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PREFACE.

THE present work is the outcome of a series of investigations

begun several years ago with the object of finding a simple

expression for the phenomenon of flow in irrigation channels.

The author hopes that his work will prove of interest and

value to the student and useful to the practical engineer.

He also hopes that it will stimulate further research and thus

tend to widen the field of hydraulic knowledge.

LOUIS SCHMEER.

Los GATOS, CALIFORNIA, October, 1909
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NOTATION.

8,8 =

LJ

Velocity in feet per second.

The mean hydraulic radius of a conduit.
Area of cross section.

Wet Perimeter.

Diameter of circular or semicircular conduit.

f Diameter of a circular conduit.
< Depth of Semi square or semi circle.

[ Depth of Water in a Channel.

Slope of Water Surface.
Head in feet.

Length of conduit in feet.

Fall of surface in feet.

Distance in feet.

The variable coefficient in the formula v = c \/r . s.

The coefficient of friction, loss of head per unit area of surface at

unit velocity.

A coefficient indicating the resistance of an impediment to flow.

Coefficients indicating the degree of roughness of the wet peri-
meter.

A coefficient indicating the variation of the coefficient c with the

velocity of flow.

A vertical distance, a head of water.

Length of a conduit, a horizontal distance.

Width of surface of water.
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THE FLOW OF WATER.

INTRODUCTION.

THERE is no branch of the science of physics on which more

has been written than on hydraulics. The master minds of the

last four centuries have wrestled with the problem and thread

by thread they have torn away the veil of mystery that enveloped
the phenomenon of flow,

The universal mind of Leonardo da Vinci (14521519),

painter, sculptor, scientist and engineer, was the first to pierce

the darkness and although he did not give his thoughts on the

flow of water mathematical expression, we are to-day, with all

the knowledge and experience gained since his time, astounded

at his clear and comprehensive reasoning.

The great Galileo (1564-1642) admitted that he had less

trouble in finding the law of motion of the planets millions of

miles away than in discerning any law in the motion of water

in the stream flowing at his feet.

Torricelli (1608-1644), inventor of the barometer, investi-

gated the laws of falling bodies and found that the velocities

of bodies falling free vary with the square roots of the heights

fallen through, or with VTT.

Huygens (1629-1695) first found the numerical value of g,

the acceleration due to gravity; and following him Bernoulli

was (in 1738) able to write the fundamental formula for the

velocities of bodies falling free,

On this general theoretical foundation our present system
of hydraulics has gradually been built. Brahms (Dyke and
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other Hydraulic Constructions 1753) made the first step towards

a practical application of the then existing theories of motion

to the motion of water flowing in a channel. He found that

the motion of water flowing in a channel is not like the motion

of water falling free, or that of a body rolling down an inclined

plane continually accelerated in speed, but moves with a

uniform velocity, and that the resistance due to the friction of a

fluid against the walls of the conduit depends on the relation of

the wet perimeter to the area of the cross-section or on the mean

hydraulic depth.

Chezy (in 1776), gave the ideas of Brahms an elegant mathe-

matical expression by writing for the velocity of flow

v = c \/r . s

in which c is a coefficient, which Chezy assumed to be constant,

and r the mean hydraulic depth. This simple formula found

general application in practice and is still in use.

Subsequent writers occupied themselves chiefly with the

definition of variations of the coefficient c in the formula pro-

posed by Chezy.

Owing to the researches of Coulomb (1736-1806) on the

resistance of fluids to slow motions, the variation of the

coefficient c with the velocity of flow was the first to be

recognized and Weisbach and others found expressions for this

variation.

If Darcy was not the first to perceive the influence of the

degree of roughness of the walls of a conduit on the velocity of

flow, he at any rate was the first who thoroughly investigated

the subject. (Mouvement de 1'eau dans les tuyaux, Paris, 1851.)

Beginning his investigations on flow in conduits under pressure

he extended them to flow in open conduits and under the

auspices of the government of France constructed a special

test channel 596.5 meters (1956.5 feet) long and 2 meters wide.

This channel was successively lined with materials possessing

characteristic degrees of roughness, the cross-section was given

various forms and the bottom various slopes. To regulate the

discharge two reservoirs were constructed at the head of the
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channel and the water admitted through carefully tested sharp-

edged orifices 20 centimeters square. The experiments were

extended also to flow in channels lined with masonry and to

flow in channels in earth.

Darcy's work was after his death completed by Bazin, his

successor in the office of Chief Engineer of Bridges and Roads
in France. Darcy-Bazin's experiments were made with the

utmost care and precision and the tabulated data (Darcy-

Bazin, Recherches Hydrauliques, Paris, 1856) bear the stamp
of scientific exactness and truth; they are mines of reliable

information on all matters relating to flow.

Darcy's experiments on flow in pipes have since his time been

supplemented by many others. Hamilton Smith in California

carefully gauged the discharge of sheet-iron riveted pipes

under great pressures, and his data rank in reliability with

those of Darcy. Clemens Herschel gauged the discharge of
N

large steel-riveted pipes; Iben that of pipes coated with

tar; Adams and Noble the discharge of circular pipes of planed V
boards.

Kutter, a Swiss engineer, extended the researches of Darcy-
Bazin on flow in open conduits to channels of greater slopes

and greater dimensions and published (in 1869) the results of

his investigations under the title
"
Versuch zur Aufstellung

einer allgemeinen Formel," etc.

Kutter and Ganguillet elaborated a general formula intended

to define the variation of the coefficient c in the formula of

Chezy with the mean hydraulic radius, the degree of roughness
of the walls of the channel and also with the slope.

Despite its cumbrousness this formula found universal appli-

cation. It has, however, many defects and is no longer regarded
as embodying any true law of flow.

Bazin, in his memoir,
" Etudes sur les mouvements des eaux

dans les canaux decouverts
"

(Annales des Fonts et Chaussees,

Faris, 1898), reviews the accumulated experimental data and

proposes a formula of great simplicity. It does not, however,

express the variation of c with the velocity or with the

slope.
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PRIMARY LAWS OF PRESSURE AND FALL.

A.

The physical laws relating to fluids at rest, which are of interest

in their relation to fluid motion, are briefly as follows :

1. The pressure of water on a surface is proportional to the

depth below the free surface.

Let H be the vertical distance of a horizontal plane below the

free surface,

G the weight of one cubic foot of water = 62.37 pounds.
P the pressure in pounds per square foot,

then P = GH = 62.37 H
and the pressure per square inch

p = H = 0<433 H
144

2. The pressure of water is the same at all points in a hori-

zontal plane irrespective of the horizontal distance of any point
in the plane from the free surface. No matter what the shape
of the vessel or the length of the conduit may be the pressure at

any point is always proportional to the vertical distance below

the free surface.

At the bottom of a stand pipe 80 feet below the free surface

of the water the pressure on the area of a circle 4 inches in

diameter will be

0.433 80.0 4 2 0.7854 = 435.2 pounds.

Let a 4-inch pipe 5 miles long be connected with the standpipe
at any point below the free surface, and the end of the pipe be

placed in the same horizontal plane as the bottom of the stand-

pipe, then, no matter how many curves or elbows there may be

in the length of the conduit, the pressure will be as before, equal
to 435.2 pound.

3. If a pressure be applied to the free surface of the water,

this pressure is transmitted equally and undiminished in all

directions, and to any distance, horizontal or vertical.

Into the upper end of a pipe 1 foot in diameter and filled
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with water let a piston be inserted and a pressure of 100 pounds
100

applied. Then a pressure equal to p-^rr
= 129.5 pounds per

0.7854

square foot will be exerted on any square foot of the inner

surface of the pipe, no matter how great the distance. Let the

depth of the water below the surface be 20 feet. Then the

total pressure per square foot will be

129.5 + (20 62.37) = 1403.9 pounds.

If Pj is the external pressure in pounds per square foot, the

total pressure will be, for any distance H,

The external pressure due to the atmosphere is equal to 14.7

pounds per square inch. It is consequently equal to that of a

14 7
column of water

^
= 33.9 feet in height.

B

Torricelli's fundamental theorem for the velocity of bodies

falling free is expressed by the equation :

1. v =
gt

2. v 2 = 2gh

3. h = }$
2

Or:

1. The speed of fall is proportional to the time of fall.

2. The square of the speed is proportional to the distance

fallen through.

3. The distance fallen through is proportional to the square

of the time of fall.

The velocity of fall in feet per second is consequently:

At the end of the first second of fall equal to g = 32.2 ft.

At the end of the second second of fall equal to 2g = 64.4 ft.

At the end of the tenth second of fall equal to 10 g = 322.0 ft.
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The velocity of fall in feet per second is equal.

At the end of the first foot of space fallen through to

VW = 8-025.

At the end of the second foot of space fallen through to

Vg = n.34.

At the end of the tenth foot of space fallen through to

= 25.35.

The distance fallen through is equal:

At the end of the first second of the time of fall to J g
= 16.1 ft.

At the end of the second second of the time of fall to J g 2 2

= 64.4 ft.

At the end of the tenth second of the time of fall to J g 10 2

= 1610.0 ft.

C.

The laws of fall thus stated apply to any body, solid or liquid

falling free in vacuo.

For bodies falling in the atmosphere, the resistance of the air

has to be considered. This resistance is proportionally the

greater, the less the density of the body. Disregarding the

resistance of the air, a jet of water issuing from a well-formed

orifice has a velocity proportional to the square root of the

height of the column of water above the centre of gravity of the

orifice.

Let h be the head of water above the centre of gravity of the

orifice.

b a coefficient of velocity differing with the nature of the

orifice, and the velocity of the jet will be

v = b V2
If the discharge is into free space the speed of the motion will

continue to increase with the distance fallen through, and if

h
l
be the vertical distance fallen through in the atmosphere,

the water will have, at the end of its journey, acquired a velocity

equal to

v = b \/2g(h~+~h^j nearly.
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*
D.

The motion of a rigid body descending in an inclined plane

infinitely smooth is continually accelerated; the law of fall still

holds, only with this difference, that in the equation

g is replaced by g sin d, d being the angle which the inclined

plane makes with the horizon. The kinetic energy or living

force aquired by a body descending in a plane infinitely smooth

is equal to

Wh or \ m v
2

W
in which m = = the mass of the body. The weight of the

\j

body W, divides into two components; one, equal to W sin d

acts parallel to the plane and produces motion
;
the other, equal

to W cos d, acts at right angles to the plane.

When the frictional resistance between the plane and the

descending body is considered, the force that produces the

motion or W sin d reduces to W sin d, zW cos d, z being a

coefficient of friction.

The acceleration of motion continues as long as W sin d is

greater than zW cos d. If they are equal, or if
-

-,,
or tangent

d is equal to z, the coefficient of friction, the motion will cease.

Following the laws of motion of a rigid body, the motion of a

perfect fluid flowing down an inclined plane infinitely smooth

would be continually accelerated. Owing, however, to internal

friction, to its adhesive qualities, and the friction of the fluid

against the surface of the channel in which it flows, water soon

spends its accelerating force and the motion arrives at a state

of steadiness more or less approaching uniformity.

The motion of water is said to be steady, when at a given point

of the cross-section the fluid arrives with the same velocity and

in the same direction.

The motion is said to be uniform, if in following a given

course the mass of water has a constant velocity.
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The motion is said to be varying, if in following a given course

the velocity varies from point to point.

In our subsequent discussions of flow we always assume the

motion to be uniform, or conditions to be such that there is no

acceleration of velocity with increase of the distance fallen

through, that the accelerating forces are equalized by frictional

resistances and that the velocity of flow at any point in a given

course remains constant as long as the slope remains constant.

PRIMARY LAWS OF FLUID FRICTION.

A plane surface moving in a still body of water is retarded in

its motion by a resistance due to the friction of the fluid against

the surface.

The subject of fluid friction was investigated by Coulomb

by rotating disks of greater or lesser diameters and having
surfaces of a greater or lesser degree of roughness with more or

less speed in a still body of water, at greater or lesser depths, and

ascertaining the work done under the various conditions.

The researches of Coulomb were extended by Froude in his

investigations on the resistance of the surfaces of ships (1870-

1874). For the rotating disks of Coulomb, Froude substituted

sharp-edged planks or metal plates of greater or lesser length

and coated with various substances. These he impelled to move
in a still body of water and ascertained the resistance by a suit-

able device.

The laws deduced from experiments made by these investi-

gators may be summed up as follows:

1. The pressure existing in any horizontal plane below the

free surface or in any part of a conduit under pressure has no

influence on the friction of the fluid against a solid surface.

Though the pressure in pounds per unit area may be much

greater in one part of a conduit than in another, the frictional

resistance of the area is not thereby increased. This is demon-

strated as follows:

A plank of suitable shape is immersed in a still body of water

just below the surface, impelled to move at a certain constant
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speed, and the resistance to motion ascertained. If the plank

is subsequently placed at a greater depth and impelled to move
at the same constant speed, it is found that the resistance to

motion has not been increased. If a pipe of constant dimensions

is resting on an inclined plane, it can also be shown that the

loss of head due to the frictional resistance is for equal lengths

of the conduit the same in the lower part of the conduit

where the pressure is greatest, as in the upper part, where it is

least.

2. The resistance to motion, due to the friction of a fluid

against a solid surface, is proportional to the area of the surface.

This is demonstrated as follows: A plank of a certain length

and width is impelled to move at a certain constant speed in a

still body of water and the work done in foot pounds noted.

If the width of the plank is subsequently doubled, thus doubling
the area of its surface, and it is impelled to move at the same

constant speed, it is found that the work done in foot pounds is

also doubled.

If water flows in a pipe running full it is found that the amount

of head consumed in overcoming the resistance of the walls is

proportional to the length of the pipe.

Let AQ be the area of a surface in square feet : W the weight
in pounds required to move a plank in a still body of water

at a velocity of one foot per second; / the frictional resistance

in pounds per square foot of surface

then /
= y ,

^o

and the total resistance to motion in pounds at any velocity

W = fA v*,

x being the variable exponent of the power of v, to which the

resistance is proportional.

As the frictional resistance in pounds per square foot for a

velocity of one foot per second corresponds to an equal pressure

per square foot, the head corresponding to the resistance is

equal to h =
-77
(JT
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The head equal to the resistance or --, multiplied by 20, the accel-
Cr

eration due to gravity or

G

is termed the coefficient of friction and denoted by z. As /

z G= - the total resistance of a surface in pounds is equal to
t7

W = z GA V

The velocity of flow remaining after the frictional resistance

is equalized acts through a distance equal to v. The total work

done in foot pounds in overcoming the frictional resistance of a

surface is consequently:

3. The resistance to motion due to the friction of a fluid

against a solid surface is for equal areas of the surface greater

for a short than for a long surface. This is demonstrated by

impelling two planks of equal areas but different lengths to move
at equal constant speeds in a still body of water. It will be

found that more power is consumed in moving the shorter

plank. There is a resistance due to the cutting edge of the

plank, this resistance is proportionally more apparent the

shorter the plank, because the total surface is proportionally less.

At the entrance of any kind of a conduit head is consumed by
a resistance due to shock. For short conduits this head is an

appreciable part of the total head consumed. With increasing

length of the conduit the head thus consumed becomes pro-

portionally less and less in comparison with the total loss of head

and becomes insignificant for very long conduits.

4. The resistance to motion due to the friction of a fluid

against a solid surface is increased by elbows, curves, etc.

Joessel, experimenting on the resistance of ships, found the

resistance of oblique planes to be equal to

= J ^' ** J A
v

1
0.39 + 0.61 sin. a 2g
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in which / is a coefficient indicating the degree of roughness of

the surface, varying between 1.1 and 1.7, d the density of the

fluid, A the area of the surface, a the angle the plane makes with

the line of motion.

The resistance to motion in conduits is proportional to the

angle of deflection, the radius of a curve and its length.

5. The resistance to motion due to the friction of a fluid

against a solid surface varies with the degree of roughness of

the surface. It increases rapidly as the roughness of the surface

increases. By impelling surfaces coated with different materials

to move in a still body of water Coulomb found the following

values of 2, the coefficient of friction and /, the resistance in

pounds per square ft.

Description of Surface.
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DISTRIBUTION OF HEAD.

Water issuing from a well-formed orifice flows with a velocity

directly proportional to the square root of the vertical distance

between the centre of gravity of the orifice and the free surface,

and the velocity will continue to increase if the discharge is into

free space.

A stream of water entering a conduit encounters various

frictional resistance tending to equalize the accelerating forces

and uniform motion ensues. The total head consumed in

producing this uniform motion may be resolved into several

components :

1. Head consumed in producing the velocity. This is always

equal to

and usually but a small fraction of the total head.

2. Head consumed in overcoming the frictional resistance

due to the entrance of the conduit. Let 2 be a coefficient

indicating the resistance due to the entrance and the head con-

sumed will be

3. Head consumed in overcoming the frictional resistance of

the wet perimeter, or of the walls of the conduit.

We have previously seen that the energy expended in over-

coming the resistance of a surface is

v 3

E =
z^ GA Q foot pounds.

*9

Replacing A ,
the area of the surface by its equivalent P, the

wet perimeter multiplied by L, the length of the conduit, this is

~s

and since Q, the discharge, is equal to AI, the area of the cross-

section multiplied by v, the velocity,
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P L
and as

"7~
=

"#"A
i

li

E L v 2

we have -
^ =z. -=

A G 1 R 2g

As #, the total force in foot pounds, is the product of height of

fall, quantity and weight we have

E
~Q~G~

l

and consequently

h - z-

4. Head consumed in overcoming the frictional resistances

due to curves, elbows, changes of section, etc.

If zn is a coefficient indicating the resistances due to these

impediments to flow, the head consumed will be equal to

v 2

*nW
Summing up all the components we have

H = h + h
Q + h

l
+ hn

jj v 2 v
n Lv 2

v
n

- + *
;

From this we have for the velocity

2gH

This is on the assumption that the resistance of a surface is

proportional to the square of the speed. We have already

observed, however, that this is not always the case; it is in fact

an exception. But we are not yet in a position to give the true

indexes of the powers of v to which the resistance is pro-

portional.
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DISTRIBUTION OF ENERGY.

A quantity of water, GQ, impounded at a vertical distance,//",

above a horizontal plane, possesses with reference to that plane,

a stored up or potential energy equal to

QGH.
If by means of a conduit of greater or lesser length the water

is transported to the horizontal plane at the vertical distance

H, below the free surface the stored-up energy is transformed

into work. The total stored-up energy resolves into several

components.

Let the difference of level between the free surface and the

horizontal plane be 80 feet, the length of the asphalt-coated

cast-iron conduit transporting the water 10,000 feet, and its

diameter one foot.

Assuming for Zi the average value 0.00489 we have for the

velocity of flow from the data given

f 64.4 .80 1*

1 + 0.505 + 0.00489 OK*- O.Zo -

or v = 5.11 feet per second.

The discharge in cubic feet per second will be

Q = 5.11 d* 0.7854 = 4.013 cubic feet.

The total energy expended in transporting this quantity is

equal to

E = 4.013 . 62.4 . 80 = 20,033 foot pounds.

This total energy of 20,033 foot pounds is consumed as follows:

1. A quantity of work is done in producing the velocity of

flow. This is equal to

QG ^- =4.013 . 62.4?^ = 101.6 foot pounds.
2g 64.4

2. Another quantity of work is done in overcoming the

resistance at the entrance. This is equal to

QGz ^ = 4.013 . 62.4 . 0.505 ?~^ = 51.3

This is on the assumption that ZQ
= 0.505.
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3. The principal part of the work is done in overcoming the

frictional resistance of the interior surface of the conduit. This

is equal to

QGZ L*L = 4.013 . 62.4 . 0.00489^2 ^i* = 19?880R 2g 0.25 64.4

foot pounds.

The sum of the several quantities of work done in trans-

porting 4.013 cubic feet of water a vertical distance of 80 and a

horizontal distance of 10
;
000 feet is equal to

101.6 + 51.3 + 19,880 = 20,033 foot pounds,
or

Dividing both sides of the equation by QG we have as before

v 2 v 2 Lv2

The C oefficient C in the Formula v = C Vr~s.

Neglecting the loss of head due to the velocity, the loss of

head due to the frictional resistance of the entrance, and the loss

of head due to the resistance of other obstructions to flow,

which severally or combined, form but a small part of the total

head lost if the conduit is of a length of 4,000 times the mean

hydraulic depth or the velocity not great, we have

L v2

H = z
1

as the loss of head due to the frictional resistance
R 2g

of the walls of the conduit. From this we have

v2 HR

and

y is equalThe term is eual to the coefficient c first introduced into
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hydraulic calculations by Chezy, a French engineer (in 1776).

On account of its brevity, this term is almost exclusively used

to indicate the frictional resistance of long conduits of all

descriptions.

AS
*,
=
?|

: .

in which /
= the frictional resistance in pounds per square foot of

surface,

G = the weight of one cubic foot of water = 62.4 we

may write

2l!
2gj

.G

and as
-^

= head lost per unit area of surface at unit velocity,

we have finally

c~\f^ i

* head lost per unit area at unit velocity.

Chezy and many of his followers up to the middle of the last

century considered the coefficient c to be a constant. The
researches of Coulomb, the investigations of Prony, Eytelwein,
Weisbach and others, however, revealed the fact, that it varies

with the velocity of flow. Later researches by Darcy and

Darcy-Bazin brought to light the astounding influence of the

degree of roughness of the walls of a channel and of the value of

the mean hydraulic radius on the value of c. The manifold

variations of c render the problem of its exact valuation one of

great difficulty. A mathematical expression embodying all

variations will necessarily be very complex; to be of practical

value, however, it should be as simple as possible. It is some-

what difficult to harmonize great exactness and great simplicity

without making sacrifices at one end or the other. On this

account two expressions are often found embodying the same

idea and rendering it with great exactitude or great sim-

plicity.
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We will now proceed to investigate the laws on which the

variation of c depends and to find suitable mathematical expres-

sions embodying these laws.

I. Primary Determination of the Coefficient c.

Going back to first principles we may ask the question : To
what power of R, the mean hydraulic radius, is the velocity of

flow proportional? Using the exponential equation

gives x -
;

g
%

-
;

g *

log R, -
log R Q

we find that the value of x is, in the case of channels in earth,

such as rivers and canals and with R varying between 1 and 50

feet in the majority of cases equal to

1 2
or

3

1.333 2.666 4

For this class of conduits we may consequently write:

in which y is variable, differing with the degree of roughness and

with the slope of the conduit. As v = c \/rTsTand R* = t/r Vr~

we have

C-vW,
hence c increases directly with Vr.

c
Column 5, Table I, gives values of y = ir=for conduits of

several degrees of roughness. It will be observed that the

formula gives fairly constant values of y only for large conduits,

such as rivers and canals,

For small conduits however y increases with increase of R if

the wet perimeter be smooth, but decreases with increase of R
if the contrary is the case. Applying the exponential equation
to other classes of conduits, the following values of x, the power
of R

}
to which the velocity is proportional were found.
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For a semi-circular channel of fine cement x = 0.67

For a semi-circular channel of concrete x = 0.68

For a rectangular channel of rough boards x = 0.69

For a rectangular channel of rough masonry x = 0.75

For a channel carrying coarse detritus x = 1.00

The conclusions to be drawn from these data may be summed

up as follows:

1. For rivers and canals the power of R, to which the velocity

is proportional, is approximately equal to |.

2 For small channels the power varies with the degree of

roughness of the perimeter a/id the form of the cross-section of

the conduit.

3. For small channels the power of R increases with increase

of roughness.

4. For the smoothest class of conduits the velocity is pro-

portional to R'Q7
for the very roughest to R1 '

. Hence the

rougher the wet perimeter, the more conditions are approached

resembling those pertaining to flow in permeable strata, in which

instance the velocity is proportional to the square of the diameter

of the channel.

5. No formula, based on anyone sjjigle power of R can give

satisfactory results when applied to all classes of conduits.
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TABLE II.

Description of Conduit.
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Variation of the Coefficient C with the Roughness of the Wet Perimeter
of a Conduit.

Although the primary formula v = y R Vs does not give

satisfactory results when applied to all classes of conduits it

may be made the basis of formulae of general application.

Regarding y Vr as an approximate value of c expressions

may be found defining the variation of c with the roughness of

the wet perimeter as depending on Vr. The primary value of

c from which its variations with the slope or the velocity of flow

must be derived is that value which corresponds to a velocity

of one foot per second.

In order to retain if possible a straight line formula we may
choose the expression

c = (y Vr) 1 + m,

m indicating the condition of the wet perimeter of the conduit.

For a primary determination of y and m Darcy's values of c

for clean iron pipes were selected. These data give c = 112.0

for R = 1.0 and c = 80.4 for R = 0.0208 (or a one-inch pipe).

These values of c are merely average values found by Darcy
from a great number of experiments on clean pipes, which, how-

ever, did not include pipes of great diameters. Taking 50 as a

trial value for y we find

112.0
= =

2.24, hence 1 + m = 1 + 1.24

4
if =

4.21, hence 1 + m = 1 + 3.21.

50 Vr

Dividing 1.24 by 3.21 that the quotient is 0.386. This is almost

equal to 0.38, the fourth root of 0.0208, the value of R for the

one-inch pipe. We have consequently in both instances

4,- 1.24
c = (50 Vr) 1 f -47=-

/YY)

or in general c = (50 Vr) 1 + -57=-vr

Testing this formula by experimental data pertaining to flow

in conduits differing widely in their degree of roughness it did
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not prove entirely satisfactory. As already stated, Darcy's

experiments were made on conduits of comparatively small

diameters and his coefficients for the larger conduits do not quite

agree with those found by recent experiments. For the final

determination of the value of y we choose the graphical method.

If

then

=
(If ^r) 1 + -TF-

Vr
m

y

This is the equation of a straight line (Fig. 1) having for

1 C
abscissae values of -j

-

,
for ordinates values of j and having

Vr yvr

Values of

FIG. 1.

1.0 as the common distance from the axis of abscissae where all

the lines intersect the axis of ordinates; the tangent

_10
y ^Jr~

of the angle a b c will give the value of m. Identical values

will be obtained by putting

7

selecting data in which v = 1.0 foot per second.



VARIATION OF THE COEFFICIENT C 23

Experimental data giving values of c corresponding to a veloc-

ity of one foot per second are not numerous while those giving

values of c corresponding to a velocity of one metre per second

are quite abundant, this coming nearer to being an average

velocity. On this account data given in metric measure were

chosen, taken chiefly from the writings of Darcy-Bazin.

After numerous trials, and using all the reliable material

available, a constant value of y and corresponding values of

m were found, producing a straight line in every instance. As

our subsequent work depends much on the reliability of this

constant, great pains were taken to find its exact value. In

metric measure its value is equal to 50.0 for which in English

measure we substitute 66.0. We have consequently for the

value of c corresponding to a velocity of one foot per second

c = 66 1 + ->

or, reducing to a straight line

c = 66 (fa + m).

As 66 (t/r + m) = c = y ?-2

and (66 (^r + m))*
= c

2 =
-j-

we have z = 7^-

or z =

(66 (Vr + m))
2

0.01478

(Vr + m)
2

'

As primary expressions for the velocity, in most instances

true only when the velocity is equal to one foot per second we
have now the formulae

v = 66 (-Vr + m) VrTs. .... (1)
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In the formula c = 66 (Vr + m), when applied to calculations

of flow in channels in earth of a great degree of roughness of

the bed, the coefficient m, which indicates the degree of roughness
will have a negative value and c will in consequence vanish for

very small values of Vr. To avoid this defect the formula may
be written, when applied to channels in earth, so that it reads

66 (Vr + 1) _
66 (Vr + Vr)

= ~

Vr

in which K is a coefficient increasing in value with increasing

roughness of the wet perimeter. The relation between m and

K is given by

K--M--1.0
1 + m

Variation of the Coefficient C with the Velocity of Flow.

A.

The characteristics which distinguish water from a perfect

fluid are its adhesive qualities, its viscosity. All fluids, includ-

ing gases, have these qualities in a greater or lesser degree. It

is even asserted that solids like ice become viscous under great

pressures. The adhesive qualities of tar or crude oil are apparent

to the eye, those of other fluids can only be inferred from their

effects.

To its viscosity is due the fact, that water flowing in a

channel perfectly smooth, is not, in accord with the law of

falling bodies, continually increasing in speed. The retarding

forces due to viscosity equalize the accelerating forces due to

gravity and distance fallen through, the speed of the water

shows no increase from point to point, in other words, the

motion is uniform.

The layer of water immediately in contact with the walls of

the channel in which it flows does not change except by diffusion
;
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it is held fast by surface adhesion. If the wall is perfectly

smooth there is consequently no friction between it and the

fluid directly in contact; the resistances to flow are entirely due

to shearing stresses between the infinitely fine film coating

the wall and the moving body of water.

Frictional resistances are always proportional to the areas of \

the surfaces in contact; surface areas near the periphery of a

conduit are always greater than near the centre and the retarda-

tion will in consequence be greater and the velocity less.

This decrease of speed from the centre towards the periphery

is in a measure counteracted by difference of pressure. Greater

velocities are always accompanied by a corresponding fall of

pressure and the pressure in the centre is in consequence less

than near the wall. This difference of pressure continually

tends to draw the water towards the centre and thus to equalize

the speeds. When this equalizing tendency is for a moment

interrupted, we suddenly perceive a wave or flash-like motion,

clearly indicating the speed the water would acquire were it not

for the resistances near the periphery. In conduits having
smooth walls the equalization of velocities is performed so

rapidly that a difference of speed between the centre and the

periphery is scarcely perceptible. A wave-like rotation is set

up and the water glides through the conduit very much like a

bullet through a rifled channel.

Let R be the force required to keep up the flow of a liquid in

two parallel planes past each other, let the surface area of each

plane be A, let the respective distances of the two planes from a

common plane of reference be D
t
and Z)

,
let the velocities be v

t

and vQ and e a coefficient indicating the degree of viscosity of the

liquid and we have:

_ eA (v l
- v )

or: the resistance is proportional to the degree of viscosity into

the area and the relative velocity v
1

- VQ ,
the whole divided by

the difference in the distance of the two layers from a common

plane of reference.
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For a circular conduit the total force required to set up motion

in a stream line is given by

4el (v,
- v ) 2flv

1 =-;
-

; ~r -
Tj

2 - r
2

r
t

in which r
l
is the semi-diameter of the conduit, r a distance from

the axis of the conduit, I its length, and / the coefficient indicating

the degree of roughness of the surface.

This indicates, that the resistance due to viscosity is least in

the centre or the axis of the conduit where r 2 = and greatest

at the periphery where r
t

2
r 2 = 0.

The last expression gives for the velocity of flow in a circular

conduit

/v = /
,

2gh +

from which, the coefficients e and / being known, the value of v

and the discharge may be computed. The coefficient e depends

for its value on the temperature of the liquid ;
its value diminishes

rapidly with increase of temperature and is five times less for

water at the boiling point than for water at the freezing point.

According to Mayer its values are (in c. g. s. units) :

at 0.6 Celsius e = 0.0173

at 10 Celsius e = 0.0131

at 20 Celsius e = 0.010

at 45 Celsius e = 0.005833

at 90 Celsius e = 0.00339.

The influence of the temperature on the flow of water through

capillary tubes has been minutely studied by Poisseule.

Slichter has demonstrated the immense influence of the

temperature on the movement of water through permeable

strata and Saph and Shoder have shown its influence on the dis-

charge of pipes. A tube having a diameter of 0.5 millimetre

(0.02 inch) or less is considered to be a capillary tube.
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Poisseule's experiments demonstrated, that the velocity of

flow in such tubes is equal to

and the discharge to

This shows, that in capillary tubes the velocity is proportional

to the head and not to the square root of the head, to the square

of the radius and not to its square root.

In investigations on the movement of water through porous

strata it has been found, that the velocity of flow is proportional

to the square of the diameter of the soil grains through which

the water percolates; from which it follows that it is also pro-

portional to the square of the voids between the soil grains.

The general equation for the movement of water in a per-

meable stratum may be written (v and Q per minute)

- 0.0189d2
(0.7 4- 0.03 t'c)

2L

Q = mv hb.

In these equations h is the elevation of the water table at the

point of efflux, h + z its elevation at the distance L, d the

FIG. 2.

diameter of the soil grains in millimetres, t 0, the temperature of

the water in degrees centigrade, m the percentage of the voids in

the material, b the breadth of the stratum.
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The elevation of the water table at the distance x from the

point of efflux is equal to

y
2Qx

hm 0.0198 d 2
b

The discharge of a well is given by

Q T
log L -

log R
0.0189 d* (0.7 + 0.03

in which R is the semi-diameter of the well, and the logarithms

the Naperian

FIG. 3.

The elevation of the water table at a distance x from the well is

given by

The surface is consequently a logarithmic curve. These

equations serve to illustrate that between the movement in

capillary tubes and in a porous stratum there is only this dif-

Ji
2

ference, that h is displaced by -
,
the velocity is not proportional

to the head but to the square of the head.

On account of internal motions the phenomenon of flow in
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pipes and other channels is much more complex than in capillary

tubes or porous strata.

The equation for the velocity of flow in a cylindrical conduit

we have given above may be transformed so it will read

- - % + r-JM!T7-v M
f 2 ~, 2 I O

7.
'1 'n l^~7't

which shows that one of the terms above the line, denoting the

internal resistance, is directly proportional to the velocity, the

p
other to its square. This is also true of the two terms 2-^

denoting the friction of the fluid against the walls of the conduit.

Moreover, /, the coefficient denoting the surface friction, depends
for its value on e, the coefficient denoting the internal friction;

its value is consequently modified by temperature. Even in

conduits having the smoothest walls there are always rotary and

wave-like motions tending to equalize pressures to speeds.

Wherever there are cross-currents there naturally is impact, one

stream impinging on the other. To this impact and the attend-

ing shearing stresses between a streamline and its surroundings

are due the increasing powers of the velocity to which the

resistances are proportional. Furthermore, if the walls of the

conduit are not perfectly smooth there are streamlines constantly

impinging on projections, however small they may be.

Conditions existing at the entrance, curves, elbows, changes
of section, etc., also affect the power of the speed to which the

total resistance is proportional. It was formerly assumed that

the resistances due to these impediments were proportional to

the square of the velocity.

From experiments made by Hubbel and Fenkell (Detroit) to

determine the resistances due to curves, the writer found,

neglecting curves the radius R of which is less than 2.5 diameters

of the conduit, that the resistance of a curve is equal to
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times the resistance of a tangent of equal length, and the excess

of frictional resistance in a curve equal to

times the resistance in a tangent of equal length. The length

of tangent equal in frictional resistance to the resistance in a

curve of 90 is equal to

This evidently vanishes when = (4.9)^ d = 539.3 and is a
a

maximum when =
(4.9)

*
d.

d

Hubbel and Fenkell's experiments were made on 30", 16" and

12" conduits, and comparison showed that the influence of the

diameter on the resistance depends on the value of d. The

value of z, or /, the coefficient of friction is therefore for any
curve.

.
- 1.0

360

in which n is equal to the number of degrees in the curve and

d'
45

substituted for d for diameter less than a foot.

Hubbel and Fenkell's experiments were supplemented by those

of Saph and Schoder on 2-inch brass tubes and more recently

by those of Alexander on a IJ-inch wooden tube. Although we

cannot accept the formulae the latter deduced from his own ex-

periments and those of Hubbel and Fenkell, Saph and Schoder,
his experiments are valuable in indicating the powers of the

velocity to which resistances in curves are proportional. While

Alexander's experiments show that resistances in a curve are

proportional to the same powers of the speed as resistances in a

tangent, provided there is no shock, the experiments of Saph
and Schoder indicate that the power of the speed increases

rapidly with increasing values of Their data indicate that
ti
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7? 7?

for = 10 the resistance is proportional to V1 '8

,
for =4 to

a a

72 ' 87
. How far this holds good for diameters greater than

2 inches we are not prepared to say. It is probable, however,

that with increasing diameter the force of the shock decreases

and the powers of v with it.

It is probable that the resistances due to right-angled entrances

right-angled elbows are also proportional to powers of v higher

than 2.0.

The effect of the temperature on the variation of the power
of v has so far not been determined with precision. Saph
and Schoder, experimenting with a 2-inch brass pipe, found for

a rise of 10 F. an increase in the discharge of 4%.
That the resistances to flow are not proportional to the square

of the speed was recognized long before Darcy and Bazin

demonstrated the great influence of the degree of roughness of the

walls of a channel on its discharge.

The laws of fluid friction were first investigated by Coulomb.

He states, that the total resistance to motion is a compound of

two factors, one being proportional to v, the other to v 2
. Dubois's

experiments on flow confirmed this view and from his data

Prony found for the resistance the expression (in metric measure)

Rv = 0.000044 v + 0.000309 v 2
,

this corresponds to

ff

-?TT'
Weisbach put Prony's formula into the form

H = 0.00741
v I r

which in our day is still used.

The relation of the power of the velocity, to which the resist-

ance is proportional, to the variation of the coefficient c with the

velocity is such, that c remains constant for all velocities if the

resistance is proportional to v2

;
it increases with increase of

velocity if the resistance is proportional to v*~*, and decreases if

the resistance is proportional to v** x
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B.

If the value of the coefficient c corresponding to any velocity

is divided by its value corresponding to a velocity of one foot per

second; the quotient is a variable which we will call the coefficient

of variation of c and denote by (a). Hence

c
a

66 (Vr + m)
While the term i

[66 (Vr + m)]
2

represents the frictional resistance per unit area of surface at

unit velocity, the term
c

66 (t/r + m)

indicates the power of the velocity to which the resistance is

proportional. We shall presently see, that under normal con-

ditions, that is if resistances proportional to different powers of

v do not enter, the coefficient a is merely a root of v.

An analysis of the values of a found in Column 4, Table II,

shows that its value does not entirely depend on the velocity,

but is affected by the degree of roughness of the walls of the

conduit, by its length and alignment, by conditions existing at

the entrance, by changes of section, etc. According to the

manner in which the coefficient a is affected we may classify

conduits as follows:

1. Long straight conduits without internal obstructions and

a great degree of smoothness of the wet perimeter.

2. Long conduits of a great degree of smoothness of the wet

perimeter but with some easy curves or other impediments, also

long straight conduits of a fair degree of smoothness of the wet

perimeter.

3. Long conduits of a great or fair degree of smoothness of

the wet perimeter but with sharp curves, angles or other impedi-

ments to flow.

4. Conduits whose walls are coated with rust, slimy or sticky

substances.
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5. Conduits of a great degree of roughness of the wet peri-

meter; badly tuberculated pipes, damaged masonry, channels

in earth with sharp bends, bars or other obstructions.

6. Short conduits.

For classes 1 and 2 the resistances are proportional to

powers of v less than 2.0 and the coefficients c and a continue

to increase in value with increasing velocity. For the third

class some resistances proportional to a power higher than

2.0 enter, a increases with increase of velocity and then

decreases. For class 4 the resistance is proportional to v 2

or nearly so and a is constant. For classes 5 and 6 the resist-

ances are proportional to powers of v higher than 2.0 and a

continually decreases with increasing velocity.

C.

We have so far only found expressions for the value of c

corresponding to a velocity of one foot per second. These give

for the velocity

v = 66 (t/r + m) Vrs (1)

2 H .... (2)
0.01478 L

(Sir + my R

We will now proceed to find in what relation the 'value of v

as found from the formula

v = 66 (tfr + m) Vr . s

stands to the true mean velocity in all cases where v is more

or less than unity or the value of a, the coefficient of variation,

is affected by the conditions we have enumerated. Using the

exponential equation

(66 (^r + m)_[
L (66 (r + m)

which gives

log y
t__log v

x =
log (66 (#r + m) Vr.s),

-
log (66 (Vf + m) Vrs),

OF THE
UNIVFRRITY
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we find from the experimental data given by Darcy and Hamilton

Smith for straight or nearly straight clean cast-iron, wrought-

iron and sheet-iron riveted pipes of all diameters and for velocities

up to 20 feet per second

*-|i
in other words, from the data given by Darcy and Hamilton

Smith we find, that the true mean velocity is equal to

v = (66 (vV + m)^r.s)* ..... (3>

which may be written

v = 66 (-r + m) ree (^r + m)

hence the coefficient a, indicating the variation of the coefficient

c with the velocity is equal to

a = 466 (\V + m) \/r~7s.

From Formula 3 we have also

yt = (66 tJr + m)

consequently
a = V*

and y* = iV(66 A/r + m) VrTsT

Table III contains a number of experimental data relating to

flow in conduits under pressure. They are purposely selected

in order to show the variation of the coefficient c as affected by
various conditions of flow.

The values of the coefficient a found in columns 3, 6 and 9

show that for 1-inch pipes of tin and wrought iron, for sheet-iron

riveted pipes up to 2.43 feet in diameter, for new cast-iron pipes

up to 1.393 feet in diameter, for pipes of planed shares up to 4.5

feet in diameter the coefficient a is equal to y^ or nearly so.

The fact that a = F holds good for a tin or wrought-iron pipe

1 inch in diameter, and also for a pipe of planed staves 54 inches

in diameter allows us to conclude, that it holds good also, be-

tween these limits for other conduits having walls of a similar

degree of roughness such as asphalt-coated, cast and wrought-

iron or cement-lined pipes.
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This, however, holds good only when the value of
,
the ratio

ct

between the length of a pipe and its diameter, is at least 1,000.

For lesser values of the value of (a) decreases with - The
a a

experimental values given by Stearns and Fitzgerald relating to

flow in four-foot cast-iron pipes indicate this plainly. In the

case of the four-foot Sudbury conduit (Stearns) the ratio is

equal to 439.

If the formula v = (66 (tfr + m) Vr . s)* is put into the

form

V =

the term

-Vr + m)
2 R

includes all the resistances, those due to the velocity itself,

those due to the entrance, and those due to the friction of the

fluid against the walls of the conduit.

The loss of head due to the velocity itself is proportional to

the square of the speed; resistances due to the entrance are pro-

portional, according to the nature of the entrance all the way
from the square of the speed up to its cube. An average value is

probably 2.5.

The value of the coefficient of resistance due to the velocity

itself is equal to 1.0; the value of z
,
the coefficient representing

the resistance due to the entrance is, according to Weisbach, for

a well rounded entrance, equal to 0.505; hence the value of z1}

the coefficient representing the resistance due to the walls of

the conduit, is equal to

'01478 L - 1.505.
+ m)

2 R
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If the conduit is long, above 1,000 diameters in length, 1.505

is a quantity small in comparison with

0.01478 L
Vr + m)

2 R

and does in consequence not appreciably affect the variation of

c. With decreasing length of the conduit, however, the ratio

between the two quantities changes at an increasing rate and

more and more affects the variation of c. In the case of the

four foot Sudbury conduit (Stearns), we have the following

data, taking m = 0.97 :

v = 3.738, H = 1.2421 ft., L 1747 ft.

0.01478 L = 6.656
(1 + 0.97)

2 R

6.656 - 1.505 = 5.151 = zr
(3

jJ

38 )
2

X 1.0 = 0.217 = h = loss of head due to velocity.
7

(3 '738)2>5 X 0.505 = 0.2119 = h = loss of head due to entrance.

0.217 + 0.2119 = 0.4289 = h + h .

1.2421 - 0.4289 = 0.8182 = ^ = loss of head due to friction in

the pipe itself.

Using the formula - = vx and inserting values we have

64.4 X 0.8142 = =

5.151

Dividing log 10.17 = 1.0073209 by log 3.738 = 0.5736293

the quotient
= 1.76 very near.

Consequently the frictional resistance in the pipe itself is

proportional to v 1 '76
, corresponding closely to FT", the value we

have found for long pipes.

The data relating to flow in a riveted flume 8.58 feet in diameter

and 152.9 feet long (Herschel, Holyoke Testing Flume) show the

great influence of the length of the conduit on the variation of c

most plainly.
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TABLE III.

EXPERIMENTAL DATA SHOWING EXTENT OF VARIATION OF c WITH THE
VELOCITY OF FLOW.

Tin pipe, straight.
Dubuat.
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TABLE III. Continued.

Asphalt-coated cast-
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TABLE III. Continued.

New steel-riveted pipe.
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The experimental data relating to flow in riveted conduits

show great diversities both in the values of m and a.

The coefficient m is equal to 0.94 for a riveted pipe 0.270 feet

in diameter (Darcy) and equal to 0.51 for a butt-jointed riveted

pipe six feet in diameter (Marx-Wing). This great difference

in the values of m is mainly due to the size of the rivet heads.

In pipes of small diameters the rivet heads, especially when

coated with asphalt, do not offer an appreciable impediment to

flow. In large conduits, however, their size is such, that they
not only produce constriction of the section, but also vortex

motions, thus reducing the discharge in a twofold manner.

From data relating to flow in steel-riveted pipes exceeding three

feet in diameter, given by Herschel, and by him considered the

most reliable (see
"
Herschel "115 Experiments), we find that

the coefficient of variation of c for these conduits is fairly, though
not precisely, equal to

(Vr + m) Vf~7.

Consequently

(66 (Vr Hh m) Vr . s)
i?

.
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we find for incrusted pipes:

x =
if, hence a =

19/ _
V V 66 (^r + m) Vr.s

and for very badly tuberculated pipes:

x =
y
9
0, hence a = - - =

^66 (>/r + m) Vr . a

The experimental data relating to flow in a 12-foot brick

sewer at Milwaukee, a 7.5-foot brick sewer at Dorchester Bay, in

a siphon aqueduct of 119 feet cross-section at the river Elvo all

show a slight decrease in the value of c with increasing velocity.

This decrease is due, in the first two cases, partly to the fact

that these conduits are discharging under water against a

hydraulic counterpressure, partly it is due to the greater viscosity

of the sewerage and partly also to the relative shortness of these

conduits. In the case of the siphon aqueduct, its length is so

short comparatively, that it can only be considered as a short

pipe, conditions being much the same as in the case of the

Holyoke Testing Flume.

D.

The variation of the coefficient c as deduced from experi-

mental data relating to flow in conduits under pressure may be

summarized as follows:

1. For long, straight conduits fairly clean, such as pipes of

glass, tin, lead, galvanized iron, cast and wrought iron, planed

staves, cement, riveted pipes up to 3 feet in diameter, the coeffi-

cient of variation of c is equal to

a = 7*

and the frictional resistance is proportional to 7"*".

2. For pipes rectangular in section, for riveted pipes exceeding

3 feet in diameter, for those enumerated under (1) between 300

and 1,000 diameters in length, the coefficient of variation of c

is equal to

a = 7fs

and the frictional resistance is proportional to 7~*~.
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3. For the classes of pipes enumerated under (1) and (2)

discharging against a hydraulic counterpressure, or between

100 and 300 diameters in length, for old pipes not incrusted or

tuberculated the coefficient c does not appreciably vary with the

velocity, and consequently

a = 1.0

and the frictional resistance is proportional to F 2

.

4. For incrusted pipes and those enumerated under (1) and

(2) less than 100 diameters in length the coefficient of variation

of c is equal to

1
a =

and the frictional resistance is proportional to

3. For very heavily tuberculated pipes the coefficient of vari-

ation of c is equal to

1
a =

i

v*

and the frictional resistance is proportional to Vs
.

In our collection of experimental data we find many instances

relating to flow in one and the same conduit which do not fit

any of the values of (a) enumerated above and which indicate :

1. First an increase in the value of c with increasing velocity

up to a certain critical velocity.

2. Then a decrease in the value of c with increasing velocity.

As instances of this kind we mention:

Two new steel riveted pipes at East Jersey, 3.5 and 4 feet in

diameter (Herschel).

A cement lined pipe with elbows (Fanning).

This peculiar variation of c indicates the presence of resistances

which are proportional to powers of the velocity greater than

2.0, that is resistances which produce shocks. In case of the

steel pipes the shocks are no doubt due to the rivet heads, in

the second to the elbows in the line of the conduit. This

peculiar variation of the coefficient c is also very plainly indicated

in the data relating to flow in channels of rough boards with

cleats nailed crosswise to bottom and sides of the channel
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(Darcy-Bazin, series 12-17). These cleats or laths were 1 centi-

metre thick and 2.5 centimetres wide. In one channel they

were spaced apart 1 centimetre, in the other 5.0. The data

relating to flow in the channel with the cleats spaced 1 centi-

metre indicate the highest values of both the coefficients m
and a, plainly showing the effect of the shock due to the wider

spacing of the cleats. In the first case the coefficients are m =

0.41, a = V, in the second m = 0.03 a =
, indicating that

the frictional resistance was proportional in the first case to

71 '94

,
in the second to F 2 ' 25

.

Open Conduits.

E.

An analysis of experimental data relating to flow in open
conduits of permanent cross-section, such as aqueducts, flumes,

etc., indicates, that the coefficient c is affected in its variation

with the velocity by the shape of the cross-section, or by the

depth of the water in the channel.

For semicircular or well rounded channels, for the semi-square

when flowing full, for all sections for which the mean hydraulic

radius is equal to half the depth, for the triangle with sides

inclined 45 the variation of the coefficient c with the velocity

does not seem to be affected by slight variations in the value

of r. For rectangular channels, however, and others having very

steep side walls (excluding those mentioned above) the varia-

tion of c is affected by the depth of water in the conduit.

The coefficient a seems to have its normal value in all instances

when the depth of water is equal to one-half the mean width of the

channel, it increases in value as the depth of water decreases,

and decreases in value as the depth of water increases.

This peculiar influence of the steepness of the walls of a

conduit on the frictional resistance has been revealed by nu-

merous current metre observations in rectangular flumes and

aqueducts and other channels with steep side-walls. It has been
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found that in such channels the position of the thread of max-

imum velocity is situated at a greater distance from the surface

than in channels having side walls more inclined: thus clearly

indicating the retarding influence of the steepness of the walls.

Experimental data relating to flow in rectangular flumes fre-

quently indicate values of the coefficient (a) as high as vf for

small depths, its value is generally equal to v\ when the mean

hydraulic radius is equal to one-fourth the width of the channel.

Its value is less than the normal when the depth exceeds one-half

the mean width of the channel. Applying the exponential equa-

tion

= log V
t

-
log ^o~

log (66 (Sir + m) Vrs\ -
log (66 (Sir + m) Vr s)

to data relating to flow in a semi-circular channel lined with

neat cement (Darcy-Bazin, series 24) we find

x =
iJ very near -

Applying the same equation to data relating to flow in

channels lined with rough boards, semicircular in section, we

find (Darcy-Bazin, series 26)

x ^ it

thus indicating a slight decrease in the value of a with increasing

roughness of the conduit's wet perimeter. As a mean between

these two values and differing but slightly from either we may
take

*-
which corresponds to a = V

or a =\/66 (Vr + m) Vrs

and the frictional resistance is proportional to V"*~ = V '

This value of the power of the velocity we observe is the identical

value Froude found for smooth plain surfaces in his investiga-

tions on the resistance of ships.

Besides the two series mentioned, given by Darcy-Bazin, we

find that

x =
if

holds also good for the following :
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Darcy-Bazin, series 25, semicircular channel lined with smooth

concrete.

McDougall, Provo Canal Flume, semicircular channel of planed

staves.

Th. Horton, Conduit of North Metropolitan Sewage System of

Massachusetts. Brickwork washed with cement. Diameter

9 feet. Values of R up to 2.31 feet.

F.

Applying the experimental equation as indicated above to

data relating to flow in channels not semicircular in section

and lined with cement or concrete, planed or rough boards,

brickwork and good ashlar masonry we find

x= If

a =

y66 (\'r + m)Vrs

and the frictional resistance is proportional to F . This we

find to hold good for the following :

Darcy-Bazin, series 2, neat cement, section rectangular.

Darcy-Bazin, series 6, 7, 8, 9, 10, 11, 18, 19, 21, 22, and 23,

sawed boards, section rectangular, triangular or trapezoidal.

Darcy-Bazin series 32, 33, 39, channels lined with good ashlar

masonry, section trapezoidal.

Darcy-Bazin, series 3, rough brick work, section rectangular.

Darcy-Bazin, series 4, channel lined with pebbles up to J inch

in diameter, section rectangular.

Fteley and Stearns, Sudbury conduit, very good brickwork,

sides of channel nearly vertical, bottom flat arch.

Fairlie Bruce, Aqueduct of Glasgow, smooth concrete, sides of

channel nearly vertical, bottom flat arch.

Th. Horton, Conduit of North Metropolitan Sewage System of

Massachusetts, brickwork washed with cement, covered with

sewer slime, sides of conduit vertical, bottom flat arch.
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Lippincott, San Bernardino Canal Trapezoidal channels in

earth, lined with concrete.

Kutter, Gontenbachschale, new and well built channel of dry
rubble masonry.

Passim and Gioppi, Aqueduct of the Cervo, Canal Cavour.

Floor of concrete, sides of brick, section rectangular. Values of

R up to 7.2 feet.

G.

Applying the exponential equation as indicated to data relating

to flow in channels having walls possessing a greater degree of

roughness than those enumerated above we find

x = 1.0

a = 1.0

and the frictional resistance is proportional to v 2
. This, amongst

others, holds good for the following :

Darcy-Bazin, series 1, 34, 35, channels lined with roughly

hammered stone masonry.

Darcy-Bazin, series 5, channel lined with pebbles 1J inch to

1J inch in diameter.

Kutter, numerous channels lined with dry rubble masonry.

Perrone, Torlonia drain tunnel, channel in rockwork, partly

lined with rubble masonry.

We mention here also:

Cunningham, Aqueduct of the Solani, Ganges Canal. Floor of

brick, laid flat, sides of masonry, length 920 feet.

In this case the fact that c does not vary with the velocity of

flow is due to the shortness of the conduit. It has no independent

slope and the movement of the water is influenced by the greater

resistance in the rough channel in earth downstream. This is

plainly indicated by the low value of the coefficient m.

Of open conduits, not channels in earth, there are few possess-

ing a degree of roughness still greater than those enumerated,

exceptional cases of old and damaged rubble masonry.
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H.

The variation of the coefficient c with the velocity of flow as

deduced from experimental data relating to flow in open conduits

not channels in earth may be briefly summarized as follows:

1. For semicircular channels lined with cement, concrete,

good brickwork, planed or rough boards, the value of the coeffi-

cient a is equal to Fn .

2. For rectangular, triangular or trapezoidal channels of the

same description, for channels lined with rough brickwork,

ashlar and very good rubble masonry, for channels lined with

pebbles up to J inch diameter the value of the coefficient a is

equal to Fn .

3. For channels lined with roughly hammered stone or

common rubble masonry, for channels lined with pebbles up
to 1^ inch in diameter, for channels in rockwork, for aqueducts

of any description discharging into channels in earth and having

no independent slopes, the value of the coefficient a is equal to 1.0.

4. For channels with obstructions producing shocks, such as

channels with cleats nailed crosswise to retard the flow, for

channels lined with old and damaged masonry the value of the

coefficient a is equal to j _ 1

Channels in Earth.

I.

When we scrutinize the data relating to flow in rivers and

other channels in earth we perceive that these data contain many
irregularities and contradictions which make them appear doubt-

ful and untrustworthy. Even those given by the best authori-

ties are not entirely free from anomalies. These irregularities

and contradictions are occasionally the result of inaccurate

measurements; more often, however, they must be attributed

to the unstable character of the beds of these channels. This

instability of the bed of the channels makes the phenomenon
of flow a problem of great complexity. An exact valuation of

all the facts entering is as yet, with the incomplete data at

present available, out of the question. We here leave the path
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of exactitude and enter a labyrinth, satisfied if we come out with

the gain of an increment of knowledge which may prove useful.

Natural and artificial channels in rock work or earth may be

divided according to the stability of their beds, into three classes :

1. Channels having beds in a regime of stability at velocities

exceeding the ordinary. Channels in rockwork, cemented gravel,

channels in earth protected by riprap or masonry side walls.

2. Channels in a regime of stability at ordinary velocities.

Channels in gravel, stiff clay, clayey loam, sandy soils with over

50 per cent clay.

3. Channels in a regime of instability at ordinary velocities.

Channels in sand, sand with fine gravel, sandy loam with less

than 50 per cent clay.

The beds of the second and third class are in a regime of

stability until the velocity becomes sufficiently great to erode

the bed.

The velocity at which erosion begins varies with the cohesion

of the material. In channels in sand, sandy gravel, sandy
soils with small percentages of clay, erosion begins at very low

velocities; these channels are consequently very unstable.

Omitting channels in firm rock or cemented gravel, the stability

of the bed depends mainly on the percentages of clay in the

material. According to W. A. Burr pure clay resists erosion up
to a velocity of 7.35 feet per second. The following table, based

chiefly on Burr's experiments, gives the mean velocities at which

erosion begins:

Nature of Material Forming the Bed.
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In the process of erosion energy is consumed which varies

with the specific gravity and the cohesion of the material.

The erosive power of a current is proportional to the square

of its speed. Its transporting power, however, varies (according

to Le Conte) :

When the surface is constant with v 2
.

When the velocity is constant with the surface of the object or

with d\

When both vary the assistance is equal to v 2 d2
. But the

weight of the object is proportional to'd3
.

Hence, when the forces are in equilibrium or the weight equal

to the energy d 3 = v 2 d 2
.

Dividing by the surface or d2 we have d = v*.

Consequently when the forces are in equilibrium the resistance

is proportional to v
6

. In other words, the transporting power
of a current is proportional to the sixth power of the speed.

This indicates that powers of r ranging between 2 and 6 enter

the problem of flow when erosion begins.

With the beginning of erosion the destruction of the bed will

be the greater ;
the less the cohesion of material the greater the

velocity. Changes and alterations in course and section generally

continue till a channel is formed which, owing to its greater

length, its deflections, curves and bars offers such resistances

that the power of the current is reduced and course and section

again become stable when force and resistance are in equi-

librium. A stream will pick up material in a narrow, deep
section of its course where the force of the current is great, and

deposit it in a wide and shallow section where the current is

feeble. At high water, the greater depth of the water in the

shallow section will result in greater velocities, the material

previously deposited will again be put in motion and carried to

a place where the current is feeble.

The work done during these processes of building and rebuild-

ing cannot be accurately measured, and on this account slope

formulae, when applied to flow in channels where erosion is going

on, are always more or less deficient. They cannot be depended
on in computing discharges; this falls into the province of the
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current metre and the rod float. They are useful, however, as a

guide to the engineer in the design of new conduits, alterations

in courses or sections, etc., etc.

The banks of channels having unstable beds are frequently

protected by riprap or masonry walls. Frequently the bottoms

of such channels are also protected by artificial bars made of

boulders or masonry.

Rittinger, Borneman, Epper, Cunningham, and others, have

given us data relating to flow in such channels. An analysis

of these data gives surprising results. Using the exponential

equation

x = log v
l
-

log y

log r
t
-

log r

we find the following values of x, the power of the mean hydraulic

radius to which the velocity is proportional:

Rittinger, millrace of dry rubble side walls, bed very rough,

depth of water 0.40 to 0.90, x = 3.0.

Rittinger, mill race, bed sand and gravel, side walls of masonry,

depth 0.28 to 0.90 ft., x = 1.77.

Rittinger, Aqueduct in earth lined with dry rubble side walls,

depth 0.61 to 1.27 feet, x = 1.19.

Cunningham, Solani Embankment, sides of masonry built in

steps, bed of clay and boulders, with frequent artificial bars

to prevent erosion. Main site, width, 150 to 170 ft.; depth of

water, 1.7 to 4.1 ft., x = 1.49; depth of water, 5.6 to 9.34 ft.,

x =
0.9; Jaoli site, depth, 6.8 to 8.1 ft., x = 0.93.

Excluding extremes, the powers of R, to which the velocity

is proportional as expressed in these data, may be given by the

equation
x = 1.8 - O.IR

so that for R = 1.0 x = 1.7

R = 2.0 x = 1.6

R = 9.0 x = 0.9.

A high value of x indicates a low value of the coefficient c,

but a rapid increase in its value with increasing value of R] a
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low value of x indicates a high value of c and a slow increase in

its value with increasing values of R.

The influence of the roughness of the bed is necessarily much

greater when the water in the channel is shallow than when it is

high; the diminishing values of x indicate a rapid decrease in the

relative influence of the character of the bed. But, on the

other hand, while the powers of R are abnormally high for

shallow water in rough channels, the powers of the sine of the

slope. to which the velocity is proportional are abnormally low.

This may be illustrated by data deduced from experimental

values relating to flow in rough channels in earth. Amongst
others we find:

Wampfler, Simme Canal, coarse gravel and detritus,

#1.104
0.2

3>

La Nicca, Rhine in the Forest, coarse gravel and detritus,

depth 0.42 to 0.9 feet. R?'
g S ' 4

.

La Nicca, Plessur River, coarse gravel to detritus, depth 1.25

to 4.58 feet. #' 64 S ' 4
.

Darcy-Bazin, Grosbois Canal, Chazilly Canal, channels in earth,

with stones and vegetation, depth 1.5 to 3.0 feet.

#0.87
0.43

to #1.59 0.4^

Reich, River Salzach, gravel and detritus, depth 3.53 to 7.39 ft.

#0.8 0.333^

Funk, Weser River, depth 4.5 to 11 ft. ft
' 79 S ' 5

.

Villevert, River Seine, depth 5.66 to 18.39 ft. R ' 63 S' 443
.

In general therefore, for shallow water in rough channels the

power of the sine of the slope to which the velocity is proportional

is equal to 0.4 and equal to 0.473 for depths exceeding 4 feet.

The variations in the powers of both r and S with the depth of

the water in the channel are chiefly due to the fact, that the

bottoms of such channels are in most cases much rougher than

the sides. In shallow water, the resistance due to the bottom

preponderates, with increasing depth the influence of the less

rough sides more and more reduces the mean resistance per

unit area of surface.

The powers of r vary not only with the degree of roughness
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in general and with the depth of the water, but also with the

value of a, the coefficient of variation of c.

%

For the same degree of roughness, the powers of r have their

highest value for the highest value of a.

For m = 0.33 or K = 2.0 for instance,

and a = 1.0 R* = R ' 795
.

But for a = V" R- = R ' 835

for a = A R- = #9 ' 745

yrs

for a = A- R* = R ' 66
.

V*

This shows the great influence of bends, bars, or other impedi-
ments on the powers of R.

Our general equation expresses the variation of the powers of

r with the depth with a fair degree of accuracy. Greater

accuracy is obtained if the formula is put into the form

c = 66 f \/r +
("2"

1 + ^r
JJ

and giving m a negative value, as

for instance :

for K = 1.20 m = - 0.10

for K = 1.50 m = - 0.20

for K = 2.0m = - 0.33.

For values of R less than 1.0 foot the formula

66 (\/r + Vf)

Vr+K
gives slightly excessive results.

Amongst the mass of experimental data accumulated during
recent years those given by Fortier for irrigation channels are,

considered from the practical standpoint, the most valuable.

They relate to flow in channels possessing all possible degrees

of roughness and a minute description of the nature of the bed

is always given. Gaugings were, however, taken only for a single

depth and a single slope at each section and on this account

no deductions can be made in regard to the variation of the

coefficient c with the velocity.
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Besides these Dubuat, Darcy-Bazin, Legler, Cunningham,

Rittinger and others have given valuable data relating to flow in

canals to ditches; Funk, Villevert, Revy, Gordon and the U. S.

Engineers, interesting data relating to flow in rivers. After a

careful analysis of all the material available we come to the

following conclusions in regard to the variation of the coefficient

c with the velocity:

1. For channels of fairly regular cross-sections and courses

having tolerably smooth beds, such as channels in firm clay,

clayey loam, sandy soil with over 50 per cent clay, fine cemented

gravel, the coefficient c increases at ordinary velocities with the

velocity of flow. Under ordinary velocities in this sense we

understand velocities which do not cause erosion.

The increase in the value of c with increasing velocities is

equal to

a = Vh

for the smoothest down to

a = V

for the roughest ohannels of this class.

Examples :

S. Fortier, Bear River Canal Branch.

S. Fortier, Providence Canal.

S. Fortier, Solveron and Logan City Canals, Utah.

Darcy-Bazin, rectangular channel lined with pebbles up to

J inch diameter.

Epper, millrace, channel in earth, bottom covered with fine gravel.

Dubuat, Canal du Jard. Channel in earth.

Reich, River Salzach, reach very regular.

2. At velocities exceeding the ordinary, or when erosion

begins, the coefficient c decreases in value for the classes of

channels enumerated above. The decrease is usually such

that

1
a = jr m



54 THE FLOW OF WATER

Examples :

Legler, Linth Canal. The coefficient c increases until v is equal

to 4.72 ft. per second, then decreases.

Gordon, Irrawaddi River. The coefficient c increases until v is

equal to 2.62 ft. per second, then decreases.

In the first case the bed is firm earth, in the second sand.

3. For channels of fairly regular cross-section and course in

rockwork, firm gravel up to 2 inches diameter, for channels in

firm earth or sand, or sand with gravel, with stones or vegeta-

tion, the coefficient c does not appreciably vary with the velocity

of flow. Consequently
a = 1.0.

Examples:

Perrone, Torlonia Drain tunnel, channel in rock work.

Darcy-Bazin, series 5, rectangular channel lined with pebbles up
to 1^-inches diameter.

Darcy-Bazin, series 36, 37, 38, 41, 43, 47, 48, 50, Grosbois and

Chazilly Canals. Channels in earth of regular cross-section but

with stones or weeds.

La Nicca, Moesa River, coarse gravel.

La Nicca, Plessur River, coarse gravel.

Funk, Weser River.

Passini and Gioppi, Canal Cavour, below the Syphon of the Sesia.

4. For the class of channels enumerated under (3) the co-

efficient c decreases in value whenever the velocity becomes

sufficient to cause erosion. The decrease usually corresponds to

1
a = r

'

V*
5. For channels with very rough beds, channels with boulders,

loose cobblestones, loose coarse gravel or detritus, for channels

with artificial bars to prevent scour, the coefficient c decreases

rapidly in value with increasing velocities. The decrease is equal

to

1
a =

?

V*
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Example :

Cunningham, Solani Embankment, bed in clay and boulders with

artificial bars to prevent erosion, sides of masonry.

Omitting the extremes, we may briefly sum up the variation of

the coefficient c with the velocity as follows:

1. For channels of very regular cross-sections and courses in

clay, clayey loam, sandy soils with large percentages of clay,

cemented gravel up to one inch in diameter, the coefficient of

variation of c is equal up to the eroding limit to

a =

2. For channels in rockwork or cemented gravel exceeding one

inch in diameter, for ordinary channels in earth, channels with

some stones or vegetation, the coefficient a is equal up to the

eroding limit to

a = 1.0.

3. For channels in sand at any velocity and for all others at

velocities exceeding the eroding limit, the coefficient c decreases

in value with increasing velocities and the coefficient of variation

is fairly equal to

1
a =

j-vt*

K.

In a preceding chapter we have mentioned the experiments
made by Hubbel and Fenkell, Saph and Schoder to determine

the loss of head due to the resistance in curves. From data
r>

given by them we computed, that, omitting values of -j less
(jL

than 2.5, the friction per unit length of curve, in terms of the

friction per unit length of tangent is equal to
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and the excess of friction per unit length of curve in terms of

tangent friction is equal to

and the length of tangent equal in the amount of frictional

resistance to the frictional resistance in a curve of 90 equal to

0.5 xR U.Qd*3 ^M - i.o.

~R 7?

This vanishes when -y
= 4.9 3

d, it is a maximum when -r
d a

= 4.9 3 d and the total excess of friction is greatest.

loss of head due to any curve is consequently

The

)
2
r 2g

TABLE IV.

FRICTION IN CURVES.

2.5
4

5

6

10

15

20
25
50
100

2.5
4

5

6

10

15

20
25

50

100

Values of
|4.9d*

f-1
)

1.0. Diameters 1 to 72 Inches.

I"
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TABLE IV. A.

WEISBACH'S COEFFICIENTS FOR RESISTANCES DUE TO ENTRANCES, ELBOWS,
CURVES, CHANGES OF SECTION, ETC., ETC.

Values of z.
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in these equations

n = number of degrees in curve.

TT = 3.1416.

d = diameter of conduit in feet.

R = radius of curve in feet.

x = -$ for diameters greater than 1 foot.

x = 0.45 for diameters less than 1 foot.

y = | for a diameter of 1 inch.

y = A f r any ther diameter.

From the foregoing we draw the conclusion, that the value of

z depends:
r>

1. On the value of -7- and the value of d.
a

n
2. On the value of -

3. On the value of m.

For any arc, multiply the values of 2, found in the table, by
the number of degrees and divide by 90.

For any degree of roughness multiply the values of z by
the following:

m =
0.95, multiply by 1.0.

m =
0.83, multiply by 1.166.

m =
0.68, multiply by 1.436.

m =
0.53, multiply by 1.802.

m =
0.45, multiply by 2.060.

m =
0.30, multiply by 2.717.

If in the formula for the loss of head due to a curve we

substitute

2 grs , .. . , 0.01478
for its equivalent -r-=-

V2

( Vr + m)
2

and L for the length of the curve the formula will read, after

reduction,
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which simply expresses the theory outlined at the beginning of

this chapter that the excess loss of head due to a curve is

/4.9 f fCA - 1.0

times the loss due to an equal length of straight pipe; S being

the sine of the slope to which velocities in the tangent are due.

Riveted Conduits.

L.

Riveted conduits form a class apart in so far as the degree of

roughness varies with the diameter. Up to date the coefficients

for such conduits have been fairly well determined for diameters

up to 8.5 feet (Holyoke Testing Flumes); for larger sections

they are as yet problematical.

Fairly reliable values of the coefficients for riveted conduits

may be found by computing the losses of head due to the

resistance of rivet heads, or to enlargements and contractions

of the section as follows :

If in an 18-foot steel-riveted pipe we allow an internal pressure

of 140 pounds per square inch, in the steel a tension of 20,000

pounds per square inch; and if we assume the efficiency of the

riveted joints to be 70 per cent of the metal, we have for the

thickness of the metal in inches

140 X diameter in inches,

0.7 X 40,000

which gives t = 1.08 inches.

It is usual to take for the diameter of the rivet in inches

d = 0.15 + 1.5 t,

and for the pitch of the rivets in a single row

s
l
= 0.375 + 2 d,

and s
2
= 0.75 + 3 d

for the pitch in a double row.
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Hence in our case

d =
1.75,

s,
=

3.875,

s
2
= 6.0.

The usual diameter of the rivet head is 1.8 d and its depth 0.6 d.

This gives for the sectional area of the rivet at right angles to

the line of flow

3.15 X 1.05 = 3.3075 square inches nearly.

As the circumference of the conduit is 12 X 18 X 3.14 = 678.25

inches and the spacing 3.875 inches, there will be 175 rivets in

the single circumferential row. The open space between the

rivets will only be 3.875 - 3.25 = 0.725 inches. The dis-

turbance in the motion in this narrow space will be such, that

it will be safe to consider the row of rivet heads as an unbroken

line of a depth 0.6 d = 1.05 inches. Weisbach gives for the loss

of head due to constrictions

->

2g

in which

A
l
= section not constricted,

A
2
= section constricted,

a = 1.225 + * - 1.695 -

\4J A
i

In our case A, = 18 2 X 0.7854 = 254.34,

A
2
=

(17.825)
2 X 0.7854 = 249.5.

Inserting these values in Weisbach's formula we find

h = 00187489
^-

-

Assuming the metal sheets to be 10 feet each way there will

be six sheets in the circumference, and as the pipe is double

riveted longitudinally there will be twelve longitudinal rows of

rivets, and allowing 1.6 d for the outside rim on each side there
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will be twenty circumferential rows, the pitch being six inches.

The twelve rivets in each row will cause a constriction of 12 x
3.3075 = 39.69 square inches = 0.275 /

2
. According to Weis-

bach's formula this constriction causes a loss of head equal to

h =
00005936^-,

and the twenty rows a loss equal to

h = 00011907~
Adding the resistances due to all the circumferential rows in a

section of 9.5 feet we have

Z,
= 00187489 + 00011907 = 00199396.

Assuming the conduit to be 20,000 feet long the total resistance

due to the rivet heads will be

20000
Z.= - = 2105 X 00199396 = 4.196985.

To this must be added the resistance due to the enlargement
or contraction caused by the circumferential lap of the sheets.

As the thickness of the metal is 1.08 inches the diameter is

enlarged or contracted 2.16 inches at each lap. The loss of

head due to enlargements or contractions is, according to

Weisbach,

r / 216" \
2 V V

2
V 2

hence in our ease
[ (m^J -

ij ^
= 00041209 ^

The total resistance due to all the enlargements or contractions

is consequently

Z
2
= 2105 X 00041209 = 0.86755.

If the conduit had no rivet heads or enlargements and con-

tractions to increase the resistance, the value of the coefficient m
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would be the same as for a cast-iron pipe, or equal to 0.83,

and the frictional resistance per unit area of surface would be

0.01478
/=!

(1.456 + 0.83)
2

'

and the total resistance of the wet perimeter

Z3
= 002829 , ..

= 12.473.
4.5

Adding, we have for the sum of all the resistances

Z
l
+ z

2 + z
3
= 17.5375.

This gives for the total frictional resistance per unit area of

surface

17 .5325 x^
or /

= 00394594;

hence the coefficient c is equal to y
' = 127.7, and m is

( M ) "iVy^-rOr/ /

127 7

equal to -^ 1.456 = 0.48.
OD

Practical Applications of the Formulae

M.

1. From the formula

v = (66 (Vr + m)
we have

and

We have also

1
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Putting 'Vr = x and transposing we have

X 3 + mX 2 + 5-^-=- =
0," *-

66 Vs

from which the value of x = *vV is found by Horner's method.

We have also

m =
66

If the coefficient of variation of c is equal to 7^, V^* j- etc.,

these values are substituted in the given equations.

Values of a =V% 7*, 7* y^ y& yrV
>

are found in Table V.

Example: Let it be required to find the slope for a rectangular

aqueduct of common brickwork or concrete 100 feet wide, 12.5

feet deep, the velocity to be 4 feet per second. The cross-sec-

tion is 1,250 /
2

,
the wet perimeter 125 /, hence R = 10.0. In

the table of roots of mean radii we find \/10 = 3.163 VlO =

1.78. The value of m for common brickwork or concrete is

0.57. The value of a = 7T* for v = 4.0 is, according to Table V,

equal to 1.08. Inserting these values into our formula we have

for the slope

r_4_7
Ll.08 X 66 X (1.78 + 0.57) X 3.163J

V530

= 0.0000569.

Example: Let it be required to find the diameter of a semi-

circular channel lined with common ashlar or very good rubble

masonry, the slope being 1 in 1,000, and the permissible velocity

10 feet per second.

In this case m = 0.30

V7 = 0.0316

a = ^To = 1.137.
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Solving by Homer's method and inserting values we have

X3 +

- -

1.187 XMX0.0316
0.3 X2 + 0.0 - 4.217 = 0.0

\c
= 1.521

1.0 + 1.3 + 1.300

-
"

1.3

1.0
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and putting x = t/r we have

ho-yo.r
1 "*" LX 3 + m X 2 + 0.0 - V 0.01478 ^ =

0.0,
a. 2 g

which may be solved by Homer's method.

To facilitate calculations it is well to remember

that y&=7*x 7*.

and 7V-/4Y
V7V

Values of 7 * and 7^ are found in Table V.

Resistances due to entrance and the velocity itself are included

in the term ^= and need not be further considered
(Vr 4- m)

2 R
unless the length of the conduit is less than 1,000 diameters.

For pipes between 300 and 1,000 diameters in length (as also

for riveted pipes exceeding 3 feet in diameter), the coefficient of

variation is equal to a = 7^, and A and V are substituted in

the given equations for A and V. If the pipe is between 100

and 300 diameters in length (or an old pipe not very clean) the

coefficient a is equal to 1.0, and % and 2.0 are substituted in

the given equations for A and V6 - In case the conduit is less

than 100 diameters in length the coefficient a is equal to
j- and

A and V are substituted for T
9
<r and V. Values of

-01478

are found in Table VI.

Example: Let it be required to find the velocity of flow in a

new steel riveted conduit 6 feet in diameter, 10,000 feet long,

the head to be 5 feet and the conduit to have 20 curves of 10

each and a radius of 30 feet. In this casern =
0.53, R =

1.5,

Vl.5 = 1.107. For the curves we have the relation = -

a o
r>

= 5.0. In Table IV we find the coefficient z
2
for - = 5.0 and a

curve of 90 to be equal to 0.466. As there are 20 curves of 10

degrees we have Z
2
= 2Q X X '448 - 0.995. For m = 0.53

yu
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this is to be multiplied by 1.802, which gives for the total resist-

ance due to curves Z
2
= 1.782.

Inserting values into our formula we have

64.4 X 5.0
v =

0.01478 X 10000

J1.107 + 0.53)
2 X 1.5

= (8.312)*

Remembering that V*7 = 7* X V& we first draw the square
root out of the quotient and multiply this by the seventeenth

root of the square root.

The quotient is 8.312, V8312 = 2.884. In the table of roots

we find ^3 =
1.065, X/2.75 = 1.059. Interpolating we have

for *!J 2^884 = 1.062. Consequently!; = 2.884 X 1.062 = 3.0628

feet per second.

3. From the formula

v = (66 (r + m)

we have for the discharge of a circular conduit in cubic feet per
second

Q = (66 (j/r + m)V77) * d2 0.7854.

From this we have for the head in feet

_y_-i Ti.
0.7854/ 66 ($r + m)J R

and for the diameter in feet

).7854/ [66(-Vr + m)]
2 H

If a = 7T* the index if is substituted for |, if for f , V for V6

and A for 4
9
T- From this equation the value of d can only be

found by trial, assuming a value of $lr in the term ^Ir + m.

For a first trial a value of $r = 1.0 will give good results.

From the formula

2gH
0.01478 L

f 4/ \ o -W-*L

.vr + m)
2 R
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we have Q 2gH
0.01478 L

(Vr + m)
2 R

d2 0.7854

0.01478 L
A. i I

H _(_ __\ r +
\ d2

0.7854/ 2g

0-01478 , 7 p, 7 p"
' *

From this equation also d can only be found by a second or

third trial, assuming a value of Vr and R.

For a = FT* the index T
9
7 is substituted for tV, V for V and

A for 4
9
T-

For a = 1.0 the index is substituted for y
9
s, 2 for V and

A = t for A.

Example: What will be the loss of head corresponding to a

discharge of 5 cubic feet per second, the conduit being a 2-foot

riveted pipe 20,000 feet long and having 30 curves of 15 each

and a radius of 20 feet.

In this case m = 0.68; R =
0.5; Vr =

0.84, consequently

0.01478 0.01478

(Vr+TO)
2

(0.84 + 0.68)
2

In Table IV we find for the resistance of a 90 curve for the

7? OC\

relation = - = 10 Z
2
=

0.686, consequently for 30 curves
d

of 15 each Z2
- 30 X 15 X '686 - 3.430. For m = 0.68 this

yo

is to be multiplied by 1.436 which gives z
2
= 4.925.

Inserting these values we have

5 [0.00638
X -- + 4.925

L4 X 0.7854J 64.4

or H = 9.24 feet.
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5. The Kinetic energy or living force acquired by a body

falling free or descending in a plane infinitely smooth is equal to

E = \rntf = Q.W.H.,
Weightm = the mass of a body = -= ^ ,

Gravity

Q = the discharge in cubic feet per second,

W = the weight of one cubic foot,

H = the total fall in feet.

Expressed in horsepowers the energy is equal to

or, in kilowatts, to

K.W.

If a body of water is not falling free, the total head is reduced

by an amount which depends on the velocity, the length of the

conduit, its diameter and its degree of roughness.

The loss of head is equal to

V 2 0.01478

2g 2g 2 g (t/r +m) 2 R

as the case may be. For conduits of equal length the loss is

evidently the least for the greatest diameter and for the lesser

speed of flow.

For a given diameter the efficiency of a conduit as a trans-

mitter of energy is greatest when the speed of flow is such, that

one-third of the total available head is consumed in overcoming
frictional resistances (see

" Adams and Gummel," Eng. News,

May 4, 1893) .

Example: A new four foot steel riveted conduit 2,000 feet

long, under a head of 300 feet is to deliver water to the gener-

ator at such a velocity that its efficiency will be a maximum.

What will be the discharge and the horsepower transmitted?
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Allowing one-third of the total head to be spent in overcoming
100

frictional resistances we have v = = 0.05. For this value
zooo

of v the velocity will be

v = (66 (1 + 0.53)* Vl X 0.05)
& = 2.369 feet per second;

the discharge, Q = 2.369 X 16 2 X
|j

=30.4 cubic feet persecond;

r> 30.4 X 62.4 X 200 _
ftQ nthe horsepower, H P = = 708.0.

o5u

TABLE V.

Table V contains roots of velocities or values of (a), the

coefficient of variation of c.

To find the value of c corresponding to any velocity multiply

the value of 66 (t/r + m) by the value of (a)
=

7*, 7T\

r-.as the case may be.
1

To find the velocity multiply the value of 66 (^r 4- m) Vr.s

by the value of

(66 ( Vr + m) VTJS)
* which in Table V is given as 7*,

(66 ( Vr + rn) Vr.s) " which in Table V is given as

(66 ( Vr + m) Vr.s)
T7 which in Table V is given as

T-= . which in Table V is given as

(66 ( Vr + m) Vr.s)
A

as the case may be.

Also
,
to find the velocity, multiply the value of

which in Table V is given as

f-' R
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TABLE V.

ROOTS OF VELOCITIES OR VALUES OF (a), THE COEFFICIENT OF

VARIATION OF c.

V
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TABLE VI.

VALUES OF 66 (^r + m) AND CORRESPONDING VALUES OF /, THE

COEFFICIENT OF FRICTION. CONDUITS UNDER PRESSURE.

sj3
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TABLE VI. A.

WELDED PIPES.

TUBES OF BRASS, GALVANIZED IRON, SHEET IRON, STEEL, ETC.

1
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TABLE VII.

CIRCULAR CONDUITS.

DIAMETERS, INTERNAL AREAS, MEAN HYDRAULIC RADII AND THEIR ROOTS.

-,
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TABLE VI. A.

WELDED PIPES.

TUBES OF BRASS, GALVANIZED IRON, SHEET IRON, STEEL, ETC.

1
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TABLE VII.

CIRCULAR CONDUITS.

DIAMETERS, INTERNAL AREAS, MEAN HYDRAULIC RADII AND THEIR ROOTS.

< -
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TABLE VII. A.
ROOTS OF MEAN HYDRAULIC RADII.

R
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TABLE VIII.

Table VIII contains the practically most useful coefficients

indicating the degree of roughness of a conduit.

In the design of a new conduit it is well to remember, that the

degree of roughness of a conduit is not a permanent quantity.

Conduits lined with cement, smooth concrete, good brickwork,

planed boards, metals, etc., gradually deteriorate and assume a

degree of roughness which closely resembles that of a sawed

board (m =
0.68) ,

in case of sewers that of common brick work

(m =
0.57) ,

in case of large riveted pipes that of very rough
brick work (m =

0.45) .

If the velocity is feeble, or the flow often interrupted, crypto-

gamic plants sooner or later appear on the walls of open conduits

and rust or calcareous matter coates the walls of pipes. In

such a condition the degree of roughness corresponds to that of

very rough brick work (m = 0.45) .

If left to themselves, channels in earth of all descriptions

likewise deteriorate and gradually assume a degree of roughness

corresponding to that of a natural channel (k
= 1.93 in most

cases) .

For artificial channels in earth Table VIII gives values of

both m and k. Owing to the abnormally rapid decreases in the

value of c with the decrease of the depth of the water in rough
channels in earth a negative value of m gives better results

than k.

The k formula, however, gives good results in all cases where R
is greater than one foot.

The relation between K and m and the coefficient n of the for-

mula of Kutter is given by

1 + K 0.02

100
=

1 + m
'
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TABLE VIII.

VALUES OF m AND k, THE COEFFICIENTS INDICATING THE DEGREE OF ROUGH-
NESS. A. CONDUITS UNDER PRESSURE.

1.0
0.95

0.83

0.68

0.57
0.53
0.45

0.30
0.20

Description of Conduit.

New, straight tin or plated pipes.

Pipes of planed boards or clean cement, new. Very smooth new
asphalt-coated cast and wrought-iron pipes. New asphalt-coated
riveted pipes not exceeding 6 inches in diameter.

Ordinary new asphalt-coated cast and wrought-iron pipes. Wrought-
iron pipes not coated, new. Glass and lead pipes. Pipes lined with
smooth concrete or cement plaster.

Pipes lined with cement or smooth concrete, pipes of planed or rough
boards, cast and wrought-iron pipes, coated or not coated, steel

and wrought-iron riveted pipes not exceeding 3 feet in diameter

(all some time in use but fairly clean).
Sewer pipe. Conduits lined with common brickwork or rough concrete.
New asphalt-coated steel-riveted pipe exceeding 3 feet in diameter.
Conduits lined with very rough brickwork or very rough concrete.
Steel-riveted pipe exceeding 3 feet in diameter, some years in use.
Old cast and wrought-iron pipes of all descriptions, not very clean.
Old steel-riveted pipe exceeding 3 feet in diameter.
Drain tile.

B. OPEN CONDUITS.

Description of Conduit.

1 .0

0.95
0.83

0.80
0.70

0.57

0.45

0.30
0.15
0.0

Conduits lined with neat cement exceptionally smooth.
New conduits lined with neat cement or planed boards.
New brick conduits washed with cement, conduits smoothly dressed

with cement mortar.
New conduits lined with smooth concrete or very good brick work.
Conduits lined with sawed boards or fairly good brick work.

Aqueducts lined with neat cement, cement plaster, smooth concrete

very good brickwork, planed boards (all some time in use).
Channels lined with common brickwork, rough concrete or smoothly

dressed ashlar masonry. Sewers lined with neat cement, smooth

concrete, brickwork washed with cement or plastered with cement

mortar, fairly good and very good brickwork (all some time in use.)
Channels lined with very rough brickwork or concrete, fairly good

ashlar masonry.
Channels lined with common ashlar or very good rubble masonry.
Channels lined with roughly hammered stone masonry.
Channels lined with common rubble masonry. Channels in rockwork.
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TABLE VIII. Continued.

C. CHANNELS IN EARTH.

m
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TABLE IX. Continued.

Author.
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TABLE IX. Continued.

Author.
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TABLE IX. Continued.

Author.
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TABLE IX. Concluded.

Author.
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TABLE X.

EXPERIMENTAL DATA.
I. RIVETED PIPES.

Description of Conduit.
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TABLE X. Continued.

Description of Conduit.
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TABLE X. Continued.

Description of Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description
of Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.



92 THE FLOW OF WATER

TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X.* Continued.

Description of
Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Conduit.



108 THE FLOW OF WATER

TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

109

Description of

Conduits.
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TABLE X. Continued.

Description of

Conduit.
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TABLE X. Continued.

Description of

Channel.
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TABLE X. Concluded.

Description of
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Forms of Sections of Conduits.

RELATION OF MEAN HYDRAULIC RADIUS TO WET PERIMETER.

In the design of the form of cross-section of an artificial con-

duit two factors enter into consideration:

1. The material composing the walls of the channel.

2. The special purpose for which it is intended.

Conduits under pressure, whether constructed of metal,

wood, earthenware, concrete or masonry are nearly always

circular in section, because this form can best be given the

strength to resist internal and external pressures. The thickness

of the material forming the walls of a circular conduit is found

from the formula:

PD
,

< =
-jr

+ c

in which P is the pressure in pounds per square inch;

D the internal diameter in inches;

T the safe tensile strength of the material;

c a constant added to guard against defects in the

casting or the welding.

For such conduits as are subject to water ram a pressure of

100 pounds per square inch is allowed in addition to the pressure

due to the head which is equal to P = 0.434 h. The stresses

allowed in the material and the constants added are :

For cast iron T = 4,000, c = 0.33

For wrought iron T =
17,000, c = 0.06

For steel .
T = 20,000

For lead T = 450, c = 0.3

For concrete, 2 per cent steel T = 480, c 1.0

Since the advent of reinforced concrete, conduits constructed

of this material are coming more and more into favor. Steel-

concrete water pipes resisting pressures of heads exceeding 100

feet are now in use. The two aqueduct-syphons of Sosa have

internal diameters of 12.46 feet, and resist the pressure of a

head of 92 feet.
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FIG. 4.

Forms of Sections of Masonry Conduits. The Numbers are Proportional.
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Steel concrete sewer pipe is now made in diameters from 15 to

120 inches.

Open conduits lined with concrete are most frequently made

semicircular in section. Wooden flumes which are acting simply

as aqueducts are generally made semi-square in section, if they
are intended to carry lumber or wood the triangular section is

used. For aqueducts lined with masonry a section is generally

preferred whose sides are vertical or nearly so, whose bottom is

a flat segmental arch, and whose top (if covered) is a semi-

circle. Very large aqueducts, those crossing valleys, streams

or other depressions are given a rectangular section.

In designing channels in earth the velocity enters into the

problem. In those of some dimensions the bottoms are well

rounded and the sides given slopes ranging from J to 1 for

cemented gravel, to 3 to 1 for loose sand.

In a preceding chapter we have observed, that the form of the

cross-section of a conduit has an appreciable influence on the

power of the velocity to which the frictional resistance is pro-

portional and that the circular or semicircular form is the one

most favorable to flow. For rectangular conduits lined with

boards, for instance, we have found the value of the coefficient

a to be equal to V& and equal to W* for semicircular conduits

lined with the same material. The circular form has the

additional advantage of having a wet perimeter less in propor-

tion to the area of the section than any other form.

>A F E D Let AD (Fig. 5) be

the top width of a trap-

ezoidal channel, BC its

bottom width, and FB
the depth.

The area of the cross-

section will then be :

y

FIG. 5.
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and the wet circumference

P = AB + BC + C D.

Let BC =
6,

BF =
d,

AD =
t,

AF_
BF

Then the area A = db + Id2 = d (b + Id);

the wet perimeter P = b + 2 d \/l + Z
2

;

the bottom width b = -=- Id;
d

p
and the relation , the reciprocal of R,

P 1 d
-T =

2
+ -T (

2 Vl * + ! - '

-il Cc- ./I

Let the angle which the side of the conduit CD makes with

the horizontal be denoted by a, and we have for the conditions

P A
most favorable to flow or T- a miminum, and a maximum,A sr

the depth d = if_
A sin a

2 - cos a'

the top width t = b +.2ld = + d cotangent a;

A

the bottom width b = -r - d cotangent a;
a

,
. , ,

. Wet Perimeter
the relation

Area of Section

jP __6_ 2rf

^4. ^ sin a

= l
+ /2-cosa)\ d

d \ A sin a I

Consequently, for a given value of i? and given side slopes the

area of section is least if R is equal to one-half the actual depth of

water.

For the semicircular section R is equal to one-half the radius,

hence this forms fulfils the conditions best and other forms of



SEWERS 117

section fulfil it the better the nearer they approach the semi-

circle. Table A contains values of R and areas of sections in

terms of the radius or semi-diameter *for semicircular conduits.

TABLE A.

Depth of

Water in

Terms of

Radius.
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Sewers.

The forms of the cross-section most frequently adopted for

sewers are the circular and the oval or egg-shaped. Only sewers

of very great dimensions are given a rectangular section, the

roof being a flat segmental arch.

For sewers less than two feet in diameter glazed earthenware

pipe is mostly used, less frequently concrete pipe. Sewers con-

structed of brick, masonry or concrete are, however, found with

diameters down to two feet.

When the discharge of a sewer is estimated to be fairly con-

stant the circular section is preferred, when it varies con-

siderably, however, some form of an oval sewer is used.

Two forms of egg-shaped sewers are in general use. The one

most frequently adopted has the proportional parts as given in

the annexed figure. In the other form the lower circle has a

diameter of one-fourth the diameter of the upper circle only.

This form is used for sewers of small dimensions and greatly

varying in discharges.

The vertical diameter in both forms is always equal to 1J

diameters of the upper circle.
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In the figure Tangent = = 0.75.

Hence the angle BCG = 36 53',

and the angle EGG - 180 -
(90 + 36 53')

= 53 7',

hence, the angle FGD = 2 X 53 7' = 106 14'.

Using trigonometry, these data enable us to compute the

different parts of the area and the circumference with precision.

For the proportional parts given in the figure we find by this

method :

The area = 18.35 which is equal to 1.147 d2

,

the circumference = 15.8488 which is equal to 3.9622 d,

the mean hydraulic radius =
1.1584, which is equal to 0.2896 d,

d being the horizontal diameter.

By the same method we may compute the value of the mean

hydraulic radius or the area for any depth of water in the sewer.

The mean hydraulic radius has its greatest value when the con-

duit is about 0.85 full. It is equal, being

0.85 full to 0.345 the horizontal diameter;

| full to 0.33 the horizontal diameter;

i full to 0.28 the horizontal diameter;

J full to 0.20 the horizontal diameter.

The speed of flow necessary to prevent a deposit of sewage is

given, for all forms of the cross-section by the equation

or, in exceptional cases, when the sewer is very well constructed

by
0.0625

v = 2 H ,

r being the mean hydraulic radius.

Hence for the very greatest section the least permissible

velocity is two feet per second. In order that the velocity

should not fall below the permissible limit the value of

66 ( Vr + ) Vr,
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on which for equal slopes the velocity depends should not, for

any quantity of discharge vary greatly.

If we assume the horizontal diameter to be equal to 4 feet,

the value of r is, for the sewer running full, equal to 1.1584 feet,

for the sewer running \ full to 0.80 feet.

Taking m = 0.57 (corresponding to common brickwork) the

value of 66 ( Vr + m) A/r is in the first case equal to 113.6, in the

second to 89.48.

For r = 0.8 the velocity necessary to prevent a deposit is

equal to

2 + ^^ = 2.156 ft. per second.
0.8

s =
7~v=T T~7=l =R^1

I

= 00053
L66 ( Vr + m} Vr J L 8r

For this
1

velocity the slope will be

.156m2

(
Vr + m) Vr J

~
L 89.48 J

For the same slope and the sewer running full the velocity will

be

v = (66 ( Vr + m) Vrs)& = (113.6 X 0.02304)if = 2.575 feet

per second.

The cross-section is equal to 1.147cP = 18.864 /
2

,
hence the

discharge, for the sewer running full

Q = 18.864 X 2.575 = 48.57 /
3

and Q = x 2.516 = 9.09 /
3

for the sewer running \ full. Thus, while the actual discharge in

cubic feet per second for the sewer running full is 5.34 times the

discharge of the sewer running J full, the difference in the speed

of flow is only 2.575 2.156 = 0.419 feet per second.
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EXPONENTIAL EQUATIONS.
General Relations between Diameters and Velocities or Quan-

tities. General Relations between Slopes and Velocities or

Quantities.
Long Circular Conduits Running Full.

A.

If in our general equation for the velocity of flow we substitute

d, the diameter of a conduit in feet, for r, its mean hydraulic

radius, the formula thus transformed will read:

v = 23.34 ( V5 + 1.414 ra) Vds
and for a = vv

v = (23.34 (V5 + 1.414m) V~ds)$

which may be written

v = 34.607 ( V5 + 1.414 m)* d& s*.

For the term ( *V3 + 1.414 m) and its variation with the

velocity we have no adequate substitute, containing as it does

two variables in an everchanging relation. This fact makes

the problem of finding an exponential equation, giving values as

exact as those found from the general formula an impossibility.

The powers of the diameter (or the mean hydraulic radius) to

which velocities and quantities are proportional are not con-

stant, even for the same degree of roughness, but vary with the

diameter (or the mean hydraulic radius) itself. On this account

exponential equations with constant values of the powers of

d or r are only approximations, fairly true between certain

limits, but the more incorrect the farther outside of these limits.

Such equations should only be considered as brief empirical

expressions, valuable only on account of their brevity; they

should never be substituted for the general formula when a

great degree of accuracy is desired.

Computing the velocities and discharges of two long straight

circular conduits of different diameters, but of the same degree of

roughness and having the same slope from the general equation,

we may by means of the data thus obtained find an expression for

the relation between the diameter and the velocity or the discharge

which holds good between the limits of the two values of d.



122 THE FLOW OF WATER

To find the exponents of the powers of d to which velocities

and quantities are proportional we may put

x _ log V,
-

log V Q

log d
l --log dQ

y
_ log Qt

-
log Q

By means of these equations and for values of d between 1

and 50 inches for a =
v\, and between 1 foot and 20 feet for

other values of a we find the following values of x and y.

a = v\ m = 1.0 x = 0.67 y = 2.67

a = v l m = 0.95 x = 0.67 y = 2.67

a = v\ m = 0.83 x = 0.68 y = 2.68

a = v? m = 0.68 x = 0.695 y = 2.695

a = V& m = 0.57 x = 0.70 y = 2.70

a = m\ m = 0.53 x = 0.70 y = 2.70

a = i.o m = 0.57 x = 0.66 y = 2.66

a = 1.0 m = 0.45 x = 0.67 y = 2 -67

a = i.o m = 0.30 z = 0.68 y = 2.68.

Consequently, for m = 0.68 (pipes of planed staves, cast and

wrought iron, etc., all some time in use), velocities are pro-

portional to d
'695

, quantities to d
2 ' 695 and we have between V

and d the relation
/7

-695

(1)

J
0.695

1

^ 0-695

'1=^03^695- ()
a

1.453

,,-
- <

and between Q and d

Q, _^ r2)
f}

~~
J 2-695 W

^o a
o

rfi\
2 ' 695

/ ^
(a)

(6)
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Equations (a) 1 and 2 enable us to find velocities and

quantities for a diameter d
lf provided velocities and quantities

for a diameter d are known.

From equations (6)1 and 2 we may find the diameter d
t
for

a velocity V l
or a quantity Qv provided the diameter d for the

Velocity V
Q
or the discharge Q is known.

In the same manner we find for the relation between the slope

and velocities and quantities:

(3)

Co
* (4)( }

Combining equation (1) and (3) we have:
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Combining (2) and (4) we have:

(6)

(a)

= <*

(c)

By means of these equations we may find :

The value of V
1
or Q 1

for any value of d
l
or $r

The value of d^ for any value of 7
l; Q l;

or $r
The value of S

t
for any value of V

lf Q or d
1

provided values of F
07 Q ,

d
,
S are known. In these equations

S& is substituted for S^5 when a = v& and <S* when a = 1.0.

Computing velocities and quantities of discharge for a con-

duit one foot in diameter and having different degrees of rough-

ness from the general formula we find for three values of (a)

the following equations:

1. For a = v*,

v = 93.25 - 59.84 (1
- m) d* S&,

Q = 76.69 -47.0 (l-m)d&*.
2. For a = ^,

v = 70.44 - 41.85 (1
- m) d* S&,

Q = 53.33 - 32.87 (1
- m) ^ S&.

3. For a = 1.0,

v = 56.33 - 33.0 (1
- m) d* S*

t

Q =44.24 -25.92 (1-m) ^5*.

In particular we have the following:

m = 1.0. New long straight conduits lined with clean cement

very smooth. Tin pipes. Plated pipes.

v =93.25 d-w SA
,

= 76.69 d a -



EXPONENTIAL EQUATIONS 125

m = 0.95. Very smooth new asphalt-coated cast or wrought-
iron pipes, also new asphalt-coated wrought-iron

and steel riveted pipes not exceeding 6" in diame-

ter. New conduits of planed staves.

v = 90.17 d-
e

*S&,

Q = 70.82 d
a - fl8 S*.

m = 0.83. Ordinary new asphalt-coated cast and wrought-iron

pipes. Wrought-iron pipes not coated. Glass and

lead pipes. Pipes lined with smooth, concrete,

v = 82.7 d- 68
.S*,

Q = 65.01 d*-
68 S&.

m = 0.68. Pipes lined with cement or smooth concrete, pipes

of planed or rough staves, cast and wrought-iron

pipes, coated or not coated, wrought-iron and

steel-riveted pipes not exceeding 36" in diameter

v = 74.1d' 695
S&,

Q = 58.2d2 ' 695 ^.
(All some time in use but fairly clean.)

m = 0.57. Sewer pipe. Conduits lined with common brick-

work.

v = 52.5 d' 70
S&,

Q = 41.27 d
2 ' 7 S&.

m = 0.53. New asphalt-coated steel-riveted pipe exceeding 36"

in diameter.

v = 50.77 d' 7

S&,

Q = 39.875 d
2 ' 7 S&.

M= 0.45. Old cast and wrought-iron pipes of all descriptions,

not very clean. Pipes of riveted steel exceeding
36" in diameter, in use for several years.

v =38.16 d -87
^,

Q =29.96 d 2 -87 ^.

M= 0.30. Old pipes of riveted steel exceeding 36" in diameter.

v = 33.23d'68
^,

= 26. 10 d2 '68
S*.
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It will be observed that the powers of d to which Velocities

and Quantities are proportional vary with (a) the coefficient

of variation of c. . The difference between the values of the

powers of d is equal to 0.04 between the successive values of (a).

For m = 0.68 we have for instance:

For a = v* d ', d 2',
a = v^ d' 655

,
d 2 '655

,

a = 1.0 d '615
,

d 2 ' 615
,

a = -V d '575
,

d 2 '575
.

v

Sewers.

B.

For sewers of circular section the general equations for velocity

and quantity are:

for a - W,
v = 71.41 - 44.0 (1

- m) d* S&,

Q = 56.08 - 34.55 (1
- m) & S&.

and for the egg-shaped section

v - 78.68 - 47.7 (1
- m) d' S&,

Q = 92.76 - 56.24 (1
- m) d" S&,

d being the horizontal diameter.

The practically useful coefficients of roughness for sewers are

as follows:

m = 0.83, x = 0.68, y = 2.68, smooth concrete, very good

brickwork, brickwork washed with cement.

m =
. 70, x =

. 69, y = 2 . 69, good concrete, fairly good brick-

work, very well laid sewer pipe.

m =
. 57 common concrete or brickwork, common sewer pipe.

Sewers of all descriptions become in the course of a few years,

frequently in the course of a few months, coated with sewer

slime. Sewage, moreover, does not, on account of its greater

viscosity or stickiness, flow with the same velocity as pure water.

The most reliable data pertaining to flow in sewers of all descrip-

tions some time in use indicate, that a value of m greater than

. 57 cannot be safely taken.



SEWERS 127

For m . 57 we have in particular

a = v&,

v = 52.55 d' 7

Q = 41.27 d 2 ' 7

for the circular and

v = 57.43 d 9 ' 7

Q = 67.70 d*'
7
S&,

for the egg-shaped section.

For a = 1 . we have for the same value of m,

v = 42.19 d
'88 ^,

Q = 33.14 d 2 ' 88 ^,
for the circular and

v = 46.30 d ' 66 ^,
Q = 53.11 d 2 ' 66 * for the egg-shaped section.

In all these equations the horizontal diameter is assumed to

be of the vertical diameter or the vertical diameter H the

horizontal diameter. For long sewers with easy curves the

equations corresponding to a = V1 * should be taken, for sewers

with many sharp curves, sharp angles, etc., for sewers discharg-

ing under water against a hydraulic counterpressure the equa-

tions given under a = 1 . give the best results.

Comparing the constants given for circular and egg-shaped

sewers we find for equal horizontal diameters and a = 1.0 the

relation

Velocity egg-shaped section _ 46.30

Velocity circular section 42.19

Discharge egg-shaped section _ 53.11 _ . ^
Discharge circular section 33.14

The velocity for the egg-shaped section is consequently 1 . 097

times and the discharge 1 . 602 times that of the circular section.

It would, however, be very erroneous to conclude that for an

equal velocity an egg-shaped sewer should have a horizontal

diameter of =0.911 and for an equal discharge a horizon-
J- \) t7 /

tal diameter of - =
. 622 times the diameter of the circular

1 .502

sewer.
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For equal velocities the relation between the horizontal

diameter of an egg-shaped section and the diameter of a circular

section is given by:

Horizontal diameter egg-shaped section

'42 . 19 d ' 66
circular sectionY'515

46.30 /

and for equal discharges by:
Horizontal diameter egg-shaped section

'33.14 cP'
66

circular sectionY'378

53.11 /

Assuming a circular sewer to have a diameter of 3 feet, an

egg-shaped sewer will have, for the same velocity a horizontal

diameter of

or 0.889 the diameter of the circular sewer.

For an equal discharge the diameter of the egg-shaped sewer

will be

/33.14 X 18.59V'376
, 10 ,

( 53.11 )
=2. 512 feet,

or 0.834 times the diameter of the circular section.

For a diameter of 12 feet we compute the relations, for equal

velocities

d = 10.42 egg-shaped section _A1

~12~
-8701

'

for equal quantities

d == 10 . 10 egg-shaped section _ - _
\-jLl

Consequently we may say, that an egg-shaped sewer should

have for an equal velocity a diameter of . 88 =
| times the

diameter of the circular section and for an equal discharge a
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diameter of 0.834 =
| times the diameter of the circular

section.

C. Open Conduits.

I. FORM OF THE CROSS-SECTION MOST FAVORABLE TO FLOW.

The form of cross-section most favorable to flow is one whose

top width is equal to the two side slopes, whose top and

bottom width together are equal to the wet perimeter, and

whose mean hydraulic radius is equal to one half the depth.

The semisquare is the simplest form fulfilling these condi-

tions, and the areas of the trapezoids may be expressed in

terms of the areas of this standard. Areas of trapezoids and

the semi-circle thus expressed are found in the following

table :

Form of Section.
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The area of a trapezoid is equal to

A = d(b + d tang a);
the wet perimeter to

P = b + 2 d Vl + tang
2

a;

the mean hydraulic radius to

^ = d(b + c?tang q)

b + 2d Vl + tang
2
a'

the bottom width to

7 Area
& =

-7-
- d tang a;

the top width to

T Area . ,
,

* ~ + a tang a.
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General Relations between the Velocity, the Discharge and
the Depth of Water in the Form of Section

most Favorable to Flow.

Computing the velocities of flow for two conduits having

mean hydraulic radii equal to 0.1 foot and 10.0 feet, respectively,

from the general formula

v =
[66 (Vr + m)\/r~7^]*,

and using the values of v thus found in the equation
. log v,

-
log v

"

log R,
-

log RQ

We find for the powers of R, to which the velocity is propor-

tional, the values tabulated below:
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2
In any of these equations the term 2 may be sub-

JL ~T~ K>

stituted for its equivalent 1 m. In particular we have for

the semicircle:

m = 1.0 Semicircular channels lined with clean cement,

v = 129 d'69 S&.

m = 0.83 Semicircular channels of brickwork washed with

cement,

v - 116 d' 7 S&.

m = 0.70 Semicircular channels lined with rough boards,

v = 104. 5 d' 71 S&.

For the semisquare we have:

a = 7*.

m = 0.95 Channels lined with clean cement, planed boards,

v = 108.43 d' nS&,

Q = 216.86d 2 ' 67 T7
.

m = 0.80 Channels lined with smooth concrete, very good

brickwork,

v = 98.87 d'M S^
t

Q = 197.74 d 2 ' 68 S&.

m =
. 70 Channels lined with sawed boards or good brickwork,

v = 92.48d' 69
/ST97 ,

Q = 184.96 d S&.

m = 0.57 Channels lined with common brickwork, rough con-

crete or very good ashlar,

v = 84.23 d'n

Q = 168.46 d 2 '70

m = 0.45 Channels lined with rough brickwork, common
ashlar or very rough concrete,

*- 76.67 d'

Q = 153.34 d 2 '715

m 0.30 Channels lined with good rubble masonry,
v = 67.27 d*-

m S&
Q = 134.54 d*'
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m = 0.15 Channels lined with roughly hammered masonry,
channels in cemented gravel up to one inch in

diameter,

v = 57.8 d' 75
S&,

Q = 114.6 d 2 ' 75
S&,

a = 1.0.

m =
. Channels lined with common rubble masonry, tunnels

K = 1.0 in rockwork, channels in cemented gravel exceeding
one inch in diameter,

v = 39.24 d'75
4,

Q = 78.48 d 2 ' 75
S*.

m = 0.1 Fairly regular channels in loose sand, or sand with

K = 1.2 gravel imbedded

v = 35.39 d*'
m

S*,

Q = 70.78 d 2 -785 ^.

m = - 0.2 Fairly regular channels in earth, free from debris or

K = 1.5 vegetation,

v.
= 30.86 d'775

S*,

Q = 61.72 d 2 - 775 i

m = 0.32 Channels in earth with debris or vegetation,

K= 1.93

v = 26.1 d' S*,

Q = 52.2 d 2 ' 795 Si

If the cross-section of the conduit is a trapezoid, the dis-

charges are multiplied by the proportional areas found in the

table given at the beginning of this chapter.

For a trapezoid having side slopes of 1: 1, for instance, the

discharges found from any of the equations given above are mul-

tiplied by . 914, for side slopes of 2 : 1 by 1 . 236 etc. The depth

being the same, the velocity is not affected by the side slope.

Values of the powers of d relating to Velocities are found in

Table E
;
those relating to Quantities of discharge in Table F.

Values of the sines of the slope and their roots are found in

Table C.
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For channels in earth, in case the velocity exceeds the limit

where erosion begins, the following equations may be used:

m = - 0.1 v = 28.68 d'

K = 1.20 Q = 57.36 d 2 '

m = - 0.20 v = 25.14 d' 735

K= 1.50 = 50.28 d 2 '

m = - 0.32 v = 20.90 d'755

K= 1.93 Q-41.80 d 2 'm

It is, however, more convenient to use the equations previ-

ously given, for which the powers of d and S are found in the

tables, and multiply the Velocities or Quantities found from the

formulas by the coefficient of variation of C, which in these

cases is equal to a = - - Values of a = - are found in

yh
column 10, Table V.

II. GENERAL EQUATIONS.

In the design of cross-sections of channels it is not always

possible to use the form of section most favorable to flow. Other

forms are frequently required for special purposes, are constructed

at less cost, or offer other advantages.

For wooden flumes, for instance, the triangular section is fre-

quently adopted.

If the sideslopes of a triangle are 1 : 1, or the sides inclined 45

(which is the usual sideslope for a flume), the area of its cross-

section, its mean hydraulic radius and consequently its velocity

and discharge are equal to those of a semisquare when

(1) the depth = Varea of semisquare.

(2) the top width = \/4 X area of semisquare.

In the design of channels in earth it is frequently necessary,

in order to keep the velocity below the eroding limit, to make

the sections wide and shallow, so that the frictional resistance

may be increased and the flow retarded. In many cases a

shallow section is also more easily constructed and at less cost.
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The general exponential equations, derived as previously

indicated, are as follows:

a = 7*,

v = 243 - 131 .6 (1
- m) r* SA,

a

v = 205.8 - 112 (1
- m) r* S

a = 7*

v = 176.3 - 93.5 (1
- m) r*<S^,

a = 1.0,

v = 132 - 66 (1
- m) r* 5*,

a =

v = 100.6 - 48.3 (1
- m) r*

o

In any of these equations 2 - --
^may be substituted for

(1
-

m).

The practically most useful special equations are as follows:

a
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Explanation of the Use of the Tables of Velocities and

Quantities Q, H, and I.

Table G contains the quantities of discharge in cubic feet per

second of a conduit one foot in diameter, for seven different

degrees of roughness and 174 slopes.

For the discharge in gallons per second multiply the quanti-

ties found in the table by 7.48052. For the velocity of flow

1 14
multiply the quantities found in the table by =

or,
. 78o4 1 1

if the conduit is egg-shaped by =
f nearly.

I.

To find the quantity of discharge for any diameter, and a

given slope, multiply the value of Q found on line with the given

slope under the value of m
}
which indicates the particular degree

of roughness of the conduit, by the value of dy found in Table D
under the same value of m.

Example: What is the discharge of a cast-iron conduit same

time in use; the diameter being 36 inches, and the slope 1 : 10,000?

In Table G, in column under m =
. 68, in line with S =

. 0001

we find Q = 0.3349/
3

per second.

In Table D, under dy = d 2 -695
,
we find for d =

36", d 2 -695 =

19.31. Hence Q = 0.3349 X 19.31 = 6.54 f per second.

II.

To find the loss of head or the slope corresponding to a given

discharge and a given diameter, divide the given discharge by
the value of dy found in Table D as indicated above. The quo-

tient then found will indicate, in Table G, under the proper value

of m, the slope required to produce the given discharge.

Example: What is the loss of head corresponding to a dis-

charge of 55 /
3

per second, the conduit being a new, asphalt-

coated, steel-riveted pipe 6 feet in diameter?

In Table D, under dy = d2 '7

,
we find for a diameter of 72"

d 2 '70 = 126.18. Dividing 55 by 126.18 the quotient 0.436 is
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the quantity of discharge of a conduit one foot in diameter for

the required slope.

In Table G, under m = 0.53, the value of Q coming nearest

to 0.436 is 0.439. This stands in line with S = 0.0002, conse-

quently S = 0.0002 is the slope required to produce the given

discharge.
III.

To find the diameter corresponding to a given discharge and

a given slope, divide the given discharge by the discharge of a

conduit one foot in diameter for the given slope as found in

Table G. The quotient is the value of dy for which the diameter

is found in Table D.

Example: What will be the horizontal diameter of an egg-

shaped sewer, the discharge being 200 /
3

per second, and the

slope 1 : 2500?

In Table G, in column headed "Egg-shaped section," and in

line with S = 0.0004, we find Q = 1.0759. Dividing 200 by
1.0759 the quotient is 185.8.

In Table D, in column headed d 2 ' 70 the nearest value above

185.8 is 191.3, which stands in line with d = 7.0 feet; hence

7 feet is the horizontal diameter required to produce the given

discharge.

IV.

To find the loss of head or the slope required to produce a

given velocity for a given diameter, divide the given velocity

by the value of dx found in Table D, as indicated above. The

quotient thus found, multiplied by 0.7854 =
-^ will indicate,

in Table G, under the proper value of m, the slope required.

Example: What is the proper slope for an 8-inch sewer pipe?

For well constructed sewers the permissible velocity is

0.25
v = 2 +

d

which gives for an 8-inch sewer v = 2.375 feet per second.

In Table D, in column headed dx = d ' 7

,
in line with d = 8

inches, we find d* = 0.7529. Dividing 2.375 by 0.7529 the

quotient is 3.053, which multiplied by ^ gives Q = 2.477.



138 THE FLOW OF WATER

In Table G, in column headed m =
57, we find the nearest

value of Q above 2.477 to be 2.495, which is in line with

S =
. 005, which is the slope required.

V.

In case the conduit is egg-shaped, proceed as before, but

instead of multiplying by . 7854 =
^ multiply by 1 . 147 =

f .

Example: What is the least permissible slope for an egg-

shaped sewer having a horizontal diameter of 10 feet?

In this case: v = 2 + ^P = 2.025 feet per second.

In Table D, in column headed dx = d '7 and in line with

d = 120 inches, we find d ' 7 = 5.011. Dividing 2.025 by
5.011 the quotient is 0.404, which multiplied by 1.147 gives

Q = 0.473.

In Table G, in column headed "Egg-shaped section," we find

the nearest value of Q above 0.473 to be 0.4738, which is in

line with S = 0.000085, hence S = 0.000085 is the least per-

missible slope for a 10-foot egg-shaped sewer.

VI.

In Table H we find velocities of flow in a semisquare one

foot in depth for the practically most useful values of m or K
and 174 slopes.

Table H applies to any trapezoid having the form of section

most favorable to flow.

To find the velocity of flow corresponding to any depth what-

soever, either in the semisquare, or the trapezoid having the

form of section most favorable to flow, multiply the values

found in the table by the values of dx found in Table E.

Example: What is the velocity of flow in a channel in earth

having the form of section most favorable to flow, the bed of

the channel being covered with stones, the depth 10 feet and the

slope 1 : 10,000?

In Table H under K = 1.93, and in line with S = 0.0001,

we find v = 0.261.

In Table E, in column headed K =
2.0, and in line with

d =
10, we find d' 795 = 6.238. Multiplying the two quantities,

we find v = 1.628 feet per second.
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VII.

Remembering that in the form of section most favorable to

flow 2R =
d; or the mean hydraulic radius equal to one half

the depth, it is plain that Table H can also be used to find the

velocity of flow in channels not having the form of section most

favorable to flow. It is only necessary always to consider

R = % d, and multiply or divide by the value of d, which corre-

sponds to the given value of R.

Example: What is the velocity of flow in a channel lined

with common brickwork, the slope being 1 : 10,000 and the

mean hydraulic radius 6 feet?

In Table H, in column headed m = 0.57, and in line with

S = 0.0001, we find v = 0.6424.

R = 6 is equal to d = 12.

In Table E, in column headed m =
0.57, and in line with

d =
12, we find D ' 7 = 5.695. Multiplying the two quantities

we have v = 3.658 feet per second.

Example: What is the slope required for a velocity of 8 feet

per second, the conduit being a triangular flume of sawed boards

and the mean hydraulic radius equal to 2 feet?

R = 2 is equal to d = 4 . 0.

In Table E, in column headed m = 0.70 and in line with

d =
4.0, we find d -69 = 2.603. Dividing 8 by 2.603, the

quotient is 3.073, which is the value of v corresponding to a

depth of one foot.

In Table H, in column headed m = 0.70, we find the value

nearest to 3.073 to be 3.061, which is in line with S = 0.0016,

which is the required slope.

Example: What is the value of the mean hydraulic radius

required to produce a velocity of 2.8 feet per second, the slope

being 1 : 10,000 and the conduit a channel in earth in good con-

dition, free from stones and plants?

In Table H, in column headed K = 1.5 and in line with

S = 0.0001 we find v = 0.3086. Dividing 2.8 by 0.3086 the

quotient is 9.073.
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In Table E, in column headed K =
1.5, we find the nearest

value above 9 . 073, to be 9 . 191, which stand in line with d = 17 . 5.

17 5
Hence R, the mean hydraulic radius required, is ^- =8 . 75 feet.

2

VIII.

As Table H holds good for all conduits having the form of

section most favorable to flow, it is evident that it may be

used to find velocities of flow in circular conduits running full.

To find velocities corresponding to any diameter, it is necessary

to keep in mind the fact, that the depth in a semicircle is one

half the diameter, and multiply or divide by the value of d

which corresponds to the semidiameter.

Example: What is the least permissible slope for a 6-inch

sewer pipe?

Here the semidiameter or the depth is 3 inches. The per-

25
missible velocity is v = 2 + - = 2.5 feet per second.

a

In Table D, in column headed dx = d
' 7

,
we find in line with

d = 3 inches, d ' 7 = 0.3703. Dividing 2.5 by 0.3703, the

quotient is 6.751.

In Table H, under m = 0.57, the value of v coming nearest

to 6.751 is 6.757, which is in line with s = 0.0085. Hence

s = . 0085 is the least permissible slope for a 6-inch sewer pipe.

IX.

For the classes of circular conduits whose degrees of roughness
are indicated by the coefficient m = 0.95, m = 0.83, m = 0.68.

Table H gives velocities also in case the conduit is between 300

and 1000 diameters in length, or has sharp elbows, such as city

mains.

Example: What will be the velocity of flow in a city main

3 feet in diameter, the slope being 1 : 200?

Here the semidiameter is 1 . 5 feet.

The difference in the powers of d to which the velocity is pro-

portional between a = V^ and a = V is equal to . 04. For

m = 0.68 or 0.70 and a =
V*, we have for the power of d,

x =
0.705, consequently for a = V& x = 0.665.
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In Table D, in line with d =
1.5, we find d'66 = 1.307,

d '67 =
1.312, hence d'665 - 1.3095.

In Table H, in column headed m =
. 70 (which is sufficiently

equal to 0.68 to apply in such cases) and in line with S = 0.005,

we find v = 5.595. Multiplying we have 1.3095x5.595
= 7.3266 feet per second. The discharge will be Q = 7.3266

X 9 X 0.7854 = 51.79 cubic feet per second.

X.

Table I gives the Quantities of discharge in cubic feet per

second of a semisquare one foot deep for the practically most

useful values of m or K and 174 slopes.

For the trapezoids or the semicircle the quantities given in

the table are to be multiplied by their proportional areas.

Example: What is the discharge of a channel lined with dry
rubble masonry, or a channel in rockwork, or a channel in coarse

cemented gravel, the side slopes being one half to 1, the depth
12 feet, and the sine of the slope 0.0005?

In Table I
7

in column headed m =
0.0, and in line with

S = 0.0005 S, we find Q = 1.755.

In Table F, in column headed m =
0.0, and in line with

d -
12, we find d 2 ' 75 - 928.4.

For a sideslope of i : 1 the proportional area is . 868. Mul-

tiplying the three quantities 1.755 X 928.4 X 0.868, we find

Q = 1414.2 /
3

per second.

Example: What will be the dimensions of a channel in sand,
the discharge being 200 cubic feet per second, the slope 1 : 10,000

and the sideslopes 3:1? For a sideslope of 3 : 1 the propor-
tional area is 1.6625. Dividing 200 by 1.6625 we have for

the discharge of a semisquare of equal depth Q = 120 . 3 feet.

In Table I, in column headed K = 1.2 and in line with

S =
0.0001, we find Q = 0.708. Dividing 120.3 by 0.708

the quotient is 169.9.

In Table F, in column headed K = 1.25, we find the value

nearest to 169.9 to be 169.5, which stands in line with 6.4 feet,

which is the depth required.

The bottom width of the conduit will be 6.4 X 0.325 = 2.08

feet, the top width 6.4x3x2 + 2. 08 = 40. 48 feet.
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The cross-section will be 6.4 X - - =136. 2 square

200
feet, and the velocity =1.46 feet per second.

lob . 2i

XI.

In the design of channels in earth, especially those in light

soils, it is necessary to keep the velocities of flow within the

eroding limits. For channels in light sandy soils a velocity

exceeding 1.5 feet per second should not be allowed, for chan-

nels in earth with some clay 2 . 5 feet per second should be the

limit.

To keep the velocities down two methods may be used :

(1) The slope may be reduced by means of weirs, dams and

drops.

(2) The mean hydraulic radius may be reduced by making
the channel wide and shallow.

Example: A channel in sandy soil is to carry 500 cubic feet

per second, the velocity is not to exceed 1.5 feet per second,

the sideslopes are to be 3 : 1 and the depth of the water 8 feet.

What will be the slope of the channel?

The area of the cross-section will be = 333.3 feet.
1 . 5

qqq q
The mean width -^ = 41.66 feet.

o

The bottom width 41.66-8 X 3 = 17.66 feet.

The wet perimeter 17.66 + 2 V82 + (8 X 3)
2 = 68.26 feet.

333 3
The mean hydraulic radius - = 4.883 feet.

bo.zb

R =4.883 corresponds to d = 9.766.

In Table E, in column headed K = 1 .25, we find the value of

d- 765
for9.8tobe5.732and5.687for9.7,meanfor9.75 = 5.71.

Dividing 1.5 by 5.71 the quotient is 0.2627.

In Table H, in column headed K = 1 . 20, we find the value

coming nearest to 0.2627 to be 0.2625, which stands in line

with S =
. 000055. This is equal to a fall of . 29 feet per mile.

Example: A channel in sandy soil is to carry 500 cubic feet

per second at a velocity of 1.5 feet per second. The sideslopes

are to be 3 : 1 and the slope of the channel . 5 feet per mile, or
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. 000095. What will be the depth of the channel and its bottom

width?

In Table H, in column headed K = 1.2 and in line with

S = 0.000095, we find v = 0.345. Dividing 1.5 by 0.345 the

quotient is 4.347.

In Table E, under K = 1.25, we find the value of d' 765 next

above 4.347 to be 4.383, which stands in line with d = 6.9.

Hence R = 3.45.

If the channel is given a depth of 4 feet, its mean width will be

3
-5^ = 83.33 feet;
4

its bottom width 83.33 - 4 X 3 = 71.33 feet;

its wet perimeter 71.33 + 2 \/42 + (4 X 3)
2 = 96.53 feet;

333 3
its mean hydraulic radius

' = 3.45 as above.

TABLE C.

SINES OF SLOPES AND ROOTS OF SINES OF SCOPES.

S
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TABLE C Continued.

s
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TABLE C Concluded.

s
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TABLE D. Continued.

|Diameter

1

|in
Inches.



OPEN CONDUITS 147

TABLE E.

POWERS OP DEPTHS OF WATER IN THE FORM OF SECTION MOST FAVOR-

ABLE TO FLOW. POWERS OF MEAN HYDRAULIC RADH IN GENERAL.

d or
r

in

Feet.
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TABLE E. Continued.

d or
7
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TABLE E. Continued.

d or
r

in
fppt
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TABLE E. Concluded.

d or
r in

Feet.
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TABLE F.

POWERS OP THE DEPTHS OF WATER IN THE FORM OF SECTION MOST
FAVORABLE TO FLOW.

d in

Feet.
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TABLE F. Continued.

d in

Feet
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TABLE F. Continued.

153

d in

Feet.
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TABLE F. Concluded.

d in

Feet.
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TABLE G.

QUANTITIES OF DISCHARGE IN CUBIC FEET PER SECOND OF A
CONDUIT ONE FOOT IN DIAMETER.
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TABLE G. Continued.
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TABLE G. Continued.
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TABLE G. Concluded.
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TABLE H.

VELOCITIES OF FLOW IN A SEMISQUARE ONE FOOT IN DEPTH.

Sine of

the

Slope.
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TABLE H. Continued.

Sine of
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TABLE H. Continued.

Sine of

the

Slope.
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TABLE H. Concluded.

Sine of

the

Slope
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TABLE I.

QUANTITIES OP DISCHARGE IN CUBIC FEET PER SECOND OP A SEMI-
SQUARE ONE FOOT IN DEPTH.

Sine of
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TABLE I. Continued.

Sine of

the

Slope
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TABLE I. Continued.

Sine of

the

Slope
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TABLE I. Concluded.

Sine of

the

Slope
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Weir Discharges.

FRANCIS' FORMULA.

The discharge of a sharp-edged measuring weir is usually

computed from Francis' formula, which reads:

Q =3.33 (b-nQ.lH) (H + h)*
- M,

in which Q = discharge in cubic feet per second;

b = breadth of weir in feet;

n = number of end contractions;

H = the vertical distance between the crest of the

weir and the surface of the still water in the

reservoir or the channel;

h = the head due to the velocity of approach.

The head due to the velocity of approach is found from the

equation

-

in which Q = discharge found from the formula given above,

neglecting the velocity of approach;

A = cross-section of the channel or reservoir parallel

to the weir, at the point where the surface

of the water begins to slope towards the weir.

If the discharge of the weir is small in comparison with the

width and depth of the channel or the contents of the reser-

voir the velocity of approach and the head due to it may be

neglected.

Table K contains values of 3.33 #1

The table is used as follows:

Let the depth of the water from the crest of the weir to the

still surface be 3 feet.
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Let the head due to the velocity of approach be 0.1 foot.

Then 3.33 (H + h)$
- 3.33 ft* = 3.33 (3.1)*

- 3.3 (0.1)*
= 18.176 - 0.1053 = 18.0707.

Let the breadth of the weir be 10 feet and we have:

Q = (io
- 2 X 0.3) X 18.0707 = 169.86458 cubic feet per

second.

TABLE K.

H
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Francis consists in the fact, that it is frequently impossible to

evaluate properly the head due to the velocity of approach.

If the formula of Bazin is used the head due to the velocity of

approach does not enter directly into calculations; it is replaced

by a coefficient which depends for its value on the relation

between the head and the vertical distance between the crest and

the floor of the channel of approach.

Bazin conducted his experiments with weirs 0.5, 1.0 and 2.0

meters wide, the heads ranging between 0.05 meters (2 inches)

and 0.6 meters (24 inches). The crests of the weirs were raised

to various heights above the floors of the channels of approach
and the sides were flush with the walls of the channels. The

formula of Bazin reads :

Q =
f mil + 0.55

( ^-Jl
Lh

in which m = 0.6075 +

h = the head above the crest to the surface of tks still

water;

p = the depth of the water below the crest to the floor

of the channel of approach.

The formula as given holds good for any system of measure.

For English measure it may be written :

Q = (3.2485 h* + 0.07914 Vh) L
j"l

+ 0.55
h*

1 .

Values of ~1 +
'55

l are found in Table L.a. It will
,

(p + /&)

be observed, that the value of this factor diminishes rapidly as

the relation - diminishes in value.

P

It is equal to 1.2444 for - = f . 1.0220 for - = \ .pi p 4

1.1375 for - = i . 1.0068 for - = | .pi p 8

1.0611 for - = i .

p 2
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TABLE L.a.
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TABLE L.b.

VALUES OF Q = 3.2485 A! + 0.07914 Vh.

h
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If accurate results are desired from the application of this

formula the depth p as well as the length L should never be less

than 2 h, and the width of the channel of approach should

increase up stream from the crest.

Heads are most conveniently and accurately ascertained by
means of a plumb-bob, the string of which is hung over a nail

driven horizontally and pulled horizontally along a board to

which a graduated scale is attached. A datum reading is taken

and laid off on the scale when the surface of the water is just

flush with the crest and the point of the plumb-bob grazes the

surface when it is made to swing to and fro.

Of weirs not originally constructed to be measuring devices

those most frequently found are the sharp-crested triangular

weir, the triangular weir with a quarter round crest and the

rectangular, broad-crested weir. The factors of proportional

discharge for these shapes, for which we are indebted to Bazin,

the Cornell Engineers, G. W. Rafter and others, are as follows,

the down stream face being in all cases vertical, air admitted

under the descending sheet of water and the relation between h

and p being the same as for the sharp edged measuring weir :
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Weir Formulae.

Weirs are constructed for the following purposes:

(1) To measure the discharge of .a conduit.

(2) To regulate the discharge of a conduit.

(3) To serve as impounding and regulating dams for the

storage of water.

(4) To raise the surface of the water at a certain point to a

certain level.

According to the manner of outflow weirs are classified as

follows :

(1) Complete overflow weirs, when the crest of the weir is

above the surface of the run-off water.

(2) Incomplete weirs, when the crest of the weir is below the

surface of the runoff water.

(3) Discontinuous weirs (wing dams, bridge piers, etc.)

when the weir does not extend the whole width of the channel.

(4) Sluice weirs (water-gate, head-gate, regulating weir,

needle weir, etc.), when the water flows out through an orifice.

Theoretically the discharge through a rectangular sharp-

edged orifice is found as follows:

Let b be the breadth of a rectangular jet,

h^ the depth of its upper,

h
2
the depth of its lower surface below the surface of the

still water (Fig. 8).

An infinitesimal thin layer of the jet between its surface and

an infinitesimal depth h has a section equal to bdh.

The velocity of flow in this infinitesimal layer bdh is equal to

v = V2gh.

The discharge will consequently be

r
Jh! bV2ghdk,

which integrated, gives for the discharge of the whole jet
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Let B be the breadth of the orifice,

H
l
the depth of its upper,

H
2
the depth of its lower edge below the free surface,

we then have for the coefficient of discharge

B (H* -
ff,*)

and for the discharge in terms of the orifice

(1)

FIG.

The value of C, the coefficient of discharge, differs with the

nature of the orifice, and must be found by experiment. (For

sharp-edged orifices and weirs C = 0.622, for broad-crested

weirs C = 0.577).

For the discharge through a rectangular sharp-edged notch we

have, since there is in this case no head H
l

Q = $CBV?rg H,t. (2)

The discharge through rectangular notches and over sharp-

crested weirs, has been minutely investigated by Bazin, Francis,

and others. Bazin found for the discharge the expression,

(3)

in which c = . 6075 +
0.0148

h

p = height of crest above bottom of channel.
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Francis found that the loss of discharge due to end contraction

is equal to $ the height of the submerged opening for each

contraction. The discharge is consequently

Q = f c (b
- 0.1 mH) V2g H?,

in which m is the number of end contractions.

If Francis' formula is used and the discharge is relatively

large compared with the dimensions of the conduit, the head

due to the velocity of approach must also be considered. This

head is equal to

the velocity of approach is equal to

b and h being the breadth and depth of the channel at the

point where the surface of the water begins to drop towards the

crest of the opening. Making this correction for the head due

to the velocity of approach, Francis' formula becomes

Q = | C (6 -0.1H)V2g[(H + a)* -a*],

in which c = 0.622 for sharp-edged orifices.

Putting f 0.622 V2g = 3.33, Francis' formula reads

Q = 3.33 (6
- raO.l H) [(H + a)

1 -
a*]. (4)

Bazin's and Francis' formulae give equally good results; the

latter is the one most frequently used in this country.

To measure the discharge of a small stream (pipe line, flume,

etc.), a temporary weir of planks is usually constructed. In

order to arrive at accurate results care must be taken that the

sill or the crest of the weir is perfectly level, that it is at right

angles to the line of flow, and that it is above the surface of the

run-off water. The head on the sill should not be less than one-

half, nor more than 2 feet, and the depth of water in the channel

should be at least three times the head on the crest. In order

to measure the head on the sill a stake is driven in the bed of

the stream a short distance above the weir. The top of the
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stake must be on a perfect level with the crest of the weir. A
thin-edged graduated scale fastened vertically to the top of the

stake is very convenient. On this gauge the height H, the

head on the sill is read off to the surface of the still water. ,

FIG. 9. Measuring Weir.

Weirs intended to regulate the discharge of a conduit, or to

raise the surface of the water at a certain point to a certain

level are constructed of various materials and in various forms.

A complete overflow weir, when constructed of masonry in the

bed of a stream, is usually of the form shown in Fig. 10.

M

FIG. 10. Complete Overflow Weir.

The height of the weir necessary to raise the surface of the

water to a given height h, is found as follows :
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LetH be the head on the sill, measured to still water,

6 the breadth of the channel,

a the height due to the velocity of approach,

h the difference of level between the surface of the water

down stream and up stream, or the swell (MO, Fig. 10)

and the discharge is

Q = %cbV2^[(H + d)* -a*],

from which we find for. the head on the sill

Q

Denoting the height of the weir above the bottom of the

channel by x and the depth of the run-off water down stream

by /, we have
x + H = h + f,

hence x =
(/ + h) H,

or

when the velocity of approach is small.

FIG. 11. Incomplete Weir.

For an incomplete weir the discharge and the height of crest

necessary to raise the water to a given level are found as follows :

The head on the sill (MN, Fig. 11) is greater than the swell-
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head (MO), therefore only the water above flows off freely,

while the water below flows off under the head (MO) = h.

The discharge through (MO) is

and that through (ON) = H - his

-h)V2g(h

hence the whole discharge:

Q = cb V2g% [(h + a)*
-

a*] + H-hV(h + a).

From the discharge Q and the height h (MO) to which the

water is raised, we find for the height of water above the crest,

or the head on the sill,

H = Q (h -*.

hence we have for the necessary height of the crest of the weir

above the bottom of the channel (NP),

(NP) = x =(f + h)-H = [(OP) + (MO)] - (MN).

Neglecting the velocity of approach we have for the height of

the weir the simple expression

(NP) = Q
cb V2 gh

FIG. 12. Discontinuous Weir.
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Wing dams are built whenever an obstruction extending the

whole width of the stream is either on account of navigation

not permissible, or on account of the form of cross-section of

the channel not feasible or necessary.

FIG. 13. Wing Dam.

While for overflow weirs the usual problem consists in finding

the height of sill or crest necessary to raise the water to a given

level, the problem for wing dams consists in finding the breadth

of channel required to be closed in order to raise the surface of

the water to the given level.

Let QR = b = breadth of efflux (Fig. 13),

MN = h = the height of swell,

NO =
}
= the undercurrent,

and we have for the quantity of water flowing off freely above /

the undercurrent

and for the undercurrent /

q 2
=

the whole discharge is consequently

from which We find, for the breadth of efflux,

Q
b =

c (f ft + /) V2gh
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If the velocity of flow in the stream is great, or the swell h

comparatively small, it will be necessary to consider the velocity

of approach. Denoting as before by a the head due to the

velocity of approach, we have for the water flowing off freely

and for the undercurrent

q 2
=

cbf V2g (h + a),

for the whole discharge

Q =

and finally for the breadth of efflux

Q
b =

c V20 (f [(h + a)*
-

at] + / \//i 4- a

This formula may be applied to discontinuous weirs of any

description, such as bridge piers, etc., etc. Denoting by b the

FIG. 14. Sluice Weir.

sum of the openings between bridge piers the swell may for

instance be found by putting

swell = h
\cb Wi

The coefficient of efflux for discontinuous weirs is very high,

usually only the end contraction needs to be considered.

For wing dams c = 0.98 will give good results. For well-

rounded bridge piers c may be taken equal to 0.90, for those
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forming acute angles c = 0.95, and for those of elliptical cross-

section c = 0.97.

Sluice weirs are constructed to regulate the discharge of a

conduit or reservoir as well as to raise the surface of the water

to a given level.

In computations of the discharge of sluice weirs, the head H
is measured from the free surface to the center of the opening.

If the water flows off freely we have for the discharge

Q =
cfb V2~

and

in which

and

H
~2~gW

f is the height of the opening,

b = the breadth

c = 0.60.

FIG. 15.

For a given discharge and a given head H the height of the

opening is given by
_ Q

cbV2gH
In case the surface of the run-off water down stream rises

above the sluice opening, the effective head reduces to the dis-

tance MN (Fig. 15) and we have for the height of opening

Q
/
=

cb V2g (MN)
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If as in Fig. 16 the surface of the run-off water downstream

lies somewhere within the opening, a part of the water runs off

under water, while the rest flows off freely.

Let MO - H
NO -ft
OP =

/

and the discharge through NO is

3l
-

cfj> V2gH -

and the discharge through OP

q2
=

cf2
b V

therefore the whole discharges through NP

Q = cb V2g (f 1
VH -0.5/! + /2 Vh).

m

FIG. 16.

For a given discharge Q, a given effective head H(MO) and

a given height /2
of the sill below the surface of the run-off water,

the height fiy
or the distance of the lower edge of the sluice board

above the surface of the runoff water may be found by putting

Q
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METHODS OF MEASUREMENT.

Loss of Head.

A.

When a conduit discharges into an open tank or reservoir,

or into the open air, the loss of head is ascertained by levelling

between the surface of the source of supply, and the surface of

the discharge tank, reservoir or outflowing stream. When
this is not the case, or when the loss in part of the conduit only
is to be .found, other methods must be employed. Where the

pressures are not great, open stand pipes or piezometers are most

convenient, otherwise the pressures are measured by means of

manometers. A mercury manometer of the form generally

used has the following essentials: A cast-iron mercury reservoir

into one side of which a glass plate is fitted through which the

height of the mercury within may be observed. A metal tube

with a gate valve connects the top of the reservoir with the main

pipe at the point at which the pressure is to be measured. At

its highest point, this tube has an air valve. Into the mercury

reservoir, which is about half filled with mercury, a vertical tube

is placed, nearly reaching to the bottom. This tube, usually

one quarter of an inch in diameter, is of brass or wrought iron in

its lower part and of glass in its upper part. To the glass tube

a graduated scale is attached. As mercury is very sensitive to

changes of temperature the tube is surrounded by a water-

jacket, in its upper parts also of glass. When the gauge is to

be used the air valve in the connecting tube is opened and also,

by degrees, the gate valve. When the air is wholly removed

the air valve is closed and the gate valve fully opened. The

pressure of the water in the reservoir depresses the surface of

the mercury and causes it to rise in the tube. The height of the

mercury column above the surface of the mercury in the reservoir

is read on the graduated scale, both at times of discharge and

times of no discharge.

If a is the difference of the heights of the mercury columns at

two sections at times of no discharge, and A the difference at
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times of discharge, the loss of head between the two sections

whose pressures are measured is equal to

H = 13.6 A -
a,

13.6 being the specific gravity of mercury.

When the conduit is of great length and the difference between

the pressures at two sections considerable, a form of the manom-

eter known as the Bourdon gauge, is used with good results. The

essential parts of this instrument, universally used as a steam-

gauge, consist of a hollow curved metal spring, one end of which

is free to curve, while the other is fastened to the case of the

instrument. A pipe connects the interior of the tube, which

is oval in cross-section, with the main pipe at the point where

the pressure is to be measured. The pressure of the liquid

expands the spring, the free end moves and by a lever the move-

ment is transmitted to a toothed bar lever, which again transmits

the motion to a toothed wheel. The movement of the spring,

thus converted into rotary motion, is, by a pointer, indicated

upon a graduated circular scale. The pressure is indicated in

pounds per square inch. This is converted into feet of pressure

by dividing it by 0.434.

If A is the difference between the indicated pressures at two

sections at times of discharge and a the difference at times of

no discharge, the loss of head between the two sections is equal

to

A aH =
0.434

Discharge of Conduits under Pressure.

B.

Discharges are measured by means of vessels, tanks, by the

rise in the surface of a reservoir, or the overflowing stream is

measured by a weir, an orifice or the current meter. When

these methods are not feasible, some form of water meter is

used. The best known devise of this kind is the Venturi meter,

invented by Herschel and named for a celebrated Italian

hydraulician.
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The theory of the Venturi meter is based on the principles

enunciated by Bernouilli:

"The fall of the free surface level between two sections of a

conduit is equal to the difference of the heights due to the

velocities at the sections."

If p is the pressure at one section of a conduit and v
l
the

velocity and p2
and v

2
the pressure and velocity at another sec-

tion and y and y:
elevations above datum, then

GG +y ~

In Fig. 17 the line pv p2, p 3 ,
shows the theoretical variation

of the free surface level due to the contraction and subsequent

enlargement of a conduit. The line pv pv p5 ,
shows the actual

variation, the difference being due to the pressure expended
in overcoming the frictional resistance of the walls of the con-

duit. It will be observed that this difference increases with

the distance.

FIG. 17.

Differences of pressure in sections of conduits not far apart

are most conveniently measured by mercury difference gauges.

In Fig. 18 is shown a gauge of this kind connected to sections,

the "pressures at which are to be compared.
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The bottom of the gauge is filled with mercury. When the

gate valves are opened, the pressure of the water causes the

mercury to rise or fall to heights which indicate the pressures

at the points of the main to which the gauge is attached. A

graduated scale allows a comparison of the pressures.

PRESSURE FROM
LOWER END OF.
VENTURI METER

PRESSURE FROM
THROAT OF

VENTURI METER

FIG. 18.

The difference between the pressures at the full section and

the section most contracted indicates the difference between

the velocities at the two points; the difference between the

pressures at the full sections above and below the contraction

corresponds to the loss of head between the two points.

Denoting the area of the section not contracted by A, the

area of the section most contracted by a, and the difference

between the pressures converted into feet of head of water by

H, the theoretical quantity passing through the section most

contracted per second is given by the equation

A a

For the actual discharge this is multiplied by a coefficient,

which, however, differs little from unity. In the Venturi meter,
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as usually constructed, the area of the throat is contracted to

one ninth the area of the full section of the main. Its length is

from eight to sixteen times the diameter of the full section. It

has a registering device which mechanically converts differences

of pressure into corresponding velocities and these, for a given

diameter and a certain interval of time (10 minutes), into

gallons of discharge.

The meter is made in sizes from 2 up to 100 inches in diameter.

The loss of head is insignificant and the condition of the water

does not affect its working.

The discharge from vertical tubes was recently determined

by Lawrence and Braunworth and formulae deduced, which not

only will prove to be of great value in computing the discharge

of artesian wells, but furnish another method to determine the

discharge of any conduit under pressure with a fair degree

of accuracy. To do this, it will simply be necessary to give

the end of the conduit a vertical direction and observe the

elevation of the crest of the outflow above the rim of the

conduit.

The investigators mentioned experimented with tubes rang-

ing between 2 and 12 inches in diameter and 15 feet long and

three conditions of out-flow were observed, depending on the

pressure head. Under a feeble head the water flows simply

over the rim of the conduit as it does over a sharp edged weir

and the discharge is equal to

Q - 8.8 d1 '25 hlM .

When the issuing water forms a jet the discharge is equal to

Q = 5.57^'" ft
'53

,

in which Q = cub. ft. per sec.

d = actual internal diameter in feet.

h = elevation of crest of water above the rim of the

conduit, in feet, determined by sighting rod. For the condition

intermediate between the weirflow and the jetflow no formula

was deduced.
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Discharge of Open Conduits.

c.

When the discharge of an open conduit cannot be measured

by a weir or an orifice, it is necessary to find the mean velocity

of flow.

The mean velocity in a vertical section is ascertained directly

by means of rod-floats or by making measurements at the point

where the thread of mean velocity is found, either with a current

meter or with a double float. Indirectly the mean velocity is

found by means of surface floats or by current meter observa-

tions at different points in the vertical section.

If the channel is narrow, measurements in one vertical section

are generally sufficient, especially if a rod-float is used. With

increasing width of the channel observations in two or more

vertical sections are necessary.

When the mean velocity of flow in a river is to be ascertained,

the channel is divided, at right angles to the line of flow, into

sections 5, 10, 20 or more feet wide, the distance depending on

the degree of accuracy desired.

The mean velocity at each section is found by means of rod-

floats, by observations at the surface, at mid-depth, at the

position of the thread of mean velocity or at points of propor-

tional depth. The mean velocity for the whole channel is found

by taking the mean of the mean velocities of all the sections.

For the discharge of the whole channel the mean velocity of

each section is multiplied by its area and the discharges of all

the sections summed up. If floats are used, the stretch over

which the float is to pass should be carefully measured and

staked off. If possible ropes or wires should be stretched across

the stream, at right angles to the line of flow. The float should

be started some distance above the rope and the time of its

passage carefully observed.

The distance measured out may be 250 to 500 feet for swift

streams; 50 feet will suffice if the current is feeble. The longer

the stretch the more reliable the time observation. On the

other hand, if the stretch is long it is often exceedingly difficult
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to keep the float in a position parallel to the axis of the stream.

This is especially so near the banks. On this account it may
be necessary to measure stretches as short as 20 feet.

A surface float may be a ball of wood or some other light

material, or else a watertight metal cylinder, so loaded as to

float flush with the surface of the stream. A small flag will

render the float more visible.

Double floats are used to find the velocities at different depths

below the surface. They consist of light surface floats con-

nected by a fine strong cord, to a large sub-surface float. A
ball of wood or a flat watertight metal box makes a good surface

float, a watertight metal cylinder, heavy enough to keep the

cord in tension, but not to drag it below the surface is an excellent

sub-surface float. The speed of the surface float is identical

with that of the larger float and observations of its passage will

give the speed of the latter.

Usually the subsurface float is placed at the point where the

thread of mean velocity is found. The use of double floats

generally leads to trouble of one kind or another; they are rarely

used, except to measure velocities in very deep channels.

A cylindrical wooden pole two inches in diameter and loaded

at the bottom, so that it will float vertically, makes an excellent

rod-float. It may be made in sections and screwed together.

A brass cylinder screwed to the bottom makes an excellent

weight. Into it shot may be placed to suit the weight to all

requirements. Watertight tin tubes also make good rod-

FIG. 19. Channel of River Divided into Vertical Sections.

floats. Rod floats should be loaded so that they nearly reach

to the bottom of the channel, but never touch it. On the other

hand they must not be too short, or else they will travel with

a speed exceeding the mean velocity.
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The rod-float is the ideal instrument to measure the velocity

in a flume or aqueduct. The fact that it integrates the velocity

of the whole section and thus indicates the mean velocity directly

is an advantage not possessed by any other measuring device.

If properly used it gives results whose accuracy cannot be ques-

tioned. However, if the bottom of the channel is very rough,

covered with plants or else very deep, its use is not indicated.

FIG. 20.

Velocity measurements are made in the centre of each sec-

tion. Depths are taken by soundings.

Line (1) indicates the position of the thread of maximum

velocity in each section, line (2) the position of the thread of

mean velocity in each section, and line (3) the position of the

thread of mean velocity for the whole section.

The current meter, like so many other hydraulic measuring

devices, originated centuries ago in the Valley of the Po, Italy,

the cradle of hydraulics. The earliest form consisted of a small

paddle wheel mounted in a floating frame. It could only be

used at the surface.

When Woltman, in 1790, added a recording device the instru-

ment could be used at any depth. The recording mechanism

consisted of an endless screw fitted to the horizontal axis; and a

series of toothed wheels which transmitted the motion of the

axis to a register. The recording mechanism was thrown in and

out of gear by a string, attached to a lever. The instrument

was fitted and clamped to a one-inch pole on which it could be
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slid up and down. To read the number of revolutions recorded

the current meter had to be taken out of the water. The instru-

ment was generally known as "Woltman's Tachometer."

Many modifications of this instrument appeared, mostly of

the windmill pattern, with propellers and vanes. Some have

the axis of the propeller horizontal, others vertical, and the

shape of the propellers is variable. The general form of the

instrument is, however, always the same. The present day
current meter has an electrical signalling or registering device.

The best known patterns are those of Harlacher in Europe, and

those of Price and Ritchie-Haskell in the United States.

The Harlacher meter is of the windmill pattern ;
its propeller

has four blades. A vane about 12 inches long and 5 inches wide

is fitted to a prolongation of the axis of the wheel. This direct-

ing device keeps the face of the wheel at right angles to the line

of flow. To the axis of the propeller is fitted an endless screw,

operating a toothed wheel. A pin in the side of the wheel

strikes an electric wire at each revolution, thus completing an

electrical circuit. The battery with the registering or sounding

device is kept at the surface. The meter slides up or down on

a vertical rod. To move the meter up and down with a uniform

speed an apparatus consisting of ropes, pulleys and weights is

often used.

The propeller of the Price current meter has four cup-shaped

wings; its axis is vertical and its revolutions are indicated by an

electrical buzzer. The instrument is generally used without a

rod; it is kept vertical by a weight attached to the frame and

moved up and down by a cord. Its vane consists of two blades,

one horizontal, the other vertical, intersecting in the middle

at right angles. It is made in two sizes. The small meter

measures velocities as low as 0.2 feet per second with a fair degree

of accuracy; the large meter gives good results down to velocities

of 0.5 foot per second.

The latest design in the line of meters is the Ritchie-Haskell

so-called "direction current meter." Like the Harlacher and

the Price this instrument has a device recording the number of

revolutions of the propeller electrically. It has also a device
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indicating the direction of the current. The body of the instru-

ment is a compass with a magnetic needle. An electrical circuit

measures the angle between the direction of the needle and the

direction in which the vane points and indicates the angle on a

graduated dial.

Current meters must be rated; that is, the relation between

the velocities and the number of revolutions of the propeller

must be ascertained. This is done by pulling the meter at

various constant speeds through a still body of water, and deter-

mining the relation between speeds and revolutions.

Current meters as furnished by the makers are always rated,

but they must subsequently be rerated at frequent intervals,

if good results are desired. As with floats, measurements with

the current meter are made in various ways. The best method

is no doubt the one adopted by Harlacher of sliding the instru-

ment by means of a mechanism at a uniform speed up and down
on a pole. By this process the velocity of the whole section is

integrated and a very good mean value found. If no pole is

used the instrument is most conveniently moved up or down by
means of a cord thrown over a small pulley.

A good current meter, properly rated and carefully handled,

surpasses any other instrument in the facility and extent of its

application; it gives results nearly as trustworthy as the rod-

float, and for average velocities nearly as accurate as a weir.

The Darcy gauge, an instrument formerly in great favor, is at

present, owing to the great perfection of the current meter,

but rarely used. The instrument consists of a combination of

two Pitot tubes, fastened to a supporting frame.

A Pitot tube is a vertical glass tube with a right-angled bend.

If such a tube is placed into a stream, with its mouth facing up-

stream and at right angles to the line of motion, the water will

ascend in the tube to a height which is equal to

v
2

b=*, nearly.

If the mouth of the tube faces the bank of the stream, and is

in line with the line of motion, there will be no difference of

level between the surface of the water in the tube and the

surface of the stream.
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If the mouth of the tube faces downstream and is at right

angles to the line of motion, the surface of the water in the tube

will be below the surface of the stream, the difference being

equal to

In this case the velocity is somewhat modified by the retard-

ing influence of the tube. Darcy combined two tubes having

their mouths at right angles, and provided their lower parts

with stopcocks, which can be operated, when the instrument is

in the water, by means of a string. If the cocks are open and

the mouth of one of the tubes faces upstream at right angles to

the line of motion the water will ascend in it while it will not

ascend in the other tube. If the corks are then closed, the

instrument may be lifted out of the water and the difference of

level in the two tubes read off on a graduated scale.

Surface Mean and Bottom Velocities.

Position of Thread of Mean Velocity.

From 82 observations of flow in small channels Bazin deduces

the following:

Mean Velocity
= Maximum Velocity 25.4

Bottom Velocity
= Maximum Velocity 36.3 Vr.s

Bottom Velocity = Mean Velocity 10 . 87 \/r\s

From this we have

Fmean + 25.4 Vi\s

V max.

V mean 1

1.0,

V max. 1 + 25.4 Vr.a

and as =
c,

r.s

, 1
V mean 1

we have also = ., .

V max. - 25.4

c

i vi y bottom 1
and likewise

V max.
1 ,

36.3
1 H

C
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Comparison of values of __
mean = with values of

V max.
1

25.4

c

mean
founcj ^ observations of flow in a great variety of

V max.

channels shows that Bazin's formula is not of general application.

It fails because the influence of the value of the total depth of

the channel is not considered.

V mean
The following values of are given by the most reliable

authorities :

V mean

V surface

Revy, Parana de las Palmas, La Plata 0.835

Harlacher, Bohemian Rivers, 28 observations 0.838
Swiss Engineers, Swiss Rivers, 200 observations 0.835

Lippincott, Sacramento River, Cal., Depth, 3-5 feet ... 0.88

Lippincott, Tuolumne River, Cal., Depth, 1.12-1.84 feet . 0.88

Lippincott, San Gabriel and Santa Anna, Rough channels,
10-20 feet wide. Depth, 0.25-1.0 feet 0.92

Pressey, Catskill Creek, partial section 0.82

Pressey, Fishkill Creek, partial section 0.93

Pressey, Mean of 28 observations of flow in rivers with

rough bottoms, Average depth, 5.05 feet 0.80

Prony, Small wooden channels 0.8164

Prony and Destrem, Neva River, Russia 0.78

Boileau, Canals 0.82

Baumgartner, Garrone River, France 0.80

Cunningham, Solani Aqueduct 0.823

Humphreys & Abbot, Mississippi 0.79-0.82

From these and other data given by Murphy (Cornell testing

flume) and others, the writer found that the relation between

the surface velocity and the mean velocity may be expressed by
the equation

Mean velocity
=

j-=. surface velocity (1)

!+-
Vc

in which n is a coefficient ranging in value between 0.25 for the

roughest and 0.35 for the smoothest classes of conduits.

Its value is

n = 0.32 for K = 1.25

n = 0.30 for K = 1.75

n = 0.27 for K = 2.25

For the velocity at any point x, depth d, in the vertical section
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we found from data relating to flow in channels with rough

bottoms, such as rivers with detritus or coarse gravel,

1

1 +
)'

(2)

in which D is the total depth. This is on the assumption that

the bottom velocity is equal to one half the surface velocity, a

relation which holds good only for channels with rough bottoms.

Bazin found from observations of flow in small artificial channels

that the difference between the surface and the bottom velocity

ranges between 0.25 and 0.5 of the surface velocity, the differ-

ence increasing in value with 'the roughness of the walls. In

canals and rivers with comparatively smooth bottoms the

difference ranges between 0.3 and 0.4, the average difference

being 0.35 of the surface velocity.

Combining the two equations (1) and (2), we have for the

position of the thread of mean velocity in the vertical section

of rivers and canals with somewhat rough bottoms and whose

width is several times the depth

41) (3)

as the depth below the surface at which the thread of mean

velocity is found. The formula does not apply to flumes and

other narrow, deep channels.

From equations (1) and (3) we find the following values of

mean
the relation relative position of the thread

V surface

of mean velocity in a vertical section, assuming K = 1 . and

v = 3 feet.
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Variation of the Coefficient c with the Slope.

IN the preceding chapters we have defined the variation of

the coefficient c with the mean hydraulic radius, with the degree

of roughness of the wet perimeter and with the velocity of flow.

We will now proceed to investigate if it is possible to find a

true expression for the variation of the coefficient c with the

slope by the graphical method. From Formula III we have

66 ( *f? + m) V* =
c,

66 ( + m)

I ^ \
9

v = [
-

1

\66 (S/r + m)/'

or substituting for v its equivalent

(66 ($fr + m) Vr7s)* = (
--4-Y;

V66 ( Vr + m)/

hence 66 ( tfr + m) Vr . s =
(
-T=- ) ,

\66 ( -N/F + m))_
and (66 ( Vr + m))

9 Vr . s = c
8

;

consequently

(66(Vr+m))*(r.a)*- c;

or 66 ( Vr +m) (66 ( Vr + m))* (r . s}& = c.

This goes to show that c increases with (rs)^-, consequently the

variation of the coefficient c with the slope depends on the

value of R.

The variation of the coefficient c follows the law of the para-

bola. If values of the coefficients a = V% and V& are plotted as

ordinates to values of v as abscissae, the points so found lie in

curves which are parabolas of the ninth or eighteenth order. A
curve somewhat resembling a parabola is the equilateral hyper-

196
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bola, and it is possible to draw a curve of this kind which nearly

coincides with the parabola.

The equation of the equilateral hyperbola concave towards

the axis of abscissae may be put into the simple form

The curve in Fig. 1 represents the hyperbola of this equation.

In the figure ZO is the vertical asymptote,

Zd the horizontal asymptote,

YK the axis of ordinates,

KX the axis of abscissae,

Zg the axis of the hyperbola,

X the distance between the vertical asymptote
ZO and the axis of ordinates YK,

c the ordinate of any point in the curve.

The area of the rectangle ZOKY is the constant which deter-

mines the hyperbola. It is equal to the square zfgh or the area

of any rectangle comprised between the asymptotes and per-

pendiculars drawn to them from any point in the curve.
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Consequently, if lines are drawn from the center z to points R
on the axis of abscissae, these lines will intersect the axis of

ordinates in points which give the values of c corresponding to

the values of R. In this way the hyperbola may be easily

constructed.

Bazin in his paper,
" Etude d'une nouvelle formule," etc., put

the equation for the coefficient c into the form

in which y is constant and equal to 157.5 in English measure,

and 0, a variable, indicating the degree of roughness.

Dividing by y we have

c = substituting x for g.

y yVr

Transposing we have

11 xj_
c y y \/r

This is the equation of a straight line having values of _ as
Vr

abscissae, values of - as ordinates. If this equation would hold

good, points of values of - pertaining to one slope would lie in
Of

straight lines intersecting the axis of ordinates in a point. If,
y

however, values of - and are plotted as indicated it appears
c vr

that only those points
-

pertaining to data of flow in old pipes
C

or fairly regular channels in earth lie in straight lines, while

those pertaining to data of flow in very smooth conduits lie in
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curved lines convex towards the axis of abscissae, and those

pertaining to data of flow in very irregular channels lie in curved

lines concave towards the axis of abscissae.

If straight lines are drawn averaging between the points as

much as possible, these lines will intersect the axis of ordinates

FIG. 2.

in points giving values of - for the greatest value of v and the
y

greatest value of R included in the series plotted. These lines

will also intersect the axis of abscissae in points which give the

value of - pertaining to each value of -
. In Fig. 2 we thus plotted

the experimental data of Darcy-Bazin, series 7, 8, 9 and one

series given by Rittinger (s
= 0.0343), all pertaining to flow in

testing channels of rough boards.

It will be observed that the lines pertaining to the steeper

slopes intersect each other in a point whose abscissa for is

Vr
1.0. This is due to the fact that for the greater slopes s = 0.0049,

0.00824, and 0.0343, the velocity is so high that c varies but

very little, while it varies much for the feebler slope s = 0.0015.
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The highest value of - corresponding to - = 1.0 is 0.0084, the
c Vr

lowest 0.0080, average 0.0082. Denoting the abscissa of the

point of intersection by a and the average ordinate by K we

have

y y a

and x = Kay a,

TZ

and considering = Ka as a tangent and denoting it by I,

a

we have x =
ly a.

Consequently in our case

x = 0.0082 y
-

1.0,

which gives values of x very nearly equal to those found graph-

ically. This formula will, however, only hold good for the

values of R included in the series, the highest of which is 1.0.

In Fig. 3 the values of y found graphically from Fig. 2 are

plotted as ordinates to values of - as abscissae. The points y
s

are seen to lie in a curved line, intersecting the axis of ordinates

at a point B = 131.0 nearly. If the line CD is produced, it

will intersect the axis of ordinates in y = 157.5, which is the

constant in the formula of Bazin mentioned above. The tan-

gent of the angle CEF (in this instance 0.29) corresponds to

Bazin's coefficient, g, indicating the degree of roughness. The

value of m obtained from the given data is . 70
;
hence the value

of ^r + m, for the highest value of R is 1 .70. Dividing 131 .0

by 1 . 70 we have

y'
= 77 ( 'N/r + m), nearly,.

as the value of y corresponding to the highest velocity included

in the series plotted.

If from the point B = 131 .
= 77 ( Vr + m) a line is drawn

parallel to the axis of abscissae, any increase in the value of
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77 ( 'N/r + m) due to any slope less than 0.0343 will appear as

an ordinate above this line BG.

It will be observed that values of y" t y'" y s/
v

, etc., increase

with the decrease of the slope or increasing values of - We

nay therefore put y"', y'", etc.,
= 77 ( Vr + m) + - in which

o

j is a coefficient still to be determined.
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canal) which are, however, somewhat doubtful, we found

z = 0. 0936, while from data pertaining to flow in the La Plata

and its tributaries we found = 0.00293. From this it is

evident that z is a variable and that its value depends on the

value of R. Having found an expression for y, the value of x

may be found from experimental data without resorting to

graphical methods.

No. 12, series 6, Darcy-Bazin gives

R = 0.922

s = 0.00208

c = 118.9.

Hence y = 77 ( ^922 + 0.68) +

or y = 127.87 + 47.6 = 175.47.

Dividing 175.47 by c = 118.9 we find x =
1.475,

= 1 +0.475. But 0.475 is equal to 0.01,
**'*

or 0.01, 47.6.
U .

Denoting the term 0.01, which is variable, by I, we have from

the given data for the variation of the coefficient c with the

slope the expression

77 (tyr + m)+ L

s
c = :r~: ; '

which, within certain limits corresponds to

c = 66 ( S/r + m) V&.

From data relating to flow in a semicircular channel of rough

boards (Darcy-Bazin, series 26) we find

01 *

y + =
210, hence y = 210 -

67,
s

which is equal to

0.1
84 ( Vr + m) +
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and which corresponds within certain limits to

c = 66 ( Vr + m) F^.

Dividing 84 by 66 the quotient 1.272 is the value of the

coefficient of variation of c for v = 18.0. Hence v = 18.0 is

the limit up to which the formula holds good.

The formula apparently gives good values of c up to the

limit indicated. By trial we find, however, that it does not

hold for values of R greater than 1.0; unless rs is substituted in

the equation for s. Consequently the variation of c with the

slope is dependent on the value of R, a fact we demonstrated at

the beginning of this chapter.

The facts related plainly show that a formula derived in the

manner indicated can only be of limited application. It holds

good only within the range of values of R, s and m included

in the series of data from which it is derived. In other words:

We cannot get out of a formula what we do not put into it.

A general formula, like that of Ganguillet and Kutter, derived

by the methods we have indicated, cannot embody true laws of

flow, it naturally must be deficient in one respect or the other.

The more so, if the data on which the formula is based are

erroneous. The experimental data derived from observations

of flow in the lower Mississippi by Humphreys and Abbot and

embodied by Ganguillet and Kutter in their formula have been

found to be incorrect, greatly at variance with those time and

again found by the United States engineers. The contention of

Ganguillet and Kutter, that, if values of - are plotted as ordinates
c

to values of - as abscissae and lines drawn through all the points
Vr

- these lines will intersect each other in a point = 1 meter,
c Vr
and that therefore c will increase with increasing values of s if

R is less than 1 meter, and decrease if R is greater than 1 meter,

is also plainly a fallacy.

If values of and - derived from the numerous series given
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by Darcy-Bazin are plotted as indicated, it will be observed

that for many of the series the lines intersect at = 1 foot.

Vr
It would be absurd, however, to draw the conclusion there-

from that c will increase or decrease with increase of the slope

if R is less or greater than 1 foot. The intersection of the lines

at = 1 foot is due to the fact, that for the greater slopes

values of c are nearly constant for values of R equal for 1 foot or

more, because the value of F 1 * increases slowly at high velocities.
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The Formula in Metric Measure.

THE general equation for the velocity of flow reads, for

Metric measure,

V = 50(-N/r>m) VrTs

2gH
0.007844 L

^Jr + m)
2

R_

The coefficients of variation of c are equal, as for English

measure, to

a = V^ holds good also for semicircular open conduits.

Values of the coefficient m, indicating the degree of rough-

ness, are found in the following table, mE signifying the English

and mM the Metric values.

Exponential Equations.

The constants of the exponential equations which we have

found for English measure are converted into Metric equivalents

'by putting

log constant Metric measure =
log constant English measure

+ "
3.281s

-
"

3.281.

x being the variable power of R or D.

The equations for conduits under pressure are as follows,

diameters being in meters, velocities in meters per second and

quantities in cubic meters (1000 liters) per second :

205
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VALUES OF mE WHICH APPLY IN THE ENGLISH AND VALUES OF mM
WHICH APPLY IN THE METRIC SYSTEM.

mE mM Description of Conduits.

1.0

0.95

0.85

0.83

0.80

0.70

0.68

0.57

0.53
0.50
0.45

0.30

0.20

0.10

0.20

0.27

0.32

0.85

0.80

0.70

0.75

0.65

0.62

0.60

0.48

0.45
0.47
0.42

0.25

0.20

-0.1

-0.2

-0.27

-0.32

Semicircular and circular conduits lined with pure
cement. Long straight brass, tin, nickel and glass
pipes.

Rectangular conduits lined with pure cement. New
pipes of planed boards and very smooth asphalt-
coated cast iron.

Semicircular conduits lined with cement plaster, 1 part
cement, 2 parts sand.

Ordinary new straight asphalt-coated cast, wrought
iron welded and wrought iron riveted pipes with
screw joints, common lead, tin, glass, brass and
galvanized pipes.

Rectangular conduits lined with cement plaster,
smooth concrete or very good brickwork.

Semicircular channels lined with rough boards . Chan-
nels lined with fairly good brickwork or fairly
smooth concrete.

Rectangular channels lined with rough boards.
Sewer pipe very well laid.

Pipes of planed boards, asphalt-coated cast and
wrought iron, riveted wrought iron pipes of small
diameters or with screw joints, pipes coated with
tar or lined with cement or smooth concrete, all

some time in use.

Common brickwork or concrete. Very good ashlar

masonry. Ordinary sewer pipe.

Asphalt-coated riveted pipe above 3 feet in diameter.
Channels in earth roughly lined with cement mortar.
Old pipes of all descriptions, fairly clean. Channels

lined with rough brickwork or rough concrete.

Old riveted pipes over 3 feet in diameter. Ordinary
ashlar and very good rubble masonry.

Channels of regular cross-section in fine cemented

gravel. Tile drains.

Channels of regular cross-section in coarse cemented

gravel or rockwork.
Channels of fairly regular cross-section in firm sand

or sand with pebbles, no vegetation.
Channels in earth somewhat above the average in

regularity and condition, no stones or vegetation.
Ordinary channels in earth, with stones or vegetation
here and there.

Channels of irregular cross-sections or channels of

fairly regular cross-sections but with stones or

plants.
The values of K corresponding to in = 0.1, 0.2,

-0.27, -0.32 are 1.2, 1.5, 1.75, 1.93.
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Exponential Equations Relating to Flow in Open Conduits.

Of the following sets of equations the first three relate to flow

in the semicircle, the rest to flow in the semisquare, the depth

being in meters, the velocities in meters per second, the dis-

charges in cubic meters per second :

mE
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English and Metric Equivalents.

The following relations between the units of the English and

the Metric Systems of Measurements are of interest in their

relation to the flow of water.

1 meter = 10 decimeters = 100 centimeters = 1000 millimeters.

1 sq. meter = 100 sq. decimeters = 10,000 sq. centimeters.

1 cu. meter = 10 hectoliters = 1000 liters.

1 liter of water at 4 degrees centigrade weighs 1 kilogram.
1 kilogram = 1000 grams.

1 meter = 3.280899 feet = 39.37079 inches.

1 foot = 0.304794 meter = 30.4794 centimeters.

1 inch = 25.3995 millimeters = 2.53995 centimeters.

= 0.253995 decimeter = 0.0253995 meter.

1 sq. meter = 10.7643 sq. feet = 1550 sq. inches.

1 sq. foot = 0.0928997 sq. meter = 928.997 sq. centimeters.

1 sq. inch = 6.451368 sq. centimeters.

1 cu. meter = 35.316585 cu. feet = 264.1863 gallons.

1 liter = 0.035316585 cu. feet; = 0.2641863 gallons.

1 cu. foot = 0.0283153 cu. meters, = 28.3153 liters.

1 cu. inch = 0.0163861 liters, = 16.38618 cu. centimeters.

1 gallon = 3.7852 liters.

1 liter weighs 2.204672 English pounds.
1 cu. foot weighs 62.425 English pounds.
1 gallon weighs 8.3448 English pounds.
1 gallon = 231 cubic inches.

The pressure of water in kilograms is equal

per square meter to 1000 h (h in meters)
" "

decimeter
"

10 h

centimeter
"

0.1 h
" "

millimeter
"
0.001 h.

A pressure of one pound per square inch is equal to

a pressure of 0.07031 kilo per square centimeter
"

0.0007031
" " "

millimeter.

The tensile, shearing, or compressive strength of any material

in pounds per square inch multiplied by 0.0007031 gives the

value in kilos per square millimeter and multiplied by 0.07031,

the value in kilos per square centimeter.

A pressure of 1 atmosphere = 14.7 pounds per square inch

corresponds to a pressure of 1.03296 kilos per square centimeter

or a head of 10.3296 meters. 2 g
= 19.61.
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Thickness of walls of conduits :

PD
t

m c,

t, D, C and m in millimeters.

P in kilos per square millimeter = 0.001 h.

Material.
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Greatest Efficiency of a Conduit of a Given Diameter as a Transmitter

of Energy.

Most Economical Diameter of a Conduit Transmitting Energy
under Pressure.

I.

IN a preceding chapter the ratio between the total head and

the head lost in overcoming frictional resistances, which for a

conduit of a given diameter under a given head corresponds to a

maximum of efficiency, has been mentioned.

The potential energy of Qf
3 of water delivered per second at

a vertical distance H above the generator is equal to

Q 62.4 H foot-pounds,

or 0.1134 QH horsepowers.

The discharge of a steel-riveted conduit in /
3
per second is equal

to

Q = 40 <P'
7

S&,

which gives for the loss of head,

H =

quently the net

equal to

1062 d5 '1

Consequently the net energy transmitted to the generator is

ual to

This is to be a maximum.

Regarding Q as the variable and equating the first differential

coefficient to zero we have

211
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26 ^L 0.1134niio/i -ahence 0.1134 H
Q

The root of this equation corresponds to a maximum. We
have consequently, for the state of maximum efficiency

26 1062 d5 - 1

9 77
or, is the head sacrificed in overcoming frictional resistances

when the conduit is in a state of maximum efficiency as a trans-

mitter of energy.
9 HWe have also for the discharge which corresponds to- >

26

= 40 d2 -1 0.57 S.

Hence the efficiency of the conduit is greatest when the velocity

and the discharge are 0.57 times the velocity and discharge

corresponding to the total head H.

II.

Of much greater importance is the quest after the most eco-

nomical diameter of a conduit for a given discharge and under a

given head, a subject recently investigated by A. L. Adams.

The function of a pressure pipe is the transmission of energy
with a minimum of loss; the usefulness of a power plant as a

whole depends on several factors, chief amongst which is the

amount of revenue derived from its operation.

In comparison with the power transmitted the cost of a con-

duit transmitting all or nearly all the energy would be exces-

sive. The conduit having a diameter just sufficient to carry the

given quantity of water under the given head delivers but a

small percentage of the gross energy and its cost per horsepower
transmitted is equally excessive as the cost of the conduit deliver-

ing all the energy. The diameter of a conduit just sufficient to

carry a given quantity under a given head is equal to
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The diameter necessary to carry the same quantity with a loss

of TsW f the gross energy is equal to

= (1000)** = 3.875 times the diameter,

just sufficient to carry the given quantity.
A quantity of 100 f

3 of water delivered at an elevation of 1000

feet above the generator possesses a potential energy of

100 X 1000 X 0.1134 = 11,340 H.P.

The diameter of a vertical steel-riveted conduit just sufficient

to carry the given quantity,

d = /I09\
27
= 1.404 feet.

\40/

The velocity corresponding to this diameter is equal to

V = 50.8 X (1.404)
- 7 = 64.38 feet per second.

The energy transmitted is

(64 -38 )
2

X 0.1134 X 100 - 729.9 H.P.
2#

This is 6.43 per cent of the gross energy. The percentage
transmitted by the conduit just sufficient is not constant but

decreases with decreasing quantities and slopes.

For Q =
10, H = 100, L = 1000, for instance, the gross energy

is 113.4 H.P. and the energy transmitted 3.635 H.P., which

is 3.21 per cent.

The diameter corresponding to a loss of T oV<i of the gross energy

is, for a vertical steel-riveted pipe carrying 100 /
3
,

3.875 X 1.404 = 5.437 feet.

A diameter of 5.407 feet transmits

11 340 _ (100) X 1000 X 0.1134

1062 X (5.437)
5 -1

= 11,328.7 H.P.

The efficiency of the two conduits of 1.404 and 5.437 feet

diameter is consequently as 729.9 to 11,328.7 or 1 to 15.52.
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At n dollars per H.P. the value of the energy transmitted is

equal to

D - .n3* QHn-<&^.
The thickness of the shell of riveted pipes is made equal to

Hence the cubic contents of a shell one foot long

,3 = td 12 n

1728
'

and its weight (specific gravity 7.854) per foot

= 0.434 hd2 12 7i 490

20,000 1728
:

which reduces to

w = 0.0334 hd2 for d in feet.

The weights of finished pipes indicate that the additional

weight due to rivets, laps and straps is sensibly equal to

w = 0.00607 hd2
,

so that the total weight of a finished pipe amounts to

w = 0.03947 hd*.

At m dollars a pound for steel the cost of a finished pipe will

be
D

l
= 0.03947 hd2m.

If we now compare the cost of the two conduits of 1.404 and

5.437 feet with the value of the power lost and the respective

cost of the pipes per horsepower delivered we find, taking n = 100

and m =
0.06,

d
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dition more favorable to economy and it is evident that the

greatest economy exists when

L Cost of Conduit _ a minimum _

Value of energy transmitted

II. Value of Energy lost + Cost of conduit = a minimum.

The value of the energy lost + cost of conduit is

0.1134 Q^Ln
1062 d6 - 1

0.03947 hd2Lm.

Equating the first differential coefficient with regard to d to

zero we have

5.1 X 0.1134 Q^Ln
1062 d 6 * 1

which gives

5.1 X 0.1134Qyn \"
2 X 1062 X 0.03947 mh)

+ 2 X 0.03947 hdLm =
0,

1

\

0.4962 (Fl)

Values of Q-407
,
H and n are found in the table below.

For steel at c cents per pound values of
'

lo
and 0.4962

f ] are as follows:
\m I

c.
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The loss of energy corresponding to this diameter is

H.P. = / IPO V

\4Q (3.831)
2 ' 7

/

67.8

L 0.1134 X 100

and the net horsepower = 11,340
- 69.8 = 11,272.2. The three

conduits we have taken as examples compare as follows:
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Formula II is best suited to small quantities of discharge and

.low heads. For our previous example, Q =
100, H = 0.5 X 1000,

the formula gives d = 3.797, hence 0.034 feet or 0.408 inch less

than Formula I. The difference increases with the decrease of the

quantity; for small diameters the difference amounts to as much
as one inch. It will be observed that according to Formula I,

the value of the energy lost is equal to ff = 0.392, the cost of the

pipe. Formula II gives if = 0.418.

VALUES OF Q AND Q - 407
.

Q
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VALUES OF H AND N AND

H



APPENDIX III 219

For pipes of planed staves a mean value of the coefficient c

corresponding to a velocity of 1 foot per second is equal to 108, or

nearly so. Taking the coefficient of variation of c equal to Vi8

this gives the exponential equation

Q = 53.63

H" =
48

1848 d g

Value of power lost at n dollars per horsepower,

1848 (

Equating the first differential coefficient of value of power lost

plus cost of pipe to zero we have (for t = 2 inches)

43 QL 0.1134 n
+ 17^8 d*hLm+ ^ 9cT*LJ = 0;

9 1848 d *

hence

It is possible to solve this equation by Homer's, or some other

method of approximation. Fairly good results are obtained by
taking a mean of the exponents of d.

The formula will then read, after reduction,

(Fill)

for t = 2 inches. For t = 2.5 inches 0.0678 is substituted for

0.0638 and 10.8 I for 8 /. This formula gives results sometimes

above, sometimes below the true value. Where great accuracy
is desired, the value of d obtained from the formula may be

tested by putting its ninth root into the expression 0.0638, or

0.0678 X60 hm + 8, or 10.8 X51
,
and increasing or diminishing

the value of X till this expression is equal in value to

43 Q 0.1134 n

9 1848

It is to be observed that for this class of conduits the ratio

between the value of the power lost and the cost of the pipe which



220 THE FLOW OF WATER

corresponds to a maximum of economy is not the same as for

metal conduits. If the tension rods did not enter the problem the

ratio would be as 8 to 43; as it is the ratio is variable but usually
in the neighborhood of 11 or 12 to 43 or 0.25 to 0.28 to 1.0.

IV.

CONDUITS LINED WITH PLAIN OR ARMORED CONCRETE.

Concrete, plain or armored, is coming more and more into

favor as a material forming the shells of conduits of all descrip-

tions. Over metal and wood this substance possesses the great

advantage not to be subject to corrosion and decay; it is prac-

tically indestructible. Experiments have brought to light the

fact that plain concrete conduits under internal pressure fail

when the stress in the material reaches 168 pounds per square
inch or nearly so. Under external pressures, however, they fail

only when the stress reaches 1500 pounds per square inch or

nearly so. Plain concrete is therefore not economical where inter-

nal pressures enter the problem. But the material may be used

to great advantage when great quantities of water are to be

delivered under low heads.

The thickness of the shell of plain concrete conduits as com-

monly used for sewers and other conduits not subject to internal

pressures is usually made equal to

2 inches for d = 1 foot.

4 inches for d = 3 feet.

8 inches for d = 9 feet.

12 inches for d = 18 feet.

These conduits will fail when the 1 foot pipe is under a head

of 127 feet or the 18 foot pipe under a head of 43 feet.

The thickness of the shell in inches of such conduits is propor-

tional to 2 d - 63
,
the cubic contents of the shell to 0.611 d1 - 63

/
3

.

At c dollars per /
3 of concrete put into place the cost of such a

conduit will consequently be

0.611 &MLc.

Taking the coefficient of variation of c equal to V 1S the exponen-
tial equations which apply to flow in conduits lined with concrete

are as follows:

m = 0.95, conduits smoothly dressed with neat cement,

Q = 54.3 d*Msft,
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m = 0.83, conduits lined with cement plaster, 1 part cement,
2 parts sand; plain concrete washed with neat cement,

Q = 50.2 d2 - 67
'S",

m = 0.57, conduits lined with plain concrete,

Q = 41.2 d2-S&.

For m = 0.95 the value of the power lost plus the cost of the

conduit will be equal to

of which the first differential coefficient equated to zero

The most economical diameter will be equal

for m = 0.95 to d = 0.2967
\
c

for m = 0.83 to d = 0.3044 Q (-}W
for m = 0.57 to d = 0.3247

It is to be observed that this class of conduits is in the state

of greatest economy when the value of the power lost is equal

(for m = 0.83) to -i^- = 0.323 of the cost of the conduit.
5.043

Concrete beams armored with 1.75 to 2 per cent steel fail when
the modulus of rupture equals 2400 pounds per square inch or

. nearly so. Taking 10 as a factor of safety the working stress

for internal pressures will be 240 pounds per square inch and the

thickness of the shell will be equal to

_ 0.434 hd

480

z being equal to 1 inch for h = 1 to h = 100, and vanishing for

h = 1000. Accordingly the thickness of the shell of a conduit

1 foot in internal diameter for h = 1000 will be 10.4 inches and the

cubic contents of the shell for any diameter and any head will be

(0.611 + 0.0035 h) d1 ' 63
/

8
.

fc
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Cracks in armored concrete begin to appear when the stress

in the steel equals 12 to 15,000 pounds per square inch. A safe

working stress will therefore be 10,000 pounds per square inch.

Allowing one-sixth for the increase of the diameter where the

armoring is placed in the 1 foot pipe and also one-sixth for the

laps of the armoring, the weight of the metal in the 1 foot pipe
will be for h = 1 equal to 0.0445 pounds.
But the thickness of the shell increases with h and conse-

quently the length of the circumference where the armoring is

placed. The necessary increase in the amount of the armoring
is proportional to

l

{/h very near, so that for any head and any
diameter the weight of the armoring will be

0.0445 h& d1 - 63 L.

Using these values we find for the most economical diameter,
m =

0.95,

d
/ 0.0003031 Q*n \

,

\0.0445 h&m + (0.611 + 0.0035 h) J

d = I 0.0003523 Qn * \^

\0.0445 h m+ (0.611 + 0.0035 h) J

A I 0.000514 Qn \*
(J^
= I ...... . . . . 1

V0.0445 h&m + (0.611 + 0.0035 h) d

m = 0.57,

In these equations n = value of 1 horsepower,

m = value of 1 pound of steel,

c = value of 1 cubic foot of concrete.
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V.

THE MOST ECONOMICAL DIAMETER FOR METRIC MEASURE.

The exponential equation for steel riveted pipes reads,

Q = 28 d?'
7S".

H
*

541.

Value of power lost at n dollars per kilowatt

9.81 QLn
541.4 d5 - 1

'

Allowing a tension of 14 kgm. per square millimeter in the

steel the weights of the shell in kilograms will be

3.1416^7854 - 1.78246
,

and allowing for rivets, laps and straps, the cost of the conduit

at ra dollars per kilogram will be equal to

2.083 d2
hm,

which gives for the most economical diameter

, = / 5.1 X 9.81 Q n \"

V541.4 X 2 X 2.083 hm)

A mean value of the coefficient c corresponding to a velocity

of 1 meter per second found from data relating to flow in 17

riveted conduits including the largest as well as the smallest is

equal to 61.93. Taking a = V 18 this corresponds to the exponen-
tial equation,

Q = 29.76 d&S &,

from which we find for the most economical diameter

d = 0.5551 Q** (^

In these equations d and h are in meters,

Q in ra3 per second,

n the value of 1 kilowatt,

ra the value of 1 kilogram of steel.
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to Machine Design. Part I. Machine Drafting. Illustrated, 70 pp.,

8vo, cloth net, $1.25

Complete in Two Parts. Part II in preparation.
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RAYMOND, E. B. Alternating Current Engineering Practically
Treated. Third edition, revised and enlarged, with an additional

chapter on "The Rotary Converter." 12mo, cloth. Illustrated. 232 pages.
net, $2.50-

REINHARDT, CHAS. W. Lettering for Draughtsmen, Engineers and
Students. A Practical System of Free-hand Lettering for Working Draw-
ings. New and revised edition. Thirty-first thousand. Oblong boards.

$1.00

RICE, J. M., Prof., and JOHNSON, W. W., Prof. On a New Method
of Obtaining the Differential of Functions, with especial reference to the
Newtonian Conception of Rates of Velocities. 12mo, paper $0.50

RIPPER, WILLIAM. A Course of Instruction in Machine Drawing
and Design for Technical Schools and Engineer Students. With 52 plates
and numerous explanatory engravings. Second edition. 4to, cloth.$6.00

ROBINSON, J. B. Architectural Composition. An attempt to order
and phrase ideas which hitherto had been only felt by the instinctive taste-

of designers. 233 pp., 173 illustrations. 8vo, cloth net, $2.50

ROGERS, ALLEN. A Laboratory Guide of Industrial Chemistry.
Illustrated. 170 pp. 8vo, cloth net, $1.50-

SCHMALL, C. N. First Course in Analytic Geometry, Plane and
Solid, with Numerous Examples. Containing figures and diagrams. 12mo,
half leather, illustrated net, $1.75

and SHACK, S. M. Elements of Plane Geometry. An Elemen-
tary Treatise. With many examples and diagrams. 12mo, half leather,
illustrated net, $1 .25-

SEATON, A. E., and ROUNTHWAITE, H. M. A Pocket-book of
Marine Engineering Rules and Tables. For the Use of Marine Engineers
and Naval Architects, Designers, Draughtsmen, Superintendents and all

engaged in the design and construction of Marine Machinery, Naval and
Mercantile. Seventh edition, revised and enlarged. Pocket size.

Leather, with diagrams $3.00

SEIDELL, A. (Bureau of Chemistry, Wash., D. C.). Solubilities of
Inorganic ami Organic Substances. A handbook of the most reliable

Quantitative Solubility Determinations. 8vo, cloth, 367 pp net, $3.00

SEVER, Prof. G. F. Electrical Engineering Experiments and Tests
on Direct-Current Machinery. With diagrams and figures. Second
edition, thoroughly revised and enlarged. 8vo, pamphlet. Illus-
trated net, $1.00

and TOWNSEND, F. Laboratory and Factory Tests in Elec-
trical Engineering. Second Edition, thoroughly revised and enlarged.
8vo, cloth. Illustrated. 236 pages net, $2.50

SHELDON, S., Prof., and MASON, HOBART, B.S. Dynamo Elec-
tric Machinery; its Construction, Design, and Operation. Direct-Current
Machines. Seventh edition, revised. 12mo, cloth. Illustrated.

net, $2.5a
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SHELDON, S., MASON, H., and HAUSMANN, E. Alternating Current
Machines. Being the second volume of the authors' "Dynamo Electric

Machinery; its Construction, Design, and Operation." With many dia-

grams and figures. (Binding uniform with volume I.) Seventh edition,
completely rewritten. 12mo, cloth. Illustrated net, $2.50

SHIELDS, J. E. Notes on Engineering Construction. Embracing
Discussions of the Principles involved, and Descriptions of the Material

employed in Tunneling, Bridging, Canal and Road Building, etc. 12mo,
cloth $1.50

SHUNK, W. F. The Field Engineer. A Handy Book of Practice
the Survey, Location and Track-work of Railroads, containing a large
collection of Rules and Tables, original and selected, applicable to both the
standard and Narrow Gauge, and prepared with special reference to the
wants of the young engineer. Nineteenth edition, revised and enlarged.
With addenda. 12mo, morocco, tucks $2.50

SMITH, F. E. Handbook of General Instruction for Mechanics.
Rules and formulae for practical men. 12mo, cloth, illustrated. 324 pp.

net, $1.50

SOTHERN, J. W. The Marine Steam Turbine. A practical descrip-
tion of the Parsons Marine Turbine as now constructed, fitted and run,
intended for the use of students, marine engineers, superintendent engineers

draughtsmen, works managers, foremen, engineers and others. Third
edition, rewritten up to date and greatly enlarged. 180 illustrations

and folding plates, 352 pp. 8vo, cloth net, $5.00

STAHL, A. W.,and WOODS, A. T. Elementary Mechanism. A Text-
Book for Students of Mechanical Engineering. Sixteenth edition, en-
larged. 12mo, cloth $2.00

STALEY, CADY, and PIERSON, GEO. S. The Separate System of

Sewerage; its Theory and Construction. With maps, plates, and illus-

trations. Third edition, revised and enlarged, with a chapter on
"
Sewage Disposal." 8vo, cloth $3.00

STODOLA, Dr. A. The Steam-Turbine, With an appendix on Gas
Turbines and the future of Heat Engines. Authorized Translation from
the Second Enlarged and Revised German edition by Dr. Louis C. Loewen-
stein. 8vo, cloth. Illustrated. 434 pages net, $4.50

SUDBOROUGH, J. J., and JAMES, T. C. Practical Organic Chem-
istry. 92 illustrations. 394 pp., 12mo, cloth net, $2.00

SWOOPE, C. WALTON. Practical Lessons in Electricity. Princi-

ples, Experiments, and Arithmetical Problems. An Elementary Text-
Book. With numerous tables, formulae, and two large instruction plates.
Tenth edition. 12mo, cloth. Illustrated net, $2.00

T1THERLEY, A. W., Prof. Laboratory Course of Organic Chemistry,
including Qualitative Organic Analysis. With figures. 8vo, cloth. Illus-

trated net, $2.00

THURSO, JOHN W. Modern Turbine Practice and Water-Power
Plants. Second edition, revised. 8vo, 244 pages. Illustrated.

net, $4.00
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TOWNSEND, F. Short Course in Alternating Current Testing. 8vo,
pamphlet. 32 pages net, $0.75

URQUHART, J. W. Dynamo Construction. A practical handbook
for the use of Engineer-Constructors and Electricians in charge, embracing
Framework Building, Field Magnet and Armature Winding and Group-
ing, Compounding, etc., with examples of leading English, American,
and Continental Dynamos and Motors. With numerous illustrations.

12mo, cloth $3.00

VAN NOSTRAND'S Chemical Annual, based on Biederman's " Chiem-
ker Kalender." Edited by Prof. J. C. Olsen, with the co-operation of

Eminent Chemists. Revised and enlarged. Second issue 1909. 12mo,
cloth net, $2.50

VEGA, Von (Baron). Logarithmic Tables of Numbers and Trig-
onometrical Functions. Translated from the 40th, or Dr. Bremiker's

thoroughly revised and enlarged edition, by W. L. F. Fischer, M.A., F.R.S.

Eighty-first edition. 8vo, half morocco $2.50

WEISBACH, JULIUS. A Manual of Theoretical Mechanics. Ninth
American edition. Translated from the fourth augmented and im-

proved German edition, with an Introduction to the Calculus by Eckley B.

Coxe, A.M., Mining Engineer. 1100 pages, and 902 woodcut illustrations.

8vo, cloth $6.00

Sheep $7.50

- and HERRMA.NN, G. Mechanics of Air Machinery. Author-
ized translation with an appendix on American practice by Prof. A.

Trowbridge. 8vo, cloth, 206 pages. Illustrated net, $3.75

WESTON, EDMUND B. Tables Showing Loss of Head Due to
Friction of Water in Pipes. Fourth edition. 12mo, full leather. . .$1.50

WILLSON, F. N. Theoretical and Practical Graphics. An Educational
Course on the Theory and Practical Applications of Descriptive Geometry
and Mechanical Drawing. Prepared for students in General Science,
Engraving, or Architecture. Third edition, revised. 4to, cloth,
illustrated net, $4.00

-Descriptive Geometry, Pure and Applied, with a chapter on
Higher Plane Curves, and the Helix. 4to, cloth, illustrated net, $3.00

WILSON, GEO. Inorganic Chemistry, with New Notation. Revised
and enlarged by H. G. Madan. New edition. 12mo, cloth $2.00

WINGHELL, N. H., and A. N. Elements of Optical Mineralogy.
An introduction to microscopic petrography, with descriptions of all

minerals whose optical elements are known and tables arranged for their
determination microscopically. 354 illustrations. 525 pages. 8vo,
cloth net, $3.50

WRIGHT, T. W., Prof. Elements of Mechanics, including Kinematics,
Kinetics, and Statics. Seventh edition, revised. 8vo, cloth $2.50

-and HAYFORD, J. F. Adjustment of Observations by the
Method of Least Squares, with applications to Geodetic Work. Second
edition, rewritten. 8vo, cloth, illustrated net, $3.00

ZEUNER, A., Dr. Technical Thermodynamics. Translated from the
Fifth, completely revised German edition of Dr. Zeuner's original treatise
on Thermodynamics, by Prof. J. F. Klein, Lehigh University. 8vo, cloth,
two volumes, illustrated, 900 pages m t, $8.00




