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PREFACE

This textbook is the outcome of a long period of close collaboration between
the authors in the teaching of field astronomy at the University of New South
Wales, Australia. The scope of this book is confined to those aspects of
astronomical theory and practice, which are appropriate for observations made
with a modern single second theodolite. Included in the book are many
examples of observations taken in both hemispheres. The calculation of these
observations is given in greater detail than that normally required, in order
to help the student reduce his own observations. Astronomical methods of
high accuracy required for the geodetic control of continental areas have not

been included.

In such a well-established subject of study in surveying education as field
astronomy, it may be presumed that there is very little new that can be
written. However, over their years of teaching, the authors found that there
was no textbook for student reference which used conventions, which were not
biased to one hemisphere and which also covered a systematic treatment of
predicting observing programmes and analysing the results of observations

made with a theodolite. ©One of the overriding considerations in the writing
of this book has been that everything should be generalised so that strict
mathematical rules could be used without the need for a host of auxiliary mniles

governing a change of terrestrial or celestial hemisphere.

The need for the practical application of field astronomy in land surveying
and exploration will decline as greater use is made of earth satellite

methods of position fixing and as horizontal controel surveys are extended into
unsurveyed areas. However, a practical need is not the only criterion by
which a course of study at a tertiary institution should be judged. It is the
opinion of the authors that a study of field astronomy has many desirable
features, which make it attractive as a discipline and as a subject of
interest to both students and experienced surveyors. Besides gaining an
understanding of celestial phenomena, a study of field astronomy exercises

the student in spherical trigonometry, convergence of meridians, error theory
and least squares methods as well as theodolite construction and adjustment,
all of which complement the instruction in other surveying subjects. The
student also gains the satisfaction of being able to find his geographical
position and determine the azimuth of a terrestrial line with a high degree

of accuracy with little more equipment than is required for normal surveying

operations.

In field astronomy, the work of surveyors has been greatly simplified by



improvements in theodolite - onstruction and by the wide availability of simple
C¢i. 1 and accurate time keeping and time recording devices, short wave radios
and powerful continuous radio time signal services. But porhaps the greatest
single influence, in recent years, has been the widespread use of small

clectronic calculators. The labour of repetitive and complex calculations has

been vemoved. Individual observations, in cruference to mean values, may be

.

redu.ed guickly and the results of all obsc¢rvations analysed, : - n under field ;
cond. zions, using simple calculator programmes. Furthermore, t..:- ne sity L
for making independent check calculations, preferably by a differenct = -n,

with alternative formulae, has been eliminated provided the calculator
programmes are thoroughly tested beforehand and the input data and outpu.
results carefully checked. No-longer is it necessary to restrict observations
to circumstances and time limitations to suit special simple mathematical
relationships, which are mainly in the form of rapidly converging series.
However, to provide some continuity with past practice and also to maintain
the flow of explanation in the text, the proofs of these and some other

relationships have been included in an appendix at the end of the book.

It is with a great deal of pleasure that the authors record their gratitude
to Mrs. Susan Kiriazis, who has, with cheerful patience and efficiency, typed

the whole of the manuscript.

The authors wish to thank the instrument companies, Messrs Wild, Heerbrugg,
Switzerland and Carl Zeiss, Oberkochen, West Germany for permission to

reproduce illustrations of their instruments.

G.G. Bennett J.G. Freislich

Lindfield, N.S.W. North Sydney, N.S.W.
February, 1979

PREFACE TO REVISED EDITION

In this revised edition of the book some minor changes have been made to the
original manuscript. In Chapter 1 the examples on pages 4, 5 and 6 have been
arranged differently and the distinction drawn between meridian and grid
convergence. Also calculator methods of time conversion have been included

in the appendix.

G.G. Bennett, J.G. Freislich,

Lindfield, N.S.W. North Sydney, N.S.W.
January, 1980
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The Uses of Field Astronomy

INTRODUCTION

THIS is a question asked of the surveyor with such frequency and such
incredulity that an answer to it must be provided. The answer will no doubt
be disappointing to the uninformed layman, who, in many cases, hardly realises
that there is any difference between astronomy and astrology.

The surveyor's interest in astronomy is very much a practical one as he,
unlike thHe astronomer with a scientific interest in the stars, is chiefly
interested in how he can make use of the stars for the purposes of his survey
requirements. '

The Uses of Field Astronomy

THE surveyor uses Field Astronomy for two main purposes. These are
(a) Determination of the Position of Points on the Earth
and (b) Determination of Orientation.

The accuracy required for these determinations varies naturally with the
purpose of each task. One can appreciate that no hairsplitting accuracy is
needed in laying out, for the devout Mohammedan, a line pointing to Mecca so
that he may make his obeisances in the correct direction. On the other hand,
the highest accuracy in an astronomical determination 1s needed to define the
relationship between the geoid and the mathematical surface to which a geodetic
survey is referred.

Position determination is used to correlate the Fundamental Station of a
continental survey network with the geoid. This also requires that the survey
network be orientated with respect to the meridian.

Position Determination

1.11 Several examples of position determination from astronomical sights to a
lesser accuracy come readily. to mind. A geophysical expedition was mounted to
traverse the Kalahari Desert for making measurements for mineral prospecting.
This expedition was accompanied by a surveyor who determined, from star sights,
the position of each night's camp. If the geophysical observations obtained
were later found to be of sufficient interest to be followed up, the surveyor's
work could be used to lead them back to within about 200 metres of the point,
at which these observations were obtained.

1.12 Another example is one, in which observations were used to determine the
positions of points identifiable on air photographs, so that the set of over-
lapping air photographs could be sét up in the form of a mosaic, with these
fixed points providing control for both position and scale. This controlled
mosaic provided its information at the fairly small scale of 1/100 000.

During the Second World War, astronomical methods were used in North Africa
by the Long Range Desert Groups, who made long journeys deep into the feature-
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less Ynhospitable desert. This desert, like the sea, can be traversed with
little restriction and the methods of navigation used were similar to those of
the sailor and fixes to within a kilometre were, 1n many cases, quite satis-
factory. Sun compasses were mounted on the vehicles to overcome the
difficulties of magnetic compasses close to steel.

1.13 Another example is that of placing marks, which are to define a property,
such as mining lease in unmapped country, and whose positions are specified in
terms of the geographical coordinates, latitude ¢ and longitude A. The sur-
veyor navigates himself by some rough means into the vicinity of the required
position ¢O A . He determines the position where he sets up his theodolite,
from sun of sfar sights as ¢, A, . The distance and direction from ¢, A, to

¢O A is taken out. If the distance is short ¢ A_is set out by placing a
mark on the calculated direction at the calcula%edodistance. If, however, the
distance between ¢, A, and ¢ A is long, the direction is set out roughly
(say by compass) and the distance run down and measured by speedometer. Atthis
point, the position ¢, A, is determined astronomically and the short distance
between ¢, Az and ¢O XO is set out in the required direction as indicated above.

Azimuth Determination

1.21 The determination of orientation is probably of greater importance to
the ordinary surveyor especially if he is working in an area, in which there
is no national survey network, or one, in which only the first stage of such a
network has been carried out and the geodetic stations are therefore too far apart
for his convenient use.

Determination of orientation consists in determining the azimuth of a line,
say PQ, in a survey. This is the horizontal angle round towards the east from
the northern branch of the local meridian through P to the line PQ. This
observation serves to orientate the survey with respect to True North at the
point P. This kind of determination provides a very valuable means for check-
ing the quality of a survey because the azimuth carried forward from a line,
whose azimuth has been previously determined, can be checked by determining an
azimuth from star sights along any successive line of the survey (see
sections 1.23 and 1.41).

When a survey has been oriented by astronomical methods, its orientation can
be re-established at a later date with ease and certainty. This is not the
case in orientation by magnetic methods, whose accuracy is low in any case and
whose re-establishment is uncertain. In some cases, the datum for azimuth is
merely an assumed one and its re-establishment is therefore impossible.

1.22 A reguirement for a good azimuth is that for monitoring the pexrformance
of the gyro- theodolite, which itself determines azimuth.

Since it is not possible to adjust the various axes of the gyro- theodolite
into the precisely correct relationships, one to the other, the gyro -
theodolite'’s azimuth will be subject to a zero error, which can only be
determined, if the azimuth of the line of reference of the gyro - theodolite
is known from an astronomic sight {(see section 1.42).

1.23 A surveyor is to carry out the survey of a very long traverse for a pipe
line for natural gas. He is also required to f£ix its position with respect to
the boundaries or properties traversed by this pipe line. Unfortunately, no
national survey has been carried across this portion of the country. The
surveyor starts by determining the azimuth of the first leg of his traverse
from astronomical observations. He then runs his survey traverse and he
carrie: forward a direction based on the azimuth of the first leg of his
traverse and the angles between the successive lines of the traverse. After
the traverse has been carried forward some distance, a check on the correct-
ness of his angular observations is obtained by determining the azimuth of a
line of the traverse and comparing this with the value obtained from the
previous azimuth determined and the angles measured between the successive
traverse lines. In this case, allowance for Meridian Convergence must be
made. (see section 1.41)
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1.24 The third example is one, which sometimes must be applied to all surveys
carried out under a specific Survey Act. This often occurs when it is
proposed to cover a state or country with a national survey. Up to such time
as the stations of this survey are established in sufficient density on the
ground, so that the cadastral surveyor may be left with only a small amount of
additional work to link his surveys to the national survey, regulations may
have been promulgated requiring any surveyor to arrange the orientation of his
survey, from an initial astronomical azimuth determination, to agree with that
of the State Survey when it is carried into his area. This requires the
application of meridian convergence to his determination, so that the surveyor
sets out the grid north of the national survey at his own local survey to
anticipate the orientation of the state survey before its actual arrival.

Corrections to Azimuths for Meridian Convergence

1.31 On the earth, considered to be a sphere, the azimuth along a line PQ
varies from a value A, at P to a value Ay at Q, because the meridians
at the two ends of a line are not parallel but converge, except when the line
lies along the equator. (see Fig 1.1)

: mhdd&n

Greenwich

Fig.1.1

Ps

This meridian convergence A is given as the difference between the
azimuths along the line at its end points

e A = A - A
o 0 o

From Napier'’s Analogies in the spherical triangle WXY (vide section 2.62)

tan {%(x+Y)} = cos{4(x-y)} secl{h(xty)} cot{%w}
Substitution in the southern of the two possible spherical triangles gives
tan{k% (A _+180-A )} = cos{%(90+¢_-90-¢ )} sec{(90+d +90+¢ )} cot{% (X -x )}
Q p ¢P ¢Q ¢P ¢Q Q p
This on reduction gives the following result
tan{%A0) = sec{%A¢} sin ¢ tan{%A)}
in which ¢ is the latitude measured positive northwards from the equator,
A is the longitude measured positive eastwards from the Greenwich
meridian,
A¢p is the latitude difference between the ends of the line PQ,
AX 1s the longitude difference between the ends of the line PQ,
and ¢ ~is the latitude of the mid point of the-line PQ
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Substitution in the northern of the two possible spherical triangles gives
exactly the same result as above. The sign of the correction follows from
keeping track of the signs of the defined quantities latitude and longitude,
and also the signs of the trigonometrical functions involved. Its sign can
also be easily determined from a simple sketch.

Since in survey practice, lines are comparatively short, A¢ and AX, and
as a result Ao, are small angles. The above relationship is therefore given,
to the first order of correctness, as

Ao = AX sin 6

It is very often convenient to substitute, for the difference AX in long-
itude, the corresponding distance or the difference in easting in coordinates
AE. The difference in longitude AA corresponds to an east west distance of
AE along the small circle of latitude ¢. Since this small circle has a

radius of R cos ¢

AA - _AE__ o)

R cos 6
But

A = AA sin.a = ——AE——: p sin 5- = é% p tan 5

R cos ¢

in which relationship AE and R are in the same units, and the angular
units and the value of p are in accoxrd.

1.41 Example. Given the following data

— (1) -
Station Latitude Loca} System Coord1naFes¥4}Line Observed Azimuth
: Easting (m) < Northing
A 33034'10" N +60 850.5 +33 008.7 AB 169027'30"
G l 33 30 40 N | +75 906.2 +26 445.8 GF 283 44 40

in which the latitudes are given to the nearest 10".
(2) The sum of the clockwise angles of the traverse at the stations B, C,
o
D, E, and F amounted to 834 11'20".
(3) The radius of the earth is 6 380 kilometres.
Determine the angular closure of the traverse between the stations A and G.

To deduce the azimuth GF f£rom that of AB. (see Fig 1.2)

(E -E_)
Azimuth of AB 169027'30" Ao = k;@ﬁ_é_ o tan ¢
sum of Angles 834 11 20
~720 00 00 = 290957 60 565v ran 33°320 30"
A 6 380 000
Meridian Convergence - 323"
between A and G, Ao 00 05 23 o
Deduced Azimuth GF 283 44 13 = 0°05'23"
Observed Azimuth GF 283 44 40
i 27
Angular Misclosure N N 435000 m ;
1‘ _‘;"""kb 33°35°00" N T T
A N |
X
2 i
S tr
™ < +
+ 3
3 S pg
g S o
S 3 Z
3 i 1.8
! ! =
I G
L ) @ 33°3000” N _
N + 25 000 m )

Fig. 1.2



The sign of term Aa is easily determined from Figure 1.3 where
AN, & GN_ are the local meridians at A and G respectively and Aa
shows the angle of convergence between these two meridians.

<
5
NA’-S
| &
| Z
' & B
1] i
Agk %
%
| '@\NG f
p o VAol Ny
-~ o—
o !
B v

Fig.1.3 Not to scale
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1.42 Example. In a country in the northern hemisphere, a gyro-theodolite,
set up at Trig. Station T and sighted towards Trig. Station S, was used
to determine a direction value for this line. Determine from the following
information, the zero correction to be applied to the gyro-theodolite

direction to obtain an azimuth. (see Fig 1.4)
Station Universal Transverse Mercator System Line | Bearing fxom
Zone 39 Coordinates these Coordinates
Easting {m) Northing
T 227 929.4 3 794 910.5 TS 192%561 42"
S 226 805.4 3 790 020.5

The gyro-theodolite direction value as obtained from observing from T
tewards s = 191°19' 20"
The following facts must be known about this projection

(i) The meridians in the northern hemisphere converge towards the central
mexidian and towards the north. In the southern hemisphere, they
converge towards the central meridian and. the south.

(ii) The ray sighted on the earth between two stations shows on the
projected plane as a curved line between these two points with a
bulge away from the central meridian. The angle T between this
arc and the chord between the two stations is easily computed.

(iii) The bearing from coordinates gives the clockwise angle round from
Grid North to the straight line chord between the two points.

From the tables published for the Universal Tranverse Mercator System,
the geographical coordinates of Station T were computed as

o 34°15735"  North
Ay 48°02'43" East
Likewise from these tables the grid convergence for Station T was computed as
y = 1%39'52"

Grid convergence 1is a special case of meridian convergence, in which one of
the two points is taken to lie on the central meridian. The longitude Xo
of the central meridian of this Zone is 51°E.

S BY = AA = 51%00'00" - 48%02'43" = 2%57'17"
-5—



A good approximation for grid convergence on this projection is given by
Y = AX sinp = 1°39748"

This compares very well with the accurate value taken out above from the
tables.

Grid North

L
V-t
S
Z
5
g
&~

Local Meridian
projected on to plane

Grid
Convergence ¥
Azimuth A of Line TS

J‘ Bearing B of Line TS

Arc to Chord Correction 7

JIION anI] pue YloN prio

Line of Sight TS
Note The small quantities <y and 7

Fig.1.4 have been exaggerated for the

2UO7Z JO URIPLIS]A [BIIUS)D)

16 Y

sake of clarity.

The Arc to Chord Correction 2ET + ES - 1 500 000*
T” = - = i N -
6R? K_* " (g = Np)

2x227 929 + 226 805 - 1 500000

- 6 x 6.3782 x 1012 x 0.99962 ~0° 265x4890

= 3" * False Origin -500 000

J. Azimuth TS = A = B+ T - %Y (see Fig 1.4)
= 192956'42" + 3" - 1°39'52"
= 191%16°'53"

191°19' 20"

—2127"

i

Observed Gyro Azimuth TS

Zero Correction
The Use of Laplace Stations

1.51 2As a preliminary to the discussion to follow, brief and somewhat
generalized descriptions must be given of the surfaces, to which various
portions of a continental survey are referred.

The first surface is the topographical one, namely that of the actual earth,
because the survey is carried out in order to provide information about this
surface. The next one is a smooth mathematical surface, to which the
observations, calculations and results of the survey can be referred. This
is usually an ellipsoid of revolution or spheroid, selected to approximate
very closely to the earth's shape and dimensions at sea level.

The third is an equipotential surface, which closely fits the surface
corresponding to mean sea level and its hypothetical continuation under the
land surfaces and which is called the geoid. The normal to the geoid at a
point will intersect the topographical surface at a second point immediately
above the first. This normal will coincide very closely indeed with the
direction in which gravity is acting at the topographic surface and in which,
therefore, the vertical axis of a theodolite is set when this instrument is
levelled.

-6
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The topographical surface of the earth can be seen to be an irregular one.
The ellipsoid of revolution selected is very slightly elliptical. It has a
smooth surface, on which the normal at any given point can be specified
mathematically. The geoidal surface is no? a smooth one; but, because it is

Topographical

Fig.1.5

not a visible surface its unevenness can be inferred only from indirect
observations. These irreqularities are due to the material, of which the
earth is composed, being homogeneous neither in density nor in distribution,
and they therefore affect the position of the vertical axis of the observer's
thecdolite, when this is levelled. Since this axis defines the observer's
zenith at this point, and since the irregularities are largely random, the
observer's zenith cannot be referred exactly to the other two surfaces.

1.52 A high precision survey, carried over a continental area is known as a
geodetic survey. At the beginning of such a survey, one of its stations is
selected as the Fundamental Station. At this point, an astronomical
determination of its position is made with the very highest accuracy. The
astronomical azimuth of the line from this station to one of the adjacent
stations of the survey is likewise determined. The estimated standard
deviation of the internal accuracy of these determinations is of the order of
1+0.3 seconds of arc.

Then, at the Fundamental Station, the astronomical position ¢A XA is taken
to be the same as that of its geodetic position Qg AG , which are position
values referred to the spheroid of reference selected for the survey.
Similarly, the survey is then orientated by means of the astronomical azimuth
Ap of the observed line; in other words, the astronomical azimuth Ap is
equated to the geodetic azimuth Ag; of the survey.

As the survey progresses, the geodetic position of successive stations can
be derived in terms of the accepted position of the Pundamental Station and
the quantities observed at each station of the survey. If, at a station, which
is not the Fundamental Station, an astronomical determination of position and
azimuth is made with the highest accuracy, this station is known as a Laplace
Station. At such a station, there will be two sets of data available for
position and azimuth and they will not necessarily coincide with each other,
even if the obsexvations, from which they are derived, are absolutely free of
the random errors of human observation. This discrepancy may come about as a
result of several factors.

The technique, described above, of equating astronomical and geodetic values
at the Fundamental Station sets the tangent of the reference spheroid parallel
to that of the geoid, i.e. perpendicular to the direction of the plumb line,
at this point. The geodetic position of the Laplace Station is obtained from
the computation on the surface of the reference spheroid. 1In this computation,
those measurements made on the earth's surface in the course of the geodetic
survey are used and the position of the new Laplace Station, relative to the
Fundamental Station, will therefore be known within a few metres.

1.53 The Laplace Station's astronomical position, however, is determined by
the position of the observer's zenith at this station. The theodolite's
vertical axis, after the theodolite has been levelled at this station, defines
this zenith and, since the levelling is done by means of a bubble or other
device under the influence of the force of gravity, this zenith is determined
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ov the normal to the equipotential surface. The relationship between the
ciumbline and the normal to the reference spheroid at this station is not
xnown and therefore the normals to the two surfaces at this point do not
necessarily coincide, even though they were set to coincide at the Fundamental
Station. The difference in position (¢p - ¢g, An - Ag) provides a very
good criterion of the relative position of the reference spheroid with respect
to the geoid. When there is evidence of a divergence between the two surfaces,
as will be indicated by a systematic difference between the astronomical and
the geodetic values of position, it becomes necessary to re- appraise the
assumptions made at the Fundamental Station and also to consider possible
changes in the dimensions of the reference spheroid adopted.

As the geodetic survey proceeds, its orientation will become increasingly
uncertain, as the distance from the Fundamental Station increases, because of
the accumulation of errors of observation. However, this can be rectified by
making use of the value of the astronomical azimuth, which has also been
obtained at the Laplace Station, in a relationship known as the Laplace
Equation, which states

AA - AG = ()\A - )\G) sin (I)

. This has been derived in the Appendix in section A.91.

The most significant feature of this equation is that it makes it possible to
orient the geodetic survey on the adopted spheroid, irrespective of which one
has been adopted and also irrespective of how it was oriented at the Funda-
mental Station.

With a spheroid of well chosen dimensions and orientation to the geoid, the
difference between the astronomical and geodetic values of position and azimuth
will be small, except possibly in those regions of disturbance, where the local
geoid is unusually uneven.




2

The Solaf System, The Celestial Sphere
and The Astronomical Triangle

INTRODUCTION

2.11 AN observer, looking out at the sky at night sees the black firmament
dotted with a host of points of light, which wheel across the sky from east to
west. On further observation all, with a few exceptions, appear to maintain
their relative positions unaltered, and it is Xnown that they have done so
over the period of recoxded history. These points of light of differing
brilliances are the stars. For convenience in identification, they are
grouped in sets as constellations, which are named from their appearance. In
some cases, there is some justification for the name, e.g. the Scorpion, the
Lion, the Southern Cross, but in others the name has only a fanciful
relationship to the constellation's shape.

Constellation boundaries have been adopted and agreed upon. These are shown
in star atlases. Originally the brightest star in any constellation was
designated o, the next brightest B and so down the Greek alphabet in
diminishing brightness. However, since this system was laid down, the actual
order of brightness, due to some natural cause, may have changed but the
alphabetical order has, for convenience, not been altered. In the star
catalogues, the brightness of each star is given by a number, called its
magnitude.

The ancient astronomers ranked the stars according to their brightness on an
arbitrary whole number scale of "magnitudes” varying between one and six.
Stars having a magnitude of six were just visible to the naked eye under very
favourable observing conditions, and the brightest stars were considered to be
of the first-magnitude. In the 19th century, it was discovered that a first
magnitude star was about 100 times as bright as a star of the sixth magnitude,
and this fact is now used as a basis for the present scale of magnitudes.
Furthermore,this scale is divided in a logarithmic manner, in order to be able
to represent the magnitudes of very bright and very dim bodies by small
numbers. The scale also takes into account fractional magnitudes and extends
beyond the original limits of one and six, with the brightest of the celestial
bodies having negative magnitudes.

Let a star of magnitude wm; have a brightness of b; and a star of
magnitude mp have a brightness of Db;. These quantities may then be related
on a logarithmic scale by

m, ki + ko log b

and ms ki + ka log b2
where k; and k» are constants.
The difference between these two equations gives

b
mi = my + k2 log EL
2
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b . . .
where gl is the ratio of brightness of the two stars.
2

b1 = 100 and thus kp = =-2.5

However from before when m; = 1 and my = 0, b
2

. bi
e = mp — 2.5 —
mj 2 5 log bo
which relationship is the basis of the modern scale of magnitudes.

The following table of magnitudes for some selected celestial bodies will
indicate the characteristics of this scale of magnitudes.

Table 2.1

Body Magnitude Remarks W
Sun -27 Approximate value ‘
Moon -12 Approximate value

at full moon
venas - 3.4 Average value
Sirius (0t Canis Majoris) - 1.6 Brightest star
Betelgeuse (00 Orionis) 0 -1 Varies between 0 & 1
Polaris(a Ursae Minoris) 2.1
0 Octantis 5.5

The reader will find it instructive to calculate the brightness ratio for some
of the bodies cited in the table.

Since the stars are almost infinitely distant, so that the image is a point
source of light, a magnifying telescope will not show any enlargement of the
star image. The images of the sun, the planets and their satellites are not
point sources of light and magnification will enlarge their images and
therefore show them up as discs.

If the sky is kept under observation, it is quickly seen that, during the
yvear, the constellations shift across the sky so that certain of them can be
seen in the eastern sky immediately after sunset at one time of the year;
about six months later, these constellations will appear in the western sky
after sunset.

It will alsoc soon appear that a few of the points of light in the sky behave
in a different way from the majority, because they appear to wander across the
background of the fixed star pattern. They take part in the overall movement
of the whole sky from east to west, but in addition this small band of
wanderers also appears to move relatively with respect to the unchanging star
background in an irregular manner. They appear to move at differing rates,
sometimes appearing to stop and sometimes even to move retrogressively. These
stars are called planets from the Greek word for a wanderer. Five planets are
visible to the naked eye. Venus and Mercury are always in the vicinity of the
sun. The other three visible planets are Mars, Jupiter and Saturn. All lie
in a fairly narrow belt in the sky.

2.12 A prominent object in the sky is the moon, which waxes and wanes over a
period of approximately a month. At the start of a cycle, it can be seen as a
thin crescent in the western sky after sunset. Gradually this crescent grows
until it appears as a semi-circle and then as a full circle at Full Moon.
After this it wanes to the semi-circle and finally disappears. The moon can
be seen to take part in the motion of the sky from east to west. If it is
watched at night, it can be seen to move across the fixed background at a
considerable rate towards the east. Between successive nights, the moon
appears to traverse an arc of about 13° across the sky. The moon also remains,
over the years, within a fairly narrow band in the sky.

2,13 At dawn, the sun rises over the eastern horizon and its light then hides
the stars and planets from the observer's view. It moves across the sky from
east to west, reaches its maximum altitude at noon and then sets in the evening
over the westexrn horizon.

Because the sun's light obscures the stars, it is not so easy to see that the
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sun also moves across the star background. If at sunrise or at sunset, the
stars in the sun's vicinity are noted over a period, it will quickly be seen
that they appear to be catching up with and overtaking the sun. From this, it
is clear that the sun, as well as the moon, is moving eastwards across the
star background. The sun, however, moves at the much slower rate of about one
degree per day and, after a year, appears to reach the same point with respect
to the star background.

The sun's noon altitude at a particular place varies from day to day over a
yearly c¢ycle. The range of this variation in altitude in temperate latitudes
is 47 . For instance, at Sydney in Australia, at a latitude of 34° South, the
sun's maximum midday altitude is 79%O in midsummer, which occurs late in
December, and its minimum noonday altitude is 321:O in midwinter six months
later.

2.14 The earth, which is the observer's platform, is a planet. Like other
planets, it travels round the sun in an orbit, which is slightly elliptical
with the sun at one of the focal points. The earth's path round the sun
defines the orbital plane and the elliptical path, which is very nearly
circular, has an average radius of approximately 150 000 000 kilometres.

The earth itself approximates closely to a sphere of radius 6 380 kilometres.
It spins round its own axis once in a day, which motion produces for all
persons, outside the Arctic Circle or the Antarctic Circle, alternate periods
of daylight and darkness. In addition, the earth travels round its orbit
once in a year.

The moon is a satellite of the earth, around which it travels at an average
distance of approximately 390 000 kilometres. If the planets are observed by
means of:-a telescope, it will be seen that Jupiter has four main satellites,
which are easily visible, and that Saturn has a flat ring encircling it.

2.15 The stars, with the exception of one, which is the sun, are incredibly
distant from the earth. Even though they are, or may be, moving with high
individual velocities in individual directions with respect to each other,
these movements have, over the period of recorded history, produced no obvious
changes in the constellation patterns.

Light from the sun takes about 8 minutes to travel from sun to earth. Light
from the next nearest star, Proxima Centauri, takes 4% years to travel from
this star to the earth. This gives the information that the 150 000 000
kilometre radius of the earth's orbit subtends, at this star, the minute angle
of three guarters of a second of arc. From this information, one may deduce
that the earth's orbit can be considered to have a point dimension at the
centre of a sphere of infinite radius and that the stars may, for all
practical purposes, be considered to be situated on this sphere, which is
known as the Celestial Sphere. O©On this account, therefore, the earth and the
sun may be considered to lie at the centre of the celestial sphere.

It is interesting to note here that, while most people subscribe to the
heliocentric view of Copernicus, the pre-Copernican idea of a geocentric
system is used as the model for much explanation in astronomy. The success of
this is due to the fact that the observer has all the time a geocentric view
of the sky and the celestial bodies.

Reference Circles on the Surface of the Earth

2.21 Any plane, intersecting a sphere and containing its centre, cuts its
surface along a circle of radius equal to that of the sphere. Such a circle
is a Great Circle. Any plane, which intersects the sphere, but does not
contain its centre, cuts its surface along a circle of radius less than that
©f the sphere. (see Fig 2.1(a)) Such a circle is a Small Circle. The
relationships of spherical Trigonometry apply only to Great Circles.

Two intersecting planes A and B, containing the centre of a sphere, produce,
at their intersection, a straight line, which also is a diameter of the sphere.
If a third plane C intersects planes A and B and has their line of intersection
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Fig.2. 1

5

(a) Great Circles and Small Circles (b) The Dihedral Anglc

as a normal, two additional lines of intersection are produced. The angle
between these two lines is the Dihedral Angle between the planes A and B. This
-dihedral angle is produced, wherever plane C may lie, so long as it has the
original line of intersection as its normal. When C is tangential to the sphere,
the two lines defining the dihedral angle are tangents to the two great circles
formed by the intersection of planes A and B with the sphere. Since these two
circles are also tangential to the plane C, the dihedral angle is equal to the
spherical angle on the sphere between these two great circles. (see Fig 2.1(b)}
Any plane, which contains the earth's rotational axis, cuts its surface along
a great circle called a Meridian. All meridians (see Fig 2.1(¢)) therefore
pass through the two terrestrial poles and the angle at each pole between any
two meridians is equal to the dihedral angle between them. The meridian, which
passes through Greenwich, has been selected as the Prime Meridian. Any other
meridian is referred to the prime meridian by quoting its dihedral angle from
the prime meridian. This quantity is the Longitude A , which will be assumed
to be positive eastwards round from the Greenwich Meridian and negative west-
wWards round. In practice, longitudes are usually quoted from Greenwich east
or west from 0° to 1800. Longitude east will be denoted by a positive sign or
by means of the letter E, and a west longitude by a negative sign or by the
letter W. (see Fig 2.1(4))

P
Meridians E Parallels

|
|

(oM
; Fquatot
: Fig.2.1
P

(¢) Meridians and Parallels (d) Latitude and Longitude

2.22 Any plane, which intersects the earth and has its rotational axis as a

normal, cuts the earth's surface in a circle called a Parallel of Latitude.

One of these is a great circle known as the Equator, which is the prime parallel
' -12-




of latitude. The others are all small circles. (see Fig 2.1(c)).

The position of a place on the earth can be defined by specifying the
meridian and the parallel, on which it lies. This is equivalent to giving the
angle A between the Greenwich and the local meridians, which are both great
circles. This has been defined above as the longitude of the place. Since
parallels of latitude are small circles, produced by a set of parallel planes,
their positions, relative to the equator, cannot be defined by the angle
between them, but must be defined by means of an arc length on the sphere along
the local meridian from the equator to the local parallel. This arc length is
known as the latitude ¢. Since the length between two points on a sphere is
defined as the angle, which the arc of a great circle between these two points
subtends at the centre of the sphere, the latitude ¢ is therefore the angle,
which its arc length, defined immediately above, subtends at the earth's
centre (see Fig 2.1(d)). Latitude starts from zero at the equator and is
considered to be positive northwards, negative southwards. Latitude north may,
therefore, be denoted by a positive sign or by means of the letter N beside
the value, and a south latitude by a negative sign or the letter S.

Reference Circles on the Celestial Sphere

2.31 The earth rotates about its own axis. If this terrestrial axis is
produced outwards in both directions into the sky, it will intersect the
celestial sphere at two pointsg known respectively as the North Celestial Pole
and the South Celestial Pole.

The stars appear to rotate about these poles. In the constellation of the
ILesser Bear, there is a bright star (o Ursae Minoris) of magnitude 2.1 called
Polaris, because it lies very close to the north celestial pole. As a result
of this, it has held a very special place in man's reckoning as it shows
continuously where north is and, for an observer at a particular station, it
maintains its altitude practically unaltered unlike other stars. This 1is not
so, in the southern hemisphere, where there is a dearth of visible stars in
the vicinity of the south celestial pole. However, there is a faint star,

0 Octantis, of magnitude 5.5, within one degree of the south pole. It cannot,
like the northern Pole Star, be seen easily by the naked eye but requires a
telescope, with which it may be viewed at night.

The earth's axis of rotation very nearly maintains its direction in space.

In other words the earth's axis points to a certain spot in the sky and only
departs from this spot at a very slow rate indeed, except for minor periodic
effects. In other words, the two pole stars cited above will remain close to
the celestial pole for many years to come.

If the earth's Equatorial Plane is extended out to cut the celestial sphere,
it will intersect this along a great circle called the Celestial Equator, which
lies mid-way between the Celestial Poles. All planes parallel to the equatorial
one will cut the celestial sphere in small circles, called Parallels of
Declination. The celestial equator is, of these, the only one which is a
great circle and it therefore is taken as the prime declination circle, to
which the others are referred.

2.32 Fig 2.2 shows a plan view of the earth's orbit with the sun at one focus
point of this elliptical path. Its eccentricity is much exaggerated in this
diagram, as the actual orbit differs only slightly from a circle. The north
pole of the earth is shown to project upwards out of the plane of the paper at
an oblique angle to the orbital plane. The upper side of the earth's equator
is also shown. The earth's axis maintains a constant spatial direction. The
earth moves round its orbit from A to B to C to D and back to A in one year.
The earth-sun radius vector is the line from earth to sun and therefore, for
an observer on the earth, the sun appears to lie always on the orbital plane,
projected out on to the celestial sphere. This great circle is known as the
Ecliptic. On account of the earth's movement round its orbit, the sun
therefore appears to traverse the ecliptic once a year and therxefore to shift
across the star background in this time.
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The seasons are produced not because the sun is sometimes closer to and
sometimes further from the earth, but because the earth's axis of rotation is
inclined and not perpendicular to the plane of its orbit. When the earth ison
the side towards A of the Equinoctial Line BD, the sun is north of the equator
and it shines with increasing intensity on the northern hemisphere of the
earth until it reaches its maximum distance north of the equator at the summer
solstice in June. The sun then comes back to the equator when the earth moves
towards the equinoctial point B and summer passes through autumn, with the sun
moving to a position south of the equator. Winter now ensues with the sun
shining less intensely on the northern hemisphere. (see Fig 2.2) It should
be noticed that all these seasonal terms refer to the Northern Hemisphere.

2.33 The information in section 2.15 indicates that the radius of the earth's
orbit, large as it may seem to the earth dweller, may be considered to be
infinitesimally small as a length by astronomical standards. The whole orbit
may therefore be considered to be so small that any point in it may be taken
as lying at the centre of the celestial sphere. (see Fig 2.3)

The ecliptic is the great circle produced, on the celestial sphere, by
extending the orbital plane to intersect this sphere. This has poles as shown
lettered EPy and EPg. The earth's rotational axis produced out intersects
the celestial sphere as shown at Py and Pg. This axis is not normal to the

gp, Celestial Longitude
-y Circle

The Celestial

Sphere First Point |
_ of Libra

Tk

Right Ascension
Circle

EPs

orbital plane, but deviates from this normal by about 231_7'O between it and the
ecliptic and there is a line of intersection between the two planes. This
line of intersection defines the two points of intersection which, on the
celestial sphere are shown as the two equinoctial points. The point at B in
FPig. 2.2 is projected out onto the ecliptic. This point (see Fig 2.3) is the
one, where the sun appears to be at the Vernal Equinox when it is crossing the
equator from south to north. This point is known as the First Point of Aries,
and is indicated by the zodiacal symbol of the ram's horns. Opposite the
vernal equinoctial point is the First Point of Libra which is indicated by the
symbol of the scales.

2.34 1If a series of planes, each containing the earth's axis is extended out
to intersect the celestial sphere, each will produce a great circle of Right
Ascension, and each will also intersect the two celestial poles. That one,
which also passes through the First Point of Aries, can be considered as the
prime right ascension circle. This circle has a value of zero right ascension.
The right ascension value of any other such circle is given by the dihedral
angle between it and the prime right ascension circle. The direction of this
numbering system is such that the right ascension circles cross a given
meridian in the order of their numbering. A useful method of remembering is
to consider that right ascension increases towards the east.

The declination of a point P is equal to the angle subtended at the centre
of the celestial sphere by the arc length along the right ascension circle
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through P from the equator to the point P. If north, it is lettered N or
North and, if south, S or South (see Fig 2.4). The position of a point on the
celestial sphere can now be specified by defining the parallel of declination
and the right ascension circle on which it lies. Such coordinates are known as
right ascensﬁon or o and declination ©&. The gormer is given in time
units from O to 24 and the latter in degrees from 0 to 90 .

EPwv EPn

Right Ascension and Declination Celestial Latitude and Longitude

It is obvious from these explanations that terrestrial latitude and longitude
are not the sagme as, but are exactly analogous to, right ascension and declination.
The first is the system for defining a terrestrial position and the second that
for defining a celestial position. Each of these systems is independent of time
because, for each, the reference circles are carried around together with the
surface, to which the system refers.

2.35 There is, on the celestial sphere, a secondary system (see Fig 2.4) for
defining position on it. In this system any plane parallel to the ecliptic
cuts the celestial sphere, in a series of parallels of celestial latitude
having the ecliptic as the reference parallel of zero celestial latitude.
Northern celestial latitudes are labelled N or North and southern ones S or
South. The circles on the celestial sphere produced by planes containing the
poles of the ecliptic provide a set of celestial longitude circles. That one
passing through the First Point of BAries is the zero celestial longitude circle
and the longitude values increase also towards the east. (see Fig 2.4)

The position of a point on the celestial sphere is specified by defining the
parallel of celestial latitude and the circle of celestial longitude, on which
it lies. The symbols used for celestial longitude will be A and for celestial
latitude B.

Observation Circles 1linking the Terrestrial and the Celestial Spheres

2.41 The two main systems, one of latitude and longitude on the earth and the
other of right ascension and declination on the celestial sphere have been set
out. They have the earth's axis of rotation common to them. Due to the earth's
rotation, there appears to be a relative motion of one system with respect to
the other. This can be expressed either way, because the motion is relative,

in the statement that the sky rotates about the earth from east to west or that
the earth rotates from west to east with respect to the sky. The relationship
between these two systems is a straightforward time rotation one. The time
system relationships will be dealt with in Chapter 3.

2.42 In addition, there is the surveyor's or the observer's system for defining
the position of a point on the celestial sphere. This is a gravity dependent
system, which uses the local vertical as the reference line and the local
meridian as the reference direction. It has long been used because the simple
levelling bubble made it possible to define the vertical and the horizontal
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so easily.
The surveyor's theodolite is the instrument constructed to measure in this

system., The theodolite has a wvertical axis, which can easily be set very
closely, but never exactly, except by occasional chance, into the vertical at
any station. Attached to the vertical axis is a graduated circle, so
constructed as to be horizontal when the vertical axis is set vertical, and a
vertical circle is also attached so that it then occupies a vertical plane.

When the theodolite 1s set up, i.e. when its vertical axis is set vertical,
horizontal directions and vertical angles can be observed. If now the
horizontal circle is set to read zero when the telescope is pointed northwards
along the meridian through the theodolite, the observer has a reference system
for setting out, by means of a horizontal circle reading and a vertical circle
reading, any point he wishes to define. Most modern theodolites have vertlcal
circles so graduated that on one face the zero coincides with the zenith, 90°
& 270° with the horizontal and 180° with the nadir.

2.43 The zenith is defined as the point on the celestial sphere where the
vertical axis of the theodolite, projected upwards, intersects it. Similarly,
the nadir is the point on the celestial sphere where this axis, projected
downwards, intersects the celestial sphere. A plane, passing through the
zenith and the nadir of a particular station, cuts the celestial sphere in a
great circle called a Vertical or an Azimuth Circle. That circle, which
coincides with the northern branch of the local merldlan, is the zero a21muth
circle. The azimuth numbering then lncreases from this zero northwards to 90°
towards the east and so right round to 360° That azimuth circle, perpendicular
to the meridian, is called the Prime Vertlcal and its azimuth eastwards is 90
and westwards 270°.

If a theodolite is set up and levelled, the telescope clamped at a specific
angle of altitude and the whole alidade rotated about the vertical axis, the
line of sight in the telescope will then describe a small circle of specific
altitude on the celestial sphere. Such a family of circles produces a set of

Zenith
Dlstance

Equal Altitude
Circle or
Almucantar

Ahnude"

Vertical or
Azimuth Circler—

Local Meridian

Fig.2.5

parallels of altitude, with the main circle the great circle perpendicular to
the vertical axis and therefore having zero altitude. This circle is the
sensible horizon, which, as far as referring it to the celestial sphere is
concerned, is the same as the plane parallel to the horizon and passing
through the earth's centre. This distinction must not be forgotten when the
comparatively close sun, moon and planets are observed, when a corxrrection
(parallax) must be applied to observations of altitude made from the earth’s
surface instead of, as they should be, from the earth's centre (see section
4.54).

The parallels of altitude are often more conveniently dealt with by
referring them to the zenith and providing the zenith distance instead of the
altitude. From this, it is clear that altitude h and zenith distance z
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are complementary quantities, i.e. z = 90-h. A specific parallel of altitude
is often called an equal altitude circle or an almucantar. The angle a at
the zenith between the meridian towards the elevated pole and the vertical
circle through the star is the azimuth angle (see Fig 2.5). The observer can
now use this system for defining a point by specifying its azimuth or its
azimuth angle and its altitude or zenith distance.

The Link between the Systems

2.51 The crux in the understanding of field astronomy lies in the understanding
of the linking up of the celestial systems of right ascension and declination
and of celestial latitude and longitude with those of azimuth and altitude.

2.52 The local meridian of a place or station P is that one passing through
P .and the two terrestrial poles. The plane of this circle, extended outwards
to the celestial sphere, will therefore pass through the two celestial poles and
also through the zenith and the nadir of the station P. These two points are
those, at which the line containing the vertical axis of a theodolite set up at
P will intersect the celestial sphere.

The upper branch of this local meridian goes from one pole through the zenith
of P to the other pole, while its lower branch likewise goes from one pole
through the nadir of P to the other one. Half the local meridian cixcle is
visible from the station P. This semi-circle goes from one side of the horizon
through the elevated celestial pole and the zenith of P to the other side of
the horizon. (see Fig 2.6)

e Visible Portion of Local Meridian

Southwards . Northwards

B E— —

Fig:2.6  Local Meridian Section

0Of the upper branch of the local meridian, that portion from the elevated
celestial pole over the zenith and down to the horizon is visible from P. In
the opposite direction from this pole, that section of the local meridian
visible from the elevated celestial pole down to the horizon is part of the
lower branch of this meridian. A star, crossing over the upper branch of the
meridian is said to be making its Upper Transit, whereas one crossing the lower
branch is said to be making its Lower Transit. At both these times, the star
is moving horizontally, but for the former it moves from east to west and for
the latter in the opposite direction.

The local meridian of P sweeps continuously across the celestial sphere.
For clarity and easier understanding, the meridian may be considered
stationary and the stars to be moving across it.

2.53 A plane, passing through the two celestial poles and a star, cuts the
celestial sphere in a great circle called an Hour Circle. Such a circle is
similar to a right ascension circle but it is unnumbered. The dihedral angle
between an hour circle through a particular celestial body and a local meridian
at a particular moment is the local hour angle of this body at this instant
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Zenith

(see Fig 2.7). This angle is measured from the meridian as zero and it varies
directly with time, because the celestial body is continuously rotating with

respect to the local meridian.
2.54 It is now necessary to bring the various systems together in Fig 2.8 to
be able to consider their relationships with respect to each other. Fig 2.6

shows a particular meridian, on which lie the celestial pole P and the
zenith 2. The two great circles equator and horizon, of which these two

Z Azimuth Angle Z Azimuth Angle
Local Hour Local Hour
Angle Angle

Fig.2.8
The Spherical Triangle
Q i Field Astronomy

points are respectively the poles, are also shown. Fig 2.7 shows the hour
circle and the local hour angle with respect to the local meridian. The
length along the meridian from R to P in Fig 2.8 is equal to the altitude
of the elevated pole. A glance at Fig 2.6 enables one to demonstrate that
"the altitude of the elevated pole at a specific station is equal to the
latitude at this station". 1In this statement, the sign of the latitude value

is dispensed with.
THE SPIIERICAL TRIANGLE OF FIELD ASTRONOMY

2.61 AS Fig 2.8 shows, this triangle on the sphere is the spherical triangle
PZS Dbounded by portions of a local meridian, an hour circle and an azimuth
circle. The apex points of this triangle are the elevated pole, the observer's
zenith and a star. In it are linked the three systems of altitude and azimuth,
right ascension and declination as well as latitude and longitude. It should
be noted that this spherical triangle could be one in which the star § did
not lie on the same side of the equator as the observer and his elevated pole.
This is shown by placing a second star at S' in Fig 2.8. The spherical
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triangle would then be the one with apex points at P, Z and S' and, in
this case, the zenith distance and polar distance would cross over the equator.
Normally, -in this system, the observer always uses the elevated pole. He
therefore changes his elevated pole on crossing the equator. Furthermore, the
resgriction is imposed that no element of this spherical triangle shall exceed
180 .

The spherical triangle of field astronomy therefore is defined by the three
apex points, elevated pole, zenith and star. The lengths of its sides are then:-

ZS or 28' = zenith distance Z = 90 - h
PZ = colatitude c = 90 - ¢
PS or PS' = polar distance p = 90 * &

in which ¢, ¢ and h are considered to be unsigned guantities and the
positive sign in the expression for p 1is used only when & and ¢ are of
contrarxy name, i.e. they are on opposite sides of the equator.

The elements in this spherical triangle must be deduced from the astronomical
elements, e.g. if the azimuth is given as 330 , the azimuth angle a 4in the
corresponding spherical triangle is either 30° or 150°. Similarly elements
obtained from the solution of the spherical triangle must be translated into
the corresponding astronomical elements.

The above method can be used, but the solutions from the spherical triangle
are encumbered with sets of special rules for the various situations
encountered. The restrictions of the spherical triangle and the constant
manipulation of the information for, and the answers of, each solution from
this triangle make the method laborious and liable to error. The cumbersome
navigation tables and the need for differentiating between the case of
"Latitude and Declination of the Same Name" and that of "Latitude and
Declination of Opposite Name" are being rendered obsolete now because
computations are being carried out by means of the electronic computer. For
this reason, it is better to develop a system, which copes automatically with
all the possible variations of the spherical triangle, encountered in
astronomy. For these and other reasons, which will be seen as the
following sections are read, a generalized system for solving the Astronomical
Triangle has been worked out and expanded further ahead in this chapter.

The Relationships of Spherical Trigonometry

2.62 For the computation, the equations of spherical trigonometry are required.
Because they will be constantly referred to, they are given here.
In the spherical triangle WXY the following relationships hold:

Cosine Formula COS W = COS X cos y + sin x sin y cos W

Five Parts

sin w cos X = ¢os X sin y - sin X cos y cos W
Formula

e

. sin W sin sin Y
Sine Formula - = — = —
sin w sin x sin vy

Four Parts

cot y sin x = cot Y sin W + cos x cox W
Formula

Polar Cosine

-cos W= cos X cos ¥ - sin X sin Y cos w
Formula

Polar Five

sin W cos x = cos X sin Y + sin X cos Y cos w
Parts Formula
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Zifferential sin w dY = ~cos X sin y dW - cos w sin Y dx
Rzlationships + sin X dy
dw = sin x sin Y dW + cos Y dx
+ cos X dy
-dW = -sin X sin y dw + cos y dX
+ cos x dY
cos w sin X dw = -sin w cos X dX + cos ¥ sin W dx
+ gin x cos W dW
Additional Formulae
Half Angle sin® %W = sin(s-x) sin(s-y) cosec x cosec y
Formulae cos? W = sin s sin(s-w) cosec x cosec y
tan? LW = sin(s-x) sin(s-y) cosec s cosec (s—w)
in which 2s = w+ x + vy
Napier's tan %(X+¥) = cos %(x-y) sec %(x+y) cot Lw
Analogies tan %(X-Y) = sin %(x-y) cosec L(x+y) cot LW
tan L(xty) = cos %(X-Y) sec %(X+Y) tan hw
tan L(x-y) = sin %(X-Y) coseck(X+Y) tan hw

The polar form of any one of the formulae of spherical trigonometry can be
derived by substituting 180-W for W, 180-x for X etc. This has been done
below in the Cosine FPormula as an illustration. It should be noticed that the
Four Parts and the Sine Formulae transform back into themselves when this
process of changing an angle for a side, and vice versa, is carried out.

The Polar Cosine Formula, for instance, is obtained by making the above
substitution in the Cosine Formula

COS W = (COS X cOoS y + sin x sin y cos W
as follows:

cos (180-w) cos (180-X) cos(180-Y) + sin(180-X) sin(180-Y) cos(180-w)

-cos W = cos X cos Y - sin X sin Y cos w

For the solution of a spherical triangle, four elements, out of the total of
six, must be linked in one of the spherical trigonometry relationships. These
four elements may be made up of the following sets:-

Case I (a) Three sides and one angle
(b) Three angles and one side.

Case II Two angles and two sides with
(a) four cyclically consecutive elements
(b) two angular elements lying opposite two side elements.

Table 2.2 below sets out the twelve various ways of solving for the fourth
unknown, when three of the elements in the spherical triangle WXY are given.
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Table 2.2

No. Given Sought Solution
1 Two sides %,y and Angle opposite one Four Parts Formula
included angle W of the two sides x,y
2 " " Third side w Cosine Formula
3 Two angles X,Y and Side opposite one of | Four Parts Formula
included side w the two angles X,Y
4 " " Third angle W Polar Cosine Formula
5 Three sides w,X,y Angle W Cosine Formula
6 Three angles W,X,Y Side w Polar Cosine Formula
7 Two sides w,x and Angle X opposite *Sine Formula
angle W opposite w other side x
8 " " Angle Y contained **FPour Parts Formula
between two sides w,x in implicit form for Y
9 " " Third side y **Cosine Formula in
implicit form for y
10 Two angles W,X and Side w opposite W *Sine Formula
a side x opposite X
11 " " Side y not opposite **Four Parts Formula in
either W or X implicit form for y
12 " " Third angle Y **Polar Cosine Formula
in implicit form for Y

* In these two cases, the ambiguity may be resolved from the rule that,
according as the sum(w+x) is greater or less than 180°, so the sum(W+X) is
greater or less than 180°.

**% These formulae are all in the implicit form for the unknown socught. They
can be solved by dropping perpendiculars from apex Y to base y and solving the
two right angled triangles from which the unknown can be obtained (see section
A.41 in the appendix for one such example). Ambiguities must then be resolved
by means of some additional piece of information.

Therefore, when a solution is being sought, it is necessary to note what
information has been given and what is required, to fit this into the twelve
possible cases given above and then to name the elements by lettering the apex
points of the spherical triangle with W, X and Y at the appropriate points.

2.63 The differential relationships of section 2.62 give the result of small
variations in the elements of the spherical triangle. The first, the second
and the fourth relationships are obtained by differentiation of the Four Parts,
the Cosine and the Sine Formula respectively (see section A.31 in the appendix
for this detail). The third relationship is the polar form of the second one.
If this method is applied to the first and the fourth relationships, they come
back to themselves, just as do the functions, from which these differential
relations are derived.

THE ASTRONOMICAL TRIANGLE OF FIELD ASTRONOMY AND THE GENERALIZED CONVENTIONS
IN THIS TRIANGLE

2.71 THE elements of the spherical triangle of field astronomy of Fig 2.8 and
of section 2.61 have been generalized and conventionalized in the astronomical
triangle of field astronomy to develop a more efficient system of calculation
and mathematical manipulation of these elements and to take advantage of the
great power of the electronic computer.

Some of these elements have already been conventionalized, e.g. latitude
and declination have long been considered positive north and negative south
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of the equator and right ascension likewise has been taken to increase east-
wards. The implications of these conventions are, however,not so obvious.
They are that the first two are quantities, which exist only in the first and
the fourth quadrants, whereas right ascension exists in all four.

The further conventions postulated below give rise to the generalized
spherical triangle, which, it is proposed, should be called the Astronomical
Triangle. In it, these generalized conventions liberate this triangle from
the restrictions and anomalies of the spherical triangle of field astronomy to
produce a much more flexible and a much more efficient system.

The Astronomical Triangle

2.72 This is the spherical triangle with the apex points at either of the
celestial poles (which may or may not be the observer's elevated pole) the
observer's zenith and the star (see Fig 2.9). In this triangle, the viewer is
considered to be lococking down on to the observer's zenith from outside the
celestial sphere. Both the northern and the southern astronomical triangles

are shown and also the situations of star west and of star east of the meridian.

2007

Meridian

West East

5bd

uBIPHIa

Ps

Fig. 2.9 The Astronomical Triangle

In this triangle, neither sides nor angles need be restricted in size. The
generalized conventions enable the astronomical triangle to be solved without
ambiguity, even if the computation or the manipulation is complex, provided
these conventions are used and the resulting signs of the trigonometrical
functions are carefully followed through the computation (see section 2.73).
The generalized system postulated above succeeds in releasing the self-~imposed
bonds, inherent in working with the spherical triangle of field astronomy, but
the ambiguous solutions, indicated in Table 2.2, still remain present in both
systems, except that this has been overcome in the example for the general
latitude solution as shown in section 5.21.

2.73 The definitions and conventions for the generalized system are given
below.
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Possible
Quadrants
Longitude A Angle at terrestrial poles or 1 2 3 4
dihedral angle between local
meridian and Greenwich Meridian;
positive eastwards from the
Greenwich Meridian as zero

Name Symbol] Definition and Sign Convention

Latitude ¢ Angle subtended at centre of the 1 - - 4
terrestrial sphere by arc of
meridian from equator to point
| specified; positive northwards
I and negative southwards from
equator as zero

Right RA Angle at celestial poles or 1 2 3 4
Ascension or o dihedral angle between the hour
circle of the First Point of

| Aries and that of a point

3 specified; positive eastwards
round from zero at the First
Point of Aries

Declination § Angle subtended at centre of 1 - - 4
the celestial sphere by arc of
hour circle from equator to
point specified, positive
northwards and negative south-
wards from equator as zero

Local Hour t Angle at poles or dihedral angle 1 2 3 4
Angle between the local meridian and
the hour circle through the point
specified; positive westwards
from this meridian as zero

Azimuth A Angle at zenith or dihedral angle \ 1 2 3 4
between the northern branch of the

local meridian and the azimuth

circle to the point specified;

positive eastwards round from north

as zero

4

Fltitude ' h Vertical angle from horizon upwards ’ i - - 4
to the zenith as positive and
| downwards to the nadir as negative
with the horizon as zexo

f

Zenith z Vertical angle downwards from 1 2 - -
Distance zenith to nadir with zenith as
zZero

Parallactic w Angle at star between its hour circle 1 2 3 4
Bngle northwards as zero eastwards round to
the azimuth circle through the star

2.74 The spherical trigonometry relationships of section 2.62 can now be
generalized for use in the astronomical triangle by substituting in them the
elements of this triangle as shown in Fig 2.9. Any one of the four possible
variants may be used as starting point and, if the relevant elements are
substituted, the same end result will be obtained. This is demonstrated for
the four cases with respect to one of the spherical trigonometry relationships
(see appendix section A.2) for manipulation of complex angles and their
trigonometrical functions).
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In the northern astronomical triangle, the Sine Formulae become

(1) to the west sin t _ 5in (360-3) _ sin W
sin(90-h) =~ sin(90-6) "~ sin(90-¢)
sin t _ _sin A _ sin w
cos h cos ¢ " cos o
(i) to th c sin(360-t) _  sin A _ sin(360~w)
= © the eas sin(90-h) _ sin(90-8) =in(90-¢)
sin t _ _ sin A _ sin w
cos h cos § " cos ¢ 1
In the southern astronomical triangle, these become
. sin t _ sin(A-180) _ 5in{180-w)
(11i)  to the west Sin(90-h)  sin(90+8)  _ sin(90+¢)
sin t _ _sin A _ 5in W
cos h cos § cos ¢
(iv) to the east sin(360-t) _ sin(180-A) _ sin (w-180)
v © the eas 5in(90-h)  Sin(90+3) sin (90+0)
sin t _ _sSsin 3 _ Sin w
cos h cos § " cos ¢

By means of a similar approach, the same can be shown to hold for any of the
other relationships of section 2.62 to obtain generalized relationships for
the astronomical triangle.

Because so much calculation or computation is required in a course of field
astronomy, it is considered to be an advantage to have these generalized
relationships readily available. The substitutions have therefore been made
for the frequently needed cases and these are given below in section 2.75.
The derivations of first and second differential relationships are given in
sections A.31 to A.33.
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2.75 Generalized Spherical Trigonometry Formulae for Use in the Astronomical
Triangle

Cosine ’ sin § = sin h sin ¢ + cos h cos ¢ cos A
Formula sin ¢ = sin § sin h + cos § cos h cos w
sin h = sin ¢ sin § + cos ¢ cos 6 cos t
Polar Cosine -cos A = cos t cos W - sin t sin W sin
Formula -cos W = cos A cos t + sin A sin t sin ¢
-~cos t = cos wcos A+ sin w sin A sin h
j
Five Parts cos 8§ cos t = sin h cos ¢ - cos h sin ¢ cos A
Formula cos § cos w = sin ¢ cos h - cos ¢ sin h cos A
cos ¢ cos A = sin § cos h - cos § sin h cos w
cos ¢ cos t = sin h cos § - cos h sin § cos w
cos hcosw = sin ¢ cos § - cos ¢ sin § cos t
cos hcos A = sin 6 cos ¢ - cos § sin ¢ cos t
Polar Five
Parts Formula | -sin A sin h = cos t sin w + sin t cos ® sin §
-sin A sin ¢ = coOs W sin t + sin w cos t sin §
-sin w sin § = -cos A sin t 4 sin A cos t sin ¢
-sin W sin h = cos t sin A - sin t cos A sin ¢
-sin t sin ¢ = cos W sin A - sin w cos A sin h
-sin t sin § = -cos A sin W + sin A cos w sin h
Four Parts tan 8§ cos ¢ = sin ¢ cos t -~ sin t cot A
Farmula tan § cos h = sin h cos w - sin w cot A
tan ¢ cos h = sin h cos A - sin A cot w
tan ¢ cos § = sin § cos t + sin t cot w
tan h cos § = sin § cos w + sin w cot t
tan h cos ¢ = sin ¢ cos A - sin A cot t
|
Sine Formula sin t/cos h = -sin B/cos 8 = sin w/cos ¢ |
Differential dh = cos ¢ sin B dt + cos A dp + cos w d6
Relationships db = -cos § sin t A& + cos t A48 + cos A dh
A8 = cos ¢ sin t dA + cos w dh + cos t d¢
dA = sec h cosw cos § dt + tan h sin A dp + sec h sin w 45
Ay = -sec h cos A cos ¢ dt + sec h sin A d¢ + tan h sin w dS
dt = -sec ¢ cos A cos h dw + tan ¢ sin t d§ + sec ¢ sin A dh
da = sec ¢ cos t cos § dw + sec ¢ sin t d§ + tan ¢ sin A dh
dw = sec § cos t cos ® dA - sec § sin t dp + tan § sin w dh
dt = sec § cos W cos h dA + tan § sin t A& - sec & sin w dh
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Second differential coefficients with ¢ and § being held constant are

dz2h dh dh
= —— + —_——
a2 ac { cot t tan h at 1

- cos ¢ cos A(tan h cos ¢ cos A - sin @)

dzt  _ t dt
e - ah (cot t ah + tan h)

= - sec ¢ cot A cosec A(tan¢ cosec A - tan h cot A)
d2A . .
a%f = cos ¢ sec?h sin A(sin § cos h -2 cos ¢ cos RA)
d,A”
aﬁ;— = - sec’h cot w(sin h + 2 cot A cosec 2 )

It must be realized that, in this generalized system, Napier's Rule of
Circular Parts for a right-angled spherical triangle should not be used,
because this rule does not always differentiate between an angle of 90° and one
of 270°. As a result, the sign convention is destroyed. Therefore, if an angle
of 90° or 270° occurs, its value must be inserted into the generalized
relationship and the rule of signs observed. This does not give trouble, when
the cosine of this angle is used as each gives a zero for this function.

Calculation Example

2.76 Determine the remaining elements of the astronomical triangle in which
the latitude is 26° North, the declination 50° South and the hour angle 3 hours
east.

i.e. ¢ = + 26° § = - 50° ¢ = 211 = 3150

If only the relationships of section 2.62 are available, then W 1is equated
with the north pole, X with the zenith and Y with the star. This gives the
hour angle at the north pole as the angle included between the latitude and the
declination sides.

The Cosine Formula of section 2.62 gives

COS W = COS X ¢Os ¥ + sin x sin y cos W

cos (90-8) cos(90-¢) + sin(90-3) sin(90-¢) cos t

il

cos(90 - h)

sin 6 sin ¢ + cos § cos ¢ cos t

sin h

which is exactly what the relationships of section 2.75 give.

.. sin h = sin § sin ¢ + cos § cos ¢ cos t
= sin(-50) sin(+26} + cos{-50) cos(+26) cos(315)
= 0.07271

.. h = + 4°10'10" or +175°49'50"

But by definition and convention, the altitude lies only in the first or fourth
gquadrants and therefore -

h = + 4°10'10" or 4°10'10" above the horizon

To solve for the azimuth, it is necessary to link the four consecutive

elements A, ¢, t and &§. This requires the Four Parts Formula. For an
illustration, and only for demonstration purposes, W will be placed at the
south pole, Y at the zenith and X at the star.
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cot y sin x cot Y sin W + cos x cos W

cot (90+4) sin(90+¢)

cot (180-3) sin(360-t) + cos(90+¢) cos(360-t)

-tan § cos ¢ = (-cot A) (-sin t) + (-sin ¢) cos t
-tan § cos § = cot A sin t - sin ¢ cos t
.. cot BAsint = sin ¢ cos t - tan § cos ¢
cot A = sin ¢ cot t - tan § cos ¢ cosec t
= sin(+26) cot 315 - tan(-50) cos(+26) cosec 315
= ~-1,95 319
. A = 332°53'20" or 152°53'20" to the nearest 10"

Before A can be unambiguously determined, a second piece of information is
required. The cotangent of the azimuth is negative as shown above. If the sign
of either its sine or cosine is known or can be determined, then A is known
uniquely.

Now from the Sine Formula

sin A = -sin t cos § sec h

in which cos § and sec h are both positive since § and h exist only in
first or fourth quadrants. Therefore, sin A has sign opposite to that of
sin t. But sin t = sin 315 = negative and so sin A is positive. Thus,
with its sine positive and its cotangent negative, the azimuth lies in the
second quadrant (see section 2.77 for a superior alternative).

A = 152°53'20"

Another way of doing the same is to remember that the hour angle of 315°
indicates that the star was east of the meridian and therefore of the two
possible values of the azimuth, the value 152°53'20" is the one on the eastern
side of the meridian.

From a similar calculation and reasoning, w is calculated by linking the
four consecutive elements w, &, t and ¢ in the Four Parts Formula. W 1is
put at the pole, Y at the star and X at the zenith and the required
relationship for the astronomical triangle is then determined and used to
calculate @ as 320°24'50" without any ambiguity.

If the relationships of section 2.75 are available, then these relationships
can be used directly without the necessity of deriving them in the mannexr
demonstrated above. The calculation is checked thoroughly by substitution of
the elements computed in the Five Parts Formula and less thoroughly by
substitution in the Sine Formula, which gives only a partial check and, in some
cases, when any of the elements is near a right angle, the check lacks accuracy.
It is to be noted that such lack of accuracy does not occur when the tangent or
the cotangent is used as these functions are sensitive over the whole of their
range, even when the functions have very large values indeed.

2.77 From the above, it comes out that at least two independent facts must be
known before an unambiguous solution can be obtained. One fact known leads to
double answers and the second fact enables the unique answer to be selected.
If one takes the determination of hour angle t from an observed altitude h,
a known declination ¢ and a known latitude ¢, the relationship connecting
these elements is the Cosine Formula which, taken direct from the generalized
relationships of section 2.75, is

sinh = sin ¢ sin § + cos ¢ cos § cos t

.. cos t = sec ¢ sec § sin h - tan ¢ tan O

From this solution for t from the cosine, doublelvalues, either one in first
guadrant and one in fourth or one in second quadrant and one in third, are
obtained. It is not possible to get the correct value without knowing whether
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the observation was made towards the west or towards the east.

One function, however, can be used to give unigue answers because it is
derived from two pieces of information. This function is the tangent, which
can be expressed in the form of a numerator and denominator as

sin X N

tan x = =
cos X D

X 1s then uniquely determined by the pair of signs specified by N and D
as the guadrant is determined from the signs shown in Table A.l of section A.21.
For example, from section 2.75,

sin A -sin t cos § sec h
cos A (sin § cos ¢ - cos § sin ¢ cos t)sec h

tan A
in which the numerator comes from the Sine Formula and the denominator comes
from the Five Parts Formula.

. tan A ~ sin t
o 0 tan 6 cos ¢ - sin ¢ cos t

because cos 6§ and cos h are always positive.
Likewise
sin w sin w c¢os h

tan W = =
cos cos w cos h

sin t cos ¢
sin ¢ cos § -~ cos ¢ sin § cos t

sin t
tan ¢ cos § - sin § cos t

because cos ¢ and cos h are always positive.
When the values of the elements used in the example of section 2.76 are sub-
stituted in these relationships, then

tan A - sin 315
tan(-50)cos (+26)-sin (+26) cos (315)
_+ 0.707 107
T -1.381 116

This indicates a second quadrant angle for the azimuth and therefore

A = 152°953'20"
leew1set . sin 315
an tan (+26) cos (-50) -sin (-50) cos 315
= .0.707 107
= ¥ 0.855 184

This indicates a fourth guadrant angle for the parallactic angle and therefore

w 320°24'50"

2,78 Example. To illustrate the power and certainty of computing in the
astronomical triangle rather than in the spheric¢al triangle, let it be required
to find the azimuth to the above star at an instant 20 minutes of time earlier.

- i.e. At = =200 = -5° = =18 000"
and t = 310° at this moment.
From a Taylor Series expansion, doh
2
Azipo = Agy1s + At + % T
dtsis 2
dt3is

From the spherical trigonometry relationships, the change in an angle dY
resulting from changes in the included angle dw and the two included sides
dx and dy is given in section 2.62 by

-29-



sinwdY = - cos Xsiny dW - cos w sin ¥ dx + sin X dy

To obtain the generalized relationship from this and also to illustrate the
manipulative process, the southern astronomical triangle of Fig 2.9 with the
star east will be taken for the starting point,

The change in the azimuth is to be found in terms of a change in the hour
angle, which is the included angle, a change in the declination and in the
latitude sides, which are the including sides. W is therefore put at the
South Pole, at which the hour angle lies. The change in azimuth d8A 1is to be
associated with the azimuth A at the zenith so that Y is put at this point.
X then falls at the third apex, i.e. at the star.

Then the differential relationship above becomes

sin(90-h) d4d(180-A) -cos (W-180) sin{(20+8) 4 (360-t)
-cos(90-h) sin(180-3) d(S0+¢)
+sin{(w-180) d(90+8)

- cos h dA = -cos w cos § dt - sin h sin A d$ - sin w A8
aa . d¢ . as
22 = + + el =
e sec h cos p cos § tan h sin A at sec h sin w at
. d das
With ¢ and & held constant a%- and ac  are each zero,
dA
and then 3t = sec h cos w cos §
dyA
C. — = é%—(g%) = -gsec h sin w g%-cos § + sec h tan h %%—cos w cos &
€ an du
But Sf = ©os ¢ sin A and Gt — ~sec h cos A cos ¢ when ¢ and 8
are held constant.
d,A
. — = sec®h cos § cos ¢ (sin W cos A + cos w sin h sin A)
ac?
Substituting numerical values gives
d'A o ] o 1 o
Fra = gec(+4°10') cos(320°25') cos(-50°)
=  0.4967% '
d2A )
—— = sec(+4°10') cos(-50°) COS(+26°)[ sin(320°25')cos (152°53")
2
dt

+ cos(320°25') sin(+4°10') sin(152°53')]

0.3442

Asyp = 152°53'20" + (.0.49671) (-18000")
+ 1. ( 0.3442) (-18000")%sin 1"
= 152°53'20" — 2°29'01" + 0°04'30"
= 150°28'49"

But A310

150°28'50" by direct solution

The use of a series, which embodies the differential coefficients, which, so
often in field astronomy, are somewhat awkard, is avoided, because the direct
solution with the altered data can nowadays so easily be repeated.
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Time and Time Keeping

INTRODUCTION

THE rotation of the earth about its own axis at the centre of the celestial
sphere provides the basic requirements of a time system.. These are reqgulax
recurrences of a phenomenon, which can be observed and which continues
unfailingly. The basic unit of a time system should be of uniform length. It
is most convenient if this interval is a reasonably short one, so that
recurrences of the event are frequent and so that the interval between
successive events can be successfully bridged, without too much difficulty, to
obtain an accurate uniform subdivision of the unit of time.

The time units available are the year, the month and the day. The vear
served as the husbandman's indicator of the seasons and also as the historian's
means of recording the sequential occurrence of events. The lunar unit of the
month served to divide the rather long period of the year into smaller units.
The day, as a unit of time, satisfied the civil need of timing the daily round.
The relationships between the lengths of these units are not simple ones. In
times gone past, these relationships were not accurately known. This, combined
with time counting being a function of the priestly orders and not of the state,
led to considerable confusion in the calendar. Julius Caesar, with the help of
the astronomer Sosigenes, revised the calendar in 46 B.C. This served well up
to the time of Pope Gregory XIII, who made a further revision and introduced it
in the catholic countries of Europe in 1582. Other countries adopted the
Gregorian calendar after this date.

TIME SYSTEMS
Sidereal Time

3.11 A less cbvious system of time keeping, than that associated with the sun,
is one connected with the stars. Such a system depends, as with a system
based on the sun, upon the rotation of the earth around its polar axis; a
rotation which, for the purpose of preliminary explanation, may be considered
uniform.

For this time system a marker is selected on the celestial sphere and the
basic time unit, the sidereal day, is defined as the interval between
successive passages of this marker over a selected meridian. The time marker
has been chosen as the First Point of Aries, the marker from which right
ascensions are reckoned, see Fig 2.3.

The stidereal day starts at the instant at which the upper branch of the
selected meridian, which for convenience will be taken as that of Greenwich,
crosses the First Point of Aries.

There are imperfections in using such a system for civil time reckoning
because the sidereal day, although very nearly constant in length, is not
fixed in relation to the hours of light and darkness. However, the constancy
in the length of the sidereal day can be used to advantage to explain the
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irregularities in a time system based on the motion of the sun.

Solaxr Time

3.12 The obvious time keeper for civil purposes is the sun, because of its
division, for the overwhelming majority of people in the world, of the day into
alternating periods of light and darkness. On this alternating cycle, the
daily pattern of civil activity is based.

Apparent Solar Time

3.13 Due to the earth's rotation about its axis, each meridian will transit
over the sun successively. For convenience of explanation, the Greenwich
meridian will be used. The upper branch of this meridian will cross the sun

at approximately the midpoint of the daylight period at Greenwich and the lower
branch will likewise cross the sun at about the midpoint of the period of
darkness. The interval between successive passages of the lower branch of the
Greenwich meridian across the sun is a "day with respect to the actual sun" or
an apparent solar day. Since the date in a civil timekeeping system is of great
importance, it would be inconvenient to have a date change in the middle of the
period of daylight, when social activity is at its height.

The Greevwich apparent solar day is constidered to start from the moment, at
which the sun 18 on the Lower branch of the Greemwich meridian.

The actual sun, therefore, provides the Apparent Solar Time system, which is
the system obtained from observations of time from a sundial. This system has
many advantages but, as will be seen, it lacks the basic requirement of a
uniform unit of time, which is possessed by the sidereal system.

The solar or tropic year, not the calendar year, begins when the sun, in its
ecliptic passage, occupies the First Point of Aries in passing from the
southern to the northern celestial hemisphere, (see section 2.32 and Fig 2.2).
The year ends when the sun again occupies the same point, during which time the
sun appears to make 365.2422... revolutions with respect to a fixed meridian.

3.14 Fig 3.1 shows the sun in three positions, e;, ez and e3 on the
ecliptic, the spacing between each point being exactly 1/365.2422... of the
circumference of the ecliptic i.e. the sun is assumed to move at constant speed
in the path of the ecliptic. The duration of the first apparent solar day will
be the time taken for the star marked S to occupy the fixed meridian after
one revolution of the earth, i.e. one sidereal day, pZus the time taken for

the sun to move through the angle a back to the fixed meridian. Likewise

the duration of a second solar day will be one sidereal day plus the time taken
for the sun to move through the angle b. It is obvious that a and b are
not equal, even though the distances ej;e; and eze; are egqual. Thus the
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apparent solar day 1is not of constant length throughout the year and would
only be so if the sun moved at constant speed in the path of the celestial
eguator, i.e. the obliquity of the ecliptic € was zero.

Fig.3.2 Plan view of Earth’s Orbit

3.15 The earth is a planet of the sun and its motion is therefore subject to
Kepler's laws of planetary motion, the first of which states that a planet's
orbit around its parent body is an ellipse with the parent body at one of the
focal points of this ellipse. The second law states that the variable length
radius vector, planet to parent body, sweeps out equal areas in equal times.
Therefore in Figure 3.2, the earth is seen to move faster in its orbit between
C and D than between A and B where the two hatched sections have been
made equal in area. Thus the previous assumption that the sun moves at
constant speed in its ecliptic path is incorrect and would only be true if the
earth's orbit around the sun was circular and not elliptical.

Mean Solar Time

3.16 The irregularity in the length of the apparent solar day caused by the
obliquity of the ecliptic and the ellipticity of the earth's orbit was of no
great concern to man until he was able to construct accurate timekeepers for
scientific measurement. To overcome the inadegquacies of the apparent solar
time system, a fictitious mean sun moving at constant speed in the equator,
was devised. Thus the intervals between successive transits of this sun across
a fixed meridian were made equal, i.e. the day was of constant length.

This system, called the Mean Solar Time system, retains the convenience of
the sun as an approximate time marker for civil purposes, and yet has a
uniform unit of time for its base.

This unit, the mean solar day, is equal to the average length of all the
apparent solar days in a year and starts when the mean sun is on the lower
branch of the Greenwich meridian. It should be noted that the duration of the
year is a fixed length of time and that the numbers of apparent and mean solar
days in this period are identical. 1In the mean solar system, the unit of
subdivision is uniform.

Standard or Zone Time

3.17 The Mean Time System is the basis of civil time keeping throughout the
world. If one lived in a area, well removed from the meridian of Greenwich,
it would be convenient to set ones watch so that it kept mean time for a
nearby meridian. In order to do this, one would take into account the
longitude of this selected meridian by converting the value of longitude from
angular units to time units on the basis that 360° = 24D etc. Such a time
system is called Local Mean Time (LMT).
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2.2 If individuals or individual communities were to adopt this practice
irZependently of one another, there would be great confusion in the
coordination of daily activity. To aveid this a meridian is selected near the
centre of the country, and all clocks and watches are set to give the LMT of
this meridian, which is called the standard meridian, The area selected on
either side of the standard meridian is called a Time Zone. Zone Times or
Standard Times are mean times, which usually differ from Greenwich Mean Time by
a number of whole houxrs (15°). ' .

Australia keeps three time zones; the eastern states of Australia keep a
zone time, called Australian Eastern Standard Time, AEST, which is 10 hours
east of Greenwich. To put this another way, the eastern states of Australia
all keep mean time provided by the 150thdegree meridian east. South Africe
keeps South African Standard Time, SAST, which is 2I' east of Greenwich. The
United States of America, keeps four zone times, Eastern, Central, Mountain
and Pacific Standard Times, which are réSpectively 3, 6, 7 and 8 hours west
of Greenwich.

RELATIONSHIPS BETWEEN TIME SYSTEMS

IT is now necessary to know the exact relationships between the time systems to
be able to convert from one to another. '

The Relationship between Mean and Apparent Solar Time

3.21 Observations are often made on the real (apparent) sun and timing is made
with watches keeping mean (solar) time. The difference between these time
systems at any instant in the year is called the Equation of Time. This is the
algebraic sum of the accumulation of the changes in the length of the apparent
solar day described in sections 3.14 and 3.15. Fig 3.3 shows the two components
of the Equation of Time, one due to the ellipticity of the orbit and the other
to the obliquity of the ecliptic, o

20" Component due to Ellipticity of the Orbit -~ -~~~ :
is b Componcqﬁ_ggc to Obliquity (_)f the Orbit
Equation of Time

-5 F Fig. 3.3 The Equation of Time
-207

—

It will be noted that the variation in sign of the Equation cof Time indicates
that the apparent sun leads or lags with respect to the mean sun. The Eguation
of Time is defined as,

Equation of Time = Greemwich Apparent Time - Greenwich Mean Time

In modern almanacs and ephemerides, a quantity E; which does not change its
sign, is tabulated. This quoantity is given by the relationship

E = 12h + Equation of Time
and is tabulated for every Gh of UT in the Star Almanac for Land Surveyors for
the current year. A table is also provided for interpclating between these
values.
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The Relationship between Mean Solar and Sidereal Time

3.22 Greenwich Mean Time, GMT, or Universal Time, UT (the terms are used
synonymously throughout the text) and Greenwich Sidereal Time are in phase
when the First Point of Aries and the Mean Sun are diametrically opposite
one another on the celestial sphere. (see sections 3.11 and 3.13) This
situation occurs at the time of the Autumnal Equinox on or about the 21st
of September. When these two points are together the time systems are 180°
or 12D out of phase and this occurs at the time of the Vernal Equinox on
or about the 21st of Maxch.

3.23 In addition to knowing the phase relationship at a particular time,

it will be necessary to know the ratio between the lengths of the sub-
divisions of the year in each time system. It was stated in section

3.13, 1in considering the variation in the length of the apparent solar

day, that during the course of one year there were 365.2422... mean or
apparent solar days. Furthermore it may be seen from section 3.14, that
with respect to a star or the First Point of Aries, there are 366.2422,..
sidereal days in the year because of the retrograde motion of the sun through
the background of stars. This motion accumulates to one complete revolution.
The ratio between the sidereal and mean time units is therefore,

366.2422...

365.2422...  1-0027379 ... = F

Thus, 1f a time interval is measured as M mean time units, the corresponding
measure of this interval in sidereal time units is M x F and conversely if a
time interval is expressed as S sidereal time units the corresponding measure

of this interval in mean time units is %.

3.24 1In order to facilitate conversion between these two time systems,
astronomical almanacs or ephemerides publish a table giving the Greenwich
Sidereal Time corresponding to the moment at which each Greenwich mean solar
day starts. This table of GST at GMT oh or GST at uUT Oh is published in
Table II in "The Apparent Places of Fundamental Stars" (FK4) for the current
year. It is also published as the quantity R at UT Oh(Ro) in the sun data
section of "The Star Almanac for Land Surveyors" of the current year. In
addition, tableg giving conversion of intervals of time up to 24 hours from
one system to the other are given in Tables III and IV of the FK4.

However, in order to avoid conversion tables which cover the whole 24 hour
period of either mean or sidereal time, the Star Almanac for Land Surveyors
provides, for each day, a guantity at UT 6h, 121 ang 18h, in addition to R,.
These will be referred to as Rg, Ri2 and Rjg. These values of R are not GST
at their associated times of UT but interpolated values of R, at 6 hour
intervals. To find intermediate values of R, an "Interpolation Table for R",
which is a table of mutual conversion of intervals of mean and sidereal time,
is provided.

h
E.g. At UTO

GST = RO
h
At UT6
h h .
GST = 6 + AR for 6 mean time + R,
h
= [S) + Rg

where AR 1is obtained from the "Interpolation Table for R". Therefore, in
general for any instant of UT,

GsT = UT + R

where R 1is an interpolated value.
Further explanation of the inter-relationships between the time systems in
the form of diagrams and examples is given in the next sections.
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3.31 THESE are line diagrams which demonstrate in a simple way the relation-
ships between quantities, which are associated with time and its measurement.
The basic diagram consists of a circle representing the celestial equator
with the earth in the centre of the circle. The reader imagines himself to be
outside the celestial sphere looking down the terrestial axis onto the north
pole. Terrestrial meridians are projected out to the celestial sphere thus
appearing as radial lines with the prime or Greenwich meridian drawn vertically
up the page and marked G. The earth is considered to be stationary so that the
celestial bodies, scattered about in the circle, appear to rotate in a clock-
wise direction indicated by the arrow outside the diagram.

The diagram, explained above, forms the basis of further diagrams which will
now be used to demonstrate a number of relationships.

3.32 BAn observer's meridian P and the mean sun MS, which lies on the
celestial equator (8=0), are plotted on the diagram shown in Fig 3.4. By
definition, when the mean sun 1s on the lower branch of the Greenwich meridian
GMT = OB and when on the upper branch GMT = 12h, Similarly for an observer at
longitude A, when the mean sun occupies the lower and upper branches of that
meridian IMT is OD' ang 12R respectively.

———

G

At any other instant it will be seen that
ILMT - GMT = A = A, = —>\W

and by extension, the time value with respect to one meridian at a particular
instant can be converted into the time value with respect to another meridian,
provided both times are in the same system, by the direct application of the
longitude difference between the two meridians. It will be readily seen too
that, if A is the time zone longitude, then similar relationships are true
for the difference between Zone Time and GMT or between two different time zones.
Also on this diagram the local hour angle of the mean sun tyg, which is the
amount by which the mean sun has advanced since crossing the upper branch of the
observer's meridian, is given by

h

* "Equation

of Time




:.33 Similarly, in Fig 3.5, the apparent sun AS 1is shown in advance of the
T=z2n sun by an angle equivalent to the Equation of Time.

h

wrere tpg 1s the local hour angle of the apparent sun.

o~ section 3.431 it is reguired to find the Greenwich hour angle of the
ctrarent sun, which can be deduced from Fig 3.6, as

mobt

GHA of the apparent sun = GMT + E

Aalso in section 3.432 it is required to find the LMT when the apparent sun
s on the upper branch of the observer's meridian i.e. when LAT = 12h,  This

zircumstance, called Local Apparent Noon (LAN), is also shown in Fig 3.6, where
.~ will be seen that

ILMT of LAN = 24h - E

3.34 Fig 3.7 shows the prime right ascension circle, which passes through the

First Point of Aries and a star, S, of right ascension, RA*, on its right
ascension circle. By definition this latter quantity is measured in anti-
clockwise direction from the First Point of Aries, see section 2.34. B2Also by
definition GST is equal to the GHA of the First Point of Aries and the figure
shows that

GST = RA* + cHA®
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A similar situation exists with respect to the local meridian and from Fig 3.8,
one may see that

LST = RAY + t*

3.35 Fig 3.9 shows the movement of the mean sun throughout a day, at the end
of which time it is seen that the First Point of Aries has moved clockwise by
about 1°.

Over the course of a year, this phase change accumulates until the phase
relationship is as it was at the beginning. In addition, it will be seen that,
when the mean sun and the First Point of Aries are diametrically opposite one
another, the two time systems are in phase, i.e. GST = UT, which occurs at the
Autumnal Equinox; when the two points are in coincidence, the time systems
differ by 12h, which occurs at the Vernal Equinox.

TECHNIQUES OF TIME CONVERSION

METHODS of converting an instant of time from one time system to the
corresponding instant in another time system will now be illustrated by examples.
The examples chosen are such that they cover various techniques and most of the
situations which may arise in practice.

General methods for use with a calculator are given in section A.101.
Conversion between the Mean and Sidereal Time Systems

3.411 Example. Find the Local Sidereal Time corresponding to Atlantic
Standard Time lhl4m27§3 on September 12th 1977, at Fredericton, New Brunswick,
Canada. The longitude of Fredericton is ahog™3451 West, and the Time Zone is
4 yest of Greenwich.

Atlantic Standard Time of instant 12 September  1714"27%3
Zone longitude 4 W (1)
Corresponding UT (GMT) of instant 12 September 514 27.3
R at UTO" on %2th September homs 23 23 32.5 (2)
AR for mean time interval of 5 14 27.3 +51.7 (3)
Corresponding GST of instant 4 38 51.5 (4)
Local Longitude 4 26 34.1w (5)
Local Sidereal Time of instant 12 September 12 17.4

(1) The circumstances are referred to the Greenwich Meridian by the addition

of a West or the subtraction of an East Time Zone, because the relationship
between the sidereal and mean time systems is given for the Meridian of
Greenwich with UT as argument. The mariner's mnemonic Longitude East, Greenwich
Time Least; Longitude West, Greevwich Time Best, is particularly useful when
performing this operation.
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Day 1

UT =12 uT = 18"

Day 2

Position of 4y°
at UT 0" on day 1

Fig.3.9




(2) This value is taken from the Star Almanac for Land Surveyors. R at uroh
or Ry = GST at uToD  is also to be found tabulated for every day in the

Apparent Places of Fundamental Stars (FK4) for the current year.

(3) AR 1is taken from the table of the mutual conversion of intervals of solar
and sidereal time given in the Star Almanac for Land Surveyors.

(4) The sum of the valueﬁ in lines 3, 4 and 5 has been reduced by 24P to give
a value between 0 and 24 .

(5) The circumstances are referred back to the local meridian by the addition
or subtraction of the longitude, reversing the signs given in note (1).

3.412 Example. The previous example will now ge worked in reverse i.e. to
find the Standard Time corresponding to 0P12™7%4 Tocal Sidereal Time.

Local Sidereal Time of instant 12 September Oh12ml7?4

Local Longitude 4 26 34.1 W
Correspogding GST of instant 12 September 4 38 51.5

R at UTO on 12th Septemberh 23 23 32.5
Sidereal interval since UTO h 5 15 19.0 (6)
AR for sideveal time interval of 5 1571950 -51.7 (7)
Corresponding UT{(GMT) of instant 514 27.3

Zone Longitude 4 W
Atlantic Standard Time of instant 12 September 1 14 27.3

h h

(6) To effect the subtraction of line 4 from line 3, 24 is added to 4 38m51§5.

(7) The table of mutual conversion of time in the Star Almanac for Land
Surveyors is used to find this guantity AR.

3.413 Example. Find the Local Sidereal Time corresponding to Australian
Eastern Standard Time (AEST) 8h a.m.* on April 28th 1977 at Melbourne, Victoria.
The longitude of Melbourne is 9139M5150 East, and the Time Zone is 100 east of
Greenwich. h

*Many watches have a 12 hour dial, in which case 12 must be added to

times in the afternpon and evening hours (p.m.), in order to express

those times in a 24 system.

AEST of instant 28 April 8hOOmOOS

Zone longitude 10 E
Corresponding UT of instant 27 April 22 00 00 (8)

R at UTOM on 27th April . 14 19 27.9

AR for mean time interval of 22 + 3 36.8 (9)
Corresponding GST of instant 12 23 04.7

Local Longitude 9 39 51.0E

Local Sidereal Time of instant 28 April 22 02 55.7

(8) See Note (6). A change of date occurs here because the subtraction of the

Time Zone brings the time value across the zero, or 24 hour time marker.

(9) The value of AR used here may be obtained partly from the 6 hour table
of AR in the Star Almanac for Lagd Suﬁveyors. Additional constants required
are 5971, 1M58%3 and 2™57%4 for 67, 12" and 18" respectively. In this example
AR for 4h is 3954 and for 18 is 2"57.4, therefore AR for 22 is 3974 +
2"57%4 = 3™36%8. A more direct way of effecting this conversion is to use the
24 hour tables of conversion which are to be found in various publications such
as the FK4.

A simpler and more accurate way of performing the conversion is to multiply
the value of UT by 1.0027379, which may be done with a few key strokes on a
calculator, thus rendering cbsolete methods which require auxiliary tables. An
additional advantage is that AR is calculated and added to UT simultaneously.

3.414 Example. The previous example will now be worked in reverse i.e. to
find the Standard Time corresponding to 2202 55,7 Local Sidereal Tiwme.
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Z=zal Sidereal Time of instant 28 April 227025557
-2zl Longitude 9 39 51.0 E
::rreSPOQding GST of instant 27 April 12 23 04.7 (10)
* at UTO on 27th April h 14 19 27.9
Sidereal interval since UTO 22 03 36.8

"R for sidereal timeinterval of 22 03 36°8 - 3 36.8 (11)
Corresponding UT of instant 22 00 00.0

Zone Longitude 10 E
22ST of instant 28 BApril 8 00 00.0

{10) A change of date occurs here because the subtraction of the longitude
brings the time value across the sidereal time marker corresponding to
~idnight i.e. R at UTOP. R at UTOP on the 28th April = 14D 230 2485,

An exception to this rule occurs when an observation has been made at
an instant of Standard Time which lies within a range of 3m55§9 on either
side of midnight. In this situation two identical values of LST on the
same date can occur. However, these values are so far removed in time
Zrom one another that the choice of which of the two values is the correct
cne is obvious. Dates are clucye associated with the Mean Time and not
with the Sidereal Time system.

{11) The value of AR used here may be obtained from the 6 hour table of AR

insthe %tar_Almanac fgr Land ﬁurvegors. ditional constants required are
3.0, 1 58?0 and 2m56.9 for 6, 12° and 18 respectively. This time
conversion may be effected in a similar way to that shown in note (9). The

sidereal time interval is divided by 1.0027379.

The Star Almanac for Land Surveyors also provides values of R corresponding
o UT 6h, 12h ang 18P as well as at UTOh. Using these values of R, one may
solve problems of time conversion without using the constants for 6h, 12
and 180 referred to in note (9) and note (11).

3.415 Example. [ Find ghe Local Sidereal Time corresponding to South African
Standard Time %8 %2 43.2 on June 16th, 1977 at Cape Town. The longitude of
Cape Town is 1 13 44.0E, and the Time Zone is 2 east of Greenwich.

South African Standard Time of instant 16 June l8h32m43?2

Zone Longitude 2 E
Corresponding UT of instant 16 June 16 32 43.2

R at UT12 on 1l6th June 17 38 34.0 (12)
AR for mean time interval 4 32743%2 +44.8  (13)
Corresponding GST of instant 10 12 02.0
Local Longitude 113 44.0 E
Local Sidereal Time of instant 16 June 11 25 46.0

(12) Select the tabulated value of R whose associatﬁd value of UT
1mmed%atelysprecedes the given value of UE i.e. UT12" immediately precedes
UT 1673274372, therefore choose R at UT12'.

(13) The mean time difference lgh32m43§2 - th = 4h32m43§2 is used as the

argument to f£ind AR from the 6 table.

3.416 Example. The previous example will nog bg worked in reverse i.e. to
find the Standard Time corresponding to 11P25"4670 Local sidereal Time.

Local Sidereal Time of instant 16 June 117254650
Local Longitude 113 44.0 E
Corresponding GST of instant 16 June 10 12 02.0

R at UT12! on 16th June 17 38 34.0 (14)
Difference A om s 16 33 28.0

AR for sidereal time interval of 4 33 2870 -44.8 (15)
Corresponding UT of instant 16 32 43.2

Zone Longitude 2 E
South African Standard Time of instant 16 June 18 32 43.2
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{14) Select the tabulated value of R whose associated value of UT immediately
precedes the UT of the instant. In this case UT is not as yet known, but a
value of UT of sufficieﬁt accuraﬁy for thﬁs gurpose may be found from h

UP = GST - R i.e. 10712" - 17740" = 1632", therefore choose R at UT12".
This can be done mentally.

hIn situations when the approximate value of UT lies close to a multiple of
6 the incorrect tabulated wvalue of R may be chosen. However, the mistake
will be seen immediately and rectified when it is found that the argument to
find AR is not in the range 0 to 6 .

(15) The sidereal time difference l6h33m28§0 - th = 4h33m28?0 is used as the

argument to find AR in the 6 table.
The aforegoing time conversion procedure is not an obvious one but may be
explained by examining the working in detail.

h h
Ger at-uT X' = 10M12%02%0, where UT X is not known
GsT at ur12® = 12" + R at vri2® = 127 + 17%38%34% = 5738™34%0
. h :
Difference in GST = 10712%02% - 573g™34%0 = 4"33™28%
. ) h__m__s . . h_ m s
Difference in UT = 433 28.0 - AR for sidereal interval of 4 33 28,0
] h h s '
. Ur = 12" + 47332850 - AR
h .
o = 167332850 - 4458 = 17324352

3.42 A calculation which frequently occurs in the reduction of observations
in field astronomy is that required for determining the local hour angle of a
star from an observed watch time. For this a relationship, which incorporates
the time conversion and is particularly suitable for use with a calculator, is
as follows,

t = 15 [ (WP + WC ~ 2)F + R, - RA+ A
where
WT is the watch time of observation,
WC the watch correction to give Standard Time(+Slow, -Fast),
A the longitude of the standard meridian (4+East, -West),
R, R at UTOP on the Greenwich date equal to the local date of observation,
RA the right ascension of the star and
A the longitude of the station (+East, -West)
all the above guantities being expressed in hours and decimals.
F is the time conversion constant, 1.0027379 and
t the local hour angle of the star expressed in degrees and decimals.

With the exception of WT, all the other guantities on the RHS of the
equation have constant values unless the watch or clock is gaining or
losing rapidly over the period of observation on the star.

rd

Conversgion between the Mean and Apparent Seclar Time Systems

3.431 Example. Find the local hour angle of -the apparent sun at 8h42m14?0
Australian Eastern Standard T%mem(A%ST) at Sydney, N.S.W., on April 4th, 1977.
The longitude of Sydney is 10 04 55,9 East, and the Time Zone 1s 10 east of
Greenwich.

AEST of instant 4 ppril gha2™14%0

Zone Longitude 1o E
Corresponﬁing UT of 'nstang 3 April | 22 42 14.0 (8)
E at UTlg AAESfor 6 = +474) 11 56 46.6 {16)
AE for 4°42714.0 + 3.4 {(17)
sum = Greenwich hour angle of sun = UT+E 10 39 04.0 (18}
Longitude 10 ¢4 55.9 E
Local hour angle of sun 20 43 59,9

-42-



(16) Select the tabulated value of E whose associated value of UT immediately
precedes the UT of the instant.

{17) AE is taken from the table for the interpolation of the sun given in the
Star Almanac for Land Surveyors.

(18) In section 3.33 it was shown that the GHA of the apparent sun = UT + E

3.432 Example. Find the Eastern Standard Time at which the sun crosses the
upper branch of the meridian of Washington, D.C., U.S.A., on November 24th,
1977. The longitude of Washington is 5 08™1557 W and the Time Zone is 51 west
of Greenwich,

TAT 24 November  12000M00%  (19)
Longitude 508 15.7 W
GAT 17 08 15.7 (20)
—(& at vr12" - 12 = - 13" 1655 =13 16.5
Difference = UT 16 54 59.2 (21)
—(AE for 4" 54%-59%2) = +3% (AR for 6@ = -45a) ___*3.6
Pifference = UT 16 55 02.8

Zone Longitude 5 W
Eastern Standard of LAN 24 November 11 55 02.8

{(12) The appai:ent sun is on the upper branch of the locdl meridian (upper
transit) when Local Apparent Solar Time (LAT) is 121, This is abbreviated
to LAN {Local Apparent Noon).

{(20) 1In section 3.33 it was shown that

IMT of LaN = 240 - E
S UT of LAN = 24h - E = A h
= 12b - % - (E-12) .
= 228 - X - (B¢ + AE - 127

where E_ g is the tabulated value of E whose associated value of UF
immediately precedes the UT of the instant, where n is an integer. However,
UT is not known but GAT = 120 - A is, and will be sufficiently accurate for
selecting E_¢. In this case select E;;.

(21) A better approximation to UT will be -
h h

120 = A - (Epg - 12
which differs from the accurate value of UT by AE, a guantity which is
seldom greater than a few seconds of time. The wvariation in AE by this amount
is negligible for our purpose. Using this value of UT, AE is found from the
tables referred to in note (17).

Then from before

h
UT of IaN = 120 - % - _ - 12" - a5

i

. . h .
.. Standard Time of LAN 127 - A - (Eng - 12?) - AE + Time Zone

The examples given have been worked and explained in great detail. For those
with some experience, short cuts are obvious and the working can be reduced
accordingly.

DETERMINATION OF TIME

3.51 THE unquestioned time keeper up to the end of the 19th century was the
earth’'s period of rotation. Theoretical considerations, of which the main one
was probably that of tidal friction, indicated that the period of rotation of
the earth would be a lengthening one, i.e. that the earth's angular velocity
was slowing with time. The clocks available up te this time were not of
sufficient long period accuracy or constancy to be able to detect any slowing
down: or any irregularity in this angular velocity.

The intreduction of the Riefler clock about 18%C and later in 1921 the
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Shortt free-pendulum clock confirmed the theories of non-uniform earth
rotation, and the subsequent development ¢f the quartz crystal clock and atomic
frequency standards have resulted in great increases in the accuracy of time
keeping and of preserving constancy over long periods. Interesting variations
in the earth's rotational period have been discovered. One effect is a
seasonal one and another is due to the plastic deformation of the earth which
causes it to rotate about an axis, which is not gquite a stationary one, but one
which has a slight wobble.

3.52 An international body, the Bureau Internationale de 1'Heure, (B.I.H.) has
been established and given as one of its tasks the monitoring of the earth's
rotational period. Those observatories, making observations on this period,
pass their information to the B.I.H., which then correlates and analyses the
results and publishes definitive relations between the various time scales
used. These relations are published a few months after the observations have
been made.

In order to distinguish between the various time scales the following
definitions are given:-

UTO is Universal Time (formerly Greenwich Mean Time) established from
observation made at fixed cbservatories.

uTl is UTO corrected for polar motion.

UT2 is UT1l corrected for seasonal variations in the earth's rotation.

urc (Universal Coordinated Time) is related to the international atomic time
scale (IAT). This atomic time scale is based on the frequency
corresponding to a certain resonance of the caesium atom and differs
from UTC by an integral number of seconds.

In 1972, by international agreement, UTC was adopted as a basis for broadcast
time signals. In most radio time signal transmissions, a coded signal is
included such that one may deduce a correction DUT1, enabling the user to
establash UT1 to an accuracy of 0%1 from the relationship

UrTl = UTC + DUT1

This accuracy is guite sufficient for a large proportion of the users of time
signals, but for precise astronomical work the time scale UT2 should be used
and the difference UT2 - UTC can be obtained from the publications of the BIH
previously referred to.

The difference UT2 - UT1l is not greater than a few hundredths of a second.

Since there is a continuous phase shift between UTC and UT1l, the DUT1
correction varies continucusly. To keep 1t manageable, the time signal values.
are hept within a maximum of 059 of UTL. When the DUT1 correction runs up
towards the end of this range a whole second, called a leap second, is intro-
duced ian the counting of UTC in the broadcast time signal. Before this is
done, eight week's warning about the proposed change is given. When the leap
second occurs,the counting is shifted and the DUTL correction changes, for
Lnstance, from -0.5 to+0.5° in order to take ap the omitted second.

Time Signals

3.53 The Star Almanac for Land Surveyors for the year has a list of Radio
Time Signals on passs 60 and 61 and Notes on Radio Time Signals on page 6l.
This list of radio time signals is restricted to the principal signals, that
are likely to be used by land surveyors and should be consulted for the
signals most likely,to be best received Ln the area. Details of the signals,
frequencies used and identification data are given.

At present one has access to time signals of great accuracy at any place in
the world, if one is provided with a suitable short wave receiver, because
there are many continuous time signal transmitters of high power and their
emissions are carefully controlled by atomic standards of high stability and
accuracy. The chief disruptions in time signal receiption are those caused by
lonosphere disturbance produced by sunspot activity. When this occurs one
faces the problem, which existed when radio time signals were broadcast over
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only two five minute periods in the day. TIf these were received, the surveyor
could obtain his clock readings corresponding to these time signals with
considerable accuracy, but he than had to rely on the clock for bridging

the long gap between successive time signals. It reguired a very good clock
to subdivide this rather long interval in an accurately linear manner, as the
observer had to assume that the clock kept a uniform rate over this period.
The technique was to make one's star observations so that the clock comparison
was made close to or even during the observing period, so that the extra-
polation period on the clock was a short one. This, however, was not always
possible as the time signal transmission might have occurred at times which
were remote from the observing periods.

This difficulty is overcome nowadays as a result of two improvements. One,
as stated before, is the introduction of continuous time signals and the other
is the wide availability of the quartz clock in a portable form for use in the
field by the surveyor. The first enables clock comparison with the time
signal to be made during any observing period, provided the occasional "radio
black-outs" do not occur at the same time. When this does occur with unusual
freguency, as for instance in high latitudes in Canada or in Antarctica, the
quartz clock can be used to bridge the gap in the reception of the time signals
with great efficiency, because its stability of rate is far superior to that
of the mechanical clock.

The Time Keeper

A good time keeper 1s one which has a stable rate, so that it can be relied
on to subdivide a time interval accurately. The mechanical clock is now beilng
replaced by the electronic clock, which uses a quartz crystal to provide a
steady frequency source as the basis of its time keeping ability.

When a quartz crystal is cut in a certain manner and a steadily alternating
voltage is applied to opposite faces of the crystal and the frequency of this
voltage is close to the natural frequency of the crystal, the crystal itself
will maintain its natural frequency of vibration tec a highly stable degree.
This stabilised oscillation, which is usually at a high frequency, can then be
used by means of suitable dividing circuits to provide time units of great
steadiness and stability. This property depends on the temperature of the
crystal, which in good quality clocks is placed in a thermostatically controlled
oven.

Determination of Clock Correction

3.61 In all but a few types of star observation, the clock correction
reguired for obtaining the Greenwich time corresponding to an observed clock
time must be determined. This quantity is defined as the amount to be added
algebraically to a clock reading to obtain the Greenwich time.

il

Greenwich Time Clock Time + Clock Correction on Greenwich Time
GT = CT + CCer

If the clock correction with respect to a specific meridian of longitude A 1is
reguired, each of the above must be increased by

GT + A = CT + CCar + A
or LT = cT + CCLT
i.e., Local Time = Clock Time + Clock Correction on Local Time

The above definition of clock correction implies that a positive value means
that the clock is slow and a negative one that it is fast. Therefore, if a
clock is losing with respect to a specific time, the c¢lock correction will
increase with time; if gaining,the clock correction will decrease with time.
Thus a losing rate is a positive one and a gaining rate a negative one.

It is convenient to have a clock with a small rate with respect to a
specified time system. Clocks, which purport to keep mean or sidereal time,

are made to have such rates that they depart very slowly from the nominal time
rate.
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The following example illustrates a determination of rate:

Corresponding Clock Correction
Greenwich on Greenwich
IClock Reading Mean Time Mean Time Rate
087040251 08031754 ~00%00™a4%7 | 41254 in 2M30™37°
10 34 39.1 10 34 06.8 -00 00 32.3 |= + 4.94 seconds per
clock hour, losing

No information is available here as to whether this rate is a linear one or
not. Any departure from a linear rate is found from an examination of more
then two clock comparisons.

Methods of Determining the Clock Correction

3.62 The general procedure for such determination is the observation of the
clock time of an instant whose Greenwich Time is known. Each pair of such
values gives a point on a clock correction graph, which should always be
plotted in the first instance, whichever method of reduction may

be used. Such a plot gives a good broad picture and the first estimate of the
quality of the determination of the clock correction as a whole. Various
methods of observation of varying accuracies can be used in practice to suit
the accuracy of the astronomical quantity desired.

3.63 The Eye and Ear Method, a rough method, consists in the obserxrver
estimating the clock time to a fraction of the second as he hears the time
signal pulse, whose Greenwich Time is known. A much better method is one, in
which a stopwatch is used to obtain a much more accurate comparison. The
observer starts the stopwatch on a known signal and then stops it on an
observed clock time. If he prefers it, he may reverse the order of observing.

A note of the order used should be made in the field book. Several such
comparisons should be made over the observing period in order to enable
blunders to be detected and to determine whether the clock's rate is stable and
thus linear. This latter requirement is more important with a mechanical clock
than with a quartz clock.

The seconds of the stopwatch being used may not be of the same length at
those of the time signal or of the clock. The length of the stopwatch second
can be compared directly with these. In addition, the effect of this sort of
error is kept small by keeping the stopwatch intervals small or by arranging
the stopwatch observations to eliminate their effect.

The stopwatches in the aforegoing method measure simple time intervals i.e.,
they bridge the short gap between the chronometer and time signal instants.
If, however, a stopwatch with a split hand or a digital stopwatch, which has
the same facility i1s used the chronometer may be dispensed with. This type of
stopwatch combines the function of both chronometer and stopwatch because
events on a continuous time scale are being recorded.

3.64 A very much more sophisticated device of very high accuracy is the
printing chronograph. One of these is the Omega printing chronograph, which
is portable and in which a temperature controlled quartz crystal oscillator
governs the speed of a synchronous electric motor. Counting wheels, on which
the numerical values of the time readings are marked are driven by this motor.
When an observation is made, a circuit is closed and a printing pad is driven
sharply up against ‘the counting wheels and the reading of time is printed on
paper tape held on top of the printing pad. This time record can be read
accurately to nearly three decimal places of a second of time (see Fig 3.10).
This device can be arranged to be operated by means of impersonal methods.

The Calculation of Clock Correction

3.65 Clock comparisons with the time signal require the clock time corres-
ponding to a specific time signal pulse to be observed. This means that the
identification of the time signal pulse is necessary. In the field,
positive identification of signal time is made at beginning and at end of the
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Fig.3.10 A Printing Chronograph Record
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zserving period and usually at suitable points in between these. It is also
tonvenient if clock readings are made at whole minute points or at points
lZentified by voice in the transmission.
—nhen be subsequently carried out in the office.
“rom these observations the clock corrections at the various times can be
Zzzermined and the results plotted graphically and reduced numerically.

Further identification in detail can

3.66 This numerical solution will be that of the method of Least Squares, by
walch a straight line of best fit will be determined so that the clock
zorrections at the times of observation may be determined for use in the

subseqguent reduction.

For simplicity here, the clock correction will be referred to Greenwich time
From definition in

ction 3.61 therefore,

ccC = GT

. which CC, 1is the clock correction at zero clock time.

- CT

CcC

(o]

(GT} and the rate D will be taken as a linear one.

+ CT x D

The clock time CT

z subject to a random error of observation and the above equation becomes

Gry - (CT;

= v;D is a minute quantity.

_-LJtlon of greatest probability from this set of observations.

n CCO +

[cry] ce, +

+

[cr; ]

[cTh]

Vi

D

D

+

+

CCO + (CTi + Vi)D

CCO + CTy

[cry

[cT; (cTy

x D + (CTi - GTi)

ZZ n>2, which should be so, normal equations are formed to

- GT; ]

- GTi)]

== which the square brackets indicate a summation of terms.
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3.67 Example of a clock correction determination for a mean time clock. The

data for the clock corrections of section 9.81 will be used to illustrate the

Least Squares solution.

It should be noted that

(a) the clock used was a Heuwer splithand stopwatch.

(b) each value of CT; results from the mean of five observations.

(c) the comparison was recorded for a whole minute of signal time; in each
case five determinations of the decimal of the second of time were made
in the vicinity of the whole minute.

Observations
GMT of Signal Obsexrved Clock Time Clock Corrn.
ETi - CTi GTi - CT4 vi
1071770056 2"36™55%44 +7%20"05%16 +0505
10 35 00.6 2 54 54,93 05.67 -0.03
10 43 00.6 3 02 54.68 05.92 -0.04
10 45 00.6 3 04 54.60 06.00 -0.02
10 55 00.6 3 14 54,34 06.26 -0.09
11 12 00.6 3 31 53.65 06.95 +0.05
11 17 00.6 3 36 53.45 07.15 +0.08
11 20 00.6 3 39 53.40 07.20 +0.03
12 06 00.6 4 25 51.96 08.64 -0.03
12 15 00.6 4 34 51.65 ‘ 08.95 -0.01
Normal equations
cc D Absclute Term = O
Q
10 +34.7328 ~76.6855
+124.2730 -266.3523
Solutions
cc = +76e66624 = +7739M505%085
D = 5.443 x 10 " hr/hr
or 3600 D = +1.959 sec/hr

Back substitution in the individual correction equations gives the required
v's from which the estimated standard deviation of an individual observed
clock correction is obtained

L ov.v,
i i 0.0243 s
- = = _— = +
[ —= / =5 + 0706

A number of points emerge from this,

(1) 1In this example, it was assumed that a lineaxr relationship existed between
_the clock correction and the clock time of observations. In some cases,
this may not be appropriate and the data would be better approximated by
a second or higher degree curve.

(2) The calculation given is often referred to as fitting a regression line
with paired data values - a calculation which occurs so frequently in
science and technology that hard wired sub-routines for this calculation
are often incorporated in small calculators.

(3) It should be noted that all the data must be converted to decimal form
before the least squares solution is attempted and the inverse conversion
made to obtain the solutions in sexagesimal form.

{4) The calculator solution of the line of best fit is made to a very high
accuracy so that clock corrections are determined with no loss of
accuracy even if the period is long or the rate of the clock large. For
example, the identical method is quite appropriate for finding c€lock
corrections and rates from comparisons between a sidereal chronometer and
a time signal. In this case, there is a large rate of about ten seconds

per hour.
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4

Observations

INTRODUCTION

IN the astronomical triangle, the observer can measure one quantity directly
with a theodolite and obtain two others from related observations and other
zuantities. The zenith distance can be measured directly. Directions can be
measured on the horizontal circle of the theodolite and azimuth is
associated with these. A clock or some such timing device can be used for
Jetermining an hour angle. Since an hour angle is associated with a specific
meridian, it is usually necessary to link the clock time, from which the hour
z2ngle is determined, with the time associated with some specific meridian,
which is usually the prime meridian, namely that of Greenwich. The techniques
associated with the relation of clock times to Greenwich times are dealt
with in section 3.61. Before any observations are made by means of a
zelescope, its focussing must be perfected. The observer achieves this by
sighting the sky and focussing the crosshairs by rotating the eyepiece cell
zntil the crosshairs stand out absolutely clearly. He then directs the
zelescope to a distant reference object. This mark is brought to sharp focus
oy means of the focussing screw for the main telescope. When this is
completed, the observer tests for parallax by moving his eye relative to the
syepiece lens. If the image of the crosshair then moves relative to the image
>f the reference object, focussing is not perfect and this procedure is
rspeated until all parallax is eliminated.

oserving on Both Faces of the Theodolite

=.11 The practice of observing both face left and face right with a
—neodolite is adhered to in order to eliminate the effects, on the observed

cuantities, of any maladjustments present in the theodolite. Since this
zZimination is only exactly achieved when such maladjustments are relatively

z=all guantities, it is good practice to keep the instrument in a state of
szod adjustment so that the horizontal collimation error, the horizontal
-r trunnion axis error and the vertical circle index error are always kept
=all.

Horizontal colliimation erxor is the amount, by which the line of sight in
—he telescope departs from lying perpendicular to the horizontal axis. It
zan be reasonably easily adjusted by the user. The horizontal axis error is
—ne amount, by which this axis departs from lying perpendicular to the vertical
zxis. In the modern optical theodolite, this error cannot be adjusted by the
zser, but the instrument should be sent to the servicing agent for this
zZjustment, because ary cant imparted to the horizontal axis may disturb the
Zzcussing of the optical train, by which the circles of this type of instru-
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ment are read. The vertical circle index error is the gifference between the
reading obtained for a level sight and what should be obtained for such a
sight. It is very easily adjusted by the user, who usually should determine
this index error before any set of vertical circle observations is made. If
this error is large, it should be reduced by adjustment mostly for convenience
only, but an instance is known of the occurrence of a vertical index error of
10 arc minutes causing a problem in the calculation.

If, as is normally done, observations are made on both faces to a stationary
object, the mean of the two observed values will be free of the effects of the
three errors cited above. Observations to a star however are not made to a
stationary, but to a moving object, which is therefore changing altitude.
Since the effect of the collimation error and that of the horizontal or
trunnion axis exror depend on both the magnitude of the error and the altitude
of the sight, these errors should be kept small and no time wasted between
the observations made on the star on each face. The vertical circle index
error effect is independent of altitude, and vertical observations on each
face need not be made very quickly one after another.

4.12 Observing on both faces of a theodolite does not get rid of the effects
on horizontal circle readings of residual error in the levelling up of the
theodolite. This error leaves the vertical axis not quite vertical, but
slightly tilted with respect to the vertical line by an unknown amount with
the direction of tilt also unknown. It cannot be sufficiently stressed that,
however many face left and face right observations are made on the
horizontal circle, the means of corresponding pairs will not eliminate the
effect of vertical axis error (i.e. non-verticality of the vertical axis) of

a theodolite. This is particularly important in field astronomy, in which

steep sights are observed, because the effects of the vertical axis error

are proportional to the tangent of the altitude. The remedy is therefore

to keep this error in verticality small by levelling very carefully with the

most sensitive means availlable. The first of these is the vertical circle

or alidade bubble with the split image viewing device, by which the two images

of the ends of the bubble can be accurately brought into coincidence. The

second is the automatic compensator (liquid or pendulum type) for indexing

the vertical circle, when the theodeclite, to which it is attached, is a

single second one.

The vertical circle bubble, with its viewing device, is used as follows for
levelling the theodolite accurately:-

i) After the theodolite has been levelled by means of the plate bubble,
the alidade is rotated until the alidade bubble lies parallel to the
line joining the two footscrews A and B. The bubble is then trimmed
by means of the bubble adjusting screw, so that the bubble ends
coincide with each other in the viewer6

ii) The alidade is now rotated through 180 . If the bubble ends are no
lenger coincident, they arebraught halfway back towards coincidence by
a rotation of footscrews A and B by equal amounts in opposite directions
The ends are then brought the rest of the way back to coincidence by
means of the bubble adjusting screw (Steps (i) and (ii) are repeated if
necessary) .

iii) The alidade is then rotated through 90°. If the bubble ends then do
not remain coincident, they are brought all the way back into co-
incidence by means of the third footscrew C.

iv) The whole process should be repeated until the bubble ends stay
coincident for any position of the alidade
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The automatic compensator on a single second theodolite is used as follows

for levelling the theodolite accurately:-

i) After the theodolite has been levelled by means of the plate bubble, the
alidade is rotated until the plane of the vertical circle is parallel
to the line joining two footscrews A and B. The telescope is clamped
and left unaltered throughout the levelling procedure. The vertical
circle reading is now observed.

ii) The alidade is rotated through 180 and the vertical circle reading
is again observed.

iii) The two vertical circle readings are meaned and footscrews A and B
are rotated equal amounts in opposite directions until the vertical
circle reading is equal to the mean value computed.

iv) The alidade is rotated through 90 and, by means of the third
footscrew C, the vertical circle reading is caused to be the same
as the mean value computed above.

v) The vertical circle reading should now remain constant for any position
of the alidade. If it does not, the whole process should be repeated
(see The Australian Surveyor, December, 1976, vol.28, No. 4).

Some theodolites have the collars of the horizontal or trunnion axis
left exposed so that a striding level may be mounted on this axis. When
this has been done and the bubble has come to rest, its position in the
bubble tube is noted. The striding level is then lifted, turned end for
end and replaced on the axis. When the bubble is stationary, its position
is again observed. From these readings, the inclination of the horizontal
axis in this position is deduced and from this a correction to the
horizontal circle reading, corresponding to this position, can be evaluated
and applied to remove the error in the horizontal circle reading.

4.13 Observing on both faces constitutes good practice, but this does mean
that the observer, after he has completed half his observations on one face,
must transit and pick up the same star for the other half of his observations.
The following is an effective method of achieving this but it is of course
not the only one, which can be used.

Let it be assumed that a series of vertical circle readings with their
corresponding times have been observed and noted in a field book by the
recorder, who now informs the observer that he must change face by saying to
him "Transit to your back-bearing”. The observer immediately makes a quick
observation of the horizontal reading to the nearest 5 or 10 minutes of arc,
calling it out to the recorder, who notes it. The obsexrver immediately
swings the telescope round to a horizontal circle reading differing from
the observed one by 180 and clamps the horizontal circle there. In the
meantime, the recorder estimates say two minutes as the time, which will be
spent in this procedure of transiting and, from the list of vexrtical circle
observations already observed, he estimates the change in vertical circle
reading in this period and works out the reading, which would have been
obtained at this time. This reading is then converted to a corresponding
value on the other face, for example on a Wild T2 theodolite, if the face
left reading is predicted as 42° 25', the converted value would be 317°35"
if the index error of the vertical circle is small. By this time, the
observer should have completed his part and he will be asking for the
setting to be put up on the vertical circle. He is told the value and runs
the telescope up to this value, at which the telescope is clamped. He now
looks through the telescope and the star should be somewhere near the
centre of the field of view of the telescope. It is of value for an observer
to learn to estimate star magnitudes with reasonable accuracy, as this
adds to certainty in relocating the correct star in the field of view.

This estimation of the magnitude is not difficult to learn, but it must be
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remempbered that the star sighted is infinitely distant and that therefore
its image is not magnified by viewing it through the telescope.

Some instruments are fitted with a diopter sight on the telescope instead
of gunsights. This enables pointings to be made with considerable accuracy
because, if the one eye is put close up to the sight, the cross can be seen,
even 1f there is only very little scattered light about. If at the same
time, the other eye is kept open, the cross can be placed accurately on the
desired star before transiting and the star identified in this way after
transiting, provided that the sight is in correct alignment with the line
of sight in the telescope.

The above methods of relocating the same star on transiting are used when
the star is moving parallel to one of the two main cross hairs. When this is
so, it is much easier to relocate the star on the other face, because only
one of two settings is varying. When a meridian or circummeridian
observation is made, the star's altitude is hardly changing. If this is so,
the azimuth change should be precomputed or estimated from the fruits of
past experience. If on setting the value for this azimuth perhaps somewhat
tardily, the star is not found in the field of view, it can be picked up by
the technique of "hosepiping", i.e. by leaving the vertical circle as set,
unclamping the horizontal circle and rotating the telescope slowly about the
vertical axis, while the observer looks through the telescope. The star is
usually found quite easily by this method.

When a circum-elongation azimuth observation is made, a similar hosepiping
technique can be used with rotation of the telescope about the horizontal
axlis, because the star is then moving very slowly in the horizontal direction.
When such an observation has been made on one face, the telescope is transited
to the backbearing and then elevated with the observer looking through the
telescope. If the star is not found by this searching in a vertical
direction, the recorder will be able to supply the vertical circle setting
at which the observer can clamp the telescope and, on looking through it, he
will normally find the star in the field of view.

This whole section has been dealt with on the assumption that an infinitely
distant star, which is seen as a point of light of no breadth is being
observed. There is, however, one star, namely the sun, which is not
infinitely distant and therefore subtends a broad disc of light on which
observations must be made. Observations to the sun will be dealt with under
that heading (see Chapter 8).

If a predicted programme is being observed, the above process of
"transiting to your backsight" can be dispensed with, if the preliminary
computations are such that the predicted values are computed at points, which
are 10 to 15 minutes apart in time and a table of values at every second
minute has been produced by a linear interpolation between the two computed
points.

OBSERVING TECHENIQUES

Vertical Circle Observations for the Determination of Timed Altitudes

4.21 1In this type of observation, the star ox body sighted should be observed
at the point of intersection of the vertical and the horizontal crosshairs.
It is most important that this should be done if the horizontal crosshair

is seen to be out of the horizontal. This seldom occurs but, with a newly
acquired instrument, the horizontal crosshair should be tested for deviation
from the horizontal and adjusted, if this is found to be necessary. If then,
a vertical observation is made at a point on the horizontal crosshair
adjacent to, but not exactly on, the intersection with the vertical hair, an
error will be introduced. This will depend on the altitude itself as well
as the distance from the intersection, but it is comforting to find out from
investigation that this errorisa surprisingly small one, and therefore, only
when particular accuracy is required, need the intersection point itself be
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used to sight for the measurement of a vertical angle. The thoughtful
observer should have got into the good habit of observing alternately on
either side of the point of intersection of the crosshairs, so that there
would be the tendency to eliminate any residual effect of the possible skew-
ness of the horizontal crosshair.

That the error, produced by this method of observation, is small, will now
be shown. Fig. 4.1 shows the horizontal or trunnion axis PQ of a theodolite
with its line of sight OX. If a vertical circle observation is made not at
the intersection point X of the vertical and horizontal crosshairs but at a
point A as shown, the measured zenith distance z will be that corxrresponding
to the point X and not to the point A. If the distance AX, equal to B, and
the reading z are known, the correction Az, which must be added to 2z, can
be determined from the right-angled spherical triangle ZXA from the Cosine
Formula. The vertical crosshair defines a vertical circle passing through
the zenith Z, while the horizontal crosshair defines a great circle, which is
perpendicular to that of the vertical crosshair and which contains the
horizontal axis PQ

Fig 4.1

The Cosine Formula gives

cos(z + Az) = cos z2 cos B + sin z sin B cos 90

. cos(z + Az) cos z cos B

12

Jo cos z - Az sin z cos z (1 - 2sin? R/2)

Az sin z = 2 sin? B/2
Since B is a sma%l angle
AZ :.'—B__._
2p sin 2

Even if, for instance a high sight of zenith distance 30O is assumed and
a rather large value of B of, for instance, one tenth of the distance from
the centre hair to the lateral stadia hair is postulated, the value of the
correction Az still comes out very small indeed. In the above example,
B = 0.5 x 0.01 x 0.1 = 0.005 radian = 103 arc seconds and from this

Az = (1032 cosec 300) v (2x206265) = 0.03 arc seconds

This correction is small and therefore, in all but the higher class work,
this type of observation may be made on the horizontal hair just off from
the intersection of the two crosshairs. But this does not mean that an
observation may be made anywhere along the horizontal crosshair, with the
expectation that a good vertical circle observation will then be obtained.
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If the star to be observed is moving diagonally across the field of view,
such as one from which a longitude from timed altitudes is obtained, then
the vertical circle reading observation is made by setting the horizontal
hair somewhat ahead of the star with the cross in such a position that the
star, when it reaches the horizontal hair, will be close to the cross. The
star is then allowed to make its own passage across the horizontal hair
and the instant of its passage is timed. The alidade or vertical circle
bubble is carefully trimmed to centre and the vertical c¢ircle then read. If,
however, the star to be observed is moving with a small component in the
vertical direction, the vertical circle reading observation is made by setting
the horizontal hair exactly on to the star, with the vertical hair close to,
but not necessarily on, the star. As the star is accurately bisected by the
horizontal hair, the time is noted. The vertical circle bubble is set to
centre and the vertical circle is then read. This is the type of observation
made in determining latitude from meridian or circum-meridian observations.

Horizontal Circle Observations for Determination of Time Azimuths

4.22 In this type of observation, the star is observed on the vertical cross-
hair with the horizontal crosshair close to, but not necessarily exactly on,
the star. If the star being observed is approaching the vertical crosshailr
fast, this crosshair is set ahead of the star in such a position that the

star will cross the vertical hair near the point where the horizontal hair
crosses it. The time of passage is then noted and the horizontal circle
reading is observed. This type of cbservation occurs when a star or the sun,
being observed for azimuth, is not sighted at the special positions, such as
elongation, where its rate of change of azimuth with respect to time is small.

If the star being observed is approaching the vertical crosshair slowly,
this hair at a point near the horizontal crosshair is placed on the star to
bisect it accurately. The time of the instant of bisection is noted and
finally the horizontal circle reading is observed. This is the type of
observation when a star near to elongation or very close circumpolar star,
such as Polaris or Sigma Octantis, 1s being sighted.

For an azimuth determination, horizontal circle readings to a mark must
also be observed. The mark, used for reference, must be placed or selected
so that it is sufficiently distant to require no change in the stellar focus-
ing of the telescope. This requires the mark to be further from the theodclite
than about two kilometres. The reference object for night work is a lamp or
a light source and care must be taken that it is accurately centred over the
gound mark, which indicates the station's position. The light should provide
an image, which resembles a third magnitude star and to achieve this, the lamp
should be provided with suitable stops for this purpose.

Altazimuth Observations

4.23 1In this type of observation, the star is observed exactly at the inter-
section of the vertical and the horizontal crosshairs. If the star is moving
in a vertical direction at a greater rate than in the horizontal direction,
the horizontal hair is placed ahead of the star. When it gets close to this
hair, the vertical hair is shifted by manipulation of the horizontal slow
motion screw to bisect the star. This bisection of the star is maintained
until it reaches the horizontal hair, at which instant tracking is stopped.
The alidade bubble is trimmed and both circles are read and the readings noted.
If the relative rates are reversed, the vertical hair is set ahead of the
star and tracking is carried out by means of the vertical slow motion screw
until the star is bisected by both crosshairs.

Sometimes the time of the instant, at which the star is bisected by both
hairs, is required. This is observed as well as the readings on both circles
This type of observation is required when an identification sight may be
needed. This type of sight serves as a means of determining the right
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ascension and declination of the star sighted. (see section 10.91)

The Technique of Orienting the Horizontal Circle from Star Sights

4.31 Normally the observer has precomputed the azimuths to two stars, which
are usually bright ones, which he knows so that he may orientate his
horizontal circle on one and then check this on another about five minutes
later. For most purposes, such orientation is sufficiently accurate if it
produces a result, which is within one tenth of a degree. Further detail is
available in section 10.11.

4.32 When the observer has the precomputed values for orientation to a known
star, he sets the predicted altitude on the vertical circle and then reads
this setting back to his recorder for checking. At this point, some
theodolites require the horizontal circle to be set so that its reading is
the same as the precomputed azimuth value. With others, however, the required
reading can be set after the sight is made. At about three minutes before
the time predicted for these settings, the telescope is directed towards the
known star and the star caught in the field of view of the telescope. If

the star is reasonably bright and it is not found, the vertical circle reading
should be checked. If this 1s correct, there is always the possibility that
the telescope is not focussed for infinity. If all is well, however, the
star is tracked accurately by means of the appropriate horizontal slow

motion screw so that the cross is on the star, as this reaches the

horizontal hair; the observer calls out when this occurs and the recorder
notes the clock time. Tracking is then stopped and, if the theodolite is
one, which requires the horizontal circle reading to be set at this point,
this setting is carried out. Immediately thereafter, the line of sight is
directed to the reference object. This is bisected and the horizontal c¢ircile
reading is observed and noted. This gives the azimuth to the reference c¢hiact
and it is recorded so that it can later be used if the orientation is,

for some reason, disturbed. The next orienting star is then observed in

© exactly the same way. If all is well, the observer can then proceed with

the rest of his programme. To be doubly sure, the inexperienced observer
will probably have three orienting stars in his list, with values pre-
computed at five minute intervals.

The Observing of a Predicted Programme

4.41 THE following points are applicable to practically any type of
predicted astronomical programme.

The observing party should arrive at the observing station with plenty of
time for carxying out all the preliminary tasks well before the predicted
programme is to be started. It is absolutely necessary that everything is
ready, as any sense of hurry is most distracting. All must be calm and
everything well under control.

This implies that the whole programme has been well thought out and proper
preparations have been made in the time before the observing season, so
that the equipment is in first class condition before the observing party
leaves base. When the observing site is reached, the equipment must be
set up and given a final testing. The lighting apparatus is tested, the radio
set up and tuned to receive the time signals. A referring object, which
is usually a light, must be set up over a distant mark. Sometimes, as in
the observing of geodetic azimuths, the light is set over an adjacent primary
station of the geodetic survey and this may be up to fifty kilometres distant.
The chronometer, chronograph or timing apparatus being used should likewise
be set up and tested.
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The theodolite is set up and levelled and it is most important that it
should be properly focussed on a distant object and tested for any parallax.
Determination of vertical circle index correction should be carried out. The
clock should be set so that it is close to local sidereal Time or Zone
Time. If the latter is set on the clock, a wrist watch should be set to read
LST so that it can be used in conjunction with the Working List, on which
the predictions are set out with respect to LST, and not Zone Time, if stars
are being observed.

At about 10 minutes before the start of the predicted programme, the first
clock comparison with respect to the radio time signals is made. 1In this
set, there should be included a time signal, which is absolutely certainly
identified. The working list now starts with the orienting sequence
previously described and then the programme goes on to the observing sequences
predicted. As the time for observation on the first star predicted approaches,
any preliminary observation required before the actual star is sighted is
carried out, such as for instance the horizontal circle readings to the RO,
if azimuth is being observed. Then the theodolite is swung round in azimuth
until the predicted reading is obtained and this is set on the horizontal
circle. The telescope is elevated until the required vertical circle setting
is reached. This is set and both circles read out aloud to the recorder,
who checks these values against the working list. About two minutes before
the predicted time the star should appear in the field of view and at the
predicted time it should be close to the intersection of the crosshairs.
Under the direction of the recorder, whose task it is to assume overall
responsibility for controlling the times of making the obsexvations to
achieve the balancing conditions, included in the prediction of the programme,
the observer is led through the whole observing programme .

CORRECTIONS TO OBSERVED QUANTITIES

Theorectical considerations indicate that observed quantities are subject to
discrepancies, for which allowance must be made. In some cases, the theory
also enables the correction to be evaluated and it is then applied. In other
cases, the correction cannot be evaluated but often a certain procedure of
observation, by means of which the effects of the discrepancies can be
eliminated, can be worked out.

Index Corrections to Vertical Circle Observations

4.51 Observed altitudes, derived from observation on one face of a
theodolite, normally have the index error of the vertical circle applied to
them so that the quantities calculated from them can be in fair agreement
with the values derived from the observations made on the other face.

Astronomical Refraction

4.52 Light, coming from a celestial body towards an observer on the earth,
travels in a straight line through the vacuum of outer space until it enters
the earth's atmosphere. Since it then continues through a medium constantly
increasing in density, the light ray, if not normal to the outer boundary
of the atmosphere, will be bent towards the normal. This bending will take
place in a vertical plane; occasionally there is a minute deviation laterally
from the vertical plane. The total amount of bending through the atmosphere
is the angle of refraction and it depends on the composition and state of the
atmosphere, being traversed, and also on the size of the incident angle.
A simple proof of a formula for refraction, according to Newcomb, will
be given. It is not a rigorous proof, but one that gives results close to
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those of more complex theories. Because the distance to the outer limit
of the earth's atmosphere is small compared with its radius, it will be

Zenith

Vacuum in Space

Y Atmosphere
/
/
Mo
FZn Mn—1
Mn
Fig. 4.2

assumed that the atmosphere in the vicinity of the observer's station consists
of thin plane layers, each with a constant absolute refraction index U and
that the light path through each layer is straight.

Figure 4.2 shows a section through the earth at an observer's station P.
Snell's law of refraction at the interface between adjacent layers gives

Ho sin z, = 1 sin z,

U1 sin 23 U2 sin 23

sin z u sin z
n-2 n-2 n-1 n-1

u sin z sin z
n-i n-1 n n

1
=
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Thus it can be seen that

sin 2 = sin z
Hs o H n
and that the refraction is given by
r = z -z
o} n

Substitution therefore gives

i sin(z + r) u sin z
o n n n

Substituting uo = 1 and expanding in a Taylor's Series, to first order terms
only, gives

sin z_ + r cos z = U sin z
n n n n

K
I

0 (Un—l) tan zn

in which ¥ and p are in the same units and p is the number of such units
in one radian.

Putting an average value of the refractive index of air into the above gives
a value of mean refraction of

r" = 60.1 tan =z
(@]

in which =z 1is the observed zenith distance.
A comparison of refraction given by this formula and that given by more
sophisticated formulae is shown in the following table:-

Zenith Distance 0° 30° 60° . 75° 90°
Refraction from tables Q" 34" 1'40" 3'34" 1°06'29"
rg = 60.1 tan z 0 35 1 44 3 44 ©

The simple refraction formula is seen to give results, which, in the light of

the great simplifications made, are, up to zenith distances of 60°, in very

close agreement with the values obtained from the more sophisticated formulae.

If the simple formula is modified to take into account the spherical shape of

the atmosphere's layers as well as the variations of pressure and temperature

from those of the standard atmosphere, the following relationship is produced
P 273.2

" — — 2
= 7013.25 573.2 7 T (60.1 tan =z 0.07 tan z sec” 2z)

r

in which P is in millibars and T is in degrees Celsius.

This relationship gives refraction values, which are adequate up to zenith
distances of about 75° but beyond this, the values become inaccurate. If
vertical angle observations with any pretensions to accuracy are to be made,
the sights should be made at zenith distances not exceeding 75°; then in this
way uncertainties in the refraction itself are avoided.

The refraction tables of "The Star Almanac for Surveyors" will suffice where
very high accuracy is not required. These are based on the Harzer formulae
and may be relied on to 1" up to 60° and 2" from 60° to 80° zenith distance.
For a detailed discussion and derivation of astronomical refraction, articles
by J. Saastamoinen in the Bulletin Geodesique 1972-1973 Nos. 105, 106, 107
should be consulted.

All formulae for refraction assume that refraction is independent of azimuth.
In practice this may not be so, especially if the country in the vicinity of
the observing station has considerable variation in relief or in vegetation.
The temperature measurements made during an observing period should be made
with the thermometer held well above the ground and, if made in sunshine, the
thermometer must be shaded.
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Differential Refraction

4.53 For observations, in which zenith distances are observed, predicted
programmes are arranged on the assumption that there may be a difference
between the calculated and the actual values of refraction. This difference
is assumed to remain constant for a short period of time for a given zenith
distance. Thus, if all observations are made in quick succession at about the
same zenith distance, then this difference will take on the characteristics of
a constant error and arrangements in the observing programme can be made to
eliminate the effects of such a type of error.

If however, the observing period for a set of observations is of any length
of time, observations of pressure and temperature should be made through the
observing period, so that all observed zenith distances can be corrected to
values at a common pressure and temperature. To obtain these changes in
refraction for changes in pressure, temperature and zenith distance, the
refraction formula is differentiated as follows:-

P 273.2

"= 60.1 t
o 1013.25 273.2 + T an z

with P in millibars, T in degrees Celsius and 2z in sexagesimal units.

" dP tan z P 4T tan 2z P sec’z dz
det = 16,2048l s T T 2 s m? T 213z e
"w P tan z dar dT dz
dr® = 16.20461 (273.2 + T) [ P (273.2 + ™) P sin z cos z !
" dp daT dz
= r [ =— - + - ]
PTz P (273.2 + T) P sin z cos z

4.531 Example. ¥Find the refraction r for P = 1023.25 mb, T = 10°C and

z = 60°, and then find the change in refraction brought about in this value by
a decrease of 10 mb, an increase of 2.8°C and a 1° decrease in zenith distance.
The value of rpp, may be calculated with sufficient accuracy for this
purpose from the following:-

N B i 1023.25 o "
rry T 16.20461 373 5 1 10 tan 60° = 101.4
R (-10) (+2.8) (-1)
dr = 101.4 [1023.25 283.2 57.296 sin 60 cos 60 1
= - 0.99 - 1.00 - 4.09
= - 6.08"

Find by how much this quantity is incorrect if dJdP 1is incorrect by 4 mb, and
dT by 0.5°C and dz Dby 10 minutes of arc.

Each quantity calculated above must change proportionally to the changes
computed immediately above.

.. Errvor in dr = (i%) 0.99" = 0.40" for the error in the
pressure value

= gfg— 1.000 = 0.18 for the error in the

10 temperature value

= %0 4,09 = 0.68 for the error in the

zenith distance value

The above example is instructive in showing up the magnitudes of the errors,
which arise from discrepancies, which have purposely been taken as rather
large ones. If good work is to be done, altitudes less than 30° should not be
used and also a method of observing should be used which minimises the effects
of any systematic errors due to refraction.

4.532 It is not necessary to have instruments, which give the exactly correct
readings of the ambient temperature and pressure of the atmosphere, provided
the observation programme has been designed to minimize the effects of
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systematic erxrrors in refraction. Such instruments should, however, be able to
monitor precisely any changes in the temperature and pressure of the air
throughout the observing programme. A simple example to demonstrate the
principles implied will be given.

%//Z
Py

: A

/8
i /:':v Star North
NS

I
~~_ ) Horizon

Southwards o Northwards

Fig.4.3

4.533 Fig 4.3 shows a meridian section at a station 0. The two stars shown
were observed at meridian transit in order to find the station's latitude.
Observations made:-

Atmospheric Readings Temperature = 18°C
Pressure = 930 millibars
Declination of star north = 39°10'23" north of equator
" " "  south = 77°03'48" south " "
Observed zenith distance to star north = 59°09'58" north of zenith
" " " " n south = 57°01'25" south of zenith
Relationships used
P 273.2
Refraction " = (60.1 tan z
: . .2+
(see section 4.52) 1013.25 273.2 T - 0.07 tan z seczw
. ar dT dz
D.f l R f . " = " PaninlR +
ifferentia efraction dr r"[ 5 (273.2 + 1) 5sin z cos z

(see section 4.53)
By inspection, the latitude is about 20° South

Direct calculation of the latitude

‘ Star north ‘ Star south
Observed Meridian 2D| 2 59°09'58" 1 2z, 57°1 25"
Refraction rN 1 26.3 | rS 1 19.4

—
ZN+rN 59 11 24.3 zS+rS 57 02 44.4
Declination L 6N 39 10 23 | GS 77 03 48
Latitude 20 01 01.3 Latitude 20 01 03.6
Mean Latitude 20°01'02.5 |
Alternative calculation of the latitude from the Mean Differences
From inspection, latitude = (zN + rN) - GN for star north
latitude = 68 - (zS + rS) for star south
. Mean latitude = %(GS - éN) + 1/2(zN - zs) + ’/2(rn - rS)
= %(GS - GN) + %(ZN - zS) + % dr
in which dr has the same sign as dz = (zN - zS)
bart = v (a2

P sin z cos z
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in which «r is found for the mean value =z 1in the Star Almanac for Land
Surveyors. For this calculation 8g and 8y are taken as unsigned quantities.

8 77°03'48"

63 39 10 23
(GS - 6N) 37 53 25 %(GS - éN) = 18°56'42.5"

z, 59 09 58

zg 57 01 25
(z = 2z) 20833 l/z(zN - 2) = 1°04'16.5" = 3856.5"
Lar" = 83" ( + 3856.5" ) = 3.5"

206265"sin 58°06' cos 58°06"

Sum = Mean Latitude 20°01'02.5" South

Demonstration of the Effect of Systematic Error

If the true values of the atmospheric readings were not 18°C and 930 millibars
but were 23°C and 910 millibars, it is required to determine the error pro-
duced in the latitude sought.

Observed Meridian ZD zy 59°09'58" zS 57°01'25"
Refraction rN 1 23.0 rS 1 16.4

. + 57 .
zN+rN 59 11 21.0 ZS rS 02 41.4

Declination GN 39 10 23 68 77 03 48
Latitude 20 00 58.0 20 01 06.6

|
T
\

Mean Latitude  20°01'02.3"

This example demonstrates two points. The large discrepancies in the
atmospheric readings produce quite small changes in the refraction. Also the
changes so produced affect the two latitude values computed in opposite ways
so that the mean value is almost unaffected. The elimination of the effects
of this kind of systematic error is a feature common to all observations on
balanced sets of stars.

Parallax

4.54 BAn observer makes his observations to celestial bodies from a position
on the earth's surface. Since data for these bodies is geocentric data, the
surface observations must also be reduced to the centre of the earth. This
correction must be made only when the earth's radius has an effect on the
quantity measured. Horizontal circle readings are not affected but vertical
circle readings are.

Let O be the centre of the earth of radius R, and S a celestial body,
which is distant D from the earth and which is on the sensible or visible
horizon of the station. Let S be observed, at the station X, to have a
zenith distance of z,. It is required to find =z the corresponding
geocentric zenith distance.

From the Sine Rule in the Triangle XO0S

sin T .  sin(180-24)
R D

b

i

R . . .
D 0 sin zO since T is a small angle

When z, is a right angle, i.e. when S 1is on the sensible horizon of
X, 7® has a maximum value of Wh known as the horizontal parallax
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. T = =
h D P
T = ﬂh sin zg
.. z = Zo - T = zo - ﬂh sin zO

in which ﬂh sin 25 is the correction to 2o for parallax. For a star, other
than the sun, % P is negligible because D 1is very large. For the sun,
however,

6380 . "
ﬂh = 1s50x10° ° 206265 = 8.8

This quantity is not quite a constant, but varies slightly, because D varies
throughout the year.

TAO TYPES OF ERROR

IN field astronomy the elimination of errors plays an important part in
devising the various observation techniques. Although some mention has already
been made of errors and their effects, a more detailed explanation should now
be given.

All observed quantities are subject to errors, however skilled or meticulous
the observer may be. For example, such errors would be due to the observer's
inability to point exactly to a star or estimate precisely the value of a
theodolite circle reading. These errors are for the most part small ones. In
addition to these errors, there are others of a systematic nature, whose
behaviour, if known, can be allowed for. Even if the values of these latter
errors are not known their effects on the end result may be minimised by using
special observing and instrumental techniques. A particular class of
systematic error, which occurs frequently in astronomical work, is the constant
erxor, i.e. an error which remains constant in size and sign.

4.61 If an observer is well trained and competent, his observational errors
tend to a "random" pattern, which in survey observations almost always follows
a "normal distribution”. This distribution displays the following features:-

(i) The frequency of the occurrence of a random error of a certain magnitude,
irrespective of sign, is inversely related to its magnitude.

(1ii) The number of such positive errors will be nearly equal to the number of
negative ones. )

(i1i) The arithmetic mean of a set of observations is more likely to be near

the truth than any single value, provided that a large number of observations

is made.
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If small numbers of observations are made, the statistical quantities
obtained from these quantities do not have great reliability and become only
estimates of the precision of the results obtained.

4,62 Neglecting to correct observations for instrumental constants causes
systematic errors in the quantities sought. Very often an instrumental
constant can be determined by observation. For example, the vertical circle
index correction of a theodolite can be readily determined by face left and
right observations. If some time later these observations are repeated it may
be found that a slightly different value of the index correction results. This
difference may be entirely due to random errors of observation or there may have
been a small change in the index correction in the intervening time between
observations. Thus an instrumental constant, supposedly of constant value, may
be affected by both random and systematic errors and it may not be possible to
separate these two components. To guard against these possibilities,
observations, including those made for determining instrumental constants,
should be made over as short a time interval as possible.

If instrumental constants are not determined and therefore suitable
corrections not applied to the observations, the routine of observation should
be such as to exclude their effects from the final results, such as observing

on both theodolite faces. Alternatively these constants may be included as
additional unknowns in the final solution for the main unknown(s).

THE DETECTION OF POOR OBSERVATIONS OR BLUNDERS IN A SET OF OBSERVATIONS

4.71 WHEN sets of corresponding pairs of guantities, linked by some mathemat-
ical relationship, are observed, they should be tested, so that the presence of
poor opservations or blunders may be detected.

A simple way of doing this is a graphical one, which consists in plotting
one member of each pair as the ordinate and the other as the abscissa. The
points so plotted should then show up as a smooth curve. This will of course
not show up exactly because of the presence of unavoidable small random
erroxs, which are present in even the best observations. If however, any
point deviates considerably from the smooth curve drawn through the points
plotted, the observations producing this deviant point should be scrutinised
to determine the cause of the discrepancy.

The error may be due to a blunder, the cause of which can often be surmised,
if it is known from experience or from the type of equipment being used, what
kinds of blunders are commonly made. Some of these are the misreading of
observed values by whole units oxr sets of units. Examples are the misreading
of clock times by whole minutes or of a theodolite circle by ten minutes of
arc. In addition, when an observation is made on a quantity, which is near
the end of a unit, the fraction of the unit is correctly read but the next
whole unit above is often mistakenly read in place of the correct value. An
example is 47°17'58" read as 47°18'58", because the 8' value is visible at the
same time as the 50" and 00" values. A clock value of 6142M59.15 can likewise
be easily misread as 6h43m59.ls, because great concentration is given to
obtaining the correct value of the small unit of the seconds and, by the time
the minute hand is read, it is on the next minute value of 43®; this mistake
is more easily made if the minute hand is not properly set into coincidence
with the minute mark, when the second hand is at the zero second reading.

If the circle left values of the observation are plotted they should form a
straight line, provided the observations have been made in a short period of

time, say of the order of a few minutes. If this period is longer a curvature
in the line may be discernible depending upon the type of observation made.
The corresponding circle right observations will define another line with
similar slope but not necessarily collinear with the first, unless the instru-
ment is in perfect adjustment.
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For vertical circle observations the index correction is usually determined
prior to the main observations and this when applied should make all observ-
ation points collinear. Additional information relating to the slope of this
line is also available from a knowledge of the time rate of change of
altitude given in section 2.75 as

dh

E = cos ¢ sin A

in which the values of latitude ¢ and azimuth A need not be known precisely.
The azimuth value may be obtained from prediction information or from oriented
horizontal circle readings made at the time of observation.

The graphical method mentioned above may be impractical because a large
scale may need to be used for the plotting in order to show up the errors.
Since the observations often extend over some time, the graphical method
would require large plotting sheets.

Instead of plotting, the investigation can be done by calculation. A
simple way 1is to displace each observation, by means of the given slope, to a
selected value of one of the variables. If the slope is the average for the
set of observations the value of the variable selected is best taken near the
middle of the observations.

4.72 Example. Time altitude observations on the Star Betelgeuse (No. 162)

Latitude 33955's Temperature 22°cC
Clock Mean Time Pressure 1016 mb
Mean Azimuth 314°12° Vertical Circle Index -1'45"
Observations and preliminary reductions
Observed
Vertical Reduced
Observed Circle Index Altitude
Clock Time Reading Corrn. Refrn. ho
3P5asg, 50 52051'21" | -1'45" | +1'14" | 37°09'10"
53 31.6 52 56 07 -1 45 +1 14 04 24
54 00.4 53 00 24 -1 45 +1 14 37 00 07
54 38.5 53 06 01 -1 45 +1 14 36 54 30
55 55.5 306 45 59 -1 45 -1 15 36 42 59
56 33.3 40 18 -1 45 -1 15 37 18
56 58.7 36 37 -1 45 -1 15 33 37
3 57 25.4 306 32 55 -1 45 -1 15 36 29 55

The time rate of change of altitude in arc seconds per second of mean time will
be
éh
dt
where F = 1.0027379

15 F cos ¢ sin A = -8.948

The reduced altitudes are now displaced to a common fictitious clock time of
observation of 3h55MQ0S using the relationship

dh
hC = hO_FATE

where AT is the difference between the selected clock time and the observed

clock time. The agreement between individual values of h; 1s the criterion
of the quality of the set of observations.
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CT AT Ah hg h.

359M59.5% | +2™00.5° -17'58" 37°09'10" 36°51'12"

53 31.6 +1 28.4 -13 11 04 24 13

54 00.4 +0 59.6 - 853 37 00 07 14
_ 54 38.5 +0 21.5 - 312 36 54 30 18
5 55 00

55 55.5 -0 55.5 + 8 17 36 42 59 16

56 33.3 -1 33.3 +13 55 37 18 13

56 58,7 -1 58.7 +17 42 33 37 19
357 25.4 -2 25.4 +21 41 | 36 29 55 36 51 36

It can be seen here that the results appear to be satisfactory except for the
last one which lies about 20" away from the others.

If a value of h, is substantially different from the others and this
difference is say 10', then this could be attributed to a misreading of the
vertical circle and the observation corrected. On the other hand a blunderx
could have been made in the associated clock time of observation which would
be

10'%% = 1Mp7% ;  such an odd misreading would be highly unlikely.
Checking of Calculations

4.73 Whatever methods are used for calculation the correct answer must be
produced and the calculation must therefore be checked. Care must be
exercised and the task of computing carried out in a systematic and objective
manner. Input data, such as the station position, the star coordinates and
the like must be carefully checked and the corrections of the input must be
monitored. The person performing the calculations should be well trained and

the importance of correct computing must continually be stressed.

The ideal method is to have the field book handed to a computer, who obtains
any additional data required and then carries out the computation. This
procedure is repeated by a second computer, who should remain unaware of the
identity of the first one. The computations are then compared with each other.
In this way, independence is achieved. The independence of the process is its
chief guarantee of correctness.

If only one person does the computation, he should be shown where mistakes
can easily occur, so that he can guard against them. Different methods of
solution should be used to check the possibility of errors in manipulation or
arithmetic. Checks should be incorporated in the field work to eliminate the
possibility of blunders.

If a programmable calculator is used, the programme should be thoroughly
tested against data beforehand to guard against mistakes in logic and execution .
Checks against the entry of incorrect input data should be provided. The
results should be checked when they are transcribed from the calculator. If a
printer attachment is used and the programme has been thoroughly tested, the
input data can be checked very positively because the results are available in
the printed form.

Finally, the computer must keep watch over the process with his critical
faculties always alert. When he has any uneasy feeling, even if it is only a
momentary one, he is well advised to find the reason for this feeling. It
very often has a valid reason behind it.
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S

Determination of Latitude

INTRODUCTION

THE latitude ¢ of a station is its angular distance, from the equator,
along the meridian of this station and it is defined as a positive value, if
the station is north of the equator and negative, if south.

An observer, using a theodolite, has two methods available for the deter-
mination of latitude; - he may time the passage of a known star across a known
altitude circle or across a known azimuth circle. If these times are
correlated with Greenwich Time by means of radio time signals, it is possible
to determine the station's latitude. The first method will be dealt with, but
the second, which is nowadays not used in practice, will not be pursued
further. A reference to it may be found in W. Chauvenet, 4 Manual of Spherical
and Practical Astronomy. Philadelphia. 1863, which has been reprinted by
Dover Publications, Inc., New York, 1960.

LATITUDE FROM TIMED ALTITUDE OBSERVATIONS

5.11 IN this method, a known star is sighted and an altitude is observed.
The clock time, at which this observation was made, is noted. The clock
correction with respect to Greenwich Time is observed. The corresponding hour
angle t 1is found from the observed clock time, the observed clock correction,
the longitude of the station and the right ascension of the star. The
observed altitude is corrected for index error and refraction to give the
altitude h of the star at the moment of observation.

The latitude ¢ 1is now to be determined from t, h and &, the known
declination of the star observed, by means of the Cosine Formula, which relates
these four elements, in the form

sin h = sin ¢ 5in § + cos ¢ cos § cos t ...5.1

Variations dt, dh and &8 will produce a variation d¢. These four
quantities are related by means of differentiation of Equation 5.1 and the
result may be obtained from the differential relationships, summarised in
section 2.75 as

dh = cos ¢ sin A dt + cos A dp + cos w A9 ...5.2
This is manipulated to show d¢ in terms of dt, dh and d4é as
dp = sec A dh - cos ¢ tan A dt - sec A cos w 4§ ...5.3

For the change d¢, produced by specific changes dh, dt and 4§, to be as
small as possible, the coefficients of these quantities should be made as
small as possible.

5.12 At this point, something must be said about the possible magnitude of

dd, the uncertainty in the star's declination. For all, but the most precise

geodetic observations, the declination values published in reliable catalogues
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may be considered irreproachable and dd may therefore be taken as zero (see
also sections 6.12, and 7.31).

.. dd = sec A dh - cos ¢ tan A at ...5.4

5.13 The observed altitude h and the derived hour angle t are known to be
subject to errors dh and dt. If, in the first instance, these are taken to
be random errors (see section 4.61), consideration should be given to the
minimising of their coefficients. If the star is sighted so that the azimuth
A is either 0° or 180°, then sec A will have its smallest value of 1 and
tan A2 likewise its smallest value of zero. If the star is therefore observed
on the meridian, the effect of the error dt will be zero and that of dh
will show up fully in the derived latitude &,

5.14 If the errors dJdh and dt are now taken to be systematic errors (see
section 4.62), their effect d¢ on the latitude sought must be considered.
The longitude A and the clock correction with respect to Greenwich Time, as
adopted, may not have the exactly correct value. Therefore, the hour angle
derived for any star will be incorrect by a constant, but unknown, amount dt.
Similarly, the observed altitudes may also all be incorrect by a constant, but
unknown, amount ¢@h. This may result, for instance, from the refraction
correction, taken from refraction tables, not representing correctly the
conditions ruling at the instant of observation. Another example is that of
vertical circle index error not being equal to the true value. This effect
can be removed by taking the arithmetic mean of the latitude values computed
from the face left observations, likewise for the face right observations and
then taking the grand mean. The systematic error in refraction, however,
cannot be thus removed because it affects the observations on both faces in
the same way and not in opposite ways.

The relationship of equation 5.4 suggests that the effects of the systematic
errors dh and dt may be eliminated, if two stars are observed such that
the coefficients sec & and cos ¢ tan A for one star are equal in
magnitude, but opposite in sign, to those for the second star.

If this is done, the observations on the first star will result in a derived
value ¢, of the latitude. Similarly, those for the second star will produce
a value ¢2. The first, however, will be in error by d¢; and the second by
d¢,, such that the value ¢ of the latitude is given by

¢ = ¢y + ddy
and = ¢z + dba
c ¢ = TYs(dy + d2) + (AP + dd2)
B ¢ = %(dp) + d2) only if  (dp; + ddp) = O

This requirement implies that sec A; and tan A; must be equal to
-sec A, and -tan A, vrespectively and that both conditions must be satisfied
stmultaneously. This occurs when BA; + A, = 1800, i.e. when the two
azimuths are symmetrical with respect to the prime vertical and when the two
stars are at similar altitudes (see section 4.52 et seq). When this is done,
the effects of systematic altitude and time errors are eliminated. However,
for determination of latitude, stars in the vicinity of the prime vertical
should be avoided, because sec A and tan A then tend towards very ‘large values.

5.15 Exact balance in azimuth is hardly ever achieved, but any deviation from
exact balance must be such that no significant error is introduced into the
result obtained. Tolerable limits to such imbalance must, therefore, be
determined. When the two azimuths are close to the meridian, this amount of
imbalance will have small effect. It will, however, have a much larger effect,
if the azimuths are far from the meridian, because the secant and the tangent
are larger and are then varying at a faster rate. Therefore, to reduce the
effect, the limit in imbalance must be reduced and balancing done more
carefully.
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THE CALCULATION OF ILATITUDE FROM TIME ALTITUDE OBSERVATIONS
The General Method

5.21 EQUATION 5.1 gives the latitude ¢, which is the unknown being sought
from the altitude h, the hour angle t and the declination &, in the form
of an implicit equation, which can be solved by means of auxiliary angles.
From section A.41 in the appendix, the following relationships are abstracted
for this purpose:-

——— -

90 - M-

— |
Eqguator

Menman“eftw_mwA o
Z

Fig.5.1
fann = o ...5.5
cos t
and cos(M=~¢) = sin h sin M cosec § ...5.6

cquation 5.5 gives M without ambiguity, if the signs of numerator and
denominator are followed but equation 5.6 gives an ambiguity for (M-9¢),
because cos{M-0) = cos{¢-M). The angle obtained from the cosine is first
of all chosen, according to its sign, to lie in either the first or second
guadrant. If the star was observed to the north of the prime vertical
this angle would be equal to M-¢. However, for a star to the south of the
prime vertical this angle would be equal to ¢-M. The latitude ¢ is then
calculated using the value of M obtained from Equation 5.5.

Alternatively, if N is defined as
cos N = sin h sin M cosec § . ..5.7

and, if N 1is then given a sign, positive if the observed star is north of
the observer's Prime Vertical and negative if south, the generaZ relationship

¢ = M~ N ...5.8

will hold. Attention is drawn to the similarity that Equation 5.8 has to
Equation 5.10.

Meridian Methods

5.31 These are methods, prompted by simplicity and backed up by the theory,
which brings out that the star should be observed on the meridian for best
results. In observatories, a telescope is permanently mounted so that its
line of sight defines the meridian very closely; also, in the precise
determination of latitude to geodetic accuracy at field stations, a large
theodolite is set to define the local meridian and to observe stars as they
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cross the meridian. These observations are made on or very close to the
meridian on sets of very accurately balanced star pairs. Generally only a
single pointing is made on each star, but a large number of pairs is observed
to achieve the precision required.

For latitude determinations of less than geodetic precision, a smaller
theodolite is used. The meridian cbservation is still favoured and the tyro,
preparing to make his first astronomical determination, may well decide to
adhere to the meridian method. He may, of course, be influenced in making
this choice by the fact that the prediction, the cbserving and the computing
are very simple and straightforward. He will soon, however, find that the
restriction to an observation on the meridian gives the poor return of only
one observation per star. His "Star Almanac for Land Surveyorsg" will soon be
found to have insufficient stars for his purpose. Also, he knows that the
theodolite should be used to make cbservations on both faces and to make
multiple observations to reduce the effecis of random errcrs of observation.
If the need to stay exactly in the meridian is slightly relaxed, such
observations can be made. These considerations, therefore, lead directly to
the circum-meridian method of latitude determination, in which the star is
observed in the vicinity of the meridian, before during and after its transit.

5.32 The determination of latitude from timed meridian altitudes or zenith
distances utilizes the best position for observing the star. Fig. 5.2 shows
meridian sections, with the south pole as the elevated pole in Fig 5.2(a) and
with the north pole as the elevated one in Fig 5.2(b). Stars are shown in

Southwards . Northwards Southwards Northwards

—_—

Fig. 5.2

four salient positions in each of these figures. Table 5.1 provides the
numerical data for all the situations illustrated. By inspection, the
latitude ¢ can be deduced. :

Table 5.1 ,
Star & P ¢
Uoper ( la 8° N 60° N 52° S
Tpp e 2a 32 8 20 N 52 S
rans: { 3a 82 s 30 s 52 S
Lower Transit 4a 78 S 50 8 52 &
( 1b 20 S 70 s 50 N
gpper.t (2b | 20 N 30 8 50 N
ransi 3b 70 N 20 N 50 N
Lower Transit 4h 70 N 60 N 50 N

|
~J
7




Declination ¢ is a guantity already defined. It starts from zero at the
equator and goes to +90° at the north pole and to -90° at the south pole and is
therefore restricted to the first or the fourth quadrant. Zenith distance =z
is also already defined and is restricted to first and second quadrant. In
Fig 5.2 the zenith distances are meridian zenith distances, which are zenith
distances measured either northward or southward. Such zenith distances, which
will be denoted by zy, may now be considered to have a sign, positive to the
north of the observer's zenith from zero at this point and negative to the
south. This, in effect, makes meridian zenith distance an angle going right
round the local meridian through four quadrants. This corresponds to the
vertical circle graduations on many of the modern theodolites. Table 5.2
shows up this information.

Table 5.2
Star § zZy ¢
’U ( la + 8° +60° ~-52°
Tpper.t ( 2a -32 +20 -52
ransd ( 3a -82 -30 -52
Lower Transit 4a -78 | -50 -52
i ( 1b -20 -70 +50
Tfpizit ( 2b +20 -30 +50
a : ( 3b +70 +20 +50
Lower Transit 4b +70 +60 +50

From this it can be seen that the latltude from an upper transit sight can be
found from the relationship
= - ...5.9
o § zZy
in which the subtraction is done algebraically.

5.33 Consideration will now be given to developing a relationship, which will
include Lower Transit cases also. An observer's meridian is a local one, which
may be split into an upper and a lower branch, each a semi-circle. The former
is defined as that one containing the observer's zenith and the latter as that
containing his nadir. The point E, at which the equator cuts the wupper branch
of the observer's meridian, may now be taken as the starting point for
declination, when it is being used in the meridian, where it will be denoted
as Oy. This meridian declination may then be taken as a full four quadrant
system, with its zero at the point E and with values, increasing from this
point positively northwards or negatively southwards.

Z—\'I'ZM
+6;
LT n 5 p
2b/ N
E/ -z,
z
"\4b
1b é%Qy @
Horizon °. ¢ Horizon
Southwards Northwards Southwards Northwards

Fig.5.3
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For a catalogue declination 0, it can be seen from Fig 5.3 that Oy = §
for a celestial body on the upper branch of the observer's meridian and that

Sy = 180 - § for one on the lower branch, the subtraction being carried out
algebraically. Also, 360° may be added or subtracted as required for
convenience.

Table 5.3 has been drawn up to show the detail of these manipulations.

Table 5.3 _

Star Sy Ziy b=0y—2zy
Upper ( la + 8° +60° -52¢°
Tiinsit ( 2a -32 +20 -52
{ 3a -82 -30 -52
Lower Transit da -102(258) -50 -52
Uppe ( 1b =20 -70 +50
ngnrit ( 2b +20 -30 +50
S ( 3b +70 +20 +50
Lower Transit 4b +110 +60 +50

The above shows that the extended conventions for meridian declinations and
meridian zenith distances produce the general relationship for the latitude,
from either upper‘or lower transit sights, as

¢ = éM - 2y ...5.10
5.34 If the meridian observations are solved by the general method of section
5.21, it will be found that the auxiliary angles M and (M-¢), for this
special case, are equal to &y and zy respectively. This shows that
Egquation 5.10, which had long been suspected as holding in practice, has now
been justified in theory.

Near Meridian Methods

5.41 Because the meridian observation for latitude determination is so
restricted (see section 5.31), circum-meridian methods have been developed.
These are methods, in which time-altitude observations are made on stars not
exactly on the meridian, but on stars as they approach, pass over and leave the
meridian. During this period their azimuths are not vevry different from that
of the meridian. Such observations are therefore made when the star is only
slightly away from the very best position for latitude determination. They are
suited to theodolite observation, because obpservations can be made on both
faces. Also they enable multiple observations to be made on each star, so that
precise results can be obtained.

The two pole stars are available for circum-polar observations, because they
are so close to the pole that theilr azimuth, whatever the hour angle, never
deviates very far from that of the meridian, unless the observer is in very
high latitudes indeed. These stars can, therefore, be observed at any hour
angle.

5.42 In section 5.32 the generalized concept of meridian zenith distance was
introduced. Since the zenith distances, observed in the near meridian methods
lie on a great circle, which departs only very slightly from that, in which
the meridian zenith distances lie, the circum-meridian zenith distances can be
generalized in the same manner to gain the same advantages. This kind of
zenith distance, designated as Zz¢y. is likewise taken to start from zero at
the observer's zenith and to increase positively northwards from this point,
Or negatively southwards so that circum-meridian distances can be used as a
full cirxcle four quadrant system. Furthermore, when the meridian zenith
distance zp and the circum-meridian zenith distance zZcy are belng used, the
meridian declination value 6M will also be used.

5.43 The relationships for reduction of near meridian zenith distances to
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meridian zenith distances have been developed in section A.71 in the appendix.
In all these, it is necessary to have a value for the unknown latitude sought
before solution can be achieved. If the observations are circum-meridian ones,
a reasonably close preliminary value of the latitude can easily be obtained
from the observations themselves. An iterative process may then be used to
obtain the unknown to the accuracy of the observations made, but, in practice,
the need to iterate is hardly ever found necessary, because the preliminary
value of the latitude, as obtained from the observations themselves, is fairly
close to the truth (see section 5.47 for justification). In the circum-
meridian observation method, the set of observations mafe is usually one,
balanced about the point of transit. The uncertainty AA in longitude
produces an effect c¢os ¢ tan A dA  in the derived latitude. Over transit,
tan A changes sign and the effects of AX tend to cancel. 1In practice,
however, the observer, who has assumed a poor longitude, knows what his clock
time of transit is and tends to make his balance using time differences from
this point instead of making balance on obtaining equal altitudes on the star
on eagh side of the meridian (see section 5.45).

Sometimes this balance is not carried out exactly, for various reasons,
which should be avoided if the programme is properly predicted. If there is
any chqice, the star on the equator side should be balanced properly and the
one on the pole side of the observer should be the one not balanced properly,
because the effect of AA on this star is smaller because its azimuth is
departing from that of the meridian at a slower rate (see section 10.32).

Sometimes, one of the pole stars may be observed (see section 5.50). This
observation is made very often when this star is not at or near transit. There
is thus no balancing on the opposite side of the meridian and the uncertainty
AN may produce an unacceptable error in the derived latitude (see section
5.512). 1In practice, a value of longitude of sufficient accuracy will often
be known.

Circum-Meridian Stars

5.44 There are many stars available for latitude determination by circum—
meridian methods, in which the stars are observed when they are close to
meridian transit (see section 5.41).

In this position, the meridian zenith distance zy and the circum-meridian
zenith distance 2z¢y do not differ much from each other; so that special
methods, in place of the general one, were developed in the past in the form
of a series (see section A.72 in the appendix). Several methods of derivation
have been used there in order to illustrate the possible lines of approach in
such derivations. The relevance of such methods of computing is nowadays
disappearing, because of the modern facilities for computing direct, instead
of indirect, solutions.

The observer arranges his programme in such a way that the circum—meridian
star is located in the field of view of the telescope about ten minutes before
the time of its transit. Prior to this, he has determined his clock correction
with respect to Greenwich Time and also the index correction of the vertical
circle readings. He then proceeds to make, say, six timed altitude observations
before transit. He finishes these with time enough to transit and find the
star on the other face of the theodolite and he then makes another six such
observations at points approximately symmetrical with respect to the previous
six.

5.45 If there is any doubt about the value of longitude assumed for
determining the latitude from such sets of observations, the period, over
which the observations are made should be extended so that it is fairly
obvious that the observed zenith distances have actually decreased to a
minimum value and have thereafter increased by the same amount. This is easy
to see by inspection, if the vertical circle index error has been reduced to a
small value by adjustment, which, 1f necessary, can easily be carried out in
the preparatory period before observing is to start. Before computation, the
reduced meridian zenith distances should be plotted on thin paper against the
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observed clock time. The sheet of paper is now folded about a line perpend-
icular to the time base, so that the rising and the falling sections of the
curve joining the plotted points are superimposed on each other. The fold line
then will give a position on the clock time base corresponding to the correct
clock time of transit.

In practice, this plotting method gives a better value of the clock time of
transit from the observations on the star on the egquatorial side of the
observer than from those on its balanced partner on the pole side. This
device should be seldom resorted to, as it is-definitely much better to avoid
this method by obtaining a reliable longitude for use in determining the
latitude. This can be very simply done by making a few time altitude
observations to stars, one to the east and the other to the west near the
prime vertical and so obtaining a fairly good value of the longitude (see
section 5.491).

5.46 Individual observations are normally calculated separately. From the
clock time, combined with longitude and clock correction, the local sidereal
time of the observation is determined. The local hour angle is found from this,
combined with the star's right ascension. The vertical circle reading is
reduced for index and refraction to give the circum-meridian zenith distance.

5.47 The latitude is now computed from these, together with the star's
declination, by means of the general method of determination of the latitude
(see section 5.21) or by means of the special circum-meridian methods (see

section A.72 in the appendix). The latter,in full, is given as
2y = Zay " Am + Bn - Cs c e e . ...5.11
in which A = cos ¢ cos SM cosec zy and m = Zsinz(%t')p
B = A% cot zyM and n = 2sin* (t")p
2 .
c =§A3(l + 3 cot? zZy) and s = 2sin® (Lt")p

and in which @ is in the same angular units as those used for all the other
quantities and is equal to the number of these units in a radian.
The quantities m, n and s are related to each other as follows:-

m = 2sin®(4t')p in which t' is defined as
2
n = T t' =t
203 near upper transit
and s = —mz-= on t' =t - 180
4p 2p

near lower transit
If m is expressed in sexagesimal seconds, then

m" = 2sin®(; t")p"

This quantity is tabulated on page 68 of the Star Almanac for Land Surveyors
to the nearest whole second of arc. 0
If the interval t' is expressed in minutes of time as At , then an
approximate value of )
900
= 55;—-(Atm)2 = 1.9635" (At™)?
(m")?
2pl|
o = (mu)3 B n" m"

(2pu)2 2pn

Table 5.4 gives numerical values for these over a range, which should not
normally be exceeded in any circum-meridian observations, which aim at single
second accuracy in the reduction by the above series expansion.
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Table 5.4

Truncated ! f
Angle . value of m" |Approx m" " "
t! m from Star from (Atm) n S
Almanac
4" 31.41" 31" 31.42" 0.00"  |0.00"
8 125.65 126 125.66 0.04 0.00
12 282.68 283 282.74 0.19 0.00
16 502.45 502 502.66 0.61 0.00
20 784 .90 785 785.40 1.49 0.00
L 24 1129.24 - 1130.98 3.10 0.01
If the near meridian zenith distance is not less than 30° and if the star

observed i1s within twenty minutes of the time of its transit, and the prelim-
inary value of the latitude ¢ is known to within one minute of arc, then the
error in the term Am will be less than one arc second. In a set of such
observations, this error will be significantly less than this amount because
closer to the meridian this error diminishes very quickly and the mean result
from the set is always taken {see section 5.43).

If a star has been observed in any latitude at a near-meridian zenith
distance not less than 30° and the star was within ten minutes (in time) of
transit, the corxrection Bn" is not greater than 0.6 arc seconds. The
correcting term Cs 1s even smaller.

5.481 An example of a circum-meridian observation made for determining
latitude will now be given in order to illustrate the calculation procedures.
First the general method of section 5.21 and then the circum-meridian method
of section 5.47 will be used. Because, it is a computing example only, a
single observation only is provided for this purpose. Subsequently, in
section 5.491 a full set of observations will be worked out in detail.

The data for the above example represents one observation from each of two
sets of observations made on a balanced pair of circum-meridian latitude stars.

| T
Star Asp-| Right . . Observed Circum-
No. ect Ascension Declination Local Sid- Meridian Remarks
ereal Time Zenith
Distance*
‘ h h ‘
338 |s | 12%0™3% | s 1e1svasn | 12749™22° | 48°26'40" Near Upper
Transit
BS0285 | N 0l 04 53 N 86 07 03 12 52 47 46 47 41 |Near Lower
| ) Transit
*These have been corrected for refraction and index
Aspect | Star South Star North
Declination ¢ - 1°18'43" +86°07'03"
Altitude h 4lh33 20 43 12 19
Local Hour Angle t = LST-RA o gM59S 11P47%545
2°14't45" 176°58'30"
fan M tan & - 0.022 9017 +14.734 8504
cos t + 0.999 2319 - 0.998 6066
M - 1°18'46.6" 93°52'37.6"
in h sin M
cos (M~¢) = TR LS HA 0.663 8515 0.684 6186
sin 6
M-¢ +48°24'20.6" +46°47'39.8"
N -48 24 20.6 +46 47 39.8
¢ = M-N +47 05 34.0 +47 04 57.8
Latitude from pair of Observations 47°05'15.9" North
5.482 The example of section 5.481 will now be reduced by the circum-meridian

method of section 5.47, in which Equation 5.11, less the

relationship as
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= - +
zM zCM Am Bn

The factor A reguires a preliminary value of the latitude ¢ as well as one
of the meridian zenith distance zy, both of which are being sought. Both
are easily found from the observations themselves, provided the observations
have been made in the vicinity of the point of the star's transit across the
meridian.

Preliminaries Star South at U.T. Star North at L.T,.
M= 9 for Upper Transit U.T.| - 1°18'43" +93952'57"
= 180-6 for Lower Transit L.T.
t = LST-RA o gl59° 11727548
£ =t for U.T. o gM50° ot12%06°
= 128-t for L.7T.
Bpprox zy = Z oy minimum at U.T. -48°26 40" +46°47'41"
maximum at L.T.
Approx ¢ = 8y - zcy o +47 07 57 +47 05 16 ;
Mean approx. ¢ 47°06'36" North &
Accurate Determination :
Rpprox zy = 6M - ¢approx +48°25"'19" -46%46 21"
h = COS 0 cosby _ L - 0.9096 - 0.0632
sin zy tandy-tangd :
m"= 2 sin® (4t').p" +158.4" +287.4" :
I:¥u} -QQeQ2r24" -00°00"18" !
EME oM RM -48 24 16 +46 47 59 _ r
$=8 -2y +47 05 33 ' +47 04 58
Latitude from pair of observations 47°05'15.5" North

Iteration is seldom required if, in the first instance, a reasonably correct
value of the meridian zenith distance can be obtained from the observations
themselves. This is normally achieved with well balanced multiple okservations
over the point of transit or close to it. If iteration is carried out in the
above example, no change occurs. The second term Bn of Egquation 5.11 should
be taken out to test its magnitude. In the above, this term amounts to 0.04"
for the star south and to 0.00" for the star north, and they can therefore be
neglected.

5.49 A full example, in which the observations were made to determine both
latitude and longitude, will now be set out.

Multiple cbservations are provided for one pair of circum-weridian latitude
stars and for one pair of longitude stars observed near the prime vertical. A
preliminary value of the latitude will be determined from meridian distances
found by inspection. The longitude, to be used in the next step of calculating
an accurate value of the latitude, is provided. The longitude from this set
of observations has been calculated in section 6.222.

5.491 Example

Place UNB Fredericton, New Brunswick, Canada Theodolite WwWild T2

Date Thursday evening 9th October 1969 Clock Mean Time

Zone 3h oy b m 5 Vertical Index Subtract
R, for 9th Octcber 1969 lh09m44.5S 30" from all Ve Rdgs
R for 9th Cctober 1969 1712 742.0 Barometer 1019.4 mb

19
Temperature 14.4°C
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Latitude Star North aﬁ Lower Transit

Star No. BS2609 RA 7 27 Gc4a. 0 § 87°05'05" N
V@& Rdg Cbs CT V@ Rdg Obs CT
313°03'24" l9h33m47 46°57'19" l9h4lm33
CR 26 35 05 CL 18. 43 06
313 03 25 12 35 27 46 57 21 19 44 14
Clock was 395 aghead of Zone Time
Latitude Star South at Upper Transit
Star No. 549  RA 19850M56.6% & 0°55'37" N
VO Rdg Obs CT VO Rdg Obs CT
314°58' 25" 19ht57mg 58 45°00'45" 20hg3m52S
CR. 59 01 19 59 30 CL 00 46 Q5 40
314 59 32 20 01 16 45 01 00 20 07 13
Clock was 395 ahead of Zone Time
Longitude Star West h
Star No. 449 RA 16°40708.0% & 31°39'28" N
V@ Rdg Obs CT V@& Rdg Obs CT
45017122" 20M39M58 2 314°077157" 2074320 4%
CL 24 08 40 37.3 CR 313 54 30 44 37.8
45 27 58 20 40 59.3 313 49 08 20 45 08.6
Clock was 39.6°% ahead of Zone Time
Longitude Star East h
Star No. 12 RA O 3743, 5 § 30°41'56™ N
V@ Rdg Ops CT Ve Rdg Obs CT
48°05'51" 20h52Mp7, 23 312°43'51" 20h56M49, 17
CL. 47 58 33 52 49.0 CR 312 54 59 57 53.1
47 46 12 20 54 00.0 313 11 59 20 59 31.2
Clock was 32.6% ahead of Zone Time

5.492 To find a preliminary value of the latitude from inspection

: Star N Star S
Min or Max V@ Rdg CR 313°03'24" CR 314°59' 32"
ZD 46 56 36 45 00 28
Min or Max V® RdAg=ZD CL 46 57 21 CL 45 00 45
Mean Observed ZD 46 56 58 45 Q0 36
Refraction 1 02 58
Preliminary Zy +46 58 00 -45 01 34
Declination +87 05 05 + 55 37
Meridian Declination Gy +92 54 55 + 5% 37
¢ = Sy -zy +45 56 55 +45 57 11
Preliminary value of the latitude +45°57'03"

5.493

Determination of the clock tlmﬁ of lower transit o
27 04 0°

Star No. BS 2609

Preliminary value of the longltude

1.8T of Local Lower Transit

Local Longitude

GST of Local Lower Transit

R for 9th Octcber

h

RA + 12

Sldereal Time Interval since GMT oh
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To determine an accurate value of the latitude from Star North

f Star North
87°05" 05" N

4%26™35 W(see sections
5.45 and 6.222)
19"27™04°%  9th october
4 26 35 W
23 53 39  9th October
_ 109 44
22 43 55



h
Conversion of this interval 00 03m44S

Mean Time Interval since GMT oh 22 40 11
equals GMT of Local Lower Transit
Zone Longitude 3 W
Zone Time of Local Lower Transit 19 40 11
Clock Correction 39 fast on Zone Time
Clock Time of Local Lower Transit 19 40 50
. cos ¢ cos Oy 1
= = = -0.0484

Ev?luatlon of constant A sin zy tan Oy - tan ¢
Reduction of the latitude from zy = 2ZcM - Am" (see section A.72)

B h m s h m s h m s h m s h m s h m s
CT of Obs 19 33 47| 19 35 051 19 35 27| 19 41 33| 19 43 06 | 19 44 14
t' MT units - 7 03 - 5 45 -5 23 + 0 43 + 2 16 + 3 24
t' 8T units - 7 04 - 5 46 - 5 24 + 0 43 + 2 16 + 3 25
m" +98 +65 +57 + 1 +10 +23

a 1 " o (] 1" o ¥ 1] o T u o 1 " [+ ] H

V@ Rdg 313 03 241313 03 261|313 03 25| 46 57 19| 46 57 18| 46 57 21
Index -30 -30 -30 -30 -30 -30
Corrected VO RdAg (313 02 54313 02 56 (313 02 55| 46 56 49| 46 56 48, 46 56 51

Obs ZD 46 57 06| 46 57 04 46 57 05| 46 56 49 | 46 56 48 | 46 56 51
Refraction 1 01 1 01| 101 101 101 1 01
Corrected ZD zcm|+46 58 07|+46 58 05 |+46 58 06 [+46 57 50 [+46 57 49 +46 57 52
Am" -5 -3 -3 -0 -0 -1

Meridian ZD 2zy +46 58 12|+46 58 08 1+46 58 09 |+46 57 50 H+46 57 49 |+46 57 53
6M=180w(5at L.T. +92 54 55|+92 54 55 +92 54 55 |+92 54 55 |+92 54 55 |+92 54 55

b= Oy - Zym +45 56 43445 56 47 +45 56 46 [+45 57 05 |[+45 57 06 |[+45 57 02

Mean CR +45°56'45.3" Mean CL +45°57'04.3"

Mean Value of the Latitude from Star North = +45°56'54.8"

5.494 To determine an accurate value of the latitude from Star South
Determination of the ﬁlock time of upper transit of star south
5

Star No. 549 RA 19 Om56,6s 1) 005513711 N

LST of Local Upper Transit = RA 19050M575  9th October

Lecal Longitude 4 26 35 W

GST of Local Upper Transit 17 32 9th October

Ry for 9th October 1l 09 44

Sidereal Time Interval since GMT Ol 23 07 48

Conversion for this interval 3 48

Mean Time Interval since GMT Of 23 04 00

equals GMT of Local Upper Transit

Zone Longitude 3 W

Zone Time of Local Upper Transit 20 04 00

Clock Correction 39 fast on Zone Time

Clock Time of Local Upper Transit 20 04 39

Evaluation of Constant a = S2° ¢ cos O = L = =0.9827
sin zy tan Oy - tan ¢

Reduction of the latitude from zy = zcM - Am' (see section A.72)
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h m s h m s h m s h m s h m s h m s
CT of Obs 19 57 45| 19 59 30| 20 01 16| 20 03 52| 20 05 40| 20 07 13
t' MT units - 6 54 - 5 09 - 3 23 - 0 47 + 1 01 + 2 34
t' ST units - 6 55 - 510 - 3 24 - 0 47 + 101 + 2 34
' l+%§ +§? +23 + 1 + 2 +13
V® Rdg 3;4 58 25 3;4 55 01314 59 32| 45 00 45| 45 00 46| 45 01 Q0
Index -30 -30 —30‘ —30‘ -30 -30
Corrected V® Rdg|314 57 55|314 58 31|314 59 02‘ 45 00 15| 45 00 16‘ 45 00 30
Obs ZD 45 02 05 45 01 29| 45 00 58| 45 00 15| 45 00 16| 45 00 30
Refraction 57 | 57‘ 57 | 57 573 57
Corrected ZD zem|-45 03 02|-45 02 26|-45 01 55|-45 01 12|-45 01 13|-45 01 27
Am" -1 32‘ -51 ~23 -1 - 2 -13
Meridian ZD zy -45 01 30 |-45 01 35|-45 01 32(|-45 01 11|-45 01 11 |-45 01 14
Sy = 0 for U.T. [+00 55 37|/+00 55 37 +00 55 37|+00 55 37 +00 55 37 |+00 55 37
¢ = 6M -y +45 57 07 |+45 57 12 +45 57 09 +45 56 48‘+45 56 48 |+45 56 51
Mean CR  +45°57'09.,3" Mean CL +45°56'49.0"
Mean value of Latitude from Star South = +45°56'59.2" N
Mean value of Latitude from pair = +4+45°56'57.0" N

This example has been computed with the aid of the tables on pages 62
and 68 of the Star Almanac for Land Surveyors (SALS). It should be seen that
the use of &y simplifies the calculation, particularly with the lower
transit calculation, because the sign of the factor A is found automatically.

Circum-Polar Stars

5.50 The two pole stars, Polaris (0 Ursae Minoris) in the northern

hemisphere and O Octantis in the southern hemisphere, are available, for the
determination of latitude, provided the observer is not at a station close to
the equator. At such latitudes, the two pole stars are difficult to see
because the line of sight must traverse a long path through the dense _
atmosphere layers, close to the earth's surface. This is particularly so for
the southern star, which is quite faint.

These two stars are within one degree of the pole and their azimuths, in all
but high polar latitudes, never depart much from the meridian azimuth, so that
they may be observed at anv hour angle. Polaris, of magnitude 2.1, is easily
visible to the naked eye, but ¢ Octantis, of magnitude 5.5, is not easily
seen by the naked eye observer, unless he is experienced, and therefore, for
most people, a telescope is needed.

5.511 BAn example of latitude determination from an observation on a circum-
polar star will be worked by a number of methods. These provide alternative
methods for checking calculations.
Example. The southern pole star of declination 89°04'00" S was cbserved

from a station to have a zenith distance, corrected for refraction and index
_error, of 56°10'45.6", when the star's hour angle was 6 40™00.05. Determine
an accurate value of the latitude of this station, if an approximate value of
34%° was scaled off an atlas map.

5.512 The meridian distance 2y at upper transit will first be determined
with a relatively rough value of 34%°S as the preliminary value for the
latitude. An iterative process will then be carried out until the value of
the latitude stabilises. From section A.71 in the appendix, the relevant
relationship is the following:-
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2
cos zoy + 2 cos 8y cos ¢ sin”(it") , ...5.12

cos zy =
6M = -89°04'00" for a star at upper transit
t' =t = 6%0™0° = 100°00'00"
zZey = 56°10'45.6" South = -56°10'45.6"
.. cos zy = 0.556 595 32 + 0.012 117 58 cos ¢ ...5.13
Ta%le 5.5 is obtained from a series of iterations from this relationship:-
Table 5.5
Preliminary ¢ Zem | ZyM ¢ =Cy~2y
-34°15'0Q" -56°10'45.6" |-55°04'56.65" |=-33°59'03.35"
-33 59 03.3 -55 04 44.15 |-33 59 15.85
-33 59 15.8 -55 04 44.31 |-33 59 15.69
-33 59 15.7 -55 04 44,31 |-33 59 15.69

The solution converges very quickly even though the preliminary latitude is
very inaccuratc. If the longitude is equally inaccurate its effect A¢ on
the derived latitude is equal to -AX cosd tan A. For the above example
A =181.1° and with AX = %°.

Ap = -AX cos ¢ tan A = -900" cos 34° tan 181.1°= -14"

This discrepancy is not eliminated because in this type of observation the star
is not observed on both sides of the meridian. The hour angle has been
deliberately chosen to give a large error. However, when the star is near
transit this erxror is very small and in addition the iterative solution for
latitude converges more quickly.

Instead of using the very rough value of latitude scaled from a small scale
map, a better preliminary value can be calculated from the actual observation
itself. This is obtained from the relationship of section A.51 in the appendix.
This is

|¢| = h -p" cos t ... ...5.14
= 33°49'14.4" - 3360" cos 100°
= 33°49'14" + 0°09'43"
¢ = 33°58'57" South
With this value as the preliminary one, the first computation from Equation
5.13 gives the latitude as -33°59'15.9", Comparison with the values of Table

5.5 shows that the refined preliminary value produces only one less iteration
than the rough value.

5.513 Section A.71 in the appendix provides the following alternative
relation for this type of solution

. _ _cos ¢ cos Oy .2
sin %(zy - sz) = S T sin® (>t') ...5.15
. . - - 1 .
in which z é(ZM + ACM)

The computation will be illustrated with the data of section 5.511, but it
will be treated as a lower transit example. The value of 33°59' South for the
latitude as obtained from Equation 5.13, in the previous section will be used.
The preliminary meridian distance zy is obtained guite easily.

Preliminary ¢ = -33°59°'
M = 269°04' for lower transit
or &y = =90°5&’
zZy = =56°57' from ¢ = Oy - zy
ZeM T -56°10'45.6"
z = =56°33'52.8"
. t' =t - 180 = -80°00' for lower transit
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Substitution in Equation 5.1% gives

z -z, = -00°45'S8.¢"
MoZEN = -56 10 45.6
Zy = =56 56 44.4
Sy = =90 56 00
$ = -33°59'15.6"

Further iteration will lead to results similar to those of section 5.512.

5.52 This computation has been done by two methods to illustrate the theory
in some detail and also to show the complete generality of the methods. The
above relationship of Equation 5.15 suggests the use of a power series as a
means of solution. This is given in the appendix, where the theory has been
developed for a power series for the solution of both latitude and azimuth
(see section A.51 and A.52).

These series are the basis for the widely used tables for the reduction of
latitude and azimuth observations made on Polaris, which is such an outstanding
mark in the sky of the Northern Hemisphere.

5.53 The data of section 5.511 will be used for this purpose. Equation A.52
in the appendix gives the relation needed for this solution as
3
|¢| =h - pcos t + %B-Sin t tan h - %57 cos t sin’® t
N

+ E%gg-sin t tan h (3 sin? t tan

2

2 2

h + 9 sin? t - 4).. ...5.16

in which p is the polar distance from the adjacent pole and p is in the
same units as p.
The numerical values for this solution are tabulated as:-

h = 90° - z = 33°49'14.4"
p = 00°56'00" = 3360"
t = 100°00'00"
o = 206265"
~- 1lst term = +583.46"
+ 2nd term = + L17.78
- 3rd term = + 0.05
+ 4th term = + 0.00
sum = +601.29 = 00°10'0l,29"
h = 33 49 14.4
[¢| = 33 59 15.7
Since the star observed was O Octantis the latitude is south
¢ = -33°59'15.7"

5.34 The data for this example is that from section 5.511 and is given below.
The method of solution is that of section 5.21.

Star South

4 = =89°04'00"
t = 100 G0 0O
h = 33 49 14.4
tap m = Lano M 269°50'16.5"
cos €

cos N = sin h sin M cosec & N - 56 10 27.8
M- N 326 00 44.3
[0) - 33¢959'15.7"

0f all the methods used to illustrate the calculation of latitude from a close
circum-polar star, this last method is the simplest and most direct. The
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method is applicable to stars of any declination and therefore is highly
recommended.

5.55 The two pole stars may be observed at any hour angle. The error Al is
usually not large and its effect cos ¢ tan A dA is further diminished for
such a star because the azimuth is always close to that of the meridian,

unless the observer happens to be at a station very close to one of the carth's
poles. While the pole stars are very useful for observations in mid latitudes,
many other stars are available adjacent to the meridian and hence the circum-
meridian methods of section 5.44 are far more often used.

THE DETERMINATION OF THE UNKNOWNS AND THEIR PRECISION FROM BALANCED OBSERVATIONS

5.61 IF a set of latitude stars has been properly predicted and properly
observed, the latitude should ke rigorously computed from these observations.
If this can be don& simply, so much the better. In the past, it has been usual
to assess the results, obtained from each star, separately instead of
inspecting the results from individual observations on both stars and obtaining
from this inspection, all the relevant unknowns, (instrumental and physical
included), as well as the precisions.

5.62 Tt is assumed that a set of timed altitude observations has been made by
means of a theodolite on a pair of well-balanced circum-meridian stars. This
gives rise to correction equations of the form:-

dé ded dd

= 1 —_— - -

) A T Ar 5=+ bh o+ v

in which is the adjusted value of the latitude,

¢

¢! is the computed value of the latitude,

C is the vertical circle index correction, with the positive
sign applving to its use with one face of the theodolite and
the negative sign applying to the other,

Ar is an unknown systematic error in the refraction wvalues taken
from the refraction tables,

Ak is an unknown systematic value of the longitude used in the
computation and is a small quantity

and v is the correction to be applied to the computed value of the

latitude to obtain the adjusted value.

In this method, the quantities ¢, ¢, t and h are linked by the Cosine
Formula and the above coefficients are obtained by differentiation of this
relationship. This gives

¢ = sec A and éﬁ, =

an 5 -cos ¢ tan A

Since these are circum-meridian observations, A is close to either 0° or 180°
and therefore

d , .
%% = *] and a%— = 0. The above correction equations,

therefore, become,
¢ = ¢' *tCct Ar 4+ v

and, since these observations are made on a star to the north on both faces of
the theodolite and also on a star to the south on both faces, four sets of
correction equations of the following type arise

o - C - Ar = &L + VL n observations
— - 1 [
$ + C Ar NR + VMR
- 1 + "
$ + C+ Ar ¢SL Var,
-_ = 1 + "
¢ cC + Ar sr b Ven
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This is so because the index correction C is eliminated in the mean from circle
left and circle right observations on each star, whereas a constant refraction
effect Ar is eliminated only if the results from both a north and a south
sStar are meaned.

These produce the following
coefficient form

Normal Equations, shown here in the detached

¢ C Ar = L (the absolute term)

N © - Loyy, + Zbgp T Log * Do
© N = 7ROy T Zépg g~ Id4p
o} 0 N = —Z¢NL - Z¢NR + Z¢éL + Z¢§R

Provided equal numbers of observations have been made on each face i.e. N = 4n

The solution of the unknowns is then,
= ;4’ e b ¢ oy
¢ ( ?NL ¥ ENR " _fSL ¥ _fSR)
— Lo + —
¢ by, vr T s Ogr)
= %(~¢ - ¢ + ¢ + ¢
Ax o T fgr tobgp t PgR)

in which EﬁL’ .$SL etc. are the means computed in each set.
The values of the v
the correction equations.

is given as

corrections may be obtained by back substitution in
The standard deviation of a single observation then

rvv

(o] =
N-3

so
Since the Normal Equation matrix is a diagonal one, the standard deviations of
the unknowns are given as

An alternative and convenient method of determining the v values consists of
first computing the differences wu from the means for each set of n
observations as

YNy T byr, -

and similarly for the other three sets and then relating these to the
v values.
From the first equation

1
NL;

VNLi = ¢ -C - Ar ¢&Li
= ¢ -C - Ar - aﬁL uNLi
= ECh v Gy b Oyt Oy
g = g T Psr t 0gg
Bt g bep, ~ Psr
_4$ﬁL ) + uNLi
= Gl v B bg t Oge) 7 YNL;

The constant D may be

D+uNLi

(see also further explanation in
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Similar treatment gives the following results for the other sets

= - D+
VNRy D+ Wg,
= D+u
VsLy SLj
v = - D+ u
SRy SRy

When observations are made by skilled observers, the required number of
observations is usually obtained with only a few, if any rejections. If this
does occur, a slight imbalance results and the weights of the mean values
etc. are no longer exactly the same. However, if the imbalance is only a
slight one, the use of this method will provide answers, which do not vary
significantly from the correct ones.

¢NL

5.63 Example. The following observations were made at the University of New
South Wales for the purpose of determining its latitude.

. . . h
Local Date Wednesday evening Approximate Longitude 10 O4m56S E Theodolite
5th May 1976 Time Zone 10" East Zeiss 010
Clock Mean Time

Observer K. Gillies Clock Correction on b m <
Recorder P. Ritchie Zone Time +187°18 04.1 Pressure 1021 mb
. R £ 14 4 . . .5°
Relationships used o o0ds b o for loca ate 14 51 57.9 Teﬁzn 5 16.5°C
1 ° = ——— - 2 7z =
Refraction ~r 593 5 5T {tan 2z 0.0012 tan 2z sec”z) tan M py—s
te = 15{ A- ra + R, + F(CT + CcC_ - Zone) } cos N = Sl?oh zlg M
F = 1.002 7379 2T cose

with N positive north,

R for Greenwich Date, equal 1 .
o ow ’ d to Loca negative south

Date, must be used

u = 0 ¢ =M-N
v = u + D and Lv = Zu * nD = tnD
Latitude Star North No. 319 ra  12%04"M01,7° § 8°51'43.9 N
Observed Vertical |Observed Clock | Calculated a D v
Circle Reading | Time Latitude -
42°50'26" 2h36m50S -33°55*17.12" +0.54"; +0.10" +0.,64"
49 55 37 25 14.18 -2.40 -2.30
49 29 38 02 16.09 -0.49 ~0. 39
49 04 38 36 15.15 -1.43 -1.33
CL 48 47 39 02 15.52 -1.06 ~0.9¢
48 31 39 31 17.85 +1.27 i +1.37
48 01 40 25 19.01 +2.43 +2.53
47 48 40 47 17.60 l +1.02 +1.12 |
47 33 41 14 15.94 -0.64 -0.54
42 47 16 2 41 55 -33 55 17.38 +0.80 ‘ +0.10 +0.90
| il
ENL -33 55 16.58 | I+0.04 L +1.04
317 13 56 2 46 32 -33 55 11.67 +0.95 -0.10 +0.85
55 47 16 13.86 +3.14 +3.04
57 47 42 11i.36 +0.64 +0.54
55 48 22 10.84 +0.12 ' +0.02
CR 53 48 46 10.31 ~-0.41 -0.51
46 49 43 08.25 -2.47 ~2.57
37 50 14 10.52 -0.20 -0.30
29 50 48 09.68 -1.04 -1.14
19 51 16 11.25 +0.53 +0.43
317 13 12 2 51 42 -33 55 09.49 -1.23 -0.10 | -1.33
¢ R -33 55 10.72 |Z + .03 | ~If ~0.97
rvv_ 39.641
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' h
Latitude Star South No. 325 Ra 12°17703.8° & 79°11'09.2 S
Observed Vertical Observed Clock Calculated a +p v
Circle Reading Time Latitude -
h
314°44'50" 25428 -33°55'16.08" | +0.05"| -0.10" -0.05"
44 52 54 52 16.15 +0,12 +0.02
44 53 55 26 14.66 -1.37 -1.47
44 54 55 55 13.75 -2.28 -2.38
CR 44 57 56 24 15.04 -0.99 -1.09
45 01 57 14 16.58 +0.55 +0.45
45 03 57 37 17.65 +1.62 +1.52
45 04 58 04 i7.71 +1.68 +1.58
314 45 04 2 58 46 -33 55 16.61 +0.58 | -0.10 +0.48
65R -33 55 16.03 |5-0.04 T -0.94
45 15 02 3 00 16 -33 55 09.67 -0.92 | 40.10 -0.82
14 59 00 51 12.83 +2.24 +2.34
15 03 01 13 09.08 -1.51 -1.41
15 03 01 38 09.51 ~-1.08 -0.98
1, 15 01 02 1¢ 12.27 +1.68 +1.78
15 04 02 33 09,98 -0.61 -0.51
15 08 03 53 09.41 -1.18 -1.08
15 19 06 52 11.66 +1.07 +1.17
15 23 07 20 10.43 -0.16 -0.06
45 15 25 3 07 45 -33 55 11.06 +0.47 | +0.10 +0.57
EéL -33 55 10.59 |I 0.00 T +1.00
Tvv 29.645
—_ O
¢y —33°55'16.58" (3): ¢ Z{ (L)+(2)+(3)+(4)} = =33755'13.48"
EﬁRr 10.72  (2): ¢ ZHI-(W)+(2)+3)-(4)} = + 2.82
. 10.59 (3): Ar ZH{-(L)-(2)+ )+ } = + 0.17
wr
'_SR -33 55 16.03 (4): D =Hi-(L+2)-H+)} = + 0.10
[Tvv /69.286 _ Iso _ +1.92
= = — = +3 39" a = g = o] = — = = - = X0 22"
Y50 N-3 36-3 b C Ar VN V39 0.22
O
¢ = =33755'13.48" tp,22"

This example has been calculated to a greater accuracy than is normally
warranted, purely for purposes of illustration.

In this and later examples the technique of calculating the quantity u,
which may be thought of as initial estimate of the error v, has the advantage
of providing a preliminary assessment of the quality of the observations
before embarking on the least squares solution. The quantity D in the afore-
going calculation represents half the variation in the vertical collimation
of the thecdolite as determined from the results of observation on each star.

o o HR nr ¢ ¢ - st " Ysm ] o= ‘6 " S e D= “n T S
N 2 S 2 ’ 2 2
Therefore when all observations are considered the additional criterion that
D should be small, otherwise v = uiD will be large, will be helpful in
analysing the results and assessing thelr precision.

-85-



-86-



6

Determination of Longitude

INTRODUCTION

THE longitude A of a station is equal to the angle at the pole measured
from the Greenwich to the local meridian. This is taken to be positive east-
ward (see section 2.21). Therefore, to determine longitude, it is necessary
to determine the local time of a certain instant as well as the Greenwich time
of this instant, both times being in the same system.

An observer, using a theodolite, has two methods available. He may time the
passage of a star across either a known altitude or azimuth circle. Then if
the latitude is known and the observed times are correlated with known radio
time signals, the longitude can be determined. Of these two, only the first
method will be dealt with in detail, the second method not being within the
scope of this book.

LONGITUDE FROM TIMED ALTITUDES

6.11 1IN this method, the longitude is obtained by means of the formula, which
links the four quantities, ¢, t, § and h in the form:

sinh = sin ¢ sin § + cos ¢ cos § cos t
or cos t = sec ¢ sec § sin h - tan ¢ tan 6 ...6.1

The hour angle t 1is determined from this and from it the Local Time is
determined. The corresponding Greenwich Time is found from the observed clock
time and the clock correction with respect to Greenwich Time. The longitude
is then found from

A = Local Time - Greenwich Time

It is desirable to determine where a star for determining longitude should be
obgerved to give the best value for the guantity sought. The argument in this
section is very similar to that used in section 5.11. The effect dt on the
derived longitude is found from equation 5.2, which, on making dt the subject,
gives

dt = sec § cosec A dh - sec ¢ cot A dP - sec ¢ cosec A cosw d§ ...6.2
6.12 The considerations of- section 5.12 hold here, i.e. the declinations
taken from reliable catalogues may, for all but geodetic quality work, be

considered error free. The effect, on the longitude sought, of errors in the
data may therefore be taken as

dXx = dt = sec ¢ cosec A dh - sec ¢ cot A d¢ ...6.3
d\ cos ¢ = cosec A dh - cot A d¢ ...6.4

Il

or DA

The quantity DA (see also section 9.51) is a more meaningful quantity to
the practical man, who wishes, in most cases, to know what the uncertainty in
his results represents in terms of distance on the ground. It follows,
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therefore, that d\ can assume quite a sizeable amount in polar regions and
yet the corresponding east-west distance on the ground DA will still remain
small. In fact, it is fallacious to think that one cannot determine ones
east-west position in high latitudes with great accuracy.

6.13 If the errors dh and dt are taken to be random errors of observation,
consideration should be given to determining where a star should be observed so
that these errors have a minimum effect. From equation 6.3, it appears that,
if the azimuth A is made either 90° or 270°, then cosec A will have its
smallest numerical value of unity and cot A likewise its smallest value of
zero. The effect of an error dh will then enter directly into the result,
while that of the error d¢ will have no effect. These deductions should be
compared with those of section 5.13.

6.14 Now the effects of these errors, if they are taken to be systematic
errors, should be investigated. The value of the latitude ¢ adopted in the
solution may or may not be the exactly correct value; also the altitudes may
be incorrect, as indicated in section 5.14.

The effect dX of the systematic errors dh and d¢ on the derived
quantity A are therefore given by equation 6.3, which is

dX = sec ¢ cosec A dh - sec ¢ cot A d¢

This relationship suggests that it might be possible to eliminate these
effects, if a balanced pair of stars is observed. 1If, therefore, observations,
for determining longitude from timed altitudes, are made on a balanced pair

of stars, the derived results will be A; £from one star and Az from the
other with unknown discrepancies di; and dX, such that

A= Ay + d)y
and A= Xy + d)y
A= 5 (A + A) + H@y + dAy)
A = % (A + A») only if dax\; + dxp, =0

This requirement implies that cosec Aj=-cosec A, and cot Aj=-cot A, simultar-
eously. This occurs when B;+ Az= 360°, i.e. when the two azimuths of the star
pair are symmetrical with respect to the meridian and when the two stars are
at similar altitudes, see section 4.52 et seqg. When this is done, the effects
of the systematic errors dh and d$ will be eliminated. Deviations from exact
balance must be decreased as the azimuths depart from the prime vertical,
because the coefficients become larger as this occurs. Therefore, stars
should be selected as close as possible to the prime vertical to obtain the
best from observations made on balanced pairs of stars.

Star pairs are finally selected with similar values for their declinations,
so that they reach similar altitudes in the vicinity of the prime vertical.
Moreover, the instants, at which balance is reached, should be neither so cloge
in time that observations cannot be fitted in nor so far apart that observing
conditions may change between the two sets of observations.

6.15 In this method of longitude determination, systematic errors, which
cannot be eliminated by means of observations on balanced pairs of stars, are
those made in observing the clock times and the clock corrections with respect
to Greenwich Time. These errors enter fully into the longitude sought and
explain why it is quickly noticed that, if observing methods of the same
precision are used for the determination of latitude and longitude, better
precision is obtained for the former, in which timing does not play a

critical part.

Thus extra precautions must be taken in the timing arrangements for
longitude, if like precisions are desired. The timing arrangements must be
further refined to eliminate constant errors in the timing and obserxvers
should be properly trained. Even then, an experienced observer’s results may
still be subject to a characteristic error, known as Personal Equation, due to
an inherent anticipation or delay in timing his observations and this zanrot

-88~




be eliminated, but may possibly be allowed for.

THE CALCULATION OF LONGITUDE FROM TIMED ALTITUDES

6.21 THIS is a fairly straightforward procedure. The observed vertical
circle reading on a star is corrected for vertical circle index error and for
refraction to give a corrected zenith distance or altitude. From this, with
the latitude and the declination, the hour angle is calculated from the Cosine
Formula of equation 6.1. At this point the value computed is set into its
correct quadrant to provide the generalized hour angle of the astronomical
triangle. This value is then added algebraically to the Right 2scension to
give the Local Sidereal Time LST as

ST = RA + t

The Greenwich Sidereal Time GST of the instant of the observation is next
determined. If the clock, being used, is running at, or nearly at, the
sidereal rate, the clock correction with respect to Greenwich Sidereal Time
is determined as CCqar* The Greenwich Sidereal Time of observation is then
found by adding the clock time of the observation to this clock correction

. GST
.. A

CT + CCqgr
LST - GST = RA + t - CT - CCggp

]

If the clock, being used,is running at, or nearly at, the mean time rate,

the clock correction with respect to Zone Time or with respect to Greenwich
Mean Time is determined as CCrmp- The Greenwich Mean Time of observation is
then found by applying this clock correction.

GMT = CT + CCGMT
and IST = RA + t

lefore the longitude can be found, the GMT must be converted to the
corresponding GST as

GST = GMT + R = CT + CCgup + R, + dR

in which R, is the GST at UTO® for the appropriate date and dR is the
gain of sidereal time in the period GMT i.e. from midnight. (see section
3.415 for use of Rn6)'

. GST = Rg + GMT x F = (CT + CCqpp) F + R,

where F 1is the ratio between Mean Time and Sidereal Time units and is equal
to 1.0027379. This last relationship is useful with a calculator for
determining GST from the corresponding value of GMT.

The above refers to observations made to a star. A slightly different
procedure of reduction is necessary to compute the longitude from sun
observations. This is dealt with in Chapter 8.

6.221 The following observations were made for determining longitude.

Local Date : Monday evening, 22nd June, 1959

Station : A Mooifontein Theodolite : Wild T2

Observer : 0.H. Meyer Index Coryrn : -11"

Recorder : J.G. Freislich Clock : Mercer, Sidereal
Latitude : 26°03'13" s cc .- 4h 52M 37 1S
Met. Readings : P 845 mb T 8°C GST
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Star East h o m s [ Star West h m s
No. 430 RA 16 03 06.1° & 19°41'41"s wﬁg. 285 RA 10 24 07.6 ¢ 16°37'54"s
Observed Observed Vertical Observed Observed Vertical
Clock Time | Circle Reading Clock Time Circle Reading
l6h08m45 5° | CL 40°23'54" l6h23m39 5° CL 42°41'"56"
16 10 23.8 CR 319 58 37 { 16 25 19.5 CR 316 56 02
Relationship used cos t Sinczs_¢sizs¢651n 8
Obs Vert.Circle Rdg 40°23'54" 319°58"'37" 42°41'56" 316°56'02"
Index Correction -11 -11 -11 -11
40 23 43 319 58 26 42 41 45 316 55 51
Obs Altitude 49 36 17 49 58 26 47 18 15 46 55 51
Refraction 42 42 45 46
Altitude h 49 35 35 49 57 44 47 17 30 46 55 05
¢ -26 03 13 -26 03 13 -26 03 13 -26 03 13
8 =19 41 41 -19 41 41 -16 37 54 -16 37 54
Hour angle t -43 30 36 -43 05 57 44 57 35 45 22 34
t - 2P5aM02.4% |- 2P52™23.8%| 2P5o™s0.3° | 3P01™30.3°
RA 16 03 06.1 16 03 06.1 10 24 07.6 10 24 07.6
LST = RA + t 13 09 03.7 13 10 42.3 13 23 57.9 13 25 37.9
Obs Clock Time 16 08 45.5 16 10 23.8 16 23 39.5 16 25 19.5
CCGST - 4 52 37.1 |- 4 52 37.1 |- 4 52 37.1 - 4 52 37.1
GST 11 16 08.4 11 17 46.7 11 31 02.4 11 32 42.4
A = LST-GST + 1P50M55.3°% |+ 1752"55.6% [+ 1"52™55.5° |+ 1750™ss,5°
| 1752™s5.455 & 1h52m55 50° E
Mean Longitude from pair lh52m55.48 East
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6.222

Note (1)

(ii)

Calculation of the Longitude

The data for this example is given in section 5.491 and the latltude value of 45°56'57" N is the final
value determined in section 5.494.

The Star Almanac for Land Suxveyors has been used for this calculation.

h
16 '40"08.0°

sin h - sin ¢ sin §

o 1 u o ¥ " : 3 =
Star West No. 449 RA ¢ 45°56'57" N O 31°39'28" N Relationship used cos t cos & cos O
Reduction of the Clock Times of Observation to Greenwich Sidereal Times of Observation
CT of Obs ccC ZT of Obs Zone GMT of Obs dR GST of Obs
h. m s ZTs “h__m s h ~h. . m S H—"%B s h_m S
20 39 58.2 -39.6 20739 18.6 3w 23739 18.6 1712 7°42. O 55.7 052 56.3
40 37.3 39 57.7 39 57.7 55.8 53 35.5
40 59.3 40 19.7 40 19.7 55.9 53 57.6
43 20.4 42 40.8 42 40.8 56.3 56 19.1
44 37.8 43 58.2 43 58.2 56.5 57 36.7
20 45 08.6 -39.6 20 44 29.0 3 W 23 44 29.0 1 12 42.0 56.6 0 58 07.6
Reduction of Observed Altitude and Computation of Local Hour Angle, Local Sidereal Times of Observation and the Longitude
Corr.Vo Computed Right LST of GST of
gés V® Rdg |Index RAG Obs Alt. |Refr |Obs Alt h Local HA t Ascension Obs Obs Longitude
h h
45017122 | 30" | 45°16'52"| 44°43'08" | 5o | 44042709" | 3746%12.5% | 1674008.0% |20726™20.5° |24%527s6.3% | -a26™35.8°
45 24 08 45 23 38 |44 36 22 59 44 35 23 46 51.5 26 58.5 53 35.5 36.0
| 45 27 58 45 27 28 |44 32 32 59 44 31 33 47 13.5 27 21.5 53 57.6 36.1
314 07 57 314 07 27 |44 07 27 60 44 06 27 49 38.1 29 46.1 56 19,1 33.0
313 54 30 313 54 00 |43 54 00 60 43 53 00 50 55.6 31 03.6 57 36.7 33.1
313 49 08 -30 313 48 38 |43 48 38 61 43 47 37 3 51 26.6 16 40 08.0 20 31 34.6 24 58 07.6 -4 26 33.0
h
Longitude from CL Obs  4'26™35.975 Mean Longitude 4 26"34.50° w
CR Obs 4 26 33.03 W

|
—~
(&)

t



h
Star East No. 12 RA 0°37743,5° b 45°56°57" N § 30°41'56" N

Reduction of the Clock Times of Observation to Greenwich Sidereal Times of Observation

ET of Obs CCZT 2T of Obs Zone GMT of Obs ng dR GST of Obs
20l52707.2% | —30.65 | 20751M27.6% | 3" w | 23751™27.6° | 1M12%42.0° | 57.7° 1705™07. 3°
52 49.0 52 09.4 52 09.4 57.8 05 49,2
54 00.0 53 20.4 53 20.4 58.0 07 00.4
56 49.1 56 09.5 56 09.5 58.5 09 50.0
57 53.1 57 13.5 57 13.5 58.7 10 54.2
20 59 31.2 | -39.6 | 2058 51.6 | 3 W | 23 58 51.6 112 42.0 | 59.0 112 32.6

Reduction of Observed Altitude and Computation of Local Hour Angle, Local Sidereal Times of Observation and the Longitude

Obs VO Rdg |Index| Corr VORAg| Obs Alt. |Refr |Obs Alt h L§22§u;:dt Asiigzzon LST of Obs | GST of Obs | Longitude
1] 48°05751" |-30" | 48°05'21"| 41°54'39" | 1'04" 41°53'35" 23P59™00.9% | oM37Ma3.5% | 20M38™33.6% | 1M05M07.3% | -aP26™33.7°
Yl 47 s8 33 47 58 03 | 42 01 57 04 | 42 00 53 58 27.8 39 15.7 05 49.2 33.5

47 46 12 47 45 42 14 18 04 13 14 57 16.7 40 26.8 07 00.4 33.6
312 43 51 312 43 21 43 21 03 42 18 54 29.2 43 14.3 09 50.0 35.7
312 54 59 312 54 29 | 42 54 29 02 |42 53 27 53 25.0 | 44 18.5 10 54.2 35.7

13 11 59 |=-30 | 313 11 29 | 43 11 29 |1 02 |43 10 27| -3 51 47.2 | 0 37 43.5 |20 45 56.3 | 1 12 32.6 |-4 26 36.3

h, _m = h s
Longitude from CL Obs 4 26 33.60 W Mean Longitude 4"26"34.75% w
h S
from CR Obs 4 26 35.90 W Mean Longitude from pair of stars 4 26m34.62 West




6.23 The longitude example of section 6.222 is linked with the latitude
example of 5.493. The observations for these determinations are given in
section 5.491. When latitude and longitude are to be determined, it is
usual to make observations, over the same observing period, to determine
both components of the position fix. The computing procedure carried out in
the following sequence is necessary because values of both latitude and
longitude must be known approximately before accurate values can be
determined: -

(1) Determination of a preliminary value of the latitude, as shown in
section 5.492.
(id) Determination of a preliminary value of the longitude by means of the

preliminary latitude value with some of the longitude observations.

{1ii) Determination of an accurate value of the latitude by means of the
preliminary latitude and longitude values with all the observations
for the latitude.

(iv) Determination of an accurate value of the longitude by means of the
accurately determined latitude with all the observations for the
longitude.

(v) Determination of the statistical precision of the fix.

The strength of the principle of observing balanced pairs of celestial
bodies lies in tlie ability to make use of a preliminary, and not necessarily
very accurate, value of one of the elements and still to obtain an accurate
value of the unknown being sought.

THE DETERMINATION OF THE UNKNOWNS AND THEIR PRECISION FROM BALANCED
OBSERVATIONS

6.31 1IT is assumed that sets of timed altitude observations n on each face
for each star, have been made by means of a theodolite on a pair of well
balanced stars at nearly equal altitudes, one star east and the other west and
both near the prime vertical. These give rise to correction equations of the

form
dAa ax dAi

A= A' tcC a t Ar T A a + v
in which A is the adjusted value of the longitude
At is the computed value of the longitude
C is the wvertical circle index corxrection, with the positive

sign applying to its use with one face and the negative sign’
applying to the other face.
Ar is an unknown systematic error in the refraction values taken
from the refraction tables.
A is an unknown systematic error in the value of the latitude
used in the computation
and v is the correction to be applied to the computed value A' of
the longitude to provide the adjusted value X .
The quantities ¢, 6, t and h are linked together in the Cosine Formula,
from which the differential coefficients, required above, are obtained as

Jdy _ at 1 ax at 1

dh = dah  cos ¢ sin A and a - dp cos ¢ tan A
The correction equations above are therefore of the form
A = X' £ C sec ¢ cosec A + Ar sec ¢ cosec A - A sec ¢ cot A + v
If the balancing of the star pair has been carefully done
cosec Ap = -cosec By = 1 very nearly; also cot Ag = -cot Ay and

numerically these quantities are in the vicinity of zero. This then leads to
a family of four sets of correction equations, as follows:-
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A= XéL + C sec ¢ + Ar sec ¢ - AP sec ¢ cot Ap + vpp, East star on face left
A=A - C sec ¢ + Ar sec ¢ - Ap sec § cot Ag + vpg East star on face right
A=Ay, -~ C sec ¢ - Ar sec ¢ - Ad sec ¢ cot Ay + vy, West star on face left
A= AWR + C sec ¢ - Ar sec ¢ - AP sec d cot By + vyr West star on face right
in which each set comprises n equations.
A= kéL + C sec ¢ + Ar sec ¢ - A sec ¢|cot AEl + Vo,
:'— -
A AER C sec ¢ + Ar sec ¢ - AP sec ¢'cot AE| + Ve
A= A - - A + A
XWL C sec ¢ r sec ¢ ¢ sec ¢|cot Awl * Vo
A= A%R + C sec ¢ - Ar sec ¢ + AP sec ¢|cot AW| + ViR
'. - I_A - LN > - [ —
A C H kEL Vg, in which C C sec ¢
+'— = ' = ~h -
A C AH Abp * Ven AH Ar sec ¢ ~Apsecd |cot AEorW'
A +C'+ AH = X&L + Vi in which it is not possible to
, \ separate the small Ad and Ar
A —C'+AH = A' + v . .
WR WL effects because both act in unison.

These equations lead to the same form of Normal Equations as those in
section 5.62. The Normal Equations, in the detached coefficient form are

A C! AH = 1 (the absoclute term)

N o = ZAéL + ZAER + ZAWL + ZAWR
o) 0 = -ZAEL + ZAER + ZAWL - ZXWR
(@] N =

—ZXéL - ZAéR * ZXQL * ZX&R

provided equal numbers of observations have been made on each face i.e. N 4n.

The solution of the unknowns is then,

= 1 by -+ x + +
A O gy Agg T Ay AR)
C' = 4%(- A + A, +A_ =X\
il iEL "ER T TwL EWR)
AH = % (- - + A+ A
B g T Aar YA AR
in which A etc. are the mean values computed in each set.
The values of the v corrections may be obtained by back substitution in the

correction equations. The standard deviation of a single observation then is

given as

Since the matrix of the Normal Equations is a diagonal one, the standard
deviations of the unknowns are given as

%)

An alternative method of determining the

o

Oso
Al W

values consists in first

OC'

v

computing the differences wu from the means for each set of n observations
as
= A - ! etc.
YBL; EL T PELg
and then relating the v values to the u values.
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Trcm the first equation

VELl A - C' - AH - AéLl

= A= C = AH - AL+ oupp,
Y T
= EEL +:§ER * EﬁL * EWR

+A - A - A + A

" "ER WL "wWR

+A + A - A - A

EL ER WL WR

“4>\EL ) + uELl
- L T _ 7 Y
= 7l AEL * AER XWL + AWR) T VEL;
= D + uELi

== constant D may be conveniently evaluated when solving for X, C' and AH.
Zirmilar treatment of the other three equations gives the following

Ver; ~ ~ D * Ugg;
Ywp; D+ uyr,
Ywr; T T D + UWR;

woen observations are made by skilled observers, the required number of
ctservations is usually obtained with only a few, if any, rejections. If
=nis does occux, a slight imbalance results and the weights of the mean
wzlues Agr, etc. are no longer exactly the same. However, if the imbalance
Z: only a slight one, the use of this method will provide answers, which do
mot vary significantly from the correct ones.

B2}

.32 Example. The following observations were made at the University of
wew South Wales for the purpose of determining longitude.

o«

_ocal Date Wednesday evening Latitude 33°55'13" S Theodolite Zeiss 010
26th May 1976 Time Zone th East Clock Mean Time
Chserver K. Gillies Pressure 1018 mb

R £ 1 d
Zecorder P. Ritchie o *9Ty ogal date Temperature 16.0°C

1614™Ma5%6
felationships used

. 0.0045 P 2
o - =~ - -
1) Refraction r 573 5 77T (tan z 0.0012 tan z sec”z)
2) Hour Angle th = f%—arc cos(sec ¢ sec § cos z - tan ¢ tan J)
3) GST = (WT + WC - Zone) F + R,
in which F = 1.0027379, WT is the observed clock time and WC

is the clock correction with respect to Zone Time 2T.
The value of R, at Greenwich date, which is the same as the local date,
nust be used.

4) Zu = 0

5) v = u*bhD and v. = ZuftnD =*nbD
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Longitude Star East No. 393 RA 15h02m43.34S

Watch Correction on Zone Time

§ 25°11'28.5" §

18715%05.53°

| Observed Ver?ical Obseryed Clock Calculated \ = o w - H
Circle Reading Time Longitude |
51923'54" oP30™17.7° 10704%54.73%|  -0.03° [p.04° | +0.01°

15 40 30 57.7 54.64 +0.06 +0.10
08 51 31 31.1 54.27 +0.43 +0.47
51 00 09 32 12.9 54.59 +0.11 +0.15
50 43 03 33 35.4 54.88 -0.18 -0.14
36 29 34 07.3 54.78 -0.08 -0.04
CcL 28 43 34 44.9 54.78 -0.08 -0.04
18 04 35 36.4 54.81 -0.11 -0.07
09 52 36 16.2 54.70 0.00 +0.04
50 02 22 36 52.4 54.79 -0.09 -0.05
49 54 38 0 37 29.9 10 04 54.68 +0.02 |0.04 | +0.06

(1) K%T' 10 04 54.70 +0.05 L +0.49

Yvv 0.2889
310 43 10 0 40 30.2 10 04 57.17 -0.06 [0.04 | -0.10
50 22 41 05.3 56 .88 +0.23 +0.19
310 58 57 41 46.7 56.95 +0.16 +0.12
311 08 02 42 30.2 57.34 -0.23 -0.27
15 53 43 08.3 57.16 -0.05 -0.09
CR 25 29 43 54.8 57.04 +0.07 +0.03
35 41 44 43.9 57.21 -0.10 -0.14
42 53 45 18.9 56.97 +0.14 +0.10
311 51 30 46 00.3 57.18 -0.07 -0.11
312 02 51 46 55.3 56.97 +0.14 +0.10
312 11 37 0 47 37.2 10 04 57.39 -0.28 |0.04 | -0.32
(2) XER 10 04 57.11 -0.05 ‘T -0.49
| ZTvv  0.2965
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Longitude Star West No. 196 RA

0725, 28°

§ 26°21'34.5" s

Watch Correction on Zone Time 18h15m05.28S
Observed Vertical [Observed Clock | Calculated u b v
Circle Reading Time Longitude
47°21'02" oP10™05.8° | 10°04™s6.74% | +0.26° | 0.04° |+0.30°
30 36 10 51.9 56.93 | +0.07 +0.11
38 28 11 29.9 57.00 0.00 +0.04
44 54 12 01.2 56.84 | +0.16 +0.20
47 53 48 12 44.1 57.02 | -0.02 +0.02
48 02 40 13 26.6 57.45 | -0.45 -0.41
CL 11 25 14 09.5 56.93 | +0.07 +0.11
17 23 14 38.2 57.14 | -0.14 -0.10
24 15 5 11.7 56.89 | +0.11 +0.15
35 17 16 05.1 56.94 | +0.06 +0.10
48 44 59 0 16 51.9 57.15 |'=0.15 [0.04 |-0.11
(3) XﬁL 10 04 57.00 [£=0.03 % +0.41
| Tvv  0.3789]
310 36 55 0 19 59.5 10 04 54.28 | +0.47 |0.04 [+0.43
29 48 20 33.4 54.89 | -0.14 -0.18
21 51 21 12.1 54.77 | -0.02 -0.06
CR 13 47 21 51.3 54.71 | +0.04 0.00
310 06 49 22 25.1 54.72 | +0.03 -0.01
309 58 54 23 03.5 54.76 | -0.01 -0.05
49 39 23 48.5 54.66 | +0.09 +0.05
37 39 24 46.9 54.54 | +0.21 +0.17
30 36 25 20.7 54.98 | -0.23 -0.27
18 06 26 21.2 55.21 | -0.46 -0.50
309 08 40 0 27 07.5 10 04 54.75 0.00 |0.04 |-0.04
(4) X%R 10 04 54.75 [£-0.02 L -0.46
[ Svv_ 0.5794
Solution and estimates of precision
T 10%04%54. 705 (1): H( (D+(2)+()+(4)) = A = 10"04"s5.89° E
Ton 57.11°5  (2): L(-(1)+(2)+(3)-(4)) = C' = + 1.17
- 57.00° (3): L(-(1)=(2)+(3)+(4)) = AH = - 0.02
Mg 10 0454.75  (4): L(-(1)+(2)-(3)+(4)) = D = + 0.04
o = %%% IQZ{iZ = +0.19° o, =0, =0, = 3;9 = ijo;%%ﬂ = +0.03"
A = 10704%s5.80° +0.03°
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7

Determination of Azimuth

INTRODUCTION

AZIMUTH determinations are required for the purpose of orienting surveys ox
checking extended surveys to ensure that their orientation is being maintained.
Examples of these applications are given in Chapter-1l.

An astronomical determination of azimuth consists basically in measuring a
horizontal angle at the instrument station between a distant reference object
RO and a star. Once the star's azimuth has been established, it becomes a
simple matter to determine the azimuth of the RO.

Two methods of observation to the star are available for the determination
of its azimuth. 1In the first or Time Azimuth Method, the time, at which the
horizontal pointing to the star is made, is recorded. 1In the second or Alt-
azimuth Method, a vertical circle observation is made instead of a time
observation.

Precautions to be observed in Azimuth Determinations

7.11 Great care must be taken, as in any horizontal direction observations,
to set the thecdolite up on a stable base and to centre the theodolite pre-
cisely over the mark. The RO should preferably be at a distance such that the
stellar focus, required for accurate sighting of the star, needs no alteration
when the RO is sighted. 1In addition, the target at the RO should be carefully
centred and should present to the observer an image which is capable of being
accurately bisected in the vertical sense. For night observations, an ideal
object on which to sight is a light source, which gives the appearance of a
third or fourth magnitude star.

The line of sight to the RO is seldom inclined to any great degree but that
to the star often has a considerable inclination. If the theodolite is
imperfectly levelled, a correction, which is proportional to the tangent of
the altitude and to the component of the inclination of the vertical axis of
the theodolite at right angles to the direction sighted, is applied to the
horizontal circle reading. Therefore the levelling of the theodolite should
be carefully carried out, preferably between each arc of horizontal readings.
This levelling procedure is described in section 4.12 and every endeavour
should be made to do this accurately. If this procedure is followed, the
residual errors of levelling should be small and of a random nature and their
contribution to the final azimuth result should likewise be small. On some
theodolites, the inclination of the vertical axis can be determined by means
of a striding level and the appropriate correction applied to the horizontal
circle readings.

It will be seen later that, in high latitudes, the line of sight to some
stars will be at an altitude which is nearly equal to, or greater, than that
of the elevated pole. For these high sights, it may be necessary to use
special instruments or special attachments for the theodolite.
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The Design of an Observation Series

7.21 As was stated before, the determination of astronomical azimuth requires
the measurement of a horizontal angle,a process which is familiar to all
surveyors. However, the various techniques, which have been devised for these
observations in normal surveying practice, may need to be modified for astro-
nomical work because of the following considerations,

(1) The limited period, during which a star is favourably located in an
observation programme, restricts the number of observations that can be made.
(2) The stars sighted are often dim and well elevated above the horizon and
therefore horizontal and vertical circle settings are needed to locate them.
(3} Great attention must be paid to the levelling of the theodolite through-
out the obsexrvation series.

Therefore, a great economy in observing time can be effected, whilst still
maintaining precision in the final result, by making multiple pointings on the
RO and on the star and changing the theodolite face less frequently during the
observation period. It will be seen in the examples later in this chapter
that various observing techniques have been used.

A single azimuth value is obtained from single observations made on one face
to both RO and star. Likewise only a single value of the azimuth is forth-
coming, when multiple observations are made on one face to both RO and star,
because the individual observations to both objects sighted cannot be
specifically paired, one with the other. Each provides the information for
one correction equation in the adjustment process and may therefore be con-
sidered to provide the statistical unit in this process (see sections 7.43,
7.44, 7.45, 7.47 and 7.62).

There are some, however, who consider that where multiple observations have
been made on one face, certain RO observations can be paired with certain
star observations to provide a value of azimuth of the RO. The decision as to
how these observations are to be paired is one for the observer who may wish
to take into account the stability of the instrument over the observation
period. In order to preserve a uniform approach in this book, a single method
suitable for all cases has been used throughout.

AZIMUTH FROM TIME AZIMUTH OBSERVATIONS

IN this method, the horizontal circle reading is obtained from an observation
to the RO and then to a known star. The time of observation to the star is
read off a clock, whose correction can be deduced from a knowledge of the
station's longitude and of clock comparisons, made with respect to a radio
time signal.

7.31 The azimuth A to the star is computed from the known latitude ¢, the
known star's declination § and the hour angle t deduced from the observed
clock time. These four quantities are linked by the Four Parts Formula

cot A = sin ¢ cot t - tan § cos ¢ cosec t o701

This, when differentiated, gives the relationship between the small changes dA,
d$, dA§ and dt as

dA = sec hcosw cos§dt + tan h sin A d¢ + sec h sinwd§
vl .2

The declinations, taken from reliable catalogues, may, for all but geodetic
quality work, be considered error free (see section 5.12). The effect, on the
azimuth sought, of errors in the data may therefore be taken as

dA = sec h coswcosddt + tan h sin A &
On substitution for cos W cos & from the Five Parts Formula
dA = sec h (sin ¢ cos h -~ cos ¢ sin h cos A)dt+tan h sinA dp

dAa = cos)(tan ¢- tan h cos A)dt + tan h sin A d¢ ve.7.3
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In this relationship, d¢ must be considered entirely as a systematic error,
because its value is not known exactly and it is not an observed quantity.
The error dt is partly systematic and partly random.

The systematic component of dt is due to the error in the assumed value of
longitude and to the systematic errors present in the timing system being used.
The random component results from the observer's inability to make perfect
observations.

7.32 If now a single star is to be observed, it should be at meridian transit
(A = 0° or 180°) and also at elongation (w = 90° or 270°) to eliminate the
d$¢ and A&t components respectively.

When a star is at elongation, its motion is entirely in a vertical sense
and thus it is ideally situated for making accurate horizontal pointings on it.
The conditions of meridian transit and elongation can only be achieved
simultanecusly when a star is either at the pole or in the zenith. The latter
position is of no interest since azimuth then becomes indeterminate. There is,
however, no star exactly at either pole. But there is.a star within one
degree of each celestial pole, the northern one being bright and easily
visible to the naked eye and the southern one being faint and usually needing
a telescope to be seen. Since any star at a very low altitude is difficult to
see, because the line of sight is traversing a long part of its path
through the lower layers of the earth's atmosphere, which are often not very
clear, the pole stars will be difficult to see from stations closer to the
equator than about 15°.

Table 7.1 shows the minimum and the maximum values of the rates %%— and %%
for these pole stars.
Table 7.1
dA da [
atc aé
Latitude Maximum Value |[Minimum Value [Minimum Value Maximum Value
(at Upper (at Elong- (at Transit) |{at Elong-
Transit) ation} ation)
15° 0.02 0 0 0.00 471
30 0.02 0 0 0.01
45 0.03 0 0 0.02
60 0.04 0 0 0.06 ‘

From this it is seen that, if the timing is correct even to the nearest second
of time and the latitude to the nearest fifteen seconds of arc, the azimuth can
be obtained to a very high accuracy. (see Table 7.3 for a comparison) These
facts account for the widespread use of the pole star for azimuth determinatim,
especially in the northern hemisphere, in which the pole star is easily seen,
although the southern pole star can easily be found in the theodolite
telescope's field of view, if precomputation is used. (see Section 10.12)
Two examples of pole star observations are given in Sections 7.43 and 7.44.

For low latitudes, however, other methods for azimuth determination must be
investigated. These are the circum-meridian and circum-elongation methods.
If only one star is observed, neither method will give azimuth results free of
the effects of the systematic errors d¢ and dt. If, however, two stars are
used, they can be balanced to achieve this, whilst still keeping the effects
of the random errors of observation small.

7.33 For meridian observations in low latitudes, stars will be visible at
upper transit only if they are above a certain minimum altitude, which depends
on the star's magnitude and the atmosphere's clarity and which, for practical
purposes, will be assumed to be 15°. The d¢ coefficient is zero for a star
on the meridian, is numerically small for low altitude sights close to the
meridian and changes sign as the star crosses the meridian. The dt
coefficient on the meridian at upper transit is

tsec h cos &
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because the parallactic angle w at transit is 0° or 180° and as 6M = § at
upper transit
da at upper transit. = - SQE_Q_ Y

dt sin zy
in which the subscript M denotes a meridian value (see sections 5.32 and
5.33 for conventions and signs). This coefficient does not change sign as the
star crosses the meridian, but its sign is positive for a star on the meridian
to the south and negative for one on the meridian to the north. Therefore a
balanced pair of stars must consist of one star north and one star south
observed close to the meridian with the two values of dA equal in magnitude

and opposite in sign. In addition, the coefficients sthld be small to keep
the effects of the random errors small.

Table 7.2 shows rates of change of azimuth with respect to time on the
meridian for a star at upper transit, with the correspondingly balanced values
on the opposite side of the zenith.

Table 7.2

da ‘ da

o8 8 &a

¢ ZM J ac M at
[ 1
0° | +75° | +75° -0.268 || -75° -75 | +0.268
-5 +75 +70 -0.354 |[-71.1 | -66.1| +0.354
-10 +75 +65 -0.438 | -68.2  -~58.2/40.438
-15 | +75 +60 -0.518 | -66.2 | -51.2 +0.518

Note: All signs in this table must be reversed for northern latitudes.
To achieve this balance for a pair of stars

g%- at upper transit to the south = - g%-at upper transit to
the north

where dA _ -cos § _ _-cos §

dt sin zy = sin(6-¢)
. -cos § B - cos & : -1
T sin (8-¢) sin § cos ¢ - sin ¢ cos § = tan § cos ¢ - sin ¢
o tan 8g cos ¢ - sin ¢ = -(tan Sy cos ¢ - sin ¢)
. tan 8y + tan 6g = 2 tan ¢ ...7.5

7.34 The above method is usually confined to equatorial latitudes and it is
stressed that, unlike many other astronomical methods, the stars of a matched
pair are selected not to transit at equal altitudes, but at such altitudes as
will produce equal rates of change of azimuth with respect to time. Very faint
stars should be avoided, as they may be difficult to see at the postulated
minimum altitude. An example of such a palr of stars is given in section 7.45.
If the stars of a pair are well matched and if each of the two stars is
observed by means of sights well balanced about the point of upper transit, the
effects of systematic error will be eliminated. Random errors in timing are
not greatly minimised, because the coefficient of dt 1is not small and there-
fore careful attention should be paid to this aspect of the observations.

7.35 The observation of matched pairs of stars at elongation (see section
7.32) will now be further investigated. In this method, the effect of the
systematic error d¢ <can be eliminated, if the stars are at elongation at
points symmetrically disposed about the meridian. The effect of the systematic
component of the error dt can be eliminated by means of sights well balanced
about the point of elongation on each star, because the coefficient of dt
changes its sign, as the star crosses this point. The random component in the
error dt 1is rendered negligible in such observations, if they are made close
to the point of elongation, because the coefficient is then very small in

magnitude.
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In low latitudes, stars may elongate at such low altitudes that they cannot
be seen. Fig 7.1 shows the elongation locus for stars, when the observer is
in such latitudes. For an observer exactly on the equator every star on the
horizon and every star on the prime vertical is at elongation. In these
latitudes, a star will elongate at an altitude greater than the minimum at
which it can be seen, only when it is well away from the meridian in azimuth.
It will then also be changing altitude fast. The prediction techniques for
such stars are dealt with in section 10.51.

Meridian/

270°

Z Prllme Vemlcal

Fig. 7.1 The Elongation Locus at Low Latitudes

7.36 The method of circum-elongation azimuth observations is not confined to
equatorial latitudes (see section 7.35). The matching of the stars of a pair
can usually be accurately achieved. The errors in azimuth, coming from an
uncertainty in the latitude adopted and from any systematic error in the
longitude and the timing, are then eliminated in the mean of the azimuths
from the star pair. The effects of random timing errors are greatly minimised,
because the coefficient of dt is very small indeed, if the observations are
made close to the point of elongation. In practice, it is usuvally quite
sufficient to read the observed times to the nearest second and the timing
arrangements can be much simplified. An example of such a pair of star
observations is given in section 7.47.

Calculation of Azimuth from Time Azimuth Obsexrvations

7.41 This calculation can be unequivocally determined by means of the Four
Parts Formula in the following form:-

- sin t

tan A = —— :
tan 6 cos ¢ - sin ¢ cos t

and is recommended for use for «ll Time Azimuth reductions.
Alternatively, the Transformation Formulae (see section A.41 in the
appendix) may be used. These are
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tan 6
cos t

tan M

and
-tan t cos M
sin (M-9}

tan A I I §
Note: Where a quantity is obtained from a tangent function in the above
formulae, the numerator and the denominator are evaluated separately in order
to place the guantity in its correct angular quadrant.

For observations on either Polaris or Sigma Octantis, at any hour angle, the
following relationships, from section A.52 in the appendix, may be used:-

(1) For the northern pole star, Polaris, o Ursae Minoris
A = - p sin t sec ¢ - %;—sin t cos t sec ¢ tan ¢
3
- %-gy-sin t sec (L + 3 tan’¢ cos® t - sin’t sec? @) ...
or
{ii) for the southern pole star Sigma Octantis
2
A = 180° + p sin t sec ¢ - %;—sin t cos t sec ¢ tan ¢
1 3
+ 3 gz sin t sec ¢(1 + 3 tan2¢ cos® t - sin?t sec2¢) -

...7.8

in which p is the positive angular distance of the star from the adjacent
pole and the units of p and p are in accordance with one another. These
last relationships, in addition to providing an alternative check calculation,
can be conveniently used for predictions and approximate reductions from the
first term in the series.

For observations on circum-meridian stars, the following relationship from
section A.74 of the appendix may be used:-

cos 6 1
A= - —V— t'+ = cos cos § cosec’z '3
o A o0 " M { cos 2, ©OS GM + cos ¢} £'3..

sin zy
eeal.9
in which A, = 0° for star north and 180° for star south.
For observations on circum—elongation stars, the following relationship from
section A.81 of the appendix may be used:-
C cot t
A=2, - é%—(At)z + __F_;__g_ At .. . ..7.10
2p
in which A, is the azimuth of the star at elongation, C = sin?8 tan RAg and
At = t - tg, where +t,o 1s the hour angle at elongation. The units of At and
P are in accordance with one another.

7.42 The examples given below aim to show detail enough for a student to
follow them through. They have been computed by means of a small calculator.
Some of the details of this calculation have been shown for the sake of
illustration, although in practice this would be avoided because transcription
is so liable to mistakes.

7.43 The following time azimuth ocbservations were made on Polaris.

Station Minchen Technische Universitat ¢ 48°09'05"North  Theodolite Wwild T2

Roof Station A 0P46™6S7East No. 35712
RO Red light on Olympic Tower Clock Mean Time
Date Monday 26th June 1972 split hand stop
Observer G.G. Bennett watch
Recorder S. Fajnor R, for date 1gh16M51 . 75
Rig for date 18 19 49.1
CComy -1 00 00.4
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Observations

Pole Star Polaris

ra  2704Ma2.2°

§ 89°08'05"8 N

Horizontal Observed Horizontal Observed
Circle Readings Clock Times Circle Readings Clock Times
‘ Arc I Arc II
RO CR 158°30'42" h om s CL 68°36'02" h om s
Star 180 25 25 21719 32 90 31 50 21 24 54
Star CL 00 25 31 21 21 17 CR 270 32 38 21 25 43
RO 338 30 53 248 35 52
| I —
7.431 Solution by the direct relationship
Relationships used
t® = 15 {A + R, - RA + F (CT + CCqpyp) }
F = 1.0027379
- sin t
+ =
an A cos ¢ tan 6 - sin ¢ cos t
To determine the azimuth
h h h
Obs CT TP 21721™17° 21724"54° 21725438
A 0°26'36.2" 0°27'09.3" 0°28'17.2" 0°28'32.5"
Star
H 180 25 25 0 25 31 90 31 50 270 32 38
Star _
Orienting Correction |+180 01 11.2 + 0 01 38.3 -90 03 32.8 |[-270 04 05.5
HRO 158 30 42 338 30 53 68 36 02 248 35 52
ARO 338 31 53.2 338 32 31.3 338 32 29.2 338 31 46.5
Arxrc I Mean 338°32'12.3" Arc II Mean 338°32'07.8"
Mean Azimuth to RO 338°32'10.0"
7.432 Solution by means of the Transformation Formulae
Relationships used tan M = tan S
cos t
- tan t cos M
tan A = sin (M-¢)
To determine the local hour angle and the azimuth
h h h h
CT of Obs 21"19™32° 21 21™7° 21 24"54° 21 25743°
CCamT -1 00 00.4 -1 00 00.4 -1 00 00.4 -1 00 00.4
GMT of Obs 20 19 31.6 20 21 16.6 20 24 53.6 20 25 42.6
Rjg 18 19 49.1 18 19 49.1 18 12 49.1 18 19 49.1
dRr 22,9 23.2 23.8 23.9
GST of Obs 14 39 43.6 14 41 28.9 14 45 06.5 14 45 55.6
A 0 46 16.7E 0 46 16.7F 0 46 16.7E 0 46 16.7E
LST of Obs 15 26 00.3 15 27 45.6 15 31 23,2 15 32 12.3
RA 2 04 42,2 2 04 42.2 2 04 42,2 2 04 42,2
Hour angle t 13 21 18.1 13 23 03.4 13 26 41.0 13 27 30.1
M 90°48'40,3" 90°48'32.0" 90°%48'14.1" 90°48'10.0"
Q 48 09 05 48 09 05 48 09 05 48 09 05
M= 42 39 35.3 42 39 27.0 42 39 09.1 42 39 05.0
a 0°26'36%2 0°27'0913 0 28 17.2 0 28 32.5
|Clockwise Angle | 338 05 17 338 05 22 338 04 12 338 03 14
[Azimuth RO 338 31 53.2 338 32 31.3 338 32 29.2 ‘338 31 46.5 |
| 338°32'12.3" 338°32'07.8"
[ Azimuth to RO 338°32'10.0" |
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7.44 Example. Time azimuth determination from the southern pole star.

Place Pillar 5 Civ.Eng.Bldg UNSW Theodolite Wild T2 No. 148423
Latitude 33°55'12" South Watch Heuer Stop Watch(Mean)
Longitude 10'04"55.9° East R, for date  8"30729.8°

Date  Wednesday 29th Januvary 1975 Rg for date 8 31 28.9

Reference Object Flashing red light
on Harbour Bridge

Clock Correction with respect
to Zone Time +18°40M07.5°

Observer G.G. Bennett . h
Recorder J.G. Freislich Time Zone 1l East
h
Observations on O Octantis RA 20 43722.9° & 89°03'06"S
I I Horizontal Face Observed Watch Horizontal Face Observed Watch
re Circle Reading Time (WT) Circle Reading Time (WT)
RO | 344°27'53" 164°27'58"
h h
Star 180 46 22 CL 3723™6.5° 0 45 30 CR 3"a7"53%
Star 180 46 17 3 43 43.5 0 45 07 3 49 47
RO 344 27 51 164 28 01
Arc II
RO 224°31'0L1" 44°30'55"
h h
Star 60 47 42 CR 3"51M38,5° 240 46 47 CL 3's4™12,5°
Star 60 47 38 | 3 51 57.5 240 46 45 3 54 31.5
RO 224 31 00 44 30 53
Arc IIT
RO 104°34' 10" 284°34'19"
h h
Star 300 49 31 CL 356" 39° 120 49 16 CR 3'5gMs7°
Star 300 49 28 3 56 57 120 49 11 3 59 19
RO 104 34 10 284 34 18
7.441 Relationships used t® = 15{\ + Ry ~ RA + F(WP - Z + WC )}
in which WT is the Observed Watch Time
Z is the Time Zone
WC is the Watch Correction with respect to Zone Time
and F = 1.0027379
- sin t
tan A = :
at cos ® tan O - sin ¢ cos t
Arc I CL CR
. h h h s
Observed WT R e T 3747"53° 3749™ay
Local Hour Angle t | 139°19'46" 139°26'32" 140°29705" | 140°57'40"
Brar 180 44 18.9 180 44 12.7 180 43 15.6 | 180 42 49.2
Hepay 180 46 22 180 46 17 0 45 30 0 45 07
Orienting Corrn OC |- .0 02 03.1 -.0 02 04.3 -180 02 14.4 180 02 17.8
Diffs. from Mean - 0.6 | + 0.6 - 1.7 + 1.7
e - 0°02'03.7" -180°02'16.1"
Hgo 344 27 53 344 27 51 164 27 58 164 28 01
Diffs from Mean - 1.0 + 1.0 + 1.5 - 1.5
Hro I 344 27 52.0 164 27 59.5
ARro 344 25 48.3 344 25 43.4
Mean Arc I 344°25'45,8" [
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The

Arc II

Agro

Arc IIT

RO

7.442 Example.

results from similar calculations for Arcs II and III are,

344°25'52.8" 344°25'41.4"
Mean Arc II 344°25'47.1"
344 25 50.7 344 25 41.7

Mean Arc III 344 25 46.2

Mean Azimuth from Pillar 5 to RO 344°25'46.4"
Eccentric Correction to Geodetic

Pillar + 2 08.7
Azimuth, Geodetic Pillar to RO 344°27'55,1"

The alternative method of reduction by means of the series
developed in section A.52 will be used.
by means of the value of Rg

The local hour angle will be computed

instead of R, as in section 7.441. BAs will be

seen the results of the computations for Arc I are very close to those
obtained in section 7.441.

Relationship used

For the southern pole star A = 180% p sin t sec ¢f{l- %-cos t tan ¢} ...
§ = 89°03'06 S p = 0°56'54" = 3414"

Arc I CL CR
WT of obs 3"43M6.5° 37437355 %4753, 0° 3"49"47 . 0°
CCGMT +7 40 07.5 +7 40 07.5 +7 40 07.5 +7 40 07.5
GMT of Obs 11 23 24.0 11 23 51.0 11 28 00.5 11 29 54.5
Rg 8 31 28.9 8 31 28.9 8 31 28.9 8 31 28.9
AR 53.1 53.2 53.9 54.2
|GST of Obs 1% 55 46.0 19 56 13.1 20 00 23.3 20 02 17.6
gk 10 04 55.9E 10 04 55.9E 10 04 55.9E 10 04 55.9E
ELST of Obs 6 00 41.9 6 01l 09.0 6 05 19.2 6 07 13.5
ERA 20 43 22,9 20 43 22.9 20 43 22.9 20 43 22.9
?LHA 139°19'45" 139°26"'32" 140°29'04" 140°57" 39"
5 star 180 44 18.6 180 44 12.5 180 43 15.3 180 42 48.9
-Hstar 180 46 22 180 46 17 0 45 30 Q0 45 07
‘Orienting Corrn OC - 0 02 03.4 - 0 02 04.5 -180 02 14.7 -180 02 18.1
;Diffs from Mean | - 0.5 + 0.6 - 1.7 + 1.7
56 -0°02'03.9" -180°02'16.4"
EHRO 344 27 53 344 27 51 164 27 58 | 164 28 01
%Diffs from Mean - 1.0 + 1.0 + 1.5 _ - 1.5
Eﬁo 344 27 52.0 164 27 59.5
n 344 25 48.1 344 25 43.1 J
|"RO

Mean Arc I 344°25'45.6"
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7.443 Example. Least Squares Solution for a close circum-polar star.
The correction equations for this situation are as follows:-
v = A *{C'sec h + i'tan nh} - A’
=A*C -4

in which A is the adjusted value of the azimuth to the RO
A’ 1is the calculated value of the azimuth to the RO
C is the combined effect of the horizontal collimation C°*
and the inclination of the trunnion axis i’
\Y is the correction to be applied to the calculated azimuth
to obtain the adjusted value.
The correction equations for the three arcs of obsexvations in section 7.441
consist of the following:-

v = A+ C - A’ = A+ C - 48.3"
IL IL
= A-C-A' = - C - 43.
VIR C IR A 4q
v = A+ C - A = A+ C - 52.8
IIL IIL
\Y = A -C - ! = A - C - 41.4
ITR ITR
v = A+ C- A" = A+ C - 50.7
IIIL ITIL
v = A-C-A' = - C - 41.
ITIR ¢ IIIR A ¢ 41.7
These give the following Normal Equations:-—
A C - L = 0
- L ¥ = 0
6 + 0 (ZAL ZAR)
) - A' - zA! = 0
(Z L z R)
. 1 - -
. = =(IA! + IA’ = % (a + A = L(50.6 + 42.2) = 46.4"
A 6( L R) ( I R) 5 )
l ] 1 PO bl
- % _ - % - = 50.6 — 42.2) = 4.
C 6(ZAL ZAR) z(AL AR) 5 ( ) 2
Back substitution gives the V values as
v = +2.3" v = =1.2" Zv=40.1%vv = 12.47
1L IR 12.47
X = -2, = +0. () = z = 1. "
ViIL 2.2 ViTR 0.8 so 6-2 L.77
v = =0.1 v = +0.5 [12.47
= = - = + "
ITIL IIIR OA GC (6-2)6 +*0.72
Azimuth to RO from Pillar 5 = 344°25'46.4" *0.72"

Circum-Meridian Time Azimuths

These are observations suited to azimuth determinations in equatorial
latitudes (see sections 7.33 and 7.34).

7.45 Example. The following observations were made in Port Moresby, Papua
New Guinea.

Place Mark on roof of CGO Building Theodolite Wild T2 No. 145852

Date Wednesday 9th November 1977 Chronometer Mercer MT No. 24950

Ry for this date 3012M12.6° Reference Object Red light on Mast
Observer B.J. Forester DUT1 correction for date -0.2 h
Recorder I.F. Jarvies Time Signal VNG Time Zone 10 E

Latitude ¢ 9°26'22" South

Longitude A 9N48M43.35 East
Four clock correction values were each determined as the mean of eight
comparisons with respect to the time signal. These gave the following results:-
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signal Time | DUTI Zone Time | J0TTICN | Cin veoment to T
18757"30.00%° | -0.2° | 18"57™20.80° | 18"57"30.10° ~10"00™09.308
20 28 30.00 20 28 29.80 | 20 28 37.75 ~10 00 07.95
22 00 30.00 22 00 29.80 | 22 00 36.09 ~10 00 06.29
23 10 30.00 -0.2 | 23 10 29.80 | 23 10 35.06 ~10 00 05.26
Star North No. 618 Ra 22"30™23.9° § 50°10'28" N
Observations -
Hor.Circle Observed Stop Hor.Circle Observed Stop
Reading Clock Time Watch Reading Clock Time Watch
CL Arc T CR
RO |141°28'22" 321°28'13"
RO |141 28 23 321 28 13
Star | 1 41 49 | 19%19%00° | 4.7° | 180 51 00 | 19"23"35® 7.7°
Star 34 19 19 45 9.2 44 03 24 12 7.5
Star 28 06 20 15 5.8 38 21 24 42 6.9
Star | 1 21 45 | 19 20 50 6.5 180 32 58 | 19 25 10 5.9
RO |141 28 24 321 28 10
RO |141 28 20 321 28 15
CL Arc I CR
RO |231 33 24 | 51 33 15
RO 231 33 24 51 33 17
Stay | 89 55 08 | 19 29 05 9.0 269 00 15 | 19 33 55 5.8
Star 48 16 29 40 7.3 268 53 50 34 30 6.4
Star 41 12 30 17 6.5 48 36 35 00 8.1
Star | 89 35 26 | 19 30 50 8.5 268 42 13 | 19 35 35 8.9
&o 231 33 17 51 33 11
RO 231 33 21 51 33 12
Note The stopwatch was started as the star

observation was made and then stopped
at the whole second of clock time
recorded as Observed Clock Time
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ra 23716M00.1°

Star South No. 641 § 58°21'35" S
Observations
Hor .Circle Observed Stop Hoxr.Circle Observed Stop
Reading Clock Time Watch Reading Clock Time Watch
CL Arc I CR
RO 141°28'26" 321°28'19"
RO 141 28 26 321 28 18
h
Star | 178 04 22 | 20'02"45° 7.5° 358 56 45 20%07"50° | 10.2°
Star 09 45 03 15 7.3 359 03 41 08 30 9.6
Star 14 19 03 42 7.7 09 31 09 05 11.3
Star 178 19 36 20 04 13 8.8 359 15 51 20 09 40 10.0
RO 141 28 25 321 28 18
RO ' 141 28 25 321 28 18
CL Arc II CR
RO 231 33 22 51 33 12
RO 231 33 24 51 33 14
Star 270 11 14 20 14 25 8.6 91 03 11 20 19 25 8.0
star 17 46 15 00 09 15 20 00
Star 22 56 15 32 8.3 15 43 20 35 6.3
Star 270 29 52 20 16 10 6.3 91 21 32 20 21 10 8.0
RO 231 33 23 51 33 15
RO 231 33 23 51 33 15
7.451 Determination of Azimuth
Relationships used t = A~ RA + Ry + F(CCpyp *+ CT)
N A = -sin t
an A = os & tan 8 - sin ¢ cos t

St N h No. 18

ar Nort o. 6 Arc I CL

h

cc ~10"00"09.04°

GMT h_ m S h. m S h.m s h,. . m s
CT 1918 55.3 19719 35.8 19720 09.2 19720 43.5
t -2°17'29.2" -2°07'20.1" -1°58'57.7" -1°50'21.8"
A 1 42 01.7 1 34 30.0 1 28 17.4 1 21 54.8

star

1 41 49 1 34 19 1 28 06 1 21 45

star _— _— _ S
Orienting Corrn +12.7 +11.0 +11.4 | + 9.8
Diffs from Mean - 1.5 + 0.2 - 0.2 | + 1.4
[mean oc +11.2"
'HRO 141 28 22 141 28 23 141 28 24 141 28 20
[~
Diffs from Mean + 0.2 - 0.8 . - 1.8 + 2.2
M kTl o ] . ”

ean HRO 141°28%'22.2
A 141 28 33.4

RO
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Arc I CR

~10"00™08. 94°

cc
Y GMT
h h
cT 19"23%27, 3° 19724%04. 5° 19724™35.1° 190250418
£ ~1°09'16.6" -0°59'57.0" -0°52'16.8" —0°45'00.6"
0 51 25.6 0 44 30.3 0 38 48.7 0 33 24.9
star
180 S1 00 180 44 03 180 38 21 180 32 S8
star
Orienting Corrn ( 180 00 25.6 180 00 27.3 180 00 27.7 180 00 26.9
Diffs from Mean + 1.3 - 0.4 - 0.8 + 0.0
Mean OC 180°00°26.9"
Heo 321 28 13 321 28 13 321 28 10 321 28 15
Diffs from Mean - 0.2 - 0.2 + 2.8 - 2.2
Mean H. 321°28'12.8"
RO
A 141 28 39.7
RO
Arc I Mean 141 28 36.6

The results from similar calculations for Arc II are,

Arc IT CL ARO 141 28 30.3
CR A 141 28 38.8
RO
Arc II Mean 141 28 34.5
Mean ARO North Star 141°28'35.5"
Star South No. 641 Are T CL
h s
CChpr -10 00"08.34
h
cr 20702™37.5° 20%03%07. 7% 20%03"34.3° 20" 04"04.2°
t -2°46'16.0" -2°938%'41.8" -2°32'01.7" —-2°24"'32.0"
star 178 04 23.7 178 09 39.0 178 14 16.8 178 19 29.1
H 178 04 22 178 09 45 178 14 19 178 19 36
star
Orienting Corrn + 1.7 - 6.0 - 2.2 - 6.9
Diffs from Mean - 5.1 + 2.6 - 1.2 + 3.5
Mean 66 - 3.4"
HRO 141 28 26 141 28 26 141 28 25 141 28 25
Diffs from Mean - 0.5 - 0.5 + 0.5 + 0.5
Mean H 141°28'25.5"
RO
A 141 28 22.1
RO
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Arc I CR

CC -10"00"08. 24°
cT 20%07™39.8% | 20M08™20.4°% | 20M08™s3.7°|  20"09™30.0°
t -1°30727.6" -1°20'16.9" -1°11'56.0" ~1°02'50.1"
AL 178 57 03.8 | 179 04 08.5 179 09 56.9 | 179 16 16.7
H 358 56 45 | 359 03 41 359 09 31 359 15 51
Orienting Corrn|+180 00 18.8 | +180 00 27.5 |+180 00 25.9  +180 00 25.7
[Diffs from Mean + 5.7 - 3.0 - 1.4 - 1.2
{Mean oc 180°00'24,5"
!HRO 321 28 19 321 28 18 321 28 18 321 28 18
Diffs from Mean - 0.8 | + 0.2 + 0.2 + 0.2
Mean Eﬁo 321°28'18.2"
Ano 141 28 42.7

Arc I Mean 141 28 32.4

The results from similar calculations for Arc II are,

Arc IT CL ARO 141 28 26.5
CR A 141 28 41.9

RO
Arc II Mean 141 28 34.2

Mean ARO South Star 141 28 33.3
Mean ARO North Star 141 28 35.5

Mean AR from pair 141°28'34.4"

0)
7.452 For the sake of illustration, some of the observations of the first arc
of the star to the south will be computed by means of the power series derived
for this purpose in section A.74. It is a series, which contains only the odd
powers and which converges very rapidly. In this computation, the first two
terms give results which differ from the rigorous results of section 7.451 by
only very small amounts.

The method of approach should be compared with that of section 7.451, as
well as with the solutions for circum-meridian latitudes of section 5.493 and
for circum-elongation azimuths of section 7.472.

Detexrmination of the clock time of passage of the south star over
the local meridian

Star South No. 641 RA 23'16709.1° § 58°21'35" 5
LST of local upper transit = RA 23hl6m09.lS
A 9 48 43.3 E
GST of this instant 13 27 25.8
GST at uro" = Rg 312 12.6
Sidereal Time interval since UTOh 10 15 13.2
Conversion Sidereal to Mean -1 40.8
Mean Time interval since UTOh 10 13 32.4

equal to GMT of instant

Relationships used (see section A.74)

o = 8y 2,
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cos
A = A -3 0%m i, L
(o) sin zZy 6

3
cos cos 6. cosec sz {cos z
¢ M M M

For calculation purposes the coefficients of t' and t'?® are constant.

in which Ao = 0°

¢ -9°26'22"

for star north and 180°

§ -58°21'35"

ZyM

for star south

-48°55"'13"

Determination of the hour angle for each observation and then of the azimuth

cos 6M + cos ¢} £,

10bs CT
;CCGMT
!GMT of Obs
ESMT of Transit
T Diff.,
'Conversion
ST Diff=LHA star t

LHA t°

£n

Tirst Term
Second Term

Total Correction

Eay
star

d

star
Jrienting Corrn
7RO

:\RO

h _m

20%02™37.5% | 20704™04.2% | 20"07™39.8°% |  20709™30.0°
-10 00 08.3 |-10 00 08.3 | -10 00 08.2 | -10 00 08,2
10 02 29.2 10 03 55.9 10 07 31.6 10 09 21.8
10 13 32.4 10 13 32.4 10 13 32.4 10 13 32.4
-11 03.2 - 9 36.5 - 6 00.8 - 4 10.6
1.8 1.6 1.0 0.7
- 11 05.0 - 9 138.1 - 6 01.8 - 411.3
~2046'15.0" | -2°24'31.5" | -1°30'27.0"| -1°02'49.5"
-9975.0" -8671.5" -5427.0" -3769.5"
~1°55'41.8" | -1°40'34.7" | -1°02'56.8" | -0°43'43.3"
+ 6.3 + 4.1 + 1.0 + 0.3
-1 55 35.5 -1 40 30.6 -1 02 55.8 -0 43 43.0
178 04 24.5 | 178 19 29.4 | 178 57 04.0 | 179 16 17.0
178 04 22 178 19 36 358 56 45 359 15 51
+ 2.5 - 6.6 | +180 00 19.0 | +180 00 26.0
141 28 26 141 28 25 321 28 19 321 28 18
141°28'28.5" | 141°28'18.4" | 141°28'38.0" | 141°28°44.0"

~his calculation has been carried to greater accuracy than is warranted to
show the excellent agreement of these results with those of the rigorous

solution.

The Assessment of Precision of Circum-Meridian Time Azimuth Observations

7.46

It is assumed that n
Zace right on each star of a balanced pair.

Furthermore,

observations have been made face left and n
it 1s assumed that

sights on the two stars have been made during an observing period on the same
night by the same observer, using the same equipment.
The correction equations for such a situation are expressed as follows:-

Ao + v

horizontal collimation

horizental axis inclination

are uncertainties in the values assumed for the

position of the observing station,

—_— L} r . ] d_A %
A = A'* C'sec h * i'tan h + it AN + a5
in which A is the adjusted value of the azimuth to the RO
A' is its calculated value
C' 1is the theodolite
i' 1is the theodolite
h is the altitude of the star
AX  and Ad
znd v

is the correction to be applied to the calculated value

of the azimuth to give the adjusted value.
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Tt should be noted that the effects C'sec h and i'tan h cannot be
separated from one another because each changes sign with change of face.
Also their effects on the two stars of a pair are not the same in this
method of determining azimuth, because the altitude hy to the star north
is not quite the same as the altitude hg to the star south. Allowance for
this must therefore be made in the solution (see section 7.48 for comparison)
and correcting terms

Y = (C' sec hg + i'tan hS) for the south star

and S

Yy = (C'sec hy + i'tan hN) for the north star

will be included as unknowns in the correction equations.
The differential coefficients dA and dA for circum-meridian azimuth

observations are given as dt 55
§
a cos O
dt sin zy
and %%— = tan h sin A

This latter coefficient an is a small quantity, because altitudes are kept
low and observations are made close to the meridian so that its value is
easily kept less than 0.05. If also the observer's latitude is reasonably
well known so that A¢ 1is small, the effect of the discrepancy produced in
the azimuth may be considered negligible.

The former coefficient will be used in a term in the correction equations
to allow for a systematic error in the longitude or timing system as

cos §
M

= |sin z
M

| AX
Random errors of observation will be present in the pointings and horizontal
circle readings to the star and reference object and also in the timing of
the star across the vertical hair. One is reasonably well justified in
assuming that these random errors will have similar magnitudes and distributions
for both stars of the pair, considering that the altitudes of the stars are
not greatly dissimilar, see Table 7.2. Thus the correction v represents the
combined effects of all these errors.

The correction equations will now take the following form:

For star south
Face left v = A+ Y + X - A'

sL S SL

i v = A-Y + X - A!
Face right SR 5 SR

For star north
= A+ Y - X - A
Face left vNL N NI
i = A-Y - X - A
Face right vNR N NR
If there are n eguations in each of the typical correction eguation forms,
these will give rise to the following Normal Equations shown in detached
coefficient form.

A YS YN X Absolute Term = 0
0 0 - ZA' - IA' - 3¥A' - Zp' = 0

4n 0 SL sr T PPun NR
2n 0 0 - ZA' + Ia' = 0

sL SR

2n 0 - Za' + IA! = 0

NL NR
- IA' - ZA' 4+ ZIA' + IA! = 0

4n s~ “Psr n T O*Par
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The solution of these eguations vields the unknowns

A = Y4(& + A + A + A_)
_SL SR NL NR
Y= H(a - A
*{Ag sr)
- — 1— — _ -
Y T By e 3
X = 4{a + A - A - A
_ Agp, SR NI, e
in which ASL etce. are the means of the individual observations of that type.

7.461 Example, making use of the data of section 7.451

KSL 141°28'24.3 (1) :4%((1) + (2) + (3) + (4))y = A = 141°28'34.4"
EN . : - = = -9.0
ASR 42.3 (2) s5( (1) (2) ) YS
F\ % - = = -3.7
i*NL 31.8 (3) :%( (3) (4)) Yy
Bun 39.2 (4) :%((1) + (2) - (3) - (4)) = X = -1.1
Arc I v =(A+Y_ + X)) -A' =141°28'24.3" - 141°28722,1" = +2.2"
- 8L S SL
= + — ' — 24,3" - 26.,5" — _2-2u
II VSL (A YS + X) ASL 3 6.5
= - Y_ 4+ X) - A = 42.3" - 42.7" = -0.4
I vgg= (A= ¥g+ X = Ag 3 :
= - 3 - ] - . noo_ .an = .
II Ve (a YS + X) ASR 42.3 41.9 +0.4
—— —_ —_ 1 = " - " - _
I_ VNL = (A + YN X} ANL 31.8 33.4 1.6
1T v = (A +Y - X) ~-A' = 31.8" - 30.3" = +1.5
NL N NL
= (A-Y -X) -Aa'_ = 2" - 39.7" = -0.5
i ViR ( N ) NR 39
= - - X - ] ™ . "o 8. n — +0.
II VAR (A YN ) ANR 39.2 38.8 0.4
, rvv = 15,22
Standard Deviation of single observation g = /EEE = /15'22 = *1,9 "
o N-4 8-4
15.22
Standard Deviation UA = GX ==/§¥;_4) = 32 = 0.7

o, =0, = /ﬁ%v =J&5-22 = #1.0
vg vy T N2 (0-4) 16

Azimuth to the RO 141°28"'34.4" +0,7."

It should be noticed here that the values Vv are small because the values
inserted in the correction eguations are each derived from four pointings to
the RO and star (see section 7.21).

Circum-Elongation Time Azimuths

7.47 Example. The following observations were made on a balanced pair of
circum-elongation stars for the determination of azimuth.

Station A Mooifontein ¢ 26°03'14" s Theodolite Wild T2
A lh52m55.7SE Clock Mercer Sidereal
RG Red light on Kempton Clock Correction with respect
Park Water Tower to GST  +7M22.9%
Date Monday 22nd June 1959
Observer O.H. Meyer
Recorder J.G. Freislich
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Azimuth Star East ¥ Octantis. Azimuth Star West 7 G Octantis
RA 18h31M54$3 6 87°38'34195 rRa 7P01M16S0 6 86°58'34"3 s
Horizontal Observed l Horizontal r Observed
Circle Reading Clock Time Circle Reading Clock Time
Mark RO 349°04'03" CL ] 79°08'55" CL
Star 357 16 00 10" 28™ 34° 93 20 00 10P47"37,5
I Star 177 15 50 CR 10 32 34 I 273 19 57 CR 10 51 21
Mark RO 169 04 01 259 08 50
Mark RO—| 259 09 06 CR 349 03 52 CL
Star 267 20 51 10 39 00 3 15 05 10 57 47%
1T Star 87 21 02 CL 10 42 24 IT 183 14 57 CR 11 01 45
Mark RO‘ 79 09 09 | 169 03 51

7.471 Solution of some of the observations by means of the general

relationship ean B = _ sin t
" cos ¢ tan & - sin ¢ cos t
Star East Arc I Star West Arc II
CT of Obs 10M28™13%5 1032™345 10574755 117%01™45°
CCoan ¥7.22.9 | 47 22.9 +7 22.9 +7 22.9
GST of Obs 10 35 36.4 10 39 56.9 | 11 05 10.4 | 11 09 07.9
A 152 55.7E| 152 55.7E| 1 52 55.7E 1 52 55.7E
LST of Obs 12 28 32.1 | 12 32 52.6 | 12 58 06.1 | 13 02 03.6
RA 18 31 54.3 | 18 31 54.3 | 7 01 16.0 7 01 16.0
Hour Angle ~6 03 22.2 | -55901.7| 5 56 50.1 6 00 47.6
A 177°22'40.2" | 177°22'35.7"| 183°21'57.5" | 183°21'53.2"
HOR to star 357 16 00 177 15 S0 3 15 05 183 14 57
Orienting +180 06 40.2 | + 0 06 45.7 ¥180 06 52.5 | + 0 06 56.2
Corrn

HOR to RO 349 04 03 169 04 01 349 03 52 169 03 51
Azimuth to RO | 169 10 43.2 | 169 10 46.7 | 169 10 44.5 | 169 10 47.2

Results of calculations made from all observations:-

Star E Star W
Arc I 169°10'43.2" 169°10'47.1"
46.7 49.8
Arc II 50.2 44 .5
45,0 47.2
Mean Azimuth to RO 169°10'46.7"

7.472 Reduction of the same data of section 7.471 by means of the circum-
elongation series.

Relationships used for determining hour angle te and azimuth Ae at
elongation
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tan

cos t = from Four Parts Formula linking ¢, 9§, w and t
e tan ¢
. cos & . . .
sin A = * ——— from Sine Formula linking $, 6, w and B
e cos ¢

In which it should be nocted that t, and A, must be assigned to their
correct quadrants.

Star East Star West
£ = -88°50'49%0 = _5P55%24%3 £, = 88°31'1215 = 554045
Ae = 2°37725Y5 East of South Ae = 3°921'58"4 West of South
= 177 22 34.5 = 183 21 58.4
To determine the clock time of elongation
Star East Star West
Hour Angle t_ -5h55T23?3 + 5540455
RA 18 31 54.3 7 0l 16.0
LST of Elongation 12 36 31.0 ) 12 55 20.8
A 1 52 55,7 E 1 52 55.7 E
GST of Elongation 10 43 35.3 11 42 25.1
CCam ;07m2259 ;OTmZZé9
CT of Elongation Te . 10736 12.4 1055 02,2
Relationship used (see secticn A.81)
m
A= A - sin?d tan A_ 1.9635" ™2z {1 - ég;_; cot t_ }..
- Star East Star West
T 10"36™12.4° 10%36™12.4° 1075502, 2° 10755002, 2%
T 10 28 13.5 10 32 34 10 57 47.5 11 01 45
AT=T=T -0 07 58.9 -0 03 38.4 0 02 45.3 0 06 42.8
Ae™ , ~7.9817 ~3.6400 2.7550 6.7133
1.9635" (At™) 125.09" 26.02" 14.90" 88.49"
1lst term - =5.7 -1.2 +0.9 +5.2
2nd term -0.0 -0.0 +0.0 +G.0
A 177°22734"5 177°22'34'5 183°21'58"4 183°21'58%4
A 177 22 40.2 177 22 35.7 183 21 57.5 183 21 53.2
HOR Star 357 16 00 177 15 50 3 15 05 183 14 57
Or. Corr +180C 06 40.2 + 0 06 45.7 +180 06 52.5 + 0 06 56.2
HOR RO 349 04 03 169 04 01 349 03 52 169 03 51
Azimuth RO 169 10 43.2 169 10 46.7 169 10 44.5 169 10 47.2

It will be seen that these results are in agreement with those obtained in
section 7.471.

The Assessment of Precision of Circum-Elongation Time Azimuth Observations

7.48 It is assumed that n observations have been made face left and n face
right on two stars forming a well balanced pair of azimuth stars. The stars
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are very close to being symmetrically disposed with respect to the meridian
and each observed close to and symmetrically about its point of elongation.
In addition, both stars have been observed during the observing period on
the same night by the same observer using the same theocdolite.

The correction equations are expressed as

. dA dA
— T o4 ' + 1
A A' * C' sec h * i'tan h + At AX + d¢A¢-+'v ...7.10

in which A is the adjusted value of the azimuth of the RO

A' 1is the calculated value of the azimuth of the RO

C' 1is the horizontal collimation correction

i' 1is the horizontal axis inclination

h is the mean altitude of the balanced pair of stars

AN and A} are uncertainties in the values of the position of
the observing station

and Vv is the correction to be applied to the computed value of the

azimuth to obtain the adjusted value.

It should be noticed that the two terms containing C' and 1i' above cannot
be separated because theilr effects C'sec h and i'tan h both change sign at
the same time, 1ie. when face is changed on the theodolite.

The differential coefficients are

da
3t = Sec h cos § cos w
= -sin A.cot W
and A = tan h sin A
d¢

Undexr the conditions assumed above, each of the above coefficients is a small
quantity. The first one is very small because each of the two components is
small. Each coefficient changes sign from east to west of the meridian and
also the first one changes sign on opposite sides of the point of elongation.
The first one will therefore be taken as zero and the second one as
tan h sin A.

The correction equations for each set of observations then become

ver AﬁL = A - (C' sec h + i'tan h] + {tan h Ezﬁﬂi]A¢ =A -C + Do
Ve * Bhp = At (c' sec h + i'tan h) + (tan h'sin AJA¢ = A + C + Db
v t A&L = A - [C‘ sec h + i'tan h] - [tan h EEE_X]A¢ =A-C-D
Ve t A = A * (c' sec h + i'tan h) - (tan h sin A)JAd =B + C - D

in which each set comprises n observations, sin A = L(sin AE - sin Aw),
C = [C' sec h + 1'tan h] and Dp = [tan h sin A) Ad.

These produce the following Normal Equations, shown in detached coefficient
form: -

A C D = L
. 1 + 1 + (] + AI
4n 0] 0 ZAEL ZAER ZAWL )X WR
= =Ia! + ! - A + IA'
4n 0 z L ZAER Z L WR
= Ea'_ 4+ ZIA'_ - ZIA' - IB
4n By, Thpg WL WR
— 1 a N N n
T A = %l Per o Per Y A T Pam }
L= _ _ _
= %H{- + - A + A
c lag, BER WL “wr }
= %{a + A - A - A
D il ApL Agr WL WR )
in which KﬁL’ KER' etc. are the mean values of each set.
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If wu__. is defined as

EL1

Ypri

it becomes possible

From the correction

A - A

EL

ELi

i.e. _AﬁLi

to derive the corresponding

equations of the first set

corrections Vv

EL

+

u__ .
EL1

ELi O™ Vpp;-

= A -C + D - Al .
VELL = - ¢ “ELi
— 1
= A0 Bgp FPpp Ry T A
+ - A + -
fgL “ER wa wa
¥ + 1 - -2
Pgr, ER A, WR
1
- +
Rie=3" _ gy
B P -
= Al Agy ¥ Bop A Bur) * VgLi
= + u R
ElL1
Trom a similar treatment
= - D+ ,
VERL YrRi
v = - D+ wu_.
WL1 WL1
= D +
ViRi YWRi
Zxample 7.481 The full results of an azimuth determination are given below.
Azimuth to RO u D v '
AL, 33642142, 7" +1.5" +0.3" +1.8" ‘
L 47.1 -2.9 -2.6
42.3 +1.9 +2.2
44.9 -0.7 -0.4
T
EﬁL 336 42 44.2 T -0.2 | T +1.2 g +1.0 V
AL, 336 42 53.0 -3.6 +0.3 -3.9
47.0 +2.4 +2.1
50,2 -0.8 -1.1
47.4 +2.0 +1.7
KER 336 42 49.4 T +0.0 T +1.2 T -1.2 v
A 336 42 41.6 +2.7 +0.3 +2.4
* 43.2 +1.1 +0.8
47.3 -3.0 -3.3
44.9 -0.6 -0.9
XQL 336 42 44.3 T 4+0.2 L o+1.2 L -1.0 v
Alos 336 42 48.1 +0.3 +0.3 +0.6
49.7 -1.3 -1.0
51.2 -2.8 -2.5
) a4.s +3.9 +4.2
A 336 42 48.4 L +0.1 Zo41.2 I +1.3 V
Yvv = 82.07
0
— SV - + i
%0 = J16-3 2.5,
82.07 .
= = = —— = ‘t . i
A % b ~VTi6-3)16 0.6
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KEL 336°42'44.2" (1) : H((1) + (2) + (3) + (4)) = A = 336°42'46.6"
Bon 49.4 (2) : H(-(L)+ (2) - (3) + (4)) = C = + 2.3"
Ao 44.3  (3) : H((l) + (2) - (3) - (4)) = Db = + 0,2"
Bk 48.4 (4) : %(~(L)+ (2) + (3) - (4)) = D = + 0.3"

Azimuth 336°42'46.6" *0.6"

AZIMUTH FROM ALTAZIMUTH OBSERVATIONS

IN this method of observing, the RO is sighted and the horizontal circle
reading observed, then a known star is sighted at the intersection of the
crosshairs in the field of view of the telescope, the altitude bubble, if
Fitted, is centred and both vertical and horizontal circles read. (see
section 4.23)

7.51 The observed altitude is corrected for index and refraction. The azimuth
A 1is calculated from this reduced altitude h, the assumed value ¢ for the
latitude of the station and the star's declination §.

These quantities are linked together in the Cosine Formula

sin O = sin ¢ sin h + cos ¢ cos h cos A L. 7.11

On differentiation, this gives the relationship linking the small changes da,
dh, d¢, and 4aS as

as = cos ¢ sin t dA + cos t d¢ + cos w dh

Declinations taken from reliable catalogues may, for all but work of geodetic
gquality, be considered to be free of error and therefore the effects of the
errors d¢ and dh on the azimuth sought may be taken as

da = -sec ¢ cot t dp - sec ¢ cosec t cos w dh
On substitution for sec ¢ cosec t from the Sine Rule
dA = =-sec ¢ cot t dp =~ sec h cot w dh ce.7.12

In this relationship d¢ must be considered entirely as a systematic error,
because its value is an assumed one not known exactly. The error dh is
partly systematic and partly random. The systematic component of dh is due
to the uncertainty in the refraction corrections taken from tables. The random
component results from the observer's inability to make perfect observations.
If now a single star is to be observed, it should be when t = 90° or 270°
to eliminate the d¢ component and also it should be at elongation (W = 90°
or 270°) to eliminate dh. These conditions can only be achieved simultaneously
when a star is at the pole. However, there is no star exactly at this point,
but observations can be made on one or other of the two pole stars. It should
be noted that if observations are made to such a star near its meridian
transit (t = 0° or 180° and w = 0° or 180°) the coefficients of both d¢
and dh Dbecome infinite and therefore observations should be well removed in
time from meridian transit and be confineg to a geriod near elongation, which
also occurs when the hour angle is near 6 or 18". In addition, observations
to these stars may be difficult for stations near the equator, see section 7.32
Table 7.3 shows the value of the rates dA and dA in the vicinity of
elongation for the pole star. dh dé
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Table 7.3

¢ 15° 30° 45° 60°
N daa aa da aa da da aa aa
ah ad dh a¢ dh ad dh ag
M lils -1.8 +2.0 -2.0 +2.4 -2.5 +3.4 -3.5
3 +1.0 -1.0 +1.2 -1.2 1.4 -1.4 +2.0 -2.0
4 +0.6 -0.6 | +0.7 -0.7 +0.8 ~0.8 +1.1 -1.2
5 +0.3 -0.3 +0.3 -0.3 +0.4 -0.4 +0.5 -0.5
6 -0.0 0.0 -0.0 0.0 -0.0 0.0, ~0.1 0.0
7 -0.3 +0.3 -0.3 +0.3 -0.4 10.4 | -0.6 +0.5
8 -0.6 +0.6 -0.7 +0.7 -0.8 +0.8 -1.2 +1.2
9 -1.0 +1.0 -1.2 +1.2 -1.4 +1.4 -2.0 +2.0
10 -1.8 +1.8 -2.0 +2.0 -2.5 +2.5 -3.5 +3.5

From this, it is seen that if such a star is observed only one houx from the
point of elongation, there will be from one third to one half of each of the
uncertainties dh and d¢ affecting the derived azimuth. This should be
compared with the very much more accurate values, obtainable over the whole
range of hour angles from time azimuth observations on the pole star (see
Table 7.1}).

7.52 The effects of the error d¢ and the systematic component in the error
dh can be eliminated from the derived azimuth, if the technique of observing
balanced pairs is used, because the coefficients of d¢ and dh change sign
on opposite sides of the meridian and their magnitudes can be made equal if
the two stars are observed symmetrically about the meridian. Thus, the two
following conditions can then be achieved simultanecusly:-

sec hp cot wg = -sec hy cot wy

and sec ¢ cot ty -sec ¢ cot Ly

or - cot ty -cot tW

The next requirement is that the above coefficients of the errors dh and
d¢ should, if possible, be kept small, so that some imbalance between the
members of a selected pair of starxs can be tolerated. If observations are
made about the point of elongation, the coefficient of dh is small in
magnitude and it alsco changes sign across this point. Thus the effects of
the systematic component of dh are eliminated and the effects of the
random errors in the observed altitudes minimised. The systematic erroxr d¢,
however, cannot bhe eliminated from observations made near elongation,
although its effect can be considerably reduced if the stars are chosen near
the elewvated pole because for a close circum-polar star at elongation the
hour angle is close to +90°%. For these reasons, therefore, pairs of balanced
stars are used. No real difficulty in predicting suitable azimuth stars in
latitudes from 15O to 55O ig encountered, because suitable high declination
stars are given in the Star Almanac for Land Surveyors in a set of
Supplementary Stars as well as a set of Circum—-Polar Stars. Most of these
stars are fairly faint and precomputation will be necessary, as well as a
means of orienting the horizontal circle of the theodolite, in order to
locate them. In equatorial.latitudes, these circum-polar stars cannot be
used because of the problem of wvisibility. But the technique of observing
stars near elongation can still be used, although suitable stars will not be
at the desired hour angle of 90” or 270" when they are at a suitable
altitude for observation. An example of a pair of circum-elongation stars
observed by the Altazimuth method is given in section 7.62.
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Calculation of the Azimuth from Altazimuth Observations

7.61 The direct calculation of the azimuth from these observations can always
be used and each observation can conveniently be computed from the relation-
ship of Equation 7.11, set out as

cos A = sec ¢ sin ¢ sec h - tan ¢ tan h e..7.13

in which it is noted that sec ¢ sin § and tan ¢ are constants for any
specific example. This is a general relationship, but further information is
required to resolve the double answer obtained from cos A. Whether the
star was east or west of the meridian is known from the field book or the
prediction and the ambiguity resolved.

The provision of a check computation is not easy for the above relationship,
if more than simply a duplication of the computation is considered necessary.
The Tangent Half Angle Formulae provide a means of checking. They are however
clumsy to use for the individual observations. If calculations from the
arithmetic means are carried out in this way, the allowance for second order
correction must be made (see section A.62).

For observations on circum-elongation stars, the following relationship,
from section A.82 in the appendix, may be used:-

C

—_— — — 2 —
A = Ae 20 (Ah) 20

C tan he ()3, ...7.14

in which A, is the azimuth of the star at elongation, C = seczhe cot Ag
and Ah = h - he where h, is the altitude at elongation. The units of Ah
and 0 are in accordance with one another.

7.62 Example of an altazimuth circum-elongation determination for azimuth.

Place Peg G, Survey Camp ¢ —33‘27'27; Theodolite Wild T2
Bathurst, NSW Approx. A 9758 E RO Navigation Light
Date Thursday 17th November 1977 Vert. Circle Index Corrn. +39"

Observer G.G. Bennett
Recorder J.C. Trinder

Met. Readings

T P
Star East 14°C 929.7mb
Star West 12.5 929.5

Abstract from Field Book

Star East No. 672 Arc T

Hor.Circle Rdg.CLVert.Circle Rdg| Hor.Circle Rdg.CRVert.Circle Rdg.
RO 0°00"34" 180°00'39"
Star 119 38 05 55°42'47" 299 37 13 304°31'52"
Star 119 37 56 55 39 46 299 37 06 304 35 23
RO 0 00 29 180 00 35
CR Are Il CL
RO | 270 05 03 ‘ 90 04 47
Star 29 41 17 304 50 22 209 41 37 54 50 05
Star 29 41 16 304 53 47 209 41 41 54 46 21
RO 270 05 01 90 04 50
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Star West No.

684

Arc I

The results from similar calculations for Arc II are,

42°00'24.3"

Arc II

Arc II

Mean A
RO

CL A

RO
CR A
RO
Mean
East Star

42
42
42
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00 46.5
00 35.4
00 32.4

CL CR
Hor.Circle Rdg. | Vert.Circle Rdg. |Hor.Circle Rdg. | Vert.Circle Rdqg.
RO 0°00'52" 180°01'00"
Star 153 29 25 54°51'14" 333 30 01 304°50'40"
Star 153 29 48 54 56 54 333 30 09 304 47 52
RO 0 00 48 180 Ol 01 ]
CR Arc II CL
RO 270 05 16 90 05 04 |
Star 63 34 40 304 33 27 243 34 53 55 44 33
Star 63 34 42 304 28 53 243 34 46 55 47 08
RO 270 05 14 90 05 03
7.621 Solution by the general relationship
sin § - sin ¢ sin h
cos A =
cos § cos h
Star East No. 672 & 74°44'43" s
Arc 1
Vert.Circle Rdg 55°42'47" 55°39'46" 304°31'52" 304°35'23"
Index +39 +39 +39 +39
Corrected Reading 55 43 26 55 40 25 304 32 31 304 36 02
Observed Altitude hg 34 16 34 34 19 35 34 32 31 '34 36 02
Refraction 117 117 1 16 1 16
Altitude h 34 15 17 34 18 18 34 31 15 34 34 46
Calcd azimuth Astar 161 37 50.5|161 37 42.6 161 37 16.2 161 37 11.3
119 38 05 119 37 56 299 37 13 299 37 06
star .
Orienting Corrn 41 59 45.5] 41 59 46.6 222 00 03.2 222 00 05.3
Diffs from Mean + 0.5 - 0.0 + 1.0 - 1.0
Mean OC 41°59'46.0" | 222°00'04.3"
HRO 0 00 34 0 00 29 1 180 00 39 180 00 35
Diffs from Mean - 2.5 + 2.5 - 2.0 + 2.0
Mean ERO 0 00 31.5 180 00 37.0
A 42 00 17.5 42 00 41.3
| RO
Arc I Mean 42°00'29.4"




Star West No. 684 § 77°06'46" S

Arc X

Vert,Circle Reading 54°5]1'14" 54°56"'54" 304°50'40” 304°47'52"
Index +39 +39 +39 +39
Corrected Reading 54 51 53 54 57 33 304 51 19 304 48 31
Observed Altitude ho 35 08 07 35 02 27 34 51 19 34 48 31
Refraction 1 15 116 116 116
Altitude h 35 06 S2 35 01 11 34 50 03 34 47 15
Calcd Azimuth Astar 195 29 03.7 195 29 23.7 195 29 54.0 195 29 59.8
Hstar 153 29 25 153 29 48 333 30 01 333 30 09
Orienting Corrn | +41 59 38.7 +412 59 35.7 +221 59 53.0 +221 59 50.8
Diffs from Mean ! - 1.5 + 1.5 - 1.1 + 1.1
Mean OC 1 41°59'37.2" 221°59'51.9"
HRO 0 00 52 0 00 48 180 01 00 180 01 01
Diffs from Mean - 2.0 L + 2.0 | + 0.5 - 0.5
Mean H, 0 00 50.0 180 01 00.5
ARO 42 00 27.2 42 00 52.4

Arc I Mean 42°00'39.8"

The results from similar calculations for Axc I1I are,

A IIx A 42°00'24.3"
rc CL RO
CR A 42 00 52.7
RO
Arc II Mean 42 00 38.5
Mean ARO West Star 42 00 39.2
Mean ARO East Star 42 00 32.4
Mean ARO from pair 42 00 35.8

7.622 Solution by means of a series
Relationships used

$ o
sin & = * 9% from the Sine Formula linking ¢ 6 w and A
e cos ¢
. sin ¢ . o
sin he = cin S from the Cosine Formula linking ¢ 6 w and h

From section A.82 in the appendix

(h-he)2 (h—he)3
A=A - seczh cot A ——— —seczh cot A tan h — I
e e e 20 ) e e e 20
((h-h )2 (h—he)d
=A -C|—= + D——
€ 20 20

in which C Sec?he cot Ae and D = tan he.

= -33°27'27"
Star East No. 672 S = -74°44'43"
Ay = 18°22'59.1" East of South h, 34°51'06"
A, =161 37 00.9 Refraction 116
constants C = -4.468 215 h 34 52 22
D= 0.696 355 in which®’h,, is the altitude atwhich

124 the star at elongation would be seen.




Arc I

by . | | 34°1634" 34°197 35" 34°321 31" 34°36'02"
h . 34 52 22 34 52 22 34 52 22 34 52 22
h - -0 35 48 -0 32 47 -0 19 51 -0 16 20
h-h, : -2148" -1967" -1191" -980"
First term ~49_97 -41.91 -15.36 -10.40
Secoﬁd term + 0.36 + 0.28 + 0.06 + 0.03
Correction +49.61 +41.63 +15.30 +10.37
LS ' 161°37'50.5" | 161°37'42.5" | 161°37'16.2" 161°37711.3"
Ho o 119 38 05 119 37 56 299 37 13 299 37 06
Orienting Corrn |+41 59 45.5 | +41 59 46.5 [222 00 03.2 | +222 00 05.3
Diffs from Mean + 0.5 - 0.5 + 1.1 - 1.0
Mean OC -- +41°59'46.0" +222°00'04.3"
Heo e 0 00 34 0 00 29 180 00 39 180 00 35
Diffs from Mean - 2.5 + 2.5 - 2.0 + 2.0
Mean Eﬁo 9 00 31.5 180 00 37.0
A g 42 00 17.5 42 00 41.3

Arc I Mean 42°00'29.4"

The results from similar calculations for Arc II by this method agree exactly
with those of section 7.621.

Star West No. 684 § = -77°06'46" h, 34°26'29"
- Refraction 1 16
. -0 ] ” —
'Ae . ,15 30'12.8" wWest of South he 34 37 45
A_ 195 30 19.8 @
c  5.299 724
D 0.685 778
Arc I
h,, _ ‘ 35°08'07" 35002'27" 34°51'19" 34°48731"
h, ‘ : 34 27 45 34 27 45 34 27 45 34 27 45
h-h o ) +0 40 22 +0Q 34 42 +0 23 34 +0 20 46
h - h, +2422" +2082" +1414" +1246"
First term +75.36 +55.69 +25.69 +19.94
Second term + 0.61 + 0.39 + 0,12 + 0.08
Correction -1 15.97 -56.08 -25.81 ~20.02
A ' 195 29 03.8 | 195 29 23.7 | 195 29 54.0 | 195 29 59.§
H . 153 29 25 153 29 48 333 30 Ol 333 30 09
star e ===
Orienting Corrn |+41 59 38.8 | +41 59 35.7 |+221 59 53.0 | 4221 59 50.8
Diffs from Mean - 1.5 + 1.6 - 1.1 + 1.1
Mean OC +41°59'37.3" +221°59'51, 9"
Heo ‘ 0 00 52 0 00 48 180 01 00 180 01 01
Diffs from Mean - 2.0 + 2.0 + 0.5 - 0.5
Mean_E%o 0 00 50.0 180 01 00.5
ARO o 42 00 27.3 42 00 52.4
Arc I Mean 42°00'39.8" |
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The results from similar calculations for Arc II by this method agree
exactly with those of section 7.621.

The Assessment of Precision of Circum-elongation Altazimuth Observations

7.63 The situation and the conditions of section 7.48 are the same here.
The correction equations are expressed as
A = A' £(C’sec h + i'tan h) + g%—AC + g%—Ar + g%— Ap + v
in which A is the adjusted value of the azimuth of the RO
a' is the calculated value of the azimuth of the RO
c’ is the horizontal collimation correction
it is the horizontal axis inclination
h is the mean altitude at elongation of the balanced pair
of stars
AC is the vertical cirxcle index correction
Ar is the uncertainty in the refraction value assumed
A is the uncertainty in the value of latitude adopted for
the observing station
and v is the correction to be applied to the computed value of
the azimuth to give the adjusted value.

The effects of C' and i' cannot be separated from one another because their
separate effects both change at the same time, i.e. when face is changed on
the theodolite. The differential coefficients are

dA = —
3 sec h cot w
and g%- = -gec h cosec w cos t

The effect of the uncertainty Ar in refraction may be considered negligible
because both Ar and the coefficient dJdA at elongation are small quantities.
dh
Provided an index correction is applied so that AC can be considered small,
its effect can likewise be considered negligible. The uncertainty A¢ will
be treated as being an unknown.
The correction equations then become

A = A' + (C'sec h + i'tan h) * |%%| dp + v
= A'* Y T X + v
in which Y = C'sec h+ i'tan h
da
and X = la$| Ad
with —=r being the mean of the values at elongation for the two stars.

The effect Y changes sign with change of face whereas the effect X
changes sign between the two stars.
The individual correction equations then become

= A + Y + X - A
VL WL
v = A - Y + X - '
WR WR
v = A + Y - X - A
EL BL
= A - Y - X - A
VR ER

with n equations in each set.
This gives the following Normal Equations, shown in the detached coefficient
form as

-126-~




A Y X L = 0
0 - IA' - IA' - IA' - IA'_ = 0
4n 0 LAg, PAur PeL ER
4 0 - za' + ZA' - ZIA' + ZA! = 0
n WL WR EL BER
- ' - IA' + ! + IA! = 0
4n A IR Ao Aer
. = Y4 + A + A + A
A “{ZQL TWR EL _ER}
4{ZWL R B fER}
= 4{a_ + - A_ - A
X AL Pyur EL ER}
in which the A etc values are the means of the corresponding A' values.

The corrections v may now be determined by a process of back substitution in
the correction equations.

7.631 The values computed in the example of 7.621 will be used to determine
the precision of the result.

Star No. Aspect Axc CL CR
AL B
WR
I 42°00'27.2" 42°00'52.4"
684 W IT 24.3 52.7

N 42 00 25.7 Z%R42 00 52.5

A! A'.
EL ER
I 42 00 17.5 42 00 41.3
672 E I 24.3 46.5
AEL 42 00 20.9 AER42 00 43.9
Solution
-KWL 42°00'25.7" (1) : L((1) + (2) + (3) + (4)) = A = 42°00'35.8"
XQR 52.5 (2) : H((1) - (2) + (3) - (4)) = = -12.4
B 20,9 (3) : H((1) +(2) - (3) - (4)) = X = + 3.3
AER 43.9 (4)
Arc I VWL = (A +Y + X) - AWL = 42°00 26.7" - 42°00'27.2" = =0.5"
= A - r = 0 __ =
IT VWL (A + Y + X) AWL 26.7 24.3 +2.4
I = - Y + - a' = no_ "o
vWR (A Y X) AWR 51.5 52.4 0.9
1T VWR = A - Y + X) - AWR = 51.5" - 52.7" = =1.2
I = A +Y -~ - A’ = "ol LR
VEL ( Y X) AEL 20.1 17.5 +2.6
= + —_ - ) _ "o " - -
11 VEL (A Y X) AEI 20.1 24.3 4.2
I vER = (A ~-Y - X) - AER = 44 _9" - 41.3" = +3.6
1T vER = (A - Y - X) - AER = 44 .97 - 46 .5" = -1.6
Lyv = 48.18
- . . . Vv 48.18
zzandard Deviation of 1 b = = = "
a single observation OSO N=3 8.3 +3.1
- . . Lvv 48.18
Szznd = = = i = —_
ndard Deviations GA OY OX /N(N—3) / 20 1.1

2zimath of the RO 42°00'35.8" £1.1"
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COMPARISON OF THE TIME AZIMUTH AND THE ALTAZIMUTH METHODS

7.71 THE superiority of the Time Azimuth method over the Altazimuth method
has been referred to in Chapter 8 in which it is seen that the Altazimuth
method requires simultaneous pointings to be made on widely separated limbs
of the sun, unless a special theodolite attachment is used, whereas in the
Time Azimuth Method only a single pointing is needed. The difficulty in
making such a double pointing can be easily verified from a casual observation.
With star observations this difficulty does not arise, although it will be
found that with the timing method the observer can concentrate his attention
on making an accurate pointing with the vertical hair without the distraction
of perfecting the altitude pointing as well. For work of geodetic quality,
it is generally conceded that the Time Azimuth Method is superior.

It may be considered that errors of refraction in altazimuth observations
produce a greater discrepancy in the derived azimuth than do errors of time in
time azimuth observations. However, if stars are observed in positions where
their rates of change of azimuth with respect to either time or altitude are
small i.e. at elongation, either method should yield a result of comparable
accuracy, because a timing error or an altitude error has only a very small
effect on the azimuth derived from a circum-elongation sight. Even if guite
large refraction changes occurred over a relatively long observing period,
hardly any azimuth error would result. Therefore, it is unnecessary to
observe the individual stars of a circum-elongation pair quickly one after the
other. The reader may well find it instructive to investigate the consequences
of dispensing with both thermometer and barometer in the Altazimuth Method.

If prediction is used to ensure that careful balancing is achieved for the
star pairs and if observations are well balanced about the point of
elongation, it appears that altazimuth observations have several advantages,
because the observer can concentrate on the procedures of pointing and circle
reading; procedures which are very familiar to a surveyor. He has all the
observing under his own control and his recorder is responsible only for
noting the observations, as they are read out to him. WNo timing equipment or
radio is required but a thermometer and barometer is necessary for accurate
determinations.
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8

Sun Observations

INTRODUCTION

THERE is a surprisingly large number of celestial bodies available for
observation with a theodolite during the hours of daylight. Such bodies are
the sun, moon, the nearer planets Venus, Mars, Jupiter and Saturn and some
bright stars, 20 of which are given a signifying letter 'd' in the Star
Almanac for Land Surveyors. The planets and stars referred to will not
normally be visible to the unaided eye and, to locate them with a theodolite,
one must calculate their altitudes and azimuths and have some prior knowledge
of azimuth of a line for the orientation of the horizontal circle. The moon,
although bright and easy to identify, has a large horizontal parallax (about
1° compared with 9" for the sun), is often below the horizon during the day
and will seldom present a completely illuminated disc to the observer in the
daytime. It is because of these drawbacks that the moon is seldom, if ever,
used by the suxveyor. Thus surveyors have concentrated their attention on the
sun, a body which is conveniently available for observation in normal working
hours and whose singularity and brightness cause no confusion with other
celestial bodies.

8.11 Star observations at night for latitude, longitude and azimuth are
relatively easy to predict, make and compute and the effects of systematic and
random errors may be minimised by a suitable selection of stars from the
catalogue. This flexibility of choice does not exist for the sun, whose
restricted celestial path often prevents observations from being made in an
optimum position (e.g. elongation, etc.). The attainment of a balanced pair
of observations on the sun for azimuth and longitude may require a long time
interval between observations and, for a determination of latitude, one must
be content with an unbalanced observation. It is mainly because of the
aforeqoing reasons and other practical considerations to be examined later,
that the results of sun observations are less accurate than those obtained
from stellar observations. Nevertheless, with care, good results, which will
suffice for many surveying purposes, can be obtained.

The only additional special piece of equipment required for sun observations
is a dark glass, which is fitted over the eyepiece of the telescope. Without
such an attachment, direct observation to the sun is impossible, except when a
veil of cloud substantially reduces the intensity of the image. On no account
should even a short glimpse of the sun be attempted in clear weather, otherwise
permanent serious damage to the eye may result. If a dark glass is not
available, the sun can be located and the telescope roughly aligned by
silhouetting the telescope sight on a page of the field book. Without varying
the main telescope focus, which must have been previously set to infinity,
sharp images of the sun and the crosshairs can be obtained on this page by
suitable adjustment of the eyepiece focussing.
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SPECTAL CONSIDERATIONS

8.21 IT is impossible to point accurately to the centre of the sun, whose

disc subtends an angle somewhat over half a degree to an observer. To over-
come this difficulty, pointings are made in an eccentric manner by noting the
instant or perfecting a pointing when the cross hairs are tangential to edges
(limbs) of the disc. It is also customary to take a mean of observations made,
in guick succession, to opposite limbs of the sun, and if, in addition, these
eccentric observations are made on opposite theodolite faces the mean will be
almost free of the effects of eccentric pointings and theodolite misadjustments.
If observations are not made on opposite limbs or if pointings are calculated
individually, then it will be necessary to apply corrections for eccentricity.

Eccentric Pointings

8.22 To effect the correction for a pointing made to the upper or the lower
limb of the sun, the value of the semi-~diameter (SD) obtained from the bi-
monthly tabulation in the Star Almanac for Land Surveyors is added to or
subtracted from the observed zenith distance (or altitude), which has been
previously corrected for vertical circle index error and refraction. If the
SD correction is applied first and the resulting zenith distance used as the
argument for calculating the refraction correction, then an incorrect value
of the corrected zenith distance results.

To assist in applying the SD correction with the correct sign, it is usual
to note in the field book the relative position of the cross hairs and the
sun @8 seen in the telescope at the time of observation. In this way, one
can allow for the effect of the inversion of the image (if applicable) at the
later stage of calculation.

Unlike the previous correction (Ah) to the altitude, the correction (AA) to
the horizontal circle reading resulting from a pointing to a lateral 1limb will
vary depending on the altitude of observation. This, strictly speaking, should
be the observed altitude corrected for index only. The situation is shown in
Fig. 8.1

An expression for AA may be derived by applying the Sine Formula to the
right angled triangle ZST, from which one obtains

sin 8D

sin AA cos h

However the SD is small and the resulting AA is also small provided h is
not large and therefore a good approximation to AA is given by
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SD
cos h

Aa =

This expression is convenient to use when altitudes have been measured such as
in the determination of azimuth by the altitude method. However for the hour
angle method of azimuth determination, the altitude is neither observed nor
required to be calculated and a more convenient expression can be obtained by
a simple substitution from the sine rule

- cos § sin t
sin A

cos h

- 8D sin A

giving B2 = os S sin €

Both this and the previous expression for AA are correct to 0%5 when
compared with the rigorous expressions for AA up to an altitude of 80°.

8.23 If sun observations are a regular feature of a surveyor's work, then
consideration should be given to equipping the theodolite with a special
attachment, which will improve the pointing accuracy to the sun and obviate
the need for applying semi-diameter corrections. Such a device has been
designed by Professor R. Roelofs and consists of overlapping thin prisms
mounted in an attachment, which fits over the objective of the theodolite.
Four images of the sun are seen in the field of view, which overlap and
provide a bright central Y"cross" on which one may point with great accuracy.
A sun filter is incorporated within the attachment, which has the advantage of
reducing the heat falling on the yeticule. The attachment is hinged on one
side to allow the theodclite to be sighted to the R.O. ‘

Parallax

2.24 1In secticon 4.54 the vertical displacement of a celestial bedy on the
celestial sphere due to the body not being infinitely distant from the earth
has been shown to be

Ll = ﬂh sin zo
Because of the elliptical nature of the earth's orbit around the sun, Ty
varies between about 8.6" and 2.0" in the course cf a vear; a variation which
can, for all practical purposes, be neglected and wy taken as 8.8" and
therefore

" — 3
| = 8.8 sin Zgo

It should be noted that this parallax correction is only to be applied to
vertical measurement and that no horizontal displacement of the celestial body
occurs. The sign of this correction is opposite to that of refraction and it
is immaterial whether one uses the observed zenith distance or the value found
after applying refraction and semi-diameter corrections in the formula for T.

Declination and E

8.25 The right ascensions and declinations of stars vary so slowly throughout
the course of a year that tabulation at monthly intervals is guite sufficient
for obtaining intermediate values to an accuracy of about .15 and 1"
respectively, by means of relatively coarse interpolation. Unlike their
stellar counterparts, E and the declination of the sun show considerable
variation, which requires them to be tabulated at much closer intervals to
permit accurate interpolation. The maximum possible change in E and
declination per hour is about 1%5 and 1' respectively and therefore a rough
knowledge of the zone time of observation (the nearest minute will be quite
sufficient) is necessary, even though a timing observation method is not being
employed. values of E and declination to the nearest 0.1% and 0.1' are to be
found in the Star Almanac for Land Surveyors at oh, 6, 12D ang 189 UT each
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Changes in the sun's co-ordinates introduce a slight complication in the
calculation process, because, if observations extend over a long period of
time, one should allow for this by introducing a series of values for E and
declination. If this is not done and one value of E and declination is taken
for the mean epoch of the observational period then, although the effects of
these co-ordinate changes are substantially reduced by taking the mean of all
the individual results of the calculations, the individual results may show
variations, which are not entirely due to observational erroxs.

8.26 From 1977 onwards, the Star Almanac for Land Surveyors will include
monthly sets of polynomial coefficients as an alternative to the main
tabulation of R, E and the sun's declination. This is one of the first steps
towards the eventual publication of ephemeral data in a form, which can be
stored in an electronic calculator, and the required data at any instant of
time can be evaluated without interpolation tables.

Practical Considerations

8.27 One of the chief difficulties to overcome with sun obsexrvations is the
effect of the exposure of the theodolite to the sun's rays. Thermal gradients
are set up in the instrument and these can be noticed at once from the

erratic behaviour of exposed bubbles. In modern theodolites, the alidade
bubble is usually enclosed within one of the theodolite standards, or, in the
latest models, a gravity dependent compensating device automatically corrects
the vertical circle reading for dislevelment. For these instruments, the
effect of thermal gradients is diminished.

8.28 For azimuth determinations, it is essential that the vertical rotational
axis be wvertical at the time of observation or, if this is not so, then the
component of the dislevelment of this axis at right angles to the direction

of pointing should be determined from readings of the plate bubble and the
horizontal circle reading corrected. It will be found that plate bubble
readings are completely unreliable unless the instrument is shaded and the
bubble allowed to assume a stationary position before it is read. These latter
remarks also apply to instruments fitted with alidade bubbles, which are
exposed. It is recommended that, for azimuth work, the instrument be levelled
between arcs throughout the observation series. This may be done by means of
the alidade bubble or with reference to vertical circle readings if the
instrument is fitted with a compensator (see section 4.12). During this
levelling process the instrument should be fully shaded.

8.29 A suggestion for the obserxrver, who wants to improve the accuracy of
pointing to the sun's limb, is that he should observe only that limb, which is
about to leave the cross hair. Otherwise it will be found that when the other
limb is observed the cross hair is usually invisible and the observer must of
necessity either anticipate the tangency of the disc and the hair or observe
slightly late. For azimuth determinations, if the observer always selects

the limb, which is about to leave the vertical hair, then provided he is
observing outside the tropics, he will be automatically observing the left
hand limb in the northern hemisphere and the right hand limb in the southern
hemisphere and thus there will be no doubt about the sign of the semi-
diameter correction. If he intends to observe only on one limb, he should
include one "dummy" pointing to the other limb. This will enable him to
verify that his semi-diameter correction has been applied with the correct
sign.

SUN OBSERVATIONS

Latitude

8.31 AS has been noted before, it will not be possible to make a balanced
observation for the determination of latitude by observing to the north and
to the south near the local meridian at approximately the same altitude. In
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addition, in some latitudes and at certain times of the year, the sun will be
too low or inconveniently high for this observation. In the latter case, the
difficulty may be overcome by the use of an eyepiece attachment, which will
allow cbservations to be made up to the zenith, although, when using such an
attachment there is a considerable decrease in magnification, which will render
the pointings less precise.

8,32 Before attempting this observation, it will be convenient to pre-
calculate the standard time when the sun transits the local meridian so that
observations may be made over this optimum time, which is termed Local
Apparent Noon (LAN).

h
At LAN LaT = 12
: h
and as E = 12 4+ LAT - IMT
LMT = 24h - E

the standard time of LAN will therefore be
h
24 - E - A 4+ Time Zone

When reducing observations by the circum-meridian reduction formula (see
gection 8.714) it will be found convenient to evaluate the standard time of
LAN for the calculation of the individual hour angles. An example of this
calculation is given in sections3.432 and 8.713.

Longitude

8.41 Ideally this observation should be made when the celestial bedy is on
the prime vertical, but, for the sun, this will only occur during half of the
year and even then, for part of this time, the sun will be too low to allow
accurate observation. Once again the observer may have to be content with
obgervations taken in less than ideal circumstances and have to choose between
either taking an observation at a low altitude near the prime vertical or one
that is sufficiently high yet somewhat removed from the prime vertical. 1In
either case, it is advisable to take balanced morning and afternoon
observations in order to minimise the effects of some systematic errors,
notably in the assumed value of latitude used in the calculation and in the
observed altitudes. The appropriate differential coefficients to consider are

dt 1 at 1

d =~ T cos ¢ tan A and dn  cos ¢ sin A
from which one notes that for a balanced pair of observations,
A + Ay = 360° and the magnitudes of each coefficient remain unchanged but
the sign reverses. Thus the mean of morning and afternoon observations will
be substantially free of the effects of systematic errors, excepting those
errors, which arise from anomalous refraction.

8.42 After the Astronomical Triangle has been solved for the hour angle ¢t
from the elements ¢, § and h, one may evaluate :

LAT = 12h+t

h

and since IAT -IMT = E - 12
IMI' = £ - E

Since longitude is defined as

A = IMT -~ GMT
A = _ - -
t - E (CT + CCop Z)
in which . CT = Watch Time of Observation
CCZT = Watch Correction on Zone Time
Z. = Time Zone
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Azimuth

8.51 By far the most important of all sun observations, applied to surveying
and mapping, is that of the determination of azimuth. Such an observation is
not only convenient for approximate orientation and as a preliminary for more
exact methods of azimuth determination but, with care, one can obtain the
azimuth of a terrestrial line to within 20", which will be found to be
extremely useful for the orientation of isoclated surveys or checking of long
traverses, which are remote from previcusly established control stations.
The surveyor will have a choice of two methods of observation
(a) azimuth from altitudes and
(b) azimuth by hour angles
For neither method will it be possible to observe the sun at or near its
ideal position, elongation, except if the station is situated within the
tropics and even in these situations the sun may be too low or too high to
obtain good results. As a general rule, the best results are obtained from
early morning and late afternoon observations. For the Altazimuth Method,
observations should be made when the sun has attained an altitude of at least
15°. For the Time Azimuth Method this restriction does not apply.

The Altazimuth Method

8.52 The equipment required, in addition to a theodolite and dark glass, is a
barometer, thermometer and a watch whose correction (to the nearest minute) to
standard time is known. A barometer may be dispensed with if the height of

the station above mean sea level is known. The Star Almanac for Land Surveyors
gives correcting factors for values of mean refraction for variations from a
standard temperature and pressure with arguments for pressure expressed in

either millibars or height (metres). Two errors may be present in the estimated
refraction when the station height is used as argument:

(1) an error in the estimate of the station height, and

(ii) a local variation in pressure, from that which corresponds to the

station height, i.e. a deviation from the pressure height
relationships given by the standard atmosphere on which the
refraction tables are based.

An error of 100 m in station height and a variation of 10 mb in local
pressure, a value which should seldom be exceeded, except under abnormal
meteorological conditions, will each contribute to about a 1% variation in
the value of the estimated refraction. Errors of this magnitude may be
safely neglected with sun observations.

The Time Azimuth Method

8.53 The equipment required, in addition to a theodolite and dark glass, 1is
a watch capable of being read to preferably better than 1% and a radio
recelver for obtaining the watch correction to standard time. Continuous
time signal transmissions on short wave may be picked up on a small
transistorised radio in most parts of the world. O0Of lesser convenience, are
the hourly 6 'pip' broadcasts from medium wave stations. Apart from the
inconvenience of having long gaps between the signals, medium wave trans-
missions can only be received over a limited distance from the transmitter.

Choice of Method

8.54 The main criterion to be used for a comparison between these observation
methods is a study of the propagation of the systematic and random errors
affecting the observations and their reduction. It is a well established

fact that, unless a special attachment is used, such as the Roelofs' solar
prism, the simultaneous pointing to the horizontal and vertical limbs,
required by the Altazimuth Method, i1s very inaccurate. On the other hand for
the Time Azimuth Method, the observer can give his undivided attention to
pointing on the one limb. In addition, it is not generally known that
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vertical angles, measured with some types of theodolite in common use, may
suffer from serious erroxrs due to the eccentricity of the vertical circle.

The instruments referred to are those, whose readings are not obtained from
diametrically opposite parts of the vertical circle. Horizontal angles,
however, measured with these instruments remain free of this type of error,
provided that the mean of face left and face right observations is taken,
because in effect the change of face allows diametrically opposite readings to
be taken. Other than calibrating the instrument and correcting the observed
altitudes, the only way to eliminate this error will be to take the mean of
balanced morning and afternoon observations, made with the same instrument.

8.55 The effects of small systematic errors in the assumed and observed
quantities to be used in the calculations, for both methods of azimuth
observation, c¢an be conveniently determined from an examination of the
behaviour of the appropriate first order differential coefficients. The
variation in the values of these differential coefficients over a range of
latitudes, altitudes and declinations is quite complicated. Such an invest-
igation can be found in The Australian Surveyor, March 1974 Vol. 26 No. 1. 1In
this the latitudes and the altitudes were not greater than 45°. If one
examines these variations for both methods it will be found that

(1) In eguatorial latitudes, at all altitudes and at all times of the year,
both methods show that the systematic errors are well controlled i.e.
the coefficients are not bkig.

(ii) As the latitude increases the propagation of the systematic errors for
the Altazimuth Method increase considerably unless either the altitude
is kept low or the observations are confined to the summer months
(middle of the year, northern hemisphere; end and beginning of the
year, southern hemisphere).

(iii) For the Time Azimuth Method the coefficients are never large regardless
of latitude, season or altitude.

(iv) In nearly all cases the coefficients of the systematic errors for the
Altazimuth Method are larger than the corresponding values for the Time
Azimuth Method. This indicates the superiority of the latter method.

(v) The Time Azimuth Method allows the surveyor to take observations over a
greater time range than the Altazimuth Method; observations using the
Time Azimuth Method, even at noon, should be quite satisfactory thus
permitting observations to be made throughout the daylight hours in
other than equatorial altitudes throughout the winter months. However,
when observations for azimuth are made at high latitudes and altitudes,
extra care should be exercised in the control of systematic and random
errors.

Examples of Sun Observations

In the sun observation examples, which follow, no other statistics, beside
the Arithmetic Means, have been evaluated, because the sample sizes are small
and the estimates of the variances are therefore not reliable.

8.61 Example of sun observations for the determination of longitude and of
azimuth by the Time Azimuth or Hour Angle Method

Place: N Pillar, UNB Eng. Building
Date: Thursday afternoon 11lth September 1969 (¢ 45°57'10" N)
Theodolite: M.O.M.(1l0") Zero of the
vertical circle at the nadir.

Watch: Omega with sweep second Index Correction -4'29"
hand (Mean Time) Pressure: 30.1 inches = 1020 mb
Time Zone: 30w Temperature: 68°F = 20°C

Reference Object: Radio Mast.

Note: All observations were made using an eyepiece prism which gave an erect
vertical image and an inverted horizontal image. The crosshair was shown as
it appeared in the field of view with respect to the sun's disc.
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Clock Comparisons

rﬁTime sighal Corresponding Watch Correction |
- d ~ Watch Time on Zone Time |
16725%00° ' a3 oS +12"01™18.1°
16 51 00 4 49 41.0 +12 01 19.0 |
17 20 00 | 5 18 40.2 +12 01 19.8
Observations
Face Object watch Vertical Circle Horizontal Circle
| cR RO Lo 301°55' 50"
| o 473321 .8 94 39 50
o 54 49.3 * 98 53 40
o) 55 58.7 241°56'4Q"
o 4 57 47.0 242 45 30
RO 301 55 50
CL RO 121 55 50
o) 5 01 29.6 117 19 50 |
Jo 05 04.0 116 13 55
o 06 50.0 282 04 50
ol 5 07 58.9 281 44 05
RO 121 55 50

* Observations delayed by passing cloud

Extract from Star Almanac for Land Surveyors, 1969
11th September

| UT S E [ SD
T ey
18" 4°25'7 N 12%03"27.0° | 1519
24 420.0 | 12 03 32.3

Watch Rating

+12°01"20.0 , , ——

Watch Correction
19.0 —

on Zone Time

1 s 41

+12"01"18.0
4" 20m 4" 40° 5°00™ 500"
Watch Time
Fig 8.2

8.611 Longitude Calculation

These observations were made within a short period of time (approximately
' 10M) and therefore the small changes in &, E and Watch Correction will be
ignored.
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Watch Time UT of ) § E Watch Correction
of Observation Observation " h om
m 5 s
<P 20001™ 4°23'47" N 12 0328.8 +12701719.3
Reduction of Vertical Circle readings
. Corrected Observed ] X Reduced
Reading Index readings Altitude Refn.| Par Sp Altitude
241°56"40" | -4'29" 241°52'11" | 28°07749" |-1'45" +8" |-15'54" 27°50'18"
242 45 30 242 41 01 27 18 59 1 49 +15 54 | 27 33 12
117 19 50 117 15 21 27 15 21 1 49 -15 54 | 26 57 46
116 13 55 1ie 092 26 26 09 26 1 54 +15 54 |26 23 34

Required relationships
sin h -~ sin ¢ sin &

cos t = cos ¢ cos 6
A = LMI - GMT = (t - E) - (Watch Time + Watch Correction - Time Zone)

A = (t - Watch Time) + (-E - Watch Correction + Time Zone)
A = {t - Watch Time}) + X

where X = -E - Watch Correction + Time Zone = -—3h04m48.lS

h 27°50'1g” 27°33'12" 26°57'46" 26°23'34"

t 3411.2% | 3PasMs0.59  3P30™an.0f | 3Pad™iy.1S

Watch Time 4 55 58.7 4 57 47.0 5 01 29.6 5 05 04.0

t - Watch Time | -1 21 47.5 -1 21 47.5 -1 21 46.7 -1 21 46.9

X -3 04 48.1 | -3 04 48.1 -3 04 48.1 -3 04 48.1

A -4 26 35.6 -4 26 35.6 -4 26 34.8 -4 26 35.0

| Mean Longitude a™26M35.25

8.612 Azimuth Calculations

The observations, given in section 8.61, were made over an extended period
of time and therefore the changes in ¢, E and Watch Correction will be taken
into account

Watch Time , UT of . § E Watch Correction
of Observation Observation
al'33® 197340 +4°24113" | 12"03™28.4%|  +12%01%18.4°
4 55 19 56 +4 23 52 12 03 28.7 12 01 19.1
5 07 20 08 +4 23 40 12 03 28.9 12 01 19.5
5 08 20 09 +4 23 39 12 03 28.9 12 01 19.5

Required relationships

tan A = - sin t
an " cos ¢ tan § - sin ¢ cos t
. o . -SD sin A
Semidiameter correction AA = o5 § sin T
h. m s . |
A =426 35.27 W {see previous calculation)

t = E + Watch Time + Watch Correction - Time Zone + Longitude

-137-



E 12%03™28.45 | 12M03™28.7° |  12703™28.0°% |  12"03M28.05
Watch Time 4 33 21.8 4 54 49.3 5 06 50.0 5 07 58.9
Watch Correction 12 01 18.4 12 01 19.1 12 01 19.5 12 01 19.5
Sum 4 38 08.6 4 59 37.1 5 11 38.4 5 12 47.3
Longitude-Time Zone -1 26 35.2 -1 26 35.2 -1 26 35.2 -1 26 35.2
t 3 11 33.4 3 33 01.9 3 45 03.2 3 46 12.1
Azimuth of Sun 239%59" 32~ 244%50' 01" 247°251 25" 24740 01"
AA +18 37 -18 01 +17 42 -17 41
Azimuth of Limb 240 18 09 244 32 00 247 43 07 247 22 20
Hor. reading to Limb| 94 39 50 98 53 40 282 04 50 281 44 05
Orienting Cormm. 145 38 19 145 38 20 325 38 17 325 38 15
Hor. reading to RO 301 55 50 301 55 50 121 55 50 121 55 50
Azimuth of RO 87 34 09 87 34 10 87 34 07 87 34 05
Mean Azimuth to RO 87034'08“

8.71 Example of sun observations for the determination of latitude and of
azimuth by the Altazimuth Method

Pillar 2,
Monday,

Place:
Date:
Observer:
Recorder:
Reference Object RO:

spire of Monastery Church

Time Zone: th East

Note:

J.G. Freislich

Fin

ial on

respect to the sun's disc.

Civil Eng. Building UNSW
20th September 1976 (Morning for Azimuth:
G.G. Bennett

h

A 10

m

04"56° E
Noon for Latitude)

Theodolites: Wild T2 (erect image)

Watc

8.711 ©Latitude observations and calculations

h:

Heuer split hand stop

watch (Mean Time)
NOTE: Two different instruments

The crosshair was shown as it appeared in the field of view with

These will be calculated first as the latitude is needed for determining

the azimuth.

Note: The sun was observed to the north of the zenith near upper transit.
Watch Correction on Zone Time llhBOmOO.OS
Temperature: 21.8°C Pressure: 1014 mb
Vertical Circle Index Correction: +11"
Face Object Watch Vertical Circle
cL 0. 10M56° 34%471 34"
0. 11 55 46 54
Q. 12 38 46 22
0. 13 16 46 06
Q. 13 53 45 45
0. 14 26 34 45 34
CR o 17 10 324 42 54
T 18 08 43 09
T 18 43 43 09
ey 19 13 43 04
Eo 19 4o 43 05
o 20 18 324 43 05

The diagonal eyepiece used for these observations produced an inverted image.
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8.712 cCalculation of declination using polynomial coefficients (see section
8.716 for constants etc.)

Watch Time UT of 5
. . X
of Cbservation Observation
oPa™ 1Py g™ 0.595 9418 1°06'16" N
) 12 42 9635 15
13 43 9852 14
13 43 0.595 29852 14
14 44 0.596 0069 13
14 K 44 0069 13
17 47 0720 10
18 48 0938 09
19 49 1155 08
19 ; 49 1155 08
20 50 1372 Q7
0 20 : 1 50 0.596 1372 1 06 07
’ E = 1i2"06™31° Semidiameter  16'00"
8.713 Calculation of the Watch Time of transit
. . h h
IMT of transit = 24 - E(see section 8.32) 11753"29°
A . 10 04 56
uT 1 48 33
Zone 10 E
zZone Time 11 48 33
Watch Correction 11 30 00
Watch Time of transit o ’ 18 33

The observation period is short and close to Local Apparent Noon and therefore
only the first term of the circum-meridian reduction formula (see section A.71)
will be used.
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8.714 Calculation of the Latitude
Calculation of an approximate latitude

cos cos &

A = cin 2 M Observed zenith distance
M closest to transit 35°16'40™ N Zzy = 2¢cMm - A.m"
Refn., Parx, SD -15 26 ¢ = cSM - zy
A = +1.4458 zZy +35 01 14
Sm +_1 06 08
Calculation of an accurate latitude Approx. ¢ -33 55 06
z;tggsZisztion t m" (:ii;éi:; Index Obzgrved Refn |Par¥® sD —Am 2gridi;n § 0
10"56° ~7M37% | 1vsan | 34°47'34%| +11"| 34°47'45" | +39%| -5" +16'00"| -2'45"| +35°01'34"| +1°06'l6" |-33°55'18"
11l 55 6 38 1 26 46 54 47 05 -2 04 35 15 20
i 12 38 5 55 1 09 46 22 46 33 -1 40 27 14 13
? 13 16 5 17 0 55 46 06 46 17 -1 20 31 14 17
13 53 4 40 43 45 45 45 56 -1 02 28 13 15
14 26 4 07 33 34 45 34 34 45 45 +16 00 -0 48 +35 01 31 +1 06 13 -33 55 18
17 1¢ 1 23 04 324 42 54 +11 35 16 55 +39 -5 -16 00 -0 06 +35 01 23 +1 06 10 -33 55 13
18 08 -0 25 00 43 09 16 40 -0 00 14 09 05
18 43 +0 10 00 43 09 16 40 -0 00 14 08 06
19 13 0 40 01 43 04 16 45 -0 01 18 08 10
19 46 113 03 43 05 16 44 -0 04 14 07 07
20 18 1 45 0 06 324 43 05 35 16 44 -16 00 -0 09 +35 01 09 +1 06 07 02
Mean Latitude 33955'12" S




8.715 The Altazimuth Observations

Watch Correction on Zone Time +=6h40m
Temperature: 16.6°C Pressure: 1015 mb
Vertical Circle Index Correction: -40" NOTE: Diagonal eyepiece not used
Face Object Watch Vertical Circle Horizontal Circle
CL RO h m 0°10'37"
)] 0 51 70°01'52" 142 52 33
CR [e) 0 52 290 48 16 322 04 34
RO 180 10 21
CL RO 45 12 48
o] 0 57 68 46 17 186 53 36
CR o] 0 58 291 59 28 6 08 22
RO 225 12 32
CR RO 270 15 03
o] 1 02 292 17 40 51 03 36
CL [0 1 04 66 54 57 230 15 14
RO | 90 15 18
| .
CL RO 135 17 36
ol 1 07 66 45 07 275 16 31
CR [e} 1 09 294 06 20 94 25 58
RO : 315 17 19

.716 Calculation of declination by means of the polynomial coefficients
rovided in the Star Almanac for Land Surveyors

oW

3 y

§ = ag + a;x + ax? + agx’ + a,x
where  ag = 8.31516 )
ai =-11.59793 ;
a» —— 1.11388 ) for September 1976
as = 0.43207 ;
ay = 0.,03983 )
8 is the declination of the sun expressed in degrees and decimals
X is the Greenwich time of observation, expressed in days and
decimals less one day and divided by 32. (see footnote)
Watch Time ! UT of < 8
oZ Observation Observation
h h
0 51m 21 3lm * 0.590 5165 1°10'18" N.
0 52 32 5382 18
0 57 37 6467 13
0 58 38 6684 12
1 02 42 7552 08
1 04 44 7986 06
1 07 47 8637 03
1 09 21 49 0.590 9071 110 01 |

* Wot= change of date
Semr 2’ ameter 16'00"

FTr-z 1977 onwards x 1is defined as the sum of the Greenwich day of the
moe=- and the decimal of the day all divided by 32.
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8.717

Reduction of Vertical Circle Readings

. Corrected Observed Pe Reduced
I . . S
Reading ndex | o cading | Altitude | “ofn  [Par P Altitude
70001]52" _40" 70001'12“ 19058|48II _2'35" +8ll +16’00Il 20012[21"
290 48 16 290 47 36 20 47 36 28 -16 00 20 29 1le
68 46 17 68 45 37 21 14 23 25 +16 00 21 28 06
291 59 28 291 58 48 21 58 48 19 -16 00 21 40 37
292 17 40 292 17 00 22 17 00 17 +16 00 22 30 51
66 54 57 66 54 17 23 05 43 12 -16 00 22 47 39
66 45 Q07 66 44 27 23 15 33 11 +16 00 23 29 30
294 06 20 294 05 40 24 05 40 -2 06 -16 00 23 47 42
|
Required relationships:
cos n = Sin § - sin h sin ¢
cos h cos ¢
. . sSpD *
Semidiameter correction An =
cos h
e}
From section 8.714 ¢ = 33°55'12" S
8.718 Calculation of the Azimuth
Face CL CR CL CR
Computed Azimuth 74°06'43" 73°53'05" 73°05'14" 72°54'57"
of Sun
AA +17 01 -17 07 +17 10 -17 15
Azimuth of Limb 74 23 44 73 35 58 73 22 24 72 37 42
HO Rdg to Limb 142 52 33 322 04 34 186 53 36 6 08 22
Orienting Corrn +291 31 11 +111 31 24 +246 28 48 +66 29 20
HOR to RO 0o 10 37 180 10 21 45 12 48 225 12 32
Azimuth to RO 291 41 48 291 41 45 | 291 41 3o 291 41 52
291°41'46" 291°41'44"
Face CR CL CL CR
Computed Azimuth 72 13 13 71 59 08 71 23 38 71 08 04
of Sun
AA +17 17 -17 24 +17 25 -17 32
Azimuth of Limb 72 30 30 71 41 44 71 41 03 70 50 32
HO® Rdg to Limb 51 03 36 230 15 14 275 16 31 94 25 58
Orienting Corxrn +21 26 54 +201 26 30 |+156 24 32 +336 24 34
HER to RO 270 15 03 90 15 18 135 17 36 315 17 1°
Azimuth to RO 291 41 57 291 41 48 291 42 08 291 41 53
291°41'52" 291°42' 00"
Mean Azimuth to Mark 291°41'50"

* Where ho is the observed altitude corrected for index only.
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The Simultaneous Determination of
Latitude and Longitude

INTRODUCTION .

IN Chapters E and 6, methods of determining Latitude and Longitude independently
of each other have been dealt with. The observation method used in both types
of observation employs timed altitudes and it was found that the best circum-
stances, in which to make such observations, were on or near the local meridian
and the prime wvertical respectively. Under these circumstances, the effects
of systematiq and random errors on the quantities sought were kept to a
minimuam. :

In the methods to be described, the same observational technique will be
used but instead of making separate observations for latitude and longitude,
values of both of the unknowns will be deduced from a consideration of all
observations to all stars.

As with‘indepehdent observations for latitude and longitude, it is possible
to use horizdnﬁal circle observations, but this latter method requires that
observation be made near to the zenith and therefore these observations
introduce some practical difficulties when a theodolite is used.

Much of the'theory and the semi~graphical treatment, which follows runs
parallel with that used by the air and marine navigator. He however, is
normally satisfied with an accuracy much less than that required by the land
surveyor. The semi-graphic solution and its interpretation, and the concept
of position circle and position line arise from the original discovery, which
was made in 1837 by T.H. Sumner, the captain of an American merchant vessel.

A full and interesting account of the circumstances leading up to this
discovery will be found in "The American Practical Navigator" by
Nathaniel Bowditch. Sumner's original technigue is now seldom used and today
a variation of his method is generally used. This was suggested by the French
Admiral Adolphe-Laurent-Anatole Marcg de Blonde de Saint-Hilaire (1832-1889)
and is known as the "Method of Zenith Distance Intercepts" or the "Marcqg St.
Hilaire Method".

Specialised instrumentation has also been developed for these observatjcns,
both for use by surveyors and in fixed cbservatories.

THE DETERMINATION OF POSITION FROM OBSERVATIONE TQ TWG STARS

9.11 IF time altitude cobservations have been made on two stars, which are
separated in azimuth by an angle, that is wedther grectly acute wor greally
chtuse, the latitude and longitude of the observer's position can be deduced,
provided that the observations are not affected by apprecilable systematic
errors. The significance of these conditions will be appreciated later in
this chapter (seé section 9.11 Step 4). The solution, which tfollows, is guite
general and does not require the person, performing the calculations, to know
the relative positions of the two stars in the sky.

The information available for the solution for cach of the two stars is,
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Celestial

(a) the observed altitude, suitably corrected for index error and
refraction,

(b) the declination and right ascension of each star, and

(c) the GHA, which is obtained from the clock time of observation after

converting this to the corresponding instant of GST and then using
the following relationship,

GHA = GST - RA

The situation is shown in Fig 9.1, where §S; and S, are the positions of
the two stars and Z is the observer's zenith.

The relationships for the computations required may be derived from those
of section 2.62, togethexr with the principles enunciated in this section for
the solution process. If the angles a2 and w2 of Fig 9.1 are defined in
the same way as the parallactic angle w in section 2.73 is defined, then
the solution below is completely general.

The reader is invited to do this derivation and solution for himself with,
for instance the positions §; and S; reversed.

1. From the Cosine Formula in triangle S31S:Py, S1S2 1is obtained from
cos $152 = siné; sin82 + cos 81 cos 8, cos(GHA, - GHA;)
2. From the Four Parts Formula in the same triangle, 0, 1is obtained from

sin (GHA; - GHA,)
cos 8, tan 6;- sin 8, cos (GHA; - GHA;)

tan 0y =

in which 0«2 is placed in its correct angular quadrant by taking heed
of the signs of the numerator and denominator.

3. From the Cosine Formula in triangle S:S22, (p— wy) 1s obtained from
sin h; - sin h; cos S3:83
cos hy, sin 5;S,

cos (02 - W2)

The solution for (o2 - w2) 1is ambiguous, because Z may lie inside or
outside the triangle S;S,Py. Therefore the two values of (0 - Ww2),
which result, will give two values for w;.

4. From the Cosine Formula in triangle S2Z Py, ¢ 1is obtained from
sin ¢ = sin hs sin 83+ cos h, cos §, cos Wy

From the two values of ¢, which result (see step 3), the appropriate
one of the two values is selected. In practice, this decision presents
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,rhofproblem'provided the difference between the azimuths to the two
- stars, is well away from 0° or 180° (see beginning of section 9.11).

5. From the Four Parts Formula in the same triangle, the hour angle t, is
- obtained: from
Gt sin w,
. tan t: .
,u_FQP z ~ tan hz cos 82~ sin d; cos w2
6. Tﬁé:ldngitude A of the observer's position is then found from
V A = t» - GHA,

: and the~hour angle t; from
. t1 = GHA; + A
7. 7 Flnally from the Cosine Formula in triangle S;2 Py, a check on the
calculatlon is obtained from
o sin h1 = sin ¢ sin §1+ cos ¢ cos 1 cos ¢

9.12 To damonstrate this computation, the follow1ng data will be used in
order to determlne the preliminary values g A of a station, at Whlch these
observatlons were made and which was in South Afrlca.

Star No. ;'1‘,‘ e 369 328 564 548
Name ~ ‘.:f_ 7 ’ A:ctufus o Crucis o Pavonis Altair
Aspect o - W SW SE NE
Right Ascension |14"13%24.6%|12%23%s.5%| 20"21"47.6% | 19748233
Decriﬁatiénﬁi'f‘ _ 19°26115" N|62°49'48" S| 56°53'44" S| 8°44'04" N
Corrected Observed Altitude| 35°52'26" |[36°07708" 39°53125" 34°01'53"
GST of Observatior - 14h21m18 55 14"35M53 63| 14aP44™23.5% | 14P55™32.2°
1 SW. GHAl = GST; - RAj = 2h12 05.1° §; -62°49'48" h; 36°07'08"
2 SE GHA; = GST, - RAp = 1sh22m35 9 &8, -56 53 44 h, 39 53 25

. GHBy = GHA, = 16h10m30 8% = 242°037'42"

cos slsz = _$in 6‘1 sin 8, + cos §, cos 8, cos (GHAy - GHAq )

518, "= 50.907 0489°
- N Sm(G}IAZ - GHA}_)
tanﬁlcoséz— sanzcos(GHAz-—GHAﬂ

- tan” o; =
Gt = 211.498 7238°

sin h; - sin hy cos §;5;
cos hs sin 5152

(@s = wz). =%71.894 7833°

cos (o —_mzjf =

Wz = G- (2 - W)
“wp = 283.393 5071° or 139.603 9406°
f-sinffgbi = sin hﬁffsi11624-Cos hy cos §; cos w,
4 = -26.113-3327° or -58.911 0644
“= -26°06°48.00"

This ﬁa;uéfis accepted because the station is known to be in South Africa.

. ta_n Ly 2 . : Slin Wz
A ,{,_2: ¢, tan h'z cos 52 - sgin (52 COs (g
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ty = =-56.227 9855° —3R44™54 725

h
A = t, - GHA, = —3"4aMsa.72% - 18M20M35.0°
1M52M9. 385 &

2M12%05.15 1+ 1M'52Ma0, 385

= —22%07™30.62°

tl = GHA] + )\

= 4P04™34.48°

Final check

sin hj sin ¢ sin 81+ cos ¢ cos §;cos t;

+0.589 463 +0.589 463

.. The values for the preliminary position d_A are

a a
¢ 26°06'48.0" South

A, 1"52™29.4% East

It is suggested that various combinations of data from pairs of stars, given at
the beginning of this section, be used as additional examples of this
calculation. The resulting latitudes and longitudes will not agree exactly
because of the presence of small observation errors.

9.13 Either star may be set out as the first star in the above layout, pro-
vided the generalized conventions of the Astronomical Triangle are adhered to
and provided that the angles @2 and @, above use the same convention as the
parallactic angle w in this triangle (see section 2.73). The azimuth
quadrant, in which each star is observed, is usually noted in the field book.
This information often makes it possible to select the reqguired value of the
two values obtained for the angle Wy . The above solution is a general one,
which is checked by means of the final equation.

Several points emerge from this. The calculation is easily carried out with
modern computing aids. The various methods of calculation for determining
position from astronomical position lines all require approximate values of
latitude and/or longitude for the observer's station. This information can
often be found, with sufficient accuracy, from a map even if its scale is
small, but sometimes this is not possible and then the calculation above may
well be used, in order to determine preliminary values ¢, Ay directly from
the observed values themselves. This calculation uses observations from only
two stars. If more than two stars had been observed, it would be an
exceedingly complicated process to determine final values of latitude and
longitude, by means of this calculation technique, because all the observed
data should be used to obtain the final result.

THE CONCEPT OF POSITION CIRCLE AND POSITON LINE

9.21 A simple illustration of what has been done by calculation above can be
obtained by plotting the positions of the two stars S; and S, on a small
sphere, such as a plastic ball, and then by drawing on it a circle with S,
as centre and a spherical radius of (90 ~ h;) and another circle with S,
as centre and (90 - hy) as radius. The intersections of these two circles
gives the required position, provided it can be determined which intersection
is the desired one.

If only one star had been observed, then although the position of Z could
not be found uniguely, it would be known that the observer's position must
lie somewhere along this circle, that is, an identical altitude to the star
could have been observed simultaneously by any number of observers, whose
zeniths (geographical position) lay on this circle. For this reason this
circle is called a position circle.

It is often convenient to consider this position circle as being situated
on the earth's surface and, under these circumstances, the centre of the
position circle (S; on the celestial sphere) has geographical co-ordinates
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¢ = 6 and Klss h - GHA. This point is. called the sub-stellar point (SSP)} and
it is obv1ous‘ hat an - observer stationed at the SSP at the instant of
observation’ “Would see the. star in gquestion in his zenith. The concept of the
SSP.and- posrtlon dircle drawn on the earth's surface is a very useful one
indeed, although it must be realised that, under these circumstances, the earth
must be cvonsidéred to be spherical in shape. Fig 9.2 illustrates this latter
lnterpretatron shere the terrestrial position P corresponds tc the celestial
p