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BIOGRAPHICAL NOTE

Sir Isaac NEWTON, 1642-1727

NEwTON was born at Woolsthorpe, Lincoln-
shire, on Christmas Day, 1642. His father, a
small farmer, died a few months before his
birth, and when in 1645 his mother married
the rector of North Witham, Newton was left
with his maternal grandmother at Wools-
thorpe. After having acquired the rudiments
of education at small schools close by, Newton
was sent at the age of twelve to the grammar
school at Grantham, where he lived in the
house of an apothecary. By his own account,
Newton was at first an indifferent scholar until
a successful fight with another boy aroused a
spirit of emulation and led to his becoming
first in the school. He displayed very early a
taste and aptitude for mechanical contrivances;
he made windmills, water-clocks, kites, and
sun-dials, and he is said to have invented a
four-wheel carriage which was to be moved by
the rider.

After the death of her second husband in
1656, Newton’s mother returned to Wools-
thorpe and removed her eldest son from school
so that he might prepare himself to manage
the farm. But it was soon evident that his in-
terests were not in farming, and upon the ad-
vice of his uncle, the rector of Burton Coggles,
he was sent to Trinity College, Cambridge,
where he matriculated in 1661 as one of the
boys who performed menial services in return
for their expenses. Although there is no record
of his formal progress as a student, Newton is
known to have read widely in mathematics
and mechanics. His first reading at Cambridge
was in the optical works of Kepler. He turned
to Euclid because he was bothered by his in-
ability to comprehend certain diagrams in a
book on astrology he had bought at a fair;
finding its propositions self-evident, he put it
aside as ‘“‘a trifling book,” until his teacher,
Isaac Barrow, induced him to take up the book
again. It appears to have been the study of
Descartes’ Geometry which inspired him to do
original mathematical work. In a small com-
monplace book kept by Newton as an under-
graduate, there are several articles on angular
sections and the squaring of curves, several
calculations about musical notes, geometrical

ix

problems from Vieta and Van Schooten, an-
notations out of Wallis’ Arithmetic of Infinities,
together with observations on refraction, on
the grinding of spherical optic glasses, on the
errors of lenses, and on the extraction of all
kinds of roots. It was around the time of his
taking the Bachelor’s degree, in 1665, that
Newton discovered the binomial theorem and
made the first notes on his discovery of the
“method of fluxions.”

When the Great Plague spread from London
to Cambridge in 1665, college was dismissed,
and Newton retired to the farm in Lincoln-
shire, where he conducted experiments in op-
tics and chemistry and continued his mathe-
matical speculations. From this forced retire-
ment in 1666 he dated his discovery of the
gravitational theory: “In the same year I be-
gan to think of gravity extending to the orb of
the Moon, . . . compared the force requisite to
keep the Moon in her orb with the force of
gravity at the surface of the earth and found
them to answer pretty nearly.” At about the
same time his work on optics led to his expla-
nation of the composition of white light. Of the
work he accomplished in these years Newton
later remarked: “All this was in the two years
of 1665 and 1666, for in those years I was in
the prime of my age for invention and minded
Mathematics and Philosophy more than at
any time since.”

On the re-opening of Trinity College in 1667,
Newton was elected a fellow, and two years
later, a little before his twenty-seventh birth-
day, he was appointed Lucasian professor of
mathematics, succeeding his friend and teach-
er, Dr. Barrow. Newton had already built a
reflecting telescope in 1668; the second tele-
scope of his making he presented to the Royal
Society in December, 1671. Two months later,
as a fellow of the Society, he communicated his
discovery on light and thereby started a con-
troversy which was to run for many years and
to involve Hooke, Lucas, Linus, and others.
Newton, who always found controversy dis-
tasteful, “blamed my own imprudence for
parting with so substantial a blessing as my
quiet to run after a shadow.” His papers on
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opties, the most important of which were com-
municated to the Royal Society between 1672
and 1676, were collected in the Optics (1704).

It was not until 1684 that Newton began to
think of making known his work on gravity.
Hooke, Halley, and Sir Christopher Wren had
independently come to some notion of the law
of gravity but were not having any success in
explaining the orbits of the planets. In that
year Halley consulted Newton on the problem
and was astonished to find that he had already
solved it. Newton submitted to him four theo-
rems and seven problems, which proved to be
the nucleus of his major work. In some seven-
teen or eighteen months during 1685 and 1686
he wrote in Latin the Mathematical Principles
of Natural Philosophy. Newton thought for
some time of suppressing the third book, and
it was only Halley’s insistence that preserved
it. Halley also took upon himself the cost of
publishing the work in 1687 after the Royal
Society proved unable to meet its cost. The
book caused great excitement throughout Eu-
rope, and in 1689 Huygens, at that time the
most famous scientist, came to England to
make the personal acquaintance of Newton.

While working upon the Principles, Newton
had begun to take a more prominent part in
university affairs. For his opposition to the at-
tempt of James II to repudiate the oath of
allegiance and supremacy at the university,
Newton was elected parliamentary member for
Cambridge. On his return to the university, he
suffered a serious illness which incapacitated
him for most of 1692 and 1693 and caused con-
siderable concern to his friends and fellow-
workers. After his recovery, he left the univer-
sity to work for the government. Through his
friends Locke, Wren, and Lord Halifax, New-
ton was made Warden of the Mint in 1695 and
four years later, Master of the Mint, a position
he held until his death.

For the last thirty years of his life Newton
produced little original mathematical work. He
kept his interest and his skill in the subject; in

1696 he solved overnight a problem offered by
Bernoulli in a competition for which six months
had been allowed, and again in 1716 he worked
in a few hours a problem which Leibnitz had
proposed in order to ‘‘feel the pulse of the Eng-
lish analysts.” He was much occupied, to his
own distress, with two mathematical contro-
versies, one regarding the astronomical obser-
vations of the astronomer royal, and the other
with Leibnitz regarding the invention of cal-
culus. He also worked on revisions for a second
edition of the Principles, which appeared in
1713.

Newton’s scientific work brought him great
fame. He was a popular visitor at the Court
and was knighted in 1705. Many honors came
to him from the continent; he was in corre-
spondence with all the leading men of science,
and visitors became so frequent as to prove a
serious discomfort. Despite his fame, Newton
maintained his modesty. Shortly before his
death, he remarked: “I do not know what I
may appear to the world, but to myself I
seem to have been only like a boy playing on
the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier
shell than ordinary, whilst the great ocean of
truth lay all undiscovered before me.”

From an early period of his life Newton had
been much interested in theological studies
and before 1690 had begun to study the proph-
ecies. In that year he wrote, in the form of a
letter to Locke, an Historical Account of Two
Notable Corruptions of the Scriptures, regarding
two passages on the Trinity. He left in manu-
script Observations on the Prophecies of Dantel
and the Apocalypse and other works of exegesis.

After 1725 Newton’s health was much im-
paired, and his duties at the Mint were dis-
charged by a deputy. In February, 1727, he
presided for the last time at the Royal Society,
of which he had been president since 1703, and
died on March 20, 1727, in his eighty-fifth
year. He was buried in Westminster Abbey
after lying in state in the Jerusalem Chamber.
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PREFACE TO THE FIRST EDITION

SincE the ancients (as we are told by Pappus) esteemed the science of me-
chanics of greatest importance in the investigation of natural things, and
the moderns, rejecting substantial forms and occult qualities, have endeavored
to subject the phenomena of nature to the laws of mathematics, I have in this
treatise cultivated mathematics as far as it relates to philosophy. The ancients
considered mechanics in a twofold respect; as rational, which proceeds accu-
rately by demonstration, and practical. To practical mechanics all the manual
arts belong, from which mechanics took its name. But as artificers do not work
with perfect accuracy, it comes to pass that mechanics is so distinguished from
geometry that what is perfectly accurate is called geometrical; what is less so,
is called mechanical. However, the errors are not in the art, but in the artificers.
He that works with less accuracy is an imperfect mechanic; and if any could
work with perfect accuracy, he would be the most perfect mechanic of all, for
the description of right lines and circles, upon which geometry is founded, be-
longs to mechanics. Geometry does not teach us to draw these lines, but re-
quires them to be drawn, for it requires that the learner should first be taught
to describe these accurately before he enters upon geometry, then it shows how
by these operations problems may be solved. To describe right lines and circles
are problems, but not geometrical problems. The solution of these problems is
required from mechanics, and by geometry the use of them, when so solved, is
shown; and it is the glory of geometry that from those few principles, brought
from without, it is able to produce so many things. Therefore geometry is
founded in mechanical practice, and is nothing but that part of universal me-
chanics which accurately proposes and demonstrates the art of measuring. But
since the manual arts are chiefly employed in the moving of bodies, it happens
that geometry is commonly referred to their magnitude, and mechanics to
their motion. In this sense rational mechanics will be the science of motions
resulting from any forces whatsoever, and of the forces required to produce
any motions, accurately proposed and demonstrated. This part of mechanics,
as far as it extended to the five powers which relate to manual arts, was cul-
tivated by the ancients, who considered gravity (it not being a manual power)
no otherwise than in moving weights by those powers. But I consider philoso-
phy rather than arts and write not concerning manual but natural powers, and
consider chiefly those things which relate to gravity, levity, elastic force, the
resistance of fluids, and the like forces, whether attractive or impulsive; and
therefore I offer this work as the mathematical principles of philosophy, for the
whole burden of philosophy seems to consist in this—from the phenomena of
motions to investigate the forces of nature, and then from these forces to dem-
onstrate the other phenomena; and to this end the general propositions in the
first and second books are directed. In the third book I give an example of this
in the explication of the System of the World; for by the propositions mathe-
matically demonstrated in the former books in the third I derive from the
celestial phenomena the forces of gravity with which bodies tend to the sun and
1



2 MATHEMATICAL PRINCIPLES

the several planets. Then from these forces, by other propositions which are
also mathematical, I deduce the motions of the planets, the comets, the moon,
and the sea. I wish we could derive the rest of the phenomena of Nature by
the same kind of reasoning from mechanical prineiples, for I am induced by
many reasons to suspect that they may all depend upon certain forces by
which the particles of bodies, by some causes hitherto unknown, are either
mutually impelled towards one another, and cohere in regular figures, or are
repelled and recede from one another. These forces being unknown, philo-
sophers have hitherto attempted the search of Nature in vain; but I hope
the principles here laid down will afford some light either to this or some truer
method of philosophy.

In the publication of this work the most acute and universally learned Mr.
Edmund Halley not only assisted me in correcting the errors of the press and
preparing the geometrical figures, but it was through his solicitations that it
came to be published; forwhen he had obtained of me my demonstrationsof the
figure of the celestial orbits, he continually pressed me to communicate the
same to the Royal Society, who afterwards, by their kind encouragement and
entreaties, engaged me to think of publishing them. But after I had begun to
consider the inequalities of the lunar motions, and had entered upon some
other things relating to the laws and measures of gravity and other forces; and
the figures that would be described by bodies attracted according to given
laws; and the motion of several bodies moving among themselves; the motion
of bodies in resisting mediums; the forces, densities, and motions, of mediums;
the orbits of the comets, and such like, I deferred that publication till I had
made a search into those matters, and could put forth the whole together.
What relates to the lunar motions (being imperfect), I have put all together in
the corollaries of Prop. 66, to avoid being obliged to propose and distinctly
demonstrate the several things there contained in a method more prolix than
the subject deserved and interrupt the series of the other propositions. Some
things, found out after the rest, I chose to insert in places less suitable, rather
than change the number of the propositions and the citations. I heartily beg
that what I have here done may be read with forbearance; and that my labors
1n a subject so difficult may be examined, not so much with the view to censure,
as to remedy their defects.

Is. NEwToN
Cambridge, Trinity College, May 8, 1686

PREFACE TO THE SECOND EDITION

I~ this second edition of the Principia there are many emendations and some
additions. In the second section of the first book, the determination of forces,
by which bodies may be made to revolve in given orbits, is illustrated and en-
larged. In the seventh section of the second book the theory of the resistances
of fluids was more accurately investigated, and confirmed by new experiments.
In the third book the lunar theory and the precession of the equinoxes were
more fully deduced from their principles; and the theory of the comets was
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confirmed by more examples of the calculation of their orbits, done also with
greater accuracy.

Is. NEWTON
London, March 28, 1713

PREFACE TO THE THIRD EDITION

IxN this third edition, prepared with much care by Henry Pemberton, M.D., a
man of the greatest skill in these matters, some things in the second book on
the resistance of mediums are somewhat more comprehensively handled than
before, and new experiments on the resistance of heavy bodies falling in air are
added. In the third book, the argument to prove that the moon is retained in
its orbit by the force of gravity is more fully stated; and there are added new
observations made by Mr. Pound, concerning the ratio of the diameters of
Jupiter to one another. Some observations are also added on the comet which
appeared in the year 1680, made in Germany in the month of November by
Mr. Kirk; which have lately come to my hands. By the help of these it becomes
apparent how nearly parabolic orbits represent the motions of comets. The
orbit of that comet is determined somewhat more accurately than before, by
the computation of Dr. Halley, in an ellipse. And it is shown that, in this ellip-
tic orbit, the comet took its course through the nine signs of the heavens, with
as much accuracy as the planets move in the elliptic orbits given in astronomy.
The orbit of the comet which appeared in the year 1723 is also added, computed
by Mr. Bradley, Professor of Astronomy at Oxford.
Is. NEwTON

London, Jan. 12, 17256






DEFINITIONS

DEFINITION 1

The quantity of matter is the measure of the same, arising from its density and
bulk conjointly.

Thus air of a double density, in a double space, is quadruple in quantity; in
a triple space, sextuple in quantity. The same thing is to be understood of
snow, and fine dust or powders, that are condensed by compression or lique-
faction, and of all bodies that are by any causes whatever differently con-
densed. I have no regard in this place to a medium, if any such there is, that
freely pervades the interstices between the parts of bodies. It is this quantity
that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body, for it is proportional to the weight,
as I have found by experiments on pendulums, very accurately made, which
shall be shown hereafter.

DEFINITION 1I

The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and there-
fore in a body double in quantity, with equal velocity, the motion is double;
with twice the velocity, it is quadruple.

DEFINITION III

The vis insita, or innate force of matter, s a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or of
moving uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs
nothing from the inactivity of the mass, but in our manner of conceiving it. A
body, from the inert nature of matter, is not without difficulty put out of its
state of rest or motion. Upon which account, this vis insita may, by a most sig-
nificant name, be called inertia (vis inertie) or force of inactivity. But a body
only exerts this force when another force, impressed upon it, endeavors to
change its condition; and the exercise of this force may be considered as both
resistance and impulse; it is resistance so far as the body, for maintaining its
present state, opposes the force impressed; it is impulse so far as the body, by
not easily giving way to the impressed force of another, endeavors to change
the state of that other. Resistance is usually ascribed to bodies at rest, and im-
pulse to those in motion ; but motion and rest, as commonly conceived, are only
relatively distinguished; nor are those bodies always truly at rest, which com-
monly are taken to be so.

5



6 MATHEMATICAL PRINCIPLES

DEFINITION IV

An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

This force consists in the action only, and remains no longer in the body
when the action is over. For a body maintains every new state it acquires, by
its inertia only. But impressed forces are of different origins, as from percus
sion, from pressure, from centripetal force.

DEFINITION V

A centripetal force vs that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the centre of the earth; mag-
netism, by which iron tends to the loadstone; and that force, whatever it is,
by which the planets are continually drawn aside from the rectilinear motions,
which otherwise they would pursue, and made to revolve in curvilinear orbits.
A stone, whirled about in a sling, endeavors to recede from the hand that turns
it; and by that endeavor, distends the sling, and that with so much the greater
force, as it is revolved with the greater velocity, and as soon as it is let go, flies
away. That force which opposes itself to this endeavor, and by which the sling
continually draws back the stone towards the hand, and retains it in its orbit,
because it is directed to the hand as the centre of the orbit, I call the centripe-
tal force. And the same thing is to be understood of all bodies, revolved in any
orbits. They all endeavor to recede from the centres of their orbits; and were it
not for the opposition of a contrary force which restrains them to, and detains
them in their orbits, which I therefore call centripetal, would fly off in right
lines, with an uniform motion. A projectile, if it was not for the force of gravity,
would not deviate towards the earth, but would go off from it in a right line,
and that with an uniform motion, if the resistance of the air was taken away.
It is by its gravity that it is drawn aside continually from its rectilinear course,
and made to deviate towards the earth, more or less, according to the force of
its gravity, and the velocity of its motion. The less its gravity is, or the quan-
tity of its matter, or the greater the velocity with which it is projected, the less
will it deviate from a rectilinear course, and the farther it will go. If a leaden
ball, prcjected from the top of a mountain by the force of gunpowder, with a
given velocity, and in a direction parallel to the horizon, is carried in a curved
line to the distance of two miles before it falls to the ground; the same, if the
resistance of the air were taken away, with a double or decuple velocity, would
fly twice or ten times as far. And by increasing the velocity, we may at pleasure
increase the distance to which it might be projected, and diminish the curva-
ture of the line which it might describe, till at last it should fall at the distance
of 10, 30, or 90 degrees, or even might go quite round the whole earth before it
falls; or lastly, so that it might never fall to the earth, but go forwards into the
celestial spaces, and proceed in its motion in infinitum. And after the same
manner that a projectile, by the force of gravity, may be made to revolve in an
orbit, and go round the whole earth, the moon also, either by the force of
gravity, if it is endued with gravity, or by any other force, that impels it to-
wards the earth, may be continually drawn aside towards the earth, out of the
rectilinear way which by its innate force it would pursue; and would be made
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to revolve in the orbit which it now describes; nor could the moon without
some such force be retained in its orbit. If this force was too small, it would not
sufficiently turn the moon out of a rectilinear course; if it was too great, it
would turn it too much, and draw down the moon from its orbit towards the
earth. It is necessary that the force be of a just quantity, and it belongs to the
mathematicians to find the force that may serve exactly to retain a body in a
given orbit with a given velocity; and vice versa, to determine the curvilinear
way into which a body projected from a given place, with a given velocity,
may be made to deviate from its natural rectilinear way, by means of a given
force.

The quantity of any centripetal force may be considered as of three kinds:
absolute, accelerative, and motive.

DEFINITION VI

The absolute quantity of a centripetal force is the measure of the same, proportional
to the efficacy of the cause that propagates it from the centre, through the spaces
round about.

Thus the magnetic force is greater in one loadstone and less in another, ac-
cording to their sizes and strength of intensity.

DEFINITION VII

The accelerative quantity of a centripetal force is the measure of the same, propor-
tional to the velocity which it generates in a given time.

Thus the force of the same loadstone is greater at a less distance, and less at
a greater: also the force of gravity is greater in valleys, less on tops of exceeding
high mountains; and yet less (as shall hereafter be shown), at greater distances
from the body of the earth; but at equal distances, it is the same everywhere;
because (taking away, or allowing for, the resistance of the air), it equally ac-
celerates all falling bodies, whether heavy or light, great or small.

DEFINITION VIII

The motive quantity of a centripetal force is the measure of the same, proportional
to the motion which it generates in a given time.

Thus the weight is greater in a greater body, less in a less body; and, in the
same body, it is greater near to the earth, and less at remoter distances. This
sort of quantity is the centripetency, or propension of the whole body towards
the centre, or, as I may say, its weight; and it is always known by the quantity
of an equal and contrary force just sufficient to hinder the descent of the body.

These quantities of forces, we may, for the sake of brevity, call by the names
of motive, accelerative, and absolute forces; and, for the sake of distinction,
consider them with respect to the bodies that tend to the centre, to the places
of those bodies, and to the centre of force towards which they tend; that is to
say, I refer the motive force to the body as an endeavor and propensity of the
whole towards a centre, arising from the propensities of the several parts taken
together; the accelerative force to the place of the body, as a certain power dif-
fused from the centre to all places around to move the bodies that are in them ;
and the absolute force to the centre, as endued with some cause, without which
those motive forces would not be propagated through the spaces round about;
whether that cause be some central body (such as is the magnet in the centre
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of the magnetic force, or the earth in the centre of the gravitating force), or
anything else that does not yet appear. For I here design only to give a mathe-
matical notion of those forces, without considering their physical causes and
seats.

Wherefore the accelerative force will stand in the same relation to the motive,
as celerity does to motion. For the quantity of motion arises from the celerity
multiplied by the quantity of matter; and the motive force arises from the ac-
celerative force multiplied by the same quantity of matter. For the sum of the
actions of the accelerative force, upon the several particles of the body, is the
motive force of the whole. Hence it is, that near the surface of the earth, where
the accelerative gravity, or force productive of gravity, in all bodies is the same,
the motive gravity or the weight is as the body; but if we should ascend to
higher regions, where the accelerative gravity is less, the weight would be
equally diminished, and would always be as the product of the body, by the ac-
celerative gravity. So in those regions, where the accelerative gravity is di-
minished into one-half, the weight of a body two or three times less, will be four
or six times less.

I likewise call attractions and impulses, in the same sense, accelerative, and
motive; and use the words attraction, impulse, or propensity of any sort to-
wards a centre, promiscuously, and indifferently, one for another; considering
those forces not physically, but mathematically: wherefore the reader is not to
imagine that by those words I anywhere take upon me to define the kind, or
the manner of any action, the causes or the physical reason thereof, or that I
attribute forces, in a true and physical sense, to certain centres (which are only
mathematical points); when at any time I happen to speak of centres as at-
tracting, or as endued with attractive powers.

ScHOLIUM

Hitherto I have laid down the definitions of such words as are less known,
and explained the sense in which I would have them to be understood in the
following discourse. I do not define time, space, place, and motion, as being
well known to all. Only I must observe, that the common people conceive those
quantities under no other notions but from the relation they bear to sensible
objects. And thence arise certain prejudices, for the removing of which it will
be convenient to distinguish them into absolute and relative, true and apparent,
mathematical and common.

1. Absolute, true, and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external, and by another name is
called duration: relative, apparent, and common time, is some sensible and
externa’ (whether accurate or unequable) measure of duration by the means of
motion, which is commonly used instead of true time; such as an hour, a day,
a month, a year.

II. Absolute space, in its own nature, without relation to anything external,
remains always similar and immovable. Relative space is some movable dimen-
sion or measure of the absolute spaces; which our senses determine by its posi-
tion to bodies; and which is commonly taken for immovable space; such is the
dimension of a subterraneous, an aerial, or celestial space, determined by its
position in respect of the earth. Absolute and relative space are the same in
figure and magnitude; but they do not remain always numerically the same.
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For if the earth, for instance, moves, a space of our air, which relatively and in
respect of the earth remains always the same, will at one time be one part of
the absolute space into which the air passes; at another time it will be another
part of the same, and so, absolutely understood, it will be continually changed.

ITI. Place is a part of space which a body takes up, and is according to the
space, either absolute or relative. I say, a part of space; not the situation, nor
the external surface of the body. For the places of equal solids are always equal;
but their surfaces, by reason of their dissimilar figures, are often unequal. Posi-
tions properly have no quantity, nor are they so much the places themselves,
as the properties of places. The motion of the whole is the same with the sum
of the motions of the parts; that is, the translation of the whole, out of its
place, is the same thing with the sum of the translations of the parts out of
their places; and therefore the place of the whole is the same as the sum of the
places of the parts, and for that reason, it is internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute place
into another; and relative motion, the translation from one relative place into
another. Thus in a ship under sail, the relative place of a body is that part of
the ship which the body possesses; or that part of the cavity which the body
fills, and which therefore moves together with the ship: and relative rest is the
continuance of the body in the same part of the ship, or of its cavity. But real,
absolute rest, is the continuance of the body in the same part of that immov-
able space, in which the ship itself, its cavity, and all that it contains, is moved.
Wherefore, if the earth is really at rest, the body, which relatively rests in the
ship, will really and absolutely move with the same velocity which the ship has
on the earth. But if the earth also moves, the true and absolute motion of the
body will arise, partly from the true motion of the earth, in immovable space,
partly from the relative motion of the ship on the earth; and if the body moves
also relatively in the ship, its true motion will arise, partly from the true mo-
tion of the earth, in immovable space, and partly from the relative motions as
well of the ship on the earth, as of the body in the ship; and from these relative
motions will arise the relative motion of the body on the earth. As if that part
of the earth, where the ship is, was truly moved towards the east, with a veloc-
ity of 10,010 parts; while the ship itself, with a fresh gale, and full sails, is
carried towards the west, with a velocity expressed by 10 of those parts; but a
sailor walks in the ship towards the east, with 1 part of the said velocity; then
the sailor will be moved truly in immovable space towards the east, with a
velocity of 10,001 parts, and relatively on the earth towards the west, with a
velocity of 9 of those parts.

Absolute time, in astronomy, is distinguished from relative, by the equation
or correction of the apparent time. For the natural days are truly unequal,
though they are commonly considered as equal, and used for a measure of time;
astronomers correct, this inequality that they may measure the celestial mo-
tions by a more accurate time. It may be, that there is no such thing as an
equable motion, whereby time may be accurately measured. All motions may
be accelerated and retarded, but the flowing of absolute time is not liable to
any change. The duration of perseverance of the existence of things remains the
same, whether the motions are swift or slow, or none at all: and therefore this
duration ought to be distinguished from what are only sensible measures there-
of; and from which we deduce it, by means of the astronomical equation. The
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necessity of thisequation, for determining the times of a phenomenon, isevinced
as well from the experiments of the pendulum clock, as by eclipses of the satel-
lites of Jupiter.

As the order of the parts of time is immutable, so also is the order of the
parts of space. Suppose those parts to be moved out of their places, and they
will be moved (if the expression may be allowed) out of themselves. For times
and spaces are, as it were, the places as well of themselves as of all other things.
All things are placed in time as to order of succession; and in space as to order
of situation. It is from their essence or nature that they are places; and that the
primary places of things should be movable, is absurd. These are therefore the
absolute places; and translations out of those places, are the only absolute
motions.

But because the parts of space cannot be seen, or distinguished from ona
another by our senses, therefore in their stead we use sensible measures of
them. For from the positions and distances of things from any body considered
as immovable, we define all places; and then with respect to such places, we
estimate all motions, considering bodies as transferred from some of those
places into others. And so, instead of absolute places and motions, we use
relative ones; and that without any inconvenience in common affairs; but in
philosophical disquisitions, we ought to abstract from our senses, and consider
things themselves, distinct from what are only sensible measures of them. For
it may be that there is no body really at rest, to which the places and motions
of others may he referred.

But we may distinguish rest and motion, absolute and relative, one from the
other by their properties, causes, and effects. It is a property of rest, that bodies
really at rest do rest in respect to one another. And therefore as it is possible,
that in the remote regions of the fixed stars, or perhaps far beyond them, there
may be some body absolutely at rest; but impossible to know, from the position
of bodies to one another in our regions, whether any of these do keep the same
position to that remote body, it follows that absolute rest cannot be determined
from the position of bodies in our regions.

It i1s a property of motion, that the parts, which retain given positions to
their wholes, do partake of the motions of those wholes. For all the parts of
revolving bodies endeavor to recede from the axis of motion; and the impetus
of bodies moving forwards arises from the joint impetus of all the parts. There-
fore, if surrounding bodies are moved, those that are relatively at rest within
them will partake of their motion. Upon which account, the true and absolute
motion of a body cannot be determined by the translation of it from those
which only seem to rest; for the external bodies ought not only to appear at
rest, but to be really at rest. For otherwise, all included bodies, besides their
translation from near the surrounding ones, partake likewise of their true mo-
tions; and though that translation were not made, they would not be really at
rest, but only seem to be so. For the surrounding bodies stand in the like rela-
tion to the surrounded as the exterior part of a whole does to the interior, or as
the shell does to the kernel; but if the shell moves, the kernel will also move, as
being part of the whole, without any removal from near the shell.

A property, near akin to the preceding, is this, that if a place is moved,
whatever is placed therein moves along with it; and therefore a body, which is
moved from a place in motion, partakes also of the motion of its place. Upon
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which account, all motions, from places in motion, are no other than parts of
entire and absolute motions; and every entire motion is composed of the motion
of the body out of its first place, and the motion of this place out of its place;
and so on, until we come to some immovable place, as in the before-mentioned
example of the sailor. Wherefore, entire and absolute motions can be no other-
wise determined than by immovable places; and for that reason I did before
refer those absolute motions to immovable places, but relative ones to mov-
able places. Now no other places are immovable but those that, from infinity
to infinity, do all retain the same given position one to another; and upon this
account must ever remain unmoved; and do thereby constitute immovable
space.

The causes by which true and relative motions are distinguished, one from
the other, are the forces impressed upon bodies to generate motion. True mo-
tion is neither generated nor altered, but by some force impressed upon the
body moved; but relative motion may be generated or altered without any
force impressed upon the body. For it is sufficient only to impress some force
on other bodies with which the former is compared, that by their giving way,
that relation may be changed, in which the relative rest or motion of this other
body did consist. Again, true motion suffers always some change from any
force impressed upon the moving body ; but relative motion does not necessarily
undergo any change by such forces. For if the same forces are likewise impressed
on those other bodies, with which the comparison is made, that the relative
position may be preserved, then that condition will be preserved in which the
relative motion consists. And therefore any relative motion may be changed
when the true motion remains unaltered, and the relative may be preserved
when the true suffers some change. Thus, true motion by no means consists in
such relations.

The effects which distinguish absolute from relative motion are, the forces
of receding from the axis of circular motion. For there are no such forces in a
circular motion purely relative, but in a true and absolute circular motion,
they are greater or less, according to the quantity of the motion. If a vessel,
hung by a long cord, is so often turned about that the cord is strongly twisted,
then filled with water, and held at rest together with the water; thereupon, by
the sudden action of another force, it is whirled about the contrary way, and
while the cord is untwisting itself, the vessel continues for some time in this
motion; the surface of the water will at first be plain, as before the vessel began
to move; but after that, the vessel, by gradually communicating its motion to
the water, will make it begin sensibly to revolve, and recede by little and little
from the middle, and ascend to the sides of the vessel, forming itself into a
concave figure (as I have experienced), and the swifter the motion becomes,
the higher will the water rise, till at last, performing its revolutions in the same
times with the vessel, it becomes relatively at rest in it. This ascent of the water
shows its endeavor to recede from the axis of its motion; and the true and
absolute circular motion of the water, which is here directly contrary to the
relative, becomes known, and may be measured by this endeavor. At first,
when the relative motion of the water in the vessel was greatest, it produced no
endeavor to recede from the axis; the water showed no tendency to the circum-
ference, nor any ascent towards the sides of the vessel, but remained of a plain
surface, and therefore its true circular motion had not yet begun. But after-
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wards, when the relative motion of the water had decreased, the ascent thereof
towards the sides of the vessel proved its endeavor to recede from the axis; and
this endeavor showed the real circular motion of the water continually increas-
ing, till it had acquired its greatest quantity, when the water rested relatively
in the vessel. And therefore this endeavor does not depend upon any translation
of the water in respect of the ambient bodies, nor can true circular motion be
defined by such translation. There is only one real circular motion of any one
revolving body, corresponding to only one power of endeavoring to recede from
its axis of motion, as its proper and adequate effect; but relative motions, in
one and the same body, are innumerable, according to the various relations it
bears to external bodies, and, like other relations, are altogether destitute of
any real effect, any otherwise than they may perhaps partake of that one only
true motion. And therefore in their system who suppose that our heavens,
revolving below the sphere of the fixed stars, carry the planets along with them;
the several parts of those heavens, and the planets, which are indeed relatively
at rest in their heavens, do yet really move. For they change their position one
to another (which never happens to bodies truly at rest), and being carried
together with their heavens, partake of their motions, and as parts of revolving
wholes, endeavor to recede from the axis of their motions.

Wherefore relative quantities are not the quantities themselves, whose names
they bear, but those sensible measures of them (either accurate or inaccurate),
which are commonly used instead of the measured quantities themselves. And
if the meaning of words is to be determined by their use, then by the names
time, space, place, and motion, their [sensible] measures are properly to be
understood; and the expression will be unusual, and purely mathematical, if
the measured quantities themselves are meant. On this account, those violate
the accuracy of language, which ought to be kept precise, who interpret these
words for the measured quantities. Nor do those less defile the purity of math-
ematical and philosophical truths, who confound real quantities with their
relations and sensible measures.

It 1s indeed a matter of great difficulty to discover, and effectually to dis-
tinguish, the true motions of particular bodies from the apparent; because the
parts of that immovable space, in which those motions are performed, do by no
means come under the observation of our senses. Yet the thing is not altogether
desperate; for we have some arguments to guide us, partly from the apparent
motions, which are the differences of the true motions; partly from the forces,
which are the causes and effects of the true motions. For instance, if two globes,
kept at a given distance one from the other by means of a cord that connects
them, were revolved about their common centre of gravity, we might, from the
tension of the cord, discover the endeavor of the globes to recede from the axis
of their motion, and from thence we might compute the quantity of their
circular motions. And then if any equal forces should be impressed at once on
the alternate faces of the globes to augment or diminish their circular motions,
from the increase or decrease of the tension of the cord, we might infer the
increment or decrement of their motions; and thence would be found on what
faces those forces ought to be impressed, that the motions of the globes might
be most augmented; that is, we might discover their hindmost faces, or those
which, in the circular motion, do follow. But the faces which follow being
known, and consequently the opposite ones that precede, we should likewise
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know the determination of their motions. And thus we might find both the
quantity and the determination of this circular motion, even in an immense
vacuum, where there was nothing external or sensible with which the globes
could be compared. But now, if in that space some remote bodies were placed
that kept always a given position one to another, as the fixed stars do in our
regions, we could not indeed determine from the relative translation of the
globes among those bodies, whether the motion did belong to the globes or to
the bodies. But if we observed the cord, and found that its tension was that
very tension which the motions of the globes required, we might conclude the
motion to be in the globes, and the bodies to be at rest; and then, lastly, from
the translation of the globes among the bodies, we should find the determi-
nation of their motions. But how we are to obtain the true motions from their
causes, effects, and apparent differences, and the converse, shall be explained
more at large in the following treatise. For to this end it was that I composed it.
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LAW I

Every body continues in its state of rest, or of uniform motion in a right line, unless
it s compelled to change that state by forces impressed wpon it.

Projectiles continue in their motions, so far as they are not retarded by the
resistance of the air, or impelled downwards by the force of gravity. A top,
whose parts by their cohesion are continually drawn aside from rectilinear mo-
tions, does not cease its rotation, otherwise than as it is retarded by the air.
The greater bodies of the planets and comets, meeting with less resistance in
freer spaces, preserve their motions both progressive and circular for a much
longer time.

LAW 11

The change of motion is proportional to the motive force impressed; and is made in
the direction of the right line in which that force is tmpressed.

If any force generates a motion, a double force will generate double the mo-
tion, a triple force triple the motion, whether that force be impressed alto-
gether and at once, or gradually and successively. And this motion (being al-
ways directed the same way with the generating force), if the body moved be-
fore, is added to or subtracted from the former motion, according as they
directly conspire with or are directly contrary to each other; or obliquely
joined, when they are oblique, so as to produce a new motion compounded from
the determination of both.

LAW III

To every action there is always opposed an equal reaction: or, the mutual actions of
two bodies upon each other are always equal, and directed to contrary parts.
Whatever draws or presses another is as much drawn or pressed by that
other. If you press a stone with your finger, the finger is also pressed by the
stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will
be equally drawn back towards the stone; for the distended rope, by the same
endeavor to relax or unbend itself, will draw the horse as much towards the
stone as it does the stone towards the horse, and will obstruct the progress of
the one as much as it advances that of the other. If a body impinge upon
another, and by its force change the motion of the other, that body also (be-
cause of the equality of the mutual pressure) will undergo an equal change, in
its own motion, towards the contrary part. The changes made by these actions
are equal, not in the velocities but in the motions of bodies; that is to say, if the
bodies are not hindered by any other impediments. For, because the motions
are equally changed, the changes of the velocities made towards contrary parts
are inversely proportional to the bodies. This law takes place also in attractions,
as will be proved in the next Scholium.
14
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COROLLARY I

A body, acted on by two forces stimultaneously, will describe the diagonal of a paral-
lelogram in the same time as it would describe the sides by those forces separately.
If a body in a given time, by the force M impressed apart in the place A,
should with an uniform motion be carried from A to B, and by the force N im-
pressed apart in the same place, should be carried from A to C, let the paral-
lelogram ABCD be completed, and, by both forces
acting together, it will in the same time be carried
in the diagonal from A to D. For since the force
N acts in the direction of the line AC, parallel to
c D BD, this force (by the second Law) will not at all
alter the velocity generated by the other force M,
by which the body is carried towards the line BD. The body therefore will
arrive at the line BD in the same time, whether the force N be impressed or
not; and therefore at the end of that time it will be found somewhere in the
line BD. By the same argument, at the end of the same time it will be found
somewhere in the line CD. Therefore it will be found in the point D, where
both lines meet. But it will move in a right line from A to D, by Law 1.

COROLLARY II

And hence is explained the composition of any one direct force AD, out of any two
oblique forces AC and CD; and, on the contrary, the resolution of any one direct
force AD into two obligue forces AC and CD: which composition and resolution are
abundantly confirmed from mechanics.

As if the unequal radii OM and ON drawn from the centre O of any wheel,
should sustain the weights A and P by the cords MA and NP; and the forces of
those weights to move the wheel were required. Through the centre O draw
the right line KOL, meeting the cords perpendicularly in K and L; and from
the centre O, with OL the greater of the distances OIX and OL, describe a cir-
cle, meeting the cord MA in D; and drawing OD, make AC parallel and DC
perpendicular thereto. Now, it being indifferent whether the points I, L,
D, of the cords be fixed to the plane of the
wheel or not, the weights will have the same
effect whether they are suspended from the
points K and L, or from D and L. Let the
whole force of the weight A be represented by K
the line AD, and let it be resolved into the p
forces AC and CD, of which the force AC,
drawing the radius OD directly from the
centre, will have no effect to move the wheel;
but the other force DC, drawing the radius
DO perpendicularly, will have the same effect
as if it drew perpendicularly the radius OL
equal to OD; that is, 1t will have the same
effect as the weight P, if

A B

M

P :A=DC : DA,
but because the triangles ADC and DOK are similar,
DC : DA=0OK : OD=0K: OL.
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Therefore,

P : A=radius OK : radius OL.
As these radii lie in the same right line they will be equipollent, and so remain
in equilibrium; which is the well-known property of the balance, the lever, and
the wheel. If either weight is greater than in this ratio, its force to move the
wheel will be so much greater.

If the weight p =P, is partly suspended by the cord Np, partly sustained by
the oblique plane pG; draw pH, NH, the former perpendicular to the horizon,
the latter to the plane pG; and if the force of the weight p tending downwards
is represented by the line pH, it may be resolved into the forces pIN, HN. If
there was any plane pQ, perpendicular to the cord pN, cutting the other plane
pG in a line parallel to the horizon, and the weight p was supported only by
those planes pQ, pG, it would press those planes perpendicularly with the
forces pN, HN; to wit, the plane pQ with the force pN, and the plane pG with
the force HN. And therefore if the plane pQ was taken away, so that the weight
might stretch the cord, because the cord, now sustaining the weight, supplied
the place of the plane that was removed, it would be strained by the same force
pN which pressed upon the plane before. Therefore, the

tension of pN : tension of PN =line pN :line pH.
Therefore, if pisto A in a ratio which is the product of the inverse ratio of the
least distances of their cords pIN and AM from the centre of the wheel, and of
the ratio pH to pN, then the weights p and A will have the same effect to-
wards moving the wheel, and will, therefore, sustain each other; as anyone
may find by experiment.

But the weight p pressing upon those two oblique planes, may be considered
as a wedge between the two internal surfaces of a body split by it; and hence
the forces of the wedge and the mallet may be determined: because the force
with which the weight p presses the plane pQ is to the force with which the
same, whether by its own gravity, or by the blow of a mallet, is impelled in the
direction of the line pH towards both the planes, as

pN : pH;
and to the force with which it presses the other plane pG, as

pN : NH.
And thus the force of the screw may be deduced from a like resolution of
forces; it being no other than a wedge impelled with the force of a lever. There-
fore the use of this Corollary spreads far and wide, and by that diffusive ex-
tent the truth thereof is further confirmed. For on what has been said depends
the whole doctrine of mechanics variously demonstrated by different authors.
For from hence are easily deduced the forces of machines, which are com-
pounded of wheels, pullies, levers, cords, and weights, ascending directly or
obliquely, and other mechanical powers; as also the force of the tendons to
move the bones of animals.

COROLLARY III

The quantity of motion, which is obtained by taking the sum of the motions directed
towards the same parts, and the difference of those that are directed to contrary
parts, suffers no change from the action of bodies among themselves.

For action and its opposite reaction are equal, by Law 111, and therefore, by
Law 11, they produce in the motions equal changes towards opposite parts.
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Therefore if the motions are directed towards the same parts, whatever is
added to the motion of the preceding body will be subtracted from the motion
of that which follows; so that the sum will be the same as before. If the bodies
meet, with contrary motions, there will be an equal deduction from the mo-
tions of both; and therefore the difference of the motions directed towards op-
posite parts will remain the same.

Thus, if a spherical body A is 3 times greater than the spherical body B, and
has a velocity =2, and B follows in the same direction with a velocity = 10, then
the

motion of A : motion of B=6 : 10.
Suppose, then, their motions to be of 6 parts and of 10 parts, and the sum will
be 16 parts. Therefore, upon the meeting of the bodies, if A acquire 3, 4, or 5
parts of motion, B will lose as many; and therefore after reflection A will pro-
ceed with 9, 10, or 11 parts, and B with 7, 6, or 5 parts; the sum remaining al-
ways of 16 parts as before. If the body A acquire 9, 10, 11, or 12 parts of mo-
tion, and therefore after meeting proceed with 15, 16, 17, or 18 parts, the body
B, losing so many parts as A has got, will either proceed with 1 part, having
lost 9, or stop and remain at rest, as having lost its whole progressive motion of
10 parts; or it will go back with 1 part, having not only lost its whole motion,
but (if I may so say) one part more; or it will go back with 2 parts, because a
progressive motion of 12 parts is taken off. And so the sums of the conspiring
motions,
15+1 or 1640,
and the differences of the contrary motions,
17—1 and 18—-2,
will always be equal to 16 parts, as they were before the meeting and reflection
of the bodies. But the motions being known with which the bodies proceed
after reflection, the velocity of either will be also known, by taking the velocity
after to the velocity before reflection, as the motion afteris tothe motion before.
As in the last case, where the
motion of A before reflection (6) : motion of A after (18)
=velocity of A before (2) : velocity of A after (z);
that is,
6:18=2:z, z=06.

But if the bodies are either not spherical, or, moving in different right lines,
impinge obliquely one upon the other, and their motions after reflection are re-
quired, in those cases we are first to determine the position of the plane that
touches the bodies in the point of impact, then the motion of each body (by
Cor. 11) is to be resolved into two, one perpendicular to that plane, and the
other parallel to it. This done, because the bodies act upon each other in the
direction of a line perpendicular to this plane, the parallel motions are to be
retained the same after reflection as before; and to the perpendicular motions
we are to assign equal changes towards the contrary parts; in such manner
that the sum of the conspiring and the difference of the contrary motions may
remain the same as before. From such kind of reflections sometimes arise also
the circular motions of bodies about their own centres. But these are cases
which T do not consider in what follows; and it would be too tedious to demon-
strate every particular case that relates to this subject.
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COROLLARY IV

The common centre of grarity of two or more bodies does not alter its state of motion
or rest by the actions of the bodies among themselves; and therefore the common
centre of gravity of all bodies acting upon each other (excluding external actions and
impediments) s either at rest, or moves uniformly wn a right line.

For if two points proceed with an uniform motion in right lines, and their
distance be divided in a given ratio, the dividing point will be either at rest, or
proceed uniformly in a right line. This is demonstrated hereafter in Lem. 23
and Corollary, when the points are moved in the same plane; and by a like way
of arguing, it may be demonstrated when the points are not moved in the same
plane. Therefore if any number of bodies move uniformly in right lines, the
common centre of gravity of any two of them is either at rest, or proceeds
uniformly in a right line; because the line which connects the centres of those
two bodies so moving is divided at that common centre in a given ratio. In like
manner the common centre of those two and that of a third body will be either
at rest or moving uniformly in a right line; because at that centre the distance
between the common centre of the two bodies, and the centre of this last, is
divided in a given ratio. In like manner the common centre of these three, and
of a fourth body, is either at rest, or moves uniformly in a right line; because
the distance between the common centre of the three bodies, and the centre of
the fourth, is there also divided in a given ratio, and so on n infinttum. There-
fore, in a system of bodies where there is neither any mutual action among
themselves, nor any foreign force impressed upon them from without, and
which consequently move uniformly in right lines, the common centre of gravity
of them all is either at rest or moves uniformly forwards in a right line.

Moreover, in a system of two bodies acting upon each other, since the dis-
tances between their centres and the common centre of gravity of both are
reciprocally as the bodies, the relative motions of those bodies, whether of
approaching to or of receding from that centre, will be equal among themselves.
Therefore since the changes which happen to motions are equal and directed to
contrary parts, the common centre of those bodies, by their mutual action
between themselves, is neither accelerated nor retarded, nor suffers any change
as to its state of motion or rest. But in a system of several bodies, because the
common centre of gravity of any two acting upon each other suffers no change
in its state by that action; and much less the common centre of gravity of the
others with which that action does not intervene; but the distance between
those two centres is divided by the common centre of gravity of all the bodies
into parts inversely proportional to the total sums of those bodies whose centres
they are; and therefore while those two centres retain their state of motion or
rest, the common centre of all does also retain its state: it is manifest that the
common centre of all never suffers any change in the state of its motion or rest
from the actions of any two bodies between themselves. But in such a system
all the actions of the bodies among themselves either happen between two
bodies, or are composed of actions interchanged between some two bodies; and
therefore they do never produce any alteration in the common centre of all as
to its state of motion or rest. Wherefore since that centre, when the bodies do
not act one upon another, either is at rest or moves uniformly forwards in some
right line, it will, notwithstanding the mutual actions of the bodies among
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themselves, always continue in its state, either of rest, or of proceeding uni-
formly in a right line, unless it is forced out of this state by the action of some
power impressed from without upon the whole system. And therefore the same
law takes place in a system consisting of many bodies as in one single body,
with regard to their persevering in their state of motion or of rest. For the
progressive motion, whether of one single body, or of a whole system of bodies,
is always to be estimated from the motion of the centre of gravity.

COROLLARY V

The motions of bodies included in a given space are the same among themselves,
whether that space ©s at rest, or moves uniformly forwards in a right line without
any circular motion.

For the differences of the motions tending towards the same parts, and the
sums of those that tend towards contrary parts, are, at first (by supposition),
in both cases the same; and 1t is from those sums and differences that the col-
lisions and impulses do arise with which the bodies impinge one upon another.
Wherefore (by Law 2), the effects of those collisions will be equal in both cases;
and therefore the mutual motions of the bodies among themselves in the one
case will remain equal to the motions of the bodies among themselves in the
other. A clear proof of this we have from the experiment of a ship; where all
motions happen after the same manner, whether the ship is at rest, or is carried
uniformly forwards in a right line.

COROLLARY VI

If bodies, moved tn any manner among themselves, are urged in the direction of
parallel lines by equal accelerative forces, they will all continue to move among
themselves, after the same manner as if they had not been urged by those forces.

For these forces acting equally (with respect to the quantities of the bodies
to be moved), and in the direction of parallel lines, will (by Law 2) move all the
bodies equally (as to velocity), and therefore will never produce any change in
the positions or motions of the bodies among themselves.

ScHOLIUM

Hitherto I have laid down such principles as have been received by mathe-
maticians, and are confirmed by abundance of experiments. By the first two
Laws and the first two Corollaries, Galileo discovered that the descent of bodies
varied as the square of the time (in duplicata ratione temporis) and that the
motion of projectiles was in the curve of a parabola; experience agreeing with
both, unless so far as these motions are a little retarded by the resistance of the
air. When a body is falling, the uniform force of its gravity acting equally,
impresses, in equal intervals of time, equal forces upon that body, and there-
fore generates equal velocities; and in the whole time impresses a whole foree,
and generates a whole velocity proportional to the time. And the spaces de-
seribed in proportional times are as the product of the velocities and the times;
that is, as the squares of the times. And when a body is thrown upwards, its
uniform gravity impresses forces and reduces velocities proportional to the
times; and the times of ascending to the greatest heights are as the velocities to
be taken away, and those heights are as the product of the velocities and the
times, or as the squares of the velocities. And if a body be projected in any
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direction, the motion arising from its projection is compounded with the mo-
tion arising from its gravity. Thus, if the body A by its motion of projection
alone could describe in a given time the right line AB, and with its motion of
falling alone could describe in the same time the altitude AC; complete the
parallelogram ABCD, and the body by that compounded
motion will at the end of the time be found in the place D; /
and the curved line AED, which that body describes, will be g =",
a parabola, to which the right line AB will be a tangent at A; ~E
and whose ordinate BDD will be as the square of the line AB.
On the same Laws and Corollaries depend those things which
have been demonstrated concerning the times of the vibra- 4D
tion of pendulums, and are confirmed by the daily experi- /
ments of pendulum clocks. By the same, together with Law C
3, Sir Christopher Wren, Dr. Wallis, and Mr. Huygens, the greatest geometers
of our times, did severally determine the rules of the impact and reflection of
hard bodies, and about the same time communicated their discoveries to the
Royal Society, exactly agreeing among themselves as to those rules. Dr. Wallis,
indeed, was somewhat earlier in the publication; then followed Sir Christopher
Wren, and, lastly, Mr. Huygens. But Sir Christopher Wren confirmed the
truth of the thing before the Royal Society by the experiments on pendulums,
which M. Mariotte soon after thought fit to explain in a treatise entirely upon
that subject. But to bring this experiment to an accurate agreement with the
theory, we are to have due regard as well to the resistance of the air as to the
elastic force of the concurring bodies. Let the spherical bodies A, B be sus-
y Pended by the parallel and equal strings AC,
BD, from the centres C, D. About these cen-
tres, with those lengths as radii, describe the
semicircles EAF, GBH, bisected respectively
by the radii CA, DB. Bring the body A to
any point R of the arc EAF, and (withdraw-
ing the body B) let it go from thence, and
after one oscillation suppose it to return to
the point V: then RV will be the retardation arising from the resistance of the
air. Of this RV let ST be a fourth part, situated in the middle, namely, so that
RS=TYV,

B

E G cC D F

and
RS :ST=3:2,

then will ST represent very nearly the retardation during the descent from S to
A. Restore the body B toits place: and, supposing the body A to be let fall from
the point S, the velocity thereof in the place of reflection A, without sensible
error, will be the same as if it had descended 7n vacuo from the point T. Upon
which account this velocity may be represented by the chord of the arc TA.
Foritisa proposition well known to geometers, that the velocity of a pendulous
body in the lowest point is as the chord of the arc which it has described in its
descent. After reflection, suppose the body A comes to the place s, and the
body B to the place k. Withdraw the body B, and find the place v, from which
if the body A, being let go, should after one oscillation return to the place r, st
may be a fourth part of v, so placed in the middle thereof as to leave rs equal
to tv, and let the chord of the arc tA represent the velocity which the body A
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had in the place A immediately after reflection. For ¢ will be the true and correct
place to which the body A should have ascended, if the resistance of the air had
been taken off. In the same way we are to correct the place k to which the body
B ascends, by finding the place [ to which it should have ascended in vacuo.
And thus everything may be subjected to experiment, in the same manner as
if we were really placed in vacuo. These things being done, we are to take the
product (if I may so say) of the body A, by the chord of the arc TA (which
representsits velocity), that we may have its motion in the place A immediately
before reflection; and then by the chord of the arc tA, that we may have its
motion in the place A immediately after reflection. And so we are to take the
product of the body B by the chord of the arc Bl, that we may have the motion
of the same immediately after reflection. And in like manner, when two bodies
are let go together from different places, we are to find the motion of each, as
well before as after reflection; and then we may compare the motions between
themselves, and collect the effects of the reflection. Thus trying the thing with
pendulums of 10 feet, in unequal as well as equal bodies, and making the bodies
to concur after a descent through large spaces, as of 8, 12, or 16 feet, I found
always, without an error of 3 inches, that when the bodies concurred together
directly, equal changes towards the contrary parts were produced in their
motions, and, of consequence, that the action and reaction were always equal.
Asif the body A impinged upon the body B at rest with 9 parts of motion, and
losing 7, proceeded after reflection with 2, the body B was carried backwards
with those 7 parts. If the bodies concurred with contrary motions, A with 12
parts of motion, and B with 6, then if A receded with 2, B receded with 8;
namely, with a deduction of 14 parts of motion on each side. For from the
motion of A subtracting 12 parts, nothing will remain; but subtracting 2 parts
more, a motion will be generated of 2 parts towards the contrary way; and so,
from the motion of the body B of 6 parts, subtracting 14 parts, a motion is
generated of 8 parts towards the contrary way. But if the bodies were made
both to move towards the same way, A, the swifter, with 14 parts of motion,
B, the slower, with 5, and after reflection A went on with 5, B likewise went on
with 14 parts; 9 parts being transferred from A to B. And so in other cases. By
the meeting and collision of bodies, the quantity of motion, obtained from the
sum of the motions directed towards the same way, or from the difference of
those that were directed towards contrary ways, was never changed. For the
error of an inch or two in measures may be easily ascribed to the difficulty of
executing everything with accuracy. It was not easy to let go the two pendu-
lums so exactly together that the bodies should impinge one upon the other in
the lowermost place AB; nor to mark the places s, and k, to which the bodies
ascended after impact. Nay, and some errors, too, might have happened from
the unequal density of the parts of the pendulous bodies themselves, and from
the irregularity of the texture proceeding from other causes.

But to prevent an objection that may perhaps be alleged against the rule,
for the proof of which this experiment was made, as if this rule did suppose that
the bodies were either absolutely hard, or at least perfectly elastic (whereas no
such bodies are to be found in Nature), I must add, that the experiments we
have been describing, by no means depending upon that quality of hardness,
do succeed as well in soft as in hard bodies. For if the rule is to be tried in bodies
not perfectly hard, we are only to diminish the reflection in such a certain
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proportion as the quantity of the elastic force requires. By the theory of Wren
and Huygens, bodies absolutely hard return one from another with the same
velocity with which they meet. But this may be affirmed with more certainty
of bodies perfectly elastic. In bodies imperfectly elastic the velocity of the re-
turn is to be diminished together with the elastic force; because that force
(except when the parts of bodies are bruised by their impact, or suffer some
such extension as happens under the strokes of a hammer) is (as far as I can
perceive) certain and determined, and makes the bodies to return one from the
other with a relative velocity, which is in a given ratio to that relative velocity
with which they met. This I tried in balls of wool, made up tightly, and strongly
compressed. For, first, by letting go the pendulous bodies, and measuring their
reflection, I determined the quantity of their elastic force; and then, according
to this force, estimated the reflections that ought to happen in other cases of
impact. And with this computation other experiments made afterwards did
accordingly agree; the balls always receding one from the other with a relative
velocity, which was to the relative velocity with which they met as about 5 to
9. Balls of steel returned with almost the same velocity; those of cork with a
a velocity something less; but in balls of glass the proportion was as about 15
to 16. And thus the third Law, so far as it regards percussions and reflections,
is proved by a theory exactly agreeing with experience.

In attractions, I briefly demonstrate the thing after this manner. Suppose an
obstacle is interposed to hinder the meeting of any two bodies A, B, attracting
one the other: then if either body, as A, is more attracted towards the other
body B, than that other body B is towards the first body A, the obstacle will be
more strongly urged by the pressure of the body A than by the pressure of the
body B, and therefore will not remain in equilibrium: but the stronger pressure
will prevail, and will make the system of the two bodies, together with the
obstacle, to move directly towards the parts on which B lies; and in free spaces,
to go forwards ¢n infinitum with a motion continually accelerated; which is
absurd and contrary to the first Law. For, by the first Law, the system ought to
continue in its state of rest, or of moving uniformly forwards in a right line; and
therefore the bodies must equally press the obstacle, and be equally attracted
one by the other. I made the experiment on the loadstone and iron. If these,
placed apart in proper vessels, are made to float by one another in standing
water, neither of them will propel the other; but, by being equally attracted,
they will sustain each other’s pressure, and rest at last in an equilibrium.

So the gravitafion between the earth and its parts is mutual. Let the earth
FI by cut by any plane EG into two parts EGF and EGI, and their weights
one towards the other will be mutually equal. For if
by another plane HK, parallel to the former EG, the E/—\H
greater part EGI is cut into two parts EGKH and
HKTI, whereof HKI is equal to the part EFG, first cut
off, it is evident that the middle part EGKH will have F I
no propension by its proper weight towards either
side, but will hang as it were, and rest in an equilib-
rium between both. But the one extreme part HKI G\/K
will with its whole weight bear upon and press the
middle part towards the other extreme part EGF; and therefore the force
with which EGI, the sum of the parts HKI and EGKH, tends towards the




Axioms, or Laws oF MorionN 23

third part EGF, is equal to the weight of the part HKI, that is, to the weight
of the third part EGF. And therefore the weights of the two parts EGI and
EGPF, one towards the other, are equal, as I was to prove. And indeed if those
weights were not equal, the whole earth floating in the nonresisting ether would
give way to the greater weight, and, retiring from it, would be carried off in
infinttum.

And as those bodies are equipollent in the impact and reflection, whose ve-
locities are inversely as their innate forces, sc in the use of mechanic instruments
those agents are equipollent, and mutually sustain each the contrary pressure
of the other, whose velocities, estimated according to the determination of the
forces, are inversely as the forces.

So those weights are of equal force to move the arms of a balance, which
during the play of the balance are inversely as their velocities upwards and
downwards; that is, if the ascent or descent is direct, those weights are of equal
force, which are inversely as the distances of the points at which they are sus-
pended from the axis of the balance; but if they are turned aside by the inter-
position of oblique planes, or other obstacles, and made to ascend or descend
obliquely, those bodies will be equipollent, which are inversely as the heights
of their ascent and descent taken according to the perpendicular; and that on
account of the determination of gravity downwards.

And in like manner in the pulley, or in a combination of pulleys, the force of
a hand drawing the rope directly, which is to the weight, whether ascending
directly or obliquely, as the velocity of the perpendicular ascent of the weight
to the velocity of the hand that draws the rope, will sustain the weight.

In clocks and such like instruments, made up from a combination of wheels,
the contrary forces that promote and impede the motion of the wheels, if they
are inversely as the velocities of the parts of the wheel on which they are
impressed, will mutually sustain each other.

The force of the screw to press a body is to the force of the hand that turns
the handles by which it is moved as the circular velocity of the handle in that
part where it is impelled by the hand is to the progressive velocity of the screw
towards the pressed body.

The forces by which the wedge presses or drives the two parts of the wood it
cleaves are to the force of the mallet upon the wedge as the progress of the
wedge in the direction of the force impressed upon it by the mallet is to the
velocity with which the parts of the wood yield to the wedge, in the direction
of lines perpendicular to the sides of the wedge. And the like account is to be
given of all machines.

The power and use of machines consist only in this, that by diminishing the
velocity we may augment the force, and the contrary; from whence, in all sorts
of proper machines, we have the solution of this problem: To move a given
wetght with a given power, or with a given force to overcome any other given
resistance. For if machines are so contrived that the velocities of the agent and
resistant are inversely as their forces, the agent will just sustain the resistant,
but with a greater disparity of velocity will overcome it. So that if the disparity
of velocities is so great as to overcome all that resistance which commonly
arises either from the friction of contiguous bodies as they slide by one another,
or from the cohesion of continuous bodies that are to be separated, or from the
weights of bodies to be raised, the excess of the force remaining, after all those
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resistances are overcome, will produce an acceleration of motion proportional
thereto, as well in the parts of the machine as in the resisting body. But to treat
of mechanics i1s not my present business. I was aiming only to show by those
examples the great extent and certainty of the third Law of Motion. For if we
estimate the action of the agent from the product of its force and velocity, and
likewise the reaction of the impediment from the product of the velocities of its
several parts, and the forces of resistance arising from the friction, cohesion,
weight, and acceleration of those parts, the action and reaction in the use of all
sorts of machines will be found always equal to one another. And so far as the
action is propagated by the intervening instruments, and at last impressed
upon the resisting body, the ultimate action will be always contrary to the
reaction.



BOOK ONE
THE MOTION OF BODIES

SECTION 1

THE METHOD OF FIRST AND LAST RATIOS OF QUANTITIES, BY THE HELP OF WHICH
WE DEMONSTRATE THE PROPOSITIONS THAT FOLLOW

LeEmMa 1

Quantities, and the ratios of quantities, which in any finite time converge contin-
ually to equality, and before the end of that time approach nearer to each other than
by any gwen difference, become ultimately equal.

If you deny it, suppose them to be ultimately unequal, and let D be their
ultimate difference. Therefore they cannot approach nearer to equality than
by that difference D; which is contrary to the supposition.

LeMMa 2
a__ 1 f If in any figure AacE, terminated by the right lines Aa,
K L m AE, and the curve acE, there be inscribed any number of
L ” parallelograms Ab, Be, Cd, &c., comprehended under equal
T C

bases AB, BC, CD, &c., and the sides, Bb, Cc, Dd, &ec.,
parallel to one side Aaof the figure; and the parallelograms
d alkbl, bLem, eMdn, &e., are completed: then if the breadth
of those parallelograms be supposed to be diminished, and
their number to be augmented in infinitum, I say, that the

: ultimate ratios which the inscribed figure AKXbLcMdD,
A BF C D E the circumscribed figure AalbmendoE, and curvilinear
figure AabcdE, will have to one another, are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum of
the parallelograms Ki, Lm, Mn, Do, that is (from the equality of all their
bases), the rectangle under one of their bases Kb and the sum of their altitudes
Aa, that is, the rectangle ABla. But this rectangle, because its breadth AB is
supposed diminished 7n Znfinitum, becomes less than any given space. And
therefore (by Lem. 1) the figures inscribed and circumscribed become ulti-
mately equal one to the other; and much more will the intermediate curvilinear
figure be ultimately equal to either. Q.E.D.

LEMMA 3

The same wultimate ratios are also ratios of equality, when the breadths AB,
BC, DC, &ec., of the parallelograms are unequal, and are all diminished in in-
finitum.
For suppose AF equal to the greatest breadth, and complete the parallelo-
gram FAaf. This parallelogram will be greater than the difference of the in-
25
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seribed and circumscribed figures; but, because its breadth AF is diminished

in infinitum, it will become less than any given rectangle. Q.E.D.
Cor. 1. Hence the ultimate sum of those evanescent

parallelograms will in all parts coincide with the curvi- , ;¢

linear figure. K [ m

Cor. 1. Much more will the rectilinear figure com- 5% i
prehended under the chords of the evanescent arcs ab, L
be, cd, &c., ultimately coincide with the curvilinear .
figure. i M—

Cor. 111. And also the circumscribed rectilinear figure
comprehended under the tangents of the same arcs.

Cor. 1v. And therefore these ultimate figures (as to :
their perimeters acE) are not rectilinear,but curvilinear A~ BF C D E
limits of rectilinear figures.

LevMa 4

If in two figures AacE, PprT, there are inscribed (as before) two series of parallelo-
grams, an equal number in each series, and, their breadths being diminished in
infinitum, if the ultimate ratios of the parallelograms in one figure lo those in the
other, each to each respectively, are the same: I say, that those two figures, AacE,
PprT, are to each other in that same ratio.

a

b

A E P T

For as the parallelograms in the one are severally to the parallelograms in
the other, so (by composition) is the sum of all in the one to the sum of all in
the other; and so is the one figure to the other; because (by Lem. 3) the former
figure to the former sum, and the latter figure to the latter sum, are both in
the ratio of equality. Q.E.D.

Cor. Hence if two quantities of any kind are divided in any manner into an
equal number of parts, and those parts, when their number is augmented, and
their magnitude diminished in infinitum, have a given ratio to each other, the
first to the first, the second to the second, and so on in order, all of them taken
together will be to each other in that same given ratio. For if, in the figures of
this Lemma, the parallelograms are taken to each other in the ratio of the
parts, the sum of the parts will always be as the sum of the parallelograms; and
therefore supposing the number of the parallelograms and parts to be aug-
mented, and their magnitudes diminished in tnfinitum, those sums will be in
the ultimate ratio of the parallelogram in the one figure to the correspondent
parallelogram in the other; that is (by the supposition), in the ultimate ratio
of any part of the one quantity to the correspondent part of the other.
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LeMary 5

Al homologous sides of similar figures, whether curvilinear or rectilinear, are pro-
portional; and the areas are as the squares of the homologous sides.

LemMa 6

A D d If any arc ACB, given in position, 1s sub-
~ c tended by its chord AB, and in any point A,
in the middle of the continued curvature, is

B touched by a right line AD, produced both

R i ways, then if the points A and B approach

one another and meet, I say, the angle BAD,
contained between the chord and the tan-
gent, will be diminished in infinitum, and
ultimately will vanish.

For if that angle does not vanish, the arc
ACB will contain with the tangent AD an angle equal to a rectilinear angle;
and therefore the curvature at the point A will not be continued, which is
against the supposition.

r

LeMvMa 7

The same things being supposed, I say that the ultimate ratio of the are, chord, and
tangent, any one to any other, 1s the ratio of equality.

For while the point B approaches towards the point A, consider always AB
and AD as produced to the remote points b and d; and parallel to the secant
BD draw bd; and let the arc Acb be always similar to the arc ACB. Then, sup-
posing the points A and B to coincide, the angle dAb will vanish, by the pre-
ceding Lemma; and therefore the right lines Ab, Ad (which are always finite),
and the intermediate arc Acb, will coincide, and become equal among them-
selves. Wherefore, the right lines AB, AD, and the intermediate arc ACB
(which are always proportional to the former), will vanish, and ultimately ac-
quire the ratio of equality. Q.E.D.

Cor. 1. Whence if through B we draw BF parallel to the tangent, always
cutting any right line AF passing through A in F, this line BF will be ultimate-
ly in the ratio of equality with the evanescent arc ACB; because, completing
the parallelogram AFBD, it is always in a ratio of equality with AD.

Cor. 11. And if through B and A more right v
lines are drawn, as BE, BD, AF, AG, cutting A E\ /D
the tangent AD and its parallel BF'; the ulti- /
mate ratio of all the abscissas AD, AE, BF, Ef G B
BG, and of the chord and arc AB, any one to
any other, will be the ratio of equality.

Cor. 111. And therefore in all our reasoning about ultimate ratios, we may
freely use any one of those lines for any other.

LEyaa 8

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent AD,
constitute three triangles RAB, RACB, RAD, and the points A and B approach
and meet: I say, that the ultimate formof these evanescent triangles is that of simil-
wtude, and their ultimate ratio that of equality.
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For while the point B approaches towards the point A, consider always AB,
AD, AR, as produced to the remote points b, d, and r, and rbd as drawn parallel
to RD, and let the arc Ach be always simi- A D y
lar to the arc ACB. Then supposing the =
points A and B to coincide, the angle bAd
will vanish; and therefore the three tri- B
angles rAb, rAcb, rAd (which are always
finite), will coincide, and on that account R
become both similar and equal. And there-
fore the triangles RAB, RACB, RAD,
which are always similar and proportional
to these, will ultimately become both simi- r
lar and equal among themselves. Q.E.D.

Cor. And hence in all reasonings about ultimate ratios, we may use any
one of those triangles for any other.

LevMya O

If a right line AE, and a curved line ABC, both given by position, cut each other in
a given angle, A; and to that right line, in another given angle, BD, CE are ords-
nately applied, meeting the curve in B, C; and the points B and C together ap-
proach towards and meet in the point A: I say, that the areas of the triangles ABD,
ACE, will ultimately be to each other as the squares of homologous sides.

For while the points B, C, approach towards the point A, suppose always
AD to be produced to the remote points d and e, so as Ad, Ae may be propor-

. . tional to AD, AE; and the ordinates db, ec, to

g
be drawn parallel to the ordinates DB and EC,
and meeting AB and AC produced in b and c.
d /f / A Let the curve Abc be similar to the curve ABC,
G C
F

and draw the right line Ag so as to touch both
curves in A, and cut the ordinates DB, EC, db,
ec,in F, G, f, g. Then, supposing the lenglh Ae
to remain the same, let the points B and C meet

in the point A; and the angle cAg vanishing,

the curvilinear areas Abd, Ace will coincide with

the rectilinear areas Afd, Age, and therefore (by

A Lem. 5) will be one to the other in the dupli-
cate ratio of the sides Ad, Ae. But the areas ABD, ACE are always propor-
tional to these areas; and so the sides AD, AE are to these sides. And there-

fore the areas ABD, ACE are ultimately to each other as the squares of the
sides AD, AE. Q.E.D.

LeMMA 10

The spaces which a body describes by any finite force urging it, whether that force
18 determined and immutable, or is continually augmented or continually dimin-
1shed, are in the very beginning of the motion to each other as the squares of the
times.

Let the times be represented by the lines AD, AE, and the velocities gen-
erated in those times by the ordinates DB, EC. The spaces described iwith
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these velocities will be as the areas ABD, ACE, described by those ordinates,
that is, at the very beginning of the motion (by Lem. 9), in the duplicate ratio
of the times AD, AE. Q.E.D.

Cor. 1. And hence one may easily infer, that the errors of bodies describing
similar parts of similar figures in proportional times, the errors being generated
by any equal forces similarly applied to the bodies, and measured by the dis-
tances of the bodies from those places of the similar figures, at which, without
the action of those forces, the bodies would have arrived in those proportional
times—are nearly as the squares of the times in which they are generated.

Cor. 11. But the errors that are generated by proportional forces, similarly
applied to the bodies at similar parts of the similar figures, are as the product
of the forces and the squares of the times.

Cor. 111. The same thing is to be understood of any spaces whatsoever de-
scribed by bodies urged with different forces; all which, in the very beginning
of the motion, are as the product of the forces and the squares of the times.

Cor. 1v. And therefore the forces are directly as the spaces described in the
very beginning of the motion, and inversely as the squares of the times.

Cor. v. And the squares of the times are directly as the spaces described,
and inversely as the forces.

ScHOLITM

If in comparing with each other indeterminate quantities of different sorts,
any one is said to be directly or inversely as any other, the meaning is, that the
former is augmented or diminished in the same ratio as the latter, or as its re-
ciprocal. And if any one is said to be as any other two or more, directly or in-
versely, the meaning is, that the first is augmented or diminished in the ratio
compounded of the ratios in which the others, or the reciprocals of the others,
are augmented or diminished. Thus, if A is said to be as B directly, and C
directly, and D inversely, the meaning is, that A is augmented or diminished

in the same ratio as B- C- %, that is to say, that A and Bﬁc are to each other
in a given ratio.
Lemma 11

The evanescent subtense of the angle of contact, in all curves which at the point of
contact have a finite curvature, 1s ultimately as the square of the subtense of the con-

A d D terminous arc.
b CasE 1. Let AB be that arc, AD its tangent, BD the
¢ subtense of the angle of contact perpendicular on the tan-
C B gent, AB the subtense of the arc. Draw BG perpendicular

to the subtense AB, and AG perpendicular to the tangent
AD, meeting in G; then let the points D, B, and G approach
to the points d, b, and g, and suppose J to be the ultimate
intersection of the lines BG, AG, when the points D, B
have come to A. It is evident that the distance GJ may be
less than any assignable distance. But (from the nature
of the circles passing through the points A, B, G, and
through A, b, ¢),

AB’=AG-BD, and
Ab?=Ag-bd.

@ 0g
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But because GJ may be assumed of less length than any assignable, the ratio
of AG to Ag may be such as to differ from unity by less than any assignable
difference; and therefore the ratio of AB? to Ab? may be such as to differ from
the ratio of BD to bd by less than any assignable difference. Therefore, by

Lem. 1, ultimately, AB?: AW =BD : bd. Q.E.D.

Cask 2. Now let BD be inclined to AD in any given angle, and the ultimate
ratio of BD to bd will always be the same as before, and therefore the same with
the ratio of AB? to Ab% Q.E.D.

Cask 3. And if we suppose the angle D not to be given, but that the right
line BD converges to a given point, or is determined by any other condition
whatever; nevertheless the angles D, d, being determined by the same law,
will always draw nearer to equality, and approach nearer to each other than
by any assigned difference, and therefore, by Lem. 1, will at last be equal; and
therefore the lines BD, bd are in the same ratio to each other as before. Q.E.D.

Cor. 1. Therefore since the tangents AD, Ad, the arcs AB, Ab, and their .
sines, BC, bc, become ultimately equal to the chords AB, Ab, their squares
will ultimately become as the subtenses BD, bd.

Cor. 11. Their squares are also ultimately as the versed sines of the arcs,
bisecting the chords, and converging to a given point. For those versed sines

are as the subtenses BD, bd. A d D
Cor. 111. And therefore the versed sine is as the square of b

the time in which a body will describe the arc with a given \

velocity. C B

Cor. 1v. The ultimate proportion,
ANADB : AAdb=AD? : Ad®*=DB3? : db¥?,
is derived from
AADB : AAdb=AD-DB: Ad - db
and from the ultimate proportion
AD?: Ad?*=DB : db.

So also is obtained ultimately

AABC : AAbc=BC3 : bed.

Cor. v. And because DB, db are ultimately parallel and as the squares of the
lines AD, Ad, the ultimate curvilinear areas ADB, Adb will be (by the nature
of the parabola) two-thirds of the rectilinear triangles ADB, Adb, and the
segments, AB, Ab will be one-third of the same triangles. And thence those
areas and those segments will be as the cubes of the tangents AD, Ad, and also
of the chords and arcs AB, Ab.

Q 0g w

ScHOLIUM

But we have all along supposed the angle of contact to be neither infinitely
greater nor infinitely less than the angles of contact made by circles and their
tangents; that is, that the curvature at the point A is neither infinitely small
nor infinitely great, and that the interval AJ is of a finite magnitude. For DB
may be taken as AD?: in which case no circle can be drawn through the point
A, between the tangent AD and the curve AB, and therefore the angle of con-
tact will be infinitely less than those of circles. And by a like reasoning, if DB
be made successfully as AD* AD® AD® AD? &c., we shall have a series of
angles of contact, proceeding in infinitum, wherein every succeeding term is in-
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finitely less than the preceding. And if DB be made successively as AD?,
AD32 AD*3 AD%4 ADS5 AD7/¢ &c., we shall have another infinite series of
angles of contact, the first of which is of the same sort with those of circles, the
second infinitely greater, and every succeeding one infinitely greater than the
preceding. But between any two of these angles another series of intermediate
angles of contact may be interposed, proceeding both ways in infinttum,
wherein every succeeding angle shall be infinitely greater or infinitely less than
the preceding. As if between the terms AD? and AD? there were interposed the
series AD/6 AD/5 ADY AD3 AD? AD33, ADW4 ADWE, ADYS &ec.
And again, between any two angles of this series, a new series of intermediate
angles may be interposed, differing from one another by infinite intervals.
Nor is Nature confined to any bounds.

Those things which have been demonstrated of curved lines, and the sur-
faces which they comprehend, may be easily applied to the curved surfaces
and contents of solids. These Lemmas are premised to avoid the tediousness of
deducing involved demonstrations ad absurdum, according to the method of
the ancient geometers. For demonstrations are shorter by the method of indi-
visibles; but because the hypothesis of indivisibles seems somewhat harsh, and
therefore that method is reckoned less geometrical, I chose rather to reduce
the demonstrations of the following Propositions to the first and last sums and
ratios of nascent and evanescent quantities, that is, to the limits of those sums
and ratios, and so to premise, as short as I could, the demonstrations of those
limits. For hereby the same thing is performed as by the method of indivisibles;
and now those principles being demonstrated, we may use them with greater
safety. Therefore if hereafter I should happen te consider quantities as made
up of particles, or should use little curved lines for right ones, I would not be
understood to mean indivisibles, but evanescent divisible quantities; not the
sums and ratios of determinate parts, but always the limits of sums and ratios;
and that the force of such demonstrations always depends on the method laid
down in the foregoing Lemmas.

Perhaps it may be objected, that there is no ultimate proportion of evanes-
cent quantities; because the proportion, before the quantities have vanished,
is not the ultimate, and when they are vanished, is none. But by the same ar-
gument it may be alleged that a body arriving at a certain place, and there
stopping, has no ultimate velocity; because the velocity, before the body
comes to the place, is not its ultimate velocity; when it has arrived, there is
none. But the answer is easy; for by the ultimate velocity is meant that with
which the body is moved, neither before it arrives at its last place and the mo-
tion ceascs, nor after, but at the very instant it arrives; that is, that velocity
with which the body arrives at its last place, and with which the motion ceases.
And in like manner, by the ultimate ratio of evanescent quantities is to be
understood the ratio of the quantities not before they vanish, nor afterwards,
but with which they vanish. In like manner the first ratio of nascent quantities
is that with which they begin to be. And the first or last sum is that with which
they begin and cease to be (or to be augmented or diminished). There is a limit
which the velocity at the end of the motion may attain, but not exceed. This
is the ultimate velocity. And there is the like limit in all quantities and propor-
tions that begin and cease to be. And since such limits are certain and definite,
to determine the same is a problem strictly geometrical. But whatever is geo-
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metrical we may use in determining and demonstrating any other thing that is
also geometrical.

It may also be objected, that if the ultimate ratios of evanescent quantities
are given, their ultimate magnitudes will be also given: and so all quantities
will consist of indivisibles, which is contrary to what Euclid has demonstrated
concerning incommensurables, in the tenth book of his Elements. But this ob-
jection is founded on a false supposition. For those ultimate ratios with which
quantities vanish are not truly the ratios of ultimate quantities, but limits to-
wards which the ratios of quantities decreasing without limit do always con-
verge; and to which they approach nearer than by any given difference, but
never go beyond, nor in effect attain to, till the quantities are diminished in
infinitum. This thing will appear more evident in quantities infinitely great. If
two quantities, whose difference is given, be augmented in infinitum, the ulti-
mate ratio of these quantities will be given, namely, the ratio of equality; but
it does not from thence follow, that the ultimate or greatest quantities them-
selves, whose ratio that is, will be given. Therefore if in what follows, for the
sake of being more easily understood, I should happen to mention quantities
as least, or evanescent, or ultimate, you are not to suppose that quantities of
any determinate magnitude are meant, but such as are conceived to be always
diminished without end.

SECTION 11

THE DETERMINATION OF CENTRIPETAL FORCES

ProrositionN 1. THEOREM 1

The areas which revolving bodies describe by radit drawn to an 1mmovable centre
of force do lie in the same immovable planes, and are proportional to the times in
which they are described.

For suppose the time to be divided into equal parts, and in the first part of
that time let the body by its innate force describe the right line AB. In the
second part of that time, the same would (by Law 1), if not hindered, proceed
directly to c, along the line Bc equal to AB; so that by the radii AS, BS, ¢S,
drawn to the centre, the equal areas ASB, BSc, would be described. But when
the body is arrived at B, suppose that a centripetal force acts at once with a
great impulse, and, turning aside the body from the right line Be, compels it
afterwards to continue its motion along the right line BC. Draw cC parallel to
BS, meeting BC in C; and at the end of the second part of the time, the body
(by Cor. 1 of the Laws) will be found in C, in the same plane with the triangle
ASB. Join SC, and, because SB and Cc are parallel, the triangle SBC will be
equal to the triangle SBc, and therefore also to the triangle SAB. By the like
argument, if the centripetal force acts successively in C, D, E, &c., and makes
the body, in each single particle of time, to describe the right lines CD, DE,
EF, &c., they will all lie in the same plane; and the triangle SCD will be equal
to the triangle SBC, and SDE to SCD, and SEF to SDE. And therefore, in
equal times, equal areas are described in one immovable plane: and, by com-
position, any sums SADS, SAFS, of those areas, are to each other as the times
in which they are described. Now let the number of those triangles be aug-
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mented, and their breadth diminished in infinitum; and (by Cor. 1v, Lem. 3)
their ultimate perimeter ADF will be a curved line: and therefore the centrip-
etal force, by which the body is continually drawn back from the tangent of
this curve, will act continually;

S, £ and any described areas SADS,

SAFS, which are always pro-
portional to the times of de-
scription, will, in this case also,
be proportional to those times.
Q.E.D.

Cor. 1. The velocity of a
body attracted towards an im-
movable centre, in spaces void
of resistance, is inversely as the
perpendicular let fall from that
centre on the right line that
touches the orbit. For the ve-
locities in those places A, B, C,
D, E, are as the bases AB, BC,
CD, DE, EF, of equal triangles;
and these bases are inversely
as the perpendiculars let fall
upon them.

Cor. 11. If the chords AB, BC of two arcs, successively described in equal
times by the same body, in spaces void of resistance, are completed into a
parallelogram ABCV, and the diagonal BV of this parallelogram, in the posi-
tion which it ultimately acquires when those arcs are diminished ¢n infinitum,
is produced both ways, it will pass through the centre of force.

Cor. 111. If the chords AB, BC, and DE, EF, of arcs described in equal times,
in spaces void of resistance, are completed into the parallelograms ABCV,
DEFZ, the forces in B and E are one to the other in the ultimate ratio of the
diagonals BV, EZ, when those arcs are diminished in ¢nfinitum. For the motions
BC and EF of the body (by Cor. 1 of the Laws) are compounded of the motions
Be, BV, and Ef, EZ; but BV and EZ, which are equal to Cc and Ff, in the
demonstration of this Proposition, were generated by the impulses of the cen-
tripetal force in B and E, and are therefore proportional to those impulses.

Cor. 1v. The forces by which bodies, in spaces void of resistance, are drawn
back from rectilinear motions, and turned into curvilinear orbits, are to each
other as the versed sines of arcs described in equal times; which versed sines
tend to the centre of force, and bisect the chords when those arcs are diminished
to infinity. For such versed sines are the halves of the diagonals mentioned in
Cor. 111.

Cor. v. And therefore those forces are to the force of gravity as the said
versed sines to the versed sines perpendicular to the horizon of those parabolic
arcs which projectiles describe in the same time.

CoRr. v1. And the same things do all hold good (by Cor. v of the Laws) when
the planes in which the bodies are moved, together with the centres of force
which are placed in those planes, are not at rest, but move uniformly forwards
in right lines.

A
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ProrosiTioN 2. THEOREM 2

Every body that moves in any curved line described in a plane, and by a radius
drawn to a point either immgouvable, or moving forwards with an uniform rectilinear
motion, describes about that point areas proportional to the times, ts urged by a
centripetal force directed to that point.

Cask 1. For every body that moves in a curved line is (by Law 1) turned
aside from its rectilinear course by the action of some force that impels it. And
that force by which the body is turned off from its rectilinear course, and is
made to describe, in equal
times, the equal least triangles
SARB, SBC, SCD, &ec., about
the immovable point S (by
Prop. 40, Book 1, Elements of
Euclid, and Law 11), acts in the
place B, according to the direc-
tion of a line parallel tocC, that
is, in the direction of the line
BS; and in the place C, accord-
ing to the direction of a line
parallel to dD, that is, in the
direction of the line CS, &c.;
and therefore acts always in
the direction of lines tending to
the immovable point S. Q.E.D.

Cask 2. And (by Cor. v of
the Laws) 1t 1s indifferent
whether the surface in which a
body describes a curvilinear figure be at rest, or moves together with the body,
the figure described, and its point S, uniformly forwards in a right line.

Cor. 1. In nonresisting spaces or mediums, if the areas are not proportional
to the times, the forces are not directed to the point in which the radii meet,
but deviate therefrom towards the part to which the motion is directed, if the
description of the areas is accelerated, and away from that part, if retarded.

Cor. 11. And even in resisting mediums, if the description of the areas is
accelerated, the directions of the forces deviate from the point in which the
radii meet, towards the part to which the motion tends.

S A

SCHOLIUM

A body may be urged by a centripetal force compounded of several forces; in
which case the meaning of the Proposition is, that the force which results out
of all tends to the point S. But if any force acts continually in the direction of
lines perpendicular to the desecribed surface, this force will make the body to
deviate from the plane of its motion; but will neither augment nor diminish the
area of the described surface, and is therefore to be neglected in the composition
of forces.
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ProrosiTioN 3. THEOREM 3

Every body, that by a radvus drawn to the centre of another body, howsoever moved,
describes areas about that centre proportional to the times, 1s urged by a force
compounded of the centripetal force tending to that other body, and of all the ac-
celerative force by which that other body is impelled.

Let L represent the one, and T the other body; and (by Cor. vi of the Laws)
if both bodies are urged in the direction of parallel lines, by a new force equal
and contrary to that by which the second body T is urged, the first body L will
go on to describe about the other body T the same areas as before: but the
force by which that other body T was urged will be now destroyed by an equal
and contrary force; and therefore (by Law 1) that other body T, now left to
itself, will either rest, or move uniformly forwards in a right line: and the first
body L, impelled by the difference of the forces, that is, by the force remaining,
will go on to describe about the other body T areas proportional to the times.
And therefore (by Theor. 2) the difference of the forces is directed to the other
body T as its centre. Q.E.D.

Cor. 1. Hence if the one body L, by a radius drawn to the other body T,
describes areas proportional to the times; and from the whole force, by which
the first body L is urged (svhether that force is simple, or, according to Cor. 11
of the Laws, compounded out of several forces), we subtract (by the same Cor.)
that whole accelerative force by which the other body is urged; the whole
remaining force by which the first body is urged will tend to the other body T,
as 1ts centre.

Cor. 11. And, if these areas are proportional to the times nearly, the remain-
ing force will tend to the other body T nearly.

Cor. 111. And vice versa, if the remaining force tends nearly to the other body
T, those areas will be nearly proportional to the times.

Cor. 1v. If the body L, by a radius drawn to the other body T, describes
areas, which, compared with the times, are very unequal; and that other body
T be either at rest, or moves uniformly forwards in a right line: the action of
the centripetal force tending to that other body T is either none at all, or it is
mixed and compounded with very powerful actions of other forces: and the
whole force compounded of them all, if they are many, is directed to another
(immovable or movable) centre. The same thing obtains, when the other body
is moved by any motion whatsoever; provided that centripetal force is taken,
which remains after subtracting that whole force acting upon that other body T.

SCHOLIUM

Since the equable description of areas indicates that there is a centre to
which tends that force by which the body is most affected, and by which it is
drawn back from its rectilinear motion, and retained in its orbit, why may we
not be allowed, in the following discourse, to use the equable description of
areas as an indication of a centre, about which all circular motion is performed
in free spaces?
ProrosiTion 4. THEOREM 4
The centripetal forces of bodies, which by equable motions describe different circles,
tend to the centres of the same circles; and are to each other as the squares of the arcs
described in equal times divided respectively by the radii of the circles.



36 MATHEMATICAL PRINCIPLES

These forces tend to the centres of the circles (by Prop. 2, and Cor. 11, Prop.
1), and are to one another as the versed sines of the least arcs described in equal
times (by Cor. 1v, Prop. 1); that is, as the squares of the same arcs divided by
the diameters of the circles (by Lem. 7); and therefore since those arcs are as
arcs described in any equal times, and the diameters are as the radii, the forces
will be as the squares of any arcs described in the same time divided by the
radii of the circles. Q.E.D.

Cor. 1. Therefore, since those arcs are as the velocities of the bodies, the
centripetal forces are as the squares of the velocities divided by the radii.

Cogr. 11. And since the periodic times are as the radii divided by the veloc-
ities, the centripetal forces are as the radii divided by the square of the periodic
times.

Cor. 111. Whence if the periodic times are equal, and the velocities therefore
as the radii, the centripetal forces will be also as the radii; and conversely.

Cor. 1v. If the periodic times and the velocities are both as the square roots
of the radii, the centripetal forces will be equal among themselves; and con-
versely.

Cor. v. If the periodic times are as the radii, and therefore the velocities
equal, the centripetal forces will be inversely as the radii; and conversely.

Cor. vi. If the periodic times are as the 24th powers of the radii, and there-
fore the velocities inversely as the square roots of the radii, the centripetal
forces will be inversely as the squares of the radii; and conversely.

Cor. viI. And universally, if the periodic time is as any power R» of the
radius R, and therefore the velocity inversely as the power R»~! of the radius,
the centripetal force will be inversely as the power R*™~! of the radius; and
conversely.

Cog. viir. The same things hold concerning the times, the velocities, and the
forces by which bodies describe the similar parts of any similar figures that
have their centres in a similar position with those figures; as appears by apply-
ing the demonstration of the preceding cases to those. And the application is
easy, by only substituting the equable description of areas in the place of
equable motion, and using the distances of the bodies from the centres instead
of the radii.

Cor. 1x. From the same demonstration it likewise follows, that the arc which
a body, uniformly revolving in a circle with a given centripetal force, describes
in any time, is a mean proportional between the diameter of the circle, and the
space which the same body falling by the same given force would describe in
the same given time.
ScHOLIUM

The case of the sixth Corollary obtains in the celestial bodies (as Sir Christo-
pher Wren, Dr. Hooke, and Dr. Halley have severally observed); and therefore
in what follows, I intend to treat more at large of those things which relate to
centripetal force decreasing as the squares of the distances from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we
may discover the proportion of a centripetal force to any other known force,
such as that of gravity. For if a body by means of its gravity revolves in a circle
concentric to the earth, this gravity is the centripetal force of that body. But
from the descent of heavy bodies, the time of one entire revolution, as well as
the arc described in any given time, is given (by Cor. 1x of this Prop.). And by
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such propositions, Mr. Huygens, in his excellent book De horologio oscillatorio,
has compared the force of gravity with the centrifugal forces of revolving
bodies.

The preceding Proposition may be likewise demonstrated after this manner.
In any circle suppose a polygon to be inscribed of any number of sides. And if
a body, moved with a given velocity along the sides of the polygon, is reflected
from the circle at the several angular points, the force, with which at every
reflection it strikes the circle, will be as its velocity: and therefore the sum of
the forces, in a given time, will be as the product of that velocity and the num-
ber of reflections; that is (if the species of the polygon be given), as the length
described in that given time, and increased or diminished in the ratio of the
same length to the radius of the circle; that is, as the square of that length
divided by the radius; and therefore the polygon, by having its sides diminished
wn infinttum, coincides with the circle, as the square of the arc described in a
given time divided by the radius. This is the centrifugal force, with which the
body impels the circle; and to which the contrary force, wherewith the circle
continually repels the body towards the centre, is equal.

ProprosiTION 5. PROBLEM 1

There being given, wn any places, the velocity with which a body describes a given
figure, by means of forces directed to some common centre: to find that centre.

Let the three right lines PT, TQV, VR touch the figure described in as many
points, P, Q, R, and meet in T and V. On the tangents erect the perpendiculars
PA, QB, RC, inversely proportional to the ve-
locities of the body in the points P, Q, R, from
which the perpendiculars were raised; that is,
so that PA may be to QB as the velocity in Q
to the velocity in P, and QB to RC as the ve-
locity in R to the velocity in Q. Through the
ends A, B, C of the perpendiculars draw AD,
DBE, EC, at right angles, meeting in D and
E: and the right lines TD, VE produced, will
meet in S, the centre required.

For the perpendiculars let fall from the centre S on the tangents PT, QT,
are inversely as the velocities of the bodies in the points P and Q (by Cor. 1,
Prop. 1), and therefore, by construction, directly as the perpendiculars AP,
BQ; that is, as the perpendiculars let fall from the point D on the tangents.
Whence it is easy to infer that the points S, D, T are in one right line. And by
the like argument the points S, E, V are also in one right line; and therefore
the centre S is in the point where the right lines TD, VE meet. Q.E.D.

ProrositioN 6. THEOREM 5

In a space void of resistance, if a body revolves in any orbit about an 1mmovable
centre, and in the least time describes any arc just then nascent; and the versed sine
of that arc 1s supposed to be drawn bisecting the chord, and produced passing
through the centre of force: the centripetal force in the middle of the arc will be
directly as the versed sine and itnversely as the square of the time.

For the versed sine in a given time is as the force (by Cor. 1v, Prop. 1); and
augmenting the time in any ratio, because the arc will be augmented in the
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same ratio, the versed sine will be augmented in the square of that ratio (by
Cor. 11 and 111, Lem. 11), and therefore is as the force and the square of the
time. Divide both sides by the square of the time, and the force will be directly
as the versed sine, and inversely as the square of the time. Q.E.D.

And the same thing may also be easily demonstrated by Cor. 1v, Lem. 10.

Cor. 1. If a body P revolving about the centre S describes a curved line APQ),
which a right line ZPR touches in any point P;
and from any other point Q of the curve, QR 1s
drawn parallel to the distance SP, meeting the
tangent in R; and QT is drawn perpendicular to
the distance SP; the centripetal force will be in-

PQ;?T if the solid be taken
of that magnitude which it ultimately acquires
when the points P and Q coincide. For QR is equal to the versed sine of double
the arc QP, whose middle is P: and double the triangle SQP, or SP-QT is pro-
portional to the time in which that double arc is described; and therefore
may be used to represent the time.

Cor. 11. By a like reasoning, the centripetal force is inversely as the solid
SY?-QP?

QR
of the orbit. For the rectangles SY-QP and SP-QT are equal.

Cor. 111. If the orbit is either a circle, or touches or cuts a circle concentri-
cally, that is, contains with a circle the least angle of contact or section, having
the same curvature and the same radius of curvature at the point P; and if PV
be a chord of this circle, drawn from the body through the centre of force; the

centripetal force will be inversely as the solid SY2-PV. For PV is 8§

Cor. 1v. The same things being supposed, the centripetal force is as the
square of the velocity directly, and the chord inversely. For the Velomty is
reciprocally as the perpendicular SY, by Cor. 1, Prop 1.

Cor. v. Hence if any curvilinear ﬁgule APQ is given, and therein a point S is
also given, to which a centripetal force is continually directed, that law of cen-
tripetal force may be found, by which the body P will be continually drawn
back from a rectilinear course, and, being detained in the perimeter of that
figure, will describe the same by a continual revolution. That is, we are to find,

by computation, either the solid SPQI%T

portional to this force. Examples of this we shall give in the following Problems.

versely as the solid S

; if SY is a perpendicular from the centre of force on PR, the tangent

or the solid SY2- PV, inversely pro-

ProrosiTion 7. PROBLEM 2

If a body revolves in the circumference of a circle, it is proposed to find the law of
centripetal force directed to any giwen poini.

Let VQPA be the circumference of the circle; S the given point to which as
to a centre the force tends; P the body moving in the circumference; Q the next
place into which it is to move; and PRZ the tangent of the circle at the preced-
ing place. Through the point S draw the chord PV, and the diameter VA of the
circle; join AP, and draw QT perpendicular to SP, which produced, may meet
the tangent PR in Z; and lastly, through the point Q, draw LR parallel to SP,
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meeting the circle in I, and the tangent PZ in R. And, because of the similar
triangles ZQR, ZTP, VPA, we shall have
RP?: QT?=AV2 PV2

. . 2
Since RP?=RL-QR, QngRL QR-PV

AV?

2
Multiply those equals by (%% and the

points P and Q coinciding, for RL write
PV; then we shall have
SP2.PV: SP2.QT?
AVZ QR
And therefore (by Cor. 1 and v, Prop. 6)

the centripetal force is inversely as

2. 3
SPA%; that is (because AV? is given),

inversely as the product of SP? and PV3,
Q.E.L

The same otherwise.
On the tangent PR produced let fall the perpendicular SY; and (because of
the similar triangles SYP, VPA) we shall have AV to PV as SP to SY, and

. 2, 3
therefore SPPV_ SY, and SPT/.le =8Y2-PV. And therefore (by Con. 111 and
2. 73

AV
v, Prop. 6) the centripetal force is inversely as BN that is (because AV is

given), inversely as SP2-PV3. Q.E.L

Cor. 1. Hence if the given point S, to which the centripetal force always
tends, is placed in the circumference of the circle, as at V, the centripetal force
will be inversely as the fifth power of the altitude SP.

Cor. 11. The force by which the body P in the circle APTV revolves about
the centre of force S is to the force by which the same body P may revolve in
the same circle, and in the same periodic time,
about any other centre of force R, as RP?-SP to
the cube of the right line SG, which from the first
centre of force S 1s drawn parallel to the distance
PR of the body from the second centre of force R,
meeting the tangent PG of the orbit in G. For by
the construction of this Proposition, the former
force is to the latter as RP2-PT? to SP?-PV?; that

3. 3
is, as SP-RP? to SPP% ; or (because of the similar triangles PSG, TPV) toSG?.

Cor. 111. The force by which the body P in any orbit revolves about the
centre of force S, is to the force by which the same body may revolve in the
same orbit, and the same periodic time, about any other centre of force R, as
the solid SP-RP? contained under the distance of the body from the first
centre of force S, and the square of its distance from the second centre of force
R, to the cube of the right line SG, drawn from the first centre of the force S,
parallel to the distance RP of the body from the second centre of force R,
meeting the tangent PG of the orbit in G. For the force in this orbit at any
point P is the same as in a circle of the same curvature.
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ProrosiTioN 8. PROBLEM 3

If a body moves in the semicircumference PQA ; ¢t is proposed to find the law of the
centripetal force tending to a point S, so remote, that all the lines PS, RS drawn
thereto, may be taken for parallels.

From C, the centre of the semicircle, let the semidiameter CA be drawn,
cutting the parallels at right angles in M and N, and join CP. Because of the
similar triangles CPM, PZT, and RZQ, we
shall have CPz: PM?=PR?: QT2 From the P

nature of the circle, PRZ=QR(RN+QN)= 4R
QR -2PM, when the points P and Q coincide. “*“AQ T
Therefore CP2: PM?=QR-2PM : QT?, and
QT?_2PM? and QT2.Sp? 2PM3.SP? And Nl a
QR ~ CpP2’ QR Cpr A <
therefore (by Cor. 1 and v, Prop. 6) the cen-
T3. 2
tripetal force is inversely as ZP%\___CIP_Z)S_P_; that 1s sl S
2
(neglecting the given ratio 20811)) ), inversely as PM?. Q.E.I.

And the same thing is likewise easily inferred from the preceding Propo-
sition.

ScHOLIUM

And by a like reasoning, a body will be moved in an ellipse, or even in an
hyperbola, or parabola, by a centripetal foree which is inversely as the cube of
the ordinate directed to an infinitely remote centre of force.

ProrosiTioN 9. PROBLEM 4

If a body revolves in a spiral PQS, cutting all the radiz SP, SQ, &c., in a gwen
angle; it is proposed to find the law of the centripetal force tending to the centre of
that speral.

v S T P

Suppose the indefinitely small angle PSQ to be given; because, then, all the
angles are given, the figure SPRQT will be given in kind. Therefore the ratio

2
% is also given, and %E
as SP. But if the angle PSQ is any way changed, the right line QR, subtending

the angle of contact QPR (by Lem. 11) will be changed in the ratio of PR? or
2
QT?2. Therefore the ratio QT

QT2-SP2?, R
“OR is as SP?, and therefore (by Cor. 1 and v, Prop. 6) the centripetal force

is inversely as the cube of the distance SP. Q.E.I.

is as QT, that is (because the figure is given in kind),

remains the same as before, that is, as SP. And
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The same otherwzse.

The perpendicular SY let fall upon the tangent, and the chord PV of the
circle concentrically cutting the spiral, are in given ratios to the height SP; and
therefore SP3?is as SY2- PV, that is (by Cor. 111 and v, Prop. 6) inversely as the
centripetal force.
P LemMa 12
All parallelograms circumscribed about any conjugate diameters of a given ellipse
or hyperbola are equal among themselves.

This is demonstrated by the writers on the conic sections.

ProrosiTioN 10. PROBLEM 5

If a body revolves in an ellipse; it is proposed to find the law of the centripetal force
tending to the centre of the ellipse.

Suppose CA, CB to be semiaxes of the ellipse; GP, DK, conjugate diam-
eters; PF, QT, perpendiculars to those diameters; Qu, an ordinate to the diam-
eter GP; and if the parallelogram
QuPR be completed, then (by the

b SR properties of the conic sections)
D Q p Py-vG : Qv2=PC2: CD?, and, be-
cause of the similar triangles Qv'T,
T PCF, Qv?: QT2=PC?: PF?; and
2
' by eliminating Qu? oG : %—1;=
2. 2
N A PpC2: @P—CIZD—F Since QR =Py,
F and (by Lem. 12) BC-CA=
CD-PF, and, when the points P
v and Q coincide, 2PC =vQG, we shall
G K have, multiplying the extremes
2, 2
and means together, QT II{) C_
2BC2- CA? , . .9
—pc Therefore (by Cor. v, Prop. 6), the centripetal force is inversely as
2, A2
%gé—; that is (because 2BC?-CA? is given), inversely as F%; that 1is, di-
rectly as the distance PC. Q.E.L

The same otherwise.

In the right line PG on the other side of the point T, take the point  so that
Tu may be equal to Tv; then take vV, such that «V : vG=DC? : PC2 Since, by
the conic sections, Qv? : Pv-vG=DC?: PC? we have Qv*=Pv-uV. Add Pu-Pv
to both sides, and the square of the chord of the arc PQ will be equal to the
rectangle PV -Pv; and therefore a circle which touches the conic section in P,
and passes through the point Q, will pass also through the point V. Now let the
points P and Q meet, and the ratio of uV to G, which is the same with the
ratio of DC? to PC?, will become the ratio of PV to PG, or PV to 2PC; and

2

therefore PV will be equal to g—% And therefore the force by which the body
2

P revolves in the ellipse will be inversely as 21;8 -PF? (by Cor. 111, Prop. 6);
that is (because 2DC?- PF? is given), directly as PC. Q.E.L.




42 MATHEMATICAL PRINCIPLES

Cogr. 1. And therefore the force is as the distance of the body from the centre
of the ellipse; and, vice versa, if the force is as the distance, the body will move
in an ellipse whose centre coincides with the centre of force, or perhaps in a
circle into which the ellipse may degenerate.

Cor. 11. And the periodic times of the revolutions made in all ellipses what-
soever about the same centre will be equal. For those times in similar ellipses
will be equal (by Cor. 111 and viii, Prop. 4); but in ellipses that have their
greater axis common, they are to each other as the whole areas of the ellipses
directly, and the parts of the areas described in the same time inversely; that
is, as the lesser axes directly, and the velocities of the bodies in their principal
vertices inversely; that is, as those lesser axes directly, and the ordinates to the
same point of the common axes inversely; and therefore (because of the equal-
ity of the direct and inverse ratios) in the ratio of equality, 1: 1.

SCHOLIUM

If the ellipse, by having its centre removed to an infinite distance, degen-
erates into a parabola, the body will move in this parabola; and the force, now
tending to a centre infinitely remote, will become constant. This 1s Galileo’s
theorem. And if the parabolic section of the cone (by changing the inclination
of the cutting plane to the cone) degenerates into an hyperbola, the body will
move in the perimeter of this hyperbola, having its centripetal force changed
intoa centrifugal force. And in like manner as in the circle, or in theellipse, if the
forces are directed to the centre of the figure placed in the abscissa, those forces
by increasing or diminishing the ordinates in any given ratio, or even by chang-
ing the angle of the inclination of the ordinates to the abscissa, are always
augmented or diminished in the ratio of the distances from the centre; provided
the periodic times remain equal; so also in all figures whatsoever, if the or-
dinates are augmented or diminished in any given ratio, or their inclination is
any way changed, the periodic time remaining the same, the forces directed to
any centre placed in the abscissa are in the several ordinates augmented or
diminished in the ratio of the distances from the centre.

SECTION III

THE MOTION OF BODIES IN ECCENTRIC CONIC SECTIONS

ProrositioN 11. PROBLEM 6

If a body revolves in an ellipse; it 1s required to find the law of the centripetal force
tending to the focus of the ellipse.

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the
ellipse in E, and the ordinate Qv in z; and complete the parallelogram QzPR. It
is evident that EP is equal to the greater semiaxis AC: for drawing HI from the
other focus H of the ellipse parallel to EC, because CS, CH are equal, ES, EI
will also be equal; so that EP is the half-sum of PS, PI, that is (because of the
parallels HI, PR, and the equal angles IPR, HPZ), of PS, PH, which taken
together are equal to the whole axis 2AC. Draw QT perpendicular to SP, and

), we shall have

2
putting L for the principal latus rectum of theellipse (or for 2A—C_
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L-QR :L-Pr=QR : Pv=PE : PC=AC : PC,

also, L-Pv : Gv-Pv=L: Go, and, Gv-Pv : Q®=PC?: CD2
By Cor. 11, Lem. 7, when the
points Pand Q coincide, Qv? = Qua?,
B R and Qx?or Qv?: QT2=EP?: PF2=
o) CA?: PF?, and (by Lem. 12)=
D DOP CD?: CB2 Multiplying together
Zi corresponding terms of the four
< proportions, and simplifying, we
shall have L-QR : QT?=AC-L-
PC?.CD?: PC.Gv - CD?.-CB2=
3 . i 2PC : Go, since AC-L=2BC2
' But the points Qand P coinciding,
2PC and Guv are equal. And there-
fore the quantities - QR and QT?,
G K proportional to these, will be also

equal. Let those equals be multi-
. SP? .
plied by QR and L-SP? will be-

D
5

SP2- QT2

come equal to QR And therefore (by Cor. 1 and v, Prop. 6) the cen-
tripetal force is inversely as L-SP2 that is, inversely as the square of the dis-
tance SP. Q.E.L.

The same otherwise.

Since the force tending to the centre of the ellipse, by which the body P may
revolve in that ellipse, is (by Cor. 1, Prop. 10) as the distance CP of the body
from the centre C of the ellipse, let CE be drawn parallel to the tangent PR of
the ellipse; and the force by which the same body P may revolve about any

3
other point S of the ellipse, if CE and PS intersect in E, will be as g—g (by

Cor. 111, Prop. 7); that is, if the point S is the focus of the ellipse, and there-
fore PE be given as SP? reciprocally. Q.E.I.

With the same brevity with which we reduced the fifth Problem to the
parabola, and hyperbola, we might do the like here; but because of the dignity
of the Problem and its use in what follows, I shall confirm the other cases by
particular demonstrations.

ProrosiTioN 12. PROBLEM 7

Suppose a body to move in an hyperbola; it is required to find the law of the
centripetal force tending to the focus of that figure.

Let CA, CB be the semiaxes of the hyperbola; PG, KD other conjugate
diameters; PF a perpendicular to the diameter XD ; and Qv an ordinate to the
diameter GP. Draw SP cutting the diameter DK in E, and the ordinate Qu in
z, and complete the parallelogram QRPz. It is evident that EP is equal to the
semitransverse axis AC; for drawing HI, from the other focus H of the hyper-
bola, parallel to EC, because CS, CH are equal, ES, EI will be also equal; so
that EP is the half difference of PS, PI; that is (because of the parallels TH,
PR, and the equal angles IPR, HPZ), of PS, PH, the difference of which is
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equal to the whole axis 2AC. Draw QT perpendicular to SP; and putting L for

the principal latus rectum of the hyperbola (that is, for fg ), we shall have

L-QR:L-Pv=QR : Pv=Pz : Pv=PE : PC=AC : PC,
also, L-Pv : Gv-Pv=L : Gv, and Gv-Pv : Q*=PC?: CD2 By Cor 11, Lem. 7,
when P and Q coincide, Qx?=Qu?, and,
Qa? or Qv?: QI?2=EP?: PF2=CA?: PF?% by Lem. 12, =CD? : CB2
Al

K

Multiplying together corresponding terms of the four proportions, and simpli-
fying,

L-QR: QT?=AC-L-PC2.CD?: PC-Gy-CD2-CB2=2PC : Gv,
since AC-L =2BC2 But the points P and Q coinciding, 2PC and Gv are equal.
And therefore the quantities L- QR and Q'12 proportional to them, will also be

equal. Let those equals be drawn into == QR’

SP2.QT? . .
~OR And therefore (by Cor. 1 and v, Prop. 6) the centripetal force is

and we shall have L-SP? equal to

inversely as L-SP? that is, inversely as the square of the distance SP. Q.E.I.
The same otherwise.

Find out the force tending from the centre C of the hyperbola. This will be

proportional to the distance CP. But from thence (by Cor. 111, Prop. 7) the

force tending to the focus S will be as Is)gz’ that is, because PE is given re-

ciprocally as SP2. Q.E.L
And the same way may it be demonstrated, that the body having its centri-
petal changed into a centrifugal force, will move in the conjugate hyperbola.
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LeEMMa 13

The latus rectum of a parabola belonging to any vertex is four times the distance of
that vertex from the focus of the figure.
This is demonstrated by the writers on the conic sections.

LeMMA 14

The perpendicular, let fall from the focus of a parabola on its tangent, is a mean
proportional between the distances of the focus from the point of contact, and from
the principal vertex of the figure.

For, let AP be the parabola, S its focus, A its principal vertex, P the point of
contact, PO an ordinate to the principal diameter, PM the tangent meeting the
principal diameter in M, and SN the per-
pendicular from the focus on the tangent:
join AN, and because of the equal lines
MS and SP, MN and NP, MA and AO,
the right lines AN, OP will be parallel;
and thence the triangle SAN will be right-
angled at A, and similar to the equal tri-
angles SNM, SNP; therefore PS is to SN
as SN is to SA. Q.E.D.

Cor. 1. PS?is to SN2 as PS is to SA.

Cor. 11. And because SA is given, SN? will vary as PS.

Cor. 11i1. And the intersection of any tangent PM, with the right line SN,
drawn from the focus perpendicular on the tangent, falls in the right line AN
that touches the parabola in the principal vertex.

ProrosiTioN 13. PROBLEM 8

If a body moves in the perimeter of a parabola; it is required to find the law of the
centripetal force tending to the focus of that figure.

Retaining the construction of the preceding Lemma, let P be the body in the
perimeter of the parabola; and from the place Q, into which it is next to suc-
ceed, draw QR parallel and QT per-
pendicular to SP, as also Quv parallel
to the tangent, and meeting the di-
ameter PG in », and the distance SP
in . Now because of the similar tri-
angles Pxv, SPM, and of the equal
sides SP, SM of the one, the sides Px
or QR and Pv of the other will be also
equal. But (by the conic sections) the
square of the ordinate Qv is equal to
the rectangle under the latus rectum
and the segment Pv of the diameter; that is (by Lem. 13), to the rectangle
4PS-Po, or 4PS-QR; and the points P and Q coinciding, (by Cor. 11, Lem. 7),
Qr=Qu. And therefore Q2 in this case, becomes equal to the rectangle
4PS-QR. But (because of the similar triangles QzT, SPN),

Qx? : QT?2=PS?: SN2=PS : SA (by Cor. 1, Lem. 14),
=4PS-QR : 4SA-QR.

M A 5
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Therefore (by Prop. 9, Book v, Elements of Euclid), QT?=4SA-QR. Multiply

2 2, n2
these equals by %%, and S_PQI(%'I will become equal to SP?-4SA: and therefore

(by Cor. 1 and v, Prop. 6), the centripetal force is inversely as SP?-4SA; that
is, because 4SA is given, inversely as the square of the distance SP. Q.E.IL

Cor. 1. From the three last Propositions it follows, that if any body P goes
from the place P with any velocity in the direction of any right line PR, and at
the same time is urged by the action of a centripetal force that is inversely
proportional to the square of the distance of the places from the centre, the
body will move in one of the conic sections, having its focus in the centre of
force; and conversely. For the focus, the point of contact, and the position of
the tangent, being given, a conic section may be described, which at that point
shall have a given curvature. But the curvature is given from the centripetal
force and velocity of the body being given; and two orbits, touching one the
other, cannot be described by the same centripetal force and the same velocity.

Cor. 11. If the velocity with which the body goes from its place P is such,
that in any infinitely small moment of time the small line PR may be thereby
described ; and the centripetal force such as in the same time to move the same
body through the space QR ; the body will move in one of the conic sections,

2

whose principal latus rectum is the quantity QE in its ultimate state, when the

small lines PR, QR are diminished in infinitum. In these Corollaries I consider
the circle as an ellipse; and I except the case where the body descends to the
centre in a right line.

ProrosiTioN 14. THEOREM 6

If several bodies revolve about one common centre, and the centripetal force is
tnversely as the square of the distance of places from the centre: I say, that the
principal latera recta of their orbits are as the squares of the areas, which the bodies

by radit drawn to the centre describe in the same time.
2

For (by Cor. 11, Prop. 13) the latus rectum L is equal to the quantity 8’11; in

its ultimate state when the points P and Q coincide. But the small line QR in a

given time is as the generating centripetal force;

that is (by supposition), inversely as SP2. and
2

therefore QT is as QT?-SP?; that is, the latus rec-

QR

tum L is as the square of the area QT -SP. .E.p.

Cor. Hence the whole area of the ellipse, and
the rectangle under the axes, which is propor-
tional to it, is as the produet of the square root
of the latus rectum, and the periodic time. For
the whole area is as the area QT -SP, described in a given time, multiplied by
the periodic time.

Prorosition 15. THEOREM 7

The same things being supposed, I say, that the periodic times in ellipses are as the
8/4th power (in ratione sesquiplicata) of their greater axes.

For the lesser axis is a mean proportional between the greater axis and the
latus rectum; and, therefore, the product of the axes is equal to the product of
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the square root of the latus rectum and the 44th power of the greater axis. But
the product of the axes (by Cor., Prop. 1) varies as the product of the square
root of the latus rectum, and the periodic time. Divide both sides by the square
root of the latus rectum and it follows that the 34th power of the greater axis
varies as the periodic time. Q.E.D.

Cor. Therefore the periodic times in ellipses are the same as in circles whose
diameters are equal to the greater axes of the ellipses.

ProrosiTioN 16. THEOREM 8

The same things being supposed, and right lines being drawn to the bodies that
shall touch the orbits, and perpendiculars being let fall on those tangents from the
common focus: I say, that the velocities of the bodies vary inversely as the perpen-
diculars and directly as the square roots of the principal latera recta.

From the focus S draw SY perpendicular to the tangent PR, and the velocity

.. ., SY?
of the body P varies inversely as the square root of the quantity I For that

velocity is as the infinitely small arc PQ described in a given moment of time,
v that is (by Lem. 7), as the tangent PR; that is
/R (because of the proportion, PR : QT =SP : 8Y),

P SP-QT : .
gy 5 °r inversely as SY, and directly as
SP-QT; but SP-QT is as the area described in
the given time, that is (by Prop. 14), as the
square root of the latus rectum. Q.E.D.
Cogr. 1. The principal latera recta vary as the
squares of the perpendiculars and the squares of

the velocities.

Cor. 11. The velocities of bodies, in their greatest and least distances from
the common focus, are inversely as the distances and directly as the square
root of the principal latera recta. For those perpendiculars are now the distances.

Cor. 111. And therefore the velocity in a conie section, at its greatest or least
distance from the focus, is to the velocity in a circle, at the same distance from
the centre, as the square root of the principal latus rectum is to the square root
of double that distance.

Cor. 1v. The velocities of the bodies revolving in ellipses, at their mean
distances from the common focus, are the same as those of bodies revolving in
circles, at the same distances; that is (by Cor. vi, Prop. 4), inversely as the
square root of the distances. For the perpendiculars are now the lesser semi-
axes, and these are as mean proportionals between the distances and the latera
recta. Let the inverse of this ratio [of the minor semiaxes] be multiplied by the
square root of the direct ratio of the latera recta, and we shall have the square
root of the inverse ratio of the distances.

Cor. v. In the same figure, or even in different figures, whose principal latera
recta are equal, the velocity of a body is inversely as the perpendicular let fall
from the focus on the tangent.

Cor. vi. In a parabola, the velocity is inversely as the square root of the
ratio of the distance of the body from the focus of the figure; it is more variable
in the ellipse, and less in the hyperbola, than according to this ratio. For (by
Cor. 11, Lem. 14) the perpendicular let fall from the focus on the tangent of a

as
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parabola is as the square root of the distance. In the hyperbola the perpen-
dicular is less variable; in the ellipse, more.

Cor. viI. In a parabola, the velocity of a body at any distance from the focus
is to the velocity of a body revolving in a circle, at the same distance from the
centre, as the square root of the ratio of the number 2 to 1; in the ellipse it is
less, and in the hyperbola greater, than according to this ratio. For (by Cor. 11
of this Prop.) the velocity at the vertex of a parabola is in this ratio, and (by
Cor. vI of this Prop. and Prop. 4) the same proportion holds in all distances.
And hence, also, in a parabola, the velocity is everywhere equal to the velocity
of a body revolving in a circle at half the distance;in the ellipse it is less, and in
the hyperbola greater.

Cor. viir. The velocity of a body revolving in any conic section is to the
velocity of a body revolving in a circle, at the distance of half the principal
latus rectum of the section, as that distance to the perpendicular let fall from
the focus on the tangent of the section. This appears from Cor. v.

Cor. 1x. Wherefore, since (by Cor. vi, Prop. 4) the velocity of a body revolv-
ing in this circle is to the velocity of another body revolving in any other circle,
inversely as the square root of the ratio of the distances; therefore, likewise,
the velocity of a body revolving in a conic section will be to the velocity of a
body revolving in a circle at the same distance as a mean proportional between
that common distance, and half the principal latus rectum of the section, to
the perpendicular let fall from the common focus upon the tangent of the
section.

ProrositioN 17. PROBLEM 9

Supposing the centripetal force to be inversely proportional to the squares of the
distances of places from the centre, and that the absolute value of that force s known;
1t 18 requared to determine the line which a body will describe that is let go from a
given place with a given velocity in the direction of a given right line.

Let the centripetal force tending to the point S be such as will make the body
p revolve in any given orbit pq; and suppose the velocity of this body in the
place p 1s known. Then from the
place P suppose the body P to be
let go with a given velocity in the
direction of the line PR; but by
virtue of a centripetal force to be
immediately turned aside from
that right line into the conic sec-
tion PQ. This, the right line PR
will therefore touch in P. Suppose
likewise that the right line pr
touches the orbit pq in p; and if
from S you suppose perpendiculars
let fall on those tangents, the principal latus rectum of the conic section (by
Cor. 1, Prop. 16) will be to the principal latus rectum of that orbit in a ratio
compounded of the squared ratio of the perpendiculars, and the squared ratio
of the velocities; and is therefore given. Let this latus rectum be L; the focus S
of the conic section is also given. Let the angle RPH be the supplement of the
angle RPS, and the line PH, in which the other focus H is placed, is given by
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position. Let fall SK perpendicular on PH, and erect the conjugate semiaxis
BC; this done, we shall have
SP?—2PH -PK+PH?=SH?>*=4CH?=4(BH2—-BC?) =
(SP+PH)?2—L(SP+PH) =SP?+4-2PS-PH+PH2— L(SP+PH).
Add on both sides
2PK-PH —-SP?—PH>+L(SP+PH),
and we shall have
L(SP+4+PH)=2PS-PH+2PK-PH, or
(SP+PH) : PH=2 (SP+KP) : L.

Hence PH is given both in length and position. That is, if the velocity of the
body in P is such that the latus rectum L is less than 2SP+4-2KP, PH will lie on
the same side of the tangent PR with the line SP; and therefore the figure will
be an ellipse, which from the given foci S, H, and the principal axis SP+PH, is
given also. But if the velocity of the body is so great, that the latus rectum L
becomes equal to 2SP+2KP, the length PH will be infinite; and therefore, the
figure will be a parabola, which has its axis SH parallel to the line PK, and is
thence given. But if the body goes from its place P with a yet greater velocity,
the length PH is to be taken on the other side the tangent; and so the tangent
passing between the foci, the figure will be an hyperbola having its principal
axis equal to the difference of the lines SP and PH, and thence is given. For if
the body, in these cases, revolves in a conic section so found, it is demonstrated
in Props. 11, 12, and 13, that the centripetal force will be inversely as the square
of the distance of the body from the centre of force S; and therefore we have
rightly determined the line PQ, which a body let go from a given place P with
a given velocity, and in the direction of the right line PR given by position,
would describe with such a force. Q.E.F.

Cor. 1. Hence in every conic section, from the principal vertex D, the latus
rectum L, and the focus S given, the other focus H is given, by taking DH to
DS as the latus rectum to the difference between the latus rectum and 4DS.
For the proportion

SP+PH : PH=2SP+2KP : L
becomes, in the case of this Corollary,
DS+DH : DH=4DS : L,
and DS : DH=4DS—L: L.

Cor. 11. Whence if the velocity of a body in the principal vertex D is given,
the orbit may be readily found; namely, by taking its latus rectum to twice the
distance DS, in the squared ratio of this given velocity to the velocity of a body
revolving in a circle at the distance DS (by Cor. 111, Prop. 16), and then taking
DH to DS as the latus rectum to the difference between the latus rectum and
4D8S.

Cor. 111. Hence also if a body move in any conic section, and if forced out of
its orbit by any impulse, you may discover the orbit in which it will afterwards
pursue its course. For by compounding the proper motion of the body with
that motion, which the impulse alone would generate, you will have the motion
with which the body will go off from a given place of impulse in the direction of
a right line given in position.

Cor. 1v. And if that body is continually disturbed by the action of some
foreign force, we may nearly know its course, by collecting the changes which
that force introduces in some points, and estimating the continual changes it
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will undergo in the intermediate places, from the analogy that appears in the
progress of the series.

ScHOLIUM

If a body P, by means of a centripetal
force tending to any given point R, move In
the perimeter of any given conic section whose
centre is C; and the law of the centripetal
force is required: draw CG parallel to the
radius RP, and meeting the tangent PG of
the orbit in G; and the force required (by
Cor. 1 and Schol., Prop. 10, and Cor. 111,

CG3

Prop. 7) will be as R

SECTION IV

THE FINDING OF ELLIPTIC, PARABOLIC, AND HYPERBOLIC ORBITS, FROM THE
FOCUS GIVEN

LeEMmyaA 15

If from the two foci S, H, of any ellipse or hyperbola, we draw to any third point V
the right lines SV, HV, whereof one HV is equal to the principal axis of the figure,
that is,to the axis tn which the foct are situated, the other,
SV, s bisected tn T by the perpendicular TR let fall
T R upon t; that perpendicular TR will somewhere touch the
conic section: and, vice versa, if it does touch it, HV

S H 101l be equal to the principal axis of the figure.

For, let the perpendicular TR cut the right line HV, produced, if need be, in
R; and join SR. Because TS, TV are equal, therefore the right lines SR, VR, as
well as the angles TRS, TRV, will be also equal. Whence the point R will be in
the conic section, and the perpendicular TR will touch the same; and the
contrary. Q.E.D.

v

ProrosiTioN 18. ProBLEM 10

From a focus and the principal azxes given, to describe elliptic and hyperbolic curves
which shall pass through given points, and touch right lines given by position.
Let S be the common focus of the figures; AB the length of the principal axis
of any conic; P a point through which the conice should pass; and TR a right
line which it should touch. About the centre P, | __ !
with the radius AB—SP, if the orbit is an ellipse, A B

or AB+SP, if the orbit is an hyperbola, describe P 14

the circle HG. On the tangent TR let fall the i
perpendicular ST, and produce the same to V, so H
that TV may be equal to ST; and about V as a Gf*

centre with the interval AB describe the circle
FH. In this manner, whether two points P, p, are given, or two tangents TR,
tr, or a point P and a tangent TR, we are to describe two circles. Let H be their
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common intersection, and from the foct S, H, with the given axis describe the
conic: I say, the thing is done. For (because PH+-SP in the ellipse,and PH —SP
in the hyperbola, is equal to the axis) the described conic will pass through
the point P, and (by the preceding Lemma) will touch the right line TR. And
by the same argument it will either pass through the two points P, p, or touch
the two right lines TR, tr. Q.E.F.

ProrosiTion 19. ProBLEM 11

About a given focus, to describe a parabola which shall pass through given points
and touch right lines given by position.

Let S be the focus, P a point, and TR a tangent of the curve to be described.
About P as a centre, with the radius PS, describe the circle FG. From the focus
let fall ST perpendicular on the tangent, and produce the same to V, so as TV

may be equal to ST. After the same manner another circle

fgis to be described, if another point p is given; or another

/ point » is to be found, if another tangent ¢r is given; then
F /P draw the right line IF, which shall touch the two circles
c /R FG, fg, if two points P, p are given; or pass through the

v two points V, v, if two tangents TR, ¢r, are given; or touch
o the circle FG, and pass through the point V, if the point
(AR P and the tangent TR are given. On FT let fall the perpen-
/K S dicular SI, and bisect the same in K; and with the axis

SK and principal vertex K describe a parabola: I say, the
thing is done. For this parabola (because SK is equal to IK, and SP to FP)
will pass through the point P; and (by Cor. 111, Lem. 14) because ST is equal
to TV, and STR a right angle, it will touch the right line TR. Q.E.F.

ProrosiTion 20. PRoBLEM 12

About a given focus, to describe any given conic which shall pass through given
points and touch right lines given by position.

CasE 1. About the focus S it is required to describe a conic ABC, passing
through two points B, C. Because the conic is given in kind, the ratio of the
principal axis to the distance of the foci will
be given. In that ratio take KB to BS, and LC
to CS. About the centres B, C, with the in-
tervals BK, CL, describe two circles; and on
the right line KL, that touches the same in K \
and L, let fall the perpendicular SG; which © A S H <
cut in A and a, so that GA may be to AS, and Ga to aS, as KB to BS; and with
the axis Aa, and vertices A, a, describe a conic: I say, the thing is done. For let
H be the other focus of the described figure, and seeing that GA : AS=Ga : aS,
we shall have
Ga—GA : aS—AS=GA : AS, or Aa : SH=GA : AS, and therefore GA and
AS are in the ratio which the principal axis of the figure to be described has to
the distance of its foci; and therefore the described figure is of the same kind
with the figure which was to be described. And since KB to BS, and L.C to CS,
are in the same ratio, this figure will pass through the points B, C, as is mani-
fest from the conic sections.

CasE 2. About the focus S it is required to describe a conic which shall some-
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where touch two right lines TR, ¢r. From the focus on those tangents let fall
the perpendiculars ST, S¢, which produce to V, », so that TV, tv may be equal
to TS, ¢S. Bisect Vv in O, and erect the 1ndeﬁn1te perpendlcular OH and cut
the rlght line VS 1nﬁn1tely produced in K and k,
so that VK be to KS, and Vk to &S, as the prin-
cipal axis of the conic to be described is to the
distance of its foci. On the diameter Kk describe
a circle cutting OH in H; and with the foci S, H,
and principal axis equal to VH, describe a
conic: I say, the thing is done. For bisecting Kk
in X, and joining HX, HS, HV, Hv, because VK
is to KS as Vk to kS; and by composition, as
VK+Vk to KS+£ES; and by subtraction, as Vk—VK to kS KS, that is, as
2VX to 2KX, and 2KX to 28X, and therefore as VX to HX and HX to SX
the triangles VXH, HXS will be similar; therefore VH will be to SH as VX to
XH; and therefore as VK to KS. Wherefore VH, the principal axis of the de-
scribed conic, has the same ratio to SH, the distance of the foci, as the prin-
cipal axis of the conic which was to be described has to the distance of its foci;
and is therefore of the same kind. And seeing VH, vH are equal to the principal
axis, and VS, vS are perpendicularly bisected by the right lines TR, tr, it is ev-
ident (by Lem. 15) that those right lines touch the described conic. Q.E.F.

Cask 3. About the focus S it is required to describe a conic which shall touch
a right line TR in a given point R. On the right line TR let fall the perpendicu-
lar ST, which produce to V, so that TV may

H be equal to ST; join VR, and cut the right

g line VS indefinitely produced in K and %, so

Rl that VK may be to SK, and Vk to Sk, as the
T principal axis of the ellipse to be described to
i O e the distance of its foci; and on the diameter
v TK S k K describing a circle, cut the right line VR

produced in H; then with the foci S, H, and
principal axis equal to VH, describe a conic: I say, the thing is done. For
VH : SH=VK : SK, and therefore as the principal axis of the conic which was
to be described to the distance of its foci (as appears from what we have dem-
onstrated in Case 2); and therefore the deseribed conic is of the same kind
with that which was to be described; but that the right line TR, by which
the angle VRS is bisected, touches the conic in the point R, is certain from the
properties of the conic sections. Q.E.F.
" Cask 4. About the focus S it is required to describe a conic APB that shall
touch a right line TR, and pass through any given point P without the tangent,
and shall be similar to the figure apb, described with the principal axis ab, and
foci s, h. On the tangent TR let fall the perpendicular ST, which produce to V,
so that TV may be equal to ST; and making the angles hsg, shq, equal to the
angles VSP, SVP, about ¢ as a centre, and with a radius which shall be to ab as
SP to VS, describe a circle cutting the figure apb in p. Join sp, and draw SH
such that it may be to sh as SP is to sp, and may make the angle PSH equal to
the angle psh, and the angle VSH equal to the angle psq. Then with the foci
S, H, and principal axis AB, equal to the distance VH, describe a conic section:
I say, the thing is done; for if sv is drawn so that it shall be to sp as sh is to sq,
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and shall make the angle vsp equal to the angle hsq, and the angle vsh equal to
the angle psq, the triangles svh, spq, will be similar, and therefore vk will be to
pq as sh is to sq; that is (because of the similar triangles VSP, hsq), as VS is to
SP, or as ab to pg. Wherefore vh and ab are equal. But, because of the similar

triangles VSH, vsh, VH is to SH as vh to sh; that is, the axis of the conic section
now described is to the distance of its foci as the axis ab to the distance of the
foci sh; and therefore the figure now described is similar to the figure aph. But,
because the triangle PSH is similar to the triangle psh, this figure passes through
the point P; and because VH is equal to its axis, and VS is perpendicularly
bisected by the right line TR, the said figure touches the right line TR. Q.E.F.

LEMMA 16

From three given points to draw to a fourth point that is not given three right lines
whose differences either shall be given or are zero.

Cask 1. Let the given points be A, B, C, and Z the fourth point which we are
to find; because of the given difference of the lines AZ, BZ, the locus of the
point Z will be an hyperbola whose foci are A and B, and whose principal axis
is the given difference. Let that axis be MN.
Taking PM to MA as MN to AB, erect PR per-
pendicular to AB, and let fall ZR perpendicular
to PR; then from the nature of the hyperbola,
ZR : AZ=MN : AB. And by the like argument,
the locus of the point Z will be another hyper-
bola, whose foci are A, C, and whose principal
axis is the difference between AZ and CZ; and QS
a perpendicular on AC may be drawn, to which
(QS) if from any point Z of this hyperbola a per-
pendicular ZS is let fall, (this ZS) shall be to AZ
as the difference between AZ and CZ is to AC.
Wherefore the ratios of ZR and ZS to AZ are given, and consequently the ratio
of ZR to ZS one to the other; and therefore if the right lines RP, SQ, meet in
T, and TZ and TA are drawn, the figure TRZS will be given in kind, and
the right line TZ, in which the point Z is somewhere placed, will be given in
position. There will be given also the right line TA, and the angle ATZ; and
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because the ratios of AZ and TZ to ZS are given, their ratio to each other is
given also; and thence will be given likewise the triangle ATZ, whose vertex is
the point Z. Q.E.L

Cask 2. If two of the three lines, for example AZ and BZ, are equal, draw the
right line TZ so as to bisect the right line AB; then find the triangle ATZ as

above. Q.E.I.
Cask 3. If all the three are equal, the point Z will be placed in the centre of a
circle that passes through the points A, B, C. Q.E.IL

This problematic Lemma is likewise solved in the Book of Tactions of Apol-
lonius [of Perga], restored by Vieta.

ProrositioN 21. PROBLEM 13

About a given focus, to describe a conic that shall pass through given points and
touch right lines given by position.

Let the focus S, the point P, and the tangent TR be given, and suppose that
the other focus H is to be found. On the tangent let fall the perpendicular ST,
which produce to Y, so that TY may be equal to ST, and YH will be equal to
the principal axis. Join SP, HP, and SP will be the
difference between HP and the principal axis.
After this manner, if more tangents TR are given,
or more points P, we shall always determine as
many lines YH, or PH, drawn from the said points
Y or P, to the focus H, which either shall be equal
to the axes, or differ from the axes by given lengths
SP; and therefore which shall either be equal among themselves, or shall have
given differences; from whence (by the preceding Lemma,), that other focus H
is given. But having the foci and the length of the axis (which is either YH,
or, if the conic be an ellipse, PH+SP; or PH—SP, if it be an hyperbola), the
conic 1s given. Q.E.1.

ScHOLIUM

When the conic is an hyperbola, I do not include its conjugate hyperbola
under the name of this conic. For a body going on with a continued motion can
never pass out of one hyperbola into its conjugate hyperbola.

The case when three points are
given is more readily solved thus.
Let B, C, D be the given points.
Join BC, CD, and produce them
to E, F, so as EB may be to EC as
SB to SC; and FC to FD as SC to
SD. On EF drawn and produced
let fall the perpendiculars SG, BH,
and in GS produced indefinitely
take GA to AS, and Ga to aS, as
: HB is to BS: then A will be the
El vertex, and Aa the principal axis
of the conic; which, according as GA is greater than, equal to, or less than AS,
will be either an ellipse, a parabola, or an hyperbola; the point a in the first
case falling on the same side of the line GF as the point A; in the second, going

K T PP
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off to an infinite distance; in the third, falling on the other side of the line GF.
For if on GF the perpendiculars CI, DK are let fall, IC will be to HB as EC to
EB; that is, as SC to SB; and by permutation, IC to SC as HB to SB, or as GA
to SA. And, by the like argument, we may prove that XD is to SD in the same
ratio. Wherefore the points B, C, D lie in a conic section described about
the focus S, in such manner that all the right lines drawn from the focus S to
the several points of the section, and the perpendiculars let fall from the same
points on the right line GF, are in that given ratio.

That excellent geometer M. de la Hire has solved this Problem much after
the same way, in his Conics, Prop. 25, Book viiI.

SECTION V

How THE ORBITS ARE TO BE FOUND WHEN NEITHER FOCUS IS GIVEN

Leana 17

If from any point P of a given conic section, to the four produced sides AB, CD,
AC, DB of any trapezium ABDC inscribed vn that section, as many right lines
PQ, PR, PS, PT are drawn in given angles, each line to each side; the rectangle
PQ- PR of those on the opposite sides AB, CD, will be to the rectangle PS-PT of
those on the other two opposite sides AC, BD, in a given ratio.
c Cask 1. Let us suppose, first, that the lines
drawn to one pair of opposite sides are parallel
to either of the other sides; as PQ and PR to
theside AC, and PS and PT to the side AB. And
further, that one pair of the opposite sides, as
AC and BD, are parallel between themselves;
then the right line which bisects those parallel
sides will be one of the diameters of the conic
: QB section, and will likewise bisect RQ. Let O be
(12( the point in which RQ is bisected, and PO will
be an ordinate to that diameter. Produce PO
to K, so that OK may be equal to PO, and OK will be an ordinate on the other
side of that diameter. Since, therefore, the points A, B, P, and K are placed in
the conic section, and PK cuts ABin a given angle, the rectangle PQ-QK (by
Props. 17, 19, 21, and 23, Book 111, Conics of Apollonius) will be to the rec-
tangle AQ-QB in a given ratio. But QK and ¢
PR are equal, as being the differences of the
equal lines OK, OP, and OQ, OR; whence the
rectangles PQ-QK and PQ-PR are equal; and
therefore the rectangle PQ-PR is to the rec-
tangle AQ-QB, that is, to the rectangle PS-PT,
in a given ratio. Q.E.D.
CasE 2. Let us next suppose that the opposite
sides AC and BD of the trapezium are not par- i :
allel. Draw Bd parallel to AC, and meeting as 4 Q N B
well the right line ST in ¢, as the conic section in d. Join Cd cutting PQ in 7,
and draw DM parallel to PQ, cutting Cd in M, and AB in N. Then (because of

A
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the similar triangles BT¢, DBN) Bt or PQ : Tt=DN :NB. AndsoRr :AQorPS =
DM : AN. Wherefore, by multiplying the antecedents by the antecedents, and
the consequents by the consequents, as the rectangle PQ- Rr is to the rectangle
PS-Tt, so will the rectangle DN :-DM be to the rectangle NA-NB; and (by
Case 1) so is the rectangle PQ- Pr to the rectangle PS-Pt, and, by division, so
is the rectangle PQ-PR to the rectangle PS-PT. Q.E.D.

Cask 3. Let us suppose, lastly, the four lines PQ, PR, PS, PT not to be
parallel to the sides AC, AB, but any way in-
clined to them. In their place draw Pgq, Pr, par-
allel to AC; and Ps, Pt parallel to AB; and be-
cause the angles of the triangles PQg, PRr, PSs,
PTt are given, the ratios of PQ to Pg, PR to Pr,
PS to Ps, PT to Pt will be also given; and there-
fore the compounded ratios PQ-PR to Pq-Pr,
and PS-PT to Ps-Pt are given. But from what
we have demonstrated before, the ratio of Pg-Pr
to Ps-Ptis given; and therefore also the ratio of
PQ-PR to PS-PT. Q.E.D.

LEMMA 18

The same things supposed, if the rectangle PQ-PR of the lines drawn to the two
opposite sides of the trapezium is to the rectangle PS-PT of those drawn to the other
two sides i1n a given ratio, the point P, from whence those lines are drawn, will be
placed 1n a conic section described about the trapezium.

Conceive a conic section to be described passing through the points A, B, C,
D, and any one of the infinite number of points P, as for example p: I say, the
point P will be always placed in this section. If you deny the thing, join AP
cutting this conic section somewhere else, if
possible, than in P, as in b. Therefore if from

vt those points p and b, in the given angles to
e the sides of the trapezium, we draw the right
5 lines pq, pr, ps, pt, and bk, bn, bf, bd, we shall

""""" have, as bk-bn to bf-bd, so (by Lem. 17)

pq-pr to ps-pt; and so (by supposition)

PQ-PR to PS-PT. And because of the sim-

ilar trapezia bkAf, PQAS, as bk to bf, so PQ
D to PS. Wherefore by dividing the terms of
the preceding proportion by the correspond-
ent terms of this, we shall have bn to bd as
PR to PT. And therefore the equiangular
trapezia Dnbd, DRPT, are similar, and consequently their diagonals Db, DP
do coincide. Wherefore b falls in the intersection of the right lines AP, DP, and
consequently coincides with the point P. And therefore the point P, wherever
it is taken, falls within the assigned conic section. Q.E.D.

Cor. Hence if three right lines PQ, PR, PS are drawn from a common point
P, to as many other right lines given in position, AB, CD, AC, each to each, in
as many angles respectively given, and the rectangle PQ-PR under any two of
the lines drawn be to the square of the third PS in a given ratio; the point P,
from which the right lines are drawn, will be placed in a conic section that

9 B
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touches the lines AB, CD in A and C; and the contrary. For the position of the
three right lines AB, CD, AC remaining the same, let the line BD approach to
and coincide with the line AC; then let the line PT come likewise to coincide
with the line PS; and the rectangle PS: PT will become PS?, and the right lines
AB, CD, which before did cut the curve in the points A and B, C and D, can no
longer cut, but only touch, the curve in those coinciding points.

ScHOLIUM

In this Lemma, the name of conic section is to be understood in a large sense,
comprehending as well the rectilinear section through the vertex of the cone,
as the circular one parallel to the base. For if the point p happens to be in a
right line, by which the points A and D, or C and B are joined, the conic section
will be changed into two right lines, one of
which is that right line upon which the
.t point p falls, and the other is a right line
that joins the other two of the four points.

—...yT I the two opposite angles of the trapezium
=14 taken together areequal to two right angles,
and if the four lines PQ, PR, PS, PT are
drawn to the sides thereof at right angles,
or any other equal angles, and the rectangle
D PQ-PR under two of the lines drawn PQ
1 and PR, is equal to the rectangle PS-PT
é Q ]L under the other two PS and PT, the conic
section will become a circle. And the same
thing will happen if the four lines are drawn in any angles, and the rectangle
PQ-PR, under one pair of the lines drawn, is to the rectangle PS-PT under
the other pair as the rectangle under the sines of the angles S, T, in which the
two last lines PS, PT are drawn, to the rectangle under the sines of the angles
Q, R, in which the first two PQ, PR are drawn. In all other cases the locus of
the point P will be one of the three figures which pass commonly by the name of
the conic sections. But in place of the trapezium ABCD, we may substitute a
quadrilateral figure whose two opposite sides cross one another like diagonals.
And one or two of the four points A, B, C, D may be supposed to be removed
to an infinite distance, by which means the sides of the figure which converge
to those points, will become parallel; and in this case the conic section will pass
through the other points, and will go the same way as the parallels in infin-
itum.

LeMMma 19

To find a point P from which ¢f four right lines PQ, PR, PS, PT are drawn to as
many other right lines AB, CD, AC, BD, given by position, each to each, at given
angles, the rectangle PQ-PR, under any two of the lines drawn, shall be to the
rectangle PS-PT, under the other two, tn a given ratio.

Suppose the lines AB, CD, to which the two right lines PQ, PR, containing
one of the rectangles, are drawn to meet two other lines, given by position, in
the points A, B, C, D. From one of those, as A, draw any right line AH, in
which you would find the point P. Let this cut the opposite lines BD, CD, in H
and I; and, because all the angles of the figure are given, the ratio of PQ to PA,
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and PA to PS, and therefore of PQ to PS, will be also given. This ratio taken as
a divisor of the given ratio of PQ-PR to PS-PT, gives the ratio of PR to PT;
and multiplying the given ratios of PI to
PR, and PT to PH, the ratio of PI to PH,
and therefore the point P, will be given.
Q.E.L

Cor. 1. Hence also a tangent may be
drawn to any point D of the locusof all the
points P. For the chord PD, where the
points P and D meet, that is, where AH is
drawn through the point D, becomes a
tangent. In which case the ultimate ratio
of the evanescent lines IP and PH will be

Al Q 'B

found as above. Therefore draw CF parallel to AD, meeting BD in F, and cut
it in E in the same ultimate ratio, then DE will be the tangent; because CF
and the evanescent IH are parallel, and similarly cut in E and P.

Cor. 11. Hence also the locus of all the points P may be determined. Through
any of the points A, B, C, D, as A, draw AE touching the locus, and through

any other point B, parallel to the tangent,
draw BF meeting the locus in F; and find the
point F' by this Lemma. Bisect BF in G, and,
drawing the indefinite line AG, this will be
oK the position of the diameter to which BG
and FG are ordinates. Let this AG meet the
locus in H, and AH will be its diameter or
latus transversum, to which the latus rectum

| will be as BG? to AG-GH. If AG nowhere
A"’:.f: "\B meets the locus, the line AH being infinite,
the locus will be a parabola; and its latus
rectum corresponding to the diameter AG

F

2

will be % But if it does meet it anywhere, the locus will be an hyperbola,

when the points A and H are placed on the same side of the point G; and an
ellipse, if the point G falls between the points A and H; unless, perhaps, the
angle AGB is a right angle, and at the same time BG? equal to the rectangle
GA-GH, in which case the locus will be a circle.

And so we have given in this Corollary a solution of that famous Problem
of the ancients concerning four lines, begun by Euclid, and carried on by
Apollonius; and this not an analytical calculus but a geometrical composition,
such as the ancients required.

LEMMa 20

If the two opposite angular points A and P of any parallelogram ASPQ touch any
conic section in the points A and P; and the sides AQ, AS of one of those angles,
indefinttely produced, meet the same conic section in B and C; and from the points
of meeting B and C to any fifth point D of the conic section, two right lines BD,
CD are drawn meeting the two other sides PS, PQ of the parallelogram, indefinitely
produced.tn T and R; the parts PR and PT, cut off from the sides, will always be
one to the other in a given ratio. And conversely, if those parts cut off are one to the
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other in a given ratio, the locus of the point D will be a conic section passing through
the four points A, B, C, P.

Cask 1. Join BP, CP, and from the point D draw the two right lines DG,
DE, of which the first DG shall be parallel to AB, and meet PB, PQ, CA, in H,
C I, G; and the other DE shall be parallel to

AC, and meet PC, PS, AB,in F, K, E; and
(by Lem. 17) the rectangle DE - DF will be
to the rectangle DG-DH in a given ratio.
But PQisto DE (or 1Q) as PB to HB, and
consequently as PT to DH; and by permu-
tation PQ is to PT as DE to DH. Likewise
PR is to DF as RC to DC, and therefore
as (IG or) PS to DG; and by permutation
PR is to PS as DF to DG; and, by com-
pounding those ratios, the rectangle
PQ-PR will be to the rectangle PS-PT as
the rectangle DE-DF is to the rectangle
DG-DH, and consequently in a given
ratio. But PQ and PS are given, and therefore the ratio of PR to PT is given.

Q.E.D.

Caske 2. But if PR and PT are supposed to be in a given ratio one to the
other, then by going back again, by a like reasoning, it will follow that the
rectangle DE - DF is to the rectangle DG-DH in a given ratio; and so the point
D (by Lem. 18) will lie in a conic section passing through the points A, B, C, P,
as its locus. Q.E.D.

Cor. 1. Hence if we draw BC cutting PQ in r and in PT take P¢ to Pr in the
gsame ratio which PT has to PR; then B¢ will touch the conic section in the
point B. For suppose the point D to coalesce with the point B, so that the
chord BD vanishing, BT shall become a tangent; and CD and BT will coincide
with CB and Bt.

Cor. 11. And, vice versa, if Bt is a tangent, and the lines BD, CD meet in any
point D of a conic section, PR will be to PT as Pr to Pt. And, on the contrary,
if PR is to PT as Pr to Pt, then BD and CD will meet in some point D of a
conic section.

Cor. 111. One conic section cannot cut another conic section in more than
four points. For, if it is possible, let two conic sections pass through the five
points A, B, C, P, O; and let the right line BD cut them in the points D, d, and
the right line Cd cut the right line PQ in ¢. Therefore PR is to PT as Pq to PT:
whence PR and Pgq are equal one to the other, against the supposition.

EB

LeMmMma 21

If two movable and wndefinite right lines BM, CM drawn through given points B,
C, as poles, do by their point of meeting M describe a third right line MN given by
position; and other two indefinite right lines BD, CD are drawn, making with the
former two at those given points B, C, given angles, MBD, MCD: I say, that those
two right lines BD, CD will by their point of meeting D describe a conic section
passing through the points B, C. And conversely, if the right lines BD, CD do by
their point of meeting D describe a conic section passing through the given points
B, C, A, and the angle DBM is always equal to the given angle ABC, as well as the
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angle DCM always equal to the given angle ACB, the point M will lie in a right
line given by position, as its locus.

For in the right line M N let a point N be given, and when the movable point
M falls on the immovable point N, let the movable point D fall on an immov-
able point P. Join CN, BN, CP,
BP, and from the point P draw
the right lines PT, PR meeting
BD, CD in T and R, and
making the angle BPT equal to
the given angle BNM, and the
angle CPR equal to the given
angle CNM. Wherefore since
(by supposition) the angles
MBD, NBP are equal, as also
the angles MCD, NCP, take
away the angles NBD and
NCD that are common, and
there will remain the angles
NBM and PBT, NCM and PCR equal; and therefore the triangles NBM, PBT
are similar, as also the triangles NCM, PCR. Wherefore PT is to NM as PB
to NB; and PR to NM as PC to NC. But the points B, C, N, P are immov-
able: wherefore PT and PR have a given ratio to NM, and consequently a
given ratio between themselves; and therefore, (by Lem. 20) the point D
wherein the movable right lines BT and CR continually concur, will be placed
in a conic section passing through the points B, C, P. Q.E.D.

And conversely, if the movable point D liesin a conic section passing through
the given points B, C, A; and the angle DBM is always equal to the given
angle ABC, and the angle DCM
always equal to the given angle
ACB, and when the point D falls
successively on any two immov-
able points p, P, of the conic sec-
tion, the movable point M falls
successively on two immovable
points n, N. Through these points
n, N, draw the right line nN: this
line nN will be the continual locus
of that movable point M. For, if
possible, let the point M be placed
in any curved line. Therefore the
point D will be placed in a conic
section passing through the five
points B, C, A, p, P, when the point M is continually placed in a curved
line. But from what was demonstrated before, the point D will be also placed
in a conic section passing through the same five points B, C, A, p, P, when
the point M is continually placed in a right line. Wherefore the two
conic sections will both pass through the same five points, against Cor. 111,
Lem. 20. It is therefore absurd to suppose that the point M is placed in a
curved line. Q.E.D.
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ProrosiTioN 22. PrRoBLEM 14

To describe a conic that shall pass through five given points.

Let the five given points be A, B, C, P, D. From any one of them, as A, to
any other two as B, C, which may be called the poles, draw the right lines AB,
AC, and parallel to those the lines
TPS, PRQ through the fourth point P.
Then from the two poles B, C, draw
through the fifth point D two indefi-
nite lines BDT, CRD, meeting with
the last drawn lines TPS, PRQ (the
former with the former, and the latter
with the latter) in T and R. And then
draw the right line {r parallel to TR,
cutting off from the right lines PT,
PR, any segments P¢,Pr, proportional
to PT, PR; and if through their ex-
tremities ¢, r, and the poles B, C, the right lines B¢, Cr are drawn, meeting in
d, that point d will be placed in the conic required. For (by Lem. 20) that
point d is placed in a conic section passing through the four points A, B, C, P;
and the lines Rr, T¢ vanishing, the point d comes to coincide with the point D.
Wherefore the conic section passes through the five points A, B, C, P, D.

Q.E.D.

A

The same otherwise.

Of the given points join any three, as A, B, C; and about two of them B, C,
as poles, making the angles ABC, ACB of a given magnitude to revolve, apply
the legs BA, CA, first to the
point D, then to the point P, and
mark the points M, N, in which
the other legs BL, CL intersect
each other in both cases. Draw
the indefinite right line MN, and
let those movable angles revolve
about their poles B, C, in such
manner that the intersection,
which is now supposed to be m,
of the legs BL, CL, or BM, CM,
may always fall in that indefinite
right line MN; and the intersec-
tion, which is now supposed to
be d, of the legs BA, CA, or BD,
CD, will describe the conic re-
quired, PADdB. For (by Lem.
21) the point d will be placed in a conic section passing through the points
B, C; and when the point m comes to coincide with the points L, M, N, the
point d will (by construction) come to coincide with the points A, D, P.
Wherefore a conic section will be described that shall pass through the five
points A, B, C, P, D. Q.E.F.

Cor. 1. Hence a right line may be readily drawn which shall be a tangent to
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the conic in any given point B. Let the point d come to coincide with the point
B, and the right line Bd will become the tangent required.

Cor. 11. Hence also may be found the centres, diameters, and latera recta of
the conics, as in Cor. 11, Lem. 19.

ScHOLIUM

The former of these constructions will become something more simple by
joining B, P, and in that line, produced, if need be, taking Bp to BP as PR is to
PT; and through p draw the indefinite right line
pe parallel to SPT, and in that line pe taking Cw
always pe equal to Pr; and draw the right lines S O T
Be, Cr to meet in d. For since Pr to Pt, PR to PT, LYo
pB to PB, pe to Pt, are all in the same ratio, pe
and Pr will be always equal. After this manner
the points of the conic are most readily found, P
unless you would rather describe the curve me- A Q B
chanically, as in the second construction.

ProrosiTioN 23. PrROBLEM 15

To describe a conic that shall pass through four given points, and touch a given
right line.

CasE 1. Suppose that HB is the given tangent, B the point of contact, and
C, D, P, the three other given points. Join BC, and draw PS parallel to BH,
and PQ parallel to BC; complete
the parallelogram BSPQ. Draw BD
cutting SP in T, and CD cutting
PQ in R. Lastly, draw any line tr
parallel to TR, cutting off from PQ),
PS, the segments Pr, P¢ propor-
tional to PR, PT respectively,
and draw Cr, Bt; their point of
intersection d will (by Lem. 20)
always fall on the conic to be des-
cribed.

The same otherwise.

Let the angle CBH of a given magnitude revolve H
about the pole B, as also the rectilinear radius DC, p
both ways produced, about the pole C. Mark the D
points M, N, on which the leg BC of the angle cuts B

that radius when BH, the other leg thereof, meets
the same radius in the points Pand D. Then drawing
the indefinite line MN, let that radius CP or CD
and the leg BC of the angle continually meet in this
line; and the point of meeting of the other leg BH M
with the radius will delineate the conic required. /

For if in the constructions of the preceding Prob-
lem the point A comes to a coincidence with the
point B, the lines CA and CB will coincide, and the
line AB, in its last situation, will become the tan-

A2
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gent BH; and therefore the constructions there set down will become the same
with the constructions here described. Wherefore the intersection of the leg
BH with the radius will describe a conic section passing through the points C,
D, P, and touching the line BH in the point B. Q.E.F.
Cask 2. Suppose the four points B, C, D, P, given, being situated without
the tangent HI. Join each two by the lines BD, CP meeting in G, and cutting
the tangent in H and I. Cut the tangent in A in such manner that HA may be
G p C to IA as the product of the mean propor-
+ + I tional between CG and GP, and the mean
proportional between BH and HD is to the
product of the mean proportional between
GD and GB, and the mean proportional be-
tween PI and IC, and A will be the point of
contact. For if HX, a parallel to the right
line PI, cuts the conic in any points X and
Y, the point A (by the properties of the
conic sections) will come to be so placed,
that HA? will become to AI?in a ratio that
is compounded out of the ratio of the rectangle HX-HY to the rectangle
BH-HD, or of the rectangle CG - GP to the rectangle DG -GB; and the ratio of
the rectangle BH - HD to the rectangle PI-IC. But after the point of contact A
is found, the conic will be described as in the first Case. Q.E.F. But the point
A may be taken either between or without the points H and I, upon which
account a two-fold conic may be described.

ProrosiTion 24. PROBLEM 16

To describe a conic that shall pass through three given points, and touch two given
right lines.

Suppose HI, KL to be the given tangents and B, C, D the given points.
Through any two of those points, as B, D, draw the indefinite right line BD
meeting the tangents in the points H, K. Then likewise through any other two
of these points, as C, D, draw the indefinite
right line CD meeting the tangents in the
points I, L. Cut the lines drawn in R and S,
so that HR may be to KR as the mean pro-
portional between BH and HD is to the
mean proportional between BK and KD, guwaniill Zul mn 2o )
and IS to LS as the mean proportional be-
tween CI and ID is to the mean proportion-
al between CL and LD. But you may cut, at
pleasure, either within or between the points
K and H, I and L, or without them. Then
draw RS cutting the tangents in A and P,
and A and P will be the points of contact. For if A and P are supposed to be
the points of contact, situated anywhere else in the tangents, and through any
of the points H, I, K, L, as I, situated in either tangent HI, a right line IY
is drawn parallel to the other tangent KL, and meeting the curve in X and
Y, and in that right line there be taken IZ equal to a mean proportional be-
tween IX and 1Y, the rectangle XI-1Y or 1Z? will (by the properties of the
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conic sections) be to LP? as the rectangle CI-ID is to the rectangle CL-LD;
that is (by the construction), as SI is to SL?, and therefore 1Z : LP =8I : SL.
Wherefore the points S, P, Z are in one right line. Moreover, since the tan-
gents meet in G, the rectangle XI-IY or IZ? will (by the properties of the
conic sections) be to IA? as GP?is to GA? and consequently 1Z : IA=GP : GA.
Wherefore the points P, Z, A lie in one right line, and therefore the points S,
P, and A are in one right line. And the same argument will prove that the
points R, P, and A are in one right line. Wherefore the points of contact A and
P lie in the right line RS. But after these points are found, the conic may be
described, as in the first Case of the preceding Problem. Q.E.F.

In this Proposition, and Case 2 of the foregoing, the constructions are the
same, whether the right line XY cuts the conic in X and Y, or not; neither do
they depend upon that section. But the constructions being demonstrated
where that right line does cut the conic, the constructions where it does not are
also known; and therefore, for brevity’s sake, I omit any further demonstration

f them.
of them LEMMa 22

To transform figures into other figures of the same kind.

Suppose that any figure HGI is to be transformed. Draw, at pleasure, two
parallel lines AO, BL, cutting any given third line AB in A and B, and from
any point G of the figure, draw out any right line GD, parallel to OA, till it
meets the right line AB. Then from any
given point O in the line OA, draw to
the point D the right line OD, meeting o
BL in d; and from the point of intersec- e b g
tion raise the right line dg containing any
given angle with the right line BL, and
having such ratio to Od as DG has to
OD; and ¢ will be the point in the new
figure hgi, corresponding to the point G.
And in like manner the several points of
the first figure will give as many corre-
spondent points of the new figure. If we
therefore conceive the point G to be carried along by a continual motion
through all the points of the first figure, the point g will be likewise carried
along by a continual motion through all the points of the new figure, and de-
scribe the same. For distinction’s sake, let us call DG the first ordinate, dg the
new ordinate, AD the first abscissa, ad the new abscissa, O the pole, OD the
abscinding radius, OA the first ordinate radius, and Oa (by which the paral-
lelogram OABa is completed) the new ordinate radius.

I say, then, that if the point G is placed in a given right line, the point g will
be also placed in a given right line. If the point G is placed in a conic section,
the point ¢ will be likewise placed in a conic section. And here I understand the
circle as one of the conic sections. But further, if the point G is placed in a line
of the third analytical order, the point g will also be placed in a line of the third
order, and so on in curved lines of higher orders. The two lines in which the
points G, g are placed, will be always of the same analytical order. For as

ad : OA=0d : OD=dg : DG=AB : AD;and therefore ADisequal to OAa.dAB,

A B D 1
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and DG equal to Oﬁ;idg. Now if the point G is placed in a right line, and there-

fore, in any equation by which the relation between the abscissa AD and the
ordinate GD is expressed, those indetermined lines AD and DG rise no higher

ad

in place of DG, a new equation will be produced, in which the new

B in place of AD, and

than to one dimension, by writing this equation

OA-dg
ad
abscissa ad and new ordinate dg rise only to one dimension; and which therefore
must denote a right line. But if AD and DG (or either of them) had risen to two
dimensions in the first equation, ad and dg would likewise have risen to two
dimensions in the second equation. And so on in three or more dimensions. The
indetermined lines, ad, dg in the second equation, and AD, DG in the first, will
always rise to the same number of dimensions; and therefore the lines in which

the points G, g are placed are of the same analytical order.

I say, further, that if any right line touches the curved line in the first figure,
the same right line transferred the same way with the curve into the new figure
will touch that curved line in the new figure, and conversely. For if any two
points of the curve in the first figure are supposed to approach one the other till
they come to coincide, the same points transferred will approach one the other
till they come to coincide in the new figure; and therefore the right lines with
which those points are joined will become together tangents of the curves in
both figures. I might have given demonstrations of these assertions in a more
geometrical form; but I study to be brief.

Wherefore if one rectilinear figure is to be transformed into another, we need
only transfer the intersections of the right lines of which the first figure con-
sists, and through the transferred intersections to draw right lines in the new
figure. But if a curvilinear figure is to be transformed, we must transfer the
points, the tangents, and other right lines, by means of which the curved line is
defined. This Lemma is of use in the solution of the more difficult Problems;
for thereby we may transform the proposed figures, if they are intricate, into
others that are more simple. Thus any right lines converging to a point are
transformed into parallels, by taking for the first ordinate radius any right line
that passes through the point of intersection of the converging lines, and that
because their point of intersection is by this means made to go off in infinitum;
and parallel lines are such as tend to a point infinitely remote. And after the
problem is solved in the new figure, if by the inverse operations we transform
the new into the first figure, we shall have the solution required.

This Lemma is also of use in the solution of solid problems. For as often as
two conic sections occur, by the intersection of which a problem may be solved,
any one of them may be transformed, if it is an hyperbola or a parabola, into
an ellipse, and then this ellipse may be easily changed into a circle. So also a
right line and a conic section, in the construction of plane problems, may be
transformed into a right line and a circle.

ProrposiTioN 25. PrRoBLEM 17

To describe a conic that shall pass through two given points, and touch three given
right lines.
Through the intersection of any two of the tangents one with the other, and
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the intersection of the third tangent with the right line which passes through
the two given points, draw an indefinite right line; and, taking this line for the
first ordinate radius, transform the figure by the preceding Lemma into a new
figure. In this figure those two tangents will be- i\ d \&
come parallel to each other, and the third tan- \
gent will be parallel to the right line that passes
through the two given points. Suppose Az, kl to
be those two parallel tangents, 7k the third tan-
gent, and Al a right line parallel thereto, passing .
through those points a, b, through which the
conic section ought to passin this new figure; and
completing the parallelogram hikl, let the right
lines hs, ¢k, kl be so cut in ¢, d, e, that hc may be to " ;
the square root of the rectangle ahb, 7c to id, and bl a Y
ke to kd, as the sum of the right lines A7 and Xl is to the sum of the three lines,
the first whereof is the right line 7k, and the other two are the square roots of
the rectangles ahb and alb; and ¢, d, e will be the points of contact. For by the
properties of the conic sections,

he? :ah-hb=1c®: id*=ke? : kd*=el® : al-1b.

Therefore,

he : v/ (ah-hb)=1c : id=ke : kd=el : \/(al-1b)

=hc+ict+ke+tel : n/(ah-hb)+id+kd++/al-lb

=hi+kl : \/(ah-hb)+ik++/(al-Ib).

Wherefore from that given ratio we have the points of contact ¢, d, ¢, in the
new figure. By the inverted operations of the last Lemma, let those points be
transferred into the first figure, and the conic will be there described by Prob.
14. @.E.F. But according as the points a, b, fall between the points A, [, or with-
out them, the points ¢, d, e must be taken either between the points &, 7, k, [,
or without them. If one of the points a, b falls between the points 4, 7, and the
other without the points £, [, the Problem is impossible.

ProrosiTioN 26. PROBLEM 18

To describe a conic that shall pass through a given point, and touch four given right
lines.

From the common intersections of any two of the tangents to the common
intersection of the other two, draw an indefinite right line; and taking this line
for the first ordinate radius, transform the figure
(by Lem. 22) into a new figure, and the two
pairs of tangents, each of which before concurred
. in the first ordinate radius, will now become

e, parallel. Let 27 and kl, 7k and Al, be those pairs
of parallels completing the parallelogram hzkl.
And let p be the point in this new figure corre-
sponding to the given point in the first figure.
7 Through O the centre of the figure draw pq: and
Ogq being equal to Op, ¢ will be the other point
bl 'l through which the conic section must pass in
this new figure. Let this point be transferred, by the inverse operation of Lem.
22. into the first figure, and there we shall have the two points through which

il [k

=
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the conic is to be described. But through those points that conic may be de-
scribed by Prop. 17.
LeasMma 23

If two given right lines, as AC, BD, terminating in given points A, B, are in a
given ratio one to the other, and the right line CD, by which the indetermined points
C, D are jotned is cut in K in a given ratio: I say, that the point X will be placed in
a given right line.

For let the right lines AC, BD meet in E, and in BE take BG to AE as BD
is to AC, and let FD be always equal to the given line EG; and, by construc-
tion, EC will be to GD, that is, to EF, as
AC to BD, and therefore in a given ratio;
and therefore the triangle EFC will be
given in kind. Let CF be cut in L so as CL
may be to CF in the ratio of CK to CD;
and because that is a given ratio, the tri-
angle EFLywill be given in kind, and there-
fore the point L will be placed in the given
right line EL. Join LK, and the triangles
CLK, CFD will be similar; and because
FD is a given line, and LK is to FD in a
given ratio, LK will be also given. To this let EH be taken equal, and ELKH
will be always a parallelogram. And therefore the point K is always placed in
the given side HK of that parallelogram. Q.E.D.

Cor. Because the figure EFLC is given in kind, the three right lines EF, EL,
and EC, that is, GD, HK, and EC, will have given ratios to each other.

Lenwva 24

If three right lines, two whereof are parallel, and given in position, touch any conic
section: I say, that the semidiameter of the section which is parallel to those two s a
mean proportional between the segments of those two that are intercepted between
the points of contact and the third tangent.

Let AF, GB be the two parallels touch-
ing the conic section ADB in A and B;
EF the third right line touching the
conic section in I, and meeting the two
former tangents in F and G, and let CD
be the semidiameter of the figure parallel
to those tangents: I say, that AF, CD,
BG are continually proportional. For if
the conjugate diameters AB, DM meet
the tangent FG in E and H, and cut one
the other in C, and the parallelogram
IKCL be completed; from the nature of
the conic sections,

EC:CA=CA : CL;

thence, EC—CA:CA-CL=EC: CA
or EA : AL=EC : CA;
thence, EA : EA+AL=EC: EC+CA

or EA : EL=EC : EB.
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Therefore, because of the similitude of the triangles EAF, ELI, ECH, EBG,

AF : LI=CH : BG.
Likewise, from the nature of the conic sections,

LI or CK: CD=CD : CH.

Taking the products of corresponding terms in the last two proportions and
simplifying,

AF : CD=CD: BG. Q.E.D.

Cor. 1. Hence if two tangents FG, PQ meet two parallel tangents AF, BG in

F and G, P and Q, and cut one the other in O; then by the Lemma applied to
EG and PQ,

AF : CD=CD : BG,

BQ:CD=CD: AP.

Therefore, AF : AP=BQ : BG

and AP—AYF : AP=BG—-BQ : BG

or PF : AP=GQ : BG,

and AP : BG=PF : GQ=FO : GO=AF : BQ.

Cor. 11. Whence also the two right lines PG, FQ drawn through the points
P and G, F and Q, will meet in the right line ACB passing through the centre
of the figure and the points of contact A, B.

LeEMMA 25

If four sides of a parallelogram indefinitely produced touch any conic section, and
are cut by a fifth tangent: I say, that, taking those segments of any two conterminous
sides that terminate tn opposite angles of the parallelogram, either segment s to the
side from which it is cut off as that part of the other conterminous side which s
intercepted between the point of contact and the third side ©s to the other segment.

Let the four sides ML, 1K, KIL,
MI of the parallelogram MLIK E
touch the conic section in A, B, C,
D; and let the fifth tangent FQ cut
those sides in F, Q, H, and E; and
taking the segments ME, KQ of the
sides MI, KI, or the segments KH,
MPF of the sides KL, ML: I say, that

ME : MI=BK : KQ,
and KH :KL=AM : MF.
For, by Cor. 1 of the preceding
Lemma,
ME : EI=AM or BK : BQ,

and by addition,

L

ME : MI=BK : KQ. Q.E.D.
Also, KH : HL=BK or AM : AF,
and by subtraction,
KH : KL=AM : MF. Q.E.D.
Cor. 1. Hence if a parallelogram IKLM described about a given conic section
is given, the rectangle KQ-ME, as also the rectangle KH-MF equal thereto,
will be given. For, by reason of the similar triangles KQH, MFE, those rec-
tangles are equal.
Cor. 11. And if a sixth tangent eq is drawn meeting the tangents KI, MIin ¢
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and e, the rectangle KQ-ME will be equal to the rectangle Kqg-Me, and
KQ : Me=Kgq : ME,

and by subtraction
KQ : Me=Qq : Ee.

Cor. 111. Hence, also, if Eq, ¢Q are joined and bisected, and a right line is
drawn through the points of bisection, this right line will pass through the
centre of the conic section. For since Qg : Ee=KQ : Me, the same right line
will pass through the middle of all the lines Eq, eQ, MK (by Lem. 23), and the
middle point of the right line MK is the centre of the section.

ProrosiTioN 27. ProBLEM 19

To describe a conic that may touch five right lines given in position.
Supposing ABG, BCF, GCD, FDE, EA to be the tangents given in position.
Bisect in M and N, AF, BE, the diagonals of the quadrilateral figure ABFE
contained under any four of them; and (by Cor. 111, Lem. 25) the right line MN

A

-G

~NF
drawn through the points of bisection will pass through the centre of the conic.
Again, bisect in P and Q the diagonals (if I may so call them) BD, GF of the
quadrilateral figure BGDF contained under any other four tangents, and the
right line PQ drawn through the points of bisection will pass through the centre
of the conic; and therefore the centre will be given in the intersection of the
bisecting lines. Suppose it to be O. Parallel to any tangent BC draw KL at such
distance that the centre O may be placed in the middle between the parallels;
this KL will touch the conic to be described. Let this cut any other two tan-
gents GCD, FDE, in L and K. Through the points C and K, F and L, where
the tangents not parallel, CL, FK, meet the parallel tangents CF, KL, draw
CK, FL meeting in R; and the right line OR, drawn and produced, will cut the
parallel tangents CF, KL, in the points of contact. This appears from Cor. 11,
Lem. 24. And by the same method the other points of contact may be found,
and then the conic may be described by Prob. 14. Q.E.F.

SCHOLIUM

Under the preceding Propositions are comprehended those Problems where-
in either the centres or asymptotes of the conics are given. For when points and
tangents and the centre are given, as many other points and as many other
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tangents are given at an equal distance on the other side of the centre. And an
asymptote is to be considered as a tangent, and its infinitely remote extremity
(if we may say so) is a point of contact. Conceive the point of contact of any
tangent removed in infinitum, and the tangent will degenerate into an asymp-
tote, and the constructions of the preceding Problems will be changed into the
constructions of those Problems wherein the asymptote is given.

After the conic is described, we may find its axes and foci in this manner. In
the construction and figure of Lem. 21, let those legs BP, CP, of the movable
angles PBN, PCN, by the intersection of
which the conic was described, be made par-
allel one to the other; and retaining that po-
sition, let them revolve about their poles B, C,
in that figure. In the meanwhile let the other
legs CN, BN, of those angles, by their inter-
section K or k, describe the circle BKGC. Let
O be the centre of this circle; and from this

. P\ :
centre upon the ruler MN, wherein those legs C \.':B
CN, BN did concur while the conic was de- \ Lj
scribed, let fall the perpendicular OH meeting
the circle in K and L. And when those other
legs CK, BK meet in the point K that is nearest to the ruler, the first legs CP,
BP will be parallel to the greater axis, and perpendicular on the lesser; and the
contrary will happen if those legs meet in the remotest point L. Whence if the
centre of the conic is given, the axes will be given; and those being given, the
foci will be readily found.

But the squares of the axes are one to the other as KH to LH, and thence it
is easy to describe a conic given in kind through four given points. For if two of
the given points are made the polesC, B, the
third will give the movable angles PCK,
PBK; but those being given, the circle
BGKC may be described. Then, because
the conic is given in kind, the ratio of OH
to OK, and therefore OH itself, will be
given. About the centre O, with the interval
OH, describe another circle, and the right
line that touches this circle, and passes
through the intersection of the legs CK,
BK. when the first legs CP, BP meet in the
fourth given point, will be the ruler MN,
by means of which the conic may be described. Whence also on the other
hand a trapezium given in kind (excepting a few cases that are impossible)
may be inscribed in a given conic section.

There are also other Lemmas, by the help of which conics given in kind may
be described through given points, and touching given lines. Of such a sort is
this, that if a right line is drawn through any point given in position, that may
cut a given conic section in two points, and the distance of the intersections is
bisected, the point of bisection will touch another conic section of the same
kind with the former, and having its axes parallel to the axes of the former.
But I hasten to things of greater use.

G
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LeMmMma 26

To place the three angles of a triangle, given both in kind and in magnitude, in
respect to as many right lines given in position, provided they are not all parallel
among themselves, tn such manner that the several angles may touch the several
lines.

Three indefinite right lines AB, AC, BC are given in position, and it is re-
quired so to place the triangle DEF that its angle D may touch the line AB, its

angle E the line AC, and its angle F the
line BC. Upon DE, DF, and EF describe
three segments of circles DRE, DGF,
EMF, capable of angles equal to the
angles BAC, ABC, ACB respectively.
But those segments are to be described
towards such sides of the lines DE, DF,

.4 EF, that the letters DRED may turn
‘ round about in the same order with the

letters BACB; the letters DGFD in the

same order with the letters ABCA; and
the letters EMFE in the same order with the letters ACBA; then, completing
those segments into entire circles, let the two former circles cut each other in
G, and suppose P and Q to be their centres. Then joining GP, PQ, take

Ga: AB=GP : PQ;

and about the centre G, with the interval Ga, describe a circle that may cut the
first circle DGE in a. Join aD cutting the second circle DFG in b, as well as aE
cutting the third circle EMF in ¢. Complete the figure ABCdef similar and
equal to the figure abcDEF: I say, the thing is done.

For drawing Fc¢ meeting aD in 7, and joining aG, bG, QG, QD, PD, by
construction the angle EaD is equal to the angle CAB, and the angle acF equal
to the angle ACB; and therefore the
triangle anc equiangular to the tri-
angle ABC. Wherefore the angle anc
or FnD is equal to the angle ABC,
and consequently to the angle FoD;
and therefore the point n falls on E
the point b. Moreover the angle
GPQ, which is half the angle GPD IWAA
at the centre, is equal to the angle 2
GaD at the circumference; and the  f{ /™
angle GQP, which is half the angle g\
GQD at the centre, is equal to the ¢ \72 tei M
supplement of the angle GbD at the
circumference, and therefore equal
to the angle Gba. Upon which ac- F
count the triangles GPQ, Gab are R
similar, and

Ga : ab=GP : PQ

and, by construction,

GP : PQ=Ga : AB.
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Wherefore ab and AB are equal; and consequently the triangles abc, ABC,
which we have now proved to be similar, are also equal. And therefore since the
angles D, E, F of the triangle DEF do respectively touch the sides ab, ac, bc of
the triangle abe, the figure ABCdef may be completed similar and equal to the
figure abcDEF, and by completing it the Problem will be solved. Q.E.F.

Cor. Hence a right line may be drawn whose parts given in length may be
intercepted between three right lines given in position. Suppose the triangle
DEF, by the approach of its point D to the side EF, and by having the sides
DE, DF placed into the same straight line, to be itself changed into a right line
whose given part DE is to be placed between the right lines AB, AC given in
position; and its given part DF is to be placed betieen the right lines AB, BC
given in position; then, by applying the preceding construction to this case, the
Problem will be solved.

ProrosiTioN 28. PROBLEM 20

To describe a conic given both in kind and tn magnitude, given parts of which shall
be placed between three right lines given in position.

Suppose a conic is to be described that may be similar and equal to the
curved line DEF, and may be cut by three right lines AB, AC, BC, given in
position, into parts DE and EF, similar and equal to the given parts of this
curved line.

Draw the right lines DE, EF, DF; and place the angles D, E, I, of this
triangle DET, so as to touch those right lines given in position (by Lem. 26).
Then about the triangle describe the conic, similar and equal to the curve
DEF. Q.E.F.

LemMma 27

To describe a trapezium given in kind, the angles whereof may respectively touch
four right lines given in position, that are neither all parallel among themselves, nor
converge to one common point.

Let the four right lines ABC, AD, BD, CE be given in position; the first
cutting the second in A, the third in B, and the fourth in C; and suppose a
trapezium fght is to be described that may be similar to the trapezium FGHI,
and whose angle f, equal to the given angle F, may touch the right line ABC;
and the other angles g, h, 7, equal to the other given angles G, H, I, may touch
the other lines AD, BD, CE respectively. Join FH, and upon FG, FH, FI
describe as many segments of circles FSG, FTH, FVI, the first of which FSG
may be capable of an angle equal to the angle BAD; the second FTH capable
of an angle equal to the angle CBD; and the third FVI of an angle equal to the
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angle ACE. But the segments are to be described towards those sides of the
lines FG, FH, FI, that the circular order of the letters FSGF may be the same
as of the letters BADB, and that the letters FTHF may turn about in the
same order as the letters CBDC, and the letters FVIF in the same order as the
letters ACEA. Complete the segments into entire circles, and let P be the centre

of the first circle FSG, Q the centre of the second FTH. Join and produce both
ways the line PQ, and in it take QR so that QR : PQ=BC : AB. But QR is to
be taken towards that side of the point Q, that the order of the letters P, Q, R
may be the same as of the letters A, B, C; and about the centre R with the
radius RF describe a fourth circle FIN¢ cutting the third circle FVI in ¢. Join
Fc cutting the first circle in a, and the second in b. Draw aG, bH, cI, and let the
figure ABCfghz be made similar to the figure abcFGHI; and the trapezium fghs
will be that which was required to be described.

For let the two first circles FSG, FTH cut one the other in K; join PK, QK,
RK, aK, bK, cK, and produce QP to L. The angles FaK, FbK, FcK at the
circumferences are the halves of the angles FPK, FQK, FRK at the centres,
and therefore equal to LPK, LQK, LRK, the halves of those angles. Therefore
the figure PQRK is equiangular and similar to the figure abcK, and conse-
quently ab is to bc as PQ to QR, that is, as AB to BC. But by construction the
angles fAg, fBh, fCi are equal to the angles FaG, FbH, Fcl. And therefore the
figure ABCfghi may be completed similar to the figure abcFGHI. This done, a
trapezium fght will be constructed similar to the trapezium FGHI, and by its
angles f, g, h, ¢ will touch the right lines ABC, AD, BD, CE. Q.E.F.

Cor. Hence a right line may be drawn whose parts intercepted in a given
order, between four right lines given by position, shall have a given proportion
among themselves. Let the angles FGH, GHI be so far increased that the right
lines FG, GH, HI may lie in the same line; and by constructing the Problem in
this case, a right line fghz will be drawn, whose parts fg, gh, hi, intercepted
between the four right lines given in position, AB and AD, AD and BD, BD
and CE, will be to each other as the lines FG, GH, HI, and will observe the
same order among themselves. But the same thing may be more readily done
in this manner:
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Produce AB to K and BD to L, so as BIX may be to AB as HI to GH; and
DL to BD as GI to FG; and join KI. meeting the right line CE in <. Produce
1L to M, so as LM may be to 7L as GH to HI; then draw MQ parallel to LB,
and meeting the right line AD in g, and join ¢z cutting AB, BD in f, h: I say,
the thing is done.

For let Mg cut the right line AB in Q, and AD the right line KL in S, and
draw AP parallel to BD and meeting ¢L in P, and gM to LA (gi to ht, Mz to Le,
GI to HI, AK to BK) and AP to BL will be in the same ratio. Cut DL in R, so

11

1F

as DL to RL may be in that same ratio; and because ¢S to ¢gM, AS to AP, and
DS to DL are proportional; therefore, as ¢S to Lh, so will AS be to BL, and DS
to RL; and mixtly, BL—RL to Lh—BL, as AS—DS to ¢S—AS. That is, BR is
to Bh as AD is to Ag, and therefore as BD to gQ. And alternately BR is to BD
as Bh to gQ, or as fh to fg. But by construction the line BL was cutin D and R
in the same ratio as the line FI in G and H; and therefore BR is to BD as FH
to FG. Therefore fh is to fg as FH to FG. Since, therefore, gz to hz likewise is as
M to Lz, that is, as GI to HI, it is manifest that the lines F1, fi are similarly
cut in G and H, ¢ and A. Q.E.F.

In the construction of this Corollary, after the line LK is drawn cutting CE
in 7, we may produce {E to V, so as EV may be to Ez as FH to HI, and then
draw Vf parallel to BD. It will come to the same, if about the centre ¢ with an
interval IH, we describe a circle cutting BD in X, and produce X to Y so as
1Y may be equal to IF, and then draw Yf parallel to BD.

Sir Christopher Wren and Dr. Wallis have long ago given other solutions of
this Problem.

ProrosiTioN 29. PROBLEM 21

To describe a conic given in kind, that may be cut by four right lines given in
posttion, into parts given in order, kind, and proportion.

Suppose a conic is to be described that may be similar to the curved line
FGHI, and whose parts, similar and proportional to the parts FG, GH, HI of
the other, may be intercepted between the right lines AB and AD, AD and BD,
BD and CE given in position, viz., the first between the first pair of those lines,
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the second between the second, and the third between the third. Draw the
right lines FG, GH, HI, FI; and (by Lem. 27) describe a trapezium fghs that
may be similar to the trapezium FGHI, and whose angles f, g, &, « may touch
the right lines given in position AB, AD, BD, CE, severally according to their
order. And then about this trapezium describe a conie, that conic will be similar
to the curved line FGHI.

e -]

ScHOLIUM

This problem may be likewise constructed in the following manner. Joining
¥G, GH, HI, FI, produce GF to V, and join FH, IG, and make the angles
CAK, DAL equal to the angles FGH, VFH. Let AK, AL meet the right line
BD in K and L, and thence draw KM, LN, of which let KM make the angle
AKM equal to the angle GHI, and be itself to AK as HI is to GH; and let LN
make the angle ALN equal to the angle FHI, and be itself to AL as HI to FH.
But AK, KM, AL, LN are to be drawn towards those sides of the lines AD,

<

AK, AL, that the letters CAKMC, ALKA, DALND may be carried round in
the same order as the letters FGHIF'; and draw MN meeting the right line CE
in 7. Make the angle tEP equal to the angle IGF, and let PE be to E7 as F'G to
GI; and through P draw PQf that may with the right line ADE contain an
angle PQE equal to the angle FIG, and may meet the right line AB in f, and
join fi. But PE and PQ are to be drawn towards those sides of the lines CE,
PE that the circular order of the letters PE<P and PEQP may be the same as of
the letters FGHIF; and if upon the line f7, in the same order of letters, and
similar to the trapezium FGHI, a trapezium fght is constructed, and a conic
given in kind is circumscribed about it, the Problem will be solved.

So far concerning the finding of the orbits. It remains that we determine the
motions of bodies in the orbits so found.
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SECTION VI

How THE MOTIONS ARE TO BE FOUND IN GIVEN ORBITS

ProrosiTioN 30. PROBLEM 22

To find at any assigned time the place of a body moving in a given parabola.

Let S be the focus, and A the principal vertex of the parabola; and suppose
4AS-M equal to the parabolic area to be cut off APS, which either was de-
scribed by the radius SP, since the body’s departure
from the vertex, or is to be described thereby before
its arrival there. Now the quantity of that area to
be cut off is known from the time which is propor-
tional to it. Bisect AS in G, and erect the perpen-
dicular GH equal to 3M, and a circle described
about the centre H, with the radius HS, will cut the
parabola in the place P required. For letting fall PO
perpendicular on the axis, and drawing PH, there
will be

AGS o)

AG2+GH*(=HP?=(A0—-AG)*+(PO—-GH)?)
=A024+P02—-2A0-AG—-2GH-PO+AG?24-GH2.
Whence
2GH-PO(=A024-PO?—2A0-AG)=A0%2+34/P0% For AO?

2
write AO -fTOS; then dividing all the terms by 3PO, and multiplying them by
2AS, we shall have
143GH-AS(=1A0-PO+14AS-PO= 6 -PO=—6—-PO=t0 the

area, APO—S8PO) =to the area APS. But GH was 3M, and therefore
*4GH-AS is 4AS- M.

Therefore the area cut off APS is equal to the area that was to be cut off

4AS-M. Q.E.D.

Cor. 1. Hence GH is to AS as the time in which the body described the arc
AP to the time in which the body described the are between the vertex A and
the perpendicular erected from the focus S upon the axis.

Cor. 11. And supposing a circle ASP continually to pass through the moving
body P, the velocity of the point H is to the velocity which the body had in the
vertex A as 3 to 8; and therefore in the same ratio is the line GH to the right
line which the body, in the time of its moving from A to P, would describe with
that velocity which it had in the vertex A.

Cor. 111. Hence, also, on the other hand, the time may be found in which the
body has described any assigned arc AP. Join AP, and on its middle point erect
a perpendicular meeting the right line GH in H.

AO+3AS 4A0—-380

LeEMMA 28

There ts no oval figure whose area, cut off by right lines at pleasure, can be
unwersally found by means of equations of any number of finite terms and
dimensions.

Suppose that within the oval any point is given, about which as a pole a
right line is continually revolving with an uniform motion, while in that right
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line a movable point going out from the pole moves always forwards with a
velocity proportional to the square of that right line within the oval. By this
motion that point will describe a spiral with infinite circumgyrations. Now if a
portion of the area of the oval cut off by that right line could be found by a
finite equation, the distance of the point from the pole, which is proportional
to this area, might be found by the same equation, and therefore all the points
of the spiral might be found by a finite equation also; and therefore the inter-
section of a right line given in position with the spiral might also be found by a
finite equation. But every right line infinitely produced cuts a spiral in an
infinite number of points; and the equation by which any one intersection of
two lines is found at the same time exhibits all their intersections by as many
roots, and therefore rises to as many dimensions as there are intersections.
Because two circles cut one another in two points, one of those intersections is
not to be found but by an equation of two dimensions, by which the other
intersection may be also found. Because there may be four intersections of two
conic sections, any one of them is not to be found universally, but by an equa-
tion of four dimensions, by which they may be all found together. For if those
intersections are severally sought, because the law and condition of all is the
same, the calculus will be the same in every case, and therefore the conclusion
always the same, which must therefore comprehend all those intersections at
once within itself, and exhibit them all indifferently. Hence it is that the inter-
sections of the conic sections with the curves of the third order, because they
may amount to six, come out together by equations of six dimensions; and the
intersections of two curves of the third order, because they may amount to
nine, come out together by equations of nine dimensions. If this did not nec-
essarily happen, we might reduce all solid to plane Problems, and those higher
than solid to solid Problems. But here I speak of curves irreducible in power.
For if the equation by which the curve is defined may be reduced to a lower
power, the curve will not be one single curve, but composed of two, or more,
whose intersections may be severally found by different calculi. After the same
manner the two intersections of right lines with the conic sections come out
always by equations of two dimensions; the three intersections of right lines
with the irreducible curves of the third order, by equations of three dimensions;
the four intersections of right lines with the irreducible curves of the fourth
order, by equations of four dimensions; and so on zn infinitum. Wherefore the
innumerable intersections of a right line with a spiral, since this is but one
simple curve, and not reducible to more curves, require equations infinite in
number of dimensions and roots, by which they may be all exhibited together.
For the law and calculus of all is the same. For if a perpendicular is let fall from
the pole upon that intersecting right line, and that perpendicular together with
the intersecting line revolves about the pole, the intersections of the spiral will
mutually pass the one into the other; and that which was first or nearest, after
one revolution, will be the second; after two, the third; and so on: nor will the
equation in the meantime be changed but as the magnitudes of those quantities
are changed, by which the position of the intersecting line is determined.
Therefore since those quantities after every revolution return to their first
magnitudes, the equation will return to its first form; and consequently one
and the same equation will exhibit all the intersections, and will therefore have
an infinite number of roots, by which they may be all exhibited. Therefore the
intersection of a right line with a spiral cannot be universally found by any
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finite equation; and hence there is no oval figure whose area, cut off by right
lines at pleasure, can be universally exhibited by any such equation.

By the same argument, if the interval of the pole and point by which the
spiral i1s described is taken proportional to that part of the perimeter of the
oval which is cut off, it may be proved that the length of the perimeter cannot
be universally exhibited by any finite equation. But here T speak of ovals that
are not touched by conjugate figures running out in infinitum.

Cor. Hence the area of an ellipse, described by a radius drawn from the
focus to the moving body, is not to be found from the time given by a finite
equation; and therefore cannot be determined by the description of curves
geometrically rational. Those curves I call geometrically rational, all the points
whereof may be determined by lengths that are definable by equations; that
is, by the complicated ratios of lengths. Other curves (such as spirals, quad-
ratrixes, and cycloids) I call geometrically irrational. For the lengths which are
or are not as number to number (according to Book x, Elements of Euclid) are
arithmetically rational or irrational. And therefore I cut off an area of an
ellipse proportional to the time in which it is described by a curve geometrically
irrational, in the following manner:

ProrositioN 31. ProBLEM 23

To find the place of a body moving in a given ellipse at any assigned time.
Suppose A to be the principal vertex, S the focus, and O the centre of the

ellipse APB; and let P be the place of the body to be found. Produce OA to G

so that OG : OA=0A : OS. Erect the perpendicular GH; and about the centre

H K

O, with the radius OG, describe the circle GEF'; and on the ruler GH, as a base,
suppose the wheel GEF to move forwards, revolving about its axis, and in the
meantime by its point A describing the cycloid ALI. This done, take GK to the
perimeter GEFG of the wheel, in the ratio of the time in which the body pro-
ceeding from A described the arc AP, to the time of a whole revolution in the
ellipse. Erect, the perpendicular KI. meeting the cycloid in L; then LP drawn
parallel to KG will meet the ellipse in P, the required place of the body.
For about the centre O with the radius OA describe the semicircle AQB, and
let LP, produced, if need be, meet the arc AQ in Q, and join SQ, OQ. Let OQ
meet the arc EFG in F, and upon OQ let fall the perpendicular SR. The area
APS varies as the area AQS, that is, as the difference between the sector OQA
and the triangle OQS, or as the difference of the rectangles 140Q-AQ, and
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140Q-SR, that is, because 140Q is given, as the difference between the are
AQ and the right line SR; and therefore (because of the equality of the given
ratios SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to GF; and by
division, AQ—SR to GF —sine of the arc AQ) as GK, the difference between
the arc GF and the sine of the arc AQ. Q.E.D.

ScHOLIUM

But since the description of this curve is difficult, a solution by approxima-
tion will be preferable. First, then, let there be found a certain angle B which
may be to an angle of 57.29578 degrees, which an arc equal to the radius sub-
tends, as SH, the distance of the foci, to AB, the diameter of the ellipse.

q Secondly, a certain length 1L,

Qﬂ which may be to the radius in

p[\2 the same ratio inversely. And

these being found, the Problem
may be solved by the following
analysis. By any construction
(or even by conjecture), sup-
pose we know P the place of the
body near its true place p. Then
A S K7 O T g letting fall on the axis of the
ellipse the ordinate PR from the

proportion of the diameters of the ellipse, the ordinate RQ of the circumscribed
circle AQB will be given; which ordinate is the sine of the angle AOQ, sup-
posing AO to be the radius, and also cuts the ellipse in P. It will be sufficient
if that angle is found by a rude calculus in numbers near the truth. Suppose
we also know the angle proportional to the time, that is, which is to four right
angles as the time in which the body described the arc Ap to the time of one
revolution in the ellipse. Let this angle be N. Then take an angle D, which may
be to the angle B as the sine of the angle AOQ to the radius; and an angle E
which may be to the angle N — AOQ-+D as the length L to the same length L
diminished by the cosine of the angle AOQ, when that angle is less than a right
angle, or increased thereby when greater. In the next place, take an angle F
that may be to the angle B as the sine of the angle AOQ-E to the radius, and
an angle G, that may be to the angle N —AOQ—E+F as the length L to
the same length L diminished by the cosine of the angle AOQ-+E, when that
angle is less than a right angle, or increased thereby when greater. For the
third time take an angle H, that may be to the angle B as the sine of the angle
AOQ-+E-G to the radius; and an angle I to the angle N—AOQ—-E—-G+H,
as the length L is to the same length L. diminished by the cosine of the angle
AOQ+E+G, when that angle is less than a right angle, or increased thereby
when greater. And so we may proceed in infinitum. Lastly, take the angle
AOgq equal to the angle AOQ+E+G+1+, &c., and from its cosine Or and
the ordinate pr, which is to its sine ¢r as the lesser axis of the ellipse to the
greater, we shall have p the correct place of the body. When the angle N —
AOQ++D happens to be negative, the sign + of the angle E must be every-
where changed into —, and the sign — into -+. And the same thing is to be
understood of the signs of the angles G and I, when the anglesN —AOQ—-E+F,
and N—AOQ—E~-G+H come out negative. But the infinite series AOQ-+




80 MATHEMATICAL PRINCIPLES

E+4G+1I+, &c., converges so very fast, that it will be scarcely ever needful
to proceed beyond the second term E. And the calculus is founded upon this
Theorem, that the area APS varies as the difference between the arc AQ and
the right line let fall from the focus S perpendicularly upon the radius OQ.
And by a calculus not unlike, the Problem is solved in the hyperbola. Let its
centre be O, its vertex A, its focus S, and asymptote OK; and suppose the
amount of the area to be cut off is known, as being proportional to the time.
Let that be A, and by conjecture suppose
we know the position of a right line SP,
that cuts off an area APS near the truth.
Join OP, and from A and P to the asymp-
tote draw AI, PK, parallel to the other
asymptote; and by the table of logarithms
the area AIKP will be given, and equal
thereto the area OPA, which, subtracted
from the triangle OPS, will leave the area
cut off APS. And by applying 2APS —2A,
or 2A —2APS, the double difference of the
area A that was to be cut off, and the area
APS that is cut off, to the line SN that is let fall from the focus S, perpendicular
upon the tangent TP, we shall have the length of the chord PQ. Which chord
PQ is to be inscribed between A and P, if the area APS that is cut off be
greater than the area A that was to be cut off, but towards the contrary side
of the point P, if otherwise: and the point Q will be the place of the body more
accurately. And by repeating the computation the place may be found con-
tinually to greater and greater accuracy.
- And by such computations we have a general analytical resolution of the
Problem. But the particular calculus that follows is better fitted for astro-
nomical purposes. Supposing AO, OB, OD to be the semiaxes of the ellipse, and
L its latus rectum, and D the difference between the lesser semiaxis OD, and
141, the half of the latus rectum: let an angle Y
be found, whose sine may be to the radius as the
rectangle under that difference D, and AO+OD
the half sum of the axes, to the square of the
greater axis AB. Find also an angle Z, whose
A S o) H B gine may be to the radius as the double rectangle
under the distance of the foci SH and that dif-
ference D, to triple the square of half the greater
semiaxis AO. Those angles being once found,
the place of the body may be thus determined.
Take the angle T proportional to the time in which the arc BP was described,
or equal to what is called the mean motion; and take an angle V, the first
equation of the mean motion, to the angle Y, the greatest first equation, as the
sine of double the angle T is to the radius; and take an angle X, the second
equation, to the angle Z, the second greatest equation, as the cube of the sine
of the angle T is to the cube of the radius. Then take the angle BHP, the mean
equated motion either equal to T+X+4V, the sum of the angles T, V, X if
the angle T is less than a right angle, or equal to T+X—V, the difference of
the same, if that angle T is greater than one and less than two right angles; and

O T A S
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if HP meets the ellipse in P, draw SP, and it will cut off the area BSP, nearly
proportional to the time.

This practice seems to be expeditious enough, because the angles V and X,
taken in fractions of seconds, if you please, being very small, it will be suffi-
cient to find two or three of their first figures. But it is likewise sufficiently ac-
curate to answer to the theory of the planets’ motions. For even in the orbit of
Mars, where the greatest equation of the centre amounts to ten degrees, the
error will scarcely exceed one second. But when the angle of the mean motion
equated BHP is found, the angle of the true motion BSP, and the distance SP,
are readily had by the known methods.

And so far concerning the motion of bodies in curved lines. But it may also
come to pass that a moving body shall ascend or descend in a right line; and 1
shall now go on to explain what belongs to such kind of motions.

SECTION VII

THE RECTILINEAR ASCENT AND DESCENT OF BODIES

ProrosiTioN 32. PROBLEM 24

Supposing that the centripetal force is inversely proportional to the square of the
distance of the places from the centre; it 1s required to define the spaces which a
body, falling directly, describes in given times.

Cask 1. If the body does not fall perpendicularly, it will (by Cor. 1, Prop. 13)
describe some conic section whose focus is placed in the centre of force. Sup-
A pose that conic section to be ARPB and its focus S. And,

first, if the figure be an ellipse, upon the greater axis thereof

AB describe the semicircle ADB, and let the right line

R DPC pass through the falling body, making right angles
with the axis; and drawing DS, PS, the area ASD will be
proportional to the area ASP, and therefore also to the
time. The axis AB still remaining the same, let the breadth

D of the ellipse be continually diminished, and the area ASD
will always remain proportional to the time. Suppose that
breadth to be diminished in infinitum; and the orbit APB

in that case coinciding with the axis R

AB, and the focus S with the ex- / /

treme point of the axis B, the body ¢ 5 D
will descend in the right line AC, and the area ABD will
become proportional to the time. Therefore the space ¢
AC will be given which the body describes in a given g
time by its perpendicular fall from the place A, if the
area ABD is taken proportional to the time, and from
the point D the right line DC is let fall perpendicularly
on the right line AB. Q.E.L.

Case 2. If the figure RPB is an hyperbola, on the
same principal diameter AB describe the rectangular
hyperbola BED; and because there exist between the
several areas and the heights CP and CD relations, Al

S
B
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CSP : CSD=CBfP : CBED=SPfB : SDEB=CP : CD, and since the area
SPfB varies as the time in which the body P will move through the arc PfB,
the area SDEB will also vary as that time. Let the latus rectum of the hy-
perbola RPB be diminished ¢n ¢nfinitum, the transverse axis remaining the
same; and the arc PB will come to coincide with the right line CB, and the
focus S with the vertex B, and the right line SD with the right line BD. And

therefore the area BDEB will vary as the time in which R
the body C, by its perpendicular descent, describes the Z /
D

line CB. Q.E.I. C P
Cask 3. And by the like argument, if the figure RPB
is a parabola, and to the same principal vertex B another
parabola BED is described, that may always remain
given while the former parabola in whose perimeter the g,
body P moves, by having its latus rectum diminished B
and reduced to nothing, comes to coincide with the line CB, the parabolic seg-
ment BDEB will vary as the time in which that body P or C will descend to
the centre S or B. Q.E.L

"

ProrosiTioN 33. THEOREM 9

The things above found being supposed, I say, that the velocity of a falling body in
any place C is to the velocity of a body, describing a circle about the centre B at the
distance BC, as the square root of the ratio of AC, the distance of the body from the
remoter vertex A of the circle or rectangular hyperbola, to Y4AB, the principal semi-
diameter of the figure.

Let AB, the common diameter of both figures RPB, DEB, be bisected in O;
and draw the right line PT that may touch the figure RPB in P, and likewise
cut that common diameter AB (produced, if need be) in T; and let SY be
perpendicular to this line, and BQ perpendicular to this diameter, and suppose

thelatusrectum of the figure RPB
T R to be L. From Cor. 1x, Prop. 16, it

/ is manifest that the velocity of a

P I/ body, moving in the line RPB

about the centre S, in any place
P, is to the velocity of a body
describing a circle about the same
centre, at the distance SP, as the
square root of the ratio of the
rectangle 1BL-SP to SY2 For
by the properties of the conic
sections AC-CB is to CP? as

2.
2A0 to L, and thereforeggg—éx—]gQ
is equal to L. Therefore those
velocities are to each other as
the square root of the ratio of

CP2-AO-SP )
—AC.CB to SY2 Moreover,
g by the properties of the conic

sections,
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CO : BO=BO : TO,

thence, CO+BO : BO=BO+TO : TO,
and CO : BO=CB : BT.
From this, BO—-CO : BO=BT-CB BT
and AC: AO=TC :BT=CP : BQ;
and, since CP=]—3-%'O—AC,

bai CP2-AO-SPp 1t BQz-AC-SP
one obtains —Ac.cp equal to— 5 e

Now suppose CP, the breadth of the figure RPB, to be diminished in infinitum,
so that the point P may come to coincide with the point C, and the point S
with the point B, and the line SP with the line BC, and the line SY with the
line BQ; and the velocity of the body now descending perpendicularly in the

line CB will be to the velocity of a body describing a circle about the centre B,
2. AC.
at the distance BC, as the square root of the ratio of —B%O.g CSP to SY? that
is (neglecting the ratios of equality of SP to BC, and BQ? to SY?), as the square
root of the ratio of AC to AO, or 15AB. Q.E.D.
cor. 1. When the points B and S come to coincide, TC will become to TS as
AC to AO.
Cor. 11. A body revolving in any circle at a given distance from the centre,
by its motion converted upwards, will ascend to double its distance from the

centre.
ProrosiTioN 34. THEOREM 10

If the figure BED 1s a parabola, I say, that the velocity of a falling body in any
place C is equal to the velocity by which a body may uniformly describe a circle
about the centre B at half the interval BC.

For (by Cor. vii, Prop. 16) the velocity of
a body describing a parabola RPB about the
centre S, in any place P, is equal to the velocity
of a body uniformly describing a circle about
C P D the same centre S at half the interval SP. Let
the breadth CP of the parabola be diminished
in wnfinitum, so that the parabolic arc PfB may

R

/f come to coincide with the right line CB, the

E centre S with the vertex B, and the interval SP

S with the interval BC, and the Proposition will
B be manifest. Q.E.D.

ProrosiTioN 35. THEOREM 11

The same things supposed, I say, that the area of the figure DES, described by the
indefinite radius SD, is equal to the area which a body with a radius equal to half
the latus rectum of the figure DES describes in the same time, by uniformly revolv-
ing about the centre S.

For suppose a body C in the smallest moment of time describes in falling the
infinitely little line Cc, while another body K, uniformly revolving about the
centre S in the circle OKk, describes the arc Kk. Erect the perpendiculars CD,
cd, meeting the figure DES in D, d. Join 8D, 8d, SK, Sk, and draw Dd meeting
the axis AS in T, and thereon let fall the perpendicular SY.



84 MATHEMATICAL PRINCIPLES

Cask 1. If the figure DES is a circle, or a rectangular hyperbola, bisect its
transverse diameter AS in O, and SO will be half the latus rectum. And because
TC : TD=Cc : Dd,

and TD : TS=CD : Sy,
there follows TC: TS=CD-Cc:SY-Dd.
But (by Cor. 1, Prop. 33) TC:TS=AC: AQ,
namely, if in the coalescence of the points D, d the ultimate ratios of the lines
are taken. Therefore,

AC : AO or SK=CD Cc : SY-Dd.
Further, the velocity of the descending body in C is to the velocity of a body
describing a circle about the centre S, at the interval SC, as the square root of
the ratio of AC to AO or SK (by Prop. 33); and this velocity is to the velocity
of a body describing the circle OKk as the square root of the ratio of SK to SC
(by Cor. vi, Prop. 4); and, consequently, the first velocity is to the last, that is,
the little line Ce to the arc Kk, as the square root of the ratio of AC to SC, that
i, in the ratio of AC to CD. Therefore,

CD-Cc=AC-Kk,

hence, AC :SK=AC Kk : SY-Dd,

and SK:-Kk=SY Dd,

and 4SK - Kk =148Y - Dd,

that is, the area KSk is equal to the area

SDd. Therefore in every moment of time two C 2/
¢

equal particles, KSk and SDd, of areas are
generated, which, if their magnitude is dimi-
nished, and their number increased in infini- .
tum, obtain the ratio of equality, and conse- ;
quently (by Cor., Lem. 1v) the whole areas /
together generated are always equal. Q.E.D. |

Cask 2. But if the figure DES is a parabola,
we shall find, as above, ;

CD:-Cc:8Y-Dd=TC : TS,
that is, =2 : 1; therefore,
14CD-Cc=14 SY-Dd.

But the velocity of the falling body in C is




Booxk I: THE MotioN oF Bobiks 85

equal to the velocity with which a circle may be uniformly described at the
interval 14SC (by Prop. 34). And this velocity to the velocity with which a
circle may be described with the radius SK, that is, the little line Cc to the arc
Kk, is (by Cor. vi, Prop. 4) as the square root of the ratio of SK to 145C;
that is, in the ratio of SK to 24CD. Therefore 14SK - Kk is equal to 14CD-Cec,
and therefore equal to 14SY -Dd; that is, the area KSk is equal to the area
SDd, as above. Q.E.D.

ProrosiTioN 36. PROBLEM 25

To determane the times of the descent of a body falling from a given
place A.

Upon the diameter AS, the distance of the body from the
centre at the beginning, describe the semicircle ADS, as like-
wise the semicircle OKH equal thereto, about the centre S.
From any place C of the body erect the ordinate CD. Join SD,
~.. i and make the sector OSK equal to the area ASD. It is evident

“+k  (by Prop. 35) that the body in falling will describe the space AC
e in the same time in which another body, uniformly revolving
- about the centre S, may describe the arc OK. Q.E.F.

ProrosiTioN 37. PROBLEM 26

To define the times of the ascent or descent of a body projected upwards or down-
wards from a given place.

.
e,
. .
.............

Suppose the body to go off from the given place G, in the direction of the line
GS, with any velocity. Take GA to 14AS as the square of the ratio of this
velocity to the uniform velocity in a circle, with which the body may revolve
about the centre S at the given interval SG. If that ratio is the same as of the
number 2 to 1, the point A is infinitely remote; in which case a parabola is to be
described with any latus rectum to the vertex S, and axis SG; as appears by
Prop. 34. But if that ratio is less or greater then the ratio of 2 to 1, in the former
case a circle, in the latter a rectangular hyperbola, is to be described on the
diameter SA; as appears by Prop. 33. Then about the centre S, with a radius
equal to half the latus rectum, describe the circle HXK; and at the place G of
the ascending or descending body, and at any other place C, erect the perpen-
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diculars GI, CD, meeting the conic section or circle in I and D. Then joining
SI, SD, let the sectors HSK, HSk be made equal to the segments SEIS,SEDS,
and (by Prop. 35) the body G will describe the space GC in the same time in
which the body K may describe the arc Kk. Q.E.F.

ProrosiTioN 38. THEOREM 12

Supposing that the centripetal force is proportional to the altitude or distance of
places from the centre, I say, that the times and velocities of falling bodies, and the
spaces which they describe, are respectively proportional to the arcs, and the sines
and versed sines of the arcs.

Suppose the body to fall from any place A in the right A
line AS; and about the centre of force S, with the radius F\
AS, describe the quadrant of a circle AE; and let CD be D
the sine of any arc AD; and the body A will in the time
AD in falling describe the space AC, and in the place C
will acquire the velocity CD.

This is demonstrated the same way from Prop. 10, as
Prop. 32 was demonstrated from Prop. 11.

Cor. 1. Hence the times are equal in which one body falling from the place
A arrives at the centre S, and another body revolving describes the quadrantal
arc ADE.

Cor. 11. Therefore all the times are equal in which bodies falling from what-
soever places arrive at the centre. For all the periodic times of revolving bodies
are equal (by Cor. 111, Prop. 4).

S E

ProrosiTioN 39. PrRoBLEM 27

Supposing a centripetal force of any kind, and granting the quadratures of curvi-
linear figures; it is required to find the velocity of a body, ascending or descending
in a right line, in the several places through which it passes, as also the time in
which it will arrive at any place; and conversely.

Suppose the body E to fall from any place A in the right line ADEC; and
from its place E imagine a perpendicular EG always erected proportional to
the centripetal force in that place tending to the centre C; and let BFG be a

curved line, the locus of the point G. And in the

A T beginning of the motion suppose EG to coincide
V with the perpendlcular AB; and the velocity of

P Q the body in any place E Wlll be as a right line
whose square is equal to the curvilinear area

ABGE. Q.E.IL

In EG take EM inversely proportional to a
F right line whose square is equal to the area

[ o G ABGE, and let VLM be a curved line wherein the
point M is always placed, and to which the right
line AB produced is an asymptote; and the time
e in which the body in falling describes the line
AE, will be as the curvilinear area ABTVME.
Q.E.IL.

For in the right line AE let there be taken the

C very small line DE of a given length, and let

o
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DLF be the place of the line EMG, when the body was in D; and if the
centripetal force be such, that a right line, whose square is equal to the
area ABGE, is as the velocity of the descending body, the area itself will
be as the square of that velocity; that is, if for the velocities in D and E
we write V and V41, the area ABFD will be as V'V, and the area ABGE as
VV+42VI+1I; and by subtraction, the area DFGE as 2VI+1II, and therefore

,
——DE%E will be as —2\]:1;;11 ; that is, if we take the first ratios of those quantities

. .. 2VI
when just nascent, the length DF is as the quantity DE’ and therefore also as

-

>

half that quantity If)%‘ But the time in which the body in falling describes the

very small line DE, is directly as that line and inversely as the velocity V; and
the force will be directly as the increment I of the velocity and inversely as the
time; and therefore if we take the first ratios when those quantities are just

.V ) i
nascent, as ID_E’ that is, as the length DF. Therefore a force proportional to

DF or EG will cause the body to descend with a velocity that is as the right
line whose square is equal to the area ABGE. Q.E.D.

Moreover, since the time in which a very small line DE of a given length
may be described is inversely as the velocity and therefore also inversely as a
right line whose square is equal to the area ABFD); and since the line DL, and
by consequence the nascent area DLME, will be inversely as the same right
line, the time will be as the area DLME, and the sum of all the times will be as
the sum of all the areas; that is (by Cor., Lem. 4), the whole time in which the
line AE is described will be as the whole area ATVME. Q.E.D.

Cor. 1. Let P be the place from whence a body ought to fall, so as that, when
urged by any known uniform centripetal force (such as gravity is commonly
supposed to be), it may acquire in the place D a velocity equal to the velocity
which another body, falling by any force whatever, hath acquired in that place
D. In the perpendicular DF let there be taken DR, which may be to DF as
that uniform force to the other force in the place D. Complete the rectangle
PDRQ), and cut off the area ABFD equal to that rectangle. Then A will be the
place from whence the other body fell. For completing the rectangle DRSE,
since the area ABFD is to the area DFGE as VV to 2V, and therefore as 14V
to I, that is, as half the whole velocity to the increment of the velocity of the
body falling by the variable force; and in like manner the area PQRD to the
area DRSE as half the whole velocity to the increment of the velocity of the
body falling by the uniform force; and since those increments (by reason of the
equality of the nascent times) are as the generating forces, that is, as the or-
dinates DF, DR, and consequently as the nascent areas DFGE, DRSE; there-
fore, the whole areas ABFD, PQRD will be to each other as the halves of the
whole velocities; and therefore, because the velocities are equal, they become
equal also.

Cor. 11. Whence if any body be projected either upwards or downwards with
a given velocity from any place D, and there be given the law of centripetal
force acting on it, its velocity will be found in any other place, as e, by erecting
the ordinate eg, and taking that velocity to the velocity in the place D as a
right line whose square is equal to the rectangle PQRD, either increased by the
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curvilinear area DFge, if the place eis below the B T
place D, or diminished by the same area DFge, if \ /———V
it be higher, is to the right line whose squareis p Q

equal to the rectangle PQRD alone.

Cor. 111. The time is also known by erecting
the ordinate em inversely proportional to the
square root of PQRD+or—DFge, and taking
the time in which the body has described the
line De to the time in which another body has
fallen with an uniform force from P, and in
falling arrived at D in the proportion of the cur- . —
vilinear area DLme o the rectangle 2PD-DL. £
For the time in which a body falling with an
uniform force hath described the line PD is to
the time in which the same body hath described
the line PE as the square root of the ratio of PD to PE; that is (the very
small line DE being just nascent), in the ratio of PD to PD+ DE or 2PD
to 2PD-+DE, and, by subtraction, to the time in which the body hath de-
scribed the small line DE, as 2PD to DE, and therefore as the rectangle
2PD-DL to the area DLME; and the time in which both the bodies de-
scribed the very small line DE is to the time in which the body with the
variable motion described the line De as the area DLME to the area DLme;
and therefore the first mentioned of these times is to the last as the rectangle
2PD DL to the area DLme.

mo
=~
v o

SECTION VIII

THE DETERMINATION OF ORBITS IN WHICH BODIES WILL REVOLVE, BEING ACTED
UPON BY ANY SORT OF CENTRIPETAL FORCE

ProrositioN 40. THEOREM 13

If a body, acted upon by any centripetal force, is moved in any manner, and an-
other body ascends or descends tn a right line, and their velocities be equal in any
one case of equal altitudes, their velocities will be also equal at all equal altitudes.

Let a body descend from A through D and E, to the centre C; and let an-
other body move from V in the curved line VIK%. From the centre C, with any
distances, describe the concentric circles DI, EK, meeting the right line AC in
D and E, and the curve VIK in I and K. Draw IC meeting KE in N, and on
IK let fall the perpendicular NT'; and let the interval DE or IN between the
circumferences of the circles be very small; and imagine the bodies in D and I
to have equal velocities. Then because the distances CD and CI are equal, the
centripetal forces in D and I will be also equal. Let those forces be expressed
by the equal short lines DE and IN; and let the force IN (by Cor. 11 of the
Laws of Motion) be resolved into two others, NT and IT. Then the force NT
acting in the direction of the line NT perpendicular to the path ITK of the
body will not at all affect or change the velocity of the body in that path, but
only draw it aside from a rectilinear course, and make it deflect continually
from the tangent of the orbit, and proceed in the curvilinear path ITKk. That
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TA whole force, therefore, will be spent in producing this effect; but
y the other force IT, acting in the direction of the course of the
body, will be all employed in accelerating it, and in the least
given time will produce an acceleration proportional to itself.
Therefore the accelerations of the bodies in D and I, produced
in equal times, are as the lines DE, IT (if we take the first ratios
of the nascent lines DE, IN, IK, IT, NT); and in unequal times
as the product of those lines and the times. But the times in which
DE and IK are described, are, by reason of the equal velocities (in
D and I), as the spaces described DE and IK, and therefore the
accelerations in the course of the bodies through the lines DE
and IK are as DE and IT, and DE and IK conjointly; that is,
as the square of DE to the rectangle IT -IK. But the rectangle
IT-IK is equal to the square of IN, thatis, equal to the square
of DE; and therefore the accelerations generated in the passage
of the bodies from D and I to E and K are equal. Therefore the velocities of
the bodies in E and K are also equal: and by the same reasoning they will
always be found equal in any subsequent equal distances. Q.E.D.

By the same reasoning, bodies of equal velocities and equal distances from
the centre will be equally retarded in their ascent to equal distances. Q.E.D.

Cor. 1. Therefore if a body either oscillates by hanging to a string, or by any
polished and perfectly smooth impediment is forced to move in a curved line;
and another body ascends or descends in a right line, and their velocities be
equal at any one equal altitude, their velocities will be also equal at all other
equal altitudes. For by the string of the pendulous body, or by the impediment
of a vessel perfectly smooth, the same thing will be effected as by the trans-
verse force NT. The body is neither accelerated nor retarded by it, but only is
obliged to leave its rectilinear course.

Cor. 11. Suppose the quantity P to be the greatest distance from the centre
to which a body can ascend, whether it be oscillating, or revolving in a curve,
and so the same projected upwards from any point of a curve with the velocity
it has in that point. Let the quantity A be the distance of the body from the
centre in any other point of the orbit; and let the centripetal force be always as
the power A1, of the quantity A, the index of which power n—1 is any num-
ber n diminished by unity. Then the velocity in every altitude A will be as
v/ (P*—A~), and therefore will be given. For by Prop. 39, the velocity of a body
ascending and descending in a right line is in that very ratio.

A
Z

C

ProrosiTiON 41. PROBLEM 28

Supposing a centripetal force of any kind, and granting the quadratures of curvi-
linear figures; it is required to find as well the curves in which bodies will move, as
the times of their motions in the curves found.

Let any centripetal force tend to the centre C, and let it be required to find
the curve VIKFk. Let there be given the circle VR, described from the centre C
with any radius CV; and from the same centre describe any other circles ID,
KE, cutting the curve in I and K, and the right line CV in D and E. Then
draw the right line CNIX cutting the circles KE, VR in N and X, and the right
line CKY meeting the circle VR in Y. Let the points I and K be indefinitely
near; and let the body go on from V through I and K to k; and let the point A
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be the place from which another body is to fall, so as in the place D to acquire
a velocity equal to the velocity of the first body in I. And things remaining as
in Prop. 39, the short line IK, described in the least given time, will be as the
velocity, and therefore as the right line whose square is equal to the area
ABFD, and the triangle ICK proportional to the time will be given, and there-
fore KN will be inversely as the altitude IC; that is (if there be given any
quantity Q, and the altitude IC be called A), as%. This quantity%call Z, and
suppose the magnitude of Q to be such that in some one case

VABFD : Z=1K : KN,
and then in all cases

+vABFD : Z=1K : KN,
and ABFD : ZZ=TK?: KN?,
and by subtraction,

AB¥D—ZZ : ZZ=1N? : KN?,

and therefore

VABFD—2%) : Z or $=IN : KN,

A
Q-IN
and A-RN = ABFD-72)
Since YX-XC:A-KN=CX2: AA,
it follows that
Q-IN-CX2

YX-XC= X/ (ABFD—272)
Therefore in the perpendicular DF let there be taken continually Db, Dc equal
. 2
to 5/ (ABFD—Z7) 2AA \/?AgFXD —77) respectively, and let the curved lines
ab, ac, the foci of the points b and ¢, be described; and from the point V let the
perpendicular Va be erected to the line AC, cutting off the curvilinear areas
VDba, VDca, and let the ordinates Ez, Ex, be erected also. Then because the
rectangle Db-IN or DbzE is equal to half the rectangle A-KN, or to the tri-
angle ICK; and the rectangle Dc-IN or DczE is equal to half the rectangle
YX-XC, or to the triangle XCY; that is, because the nascent particles DbzE,
ICK of the areas VDba, VIC are always equal; and the nascent particles DcxE,
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XCY of the areas VDca, VCX are always equal: therefore the generated area
VDba will be equal to the generated area VIC, and therefore proportional to
the time; and the generated area VIDca is equal to the generated sector VCX.
If, therefore, any time be given during which the body has been moving from
V, there will be also given the area proportional to it VDba; and thence will be
given the altitude of the body CD or CI; and the area VDca, and the sector
VCX equal thereto, together with its angle VCI. But the angle VCI, and the
altitude CI being given, there is also given the place I, in which the body will
be found at the end of that time. Q.E.L.

Cor. 1. Hence the greatest and least altitudes of the bodies, that is, the ap-
sides of the curves, may be found very readily. For the apsides are those points
in which a right line IC drawn through the centre falls perpendicularly upon
the curves VIK; which comes to pass when the right lines IK and NK become
equal; that is, when the area ABFD is equal to ZZ.

Cor. 11. So also the angle KIN, in which the curve at any place cuts the line
IC, may be readily found by the given altitude IC of the body; namely, by
making the sine of that angle to the radius as KN to 1K, that is, as Z to the
square root of the area ABFD.

Cor. 1. If to the centre C, and the principal vertex V, there be described a
conic section VRS; and from any point thereof, as R, there be drawn the tan-
gent RT meeting the axis CV indefinitely produced in the point T; and then
S joining CR there be drawn the right line CP,

equal to the abscissa CT, making an angle VCP
. proportional to thesector VCR; and if a centri-

petal force inversely proportional to the cubes

v V of the distances of the places from the centre,
tends to the centre C; and from the place V
there sets out a body with a just velocity in the
direction of aline perpendiculartothe rightline
C S c CV; that body will proceed in a curve VPQ,
which the point P will always touch; and there-

Q Q fore if the conic section VRS be an hyperbola,
the body will descend to the centre; but if it be an ellipse, it will ascend con-
tinually, and go farther and farther off in infinitum. And, on the contrary, if
a body endued with any velocity goes off from the place V, and according as
it begins either to descend obliquely to the centre, or to ascend obliquely from
it, the figure VRS be either an hyperbola or an ellipse, the curve may be found
by increasing or diminishing the angle VCPina given ratio. And the centripetal
force becoming centrifugal, the body will ascend obliquely in the curve VPQ,
which is found by taking the angle VCP proportional to theellipticsector VRC,
and the length CP equal to the length CT, as before. All these things follow
from the foregoing Proposition, by the quadrature of a certain curve, the in-
vention of which, as being easy enough, for brevity’s sake I omit.

R

ProrosiTioN 42. PROBLEM 29

The law of centripetal force being given, it isrequired to find the motion of a body set-
ting out from a given place, with a given velocity, in thedirection of a givenright line.

Suppose the same things as in the three preceding Propositions; and let the
body go off from the place I in the direction of the little line IK, with the same



92 MATHEMATICAL PRINCIPLES

velocity as another body, by falling with an uniform centripetal force from the
place P, may acquire in D); and let this uniform force be to the force with which
the body is at first urged in I, as DR to DF. Let the body go on towards k; and
A _\B

a

X \ Q

A

C

about the centre C, with the radius Ck, describe the circle ke, meeting the right
line PD in ¢, and let there be erected the lines eg, ev, ew, ordinately applied to
the curves BFg, abv, acw. From the given rectangle PDRQ and the given law of
centripetal force, by which the first body is acted on, the curved line BFyg is
also given, by the construction of Prop. 27, and its Cor. 1. Then from the given
angle CIK is given the proportion of the nascent lines IK, KN; and thence, by
the construction of Prob. 28, there is given the quantity Q, with the curved
lines abv, acw; and therefore, at the end of any time Dbve, there is given both
the altitude of the body Ce or Ck, and the area Dcwe, with the sector equal to
it XCy, the angle ICk, and the place k, in which the body will then be found.
Q.E.L
We suppose in these Propositions the centripetal force to vary in its recess
from the centre according to some law, which anyone may imagine at pleasure,
but at equal distances from the centre to be everywhere the same.
I have hitherto considered the motions of bodies in immovable orbits. It
remains now to add something concerning their motions in orbits which re-
volve round the centres of force.

SECTION IX

THE MOTION OF BODIES IN MOVABLE ORBITS; AND THE MOTION OF THE APSIDES

ProrosiTioN 43. PROBLEM 30

It s required to make a body move in a curve that revolves about the centre of force
in the same manner as another body in the same curve at rest.

In the fixed orbit VPK, let the body P revolve, proceeding from V towards
K. From the centre C let there be continually drawn Cp, equal to CP, making
the angle VCp proportional to the angle VCP; and the area which the line Cp
describes will be to the area VCP, which the line CP describes at the same time,
as the velocity of the describing line Cp to the velocity of the desecribing line
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CP; that is, as the angle VCp to the angle VCP, therefore in a given ratio, and
therefore proportional to the time. Since, then, the area described by the line
Cp in a fixed plane is proportional to the time, it is manifest that a body, being

v acted upon by a suitable centripetal force, may re-
volve with the point p in the curved line which the
same point p, by the method just now explained,
may be made to describe in a fixed plane. Make
the angle VCu equal to the angle PCp, and the line
Cu equal to CV, and the figure uCp equal to the
figure VCP, and the body being always in the
point p, will move in the perimeter of the revolving
figure uCp, and will describe its (revolving) arc up
in the same time that the other body P describes
the similar and equal arc VP in the fixed figure
VPK. Find, then, by Cor. v, Prop. 6, the centrip-
etal force by which the body may be made to revolve in the curved line which
the point p describes in a fixed plane, and the Problem will be solved. Q.E.F.

ProrosiTioN 44. THEOREM 14

The difference of the forces, by which two bodies may be made to move equally, one
in a fixed, the other in the same orbit revolving, varies inversely as the cube of their
common altitudes.

Let the parts of the fixed orbit VP, PK be similar and equal to the parts of
the revolving orbit up, pk; and let the distance of the points P and K be sup-
posed of the utmost smallness. Let fall a perpendicular kr from the point k to
the right line pC, and produce it to
m, so that mr may be to kr as the
angle VCp to the angle VCP. Be-
cause the altitudes of the bodies PC
and pC, KC and &C, are always
equal, it is manifest that the in-
crements or decrements of the lines
PC and pC are always equal; and
therefore if each of the several mo-
tions of the bodies in the places P
and p be resolved into two (by
Cor. 11 of the Laws of Motion), one
of which is directed towards the
centre, or according to the lines PC,
pC, and the other, transverse to the
former, hath a direction perpendic-
ular to the lines PC and pC; the
motions towards the centre will be
equal, and the transverse motion
of the body p will be to the trans-
verse motion of the body P as the angular motion of the line pC to the angular
motion of the line PC; that is, as the angle VCp to the angle VCP. Therefore,
at the same time that the body P, by both its motions, comes to the point K,
the body p, having an equal motion towards the centre, will be equally moved
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from p towards C; and therefore that time being expired, it will be found some-
where in the line mkr, which, passing through the point %, is perpendicular to
the line pC; and by its transverse motion will acquire a distance from the line
pC, that will be to the distance which the other body P acquires from the line
PC as the transverse motion of the body p to the transverse motion of the
other body P. Therefore since kr is equal to the distance which the body P ac-
quires from the line PC, and mr is to kr as the angle VCp to the angle VCP,
that is, as the transverse motion of the body p to the transverse motion of
the body P, it is manifest that the body p, at the expiration of that time,
will be found in the place m. These things will be so, if the bodies p and P are
equally moved in the directions of the lines pC and PC, and are therefore urged
with equal forces in those directions. But if we take an angle pCn that is to
the angle pCk as the angle VCp to the angle VCP, and nC be equal to kC, in
that case the body p at the expiration of the time will really be in n; and 1s
therefore urged with a greater force than the body P, if the angle nCp is greater
than the angle ACp, that is, #f the orbit upk moves either progressively, or in a
retrograde direction, with a velocity greater than the double of that with which
the line CP is carried forwards; and with a less force if the retrograde motion
of the orbit is slower. And the difference of the forces will be as the interval mn
of the places through which the body would be carried by the action of that
difference in that given space of time. About the centre C with the interval Cn
or Ck suppose a circle described cutting the lines mr, mn produced in s and ¢,
and the rectangle mn-mi¢ will be equal to the rectangle mk-ms, and therefore

mk -ms

mn will be equal to . But since the triangles pCk, pCn, in a given time,

are of a given magnitude, kr and mr, and their difference mk, and their sum ms,
are inversely as the altitude pC, and therefore the rectangle mk - ms is inversely
as the square of the altitude pC. Moreover, mt is directly as Lgmt, that is, as the
mk-ms
mt '
that is, the nascent short line mn, and the difference of the forces proportional
thereto, are inversely as the cube of the altitude pC. Q.E.D.
Cor. 1. Hence the difference of the forces in the places P and p, or K and #,
is to the force with which a body may revolve with a circular motion from R to
K, in the same time that the body P in a fixed orbit describes the arc PK, as
mk-ms
mi

altitude pC. These are the first ratios of the nascent lines; and hence

the nascent line mn to the versed sine of the nascent arc RK, that is, as

2

to %{6’ or as mk -ms to the square of rk; that is, if we take given quantities F
and G in the same ratio to each other as the angle VCP bears to the angle VCp,
as GG —FF to FF. And, therefore, if from the centre C, with any distance CP
or Cp, there be described a circular sector equal to the whole area VPC, which
the body revolving in a fixed orbit hath by a radius drawn to the centre de-
scribed in any certain time, the difference of the forces, with which the body P
revolves in a fixed orbit, and the body p in a movable orbit, will be to the cen-
tripetal force, with which another body by a radius drawn to the centre can
uniformly describe that sector in the same time as the area VPC is described,
as GG—FF to FF. For that sector and the area pCk are to each other as the
times in which they are described.
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Cor. 11. If the orbit VPK be an ellipse, having its focus C, and its highest
apse V, and we suppose the ellipse upk similar and equal to it, so that pC may
be always equal to PC, and the angle VCp be to the angle VCP in the given
ratio of G to F; and for the altitude PC or pC we put A, and 2R for the latus
rectum of the ellipse, the force with
which a body may be made to re-
volve in a movable ellipse will be as
FF RGG-—-RFF
AATT A
Let the force with which a body
may revolve in a fixed ellipse be ex-

, and conversely.

pressed by the quantity g, and

FTF
the force in V will be v But the

force with which a body may re-
volve in a circle at the distance CV,
with the same velocity as a body
revolving in an ellipse has in V, is
to the force with which a body re-
volving in an ellipse is acted upon
in the apse V, as half the latus rec-
tum of the ellipse to the semidiam-
eter CV of the circle, and there-

fore is as I%; and the force which is to this as GG—FF to FF, is as

EC%@‘ ; and this force (by Cor. 1 of this Prop.) is the difference of the
forces in V, with which the body P revolves in the fixed ellipse VPK, and the
body p in the movable ellipse upk. Then since by this Proposition that differ-

ence at any other altitude A is to itself at the altitude CV as 4 1 the

CV3’
}%:‘RFF. Therefore to the

force g, by which the body may revolve in a fixed ellipse VPK, add the excess
B—G%i@ and the sum will be the whole force ii_i_w
a body may revolve in the same time in the movable ellipse upk.

Cor. 111. In the same manner it will be found, that, if the fixed orbit VPK be
an ellipse having its centre in the centre of the forces C, and there be supposed
a movable ellipse upk, similar, equal, and concentric to it; and 2R be the prin-
cipal latus rectum of that ellipse, and 2T the latus transversum, or greater
axis; and the angle VCp be continually to the angle VCP as G to F'; the forces
w1th which bodies may revolve in the fixed and movable ellipse, in equal times,

will be as F;;A and F,f:? +RGG A3RF

Cor. 1v. And universally, if the greatest altitude CV of the body be called T,
and the radius of the curvature which the orbit VPK has in V, that is, the

same difference in every altitude A will be as

by which

respectively.
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radius of a circle equally curved, be called R, and the centripetal force with
which a body may revolve in any fixed curve VPK at the place V be called
S"_I‘ETE’ and in other places P be indefinitely styled X; and the altitude CP be
called A, and G be taken to F in the given ratio of the angle VCp to the angle
VCP; the centripetal force with which the same body will perform the same
motions in the same time, in the same curve upk revolving with a circular

motion, will be as the sum of the forces X—i—VRGGA_aV RFF‘

Cor. v. Therefore the motion of a body in a fixed orbit being given, its angu-
lar motion round the centre of the forces may be increased or diminished in a
given ratio; and thence new fixed orbits may be found in which bodies may
revolve with new centripetal forces.

Cor. v1. Therefore if there be erected the line VP of an indeterminate length,
perpendicular to the line CV given by position, and CP be drawn, and Cp
equal to it, making the angle VCp having a given P
ratio to the angle VCP, the force with which a body v
may revolve in the curved line Vpk, which the point
p is continually describing, will be inversely as the
cube of the altitude Cp. For the body P, by its inertia
alone, no other force impelling it, will proceed uni-  ,
formly in the right line VP. Add, then, a force tending
to the centre C inversely as the cube of the altitude , C
CP or Cp, and (by what was just demonstrated) the
body will deflect from the rectilinear motion into the curved line Vpk. But this
curve Vpk is the same with the curve VPQ found in Cor. 111, Prop. 41, in which,
I said, bodies attracted with such forces would ascend obliquely.

ProrositTioN 45. PrRoOBLEM 31

To find the motion of the apsides in orbits approaching very near to circles.
This problem is solved arithmetically by reducing the orbit, which a body
revolving in a movable ellipse (as in Cor. 11 and 111 of the above Prop.) de-
scribes in a fixed plane, to the figure of the orbit whose apsides are required;
and then seeking the apsides of the orbit which that body describes in a fixed
plane. But orbits acquire the same figure, if the centripetal forces with which
they are described, compared between themselves, are made proportional at
equal altitudes. Let the point V be the highest apse, and write T for the great-
est altitude CV, A for any other altitude CP or Cp, and X for the difference of
the altitudes CV—CP; and the force with which a body moves in an ellipse

revolving about its focus C (as in Cor. 11), and which in Cor. 11 was as
FF RGG—-RFF FFA+RGG—RFF oL
, by substituting T —X for

AA+ e , that is, as e
. RGG—-RFF+TFF—-FFX
A, will become as A5
etal force is to be reduced to a fraction whose denominator is A3, and the
numerators are to be made analogous by collating together the homologous
terms. This will be made plainer by Examples.
Exam. 1. Let us suppose the centripetal force to be uniform, and therefore as

. In like manner any other centrip-
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3 3
ﬁa or, writing T — X for A in the numerator, aqT 3TTX1_33TXX X . Then
collating together the correspondent terms of the numerators, that is, those
that consist of given quantities with those of given quantities, and those of
quantities not given with those of quantities not given, it will become

RGG—RFF+TFF : T8= —FFX : —3TTX+43TXX-X3
=—FF: -3TT4H3TX -XX.
Now since the orbit is supposed extremely near to a circle, let it coincide with a
circle; and because in that case R and T become equal, and X is infinitely
diminished, the last ratios will be
GG : T?*=—-FF : —3TT,

and again, GG :FF=TT :3TT=1:3;

and therefore G is to F, that is, the angle VCp to the angle VCP, as 1 to /3.
Therefore since the body, in a fixed ellipse, in descending from the upper to the
lower apse, describes an angle, if I may so speak, of 180° the other body in a

movable ellipse, and therefore in the fixed plane we are treating of, will in its

descent from the upper to the lower apse, describe an angle VCp of 1\8/03 And

this comes to pass by reason of the likeness of this orbit which a body acted
upon by an uniform centripetal force describes, and of that orbit which a body
performing its circuits in a revolving ellipse will describe in a fixed plane. By
this collation of the terms, these orbits are made similar; not universally, in-
deed, but then only when they approach very near to a circular figure. A body,
therefore, revolving with an uniform centripetal force in an orbit nearly cir-

cular, will always describe an angle of \8/% , or 103° 55’ 23" at the centre;
moving from the upper apse to the lower apse when it has once described that
angle, and thence returning to the upper apse when it has described that angle
again; and so on n nfinitum.

Exam. 2. Suppose the centripetal force to be as any power of the altitude A,

as, for example, A" 3, or — A where n—3 and 7 signify any indices of powers

whatever, whether integers or fractions, rational or surd, affirmative or nega-
tive. That numerator A" or (T —X)" being reduced to an indeterminate series
by my method of converging series, will become

Tn —nXT"—1—+—nn P XXT2, &e.

And comparing these terms with the terms of the other numerator,
RGG —RFF+TFF —-FFX,|

1t becomes
RGG—RFF+TFF : Tr= —-FF : —nTr

And taking the last ratios where the orbits approach to circles, it becomes
RGG : Tr=—FF : —nT*},

or, GG : T '=FF : nT» 1,

and again, GG :FF=Tr1:nTr'=1:n;

and therefore G is to F, that is, the angle VCp to the angle VCP, as 1 to +/n.

Therefore since the angle VCP, described in the descent of the body from the

upper apse to the lower apse in an ellipse, is of 180° the angle VCp, described
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in the descent of the body from the upper apse to the lower apse in an orbit

nearly circular which a body describes with a centripetal force proportional to
o

\/0 , and this angle being repeated,
the body will return from the lower to the upper apse, and so on n nfinitum.
As if the centripetal force be as the distance of the body from the centre, that

the power A"~3, will be equal to an angle of

4
1s, as A, or % n will be equal to 4, and v/n equal to 2; and therefore the angle
(o]

between the upper and the lower apse will be equal to 1820 , or 90°. Therefore

the body having performed a fourth part of one revolution, will arrive at the
lower apse, and having performed another fourth part, will arrive at the upper
apse, and so on n infinitum. This appears also from Prop. x. For a body acted
on by this centripetal force will revolve in a fixed ellipse, whose centre is the
centre of force. If the centripetal force is inversely as the distance, that is,

directly as ‘}\ ﬁa, n will be equal to 2; and therefore the angle between the

upper and the lower apse will be 1\8/—02, or 127° 16" 45”; and hence a body re-

volving with such a force will, by a continual repetition of this angle, move
alternately from the upper to the lower and from the lower to the upper apse
forever. So, also, if the centripetal force be inversely as the fourth root of the
eleventh power of the altitude, that is, inversely as A4 and therefore directly

Alll, or as % n will be equal to 14, and 1807 will be equal to 360°; and
1 v'n

therefore the body parting from the upper apse, and from thence continually
descending, will arrive at the lower apse when 1t has completed one entire revo-
lution; and thence ascending continually, when it has completed another entire
revolution, it will arrive again at the upper apse; and so alternately forever.

ExawMm. 3. Taking m and n for any indices of the powers of the altitude, and b
and ¢ for any given numbers, suppose the centripetal force to be as (bA™+cA")
=+ A3, that is, as [b(T —X)™+¢(T —X)*]+ A3, or (by the method of converging
series above mentioned) as

(T4 cTr—mbXTm 1 —ncXTr 14+

—cXXTr 2 &e. ]+ A3,
and comparing the terms of the numerators, there will arise,
RGG—-RFF+TEFF : bT"+cT?»= —FF : —mbT™ '—ncT» 1+

mmz—m bX T 2+"" " eXT2, &e.

And taking the last ratios that arise when the orbits come to a circular form,
there will come forth
GG : bTm 14T 1=FF : mbT™ 14-ncT
and again, GG : FF=bT"" 14T ! : mbTr4-ncT 1
This proportion, by expressing the greatest altitude CV or T arithmetically by

unity, becomes, GG : FF=b+4c¢ : mb+nc=1 :mgicrLc

F, that is, the angle VCp to the angle VCP, as 1 to +/

mm—m nnm—n

bXXTm24

. Whence G becomes to

mb+nc
b+c

. And therefore,
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since the angle VCP between the upper and the lower apse, in a fixed ellipse, is

of 180° the angle VCp between the same apsides in an orbit which a body

bA™+4cA™
A3

. And by the same reasoning, if the centripetal force be

describes with a centripetal force, that is, as , will be equal to an

b+c
mb—+nc

, the angle between the apsides will be found equal to

o b—c
180° +/ oy S

After the same manner the Problem is solved in more difficult cases. The
quantity to which the centripetal force is proportional must always be resolved
into a converging series whose denominator is A%. Then the given part of the
numerator arising from that operation is to be supposed in the same ratio to
that part of it which is not given, as the given part of this numerator RGG
—RFF+TFF —FFXis to that part of the same numerator which is not given.
And taking away the superfluous quantities, and writing unity for T, the pro-
portion of G to F is obtained.

Cor. 1. Hence if the centripetal force be as any power of the altitude, that
power may be found from the motion of the apsides; and conversely. That is,
if the whole angular motion, with which the body returns to the same apse, be
to the angular motion of one revolution, or 360°, as any number as m to another
as n, and the altitude be called A; the force will be as the power Amm—3 of the

angle of 180° v/
bA™ —cA™
as T

altitude A; the index of which power is %—3. This appears by the second

Example. Hence it is plain that the force in its recess from the centre cannot
decrease in a greater than a cubed ratio of the altitude. A body revolving with
such a force, and parting from the apse, if it once begins to descend, can never
arrive at the lower apse or least altitude, but will descend to the centre, de-
scribing the curved line treated of in Cor. 111, Prop. 41. But if it should, at its
parting from the lower apse, begin to ascend ever so little, it will ascend in
infinttum, and never come to the upper apse; but will describe the curved line
spoken of in the same Cor., and Cor. vi, Prop. 45. So that where the force in its
recess from the centre decreases in a greater than a cubed ratio of the altitude,
the body at its parting from the apse, will either descend to the centre, or
ascend in infinitum, according as it descends or ascends at the beginning of its
motion. But if the force in its recess from the centre either decreases in a less
than a cubed ratio of the altitude, or increases in any ratio of the altitude what-
soever, the body will never descend to the centre, but will at some time arrive
at the lower apse; and, on the contrary, if the body alternately ascending and
descending from one apse to another never comes to the centre, then either the
force increases in the recess from the centre, or it decreases in a less than a
cubed ratio of the altitude; and the sooner the body returns from one apse to
another, the farther is the ratio of the forces from the cubed ratio. As if the
body should return to and from the upper apse by an alternate descent and
ascent in 8 revolutions, or in 4, or 2, or 114; that is, if m should be to n as 8, or

4, or 2, or 114 to 1, and therefore ;—22—3, be L%—3, or L{s—3, or 14 —3, or ¥4

—3; then the force will be as A%—3 or A%e=3 or A%-3 or A%-3; that is, it will be
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inversely as A3% or A %e or A®% or A% If the body after each revo-
lution returns to the same apse, and the apse remains unmoved, then m will be

ton as1tol, and therefore A7~ will be equal to A=% or —+ AA’ ; and therefore the

decrease of the forces will be in a squared ratio of the altitude; as was demon-
strated above. If the body in three fourth parts, or two thirds, or one third, or
one fourth part of an entire revolution, return to the same apse; m will be to n

as 34 or 25 or 14 or I{ to 1, and therefore A== —° is equal to A3, or A%=3, or
A3 or A3 and therefore the force is either inversely as A™ or A%, or
directly as A% or A3, Lastly if the body in its progress from the upper apse to
the same upper apse again, goes over one entire revolution and three degrees
more, and therefore that apse in each revolution of the body moves forward
three degrees, then m will be to n as 363° to 360°, or as 121 to 120, and therefore

Amm =3 will be equal to A~ 1382 and therefore the centripetal force will be in-

versely as A %, or inversely as A’7Es very nearly. Therefore the centripetal
force decreases in a ratio something greater than the squared ratio; but ap-
proaching 5934 times nearer to the squared than the cubed.

Cor. 11. Hence also if a body, urged by a centripetal force which is inversely
as the square of the altitude, revolves in an ellipse whose focus is in the centre
of the forces; and a new and foreign force should be added to or subtracted
from this centripetal force, the motion of the apsides arising from that foreign
force may (by the third Example) be known; and conversely: If the force with

which the body revolves in the ellipse be as KIK ; and the foreign force as cA,

and therefore the remaining force as A3 ; then (by the third Example) b

will be equal to 1, m equal to 1, and n equal to 4; and therefore the angle of
revolution between the apsides is equal to 180°\/ Suppose that foreign

force to be 357.45 times less than the other force Wlth whlch the body revolves

in the ellipse' that is, ¢ to be s3%%s, A or T being equal to 1; and then 180°
1—

V4 - 4 will be 180° /32852 or 180°-7623, that is, 180° 45’ 44". Therefore the
body, parting from the upper apse, will arrive at the lower apse with an angular
motion of 180° 45’ 44", and this angular motion being repeated, will return to
the upper apse; and therefore the upper apse in each revolution will go forward
1° 31’ 28”. The apse of the moon is about twice as swift.

So much for the motion of bodies in orbits whose planes pass through the
centre of force. It now remains to determine those motions in eccentric planes.
For those authors who treat of the motion of heavy bodies used to consider the
ascent and descent of such bodies, not only in a perpendicular direction, but at
all degrees of obliquity upon any given planes; and for the same reason we are
to consider in this place the motions of bodies tending to centres by means of
any forces whatsoever, when those bodies move in eccentric planes. These
planes are supposed to be perfectly smooth and polished, so as not to retard the
motion of the bodies in the least. Moreover, in these demonstrations, instead
of the planes upon which those bodies roll or slide, and which are therefore
tangent planes to the bodies, I shall use planes parallel to them, in which the
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centres of the bodies move, and by that motion describe orbits. And by the
same method I afterwards determine the motions of bodies performed in curved
surfaces.

SECTION X

THE MOTION OF BODIES IN GIVEN SURFACES; AND THE OSCILLATING
PENDULOUS MOTION OF BODIES

Prorosition 46. PROBLEM 32

Any kind of centripetal force being supposed, and the centre of force, and any plane
whatsoever in which the body revolves, being given, and the quadratures of curvi-
linear figures being allowed; it vs required to determine the motion of a body going
off from a given plane with a given velocity, in the direction of a given right line in
that plane.

Let S be the centre of force, SC the least distance of that centre from the
given plane, P a body issuing from the place P in the direction of the right line
PZ, Q the same body revolving in its curve, and PQR the curve itself which is
required to be found, described in that given plane. Join CQ, QS, and if in QS
we take SV proportional to the cen-
tripetal force with which the body
is attracted towards the centre S,
and draw VT parallel to CQ, and
Q C R meeting SC in T; then will the force
SV be resolved into two (by Cor. 11
of the Laws of Motion), the force
ST, and the force TV; of which ST
attracting the body in the direction
of a line perpendicular to that plane,
does not at all change its motion in
that plane. But the action of the
other force TV, coinciding with the
S position of the plane itself, attracts

the body directly towards the given
point C in that plane; and therefore causes the body to move in the plane in
the same manner as if the force ST were taken away, and the body were to re-
volve in free space about the centre C by means of the force TV alone. But
there being given the centripetal force TV with which the body Q revolves in
free space about the given centre C, there is given (by Prop. 42) the curve
PQR which the body describes; the place Q, in which the body will be found
at any given time; and, lastly, the velocity of the body in that place Q. And
conversely. Q.E.L.

P
Z

ProrosiTioN 47. THEOREM 15

Supposing the centripetal force to be proportional to the distance of the body from
the centre; all bodies revolving in any planes whatsoever will describe ellipses, and
complete their revolutions tn equal times; and those which move in right lines, run-
ning backwards and forwards alternately, will complete their several periods of
going and returning in the same times.
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For letting all things stand as in the foregoing Proposition, the force SV,
with which the body Q revolving in any plane PQR is attracted towards the
centre S, is as the distance SQ; and therefore because SV and SQ, TV and CQ
are proportional, the force TV with which the body is attracted towards the
given point C in the plane of the orbit, is as the distance CQ. Therefore the
forces with which bodies found in the plane PQR are attracted towards the
point C, are in proportion to the distances equal to the forces with which the
same bodies are attracted every way towards the centre S; and therefore the
bodies will move in the same times, and in the same figures, in any plane PQR
about the point C, as they would do in free spaces about the centre S; and
therefore (by Cor. 11, Prop. 10, and Cor. 11, Prop. 38) they will in equal times
either describe ellipses in that plane about the centre C, or move to and fro in
right lines passing through the centre C in that plane; completing the same
periods of time in all cases. Q.E.D.

ScHOLIUM

The ascent and descent of bodies in curved surfaces has a near relation to
these motions we have been speaking of. Imagine curved lines to be described
on any plane, and to revolve about any given axes passing through the centre
of force, and by that revolution to describe curved surfaces; and that the bodies
move in such sort that their centres may be always found in those surfaces. If
those bodies oscillate to and fro with an oblique ascent and descent, their
motions will be performed in planes passing through the axis, and therefore in
the curved lines, by whose revolution those curved surfaces were generated. In
those cases, therefore, it will be sufficient to consider the motion in those
curved lines.

ProrosiTiON 48. THEOREM 16

If a wheel stands upon the outside of a globe at right angles thereto, and revolving
about its own axis goes forwards in a great circle, the length of the curvilinear path
which any point, given in the perimeter of the wheel, hath described since the time
that it touched the globe (which curvilinear path we may call the cycloid or epi-
cycloid), will be to double the versed sine of half the arc which since that tme hath
touched the globe in passing over it, as the sum of the diameters of the globe and the
wheel to the semidiameter of the globe.

Prorosition 49. THEOREM 17

If a wheel stands upon the inside of a concave globe at right angles thereto, and
revolving about its own axis goes forwards in one of the great circles of the globe, the
length of the curvilinear path which any point, given in the perimeter of the wheel,
hath described since it touched the globe, will be to the double of the versed sine of
half the arc which in all that time hath touched the globe in passing over it, as the
difference of the diameters of the globe and the wheel to the semidiameter of the
globe.

Let ABL be the globe, C its centre, BPV the wheel resting on it, E the centre
of the wheel, B the point of contact, and P the given point in the perimeter of
the wheel. Imagine this wheel to proceed in the great circle ABL from A
through B towards L, and in its progress to revolve in such a manner that the
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arcs AB, PB may be always equal one to the other, and the given point P in the
perimeter of the wheel may describe in the meantime the curvilinear path AP.
Let AP be the whole curvilinear path described since the wheel touched the
globe in A, and the length of this path AP will be to twice the versed sine of
the arc 14PB as 2CE to CB. For let the right line CE (produced if need be)
meet the wheel in V, and join CP, BP, EP, VP; produce CP, and let fall there-
on the perpendicular VF. Let PH, VH, meeting in H, touch the circle in P and
V, and let PH cut VF in G, and to VP let fall the perpendiculars GI, HK. From

the centre C with any radius let there be described the circle nom, cutting the
right line CP in n, the perimeter of the wheel BP in 0, and the curvilinear path
AP in m; and from the centre V with the radius Vo let there be described a
circle cutting VP produced in g.

Because the wheel in its progress always revolves about the point of contact
B, it is manifest that the right line BP is perpendicular to that curved line AP
which the point P of the wheel describes, and therefore that the right line VP
will touch this curve in the point P. Let the radius of the circle nom be grad-
ually increased or diminished so that at last it becomes equal to the distance
CP; and by reason of the similitude of the evanescent figure Pnomg, and the
figure PFGV], the ultimate ratio of the evanescent short lines Pm, Pn, Po, Pgq,
that is, the ratio of the momentary increments of the curve AP, the right line
CP, the circular arc BP, and the right line VP, will be the same as of the lines
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PV, PF, PG, PI, respectively. But since VF is perpendicular to CF, and VH to
CV, and therefore the angles HVG, VCF equal; and the angle VHG (because
the angles of the quadrilateral HVEP are right in V and P) is equal to the angle
CEP, the triangles VHG, CEP will be similar; and thence it will come to pass
that EP :CE=HG :HV or HP=KI : PK,
and by addition or subtraction,

CB : CE=PI: PK,
and CB :2CE=PI : PV=Pq : Pm.
Therefore the decrement of the line VP, that is, the increment of the line
BV —VP to the increment of the curved line AP is in a given ratio of CB to
2CE, and therefore (by Cor., Lem. 4) the lengths BV — VP and AP, generated
by those increments, are in the same ratio. But if BV be radius, VP is the cosine
of the angle BVP or 4BEP, and therefore BV —VP is the versed sine of the
same angle, and therefore in this wheel, whose radius is 4BV, BV —VP will be
double the versed sine of the arc 4BP. Therefore AP is to double the versed
sine of the arc 4BP as 2CE to CB. Q.E.D.

The line AP in the former of these Propositions we shall name the cycloid
without the globe, the other in the latter Proposition the cycloid within the
globe, for distinction’s sake.

Cor. 1. Hence if there be described the entire cycloid ASL, and the same be
bisected in S, the length of the part PS will be to the length PV (which is the
double of the sine of the angle VBP, when EB is radius) as 2CE to CB, and
therefore in a given ratio.

Cor. 11. And the length of the semidiameter of the cycloid AS will be equal
to a right line which is to the diameter of the wheel BV as 2CE to CB.

Prorosition 50. PRoBLEM 33

To cause a pendulous body to oscillate in a given cycloid.

Let there be given within the globe QVS described with the centre C, the
cycloid QRS, bisected in R, and meeting the surface of the globe with its ex-
treme points Q and S on either
hand. Let there be drawn CR
bisecting the arc QS in O, and
let it be produced to A in such
sort that CA may be to CO as
CO to CR. About the centre C,
with the radius CA, let there
be described an exterior globe
DAF; and within this globe, by
a wheel whose diameter is AO,
let there be described two semi-
cycloids AQ, AS, touching the
interior globe in Q and S, and
meeting the exterior globe in A.
From that point A, with a
thread APT in length equal to
the line AR, let the body T be
suspended and oscillated in
such manner between the two
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semicycloids AQ, AS, that, as often as the pendulum parts from the perpen-
dicular AR, the upper part of the thread AP may be applied to that semi-
cycloid APS towards which the motion tends, and fold itself round that curved
line, as if it were some solid obstacle, the remaining part of the same thread
PT which has not yet touched the semicycloid continuing straight. Then will
the weight T oscillate in the given cycloid QRS. Q.E.F.
For let the thread PT meet the cycloid QRS in T, and the circle QOS in V,
and let CV be drawn; and to the rectilinear part of the thread PT from the ex-
treme points P and T let there be erected the perpendiculars BP, TW, meeting
the right line CV in B and W. It is evident, from the construction and genera-
tion of the similar figures AS, SR, that those perpendiculars PB, TW, cut off
from CV the lengths VB, VW, equal the diameters of the wheels OA, OR.
Therefore TP is to VP (which is double the sine of the angle VBP when 14BV
is radius) as BW to BV, or AO+OR to AO, that is (since CA and CO, CO and
CR, and by division AO and OR are proportional), as CA+CO to CA, or, if
BV be bisected in E, as 2CE to CB. Therefore (by Cor. 1, Prop. 49), the length
of the rectilinear part of the thread PT is always equal to the arc of the cycloid
PS, and the whole thread APT is always equal to half the cycloid APS, that is
(by Cor. 11, Prop. 49), to the length AR. And conversely, if the string is always
equal to the length AR, the point T will always move in the given cycloid QRS.
Q.E.D.
Cor. The string AR is equal to the semicycloid AS, and therefore has the
same ratio to AC, the semidiameter of the exterior globe, as the like semicycloid
SR has to CO, the semidiameter of the interior globe.

Prorosition 51. THEOREM 18

If a centripetal force tending on all sides to the centre C of a globe, be in all places

as the distance of the place from the centre; and, by this force alone acting upon it
the body T oscillate (in the manner above
described) in the perimeter of the cycloid
QRS: I say, that all the oscillations, how-
soever unequal in themselves, will be per-
formed in equal times.

For upon the tangent TW indefinitely
produced let fall the perpendicular CX,
and join CT. Because the centripetal
force with which the body T is impelled

Q™ towards Cis as the distance CT, let this

(by Cor. 11 of the Laws) be resolved into

the parts CX, TX, of which CX impelling

X the body directly from P stretches the
thread PT, and by the resistance the

thread makes to it is totally employed,

producing no other effect; but the other

part TX,impelling the body transversely

or towards X, directly accelerates the

motion in the cycloid. Then it is plain

that the acceleration of the body, proportional to this accelerating force, will
be every moment as the length TX, that is (because CV, WV, and TX, TW

-]

C
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proportional to them are given), as the length TW, that is (by Cor. 1, Prop.
39), as the length of the arc of the cycloid TR. If therefore two pendulums
APT, Apt, be unequally drawn aside from the perpendicular AR, and let fall
together, their accelerations will be always as the arcs to be described TR, (R.
But the parts described at the beginning of the motion are as the accelerations,
that is, as the whole spaces that are to be described at the beginning, and there-
fore the parts which remain to be described, and the subsequent accelerations
proportional to those parts, are also as the whole, and so on. Therefore the ac-
celerations, and consequently the velocities generated, and the parts described
with those velocities, and the parts to be described, are always as the whole;
and therefore the parts to be described preserving a given ratio to each other
will vanish together, that is, the two bodies oscillating will arrive together at
the perpendicular AR. And since on the other hand the ascent of the pendu-
lums from the lowest place R through the same cycloidal arcs with a retro-
grade motion, is retarded in the several places they pass through by the same
forces by which their descent was accelerated, it is plain that the velocities of
their ascent and descent through the same arcs are equal, and consequently
performed in equal times; and, therefore, since the two parts of the cycloid RS
and RQ lying on either side of the perpendicular are similar and equal, the
two pendulums will perform as well the whole as the half of their oscillations
in the same times. Q.E.D.

Cor. The force with which the body T is accelerated or retarded in any place
T of the cycloid, is to the whole weight of the same body in the highest place S
or Q as the arc of the cycloid TR is to the arc SR or QR.

ProrosiTioN 52. PrOBLEM 34

To define the velocities of pendulums in the several places, and the times in which
both the entire oscillations and their several parts are performed.

About any centre G, with the radius GH equal to the arc of the cycloid RS,
describe a semicircle HKM bisected by the semidiameter GK. And if a centri-
petal force proportional to the distance of the places from the centre tend to
the centre G, and it be in the perimeter HIK equal to the
centripetal force in the perimeter of the globe QOS tending I{(I Z
towards its centre, and at the same time that the pendulum
T is let fall from the highest place S, a body, as L, is let fall L J
from H to G; then because the forces which act upon the
bodies are equal at the beginning, and always proportional
to the spaces to be described TR, LG, and therefore if TR
and LG are equal, are also equal in the places T and L, it is
plain that those bodies deseribe at the beginning equal spaces
ST, HL, and therefore are still acted upon equally, and con-
tinue to describe equal spaces. Therefore by Prop. 38, the
time in which the body describes the arc ST is to the time of M
one oscillation, as the arc HI the time in which the body H arrives at L, to
the semiperiphery HKM, the time in which the body H will come to M. And
the velocity of the pendulous body in the place T is to its velocity in the
lowest place R, that is, the velocity of the body H in the place L to its velocity
in the place G, or the momentary increment of the line HL to the momentary
increment of the line HG (the arcs HI, HK increasing with an uniform velocity)

G K
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as the ordinate LI to the radius GK, or as +/(SR*—TR?) to SR. Hence, since
in unequal oscillations there are described in equal times arcs proportional to
the entire arcs of the oscillations, there are obtained, from the times given,
both the velocities and the arcs described in all the oscillations universally.
Which was first required.

Let now any pendulous bodies oscillate in different cycloids described within
different globes, whose absolute forces are also different; and if the absolute
force of any globe QOS be called V, the accelerative force with which the pen-
dulum is acted on in the circumference of this
globe, when it begins to move directly towards
its centre, will be as the distance of the pendulous
body from that centre and the absolute force of
the globe conjointly, that is, as CO-V. Therefore
the short line HY, which is as this accelerated
O force CO-V, will be described in a given time;
3 ) and if there be erected the perpendicular YZ
meeting the circumference in Z, the nascent arc
T R HZ will denote that given time. But that nascent
arc HZ varies as the square root of the rectangle
GH-HY, and therefore as +/(GH-CO-V).
Whence the time of an entire oscillation in the
cycloid QRS (it being as the semiperiphery
HKM, which denotes that entire oscillation, di-
rectly; and as the arc HZ, which in like manner denotes a given time, in-
versely) will be as GH directly and +/(GH-CO-V) inversely; that is, because
GH and SR are equal, as v/ C%-{V’ or (by Cor., Prop. 50), as \/%. There-
fore the oscillations in all globes and cycloids, performed with any absolute
forces whatever, vary directly as the square root of the length of the string, and
inversely as the square root of the distance between the point of suspension
and the centre of the globe, and also inversely as the square root of the absolute
force of the globe. Q.E.L

Cor. 1. Hence also the times of oscillating, falling, and revolving bodies may
be compared among themselves. For if the diameter of the wheel with which
the cycloid is described within the globe is supposed equal to the semidiameter
of the globe, the cycloid will become a right line passing through the centre of
the globe, and the oscillation will be changed into a descent and subsequent
ascent in that right line. Hence there is given both the time of the descent from
any place to the centre, and the time equal to it in which the body revolving
uniformly about the centre of the globe at any distance describes an arc of a
quadrant. For this time (by Case 2) is to the time of half the oscillation in any

cycloid QRS as 1 to \/i:—lé.

Cor. 11. Hence also follow what Sir Christopher Wren and Mr. Huygens
have discovered concerning the common cycloid. For if the diameter of the
globe be infinitely increased, its spherical surface will be changed into a plane,
and the centripetal force will act uniformly in the direction of lines perpendicu-
lar to that plane, and our cycloid will become the same with the common
cycloid. But in that case the length of the arc of the cycloid between that plane

A

ct
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and the describing point will become equal to four times the versed sine of half
the arc of the wheel between the same plane and the deseribing point, as was
discovered by Sir Christopher Wren. And a pendulum between two such cy-
cloids will osecillate in a similar and equal cycloid in equal times, as Mr. Huy-
gens demonstrated. The descent of heavy bodies also in the time of one oscil-
lation will be the same as Mr. Huygens exhibited.

The Propositions here demonstrated are adapted to the true constitution of
the earth, so far as wheels moving in any of its great circles will describe, by the
motions of nails fixed in their perimeters, cycloids without the globe; and
pendulums, in mines and deep caverns of the earth, must oscillate in cycloids
within the globe, that those oscillations may be performed in equal times. For
gravity (as will be shown in the third book) decreases in its progress from the
surface of the earth; upwards as the square root of the distances from the
centre of the earth; downwards as these distances.

ProrosiTiOoN 53. PROBLEM 35

Granting the quadratures of curvilinear figures, it 1s required to find the forces with
which bodies moving in given curved lines may always perform their oscillations in
equal times.

Let the body T oscillate in any curved line STRQ, whose axis is AR passing
through the centre of force C. Draw TX touching that curve in any place of
the body T, and in that tangent TX take TY A
equal to the arc TR. The length of that arc is
known from the common methods used for the
quadratures of figures. From the point Y draw
the right line YZ perpendicular to the tangent.
Draw CT meeting YZ in Z, and the centripetal
force will be proportional to the right line TZ.

Q.E.L

For if the force with which the body is at- 8 Q
tracted from T towards C be expressed by the
right line TZ taken proportional to it, that force R

will be resolved into two forces TY, YZ, of which
YZ, drawing the body in the direction of the
length of the thread PT, does not at all change
its motion; whereas the other force TY directly
accelerates or retards its motion in the curve
STRQ. Therefore since that force is as the
space to be described TR, the accelerations or
retardations of the body in describing two pro- C
portional parts (a greater and a less) of two oscillations, will be always as those
parts, and therefore will cause those parts to be described together. But bodies
which continually describe in the same time parts proportional to the whole,
will describe the whole in the same time. Q.E.D.
Cor. 1. Hence if the body T, hanging by a rectilinear thread AT from the
centre A, describe the circular arc STRQ, and in the meantime be acted on by
any force tending downwards with parallel directions, which is to the uniform
force of gravity as the arc TR to its sine TN, the times of the several oscilla-
tions will be equal. For because TZ, AR are parallel, the triangles ATN, ZTY
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A are similar;and therefore TZ will be to AT as TY to TN ;
that is, if the uniform force of gravity be expressed by
the given length AT, the force TZ, by which the oscil-
N lations become isochronous, will be to the force of grav-
L/ ity AT, as the arc TR equal to TY is to TN the sine of
R that are.
Y Cor. 11. And therefore in clocks, if forces are im-
pressed by some machine upon the pendulum which con-
7 tinues the motion, and so compounded with the force of
gravity that the whole force tending downwards will be
always as a line which is obtained by dividing the product of the arc TR
and the radius AR, by the sine TN, then all the oscillations will become
isochronous.

ProrosiTioN 54. PROBLEM 36

Granting the quadratures of curvilinear figures, it 1s required to find the times in
which bodies by means of any centripetal force will descend or ascend in any curved
lines in a plane passing through the centre of force.

Let the body descend from any place S, and move in any curve ST¢R given
in a plane passing through the centre of force C. Join CS, and let it be divided
into innumerable equal parts, and let Dd be one

of those parts. From the centre C, with the radii g 3
CD,Cd,let the circles DT, dt be described, meeting

the curved line ST/R in T and ¢. And because the

law of centripetal force is given, and also the alti- I;I e B XNT
tude CS from which the body at first fell, there gl N

will be given the velocity of the body in any other
altitude CT (by Prop. 39). But the time in which
the body describes the short line T¢tisasthe length
of that short line, that is, directly as the secant
of the angle tTC and inversely as the velocity.
Let the ordinate DN, proportional to this time,
be made perpendicular to the right line CS at the
point D, and because Dd is given, the rectangle
Dd-DX, that is, the area DNnd, will be propor- C"':
tional to the same time. Therefore if PN7 be a
curved line which the point N continually touches, and its asymptote be the
right line SQ standing upon the line CS at right angles, the area SQPND will
be proportional to the time in which the body in its descent hath described the
line ST; and therefore that area being found, the time is also given. Q.E.I.

ProrosiTioN 55. THEOREM 19

If a body move 1n any curved surface, whose axis passes through the centre of force,
and from the body a perpendicular be let fall upon the axis; and a line parallel and
equal thereto be drawn from any given point of the axis: I say, that this parallel line
will describe an area proportional to the time.

Let BKL be a curved surface, T a body revolving in it, STR a curve which
the body deseribes in the same, S the beginning of the curve, OMK the axis of
the curved surface, TIN a right line let fall perpendicularly from the body to the
axis; OP a line parallel and equal thereto drawn from the given point O in the
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axis; AP the path described by the point
P in the plane AOP in which the re-
volving line OP is found; A the be-
ginning of that path answering to the
point S; TC a right line drawn from the
body to the centre; TG a part thereof
proportional to the centripetal force with
which the body tends towards the centre
C; TM a right line perpendicular to the
curved surface; TI a part thereof pro-
portional to the force of pressure with
which the body urges the surface, and
therefore with which it is again repelled
by the surface towards M; PTF a right
line parallel to the axis and passing
through the body, and GF, TH right
lines let fall perpendicularly from the C
points G and T upon that parallel PHTF. I say, now, that the area AOP, de-
seribed by the radius OP from the beginning of the motion, is proportional to
the time. For the force TG (by Cor. 11 of the Laws of Motion) is resolved into
the forces TF, FG; and the force TI into the forces TH, HI; but the forces
TF, TH, acting in the direction of the line PF perpendicular to the plane
AOP, introduce no change in the motion of the body but in a direction perpen-
dicular to that plane. Therefore its motion, so far as it hath the same direction
with the position of the plane, that is, the motion of the point P, by which the
projection AP of the curve is described in that plane, is the same as if the forces
TTF, TH were taken away, and the body were acted on by the forces FG, HI
alone; that is, the same as if the body were to describe in the plane AOP the
curve AP by means of a centripetal force tending to the centre O, and equal
to the sum of the forces FG and HI. But with such a force as that (by Prop.1)
the area AOP will be described proportional to the time. Q.E.D.

Cogr. By the same reasoning, if a body, acted on by forces tending to two or
more centres in the same given right line CO, should describe in a free space
any curved line ST, the area AOP would be always proportional to the time.

ProrositioN 56. PROBLEM 37

Granting the quadratures of curvilinear figures, and supposing that there are given
both the law of centripetal force tending to a given centre, and the curved surface
whose axis passes through that centre; it is required to find the curve which a body
will describe in that surface, when going off from a given place with a given velocity,
and in a gwen direction in that surface.

The last construction remaining, let the body T go from the given place S,
in the direction of a line given by position, and turn into the curve sought STR,
whose orthographic projection in the plane BDO is AP. And from the given
velocity of the body in the altitude SC, its velocity in any other altitude TC
will be also given. With that velocity, in a given moment of time, let the body
describe the segment Tt of its curve and let Pp be the projection of that seg-
ment described in the plane AOP. Join Op, and a little circle being described
upon the curved surface about the centre T with the radius T¢, let the pro-
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jection of that little circle in the plane
AOP be the ellipse pQ. And because the
magnitude of that little circle T¢, and
TN or PO its distance from the axis CO
is also given, the ellipse pQ will be given
both in kind and magnitude, as also its
position to the right line PO. And since
the area POp isproportional to the time,
and therefore given because the time is
given, the angle POp will be given. And
thence will be given p the common in-
tersection of the ellipse and the right
line Op, together with the angle OPp, in
which the projection APp of the curve
cuts the line OP. But from thence (by
comparing Prop. 41, with its Cor. 11) the
C manner of determining the curve APp
easily appears. Then from the several points P of that projection erecting to
the plane AOP, the perpendiculars PT meeting the curved surface in T, there
will be given the several points T of the curve. Q.E.I.

SECTION XI

THE MOTIONS OF BODIES TENDING TO EACH OTHER WITH CENTRIPETAL FORCES

I have hitherto been treating of the attractions of bodies towards an im-
movable centre; though very probably there is no such thing existent in na-
ture. For attractions are made towards bodies, and the actions of the bodies
attracted and attracting are always reciprocal and equal, by Law 111; so that
if there are two bodies, neither the attracted nor the attracting body is truly
at rest, but both (by Cor. 1v of the Laws of Motion), being as it were mutually
attracted, revolve about a common centre of gravity. And if there be more
bodies, which either are attracted by one body, which is attracted by them
again, or which all attract each other mutually, these bodies will be so moved
among themselves, that their common centre of gravity will either be at rest,
or move uniformly forwards in a right line. I shall therefore at present go on to
treat of the motion of bodies attracting each other; considering the centripetal
forces as attractions; though perhaps in a physical strictness they may more
truly be called impulses. But these Propositions are to be considered as purely
mathematical; and therefore, laying aside all physical considerations, I make
use of a familiar way of speaking, to make myself the more easily understood
by a mathematical reader.

ProrosiTioN 57. THEOREM 20

Two bodies attracting each other mutually describe simzlar figures about their com-
mon centre of gravity, and about each other mutually.

For the distances of the bodies from their common centre of gravity are
inversely as the bodies; and therefore in a given ratio to each other; and thence,
by composition of ratios, in a given ratio to the whole distance between the
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bodies. Now these distances are carried round their common extremity with an
uniform angular motion, because lying in the same right line they never change
their inclination to each other. But right lines that are in a given ratio to each
other, and are carried round their extremities with an uniform angular motion,
describe upon planes, which either rest together with them, or are moved with
any motion not angular, figures entirely similar round those extremities. There-
fore the figures described by the revolution of these distances are similar. Q.E.D.

ProrosiTioN 58. THEOREM 21

If two bodies attract each other with forces of any kind, and revolve about the com-
mon centre of gravity: I say, that, by the same forces, there may be described round
etther body unmoved a figure similar and equal to the figures which the bodies so
moving describe round each other.

Let the bodies S and P revolve about their common centre of gravity C,
proceeding from S to T, and from P to Q. From the given point s let there be
continually drawn sp, sq, equal and parallel to SP, TQ; and the curve pqy,
which the point p describes in its revolution round the fixed point s, will be

similar and equal to the curves which the bodies S and P describe about each
other; and therefore, by Theor. 20, similar to the curves ST and PQV which the
same bodies describe about their common centre of gravity C; and that be-
cause the proportions of the lines SC, CP, and SP or sp, to each other, are given.

Caskg 1. The common centre of gravity C (by Cor. 1v of the Laws of Motion)
is either at rest, or moves uniformly in a right line. Let us first suppose it at
rest, and in s and p let there be placed two bodies, one immovable in s, the
other movable in p, similar and equal to the bodies S and P. Then let the right
lines PR and pr touch the curves PQ and pg in P and p, and produce CQ and
sq to R and 7. And because the figures CPRQ, sprq are similar, RQ will be to
rq as CP to sp, and therefore in a given ratio. Hence if the force with which the
body P is attracted towards the body S, and by consequence towards the
intermediate centre C, were to the force with which the body p is attracted
towards the centre s, in the same given ratio, these forces would in equal times
attract the bodies from the tangents PR, pr to the arcs PQ, pq, through the
intervals proportional to them RQ, rq; and therefore this last force (tending
to s) would make the body p revolve in the curve pgv, which would become
similar to the curve PQV, in which the first force obliges the body P to revolve;
and their revolutions would be completed in the same times. But because those
forces are not to each other in the ratio of CP to sp, but (by reason of the simi-
larity and equality of the bodies S and s, P and p, and the equality of the dis-
tances SP, sp) mutually equal, the bodies in equal times will be equally drawn
from the tangents; and therefore that the body p may be attracted through the
greater interval rq, there is required a greater time, which will vary as the
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square root of the intervals; because, by Lem. 10, the spaces described at the
beginning of the motion are as the square of the times. Suppose, then, the
velocity of the body p to be to the velocity of the body P as the square root of
the ratio of the distance sp to the distance CP, so that the arcs pq, PQ, which
are in a simple proportion to each other, may be described in times that are
as the square root of the distances; and the bodies P, p, always attracted by
equal forces, will describe round the fixed centres C and s similar figures PQV,
pqu, the latter of which pgu is similar and equal to the figure which the body
P describes round the movable body S. Q.E.D.

Cask 2. Suppose now that the common centre of gravity, together with the
space in which the bodies are moved among themselves, proceeds uniformly
in a right line; and (by Cor. v1 of the Laws of Motion) all the motions in this
space will be performed in the same manner as before; and therefore the bodies
will deseribe about each other the same figures as before, which will be there-
fore similar and equal to the figure pqv. Q.E.D.

Cor 1. Hence two bodies attracting each other with forces proportional to
their distance, describe (by Prop. 10), both round their common centre of
gravity, and round each other, concentric ellipses; and, conversely, if such
figures are described, the forces are proportional to the distances.

Cor. 11. And two bodies, whose forces are inversely proportional to the
square of their distance, describe (by Props. 11, 12, 13), both round their com-
mon centre of gravity, and round each other, conic sections having their focus
in the centre about which the figures are described. And, conversely, if such
figures are described, the centripetal forces are inversely proportional to the
square of the distance.

Cor. 111. Any two bodies revolving round their common centre of gravity
describe areas proportional to the times, by radii drawn both to that centre
and to each other. PropoSITION 59. THEOREM 22
The periodic time of two bodies S and P revolving round their common centre of
gravity C, is to the pertodic time of one of the bodies P revolving round the other S
remaining fixed, and describing a figure similar and equal to those which the bodies
describe about each other, as /S is to A/ (S+P).

For, by the demonstration of the last Proposition, the times in which any
similar arcs PQ and pq are described are as +/CP is to +/SP, or 4/sp, that is,
as v/S is to v/(S+P). And by composition of ratios, the sums of the times in
which all the similar arcs PQ and pq are described, that is, the whole times in
which the whole similar figures are described, are in the same ratio, /S to

v (S+P). Q.E.D.

ProrosiTion 60. THEOREM 23

If two bodies S and P, attracting each other with forces tnversely proportional to
the square of their distance, revolve about their common centre of gravity: I say,
that the principal axis of the ellipse which either of the bodies, as P, describes by
this motion about the other S, will be to the principal axis of the ellipse, which the
same body P may describe in the same periodic time about the other body S fized,
as the sum of the two bodies S+P to the first of two mean proportionals between
that sum and the other body S.

For if the ellipses described were equal to each other, their periodic times by
the last Theorem would be as the square root of the ratio of the body S to the
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sum of the bodies S+ P. Let the periodic time in the latter ellipse be diminished
in that ratio, and the periodic times will become equal; but, by Prop. 15, the
principal axis of the ellipse will be diminished in a ratio which is the 3/4th power
of the former ratio; that is, in a ratio to which the ratio of S to S+ P is the cube,
and therefore that axis will be to the principal axis of the other ellipse as the
first of two mean proportionals between S+P and S to S+P. And inversely the
principal axis of the ellipse described about the movable body will be to the
principal axis of that described round the immovable as S+P to the first of
two mean proportionals between S+4-P and S. Q.E.D.

ProrosiTioN 61. THEOREM 24

If two bodies attracting each other with any kind of forces, and not otherwise
agitated or obstructed, are moved in any manner whatsoever, those motions will be
the same as if they did not at all attract each other, but were both attracted with the
same forces by a third body placed in their common centre of gravity; and the law
of the attracting forces will be the same in respect of the distance of the bodies from
the common centre, as in respect of the distance between the two bodies.

For those forces with which the bodies attract each other, by tending to the
bodies, tend also to the common centre of gravity lying directly between them;
and therefore are the same as if they proceeded from an intermediate body.

Q.E.D.

And because there is given the ratio of the distance of either body from that
common centre to the distance between the two bodies, there is given, of
course, the ratio of any power of one distance to the same power of the other
distance; and also the ratio of any quantity derived in any manner from one of
the distances compounded in any manner with given quantities, to another
quantity derived in like manner from the other distance, and as many given
quantities having that given ratio of the distances to the first. Therefore if the
force with which one body is attracted by another be directly or inversely as
the distance of the bodies from each other, or as any power of that distance;
or, lastly, as any quantity derived after any manner from that distance com-
pounded with given quantities; then will the same force with which the same
body is attracted to the common centre of gravity be in like manner directly
or inversely as the distance of the attracted body from the common centre, or
as any power of that distance; or, lastly, as a quantity derived in like sort from
that distance compounded with analogous given quantities. That is, the law
of attracting force will be the same with respect to both distances. Q.E.D.

ProrosiTioN 62. PROBLEM 38

To determine the motions of two bodies which attract each other with forces tnversely
proportional to the squares of the distance between them, and are let fall from given
places.

The bodies, by the last Theorem, will be moved in the same manner as if
they were attracted by a third placed in the common centre of their gravity;
and by the hypothesis that centre will be fixed at the beginning of their motion,
and therefore (by Cor. 1v of the Laws of Motion) will be always fixed. The
motions of the bodies are therefore to be determined (by Prob. 25) in the same
manner as if they were impelled by forces tending to that centre; and then we
shall have the motions of the bodies attracting each other. Q.E.L



Book I: Tar MotioN oF Bobiks 115

ProrosiTioN 63. PROBLEM 39

To determine the motions of two bodies atiracting each other with forces inversely
proportional to the squares of their distance, and going off from given places in
given directrons with given velocities.

The motions of the bodies at the beginning being given, there is given also
the uniform motion of the common centre of gravity, and the motion of the
space which moves along with this centre uniformly in a right line, and also
the very first,or beginning motions of the bodies in respect of this space. Then
(by Cor. v of the Laws, and the last Theorem) the subsequent motions will be
performed in the same manner in that space, as if that space together with the
common centre of gravity were at rest, and as if the bodies did not attract each
other, but were attracted by a third body placed in that centre. The motion
therefore in this movable space of each body going off from a given place, in
a given direction, with a given velocity, and acted upon by a centripetal force
tending to that centre, is to be determined by Probs. 9 and 26, and at the same
time will be obtained the motion of the other round the same centre. With
this motion compound the uniform progressive motion of the entire system of
the space and the bodies revolving in it, and there will be obtained the absolute
motion of the bodies in immovable space. Q.E.I.

ProrosiTiox 64. PrRoBLEM 40

Supposing forces with which bodies attract each other to increase in a simple ratio
of their distances from the centres; it is required to find the motions of several bodies
among themselves.

Suppose the first two bodies T and L to have their common centre of gravity
in D. These, by Cor. 1, Theor. 21, will describe ellipses having their centres in
D, the magnitudes of which ellipses are known by Prob. 5.

Let now a third body S attract the two former T and L with the accelerative
forces ST, SL, and let it be attracted again by them. The force ST (by Cor. 11
of the Laws of Motion) is resolved into the forces SD, DT; and the force SL
into the forces SD and DL. Now the forces DT, DL, which are as their sum

TL, and therefore as the accelerative
s@ ¢ D tract each other, added to the forces of the

bodies T and L, the first to the first, and
the last to the last, compose forces propor-
tional to the distances DT and DL as be-
L fore, but only greater than those former
forces; and therefore (by Cor. 1, Prop. 10,
and Cor. 1 and viii, Prop. 4) they will
cause those bodies to describe ellipses as before, but with a swifter motion.
The remaining accelerative forces SD and DL, by the motive forces SD-T
and SD-L, which are as the bodies attracting those bodies equally and in the
direction of the lines TT, LK parallel to DS, donotat all change their situations
with respect to one another, but cause them equally to approach to the line
IK; which must be imagined drawn through the middle of the body S, and
perpendicular to the line DS. But that approach to the line IK will be hindered
by causing the system of the bodies T and L on one side, and the body S on the
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other, with proper velocities, to revolve round the common centre of gravity
C. With such a motion the body S, because the sum of the motive forces
SD-T and SD-L is proportional to the distance CS, tends to the centre C,
and will describe an ellipse round that centre; and the point D, because the
lines CS and CD are proportional, will describe a like ellipse over against it.
But the bodies T and L, attracted by the motive forces SD-T and SD-L, the
first by the first, and the last by the last, equally and in the direction of the
parallel lines TT and LXK, as was said before, will (by Cor. v and v1 of the Laws
of Motion) continue to describe their ellipses round the movable centre D, as
before. Q.E.L.

Let there be added a fourth body V, and, by the like reasoning, it will be
demonstrated that this body and the point C will describe ellipses about the
common centre of gravity B; the motions of the bodies T, L, and S round the
centres D and C remaining the same as before, but accelerated. And by the
same method one may add yet more bodies at pleasure. Q.E.IL

This would be the case, though the bodies T and L should attract each other
with accelerative forces greater or less than those with which they attract the
other bodies in proportion to their distance. Let all the accelerative attractions
be to each other as the distances multiplied into the attracting bodies; and
from what has gone before it will easily be concluded that all the bodies will
describe different ellipses with equal periodic times about their common centre
of gravity B, in an immovable plane. Q.E.I.

ProrosiTioN 65. THEOREM 25

Bodies, whose forces decrease as the square of their distances from their centres,
may move among themselves in ellipses; and by radii drawn to the foct may describe
areas very nearly proportional to the times.

In the last Proposition we demonstrated that case in which the motions will
be performed exactly in ellipses. The more distant the law of the forces is
from the law in that case, the more will the bodies disturb each other’s motions;
neither is it possible that bodies attracting each other according to the law
supposed in this Proposition should move exactly in ellipses, unless by keeping
a certain proportion of distances from each other. However, in the following
cases the orbits will not much differ from ellipses.

Cask 1. Imagine several lesser bodies to revolve about some very great one
at different distances from it, and suppose absolute forces tending to every one
of the bodies proportional to each. And because (by Cor. 1v of the Laws) the
common centre of gravity of them all is either at rest, or moves uniformly
forwards in a right line, suppose the lesser bodies so small that the great body
may be never at a sensible distance from that centre; and then the great body
will, without any sensible error, be either at rest, or move uniformly forwards
in a right line; and the lesser will revolve about that great one in ellipses, and
by radii drawn thereto will describe areas proportional to the times; if we ex-
cept the errors that may be introduced by the receding of the great body from
the common centre of gravity, or by the actions of the lesser bodies upon each
other. But the lesser bodies may be so far diminished, as that this recess and
the actions of the bodies on each other may become less than any assignable;
and therefore so as that the orbits may become ellipses, and the areas answer
to the times, without any error that is not less than any assignable. Q.E.O.



Boox I: Tue Moriox orF Bobiks 117

Cask 2. Let us imagine a system of lesser bodies revolving about a very
great one in the manner just described, or any other system of two bodies
revolving about each other, to be moving uniformly forwards in a right line,
and in the meantime to be impelled sideways by the force of another vastly
greater body situate at a great distance. And because the equal accelerative
forces with which the bodies are impelled in parallel directions do not change
the situation of the bodies with respect to each other, but only oblige the whole
system to change its place while the parts still retain their motions among
themselves, it is manifest that no change in those motions of the attracted
bodies can arise from their attractions towards the greater, unless by the in-
equality of the accelerative attractions, or by the inclinations of the lines to-
wards each other, in whose directions the attractions are made. Suppose,
therefore, all the accelerative attractions made towards the great body to be
among themselves inversely as the squares of the distances; and then, by in-
creasing the distance of the great body till the differences of the right lines
drawn from that to the others in respect of their length, and the inclinations
of those lines to each other, be less than any given, the motions of the parts of
the system will continue without errors that are not less than any given. And
because, by the small distance of those parts from each other, the whole sys-
tem is attracted as if it were but one body, it will therefore be moved by this
attraction as if it were one body; that is, its centre of gravity will describe
about the great body one of the conic sections (that is, a parabola or hyperbola
when the attraction is but languid and an ellipse when it is more vigorous) ; and
by radii drawn thereto, it will describe areas proportional to the times, without
any errors but those which arise from the distances of the parts, and these are
by the supposition exceedingly small, and may be diminished at pleasure. q.E.o.

By a like reasoning one may proceed to more complicated cases in infinitum.

Cor. 1. In the second Case, the nearer the very great body approaches to
the system of two or more revolving bodies, the greater will the perturbation
be of the motions of the parts of the system among themselves; because the
inclinations of the lines drawn from that great body to those parts become
greater; and the inequality of the proportion is also greater.

Cor. 11. But the perturbation will be greatest of all, if we suppose the accel-
erative attractions of the parts of the system towards the greatest body of all
are not to each other inversely as the squares of the distances from that great
body; especially if the inequality of this proportion be greater than the in-
equality of the proportion of the distances from the great body. For if the ac-
celerative force, acting in parallel directions and equally, causes no perturba-
tion in the motions of the parts of the system, it must of course, when it acts
unequally, cause a perturbation somewhere, which will be greater or less as
the inequality is greater or less. The excess of the greater impulses acting upon
some bodies, and not acting upon others, must necessarily change their situa-
tion among themselves. And this perturbation, added to the perturbation
arising from the inequality and inclination of the lines, makes the whole per-
turbation greater.

Cor. 111. Hence if the parts of this system move in ellipses or circles without
any remarkable perturbation, it is manifest that, if they are at all impelled by
accelerative forces tending to any other bodies, the impulse is very weak, or
else is impressed very near equally and in parallel directions upon all of them.
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ProrositioN 66. THEOREM 26

If three bodies, whose forces decrease as the square of the distances, attract each
other; and the accelerative attractions of any two towards the third be between them-
selves inversely as the squares of the distances; and the two least revolve about the
greatest: I say, that the intertor of the two revolring bodies will, by radit drawn to
the innermost and greatest, describe round that body areas more proportional to the
times, and a figure more approaching to that of an ellipse having ts focus in the
point of intersection of the radii, if that great body be agitated by those attractions,
than it would do if that great body were not attracted at all by the lesser, but re-
mained at rest; or than it would do if that great body were very much more or very
much less attracted, or very much more or very much less agttated, by the attractions.

This appears plainly enough from the demonstration of the second Corollary
of the foregoing Proposition; but it may be made out after this manner by a
way of reasoning more distinct and more universally convincing.

Cask 1. Let the lesser bodies P and S revolve in the same plane about the
greatest body T, the body P describing the interior orbit PAB, and S the
exterior orbit ESE. Let SK be the mean distance of the bodies P and S; and
let the accelerative attraction of the body P towards S, at that mean distance,
be expressed by that line SK. Make SIL to SK as the square of SK to the
square of SP,and SL will be the accelerative attraction of the body P towards S
at any distance SP. Join PT, and draw LM parallel to it meeting ST in M; and

E

E

the attraction SL will be resolved (by Cor. 11 of the Laws of Motion) into the
attractions SM, LM. And so the body P will be urged with a threefold accel-
erative force. One of these forces tends towards T, and arises from the mutual
attraction of the bodies T and P. By this force alone the body P would deseribe
round the body T, by the radius PT, areas proportional to the times, and an
ellipse whose focus is in the centre of the body T'; and this it would do whether
the body T remained unmoved, or whether it were agitated by that attraction.
This appears from Prop. 11, and Cor. 11 and 111 of Theor. 21. The other force is
that of the attraction LM, which, because it tends from P to T, will be super-
added to and coincide with the former force; and cause the areas to be still
proportional to the times, by Cor. 111. Theor. 21. But because it is not inversely
proportional to the square of the distance PT, it will compose, when added to
the former, a force varying from that proportion; this variation will be the
greater by as much as the proportion of this force to the former is greater,
other things remaining the same. Therefore, since by Prop. 11, and by Cor. 11,
Theor. 21, the force with which the ellipse is described about the focus T ought
to be directed to that focus, and to be inversely proportional to the square of
the distance PT, that compounded force varying from that proportion will
make the orbit PAB vary from the figure of an ellipse that has its focus in the
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point T; and so much the more by as much as the variation from that propor-
tion is greater; and in consequence by as much as the proportion of the second
force LM to the first force is greater, other things remaining the same. But now
the third force SM, attracting the body P in a direction parallel to ST, com-
poses with the other forces a new force which is no longer directed from P to T;
and this varies so much more from this direction by as much as the proportion
of the third force to the other forces is greater, other things remaining the
same; and therefore causes the body P to describe, by the radius TP, areas no
longer proportional to the times; and therefore makes the variation from that
proportionality so much greater by as much as the proportion of this force to
the others is greater. But this third force will increase the variation of the orbit
PAB from the elliptical figure before mentioned upon two accounts: first, be-
cause that force is not directed from P to T; and, secondly, because it is not
inversely proportional to the square of the distance PT. These things being
premised, it is manifest that the areas are then most nearly proportional to the
times, when that third forceisthe least possible, the rest preserving their former
quantity; and that the orbit PAB does then approach nearest to the elliptical
figure above mentioned, when both the second and third, but especially the
third force, is the least possible; the first force remaining in its former quantity.

Let the accelerative attraction of the body T towards S be expressed by the
line SN ; then if the accelerative attractions SM and SN were equal, these,
attracting the bodies T and P equally and in parallel directions, would not at
all change their situation with respect to each other. The motions of the bodies
between themselves would be the same in that case as if those attractions did
not act at all, by Cor. v1 of the Laws of Motion. And, by a like reasoning, if the
attraction SN is less than the attraction SM, it will take away out of the at-
traction SM the part SN, so that there will remain only the part (of the attrac-
tion) MN to disturb the proportionality of the areas and times, and the ellip-
tical figure of the orbit. And in like manner if the attraction SN be greater
than the attraction SM, the perturbation of the orbit and proportion will be
produced by the difference MN alone. After this manner the attraction SN
reduces always the attraction SM to the attraction MN, the first and second
attractions remaining perfectly unchanged; and therefore the areas and times
come then nearest to proportionality, and the orbit PAB to the above-men-
tioned elliptical figure, when the attraction MN is either none, or the least
that is possible; that is, when the accelerative attractions of the bodies P and
T approach as near as possible to equality; that is, when the attraction SN is
neither none at all, nor less than the least of all the attractions SM, but is, as
1t were, a mean between the greatest and least of all those attractions SM,
that is, not much greater nor much less than the attraction SK. Q.E.D.

Cask 2. Let now the lesser bodies P, S revolve about a greater T in different
planes; and the force LM, acting in the direction of the line PT situated in the
plane of the orbit PAB, will have the same effect as before; neither will it draw
the body P from the plane of its orbit. But the other force NM, acting in the
direction of a line parallel to ST (and therefore, when the body S is without the
line of the nodes, inclined to the plane of the orbit PAB), besides the perturba-
tion of the motion just now spoken of as to longitude, introduces another per-
turbation also as to latitude, attracting the body P out of the plane of its orbit.
And this perturbation, in any given situation of the bodies P and T to each



120 MATHEMATICAL PRINCIPLES

other, will be as the generating force MN; and therefore becomes least when
the force MN is least, that is (as was just now shown), where the attraction
SN is not much greater nor much less than the attraction SK. Q.E.D.

Cor. 1. Hence it may be easily inferred, that if several less bodies P, S, R,
&c., revolve about a very great body T, the motion of the innermost revolving
body P will be least disturbed by the attractions of the others, when the great
body is as well attracted and agitated by the rest (according to the ratio of the
accelerative forces) as the rest are by each other.

Cor. 11. In a system of three bodies T, P, S, if the accelerative attractions
of any two of them towards a third be to each other inversely as the squares
of the distances, the body P, by the radius PT, will describe its area about the
body T swifter near the conjunction A and the opposition B than it will near
the quadratures C and D. For every force with which the body P is acted on
and the body T is not, and which does not act in the direction of the line PT,
does either accelerate or retard the description of the area, according as its
direction is the same as, or contrary to that of the motion of the body. Such is
the force N M. This force in the passage of the body P from C to A tends in the
direction in which the body is moving, and therefore accelerates it; then as far
as D, it tends in the opposite direction, and retards the motion; then in the
direction of the body, as far as B; and lastly in a contrary direction, as it moves
from B to C.

Cor. 111. And from the same reasoning it appears that the body P, other
things remaining the same, moves more swiftly in the conjunction and opposi-
tion than in the quadratures.

Cor. 1v. The orbit of the body P, other things remaining the same, is more
curved at the quadratures than at the conjunction and opposition. For the
swifter bodies move, the less they deflect from a rectilinear path. And besides,
the force KL, or NM, at the conjunction and opposition, is contrary to the
force with which the body T attracts the body P, and therefore diminishes that
force; but the body P will deflect the less from a rectilinear path the less it is
impelled towards the body T.

E

E

Cor. v. Hence the body P, other things remaining the same, goes farther
from the body T at the quadratures than at the conjunction and opposition.
This is said, however, when no account is taken of the variable eccentricity.
For if the orbit of the body P be eccentric, its eccentricity (as will be shown
presently by Cor. 1x) will be greatest when the apsides are in the syzygies;
and thence it may sometimes come to pass that the body P, in its near approach
to the farther apse, may go farther from the body T at the syzygies than at the
quadratures.

Cor. vI. Because the centripetal force of the central body T, by which the
body P is retained in its orbit, is increased at the quadratures by the addition
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caused by the force LM, and diminished at the syzygies by the subtraction
of the force KL, and, because the force KL is greater than LM, it is more
diminished than increased; and, moreover, since that centripetal force (by Cor.
11, Prop. 4) varies directly as the radius TP, and inversely as the square of the
periodical time, it is plain that the resulting ratio is diminished by the action
of the force KL; and therefore that the periodical time, supposing the radius
of the orbit PT to remain the same, will be increased, and that as the square
root of that ratio in which the centripetal force is diminished; and, therefore,
supposing this radius increased or diminished, the periodical time will be in-
creased more or diminished less than in the 34th power of this radius, by Cor.
v1, Prop. 4. If that force of the central body should gradually decay, the body
P being less and less attracted would go farther and farther from the centre T;
and, on the contrary, if it were increased, it would draw nearer to it. Therefore
if the action of the distant body S, by which that force is diminished, were to
increase and decrease by turns, the radius TP would be also increased and
diminished by turns; and the periodical time would be increased and dimin-
ished in a ratio compounded of the 34th power of the ratio of the radius, and
of the square root of that ratio in which the centripetal force of the central
body T was diminished or increased, by the increase or decrease of the action
of the distant body S.

Cor. vi1. It also follows, from what was before laid down, that the axis of
the ellipse described by the body P, or the line of the apsides, does as to its
angular motion go forwards and backwards by turns, but more forwards than
backwards, and by the excess of its direct motion is on the whole carried for-

E
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wards. For the force with which the body P is urged to the body T at the
quadratures, where the force MN vanishes, is compounded of the force LM
and the centripetal force with which the body T attracts the body P. The
first force LM, if the distance PT be increased, is increased in nearly the same
proportion with that distance, and the other force decreases as the square
of the ratio of the distance; and therefore the sum of these two forces de-
creases in less than the square of the ratio of the distance PT; and therefore,
by Cor. 1, Prop. 45, will make the line of the apsides, or, which is the same
thing, the upper apse, to go backwards. But at the conjunction and opposition
the force with which the body P is urged towards the body T is the difference
of the force KL, and of the force with which the body T attracts the body P;
and that difference, because the force KL is very nearly increased in the ratio
of the distance PT, decreases in more than the square of the ratio of the dis-
tance PT; and therefore, by Cor. 1, Prop. 45, causes the line of the apsides to
go forwards. In the places between the syzygies and the quadratures, the
motion of the line of the apsides depends upon both of these causes conjointly,
so that it either goes forwards or backwards in proportion to the excess of one
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of these causes above the other. Therefore since the force KL in the syzygies
is almost twice as great as the force LM in the quadratures, the excess will be
on the side of the force I<1., and by consequence the line of the apsides will be
carried forwards. The truth of this and the foregoing Corollary will be more
easily understood by conceiving the system of the two bodies T and P to be
surrounded on every side by several bodies S, S, S, &ec., disposed about the
orbit ESE. For by the actions of these bodies the action of the body T will be
diminished on every side, and decrease in more than the square of the ratio of
the distance.

Cor. vIir. But since the direct or retrograde motion of the apsides depends
upon the decrease of the centripetal force, that is, upon its being in a greater
or less ratio than the square of the ratio of the distance TP, in the passage of
the body from the lower apse to the upper; and upon a like increase in its
return to the lower apse again; and therefore becomes greatest where the pro-
portion of the force at the upper apse to the force at the lower apse recedes
farthest from the inverse square of the ratio of the distances; it is plain that,
when the apsides are in the syzygies, they will, by reason of the subtracted
force KL or NM~LM, go forwards more swiftly; and in the quadratures by
the additional force LM go backwards more slowly. Because the velocity of the
progression or the slowness of the retrogression is continued for a long time,
this inequality becomes exceedingly great.

Cor. 1x. If a body is obliged, by a force inversely proportional to the square
of its distance from any centre, to revolve in an ellipse round that centre; and
afterwards in its descent from the upper apse to the lower apse, that force by
a continual accession of new force is increased in more than the square of the
ratio of the diminished distance; it is manifest that the body, being impelled
always towards the centre by the continual accession of this new force, will
incline more towards that centre than if it were urged by that force alone which
decreases as the square of the diminished distance, and therefore will describe
an orbit interior to that elliptical orbit, and at the lower apse approaching
nearer to the centre than before. Therefore the orbit by the accession of this
new force will become more eccentric. If now, while the body is returning from
the lower to the upper apse, it should decrease by the same degrees by which
it increased before, the body would return to its first distance; and therefore if
the force decreases in a yet greater ratio, the body, being now less attracted
than before, will ascend to a still greater distance, and so, the eccentricity of the
orbit will be increased still more. Therefore if the ratio of the increase and
decrease of the centripetal force be augmented with each revolution, the eccen-
tricity will be augmented also; and, on the contrary, if that ratio decrease, it
will be diminished.

Now, therefore, in the system of the bodies T, P, S, when the apsides of the
orbit PAB are in the quadratures, the ratio of that increase and decrease is
least of all, and becomes greatest when the apsides are in the syzygies. If the
apsides are placed in the quadratures, the ratio near the apsides is less, and
near the syzygies greater, than the square of the ratio of the distances; and
from that greater ratio arises a direct motion of the line of the apsides, as was
just now said. But if we consider the ratio of the whole increase or decrease in
the progress between the apsides, this is less than the square of the ratio of the
distances. The force in the lower is to that in the upper apse in less than the
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square of the ratio of the distance of the upper apse from the focus of the ellipse
to the distance of the lower apse from the same focus; and conversely, when
the apsides are placed in the syzygies, the force in the lower apse is to the force
in the upper apse in a greater than the square of the ratio of the distances. For
the forces LM in the quadratures added to the forces of the body T, compose
forces in a less ratio; and the forces KL in the syzygies subtracted from the
forces of the body T, leave the forces in a greater ratio. Therefore the ratio of
the whole increase and decrease in the passage between the apsides is least at
the quadratures and greatest at the syzygies; and therefore in the passage of
the apsides from the quadratures to the syzygies it is continually augmented,
andincreases the eccentricity of theellipse;and in the passage from the syzygies
to the quadratures it is continually decreasing, and diminishes the eccentricity.
Cor. x. That we may give an account of the errors of latitude, let us suppose
the plane of the orbit EST to remain immovable; and from the cause of the
errors above explained, it is manifest that, of the two forces NM, ML, which
are the only and entire cause of them, the force ML acting always in the plane
of the orbit PAB never disturbs the motions as to latitude; and that the force
NM, when the nodes are in the syzygies, acting also in the same plane of the
orbit, does not at that time affect those motions. But when the nodes are in the
quadratures, it disturbs them very much, and, attracting the body P contin-
ually out of the plane of its orbit, it diminishes the inclination of the plane in
the passage of the body from the quadratures to the syzygies, and again in-
creases the same in the passage from the syzygies to the quadratures. Hence it
comes to pass that when the body is in the syzygies, the inclination is then
least of all, and returns to the first magnitude nearly, when the body arrives
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at the next node. But if the nodes are situated at the octants after the quad-
ratures, that is, between C and A, D and B, it will appear, from what was just
now shown, that in the passage of the body P from either node to the ninetieth
degree from thence, the inclination of the plane is continually diminished;
then, in the passage through the next 45 degrees to the next quadrature, the
inclination is increased; and afterwards, again, in its passage through another
45 degrees to the next node, it is diminished. Therefore the inclination is more
diminished than increased, and is therefore always less in the subsequent node
than in the preceding one. And, by a like reasoning, the inclination is more
increased than diminished when the nodes are in the other octants between
A and D, B and C. The inclination, therefore, is the greatest of all when the
nodes are in the syzygies. In their passage from the syzygies to the quadratures
the inclination is diminished at each appulse of the body to the nodes; and
becomes least of all when the nodes are in the quadratures, and the body in the
syzygies; then it increases by the same degrees by which it decreased before; and,
when the nodes come to the next syzygies, returns to its former magnitude.
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Cor. x1. Because when the nodes are in the quadratures the body P is con-
tinually attracted from the plane of its orbit; and because this attraction is
made towards S in its passage from the node C through the conjunction A to
the node D; and in the opposite direction in its passage from the node D
through the opposition B to the node C; it is manifest that, in its motion from
the node C, the body recedes continually from the former plane CD of its orbit
till it comes to the next node; and therefore at that node, being now at its
greatest distance from the first plane CD, it will pass through the plane of the
orbit EST not in D, the other node of that plane, but in a point that lies nearer
to the body S, which therefore becomes a new place of the node behind its
former place. And, by a like reasoning, the nodes will continue to recede in
their passage from this node to the next. The nodes, therefore, when situated
in the quadratures, recede continually; and at the syzygies, where no perturba-
tion can be produced in the motion as to latitude, are quiescent; in the inter-
mediate places they partake of both conditions, and recede more slowly; and,
therefore, being always either retrograde or stationary, they will be carried
backwards, or made to recede in each revolution.

Cor. x11. All the errors described in these Corollaries are a little greater at
the conjunction of the bodies P, S than at their opposition; because the gen-
erating forces NM and ML are greater.

Cor. x111. And since the causes and proportions of the errors and variations
mentioned in these Corollaries do not depend upon the magnitude of the body
S, it follows that all things before demonstrated will happen, if the magnitude
of the body S be imagined so great that the system of the two bodies P and T
may revolve about it. And from this increase of the body S, and the consequent
increase of its centripetal force, from which the errors of the body P arise, it
will follow that all these errors, at equal distances, will be greater in this case,
than in the other where the body S revolves about the system of the bodies P
and T.

Cor. x1v. But since the forces NM, ML, when the body S is exceedingly
distant, are very nearly as the force SK and the ratio PT to ST conjointly;
that is, if both the distance PT and the absolute force of the body S be given,
inversely as ST?; and since those forces NM, ML are the causes of all the errors
and effects treated of in the foregoing Corollaries; it is manifest that all those
effects, if the system of bodies T and P continue as before, and only the dis-
tance ST and the absolute force of the body S be changed, will be very nearly
in a ratio compounded of the direct ratio of the absolute force of the body S,
and the cubed inverse ratio of the distance ST. Hence if the system of bodies
T and P revolve about a distant body S, those forces NM, ML, and their ef-
fects, will be (by Cor. 11 and vi, Prop. 4) inversely as the square of the periodical
time. And thence, also, if the magnitude of the body S be proportional to its
absolute force, those forces NM, ML, and their effects, will be directly as the
cube of the apparent diameter of the distant body S viewed from T'; and con-
versely. For these ratios are the same as the compounded ratio above men-
tioned.

Cor. xv. If the orbits ESE and PAB, retaining their figure, proportions, and
inclination to each other, should alter their magnitude, and if the forces of the
bodies S and T should either remain unaltered or be changed in any given
ratio, then these forces (that is, the force of the body T, which obliges the body
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P to deflect from a rectilinear course into the orbit PAB, and the force of the
body S, which causes the body P to deviate from that orbit) will act always in
the same manner, and in the same proportion. Consequently it follows, that
all the effects will be similar and proportional, and the times of those effects
will be proportional also; that is, that all the linear errors will be as the diam-
eters of the orbits, the angular errors the same as before; and the times of
similar linear errors, or equal angular errors, are as the periodical times of the
orbits.

Cor. xvI. Therefore if the figures of the orbits and their inclination to each
other be given, and the magnitudes, forces, and distances of the bodies be
changed in any manner, we may, from the errors and times of those errors in
one case, obtain very nearly the errors and times of the errors in any other
case. But this may be done more expeditiously by the following method. The
forces NM, ML, other things remaining unaltered, are as the radius TP; and
their periodical effects (by Cor. 11, Lem. 10) are as the forces and the square of
the periodical time of the body P jointly. These are the linear errors of the
body P; and hence the angular errors as they appear from the centre T (that
is, the motion of the apsides and of the nodes, and all the apparent errors of
longitude and latitude) are in each revolution of the body P as the square of
the time of the revolution, very nearly. Let these ratios be compounded with
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the ratios in Cor. x1v, and in any system of bodies T, P, S, where P revolves
about T very near to it, and T revolves about S at a great distance, the angular
errors of the body P, observed from the centre T, will be in each revolution of
the body P directly as the square of the periodical time of the body P, and in-
versely as the square of the periodical time of the body T. And therefore the
mean motion of the line of the apsides will be in a given ratio to the mean
motion of the nodes; and both those motions will be directly as the periodical
time of the body P, and inversely as the square of the periodical time of the
body T. The increase or diminution of the eccentricity and inclination of the
orbit PAB makes no sensible variation in the motions of the apsides and nodes,
unless that increase or diminution be very great indeed.

Cor. xvII. Since the line LM becomes sometimes greater and sometimes less
than the radius PT, let the mean quantity of the force LM be expressed by
that radius PT; and then that mean force will be to the mean force SK or SN
(which may be also expressed by ST) as the length PT to the length ST. But
the mean force SN or ST, by which the body T is retained in the orbit it
describes about S, is to the force with which the body P is retained in its orbit
about T in a ratio compounded of the ratio of the radius ST to the radius PT,
and the squared ratio of the periodical time of the body P about T to the
periodical time of the body T about S. And, consequently, the mean force LM
is to the force by which the body P is retained in its orbit about T (or by which
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the same body P might revolve at the distance PT in the same periodical time
about any immovable point T) in the same squared ratio of the periodical
times. The periodical times therefore being given, together with the distance
PT, the mean force LM is also given; and that force being given, there is
given also the force MN, very nearly, by the analogy of the lines PT and MN.

Cor. xvii1. By the same laws by which the body P revolves about the body
T, let us suppose many fluid bodies to move round T at equal distances from
it; and to be so numerous, that they may all become contiguous to each other,
so as to form a fluid annulus, or ring, of a round figure, and concentric to the
body T; and the several parts of this ring, performing their motions by the
same law as the body P, will draw nearer to the body T, and move swifter in
the conjunction and opposition of themselves and the body S, than in the
quadratures. And the nodes of this ring or its intersections with the plane of
the orbit of the body S or T, will rest at the syzygies; but out of the syzygies
they will be carried backwards, or in a retrograde direction, with the greatest
swiftness in the quadratures, and more slowly in other places. The inclination
of this ring also will vary, and its axis will oscillate in each revolution, and when
the revolution is completed will return to its former situation, except only that
it will be carried round a little by the precession of the nodes.

Cor. x1x. Suppose now the spherical body T, consisting of some matter not
fluid, to be enlarged, and to extend itself on every side as far as that ring, and
that a channel were cut all round its circumference containing water; and that
this sphere revolves uniformly about its own axis in the same periodical time.
This water being accelerated and retarded by turns (as in the last Corollary),
will be swifter at the syzygies, and slower at the quadratures, than the surface
of the globe, and so will ebb and flow in its channel after the manner of the sea.
If the attraction of the body S were taken away, the water would acquire no
motion of flux and reflux by revolving round the quiescent centre of the globe.
The case is the same of a globe moving uniformly forwards in a right line, and
in the meantime revolving about its centre (by Cor. v of the Laws of Motion),
and of a globe uniformly attracted from its rectilinear course (by Cor. v1 of the
same Laws). But let the body S come to act upon it, and by its varying attrac-
tion the water will receive this new motion; for there will be a stronger attrac-
tion upon that part of the water that is nearest to the body, and a weaker upon
that part which is more remote. And the force LM will attract the water down-
wards at the quadratures, and depress it as far as the syzygies; and the force
KL will attract it upwards in the syzygies, and withhold its descent, and make
it rise as far as the quadratures; except only so far as the motion of flux and
reflux may be directed by the channel, and be a little retarded by friction.

Cor. xx. If, now, the ring becomes hard, and the globe is diminished, the
motion of flux and reflux will cease; but the oscillating motion of the inclina-
tion and the precession of the nodes will remain. Let the globe have the same
axis with the ring, and perform its revolutions in the same times, and at its
surface touch the ring within, and adhere to it; then the globe partaking of the
motion of the ring, this whole body will oscillate, and the nodes will go back-
wards for the globe, as we shall show presently, is perfectly indifferent to the
receiving of all impressions. The greatest angle of the inclination of the ring
alone is when the nodes are in the syzygies. Thence in the progress of the nodes.
to the quadratures, it endeavors to diminish its inclination, and by that en-
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deavor impresses a motion upon the whole globe. The globe retains this motion
impressed, till the ring by a contrary endeavor destroys that motion, and im-
presses a new motion in a contrary direction. And by this means the greatest
motion of the decreasing inclination happens when the nodes are in the quadra-
tures, and the least angle of inclination in the octants after the quadratures;
and, again, the greatest motion of the reclination happens when the nodes are
in the syzygies; and the greatest angle of inclination in the octants following.
And the case is the same of a globe without this ring, if it be a little higher or
a little denser in the equatorial than in the polar regions; for the excess of that
matter in the regions near the equator supplies the place of the ring. And al-
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though we should suppose the centripetal force of this globe to be increased in
any manner, so that all its parts tend downwards, as the parts of our earth
gravitate to the centre, yet the phenomena of this and the preceding Corollary
would scarce be altered; except that the places of the greatest and least height
of the water will be different; for the water is now no longer sustained and kept
in its orbit by its centrifugal force, but by the channel in which it flows. And,
besides, the force LM attracts the water downwards most in the quadratures,
and the force KL or NM—-LM attracts it upwards most in the syzygies. And
these forces conjoined cease to attract the water downwards, and begin to at-
tract it upwards in the octants before the syzygies; and cease to attract the
water upwards, and begin to attract the water downwards in the octants after
the syzygies. And thence the greatest height of the water may happen about
the octants after the syzygies; and the least height about the octants after the
quadratures; excepting only so far as the motion of ascent or descent im-
pressed by these forces may by the inertia of the water continue a little
longer, or be stopped a little sooner by impediments in its channel.

Cor. xxI. For the same reason that redundant matter in the equatorial
regions of a globe causes the nodes to go backwards, and therefore by the in-
crease of that matter that retrograde motion is increased, by the diminution
is diminished, and by the removal quite ceases; it follows, that, if more than
that redundant matter be taken away, that is, if the globe be either more
depressed, or of a rarer consistence near the equator than near the poles, there
will arise a direct motion of the nodes.

Cor. xx11. And thence from the motion of the nodes is known the constitu-
tion of the globe. That is, if the globe retains unalterably the same poles, and
the motion (of the nodes) is retrograde, there is a redundance of the matter
near the equator; but if that motion is direct, a deficiency. Suppose a uniform
and exactly spherical globe to be first at rest in a free space; then by some
impulse made obliquely upon its surface to be driven from its place, and to
receive a motion partly circular and partly straight forward. Since this globe
is perfectly indifferent to all the axes that pass through its centre, nor has a
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greater propensity to one axis or to one situation of the axis than to any other,
it is manifest that by its own force it will never change its axis, or the inclina-
tion of its axis. Let now this globe be impelled obliquely by a new impulse in
the same part of its surface as before; and since the effect of an impulse is not
at all changed by its coming sooner or later, it is manifest that these two
impulses, successively impressed, will produce the same motion, as if they had
been impressed at the same time; that is, the same motion, as if the globe had
been impelled by a simple force compounded of them both (by Cor. 11 of the
Laws), that is, a simple motion about an axis of a given inclination. And the
case is the same if the second impulse were made upon any other place of the
equator of the first motion; and also if the first impulse were made upon any
place in the equator of the motion which would be generated by the second
impulse alone; and therefore, also, when both impulses are made in any places
whatsoever; for these impulses will generate the same circular motion as if they
were impressed together, and at once, in the place of the intersections of the
equators of those motions, which would be generated by each of them sepa-
rately. Therefore, a homogeneous and perfect globe will not retain several
motions distinct, but will unite all those that are impressed on it, and reduce
them into one; revolving, as far as in it lies, always with a simple and uniform
motion about one single given axis, with an inclination always invariable. And
the inclination of the axis, or the velocity of the rotation, will not be changed by
centripetal force. For if the globe be supposed to be divided into two hemi-
spheres, by any plane whatsoever passing through its own centre, and the
centre to which the force is directed, that force will always urge each hemi-
sphere equally; and therefore will not incline the globe to any side with respect
to its motion round its own axis. But let there be added anywhere between the
pole and the equator a heap of new matter like a mountain, and this, by its
continual endeavor to recede from the centre of its motion, will disturb the
motion of the globe, and cause its poles to wander about its surface describing
circles about themselves and the points opposite to them. Neither can this
enormous deviation of the poles be corrected otherwise than by placing that
mountain either in one of the poles, in which case, by Cor. xx1, the nodes of
the equator will go forwards; or in the equatorial regions, in which case, by
Cor. xx, the nodes will go backwards; or, lastly, by adding on the other side
of the axis a new quantity of matter, by which the mountain may be balanced
in its motion; and then the nodes will either go forwards or backwards, as the
mountain and this newly added matter happen to be nearer to the pole or to
the equator. ProrosiTiON 67. THEOREM 27

The same laws of attraction being supposed, I say, that the exterior body S does, by
radii drawn to the point O, the common centre of gravity of the interior bodies P and
T, describe round that centre areas more proportional to the times, and an orbit
more approaching to the form of an ellipse having its focus in that centre, than 1t
can describe round the innermost and greatest body
T by radii drawn to that body.

For the attractions of the body S towards T S
and P compose its absolute attraction, which is §@- e
more directed towards O, the common centre of
gravity of the bodies T and P, than it is to the
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greatest body T';and which approaches nearer to the inverse proportion of the
square of the distance SO, than of the square of the distance ST; as will easily
appear by a little consideration.

ProrosiTioN 68. THEOREM 28

The same laws of attraction supposed, I say, that the exterior body S will, by radiz
drawn to O, the common centre of gravity of the interior bodies P and T, describe
round that centre areas more proportional to the times, and an orbit more approach-
ing to the form of an ellipse having its focus in that centre, if the innermost and
greatest body be agitated by these attractions as well as the rest, than it would do if
that body either were at rest and not attracted at all, or were much more or much less
attracted, or were much more or much less agrtated.

This may be demonstrated after the same manner as Prop. 66, but by a
more prolix reasoning, which I therefore pass over. It will be sufficient to con-
sider it after this manner. From the demonstration of the last Proposition it
is plain, that the centre, towards which the body S is urged by the two forces
conjointly, is very near to the common centre of gravity of those two other
bodies. If this centre were to coincide with that common centre, and moreover
the common centre of grawty of all the three bodies were at rest, the body S on
one side, and the common centre of gravity of the

other two bodies on the other side, would describe
true ellipses about that quiescent common centre.
This appears from Cor. 11, Prop. 58, compared
with what was demonstrated in Props. 64 and 65.
Now this accurate elliptical motion will be dis-
turbed a little by the distance of the centre of the
two bodies from the centre towards which the third body S is attracted. Let
there be added, moreover, a motion to the common centre of the three, and
the perturbation will be increased yet more. Therefore the perturbation is least
when the common centre of the three bodies is at rest; that is, when the inner-
most and greatest body T is attracted according to the same law as the rest
are; and is always greatest when the common centre of the three, by the dimi-
nution of the motion of the body T, begins to be moved, and is more and more
agitated.

Cor. And hence if several smaller bodies revolve about the great one, it may
easily be inferred that the orbits described will approach nearer to ellipses; and
the descriptions of areas will be more nearly uniform, if all the bodies attract
and agitate each other with accelerative forces that are directly as their abso-
lute forces, and inversely as the squares of the distances, and if the focus of
each orbit be placed in the common centre of gravity of all the interior bodies
(that is, if the focus of the first and innermost orbit be placed in the centre of
gravity of the greatest and innermost body; the focus of the second orbit in
the common centre of gravity of the two innermost bodies; the focus of the
third orbit in the common centre of gravity of the three innermost; and so on),
than if the innermost body were at rest, and was made the common focus of
all the orbits.
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ProrosiTioN 69. THEOREM 29

In a system of several bodies A, B, C, D, &c., if any one of those bodies, as A,
attract all the rest, B, C, D, &c., with accelerative forces that are inversely as the
squares of the distances from the attracting body, and another body, as B, attracts
also the rest, A, C, D, d&c., with forces that are inversely as the squares of the
distances from the attracting body; the absolute forces of the atiracting bodies A and
B will be to each other as those very bodies A and B to which those forces belong.

For the accelerative attractions of all the bodies B, C, D, towards A, are
by the supposition equal to each other at equal distances; and in like manner
the accelerative attractions of all the bodies towards B are also equal to each
other at equal distances. But the absolute attractive force of the body A is to
the absolute attractive force of the body B as the accelerative attraction of all
the bodies towards A is to the accelerative attraction of all the bodies towards
B at equal distances; and so is also the accelerative attraction of the body B
towards A to the accelerative attraction of the body A towards B. But the
accelerative attraction of the body B towards A is to the accelerative attrac-
tion of the body A towards B as the mass of the body A is to the mass of
the body B; because the motive forces which (by the second, seventh and
eighth Definitions) are as the accelerative forces and the bodies attracted con-
jointly are here equal to one another by the third Law. Therefore the absolute
attractive force of the body A is to the absolute attractive force of the body B
as the mass of the body A is to the mass of the body B. Q.E.D.

Cor. 1. Therefore if each of the bodies of the system A, B, C, D, &c., does
singly attract all the rest with accelerative forces that are inversely as the
squares of the distances from the attracting body, the absolute forces of all
those bodies will be to each other as the bodies themselves.

Cor. 11. By a like reasoning, if each of the bodies of the system A, B, C, D,
&ec., does singly attract all the rest with accelerative forces, which are either
inversely or directly in the ratio of any power whatever of the distances from
the attracting body; or which are defined by the distances from each of the
attracting bodies according to any common law; it is plain that the absolute
forces of those bodies are as the bodies themselves.

Cor. 111. In a system of bodies whose forces decrease as the square of the
distances, if the lesser revolve about one very great one in ellipses, having their
common focus in the centre of that great body, and of a figure exceedingly
accurate; and moreover by radii drawn to that great body describe areas pro-
portional to the times exactly; the absolute forces of those bodies to each other
will be either accurately or very nearly in the ratio of the bodies. And so con-
versely. This appears from Cor. of Prop. 68, compared with the first Corollary
of this Proposition.
ScHOLIUM

These Propositions naturally lead us to the analogy there is between centrip-
etal forces and the central bodies to which those forces are usually directed;
for it is reasonable to suppose that forces which are directed to bodies should
depend upon the nature and quantity of those bodies, as we see they do in
magnetical experiments. And when such cases occur, we are to compute the
attractions of the bodies by assigning to each of their particles its proper force,
and then finding the sum of them all. I here use the word attractzon in general
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for any endeavor whatever, made by bodies to approach to each other, whether
that endeavor arise from the action of the bodies themselves, as tending to
each other or agitating each other by spirits emitted; or whether it arises from
the action of the ether or of the air, or of any medium whatever, whether cor-
poreal or incorporeal, in any manner impelling bodies placed therein towards
each other. In the same general sense I use the word tmpulse, not defining in
this treatise the species or physical qualities of forces, but investigating the
quantities and mathematical proportions of them; as I observed before in the
Definitions. In mathematics we are to investigate the quantities of forces with
their proportions consequent upon any conditions supposed; then, when we
enter upon physics, we compare those proportions with the phenomena of
Nature, that we may know what conditions of those forces answer to the sev-
eral kinds of attractive bodies. And this preparation being made, we argue
more safely concerning the physical species, causes, and proportions of the
forces. Let us see, then, with what forces spherical bodies consisting of particles
endued with attractive powers in the manner above spoken of must act upon
one another; and what kind of motions will follow from them.

SECTION XII

THE ATTRACTIVE FORCES OF SPHERICAL BODIES
ProrosiTioN 70. THEOREM 30

If to every point of a spherical surface there tend equal centripetal forces decreasing
as the square of the distances from those points, I say, that a corpuscle placed
within that surface will not be attracted by those forces any way.

Let HIKL be that spherical surface, and P a corpuscle placed within.
Through P let there be drawn to this surface two lines HK, IL, intercepting
very small ares HI, KL; and because (by Cor. 111, Lem. 7) the triangles HPI,
LPK are alike, those arcs will be proportional to the
distances HP, LP; and any particles at HI and KL of
the spherical surface, terminated by right lines passing
through P, will be as the square of those distances.
Therefore the forces of these particles exerted upon the
body P are equal between themselves. For the forces
aredirectly as the particles, and inversely asthe square
of the distances. And these two ratios compose the
ratio of equality, 1: 1. The attractions therefore,
being equal, but exerted in opposite directions, de-
stroy each other. And by a like reasoning all the attractions through the whole
spherical surface are destroyed by contrary attractions. Therefore the body
P will not be any way impelled by those attractions. Q.E.D.

ProrositioN 71. THEOREM 31

The same things supposed as above, I say, that a corpuscle placed without the
spherical surface s attracted towards the centre of the sphere with a force 1nversely
proportional to the square of its distance from that centre.

Let AHKB, ahkb be two equal spherical surfaces described about the centres
S, s, their diameters AB, ab; and let P and p be two corpuscles situate without
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the spheres in those diameters produced. Let there be drawn from the cor-
puscles the lines PHK, PIL, phk, pil, cutting off from the great circles AHB,
ahb, the equal ares HK, hk, 11, #/; and to those lines let fall the perpendiculars
SD, sd, SE, se, IR, ir; of which let SD, sd, cut PL, pl, in ¥ and f. Let fall also

to the diameters the perpendiculars 1Q, ig. Let now the angles DPE, dpe
vanish; and because DS and ds, ES and es are equal, the lines PE, PF, and pe,
pf, and the short lines DF, df may be taken for equal; because their last ratio,
when the angles DPE, dpe vanish together, is the ratio of equality. These
things being thus determined, it follows that
Pl : PF=RI: DF

and pf : pt=df or DF : ri.
Multiplying corresponding terms,

PI-pf : PF-pi=RI : ri=arc IH : arc th (by Cor. 111, Lem. viI).

Again, PI: PS=1Q:SE
and ps : pi=se or SE : 1q.
Hence, PIl-ps: PS-pi=1Q : 4.

Multiplying together corresponding terms of this and the similarly derived
preceding proportion,
PI%-pf-ps: p?-PF-PS=HI-1Q : th-1q,

that is, as the circular surface which is described by the arc IH, as the semi-
circle AKB revolves about the diameter AB, is to the circular surface described
by the arc ih as the semicircle akb revolves about the diameter ab. And the
forces with which these surfaces attract the corpuscles P and p in the direction
of lines tending to those surfaces are directly, by the hypothesis, as the surfaces
themselves, and inversely as the squares of the distances of the surfaces from
those corpuscles; that is, as pf-ps to PF-PS. And these forces again are to the
oblique parts of them which (by the resolution of forces as in Cor. 11 of the
Laws) tend to the centres in the directions of the lines PS, ps, as PI to PQ, and
pi to pg; that is (because of the like triangles PIQ and PSF, pig and psf), as PS
to PF and ps to pf. Thence, the attraction of the corpuscle P towards S is to
the attraction of the corpuscle p towards s as PFPzéf D3 is to p/-PT PS, that
is, as ps® to PS% And, by a like reasoning, the forces with which the surfaces
described by the revolution of the arcs KL, kI attract those corpuscles, will be
as ps? to PS2. And in the same ratio will be the forces of all the circular surfaces
into which each of the spherical surfaces may be divided by taking sd always
equal to SD, and se equal to SE. And therefore, by composition, the forces of

the entire spherical surfaces exerted upon those corpuscles will be in the same
ratio. Q.E.D.
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ProrposiTion 72. THEOREM 32

If to the several points of a sphere there tend equal centripetal forces decreasing as
the square of the distances from those points; and there be given both the density of
the sphere and the ratio of the diameter of the sphere to the distance of the corpuscle
from its centre: I say, that the force with which the corpuscle is attracted is pro-
portional to the semidiameter of the sphere.

For conceive two corpuscles to be severally attracted by two spheres, one by
one, the other by the other, and their distances from the centres of the spheres
to be proportional to the diameters of the spheres respectively; and the spheres
to be resolved into like particles, disposed in a like situation to the corpuscles.
Then the attractions of one corpuscle towards the several particles of one
sphere will be to the attractions of the other towards as many analogous par-
ticles of the other sphere in a ratio compounded of the ratio of the particles
directly, and the square of the distances inversely. But the particles are as the
spheres, that is, as the cubes of the diameters, and the distances are as the
diameters; and the first ratio directly with the last ratio taken twice inversely,
becomes the ratio of diameter to diameter. Q.E.D.

Cor. 1. Hence if corpuscles revolve in circles about spheres composed of
matter equally attracting, and the distances from the centres of the spheres
be proportional to their diameters, the periodic times will be equal.

Cor. 11. And, vice versa, if the periodic times are equal, the distances will be
proportional to the diameters. These two Corollaries appear from Cor. 11,
Prop. 4.

Cor. 111. If to the several points of any two solids whatever, of like figure
and equal density, there tend equal centripetal forces decreasing as the square
of the distances from those points, the forces, with which corpuscles placed in
a like situation to those two solids will be attracted by them, will be to each
other as the diameters of the solids.

ProrosiTioN 73. THEOREM 33

If to the several points of a given sphere there tend equal centripetal forces decreas-
wng as the square of the distances from the points, I say, that a corpuscle placed
within the sphere 1s attracted by a force proportional to its distance from the centre.
C In the sphere ACBD, described about the centre

S, let there be placed the corpuscle P; and about the
same centre S, with the interval SP, conceive de-
scribed an interior sphere PEQF. It is plain (by Prop.
70) that the concentric spherical surfaces of which the
difference AEBF of the spheres is composed, have
no effect at all upon the body P, their attractions
being destroyed by contrary attractions. There re-
mains, therefore, only the attraction of the interior
D sphere PEQF. And (by Prop. 72) this is as the dis-

tance PS. Q.E.D.

SCHOLIUM

By the surfaces of which I here imagine the solids composed, I do not mean
surfaces purely mathematical, but orbs so extremely thin, that their thickness
is as nothing; that is, the evanescent orbs of which the sphere will at last con-
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sist, when the number of the orbs is increased, and their thickness diminished
without end. In like manner, by the points of which lines, surfaces, and solids
are said to be composed, are to be understood equal particles, whose magnitude
is perfectly inconsiderable.

ProrosiTioN 74. THEOREM 34

The same things supposed, I say, that a corpuscle situated without the sphere is
attracted with a force inversely proportional to the square of its distance from the
centre.

For suppose the sphere to be divided into innumerable concentric spherical
surfaces, and the attractions of the corpuscle arising from the several surfaces
will be inversely proportional to the square of the distance of the corpuscle
from the centre of the sphere (by Prop. 71). And, by composition, the sum of
those attractions, that 1s, the attraction of the corpuscle towards the entire
sphere, will be in the same ratio. Q.E.D.

Cor. 1. Hence the attractions of homogeneous spheres at equal distances
from the centres will be as the spheres themselves. For (by Prop. 72) if the
distances be proportional to the diameters of the spheres, the forces will be as
the diameters. Let the greater distance be diminished in that ratio; and the
distances now being equal, the attraction will be increased as the square of
that ratio; and therefore will be to the other attraction as the cube of that
ratio; that is, in the ratio of the spheres.

Cor. 11. At any distances whatever the attractions are as the spheres applied
to the squares of the distances.

Cor. 111. If a corpuscle placed without an homogeneous sphere is attracted
by a force inversely proportional to the square of its distance from the centre,
and the sphere consists of attractive particles, the force of every particle will
decrease as the square of the distance from each particle.

ProrosiTiON 75. THEOREM 35

If to the several points of a given sphere there tend equal centripetal forces decreas-
ing as the square of the distances from the point, I say, that another stmilar sphere
will be attracted by it with a force inversely proportional to the square of the distance
of the centres.

For the attraction of every particle is inversely as the square of its distance
from the centre of the attracting sphere (by Prop. 74), and is therefore the
same as if that whole attracting force issued from one single corpuscle placed
in the centre of this sphere. But this attraction is as great as on the other hand
the attraction of the same corpuscle would be, if that were itself attracted by
the several particles of the attracted sphere with the same force with which
they are attracted by it. But that attraction of the corpuscle would be (by
Prop. 74) inversely proportional to the square of its distance from the centre
of the sphere; therefore the attraction of the sphere, equal thereto, is also in
the same ratio. Q.E.D.

Cor. 1. The attractions of spheres towards other homogeneous spheres are
as the attracting spheres applied to the squares of the distances of their centres
from the centres of those which they attract.

Cor.11. The case is the same when the attracted sphere does also attract.
For the several points of the one attract the several points of the other with
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the same force with which they themselves are attracted by the others again;
and therefore since in all attractions (by Law 111) the attracted and attracting
point are both equally acted on, the force will be doubled by their mutual
attractions, the proportions remaining.

Cor. 111. Those several truths demonstrated above concerning the motion
of bodies about the focus of the conic sections will take place when an attract-
ing sphere is placed in the focus, and the bodies move without the sphere.

Cor. 1v. Those things which were demonstrated before of the motion of
bodies about the centre of the conic sections take place when the motions are
performed within the sphere.

ProrosiTioN 76. THEOREM 36

If spheres be however dissimilar (as to density of matter and attractive force) in
the same ratio onwards from the centre to the circumference; but everywhere similar,
at every given distance from the centre, on all sides round about; and the attractive
force of every point decreases as the square of the distance of the body attracted:
I say, that the whole force with which one of these spheres attracts the other will be
inversely proportional to the square of the distance of the centres.

Imagine several concentric similar spheres AB, CD, EF| &c., the innermost
of which added to the outermost may compose a matter more dense towards
the centre, or subtracted from them may leave the same more lax and rare.

A Then, by Prop. 75, these spheres will
attract other similar concentric
spheres GH, 1K, LM, &ec., each the
other, with forces inversely propor-
tional to the square of the distance
SP. And, by addition or subtraction,
the sum of all those forces, or the ex-
cess of any of them above the others;
that is, the entire force with which the
whole sphere AB (composed of any
concentric spheres or of their differences) will attract the whole sphere GH
(composed of any concentric spheres or their-differences) in the same ratio. Let
the number of the concentric spheres be increased in infinitum, so that the
density of the matter together with the attractive force may, in the progress
from the circumference to the centre, increase or decrease according to any
given law; and by the addition of matter not attractive, let the deficient den-
sity be supplied, that so the spheres may acquire any form desired; and the
force with which one of these attracts the other will be still, by the former
reasoning, in the same inverse ratio of the square of the distance. Q.E.D.

Cor. 1. Hence if many spheres of this kind, similar in all respects, attract
each other, the accelerative attractions of each to each, at any equal distances
of the centres, will be as the attracting spheres.

Cor. 11. And at any unequal distances, as the attracting spheres divided by
the squares of the distances between the centres.

Cor. 111. The motive attractions, or the weights of the spheres towards one
another, will be at equal distances of the centres conjointly as the attracting
and attracted spheres; that is, as the products arising from multiplying the
spheres into each other.

B
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Cor. 1v. And at unequal distances directly as those products and inversely
as the squares of the distances between the centres.

Cor. v. These proportions hold true also when the attraction arises from
the attractive power of both spheres exerted upon each other. For the attrac-
tion 1s only doubled by the conjunction of the forces, the proportions remain-
ing as before.

Cor. vi. If spheres of this kind revolve about others at rest, each about
each, and the distances between the centres of the quiescent and revolving
bodies are proportional to the diameters of the quiescent bodies, the periodic
times will be equal.

Cor. viI. And, again, if the periodic times are equal, the distances will be
proportional to the diameters.

Cogr. viir. All those truths above demonstrated, relating to the motions of
bodies about the foci of conic sections, will take place when an attracting
sphere, of any form and condition like that above described, is placed in the
focus.

Cor. 1x. And also when the revolving bodies are also attracting spheres of
any condition like that above described.

ProrosiTioN 77. THEOREM 37

If to the several points of spheres there tend centripetal forces proportional to the
distances of the points from the attracted bodies, I say, that the compounded force
with which two spheres attract each other is as the distance between the centres of
the spheres.

Cask 1. Let AEBF be a sphere; S its centre; P a corpuscle attracted; PASB
the axis of the sphere passing through the centre of the corpuscle; EF, ef two
planes cutting the sphere, and perpendicular to the axis, and equidistant, one
on one side, the other on the other, from the centre of the sphere; G and g the
intersections of the planes and the axis;
and H any point in the plane EF. The cen-
tripetal force of the point H upon the cor-
puscle P, exerted in the direction of the
line PH, is as the distance PH; and (by B
Cor. 11 of the Laws) the same exerted in
the direction of the line PG, or towards
the centre S, is as the length PG. Therefore
the force of all the points in the plane EF
(that is, of that whole plane) by which the corpuscle P is attracted towards
the centre S is as the distance PG multiplied by the number of those points,
that is, as the solid contained under that plane EF and the distance PG. And
in like manner the force of the plane ef, by which the corpuscle P is attracted
towards the centre S, is as that plane multiplied by its distance Pg, or as the
equal plane EF multiplied by that distance Pg; and the sum of the forces of
both planes as the plane EF multiplied by the sum of the distances PG+ Py,
that is, as that plane multiplied by twice the distance PS of the centre and the
corpuscle; that is, as twice the plane EF multiplied by the distance PS, or as
the sum of the equal planes EF +e¢f multiplied by the same distance. And, by
a-like reasoning, the forces of all the planes in the whole sphere, equidistant
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on each side from the centre of the sphere, are as the sum of those planes mul-
tiplied by the distance PS, that is, as the whole sphere and the distance PS
conjointly. Q.E.D.

Casgk 2. Let now the corpuscle P attract the sphere AEBF. And, by the
same reasoning, it will appear that the force with which the sphere is attracted
is as the distance PS. Q.E.D.

Cask 3. Imagine another sphere composed of innumerable corpuscles P; and
because the force with which every corpuscle is attracted is as the distance of
the corpuscle from the centre of the first sphere, and as the same sphere con-
jointly, and is therefore the same as if it all proceeded from a single corpuscle
situated in the centre of the sphere, the entire force with which all the cor-
puscles in the second sphere are attracted, that is, with which that whole
sphere is attracted, will be the same as if that sphere were attracted by a force
issuing from a single corpuscle in the centre of the first sphere; and is therefore

proportional to the distance between the centres of the spheres. Q.E.D.
Cask 4. Let the spheres attract each other, and the force will be doubled,
but the proportion will remain. Q.E.D.

Cask 5. Let the corpuscle p be placed within the sphere AEBF'; and because
the force of the plane ef upon the corpuscle is as the solid contained under that
plane and the distance pg; and the contrary force of the plane EF as the solid

contained under that plane and the distance pG; the
emE force compounded of both will be as the difference of
the solids, that is, as the sum of the equal planes
multiplied by half the difference of the distances;
A

B—p e that is, as that sum multiplied by pS, the distance of
\ S # / the corpuscle from the centre of the sphere. And, by

a like reasoning, the attraction of all the planes EF,
/\_’/F ef, throughout the whole sphere, that is, the attrac-
tion of the whole sphere, is conjointly as the sum of

all the planes, or as the whole sphere, and as pS, the distance of the corpuscle
from the centre of the sphere. Q.E.D.
Cask 6. And if there be composed a new sphere out of innumerable corpus-
cles such as p, situated within the first sphere AEBF, it may be proved, as
before, that the attraction, whether single of one sphere towards the other, or
mutual of both towards each other, will be as the distance pS of the centres.
Q.E.D.

ProrositioN 78. THEOREM 38

If spheres in the progress from the centre to the circumference be however dissimzlar
and unequable, but similar on every side round about at all given distances from
the centre; and the attractive force of every point be as the distance of the attracted
body: I say, that the entire force with which two spheres of this kind attract each
other mutually vs proportional to the distance between the centres of the spheres.

This is demonstrated from the foregoing Proposition, in the same manner
as Prop. 76 was demonstrated from Prop. 75.

Cor. Those things that were above demonstrated in Props. 10 and 64, of
the motion of bodies round the centres of conic sections, take place when all
the attractions are made by the force of spherical bodies of the condition above
described, and the attracted bodies are spheres of the same kind.
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ScHOLIUM

I have now explained the two principal cases of attractions; to wit, when
the centripetal forces decrease as the square of the ratio of the distances, or
increase in a simple ratio of the distances, causing the bodies in both cases to
revolve in conic sections, and composing spherical bodies whose centripetal
forces observe the same law of increase or decrease in the recess from the
centre as the forces of the particles themselves do; which is very remarkable.
It would be tedious to run over the other cases, whose conclusions are less
elegant and important, so particularly as I have done these. I choose rather to
comprehend and determine them all by one general method as follows.

LEMmMmaA 29

If about the centre S there be described any circle as AEB, and about the centre P
there be also described two circles EF, ef, cutting the first in E and e, and the line
PS in ¥ and f; and there be let fall to PS the perpendiculars ED, ed: I say, that <f

the distance of the arcs EF, ef be supposed to be infinttely diminished, the last ratio
of the evanescent line Dd to the evanescent line ¥f ¢s the same as that of the line PE
to the line PS.

For if the line Pe cut the arc EF in ¢; and the right line Ee, which coincides
with the evanescent arc Ee, be produced, and meet the right line PSin T; and
there be let fall from S to PE the perpendicular SG; then, because of the like
triangles DTE, dTe, DES,

Dd : Ee=DT : TE=DE : ES;
and because the triangles, Eeq, ESG (by Lem. 8, and Cor. 111, Lem. 7) are
similar, Ee : eq or Ff=Es : SG.
Multiplying together corresponding terms of the two proportions,
Dd : Ff=DE : SG=PE : PS
(because of the similar triangles PDE, PGS). Q.E.D.

ProrosiTioN 79. THEOREM 39

Suppose a surface as EFfe to have its breadth infinitely diminished, and to be just
vanishing; and that the same surface by ts revolution round the axis PS describes a
spherical concavoconvex solid, to the several equal particles of which there tend equal
centripetal forces: I say, that the force with which that solid attracts a corpuscle
sttuated in P is in a ratio compounded of the ratio of the solid DE?-Ff and the ratio
of the force with which the given particle in the place ¥f would attract the same
corpuscle.

For if we consider, first, the force of the spherical surface FE which is gen-
erated by the revolution of the arc FE, and is cut anywhere, as in r, by the line
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de, the annular part of the surface generated by the revolution of the arc rE
will be as the short line Dd, the radius of the sphere PE remaining the same;
as Archimedes has demonstrated in his Book on the Sphere and Cylinder. And
the force of this surface exerted in the direction of the lines PE or Pr situated
all round in the conical surface, will be as
this annular surface itself; that is, as the
short line Dd, or, which is the same, as the
rectangle under the given radius PE of the
sphere and the short line Dd; but that force,
exerted in the direction of the line PS tend-
ing to the centre S, will be less in the ratio
PD to PE, and therefore will be as PD-Dd.
Suppose now the line DF to be divided
into innumerable little equal particles, each
of which call Dd, and then the surface FE
will be divided into so many equal annuli, whose forces will be as the sum
of all the rectangles PD-Dd, that is, as 14PF?— 14PD? and therefore as DE2.
Let now the surface FE be multiplied by the altitude Ff; and the force of the
solid EFfe exerted upon the corpuscle P will be as DE?- Ff; that is, if the force
be given which any given particle as Ff exerts upon the corpuscle P at the
distance PF. But if that force be not given, the force of the solid EFfe will be
conjointly as the solid DE?-Ff and that force not given. Q.E.D.

ProrosiTioN 80. THEOREM 40

If to the several equal parts of a sphere ABE described about the centre S there tend

equal centripetal forces; and from the several points D in the axis of the sphere AB

in which a corpuscle, as P, is placed, there be erected the perpendiculars DE meet-

ing the sphere in E, and if in those perpendiculars the lengths DN be taken as the
2

quantity DEP—];:—, and as the force which a particle of the sphere situated in the

axtis exerts at the distance PE upon the corpuscle P conjointly: I say, that the whole
force with which the corpuscle P is attracted towards the sphere is as the area ANB,
comprehended under the axis E

of the sphere AB, and the curved ¥
line ANB, the locus of the
point N.

For supposing the con-
struction in the last Lemma
and Theorem to stand, con- PC
ceive the axis of the sphere
AB to be divided into innu-
merable equal particles Dd,
and the whole sphere to be
divided into so many spheri-
cal concavoconvex laminze EFfe; and erect the perpendicular dn. By the last
Theorem, the force with which the laminz EFfe attract the corpuscle P is as
DE?-Ff and the force of one particle exerted at the distance PE or PF, con-
jointly. But (by the last Lemma) Dd is to Ff as PE to PS, and therefore Ff is
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X 2,
equal to PS-Dd ; and DE2-Ff is equal to Dd-%EPS—

PE
. g DE2-PS :
of the lamina EFfe is as Dd- PE and the force of a particle exerted at

the distance PF conjointly; that is, by the supposition, as DN -Dd, or as the
evanescent area DNnd. Therefore the forces of all the laminae exerted upon the
corpuscle P are as all the areas DNnd, that is, the whole force of the sphere will
be as the whole area ANB. Q.E.D.

Cor. 1. Hence if the centripetal force tending to the several particles remain

9

; and therefore the force

—-——]?)EP , the whole force
with which the corpuscle is attracted by the sphere is as the area ANB.
Cor. 11. If the centripetal force of the particles be inversely as the distance
2,
of the corpusclc attracted by it, and DN be made as D——]IZ;E? S, the force with
which the corpuscle P is attracted by the whole sphere will be as the area ANB.
Cor. 111. If the centripetal force of the particles be inversely as the cube of
DE2?-PS th
PE: ¢
force with which the corpuscle is attracted by the whole sphere will be as the
area ANB.
Cor. 1v. And universally if the centripetal force tending to the several par-

ticles of the sphere be supposed to be inversely as the quantity V; and DN be

2,
made as 1%_—?—?; the force with which a corpuscle is attracted by the whole

sphere will be as the area ANB.

always the same at all distances, and DN be made as

the distance of the corpuscle attracted by it, and DN be made as

ProrosiTioN 81. PROBLEM 41

The things remaining as above, it is required to measure the area ANB.

From the point P let there be drawn the right line PH touching the sphere in
H; and to the axis PAB, letting fall the perpendicular HI, bisect PI in L; and
(by Prop. 12, Book 11, Elements of Euclid) PE?is equal to PS?*4SE?+-2PS-SD.
But because the triangles SPH,
SHI are alike, SE? or SH? is
equal to the rectangle PS-IS.
Therefore PE? is equal to the
rectangle contained under PS
and PS+SI+2SD; that is,
under PS and 2LS+2SD; that
is, under PS and 2LLD. More-
over DE?is equal to SE2—SD?,
or

SE2—LS?2+42LS-LD—-LD?
that 1s,

2LS-LD—-LD?—LA-LB.
For L82—SE? or L82—SA? (by Prop. 6, Book 11, Elements of Euclid) is equal to
the rectangle LA -LB. Therefore if instead of DE? we write
2LS-LD—-LD?*—LA-LB,
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2,
the quantity I—)P}%—P{,S ,which (by Cor. 1v of the foregoing Prop.) is as the length

of the ordinate DN, will now resolve itself into three parts

2SLD-PS LD2*-PS ALB-PS

PE-V PE-V PE-V 2
where if instead of V we write the inverse ratio of the centripetal force, and
instead of PE the mean proportional between PS and 2LD, those three parts
will become ordinates to so many curved lines, whose areas are discovered by
the common methods. Q.E.D.
Exawm. 1. If the centripetal force tending to the several particles of the sphere
be inversely as the distance; instead of V write PE the distance, then 2PS-LD

T for PE?; and DN will become as SL—%LD_LQI;]I)*B_
Suppose DN equal to its double 2SL—LD—L‘i'I£JB;

and 281, the given part of the ordinate drawn into the
length AB will describe the rectangular area 2SL-AB;
and the indefinite part LD, drawn perpendicularly into
LA g the same length with a continued motion, in such sort as
in its motion one way or another it may either by in-

creasing or decreasing remain always equal to the length LD, will describe

LB2—1A? : .
the area ———— that is, the area SL- AB; which taken from the former area

2

2SL - AB, leaves the area SL-AB. But the third part L?JEJB
same manner with a continued motion perpendicularly into the same length,
will describe the area of an hyperbola, which subtracted from the area SL-AB
will leave ANB the area sought. Whence arises this construction of the Prob-
lem. At the points L, A, B, erect the perpendiculars LI, Aa, Bb; making Aa
equal to LB, and Bb equal to LA. Making LI and LB asymptotes, describe
through the points @, b the hyperbolic curve ab. And the chord ba being drawn,
will inclose the area aba equal to the area sought ANB.

ExawMm. 2. If the centripetal force tending to the several particles of the sphere
be inversely as the cube of the distance, or (which is the same thing) as that

b

, drawn after the

'3
cube applied to any given plane; write PR for V, a
2A8? !

and 2PS-LD for PE?; and DN will become as
SL-AS? AS® LA-LB-AS?
PS-LD 2PS 2PS-LD?° S
that is (because PS, AS, SI are continually propor- \lb
S

tional), as

LSI LA-LB-SI LA % B

D 14QT—

LD 7281 2L.D?
If we draw then these three parts into the length AB, the first SEDS !
generate the area of an hyperbola; the second 1481 the area 14AB -SI; the third
LA-LB-SI LA-LB-SI LA-LB-SI .
—oIDr the area LA~ olB that is, 14AB-SI. From the first

subtract the sum of the second and third, and there will remain ANB the area

will
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sought. Whence arises this construction of the Problem. At the points L, A, S,
B, erect the perpendiculars Ll, Aa, Ss, Bb, of which suppose Ss equal to SI;
and through the point s, to the asymptotes I.[, LB, describe the hyperbola asb
meeting the perpendiculars Aa, Bb in a and b; and the rectangle 2SA -SI sub-
tracted from the hyperbolic area AasbB, will leave ANB the area sought.
Exam. 3. If the centripetal force tending to the several particles of the
spheres decrease as the fourth power of the distance from the particles; write

N4
%—3 for V, then v/(2PS+4LD) for PE, and DN will hecome as
SesL 1 s1* 1 SIPLA-LB 1
V28I /LD? 2+/2S1 /LD 24281 +/LD¥
E

H

These three parts drawn into the length AB, produce so many areas, viz.,

2S12-SL . 1 1 \ SI? . ]
VST into \/LA—\/LB>’ V/2ST into v/(LB—+/LA); and

SI*LA-LB. .
TosT B into \/IIJA3_ \/IIJB3>' And these after due reduction come forth

2, 3
2SILISL' SI2, and SI2+%S—I And these by subtracting the last from the first,
3

3LT
becomeéiLI-I. Therefore the entire force with which the corpuscle P is attracted
3

. I ..
towards the centre of the sphere is as %, that is, inversely as PS3-PI. Q.E.I

By the same method one may determine the attraction of a corpuscle sit-
uated within the sphere, but more expeditiously by the following Theorem.

ProrosiTioN 82. THEOREM 41

In a sphere described about the centre S with the radius SA, if there be taken SI,
SA, SP continually proportional: I say, that the attraction of a corpuscle within the
sphere in any place 1 is to its attraction without the sphere in the place P in a ratio
compounded of the square root of the ratio of IS, PS, the distances from the centre,
and the square root of the ratio of the centripetal forces tending to the centre in those
places P and 1.

As, if the centripetal forces of the particles of the sphere be inversely as the
distances of the corpuscle attracted by them, the force with which the cor-
puscle situated in I is attracted by the entire sphere will be to the force with
which it is attracted in P in a ratio compounded of the square root of the ratio
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of the distance SI to the distance SP, and the square root of the ratio of the
centripetal force in the place I arising from any particle in the centre to the
centripetal force in the place P arising from the same particle in the centre;
that is, inversely as the square root of the ratio of the distances SI, SP to each
E other. These two square roots
of ratios compose the ratio of
equality, and therefore the at-
tractions in I and P produced
by the whole sphere are equal.
By the like calculation, if the
forces of the particles of the
sphere are inversely as the
square of the ratio of the dis-
tances, it will be found that the
attraction in I is to the attrac-
tion in P as the distance SP to
the semidiameter SA of the sphere. If those forces are inversely as the cube of
the ratio of the distances, the attractions in T and P will be to each other as
SP? to SAZ; if as the fourth power of the ratio, as SP? to SA%. Therefore since
the attraction in P was found in this last case to be inversely as PS3-PI, the
attraction in I will be inversely as SA3.PI, that is, because SA® is given, in-
versely as PI. And the progression is the same n nfinitum. The demonstra-

tion of this Theorem is as follows:
The things remaining as above constructed, and a corpuscle being in any

2.

%'P{,S. Therefore if TE be
drawn, that ordinate for any other place of the corpuscle, as I, will become

place P, the ordinate DN was found to be as

2,
(other things being equal) as ]%\I,S Suppose the centripetal forces flowing

from any point of the sphere, as E, to be to each other at the distances 1K and
PE as PE" to IE® (svhere the number n denotes the index of the powers of PE
DE2-PS d DE2-1S h ;

PE.pE- 204 15 1~ Whose ratio
to each other is as PS-1E-1E" to IS- PE - PE". Because SI, SE, SP are in con-
tinued proportion, the triangles SPE, SEI are alike; and thence IE is to PE as
IS to SE or SA. For the ratio of IE to PE write the ratio of IS to SA; and the
ratio of the ordinates becomes that of PS-IE" to SA -PE". But the ratio of PS
to SA is the square root of that of the distances PS, SI; and the ratio of IE” te
PE" (because IE is to PE as IS to SA) is the square root of that of the forces at
the distances PS, IS. Therefore the ordinates, and consequently the areas
which the ordinates describe, and the attractions proportional to them, are in a
ratio compounded of the square root of those ratios. Q.E.D.

and IE), and those ordinates will become as

ProrositioN 83. PROBLEM 42

To find the force with which a corpuscle placed in the centre of a sphere is atiracted
towards any segment of that sphere whatsoever.

Let P be a body in the centre of that sphere, and RBSD a segment thereof
contained under the plane RDS and the spherical surface RBS. Let DB be cut
in F by a spherical surface EFG described from the centre P, and let the seg-
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ment be divided into the parts BREFGS, FEDG. Let us suppose that segment
to be not a purely mathematical but a physical surface, having some, but a
perfectly inconsiderable thickness. Let that thickness
be called O, and (by what Archimedes hath dem- R
onstrated) that surface will be as PF-DF-O. Let us E
suppose, besides, the attractive forces of the particles
of the sphere to be inversely as that power of the dis-
tances, of which 7 is index; and the force with which
the surface EFG attracts the body P will be (by
2, ) i 2, : F
Prop. 79) as 1%), that is, as ZIPFP;_?—DanO. Let PO— D B
the perpendicular FN multiplied by O be propor-
tional to this quantity; and the curvilinear area NI
BDI, which the ordinate FN, drawn through the
length DB with a continued motion will describe, will G
be as the whole force with which the whole segment
RBSD attracts the body P. Q.E.L S

ProrosiTioN 84. ProBLEM 43

To find the force with which a corpuscle, placed without the centre of a sphere in the

axis of any segment, is attracted by that segment.
Let the body P placed in the axis ADB

of the segment EBK be attracted by that

segment. About the centre P, with the ra-

dius PE, let the spherical surface EFK be

described; and let it divide the segment

/\ E
into two parts EBKFE and EFKDE. P&- A\: F B
K

Find the force of the first of those parts
by Prop. 81, and the force of the latter
part by Prop. 83, and the sum of the
forces will be the force of the whole seg-
ment EBKDE. Q.E.L

ScHOLIUM

The attractions of spherical bodies being now explained, it comes next in
order to treat of the laws of attraction in other bodies consisting in like man-
ner of attractive particles; but to treat of them particularly is not necessary to
my design. It will be sufficient to add some general Propositions relating to the
forces of such bodies, and the motions thence arising, because the knowledge of
these will be of some little use in philosophical inquiries.

SECTION XIII

THE ATTRACTIVE FORCES OF BODIES WHICH ARE NOT SPHERICAL

ProrosiTioN 85. THEOREM 42

If a body be attracted by another, and its attraction be vastly stronger when it is
contiguous to the attracting body than when they are separated from each other by a
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very small interval; the forces of the particles of the attracting body decrease, in the
recess of the body atiracted, in more than the squared ratio of the distance of the
particles.

For if the forces decrease as the square of the distances from the particles,
the attraction towards a spherical body being (by Prop. 74) inversely as the
square of the distance of the attracted body from the centre of the sphere, will
not be sensibly increased by the contact, and it will be still less increased by it,
if the attraction, in the recess of the body attracted, decreases in a still less
proportion. The Proposition, therefore, is evident concerning attractive spheres.
And the case is the same of concave spherical orbs attracting external bodies.
And much more does it appear in orbs that attract bodies placed within them,
because there the attractions diffused through the cavities of those orbs are (by
Prop. 70) destroyed by contrary attractions, and therefore have no effect even
in the place of contact. Now if from these spheres and spherical orbs we take
away any parts remote from the place of contact, and add new parts anywhere
at pleasure, we may change the figures of the attractive bodies at pleasure; but
the parts added or taken away, being remote from the place of contact, will
cause no remarkable excess of the attraction arising from the contact of the
two bodies. Therefore the Proposition holds good in bodies of all figures. Q.E.D.

ProrositioN 86. THEOREM 43

If the forces of the particles of which an attractive body is composed decrease, in the
recession of the attractive body, as the third or more than the third power of the dis-
tance from the particles, the attraction will be vastly stronger n the point of contact
than when the attracting and attracted bodies are separated from each other, though
by ever so small an interval.

For that the attraction is infinitely increased when the attracted corpuscle
comes to touch an attracting sphere of this kind, appears, by the solution of
Problem 41, exhibited in the second and third Examples. The same will also
appear (by comparing those Examples and Theor. 41 together) of attractions
of bodies made towards concavoconvex orbs, whether the attracted bodies be
placed without the orbs, or in the cavities within them. And by adding to or
taking from those spheres and orbs any attractive matter anywhere without
the place of contact, so that the attractive bodies may receive any assigned
figure, the Proposition will hold good of all bodies universally. Q.E.D.

ProrosiTioN 87. THEOREM 44

If two bodies stmilar to each other, and consisting of matter equally attractive,
attract separately two corpuscles proportional to those bodies, and in a like situation
to them, the accelerative attractions of the corpuscles towards the entire bodies will
be as the accelerative atiractions of the corpuscles towards particles of the bodies
proportional to the wholes, and similarly situated in them.

For if the bodies are divided into particles proportional to the wholes, and
alike situated in them, it will be, as the attraction towards any particle of one
of the bodies to the attraction towards the correspondent particle in the other
body, so are the attractions towards the several particles of the first body, to
the attractions towards the several correspondent particles of the other body;
and, by composition, so is the attraction towards the first whole body to the
attraction towards the second whole body. Q.E.D.
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Cor. 1. Therefore if, as the distances of the corpuscles attracted increase, the
attractive forces of the particles decrease in the ratio of any power of the dis-
tances, the accelerative attractions towards the whole bodies will be directly as
the bodies, and inversely as those powers of the distances. As if the forces of
the particles decrease as the square of the distances from the corpuscles at-
tracted, and the bodies are as A% and B?, and therefore both the cubic sides of
the bodies, and the distance of the attracted corpuscles from the bodies, are as

3 3

A and B; the accelerative attractions towards the bodies will be as %2 and %,

that is, as A and B the cubic sides of those bodies. If the forces of the particles

decrease as the cube of the distances from the attracted corpuscles, the ac-
. : . : A3 3 .

celerative attractions towards the whole bodies will be as e and B that is,

equal. If the forces decrease as the fourth power, the attractions towards the

3 3
X and %, that is, inversely as the cubic sides A and B. And so

bodies will be as

in other cases.

Cor. 11. Hence, on the other hand, from the forces with which like bodies
attract corpuscles similarly situated, may be obtained the ratio of the decrease
of the attractive forces of the particles as the attracted corpuscle recedes from
them; if only that decrease is directly or inversely in any ratio of the distances.

ProrosiTioN 88. THEOREM 45

If the attractive forces of the equal particles of any body be as the distance of the
places from the particles, the force of the whole body will tend to its centre of gravity;
and will be the same with the force of a globe, consisting of stmilar and equal matter,
and having its centre in the centre of gravity.

Let the particles A, B of the body RSTYV attract any corpuscle Z with forces
which, supposing the particles to be equal between themselves, are as the
distances AZ, BZ; but, if they are supposed unequal, are as those particles and
their distances AZ, BZ conjointly, or (if I may so speak) as those particles
multiplied by their distances AZ, BZ respec-
tively. And let those forces be expressed by
the contents under A-AZ, and B-BZ. Join
AB, and let it be cut in G, so that AG may
be to BG as the particle B to the particle A;
and G will be the common centre of gravity
of the particles A and B. The force A-AZ
will (by Cor. 11 of the Laws) be resolved into
the forces A-GZ and A-AG; and the force A T
B-BZ into the forces B-GZ and B-BG. Now
the forces A-AG and B-BG, because A is proportional to B, and BG to AG,
are equal, and therefore having contrary directions destroy one another. There
remain then the forces A-GZ and B-GZ. These tend from Z towards the
centre G, and compose the force (A+B)-GZ; that is, the same force as if the
attractive particles A and B were placed in their common centre of gravity G,
composing there a little globe.

By the same reasoning, if there be added a third particle C, and the force of
it be compounded with the force (A+B) - GZ tending to the centre G, the force
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thence arising will tend to the common centre of gravity of that globe in G and
of the particle C; that is, to the common centre of gravity of the three particles
A, B, C; and will be the same as if that globe and the particle C were placed in
that common centre composing a greater globe there; and so we may go on in
infinttum. Therefore the whole force of all the particles of any body whatever
RSTY is the same as if that body, without removing its centre of gravity, were
to put on the form of a globe. Q.E.D.

Cor. Hence the motion of the attracted body Z will be the same as if the
attracting body RSTV were spherical; and therefore if that attracting body be
either at rest, or proceed uniformly in a right line, the body attracted will move
in an ellipse having its centre in the centre of gravity of the attracting body.

ProrosiTioN 89. THEOREM 46

If there be several bodies consisting of equal particles whose forces are as the dis-
tances of the places from each, the force compounded of all the forces by which any
corpuscle is attracted will tend to the common centre of gravity of the attracting
bodies; and will be the same as if those attraeting bodies, preserving their common
centre of gravity, should unite there, and be formed into a globe.

This is demonstrated after the same manner as the foregoing Proposition.

Cor. Therefore the motion of the attracted body will be the same as if the
attracting bodies, preserving their common centre of gravity, should unite
there, and be formed into a globe. And, therefore, if the common centre of
gravity of the attracting bodies be either at rest, or proceed uniformly in a
right line, the attracted body will move in an ellipse having its centre in the
common centre of gravity of the attracting bodies.

ProrosiTioN 90. PROBLEM 44 -

If to the several points of any circle there tend equal centripetal forces, increasing or
decreasing in any ratio of the distances; it s required to find the force with which a
corpuscle s attracted, that s, situated anywhere tn a right line which stands at
right angles to the plane of the circle at its centre.

Suppose a circle to be described about the centre A with any radius AD in a
plane to which the right line AP is perpendicular; and let it be required to find
D the force with which a corpuscle P is attracted
towards the same. From any point E of the
circle, to the attracted corpuscle P, let there be
cE drawn the right line PE. In the right line PA
€ take PF equal to PE, and make a perpendicular

FK, erected at F, to be as the force with which
the point E attracts the corpuscle P. And let
/F H the curved line IKL be the locus of the point

P Al r K. Let that curve meet the plane of the circle
I in L. In PA take PH equal to PD, and erect the

5K perpendicular HI meeting that curve in I; and

L the attraction of the corpuscle P towards the

circle will be as the area AHIL multiplied by the altitude AP. Q.E.IL.

For let there be taken in AE a very small line Ee. Join Pe, and in PE, PA
take PC, Pf, both equal to Pe. And because the force, with which any point E
of the ring described about the centre A with the radius AE in the aforesaid
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plane attracts to itself the body P, is supposed to be as FK; and, therefore, the
AP-FK d
PR a0
the force with which the whole ring attracts the body P towards A is as the
ring and ——Al;é‘ K conjointly; and that ring also is as the rectangle under the
radius AE and the breadth Ee, and this rectangle (because PE and AE, Ee and
CE are proportional) is equal to the rectangle PE-CE or PE-Ff; the force with
which that ring attracts the body P towards A will be as PE-Ff and Al;]f K
conjointly; that is, as the content under Ff-FK- AP, or as the area FKkf mul-
tiplied by AP. And therefore the sum of the forces with which all the rings, in
the circle described about the centre A with the radius AD, attract the body P
towards A, is as the whole area AHIKL multiplied by AP. Q.E.D.
Cor. 1. Hence if the forces of the points decrease as the square of the dis-

1 1
tances, that is, if FIX be as 53 PF2’ and therefore the area AHIKL as PR TH

force with which that point attracts the body P towards A is as —5+—

the attraction of the corpuscle P towards the circle will be as

PA AH
I—P—H—, that 1s, as PH

Cor. 11. And universally if the forces of the points at the distances D be

inversely as any power D" of the distances; that is, if FK be as —- D~ and there-
1 1
fore the area AHIKL as PA" ~PH— the attraction of the corpuscle P
PA

towards the circle will.be as PA"—2_PH"—1'

Cor. 111. And if the diameter of the circle be increased in infinitum, and the
number 7 be greater than unity; the attraction of the corpuscle P towards the

whole infinite plane will be inversely as PA"~2 because the other term P——IP;‘/:_I
vanishes.

ProrosiTIiON 91. PROBLEM 45

To find the attraction of a corpuscle situated in the axvs of a round solid, to whose
several points there tend equal centripetal forces decreasing in any ratio of the
distances whatsoever.

Let the corpuscle P, situated in the axis R
AB of the solid DECG, be attracted towards /—\E
that solid. Let the solid be cut by any circle D

as RFS, perpendicular to the axis; and in its
semidiameter F'S, in any plane PALKB pass-
ing through the axis, let there be taken (by
Prop. 90) the length FK proportional to the
force with which the corpuscle P is attracted
towards that circle. Let the locus of the point
K be the curved line LKI, meeting the planes
of the outermost circles AL and BI in L and I; and the attraction of the cor-
puscle P towards the solid will be as the area LABI. Q.E.L

"UT
»
Lo +]
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Cor. 1. Hence if the solid be a cylinder described by the parallelogram
ADERB revolved about the axis AB, and the centripetal forces tending to the
several points be inversely as the squares of the distances from the points; the
D R E attraction of the corpuscle P towards this
A1 ] cylinder will be as AB—PE+PD. For the

......... e ordinate FK (by Cor. 1, Prop. 90) will be as

1— E The part 1 of this quantity, multi-

P A F B PR

-l plied by the length AB, describes the area
G 1-AB; and the other part 11))—12, multiplied by
i ¢ the length FB, describes the area 1-(PE—
AD) (as may be easily shown from the quad-
rature of the curve LKI); and, in like manner, the same part multiplied by
the length PA describes the area 1:-(PD—AD), and multiplied by AB, the
difference of PB and PA, describes 1- (PE—PD), the difference of the areas.
From the first content 1-AB take away the last content 1-(PE—PD), and
there will remain the area LABI equal to 1-(AB—PE+PD). Therefore the
force, being proportional to this area, isas AB—PE+PD.

Cor. 11. Hence also is known the force by which a spheroid AGBC attracts
any body P situate externally in its axis AB. Let NXRM be a conic section
whose ordinate ER perpendicular to
PE may be always equal to the B
length of the line PD, continually
drawn to the point D in which that
ordinate cuts the spheroid. From the
vertices A, B of the spheroid, let G
there be erected to its axis AB the
perpendiculars AK, BM, respective-
ly equal to AP, BP, and therefore
meeting the conic section in K and
M; and join KM cutting off from it
the segment KMRK. Let S be the Pl
centre of the spheroid, and SC its
greatest semidiameter; and the force with which the spheroid attracts the
body P will be to the force with which a sphere described with the diameter

.CS2—PS.
AB attracts the same body as AS-C5'—PS-KMRK is to AS And by a

PS4 CS2—AS? 3PS*
calculation founded on the same principles may be found the forces of the seg-
ments of the spheroid.

Cor. 111. If the corpuscle be placed within the spheroid and in its axis, the
attraction will be as its distance from the centre. This may be easily inferred
from the following reasoning, whether the particle be in the axis or in any other
given diameter. Let AGOF be an attracting spheroid, S its centre, and P the
body attracted. Through the body P let there be drawn the semidiameter SPA,
and two right lines DE, FG meeting the spheroid in D and E, F and G; and let
PCM, HLN be the surfaces of two interior spheroids similar and concentric to
the exterior, the first of which passes through the body P, and cuts the right
lines DE, FG in B and C; the latter cuts the same right lines in H and I, K and

M
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L. Let the spheroids have all one common axis, DEF
and the parts of the right lines intercepted on A
both sides DP and BE, FP and CG, DH and 1E, p
FK and LG, will be mutually equal; because the /
right lines DE, PB, and HI are bisected in the /
same point, as are also the right lines FG, PC,

and KL. Conceive now DPF, EPG to represent /
opposite cones described with the infinitely small AN
vertical angles DPF, EPG, and the lines DH,

EI to be infinitely small also. Then the particles of the cones DHKF, GLIE,
cut off by the spheroidal surfaces, by reason of the equality of the lines DH
and EI, will be to one another as the squares of the distances from the body P,
and will therefore attract that corpuscle equally. And by a like reasoning if the
spaces DPF, EGCB be divided into particles by the surfaces of innumerable
similar spheroids concentric to the former and having one common axis, all
these particles will equally attract on both sides the body P towards contrary
parts. Therefore the forces of the cone DPF, and of the conic segment EGCB,
are equal, and by their opposed actions destroy each other. And the case is
the same of the forces of all the matter that lies without the interior spheroid
PCBM. Therefore the body P is attracted by the interior spheroid PCBM
alone, and therefore (by Cor. 111, Prop. 72) its attraction is to the force with
which the body A is attracted by the whole spheroid AGOD as the distance
PS is to the distance AS. Q.E.D.

ProrosiTioN 92. PROBLEM 46

An attracting body being given, it is required to find the ratvo of the decrease of the
centripetal forces tending to its several points.

The body given must be formed into a sphere, a cylinder, or some regular
figure, whose law of attraction answering to any ratio of decrease may be found
by Props. 80, 81, and 91. Then, by experiments, the force of the attractions
must be found at several distances, and the law of attraction towards the
whole, made known by that means, will give the ratio of the decrease of the
forces of the several parts; which was to be found.

ProrosiTioN 93. THEOREM 47

If a solid be plane on one side, and infinitely extended on all other sides, and consist
of equal particles equally attractive, whose forces decrcase, in receding from the
solid, in the ratio of any power greater than the square of the distances; and a
corpuscle placed towards either part of the plane s attracted by the force of the
whole solid: I say, that the attractive force of the whole solid, in receding from uts
plane surface will decrease in the ratio of a power whose side s the distance of the
corpuscle from the plane, and its index less by 3 than the index of the power of the
distances.

Cask 1. Let LLGI be the plane by which the solid is terminated. Let the solid
lie on thatside of the plane that is towards I, and let it be resolved intoinnumer-
able planes mHM, nIN, 0KO, &c., parallel to GL. And first let the attracted
body C be placed without the solid. Let there be drawn CGHI perpendicular to
those innumerable planes, and let the attractive forces of the points of the solid
decrease in the ratio of a power of the distances whose index is the number n
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not less than 3. Therefore (by Cor. 111,

L. M Prop. 90) the force with which any

ol N plane mHM attracts the point C is in-

el O  versely as CH* 2. In the plane mHM

take the length HM inversely propor-

C G H I K tional to CH"%, and that force will be

as HM. In like manner in the several
planes IGL, nIN, oKO, &c., take the
lengths GL, IN, KO, &ec., inversely
! m n 0 proportional to CG»=2, CI=—2, CK"?,

&c., and the forces of those planes will
be as the lengths so taken, and therefore the sum of the forces as the sum of
the lengths, that is, the force of the whole solid as the area GLOK produced
infinitely towards OK. But that area (by the known methods of quadratures)
is inversely as CG"3, and therefore the force of the whole solid is inversely as
CG~3. Q.E.D.

Cask 2. Let the corpuscle C be now placed on that side of the plane IGL that
is within the solid, and take the distance CK equal to the distance CG. And the
part of the solid LGloKO terminated by the par-
allel planes IGL, oKO, will attract the corpuscle
C, situated in the middle, neither one way nor
another, the contrary actions of the opposite points
destroying one another by reason of their equality.
Therefore the corpuscle Cis attracted by the force c [f K
only of the solid situated beyond the plane OK.
But this force (by Case 1) is inversely as CK»3,
that is (because CG, CK are equal), inversely as ]
CG3. Q.E.D.

Cor. 1. Hence if the solid LGIN be terminated on each side by two infinite
parallel planes LG, IN, its attractive force is known, subtracting from the
attractive force of the whole infinite solid LGKO the attractive force of the
more distant part NIKO infinitely produced towards KO.

Cor. 11. If the more distant part of this solid be rejected, because its attrac-
tion compared with the attraction of the nearer part is inconsiderable, the
attraction of that nearer part will, as the distance increases, decrease nearly in
the ratio of the power CG"3,

Cor. 111. And hence if any finite body, plane on one side, attract a corpuscle
situated over against the middle of that plane, and the distance between
the corpuscle and the plane compared with the dimensions of the attracting
body be extremely small; and the attracting body consist of homogen-
eous particles, whose attractive forces decrease in the ratio of any power
of the distances greater than the fourth; the attractive force of the whole
body will decrease very nearly in the ratio of a power whose side is that
very small distance, and the index less by 3 than the index of the former
power. This assertion does not hold good, however, of a body consisting of
particles whose attractive forces decrease in the ratio of the third power of
the distances; because, in that case, the attraction of the remoter part of the
infinite body in the second Corollary is always infinitely greater than the
attraction of the nearer part.

N O

(4
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ScHOLIUM

If a body is attracted perpendicularly towards a given plane, and from the
law of attraction given, the motion of the body be required; the Problem will
be solved by seeking (by Prop. 39) the motion of the body descending in a right
line towards that plane, and (by Cor. 11 of the Laws) compounding that motion
with an uniform motion performed in the direction of lines parallel to that
plane. And, on the contrary, if there be required the law of the attraction tend-
ing towards the plane in perpendicular directions, by which the body may be
caused to move in any given curved line, the Problem will be solved by working
after the manner of the third Problem.

But the operations may be contracted by resolving the ordinates into con-
verging series. As if to a base A the length B be ordinately applied in any given

angle, and that length be as any power of the base A=; and there be sought the
force with which a body, either attracted towards the base or driven from it in
the direction of that ordinate, may be caused to move in the curved line which
that ordinate always describes with its superior extremity; I suppose the base

to be increased by a very small part O, and I resolve the ordinate (A—I—O)% into
an infinite series ——n _ i
ARt oA = 4 TR oA &e.,
n 2nn
and I suppose the force proportional to the term of this series in which O is of

MM —MNANOA "= Therefore the force
2nn
sought is as mm—mn =2 ", or, which is the same thing, as T TEB R As
— nn

two dimensions, that is, to the term

if the ordinate describe a parabola, m being =2, and n =1, the force will be as
the given quantity 2B°, and therefore is given. Therefore with a given force the
body will move in a parabola, as Galileo hath demonstrated. If the ordinate
describe an hyperbola, m being =0—1, and n=1, the force will be as 2A=2 or
2B3; and therefore a force which is as the cube of the ordinate will cause the
body to move in an hyperbola. But leaving Propositions of this kind, I shall go
on to some others relating to motion which I have not yet touched upon.

SECTION XIV

THE MOTION OF VERY SMALL BODIES WHEN AGITATED BY CENTRIPETAL FORCES
TENDING TO THE SEVERAL PARTS OF ANY VERY GREAT BODY

ProrosiTiON 94. THEOREM 48

If two stmilar mediums be separated from each other by a space terminated on both
sides by parallel planes, and a body in its passage through that space be attracted or
tmpelled perpendicularly towards either of those mediums, and not agitated or
hindered by any other force; and the attraction be everywhere the same at equal
distances from either plane, taken towards the same side of the plane: I say, that
the sine of incidence upon etther plane will be to the sine of emergence from the other
plane in a given ratio.

Cask 1. Let Aa and Bb be two parallel planes, and let the body light upon the
first plane Aa in the direction of the line GH, and in its whole passage through
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G the intermediate space let it be attracted
\ or impelled towards the medium of inci-
A H dence, and by that action let it be made to
describe a curved line HI, and let, it emerge
12N in the direction of the line IK. Let there be
AN erected IM perpendicular to Bb the plane
E of emergence, and meeting the line of in-
L6 | cidence GH prolonged in M, and the plane
B RN 5 of incidence Aa in R; and let the line of
R emergence KI be produced and meet HM

Q. g In L. About the centre L, with the radius
M LI, let a circle be deseribed cutting both
HM in P and Q, and MI produced in N;

and, first, if the attraction or impulse be supposed uniform, the curve HI (by
what Galileo hath demonstrated) will be a parabola, whose property is that of
a rectangle under its given latus rectum, and the line IM equal to the square of
HM ; and moreover the line HM will be bisected in L. Hence if to MI there be
let fall the perpendicular LO, then MO, OR will be equal; and adding the equal
lines ON, OI, the wholes MN, IR will be equal also. Therefore since IR is
given, MN is also given, and the rectangle MI-MN is to the rectangle under
the latus rectum and IM, that is, to HM? in a given ratio. But the rectangle
MI-MN is equal to the rectangle MP-MQ), that is, to the difference of the
squares ML?, and PL? or L12; and HM? hath a given ratio to its fourth part
ML2; therefore the ratio of ML2—LI2 to ML? is given, and by conversion the
ratio of LI2 to ML? and its square root, the ratio of LI to ML. But in every
triangle, as LMI, the sines of the angles are proportional to the opposite sides.
Therefore the ratio of the sine of the angle of incidence LMR to the sine of the
angle of emergence LIR is given. Q.E.D.
Cask 2. Let now the body pass successively through several spaces termi-
nated with parallel planes AabB, BbcC, &c., and let it be acted on by a force
which is uniform in each of them separately, but different in the different
spaces; and by what was just demonstrated, the

\ sine of the angle of incidence on the first plane
N Aa 1s to the sine of emergence from the second
- plane Bb in a given ratio; and this sine of inci-

N dence upon the second plane Bb will be to the

\ sine of emergence from the third plane Ccin a

given ratio; and this sine to the sine of emergence

from the fourth plane Dd in a given ratio; and so on in infinitum; and, by
multiplication of equals, the sine of incidence on the first plane is to the sine
of emergence from the last plane in a given ratio. Let now the intervals of the
planes be diminished, and their number be infinitely increased, so that the
action of attraction or impulse, exerted according to any assigned law, may
become continual, and the ratio of the sine of incidence on the first plane to
the sine of emergence from the last plane being all along given, will be given
then also. Q.E.D.

oo wE >
/[, o O 1\
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ProrosiTioN 95. THEOREM 49

The same things being supposed, I say, that the velocity of the body before its
incidence 1s to its velocity after emergence as the sine of emergence to the sine of
incidence.

Make AH and Id equal, and erect the perpendiculars AG, dK meeting the
lines of incidence and emergence GH, IK in G and K. In GH take TH equal to
IK, and to the plane Aa let fall a perpendicular Tz. And (by Cor. 11 of the Laws
of Motion) let the motion of the body be re-
solved into two, one perpendicular to the
planes Aa, Bb, Cc, &c., and another parallel
to them. The force of attraction or impulse, :
acting in directions perpendicular to those 5 N a
planes, does not at all alter the motion in par- B b

allel directions; and therefore the body pro- C \\ c
ceeding with this motion will in equal times D ; ~
go through those equal parallel intervals that \]\
lie between the line AG and the point H, and K

between the point I and the line dK; that is, they will describe the lines GH,
IK in equal times. Therefore the velocity before incidence is to the velocity
after emergence as GH to IK or TH, that is, as AH or Id to vH, that is (suppo-
sing TH or IK radius), as the sine of emergence to the sine of incidence. Q.E.D.

ProrosiTioN 96. THEOREM 50

The same things being supposed, and that the motion before incidence vs swifter
than afterwards: I say, that if the line of tncidence be inclined continually, the body
will be at last reflected, and the angle of reflection will be equal to the angle of
incidence.

For conceive the body passing between the parallel planes Aa, Bb, Ce, &c.,
to describe parabolic arcs as above; and let those arcs be HP, PQ, QR, &c. And
let the obliquity of the line of incidence GH to the first plane Aa be such that
the sine of incidence may be to the radius of the circle whose sine it is, in the
same ratio which the same sine of incidence hath to the sine of emergence from
the plane Dd into the space DdeE; and because the sine of emergence is now
become equal to the radius, the angle of emergence will be a right one, and
therefore the line of emergence will coincide with the plane Dd. Let the body
come to this plane in the point R; and because the line of emergence coincides
with that plane, it is manifest that the body can proceed no farther towards the

plane Ee. But neither can it proceed in

G £ . o .
\ / the line of emergence Rd; because it is
H ) perpetually attracted or impelled to-

A a

3 : ey .
8 Q = & wards the medium of incidence. It will
D R 4 return, therefore, between the planes

Cc, Dd, describing an arc of a parabola
QRg, whose principal vertex (by what Galileo hath demonstrated) is in R,
cutting the plane Cc in the same angle at g, that it did before at Q; then going
on in the parabolic arcs ¢p, ph, &c., similar and equal to the former arcs QP,
PH, &c., it will cut the rest of the planes in the same angles at p, h, &ec., as it



Book I: Tue MortIioN oF BobpIEs 155

did before in P, H, &c., and will emerge at last with the same obliquity at &
with which it first impinged on that plane at H. Conceive now the intervals of
the planes Aa, Bb, Cc, Dd, Ee, &c., to be infinitely diminished, and the number
infinitely increased, so that the action of attraction or impulse, exerted accord-
ing to any assigned law, may become continual; and, the angle of emergence
remaining all along equal to the angle of incidence, will be equal to the same
also at last. Q.E.D.

ScHOLIUM

These attractions bear a great resemblance to the reflections and refractions
of light made in a given ratio of the secants, as was discovered by Snell; and
consequently in a given ratio of the sines, as was
exhibited by Descartes. For it is now certain
from the phenomena of Jupiter’s satellites, con-

d.
e. "
fo ..-~4 firmed by the observations of different astron-
£ _.e omers, that light is propagated in succession,
and requires about seven or eight minutes to
2 travel from the sun to the earth. Moreover, the

rays of light that are in our air (as lately was
discovered by Grimaldi, by the admission of light into a dark room through
a small hole, which I have also tried) in their passage near the angles of
bodies, whether transparent or opaque (such as the circular and rectangular
edges of gold, silver, and brass coins, or of knives, or broken pieces of stone or
glass), are bent or inflected round those bodies as if they were attracted to
them; and those rays which in their passage come nearest to the bodies are
the most inflected, as if they were most attracted; which thing I myself have
also carefully observed. And those which pass at greater distances are less in-
flected; and those at still greater distances are a little inflected the contrary
way, and form three fringes of colors. In the figure s represents the edge of a
knife, or any kind of wedge AsB; and gowog, fnunf, emtme, dlsld are rays in-
flected towards the knife in the arcs owo, nun, mtm, lsl; which inflection is
greater or less according to their distance from the knife. Now since this in-
flection of the rays is performed in the air without the knife, it follows that the
rays which fall upon the knife are first inflected in the air before they touch the
knife. And the case is the same of the rays falling upon glass. The refraction,
therefore, is made not in the point of incidence, but
gradually, by a continual inflection of the rays;
which is done partly in the air before they touch
the glass, partly (if I mistake not) within the glass,
after they have entered it; as is represented in the i
rays ckzc, biyb, ahza, falling upon r, ¢, p, and In- 2y xS
flected between k and z, 7 and y, A and z. Therefore fA
because of the analogy there is between the propa-
gation of the rays of light and the motion of bodies,
I thought it not amiss to add the following Propo-
sitions for optical uses; not at all considering the nature of the rays of light,
or inquiring whether they are bodies or not; but only determining the curves
of bodies which are extremely like the curves of the rays.

cba

F b4
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ProrosiTioN 97. PROBLEM 47

Supposing the sine of incidence upon any surface to be in a given ratio to the sine
of emergence; and that the inflection of the paths of those bodies near that surface is
performed in a very short space, which may be considered as a point; it is required
to determine such a surface as may cause all the corpuscles issuing from any one
given place to converge to another given place.

Let A be the place from whence the corpuscles diverge; B the place to which
they should converge; CDE the curved line which by its revolution round the
axis AB describes the surface sought; D, E any two points of that curve; and
EF, EG perpendiculars let fall on the
paths of the bodies AD, DB. Let the
point D approach to and coalesce with
the point E; and the ultimate ratio of
the line DF by which AD is increased, x
to the line DG by which DB is dimin-
ished, will be the same as that of the sine of incidence to the sine of emergence.
Therefore the ratio of the increment of the line AD to the decrement of the
line DB is given; and therefore if in the axis AB there be taken anywhere the
point C through which the curve CDE must pass, and CM the increment of
AC be taken in that given ratio to CN the decrement of BC, and from the
centres A, B, with the radii AM, BN, there be described two circles cutting
each other in D; that point D will touch the curve sought CDE, and, by touch-
ing it anywhere at pleasure, will determine that curve. Q.E.I

Cor. 1. By causing the point A or B to go off sometimes 7n infinitum, and
sometimes to move towards other parts of the point C, will be obtained all
those figures which Descartes has exhibited in his Optics and Geometry relating
to refractions. The invention of which Descartes having thought fit to conceal
is here laid open in this Proposition.

Cor. 11. If a body lighting on any surface _
CD in the direction of a right line AD, drawn . D / K
according to any law, should emerge in the Q
direction of another right line DK; and from
the point C there be drawn curved lines CP,
CQ, always perpendicular to AD, DK the
increments of the lines PD, QD, and there- A c
fore the lines themselves PD, QD, generated by those increments, will be as
the sines of incidence and emergence to each other, and conversely.

CNM B

ProprosiTiON 98. PROBLEM 48

The same things supposed; if round the axis AB any attractive surface be described,
as CD, regular or irreqular, through which the bodies issuing from the given place
A must pass; it is required to find a second attractive surface EF, which may make
those bodies converge to a given place B.

Let a line joining AB cut the first surface in C and the second in E, the point
D being taken in any manner at pleasure. And supposing the sine of incidence
on the first surface to the sine of emergence from the same, and the sine of
emergence from the second surface to the sine of incidence on the same, to be
as any given quantity M to another given quantity N; then produce AB to G, so



Book I: TuE MotioN or BobpiEs 157

that BG may be to CE as M ~N to N; and AD to H, so that AH may be equal
to AG; and DF to K, so that DK may be to DH as N to M. Join KB, and about
the centre D with the radius DH describe a circle meeting KB produced in L,

and draw BF parallel to DL; and the point F will touch the line EF, which,
being turned round the axis AB, will describe the surface sought. Q.E.F.

For conceive the lines CP, CQ to be everywhere perpendicular to AD, DF,
and the lines ER, ES to FB, FD respectively, and therefore QS to be always
equal to CE; and (by Cor. 11, Prop. 97) PD will be to QD as M to N, and there-
fore as DL to DK, or FB to FK; and by subtraction, as DL—FBor PH—-PD—
FB to FD or FQ—QD; and by addition as PH—FB to FQ, that is (because
PH and CG, QS and CE, are equal), as CE4-BG—FR to CE—FS. But (be-
cause BG is to CE as M —N to N) it comes to pass also that CE+BG is to CE
as M to N; and therefore, by subtraction, FR is to F'S as M to N; and therefore
(by Cor. 11, Prop. 97) the surface EF compels a body, falling upon it in the
direction DF, to go on in the line FR to the place B. Q.E.D.

ScHOLIUM

In the same manner one may go on to three or more surfaces. But of all
figures the spherical is the most proper for optical uses. If the object glasses of
telescopes were made of two glasses of a spherical figure, containing water be-
tween them, it is not unlikely that the errors of the refractions made in the
extreme parts of the surfaces of the glasses may be accurately enough corrected
by the refractions of the water. Such object glasses are to be preferred before
elliptic and hyperbolic glasses, not only because they may be formed with more
ease and accuracy, but because the pencils of rays situated without the axis of
the glass would be more accurately refracted by them. But the different re-
frangibility of different rays is the real obstacle that hinders optics from being
made perfect by spherical or any other figures. Unless the errors thence arising
can be corrected, all the labor spent in correcting the others is quite thrown
away.
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BOOK TWO

THE MOTION OF BODIES

IN RESISTING MEDIUMS

SECTION I

THE MOTION OF BODIES THAT ARE RESISTED IN THE RATIO OF THE VELOCITY

ProrosiTiON 1. THEOREM 1

If a body is resisted in the ratio of its velocity, the motion lost by resistance s as the
space gone over in its motion.

For since the motion lost in each equal interval of time is as the velocity,
that is, as the small increment of space gone over, then, by composition, the
motion lost in the whole time will be as the whole space gone over.  Q.E.D.

Cor. Therefore if the body, destitute of all gravity, move by its innate force
only in free spaces, and there be given both its whole motion at the beginning,
and also the motion remaining after some part of the way is gone over, there
will be given also the whole space which the body can describe in an infinite
time. For that space will be to the space now described as the whole motion at
the beginning is to the part lost of that motion.

LeMMA 1

Quantities proportional to their differences are continually proportional.
Let A:A-B=B:B-C=C:C—D=&ec;
then, by subtraction,
A:B=B:C=C:D=¢&ec. Q.E.D.

ProrosiTioN 2. THEOREM 2

If a body is resisted in the ratio of its velocity, and moves, by its inertia only,
through an homogeneous medium, and the times be taken equal, the velocities in the
beginning of each of the times are in a geometrical progression, and the spaces
described in each of the times are as the velociiies.

CasE 1. Let the time be divided into equal intervals; and if at the very begin-
ning of each interval we suppose the resistance to act with one single impulse
which is as the velocity, the decrement of the velocity in each of the intervals
of time will be as the same velocity. Therefore the velocities are proportional to
their differences, and therefore (by Lem. 1, Book 11) continually proportional.
Therefore if out of an equal number of intervals there be compounded any
equal portions of time, the velocities at the beginning of those times will be as
terms in a continued progression, which are taken by jumps, omitting every-
where an equal number of intermediate terms. But the ratios of these terms are

159
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compounded of the equal ratios of the intermediate terms equally repeated,
and therefore are equal. Therefore the velocities, being proportional to those
terms, are in geometrical progression. Let those equal intervals of time be
diminished, and their number increased in infinitum, so that the impulse of
resistance may become continual; and the velocities at the beginnings of equal
times, always continually proportional, will be also in this case continually
proportional. Q.E.D.

Cask 2. And, by division, the differences of the velocities, that is, the parts
of the velocities lost in each of the times, are as the wholes; but the spaces
described in each of the times are as the lost parts of the

velocities (by Prop. 1, Book 1), and therefore are also as H
the wholes. Q.E.D. G
Cor. Hence if to the rectangular asymptotes AC, CH,
the hyperbola BG is described, and AB, DG be drawn B
perpendicular to the asymptote AC, and both the velo- i L '

city of the body, and the resistance of the medium, at
the very beginning of the motion, be expressed by any given line AC, and,
after some time is elapsed, by the indefinite line DC; the time may be ex-
pressed by the area ABGD, and the space described in that time by the line
AD. For if that area, by the motion of the point D, be uniformly increased in
the same manner as the time, the right line DC will decrease in a geometrical
ratio in the same manner as the velocity; and the parts of the right line AC,
described in equal times, will decrease in the same ratio.

ProrosiTioN 3. PROBLEM 1

To define the motion of a body which, tn an homogeneous medium, ascends or
descends tn a right line, and 1s resisted in the ratio of its velocity, and acted upon by
an uniform force of gravity.

The body ascending, let the gravity be represented by any given rectangle
BACH; and the resistance of the medium, at the beginning of the ascent, by
the rectangle BADE, taken on the contrary
5 / side of the right line AB. Through the point

B, with the rectangular asymptotes AC,

CH, describe an hyperbola, cutting the per-

pendiculars DE, de in G, g; and the body

ascending will in the time DGgd describe

E e B / the space IEGge; in the time DGBA, the

H space of the whole ascent EGB; in the time

ABKI, the space of descent BFK; and in

D7 yy i ; c the time IKkz'.t.he space of dgscent KFfk;

and the velocities of the bodies (propor-

tional to the resistance of the medium) in these periods of time will be ABED,

ABed, o, ABFI, ABfi respectively; and the greatest velocity which the body
can acquire by descending will be BACH.

For let the rectangle BACH be resolved into innumerable rectangles Ak, KI,
Lm, Mn, &c., which shall be as the increments of the velocities produced in so
many equal times; then will o, Ak, Al, Am, An, &c., be as the whole velocities,
and therefore (by supposition) as the resistances of the medium in the begin-
ning of each of the equal times. Make AC to AK, or ABHC to ABKK, as the
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force of gravity to the resistance in the beginning of the second time; then from
the force of gravity subtract the resistances, and ABHC, KFHC, LIHC, Mm-
HC, &c., will be as the absolute forces with which the body is acted upon in the
beginning of each of the times, and therefore (by Law 1) as the increments of
the velocities, that is, as the rectangles Ak, Ki, Lm, Mn, &c., and therefore (by
Lem. 1, Book 11) in a geometrical progression. Therefore, if the right lines Kk,
LI, Mm, Nn, &c., are produced so as to meet the hyperbola in ¢, 7, s, ¢, &c., the
areas ABgK, KqgrL, LrsM, MstN, &c., will be equal, and therefore analogous to
the equal times and equal gravitating forces.
But the area AB¢K (by Cor. 111, Lems. 7 and
8, Book 1) is to the area Bkq as Kq to Lgkq,
or AC to L4AK, that is, as the force of grav-

by ity to the resistance in the middle of the first
g 4 /'/ time. And by the like reasoning, the areas
AWIECE H ¢gKLr, rLMs, sMN{, &c., are to the areas gklr,
rlms, smnt, &c., as the gravitating forces to
the resistances in the middle of the second,

A KLMN C

third, fourth time, and so on. Therefore since
the equal areas BAKgq, ¢KLr, rLMs, sMN¢, &c., are analogous to the gravi-
tating forces, the areas Bkq, qklr, rlms, smnt, &c., will be analogous to the
resistances in the middle of each of the times, that is (by supposition), to the
velocities, and so to the spaces described. Take the sums of the analogous
quantities, and the areas Bkg, Blr, Bms, Bnt, &c., will be analogous to the
whole spaces described; and also the areas AB¢K, ABrL, ABsM, AB¢N, &c.,
to the times. Therefore the body, in descending, will in any time ABrL de-
scribe the space Blr, and in the time LrtN the space rint. @.E.n. And the like
demonstration holds in ascending motion.

Cor. 1. Therefore the greatest velocity that the body can acquire by falling
is to the velocity acquired in any given time as the given force of gravity which
continually acts upon it to the resisting force which opposes it at the end of
that time.

Cor. 11. But the time being augmented in an arithmetical progression, the
sum of that greatest velocity and the velocity in the ascent, and also their
difference in the descent, decreases in a geometrical progression.

Cor. 111. Also the differences of the spaces, which are described in equal
differences of the times, decrease in the same geometrlcal progression.

Cor. 1v. The space descrlbed by the body is the difference of two spaces,
whereof one is as the time taken from the beginning of the descent, and the
other as the velocity; which [spaces] also at the beginning of the descent are
equal among themselves.

ProrosiTioN 4. PROBLEM 2

Supposing the force of gravity in any homogeneous medium to be uniform, and to
tend perpendicularly to the plane of the horizon: to define the motion of a projectile
therein, which suffers reststance proportional to its velocity.

Let the projectile go from any place D in the direction of any right line DP,
and let its velocity at the beginning of the motion be represented by the length
DP. From the point P let fall the perpendicular PC on the horizontal line DC,
and cut DC in A, so that DA may be to AC as the vertical component of the
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resistance of the medium arising from the z
motion upwards at the beginning, to the
force of gravity; or (which comes to the
same) so that the rectangle under DA and
DP may be to that under AC and CP as
the whole resistance at the beginning of
the motion, to the force of gravity. With
the asymptotes DC, CP describe any hy-
perbola GTBS cutting the perpendiculars
DG, AB in G and B; complete the paralle-
logram DGKC, and let its side GK cut AB P
in Q. Take a line N in the same ratio to QB X
as DC is in to CP; and from any point R

of the right line DC erect RT perpendicu-

lar to it, meeting the hyperbola in T, and

the right lines EH, GK, DP in I, ¢, and V; N

; L
in that perpendicular take Vr equal to v/
%I, or, which is the same thing, take Rr //rr
“a B H
equal to g,I—‘\YLE—‘; and the projectile in the G % T
: ;

time DRTG will arrive at the point r, de-
scribing the curved line DraF, the locus of
the point 7; thence it will come to its greatest height a in the perpendicular
AB; and afterwards ever approach to the asymptote PC. And its velocity in

R A F C

any point r will be as the tangent rL to the curve. Q.E.L.
For N:QB=DC:CP=DR:RYV,

and therefore RV is equal to %;QB, and Rr

(that is, RV—=Vr, or DR'QE_tGT> is equal to DR.AB\? RDGT. Now let

the time be represented by the area RDGT, and (by Laws, Cor. 11) distinguish
the motion of the body into two others, one of ascent, the other lateral. And
since the resistance is as the motion, let that also be distinguished into two
parts proportional and contrary to the parts of the motion: and therefore the
length described by the lateral motion will be (by Prop. 2, Book 11) as the line
DR, and the height (by Prop. 3, Book 11) as the area DR-AB —RDGT, that is,
as the line Rr. But in the very beginning of the motion the area RDGT is equal

to the rectangle DR-AQ, and therefore that line Rr < or DR'AB;TDR'AQ)

will then be to DR as AB—AQ or QB to N, that is, as CP to DC; and therefore
as the motion upwards to the motion lengthwise at the beginning. Since, there-
fore, Rris always as the height, and DR always as the length, and Rris to DR
at the beginning as the height to the length, it follows, that Rris always to DR
as the height to the length; and therefore that the body will move in the line
DraF, which 1s the locus of the point r. Q.E.D.

DRI\.TAB—RI?\,GT; and therefore if RT be

Cor. 1. Therefore Rr is equal to
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l)R_l\AE that is, if the parallel-

ogram ACPY be completed, and DY cutting CP in Z be drawn, and RT be

produced till it meets DY in X; Xr will be equal to \IGT, and therefore

produced to X so that RX may be equal to

proportional to the time.

Cor. 11. Whence if innumerable lines CR, or, which is the same, innumerable
lines ZX, be taken in a geometrical progression ,there will be as many lines X»
in an arithmetical progression. And hence the curve DraF is easily delineated
by the table of logarithms.

Cor. 111. If a parabola be constructed to the vertex D, and the diameter DG
produced downwards, and its latus rectum is to 2DP as the whole resistance at
the beginning of the motion to the gravitating force, the velocity with which
the body ought to go from the place D, in the direction of the right line DP, so
p as in an uniform resisting medium to de-

scribe the curve DraF, will be the same as
that with which it ought to go from the
same place D in the direction of the same
right line DP, so as to describe a parabola

S in a nonresisting medium. For the latus
rectum of this parabola, at the very be-
= .. . . Dve .
a ginning of the motion, is ~ and Vr is
B t(GT DR-T¢ . . .
G- Q K N O oy - Buta right line which,
Dvr + —- if drawn, would touch the hyperbola GTS
R in G, is parallel to DK, and therefore Tt is
CK-DR .. QB-DC . DR*-CK-CP .
—DC and N is~sp And therefore Vr is equal to 3DC-QB that is
"2, .
(because DR and DC, DV and DP are proportionals), to D;DPCJ{QBCP;
2 DP:.
and the latus rectum % comes out %, that is (because QB and CK,
2DP?- DA

DA and AC are proportionals), “AC.CP and therefore is to 2DP as DP-DA

to CP-AC; that is, as the resistance to the gravity. Q.E.D.

Cor. 1v. Hence if a body be projected from any place D with a given velocity,
in the direction of a right line DP given by position, and the resistance of the
medium, at the beginning of the motion, be given, the curve DraF, which that
body will deseribe, may be found. For the velocity being given, the latus rec-
tum of the parabola is given, as is well known. And taking 2DP to that latus
rectum, as the force of gravity to the resisting force, DP 1s also given. Then
cutting DC in A, so that CP-AC may be to DP-DA in the same ratio of
the gravity to the resistance, the point A will be given. And hence the curve
DraF is also given.

Cor. v. And conversely, if the curve DraF be given, there will be given both
the velocity of the body and the resistance of the medium in each of the places
r. For the ratio of CP-AC to DP-DA being given, there is given both the re-
sistance of the medium at the beginning of the motion, and the latus rectum of
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the parabola; and thence the velocity at z
the beginning of the motion is given also.
Then from the length of the tangent rL
there is given both the velocity propor-
tional to it, and the resistance proportional
to the velocity in any place r.

Cor. vI. But since the length 2DP is to
the latus rectum of the parabola as the
gravity to the resistance in D, and, from
the velocity augmented, the resistance is
augmented in the same ratio, but the latus p
rectum of the parabola i1s augmented as X
the square of that ratio, 1t is plain that
the length 2DP is augmented in that
simple ratio only; and is therefore always
proportional to the velocity; nor will it be N
augmented or diminished by the change A/
of the angle CDP, unless the velocity be /
also changed. B ]

Cor. vii. Hence appears the method of %
determining the curve DraF nearly from G
the phenomena, and thence finding there-
sistance and velocity with which the body
is projected. Let two similar and equal bodies be projected with the same ve-
locity, from the place D, in different angles CDP, CDp; and let the places
F, f, where they fall upon the horizontal plane DC, be known. Then taking
any length for DP or Dp suppose the resistance in D to be to the gravity in any
ratio whatsoever, and let that ratio be represented by any length SM. Then,
by computation, from that assumed length DP, find the lengths DF, Df;

’ and from the ratio %fF’ found by calcu-
lation, subtract the same ratio as found
by experiment; and let the difference be
represented by the perpendicular MN.
Repeat the same a second and a third
time, by assuming always a new ratio
SM of the resistance to the gravity, and
collecting a new difference MN. Draw
the positive differences on one side of the
right line SM, and the negative on the
other side; and through the points N, N,
N, draw a regular curve NNN, cutting
the right line SMMM in X, and SX will
be the true ratio of the resistance to the
D AN C  gravity, which was to be found. From

N N this ratio the length DF is to be found

— S M by calculation; and a length, which is to
the assumed length DP as the length DF
known by experiment to the length DF

o

TN
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just now found, will be the true length DP. This being known, you will have
both the curved line DraF which the body describes, and also the velocity and
resistance of the body in each place.

ScHOLIUM

However, that the resistance of bodies is in the ratio of the velocity, is more
a mathematical hypothesis than a physical one. In mediums void of all tenac-
ity, the resistances made to bodies are as the square of the velocities. For by
the action of a swifter body, a greater motion in proportion to a greater veloc-
ity is communicated to the same quantity of the medium in a less time; and in
an equal time, by reason of a greater quantity of the disturbed medium, a
motion is communicated as the square of the ratio greater; and the resistance
(by Laws 11 and 111) 18 as the motion communicated. Let us, therefore, see what
motions arise from this law of resistance.

SECTION 11

THE MOTION OF BODIES THAT ARE RESISTED AS THE SQUARE
OF THEIR VELOCITIES

ProrosiTioN 5. THEOREM 3

If a body vs resisted as the square of its velocity, and moves by its innate force only
through an homogeneous medium; and the tvmes be taken in a geometrical progres-
ston, proceeding from less to greater terms: I say, that the velocities at the beginning
of each of the times are in the same geomeirical progression inversely; and that the
spaces are equal, which are described in each of the times.

For since the resistance of the medium is proportional to the square of the
velocity, and the decrement of the velocity is proportional to the resistance:
if the time be divided into innumerable equal intervals, the squares of the
velocities at the beginning of each of the times will be proportional to the dif-
ferences of the same velocities. Let those inter-
vals of time be AK, KL, LM, &c., taken in the
right line CD; and erect the perpendiculars AB,
Kk, LI, Mm, &c., meeting the hyperbola BklmG,
described with the centre C, and the rectangular
asymptotes CD, CH, in B, k, [, m, &c.; then AB
will be to Kk as CK to CA, and, by division,
AB—-Kk to Kk as AK to CA, and alternately,

AB—KFk to AK as Kk to CA; and therefore as
C AKLM T D AB.Kk to AB-CA. Therefore since AK and
AB-CA are given, AB— Kk will be as AB-Kk; and, lastly, when AB and Kk
coincide, as AB?. And, by the like reasoning, Kk — LI, LI—Mm, &c., will be as
Kk?% L%, &c. Therefore the squares of the lines AB, Kk, LI, Mm, &c., are as
their differences; and, therefore, since the squares of the velocities were shown
above to be as their differences, the progression of both will be alike. This being
demonstrated it follows also that the areas described by these lines are in a like
progression with the spaces described by these velocities. Therefore if the ve-
locity at the beginning of the first time AK be represented by the line AB, and
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the velocity at the beginning of the second time KL by the line Kk, and the
length described in the first time by the area AKAB, all the following velocities
will be represented by the following lines LI, Mm, &c., and the lengths de-
scribed by the areas Kl, Lm, &ec. And, by composition, if the whole time be
represented by AM, the sum of its parts, the whole length described will be
represented by AMmB, the sum of its parts. Now conceive the time AM to be
divided into the parts AK, KL, LM, &c., so that CA, CK, CL, CM, &c., may
be in a geometrical progression; and those parts will be in the same progression,
and the velocities AB, Kk, LI, Mm, &c., will be in the same progression in-
versely, and the spaces described Ak, Ki, Lm, &c., will be equal. Q.E.D.

Cor. 1. Hence it appears, that if the time be represented by any part AD of
the asymptote, and the velocity in the beginning of the time by the ordinate
AB, the velocity at the end of the time will be represented by the ordinate DG;
and the whole space described by the adjacent hyperbolic area ABGD; and the
space which any body can describe in the same time AD, with the first velocity
AB, in a nonresisting medium, by the rectangle AB-AD.

Cor. 11. Hence the space described in a resisting medium is given, by taking
it to the space described with the uniform velocity AB in a nonresisting me-
dium, as the hyperbolic area ABGD to the rectangle AB-AD.

Cor. 111. The resistance of the medium is also given, by making it equal, in
the very beginning of the motion, to an uniform centripetal force, which could
generate, in a body falling through a nonresisting medium, the velocity AB in
the time AC. For if BT be drawn touching the hyperbola in B, and meeting the
asymptote in T, the right line AT will be equal to AC, and will express the time
in which the first resistance, uniformly continued, may take away the whole
velocity AB.

Cor. 1v. And thence is also given the proportion of this resistance to the
force of gravity, or any other given centripetal force.

Cor. v. And, conversely, if there is given the proportion of the resistance to
any given centripetal force, the time AC is also given, in which a centripetal
force equal to the resistance may generate any velocity as AB; and thence is
given the point B, through which the hyperbola, having CH, CD for its asymp-
totes, is to be described; as also the space ABGD, which a body, by beginning
its motion with that velocity AB, can describe in any time AD, in an homo-
geneous resisting medium.

ProrositioN 6. THEOREM 4

Homogeneous and equal spherical bodies, opposed by resistances that are as the
square of the velocities, and moving on by their innate force only, will, in times
which are tnversely as the velocities at the beginning,
describe equal spaces, and lose parts of their veloc- H

1ties proportional to the wholes.

To the rectangular asymptotes CD, CH des-

cribe any hyperbola BbEe, cutting the perpen-
diculars AB, ab, DE, de in B, b, E, ¢; let the ini-
tial velocities be represented by the perpendiculars E
AB, DE, and the times by the lines Aa, Dd.
Therefore as Aa is to Dd, so (by the hypothesis)
is DE to AB, and so (from the nature of the hy- ¢ Aa D 4
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perbola) is CA to CD; and, by composition, so is Ca to Cd. Therefore the
areas ABba, DEed, that is, the spaces described, are equal among themselves,
and the first velocities AB, DE are proportional to the last ab, de; and there-
fore, by subtraction, proportional to the parts of the velocities lost, AB—ab,
DE —de. Q.E.D.

ProrosiTiON 7. THEOREM 5

If spherical bodies are resisted as the squares of their velocities, in times which are
directly as the first motions, and inversely as the first resistances, they will lose parts
of their motions proportional to the wholes, and will describe spaces proportional
to the product of those times and the first velocities.

For the parts of the motions lost are as the product of the resistances and
times. Therefore, that those parts may be proportional to the wholes, the
product of the resistance and time ought to be as the motion. Therefore the
time will be as the motion directly and the resistance inversely. Therefore the
intervals of the times being taken in that ratio, the bodies will always lose parts
of their motions proportional to the wholes, and therefore will retain velocities
always proportional to their first velocities. And because of the given ratio of
the velocities, they will always describe spaces which are as the product of the
first velocities and the times. Q.E.D.

Cogr. 1. Therefore if bodies equally swift are resisted as the square of their
diameters, homogeneous globes moving with any velocities whatsoever, by
describing spaces proportional to their diameters, will lose parts of their mo-
tions proportional to the wholes. For the motion of each globe will be as the
product of its velocity and mass, that is, as the product of the velocity and the
cube of its diameter; the resistance (by supposition) will be as the product of
the square of the diameter and the square of the velocity; and the time (by
this Proposition) is in the former ratio directly, and in the latter inversely, that
is, as the diameter directly and the velocity inversely; and therefore the space,
which is proportional to the time and velocity, is as the diameter.

Cor. 11. If bodies equally swift are resisted as the 34th power of their diam-
eters, homogeneous globes, moving with any velocities whatsoever, by describ-
ing spaces that are as the 34th power of the diameters, will lose parts of their
motions proportional to the wholes.

Cor. 111. And universally, if equally swift bodies are resisted in the ratio of
any power of the diameters, the spaces, in which homogeneous globes, moving
with any velocity whatsoever, will lose parts of their motions proportional to
the wholes, will be as the cubes of the diameters applied to that power. Let
those diameters be D and E; and if the resistances, where the velocities are
supposed equal, are as D™ and E*; the spaces in which the globes, moving with
any velocities whatsoever, will lose parts of their motions proportional to the
wholes, will be as D*" and E3>—". And therefore homogeneous globes, in de-
scribing spaces proportional to D3 and E3—, will retain their velocities in the
same ratio to one another as at the beginning.

Cor. 1v. Now if the globes are not homogeneous, the space described by the
denser globe must be augmented in the ratio of the density. For the motion,
with an equal velocity, is greater in the ratio of the density, and the time (by
this Proposition) is augmented in the ratio of motion directly, and the space
described in the ratio of the time.
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Cor. v. And if the globes move in different mediums, the space, in a medium
which, other things being equal, resists the most, must be diminished in the
ratio of the greater resistance. For the time (by this Proposition) will be dimin-
ished in the ratio of the augmented resistance, and the space in the ratio of
the time.

LeMmMaA 2

The moment of any genitum s equal to the moments of each of the generating sides
multiplied by the indices of the powers of those sides, and by their coefficients
continually.

I call any quantity a genitum which is not made by addition or subtraction
of divers parts, but is generated or produced in arithmetic by the multiplica-
tion, division, or extraction of the root of any terms whatsoever; in geometry
by the finding of contents and sides, or of the extremes and means of propor-
tionals. Quantities of thiskind are products, quotients, roots, rectangles, squares,
cubes, square and cubic sides, and the like. These quantities I here consider as
variable and indetermined, and increasing or decreasing, as it were, by a con-
tinual motion or flux; and I understand their momentary increments or decre-
ments by the name of moments; so that the increments may be esteemed as
added or affirmative moments; and the decrements as subtracted or negative
ones. But take care not to look upon finite particles as such. Finite particles
are not moments, but the very quantities generated by the moments. We are
to conceive them as the just nascent principles of finite magnitudes. Nor do we
in this Lemma regard the magnitude of the moments, but their first propor-
tion, as nascent. It will be the same thing, if, instead of moments, we use either
the velocities of the increments and decrements (which may also be called the
motions, mutations, and fluxions of quantities), or any finite quantities pro-
portional to those velocities. The coefficient of any generating side is the quan-
tity which arises by applying the genitum to that side.

Wherefore the sense of the Lemma is, that if the moments of any quantities
A, B, C, &ec., increasing or decreasing by a continual flux, or the velocities of
the mutations which are proportional to them, be called a, b, ¢, &c., the moment
or mutation of the generated rectangle AB will be aB+bA ; the moment of the
generated content ABC will be aBC+bAC+cAB; and the moments of the
generated powers A2, A3, A4 A1/2 A3/2) A13 A28 A-1 A—2 A—1/2 will be 2aA,
3aA? 4aA3 VoaA—12 SaAl2, V4aA—23) 24aA~13, —aA~? —2aA~3, — LgaA—3?

respectively; and, in general, that the moment of any power Am will be

n-m

:L—n aA m . Also, that the moment of the generated quantity A2B will be

2aAB+bA?; the moment of the generated quantity A*B*C? will be 3aA2B4C?+
A3

4bA’B3C?4-2¢A’B*C; and the moment of the generated quantity B2 Or A3B—?

will be 3a¢A’B~2—2bA3B—3; and so on. The Lemma is thus demonstrated.
CasE 1. Any rectangle, as AB, augmented by a continual flux, when, as yet,
there wanted of the sides A and B half their moments 14a and 14b, was
A —1%a into B—14b, or AB—14a B—14b A+ Y4ab; but as soon as the sides
A and B are augmented by the other half-moments, the rectangle becomes
A+14a into B4-14b, or AB+Ya B-+14b A+ 14ab. From this rectangle sub-
tract the former rectangle, and there will remain the excess aB+bA. There-
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fore with the whole increments a and b of the sides, the increment aB+4bA of
the rectangle is generated. Q.E.D.

CASE 2. Suppose AB always equal to G, and then the moment of the content
ABC or GC (by Cask 1) will be gC+cG, that is (putting AB and aB+bA for
G and ¢g), aBC+bAC+cAB. And the reasoning is the same for contents under
ever so many sides. Q.E.D.

Cask 3. Suppose the sides A, B, and C, to be always equal among them-
selves; and the moment aB+bA, of A2, that is, of the rectangle AB, will be 2aA;
and themoment aBC+bAC-+cAB of A3, thatis, of the content ABC, will be 3aA2.
And by the same reasoning the moment of any power A" is naA™~!.  Q.E.D.

Cask 4. Therefore since % into A is 1, the moment of 1 multiplied by A,
1

3 multiplied by a, will be the moment of 1, that is, nothing.

Therefore the moment of %, or of A™L is f\f .
1

< multiplied by A" together with

be nothing. And, therefore, the moment of A];n or A= will be — 1%'

Cask 5. And since A!/2 into A2 is A, the moment of A!/2 multiplied by
2A12 will be a (by Case 3); and, therefore, the moment of A'/2 will be ﬁ%
or L4aA—12, And generally, putting A equal to B, then A™ will be equal to
B~", and therefore maA™"! equal to nbB*!, and maA~! equal to nbB~!, or

together with

And generally since % into
1

A™is 1, the moment of X into naA™"1! will

Q.E.D.

nbAJ’?; and therefore A 7 is equal to b, that is, equal to the moment of

A7, Q.E.D.
Casge 6. Therefore the moment of any generated quantity A”B” is the
moment of A™ multiplied by B”, together with the moment of B” multiplied
by A™, that is, maA™ ! B*4+nbB"~! A™; and that whether the indices m and n
of the powers be whole numbers or fractions, affirmative or negative. And the
reasoning is the same for higher powers. Q.E.D.
Cor. 1. Hence in quantities continually proportional, if one term is given,
the moments of the rest of the terms will be as the same terms multiplied by
the number of intervals between them and the given term. Let A, B, C, D,
E, F be continually proportional; then if the term C is given, the moments of
the rest of the terms will be among themselves as —2A, —B, D, 2E, 3F.
Cor. 11. And if in four proportionals the two means are given, the moments
of the extremes will be as those extremes. The same is to be understood of the
sides of any given rectangle.
Cor. 111. And if the sum or difference of two squares is given, the moments
of the sides will be inversely as the sides.

ScHOLIUM

In a letter of mine to Mr. J. Collins, dated December 10, 1672, having de-
scribed a method of tangents, which I suspected to be the same with Sluse’s
method, which at that time was not made public, I added these words: This is
one particular, or rather a Corollary, of a general method, which extends ttself,
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without any troublesome calculation, not only to the drawing of tangents to any
curved lines, whether geometrical or mechanical or in any manner respecting right
lines or other curves, but also to the resolving other abstruser kinds of problems
about the crookedness, areas, lengths, centres of gravity of curves, &c.; nor s ut
(as Hudden’s method de maximis et minimis) limited to equations which are free
from surd quantities. This method I have interwoven with that other of working in
equations, by reducing them to infinite series. So far that letter. And these last
words relate to a treatise I composed on that subject in the year 1671. The
foundation of that general method is contained in the preceding Lemma.

ProrosiTioN 8. THEOREM 6

If a body in an uniform medtum, being uniformly acted upon by the force of
gravity, ascends or descends in a right line; and the whole space described be
divided into equal parts, and in the beginning of each of the parts (by adding or
subtracting the resisting force of the medium to or from the force of gravity, when
the body ascends or descends) you derive the absolute forces: I say, that those
absolute forces are in a geometrical progression.

Let the force of gravity be represented by the given line AC; the force of
resistance by the indefinite line AK; the absolute force in the descent of the
body by the difference KC; the velocity of the body by a line AP, which shall
be a mean proportional between AK and AC, and therefore as the square root
of the resistance; the increment of the re-
sistance made in a given interval of time
by the short line KL, and the contempora-
neous increment of the velocity by the
short line PQ; and with the centre C, and
rectangular asymptotes CA, CH, describe
any hyperbola BNS meeting the erected
perpendiculars AB, KN, LO in B, N, and
O. Because AK is as AP? the moment KL
of the one will be as the moment 2AP - PQ of the other, that is, as AP-KC; for
the increment PQ of the velocity is (by Law 11) proportional to the generating
force KC. Let the ratio of KL be multiplied by the ratio KN, and the rectangle
KL-KN will become as AP-KC-KN; that is (because the rectangle KC-KN
is given), as AP. But the ultimate ratio of the hyperbolic area KNOL to the
rectangle KL-KN becomes, when the points K and L coincide, the ratio of
equality. Therefore that hyperbolic evanescent area is as AP. Therefore the
whole hyperbolic area ABOL is composed of intervals KNOL which are always
proportional to the velocity AP; and therefore is itself proportional to the space
described with that velocity. Let that area be now divided into equal parts, as
ABMI, IMNK, KNOL, &ec., and the absolute forces AC, IC, KC, LC, &ec.,
will be in a geometrical progression. Q.E.p. And by a like reasoning, in the ascent
of the body, taking, on the contrary side of the point A, the equal areas ABmz,
imnk, knol, &c., it will appear that the absolute forces AC, iC, kC, IC, &c., are
continually proportional. Therefore if all the spaces in the ascent and descent
are taken equal, all the absolute forces IC, kC, iC, AC, IC, KC, LC, &c., will
be continually proportional. Q.E.D.

Cor. 1. Hence if the space described be represented by the hyperbolic area
ABNK, the force of gravity, the velocity of the body, and the resistance of the

H
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medium, may be represented by the lines AC, AP, and AK respectively; and
conversely.

Cor. 11. And the greatest velocity which the body can ever acquire in an
infinite descent will be represented by the line AC.

Cor. 111. Therefore if the resistance of the medium answering to any given
velocity be known, the greatest velocity will be found, by taking it to that
given velocity, as the square root of the ratio which the force of gravity bears
to that known resistance of the medium.

ProrosiTioN 9. THEOREM 7

Supposing what is above demonstrated, I say, that if the tangents of the angles of
the sector of a circle, and of an hyperbola, be taken proportional to the velocities,
the radius being of a fit magnitude, all the time of the ascent to the highest place will
be as the sector of the circle, and all the time of descending from the highest place
as the sector of the hyperbola.

To the right line AC, which expresses the force of gravity, let AD be drawn
perpendicular and equal. From the centre D, with the semidiameter AD
describe as well the quadrant AtE of a circle, as the rectangular hyperbola
AVZ, whose axis is AK, principal vertex A, and asymptote DC. Let Dp, DP

D
be drawn; and the circular sector A¢tD will be as all the time of the ascent to the
highest place; and the hyperbolic sector ATD as all the time of descent from
the highest place; if so be that the tangents Ap, AP of those sectors be as the
velocities.

Cask 1. Draw Dug cutting off the moments or least intervals tDv and ¢Dp,
described in the same time, of the sector AD¢ and of the triangle ADp. Since
those intervals (because of the common angle D) are as the square of the sides,

. 2
the interval (Dv will be as q’;p—DiD, that is (because tD is given), as (*;11))2; But
pD? is AD?2+4Ap?, that is, AD?4+AD-Ak, or AD-Ck; and ¢Dp is L4AD-pg.
Therefore ¢tDv, the interval of the sector, is as % ; that is, directly as the least
decrement pq of the velocity, and inversely as the force Ck which diminishes
the velocity; and therefore as the interval of time answering to the decrement
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of the velocity. And, by composition, the sum of all the intervals {Dv in the
sector AD¢ will be as the sum of the intervals of time answering to each of the
lost intervals pg of the decreasing velocity Ap, till that velocity, being dimin-
ished into nothing, vanishes; that is, the whole sector ADt¢ is as the whole time
of ascent to the highest place. Q.E.D.

Cask 2. Draw DQV cutting off the least intervals TDV and PDQ of the
sector DAYV, and of the triangle DAQ; and these intervals will be to each other
as DT? to DP?, that is (if TX and AP are parallel), as DX? to DA? or TX? to

E

D

AP?; and, by subtraction, as DX2—TX? to DA2— AP? But, from the nature
of the hyperbola, DX2—TX?is AD?; and, by the supposition, AP?is AD-AK.
Therefore the intervals are to each other as AD? to AD?*—AD-AK; that is,
as AD to AD— AK or AC to CK; and therefore the interval TDV of the sector
PD(?I,AC and therefore (because AC and AD are given) as C?(’ that 1s,
directly as the increment of the velocity, and inversely as the force generating
the increment; and therefore as the interval of the time answering to the incre-
ment. And, by composition, the sum of the intervals of time, in which all the
intervals PQ of the velocity AP are generated, will be as the sum of the in-
tervals of the sector ATD; that is, the whole time will be as the whole sector.
Q.E.D.
Cor. 1. Hence if AB be equal to a fourth part of AC, the space which a body
will describe by falling in any time will be to the space which the body could
describe, by moving uniformly on in the same time with its greatest velocity
AC, as the area ABNK, which expresses the space described in falling to the
area ATD, which expresses the time. For since
AC : AP=AP : AK,
and by Cor. 1, Lem. 2, of this Book,
LK : PQ=2AK : AP=2AP : AC,

therefore LK : 14PQ=AP : J4AC or AB,
and since KN : AC or AD=AD : CK,

multiplying together corresponding terms,
LKNO : DPQ=AP: CK.



Booxk II: THE Motiox oF BobpiEs 173

As shown above,
DPQ : DTV=CK : AC.

Hence, LKNO : DTV=AP: AC;

that is, as the velocity of the falling body to the greatest velocity which the
body by falling can acquire. Since, therefore, the moments LKNO and DTV
of the areas ABNK and ATD are as the velocities, all the parts of those areas
generated in the same time will be as the spaces described in the same time;
and therefore the whole areas ABNK and ADT, generated from the beginning,
will be as the whole spaces described from the beginning of the descent. q.E.D.

Cogr. 11. The same is true also of the space described in the ascent. That is to
say, that all that space is to the space described in the same time, with the
uniform velocity AC, as the area ABnk is to the sector ADx.

Cor. 111. The velocity of the body, falling in the time ATD, is to the velocity
which it would acquire in the same time in a nonresisting space, as the triangle
APD to the hyperbolic sector ATD. For the velocity in a nonresisting medium
would be as the time ATD, and in a resisting medium is as AP, that is, as the
triangle APD. And those velocities, at the beginning of the descent, are equal
among themselves, as well as those areas ATD, APD.

Cor. 1v. By the same argument, the velocity in the ascent is to the velocity
with which the body in the same time, in a nonresisting space, would lose all
its motion of ascent, as the triangle ApD to the circular sector A¢D; or as the
right line Ap to the arc At.

Cor. v. Therefore the time in which a body, by falling in a resisting medium,
would acquire the velocity AP, is to the time in which it would acquire its
greatest velocity AC, by falling in a nonresisting space, as the sector ADT to
the triangle ADC; and the time in which it would lose its velocity Ap, by
ascending in a resisting medium, is to the time in which it would lose the same
velocity by ascending in a nonresisting space, as the arc A¢ to its tangent Ap.

Cor. vi. Hence from the given time there is given the space described in the
ascent or descent. For the greatest velocity of a body descending <n infinitum
is given (by Cor. 11 and 111, Theor. 6, of this book); and thence the time is given
in which a body would acquire that velocity by falling in nonresisting space.
Taking the sector ADT or AD¢ to the triangle ADC in the ratio of the given
time to the time just found, there will be given both the velocity AP or Ap, and
the area ABNK or ABnk, which is to the sector ADT, or AD¢ as the space
sought to that which would, in the given tim