. as in the example
in seotlon. 58 and apply the equation of time, extracted from
the Nautical Almanac for the Greenwich Date, by means of
(18). The procedure is shown in the following example.
Ex. 9. An observer in longi ° 157 i i
of Zone - 11, made an obaeg;:augi‘:ml egf Eaﬁmﬁxﬂmtﬂ?

198 3m, July 14 ; chronometer time, 8h 2m 40s
} , ; error of chro .
Im 14s fast on ¢.c.r. To caleulate the sun’s hour angle for the Sl?sl:.:\ti:

Approx. z.1. - 19b 3m July 14

Zone - - s uzac]

Approx.e.p. - 8§ 3m July 14

Chronometer time  §h 2m 49s

Error (fast) - -1 14

G.D.=G.C.T. - 8h 1m 358 July 14 (see Note 1)
Hence, G.H.A.M.8. i8 - 20b Im 35s

Long. (E) - - 11 s18100

H.A.M.S. - - 7 14 35 (see Note 2)

BT, - - - -4 47

HA. O - . - m

Note 1. With this c.p. 1
gy 8 ith this ¢.n. we find from the Nautical Almanae that k..
Note 2. By (11); the addition of ¢.m.a.M.8. and Long. (E) gives

315 14m 355 ; as hour angle i
and obtain the result givan.ls reckoned from Ot to 24k we subtract 24n
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Note 3. In the Nautical Almanac, abridged for the use of seamen, &
quantity E, equal to 12b+E.T., is tabulated at two-hourly intervals.
The m.A.® is then found by (i) adding E to the G.c.T. (this gives
a.1.A.©) and (i) applying the longitude.

61. Calculation of the chronomeler error from the sun’s hour angle.

We assume that the sun’s hour angle can be deduced from
observation. The procedure is readily seen from the following
example.

Ex. 10. An observer in long. 58° 48’ 30" W, keeping the mean time
of Zone +4, made an observation of the sun at approximate z.T.
14b 25m, October 2 ; chronometer time 18 24m 38s. From the observa-
tion the sun’s hour angle was deduced to be 2b 40m 59. To find the
error of the chronometer.

Approx. z.T. 14h 25m October 2
Zone - - +4
Approx. G.D. 18h 25m October 2

We can find the correct 6.p. only when we have found the error of the
chronometer ; but, using the approximate G.D. as given above, we
obtain an approximate value of £.T., which should not be in error by

 more than a second. Thus, we find from the Nautical Almanac that '

B, is + 10m 385, We proceed as follows.

H.A.Q - - 9h 40m 508
BT (+) - - 10 B8 ..iciivirsircicrerrorsransan (a)
H.AM.S, - . 2 30 21, by means of (18)
Long. (W) - . -3 B 14
G.H.AMS. - - .8 25 38
Hence, G.0.%. is 18h 25m 355 October 2 (Note 1)
But chronometer time is - - 18b 24m 38s,

Consecquently, the error of chronometer is Om 57s slow on G.C.T.

Note 1. The date, October 2, must agree with that of the approxi-
mate G.D.

1f we require extreme accuracy, we repeat the above calculation with
the value of E.T., taken from the Nautical Almanac, for the c.c.r.
immediately above (in the same line as Note 1).
62. Relation between mean time and sidereal time intervals.

We start from formula (6), p. 53, which gives for a given
instant and for a given meridian the sidereal time in terms of
1.A.M.8. and R.A.M.S., namely,

H.AMLS. +R.A.M.8, = Local sidereal time,

which we write in the form
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If we know H, and R, we obtain the sidereal time 7', as indi-
cated by the observer’s sidereal clock at the given instant (we
supl;ose for simplicity that the clock’s error and rate are both
7ero).
- A.ﬂ:-er an interval of one mean solar day we have the formula,
similar to (19),
T S O T Qiinesne aihes sstsssssosyurny (20)

where 7', is now the reading shown by the sidereal clock. From
(19) and (20), by subtraction, we obtain

Hg—‘Hl'l'R’—Rl:Tg_Tlo ----------------- (21)

_Now in the interval of one mean solar day the m.A.m.s. has
increased by 24h, so that

IOIRE R il i (22)

Also, the r.a.M.8. has increased by » (the mean daily angular
motion) which is given from (9) by

360°
n=—,
365}
or, writing 24t for 360°, by
po e
365}’
24
hence Roch ot
2 3 365i ............................. (23)
From (21), (22) and (23) we obtain
24h
Py-Ty=2a0 4 — .
kTS U aey

Now 7',-1', is the interval of sidereal time equivalent to
24b of mean solar time ; hence

. 1 2 .
240 M.8.7. =240 (1 +3_GE}) sidereal time ...(24)

3661\ . y
=24h (565—}) sidereal time. ...... (25)

Formula (24) or (25) enables us to convert an inter;al of
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mean solar time into its equivalent value of sidereal time.
From (24) we can readily construct the following table.*

- TasLe 1
Conversion of mean solar time into sidereal time
24h N.S.T. = (240 + 3™ 568-556) sidereal time.

lh 1] = (lh +98.8565) ' He
m = (Im+0-1643) A i
- .]_5 2 = (1! +0°-0027) 13 .

From (25) we can clearly write
365}

24 gidereal time =240 (W) M.S.T.

§ ) M.S.T
—366i bl d o

The following table can then be constructed.

—o4n (1

Tasre II
Conversion of sidereal time into mean solar time
24h gidereal time = (242 — 3™ 558:910) M.S.T.

1h = il = (1]1 - 99‘8_296) i3
1m % , = (Im-— 0s-1638) ,,
3 i E) ” = (15 L 05'0027) 1]

The Nautical Almanac contains more detailed tables for con-
verting mean solar time intervals into sidereal time intervals,
and vice versa.

63. Greenwich sidereal time. ¥

The sidereal time at Greenwich is tabulated in the Nautical
Almanac for G.c.7. Ot for each day of the year.

Suppose that an observation is made at G.C.T. 100 25m 308
April 4 by an observer in longitude A and that the correspond-
ing local sidereal time is required. We proceed in two steps.

The first step is to find the Greenwich sidereal time at the
given ¢.0.r. We find from the Nautical Almanac that

Gr. sid. time at 6.0.1. b April 4=12b 48™ 385,
* Instead of 365} the value 365:2422 is used for this purpose.
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The interval between G.c.r. Ob April 4 and the c.c.1. of the
observation is 10t 25m 308 M.S.T.
We convert this mean time interval into the corresponding
- - - pon
sidereal time interval by means of Table I. Thus

10t M8 1. =100 1m 388.565 sidereal time.
S Lot LIRSty v
308 1 = 30-081 %

f.[enae the mean time interval is equivalent to a sidereal time
mten;lal of 10h27m ]19s.753, or 10" 27m 138, to the nearest
second.

. 'f}?e Greenwich sidereal time * at the time of the observation
is then

- 12h 48m 388 4 10h 27m ]38,
or 23h 15m 518,
The second step is to apply formula (12), p. 53, namely,
Gr. sid. time = Local sid. time + A,

from whic_h the observer’s sidereal time can be obtained. For
;xa.mple, if the observer’s longitude is 96° 30° W (6h 26m) we
ave

Gr. sid. time for observation - 23h ]15m 518
SR = - - .- @8 D

Local sid. time for observation - 16h 49m 518

64. Calculation of the hour angle of a star.

We assume that a star is observed at a known c.c.r. (the
{:nathoq is applicable to the moon or a planet) by an observer
in a given longitude. The method of the previous section
e.nablea us to calculate the local sidereal time of the observa-
uon.. The right ascension of the star (or moon or planet) is
obtained from the Nautical Almanac or other book of reference.

We then apply formula (7), p. 54, whi i
ol Rt g i | p- 54, which enables us to derive

* In the Nautical Almanac, abridged for the use of seamen

a3 :

s equa_l to R.AMS. & 12b, is tabulat.eiif at two-hoirly inte'r:a?sm%hty
Greenwich sidereal time is then found by adding R to the c.o.T Y P
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Ex. 11. To find the hour angle of Betelgeuse (« Orionis) for an
observer in-longitude 85° 15’ E (Zone - 6); given, approximate z.7. of
observation, 18h 25m January 2; chronometer time, 12h 24m 38s;
chronometer error, 1m 33s slow on G.C.T.

Approx. z.1. - 18h 25m  January 2
Zone - - - -8

Approx. G.D. - 12 25 January 2
Chronometer time 12 24 38

Slow - - - 1 33
G.D.=G.0.T. - 12 26 11 January 2

1t is found from the Nautical Almanac that the Greenwich sidereal time
at G.c.r. Ob January 2 is 6 41m 58, Also, 12h 26m 11 of mean time is
equivalent, by using Table I, p. 69, to 12b 28m 14s sidereal time.

Cr. sid. time at G.c.7. Ob Jan. 2 6b 41m 58

Add sid. time interval - < 1228 14
Gr. sid. time for observation - 19 10 12
Long. (E) - - - s, Doal
Local sid. time - . - 24 51 12, using(12)
R.A. Betelgeuse - - - .8 51 67, from ¥N.A.
i.A. Betelgeuse - - . 18 59 15, using (7)

The procedure of finding the hour angle of a star, the moon
or a planet by the method of this section, or of the sun by the
method of section 60, is fundamental in many problems. For
example, the zenith distance and azimuth of any heavenly
body can be calculated for any observer whose latitude and
longitude are known and who is equipped with a chronometer ;
for, with the m.A. determined as above, two sides (PZ and PX)
of the spherical triangle PZX and the included angle ZPX are
known so that, as in Problem 2, p. 33, the zenith distance
and azimuth can be found.

65. The seasons.
The year is divided astronomically into four seasons called

spring, summer, autumn and winter. In the northern hemi-
sphere, spring begins when the sun, in its circuit of the ecliptic,
reaches the First Point of Aries, o, and ends when it reaches
the summer solstice. During spring the sun’s right ascension
increases from OB to 61 and its declination from 0° to 23° 27’ N.
Summer is the interval between the passage of the sun through
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the summer solstice and through the autumnal equinox (or We then obtain easily that
First Point of Libra) ; the sun’s right ascension increases from M M, =6h 5 545 ;
6" to 12" and its declination changes from 23°27'N to 0°. , s
Autumn begins when the sun is at = and ends at the winter or, expressed in degrees,
801:1ti09; the sun’s right ascension increases from 12h to 18h M, M,=91° 28}
and its declination changes from 0° to 23° 27’ 8. Winter begins . ibed as the interval required by the
with the sun at the winter solstice and ends with the return of i}:ﬁgsia{ong;?b;i 6;1(31 281" of the equator. I'3%111; the {uean
the sun to ) Gl the l'ight ascension increases from 18h to 24h sun describes 360° in one year ; comequenﬂy spl'ing is the
(or (%) and the declination changes from 23°27'S to 0°. In 91° 28}/ A
the southern hemisphere spring begins when the sun is at = fraction — 25~ of one year, which is rather more than one
g’ m.:ld Bl-ld.s Yvhen its de- quarter of a year. The lengths of the seasons (for the northern
clination is 23° 27’ 8. hemisohere) are found in this way to be as follows.
The other seasons S ness) :
follow in succession. Spring - - 92 days 20-2 hours
The length of the Summer - - 93 days 14-4 hours
northern spring can Autumn - - 89 days 18-7 hours
be found as follows. Winter - - - 89days. 0-5 hours
In Fig. 37 suppose During the northern spring and summer the sun’s declination
that when the sun is is north and hence, by section 32, the sun is above the horizon
at ¢ the mean sun is for more than 12 hours in each day; similarly during the
at M,, where the arc northern autumn and winter the sun is above the horizon for
M v is the numerical less than 12 hours in each day.
value of the equation Moreover, for a northern observer the meridian zenith
of time. From the distance of the sun is, in general, smaller when the sun’s
Fre. 37. f?\’a;eticaé Alfmanac it declination is north than when it is south (compare formula (6),
- Setendelle 18 found that, when . 25, , ZU =¢ -38).
the sun’s declination is 0° on or about March 21, the equation ¥ “;)a Exﬂﬁe that g) du)_ring the northern spring and summer
SEVmS s < S0y Wove the hours of daylight are longer than during autumn and
B SRAME SRAD, . u (26) winter, and (ii) the sun has greater noon-time altitudes during

spring and summer than in the other two seasons. These two

SR sbamn ki ¥ (. Oding then g facts determine the relative amounts of the solar heat falling

R.AM.S. = — 7m 288 or 24h — 7m 288, at a particular place on the earth’s surface and explain, to a
Thus M, is to the left of o in the figure and M, =7m 2gs. large extent, why the te m- mn“m?r* te ok a1
A:ga.m, ﬁ\;\lrhm::1 the sun is at the summer solstice its right ascen- SPEDE BV o ik 3, e vgs
sion is 6" and the equation of time (from the Nautical Almanac) ;
b : : ' 66. The terrestrial zones.
:31 — 1™ 345, so that if M, denotes the corresponding position of The parallel of latitude 23°27'N is called the Tropic of
© mean sun, we have from (26) : Cancer and the parallel of latitude 23° 27’ § is called the Z'ropic

PMy=R.AM.S, =6h — 1M 345, of Capricorn ; the zone between these two parallels is the T'orrid
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Zone. At any place within the Torrid Zone the sun is in the
zenith (or very nearly so) on two days of the year ; for if the
latitude is 20° N, say, the meridian zenith ( =¢ —8) is zero or
very nearly zero when the sun’s declination is exactly equal, or
nearly equal, to 20° N, that is, about May 21 and July 24.

The parallels of latitude 66° 33’ N and 66° 33’ S are called
the Arctic Circle and the Aniarctic Circle respectively ; the
zone between the Tropic of Cancer and the Arctic Circle is
called the North Temperate Zone and the zone between the
Tropic of Capricorn and the Antarctic Circle is the South
Temperate Zone.,

For a place on the Arctic Circle the meridian zenith distance

of the sun on December 21 is given by ¢ —8 where ¢ =66° 33"

and 8= —23°27"; thus the sun’s meridian zenith distance is
90°, that is to say, the sun is below the horizon throughout the
whole of this day. It is easily seen in a similar way that within
the temperate zones the sun is above the horizon for some part
of every day of the year.

If we consider a place north of the Arctic Circle, say in
latitude 80° N, the meridian zenith distance of the sun will be
less than 90° provided that ¢ -3 is less than 90°, that is if
8> ~10°. The dates corresponding to 8 = —10° are February
21 and October 20 ; it follows that between October 20 and
February 21 the sun never appears above the horizon in this
latitude.

Again, by (7) of section 25, the sun will be circumpolar, that
is to say, above the horizon for all hour angles, if §>>90° - ¢.
For latitude 80° N this condition becomes § >10°. The dates
corresponding to 8=10° are April 17 and August 28 ; hence
between these dates the sun never sets and we have the pheno-
menon of the midnight sun.

1t is also easily seen that at the north pole the sun is con-
- tinuously above the horizon between March 21 and September
21 and continuously below the horizon during the remainder of
the year.

67. Twilight.
For some time after the sun has set, we receive a diminishing
amount of diffused sunlight, reflected and scattered by the
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earth’s atmosphere. This is called twilight which steadily
diminishes as the sun moves further below the horizon. f_&shro;
nomical twilight is said to end when the sun’s centre 18 18
below the horizon.

N

In Fig. 38, Z?X is the hour angle of sunset and ZP.Y is the
hour angle when the sun is 18° below the horizon, that is, when
its zenith distance (ZY in
the figure) is 108°. The
interval between sunset
and the end of twilight is
called the duration of
evening twilight ; it is
measured as the difference
of the two hour angles
ZPY and ZPX and is
strictly an interval of
apparent solar time ; but
for all practical purposes
it may be taken to be
equivalent to an interval
of mean solar time. The Frc. 38.
calculation proceeds in
two steps ; vl:e first calculate the hour angle ZPX from the
spherical triangle PZX in which

PZ=90°-¢, PX=90°-8 and ZX =90°,

using the formula (24) of section 32. The second_. step is to
calculate the hour angle ZPY from the spherical triangle PZY
in which we know all three sides, namely

PZ=90°—¢$, PY=90°—-3 and ZY =108°.

The difference between the two hour angles so found is the
duration of evening twilight. i

Morning twilight is defined and found in a su_mlgm way.

Twilight lasts continuously—that is, the begmmng of morn-
ing twilight coincides with the end of evening twlllghb——-xf ab
apparent midnight the sun is not more than 18 b.elow the
horizon. The limiting case is when the sun is at J (Fig. 38) at
apparent midnight and then twilight is just continuous. Now
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in this case Z.J =108° and PJ =90° -3, and, since ZJ =PZ + PJ,
the condition in the limiting case becomes

108°=90° — ¢ + 90° -3,
or 3=172°-4¢.

tI'hus if ¢-=62°, twilight is just continuous when 8 =10°, that
1:’;]1 on Apnlb:'? and August 28. Between these dates the sun
never be more than 18° below the horizo d so twiligh

will be continuous. ; e bR :
Csfnl twilight is defined in a similar way, with the sun’s
maximum angular distance below the horizon taken as 6°.

For. nautical twilight the sun’s maximum distance below the
horizon is taken to be 12°,

EXAMPLES

1. The hour an, £ i i
i o %Iﬁz v:s :a star X (m.a.x.) for the places in the given

) H.A.X. Longitude H.AX. Longi
(i) 3b14m15s; 45°W. (iv) 23b pm 32s; 35354‘;11%?
(ii) 7h27m 37s; 120° E. (v) 2h39m42s; 163° 22°E.

(iii) 14b 25m 565 ; 156° W,
Find in each case the corresponding hour angle at Greenwich.

2. The hour angles of a star X at Greenwich (c.11.a
i ; H.AX,
Find the corresponding hour angles for the given lon 't’ are.aa follows.

g G.1.4.x. Longitude LA, i

{.5} 17h 53m 14s ; 175° W. (iii) 22(: Ell{;m'lﬁl; g;gg;;?dEe

(ii) 3b4Tm 9s; 108°W. (iv) &b 11m 48s; 68° 30’ E.

3. Find the m.A.M.5. i i i
B b Aas. for the given longitudes, corresponding to the

) g.c.r. ©  Longitude .1 i

(_f) 170 11m 225 ;  48° K. (iii) 23h(;3:425; fgr“glltgfl;}

(ii) 3h 35m 55s; 156° W. (iv) 22b 37m 55s; 73° 30° W.

fol?s;ws : d the Greenwich Date, given the zone and the zone time as

_ Zone Zone Time Zone Z
(:.) + 63 6.30 pm. July 4. (iii) +8; 19h Sﬁ?nmi&'flifn‘uast 10.
(ii)) —=11; 5.44 a.m. July 8. (iv) —=7; 8b27m August 20.

5. Find the correct Greenwich Date, given the pproxima
zone time, the chronometer time and thg; chmnotm :?::: as f'cpll.ow:Er
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Zone Approx. zZ.T. Chronometer Error
(i) - 3 8 l4mMayl 5° 15m36: 1= 10s slow

(i) + O 220 10mMay2 7h 12m 15 2m 15 fast
(i) —12 h10mMay 4 17h 8md0s 2m 4s fast
(iv) + 4 17525mMay 5 21b 25w 30s 0m 10° slow

6. Find the hour angle of the sun for places in the given longitudes,
from the following data (take the chronometer error to be 1= 10s slow
in all cases ; the values of the equation of time (x.1.) are taken from the
Nautical Almanac) :

Zone Approx.z.r. Chronometer Longitude B.T.
(i) + 7 1630 Jun. 1 23h3Im20s 103° 40 W + 2m]8s
(ii) - 6 0425 Nov. 3 22h23m50% 91° 12E  +16m 22s
(iii) +10 1830 Aug. 2 4h20m 425 149° 52°W - 6m @
(iv) + 2 0450 Feb. 12 64 51m 38 34°40°'W -—14m21s

7. Express the mean time intervals of (i) 9b 10m, (ii) 3b 40m 10s,
(iii) 19k 45m 36s as intervals of sidereal time.

8. sidereal time intervals of (i) 7h 45m, (i) 9b 22m 48,
(iii) 21b 35m 165 as intervals of mean time.
9. Sirius crosses a given meridian at z.T. 9.30 .. on a certain day.

At what z.x. will it eross the same meridian (i) next day, (ii) ten days
later?

10. Zone + 5. Find the z.1. on Feb. 3 when Procyon (R.A. Th 36m 10s)
crosses the meridian of Ottawa (Long. 75° 43’ W) given that at c.c.T. on,
Feb. 3, the Greenwich sidereal time is 8b 48m 8s,

11. Find the local sidereal time, for the given longitudes, and the cor-
responding hour angles of Regulus (R.A. 10k 5w 11s) from the following
data ; take the chronometer error in each case to be 2m 5s slow. From
the Nautical Almanac the Greenwich sidereal time at G.0.T. 0Oh, January
4, is Gh 49m 52s,

Zone Approx. z.T. Chronometer Longitude
(i) + 4 3b 14m Jan. 7h 12m 562 58° 20" W

(i - 7 17h 26w Jan. 10b 27m 2s 103° 48’ E
(iii) + 9 18t 50m Jan. 3h 50m 0 134° 100 W
(iv) —-10 gh 18m Jan. 23h 17m 508 148° 26’
(v) 0 16h 44m Jan. 161 43m 48s 6°14'E
(vi) + 2 23h 7m Jan. 1b 8m l4s 20°39° W
12. The values of the equation of time at the equinoxes or solstices
on or near March 21, June 21, September 21 and December 21 are
respectively :
—7m2gs; —1m34s; +7m32 and + 1M 34s.
Find the lengths of the seasons correct to one-tenth of a day.
13. Find the most northerly latitude at which the phenomenon of
the midnight sun is just possible between the two dates in summer for
which the sun’s declination is 20° N.

o o e 08
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14. 'Find the latitude of a place at which twilight (astronomical) just
lasts all night, the sun’s declination being (i) 14° N, (ii) 22° S.

15. Can twilight last all night at the equator or at any place within
the Torrid zone?

16. What are the limits of declination if twilight lasts all night in
latitude 58° 87 :

17. Calculate the duration of evening twilight (astronomieal) for lati-
tude 50° N when (i) §= + 5%, (ii) = - 5°.

18. Explain how you would find the zone time of apparent noon for
an observer in a given longitude on a given date.

19. On a certain day at a place on the Greenwich meridian the sun
rose at @.c.T. 5b 4m 10 and set at ¢.c.r. 19b 8m 50s. If the equation of
time is assumed constant between sunrise and sunset, find its value.

20. Zone +2. At a place in longitude 31° 15° W, the sun rose at
Zone Time 7b 11m 40s and set at 16b47m 36s. Assuming that the
equation of time is constant, find its value and also the Zone Time of
apparent noon at the place. .

21. At Zone Time 1800 (Zone - 2) on February 4, 1940, a ship’s posi-
tion was 38° 8, 34° 30’ E. The ship steams eastwards along the parallel
of latitude for 2850 nautical miles at 15 knots. Find (i) the ship’s
longitude and (ii) the Zone Time with date, at the end of the run.

22. At Zone Time 0600 (Zone + 11) October 14, a ship’s position was
A (42° 30" 8, 162° 40’ W). At Zone Time 1400 (Zone + 5), October 27,
she reached the position B (42° 30" 8, 79° 35’ W), her course being along
the parallel of latitude of 42° 30’ 8. Find her speed in knots.

CHAPTER V

THE SOLAR SYSTEM AND THE LAW OF
GRAVITATION

68. Motions relative to the earth.
In this chapter we consider the sun and its family of planets,
the satellites (or moons) of the planets, comets and meteors,
the whole forming what is known as the Solar System. Starting
with the Moon—the only satellite of the Earth—we can easily
infer by simple observation the principal features of its motion
in the sky. Suppose that we observe—say, at 10 P.L, on a
particular day—the moon’s position, M, with reference to the
principal stars in its neigh-
bourhood. Next day, at 10 * *
p.M., it will be seen that its | =* " i
position, M ,, relative to the ﬁ -

same stars, is now about 13° Ny % * )

M <
o
"

to the eastward of its first »
position ; 24 hours later its »
position is about 13° still
further to the eastwards.
These simple observations
are represented in Fig. 39. Continued observation will show
that after about 27} days the moon will return approximately
to the position, relative to the stars, denoted by M, in the
figure. We infer that the moon describes an orbit round the
earth in a period, with reference to the background of the stars,
of about 27} days; this period is called the moon’s sidereal
period of revolution or orbital period.

In a somewhat similar way we infer that the sun appears to
move around the earth in a period of 365} days with reference
to the background of the stars. The stars, of course, are not
visible to the naked eye in day-time, but we can proceed as

*

«— East

Fia. 39.
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follows. At apparent noon we can measure the sun’s declina-
tion. At the apparent midnight following, when the sun’s hour
angle is 120, the point in the heavens exactly opposite to the sun
(the declination of this point will be opposite in sign to that of
the sun) will be on the meridian and its position with reference
to the stars can be noted—allowing for the change in the sun’s
declination in the interval. Observations on successive nights
will show that the point diametrically opposite to the sun will
appear to move in 24 hours about 1° eastwards with respect to
the stars. In this way we infer that the sun appears to move
eastwards against the stellar background in a period of about
365} days. Weemphasise that thesun appears to revolve around
the earth and its orbit is the apparent orbit with which we were
concerned in section 45. On the celestial sphere the ecliptic is the
path of the sun with reference to the stars and is a great circle.
If we make a similar set of observations of a planet such as
Mars, for example, it is seen that the apparent path of the
' planet with reference to the
L . * background of the stars is
very much more complicated

than in the case of the moon
or sun. This is illustrated
*» in Fig. 40 where the curve

* ABCDEFG represents some
i X » of the typical features of a
e planet’s path in the sky.

Wl Along the section ABC the

planet appears to move eastwards with reference to the stars,
its angular motion decreasing as C is approached. Along the
section CDE the planet appears to move westwards relative to
the stars until % is reached, after which its motion again becomes
eastward along the section EF@. The eastward motion (sections
ABC and EFQ@), corresponding to increasing right ascension, is
said to be direct, and the westward motion (section CDE), cor-
responding to decreasing right ascension, is said to be refrograde.

89. The Ptolemaic and Copernican theories.
The first rational attempt to account for the phenomena de-
scribed in the previous section is embodied in the Plolemaic
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theory. The earth was supposed to be the fixed and immova.b{e
centre of the universe (the Ptolemaic theory is thus a geocentric
theory) and round it circulated the sun and moon. The stars
were imagined to be situated on the surface of a tranaparclant
sphere which rotated westwards about an axis in the period
of what we now call a sidereal day, thus accounting for the
diurnal motion, that is, the westward motion of the heavenly
bodies across the sky. The peculiar apparent motions of the
planets as illustrated in Fig. 40 necessitated ingenious geo-
metrical devices which became more and more complicated as
further divergences between observation and “ theory ”’ were
noticed. The Ptolemaic system survived until it was challenged
by the heliocentric theory of Copernicus (1473-1543). Accord-
ing to Copernicus, the sun is the centre of the system of pla:nats -
the Earth rotates about an axis, thus giving rise to the diurnal
motion of the heavens, and is itself a planet describing a cir-
cular orbit, like the other planets, about the sun. The planet
nearest the sun is Meroury, and the others known at the time
of Copernicus are—in order of distance from the sun—Venus,
Earth, Mars, Jupiter and Saturn. The planets Mercury and
Venus are called inferior planets ; those more remote from the
sun than the earth are called superior planets. Beyond the
orbit of Saturn three new planets have been discovered, namely,
Uranus (1781), Neptune (1846) and Pluto (1930), the year of
discovery being indicated in each instance ; in addition, nearly
2,000 minor planels or asieroids, most of them extremely small
in size as compared with the major planets just enume?atefi,
have been discovered—mostly within recent years—moving in
orbits between those of Mars and Jupiter. The Copernican
theory gave a simple explanation of the principal phenomena
of planetary motions, including direct and ret;rogr?de motions
(which we shall further consider in section 76), but its complete
expression had to await the researches of Kepler and Newton.

70. Synodic period (superior planet).

We assume that the planetary orbits are circles and coplanal:.
The assumption that the planetary orbits are coplanar is equi-
valent to saying that the planets move in the plane c:f the
ecliptic, since this is the plane defined by the earth’s orbit—or




82 FOUNDATIONS OF ASTRONOMY

the sun’s apparent orbit round the earth. Actually, the orbital
planes of the inferior and superior planets are inclined at small
angles to the plane of the ecliptic—the inclinations are given
on p. 259.

A planet is said to be in opposition when the direction of the
planet as viewed from the earth is opposite to the direction of
the sun. In Fig. 41 the orbits of the earth and a superior planet
are shown, and opposition corresponds to the configuration
shown by 8, #, and P,.
Thus, at apparent midnight
the planet will be on the ob-
server’s meridian and the
planet will be above the
horizon between sunset and
the next sunrise.

If the directions of the sun
and planet coincide, as in the
configuration ,, S and P,,
the planet is said to be in
conjunction.

The interval between two
successive oppositions, or be-
, tween two successive con-

Fic. 41. junctions, is called the

planet’s synodic period. Let

SE,P, define a particular opposition and SE,P, the next
opposition. Now, as we shall see later, the orbital periods
of revolution of the planets increase from Mercury outwards.
Hence in Iig. 41 the orbital period of the planet P is greater
than that of the earth. In other words, the angular motion
of £ is greater than the angular motion of P. Thus, if the
planet moves from P, to P, in the same time as that required
by the earth to move from E, to E,, the angle subtended
by the arc £, £, at S is greater than the angle subtended by the
arc P,P, at S. It follows that, since the planet has described
the angle P,SP,, or 0, in the direction of the arrow when
the next opposition takes place, the earth has described

-~
360° + Fi ;SE,, that is, 360° +-0.
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Let n,, n, denote in degrees the daily angular motion of the
oarth and the planet and 7';, 7', the corresponding orbital
periods in days. We have

360° 360°
=T;— sy M= T’ + snssssEsasssssssssses (1)
Let S denote the synodic period in days; it is the interval
required by the earth to move through 360°+0 and also the
interval required by the planet to move through 6. Thus

360° +0=n,8, and @=nyS.
Eliminating by subtraction, and using (1), we obtain

LT

1 1)
oA el L7 _a2g0°[—- 28
360° = (1, — m5) S =360 (T, 7.) S
winan RSIRSLSONE 1 r3g acs. Mo )
5= T, T,

The synodic period, S, can be readily obtained by observing
the interval between two successive oppositions and, taking 7'y
to be 365} days, we can then determine the orbital period c_»f
the planet. For example, the synodic period of Saturn is
3781 days, and from (2) we deduce that the orbital period is

29-5 years approximately.

71. Synodic period (inferior planet).

Wey?otfiinepthe syn’gdic period for an inferior planet as the
interval between two successive conjunctions. It is easily seen
from Fig. 42 that there is never any
possibility of opposition, since the earth E
E can never lie directly between the
inferior planet ¥ and the sun. When 9
the planet is directly between S and £,
as at V, it is said to be in inferior :
conjunction ; at Vit is in superior con- ’
junction.

Let SVE and SV, E, denote the con- Fro. &2
figurations for two successive inferior _
conjunctions. Since the angular motion of V- is greater thax
the angular motion of the earth, I, the earth will move through
the angle ESE,, or 8, in the synodic period § while ¥ moves
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through the angle 360°+0. Let n,, 7', refer as before to the
earth and n,, 7', to the planet. Then

0=n,8 and 360°+0=n,8,

whence . 360°=(ny—mn,) S,
and as n, =360°/7", and n,=2360°/7",, we obtain
ol 1
:g—: f’rz_ '1?; R Ty (3)

The orbital and synodic periods of the planets will be found on
p- 259 ; it will be seen that the orbital periods increase from
Mercury outwards from the Sun,

The angle between the directions of a planet and of the sun
as seen from the earth at any instant is called the elongation.*
In Fig. 43, which is drawn for an

inferior planet, the elongation is SEV.

cannot exceed a certain angle which

depends on the radii of the orbits of

the earth and planet. It is clear from

the figure that the maximum elongation

occurs when the straight line joining

Fia. 48. the earth and planet is tangential to

the planet’s orbit. Thus, if £,V, is a

tangent to the circular orbit of the inferior planet, the angle
SE,V, is the maximum elongation. In this instance,

) SV,
mSE,Vl_SEl. ........................ (4)
Regarding SE,, the radius of the earth’s orbit, as the astro-
nomical unit of distance f we obtain from (4)

8V, =sin 8,7, astronomical units.

* We refer to elongation as east or west elongation according as the
planet is east or west of the sun, the limits of elongation being 0° and,
at the most, 180°,

+ The astronomical unit is more particularly defined as the semi-
major axis of the earth’s orbit; its value is 93-0 million miles (see
section 73). .

The elongation of an inferior planet

-
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Hence, if SE‘: V, is obtained from observations, we can deter-
mine the radius of the orbit of an inferior planet in terms of the
astronomical unit. This method was used by Copernicus.

For a superior planet the elongation, east or west, can take
any value between 0° and 180°. At conjunction the sun and
planet are in the same direction and
consequently the elongation is 0°; at
opposition the elongation is 180°. When
the elongation is 90°, the planet is said a
to be in quadrature. .

The approximate distance of asuperior » "/
planet from the sun can be determined as
follows. Let PES be the configuration ,
at opposition (Fig. 44). Some time later, 0
say t days after opposition, the earth is Pro. S8
at E, and the planet at P,. The angle
SE,P, is the elongation which we suppose to be found from
observation. Let m,, . denote as before the daily angular
motions of the earth and planet respectively ; from Fig. 44
we have

o~ ~~
ESE,=nt and PSP, =ny,

~ i 1
so that P SE,= (n,—ny)t=360 (f_f;_ 7 i

Hence, if § is the synodic period for the planet, we obtain
from (2)
N oz t
P,SE,=360 5
-~
With ¢ and 8 known we can calculate P,SFE,, and as the

elongation Sé:Pl is also supposed known we obtain the angle
SP.E,. Now
SP, sin SE,P,
SE, sin SP,E,’
As SE, is the astronomical unit this formula enables us to

calculate SP, (the radius of the planet’s orbit) in astronomical
units.

.............. sk AB)
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Ex. 1. Calculate the radius of Saturn’s orbit given that, 40 da;
after opposition, the elongation is 137° 53" ’ 4
From section 70, the synodic period for Saturn is 378:1 days. Hence

ey 360° x 40

PSE,=——— —=388°§"
WS, 3781 38° 5°.

A~ A~
Also P\SE, + SE\P,=38" 5"+ 137° 53’ = 175° 58’ ; hence
A
SP, B, =4°2'.
Then, by (5), £
. sin 137° 53’ \ j
bP1=‘-‘W astronomical units

=9-64 astronomical units.

7. Kepler's laws of planelary motions.

In the preceding sections we have assumed—according to
the Copernican ideas relating to the solar system—that the
planetary orbits are circles. It was soon found, however, that
the hypothesis of circular orbits led to small discrepancies
between the predicted and observed positions of the planets,
and this was notably so in the case of Mars for which accurate
observations had been made by the Danish astronomer Tycho
Brahe (1546-1601). His pupil and successor, Kepler (1571-
1630), investigated the subject afresh, and was finally led to
enunciate the three great laws of planetary motions which bear
his name. These laws are as follows.

Kepler's first law.

T:ke orbit of a planet is an ellipse with the sun situated at a focus.

thg. 45 shows an ellipse with the sun situated at a focus, S ;
C is the centre of the ellipse and 4B is the major axis. The
semi-majoraxis C4 (or
CB) is denoted by a.
The ratio of CS to C4
is the eccentricity e ;
hence CS=ae. The
point on the orbitnear-
est S is 4 and this is
called perihelion ; the
perihelion  distance,
84, is equal to C4 -
C8, that is, a(l —e).
The point on the

Fic. 45.
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orbit most remote from S is B, called aphelion ; the aphelion
distance SB is SC +CB or a(1 +e¢). If the planet is at L, the
straight line SL joining the planet to the sun is called a radius
vector. These definitions are analogous to those already referred
to in Chapter IV, section 45, in connection with the sun’s
apparent orbit with the earth at a focus.

The following points should be noted : (i) Kepler’s law applies
to all planets, including the earth ; (ii) the sun’s apparent orbit
described in Chapter IV, section 45, is the path which the sun
appears lo describe relative to the earth ; it follows that the earth’s
elliptic orbit around the sun is of the same size and shape as
the sun’s apparent orbit ; in other words, the semi-major axis
and the eccentricity are the same for both.

Kepler's second law.

The radius vector, joining the sun lo a planel, sweeps out equal

areas in equal limes.

The law is illustrated in Fig. 45, where L, M and P, @ are
two pairs of positions in the orbit occupied by the planet, the
interval required by the planet to travel from L to M being
equal to the interval between P and @; according to the
second law the area LSM is equal to the area PSQ.

If we suppose the interval to be short, J will be near to L

and Q to P. The area LS is then approximately §7* sin LSM
—where LS is denoted by r—or gr’L:S'\M , the angle LSM being

-~

expressed in circular measure. If LSM is equivalent to 6
degrees, the area is then 77°0/360. Similarly if 7, and 6, refer
to SP and PSQ, the area PSQ is approximately zr,20,/360.
Hence by the second law

r20 =7,%0, =a constant. .........c..c.oeunnes (6)
If the interval is ¢ minutes of time and « denotes the angular
velocity, expressed in degrees per minute, with which the radius
vector SI moves to SM, we have wt=0. Similarly, if w, is the
angular velocity between P and @, w,t=60,. We then derive

from (6) U e SR o R (7)
where % is a constant. The formula shows that the smaller the
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radius vector in a given orbit the greater is the angular motion
of the planet. Accordingly, the angular motion is greatest at
perihelion and least at aphelion.

Kepler's third law.

The first two laws refer to the orbit of any given planet ; the
third law states a relation between certain of the elements of
two or more planets. Let @,, @, @3, ... be the semi-major axes
of the orbits of the planets and 7',, 7'y, 7'y, ... the corresponding
periods of revolution in their orbits. The third law is expressed
algebraically as :

a,® _ay® ag
AL O LR (8)

Suppose @, and T'; refer to the earth. Then ¢, is the astro-
nomical unit of distance ; this definition replaces the earlier one
when we were concerned with circular orbits which were
regarded as approximations to the true orbits. If we know the
orbital period (expressed in years) of a planet such as Saturn,
we can calculate by means of (8) the semi-major axis of its
orbit in terms of the astronomical unit. Suppose that a, and
T, refer to Saturn. Then from (8), putting @, =1 astronomical
unit and 7', =1 year, we have

“s==Ta’:
T, being expressed in years. Hence a,= (T,)'.

Ex. 2. For Saturn, T';=209-46 years. Hence the semi-major axis of
Saturn’s orbit is (20-46)% or 9-54 astronomical units.

In this way we determine the lengths of the semi-major axes
of all the planetary orbits in terms of the astronomical unit.
With further knowledge of the directions in which the several
major axes point and the inclinations of the orbital planes to
the ecliptic, we can construct a model of the solar system. If
we want to know the distance of a planet from the sun in miles,
we have to make one further step, namely, to express the
astronomical unit in miles. This latter problem will be dis-
cussed in Chapter VII. Meanwhile we may state the result :

1 astronomical unit = 93,003,000 miles
— 149,674,000 kilometres.
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74, Newton's law of gravitation.

The three laws of planetary motion as stated by Kepler are
independent of one another. It was Newton (1643-1727) who
showed that all three could be deduced from one single law—
the law of gravitation. Newton’s law is as follows.

Every particle of matter in the universe atlracts every other
particle with a force varying directly as the product of their
masses and inversely as the square of the distance between
them.

Newton also proved that if M is the mass of a spherical body
such as the sun, its attraction on a particle outside the sphere
is the same as if the solar mass were concentrated at the centre
of the sphere. Except for certain refinements which we need
not consider here, we can thus replace for theoretical purposes
the sun and planets by point-masses. The law of gravitation
then asserts that if M and m are the masses of the sun and a
planet and r is the distance between their centres, the sun
attracts the planet with a force F equal to GMm/r* and that
the planet attracts the sun with an equal force. Here @ is a
universal constant, called the constant of gravitation ; its value
in €.6.8. units is 6-670 x 10-5.

75. Deductions from the law of gravitation.

Tt is impracticable within the scope of this book to show how
all three of Kepler’s laws for elliptic orbits can be deduced from
the law of gravitation ; the reader is referred to the author’s
Spherical Astronomy for a more detailed discussion. We state,
however, some results.

(a) Accurate statement of Kepler's third law. Let M, m
denote the masses of the sun and a planet, a the semi-major
axis of the planet’s orbit and 7' the period of revolution in the
orbit. Then, as Newton showed,

"‘TL:. £ s i )

For another planet with mass m, and elements a,, 7'y, we have
similarly
4572
T a2 =G (M +mM1). cevevrinannnnrnnanns (10)
1

D S.A.
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From (9) and (10) we have, by division,
a® 1 a.® 1
7 (1+m)_T_1‘ (1+"ﬁ)’ ............... (11)
M M

which is the accurate statement of Kepler’s third law so far as
these two planets are concerned. Formula (8) is thus an
approximation to (11) if m/M and m,/M are very small quan-
tities. Actually, the sun is 330,000 times more massive than
the earth and 1047 times more massive than Jupiter, which is
the most massive planet of all. It is thus seen that Kepler’s
third law is an exceedingly good approximation to the accurate
formula (11).

(b) Determination of the mass of a planet. As before, let m,
a and 7' refer to a planet which is accompanied by one or more
satellites. Then for the planet we have formula (9) connecting
M, m,aand T. Letm, be the mass of a satellite, a, the semi-

major axis of its orbit round the planet and 7', the orbital

period of revolution. Considering only the planet and its
satellite, we notice that they are bound together by the uni-
versal law of gravitation, and it follows that the orbital motion
of the satellite about the planet implies a formula similar to
. (9), namely,

dn’a®
In most cases we may assume that the mass of the satellite is
negligible in comparison with the planet’s mass, so that we
can omit m,/m in (12). From (9) and (12), by division, we

have
Mﬂ:m=(‘£z)°(%)’, ..................... (13)

or, with sufficient accuracy in most cases,

%: (%)s(%)’ ........................ (14)

We assume, first, that @ and 7' are known for the planet, the
former in astronomical units (or miles) and the latter in years,
and, second, that @, and 7', are known similarly for the satellite.

=G (m +m,)=Gm (1+%). ............ (12)
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The right-hand side of (14) is then easily calculated, and so we
determine the ratio of the planet’s mass to the sun’s mass.

Ex. 3. To determine the ratio of the mass of Uranus to the sun’s
mass from the following data :
Uranus : a=19-19 astronomical units, 1" = 84-02 years.
Titania (the third satellite of Uranus) :
a, = 0-00293 astronomical units, 7', =8-706 days =%g—;]£ years.
Then, by (14),
m (0-00293)' : (84-02 x 36561\*
M7\ 1919 8-706
=i
22610
which is close to the value obtained from more accurate data.

The masses of planets which have no satellites (such as
Mercury and Venus) are determined by indirect methods. Con-
sider the earth ; its orbit round the sun is an ellipse when only
the mutual gravitation of the sun and earth are taken into
account. But Mercury and Venus and all the planets attract
the earth, with the result that the earth’s path deviates from
an ellipse by small but calculable amounts depending on the
masses of the “disturbing” planets. It is possible from

" observations to determine the deviation due to, say, Venus and

so to derive the mass of the planet in terms of the sun’s mass as
unit. The deviations which we have been considering are
called perturbations.

(¢) The linear velocity of a planet. Let V denote the linear
velocity of a planet at a point in its orbit (elliptic) at a distance
r from the sun. Then it is deduced from the law of gravitation

that
A
2 =iy =
v (r a.) 7
where =G (M +m). This formula shows that V will be greatest
when r is least and least when r is greatest, that is, at perihelion
and aphelion respectively. At perihelion, r=a(1-e¢); and if
V, denotes the linear velocity at perihelion,

o L ¥
' a(l-e)
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Similarly, if ¥, denotes the velocity at aphelion,
o k(1-€)
*Ta(l+e)
From these two formulae we derive

V, l+e

V’ o4 1 -8
For example, the eccentricity of Mercury’s orbit is about 3 ;
hence, in this case, V,/V,=38/2, so that Mercury’s velocity at
perihelion is half as great again as its velocity at aphelion.

If the eccentricity of a planetary orbit is neglected so that

we may regard the orbit as circular, (15) becomes, on putting
r =a, where a is now the radius of the orbit,

But V is given in this case by the length of the circular path
divided by the period of revolution ; that is

K e T.... sy cdesesss vsbeonindls (17)
Hence we obtain, from (16) and (17),

which is the form assumed by (9) for a circular orbit of radius a.

From (17) we can readily find the velocity of the earth in its
orbit, assumed circular, for @=93-0x10° miles and 7' (the
number of seconds in a year)=231-56 x 10°. Hence

27 x 93-0 .
V—-—sil—as— =18+5 miles per second.

To find the velocity of any other planet in its orbit (assumed
circular) we proceed as follows. Let V and a refer to the earth
and V, and a, to the planet. Then, neglecting the masses of
the earth and planet in comparison with the sun’s mass, we
have by (16)
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from which
__I‘ = (_a)i 18
Y s (18)

It follows from this formula that a planet nearer to the sun
moves more rapidly than a planet more remote.

Ex. 4. For Venus, a,=0-723 astronomical units ; hence

VoV =(1/0-728)} = 1-176,
and as V=18-5 miles per second, V,=21-8 miles per second.

76. Direct and retrograde motions.
We have already remarked (p. 81) that the Copernican

theory accounted in a simple manner for the direct and retro-

grade motions of the planets as illustrated

in Fig. 40. We now give the explanation, S

assuming for simplicity that the planetary

orbits are circular and coplanar.

Consider a superior planet P at opposi- \'\ £l
tion (Fig. 46), and let » and v be the BBl =
linear velocities of the earth, £, and the

planet in their orbits, the radii of the &\- f
C("E B

orbits being @ and b respectively. Then, P 0
by (18), : Fie. 46.
w (b
;= (a) § sesssssssssssassssnsssssssses (19)

hence, since b>a, we have u>v. Now, as we observe P from
I, its linear motion relative to E will be compounded of its
orbital velocity » along PB and the earth’s orbital velocity
reversed, that is to say, » along PC. Since u>v the planet
will appear to have a linear velocity  —v, as viewed from the
earth, in the direction PC, and this direction is opposile to that
of the orbital motion ; accordingly, the planet will appear to
move in the retrograde direction at opposition. '
Consider now the figure corresponding to quadrature (Fig.

47), that is, when the elongation, SEP, is 90°. Let B denote

SPE and let PD be perpendicular to EP, so that BPD is B.
The earth’s orbital velocity is « along EA and, consequently,




94 FOUNDATIONS OF ASTRONOMY

relative to the earth, the planet’s motion consists of » reversed
(that is, » along PC) and » along PB.
Now » along PB is equivalent to v cos
along PD and v sin B along PE. Hence,
relative to E the planet’s motion con-
sists of (i) w-vsinf along PC, and
(ii) vcos B along PD. Now (i) has no
effect in changing the direction of P
as viewed from the earth ; hence the
apparent motion of P is due to (ii) alone.
It follows that at quadrature the planet
) appears to move, relative to E, in the
Fic. 47. anti-clockwise direction, that is, in the
same direction as the orbital motion.
The planet’s apparent motion at quadrature is thus direct.

C

77.* Stationary points.
We have just shown that at opposition the apparent motion
of a superior planet is retrograde and that at quadrature it is
direct. At some time between oppos-
ition and quadrature the planet must 8
appear stationary. Let Fig. 48 be
the corresponding diagram. Then,
relative to E, the motion of P is com-
pounded of (i) the orbital velocity »
along PB, and (ii) the earth’s reversed
velocity « along PD (DPG is drawn
parallel to £4); the condition for a
stationary point is that the resultant
of (i) and (ii) should lie along EP pro-
duced. We have thus the parallelo- /
gram of velocities, PBCD, in which " 7 ©
PB=DC=v and BC=PD=u.

L
Let 8 denote PSE and let ¢ denote SPE. Since A and PG
are perpendicular to ES and PB is perpendicular to PS, then

Y N N ~~
GPB=0. Hence EPG—DPC=PCB=90°-0-¢. Also
CPB=90°+ .

Fia. 48.
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From the triangle PCB we obtain
sin (90°+¢) sin (90° -0 -¢)

% o
whence
oosqS:%cos T . E XL (20)
If we draw a perpendicular EJ from Z to SP we have
SP-8J=PJ,
so that
b—acos 0=PE coSd. ...ccovvervnrnninns (21)

Let SE produced meet DPG in @: since SG -SE=EG,
PEG 0+ and SGP=90°, we have
beos 0 —a=PE cos (0+). ccooeererienninns (22)
Dividing (21) by (22), we obtain

b—acosf cos¢dp U
= =-, by (20),
beosf—-a cos(0+¢) v y (20)
from which
au+bv &
= BRI s s s 23
cos @ 7 o (23)
But, by (16), #=+/p/a and v=+/p/b; hence (23) becomes
atbd (@t + bh)
0S8 f=———— . erereereiiiiiininn (24)
at + b

This formula gives the value of § when the planet is stationary.
If «, in degrees, is the value of § between 0° and 90° given by
(24), the planet’s motion, relative to the earth, is retrograde for
0 between 360° —« and «, since it is retrograde at opposition
when 0=0. o corresponds to the stationary point represented
in Fig. 48 ; 360° -« corresponds to the second stationary point,
not shown in the figure, when the radius vector SE is « degrees
behind the radius vector SP. Now « is the angle through
which the radius vector SE has moved ahead of the radius
vector SP between opposition and the moment at which the
planet is stationary. If S is the synodic period of the planet
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in days, the motion is consequently retrograde for 32%; -8
a

or 125 8 days. For the remainder of the synodic period,

. 180 -
that is, 180 z.8 days, the motion is direct.

78.*% The elongation at a stationary point.

E L)
In Flng 48 let SEP, the elongation, be denoted by E. Then
E=180°-60-¢. From triangle SEP we have

sin,a:g-sinﬁ:
and (20) can be written, since cos £ = — cos (6 +¢),
cos = —%-cosE.

For the stationary point shown in Fig. 48, ¢ lies between 0°
and 90°; the above equations show that E lies between 90°
and 180°. Similarly for the other stationary point. The value
of the elongation, east or west, is thus between 90° and 180°.
Squaring and adding the previous equations, we obtain
u® a?
= cos'E+b—’-s:in‘E=1,

from which we derive, using (19),

b 2
_cos!E_a_coa!E_l_af-
b? b
We obtain
a(a-+b)
cos? B = 5
= AT e o (25)
b it a®+ab +b?
sin® f = >
Frabhr s (26)
From (25) and (26), we derive
2 — b
S alp T s A (27)

This gives the value of £ (between 90° and 180°) co i
to the two stationary points. o s
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79. Phases of the planels. :

The planets are non-luminous bodies but they appear bright
owing to the reflection of sunlight from their surfaces or atmos-
pheres. Let the sphere in Fig. 49 represent a planet (we assume
it to be spherical) of radius r, with its
centre at P. If S is the sun—we have
to imagine that, in the figure, S is at a
great distance from P—the hemisphere 5
towards the sun will be illuminated and
the hemisphere away from S will be in
darkness. Let % be the earth and APB
the diameter of the sphere, in the plane
SEP, perpendicular to EP. Similarly,
let GPH be the diameter in this plane
perpendicular to SP. From H draw HC
perpendicular to PB. Then the fraction
of the diameter of the planet’s disc seen Fia. 49.
illuminated from % is AC/4 B—we must
imagine that, in the figure, £ is at a great distance from P.
This fraction measures the phase. When the phase is unity, the
planet is seen full ; when the phase is zero, the planet is invisible.

Let ¢ denote SPE and 0 denote PSE. It is easily seen that
HPC =, so that PC=PH cos $=r cos ¢. We then have

_AC r+PC_1+cosé
AETE TN RN

For a superior planet the phase is unity when ¢=0; this
corresponds to opposition. Also, ¢ is always less than 90°,
whatever the configuration of 8, Z and P may be, so that the
phase is always more than § and consequently more than half
the disc is visible. The appearance of the superior planet is
then said to be gibbous.

For an inferior planet it can be seen from (28) that the phase
is zero at inferior conjunction—for, then, ¢ =180°—and unity
at superior conjunction—for, then, ¢ =0°. Between these two
limits the planet is seen to pass through all the phases from a
thin crescent to * half-full ”, followed by the gibbous phase
until the * full * stage is reached.

p* 8.A.

Phase
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We can calculate the phase given by (28) as follows. From
the known interval between opposition (superior planet) or
inferior conjunction (inferior planet) and the time of observa-
tion we can determine f, assuming the synodic period, S,
known. For if ¢ is the interval, @ is given in degrees by
_ 360° ¢
o
From the triangle SEP, we have

0

b sin ¢ =a sin SEP =a sin (0+9),
from which we obtain

@ sin @
m¢=m. ..... cssssssssssvnsnn (29)

Thus ¢ can be calculated and then the phase is found by means
of (28).

80. Description of the sun, moon and planets.

In this section we give a brief description of these bodies,
the numerical details being found in the Table on p. 259.

The sun. The sun is a luminous, gaseous globe of radius
432,000 miles, or 695,500 kms., and is a star of very ordinary
dimensions. At its radiating surface the temperature is about
6000° on the centigrade scale ; it is inferred that the central
temperature is of the order of 40 million degrees. The bright-
ness of the planets is due to the reflection by their surfaces of
the sunlight falling on them. By the gravitational methods
described earlier in this chapter it is deduced that the sun’s
mass is 330,000 times the mass of the earth. By experiments
such as the Cavendish Experiment it is found that the earth’s
mass is about 5000 million million million tons, from which the
sun’s mass can be deduced. The average density of the sun is
about 1-4 times that of water, the average density of the earth
being about 5-5.

Usually sunspots are seen on the sun’s disc and, from their
apparent motion across the dise, it is inferred that the sun
rotates about an axis in about 25 days; this applies to the
solar equatorial layers—in higher solar latitudes the rotational
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period increases to about 28 days. Sunspots appear dark
against the brilliantly luminous dise, but it is found that .theu'
temperatures are about 4000°. The solar atmosphere will be
described in some detail in section 170. !

The moon. 'The moon is the earth’s only satellite. Its radius
is 1080 miles, its average density is 3} times that of water and
its mass is about gy that of the earth. The smallest telescope
reveals the chief features of the lunar surface—rugged moun-
tain ranges and a large number of craters and walled-in plains,
many with central mountains rising high above the floors _of
the craters. The largest crater has a diameter of s?bout 150
miles. The heights of the lunar mountains, which rival those
on the earth in height, can be measured by the n:fethods of
section 138. By a variety of arguments it is established that
the moon has no atmosphere.

The planets. We first remark that the orbits of the planets
are ellipses whose planes are nearly coincident with the plan.e
of the ecliptic. The angle which the plane of a p]azfeta.'ry o_rbnt
makes with the plane of the ecliptic is called the inclination. ;
it will be seen from the Table on p. 259 that with the exception
of Mercury and Pluto the inclinations are all rema.rl.{a.bly ama,ll
Except for Pluto, the planets are all within !:l" on either m_de l?f
the ecliptic, and this zone is called the Zodiac. The zqdmc is
divided into twelve signs, or constellations, each occupying 30
of the ecliptic ; the signs are :

Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio,
Sagittarius, Capricornus, Aquarius, Pisces;

or Ram, Bull, Heavenly Twins, Crab, Lion, Virgin, Scales,
Scorpion, Archer, He-goat, Water-carrier, Fishes.

We remark in the second place that the planets rotate about
axes just as the earth rotates about an axis and in the same

Mercury. This planet is a difficult object to observe, as its
maximum elongation is only 28°. Mercury has no at:!aosphe{m,
and as it normally shows no surface markings its axial pepo'd
of rotation is not known with any certainty. Hower, it is
believed to be 88 days, which is the period of orbital revolu'-
tion ; if this is so, Mercury presents nearly the same hemi-
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spherical surface to the sun—it would be continuously the same
hemisphere if its orbit were exactly circular, in which event one
half of Mercury’s surface would be in perpetual darkness and
the other half would be perpetually illuminated by the sun.
Mercury has no satellite.

Venus. The orbit of Venus is the closest approach to a
circle of all the planetary orbits, the eccentricity being about
140 only. Venus resembles the earth very closely in size and
mass. It is surrounded by a dense atmosphere which obscures
its surface features; spectroscopic observations have not
revealed the presence of oxygen and water-vapour in its
atmosphere. Its axial period of rotation is not known with any
certainty, but it is possible that it is 225 days, which is the
orbital period ; if so, Venus presents almost continuously the
same hemisphere towards the sun. The planet has no satellite.

Mars. This planet, which has a diameter about half that of
the earth, has a rather rare atmosphere through which one can
see reddish and bluish-green tracts, the former being presumed
to be deserts and the latter areas where some form of vegetation
still survives. Mars has two white polar caps—similar in
appearance to the Arctic and Antarctic snowfields of the earth
—from which it is concluded that water is present, perhaps
only in small quantities, on the Martian surface. The “ Canals ”
of Mars, which are faint, narrow markings crossing the surface
in all directions, have given rise to much controversy as to their
interpretation and even to their objective reality. Mars has
two satellites, Phobos and Deimos, which are small bodies,
probably only about a dozen miles in diameter.

Jupiter. Jupiter is the largest and most massive of the
planets and possesses eleven satellites, two of which were dis-
covered only as recently as 1938. The planet is surrounded by
a dense atmosphere consisting mainly of methane (or marsh-
gas) and ammonia-gas. Jupiter departs notably from the
spherical form, its polar diameter being 82,800 miles and its
equatorial diameter 88,700 miles. In the telescope Jupiter
shows several dark bands parallel to the planet’s equator and
also many smaller markings by means of which the axial period
of rotation can be found with great accuracy.

Saturn. This planet has nine satellites and is similar to
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Jupiter as regards the chemical constitution of its atmosphere.
The distinguishing feature of Saturn is its unique and magni-
ficent system of rings which make Saturn one of the most
beautiful objects in the heavens. The rings actually consist of
innumerable tiny satellites, so close together as to give the
impression of a continuous surface except where “ Encke’s ”’
and * Cassini’s divisions * occur,

Uranus. 'This planet was discovered in 1781 by Sir William
Herschel. Tt is surrounded by an atmosphere resembling that
of Jupiter and Saturn. The planet has four satellites which
revolve in planes almost perpendicular to the plane in which
Uranus revolves about the sun, the orbital planes of all other
satellite systems being in, or nearly in, the orbital plane of
revolution of the planet concerned.

Neptune. After Uranus had been observed for several years
it became increasingly evident that there were small un-
explained discrepancies between the observed positions and the
theoretical positions as calculated according to the law of
gravitation ; these theoretical positions included the small
disturbances of its path due to the gravitational action of all
the other planets. Acting on the supposition that these dis-
crepancies were due to the influence of an unknown planet,
presumably more remote than Uranus, J. C. Adams and U. J. J.
Le Verrier—independently and unknown to each other—deter-
mined the orbit of the hypothetical planet by mathematical
analysis which enabled its position in the sky to be specified at
any given date. It was found at once, in 1846, when the
telescope was directed to the predicted position. Neptunehasone
satellite and its atmosphere contains methane and ammonia-gas.

Pluto. Pluto was discovered photographically in 1930. It
is a faint object, visible only in the largest telescopes. It is
almost certain that its mass is less than that of the earth and,
probably, approximately that of Mars. Owing to the short
time during which it has been observed, its orbit is not known
with the aceuracy associated with the orbits of the other planets.

8l. Bode’s ““ law ™.
Previous to the discovery of Uranus it was noticed that the
semi-major axes of the planetary orbits could be approximately
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represented by a numerical relationship, known now as Bode’s
“Jaw ”. Write down the following series of numbers in which
any number after the second is double the preceding one :

0, 1, 2, 4, 8, 16, 32, 64, 128, 256.

Then multiply by 3 throughout and add 4 to the products. We
thus get line (1) :

(1) 4 % 10 16 28 52 100 196 388 772

(2) Mer. Ven. Earth Mars phli]::tl..s Jup. Sat. Ur. Nep. Pluto

(3 39 72 10 15 — 52 95 192 301 396

Underneath the series 4, 7, 10, ... we write down the name of
the planet to which each number applies ; lines (1) and (2)
constitute Bode's ““law ”. Underneath the names of the
planets we insert in line (3) the actual values of the semi-
major axes, taking the value of the earth’s major axis to be 10.
It will be seen that the actual values, in line (3), of the semi-
major axes for all the major planets up to Saturn agree fairly
closely with the values, in line (1), as given by Bode’s ‘“ law .
When Uranus was discovered it was seen to fit also into the
scheme satisfactorily. However, with Neptune and Pluto the
numerical relationship breaks down and it is to be concluded
that Bode’s ““ law ’ is very probably no more than an accidental
relationship which is useful, however, for giving the approxi-
mate values of the semi-major axes for the major planets up
to Uranus.

82. The manor planets.

The first of the minor planets to be discovered was Ceres
(January 1, 1801); the total number now known is close to
2000 and each year sees a substantial addition to the number,
The orbits of the minor planets lie between the orbits of Mars
and Jupiter. The diameter of Ceres—the largest—is about
500 miles, but’ the great majority have diameters of only a
score or so of miles. It is surmised that the minor planets are
the débris of a disrupted planet which occupied the position in
Bode’s table indicated by the number 28.
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83. Comets.

The naked eye comets are distinguished by extensive tails,
which sometimes stretch over 30 or 40 degrees of the sky. The
faint comets, only visible in the telescope, are generally nebul-
ous objects without any indication of the tail that characterises
the bright comets. Cometary orbits have large eccentricities
and sometimes they are hardly distinguishable from parabolas

or hyperbolas—forms of conics describable under the law of
gravitation, as Newton proved. Comets with elliptic orbits are
periodic—the shortest period is that of Encke’s Comet, namely
3-3 years; the period of Halley’s Comet, perhaps the best
known of all the comets, is 75} years; it was last visible in
1910. Tts orbit is shown in Fig. 50 and it is typical of the
periodic comets.

84. Meteors.

Meteors are tiny objects, in most instances perhaps no bigger
than a grain of sand, which are rendered luminous owing to
air-resistance when they crash into the earth’s atmosphere with
speeds of twenty to forty miles per second ; they are then
described as  shooting-stars . Sometimes a large number of
shooting-stars are visible during a short interval of two or three
hours and on such occasions they all appear to radiate from a
particular point in a constellation, called the radiant. This is
an effect of perspective and we conclude that the meteors are
travelling in a parallel stream to which an orbit around the
sun can be ascribed. For example, the Leonids, which are
visible about November 14, are a swarm of meteors moving
round the sun in an elliptic orbit which intersects the ecliptic
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in a point near which the earth is situated about November 14.
As a display of meteors occurs annually about this date, it is
concluded that the meteors are strung out all along the orbit.
There is a similarity between the orbits of meteor swarms and
certain periodic comets and it is inferred that the meteors are
fragments of comets, partially or wholly disrupted. The prin-
cipal meteor showers are the Lyrids, Perseids, Leonids and
Andromedids, so called because their radiants are situated in
the constellations of Lyra, Perseus, Leo and Andromeda ; their
orbital periods are 415, 120, 33} and 6§ years respectively. Stray
meteors may have genuinely elliptic orbits, in which case they
are members of the solar system. Others, with hyperbolic
orbits, are visitors from or voyagers into extra-planetary space.

EXAMPLES
(Take a year to be 365} days and the astronomical unit to be
93,000,000 miles.)

1. The synodic period of Venus is 583-0 days; find the planet’s
sidereal period in days.

2. The sidereal period of Saturn is 20-46 years; find the synodic
period.

8. The synodic period of Jupiter is 3989 days; find its sidereal
period in years.
4. Find the maximum elongation of Venus, given that the radius of
its orbit (assumed circular) is 0-723 astronomical units,

5. Find the interval between opposition and the next quadrature for
Jupiter, given that the radius of Jupiter’s orbit (assumed circular) is
5-20 astronomical units and that the synodic period is 398-9 days.

6. From Kepler’s third law, calculate in days the orbital periods of
Mercury and Venus, given that the semi-major axes of their orbits are
0-3871 and 0-7233 astronomical units respectively.

7. A minor planet has a semi-major axis of 3-55 astronomical units ;
find its orbital period in years.

8. A minor planet has an orbital period of 9-86 years ; find the semi.
major axis of its orbit in miles. | &

9. The orbital periods of the Martian satellites, Phobos and Deimos,
are 0-3189 and 1-262 days respectively. Find the semi-major axes of
their orbits in (i) astronomical units, (ii) miles, given that the sun’s
mass is 3-093 x 10® times the mass of Mars.

SOLAR SYSTEM AND LAW OF GRAVITATION 105

10. The earth’s orbital speed is 18-5 miles per second 3 find t:_ha orbital
speed of Venus (assume its orbit to be a circle of radius 0-723 astro-
nomical units).

11. With the data for Venus given in exs. 1 and 4, find how long a
transit of the planet centrally across the sun’s dise would last. AsPume
that Venus moves in the ecliptic ; take the sun’s s.n. to be 16" and
neglect the s.p. of the planet and the earth’s rotation.

12. The orbit of Jupiter’s satellite Ganymede has a semi-major axis
of 0-007156 astronomical units and the orbital period is 7-155 days.
Find the semi-major axis of the orbit of the satellite Callisto whose
orbital period is 16-69 days.

18. Determine the ratio of the mass of the sun to the mass of Uranus
from the following data relating to Uranus and the satellite Oberon :

Semi-major axis of orbit  Orbital period
Uranus - 19-19 astronomical units 84-02 years.
Oberon - 0:00392 astronomical units 13-46 days.
14. Determine the ratio of the mass of the sun to the mass of Jupiter
from the following data relating to Jupiter and the satellite Europa :
Semi-major axis of orbit Orbital period
Jupiter - 5-203 astronomical units 11-86 years.
Europa - 0-004486 astronomical units  3:551 days.
15.* Find the e tion of Jupiter at a stationary point ; take the
radius of the orbitk(mgaaemmned circular) to be 5-20 astronomical units.
16. Given that the radius of the orbit of Venus is 0-723 astronomical
units, calculate (i) the maximum elongation and the nqn'ea;zondmg
phase, (ii) the two values of the phase when the elongation is 20°.

17. The phase of Venus is ¥ ; calculate its elongation.

18. The synodic period of Mars is 780 days and the radius of its orbit
(assumed cquy:ldar}l?;:nl-w astronomical units. Calculate its phase (i)
at quadrature, (ii) 150 days before opposition.




CHAPTER VI

ATMOSPHERICAL REFRACTION

85. Introduction.

In empty space a ray of light is rectilinear, but as soon as
the ray enters a transparent medium its direction is altered ;
this phenomenon is known as refraction. Now the earth is sur-
rounded by an atmosphere which is transparent to the light of
heavenly bodies ; accordingly, a ray of light from a star will
suffer a change of direction on entering the atmosphere and
further changes as it penetrates through atmospheric layers of
increasing density until it reaches the observer at the earth’s
surface. The star will be seen by the observer in a direction
somewhat different from that in which it would be seen if the
earth’s atmosphere were non-existent. This difference in direc-
tion depends on the star’s zenith distance, as will be shown
later, and so it is necessary to correct any observation for the
effects of refraction produced by the atmosphere.

88. T'he laws of refraction.

Consider a uniform slab of a transparent medium, M, such
as glass, bounded by two parallel planes intersecting the plane
of the paper in £F and GH (Fig. 51). Let AB be a ray in vacuo
falling on the upper surface at B, and let BN be the perpen-
dicular, or the normal, to the surface at B; the angle ABN,
denoted by i, is called the angle of incidence. On entering the
medium M, at B the direction of the ray is changed to BC
which makes an angle r, with the normal at B.

The first law of refraction states that the refracted ray BC lies
in the plane defined by the incident ray 4B and the normal BN.

The second law of refraction states that

sin ¢

e at— | PSP A 1
sin 7, Hys ()
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where p,(>1) is a constant depending only on the (?ptifsal pro-
perties of the medium M, ; g, is called the refractive index of
the medium. Thus for a

given value of i we can N A
calculate 7,, if the index of
refraction is known. Since
py>1, it follows from (1)
that r,< i ; in other words,

the effect of refraction is to
change the direction of the
ray to a direction nearer
that of the normal.

Suppose now that a uni-
form slab of a medium M,, «
bounded by GH and KL, .
is placed below the first E
medium. The ray BC is Fie. 51.
now incident on the upper :
surface of M, at C and is refracted into the medium M, along
some such direction as C'D, making an angle r, with the normal
at C. If the ray then passes into a vacuum along the path
DE, it is known from experiments that D is parallel to 4B
so that, if DM is the normal to KL at D, the angle EDM- is 1.
Now a ray passing in the reversed direction along ED wﬂl be
refracted along DC so that, if p, is the index of refraction for
the medium M ,,

s

Vacuum

L A I S, S @)
sin 7, ik

Hence, from (1) and (2), we obtain

SN 4=, 8IN 7y =pa SIN . wovierriniinnniannnns (3)

This formula evidently holds for any number of slabs; for
three slabs it is

8iN 4 =, 8in 7, = 1o 8N 75 =g SIN 75,
and for n slabs

SN 4 =pu, 80 7 =y SN 7= =y STy cooeinens (4)
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87. The earth’s atmosphere.

It is well known that the density of the air diminishes with
distance above the earth’s surface. From studies of the
observed paths of shooting-stars it is inferred that the atmos-
phere extends to a height of at least three or four score of
miles. Within recent years investigations on radio-waves have
made it certain that the atmosphere reaches to still greater
heights, and studies of aurorae show unmistakably that these
phenomena belong to atmospheric regions up to about 500
miles above the earth’s surface. However, at heights greater
than about 50 miles, the air is so rare as to be practically a
vacuum so far as its refracting power is concerned ; for our
purpose, the height of the atmosphere may then be regarded as a
small fraction of the earth’s radius, the latter being 3960 miles.

88. The law of astronomical refraction.

Consider the path of a ray from a star which, after its passage
through the atmosphere, eventually reaches an observer O on
the earth’s surface (Fig. 52).
Owing to the small height of
the atmosphere as compared
with the earth’s radius we can
assume, for moderate values
of the zenith distance, that
the atmosphere consists of a
large number of horizontal
layers in which the density—
and, consequently, the index
of refraction—increases from
the uppermost layer towards
the surface layer.

Fia, 2. _ABis theray incident at the
highest layer at B, the angle of

incidence being i. If we draw OX parallel to BA, ZOX is the
true zenith distance of the star; we denote this angle by z.

N
Thus ZOX =z=1. In the figure PO is the final element of the
path of the ray before it reaches the observer, so that OP, or
OX’, gives the direction in which the observer sees the star.
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We refer to ZOX' as the observed zenith distance and denote it
by ¢, or by r, according to the nomenclature of the previous
section. If u, is the index of refraction of the lowest layer we
have from (4)

sin ¢ =p, sin 7,
so that

SRME=RE L, ..ol cieaneseserses (5)
in which we write p for p,. irag
It is to be noted (i) that the effect of refraction is to .make
the star appear nearer io the zenith than it would be if the
atmosphere were non-existent, and (i) that the _qbaerved
position is on the vertical circle through the true position.
The angle of refraction, R, is the angle XOX' th.roug.h wl}mh
the star’s observed direction is displaced from its true direction.
By definition,
s R=z- Z s eessessssssssseassasensseans (6)
Hence, from (5) and (6),
sin (B +{)=psin ,
or sin Rcos {+cos Rsin {=psin {. .....covvnnnn (7)
Actually, R is a small angle and, if R is expressed in circular
measure, we can write with sufficient accuracy
sin R=R and cos R=1,
so that (7) becomes
Bty 1)L il ol (8)

If R is now expressed in seconds of arc we have, since
1 radian =206265",

R =206265(x - 1) tan £,
or Bektanl, ciiciiemw Ry (9)

where % depends on the value of pn at the earth’s surface ; £ is
called the c;?;mm of refraction. Corresponding to the at.amza.rd
barometric height of 30 inches and the temperature of 50° F.,
the value of % is found from observations to be 58”2 ; we can
thus write (9) in the alternative form :

BeBB% 00 L. oo isiai,oosenssssansac (10)
In this case R is called the mean refraction.
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In actual observations it is the angle { that is involved
directly in the measures ; by means of (10) we calculate R
and then the true zenith distance, z, is given, from (6), by
{+R. In this way we eliminate the effect of astronomical
refraction from our observations.

The formula (10) shows that the angle of refraction is pro-
portional to the tangent of the observed zenith distance, and by
reason of the approximations introduced into its derivation it
may be regarded as valid for zenith distances up to about 50°
and as a fairly good approximation up to about 70°, if excep-
tional accuracy is not required. For large zenith distances the
appropriate accurate formula is a much more complicated one
and for zenith distances close to 90° the refraction cannot be
represented by a practicable formula at all.

89. Refraction for non-standard conditions.

The constant of refraction, &, has been defined with reference
to standard atmospherical conditions. If R, denotes the refrac-
tion when the barometric height is B inches and the temperature
is 1" degrees on the Fahrenheit scale, the relationship between
the actual refraction R; and the mean refraction R is given by

R, 1B
: R 260+7°
17460+ 1

90. Measurement of the constant of refraction.

One method depends on measuring the observed zenith
distances of a circumpolar star at upper and lower culmination
P by means of the merid-
U ian circle. We suppose
for simplicity that the
observations are made
at standard atmospheric
pressure and tempera-
ture ; if these conditions
do not apply, we can
make use of (12) at each

culmination.

B rs vt 8 (12)
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Let ¢ be the latitude which will be assumed known—we take
¢ to be north latitude—and let 3 be the true declination of the
star. Then, in Fig. 53, PZ=90°-¢, and PU=90°-3=PV.
We consider the case where the star transits south of the
zenith. The star is observed at upper culmination at U, (on
the vertical circle ZU) and at lower culmination at ¥, (on the
vertical circle ZV). We denote by { and £, the observed zenith
distances ZU, and ZV,.

Now ZU=2ZUy+UU={+ktan(,
and since PU =PZ +ZU, we obtain
90° - $=90° — ¢ + { +k tan L,
or S=d-C-ktanl.......cccccceeieniinian (13)
At lower culmination, V¥V, =k tan {,, and since
ZV =PZ+PV =180° - ¢ - 3,

we obtain
180° ~$ ~B={Ly ¥l Ly iiiviciniiin (14)

Adding (13) and (14) so as to eliminate 8, which may not be
known with the requisite accuracy, we have

180° - 2¢ =L, - { +k(tan {; —tan ). ............ (15)

As ¢ is supposed known and {, and { are observed angles, we
can calculate k from this formula.

With the value of & accurately determined the declination
of any star can be derived by means of (13) or (14) or by
a combination of these two equations found by eliminating ¢
(so as to dispose of any uncertainty in the value of ¢); this
relation is

28=180°-{ - {, —k(tan {+tan {;). ............ (16)

In Fig. 53 we have considered a star culminating at U, south
of the zenith ; the condition for this is that 8 <¢. If 8>>¢ the
star’s upper culmination occurs at a point between P and Z ;
the appropriate formulae, corresponding to (13), (14), (15) and
(16) can be readily obtained from a figure.

Ex. 1. In latitude 60° N the observed zenith distances of a circum-
polar star (3< ¢) are 3° 19° 56”6 and 63° 18" 04*4 at upper and lower
transits. To calculate & (we assume standard atmospherical conditions
for each observation).
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From (15) we have
60°=63° 18’ 04”4 — 3° 19’ 56”6 + k(tan {, - tan ).
Inserting the values of tan {; and tan { we obtain
1’ 52"-2=F%(1-9883 - 0-0582),
so that 112%-2=1-9301%,
whence k=58"1.

91. Horizonial refraction.

The refraction for a heavenly body observed on the horizon,
that is when its observed zenith distance is 90°, is 35" ; this is
called for convenience the korizontal refraction.

One effect of refraction is to increase the interval during
which the sun is seen above the horizon. Near sunset, for
example, when the true zenith distance of the sun’s centre is
90°, the sun is observed to be still above the horizon, the
altitude of its centre being about 35’. Sunset will not occur
till some time later when the observed zenith distance of the
sun’s centre has increased to 90°, the true zenith distance of
the sun’s centre being then 90°35’. Similarly, sunrise will
occur somewhat earlier owing to refraction. It is found, for
example, that at the equator on March 21 or September 21 the
interval during which the sun is observed above the horizon is
increased, owing to refraction, by about 4} minutes.

Another effect of refraction is to make the sun at or near sun-
set appear slightly oval in shape. If 4 and B in Fig. 54 are the

B, ends of a vertical diameter of the sun’s disc in
its true position near the horizon, the point 4
will be raised by refraction towards the zenith
to 4, and B to B,. But, inasmuch as the

Ay zenith distance of 4, is greater than the zenith

i distance of B,, the displacement of 4 to A,

will be greater than the displacement of B to

B;—in other words, the vertical angular dia-

meter 4,8, as observed will be somewhat less

than the true angular diameter 4B, 4B being

A soss equivalent to the horizontal diameter, the

e 54 length of which (about