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PREFACE

This textbook is the outcome of a long period of close collaboration between

the authors in the teaching of field astronomy at the University of New South

Wales, Australia. The scope of this book is confined to those aspects of

astronomical theory and practice, which are appropriate for observations made

with a modern single second theodolite. Included in the book are many

examples of observations taken in both hemispheres. The calculation of these

observations is given in greater detail than that normally required, in order

to help the student reduce his own observations. Astronomical methods of

high accuracy required for the geodetic control of continental areas have not

been included.

In such a well-established subject of study in surveying education as field

astronomy, it may be presumed that there is very little new that can be

written. However, over their years of teaching, the authors found that there

was no textbook for student reference which used conventions, which were not

biased to one hemisphere and which also covered a systematic treatment of

predicting observing programmes and analysing the results of observations

made with a theodolite. One of the overriding considerations in the writing

of this book has been that everything should be generalised so that strict

mathematical rules could be used without the need for a host of auxiliary rulES

governing a change of terrestrial or celestial hemisphere.

The need for the practical application of field astronomy in land surveying

and exploration will decline as greater use is made of earth satellite

methods of position fixing and as horizontal control surveys are extended into

unsurveyed areas. However, a practical need is not the only criterion by

which a course of study at a tertiary institution should be judged. It is the

opinion of the authors that a study of field astronomy has many desirable

features, which make it attractive as a discipline and as a Subject of

interest to both students and experienced surveyors. Besides gaining an

understanding of celestial phenomena, a study of field astronomy exercises

the student in spherical trigonometry, convergence of meridians, error theory

and least squares methods as well as theodolite construction and adjustment,

all of which complement the instruction in other surveying subjects. The

student also gains the satisfaction of being able to find his geographical

position and determine the azimuth of a terrestrial line with a high degree

of accuracy with little more equipment than is required for normal surveying

operations.

In field astronomy, the work of surveyors has been greatly simplified by



improvements in theodolite unstruction and by the wide availability of simple

Cl •. ,r and accurate time keepir~g und time recording devices, short wave radios

and powerful continuous radio time signal services. But p.:~rhaps the greatest

single influence, in recent years, has been the widespread use of small

electronic calculators. The labour of repetitive and complex calculations has

been ·cemoved. Individual observations, in :.. Yl:ference to mean values, may be

redu:. ed quickly and the results of all observations analysc..l,

cond"~ions, using simple calculator programmes. Furthermore,

'1 under fie Id

,3ity

,

l
for making independent check calculations, preferably by a different ~'1,

with alternative formulae, has been eliminated provided the calculator

programmes are thoroughly tested beforehand and the input data and outp~v

results carefully checked. No longer is it necessary to restrict observations

to circumstances and time limitations to suit special simple mathematical

relationships, which are mainly in the form of rapidly converging series.

However, to provide some continuity with past practice and also to maintain

the flow of explanation in the text, the proofs of these and some other

relationships have been included in an appendix at the end of the book.

It is with a great deal of pleasure that the authors record their gratitude

to Mrs. Susan Kiriazis, who has, with cheerful patience and efficiency, typed

the whole of the manuscript.

The authors wish to thank the instrument companies, Messrs \'Ji1d, Heerbrugg,

Switzerland and Carl Zeiss, Oberkochen, West Germany for permission to

reproduce illustrations of their instruments.

G.G. Bennett

Lindfield, N.S.~.

PREFACE TO REVISED EDITION

J.G. Freislich

North Sydney, N. S . 'iv.

February, 1979

In this revised edition of the book some minor changes have been made to the

original manuscript. In Chapter 1 the examples on pages 4, 5 and 6 have been

arranged differently and the distinction drawn between meridian and grid

convergence. Also calculator methods of time conversion have been included

in the appendix.

G.G. Bennett,

Lindfield, N.S.W.

J.G. Freislich,

North Sydney, N.S.W.

January, 1980



1
The Uses of Field Astronomy

INTRODUCTION

THIS is a question asked of the surveyor with such frequency and such
incredulity that an answer to it must be provided. The answer will no doubt
be disappointing to the uninformed layman, who, in many c~ses, hardly realises
that there is any difference between astronomy and astrology.

The surveyor's interest in astronomy is very much a practical one as he,
unlike the astronomer with a scientific interest in the stars, is chiefly
interested in how he can make use of the stars for the purposes of his survey
requirements.

The Uses of Field Astronomy

THE surveyor uses Field Astronomy for two main purposes. These are
(a) Determination of the position of Points on the Earth

and (b) Determination of Orientation.
The accuracy required for these determinations varies naturally with the

purpose of each task. One can appreciate that no hairsplitting accuracy is
needed in laying out, for the devout Mohammedan, a line pointing to Mecca so
that he may make his obeisances in the correct direction. On the other hand,
the highest accuracy in an astronomical determination is needed to define the
relationship between the geoid and the mathematical surface to which a geodetic
survey is referred.

Position determination is used to correlate the Fundamental Station of a
continental survey network with the geoid. This also requires that the survey
network be orientated with respect to the meridian.

Position Determination

1.11 Several examples of position determination from astronomical sights to a
lesser accuracy come readily to mind. A geophysical expedition was mounted to
traverse the Kalahari Desert for making measurements.for mineral prospecting.
This expedition was accompanied by a surveyor who determined, from star sights,
the position of each night's camp. If the geophysical observations obtained
were later found to be of sufficient interest to be followed up, the surveyor's
work could be used to lead them back to within about 200 metres of the point,
at which these observations were obtained.

1.12 Another example is one, in which observations were use~ to determine the
positions of points identifiable on air photographs, so that the set of over­
lapping air photographs could be set up in the form of a mosaic,· with these
fixed points providing control for both position and scale. This controlled
mosaic provided its information at the fairly small scale of 1/100 000.

During the Second World War, astronomical methods were used in North Africa
by the Long Range Desert Groups, who made long journeys deep into the feature-
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less ~nhospitable desert. This desert, like the sea, can be traversed with
little restriction and the methods of navigation used were similar to those of
the sailor and fixes to within a kilometre were, in many cases, quite satis­
factory. Sun compasses were mounted on the vehicles to overcome the
difficulties of magnetic compasses close to steel.

1.13 Another example is that of placing marks, which are to define aproperty,
such as mining lease in unmapped country, and whose positions are specifiedin
terms of the geographical coordinates, latitude <P and longitude A. The sur­
veyor navigates himself by some rough means into the vicinity of the required
position <Po A. H~ determines the position where he sets up his theodolite,
from sun or s~ar slghts as <PI AI. The distance and direction from¢ A to
~ A' k' 1 1'Po 0 lS ta en out. If the dlstance is short <P A is set out by placing a
mark on the calculated direction at the calcula~edodistance. If, however, the
distance between <PI Al and <P A is long, the direction is set out roughly
(say by compass) and the dis~ange run down and measured by speedometer. Atthis
point, the position ¢2 A2 is determined astronomically and the short distance
between ¢2 A2 and <Po A

O
is set out in the required direction as indicated above.

Azimuth Determination

1.21 The determination of orientation is probably of greater importance to
the ordinary surveyor especially if he is working in an area, in which there
is no national survey network, or one, in which only the first stage of such a
network has been carried out and the geodetic stations are therefore too far apart
for his convenient use.

Determination of orientation consists in determining the azimuth of a line,
say PQ, in a survey. This is the horizontal angle round towards the east from
the northern branch of the local meridian through P to the line PQ. This
observation serves to orientate the survey with respect to True North at the
point P. This kind of determination provides a very valuable means for check­
ing the quality of a survey because the azimuth carried forward from a line,
whose azimuth has been previously determined, can be checked by determining an
azimuth from star sights along any successive line of the survey (see
sections 1.23 and 1.41) .

When a survey has been oriented by astronomical methods, its orientation can
be re-established at a later date with ease and certainty. This is not the
case in orientation by magnetic methods, whose accuracy is low in any case and
whose re-establishment is uncertain. In some cases, the datum for azimuth is
merely an assumed one and its re-establishment is therefore impossible.

1.22 A requirement for a good azimuth is that for monitoring the performance
of the gyro- theodolite, which itself determines azimuth.

Since it is not possible to adjust the various axes of the gyro- theodolite
into the precisely correct relationships, one to the other, the gyro ­
theodolite's azimuth will be subject to a zero error, which can only be
determined, if the azimuth of the line of reference of the gyro - theodolite
is known from an astronomic sight (see section 1.42).

1.23 A surveyor is to carry out the survey of a very long traverse for a pipe
line for natural gas. He is also required to fix its position with respect to
the boundaries or properties traversed by this pipe line. Unfortunately, no
national survey has been carried across this portion of the country. The
surveyor starts by determining the azimuth of the first leg of his traverse
from astronomical observations. He then runs his survey traverse and he
carrie~ forward a direction based on the azimuth of the first leg of his
traverse and the angles between the successive lines of the traverse. After
the traverse has been carried forward some distance, a check on the correct­
ness of his angular observations is obtained by determining the azimuth of a
line of the traverse and comparing this with the value obtained from the
previous azimuth determined and the angles measured between the successive
traverse lines. In this case, allowance for Meridian Convergence must be
made. (see section 1.41)
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1.24 The third example is one, which sometimes must be applied to all surveys
carried out under a specific Survey Act. This often occurs when it is
proposed to cover a state or country with a national survey. Up to such time
as the stations of this survey are established in sufficient density on the
ground, so that the cadastral surveyor may be left with only a small amount of
additional work to link his surveys to the national survey, regulations may
have been promulgated requiring any surveyor to arrange the orientation of his
survey, from an initial astronomical azimuth determination, to agree with that
of the State Survey when it is carried into his area. This requires the
application of meridian convergence to his determination, so that the surveyor
sets out the grid north of the national survey at his own local survey to
anticipate the orientation of the state survey before its actual arrival.

Corrections to Azimuths for Meridian Convergence

1.31 On the earth, considered to be a sphere, the azimuth along a line PQ
varies from a value AD at P to a value AQ at Q, because the meridians
at the two ends of a line are not parallel but converge, except when the line
lies along the equator. (see Fig 1.1)

Fig.I.1
Ps

This meridian convergence 6a is given as the difference between the
azimuths along the line at its end points

A
P

From Napier's Analogies in the spherical triangle WXY (vide section 2.62)

tan {~(X+Y)} cos{~(x-y)} sec{~(x+y)} cot{~W}

Substitution in the southern of the two possible spherical triangles gives

tan{~(A +180-A )}
Q P

cos{~(90+~ -90-~ )} sec{~(90+~ +90+~ )} cot{~(~Q-~p}}
p Q p Q

This on reduction gives the following result

tan{~6a}

in which

and

~ is the latitude measured positive northwards from the equator,
A is the longitude measured positive eastwards from the Greenwich

meridian,

6¢ is the latitude difference between the ends of the line PQ,
6A is the longitude difference between the ends of the line PQ,

¢ is the latitude of the mid point of the'line PQ

-3-



Substitution in the northern of the two possible spherical triangles gives
exactly the same result as above. The sign of the correction follows from
keeping track of the signs of the defined quantities latitude and longitude,
and also the signs of the trigonometrical functions involved. Its sign can
also be easily determined from a simple sketch.

Since in survey practice, lines are comparatively short, 6¢ and 6;"', and
as a result 6a, are small angles. The above relationship is therefore given,
to the first order of correctness, as

60. 61.. sin ¢

It is very often convenient to substitute, for the difference 6;'" in long­
itude, the corresponding distance or the difference in easting in coordinates
6E. The difference in longitude 6;'" corresponds to an east west distance of
6E along the small circle of latitude ¢. Since this small circle has a
radius of R cos ¢

6;'"
6E

p
R cos ¢

But

60. 6A sin ¢
6E

sin ¢
6E

¢P - P tan
R

R cos ¢

in which relationship 6E
units and the value of p

and R are in the same units, and the angular
are in accord.

1.41 Example. Given the following data

(1)
Local System Coordinates

Station Latitude Easting (m) , Northing
Line Observed Azimuth

I
A 33

0
34'10" N +60 850.5 +33 008.7 AB 169

0
27'30"

G 33 30 40 N +75 906.2 +26 445.8 GF 283 44 40

in Fhl.ch the latl.tudes are gl.ven to the nearest 10".
(2) The sum of the clockwise angles of the traverse at the stations B, C,

o
0, E, and F amounted to 834 II' 20".
(3) The radius of the earth is 6 380 kilometres.
Determine the angular closure of the traverse between the stations A and G.

I
I

tTl

+
--J
lJl

0 Q
0 :L
0 a.
3 :z
i

0....
F

i a
;.

L

AB. (see Fig 1.2)
(E -E )
GAp tan ¢

R

15055.7 206 265"
6 380 000
323"

c

from that ofGF

00 05
283 44
283 44

23
13
40
27

N + 35 000 m-__. -t

i--- ~-=<b 33"35'00" N

iA ~

I i
tTl ~

+
~
o
oo

L-_L ¢ m_-=o-='o:...::.o_"~:~======
N + 25 000 m

169
0

27'30"
834 11 20

-720 00 00

the azimuthTo deduce

Meridian Convergence
between A and G, 60.

Deduced Azimuth GF
Observed Azimuth, GF
Angular Misclosure

Azimuth of AB
Sum of Angles

Fig. I.2
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The sign of term 6a is easily determined from Figure 1.3 where
ANA & GN

G
are the local meridians at A arid G respectively and 6Ci

shows the angle of convergence between these two meridians .

Fig. 1.3 Not to scale

.-1

"?
-t.
9.. NG t.... \
':f • ~(XI N '
l>' • A.... ,-
0'. I

". I

F~
G

1.42 Example. In a country in the northern hemisphere, a gyro-theodolite,
set up at Trig. Station T and sighted towards Trig. Station S, was used
to determine a direction value for this line. Determine from the following
information, the zero correction to be applied to the gyro-theodolite
direction to obtain an azimuth. (see Fig 1.4)

Station Universal Transverse Mercator System Line Bearing from
Zone 39 Coordinates these Coordinates

Easting (m) Northing

T 227 929.4 3 794 910.5 TS 192°56'42"
S 226 805.4 3 790 020.5

The gyro-theodolite direction value as obtained from observing from T
tC'wards S = 191

0
19' 20"

The following facts must be known about this projection
(i) The meridians in the northern hemisphere converge towards the central

meridian and towards the north. In the southern hemisphere, they
converge towards the central meridian and the south.

(ii) The ray sighted on the earth between two stations shows on the
projected plane as a curved line between these two points with a
bulge away from the central meridian. The angle T between this
arc and the chord between the two stations is easily computed.

(iii) The bearing from coordinates gives the clockwise angle round from
Grid North to the straight line chord between the two points.

From the tables published for the Universal Tranverse Mercator System,
the geographical coordinates of Station T were computed as

r!J 34
0

15' 35" North
'1'

AT 48
0

02'43" East

Likewise from these tables the grid convergence for Station T was computed as

y 1
0

39'52"

Grid convergence is a special case of meridian convergence, in which one of
the two points is taken to lie on the central meridian. The longitude A
of the central meridian of this Zone is SloE. 0

6A = A-A
T °
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A good approximation for grid convergence on this projection is given by

y 6."A sin¢ 1°39'48"

This compares very well with the accurate value taken out above from the
tables.

..c::
~ "5....

C)0 ...
Z ~

'"1

~
"0 <U'C ::J Z
(,)
~

0 -i""\

Grid
Local Meridian &

projected on to plane '"Convergence
::s "'Y Q.

Azimuth A of Line TS ~
C
rt>

Z ()

~'-Bearing B of Line TS
0

("0

'"1 a....
""\=r
~

Arc to Chord Correction T ~
(l)
""\

i0.: ;
po j
;:l ;

Note The small quantities 'Y and T >- 0 ..,....., ,
Fig. 1.4 have been exaggerated for the

Vl N

S.
c 0 i

tTl ;:l •sake of clarity. (l)

The Arc to Chord Correction
T"

=

2E
T

+ E
S

- 1 500 000*
-=----'-.;;----:::----- p" (N - N )

6R2 k 2 S T

°
2x227 929 + 226 805 - 1 50000° 206 265x4890

6 x 6.378 2 X 10 12 x 0.9996 2

3" * False Origin -500 000

Azimuth TS A

Observed Gyro Azimuth TS =

B + T - Y (see Fig 1.4)

192
0

56'42" + 3" - 1°39'52"

191°16 '53"

191°19'20"

Zero Correction -2'27"

The Use of Laplace Stations

1.51 As a preliminary to the discussion to follow, brief and somewhat
generalized descriptions must be given of the surfaces, to which various
portions of a continental survey are referred.

The first surface is the topographical one, namely that of the actual earth,
because the survey is carried out in order to provide information about this
surface. The next one is a smooth mathematical surface, to which .the
observations, calculations and results of the survey can be referred. This
is usually an ellipsoid of revolution or spheroid, selected to approximate
very closely to the earth's shape and dimensions at sea level.

The third is an equipotential surface, which closely fits the surface
corresponding to mean sea level and its hypothetical continuation under the
land surfaces and which is called the geoid. The normal to the geoid at a
point will intersect the topographical surface at a second point immediately
above the first. This normal will coincide very closely indeed with the
direction in which gravity is acting at the topographic surface and in which,
therefore, the vertical axis of a theodolite is set when this instrument is
levelled.
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The topographical surface of the earth can be seen to be an irregular one.
The ellipsoid of revolution selected is very slightly elliptical. It has a
smooth surface, on which the normal at any given point can be specified
mathematically. The geoidal surface is not a smooth one; but, because it is

Topographical

Surface .-> -2~~

Geoid
Reference Spheroid

Fig. 1.5

not a visible surface its unevenness can be inferred only from indirect
observations. These irregularities are due to the material, of which the
earth is composed, being homogeneous neither in density nor in distribution,
and they therefore affect the position of the vertical axis of the observer's
theodolite, when this is levelled. Since this axis defines the observer's
zenith at this point, and since the irregularities are largely random, the
observer's zenith cannot be referred exactly to the other two surfaces.

1.52 A high precision survey, carried over a continental area is known as a
geodetic survey. At the beginning of such a survey, one of its stations is
selected as the Fundamental Station. At this point, an astronomical
determination of its position is made with the very highest accuracy. The
astronomical azimuth of the line from this station to one of the adjacent
stations of the survey is likewise determined. The estimated standard
deviation of the internal accuracy of these determinations is of the orJer of
+0.3 seconds of arc.

Then, at the Fundamental Station, the astronomical position ¢A AA is taken
to be the same as that of its geodetic position ¢G AG ' which are position
values referred to the spheroid of reference selected for the survey.
Similarly, the survey is then orientated by means of the astronomical azimuth
AA of the observed line; in other words, the astronomical azimuth AA is
equated to the geodetic azimuth AG of the survey.

As the survey progresses, the geodetic position of successive stations can
be derived in terms of the accepted position of the Fundamental Station and
the quantities observed at each station of the survey. If, at a station, which
is not the Fundamental Station, an astronomical determination of position and
azimuth is made with the highest accuracy, this station is known as a Laplace
Station. At such a station, there will be two sets of data available for
position and azimuth and they will not necessarily coincide with each other,
even if the observations, from which they are derived, are absolutely free of
the random errors of human observation. This discrepancy may come about as a
result of several factors.

The technique, described above, of equating astronomical and geodetic values
at the Fundamental Station sets the tangent of the reference spheroid parallel
to that of the geoid, i.e. perpendicular to the direction of the plumb line,
at this point. The geodetic position of the Laplace Station is obtained from
the computation on the surface of the reference spheroid. In this computation,
those measurements made on the earth's surface in the course of the geodetic
survey are used and the position of the new Laplace Station, relative to the
Fundamental Station, will therefore be known within a few metres.

1.53 The Laplace Station's astronomical position, however, is determined by
the position of the observer's zenith at this station. The theodolite's
vertical axis, after the theodolite has been levelled at this station, defines
this zenith and, since the levelling is done by means of a bubble or other
device under the influence of the force of gravity, this zenith is determined
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by the normal to the equipotential surface. The relationship between the
~l~line and the normal to the reference spheroid at this station is not
L~ and therefore the normals to the two surfaces at this point do not
~ecessarily coincide, even though they were set to coincide at the Fundamental
Station. The difference in position (¢A - ¢G' AA - AG) provides a very
good criterion of the relative position of the reference spheroid with respect
to the geoid. When there is evidence of a divergence between the two surfaces,
as will be indicated by a systematic difference between the astronomical and
the geodetic values of position, it becomes necessary to re- appraise the
assumptions made at the Fundamental Station and also to consider possible
changes in the dimensions of the reference spheroid adopted.

As the geodetic survey proceeds, its orientation will become increasingly
uncertain, as the distance from the Fundamental Station increases, because of
the accumulation of errors of observation. However, this can be rectified by
making use of the value of the astronomical azimuth, which has also been
obtained at the Laplace Station, in a relationship known as the Laplace
Equation, which states

This has been derived in the Appendix in section A.91.
The most significant feature of this equation is that it makes it possible to

orient the geodetic survey on the adopted spheroid, irrespective of which one
has been adopted and also irrespective of how it was oriented at the Funda­
mental Station.

With a spheroid of well chosen dimensions and orientation to the geoid, the
difference between the astronomical and geodetic values of position and azimuth
will be small, except possibly in those regions of disturbance, where the local
geoid is unusually uneven.
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a brightness of bI and a star of
b2. These quantities may then be related

2
The Solar System, The Celestial Sphere
and The Astronomical Triangle

INTRODUCTION

2.11 AN observer, looking out at the sky at night sees the black firmament
dotted with a host of points of light, which wheel across the sky from east to
west. On further observation all, with a few exceptions, appear to maintain
their relative positions unaltered, and it is known that they have done so
over the period of recorded history. These points of light of differing
brilliances are the stars. For convenience in identification, they are
grouped in sets as constellations, which are named from their appearance. In
some cases/ there is some justification for the name, e.g. the Scorpion, the
Lion, the Southern Cross, but in others the name has only a fanciful
relationship to the constellation's shape.

Constellation boundaries have been adopted and agreed upon. These are shown
in star atlases. Originally the brightest star in any constellation was
designated a, the next brightest B and so down the Greek alphabet in
diminishing brightness. However, since this system was laid down, the actual
order of brightness, due to some natural cause, may have changed but the
alphabetical order has, for convenience, not been altered. In the star
catalogues/ the brightness of each star is given by a number, called its
magnitude.

The ancient astronomers ranked the stars according to their brightness on an
arbitrary whole number scale of "magnitudes" varying between one and six.
Stars having a magnitude of six were just visible to the naked eye under very
favourable observing conditions, and the brightest stars were considered to be
of the first-magnitude. In the 19th century/ it was discovered that a first
magnitude star was about 100 times as bright as a star of the sixth magnitude,
and this fact is now used as a basis for the present scale of magnitudes.
Furthermore,this scale is divided in a logarithmic manner, in order to be able
to represent the magnitudes of very bright and very dim bodies by small
numbers. The scale also takes into account fractional magnitudes and extends
beyond the original limits of one and six, with the brightest of the celestial
bodies having negative magnitudes.

Let a star of magnitude mI have
magnitude m2 have a brightness of
on a logarithmic scale by

and

where kI and k2 are constants.
The difference between these two equations gives
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-2.5and thus kz

is the ratio of brightness of the two stars.

ml = 1 and mz = 6, £l = 100
bz

blwhere
bz

However from before when

bl
m2 - 2.5 log -­

b2

which relationship is the basis of the modern scale of magnitudes.
The following table of magnitudes for some selected celestial bodies will

indicate the characteristics of this scale of magnitudes.

Table 2 1.
Body Magnitude Remarks

S~ -27 Approximate value
Moon -12 Approximate value

at full moon
Venus - 3.4 Average value
Sirius(a Canis Majoris) - 1.6 Brightest star
Betelgeuse (a Orionis) 0 - 1 Varies between 0 & 1
Polaris (a Ursae Minoris) 2.1
o Octantis 5.5

The reader will find it instructive to calculate the brightness ratio for some
of the bodies cited in the table.

Since the stars are almost infinitely distant, so that the image is a point
source of light, a magnifying telescope will not show any enlargement of the
star image. The images of the s~, the planets and their satellites are not
point sources of light and magnification will enlarge their images and
therefore show them up as discs.

If the sky is kept under observation, it is quickly seen that, during the
year, the constellations shift across the sky so that certain of them can be
seen in the eastern sky immediately after s~set at one time of the year;
about six months later, these constellations will appear in the western sky
after s~set.

It will also soon appear that a few of the points of light in the sky behave
in a different way from the majority, because they appear to wander across the
background of the fixed star pattern. They take part in the overall movement
of the whole sky from east to west, but in addition this small band of
wanderers also appears to move relatively with respect to the unchanging star
background in an irregular manner. They appear to move at differing rates,
sometimes appearing to stop and sometimes even to move retrogressively. These
stars are called planets from the Greek word for a wanderer. Five planets are
visible to the naked eye. Venus and Mercury are always in the vicinity of the
sun. The other three visible planets are Mars, Jupiter and Saturn. All lie
in a fairly narrow belt in the sky.

2.12 A prominent object in the sky is the moon, which waxes and wanes over a
period of approximately a month. At the start of a cycle, it can be seen as a
thin crescent in the western sky after sunset. Gradually this crescent grows
until it appears as a semi-circle and then as a full circle at Full Moon.
After this it wanes to the semi-circle and finally disappears. The moon can
be seen to take part in the motion of the sky from east to west. If it is
watched at night, it can be seen to move across the fixed background at a
considerable rate towards the east. Between successive nights, the moon
appears to traverse an arc of about 130 across the sky. The moon also remains,
over the years, within a fairly narrow band in the sky.

2.13 At dawn, the sun rises over the eastern horizon and its light then hides
the stars and planets from the observer's view. It moves across the sky from
east to west, reaches its maximum altitude at noon and then sets in the evening
over the western horizon.

Because the s~'s light obscures the stars, it is not so easy to see that the
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sun also moves across the star background. If at sunrise or at sunset, the
stars in the sun's vicinity are noted over a period, it will quickly be seen
that they appear to be catching up with and overtaking the sun. From this, it
is clear that the sun, as well as the moon, is moving eastwards across the
star background. The sun, however, moves at the much slower rate of about one
degree per day and, after a year, appears to reach the same point with respect
to the star background.

The sun's noon altitude at a particular place varies from day to day over a
year16 cycle. The range of this variation in altitude in temperate latitudes
is 47 For instance, at Sydney in Australia, at a latitude of 340 South, the
sun's maximum midday altitude is 79~0 in midsummer, which occurs late in
December, and its minimum noonday altitude is 32~0 in midwinter six months
later.

2.14 The earth, which is the observer's platform, is a planet. Like other
planets, it travels round the sun in an orbit, which is slightly elliptical
with the sun at one of the focal points. The earth's path round the sun
defines the orbital plane and the elliptical path, which is very nearly
circular, has an average radius of approximately 150 000 000 kilometres.

The earth itself approximates closely to a sphere of radius 6 380 kilometres.
It spins round its own axis once in a day, which motion produces for all
persons, outside the Arctic Circle or the Antarctic Circle, alternate periods
of daylight and darkness. In addition, the earth travels round its orbit
once in a year.

The moon is a satellite of the earth, around which it travels at an average
distance of approximately 390 000 kilometres. If the planets are observed by
means ofa telescope, it will be seen that Jupiter has four main satellites,
which are easily visible, and that Saturn has a flat ring encircling it.

2.15 The stars, with the exception of one, which is the sun, are incredibly
distant from the earth. Even though they are, or may be, moving with high
individual velocities in individual directions. with respect to each other,
these movements have, over the period of recorded history, produced no obvious
changes in the constellation patterns.

Light from the sun takes about 8 minutes to travel from sun to earth. Light
from the next nearest star, Proxima Centauri, takes 4~ years to travel from
this star to the earth. This gives the information that the 150 000 000
kilometre radius of the earth's orbit subtends, at this star, the minute angle
of three quarters of a second of arc. From this information, one may deduce
that the earth's orbit can be considered to have a point dimension at the
centre of a sphere of infinite radius and that the stars may, for all
practical purposes, be considered to be situated on this sphere, which is
known as the celestial Sphere. On this account, therefore, the earth and the
sun may be considered to lie at the centre of the celestial sphere.

It is interesting to note here that, while most people subscribe to the
heliocentric view of Copernicus, the pre-Copernican idea of a geocentric
system is used as the model for much explanation in astronomy. The success of
this is due to the fact that the observer has all the time a geocentric view
of the sky and the celestial bodies.

Reference Circles on the Surface of the Earth

2.21 Any plane, intersecting a sphere and containing its centre, cuts its
surface along a circle of radius equal to that of the sphere. Such a circle
is a Great Circle. Any plane, which intersects the sphere, but does not
contain its centre, cuts its surface along a circle of radius less than that
of the sphere. (see Fig 2.1(a)) Such a circle is a Small Circle. The
relationships of spherical Trigonometry apply only to Great Circles.

Two intersecting planes A and B, containing the centre of a sphere, produce,
at their intersection, a straight line, which also is a diameter of the sphere.
If a third plane C intersects planes A and B and has their line of intersection
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(a) Great Circles and Small Circles

Fig.2. I

(b) The Dihedral Angle

as a normal, two additional lines of intersection are produced. The angle
between these two lines is the Dihedral Angle between the planes A and B. This
dihedral angle is produced, wherever plane C may lie, so long as it has the
original line of intersection as its normal. When C is tangential to the sphere,
the two lines defining the dihedral angle are tangents to the two great circles
formed by the intersection of planes A and B with the sphere. Since these two
circles are also tangential to the plane C, the dihedral angle is equal to the
spherical angle on the sphere between these two great circles. (see Fig 2.l(b)}

Any plane, which contains the earth's rotational axis, cuts its surface along
a great circle called a Meridian. All meridians (see Fig 2.1(c» therefore
pass through the two terrestrial poles and the angle at each pole between any
two meridians is equal to the dihedral angle between them. The meridian, which
passes through Greenwich, has been selected as the Prime Meridian. Any other
meridian is referred to the prime meridian by quoting its dihedral angle from
the prime meridian. This quantity is the Longitude A, which will be assumed
to be positive eastwards round from the Greenwich Meridian and negative west­
wards round. In practice, longitudes are usually quoted from Greenwich east
or west from 0

0
to 180°. Longitude east will be denoted by a positive sign or

by means of the letter E, and a west longitude by a negative sign or by the
letter w. (see Fig 2.1 (d) )

2.22 Any plane, which intersects the earth and has its rotational axis as a
normal, cuts the earth's surface in a circle called a Parallel of Latitude.
One of these is a great circle known as the Equator, which is the prime parallel
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of latitude. The others are all small circles. (see Fig 2.I(c».
The position of a place on the earth can be defined by specifying the

meridian and the parallel, on which it lies. This is equivalent to giving the
angle A between the Greenwich and the local meridians, which are both great
circles. This has been defined above as the longitude of the place. Since
parallels of latitude are small circles, produced by a set of parallel planes,
their positions, relative to the equator, cannot be defined by the angle
between them, but must be defined by means of an arc length on the sphere along
the local meridian from the equator to the local parallel. This arc length is
known as the latitude ¢. Since the length between two points on a sphere is
defined as the angle, which the arc of a great circle between these two points
subtends at the centre of the sphere, the latitude ¢ is therefore the angle,
which its arc length, defined immediately above, subtends at the earth's
centre (see Fig 2.l(d». Latitude starts from zero at the equator and is
considered to be positive northwards, negative southwards. Latitude north may,
therefore, be denoted by a positive sign or by means of the letter N beside
the value, and a south latitude by a negative sign or the letter S.

Reference Circles on the celestial Sphere

2.31 The earth rotates about its own axis. If this terrestrial axis is
produced outwards in both directions into the sky, it will intersect the
celestial sphere at two points known respectively as the North Celestial Pole
and the South Celestial Pole.

The stars appear to rotate about these poles. In the constellation of the
Lesser Bear, there is a bright star (a Ursae Minoris) of magnitude 2.1 called
Polaris, because it lies very close to the north celestial pole. As a result
of this, it has held a very special place in man's reckoning as it shows
continuously where north is and, for an observer at a particuiar station, it
maintains its altitude practically unaltered unlike other stars. This is not
so, in the southern hemisphere, where there is a dearth of visible stars in
the vicinity of the south celestial pole. However, there is a faint star,
a Octantis, of magnitude 5.5, within one degree of the south pole. It cannot,
like the northern Pole Star, be seen easily by the naked eye but requires a
telescope, with which it may be viewed at night.

The earth's axis of rotation very nearly maintains its direction in space.
In other words the earth's axis points to a certain spot in the sky and only
departs from this spot at a very slow rate indeed, except for minor periodic
effects. In other words, tl1e two pole stars cited above will remain close to
the celestial pole for many years to come.

If the earth's Equatorial Plane is extended out to cut the celestial sphere,
it will intersect this along a great circle called the celestial Equator, which
lies mid-way between the Celestial Poles. All planes parallel to the equatorial
one will cut the celestial sphere in small circles, called Parallels of
Declination. The celestial equator is, of these, the only one which is a
great circle and it therefore is taken as the prime declination circle, to
which the others are referred.

2.32 Fig 2.2 shows a plan view of the earth's orbit with the sun at one focus
point of this elliptical path. Its eccentricity is much exaggerated in this
diagram, as the actual orbit differs only slightly from a circle. The north
pole of the earth is shown to project upwards out of the plane of the paper at
an oblique angle to the orbital plane. The upper side of the earth's equator
is also shown. The earth's axis maintains a constant spatial direction. The
earth moves round its orbit from A to B to C to 0 and back to A in one year.
The earth-sun radius vector is the line from earth to sun and therefore, for
an observer on the earth, the sun appears to lie always on the orbital plane,
projected out on to the celestial sphere. This great circle is known as the
Ecliptic. On account of the earth's movement round its orbit, the sun
therefore appears to traverse the ecliptic once a year and therefore to shift
across the star background in this time.
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The seasons are produced not because the sun is sometimes closer to and
sometimes further from the earth, but because the earth's axis of rotation is
inclined and not perpendicular to the plane of its orbit. When the earth is on
the side towards A of the Equinoctial Line BD, the sun is north of the equator
and it shines with increasing intensity on the northern hemisphere of the
earth until it reaches its maximum distance north of the equator at the summer
solstice in June. The sun then comes back to the equator when the earth moves
towards the equinoctial point B and summer passes through autumn, with the sun
moving to a position south of the equator. Winter now ensues with the sun
shining less intensely on the northern hemisphere. (see Fig 2.2) It shou~d

be noticed that al~ these seasonal tenms refer to the Northern Hemisphere.

2.33 The information in section 2.15 indicates that the radius of the earth's
orbit, large as it may seem to the earth dweller, may be considered to be
infinitesimally small as a length by astronomical standards. The whole orbit
may therefore be considered to be so small that any point in it may be taken
as lying at the centre of the celestial sphere. (see Fig 2.3)

The ecliptic is the great circle produced, on the celestial sphere, by
extending the orbital plane to intersect this sphere. This has poles as shown
lettered EPN and EPS' The earth's rotational axis produced out intersects
the celestial sphere as shown at PN and PS' This axis is not normal to the

EPN Celestial Longitude
Circle

Fig.2.3

EPs
lO .orbital plane, but deviates from this normal by about 23-i between It and the

ecliptic and there is a line of intersection between the two planes. This
line of intersection defines the two points of intersection which, on the
celestial sphere are shown as the two equinoctial points. The point at B in
Fig. 2.2 is projected out onto the ecliptic. This point (see Fig 2.3) is the
one, where the sun appears to be at the Vernal Equinox when it is crossing the
equator from south to north. This point is known as the First Point of Aries,
and is indicated by the zodiacal sYmbol of the ram's horns. Opposite the
vernal equinoctial point is the First Point of Libra which is indicated by the
symbol of the scales.

2.34 If a series of planes, each containing the earth's axis is extended out
to intersect the celestial sphere, each will produce a great circle of Right
Ascension, and each will also intersect the two celestial poles. That one,
which also passes through the First Point of Aries, can be considered as the
prime right ascension circle. This circle has a value of zero right ascension.
The right ascension value of any other such circle is given by the dihedral
angle between it and the prime right ascension circle. The direction of this
numbering system is such that the right ascension circles cross a given
meridian in the order of their numbering. A useful method of remembering is
to consider that right ascension increases towards the east.

The declination of a point P is equal to the angle subtended at the centre
of the celestial sphere by the arc length along the right ascension circle
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through P from the equator to the point P. If north, it is lettered N or
North and, if south, S or South (see Fig 2.4). The position of a point on the
celestial sphere can now be specified by defining the parallel of declination
and the right ascension circle on which it lies. Such coordinates are known as
right ascensAon ~ or a and declination O. The former is given in time
units from 0 to 24 and the latter in degrees from 0

0
to 90

0
.

Right Ascension and Declination

Fig.2.4

Celestial Latitude and Longitude

It is obvious from these explanations that terrestrial latitude and longitude
are not the same as, but are exactly analogous to, right ascension and declination.
The first is the system for defining a terrestrial position and the second that
for defining a celestial position. Each of these systems is independent of time
because, for each, the reference circles are carried around together with the
surface, to which the system refers.

2.35 There is, on the celestial sphere, a secondary system (see Fig 2.4) for
defining position on it. In this system any plane parallel to the ecliptic
cuts the celestial sphere, in a series of parallels of celestial latitude
having the ecliptic as the reference parallel of zero celestial latitude.
Northern celestial latitudes are labelled N or North and southern ones S or
South. The circles on the celestial sphere produced by planes containing the
poles of the ecliptic provide a set of celestial longitude circles. TIlat one
passing through the First Point of Aries is the zero celestial longitude circle
and the longitude values increase also towards the east. (see Fig 2.4)

The position of a point on the celestial sphere is specified by defining the
parallel of celestial latitude and the circle of celestial longitude, on which
it lies. The symbols used for celestial longitude will be A and for celestial
latitude S.

Observation Circles linking the Terrestrial and the Celestial Spheres

2.41 The two main systems, one of latitude and longitude on the earth and the
other of right ascension and declination on the celestial sphere have been set
out. They have the earth's axis of rotation common to them. Due to the earth's
rotation, there appears to be a relative motion of one system with respect to
the other. This can be expressed either way, because the motion is relative,
in the statement that the sky rotates about the earth from east to west or that
the earth rotates from west to east with respect to the sky. The relationship
between these two systems is a straightforward time rotation one. The time
system relationships will be dealt with in Chapter 3.

2.42 In addition, there is the surveyor's or the observer's system for defining
the position of a point on the celestial sphere. This is a gravity dependent
system, which uses the local vertical as the reference line and the local
meridian as the reference direction. It has long been used because the simple
levelling bubble made it possible to define the vertical and the horizontal

-16-



so easily.
The surveyor's theodolite is the instrument constructed to measure in this

system. The theodolite has a vertical axis, which can easily be set very
closely, but never exactly, except by occasional chance, into the vertical at
any station. Attached to the vertical axis is a graduated circle, so
constructed as to be horizontal when the vertical axis is set vertical, and a
vertical circle is also attached so that it then occupies a vertical plane.

When the theodolite is set up, i.e. when its vertical axis is set vertical,
horizontal directions and vertical angles can be observed. If now the
horizontal circle is set to read zero when the telescope is pointed northwards
along the meridian through the theodolite, the observer has a reference system
for setting out, by means of a horizontal circle reading and a vertical circle
reading, any point he wishes to define. Most modern theodolites have vertical
circles so graduated that on one face the zero coincides with the zenith, 900

&'2700 with the horizontal and 1800 with the nadir.

2.43 The zenith is defined as the point on the celestial sphere where the
vertical axis of the theodolite, projected upwards, intersects it. Similarly,
the nadir is the point on the celestial sphere where this axis, projected
do~~wards, intersects the celestial sphere. A plane, passing through the
zenith and the nadir of a particular station, cuts the celestial sphere in a
great circle called a Vertical or an Azimuth Circle. Th~t circle, which
coincides with the northern branch of the local meridian, is the zero azimuth
circle. The azimuth numbering then increases from this zero northwards to 90

0

towards the east and.so right round to 3600
. That azimuth circle, perpendicular

to the meridian, is called the Prime Vertical and its azimuth eastwards is 90
0

and westwards 270 0
•

If a theodolite is set up and levelled, the telescope clamped at a specific
angle of altitude and the whole alidade rotated about the vertical axis, the
line of sight in the telescope will then describe a small circle of specific
altitude on the celestial sphere. Such a family of circles produces a set of

z

Vertical or

Azimuth Circle~

Fig.2.5

Meridian

parallels of altitude, with the main circle the great circle perpendicular to
the vertical axis and therefore having zero altitude. This circle is the
sensible horizon, which, as far as referring it to the celestial sphere is
concerned, is the same as the plane parallel to the horizon and passing
through the earth's centre. This distinction must not be forgotten when the
comparatively close sun, moon and planets are observed, when a correction
(parallax) must be applied to observations of altitude made from the earth's
surface instead of, as they should be, from the earth's centre (see section
4.54) •

The parallels of altitude are often more conveniently dealt with by
referring them to the zenith and providing the zenith distance instead of the
altitude. From this, it is clear that altitude h and zenith distance z
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are complementary quantities, i.e. z = gO-h. A specific parallel of altitude
is often called an equal altltude circle or an almucantar. The angle a at
the zenith between the meridian towards the elevated pole and the vertical
circle through the star is the azimuth angle (see Fig 2.5). The observer can
now use this system for defining a point by specifying its azimuth or its
azimuth angle and its altitude or zenith distance.

The Link between the Systems

2.51 The crux in the understanding of field astronomy lies in the understanding
of the linking up of the celestial systems of right ascension and declination
and of celestial latitude and longitude with those of azimuth and altitude.

2.52 The local meridian of a place or station P is that one passing through
Pand the two terrestrial poles. The plane of this circle, extended outwards
to the celestial sphere, will therefore pass through the two celestial poles and
also through the zenith and the nadir of the station P. These two points are
those, at which the line containing the vertical axis of a theodolite set up at
P will intersect the celestial sphere.

The upper branch of this local meridian goes from one pole through the zenith
of p to the other pole, while its lower branch likewise goes from one pole
through the nadir of P to the other one. Half the local meridian circle is
visible from the station P. This semi-circle goes from one side of the horizon
through the elevated celestial pole and the zenith of P to the other side of
the horizon. (see Fig 2.6)

Southwards-

Visible Portion of Local Meridian

Upper Branch

Fig.2.6 Local Meridian Section
Northwards

Of the upper branch of the local meridian, that portion from the elevated
celestial pole over the zenith and down to the horizon is visible from P. In
the opposite direction from this pole, that section of the local meridian
visible from the elevated celestial pole down to the horizon is part of the
lower branch of this meridian. A star, crossing over the upper branch of the
meridian is said to be making its Upper Transit, whereas one crossing the lower
branch is said to be making its Lower Transit. At both these times, the star
is moving horizontally, but for the former it moves from east to west and for
the latter in the opposite direction.

The local meridian of P sweeps continuously across the celestial sphere.
For clarity and easier understanding, the meridian may be considered
stationary and the stars to be moving across it.

2.53 A plane, passing through the two celestial poles and a star, cuts the
celestial sphere in a great circle called an Hour Circle. Such a circle is
similar to a right ascension circle but it is unnumbered. The dihedral angle
between an hour circle through a particular celestial body and a local meridian
at a particular moment is the local hour angle of this body at this instant
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Zenith

Fig.2.7

p

Nadir

(see Fig 2.7). This angle is measured from the meridian as zero and it varies
directly with time, because the celestial body is continuously rotating with
respect to the local meridian.

2.54 It is now necessary to bring the various systems together in Fig 2.8 to
be able to consider their relationships with respect to each other. Fig 2.6
shows a particular meridian, on which lie the celestial pole P and the
zenith Z. The two great circles equator and horizon, of which these two
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Fig.l.8
The Spherical Triangle

Q in Field Astronomy
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points are respectively the poles, are also shown. Fig 2.7 shows the hour
circle and the local hour angle with respect to the local meridian. The
length along the meridian from R to P in Fig 2.8 is equal to the altitude
of the elevated pole. A glance at Fig 2.6 enables one to demonstrate that
"the altitude of the elevated pole at a specific station is equal to the
latitude at this station". In this statement, the sign of the latitude value
is dispensed with.

THE SPIJERICAL TRIANGLE OF FIELD ASTRONOIvlY

2.61 AS Fig 2.8 shows, this triangle on the sphere is the spherical triangle
PZS bounded by portions of a local meridian, an hour circle and an azimuth
circle. The apex points of this triangle are the elevated pole, the observer's
zenith and a star. In it are linked the three systems of altitude and azimuth,
right ascension and declination as well as latitude and longitude. It should
be noted that this spherical triangle could be one in which the star 8 did
not lie on the same side of the equator as the observer and his elevated pole.
This is shown by placing a second star at 8' in Fig 2.8. The spherical

-19-



triangle would then be the one with apex points at P, Z and 8' and, in
this case, the zenith distance and polar distance would cross over the equator.
Normally, in this system, the observer always uses the elevated pole. He
therefore changes his elevated pole on crossing the equator. Furthermore, the
restriction is imposed that no element of this spherical triangle shall exceed
180

0
.

The spherical triangle of field astronomy therefore is defined by the three
apex points, elevated pole, zenith and star. The lengths of its sides are then:-

ZS or ZS I

PZ
PS or PS'

zenith distance
colatitude
polar distance

z
c
p

90 - h
90 - cp
90 ± <5

in which cp, <5 and h are considered to be unsigned quantities and the
positive sign in the expression for p is used only when <5 and cp are of
contrary name, i.e. they are on opposite sides of the equator.

The elements in this spherical triangle must be deduced from the astronomical
elements, e.g. if the azimuth is given as 330°, the azimuth angle a in the
corresponding spherical triangle is either 30

0
or 150°. Similarly elements

obtained from the solution of the spherical triangle must be translated into
the corresponding astronomical elements.

The above method can be used, but the solutions from the spherical triangle
are encumbered with sets of special rules for the various situations
encountered. The restrictions of the spherical triangle and the constant
manipulation of the information for, and the answers of, each solution from
this triangle make the method laborious and liable to error. The cumbersome
navigation tables and the need for differentiating between the case of
"Latitude and Declination of the Same Name" and that of "Latitude and
Declination of opposite Name" are being rendered obsolete now because
computations are being carried out by means of the electronic computer. For
this reason, it is better to develop a system, which copes automatically with
all the possible variations of the spherical triangle, encountered in
astronomy. For these and other reasons, which will be seen as the
following sections are read, a generalized system for solving the Astronomical
Triangle has been worked out and expanded further ahead in this chapter.

The Relationships of Spherical Trigonometry

2.62 For the computation, the
Because they will be constantly
In the spherical triangle WXY

equations of spherical trigonometry are required.
referred to, they are given here.
the following relationships hold:

Cosine Formula cos w cos x cos y + sin x sin y cos W

Five Parts
sin X sin sin Ww cos cos x y - x cos y cos

Formula
sin W sin X sin Y

Sine Formula
sin sin sinw x y

Four Parts
cot y sin cot Y sin W + x cox Wx cos

Formula

Polar Cosine
-cos W X cos Y - sin X sin y cos wcos

Formula

Polar Five
sin W cos X sin y + sin X Yx cos cos cos w

Parts Formula
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::'fferential sin w dY -cos X sin y dW cos w sin Y dx
?e~ationships

+ sin X dy

dw sin x sin Y d~.y + cos Y dx

+ cos X dy

-dW -sin X sin y dw + cos Y dX

+ cos x dY

cos w sin X dw -sin w cos X dX + cos x sin W dx

+ sin x cos W dW
;

_:",dditional Formulae

Half Angle sin2
~ sines-x) sin(s-y)== cosec x cosec y

Formulae cos 2 Jzw sin s sin(s-w) cosec x cosec y

tan£ ~W sin (s-x) sin(s-y) cosec s cosec (s-w)

in which 2s w + x + y

Napier's tan ~(X+Y) cos ~ (x-y) sec ~(x+y) cot ~W

Analogies tan ~ (X-Y) sin ~(x-y) cosec Jz (x+y) cot },zW

tan Jz(x+y) == cos },z (X-Y) sec !z(X+Y) tan 1.zw

tan ~(x-y) sin ~(X-Y) cosec},z(X+Y) tan !2W

The polar form of anyone of the formulae of spherical trigonometry can be
derived by substituting 180-W for W, 180-x for X etc. This has been done
below in the Cosine Formula as an illustration. It should be noticed that the
Four Parts and the Sine Formulae transform back into themselves when this
process of changing an angle for a side, and vice versa, is carried out.

The Polar Cosine Formula, for instance, is obtaineq by making the above
substitution in the Cosine Formula

as follows:

cos w cos x cos y + sin x sin y cos W

cos (180-W)

-cos W

cos (180-X) cos (180-Y) + sin(180-X) sin (180-Y) cos (180-w)

cos X cos Y - sin X sin Y cos w

Case I

Case II

For the solution of a spherical triangle, four elements, out of the total of
six, must be linked in one of the spherical trigonometry relationships. These
four elements may be made up of the following sets:-

(a) Three sides and one angle
(b) Three angles and one side.

Two angles and two sides with
(a) four cyclically consecutive elements
(b) two angular elements lying opposite two side elements.

Table 2.2 below sets out the twelve various ways of solving for the fourth
unknown, when three of the elements in the spherical triangle WXY are given.
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No. Given

1 Two sides x,y and
included angle W

2 " "

3 Two angles X,Y and
included side w

4 " "

5 Three sides w,x,y

6 Three angles W,X,Y

7 Two sides w,x and
angle W opposite w

8 " "

9 " "

10 Two angles W,X and
a side x opposite X

11 " "

12 " "

Table 2.2

Sought

Angle opposite one
of the two sides x,y

Third side w

Side opposite one of
the two angles X,y

Third angle W

Angle W

Side w

Angle X opposite
other side x

Angle Y contained
between two sides w,x

Third side y

Side w opposite W

Side y not opposite
either W or X

Third angle Y

Solution

Four Parts Formula

Cosine Formula

Four Parts Formula

Polar Cosine Formula

Cosine Formula

Polar Cosine Formula

*Sine Formula

**Four Parts Formula
in implicit form for Y

**Cosine Formula in
implicit form for y

*Sine Formula

**Four Parts Formula in
implicit form for y

**Polar Cosine Formula
in implicit form for Y

* In these two cases, the ambiguity may be resolved from the rule that,
according as the sum (w+x) is greater or less than 180°, so the sum(W+X) is
greater or less than 180°.
** These formulae are all in the implicit form for the unknown sought. They
can be solved by dropping perpendiculars from apex Y to base y and solving the
two right angled triangles from which the unknown can be obtained (see section
A.41 in the appendix for one such example). Ambiguities must then be resolved
by means of some additional piece of information.

Therefore, when a solution is being sought, it is necessary to note what
information has been given and what is required, to fit this into the twelve
possible cases given above and then to name the elements by lettering the apex
points of the spherical triangle with W, X and Y at the appropriate points.

2.63 The differential relationships of section 2.62 give the result of small
variations in the elements of the spherical triangle. The first, the second
and the fourth relationships are obtained by differentiation of the Four Parts,
the Cosine and the Sine Formula respectively (see section A.31 in the appendix
for this detail). The third relationship is the polar form of the second one.
If this method is applied to the first and the fourth relationships, they come
back to themselves, just as do the functions, from which these differential
relations are derived.

THE ASTRONOMICAL TRIANGLE OF FIELD ASTRONOMY AND THE GENERALIZED CONVENTIONS
IN THIS TRIANGLE

2.71 THE elements of the spherical triangle of field astronomy of Fig 2.8 and
of section 2.61 have been generalized and conventionalized in the astronomical
triangle of field astronomy to develop a more efficient system of calculation
and mathematical manipulation of these elements and to take advantage of the
great power of the electronic computer.

Some of these elements have already been conventionalized, e.g. latitude
and declination have long been considered positive north and negative south
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of the equator and right ascension likewise has been taken to increase east­
wards. The implications of these conventions are, however,not so obvious.
They are that the first two are quantities-, which exist only in the first and
the fourth quadrants, whereas right ascension exists in all four.

The further conventions postulated below give rise to the generalized
spherical triangle, which, it is proposed, shoulD be called the Astronomical
Triangle. In it, these generalized conventions liberate this triangle from
the restrictions and anomalies of the spherical triangle of field astronomy to
produce a much more flexible and a much more efficient system.

The Astronomical Triangle

2.72 This is the spherical triangle with the apex points at either of the
celestial poles (which mayor may not be the observer's elevated pole) the
observer's zenith and the star (see Fig 2.9). In this triangle, the viewer is
considered to be looking down on to the observer's zenith from outside the
celestial sphere. Both the northern and the southern astronomical triangles
are shown and also the situations of star west and of star east of the meridian.

West

N
l" I0 t::

\D
0 oj -e-

0 e. :3
,

0... 0>--e- Q)

~

(;i
u
o \D

,..J 0

+
-e-

Fig. 2.9 The Astronomical Triangle

In this triangle, neither sides nor angles need be restricted in size. The
generalized conventions enable the astronomical triangle to be solved without
ambiguity, even if the computation or the manipulation is complex, provided
these conventions are used and the resulting signs of the trigonometrical
functions are carefully followed through the computation (see section 2.73).
The generalized system postulated above succeeds in releasing the self-imposed
bonds, inherent in working with the spherical triangle of field astronomy, but
the ambiguous solutions, indicated in Table 2.2, still remain present in both
systems, except that this has been overcome in the example for the general
latitude solution as shown in section 5.21.

2.73 The definitions and conventions for the generalized system are given
below.
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Name Symbol Definition and Sign Convention Possible
Quadrants

Longitude It Angle at terrestrial poles or I 2 3 4
dihedral angle between local
meridian and Greenwich Meridian;
positive eastwards from the
Greenwich Meridian as zero

..

Latitude ep Angle subtended at centre of the I - - 4
terrestrial sphere by arc of
meridian from equator to point
specified; positive north\,yards
and negative southwards from
equator as zero

Right RA Angle at celestial poles or I 2 3 4
Ascension or ex dihedral angle between the hour

circle of the First Point of
Aries and that of a point
specified; positive eastwards
round from zero at the First
Point of Aries

Declination 0 Angle subtended at centre of 1 - - 4
the celestial sphere by arc of
hour circle from equator to
point specified, positive
northwards and negative south-
wards from equator as zero

Local Hour t Angle at poles or dihedral angle I 2 3 4
Angle between the local meridian and

the hour circle through the point
specified; positive westwards
from this meridian as zero

Azimuth A Angle at zenith or dihedral angle 1 2 3 4
between the northern branch of the
local meridian and the azimuth
circle to the point specified;
positive eastwards round from north
as zero

\Altitude h vertical angle from horizon upwards I - - 4
to the zenith as positive and
downwards to the nadir as negative
with the horizon as zero

Zenith z Vertical angle downwards from 1 2 - -
Distance zenith to nadir with zenith as

zero

Parallactic w Angle at star between its hour circle 1 2 3 4
lzI..ngle northwards as zero eastwards round to

the azimuth circle through the star

2.74 The spherical trigonometry relationships of section 2.62 can now be
generalized for use in the astronomical triangle by substituting in them the
elements of this triangle as shown in Fig 2.9. Anyone of the four possible
variants may be used as starting point and, if the relevant elements are
substituted, the same end result will be obtained. This is demonstrated for
the four cases with respect to one of the spherical trigonometry relationships
(see appendix section A.21 for manipulation of complex angles and their
trigonometrical functions).
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In the northern astronomical triangle, the Sine Formulae become

(i) to the west
sin t sin (360-A) sin w

= sin (90-0)
=

sin(90-h) sin(90-¢)

sin t sin A sin w
= -

0 =
cos ¢cos h cos

(ii) the east
sin (360-t) sin A sin(360-W)

to = sin(90-0)
=

sin(90-¢)sin(90-h)

sin t sin A sin w
= -

0
=

cos cbcos h cos

In the southern astronomical triangle, these become

(iii) to the west
sin t sin (A-180) sin(180-w)

=
sin(90+0) =sin (90-h) sin (90+¢)

sin t sin A sin w
= -

0 =cos h cos cos ¢

(iv) to the east
sin (360-t) sin (180-A) sin (w-180)

= sin(90+0) =sin (90-h) sin (90+¢)

sin t sin A sin w
= -

<5
= cos cbcos h cos

By means of a similar approach~ the same can be shown to hoZd for any of the
other relationships of section 2.62 to obtain generalized relationships for
the astronomical triangle.

Because so much calculation or computation is required in a course of field
astronomy, it is considered to be an advantage to have these generalized
relationships readily available. The substitutions have therefore been made
for the frequently needed cases and these are given below in section 2.75.
The derivations of first and second differential relationships are given in
sections A.3l to A.33.
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2.75 Generalized Spherical Trigonometry Formulae for Use in the Astronomical
Triangle

Cosine
Formula

Polar Cosine
Formula

Five Parts
Formula

Polar Five
Parts Formula

sin 0

sin ep

sin h

-cos A

-cos W

-cos t

cos 0 cos t

cos 0 cos W

cos ep cos A

cos ep cos t

cos h cos w

cos h cos A

-sin A sin h

-sin A sin ¢

-sin w sin cS

-sin w sin h

sin h sin ep + cos h cos ep cos A

sin 0 sin h + cos 6 cos h cos w

sin ep sin 0 + cos ep cos 0 cos t

cos t cos w - sin t sin w sin 0

cos A cos t + sin A sin t sin ep

cos w cos A + sin w sin A sin h

sin h cos ep - cos h sin ep cos A

sin ep cos h - cos ep sin h cos A

sin 0 cos h - cos 0 sin h cos w

sin h cos 0 - cos h sin 0 cos w

sin ¢ cos 0 - cos ep sin 0 cos t

sin cS cos ep - cos 0 sinep cos t

cos t sin w + sin t cos w sin 0

= cos W sin t + sin w cos t sin 0

= -cos A sin t + sin A cos t sin ¢

= cos t sin A - sin t cos A sin ep

-sin t sin ep = cos W sin A - sin w cos A sin h

-sin t sin 0 = -cos A sin w + sin A cos W sin h

Four Parts
Formula

tan cS cos ep =
tan cS cos h =

tan ep cos h =
tan ¢ cos 0 =
tan h cos 0 =
tan h cos ep =

sin ep cos t - sin t cot A

sin h cos w - sin w cot A

sin h cos A - sin A cot W

sin 0 cos t + sin t cot W

sin 0 cos w + sin w cot t

sin ¢ cos A - sin A cot t

Sine Formula

Differential
Relationships

sin t/cos h = -sin A/cos 0 = sin w/cos ¢

dh = cos ¢ sin A dt + cos A d¢ + cos w do

d¢ = -cos 0 sin t dw + cos t do + cos A dh

do = cos ep sin t dA + cos w dh + cos t d¢

dA = sec h cos w cos 0 dt + tan h sin A d¢

dW = -sec h cos A cos ¢ dt + sec h sin A d¢

dt = -sec ep cos A cos h dw + tan ¢ sin t do

dA = sec ¢ cos t cos 0 dw + sec ¢ sin t do

dw = sec 0 cos t cos ¢ dA - sec 0 sin t d¢

dt = sec 0 cos w cos h dA + tan 0 sin t d¢
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Second differential coefficients with ~ and 0 being held constant are

~~~ : { cot t + tan h :}

= - cos ~ cos A(tan h cos ¢ cos A - sin ¢)

~~ ~ (cot t ~ + tan h)

- sec ~ cot A cosec A(tan¢ cosec A - tan h cot A)

cos ~ sec2 h sin A(gin 0 cos h -2 cos ¢ cos A)

- sec2 h cot w(sin h + 2 cot A cosec 2 w)

It must be realized that, in this generalized system, Napier's Rule of
Circular Parts for a right-angled spherical triangle should not be used,
because this rule does not always differentiate between an angle of 90° and one
of 270°. As a result, the sign convention is destroyed. Therefore, if an angle
of 90° or 270° occurs, its value must be inserted into the generalized
relationship and the rule of signs observed. This does not give trouble, when
the cosine of this angle is used as each gives a zero for this function.

Calculation Example

2.76 Determine the remaining elements of the astronomical triangle in which
the latitude is 26° North, the declination 50° South and the hour angle 3 hours
east.

i.e. - 500 t

of section 2.62 are available, then W is equated
with the zenith and Y with the star. This gives the

pole as the angle included between the latitude and the

If only the relationships
with the north pole, X
hour angle at the north
declination sides.

The Cosine Formula of <3ection 2.62 gives

cos w cos x cos y + sin x sin y cos W

cos(90 - h) cos(90-o) cos(90-~) + sin(90-o) sin(90-¢) cos t

sin h sin 0 sin ¢ + cos 0 cos ~ cos t

which is exactly what the relationships of section 2.75 give.

sin h sin 0 sin ~ + cos 0 cos ¢ cos t

sin(-50) sin(+26) + cos(-50) cos(+26) cos(315~

0.07271

h or +175°49'50"

But by definition and convention, the altitude lies only in the first or fourth
quadrants and therefore

h = + 4°10'10" or above the horizon

To solve for the azimuth, it is necessary to link the four consecutive
elements A, ¢, t and o. This requires the Four Parts Formula. For an
illustration, and only for demonstration purposes, W will be placed at the
south pole, Y at the zenith and X at the star.
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cot Y sin w + cos x cos Wcot y sin x

cot(90+o) sin (90+¢)

-tan 0 cos ¢

-tan 6 cos ¢

cot A sin t

cot A

cot (180-A) sin(360-t) + cos(90+¢} cos (360-t)

(-cot A) (-sin t) + (-sin ep) cos t

cot A sin t - sin ¢ cos t

Sln ¢ cos t tan 0 cos ¢

sin ep cot t - tan 0 cos ep cosec t

sin(+26) cot 315 - tan(-50) cos(+26) cosec 315

-1.95 319

to the nearest 10"

can be unambiguously
The cotangent of the

its sine or cosine is

Before A
required.
of either
uniquely.

Now from the Sine Formula

determined, a second piece of information is
azimuth is negative as shown above. If the sign
known or can be determined, then A is known

sin A = -sin t cos 0 sec h

in which cos 0 and sec h are both positive since 6 and h exist only in
first or fourth quadrants. Therefore, sin A has sign opposite to that of
sin t. But sin t = sin 315 = negative and so sin A is positive. Thus,
with its sine positive and its cotangent negative, the azimuth lies in the
second quadrant (see section 2.77 for a superior alternative).

A = 152°53'20"
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From this solution for t from the cosine, double values, either one in first
quadrant and one in fourth or one in second quadrant and one in third, are
obtained. It is not possible to get the correct value without knowing whether

Another way of doing the same is to remember that the hour angle of 315°
indicates that the star was east of the meridian and therefore of the two
possible values of the azimuth, the value 152°53'20" is the one on the eastern
side of the meridian.

From a similar calculation and reasoning, w is calculated by linking the
four consecutive elements w, 0, t and <P in the Four Parts Formula. W is
put at the pole, Y at the star and X at the zenith and the required
relationship for the astronomical triangle is then determined and used to
calculate w as 320°24' 50" without any ambiguity.

If the relationships of section 2.75 are available, then these relationships
can be used directly without the necessity of deriving them in the manner
demonstrated above. The calculation is checked thoroughly by substitution of
the elements computed in the Five Parts Formula and less thoroughly by
substitution in the Sine Formula, which gives only a partial check and, in some
cases, when any of the elements is near a right angle, the check lacks accuracy.
It is to be noted that such lack of accuracy does not occur when the tangent or
the cotangent is used as these functions are sensitive over the whole of their
range, even when the functions have very large values indeed.

2.77 From the above, it comes out that at least two independent facts must be
known before an unambiguous solution can be obtained. One fact known leads to
double answers and the second fact enables the unique answer to be selected.
If one takes the determination of hour angle t from an observed altitude h,
a known declination 0 and a known latitude <p, the relationship connecting
these elements is the Cosine Formula which, taken direct from the generalized
relationships of section 2.75, is

sin <p sin 6 + cos <p cos 0 cos t

sec ¢ sec 6 sin h - tan <p tan 6cos t

sin h



the observation was made towards the west or towards the east.
One function, however, can be used to give unique answers because it is

derived from two pieces of information. This function is the tangent, which
can be expressed in the form of a numerator and denominator as

tan x = sin x
cos x

N
D

x is then uniquely determined by the pair of signs specified by Nand D
as the quadrant is determined from the signs shown in Table A.l of section A.21.
For example, from section 2.75,

tan A
sin A

cos A
-sin t cos 0 sec h

(sin 0 cos ¢ - cos 8 sin ¢ cos t)sec h

in which the numerator comes from the Sine Formula and the denominator comes
from the Five Parts Formula.

- sin t
tan A

tan 0 cos ¢ - sin ¢ cos t

because cos 8 and cos h are always positive.
Likewise

tan {)j
sin {)j sin ()j cos h

=
cos w cos w cos h

sin t cos p
sin ¢ cos 8 - cos ¢ sin 8 cos t

sin t
tan cP cos 8 - sin 0 cos t

tan(-50)cos(+26)-sin(+26)cos(315)
tan A

because cos cP and cos h are always positive.
When the values of the elements used in the example of section 2.76 are sub­
stituted in these relationships, then

- sin 315

+ 0.707 107
- 1. 381 116

This indicates a second quadrant angle for the azimuth and therefore

A

Likewise
tan w sin 315

tan(+26)cos(-50)-sin(-50)cos 315

- 0.707 107
+ 0.855 184

This indicates a fourth quadrant angle for the parallactic angle and therefore

{)j 320°24'50"

2.78 Example. To illustrate the power and certainty of computing in the
astronomical triangle rather than in the spherical triangle, let it be required
to find the azimuth to the above star at an instant 20 minutes of time earlier.

i.e.
m

-20 -5° -18 000"

in an angle dY
two included sides

(ll t) z
dzA

at this moment.

lit + !z

t 310°
Series expansion,

dA
A310 = A315 +

dt315

and
From a Taylor

2
dt315

From the spherical trigonometry relationships, the change
resulting from changes in the included angle dW and the
dx and dy is given in section 2.62 by
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sin w dY - cos X sin y dW - cos w sin Y dx + sin X dy

To obtain the generalized relationship from this and also to illustrate the
manipulative process, the southern astronomical triangle of Fig 2.9 with the
star east will be taken for the starting point.

The change in the azimuth is to be found in terms of a change in the hour
angle, which is the included angle, a change in the declination and in the
latitude sides, which are the including sides. W is therefore put at the
South Pole, at which the hour angle lies. The change in azimuth dA is to be
associated with the azimuth A at the zenith so that Y is put at this point.
X then falls at the third apex, i.e. at the star.

Then the differential relationship above becomes

sin (90-h) d(180-A) = -cos(w-180) sin(90+o) d(360-t)

-cos (90-h) sin(180-A) d(90+¢)

+sin(w-180) d(90+0)

- cos h dA -cos w cos 0 dt - sin h sin A d¢ - sin w do

sec h cos w cos 0 + tan h sin A ~ + sec h sin w ~~

with ¢ and

and then

dA
dt

held constant ~ and

dA
dt = sec h cos w cos a

do
dt

are each zero,

sec2h cos 0 cos ¢ (sin w cos A + cos W sin h sin A)

d dA
(--) - -sec h sin Wdt dt -

and awhen-sec h cos A cos ¢

dw dh
dt cos 0 + sec h tan h dt cos w cos 0

dw
dt

and¢ sin Acos

zdt
dh
dt

held constant.
dzA

are

But

dt2

Substituting numerical values gives

dA
dt

sec(+4°10') cos(32002S') cos(-SOO)

0.49671

sec 2(+4°l0') cos(-SOO) cos(+26°) [ sin(32002S')cos(lS2°S3')

+ cos(32002S') sin(+4°10') sin(152°53')]
0.3442

152°53'20" + (0.49671) (-18000")

+ !.2. ( 0.3442) (-18000")2 sin 1"

:= 152°53'20" - 2°29'01" + 0°04'30"

But 150°28'50" by direct solution

The use of a series, which embodies the differential coefficients, which, so
often in field astronomy, are somewhat awkard, is avoided, because the direct
solution with the altered data can nowadays so easily be repeated.
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3
Time and Time Keeping

INTRODUCTION

THE rotation of the earth about its own axis at the centre of the celestial
sphere provides the basic requirements of a time system.. These are regular
recurrences of a phenomenon, which can be observed and which continues
unfailingly. The basic unit of a time system should be of uniform length. It
is most convenient if this interval is a reasonably short one, so that
recurrences of the event are frequent and so that the interval between
successive events can be successfully bridged, without too much difficulty, to
obtain an accurate uniform subdivision of the unit of time.

The time units available are the year, the month and the day. The year
served as the husbandman's indicator of the seasons and also as the historian's
means of recording the sequential occurrence of events. The lunar unit of the
month served to divide the rather long period of the year into smaller units.
The day, as a unit of time, satisfied the civil need of timing the daily round.
The relationships between the lengths of these units are not simple ones. In
times gone past, these relationships were not accurately known. This,combined
with time counting being a function of the priestly orders and not of the state,
led to considerable confusion in the calendar. Julius Caesar, with the help of
the astronomer Sosigenes, revised the calendar in 46 B.C. This served well up
to the time of Pope Gregory XIII, who made a further revision and introduced it
in the catholic countries of Europe in 1582. Other countries adopted the
Gregorian calendar after this date.

TIME SYSTEMS

Sidereal Time

3.11 A less obvious system of time keeping, than that associated with the su~

is one connected with the stars. Such a system depends, as with a system
based on the sun, upon the rotation of the earth around its polar axis; a
rotation which, for the purpose of preliminary explanation, may be considered
uniform.

For this time system a marker is selected on the celestial sphere and the
basic time unit, the siderea~ day, is defined as ~he interval between
successive passages of this marker over a selected meridian. The time marker
has been chosen as the First Point of Aries, the marker from which right
ascensions are reckoned, see Fig 2.3.

The siderea~ day starts at the instant at which the upper branch of the
se~ected meridian~ which for convenience wi~~ be taken as that of Greenwich~

crosses the First Point of Aries.
There are imperfections in using such a system for civil time reckoning

because the sidereal day, although very nearly constant in length, is not
fixed in relation to the hours of light and darkness. However, the constancy
in the length of the sidereal day can be used to advantage to explain the
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irregularities in a time system based on the motion of the sun.

Solar Time

3.12 The obvious time keeper for civil purposes is the sun, because of its
division, for the overwhelming majority of people in the world, of the day into
alternating periods of light and darkness. On this alternating cycle, the
daily pattern of civil activity is based.

Apparent Solar Time

3.13 Due to the earth's rotation about its axis, each meridian will transit
over the sun successively. For convenience of explanation, the Greenwich
meridian will be used. The upper branch of this meridian will cross the sun
at approximately the midpoint of the daylight period at Greenwich and the lower
branch will likewise cross the sun at about the midpoint of the period of
darkness. The interval between successive passages of the lower branch of the
Greenwich meridian across the sun is a "day with respect to the actual sun" or
an apparent soZar day. Since the date in a civil timekeeping system is of great
importance, it would be inconvenient to have a date change in the middle of the
period of daylight, when social activity is at its height.

The Greenwich apparent solar day is considered to start from the moment~ at
which the sun is on the lowep bpanch of the Greenwich meridian.

The actual sun, therefore, provides the Apparent Solar Time system, which is
the system obtained from observations of time from a sundial. This system has
many advantages but, as will be seen, it lacks the basic requirement of a
uniform unit of time, which is possessed by the sidereal system.

The solar or tropic year, not the calendar year, begins when the sun, in its
ecliptic passage, occupies the First Point of Aries in passing from the
southern to the northern celestial hemisphere, (see section 2.32 and Fig 2.2).
The year ends when the sun again occupies the same point, during which time the
sun appears to make 365.2422 ... revolutions with respect to a fixed meridian .

•

Celestial
Equator

Fig. 3.1

3.14 Fig 3.1 shows the sun in three positions, e1, e2 and e3 on the
ecliptic, the spacing between each point being exactly 1/365.2422 •.. of the
circumference of the ecliptic i.e. the sun is assumed to move at constant speed
in the path of the ecliptic. The duration of the first apparent solar day will
be the time taken for the star marked S to occupy the fixed meridian after
one revolution of the earth, i.e. one sidereal day, plus the time taken for
the sun to move through the angle a back to the fixed meridian. Likewise
the duration of a second solar day will be one sidereal day pZus the time taken
for the sun to move through the angle b. It is obvious that a and bare
not equal, even though the distances e1e2 and e283 are equal. Thus the
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apparent solar day is not of constant length throughout the year and would
only be so if the sun moved at constant speed in the path of the celestial
~1uator, i.e. the obliquity of the ecliptic ( was zero.

1

F· 32 Plan view of Earth's Orbit19..

3.15 The earth is a planet of the sun and its motion is therefore subject to
Kepler's laws of planetary motion, the first of which states that a planet's
orbit around its parent body is an ellipse with the parent body at one of the
focal points of this ellipse. The second law states that the variable length
radius vector, planet to parent body, sweeps out equal areas in equal times.
Therefore in Figure 3.2, the earth is seen to move faster in its orbit between
C and D than between A and B where the two hatched sections have been
made equal in area. Thus the previous assumption that the sun moves at
constant speed in its ecliptic path is incorrect and would only be true if the
earth's orbit around the sun was circular and not elliptical.

Mean Solar Time

3.16 The irregularity in the length of the apparent solar day caused by the
obliquity of the ecliptic and the ellipticity of the earth's orbit was of no
great concern to man until he was able to construct accurate timekeepers for
scientific measurement. To overcome the inadequacies of the apparent solar
time system, a fictitious mean sun moving at constant speed in the equator,
was devised. Thus the intervals between successive transits of this sun across
a fixed meridian were made equal, i.e. the day was of constant length.

This system, called the Mean Solar Time system, retains the convenience of
the sun as an approximate time marker for civil purposes, and yet has a
uniform unit of time for its base.

This unit, the mean solar day, is equal to the average length of all the
apparent solar days in a year and starts when the mean sun is on the lower
branch of the Greenwich meridian. It should be noted that the duration of the
year is a fixed length of time and that the numbers of apparent and mean solar
days in this period are identical. In the mean solar system, the unit of
subdivision is uniform.

Standard or Zone Time

3.17 The Mean Time System is the basis of civil time keeping throughout the
world. If one lived in a area, well removed from the meridian of Greenwich,
it would be convenient to set ones watch so that it kept mean time for a
nearby meridian. In order to do this, one would take into account the
longitude of this selected meridian by converting the value of longitude from
angular units to time units on the basis that 360 0 = 24h etc. Such a time
system is called Local Mean Time (LMT).
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Equation of Time

IT is now necessary to know the exact relationships between the time systems to
be able to convert from one to another. .j'

It will be noted that the variation l.n sign of the Equation of Time i.ndicates
that the apparent sun leads or lags with respect to the mean sun. The Equation
of Time is defined as,

In modern almanacs and ephe-erides, a quantity E, which does not change its
sign, is tabulated. This quantity is given by the relationship

U
h . f'E + Equatlon 0 Tlme

and is tabulated for every 6h of UT in the Star Almanac for Land Surveyors for
the current year. A table is also provided for interpolating between these
values.

;.:3 If individuals or individual communities were to adopt this practice
~.~ependently of one another, there would be great confusion in the
coordination of daily activity. To avoid this a meridian is selected near the
centre of the country, and all clocks and watches are set to give the LMT of
this meridian, which is called the standard meridian. The area selected on
either side of the standard meridian is called a Time Zone. Zone Times or
Standard Times are mean times, which usually differ from Greenwich Mean Time by
a number of whole hours (15°).

Australia keeps three time zones; the eastern states of Australia keep a
zone time, called Australian Eastern Standard Time, AEST, which is 10 hours
east of Greenwich. To put this another way, the eastern states of Australia
all keep mean time provided by the 150thdegree meridian east. South Africa
keeps South African Standard Time, SAST, which is Zh east of Greenwich. The
United States of America, keeps four zone times, Eastern,- Central, Mountain
and Pacific Standard Times, which are respectively 5, 6, 7 and 8 hours west
of Greenwich.

The Relationship between Mean and Apparent Solar Time

3.21 Observations are often made on the real (apparent) sun and timing is made
with watches keeping mean (solar) time. The difference between these time
systems at any instant in the year is called. the Equation of Time. This is the
algebraic sum of the accumulation of the changes in the length of the apparent
solar day described in sections 3.14 and 3.15. Fig 3.3 shows the two components
of the Equation of Time, one due to the ellipticity of the orbit and the other
to the obliquity of the ecliptic.



The Relationship between Mean Solar and Sidereal Time

3.22 Greenwich Mean Time, GMT, or Universal Time, UT (the terms are used
synonymously throughout the text) and Greenwich Sidereal Time are in phase
when the First Point of Aries and the Mean Sun are diametrically opposite
one another on the celestial sphere. (see sections 3.11 and 3.13) This
situation occurs at the time of the Autumnal Equinox on or about the 21st
of September. When these two points are together the time systems are 180 0

or l2h out of phase and this occurs at the time of the Vernal Equinox on
or about the 21st of March.

3.23 In addition to knowing the phase relationship at a particular time,
it will be necessary to know the ratio between the lengths of the sub­
divisions of the year in each time system. It was stated in section
3.13, in considering the variation in the length of the apparent solar
day, that during the course of one year there were 365.2422 •.. mean or
apparent solar days. Furthermore it may be seen from section 3.14, that
with respect to a star or the First Point of Aries, there are 366.2422 ...
sidereal days in the year because of the retrograde motion of the sun through
the background of stars. This motion accumulates to one complete revolution.
The ratio between the sidereal and mean time units is therefore,

366.2422 .
365.2422 .

1.0027379 F

Thus, if a time interval is measured as M mean time units, the corresponding
measure of this interval in sidereal time units is M x F and conversely if a
time interval is expressed as S sidereal time units the corresponding measure
of this interval in mean time units is ~.

3.24 In order to facilitate conversion between these two time systems,
astronomical almanacs or ephemerides publish a table giving the Greenwich
Sidereal Time corresponding to the moment at which each Greenwich mean solar
day starts. This table of GST at GMT Oh or GST at UT Oh is published in
Table II in "The Apparent Places of Fundamental Stars" (FK4) for the current
year. It is also published as the quantity R at UT Oh(Ra) in the sun data
section of "The Star Almanac for Land Surveyors" of the current year. In
addition, tables giving conversion of intervals of time up to 24 hours from
one system to the other are given in Tables III and IV of the FK4.

However, in order to avoid conversion tables which cover the whole 24 hour
period of either mean or sidereal time, the Star Almanac for Land Surveyors
provides, for each day, a quantity at UT 6h , l2h and lSh, in addition to Re.
These will be referred to as R6, R1 2 and RIa. These values of R are not CST
at theip associated times of UT but interpolated values of Re at 6 hour
intervals. To find intermediate values of R, an "Interpolation Table for R",
which is a table of mutual conversion of intervalS of mean and sidereal time,
is provided.

E.g. At UToh

GST Ro

At UT6
h

6
h

lm
h .

GST + for 6 mean t~me + Ro

6
h

+ R6

where 6R is obtained from the "Interpolation Table for R". Therefore, in
general for any instant of UT,

GST =:: UT + R

where R is an interpolated value.
Further explanation of the inter-relationships between the time systems in

the form of diagrams and examples is given in the next sections.
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3.31 THESE are line diagrams which demonstrate in a simple way the relation­
ships between quantities, which are associated with time and its measurement.
The basic diagram consists of a circle representing the celestial equator
with the earth in the centre of the circle. The reader imagines himself to be
outside the celestial sphere looking down the terrestial axis onto the north
pole. Terrestrial meridians are projected out to the celestial sphere thus
appearing as radial lines with the prime or Greenwich meridian drawn vertically
up the page and marked G. The earth is considered to be stationary so that the
celestial bodies, scattered about in the circle, appear to rotate in a clock­
wise direction indicated by the arrow outside the diagram.

The diagram, explained above, forms the basis of further diagrams which will
now be used to demonstrate a number of relationships.

3.32 An observer's meridian P and the mean sun MS, which lies on the
celestial equator (0=0), are plotted on the diagram shown in Fig 3.4. By
definition, when the mean sun is on the lower branch of the Greenwich meridian
GMT = Oh and when on the upper branch GMT = l2h . Similarly for an observer at
longitude A, when the mean sun occupies the lower and upper branches of that
meridian LMT is Oh and l2h respectively.

I'

At any other instant it will be seen that

LMT - GMT - Aw
and by extension, the time value with respect to one meridian at a particular
instant can be converted into the time value with respect to another meridian,
provided both times are in the same system, by the direct application of the
longitude difference between the two meridians. It will be readily seen too
that, if A is the time zone longitude, then similar relationships are true
for the difference between Zone Time and GMT or between two different time zones.

Also on this diagram the local hour angle of the mean sun tMS' which is the
amount by which the mean sun has advanced since crossing the upper branch of the
observer's meridian, is given by
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+ t AS

is the local hour angle of the apparent sun.

;.33 Similarly, in Fig 3.5, the apparent sun AS is shown in advance of the
~~2n sun by an angle equivalent to the Equation of Time.

LAT l2
h

AS

p

Fig 3.6

section 3.431 it is required to find the Greenwich hour angle of the
~~~arent sun, which can be deduced from Fig 3.6, as

GHA of the apparent sun GMT + E

~lso in section 3.432 it is required to find the LMT when the apparent sun
~3 on the upper branch of the observer's meridian i.e. when LAT = 12h . This
:~rcumstance, called Local Apparent Noon (LAN), is also shown in Fig 3.6, where
~~ will be seen that

LMT of LAN 24
h

- E

3.34 Fig 3.7 shows the prime right ascension circle, which passes through the

Fig. 3.7

First Point of Aries and a star, S, of right ascension, RA*, on its right
ascension circle. By definition this latter quantity is measured in anti­
clockwise direction from the First Point of Aries, see section 2.34. Also by
definition GST is equal to the GHA of the First Point of Aries and the figure
shows that

GST RA* + GHA*
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A similar situation exists with respect to the local meridian and from Fig 3.8,
one may see that

LST RA* + t*

3.35 Fig 3.9 shows the movement of the mean sun throughout a day, at the end
of which time it is seen that the First Point of Aries has moved clockwise by
about 1 0

•

Over the course of a year, this phase change accumulates until the phase
relationship is as it was at the beginning. In addition, it will be seen that,
when the mean sun and the First Point of Aries are diametrically opposite one
another, the two time systems are in phase, i.e. GST = UT, which occurs at the
Autumnal Equinox; when the two points are in coincidence, the time systems
differ by l2h , which occurs at the Vernal Equinox.

TECHNIQUES OF TIME CONVERSION

METHODS of converting an instant of time from one time system to the
corresponding instant in another time system will now be illustrated by examples.
The examples chosen are such that they cover various techniques and most of the
situations which may arise in practice.

General methods for use with a calculator are given in section A.IOI.

Conversion between the Mean and Sidereal Time Systems

3.411 Example. Find the
Standard Time lh14m27:3
Canada. The longitude of
4h west of Greenwich.

Local Sidereal Time corresponding to Atlantic
on September 12th 1977, at Fredericton, New Brunswick,
Fredericton is 4h 26

m
34:1 West, and the Time Zone is

Atlantic Standard Time of instant 12 September
Zone longitude
Corresponding UT(GMT) of instant 12 September
R at UTOh on 12th September h
6R'for mean time interval of 514

m
27:3

Corresponding GST of instant
Local Longitude
Local Sidereal Time of instant 12 September

Ih14m27~3
4 W (1)
5 14 27.3

23 23 32.5 (2)
+51. 7 (3)

4 38 51.5 (4)
4 26 34.1W (5)

12 17.4

(1) The circumstances are referred to the Greenwich Meridian by the addition
of a West or the subtraction of an East Time Zone, because the relationship
between the sidereal and mean time systems is given for the Meridian of
Greenwich with UT as argument. The mariner's mnemonic Longitude East~ Greenwich
Time Least; Longitude West~ Greenwich Time Best~ is particularly useful when
performing this operation.
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(2) This value is taken from the star Almanac for Land Surveyors. R at UTOh
or Ro = GST at UTOh is also to be found tabulated for every day in the
Apparent Places of Fundamental Stars (FK4) for the current year.

(3) 6R is taken from the table of the mutual conversion of intervals of solar
and sidereal time given in the Star Almanac for Land Surveyors.

(4) The sum of tge value~ in lines 3, 4 and S has been reduced by 24h to give
a value between 0 and 24 .

(S) The circumstances are referred back to the local meridian by the addition
or subtraction of the longitude, reversing the signs given in note (1).

3.412 Example. The previous example will now be worked in reverse i.e. to
find the standard Time corresponding to Oh12m17:4 Local Sidereal Time.

Local Sidereal Time of instant 12 September Oh12m17:4
Local Longitude 4 26 34.1 W
correspogding GST of instant 12 September 4 38 5l.S
R at UTO on 12th September

h
23 23 32.5

Sidereal interval since UTO S lS 19.0 (6)
6R for sidereal time interval of ShlSm1970 -51.7 (7)
Corresponding UT(GMT) of instant S 14 27.3
Zone Longitude 4 W
Atlantic Standard Time of instant 12 September 1 14 27.3

(6) To effect the subtraction of line 4 from line 3, 24 h is added to 4
h

3S
m

Sl:5.

(7) The table of mutual conversion of time in the Star Almanac for Land
Surveyors is used to find this quantity 6R.

(9)

SS.7

04.7
5l.0E

00
27 .9
36.8

22 02

ShOomOos

10
22 00
14 19

+ 3
12 23

9 39
28 April

27 April

3.413 Example. Find the Local Sidereal Time corresponding to Australian
Eastern Standard Time (AEST) 8h a.m.* on April 28th 1977 at Melbourne, Victoria.
The longitude of Melbourne is 9h39mSl~0 East, and the Time Zone is 10h east of
Greenwich. h

*Many watches have a 12 hour dial, in which case 12 must be added to
times in the afterngon and evening hours (p.m.), in order to express
those times in a 24 system.

AEST of instant 28 April
Zone longitude
Corresponding UT of instant
R at UTOh on 27th April
6R for mean time interval of 22

h

Corresponding GST of instant
Local Longitude
Local Sidereal Time of instant

(8) See Note (6). A change of date occurs here because the subtraction of the
Time Zone brings the time value across the zero, or 24 hour time marker.

(9) The value of 6R used here may be obtained partly from the 6 hour table
of 6R in the Star Almanac for LaRd Su~eyors. Additional constants required
are S9:1, lmS8: 3 and 2m57~4 fRr 6 , 12 and Ish respectively. ~n this example
6R for 4h is 39:4 and for 18 is 2m57~4, therefore 6R for 22 is 39~4 +
2

m
S7:4 = 3

m
3678. A more direct way of effecting this conversion is to use the

24 hour tables of conversion which are to be found in various publications such
as the FK4.

A simpler and more accurate way of performing the conversion is to multiply
the value of UT by 1.0027379, which may be done with a few key strokes on a
calculator, thus rendering obsolete methods which require auxiliary tables. An
additional advantage is that 6R is calculated and added to UT simultaneously.

3.414 Example. The previous example willhnow be worked in reverse i.e. to
find the Standard Time corresponding to 22 02

m
SS:7 Local Sidereal Time.
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':'.:,::",1 Sidereal Time of instant 28 April
:'.:::=.1 Longitude
::rrespoDding GST of instant 27 April
~- at UTO

n
on 27th April h

3idereal interval since UTO
~R for sidereaZ time interval of 22h03m36~S
:orresponding UT of instant
Zone Longitude
~2ST of instant 28 April

22
h

02
m

5577
9 39 51.0

12 23 04.7
14 19 27.9
22 03 36.S

- 3 36.S
22 00 00.0
10

8 00 00.0

E

(10)

(11)

(10) A change of date occurs here because the subtraction of the longitude
~rings the time value across the sidereal time marker corresponding to
~idnight i.e. R at UTOh R at UTOh on the 2Sth April 14h 23m 24~5.

An exception to this rule occurs when an observation has been made at
an instant of Standard Time which lies within a range of 3m5579 on either
side of midnight. In this situation two identicaZ values of LST on the
S2me date 9an occur. However, these values are so far removed in time
=rom one another that the choice of which of the two values is the correct
8~e is obvious. Dates are ~lwayc associated with the Mean Time and not
~ith the Sidereal Time system.

:11) The value of 6R used here may be obtained from the 6 hour table of 6R
~~ the Star Almanac for Land Surveyors. Additional constants required are
_~s m s m s9 f 6h h d8~h . 1 h' .
::~.O, 1 58.0 and 2 56. or , 12 an 1 respectlve y. T lS tlme
::onversion may be effected in a similar way to that shown in note (9). The
sidereal time interval is divided by 1.00273/9.

The Star Almanac for Land Surveyors also provides values of R corresponding
~o UT 6h , 12h and ISh as well as at UTOh. Using these values of R, one may
solve problems of time conversion ~ithout using the constants for 6h , l2h

and ISh referred to in note (9) and note (11).

(12)

(13)

E

3.415 Example. hFind the Local Sidereal Time corresponding to South African
Standard Time rr8 32

m
43:2 on June 16th, 1977 at ~ape Town. The longitude of

Cape Town is 1 13
m

44:0E, and the Time Zone is 2 east of Greenwich.

South African Standard Time of instant 16 June lSh32m4372

Zone Longitude ~2~~~~~
CorresponRing UT of instant 16 June 16 32 43.2
R at UT12 on 16th June h 17 3S 34.0
6R for mean time interval 4 32

m
43:2 +44.8

Corresponding GST of instant 10 12 02.0
Local Longitude 1 13 44.0 E
Local Sidereal Time of instant 16 June 11 25 46.0

(J2) Select the tabulated value of R whose associatfid value of UT
lmmediately precedes the given value of UT i.e. UT12 immediately precedes

h m S' h
UT 16 32 43.2, therefore choose R at UT12 .

(13) The mean time difference 1~h32m43:2 - 12
h = 4h 32

m
4372 is used as the

argument to find 6R from the 6 table.

3.416 Example. The previous example will now be worked in reverse i.e. to
find the Standard Time corresponding to 11h 25

m
46:0 Local Sidereal Time.

Local Sidereal Time of instant 16 June llh25m4670
Local Longitude 1 13 44.0 E
Corresponding GST of instant 16 June 10 12 02.0
R at UT12 h on 16th June 17 3S 34.0 (14)
Difference 16 33 28.0

h m s
6R for sidereal time interval of 4 33 28.0 -44.S (15)
Corresponding UT of instant 16 32 43.2
Zone Longitude 2 E
South African Standard Time of instant 16 June IS 32 43.2
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t 15 [ (lIT + WC - Z) F + % - RA + A 1

3.42 A calculation which frequently occurs in the reduction of observations
in field astronomy is that required for determining the local hour angle of a
star from an observed watch time. For this a relationship, which incorporates
the time conversion and is particularly suitable for use with a calculator, is
as follows,

12
h

+ 4
h

33
m

28:0 fiR

16
h

33
m

28:0 - 44~S 16
h

32
m

43:2UT

UT

is the watch time of observation,
the watch correction to give Standard Tirne(+Slow, -Fast),
the longitude of the standard meridian (+East, -West),
R at UTOh on the Greenwich date equal to the local date of observation,
the right ascension of the star and
the longitude of the station (+East, -West)
above quantities being expressed in hours and decimals.

is the time conversion constant, 1.0027379 and
the local hour angle of the star expressed in degrees and decimals.

With the exception of WT, all the other quantities on the RHS of the
equation have constant values unless the watch or clock is gaining or
losing rapidly over the period of observation on the star.

(14) Select the tabulated value of R whose associated value of UT immediately
precedes the UT of the instant. In this case UT is not as yet known, but a
value of UT of sufficieRt accurafiY for th~s Eurpose may be found from
UT ~ GST - R i.e. 10 12m - 17 40

m = 16 32 , therefore choose Rat UT12h .
This can be done mentally.
hIn situations when the approximate value of UT lies close to a multiple of

6 the incorrect tabulated value of R may be chosen. However, the mistake
will be seen immediately and rectified when it is found that the argument to
find ~R is not in the range 0 to 6h .

(15) The sidereal time differfince 16h33m28~0 - 12
h

= 4h33m28~0 is used as the
argument to find ~R in the 6 table.

The aforegoing time conversion procedure is not an obvious one but may be
explained by examining the working in detail.

h h m s h .
GST at UT X = 10 12 02.0, where UT X 1S not known

h h h h hms
GST at UT12 = 12 + R at UT12 = 12 + 17 38 34.0

Difference in GST 10h12m02~0 - 5h 3S
m

34:0 = 4h33m28~0

Difference in UT 4
h

33
m

28:0 - ~R for sidereal interval of 4
h

33
m

28:0

where
WT
\'/C

Z

Ro
RA

A
all the
F
t

Conversion between the Mean and Apparent Solar Time Systems
h m s

3.431 Example. Find the local hour angle of·the apparent sun at S 42 14.0
Australian Eastern Standard T~me (AEST) at Sydney, N.S.W., on April

h
4th, 1977.

The longitude of Sydney is 10 04m55~9 East, and the Time Zone is 10 east of
Greenwich.

AEST of instant
Zone Longitude
corresponging UT of ~nstang

E at UTIR ~~Esfor 6 = +4.4)
~E for 4 42 14.0
Sum = Greenwich hour angle of sun
Longitude
Local hour angle of sun

tjT+E

4 April

3 April

Sh42m14~0
10 E
22 42 14.0 (S)
11 56 46.6 (16)

+ 3.4 (17)
10 39 04.0 (18)
10 04 55.9 E
20 43 59.9
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(16) Select the tabulated value of E whose associated value of UT immediately
precedes the UT of the instant.

(17) 6E is taken from the table for the interpolation of the sun given in the
Star Almanac for Land Surveyors.

(18) In section 3.33 it was shown that the GHA of the apparent sun = UT + E

3.432 Example. Find the Eastern Standard Time at which the sun crosses the
upper branch of the meridian of washingfion, D.C., U.S.A., on November 24th,
1977. The longitude of Washington is 5 08m15~7 Wand the Time Zone is 5h west
of Greenwich.

24 November

24 November

s h
+3.6 (6E for 6

16 55 02.8

-,-5:;:---"c;:-;~;:- W
11 55 02.8

(21)

(19)
W

(20)

12hOOmOOs

5 08 15.7
17 08 15.7

-13 16.5
16 54 59.2

+ 3.6s
= -4.4)

LAT
Longitude
GAT

-(E at UT12
h

- 12
h

) = - 13m 16~5
Difference ~ {IT

-(~E for 4 h 54m·59~2)
Difference = UT
Zone Longitude
Eastern Standard of LAN

(19) The apparent sun is on the upper branch of the local meridian (upper
transit) when Local Apparent Solar Time (LAT) is l2h . This is abbreviated
to LAN (Local Apparent Noon).

(20) In section 3.33 it was shown that

LMT of LAN 24
h

E

UT of LAN 24
h

- E A
12h - A - (E-12

h
)

12h - A (En6 + 6E _ 12h )

where En6 is the tabulated value of E whose associated value of UT
immediately precedes the UT of the instant, where n is an integer. However,
UT is not known but GAT = 12h - A is, and will be sufficiently accurate for
selecting En 6' In this case select E,2'

(21) A better approximation to UT will be

12
h

- A - (En6 - l2
h

)

which differs from the accurate value of UT by ~E, a quantity which is
seldom greater than a few seconds of time. The variation in ~E by this amount
is negligible for our purpose. Using this value of UT, ~E is found from the
tables referred to in note (17).

Then from before

UT of LAN

Standard Time of LAN =

- A

A

h
- (E - 12 ) -

n6 h
(En6 - 12) -

6E

6E + Tirne Zone

The examples given have been worked and explained in great detail. For those
with some experience, short cuts are obvious and the working can be reduced
accordingly.

DETERMINATION OF TIME

3.51 THE unquestioned time keeper up to the end of the 19th century was the
earth's period of rotation. Theoretical considerations, of which the mair. one
was probably that of tidal friction, indicated that the period of rotation of
the earth would be a lengthening one, i.e. that the earth's angular velocity
was slowing with time. The clocks available up to this time were not of
sufficient long period accuracy or constancy to be able to detect any slowing
down or any irregularity in this angular velocity.

The introduction of the Riefler clock about 1890 and later in 1921 the
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UTO is Universal Time (formerly Greenwich Mean Time) established from
observation made at fixed observatories.

UTl is UTO corrected for polar motion.
UT2 is UTI corrected for seasonal variations in the earth's rotation.
UTC (Universal Coordinated Time) is related to the international atomic time

scale (IAT). This atomic time scale is based on the frequency
corresponding to a certain resonance of the caesium atom and differs
from UTC by an integral number of seconds.

Shortt free-pendulum clock confirmed the theories of non-uniform earth
rotation, and the subsequent development of the quartz crystal clock and atomic
frequency standards have resulted in great increases in the accuracy of time
keeping and of preserving constancy over long periods. Interesting variations
in the earth's rotational period have been discovered. One effect is a
seasonal one and another is due to the plastic deformation of the earth which
causes it to rotate about an axis, which is not quite a stationary one, but one
which has a slight wobble.

3.52 An international body, the Bureau Internationale de I'Heure, (B.I.H.) has
been established and given as one of its tasks the monitoring of the earth's
rotational period. Those observatories, making observations on this period,
pass their information to the B.l.H., which then correlates and analyses the
results and publishes definitive relations between the various time scales
used. These relations are published a few months after the observations have
been made.

In order to distinguish between the various time scales the following
definitions are given:-

international agreement, UTC was adopted as a basis for broadcast
In most radio time signal transmissions, a coded signal is

that one may deduce a correction DUTl, enabling the user to
to an accuracy of O~l from the relationship

In 1972, by
time signals.
included such
establlsh UTl

UTI UTC + DUTI

This accuracy is quite sufficient for a large proportion of the users of time
signals, but for precise astronomical work the time scale UT2 should be used
and the difference UT2 - UTC can be obtained from the publications of the 8IH
previously referred to.

The difference UT2 - UTI is not greater than a few hundredths of a second.
Since there is a continuous phase shift between UTe and UTl, the DUTl

correction varies contlnuously. To keep lt manageable, the time signal values.
are kept within a maximum of O~9 of UTI. When the DUTI correction runs up
towards the end of this range a whole second, called a leap second, is intro­
duced i.o thE' counting of UTC in the broadcast time signal. Before this is
done, elqht week's warning about the proposed change is given. When the leap
serond occurs. the counting is shifted and the DUTI correction changes, for
lnGtance. from -o.SSto+O.Ss in order to take up the omltted second.

Time Slqnals

1.53 The Star Almanac for Land Surveyors for the year has a list of Radio
Time Signals on pau\-s 60 and 61 and Notes on Radio Time Signals on page 6l.
Thi~ list of radio time signals is restricted to the principal signals, that
are likely to be used by land surveyors and should be consulted for the
51gnals most likelY,to be best received in the area. Details of the signals,
frequencies used and identification data are given.

At present one has access to time signals of great accuracy at any place in
the world, if one is provided with a suitable short wave receiver, because
there are many continuous time signal transmitters of high power and their
emi~SLJi;~ are carefully controlled by atomic standards of high stability and
accuracy. The chief disruptions in time signal receiption are those caused by
ionosphere disturbance produced by sunspot activity. When this occurs one
faces the problem, which existed when radio time signals were broadcast over
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only two five minute periods in the day. If these were received, the surveyor
could obtain his clock readings corresponding to these time signals with
considerable accuracy, but he than had to rely on the clock for bridging
the long gap between successive time signals. It required a very good clock
to subdivide this rather long interval in an accurately linear manner, as the
observer had to assume that the clock kept a uniform rate over this period.
The technique was to make one's star observations so that the clock comparison
was made close to or even during the observing period, so that the extra­
polation period on the clock was a short one. This, however, was not always
possible as the time signal transmission might have occurred at times which
were remote from the observing periods.

This difficulty is overcome nowadays as a result of two improvements. One,
as stated before, is the introduction of continuous time signals and the other
is the wide availability of the quartz clock in a portable form for use in the
field by the surveyor. The first enables clock comparison with the time
signal to be made during any observing period, provided the occasional "radio
black-outs" do not occur at the same time. When this does occur with unusual
frequency, as for instance in high latitudes in Canada or in Antarctica, the
quartz clock can be used to bridge the gap in the reception of the time signals
with great efficiency, because its stability of rate is far superior to that
of the mechanical clock.

The Time Keeper

A good time keeper is one which has a stable rate, so that it can be relied
on to subdivide a time interval accurately. The mechanical clock is now being
replaced by the electronic clock, which uses a quartz crystal to provide a
steady frequency source as the basis of its time keeping ability.

When a quartz crystal is cut in a certain manner and a steadily alternating
voltage is applied to opposite faces of the crystal and the frequency of this
voltage is close to the natural frequency of the crystal, the crystal itself
will maintain its natural frequency of vibration to a highly stable degree.
This stabilised oscillation, which is usually at a high frequency, can then be
used by means of suitable dividing circuits to provide time units of great
steadiness and stability. This property depends on the temperature of the
crystal, which in good quality clocks is placed in a thermostatically controlled
oven.

Determination of Clock Correction

3.61 In all but a few types of star observation, the clock correction
required for obtaining the Greenwich time corresponding to an observed clock
time must be determined. This quantity is defined as the amount to be added
algebraically to a clock reading to obtain the Greenwich time.

Greenwich Time
GT

Clock Time + Clock Correction on Greenwich Time
CT + CCGT

If the clock correction with respect to a specific meridian of longitude A is
required, each of the above must be increased by

or

i.e.,

GT + A
LT

Local Time

CT +
CT +

Clock Time +

CCGT + A
CCLT

Clock Correction on Local Time

,

The above definition of clock correction implies that a positive value means
that the clock is slow and a negative one that it is fast. Therefore, if a
clock is losing with respect to a specific time, the clock correction will
increase with time; if gaining, the clock correction will decrease with time.
Thus a losing rate is a positlve one and a gaining rate a negative one.

It is convenient to have a clock with a small rate with respect to a
specified time system. Clocks, which purport to keep mean or sidereal time,
are made to have such rates that they depart very slowly from the nominal time
rate. -45-



The following example illustrates a determination of rate:

Corresponding Clock Correction
Greenwich on Greenwich

Clock Reading Mean Time Mean Time Rate

08
h

04
m

02:l 08
h

03
m

17:4 _00hOOm44~7 +12:4 in 2
h

30
m

37
s

10 34 39.1 10 34 06.8 -00 00 32.3 = + 4.94 seconds per
clock hour, losing

No information is available here as to whether this rate is a linear one or
not. Any departure from a linear rate is found from an examination of more
then two clock comparisons.

Methods of Determining the Clock Correction

3.62 The general procedure for such determination is the observation of the
clock time of an instant whose Greenwich Time is known. Each pair of such
values gives a point on a clock correction graph, which should always be
plotted in the first instance, whichever method of reduction may
be used. Such a plot gives a good broad picture and the first estimate of the
quality of the determination of the clock correction as a whole. Various
methods of observation of varying accuracies can be used in practice to suit
the accuracy of the astronomical quantity desired.

3.63 The Eye and Ear Method, a rough method, consists in the observer
estimating the clock time to a fraction of the second as he hears the time
signal pulse, whose Greenwich Time is known. A much better method is one, in
which a stopwatch is used to obtain a much more accurate comparison. The
observer starts the stopwatch on a known signal and then stops it on an
observed clock time. If he prefers it, he may reverse the order of observing.

A note of the order used should be made in the field book. Several such
comparisons should be made over the observing period in order to enable
blunders to be detected and to determine whether the clock's rate is stable and
thus linear. This latter requirement is more important with a mechanical clock
than with a quartz clock.

The seconds of the stopwatch being used may not be of the same length at
those of the time signal or of the clock. The length of the stopwatch second
can be compared directly with these. In addition, the effect of this sort of
error is kept small by keeping the stopwatch intervals small or by arranging
the stopwatch observations to eliminate their effect.

The stopwatches in the aforegoing method measure simple time intervals i.e.,
they bridge the short gap between the chronometer and time signal instants.
If, however, a stopwatch with a split hand or a digital stopwatch, which has
the same facility is used the chronometer may be dispensed with. This type of
stopwatch combines the function of both chronometer and stopwatch because
events on a continuous time scale are being recorded.

3.64 A very much more sophisticated device of very high accuracy is the
printing chronograph. One of these is the Omega printing chronograph, which
is portable and in which a temperature controlled quartz crystal oscillator
governs the speed of a synchronous electric motor. Counting wheels, on which
the numerical values of the time readings are marked are driven by this motor.
When an observation is made, a circuit is closed and a printing pad is driven
sharply up against 'the counting wheels and the reading of time is printed on
paper tape held on top of the printing pad. This time record can be read
accurately to nearly three decimal places of a second of time (see Fig 3.10).
This device can be arranged to be operated by means of impersonal methods.

The Calculation of Clock Correction

3.65 Clock comparisons with the time signal require the clock time corres­
ponding to a specific time signal pulse to be observed. This means that the
identification of the time signal pulse is necessary. In the field,
positive identification of signal time is made at beginning and at end of the
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Fig. 3. 10 A Printing Chronograph Record

==serving period and usually at suitable points in between these. It is also
=~~venient if clock readings are made at whole minute points or at points
~=entified by voice in the transmission. Further identification in detail can
~~en be subsequently carried out in the office.

?rom these observations the clock corrections at the various times can be
~2~ermined and the results plotted graphically and reduced numerically.

~.66 This numerical solution will be that of the method of Least Squares, by
-..:::'ich a straight line of best fit will be determined so that the clock
=orrections at the times of observation may be determined for use in the
~ubsequent reduction.

For simplicity here, the clock correction will be referred to Greenwich time
~s (GT) and the rate D will be taken as a linear one. From definition in
~2~tion 3.61 therefore,

CC GT - CT CCo + CT x D

which CCo is the clock correction at zero clock time. The clock time CT
__ subject to a random error of observation and the above equation becomes

GTi - (CTi + vi)

viD is a minute quantity.

- n> 2, which should be so, normal equations are formed to give the unique
~=~~tion of greatest probability from this set of observations. These
2~~ations take the form

o

which the square brackets indicate a summation of terms.
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3.67 Example of a clock correction determination for a mean time clock. The
data for the clock corrections of section 9.81 will be used to illustrate the
Least Squares solution.

It should be noted that
(a) the clock used was a Heuer splithand stopwatch.
(b) each value of CTi results from the mean of five observations.
(c) the comparison was recorded for a whole minute of signal time; in each

case five determinations of the decimal of the second of time were made
in the vicinity of the whole minute.

Observations

GMT of Signal Observed Clock Time Clock Corrn.
GTi CTi GT; - CTi v'l

10h17mOO:'6 2h36m55~44 +7h40m05~16 s
+0.05

10 35 00.6 2 54 54.93 05.67 -0.03
10 43 00.6 3 02 54.68 05.92 -0.04
10 45 00.6 3 04 54.60 06.00 -0.02
10 55 00.6 3 14 54.34 06.26 -0.09

11 12 00.6 3 31 53.65 06.95 +0.05
11 17 00.6 3 36 53.45 07.15 +0.08
11 20 00.6 3 39 53.40 07.20 +0.03
12 06 00.6 4 25 51.96 08.64 -0.03
12 15 00.6 4 34 51.65 08.95 -0.01

Normal equations

solutions

CC
o

10

D

+34.7328
+124.2730

Absolute Term

-76.6855
-266.3523

o

+1.959 sec/hr

CC
o
D

or 3600 D

+7~6666624
-4

5.443 x 10

==

hr/hr

Back substitution in the individual correction equations gives the required
v's from which the estimated standard deviation of an individual observed
clock correction is obtained

~==C;;;;j~ j~ ±0~06

A number of points emerge from this,

(1) In this example, it was assumed that a linear relationship existed between
,the clock correction and the clock time of observations. In some cases,
this may not be appropriate and the data would be better approximated by
a second or higher degree curve.

(2) The calculation given is often referred to as fitting a regression line
with paired data values - a calculation which occurs so frequently in
science and technology that hard wired sub-routines for this calculation
are often incorporated in small calculators.

(3) It should be noted that all the data must be converted to decimal form
before the least squares solution is attempted and the inverse conversion
made to obtain the solutions in sexagesimal form.

(4) The calculator solution of the line of best fit is made to a very high
accuracy so that clock corrections are determined with no loss of
accuracy even if the period is long or the rate of the clock large. For
example, the identical method is quite appropriate for finding clock
corrections and rates from comparisons between a sidereal chronometer and
a time signal. In this case, there is a large rate of about ten seconds
per hour.
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4
Observations

INTRODUCTION

IN the astronomical triangle, the observer can measure one quantity directly
hith a theodolite and obtain two others from related observations and other
~uantities. The zenith distance can be measured directly. Directions can be
~easured on the horizontal circle of the theodolite and azimuth is
associated with these. A clock or some such timing device can be used for
~etermining an hour angle. Since an hour angle is associated with a specific
~eridian, it is usually necessary to link the clock time, from which the hour
angle is determined, with the time associated with some specific meridian,
hhich is usually the prime meridian, namely that of Greenwich. The techniques
associated with the relation of clock times to Greenwich times are dealt
hith in section 3.61. Before any observations are made by means of a
~elescope, its focussing must be perfected. The observer achieves this by
sighting the sky and focussing the crosshairs by rotating the eyepiece cell
-~~til the crosshairs stand out absolutely clearly. He then directs the
~elescope to a distant reference object. This mark is brought to sharp focus
jy means of the focussing screw for the main telescope. When this is
=ompleted, the observer tests for parallax by moving his eye relative to the
eyepiece lens. If the image of the crosshair then moves relative to the image
~f the reference object, focussing is not perfect and this procedure is
~epeated until all parallax is eliminated.

=~serving on Both Faces of the Theodolite

~.ll The practice of observing both face left and face right with a
~~eodolite is adhered to in order to eliminate the effects, on the observed
~~antities, of any maladjustments present in the theodolite. Since this
e~imination is only exactly achieved when such maladjustments are relatively
~=all quantities, it is good practice to keep the instrument in a state of
?:od adjustment so that the horizontal collimation error, the horizontal
:= trunnion axis error and the vertical circle index error are always kept
~all.

Horizontal collimation error is the amount, by which the line of sight in
~~e telescope departs from lying perpendicular to the horizontal axis. It
:an be reasonably easily adjusted by the user. The horizontal axis error is
~~e amount, by which this axis departs from lying perpendicular to the vertical
~xis. In the modern optical theodolite, this error cannot be adjusted by the
~ser, but the instrument should be sent to the servicing agent for this
~~justment, because apy cant imparted to the horizontal axis may disturb the
=:cussing of the optical train, by which the circles of this type of instru-
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ment are read. The vertical circle index error is the difference between the
reading obtained for a level sight and what should be obtained for such a
sight. It is very easily adjusted by the user, who usually should determine
this index error before any set of vertical circle observations is made. If
this error is large, it should be reduced by adjustment mostly for convenience
only, but an instance is known of the occurrence of a vertical index error of
10 arc minutes causing a problem in the calculation.

If, as is normally done, observations are made on both faces to a stationary
object, the mean of the two observed values will be free of the effects of the
three errors cited above. Observations to a star however are not made to a
stationary, but to a moving object, which is therefore changing altitude.
Since the effect of the collimation error and that of the horizontal or
trunnion axis error depend on both the magnitude of the error and the altitude
of the sight, these errors should be kept small and no time wasted between
the observations made on the star on each face. The vertical circle index
error effect is independent of altitude, and vertical observations on each
face need not be made very quickly one after another.

4.12 Observing on both faces of a theodolite a~es not get rid of the effects
on horizontal circle readings of residual error in the levelling up of the
theodolite. This error leaves the vertical axis not quite vertical, but
slightly tilted with respect to the vertical line by an unknown amount with
the direction of tilt also unknown. It cannot he sufficiently stressed that~

however many face left and face right observations are made on the
horizontal circle, the means of corresponding pairs will not eliminate the
effect of vertical axis error (i.e. non-verticalityof the vertical axis) of
a theodolite. This is particularly important in field astronomy, in which
steep sights are observed, because the effects of the vertical axis error
are proportional to the tangent of the altitude. The remedy is therefore
to keep this error in verticality small by levelling very carefully with the
most sensitive means available. The first of these is the vertical circle
or alidade bubble with the split image viewing device, by which the two images
of the ends of the bubble can be accurately brought into coincidence. The
second is the automatic compensator (liquid or pendulum type) for indexing
the vertical circle, when the theodolite, to which it is attached, is a
single second one.

The vertical circle bubble, with its viewing device, is used as follows for
levelling the theodolite accurately:-
i) After the theodolite has been levelled by means of the plate bubble,

the alidade is rotated until the alidaoe bubble lies parallel to the
line joining the two foots crews A and B. The bubble is tben trimmed
by means of the bubble adjusting screw, so that the bubble ends
coincide with each other in the viewer.

ii) The alidade is now rotated through 180
0

. If the bubble ends are no
longer coincident, they are bro_ngh-c halfway back towards coincidence by
a rotation of footscrews A and B by equal amounts in opposite directions
The ends are then brought the rest of the way back to coincidence by
means of the bubble adjusting screw (Steps (i) and (ii) are repeated if
necessary) .

iii) The alidade is then rotated through 90
0

. If the bubble ends then do
not remain coincident, they are brought all the way back into co­
incidence by means of the third footscrew C.

iv) The whole process should be repeated until the bubble ends stay
coincident for any position of the alidade
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The automatic compensator on a single second theodolite is used as follows
for levelling the theodolite accurately:-
i) After the theodolite has been levelled by means of the plate bubble, the

alidade is rotated until the plane of the vertical circle is parallel
to the line joining two footscrews A and B. The telescope is clamped
and left unaltered throughout the levelling procedure. The vertical
circle reading is now observed.

ii) The alidade is rotated through 180
0

and the vertical circle reading
is again observed.

iii) The two vertical circle readings are meaned and footscrews A and B
are rotated equal amounts in opposite directions until the vertical
circle reading is equal to the mean value computed.

iv) The alidade is rotated through 90
0

and, by means of the third
footscrew C, the vertical circle reading is caused to bo the same
as the mean value computed above.

v) The vertical circle reading should now r~ain constant for any position
of the alidade. If it does not, the whoie process should be repeated
(see The Australian Surveyor, December, 1976, vol.2S, No.4).

Some theodolites have the collars of the horizontal or trunnion axis
left exposed so that a striding level may be mounted on this axis. When
this has been done and the bubble has come to rest, its position in the
bubble tube is noted. The striding level is then lifted, turned end for
end and replaced on the axis. When the bubble is stationary, its position
is again observed. From these readings, the inclination of the horizontal
axis in this position is deduced and from this a correction to the
horizontal circle reading, corresponding to this position, can be evaluated
and applied to remove the error in the horizontal circle reading.

4.13 Observing on both faces constitutes good practice, but this does mean
that the observer, after he has completed half his observations on one face,
must transit and pick up the same star for the other half of his observations.
The following is an effective method of achieving this but it is of course
not the only one, which can be used.

Let it be assumed that a series of vertical circle readings with their
corresponding times have been observed and noted in a field book by the
recorder, who now informs the observer that he must change face by saying to
him "Transit to your back-bearing". The observer immediately makes a quick
observation of the horizontal reading to the nearest 5 or 10 minutes of are,
calling it out to the recorder, who notes it. The observer immediately
swings the telescope round to a horizontal circle reading differing from
the observed one by 180

0
and clamps the horizontal circle there. In the

meantime, the recorder estimates say two minutes as the time, which will be
spent in this procedure of transiting and, from the list of vertical circle
observations already observed, he estimates the change in vertical circle
reading in this period and works out the reading, which would have been
obtained at this time. This reading is then converted to a corresponding
value on the other face, for example on a Wild T2 theodolite, if the face
left reading is predicted as 42

0
25', the converted value would be 317

0
35'

if the index error of the vertical circle is small. By this time, the
observer should have completed his part and he will be asking for the
setting to be put up on the vertical circle. He is told the value and runs
the telescope up to this value, at which the telescope is clamped. He now
looks through the telescope and the star should be somewhere near the
centre of the field of view of the telescope. It is of value for anobserver
to learn to estimate star magnitudes with reasonable accuracy, as this
adds to certainty in relocating the correct star in the field of view.
This estimation of the magnitude is not difficult to learn, but it must be
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remembered that the star sighted is infinitely distant and that therefore
its image is not magnified by viewing it through the telescope.

Some instruments are fitted with a diopter sight on the telescope instead
of gunsights. This enables pointings to be rnade with considerable accuracy
because, if the one eye is put close up to the sight, the cross can be seen,
even if there is only very little scattered light about. If at the same
time, the other eye is kept open, the cross can be placed accurately on the
desired star before transiting and the star identified in this way after
transiting, provided that the sight is in correct alignment with the line
of sight in the telescope.

The above methods of relocating the same star on transiting are used when
the star is moving parallel to one of the two main cross hairs. When this is
so, it is much easier to relocate the star on the other face, because only
one of two settings is varying. When a meridian or circum-meridian
observation is made, the star's altitude is hardly changing. If this is so,
the azimuth change should be precomputed or estimated from the fruits of
past experience. If on setting the value for this azimuth perhaps somewhat
tardily, the star is not found in the field of view, it can be picked up by
the technique of "hosepiping", i.e. by leaving the vertical circle as set,
unclamping the horizontal circle and rotating the telescope slowly about the
vertical axis, while the observer looks through the telescope. The star is
usually found quite easily by this method.

When a circum-elongation azimuth observation is made, a similar hosepiping
technique can be used with rotation of the telescope about the horizontal
axis, because the star is then moving very slowly in the horizontal direction.
When such an observation has been made on one face, the telescope is transited
to the backbearing and then elevated with the observer looking through the
telescope. If the star is not found by this searching in a vertical
direction, the recorder will be able to supply the vertical circle setting
at which the observer can clamp the telescope and, on looking through it, he
will normally find the star in the field of view.

This whole section has been dealt with on the assumption that an infinitely
distant star, which is seen as a point of light of no breadth is being
observed. There is, however, one star, namely the sun, which is not
infinitely distant and therefore subtends a broad disc of light on which
observations must be made. Observations to the sun will be dealt with under
that heading (see Chapter 8).

If a predicted programme is being observed, the above process of
"transiting to your backsight" can be dispensed with, if the preliminary
computations are such that the predicted values are computed at points, which
are 10 to 15 minutes apart in time and a table of values at every second
minute has been produced by a linear interpolation between the two computed
points.

OBSERVING TECHNIQUES

Vertical Circle Observations for the Determination of Timed Altitudes

4.21 In this type of observation, the star or body sighted should be observed
at the point of intersection of the vertical and the horizontal crosshairs.
It is most important that this should be done if the horizontal crosshair
is seen to be out of the horizontal. This seldom occurs but, with a newly
acquired instrument, the horizontal crosshair should be tested for deviation
from the horizontal and adjusted, if this is found to be necessary. If then,
a vertical observation is made at a point on the horizontal crosshair
adjacent to, but not exactly on, the intersection with the vertical hair, an
error will be introduced. This will depend on the altitude itself as well
as the distance from the intersection, but it is comforting to find out from
investigation that this errorisasurprisingly small one, and therefore, only
when particular accuracy is required, need the intersection point itself be
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used to sight for the measurement of a vertical angle. The thoughtful
observer should have got into the good habit of observing alternately on
either side of the point of intersection of the crosshairs, so that there
would be the tendency to eliminate any residual effect of the possible skew­
ness of the horizontal crosshair.

That the error, produced by this method of observation, is small, will now
be shown. Fig. 4.1 shows the horizontal or trunnion axis PQ of a theodolite
with its line of sight OX. If a vertical circle observation is made not at
the intersection point X of the vertical and horizontal crosshairs but at a
point A as shown, the measured zenith distance z will be that corresponding
to the point X and not to the point A. If the distance AX, equal to 8, and
the reading z are known, the correction ~z, which must be added to z, can
be determined from the right-angled spherical triangle ZXA from the Cosine
Formula. The vertical crosshair defines a vertical circle passing through
the zenith Z, while the horizontal crosshair defines a great circle, which is
perpendicular to that of the vertical crosshair and which contains the
horizontal axis PQ

x

The Cosine Formula gives

cos(z + ~z) = cos z cos 8 + sin z sin B cos 90

cos(z + ~z) = cos z cos B

cos z - ~z sin z ~ cos z (1 2sin2 8/2)

~z sin z ~ 2
. 2 8/2Sln

Since 8 is a small angle

~z ~
82

2p sin z

Even if, for instance a high sight of zenith distance 30
0

is assumed and
a rather large value of 8 of, for instance, one tenth of the distance from
the centre hair to the lateral stadia hair is postulated, the value of the
correction ~z still comes out very small indeed. In the above example,
8 0.5 x 0.01 x 0.1 = 0.005 radian = 103 arc seconds and from this

~z (103 2 cosec 30
0

) (2x206265) 0.05 arc seconds

This correction is small and therefore, in all but the higher class work,
this type of observation may be made on the horizontal hair just off from
the intersection of the two crosshairs. But this does not mean that an
observation may be made anywhere along the horizontal crosshair, with the
expectation that a good vertical circle observation will then be obtained.
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If the star to be observed is moving diagonally across the field of view,
such as one from which a longitude from timed altitudes is obtained, then
the vertical circle reading observation is made by setting the horizontal
hair somewhat ahead of the star with the cross in such a position that the
star, when it reaches the horizontal hair, will be close to the cross. The
star is then allowed to make its own passage across the horizontal hair
and the instant of its passage is timed. The alidade or vertical circle
bubble is carefully trimmed to centre and the vertical circle then read. If,
however, the star to be observed is moving with a small component in the
vertical direction, the vertical circle reading observation is made by setting
the horizontal hair exactly on to the star, with the vertical hair close to,
but not necessarily on, the star. As the star is accurately bisected by the
horizontal hair, the time is noted. The vertical circle bubble is set to
centre and the vertical circle is then read. This is the type of observation
made in determining latitude from meridian or circum-meridian observations.

Horizontal Circle Observations for Determination of Time Azimuths

4.22 In this type of observation, the star is observed on the vertical cross­
hair with the horizontal crosshair close to, but not necessarily exactly on,
the star. If the star being observed is approaching the vertical crosshair
fast, this crosshair is set ahead of the star in such a position that the
star will cross the vertical hair near the point where the horizontal hair
crosses it. The time of passage is then noted and the horizontal circle
reading is observed. This type of observation occurs when a star or the sun,
being observed for azimuth, is not sighted at the special positions, such as
elongation, where its rate of change of azimuth with respect to time is small.

If the star being observed is approaching the vertical crosshair slowly,
this hair at a point near the horizontal crosshair is placed on the star to
bisect it accurately. The time of the instant of bisection is noted and
finally the horizontal circle reading is observed. This is the type of
observation when a star near to elongation or very close circumpolar star,
such as Polaris or Sigma Octantis, is being sighted.

For an azimuth determination, horizontal circle readings to a mark must
also be observed. The mark, used for reference, must be placed or selected
so that it is sufficiently distant to require no change in the stellar focus­
ing of the telescope. This requires the mark to be further from the theodolite
than about two kilometres. The reference object for night work is a lamp or
a light source and care must be taken that it is accurately centred over the
gound mark, which indicates the station's position. The light should provide
an image, which resembles a third magnitude star and to achieve this, thelamp
should be provided with suitable stops for this purpose.

Altazimuth Observations

4.23 In this type of observation, the star is observed exactly at the inter­
section of the vertical and the horizontal crosshairs. If the star is moving
in a vertical direction at a greater rate than in the horizontal direction,
the horizontal hair is placed ahead of the star. When it gets close to this
hair, the vertical hair is shifted by manipulation of the horizontal slow
motion screw to bisect the star. This bisection of the star is maintained
until it reaches the horizontal hair, at which instant tracking is stopped.
The alidade bubble is trimmed and both circles are read and the readings noted.
If the relative rates are reversed, the vertical hair is set ahead of the
star and tracking is carried out by means of the vertical slow motion screw
until the star is bisected by both crosshairs.

Sometimes the time of the instant, at which the star is bisected by both
hairs, is required. This is observed as well as the readings on both circles
This type of observation is required when an identification sight may be
needed. This type of sight serves as a means of determining the right
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ascension and declination of the star sighted. (see section 10.91)

The Technique of Orienting the Horizontal Circle from Star Sights

4.31 Normally the observer has precomputed the azimuths to two stars, which
are usually bright ones, which he knows so that he may orientate his
horizontal circle on one and then check this on another about five minutes
later. For most purposes, such orientation is sufficiently accurate if it
produces a result, which is within one tenth of a degree. Further detail is
available in section 10.11.

4.32 When the observer has the precomputed values for orientation to a known
star, he sets the predicted altitude on the vertical circle and then reads
this setting back to his recorder for checking. At this point, some
theodolites require the horizontal circle to be set so that its reading is
the same as the precomputed azimuth value. With others, however, therequired
reading can be set after the sight is made. At about three minutes before
the time predicted for these settings, the telescope is directed towards the
known star and the star caught in the field of view of the telescope. If
the star is reasonably bright and it is not found, the vertical circle reading
should be checked. If this is correct, there is always the possibility that
the telescope is not focussed for infinity. If all is w~ll, however, the
star is tracked accurately by means of the appropriate horizontal slow
motion screw so that the cross is on the star, as this reaches the
horizontal hair; the observer calls out when this occurs and the recorder
notes the clock time. Tracking is then stopped and, if the theodolite is
one, which requires the horizontal circle reading to be set at this point,
this setting is carried out. Immediately thereafter, the line of sight is
directed to the reference object. This is bisected and the horizontal c~~cle

reading is observed and noted. This gives the azimuth to the reference (;bj(~ct

and it is recorded so that it can later be used if the orientation is,
for some reason, disturbed. The next orienting star is then observed in
exactly the same way. If all is well, the observer can then proceed with
the rest of his programme. To be doubly sure, the inexperienced observer
will probably have three orienting stars in his list, with values pre­
computed at five minute intervals.

The Observing of a Predicted Programme

4.41 THE following points are applicable to practically any type of
predicted astronomical programme.

The observing party should arrive at the observing station with plenty of
time for carrying out all the preliminary tasks well before the predicted
programme is to be started. It is absolutely necessary that everything is
ready, as any sense of hurry is most distracting. All must be calm and
everything well under control.

This implies that the whole programme has been well thought out and proper
preparations have been made in the time before the observing season, so
that the equipment is in first class condition before the observing party
leaves base. When the observing site is reached, the equipment must be
set up and given a final testing. The lighting apparatus is tested, the radio
set up and tuned to receive the time signals. A referring object, which
is usually a light, must be set up over a distant mark. Sometimes, as in
the observing of geodetic azimuths, the light is set over an adjacent primary
station of the geodetic survey and this may be up to fifty kilometres distant.
The chronometer, chronograph or timing apparatus being used should likewise
be set up and tested.
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The theodolite is set up and levelled and it is most important that it
should be properly focussed on a distant object and tested for any parallax.
Determination of vertical circle index correction should be carried out. The
clock should be set so that it is close to local sidereal Time or Zone
Time. If the latter is set on the clock, a wrist watch should be set to read
LST so that it can be used in conjunction with the Working List, on which
the predictions are set out with respect to LST, and not Zone Time, if stars
are being observed.

At about 10 minutes before the start of the predicted programme, the first
clock comparison with respect to the radio time signals is made. In this
set, there should be included a time signal, which is absolutely certainly
identified. The working list now starts with the orienting sequence
previously described and then the programme goes on to the observing sequences
predicted. As the time for observation on the first star predictedapproache~

any preliminary observation required before the actual star is sighted is
carried out, such as for instance the horizontal circle readings to the RO,
if azimuth is being observed. Then the theodolite is swung round in azimuth
until the predicted reading is obtained and this is set on the horizontal
circle. The telescope is elevated until the required vertical circle setting
is reached. This is set and both circles read out aloud to the recorder,
who checks these values against the working list. About two minutes before
the predicted time the star should appear in the field of view and at the
predicted time it should be close to the intersection of the crosshairs.
Under the direction of the recorder, whose task it is to assume overall
responsibility for controlling the times of making the observations to
achieve the balancing conditions, included in the prediction of the programme,
the observer is led through the whole observing programme.

CORRECTIONS TO OBSERVED QUANTITIES

Theorectical considerations indicate that observed quantities are subject to
discrepancies, for which allowance must be made. In some cases, the theory
also enables the correction to be evaluated and it is then applied. In other
cases, the correction cannot be evaluated but often a certain procedure of
observation, by means of which the effects of the discrepancies can be
eliminated, can be worked out.

Index Corrections to Vertical Circle Observations

4.51 Observed altitudes, derived from observation on one face of a
theodolite, normally have the index error of the vertical circle applied to
them so that the quantities calculated from them can be in fair agreement
with the values derived from the observations made on the other face.

Astronomical Refraction

4.52 Light, coming from a celestial body towards an observer on the earth,
travels in a straight line through the vacuum of outer space until it enters
the earth's atmosphere. Since it then continues through a medium constantly
increasing in density, the light ray, if not normal to the outer boundary
of the atmosphere, will be bent towards the normal. This bending will take
place in a vertical plane; occasionally there is a minute deviation laterally

from the vertical plane. The total amount of bending through the atmosphere
is the angle of refraction and it depends on the composition and state of the
atmosphere, being traversed, and also on the size of the incident angle.

A simple proof of a formula for refraction, according to Newcomb, will
be given. It is not a rigorous proof, but one that gives results close to
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those of more complex theories. Because the distance to the outer limit
of the earth's atmosphere is small compared with its radius, it will be

Zenith

Vacuum in Space

/-1-1

------_._--_.-

Atmosphere

IJ.n-1

/-'n-I

/-Ln

Fig. 4.2

assumed that the atmosphere in the vicinity of the observer's station consists
of thin plane layers, each with a constant qbsolute refraction index ~ and
that the light path through each layer is straight.

Figure 4.2 shows a section through the earth at an observer's station P.
Snell's law of refraction at the interface between adjacent layers gives

].10 sin Zo ].11 sin Z1

].11 sin ZI ].12 sin Z2

].1 sin Z ].1 sin Z
n-~ n-2 n-1 n-1

].1n-l sin z ].1 sin z
n-1 n n
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Thus it can be seen that

sin(z + r)
n

r

Substitution therefore gives

and that the refraction is given by

].1n sin z
n

z - z
0 n

].1n sin z
n

sin z
o].10

Substituting ].10
only, gives

1 and expanding in a Taylor's Series, to first order terms

sin z + r cos z
n n ].1n sin z

n

r P (].1 -1) tan z
n n

in which r and P are in the same units and P is the number of such units
in one radian.

Putting an average value of the refractive index of air into the above gives
a value of mean refraction of

r" 60.1 tan z
o

in which z is the observed zenith distance.
A comparison of refraction given by this formula and that given by more

sophisticated formulae is shown in the following table:-

Zenith Distance
Refraction from tables
r" :: 60.1 tan z

o

0°
0"
o

30° 60° 75°
34" 1'40" 3'34"
35 1 44 3 44

90°
1°06'29"

00

The simple refraction formula is seen to give results, which, in the light of
the great simplifications made, are, up to zenith distances of 60°, in very
close agreement with the values obtained from the more sophisticated formulae.
If the simple formula is modified to take into account the spherical shape of
the atmosphere's layers as well as the variations of pressure and temperature
from those of the standard atmosphere, the following relationship is produced

r"
p

1013 .25
273.2 2

273.2 + T (60.1 tan z - 0.07 tan z sec z)

in which P is in millibars and T is in degrees Celsius.
This relationship gives refraction values, which are adequate up to zenith

distances of about 75° but beyond this, the values become inaccurate. If
vertical angle observations with any pretensions to accuracy are to be made,
the sights should be made at zenith distances not exceeding 75°; then in this
way uncertainties in the refraction itself are avoided.

The refraction tables of "The Star Almanac for Surveyors" will suffice where
very high accuracy is not required. These are based on the Harzer formulae
and may be relied on to 1" up to 60° and 2" from 60° to 80° zenith distance.
For a detailed discussion and derivation of astronomical refraction, articles
by J. Saastamoinen in the Bulletin Geodesique 1972-1973 Nos. 105, 106, 107
should be consulted.

All formulae for refractionassurne that refraction is independent of azimuth.
In practice this may not be so, especially if the country in the vicinity of
the observing station has considerable variation in relief or in vegetation.
The temperature measurements made during an observing period should be made
with the thermometer held well above the ground and, if made in sunshine, the
thermometer must be shaded.
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Differential Refraction

4.53 For observations, in which zenith distances are observed, predicted
programmes are arranged on the assumption that there may be a difference
between the calculated and the actual values of refraction. This difference
is assumed to remain constant for a short period of time for a given zenith
distange. Thus, if all observations are made in quick succession at about the
same zenith distance, then this difference will take on the characteristics of
a constant error and arrangements in the observing programme can be made to
eliminate the effects of such a type of error.

If however, the observing period for a set of observations is of any length
of time, observations of pressure and temperature should be made through the
observing period, so that all observed zenith distances can be corrected to
values at a common pressure and temperature. To obtain these changes in
refraction for changes in pressure, temperature and zenith distance, the
refraction formula is differentiated as f0110ws:-

r" P
1013.25

273.2
273.2 + T

60.1 tan z

in millibars, T in degrees Celsius andwith P

dr" [
dP tan z

16.20461 (273.2 + T)
P dT tan z

(273.2 + T)2 +

z in sexagesimal

P sec2 z dz
(273.2 + T)

units.

16.20461dr"

r
PTz" [ dP

P

P tan z
(273.2 + T)

dT
(273.2 + T)

dP
P

+

dT------+
(273.2 + T) P

dz
P sin z cos z

dz
sin z cos z

4.531 Example. Find the refraction r for P = 1023.25 mb, T = 100C and
z = 60°, and then find the change in refraction brought about in this value by
a decrease of 10 mb, an increase of 2.8°C and a 1° decrease in zenith distance.
The value of rpTz may be calculated with sufficient accuracy for this
purpose from the following:-

r"
PTz

16.20461
1023.25

tan 60 0

273.2 + 10
101.4"

dr" 101.4
[ (-10)
1023.25

(+2.8) (-1)
283.2 + 57.296 sin 60 cos 60 1

- 0.99 1.00 - 4.09

- 6.08"

The above example is instructive in showing up the magnitudes of the errors,
which arise from discrepancies, which have purposely been taken as rather
large ones. If good work is to be done, altitudes less than 30° should not be
used and also a method of observing should be used which minimises the effects
of any systematic errors due to refraction.

4.532 It is not necessary to have instruments, which give the exactly correct
readings of the ambient temperature and pressure of the atmosphere, provided
the observation programme has been designed to minimize the effects of
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the error in the
pressure value
the error in the
temperature value
the error in the
zenith distance value

for

for

for

0.68

0.18

0.40"

4.09

drError in

Find by how much this quantity is incorrect if dP is incorrect by 4 mb, and
dT by 0.5°C and dz by 10 minutes of arc.

Each quantity calculated above must change proportionally to the changes
computed immediately above.

4
(10) 0.99"
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systematic errors in refraction. Such instruments should, however, be able to
monitor precisely any changes in the temperature and pressure of the air
throughout the observing programme. A simple example to demonstrate the
principles implied will be given.

z
~~g s j. ~~

// • / ON
'1/ i /~ \

Ps ~~ar South !WStar North

--~ I.
--., : / Horizon

Southwards
o

Northwards

Fig.4.3

4.533 Fig 4.3 shows a meridian section at a station o. The two stars shown
were observed at meridian transit in order to find the station's latitude.

Observations made:-

"
of equator

of zenith
of zenith

18°C
930 millibars
39°10'23" north
77°03'48" south
59°09'58" north
57°01'25" south""""

Atmospheric Readings Temperature
Pressure

Declination of star north
" "" south

Observed zenith distance to star north
" south

273.2
273.2 + T (60.1 tan z

- 0.07 tan z sec2~
dT dz

( 273 . 2 + T) + P-s-i-n-z-c-o-s-z

p

dPr"[
P

1013.25

Relationships used

Refraction r"
(see section 4.52)

Differential Refraction dr"
(see section 4.53)

By inspection, the latitude is about 20° South

Direct calculation of the latitude

.l:1 dz
sin z cos z
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r" (p

= (zN + r
N

) - 0 for star north
N

0 - (zS + r
S

) for star south
S

1: (0 ON) + 1: (z zS) + .l:1(r - r )
2 S 2 N n S

)..,,(0 ON) + ~(z zs) + ~ dr2 S N
sign as dz (zN zs)

~dr"

Mean latitude

in which dr has the same

Alternative calculation of the latitude from the Mean Differences

From inspection, latitude

lati tude

Star north Star south

ZD!
- -

Observed Meridian zN 59°09'58" Zs 57°0t 25 "

Refraction r
N

1 26.3 r 1 19.4
S

z +r 59 11 24.3 z +r 57 02 44.4
N N S S

Declination 8 39 10 23 8 77 03 48
N S

Latitude 20 01 01. 3 Latitude 20 01 03.6

Mean Latitude 20°01'02.5



in which
Surveyors.

r" is found for the mean value z in the Star Almanac for Land
For this calculation Os and oN are taken as unsigned quantities.

6 77°03'48"
S° 39 10 23N

(Os - ON) 37 53 25 k(o - <5 )
2 S N

z 59 09 58
N

Zs 57 01 25

(z - zs) 2 08 33 ~ (z - Z )
N N S

~dr"
+ 3856 5"

83" (206265"sin 58006; 58 006')cos

1°04'16.5"

3.5"

3856.5"

Sum Mean Latitude 20°01'02.5" South

Demonstration of the Effect of Systematic Error

If the true values of the atmospheric readings were not lSoc and 930 millibars
but were 23°C and 910 millibars, it is required to determine the error pro­
duced in the latitude sought.

Observed Meridian ZD zN 59°09'58" z 57°01'25"
S

Refraction r
N

1 23.0 r
S

1 16.4

z +r 59 11 21.0 z + r
S

57 02 41.4
N N S

Declination <5 39 10 23 6 77 03 48
N S

Latitude 20 00 58.0 20 01 06.6

Mean Latitude 20°01'02.3"
'"--

This example demonstrates two points. The large discrepancies in the
atmospheric readings produce quite small changes in the refraction. Also the
changes so produced affect the two latitude values computed in opposite ways
so that the mean value is almost unaffected. The elimination of the effects
of this kind of systematic error is a feature common to all observations on
balanced sets of stars.

Parallax
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When Zo is a right angle, i.e. when S is on the sensible horizon of
X, TT has a maximum value of 7T

h
known as the horizontal parallax

4.54 An observer makes his observations to celestial bodies from a position
on the earth's surface. Since data for these bodies is geocentric data, the
surface observations must also be reduced to the centre of the earth. This
correction must be made only when the earth's radius has an effect on the
quantity measured. Horizontal circ~e readings are not affected but vertical
circle readings are.

Let 0 be the centre of the earth of radius R, and S a celestial body,
which is distant D from the earth and which is on the sensible or visible
horizon of the station. Let S be observed, at the station X, to have a
zenith distance of ZOo It is required to find z the corresponding
geocentric zenith distance.

From the Sine Rule in the Triangle XOS

is a small angleTTsincesin zo
R
D P

sin(180-zo )
o

11

sin TT
R



z

S

/

/

/ Sensible Horizon of X

, /

/
1..0 ........ /,

Earth Fig.4.4

R P
D

Zo - TI 2
0

the correction to
negligible because

TI
h

TI

Z

in which TI
h

sin z is
than the R 0

issun, IT p
however,

TI
h

6380
150xl06 . 206265"

TI
h

sin 2
0

2 0 for parallax.
D is very large.

8.8"

For a star, other
For the sun,

This quantity is not quite a constant, but varies slightly, because D varies
throughout the year.

T~O TYPES OF ERROR
IN field astronomy the elimination of errors plays an important part in

devising the various observation techniques. Although some mention has already
been made of errors and their effects, a more detailed explanation should now
be given.

All observed quantities are subject to errors, however skilled or meticulous
the observer may be. For example, such errors would be due to the observer's
inability to point exactly to a star or estimate precisely the value of a
theodolite circle reading. These errors are for the most part small ones. In
addition to these errors, there are others of a systematic nature, whose
behaviour, if known, can be allowed for. Even if the values of these latter
errors are not known their effects on the end result may be minimised by using
special observing and instrumental techniques. A particular class of
systematic error, which occurs frequently in astronomical work, is the constant
error, i.e. an error which remains constant in size and sign.

4.61 If an observer is well trained and competent, his observational errors
tend to a "random" pattern, which in survey observations almost always follows
a "normal distribution". This distribution displays the following features:-

(i) The frequency of the occurrence of a random error of a certain magnitude,
irrespective of sign, is inversely related to its magnitude.
(ii) The number of such positive errors will be nearly equal to the number of
negative ones.
(iii) The arithmetic mean of a set of observations is more likely to be near
the truth than any single value, provided that a large number of observations
is made.
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If small numbers of observations are made, the statistical quantities
obtained from these quantities do not have great reliability and become only
estimates of the precision of the results obtained.

4.62 Neglecting to correct observations for instrumental constants causes
systematic errors in the quantities sought. Very often an instrumental
constant can be determined by observation. For example, the vertical circle
index correction of a theodolite can be readily determined by face left and
right observations. If some time later these observations are repeated it may
be found that a slightly different value of the index correction results. This
difference may be entirely due to random errors of observation or there may have
been a small change in the index correction in the intervening time between
observations. Thus an instrumental constant, supposedly of constant value, may
be affected by both random and systematic errors and it may not be possible to
separate these two components. To guard against these possibilities,
observations, including those made for determining instrumental constants,
should be made over as short a time interval as possible.

If instrumental constants are not determined and therefore suitable
corrections not applied to the observations, the routine of observation should
be such as to exclude their effects from the final results, ~uch as observing

on both theodolite faces. Alternatively these constants may be included as
additional unknowns in the final solution for the main unknown(s) .

THE DETECTION OF POOR OBSERVATIONS OR BLUNDERS IN A SET OF OBSERVATIONS

4.71 WHEN sets of corresponding pairs of quantities, linked by some mathemat­
ical relationship, are observed, they should be tested, so that the presence of
poor observations or blunders may be detected.

A simple way of doing this is a graphical one, which consists in plotting
one member of each pair as the ordinate and the other as the abscissa. The
points so plotted should then show up as a smooth curve. This will of course
not show up exactly because of the presence of unavoidable small random
errors, which are present in even the best observations. If however, any
point deviates considerably from the smooth curve drawn through the points
plotted, the observations producing this deviant point should be scrutinised
to determine the cause of the discrepancy.

The error may be due to a blunder, the cause of which can often be surmised,
if it is known from experience or from the type of equipment being used, what
kinds of blunders are commonly made. Some of these are the misreading of
observed values by whole units or sets of units. Examples are the misreading
of clock times by whole minutes or of a theodolite circle by ten minutes of
arc. In addition, when an observation is made on a quantity, which is near
the end of a unit, the fraction of the unit is correctly read but the next
whole unit above is often mistakenly read in place of the correct value. An
example is 47°17'58" read as 47°18'58", because the 8' value is visible at the
same time as the 50" and DO" values. A clock value of 6h 42mS9.1 s can likewise
be easily misread as 6h 43mS9.1s , because great concentration is given to
obtaining the correct value of the small unit of the seconds and, by the time
the minute hand is read, it is on the next minute value of 43m; this mistake
is more easily made if the minute hand is not properly set into coincidence
with the minute mark, when the second hand is at the zero second reading.

If the circle left values of the observation are plotted they should form a
straight line, provided the observations have been made in a short period of
time, say of the order of a few minutes. If this period is longer a curvature
in the line may be discernible depending upon the type of observation made.
The corresponding circle right observations will define another line with
similar slope but not necessarily collinear with the first, unless the instru­
ment is in perfect adjustment.
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For vertical circle observations the index correction is usually determined
prior to the main observations and this when applied should make all observ­
ation points collinear. Additional information relating to the slope of this
line is also available from a knowledge of the time rate of change of
altitude given in section 2.75 as

dh
dt cos ¢ sin A

in which the values of latitude ¢ and azimuth A need not be known precisely.
The azimuth value may be obtained from prediction information or from oriented
horizontal circle readings made at the time of observation.

The graphical method mentioned above may be impractical because a large
scale may need to be used for the plotting in order to show up the errors.
Since the observations often extend over some time, the graphical method
would require large plotting sheets.

Instead of plotting, the investigation can be done by calculation. A
simple way is to displace each observation, by means of the given slope, to a
selected value of one of the variables. If the slope is the average for the
set of observations the value of the variable selected is best taken near the
middle of the Observations.

Star Betelgeuse (No. 162)
22°C
1016 rob
-1'45"

observations on the
Temperature
Pressure
Vertical Circle Index

4.72 Example. Time altitude
Latitude 33°55'S
Clock Mean Time
Mean Azimuth 314°12'

Observations and preliminary reductions
Observed
Vertical Reduced

Observed Circle Index Altitude
Clock Time Reading Corrn. Refrn. ho __

3
h

52
m

59.5
s

52°51'21" -1'45" +1'14" 37°09'10"
53 31.6 52 56 07 -1 45 +1 14 04 24
54 00.4 53 00 24 -1 45 +1 14 37 00 07
54 38.5 53 06 01 -1 45 +1 14 36 54 30

55 55.5 306 45 59 -1 45 -1 15 36 42 59
56 33.3 40 18 -1 45 -1 15 37 18
56 58.7 36 37 -1 45 -1 15 33 37

3 57 25.4 306 32 55 -1 45 -1 15 36 29 55

The time rate of change of altitude in arc seconds per second of mean time will
be

dh
dt

where F = 1.0027379

15 F cos ¢ sin A -8.948

The reduced altitudes are now displaced to a common fictitious clock time of
observation of 3h55mOOs using the relationship

where 6T is the difference between the selected clock time and the observed
clock time. The agreement between individual values of h c is the criterion
of the quality of the set of observations.
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CT 6T 6h ho hI'"'

3
h

52
m

59.5
s

+2
m

OO.5
s

-17'58" 37°09'10" 36°51'12"
53 31.6 +1 28.4 -13 11 04 24 13
54 00.4 +0 59.6 - 8 53 37 00 07 14
54 38.5 +0 21.5 - 3 12 36 54 30 18

j 55 00

55 55.5 -0 55.5 + 8 17 36 42 59 16
56 33.3 -1 33.3 +13 55 37 18 13
56 58.7 -1 58.7 +17 42 33 37 19

3 57 25.4 -2 25.4 +21 41 36 29 55 36 51 36

It can be seen here that the results appear to be satisfactory except for the
last one which lies about 20" away from the others.

If a value of h c is substantially different from the others and this
difference is say 10', then this could be attributed to a misreading of the
vertical circle and the observation corrected. On the other hand a blunder
could have been made in the associated clock time of observation which would
be

10,dt lm07s; such an odd misreading would be highly unlikely.
dh

Checking of Calculations

4.73 Whatever methods are used for calculation the correct answer must be
produced and the calculation must therefore be checked. Care must be
exercised and the task of computing carried out in a systematic and objective
manner. Input data, such as the station position, the star coordinates and
the like must be carefully checked and the corrections of the input must be
monitored. The person performing the calculations should be well trained and

the importance of correct computing must continually be stressed.
The ideal method is to have the field book handed to a computer, who obtains

any additional data required and then carries out the computation. This
procedure is repeated by a second computer, who should remain unaware of the
identity of the first one. The computations are then compared with each other.
In this way, independence is achieved. The independence of the process is its
chief guarantee of correctness.

If only one person does the computation, he should be shown where mistakes
can easily occur, so that he can guard against them. Different methods of
solution should be used to check the possibility of errors in manipulation or
arithmetic. Checks should be incorporated in the field work to eliminate the
possibility of blunders.

If a programmable calculator is used, the programme should be thoroughly
tested against data beforehand to guard against mistakes in logic and execution.
Checks against the entry of incorrect input data should be provided. The
results should be checked when they are transcribed from the calculator. If a
printer attachment is used and the programme has been thoroughly tested, the
input data can be checked very positively because the results are available in
the printed form.

Finally, the computer must keep watch over the process with his critical
faculties always alert. When he has any uneasy feeling, even if it is only a
momentary one, he is well advised to find the reason for this feeling. It
very often has a valid reason behind it.
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5
Determination of Latitude

INTRODUCTION

THE latitude ¢ of a station is its angular distance, from the equator,
along the meridian of this station and it is defined as a positive value, if
the station is north of the equator and negative, if south.

An observer, using a theodolite, has two methods available for the deter­
mination of latitude; he may time the passage of a known star across a known
altitude circle or across a known azimuth circle. If these times are
correlated with Greenwich Time by means of radio time signals, it is possible
to determine the station's latitude. The first method will be dealt with, but
the second, which is nowadays not used in practice, will not be pursued
further. A reference to it may be found in W. Chauvenet, A Manual of Spherical
and Practical Astronomy. Philadelphia. 1863, which has been reprinted by
Dover Publications, Inc., New York, 1960.

LATITUDE FROM TIMED ALTITUDE OBSERVATIONS

5.11 IN this method, a known star is sighted and an altitude is observed.
The clock time, at which this observation was made, is noted. The clock
correction with respect to Greenwich Time is observed. The corresponding hour
angle t is found from the observed clock time, the observed clock correction,
the longitude of the station and the right ascension of the star. The
observed altitude is corrected for index error and refraction to give the
altitude h of the star at the moment of observation.

The latitude ¢ is now to be determined from t, hand 0, the known
declination of the star observed, by means of the Cosine Formula, which relates
these four elements, in the form

sin h sin ¢ sin 0 + cos ¢ cos 0 cos t ... 5.1

Variations dt, dh and do will produce a variation d¢. These four
quantities are related by means of differentiation of Equation 5.1 and the
result may be obtained from the differential relationships, summarised in
section 2.75 as

dh cos ¢ sin A dt + cos A d¢ + cos w do ... 5.2

do, to be as
be made as

This is manipulated to show d¢ in terms of dt, dh and do as

d¢ sec A dh - cos ¢ tan A dt - sec A cos w do .•. 5.3

For the change d¢, produced by specific changes dh, dt and
small as possible, the coefficients of these quantities should
small as possible.

5.12 At this point, something must be said about the possible magnitude of
do, the uncertainty in the star's declination. For all, but the most precise
geodetic observations, the declination values published in reliable catalogues
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may be considered irreproachable and do may therefore be taken as zero (see
also sections 6.12, and 7.31).

sec A dh - cos ¢ tan A dt ... 5.4

5.13 The observed altitude h and the derived hour angle t are known to be
subject to errors dh and dt. If, in the first instance, these are taken to
be random errors (see section 4.61), consideration should be given to the
minimising of their coefficients. If the star is sighted so that the azimuth
A is either 0 0 or 180 0

, then sec A will have its smallest value of ±l and
tan A likewise its smallest value of zero. If the star is therefore observed
on the meridian, the effect of the error dt will be zero and that of dh
will show up fully in the derived latitude ~.

5.14 If the errors dh and dt are now taken to be systematic errors (see
section 4.62), their effect d¢ on the latitude sought must be considered.
The longitude A and the clock correction with respect to Greenwich Time, as
adopted, may not have the exactly correct value. Therefore, the hour angle
derived for any star will be incorrect by a constant, but unknown, amount dt.
Similarly, the observed altitudes may also all be incorrect by a constant, but
unknown, amount dh. This may result, for instance, from the refraction
correction, taken from refraction tables, not representing correctly the
conditions ruling at the instant of observation. Another example is that of
vertical circle index error not being equal to the true value. This effect
can be removed by taking the arithmetic mean of the latitude values computed
from the face left observations, likewise for the face right observations and
then taking the grand mean. The systematic error in refraction, however,
cannot be thus removed because it affects the observations on both faces in
the same way and not in opposite ways.

The relationship of equation 5.4 suggests that the effects of the systematic
errors dh and dt may be eliminated, if two stars are observed such that
the coefficients sec A and cos ¢ tan A for one star are equal in
magnitude, but opposite in sign, to those for the second star.

If this is done, the observations on the first star will result in a derived
value ¢1 of the latitude. Similarly, those for the second star will produce
a value ¢2' The first, however, will be in error by d¢l and the second by
d¢2, such that the value ¢ of the latitude is given by

¢ ¢l + dePl

and ¢ ¢2 + d¢2

¢ Yz(¢l + ¢2) + Yz(d¢l + d¢2)

¢ Yz«h + <!J2) only if (d¢l + d¢2) 0

This requirement implies that sec AI and tan Ai must be equal to
-sec A2 and -tan A 2 respectively and that both conditions must be satisfied
simultaneously. This occurs when Al + A2 = 180

0
, i.e. when the two

azimuths are symmetrical with respect to the prime vertical and when the two
stars are at similar altitudes (see section 4.52 et seq). When this is done,
the effects of systematic altitude and time errors are eliminated. However,
for determination of latitude, stars in the vicinity of the prime vertical
should be avoided, because sec A and tan A then tend towards very large values.

5.15 Exact balance in azimuth is hardly ever achieved, but any deviation from
exact balance must be such that no significant error is introduced into the
result obtained. Tolerable limits to such imbalance must, therefore, be
determined. When the two azimuths are close to the meridian, this amount of
imbalance will have small effect. It will, however, have a much larger effect,
if the azimuths are far from the meridian, because the secant and the tangent
are larger and are then varying at a faster rate. Therefore, to reduce the
effect, the limit in imbalance must be reduced and balancing done more
carefully.

-68-

•



THE CALCULATION OF LATITUDE FROM TIME ALTITUDE OBSERVATIONS

The General Method

5.21 EQUATION 5.1 gives the latitude ¢, which is the unknown being sought
from the altitude h, the hour angle t and the declination 6, in the form
of an implicit equation, which can be solved by means of auxiliary angles.
From section A.41 in the appendix, the following relationships are abstracted
for this purpose:-

s

~

-e.~
I 0"-

~I

Fit
! !

iM
Observer's i

----~- Zt
Prime Vertical r/>

Equator

Fig.5.l

tan M
tan 6
cos t ... 5.5

and cos(M-¢) sin h sin M cosec 6 ... 5.6

Lquation 5.5 gives M without ambiguity, if the signs of numerator and
denomlnator are followed but equation 5.6 gives an ambiguity for (M-¢),
because cos{M-~) ~ cos(¢-M). The angle obtained from the cosine is first
of alJ chosen, according to its sign, to lie in either the first or second
quadrant. If the star was observed to the north of the prime vertical
this angle would be equal to M-¢. However, for a star to the south of the
prime vertical this angle would be equal to ¢-M. The latitude ¢ is then
calculated using the value of M obtained from Equation 5.5.

Alternatively, if N is defined as

cos N sin h sin M cosec 6 ... 5.7

and, if N is then given a sign, positive if the observed star is north of
the observer's Prime Vertical and negative if south, the gene~al relationship

M - N ... 5.8

I~,

will hold. Attention is drawn to the similarity that Equation 5.8 has to
Equation 5.10.

Meridian Methods

5.31 These are methods, prompted by simplicity and backed up by the theory,
which brings out that the star should be observed on the meridian for best
results. In observatories, a telescope is permanently mounted so that its
line of sight defines the meridian very closely; also, in the precise
determination of latitude to geodetic accuracy at field stations, a large
theodolite is set to define the local meridian and to observe stars as they
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Table 5 1

-70-

Z

z'-3b PN

z,
'4b

€ 1>9"Q>
to", 1> Horizon

Southwards (b) Northwards

Fig. 5.2

Northwards

z

(a)

Star 0 z ~

( la 8° N 60° N 52° S
Upper

( 2a 32 S 20 N 52 S
Transit

( 3a 82 S 30 S 52 S

Lower Transit 4a 78 S 50 S 52 S

( lb 20 S 70 s 50 N
upper ( 2b 20 N 30 S 50 N
Transit

( 3b 70 N 20 N 50 N

Lower Transit 4b 70 N 60 N 50 N

Southwards

cross the meridian. These observations are made on or very close to the
meridian on sets of very accurately balanced star pairs. Generally only a
single pointing is made on each star, but a large number of pairs is observed
to achieve the precision required.

For latitude determinations of less than geodetic precision, a smaller
theodolite is used. The meridian observation is still favoured and the tyro,
preparing to make his first astronomical determination, may well decide to
adhere to the meridian method. He may, of course, be influenced in making
this choice by the fact that the prediction, the observing and the computing
are very simple and straightforward. He will soon, however, find that the
restriction to an observation on the meridian gives the poor return of only
one observation per star. His "Star Almanac for Land Surveyors" will soon be
found to have insufficient stars for his purpose. Also, he knows that the
theodolite should be used to make observations on both faces and to make
multiple o~servations to reduce the effects of random errors of observation.
If the need to stay exactly in the meridian is slightly relaxed, such
observations can be made. These considerations, therefore, lead directly to
the circum-meridian method of latitude determination, in which the star is
observed in the vicin~ty of the meridian, before during and after its transit.

5.32 The determination of latitude from timed meridian altitudes or zenith
distances utilizes the best position for observing the star. Fig. 5.2 shows
meridian sections, with the south pole as the elevated pole in Fig 5.2(a) and
with the north pole as the elevated one in Fig 5.2(b). stars are shown in

four salient positions in each of these figures. Table 5.1 provides the
numerical data for all the situations illustrated. By inspection, the
latitude ~ can be deduced.



Declination 0 is a quantity already defined. It starts from zero at the
equator and goes to +90 0 at the north pole and to -90 0 at the south pole and is
therefore restricted to the first or the fourth quadrant. Zenith distance z
is also already defined and is restricted to first and second quadrant. In
Fig 5.2 the zenith distances are meridian zenith distances, which are zenith
distances measured either northward or southward. Such zenith distances, which
will be denoted by zM' may now be considered to have a sign, positive to the
north of the observer's zenith from zero at this point and negative to the
south. This, in effect, makes meridian zenith distance an angle going right
round the local meridian through four quadrants. This corresponds to the
vertical circle graduations on many of the modern theodolites. Table 5.2
shows up this information.

Table 5 2.
Star 0 zM ep

( la + 8 0 +60 0 -52 0

Upper ( 2a -32 +20 -52
Transit

( 3a -82 -30 -52

Lower Transit 4a -78 -50 -52

( lb -20 -70 +50
Upper

( 2b +20 -30 +50
Transit.

( 3b +70 +20 +50

Lower Transit 4b +70 +60 +50

From this it can be seen that the latitude from an upper transit sight can be
found from the 'relationship

... 5.9cP 0 zM

in which the subtraction is done algebraically.

5.33 Consideration will now be given to developing a relationship, which will
include Lower Transit cases also. An observer's meridian is a local one, which
may be split into an upper and a lower branch, each a semi-circle. The former
is defined as that one containing the observer's zenith and the latter as that
containing his nadir. The point E, at which the equator cuts the upper branch
of the observer's meridian, may now be taken as the starting point for
declination, when it is being used in the meridian~ where it will be denoted
as OM. This meridian declination may then be taken as a full four quadrant
system, with its zero at the point E and with values, increasing from this
point positively northwards or negatively southwards.

P"I

Northwards

cP Horizon

Z-+ZM

(b)
Northwards Southwards

(a)

Horizon

Southwards

Fig,5.3
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For a catalogue declination 0, it can be seen from Fig 5.3 that OM = °
for a celestial body on the upper branch of the observer's meridian and that
OM = 180 - 0 for one on the lower branch, the subtraction being carried out
algebraically. Also, 360 0 may be added or subtracted as required for
convenience.

Table 5.3 has been drawn up to show the detail of these manipulations.

Table 5.3
Star oM zM cjJ=OM- Z t-1

( 1a + 8 0 +60 0 -52 0

Upper
( 2a -32 +20 -52

Transit
( 3a -82 -30 -52

Lower Transit 4a -102(258) -50 -52

( Ib -20 -70 +50
Upper

( 2b +20 -30 +50
Transit

( 3b +70 +20 +50

Lower Transit 4b +110 +60 +5~

The above shows that the extended conventions for meridian declinations and
meridian zenith distances produce the general relationship for the latitude,
from either upper\or lower transit sights, as

¢ 0 - z ... 5.10
M M

5.34 If the meridian observations are solved by the general method of section
5.21, it will be found that the auxiliary angles M and (M-cjJ), for this
special case, are equal to OM and 2M respectively. This shows that
Equation 5.10, which had long been suspected as holding in practice, has now
been justified in theory.

Near Meridian Methods

5.41 Because the meridian observation for latitude determination is so
restricted (see section 5.31), circum-meridian methods have been developed.
These are methods, in which time-altitude observations are made on stars not
exactly on the meridian, but on stars as they approach, pass over and Leave the
meridian. During this period their azimuths are not very different from that
of the meridian. Such observations are therefore made when the star is only
slightly away from the very best position for latitude determination. They are
suited to theodolite observation, because observat~ons can be made on both
faces. Also they enable multiple observations to be made on each star, so that
precise results can be obtained.

The two pole stars are available for circum-polar observations, because they
are so close to the pole that their azimuth, whatever the hour angle, never
deviatp.s very far from that of the meridian, unless the observer is in very
hiqh latitudes indeed. These stars can, therefore, be observed at dny hour
angle.

S.42 In section S. 32 the generalized concept of meridian zerli th distance was
introch.lC7ed. Since the zenith distances, observed in the near mer idian methods
l~e on a great circle, which departs only very slightly from that, in whlch
the meridian zenith distances lie, the circum-meridian zenith distances can D~

generalized in the same manner to gain the same advantages. This lurid of
zenith distance, designated as zCM' is likewise taken to start from zp.ro at
the observer's zenith and to increase positively northwards from thiS point,
or negatively southwards so that circum-meridian distances can be used as ~

full circle four quadrant system. Furthermore, when the meridian zenith
distance zM and the circum-meridian zenith distance zCM are being used, the
meridian declination value oM will also be used.

5.43 The relationships for reduction of near meridian zenith distances to
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meridian zenith distances have been developed in section A.71 in the appendix.
In all these, it is necessary to have a value for the unknown latitude sought
before solution can be achieved. If the observations are circum-meridian ones,
a reasonably close preliminary value of the latitude can easily be obtained
from the observations themselves. An iterative process may then be used to
obtain the unknown to the accuracy of the observations made, but, in practice,
the need to iterate is hardly ever found necessary, because the preliminary
value of the latitude, as obtained from the observations themselves, is fairly
close to the truth (see section 5.47 for justification). In the circum­
meridian observation method, the set of observations mafe is usually one,
balanced about the point of transit. The uncertainty 6A in longitude
produces an effect cos ¢ tan A dA in the derived latitude. Over transit,
tan A changes sign and the effects of 6A tend to cancel. In practice,
however, the observer, who has assumed a poor longitude, knows what his clock
time of transit is and tends to make his balance using time differences from
this point instead of making balance on obtaining equal altitudes on the star
on ea~h side of the meridian (see section 5.45) .

Sometimes this balance is not carried out exactly, for various reasons,
which should be avoided if the programme is properly predicted. If there is
any ch9ice, the star on the equator side should be balanced properly and the
one on the pole side of the observer should be the one not balanced properly,
because the effect of 6A on this star is smaller because its azimuth is
departing from that of the meridian at a slower rate (see section 10.32).

Sometimes, one of the pole stars may be observed (see section 5.50). This
observation is made very often when this star is not at or near transit. There
is thus no balancing on the opposite side of the meridian and the uncertainty
6A may produce an unacceptable error in the derived latitude (see section
5.512). In practice, a value of longitude of sufficient accuracy will often
be known.

Circum-Meridian Stars

5.44 There are many stars available for latitude determination by circum­
meridian methods, in which the stars are observed when they are close to
meridian transit (see section 5.41).

In this position, the meridian zenith distance zM and the circum-meridian
zenith distance zCM do not differ much from each other; so that special
methods, in place of the general one, were developed in the past in the form
of a series (see section A.72 in the appendix). Several methods of derivation
have been used there in order to illustrate the possible lines of approach in
such derivations. The relevance of such methods of computing is nowadays
disappearing, because of the modern facilities for computing direct, instead
of indirect, solutions.

The observer arranges his programme in such a way that the circum-meridian
star is located in the field of view of the telescope about ten minutes before
the time of its transit. Prior to this, he has determined his clock correction
with respect to Greenwich Time and also the index correction of the vertical
circle readings. He then proceeds to make,sa~ six timed altitude observations
before transit. He finishes these with time enough to transit and find the
star on the other face of the theodolite and he then makes another six such
observations at points approximately symmetrical with respect to the previous
six.

5.45 If there is any doubt about the value of longitude assumed for
determining the latitude from such sets of observations, the period, over
which the observations are made should be extended so that it is fairly
obvious that the observed zenith distances have actually decreased to a
minimum value and have thereafter increased by the same amount. This is easy
to see by inspection, if the vertical circle index error has been reduced to a
small value by adjustment, which, if necessary, can easily be carried out in
the preparatory period before observing is to start. Before computation, the
reduced meridian zenith distances should be plotted on thin paper against the
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observed clock time. The sheet of paper is now folded about a line perpend­
icular to the time base, so that the rising and the fdlling sections of the
curve joining the plotted points are superimposed on each other. The fold line
then will give a position on the clock time base corresponding to the correct
clock time of transit.

In practice, this plotting method gives a better value of the clock time of
transit from the observations on the star on the equatorial side of the
observer than from those on its balanced partner on the pole side. This
device should be seldom resorted to, as it is-definitely much better to avoid
this method by obtaining a reliable longitude for use in determining the
latitude. This can be very simply done by making a few time altitude
observations to stars, one to the east and the other to the west near the
prime vertical and so obtaining a fairly good value of the longitude (see
section 5.491).

5.46 Individual observations are normally calculated separately. From the
clock time, combined with longitude and clock correction, the local sidereal
time of the observation is determined. The loc&l hour angle is found from this,
combined with the star's right ascension. The vertical circle reading is
reduced for index and refraction to give the circum-meridian zenith distance.

5.47 The latitude is now computed from these, together with the star's
declination, by means of the general method of determination of the latitude
(see section 5.21) or by means of the special circum-meridian methods (see
section A.72 in the appendix). The latter,in full, is given as

+ Bn - Cs ... 5.11

and m 2sin2 (Jzt') p

and n == 2sin 4 (lzt ') p

and s == 2sin6 (lzt ' )p

-Am

in which

zM

A cos ¢ cos

B A
2 cot zM

C ==~A3 (1 + 3 cot2 zM)
3

and in which p is in the same angular units as those used for all the other
quantities and is equal to the number of these units in a radian.

The quantities m, nand s are related to each other as follows:-

m 2sin2 (lzt')p in which t' is defined as
2m t' tn

2p near upper transit
m3 nm

t' 180and s W t -
2p

near lower transit

If m is expressed in sexagesimal seconds, then

m" == 2sin2(~t')p"

nil

s"

mil
2

900 (6tm) 2 1. 9635" (6tm) 2
2p"
(mil) 2

2p"
(mil) 3 nil mil

(2 p")2 2p"

Table 5.4 gives numerical values for these over a range, which should not
normally be exceeded in any circum-meridian observations, which aim at single
second accuracy in the reduction by the above series expansion.
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to the nearest whole second of arc.

If the interval t' is expressed in minutes of time as 6t
m

, then an
approximate value of



Table 5.4
-

Truncated
Angle mil value of m" Approx m"

n" s"
t' from Star from (ll.tm)

Almanac

4
m

31. 41" 31" 31.42" 0.00" 0.00"
8 125.65 126 125.66 0.04 0.00

12 282.68 283 282.74 0.19 0.00
16 502.45 502 502.66 0.61 0.00
20 784.90 785 785.40 1.49 0.00
24 1129.94 - 1130.98 3.10 0.01

If the near meridian zenith distance is not less than 30° and if the star
observed is within twenty minutes of the time of its transit, and the prelim­
inary value of the latitude ¢ is known to within one minute of are, then the
e~ror in the term Am will be less than one arc second. In a set of such
observayions, this error will be significantly less than this amount because
closer to the meridian this error diminishes very quickly and the mean result
from the set is always taken (see section 5.43).

If a star has been observed in any latitude at a near-meridian zenith
distance not less than 30° and the star was within ten minutes (in time) of
transit, the correction Bn" is not greater than 0.6 arc seconds. The
correcting term Cs is even smaller.

5.481 An example of a circum-meridian observation made for determining
latitude will now be given in order to illustrate the calculation procedures.
First the general method of section 5.21 and then the circum-meridian method
of section 5.47 will be used. Because, it is a computing example only, a
single observation only is provided for this purpose. Subsequently, in
section 5.491 a full set of observations will be worked out in detail.

The data for the above example represents one observation from each of two
sets of observations made on a balanced pair of circum-meridian latitude stars.

Remarks

Near Upper
Transit

Near Lower
Transit

Star Asp- Right
Declination

Observed Circum-
No. ect Ascension Local Sid- Meridian

ereal Time Zenith
Distance *

338 S 12
h

40
m

23
s

S 1°18'43" 12
h

49
m

22
s

48°26'40"

BS0285 N 01 04 53 N 86 07 03 12 52 47 46 47 41

*These have been corrected tor rerractlon ana lnaex

Aspect Star South Star North

Declination
Altitude
Local Hour

8
h

Angle t = LST-RA

- 1°18'43"
41 33 20

Oh 8m59 s

2°14'45"

+86°07'03"
43 12 19
11h 4 7m54 s

176°58'30"

tan 8
tan M = cos t

M

cos (M-¢)
sin h sin M

= sin 8

- 0.022 9017
+ 0.999 2319

0.663 8515

+14.734 8504
- 0.998 6066

93°52'37.6"

0.684 6186

47°05'15.9" NorthI

M-¢
N

¢ =

±48°24'20.6"
-48 24 20.6

M-N +47 05 34.0

Latitude from pair of Observations

±46°47 t 39.8"
+46 47 39.8
+47 04 57.8
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5.482 The example of section 5.481 will
method of section 5.47, in which Equation
relationship as

now be reduced by the circum-meridian
5.11, less the term Cs, gives the



ZM ZCM - Am + Bn

The factor A requires a preliminary value of the latitude ~ as well as one
of the meridian zenith distance zM' both of which are being sought. Both
are easily found from the observations themselves, provided the observations
have been made in the vicinity of the point of the star's transit across the
meridian.

1
Preliminaries Star South at V.T. Star North at L.T.

~M = ° for vpper Transit V.T. - 1°18'43" +93°52'57"
= lSO-o for Lower Transit L.T.

t = LST-RA oh Sm59s llh47m54 s

~' = t for V.T. Oh Sm59s oh12m06s

= 12h-t for L.T.

f'\pprox zM = zCM min~mum at V.T. -48°26'40" +46°47'41 11

maxunurn at L.T.

f'\pprox <f> ~ oM - zCM +47 07 57 +47 05 16

Nean approx. <f> 47°06'36" North

Accurate Determination

"

;
i

,
IIpprox zM = OM - <Papprox +48°25'19" -46°46'21"

II =
cos <P COSOM = 1

0.9096- - 0.0632
sin zM tanoM-tan<f>

mil = 2 sin2 (!zt') .p" +158.4" +287.4"

Am -00°02'24 11 -00°00'18"

zM=zCM-AM -48 24 16 +46 47 59

<P=oWzM +47 05 33 +47 04 5S

Latitude from pair of observations 47°05 1 15.5 11 North

r

,.

Iteration is seldom required if, in the first instance, a reasonably correct
value of the meridian zenith distance can be obtained from the observations
themselves. This is normally achieved with well balanced multiple observations
over the point of transit or close to it. If iteration is carried out in the
above example, no change occurs. The second term En of Equation 5.1] should
be taken out to test its magnitude. In the above, this term amounts to 0.04 11

for the star south and to 0.00" for the star north, and they can therefore be
neglected.

5.49 A full example, in which the observations were made to determine both
latitude and longitude, will now be set out.

Multiple observations are provided for one pair of circum-meridian latitude
stars and for one pair of longitude stars observed near the prime vertical. A
preliminary value of the latitude will be determined from meridian distances
found by inspection. The longitude, to be used in the next step of calculating
an accurate value of the latitude, is provided. The longitude from this set
of observations has been calculated in section 6.222.

"

~.

Theodolite Wild T2
Clock Mean Time
Vertical Index Subtract

30" from all V0 Rdgs
Barometer 1019.4 rob

Temperature 14.4°C

New Brunswick, Canada
9th October 1969

Ih09m44.5s
1h 12 m42 .Os

Example
UNB Fredericton,
Thursday evening
3h W

9th October 1969
9th October 1969

5.491
Place
Date
Zone
Ro for
R J e for
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Latitude Star North at Lower Transit
Star No BS2609 RA 7 27ID04 OS 0 87°05'05" N.

VGJ Rdg Obs CT VGJ Rdg Obs CT

313°03 1 24" 19
h

33
ID

47
S 46°57'19" 19

h
41

ID
33

S

rR 26 35 05 CL 18 43 06
313 03 25 19 35 27 46 57 21 19 44 14

Clock was 39s ahead of Zone Time

Latitude Star South at Upper Transit
Star No. 549 RA 19h 50ID56.6 s 0 0°55'37" N

Wl Rdg Obs CT VGJ Rdg Obs CT

314°58 1 25" 19h 57ID45s 45°00 1 45" 20h 03ID52 s

~R 59 01 19 59 30 CL 00 46 05 40
314 59 32 20 01 16 45 01 00 20 07 13

Clock was 39
s

ahead of Zone Time

Longitude Star West
Star No. 449 RA 16h40ID08.0s 0 3P39'28" N

VQ Rdg Obs CT VGJ Rdg Obs CT

45°17'22" 20
h

39
ID

58.2
s

314°07'57" 20h 43
ID

20.4
s

CL 24 08 40 37.3 CR 313 54 30 44 37.8
45 27 58 20 40 59.3 313 49 08 20 45 08.6

Clock was 39.6
s ahead of Zone Time

Longitude Star East
Star No. 12 RA Oh37ID43.5s 0 30°41'56" N

VQ Rdg Obs CT VGJ Rdg Obs CT

48°05'51 11 20h 52ID07.2s 312°43'51 11 20h 56ID49.1s

CL 47 58 33 52 49.0 CR 312 54 59 57 53.1
47 46 12 20 54 00.0 313 11 59 20 59 31.2

Clock was 39.6s ahead of Zone Time

5.492 To find a preliIDinary value of the latitude frOID inspection

Star N Star S
Min or Max VGJ Rdg CR 313°03'24 11 CR 314°59'32"
ZD 46 56 36 45 00 28
Min or Max V0 Rdg=ZD CL 46 57 21 CL 45 00 45
Mean Observed ZD 46 56 58 45 00 36
Refraction 1 02 58
Preliminary 2 M +46 58 00 -45 01 34
Declination +87 05 05 + 55 37
Meridian Declination OM +92 54 55 + 55 37
ep = OM - 2 M +45 56 55 +45 57 11

Prellmlnary value of the latitude +45°57'03 11

5.493 To determine an accurate value of the latitude from Star North

LST of Local Lower Transit RA + 12
h

Local Longitude
GST of Local Lower Transit
Ro for 9th October
Sidereal TiIDe Interval since GMT Oh

Determination of the
Star No. BS 2609
Preliminary value of

-...

clock ti~ of lower
RA 7h27ID04.0s

the longitude

transit of

°A
Star North
87°05 1 05 11 N

4h 26
ID

35sW (see sections
5.45 and 6.222)

19
h

27
ID

04
s

9th October
4 26 35 W

23 53 39 9th October
1 09 44

22 43 55

-77-



Evaluation of constant A = -0.0484
tan ¢

3 W
19 40 11

______~3~9 fast on Zone Time
19 40 50

1

Conversion of this interval
Mean Time Interval since GMT Oh

equals GMT of Local Lower Transit
Zone Longitude
Zone Time of Local Lower Transit
Clock Correction
Clock Time of Local Lower Transit

cos ¢ cos oM
sin zM

Reduction of the latitude from ZCM - Am" (see section A.72)

" h m s h m s h m s h m s h m s h m s
CT of Obs 19 33 47 19 35 05 19 35 27 19 41 33 19 43 06 19 44 14

t' MT units - 7 03 - 5 45 - 5 23 + 0 43 + 2 16 + 3 24

t' ST units - 7 04 - 5 46 - 5 24 + 0 43 + 2 16 + 3 25

m" +98 +65 +57 + 1 +10 +23
°

,
" °

,
" °

, " °
,

" ° I " °
,

"
VGJ Rdg 313 03 24 313 03 26 313 03 25 46 57 19 46 57 18 46 57 21

Index -30 -30 -30 -30 -30 -30

Corrected V0 Rdg 313 02 54 313 02 56 313 02 55 46 56 49 46 56 48 46 56 51

Obs ZD 46 57 06 46 57 04 46 57 05 46 56 49 46 56 48 46 56 51

Refraction 1 01 1 01 1 01 1 01 1 01 1 01

Corrected ZD zCM +46 58 07 +46 58 05 +46 58 06 +46 57 50 +46 57 49 +46 57 52

Am" - 5 - 3 - 3 - 0 - 0 - 1

Meridian ZD 2M +46 58 12 +46 58 08 +46 58 09 +46 57 50 +46 57 49 +46 57 53

0w180- 0 at L.T. +92 54 55 +92 54 55 +92 54 55 +92 54 55 +92 54 55 +92 54 55

¢= OM - zM +45 56 43 +45 56 47 +45 56 46 +45 57 05 +45 57 06 +45 57 02

Mean CR +45°56'45.3" Mean CL +45°57'04.3"

Mean Value of the Latitude from Star North = +45°56'54.8"

5.494 To determine an accurate value of the latitude from Star South

Determination of the Block time of upper transit of star south
Star No. 549 RA 19 50m56.6s 0 0 0 55'37" N

LST of Local Upper Transit RA 19h 50m57s 9th October
Lucal Longitude 4 26 35 W

GST of Local Upper Transit 17 32 9th October
Ra for 9th October 1 09 44
Sidereal Time Interval since GMT Oh 23 07 48
Conversion for this interval 3 48
Mean Time Interval since GMT Oh 23 04 00

equals GMT of Local Upper Transit
Zone Longitude 3 W

Zone Time of Local Upper Transit 20 04 00
Clock Correction 39 fast on Zone Time
Clock Time of Local Upper Transit 20 04 39

Evaluation of Constant A
1

tan OM - tan ¢ -0.9827

Reduction of the latitude from ZCM - Am" (see section A.72)
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- ---
h m s h m s h m s h m s h m s h m s

CT of Obs 19 57 45 19 59 30 20 01 16 20 03 52 20 05 40 20 07 13

t' MT units - 6 54 - 5 09 - 3 23 - 0 47 + 1 01 + 2 34

t' ST units - 6 55 - 5 10 - 3 24 - 0 47 + 1 01 + 2 34

m" +94 +52 +23 + 1 + 2 +13
° I ..

°
,

"
V0 Rdg 314 58 25 314 59 01 314 59 32 45 00 45 45 00 46 45 01 00

Index -30 -30 -30 I -30 -30 -30

Corrected VGJ Rdg 314 57 55 314 58 31 314 59 02 45 00 15 45 00 16 45 00 30

Obs ZD 45 02 05 45 01 29 45 00 58 45 00 15 45 00 16 45 00 30

Refraction 57 57 57 57 57 57

Corrected ZD zCM -45 03 02 -45 02 26 -45 01 55 -45 01 12 -45 01 13 -45 01 27

Am" - 1 32 -51 -23 - 1 - 2 -13

Meridian ZD zM -45 01 30 -45 01 35 -45 01 32 -45 01 11 -45 01 11 -45 01 14

OM = ° for U.T. +00 55 37 +00 55 37 +00 55 37 +00 55 37 +00 55 37 +00 55 37

rp = 6M - zM +45 57 07 +45 57 12 +45 57 09 +45 56 41? +45 56 48 +45 56 51
._-

Mean CR +45°57'09.3" Mean CL +45°56'49.0"

Mean value of Latitude from Star South = +45°56'59.2" N

Mean value of Latitude from pair = +45°56'57.0" N

This example has been computed with the aid of the tables on pages 62
and 68 of the Star Almanac for Land Surveyors (SALS). It should be seen that
the use of OM simplifies the calculation, particularly with the lower
transit calculation, because the sign of the factor A is found automatically.

Circum-Polar stars

5.50 The two pole stars, Polaris (a Ursae Minoris) in the northern
hemisphere and 0 Octantis in the southern hemisphere, are available, for the
determination of latitude, provided the observer is not at a station close to
the equator. At such latitudes, the two pole stars are difficult to see
because the line of sight must traverse a long path through the dense
atmosphere layers, close to the earth's surface. This is particularly so for
the southern star, which is quite faint.

These two stars are within one degree of the pole and their azimuths, in all
but high polar latitudes, never depart much from the meridian azimuth, so that
they may be observed at any hour angle. Polaris, of magnitude 2.1, is easily
visible to the naked eye, but a Octantis, of magnitude 5.5, is not easily
seen by the naked eye observer, unless he is experienced, and therefore, for
most people, a telescope is needed.

5.511 An example of latitude determination from an observation on a circum­
polar star will be worked by a number of methods. These provide alternative
methods for checking calculations.

Example. The southern pole star of declination 89°04'00" S was observed
from a station to have a zenith distance, corrected for refraction and index

. error, of 56°10'45.6", when the star's hour angle was 6h40mOO.Os . Determine
an accurate value of the latitude of this station, if an approximate value of
34~0 was scaled off an atlas map.

5.512 The meridian distance zM at upper transit will first be determined
with a relatively rough value of 34~oS ~s the preliminary value for the
latitude. An iterative process will then be carried out until the value of
the latitude stabilises. From section A.71 in the appendix, the relevant
relationship is the following:-
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cos 2 M cos zCM + 2 cos oM cos ¢ sin
2

(!zt ' ) · .. 5.12

OM -89°04'00" for a star at upper transit

t' = t 6h40mOOs 100°00'00"

56°10'45.6" South

cos zM 0.556 595 32 + 0.019 117 58 cos ¢ ... 5.13

Table 5.5 is obtained from a series of iterations from this relationship:-

Table 5.5--..
¢ ¢ =oM-zMPrellmlnary zCM zM

-34°15'00" ... 56°10'45.6" -55°04'56.65" -33°59'03.35"
-33 59 03.3 -55 04 44.15 -33 59 15.85
-33 59 15.8 -55 04 44.31 -33 59 15.69
-33 59 15.7 -55 04 44.31 -33 59 15.69

.._.. ,----_.

The solution converges very quickly even though the preliminary latitude is
very inaccurate. If
the derived latitude
A = 181.]0 and with

the longitude is equally inaccurate its effect 6¢
is equal to -61.. cos¢ tan A. For the above example

61.. = ~o

on

-6).. cos ¢ tan A ~900" cos 34° tan 181.1°= -14"

This discrepancy is not eliminated because in this type of observation the star
is not observed on both sides of the meridian. The hour angle has been
deliberately chosen to give a large error. However, when the star is near
transit this error is very small and in addition the iterative solution for
latitude converges more quickly.

Instead of using the very rough value of latitude scaled from a small scale
map, a better preliminary value can be calculated from the actual observation
itself. This is obtained from the relationship of section A.51 in the appendix.
This is

h - pIt cos t ...

33°49'14.4" - 3360" cos 100°

· .. 5.14

33°58'57" South

With this value as the preliminary one, the first computation from Equation
5.13 gives the latitude as -33°59'15.9". Comparison with the values of Table
5.5 shows that the refined preliminary value produces only one less iteration
than the rough value.

5.513 Section A.71 in the appendix provides the following alternative
relation for this type of solution

The computation will be illustrated with the data of section 5.511, but it
will be treated as a lower transit example. The value of 33°59' South for the
latitude as obtained from Equation 5.13, in the previous section will be used.
The preliminary meridian distance 2M is obtained quite easily.

· .. 5.15
cos ~ cos OM 2

'f' sin (~t')
sin z

Z

Preliminary ¢ -33°59'

°r1 269°04' for lower transit
or oM -90°56'

zM -56°57' from ¢ = OM - zM
zCM -56°10'45.6"

Z -56°33'52.8"

t' t - 180 -80°00 ' for lower transit
-80-
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Substitution in Equation 5.15 gives

-00°45'58.2"
-56 10 45.6
-56 56 44.4
-90 56 00
-33°59'15.6"

Further iteration will lead to results similar to those of section 5.512.

5.52 This computation has been done by two methods to illustrate the theory
in some detail and also to show the complete generality of the methods. The
above relationship of Equation 5.15 suggests the use of a power series as a
means of solution. This is given in the appendix, where the theory has been
developed for a power series for the solution of both latitude and azimuth
(see section A.5l and A.52).

These series are the basis for the widely used tables for the reduction of
latitude and azimuth observations made on Polaris, which is such an outstanding
mark in the sky of the Northern Hemisphere.

5.53 The data of section 5.511 will be used for this purpose. Equation A.52
in the appendix gives the relation needed for this solution as

2 3

I~I h - p cos t + ~p sin
2

t tan h - ~pL cos t sin
2

t

4

+ 2~p3 sin2 t tan h (3 sinz t tan 2 h + 9 sin2 t - 4).. . .. 5.16

in which p is the polar distance from the adjacent pole and p is in the
same units as p.

The numerical values for this solution are tabulated as:-

h
p
t

P
1st term

+ 2nd term
3rd term

+ 4th term
sum

90° - z
:::: 00°56'00"

100°00'00"
206265"
+583.46"
+ 17.78
+ 0.05
+ 0.00
+601.29

h
I(~I

33°49'14.4"
3360"

00010'OJ.29"
33 49 14.4
33 59 15.7

S-lnce the star observed was a Octantis the latitude is south

¢ -33°59'15.7"

5.54 The data for this example is that from section 5.511 and lS given below.
Tha method of solution is that of section 5.21.

Star South

5 -89°04'00"
t 100 00 00
h 33 49 14.4

tan 6
Mtan M

tcos

cos N Sln h Sl.n M cosec 0 N
M - N

cjl

269°50'16.5"

- 56 10 27.8
326 00 44.3

- 33°59'15.7"

Of all the methods used to illustrate the calculation of latitude from a close
circum-polar star, this last method is the simplest and most direct. The
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THE DETERMINATION OF THE UNKNOWNS AND THEIR PRECISION FROM BALANCED OBSERVATIONS

therefore, become,

¢ ¢' ± C ± ~r + v

-cos ¢ tan A

are linked by the Cosine
differentiation of this

d¢
dA

The above correction equations,o.

and

6, t and h
are obtained by

d¢ d¢
~rdh+6AdA+v

and

sec A

±l

C d¢ +
dh

~
dh

¢ C ~r ¢~L + v
NL

n observations

¢ + C - ~r ¢~R + v
NR "

¢ + C + ~r ¢~L + v
SL "

¢ C + ~r ¢~R + v
SR "

-82-

is the adjusted value of the latitude,
is the computed value of the latitude,
is the vertical circle index correction, with the positive
sign applying to its use with one face of the theodolite and
the negative sign applying to the other,
is an unknown systematic error in the refraction values taken
from the refraction tables,
is an unknown systematic value of the longitude used in the
computation and is a small quantity
is the correction to be applied to the computed value of the
latitude to obtain the adjusted value.

~
dh

¢' ±

v

¢
¢'
C

~r

in which

method is applicable to stars of any declination and therefore is highly
recommended.

and

5.55 The two pole stars may be observed at any hour angle. The error ~A is
usually not large and its effect cos ¢ tan A dA is further diminished for
such a star because the azimuth is always close to that of the meridian,
unless the observer happens to be at a station very close to one of the earth's
poles. While the pole stars are very useful for observations in mid latitudes,
many other stars are available adjacent to tile meridian and hence the circum­
meridian methods of section 5.44 are far more often used.

5.61 IF a set of latitude stars has been properly predicted and properly
observed, the latitude should be rigorously computed from these observations.
If this can be don~ simply, so much the better. In the past, it has been usual
to assess the results, obtained from each star, separately instead of
inspecting the results from individual observations on both stars and obtaining
from this inspection, all the relevant unknowns, (instrumental and physical
included), as well as the precisions.

5.62 It is assumed that a set of timed altitude observations has been made by
means of a theodolite on a pair of well-balanced circum-meridian stars. This
gives rise to correction equations of the form:-

and, since these observations are made on a star to the north on both faces of
the theodolite and also on a star to the south on both faces, four sets of
correction equat.ions of the fOllowing type arise

Since these are circum-meridian observations, A is close to either 0 0 or 180 0

and therefore

In this method, the quantities ¢,
Formula and the above coefficients
relationship. This gives



This is so because the index correction C is eliminated in the mean from circle
left and circle right observations on each star, whereas a constant refraction
effect 6r is eliminated only if the results from both a north and a south
star are meaned.

These produce the following Normal Equations, shown here in the detached
coefficient form

¢ C 6r L (the absolute term)

N 0 0 E¢' + E¢J:~R + Eep' + Eep'
NL SL SR

0 N 0 L:¢' + E¢' + E¢' - l:ep~RNL NR SL
0 0 N -l:¢ I - L:¢' + L:¢' + 2:¢~RNL NR SL

Provided equal numbers of observations have been made on each face i.e. N 4~

The solution of the unknowns is then,

¢ !." ( ¢NL + ¢NR + ¢SL + ¢SR)

C 1.i (-¢ + ¢NR + ¢SL - ¢SR)NL
6r 1.i(-¢ - ¢NR + ¢SL + ¢ SR)NL

rr:;;;
J~

o
so

in which ¢NL' ¢SL etc. are the means computed in each set.

The values of the v corrections may be obtained by back substitution in
the correction equations. The standard deviation of a single observation then
is given as

Since the Normal Equation matrix is a diagonal one, the standard deviations of
the unknowns are given as

o = 0
C 6r

An alternative and convenient method of determining the v values consists of
first computing the differences u from the means for each set of n
observations as

~L'1.

and similarly for the other three sets and then relating these to the
v values.

From the first equation

vNL · ¢ - C 6r ¢~L'
1. l

¢ - C 6r ¢NL + u
NLi

~(¢ + ¢NR + ¢SL + ¢SRNL

+¢ - ¢NR ¢SL + ¢SRNL

+¢NL + ¢NR ¢SL - ¢SR

-4¢ + u
NL NLi

1 -

¢NR - ¢SL ¢SR)= '4( -¢ + + + u
NL NLi

D + ~ (see also further explanation inL.
l section 5.63)

The constant D may be conveniently evaluated when solving for ¢, C and 6r.
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Similar treatment gives the following results for the other sets

Vi-JR' - D +
~R'1 1

v D + u
SLi SLi

v - D + uSR 'SRi 1

When observations are made by skilled observers, the required number of
observations is usually obtained with only a few, if any rejections. If this
does occur, a slight imbalance results and the weights of the mean values ¢NL
etc. are no longer exactly the same. However, if the imbalance is only a
slight one, the use of this method will provide answers, which do not vary
significantly from the correct ones.

5.63 Example. The following observations were made at the University of New
South Wales for the purpose of determining its latitude.

Latitude Star North No. 319

Relationships used
Refraction rO 0.0045 P

273.2+T

¢ = M - N

8°51'43 9 N

cos N

LV = LU ± nD = ±nD

RA 12
h

04
m

Ol 7
5

Approximate Longitude 10~04m56s £
Time Zone 10 East

Tlteod'Jl i te
Zeiss 010

Clock Mean Time
Clock Correction on. h m s
Zone Tlme +18 18 04.1 Pressure 1021 rob
Ro for local date 14 51 57.9 Temp. 16.5°C

(tan z - 0.0012 tan z secLz) tan M tan 8
cos t

sin h sin [v!

cosec 8
with N positive north,

negative south

o

15 { A - RA + Ro + F (CT + CC - Zone)}
1.002 7379 ZT

for Greenwich Date, equal to Local
Date, must be used

v u ± D and

Wednesday evening
5th May 1976

LU

K. Gillies
P. Ritchie

Observer
Recorder

Local Date

Observed Vertical Observed Clock Calculated
Circle Reading Time Latitude

u -':D v

42°50'26" 2h36I:l50 S -33°55'17.12" +0.54" +0.10" +0.64"
49 55 37 25 14.18 -2.40 -2.30
49 29 38 02 16.09 -0.49 -0, ~9

49 04 38 36 15.15 -1. 43 -1.33
CL 48 47 39 02 15.52 -1.06 -0.96

48 31 39 31 17.85 +1.27 +1.37
48 01 40 25 19.01 +2.43 +2.53
47 48 40 47 17.60 I +1.02 +1.12
47 33 41 14 15.94 -0.64 -0.54

42 47 16 2 41 55 -33 55 17.38 +0.80 +0.10 +0.90
-

L+0.04¢NL -33 55 16.58 L +1.04

317 13 56 2 46 32 -33 55 11.67 +0.95 -0.10 +0.85
55 47 16 13.86 +3.14 +3.04
57 47 42 11.36 +0.64 +0.54
55 48 22 10.84 +0.12

I
+0.02

CR 53 48 46 10.31 -0.41 -0.51
46 49 43 08.25 -2.47 -2.57
37 50 14 10.52 -0.20 -0.30
29 50 48 09.68 -1.04 -1.14
19 51 16 11.25 +0.53 +0.43

317 13 12 2 51 42 -33 55 09.49 -1. 23 -0.10 -1. 33

¢NR -33 55 10.72 L + .03 Z -0.97

I LVV 39.641
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Latitude Star South No 325. .
Observed Vertical Observed Clock Calculated ±D

Circle Reading Time Latitude
u v

314°44'50" 2h 54'n28
s

-33°55'16.08" +0.05" -0.10 11 -0.05"
44 52 54 52 16.15 +0.12 +0.02
44 53 55 26 14.66 -1. 37 -1.47
44 54 55 55 13.75 -2.28 -2.38

~R 44 57 56 24 15.04 -0.99 -1.09
45 01 57 14 16.58 +0.55 +0.45
45 03 57 37 17.65 +1.62 +1.52
45 04 58 04 17.71 +1.68 +1.58

314 45 04 2 58 46 -33 55 16.61 +0.58 -0.10 +0.48

4>SR -33 55 16.03 E-0.04 E -0.94

45 15 02 3 00 16 -33 55 09.67 -0.92 +0.10 -0.82
14 59 00 51 12.83 +2.24 +2.34
15 03 01 13 09.08 -1.51 -1.41
15 03 01 38 09.51 -1.08 -0.98

~L 15 01 02 10 12.27 +1.68 +1. 78

I
15 04 02 33 09.98 -0.61 -0.51
15 08 03 53 09.41 -1.18 -l.08
15 19 06 52 11.66 +1.07 +1.17
15 23 07 20 10.43 -0.16 -0.06

45 15 25 3 07 45 -33 55 11.06 +0.47 +0.10 +0.57
-

E E4>SL -33 55 10.59 0.00 +1.00

I Evv 29.645

CilNL
-33°55' 16.58" (1) : 4> ~{ (1)+(2)+(3)+(4) }

4>NR 10.72 (2) : C =~{-(1)+(2)+(3)-(4)}

4>SL 10.59 (3) : !::.r ~{-(1)-(2)+(3)+(4)}

4>SR -33 55 16.03 (4) : D ~{-(1)+(2)-(3)+(4) }

-33°55' 13 .48"

+ 2.82

+ 0.17

+ 0.10

~ JEVV = }69.286 = ±1.39"
°so ;-;-3 39-3

±.1. 92
rn ±O.22 11

-33°55'13.48" ±O.22 11

C C
N s

D = ---"'---"­
2

&

This example has been calculated to a greater accuracy than is normally
warranted, purely for purposes of illustration.

In this and later examples the technique of calculating the quantity u,
which may be thought of as initial estimate of the error v, has the advantage
of providing a preliminary assessment of the quality of the observations
before enbarking on the least squares solution. The quantity D in the afore­
going calculation represents half the variation in the vertical collimation
of the theodolite as determined from the results of observation on each star.- -

,;R 4>NL :>SL 4>SR CN + Cs
---"'''---;2'---= & CS 2 C = 2

Therefore wnen all observations are considered the additional criterion that
D should be snail, otherwise v = u~D will be large, will be helpful in
analysing the results and assessing their precision.
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6
Determinatio11 of Longitude

INTRODUCTION

THE longitude A of a station is equal to the angle at the pole measured
from the Greenwich to the local meridian. This is taken to be positive east­
ward (see section 2.21). Therefore, to determine longitude, it is necessary
to determine the local time of a certain instant as well as the Greenwich time
of this instant, both times being in the same system.

An observer, using a theodolite, has two methods available. He may time the
passage of a star across either a known altitude or azimuth circle. Then if
the latitude is known and the observed times are correlated with known radio
time signals, the longitude can be determined. Of these two, only the first
method will be dealt with in detail, the second method not being within the
scope of this book.

LONGITUDE FROM TIMED ALTITUDES

6.11 IN this method, the longitude is obtained by means of the formula, which
links the four quantities, ¢, t, 0 and h in the form:

or

sin h

cos t

sin ¢ sin 8 + cos ¢ ~os 8 cos t

sec ¢ sec 0 sin h tan ¢ tan 0 ... 6.1

The hour angle t is determined from this and from it the Local Time is
determined. The corresponding Greenwich Time is found from the observed 'clock
time and the clock correction with respect to Greenwich Time. The longitude
is then found from

A Local Time - Greenwich Time

It is desirable to determine where a star for determining longitude should be
observed to give the best value for the quantity sought. The argument in this
section is very similar to that used in section 5.11. The effect dt on the
derived longitude is found from equation 5.2, which, on making dt the subject,
gives

dt = sec ¢ cosec A dh - sec ¢ cot A d¢ - sec ¢ cosec A cosw do ... 6.2

6.12 The considerations of- section 5.12 hold here, i.e. the declinations
taken from reliable catalogues may, for all but geodetic quality work, be
considered error free. The effect, on the longitude sought, of errors in the
data may therefore be taken as

dt = sec ¢ cosec A dh - sec ¢ cot A d¢

or dA cos ¢ cosec A dh - cot A d¢

... 6.3

... 6.4

The quantity DA (see also section 9.51) is a more meaningful quantity to
the practical man, who wishes, in most cases, to know what the uncertainty in
his results represents in terms of distance on the ground. It follows,
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be systematic
¢ adopted in the
the altitudes may

therefore, that dA can assume quite a sizeable amount in polar regions and
yet the corresponding east-west distance on the ground DA will still remain
small. In fact, it is fallacious to think that one cannot determine ones
east-west position in high latitudes with great accuracy.

6.13 If the errors dh and dt are taken to be random errors of observation,
consideration should be given to determining where a star should be observed so
that these errors have a minimum effect. From equation 6.3, it appears that,
if the azimuth A is made either 90° or 270°, then cosec A will have its
smallest numerical value of unity and cot A likewise its smallest value of
zero. The effect of an error dh will then enter directly into the result,
while that of the error d¢ will have no effect. These deductions should be
compared with those of section 5.13.

6.14 Now the effects of these errors, if they are taken to
errors, should be investigated. The value of the latitude
solution mayor may not be the exactly correct value; also
be incorrect, as indicated in section 5.14.

The effect dA of the systematic errors dh and d¢ on the derived
quantity A are therefore given by equation 6.3, which is

dA sec ¢ cosec A dh - sec ¢ cot A d¢

This relationship suggests that it might be possible to eliminate these
effects, if a balanced pair of stars is observed. If, therefore, observations,
for determining longitude from timed altitudes, are made on a balanced pair
of stars, the derived results will be Al from one star and A2 from the
other with unknown discrepancies dAl and dA2 such that

A Al + dAl

and A A2 + dA2

\ ~ (\ 1 + \2) + ~ (dA 1 + dA2)

A !., (A 1 + A2) only if d\ 1 + dA2 = 0
This requirement implies that cosec Al=-cosec A2 and cot Al=-cot Az simultan­
eously. This occurs when Al+ A2= 3600 , i.e. when the two azimuths of the star
pair are symmetrical with respect to the meridian and when the two stars are
at similar altitudes, see section 4.52 et seq. When this is done, the effects
of the systematic errors dh and d¢ will be eliminated. Deviations from exact
balance must be decreased as the azimuths depart from the prime vertical,
because the coefficients become larger as this occurs. Therefore, stars
should be selected as close as possible to the prime vertical to obtain the
best from observations made on balanced pairs of stars.

Star pairs are finally selected with similar values for their declinations,
so that they reach similar altitudes in the vicinity of the prime vertical.
Moreover, the instants, at which balancp is rr'ached, should be neither so close
in time that observations cannot be fitted in nor so far apart that observing
conditions may change between the two sets of observations.
6.15 In this method of longitude determination, systematic errors, which
cannot be eliminated by means of observations on balanced pairs of stars, are
those made in observing the clock times and the clock corrections with respect
to Greenwich Time. These errors enter fully into the longitude sought and
explain why it is quickly noticed that, if observing methods of the same
precision are used for the determination of latitude and longitude, better
precision is obtained for the former, in which timing does not playa
critical part.

Thus extra precautions must be taken in the timing arrangements for
longitude, if like precisions are desired. The timing arrangements must be
further refined to eliminate constant errors in the timlng and observers
should be properly trained. Even then, an experienced observer's resuJts may
still be subject to a characteristic error, known as Personal Equatlon, due to
an inherent anticipation or delay in timing his observations and i,hiR ~al,~ot
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be eliminated, but may possibly be allowed for.

THE CALCULATION OF LONGITUDE FROM TIMED ALTITUDES

6.21 THIS is a fairly straightforward procedure. The observed vertical
circle reading on a star is corrected for vertical circle index error and for
refraction to give a corrected zenith distance or altitude. From this, with
the latitude and the declination, the hour angle is calculated from the Cosine
Formula of equation 6.1. At this point the value computed is set into its
correct quadrant to provide the generalized hour angle of the astronomical
triangle. This value is then added algebraically to the Right Ascension to
give the Local Sidereal Time LST as

LST RA + t

The Greenwich Sidereal Time GST of the instant of the observation is next
determined. If the clock, being used, is running at, or nearly at, the
sidereal rate, the clock correction with respect to Greenwich Sidereal Time
is determined as CCGST ' The Greenwich Sidereal Time of observation is then
found by adding the clock time of the observation to this clock correction

GST CT + CCGST

A LST - GST ~ RA + t -OCT - CCGST

If the clock, being used,is running at, or nearly at, the mean time rate,
the clock correction with respect to Zone Time or with respect to Greenwich
Mean Time is determined as CCGMT . The Greenwich Mean Time of observation is
then found by applying this clock correction.

and

GMT

LST

CT + CCGMT

RA + t

3efore the longitude can be found, the GMT must be converted to the
corresponding GST as

is the
section

equal

GST GMT + R CT + CCGMT + Ro + dR

at UTOh for the appropriate date and dR
the period GMT i.e. from midnight. (see

in which Ro is the GST
gain of sidereal time in
3.415 for use of ~6) •

GST Ra + GMT x F (CT + CCGf·IT) F + Ro

where F is the ratio between Mean Time and Sidereal Time units and is
to 1. 0027379. This last relationship is useful with a calculator for
determining GST from the corresponding value of GMT.

The above refers to observations made to a star. A slightly different
procedure of reduction is necessary to compute the longitude from sun
observations. This is dealt with in Chapter 8.

6.221 The following observations were made for determining longitude.

Sidereal
4 h 52m 37.1 s

Wild T2
-11"
Mercer,
CC

GST

22nd June, 1959
Theodolite
Index Corrn
Clock

Monday evening,
&. Mooifontein

O.H. Meyer
J.G. Freislich
26°03'13" S
P 845 rob T 8°C

Local Date
Station
Observer
Recorder
Latitude
Met. Readings
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Star East
16

h
03

m
06.1

s 0
Star west

10
h

24
m

07.6
s 0No. 430 RA 19°41'41"S No. 285 RA 16°37'54"S

Observed Observed Vertical Observed Observed Vertical
Clock Time Circle Reading Clock Time Circle Reading

16
h

08
m

45.5
s

CL 40°23'54" 16
h

23
m

39.5
s

CL 42°41'56"
16 10 23.8 CR 319 58 37 16 25 19.5 CR 316 56 02

Obs Vert.Circle Rdg 40°23'54" 319°58'37" 42°41'56" 316°56'02"

Index Correction -11 -11 -11 -11

40 23 43 319 58 26 42 41 45 316 55 51

Obs Altitude 49 36 17 49 58 26 47 18 15 46 55 51

Refraction 42 42 45 46

Altitude h 49 35 35 49 57 44 47 17 30 46 55 05

~ -26 03 13 -26 03 13 -26 03 13 -26 03 13

<5 -19 41 41 -19 41 41 -16 37 54 -16 37 54

Hour angle t -43 30 36 -43 05 57 44 57 35 45 22 34

t - 2
h

54
m

02.4
s _ 2h 52m23.8s

2
h

59
m

SO.3
s

3
h

Ol
m

30.3
s

RA 16 03 06.1 16 03 06.1 10 24 07.6 10 24 07.6
I
I LST = RA + t 13 09 03.7 13 10 42.3 13 23 57.9 13 25 37.9

Obs Clock Time 16 08 45.5 16 10 23.8 16 23 39.5 16 25 19.5

CC
GST

- 4 52 37.1 - 4 52 37.1 - 4 52 37.1 - 4 52 37.1

GST 11 16 08.4 11 17 46.7 11 31 02.4 11 32 42.4

A h m s h m s h m s h m s
= LST-GST + 1 52 55.3 + 1 52 55.6 + 1 52 55.5 + 1 52 55.5

Ih52m5S.4Ss E IhS2mSS.50s
E

Mean Longitude from pair I
h

S2
m

55.4S
s

East

Relationship used cos t
sln h - Sln ~ Sln 0

cos ~ cos 0
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sin h - sin <I> sin 0
cos ¢ cos (5cos tRelationship used

(i)

Calculation of the Longitude
The data for this example is given in section 5.491 and the latitude value of 45°56'57" N is the final
value determined in section 5.494.

(ii) The Star Almanac for Land Surveyors has been used for this calculation.

Star West No. 449 RA l6h40m08.0
s

<I> 45°56'57" N 0 3P39'28" N

6.222
Note

Reduction of the Clock Times of Observation to Greenwich Sidereal Times of Observation
CT of Obs CC ZT of Obs Zone GMT of Obs

-.318
dR GST of Obs

ZT
20

h
39

m
5B.2

s
-39.6

s
20

h
39

m
18.6s 3

n
23

h
39

m
18.6

s 1\2m42.0s
55.7

5 h m s
W o 52 56.3

40 37.3 39 57.7 39 57.7 55.B 53 35.5
40 59.3 40 19.7 40 19.7 55.9 53 57.6
43 20.4 42 40.8 42 40.8 56.3 56 19.1
44 37.8 43 58.2 43 58.2 56.5 57 36.7

20 45 08.6 -39.6 20 44 29.0 3 W 23 44 29.0 1 12 42.0 56.6 0 58 07.6

I
rl
0'\
I

Reduction of Observed Altitude and Computation of Local Hour Angle, Local Sidereal Times of Observation and the Longitude

Obs VG Rdg IIndex
Corr.V0

Obs Alt. Refr Obs Alt h
Computed Right LST of GST of

Longitude
Rda Local HA t Ascension Obs Obs

45°17'22" -30" 45°16'52" 44°43'08" 59" 44°42'09" 3
h

46
m

l2.5
s 16h40m08.0s

20
h

26
m

20.5
s

24
h

52
m

56.3
s h m s

-4 26 35.8

45 24 08 45 23 38 44 36 22 59 44 35 23 46 51.5 26 59.5 53 35.5 36.0

45 27 58 45 27 28 44 32 32 59 44 31 33 47 13.5 27 21. 5 53 57.6 36.1

314 07 57 314 07 27 44 07 27 60 44 06 27 49 38.1 29 46.1 56 19.1 33.0

313 54 30 313 54 00 43 54 00 60 43 53 00 50 55.6 31 03.6 57 36.7 33.1

313 49 08 -30 313 48 38 43 48 38 61 43 47 37 3 51 26.6 16 40 08.0 20 31 34.6 24 58 07.6 -4 26 33.0

Longitude from CL Obs

CR Obs

4
h

26
m

35.97
s

W

4 26 33.03 W

Mean Longitude



Star East No. 12 RA
h m so 37 43.5

Reduction of the Clock Times of Observation to Greenwich Sidereal Times of Observation

K::T of Obs Cc.7.'T' ZT of Obs Zone GMT of Obs Ru~ dR GST of Obs
h m s s

20
h

51
m

27.6
s h

23
h

51
m

27.6
s Ih12m42.0 s

57.7
s

I
h

05
m

07.3
s

20 52 07.2 -39.6 3 W
52 49.0 52 09.4 52 09.4 57.8 05 49.2
54 00.0 53 20.4 53 20.4 58.0 07 00.4
56 49.1 56 09.5 56 09.5 58.5 09 50.0
57 53.1 57 13.5 57 13.5 58.7 10 54.2

20 59 31. 2 -39.6 20 58 51.6 3 W 23 58 51. 6 1 12 42.0 59.0 1 12 32.6

Reduction of Observed Altitude and Computation of Local Hour Angle, Local Sidereal Times of Observation and the Longitude

I
1.0
IV
I

pbs V0 Rdg Index Corr V8 Rdg Obs Alt. Refr Obs Alt h
Computed Right

LST of Obs GST of Obs Longitude
Local HA t Ascension

48°05'51" -30" 48°05'21" 41°54'39" 1'04" 41°53'35" _3
h

S9
m

09.9
s Oh37m43.5s 20

h
38

m
33.6

s
1

h
05

m
07.3

s _4h 26m33.7 s

47 58 33 47 58 03 42 01 57 04 42 00 53 58 27.8 39 15.7 05 49.2 33.5

47 46 12 47 45 42 14 18 04 13 14 57 16.7 40 26.8 07 00.4 33.6

312 43 51 312 43 21 43 21 03 42 18 54 29.2 43 14.3 09 50.0 35.7

312 54 59 312 54 29 42 54 29 02 42 53 27 53 25.0 44 18.5 10 54.2 35.7

313 11 59 -30 313 11 29 43 11 29 1 02 43 10 27 -3 51 47.2 o 37 43.5 20 45 56.3 1 12 32.6 -4 26 36.3
-

Longitude from CL Obs

from CR Obs

4h26m33.60 s W

4 26 35.90 W

Mean Longitude

Mean Longitude from pair of stars



6.23 The longitude example of section 6.222 is linked with the latitude
example of 5.493. The observations for these determinations are given in
section 5.491. When latitude and longitude are to be determined, it is
usual to make observations, over the same observing period, to determine
both components of the position fix. The computing procedure carried out in
the following sequence is necessary because values of both latitude and
longitude must be known approximately before accurate values can be
determined:-

(i) Determination of a preliminary value of the latitude, as shown in
section 5.492.

(ii) Determination of a preliminary value of the longitude by means of the
preliminary latitude value with some of the longitude observations.

(iii) Determination of an accurate value of the latitude by means of the
preliminary latitude and longitude values with all the observations
for the latitude.

(iv) Determination of an accurate value of the longitude by means of the
accurately determined latitude with all the observations for the
longitude.

(v) Determination of the statistical precision of the fix.

The strength of the principle of observing balanced p~irs of celestial
bodies lies in the ability to make use of a preliminary, and not necessarily
very accurate, value of one of the elements and still to obtain an accurate
value of the unknown being sought.

THE DETERMINATION OF THE UNKNOWNS AND THEIR PRECISION FROM BALANCED
OBSERVATIONS

6.31 IT is assumed that sets of timed altitude observations n on each face
for each star, have been made by means of a theodolite on a pair of well
balanced stars at nearly equal altitudes, one star east and the other west and
both near the prime vertical. These give rise to correction equations of the
form

1, + C dA dA dAA A - dh + 6r dh + 6¢ d¢ + v

in which A is the adjusted value of the longitude
A' is the computed value of the longitude
C is the vertical circle index correction, with the positive

sign applying to its use with one face and the negative sign
applying to the other face.

6r is an unknown systematic error in the refraction values taken
from the refraction tables.

6¢ is an unknown systematic error in the value of the latitude
used in the computation

and v is the correction to be applied to the computed value A' of
the longitude to provide the adjusted value A .

The quantities ¢, 6, t and h are linked together in the Cosine Formula,
from which the differential coefficients, required above, are obtained as

. d;\
dh

dt
dh

1
cos ¢ sin A

and
dt
d¢

1
cos ¢ tan A

The correction equations above are therefore of the form

;\ A' ± C sec ¢ cosec A + 6r sec ¢ cosec A - 6¢ sec ¢ cot A + v

If the balancing of the star pair has been carefully done
cosec AE -cosec AW = 1 very nearly; also cot AE -cot AW and
numerically these quantities are in the vicinity of zero. This then leads to
a family of four sets of correction equations, as follows:-
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A A' + e sec ¢ + 8.r sec ¢ 8.<jJ sec <jJ cot AE + vEL East star on face left
EL

A AER e sec <jJ + 8.r sec <jJ 8.<jJ sec <jJ cot AE + vER East star on face right

A AWL C sec <jJ 8.r sec <jJ 8.<jJ sec <P cot AW + vWL West star on face left

A \~m + e sec ¢ 8.r sec ¢ M sec ¢ cot AW + vWR West star on face right

in which each set comprises n equations.

A AEL + e sec ¢ + 8.r sec ¢ M sec <pIcot AEI + vEL

A A~R C sec <P + 8.r sec ¢ M sec ¢Icot ~I + vER
A A' c sec ¢ 8.r sec <P + 8.<p sec <pIcot ~I + v

WLWL
A AT + e sec <p 8.r sec ¢ + 8.¢ sec ¢Icot Awl + v

WR WR

A e' 8.H A' + vEL in which e' e sec ¢EL
A + e' 8.H A' + v 8.H 8.r sec ¢ -8.¢sec¢ !cot ~orwiER ER
A + e' + 8.H A' + v in which it is not possible toWL WL
A - c' + 8.H A' + vJ;VL

separate the small M> and 6r
WR effects because both act in unison.

These equations lead to the same form of Normal Equations as those in
section 5.62. The Normal Equations, in the detached coefficient form are

A e' 8.H L (the absolute term)

N 0 0 "" ~A' + LA' + D .. ' + LA'
EL ER WL WR

0 N 0 ::: -LV + D' + D' - D'EL ER WL WR
0 0 N -LA' - LA' + LA' + D'EL ER WL WR

provided equal numbers of observations have been made on each face i.e. N 4n.
The solution of the unknowns is then,

in which XEL etc. are
The values of the v

correction equations.
given as

e '
8.H

~ ( 1:"EL + 1:"ER + AWL + 1:"WR)

~4 (- X"EL + AER + AWL - AWR)

~ (- X 1:" + 1:" + A )
EL ER WL WR

the mean values computed in each set.
corrections may be obtained by back substitution in the

The standard deviation of a single observation then is

a {tvv
so .; N-3
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and then relating the v values to the u values.

Since the matrix of the Normal Equations is a diagonal one, the standard
deviations of the unknowns are given as

etc.1:" -EL

An alternative method of determining the v values consists in first
computing the differences u from the means for each set of n observations
as



- - ..... _.. the first equation

vELi = A - C' flH AEL"1
A - C' flH A + uELiEL

= ~( -X
EL

+A + A + X
ER WL WR

+A - X- X + X-
EL ER WL WR

+A +X X X
EL ER WL WR

-4X- ) + uELiEL

= ~(-A + X X- + X
WR

) + uELiEL ER WL
= o + uELi

~~~ constant 0 may be conveniently evaluated when solving for A, C' and flH.
=~ilar treatment of the other three equations gives the following

VERi 0 + uERi

vWLi = 0 + uWLi

vWRi = D + uWRi

~~en observations are made by skilled observers, the required number of
:~servations is usually obtained with only a few, if any, rejections. If
~~is does occur, a slight imbalance results and the weights of the mean
-;=.lues AEL etc. are no longer exactly the same. However, if the imbalance
~: only a slight one, the use of this method will provide answers, which do
~Jt vary significantly from the correct ones.

~.32 Example. The following observations were made at the University of
~~2W South Wales for the purpose of determining longitude.

:..ocal Date

::bserver
?ecorder

Wednesday evening
26th May 1976
K. Gillies
P. Ritchie

Latitude 33°55'13" S
Time Zone 10h East

Theodolite
Clock
Pressure
Temperature

Zeiss 010
Mean Time
1018 mb
l6.00C

?elationships used

1) Refraction r O 0.0045 P
(tan 0.0012 tan sec 2 z)= z - z

273.2+T

2) Angle t
h 1

cos (sec ¢ 0 tan ¢ 0)Hour arc sec cos z - tan
15

3) GST (WT + WC - Zone) F + Ra
in which F = 1. 0027379, WT is the observed clock time and WC
is the clock correction with respect to Zone Time ZT.

The value of Ra at Greenwich date, which is the same as the local date,
::lust be used.

4) Iu 0

5) v u ± D and Iv LU ± nD
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Longitude Star East No. 393 RA 15
h

02
m

43.34
s 0 25°11'28.5" S

Watch Correction on Zone Time 18
h

15
m

05.53
s

Observed Vertical Observed Clock Calculated
Circle Readinq Time Longitude

u D v

51°23'54" Oh30m17.7s 10
h

04
m

54.73
s s s s

-0.03 0.04 +0.01

15 40 30 57.7 54.64 +0.06 +0.10

08 51 31 31.1 54.27 +0.43 +0.47

51 00 09 32 12.9 54.59 +0.11 +0.15

50 43 03 33 35.4 54.88 -0.18 -0.14

36 29 34 07.3 54.78 -0.08 -0.04

CL 28 43 34 44.9 54.78 -0.08 -0.04

18 04 35 36.4 54.81 -0.11 -0.07

09 52 36 16.2 54.70 0.00 +0.04

50 02 22 36 52.4 54.79 -0.09 -0.05

49 54 38 0 37 29.9 10 04 54.68 +0.02 0.04 +0.06

(1) "XPL 10 04 54.70 I +0.05 II +0.49

Ivv 0.2889

310 43 10 0 40 30.2 10 04 57.17 -0.06 0.04 -0.10

50 22 41 .05.3 56.88 +0.23 +0.19

310 58 57 41 46.7 56.95 +0.16 +0.12

311 08 02 42 30.2 57.34 -0.23 -0.27

15 53 43 08.3 57.16 -0.05 -0.09

CR 25 29 43 54.8 57.04 +0.07 +0.03

35 41 44 43.9 57.21 -0.10 -0.14

42 53 45 18.9 56.97 +0.14 +0.10

311 51 30 46 00.3 57.18 -0.07 -0.11

312 02 51 46 55.3 56.97 +0.14 +0.10

312 11 37 o 47 37.2 10 04 57.39 -0.28 0.04 -0.32

(2) A R 10 04 57.11 I -0.05 I -0.49

0.2965
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Longitude star West No. 196 RA 7
h

07
m

25.28
s

<5 26°21'34.5" S

Watch Correction on Zone Time 18
h

15
m

05.28
s

Observed Vertical Observed Clock Calculated
D

Longitude
u v

Circle Reading Time

OhlOm05.8s 10h04m56.74s s s s
47°21'02" +0.26 0.04 +0.30

30 36 10 51.9 56.93 +0.07 +0.11

38 28 11 29.9 57.00 0.00 +0.04

44 54 12 01.2 56.84 +0.16 +0.20

47 53 48 12 44.1 57.02 -0.02 +0.02

48 02 40 13 26.6 57.45 -0.45 -0.41

~L 11 25 14 09.5 56.93 +0.07 +0.11

17 23 14 38.2 57.14 -0.14 -0.10

24 15 15 11. 7 56.89 +0.11 +0.15 I
35 17 16 05.1 56.94 +0.06 +0.10

48 44 59 0 16 51.9 57.15 '-0.15 0.04 -0.11

( 3) X 10 04 57.00 '£'":'-0.03 1'£ +0.41
WL

L:vv 0.3789

310 36 55 0 19 59.5 10 04 54.28 +0.47 0.04 +0.43

29 48 20 33.4 54.89 -0.14 -0.18

21 51 21 12.1 54.77 -0.02 -0.06

~R 13 47 21 51. 3 54.71 +0.04 0.00

310 06 49 22 25.1 54.72 +0.03 -0.01

309 58 54 23 03.5 54.76 -0.01 -0.05

49 39 23 48.5 54.66 +0.09 +0.05

37 39 24 46.9 54.54 +0.21 +0.17

30 36 25 20.7 54.98 -0.23 -0.27

18 06 26 21.2 55.21 -0.46 -0.50

309 08 40 0 27 07.5 10 04 54.75 0.00 0.04 -0.04

(4 ) X 10 04 54.75 ~-0.02 lL: -0.46
WR

L:vv 0.5794

Solution and estimates of precision

"I
EL

10h04m54.70s (1) : ~( (1)+(2)+(3)+(4» A 10h04m55.89s E

1"ER
57.11s (2) : ~(-(1)+(2)+(3)-(4» C' + 1.17

X 57.00
s

(3) : ~(-(1)-(2)+(3)+(4» 6.H :: 0.02
WL

1"WR 10 04 54.75 (4) : ~(-(1)+(2)-(3)+(4» D + 0.04

j'Evv )1.5437
aso = N- 3 = 44- 3
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7
Determination of Azimuth

INTRODUCTION

AZIMUTH determinations are required for the purpose of orienting surveys or
checking extended surveys to ensure that their orientation is being maintained.
Examples of these applications are given in Chapter-l.

An astronomical determination of azimuth consists basically in measuring a
horizontal angle at the instrument station between a distant reference object
RO and a star. Once the star's azimuth has been established, it becomes a
simple matter to determine the azimuth of the RO.

Two methods of observation to the star are available for the determination
of its azimuth. In the first or Time Azimuth Method, the time, at which the
horizontal pointing to the star is made, is recorded. In the second or Alt­
azimuth Method, a vertical circle observation is made instead of a time
observation.

Precautions to be observed in Azimuth Determinations

7.11 Great care must be taken, as in any horizontal direction observations,
to set the theodolite up on a stable base and to centre the theodolite pre­
cisely over the mark. The RO should preferably be at a distance such that the
stellar focus, required for accurate sighting of the star, needs no alteration
when the RO is sighted. In addition, the target at the RO should be carefully
centred and should present to the observer an image which is capable of being
accurately bisected in the vertical sense. For night observations, an ideal
object on which to sight is a light source, which gives the appearance of a
third or fourth magnitude star.

The line of sight to the RO is seldom inclined to any great degree but that
to the star often has a considerable inclination. If the theodolite is
imperfectly levelled, a correction, which is proportional to the tangent of
the altitude and to the component of the inclination of the vertical axis of
the theodolite at right angles to the direction sighted, is applied to the
horizontal circle reading. Therefore the levelling of the theodollte should
be carefully carried out, preferably between each arc of horizontal readings.
This levelling procedure is described in section 4.12 and every endeavour
should be made to do this accurately. If this procedure is followed, the
residual errors of levelling should be small and of a random nature and their
contribution to the final azimuth result should likewise be small. On some
theodolites, the inclination of the vertical axis can be determined by means
of a striding level and the appropriate correction applied to the horizontal
circle readings.

It will be seen later that, in high latitudes, the line of sight to some
stars will be at an altitude which is nearly equal to, or greater, than that
of the elevated pole. For these high sights, it may be necessary to use
special instruments or special attachments for the theodolite.
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The Design of an Observation Series

7.21 As was stated before, the determination of astronomical azimuth requires
the measurement of a horizontal angle,a process which is familiar to all
surveyors. However, the various techniques, which have been devised for these
observations in normal surveying practice, may need to be modified for astro­
nomical work because of the following considerations,

(1) The limited period, during which a star is favourably located in an
observation programme, restricts the number of observations that can be made.
(2) The stars sighted are often dim and well elevated above the horizon and
therefore horizontal and vertical circle settings are needed to locate them.
(3) Great attention must be paid to the levelling of the theodolite through­
out the observation series.

Therefore, a great economy in observing time can be effected, whilst still
maintaining precision in the final result, by making multiple pointings on the
RO and on the star and changing the theodolite face less frequently during the
observation period. It will be seen in the examples later in this chapter
that various observing techniques have been used.

A single azimuth value is obtained from single observations made on one face
to both RO and star. Likewise only a single value of the azimuth is forth­
coming, when multiple observations are made on one face to both RO and star,
because the individual observations to both objects sighted cannot be
specifically paired, one with the other. Each provides the information for
one correction equation in the adjustment process and may therefore be con­
sidered to provide the statistical unit in this process (see sections 7.43,
7.44, 7.45, 7.47 and 7.62).

There are some, however, who consider that where multiple observations have
been made on one face, certain RO observations can be paired with certain
star observations to provide a value of azimuth of the RO. The decision as to
how these observations are to be paired is one for the observer who may wish
to take into account the stability of the instrument over the observation
period. In order to preserve a uniform approach in this book, a single method
suitable for all cases has been used throughout.

AZIMUTH FROM TIME AZIMUTH OBSERVATIONS

IN this method, the horizontal circle reading is obtained from an observatkn
to the RO and then to a known star. The time of observation to the star is
read off a clock, whose correction can be deduced from a knowledge of the
station's longitude and of clock comparisons, made with respect to a radio
time signal.

7.31 The azimuth A to the star is computed from
known star's declination 0 and the hour angle
clock time. These four quantities are linked by

the known latitude ¢, the
t deduced from the observed
the Four Parts Formula

cot A sin ¢ cot t tan 0 cos ¢ cosec t · . . 7.1

This, when differentiated, gives the relationship between the small changes dA,
d¢, do and dt as

dA sec h cos W cos 0 dt + tan h sin A d¢ + sec h sin w do
· .. 7.2

The declinations, taken from reliable catalogues, may, for all but geodetic
quality work, be considered error free (see section 5.12). The effect, on the
azimuth sought, of errors in the data may therefore be taken as

dA sec h cos W cos 0 dt + tan h sin A d¢

On substitution for cos w cos 0 from the Five Parts Formula

dA sec h (sin ¢ cos h - cos ¢ sin h cos A) dt+tan h sinA d¢

dA cos¢(tan ¢- tan h cos A)dt + tan h sin A d¢
-100-
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In this relationship, d¢ must be considered entirely as a systematic error,
because its value is not known exactly and it is not an observed quantity.
The error dt is partly systematic and partly random.

The systematic component of dt is due to the error in the assumed value of
longitude and to the systematic errors present in the timing system being used.
The random component results from the observer's inability to make perfect
observations.

7.32 If now a single star is to be observed, it should be at meridian transit
(A = 0° or 180°) and also at elongation (w = 90° or 270°) to eliminate the
d¢ and dt components respectively.

When a star is at elongation, its motion is entirely in a vertical sense
and thus it is ideally situated for making accurate horizontal pointings on it.
The conditions of meridian transit and elongation can only be achieved
simultaneously when a star is either at the pole or in the zenith. The latter
position is of no interest since azimuth then becomes indeterminate. There is,
however, no star exactly at either pole. But there is.a star within one
degree of each celestial pole, the northern one being bright and easily
visible to the naked eye and the southern one being faint and usually needing
a telescope to be seen. Since any star at a very low altitude is difficult to
see, because the line of sight is traversing a long part of its path
through the lower layers of the earth's atmosphere, which are often not very
clear, the pole stars will be difficult to see from stations closer to the
equator than about 15°.

Table 7.1 shows the minimum and the maximum values of the rates ~ and ~
for these pole stars.

Table 7.1
;--.

dA dA
-

d<bdt
Latitude Maximum Value Minimum Value Minimum Value Maximum Value

(at Upper (at Elong- (at Transit) (at Elong-
Transit) ation) ation)

15° 0.02 0 0 0.00
30 0.02 0 0 0.01
45 0.03 0 0 0.02
60 0.04 0 0 0.06

.. -

From this it is seen that, if the timing is coppect even to the nearest second
of time and the latitude to the nearest fifteen seconds of are, the azimuth can
be obtained to a very high accuracy. (see Table 7.3 for a comparison) These
facts account for the widespread use of the pole star for azimuth determination,
especially in the northern hemisphere, in which the pole star is easily seen,
although the southern pole star can easily be found in the theodolite
telescope's field of view, if precomputation is used. (see Section 10.12)
Two examples of pole star Observations are given in Sections 7.43 and 7.44.

For low latitudes, however, other methods for azimuth determination must be
investigated. These are the circum-meridian and circum-elongation methods.
If only one star is observed, neither method will give azimuth results free of
the effects of the systematic errors d¢ and dt. If, however, two stars are
used, they can be balanced to achieve this, whilst still keeping the effects
of the random errors of observation small.

7.33 For meridian observations in low latitudes, stars will be visible at
upper transit only if they are above a certain minimum altitude, which depends
on the star's magnitude and the atmosphere's clarity and which, for practical
purposes, will be assumed to be 15°. The d¢ coefficient is zero for a star
on the meridian, is numerically small for low altitude sights close to the
meridian and changes sign as the star crosses the meridian. The dt
coefficient on the meridian at upper transit is

±sec h cos 0
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because the parallactic angle w at transit is 0° or 180° and as OM
upper transit

o at

dA
dt

at upper transit,
cos 0
sin zM

... 7.4

in which the subscript M denotes a meridian value (see sections 5.32 and
5.33 for conventions and signs). This coefficient does not change sign as the
star crosses the meridian, but its sign is positive for a star on the meridian
to the south and negative for one on the meridian to the north. Therefore a
balanced pair of stars must consist of one star north and one star south
observed close to the meridian with the two values of dA equal in magnitude

dt
and opposite in sign. In addition, the coefficients should be small to keep
the effects of the random errors small.

Table 7.2 shows rates of change of azimuth with respect to time on the
meridian for a star at upper transit, with the correspondingly balanced values
on the opposite side of the zenith.

Table 7.2

¢ 0 dA 0 dA
zM - zM -

dt dt

0° +75 0 +75 0 -0.268 -75 0 -75 +0.268
-5 +75 +70 -0.354 -71.1 -66.1 +0.354

-10 +75 +65 -0.438 -68.2 -58.2 +0.438
-15 +75 +60 -0.518 -66.2 -51.2 +0.518

Note: All signs in this table must be reversed for northern latitudes.
To achieve this 'balance for a pair of stars

at upper transit to the south

where

dA
dt

dA
dt

-cos 0
sin zM

-cos 0
sin(O-¢)

dA
dt at upper transit to

the north

-cos 0
sin(o-¢)

- cos 0
sin 0 cos ¢ - sin ¢ cos 0

-1

tan 0 cos ¢ - sin ¢

tan Os cos ¢ - sin ¢ = -(tan ON cos ¢ - sin ¢)

tan ON + tan Os = 2 tan ¢ ... 7.5
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7.34 The above method is usually confined to equatorial latitudes and it is
stressed that, unlike many other astronomical methods, the stars of a matched
pair are selected not to transit at equal altitudes, but at such altitudes as
will produce equal rates of change of azimuth with respect to time. Very faint
stars should be avoided, as they may be difficult to see at the postulated
minimum altitude. An example of such a pair of stars is given in section 7.45.
If the stars of a pair are well matched and if each of the two stars is
observed by means of sights well balanced about the point of upper transit, the
effects of systematic error will be eliminated. Random errors in timing are
not greatly minimised, because the coefficient of dt is not small and there­
fore careful attention should be paid to this aspect of the observations.

7.35 The observation of matched pairs of stars at elongation (see section
7.32) will now be further investigated. In this method, the effect of the
systematic error d¢ can be eliminated, if the stars are at elongation at
points symmetrically disposed about the meridian. The effect of the systematic
component of the error dt can be eliminated by means of sights well balanced
about the point of elongation on each star, because the coefficient of dt
changes its sign, as the star crosses this point. The random component in the
error dt is rendered negligible in such observations, if they are made close
to the point of elongation, because the coefficient is then very small in
magnitude.



In low latitudes, stars may elongate at such low altitudes that they cannot
be seen. Fig 7.1 shows the elongation locus for stars, when the observer is
in such latitudes. For an observer exactly on the equator every star on the
horizon and every star on the prime vertical is at elongation. In these
latitudes, a star will elongate at an altitude greater than the minimum at
which it can be seen, only when it is well away from the meridian in azimuth.
It will then also be changing altitude fast. The prediction techniques for
such stars are dealt with in section lO.5l.

270"

z 45°

Meridia~

z 30°

7. 15"

z
Fig. 7.1 The Elongation Locus at Low Latitudes

7.36 The method of circum-elongation azimuth observations is not confined to
equatorial latitudes (see section 7.35). The matching of the stars of a pair
can usually be accurately achieved. The errors in azimuth, coming from an
uncertainty in the latitude adopted and from any systematic error in the
longitude and the timing, are then eliminated in the mean of the azimuths
from the star pair. The effects of random timing errors are greatly minimised,
because the coefficient of dt is very small indeed, if the observations are
made close to the point of elongation. In practice, it is usually quite
sufficient to read the observed times to the nearest second and the timing
arrangements can be much simplified. An example of such a pair of star
observations is given in section 7.47.

Calculation of Azimuth from Time Azimuth Observations

7.41 This calculation can be unequivocally determined by means of the Four
Parts Formula in the following form:-

... 7.6
- sin t

tan A
tan 8 cos ¢ - sin ¢ cos t

and is recommended for use for all Time Azimuth reductions.
Alternatively, the Transformation Formulae (see section A.41 in the

appendix) may be used. These are
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tan M
tan 8
cos t

and

tan A
-tan t cos M

sin (M-¢)
· •. 7. 7

Note: ~ihere a quantity is obtained from a tangent function in the above
formulae, the numerator and the denominator are evaluated separately in order
to place the quantity in its correct angular quadrant.

For observations on either Polaris or Sigma Octantis, at any hour angle, the
following relationships, from section A.52 in the appendix, may be used:-

Octantis

sin t cos t sec ¢ tan ¢

the northern pole star, Polaris, a Ursae Minoris
. p2 .

- p Sln t sec ¢ - I) Sln t cos t sec ¢ tan ¢

1 p3 . 2
- - ~ Sln t sec ¢(l + 3 tan2 ¢ cos 2 t - sin2 t sec ¢)

3 P

A

A

for the southern pole star Sigma

JL180 ° + p sin t sec ¢ - p

For(i)

or
(ii)

+!
3

· .. 7.8

in which p is the positive angular distance of the star from the adjacent
pole and the units of p and p are in accordance with one another. These
last relationships, in addition to providing an alternative check calculation,
can be conveniently used for predictions and approximate reductions from the
first term in the series.

For observations on circum-meridian stars, the following relationship from
section A.74 of the appendix may be used:-

A = A - cos (; t' + 1 rh 8 cosec 3 Z {cos A' } 3o sin ZM 6 cos ~ cos M M zM cos v M + cos ¢ t' •.

•.• 7.9
star south.
the following relationship from

and
and

· .. 7.10

C = sin2 8 tan Ae
The units of Llt

t
e

+C 2
A = Ae - 2P (Llt)

2p2

which Ae is the azimuth of the star at elongation,
= t - t e , where t e is the hour angle at elongation.
are in accordance with one another.

in
Llt
p

in which Ao = 0° for star north and 180° for
For observations on circum-elongation stars,

section A.81 of the appendix may be used:-
C cot

7.42 The examples given below aim to show detail enough for a student to
follow them through. They have been computed by means of a small calculator.
Some of the details of this calculation have been shown for the sake of
illustration, although in practice this would be avoided because transcription
is so liable to mistakes.

7.43 The following time azimuth observations were made on Polaris.

Station Munchen Technische Universitat ¢ 4S009'05"North Theodolite wild T2
Roof Station A Oh46ml6~7East No. 35712

RO Red light on Olympic Tower Clock Mean Time
Date Monday 26th June 1972 split hand stop
Observer G.G. Bennett watch
Recorder S. Fajnor Ra for date lSh16m51.7s

RI8 for date IS 19 49.1
CCGMT -1 00 00.4
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Observations
Pole Star Polaris RA

Horizontal Observed Horizontal I Observed
Circle Readings Clock Times Circle Readings Clock Times

Arc I Arc II

RO CR 158°30'42"
21

h
19

m
32

s
CL 68°36'02"

21
h

24
m

54
s

Star 180 25 25 90 31 50
Star CL 00 25 31 21 21 17 CR 270 32 38 21 25 43
RO 338 30 53 248 35 52

7.431 Solution by the direct relationship
Relationships used

F

tan A

To determine the azimuth

15 {A + Ro - RA + F (CT + CCGMT )}

1.0027379

- sin t
cos ¢ tan 0 - sin ¢ cos t

Obs CT 21
h

19
m

32
s 21h 21m17s 21

h
24

m
54

s
21

h
25

m
43

s

A 0°26'36.2" 0°27'09.3" 0°28'17.2" 0°28'32.5"
Star

H 180 25 25 0 25 31 90 31 50 270 32 38Star
Orienting Correction +180 01 11.2 + 0 01 38.3 -90 03 32.8 -270 04 05.5

H 158 30 42 338 30 53 68 36 02 248 35 52
RO

A 338 31 53.2 338 32 31. 3 338 32 29.2 338 31 46.5
RO

Arc I Mean 338°32'12.3" Arc II Mean 338°32'07.8"

Mean Azimuth to RO 338°32'10.0"

7.432 Solution by means of the Transformation Formulae

Relationships used tan M

tan A

tan 0
cos t
- tan t cos M

sin (M-¢)

TO determine the local hour angle and the azimuth

CT of Obs 21
h

19
ffi

32
s

21
h

21
ffi

17
s

21
h

24
m

54
s

21
h

25
m

43
s

CCGLJIT -1 00 00.4 -1 00 00.4 -1 00 00.4 -1 00 00.4

GMT of Obs 20 19 31.6 20 21 16.6 20 24 53.6 20 25 42.6

RIB 18 19 49.1 18 19 49.1 18 19 49.1 18 19 49.1

dR 22.9 23.2 23.8 23.9

GST of Obs 14 39 43.6 14 41 28.9 14 45 06.5 14 45 55.6
A 0 46 16.7E 0 46 16.7E 0 46 16.7E 0 46 l6.7E

LST of Obs 15 26 00.3 15 27 45.6 15 31 23.2 15 32 12.3

RA 2 04 1L2.. 2 04 42.2 2 04 42.2 2 04 42.2

Hour angle t 13 21 18.1 13 23 03.4 13 26 41.0 13 27 30.1

)1 90°48'40.3" 90°48'32.0" 90°48'14.1" 90°48'10.0"

Q 48 09 05 48 09 05 48 09 05 48 09 05

M-¢ 42 39 35.3 42 39 27.0 42 39 09.1 42 39 05.0

A 0°26' 36'~ 2 0°27' 09'~ 3 0 28 17.2 o 28 32.5

Clockwise Angle 338 05 17 338 05 22 338 04 12 338 03 14

Azimuth RO 338 31 53.2 338 32 31. 3 338 32 29.2 338 31 46.5
338°32'12.3" 338°32'07.8"

I Azimuth to RO 338°32'10.0" I
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7.44 Example. Time azimuth determination from the southern pole star.

Theodolite Wild T2 No. 148423
Watch Heuer Stop Watch(Mean)

h m sRo for date 8 30 29.8
R6 for date 8 31 28.9
Clock Correction w~th respect
to Zone Time +18 40m07.5s

h
Time Zone 11 East

Civ.Eng.B1dg UNSW
33°55'12" South

h m s
10 04 55.9 East
29th January 1975
Flashing red light

on Harbour Bridge
Bennett
Freislich

G.G.
J.G.

Observer
Recorder

Place Pillar 5
Latitude
Longitude

Date Wednesday
Reference Object

Observations on (J Octantis RA 20
h

43
m

22.9
s 0 89°03'06"S

iArc I
Horizontal

Face
Observed watch Horizontal

Face
Observed Watch

Circle Reading Time (WT) Circle Reading Time (WT)

RO 344°27'53" 164°27'58"

Star 180 46 22 CL 3
h

43
m

16.5
s

0 45 30 CR 3
h

47
m

53
s

Star 180 46 17 3 43 43.5 0 45 07 3 49 47

RO 344 27 51 164 28 01

Arc II

RO 224°31'01" 44°30'55"

Star 60 47 42 CR 3
h

51
m

38.5
s

240 46 47 CL 3
h

54
m

12.5
s

Star 60 47 38 3 51 57.5 240 46 45 3 54 31. 5

RO 224 31 00 44 30 53

A.rc III

RO 104°34'10" 284°34'19"

Star 300 49 31 CL 3
h

S6
m

39
s

120 49 16 CR 3
h

58
m

S7
s

~tar 300 49 28 3 56 57 120 49 11 3 59 19

RO 104 34 10 284 34 18

7.441 Relationships used to = 15 {( It + Ra - RA + F (WT - Z + WC )}

in which

and

WT
Z

WC
F

is the Observed Watch Time
is the Time Zone
is the Watch Correction with respect to Zone Time
1.0027379

tan A
- sin t

cos ~ tan 0 - sin ~ cos t

Arc I CL CR

3
h

43
m

16.5
s

3
h

43
ffi

43.5
S

3
h

47
m

S3
s h ffi s

Observed WT 3 49 4'Y

Local Hour Angle t 139°19'46" 139°26'32" 140°29' 05" 140°57'40"

A 180 44 18.9 180 44 12.7 180 43 15.6 180 42 49.2
star

H 180 46 22 180 46 17 0 45 30 0 45 07
star

Orienting Corrn DC - ,0 02 03.1 - 0 02 04.3 -180 02 14.4 1-180 02 17.8

Diffs. from Mean - 0.6 + 0.6 - 1. 7 + 1.7
X - 0°02'03.7" -180°02'16.1"

HRO 344 27 53 344 27 51 164 27 58 164 28 01

oiffs from Mean - 1.0 + 1.0 + 1.5 - 1.5

HRa 344 27 52.0 164 27 59.5

lARa 344 25 48.3 344 25 43.4

Mean Arc I 344°25'45.8"
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The results from similar calculations for Arcs II and III are,

Arc II

344°25'52.8" 344°25'41.4"

Arc III

Mean Arc II 344°25'47.1"

344 25 50.7 344 25 41. 7

Mean Arc III 344 25 46.2

Mean Azimuth from Pillar 5 to RO

Eccentric Correction to Geodetic
Pillar

Azimuth, Geodetic Pillar to RO

344°25'46.4"

+ 2 08.7

344°27'55.1"

7.442 Example. The alternative method of reduction by means of the series
developed in section A.52 will be used. The local hour angle will be computed
by means of the value of R6 instead of Ra as in section 7.441. As will be
seen the results of the computations for Arc I are very close to those
obtained in section 7.441.

Relationship used
For the southern pole star A 180

0
+ P sin

89°03'06 S

t sec ¢u- I2. cos t tan ¢}
p

p = 0°56'54" 3414"
/Arc I CL CR

iWT of Obs 3
h

43
ID

16.5
s

3
h

43
m

43.5
s 3h47m53.0s 3h49m47.0s

icc +7 40 07.5 +7 40 07.5 +7 40 07.5 +7 40 07.5
! GMT
I

11 23 24.0 23 51.0[GMT of Obs 11 11 28 00.5 11 29 54.5

IR6 8 31 28.9 8 31 28.9 8 31 28.9 8 31 28.9

!llR 53.1 53.2 53.9 54.2
I
I

55 46.0IGST of Obs
I

19 19 56 13.1 20 00 23.3 20 02 17.6
I

A 10 04 55.9E 10 04 55.9E 10 04 55.9E 10 04 55.9E
f

~LST of Obs 6 00 41.9 6 01 09.0 6 05 19.2 6 07 13.5,
iRA 20 43 22.9 20 43 22.9 20 43 22.9 20 43 22.9
!

:LHA 139°19'45" 139°26'32" 140°29'04" 140°57'39"

:A 180 44 18.6 180 44 12.5 180 43 15.3 180 42 48.9
star

H 180 46 22 180 46 17 0 45 30 0 45 07
star

'Orienting Carrn OC - 0 02 03.4 - 0 02 04.5 -180 02 14.7 -180 02 18.1
;

Diffs from Mean - 0.5 + 0.6 - 1.7 + 1. 7
--~--

-,-pC -0°02'03.9" -180°02'16.4"

'H 344 27 53 344 27 51 164 27 58 164 28 01
j RO
I . f from Mean - 1.0 + 1.0 + 1.5 1.5;01 fs -
c--
iHRO 344 27 52.0 164 27 59.5

!ARO
344 25 48.1

-~I----
344 25 43.1

Mean Arc I 344°25'45.6"
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7.443 Example. Least Squares Solution for a close circum-polar star.

The correction equations for this situation are as follows:-

v = A ±{C'sec h + i'tan h} - A'

A ± C - A'

in which A
A'
C

v

The correction
consist of the

is the adjusted value of the azimuth to the RO
is the calculated value of the azimuth to the RO
is the combined effect of the horizontal collimation C'

and the inclination of the trunnion axis i '
is the correction to be applied to the calculated azimuth

to obtain the adjusted value.
equations for the three arcs of observations in section 7.441
following:-

A - C - 41.4

48.3"

43.4

50.7

41.7

C

c

A + C

A + C - 52.8

A

A

A + C

=

A'
IL

A'
IR

- At
IlL

- A'
IlR

A' =
IIIL

A'
IIIR

Equations:-

c

C

A

A - C

A

A + C

A + C

A + CV
IL

vIR
v

IlL
v
IlR

V
IlIL

v
IIlR

These give the following Normal

A C

6 + 0

6

A l(LA' + LA')
6 L R

C 1:.(~A' ~A ')
6 L R

Back substitution gives the V

v +2.3" v
IL IR

v
11L

= -2.2 v
IlR

v
11IL

= -0.1 v
IIlR

Azimuth to RO from Pillar 5

L 0

(LA I + LA ') 0
L R

(L:A I LA ') 0
L R

~ (A + A ) = ~(50.6 + 42.2) 46.4"
L R

l, (A A
R

) ~(50.6 42.2) 4.2
L

values as

-1.2" LV=+O.Hvv = 12.47

+0.8 (J JIPl- ±1.77"=
so 6-2

+0.5
~ ±O.72"(JA = (J =

C (6-2) 6

344°25'46.4" ±O.72"

Circum-Meridian Time' Azimuths
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7.45 Example. The following observations were made in Port Moresby, Papua
New Guinea.

TheSe are observations suited to azimuth determinations in equatorial
latitudes (see sections 7.33 and 7.34).

Theodolite wild T2 No. 145852
Chronometer Mercer MT No. 24950
Reference Object Red light on Mast
DUTl correction for date -0.2

5

Time Signal VNG Time Zone IOh E

Place Mark on roof of CGO Building
Date Wednesday 9th November 1977
Ro for this date 3h 12

m
12.6

s

Observer B.J. Forester
Recorder I.F. Jarvies

Latitude ¢ g026'22" South
Longitude A gh48m43.3 s East

Four clock correction values were each determined as the mean of eight
comparisons with respect to the time signal. These gave the following results:-



Signal Time DUTl Zone Time
Observed Clock Correction

Clock Time with respect to GMT
h m s _0.2 s 18h57m29.80s

18
h

57
m

39 .10
S _10hOOm09.30 s18 57 30.00

20 28 30.00 20 28 29.80 20 28 37.75 -10 00 07.95

22 00 30.00 22 00 29.80 22 00 36.09 -10 00 06.29

23 10 30.00 -0.2 23 10 29.80 23 10 35.06 -10 00 05.26

Star North No. 618
Observations

o 50°10'28" N

Hor.Circle Observed Stop Hor.Circle Observed Stop
Readinq Clock Time Watch Readinq Clock Time Watch

CL Arc I CR
:
iRO 141°28'22" 321°28'13"
I

iRO 141 28 23 321 28 13I
Istar 41 49 19h19mOOs s

19
h

23
m

35
s

7.7
s

1 4.7 180 51 00

IStar 34 19 19 45 9.2 44 03 24 12 7.5

Istar 28 06 20 15 5.8 38 21 24 42 6.9

Star 1 21 45 19 20 50 6.5 180 32 58 19 25 10 5.9

RO 141 28 24 321 28 10

RO 141 28 20 321 28 15

CL Arc II CR

RO 231 33 24 51 33 15

RO 231 33 24 51 33 17

Star 89 55 08 19 29 05 9.0 269 00 15 19 33 55 5.8

IStar 48 16 29 40 7.3 268 53 50 34 30 6.4

fstar 41 12 30 17 6.5 48 36 35 00 8.1

~tar 89 35 26 19 30 50 8.5 268 42 13 19 35 35 8.9

~O 231 33 17 51 33 11

~O 231 33 21 51 33 12

Note The stopwatch was started as the star
observation was made and then stopped
at the whole second of clock time
recorded as Observed Clock Time
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Star South No. 641

Observations

7.451 Determination of Azimuth
Relationships used t == A - RA + ~ + F(CCGMT + CT)

-Sln t
tan A =

<P tan 0 ¢cos - sin cos t

h m s
CC -10 00 09.04

GMT
19

h
18

m
55.3

s
19

h
19

m
35.8

s
19

h
20

m
09.2

s 19
h

20
m

43.5
s

CT

t -2°17'29.2" -2°07'20.1" -1°58'57.7" -1°50'21.8"

A 1 42 01. 7 1 34 30.0 1 28 17 .4 1 21 54.8
star

H 1 41 49 1 34 19 1 28 06 1 21 45
star

Orienting Corrn +12.7 +11.0 +11.4 + 9.8

Diffs from Mean - 1.5 + 0.2 - 0.2 + 1.4

Mean OC +11.2"

H 141 28 22 141 28 23 141 28 24 141 28 20
RO

Diffs from Mean + 0.2 - 0.8 - 1.8 + 2.2
-

Mean H"Rn 141°28'22.2"

A
RO

141 28 33.4

Hor.Circle Observed Stop Hor.Circle I Observed Stop
Reading Clock Time Watch Reading I Clock Time Watch

CL Arc I CR

RO 141°28'26" 32P28'19"

RO 141 28 26 321 28 18

Star 178 04 22 20
h

02
m

45
s

7.5
s

358 56 45 20h07m50s
10.2

5

Star 09 45 03 15 7.3 359 03 41 08 30 9.6

Star 14 19 03 42 7.7 09 31 09 05 11. 3

Star 178 19 36 20 04 13 8.8 359 15 51 20 09 40 10.0

RO 141 28 25 321 28 18

RO 141 28 25 321 28 18

CL Arc II CR

RO 231 33 22 51 33 12

RO 231 33 24 51 33 14

Star 270 11 14 20 14 25 8.6 91 03 11 20 19 25 8.0

Star 17 46 15 00 6.0 09 15 20 00 8.9

Star 22 56 15 32 8.3 15 43 20 35 6.3

Star 270 29 52 20 16 10 6.3 91 21 32 20 21 10 8.0

RD 231 33 23 51 33 15

RO 231 33 23 51 33 15

Arc I CL
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Arc I CR

CC
GMT

-10hOOm08.94s

CT 19
h

23
m

27.3
s

19
h

24
m

04.5
s

19
h

24
m

35.1
s

19
h

25
m

04.1
s

t -1°09'16.6" -0°59'57.0" -0°52'16.8" -0°45'00.6"

A 0 51 25.6 0 44 30.3 0 38 48.7 0 33 24.9
star

H 180 51 00 180 44 03 180 38 21 180 32 58
star

Orienting Corrn 180 00 25.6 180 00 27.3 180 00 27.7 180 00 26.9

Diffs from Mean + 1. 3 - 0.4 - 0.8 + 0.0

Mean OC 180°00'26.9"

H 321 28 13 321 28 13 321 28 10 321 28 15
RO

Diffs from Mean - 0.2 - 0.2 + 2.8 - 2.2
-

Mean H 321°28'12.8"
RO

IARo
141 28 39.7

Arc I Mean 141 28 36.6

CL A
RO

141 28 30.3

CR A 141 28 38.8
RO

Arc II Mean 141 28 34.5

North Star 141°28'35.5"Mean A
RO

The results from similar calculations for Arc II are,

Arc II

Star South No. 641
Arc I CL

h m s
CC

GMT
-10 00 08.34

20
h

02
m

37.5
s

20
h

03
m

07.7
s

20
h

03
m

34.3
s

20
h

04
m

04.2
s

CT

t -2°46'16.0" -2°38'41.8" -2°32'01.7" -2°24'32.0"

A 178 04 23.7 178 09 39.0 178 14 16.8 178 19 29.1
star

H 178 04 22 178 09 45 178 14 19 178 19 36
star

Orienting Corrn + 1. 7 - 6.0 - 2.2 - 6.9

Diffs from Mean - 5.1 + 2.6 - 1.2 + 3.5
-

Mean OC - 3.4"

HRO
141 28 26 141 28 26

I
141 28 25 141 28 25

Diffs from Mean - 0.5 - 0.5 + 0.5 + 0.5

Mean H 141°28'25.5"
RO

A 141 28 22.1
RO

-111-



-112-

Arc I CR

the south star over

0 58"21'35" S

23
h

16
m

09.1
s

9 48 43.3 E

13 27 25.8

3 12 12.6

10 15 13.2

-1 40.8

10 13 32.4

141 28 35.5

141 28 34.2

141 28 33.3

141°28'34.4"

141 28 26.5

141 28 41. 9

A
RO

A
RO

Mean

CL

CR

Arc II

Arc II

GST of this instant

GST at UToh Ra

Sidereal Time interval since UToh

Conversion Sidereal to Mean

., l' hMean Tlrne lnterva Slnce UTO

equal to GMT of instant

Determination of the clock time of passage of
the local meridian

h m s
Star South No. 641 RA 23 16 09.1

LST of local upper transit = RA

Relationships used (see section A.74)

=

Mean A South Star
RO

Mean A North Star
RO

Mean A from pair
RO

7.452 For the sake of illustration, some of the observations of the first arc
of the star to the south will be computed by means of the power series derived
for this purpose in section A.74. It is a series, which contains only the odd
powers and which converges very rapidly. In this computation, the first two
terms give results which differ from the rigorous results of section 7.451 by
only very small amounts.

The method of approach should be compared with that of section 7.451, as
well as with the solutions for circum-meridian latitudes of section 5.493 and
for circum-elongation azimuths of section 7.472.

The results from similar calculations for Arc II are,

CC -10
h

OO
m

08.24
s

GMT
20

h
07

m
39.8

s 20hOSm20.4s 20hOS
m

53.7s 20h09m30.0sCT

t -1°30'27.6" -1°20'16.9" -1°11'56.0" -1°02'50.1"

A 178 57 03.8 179 04 08.5 179 09 56.9 179 16 16.7star
H 358 56 45 359 03 41 359 09 31 359 15 51star
Orienting Corrn +180 00 18.8 +180 00 27.5 +180 00 25.9 +180 00 25.7

Diffs from Mean + 5.7 - 3.0 - 1.4 - 1. 2

Mean OC 180°00'24.5"

H 321 28 19 321 28 18 321 28 18 321 28 18RO
Diffs from Mean - 0.8 + 0.2 + 0.2 + 0.2

-
Mean H

RO
321°28'18.2"

A 141 28 42.7
RO

Arc I Mean 141 28 32.4



A A
o

cos OM t' + 1 0 3 {
sin zM "6 cos qJ cos M cosec 2 M cos 2 11

cos 0 + cos ¢} t,3..
M

For calclJlation purposes the coefficients of t t and t t 3 are constant.

in which 71.o
0° for star north and 180° for star south

o -58°21'35"

Determination of the hour angle for each observation and then of the azimuth

lObs CT 20
h

02
m

37.5
s

20
h

04
m s

20
h

07
m

39.8
s 20h09m30.0s

04.2
I
iCC -10 00 08.3 -10 00 08.3 -10 00 08.2 -10 00 08.2
: GMT
!GMT of Obs 10 02 29.2 10 03 55.9 10 07 31.6 10 09 21.8

:~IT of Transit 10 13 32.4 10 13 32.4 10 13 32.4 10 13 32.4

~.:T Diff. -11 03.2 - 9 36.5 - 6 00.8 - 4 10.6

:::onversion 1.8 1.6 1.0 0.7

ST Diff=LHA star t - 11 05.0 - 9 38.1 - 6 01.8 - 4 11. 3

LHA to -2°46'15.0" -2°24'31.5" -1°30'27.0" -1°02'49.5"

t" -9975.0" -8671. 5" -5427.0" -3769.5"

?irst Term -1°55'41.8" -1°40'34.7" -1°02'56.8" -0°43'43.3"

Second Term + 6.3 + 4.1 + 1.0 + 0.3

?otal Correction -1 55 35.5 -1 40 30.6 -1 02 55.8 -0 43 43.0

- 178 04 24.5 178 19 29.4 178 57 04.0 179 16 17.0-"""'star
:J: 178 04 22 178 19 36 358 56 45 359 15 51
star

:Jrienting Corrn + 2.5 - 6.6 +180 00 19.0 +180 00 26.0

:-i
RO

141 28 26 141 28 25 321 28 19 321 28 18

--l.RO 141°28'28.5" 141°28'18.4" 141°28' 38.0" 141°28'44.0"

?his calculation has been carried to greater accuracy than is warranted to
show the excellent agreement of these results with those of the rigorous
solution.

~~e Assessment of Precision of Circum-Meridian Time Azimuth Observations

7.46 It is assumed that n observations have been made face left and n
=ace right on each star of a balanced pair. Furthermore, it is assumed that
sights on the two stars have been made during an observing period on the same
~ight by the same observer, using the same equipment.

The correction equations for such a situation are expressed as follows:-

A A' ± C'sec h ± i'tan h + dA ~A + dA ~0 + v
dt d¢'

~n which A is the adjusted value of the azimuth to the RO
A' is its calculated value
C' is the theodolite horizontal collimation
i' is the theodolite horizontal axis inclination
h is the altitude of the star
~A and ~¢ are uncertainties in the values assumed for the

position of the observing station,
~~d v is the correction to be applied to the calculated value

of the azimuth to give the adjusted value.

-113-



It should be noted that the effects C'sec hand i'tan h cannot be
separated from one another because each changes sign with change of face.
Also their effects on the two stars of a pair are not the same in this
method of determining azimuth, because the altitude hN to the star north
is not quite the same as the altitude hS to the star south. Allowance for
this must therefore be made in the solution (see section 7.48 for comparison)
and correcting terms

(C' sec hS + i'tan h S ) for the south star
and

YN (C'sec hN + i'tan hN) for the north star

will be included as unknowns in
The differential coefficients

observations are given as

the
dA
dt

correction equations.
and dA for circum-meridian

d¢
azimuth

cos <5
M

tan h sin A

x

and

dA
dt
dA
d¢

This latter coefficient ~ is a small quantity, because altitudes are kept
low and observations are made close to the meridian so that its value is
easily kept less than 0.05. If also the observer's latitude is reasonably
well known so that 6¢ is small, the effect of the discrepancy produced in
the azimuth may be considered negligible.

The former coefficient will be used in a term in the correction equations
to allow for a systematic error in the longitude or timing system as

cos <5

I sin zM I 6)...
M

Random errors of observation will be present in the pointings and horizontal
circle readings to the star and reference object and also in the timing of
the star across the vertical hair. One is reasonably well justified in
assuming that these random errors will have similar magnitudes and distributions
for both stars of the pair, considering that the altitudes of the stars are
not greatly dissimilar, see Table 7.2. Thus the correction v represents the
combined effects of all these errors.

The correction equations will now take the following form:

For star south

Face left v
SL

A + Y + X A'
S SL

Face right v A Y + X A'
SR S SR

For star north

Face left v
NL

A + Y X A'
N NL

Face right v
NR

A y X A'
N NR

If there are n equations in each of the typical correction equation forms,
these will give rise to the following Normal Equations shown in detached
coefficient form.

A y y X Absolute Term a
S N

4n a a 0 LA' LA' LA' LA' 0
SL SR NL NR

2n a a LA' + LA' 0
sL SR

2n a LA' + LA' a
NL NR

4n LA' - LA' + LA' + LA' 0
SL SR NL NR
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making use of the data of section 7.451

A
NL

A
NR

)

the individual

The solution of

A

in which A
SL

7.461 Example,

these equations yields the

J,,(A + A + A
NLSL SR

" (ASL ASR)

!,(A A)
NL NR

"(A + A
4 SL SR

etc. are the means of

unknowns

+

observations of that type.

A
SL

141°28'24.3 (1) :'>«1) + (2) + ( 3) + (4) ) A 141°28'34.4"

A
SR

42.3 (2) :!'( (1) (2) ) Y
S

-9.0

~L 31.8 (3) : !z ( (3) (4) ) Y -3.7
N-

(4) :'>«1) (2) ( 3) (4) )
~R

39.2 + - - X -1.1

Arc I v (A + Y
S

+ X) - A' 141°28'24.3" 141°28'22.111 +2.2"
'SL SL

II v
SL

(A + Y + X) A' 24.3" 26.5 11 -2.2"
S SL

I v
SR

= (A Y + X) A' 42.3 11 42.7" -0.4
S SR

II v
SR

(A - Y
S

+ X) A' 42.3 11 41.9" +0.4
SR

I v
NL

(A + Y
N

X)
ANL

31 .. 8" 33.4" -1.6

II v
NL

(A + Y - X) - A' 31.8" - 30.3 11 +1.S
N NL

I V
NR

(A Y X) A' 39.2" 39.7 11 -0.5
N NR

II v
NR

(A - Y - X) - A' 39.2" - 38.8 11 +0.4
N NR

I LVV 15.22

Standard Deviation of single observation =j~~ )15.22 ±1.9 "0 =
0 8-4

Standard Deviation /lS.22
32

±0.7

Azimuth to the RO 141"28' 34.4"

o = 0 Iivv fl5:22
YS YN = IN/2 (N-4) -I----u;- ±l.0

±0.7 I"

It should be noticed here that the values v are small because the values
inserted in the correction equations are each derived from four paintings to
the RO and star (see section 7.21).

Circum-Elongation Time Azimuths

7.47 EXillnple. The following observations were made on a balanced pair of
circum-elongation stars for the determination of azimuth.

Station A Mooifontein <I> 26°03'14" S

A 1
h

52
m

S5.7
s

E
RO Red light on Kempton

Park Water Tower
Date Monday 22nd June 1959
Observer O.H. Meyer
Recorder J.G. Freislich

-l1S-

Theodolite wild T2

Clock Mercer Sidereal
Clock Correction with respect

to GST +7m22.9s



- sin ttan A ::: -~-;--~~=-==-=--.::.----:----

cos ¢ tan 0 - sin ¢ cos t

Azimuth Star East X Octantis Azimuth Star West 7 G Octantis
RA 18h31m54~3 887°38' 34'195 RA 7h01m16~0 086°58' 34'13 S

Horizontal Observed Horizontal Observed
Circle Reading Clock Time Circle Readinq Clock Time

Mark RO 349°04'03" CL 79°08'55" CL

Star 357 16 00 10
h

28m13!zs 93 20 00 10
h

47m37!zs

I Star 177 15 50 CR 10 32 34 I 273 19 57 CR 10 51 21

Mark RO 169 04 01 259 08 50

Mark RO 259 09 06 CR 349 03 52 CL

Star 267 20 51 10 39 00 3 15 05 10 57 47!z

II Star 87 21 02 CL 10 42 24 II 183 14 57 CR 11 01 45

Mark RO 79 09 09 169 03 51

7.471 Solution of some of the observations by means of the general
relationship

I Star East Arc I Star West Arc II

CT of Obs 10h28m13~5 10
h

32
m

34
s 10h57m47~5 11hOIm45 s

CC +7 22.9 +7 22.9 +7 22.9 +7 22.9
GST

GST of Obs 10 35 36.4 10 39 56.9 11 05 10.4 11 09 07.9

A 1 52 55.7E 1 52 55.7E 1 52 55.7E 1 52 55.7E

LST of Obs 12 28 32.1 12 32 52.6 12 58 06.1 13 02 03.6

RA 18 31 54.3 18 31 54.3 7 01 16.0 7 01 16.0

Hour Angle -6 03 22.2 -5 59 01. 7 5 56 50.1 6 00 47.6

A 177°22'40.2" 177°22'35.7" 183°21'57.5" 183°21'53.2"

HQR to star 357 16 00 177 15 50 3 15 05 183 14 57

Orienting
+180 06 40.2 + 0 06 45.7 ~180 06 52.5 + 0 06 56.2

Corrn

HQR to RO 349 04 03 169 04 01 349 03 52 169 03 51

Azimuth to RO 169 10 43.2 169 10 46.7 169 10 44.5 169 10 47.2

Results of calculations made from all observations:-

7.472 Reduction of the same data of section 7.471 by means of the circum­
elongation series.

Relationships used for determining hour angle t and azimuth A at
e e

elongation
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Arc I

Arc II

Star E

169°10'43.2"
46.7

50.2
45.0

Mean Azimuth to RO

Star W

169°10'47.1"
49.8

44.5
47.2

169°10'46.7"



t =
tan <p

from Four Parts Formula linking <P, 6, w and tcos tan 6e

sin ± cos 6
from Sine Formula linking <P, 6,A = w and A

e cos <P
In which it should be noted that t e and Ae must be assigned to their
correct quadrants.

Star East

t
e

A
e

-88°50 '49':0

2°37'2S~S East of South

Star West

t
e

A
e

3°21'S8~4 West of South

= 177 22 34.S

To determine the clock time of elongation

183 21 58.4

Star East Star West

-ShSSID23~3 h ID S
Hour Angle t + S 54 04.8

e
RA 18 31 54.3 7 01 16.0

LST of Elongation 12 36 31.0 12 S5 20.8

11 1 52 55.7 E 1 52 55.7 E

GST of Elongation 10 43 35.3 11 02 25.1

CC
GST

+07 22.9 +07 22.9

CT of Elongation T 10h36ID12~4 10h55ID02:2
e

Relationship used (see section A.81)

A = A
e

Star East

{l-

Star west

T 10
h

36
ID

12.4
s 10h36ID12.4s 10

h
SS

ID
02.2

s 10h S'SID02 . 2s
e

T 10 28 13.5 10 32 34 10 57 47.5 11 01 45

lIT='r~T -0 07 58.9 -0 03 38.4 0 02 45.3 0 06 42.8e

lIt
m

-7.9817 -3.6400 2.7550 6.7133
2

1. 963S" (lItm) 12S.09" 26.02" 14.90" 88.49"

1st term -5.7 -1. 2 +0.9 +S.2

2nd term -0.0 -0.0 +0.0 +0.0

A 177°22' 34'~ 5 17r22' 34'~5 183°21' 58'~4 183°21' 58'~4
e

A 177 22 40.2 177 22 35.7 183 21 57.5 183 21 53.2

HeR Star 357 16 00 177 15 50 3 IS 05 183 14 57

Or. Carr +180 06 40.2 + 0 06 45.7 +l80 06 52.5 + 0 06 56.2

H€lR RO 349 04 03 169 04 01 349 03 52 169 03 51

Azimuth RO 169 10 43.2 169 10 46.7 169 10 44.5 169 10 47.2

It will be seen that these results are in agreement with those obtained in
section 7.471.

The Assessment of Precision of Circum-Elongation Time Azimuth Observations

7.48 It is assumed that n observations have been made face left and n face
right on two stars forming a well balanced pair of azimuth stars. The stars
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A A'

in which A
A'
C'
i'
h
b.)",

and v

are very close to being symmetrically disposed with respect to the meridian
and each observed close to and symmetrically about its point of elongation.
In addition, both stars have been observed during the observing period on
the same night by the same observer using the same theodolite.

The correction equations are expressed as

± c' sec h ± i'tan h + : b.)... + : b.¢ + v ... 7.10

is the adjusted value of the azimuth of the RO
is the calculated value of the azimuth of the RO
is the horizontal collimation correction
is the horizontal axis inclination
is the mean altitude of the balanced pair of stars
and b.¢ are uncertainties in the values of the position of

the observing station
is the correction to be applied to the computed value of the

azimuth to obtain the adjusted value.

It should be noticed that the two terms containing C' and i' above cannot
be separated because their effects C'sec hand i'tan h both change sign at
the same time, ie. when face is changed on the theodolite.

The differential coefficients are

dA
sec h cos 0

dt
cos W

-sin A.cot w

and
dA

tan h sin A
dep

Under the conditions assumed above, each of the above coefficients is a small
quantity. The first one is very small because each of the two components is
small. Each coefficient changes sign from east to west of the meridian and
also the first one changes sign on opposite sides of the point of elongation.
The first one will therefore be taken as zero and the second one as
tan h sin A.

The correction equations for each set of observations then become

VEL + A' A (C I sec h + i'tan h) + ·:tan h sin A)b.ep A C + D¢
EL \.

v
ER + A' A + (C' sec h + i'tan h) + (tan h sin A)t;c/J A + C + Dep

ER
v

WL + ~L A (C' sec h + i'tan h) (tan h sin A)b.¢ A - C D¢

v + A' A + (C' sec h + i'tan h) (tan h sin A)t;ep A + C D¢
WR WR

in which each set comprises

C = (C' sec h + i'tan h)

n

and

observations, sin A = ~(sin

D¢ (tan h s in A) b.ep.

These produce the following Normal Equations, shown in detached coefficient
form:-

A C D¢ L

4n 0 0 LA' + EA' + L~~L + EA'
EL ER WR

4n 0 -L~L + EA' LA' + EA'
ER WL WR

4n E~L + LA' EA' LA'
ER WL WR

A ~{ ~L + A
ER + ~ + ~R }

J { - -
}C '<i -A + A

ER
A + A

EL WL WR
~{ A - - - }Dep + A

ER
A A

EL WL WR

in which A
EL'

A
ER

, etc. are the mean values of each set.
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If is defined as

A - A'
EL ELi

Le. -A + u .
EL ELl

it becomes possible to derive the corresponding corrections

From the correction equations of the first set

v
ELi

A C + D<P A'
ELi

!:4(
~L

+ A
ER + AWL + ~R

- -
+ A

EL
- A + ~L - A

WRER -
+ ~L + A - A - A

ER WL WR

-4~L ) +~.Ll
!:4(- A

EL
+ A + A - A ) +~.ER WL WR Ll

D + u
ELi

?rom a similar treatment

from

VERi
v

WLi
V .

WRl

D + u
ERi

D + u
WLi

D + ~Ri

:=:xample 7.481 The full results of an azimuth determination are given below.

Azimuth to RO u D V

A' . 336
0
42'42.7" +1.5" +0.3" +1.8"

ELl
47.1 -2.9 -2.6
42.3 +1.9 +2.2
44.9 -0.7 -0.4

-
L: L l: .;A

EL
336 42 44.2 -0.2 +1.2 +1.0

A' 336 42 53.0 -3.6 +0.3 -3.9
ERi

47.0 +2.4 +2.1
50.2 -0.8 -1.1
47.4 +2.0 +1.7

-
l: l: l: .;A

ER
336 42 49.4 +0.0 +1.2 -1.2

A~i 336 42 41.6 +2.7 +0.3 +2.4
43.2 +1.1 +0.8
47.3 -3.0 -3.3
44.9 -0.6 -0.9

-
L .;AWL 336 42 44.3 L +0.2 +1.2 L -1.0

A' 336 42 48.1 +0.3 +0.3 +0.6
WRi

49.7 -1.3 -1.0
51. 2 -2.8 -2.5
44.5 +3.9 +4.2

- .;
~R

336 42 48.4 L +0.1 L +1.2 l: +1.3

=

Lvv ::: 82.07

~
:::~~

/82.07
= (16-3) 16

-119-

±2.5"

::: ±0.6"



A 336°42'44.2" (l) ~ ( (1) + (2 ) + (3) + (4) } A 336°42'46.6"EL
A

ER
49.4 (2 ) ~(-(l)+ (2 ) - (3) + (4) ) C + 2.3"

-
(3) ~ ( (1)AWL 44.3 + (2) - (3 ) - (4) ) o¢ + 0.2"

-
48.4 (4) ~(-(l)+ (2)A + (3) - (4) } 0 + 0.3"

WR
Azimuth 336°42'46.6" ±0.6"

AZIMUTH FROM ALTAZIMUTH OBSERVATIONS

IN this method of observing, the RO is sighted and the horizontal circle
reading observed, then a known star is sighted at the intersection of the
crosshairs in the field of view of the telescope, the altitude bubble, if
fitted, is centred and both vertical and horizontal circles read. (see
section 4.23)

7.51 The observed altitude is corrected for index and refraction.
A is calculated from this reduced altitude h, the assumed value
latitude of the station and the star's declination O.

These quantities are linked together in the Cosine Formula

The azimuth
¢ for the

sin 0 sin ¢ sin h + cos ¢ cos h cos A ... 7.11

On differentiation, this gives the relationship linking the small changes dA,
dh, d¢, and dO as

cos ¢ sin t dA + cos t d¢ + cos w dh

Declinations taken from reliable catalogues may, for all but work of geodetic
quality, be considered to be free of error and therefore the effects of the
errors d¢ and dh on the azimuth sought may be taken as

dA -sec ¢ cot t d¢ - sec ¢ cosec t cos w dh

On substitution for sec ¢ cosec t from the Sine Rule

dA -sec ¢ cot t d¢ - sec h cot w dh ... 7.12

In this relationship d¢ must be considered entirely as a systematic error,
because its value is an assumed one not known exactly. The error dh is
partly systematic and partly random. The systematic component of dh is due
to the uncertainty in the refraction corrections taken from tables. The random
component results from the observer's inability to make perfect observations.

If now a single star is to be observed, it should be when t = 90° or 270°
to eliminate the d¢ component and also it should be at elongation (w = 90°
or 270°) to eliminate dh. These conditions can only be achieved simultaneously
when a star is at the pole. However, there is no star exactly at this point,
but observations can be made on one or other of the two pole stars. It should
be noted that if observations are made to such a star near its meridian
transit (t = 0° or 180° and w = 0° or 180°) the coefficients of both d¢
and dh become infinite and therefore observations should be well removed in
time from meridian transit and be confineg to a Eeriod near elongation, which
also occurs when the hour angle is near 6 or 18. In addition, observations
to these stars may be difficult for stations near the equator, see section 7.32

Table 7.3 shows the value of the rates dA and dA in the vicinity of
elongation for the pole star. dh d¢
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Table 7.3

<j> 15° 30° 45° 60°

dA dA dA dA dA dA dA dAt
dh CW dh dQi dh CW dh CW

2
h

+1.8 -1.8 +2.0 -2.0 +2.4 -2.5 +3.4 -3.5

3 +1.0 -1.0 +1.2 -1.2 +1.4 -1.4 +2.0 -2.0

4 +0.6 -0.6 +0.7 -0.7 +0.8 -0.8 +1.1 -1.2

5 , +0.3 -0.3 +0.3 -0.3 +0.4 -0.4 +0.5 -0.5

6 -0.0 0.0 -0.0 0.0 -0.0 0.0 -0.1 0.0

7 -0.3 +0.3 -0.3 +0.3 -0.4 +0.4 -0.6 +0.5

8 -0.6 +0.6 -0.7 +0.7 -0.8 +0.8 -1.2 +1.2

9 -1.0 +1.0 -1.2 +1.2 -1.4 +1.4 -2.0 +2.0

10 -1.8 +1.8 -2.0 +2.0 -2.5 +2.5 -3.5 +3.5

From this, it is seen that if such a star is observed only One hour from the
point of elongation, there will be from one third to one half of each of the
uncertainties dh and d¢ affecting the derived azimuth. This should be
compared with the very much more accurate values, obtainable over the whoZe
range of hour angles from time azimuth observations on the pole star (see
Table 7.1).

7.52 The effects of the error d<j> and the systematic component in the error
dh can be eliminated from the derived azimuth, if the technique of observing
balanced pairs is used, because the coefficients of d¢ and dh change sign
on opposite sides of the meridian and their magnitudes can be made equal if
the two stars are observed symmetrically about the meridian. Thus, the two
following conditions can then be achieved simultaneously:-

and

or

sec hE cot wE

sec ¢ cot t E

cot t E

-sec hW cot Ww
-sec <j> cot t w
-cot t w

The next requirement is that the above coefficients of the errors dh and
d<j> should, if possible, be kept small, so that some imbalance between the
members of a selected pair of stars can be tolerated. If observations are
made about the point of elongation, the coefficient of dh is small in
magnitude and it also changes sign across this point. Thus the effects of
the systematic component of dh are eliminated and the effects of the
random errors in the observed altitudes minimised. The systematic error d¢,
however, cannot be elimdnated from observations made near elongation,
although its effect can be considerably reduced if the stars are chosen near
the elevated pole because for a close circum-polar star at elongation the
hour angle is close to ±90o. For these reasons, therefore, pairs of balanced
stars are used. No real difficulty in predicting suitable azimuth stars in
latitudes from 150 to 55° is encountered, because suitable high declination
stars are given in the Star Almanac for Land Surveyors in a set of
Supplementary Stars as well as a set of Circum-Polar Stars. Most of these
stars are fairly faint and precornputation will be necessary, as well as a
means of orienting the horizontal circle of the theodolite, in order to
locate them. In equatorial. latitudes, these circum-polar stars cannot be
used because of the problem of visibility. But the technique of observing
stars near elongation can still be used

6
although suitable stars will not be

at the desired hour angle of 90
0

or 270 when they are at a suitable
altitude for observation. An example of a pair of circum-elongation stars
observed by the Altazimuth method is given in section 7.62.
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7.62 Example of an altazimuth circum-elongation determination for azimuth.

RO 270 05 03 90 04 47

Star 29 41 17 304 50 22 209 41 37 54 50 05

Star 29 41 16 304 53 47 209 41 41 54 46 21

RO 270 05 01 90 04 50

929.7mb
929.5

... 7.14

T P

CL

Theodolite wild T2
RO Navigation Light
Vert. Circle Index Corrn. +39"

Met. Readings

Star East
Star West

Arc I

Arc II
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(f,h) 2 _ C ta~ (i1h) 3 •••
2p

C

2pA
e

A

Ae is the azimuth of the star at elongation, C = sec 2h e cot Ae
h - he where he is the altitude at elongation. The units of

are in accordance with one another.

CR

in which
and 6h
and p

Abstract from Field Book
Star East No. 672

Calculation of the Azimuth from Altazimuth Observations

7.61 The direct calculation of the azimuth from these observations can always
be used and each observation can conveniently be computed from the relation­
ship of Equation 7.11, set out as

cos A sec ¢ sin 0 sec h - tan ¢ tan h ... 7.13

in which iT is noted that sec ¢ sin 0 and tan ¢ are constants for any
specific example. This is a general relationship, but further information is
required to resolve the double answer obtained from cos A. Whether the
star was east or west of the meridian is known from the field book or the
prediction and the ambiguity resolved.

The provision of a check computation is not easy for the above relationship,
if more than simply a duplication of the computation is considered necessary.
The Tangent Half Angle Formulae provide a means of checking. They are however
clumsy to use for the individual observations. If calculations from the
arithmetic means are carried out in this way, the allowance for second order
correction must be made (see section A.62).

For observations on circum-elongation stars, the following relationship,
from section A.82 in the appendix, may be used:-

Place Peg G, Survey Camp ¢ -33<27'27"
h m

Bathurst, NSW Approx. A 9 58 E
Date Thursday 17th November 1977
Observer G.G. Bennett
Recorder J.C. Trinder

CL CR
Hor.Circle Rdg. Vert. Circle Rdg Hor.Circle Rdg. vert.Circle Rdg.

RO 0°00'34" 180°00'39"

Star 119 38 05 55°42'47" 299 37 13 304°31'52"

Star 119 37 56 55 39 46 299 37 06 304 35 23

RO 0 00 29 180 00 35



Star West No. 684

CR
Arc I

CL
Hor.Circle Rdg. Vert.Circle Rdg. Hor.Circle Rdg. Vert.Circle Rdg.

RO 0°00'52" 180°01'00"

Star 153 29 25 54°51'14" 333 30 01 304°50'40"

Star 153 29 48 54 56 54 333 30 09 304 47 52

RO 0 00 48 180 01 01

CR
Arc II

CL
RO 270 05 16 90 05 04

Star 63 34 40 304 33 27 243 34 53 55 44 33

Star 63 34 42 304 28 53 243 34 46 55 47 08

RO 270 05 14 90 05 03

7.621 Solution by the general relationship
sin 0 - sin ¢ sin hcos A = -----,-----'--------

cos ¢ cos h

Star East No. 672 0 74°44' 43" S
Arc I

Vert.Circle Rdg 55°42'47" 55°39'46" 304°31'52" 304°35'23"

Index +39 +39 +39 +39

Corrected Reading 55 43 26 55 40 25 304 32 31 304 36 02

Observed Altitude h o 34 16 34 34 19 35 34 32 31 '34 36 02

Refraction 1 17 1 17 1 16 1 16

Altitude h 34 15 17 34 18 18 34 31 15 34 34 46

Calcd azimuth A 161 37 50.5 161 37 42.6 161 37 16.2 161 37 11. 3
star

H 119 38 05 119 37 56 299 37 13 299 37 06star
Orienting Corrn 41 59 45.5 41 59 46.6 222 00 03.2 222 00 05.3

Diffs from Mean + 0.5 - 0.6 + 1.0 - 1.0

Mean OC 41°59'46.0" 222°00'04.3"

H a 00 34 0 00 29 180 00 39 180 00 35
RO

Diffs from Mean - 2.5 + 2.5 - 2.0 + 2.0
-

Mean H
RO

0 00 31.5 180 00 37.0

A 42 00 17 .5 42 00 41. 3
RO

Arc I Mean 42°00'29.4"

The results from similar calculations for Arc II are,

Arc II CL A
RO

42°00'24.3"

CR A
RO

42 00 46.5

Arc II Mean 42 00 35.4

Mean A
RO

East Star 42 00 32.4
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Star West No. 684 o 77°06'46" S
Arcl

Vert. Circle Reading 54°51'14" 54°56'54" 304°50'40" 304°47'52"

Index +39 +39 +39 +39

Corrected Reading 54 51 53 54 57 33 304 51 19 304 48 31

Observed Altitude h 35 08 07 35 02 27 34 51 19 34 48 31a
Refraction 1 15 1 16 1 16 1 16

Altitude h 35 06 52 35 01 11 34 50 03 34 47 15

Calcd Azimuth A 195 29 03.7 195 29 23.7 195 29 54.0 195 29 59.8
star

H 153 29 25 153 29 48 333 30 01 333 30 09
star

Orienting Corrn +41 59 38.7 +41 59 35.7 +221 59 53.0 +221 59 50.8

Diffs from Mean - 1.5 + 1. 5 - 1.1 + 1.1

Mean OC 41°59'37.2" 221°59'51.9"

H 0 00 52 0 00 48 180 01 00 180 01 01
IRO

Diffs from Mean - 2.0 + 2.0 + 0.5 -ooj_.. -
-

Mean H
Ro

a 00 50.0 180 01 00.5

A 42 00 27.2 42 00 52.4
RO

Arc I Mean 42°00' 39.8"

The results from similar calculations for Arc II are,

± cos c5
from the Sine Formula linking <jJ o w and= A

cos <jJ
sin <jJ

from the Cosine Formula linking <jJ o w and h
sin 0

(h-h ) 3
e

1 16

34°51'06"h
e

Refraction

42 00 52.7

42 00 38.5

42 00 39.2

42 00 32.4

42 00 35.8

42°00'24.3"

h 34 52 22
in whicheoheo is the altitude atwhich
the star at elongation would be seen.

-33°27'27"

CR

CL

Arc II Mean

Arc II

Ae 18°22' 59.1" East of South

·-o.e =1(.1 37 00.9

constants C -4.468 215
D 0.696 355
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A A - sec 2 h cot A
e e e

( (h-h ) 2

A - c I
e

+
e

t 20

in which C sec 2 h cot A and
e e

cP

Star East No. 672 8

sin A
e

sin h
e

Mean A West Star
RO

Mean A East Star
RO

Mean A from pair
RO

7.622 Solution by means of a series
Relationships used

From section A.82 in the appendix

(h-h )2
____e__ -sec 2 h cot A tan h

20 e e e
(h-he ) j ]

D 2 •••
2p

D = tan h
e



Arc I

h 34°16'34" 34°19'35" 34°32 I 31 n 34°36'02 11

0

h 34 52 22 34 52 22 34 52 22 34 52 22eo
h - h -0 35 48 -0 32 47 -0 19 51 -0 16 20

e
h - h -2148" -1967" -1191" -980"e
First term -49.97 -41.91 -15.36 -10.40

Second term + 0.36 + 0.28 + 0.06 + 0.03

Correction +49.61 +41. 63 +15.30 +10.37

A 161°37'50.5" 161037'42.5" 161°37'16.2" 161°37'11.3"
star

H 119 38 05 119 37 56 299 37 13 299 37 06star
Orienting Corrn +41 59 45.5 +41 59 46.5 1t222 00 03.2 +222 00 05.3

Diffs from Mean + 0.5 - 0.5 + 1.1 - 1.0

Mean OC +41°59'46.0" +222°00'04.3"

H
RO

0 00 34 0 00 29 180 00 39 180 00 35

Diffs from Mean - 2.5 + 2.5 - 2.0 + 2.0

Mean H
RO

0 00 31.5 180 00 37.0

A
RO

42 00 17.5 42 00 41.3

Arc I Mean 42°00'29.4"

The results from similar calculations for Arc II by this method agree exactly
with those of section 7.621.

A 15°30'19.8" West of South
e

A 195 30 19.8
e

C 5.299 724

D -0.685 778

Star West No. 684 o = -77°06'46" h
Refr~ction

h
eo

Arc I

34°26 1 29"
1 16

34 27 45

..

ho 35°08'07 11 35°02'27 11 34°51'19" 34°48'31"

h 34 27 45 34 27 45 34 27 45 34 27 45eo
h - h +0 40 22 +0 34 42 +0 23 34 +0 20 46

e
h-' h +2422" +2082" +1414" +1246"

e
First term +75.36 +55.69 +25.69 +19.9'

Second term + 0.61 + 0.39 + 0.12 + 0.08

Correction - 1 15.97 -56.08 -25.81 -20.02

A 195 29 03.8 195 29 23.7 195 29 54.0 19:' 29 59.8
star

H 153 29 25 153 29 48 333 30 01 333 30 09
sta:r

Orienting Corrn +41 59 38.8 +41 59 35.7 +221 59 53.0 +221 59 50.8

Diffs from Mean - 1.5 + 1.6 - 1.1 + 1.1

Mean DC +41059'37.3" +221 °59' 51. 9"

H
RO

0 00 ,,2 o 00 48 180 01 00 180 01 01

Diffs from Mean - 2.0 + 2.0 + 0.5 - 0.5

Mean H"n 0 00 50.0 180 01 00.5

IARO 42 00 27.3 42 00 52.4
Arc 1 Mean 42°00'39.8" I
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The results from similar calculations for Arc II by this method agree
exactly with those of section 7.621.

The Assessment of Precision of Circum-elongation Altazimuth Observations

7.63 The situation and the conditions of section 7.48 are the same here.
The correction equations are expressed as

v

A
A'
C'
i'
h

A

in which

and

dA dA dA
A' ±(C'sec h + i'tan h) + dh 6C + -- 6r + -- 6¢ + v

dh d¢

is the adjusted value of the azimuth of the RO
lS the calculated value of the azimuth of the RO
is the horizontal collimation correction
is the horizontal axis inclination
is the mean altitude at elongation of the balanced pair

of stars
is the vertical circle index correction
is the uncertainty in the refraction value assumed
is the uncertainty in the value of latitude adopted for

the observing station
is the correction to be applied to the computed value of

the azimuth to give the adjusted value.

The effects of C' and i' cannot be separated from one another because their
separate effects both change at the same time, i.e. when face is changed on
the theodolite. The differential coefficients are

with ~ being the mean of the values at elongation for the two stars.
The e~fect Y changes sign with change of face whereas the effect X

changes sign between the two stars.
The individual correction equations then become

dA
A A' ± (C'sec h + i'tan h) ± Id¢1 dcjJ + v

A' ± y ± X + v

in which y C'sec h + i'tan h
dA

and X Id¢1 6¢

can be considered small,
The uncertainty 6¢ will

A'
WL

A'
WR

A'
EL

A'
ER
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y X

y + X

-sec h cosec w cos t

-sec h cot w

+ Y X

+ Y + X

set.
Normal Equations, shown in the detached coefficient

A

A

A

dA
dh

dA
d¢

uncertainty 6r in
and the coefficient

and

v
ER

A

with n equations in each
This gives the following

form as

refraction may be considered negligible
dA at elongation are small quantities.
dh

Provided an index correction is applied so that 6C
its effect can likewise be considered negligible.
be treated as being an unknown.

The correction equations then become

The effect of the
because both 6r



A Y X L = 0

4n 0 0 L:A' L:A' LA' EA' = 0
WL WR EL ER

4n 0 L:A' + EA' LA' + r.~R 0
WL WR EL

4n L:~ LA' + LA' + E~R 0
WR EL

A h{A + A + A + A
ER

}
4 WL WR EL

Y h~ A
WR + ~L

A
ER

}
4 L

X h~ + A
WR

A A }
4 L EL ER

in which the A etc values are the means of the corresponding A' values.
The correctionsWLv may now be determined by a process of back substitution in
the correction equations.

7.631 The values computed in the example of 7.621 will be used to determine
the precision of the result~

Star No. Aspect Arc CL CR

~
A'

WR

684
I 42°00'27.2" 42°00'52.4"

W
II 24.3 52.7

~L
42 00 25.7 ~R42 00 52.5

A' AI
EL ER

672
I 42 00 17.5 42 00 41. 3

E
II 24.3 46.5

A
EL

42 00 20.9 A
ER

42 00 43.9

solution

]\WL 42°00'25.7" (1) ~ ( (1) + (2 ) + (3) + (4) ) A 42°00'35.8"
- :.r ( (1)~R

52.5 (2) - (2) + (3 ) - (4) ) y = -12.4

A
EL

20.9 (3) ~ ( (1) + (2) - ( 3) (4) ) = X + 3.3
-
A

ER
43.9 (4)

.;;'rc I v
WL

(A + Y + X) ~L 42°00 26.7" 42°00'27.2" ::: -0.5"

II v (A + Y + X) A' 26.7" 24.3 +2.4WL WL
I v

WR
(A Y + X) A' 51.5" 52.4" = -0.9WR

II vvlR (A y + X)
\vR 51.5" 52.7" -1.2

I VEL (A + Y X) At 20.1" 17.5" +2.6EL
II VEL == (A + y X) A' 20.1" 24.3" ::: -4.2EI
I v

ER
(A Y X) ~R 44.9" 41.3" +3.6

II v
ER

(A Y X) A' 44.9" 46.5" -1.6ER
L:vv 48.18

.:: ::a.'1dard Deviation of a single observation J§ =)48.18 ±3.1"0 so = N-3 8-3

'::::3.:1dard Deviations 0 (J 0 ;W;; = j48.18
A Y X N (N-3) 40 ±1.1

?-....:. ::""-:rJth of the RO 42°00'35.8" ±1.1"
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COMPARISON OF THE TIME AZIMUTH AND THE ALTAZIMUTH METHODS

7.71 THE superiority of the Time Azimuth method over the Altazimuth method
has been referred to in Chapter 8 in which it is seen that the Altazimuth
method requires simultaneous pointings to be made on widely separated limbs
of the sun, unless a special theodolite attachment is used, whereas in the
Time Azimuth Method only a single pointing is needed. The difficulty in
making such a double pointing can be easily verified from a casual observation.
With star observations this difficulty does not arise, although it will be
found that with the timing method the observer can concentrate his attention
on making an accurate pointing with the vertical hair without the distraction
of perfecting the altitude pointing as well. For work of geodetic quality,
it is generally conceded that the Time Azimuth Method is superior.

It may be considered that errors of refraction in altazimuth observations
produce a greater discrepancy in the derived azimuth than do errors of time in
time azimuth observations. However, if stars are observed in positions where
their rates of change of azimuth with respect to either time or altitude are
small i.e. at elongation, either method should yield a result of comparable
accuracy, because a timing error or an altitude error has only a very small
effect on the azimuth derived from a circum-elongation sight. Even if quite
large refraction changes occurred over a relatively long observing period,
hardly any azimuth error would result. Therefore, it is unnecessary to
observe the individual stars of a circum-elongation pair quickly one after the
other. The reader may well find it instructive to investigate the consequences
of dispensing with both thermometer and barometer in the Altazimuth Method.

If prediction is used to ensure that careful balancing is achieved for the
star pairs and if observations are well balanced about the point of
elongation, it appears that altazimuth observations have several advantages,
because the observer can concentrate on the procedures of pointing and circle
reading; procedures which are very familiar to a surveyor. He has all the
observing under his own control and his recorder is responsible only for
noting the observations, as they are read out to him. No timing equipment or
radio is required but a thermometer and barometer is necessary for accurate
determinations.
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8
Sun Observations

INTRODUCTION

THERE is a surprisingly large number of celestial bodies available for
observation with a theodolite during the hours of daylight. Such bodies are
the sun, moon, the nearer planets Venus, Mars, Jupiter and Saturn and some
bright stars, 20 of which are given a signifying letter 'd' in the Star
Almanac for Land Surveyors. The planets and stars referred to will not
normally be visible to the unaided eye and, to locate them with a theodolite,
one must calculate their altitudes and azimuths and have some prior knowledge
of azimuth of a line for the orientation of the horizontal circle. The moon,
although bright and easy to identify, has a large horizontal parallax (about
1° compared with 9" for the sun), is often below the horizon during the day
and will seldom present a completely illuminated disc to the observer in the
daytime. It is because of these drawbacks that the moon is seldom, if ever,
used by the surveyor. Thus surveyors have concentrated their attention on the
sun, a body which is conveniently available for observation in normal working
hours and whose singularity and brightness cause no confusion with other
celestial bodies.

8.11 Star observations at night for latitude, longitude and azimuth are
relatively easy to predict, make and compute and the effects of systematic and
random errors may be minimised by a suitable selection of stars from the
catalogue. This flexibility of choice does not exist for the sun, whose
restricted celestial path often prevents observations from being made in an
optimum position (e.g. elongation, etc.). The attainment of a balanced pair
of observations on the sun for azimuth and longitude may require a long time
interval between observations and, for a determination of latitude, one must
be content with an unbalanced observation. It is mainly because of the
aforegoing reasons and other practical considerations to be examined later,
that the results of sun observations are less accurate than those obtained
from stellar observations. Nevertheless, with care, good results, which will
suffice for many surveying purposes, can be obtained.

The only additional special piece of equipment required for sun observations
is a dark glass, which is fitted over the eyepiece of the telescope. Without
such an attachment, direct observation to the sun is impossible, except when a
veil of cloud substantially reduces the intensity of the image. On no account
should even a short glimpse of the sun be attempted in clear weather, otherwise
permanent serious damage to the eye may result. If a dark glass is not
available, the sun can be located and the telescope roughly aligned by
silhouetting the telescope sight on a page of the field book. Without varying
the main telescope focus, which must have been previously set to infinity,
sharp images of the sun and the crosshairs can be obtained on this page by
suitable adjustment of the eyepiece focussing.
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SPECIAL CONSIDERATIONS

8.21 IT is impossible to point accurately to the centre of the sun, whose
disc subtends an angle somewhat over half a degree to an observer. To over­
come this difficulty, pointings are made in an eccentric manner by noting the
instant or perfecting a pointing when the cross hairs are tangential to edges
(limbs) of the disc. It is also customary to take a mean of observations made,
in quick succession, to opposite limbs of the sun, and if, in addition, these
eccentric observations are made on opposite theodolite faces the mean will be
almost free of the effects of eccentric paintings and theodolite misadjustments.
If observations are not made on opposite limbs or if pointings are calculated
individually, then it will be necessary to apply corrections for eccentricity.

Eccentric Pointings

8.22 To effect the correction for a pointing made to the upper or the lower
limb of the sun, the value of the semi-diameter (SD) obtained from the bi­
monthly tabulation in the Star Almanac for Land Surveyors is added to or
subtracted from the observed zenith distance (or altitude), which has been
previously corrected for vertical circle index error and refraction. If the
SD correction is applied first and the resulting zenith distance used as the
argument for calculating the refraction correction, then an incorrect value
of the corrected zenith distance results.

To assist in applying the SD correction with the correct sign, it is usual
to note in the field book the relative position of the cross hairs and the
sun as seen in the telescope at the time of observation. In this way, one
can allow for the effect of the inversion of the image (if applicable) at the
later stage of calculation.

Unlike the previous correction (6h) to the altitude, the correction (6A) to
the horizontal circle reading resulting from a pointing to a lateral limb will
vary depending on the altitude of observation. This, strictly speaking, should
be the observed altitude corrected for index only. The situation is shown in
Fig. 8.1

z

Fig. 8. I

ishis also small provided
6A is given by

t\orizon

sin 6A
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However the SD is small and the resulting 6A
not large and therefore a good approximation to

An expression for 6A may be derived by applying the Sine Formula to the
right angled triangle ZST, from which one obtains

sin SD
cos h



SD
cos h

This expression is convenient to use when altitudes have been measured such as
in the determination of azimuth by the altitude method. However for the hour
angle method of azimuth determination, the altitude is neither observed nor
required to be calculated and a more convenient expression can be obtained by
a simple substitution from the sine rule

giving

cos h
cos 6 sin t

sin A

- SD sin A
cos 6 sin t

Both this and the previous expression for
compared with the rigorous expressions for

are correct to O~5 when
up to an altitude of SOo.

8.23 If sun observations are a regular feature of a surveyor's work, then
consideration should be given to equipping the theodolite with a special
attachment, which will improve the pointing accuracy to the sun and obviate
the need for applying semi-diameter corrections. Such a device has been
designed by Professor R. Roelofs and consists of overlapping thin prisms
mounted in an attachment, which fits over the objective of the theodolite.
Four images of the sun are seen in the field of view, which overlap and
provide a bright central "cross" on which one may point with great accuracy.
A sun filter is incorporated within the attachment, which has the advantage of
reducing the heat falling on the reticule. The attachment is hinged on one
side to allow the theodolite to be sighted to the R.O.

Parallax

S.24 In section 4.54 the vertical displacement of a celestial body on the
celestial sphere due to the body not being infinitely distant from the earth
has been shown to be

TI = TIh sin Zo

Because of the elliptical nature of the earth's orbit
varies between about 8.6 11 and 9.0" in the course of a
can, for all practical purposes, be neglected and TIh
therefore

around
year;
taken

the sun, Tfh
a variation which
as 8.8" and
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TIn 8.8 sin 2 0

It should be noted that this parallax correction is only to be applied to
vertical measurement and that no horizontal displacement of the celestial body
occurs. The sign of this correction is opposite to that of refraction and it
is immaterial whether one uses the observed zenith distance or the value found
after applying refraction and semi-diameter corrections in the formula for Tl ..

Declination and E

S.25 The right ascensions and declinations of stars vary so slowly throughout
the course of a year that tabulation at monthly intervals is quite sufficient
for obtaining intermediate values to an accuracy of about O.ls and 1"
respectively, by means of relatively coarse interpolation. Unlike their
stellar counterparts, E and the declination of the sun show considerable
variation, which requires them to be tabulated at much closer intervals to
permit accurate interpolation. The maximum possible change in E and
declination per hour is about l~S and I' respectively and therefore a rough
knowledge of the zone time of observation (the nearest minute will be quite
sufficient) is necessary, even though a 'timing observation method is not being
employed. Values of E and declination to the nearest O.ls and 0.1' are to be
found in the Star Almanac for Land Surveyors at Oh, 6h , 12h and lSh UT each
day.



Changes in the sun's co-ordinates introduce a slight complication in the
calculation process, because, if observations extend over a long period of
time, one should allow for this by introducing a series of values for E and
declination. If this is not done and one value of E and declination is taken
for the mean epoch of the observational period then, although the effects of
these co-ordinate changes are substantially reduced by taking the mean of all
the individual results of the calculations, the individual results may show
variations, which are not entirely due to observational errors.

8.26 From 1977 onwards, the Star Almanac for Land Surveyors will include
monthly sets of polynomial coefficients as an alternative to the main
tabulation of R, E and the sun's declination. This is one of the first steps
towards the eventual publication of ephemeral data in a form, which can be
stored in an electronic calculator, and the required data at any instant of
time can be evaluated without interpolation tables.

Practical Considerations

8.27 One of the chief difficulties to overcome with sun observations is the
effect of the exposure of the theodolite to the sun's rays. Thermal gradients
are set up in the instrument and these can be noticed at once from the
erratic behaviour of exposed bubbles. In modern theodolites, the alidade
bubble is usually enclosed within one of the theodolite standards, or, in the
latest models, a gravity dependent compensating device automatically corrects
the vertical circle reading for dislevelment. For these instruments, the
effect of thermal gradients is diminished.

8.28 For azimuth determinations, it is essential that the vertical rotational
axis be vertical at the time of observation or, if this is not so, then the
component of the dislevelment of this axis at right angles to the direction
of pointing should be determined from readings of the plate bubble and the
horizontal circle reading corrected. It will be found that plate bubble
readings are completely unreliable unless the instrument is shaded and the
bubble allowed to assume a stationary position before it is read. These latter
remarks also apply to instruments fitted with alidade bubbles, which are
exposed. It is recommended that, for azimuth work, the instrument be levelled
between arcs throughout the observation series. This may be done by means of
the alidade bubble or with reference to vertical circle readings if the
instrument is fitted with a compensator (see section 4.12). During this
levelling process the instrument should be fully shaded.

8.29 A suggestion for the observer, who wants to improve the accuracy of
pointing to the sun's limb, is that he should observe only that limb, which is
about to leave the cross hair. Otherwise it will be found that when the other
limb is observed the cross hair is usually invisible and the observer must of
necessity either anticipate the tangency of the disc and the hair or observe
slightly late. For azimuth determinations, if the observer always selects
the limb, which is about to leave the vertical hair, then provided he is
observing outside the tropics, he will be automatically observing the left
hand limb in the northern hemisphere and the right hand limb in the southern
hemisphere and thus there will be no doubt about the sign of the semi­
diameter correction. If he intends to observe only on one limb, he should
include one "dummy" pointing to the other limb. This will enable him to
verify that his semi-diameter correction has been applied with the correct
sign.

SUN OBSERVATIONS

Latitude

8.31 AS has been noted before, it will not be possible to make a balanced
observation for the determination of latitude by observing to the north and
to the south near the local meridian at approximately the same altitude. In
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LAT l2
h

E l2
h

+ LAT - LMT

LMT 24
h

- E

of LAN will therefore be
h A +24 - E - Time Zone

and as

addition, in some latitudes and at certain times of the year, the sun will be
too low or inconveniently high for this observation. In the latter case, the
difficulty may be overcome by the use of an eyepiece attachment, which will
allow observations to be made up to the zenith, although, when using such an
attachment there is a considerable decrease in magnification, which will render
the pointings less precise.

8.32 Before attempting this observation, it will be convenient to pre­
calculate the standard time when the sun transits the local meridian so that
observations may be made over this optimum time, which is termed Local
Apparent Noon (LAN).

At LAN

the standard time

When reducing observations by the circum-meridian reduction formula (see
section 8.714) it will be found convenient to evaluate the standard time of
LAN for the calculation of the individual hour angles. An example of this
calculation is given in sections3.432 and 8.713.

Longitude

8.41 Ideally this observation should be made when the celestial body is on
the prime vertical, but, for the sun, this will only occur during half of the
year and even then, for part of this time, the sun will be too low to allow
accurate observation. Once again the o~server may have to be content with
observations taken in less than ideal circumstances and have to choose between
either taking an observation at a low altitude near the prime vertical or one
that is sufficiently high yet somewhat removed from the prime vertical. In
either case, it is advisable to take balanced morning and afternoon
observations in order to minimise the effects of some systematic errors,
notably in the assumed value of latitude used in the calculation and in the
observed altitudes. The appropriate differential coefficients to consider are

dt
d<j>

1
cos <j> tan A

and dt
dh

1
cos <j> sin A

from which one notes that for a balanced pair of observations,
AE + Aw = 360 0 and the magnitudes of each coefficient remain unchanged but
the sign reverses. Thus the mean of morning and afternoon observations will
be substantially free of the effects of systematic errors, excepting those
errors, which arise from anomalous refraction.

8.42 After the Astronomical
from the elements <j>, 0 and

and since

LAT

LAT - LMT

Triangle has been solved
h, one may evaluate

l2h + t

E - l2
h

for the hour angle t

LMT=t-E

Since longitude is defined as

= Watch Correction on Zone Time

in which

A

A

CT

CC
ZT

Z

=

=

LMT - GMT

t - E - (CT + CCZT - Z)

Watch Time of Observation

Time Zone
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Azimuth

8.51 By far the most important of all sun observations, applied to surveying
and mapping, is that of the determination of azimuth. Such an observation is
not only convenient for approximate orientation and as a preliminary for more
exact methods of azimuth determination but, with care, one can obtain the
azimuth of a terrestrial line to within 20", which will be found to be
extremely useful for the orientation of isolated surveys or checking of long
traverses, which are remote from previously established control stations.

The surveyor will have a choice of two methods of observation
(a) azimuth from altitudes and
(b) azimuth by hour angles

For neither method will it be possible to observe the sun at or near its
ideal position, elongation, except if the station is situated within the
tropics and even in these situations the sun may be too low or too high to
obtain good results. As a general rule, the best results are obtained from
early morning and late afternoon observations. For the Altazimuth Method,
observations should be made when the sun has attained an altitude of at least
15°. For the Time Azimuth Method this restriction does not apply.

The Altazimuth Method

8.52 The equipment required, in addition to a theodolite and dark glass, is a
barometer, thermometer and a watch whose correction (to the nearest minute) to
standard time is known. A barometer may be dispensed with if the height of
the station above mean sea level is known. The Star Almanac for Land Surveyors
gives correcting factors for values of mean refraction for variations from a
standard temperature and pressure with arguments for pressure expressed in
either millibars or height (metres). Two errors may be present in the estimated
refraction when the station height is used as argument:

(i) an error in the estimate of the station height, and
(ii) a local variation in pressure, from that which corresponds to the

station height, i.e. a deviation from the pressure height
relationships given by the standard atmosphere on which the
refraction tables are based.

An error of 100 m in station height and a variation of 10 rob in local
pressure, a value which should seldom be exceeded, except under abnormal
meteorological conditions, will each contribute to about a 1% variation in
the value of the estimated refraction. Errors of this magnitude may be
safely neglected with sun observations.

The Time Azimuth Method

8.53 The equipment required, in addition to a theodolite and dark glass, is
a watch capable of being read to preferably better than IS and a radio
receiver for obtaining the watch correction to standard time. Continuous
time signal transmissions on short wave may be picked up on a small
transistorised radio in most parts of the world. Of lesser convenience, are
the hourly 6 'pip' broadcasts from medium wave stations. Apart from the
inconvenience of having long gaps between the signals, medium wave trans­
missions can only be received over a limited distance from the transmitter.

Choice of Method

8.54 The main criterion to be used for a comparison between these observation
methods is a study of the propagation of the systematic and random errors
affecting the observations and their reduction. It is a well established
fact that, unless a special attachment is used, such as the Roelofs' solar
prism, the simultaneous pointing to the horizontal and vertical limbs,
required by the Altazimuth Method, is very inaccurate. On the other hand for
the Time Azimuth Method, the observer can give his undivided attention to
pointing on the one limb. In addition, it is not generally known that
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vertical angles, measured with some types of theodolite in common use, may
suffer from serious errors due to the eccentricity of the vertical circle.
The instruments referred to are those, whose readings are not obtained from
diametrically opposite parts of the vertical circle. Horizontal angles,
however, measured with these instruments remain free of this type of error,
provided that the mean of face left and face right observations is taken,
because in effect the change of face allows diametrically opposite readings to
be taken. Other than calibrating the instrument and correcting the observed
altitudes, the only way to eliminate this error will be to take the mean of
balanced morning and afternoon observations, made with the same instrument.

8.55 The effects of small systematic errors in the assumed and observed
quantities to be used in the calculations, for both methods of azimuth
observation, can be conveniently determined from an examination of the
behaviour of the appropriate first order differential coefficients. The
variation in the values of these differential coefficients over a range of
latitudes, altitudes and declinations is quite complicated. Such an invest­
igation can be found in The Australian Surveyor, March 1974 Vol. 26 No.1. In
this the latitudes and the altitudes were not greater than 45°. If one
examines these variations for both methods it will be found that
(i) In equatorial latitudes, at all altitudes and at all times of the year,

both methods show that the systematic errors are well controlled i.e.
the coefficients are not big.

(ii) As the latitude increases the propagation of the systematic errors for
the Altazimuth Method increase considerably unless either the altitude
is kept low or the observations are confined to the summer months
(middle of the year, northern hemisphere; end and beginning of the
year, southern hemisphere) .

(iii) For the Time Azimuth Method the coefficients are never large regardless
of latitude, season or altitude.

(iv) In nearly all cases the coefficients of the systematic errors for the
Altazimuth Method are larger than the corresponding values for the Time
Azimuth Method. This indicates the superiority of the latter method.

(v) The Time Azimuth Method allows the surveyor to take observations over a
greater time range than the Altazimuth Method; observations using the
Time Azimuth Method, even at noon, should be quite satisfactory thus
permitting observations to be made throughout the daylight hours in
other than equatorial altitudes throughout the winter months. However,
when observations for azimuth are made at high latitudes and altitudes,
extra care should be exercised in the control of systematic and random
errors.

Examples of Sun Observations
In the sun observation examples, which follow, no other statistics, beside

the Arithmetic Means, have been evaluated, because the sample sizes are small
and the estimates of the variances are therefore not reliable.

8.61 Example of sun observations for the determination of longitude and of
azimuth by the Time Azimuth or Hour Angle Method

Radio Mast.

sweep second
Time)

Watch: Omega with
hand (Mean

Time Zone: 3h W
Reference Object:

Place:
Date:

N Pillar, ONB Eng.
Thursday afternoon

Building
11th September 1969 (¢ 45°57'10" N)

Theodolite: M.O.M. (10") Zero of the
vertical circle at the nadir.

Index Correction -4'29"
Pressure: 30.1 inches = 1020 rob
Temperature: 68°F = 20°C

Note: All observations were made using an eyepiece prism which gave an erect
vertical image and an inverted horizontal image. The crosshair was shown as
it appeared in the field of view with respect to the sun's disc.
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Clock Comparisons

Time Signal
Corresponding Watch Correction

Watch Time on Zone Time
h m s

4
h

23
m

41.9
s

+12
h

Ol
m

18.1
s

16 25 00
16 51 00 4 49 41.0 +12 01 19.0
17 20 00 5 18 40.2 +12 01 19.8

Observations
Face Object Watch Vertical Circle Horizontal Circle

CR RO
h m s

301°55'50"

P 4 33 21.8 94 39 50
Q 54 49.3 * 98 53 40
'0 55 58.7 241°56'40"
0 4 57 47.0 242 45 30

RO 301 55 50

CL RO 121 55 50
0- S 01 29.6 117 19 50
.Q.. 05 04.0 116 13 55

P 06 50.0 282 04 50
01 5 07 58.9 281 44 05

RO 121 55 50

* Observations delayed by passing cloud

Extract from Star Almanac for Land Surveyors, 1969
11th September

UT 6 E so
18

h
4°25:7 N 12h03m27.0s

15:9
24 4 20.0 12 03 32.3

Watch Rating

a

Watch Correction

19.0

on Zone Time
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short period of time (approximately
6, E and Watch Correction will be

Fig.S.2

8.611 Longitude Calculation
These observations were made within a

. lOrn) and therefore the small changes in
ignored.



Watch Time
of Observation

5
h

OO
m

UT of
Observation

20
h

Ol
m

8 Watch Correction

h m s
+12 01 19.3

Reduction of Vertical Circle readings

Reading Index
Corrected Observed

Refn.
x Reduced

readings Altitude Par SD Altitude

241°56'40" -4'29 11 241°52'11" 28°07'49 11 -1'45" +8" -15'54" 27°50'18"
242 45 30 242 41 01 27 18 59 1 49 +15 54 27 33 12
117 19 50 117 15 21 27 15 21 1 49 -15 54 26 57 46
116 13 55 116 09 26 26 09 26 1 54 +15 54 26 23 34

Requlred relatlonshlps

cos t

LMT - GMT

sin h - sin ~ sin 8
cos ~ cos 8

(t - E) - (Watch Time + Watch Correction - Time Zone)

A (t - Watch Time) + (-E - Watch Correction + Time Zone)

A (t - Watch Time) + X

where X -E - Watch Correction + Time Zone

h 27°50'18" 27°33'12 11 26°57'46" 26°23'34"

t 3
h

34
m

11.2
s

3
h

35
m

59.5
E

3
h

39
m

42.9
s

3
h

43
m

17.1
s

Watch Time 4 55 58.7 4 57 47.0 5 01 29.6 5 05 04. O.

t - Watch Time -1 21 47.5 -1 21 47.5 -1 21 46.7 -1 21 46.9

X -3 04 48.1 . -3 04 48.1 -3 04 48.1 -3 04 48.1

A -4 26 35.6 -4 26 35.6 -4 26 34.8 -4 26 35.0

Mean Longitude 4
h

26
m

35.2
s

W

8.612 Azimuth Calculations
The observations, given in section

of time and therefore the changes in
into account

8.61, were made over an extended period
6, E and Watch Correction will be taken

tan A

Semidiameter correction

Watch Time UT of 8 E Watch Correction
of Observation Observation

4
h

33
m 19

h
34

m 12
h

03
m

28.4
s h m s

+4°24'13" +12 01 18.4

4 55 19 56 +4 23 52 12 03 28.7 12 01 19.1

5 07 20 08 +4 23 40 12 03 28.9 12 01 19.5

5 08 20 09 +4 23 39 12 03 28.9 12 01 19.5

Required relationships

- sin t

cos ~ tan 8 - sin ~ cos t

-SD sin A
/':,A = cos 6 sin t

A = 4
h

26
m

35.2
s

W (see previous calculation)

t E + Watch Time + Watch Correction - Time Zone + Longitude
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12
h

03
m

28.4
s

12
h

03
m

28.7
s h m s

12
h

03
m

2S.9s12 03 28.9

atch Time 4 33 21. 8 4 54 49.3 5 06 50.0 5 07 58.9

atch Correction 12 01 18.4 12 01 19.1 12 01 19.5 12 01 19.5

um 4 38 08.6 4 59 37.1 5 11 38.4 5 12 47.3

ngitude-Time Zone -1 26 35.2 -1 26 35.2 -1 26 35.2 -1 26 35.2

3 11 33.4 3 33 01.9 3 45 03.2 3 46 12.1

imuth of Sun 239
0

59'32" 2440 50'01" 2470 25'25" 247
0

40' 01"

A +18 37 -18 01 +17 42 -17 41

zimuth of Limb 240 18 09 244 32 00 247 43 07 247 22 20

or. reading to Limb 94 39 50 98 53 40 282 04 50 281 44 05

rienting Corm. 145 38 19 145 38 20 325 38 17 325 38 15 I

or. reading to RO 301 55 50 301 55 50 121 55 50 121 55 50

zimuth of RO 87 34 09 87 34 10 87 34 07 87 34 05
-

La

Mean Azimuth to RO

W

S

t

W

A

E

Az

A

o

H

H

8.71 Example of sun observations for the determination of latitude and of
azimuth by the Altazimuth Method

E
for Latitude)
(erect image)

Heuer split hand stop
watch (Mean Time)

Two different instrumentsNOTE:

Watch:

Place: pillar 2, Civil Eng. Building UNSW A 10
h

04
m

56
s

Date: Monday, 20th September 1976 (Morning for Azimuth: Noon
Observer: G.G. Bennett Theodolites: Wild T2
Recorder: J. G. Freislich
Reference Object RO: Finial on

spire of Monastery Church
Time Zone: 10h East

Note: The crosshair was shown as it appeared in the field of view with
respect to the sun's disc.

8.711 Latitude observations and calculations

These will be calculated first as the latitude is needed for determining
the azimuth.

Note: The sun was observed to the north of the zenith near upper transit.

Watch Correction on Zone Time 11h30mOO.O
s

Temperature: 21.80 C Pressure: 1014 mb
Vertical Circle Index Correction: +11"

Face Object Watch Vertical Circle

CL ...Q 10
m

56
s

34
0

47'34"
-0.. 11 55 46 54
-Q. 12 38 46 22
..Q... 13 16 46 06
..0.. 13 53 45 45
_0_ 14 26 34 45 34

CR v 17 10 324 42 54
v 18 OS 43 09
U 18 43 43 09
v 19 13 43 04
'0' 19 46 43 05
'U 20 18 324 43 05

The diagonal eyepiece used for these observations produced an inverted image.
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8.712 Calculation of declination using polynomial coefficients (see section
8.716 for constants etc.)

Watch Time UT of /)
bf Observation Observation

x

ohllm Ih41m 0.595 9418 1°06'16" N
12 42 9635 15
13 43 9852 14
13 43 0.595 9852 14
14 44 0.596 0069 13
14 44 0069 13
17 47 0720 10
18 48 0938 09
19 49 1155 08
19 49 1155 08
20 50 1372 07

0 20 1 50 0.596 1372 1 06 07

I:

~,
~
II
I'
i
"
i
;,

\'

I
I
I
,I E = Semidiarneter 16'00"

Zone Time 11 48 33

Watch Correction 11 30 00

Watch Time of transit 18 33

The observation period is short and close to Local Apparent Noon and therefore
only the first term of the circum-meridian reduction formula (see section A.71)
will be used.

i
"
I

8.713 Calculation of the Watch Time

, 24h ( .LMT of trans1t = - E see sect10n

UT

Zone

of transit

8.32) Ilh53m29s

10 04 56

1 48 33

10
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8.714 Calculation of the Latitude

A +1.4458

Calculation of an accurate latitude

A
cos <P cos OM

sin zM

Calculation of an approximate latitude

Observed zenith distance
closest to transit 35°16'40" N

Refn. , Par
x

-15 26, SO

zM +35 01 14

OM + 1 06 08

Approx. <P -33 55 06

I

Watch Time
m"

VerticaJ,.
Index

Observed
Refn Parx Meridian

° ¢
of Observation

t G reading zo SO -Am zo zM

10m56s _7m37s
1'54" 34°47'34" +11" 34°47'45" +39" -5" +16'00" -2'45" +35°01'34" +1°06'16" -33°55'18"

11 55 6 38 1 26 46 54 47 05 -2 04 35 15 20
I

t-' 12 38 5 55 1 09 46 22 46 33 -1 40 27 14 13
.t:-
o
I 13 16 5 17 0 55 46 06 46 17 -1 20 31 14 17

13 53 4 40 43 45 45 45 56 -1 02 28 13 15

14 26 4 07 33 34 45 34 34 45 45 +16 00 -0 48 +35 01 31 +1 06 13 -33 55 18

17 10 1 23 04 324 42 54 +11 35 16 55 +39 -5 -16 00 -0 06 +35 01 23 +1 06 10 -33 55 13

18 08 -0 25 00 43 09 16 40 -0 00 14 09 05

18 43 +0 10 00 43 09 16 40 -0 00 14 08 06

19 13 0 40 01 43 04 16 45 -0 01 18 08 10

19 46 1 13 03 43 05 16 44 -0 04 14 07 07

20 18 1 45 0 06 324 43 05 35 16 44 -16 00 -0 09 +35 01 09 +1 06 07 02

Mean Latitude 33°55'12" S



8.715 The A1tazimuth Observations

Watch Correction on Zone Time
h In

+6 40

Temperature: Pressure: 1015 rob

Vertical Circle Index Correction: -40" NOTE: Diagonal eyepiece not used

Face Object Watch Vertical Circle Horizontal Circle

CL RO
oh51m

0°10'37"
.QJ 70°01'52" 142 52 33

CR ro o 52 290 48 16 322 04 34
RO 180 10 21

CL RO 45 12 48
.QJ 0 57 68 46 17 186 53 36

CR 10 0 58 291 59 28 6 08 22
RO 225 12 32

CR RO 270 15 03
.QJ 1 02 292 17 40 51 03 36

CL lIT 1 04 66 54 57 230 15 14
RO 90 15 18

CL RO 135 17 36
.Qj 1 07 66 45 07 275 16 31

CR ro 1 09 294 06 20 94 25 58
RO 315 17 19

3.716 Calculation of declination by means of the polynomial coefficients
~rovided in the Star Almanac for Land Surveyors

,$eI:mi=-':"a...;11eter 16 '00"

• mo~ change of date

for September 1976
- 1.11388

= 8.31516

al =-11.59793

a3 0.43207

a4 0.03983

o is the declination of the sun expressed in degrees and decimals

x is the Greenwich time of observation, expressed in days and
decimals less one day and divided by 32. (see footnote)

?~ 1977 onwards x is defined as the sum of the Greenwich day of the
~:: and the decimal of the day all divided by 32.
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~oJatch Time UT of 00: Observation Observation
x

Oh 51m 21
h

31
m * 0.590 5165 1°10'18" N

0 52 32 5382 18
0 57 37 6467 13
0 58 38 6684 12
1 02 42 7552 08
1 04 44 7986 06
1 07 47 8637 03
1 09 21 49 0.590 9071 1 10 01
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8.717 Reduction of Vertical Circle Readings

Reading Index
Corrected Observed

Refn Parx SD
Reduced

readinq Altitude Altitude
70°01'52" -40" 70°01'12" 19°58'48" -2'35" +8" +16'00" 20°12'21"

290 48 16 290 47 36 20 47 36 28 -16 00 20 29 16

68 46 17 68 45 37 21 14 23 25 +16 00 21 28 06
291 59 28 291 58 48 21 58 48 19 -16 00 21 40 37

292 17 40 292 17 00 22 17 00 17 +16 00 22 30 51

66 54 57 66 54 17 23 05 43 12 -16 00 22 47 39

66 45 07 66 44 27 23 15 33 11 +16 00 23 29 30

294 06 20 294 05 40 24 05 40 -2 06 -16 00 23 47 42

Required relationships:

cos A

Semidiameter correction

From section 8.714

8.718 Calculation of the Azimuth

sin 0 - sin h sin ep
cos h cos ¢

SD */':,A
hcos

0

¢ 33°55'12" S

Face CL CR CL CR

Computed Azimuth 74°06'43" 73°53'05" 73°05'14" 72°54'57"
of Sun

/':,A +17 01 -17 07 +17 10 -17 15

Azimuth of Limb 74 23 44 73 35 58 73 22 24 72 37 42

HQ Rdg to Limb 142 52 33 322 04 34 186 53 36 6 08 22

Orienting Corrn +291 31 11 +111 31 24 +246 28 48 +66 29 20

H0R to RO 0 10 37 180 10 21 45 12 48 225 12 32

Azimuth to RO 291 41 48 291 41 45 291 41 36 291 41 52

291°41'46" 291°41'44"

Face CR CL CL CR

Computed Azimuth 72 13 13 71 59 08 71 23 38 71 08 04

of Sun

/':,A +17 17 -17 24 +17 25 -17 32

Azimuth of Limb 72 30 30 71 41 44 71 41 03 70 50 32

HG Rdg to Limb 51 03 36 230 15 14 275 16 31 94 25 58

Orienting Corrn +21 26 54 +201 26 30 +156 24 32 +336 24 34

HQR to RO no 15 03 90 15 18 135 17 36 315 17 19

Azimuth to RO 291 41 57 291 41 48 291 42 08 291 41 53

291°41'52" 291°42'00"
-_._- -----

Mean Azimuth to Mark 291°41 1 50"
"-------- --_..._..- -_.. _._-- --_._.. -_ .._--_. ---

* Where h is the observed altitude corrected for index only.
o
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9
The Simultaneous Determination of
Latitude and Longitude

INTRODUCTION

IN Chapters 5 a.nd 6, methods of determining Latitude and Longitude independently
of each other ha.ve been dealt with. The observation method used in both types
of observation employs timed altitudes and it was found that the best circum­
stances, in wh~c~to make such observations, were on or near the local meridian
and the prime vertical respectively. Under these circumstances, the effects
of systematic ahd:random errors on the quantities sought were kept to a
minimum.

In the methods' to be described, the same observational technique will be
used but instead of making separate observations for latitude and longitude,
values of both of the unknowns will be deduced from a consideration of all
observations tc:all stars.

As withlndependent observations for latitude and longitude, it is possible
to use horizontal circle observations, but this latter method requires that
observation bema-de near to the zenith and therefore these observations
introduce some practical difficulties when a theodolite is used.

Much of thethe9ry and the semi-graphical treatment, which follows runs
parallel witht~atused by the air and marine navigator. He however, is
normally satisfi~awith an accuracy much less than that required by the land
surveyor. The,semi~graphicsolutionand its interpretation, and the concept
of position circle ~nd position line arise from the original discovery, which
was made in 1837 by T.H. Sumner, the captain of an American merchant vessel.

A full ,and inte:resting account of the circumstances leading up to this
discovery will be found in liThe American Practical Navigator" by
Nathaniel Bowditch. Sumner's original technique is now seldom used and today
a variation of his method is generally used. This was suggested by the French
Admiral Adolphe...L"urent-Anatole Marcq de Blonde de Saint-Hilaire (1832-1889)
and is known as the II Method of Zenith Distance Intercepts" or the "Marcq St.
Hilaire Method".

SpecialisedinstrlUnentation has also been developed for these observatj ons,
both for use by surveyors and in fixed observatories.

THE DETERMINATION OF POSITION FROM OBSERVATIONS TO TWO STARS

9.11 IFtime'altitl.1de observations have been made on two stars, which are
separated in azimuth by an angle, that is -r;c1"t;hpY' greot7.y aCut-e nor greatly
obtuse" the lat,itude and longitude of the observer I s position can be deduced,
provided'thatth\8' observations are not. affected by appreclable systematic
errors. Thesig»~ficanceof these conditions w)IJ be apprecjated later in
this chapterlseesection 9.11 Step 4). The solut,lon I which follows, is oui.te
general and does, not require the person, performing the calculations, to know
the relatiyePc:>.~ttionsof -the _two stars in the sky.

The information,available for the solution for each of the two stars is,
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(a) the observed altitude, suitably corrected for index error and
refraction,

(b) the declination and right ascension of each star, and
(c) the GHA, which is obtained from the clock time of observation after

converting this to the corresponding instant of GST and then using
the following relationship,

GHA G5T - RA

The situation is shown in Fig 9.1, where 51 and 5 z are the positions of
the two stars and Z is the observer's zenith.

The relationships for the computations required may be derived from those
of section 2.62, together with the principles enunciated in this section for
the solution process. If the angles az and Wz of Fig 9.1 are defined in
the same way as the parallactic angle w in section 2.73 is defined, then
the solution below is completely general.

The reader is invited to do this derivation and solution for himself with,'
for instance the positions 51 and 52 reversed.

1. From the Cosine Formula in triangle SlS2PN' S15Z is obtained from

cos SlS2 sin 01 sin 02 + cos 01 cos 02 cos (GHAz - GHA1)

4. From the Cosine Formula in triangle S2Z PN, ¢ is obtained from

sin ¢ sin h2 sin oz+ cos h 2 cos 02 cos W2

From the two values of ¢, which result (see step 3), the appropriate
one of the two values is selected. In practice, this decision presents

-144-

Parts Formula in the same triangle, az is obtained from
sin(GHAz - GHA1)

'" cos Oz tan 01- sin OZ cos (GHAz - GHA1)

In which az is placed in its correct angular quadrant by taking heed
of the signs of the numerator and denominator.

From the Four

From the Cosine Formula in triangle 51SZZ,
sin hI - sin hz cos S1SZ

cos (az - wz) = cos h z sin 5152

The solution for (az - wz) is ambiguous, because Z may lie inside or
outside the triangle 5 15 zPN. Therefore the two values of (al - wz) ,
which result, will give two values for wz.

3.

2.



, 5.

no problem provided the difference between the azimuths to the two
stars"iswell away from 0° or lSO° (see beginning of section 9.11).

From the Four Parts Formula in the same triangle, the hour angle t 2 is
obtained, from

sin (02
tan t2

tan h2 cos 02- sin 02 cos W2

6. The lOngitude A of the observer's position is then found from

GHA2

and the hour angle t 1 from

tl GHAI + A

7. Finally from the Cosine Formula in triangle SIZ PN' a check on the
calculation is obtained from

sin <p sin 01+ cos <I> cos 01, cos tl

9.12 To demOnstrate this computation, the following data will be used in
order to determine the preliminary values <l>a Aa of a station, at which these
observations were made and which was in South Africa.

,

Star No. 369 328 564 548

Name Arcturus cc Crucis cc Pavonis Altair
"

NW SW SE NEAspect
"

14h13m24. SS 12h 23m4S.5
s

20
h

21m47.6s 19
h

48
m

23.3
s

Right As,:ension

Declination 19°26'15" N 62°49'4S" S 56°53'44" S 8°44'04" N

Corrected Observed Altitude 35°52 1 26" 36°07'OS" 39°53'25" 34°01'53"

GSTo£'Observation " 14
h

21
m

18.2
s

14
h

35
m

53.6
s 14

h
44m23.5s 14h55m32.2

s

1 SW GHA1 =:(;STl - RAl = 2
h

12
m

05.1s
°1 -62°49'48" hI 36°07'08"

2 SE GHA2 = GST2 - RA2 = lS
h

22m35.9s
°2 -56 53 44 h2 39 53 25

GHA2 - GHAI = 16
h

lO
m

30.8
s

242°37'42"

cos S15 2 = ,sin 01 sin 02 + cos 01 cos 02 cos (GHA2 - GHAI )

S1-S2, 50.907 q489°

sin(GHA2 - GHA J)tan ',cc 2 =
tan ° 1 cos 02 sin 02 cos (GHA2 - GHAil

CC2 211.498 7238°

cos(a2 1;)2 j sin hI - sin h2 cos SJ S2=
cos h2 sin SlS2

(Cl2 w2) ±71.S94 7833°

'lJ)2 = CC2-(CC2 - W2)

, !l!2 2S3.393 5071° or 139.603 9406°

sin '<p' sin h2 sin 02 + cos h2 cos 02 cos W2

<1>, -26.11-3 3327° or -58.911 0644
- -.' = -26°06'48.00"

This value is accepted because the station is known to be in South Africa.

sin (02
= .,----:-~----'T-'-~-;--,__-­

tan h2 cos (h - sin 02 cos W2
',\'
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tz -56.227 9855° _3
h

44
m

54.12
s

A tz - GHAz _3
h

44
m

54.12
5

18
h

22
m

35.9
s

_22
h

07
m

30.62
s Ih52m29.38s E

t1 GHAl + A 2
h

12
m
05.l

s
+ Ih52m29.38s

4
h

04
m

34.48
s

Final check

+0.589 463

sin ¢ sin 01+ cos ¢ cos 0lCOS tl

+0.589 463

The values for the preliminary position

¢a 26°06'48.0" South

A Ih52m29.4s East
a

It is suggested that various combinations of data from pairs of stars, given at
the beginning of this section, be used as additional examples of this
calculation. The resulting latitudes and longitudes will not agree exactly
because of the presence of small observation errors.

9.13 Either star may be set out as the first star in the above layout, pro­
vided the generalized conventions of the Astronomical Triangle are adhered to
and provided that the angles az and Wz above use the same convention as the
parallactic angle w in this triangle (see section 2.73). The azimuth
quadrant, in which each star is observed, is usually noted in the field book.
This information often makes it possible to select the required value of the
two values obtained for the angle wz. The above solution is a general one,
which is checked by means of the final equation.

Several points emerge from this. The calculation is easily carried out with
modern computing aids. The various methods of calculation for determining
position from astronomical position lines all require approximate values of
latitude and/or longitude for the observer's station. This information can
often be found, with sufficient accuracy, from a map even if its scale is
small, but sometimes this is not possible and then the calculation above may
well be used, in order to determine preliminary values ¢a Aa directly from
the observed values themselves. This calculation uses observations from only
two stars. If more than two stars had been observed, it would be an
exceedingly complicated process to determine final values of latitude and
longitude, by means of this calculation technique, because all the observed
data should be used to obtain the final result.

THE CONCEPT OF POSITION CIRCLE AND POSITON LINE

9.21 A simple illustration of what has been done by calculation above can be
obtained by plotting the positions of the two stars Sl and S2 on a small
sphere, such as a plastic ball, and then by drawing on it a circle with Sl
as centre and a spherical radius of (90 - hI) and another circle with 52
as centre and (90 - hz) as radius. The intersections of these two circles
gives the required position, provided it can be determined which intersection
is the desired one.

If only one star had been observed, then although the position of Z could
not be found uniquely, it would be known that the observer's position must
lie somewhere along this circle, that is, an identical altitude to the star
could have been observed simultaneously by any number of observers, whose
zeniths (geographical position) lay on this circle. For this reason this
circle is called a position circle.

It is often convenient to consider this position circle as being situated
on the earth's surface and, under these circumstances, the centre of the
position circle (Sl on the celestial sphere) has geographical co-ordinates
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Element of map distance along parallel

d
R cos ~ 00

E~ement of map distance along meridian

D

R d,et

Corresponding element of ground distance along
meridian

corresponding element of ground distance along
parallel

in which R is the earth's radius.

Ps

P 90- hi SSP
~;9"- - ,- - - _ I

"I~" I' AzimUth-
/ \ \

,SSPz ( \ I Cire'le
I AzimuthiP'

<P2 = lh Circle -..!' ~\\\o~
i yo Otc\<'

GHA,

Fig;9.2

_.. ""

Point scale ,albcrlg 'parallel

,. - '.uf\,';> .. h
~ = o,and",A-''';;i,24 - GHJ>. This point' is called, the sub-stellar point (SSP) and,
it is obviouscthat an observer stationed at the SSP at the instant of
observatidn::~'U1d see the star in question in his zenith. The concept of the
SSp, and, positipn'circle clrawn on the earth's surface is a very useful one
indeed, althOugh it must be realised that, under these circumstances, the earth
must be consid~ied to be spherical in shape. Fig 9.2 illustrates this latter
interpreta~ion;:wherethe terrestrial position P corresponds to the celestial
position :{,,~rFig 9.1.

It is ~s~~i~y -necessary in-practice to deal with more than two position line
circles c,.an4,;,3ip..de~r the~e circumstances, it is convenient to be able to plot
these circl~s::,ir,.the vicinity of P at a large scale (see Fig 9.2). Unless
the observat4,?nS,,,re perfect, the resulting position lines will not intersect
at a pointbub.¥ill form a network of intersecting lines, from which the best
estimate of ,ihe::po~ition P must be made. It would be convenient to
represent-thi~,smallalCea in the vicinity of P orthomorphically on a map or
a plottirt~s~e~t,~ This requires its scale to be uniform and then the map will
also be angle ,trUe.

In ~~ditio~\~:',:,,::,~twouldbe convenient to use a graticule of latitude and
longitude., .1.i:.ri¢s.. ,which comprise an orthogonal set of lines. OVer this very
small area'Of,zth,,';arth's surface, these may be taken, without appreciable
error, to.be a' set of orthogonal straight lines.

Let.an elementary rectangle on the earth's surface lie between two parallels
~' and ~:I'da:_'al-.d J:wo meridians A and A+00 . The corresponding figure on
the map yiil1,:",,~so ,be a rectangle, which lies between two graticule lines,
represEmting-ithe'se'two parallels and spaced at map distance D, as well as two
other orth09~nat 9raticule lines, representing the two meridians and spaced at
mapdistance ,i.e",

,;." ,-

and pointscai~'along
·.:.'meridian;. :



But the map represents a very small area and also the scale is independent of
bearing. Therefore the two scales above are equal to one another.

+ + + +
-J -J -J -J

~
VI ~ ~0

tv tv tv tv
CZ ..... ":! ~

Fig.9.3

D Meridian~
/

d

r
Parallels

J

N

+28°40'

A. + 3da'

D

cos ep

>... + 2da

d
cos ep

d
D

>... +dO:'

cPa + dO:'

The graticule may now be drawn as a set of orthogonal straight lines with the
lines representing parallels spaced at intervals D and those representing
meridians spaced at intervals d where d=D cos ep and D is the map
distance corresponding to an angular unit da. These lines are labelled Aa ,
Aa + da, Aa + 2da, Aa + nda increasing towards the east and epa,
epa + da, ~a + 2da, .... ¢a + mda increasing towards the north (see Fig 9.3).

Parallels

of Latitude

Meridians--­of Longitude

Fig. 9.4
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THE CALCULATION AND PLOTTING OF A POSITION LINE

9.22 THE determination of the position of P by calculation, as stated in
section 9.13, would be extremely complicated if more than two stars were
observed and, for this reason, a semi-graphic process is often used to provide
a simpler solution. The individual position lines may be located on the plot
in a number of ways, two of which are shown in Fig 9.5.

N

Fig.9.S

SSP

Fig 9.4 represents the position circles through P and the azimuth circles
from P to the substellar points.

The short arcs shown on the plot have been drawn as straight lines, an
approximation, wbich is both convenient and sufficiently accurate for our
purpose. It will be noted that thE: position linE' and the azimuth line for a
star are mutually perpendicular and also that one is able to plot their
directions from a knowledge of thE: azimuth of the star (see also Figs 9.1 and
9.2) .

The concept of position lines is not new for surveyors, who use them in many
different forms, in everyday work. If, for instance, a point lies on a river
or on a path and these features are represented by lines on a map, then these
lines are position lines on which the point, whose position on the map is
required, is situated. If this point lies both on the river and on the path
represented, then the point's position on the map lies at an intersection of
these two position lines. position lines on a map may be irregular, straight
or curved lines, because ttey represent natura] features, such as rivers,
streams, spore lines, etc. or artificial ones, such as roads, railway lines,
fences et.c. On thE: other hand, position lines may result from some condition,
e.g. numbered gdd or graticule lim:s on thE: map, or frem some measurement
mc\de on the ground. In the case under consideration, the po[dtion lines are
small parts of circles of measured altitude which, when drawn on a map, are
known to intersect at a point. representing the station at which they were
observed.

:n the first method, a value of latitude ~l near to the position of
oC5ervation, is chosen and this, together with the star's altituoe and
declination, enables one to solve for the hour angle. This hour angle, com­
c~~ed with the RA, gives LST. The clock time of observation furnishes a
-::rn.::..le of GST and tl!us a val ue of longitude )\1 is obtained.

:Yl the second metl!od, a value of longitude A2, also near to the position
0: observation, is cbosen. From this longitude value, one may deduce the
s~r's hour angle fr0m consideration of the RA and the GST of observation.
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This hour angle together with the stars declination and altitude enables one
to solve for the latitude

For both methocls, other points (¢,A) along thE' position line may be cal­
culated in order to draw the linE', but a simpler way is that of calculating
the azirnutl! of the star Ac ' which need only be donE> with a low accuracy
(say O?l) and then drawing the position line from (01, AI) or (¢2, A2)
in a direction at right angles to thE' cal cvlated azimuth.

ThE first metrod is ofter: referred to as thE' "Longi tude Intercept Method" or
"Modified SumnEr Method", while the secon<l is known as the "Latitude Intercept
Met.hod". Neither of these methods finds much favour today, because of the
difficulties of locating points on the position lines, wLen stars are observed
either close to tt,e mf,ridian or close to thE' prime vertical respectively,
because thE: point (cPl ,Ad or «!J2, A2) may fall outside thE limited
plotting area. A third method (see section 9.31) does not suffer from this
disadvantage and, for thi~ reason, it is recommended for use exclusively and
is dealt with in detail.

Calculation of the Marcq St. Hilaire position Line

9.31 This method, "Th8 Method of Zenith Distance Intercepts" or "The Marcq.
St. Hilaire Method", utilises an approximate valUE:> for both latitude and
longi tude. This seems a more rational approach than thE.' previous mett,ods,
because the purpose of thE' observations is to refine the approximate val ues
of latitude and longitude. However, in this approach, one has foul' values
of either observed or assDmed data to deal witb in the astronomical triangle,
in which three are sufficient for a solution. ThE' preliminary calculation is
tberefore done as follm·is. An hou!: angle is ca1culated by means of an assumed
valuEo' of longitude A.a' and together with an assumed valUE' of latituc.1e ¢a
and the star's declinction, an altitude h c is theE calculated from the
astronomical triangle. As with the previow,:: methods, an azimuth Ac of
sufficient accuracy for plotting purposes is also obtained. In most cases,
the calculated and observed values of altitude are not the same. They would
be so only if the position line passed through the assumed position of
observation ¢ a' Aa'

ThE' Plotting of St. Hilaire Position Lines

9.32 ThE astronomical po~;ition linE' sbown in Fig 9.6, is portion of the locus
of an observed altitude circle. This may be represented by means of a small
circle on the spherical earth. Similarly for the calculated altitude, there
is a locus, wl:ich has thf, san:e SSP at its centre. ThE>se two loci therefore

ToSSP

N

Fig.9.6
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w0uld plot as two parallel straight lines, with the latter one passing
through the assl:nled position Q at ¢a Aa. The distance bf,tween these
parallel lines is given by the difference

I ho - hc

where I is called thE: int.ercept and h o and he are the observed and
calculated altitudes respectively.

The intercept I is given a sign, which depends upon whether h o is
greater or less than h c ' This sign will indicate whether the position line
lies between Q and SSP (as in Pig 9.6) or on the other side of Q away
from SSP.

The distance from SSP to Q is (90
0

- he) and from SSP to the position
line is (900 - h o ) and therefore, if h o is greater than he' I is
positive and the position line is plotted between Q and SSP. This is said to
be towards and the converse away. A handy mnemomic, used by both navigators
and surveyors, is

GOA T
the initial letters of Greater Observed Altitude Towards, meaning that if the
observed altitude is the greater, then the position line is plotted towards
the SSP and vice versa.

Pig 9.6 illustrates how the intercept and its position line are plotted. ~le

azimuth line is first set out and drawn and then the intercept is measured
along it from Q, either towards or away from the SSP as required, in units the
same as those along the meridian line. These units are those to be used for
measuring distances along any great circle, e.g. differences in latitude along
the meridian great circle or differences in altitude along any azimuth circle,
which is also a great circle.

When several position lines are to be plotted on the diagram, the
multiplicity of azimuth lines and position lines may cause some confusion and,
to avoid cluttering up the plot, it is suggested that only the footpoint F
of the intercept on the position line (see Fig 9.6) be plotted and the position
line drawn through this point. The geographical co-ordinates ~F Ap of this
footpoint p will be

¢p ¢a + I cos A
c

A == A + I sin A sec ¢
P a c a

because 6¢p I cos A
c

and DA 6Ap cos ¢F I sin A (see Fig 9. 6)
F c

9.33 A handy graphical way of plotting or reading off the geographical
coordinates consists in plotting a line at an angle of ¢a with respect to a
parallel of latitude (see Pig 9.7) and subdividing this Longitude Plotting Line
according to the chosen scale. The meridian is likewise subdivided. It is
suggested that the labelling of the latitude and longitude lines be done so
that the numerical values, irrespective of sign, face in the direction, in
which they are increasing. This may produce numbers, which are upside down on
the plot,but this arrangement tends to prevent mirror ~mage plot~ing and inter­
polation in the wrong direction. The latitude and longitude values of any
point may now be plotted or read off directly from the graduations along the
meridian and the longitude plotting lines.

If observations have been made to a number of stars and such measurements
are not influenced by the presence of systematic errors, then a position line
for each star may be drawn using a convenient scale (say 1 em representing 5")
for the plotting sheets. The position lines so plotted will form a network of
lines which, because of the presence of random errors in the timing and
measurement of the star altitudes, will not intersect at a point.

P, the best estimate of the observer's position, is a point whose position
is such that the sum of the squares of the distances fvom p to each position
line is a minimum, provided that each position line has the same weight. (see
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<P p
= <Pa + t><P = <Pa + x

Ap A f',A A DA A y+ + = +a a cos <Pa a cos <Pa

where x and y are scaled from the plotting sheet (see Fig 9.7) •

The Influence of Systematic Errors on position Lines

9.41 Two types of systematic error may be present in the observations under
consideration. Firstly, there may be a systematic error present in the timing
system being used and the observer may always make his observations a little
early or a little late depending upon his personal reactions. These errors
will have a marked effect on those position lines, which are oriented north
south, and little or no effect on those oriented east west. This is not
surprising, since it is known that systematic errors of this nature have their
worst effect, when observations have been made near the prime vertical, and
have little or no effect for near meridian observations. In other words, the
final position for latitude is unaffected, but the longitude value will be
displaced by an amount equal in size to that of the systematic error and this
uncertainty in the fin~l position cannot be discovered or allowed for, unless
it can be independently determined.

The second type of systematic error, which can occur, is an error in the
altitude, in which uncertainties in the corrections for refraction and index
may be present. In the treatment which follows, it will be found desirable to
assume that such errors are constant -in character and that their presence or
absence may be deduced from an examination of the position line plot. In order
to maintain the assumption, that'these systematic errors are constant,
observations to stars sho~ld be made in quick succession and at about the same
altitude, a condition,which has been shown to be necessary for the methods of
determining latitude and longitude independently of each other.

A full discussion of this aspect is given in sections 5.14 and 6.14. If
such errors are present, then it is apparent that each position line will be
displaced parallel to itself by an amount equal in size to the error and in a
direction, which will shift all position lines either towards or away from
their SSPs. The truth of this latter assertion is established from the fact
that altitudes always increase in a direction along the azimuth line towards
the SSP.

If two stars are observed and the resulting position lines are plotted, the

section 9.65 for a
The position of

follows:

fuller discussion of this aspect).
P can, if required, be found numerically from Fig 9.7 as

observer's position lies at their point o~iptersection only if.no systematic
error in altitude is present. If a systematic error is present however, his
position will lie somewhere on the line, bisecting the angle between the two
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?osition lines, whose arrows show the directions towards their SSPs (see Fig
3.8). Thus, there are now three unknowns to be determined, the coordinates of
~he observer's position and the systematic error ~h, affecting the altitude
observations. One can therefore conclude that, if such a systematic error is
s~spected or known to exist, then observations to three stars, suitably
situated, will be required for a unique solution. In practice, a fourth star
~3 usually observed to provide, by its redundancy, a check on the results
~btained and the means of estimating the precision of the unknowns. Fig 9.9
shows the results of plotting position lines from observations made to sets of
L~ee and sets of four stars. Each position line is marked with a small arrow
~o indicate the direction towards its SSP. In Fig 9.9(a), a circle has been
~rawn to touch each of the position lines. The centre of this circle gives
~he required position and the radius of this circle is the value of ~h. It
_ill be noticed that all the arrows point away from P, indicating that if
~~h position line is displaced away from its SSP by an amount equal to the
~adius of this circle, then the three position lines would pass through the
~oint P. In Fig 9.9(b), the circle has been drawn outside the triangle formed
=~- the three position lines but, once again, it will be seen that, by dis­
~:acing all position lines towards their SSPs by the radius value, the positicn
:~,es will intersect at P.

tfuen three stars have been observed, which is not a recommended practice, P
Lay be located on the plot by bisecting the appropriate angles at the apex
~oints of the triangle formed by the position lines. It will be noticed that,
~~ Fig 9.9(a), the stars have been observed in azimuths well separated from
~~e another, whilst in Fig 9.9(b) the stars are confined to a limited azimuth
sector. If this sector is less than 1800 the position of P will always be
sxternal to the triangle and vice versa.

~.42 Figs 9.9(c) and (d) show the ideal situation for four stars which have
~een observed in azimuths, which are approximately A, A+90o , A+180o and A+270o •
:;ot only is the point P located in an unambiguous manner, but it appears that
~ecause the inscribed circle exactly fits the rectangle, the observations,
..hich gave rise to the position line, are error free. However, the situation,
,,~ch normally occurs, is shown in Fig 9.9(e) in which it is not possible to
~~scribe a circle to touch each line. Instead, one may, by bisecting angles
=~ drawing bisecting parallel lines etc., construct a circle of best fit, i.e.
=~e where the distances from the circle to the adjacent position line conform
~o the principle of Least Squares. If the situation occurring in Fig 9.9(c)
=~ (d) is encountered, it must not be thought that the observations were error
=~ee, because each position line is normally derived from a mean of a number
== observations. If one were to plot the individual position lines from a
2~ar, the uncertainty of this mean value would then become apparent.

~.43 It sometimes happens (see Fig 9.10), especially if the plotting scale is
~a~ge and 6h small, that the arrows on one pair of nearly parallel position
_lnes point inwards and those on the other pair point outwards. In this
~~omalous case, a circle of best fit should not be drawn to these lines,
~~though the centre of such a circle would give a position very close to that
== P, but the diagram should be transformed to look like the situation shown
~~ Fig 9.9(e), i.e. the arrows on the position lines should either all point
=~twards or all point inwards. This may be effected quite simply by displacing
~ach position line, parallel to itself, by a constant amount in the same
~irection with respect to its SSP. The shift S is to be of sufficient size
~o make the arrows of the displaced position lines all point inwards or all
:~twards. The circle of best fit is drawn and the errors of observation are
~ow shown distinctly, whereas before this transformation, a quite erroneous
~stimation of the precision of the fix would have been made.

The shifting of position lines by a constant amount (see Fig 9.10) either
~ll towards, or all away from, their SSPs does not invalidate the solution of
~~e unknowns, because the application of such a shift means nothing more than
~hanging the size of the constant unknown 6h. The true value of ~h may be
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(see Figs 9.10 and 9.12 for further notes about signs).

~~~ple of a Semi-Graphical Solution

~.~4 The data for this example is the same as that used in sections 9.62, 9.@
~6 9.81. The mean value of the intercepts and that of the computed azimuths
=~~ each star are used in this solution.

:ound by taking the algebraic sum of the shift and the radius of the circle
-~ing the following conventions:

:a) The shift S is positive, if it is made in a direction towards the sub­
stellar points.

:~) The radius R of the displaced circle is positive if the arrows of the
displaced position lines point inwards.

'~) The residual V is positive, if the arrow of the displaced position line
points towards the circumference of the displaced circle. Then



Preliminary Position

Plotting Data

33
0

55'30" South

10h04m55 s ( 151013'45") East

Star Aspect Mean Intercept Mean Calculated Azimuth

1 NE +22.2" 48
0
42'

2 SE - 0.8 136 12

3 SW -20.6 228 16

4 NW + 5.2 313 10

Final Position 33
0

55'12.5"South

10h04m56~05 ( 151014100~7) East

-1.7" +0.9"

V z V4:= -0.9"

In Fig 9.11, use has been made of a semi-graphic technique, which should be
familiar to those surveyors, who have used similar methods in triangulation
breakdown procedures for minor order control etc. The method has the advanVBe
of showing a clear picture~ at a large scale, of the relationships between
many quantities. Such relationships would be very hard to visualise, if they
were given in numerical form only. The reader may reduce the data of section
9.12 as a further example. As with all semi-graphic procedures there is an
analytical counterpart.

THE ANALYTICAL SOLUTION OF A ST.HILAIRE POSITION LINE FIX

The Derivation of the Analytical Relationships

9.51 The unknown position
position line observations.
for this station, where

<P, A of a station P is sought from a set of
An approximate position ¢a Aa has been obtained

¢ ¢a + t.<p

A := A + I1A
a

I1A are small quantities, which now become two of the

values of ¢a and Aa , h c and A c are calculated from the

sin ¢a sin o + cos ¢a cos 0 cos t csin hc

and the Four Parts Formula

and

in which 11¢ and
unknowns sought.

Using the above
Cosine Formula
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Likewise the true local hour angle t with respect to the observer's meridian
is given by

t A + GST
obs

+ v
T

- RA

in which the GST of observation is shown to be subject to a small correction vT.

t t c + vT + I1A

In addition the true altitude

h h o + vh + I1h ± C'

where the observed altitude is Subject to a small correction vh .

- sin t c
tan 0 cos ¢a - sin ¢a cos t c

Aa + GSTobs - RA:=

tan Ac

where



~h is a small unknown systematic quantity affecting all measured altitudes
and C is the th~odolite index correction, whose sign will depend on the
theodolite face used for that observation. The intercept I is defined by

I = ho ± C' - hc

where C' is a close approximation of C and

C C' + ~C

h hc + I + vh + ~h ± ~C

One may now substitute for h, ,<P and t in the Cosine Formula

sin h = sin <P sin 0 + co's <P cos 0 cos t

cosO cos(t
c

+ v
T

+ ~A)

retaining only first

= sin(<Pa + ~<P) sin 0 +

cos(<P + ~<P)
a

of Taylor's theorem andby me'ans

to give

sin(hc + I, + vh + ~h ± ~C>,

Expanding this expression
order terms give~,

sin he +(I + vh + ~h ± ~C)cos hc sin <Pa sin 0'+ nep cos <Pa sin 0

+ cos <P cos 0 cos t - ~<psin <Pa cos 0 cos t c,a c

- (vT + ~A) cos <Pa cos 0 sin t c
but from the Cosine Formula

sin hc =' 'sin <Pa sin 0 + ,cos <Pa:cos 0 cos t c

~<P (cos <Pa sin 0 - sin <Pa cos 0 cos t c )

- (vT +_~A) cos <P
a

cos 0 sin t c
From the Five Parts Formula

<Pa
sip 0

,
sin <Pa

0cos Ac -cos h cos - cos cos t c,',C

(I + vh + ~h ±~C) cos he = ~<P cos /(c cos h c - (vT + M) cos <P a cos 0 sin t c

Dividing by cos hc and

sin

substituting from
- -cos 0 sin

Ac =
co;; he

the sine formula
t c

I + vh+~h±OC = fi<P cos Ac + (vT + ~A) cos <Pa sin Ac
or -~h ± ~C + DA sin Ac + t:4> cos A '-' I vh - vT cos <P a sin Ac vc

where DA i',A cqs <P a

This equation, involving all the unknown quantities sought, with the exception
of the index correction, may now be reconciled with the semi-graphic treatment
described previously.

From Fig 9.-12 one may ,deduce the identical relationship.

N1.lmerical, Methods of position ,Line Snlution

9.61 Each observation to a star yields a position line from the intercept and
azimuth calculated. For each set of observations, the mean of these intercepts
and aZimuthsma:{betaken and used in calculating a single position line for
each star. This,procedurehas'the virtue of eliminating the effect of the
unknown index correction, but it will ·not. provide the means for determining

.estimates of-pre?ision. However,> thes'e estimates can, if required, be
obtained by furt·her treatment;'21s shoWitin section 9.72. The analytical
relationship, for each set of observa~ibns, then simplifies to four equations
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N
(

P(cP,A)

are the means of the individual values of the azimuth and
is the required correction necessary to satisfy the

I
V

and
and

Fig.9. L2

Q ()O------~---------_____'1n__---cf>a-

cP:l DA = LlA cos cP

"
~LlA

~~
"'~ I

~:,

Note. The quantities I, D.cP, LlA, DA, v and Llh, all shown

with arrows are positive quantities in this figure
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of the following form:-

- 6h + DA sin Ac + 6¢ cos Ac - I V

in which A c
the intercept
equation.

If the four stars are chosen such that they are situated near the centre
of each azimuth quadrant, the four equations of a set can be manipulated to
give a solution in which each unknown is derived almost independently, one from
the other. This can be done rigorously by means of a Least Squares solution
or non-rigorously by means of an approximate method.

A Non-Rigorous solution for a position Line Fix

9.62 This will be best shown by means of an example. If the four stars are
always set out in the same sequence of azimuth quadrants, irrespective of the
time sequence of observation, a uniform method of calculation can be carried
out by means of simple calculating aids.

The data is that of section 9.81 and the Observation or Parametric
Equations, in detached coefficient form, are as follows:-



lIh DA lIcP . -1" - 0

-1 sin 48°42' cos 48°42' -22.2" · .. 1

-l sin 136°12' cos 136°12' + 0.8 · •• 2

-1 sin 228°16' cos 228°16' +20.6 · .. 3

-1 sin 313°10' cos 313°10' - 5.2 · .. 4

-1 +0.7513 +0.6"600 -22.2 · .. 1

-1 +0.6921 -0.7218 + 0.8 · .. 2 .

-1 -0.7463 -0.6657 +20.6 · .. 3

-1 -0.7294 +0.6841 - 5.2 · .. 4

-4 -0.0323 -0.0434 - 6.0 ... 5=1+2+3+4

Eliminating lIh gives

+0.0592 '. +1. 3818 -23.0 · . . I' = 1-2

-0.0169 -1. 3498 +25.8 ...... 2 I = 3-4

+1.4807 -0.0241 -17.0 ...... 3 t = 1-4

+1. 4384 -0.0561 -19.8 ...... 4 I = 2-3

+0.0761 +2.7316 -48.8 ..... 1 11 = 1'-2'

+2.9191 -0.0802 -36.8 .... .. 2" = 3 1 +4'

-0.0761 +0.0021 +0.9594 ...... 3" 2"
-0.0761

= x
2.9191

+0.0761 +2.7316 -48.8 .... • 111

Final Position cP

A

-33°55'30" + 17.5"

+10h04m55s + 71~3~.1=-__~
15 cos cPa

33°55 '12. 5 "South
h m s

10 04 56.05 East

The Least Squares Solution for a Position Line Fix

9.63 The parametric equations of section 9.62 are used for the following
least squares solution.

Normal Equations:
lIh DA lIcP -I 0

4 +0.0322 +0.0433 +6.0000 0

2.1323 -0.0059 -27.7044 0

1. 8677 -32.4996 = 0
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Solution:

6h -1.8"

DA 13.1 6A
13.1"

15.8"
cos <t>a

=

M = 17.5

VI +1.0" V2 -1.0" V"j +1.0" Vq

<t> -33
0

55'30" + 17.5" = -33
0

55'12.5"

A +151 13 45 + 15.8 +151 14 00.8

+ 10h04m56.05s

-1.0"

9.64 The details of the solution of the normal equations etc. have been
purposely omitted. With modern computing aids, intermediate steps in this
type of calculation are seldom written down, because of the risk of making
transcription mistakes. After the formation and solution of the normal
equations and the determination of the V's, a useful check is provided as
follows:-

LV. = LV, sin A.
~ ~ 1.

LV. cos A. :=: a
1. 1.

One need not form and solve the normal equations if one is satisfied with
other non-rigorous forms of numerical solution (the semi-graphic process is
one). It will be seen that the normal equations for properly planned position
line Observations have dominant diagonal terms. This indicates that the
unknowns have very little mathematical dependence and are therefore amenable
to non-rigorous methods of solution.

The least squares solution given in section 9.63 has not taken into account
the unknown index correction C, which should be included when the observations
have been made with a theodolite (see sections 9.51 and 9.71). However if one
of the specialised instruments or attachments, referred to in section 9.91,
has been used, then the least squares solution of section 9.63 is appropriate.

The results of the example solved by all three methods (see sections
9.44, 9.62 and 9.63) are in remarkable agreement.

Weighting of the Least Squares Solution

9.65 So far, all observations have been treated as having equal weight in
the least squares solution, a situation that arises only when certain
conditions are imposed on the azimuth distribution of the stars to be
observed.

The contribution of each star to the overall solution, i.e. weight, will
depend upon the magnitude and propagation characteristics of the random errors
of observation. In the case under consideration, random errors of observation
occur in the timing and measurement of altitudes. If the relative or absolute
estimates of the variances of these measurements, afi and a~ , are known,
say from previous experience, their combined effect may be found from
examining the v term in the analytical solution, where

v vh - vT cos <t>a sin Ac

Provided the variances are uncorrelated, which is generally considered to be
the case,

and, as weight
weights W may
proportional to

W is inversely proportional to the variance, individual
be assigned to the parametric equations, where W is
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.~.

.1

cr2 + cr2 cos 2<1> sin2 A
h T a c

The Azimith Distribution of stars for a Set of Position Lines

9.66 So far, the restrictions imposed on the selection of stars in a set
should be that each star should be observed at about the same altitude and
that the observations be made over as short a time interval as possible. If
six observations on each face to each of four stars are made, this should be
accomplished in about an hour. These considerations will now be used as a
basis for further examination of how these stars should be distributed in
azimuth.

It has been demonstrated, both graphically and analytically, that position
lines intersecting at right angles give a clear indication of where the final
position of P should be located, i.e. stars should have azimuths of A, A+90o,
A+lBOo and A+2700 , where A may have any value. Only two cases will be
considered in detail, because the remaining cases lead to complications
involving a prior knowledge of relative weights.

Cardinal Position Lines

9.67 For this case, the basic azimuth value A is taken to be zero, so that
the stars are observed near the local meridian north and south and near the
prime vertical east and west. The parametric equations will be of the form

/',h DA M -I 0 Weight

N -1 0 1 -I W
N M

5 -1 0 -1 -I W
M5

E -1 1 0 -I W
pE

W -1 -1 0 -I W
W P

and the norma] equations

t',h DI- M> AbsolutE'. Tel..'Jn r;

- - --
2 (1-1 .' !t1: ) 0 0 W (I +1 ) +W n +1 )

~! P' M'NS PEW

2Wp 0 Wp (Iw-IE)

2W
M

w
M

(IS-IN)

where W
M

and Wp are the weights of observations made in the meridian and
prime vertical respectively.

From the structure of the normal equations, it is clear that DA and /',<1> may
be solved independently of one another and also independently of the assigned
weights. However, /',h cannot be found, unless the relative values of the
weights are known. This latter aspect is not of great concern, because DA and

/',<1> are the principal unknowns sought and one has only a marginal interest in
the value of /',h. Furthermore, there is little to recommend making
observations in this way when one can predict, observe and compute pairs of
stars quite independently for latitude and longitude without having the
additional restrictions that all four stars should be observed in quick
succession and all four at nearly the same altitudes.

Mid-quadrant position Lines

9.68 For this case, the basic azimuth value A
examination of the expression for the weight W
seen that for this situation, equal weights may
equations, which will be of the form
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is taken to be 45°. From an
of section 9.65, it will be

be assigned to the parametric



The structure of these normal equations is ideal, because each unknown may be
solved for quite independently of the others, with the additional advantage
that one need not know the relative weighting. Also 6¢ and DA are
determined with equal precision, i.e. the uncertainty of the position of P on
the ground is the same in any direction and may be represented by an error
circle.

The Least Squares Solution including Vertical Index Correction

9.71 The complete parametric equation for a position line observation,

-6h ± 6C + DA sin Ac + 6¢ cos Ac - I v,

and its application to 2n observations on each of four stars should now be
considered. Half of the observations on each star are made in the face left
and the other half in the face right position. In all, there are N=8n
observations. A representative set of such equations for one star is as
follows,

Comparison of Cardinal and Mid-quadrant Position Lines

9.69 The question now is which of the two methods selected is the better. The
answer to this is not absolutely clear unless one can make reZiabZe estimates
of the relative sizes of the random errors involved in the measurements, which
will largely depend upon the skills of individual observers and the type of
equipment used.

The expression for the weight W shows that, in the first method, the
latitude observations are subject to random errors of altitude measurement but
free of those of time measurement and have a weight inversely proportional to
0~, whereas the longitude observations are subject to errors in both altitude
and time measurement and have a weight inversely proportional to (aE+a~ cos 2¢).
Thus the latitude is obtained with a higher precision than the longitude. Each­
component is obtained independently from two stars.

In the second method, however, each star contributes information for the
solution of both components, which have the same precision because each
equation has the same weight, which lies between the two values above and is
inversely proportional to (0~+0~ cos L ¢ sin 2 45).

n
equations

o

equal weights

k -=

o

where

6h DA 6¢ Absolute Term 0

4 0 0 (I +1 +1 +1 )
NE SE SW NW

/2 -
2 0 -(-I -I +1 +1 )

2 NW SE SW N'i'1

2
12 -
-(-I +1 +1 -I )
2 NE SE SW NW

6h 6C DA 6¢ Absolute term

CL -1 1 sin A cos A -I
c c Ll

-1 1 sin A cos A -I
c c Ln
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6h DA 6¢ -I

NE -1 k k -I
NE

-
SE -1 k -k -I

SE
-

SW -1 -k -k -I
SW

-
N\'1 -1 -k k -I

NW

and the normal equations



f; Ah A C A 0 A<jl Absolute term ~ 0.,
If
j;. CR ~l -1 sin A cos A -I

c c R j

lii~ n

I
equations

-,(
-1 -1 sinf·-, Ac cos Ac -I

:~ Rn

in which a ..common value of Ac, the mean, has been used. This is a reasonable
approximation provi~ed the observations are made in a short period of time.
The normal equations resulting from four such sets, regarded as having equal
weight and each being an observation near a quadrant centre, are

Absolute termAh Ac oJ.
!f.
i- N 0 - [sin Acl,t-

: ::- N 0

[sin2
AcJ

-[cos Acl

o
[sin Accos Acl

[cos
2

Acl

+ [Il

fIR] - [ILl

-[I sin Acl

-[I cos Acl

o

where the square brackets indicate summation.
term can be -excluded from the normal equations
from

It will be noticed that the
and be solved for, exactly,

Ac

Ac

The three remaining normal equations may now be solved in exactly the same way
as given in section 9.63. As observations are confined to the vicinity of the
quadrant centres, the terms [sin Acl, [cos AcJ and [sin Ac cos Acl are
very small and the inverse of the matrix of normal equations will be similar
in character to the matrix of normal equations i.e. each has dominant
diagonal terms. The reciprocal values of the diagonal terms of the matrix of
normal equati9ns are the corresponding diagonal terms of its inverse. Thus,
one can write simple expressions for the estimates of precision of the
unknowns, as follows

The adjusted values of the unknowns may now be substituted back into each
parametric equation to obtain values of v for the calculation of precision.

Standard Deviation of a single observation 0 0 ~ j~:

oAh ~ 0Ac ~ J~~~-4)and

N
" 2

because
··1···:.·

.. ;,,
!

I
Alternative Method of Solution from Mean Values I of the Intercepts

9.72 The tempting expedient of taking the means of observed altitudes and
times and calculating ~esults from these treated as a single observation can
be used. This,_ however, is dangerous, because_ the relationships used in this
and other types of calculation are not linear ones and to preserve accuracy,
higher order effects must be allowed for (see section A.6l). In addition,
mistakes. may be hidden in the means and go undiscovered. It is, therefore, a
recommended practice, in this and other calculations, to derive results from
individual qbservations which, for ,the method under consideration, will be
intercepts and azimuths. It is also preferable to use rigorous adjustment
procedures with appropriate qhecks.

The rig?rous Least Squares s'olution by means of m.odern calculating aids is
not an arduous task. Nowadays it would be most uncommon to find a surveyor,
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andlIhDA, 6¢,

(see section 9.71)
II - LI

L R
N

tIL - IrR
8

6CI + 6C2 + 6C3 + 6C4
4

for Star No. 1 etc.

6C

6C

6C

- I
R

I
L

2
of the process is to solve for the unknowns
one of the methods previously described.

The difference between !hese_equations is
I

L
+ I

6c + R
I + VI- v

L2 L
I - I

but 6CI
L R and I - I

2
u

L L L
I + I

lICI
L R

- Iu
L 2 L

- lIh + 6c + DA sin Ac + lI¢ cos Ac - IL vL

and for all observations on that star in both fac~ left and face right
I + I

- lIh + DA sin Ac + 6¢ cos Ac - ( L 2 R) == VI

and, for an observation on face right, it may be similarly proved that

with identical expressions for the other stars in the set.
All the quantities on the LHS of the equations for vL and vR have been

previously calculated and therefore it is a simple matter to complete the
calculation for the v's and thence the estimates of precision of the unknowns.

where 6CI

The next stage
the V's by any

who does not have an electronic calculator for his sole use, and a large
proportion of these calculators would have programmable features of some
kind.

If the same number of multiple observations has been made on each star,
equally divided between each face and the stars have been observed in
accordance with the principles previously established, a calculation technique
is available for making a preliminary analysis of the intercepts and, with a
little extra manipulation, estimates of precision of the unknowns can also be
found, whilst the full rigour of the Least Squares solution is maintained.
The mean values of the intercepts for each star on each face are first
calculated. An examination of the differences, u = I - I, will give the
opportunity of making a preliminary assessment of the consistency of the
observations and of also revealing the presence of a mistaken observation or
calculation. The elementary check LU = 0 should be made.

The unknown 6C may now be conveniently calculated from a consideration of
the following,

9.73 All that now remains, is the calculation of the individual v's, and for
this process one can take advantage of the arithmetic already completed for
the calculation of the u's and the 6c's.

For a single observation in face left on one star



Practical Considerations

9.74 It is apparent that the success of this calculation technique depends
upon the balance of numbers of face left and face right observations on both
individual stars and all stars in the set. Occasionally it may happen, such
as when a rndstaken observation must be rejected, that this balance is
disturbed. Under these circumstances, it would seem that there is no choice
other than to perform a Least Squares solution, based on a set of parametric
equations containing one equation for each observation, if rigour is to be
maintained. This will require a solution of 4 normal equations, because now
all terms are non-zero in the matrix of normal equations and therefore one
cannot solve for ~C independently of the other unknowns.

If one is satisfied with a solution, which is only minuteZy different from
the rigorous one, then the same teahnique as that outlined in section 9.72
may be used. The justification for this is based on the fact that when Least
Squares adjustments are made using equations of different, but not markedly
dissimilar, weights, the difference between solutions using equal and unequal
weights is seldom of practical s1gnificance. In the technique outlined
previously, the 4 parametric equations which had been derived from the mean
of the intercepts (and the mean azimuth) from each star, had weights of 2n.
In the example given, 2n = 12, and if, for example, one observation had been
rejected, the relative weights would be 11, 12, 12 and 12, which are not
markedly different from equal weights.

9.75 It will be appreciated that the quality of the determination of
position by the position line method of observation depends to a great extent
upon how well the planning and execution of the observations have been made.

If only rough determinations are needed, e.g. the navigation of an
expedition in unmapped or featureless country, then one may be content with a
few observations made to'readily identifiable bright stars, selected in
positions such that the position lines give reasonable intersections. As the
ideal conditions for selection of stars are relaxed, then so must the
precision and accuracy of the determination of position decrease.

Therefore, if the best available accuracy is required, each set of four
stars should be predicted for observation near the mid quadrant positions at
nearly equal altitudes within about an hour. These observations can be made
by means of an astrolabe (see section 9.91) or a theodolite. If a theodolite
is to be ·used, then this position line method must be compared with the
methods of Chapters 5 and 6 for determining latitude and longitude independent­
ly of each other. Such stars should likewise be predicted. The prediction
for a pair of longitude stars in the vicinity of the prime vertical is
similar to that for the position line stars, but a pair of latitude stars at
transit is much more easily predicted. Also these two pairs do not have to be
observed within sayan hour, because it is only necessary to observe the
members of each pair with an interval of less than half an hour between them.

The method of independent determination of the two elements, latitude and
longitude, by means of the same techniques and under the same circumstances
gives results o£ di£ferent precision for these elements. This agrees with the
weighting theory and shows up clearly in practice. If the same techniques are
used under the same circumstances for the simultaneous determination of
latitude and longitude from position lines, derived from observations to four
mid-quadrant stars, the precisions obtained for the two elements are equal,
because the weights for each star are equal. This precision should lie
between the two obtained in the method of independent determination.

9.81 Example of a Set of Position Line Observations

mb

Approx. Latitude ¢ = 33
0
55'30" S

Approx. Longitude A= 10h04m55s E
Theodolite Wild T2 No. 148423
Watch r Heuer No. 23 (Mean Time)
Temperature 190C Pressure 1020n m s
R~ for date = 8 31 28.9

NSW
1975
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pillar 5, University of
Wed. evening, 29th Jan.

G.G. Bennett
J.G. Freislich
VNG DUTl = +0.6s

U h E

Station
Date
Observer
Recorder
Signal
Zone



Star Observations

Star No. 198 (NE) RA 7
h

10
ffi

37. 8
5

<5 00°27'12" S
~atch Correction +18

h
40

ffi
05.4

5

vh:,tch
CL CR

VGR HElR Watch V0R

2
h

39
ffi

47.6
5

45°47'35" 2
h

46
rn

O').6
5

315°12'38"
40 50.3 37 33 46 58.7 20 56
42 05.8 25 30 CL 47 34.8 26 26
42 47.2 19 01 48 13.3 32 23
43 43.8 10 03 49 02.8 40 05

2 44 22.9 45 03 55 48°55' 2 49 39.6 315 45 43

Star No_ 258 {SE) RA 9
h

21
ffi

23.6
5

<5 54°54'21" S
Watch Correction +18

h
40

ffi
06.1

s

Watch
CR

VElR HGR Watch
CI,

VGR

3
h

05
ffi

51.5
s 314°18'45" 3

h
l0

ffi
29.6

s
45°01'50"

06 27.7 23 57 11 02.7 44 57 02
07 02.8 29 00 CR 11 42.0 51 23
07 41.1 34 34 12 18.9 46 01
08 18.2 39 50 12 53.2 41 05

3 08 55.9 314 45 18 L316013 I 3 13 35.2 44 35 03

~tar No. 82 (NW) RA 3~35ffi37.4S <5 00°19'21" N
Watch Correction

ffi 5
+18 40 06.5

Watch
CL

V0R HGR Watch
CR

V0R

3
h

18
ffi

18.7
5

44°18'38" 3
h

23
m

02.7
s

314°59'12"
19 01.9 25 01 23 46.0 52 37
19 32.3 29 35 CL 24 31. 0 45 45
20 04.7 34 24 24 59.3 41 24
20 55.4 42 02 25 40.3 35 04

3 21 27.6 44 46 57 313°15' 3 26 03.8 314 31 24

f;tar No. 40 (SW)
h rn s <5 51°44'11"RA 1
h

54 59.6 S
~atch Correction +18 40

rn
06.8

s

Watch
CR

HQR Watch
CL

VGR VElR

3
h

27
ffi

36.7
s

315°36'18" 3
h

32
ffi

06.9
s

45°06'14"
28 05.2 31 53 32 36.3 10 44
28 36.8 26 56 CR 33 13.7 16 34
29 09.3 21 55 33 44.2 21 21
29 41. 5 16 53 34 26.7 27 56

3 30 08.2 315 12 47 48°20' 3 34 56.1 45 32 29
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Reduction in full of the first Observation of each star:

Star No. 198 258 82 40

Quadrant NE SE NW SW

Observed Watch 2
h

39
ffi

47.6
s

3
h

O5
ffi

51. 5
s

3
h

18
ffi

lB.7
s

3
h

27
ffi

36.7s

Watch Corrn 18 40 05.4 18 40 06.1 18 40 06.5 18 40 06.8

Corrected
21 19 53.0 21 45 57.6 21 58 25.2 22 07 43.5

Watch

Zone 11 E 11 E 11 E 11 E

U T 10 19 53.0 10 45 57.6 10 58 25.2 11 07 43.5

% 8 31 28.9 8 31 28.9 8 31 28.9 8 31 28.9

dR 42.7 47.0 49.0 50.6

Aa
I

10 04 55.0E 10 04 55.DE 10 04 55.0E 10 04 55.0 E
!

IISTa 4 56 59.6 5 23 08.5 5 35 38.1 5 44 58.0,

; RA
.., 10 37.8 9 21 23.6 3 35 37.4 1 54 59.6I

i t c 21 46 21.8 20 01 44.9 2 00 00.7 3 49 58.4
I
t 0 -0°27'12" -54°54'21" 0°19'21" -51°44'11"I

I q,a -33 55 30 -33 55 30 -33 55 30 -33 55 30

I Calculated z 45 48 33 45 42 28 44 19 18 44 24 34 (1)

Calculated A 50 09 55 136 10 15 314 18 04 228 16 19 (2)

LHS Five Parts 0.834 734
I

0.291 253 0.865 986 0.332 800' (3)

I 0.834 735 0.291 252 0.865 987 0.332 801 (3)RHS Five Parts

II Observed z 45°47'35" 45°41'15" 44°18' 38" 44°23'42"

I T = 19 I
I P = 1020 f 0. 971 0.97 0.97 0.97

r o 60 60 57 57
r 58 58 55 55

Corrected z 45 48 33 45 42 13 44 19 33 44 24 37
Intercept OA 15T 15A 3A (4)

Refs: (1) cos Zc sinq,a sin 0 + cosq,a cos 0 cos t c

- sin t c(2)
tan 0 cosq,a - sinq,a cos t c

The azimuth of the star is only required for plotting purposes or for
evaluating the coefficients of the unknowns in a least squares solution and
therefore a low accuracy (O?l or 3 decimal places) is quite sufficient.
However in order to provide a check on the accurate calculation of the
zenith distance it will be necessary to calculate the azimuth accurately.

(3) Check cos 0 cos t c = cos Zc cosq,a - sin zc sin¢a cos Ac (Five
Parts)

(4) Intercept = Calculated z - Observed z
= Observed h - Calculated h

positive, towards (T); negative, away (A)
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No. 198 (NE) No. 258 (SE)

I u v I u v I
L

u v I u vL R R

+0.2" +4.7" +6.1" +38.3" +1.1" +1.7" -20.8" +3.5" +2.1" +15.7" -0.1" -0.7"

+2.8 +2.1 +3.5 +41.6 -2.2 -1.6 -18.5 +1.2 -0.2 +15.0 +0.6 0

+7.5 -2.6 -1.2 +36.4 +3.0 +3.6 -18.7 +1.4 0 +14.9 +0.7 +0.1
--

+4.1 +0.8 +2.2 +36.9 +2.5 +3_1 -15.2 -2.1 -3.5 +18.1 -2.5 -3.1

+7.5 -2.6 -1. 2 +42.0 -2.6 -2.0 -15.1 -2.2 -3.6 +13.7 +1.9 +1.3

+7.3 -2.4 -1.0 +41.5 -2.1 -1.5 -15.5 -1.8 -3.2 +16.2 -0.6 -1.2

L L L L
-

L L
-

L EI I I IL R L R
+4.9 01 +8.41 +39.4 -0.31 +3.31 -17.3 01 -8.41 +15.6 01 -3.61

I +1 I +1
L R -

48°42' L R -
136°12'Intercept =--2-= +22':2,A =: Intercept = = -O'~8,A =2

6c - 6Cl = +0.4" 6C I - 6c = -0.4" 6C - 6Cz = -0.4" 6cz - 6c = +0.4"

VI = +1.0 VI = +1.0 Vz = -1.0 V2 = -1.0--

Sum ~u = +1.4 6u = +0.6 Sum I~U = -1.4 6u = -0.6
--

I No. 82 (NW) No. 40 (SW)
I

L
u v I u v I u v I u vR L R

-13.2" +2.3" +0.5" +21.2" 0.0' -0.2" -38.7" +0.7" +2.3" -2.1" -1.1" -0.7"

- 9.9 -1.0 -2.8 +22.2 -1.0 -1.2 -35.0 -3.0 -1.4 -l.8 -l.4 -1.0

-11.2 +0.3 -1.5 +23.1 -1.9 -2.1 -36.8 -1.2 +0.4 -4.6 +1.4 +1.8

- 8.8 -2.1 -3.9 +22.4 -1.2 -1.4 -39.9 +1.9 +3.5 -3.0 -0.2 +0.2

- 9.4 -1.5 -3.3 +20.6 +0.6 1+0.4 -39.3 +1.3 +2.9 -5.3 +2.1 +2.5

-12.9 +2.0 +0.2 +17.9 +3.3 ft.3.1 -38.6 +0.6 +2.2 -2.7 -0.5 -0.1
- E

-
L

- -
L: LI L I L: I

L
L L IL R R

-10.9 a 1-10.81 +21.2 -O.b1-1.41 -38.0 +0.3v' +9.91 -3.2 +0.31 +2.7
- -

I +1 I +1L R -
313°10 I

L R -
228°16'Intercept = =+5':2,A = Intercept = =-20':6,A =2 2

bc - 6C3 = -0.8" 6C3- 6c = +0.8" 6c - 6C4 = +0.6" 6C,+ - 6c = -0.6"

V3 = -1.0 V3 = -1.0 v,+ = +1.0 V'+ = +1.0--

~um 6u = -1.8 6u = -0.2 Sum 6u = +1.6 6u = +0.4

I - I
39~'4L R 4~'9 -

-17.2" 6C +0.4"lICI = C 1 =2 2

6cz
-17.3-15.6

-16.4 6c Cz -0.4=
2

6C3
-10.9-21. 2

-16.0 6c C3 = -0.8
2

6c,+ -38.0 + 3.2
-17.4 6c C4 +0.6=2

6c
6CI + 6C2 + 6C3 + 6C4

-16.8 Check 0 L: -0.2 I'"4
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Calculation of Collimation Correction:

Note: u + .tIu = v checks: LU '" a & Lv '" n.tlu (in this case n=6)



6h, ~ and A may be solved by anyone of the methods described in sections
9.44, 9.62 and 9.63, in which the star sequence numbers 3 and 4 are the
reverse of those used in this section.

6h = -1.8 1f

~ -33
0

55'12.5" C· 0

A +10h04m56.05s C 6C -16.8"

Zv 2 243.63 N ~ 48

GM = G = ~JlL
6ACOS~ N(N-4) ±O.48"a

u
6C

G
6h

=~ ±O.34 11

N(N-4)

EQUAL ALTITUDE OBSERVATIONS FOR POSITION LINES

THE initiative for the development of specialised instrumentation and
observing methods for this work was given by Gauss, who devised a procedure
in which stars are observed at a fixed altitude for the simultaneous
determination of latitude and longitude. The principal advantage of this
method is that the value of the fixed altitude is not measured but may be
solved for together with the station's latitude and longitude, provided the
altitude remains constant during the course of the observing period. A
theodolite would serve this purpose, but any variations in this altitude
over the observing period would have to be corrected or allowed for by
readings or settings of the vertical circle and, when fitted, the altitude
bubble.

The Astrolabe

9.91 The special instruments used for this work are generally called astro­
labes, which may be reserved entirely for this purpose or may consist of an
attachment to a theodolite or level. The first of such instruments, the 600

prismatic astrolabe, was developed by MM. Claude and Driencourt of the French
Bureau of Longitudes and Hydrographic Department of the French Navy respect­
ively. An equilateral prism is mounted in front of the objective of a
horizontal telescope with the rear face of the prism at right angles to the
optical axis of the telescope. Two images of a star are formed, one directly
through the prism and the other via a mercury pool placed beneath the prism.

The two images are seen moving in opposite directions in the eyepiece and
when the images are in line horizontally, time is recorded and the star is at
an altitude equal to that of the apex angle of the prism. The success of the
technique depends upon the fact that this altitude is unaffected by small
variations in the horizontality of the telescope. The prism and mercury
receptacle have been designed as an objective attachment to a theodolite.
Fig 9.13 shows this attachment for a wild T2 theodolite.

9.92 A variation of this original form, the 450 prismatic astrolabe, was
developed by Captain T.Y. Baker of the British Navy in 1930. In this
instrument, a pentagonal prism is used to create a fixed altitude of 450

.

The advantage of such an instrument! when compared with the previous one, is
that more stars cross the 45 0 almucantar than the 600 almucantar. This makes
it possible to observe a greater number of stars on the 450 circle of equal
altitude. A weak duplicating prism is mounted above half the surface of the
pentagonal prism to duplicate the direct image of the star laterally and the
observational instant occurs when the reflected image is in line with the two
direct images. In addition, a series of deflecting prisms is placed in turn
in the path of the reflected image. In this way, multiple observations are
obtained with a significant increase in the precision of the results obtained
from observation of a star.

Mercury is not an ideal substance to use under field conditions. In the
-171-



Wild astrolabe attachment on a T2 theodolite

_ __ Image ~epiece

~::~~
,,"",-.I=-=-'c~~--~ --- -- --- ~~

movements Reticule

Light rays in an astrolabe

Fig.9.13

60
0

and 45
0

prismatic astrolabes described above, the mercury pool is formed
on the surface of an amalgamated copper plate. It is essential that the
mercury surface be kept absolutely clean in order to provide a bright
reflected image. Also the thickness of the mercury layer is critical; too
thick a layer is sensitive to small vibrations,whilst too thin a layer may
form a surface, which is not truly horizontal.

9.93 Another form of astrolabe, which uses a different gravity dependent
device, an essential feature of all astrolabes, is the pendulum astrolabe.
In this instrument, which was invented by the American astronomer Willis,
stars are viewed at a nominal altitude of 60°. Compensation for small
dislevelments of the instrument is effected by a horizontal metallic mirror
a·ttached to an air-damped pendulum. The mirror is interposed between the
objective and eyepiece of the telescope thus requiring the optics to be
"broken" at the point of reflection.

Only one image of the star is formed and this is observed over a series of
reticule lines. The pendulum astrolabe may be said to be the forerunner of
instruments, incorporating dislevelment compensating devices, which are in
almost universal use in modern theodOlites and levels.
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9.94 In 1950 Z~iss (Oberkochen) devised a level, in which the line of sight
is automatically corrected for small dislevelments of the instrument.
Essentially the compensator consists of three prisms, two of which are fixed
and the third is suspended by four wires. The accuracy of compensation of
this device is exceptionally high and thus the instrument was suitable for
adaptation as,ap, ..astrOlabe~.

The light from the star is deviated through 600 by a right angle objective

GeneraLview with astrolabe reticule in the telescope's field of view also shown.

Light path through Ni2 Level.

\

Light path through astrolabe prism.

Fig. 9.14 The Zeiss Ni2 Level Astrolabe

prism to provide a near horizontal ray; the constancy of this deviation is
maintained as.a, result of the- principle of double reflection. Ten
observations are made on each star. The time is observed as the single image
of the star reaches the midpoint of each one of the set of double reticule
lines (see Fig 9.14).
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This type of astrolabe combines features of both the prismatic and pendulum
instruments previously described. The principal advantage of this astrolabe
is that the basic instrument may be used for its primary purpose, i.e.
levelling, when not being used for astronomical observations.

Observations made by means of the astrolabe are much simpler than those made
by means of the theodolite, mainly because there are no circle or bubble
readings to be taken and only a relatively coarse levelling procedure is
necessary. On the other hand, the theodolite may be used for this and other
surveying operations, whereas the astrolabe is a single purpose instrument.
The accuracy claimed for astrolabe determinations is superior to that obtained
by means of a theodolite of comparable optics.

The above list of astrolabes is not an exhaustive list of all types, but
the principal features of these special instruments have been highlighted.
Details may be obtained from manufacturers' handbooks.

The Reduction of Astrolabe Observations

9.95 The technique of reduction for the astrolabe is very similar to that
used for theodolite observations (see section 9.81). When only a single
observation has been taken, as with the 600 astrolabe, the computations are
identical; the value of the observed altitude is the best known value of the
apex angle of the prism, corrected for refraction. This may be conveniently
determined from a trial set of observations.

When multiple observations have been made on a star by means of either
deflecting prisms, as with the 450 astrolabe, or a series of reticule lines,
then several methods of reduction are possible.

If all reticule lines or all deflecting prisms have been used on all stars,
the mean of the clock times for individual stars can be used to calculate
intercepts. However, before calculating intercepts it will be necessary to
apply a second order correction to either these means or the value of the
fixed altitude (see section A.61). It is tempting to assume that the effects
of the second order correction will be eliminated from such a series of
observations, especially if the stars in a set are symmetrically disposed in
azimuth. However, this is not the case, because the correction for stars on
the pole side of the prime vertical is significantly different for stars on
the equatorial side. To illustrate this point, the second order corrections
to the means of the clock times for the stars shown in section 9.97 have been
calculated as follows:-

Star No. (Aspect)

Correction

FK604 (S~"1)

-0.03
s

FK761 (NE)

+0.08
s

FK1461 (NW)

-O.13
s

FK796 (SE)
s

+0.06

This correction, in seconds of time, is given by

I
2np

where -sec ¢ cot A cosec A(tan ¢ cosec A - tan h cot A)

dt L. dt
:= db (cot L- dh + tan h)

where n is the number of observations,
~h is the altitude difference between the observed reticule line and

the reticule centre,
and 6h and p are in seconds of arc and for a full set of observations
~6hz is a constant quantity.

It will be seen that one needs the individual values of 6h for the
evaluation of these corrections. More often than not these intervals are
known, but if this is not the case they can be derived, with sufficient
accuracy for this purpose, from the observations themselves from the time
rate of change of altitude as follows,

6h ~T cos ¢ sin A
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where 6T is the time interval corresponding to 6h.
The final assessment of the three unknowns 6¢, 6"A & 6h is very unreliable

if only the mean values of the intercepts are used, especially if a small
number of stars has been observed, because the estimates of precision are
based on the V and not on the v quantities. In fact one can obtain what
appears to be a perfect solution with each V=O (see Figs 9.9(c) and (d».

Ideally one should know the precise values of the prism deflections or
reticule line spacing in order to obtain estimates of precision based on
individual observations. The evaluation of the spacing may be obtained from
a large number of star observations, but these values may only be applicable
for a particular focal setting and therefore not constant for all observers.

With the 450 astrolabe, advantage can be taken of tne fact that the same
prism, or combination of prisms, is used to an observation on either side of
the nominal altitude. Therefore the mean of intercepts obtained from a pair
of observations symmetrical about the centre should be identical. These
mean intercepts may then be treated as if they had been obtained from a
single observation at the centre and the calculation of the unknowns and the
estimates of precision may proceed in the usual way.

This situation may also exist in astrolabes, which are fitted with reticules
having multiple hairs for observations on a single star image. The manu­
facturers of modern instruments can usually ensure that the linear spacing of
such lines is symmetrical about the centre point. The small departures from
the manufacturer's nominal angular values of the line spacing are caused by
the small variations in the nominal values of the focal lengths of the
telescope lenses in a serial production process.

If, as sometimes happens, an observation is missed then two courses of
action are open. Either the corresponding observation from all other star
observations may be rejected or, if the spacing between reticule lines is
known precisely, all observations may be used.

9.96 An example of a set of astrolabe observations and their full reduction
is given in this section. The observations were made by means of a Zeiss Ni2
level fitted with an astrolabe attachment. Times of passage of each star
through the centre of each of the double reticule lines were recorded. The
calculation of the intercepts, I, was carried through in exactly the same way
as those for the theodolite observations in section 9.81, on the assumption
that the reticule line spacing was equal to the manufacturer's stated values
of ill'OO", ±7 1 30", ±5'OO", ±3'OO" and ±1'30" from the centre and the combined
prism angle ~nd collimation error of the level was 590 59'30". It was known,
from a very large number of observations made with this instrument, that the
reticule line spacing was not exactly equal to those nominal values but that
the lines were symmetrical about the centre to a very high degree of
accuracy. Therefore secondary intercepts, II, were derived by taking the
mean of the intercepts obtained from the corresponding pair of SYmmetrical
reticule lines. These secondary intercepts were then treated as though they
had been derived from a single observation and the remainder of the calculat­
ion was performed in exactly the same way as the example given in section
9.81. It will be noted that this method of reduction avoids the need for
second order corrections.

¢a 34
0

08'20" S
"A 10h02m40s E

a

'.

Station

Observer:
Recorder:
Date:
%:

(}. Razorback

G.J. Hoar
K.I. Groenhout
14fih Ju~y, 1977
19 26

m
S9.2S

s

Clock: Omega Printing Chronograph
(Mean Time)

Correction on 10h E Zone fiime
+18 00mOO. 40s

Instrument: Zeiss Ni2 level with astrolabe
attachment.

Hairs: ±ll'DO", ±7'3D", ±5'OO", ±3'OO", ±l'30"
(nominal values)

Combined prism angle and collimation 59
0

S9'30"
Temperature: 6.90 C Pressure: 976.3 mb
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FK4 604 (SW) FK4 761 (NE)

RA 16h18m1l51s 6 -50°06'08.7" RA 20
h

16
m

SO.18
s

0 -12°36'42.5"

Clock Time I I' u v Clock Time I I' u v

Sh04m50.24s 0.6" 5
h
ll

m
42.97

s
9.2"

05 14.10 8.2 12 05.32 5.8

05 30.24 5.4 12 21.34 3.1 I
05 43.43 5.8 12 34.14 1.3

05 53.64 9.0 12 43.58 1.5

06 13.46 10.0 9.5" -0.8" +0.2" 13 02.54 1.4 1.4" +1.2" +2.1"

06 23.26 9.5 7.6 +1.1 +2.1 13 11.98 1.9 1.6 +1.0 +1.9

06 36.60 H.5 8.4 +0.3 +1.3 13 24.64 2.0 2.6 0 +0.9
I

06 52.98 11.2 9.7 -1.0 0 13 40.54 1.5 3.6 -1.0 -0.1

5 07 16.49 16.3 8.4 +0.3 +1.3 5 14 03.08 -1.4 3.9 -1. 3 -0.4

Mean 8.8 8.7 [-0.1 2:+4.9 Mean 2.6 2.6 2:-0.1 2: 4.4

-
227~2

- = 49~7Al :::: u + VI = V Az u + Vz = v

FK4 1461 (NW) h FK4 796 (S£)

RA 17
h

33
m

32.93
s o -11°13'30.5" RA 21 14

m
ll.92

s
0 -53°21'07.9"

Clock Time I I' u v Clock Time I I' u v

5
h

2S
m

27.14
s

3.9" sh30mOO.74s 13.0"

25 51.12 4.5 30 26.48 15.7

26 08.23 5.1 30 45.87 9.7 I

26 22.09 7.4 31 00.72 10.4 I
26 32.33 7.8 31 12.02 9.6

I 26 52.46 5.8 6.8" +0.1" -0.8" 31 35.00 5.1 7.4" +1.1" +0.2"

27 02.76 7.1 7.2 -0.3 -1.2 31 46.05 6.4 8.4 +0.1 -0.8

27 16.34 7.6 6.4 +0.5 -0.4 32 01.28 4.4 7.0 +1.5 +0.6

I 27 33.33 8.6 6.6 +0.3 -0.6 32 19.64 7.3 ~ll. 5 -3.0 -3.9

5 27 57.14 10.7 7.3 -0.4 -1.3 5 32 46.32 3.8 8.4 +0.1 -0.8

Mean 6.8 6.9 E+0.2 E-4.3 Mean 8.5 8.5 E-O.2 2:-4.7

~3 314:7
- = 139?8= u + V3 = V A4 U + V4 = V

Checks Er = 2::1' LU ° LV nV where n=5

Parametric Equations:

-eh DA 6¢ -I 0

1 sin 227:2 cos 227:2 -8.8"

1 sin 49.7 cos 49.7 -2.6

1 sin 314.7 cos 314.7 -6.8

1 sin 139.8 cos 139.8 -8.5
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Normal Equations:
-L\h DA L\¢ -I 0

4 -0.0364 -0.0931 -26.7000

2.0419 -0.0012 3.8209

1. 9581 6.0066

Solution:
.6h -6.6" VI 1.0"

DA -1. 8 V2 0.9

.6¢ -2.8 V3 -0.9

V4 -0.9

Final Position

-2.8

- 34 08 22.8

+lOh02m40.00s

-0.14

+10 02 39.86

Evv 38.01 N 20

~ iO.47"G
DA N (N- 3)

CY.6h == j~;-3) iO.33"

The semi-graphic solution is given as well for completeness. (see Fig 9.15)

9.97 The semi-graphic method of solution is as follows:-

Preliminary position

Plotting Data

Star No.
Calculated Mean .!.ntercept
Azimuth Ac I

1 FK4 604 227~2 8.8"

2 FK4 761 49.7 2.6

3 FK4 1461 314.7 6.8

4 FK4 796 139.8 8.5
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I

Fig. 9. J5 Astrolabe Position Line Fix

~178~

-¢a

N

Final Position ¢ 34"08'22.8"S

A IOh02m 39.85' E

,1h = -6.6"

VI =+0.9"
V2 =+0.9
V 3 = -0.9
V 4 = -0.9



10
Prediction

INTRODUCTION

IT has been shown in Chapters 5, 6 and 7 that, in order to eliminate or
minimise the effect of certain systematic and random errors, which may be
present in the best known values of assumed data and observed quantities,
observations for latitude, longitude and azimuth should be made on stars,
which comply with certain conditions regarding their position in the sky and,
when altitudes are being measured, the time separating the observations
between individual stars. If one were to attempt to take such observations
without the assistance of a list of predicted instrument settings and clock
times, it would be only by chance that the observations would comply with the
conditions, which should have applied. The requirements for such a working
list are predicted settings, which will enable the observer to pick up the
stars prior to observation. Once the star has been found, it is a relatively
easy matter to follow its movement in the field of view of the instrument.
However, in the event of a delay, such as that caused by changing face or by
an interruption, caused perhaps by passing cloud, it is essential that the
assistant be able to give to the observer new instrumental settings for
locating the star again. Thus it will be necessary to provide a series of
times and settings for each star at intervals, which are close enough to
allow a quick visual estimation of the star's position without recourse to
calculation.

The calculations for the pred~ction need not be made with high accuracy,
because the angular width of the field of view of most theodolites is about
one degree, and if a star corresponding in magnitude to the one listed in
the programme appears within a few tenths of a degree from the cross hairs,
then the observer is reasonably assured that he will be observing the right
star. The location of the star in azimuth from values in the working list
presupposes that an approximate orientation of the instrument is known. An
illuminated reference object (R.O.) is required for convenience in night
observing, even though the observer may not be making observations for azimuth.
He may then conveniently check the orientation of the horizontal circle at
intervals throughout the observing programme.

ORIENTATION

10.11 ORIENTATION may be obtained from a knowledge of the azimuth of a line
in a local surveyor, if time permits, a sun observation made during the day
prior to the night's observation will satisfy this requirement. Alternative­
ly an orienting star, usually one of the bright well known ones, may be pre­
computed for a time earlier than the start of the predicted programme.

A necessary pre-requisite for finding an approximate orientation is a
rough knowledge of the station's position and therefore one must investigate
the effect of errors in the values of the station's latitude and longitude

-179-
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Fig. IO.I(a) Altitude and Azimuth of Polaris
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on the calculated azimuth. For a more extensive treatment of these effects,
the reader is referred to Chapter 7. The differential coefficients to
consider are

dA
d¢

=
-tan h sin w cos 0

cos ¢ &
dA
dA

cos w cos 8
cos h

both of which will be small for stars of high declination, especially for
close circum-polar stars, whose movement in azimuth is slow. Polaris (m=2.1),
in the northern hemisphere, and a Octantis (m=5.5), in the southern
hemisphere, are both within about a degree of the pole and for the former,
which is a bright star, the Star Almanac for Land Surveyors provides tables,
by means of which the altitude and azimuth for any hour angle can be readily
calculated.

10.12 Example of a Polaris calculation

Standard Time 21
h

30
m

(29th June 1975)

Azimuth of Polaris

Altitude of Polaris

Terms involving al, a2, bl and b2

Latitude ¢ 45
0

20'

Zone

UT

R

GST

LST

a o

Altitude

+46

44 34

5 w
2 30 (30th June 1975)

18 30

21 00

5 04 \'1

15 56

latitude - a o

b o sec ¢

may be safely neglected.

N sec ¢ 1.42

bo +22'

Azimuth 00 31'

Observed Horizontal Circle reading

Azimuth

Orientation

o 31

1 12

297 05

1 12

In the southern hemisphere a Octantis is a dim star, difficult to locate
without the aid of approximate preliminary settings. One method of locating
this star is to calculate its altitude and to set this on the vertical
circle (refraction being ignored). The instrument is pointed roughly to the
South, clamped in azimuth and one then proceeds to scan the sky at degree
settings of the horizontal circle on either side of the initial setting. If
a star corresponding in magnitude to a Octantis appears close to the cross
hairs, then approximately 20' distant from it, one should find a fainter
star, B Octantis (m=6.5). The relative position of the two stars in the
field of view may be found from Fig 10.1(b). This will confirm the
identification. The cross hair illumination may need to be extinguished in
order to discern this fainter star.

10.13 Example of a Octantis calculation.
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a Octantis RA 2d'45m

Or 3/1°15'

o 89"03'S

Key

l-OCa.\ Sidereal lil11e

20h 21
h

/

Altitude = I <b I + ~h

t
A useful check on the identification of
a Octantis may be made as follows:
A point representing a Octantis

(m = 5.5) is plotted on the zero
latitude circle at the LST of the
observation. Another on the same
circle is plotted at LST 2 hours earlier
to represent B Octanti~ fm:: 6.5)
These- two points sho'" the relative
positions of these twO stars in the fIeld
of view of an erecting telescope. For
an inverting lelescope. the diagram
should be turned upside down.

Fig. 10. I(b) Altitude and Azimuth of a Octantis
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Standard Time 19
h

25
ffi

(3rd August 1975)

Zone 10 E

UT 9 25

R 20 45

f- lO 05 E

LST 16 15

RA 20 46 0 -89°03' , p 57'

t 19 29

t 292°15' sin t = -0.93, cos t 0.38

Altitude of (J Octantis '" I<P I + p cos t

Azimuth of (J Octantis '" 180° + p sin t sec <P

Latitude <P 37°48' S sec <P 1.27

+22 P sin °p cos t t sec <p -1 07'

Alti tude 38 10 Azimuth 178°53'

Observed Horizontal Circle reading

Azimuth

Orientation

178 53

-32

93 24

-32

As an alternative to some of the previous calculations, a handy graphical
solution of the altitude and azimuth of Polaris and (J Octantis can be
obtained from Figs lO.l(a) and (b).

In equatorial latitudes, it may be difficult to sight close circum-polar
stars, because of the poor transparency of the atmosphere near the horizon.
In this case, one may use either a star at transit or an extra-meridian star,
preferably at low altitude near the prime vertical. The use of a star at
transit for orientation need not be confined to equatorial latitudes; in
fact, it is one of the easiest ways of determining orientation and may even
be used as a preliminary to find (J Octantis, which, when found, may then in
turn be used for a greater refinement of the orientation. It should be
stressed again that stars of high declination are to be preferred, i.e. stars
as close as possible to the visible pole, otherwise an error in the assumed
value of the station's longitude will have an adverse effect on the
orientation.

Example of a transit calculation

10.14 To use this method, one should calculate the LST of the start of the
observing programme and then select from the almanac a bright high declination
star, whose RA = LST (Upper Transit) or RA = LST ± 12h (Lower Transit); the
RA of this star should be such as to allow sufficient time to complete the
orientation before the beginning of the programme. The theodolite altitude to
be set is then calculated from the simple meridian formula (see Section 5.33),
from which it is seen that whatever error is present in the assumed value of
the station's latitude, this will be present in the altitude set out. The
star is then identified, the theodolite swung on to it and the star followed
up to the calculated time of transit, when the final pointing is made and the
horizontal circle read. Immediately after this the RO is sighted and the
horizontal circle read. It is a simple matter to calculate the azimuth of
this star at say Sm before and after transit using the appropriate
differential relationship of section 10.27. These additional values will be
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235 46

2 28

20h15m (19th Jan 1975)

1 E

19 15

7 54 01.6
s

12.3

1 13 45 E

4 22 58.9

3 47 38.2

35 20.7

- 5.8

35 14.9

20 15

19 39 45.1

2 28

180

-33 56

-40 23

Star No. 91 oM

Latitude, 1>

zenith distance,zM

Observed Horizontal Circle reading

Azimuth

Orientation

Difference (mean units)

Conversion sidereal to mean

Difference (sidereal units)

LST

Star No. 9l(m=3.2) RA

dR

UT

Standard Time of the start of the programme

Standard Time of transit

useful for checking purposes.

Standard Time of the start of the programme

Zone

Example of an extra meridian calculation

10.15 Before the start of the programme a bright star is seen to the south
and identified as Fomalhaut, Star No. 632 in the Star Almanac for Surveyors.
The observer may then choose either to observe the star and then calculate the
azimuth, or to calculate the azimuth for a particular time and then make the
observation at this time. The following calculation corresponds to the latter
method.

Standard Time of observation (19th Jan 1975)

Zone

UT

dR

LST

RA of Fomalhaut

t

t

° of Fomalhaut

19

7 54
m

Ol.6
s

9.9

1 13 45 E

4 07 56.5

22 56 16.5

5 11 40.0

77
0

55'00"

-29 45 20

-33 56 00
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- sin t
Formulae: tan A 0 ¢ sin ¢tan cos - cos t

sin h sin ¢ sin 0 + cos ¢ cos <5 cos t

check cos 0 cos t ::: sin h cos ¢ cos h sin ¢ cos A

Solution: A 249
0

55' h ::: 25
0

20'

Observed Horizontal Circle reading

Azimuth

Orientation

PREPARATIONS FOR PREDICTION

249 55

-32

93 24

-32

10.21 THE preparation of a predicted programme for star observations can be
undertaken in a systematic manner with the minimum of subjective judgement
being exercised, provided the constraints such as catalogue to be used,
position of the observation station, limits of altitude etc., are stated quite
specifically beforehand. The following examples have been chosen to illustrate
the techniques, assuming that the observations are to be made with a single
secohd theodolite on stars selected from the Star Almanac for Land Surveyors.
The principles used in the examples which follow are equally applicable to
observations made with more sophisticated equipment and catalogues containing
more stars than those in the Star Almanac for Land Surveyors. The routines
have been devised so that there is a minimum amount of calculation; however,
it is assumed that a small calculator is available for preparing such a
predicted programme. The end product of the prediction procedure is a working
list to be used as a guide for the observer. How detailed this working list
is will depend to a large extent upon the skill and experience of the
observer and his assistant.

Time Rates of Change of Zenith Distance and Azimuth

10.22 Zenith distances and azimuths for times shortly before and after the
central predicted value may be conveniently calculated from the appropriate
differential coefficients. However, care should be exercised in applying
these small changes with their correct signs. Alternatively, the azimuths
and zenith distances to the star may be computed at the start and the finish
of the predicted interval. Intermediate values between these two points may
then be determined with sufficient accuracy by linear interpolation.

The differential coefficients to be used are as follows:-

dz
¢ sin A ... 10.1dt

- cos

dA cos w cos 0
... 10.2dt cos h

Equation 10.2 is not in a convenient form, because it contains the
parallactic angle w, but it can be transformed by using the Five Parts
Formula

cos 0 cos w sin ep cos h - cos ¢ sin h cos A

then
cos 0 cos w

sin ¢ ¢ tan h cos A
h

- cos
cos

dA
sin ¢ - cos ¢ cot z cos Adt
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Equations 10.1 and 10.3, or modifications of them, may now be used for the
following observations.

Latitude Determinations

10.23 These observations are made near the meridian, 1.e. A ~ 0
0

and 180
0

and therefore

dz
at o &

dA
at sin ¢ ± cos ¢ cot z

+ Star South

- Star North

A more convenient expression for ~ is obtained by transforming equation
10.2 where cos W = fl. With the notation and conventions postulated in
Chapter 2, this becomes

If one of the stars forming the pair matches a close circum-polar star, then
the zenith distance of the former will be approximately equal in magnitude to
the co-latitude, and thus

and
and

gives

in the
and in
which,

northern hemisphere, A = 180°
the southern hemisphere, A = 00

when substituted in equation 10.3,

z = 90° - ¢
z = 900 + ¢,

for both cases

dA
dt

2 sin

Longitude Determinations

10.24 These observations are made near the prime vertical, ie. A'" 900 and
2700 and therefore

dz

dt
+ ,+, + West
-cos 'V

- East
and

dA
dt

sin ¢

The above form of the differential ~z is very accurate even for observations
away from the prime vertical, because

t
sin A does not change rapidly in the

vicinity of A=900 and 2700 . However the differential dA should not be used
in the above form, unless the observations are made closgtto the prime vertical.

Azimuth Determinations

10.25 These observations may be made when the star is in the vicinity of
elongation, ie. w=900 and 2700 •

dz ¢ sin A, obtains
dt

-cos one

dz
<5 sin- cos W

dt

dz + ~vest

or - ±cos 0
dt - East
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cos w cos 0
cos h

into equation
- cos <5 sin w

cos ¢

o

sin A

CiA
dt

and from equation 10.2

Substituting the Sine Formula
10.1 which is



position Line Determinations

10.26 These observations are often made on extra-meridian stars at the same
altitude and, if this altitude is 450 , then

dz
dt

- cos ep sin A and
dA
dt

sin ep - cos ep cos A

Furthermore, if the observations are made near the centres of the azimuth
quadrants, sin A and cos A have the same magnitude, but of course may vary in
sign.

10 27 Summary
,...--- dz dA

Observation
dt dt

Latitude (circum-meridian) 0
cos OM

sin zM

Latitude (star matching a
0 2 sin ep

circum-polar)

sin <p - cos <p cot z cos A
+West

Longi tude (near prime vertical) ± cos ¢ E t or sin <p close to prime
- as

vertical

Azimuth (circum-elongation) + 0 +West 0- cos -East

position Lines (45
0

altitude) - cos ¢ sin A sin ¢ - cos <p cos A

PREDICTED PROGRAMMES

Latitude from Circum-Meridian Observations

10.31 An example of the preparation of a predicted programme for this method
for the following circumstances:-

Station position Latitude
Longitude

41°30' N
sh 26m W (Time Zone 5h W)

Duration about 2h .
range 700 to 400 )

Date: lOth May 1975
Programme: Start at about 20h Standard Time.
Altitude range: 200 to 500 (zenith distance
Altitude balance: ±5°
Maximum time between stars forming a pair: About 30m

Duration of observation on each star: About 10m

Calculation of the range of RA's

Standard Time of the start of the programme

LST of the start of the programme

LST of the finish of the programme

Ranges of RA: Upper transit 10h47m to

Zone

UT

R

GST

Lower transit 22 47 to

20
h

OO
m

(10th May 1975)

5 W

1 00 (11th May 1975)

15 13

16 13

5 26 W

10 47

12 47

l2
h

47
m

o 47

-187-



Calculation of the range of declinations:

Table 10.1

Circumstance ZM OM °Upper transit _70° -28°30' 28
v

30' S

South -40 + 1 30 1 30 N

Upper transit +40 +81 30 81 30 N

North +48 30 +90 00 90 00 N

Lower Transit +48 30 +90 00 90 00 N
North +70 +111 30 68 30 N

A local meridian section diagram may be used in lieu of Table 10.1 (see
Fig 10.2).

Ps

Nadir

Fig. 10.2
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Stars which conform to the ranges of RA& 0 calculated, may now be selected
from the catalogue. ~Vhen the Star Almanac for Land Surveyors is used, it
should be noted that stars may be selected not only from the main list, but
also from the supplementary list and the circum-polar list. It 'flill be found
that there are fewer stars available for observation on the pole side of the
zenith than on the equatorial side. This is due to the convergence of the
celestial meridians. If stars were distributed equally over thehcelestial
sphere, then a rectangle bounded by say 100 of declination and 1 of right
ascension near the equator would contain more stars than a corresponding
rectangle near the pole. Because there are fewer stars available for
observation on the pole side, the selection of stars and their matching to
form pairs can often be done simultaneously when one is looking up the almanac.
First of all a star on the pole side is selected and then a companion star or
stars are sought in the RA range of the equatorial side stars.

10.32 Table 10.2 contains aZI stars available within the chosen limits of RA
and declination. The above method of selection of pairs of stars will be seen
to apply.

Available StarsTable ID 2
North .

SO' I t.h

No. m RA LST 0 OM zM NO. m RA=LST 0=0 z
M M

668 4.8 22
h

48
m 10h4Sm 83

0
01 'N +96

0
59' +55

0
29' 293 3.3 1~h48m -16

0
04' -57

0
34'

669 4.5 23 07 11 07 75 15 N +104 45 +63 15 296 4.2 10 59 -18 10 -59 40

647 3.4 23 38 11 38 77 30 N +102 30 +61 00 305 3.8 11 18 -14 39 -56 09

308 4.1 11 24 -17 33 -59 03

321 3.2 12 09 -22 29 -63 59

324 2.8 12 15 -17 25 -58 55

326 4.0 12 19 - a 32 -42 02

330 3.1 12 29 -16 23 -57 53

335 2.8 12 33 -23 16 -64 46

338 2.9 12 40 - 1 19 ~42 '49

To assist in finding matching pairs, it is convenient to calculate individual
zenith distances and then select stars of a pair, which, in our case, are to
have zenith distances differing by not more than 50. It is also possible to
match stars from the declinations alone. From the meridian relationship

<P = OM - zM

and the fact that zM for a north and for a south star will be of opposite
sign,

2¢ 0M(N Star) + 0M(S Star)

Thus, in our example, the RHS of this equation should be within the limits of
2¢ ± 50 i.e. 78

0
to 88

0
, except when the stars forming a pair lie at, or

close to, the extremities of the postulated altitude range. In such cases it
may be found that the altitude of the companion star falls outside this range.
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Selected Latitude starsTable 10 3.
Pair Aspect &

1ST Diff
Standard Time Az change

No. Star No. on Prediction for +Sm
DateStart of

10h47m 20
h

OO
mPrediction

Period
1

m

1 N 668 10 48
11

20 01 +0
0
11'

1 S 296 10 59
8

20 12 +1 23

2 N 669 11 07
17

20 20 +0 21

2 S 308 11 24
14

20 37 +1 23

3 N 647 11 38
31

20 51 +0 19

3 -~ 321 12 09 21 22 +1 17
b. Ih 22m L:l

h
22

m
; b. Ih 22m;

Note 6 is the difference between first and last times

-190-

* Observations on this star could be started a little later if necessary.

It will be seen that, in the working list, corresponding values of LST and
Standard Time are given. The values of LST remain invariable for star
observations, but those of standard time will vary from one night to the next
by about 3

m
56

s
. If observations are not made on the predicted date, the

Standard Time values of the working list must be altered. However, the use of
an auxiliary watch, set to read LST approximately, will be found a convenient

Working ListTable 10.4

Pair
Aspect Vertical Circle Standard Horizontal Circle
Star No.

Mag.
CL CR

1ST
Time CL CR

,
N 668 4.8 55

0
29' 304°31' 10h43m 19

h
56

m 359 0 49 I 179
0

49'.J..

10 48 20 01 0 00 180 00

10 53 20 06 0 11 180 11

S 296 4.2 59 40 300 20 10 54 20 07 178 37 358 37

10 59 20 12 IBO 00 0 00

11 04 20 17 IBI 23 1 23

2 N* 669 4.5 63 15 296 45 11 02 20 15 359 39 179 39

11 07 20 20 0 00 180 00

11 12 20 25 0 21 180 21

S 30B 4.1 59 03 300 57 11 19 20 32 178 37 358 37

11 24 20 37 180 00 0 00

11 29 20 42 181 23 1 23

3 N 647 3.4 61 00 299 00 11 33 20 46 359 41 179 41

11 38 20 51 0 00 180 00

11 43 20 56 0 19 180 19

S 321 3.2 63 59 296 01 12 04 21 17 178 43 358 43

12 09 21 22 180 00 0 00

12 14 21 27 181 17 I 1 17



substitute for calculating standard times for different nights.
The working list shows that the difference between the times of transit of

Stars Nos. 296 and 669 is only 8 minutes, which means that, if the observations
on the first star lasted the anticipated full 10 minutes, the observer would
have to start his observations late on Star No. 669 and might therefore, not be
able to distribute his observations on this star evenly on either side of
transit. This imbalance is not a serious disadvantage for stars on the pole
side of the zenith, because it is known that systematic errors have a lesser
effect on the latitude derived from observations on these stars, (see section
5.15). Thus, if one finds that the times of transit of a pair of well
balanced stars are too close to each other to allow for a full set of
observations, one can adopt the following procedure. The observations should
be arranged, in such a way, that a full set on either side of transit is
obtained for the star on the equatopial side of zenith. This will mean that
observations to the star on the pole side of the zenith will have to be made
either slightly earlier or later depending upon the order in which they
transit.

Latitude from Observations on the Circum-Polar Star

10.33 A simple and convenient method of determining latitude may be used if
one takes advantage of the fact that, in medium to high latitude, observations
on a close circum-polar star need not be made in the vicinity of transit but
at any hour angle, because the time rate of change of altitude on such a star
will never be large and therefore, one may obtain highly accurate observations
at any hour angle. Such a star may be coupled with one on the equatorial side
to form a balanced pair.

The zenith distance of the star, which is on the equatorial side of the
zenith and which will balance that of the circum-polar star, will be
approximately equal to the magnitude of the co-latitude and this fact makes
the prediction procedure very simple. Then from the meridian formula

¢ = 0 - z
one can deduce that the declinationMof tNe matching star will be

(a) for the northern hemisphere

o 2¢ - 90
0

and (b) for the southern hemisphere

<S 2¢ + 90
0

This method of latitude determination has the advantage that the observer
can make observations on the star on the equatorial side of the zenith knowing
that the circum-polar star will be available at any time either b~fore or
after these observations.

10.34 To illustrate this technique, such a pair will be predicted for the
same circumstances as those of Section 10.31. These observations are to
start after the finish gf the circum-meridian gbservations (see Table 10.3),
i.e. at about LST = 12 20

m
(Standard Time 21 33m).

Declination of the south star <S Z¢ - 90
0 83 0

_ 900 _70

From the catalogue, star No. 348 is found as a suitable one.

No.

348

Mag.

4.5

dA(dt = 5
In

)

+1
0

42'

Polaris may then be observed at about LST = lzhSom.

From the Polaris diagram Fig 10.1(a) (or Pole Star Tables) the following is
obtained:-

A lIh -48'
-191-
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10.42 When the process of selecting stars is started, limits of altitude and
azimuth are set out to define a suitable area in which the required
observations should be made. Such limits define a quasi-rectangle, which may
be referred to as a Sky Window. With the passage of time, a certain band of
stars will appear to move through the sky window, which may be considered to
be stationary. Such a star band is one bounded by specific limits of right
ascension and declination.

To assist in the initial selection of stars from the catalogue, a diagram
has been constructed (see Fig 10.3), from which the limits of declination and
hour angle can be read off without preliminary calculations. For the prepar­
ations of this diagram, declinations have been limited to a band 10

0
wide

centred on a point, which has a zenith distance of 50° (ie. middle of the
range of zenith distances) on the prime vertical. From these limits of
declination, hour angle limits have been calculated to correspond to the
limits of zenith distance (ie. 40

0
and 60

0
). Thus if stars, which conform to

these limits of declination and hour angle, are observed, the observations
will lie within the chosen range of zenith distance and close to the prime
vertical.

5 W

3 30 (11th May 75)

15 13

18 43

5 26 W

13 17

15 17

Working List

the following is obtained:-

4
h

29
m

Declination range: 20
0

N to
20 48 30

0
N

to
to

Table 10.5

41
0

30' N

3
h

12
m

19 31
West
East

Aspect & Vertical Circle Standard Horizontal Circle
Mag. LST

Star No. CL CR Time CL CR

N Pol. 2.1 49°18' 310°42' 12
h

50
m

22
h

03
m

359°37' 179°37'

S 348 4.5 46 55 313 05 13 04 22 17 178 18 358 113

13 09 22 22 180 00 0 00

13 14 22 27 181 42 1 42
--

R

LST of start of the programme

LST of the finish of the programme

GST

UT

Zone

From the diagram for

Hour angle range:

Longitude from Near Prime Vertical Observations

10.41 An example of the preparation of a predicted programme for the deter­
mination of longitude for the following circumstances:-

station position: Latitude 4l~30' N
Longitude 5 26

m
W (Time Zone 5

h
W)

Date: 10th May 1975 h m
Programme: Start at about 22 30 Standard Time

Duration about 2h

Altitude range: 30° to 50° (zenith distance range 60° to 40°)
Declination balance: ±2°
Duration of observation on each star: about lOrn

Calculation of the LST of the start and finish of the programme.

Standard Time of the start of the programme 22
h

30
m

(10th May 75)



Fig.10.3 Limits of declination and hour angle for near prime vertical observations

Declination band \00 wide Zenith distance range 40" to 60"

For stations in south latitude, signs of latitude and declination are changed.

40° ·40" I
M
0\
r-lr- I

~,
v 300

- 30" S
" 0-
~ (1)...,
'<;;

/
,...l

20°
I

I 20°

100 _ 100

0° 00
_100 100 200 300 400 t 3h 4" 5h 6" West

22" 21 h
20" 19h

18" East

Declination Hour Angle



The star band and the sky window normally are, as shown in Fig 10.4,
inclined with respect to each other. At the start of the observing period,
tIlt? leading edge of the star band is situated at the corner of the sky window.
It will be seen, from this figure, that some of the stars in the star band
have already passed through the sky window and are not available for
observation, and also that stars at the declination boundaries of the star
band appear only fleetingly within the sky window, whilst those stars nearer
the centre of the band remain for some time. In addition, at the end of the
observing period, some stars within the star band will not have reached the
sky window. Compari8on with sections 10.52 and 10.62 is instructive.

10.43 From the limits of hour angle, previously determined at the end of

N

0°
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section 10.41, the ranges of RA may be determined as follows:-

------190°

the ohserving period.

To First Point Ofl Aries
!

Fig. 10.4 This figure illustrates the situation at the start of

270"



East West

17

48

17
29

os

8
2
1

13
4

12

13 17
20 48---
16 29

2
1 17

19 46

LST of the start of the prograrrune
Largest hour angle (see section 10.41)
RAS*
Duration of the programme
Hour angle difference (tl - t2) **

RAp*
* RAs and RAp are the catalogue limits of RA between which stars are selected.
**tl and t2 are the extremes of hour angle over the sky window.

Prom the list of available stars, one now selects pairs of stars, each
comprising one east and one west star. The ideal stars in a pair would have
identical declinations and,' if it were possible to observe them simultaneously,
they would be symmetrically placed on either side of the meridian, ie.
tE + tw ~ 24h , AE + AW ~ 3600 and zE ~ ZW, thus satisfying the optimum
conditions of the observation. Now if one were to observe on one of the stars
for a short period before the instant when these conditions are fulfilled and
for the same period on the other star immediately afterwards, then the average
zenith distances of each star would be equal, thus still maintaining all the
conditions. In practice, a compromise must be made and pairs of stars are so
selected that they have simi~r declinations (in our case within 20 ). Now the
condition, that tE + tw ~ 24 (or t E ~ -tw) will be applied. This will
simplify computation and, at the same time, partially satisfy the other two
conditions concerning azimuth and zenith distance.

From the relationships,

LST of observation

LST of observation

one obtains, for practical computation,
RA +

E
2

(if > RA
E

add

RAE -Mw
t w 2

RA -RA + 24
t

h' E
E 2

These relationships may now be used to pair off the stars because the ranges
of LST and RA have already been calculated.

2LST

Condition Range

to 30
h

34
ID

to 8
h

S8
m

Those stars, which satisfy these conditions for pairing, are given in the
following table of available stars.
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Available StarsTable 10 6.
East West

No. Mag. RA 6 Pair No. Mag. RA 6 Pair

442 2.8 16h 2g
m

21
0

32' N 266 3.1 gh44m 230 53 I N 1

467 3.2 17 14 24 52 N 1,2,3 270 4.1 . 9 51 26 07 N 2,4,5

477 4.5 17 30 26 08 N 4 277 3.6 10 15 23 32 N 3,6

488 3.5 17 46 27 44 N 5 301 2.6 11 13 20 39 N 7,8

495 3.8 17 57 29 15 N

501 3.8 18 07 28 45 N

510 3.9 18 23 21 45 N 6,7

517 4.3 18 45 20 31 N 8

542 3.2 19 30 27 54 N

The small line diagram below will now be found to be of assistance in the
final selection of stars.

Pair No.
I 2

I I
4 3 5

I I I
LST

6

I
7

I

Fig 10.5

Table 10 7 Selected Longitude Stars

Aspect Standard Zenith
ZD Az

Pair Hour
& LST Diff Time on Azimuth Change Change

No.
Star Predicti,n

Angle Distance
for for

NO. Date t z A + lOrn + lOrn

Start of
13

h
17

m 22
h

30
m

Prediction
Period 12

m

1 E 467 13 29 0
22 42 _3h 45m

49
0

00' 91
0

27' -1
0

52'. +1
0

42'

1 W 266 13 29
19

22 42 +3 45 49 33 267 29 +1 52 +1 44

5 E 488 13 48
0

23 01 -3 58 49 51 86 11 -1 52 +1 33

5 W 270 13 48
31

23 01 +3 58 50 44 272 03 +1 52 +1 36

6 E 510 14 19
0

23 32 -4 04 54 21 91 28 -1 52 +1 41

6 W 277 14 19 23 32 +4 04 53 19 270 19 +1 52 +1 39

f::, I
h

02
IT[1h 02m; f::, 1

h 02m
;

Formulae cos z sin ¢ sin 6 + cos ¢ cos 6 cos t

- sin t
tan A

tan 6 ¢ sin ¢ tcos - cos

check cos 6 cos t = cos z cos ¢ - sin z sin ¢ cos A
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Table 10.8 Working List

EAST WEST

Pair No.
Vertical Circle Horizontal Circle

LST
Standard Vertical Circle Horizontal Circle

MagMag
Time

NoCL CR CL CR CL CR CL CR

1 467 3.2 50°52' 309°08' 89°45' 269°45' 13
h

19
m

22
h

32
ffi

47°41' 312°19' 265°45' 85°45' 3.1 266

49 56 310 04 90 36 270 36 13 24 22 37 48 37 311 23 266 37 86 37

49 00 311 00 91 27 271 27 13 29 22 42 49 33 310 27 267 29 87 29

48 04 311 56 92 18 272 18 13 34 22 47 50 29 309 31 268 21 88 21

47 08 312 52 93 09 273 09 13 39 22 52 51 25 308 35 269 13 89 13
--

2 488 3.5 51 43 308 17 84 38 264 38 13 38 22 51 48 52 311 08 270 27 90 27 4.1 270

50 47 309 13 85 25 265 25 13 43 22 56 49 48 310 12 271 15 91 15

49 51 310 09 86 11 266 11 13 48 23 01 50 44 309 16 272 03 92 03
I
l'

48 55 311 05 86 57 266 57 13 53 23 06 51 40 308 20 272 51 92 51 0'\
~

273
I

47 59 312 01 87 44 267 44 13 58 23 11 52 36 307 24 39 93 39

3 510 3.9 56 13 303 47 89 47 269 47 14 09 23 22 51 27 308 33 268 40 88 40 3.6 277

55 17 304 43 90 38 270 38 14 14 23 27 52 23 307 37 269 29 89 29

54 21 305 39 91 28 271 28 14 19 23 32 53 19 306 41 270 19 90 19

53 25 306 35 92 18 272 18 14 24 23 37 54 15 305 45 271 09 91 09

52 29 307 31 93 09 273 09 14 29 23 42 55 11 304 49 271 58 91 58

Note. (1) One may choose to observe either an east or a west star first and then change over to
the other star at the tabulated central value of the LST or Standard Time.

(2) Another pair Nos. 507 and 301 is also available.



Azimuth from Circum-Elongation Observations

for the deter-

Time

about 20
m

h
20

h
Standard

4 30
m

to 900 N

about
about
75 0 N

10.51 An example of the preparation of a predicted programme
mination of azimuth for the following circumstances:-

Station position: Latitude 41~301 N
Longitude 5 26

m
W (Time Zone 5

h
W)

Date: 10th May 1975
Programme: Start at

Duration
range:
balance: ±5°
observation on each star:

Declination
Declination
Duration of

Calculation of the LST of the start and finish of the programme

Standard Time of the start of the programme 20
h OO

m
(10th May 1975)

Zone 5 W

UT 1 00 (11 th May 1975)

R 15 13

GST 16 13

A 5 26 W

LST of the start of the programme 10 47

LST of the finish of the programme 15 17

To assist in the initial selection of stars from the catalogue, a diagram has
been constructed (see Fig 10.6). From this, hour angles, and for later
purposes azimuths and altitudes at elongation, may be read off without
preliminary calculation.

From this diagram for ¢ = 41
0

30' N, for the limits of declination from 75
0

to 900 as shown, the corresponding hour angle ranges are:-

West 5h 07m to 6Iuom

East 18 bO to 18 53

10.52 For azimuth determination from circum-elongation observation, the sky
window, as defined in section 10.42, becomes a curved line, which is a portion
of the elongation locus and, therefore does not enclose an area on the
celestial sphere. This portion of the locus, comprising the sky window for
the azimuth case, extends from the pole to the lower limiting declination
of 750 N. The situation at the start of the observing period is illustrated
in Fig 10.7. The star band here, unlike that of section 10.42, consists of a
sector with the pole at the apex.

At the start of the observing period, the leading edge of the star band is
situated tangential to the elongation locus at the pole, i.e. it lies at
right angles to the meridian. Figure 10.7 shows some of the stars in the
star band have already passed over this locus and are not available for
observation. In addition, at the end of the observing period, some stars in
the star band have not reached the locus of elongation. Comparison with the
situation in section 10.42 is instructive.

10.53 From the limits of hour angle, previously determined at the end of
section 10.51 and in the same manner as that of section 10.43, the ranges of
RA may be determined as follows:-
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Fig 10.7 This figure illustrates the situation at the start of the observing period

East West

LST of the start of the programme 10
h

47
m

10
h

47
m

Largest hour angle (see section 10.51) 18 53 6 00
RA

S 15 54 4 47
Duration of the programme 4 30 4 30
Hour angle difference (t 1 - t2) 53 53
RA 21 17 10 10F
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Available StarsTable 10 9·
~ East West

No. Mag RA 0 t LST No. Mag RA 0 t LST

664 5.0 16
h

1S
m

+75°49' 18
h

S2
m

11
h

10
m

655 5.1 4
h

56
m

+81°10' 5
h

28
m

10
h

24
m*

1
453 4.4 16 49 +S2 05 18 28 11 17 656 5.2 5 18 +79 12 5 21 10 39 *

1665 5.0 17 51 +76 58 18 47 12 38 657 4.7 6 56 +77 01 5 13 12 09

666 5.1 19 10 +76 31 18 49 13 59 658 5.3 8 01 +79 33 5 22 13 23

557 4.4 20 10 +77 38 18 45 14 55 659 4.6 9 34 +81 26 5 29 15 03

* Some stars with certain combinations of hour angle and declination do
not elongate within the given range of LST's. These stars (marked *)
may then be rejected, but it should be noted that, by using the aforegoing
procedure, we include in our list of available stars all which elongate
between the programme time limits (see section 10.52).

Table 10.10 Selected Azimuth Stars

!Pair Aspect &
Standard

Zenith
ZD

1ST Diff Time on Change Azimuth
No. Star No.

Prediction
Distance

for
Date +10

m

IStart of
10

h
47

m
20

h
OO

m
fPrediction
!period

30
m

I
1 NE 453 11 17

52
20 30 48°01' _0°21 • 10°36'

2 NW 657 12 09 21 22 47 09 +0 34 342 33
29

2 NE 665 12 38
45 21 51 47 09 -0 34 17 31

3 NW 658 13 23
36

22 36 47 38 +0 27 345 59

3 NE 666 13 5\"\
1 C4 23 12 47 03 -0 35 18 08

1 NW 659 15 03 00 16 47 56 +0 22 348 32

/), 4
h

16
m l::4

h
16

m
; f:.. 4

h
16

m
;

Table 10.11 "lorking List

Pair
Aspect & Vertical Circle

LST
Standard Horizontal Circle

Star No.
Mag

CL CR Time CL CR

1 NE 453 4.4 48°22 ' 311°38' 11h 07 ffi 20
h

20
m

10°36' 190°36'

48 01 311 59 11 17 20 30

47 40 312 20 11 27 20 40
--

2 NW 657 4.7 46 35 313 25 11 59 21 12 342 33 162 33

47 09 312 51 12 09 21 22

47 43 312 17 12 19 21 32

.,
NE 665 5.0 47 43 312 17 12 28 21 41 17 31 197 31,.

47 09 312 51 12 38 21 51

46 35 313 25 12 48 22 01
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Table 10.11 (contd)

Pair
Aspect &

Mag
vertical Circle

LST
~tandard Horizontal Circle

star No. eL CR Time CL CR

3 NW 658 5.3 470 11 r 312
0

49' 13
h

13
IT

22
h

26
m

345
0

59 ' 165
0

59'

47 38 312 22 13 23 22 36

48 05 311 55 13 33 22 46

3 NE 666 5.1 47 58 312 22 13 49 23 02 18 08 198 08

47 03 312 57 13 59 23 12

46 28 3l:i 32 14 09 23 22

1 NW 659 4.6 47 34 312 26 14 53 0 06 348 32 168 32

47 56 I 312 04 15 03 0 16

48 18
1

311 42 15 13 0 26

Calculation of the LST of the start and finish of the programme.

Standard Time of the start of the programme 20
h OO m

10 59

12 59

_1_0__ E

10 00

15 10

1 10

9 49 E
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9
0

27' S
gh49m E (Time Zone 10h E)

Latitude
Longi tude

LST of the start of the programme

LST of the finish of the programme

CST

UT

R

To ensure that observations are kept within the altitude limits of 15
0

and
30

0
, which have been imposed from considerations of atmospheric transparency

and the minimisation of the effects of transverse dislevelment respectively,
additional arbitrary altitude limits of 20

0
and 25

0
have been set. .

Declinations and hour angles may now be computed corresponding to the limits
from

Station Position:

10.54 Star pairs should be selected mainly by means of declination balance.
In addition, sufficient time should be allowed for the purpose of completing
the observations on each star. This requires a period of approximately twenty
minutes between any two stars, observed in succession. It is not necessary
for a maximum period between the two stars of a balanced pair to be specified,
as is required for the longitude and the latitude pairs. This is so, whether
time azimuth or altazimuth observations are made, provided they are both made
on stars near their points of elongation. (see section 7.71)

10.55 An example of the preparation of a predicted progrmnme for the
determination of azimuth, for a station situated in a low latitude, for the
following circumstances:-

Zone

Date: lOth May 1975
Programme: Start at about 20

h
Standard Time

Duration about 2h

Minimum altitude: 15
0

Maximum altitude: 30
0

Declination balance: ±2°
Duration of observation on each star: about 20

m



sin 0
e

sin <p

sin he
and +cos he

cos <p

~-~ ~esults of this computation are:~

Declination -22
0

51'

Hour Angle ± 4
h

27
m

to

to

_5~~~ the principles stated in section 10.51, the ranges of RA may be calculated
=:5 ::~llows:-

East West

-- of the start of the programme 10h 59m lOh59m

:'•.=:' ::2St hour angle (see section 10.51) 19 33 4 49

-- IS 26 6 10- - ~ ==

:--:'::-3.tion of programme 2 00 2 00

:-: :~.:r angle difference (tl - t2) 22 22

---. 17 48 8 32

Table 10.12 Available Stars

East West

,-- Mag RA I 0 t LST No. Mag RA 0 t LST-' -' ..

.; ::"3 3.8 15
h

36
m

-28°03' _4 h 47m
10

h
49

m* 192 3.7 7h O]m -27
0

54' 4
h

47
m llh48m

• ~r 3.0 15 57 -26 03 -4 40 11 17 193 3.1 7 02 -23 48 4 31 11 33-:LQ

";38 3.1 16 20 -25 32 -4 38 11 42 196 2.0 7 07 -26 21 4 41 11 48

";41 1.2 16 28 -26 23 -4 42 11 46 200 3.8 7 14 -26 44 4 43 11 57

H7 2.9 16 34 -28 10 -4 48 11 46 218 3.5 7 48 -24 48 4 36 12 24

469 3.4 17 21 -24 59 -4 36 12 45 222 2.9 8 06 -24 14 4 33 12 39

1
472 4.3 17 25 -24 09 -4 33 12 52

* See note section 10.53

For the calculation in Table 10.12 and later, the following relationships are
obtained from the right angled triangle at elongation,

cos t =
e

tan ¢
tan 0

sin ¢
cos ze = sin 0 sin

+ cos 0
A =e - cos cD

For the final selection of star pairs the reader is referred to section 10.54.

Table 10.13 Selected Azimuth Stars

Aspect &
Standard

i
ZD

Pair Time on zenith
Star LST Diff

Prediction Distance
Change Azimuth

No.
No. for +lOm

Date
Start of

10h 59m 20
h

OO
m

Prediction
Period 18

m

1 SE 426 11 17
31

20 18 68°02'
I

-2°15' 114°24 •

1 SW 196 11 48
36

20 49 68 17 +2 14 245 17

2 SW 218 12 24
28

21 25 66 57 +2 16 246 58

2 SE 472 12 52 21 53 66 20 -2 17 112 20

~
Ih53m L:l

h
53

m
; f'., I

h
53

m
;
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Table 10.14 Working List

Pair
Aspect &

Mag
Vertical Circle Standard Horizontal Circle

Star No. CL CR
LST

Time CL CR

1 SE 426 3.0 70
0

17' 289
0

43' llh07m 20hOSm
114

0
24 I 294

0
24'

68 02 291 58 11 17 20 18

65 47 294 13 11 27 20 28

1 SW 196 2.0 66 03 293 57 11 38 20 39 245 17 65 17

68 17 291 43 11 48 20 49

70 31 289 29 11 58 20 59

2 SW 218 3.5 64 41 295 19 12 14 21 15 246 58 66 58

66 57 293 03 12 24 21 25

69 13 290 47 12 34 21 35

2 SE 472 4.3 68 37 291 23 12 42 21 43 112 20 292 20

66 20 293 40 12 52 21 53

64 03 295 57 13 02 22 03

Azimuth from Circum-Meridian Observations

10.56 An example of the preparation of a predicted programme for the deter­
mination of azimuth in equatorial latitudes from circum-meridian observations
is given below for the same circumstances as those of section 10.55. Theory
is given in section 7.31 and discussion in section 7.33.

In this method, pairs of stars, each of which comprises one star to the north
and one to the south, are observed at upper transit. The stars forming a pair
have balanced time rates of change of azimuth, see section 7.33 and 7.34.
This balance of rates is achieved when the following condition is satisfied,

tan ON + tan Os ~ 2 tan ¢

The altitude of a star observed on the equatorial side of the zenith is a~ways

smaller than that of the other star of the pair. For the former stars, a
minimum of 150 and a maximum of 30

0
will be assigned as their limits of

altitude. From these limits, the corresponding values of declination for both
north and south stars may then be evaluated as follows,

For ep = -9
0

27'

At upper transit °-
North Stars

h ::: 15
0

z +75
0

° +65
0

33'
Declination limitsM N

h 30 z +60 ON +50 33
M

South Stars
tan ON + tan ° = 2 tan ¢

S
-680 27 ,)For ° +65

0
33' ° Declination limitsN S )

For ON +50 33 Os -57 08 )

From these limits of declination and from the limits of LST, which here equal
those of the RA values, a set of available stars is taken out in Table 10.15,
in which the dA rates are also shown. From these, by balancing rates and

at
allowing sufficient time for the observation to be made, Table 10.16 shows
the stars selected and Table. 10.17 the final working list.

-204-



Table 10.15 Available Stars

North

No. Mag RA 0 dA
Pair

N zM dt
298 1.9 n h

02
m

+61
u

52' +71u 19, -0.50 1,2,3

318 2.5 11 52 +53 49 +63 16 -0.66 4,5,6,7

323 3.4 12 14 +57 10 +66 37 -0.59 8,9,10

342 1.7 12 53 +56 05 +65 32 -0.61 11,12,13

South

No Mag RA Os z etA
Pair

M dt

299 4.0 llh07m -58°50' -49
0

23' +0.68 4

311 3.3 11 35 -62 53 -53 26 +0.57 8,11

312 3.8 11 45 -66 35 -57 08 +0.47 1

322 3.1 12 14 -58 37 -49 10 +0.69 5

327 3.6 12 20 -60 15 -50 48 +0.64 6,12

328 1.6 12 25 -62 57 -53 30 +0.57 2,9

339 3.3 12 45 -67 58 -58 31 +0.44 3

340 1.5 12 46 -59 33 -50 06 +0.66 7,10,13

Table 10.16 Selected Stars

Pair Aspect &
Standard

Zenith
Azimuth

LST Diff Time on Azimuth ChangeNo. Star No.
Prediction

Distance for +lOm
Date

Start of
10

h
59

m
20

h
OO

ID
Prediction
Period 8

m

4 S 299 11 07
28

20 08 -49°23' 180°00' +1
0

42'

8 S 311 11 35
17

20 36 -53 26 180 00 +1 25

4 N 318 11 52
22

20 53 +63 16 00 00 -1 40

8 N 323 12 14 21 15 +66 37 00 00 -1 29

/::, 1
h

15
m

L:l
h

lS
ID

/::, 1
h

lS
ID

Pair Aspect &
Mag.

vertical Circle
LST

Standard Horizontal Circle
Star No. CL CR Time CL CR

4 S 299 4.0 49°23' 310°37' 10
h

S7
ID

19
h

58
ID

178°18' 358°18'

11 07 20 08 180 00 00 00

11 17 20 18 181 42 1 42

8 S 311 3.3 53 26 306 34 11 25 20 26 178 35 358 35

11 35 20 36 180 00 00 00

11 45 20 46 181 25 1 25
A slight overlap here

Ta.h1e 10.17
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LATITUDE AND LONGITUDE FROM POSITION LINE OBSERVATIONS

Table 10.17 (contd)

Calculation of the LST of the start and finish of the programme:

This is the same as that in section 10.31, where

41~301 N
5 26

m
W (Time Zone 5

h
W)

Lati tude
Longitude

h
about 2g Standard Time
about 2

10.61 AN example of L~e preparation of a predicted programme for the
simultaneous determination of latitude and longitude for the following
circumstances:-

Station position:

Date: 10th May 1975
Programme: Start at

Duration
Altitude: 45

0

Azimuth: Close to the azimuth quadrant centres
Duration of Observation on each star: About lOrn

Pair
Aspect & vertical Circle

LST
Standard Horizontal Circle

Star No.
Mag

CL CR Time CL CR

4 N 318 2.5 63
0

16' 296
0

44 ' 11
h

42
m

20
h

43
m

1
0

40' 181°40'

11 52 20 53 00 00 180 00

12 02 21 03 358 20 178 20

8 N 323 3.4 66 37 293 23 12 04 21 05 1 29 181 29

12 14 21 15 00 00 180 00

12 24 21 25 358 31 178 31

LST of the start of the programme

LST of the finish of the programme

To assist in the initial selection of stars from the catalogue, two diagrams
have been constructed (Figs 10.S(a) and (b» from which the limits of
declination and hour angle can be read off without preliminary calculations.
For the preparation_of these diagrams, declinations have been limited to a
band 100 wide centred on points, which have zenith distances of 450 in the
centres of the azimuth quadrants. From these limits of declination
corresponding values of the hour angle have been calculated.

From Figs 10.8(a) and (b) for ¢ = 41
0

30' N, the following is read off:

Quadrant NE & NW SE & S~'i1
I

Declination +52~5 to +62~5 +0~4 to +lO~4

Hour Angle ± 4
h

26
m

to ± 4
h

39
m ±lh 21m to ± 2

h
2S

m

From these limits of hour angle the ranges of RA may be calculated.

10.62 For position line observations, the sky window of section 10.42
becor~s a line, as in section 10.52. The star band is the same as that of
section 10.42. At the start of the observing period, the leading edge of the
star band is shown in Fig 10.9 to be situated at the end of the line
representing the sky window. It also shows that some stars in the star band
have already crossed the almucantar and are not available for observation.
In addition, at the end of the observing period, it is clear that some stars
in the star band have not reached this line. Comparison with sections 10.42
and 10.52 is instructive.
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Fig 10.8(a) Limits of Hour Angle for Position Line Observations
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Fig 10.8(b) Limits of Declination for Position Line Observations
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,1__

~
Duration of Observation

Fig 10.9 This figure illustrates the situation at the start of the observations

10.63 From the limits of hour angle, previously determined at the end of
section 10.61 and in the same manner as that of section 10.43 the ranges of RA

may be determined as fo11ows:-

NE NW SE SW

LST of the start of the programme 10h47m 10h47m 10h47IT1 10h47m

Largest hour angle (see section 10.61) 19 34 4 39 22 39 2 28

RAs 15 13 6 08 12 08 8 19

Duration of Programme 2 2 2 2

Hour angle difference (tl - t2) 13 13 1 07 1 07

RAp 17 26 8 21 15 15 11 26
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Table 10.18 Available Stars

NE NW

No. Mag RA <5 t LST No. Maq RA <5 t LST

405 3.5 lSh 24m 59°03 'N 19
h

25
m 10h49m 173 4.4 6

h
17

m
59°01 'N 4

h
3S

m
10

h
52

m

429 4.1 16 01 58 38 N 19 25 11 26

440 2.9 16 24 61 34 N 19 22 11 46

SE SW

343 3.7 12 54 3 32 N 22 12 11 06 232 4.2 8 36 5 47 N 2 03 10 39 *

363 4.3 14 00 1 40 N 22 27 12 27 240 3.5 8 45 6 30 N 2 07 10 52

387 3.8 14 45 2 00 N 22 24 13 09* 242 3.3 8 54 6 02 N 2 05 10 59

254 3.8 9 13 2 25 N 1 39 10 52

265 3.8 9 40 10 00 N 2 26 12 06

288 3.8 10 32 9 26 N 2 24 12 56 *

306 4.1 11 20 6 10 N 2 05 13 25 *

*Some stars with certain combinations of hour angle and declination will not
cross the 45° almucantar within the given range of LST's. These stars
(marked *) may then be rejected but it should be noted that, by using the
aforegoing procedure, there are included in our list of available stars,
all which will cross this almucantar between the programme time limits.
(see section 10.62)

One now selects 4 stars, one in each of the quadrants, such that it is
possible to observe them in the shortest possible period.

vertical Circle Standard Horizontal Circle
Aspect No. Mag

CL CR
LST

Time CL CR

Nlv 173 4.4 44°22' 315°38' lOh47m 20
h

OO
m

317°06' 137°06'

45 00 315 00 10 52 20 05 317 14 137 1.4

45 38 314 22 10 57 20 10 317 22 137 22

Aspect &
Standard

ZD Az
LST Diff Time on Azimuth

Star No.
Prediction

Change Change
A for +5

m
for +5

ID

Date

Start of
10h47 ID 20

h
OO

m
Prediction
Period

5
m

NW 173 10 52
34

20 05 317°14' +0°38' +0°98'

NE 429 11 26
40

20 39 43 19 -0 39 +0 09

SW 265 12 06 21 19 236 10 +0 47 +1 21
21

SE 363 12 27 21 40 146 05 -0 31 +1 36

f'1 Ih40m 2: 1h 40m f'11
h

40
m

Table 10.19

Table 10.20

Selected Position Line Stars

Working List
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Table 10.20 (contd)

vertical Circle
LST

Standard Horizontal Circle
Aspect No. Mag

CL CR Time CL CR

NE 429 4.1 45
0

39' 314
0

21' 11
h n m

20
h

34
m

43
0
10' 223°l.0'

45 00 315 00 11 26 20 39 43 19 223 19

44 21 315 39 11 31 20 44 43 28 223 28

sw 265 3.8 44 13 315 47 12 01 21 14 234 49 54 49

45 00 315 00 12 06 21 19 236 10 56 10

45 47 314 13 12 11 21 24 237 31 57 31

SE 363 4.3 45 31 314 29 12 22 21 35 144 29 324 29

45 00 315 00 12 27 21 40 146 05 326 05

44 29 315 31 12 32 21 45 147 41 327 41

Combined Observation Programmes

10.71 The previous examples illustrate methods of prediction for the separate
determination of latitude, longitude and azimuth. Sometimes it may be
nec('ssary to compile a programme for the determination of all three elements
together (position lines excluded) and, in this case, one can still use the
same techniques, although the order in which the prediction for each element
is done, can be critical. In most cases, it will be found that if one
restricts oneself to observing close circumpolar stars, there are only a few
stars available for azimuth determination, and therefore one should predict
for this element first. Now, because the latitude Observations may also require
high declination stars, one should endeavour to fill in the gaps between the
times of the azimuth stars with latitude star pairs. After this, the remaining
gaps may be filled with longitude star pairs, which are often quite numerous,
because these stars are chosen from the lower declination ranges. In practice,
there may arise situations where this order of prediction leads to
difficulties, which should not be construed as being a failure of the
principle but as being due to a situation brought about by irregular star
distribution, a fact which is easy to verify from a casual look at the night
sky.

PREDICTION AIDS

10.81 THE prediction procedures used in the previous examples can all be
described in strict mathematical terms, which may then be translated into
computer programmes. These programmes, in conjunction with a data set made
up from a star catalogue, can then be used for the preparation of working
lists. The preparation of such programmes may be quite difficult and time
consuming, notwithstanding the apparent simplicity of the prediction process
(eg. meridian transit observations require a large number of complicated
logical branching statements) and, therefore, there should be a continuing
need for such programmes to justify their compilation.

Aids to prediction, other than the computer may be divided into two broad
classes,

(a) those, which assist in the calculation of ranges of hour angle
and declination before the stars are selected from the catalogue

(b) those, from which the stars for observation are directly selected.

Some of the former class of aids have been used for the preparation of the
previous examples, where it can be seen that no great accuracy is required
in the construction of these graphs or in the results obtained from them. If
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Balanced Pairs of Longitude StarsTable 10.21

West Star East Star

Z.D. AZ LST AZ Z.D.Cat No. Mag
Lat40 Lat45 Lat40 Lat45 Hrs Min Lat40 Lat45 Lat40 Lat45

Mag Cat No.

40.1 41.0 262.2 256.5 9 42 89.0 94.2 44.3 44.4

254 3.2 42.0 42.7 264.1 258.7 9 52 90.6 96.1 42.4 42.7 4.3 492

43.9 44.5 265.9 260.8 10 02 92.3 98.1 40.5 40.9

51.3 51.0 275.9 271.9 9 57 77.0 80.4 55.4 54.4

1158 4.5 53.3 52.8 277 .4 273.6 10 7 78.3 82.0 53.5 52.7 3.8 534

55.1 54.5 278.8 275.3 10 17 79.6 83.6 51.6 50.9

48.9 48.5 276.9 272.6 10 11 78.8 82.6 52.8 52.0

1168 4.5 50.8 50.2 278.3 274.2 10 21 80.2 84.3 50.9 50.2 3.8 534
52.7 52.0 279.7 275.9 10 31 81.5 85.9 49.0 48.4

49.3 48.8 277.2 272.9 10 13 79.4 83.2 53.2 52.5

1168 4.5 51. 2 50.6 278.6 274.6 10 23 80.8 84.8 51.4 50.7 4.5 1380

53.0 I 52.3 280.0 276.2 10 33 82.1 86.4 49.5 49.0I

I
I\..)

I-'
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Table 10.22 Balanced Sets of Position Line Stars

NW QUADRANT NE OUADRANT

AZIMUTH Z.D. IST AZIMUTH Z.D. LSTCat No. Mag
Lat-26 A Lat-24 Lat-26 B Lat-24 Hrs Min

Cat No. Mag
Lat-26 A Lat-24 Lat-26 B Lat-24 Hrs Min

1603 4.7 316.5 2.7 315.1 45.8 1-1.6 44.4 1 06 1058 4.5 44.5 2.7 45.9 45.7 1.6 44.3 0 10

1606 5.2 315.0 2.6 313 .6 45.8 1-1.6 44.4 1 14 85 4.3 45.4 2.6 46.9 45.7 1.6 44.3 0 23

28 4.6 312.6 2.6 311.2 45.7 f-1.7 44.4 2 56 98 4.4 41.8 2.7 43.1 45.7 1.5 44.3 0 48

36 4.5 313.3 2.6 311.8 45.8 f-1.7 44.4 3 09 1083 4.7 44.4 2.7 45.8 45.7 1.6 44.3 0 57

-
SW QUADRANI' SE QUADRANT

AZIMUTH Z.D. LST
Cat No.

AZIMUTH Z.D. LST
Cat No. Mag

Lat-26 A Lat-24 Lat-26 B Lat-24 Hrs Min
Mag

Lat-26 A lLat-24 Lat-26 B Lat-24 Hrs Min

829 2.2 228.2 1-0.5 226.8 44.4 f-1.7 45.8 1 27 187 4.9 135.5 -O.E 136.9 44.3 1.6 45.8 1 48

860 3.7 221.8 ~0.7 220.4 44.2 1-1.5 45.7 2 00 199 5.5 137.1 -0.6 138.4 44.2 1.5 45.7 2 05

856 2.2 228.3 0.5 226.8 44.3 1-1.7 45.7 2 01 1152 5.5 131.8 -0.5 133.3 44.3 1.7 45.7 2 10

15 4.9 225.5 1-0.5 224.1 44.4 1-1.6 45.8 3 48 263 2.8 137.0 -0.6 138.3 44.3 1.5 45.8 3 35
-

The values of azimuth and zenith distance 10 minutes earlier than those tabulated may be found by adding
the A factor to the azimuth and the B factor to the zenith distance.

I
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one wishes to use aids from the latter class, there are two principal ways of
representing this information. The first of these is to use tables such as
"Star prediction tables for the fixing of position" prepared by G.G. Bennett,
J.G. Freislich and M. Maughan and published as a monograph by the School of
Surveying, University of New South Wales, Australia. These tables extend over
a latitude range from 600S to 60

0
N and contain stars selected from the

Apparent Places of Fundamental Stars (FK4) catalogue. The tables are so
constructed that a working list of near prime vertical star pairs and sets of
position line stars can be prepared quite quickly by simple linear interpol­
ation between the tabulated values. Extracts from these tables appear in
Tables 10.21 and 10.22.

The second way of obtaining star information directly is to use a planisphere
or similar device, which often has some mechanical movement. Planispheres
have their origins in antiquity, when the term astrolabe was applied to
observing instruments, which incorporated a star chart. Modern planispheres
usually consist of a central circular disc, upon which the stars have been
plotted on either a stereographic or a polar equidistant projection. A
transparent cursor or mask, upon which altitude and azimuth lines have been
plotted, rotates around the centre of the chart (the visible pole) thus
simUlating the daily motion of the stars. If the planisphere is to be used
over a range of latitudes, then it is necessary to have a number of cursors
for the various latitudes, because each cursor represents only the situation
for the latitude used in the calculation of its azimuth and altitude lines.
This is the chief limitation of the planisphere, because, if one wishes to
make accurate readings from it, then it must be large and with it there must
be provided a considerable number of cursors. For a teaching situation, where
instruction is given in one latitude, it is an ideal aid and it can be used
not only for prediction purposes but also for demonstrating sun and star
movements in a very clear and easily understandable manner. A photograph of
such a planisphere appears in Fig 10.10. A small planisphere called the "Star
Finder and Identifier", based upon the principles of Rude and Collins, often
called simply the "Rude Star Identifer" is produced by the u.s. Naval Oceano­
graphic Office (for reference when ordering, No. 2101-D). The star chart of
this planisphere is approximately 21 cm in diameter and has plotted on it the
57 bright stars listed in the Air and Nautical Almanacs. It is also possible
to plot on this chart the position of other celestial bodies, such as the sun
and the planets. Transparent cursors, 9 in number are also supplied. These
have latitude values between 85

0
S and 85

0
N in steps of 100. The planisphere

is intended for use in sea and air navigation and although small, is also
very useful for star observations taken on land.

For position line observations, especially when an astrolabe is employed,
the prediction process is simplified considerably because one of the variables
viz. altitude, is fixed. A variety of tables, diagrams and charts have been
produced to assist in the prediction process for this method.

A star globe is usually found where any astronomy is being taught. This can
be made into an efficient means of star prediction. An excellent type is one,
supported in a cradle, which allows the globe to rotate about the polar axis
and also allows the axis to be set at various angles of inclination, which
correspond to the latitude. A yoke or similar device may then be placed over
the globe to allow the altitude and azimuth of the stars to be read off for
any desired time. An illustration of two such globes appears in Fig. 10.11.
These globes are normally employed for teaching purposes, because their bulk
renders them inconvenient for field use. Both planispheres and star globes
may be used for star identification purposes, when often only a rough knowledge
of the RA and declination of a star is sufficient to identify the star in the
catalogue.
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Fig 10.10 A Plani~phcre
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These quantities need not be known accurately, since an error of one tenth
of an arc-degree can usually be comfortably tolerated.

For this calculation, one may use the Cosine and the Four Parts Formulae
of section 2.75, namely

The catalogue may then be searched for a star, having the corresponding RA and
6. If this is successful, the computation can then be completed.

Sometimes, however, the search may be fruitless. This is likely to occur if
the catalogue used contains the positions of only a limited number of stars.
The principal catalogues used by surveyors are:-

... 10.4

that the star
This may result

sin 6 = sin h sin ¢ + cos h cos ¢ cos A

The station's position (latitude and longitude).
An observed altitude of the body.
The clock time of the observation and further information so that the
Local Sidereal Time of the observation may be determined.
An observed azimuth of tile body.

(i)

The Star Almanac for Land Surveyors, an annual publication, gives apparent
places of all stars brighter than magnitude 4 and some additional stars of
high declination with magnitudes to 5.5. The FK4, also an annual publication,
lists stars up to magnitude 7.9, but does not include all stars up to this
limiting magnitude, because the catalogue is intended to provide a general
coverage. Where a cluster of bright stars appears, the positions of only
some of these stars will be given. The remaining catalogues in the list are
not so convenient to use for two reasons. Firstly, the coordinates are not
published annually but for a specific epoch, e.g. the Boss Catalogue contains

(iv)

Observations were undertaken with a sketchy or incorrect working list
or even without any working list at all.
The horizontal circle was incorrectly oriented.
Observations were made on the incorrect one of two or more stars in
the field of view of the theodolite telescope.

If this situation arises and the surveyor considers it essential to include
these observations in his work, he must then identify the star in a star
catalogue from a calculation of its right ascension and declination. For this
purpose it will be assumed that the following information is available.

10.91 SOMETIMES when observations are computed, it is found
observed was not the one, which it was intended to observe.
from one or more of the following causes:-

(ii)
(iii)

- sin A
tan t

¢ h sin ¢ · .. 10.5
cos tan - cos A

with a check from the Five Parts Formula given as

cos 6 cos t sin h cos ¢ - cos h sin ¢ cos A · .. 10.6

Also RA LST - t • .. 10.7

STAR IDENTIFICATION

(i)
(ii)
(iii)

Name
Number of Stars

Listed

The star Almanac for Land Surveyors 685

The Apparent Places of Fundamental Stars (FK4) 1 535

The Supplementary Catalogue to the FK4 1 990

The Boss General Catalogue 33 342

IThe Smithsonian Astrophysical Observatory Catalogue 258 997



A clear plastic slar glo he

A McCormick star globe

Fig 10.11 Star Globes
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with this information the following was obtained by means of Equations 10.4
to 10.7.

33
0

55' S

44
0

18'

5h23mOSs

cos ¢ sin A

dh
dt sec ¢

dh
dt

sin A

Latitude of the Station

Observed Altitude

Local Sidereal Time of the observation

An approximate azimuth of 140
0

was assumed as a starting value.

so that

10.92 Example. The data of section 9.81 will be used. The star was known to
lie in the north western sky. The latitude was 330 55'S and the time rate of
change of altitude obtained from the first and last observation was found to
be -8.86 arc-seconds per clock second. From this the azimuth is found to be
225.20 or 314.80 • The ambiguity here is resolved, because the star was
observed to the north west. In fact, this ambiguity raises difficulty only
when the star observed lies near the Prime Vertical. The identification
process is now started with this value of 314.8

0
as a preliminary value of

the azimuth.

10.93 Example of a star identification
The following information was available from an observation made on an

unknown star towards the south east.

the mean places of stars for the epoch 1950. This necessitates a special
calculation for obtaining the apparent place at the epoch of observation.
Secondly, these catalogues are not as readily available as the first two,
because copies, either in book form or on computer files, are generally held
only by surveyor mapping authorities, observatories and some teaching
institutions. These inconveniences should be kept in mind, when observing
programmes and working lists are being prepared; otherwise, if attention is
not given to these aspects in the preparatory phase of the task, additional
calculations may be necessary and delays may be incurred in the subsequent
processing of the observations.

The calculation of the RA and declination, referred to before, may not lead
to a successful identification, even if the larger catalogues are used. In
many instances, this failure to identify the star is due to a poor orientation
of the horizontal circle and therefore the azimuth assumed in the calculation
is in doubt. The identification may be effected by duplicating the calculation
of the RA and declination with a value of azimuth a few degrees different
from that used in the original calculation and plotting the star positions
resulting from the calculations on a star chart, such as that given in Norton's
Star Atlas or on a Modified Mercator Chart similar to that used for plotting
astronomical position lines (see section 9.21 and Figs 9.3 and 10.12). It
should be kept in mind that, in this case, the chart is being plotted on a
small scale and a large area of the sky is shown. Thus the scale is not
uniform over the area shown and, as a result, projection distortions,
considered negligible in the very large scale chart on which only a small
area is represented, can no longer be considered negligible. Several points
should therefore be computed for plotting to justify the drawing of a
straight line between adjacent points. Such duplicate calculation is easily
carried out. An example of such a plot is shown in Fig 10.12. Data for this
example is found in section 10.93.

If a horizontal circle reading is not included in the observations and the
star observed is mis-identified, it is often possible to obtain a preliminary
value of the azimuth, as a starting value for the identification search, from
the observed rate of change of altitude with time. This is given by



A search in the Star Almanac for Land Surveyors gave the following stars
clustered in this vicinity:-

Star No. Macmitude RA e
252 3.6 ghlOm 58

0
52' S

255 2.2 9 16\ 59 10 S

258 2.6 9 21~ 54 54 S

262 3.0 9 30~ 56 55 S

None of these values agrees with the calculated value. With the same
data and varying values of azimuth, the following results were obtained:-

Point No. Azimuth RA 0

I 135
0

9
h
2l.5

m
-54

0
04'

II 137.5 9 21.0 -55 51

III 140 9 20.2 -57 38

IV 142.5 9 18.8 -59 25

V 145 9 16.8 -61 11

These have been plotted on the Modified Mercator Chart of Fi~ 10.12 where it
can be seen that if only the azimuth is in doubt, the star No. 258 is a
likely one to accept as the unknown star.

Finally a knowledge of approximate magnitudes is very useful as this can
prove to give strong corroborative evidence of identification. This is
easily learnt with a little experience. It should always be remembered that
a star's magnitude is not altered by the magnifying property of the
theodolite's telescope, because the star is a point of light from a distance,
which may be justifiably considered to be infinite.

It is good practice, when two or more stars appear near the centre of the
field of view of the telescope, to note their relative positions. If there is
doubt, about which is the correct star to be observed, the observations
should be made on the brightest one. Also if the orientation of the
horizontal circle is unknown, or even only in dOlllt, then an identification
sight should be included among the set of observations made to any star. The
identification sights made to the known stars then serve to orientate the
horizontal circle readings observed and to provide an azimuth for identifying
the unknown stars observed.
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This chart is entirely free of distortion

along the 51) declination line

0258

·11
N

o 262

252 0

Fig. 10.12
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Appendix

sin 3A 3 sinA-4sin 3A sin2A-sin2B sin (A+B) sin (A-B)
cos 3A = 4 cos 3A-3cosA cosZA-cos1B = -sin (A+B) sin (A-B)

coszA-sin 2 B = cos (A+B) cos (A-B)

sin A sin B =-!,cos(A+B) + !'cos (A-B)

cos A cos B !'cos (A+B) + !'cos(A-B)

USEFUL FORMULAE AND RELATIONSHIPS

A.ll Trigonometrical Relationships

1 sinzA + coszA sin(A±B) sin A cos B ± cos A sin B
seczA tan 2A cos (A±B) -1 = = cos A cos B + sin A sin B

=coseczA - cot2A tan A + tan B1 tan (A±B)
1 tan BT tan A

sin 2A = 2 sin A cos A sin A ± sin B 2 sin!' (A±B) cos!' (A+B)
cos 2A 2 cos 2 A - 1 cos A + cos B 2 cos!' (A+B) cos!' (A-B)

1 - 2 sinzA cos A - cos B -2 sin!, (A+B) sin!' (A-B)
cos 2A - sin 2A tan A ± tan B sin (A ± B)=

cos A cos B

3a ...

sin A cos B = !,sin(A+B) + !,sin(A-B)

n n-l 1 n-2 1 n-3
x + n x a + - n(n-l)x a 2 + -- n(n-l) (n-2)x

2! 3!

Power Series Expansions

n
(x+a)

A.12

Binomial Series

Exponential Series

X x 2 x 3 x 4
e = 1 + x + + + - +2 ! 3 I 41

x
1 X

X2
+ X3 X 4

a = + + +2 I 3 ! 41 +

in which x x log a,
e

Xl < 00 and e = 2.718 281 828 5 ...
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A.13 Logarithmic Series

log (l+x)
x 2 x 3 x 4

(-1 1)== x + + < x ~e 2 3 4

log (l-x)
x 2 x 3 x'"

(-1 < 1)-x
2 3 4 ~ x

e

loglON == log N logloe == 0.434 294 481 9 log N
e e

log N lOgiON log 10 := 2.302 585 093 0 log lo N
e e

A.14 Trigonometrica1 Series

In these expressions the angle 8 must be given in radians

sin 8 8
8 3 8 S 8 7

(8 2+ - + < co)
31 51 71

8
8 2 8'" 8 6

(8 2cos 1 - - + - - + < co)
2 ! 4 ! 6!

tan 8 8
8 3 28 s 178 7 628 9

(8 2 < \7T
2

)+- + + -- +-- +
3 15 315 2835

e 1 e 63 28 5 67

(8 2 7T 2)cot - ~--- -- + <
8 3 45 945 4725

8 1
8 2 58 4 618 6

(8 2 < ~1T2)sec +- + + --+
2 24 720

8
1 8 78 3 318 5

(8 2
7T

z )cosec := -+- + -- + +... <
8 6 360 15120

sin e e 1 8 3 1 3 8 5 1 3 5 8 7

(8 2 <: 1)arc := + --+ --- + ---- +
2 3 245 246 7

arc cos 8 := ~ 7T arc sin 8

8 3 8 5 8 7

(8 2arc tan 8 8 - + 7 + - .. ~ 1)
3 5

1 1 1 1
(8 2

~ 7T - e+~
- -.::AS- + 78 7- ~ 1)58

arc cot 8 ~ 7T arc tan e
1 1 1 1 3 1 1 3 5 1

... (8 2
arc sec e ~ 7T -

2~ "2 "4 565" - - - - -T + > l)
8 2 4 6 78

arc cosec 8 ~ 7T arc sec e

A.15 Taylor and Maclaurin Series

If f(x) is a continuous function with successive derivatives fJ, f2, f 3 ...

then £(x + £'Ix) can be expressed as a Taylor Series as follows:-
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successive term being smaller than its predecessor, then

The special case when x := 0 gives the Maclaurin Series as follows:-

f ()
(£'Ix) 3

3 x -- +
31

([IX) 3
£3 (O) 3! + ...

+
(£'Ix) 2

21
f2 (x)

(£lx) 2
£2(0) +

2 !

+

£'Ix- +
I!

£'Ix
+ £1 (x}lT

£ 1 (0)

f (x)

£(0) +f (£'Ix)

f(x+6x)

A.l6 Inversion of a Power Series

If Y can be expressed as a power series in terms of x, with each



if Y ax + bx2 + cx 3 + dx'i + 5ex

1 b y2 + 2b2 - ac 3 5b 3 - 5abc + a 2d ylfx -y - ~3 --a~Y a 7a

and if ::: px + qx 3 + 5 + sx7y rx

1 ~ y3 ~--PE. yS l2q3 - 8pqr + p2 s 7x - Y - + Y •••p p" p7 pIO

THE MANIPULATION OF A TRIGONOMETRICAL FUNCTION AND ITS EVALUATION

Experience has shown that for many there is some uncertainty in the
manipulation and evaluation of trigonometrical functions of an angle,
which does not lie in the first angular quadrant, i.e. between 0 and 90.
Such problems frequently occurred in the past, when trigonometrical
function values and their inverses were obtained from tables, often
arranged in a semi-quadrantal form. Nowadays the problems occur less
frequently because of the widespread use of the electronic calculator,
but it is often convenient when manipulating trigonometrical functions,
in a formula for instance, to express a result such as sin(-185) in
the simpler form of sin 5,etc.

It is therefore considered desirable here to set down simple rules
and guide lines, which, if properly learnt, will eliminate any un­
certainty entirely. This will be done without formal proof, as the
use of such rules is all that is necessary in practice.

A.21 As a preliminary, the signs of the various trigonometrical
functions will be determined from an inspection of Fig.A.I which shows
the vector diagram with its angle of rotation y increasing in a

xt
36(f = 0"

IV

R

27o"f------------'-t===-;~====~190"- YI ~y---

Fig A.I

III

I~O"

II

sin y

cos "y

tan "y

t.Y I R

t.Y I R

t.Y I ~x

clockwise direction as is usual in survey practice. This convention
is opposite to that used in cartesian coordinate geometry in mathematics.
From this diagram, the signs of the trigonometrical functions of any
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value of y can be determined by inspection.
results of such inspection.

Table A.l embodies the

Table A.I

Quadrant Function positive Trigonometrical

and Range sin cos tan Function

First 0 -+ 90 + + + ALL

Second 90 -+ 180 + - - SIN

Third 180 -+ 270 - - + TAN

Fourth 270 -+ 360 - + - cos

There are several mnemonics, which are commonly used to remind the user
which of the trigonometrical functions are positive and which negative in
the quadrant under consideration. This table provides the rule, which in
section A.22 has been called Rule 2.
A.22 It is required to manipulate F(8), where 8 is an angle of any
magnitude and F is one of the trigonometrlcal functions.

Step 1 Rule 1

Multiples of 360 are applied to 8 until there is Zeft a remainder y,
0hich lies 0ithin the function range of 0 to 360.

Le. F (8) F(360N + y) = F(y)

in which N is an integer and 0 < y < 360.
Step 2

The angle y is divided into n right angles pZus or minus a basic angle
a

i.e. F(Y) F(n90 ± a) ± f (a)

in which n is an integer and 0 < a < 90
Step 3 Rule 2
"AU~ Sin~ Tan~ Cos" is used to give the sign to be used 'in front of
the funcUon f from the quadran.t si({'fi of the function F.

Step 4 Rule 3

If n 1-S odd~ f becomes the co-function of F.

If n ~s even~ f is the same as F.

F(8) i F(y) !F(n90-a) 1'::f(a1--+ "
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I±f (a)F(n90+a}F(y)F (8) ~
Examples

I i

47015in110 sin(2x90-70~+sin70jI I i I

I sin 1030 I sin 310 I sin (3x90+40) -cos40 sin
I

, i II

cos -1640 I cos 160 cos (lx90+70) -sin70 tan- 320 ltan 401 tan (lX90-S01+cotSO II

!
tan 590 I tan 230 tan (2x90+50) +tan50 cos1270 cos190 cos(3x90-80~-sin80

I tan- 60 tan300 tan(4X90~60~-tan60cos 40 i cos 40 cos (Ox90+40) +cos40



A.23 The above procedure can be generalized to deal with angles y when
they are expressed in the algebraic form of (n90+a), such as 180-w, A-180,
-t, 90+0, etc. The procedure of section A.22 is carried through in
exactly the same way, with the algebraic portion a of the angle y re­
garded here also as if it lies in the first quadrant.

Examples

F(e) F(y) F(n90±£) ±£(£)

tan (180-W) tan (180-W) tan (2x90-W) -tan w

cos (90+0) cos (90+0) cos (lx90+0) -sin 0

sin(-t) sin(360-t) sin(4x90-t) -sin t

cos (A-180) cos (180+A) cos (2x90+A) -cos A

cot(90+o) cot(90+o) cot(lx90+0) -tan 0

sec(180-A) sec(180-A) sec (2x90-A) -sec A

cot(w-180) cot (180+w) cot (2x90+W) +cot w

Examples of the need for this kind of manipulation can be found in the
text e.g. in sections 2.62, 2.74 and 2.76 as well as in the derivation
of the generalized relationships of section 2.75 from those of
section 2.62.

A.24 The reverse process consists in finding y if the value of F(y)
is known and a set of trigonometrical tables, restricted to first
quadrant angles n, is available. If the rule established in table
A.l in section A.2l is used, two possible values of y will result,
except in the case of the tangent function, derived from a ratio, in
which the signs of numerator and denominator are both known. In this
case, y is known without ambiguity.

The value of n is abstracted from the table at the point
corresponding to the modulus value of the function. The two quadrants
in which y may lie are determined from Table A.l or the associated
mnemonic. The possible values of y will then be the relevant
pair from ±n or 180 ± n. This can be verified from the vector diagram
in Fig.A.l

For example, if sin y = +~, then n = 30. The sine is positive in
quadrants 1 and 2 so that y can be either 30 or 180-30 = 150. Sometimes
one has some other piece of information, which enables one to select the
correct value from the two possible ones.

If the signs of more than one function are known, the angle y can be
found by a simple process of elimination. For example, if sin y was
known to be +~ and tan y was known to be negative, two possible values
of y, namely 30 or 150, are obtained from the sine. Of these two, only
150 has a negative tangent. Therefore y is 150 in this case.

DIFFERENTIAL RELATIONSHIPS
The derivation of two commonly used differential relationships will be
carried out to illustrate the process:-

A.3l Differentiation of the Cosine Formula

cos w cos x cos y + sin x sin y cos W
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gives

-sin w dw -cos x sin y dy - sin x cos y dx + cos x sin y cos W dx

+sin x cos y cos W dy - sin x sin y sin W dW

-(cos y sin x - cos x sin y cos W) dx

-(cos x sin y - sin x cos y cos W) dy

-(sin x sin y sin W) dW ... A.3l

From the Five Parts Formula

sin w cos X

and sin w cos Y

cos x sin y - sin x cos y cos W

cos y sin x - sin y cos x cos W

and from the Sine Formula

sin w sin Y = sin y sin W

Substitution of these in equation A.31 gives

-sin w dw -sin w cos Y dx - sin w cos X dy - sin w sin x sin Y dW

dw cos Y dx + cos X dy + sin x sin Y ~~ . .. A. 32

A.32 Differentiation of the Four Parts Formula
cot y sin x cot Y sin W + cos x cos W

gives

-cosec 2y sin x dy + cot Y cos x dx

-cosec 2 y sin W dY + cot Yeas W dW

ana from the Polar Cosine Formula

Substitution in equation A.33 gives

sin w
sin v

cos X dwJ

sin x cos W) dx

sin W---
sin Y

sin "dY + ..<
sin V

cos W - cos x sin W s~n Y) dW
Sln Y

and

sin y
cos x +

sin y

[ sin w
sin y
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sin Y 1
dy - . cos w dx !

sin Y -

sin Y

cos x cos y + sin x sin yeas W

cos W cos Y - sin W sin Y cos x

sin X
sin Y

-cos x sin W dW - sin x cos W dx

dy + (?s
Sln

sin W
dY +

sin Y

[ si,n x ldy - (cos Y cos x + sin y sin x cos W) dx oJ

Sln y

[ Sl,' n ~-;r ]
dY - (cos Yeas W - sin Y sin W cos x) dW ... A.33

Sln Y

[ sin X
sin Y

"

.L

1
sin y

1
sin Y

cos w

sin x
sin y

-cos X

sin y

sin Y

1 sin x
sin y sin y

1

and from the Cosine Formula

From the Sine Formula



sin w dY sin X dy - cos w sin Y dx - sin y cos X dW •••A. 34

Needless to say, the above approach was not achieved at the first attempt
and also hindsight helped to anticipate some of the difficulties in the
manipulation.
A.33 Two useful second order differential coefficients (see section 2.75)
are derived as follows:-
If the latitude ¢ and the declination 0 are held constant in the
astronomical triangle,

dh
¢ sin A ¢ 0 sin t sec h- cos = -cos cos

dt

since sin
cos 0

sinA
h

t
cos

¢ 0 d
(sin t sec h)cos cos

dt

¢ 0 (cos sin
dh- cos cos t sec h + t sec h tan h dt)

- cos ¢ cos 0 sec h sin t (cot t + tan h dh)
dt

dh
dt

dh
(cot t + tan h dt) ...A. 35

Similarly
dt
- sec ¢ sec 0 cosec t cos h
dh

d2 t
dt

dh 2 - sec ¢ sec 0 (- cot t cosec t - cos h - cosec t sin h)
dh

¢ sec 0 t cos h (- cot
dt

- tan h)- sec cosec t
dh

dt
dh

dt
(cot t dh + tan h) .•• A. 36

THE TRANSFORMATION FOR~ULAE

These relationships, about to be derived, give a method of conversion
between the astronomical coordinates of hour angle and declination and the
terrestrial coordinates of azimuth and altitude. In addition, a general
solution for the latitude from timed altitude observntions is also provided
(see section 5.21). A summary of the transformation formulae is set for
comparison beside the relationships used for the methods of direct solution
for the unknowns.
A.4l The astronomical triangle PNZS is shown in Fig.A.2 with its elements
as they have been conventionalized (see also Fig.2.9 and section 2.73),
the quantities A and hand t and ¢ having already been defined. To effect
a transformation between these systems, two new quantities M and m may be
defined in a similar way. M is the arc measured along the local meridian
from the equator towards the north pole to the footpoint of a great circle
that passes through the west point and the star. It will be seen that M
can also be measured at the west point between the equator and the great
circle referred to. The distance from this footpoint to the star is
defined as m, positive towards the west point. Thus it will be seen
that M may exist in any angular quadrant but m can only exist in the first
or fourth quadrants.

In the triangle PNFS, the Cosine and the Five Parts Formulae give the
following:-

cos(90-o) cos In cos(90-M) + sin In sin(90-M) cos F

and sin(90-0)cos t cos In sin(90-M) - sin m cos(90-M) cos F
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.. a 2700 d' h h f .In thls trlangle F=90 or an In eac case, t ere are, cos F lS zero
and so the last term in each of these relationships goes to zero, because
the zero function cos F is multiplied by quantities, which never exceed
unity.

sin 8 cos m sin M

and cos t cos 6 cos m cos M

tan M
tan 0
cos t

Exactly the same treatment applied in the triangle ZFS gives

sin h cos m cos (M-¢)

and cos A cos h cos m sin (M-¢)

tan (M-¢)
cos A
tan h

• •• A. 411

• •• A. 412

••• A. 413

... A.414

· .. A.415

... A.416
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A.42 Transformation between the 0, t system and the A, h system lS
achieved as follows:

But as cos 6, cos h and cos m are all positive quantities, because by
definition 0, hand m can lie only in the first and fourth quadrants,

...A.421

cos m sin (M-<jJ)cos h cos A

Substituting cos 8 cos t sec M for cos m from equation A.412 in the above
gives

cos h cos A cos 0 cos t sec M sin (M-<jJ )
sin A -cos 6 sin t
cos A cos 6 cos t sec H sin (M-¢)

The Sine Formula in the astronomical triangle gives

cos h sin A = -cos 6 sin t

From equation A.4l5



and thus also cos t sec M is always positive (see equation A.4l2), therefore

tan A ==
-tan teas M
sin '(M-cP)

In summary
tan 0

tan A
-tan t cos M

tan h (M-cP)tan M = cos A cot
cos t sin (M-cP)

...A.422

Similarly it can be proved that

tan (M-cP)
cos A
tan h

tan t ==
-tan A sin(M-cP)

cos M
tan 0 tan M cos t

... A. 423

It should be noted that those quantities computed from the tangent expressed
as a ratio are unambiguously determined in one of the four quadrants, while
those computed from a tangent not expressed as a ratio are quantities which
exist in only the first or fourth quadrants and the sign of the tangent in
these cases also determines the quantity sought, without ambiguity.

The equivalent direct solutions are

and

sin h

tan A

sin <5

tan t

sin ¢ sin 0 + cos ¢ cos 0 cos t

- sin t
cos ¢ tan 0 - sin ¢ cos t

sin ¢ sin h + cos ¢ cos h cos A

- sin A
cos ¢ tan h - sin ¢ cos A

A.43 For the determination of A and ¢ from h, <5 and t, the azimuth
may be determined from the Sine Formula, which from equation A.42l gives

sin A
-cos 0 sin t

cos h

The ambiguity in this relationship is easily resolved provided observations
are not made on a star in the vicinity of the prime vertical, because then
inspection by the observer determines the azimuth quadrant in which the
observation is being made. After this has been settled, M and (M-¢) can
both be unambiguously determined from equations A.4l3 and A.4l6 as

tan M
tan 0
cos t

(M-¢)
cos A

tan
htan

and ¢ is then determined very simply.
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If however a solution for latitude only is
may be calculated unambiguously as above and
in equation A.414 as

sought (see section 5.21), M
(M-¢) from its cosine given

cos (M-«J) sin h sec m

From equation A.411

sec m

.•. cos (M-CP)

sin M cosec 0

sin h sin M cosec 0 ... A.43l

Since cOS(¢-M) cos (M-¢) ambiguity results, but from Fig. A.2 it can be
seen that the footpoint F coincides with the zenith Z if the star lies on
the observer's prime vertical. If the star were observed south of the
prime vertical, the distance FZ would be (¢-M) i if north, it would be
(M-¢) . If therefore a quantity N were defined as

N ... A.432

and N were signed positive if the star had been north of the prime vertical
and negative if south, then

M - N ...A.433

The transformation formulae were developed for use in logarithmic
computation, for which they were admirably suited. In modern computing
direct and general methods of solution are used but the derivation of the
transformation formulae are given here for completeness.

RELATIONSHIPS FOR A CLOSE CIRCUM-POLAR STAR

Latitude from Observations on a Close Circum-Polar Star

A.5l The altitude of a close circum polar star is very nearly numerically
equal to the latitude of the place of observation. This fact will be used
to develop a power series, from which the altitude can be accurately
determined from a time altitude observation made on such a star.

From Equation 5.1

sin h sin ¢ sin 0 + cos ¢ cos 0 cos t

Let I¢I h - x and p 90 - 101

in which h the observed altitude corrected for vertical circle index
error and refraction

p the polar distance of the star from the adjacent celestial
pole.

It should be noticed that
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and that both x and p are small quantities.

Equation 5.1 may then be written as

...A.5l

Upon expansion and re-

o+ cos p sin x

sin (h-x) cos p + cos(h-x) sin p cos tsin h

x ~ p

In addition x may be expressed as a power series in terms of p as
follows:-

which is still applicable to both hemispheres.
arrangement, this relationship becomes

tan h(l - cos P cos x - cos t sin p sin x) - cos t sin p cos x



2

X alP + a2P + a3p 3 + a4p 4 .•.

in which attention is drawn to the absence of a constant term, due to the
fact that when P = 0, x = 0 and therefore I~I then equals h.

Expansion of Equation A.51, up to terms of the fourth degree, gives

[ 1 214 13 13Jtan h 1 - (1 - ~p + - P 4) (1 - ~x + - x ) - cos t (p - -6 P ) (x - - x )
24 24 6 .

- cos t (p = 0

Substitution for x in this, from the power series in p, gives

tan h{~p2(l + 2 3 + p4[ala3 2 !;rai
. 1

(1 + ai)Jad + ala2P + ~a2 -
24

[alp 2 3 + p4(a3 1 i ar)J}- cos t + a2P - -a 1 -
6

This equation will be true whatever the value of p and hence the co­
efficients of p n (n = 1 to 00) must each vanish.

Equating each of the coefficients of
n

p to zero gives

for n = 1 cos t

for n 2 tan h {~(1 + ail - alCOS t} + a2

a2 = -~ sin2 t tan h

o

for n = 3

for n = 4

tan h (ala2 - a2COS t) + 1 cos t(l + 3ai)
6

[ala3 + ~a~ !;rat
1

ailtan h - - -(1 +
24

t(a3
1 1 3

l J- cos - - al - - al
6 6
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Finally, this gives
2 3

h - P cos t + ~ sin
2

t tan h - ~ cos t sin
2

t

4

+ 2~p3 sin2 t tan h (3 sin2t tan 2h + 9 sin2 t - 4) ••• A. 52

In practice, care should be exercised in judging where to truncate this
series, because sometimes the terms do not diminish progressively.

Azimuth from Observations on a Close Circum Polar Star

A.52 The general formula for determination of azimuth from timed hori­
zontal circle readings is given by

tan A
-sin t

tan 8 cos ~ - sin ~ cos t

tan A

This can be expressed in the form

- sin t sec ¢ cot 0
1- tan ¢ cos teat 8

•••A. 53

which is convenient for expansion into a series.

The derivation will be given in two parts, one for each of the two
hemispheres.

A.521 For the northern hemisphere, the northern polar distance p is
given by

P 90 - a

which, because 8 for the northern pole star is near 90°, will be a small
angle.

Furthermore, if the latitude is not very high, the term tan ¢ cos t cot a
is not large and equation A.53 may therefore conveniently be expanded by
means of the binomial theorem (see section A.12 in the appendix) to give:-

tan A
-1

- sin t sec ¢ tan p (1 - tan ¢ cos t tan p)

=tan p

- sin t sec ¢ tan p (1 + tan ¢ cos t tan p + tan2 ¢ cos 2t tan 2p .. )

1 3
P + jPBut

tan A = I 3 { 1 3-sin t sec ~ (p + 3 p ... ) 1 + tan ¢ cos t (p + "3 p ..• ) +

This simplifies to

tan A

But tan A

-p sin t sec cP p2 sin t cos t sec ¢ tan ¢

£3
sin t sec ¢ (1 + 3 tan 2¢ cos 2t) A.54

3
...

A + 1. A3

3
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and this may be inverted (see equation A.l6 in this appendix) to give

~ 2· ~A -p sin t sec ~ - p Sln t cos t sec ~ tan ¢

- ~ p3 sin t sec ¢(l + 3 tan 2¢ cos 2t - sin2t sec 2¢) ... A.55

A.522 For the southern hemisphere, the southern polar distance p is
given by

P 90 + 0

1 + tan ¢ cos t tan p
tan A

which, because 0 is nearly _90
0

, will also be a small angle.

Substitution in equation A.53 gives

sin t sec p tan p

By means of a similar technique to that given above, the following is
obtained

tan A : p sin t sec ¢ - p2 sin t cos t sec ¢ tan ¢

+ ~ p3 sin t sec ¢ (1 + 3 tan 2¢ cos 2t) ••• A. 56

Here, however, p is a small angle about the south pole and thus the azimuth
A may be given as

A = 1T + A*

in which A* is a small quantity.

Inversion therefore produces

A

A

1T + p sin t sec ¢ - p2 sin t cos t sec ¢ tan ¢

1 3 sin ¢(l
?

cos 2t - sin 2t sec 2¢)+ "3 P t sec + 3 tan-¢ ...

180
0 + P sin t sec ¢

p2
sin t cos t sec ¢ tan ¢

p

+
p3

sin t sec ¢(1 + 3 tan 2¢ cos 2t - sin2t sec 2 ¢) ••. A.5 7JP7

in which the first is in radians and the second in sexagesima1 units with
p and p in accord as far as units are concerned.

A summary of these relations is given as follows:-
p2 p3

I¢I = h - P cos t + -- sin2 t tan h - --2 cos t sin 2t
2p 3p

4

+ ~3 sin2t tan h(3 sin2t tan 2h + 9 sin2 t - 4)

For observations on the northern pole star a Ursae Minoris:-

~A - P sin t sec ¢ sin t cos t sec ¢ tan ¢p

.•. A.58

3

~ sin t sec ¢ (1 + 3 tan 2¢ cos 2 t - sin2 t sec2 ¢) •.. A.59
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A

and for observations on the southern pole star 0 Octantis

~= 180 + P sin t sec ¢ - sin t cos t sec ¢ tan ¢p

+~ sin t sec ¢(l + 3 tan2¢ cosZt - sin2t sec 2¢)
3p

The truncated form of these to the first term only is useful for rough
prediction and computation.

A.60

SECOND ORDER CORRECTIONS TO LINKED QUANTITIES COMPUTED FROM MEANS

A.61 Sometimes it may be necessary to calculate a quantity
the mean of a set of values. If the function used for this
linear one, the result obtained will not be the correct one.
required to determine a correction to this computed value to
correct value.

desired from
is not a

It is then
give the

If
f (x)

then

X,
1

y = f(x), y. is obtained by substitution of x. in the function
and evaluating. If a set of such values x. l are so computed and

means are taken out, the following results ar~ obtained:­
1
-(Xl + X2 + X3 ••••x )n n

and y.
1

l(Yl + Y2 + Y3 ... · Y ) == l(f(xd + f(x2) + .•. f(x » ==
n n n n

f(x. )
1

If x. is substituted in the function f(x) and evaluated, a value
1

Y == f(x.) will be obtained. It is required to find the relationship
between

1
these two values

6y. == y. - Y
1 1

or v. == Y + 6y,
~1 1

y. corresponds to x. and Y
1 1

corresponds to x. - x. == 6x,
1 1 1

corresponds to x. == x. + 6x.
1 1 1

corresponds to X.
1

But V. == f(x,) f(x. + 6x,) == f(x.) + 6x. fl (x,) + ~ 6x~ £2 (x,)
-1 1 1 1 1 1 1 1 1

Yl' y + (x. - x.) fl 6c) + ~(x. - ~.)2 f2(~,)
1 1 111 1

-X.)2 - ( )I2 X. • ••
1 1

L(X,
1

of equations are summed and meaned,

~.) 2 == Y + the second order co ret' A 611 r e lon '" .
L (x,

12n

L (x. ­
1

fz(x.)
1

members of this family

f l (x. )
x.) 1_ + 1

1 n 2n

n

Y +

y +

Y.
1

Y.
1

If now all
then

since L(X. - x,) the sum of the differences from the mean equals zero.
1 1

A.62 In field astronomy, an observation made on a star consists of the
observation of a pair of linked quantities. Such a pair consists usually of
either (i) a circle reading and an associated clock reading
or (ii) a circle reading on each of the two circles of a theodolite.

In addition, ancillary observations may be made, at suitable times during
the observing period, for determining clock corrections required, and for
determining refraction corrections or reasonably accurate values of
instrumental errors needed or for referring circle readings to a reference
object.
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The unknown sought is then set up in an equation involving the observed
quantities, one of which is used to determine an element in the astronomical
triangle.
Two brief examples will be given to illustrate the process:-

For longitude determination from timed altitudes, the observation pairs
are altitudes h. and the corresponding observed values T. of Greenwich
Sidereal Time. lEach pair of quantities gives a value A. 1 0f the longitude

1.
as

A. LST. - GST
1. 1 i

t. + FA
1

GST.
l.

in which

f (h.) + L.
1 1

t = arc cos (sec ¢ sec 0 sin h - tan ¢ tan 0)
i i

If A is the value computed from
mean 6f the observed times, then

h.
1

the mean altitude and T.
1

the

A.
1

A +
c

1
2np

2

f 2 (h.) L: (h. - h.)
1 1 l.

A
c

1
2np

dt - dt
dh (cot t dh + tan h)L:(h.

1.

2

h. )
1.

in which A and 6h are in the same units and p is the number of these

units in one radian;
section 2. 75.

also comes from equation A.36 or

For azimuth determination by the altazimuth method, the observed pairs
are horizontal circle readings Hstar. and observed altitudes h. on

1. l.

the star with an ancillary observation Hmark., a horizontal circle reading
1.

observed on the mark RO. Each observed set gives the following value A.
for the azimuth to the mark (see section 7.62). l.

A. Astar. + Hmark. - Hstar.
1. 1. 1. l.

F(h.) + a.
1. 1.

in which Astar. = F(h.) = arc cos(sec ¢ sin 0 sec h. - tan ¢ tan h.)
1 1. l. 1.

If A is the value computed from h. the mean altitude and the means
c l.

of the horizontal circle readings, then

in which A and 6h are in the same units and p is the number of these

1 2
A. A + -- F2 (h. ) L(h. h. )

1. C 2np l. l. l.

A
1 2 -

w(sin h + 2 2(0) 2: (h. -h. ) 2
2np

sec h. cot cot A cosec
c l. c l. l.

units in one radian; also
dzA

Fz(h
i

) = dh z comes from section 2.75.
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Introduction

CIRCUM-MERIDIAN AND CIRCUM-ELONGATION RELATIONSHIPS

for an upper transit

180 - 0 for a lower transit

:=

and

A.71

The elongation position for the determination of azimuth is also a favoured
position, at which point the azimuth value reaches a minimum or a maximum
so that the star being sighted then has no horizontal component and only a
small one in the vicinity of this point (see section 7.32). The star's
movement in azimuth about the point of elongation is not symmetrical and the
power series consists of all ascending powers except the first one, which
is zero.

The Cosine Formula gives the following general relationship

cos z := sin ¢ sin <5 + cos ¢ cos <5 cos t

In section 5.42 the handling of the circum-meridian situation postulates
the use of a generalized zenith distance zOM with that of a generalized
meridian declination 0 , defined as

t:l

Meridian observations for latitude determination lead directly to the circum­
meridian method (see sections 5.41 et seq.). Similarly the meridian observat­
ions for azimuth determination in low latitudes lead to the circum-meridian
observations (see section 7.33). In each case, the star is in a favoured
position and symmetry about the meridian occurs. Such symmetry makes the use
of a power series very attractive for evaluation, because, in each case,
alternate terms vanish and the series usually converges very rapidly.

Circum-Meridian and Meridian Zenith Distances

The hour angle for a circum-meridian situation lies in the
for an upper transit one and in the vicinity of 1800 for a
one. It is proposed to use a circum-meridian hour angle
convenience. This is defined as

vicinity of 0
0

lower transit
t' for

t' t in the vicinity of an upper transit

and t' t-180 in the vicinity of a lower transit

Substitution of these quantities in the general relationship immediately
above gives rise to the general relationship

cos sin ¢ sin OM + cos ¢ cos OM cos t' ••• A. 71

which holds for both upper and lower transit circum-meridian situations.

From this, the special case of the meridian zenith distance zM' which
occurs when t' is zero is

sin ¢ sin OM + cos ¢ cos OM •.. A. 72

Subtracting equation A.71 from equation A.72 gives

cos zM cos z + cos ¢ cos OM (1 - cos t')
eM

cos zCM + cos ¢ cos OM 2 sin2 (~t') ... A. 73

cos ¢ cos OM 2 sin2(~t')
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-" sin {!, (z - Z )} sin {!, (z +z ) } = cos ¢ cos OM 2 sin2 (~t ')"- H CM M CM

cos ¢ cos OM
sin {!,(z -z }}

M CM sin {!, (~, +z ) } sin 2 (!'t I )

M CM
cos ¢ cos OM

sin {!,(Z -z )} sin Z (!,t' ) ...A. 74
M CM sin z

All the relationships in this section are rigorous.

A.72 The derivation of a very well known power series for reducing
an observed circum-meridian zenith distance to the corresponding meridian
zenith distance will be carried out by means of two methods for the
purposes of illustration.

The following relationship is derived from equation A.73 above:-

{cos - ¢ oM 2 . 2 (!,t')}ZCM arc cos ZM cos cos sln

arc cos (k + x) = F (x)

in which k cos Z which is a constant for a particular station
M

and particular celestial body,a

and x -cos <P cos <) 2.sin2 (!'t') , which is a variable.
M

The function zCM F (x) can be expanded as a Maclaurin Series, which

+ x F 1 (0) l.zx
2

F 1 (0)
1 3

gives Z = F (0) + +6" XF 3(O) . . . .
CM

These differential coefficients are evaluated as follows:-

zCM arc cos (k + x)

x + k

-cot z cosec 2z
CM dCM

zCM
cosec zCM --;jX}}

dZ
CM

+cot zCM cosec zCM dx

-cot zCM {2 cosec ZCM(-~~t zCM

-cosec 2z
CM

{-cosec2z ~}
CM dx

-cosec Z
CM

= -sin zCM
dx
dZ

CM
dZCM
dx

dF1
dx

dF2
dx

Fz(x)

-cosec 3z
CM

{2 cot 2z
CM

+ cosec 2 z
CM

}

-cosec 3zCM(1 + 3 cotZz
CM

)

2 1 3
F(O) = x Fl(O) + l.z x F2(0) + 6 x F3(O)

arc cos(k) + {-cos ¢ cos OM 2 sin2(~t')} (-cosec zM)

Z

+!'{-cos <P cos ° 2 sin2 (!,t')} (-cot z coseczz)
M M M

?6{-COS ¢ cos ° 2 sin2 (!,t') }3{-cosec 3z (1+3 cot 2z )}
M M M
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ZCM z + A 2 sin2.(lz t') p or zCM z + A m
M M

- A2 2 sin" (lzt') peat z B nM

+~32 sin6 (lzt') p (1+3 cot2 zM) + C s3

in which P is in accord with the angular
units used.

Z z - Am+ Bn - Cs
M CM

in which A cos ¢ cos 8 cosec z and m := 2 sin 2 (lzt') p
M M

B A
2 cot Z " n 2 sin" (!:it I) PM

C
2 3

(1+3 cot2 zM) 2 sin6 (!:it') ..•A. 75= -A s P3

A.73 The alternative method of approach uses the Taylor Series expansion of
section A.IS in this appendix followed by the power series inversion of
section A.16.
From equation A.73

- ¢ cos 0 2 sin 2 (J..it' )cos z cos cos z
M M CM

If 8.z is defined as

8.z := zCM z i.e. zCr'l z + 8.z
M M

COs(zM + 6.Z) 2 - ¢ 0 2 sin 2
(~t ')cos cos cos

M M

Expanding LHS, simplifying and dividing through by sin z gives
M

cos ¢ cos 0 cosec
M

6.z + !:i cot Z
M

z 2 sin 2 (!:it I )

M

6.z 2

Let

then

y

y

cos ¢ cos OM cosec 2
M

2 sin2(~t')

6.z + !:i cot zM 8.z2. - t 6.z 3 . . . .
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The same result is produced here as in the alternative method immediately
above.

In this expression y is given in terms of a power series in 6.z. It is
required that 6.z be expressed as a power series in y (see section A.16) .

y2. {2(~ cot ZM) 2
1 y38.z y - (~ cot zM) + - (1) (--) }
6

~
y2 {~ cot 2 z

M
+ 1 } y3= Y - cot Z + -

M 6

- (cos ¢ cos <5 cosec Z ) 2 sin 2.
(~t ') pZ

CM M M

+ (cos ¢ cos ° cosec z ) 2 2 sin" (!:it') p cot z
M M M

¢ ° Z ) 3 sin6 (~t ')
2 cot2. z M)- (cos cos cosec 2 p "3(1+3

M M

z - Am + Bn - Cs
CM

z
M

z
M



Circum-Meridian Azimuths

A.74 It is desired to derive a power series expressing the azimuth in the
terms of ascending powers of the hour angle for a star in the vicinity of
transit. Large numerical values of the hour angle for a star near transit
may be avoided by the use of the circum-meridian hour angle t' which is
defined as

and
t'
t'

t
t - 180

0
in the vicinity of upper transit
in the vicinity of lower transit

with the proviso that t' is given its smallest numerical value. In this
way, values of the ascending powers of t' will decrease numerically.

From the set of differential relationships of section 2.75, the following
holds when the latitude and declination are held constant:-

cosec z cos W cos 0,f 1 (t')

A f (t ')

dA
dt'

and

dw
dt'

dz
dt'

- cosec z cos A cos ~

cos ¢ sin A

These coefficients at transit may be simplified by the use of the meridian
zeni th distance zr1 and the meridian declination 0 , which are signed
quantities defined in sections 5.32 and 5.33, andMare linked by the
general relationship

From an examination of all possible meridian transit situations, these
coefficients become

-cos 0
f 1 (0)

DA M
= --

Dt' sin zM

DW - cos ~
Dt' sin z

M

and
Dz

0 (sin A 0)- =
Dt'

Further differentiation gives f2(t') as

d2A {dz dw }
f2 (t') dt'z= cos 0 - cot z cosec z dt' cos W - cosec z sin w dt'

b . dz 0 d . ..ut at translt dt' = an Sln W = 0, and z ln practice 1S never such
that cot z and cosec z become very large

f (0) = D2 A 0
Z Dt' Z

Further differentiation gives f 3 (t') as

d3 A
dt' 3

= cos ~ cos 8{(-cosec 3z - cotZz cosec z) (~~')Z sin A cos W

dA+ cot z cosec z cos A cos W
dt'

dw
- cot z cosec z sin A sin ()J dt'
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2 dz- 2 cosec z cot z sin w cos A
dt'

2 dw+ cosec z cos w cos A
dt'

- cosec 2z sin w sin A dA }
dt'

cos ¢ cos 0 {cos Z cosec 2z cos A

At transit,~ll terms, except the second and fifth,
sin A and dt' are then zero. Substituting for ~~,

+

become zero because
and OW one obtains

Dt'
-cos oM

) cos w
sin oM

cosec 2z cos W (- ?OS ¢) cos A}
Sln z

M

It can also be shown from an examination of all possible meridian transit
situations that

cos 0 cos W cos A -cos 0
M

f 3 (0) cos ¢ cos 0 cosec 3z (cos zM cos OM + cos ¢)
M f1

These coefficients can now be used in a Maclaurin series (see section A.IS)
to expand the function A = f(t') as follows:-

A f(t') = £(0) + fdO) t' + ~ f2(0) t,2 + ~ £3 (0) t,3 ....

Ao - cos OM cosec z t'
M

1
ct> OM cosec 3z M {cos cos 0M+cOS ct>}t,3+ - cos cos z

6 M

... A. 76
in which Ao = £(0) = 0

0
for a star north and 180

0
for a star south.

Circum-Elongation Time Azimuths

A.81 It is required to express the azimuth A at hour angle t in terms of the
elongation azimuth A at hour angle teo

The general relati6nship for azimuth from time observation gives the
following:-

cot A ==
sin ¢ cos t

sin t
tan 0 cos ¢

sin t

From the Four Parts Formula

cos 0 tan ¢ because w 90
0

or 270
0

and sin t
never exce~ds unity in magnitude e

At elongation this becomes
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... A. 81

sin t cot w

sin t cot w
e e

cos 0 tan ¢

cos 0 tan ¢

sin ¢
cos t

e
tan ° cos ¢

sin ° cos t e

sin 0 cos t



cot A ==
sin ¢ cos t

sin t
cos te
cos te

sin ¢
sin t cos t

e
From the Polar Cosine Formula

- cos w = cos t cos A + sin t sin A sin ¢
At elongation this becomes

o

cot Ae

cos t e cos Ae + sin t e sin Ae sin ¢

sin t e sin ¢
cos t e

cot
sin ¢ cos t cos te sin ¢

cot A - A ==e sin t cos te sin t cos t e
sin <t> sin t e sin t

+ cos t sin t
e

sin ¢ (cos t cos t e - 1 + sin t e sin t)
sin t cos t e

sin ¢ { 1 - cos(t t ) }
sin t cos t e

e
sin ¢

2 sin2!:!(t - t )
sin t cos t e

e
which is a rigorous expression

••• A .82

Now let M==A-A
e

and fit t - t
e

A = A + M and
e

t = t + fit
e

Expanding LHS as a Taylor's Series gives

cot A - cot A
e

cot(A + M) - cot A
e e

Here Y is expressed as a series in ascending powers of
inverted to give 6A as a series in ascending powers of
A.16 in the appendix)

- cosec 2A
e

cosec 2A
e

cot A
e

cot A
e

==
sin ¢ 2

2sin l.:l f'..t == y
sin t cos t

e
M. This can be
Y (see section

== si-h t (1 - 2 sin2~ fit) + cos t 2sin ~f'..t(l sin2~6t)~
e e

sin t { 1 - 2 sin 2!:!6t + 2 cot t sin ~f'..t - 2 cot-. t ~ sin 3~6d
e e e

sin t cos fit + cos t sin 6t
e e

•••A .83

cot A 4 sin 4 l.:l f'..t
e

in the above expression.

cot A
e

sin t
e
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sin t by

sin2A Y + sin 6A
e e

sin ¢ sin 2Ae
sin t cos t

e

sin t == sin(t + 6t)
e

It is canvenient:-!o replace



cosec t cosec t {I - (2sin2~6t - 2 cot t sin ~6t + cot t sin3~~t}-1
e e e

cosec t { 1 + 2 sin2~6t - 2 cot t sin ~6t + cot t sin3 ~6t
e e e

+ 4 cot2t sin2~t - 8 sin3~6t cot t
e e

}

~ cosec t {I - 2 cot t sin ~~t + (1 + 2 cot2t ) 2 sin2~6t
e e e

-(7 + 8 cot2 t ) cot t sin3~6t }
e e

up to sin \6t to the third power.

cosec t .E
e

The expression
sin <jJ sin Ae
sin t e cos t e

From the Polar Cosine Formula

can be simplified

cos A ~ sin t e sin we sin 8
e

sin t
e

cos A cosec W cosec 0
e e

From the Sine Formula at elongation

sin A
e

-cos 0 sec <jJ sin w
e

From Equation A.8l above

cos t
e

sin <jJ sin 2Ae
sin tecos t e

tan ¢ cot 0

- sin <jJ sin Ae cos 0 sec <jJ sin we sec Ae sin ule sin 8

tan 0 cot ¢

- sin2 0 sin 2we tan A
e

- sin2 8 tan A
e

~ - C

Substituting the above expressions into Equation A.83 gives

M
sin ¢ sin 2Ae 2 sin2~6t E +

sin2<jJ sin 4
Ae cot A

sin t cos t e sin2tecos Lte e
e

4 sin 4 !:i6t E 2

- C 2 sin2!z6t E + C2 cot A E2
e

- C 2sin2~6t { 1 - 2cot t sin !z6t + (1 + 2cot 2t )
e e

2sin2~6t - (7 + 8cot2t ) cot t sin3~6t}
e e

+ C2cot A 4sin4~~t {I - negligible terms}
e

- C 2sin2~6t + C cot t 4sin3~6t - C 4sin4~6t(1 + 2cot2t~
e
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A - A -C 2sin2~flt + C cot t 4sin3~flt
e e

- C 4sin It
~flt (1 + 2 cot 2t sin2 0)-

e

in which C :::: sin20 tan A
e

• •• A .84

Substi tu tion of

A - A
e

sin gives

1
cot t e - 24 C(12

6 cos 28 - l)flt lt

2cot t e +

• •• A .85

The following are the first two terms of this series expansion:-

A

in which fit (t-t) and all quantities are expressed in radians.
e

A.p" A p" - C ~ (flt)2 p" + C ~ (flt)3 p" cot t
e e

A"

in which C :::: sin28 tan A •
e

A" - C L(Llt")2 + C L (flt")2
e -:; p" •. p" p"

(Llt")
p"

cot t
e

in which the units are arc seconds.
But

15 l~ LltS 15 60 Ll s 900
(flt

m
)-

15 P p" 60 t p"

~ (900 Lltm) 2 900 2
(Lltm) 2

2 P 2p"

6t
m

are the 6t values expressed in time seconds

fit" 6t"
p" p"

and

L,(Llt
ll

)2 p"
2 p"

in which Llt
S

and
and minutes.
Substitution above gives

900 m
-11- Llt cot t }
p e

A" - C 1.963 496" (Lltm)2 h - 900 (6tm) cot t }
e p" e • ••A .86

in which form, the relationship can be very conveniently set up for a
calculator.
Under the heading Table for Circum-Meridian Observations the relationship
m = 2 sin2(~HA) cosec 1" is tabulated. The quantity 1.9635" (flt

m
) is a very

good approximation to m.

Circum Elongation Altazimuth

A.82 It is required to express the azimuth A at altitude h in terms of the
elongation azimuth Ae at altitude he' ie. A F(h-h). This can be expressed
as a Maclaurin Series as e

A F(O) + Fl (0) (h-h ) + 2
1

, F2 (0) (h-h ) 2 + 3
1
, F3 (0) (h-h ) 3

e. e. e
•••A .87
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in which F(O) = A ,
D2A e

F2(0) = Dhz

because then h equals h , and
e

FI (0)
DA
Dh'

A A + DA (h-h ) + ~D2~ (h-h )2 + l
e Dh e Dh e 6

•••A .88

The differential relationship, given in section 2.75 and connecting A, ~,

o and h, gives do = cos ¢ sin t dA + cos t d~ + cosw dh

dA
db

-cos w sec ¢ cosec t when ¢ and 0 are held constant

- cot w sec h since sec ¢ cosec t = sec h cosec w from the
sine FOrmula.

Further differentiation gives

d2A 2 dw
dh L - cot w sec h tan h + cosec w dh sec h

Differentiation of the Cosine Formula, linking w, ¢ , 0 and h gives

dw
db

cos A sec 0 cosec t -cot A sec h

when ¢ and 0 are held constant and the Sine Formula is used as above.

Further differentiation gives

+ cosec Lw ddbw L. 2 L .sec h Sln h - cot w sec h tan h Sln h

2 dw L L+ sec h 2 cosec w cot w cosec w db cot A + sec h cosec w

cosecLA dA
dh

Substi tution for
dw
db

and
dA
dh

and simplification gives

= -cosecLw sec 3h sin h cot A - 2 cotw

At the point of elongation, where
coefficients become

except when

w = 90
0

or 270, these differential
e
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= 0

is a condition never encountered in practice.

- cot w sec h
e e
o . hh == 90 , WhlC

e

=
DA
Dh



=

=

- cot w sec2h sin h sec 2h cosec2w cot A
e e e e e e

- cot 90 sec2h sin h sec 2h cosec290 cot A
e e e e

')- sec~h cot A
e e

-3 cosec2w sec h sin h cot A
e e e e

-3 sec
2
h tan h cot A

e e e

+ terms containing cotw
e

which reduces each of these
terms to zero.

The fourth differential coefficient
it is proposed to evaluate here, is
discards any quantity that produces
cot w. This produces

DItA .,. th
~ at elongat1on, Wh1Ch 1S e last one

oB¥ained by further differentiation, which
a term containing the factor

= sin2h cot A
e e

cot 3A - seclth
e e

- 4 sec 2h cot A
e e

cot A cosec 2A
e e

-sec2h cot A (9 sec 2h + 3 sec2h cosec2A - 7)
e e e e e

A = A ~sec2h cot A (h-h ) 2 - ~sec2h cot A tan h (h-h ) 3 ...
e e e e e e e e

(h"-h") 2 (h"-h") 3

A" A" sec2h e cot Ae
e

sec 2h cot A tan h
e= - - 2 (p") [e 2p" e e e

...A.89

in which p is in accord with the units used.

DERIVATION OF THE LAPLACE EQUATION

A.9l AT a Laplace Station (see section 1.53) astronomical values ¢A AA
defining its position and AA the azimuth to an adjacent station of the
geodetic survey are available as well as the corresponding geodetic values
¢GAG and AG, which have been carried forward in the geodetic survey from the
Funadmental Station of this survey. Fig A.3 shows the astronomic zenith ZA
and the geodetic zenith ZG of the Laplace Station with a much exaggerated
space between them.

The line, along which the azimuth was observed on the earth from the Laplace
Station to the reference object RO defines a vector, which has azimuth AA
and an altitude hA, in practice a value very close to the horizon. This
vector produced will intersect the celestial sphere at the point R, as is
shown in Fig A.3. The two triangles pole, zenith and R in this figure are
spherical triangles but neither is an astronomical triangle, because the
point R is not a star and therefore maintains its position with respect to
the local meridians PNZN and PNZG' so that the pole angles PA and pG,
as well as the longitude angles AA and AG illustrated do not vary with
time so that
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N

k

gO - h, R

Fig A.3

If epA + d¢ then d<jJ

and if then dP = -(A - A )
G A

because longitude is defined as increasing eastwards and the pole angles here
are shown as increasing westwards.

Substitution from the spherical triangle PNZAR gives

The side PNR k is common to both triangles and is constant In length
so that dk O.

The differential relationship connecting dA, d¢, dP and dk is given in
section 2.62 as

dAthen

- cos X sin y dW - cos w sin Y dx + sinXdysin w dY

sin(90-h )dA cos R sin k dP - sin h
A

sin A d¢ + sin R dkA A

cos h dA cos R sin k dP sin h
A

sin AA d¢A
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with the last term going to zero because k does not vary.
The Five Parts Formula in this triangle gives

sin k cos R = cos(90-¢A) sin (90-h
A

) - sin(90-¢A) cos (90-h
A

) cos AA

sin ¢A cos hA - cos ¢A sin h
A

cos AA

Substitution for sin k cos R from here into the previous equation gives

dA

A -A
G A

Since hA in practice is a small angle, tan hA is small and therefore to
first order accuracy, the Laplace Equation is given by

(A
G

in which either value ¢G or ¢A may be used for ¢.

CALCULATOR METHODS OF TIME CONVERSION

A.IOl THE increasing use of calculators, particularly the programmable type,
has rendered former methods of time conversion cumbersome. In particular the
selection of the appropriate value of R to be used in these calculations
may cause a problem when times are transferred between the Greenwich and
the observer's meridian. The following techniques are simple and eliminate
any date ambiguity.

The Conversion of an Instant of Standard Time to the Corresponding
Instant of LST.

LST (Standard Time - Zone) F + R + A
o

Add or subtract mUltipl~shof 24
h

if the calculated value of LST does not
lie in the range of 0-24 .

The values of Zone and A, the longitudes of the standard and observer's
meridian, have the convention that they are positive when east and negative
when west of the Greenwich meridian.

Ro is CST at UTah on the Greenwich date equal to the local date of
observation. Note that dates are always associated with the Mean Time and
not with the Sidereal Time System.

F 1. 0027379
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of Standard

+ Zone

to the Corresponding Instant of

F
if the calculated value

LST - R - A
o

LSTThe Conversion of an Instant of
Standard Time.

Standard Time

Add or subtract multiples of 24
h
/F

Time does not lie in the range 0-24h .
It will be noted that if the instant of Standard Time lies within a range

of 3m55~9 on either side of midnight, two identical values of LST on the
same date can occur. However, the two values of Standard Time which result
are so far removed from one another that the choice of which of the two
values is the correct one is obvious.



EXAMPLES

Local Date R * Zone Longitude Std Time LST
0

1 12 Sep. 1977 23h23m32~5 4
h

W 4h26m34~1 W Ih14m27~3 ?

2 28 Apr. 1977 14 23 24.5 10 E 9 39 51.0 E 8 00 00.0 ?

3 16 Jun. 1977 17 36 35.7 2 E 1 13 44".0 E 18 32 43.2 ?

4 17 Aug. 1977 21 41 02.1 5 W 5 19 34.5 W ? 1h02m30~1

5 23 Sep. 1977 0 06 54.6 8 E 7 32 18.1 E ? 23 59 42.2

6 21 Dec. 1977 5 57 47.9 12 E 11 21 58.1 E ?
i

5 20 05.7

* R on Greenwich date equal to the local date of observation.
0

Example 1 ".'

Calculated LST 24h12m17~4

24
h

- 24

LST 0 12 17.4

Example 2

Calculated LST LST 22 02 55.8

Example 3

Calculated LST 35 25 46.0

24
h

- 24

LST 11 25 46.0

Example 4

Calculated Std Time - 20 16 2J.0

24
h
/F + 23 56 04.1

Std Time 3 39 37.1

Example 5

Calculated Std Tizre 24 17 48.9

24
h
/F - 23 56 04.1

Std Time 0 21 44.8

Example 6

Calculated Std Time 0 02 17.6

24
h
/F + 23 56 04.1

Std Time 23 58 21. 7

Note that two values of Standard Time i.e. Oh02m17~6 and 23
h

58
m

21:7
have the same corresponding value of LST on this date.
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Alidade bubble, 50
Almanac, Star, for Land Surveyors, 34,216
Almucantnr, 18,206
Altazimuth Observations, 100, I03,115,240
Altitude, 17,24

Corrections, 49,61,6-7
Antarctic Circle. 11
Apoelion, 14
Apparent Noon, 37,43
Apparent Places of Fundamental Stars (FI<4), 34,216
Apparent Solar Time, 32
Alc to Chord Correction, 5
Arctic Circle, 11
Astrolabe, 171,214
A~tronomicalTriangle, 22,23
Autumnal Equinox, 15
Azimuth, 2,24,99

Angle, 18
Circle, 17,149
Circum-Elongation Observations, 102,115,122,240,243
Circum-Meridian Observations, 102,108,239
Circum-Polar Observations, 101,104,232

Baker, Cpr. T, Y., 171
Barometer, 134
l3Iunders, detecting, 63
Boss General Catalogue, 216
Bowditch. Nathaniel, 143
Bureau Internationale de I'Heure (B.I.H.), 44

Calcnlations, checking, 65
Calendar, 31
Cardinal Position Lines, 163
Catalogues, 216
Celestial

Equator, 13
Latitude, 16
Lonj!:ilucte, 16
Pole, 13
Spnere, II

Chauvctlel, W, 67
Chronograpn, 47,175
Chronometer, 44
Circle

Azimuth, 17,149
Great, 11
Hour, 18
Small, II
Vertical, 17

Circum-Elongation Observations, 102,115,J 22,240,243
Circum-meridian

Azimuth Observations, 102,108,239
Latitude Observations, 72,73,236

Circum-Polar
Azimuth Observations, 101,104,232
Latitude Observations, 72,79,230

Cloude, 171
Clock,43

QuaItz,44
Rie[ler, 43
Shorn, 44

Clock Correction, 45,46
Colatitude, 20
Collimation,

Horizontal,49
Vertical,49

Compensator, 50
Constellation, 9
Convergence of Meridians, 2,3
Conve~sion of Time, 35,247
Coord1l1ates

Astronomical, 16
Terrestrial. 16

Cross Hairs, 49,52,129
Culmination· see Transit, 18,71,183
Curvature, 63,174

Dark glass, 129
Day, 31

Sidereal, 31
Solar, 32

Daylight Stars, 129
Declination, 15,24,67,131
Diagonal Lyepiece, 133
Diagrams, Time, 36
Differential Refraction, 59
Differential Relationships, 21,185,225
Driencourt, 171
DUTI,44

E,34,131
Ecliptic, 13

Coordinates, 16
Ellipsoid of Revolution, 6
Llongation, 101
Equal Altitude Observations, 171
Equation,

of Time, 34
Permnal.88,153

Equator, 12
Equinoctial Points, IS
Equinox

Autulllnal,15
Vernal, 15

Errors, Systematic and Random, 63
Eye and Ear Method, 46

First Point of
Aries, 15,31
Libra, IS

Focussing, 49,129
Fundamental Station, 7

GOliSS, 171
Geoid. 6
Great Circle, 11
Greenwich

Apparent Time. 34
Mean Time, 34
Meridian, 12,31
Sidereal Time, 34

Grid Convergence, 5
Gyro-theodolite, 2

Horizon, Sensible, 17
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Hour
Angle, J8,24
Cirde,18

Identification, Star, 2J4,216
Index Correction, 56,64,159
intercept, 152

Kepler, 33

Laplizce Station and Equation, 6,245
Latitude, 24,67

Celestial, 16
Circum-Meridian Observations, 72,73,236
Circum-Polar Observations, 72,79,230
Intercept Method, 150
Near Meridian Observations, 72
Meridian Observations, 69,236

Level
Alidade, 48,132
Plate, 48,99.132
Striding, 49,99

Limb,130
Local

Apparent Noon, 37,43,133
Hour Angle, 18,24
Mean Time, 33
Meridian, 16,18
Sidereal Time, 38

Locus of Elongation. 103
Longitude, 12,24,87

Celestial, 16
Longitude Intercept Method, 150

m, 74,238,243
M,69
Magnitude, 9,216,219
Marcq St. Hilaire, 150
Mean

Places of Stars, 218
Solar Time, 33
Sun, 36

Mercator Char to Modified, 218
Meridian, 12

Altitude, 69
Central, 4
Convergence, 2,3,4
Greenwich, 12,31
Local, 18
Prime, 12

Mid-Quadrant Position Lines, 163
Modified Sumner Method, l50
Month, 31
Moon, 10,129

n,74,238
N,69
Nadir, 17
Napier's

Analooies 3
Rules ~t' Circular Parts, 27

Noon, II
Local Apparent, 37,43,133

Observations, 49
Obliquity of the Ecliptic, 33
Octantis

Sigma, 13,79,181
B,181

Orientation, 55,179
Circum-Polar Star, 181
Extra Meridian Star, 184
Transil of Star, 183

Parallactic AnJl:lc, 24

ParaUax, 61, 129,131
ParaUel of Latitude, 12
Perihelion, 14
Personal Equation, 88,153
Planets, 10,129
Planispherc, 214
Polar Distance, 20
Polaris,13,79,J81
Pole

Celestial, J3
Terrestrial, 12

Polynomial Coefficients, J 32,141
Position

Circle, 146
Line, 146,149

Position Line Observations, 143
Analytical Solution, 158
Semi-Graphic Solution, 149
Least Squares Solution, 161
Non-Rigorous Solution, 160
Weighting, 162

Prediction, 55,180
Aids, 211
Azimuth Observations, 186,198,202,204
Combined Observations, 21 1
Latitude Observations, 186,187,191
Longitude Observations, 186,192
Position Lines, 187,206

Prime
Meridian, 12
Vertical, 17

Prismatic Astrolabe, 171
Proxima Centauri, 11

R,34
Rate, 45
Reference Circles, 11,13
Referring Object or Mark, 54, 99
Refraction, 56
Reticule, l73
Riefler Clock, 43
Right Ascension, 15,24
Roelofs, Prof R

Solar Prism Attachment, 131
Rude Star Finder, 214

s,239
Saastamoinen, 58
Saint Hilaire, 143, 150
Seasons, 15,31
Second Order Correction, 234
Semi-Diameter, 130
Semi-Graphic Solution, J49
Sensible Horizon, J 7
Series

Inversion, 222
Logarithmic, 222
Maclaurin, 222
Power, 221
Taylor, 222
Trigonometric, 222

Shortt Clock, 44
Sidereal Time, 31
Sky Window, 192,198,206
Small Circle, 1 I
Smithsonian Catalogue, 216
Solar Time, 32
Solstice, 15
Sphere, Celestial, 11
Spherical Triangle, )9
Spherical Trigonometry, 20

Generalized Formulae, 26
Polar forms, 21

Spheroid, 6
Standard,

Meridian, 34
Time, 33

Star, 9
Almanac for Land Surveyors, 216
Globes, 214
lden tifieation, 216

Stop WatCh, 46
Striding Level, 51
Sub-Stellar Point, 147
Sumner, Cpt. T. If. , 143
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Sun
Apparent, 37
Azimuth Obscrvations, 134.137,142
Compass, 2
Latitudc Observations, 132,140
Longitude Observations, J33,136
Mean, 36

Taylor Series. 29,58,222
Theodolite, 17,49
Thermometer, 134
Time, 31

Apparent, 32
Azimuth Observations, 100,103,115,240
Conversion, 38, 247
Diagrams, 36
Keeper, 45
Keeping, 31
Mean, 33
Sidereal, 3 I
Signals, 44
Solar, 32,33
Zone, 34

Transit, 18,71,183
Transformation r'ormulac, 104,227
Trigonometrical Function, Evaluation, 223
Trigonometrical \{clationships, 221
Tropic Year, 32
Trunnion Axis, 49

Universal Time, 34,44
UT,34

UTO, un, un, UTe, 44

Vernal Equinox, 15
VCltical Circle. 17

Eccentricity, 135

Watch Correction. 42
Wild Astrolabe Attachmenl. 171
Willis, 171
Working List, 185,190,197,201,204,205,210

Year, 31
Tropic. 32

Zenith, 17
Oistancc, J7,24

Zeiss Ni2 Level Astrolabe Attachment, J73,175
Zone Time, 33
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