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BIOGRAPHICAL NOTE
ProLEMY, A.D. ¢.100-¢.178

Tre life of Claudius Ptolemaeus is almost en-
tirely unknown despite his fame as an as-
tronomer and geographer. What little can be
sald of his personal history has to be pieced to-
gether from indications in his writings, two
ancient scholia, and brief notices by much later
writers, some of them Arabian. From these it
appears that Ptolemy was born at Ptolemais
Hermii, a Grecian city of the Egyptian The-
baid; even this is not certain, since another
early source gives his birth-place as Pelusium,
His work is traditionally associated with Alex-
andria, but according to one scholium, he de-
voted his life to astromony and lived for forty
years at Canopus, about fifteen miles east of
the capital, Ptolemy himself notes that he
made his observations ‘“‘in the parallel of Alex-
andria.” The dates of his birth and death are
also uncertain, His observations recorded in
the Almagest extend from a.p. 127 to 151; the
Arabic writers claim that he lived to the age of
seventy-eight; from this evidence it is inferred
that Ptolemy’s life covered the first three
quarters of the second century and the reigns
of Trajan, Hadrian, Antoninus Pius, and Mar-
cus Aurelius. There seems to be no basis for
the claim once made that he was related to the
royal house of the Ptolemies.

From his writings it is evident that Ptolemy
knew well the work of his predecessors, and
most of what is now known about ancient
astronomy owes its preservation to him.
He was particularly indebted to Hipparchus
(c. 130 B.c.), “that enthusiastic worker and
lover of truth,” whom Ptolemy considered
his master. From his own observation he was
able to add to the records compiled by prior
astronomers; he increased by several hundred
stars the list drawn up by Hipparchus. His
discoveries are said to have been inscribed on
pillars erected in the temple of Serapis at
Canopus.

Ptolemy’s fame as an astronomer rests chief-
ly upon the Almagest. This work was originally
known as The Mathematical Composition, but
after it had come to be used as a text in as-
tronomy, it was called The Great Astronomer to
distinguish it from a collection known as The
Liitle Astronomer. The Arabs called it “The
Greatest,” prefixing the article al to the Greek
megiste, and ever since it has been known as
the Almagest.

In addition to his great work, Ptolemy com-
posed many shorter books dealing with the
heavens. In his Hypothests on the Planets he
provided a summary of part of the Almagest
and a brief statement of the principal theories
explaining the motion of the heavenly bodies.
He drew up a list of annual sidereal phenomena
and also a chronological table of Assyrian, Per-
sian, Greek, and Roman kings for use in reck-
oning the lapse of time between an event and
a given fixed date. The two astrological writ-
ings, the Tetrabiblon (or Quadripartitum) and
the Centiloguium, are usually attributed to
Ptolemy, although their authenticity has
sometimes been doubted. Of his other mathe-
matical works, the most important are the
Harmonica, a treatise on music, and the Optics,
which is apparently the first recorded attempt
at a theory of refraction of luminous rays
through media of different densities.

After the Almagest, Ptolemy’s most impor-
tant work is his Guide to Geography, the most
comprehensive and scientific work of antiquity
on the subject. It consists largely of a tabula-
tion of places with their latitude and longitude,
but it also contains an estimate of the size and
extent of the “inhabited world” and a discus-
sion of map-making. The Guide came to be for
geography what the Almagest was for astrono-
my, and until well into the Renaissance, Ptol-
emy was hardly less celebrated as a geographer
than as an astronomer.
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INTRODUCTION

The Mathematical Composition of Claudius Ptolemy in thirteen books, called
also by an Arabic transliteration of 4 uediorn [ovsratis] The Almagest, is the only
completely comprehensive treatise of Greek astronomy to come down to us, if
we except Aristarchus’ On the Sizes and Distances of the Sun and Moon, a com-
plete and remarkable mathematical treatment of a very limited astronomical
subject. The works of the greatest Greek astronomers—Eudoxus, Heraclides
of Pontus, Aristarchus of Samos, Apollonius of Perga, and Hipparchus—are
lost for the most part, and we only know their contents from this treatise and
other very meagre sources. For detail, completeness, and perfection, the Com-
position of Ptolemy might be said to contain all those which preceded it; its pre-
diction of the phenomena is on the whole as adequate as the instruments used—
they were surprisingly accurate—could possibly allow for. But its perfection is
such that it often covers up the modes of discovery, and its geocentric theory
is propounded with only the barest references to its heliocentric opponents.

The Composition more or less dates itself. In Book x1, chapter 5, Ptolemy
says he observed Saturn, 7 Pachom, year 11 of Hadrian; and although he does
not directly attribute to himself the observation, it is almost certain he made
the observation of the eclipse of the moon mentioned in 1v, 9, which took place
17 Pachom, Hadrian 9. This last is the earliest he mentions of those which
could have been made by himself. The latest is given in X, where Ptolemy says
he observed Venus, 11 Thoth, Antonine 14. All the observations, therefore,
mentioned in this book and attributable to Ptolemy himself fall between
17 Pachom, Hadrian 9 and 11 Thoth, Antonine 14, and were made in Alexan-
dria. It is also stated in 111,4, that the spring equinox fell on 7 Pachom, Antonine
3. These dates are in terms of Egyptian years and The Table of the Kings which
are explained in Appendix A. In terms of the Christian Era and Julian years,
historians give Hadrian’s accession as 11 Aug., A.p. 117 and his death as July,
A.D. 138. Using the rules given in Appendix A, one concludes that the observa-
tions made by Ptolemy and mentioned in The Composition lie between a.p. 127
and 151.

Book 1 deals first with the general assumptions of the science such as the
sphericity of the earth, the earth’s size relative to the sphere of the fixed stars,
and the geocentric hypothesis. The arguments in favour of this last are all drawn
from Aristotelian physics, and this is almost the only place where physical
arguments are used since the point of view is usually purely mathematical and
fairly sophisticated about the futility of dealing otherwise with sensible ap-
pearances.

The geocentriec theory of Ptolemy was not the only theory known to the
Greeks nor even at times the most accepted. The Pythagoreans, prior to Plato,
had theories involving a motion of the earth, and we know that Aristarchus of
Samos after Plato bad a heliocentric theory which in all essentials was that of

1



2 PTOLEMY

Copernicus. We also know that Heraclides of Pontus, a contemporary of Plato
and a member of the Platonic Academy, placed Venus and Mercury on epi-
cycles about the sun and supposed the earth to turn on its axis; and it is even
likely that he had either the system of Copernicus with the sun as centre and
the planets including the earth revolving about, or the system of Tycho Brahe
with the planets revolving about the sun and the sun about the earth, or both
systems. There is much dispute over Plato’s astronomical descriptions, but it is
very possible that the Timaeus gives the outline of a heliocentric theory like
that of Copernicus.!

Then follows a vigorous development of those theorems in plane and spherical
trigonometry necessary for the astronomieal theories which follow. And Book 1
ends with a determination of the inclination of the ecliptic and equator.

Book 11 works out the co-ascensions of arcs on the ecliptic and equator for
the oblique sphere, that is, for the horizons in different latitudes, the shadows
of gnomons in the different latitudes, and the inclinations of different circles
with each other in the latitudes. The reader who is out to get the larger aspects
of the lunar and planetary theories can well afford to skip most of this Book
and only read it when referred to later on.

Book 111 presents the theory of the sun and its one anomaly. It is here that
the great principle of all Greek planetary theory is laid down: all planetary ap-
pearances must be accounted for by the uniform motion of the planet in a circle with
or without the uniform motion of this circle’s centre on another circle called its
deferent, and so on to any required complication. In this Book, however, Ptolemy
states this principle in its restricted form, the one used by Copernicus:—all
planetary appearances must be accounted for by the uniform motion of the
planet on a circle where the motion is uniform with respect to the centre of that circle
with or without the uniform motion of this circle’s centre on another circle where
the motion of the first circle’s centre is uniform with respect to the cenire of the
second circle, and so on to any required complication.

The principle in its restricted form is used by Ptolemy only for the sun. In
Books v, 1%, and X, for the moon and other planets, he uses without preliminary
warning the more general form of the principle which allows the centre of a
circle to move uniformly about a point not the centre of the deferent circle.
Such a point is called the centre of the equant.

This principle, which might be called the law of inertia of Greek celestlal
mechanics, was probably first suggested by Plato in a much less dogmatic form.
All that is seemingly implied in the dialogues is that irregular appearances of
the planets must be supposed capable of rational explanation, and that the
circle and uniform motion are the most likely tools for this. The system of
Eudoxus, devised at this time, is perbaps the most rigorous application of the
principle of uniform motion in a circle. For here the planet’s motion is composed
of the motions of concentric spheres moving uniformly about one point, the
earth their common centre. From the point of view of mathematical ingenuity-
this was the most brilliant application of the principle, but required too much
to save the more complicated appearances; it was not flexible enough. Aristotle
took the principle literally and therefore was led, by his theory of being and
substance which preclude a purely mathematical physics of the Platonic kind,
to make a radical distinction between celestial mechanics and terrestrial me-

1See Appendix C.
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chanics. In considering all heavenly bodies impassible (except for the fact they
could be seen), Aristotle gave a physical and metaphysical sanction to the
purely mathematical principle of uniform motion in a circle. He did, however,
using Eudoxus’ system, extend his theory of the transmission of motion by
contact to these bodies so that he assumed the movement of the outer sphere
of the fixed stars is transmitted to the inner spheres moving the planets by
mechanical contact. Since this transmission from one planetary sphere to
another would involve also transmission of movements particular to the planet,
counteracting spheres had to be introduced to differentiate out the right motion.

Although this same physical sanction is not explicitly mentioned by Ptolemy
in the Composition, yet it is stated in the most direct and meaningful way by
Ptolemy in Book II of his Hypothesis on the Planets. The heavenly bodies suffer
no influence from without; they have no relation to each other; the particular
motions of each particular planet follow from the essence of that planet and
are like the will and understanding in men. One might almost say that the law
of universal gravitation is expressly denied, and reserved only in a very par-
ticular form for bodies on the earth’s surface in such treatises as Archimedes’ On
Floating Bodies and On the Cenlers of Gravity of Planes. For it is assumed that
the earth or rather the earth’s centre attracts only bodies below the lunar
sphere. It is, of course, Kepler who, probably under the influence of Gilbert’s
work on magnetism, assumes for the first time in The Commentaries on Mars
that all bodies attract each other. It was reserved for Newton to state the
classical law of inertia in the light of Kepler’s assumption: all bodies continue
in the same straight line and at uniform speed unless disturbed.

It is also in Book 111 that the first principles of the epicycle and eccentric are
worked out.

Book 1v begins the study of the moon and its first or epicyelic anomaly.

Book v continues the study of the moon with its solar or eccentric anomaly,
equant anomaly, and a fourth anomaly called the inclination of the moon’s
epicycle. There is also a discussion of the moon’s parallaxes and of the distances
of the moon and sun from the earth in terms of the earth’s radius and a discus-
sion of the relative magnitudes of these bodies.

Book vI continues the study of the moon with respect to its phases and
eclipses.

Books vir and viir are devoted to the sphere of the fixed stars and to the pre-
cession of the equinoxes.

Book 1x begins the study of the planets Mercury, Venus, Mars, Jupiter, and
Saturn. The order of these planets is given. The Ptolemaic geocentric theory
furnishes no very sound principles for their ordering; only a heliocentric theory
or a geocentric theory like Brahe’s could give one. But the ordering turns out
pretty much as the heliocentric theory would require except that Venus and
Mercury are placed between the earth and the sun instead of around it. A
general introduction is given to their movements, and Mercury is treated in
detail. Mercury is the most complicated of the five: it requires not only an epi-
cycle, eccentric, and equant as the others do, but it requires that the centre of
the eccentric move about another circle. Mercury remains just as complicated
in the system of Copernicus. It is well known that it was never compietely ex-
plained by the principles of Newton’s mechanics and that it is only taken care
of in the general theory of relativity.
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Book x contains the detailed discussions of Venus and Mars, and Book x1 of
Jupiter and Saturn.

Book xi1 is the most interesting perhaps from the kinematic point of view.
It contains the statement of an eccentric theory of the planets Mars, Jupiter,
and Saturn, equivalent to the epicyclic one used by Ptolemy and which very
evidently forms the bridge from Ptolemy’s and Hipparchus’ geocentric theory
to Aristarchus’ heliocentric theory. The theorems on station points and re-
gressions, probably due to Apollonius of Perga, are remarkable. These solve
the problem: given the angular speed of a star on its epicycle and the angular
speed of the epicycle on its deferent and the ratio of the radii of the epicycle and
deferent, to find the necessary and sufficient conditions that the star will ap-
pear to stop and regress for an observer at the centre of the deferent and at
what points.

Book x111 contains the theory of the planets’ lateral deviations from the
ecliptic.

The translator wishes to thank Dr. George Comenetz, Mr. John Kieffer, Dr.
Jacob Klein, Prof. Alexandre Koyré, and Mr. John Weber for their suggestions
and criticisms. They are in no way to blame for any immoderate statements.

R.C. T
Portsmouth, Rhode Island, 1946.
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BOOK ONE

1. PREFACE

TaosE who have been true philosophers, Syrus, seem to me to have very wisely
separated the theoretical part of philosophy from the practical. For even if it
happens the practical turns out to be theoretical prior to its being practical,
nevertheless a great difference would be found in them; not only because some
of the moral virtues can belong to the everyday ignorant man and it is impos-
sible to come by the theory of whole sciences without learning, but also because
in practical matters the greatest advantage is to be had from a continued and
repeated operation upon the things themselves, while in theoretical knowledge
it 1s to be had by a progress onward. We accordingly thought it up to us so to
train our actions even in the application of the imagination as not to forget in
whatever things we happen upon the consideration of their beautiful and well-
ordered disposition, and to indulge in meditation mostly for the exposition of
many beautiful theorems and especially of those specifically called mathematical.

For indeed Aristotle quite properly divides also the theoretical into three im-
mediate genera: the physical, the mathematical, and the theological. For given
that all beings have their existence from matter and form and motion, and that
none of these can be seen, but only thought, in its subject separately from the
others, if one should seek out in its simplicity the first cause of the first move-
ment of the universe, he would find God invisible and unchanging. And the kind
of science which seeks after Him is the theological; for such an act [évépyera] can
only be thought as high above somewhere near the loftiest things of the universe
and is absolutely apart from sensible things. But the kind of science which
traces through the material and ever moving quality, and has to do with the
white, the hot, the sweet, the soft, and such things, would be called physical;
and such an essence [odgial, since it is only generally what it is, is to be found in
corruptible things and below the lunar sphere. And the kind of science which
shows up quality with respect to forms and local motions, seeking figure, num-
ber, and magnitude, and also place, time, and similar things, would be defined
as mathematical. For such an essence falls, as it were, between the other two,
not only because it can be conceived both through the senses and without the
senses, but also because it is an accident in absolutely all beings both mortal and
immortal, changing with those things that ever change, according to their insep-
arable form, and preserving unchangeable the changelessness of form in things
eternal and of an ethereal nature.

And therefore meditating that the other two genera of the theoretical would
be expounded in terms of conjecture rather than in terms of scientific under-
standing: the theological because it is in no way phenomenal and attainable, but
the physical because its matter is unstable and obscure, so that for this reason
philosophers could never hope to agree on them; and meditating that only the
mathematical, if approached enquiringly, would give its practitioners certain

5
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and trustworthy knowledge with demonstration both arithmetic and geometric
resulting from indisputable procedures, we were led to cultivate most particu-
larly as far as lay in our power this theoretical discipline [fewpia]. And especially
were we led to cultivate that discipline developed in respect to divine and heav-
enly things as being the only one concerned with the study of things which are
always what they are, and therefore able itself to be always what it is—which is
indeed the proper mark of a science—because of its own clear and ordered un-
derstanding, and yet to cooperate with the other disciplines no less than they
themselves. For that special mathematical theory would most readily prepare
the way to the theological, since it alone could take good aim at that unchange-
able and separate act, so close to that act are the properties having to do with
translations and arrangements of movements, belonging to those heavenly be-
ings which are sensible and both moving and moved, but eternal and impassible.
Again as concerns the physical there would not be just chance correspondances.
For the general property of the material essence is pretty well evident from the
peculiar fashion of its local motion—for example, the corruptible and incorrupt-
ible from straight and circular movements, and the heavy and light or passive
and active from movement to the center and movement from the center. And
indeed this same discipline would more than any other prepare understanding
persons with respect to nobleness of actions and character by means of the
sameness, good order, due proportion, and simple directness contemplated in
divine things, making its followers lovers of that divine beauty, and making
habitual in them, and as it were natural, a like condition of the soul.

And so we ourselves try to increase continuously our love of the discipline of
things which are always what they are, by learning what has already been ‘dis-
covered in such sciences by those really applying themselves to them, and als-
by making a small original contribution such as the period of time from them to
us could well make possible. And therefore we shall try and set forth as briefly
as possible as many theorems as we recognize to have come to light up to the
present, and in such a way that those who have already been initiated somewhat
may follow, arranging in proper order for the completeness of the treatise all
matters useful to the theory of heavenly things. And in order not to make the
treatise too long we shall only report what was rigorously proved by the an-
cients, perfecting as far as we can what was not fully proved or not proved as
well as possible.

2. ON THE ORDER OF THE THEOREMS

A view, therefore, of the general relation of the whole earth to the whole of the
heavens will begin this composition of ours. And next, of things in particular,
there will first be an account of the ecliptic’s position and of the places of that
part of the earth inhabited by us, and again of the difference, in order, between
each of them according to the inclinations of their horizons. For the theory of
these, once understood, facilitates the examination of the rest. And, secondly,
there will be an account of the solar and lunar movements and of their incidents.
For without a prior understanding of these one could not profitably consider
what concerns the stars. The last part, in view of this plan, will be an account
of the stars. Those things having to do with the sphere of what are called the
fixed stars would reasonably come first, and then those having to do with what
are called the five planets. And we shall try and show each of these things using
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as beginnings and foundations for what we wish to find, the evident and certain
appearances from the observations of the ancients and our own, and applying
the consequences of these conceptions by means of geometrical demonstrations.

And so, in general, we have to state that the heavens are spherical and move
spherically; that the earth, in figure, is sensibly spherical also when taken as a
whole; in position, lies right in the middle of the heavens, like a geometrical
centre; in magnitude and distance, has the ratio of a point with respect to the
sphere of the fixed stars, having itself no local motion at all. And we shall go
through each of these points briefly to bring them to mind.

3. THAT THE HEAVENS MOVE SPHERICALLY

It is probable the first notions of these things came to the ancients from some
such observation as this. For they kept seeing the sun and moon and other stars
always moving from rising to setting in parallel circles, beginning to move up-
ward from below as if out of the earth itself, rising little by little to the top, and
then coming around again and going down in the same way until at last they
would disappear as if falling into the earth. And then again they would see them,
after remaining some time invisible, rising and setting as if from another begin-
ning; and they saw that the times and also the places of rising and setting gen-
erally corresponded in an ordered and regular way.

But most of all the observed circular orbit of those stars which are always
visible, and their revolution about one and the same centre, led them to this
spherical notion. For necessarily this point became the pole of the heavenly
sphere; and the stars nearer to it were those that spun around in smaller cireles,
and those farther away made greater circles in their revolutions in proportion to
the distance, until a sufficient distance brought one to the disappearing stars.
And then they saw that those near the always-visible stars disappeared for a
short time, and those farther away for a longer time proportionately. And for
these reasons alone it was sufficient for them to assume this notion as a principle,
and forthwith to think through also the other things consequent upon these
same appearances, in accordance with the development of the science. For abso-
lutely all the appearances contradict the other opinions.

If, for example, one should assume the movement of the stars to be in a
straight line to infinity, as some have opined, how could it be explained that
each star will be observed daily moving from the same starting point? For how
could the stars turn back while rushing on to infinity? Or how could they turn
back without appearing to do so? Or how is it they do not disappear with their
size gradually diminishing, but on the contrary seem larger when they are about
to disappear, being covered little by little as if cut off by the earth’s surface?
But certainly to suppose that they light up from the earth and then again go out
in it would appear most absurd. For if anyone should agree that such an order
in their magnitudes‘and number, and again in the distances, places, and times
is accomplished in this way at random and by chance, and that one whole part
of the earth has an incandescent nature and another a nature capable of extin-
guishing, or rather that the same part lights the stars up for some people and
puts them out for others, and that the same stars happen to appear to some
people either lit up or put out and to others not yet so—even if anyone, 1 say,
should accept all such absurdities, what could we say about the always-visible
stars which neither rise nor set? Or why don’t the stars which light up and go out
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rise and set for every part of the earth, and why aren’t those which are not
affected in this way always above the earth for every part of the earth? For in
this hypothesis the same stars will not always light up and go out for some
people, and never for others. But it is evident to everyone that the same stars
rise and set for some parts, and do neither of these things for others.

In a word, whatever figure other than the spherical be assumed for the move-
ment of the heavens, there must be unequal linear distances from the earth to
parts of the heavens, wherever or however the earth be situated, so that the
magnitudes and angular distances of the stars with respect to each other would
appear unequal to the same people within each revolution, now larger now
smaller. But this is not observed to happen. For it is not a shorter linear distance
which makes them appear larger at the horizon, but the steaming up of the
moisture surrounding the earth between them and our eyes, just as things put
under water appear larger the farther down they are placed.

The following considerations also lead to the spherical notion: the fact that
instruments for measuring time cannot agree with any hypothesis save the
spherical one; that, since the movement of the heavenly bodies ought to be the
least impeded and most facile, the circle among plane figures offers the casiest
path of motion, and the sphere among solids; likewise that, since of different
figures having equal perimeters those having the more angles are the greater,
the circle is the greatest of plane figures and the sphere of solid figures, and the
heavens are greater than any other body.

Moreover, certain physical considerations lead to such a conjecture. For
example, the fact that of all bodies the ether has the finest and most homoge-
neous parts [6uocopepéarepos]; but the surfaces of homogeneous parts must have
homogeneous parts, and only the eircle is such among plane figures and the
sphere among solids. And since the ether is not plane but solid, it can only be
spherical. Likewise the fact that nature has built all earthly and corruptible
bodies wholly out of rounded figures but with heterogeneous parts, and all di-
vine bodies in the ether out of spherical figures with homogeneous parts, since
if they were plane or disc-like they would not appear circular to all those who
see them from different parts of the earth at the same time. Therefore it would
seem reasonable that the ether surrounding them and of a like nature be also
spherical, and that because of the homogeneity of its parts it moves circularly
and regularly.

4. THAT aLsO THE EaRTH, TAKEN A8 A WHOLE, Is SENSIBLY SPHERICAL

Now, that also the earth taken as a whole is sensibly spherical, we could most
likely think out in this way. For again it is possible to see that the sun and moon
and the other stars do not rise and set at the same time for every observer on the
earth, but always earlier for those living towards the orient and later for those
living towards the occident. For we find that the phenomena of eclipses taking
place at the same time, especially those of the moon, are not recorded at the
same hours for everyone—that is, relatively to equal intervals of time from
noon; but we always find later hours recorded for observers towards the orient
than for those towards the occident. And since the differences in the hours is
found to be proportional to the distances between the places, one would reason-
ably suppose the surface of the earth spherical, with the result that the general
uniformity of curvature would assure every part’s covering those following it
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proportionately. But this would not happen if the figure were any other, as can
be seen from the following considerations.

For, if it were concave, the rising stars would appear first to people towards
the occident; and if it were flat, the stars would rise and set for all people togeth-
er and at the same time; and if it were a pyramid, a cube, or any other polygonal
figure, they would again appear at the same time for all observers on the same
straight line. But none of these things appears to happen. It is further clear that
it could not be cylindrical with the curved surface turned to the risings and set-
tings and the plane bases to the poles of the universe, which some think more
plausible. For then never would any of the stars be always visible to any of the
inhabitants of the curved surface, but either all the stars would both rise and set
for observers or-the same stars for an equal distance from either of the poles
would always be invisible to all observers. Yet the more we advance towards the
north pole, the more the southern stars are hidden and the northern stars ap-
pear. So it is clear that here the curvature of the earth covering parts uniformly
in oblique directions proves its spherical form on every side. Again, whenever
we sail towards mountains or any high places from whatever angle and in what-
ever direction, we see their bulk little by little increasing as if they were arising
from the sea, whereas before they seemed submerged because of the curvature
of the water’s surface.

5. THAT THE EARTH Is IN THE MIDDLE OF THE HEAVENS

Now with this done, if one should next take up the question of the earth’s
position, the observed appearances with respect to it could only be understood
if we put it in the middle of the heavens as the centre of the sphere. If this were
not so, then the earth would either have to be off the axis but equidistant from
the poles, or on the axis but farther advanced towards one of the poles, or nei-
ther on the axis nor equidistant from the poles.

The following considerations are opposed to the first of these three positions—
namely, that if the earth were conceived as placed off the axis either above or
below in respect to certain parts of the earth, those parts, in the right sphere,
would never have any equinox since the section above the earth and the section
below the earth would always be cut unequally by the horizon. Again, if the
sphere were inclined with respect to these parts, either they would have no equi-
nox or else the equinox would not take place midway between the summer and
winter solstices. The distances would be unequal because the equator which is
the greatest of those parallel circles described about the poles would not be cut
in half by the herizon; but one of the circles parallel to it, either to the north or
to the south, would be so cut in half, It is absolutely agreed by all, however, that
these distances are everywhere equal because the increase from the equinox to
the longest day at the summer tropic are equal to the decreases to the least days
at the winter tropic. And if the deviation for certain parts of the earth were
supposed either towards the orient or the occident, it would result that for these
parts neither the sizes and angular distances of the stars would appear equal and
the same at the eastern and western horizons, nor would the time from rising to
the meridian be equal to the time from the meridian to setting. But these things
evidently are altogether contrary to the appearances.

As to the second position where the earth would be on the axis but farther
advanced towards one of the poles, one could again object that, if this were so,
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the plane of the horizon in each latitude would always cut into uneven parts the
sections of the heavens below the earth and above, different with respect to each
other and to themselves for each different deviation. And the horizon could cut
into two even parts only in the right sphere. But in the case of the inclined
sphere with the nearer pole ever visible, the horizon would always make the part
above the earth less and the part below the earth greater with the result that
also the great circle through the centre of the signs of the zodiac [ecliptic] would
be cut unequally by the plane of the horizon. But this has never been seen, for
six of the twelve parts are always and everywhere visible above the earth, and
the other six invisible; and again when all these last six are all at once visible,
the others are at the same time invisible. And so—from the fact that the same
semicircles are cut off entirely, now above the earth, now below—it is evident
that the sections of the zodiac are cut in half by the horizon.

And, in general, if the earth did not have its position under the equator but
lay either to the north or south nearer one of the poles, the result would be that,
during the equinoxes, the shadows of the gnomons at sunrise would never per-
ceptibly be on a straight line with those at sunset in planes parallel to the hori-
zon. But the contrary is everywhere seen to occur. And it is immediately clear
that it is not possible to advance the third position since each of the obstacles
to the first two would be present here also.

In brief, all the observed order of the increases and decreases of day and night
would be thrown into utter confusion if the earth were not in the middle. And
there would be added the fact that the eclipses of the moon could not take place
for all parts of the heavens by a diametrical opposition to the sun, for the earth
would often not be interposed between them in their diametrical oppositions,
but at distances less than a semicirele.

6. TaaT THE EARTH HAs THE RaTIO OF A PoINT TO THE HEAVENS

Now, that the earth has sensibly the ratio of a point to its distance from the
sphere of the so-called fixed stars gets great support from the fact that in all
parts of the earth the sizes and angular distances of the stars at the same times
appear everywhere equal and alike, for the observations of the same stars in the
different latitudes are not found to differ in the least.

Moreover, this must be added: that sundials placed in any part of the earth
and the centres of armillary spheres can play the role of the earth’s true centre
for the sightings and the rotations of the shadows, as much in conformity with
the hypotheses of the appearances as if they were at the true midpoint of the
earth.

And the earth is clearly a point also from this fact: that everywhere the planes
drawn through the eye, which we call horizons, always exactly cut in half the
whole sphere of the heavens. And this would not happen if the magnitude of the
earth with respect to its distance from the heavens were perceptible; but only
the plane drawn through the point at the earth’s centre would exactly cut the
sphere in half, and those drawn through any other part of the earth’s surface
would make the sections below the earth greater than those above.

7. Taat THE EARTH DoEs NoT IN ANY WaY Move LocaLLy

By the same arguments as the preceding it can be shown that the earth can
peither move in any one of the aforesaid oblique directions, nor ever change at
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all from its place at the centre. For the same things would result as if it had
another position than at the centre. And so it also seems to me superfluous to
look for the causes of the motion to the centre when it is once for all clear from
the very appearances that the earth is in the middle of the world and all weights
move towards it. And the easiest and only way to understand this is to see that,
once the earth has been proved spherical considered as a whole and in the middle
of the universe as we have said, then the tendencies and movements of heavy
bodies (I mean their proper movements)! are everywhere and always at right
angles to the tangent plane drawn through the falling body’s point of contact
with the earth’s surface. For because of this it is elear that, if they were not
stopped by the earth’s surface, they too would go all the way to the centre itself,
since the straight line drawn to the centre of a sphere is always perpendicular to
the plane tangent to the sphere’s surface at the intersection of that line.

All those who think it paradoxical that so great a weight as the earth should
not waver or move anywhere seem to me to go astray by making their judgment
with an eye to their own affects and not to the property of the whole. For it
would not still appear so extraordinary to them, I believe, if they stopped to
think that the earth’s magnitude compared to the whole body surrounding it is
in the ratio of a point to it. For thus it seems possible for that which is relatively
least to be supported and pressed against from all sides equally and at the same
angle by that which is absolutely greatest and homogeneous. For there is no
“above” and “below” in the universe with respect to the earth, just as none
could be conceived of in a sphere. And of the compound bodies in the universe,
to the extent of their proper and natural motion, the light and subtle ones are
scattered in flames to the outside and to the circumference, and they seem to
rush in the upward direction relative to each one because we too call “up’’ from
above our heads to the enveloping surface of the universe; but the heavy and
coarse bodies move to the middle and centre and they seem to fall downwards
because again we all call ““down’’ the direction from our feet to the earth’s cen-
tre. And they properly subside about the middle under the everywhere-equal
and like resistance and impact against each other. Therefore the solid body of
the earth is reasonably considered as being the largest relative to those moving
against it and as remaining unmoved in any direction by the force of the very
small weights, and as it were absorbing their fall. And if it had some one com-
mon movement, the same as that of the other weights, it would clearly leave
them all behind because of its much greater magnitude. And the animals and
other weights would be left hanging in the air, and the earth would very quickly
fall out of the heavens. Merely to conceive such things makes them appear
ridiculous.

1A1l local motions or movements according to place are divided by Aristotle into natural and
violent local motions. In the case of compound bodies (that is, those bodies subject to gener-
ation and corruption and consisting of all those, and only those, bodies lying below the lunar
sphere), the natural local motions are those of unimpeded and unpropelled fall; the violent
local motions are any propelled or interrupted motions. In the case of simple bodies (that is,
the heavenly bodies within and above the lunar sphere), there are only natural local motions:
the regular or uniform circular motions. Ptolemy here calls the natural local motions of com-
pound bodies their proper motions. This distinction between natural and violent motions is
preserved by Galileo. For in his Two New Sciences, natural motion is treated in the “Third
Day” and violent motion in the “Fourth Day.” In the Newtonian system, the distinction is
dissolved in a general mathematical treatment, a treatment more in line with the Platonic
myth of the Timaeus, and so it loses all meaning.
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Now some people, although they have nothing to oppose to these arguments,
agree on something, as they think, more plausible. And it seems to them there
is nothing against their supposing, for instance, the heavens immobile and the
earth as turning on the same axis from west to east very nearly one revolution
a day;-or that they both should move to some extent, but only on the same axis
as we said, and conformably to the overtaking of the one by the other.

But it has escaped their notice that, indeed, as far as the appearances of the
stars are concerned, nothing would perhaps keep things from being in accord-
ance with this simpler conjecture, but that in the light of what happens around
us in the air such a notion would seem altogether absurd. For in order for us to
grant them what is unnatural in itself, that the lightest and subtlest bodies
either do not move at all or no differently from those of eontrary nature, while
those less light and less subtle bodies in the air are clearly more rapid than all
the more terrestrial ones; and to grant that the heaviest and most compact
bodies have their proper swift and regular motion, while again these terrestrial
bodies are certainly at times not easily moved by anything else—for us to grant
these things, they would have to admit that the earth’s turning is the swiftest of
absolutely all the movements about it because of its making so great a revolu-
tion in a short time, so that all those things that were not at rest on the earth
would seem to have a movement coptrary to it, and never would a cloud be
seen to move toward the east nor anything else that flew or was thrown into
the air. For the earth would always outstrip them in its eastward motion,
so that all other bodies would seem to be left behind and to move towards
the west.

For if they should say that the air is also carried around with the earth in the
same direction and at the same speed, none the less the bodies contained in it
would always seem to be outstripped by the movement of both. Or if they
should be carried around as if one with the air, neither the one nor the other
would appear as outstripping, or being outstripped by, the other. But these
bodies would always remain in the same relative position and there would be no
movement or change either in the case of flying bodies or projectiles. And yet
we shall clearly see all such things taking place as if their slowness or smftness
did not follow at all from the earth’s movement.

8. TuaT THERE ARE Two DirFEreNT PRIME MOVEMENTS IN THE HEAVENS

It will be sufficient for these hypotheses, which have to be assumed for the
detailed expositions following them, to have been outlined here in such a sum-
mary way since they will finally be established and confirmed by the agreement
of the consequent proofs with the appearances. In addition to those already
mentioned, this general assumption would also be rightly made that there are
two different prime movements in the heavens. One is that by which everything
moves from east to west, always In the same way and at the same speed with
revolutions in circles parallel to each other and clearly described about the poles
of the regularly revolving sphere. Of these circles the greatest is called the equa-
tor, because it alone is always cut exactly in half by the horizon which is a great
circle of the sphere, and because everywhere the sun’s revolution about it is
sensibly equinoctial. The other movement is that according to which the spheres
of the stars make certain local motions in the direction opposite to that of the
movement just described and around other poles than those of that first revolu-
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tion. And we assume that it is so because, while, from each day’s observation,
all the heavenly bodies are seen to move generally in paths sensibly similar and
parallel to the equator and to rise, culminate, and set (for such is the property
of the first movement), yet from subsequent and more continuous observation,
even if all the other stars appear to preserve their angular distances with respect
to each other and their properties as regards their places within the first move-
ment, still the sun and moon and planets make certain complex movements un-
equal to each other, but all contrary to the general movement, towards the east
opposite to the movement of the fixed stars which preserve their respective
angular distances and are moved as if by one sphere.

If, then, this movement of the planets also took place in circles parallel to the
equator—that is, around the same poles as those of the first revolution-—it
would be sufficient to assume for them all one and the same revolving movement
in conformity with the first. For it would then be plausible to suppose that their
movement was the result of a lag and not of a contrary movement. But they
always seem, at the same time they move towards the east, to deviate towards
the north and south poles without any uniform magnitude’s being observed in
this deviation, so that this seems to befall them through impulsions. But al-
though this deviation is irregular on the hypothesis of one prime movement, it
is regular when effected by a circle oblique to the equator. And so such a circle
is conceived one and the same for, and proper to, the planets, quite exactly ex-
pressed and as it were described by the motion of the sun, but traveled also by
the moon and planets which ever turn about it with every deviation from it on
the part of any planet either way, a deviation within a prescribed distance and
governed by rule. And since this is seen to be a great circle also because of the
sun’s equal oscillation to the north and south of the equator, and since the east-
ward movements of all the planets (as we said) take place on one and the same
circle, it was necessary to suppose a second movement different from the general
one, a movement about the poles of this oblique circle or ecliptic in the direction
opposite to that of the first movement.

Then if we think of a great circle described through the poles of both the cir-
cles just mentioned, which necessarily cuts each of them—that is, the equator
and the circle inclined to it—exactly in half and at right angles, there will be
four points on the oblique circle or ecliptic: the two made by the equator dia-
metrically opposite each other and called the equinoxes of which the one guard-
ing the northern approach is called spring, and the opposite one autumn. And
the two made by the circle drawn through both sets of poles, also clearly diamet-
rically opposite each other, are called the tropics, of which the one to the south
of the equator is called winter, and the one to the north summer.

The one first movement which contains all the others will be thought of then
as described and as if defined by the great circle, through both sets of poles,
which is carried around and carries with it all the rest from east to west about
the poles of the equator. And these poles are as if they were on what is called the
meridian, which differs from the circle through both sets of poles in this alone:
that it is not always drawn through the poles of the ecliptic, but is conceived as
continuously at right angles to the horizon and therefore called the meridian,
since such a position cutting in half as it does each of the two hemispheres, that
below the earth and that above, provides midday and midnight. But the second
movement, consisting of many parts and contained by the first, and embracing
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itself all the planetary spheres,! is carried by the first as we said, and revolves
about the poles of the ecliptic in the opposite direction. And these poles of the
ecliptic being on the circle effecting the first revolution—that is, on the circle
drawn through all four poles together—are carried around with it as one would
expect ; and, moving therefore with a motion opposite to the second prime move-
ment, in this way keep the position of the great circle which is the ecliptic ever
the same with respect to the equator.

9. Ox THE ParTICULAR NOTIONS

A summary and general preliminary explanation would contain some such
exposition as the foregoing of the things to be presupposed. But now we are
going to begin the detailed proofs. And we think the first of these is that by
means of which is calculated the length of the arc between the poles of the equa-
tor and the ecliptic, lying on the great circle drawn through these poles. To this
end we must first see expounded the method of computing the size of chords
inscribed in a circle, and we are now going to demonstrate this geometrically for
each case, once for all.

10. ON THE Size oF CHORDS IN A CIRCLE

With an eye to immediate use, we shall now make a tabular exposition of the
size of these chords by dividing the circumference into 360 parts and setting
side by side the chords as the ares subtended by them increase by a half part.
That is, the diameter of the circle will be cut into 120 parts for ease in calcula~
tion; [and we shall take the arcs, considering them with respect to the number
they contain of the circumference’s 360 parts, and compare them with the sub-
tending chords by finding out the number the chords contain of the diameter’s
120 parts.] But first we shall show how, with as few theorems as possible and the
same ones, we make a methodical and rapid calculation of their sizes so that we
may not only have the magnitudes of the chords set out without knowing the
why and wherefore but so that we may also easily manage a proof by means of a
systematic geometrical construction. In general we shall use the sexagesimal
system because of the difficulty of fractions, and we shall follow out the multi-
plications and divisions, aiming always at such an approximation as will leave
no error worth considering as far as the accuracy of the senses is concerned.

Then first let there be the semicircle ABC on the diameter 4 DC and around
centre D, and let straight line DB be erected on B
AC at right angles. Let DC be bisected at E, and
EB be joined; and let EF be laid out equal to
EB, and let FB be joined.

I say that the straight line D is the side of a
regular inscribed decagon, and BF that of a
pentagon.

For since the straight line DC is bisected at E
and a straight line DF is added to it,

rect. CF, FD+sq. ED=sq. EF, [Eucl. 1, 6]
=sq. BE,

BE=EF.

1These are the two movements of the same and of the other described in Plato’s myth of
the Timaeus.

O

A

since
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But
sq. ED-+sq. DB=sq. BE. [Euel. 1, 47]
Therefore
’ rect. CF, FD-+sq. ED=sq. ED+sq. DB.
And, subtracting the common square on ED,
rect. CF, FD=sq. DB
=sq. DC.
Therefore CF is cut at D in extreme and mean ratio [Eucl. vi, def. 3]. Since,
then, the side of the hexagon and the side of the decagon which are inseribed
in the same circle, when they are in the same straight line, cut that line in ex-
treme and mean ratio [Eucl. x11, 9], and since the radius DC is equal to the side
of the hexagon [Eucl. v, 15 coroll.], therefore FD is equal to the side of the
decagon.

And likewise, since the square on the side of the pentagon is equal to the
square on the side of the hexagon together with the square on the side of the
decagon, all inscribed in the same circle [Eucl. x111, 10], and since in the right
triangle BDF

sq. BF =sq. DB+sq. FD
where DB is the side of the hexagon and FD the side of the decagon, the straight
line BF is equal to the side of the pentagon.

Since, then, as I said, we suppose the diameter divided into 120 parts, there-
fore by what we have just established, being half the circle’s radius,

ED =30 such parts,

and
sq. ED=900;

and

rad. DB =60 such parts,
and

sq. DB =3600;

and

sq. BE=sq. EF =4500.
Then

, EF=67r4'55"1

in length, and by subtraction

FD=37r4’55",
Therefore the side of the decagon, subtending an are of 36° of the whole circum-
ference’s 360°, will have 37p4'55" of the diameter’s 120,

Since again
FD=37r4'55",
sq. FD=137574'14",

sq. DB =3600»,

and
sq. FD+sq. DB=sq. BF,

therefore, in length,

'From now on, we shall indicate ‘“‘parts such as the diameter’s 120" by a p-superscript.
Thus 67P4'55"” means “67-ds-+3850 parts such as the diameter’s 120.” And we shall indi-
cate “‘parts such as the circumference’s 360” by the ordinary notation for angular degrees.
For the measures of arcs and angles exactly correspond. Thus 47°42'40" means “47 %%
+3%55 parts such as the circumference’s 860’ or “‘parts such as 4 right angles’ 360.”
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BF=70°32'3",
And therefore the side of the pentagon, subtending an arc of 72°, is 70°32'3"/.

It is immediately clear that the side of the hexagon, subtending an arc of 60°
and being equal to the radius, is itself 60°. And likewise, since the side of the
inscribed square, subtending an are of 90°, is, when squared, double the square
on the radius, and since the side of the inscribed equilateral triangle is, when
squared, triple the square on the radius, and since the square on the radius is
3,600¢, the square on the side of the square will add up to 7,2007, and the square
on the side of the equilateral triangle to 10,800°. And so in length

chord of are 90°=84r51’10",
and
chord of arc 120°=103»55'23"".

And so these chords are easily gotten by themselves. Thence it is evident that,
with these chords given, it will be easy to get the chords which subtend the
supplements, since the squares on them added together are equal to the square
on the diameter. For example, since it was shown

chord of are 36°=37r4'55",
8q. chord of arc 36°=1375r4’ 15" ,
and
8q. diameter = 14,400r,
therefore, for the supplement,
sq. chord of arc 144°=13,024r55'45",
and, in length,
chord of arec 144°=114°7'37"";

and the others in like manner.

And we shall next show, by expounding a lemma very useful for this present
business, how the rest of the chords can be derived successively from those we
already have.

For let there be a circle with any sort of inseribed quadrilateral ABCD, and
let AC and BD be joined.

It is to be proved that B

rect. AC, BD=rect. AB, DC+rect. AD, BC. <

For let it be laid out such that

angle ABE =angle DBC.
If then we add the common angle EBD,
angle ABD =angle EBC.
But also A
angle BDA =angle BCE’ [Euel. 111, 21},
for they subtend the same arc. Then triangle
ABD is equiangular with triangle BCKE. Hence
BC :CE ::BD: AD {Eucl. v1, 4].
Therefore
rect. BC, AD =rect. BD, CE. [Euel. v1, 16].
Again since
angle ABE =angle CBD
and also
angle BAE =angle BDC,
therefore triangle ABE is equiangular with triangle BCD. Hence
AB :AE ::BD :CD.
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Therefore

rect. AB,CD=rect. BD, AE.

But it was also proved

. rect. BC, AD=rect. BD, CE.
Therefore also

rect. AC, BD=rect. AB, CD+rect. BC, AD. [Euel. 11, 1].

Which was to be proved.

Now that this has been expounded, let there be the semicircle ABCD on di-

ameter AD, and from the point A4 let there be
c drawn the two straight lines AB, AC, and let
the length of each of them have been given in

8 terms of such parts as the given diameter’s 120;

and let BC be joined.
I say that BC is also given.

A D For let BD and CD be joined. Then clearly
they are also given because they subtend the
supplements. Since, then, the quadrilateral
ABCD is inscribed in a circle, therefore

rect. AB, CD+rect. AD, BC =rect. AC, BD
[p. 16]
And rectangle AC, BD is given, and also rectan-
gle AB, CD. Therefore the remaining rectangle

AD, BC is also given. And AD is the diameter. Hence the straight line BC is
also given. And it is now clear to us that, if two arcs are given and the two
chords subtending them, then also the chord subtending the difference between
the two ares will be given. And it is evident that by means of this theorem we
can inscribe many other chords in ares which are the differences between arcs
directly given; for instance, the chord subtending an arc of 12°, since we have
the chords of 60° and 72°.

Again, given any chord in a circle, let it be proposed to find the chord of half
the arc of the given chord.

And let there be the semicircle ABC on diameter AC, and let CB be the given
chord. And let the arc be bisected at D, and let AB, AD, BD, and DC be joined.
And let DF be drawn from D perpendicular to AC.

I say that

: 8
CF=half (AC—AB).
For let AE be laid out such that D

AE=AB,

and let DB be joined. Since
AB=AE,

and AD is common, therefore the two sides AB and *

AD are equal to the two sides AE and AD respec-

tively. And

angle BAD=angle EAD; {Eucl. 111, 27]
therefore also
base BD =base DE.
But :
chord BD=chord CD,
and therefore
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chord CD=DE.
Since then, in the isosceles triangle DEC, DF has been dropped from the vertex
perpendicular to the base, therefore
EF=CF. {Eucl. 1, 26]
But CE=AC—AB;
therefore
CF=half (AC—AB).

And so, since, given the chord of arc BC, chord AE of its supplement is also
given [p. 16}, therefore CF, which is half the difference between AC and AB, is
given too. But when the perpendicular DF is drawn in right triangle ACD, as a
consequence right triangle ACD is equiangular with right triangle DCF [Eucl.
v1, 8], and

AC:CD::CD:CF.
Therefore
rect. AC,CF=sq. CD.
But rectangle AC,CF is given, therefore the square on CD is also given. And so
the chord CD of half the arc BC will also be given in length.

And so again, by means of this theorem, most of the other chords will be given
as subtending the halves of arcs already f ound. For instance, from the chord of
an arc of 12°, there can be gotten the chord subtending an arc of 6°, and those
subtending ares of 3°, 114°, and 34° respectively. And we shall find from calcu-
lation that

chord of are 114°=1r34'15",
and
chord of arc 34°=0r47'8".

Again let there be the circle ABCD on diameter AD with center at F. And
from A let there be cut off consecutively two given arcs, AB and BC'; and let the
given chords subtending them, AB and BC, be joined.

I say that, if we join AC, then AC will be
given also. B

For let the circle’s diameter BFE be drawn <
through B, and let BD, DC, CE, and DE be
joined. Then from this it is clear that, by means
of BC, chord CE is given; and, by means of AB, a 3
chords BD and DE are given [p. 16]. And by
things we have already proved, since BCDE is
a quadrilateral inscribed in a circle, and BD and
CE are the diagonals, the rectangle contained by A
the diagonals is equal to the sum of the rec-
tanglescontained by opposite sides [p. 16,17]. And
s0, since the rectangles BD, CE and BC, DE are
given, therefore the rectangle BE, CD is given also. But the diameter BE is
given too, and the remaining side CD will be given. Therefore the chord AC of
the supplement will be given also. And so, if two arcs and their chords are given,
then by means of this theorem the chord of both these arcs together will be
given.

And it is evident that, by continually combining the chord of an arc 114° with
those so far set out and calculating the sums, we shall inscribe all those chords
which, when doubled, are divisible by three; and only those chords will still be
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skipped which fall within 114° intervals. For there will be two such chords
skipped in each interval, since we are carrying out this inscribing of chords by
successive additions of 24°. And so if we could compute the chord subtending an
arc of 14°, then this chord, by addition to, and subtraction from, the chords
which are separated by 114° intervals and have already been given, will fill in
all the rest of the intermediate chords. But since, given any chord such as that
subtending an arc of 114° the chord of a third of the are is in no way geomet-
rically given (and if it were possible, we could then compute the chord of an arc
of 15°), therefore we shall first look for the chord of an arc of 1° by means of
chords subtending ares of 114° and 34°. We shall do this by presenting a little
lemma which, even if it may not suffice for determining their sizes in general,
can yet in the case of these very small chords keep them indistinguishable from
chords rigorously determined.

For I say that, if two unequal chords are inscribed in a circle, the greater has
to the less a ratio less than the arc on the greater has to the are on the less.

For let there be the circle ABCD; and let
unequal chords be inscribed in it, AB the less
and BC the greater.,

I say that

chord BC : chord AB<arc BC : arc AB.

For let angle ABC be bisected by BD, and let
AEC, AD, and CD be joined. And since angle
ABC has been bisected by the straight line
DEB,

chord CD=chord AD,
[Eucl. 111, 26, 29]

and
CE>AE. [Euel. v1. 3]

Then let DF be dropped from D perpendicular to
AEC. Now since

AD>DE,

DE>DF}
therefore the circle described with centre D and radius DE cuts AD and falls
beyond DF. Then let the circle GEH be drawn and the straight line DFH be
produced. And since
sect. DEH >trgl. DEF,

and
trgl. DEA >sect. DEG,

therefore

trgl. DEF : trgl. DEA <sect. DEH : sect. DEG. (Euel. v, 8]
But

trgl. DEF :trgl. DEA : . EF : AE, [Eucl. vi, 1]
and .
sect. DEH :sect. DEG : : angle FDE : angle EDA.

Therefore

1For DF produced will bisect arc ABC [Eucl. 111, 3, 26); hence it will fall on the side of B
towards C. Therefore
DE>DPF, [Eucl. 1, 21}
AD>DE.



20 PTOLEMY

EF : AE <angle FDE : angle EDA.
Then componendo

AF : AE<angle FDA : angle EDA.
And doubling the antecedents

CA : AE <angle CDA :angle EDA.

And separando -
CE : AE <angle CDB : angle BDA.
But
CE:AE ::BC :AB, [Eucl. v1, 3]
and
angle CDB : angle BDA : :arc BC :arc AB. [Eucl. vi1, 33)
Therefore . .

chord BC : chord AB<arc BC : arc AB,
Now, then, with this laid down, let there be the circle ABC, and let the two
chords AB and AC be inscribed in it. And first let AB be given as subtending
an arc of 34°, and AC an arc of 1°.

Since B
chord AC : chord AB <are AC : arc 4B,
and ¢
arc AC=114 (arc AB), A
therefore

chord AC<1Y4 (chord AB).
But it was proved [p. 18]
chord AB=0r47'8".
Therefore
chord AC <1r2'50",
for
1°2'50" =114 (0»47'8").
Again, with the same figure, let chord A B be given as subtending an arc of 1°,
and chord AC an arc of 114°.
Likewise then, since
arc AC=114 (arc AB),
chord AC <114 (chord AB).
But we proved [p. 18]
chord AC=1734"15",
Therefore
chord AB>192'50",
for
134’157 =114 (122'50"),
And so, since it has been proved that the chord of an arc of 1° is both greater
and less than the same number of parts, clearly we shall have
chord of are 1°=1°2'50";
and by means of earlier proofs we saw
chord of arc 14°=0731'25"".
And the remaining intervals will be filled in as we have just said. For example,
in the first interval we find the chord subtending an arc of 2° by adding 14° and
114°, and the chord subtending an arc of 214° by subtracting 14° from 3°, and
so on for the rest.
So the business of chords in a circle can be easily handled in this way, I think,
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And as I said, in order to have the magnitudes set out immediately to hand, we
shall draw up tables of 45 rows each, for symmetry’s sake. And the first column
will contain the magnitudes of the arcs increasing by 14°, and the second column
will contain the magnitudes of the chords subtending them in terms of the diam-
eter’s assumed 120 parts. The third column will contain the thirtieth of the
increase of the chord as the corresponding arc increases by 14°, so that we may
have a mean addition, accurate for the senses, for each increase of Ye® in the
corresponding arcs, and so be able to calculate readily the chords falling within
the 14° intervals. And it is to be remarked that by means of these same the-
orems, if we should suspect some typographical error in connection with any of
the chords computed here, we can easily check and correct it either by means
of the chord of an arc double the arc of the chord which is being examined, or by
means of the difference of certain other given chords, or by means of the chord
subtending the supplement. And here is the table:

11. TABLE oF CHORDS

Ares Chords Siztiethst Ares Chords Siztieths
g 0 31 25{0 1 2 5H0 1614 17 13 9{0 1 2 10
1 1 2 50;0 1 2 50 17 17 44 1410 1 2 7
114 1 34 150 1 2 50 17%4 18 15 170 1 2 5
2 2 5 4010 1 2 50 18 18 46 190 1 2 2
214 2 37T 410 1 2 48 1844 19 17 2101 2 0
3 3 8 2800 1 2 48 19 19 48 2170 1 1 57
3| 3 39 2|0 1 2 48 19% 1 20 19 19/0 1 1 5
4 4 11 160 1 2 47 20 20 50 16 ({0 1 1 51
414 4 42 40 |0 1 2 47 2014 21 21 1110 1 1 48
5 - 5 14 4|0 1 2 46 21 21 52 60 1 1 45
514 5 45 2710 1 2 45 2114 22 22 58 (0 1 1 42
6 6 16 49 ({0 1 2 44 22 22 53 4910 1 1 39
614 6 48 11 {0 1 2 43 2214 23 24 3910 1 1 36
7 7 19 3310 1 2 42 23 23 55 2710 1 1 33
74 7 50 4|0 1 2 41 2314 24 26 1370 1 1 30
8 8 22 150 1 2 40 24 24 56 5810 1 1 26
814 8 53 3 (0 1 2 39 2414 25 27 4110 1 1 22
9 9 24 54|10 1 2 38 25 25 58 2210 1 1 19
914 9 56 13|10 1 2 37 2514 26 209 110 1 1 15
10 10 27 3210 1 2 35 26 26 59 38|10 1 1 11
1014 10 58 49({0 1 2 33 2614 27 30 1410 1 1 8
11 11 30 5[0 1 2 32 27 28 0 480 1 1 4
1115 12 1 21(0 1 2 30 2714 2831 2010 1 1 O
12 12 32 36|10 1 2 28 28 29 1 50{0 1 0 56
1214 13 3 5010 1 2 27 2814 20 32 1810 1 0 352
13 13 3 410 1 2 25 29 30 2 4410 1 0 48
13}5 14 6 16)0 1 2 23 2014 30 33 810 1 0 44
14 14 37 27{0 1 2 21 30 31 3 300 1 0 40
1414 115 8 3810 1 2 19 3014 31 33 50|10 1 0 35
15 1539 47|10 1 2 17 31 32 4 710 1 0 31
1534 16 10 56|10 1 2 15 3144 32 34 2210 1 0 27
16 16 42 30 1 2 13 32 3 4 30 1 0 22

1The sexagesimal system is carried out one place further in this column. Thus 0°1'2"50"
represents sg+3¢o0+2T8900 which is 7% of the increase of the second chord over the first.
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Ares Chords Stxtieths Ares Chords Siztieths
32151 33 34 4610 1 0O 17 5814 | 58 38 5|0 0 54 45
33 34 4 5510 1 0 12 59 59 5 2710 0 54 37
335 34 3 1|0 1 0 8 5915 59 32 450 0 54 29
34 3 5 5101 0 3 60 60 0 0|0 0 54 21
4% 1 3 35 60 0 59 &7 6031 60 27 11|10 0 54 12
35 36 5 510 0 59 52 61 60 54 170 0 54 4
354 | 36 35 1[0 0 59 48 614 | 61 21 190 0 53 56
6 37 4 55]0 0 59 43 62 61 48 17 (0 O 53 47
3614 | 37 34 4710 0 59 38 6215 | 62 15 10| 0 O 53 39
37 38 4 360 0 59 32 63 62 42 00 0 53 30
374 | 38 34 22({0 0 59 27 634 | 63 & 45|10 0 53 22
38 39 4 5|0 0 59 22 64 63 35 25|10 0 53 13
384 | 39 33460 0 59 16 64141 64 2 2|0 0 53 4
39 40 3 250 0 59 11 65 64 28 34|10 0 52 55
3914 40 33 0|0 0 59 b 6514 64 55 1|0 0 52 46
40 41 2 330 0 59 O 66 65 21 24 (0 0 52 37
405 | 41 32 3|0 0 58 54 6614 1 65 47 43 |0 0 52 28
41 42 1 30{]0 0 58 48 67 66 13 57 (0 0 52 19
411 42 30 54 |0 0O 58 42 67141 66 40 710 0 52 10
- 42 43 0 15|10 0 58 36 68 67 6 12|10 0 52 1
4214 1 43 29 330 0 58 31 68l | 67 32 1210 0 51 52
43 43 58 49|10 0 58 25 69 67 58 8|0 0 51 43
435 | 44 28 1[0 0 58 18 6915 | 68 23 5910 0 51 33
44 44 57 10|10 0 58 12 70 68 49 450 0 51 23
445 | 45 26 160 0 58 6 705 | 69 15 27|10 0 51 14
45 45 55 1910 0 58 0 71 69 41 4{0 0 51 4
4514 | 46 24 19 |0 0 57 54 7135 | 70 6 36 |0 0 50 55
46 46 53 16| 0 0 b7 47 72 70 32 40 0 50 45
4614 47 22 910 0 57 41 7214 70 57 2610 0 50 35
47 47 51 0|0 0 57 34 73 71 22 4410 0 50 26
47V | 48 19 47 |0 O 57 27 73L | 71 47 56 |0 0 50 16
48 48 48 30 |0 0 57 21 74 72 13 410 0 5 6
4814 | 49 17 11 |0 0 57 14 7415 | 72 38 7|0 0 49 56
49 49 45 48|10 .0 57 7 75 73 3 510 0 49 46
4914 50 14 210 0 57 O 7544 73 27 5810 0 49 36
50 50 42 51 |0 0 56 53 76 73 52 4610 0 49 26
5041 51 11 18| 0 0 56 46 76l | 74 17 2010 0 49 16
51 51 39 410 0 56 39 77 74 42 710 0 49 6
514 | 52 8 0|0 O 56 32 7Y% 1 75 6 39|0 0 48 55
52 52 36 16 {0 0 56 25 78 75 31 710 0 48 45
52141 53 4 2910 0 56 18 7815 | 75 55 29|10 0 48 34
53 53 32 38(0 0 56 10 79 76 19 4610 0 48 24
5341 54 0 430 0 56 3 7914 | 76 43 5810 0 48 13
54 28 44 |0 0 55 55 80 77 8 5|0 0 48 3
5415 | 54 56 42 |0 0 53 48 80Ls | 77 32 6|0 0 47 52
55 55 24 36 |0 0 55 40 81 77 56 210 0 47 41
5514 | 55 52 260 0 55 33 815 | 78 19 52 |0 0 47 31
56 5 20 12|10 0 55 25 82 78 43 38 |0 0 47 20
56l | 56 47 54 [0 0 55 17 82l 1 79 7 18|0 0 47 9
57 57 15 3310 0 55 9 83 79 30 52|10 0 46 58
57| 57 43 710 0 55 1 8315 | 79 54 2110 0 46 47
58 58 10 38|10 0 54 53 80 17 4510 0 46 36
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111
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12014
121
12114
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13114
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Arcs Chords Siztieths Arces Chords Siztieths

13614 | 111 27 26 0 23 9 15814 ( 117 53 39 0 11 35
137 111 39 1 22 o 159 117 59 27 0 11 19
13715 1 111 50 28 22 39 1595 1 118 5 7 10 3
138 112 1 47 22 24 160 118 10 37 10 47
13814 | 112 12 59 22 8 16015 | 118 16 1 10 31
139 112 24 3 21 53 161 118 21 16 10 14
13915 | 112 35 0 21 37 16114 [ 118 26 23 9 58

140 {112 45 48
14015 | 112 56 29
41 |13 7 2
14115 | 113 17 26
142 7| 113 27 44
14215 | 113 37 54
143 | 113 47 36
14314 | 113 37 50
144 | 114 7 37
14415 | 114 17 15
145 | 114 26 46
1451 | 114 36 9
146 | 114 45 24
14615 | 114 54 31
147 115 3 30
147% | 115 12 22
148 {115 21 6
14815 | 115 29 41
149 | 115 38 9
14915 | 115 46 29
150 | 115 54 40
15015 | 116 2 44
151 | 116 10 40
15115 | 116 18 28
152 | 116 26 8
15215 | 116 33 40
153 | 116 41 4
1531 | 116 48 20

154 | 116 55 28

15414 | 117 2 28
155 | 117 9 20
15514 | 117 16 4
156 | 117 22 40
15614 | 117 29 8
157 | 117 35 28
1574 | 117 41 40
158 | 117 47 43

21 22 | 162 1118 31 22
21 7 | 16214 | 118 36 13

20 51 | 163 | 118 40 55

20 36 | 163l | 118 45 30

20 20 | 164 | 118 49 56
20 4 | 16415, 118 54 15

19 49 | 165 | 118 58 25

19 33 | 165l | 119 2

19 17 | 166 | 119 6 20

19 2 | 1661|119 10 6

18 46 | 167 | 119 13 44

18 30 | 167y | 119 17 13

18 14 | 168 | 119 20 34
17 59 | 16814 | 119 23 47

17 43 | 169 | 119 26 52

17 27 | 16915 | 119 29 49

17 11 | 170 | 119 32 37

16 55 | 17015 { 119 35 17

16 40 | 171 | 119 37 49

16 24 | 17115 | 119 40 13

16 8 | 172 |119 42 28

15 52 | 17214 | 119 44 35

15 36 | 173 | 119 46 35

15 20 | 17315 | 119 48 26.
15 4 | 174|119 50 8

14 48 | 17414 | 119 51 43
14 32 | 175 | 119 53 10

14 16 | 17515 | 119 54 27

14 0 | 176 |119 55 38

13 44 | 17615 | 119 36 39
13 28 | 177|119 57 32

13 12 | 1774 | 119 58 18

12 5 | 178 | 119 58 55

12 40 | 17814 | 119 59 24

12 24 | 179 .| 119 59 44

12 7 | 17944 | 119 59 36

11 51 | 180 1120 0 0
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12. O~ tHE ARCc BETWEEN THE TROPICS

Now that the question of the value of chords in a circle has been treated, our
first task will be, as we have said, to show how much the oblique circle through
the middle of the zodiac [the ecliptic] is inclined to the equator—that is, what
ratio the great circle which passes through both sets of poles has to the arc inter-
cepted on it by these poles. This arc is evidently equal to the arc from either of
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the tropic points to the equator, along this same circle. And we can immediately
get the measure of this arc instrumentally, with some such simple construction
as the following.

e shall make a brass circle, suitable in size, accurately turned, with its sur-
faces standing square. And we shall use it as a meridian, dividing it into the 360
parts supposed for the great circle, and each of these into as many parts as there
is room for. Then, fitting into this circle another little circle, thinner than it, in
such a way that their sides remain in the same plane and the smaller circle can
turn without hindrance within the greater circle to the north and south, always
in the same plane, we shall place, on one of the smaller circle’s two sides at two
diametrically opposite points, small prisms of the same size pointing in exactly
the same straight line with each other and with the centre of the circles. And in
the middle of the prisms’ width we shall place fine pointers touching the side of
the greater circle and its divisions. And then we shall fit that circle securely on a
small and convenient column for its several uses, and stand the base of the
column on a pavement in the open air exactly parallel to the plane of the hori-
zon. And we shall take care that the plane of the circles is perpendicular to that
of the horizon and parallel to that of the meridian. The first condition is satisfied
by means of a plumb line which is suspended from the highest point of the circles
and which is watched until, by correction of the underpinning, it is directed to
the diametrically opposite point below. And the second condition is satisfied by
very visibly drawing a meridian line in the plane below the column and turning
the circles from side to side until their plane is sighted parallel to the line. And
after a placement of this kind had been made, we would observe the sun’s ad-
vance to the north and south, moving the inside circle at middays until the lower
prism was completely shadowed by the whole of the upper prism. And when
this was done, the needle points would show us each time how many degrees
from the zenith the sun’s center stood on the meridian line.

And we used to make this observation still more readily by constructing, in-
stead of circles, a steady square block of rock or wood having one of its faces reg-
ular and accurately shaped. And using as a centre the vertex of one of its angles,
we drew a quadrant, drawing out from the centre point to the circumference
those straight lines which contain the right angle of the quadrant, and likewise
dividing the circumference into 90 parts, and dividing these again. And after
this, on one of the straight lines, the one which was to be perpendicular to the
plane of the horizon and to face south, we laid two small right cylinders in every
way equal and similarly fashioned, one on the centre exactly at the midpoint of
the indicated circle and the other at the lower extremity of the straight line.
Then, standing the marked side of the block along the meridian line drawn in
the supporting plane of the horizon so that it would also be parallel to the plane
of the meridian, again making adjustments with fine splints in accord with a
plumb line right across the cylinders perpendicular to the plane of the horizon,
we would observe as before the midday shadow from the céntre cylinder, put-
ting something at the graduated circumference to show more clearly its position.
And marking the middle of the shadow we would note down the division of the
quadrant, and this would clearly indicate the latitude of the sun’s path on the
meridian.

Now from such observations and especially from those made by us over sev-
eral periods while the sun was near the tropics, seeing the marker count off from
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the zenith always an equal number of divisions on the meridian and the same
ones both for the winter tropics and for the summer tropics, we found the arc
from the northernmost to the southernmost limit, which is the arc between the
tropic points, to be always more than 47°40’ but less than 47°45’. And with this
there results nearly.the same ratio as that of Eratosthenes and as that which
Hipparchus used. For the arc between the tropics turns out to be very nearly 11
out of the meridian’s 83 parts.

And immediately from this observation it is easy to deduce the latitudes of
the places where we make the observations, once we have taken the midpoint of
the two limits, which is on the equator, and the arc between this point and the
zenith. For the arc between the poles and the plane of the horizon is clearly
equal to this are.

13. PRELIMINARIES TO THE SPHERICAL PROOFS

And since it is next in order to demonstrate the respective values of the arcs
on great circles drawn through the poles of the equator and cut off between the
equator and the ecliptic, we shall explain very short and
easy lemmas by means of which we shall effect nearly all
the proofs of theorems dealing with spheres.

Now let the two straight lines BE and CD, drawn to
two straight lines AB and AC, cut each other at F.

1 say that AC : AE comp. CD : DF, BF : BE.

For let EG be drawn through £ parallel to CD. Since
the straight lines CD and EG are parallel, AC : AE ::
CD: EG [Eucl. v1, 4].
Then if we supply the straight line DF,

CD : EG comp. CD : DF, DF : EG.

And
DF :EQ::BF : BE, [Eucl. vi, 4].
again because EG and DF are parallel. Therefore
AC : AE comp. CD : DF, BF : BE.
Which it was proposed to prove. ’

And in the same way it can be shown, by drawing a straight line through A
parallel to EF and producing CDG to meet it, that
CE : AE comp. CF : DF, BD ; AB.

For again since AG is parallel to EF
CF:FG::CE:AE [Eucl vi, 2].
But if we supply DF,
CF : FQ comp. CF : DF, DF : FG.

A

But

DF :FG::BD: AB
8 ¢ because AB and FG are drawn through to the paral-
. lels AG and BF. Therefore
CF . FG comp. CF : DF, BD : AB.
But
CE:AE .. CF . FG.
And therefore
CE : AE comp. CF : DF, BD : AB.
Which was to be proved.
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Again, let there be the circle A BC with centre D; and let there be taken on its
circumference three points A, B, and C in such a way that each of the arcs AB
and BC is less than a semicircle (and let the same thing be understood of the
arcs taken hereafter). And let the straight lines AC and DFB be joined.

I say that chord 2 arc AB :chord 2 arc BC ::

L AE :CE.
G < For let the straight lines AF and CG be drawn
£ from the points 4 and C perpendicular to BD.
Since AF is parallel to CG@ and A EC crosses them,
A F therefore
D AF :CG:: AE:CE [Eucl. v1, 4].
But
AF :CG ::chord 2 arc AB :chord 2 arc BC.
For the ones are the halves of the others respective-
ly. And therefore

AE :CE ::chord 2 arec AB : chord 2 arc BC.
Which was to be proved.

And it follows from this that, if the whole arc AC
is given and also the ratio of the chord of twice arc AB to the chord of twice arc
BC, then each of the arcs AB and BC is given.

For with the same figure laid out, let AD be
joined, and from D let DF be drawn perpendicular
to AEC. It is clear then that, given arc AC, angle
ADF which subtends the half of it is given, and also
the whole triangle ADF. Now with the whole line
AC given, since

AE :CE : : chord 2 arc AB : chord 2 arc BC,
therefore AE is given!, and the remainder EF is
given. And for this reason and since DF is given,
both angle EDF of the right triangle EDF and the
whole angle ADB are given. And so both arcs AB
and BC are given. Which was to be proved.

Again, let there be the circle ABC with centre D, and on its circumference

let there be taken three points 4, B, and C in

€ such a way that each of the arcs 4B and AC is

B less than a semicircle (and let this same condition

be understood for the arcs to be taken hereafter).

And let AD and BC be joined and the resulting
straight lines be produced to meet at E.

I say that

CE : BE : : chord 2 arc AC : chord 2 arc AB.

For, as in the previous lemma, if from the
points B and C we drop BF and CG perpendicu-
lar to AD, then, since they are parallel,

CG:BF:..CE:BE.

And so also
CE : BE : : chord 2 arc AC : chord 2 arc AB.

tFor componendo
AC :CE : : chord 2 arc AB + chord 2 arc BC : chord 2 arc BC.
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Which was to be proved.

And then from this it follows that, even if the arc BC alone be given along
with the ratio of the chord of twice arc AC to the chord of twice arc AB, then
arc A B is given.

For again in a similar figure, with BD joined
and DF dropped perpendicular to BC, angle 8
BDF subtending half are BC is given, and also
the whole right triangle BDF. And since also the z Y )
ratio of CE to BE is given and chord BC, there-
fore BE is given and the whole line EBF. And so,
since DF is given, angle EDF of the same right
triangle is also given, and by subtraction angle
EDB. Hence arc AB is also given.

And with these conclusions in mind, let arcs of great circles be described on
a spherical surface in such a way that two arcs
BE and CD, drawn to two ares AB and AC, in-
tersect each other at the point F. And let each of
these arcs be less than a semicirele (and let the
same condition be understood in all the figures).

Then I say that

chord 2 arc CE : chord 2 arc AE comp.
chord 2 arc CF : chord 2 arc DF,
chord 2 arc BD : chord 2 arc AB.

For let the centre of the sphere be taken, and
let it be G; and from the point @ let the straight
lines BG, F@G, and EG be drawn to the intersec-
tions of the circles at B, F, and E. And let the
straight line joining AD be produced to meet BG produced at point H. And
likewise let CD and AC be joined and cut FG and EG at K and L. Then the
points H, K, and L are on one straight line, because they are at once in two
planes: that of the triangle ACD, and that of the circle BFE. When these points
are joined, we have two straight lines HL and CD intersecting at point K and
cutting two other straight lines AH and AC. Therefore

C

CL:AL comp. CK : DK, DH : AH. {p. 26]
But
CL : AL ::chord 2 arc CE : chord 2 arc AE,
CK : KD : :chord 2 arc CF : chord 2 arc DF; [p. 27]
and .
DH : AH : : chord 2 arc BD : chord 2 arc AB. [p. 27]

And therefore
chord 2 are CE : chord 2 arc AE comp.
chord 2 are CF : chord 2 are DF, chord 2 arec BD : chord 2 arc AB.
In the same way, by straight lines constructed in a plane, it is also proved
that
chord 2 are AC : chord 2 arc AL comp.
chord 2 are CD : chord 2 are DF, chord 2 are BF : chord 2 arc BE.!
Which things it was required to prove.

1This analogous theorem is proved thus: With the same arcs as in the preceding figure, pro-
duce the straight lines CE, CF, and EF of the four intersecting great circles of a sphere whose
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14. On tHE Arcs BETWEEN THE EQuaTor AND THE EcLipTiC

Now that this theorem has been expounded, we shall make the first applica-
tion of the arcs as worked out above, in the following way:

For let the circle ABCD be the circle through the poles of the equator and
the poles of the ecliptic; and let AEC be the semi-
circle of the equator, and BED the semicircle of the
ecliptic, and the point E their intersection at the
spring equinox so that point B is the winter tropic
and D the summer tropic. And let the pole of the
equator AEC be taken on arc ABC, and let it be the
point F. And let the arc EG be taken on the ecliptic,
and suppose it to be 30°, and through the points F
and @ let the are FGH of a great cirele be drawn.

And let it be proposed to find the arc GH.

Let it be understood now and generally in all such
proofs, so we shall not have to repeat the same thing
for each one, that, whenever we say of how many
parts or divisions the magnitudes of arcs or straight lines consist, we mean, in
the case of arcs, of such divisions as the circumference of the great circle has
360; and, in the case of straight lines, of such as the same circle’s diameter has
120.

Since, then, in the construction of the great circles, the two arcs FH and BE
have been drawn to the ares AF and AE, intersecting at the point G, therefore
chord 2 are AF : chord 2 arc AB comp.
chord 2 arc FH : chord 2 arc GH, chord 2 arc EG : chord 2 arc BE. [p. 28 Fn]

But

2 arc AF=180°,
chord 2 arc AF =1207.

centre is G. Let CE and AG meet at H, CF and DG at L, and EF and BG at K. Then the
points H, L, and K lie in the same stralght line since they all lie on the intersection of the
same two planes that of circle BAG, and that of triangle FEC.

Then
CH : EH comp. CL : FL, FK : EK [p. 26]
But
CH : EH : :chord 2 arc AC : chord 2 arc AE,
CL : FL : : chord 2 arc CD : chord 2 arc DF,
and

FK : EK : :chord 2 arc BF : chord 2 arc BE. [p. 27]
Substituting in the first expression, we have shown what was required.
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And according to the ratio of 83 parts to 11, agreed to by us
2 arc AB=47°42'40",

and therefore
chord 2 arc AB=48r31'55".

[p. 26),

And again
2 arc EG=60°,
chord 2 arc EG=60°;
and
2 arc BE=180°,
chord 2 arc BE =120".
Therefore
chord 2 arc FH : chord 2 arc GH comp. 120° : 48°31'55”, 120" ; 60p,1
or
chord 2 arc FH : chord 2 arc GH : : 1207 : 24°15'57”.
And

2 arc FH =180°,
chord 2 arc FH =1207;
and therefore
chord 2 arc GII =24r15'57", ¢
And so
2 arc GH =23°19'59",
arc GH =11°40".
And again let
arc EG=60°,
so that, the others remaining the same,
2 arec EG=120°
chord 2 arc EG=103r5523",

Then again
chord 2 arc FH : chord 2 arc GH :: 120r : 42r1'48”,
And
chord 2 arc FH =120r
And so also ’

chord 2 arc GH =42r1'48”,
And therefore
2 arc GH=41°0"18"
arc GH=20°30"9".
Which things were to be proved.

1Since the compounding of ratios is equivalent to our multiplication of fractions, com-
pounding with the inverse ratio is equivalent to our division of fractions. In other words,

Ptolemy in this paragraph has first proved that

chord 2 arc AF  chord 2 urc FH chord 2 arc EG
chord 2 arc AB ~ chord 2 urc GH ~ chord 2 arc BE

He then says here
chord 2 arc AF , chord 2 arc EG __ chord 2 arc FH

chord 2 arc AB ~ chord 2 arc BE = chord 2 arc GH

For the fundamental principles of the compounding of ratios the reader is referred to
Euelid’s Elements, Books V and VI. The rules for the multiplication and division of fractions
depend for their validity upon these principles of Euclid, unless one treats them as operations

in a symbolic system, as in modern mathematical theory.
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And now in the same way, by calculating the values for successive arcs, we
shall lay out a table for the 90° of a quadrant, containing the values of arcs like

15. TaBLE or OBLIQUITY

31

Arcs of the

Ecliptic| Meridian
1 |0 24 16
2 [0 48 31
3 |1 12 46
4 {1 37 O
5 (2 1 12
6 [2 25 22
7 (2 49 30
8§ |3 13 35
9 |3 37 37
10 |4 1 38
11 |4 25 32
12 |4 49 24
13 |5 13 11
14 |5 36 53
15 |6 0 31
16 |6 24 1
17 |6 47 26
18 {7 10 45
19 |7 33 57
20 [7 57 3
21 |8 20 O
22 |8 42 50
23 19 5 32
24 |9 28 5

Arcs of the
Ecliptic| Meridian
25 9 50 29
26 10 12 46
27 10 34 57
28 10 56 44
29 11 18 25
30 11 39 59
31 12 1 20
32 12 22 30
33 12 43 28
34 13 4 14
35 13 24 47
36 13 45 6
37 14 5 11
38 14 25 2
39 14 44 39
40 15 4 4
41 15 23 10
42 15 42 2
43 16 0 38
44 16 18 58
45 16 37 20

Arcs of the
Ecliptic! Meridian
46 16 54 47
47 17 12 16
48 17 29 27
49 17 46 20
50 18 2 53
51 18 19 15
52 18 35 5
53 18 50 41
54 19 5 57
55 19 20 56
56 19 35 28
57 19 49 42
58 20 3 31
59 20 17 4
60 20 30 9
61 20 42 58
62 20 55 24
63 21 7 21
64 21 18 58
65 21 30 11
66 21 41 O
67 21 51 25
68 22 1 25
69 22 11 11

Arcs of the
Ecliptic| Meridian
70 22 20 11
71 22 28 57
72 22 37 17
73 22 45 11
74 22 52 39
75 22 59 41
76 23 6 17
77 23 12 27
78 23 18 11
79 23 23 28
80 23 28 16
81 23 32 30
82 23 36 35
83 23 40 2
84 23 43 2
85 23 45 34
86 23 47 39
87 23 49 16
88 23 50 25
89 23 51 6
90 23 51 20

16. ON AscexsIioNs IN THE RIGHT SPHERE

And next it would be proper to demonstrate all together the values of the ares
on the equator determined by circles drawn through the poles of the equator and
given divisions of the ecliptic. For in this way we shall know corresponding to
how many equatorial time-degrees the divisions of the ecliptic cross the meridi-
an for any place and the horizon in the right sphere, because it is only in the
right sphere that the horizon passes through the

poles of the equator.
Then let the last figure be constructed again. And
again given the arc EQ of the ecliptic, first as 30°,
let it be required to find the arc EH on the equator.
Then in the same way as before

chord 2 arc BF : chord 2 arc AB comp.
chord 2 arc FG :chord 2 arc GH,
chord 2 arc EH : chord 2 arc AE. [p. 28]

But

And

2 arc BF =132°17'20",

chord 2 arc BF =109744'53".
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2 are AB=47°42'40",
chord 2 arc AB=48931'55".

And again
2 arc FG=156°40"1",
chord 2 arc FG=117°31'15";
and
2 arc GH =23°19'59" [table, §14]
chord 2 arc GH =24r15'57".
Therefore
chord 2 ar¢ EH : chord 2 arc AE comp.
109744'53” . 48°31’55”, 24r15'567” : 117°31°15”;
or
chord 2 arc EH : chord 2 arc AE :: 54°52'26” : 117°31'15”
And
5452267 ; 117°31'15” . : 56r125” : 120,
And
2 arc AE=180°,
chord 2 arc AE =120,
Therefore
chord 2 arc FH =56r1"25";
and so
2 arc EH =55°40/,
arc EH =27°50".
Again let

are EG=60°.
And so, the others remaining the same,
2 arc FG'=138°59'42"
chord 2 arc FG=112023'56";

and
2 arc GI{ =41°0'16",
chord 2 arc GH =42r1'48".

Therefore

chord 2 ar¢c EH : chord 2 arc AE comp.

109r44’53” : 48031’55”, 42r1'48” : 112°23’56";
or
chord 2 arc EH : chord 2 arc AE : : 95°2'40” : 112023’56”.

And

95r2/40” : 112023567 : : 101r28'20” ; 1207,
But

chord 2 arc AFE =120°;

and so

chord 2 arc EH =101728'20".
And therefore
2 arc EI1=115°28,
are EH =57°44’.

Tt has been shown that the first 30°from the equinoctial point on the ecliptic
corresponds to 27°50” in time on the equator; and the second 30° on the ecliptic
to 29°54’ on the equator, since they both togethcr were proved to be 57°44’.
And it is evident that the third 30° on the ecliptic will correspond in time to the
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remainder of the equator’s quadrant, that is to 32°16’, since the ecliptic’s quad-
rant corresponds in time to the equator’s quadrant, both being cut off by the
same circles through the poles of the equator.

In the same way, following this same method, we calculated the arcs of the
equator corresponding in time to each 10° of the ecliptic because arcs smaller
than these have practically equal differences as they increase. We shall set them
out also, in order to have at hand, as we said, the amount of time it takes each
arc to cross the meridian for any place and the horizon in the right sphere. And
we take as our starting place the point 10° from the equinox.

The first arc of 10° on the ecliptic takes 9°10” equatorial time; the second,
9°15’; the third, 9°25’; so that the first 30° on the ecliptic totals 27°50” equatorial
time. The fourth arc takes 9°40; the fifth, 9°58’; the sixth, 10°16’; so that the
second 30° on the ecliptic totals 29°54’ equatorial time. The seventh are takes
10°34’; the eighth, 10°47’; the ninth, 10°55’; so that the third 30° on the ecliptic
totals 32°16’ equatorial time, and the whole quadrant 90°.

And from this it is evident that the order is the same for the other quadrants,
everything being the same in each of them, because the sphere is given as right;
that is, the equator is not oblique to the horizon.



BOOK TWO

1. Ox toE GENERAL PositioN oF THE INHABITED WORLD

Now that, in the first book of the Composition, we have gone through those
things concerning the system of the universe which had first to be understood in
summary form, and as many other things concerning the right sphere as would
be considered useful to an understanding of questions treated here, we shall try
in the following book to present again, in the handiest possible way, the more
important of those things having to do with the oblique sphere.

And now this we must first understand in a general way that, if the earth is
supposed cut into four equal parts by the equator and one circle through its
poles, the extent of the part inhabited by us is very nearly enclosed in one or the
other of the northern quadrants. And this would certainly be evident in the case
of latitude—that is, of the passage from south to north—because everywhere
the noon shadows of gnomons at the equinox fall to the north and never to the
south. And also in the case of longitude—that is, of the passage from east to
west—because the same eclipses, and especially the lunar ones, observed at the
same time by those inhabiting the extreme eastern sections of that part of the
earth inhabited by us and by those inhabiting the extreme western sections,
neither precede nor lag behind by more than twelve equatorial hours. But the
quarter part of the sphere in longitude embraces a twelve-hour interval since it
is bounded by one of the semicircular ares of the equator.

Of the particular things which must be understood for the business at hand,
one should especially consider the arrangement, one by one, of the circles north
of the equator and parallel to it, according to the particularities of the places
situated under them. That is, how far the poles of the equator are from the
horizon; or how far the zenith is from the equator along the meridian circle; and
in what places the sun reaches the zenith, and when and how many times that
happens; what are the ratios of the equinoctial and tropical shadows cast at
noon to their gnomons; and what are the differences of the longest and shortest
days with respect to the equinoxes; and as many other things as are observed
relative to the increase and decrease of solar days, with the correspondances in
the risings and settings of the equator and ecliptic, and with the properties and
magnitudes of the angles formed by the principal great circles.

2. Grven THE MagN1TuDE oF THE LoxGesT Day, How THE ARCS ON THE
Hor1zox INTERCEPTED BY THE EqQuaTOR aNxD THE Ecripric ARE GIVEN

As a general example, let the circle drawn through Rhodes parallel to the
equator be considered, where the height of the pole is 36° and the longest day is
1414 equatorial hours.! And let the circle ABCD be the meridian; and BED the

!An equatoriul hour is Y44 of the 360° of the equator or 15°. In other words an equatorial
hour is }341 of a stellar day, a stellar day being the time it takes a fixed star to pass from a

meridian back again to that same meridan, that is one complete revolution of the equator.
For the purposes of Book II, Ptolemy considers the sun such a fixed star, although it will be
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eastern semicircle of the horizon; and likewise
AEC the semicircle of the cquator, and F itxsouth-
ern pole. And let the ecliptic’s winter-tropic point
rise through G; and let FGII be drawn as the
quadrant of the great circle through F and ¢;.

And first let the magnitude of the longest duy
be given; and let it be required to find the are K¢/
of the horizon.

Now, since the turning of the sphere tukes
place around the poles of the equator, it is evi-
dent that the points @ and /7 will be at the merid-
ian ABCD at the same time. And the time from
the rising of @ to its culmination at the upper
meridian is contained by arc HA of the equator, and from its crossing the lower
meridian to its rising by arec CH. It follows that the length of time of the day is
double that contained by arec HA, and the length of time of the night is double
that contained by arc CH. For the sections above and below the earth of the
circles parallel to the equator are exactly cut in half by the meridian.

Therefore, since the arc EH is half the difference between the shortest or
longest day and the equinoctial day, it is 114 hours on the given parallel or
18°45’ in time, and the remainder of the quadrant, are /A, is 71°15 in time.
Since then, in the same way as in the previous proofs, the arcs EB and FII of
great circles cutting each other at @ have been drawn to the two ares AE and
AF of great circles,

chord 2 arc /{A : chord 2 arc AE comp. chord 2 are FII : chord 2 arc FG,

chord 2 arc BG : chord 2 arc EB [p. 28]

But 2 arc HA =142°30/,
chord 2 arc /74 =113°37'51";
and 2 arc AE=180°,
chord 2 arc AE=1207;
and 2 arc FH=180°,
chord 2 arc FI =1207;
and

2 arc FG'=132°17"20"

1The arc FG is 66°8’40”, since the arc G which marks the obliquity of the ecliptic is
23°51720".
pointed out in detail in Book III that this is not the case, just as it l.ms already bee'n stated in
general in Book I. Therefore all the calculations relative to the sun in Book II are in error by
the small amount such neglect entails. ) o

In Book III, there is introduced the notion of a solar day, a so]af day being thg txme it
takes the sun to pass from a meridian back to that same meridian. The solar day, it will be
seen, is very nearly 59’ [of arc] longer than the stellar day. Now in Book III an hn‘ur is defined
as %4 of the solar day; and this hour is used interchangeably with the equatorial hour, al-
though it is very nearly 214’ longer than it. But the total error could never come to as much
as 59’, which is less than 4 minutes in time; and Ptolemy declares that h‘w instruments cannot
be acéurate within less than 15 minutes in time. Therefore this ambiguity will have no effect

on the accuracy of the caleulations. . o . ]
The degrees fm the equator are often referred to as ‘‘degrees in time’” or “time-degrees” in

referring to their time-measuring aspect.
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chord 2 are FG=109°44'53"

Then
chord 2 are BG : chord 2 arc EB comp. 113°37/54” : 1200, 109044'53” : 120
or
chord 2 arc BG : chord 2 arc EB :: 103,55'23” : 120°
And since it is a quadrant,
chord 2 arc EB=120v,

and therefore

chord 2 arc BG=103r5523".

And so
2 arc BG=120°,
arc BG=60°
And therefore as remainder
arc EG=30°.

Which was to be shown.

3. How, wrrH THE SAME THiNgs GIVEN, THE HEIGHT OF THE
PoLE 1s GiveN, AND CONVERSELY

Now again, with this given, let it be required to find the height of the pole;
that is, arc BF of the meridian. Then, in the same figure
chord 2 arc EH : chord 2 arc HA comp. chord 2 arc EG : chord 2 arc BG,

chord 2 arc BF :chord 2 arc AF. [p. 28]
But
2 arc EH=37°30,
chord 2 arc EH =38v34'22";
and
2 arc HA =142°30’,
chord 2 arc HA =113°37'54";
and again
2 arc EG=60°,
chord 2 arc EG=60r.
Then

chord 2 arc BF : chord 2 arc AF comp. 38°3422” : 113°37'54",
1035523 . 60
or very nearly
chord 2 arc BF : chord 2 arc AF : : 70733 : 120r.
And again
chord 2 arc AF=120v,
and therefore
chord 2 are BF =70733’.
And so
2 arc BF =72°1',
arc BF=36°.

Again, conversely, let arc BF, the height of the pole, be given by observation
as 36°; and let it be required to find the difference between the longest or
shortest day and the equinoctial day, that is twice arc EH. Then

chord 2 are BF : chord 2 arc AB comp. chord 2 arc FG : chord 2 arc GH,

chord 2 arc EH : chord 2 arc AE.
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But
2 arc BF =72°,
chord 2 arc BF=70732'3";
and
2 arc AB=108°,
chord 2 arc AB=9774'56";
and again
2 arc FG=132°17'20"
chord 2 arec FG=109741'53";
and
2 arc GH =47°42'40",
chord 2 arc GH =48r31'55".
Then
chord 2 arc EH : chord 2 arc AE comp. 70°32'3” : 97»4'56”,
48r31/55” : 109744753”
or

chord 2 arc EH :chord 2 arc AE ::31°11'23” : 9704/56",
And since, very nearly,
31°11°237 : 9704567 : : 38734 ; 120v,

and

chord 2 arc AE=120¢,
therefore it is inferred

chord 2 arc EH =38°34'.
And so

2 arc EH=37°30'

or 214 equatorial hours. Which was to be shown.

Likewise the arc EG of the horizon will be given because the given ratio of
the chord of 2 arc AF to the chord of 2 are 4B is compounded of the given
ratio of the chord of 2 are FH to the chord of 2 are GH and the ratio of the chord
of 2 arc EG to the chord of 2 arc BE. And so, since BE is given, the magnitude
of arc EG is left.

It is evident that—even if we did not suppose the point G to be the winter
tropie, but some point at one of the other divisions of the ecliptic—each of the
arcs EH and EG would still be given in the same way. For we have set up, by
means of the Table of Obliquity, the arcs on the meridian cut off by each
division of the ecliptic and by the equator—that is, the arcs like GH.

From this it follows that the divisions of the ecliptic made by the same paral-
lels—that is, those equidistant from the same
tropic point—make sections on thke horizon the
same and on the same side of the equator, and
the magnitudes of the days and nights equal to
each other, like to like.

At the same time it is proved that the points
produced by equal parallels—that is, those equi-
distant from the same equinoctial point—make
equal arcs on the horizon from either side of the
equator, and make the magnitudes of the days
and nights equal contrariwise, unlike to unlike.
For if, in the figure already set out, we take also
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the point K as the point where the circle equal and parallel to that through G
cuts the semicircle of the horizon BED, and if we fill in the sections GL and
KM of theparallels, which are clearly contrariwise and equal, and if we draw
the quadrant NKO through K and the north pole, then the arcs AH and OC
will be equal. For GL and KM are equal as like to like; and the remainder EH
will be equal to the remainder EOQ. And the two sides of the similar three-sided
figures EGH and EKO will be equal to each other, EH to EO and GH to KO, and
each of the angles at H and O are right, so that base EG is equal to base EK.

4. How ONE 1s 7O CALCULATE AT WHAT PLACES, WHEN, AND
How Many TimEes, THE SUN COMES TO THE ZENITH

Now it is easy, once given these things, to calculate when and how many
times the sun comes to the zenith. For since it is at once evident that the sun
does not come to the zenith at all in those places under parallels farther away
from the equator than the approximate 23°51°20” of the distance of the summer
tropic point, and that it does so once, at the summer tropic itself, for those
places under parallels at an equal distance from the equator, therefore it is also
clear it comes to the zenith twice in those places at a distance less than that just
given. And the setup of the Table of Obliquity makes the answer to the ques-
tion, “When?” an easy one. For taking to the second column the number of de-
grees by which the parallel in question is distant from the equator—that is, in
the case of those parallels within the summer tropic—we shall have, in the first
column, the corresponding number of degrees of the quarter of the ecliptic.
And at the distance from either equinoctial point given by this number of de-
grees, the sun comes to the zenith for the places under this parallel on the side of
the summer tropic.

5. How, rroM THINGS EXPLAINED, THE RaTIOS OoF THE GNOMONS TO THEIR
EquinocTiAL AND TRoPIC SHADOWS AT NOON ARE Founp

Now it will be made clear in the following manner that also the proposed ra-
tios of the shadows to the gnomons are obtained more simply, if the arc be-
tween the tropics and the arc between
the horizon and the poles are given. G

For let the circle ABCD be the B
meridian around center E; and with
A as zenith let the diameter AEC
be drawn; and let CKFN, in the plane
of the meridian, be perpendicular to
it. CKFN is clearly parallel to the in-
tersection of the meridian-plane and i
the horizon-plane. And since the earth
as a whole is sensibly in the ratio of
a point and centre to the solar sphere T K F N
so that the centre E does not differ
from the top of the gnomon, therefore
let CE be thought of as the gnomon, and CKFN as the straight line on which,
at noon, the ends of the shadows fall. And let the equinoctial and tropic
noontide rays be drawn through E. Let the equinoctial ray be BEDF, the sum-

A
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mer tropic ray be GEH K, and the winter one LEM N, so that CK is the summer
shadow, CF is the equinoctial shadow, and CN the winter shadow.

Therefore, sinee the are CD, which is equal to the height of the pole above the
horizon, is, in the given latitude, 36°, and the meridian ABC 360°, and each of
the arcs HD and DAl approximately 23°51°20”, it is evident that, as remainder,

arc CH=12°8"40",
and, by addition,
arc CM =59°51"20".
And so, of the angles subtending these ares,
angle KEC =12°8'40",
angle FEC =36°,
angle NEC =59°51'20".
And
angle KEC =24°1720” to 2 rt.,
angle FEC=72° to 2 rt.,
angle NEC =119°42’40” to 2 rt.
And then, on the circles about the right triangles KEC, FEC, and NEC,
arc CK =24°17/20",
arc CE=155°42'40"
as remainder of the semicircle; and
arc CF=72°,
arc CE=108°
likewise; and
arc CN =119°4240",
arc CE=60°1720"
again as remainder of the semicircle. And so, of these chords,
chord CE=117r18'51"

where
chord CK =25r14’43";
and
chord CE =97r4’56"
where
chord CF=70r32'4";
and
chord CE =60r1542"
where

chord CN =103746"16".

And therefore, where CE equals 60°, CK the summer shadow equals 12#55’, CF
the equinoctial shadow 43736’, and CN the winter shadow very nearly 103220’,

It is therefore clear that, conversely, if any two ratios alone of these three of
the gnomon CFE to its shadows are given, then the height of the pole and the are
between the tropics are given, since, if any two of the angles at ¥ are given, the
other is also given. For the arcs HD and DM are equal. But for the sake of ac-
curacy in observations, the height of the pole and the arc between the tropies
should certainly be taken in the way we have already shown. For the ratios of
these shadows to their gnomons do not always agree, because the time of the
equinoctial shadows is somehow in itself undetermined, and the ends of the
winter shadows are hard to distinguish.
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6. EXPOSITION OF THE PROPERTIES OF EAacH Pa

In this same way we shall consider the most important of
have expounded for the other parallels also. And taking para
inclination of 14 equatorial hour, which is sufficient, we shall
posmon of their incidents before maklng a detailed one.

i. We shall begin with the parallel under the equator -
bounds the southern part of the whole quarter of the earth ir
which alone has all days and nights equal to each other. Fo
the sphere’s parallels to the equator cut in half by the horiz
sections above the earth are similar to each other and equal
ing sections under the earth. And this is not the case with anj
of the sphere. Again, only the equator is everywhere cut in |
and makes the days along it sensibly equal to the nights, sin
circle. But the others are divided unequally; and, in the lati
us, the parallels south of the equator have their sections ab.
their sections below earth and their days shorter than the
versely the parallels north of the equator have their sections :
and their days longer.

And this parallel is also amphiscian, since for those living
twice at the zenith, at the intersections of the equator and the
those times only are the gnomons shadowless at noon. A
passes through the northern hemisphere the gnomons’ shados
and when 1t passes through the southern, to the north. Ther
and winter shadows are very nearly 2614 to the gnomon’s 60.

We say “the shadows at noon,” speaking generally and
preciable difference, because the equinoxes and tropics are b;
completed exactly at noon.

And all those stars which revolve along the equator pass
for those under this parallel. And they are all seen to rise and
of the sphere are on the horizon, none of the parallels mak
always visible or invisible, and no meridians are cut short. 1
lieve there are human habitations under the equator; for, acc
very temperate because the sun does not tarry about the
speed of its passage through the divisions of the equator;
summer heat would be temperate. Nor is the sun in the tropic
zenith, so that the winter would not be severe. But we coul
conviction what sort of habitations they are; for up until

mained inaccessible to people from the part ot the earth in
xirhiot e ol aln it £l aen e a1 L o e L TR IR T
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gnd the stars coptained by it are always visible. .And the always.
1s.th?,t .drawn with tche south pole as pole at the same distanée,
within it are always invisible.

il. _The second parallel is that whose longest day is 1214 eq
And it is 4}4° from the equator, and is drawn through the islanc
[Ceylon]. And it is one of the amphiscian parallels, since the sun
zenith for those living under it and twice makes the £nomons
noon when it is 7914° from the summer tropic on either side. Ang
its passage the shadows of the gnomons fall to the south, and for
to the north. Thereupon the equinoctial shadow is 44-14411.
shadow 2113, and the winter 32, to the gnomon’s 60. |

iii. The third parallel is that whose longest duy is 1214 equator
it is 8°25’ from the equator and it is drawn through the Aualiti
Aden]. And it is amphiscian since the sun is twice at the zenith f
under it, and twice makes the gnomons shadowless at noon, whet
the summer tropic on either side. And so for 138° of its passage 1
the gnomons fall to the south, and for the other 222° to the no
equinoctial shadow is 8414414 the summer shadow 164 13
winter 374+14+14414{5, to the gnomon’s 60.

1v. The fourth parallel is that whose longest day is 1234 equator
it is 1214° from the equator and is drawn through the Adulitic (
Bay]. And it is amphiscian, since the sun is twice at the zenith f
under it and twice makes the gnomons shadowless at noon, wl
from the summer tropic on either side. And so for 11514° of i
shadows of the gnomons fall to the south, and for the other 24424
Thereupon the equinoctial shadow is 1314, the summer shado
winter 4414, to the gnomon’s 60.

v. The fifth parallel is that whose longest day is 13 equatorial h
16°27’ from the equator and is drawn through the island of Mc
also amphiscian since the sun is twice at the zenith for those wh
and twice makes the gnomons shadowless at noon, when it is 43°
mer tropic on either side. And so for 90° of its passage the sl
gnomons fall to the south, and for the other 270° to the north. ’]
equinoetial shadow is 17+14+14, the summer shadow 7+1%
winter 51, to the gnomon’s 60.

vi. The sixth parallel is that whose longest day is 1314 equator
it is 20°14’ from the equator and is drawn through the country of t
And it is also amphiscian since the sun is twice at the zenith fc
under it and twice makes the gnomons shadowless at noon, when
 § the sitmmer tronie on either side. And so for 62° of its passage t.
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point. And the rest of the time the shadows of the gnomons fall to the north.
Thereupon the equinoctial shadow is 2614, the winter shadow 65414414, to
the gnomon’s 60, and the summer shadowless. And all the parallels to the north
of this one, as far as the one bounding our inhabited world, are heteroscian. For
the gnomons at these parallels are never shadowless at noon and they never
throw their shadows to the south but always to the north, because the sun is
never at the zenith for these people.

viii. The eighth parallel is that whose longest day is 1324 equatorial hours.
And it is 27°12 from the equator and is drawn through Ptolemais in the The-
bais, also called Hermeias. Thereupon the summer shadow is 314, the equinoc-
tial shadow 36414414, and the winter 7414, to the gnomon’s 60.

ix. The ninth parallel is that whose longest day is 14 equatorial hours. And
it is 30°22’ from the equator and is drawn through the low countries of Egypt.
Thereupon the summer shadow is 6414414, the equinoctial shadow 35115,
and the winter 83115, to the gnomon’s 60.

x. The tenth parallel i1s that whose longest day is 1414 equatorial hours. And
it is 33°18’ from the equator and is drawn through the middle of Phoenicia.
Thereupon the summer shadow is 10, the equinoctial shadow 3914, and the
winter 93112, to the gnomon’s 60.

xi. The eleventh parallel is that whose longest day is 1414 equatorial hours.
And it 1s 36° from the equator and is drawn through Rhodes. Thereupon the
summer shadow is 12+ 144144115, the equinoctial shadow 43+14+ 14, and
the winter 10314.

xii. The twelfth parallel is that whose longest day is 1434 equatorial hours.
And it is 38°35’ from the equator and is drawn through Smyrna. Thereupon the
summer shadow is 1524, the equinoctial shadow 47414414, and the winter
114+ 14+ 144 145, to the gnomon’s 60.

xili. The thirteenth parallel is that whose longest day is 15 equatorial hours.
And it is 40°56’ from the equator and is drawn through the Hellespont. There-
upon the summer shadow is 1814, the equinoctial shadow 5214, and the winter
127414+ 14, to the gnomon’s 60.

xiv. The fourteenth parallel is that whose longest day is 1514 equatorial
hours. And it is 43°4’ from the equator and is drawn through Marseilles. There-
upon the summer shadow is 20414414, the equinoctial shadow 55414414+
1{, and the winter 144, to the gnomon’s 60.

xv. The fifteenth parallel is that whose longest day is 1514 equatorial hours.
And it is 45°1’ from the equator and is drawn through the middle of Pontus.
Thereupon the summer shadow is 2314, the equinoctial shadow 60, and the
winter 155145, to the gnomon’s 60.

xvi. The sixteenth parallel is that whose longest day is 1534 equatorial hours.
And it 1s 46°51’ from the equator and is drawn through the source of the river
Ister [Danube]. Thereupon the summer shadow is 2514, the equinoctial shadow
63+14+14+1{5, and the winter 17114, to the gnomon’s 60.

xvii. The seventeenth parallel is that whose longest day is 16 equatorial
hours. And it is 48°32’ from the equator and is drawn through the mouth of the
Borysthenes [Dnieper]. Thereupon the summer shadow is 2714, the equinoctial
shadow 67414414, and the winter 188+14+4115.

xviii. The eighteenth parallel is that whose longest day is 1614 equatorial
hours. And it is 50°4’ from the equator and is drawn through the middle of
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Palus Maeotis [the Sea of Azof]. Thereupon the summer shadow is 29+144-14
4 {5, the equinoctial shadow 7124, and the winter 20814, to the gnomon’s 60.

xix. The nineteenth parallel is that whose longest day is 1614 equatorial
hours. And it is 51°40’ from the equator and is drawn through the southernmost
parts of Britain. Thereupon the summer shadow is 31+144-1{5, the equinoctial
shadow 75+14+4 112, and the winter 22914, to the gnomon’s 60.

xx. The twentieth parallel is that whose longest day is 1634 equatorial hours.
And it is 52°50 from the equator and is drawn through the mouth of the Rhine.
Thereupon the summer shadow is 3314, the equinoctial shadow 79145, and the
winter 25314, to the gnomon’s 60.

xxi. The twenty-first parallel is that whose longest day is 17 equatorial
hours. And it is 54°30’ from the equator and is drawn through the mouth of the
Tanais [Don]. Thereupon the summer shadow is 34+14+144-1{,, the equi-
noctial shadow 824144115, and the winter 278 +14+14, to the gnomon’s 60.

xxii. The twenty-second parallel is that whose longest day is 1714 equatorial
hours. And it is 55° from the equator and is drawn through Brigantium [York]
of Great Britain. Thereupon the summer shadow is 3614, the equinoctial shadow
8524, and the winter 30414.

xxiil. The twenty-third parallel is that whose longest day is 1714 equatorial
hours. And it is 56° from the equator and is drawn through the middle of Great
Britain. Thereupon the summer shadow is 3724, the equinoctial 88414+ 14,
and the winter 33514, to the gnomon’s 60.

xxiv. The twenty-fourth parallel is that whose longest day is 1734 equatorial
hours. And it is 57° from the equator and is drawn through Caturactonium of
Britain. Thereupon the summer shadow is 3914, the equinoctial shadow 9214
+ 145, and the winter 372115, to the gnomon’s 60.

xxv. The twenty-fifth parallel is that whose longest day is 18 equatorial
hours. And it is 58° from the equator and is drawn through the southern parts of
Little Britain. Thereupon the summer shadow is 4024, the equinoctial shadow
96, and the winter 419145, to the gnomon’s 60.

xxvi. The twenty-sixth parallel is that whose longest day is 1814 equatorial
hours. And it is 5914° from the equator and is drawn through the middle of Little
Britain.

We have not here used an increase of a quarter hour, because the parallels are
now very close and the difference between the heights of the pole does not come
to a full degree, and because it does not seem called for to finish out completely,
in like fashion, the still more northern parallels. And for this reason we have
thought it superfluous also to set out the ratios of the shadows to the gnomons
as in the case of those places already defined.

xxvil. And further where the longest day is 19 equatorial hours, there the
parallel is 61° from the equator and is drawn through the northern parts of Little
Britain. '

xxviii. And where the longest day is 1914 equatorial hours, there the parallel
is 62° from the equator and is drawn through what are called the Ebrides Islands
[Hebrides].

xxix. And where the longest day is 20 equatorial hours, there the parallel is
63° from the equator and is drawn through the Island of Thule.

xxx. And where the longest day is 21 equatorial hours, there the parallel is
6414° from the equator and is drawn through unknown Scythian nations.
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xxxi. And where the longest day is 22 equatorial hours, there the parallel is
6514° from the equator.

xxxil. And where the longest day is 23 equatorial hours, there the parallel is
66° from the equator.

xxxiii. And where the longest day is 24 cquatorial hours, there the parallel is
66°8’40” from the equator. And this is the first of the periscian parallels. For since
the sun at the summer tropic does not set for that parallel, the shadows of the
gnomons fall to every side of the horizon. And the parallel through the summer
tropic is there always visible, and through the winter tropic always invisible,
because they both touch the horizon from different directions. And the ecliptic
coincides with the horizon whenever the point of the spring equinox is just rising
from it.

xxx1v. And if anyone for the sake of knowledge generally should want some of
the broader incidents of the still more northern latitudes, he would find, where
the height of the north pole is very nearly 67°, there 15° along the eeliptic on
eitherside of thesummertropicdonotset; so that the longest day and the turning
of the shadows to all parts of the horizon last for nearly a month. For these things
can be easily understood from the Table of Obliquity, already given. For by as
many degrees as we find the parallel distant from the equator—as for instance
that parallel which cuts off 15° of the ecliptic on either side of the summer tropic
and which is then either always invisible or always visible along the intercepted
section of the ecliptic—Dby just so many degrees does the height of the north pole
lack being a quadrant or 90°.

xxxv. And then where the height of the pole is 6914°, there it would be found
that 30° on either side of the summer tropic do not set; so that the longest day
and the periscian gnomons last nearly two months.

xxxvi. And where the height of the pole is 7314°, there it would be found that
45° on either side of the summer tropic do not set; so that the longest day and
the periscian gnomons last nearly three months.

xxxvil. And where the height of the pole is 7814°, there it would be found that
60° on either side of the summer tropic do not set; so that the longest day and
the wheeling of the shadows are accomplished in nearly 4 months.

xxxviii. And where the height of the pole is 84°, there it would be found that
75° on either side of the summer tropic do not set; so that again the longest day
would last for nearly 5 months and the periscian gnomons the same length of time.

xxxix. And where the north pole is raised from the horizon the 90° of the
whole quadrant, there the whole semicircle of the ecliptic north of the equator is
never below the earth, and the whole southern semicircle is never above the
earth; so that there is one day and one night in each year, each nearly six months
long, and the gnomons are always periscian. And the properties of this latitude
are that the north pole is always at the zenith, the equator occupies the position
of the always visible and at the same time invisible circle and also of the horizon,
putting the whole hemisphere north of itself above the earth and that south of it
below the earth.

7. O~ THE Co-ASCENSIONS OF THE EcLipric AND THE EQUATOR
IN THE OBLIQUE SPHERE

Now that the general matters observed concerning the latitudes have been
explained, the next thing would be to show how the co-ascending time-arcs of
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the equator and the ecliptic can be gotten for each latitude. And from these
all the other particularities will be deduced. We shall use the names of the
zodiacal signs for the dodecatemories of the ecliptic as if they began from the
equinoctial and tropic points, calling the first dodecatemory from the spring
equinox in the direction opposite the movement of the universe the Ram, the
second the Bull, and so on according to the order of the twelve signs handed
down to us.

And first we shall show that arcs on the ecliptic equidistant from the same
equinoctial point always ascend with equal arcs on the equator.

For let the circle ABCD be the meridian, and BED the semicircle of the hori-
zon, and A EC the semicircle of the equator. And
let FG and HK be two sections of the ecliptic, so
that each of the points F and H is assumed to be
the point of the spring equinox, and so that the
ends of the equal arecs FG and HK, taken on
either side of it, ascend through the points K
and G.

I say that the arcs of the equator ascending
with either of them, that is EF and EH, are
equal.

For let the points L and 3 be taken as the
poles of the equator, and let the sections of great
circles, LEM, HL, KL, FM, and G} be drawn

through them. Then since

arc FG=arc HK,
and the parallels through K and @ are equidistant from the equator on either
side so that
are LK =arc MG
and
arc EK =arc EG, [p. 37, 38]
therefore LKH and MGF have their sides equal respectively, and so also do
LEK and M EG. Therefore
angle KLE =angle GME,
angle KLH =angle GMF,
so that, by subtraction,
angle ELH =angle EMF.
And therefore
base EH =base EF.
Which was to be proved.

And again we shall prove that the arcs on the
equator, ascending with equal arcs of the ecliptic
equidistant from the same tropic point, are both
together equal to the sum of the corresponding
two in the right sphere.

For let the meridian ABCD be set out, and the
semicircle of the horizon BED, and the semicircle
of the equator AEC. And let two equal arcs on
the ecliptic equidistant from the winter tropic
point be drawn, the arc FG with F as the autumn
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equinox and the arc GH with H as the spring equinox, so that the point @ is
the rising point of both on the horizon (because the ares FG and GH are cut off
by the same circle parallel to the equator), and so that clearly arcs EH and
GH co-ascend and also EF and FG.

It is immediately evident, then, that the whole arc HEF! is equal to the as-
censions in the right sphere of the arcs #G and GH. For if we suppose the south
pole of the equator to be the point K, and draw through K and the point @ the
quadrant of a great circle XGL which represents the horizon in the right sphere,
then arc HL ascends with are GH in the right sphere, and likewise arc LF with
arc GF. And so the two together, arcs AL and LF, are equal to the other two to-
gether, arcs HE and EF, and are contained by the same arc HF. Which was to
be proved.

And for these reasons it has now become clear to us that, if we have calculated
the particular co-ascensions in each latitude for a quadrant only, we shall have
those of the other three quadrants already demonstrated.

Then with these things established, let the parallel through Rhodes be con-
sidered, where the longest day is 1414 equatorial hours and the north pole is
raised 36° above the horizon. And let the circle
ABCD be the meridian; and likewise BED the
semicirele of the horizon, AEC the semicircle of
the equator, and FGH the semicircle of the eclip-
tic, so that @ is assumed to be the spring equinox.
And with the north pole at the point K, let the
quadrant of a great circle, arc KLM, be drawn
through it and L, the intersection of the ecliptic
and the horizon.

And given the arc GL, let it be required to find
the arc on the equator ascending with it, that is
GE. And let GL first embrace the dodecatemory
corresponding to the Ram. |

Now, since again in this construction the arcs DE and KM of great circles, |
cutting each other at L, have been drawn to the two arcs CE and CK of great ;
circles, therefore

chord 2 arc DK : chord 2 arc CD comp. chord 2 arc KL : chord 2 arc LM,
chord 2 arc EM : chord 2 arc CH.

But
2 arc DK =72°,
chord 2 arc DK =70732'4";
and
2 arc CD=108°,
chord 2 arc CD=9774'56";
and again
2 arc KL=156°41,
chord 2 arc KL=117°31'15";
and

1That is, the sum of arcs EF and EH; for they are not, of course, naturally the one the con-
tinuation of the other, but are considered so for the purposes of proof,
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2 are LM!=23°19'59",
chord 2 arec LM =24r15'57”.

Then
chord 2 arc EM : chord 2 arc CE comp. 70°32'4” : 9704’56,
24r15'577 ; 117°31'15”,
or
chord 2 arc EM : chord 2 arc CE : : 18°0’5” : 1207,
And
chord 2 arc CE =120v,
therefore
chord 2 arc EM =18°0’5”,
And so

2 arc EM =17°1¢/,
arc EM =8°38’
But since the whole are GM ascends with arc GL in the right sphere, therefore
[p. 32]
arc GM =27°5(),
and therefore, by subtraction,
arc KG=19°12".

And it is proved therewith that the dodecatemory which is the Fishes ascends
in the same time, 19°12’; and that of the Virgin and that of the Balance is,
each, what is left when this is subtracted from double the ascension in the
right sphere [twice arc GM], that is 36°28’ in time [p. 45].2 Which was to be
proved.

Again, let the arc GL embrace the 60° of the two dodecatemories of the eclip-
tic, the signs of the Ram and the Bull. Then, because of this assumption, the
other things remaining the same,

2 arc KL =138°59'42",
chord 2 are KL=112r23'56";

and
2 arc LM =41°0"18",
chord arc LM =42r1’48”.
Then again
chord 2 arc EM : chord 2 arc CE comp. 70°32'4” : 97r4'56”,
42r1’48” 1 112r23'56”,
or
chord 2 arec EM : chord 2 arc CF : : 32,36'4” : 120r.
And
chord 2 arc CE =120»,
therefore
chord 2 arec EM =32r36'4”.
And so

2 arc EM=31°32,

'GL is given as 30°; hence LM is given in the Table of Obliquity, and KL is the difference
between LM and 90°.

2In other words, the ascensions on either side of the autumn equinox are gotten by doubling
arc G and subtracting arc EG. For the arc EG and the arc to be found are arcs on the equator
ascending with equal arcs on the ecliptic equidistant from the winter tropic, and are therefore

both together equal to the two equatorial ares ascending in the right sphere—that is, twice
arc GM.
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arc EM =15°46'.

But, for the same reasons [p. 32], it has already been proved
arc GM =57°44/;

and therefore, by subtraction,
arc EG=41°58’.

Therefore the Ram and the Bull together ascend in 41°58’ in time, with
19°12’ of which the Ram has just been proved to ascend. And therefore the
dodecatemory which is the Bull ascends with 22°46” in time.

And again, for the same reasons as before, the dodecatemory which is the
Water Bearer will ascend with an equal 22°46’ in time; and the Lion and the
Scorpion, each, with what is left when this is subtracted from double the as-
cension in the right sphere; that is, 37°2' in time.

And since the longest day is 1414 equatorial hours and the shortest day 914
hours, it is evident that the semicircle from the Crab (Cancer) to the Archer
will ascend with 217°30’ in equatorial time, and the semicircle from the Goat
(Capricorn) to the Twins with 142°30’. And so each of the quadrants on either
side of the spring equinox will ascend with 71°15’ in time, and each of the quad-
rants on either side of the autumn equinox with 108°45’ in time. And therefore
there remain the dodecatemories, the Twins and Goat (Capricorn), each of
which will ascend with the 29°17’ in time left over from the 71°15 in time of the
quadrant; and there remain the dodecatemories, the Crab (Cancer) and the
Archer, each of which will ascend with the 35°15" in time left over from the
108°45’ in time of the quadrant.

1t is clear that in this same way we could also get the coascensions of the
ecliptic for smaller divisions.

But we could also calculate them in an easier and more systematic way, thus:

For first let the circle ABCD be the meridian, BED the semicircle of the
horizon, AEC that of the equator, and FEG that of the ecliptic, assuming the
intersection E to be the spring equinox. And let
the arc EH on the ecliptic be taken at random,
and let the section HK of the parallel to the equa-
tor through H be drawn. And taking L as the
pole of the equator, let there be drawn through
it the quadrants of great circles LHM, LKN, and
LE.

It is thus immediately evident that the section
EII of the ecliptic ascends with arc EM of the
equator in the right sphere, but in the oblique
sphere with the arc equal to M N, since the paral-
lel’s arc HK, with which section EH ascends, is
similar to arc MN of the equator and the similar
ares of parallels have everywhere their ascensions in equal times. Therefore the
ascension of section EH in the oblique sphere is less than that in the right sphere
by arc EN. And it has also now been proved in general that, if certain arcs of
great circles like LK N are thus drawn, the section EN will contain the difference
between the ascensions in the right and oblique spheres of arcs on the ecliptic
cut off by E and the parallel drawn through K. Which was to be proved.

Now, with this first considered, let the figure be laid out with only the meridi-
an and the semicireles of the horizon and the equator. And through F, the south
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pole of the equator, let the quadrants of two
great circles be drawn, FGH and FKL. And let G
be assumed to be the intersection of the horizon
and the parallel drawn through the winter tropic;
and A the intersection of the horizon and the
parallel drawn through the beginning of the
Fishes, for example, or any other of the divisions
of the given quadrant.

Now again the arcs of great circles, FKL and
EKQ@G, intersecting at K, have been drawn to the
arcs of great circles FH and FH. And

chord 2 arc GH : chord 2 arc FG comp.
chord 2 arc EH : chord 2 arc EL,
chord 2 arc KL : chord 2 arc FK.
But 2 arc GH is given the same in all latitudes, for it is the distance between the
tropics. And for this reason the remainder, 2 arc FG, is also given. And likewise,
for the same sections of the ecliptic, 2 arc KL is the same for all Iatitudes and is
given by the Table of Obliquity; and for this same reason 2 arc FK is given. And
so the ratio ' '

chord 2 arc EH : chord 2 arc EL
is left also as the same in all latitudes for the same divisions of the quadrant.
If, then, these things being true, we take the increasing values of arc KL for
each increase of 10° on the quadrant from the spring equinox to the winter
tropic (for a division into arcs of this length will be sufficient for our use), we
always have ‘
2 arc GH =47°42'40",
chord 2 arc GH =48r31’55",
and
2 arc FG=132°17"20"
chord 2 arc FG =109r44'53".
And when K is 10° from the spring equinox in the direction of the winter
tropic, we likewise also have
2 arc KL=8°3'16",
chord 2 arc KL =8°25'39";
and
2 arc FK=171°56"44",
chord 2 arc FK=119r42'14".
And likewise, when it is 20° away, we have
2 arc KL =15°546",
chord 2 arc KL=16735'56";
and
2 arc FK =164°5'54”,
chord 2 arc FK =118r50'47".
And when it is 30° away, we have
2 are KL =23°19'58",
chord 2 arc KL =24r15'56";
and
2 arec FK=156°40"2",
chord 2 arc FK=117r31’15".
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~And when it is 40° away, we have
‘ 2 arc KL=30°8'8”,
chord 2 arc KL=31°r11'43";
and
2 arc FK =149°51'52",
, chord 2 arc FK=115752"19".
And when it is 50° away, we have
2 arc KL =36°546",
chord 2 arc KL=37710'39";
and
2 arc FK =143°54'14",
chord 2 arc FK =114r5'44”,
And when it is 60° away, we have
2 arc KL =41°0'18",
chord 2 arc KL =42r1"48"
and
2 arc FK =138°59'42",
chord 2 arc FK =112°r23'57".
And when it is 70° away, we have
) 2 arc KL =44°40'22"
chord 2 arc KL =45736"18";
and
2 arc FK =135°19'38",
chord 2 arc FK=110259'47".
And when it is 80° away, we have
2 arc KL =46°56'32",
chord 2 arc KL=47747"40";
and
2 arc FK =133°3'28",
chord 2 arc FK=11074"16".

And therefore, if we compound the ratio

chord 2 arc GH : chord 2 arc FG
or

48031'55” : 109044'53”

with the inverse of

chord 2 arc KL : chord 2 arc FK
for each 10° as just laid out, the result is the ratio

chord 2 arc EH : chord 2 arc EL.
And this is the same for all latitudes:—as 60° to 9233, when K is 10° from the
equinox; to 18757, when 20° away ; to 2871”, when 30° away; to 36°33’, when 40°
away; to 44°12’, when 50° away; to 50°44’, when 60° away ; to 5545’ when 70°
away; to 58255, when 80° away.

Therefore it 1s evident that, being given 2 arc EH for each latitude since it is
equal to the difference between the equinoctial day and the shortest day in time,
and being given its chord and the ratio of this chord to that of 2 arc EL, we also
have given 2 arc EL. And if we subtract the half of it—that is, arc EL itself
containing the difference we have spoken of before [p. 48}—from the ascensions
in the right sphere of the given arc of the ecliptic, we shall find the ascension of
the same arc in the given latitude.
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For let the latitude of the parallel of Rhodes be taken for an example, where
2 arc EH=37°30,
chord 2 arc EH =38734".
Then since
607 : 38r34’ : : 9»33’ : 6r8’

1118957 1 12°1Y’

1:28r17 ;18P

::136r337 : 23029/

D 144P12 ; 28725/

;15044 ; 32037’

:: 55r45" ; 35052/

:: 58r55” : 37r52/,
therefore the chord of 2 arc EL is also available for each of the sections as they
increase in the usual manner by 10°. And the half of the arc subtending this
chord (that is, EL itself) is 2°56” at the first 10°; 5°50’ at the second ; 8°38’ at the
third; 11°17’ at the fourth; 13°42’ at the fifth; 15°46 at the sixth; 17°24/ at the
seventh; 18°24’ at the eighth; and clearly 18°45” at the ninth.! And so, since in
the right sphere the arc through the first 10° on the ecliptic ascends with 9°10’
in time; through the second, with 18°25’; through the third, with 27°50’;
through the fourth, with 37°30’; through the fifth, with 47°28’; through the
sixth, with 57°44’; through the seventh, with 68°18’; through the eighth, with
79°5’; and through the ninth, with the 90° in time of the whole quadrant; there-
fore it is evident that, if we subtract from each of the ascensions in the right
sphere just mentioned the corresponding difference or arc EL, we shall have the
ascensions of those same arcs in the given latitude. And so the arc through the
first 10° of the ecliptic will ascend with 6°14’ in time; through the second 10° of
the ecliptic, with 12°35’ in time; through the third 10°, with 19°12’; through the
fourth, with 26°13’; through the fifth, with 33°46’; through the sixth, with
41°58’; through the seventh, with 50°54’; through the eighth, with 60°41’; and
through the ninth or the whole quadrant, with the 71°15’ taken from the half
of the day. And therefore the first 10° of the ecliptic with 6°14’ in time; the sec-
ond with 6°21’; the third with 6°37’; the fourth with 7°1’; the fifth with 7°33’;
the sixth with 8°12’; the seventh with 8°56'; the eighth with 9°47’; and the ninth
with 10°34".

And now with these things demonstrated, the ascensions of the other quad-
rants are in consequence also demonstrated immediately. And having calculated
in the same way the ascensions of the other parallels for each 10°, which is as far
as it is possible to anticipate their use in every case, we shall set them out in a
table for use in the rest of this treatise, beginning with the parallel under the
equator and going as far as that whose longest day is 17 hours, and advancing
by half-hour increases because of the almost uniform increases of the periods
within the half-hours. Then, placing first the 36 divisions of 10° each, we next
set beside each one the time of its own ascension and then the successive addi-
tions of them, in the following manner:

1For when K is at 90° it coincides with H. Hence EL coincides with EH.
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8. TABLE OF ASCENSIONS BY 10°

' Through the

Right Sphere Atlantic Gulf Through Meroé
Signs Tens | 12 hours | Lat. 0°0" (1234 hours| Lai. 8°25' | 18 hours {Lat. 16°27
time total time time total time lime tolal time
10 9° 10’ 9° 10’ 8° 35’ 8° 35’ 7° 58’ 7° 58’
Ram 20 9° 15’ 18° 25’ 8° 39’ 17° 14’ 8 5 16° 3

30 9° 25 27° 50’ |. 8° 52 26° 6 8 17 24° 20/

10 9° 40’ 37° 30/ 9° & 35° 14/ 8° 36’ 32° 56’
Bull 20 9° 58 47° 28’ 9° 29 44° 43’ 9° 1 41° 57’
30 10° 16’ 37° 44/ 9° 51 54° 34/ 9° 27 51° 24/

10 10° 34’ 68° 18’ | 10° 15’ 64° 49 9° 56 61° 20
Twins 20 10° 47 79° 5’ | 10° 35 75° 24/ | 10° 2% 71° 43’
30 10° 55 90° 0’ | 10° 517 86° 15’ | 10° 47 82° 30

10 10° 55’ | 100° 55’ | 10° 59 97° 14 | 11° & 93° 33’
Crab 20 10° 47’ | 111° 42’ | 10° 59’ | 108° 13’ | 11° 11’ | 104° 44’
{Cancer) 30 10° 34’ | 122° 16’ | 10° 53’ | 119° 6’ | 11° 12’ | 115° 56/

10 10° 16’ | 132° 32’ | 10° 41’ | 129° 47’ | 11° 5 | 127° 1’
Lion 20 9° 58" | 142° 30’ | 10° 27’ | 140° 14’ | 10° 55 | 137° 56’
30 - 9% 40" | 152° 10" | 10° 12’ | 150° 26’ | 10° 44’ | 148° 40’

10 9° 25" | 161° 35’ 9° 58 { 160° 24’ | 10° 33’ | 159° 13’
Virgin 20 9° 15’ | 170° 50’ 9° 51’ | 170° 15’ | 10° 25’ | 169° 38
30 9° 10’ | 180° 0O’ 9° 45 | 180° 0’ | 10° 22’ | 180° O’

10 9° 10’ | 189° 10’ 9° 45’ | 189° 45’ | 10° 22’ | 190° 22’
Balance 20 9° 15° | 198° 25’ 9° 51’ | 199° 36’ | 10° 25’ | 200° 47
' 30 9° 25’ | 207° 50’ 9° 58" | 209° 34’ | 10° 33’ | 211° 20’

10 9° 40’ | 217° 30" | 10° 12’ | 219° 46’ | 10° 44’ | 222° &
Scorpion 20 9° 58’ | 227° 28’ | 10° 27’ | 230° 13’ | 10° 55’ | 232° 59’
30 10°°167 | 237° 44’ | 10° 41’ | 240° 54’ | 11° 5" | 244° 4/

10 | 10° 34’ | 248° 18’ | 10° 53 | 251° 47* | 11° 12’ | 255° 16’
Archer 20 10° 47’ | 259° &' | 10° 59’ | 262° 46’ | 11° 11’ | 266° 27’
30 10° 55’ | 270° 0’ | 10° 59" | 273° 45 | 11° 3 | 277° 30’

10 10° 55’ | 280° 55’ | 10° 51’ { 284° 36’ { 10°.47' | 288° 17’
Goat 20 10° 477 | 291° 42 | 10° 35’ | 2957 -11’ | 10° 23 | 298° 40’

(Capricorn) 30 10° 34’ | 302° 16’ | 10° 15’ | 305° 26’ 9° 56’ | 308° 36’

10 10° 16’ | 312° 32’ 9° 51’ | 315° 17 9° 27 | 318° 3
Water Bearer| 20 9° 38 | 322° 30’ 9° 29’ | 324° 46’ 9° 1| 327 4
30 9° 40’ | 332° 10’ 9° 8 | 333° 54’ 8° 36’ | 335° 40’

© 10 9° 25’ | 341° 35 | 8° 52’ | 342° 46’ 8° 17" | 343° 57
Fishes 20 9° 15" | 350° 50’ 8° 39 | 351° 25 | 8 5 | 352° 2
30 9° 10’ | 360° O 8° 35 | 360° 0’| 7° 58} 360° O
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8. TABLE OF ASCENSIONS BY 10°—Continued

53

Stgns

Ram

Bull

Twins

Crab

(Cancer)

Lion

Virgin

Balance

Scorpion

Archer

Goat

(Capricorn)

Water Bearer

Fishes

Through Soéne
184 hours Lat. 23°51’
time

11°

11°
11°
11°

11°
11°
10°

10°
11°
11°
11°
11°
11°

11°

23
29’
45’

4/
31’
31

36’
1
43’

7/
23
32’

29’
25’
16’

5/
1
57

57
1/
5/

16’
25
29’

32
23

71
43
11
36’

3[

31"

4'

45
29
23’

total time

70
14°
22°

23’
52/
37’
30°

39°
48°

41’
12/
15’

57° 51
68° 2’
78° 45’

89°
101°
112°

52/
15’
47’

124°
135°
146°

158° 2/
169° 3
180° o

190°
201°
213° ¥

224°
235°
247°

258°
270° &
281°

291°
302° 9
311°

320°
329°
337°

345° &

352°
360° 0

Through the low
countries of Egypt

1} hours |Lal. 30°22'

time

11°

11°
11°
11°

11°

48’
55’
10’

33
2'
37

17
OI
38’

12’
34/
51

55
54’
47

40’
35’
32

32’
35
40’

47
54’
55

51’
3¢
127

38’
OI
17

37

2'
33
10

55
48’

total time

§°
13°
20°

28°
36°
45°

54°
64°
75°

86°
97°
109°

121°
133°
145°

156°
168°
180°

191°
203°
214°

226°
238°
250°

262°
273°
285°

295°
305°
314°

323°
331°
339°

346°
353°
360°

48’
43’
53’

26’
28’

=1

3

22’
22’
0’

12
46’
37

32
26’
13’

53
28’
0/

32’
7’
47

34
28’
23’

14’
48’

38’
38
55

32’
34’

17
12/

Through Rhodes
Lat. 36°
total time

1414 hours)

ttme

10°

11°
11°
12°

12°
12°
12°

12°
12° ¢
120 6’
12° ¢
12° ¢
12°

12°

34’

12/
33

37
21’
14’

60
12°
19°

26°
33°
41°

50°
60°
71°

82°
94°
106°

118°
131°
143°

155°
167°
180°

192°
204°
216°

228°
241°
253°

265°
277°
288°

299°
309°
318°

326°
333°
340°

347°
353°
360°

14/
35
12’

13’
46’
58’

54
41/
15

31’
18’
30

50°
13’
32

45’
54’
0/

6/
15’
28’

47
10’
30[
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8. TABLE oF AsceNsioNs BY 10°—Continued
Through Through the Through the mouth
the Hellespont middle of Pontus of the Borysthenes
Signs Tens | 15 hours [Lat. 40°66'{15Y% hours| Lat. 45°1' | 16 hours | Lat. 48°
time total time time total time time total time
10 5° 40 5° 40’ 5° & 5° & 4° 36/ 4° 36/
Ram 20 5° 47 11° 27 5° 14/ 10° 22’ 4° 43’ 9° 19’
30 6° 5 17° 32/ 5° 33/ 15° 55’ 5° 1 14° 20/
10 6° 29’ 24° 1/ 5° 58’ 21° 53’ 5° 26’ 19° 46’
Bull 20 7° 4 31° & 6° 34’ 28° 27’ 6° 5 25° 51/
30 7° 46’ 38° 517 7° 20/ 35° 47 6° 52 32° 43/
10 8° 38’ 47° 29 8° 15’ 44° 2/ 7° 53’ 40° 36’
Twins 20 9° 32’ 57° 1 9° 19’ 53° 21/ 9° 5 49° 41*
30 10° 29’ 67° 30’ | 10° 2¢4’ 63° 45’ 10° 19’ 60° 0
10 11° 21/ 78° 51’ | 11° 26’ 75° 11’ | 11° 31’ 71° 31/
Crab 20 12° 2 90° 53’ | 12° 15/ 87° 26’ 12° 29/ 84° .0’
(Cancer) 30 12° 30’ 103° 23" | 12° 53’ 100° 19’ 13° 15’ 97° 15/
10 12° 46’ | 116° 9 | 13° 12/ 113° 31/ | 13° 40/ 110° 55’
Lion 20 12° 52/ | 129° 1’ 13° 22’ 126° 53’ | 13° 517 | 124° 46’
30 12° 51/ 141° 52/ 13° 22/ 140° 15’ | 13° 54’ 138° 40’
10 12° 45/ 154° 37’ | 13° 17’ | 153° 32’ | 13° 49 152° 29/
Virgin 20 12° 43’ 167° 20/ | 13° 16’ 166° 48’ 13° 47 166° 16’
o 30 12° 40’ 180° 0’ | 13° 12/ | 180° 0O 13° 44/ 180° 0’
10 12° 40/ 192° 40’ | 13° 12/ | 193° 127 | 13° 44’ | 193° 44’
Balance 20 12° 43’ | 205° 23’ | 13° 16’ | 206° 28" | 13° 47/ | 207° 31’
30 12° 45 | 218° 8/ | 13° 17 | 219° 45’ | 13° 49’ | 221° 20/
10 12° 517 | 230° 59 | 13° 22" | 233° 7' | 13° 54’ | 235° 14/
Scorpion 20 12° 527 | 243° 51’ | 13° 22/ | 246° 29’ | 13° 51’ | 249° &’
30 12° 46’ | 256° 37’ | 13° 12’ | 259° 41’ 13° 40’ | 262° 45’
10 12° 30" | 269° 7’ 12° 53/ | 272° 34’ | 13° 15" | 276° 0O
Archer 20 12° 2/ | 281° 9 12° 15" | 284° 49 12° 29’ | 288° 29/
30 11° 21’ | 292° 30’ | 11° 26" | 296° 15/ 11° 31° | 300° 0O
10 10° 29/ | 302° 59’ | 10° 24’ | 306° 39’ 10° 19’ | 310° 19/
Goat 20 9° 32’ | 312° 31’ 9° 19’ | 315° 58’ 9° 5 | 319° 24/
(Capricorn) 30 8° 38" | 321° 9 8° 15 | 324° 13’ 7° 83 | 327° 17
‘ 10 7° 46" | 328° 55’ 7° 20/ | 331° 33’ 6° 52’ | 334° 9
Water Bearer| 20 7° 4 | 335° 59’ 6° 34’ | 338° 7 6° 5 |.340° 14/
30 6° 29’ | 342° 28’ 5° 58" | 344° & 5° 26’ | 345° 40/
10 6° 5 | 348° 33/ 5° 33" | 349° 38’ 5° 1’ | 350° 41’
Fishes 20 5° 47" | 354° 20’ 5° 14’ | 354° 52/ 4° 43’ | 355° 24’
30 5° 40’ | 360° 0O’ 5° 8 | 360° O 4° 36’ | 360° O
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8. TaBLE oF AscExsioNs BY 10°—Continued

Through the southernmost Through the mouth
parts of Britain of the Tanais

Signs Tens 16Y4 hours Lat. 51°30/ 17 hours Lat. 64°1'
lime total time time total time

10 4 5 £ 5 3° 36’ 3° 36/

Ram 20 4° 12/ 8° 17 3° 43/ 7° 19
30 4° 31/ 12° 48’ 4° 0 - 11° 19/

10 4° 56’ 17° 44/ 4° 26’ 15° 45’

Bull 20 5° 3¢ 23° 18’ 5° 4 20° 49’
30 6° 25 20° 43’ 5° 56’ 26° 45’

10 7° 29’ 37° 12/ 7° 5 33° 50

Twins 20 8° 4% 46° 1’ 8° 33’ 42° 23
30 10° 14/ 56° 15 10° 7 52° 30’

10 11° 36’ 67° 51’ 11° 43’ 64° 13’

Crab ‘ 20 12° 45’ 80° 36’ 13° v/ 77° 14/
(Cancer) 30 13° 39 94° 15/ 14°- 3’ 91° 17
10 14° 7/ 108° 22/ 14° 36’ 105° 53’

Lion 20 14° 22’ 122° 44/ 14° 52/ 120° 45’
30 14° 24’ 137° & 14° 54/ 135° 39

10 14° 19/ 151° 27/ 14° 50/ 150° 29/

Virgin 20 14° 18’ 165° 45 14° 47’ 165° 16’
30 14° 15’ 180° 0O’ 14° 44’ 180° 0

10 14° 15/ 104° 15/ 14° 44’ 194° 44/

Balance 20 14° 18’ 208° 33’ 14° 47 209° 31/
30 14° 19/ 222° 52’ 14° 50’ 224° 21/

10 14° 24/ 237° 16’ 14° 54’ 239° 15’

Scorpion 20 14° 22’ 251° 38’ 14° 52’ 254° 77
30 14° 7 265° 45’ 14° 36’ 268° 43’

10 13° 39’ 279° 24/ 14° 3 282° 46/

Archer 20 12° 45’ 202° 9 13° Vv 295° 47!
30 11° 36/ 303° 45’ 11° 43 307° 30’

10 10° 14/ 313° 59 10° 7/ 317° 37

Goat 20 8° 49’ 322° 48’ 8° 33’ 326° 10/
(Capricorn) 30 7° 29 330° 17 7° 5 333° 15’
10 6° 25 336° 42’ 5° 56’ 339° 1V
Water Bearer 20 5° 34/ 342° 16’ 5° 4/ 344° 15’ -
30 4° 56/ 347° 12 4° 26’ 348° 41/

10 4° 317 351° 43’ ] 4° 0 352° 41/

Fishes 20 4° 12/ 355° 55’ 3° 43’ 356° 24/
30 4° 5 360° O 3° 36/ 360° 0O
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9. ON ParTicULAR CONSEQUENCES OF THE ASCENSIONS

It will be evident through the systematic means given below that, once the
times of the ascensions have been set out by us in the foregoing mannecr, all the
rest of those things which concern the particular will be easily available, and we
shall neither need proofs with figures for each of them, nor more tables.

For the first the length of the given day or night is gotten by calculating the
degrees in time of the particular latitude: (1) in the case of the day by adding up
the degrees in equatorial time from the point of the sun eastward to the point
exactly opposite on the ecliptic, (2) in the case of the night, from the point op-
posite to the sun. For if we take a fifteenth of the total time, we shall get how
many equatorial hours the given distance is; but if we take a twelfth, we shall
get how many degrees in time the seasonal hour of the same distance is.

And the magnitude of the hour is also more easily found if, out of the fore-
going table, the difference is taken laterally between the totals of successive
additions of time in the parallel under the equator and that of the given lati-
tude:.(1) in the case of the day at the point of the sun; (2) in the case of the
night, at the point directly opposite on the ecliptic. For taking 14 of the differ-
ence so found and adding it to the 15° in time of the equatorial hour when the
sun is in the northern hemisphere, and subtracting it when it is in the southern,
we shall get the number of degrees in time of the given seasonal hour.!

And consequently we reduce the given seasonal hours to equatorial hours by
multiplying the number of such hours in the day by the number of time-degrees
in the hour for that day in that latitude, and the number in the night by the
number of degrees in the hour for that night. For by taking {5 of the total we
shall have the number of equatorial hours. Conversely we reduce the given
equatorial hours to seasonal hours by multiplying by 15 and dividing by the
given number of time-degrees for the hour of that particular interval.

Again, given the time and any seasonal hour, we shall get the degree of the
ecliptic which is rising at that time by multiplying the number of hours from
the rising of the sun for the day, from the setting of the sun for the night, by the
proper number of time-degrees for that hour. For we compare the resulting
number with the ascensions of the given latitude: in the case of the day be-
ginning with the sun and going eastward; in the case of the night, from the
opposite point on the ecliptic. And to whatever degree the number corresponds
we shall say that degree rises at that moment.

And if we wish to get the degree culminating, we multiply the seasonal hours,
counted always from midday to the given hour, by the proper number of time-
degrees for that hour. Beginning from the sun eastward, with the ascensions in
the right sphere, we compare the resulting number, and on whatever degree the
number falls, that degree will be culminating at that moment.

Likewise from the degree given as rising we shall get the degree culminating
by locating the number resulting from the successive additions corresponding
to the degree given as rising, in the table of the proper latitude. For by always
subtracting from it the 90° in time of the quadrant, we shall find the degree
culminating as that corresponding to the number resulting from this subtrac-
tion found in the column of successive additions of the right sphere. And con-

1For this difference, according to the construction of the Table [p. 52], is arc EL which is
half the difference between the given and the equinoctial day [p. 50].
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versely, from the degree given as culminating, we shall again get the degree
which is rising by considering the number resulting from the successive addi-
tions corresponding to the degree given as rising, in the table of the right sphere.
For after always adding the 90° in time, we shall look for the degree, correspond-
ing to the resulting number, in the column of successive additions of the given
latitude. And then we shall have the degree rising at that moment.

And it is also evident that for those living under the same meridian the sun
is the same number of equatorial hours from noon or midnight; but for those
not living under the same meridian, it will differ by as many equatorial hours
as one meridian differs from the other.

10. O~ THE ANGLES ForMED BY THE EcripTic AND THE MERIDIAN

Since we still have to treat of the angles, to complete this theory—I mean
those angles made by the ecliptic—it must first be understood that we say a
right angle is contained by great circles if, when a circle is drawn with the inter-
section of the given great circles as pole and any distance, the arc intercepted
on this circle by the sections of the great circles containing the angle is a quad-
rant. And in general we say that whatever ratio the intercepted arc has to the
circle drawn in the manner we described, that same ratio does the angle con-
tained by the inclination of the planes have to four right angles. And so, since
we suppose the perimeter to be 360°, whatever number of degrees the inter-
cepted arc is found to be, that same number will the angle subtending it be.
For instance, one right angle is 90°.

Of the angles made by the ecliptic the most useful with respect to this theory
are: (1) those contained by its intersection with the meridian, (2) those con-
tained by its intersection with the horizon for each position, and likewise (3)
those*contained by its intersection with the great circle drawn through the
horizon’s poles. And along with the exposition of these last angles will be given
also an exposition of the arcs intercepted on this great circle by the intersection
and the horizon’s pole—that is, the zenith. For every one of the aforemen-
tioned things, when demonstrated, has a very considerable place in the theory
and contributes most especially to researches concerning the parallaxes of the
moon, since such work cannot advanece without the prior understanding of these.

But since there are four angles contained by the intersection of the two
circles (that is, by the ecliptic and one of those intersecting it), and since we are
going to speak of just one of them always similar in position, it is first necessary
to determine that in general, of the two angles on either side of that arc of the
ecliptic east of the intersection of the circles, the one
on the north is to be considered, so that the inci-
dents and quantities which will be demonstrated be-
long to such angles. And since the demonstration of
the angles of the ecliptic considered with respect to
the meridian is simpler, we shall begin with it, and
we shall first prove that points on the ecliptic equi-
distant from the same equinoctial point make the
resulting angles equal to each other.

For let ABC be the arc of the equator, and DBE
the are of the ecliptic, and point F the pole of the
equator. And with ares BG and BH cut off equal on
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either side of the equinoctial point B, let there be drawn through the pole F and
the points G and H the arcs of merldlan circles FKG and FHL.

I say that

-angle KGB=angle FHE. -

For the three-sided figure BGK is equiangular with the three-sided figure
BHL, since it has its three sides equal to the three sides of the other respectively,
GB to BH, GK to HL, and BK to BL. For all these things have been proved be-
fore [Book 1, Chaps. 14, 15]. And therefore

angle KGB=angle BHL=angle FHE.

Which was to be proved.

Again it must be proved that, given two points on the ecliptic equidistant
from the same tropic point, the angles there formed with the meridian are to-
gether equal to two right angles.:

For let ABC be an arc of the ecliptic with B given as the tropic point. And
with the equal arcs BD and BE intercepted on either
side of it, let the arcs of meridian circles D and FE
be drawn through the points D and E and the pole
F of the equator.

I say that
angle FDB+angle FEC =2 rt. angles.

And this is immediately evident. For since the
points D and E are equidistant from the same tropic
point,

are DF =arc EF.
And therefore
angle FDB=angle FEB

But
angle FEB+angle FEC =2 rt. angles.
And therefore
angle FDB-+tangle FEC =2 rt. angles.

Which was to be proved.

And with these things understood first, let there be the meridian circle ABCD,
and the semicircle of the ecliptic AEC with the point A taken as the winter
tropic. And with 4 as pole and with a side of the inscribed square as distance

let the semicircle BED be drawn. Since then the

meridian ABCD has been drawn through the poles
of AEC and those of BED, therefore ED is the arc

~ of the quadrant of a circle. Then the angle DAE is
right. And, by what has just been demonstrated, the
angle at the summer tropic is also right. Which was
to be proved.

Again let there be the meridian circle ABCD, and
the semicircle of the equator A EC. And let the semi-
circle of the ecliptic AFC be drawn in such a way
that the point A4 is the autumn equinox; and with 4

- as pole and with the side of the inscribed square as
distance, let the semicircle BFED be drawn.

(%
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For the same reasons, then, since A BCD has been
drawn through the poles of AEC and BED, there-
fore AF and ED are quadrants. And so the point F
is the winter tropic, and as already proved

arc EF =23°51"
And therefore, by addition,
arc FED =113°51",
angle DAF =113°51".
And therefore, as already proved, the angle at the
point of the spring equinox is what remains of two
right angles or 66°9'.

Again let there be the meridian circle A BCD, and
the semicircle of the equator A EC,and that of the ecliptic BF D, so that the point
F is taken as the autumn equinox, the arc BF first as one twelfth of the circle,
that of the Virgin, and the point B clearly as the be-
ginning of the Virgin. And again with B as pole
and with the side of the inscribed square as dis-
tance let the semicircle GHEK be drawn.

And let it be required to find angle KBH.

Since, then, the meridian ABCD has been drawn
through the poles of AEC and GEK, each of the arcs
BG, BH, and EG is a quadrant Because of the con-
struction,

chord 2 arc AB : chord 2 arc AG comp.
chord 2 arc BF : chord 2 arc FH,
chord 2 arc EH : chord 2 arc EG.
But from things already proved
2 arc AB=23°20',
chord 2 arc 4B =24716’;

and
2 arc AG=156°40,
chord 2 arc AG=117731";

and again '

2 arc BF =60°,

chord 2 arc BF =60°;

and ,

2 arc FH=120°,

chord 2 arc FH =103r55'23".

Then again

chord 2 arc EH : chord 2 arc EG comp. 24°16" : 117731, 103"55'23” 60»
or, very nearly,
chord 2 arc EH chord 2 arec EG : ; 42058’ : 120°
And
chord 2 arc EG=1207;
and therefore ‘
chord 2 are EH =42°58’,
And so
2 arc EH =42°,
- ar¢ EH =21°,
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And therefore, by addition, . '
arc HEK =111°,

: angle KBH =111°;

and, by previous proofs, the angle formed at the beginning of the Scorpion is

also 111°, and each of the angles formed at the beginning of the Bull and of the

Fishes is the 69° which remain from two right angles.. Which was to be proved.
Again, with the same construction, let arc BF be taken as two twelfths of a

circle, so that the point B is the beginning of the Lion and, with the same things

being assumed, so that

2 arc AB=41°,
chord 2 arc AB=42r2';
and
2 arc AG=139°,
chord 2 arc AG=112r2¢;
and again
2 arc BF=120°,
chord 2 arc BF =103°55'23";
and
2 arc FH =60°
chord 2 arc FH =60,
Then
chord 2 arc EH : chord 2 arc EG comp. 4202’ : 112°24’, 60 : 103755/23”
or :
chord 2 arc EH : chord 2 arc EG : : 25053’ : 1207,
Therefore
chord 2 arc EH =25053’,
And so

2 arc EH=25°

arc FH =1214°,
Therefore, by addition,

arc HEK =10215°,
angle KBH =10214°, :
And for this reason the angle formed at the beginning of the Archer is also
10214°, and each of the angles formed at the beginning of the Twins and of the
Water Bearer is what remains of two right angles, or 7714°.
And we have proved what was required; and the method will be the same

for still smaller sections of the ecliptic. But the exposition of the twelve signs is
sufficient for the needs of this treatise.

11. O~N THE ANGLES ForMED BY THE EcLipTic AND THE HORIZON

And next we shall show how we can also get, for a given latitude, the angles
formed by the ecliptic and the horizon; for they have a simpler system than the
others that are left to do. Now it is clear that those formed with the meridian
are the same as those formed with the horizon in the right sphere. But to get
those in the oblique sphere it is first necessary to prove that points on the eclip-
tic equidistant from the same equinoctial point make with the horizon, angles
equal to each other.

For let there be the meridian circle ABCD, and the semicircle of the equator
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AEC, and that of the horizon BED. And let two
sections of the ecliptic, FGH and K LM, be drawn
in such a way that each of the points F and K is
taken to be the autumn equinox, and
arc FG=arc KL.
I say that also
angle EGH =angle DLK.

And this is immediately evident. For the three-
sided figure EFG is equiangular with the three-
sided figure EKL, since, by previous proofs, it
has its three sides equal respectively to the three
sides of the other; FG to KL, the section of the
horizon GE to EL, and the ascension arc EF to

EK. Therefore also

angle EGF =angle ELK,

and the supplements :
angle EGH =angle DLK.

Which was to be proved.

And I say also that the two angles formed at two points directly opposite,
one at the east and the other at the west, together make two right angles.

"For if we draw circle ABCD as the horizon and AECF as the ecliptic, cutting
each other at the points 4 and C, '

angle FAD-+angle DAE =2 rt. angles.
But
angle FAD =angle FCD
so that
angle FCD+angle DAE =2 rt. angles.
Which was to be proved.

And now that these things are so—since angles
formed by the ecliptic and the same horizon, at
points on the ecliptic equidistant from the same
equinoctial point, have been proved equal—it
will also follow that the angle at the east and the
angle at the west, for points equidistant from the
same tropic and formed by the ecliptic and the horizon, will together equal two
right angles. And so, for this reason, if we find the rising angles from the Ram to
the Balance, the rising angles of the other semicircle will be made known at the
same time, and also the setting angles of both. And we shall briefly expound how
this is demonstrated, using again as an example the same parallel—that is, the
one where the north pole is 36° above the horizon.

Now, the angles formed by the ecliptic and the horizon at the equinoctial
points can be easily found. For if we draw the circle A BCD as the meridian and
AED as the eastern semicircle of the horizon, and EF as a quadrant of the equa-
tor, and if we draw the two arcs of the ecliptic BE and CE in such a way that
the point E is conceived as the fall equinox with respect to the quadrant BE and
as the spring equinox with respect to CE, and B in the first instance becomes the
winter tropic and C in the second becomes the summer tropie, then it is inferred
that, since it is supposed
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arc DF =54°,
and '
are BF =arc CG=23°51/,

therefore

arc CD=30°%,

arc BD=77°51".
And so, since the point E is a pole of the meridian
ABC, therefore the angle DEC formed at the be-
ginning of the Ram will be 30°9’, and angle DEB
formed at the beginning of the Balance will be

S

-,

7

77°51'.

To show clearly the method for getting the others, let it be required, for ex-
ample, to find the rising angle formed at the beginning of the Bull by the eclip-

tic and the horizon. And let there be the meridian
circlee ABCD and the eastern semicircle of the
given horizon BED. And let the semicircle of the
ecliptic AEC be drawn so that the point E is the
beginning of the Bull. And since in this same lati-
tude, when the beginning of the Bull is just ris-
ing, the point 17°41’ within the Crab is at the
meridian under the earth (for we showed [p. 56]
how to get such results easily from our Table of
Ascensions). Therefore the arc CE is less than a
quadrant. Then let the section HGF of a great
circle be drawn with & as pole and the side of the
inscribed square as distance; and let the quad-

rants ECG and EDH be filled out. But each of the ares DCF and FGH is also a
quadrant because the horizon BEH is through the poles of the meridian FCD
and of the great circle FGH. Again, since the point 17°41’ within the Crab is
22°40’ from the equator towards the north along the great circle through the
equator’s poles (for this we have also proved), and since the equator is 36° from
the horizon’s pole F along the same arc FCD, therefore it is inferred

arc CF =58°40".

Now with this given, because of the construction,
chord 2 arc CD : chord 2 arc DF comp. chord 2 are CE : chord 2 arc EG,
chord 2 arc GH : chord 2 arc FH.

But, by what has already been laid down,

and

and again

and

2 arc CD =62°40’,

chord 2 arc CD=62r24';

2 arc DF=180°,

chord 2 arc DF = 120";

2 arc CE=155°22’,

chord 2 arc CE=117r14';

2 arc EG=180° -

chord 2 arc EG=120r,
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Then
chord 2 arc GH : chord 2 arc FH comp. 62024" ;: 120°, 1207 : 11714’
or
chord 2 arc GH : chord 2 arc FH : :63r52" : 120r.

And

chord 2 arc FH =120¢;
therefore ’ :

chord 2 arc GH =63752',
And so

2 arc GH =64°20,
arc GH=32°10’,
angle GEH =32°10’,
Which was to be proved.
Not to draw out this treatise by repeating for each case, the same method
will be understood as used for the other signs and latitudes.

12. ON THE ANGLES AND ArRcCS MADE BY THE ECLIPTIC WITH, AND ON, ~
' THE CIRCLE THROUGH THE POLES oF THE HoR1zoN

Now there remains the method by which we can get the angles formed by the
ecliptic and the circle through the poles of the horizon for each latitude and
position. And, as we said, there will result, at the same time and in each case, a
demonstratlon of the arc on the circle through the poles of the horizon mter-
cepted by the zenith and the intersection with the ecliptic. And again we shall
set out the fundamental things for this particular situation; and we shall prove
first that, if two points on the ecliptic equidistant from the same tropic inter-
cept an equal number of time degrees on either side of the meridian (the one to
the east, the other to the west), then the arcs on great circles from the zenith
to each of these points are equal to each other, and the angles formed at these
points in the way we have stipulated are equal to two right angles.

For let there be a section of the meridian, A BC, and take the zenith B on it,
and the pole of the equator C. And let two sec-
tions of the ecliptic, ADE and AF@G, be drawn in
such a way that the points D and F are equi-
distant from the same tropic and intercept equal
arcs on the parallel through them from either
side of the meridian ABC. And let the arcs of
great circles, CD and CF, be drawn through the
points D and F from the equator’s pole C'; and
from the zenith B the arcs of great circles BD and
BF.

I say that

c

"~ arc BD=arc BF,
and
angle BDE+angle BFA =2 rt. angles.

For since the pomts D and F are equidistant from the merldlan ABC by

equal arcs on the parallel through them,
angle BCD =angle BCF.

Then we have the two three-sided figures BCD and BCF having two sides
equal to two sides respectively, CD to CF and BC common, and the angles
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contained by the equal sides equal-—that is, angle BCD to angle BCF. And
therefore
base BD =base BF,
angle BFC =angle BCD.
But since it has just been proved that the angles at points equidistant from the
same tropic and formed by the ecliptic and circles through the equator’s poles
are together equal to two right angles, therefore
angle CDE+angle CFA =2 rt. angles.
But it was proved also
angle BDC =angle BFC.
And therefore
angle BDE+angle BFA =2 rt. angles.
Which was to be proved.

Again, it must be proved that, when the same points on the ecliptic are equi-
distant in time from either side of the meridian, the arcs of great circles from the
zenith to these points are equal to each other; and the angles formed by these
arcs with the ecliptic (the one in the east and the other in the west) are together
equal to the two angles at the same point formed by the ecliptic and the merid-
ian at that point, whenever the culminations of the points in either position are
either both to the north or both to the south of the zenith.

First let them be taken both to the south, and let there be the section of the
meridian ABCD, and on it the zenith C, and the
pole of the equator D. And let two sections of the
ecliptic, AEF and BGH, be drawn so that points
and @, taken as the same, are equally distant from
the meridian A BCD on either side by an arc of the
parallel through the point. And again let the sec-
tions of great circles, CE and CG, be drawn through
these points from C; and DE and DG, from D.

By the same reasoning as before, since the points
E and G, on the same parallel, make on that parallel
equal arcs on either side from the meridian, there-
fore the three-sided figure CDE is equiangular and
equilateral with the figure CDG, so that

arc CE=arc CG.

D

I say then that
angle CEF+angle CGB =angle DEF+-angle DGB.
For since angle DEF is the same as angle DGB, and
angle CED =angle DGC,
therefore
angle CED+angle CGB =angle DEF.
And so also
angle CEF +angle CGB=angle DEF +-angle DGB.
Which was to be proved.
Let the same sections of the aforementioned circles be again constructed so
that this time the points A and B are north of the point C.
I say that the same thing will follow, that is
angle K EF+angle LGB =angle DEF 4-angle DGB.




I say that
angle CEF+angle LGB =angle DEF
+angle DG 42 rt. angles

For since

and

angle DGC-+angle DGL =2 rt. angles,
therefore also
" angle DEC+angle DGL=2 rt. angles.
But angle DEF is the same ag angle DBG. And s0
angle CEF4angle LGB =angle DEF +
angle DGB+4-angle DEC 4-angle DGL

or

angle DGC =angle DEC,
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For since the angle DEF is the same as angle DGR

and
angle DEK =angle DG,
therefore, by addition,
angle LGB —angle DEF+-angle DEK.

And 50
angle KEF +-angle LGB =angle DEF -+ ungle DGR,

Now, again, let a similur figure be set gut % that
this time the point of the ecliptic’s eastern weetion
when culminating, that is A, is south of the zenith
C, and the point of the western soetion when eyl-
minating, that ix /3, is north of it.

angle CEF+angle LGB =2 angle DEF+42 rt angles
Which was to be proved,

And let the final combination be xet out in a similar figure. the point 4 of the

2]

because

and

Which was to be proved.

eeliptie’s castern section culminating north of the
point C, and the point B of the western section cul-
minating kouth of it.
I suy that
angle KEF 4angle CGB 421t angles=2angle DEF
For, by the xame reasoning, again
angle KEF4angle CGI 4 angle DEK -+
angle DGC =angle DIF 4 angle DGDB

or
angle KEF4+angle CGB-4angle DEK +
angle DGC =2 ungle DEF.
But

angle DEK 4angle DGC =2 rt anglos,

angle DEK +angle DEC=2 rt. angles

angle DEC =angle DGC

And it will be immediately elear that, from the angles and ares formed by the
ecliptic with the great circle through the zemith in the way we have desonbed,



66 PTOLEMY.

those formed on the meridian and the horizon
can be easily gotten. For if we draw the meridian
circle ABCD, and the semicircle of the horizon
BED, and that of the ecliptic FEG in any manner -
whatsoever, then, whenever we conceive the
great circle drawn through the zenith A as pass-.
ing through the culminating point F, it will coin-
cide with the meridian ABCD. And the angle
DFE is immediately given us because the point #
and the angle formed at it by the meridian [Book
11, Chap. 10] are given. And the arc AF is given
because we know how far on the meridian the .
point F is from the equator, and how far the
equator is from the zenith A. And whenever we
conceive the great circle drawn through 4 as passing through the rising point E
(for example, the semicircle AEC) then it is immedLately clear that the arc AE
will always be a quadrant; because the point A is the pole of the horizon BED.
And since for the same cause the angle AED is always rlght and the angle
formed by the ecliptic and the horizon (that is, angle DEG) is glven Therefore
the whole angle AEQG is also given. Which was to be proved.

And so it is clear that, since things are thus, if, in each latitude, we calculate
only the angles and arcs preceding the mendlan and only those from the begin-
ning of the Crab to the beginning of the Goat, we shall have calculated at the
same time {p. 63; p. 64] the angles and ares Whlch follow the meridian, and for
the rest of the signs both those preceding and those followmg

To make the method, here clear for each position, again as an example, we
shall set out what will be a general demonstration through one theorem, sup-
posing that, in the same latitude (that is, where the north pole is 36° above,the
horizon), the beginning of the Crab for instance is one equatorial hour to the
east of the meridian. And in this position, for this parallel, the point 16°12’ with-
in the Twins is culminating and the point 17°37’ within the Virgin is rising.

Then let there be the meridian cirele A BCD, and the semicircle of the horizon
BED:; and that of the ecliptic ¥GH in such a way
that the point G is the beginning of the Crab, the
point F 16°12’ within the Twins, and H 17°37’
within the Virgin. And let section AGEC of the
great circle through the zenith 4 and through G
the beginning of the Crab, be drawn.

And'let it be required first to find arc AG.

" Then it is evident that

arc FH =91°25/,

are GH=77°37".
And likewise since the point 16°12" within the
Twins intercepts 23°7’ on the meridian from the
equator northward and the equator is 36° from

the zenith A, therefore

arc AF =12°53,
and, by subtraction from the quadrant, :
arc BF=T77°7.
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With these things given, it again follows from the construction thai chord 2
arc BF : chord 2 arc AB comp,.chord 2 are F'H : chord 2 arc GII,
chord 2 arc EG : chord 2 arc AE.

But
2 arc BF =154°14/,
chord 2 arc BF =116°59;
and
2 arc AB=180°,
chord 2 arc AB=120r;
and again
"2 arc FH =182°50/,
chord 2 arc FH=119°5%’;
and
2 arc GH =155°14/,
chord 2 arc GH=117»12'.
Therefore

chord 2 arc EG : chord 2 arc AE comp. 116°59 : 1207, 117712’ ; 119758’
or
chord 2 arc EG : chord 2 arc AE : : 114716’ : 120w,
And
chord 2 arc AE = 120¢;
and therefore
chord 2 arc EG'=114716".
And so
: 2 arc EG=114°26',
. arc EG=72°13',
And therefore, by subtraction from the quadrant,
arc AG=17°47".
Which was to be proved.
And next we shall also find the angle AGH in this way: let the same figure be
A .+ set out, and with G as pole and with the side of
I the inscribed square as distance let the section
K LM of a great circle be drawn so that, since cir-
cle AGE has been drawn through the poles of
EHM and KLM, each of the ares EM and KM is
a quadrant. Then again, because of the con-
B P struction,
chord 2 arc £G : chord 2 arc EK comp,

' chord 2 arc GH : chord 2 arc HL,
chord 2 arc LM : chord 2 are KM.

But
=" 2 arc EG=144°2¢,
chord 2 arc EG=114r16/;
and
2 arc EK =35°34’,
; chord 2 arc EK =36°38';
and -

2 arc GH=155°14,
chord 2 arc GH =117°12’;
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and
2 arc HL=24°46’
chord 2 arc HL=25744’,
And so
chord 2 arc LM : chord 2 arc KM comp. 114016’ : 36°38’, 25044’ : 117912’
or very nearly
chord 2 are LM : chord 2 arc KM :: 82711’ ; 120»,

And

chord 2 arc KM =120°;
therefore

chord 2 arc LM =82r11’,
And so

2 arc LM =86°28,
arc LM =43°14".
And therefore, by subtraction,
arc KL =46°46'
angle LGK =46°46’.
And so, by subtraction from two right angles,
angle AGH =133°14".
Which was to be proved.

Now, the method of finding these arcs and angles is inferred to be the same
also for the rest. But to have them set out, ready to hand, we have calculated
as many of the other arcs and angles as seemed likely to be useful for the de-
tailed rescarches. And we have begun geometrically with the parallel through
Meroé where the longest day is 13 equatorial hours and have gone to the parallel
drawn above Pontus through the mouth of the Borysthenes. And we have used
again, as in the case of the ascensions, an increase each time of a half hour for
the latitudes, of a twelfth of a cirele for the sections of the ecliptic, and of one
equatorial hour for the positions either east or west of the meridian. And we set
them out in tables, one for each latitude and sign, putting in the first column
for each position the number of its equatorial hours’ distance from either side
of the meridian; in the second column the lengths of the arcs running, as we
said, from the zenith to the beginning of the sign in question; and in the third
and fourth columns the sizes of the angles formed at the intersections and situ-
ated in the way we defined, with the positions east of the meridian in the third
column and those west in the fourth. And it is necessary to remember, as we
stipulated in the beginning, that, of the two angles contained by the section of
the ecliptic east of the intersection, we have always taken the one to the north
of it, comparing the size of each of them with the 90° of a right angle. And
here are the tables.!

18ince, for latitudes between the tropic of the Crab (Cancer) and the tropic of the Goat
(Capricorn), the zeniths lie on the meridian between the points where the two tropics cul-
minate, therefore, as the tropic of the Crabh, for instance, is considered at the meridian and
then farther and farther eastward, the arc of the great circle through the zenith and the tropic,
first south of the ecliptic, comes nearer and nearer to coinciding with the ecliptic. Finally it
does coincide, and then passes to the northern side of the ecliptic. The angle in question starts
as a right angle, becomes smaller and smaller, does not exist or is equal to two right angles, and
then starting again as if from two right angles gets smaller and smaller. This is repeated,
mutatis mutandi, for all the signs. The letter N or S placed after an angle in the tables indicates
that the point of the ecliptic culminating is north or south of the zenith for that angle and all
below it until a change is indicated.
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And now, although the business of the angles has been worked out and there
is left to add to these things now established a research into the positions of the
principal cities of each province according to their longitudes and latitudes for
the calculations of the appearance observed in them, we shall do this exposition
ag a special geographical treatise by itself; and we shall follow the writings of
those who have especially worked in this kind of thing, finding out how many
degrees each city is from the equator along the meridian drawn through that
city, and how many degrees east or west of the meridian of Alexandria each
city is. For we arrange the times of the other places with reference to this
meridian. _

Now we have thought it pertinent to add this much about these positions:
whenever we wish to know, at a given hour in one of these places, what hour it
is in some other if their meridians are different, we must take the number of
degrees they differ from each other along the equator, and, according as the one
sought is east or west of the one given, increase or decrease the given hour by
that number of degrees to get the hour defined at the same time in the place
sought.




BOOK THREE

Now that we have methodically gone through, in all that has been put together
up until now, those things which have first to be completely grasped mathe-
matically concerning the heavens and the earth, and also concerning the ob-
liquity of the sun’s path through the middle of the zodiac [along the ecliptic] and
its particular incidents in the right sphere and the oblique sphere for each lati-
tude, we consider it proper after all this to treat of the sun and moon and to take
account of the incidents concerning their movements, since without a prior
understanding of them none of the appearances having to do with the stars can
be discovered. And we find the treatise on the sun’s movement advanced first,
for again, without this, matters concerning the moon could not be grasped in
detail.

1. O~ THE YEAR’'sS MAGNITUDE

Since finding the year's time-length is the first of all the things demonstrated
concerning the sun, we shall first learn from the treatises of the ancients the dis-
agreements and difficulties concerning their statement on this, and especially
from that of Hipparchus, a diligent and truth-loving man. For he is brought to
a difficulty of this kind especially by the fact that, for the apparent returns of
the sun with respect to the tropics and equinoxes, the length of the year is found
to be less than 36514 days, but for its returns observed with respect to the fixed
stars it is found to be more. And from that he conjectures that the sphere of the
fixed stars also has a very slow movement, and like that of the planets is in the
direction contrary to that of the prime movement which revolves the circle that
passes through the poles of the equator and the ecliptic. And we shall show this
is so and how it comes about, in the chapters on the fixed stars. For matters
concerning them could not be seen in their entirety without a prior understand-
ing of the sun and moon.

But for the present research we believe that we must consider the length of
the year looking only to the sun’s return with respect to itself—that is, with re-
spect to the oblique circle made by it [the ecliptic]—and that we must define the
length of the year as the time in which the sun proceeds continuously from some
fixed point of this circle back to the same point, supposing as we do that the only
proper principles of this return are the points of this circle determined by the
tropics and equinoxes. For, if we tell the story mathematically, we shall not find
a more proper return than that which carries the sun through the same config-
uration both in space and time, whether it be considered with respect to the
horizons or the meridian or the magnitude of the solar days; and we shall find no
other principles of the ecliptic except those accidentally defined by the tropic
and equinoctial points. And if one examines the subject more physically, he will
not find a more reasonable return than that which brings the sun from a like to
a like weather-condition and from the same season to the same season; nor will

7
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he find other principles than those by which the seasons are the most completely
distinguished. And the return of the sun considered with respect to the fixed
stars seems quite inept for this reason particularly that their sphere is observed
to make an ordered movement contrary-to that of the heavens. For, with thmga
this way, nothing will keep one-from saying ‘that the length of the sun’s year is
the time it takes the sun to overtake Saturn, for instance, or some other star.
And so there would be many different years.

And so we think it proper to consider such a period of time the sun’s year
which is found, by as many observations as possible taken over a rather long in-
terval, from one tropic or equinox back to the same.

But since a suspected inequality in the periods of éven this return, suspected
through continuous and successive observations, more or less worried Hip-
parchus, we shall try briefly to show how this i§ not at all disturbing, since we
are sure by the continuous instrumental observations we have made of the
tropics and equinoxes that these periods are not unequal. For we find them dif-
fering by no appreciable amount from the additiénal quarter day, but at times
by about as much as could be attributed to the error due to the construction or
position of the instruments. For we guess from what Hipparchus reports that
the error with regards to inequality belongs rather to the observations. For after
he has first set out, in his treatlse On the Precession of the Tropic and Equi-
noctial Points, the summer and winter tropics seeming to him to have been ac-
curately observed and in order, he himself agrees that there is not such a differ-
ence between them as to recognize for this reason an inequality in the year. For
he adds this: “Then it is clear from these observations that the differences in the
years have been altogether small. But in the case of the tropics I do not despair
of Archimedes’ and my having made an error of as much as a quarter day both
in observation and calculation. But the 1rregular1ty of the years can be ac-
curately perceived from observations made on the bronze ring situated in what
is called the Square Hall in Alexandria which is supposed to indicate the equi-
noctial day as that on whlch its concave surface begins to be lighted up from the
opposite side.’”! :

Then he lists, first, the dates of those autumn equinoxes which have been very
accurately observed. One fell in the year 17 of the Thll‘d Callippic Period, Mesore
30, at the setting of the sun; and another three years after, year 20, on the first
of the intercalated days in the morning, which should have been noon, so that
tHere was a disagreement of a quarter day. And another a year after, year 21,
at the sixth hour, which agreed Withﬁ the preceding observation. And another

'The inequality of the year is here being judged in terms of the number of solar days. This
might séem arbitrary, since the days might be unequal. And indeed it will be seen later on in
this Book that the solar.days are considered to be unequal. But the theory of their irregularity
will be such that their mequallty is exactly symmetncal within each year. But, of course, to
judge that the inequality is symmetrical, it is necessary to fall back on somethmg else sup-

posed equal. The Greeks usually supposed it to be the stellar day, the time it takes a fixed
star to go from a meridian back to the same meridian again. This is practically true for
Ptolemy, but not absolutely so, because of the precession of the equinoxes. For, as we shall see
in Book VII, the fixed stars move from west to east about the poles of the ecliptic nearly a
half a degree in a hundred years. This introduces an irregularity in the length of the stellar
day exactly parallel to one of the irregularities in the length of the solar day described in
Chapter 9 of this Book, but one 8o small in magmtude that it could not be percexved from day
to day, or-even from year to year,
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eleven years after, year 32, on the third of the intercalated days at midnight be-
fore the fourth. And it should have been in the morning, so that there was again
a disagreement of a quarter day. And another a year after, year 33, on the fourth
of the intercalated days in the morning, which agreed with the preceding ob-
servation. And another three years after, year 36, on the fourth of the inter-
calated days in the evening. And it should have been at midnight so that there
was again a disagreement of a quarter day.

And next he lists those spring equinoxes likewise accurately observed. One
fell in the year 32 of the Third Callippic Period, Mechir 27, in the morning.
But he adds: “The ring in Alexandria was also lighted up equally on both sides
at the fifth hour, so that the same equinox differently observed differed by near-
nearly five hours.” And he says the equinoxes following, up to the year 37,
agreed with the addition of a quarter day. And eleven years after, year 43,
Mechir 29-30, just after midnight, he says; there was a spring equinox, which
also agreed with the observation in the year 32; and also, he says, with the ob-
servations in the following years up to the year 50. For in that year it fell on
Phamenoth 1 at sunset, within veéry nearly 124 days of that of the year 43,
which is also proportional to the 7 intervening years. And so in these observa-
tions there was no perceptible difference althiough it is possible for there to be
an error of as much as a quarter day, not only as regards the tropic observations,
but also the equinoctial. For even if the position or discrimination of the instru-
ments is inaccurate by only Y4g0¢ of the circle through the poles of the equator,
at the equinoctial intersections the sun makes up for this advance in latitude
by shifting }{° in longitude along the ecliptic, so that there could be an incon-
sistency of very nearly a quarter day. And there could be a greater error still in
the case of instruments not placed permanently and not then corrected for each
observation, but which have been attached for some time to the pavement with
a view to keeping a steady position for a good while, where yet some long un-
noticed shift has been made in them. And anyone ean see an example of this in
the bronze rings in the palestra of our city, which are supposed to be in the
plane of the equator. For in making observations we find such a distortion in
their placement, and especially in the case of the largest and oldest, that at
times their concave surfaces twice suffer a shift in lighting at the same equi-
noxes.

But certainly from such things Hipparchus himself does not think there is
anything solid to support a suspicion of inequality in the lengths of years. But
he says he finds by caleulating from certain eclipses of the moon that the irregu-
larity of the years, on the average, does not embrace a difference greater than
three quarters of a day. And this would merit some attention if it were so and
not evidently belied by the reasons he offers. For he calculates, by the lunar
eclipses observed near certain fixed stars, by how much in each case the star
Spica precedes the autumn equinox. And in this way he thinks he finds that
once it was at its greatest distance of 6}4°, for the time he observed, and once
at its least distance of 514°. And he infers from this fact that, since it is not
possible for Spica to move so far in such a short time, it is likely that the sun,
from which Hipparchus examines the positions of the fixed stars, does not al-
ways make its return in an equal time..

But he has overlooked the point that, since this calculation cannot proceed
without laying down the sun’s position at the eclipse, he, taking for this purpose
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in each case the tropies and equinoxes accurately observed by himself in those
very vears, thereby immediately makes clear that in comparing the years there
is no difference beyond the addition of the quarter day.

For example, from the observation of the eclipse in the year 32 of the Third
Callippic Period he thinks he finds Spica preceding the autumn equinox by
61,°; but from the eclipse in the year 43 of the same period, by 514°. And like-
wize setting beside these calculations the spring equinoxes accurately observed
in those same years—so that by means of these he may get the sun’s positions
at the middle of the eclipses, and from these the moon's positions, and from the
moon’s those of the stars—he says that the spring equinox of the year 32 fell on
Mechir 27 in the morning, and that of the year 43 on Mechir 29-30 after mid-
night, nearly 23{ days later than that of the year 32, which is just equal to the
quarter day added for each of the 11 intervening years. If, then, the sun has
made its return to these equinoxes in neither more nor less time than the addi-
tional quarter day, and if it is not possible for the star Spiea to have moved
114° in so few vears, how could it be otherwise than absurd to take the results
calculated from the principles assumed as an accusation against the very prin-
ciples combined to produce them, as if one were unable to saddle anything else
with the cause of this excessive movement of Spica except the equinoxes as-
sumed at the same time to have been accurately and inacecurately observed,
although there were many things which could have introduced such an error?
For it would seem much more possible that the distances of the moon at the
eclipses with respect to the nearest fixed stars had been estimated rather
roughly; or that the calculations either of the moon’s parallaxes for the sighting
of its apparent positions or of the sun’s movement from the equinoxes to the
middle of the eclipses had been effected neither truly nor accurately.

And I think Hipparchus himself recognized there is nothing convinecing in
such things as far as imposing a second anomaly on the sun, but I think he only
wishes for the love of the truth not to keep back anything which could in any-
way bring one to suspect. And so he himself used hypotheses concerning the
sun and moon with just one anomaly belonging to the sun, an anomaly which is
redeemed in the year considered with respect to the tropies and equinoxes.
And in supposing these revolutions to be equal in time we do not observe the
appearances at the eclipses differing in any pereceptible way from the calcula-
tions based on these hypotheses. For it would be quite perceptible if a corree-
tion for the inequality of the year were not made at the same time, even if it
were only a difference of one degree or very nearly two standard hours.

From all these things, and from the times of the returns which we ourselves
have gotten from the consecutive passages of the sun observed by us, we do not
find the magnitude of the year unequal if it is considered with respect to some
one thing and not one time with respect to the tropic and equinoctial points
and another with respect to the fixed stars. Nor do we find any more proper
period of return than that which earries the sun from one tropic or equinoctial
point, or any other point on the ecliptie, back to that same point. And we do
think it entirely proper to explain the appearances by the simplest hypotheses

1Hipparchus’ logie, contrary to what Ptolemy says, seems impeccable insofar as he is say-
ing that assumptions which lead to their contradictories are false. But the reasoning must be
right, and Ptolemy is also suggesting that there were many steps in between which might have
been false.
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possible, so long as nothing perceptible appears contrary to this deduction.

And therefore it has become clear to us from what Hipparchus has shown
that the length of the year observed with respect to the tropics and equinoxes
is less than 36314 days. but it would not be possible to find out with very great
certainty by how much it is less since the increase of a quarter day remains per-
ceptibly unchanged for many vears because of the very small difference. And so
the extra amount can be perceived only when it is found added up together
over a longer period of time. And it must be divided amoeng the intervening
vears of the interval and it must be observed for a greater and a smaller number
of years than this same interval. And the period of return will be gotten the
more accurately the longer the time between the observations compared. And
this is the casze not only with this period of return, but with all of them. For the
error resulting from the weakness of the observations themselves, even if they
are managed accurately, is small and very nearly the same as far as the senses
are concerned both for appearances considered over a long time and for those
considered over a short time. And this error of observation, when it is dis-
tributed over fewer years, makes the error in the length of the year greater and
also in multiples of it over a longer period of time; and it makes the error in the
length of the vear smaller when distributed over a greater number of years.

And therefore it 1s properly thought sufficient if, when we consider how much
the time between us and the old yet accurate observations can help in the ap-
proximation of the supposed periods of revolution, we try to introduce them
with the others and do not willingly forego the proper verification, and if we
suppose the establishing of dates for a whole long age or for some great multiple
of time between observations is the work for another’s love of wisdom and
truth. Because of their age, then, the summer tropics observed by the pupils
of Meton and Euctemon and those observed after them by the pupils of Aris-
tarchus should be compared with those observed by us. But because the ob-
servations of the tropics are generally hard to determine and, moreover, be-
cause the observations handed down by these people were taken more or less in
the rough, as Hipparchus also seems to have thought, we pass them over. We
have used for this comparison the observation of the equinoxes, and. because
of their accuracy, especially those given Hipparchus” approval as having been
most certainly taken by him, and those most carefully observed by ourselves
with the Instruments for such purposes described at the beginning of this
treatise. And from these we find that, in very nearly 300 years, the tropics
and equinoxes fall one day sooner than the quarter-day addition to 363 days
allows.

For in the year 32 of the Third Callippic Period Hipparchus singles out es-
pecially the autumn equinox as most sccurately observed, and he says he
caleulates it to have fallen at midnight between the third and fourth of the
intercalated days. And this is the year 178 after the death of Alexander. And
283 years after in the year 3 of Antonine (which is 463 years after the death of
Alexander) we observed, again most correctly, the autumn equinox as having
fallen on Athyr 9 about one hour after sunrise. Therefore the return added on
in all the 283 Egyptian vears, that is those of 363 days each, all told 70414+ 159
days instead of the 7114 days due these years by the regular quarter-day addi-
tion. And so the return fell sooner by very nearly 1 day less 145 than the regular
quarter-day addition allowed.



82 PTOLEMY

And likewise Hipparchus again says the spring equinox in the same year 32
of the Third Callippic Period was very accurately cbserved to have fallen on
Mechir 27 in the morning. And this is 178 years after the death of Alexander.
And likewise 285 years later (463 years after the death of Alexander) we find
the spring equinox has fallen on Pactom 7 very nearly one hour after noon, so
that the period reached the aforesaid 70414+ 14, days very nearly, instead of
the regular quarter-day addition to the 285 years of 7114 days. Therefore the
return of the spring equinox fell sooner by 1 day less 14, than the regular quarter-
day addition allowed. And so, since 300 years to 285 years, and 1 day to 1 day
less 240, are the same ratio, it is inferred that in very nearly 300 years the sun’s
return with respect to the equinoctial points is sooner by 1 day than the regular
quarter-day addition allows.

Even if, because of its antiquity, we compare the summer tropic more or less
roughly recorded by the pupils of Meton and Euctemon with that calculated
by us, we shall find the same thing. For it is recorded to have taken place
Athenianwise in the Magistracy of Apseudes, Egyptianwise Phamenoth 21 in
the morning, and we, in the same 463rd year after the death of Alexander, very
carefully calculated it to have fallen on Mesore 11-12 two hours after midnight.
And from the summer tropic recorded under Apseudes to that observed by the
pupils of Aristarchus in the year 50 of the First Callippic Period, as Hipparchus
also says, 1s 152 years. And from this year 50 (which was the 44th year after
the death of Alexander) to the 463rd year [after the death of Alexander], the
year of our observation, is 419 years. Therefore, in the intervening 571 years
of the whole interval, if the summer tropic observed by the pupils of Euctemon
fell at the beginning of Phamenoth 21, very nearly 140414414 days have
been added to the complete Egyptian years instead of the regular quarter-day
addition to the 571 years of 142-+14+14 days; so that this return fell sooner
by 2 days less 145 than the regular quarter-day addition allowed. It is therefore
evident that in 600 complete Egyptian years, the lengths of the solar years
anticipate the regular quarter-day addition by nearly 2 whole days.

And with many other observations we find this same thing happening, and we
see Hipparchus several times agreeing to this. For in his treatise On the Length
of the Year, when he compares the summer tropic observed by Aristarchus at the
end of the year 50 of the First Callippic Period with the one taken again very
accurately by himself at the end of the year 43 of the Third Callippie Period, he
says as follows: “It is evident, therefore, that in 145 years the tropic has fallen
sooner by half a day and night together than the regular quarter-day addition
allows.” And again in his treatise On Intercalated Months and Days, saying first
that the year, for the pupils of Meton and Euctemon, contains 365414+ 14¢
days and according to Callippus only 36514 days, he adds this: “And we have
found as many whole months in the 19 years as they, but we have found that
the year comes to 14 day less than the regularly added quarter day, so that
in 300 Egyptian years the sum of the solar years is 5 days less than Meton’s and
only 1 day less than Callippus’.” And also in summarizing his views by citing
his own works, he says as follows: “And I have also treated the question of the
length of the year In a book in which I show that the solar year (that is, the time
in which the sun goes from a tropic back to the same tropic or from an equinox
back to the same equinox) contains 365 days and less than 14 day by 1440 of a
day and night, and not as the mathematicians think 36514 days.”
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I think, then, it has been made clear that the appearances observed up to this
time concerning the magnitude of the year agree with the size just assigned the
return of the tropic and equinoctial points by a concurrence of present ap-
pearances with earlier ones. And since all this is so, if we distribute the one day
over the 300 years, there falls to each year 12” of a day. And if we subtract this
from the 365 days 15" where the quarter day has been added, we shall have the
length of the year we are looking for—that is, 365 days 14’ 48”. And this num-
ber of days can be taken by us as the nearest approximation possible from the
observations we have at present.

And as regards the scrutiny of the movements of the sun and the other planets
in their particularities which is best furnished ready to hand and all set out by
the orderly construction of tables, we believe it is the necessary purpose and
aim of the mathematician to show forth all the appearances of the heavens as
products of regular and circular motions. And it is incumbent upon him to con-
struct such tables as, proper and consequent upon this purpose, separate out
the particular regular! motions from the anomaly which seems to result from
the hypotheses of circles, and show forth their apparent movements as a com-
bination and union of all together. In order, then, that we may get this sort of
thing in more serviceable form for the demonstration under consideration, we
shall set out the regular movements of the sun in their particularities in
this way.

For since a return has been proved to be 365 days 14’48”, if we divide these
into the 360° of one circle, we shall have the sun’s mean daily movement along
the ecliptic as approximately 0°59181i17111131v12v31vi;2 for it will suffice to carry
out the fractions to this power of sixtieths. And again, taking 144 of the daily
movement along the ecliptic, we shall have for the hourly movement approxi-
mately 0°2127i15011143iv3v1vi. Likewise multiplying the daily movement by the
30 days of a month, we shall have the mean monthly movement of 29°34181i361ii
36iv15v30vi; and multiplying by the 365 days of an Egyptian year we shall have
the mean yearly movement of 359°45i241i451ii2]11v8v35vi. Again multiplying the
mean yearly movement by 18 years, because of the symmetry which will appear
in the construction of the tables, and subtracting the whole circles, we shall have
the surplus for the 18-year period, that is 355°371251136111201v34v30v1.

We have accordingly drawn up three tables of the regular movement of the
sun, one in forty-five rows and the others in two parts. The first table contains
the mean movements for the 18-year periods; the second table contains first
the movements for the Egyptian years, and then for hours; the third, first the
movements for months and, under that, for days. The numbers designating the
time are set out in the first columns, and in the next columns the degrees, min-
utes, etc., are put beside them according to the proper combinations of each.
And the tables are as follows:

The word ‘“‘regular” is here used as a translation of the Greek word oualés. On the other
hand édrouaMia, its privative, is translated by the technical “anomaly’’ instead of by the more
obvious “irregularity.” There will be times, however, when “‘irregularity’’ is used. The Greek
word éuaXés has three meanings, all significant in an astronomical context: (1) regular, (2)
uniform, (3) mean or average. It is evident that “regular” and ‘“uniform” are here synonym-

ous. But also the regular movement of the sun is computed as the average or mean movement
of the sun for the interval of a solar year.

*The superscripts indicate the powers of the sixtieths in the denominator. Thus in ordinary
fractions this would be written 2§ + 62 + &§3 + 34, etc.
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2. TaBLE oF THE SUN’s REGULAR MoOVEMENT

Distance from the apogee 265°15’; mean epoch 0°45" within the Fishes

72
90
108

126
144
162

180
198
216

234
252
270

288
306
324

342
360
378

396
414
432

De-
grees
355
351
346

342
338
333

329
324
320

316
311
307

303
298
294

289
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276
272
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263
259
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I

37
14
52

29
7
44

21
59
36

14
51
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6
43
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13

51
28
5

43
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II

25
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16

42
8
33
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32
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~
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2. TaBLE oF THE SuN’s REGULAR MovEMENT—Continued
Distance from the apogee 265°15'; mean epoch 0°45' within the Fishes

Single| De- i Single: De-

years |grees| T IT LIV | V 1 VI years grees| [ IT JIIT | IV | V | VI
1 35045124 | 45121 | 8| 35 10 1357134 7(33{31]25]|50
2 (35930 |49 |30 4217 |10 11 1357119 (32|18 |32 134 |25
3 |359{ 16 {14 16| 3 25|45 12 1357 4|57 4113143 | 0
4 (359 139 1[24(34]20 13 356 50 | 21 |49 | 34|51 | 35
5 [358] 47 | 3|46 |45 |42 ] 55 14 35635146 |34 (56| 0] 10
6 (3581322832} 651130 15 |356(21 | 11|20 |17 | 8| 45
7 |358] 17 |53 17 (28, 0 5 16 (356 6|36 | 5138|1720
8 (358} 3|18} 2,49 . 8140 17 13551521 0150|5925 55
9 {35748 4248 1017 | 15 18 3550137 125|136 (20] 34130

De- | 3 De-

Hoursigrees;, 1 | IT |IIT | IV | V | VI Hours|grees) T | 11 {III | IV | V { VI
1 0 2127150143 3| 1 13 0 |32 1(59]|191]39]16
2 0 45514126 6| 2 14 0 1342950 24218
3 0 7123132 9 9] 3 156 | 0 | 365740 {4545 |19
4 [0 9151225212 5 16 0 (39125312848 |20
5§ | 0 |12(19113 35|15 6 17 0 |41 531221115121
6 | 0 |14 (47| 4|18 18] 7 18 0 |44 |21 |12 54|54 23
7 0 17|14 f565¢{ 1|21 9 19 0 |46 |49 | 3|37 |57} 24
8 0 |19 42|45 |44 |24 |10 20 0 4911654121} 0125
9 0 [22110(36}27 27|11 21 0 | 514445} 4| 31|27

10 0 |24 38,27|10)30 ;12 22 0 {5412 (35|47 | 6128
11 0 {27 6117|5333 14 23 0 (56140 (26{30] 9|29
12 0 |29134| 8136|3615 24 01591 8117113 ]12) 31

The surplus of the distance from the apogee of the sun 5°30’ within the Twins to its mean

epoch in the year I of Nabonassar 0°45’ within the Fishes is 265°15".
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2. TaBLE oF THE SuN’s REaurar MoveEmenT—Continued

Distance from the apogee 265°15'; mean epoch 0°45’ within the Fishes

Egypt- Egypt-
dgan |De-| I | II JIII | IV | V [ VI ian [De-| I | II |III | IV | V VI

mo’ths grees mo’ths grees
3012934 8136|3615, 30 210 206 |59 | 0|16 ] 13|48 30
60 (59| 8|17 {1312 |31| O 240 1236 | 33| 852150 4| 0
90 | 88 | 42 | 25 | 49 | 48 | 46 | 30 270 266 | 7|17 129 26| 19| 30

120 118 | 16 | 34 26 | 256] 2| O 300 {205 |41 |26 | 6| 2|35]| O

150 (147 | 50 |43} 3| 1| 17 | 30 330 1325115 | 34 | 421 38| 50 | 30

180 (177 | 24 1 51 {39 | 37133 | O 360 1354 149143 |19}15} 6 0

De- De-

Days|grees) I | II |IIT|{ IV ] V | VI Days |grees) 1 | II |III | IV | V | VI
1 0159 8|17 13112 31 16 | 15146 |12 35)311{20(16
2 1168|1634 |26|25] 2 17 [ 16| 45|20 | 52 | 44 | 32 | 47
3 2157124 (5113937133 18 |17 | 44| 29| 9|57 (4518
4 3/56(33| 8(52|50]| 4 19 | 18|43 137 |27 110 | 57 | 49
5 415541126 6| 2135 20 |19 (4245|441 24| 10|20
6 5154|149 (4319 |15 6 21 (2041154 1372251
7 6|53 58| 0332|2737 22 (21 (41 211850 | 35| 22
8 7|53 6174540 8 23 (224010 (35| 3|47 | 53
9 85214 (34| 58| 52| 39 24 1231391853117 024
10 9517225212} 5|10 25 |24 (38(127]10(30]|12] 55

11 | 10|50 |31 9{25] 17 41 26 (2537135127 |43 |25]|26
12 | 11 {49 39| 2638|3012 27 | 26 (3643 | 44 | 56 | 37 | 57
13 | 12 | 48 | 47 | 43 | 51 | 42 | 43 28 (27 (35152 2| 9|50 28

14 [ 13|47 |56 1| 455 14 20 128135 0119 (23| 2|59
15 1141471 4118118 | 745 30 129[34] 8136136115130

3. On THE HYPOTHESES CONCERNING REGULAR AND CIRCULAR MOVEMENT

Since the next thing is to explain the apparent irregularity of the sun, it is
first necessary to assume in general that the motions of the planets in the direc-
tion contrary to the movement of the heavens are all regular and circular by
nature, like the movement of the universe in the other direction. That is, the
straight lines, conceived as revolving the stars or their circles, cut off in equal
times on absolutely all circumferences equal angles at the centres of each;! and
their apparent irregularities result from the positions and arrangements of the
circles on their spheres through which they produce these movements, but no
departure from their unchangeableness has really occurred in their nature in
regard to the supposed disorder of their appearances.

But the cause of this irregular appearance can be accounted for by as many
as two primary simple hypotheses. For if their movement is considered with
respect to a circle in the plane of the ecliptic concentric with the cosmos so that
our eye is the centre, then it is necessary to suppose that they make their regular

1This principle of celestial mechanics will be considerably broadened in the case of the
moon and the other five planets as treated in Books V, IX, and X.
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movements either along circles not concentric with the cosmos, or along con-
centric circles; not with these simply, but with other circles borne upon them
called epicycles. For according to either hypothesis it will appear possible for
the planets secemingly to pass, in equal periods of time, through unequal arcs of
the ecliptic circle which is concentric with the cosmos.
For if, in the case of the hypothesis of eccentricity, we conceive the eccentric
circle ABCD on which the star moves regularly,
Lt with E as center and with diameter AED, and the
point F on it as your eye so that the point A be-
comes the apogee and the point D the perigee; and
if, cutting off equal arcs AB and DC, we join BE,
BF, CE, and CF, then it will be evident that the

E star moving through each of the arcs AB and CD in
an equal period of time will seem to have passed
F through unequal arcs on the circle described around
F as a centre. For since
¢ angle BEA =angle CED,
D therefore angle BF A is less than either of them, and

angle CFD greater [Eucl. 1, 16].

And if in the hypothesis of the epicycle we con-
ceive the circle ABCD concentric with the ecliptic with centre ¥ and diameter
AEC, and the epicycle FGHK borne on it on
which the star moves, with its centre at A, then
it will be immediately evident also that as the
epicycle passes regularly along the circle ABCD,
from A to B for example, and the star along the
epicycle, the star will appear indifferently to be
at A the centre of the epicycle when it is at F or
H; but when it is at other points, it will not. But
having come to G, for instance, it will seem to
have produced a movement greater than the reg-
ular movement by the arc AG; and having come
to K, likewise less by the arc AK.

Then with the hypothesis of eccentricity it is
always the case that the least movement belongs
to the apogee and the greatest movement to the
perigee, since angle A FB is always less than angle
DFC. But both cases can come about with the hypothesis of the epicycle. For
when the epicycle moves contrary to the heavens [from west to east], for exam-
ple from A to B, if the star so moves on the epicycle that it goes from the apogee
again contrary to the heavens (that is, from F in the direction of G), there will
result at the apogee the greatest advance, because the epicycle and the star are
moving the same way. But if the movement of the star on the epicycle is in the
direction of that of the heavens [from east to west], that is, from # towards K,
conversely the least advance will be effected at the apogee because the star is
then moving contrary to the movement of the epicycle.

With these things established, it must next be understood that, in the case of
those planets which effect two anomalies, it is possible to combine both of
these hypotheses, as we shall show in the chapters concerning them. But, in
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the case of those planets subject to only one anomaly, one of the hypotheses
will suffice. And it must be understood that all the appearances can be cared
for interchangeably according to either hypothesis, when the same ratios are
involved in each. In other words, the hypotheses are interchangeable when, in
the case of the hypothesis of the epicycle, the ratio of the epicycle’s radius to
the radius of the circle carrying it! is the same as, in the case of the hypothesis
of eccentricity, the ratio of the line between the centres (that is, between the
eye and the centre of the eccentric circle), to the eccentric circle’s radius; with
the added conditions that the star move on the epicycle from the apogee in the
direction of the movement of the heavens with the same angular velocity as
the epicycle moves on the circle concentric with the eye in the direction op-
posite to that of the heavens, and that the star move regularly on the eccentric
circle with the same angular velocity also and in the direction opposite to the
movement of the heavens.

And we shall briefly show in a systematic way, first by reasoning and secondly
by the numbers discovered in the appearances of the sun’s anomaly, that with
the above assumptions the same appearances agree with either hypothesis.

1 say first, then, that on either hypothesis the greatest difference between the
regular movement and the apparent irregular movement (difference by which
the mean passage of the stars is apprehended) occurs when the apparent angular
distance cuts off a quadrant from the apogee; and that the time from the apogee
to this mean passage is greater than from this mean passage to the perigee.

Therefore it results—always on the hypothesis of the eccentric circles, and on
the hypothesis of the epicycle whenever their movements occur in the direction
of the movement of the heavens—that the time from the least passage to the
mean passage is greater than that from the mean to the greatest passage, be-
cause in each case the least progress is effected at the apogee. But on the hypoth-
esis of the epicycles which supposes the revolutions of the stars on them in the
direction contrary to that of the heavens, conversely the time from the greatest
to the mean passage is greater than that from the mean to the least, because in
this case the greatest progress is effected at the apogee.

First, then, let there be the star’s eccentric circle ABCD with centre E and
diameter AEC. And let the centre of the ecliptic be
taken (that is, the point at the eye), and let it be F.
And with BFD drawn through F at right angles to
AEC, let the star be supposed at points B and D,
so that the apparent angular distance on cither
side from the apogee A is clearly a quadrant. H

It must be proved that the greatest difference
between the regular and irregular movements oc-

£
curs at the points B and D. B : D
For let EB and ED be joined. Then it is im-
mediately evident that the arc of the anomalistic R
difference has to the whole circle the same ratio C

that angle EBF has to 4 right angles, since the

angle AEB subtends the arc of the regular move-

ment and angle AFB that of the apparent irregular movement, and angle EBF
is the difference between them.

1The circle carrying the epicycle is often called the deferent.

A
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I say, then, that no other angle can be constructed on the circumference of
the circle ABCD and on the straight line £F greater than these two at B and D.

For let the angles EHF and EKF be constructed at the points H and K, and
let HD and KD be joined. Since then in every triangle the greater side sub-
tends the greater angle, and

HF>FD, [Eucl. 111, 7,3]
also angle HDF >angle DHF
But angle EDH =angle EHD
since EH=ED.
And therefore angle EDF>angle EHF,
angle EBD>angle EHF.
Again since DF>KF,
angle FKD>angle FDK.
But angle EKD=angle EDK,
since again EK=ED.

And therefore, by subtraction,
angle EDF>angle EKF,
angle EBF > angle EKF.

Therefore it is not possible to construct other angles in the way we have de-
seribed greater than those at points B and D !

And at the same time it is proved that arc 4B, which embraces the time
from the least to the mean movement, is greater than are¢ BC which embraces
the time from the mean to the greatest movement, by twice the arc containing
the anomalistic difference. For

angle AEB =angle EFB-+angle EBF,
=rt. angle4-angle EBF,
and
angle BEC+angle EBF =rt. angle.

Again, to prove the same thing occurs in the other hypothesis, let there be
the circle ABC concentric with the cosmos, with center D and diameter ABD;
and let there be in the same plane the epicycle EFG with centre A, carried on it.
And let the star be supposed at G where it appears to be a quadrant’s distance
from the apogee point. And let AG and DGC be joined.

1The Greeks, in general, avoided the notion of a body’s speed at a given point, and Ptolemy
here handles the problem in the classic way, in terms of boundary points. Thus by proving
that the greatest difference between the angle of the regular movement and that of the ap-
parent irregular movement is at a point an apparent quadrant’s distance from the apogee, it
then follows that this point is a boundary point such that for all arcs between it and the
apogee the star will appear to move more slowly than its regular or average movement, and
for all arcs between it and the perigee the star will appear to move faster thun its regular or
average movement. Ptolemy therefore calls the point itself the point of the star’s mean pas-
sage. It is not very different from saying in modern terms that the speed of the star at this
point is its regular speed.

That the point of greatest anomalistic difference is such a boundary point is simply stated
by Ptolemy and not explained. The explanation is this: From the apogee to the point of
greatest difference the apparent angular speed of the star is always slower than its regular
speed, for otherwise the difference between the two angles traveled would not be getting
greater and greater. Likewise from the point of greatest difference to the perigee the apparent
angular speed is greater than the regular speed, for otherwise the difference between the two
angles traveled would not be getting less and less.
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I say that the straight line DGC is tangent to E
the epicycle. For at that time there occurs the
greatest difference between the regular and ir-
regular movements.

Tor since the regular movement from the apo-
gee is contained by the angle FAG (for the star
traverses the epicycle, and the epicycle the cir-
cle ABC, with the same angular velocity), and
the difference between the regular and apparent
movements is contained by the angle ADG,
therefore it is evident that also the difference
between angle EAG and angle ADG (that is,
angle AGD) contains the apparent angular dis-
tance of the star from the apogee. And so, since
it is assumed to be the angle of a quadrant,
angle AGD will also be a right angle, and therefore the straight line DGC will be
tangent to the epicycle EFG [Eucl. 111, 16, Por.]. Therefore the arc AC between
the centre A and the tangent is the greatest anomalistic difference.

And in the same way arc EQ, which, according to the motion assumed for
the epicycle, embraces the time from the least to the mean movement, is
greater than arc GF, which embraces the time from the mean to the greatest
movement. And it is greater by twice arc AC. For if we produce the straight
line DGH and draw AKH at right angles to E'F, then

angle KAG=angle ADC, (Eucl. v, §]
and arc KG is similar to arc AC. Therefore arc EK(G is greater than a quadrant
by arc AC, and arc FQ is less than a quadrant by arc AC. Which it was re-
quired to prove.!

And next it will be clearly seen that, even in the other particular movements,
in the case of both hypotheses, for equal times,
all the same things will occur with respect to the
regular and apparent movements and the differ-
ences between them—that 1s, the anomalistic
difference.

For let there be the circle A BC with centre D,
concentric with the ecliptic; and the eccentric
EF@G with center H, equal to the concentric circle
ABC; and the diameter EAHD common to both,
through the centres D and H and the apogee E.
And with arc AB taken at random length on the
concentrie circle, let the epicycle KF with centre
B and radius DH be described, and let KBD be
joined. -

I say that the star will be borne by either
movement to F, the intersection of the eccentrie

1Tn the case where the star moves on the epicycle in the same direction that the epicycle
moves on the concentric circle, the mean passage and greatest anomalistic difference do not
occur an apparent quadrant’s distance from the apogee—that is, if the angular velocity of the
star on the epicycle is the same as that of the epicycle’s centre on the concentric circle. But it
is greater than a quadrant’s distance from the apogee. This is immediately evident if we refer
to the previous figure and suppose DGH drawn tangent on the opposite side of the epicycle.
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circle and the epicycle, in the same amount of time. That is, the three arcs, EF
on the eccentric, AB on the concentric, and KF on the epicycle are similar to
each other; and the difference between the regular and irregular movements,
and the apparent passage of the star, will be similar and the same under either
hypothesis.

For let FH, BF, and DF be joined. Since the opposite sides of the quadri-
lateral BDHF are equal to each other, FH to BD, and BF to DH, the quadri-
lateral BDIFFH is a parallelogram. Therefore the three angles EHF, ADB, and
FBK are equal. And so, since they are angles at the centres, the arcs sub-
tended by them—EF on the eccentric, AB on the concentric, and K¥ on the
epicycle—are similar to one another. Therefore by either motion, the star will
be brought to the same point # in an equal period of time, and will appear to
have passed from the apogee along the same arc of the ecliptic, AL. And ac-
cordingly the anomalistic difference will be the same according to either hypo-
thesis, since we have already proved that the difference contained by angle
DFH on the hypothesis of eccentricity is of the same kind as that contained
by angle BDF on the hypothesis of the epicycle, and since these angles are here
also alternate and equal, with FH proved parallel to BD.

And it is clear that for all distances these same results will follow, HDFB be-
ing always a parallelogram and the eccentric circle being described by the move-
ment of the star on the epicycle whenever the relations under either hypothesis
are both similar and equal.

But it will also become clear in the following way that, even if they are only
similar but unequal in magnitude, the same appearances will again result. For
in the same way, let there be the circle A BC with centre D, concentric with the
cosmos; and its diameter ADC passing through the star’s apogee and perigee;
and the epicycle about B at the random distance of arc AB from the apogee A.
And let the star have moved through arc EF similar to AB since the returns of
the circles take place in the same time. And let the straight lines DBE, BF, and
DF be joined.

It is immediately clear that, on this hypothesis, angle ADE and angle FBE

are always equal, and that the star will
S appear on the straight line DF.
T say also that, on the hypothesis of
H eccentricity, both if the eccentric circle
is greater than the concentric circle
and if it is less, with only the similarity

A of the relations and the isochronism of
L the returns assumed, the star will
WK again appear on the same straight
line DF.
N For let the eccentric circle GH be
D

drawn greater, as we said, with its centre

at K on AC; and likewise LM less, with

centre N. And producing DMFH and

DLAG, let HK and M N be joined. Since
DB:BF:.:HK :KD ::MN :ND,

C and since

angle BFD=angle MDN
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because of the parallels DA and BF, therefore the three triangles are equian-
gular [Eucl. vi, 7], and the angles BDF, DHK, and DM N, subtending the corre-
sponding sides, are equal. Therefore the straight lines BD, HK, and MN are
parallel, so that also angles ADB, AKH, and ANM are equal. And since they
are angles at the centres of the circles, therefore the arcs subtended by them,
AB, GH, and LM, will be similar. Therefore, in the same length of time, not
only has the epicycle traversed arc AB, and the star arc EF, but also on the
eccentric circles the star will have traversed ares GH and LM ; and in each case,
therefore, it will be observed on the same straight line DMFH, being at the
point F in the case of the epicycle, at H for the greater eccentrie, at M for the
smaller eccentric, and likewise for all positions.

And furthermore it results that, when the star appears to have traversed
equal arcs both from the apogee and the perigee, the anomalistic difference in
either position will be equal.

For, on the hypothesis of eccentricity, if we describe the eccentric circle
ABCD about centre I with diameter A4 EC through
the apogee A, with the eye supposed on it at F, and A
if, drawing through F the straight line BFD at ran-
dom, we join EB and ED), then the apparent courses
will be equal and opposite; that is, angle AFB of the
course from the apogee and angle CFD of that from
the perigee. And the anomalistic difference will be £
the same because BE is equal to DE and angle EBF
to angle EDF. And so the arc from the apogee A and
the arc from the perigee C' (that is, the arcs con-
tained by angles. AFB and CFD, respectively) are,
the one greater and the other less, than the regular
movement by the same difference of the apparent
arc; because AEB is greater than angle AFB and
angle CED less than angle CFD,

And, on the hypothesis of the epicycle, if we describe likewise the concentric
circle around centre D and with diameter ADC, and
the epicycle EFG around centre 4, and if, drawing
at random the straight line DGBF, we join AF and
AG, then the arc of the anomalistic difference AB
will be the same for both positions. That is, if the
star 1s at F or if the star is at G, it will appear on the
ecliptic at the same distance from the apogee point
when it is at F' as from the perigee point when it is
at @, since the apparent arc from the apogee is con-
tained by angle DFA. For angle DFA has been
shown to be the difference between the regular
movement and the anomalistic difference. And the
apparent arc from the perigee is contained by angle
FGA. For it is also equal to the angle of the regular
movement from the perigee plus the anomalistic
difference. And so it is thereupon inferred again that
the mean movement is greater than the apparent movement about the apogee
(that is, angle EAF than angle AFD) and the mean movement is less than the
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apparent about the perigee (that is, angle GAD than angle AGF), both by the
same difference, by angle ADG. Which was to be proved.

4. ON THE APPARENT IRREGULARITY OR ANOMALY OF THE SUN

With these things explained, it is now necessary to take up.the apparent ir-
regularity or anomaly of the sun; because there is one only, and it is such that
the time from the least movement to the mean is greater than the time from the
mean to the greatest movement. For we find this agrees with the appearances.
And this can be accomplished by either hypothesis:—(1) by that of the epicycle
when the movement of the sun is in the direction of the movement of the heav-
ens on its arc at the apogee. But (2) it would be more reasonable to stick to the
hypothesis of eccentricity which is simpler and completely effected by one and
not two movements.

Now, the first question is that of finding the ratio of eccentricity of the sun’s
circle—that is, what ratio the line between the eccentric circle’s centre and the
ecliptic’s centre at the eye has to the radius of the eccentric circle; and next at
what section of the ecliptic the apogee of the eccentric circle is to be found. And
these things have been shown in a serious way by Hipparchus. For having sup-
posed the time from the spring equinox to the summer tropic to be 9114 days,
and the time from the summer tropic to the autumn equinox to be 9214 days,
he proves from these appearances alone that the straight line between the
aforcsaid centres is very nearly 144 the radius of the eccentric cirele; and that
its apogee precedes the summer tropic by very nearly 2414° of the ecliptic’s
360°.

And we too find that the time-periods of these quarters and these ratios are
very nearly the same even now, so that in this way it is clear to us that the sun’s
eccentric circle always preserves the same position with respect to the tropic and
equinoctial points. And not to establish this position on hearsay only, but to
expound the theory systematically with our own numbers, we shall prove these
things ourselves, using these same appearances as regards the eccentric circle—
that is, as we said, 9414 days from the spring equinox to the summer tropic and
9214 days from the summer tropic to the autumn equinox. For with the very
accurate observations made by us in the year 463 after the death of Alexander
we find a complete agreement in the number of days between the summer tropic
and the equinoxes. For as we said [pp. 81-82], the autumn equinox fell on
Athyr 9 after sunrise, the spring equinox on Pachom 7 after midday, which
makes an interval of 17814 days, and the summer tropic on Mesore 11-12 after
midnight, which makes the interval from the spring equinox to the summer
tropic 9414 days, and leaves very nearly 9214 days for the interval from the
summer tropic to the following autumn equinox.

Then let there be the ecliptic circle ABCD with centre E, and let the two di-
ameters AC and BD be drawn in it perpendicular to each other through the
tropic and equinoctial points. And let A be supposed the spring point, B the
summer, and the rest accordingly.

Now, that the centre of the eccentric circle will fall between the straight
lines EA and EB, is clear on the one hand from the fact that the semicircle
A BC embraces more time than half a year and therefore cuts off a section of the
eccentric greater than a semicircle, and on the other hand from the fact that
the quadrant 4B itself also embraces more time and cuts off a greater arc of
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the eccentric than quadrant BC. __A
This being so, let the point ¥ be sup-
posed the centre of the eccentric circle, TP .

and let the diameter EFG be drawn G
through both centres and the apogee.
And with centre F and any radius, let the
eccentric circle of the sun HKLM be
drawn, and through ¥ the line NQO par-
allel to AC and the line PRS parallel to
BD. And again let HT'U, the perpendi-
cular from H to NQO, and KWX, the
perpendicular from K to PRS, be drawn.

Since, then, the sun, moving regularly
on the circle HKLM, traverses arc HK
in 9414 days and arc KL in 9214 days,
and since it covers regularly in 9414
days very nearly 93°9%, and in 9214 days 91°11’ [Chap. 11, Table of Sun’s Regular
Movement)], therefore

arc HKL =184°20/,
and
arc NH+arc LO=4°20/
by subtraction of the semicircle NPO. And
arc HNU =2 arc HN =4°20’.
And so
chord HU =4°32’
where
ecc. diam, =120
And, the half of chord HU,
HT=EQ=2°16".
Again, since
arc HNPK =93°9’
and
arc HN =2°10/
and
quadrant NP =90°,
therefore, by subtraction,
arc PK =0°59
and
arc KPX =2 arc PK=1°58'.
And so
chord KWX =204’/
and, the half of it,
KW=FQ=1r2,
But, it was proved
EQ=2r16'.
And since
8q. FQ-+sq. EQ=sq. EF,
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therefore, in length,
EF=2r29'30”
where
rad. ecc. =060,
Therefore the radius of the eccentric circle is very nearly twenty-four times
the line between its centre and that of the ecliptic.
Again since
FQ=1»2
where it was proved
EF =2r29'30",
therefore
FQ=49r46’
where
hypt. EF =120,
and, on the circle about right triangle EFQ,
arc FQ=49°.
And therefore
angle FEQ=49° to 2 rt.
=24°30".

And so, since the angle is at the centre of the ecliptic, arc BG by which the
apogee @ precedes the summer tropic point B, is also 24°30".
Finally, since the quadrants OS and SN are each 90°, and

arc OL=arc HN =2°10/,

and

are MS=0°59,
therefore

arc LM =86°51'
and

arc M H =88°49’.

But the sun moves regularly through 86°51” in 8814 days, and through 88°
49’ in very nearly 9014 days [Chap. 2, Table of Sun’s Regular Movement].
And so the sun will appear to traverse arc CD, which is the arc from the
autumn equinox to the winter tropic in 8814 days; and arc DA, which is the
arc from the winter tropic to the spring equinox, in very nearly 9014 days.
And these things have been found by us in accord with what Hipparchus
Says.
L Now with these quantities, let us find out first
how much is the greatest difference between the
regular and irregular movements, and at what point
this occurs.

Then let there be the eccentric circle ABC with

D centre D and diameter ADC through the apogee A;
and on it let there be the centre of the ecliptic E.
8 £ And let EB be drawn perpendicular to AC, and DB

be joined. Since
1. betw. ¢. DE =230/

e where
rad. BD =607
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according to the ratio of 1 to 24, therefore
DE=5°

where

hypt. BD=120°,
and, on the circle about right triangle BDE,

arc DE=4°46".
And so angle DBE which contains the greatest anomalistic difference will be
4°46’ to 2 right angles’ and 2°23’ to 4 right angles’ 360°. And

rt. angle BED =90°
and
angle BDA =angle BED+-angle DBE =92°23,

And since angle BDA is at the centre of the eccentric circle and angle BED of
the ecliptic, we shall have the greatest anomalistic difference as 2°23’. And
as for the ares at which this occurs, that of the eccentric which is regular is
92°23’ from the apogee, and that of the ecliptic which is apparent and irregular
is a quadrant or 90°, as we have already proved. And it is clear from what has
been set out that in the opposite section the apparent mean passage and the
greatest anomalistic difference will be at 270°, and the regular mean passage
at 267°37’ on the eccentric.

In order to show with numbers also that the same quantities can be in-
ferred on the hypothesis of the epicycle when there
are the same ratios in the way we described, let
there be the circle A BC with centre D and diameter
ADC, concentric with the ecliptic, and the epicycle A
EFG with centre A. And let the straight line DFB F
be drawn from D tangent to the epicycle, and let ~1
AF be joined. Then likewise

AD=24 AF,
so that again also °
AF=5p

m

where
hypt. AD =120,
and, on the circle about right triangle ADF,
arc AF =4°46' to 2 rt.
=2°23'
Therefore, the greatest anomalistic difference (that
is, arc AB) is thereupon found rightly to be 2°23’; and the irregular are, since it
is contained by the right angle AF D, to be 90° and the regular arc, contained by
angle EAF, again to be 92°23'.

O

5. Ox THE EXAMINATION OF PARTICULAR SECTIONS OF THE ANOMALY

And to be able to distinguish at any time particular irregular movements,
we shall again show for either hypothesis how, given one of these arcs, we can
get the others also.

Then first let there be the circle ABC with centre D, concentric with the
ecliptic; and the eccentric circle with centre H; and the diameter EAHDG
through both centres and the apogee E. And with arc EF cut off, let #D and FH
be joined. And first let arc EF be given, for instance, as 30°; and on FH pro-
duced let fall the perpendicular DK from D.
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Since then it is assumed

arc EF =30°,
therefore

angle EHF =angle DHK =30°
=60° to 2 rt.

And therefore, on the circle about right triangle
DHK,

arc DK =060°,
and, the rest of the semicircle,

arc K =120°. {Eucl. 111, 31]
And therefore

DK =60
and
KH=103r55"
where
hypt. DH =120v,
And so
DK =1°1%/,
HEK =2r10/,
-~ KHF =62°10/
where
DH =230,
rad. FH =60r,
And since

sq. DK+sq. FHK =sq. FD,

hypt. FD=062°11".
And therefore

where
FD=120v,
and, on the circle about right triangle FDK,
arc DK =2°18’,
And so

angle DFK=2°18' to 2 rt.

=1°9’.
Therefore the anomalistic difference at that time is
1°9’. But angle EHF was 30° and therefore the re-
maining angle ADB (that is, arc A B on the ecliptic)
is 28°51".

And with the same construction, if HL is dropped
from H perpendicular to #D, it will be immediately
clear that also, if any other angle is given, the rest
are given. For if we suppose the arc A B on the eclip-
tic given (that is, angle HDL), then the ratio of DH
to HL is given. And if the ratio DH to HF is given,
the ratio of HF to HL is also given; and therefore
we shall have angle HFL given (that 1s, the anom-
alistic difference) and angle EHF (that is, arc £F of
the eccentric circle).
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And if we suppose the anomalistic difference (that is, angle HFD) given, then,
conversely, the same things will occur. For the ratio of HF to HL is given, and
given from the first is the ratio of HF to HD. And so the ratio of DH to HL is
also given; and therefore also angle HDL (that is, arc AB of the ecliptic) and
angle EHF (that is, arc I/I' on the eccentric circle) are given.

Again let there be the circle ABC with centre D and diameter ADC, con-
centric with the ecliptic, and the epicycle EFGH
with centre A4, in the same ratio. And let arc EF be
cut off, and ¥BD and FA joined. Again let arc EF « l
be supposed 30°, and let the line KF be drawn from X
F perpendicular to AE. P
Since P

arc EF =30°,
angle EAF =30°
=60° to 2 rt. o
And so, on the circle about right triangle AFK,
arc FK=60°,
and, the remainder of the semicircle,
arc AK=120°.
And therefore ~C
chord FK =60r,
chord AK =103r55’

F

where
diam. 4 F = 120r,
And so
FK=1°15,
AK=2r10,
KAD=62°10
where
hypt. AF =2¢30’,
rad. AD=60v.
And since

sq. FK+sq. KAD=sq. FBD,
therefore, in length,

FD=62r11’
where

FK=1r15.
And therefore

FK=2r25'

where

hypt. DF =120r,
and, on the circle about the right triangle DFK,

arc FK=2°18".
And so also

angle FDK =2°18" to 2 rt.
=1°9".

And therefore, again, the anomalistic difference, which is are AB, is also 1°9.
But angle EAF was 30°. Therefore the remaining angle AFD (that is, the ap-
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parent arc of the ecliptic) is 28°51, which agrees with the magnitudes proved on
the hypothesis of eccentricity.
Likewise in this case too, even if any other angle is given, the others will also

be given if, with the same construction, 4 L is drawn
from A perpendicular to FD. For if, conversely, we
give the apparent arc of the ecliptic (that is, angle
AFD) then the ratio of AF to AL is also given. And
since the ratio of AF to AD was given from the be-
ginning, the ratio of AD to AL is also given. And
therefore angle ADB (that is, arc AB which is the
anomalistic difference) is given; and also angle ZAF
(that is, arc EF) of the epicycle.

And if we suppose the anomalistic difference given
(that is, angle ADB) then, conversely, the ratio of
AD to AL will likewise be given. But since the ratio
of AD to AF was given from the beginning, the ratio
of AF to AL is also given, and therefore angle AFD
is given (that is, the apparent arc of the ecliptic)
and angle EAF (that 1s, arc EF of the epicycle).

Again, with the previous construction of the eccentric circle, let the are F@G
be cut off from the perigee G on the eccentric circle

and be assumed to be 30°. And let DFB and FH be £
joined, and let DK be dropped from D perpendicu-
lar to HF.
Since
arc FG=30°,
angle FHG =30°
=60° to 2 rt. K
And so, on the circle about right triangle DHK,
arc DK =60°

and, the remainder of the semicircle,
arc KH=120°

And therefore

chord DK =60p,

chord KH =103r55

where

And therefore

where

And since

therefore, in length,

diam. DH =120,
DK =1r15,
HK=2r10,
KF=57°50’,

hypt. DH =2°r30’,
rad. HF =60r.

sq. DK+sq. KF=sq. DF,

DF =57051’
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where
DK =1r15',
And therefore
DK =2r34'36"
where
hypt. DF =120v,
and, on the circle about right triangle DFK,
arc DK =2°27’,
And so
angle DFK =2°27" to 2 rt.
=1°14,
Therefore the anomalistic difference is 1°14’. And since angle FHG is assumed
to be 30°, the whole angle BDC (that is, arc BC of the ecliptic) will be 31°14".

And in the same way now, with BD produced and HL drawn perpendicular
to it, if we give arc BC of the ecliptic (that is, angle
HDL), then the ratio of DH to HL is also given; and
since the ratio of HD to HF was given from the be-
ginning, the ratio of FH to HL is also given. And
therefore we have angle HFD given, that is, the
anomalistic difference; and angle FHD (that is, arc
GF) on the eccentric circle.

And if we give the anomalistic difference (that is,
angle [{F D) then conversely the ratio of FH to HL
is also given; and since the ratio of FH to DI has
been given from the beginning, the ratio of DH to
HL is also given. And therefore we have angle HDL
given (that is, ar¢ BC of the ecliptic) and angle FHG
(that is, arc FG of the eccentric circle).

In the same way, with the previous construction
of the concentric circle and epicycle, let arc HG be
cut off from the perigee H at 30°. And let AG and DGB be joined, and GK drawn
from G perpendicular to AD.

Then since again

£ arc GH =30°,
F angle HAG =30°
A A =60° to 2 rt.
And so, on the circle about right triangle GKA,
" arc GK =60°
H /S and, the remainder of the semicircle,

are A K=120°.
And therefore
° chord GK =607,
chord AK =103r55’
where
hypt. AG=120°.
And therefore

(g}

GK =1°15,
AK =2°1(,
KD =57°5(/
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where
AG= 2r30/,
rad. AD=00r,
And since
sq. GK+sq. KD=sq. DG,
therefore, in length,
DG =57r51"
where
GK=1r1%.
And therefore
GK =2r34'36"
where
DG =120r;
and, on the circle about right triangle DGK,
arc GK =2°27’.
And so also
angle GDK =2°27' to 2 rt.
=1°14.
Therefore the anomalistic difference (that is, arc AB) is here also very nearly
1°14’. And since angle KAG is assumed to be 30°, the whole angle BGA which
contains the apparent arc of the ecliptic will be 31°14’, agreeing with the mag-
nitudes found for the eccentric circle.
And likewise here also, with AL drawn perpendicular to DB, if we give the
arc of the ecliptic (that is, angle AGL), then the
ratio of AG to AL is given; and since the ratio of

AG to AD has been given from the beginning, the

A \A ratio of AD to AL is also given. And therefore we
V’ have angle ADB given (that is, arc AB which is the
o anomalistic difference) and angle HAG (that is, arc

HG@ of the epicycle).
And, again, if we give arc AB of the anomalistic
b difference (that is, angle A DB) then, conversely, the
ratio of AD to AL is likewise given; and since the
ratio of AD to AG has been given from the begin-
ning, the ratio of AG to AL is also given. And there-
fore we shall have angle AGL given (that is, the arc

< of the ecliptic) and angle HAG (that is, arc HG of
the epicycle). And we have shown what was pro-
posed.

Now, although, by means of these theorems, various tables of the sections
containing the anomalistic distinctions of the apparent courses can be con-
structed, yet that one containing the anomalistic differences arranged side by
side with the regular arcs will better serve us for getting easily the magnitudes
of the particular corrections, both because of its conformity with the hypotheses
themselves and because of the simplicity and facility in the calculation for each
section. Therefore we followed the first of the theorems set out with numbers for
the particular sections, and calculated geometrically just as before the anomal-
istic differences corresponding to each of the regular ares. And in general, both
in the case of the sun and of the other planets, we divide the quadrants at the
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apogees into 15 sections, so that the comparison is at intervals of 6°; and the
quadrants at the perigees into 30 sections so that the comparison in this case is
at intervals of 3°. This is done because the differences in excess at the perigees
are greater than those corresponding to equal sections at the apogee.

And so we shall arrange the table of the sun’s anomaly into forty-five rows
and three columns. And of these columns the first two contain the numbers of
the 360° of regular movement, while the first fiftecen rows embrace the two quad-
rants at the apogee, and the other thirty those at the perigee. And the third col-
umn contains the degrees of anomalistic difference to be added or subtracted,
corresponding to each of the regular numbers. And here is the table:

6. TABLE oF THE SUN’s ANOMALY

1. 2. 3. 1. 2. 3.
Common numbers Common numbers : 1
(Degrees of Regular Additive—sub- (Degrees of Regular Additrve—sub-
Movement) tractive differences Movement) tractive differences
6° 354° 0° 14 120° 240° 2° 6’
12° 348° 0° 28’ 123° 237° 2° 2/
18° 342° 0° 42’ 126° 234° 1° 58’
24° 336° 0° 56 129° 231° 1° 54
30° 330° 1° 9’ 132° 228° 1° 49’
36° 324° 1° 21’ 135° 225° 1° 44/
42° 318° 1° 32! 138° 222° 1° 39’
48° 312° 1° 43’ 141° 219° 1° 33’
54° 306° 1° 53’ 144° 216° 1° 27
60° 300° 2° v 147° 213° 1° 21’
66° 294° 2° 8 150° 210° 1° 14/
72° 288° 2° 14/ 153° 207° 1° 7
78° 282° 2° 18’ 156° 204° 1° 0’
84° 276° 2° 21 159° 201° 0° 53’
90° 270° 2° 23’ 162° 198° 0° 46/
. 93° 267° 2° 23’ 165° 195° 0° 39’
96° 264° 2° 23’ 168° 192° 0° 32’
99° 261° 2° . 22 171° 189° 0° 24’
102° 258° 2° 21’ 174° 186° 0° 16’
105° 255° 2° 20" 177° 183° 0° 8’
108° 252° 2° 18’ 180° 180° 0° o
111° 249° 2° 16/
114° 246° 2° 13’

117° 243° 2° 10

X _—_ 3 -
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7. O~ THE ErocH oF THE Sun’s MEaN COURSE

Since there remains to be established the epoch of the sun’s regular movement
for finding out its particular course at any time, we shall make the following ex-
position, using again in general, both in the case of the sun and of the other
planets, the passages most accurately observed by ourselves, and taking the
establishing of the epochs back to the beginning of the reign of Nabonassar by
means of the mean movements already demonstrated. For we have ancient ob-
servations completely preserved from that period to the present.

Then let there be the circle with centre D concentric with the ecliptic; and the
eccentric circle of the sun EFG with centre H; and
the diameter EAGC through both centres and the
apogee E. And let B be supposed the fall equinox
point on the ecliptic; and let BFD and FH be
joined; and let HK be dropped from H perpendicu-
lar to #D.

Since the point B, the autumn equinox, is at the
beginning of the sign of the Balance, and the perigee
C 514° within the sign of the Archer, therefore

arc BC=65°30'".
And therefore
angle BDC =angle HDK =65°30

=131° to 2 rt.
And so, on the circle about right triangle DHK,
arc HK =131°,
and
chord HK = 109712’
where
diam. DH =120r,
Therefore
HK =4r33'
where
DH =5,

hypt. FH=120°.
And, on the circle about right triangle FHK,
arec HK =4°20/,
And so
angle HFK =4°20/ to 2 rt.
=2°10)".
But it was proved :
angle BDC =65°30/,
and therefore the remaining angle FHG (that is, arc FG on the eccentric circle)
is 63°20". Therefore, when the sun is at the autumn equinox, it precedes the
perigee (that is, the point 514° within the Archer) by 63°20’ mean movement;
and it is 116°40’ in mean movement from the apogee (that is, 514° within the
Twins) in the direction contrary to the movement of the heavens.
Now that this is understood—since, of the first equinoxes observed by us, one
of the most accurate occured as the autumn equinox in the year 17 of Hadrian,
Egyptianwise Athyr 7, very nearly 2 hours after midday—it is clear that at that
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time the sun was 116°40’ in mean movement on the eccentric circle, away from
the apogee in the direction contrary to the movement of the heavens. But from
the reign of Nabonassar to the death of Alexander amounts to 424 Egyptian
years; and from the death of Alexander to the reign of Augustus, 294 years; and
from the year 1 of Augustus, Egyptianwise Thoth 1, midday (for we establish
the epochs from midday) to the year 17 of Hadrian, Athyr 7, 2 hours after mid-
day, amounts to 161 years, 66 days, and 2 equatorial hours. And therefore from
the year 1 of Nabonassar, Egyptianwise Thoth 1, midday, to the time of the
autumn equinox just mentioned amounts to 879 Egyptian years, 66 days, and
2 equatorial hours.

But in that amount of time the sun makes a mean movement of very nearly
211°25" over and above the complete circles. If then we add to the 116°40,
representing the distance of this autumn equinox from the eccentric circle’s apo-
gee, the 360° of a whole circle and subtract from the sum the 311°25’ left over
from the time between, then we shall have the sun at its epoch of mean move-
ment in the year 1 of Nabonassar, Egyptianwise Thoth 1 at midday, 265°15" of
mean movement distant from the apogee in the direction contrary to the move-
ment of the heavens, and 0°45’ within the Fishes.

8. Ox CALCULATING THE SUN

Whenever we wish to know the course of the sun for any desired time, taking
the total time from the epoch to the proposed date with reference to the hour
in Alexandria and taking it to the tables of mean movement, we add the degrees
corresponding to the particular numbers to the 265°15" of the distance found
above; and striking the complete circles out of the result, we subtract the rest
from the 5°30" within the Twins backwards in the order of the signs [from west
to east]. And wherever the number falls, there we find the mean course of the
sun. INext we take the same number (that is, the number of degrees from the
apogee to the mean course) to the Table of Anomaly. And, if the number falls
in the first column (that is, if it is not greater than 180°), then we subtract the
corresponding degrees in the third column from the position of the mean course;
but, if it falls in the second column (that is, if it is greater than 180°), then we
add it to the mean course. And thus we find the true and apparent sun.

9. ON THE INEQUALITY OF SoLAR Days

Now this is pretty nearly all of the theory of the sun considered by itself. But
it would be well to add briefly to this something concerning the inequality of
the solar days, a matter which ought to be cleared up before what follows. For
each of the simple mean movements we have given receives a uniform increase,
as if the solar days were equal in time; but this is contrary to true theory. Now,
given that the revolution of the universe is effected regularly about the poles of
the equator, if the cyclical return is taken either with respect to the horizon or
the meridian (whichever point is the more easily distinguishable), it is clear that
one complete turn of the cosmos is the return of the same equatorial point from
some section either of the horizon or the meridian back to that same section,
and the solar day considered simply is the return of the sun from some section
either of the horizon or of the meridian back again to the same section. The
regular [or mean] solar day is, therefore, that embracing a course of 360° equa-
torial time proper to one revolution of the equator plus very nearly 59’ equa-
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torial time for the sun’s contrary mean movement along the ecliptic. And the
irregular solar day is that embracing a course of 360° equatorial time proper to
one revolution of the equator plus the extra are, either at the horizon or at the
meridian, corresponding to the sun’s contrary irregular movement.

And so this section of the equator which is traversed over and above the 360°
equatorial time must be an unequal one because of the sun’s apparent irregu-
larity, and because equal sections of the ecliptic do not traverse the horizon or
the meridian in equal periods of time. Each of these extra sections makes the
difference between the regular and irregular return, in the case of one solar day,
a difference indistinguishable by the senses; but a total of many solar days
makes a very sensible difference.

Now, the sun’s greatest anomalistic difference occurs at intervals of one mean
movement of the sun to the other. For in this way the total of solar days will
differ from the total of regular [or mean] solar days by very nearly 434° equa-
torial time; and the total in one interval will differ from the total in the other
by twice as much, that is by 914° equatorial time. And this is so because the
apparent course of the sun is less, in the semicircle of the apogee, than the regu-
lar course by 434°, but greater, in the semicircle of the perigee, by the same
amount.?

And the greatest difference of irregularity in the corresponding risings or set-
tings oceurs in the semicireles bounded by the tropic points. For then the ascen-
sions in each of these semicircles will differ from the 180° equatorial time of
those considered regularly by the difference between the shortest or longest day
and the equinoctial day; and they will differ from each other by the difference
between the longest day or night and the shortest day or night. But the greatest
difference of inequality in the case of simultaneous culminations occurs in the
intervals containing two signs, one sign on each side of the tropic or equinoctial
point. For those at the tropics taken together will differ from the regular by very
nearly 414° equatorial time, but {from those at the equinoctial points taken to-
gether by 9° equatorial time. For the latter are less than the mean movement,
and the former are greater by nearly an equal amount.? And thence we estab-
lish the beginnings of the solar days at the positions of the sun as it passes the
meridian, and not from the sun’s risings or settings; because the difference con-
sidered with respect to horizons ean amount to many hours and is not the same
everywhere, but changes with the excess of the longest over the shortest day in
each latitude of the sphere. But the difference at the meridian is the same every-
where and does not exceed the total time of the sun’s anomalistic difference.

And the difference in the intervals to be added or subtracted is constructed
out of the eombination of both of the aforesaid differences: that of the sun’s

1For the greatest anomalistic differences, it has already been proved, occur at the apparent
distance of a quadrant from the apogee, which are also the points of mean movement. Now,
it has been shown that the difference between the angles of the regular and irregular move-
ments from the mean to the apogee is 2°23’ and from the apogee to the other mean again
2°23', the regular exceeding in both cases. The same thing occurs from the mean through the
perigee to the other mean, the irregular exceeding in both cases.

#This difference is demonstrated in the Table of Ascensions for the Right Sphere, Book II.
The difference in the co-ascensions of the ecliptic and equator is additive for the ecliptic in
the Twins and the Crab, and the Archer and the Goat. It is subtractive for the ecliptic in the
Fishes and the Ram, and the Virgin and the Balance. The other signs are all mixed. The
equator here, of course, represents the regular movement of the sun for the mean solar days;
and the ecliptic represents the irregular movement of the sun for the irregular true solar days.
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anomaly and that of the culminations. And the interval from the middle of the
Water Bearer to the Balance is subtractive for either difference; and the interval
from the Scorpion to the middle of the Water Bearer is additive. For sach of
these sections either adds or subtracts with respect to the solar anomaly at most
very nearly 324° equatorial time, and with respect to the culminations very
nearly 424° equatorial time. And so, at most, the difference in the solar day,
gotten from the combination of the two, amounts, for either interval, to 814°
equatorial time over and above the regular difference—that is, 14+14g [equa-
torial] hour. And with respect to each other it amounts to 1624° equatorial time
—that is, 114 {[cquatorial] hours. Now, if this difference is neglected in the case
of the sun, it perhaps would not hurt the study of its appearances to any appre-
ciable extent; but in the case of the moon, because of the rapidity of its move-
ment, it would produce a considerable difference even for 31£°.

In order to reduce the solar days given over any interval of time (and by solar
days I mean from midday or midnight to midday or midnight) to regular solar
days, we find out for the beginning and end of the given interval at what part of
the ecliptic the sun is to be found both in its regular and irregular movements.
Then, taking the surplus over and above complete revolutions accumulated in
the irregular interval (that is, from apparent position to apparent position) to
the Table of Ascensions in the Right Sphere, we find out with how many de-
grees equatorial time the degrees of the irregular interval, as we said, culminate.
Then we take the difference between the amount of time thus found and the
degrees of the regular interval and calculate the part of the corresponding equa-
torial hour. And if the amount of time found in the Table of Ascensions in the
Right Sphere is greater than that of the regular interval, we add this difference
to the given number of solar days; if less, we subtract. And finally, in this way,
we have the time expressed in mean solar days. We shall use this correction
especially in the successive additions of the mean movements in the moon’s ta-
bles. And it is immediately seen that, given the regular [or mean] solar days, the
simply considered seasonal solar days are gotten by an addition or subtraction
in the converse order.!

11f the sun moved regularly along the equator instead of moving irregularly along the
ecliptic, the solar days would all be regular. Their irregularity, then, is due to two things: (1)
the irregularity of the sun’s movement, and (2) the fact that the sun moves on a circle oblique
to the equator.

Now, as far as the solar days are concerned, it is not the arc of the ecliptic that is directly
involved, but the corresponding or co-ascending arc of the equator. For the culminations
which define solar days tuke place at the meridian, and the meridian is through the pole of the
equator. Therefore we first find the arc on the equator co-ascending with the apparent arc
traversed by the sun along the ecliptic.

Now if the arc of the sun’s regular movement is less than the equatorial arc co-ascending
with the apparent arc, then the number of actual solar days is less than the number of regular
ones. But if the are of the sun’s regular movement is greater, then the number of actual solar
days is greater than the number of regular ones. For when the sun moves faster than the
regular, then the actual solar day is longer than the mean solar day and there are fewer of
them in a given time; but, when it moves slower, then the actual solar day is shorter.

And in each case the difference between the number of actual solar days and the number
of corresponding regular solar days is expressed by the difference between the equatorial arc cor-
responding to the apparent arc on the ecliptic and the arc of regular movement. For (1) if the
regular arc is less than the equator’s arc, then the apparent arc is reaching the meridian that
many time-degrees later; and so just so many time-degrees have been lost to the number of

regular solar days. For the same number of regular solar days as actual solar days would only
take the sun the length of the arc of regular movement, if we consider it as moving on the
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Now, according to the epoch we have chosen (that is, the year 1 of Nabonas-
sar, Egyptianwise Thoth 1 at midday), the sun’s mean position, as we have just
shown [p. 104], was 0°45’ within the Fishes. But, considered with its anomaly,
its position was very nearly 3°8’ within the Fishes.

equator. It would perhaps be clearer if we imagined that the regular arc were less by a revolu-
tion than the equator’s arc representing the apparent arc on the ecliptic. Then the number of
actual solar days would be one day less than the number of regular solar days. For the sun
would have moved back one whole circle, and thus would have come to the meridian one time
less over the period assigned than if it had moved back according to the regular movement.
And by the same argument (2) if the regular arc is greater, just so many time-degrees have
been added to the number of regular solar days. Therefore, in the first case, we add the differ-
ence to the number of actual solar days to get the number of regular solar days; and, in the
second case, we subtract.



BOOK FOUR

1. From WuaT KiND or OBSERVATIONS AN INQUIRY INTO
THE Moon Must BE CONDUCTED

Having now organized in the preceding book all the incidents one could ob-
serve with respect to the sun’s movement, we begin next in order with the trea-
tise on the moon. First we think it is not proper to proceed simply and hap-
hazardly in the use of observations for this purpose; but for the general under-
standing of the moon it is best to attend especially to those demonstrations
which not only cover a longer period of time but also are gotten from the obser-
vations of lunar eclipses. For it is only by means of these that the positions of
the moon can be found in an accurate way, since the other kinds of observations
which depend either on its courses with respect to the fixed stars, or on instru-
ments, or on the solar eclipses, can, because of the moon’s parallaxes, be very
deceptive. But with respect to the particular incidents the inquiry can be carried
on from the other observations also.

For since the distance from the earth’s centre to the lunar sphere is not as
that to the ecliptic circle which is so great that the magnitude of the earth is
in the ratio of a point to it, therefore the straight line drawn from the moon’s
centre to scctions of the ecliptic, according to which the true courses of all the
stars are conceived, necessarily does not everywhere sensibly coincide with the
straight line according to which its apparent course is observed—that is, the
straight line drawn from some part of the earth’s surface or rather from the ob-
server’s eye to the moon’s centre. But when the moon is directly above the ob-
server, then only are the straight lines drawn from the earth’s centre and the ob-
server’s eye to the moon’s centre and the ecliptic one and the same straight line.
And when it is in any way whatsoever removed from the zenith, a difference of
inclination in these straight lines follows; and therefore the apparent course dif-
fers from the true one for different positions of the eye as it moves downward.
For the positions of the moon scen from the earth’s centre are determined pro-
portionately to the magnitudes of the angles resulting from the inclination.

Therefore, when solar eclipses take place through the intervention and inter-
position of the moon, and when their occurrence shapes its passing shadow into
a cone from our eye to the sun, the result is that these things are not fulfilled
everywhere in the same way either in magnitudes or times, nor to all alike for
the causes we have assigned; nor does the moon appear to shadow the same
parts of the sun. But in the case of lunar eclipses no such difference follows from
the parallaxes, since the eclipse of the moon does not involve the eye of the ob-
server as an incidental cause. For the moon always receives its light from the
sun; and, when the moon is opposite it, the whole of it appears to us lighted up,
because the whole of the bright hemisphere is also at that time turned towards
us. But when it is opposite the sun in such a way that it falls into the cone of the
earth’s shadow which is always revolving opposite the sun, then the moon be-
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comes darkened proportionately to the extent it enters the cone, since the earth
screens the rays of the sun. Therefore it appears to be eclipsed similarly for all
parts of the earth both as to magnitudes and as to the times of the intervals.

Therefore, insofar as we are concerned with a general examination of the true
positions of the moon but not of apparent ones! (the true ones to be ascertained
because the ordered and similar thing should be necessarily preferred to dis-
ordered and dissimilar things), we say we must not use the other observations
where the positions depend on the eye of the observers, but only the observa-
tions of the moon’s eclipses, since there the eye is in no way involved in getting
the positions. For whatever section of the ecliptic the sun is found to occupy at
the midtime of the eclipse when the moon’s centre is directly opposite in true
longitude to the sun’s centre, the section opposite that section the moon’s centre
will also truly occupy at the same midtime of the eclipse.

2. Ox tHE Moon’s Periops or TIME

Let this be our brief exposition as to what observations are to be used for gen-
eral considerations of the moon. We shall try and give an account of how the
ancients proceeded in their demonstrations, and how we can make a more useful
differentiation of the hypotheses which conform to the appearances.

Now, since the moon appears to move irregularly both in longitude and lati-
tude,? and not to cross the ecliptic nor to have a cyclical return in its latitudinal
course at equal intervals of time; and since, without the discovery of the interval
in which this irregularity is redeemed, necessarily the periods of the others could
not be gotten; and since, from particular observations, the moon appears to
have its mean, greatest, and least movements in all parts of the zodiac, and to
be at its northernmost point, southernmost point, and on the ecliptic itself at
all parts of the zodiac, very reasonably therefore the ancient mathematicians
sought a certain time in which the moon would always move the same distance
in longitude, for this alone could redeem the irregularity. Comparing, then, for
the causes we have assigned, the observations of the lunar eclipses, they tried
to find what multitude of lunar months would always be isochronous with other
equal multitudes and would embrace an equal number of circles in longitude,
either whole or in parts. Now the even more ancient ones in a more or less rough

iIn the case of the sun, there were the mean positions and the true (éxpuB7%s) positions.
And the true positions were taken as coinciding with the apparent ones. For the true positions
are the projections of the sun on the ecliptic by a straight line through the earth’s centre and
the sun’s centre; the apparent ones are the projections on the ecliptic by a straight line through

the observer’s eye and the sun’s centre. In the case of the moon, they are all three distinet by
reason of the parallaxes.

2The moon’s latitudinal movement is its movement along a great circle inclined to the
ecliptic. It is not, as might be thought, its movement along an arc at right angles to the
ecliptic. This inclined circle is the moon’s oblique cirele which is not to be confused with the
ecliptic itself, the sun’s oblique circle. The moon’s longitudinal movement is its movement
considered with reference to the ecliptic, just as the sun’s is its movement with respect to the
equator. The sun’s movement with respect to the equator is distinguished from its movement
along the ecliptic because of the great obliquity of the one to the other. In the case of the
moon, the inclination of its oblique circle with respect to the ecliptic is so small as to be neg-
ligible for such considerations. But the moon’s returns in latitude do not appear to correspond
to its returns in longitude—that is, its successive returns to the same parallel to the ecliptic
take place at different great circles through the ecliptic’s poles. Hence it is necessary to sup-
pose that the nodes of its oblique circle move with respect to the ecliptic, and therefore it is
necessary to distinguish its latitudinal movement from its longitudinal.
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way assumed that period of time to be 6,58514 days. For in this period they saw
accomplished very nearly 223 lunar months, 239 restitutions of anomaly, 242
latitudinal cycles, and 241 longitudinal eycles plus the 1024° which the sun also
adds to its 18 complete revolutions in that time, their restitutions being ob-
served with respect to the fixed stars. And they called this interval of time
“periodic” as being the least to collect approximately the differences of the
movements into one complete cyclical restitution. In order to arrange it in terms
of whole days, they tripled the 6,58514 days and got the number 19,756 which
they called an evolution [¢fehiyuss]. And likewise tripling the others, they had
669 lunar months, 717 restitutions of anomaly, 726 latitudinal cycles, and 723
longitudinal cycles plus the 32° which the sun alsc adds to its 54 complete
revolutions.

And again Hipparchus proved by calculations from his own and Chaldean
observations that these numbers were not accurate. For he shows by the obser-
vations he lays down that the least number of days in which the moment of
eclipse recurs, after an equal number of months and an equal number of move-
ments, is 126,007 days and 1 equatorial hour. And in this amount of time he
finds fulfilled 4,267 lunar months, 4,573 complete restitutions of anomaly, 4,612
zodiacal revolutions less the 714° (very nearly) which the sun also lacks of com-
pleting 345 circles, these restitutions again being observed with respect to the
fixed stars. And so he finds, when the given number of days is distributed over
the 4,267 lunar months, that the mean time of the lunar month amounts to very
responding intervals from lunar eclipse to lunar eclipse are equal, so that the
restitution of irregularity becomes evident from the fact that always in this
amount of time there are contained just so many lunar months, and that to the
4,611 revolutions, equal in longitude, are added 35214° in accordance with the
sun’s syzygies.

But if one should seek, not the number of months from lunar eclipse to lunar
eclipse, but only from a conjunction or full moon to the corresponding syzygy,
he would find a still smaller number for the restitution of anomaly and for the
lunar months by taking their only common measure 17, which brings the result
to 251 lunar months and 269 restitutions of anomaly. But this period of time
was found no longer to complete the latitudinal restitution. For the return of the
eclipses appeared to save the equalities only with respect to the intervals of time
and of the longitudinal revolutions, but not with respect to the magnitudes and
similarities of the shadows cast, from which the latitude is known.

Now, having already found the time of the return of anomaly, Hipparchus
again compares the intervals of lunar months bounded by eclipses in every way
similar both in the magnitude and length of time of the shadows cast and in
which was no anomalistic difference, so that the latitudinal course for that rea-
son appears to make a cyclical return. And he shows that such a revolution is
completed in 5,458 lunar months and 5,923 latitudinal cycles.

Now this was somewhat the way in which our predecessors dealt with these
researches. But we would consider it neither a simple nor easy way, but one de-
manding much methodical diligence. For, first, it would be no use for us to grant
that the durations of the intervals are accurately found to be equal to each
other, unless the sun effected either the same anomalistic difference or none for
each of the intervals. For if this should not be so, and there should be, as I said,
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some anomalistic difference of the sun, then neither will the sun, nor evidently
the moon, have made equal revolutions in equal periods of time. If, for instance,
each of the distances compared in addition to the complete and equal solar years
takes on another half year, and if in this amount of time the sun happens to
have moved in the first interval from its mean movement in the Fishes, and in
the second interval from its mean movement in the Virgin, then in the first in-
terval it will have added on less than the semicircle by nearly 434°; and in the
second interval, more than the semicircle by the same amount. And so in the
same time the moon has a surplus, over and above complete circles, of 17514°
in the first interval; and 18434° in the second.

Hence we say it is first necessary that this sort of accident be characteristic
of the intervals in their relationship to the sun: either (1) that it embrace whole
circles; or (2) that for one interval it add on a semicircle from the apogee and
for the other a semicircle from the perigee; or (3) that for both it begin from the
same section; or (4) that it be equidistant on each side of either the apogee or
the perigee, for the first eclipse in one interval and for the second eclipse in the
other. For only in this way would its anomalistic difference be either equal or
absent in each interval, so that the extra ares would be equal either to each
other, or to each other and arcs of regular movement.

And, secondly, we think that like attention should be paid to the courses of
the moon. For if no distinctions are made here, it will again appear possible for
the moon to be able to add on equal longitudinal arcs in equal periods of time
without any restitution of its anomaly. And this will happen (1) if for each of
the intervals it begins from the same course which is to be added or subtracted
and does not stop at the same; or (2) if in one interval it begins from the greatest
movement and stops at the least, while in the other it starts from the least and
ends at the greatest; or (3) if the first course of one interval and the last course
of the other are equidistant on each side of either the course of greatest move-
ment or the course of least movement. For each of these cases, if it come about,
will either again produce no anomalistic difference or the same, and therefore
make the longitudinal surpluses equal, but will effect no restitution of anomaly.
Therefore the intervals considered must fall under none of these cases if they
are to embrace a restitution of anomaly.

But on the contrary, if complete restitutions of anomaly are not embraced by
the intervals, we should choose those which can most thoroughly manifest the
inequality ; that is, we should choose them when they begin not only from differ-
ent courses but also from ones very different either in magnitude or power;
(a) in magnitude as when in one interval it begins from the least course and does
not end with the greatest and when in the other interval it begins from the great-
est and does not end with the least, for in this way the difference of longitudinal
surplus will be greatest if whole cycles of anomaly are not completed, especially
when one quadrant or three quadrants of one anomaly are left over, the inter-
vals then being unequal by twice the anomalistic difference; and (b) in power
as when in each of the intervals it begins from the mean course, and not from
the same mean, but in one interval from the mean additively and in the other
subtractively; for in this way, if the anomaly is not restored, the longitudinal
surpluses will differ from each other the most—by twice the anomalistic differ-
ence if the surpluses are again a quadrant or three quadrants of an anomalistic
cycle, or four times the difference if a half cycle.
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And, therefore, we see that Hipparchus was most attentive, as he judged, in
his choice of the intervals gotten for this research. And we see he used the case
where the moon, in one interval, started from the greatest course and did not
stop with the least, and, in the other interval, started from the least and did not
stop with the greatest; and redeemed the resulting anomalistic difference of the
sun, although it is short a bit because the sun’s return fails of complete circles
by very nearly one quarter of a sign which is not the same sign and does not
produce an equal anomalistic difference in each of the intervals.

And we say these things, not to belittle this method of getting at the periods
of return, but to bring to mind that, when it is done with the proper eare and
consequent caleulation, it can rectify the difference; but that, if any at all of the
incidents explained are neglected, it will completely falsify the solution sought;
and that a rectification which accurately takes into account all the incidents of
the observations is very difficult for those who are making a discerning choice
of these observations.

Now, of the periodie returns given according to the calculations made by
Hipparchus, that of the lunar month, as we said, appears to have been calcu-
lated as soundly as possible and not to differ by any sensible amount from the
true one. But the periodie return in latitude and the restitution of anomaly ap-
pear to be off by an appreciable amount. So much so that we have immediately
seen the flaw from the simpler and easier means employed by us in view of the
same diserimination. And we shall immediately demonstrate these methods a-
long with the quantity of the moon’s anomaly. But first we set out, for greater
service in what follows, the particular mean movements in latitude, longitude,
and anomaly, in accordance with the proposed times of return of the periodic
movements modified by that correction which will be demonstrated later.

3. O~ THE MoonN’s REGULAR MOVEMENTS IN DETAIL

If now we multiply the sun’s mean daily movement, proved to be very nearly
0°5918ii1711i131v12v31v1, by the 29 days 311501811201 of one lunar month, and
add to the result the 360° of one circle, then we shall have the longitudinal
course of the moon’s mean movement in one lunar month—that is, very nearly
we shall have the moon’s daily movement in longitude—that is, very nearly
13°10134115811:331v30v30~1.

Again, multiplying the 269 circles of the anomaly by the 360° of one circle,
we shall have the number 96,840°. Distributing these over the 7,412 days 101441
511140t of the 251 lunar months, we shall have a daily mean movement of
anomaly of 13°31531i56111291v38v38vi,

Likewise multiplying the 5,923 returns in latitude by the 360° of one circle, we
shall have the number 2,132,280°. Distributing these over the 161,277 days 581
movement of 13°13145113911401v17v19vi,

Again, subtracting the sun’s daily mean movement from the moon’s daily
mean movement in longitude, we shall have the daily mean elongation of 12°111
26ii4 ] 11120iv]7v59vi,

Through the methods we shall employ later on, as we have already said, we
find that the daily mean movement in longitude remains practically unchanged
and that, of course, the movement of elongation remains about the same, too;
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but that the daily mean movement of anomaly is less by 111¥46v39vi, so that it
becomes 13°31531156111171v51v5971, and that the daily mean movement in latitude
is more by 81¥39v18"i, so that it becomes 13°1314511391ii48iv56v37 1,

If, in accordance with these daily movements, we take one twenty-fourth of
each, we shall have the hourly mean movement in longitude of 0°321561127:ii261v
23v46vi15¥11; the hourly mean movement of anomaly of 0°32i391i44i1i50iv44v
39vi57vii3(viii; in latitude of 0°33141i241ii9iv32v21vig2vii3(viii; and of elongation
of 0°30128113611143iv20v44v157v1130viii. And if we multiply the daily movements
by thirty and subtract the complete circles, we shall have the monthly mean
surplus in longitude of 35°171291116111451¥15; the monthly mean surplus of a-
of elongation of 5°431201401118v59v3(vi,

Again, multiplying the daily mean movements by the 365 days of an Egyp-
tian year and subtracting the complete circles, we shall have the yearly mean
surplus in longitude of 129°22146i113111501v32¥30"}; the yearly mean surplus of
anomaly of 88°43i7ii128iii41v13v55vi; in latitude of 148°42i47ii]12iii44iva5v5vi;
and of elongation of 129°37i211128iii29iv23v55vi,

Next, multiplying the yearly movements by eighteen for greater facility as
we said, in using the table, and subtracting the complete circles, we shall have
an eighteen-year mean surplus in longitude of 168°49152i19iti9iv45v. an eighteen-
vear mean surplus of anomaly of 156°561141136111221v10v30v!; in latitude of 156°
501914911119iv31v30"; and of elongation of 173°121261132iii49iv1(v30vi,

Then we shall construect, as in the case of the sun, 3 tables, again of 45 rows and
5 columns each. Now the first column will contain the particular times: in the
first table, the eighteen-year periods; in the second table, the years and then
again the hours; in the third table, the months and then again the days. And the
other four columns contain the particular comparisons in degrees: the second
column those in longitude, the third those of anomaly, the fourth those in lati-
tude, and the fifth those of elongation. See tables on following pages.
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4. TABLES OF THE MEAN MOVEMENTS OF THE MoON, TABLE I
Longitudinal Surplus Surplus of Anomaly
Col.1 | Col. 2 11°22" within the Bullt Col. 3 268°49
Years {Degrees| I | II { III [ IV | V | VI | Degrees | 1 ITJIII IV} V |VI
18 168 1491521 9| 9145| 0O 156 | 56| 14 [ 36 | 22 | 10 | 30
36 337 (391441181930 O 313 |52 (29 (1214421 ] O
54 146 |29 136127 29|15 0 110 {48 |43 |49 6|31 30
72 315 | 19128136139 0| O 267 |44 (58 (25128142 0
90 124 912014548 |45]| 0 64 |41 (13| 1150|5230
108 202 [59 412|154 58|30| 0 221 (37127138113 3| 0
126 101 |49 5 4} 8|15 0 18 1331421144135 ]| 13| 30
144 270 |38 (57113 (18| 0] O 175 129156 |50 57|24 O
162 79 |28 [49 2227|145 0 332 |26 (112719 |34 30
180 248 (18141 | 3173730 0 120 122|126 3141 |45( O
198 57 8133140 |47 | 15| O 286 | 18 (40 (40} 3|55 30
216 225 | 58125149 (57| 0| O 83 | 145516126 6| O
234 34 | 4811759 6|45| 0 240 | 11| 95214816 30
252 203 |38,10) 81630 | O 37 712412911027 O
270 12 128 2117 126115 0 194 3(139)] 5132|371 30
288 181 |17 | 54126 (36 00 350 |59 | 53|41 {5448 O
306 350 714613514545 0 147 | 56| 8 {18116 | 58 { 30
324 158 | 57 | 38445530 0 304 (5222154139 91 O
342 327 14773054 5115| 0 101 (48|37 |31} 1]19 {30
360 136 {37123 3|15 0O 258 |44 (52 7123130 O
378 3056 (2715112 (24145| @ 55 |41 6143|4540 30
396 114 17 712134300 212 §y37(21{20| 7151] O
414 283 659130144 |15} 0 9 33|35 ]3¢ 1|30
432 91 | 56|51 139|54) 0] 0 166 {29 |50 3252712 0O
450 260 |46 |43 149 3(145| 0O 323 (26| 5| 91422 30
468 69 [ 3635|581 13;30¢0 120 |22 11945136 (33| O
486 238 12628 7123115} 0 277 | 1834 {21 |58]43 | 30
504 47 1162016133 ] 0} 0 74 |14 |48 |58 | 20 | 54| O
522 216 612 |25142145} 0 231 | 11| 3134143 | 4|30
540 24 | 56| 4341521300 28 7118111} 516} O
558 193 | 45|56 (44| 2|15] O 185 332147272530
576 2 1354853112 00 341 [ 59|47 123149 (36| O
594 1710 25141 2]21 45| 0 138 |56 | 2 0] 11 |46 | 30
612 340 | 15|33 (11 |31|30} O 205 | 52|16 136{33 (57| O
630 149 5125204115} 0 92 148 3112 56} 7|30
648 317 | 55117129581 0} O 249 |44 (45149 | 18|18 ) O
666 126 | 45| 9|39 0/45| 0 46 {41 ] 0| 25|40 |28 30¢%
684 205 {35] 114811030 | O 203 (37|15 2| 2139} O
702 104 | 24|53 |57 (2015 0 0 |33[29138|24{49 30
720 273 {14146 6130 0| O 157 | 29144114 (47 0] O
738 82 4138153945 0 314 |25 (58|51 911030
756 250 [ 541302449 (30| O 111 [ 2213|127 (31|21 O
774 59 144 (2233|3915 0 268 |18 (28| 3|53 |31} 30
792 228 (34714143 9] 04 0 65 |14 {42 14015 42| O
810 37 124} 6152118145 0 222 110153716 |37 |52 30

1These numbers under the headings refer, of course, to the surpluses at the epochs in the
year 1 of Nahonassar.
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4. TABLES oF THE MEAN MovEMENTS OF THE MooN, TaBrLe I—Continued

Col. 1
Years

18

36

54

72

90
108
126
144
162
180
198
216
234
252
270
288
306
324
342
360
378
396
414
432
450
468
486
504
522
540
558
576
594
612
630
648
666
684
702
720
738
756
774
792
810

Col. 4
Degrees
156
313
110
267

64
221
17
174
331
128
285
82
238
35
192
349
146
303
99
256
53
210
7
164
320
117
274
71
228
25
181
338
135
292
89
246
42
199
356
153
310
107
263
60
217

Latitudinal Surplus
354°15'

II

9
19
29
39
49
58

I
49
38
27
17

6
55
45
34
23
13

2
51
41
30
19

9
58
47
37
26
15

5
54
43
33
22
11

v
19
39
58
18
37

A
31

3
34

6
37

9
40
12
43
15
46
18
49
21
52
24
55
27
58
30

1
33

4
36

7
39
10
42
13
45
16
48
19
51
22
54
25
57
28

0
31

3
34

6
37

VI
30

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

30

Col. 5
Degrees

173
346
159
332
146
319
132
305
118
292
105
278

91
264

78
251

64
237

50
224

37
210

23
196

10
183
356
169
343
156
329
142
315

Surplus of Elongation

I
26
53
19
46
12
39

5
32
58
25
52
18
45
11
38

4
31
57
24
50
17
44
10
37

3
30
56
23
49
16
42

36

70°87

111
32

5
38
11
44
16
49
22
55
28

33

A
10
21
31
42
52

3
13
24
34
45
55

6
16
27
37
48
58

30
30
30
30
30
30
30
30
30
30
30
30
30

30

30
30
30
30
30
30
30
30
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4, TaBLEs oF THE MEAN MoVEMENTS OF THE MooN, TasLe I1

Col. 1 | Col. 2 Longitudinal Surplus Col. 3 Surplus of Anomaly
Years | Degrees| 1 | II ' II1 | IV | V | VI | Degrees Im |11 j1vy v | VI
1 129 (22|46 |13 |50 | 32§30 88 |43 7|28 41|13 55
2 258 |45 | 3227 | 41 5|1 0 177 26 | 14 57 | 22 | 27 | 50
3 28 8|18 41|31 3730 266 9122126 3|4145
4 157 31 4155122110] 0 354 | 52|29 | 54 | 44 | 55 | 40
5 286 53 | 51 9112142 30 83 35137 123|126| 91|35
6 56 16 1371231 31153 O 172 18 144 (52| 7123130
7 185 [ 39123 |36 |53 |47 ;30 261 1152120148371} 25
8 315 2 9150441201 O 349 44 1 59149129 |51 | 20
9 84 | 24156 | 4134152} 30 78 | 28| 7118111 5115
10 213 [ 47 1421181256125} O 167 11 {14 | 46 | 52 [ 19 | 10
11 343 10 |28 {32 |15 57 | 30 255 54 122 1151331331 5
12 112 33|14 | 46 6130] 0O 344 | 37 (129144114147 O
13 241 561 05957 2130 73 20 137 |12 | 56| O 55
14 11 18 147 |13 47 | 35| O 162 3144141 371141 50
15 140 41 {383 (27 138| 7130 250 |46 |52 | 10 | 18 | 28 | 45
16 270 411914128140} 0O 339 29 | 59 | 38 | 59 | 42 | 40
17 39 |27 5155119 |12 30 68 13 7 7140 | 56 | 35
i8 168 | 49 | 52 91 91451 0 156 56114 | 36122 | 10§ 30
Hours Longitudinal Surplus . Surplus of Anomaly
1 0 32|56 127|261 23 | 46 0 32139 |44 | 50 |44 | 40
2 1 5| 52| b4 | b2 |47 | 32 1 5119129141 29| 20
3 1 38149122 (1911 |18 1 37159 (1413214} 0
4 2 11 | 45| 49 | 45 | 35 5 2 10 | 38 | 59 | 22 | 58 | 40
5 2 44 | 42 | 17 | 11| 58 | 51 2 43 | 18 | 44 | 13 1 43 | 20
6 3 17 138 | 44 | 38 | 22 | 37 3 1558 [ 29| 4 (28| O
7 3 50135112} 4|46 | 23 3 48 | 38 | 13 | 55 | 12 | 40
8 4 231311394131 ]10 10 4 21 | 17 | 58 | 45| b7 | 20
9 4 56 | 28] 6157|3356 4 53 | 57 |43 136 |42 | O
10 5 29 | 24 | 34|23 |57 |42 5 26 [ 37 | 28 | 27 | 26 | 40
11 6 2121 115012128 5 59 |17 113 | 18 | 11 | 20
12 6 3511712911645 | 15 6 31| 56158 8|56 0
13 7 8113561431 9 1 7 4|36 |42 | 59 | 40 | 39
14 7 41 110 { 24| 9| 32| 47 7 37116 2715025119
15 8 14} 6| 51|35 56|33 8 915612 41 9 | 59
16 8 471 31191] 212020 8 42 { 35| 57 | 31 | 54 | 39
17 9 19 | 59 | 46 | 28 | 44 6 9 1515 (422213919
18 Y 52 | 56 {13 | 86| 7|52 9 47 1 55 | 27 {13 | 23 | 59
19 10 25| 52|41 |21 | 31 | 38 10 2013512 4 839
20 10 58 149 | 8|47 |55 | 25 10 53 |14 | 56 | 54 | 53 | 19
21 11 31145136 |14 |19 |11 11 25 1 54 | 41 | 45 | 37 | 59
22 12 4142 3|40 |42 | 57 11 58 | 34 |26 | 36 | 22 | 39
23 12 371381 31 7 6 | 43 12 31 {14 |11 |27} 7119
24 13 10 | 34 | 58 1 33 | 30 | 30 13 3158315661751 |59
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4, TaBLES oF THE MEAN MoVEMENTS OF THE MooN, TasLe II—Continued

Col. 1
Single | Col. 4 Latitudinal Surplus Col. & Surplus of Elongation
Years | Degrees| 1 | IT | IIT | IV | V | VI | Degrees IIT{IL | IV | V [ VI
1 148 | 42 |47 |12 144|125} 5 129 |37 21128129231 55
2 297 {25134 125|128 |50 |10 259 14 | 42 | 56 | 58 | 47 | 30
3 86 8121 3813|1515 28 | 52| 4 25|28 | 11| 45
4 234 | 51 8150157 40|20 158 129 (25| 53| 5735 40
5 23 33|56 3|42 5| 25 288 6147 | 22 26| 5% | 35
6 172 16 |43 116 | 26 | 30 | 30 57 [ 44 8|50 |56 |23 30
7 320 |59 (30 (29|10} 55| 35 187 2113019125147 | 25
8 109 |42 |17 {41 | 55} 20 | 40 316 | 58 | 51 | 47 { 55 | 11 | 20
9 258 |25 4154|3945 45 8 |36 13|16 24|35 15
10 47 7152 712411050 216 13 34|44 |53 |59 10
11 195 [ 50139120 8|35 55 345 150 (5613 123,23 5
12 344 |33 ([261} 3253 1 0 115 | 28117 |41 {5247 0
13 133 16 (13145 |37 (26| 5 245 513911012210 ]| 55
14 281 59| 0|58 215110 14 143 0| 38|51 34|50
15 70 | 41 )48 11 6|16 | 15 144 | 201(22| 7120|5845
16 219 24 1351231504120 273 | 57 | 43 | 355012240
17 8 712213635 6|25 43 135 5| 4119 | 46| 35
18 156 |50 9{49{19|31] 30 173 12126 132]491 10| 30
Hours Latitudinal Surplus Surplus of Elongation
1 0 33| 424 93222 0 30 | 28| 36| 4312045
2 1 6] 8|48 19| 4| 43 1 05713264130
3 1 3911311212837} 5 1 31125501101 215
4 2 12 17136138 | 9| 26 2 115412653123 0
5 2 45122} 0|47 | 41 | 48 2 32123 | 3(36]43] 45
6 3 18126 (24|57 |144¢ 9 3 215114020 4] 30
7 3 51130 | 49 6146 | 31 3 33120117 | 3125| 15
8 4 24 135113 |16 18| 52 4 3148 153 (4646 | 0
9 4 57 1391372551 14 4 3411713030 6|45
10 5 30 | 44 1135123] 35 5 4146 713 |27 30
11 6 3148125 |44} 55 | 57 5 35|14 |43 | 56| 48] 15
12 6 36 | 52149} 54 | 28| 19 6 51431201401 91 O
13 7 957114 | 4 040 6 36 | 11 | 57 { 23|29 | 44
14 7 43 1138]13 33| 2 7 6140 [ 34| 6| 50 |29
15 8 16| 6] 223 5123 7 371 911050 | 11| 14
16 8 49 110126 | 3237 {45 8 7137147133 31| 59
17 9 22114 |50 | 42|10 6 8 38| 624|161 52| 44
18 9 55 | 1914 | 51 | 42 ] 28 9 8135 1 0] 13129
19 10 28 1 23] 39 1714149 9 391 3137431341} 14
20 11 1128} 3104711 10 9132142654159
21 11 3413212712019 32 10 401 0| 51 | 10 | 15 | 44
22 12 7136|5129 |51 54 11 10 (2927 5336129
23 12 40 1 41 | 15139 |24 | 15 11 40 1 58| 4136 | 57 |14
24 13 13145139148 56| 37 12 1112614112017 | 59
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4. TaBLEs oF THE MEAN MOVEMENTS OF THE MooxN, TaBLE 111

Col.1 | Col. 2 Longitudinal Surplus Col. 8 Surplus of Anomaly
Months | Degrees| I | II | TI1 |1V | V | VI | Degrees | T | IT {III|IV | V | VI
30 35 1729116 (45|15 | O 31 56 | 58 8155|5930
60 70 3415813343030 0 63 53156 |17 |51 |59 O
90 105 52 | 27 |50 [ 15| 45| O 95 50 | 54 | 26 | 47 | 58 | 30
120 141 9| 57 7 1 0 0 127 47 [ 52135143158 | 0
150 176 2712612346151 O 159 44 | 50 | 44 | 39 | 57 | 30
180 211 44 | 55 | 40 | 31 | 30 0 191 41 | 48 | 53 | 35 | 57 0
210 247 212415716 45 0 223 38 | 47 21315630
240 282 19 | 54 | 14 2 0 0 255 35145111 127156 O
270 317 3712313047156 0 287 321431202355} 30
300 352 54 {52147 (32|30 | O 319 2014112911955 O
330 28 12 | 22 4|17 | 45 0 351 26 (39|38 | 15| 54 | 30
360 63 29 | 51 ¢ 21 3 0 0 23 23 13714711154 O
Days Longitudinal Surplus Surplus of Anomaly
1 13 10 | 34158 | 33|30 30 13 3153561751159
2 26 21 9| 57 7 1 0 26 714715235143 | 58
3 39 31 14455140 31|30 39 11 | 41 {48 { 53 | 35 | 57
4 52 42 119 |1 54| 14 2 0 52 1513514511 | 27| 56
5 65 52 | 54 | 52 {47 | 32 | 30 65 19 129 |41 12919 | 55
6 79 3129|5121 31 0 78 23123 137|471 11| 54
7 92 14 4149|5433 30 91 27 | 17 | 34 5 3|53
8 105 24 [ 39| 48 | 28 41 0 104 31 | 11| 30| 22 55| 52
9 118 35| 14 | 47 1134 30 117 35 5126140 |47 51
10 131 45 |1 49 | 45 1 35 5|1 0 130 3815912258 39|50
11 144 56 | 24 | 44 813530 143 42 1 53 11916 | 31 | 49
12 158 6| 59 | 42 | 42 6 0 156 46 147 | 15|34 | 23 | 48
13 171 17 | 34 |41 | 15| 36 | 30 169 50 | 41 | 11 | 52 | 15 | 47
14 184 28 9| 39 | 49 7 0 182 54 | 35 8§10 7146
15 197 38144138 (2237130 195 58 | 29 4127|591 45
16 210 49 [ 19| 36 | 56 81 0 209 2123 0|45 |51 | 44
17 223 59 [ 5413512938 30 222 6|16 | 57 3143 | 43
18 237 101 29 | 34 3 9] 0 235 10 10 | 53 | 21 | 35 | 42
19 250 21 4132(361}39 (30 248 14 4149 (39| 27|41
20 263 3113931101} 10 0 261 17 | 58 | 45 | 57 | 19 | 40
21 276 42 11412943 |40} 30 274 21| 524215 11 | 39
22 289 52 49128 |17 11 0 287 25| 46 | 38 | 33 3138
23 303 31241265041 30 300 291|140 {34} 50| 55 37
24 316 131592524 |12 0 313 331341 31 8| 47 | 36
25 329 24 | 34| 23| 57|42 30 326 3712827263935
26 342 35 91223113 0 339 41 | 22 | 23 | 44| 31 | 34
27 355 45 | 44 | 21 4143 | 30 352 45 16 | 20 2123133
28 8 56 1 19119 { 38| 14| O 5 49 | 10 | 16 | 20 | 15| 32
29 22 6|54 |18 1144 30 18 53 41121 38 7|31
30 35 17129 |16 |1 45| 15 0 31 56 | 58 8155|5930
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4. TaBres oF THE MEAN MoOVEMENTS OF THE MooN, TABLE III—Continued

Col. 1 | Col. 4 Latitudinal Surplus Col. § Surplus of Elongation
Months | Degrees| 1 | II | III | IV | V | VI | Degrees II |IIT | IV | V | VI
30 36 {52149 (54281830 5 |43 (12040 8591} 30
60 73 14513948 |56 |37 O 11 26 | 41 |20 (17 |89 | O
90 110 {3820 |43 |24 551 30 17 10 2| 026|581} 30
120 147 13111937583 |14 0O 22 1532214013588 0
150 184 |24 9132213230 28 13643 (20|44 | 57430
180 221 16 |59 |26 (49|51} O 34 120 47 0|53 |57| 0
210 258 9149121 |18 9130 40 3|24 |41 2156 | 30
240 295 2139|1546 (28| © 45 46 45|21 |11 |56 O
270 331 5512910 | 14146 | 30 51 30| 6] 1120|551 30
300 8 148119 4|43 5| O 57 13126141 129155 0O
330 45 | 41 859 (11123 130 62 | 56 (47 |21 |38 | 54| 30
360 82 3315853 139{42) 0 68 [40]| 8| 1147154 | O
Days Latitudinal Surplus Surplus of Elongation
1 13 13145139 | 48 | 56 | 37 12 11126 | 411 20 | 17 | 59
2 26 |27 |31]19)37|531|14 24 | 22]|53|22(40 | 35| 58
3 39 |41 |16 | 59| 26 | 49 | 51 36 | 34120} 4| 0} 53|57
4 52 | 55| 2139 | 15| 461 28 48 | 45146 { 45|21 | 11 | 56
5 66 848119} 4{43 | 5 60 | 57 ] 13|26 |41 (29|55
6 79 |22 33 |58]53|39 42 73 8140 8 147 | 54
7 92 | 3619 (38}42 36| 19 86 [20| 649 22 51 53
8 105 [ 50| 5|18 | 311 32| 56 97 (311333042 (23|52
9 119 315058202933 109 |43} 0 (12| 2] 41|51
10 132 17 |36 |1 38| 9|26 10 121 54 | 26 | 53 | 22 | 59 | 50
11 145 |31 122 |17 | 58|22 | 47 134 5|53 (3443117 |49
12 158 |45 | 7|57 147119 | 24 146 17120116 | 3] 35|48
13 171 58 153|137 (36|16 1 158 | 28 | 46 | 57 | 23 | 53 | 47
14 185 12 (39|17 | 25| 12| 38 170 |40 | 13| 38 (44| 11| 46
15 198 (26 24|57 |14 9|15 182 | 51 14020 429145
16 211 40 |10 | 37| 3| 5|52 195 3| 7 12447 | 44
17 224 |53 15616152 2129 207 14 1 33142145 5 43
18 238 71411564059 | 6 219 126 0{24| 52342
19 251 21 [ 27 {36 |29 | 55 | 43 231 37127 | 52541141
20 264 (3513116} 18 | 52 20 243 | 48 [ 53 | 46 | 45 | 59 | 40
21 277 |48 158 | 56| 7 | 48 | 57 256 012028 6|17 39
22 201 2,44 35|56 | 45| 34 268 |11 47| 9126 | 35| 38
23 304 16 | 30 | 15145 ) 42| 11 280 2311350146 | 53 |37
24 317 .| 30 [ 15| 55 | 34 | 38 | 48 202 134140321 7|11 36
25 330 | 44 1135123135125 304 | 461 T |13 27|29 35
26 343 |57 (47115112132 2 316 | 57 | 33| 54|47 | 47 | 34
27 357 11 [ 32 | 55 11281 39 329 9 0|36)] 8| 5 33
28 10 [25[18 (34|50 |25/ 16 341 | 20|27 | 17| 28 | 23 | 32
29 23 |39 4141|3921} 53 353 |31 |53 5848 |41 (31
30 36 152495428118 30 5 1431201 40 8159 |30
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5. TrAT, Ix THE CASE OF THE SIMPLE HYPOTHESIS OF THE Moox,
BOTH THE HyPOTHESIS OF ECCENTRICITY AND OF THE EPICYCLE
PropUCE THE SAME APPEARANCES

And after these things there follows an explication of the manner and size of
the moon’s anomaly. At present we shall develop the explication as if there were
that one anomaly belonging to it to which alone nearly all our predecessors ap-
pear to have turned their attention; I mean to that anomaly completed in the
period of return already mentioned. Afterwards we shall show that the moon
effects a second anomaly in its elongations from the sun,! an anomaly which be-
comes greatest at the two quarters and is twice redeemed in the month’s time,
at conjunetions and full moons.

We shall use this order of demonstration because the second can never be
found without the first’s being implied by it. But the first can be found without
the second since it is derived from lunar eclipses where there is no sensible dit-
ference due to the anomaly relative to the sun. And in the first proof we shall
follow the methods we see Hipparchus used. For considering three lunar eclip-
ses, we shall demonstrate the size of the greatest difference at the point of mean
movement and the position of the apogee; we shall show that considered in itself
this first anomaly can be effected both by the hypothesis of the epicycle and the
hypothesis of eccentricity and the appearances will be the same; but that this
last hypothesis would be more properly applied to the second anomaly relative
to the sun in the combination of both anomalies.

And so, in making this research, we shall see that again in the ease of the sim-
ple anomaly of the moon the appearances are the same in either of these hy-
potheses even if the time-periods of the two returns—(1) that relative to the
anomaly and (2) that relative to the ecliptic—are not equal to each other asin
the case of the sun, but are unequal as in the case of the moon, with only the
ratios being again supposed the same. Since, then, the moon effects itz return
with respect to the ecliptic more rapidly than its return with respeet to this
anomaly, therefore it is evident that, on the hypothesis of the epicyele. in equai
times the epicycle will move on the circle concentric with the ecliptie through
an arc greater than the one similar to that traversed by the moon on the epicyvele
itself; but that, on the hypothesis of eccentricity, the moon will traverse an
arc on the eccentric circle similar to that traversed on the epicyele. and the ec-
centric will turn about the ecliptic’s centre, in the same direction as the moon.?
through an arc equal to the excess of the longitudinal course over the anomalistie
course—that is, the excess of the concentric cirele’s arc over the epicycle’s. For
in this way not only the sameness of the ratios but also the equality of the times
of each of the movements will be saved in both hypotheses.

Now, these things being supposed as necessary and immediate consequences,

1This second anomaly of the moon with respect to the sun is the first of those appearances
which tie the planets to the sun instead of the earth. As we shall see later, each of the five
planets has an anomaly with respect to the sun besides its other anomalies. And thus even on
the geocentric hypothesis of Ptolemy, there are manifested inevitably heliocentric appear-
ances. And so it is no wonder the Greeks had Leliocentrie theories. Nor is the appearance of
the Copernican theory anything very extranrdinary: Copernicus had only to look at Ptolemy.
Ptolemy himself sees all this when he says, in Book 1. that the heliocentric theory would be
simpler as far as the planets are concerned.

*That is, both movements of the eccentric hypothesis—(1) that of the moon on the ec-
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let there be the circle ABC concentric with the

ecliptic, with centre D and diameter AD; and
A the epicycle EF with centre C. And let it be
assumed that, when the epicycle was at A, the
moon was at E, the epicycle’s apogee; and
that in the same time the epicycle has tra-
versed the arc AC and the moon the arc EF.
And let DE and CF be joined. And since the
° | arc AC is greater than the are¢ similar to EF,
let BC be taken similar to EF and let BD be
/ joined. It is clear, then, that in the same time

the eccentric circle has moved through angle
ADB, the excess of one of the courses over the
other. and that its centre and apogee have
come to be along the straight line BD. This
being so, let DG be laid off equal to CF, and
let FG be joined. And with centre G and radius FG, let the eccentric circle FH
be drawn.
I say that

FG:DG::CD:CF;
and that, according to this last hypothesis also, the moon will be at point F—
that is, arc FH will also be similar to arc EF.
For since

angle BDC =angle ECF,

CF is parallel to DG. And
CF=DG;
and therefore
FG=CD,
and is parallel to it. And
FG:DG:.CD:CF.

Again, since CD is parallel to FG,

angle BD(C' =angle FGH.
But it was supposed

angle BDC =angle ECF.
And so also arc FH is similar to arc EF. Therefore, in the same time according
to either hypothesis, the moon has arrived at the point F. since it has moved
through the epicycle’s arc EF and the eccentric’s arc FH, which have been
proved similar, and since the epicycle’s centre has moved through arc AC and
the eccentric’s centre through arc A B, the excess of arc AC over arc EF. Which
was to be proved.

centric, and {2) that of the eccentric about the ecliptic’s centre or the earth—are from west
to east in the general direction of the moon's movement on the ecliptic or of the epicycle’s
centre on the concentric circle.

The equivalent epicyclic hypothesis is, of course, the case where the epicycle’s centre moves
counter-clockwise while the epicycle itself turns clockwise. In the case of the moon, Ptolemy
does not explicitly state, as he does with the other five planets, why it is necessary to take
one epicyvcelic hypothesis and not the other. The reason is obvious. By the tables of observa-
tions it was known that the time from the moon’s mean movement in longitude through its
greatest movement back to the mean is always less than the time from its mean movement
through its least movement back to the mean.
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And, even if only the ratios are equal without their respective terms being so,
and the eccentric cirele is not equal to the concentric, it is clear to us as follows
that the result will be the same.

For let each of the hypotheses be drawn separately. And let there be the circle
ABC concentric with the ecliptie, with centre
D and diameter AD; and the epicycle EF with B
centre C. And let the moon be at F. And again
let there be the eccentric circle GH K with cen-
tre L and diameter HLM. And on thisdiame- ¢
ter let there be the ecliptic’s centre M; and let
the point K be the moon. And in the first b
figure let DCE, CF, DF be joined; and in the
second figure GM, KM, KL.

And let

A

CD:CE::HL:LM.

And let the ecpicycle have moved through
angle ADC and the moon through angle ECF
in the same time. And let the eccentric circle have moved through angle GMH
and the moon in turn through angle HLK in the
same time. Then, because of the relations assumed
K $ to hold between the movements,

angle FCF =angle HLK

H

and
angle ADC =angle GMH+angle HLK.

This being so, I say that, again on either hypothe-
sis, in the same time the moon will appear to have
M traversed equal arcs; that is,

angle ADF=angle GMK.
For the moon at the beginning of the interval is at
the apogees, and appears along the straight lines
AD and GM; and at the end of the interval is at the
points F and K, and appears along the straight lines DF and KM.

For again let arc BC be laid out similar to each of the arcs HK and EF, and
let BD be joined. Then, since

CD:CF::KL:LM,
and since the sides about the equal angles at C and L are for that reason pro-
portional, therefore the triangle CDF is equiangular with the triangle KLM and
the angles opposite the proportional sides are equal. Therefore
angle CFD=angle KML.

But also
angle BDF =angle CFD
since it is supposed
angle ECF =angle BDC
and since, therefore, CF and BD are parallel. Therefore
angle BDF =angle KM L.
But angle ADB, the excess of one movement over the other, is assumed equal to
angle GM H, the passage of the eccentric. And therefore, by addition,
angle ADF=angle GMK.
Which was to be proved.
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6. DEMONSTRATION OF THE MoON’s FIrsT AND SIMPLE ANOMALY

Now that we have understood this much, we shall demonstrate this lunar
anomaly on the hypothesis of the epicycle for the reason we assigned, first using
three of the oldest eclipses we have which seem to have been faithfully recorded,
and then again three from the present very accurately observed by ourselves.
In this way our inspection will extend over the longest time possible; and espe-
cially it will be evident that the anomalistic difference comes to be very nearly
the same in both cases, and that the surplus of the mean movements is always
found to agree with that computed from the periods of time already given with
our corrections. With respect, then, to the demonstration of the first anomaly
considered in itself, let the hypothesis of the epicycle, the one we have chosen,
be applied as follows:

Let the concentric circle be conceived on the lunar sphere and lying in the
same plane with the ecliptic. And let another circle be conceived inclined to this
one proportionately to the quantity of the moon’s latitudinal course, and borne
from east to west around the ecliptic’s centre at a regular speed equal to the ex-
cess of the latitudinal movement over the longitudinal. Then on this oblique
circle we suppose the epicycle to be moving regularly but from west to east ac-
cording to the latitudinal return, which (considered with respect to the ecliptic)
produces, of course, the longitudinal movement. And on the epicycle we suppose
the moon to be passing through the arc of the apogee from east to west, accord-
ing to the anomalistic return. Yet in this demonstration we shall not be con-
cerned with the latitudinal advance nor with the obliquity of the lunar circle
since no appreciable difference results in the longitudinal movement from an in-
clination of this amount.

I.—Then of the three ancient eclipses observed in Babylon, of which we
spoke, the first is recorded as having taken place in the year 1 of Mardokempad,
Egyptianwise Thoth 29-30. And the eclipse began, it is stated, more than one
hour after the rise of the moon, and the eclipse was total. Now, since the sun
was very nearly at the end of the Fishes, and the night was very nearly 12 equa-
torial hours, evidently the beginning of the eclipse was 414 equatorial hours be-
fore midnight, and the middle of the eclipse, since it was complete, was 214
hours before midnight. Therefore, in Alexandria, the midtime of this eclipse oe-
curred 314 equatorial hours before midnight. For we establish hour-positions
with respect to its meridian, and the meridian through Alexandria is west of that
through Babylon by 14414 equatorial hour. And at that hour the sun’s true
position was very nearly 2414° within the Fishes.

The second of the eclipses is recorded as having occurred in the year 2 of Mar-
dokempad, Egyptianwise Thoth 18-19. And there was an eclipse, it says, of 3
digits! from the southern end at midnight. Since, then, the middle of the eclipse
appears to have occurred in Babylon at midnight, it must have occurred in
Alexandria 14+ 14 of an hour before midright. And at that hour the sun’s true
position was 1334° within the Fishes.

The third of the eclipses is recorded as having taken place in the same year 2
of Mardokempad, Egyptianwise Phamenoth 15-16. And the eclipse began, it
says, after the rise of the moon, and there was an eclipse of more than half from
the northern end. Now, since the sun was near the beginning of Virgin, the night

A digit is 1/12 of the moon’s apparent diameter.
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in Babylon was very nearly 11 equatorial hours, and half the night 514 hours.
Therefore the beginning of the eclipse oceurred, at most, 5 equatorial hours be-
fore midnight since it began after the moon’s rise; and the middle of the eclipse
314 hours before midnight, since the whole time of an eclipse of this magnitude
must have been very nearly 3 hours. Therefore in Alexandria, in turn, the mid-
dle of the eclipse was effected 414 equatorial hours before midnight. And at this
hour the sun’s true position was very nearly 314° within the Virgin.

It is thus clear that, from the middle of the first eclipse to that of the second,
the sun had moved, and the moon too, 349°15’ over and above the complete
circles; and from the middle of the second celipse to that of the third 169°30’.
But the interval of time between the first and second contains 354 days and 214
equatorial hours for those considering them simply, but relative to the calcula-
tion of regular solar days 2414+ 145 hours; and between the second and third
176 days and again 2014 equatorial hours simply considered, but 2014 hours
accurately considered. And the moon moves regularly (for in this amount of
time there will be no sensible difference even if one follow revolutions very close
upon the true ones)! in 354 days and 2-+14+115 equatorial hours, 306°25’ of
its cycle of anomaly over and above the complete cir-
cles, and 345°51’ in longitude. And in 176 days and
2014 equatorial hours, 150°26’ of its cycle of anomaly,
and very nearly 170°7’ in longitude. It is clear, then,
that the 306°25’ of the epicycle’s first interval have
added 3°24’ to the moon’s mean movement; and that
the 150°26’ of the second interval have subtracted 37
from the mean movement.

These things being assumed, let there be the
moon’s epicycle ABC. And let point A be the moon’s
position in the middle of the first eclipse, and B its
position in the middle of the second, and C its posi-
tion in the middle of the third. Let the moon’s move-
ment on the epicycle be thought as taking place from
B to 4 and from A to C in such a way that the arc
ACB of 306°25', which it has traveled from the first
eclipse to the second, adds 3°24’ to the mean move-
ment; and that the arc BAC of 150°26’, which it
has traveled from the second eclipse to the third,
subtracts 37’ from the mean movement. And there-
fore in such a way that the passage from B to 4 of
53°35' subtracts the 3°24’ from the mean movement,
and the passage from A to C of 96°51” adds 2°47’ to the

mean movement.?

1Tn establishing the mean positions for the moon in each of the two series of eclipses, the
lengths of the time-intervals are so small that there is no sensible difference if one use the
averages of Hipparchus or the corrected ones given by Ptolemy in the tables. This remark is
necessary because it is from a comparison of the second eclipse in the old series and in the new
series, in Chapter 7 of this Book, an interval of some 854 Egyptian years, that the corrections
are gotten—very small, indeed, but appreciable, Otherwise Ptolemy would be pulling himself
up by his boot-straps.

*Whatever 4 to B adds, B to A must subtract, since 4 to 4 being a complete cycle neither
adds nor subtracts. Likewise if B to C subtracts 37’ and B to A 3°24’, then A to C must add
the difference between 37’ and 3°24/, or 2°47’.
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Now, that it is impossible for the epicycle’s perigee to be on the are BAC is
clear from the fact that this arc is subtractive and less than a semicircle. But the
greatest movement is assumed to be at the perigee. Since, then, it must be on
the arc BEC, let the centre of the ecliptic and of the circle carrying the epicy-
cle’s centre be taken, and let it be D. And let the straight lines DA, DEB, DC,
from the center of the three points of eclipse, be joined.

Then, generally—in order that we may easily apply this theorem in similar
demonstrations, both in case we prove them by the
hypothesis of the epicycle as here, and by the hy-
pothesis of eccentricity when the centre D is taken
within the circle—let one of the three straight lines
we just joined be produced to the oppasite are, as
here we have DEB drawn from the point B of the
second eclipse to E. And let a straight line, in this
case AC, join the other two points of eclipse. And

D from the intersection made by the line produced, E
%

<

B

for instance, let straight lines be joined to the other
two points, in this case the lines EA and EC. And let
E perpendiculars be dropped on the straight lines from
these other two points to the centre of the ecliptic,
thatis EF on AD and EG on CD. From one of these
two points, in this case C, let the perpendicular be drawn to the line joining the
other point, in this case A, to the principal intersection made by the line pro-
duced, here E—that is, CH on AE. And from whatever intersection we extend
the construction, we shall always find the same ratios resulting for the numbers
of the demonstration; and the choice is made only with a view to facility.
Since, then, arc AB was proved to subtend 3°24’ of the ecliptie, therefore,
considered as an angle at the ecliptic’s centre,
angle ADB=3°2¢
=648’ to 2 rt.
And so also, on the circle about right triangle DEF,
arc EF=6°48’,
chord EF =777’

where
hypt. DE =120p.
Likewise, since
arc AB=53"35,
therefore, being on the circumference, also
angle BEA =353"35" to 2 rt.
But it was seen
angle ADB =648 to 2 rt.
and therefore, by subtraction,
angle EAF =46°47" to 2 rt.
And so, on the circle about right triangle AEF,
arc EF =46°47",
chord FF =47738'30”
where
hypt. AE =1205.
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And
AE=17r55'32"
where
EF=7r7,
and
DE =120r,

Again, since arc BAC subtends 37’ of the ecliptic, considered as an angle at
the centre of the ecliptic,
angle BDC' =37’
=1°14' to 2 rt.
And so, on the circle about right triangle DEG,
arc EG=1°14/,
chord EG=1r17'30"
where
hypt. DE=120¢.
Likewise, since
arc BAC =150°26",
being on the circumference,
angle BEC =150°26' to 2 rt.
But it was seen
angle BDC' =1°14' to 2 rt.
and therefore, by subtraction,
angle DCE=149°12" to 2 rt.
And so, on the circle about right triangle CEG,
arc EG=149°12,
chord EG=115741'21"
where
hypt. CE=120.»
And therefore
CE=1r20'23"
where
EG=1r17'30",
and
DE=120r,
and where it was proved
AE=17755'32",
Again, since it was proved
are AC=96°51",
therefore, being on the circumference,
angle AEC=96°51' to 2 rt.
And so, on the circle about right triangle CEH,
arc CH =96°51",
and, as remainder of the semicircle,
arc EH =83°9%’,
And therefore
chord CH =89r46’14",
chord EH =79*37'55"
where
hypt. CE =120,
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And therefore
CH =1°0'8",
EH =0r53'21"
where
CE=1°20"23",
and where it was proved
AE=17755'32";
and therefore, by subtraction,
AH=17°2'11"
where
CH=170'8".
And
sq. AH =290714'19",
sq. CH=1°0'17"
which added together give
sq. AC=291r14'36".
Therefore, in length,
AC=17°3'57",
CE =1r20'23"

where
DE =120,
And
chord AC =89046"14”
where

epic. diam. =120°;
for it subtends arc AC and
arc AC=96°51".
And therefore
DE=631013/48",
CE=772'50"

where
AC=89r46'14"
and
epic. diam. == 120r.
And so

arc CE=6°44'1".
But it is assumed
arc BAC=150°26",
and therefore, by addition,
arc BCE=157°10'1",
chord BE=117737'32"
where
epic. diam. =120,
DE=631r13'48".

If, then, this line BE were equal to the epicycle’s diameter, the epicycle’s
centre would fall on it, and the ratio of the diameters would be immediately evi-
dent. But since it is less than the diameter, and arc BCE is less than a semicircle,
it is clear that the epicycle’s centre will fall outside the sector BACE.

Then let the point K be taken as centre, and let the straight line DA/ KL be
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drawn from D, the centre of the ecliptie, through K in

such a way that point L becomes the epicycle’s apogee,

and M the perigee.

Since then

rect. BD, DE =rect. LD, DM, [Euecl. 111, 36] K

and since we have proved
BE=117737"32",
DE=0631r13"49",

and, by addition,

BD =748°51'20" M
where, as the epicycle’s diameter,
LKM =120,
therefore
rect BD, DE =rect. LD, DM =472,700°5'32".
And again since
rect. LD, DM +sq. KM =sq. DK, [Eucl. 11, 6]
and since, as radius of the epicycle,
KM =60r,
therefore
sq. DK =472,700°5'32” 43,6007 D
=476,300°5'32".
And therefore, as the radius of the circle concentric with
the ecliptic and carrying the epicycle,
DK =69078'42”
where, as the epicycle’s radius,
KM =60e.
And so
epic. rad. =5r13’
L where the radius of the circle carrying the epicycle and

concentric with the eye is 60p.

K Since then
X DE=0(31r13'48",
EN =half BE
= 58r4846”,
- where
M DK =690r8"42"

so that, by addition,

DEN =690r2'34",
therefore

DN =119058'57"
where

DK =120v.

And, on the cirele about right triangle DNK,

arc DN=178°2".
And so also
D angle DKN =178°2' to 2 rt.
=89°1".

And in a similar figure let fall KNX from the centre
K perpendicular to line BE, and let BK be joined.
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And therefore, on the epicycle
arc MX =89°1,
and, as remainder of the semicircle,
arc LBX =90°59.
And
arc BX =half arc BXE=78°3%,

since it was proved

arc BXE=157°10'.
And therefore, by subtraction, the arc BL of the epicycle, which is the moon’s
distance from the apogee at the middle of the second eclipse, is 12°24.

And likewise, since it was proved

angle DKN =89°1’,
therefore, by subtraction, angle KDN, which subtends the arc subtracted from
the mean longitudinal course and resulting from the anomaly due to the epi-
cycle’s are BL, is its complement 59’. Therefore the moon’s mean longitudinal
position at the middle of the second eclipse was 14°44’ within the Virgin, since
indeed its true position was 13°45’ within the Virgin, with the sun 13°45’ within
the Fishes.

II.—Again, of the three eclipses we have chosen from those most carefully ob-
served by us in Alexandria, the first occurred in the year 17 of Hadrian, Egyp-
tianwise Payni 20-21; and we accurately calculated the middle of it to have oc-
curred 34 equatorial hour before midnight. And the eclipse was total. At this
hour the sun’s true position was very nearly 1314° within the Bull.

The second occurred in the year 19 of Hadrian, Egyptianwise Choiac 2-3; and
we calculated the middle of it to have occurred 1 equatorial hour before mid-
night. And there was an eclipse to the extent of 144-14 of the diameter from the
northern side. And at this hour the sun’s true position was very nearly 2514°
within the Balance.

The third of the eclipses occurred in the year 20 of Hadrian, Egyptianwise
Pharmouthi 19-20; and we calculated the middle of it to have occurred 4 equa-
torial hours after midnight. And there was an eclipse to the extent of 14 of the
diameter from the northern side. And at that hour the sun’s true position was
very nearly 14°12’ within the Fishes.

Now, it is clear that the moon and also the sun have moved, from the middle
of the first eclipse to the middle of the second, 161°55" over and above the com-
plete circles; and from the middle of the second to the middle of the third, 138°
55’. The time of the first interval is 1 Egyptian year 166 days and 2334 equa-
torial hours simply considered, but 2334 hours accurately considered. And the
time of the second interval is again 1 Egyptian year 137 days and 5 equatorial
hours simply considered, but 514 hours accurately considered.

Now in 1 year, 166 days, and 2324 equatorial hours, the moon makes a mean
movement of 110°21" of its anomalistic cycle over and above the complete cir-
cles, and very nearly 169°37” in longitude; and in 1 year, 137 days, and 514
equatorial hours, 81°36’ of its anomalistic cycle, and very nearly 137°34’ in
longitude. It is clear, then, that the 110°21’ on the epicycle of the first interval
subtract 7°42’ from the mean longitudinal course, and that the 81°36’ of the
second interval add 1°21’ to the mean longitudinal course.

Now, these things being assumed, let there again be the moon’s epicycle A BC.
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And let the point A be taken as the moon’s position in the
middle of the first eclipse; B that of the second eclipse;
and C that of the third. And let the movement of the
moon be conceived as passing from A to B and then to C
in such a way that are AB of 110°21’ subtracts, as we said,
7°42’ from the mean longitudinal ecourse; and that arc BC
of 81°36’ adds 1°21’ to the mean longitudinal course; and
that the remaining arc CA of 168°3’ adds 6°21".

That the apogee must be on the arc 4B is clear from
the fact that it can neither be on arc BC nor arc CA, since
each of them is additive and less than a semicircle. And
yet, as if this were not assumed, let the centre of the eclip-
tic and of the circle on which the epicycle is borne be
taken, and let it be D. Let the straight lines DEA, DB,
DC(C be joined from the centre to the three points of eclipse.
And with BC joined, let the straight lines EB and EC be
drawn from E to B and C; and EF and EG perpendicular
to BD and DC; and again from C let CH be drawn per-
pendicular to BE. of

Since then arc AB subtends 7°42’ of the ecliptic, there- '
fore, being at the centre of the ecliptic,

angle ADB =742’
=15°24' to 2 rt.
And so also, on the circle about right triangle DEF,
arc EF =15°24/,
chord EF =16r4'42"

hypt. DE = 120°.

where

Likewise, since
‘ arc AB=110°21",
therefore, being on the circumference,
But angle AEB=110°21" to 2 rt.
u

angle ADB=15°21" to 2 rt.
Therefore, by subtraction,
angle EBD =94°57" to 2 rt.
And so, on the circle about right triangle BEF,
arc EF =91°57’,
chord EF =88°26"17”

hypt. BE =120¢.

where

And therefore
BE =21r48'59"

EF =16r4/42",
DE=120°
Again, since arc AEC was shown to embrace 6°21’ of the ecliptic, therefore
being at the centre of the ecliptic
angle ADC=6°21’
=12°42' to 2 It.

where
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And so, on the circle about right triangle DEG,
arc EG=12°42',
chord EG=13°16'19"
where
hypt. DE =120¢,
Likewise, since, by addition,
arc ABC =191°57',
therefore, being on the circumference, -
angle AEC=191°57" to 2 rt.
But
angle ADC=12°42" to 2 rt.
Therefore, by subtraction,
angle ECD=179°15 to 2 rt.
And so also, on the circle about right triangle CEG,
arc EG=179°15,
chord EG=119759'50"
where
hypt. CE =120,
And therefore _
CE =13716"20"
where
EG=1316'19",
and
DE=120r,
and where it was proved
BE =21r48'59".
Again, since
arc BC=81°36’,
therefore, being on the circumference,
angle BEC =81°36" to 2 rt.
And so, on the circle about right triangle CEH,
arc CH =81°36,
and, as remainder of the semicircle,
arc FH =08°2¢".
And therefore
chord CH =78v24'37",
chord EH =90°50'22”
where
hypt. CE =120v.
And therefore
CH =8r40'20",
EH=10r2'49"
where
CE =13r16'20"
and
BE=21r48'59".
Therefore, by subtraction,
BH =11746"10"
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where
CH =8r40'20".
And
sq. BH=138r31'11",
sq. CH=7571227",
and

sq. BC =138°31'11" 4-75°12/27”
=213r43"38”".
Therefore, in length,
BC=14737'10"

where
DE =120r,
CE=13r16"20".
But also
B(C'=78v24'37"
where

epic. diam. =120,
for it subtends arc BC which is 81°36’. And therefore
DE =643736'39",
CE=T71°11'4"
where
BC =T8r24'37",
epic. diam. = 120r.
And so, on the epicycle,
arc CE=72°46"10".
And it is assumed
arc CEA =168°3'.
Therefore, by subtraction,
arc AE=95°16"50";
and
chord 4 E=88740'17"
where
epic. diam. = 120r,
DE =643736'39".

Now again, since arc A E was shown to be less than a semicircle, it is clear that
the epicycle’s centre will fall outside the segment AE. Then let it be taken and
let it be K; and let DM KL be joined so that again point L becomes the apogee
and M the perigee. Now since

rect. AD, DE=rect. LD, DM,
and since we have shown that
AE =88»40'17",
DE =643r36'39",
and, by addition,
AD=732v16'50"
where, as epicycle’s diameter,
LKM =120v,
therefore
rect. LD, DM =471,304746'17".

— = B -
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L And again, since

rect. LD, DM +sq. KM =sq. DK,
and since KM, the epicycle’s radius, when squared, is
3,600r, therefore
B sq. DK =471,304746'17” +3600°
=474,90446'17”.
And therefore, as the radius of the circle bearing the
epicycle and concentric with the ecliptie,
DK =689r8’
M where, as the epicycle’s radius,
KM =60r,
And so
epic. rad. =5r14’
where the straight line between the epicycle’s centre
and the ecliptic’s centre is 60P. And this is very nearly
the same ratio as that demonstrated a little while
ago with the other eclipses.
Again with the same figure, let the straight line
KNX be drawn perpendicular to DEA from the cen-

tre K, and let AK be joined.
Now since
DE =643736'39",

EN =half AE =44720'8"

so that, by addition,

DEN =687756'47"

where A
DK =689°8/,
therefore also
DN =119747'36” ‘ ¥
where X
hypt. DK =120r;
and, on the circle about right triangle DKN,
arc DN =173°17".
And so B
angle DKN =173°17’ to 2 rt.
=86°38'30".
And therefore, on the epicycle,
are MEX =86°38'30”
and, as remainder of the semicircle,
arc LAX =93°21"30".
And
arc AX =half arc AE=47°3830",
and therefore, by subtraction,
arc AL=45°43, 0

But it was assumed

arc AB=110°21".

And therefore the remainder arc BL, the distance of the moon from the apogee
at the middle of the second eclipse, is 64°38'.



134 PTOLEMY

Likewise, since it was proved

angle DKN =86°38’
and, as its complement,

angle KDN =3°22,
and since it was assumed

angle ADB=7°42,
therefore, by subtraction, angle LDB, which subtends the arc subtracted from
the mean longitudinal course resulting from the anomaly due to the epicycle’s
arc BL, will be 4°20’. And therefore the moon’s mean longitudinal position at
the middle of the second eclipse was 29°30" within the Ram, since indeed its
true position was 25°10” within the Ram with the sun 25°10” within the Balance.

7. ON THE CORRECTION OF THE MooN’s MEaAN MOVEMENTS
oF LONGITUDE AND ANOMALY

Since we showed that in the middle of the second of the old eclipses the moon
was situated 14°44’ within the Virgin according to mean longitude, and with
respect to the anomalistic cycle 12°24’ from the epicycle’s apogee; and that in
the middle of the second of our own eclipses it was situated 29°3(0/ within the
Ram according to mean longitude, and with respect to the anomalistic cycle
64°38’ from the epicycle’s apogee, therefore it is clear that, in the interval of
time between the two eclipses, the moon has run in mean movement over and
above complete revolutions 224°46’ in longitude and 52°14’ of its anomalistic
cycle. But the interval of time from the year 2 of Mardokempad, Thoth 18-19,
14+ 14 equatorial hours before midnight to the year 19 of Hadrian, Choiac 2-3,
1 equatorial hour before midnight is 854 Egyptian years, 73 days, and 2314414
equatorial hours simply calculated, but 2314 hours accurately calculated in
mean solar days. Expressed entirely in days this is 311,783 days 2314 equatorial
hours. And we find corresponding to them, for the daily movements we have al-
ready set up according to the hypotheses preceding the correction, over and
above the complete revolutions surpluses of 224°46’ in longitude and 52°31’ in
the anomalistic cycle. And so the longitudinal surplus, as we said, is found to be
the same as that deduced from our ohservations, but the surplus in the anoma-
listic cycle exceeds by 17’. And therefore, before setting out the tables, in order
to correct the daily movements, we distributed the 17’ over the number of days,
subtracted the 11iv46v39¥! corresponding to each day from the daily mean
movement of anomaly calculated before the correction, and found the corrected
figure to be 13°31531156111171v51v59vi. And in accordance with this we made the
rest, of the calculations for the tables.

8. O~ THE ErocH oF THE MooN’s MEAN MOVEMENTS
oF LONGITUDE AND ANOMALY

In order to establish the epochs of two cycles in the year 1 of Nabonassar,
Egyptianwise Thoth 1 at midday, we take the time from this date to the second
of the first and nearest series of three eclipses, which, as we said, occurred in the
year 2 of Mardokempad, Egyptianwise Thoth 18-19, 14414 equatorial hour
before midnight. And this makes a total of 27 Egyptian years, 17 days, and very
nearly 1124 hours considered both simply and accurately. And corresponding to
this interval of time there is a surplus, over and above the complete revolutions,

of 123°22’ in longitude and a surplus of 103°3%" of the anomalistic cycle. If we.
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subtract each of these numbers from each of the corresponding numbers proper
to the positions of the second eclipse, then, in the year 1 of Nabonassar, Egyp-
tianwise Thoth 1 at midday, we shall have the moon’s mean position 11°22’ with-
in the Bull and 268°49’ from the epicycle’s apogee in the anomalistic cycle. And
its elongation from the sun will be clearly 70°37, since the sun’s position at that
time has been demonstrated to be 0°45’ within the Fishes.

9. O~ THE CORRECTION OF THE MooON’s MEAN LATITUDINAL MOVEMENTS
AND THEIR EPOCHS

Now this is the way we have established the cycles of longitude and anomaly
and their epochs. But in the case of the latitudinal cycles we were quite wrong
earlier in using Hipparchus’ assumption that the moon measures its own circle
of revolution very nearly 650 times, and the circle of [the earth’s] shadow 214
times when the moon is at its mean distance at the syzygics.! For with these as-
sumptions and the inclination of the moon’s oblique circle, the limits of its par-
ticular eclipses are given. Then, taking the intervals of eclipse and calculating
from the size of the shadows cast in mid-eclipse the true latitudinal courses on
the oblique circle from either node, and distinguishing by means of the anoma-
listic difference already demonstrated the periodic from the true courses,® we
find in this way the positions of the latitudinal cycle at mid-eclipse and the
surplus over and above the complete revolutions which accrues in the time be-
tween. But by using more elegant methods which need none of the former hy-
potheses for getting what is desired, we have found that the latitudinal course is
quite faulty. And from the course obtained now without them we have proved
that these hypotheses concerning magnitudes and distances were not right, and
we have made corrections.

We have done likewise in the case of the hypotheses concerning Saturn and
Mereury, changing certain things not altogether accurately determined before
us by having fallen later upon surer observations. For it behooves those going
forward with this theory inquiringly and for the love of truth to use the new and
surest methods found, not only for the correction of the old hypotheses but also
of their own if they need it; and not to think it disgraceful (for it is a great and
divine profession) even if they happen upon a correction for greater accuracy
due to others and not only to themselves.

Later in this treatise we shall explain in the proper places how we prove each
of these things. At present, for the sake of sequence, we shall turn to the demon-
stration of the latitudinal course. And here is the method.

Now, in the correction of the mean course we first looked for lunar eclipses
from among those accurately recorded, as far apart in time as possible, in which

1By the moon’s mean distance at the syzygies is here meant the linear distance from the
earth of the centre of the moon’s epicycle at the syzygies. This is speaking strictly; practically
it is the distance from the earth to the moon when it is at the point of mean movement on its
epicycle at the syzygies. For it will be secn later, in Book V, that the moon’s epicycle is borne
on a moving eccentric in such a way that the epicycle’s centre is always at the apogee of the
eccentric at the syzygies. Hence the mean distance at the syzygies is strictly the distance from
the earth to the apogee of the moon’s eccentrie circle. These distances are calculated in detail
in Chapter 13 of Book V.

?The true latitudinal return is the latitudinal return with respect to the moon; and the
periodic latitudinal return is the latitudinal return with respect to the centre of the moon’s
epicycle. Hence, as we shall see, when the anomalistic difference is known it is possible to find
the latitudinal position of the epicycle’s centre.
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the magnitudes of the shadows were equal, near the same node with both shad-
ows either on the southern or northern side, and in which, moreover, the moon
was at the same distance from the earth. All this being so, it necessarily follows
that the moon’s centre in each of the eclipses is equidistant on the same side of
the same node; and, therefore, that the true course of the moon embraces com-
plete latitudinal cycles in the time between the observations.

We then took, first, the eclipse observed in Babylon in the year 31 of Darius,
Egyptianwise Tybi 3-4 at the middle of the sixth hour; and the moon was
eclipsed to a breadth of 2 digits from the southern side.

Second, we took that observed in Alexandria in the year 9 of Hadrian, Egyp-
tianwise Pachom 17-18 at 334 equatorial hours before midnight; and the moon
was eclipsed likewise to the extent of 1§ of its diameter from the southern side.

And the latitudinal course of the moon was in each eclipse near the descend-
ing node. For this is taken from more general hypotheses. And the distance was
very nearly equal and a little towards the perigee from the mean. For this be-
comes clear from the previous demonstrations of the anomaly. Now since, when-
ever the moon is eclipsed from the southern side, its centre is north of the eclip-
tic, it is clear the moon, in each of the eclipses, precedes the descending node by
an equal amount.

But at the first eclipse the moon was 100°19” from the epicycle’s apogee, for
the middle of this eclipse occurred in Babylon 14 hour before midnight, and in
Alexandria 124 hours before midnight. And the time from its epoch in the reign
of Nabonassar totals 256 years, 122 days, and 1024 equatorial hours simply con-
sidered, but 1014 hours with respect to mean solar days. Therefore, the true
course was less than the periodic course by 5°'. In the second eclipse the moon
was 251°563’ from the epicycle’s apogee. Here the time from the epoch to the
middle of the eclipse totals 871 years, 256 days, and 824 equatorial hours con-
sidered simply, but 8195 accurately considered. Therefore, the true course was
more than the mean course by 4°53’. Consequently, in the interval of time be-
tween the two eclipses, which contains 615 Egyptian years, 133 days, and 21+
15114 equatorial hours, the true latitudinal course of the moon consists of com-
plete cycles; but the periodic falls short of complete cycles by a total of 9°53’
from the two anomalistic differences. But calculated from the mean courses set
out according to Hipparchus’ hypotheses, the periodic course falls short of com-
plete restitutions by very nearly 10°2’. Therefore the mean latitudinal course
is 9’ greater than his hypotheses allow.

Now, distributing these over the given number of days which is very nearly
224,609, and adding the resulting 81v39v18"i to the daily mean movement al-
ready demonstrated according to those hypotheses, we found the corrected daily
mean movement to be 13°13145113911148iv56v37¥1. And again, in accordance with
this result, we made out the rest of the additions in the tables.

Once the periodie latitudinal movement had been demonstrated in this way,
in order to establish its position we again looked for an interval between two
well-observed eclipses having the same incidents as the former—that is, where
the distances of the moon were very nearly equal, and the shadows cast were
equal, being in both cases either on the northern side or on the southern side,

1This is taken from the Table of the Moon’s First and Simple Anomaly which is Chapter 10
of this Book. This table is only for the anomalies at the syzygies because of the later use of an
eccentric deferent.
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but where the nodes were no longer the same but opposite.

The first of these eclipses is the one we used in connection with the demon-
stration of the anomaly, which occurred in the year 2 of Mardokempad, Egyp-
tianwise Thoth 18-19, at midnight in Babylon, and 14+ 14 equatorial hour be-
fore midnight in Alexandria. And the moon was observed to be eclipsed 3 digits’
breadth from the south.

The second is the one Hipparchus used, occurring in the year 20 of Darius,
successor of Cambyses, Egyptianwise Epiphi 28-29, 614 equatorial hours after
nightfall. And here likewise the moon was eclipsed to the extent of a quarter of
its diameter from the southern side. The middle of the eclipse in Babylon was
at 2§ equatorial hour before midnight, since a half-night at that time was very
nearly 6+14+14 equatorial hours, and in Alexandria 114 equatorial hours be-
fore midnight.

Each of these eclipses oceurred when the moon was near the apogee, but the
first at the ascending node and the second at the descending node, so that the
moon’s centre was an equal distance north of the ecliptic in these eclipses also.

Then let there be the oblique circle of the moon A BC with diameter AC; and
let point A be supposed the ascending node, C the
descending node, and B the northernmost limit.
And let equal arcs AD and CE be cut off from
each of the nodes A and C, in the direction of the
northern limit B, so that in the first eclipse the
moon’s centre is at D, and in the second at E.
¢ A But the time from the epoch to the first eclipse

i1s 27 Egyptian years, 17 days, and 111§ equa-

torial hours considered both simply and accurate-

ly. And, therefore, the moon was 12°24’ from the

epicycle’s apogee and the periodic course was 59’

greater than the true one, and the time from the

epoch to the second eclipse is likewise 245 Egyp-
tian years, 327 days, and 10+ 14+ 14 equatorial hours simply considered and
10Y4 accurately considered. The moon hence was 2°44” from the epicycle’s apo-
gee, and the periodic course was 13’ greater than the true one. The time between
the observations (amounting as it does to 218 Egyptian years, 309 days, and
2314 equatorial hours) gives, according to the mean latitudinal movement just
demonstrated, a surplus of 160°4’.

Now, with these things in mind let the mean course of the moon’s centre be
in the first eclipse at F, and in the second at (. And since
arc FBG=160°¢,

arc DF =59/,

arc EG=13,

Qm
Q

therefore
arec KD =160°50’.
And therefore
arc AD-+arc CE=19°10'
the rest of the semicircle. And since
arc AD=arc CE,
therefore
arc AD=arec CE=9°35".
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This is the amount by which the moon’s true course, in the first eclipse, lay east
of the ascending node, and, in the second eclipse, lay west of the descending
node. Therefore, by addition and subtraction,

arc AF=10°34,

arc CG=9°22'.

And so the moon’s periodic course, in the first eclipse, lay east of the ascend-
ing node 10°34’, and was 280°34’ from the northern limit B; and, in the second
eclipse, lay west of the descending node 9°22’, and was 80°38’ from the same
northern limit.

Finally, since the time from the epoch to the middle of the first eclipse em-
braces a latitudinal surplus of 286°19’, therefore, if we subtract this surplus
from a circle plus the 280°34’ representing the position of the first eclipse, we
shall have the epoch of the latitudinal cycle in the year 1 of Nabonassar, Egyp-
tianwise Thoth 1 at midday; and it will be 354°15" from the northern limit.

As for the determinations of the calculations for the conjunctions and full
moons—since for these passages we nced take no heed of the second anomaly to
be demonstrated later—we shall set out the table of the particular sections geo-
metrically again as in the case of the sun. And we shall do it by making use of
the ratio of 60 to 514, and dividing as before the quadrants at the apogee into
sections of 6° and the quadrants at the perigee into sections of 3°, so that again
the scheme of the table is similar to that of the sun’s, with 45 rows and 3 col-
umns. The first two columns contain the numbers representing the degrees of
anomaly, and the third the corresponding degrees to be added or subtracted.
They are to be subtracted in computing the movement in longitude and latitude
when the total number representing the arc of anomaly from the epicycle’s apo-
gee is less than 180°, and are to be added when it exceeds 180°. See following
table:
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Common Additive— Common Additive—
numbers subtractive numbers subtractive
1 2 3 1 2 3
6 354 0 29 120 240 4 31
12 348 0 57 123 237 4 24
18 342 1 25 126 234 4 16
24 336 1 53 129 231 4 7
30 330 2 19 132 228 3 57
36 324 2 44 135 225 3 46
42 318 3 8 138 222 3 35
48 312 3 31 141 219 3 23
54 306 3 51 144 216 3 10
60 300 4 8 147 213 2 57
66 204 4 24 150 210 2 43
72 288 4 38 153 207 2 28
78 282 4 49 156 204 2 13
84 276 4 56 159 201 1 57
90 270 4 59 162 198 1 41
93 267 5 0 165 195 1 25
96 264 5 1 168 192 1 9
99 261 5 0 171 189 0 52
102 258 4 59 174 186 0 35
105 255 4 57 177 183 0 18
108 252 4 53 180 180 0 0
111 249 4 49
114 246 4 44
117 243 4 38

11. THAT THE QUANTITY OF THE MooN’s ANOMALY As GIVEN BY
HripparRcHUS DID NOT DIFFER BECAUSE OF THE DISSIMILARITY

IN HYPOTHESES, BUT BECAUSE OF THE CALCULATIONS

139

- These things having been demonstrated in this way, it would be reasonable to
try and find out why, in the case of the lunar eclipses compared by Hipparchus
in his research on this anomaly, the ratio does not tally with that demonstrated
by us; and why the first ratio, demonstrated according to the hypothesis of ec-
centricity, does not agree with the second calculated according to the hypothesis
of the epicycle. For according to the first demonstration, he finds the ratio of the
eccentric’s radius to the line between its centre and the ecliptic’s centre to be
very nearly 3,144 to 32724, which is the same as the ratio of 60° to 6°15’. And
according to the second demonstration, he finds the ratio of the line from the
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ecliptic’s centre to the epicycle’s centre to the epicycle’s radius to be 3,12214 to
24714, which is the same as the ratio of 60° to 4746’. And the ratio of 60 to 614
makes the greatest anomalistic difference 5°49’; and the ratio of 60° to 4r46’
makes the greatest difference 4°34’. But in our calculations the ratio of 60 to 514
makes the greatest difference very nearly 5°.

Now, it became evident to us a little way back, from the fact that the same
appearances would result interchangeably from either hypothesis, that this dis-
crepancy does not follow, as some think, from the difference of the hypotheses;
and that if we should make our calculations with numbers we would find the
same ratio resulting from either hypothesis if one should follow the same ap-
pearances for each, and not different ones like Hipparchus. For in this way, with
different eclipses supposed, it is possible for the error to have occurred, either
because of the observations themselves or because of the calculations of the in-
tervals.

In these eclipses we find the syzygics well observed and we find that they oc-
curred according to the hypotheses of regular and irregular movements we have
just demonstrated. But we find that the calculations of the intervals by which
the ratio is demonstrated were not made with the greatest care possible. And be-
ginning with the first three eclipses we shall go through each one of these calcu-
lations.

Now he says these three eclipses were given out by those crossing over from
Babylon as having been observed there, that the first of them occurred in the
Athenian magistracy of Phanostratus in the month of Poseideon, and that the
moon was eclipsed to the extent of a small bit of its circle on the side of the sum-
mer rising point, the night failing a half hour of being finished. And he says it
was still eclipsed when setting. Now, this date is the year 366 of Nabonassar,
Egyptianwise, as he himself says, Thoth 26-27, 514 seasonal hours after mid-
night, since there remained a half hour of night. But when the sun is at the end
of the Archer in Babylon, the night hour is 18° equatorial time. For then the
night is 1424 equatorial hours. Therefore the 514 seasonal hours come to 63%
equatorial hours. The beginning of the eclipse hence occurred 1834 equatorial
hours after midday of Thoth 26. But since a small part was shadowed, the whole
time of the eclipse must have been very nearly 114 hours. Therefore in Alex-
andria the middle of the eclipse must have occurred 1814 equatorial hours after
midday of Thoth 26. And the time from the epoch in the year 1 of Nabonassar
to the eclipse in question is 365 Kgyptian years, 25 days, and 1814 equatorial
hours considered simply, but 1814 hours considered accurately. And caleulating
according to our hypotheses we find the sun’s true position at this time to be
28°18' within the Archer; and find the moon’s mean position to be 24°20’
within the Twins, but true position to be 28°17’, since according to its anom,
alistic eycle it is 227°43" from the epicycle’s apogee. ‘

Again, he says, the next eclipse occurred in the Athenian magistracy of
Phanostratusin the month of Seirophorion, but Egyptianwise Phamenoth 24-25.
And the moon was eclipsed, he says, on the side of the summer rising point at
the end of the first hour of the night. Now, this date is the year 366 of Nabonas-
sar, Phamenoth 24-25, at most 514 seasonal hours before midnight. But when
the sun is at the extremity of the Twins, the night-hour in Babylon is 12° equa-
torial time. Therefore 514 seasonal hours make 424 equatorial hours, and the
beginning of the eclipse occurred 734 equatorial hours after midday of Phame-
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noth 24, But since the whole eclipse is recorded as having lasted 3 hours, the
middle of the eclipse evidently occurred 914 equatorial hours after midday.
In Alexandria, therefore, it must have occurred very nearly 814 equatorial hours
after midday. And again the time from the epochs to the middle of the eclipse is
365 Egyptian years, 203 days, and 814 equatorial hours simply considered, but,
7414414 hours accurately considered. And we find the sun’s true position at
this time to be 21°46’ within the Twins; and the moon’s mean position to be
23°58' within the Archer, but true position 21°48’, since according to its anom-
alistic cycle it is 27°37’ from the epicycle’s apogee. And the interval from the
first to the second eclipse comes to 177 days and 1334 equatorial hours, and
173°28’ of the sun’s movement, while Hipparchus proceeded as if the interval
were 177 days and 134124414 equatorial hours, and 17274° of the sun’s move-
ment.

And he says the third eclipse occurred in the Athenian magistracy of Evan-
drus on the first day of the month of Poseideon, Egyptianwise Thoth 16-17. And
the eclipse, he says, was total, beginning from the direction of the summer rising
point at the end of the fourth hour of the night. Now, this date is the year 367
of Nabonassar, Thoth 16-17, at most 214 hours before midnight. But when the
sun is about two-thirds the way within the Archer, the night-hour in Babylon is
nearly 18° equatorial time. Therefore 214 seasonal hours make 3 equatorial
hours. And so the beginning of the eclipse occurred 9 equatorial hours after mid-
day of Thoth 16. But since the eclipse was total, the whole time of the eclipse
was very nearly 4 equatorial hours, and the middle of it was evidently 11 hours
after midday. In Alexandria, therefore, the middle of the eclipse must have oc-
curred 1014 equatorial hours after midday of Thoth 16. And the time from the
epochs to the middle of this eclipse is 366 Egyptian years, 15 days, and again
1014 equatorial hours simply considered, but 941414 hours accurately con-
sidered. At this time we find the sun’s true position to be 17°30’ within the
Archer; and the moon’s mean position 17°21” within the Twins, but its true posi-
tion 17°28’ because, according to its anomalistic cycle, it is 181°12 from the epi-
cycle’s apogee. And the interval from the second to the third eclipse comes to
177 days and 2 equatorial hours, and 175°44” of the sun’s movement, while Hip-
parchus again assumes the interval to be 177 days and 124 hours, and 175°8’ of
the sun’s movement.

Now, in his calculations of the intervals he appears to have made an error, in
the case of the days, of 1§ equatorial hour and 14 equatorial hour; and, in the
degrees of the sun’s movement, to have made an error of very nearly 35° in each
of them. And this is enough to exclude just a chance disagreement in the quan-
tity of the ratio.

And next we shall pass to the three later eclipses set out by him, which he says
were observed in Alexandria. He says the first of these oceurred in the year 54 of
the Second Callippic Period, Egyptianwise Mesore 16, in which the moon began
to be eclipsed 14 hour before rising and returned to its full size in the middle of
the third hour. Therefore the mid-eclipse occurred at the beginning of the second
hour or 5 seasonal hours before midnight, and about as many equatorial hours
since the sun was near the end of the Virgin. And so the middle of the eclipse oc-
curred in Alexandria 7 equatorial hours after midday of Mesore 16. The time
from the epochs in the year 1 of Nabonassar is 546 Egyptian years, 345 days,
and 7 equatorial hours simply considered, but 614 hours accurately considered.
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And again we find that at this time the sun’s true position is 26°6’ within the
Virgin; and the moon’s mean position 22° within the Fishes, and its true position
26°7’ because, according to its anomalistic cycle, it is 300°13’ from the epicy-
cle’s apogee.

The next eclipse occurred, he says, in the year 55 of the same period, Egyp-
tianwise Mechir 9; and it began after the night had run 514 hours, and the eclipse
was total. Therefore the beginning of the eclipse occurred 1114 equatorial hours
after midday of Mechir 9, since the sun was now near the end of the Fishes. And
the middle of the eclipse was 1314 equatorial hours after midday since the e-
clipse of the moon was total. The time from the epochs to the middle of the
eclipse is 547 Egyptian years, 158 days, and very nearly 1314 equatorial hours
both simply and accurately computed. Likewise we find that at this time the
sun’s true position is 26°17” within the Fishes; and the moon’s mean position
1°7’ within the Balance, and its true position 26°16’ within the Virgin, since ac-
cording to its anomalistic cycle it is 109°28’ from the apogee. And the interval
from the first to the second eclipse comes to 178 days and 6414+ 14 equatorial
hours, and 180°11’ of the sun’s movement, while Hipparchus proceeded as if the
interval were 178 days and 6 equatorial hours, and 180°20’ of the sun’s move-
ment.

And he says the third eclipse occurred in the same year 55 of this Second Peri-
od, Egyptianwise Mesore 5; and it began after the night had run 624 hours, and
the eclipse was total. The middle of the eclipse, he says, occurred at about 814
hours in the night, that is 214 seasonal hours after midnight. But when the sun
is about the middle of the Virgin, the night-hour in Alexandria is 1425° equa-
torial time. Therefore the 214 seasonal hours make very nearly 214 equatorial
hours. And so the middle of the eclipse occurred 1414 equatorial hours after
midday of Mesore 5. Again the time from the epochs to the middle of this eclipse
is 547 Egyptian years, 334 days, and 1414 equatorial hours simply considered,
but 13414434 accurately considered. And we find that the sun’s true position
at this time is 15°12 within the Virgin; and the moon’s mean position 10°24’
within the Fishes, but true position 15°13’, since according to its anomalistic cy-
cle it is 249°9 from the epicycle’s apogee. And the interval from the second to
the third eclipse comes to 176 days and 24 equatorial hour, and 168°55’ of the
sun’s movement, while Hipparchus again assumes this interval to be 176 days
and 114 equatorial hours, and 168°33’ of the sun’s movement.

Therefore it here appears that in the degrees of the sun’s movement he has
made an error of very nearly (14+35)°, and an error in days of very nearly 14+
16414, equatorial hour. These errors can work an appreciable difference in the
ratio of the hypothesis.

Now we have seen the cause of this disagreement. We have also seen that with
still more confidence we can use the ratio of anomaly demonstrated by us for the
moon’s syzygies, for their eclipses are found likewise to agree most completely
with our hypotheses.



BOOK FIVE

1. ON THE CONSTRUCTION OF THE ASTROLABE

WE now find that the hypothesis set up with reference to the first and simple
anomaly is sufficient for the moon’s syzygies with respect to the sun, both the
synodical and the plenilunar, as well as for the eclipses which accompany them,
even if we take this anomaly by itself. But, as regards the particular passages of
the moon’s other positions relative to the sun, it would not be found sufficient.
For, as we said, a second anomaly of the moon is discovered relative to its
elongations from the sun, an anomaly which is reduced to the first at the syzy-
gies, and is greatest at the first and third quarters. We were brought to this ex-
amination and opinion by the courses of the moon observed and recorded by
Hipparchus, and by those we ourselves obtained with an instrument we con-
structed for this purpose. And here is the kind of thing it is.

We take two circles accurately turned with four perpendicular surfaces each,
similar in magnitude, and in every way equal and similar to each other. And we
fit them at right angles to each other with a common diameter, so that one of
them is conceived to be the ecliptic and the other becomes the meridian through
the poles of the ecliptic and of the equator [solstitial colure]. On this circle we
take, with the side of the inscribed square, the points defining the poles of the
ecliptic, and we place at both of them pivots projecting from the inside and out-
side surfaces. And on the outside pivots we place another circle having its con-
cave surface exactly touching everywhere the convex surface of the circles al-
ready fitted together, and able to revolve in longitude about these poles of the
ecliptic. Likewise on the inside pivots we place another circle having its convex
surface everywhere exactly touching the concave surface of the two circles and
likewise revolving in longitude about the same poles as the outside circle. Now,
dividing this inside circle and the one used for the ecliptic each into the usual
360 parts and these in turn into as many parts as practicable, we fit in under the
inner circle another little circle with diametrically opposite projecting sights.
And we fit it in so that it can move in the same plane with this inner circle with
respect to each of the poles, for latitudinal observations. With this done, on
the circle we supposed through both sets of poles, we lay off, from each of
the ecliptic’s poles, the arc we computed to lie between the ecliptic’s poles
and the equator’s. We place the limits of these arcs diametrically opposite
each other on the meridian like that exhibited in the beginning of this treatise
relative to the observations of the meridian arc between the tropics, so that,
when this meridian has been placed in the same position (in other words
when it has been placed perpendicular to the plane of the horizon and in
accordance with the height of the pole of the place in question and parallel
to the plane of the natural meridian) then the inner circles may move about
the equator’s poles from east to west in accord with the prime movement of
the universe.

143
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Now, arranging the instrument in this way, whenever
could appear together above the earth, we placed the outside
labe as nearly as possible at the sun’s degree at that hour. A
colure until, with the intersection of the circles at the sun’s
cisely to the sun itself, the two circles, the ecliptic and th
poles, obscured each other; or, if it were a star being sighted,
placed at one side of the outside circle, already correctly arra
proper section of the ecliptic, the star as if stuck to both su
the opposite side in the plane through both circles. We move
side circle of the astrolabe towards the moon or any other s
until, simultaneously with the sun or star in question, the m
be examined is lined up with both sights of the little circle
side circle.

In this way, we find out, from the inside circle’s intersect
the circle corresponding to the ecliptic, what longitudinal se
they occupy and how many degrees distant they are either n.
circle through the ecliptic’s poles. And this last reading is ma
division of the inner circle, from the interval between the 1
sight of the little circle fitted under it and the ecliptic.

2. ON THE HyroTHESIS OF THE M0oON’s DOUBLE

Now, with this kind of observation, the moon’s distances
sun, both those recorded by Hipparchus and those observec
at times to agree with the calculations made according to the
advanced, and at other times to disagree and differ; somet
times a great deal. With a continuously greater and more r
of our own, we learned concerning the order of this irregula
conjunctions and full moons there was either little or no appr
and only such as the moon’s parallaxes could account for; anc
the first and third quarters, there is very little or no discrepa
is at the epicycle’s apogee or perigee, but the most when th
courses effects the greatest difference of first anomaly. We fi
ever of the two semicircles the first anomaly is subtractive, |
is found to be advanced even less than the result of this first
but, when it is additive, it is likewise found to be more &
occurs in proportion to the magnitude of the first addition:
this order we see at a glance that it is necessary to suppose
is borne on an eccentric circle with its apogee at the conjuncti
and its perigee at the first and third quarters. And this woulc
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eccentric circle, \.vhic.h is taken in this same plane always bearin,
centre, and turning it from east to west at g speed equal to the
the moon’s elongation from the sun over the latitudinal moveme
excess of the moon’s mean longitudinal movement over the sun

And so, for example, in one day the epicycle’s centre appears
nearly 13°14’ in latitude from west to east, traversing 13°11’ ir
cause of the oblique circle’s retrogression of the 3/ excess from ea.
in turn the eccentric’s apogee is rotated in that same opposite
east to west 11°9’, by which amount 24°23’ (double the moon’s
ceeds 13°14". Thus, because of the two movements’ retrogression
direction about the ecliptic’s centre, as we said, the movemen:
epicycle’s centre will differ from that of the eccentric’s by the a
13°14’ plus 11°9’, which is very nearly double the 12°11157 of
Therefore the epicycle will traverse the eccentric cirele’s circumf
a mean month’s time, and its return to the eccentric’s apogee Is a;
place at mean conjunctions and full moons.!

But to see the details of the hypothesis more thoroughly, aga
conceived the circle ABCD concer
ecliptic and lying in the moon’s obliq
E as centre and A EC as diameter. At
suppose the point A to be the ecce
the epicycle’s centre, the northern lir
F ning of the Ram, and the mean sun.

Then, I say, in one day’s course tl

moves from east to west, or from A t«

ly 3’ about centre E, so that the no

comes to be 29°57" within the Fishes.

the two contrary regular movements

straight line similar to £A4 again abot

tic’s centre, I say that, likewise in a

the straight line similar to £4 throt

tric’s centre and revolving westward at a regular speed to ED .
centric’s apogee to D, describes the eccentric circle DG about
makes an arc AD of 11°9’; but that the straight line through the ef
revolving about E, this time eastward, at a regular speed to EB?
cycle’s centre to G and makes an arc 4B of 13°14’. And so G, the
tre, appears to be 13°14’ in latitudinal movement distant from

1The mean conjunctions and full moons or mean syzygies are the conjunct
tions of the centre of the moon’s enicvele and the mean sun.
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limit A4 ; but 13°11’ within the Ram in longitude, because the
29°57' within the Fishes; and to be 24°23’, the sum of arcs »
the eccentric’s apogee, which is double the daily movemen:

In this way, since the two movements together througl
make a complete return to each other in half a mean month
that in a quarter or three quarters of a mean month’s time
directly opposite each other—that is, at the first and third
mean movement—and that, when the epicycle’s centre a
opposite the eccentric’s apogee along ED it will be at the ec

It is clear that, with things thus disposed, as regards the e
dissimilarity of ares DB and D@ there is no difference in the
since the straight line EB, because of its rotation about £
centric’s centre, traverses at a regular speed, not arc DG of
but arc DB of the ecliptic. But only as regards the difference
itself will there be a change. For the epicycle when nearer the
crease the anomalistic difference, the additive equally with
angle at the eye intercepting it being made greater in positior

There will be no general difference, then, for the first hyy
epicycle’s centre is at the apogee A. This happens at mean c
moons. ,

For if we draw the epicycle MN about A, the ratio of AE
as that demonstrated by means of eclipses. And the
difference will be greatest when the epicycle is pass-
ing G, theeccentric’s perigee—as, forexample, the one
drawn through the points X and O. This occurs at
the first and third quarters considered in terms of
mean movement. For the ratio of XG to GE is
greater than all those constructed at the other posi-
tions, since X@, the epicycle’s radius, is always
equal and the same, and the line EG from the earth’s
centre is less than all the others drawn to the ec-
centric circle.

3. O~ THE SiZE oF THE MOON’S SOLAR ANOMALY

To see, then, how much the greatest anomalistic
difference comes to when the epicycle happens to be
borne at the eccentric’s perigee, we observed those
of the moon’s elongations sighted with the sun in

vwhinh fhae mann’e antireoce arnnrmacrnhod +he moaan (fAar
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tions, we sighted the sun and moon in the year 2 of Antonine, I
Phamenoth 25, after sunrise, or 54 cquatorial hours before noon.
sighted (18+144-14)° within the Water Bearer and the point 14
Archer culminating, the moon’s apparent position was 924° within t
and its true position was the same, since in Alexandria, when the m
first part of the Scorpion very nearly 114 hours west of the meridia;
display an appreciable parallax in longitude. The time from the e
vear 1 of Nabonassar to this observation is 885 Egyptian years, 21
18+ 14414 equatorial hours, both simply and accurately considerec
sponding to this amount of time we find the sun’s mean position
within the Water Bearer, and its true position 18°50” which agr
sighting of the astrolabe. From the first hypothesis, the moon at
found to be 17°20" within the Scorpion in mean longitude, so tl
elongation from the sun is very nearly a quadrant, and in anomal;
from the epicycle’s apogee, near which the greatest anomalistic d
curs. Therefore, the true course was less than the regular one by 72
the first anomaly’s 5°.

Again, in order to have before us the difference in like cases from .
observed by Hipparchus, we shall first set out one which he says he
the year 50 of the Third Callippic Period, Egyptianwise Epiphi 1
first hour having passed. Now the course, he says, was mean.! And-
sighted (84144-112)° within the Lion, the moon’s apparent positic
within the Bull, and its true position was very nearly the same. T
moon’s true elongation from the sun was 86°15’. But when the sun i
part of the Lion, in Rhodes where the observation occurred, the
1714° in time. Therefore the 514 seasonal hours before noon make 61
hours, so that the observation occurred 614 equatorial hours bef
Epiphi 16 with the point 9° within the Bull culminating. Consecquer
from the epochs to this observation totals 619 Egyptian years, 31
17414+ 14 equatorial hours simply considered, but 17414414 acc
sidered. And according to our hypotheses (since the meridian thro
is the same as that through Alexandria), for this amount of time
sun’s mean position to be 10°27” within the Lion, but its true pc
8°20’. And we find the moon’s mean longitudinal position to be 4°2:
Bull so that its mean elongation from the sun is again nearly a quac
anomaly is 257°47’ from the epicycle’s apogee, very near which the
ference of epicyclic anomaly occurs. Therefore, the distance from
mean position to the sun’s true position totals 93°55’. But the moon

1 faYaloR .2 2 4 o] TS D T
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4. Ox tHE LuNar CircLe’s RaTio oF EcCcENTRICITY

Now this being so, let there be the moon’s eccentric circle ABC about D as
centre and ADC as diameter. And on this diameter
let E be taken as the ecliptic’s centre so that A is
the eccentric’s apogee and C its perigee. And let
there be drawn the moon’s epicycle FGH with cen-
tre C, and let the tangent EH B be drawn to it, and
let CH be joined.

Then, since the greatest anomalistic difference is
produced on this tangent of the moon’s epicycle
(this being shown to total 724°), therefore, being at
the ecliptic’s centre,

angle CEH =7°40/
=15°20' to 2 rt.
And therefore, on the circle about right triangle
CEH,

A

arc CH=15°20’,
chord CH =167
where
hypt. CE =120r,

And so CE, the line from the ecliptic’s centre to the eccentric’s perigée, will
also be 39r22’ to the already-demonstrated 5715 of the epicycle’s radius and the
60 of AE, the line from the ecliptic’s centre to the eccentric’s apogee. And,
therefore, the whole diameter AC will be 99722, the eccentric’s radius AD
49r41’, and DE the line between the centres of the ecliptic and eccentric 10°19'.
So we have shown the ratio contained by the eccentricity.!

5. On TuE INcLINATION OF THE Moon’s EpicycLE

Now this number of circles would be added to the hypotheses for an explana-
tion of the appearances at the syzygies and again at the first and third quarters.
But from a consideration of the particular courses where it is either crescent or
gibbous and when its epicycle is between the eccentric’s apogee and perigee, in
the case of the moon we find a peculiar incident concerning the epicycle’s in-
clination. For in general it is necessary to suppose one and the same point on
epicycles with respect to which the returns of the movements on them are ac-
complished. We call this the regular apogee from which we begin the numbers
of the epicyclic movement, as the point F in the preceding figure; and this point
is determined by the line of centres, such as DEC, when the epicycle is at the
apogees and perigees of the eccentric circles. Now, for all the other hypotheses,
we see absolutely nothing in the appearances contrary to this supposition: that
the diameter through the epicycle’s apogee (FCG@, for instance) always and in

1From this theory of eccentricity it follows that the moon’s distance from the earth varies
by as much as 34 to 65, or nearly 1 to 2. And since, for small angles, the tangents are nearly
proportional to the angles, the size of the moon’s diameter (as Copernicus points out in
Chapter 2 of Book 1V, On the Revolutions of the Heavenly Spheres) will vary as 1 to 2. But,by
observation, this is not true. The diameter varies very nearly as 55 to 65, just as the epicylic
theory without the eccentric theory allows. Hence at this point the Ptolemaic theory, in sav-
ing the appearances of the angular distances, is unable to save the appearances of the diame-
ter’s variations.



THE ALMAGEST, V 149

the other courses of the epicycles keeps the same direction as the line which re-
volves the epicycle’s centre at a regular speed (in this case EC); and that, con-
sequently, it always points to the centre of revolution at which in equal times
are mtercepted the equal angles of the regular movement.

But in the case of thé moon, the appearances are opposed to the epicyclic
diameter, FG’s being inclined towards £ the centre of revolution and keeping
the same direction as EC in the passages between A and C. True enough, we
find it, always pointing to one and the same point on the diameter AC; not to
the ecliptic’s center E nor to the eccentric’s center D, however, but to the point
the same distance from £ on the same side of the eccentric’s perigee as DE, the
line between the centres.!

Again we shall show this is so by choosing from several observations two
which can bring this to light most efficiently—that is, two observations where
the epicycle was in the mean distances, and the moon either at the epicycle’s
perigee or apogee. For it is in such passages that the greatest difference in these
inclinations occurs.

Hipparchus writes that he observed the sun and moon with instruments in
Rhodes, in the year 197 after Alexander’s death, Egyptianwise Pharmouthi 11,
at the beginning of the second hour. And he says that, with the sun s1ghted
(7+14+34)° within the Bull, the apparent position of the moon’s centre was
2124° within the Fishes, and its true, position (214144 14)° within the Fishes.
Therefore, at that time, the true moon’s eastern elongation from the true sun
was very nearly 313°42’. But since the observation occurred at the beginning
of the second hour or very nearly 5 seasonal hours before noon of Pharmouthi
11, and since in Rhodes at that time the seasonal hours were equivalent to very
nearly 524 equatorial hours, therefore the time from our epoch to this observa-
tion totals 620 Egyptian years, 219 days, and 1814 equatorial hours simply con-
sidered, but only 18 hours accurately considered. Corresponding to this time,
we find the regular sun’s position to be 6°41’ within the Bull, but the true sun’s
position to be 7°45"; and the regular moon’s longitudinal position to be 22°13/
within the Fishes, and in anomaly the moon to be 185°30" from the epicycle’s
mean apogee.? And so the regular moon’s elongation from the true sun totals
314°28'.

Now all this being granted, let A BC be the moon’s eccentric circle with centre

tAgain in Chapter 2 of Book IV, On the Revolutions of the Heavenly Spheres, Copernicus
sharply criticises this third lunar anomaly where the regular movement of the moon on the
epicycle is no longer tied to the regular movement of the epicycle on its deferent. For the
result of this contriving of movements is that the moon moves irregularly about the epicycle’s
centre. Copernicus says that the initial violation of the strict principle of celestial mechanics,
with respect to the epicycle’s movement on its deferent, necessitates this further irregularity.

But Ptolemy might well reply that even if these movements, so contrived, turn out to
move the stars on their epicycles irregularly with respect to the centres of the epicycles, and
the epicycles irregularly with respect to the centres of their deferents, yet these irregular

movements are such as can be coraputed and mastered by means of circles and regular move-
ments, and this is all that is necessary.

*The apparent apogee and apparent perigee are those defined in the normal way, by a
straight line through the epicycle’s centre and the ecliptic’s centre, or the earth. The mean
apogee and mean perigee are those defined in another regular way to fit the particular ap-
pearances. As Ptolemy says, in the case of the moon, they are defined by a line through the
epicycle’s centre and a point on the line of apsides other than the earth. It is evident that the
apparent and mean apogees coincide at the quarters and syzygies. Furthermore, the apparent
and regular apogees always coincide in the case of the moon.
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D and diameter ADC, on which let
there be the ecliptic’s centre E.
And with B as centre let the moon’s
epicycle FGH be drawn. Let the
epicycle be revolved eastward as
from B to A, and let the moon be
revolved on the epicycle from F to
G and H, letting DB and EHBF be
joined. ‘

Now, since a mean lunar month’s
time embraces two returns of the
epicycle with respect to the eccen-
tric, and since in the foregoing po-
sition the mean moon was 315°32’
from the mean sun, it follows that
if we double this amount and sub-
tract a complete circle we shall .
have, for that time, the epicycle’s distance of 271°4’ eastward from the eccen-
tric’s apogee. And so, by subtraction, -

angle AEB=88°56".
Then let DK be drawn from D perpendicular to BE.
Now, since

angle DEB = 88°56’
=177°52' to 2 rt.,
therefore also, on the circle about right triangle DEK,
arc DK =177°52/,
and, by subtraction from the semicircle,
arc EK =2°8'.
And therefore
chord DK = 11959,
chord EK =2r14/
where '
diam. DE =120p.
And therefore:
DK =10r19,
EK=0r12
where again
1. betw. c. DE =10°19’

and
ecc. rad. BD =49r41’.
And since
sq. BD—sq. DK =sq. BK,
therefore
BK =48°36/,

and, by addition,

’ BE =48r48’,

Again, since the mean moon’s elongation from the true sun was 314°28’, and
in the observation the true moon’s elongation from the true sun was 313°42’ so
that the moon’s anomalistic difference subtracts 46’, and since the moon’s regu-
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lar course is sighted along the line EB, therefore let the moon be supposed at the
point G, for it was near the epicycle’s perigee. And with EG and BG joined, let
BL be drawn from B perpendicular to EG produced.

Since it contains the moon’s anomalistic difference,

angle BEL =0°46'
=1°32" to 2 rt.
And so also, on the circle about right triangle BEL,
arc BL=1°32,
chord BL =136’

where
hypt. BE =120,
And so
BL =0°3%
where
BE =48r48’
and

epic. rad. BG=5715".
And therefore
BL =14r52'

where

epic. rad. BG=120r,
And, on the circle about right triangle BGL,

arc BL=14°14".
And so
angle BGL=14°14" to 2 rt.,

and, by subtraction,
angle EBG =12°42' to 2 rt.
=6°21".
Therefore, on the epicycle,
arc GH =0°21"
which is the distance from the moon to the true perigee.

But since the moon, at the time of the observation, was 185°30’ distant from
the epicycle’s mean apogee, it is evident that the mean perigee precedes the
moon or point G. Let it be A, and let BMN be drawn and £X from E perpen-
dicular to it.

Then, since it was shown

arc GH =6°21'
and it is assumed
arc GM =5°30’
from the perigee so that, by addition,
arc HM =11°51",
therefore
angle FBX =11°51’
=23°42’' to 2 rt.
And so also, on the circle about right triangle BEX,
arc EX =23°42';
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chord EX =24739’
where
hypt. BE=120r.
And therefore
EX=10r2
where
BE =48r48’,
Again, since
angle AEB=177°52" to 2 rt.
and
angle EBN =23°42' to 2 rt.,
therefore, by subtraction,
angle ENB=154°10" to 2 rt.
And so also, on the circle about right triangle ENX,
arc EX =154°10";
chord EX =116758'
where
hypt. EN =120°.
And therefore
EN=10°18’
where
EX =102
and
1. betw. ¢. DE=10719’.
Therefore, the inclination of the straight line BM through the mean perigee to
N cuts off EN very nearly equal to DE.

Likewise—to show that the same thing occurs also for the opposite parts of
the eccentric and epicycle—we have again taken from among the intervals ob-
served by Hipparchus in Rhodes, as we said, the one sighted in the same year
197 after Alexander’s death, Egypt1anw1se Paym 17, at 914 hours At that time,
he says, with the sun s1ghted 1091 ¢° within the Crab the moon’s apparent po-
sition was about 29° within the Lion. And this was its true position also, since
in Rhodes towards the end of the Lion, at very nearly one hour after noon, the
moon does not display a parallax in longltude Therefore, at that time, the true
moon’s eastern elongation from the true sun was 48°6’. But since the observa-
tion occurred 314 seasonal hours after noon of Pajni 17, and in Rhodes at that
date these came to very nearly 4 equatorial hours, the time from this observa-
tion to our epoch is 620 Egyptian years, 286 days, and 4 equatorial hours simply
considered, but 324 hours accurately considered. Likewise corresponding to this
time we find the regular sun’s position to be 12°5’ within the Crab, but the true
sun’s position 10°40’; and the regular moon’s position in longitude to be 27°20,
within the Lion so that the regular moon’s elongation from the true sun totals
46°40’, in anomaly the moon being 333°12’ from the epicycle’s mean apogee.

Now, with these things granted, again let there be the moon’s eccentric circle
ABC with centre D and diameter ADC on which let I be taken as the ecliptic’s
centre. And let the moon’s epicycle FGH be described about the point B, and
let DB and EHBF be joined.

Since, then, double the moon’s mean elongation from the sun contains 90°30',
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therefore for reasons already given
angle AEB=90°30’
=181° to 2 rt.
Therefore if we extend the line BE
and drop DK from D perpendicular
to it, then, as supplement,
angle DEK =179° to 2 rt.
And so also, on the circle about
right triangle DEK,
arc DK =179°
and, as remainder of the semicircle,
arc EK=1°.
And therefore
chord DK =119»59’,
chord EK =173’

where
hypt. DE =120r,
And so
DK =10°19,
EK =0r5’
where
1. betw. ¢. DE=10°r19’,

ecc. rad. BD=49r41’,

And since

8q. BD —sq. DK =sq. BK,
we shall have
BK =48°36'
and, by subtraction,
BE =48°31".

Again, since the regular moon’s elongation from the true sun was 46°40’, but
the true moon’s elongation was 48°6" (so that the anomalistic difference has
added 1°26"), let the moon, since it was near the epicycle’s apogee, be supposed
at point G. And with EG and BG joined, let BL be drawn from B perpendicular
to EG.

Since, then,

angle BEL=1°2¢'
=2°52' to 2 rt.
therefore also, on the circle about right triangle BEL.
arc BL=2°52";
chord BL=2v59'
where
hypt. BE =120»,
And therefore
BL=1r12'
where
BE =48731"
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and
epic. rad. BG=5715".
And so
BL=27734
where

hypt. BG=120r;
and, on the circle about right triangle BGL,
arc BL=26°34'
And therefore
angle BGL=26°34" to 2 rt.,
and, by addition,
angle FBG=29°26' to 2 rt.
=14°43".
Therefore, on the epicycle,
arc FG=14°43,
which is the moon’s distance to the true apogee.

But since at the time of the observation the moon was 333°12’ from the mean
apogee, if we suppose the mean apogee at M and, joining M BN, drop EX from
E perpendicular to it, then S

arc GFM =26°48’
the rest of the circle, and, by subtraction,

arc FM =12°5".
And so

angle MBF =angle EBX =12°5
=24°10" to 2 rt.

And also, on the circle about right triangle BEX,

arc EX =24°10";

chord EX =25°7"

where
hypt. BE=120°,
And therefore
EX=10r8’
where
BE =48°31’
and

1. betw. ¢c. DE=10r19’.
Again, since it is assumed
angle AEB=181° to 2 rt.,
and it was proved
angle EBN =24°10" to 2 rt.
so that by subtraction
angle ENB=156°50" to 2 rt.,
therefore also, on the circle about right triangle ENX,
arc FX =156°50";
chord EX =117°33’
where
hypt. EN =120°.
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And therefore
EN =10°20'
where
EX =10°8
and
1. betw. ¢. DE=10°19".
Therefore the inclination of the straight line 4/ B through the mean apogee M
to N has again cut off EN very nearly equal to DE, the line between the centres.
From several other observations we find that very nearly the same ratios re-
sult, so that in this way the property of the epicycle’s inclination in the moon’s
hypothesis is established. For on the one hand the revolution of the epicycle’s
centre takes place about the ecliptic’s centre E; on the other hand the epicycle’s
diameter which defines the epicycle’s mean-apogee point no longer points to E,
the centre of regular rotation, as for the other stars, but always points to NV on
the other side of ¥ from D at a distance equal to DE, the line between the
centres.

6. How tHE Moon’s TRUE CoURSE 1s GOTTEN GEOMETRICALLY
FROM I1Ts PERIODIC MOVEMENTS

With these things demonstrated, it would be proper next to add how, for par-
ticular courses of the moon, by takmg the epochs of the mean movements we
could find, from the elongation—number and the moon’s epicyclic number, the
addition or subtraction to the mean longitudinal course due to the anomalistic
difference. This determination is gotten geometrically from theorems like those
we have already expounded.

For example, in the case of the last figure we gave, let us suppose the same

periodic movements of elongation
A and anomaly—that is, for double
the elongation, 90°30’, and for a-
nomaly 333°12’ from the epicycle’s
apogee. Let us draw NX perpen-
dicular, instead of £X, and GL in-
stead of BL. And by the same
~ means, with the angles at the cen-
tre £ given and the hypotenuses
DE and NE given equal, it can be
shown that

DK=10°19,
NX=10r19'
where
ecc. rad. BD =49°41,
epic. rad. BG=5r15,
and
ER=EX=0r5.
And, therefore, as we showed before,
BK =48°36’,
BE =48°31’,

and, by subtraction,
BX =48r26’.
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And so, since

sq. BX+sq. NX =sq. BN,
we shall have in length

BN =49r31/
where
NX=10r19".
And therefore '
NX =257

where

hypt. BN =120%;
and, on the circle about right triangle BN X,

arc NX=24°3".
And so also

angle NBX =angle FBM =24°3" to 2 rt.,
=12°l".
And therefore, on the epicycle, also
arc FM =12°1".
But since the point G, the moon, is the remainder of the circle or 26°48” distant

from the mean apogee 3, therefore we shall have, by subtraction,

arc FG=14°47".
And so also
angle FBG=14°47'
=20°34" to 2 rt.
And also, on the circle about right triangle GBL,
arc GL=29°3%,
and, as remainder of the semicircle,
arc BL=150°26".
And therefore
chord GL=30°37’,
chord BL=11672’

where
hypt. BG=120r.
And so
GL =120,
BL=5r5
where

epic. rad. =5r15’
and where it was proved
BE =48r31".
And therefore, by addition,
EBL=5373¢
where



e s e e e L A e

—_—- =TT "8 -0

THE ALMAGEST, V 157
GL=1r20’.
And again since
sq. EBL+sq. GL=sq. EG,
therefore, we shall have in length
EG=53r37.
And so
GL =259
where
hypt. EG=1207;
and, on the circle about right triangle EGL,
arc GL=2°52".
And therefore, as the anomalistic difference,
angle GEL=2°52' to 2 rt.
=1°26".
Which it was required to show.

7. CoNsTRUCTION OF THE TABLE OF GENERAL LUNAR ANOMALY

To have a methodical determination of the particular addition-subtractions
set out in a table, we have again used the same geometrical figures and filled out
the table we constructed according to the simple hypothesis, with columns
which readily correct for the second anomaly. For after the first two columns
containing the numbers, we have added a third column containing the addition-
subtractions corresponding to the anomalistic number for reducing this number,
calculated by the mean passages from the mean apogee or M, to the true apogee
or F. In the foregoing case of a distance between the moon and the eccentric’s
apogee of 90°30’, we showed the arc #{ to be 12°1” so that, although the moon’s
distance from the mean apogee was only 333°12’, its distance from the true
apogee was 345°13’. It is with respect to this last number that the epicyclic ad-
dition-subtraction for mean longitudinal movement must be taken. In brief,
therefore, we have gotten the quantities of addition-subtraction, at convenient
intervals of arc-length, for the other numbers of the moon’s distance, and we
have put them in the third column beside the proper number.

The fourth column contains the anomalistic differences due to the epicycle
and already set out; here the greatest addition-subtraction comes to very nearly
5°1” according to the ratio of 607 to 5°15’. The fifth column contains the excess
amounts of the differences resulting from the second anomaly over those from
the first, the greatest addition-subtraction from the second totaling 724°, ac-
cording to the ratio of 60 to 8. And so the fourth column provides for the epicy-
cle’s position at the eccentric’s apogee near the syzygies; but the fifth column
consists of the excess amounts gotten from the anomaly produced at the ec-
centric’s perigee near the first and third quarters.

To find proportionately the parts of these excess amounts corresponding to
the passages between these two positions on the eccentric, we have added a
sixth column containing the sixtieth part of that difference for each number of
elongation; and this must be added to the first anomaly’s addition-subtraction
laid out in the fourth column. And we have gotten them in this way:
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Let there be the moon’s eccentric cir-
cle ABC with centre D and diameter
ADC on which let the ecliptic’s centre £
be taken. And with arc AB cut off and
with the epicycle FGHK described about
B, let EBF be drawn. By way of exam-
ple, let the moon’s elongation be given as
60° so that, for the same reasons already
demonstrated, angle AEB is double the
elongation of 120°. And let DL be drawn
from D perpendicular to BE produced,
and let GBKD be drawn through; let the
straight line (in this case KMN) from
the centre E to the moon be supposed
tangent to the epicycle so as to have the
greatest anomalistic difference; and let
BM be joined.

Now, since it is assumed

angle AEB=120°
=240° to 2 rt.,

therefore, as supplement,
’ angle DEL=120° to 2 rt.
And so, on the circle about right triangle DEL,

arc DL =120°,
and, as remainder of the semicircle,

arc EL=60°.

And therefore

chord EL=60r,

chord DL=103755’

where
hypt. DE = 120>,
And therefore
EL=5r10’,
DL =856
where
DE=10r19,
BD=49r41’.
And

sq. BD—sq. DL=sq. BL;
therefore, in length,
BEL=48°53,

and, by subtraction, :
' BE =43r43’
where

epic. rad. BM =5°15,

And therefore
BM =14r25

where
hypt. BE =120°,;
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and, on the circle about right triangle BEAM,
arc BM =13°48'.
Therefore, as the angle which contains the greatest anomalistic difference,
angle BEM =13°48’ to 2 rt.

=(°54".
The anomalistic difference for this distance of elongation thus differs from the
5°1’ produced at the apogee by 1°53’. But the complete difference up to the peri-
gee is 2°39’. And therefore the difference of 1°53’ will be 42°48’ to the greatest
difference’s 60°. We shall put this 42°38’ in the sixth column in the row with the
number 120° which here indicates the distance of the epicycle from the eccen-
tric’s apogee.

Likewise for the other sections we have calculated by the same means the
parts so taken of the excess of one anomaly over the other, placing beside the
proper numbers the sixtieth part of this excess corresponding to each one. And,
of course, the whole 60 such parts have been put in a row with double the num-
ber 90°, the elongation, for the resulting 180° is at the eccentric’s perigee.

We have added a seventh column containing the latitudinal passages of the
moon on a circle through the ecliptic’s poles corresponding to each part of the
ecliptic; or, in other words, the arcs intercepted on the circle through the eclip-
tic’s poles between the ecliptic and the moon’s oblique circle. And for this we
have used the same proof as that by which we calculated the arcs on the circle
through the equator’s poles, and which lie between the ecliptic and the equator.
But in this case the arc on the great circle through the poles of the ecliptic and
of the moon’s oblique circle, lying between the ecliptic and the northern or
southern limit of the oblique circle, is very nearly 5°. For, according to both
Hipparchus and ourselves in calculating the appearances pertaining to the
northernmost and southernmost courses, the moon’s greatest passage was found
to be just about that much on either side of the ecliptic. Nearly all things per-
taining to lunar observation, considered with respect to the stars and by means
of instruments, agree with greatest latitudinal courses of this size. And things
to be demonstrated later will agree also. And the following is the table of general
lunar anomaly.!

1This table is fairly complicated and condensed, and Ptolemy’s explanation is not too clear.
We shall here give a clearer and more analytical summary.

In the first place, the first two columns are called ‘‘common numbers” because these num-
bers play different roles for the different columns that follow.

With respect to column 3, columns 1 and 2 contain the numbers of arcs on the eccentric in-
dicating the distance of the epicycle’s centre from the eccentric’s apogee. And column 3 con-
tains the corresponding addition-subtractions to be made in the moon’s distances from the
epicycle’s mean apogee, in order to determine its distance from the epicycle’s true apogee.

With respect to column 4, columns 1 and 2 contain the numbers of arcs on the epicycle in-
dicating the moon’s distance from the epicycle’s true apogee. And column 4 contains the
corresponding addition-subtractions in longitude and latitude which correct for the anomaly
when the epicycle is at the eccentric’s apogee. These last numbers correspond to the addition-
subtractions in the table of the first lunar anomaly, but they are here given their proper place
within the general scheme of lunar anomaly.

With respect to column 5, columns 1 and 2 again contain the numbers of ares on the epi-
cycle indicating the moon’s distances from the epicycle’s true apogee. And column 5 contains
the corresponding additions-subtractions in longitude due to the second lunar anomaly when
the epicycle is at the eccentric’s perigee, and which are over and above those due to the first
anomaly. In other words, these are the differences between the first and general anomalies.

With respect to column 6, columns 1 and 2 contain the numbers of arcs on the eccentric
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8. TABLE oF THE GENERAL LUNAR ANOMALY
1 2 3 A 5 6 7
Addition— | Addition—
subtractions| subtractions Difference
Common |for disiances|in longitude| Epicyclic in Latitude
Numbers from and latitude| difference stxtieths
eccentric’s for
apogee epicycle
613 0 |53 0 |29 0 |14 0 |12 4 | 58 Northern
12 | 348 1 46 0 57 0 {28 0 | 24 4 | 54 limat
1813421 2 {39 1 25 0 |42 1 20 4 |45
24 1336 3 |31 1 53 0 56 2 16 4 | 34
301330 4 23 2 19 1 10 3 {24 4 |20
36 | 324 5 15 2 | 44 1 23 4 |32 4 3
42 1 318 | 6 7 3 8 1 35 6 |25 3 | 43
48 | 312 6 58 3 |31 1 45 8 18 3 120
54 13061 7 |48 3 51 1 54 10 | 22 2 | 56
60 | 300 | 8 | 36 4 8 2 3 12 | 26 2 130
66 1294 | 9 22 4 |24 2 11 15 5 2 2
72 | 288 | 10 6 4 | 38 2 18 17 | 44 1 33
78 | 282 | 10 48 4 |49 2 125 |20 |34 1 3
84 | 276 | 11 27 4 56 2 31 23 |24 0 | 32
90 | 270 | 12 0 4 59 2 35 26 | 36 0 0
93 | 267 | 12 15 5 0 2 37 28 12 0 16
96 | 264 | 12 28 5 1 2 |38 |29 {49 0 | 32
99 | 261 | 12 39 5 0 2 39 31 25 0 | 48
102 | 258 | 12 | 48 4 |59 2 139 |33 1 1 3
105 { 255 | 12 | 56 4 | 57 2 139 34 | 37 1 17
108 | 252 | 13 3 4 | 53 2 38 | 36 14 1 33
111 { 249 | 13 6 4 149 2 |38 |37 |30 1 48
114 | 246 | 13 9 4 |44 2 37 39 {26 2 2
117 | 243 | 13 7 4 | 38 2 35 | 41 2 2 16
120 | 240 | 13 4 4 32 2 32 42 | 38 2 130
123 | 237 | 12 59 4 25 2 28 | 44 3 2 |43
126 | 234 | 12 50 4 16 2 24 |45 128 2 56
120 1 231 | 12 36 4 | 7 2 |20 46 53 3 8
132 | 228 | 12 16 3 57 2 16 | 48 18 3 120
1351 225 | 11 54 3 | 46 2 11 49 32 3 |32
138 | 222 | 11 29 3 135 2 5 |50 |45 3 |43
141 | 219} 11 2 3 123 1 58 | 51 59 3 53
144 | 216 | 10 33 3 10 1 51 53 12 4 3
147 | 213 | 10 0 2 57 1 43 | 54 3 4 11
150 | 210 9 |22 2 |43 1 35 | 54 {54 4 |20
1563 | 207 | 8 | 38 2 |28 1 27 55 | 45 4 |27
156 | 204 7 48 2 13 1 19 56 | 36 4 | 34
159 1201 | 6 56 1 57 1 |11 57 15 4 140
162 | 198 ¢ 6 3 1 41 1 2 57 155 4 | 45
165 | 195 5 8 1 25 0 52 |58 |35 4 | 50
168 1 192 | 4 11 1 9 0 |42 59 4 4 | 54
171 [ 1891 3 12 0 52 0 31 59 | 26 4 | 56
174 | 186 | 2 11 0 35 0 21 59 37 4 58
177 | 183 1 7 0 |18 0 10 59 | 49 4 |59 Southern
180 {180 | O 0 0 0 0 0 | 60 0 5 0 limat
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9. Ox GexneraL CALCULATIONS OF THE Moon

Now whenever we wish, by means of this tabular set up, to calculate the lunar
anomaly we take the moon’s mean movements, for the date in question in Alex-
andria, and we take them in longitude, elongation, anomaly, and latitude in the
way we have shown. Always doubling the first number of elongation calculated,
and subtracting a whole circle from the product if we can, we carry the result to
this Table of Anomaly. We then add the degrees in the third column correspond-
ing to it to the mean degrees of anomaly, if the number doubled runs up to 180°;
but, if it exceeds 180°, we subtract it. Again we carry the resulting true number
of anomaly to this same table, and we note down the addition-subtraction cor-
responding to it in the fourth column, and also the corresponding difference in
the fifth column.

After this we again carry the double of the number indicating the mean elon-
gation to the same first two columns; and, as many sixtieths in the sixth column
as correspond to it, just so many do we take of the difference from the fifth
column which we have already noted down. We always add the result to the
addition-subtraction we found in the fourth column. If the true anomalistic
number is not above 180°, we subtract this sum from the mean longitude and
latitude; but, if it is above 180°, we add it. Of the two resulting numbers we take
the one in longitude and add it to the mean position calculated at the epoch;
and whatever it comes out to, we shall say the moon is truly at that place.

We carry the latitudinal number, computed from the northern limit, to this

indicating the distances of the epicycle’s centre from the eccentric’s apogee. And eolumn 6
contains the corresponding differences between the first anomaly and the general anomaly
when the moon lies on the tangent from the earth to

i the epicycle or when the epicyelic addition-subtrac-

R tion is greatest. But these differences are here ex-
pressed in terms of the greatest difference among
them, which is taken as 60. It is then assumed that, for
all practical purposes, the ratio of a difference for a
given position of the epicyecle to the greatest difference
when the epicycle is at the eccentric’s perigee is the
same for all positions on the epicycle. In other words,
taking the eccentric about O and the centre of the
ecliptic £, and drawing equal epicycles at the apogee

e and perigee, 4 and C, and another equal epicycle at a
chance position B, let the tangents from E to the three
F
C

epicycles be drawn, and let equal arcs LR, 3S, and
N'T be taken from their apogees. Then Ptolemy is as-
suming that, for all practical purposes, we can use the
following proportion: ‘

angle CEF — angle AED :

angle BEG — angle AED : :
N angle NET — angle LER :

angle SEM — angle LER.
Now, column 6 gives us the first ratio for different po-

sitions of B. And therefore, knowing the differences
between angle NET and angle LER, for different lengths of LR and TN, froimn column 5, we
ean find the differences between angle SEM and angle LER.

With respect to column 7, coluruns 1 and 2 contain the numbers of the ares of the moon’s
oblique circle, beginning at the northern limit and ending at the southern. And column 7 con-
tains the corresponding numbers of arcs intercepted on circles through the poles of the eclip-
tic, between the ecliptic and the moon’s oblique circle.
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same table. And whatever number of degrees in latitude in the seventh column
correspond to it, by just so many is the moon’s centre distant from the ecliptic
along the great circle drawn through the ecliptic’s poles. If the number carried
is in the first 15 rows, this distance is to the north of the ecliptic; but if it is in
the rows below, the distance is to the south of the ecliptic. The first column of
numbers embraces the movement from north to south and the second column
the movement from south to north.

10. THAT NO APPRECIABLE DIFFERENCE IS PRODUCED AT THE SYZYGIES
BY THE MooN’s EcceENnTrIiC CIRCLE

Now, it is reasonable for some to suspect that at times an appreciable differ-
ence occurs at the conjunctions, full moons, and eclipses accompanying them,
because of the moon’s cccentric circle. For the epicycle’s centre does not always
fall exactly on the eccentric’s apogee at these periods, but can miss it to the ex-
tent that the return of the epicycle’s centre to the eccentric’s apogee is effected
at the mean syzygies, but true conjunctions and full moons are taken with the
anomaly of each of the two luminaries. Therefore we shall try and show that this
difference can produce no error worth mentioning in the appearances at the

syzygies, even if the difference due to the circle’s eccentricity is neglected.

For let ABC be the moon’s eccentric circle with centre D and diameter ADC
on which let the point £ be taken as
the ecliptic’s centre and F on the side
opposite D as the centre of epicyclic
inclination. And with arc AB cut off
from the apogee A, let the epicycle
GHL be described about B, and let
BD and GBE and also BLF be joined.

Now, the magnitude of the anom-
aly can differ in two ways from that
proper to the epicycle’s position at the
apogee A: (1) by cutting off a greater
angle at £ because of its position to-
wards the perigee, and (2) by having
the diameter through the mean apo-
gee and perigee not directed to the
center E but to the point 7.

The difference due to the first cause
is greatest when the moon’s anomalistic difference is greatest; and that due to
the second cause, when the moon is at the epicycle’s apogee or perigee. There-
fore it is evident that, when the difference due to the first cause is greatest, then
that due to the second will be entirely negligible because the moon on the tan-
gents to the epicycle makes very little difference in the addition-subtraction;
and it is evident that the true syzygy will possibly differ from the mean by as
much as the anomalistic differences of both luminaries put together, either by
addition or by subtraction. But when (according to the second cause) the differ-
ence in inclination is the greatest, then the difference from the first cause is neg-
hglble because the entire anomaly is either nothing or very little when the moon
is at the epicycle’s apogee or perigee; and the true syzygy will differ from the
mean syzygy by the difference of solar anomaly alone.
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(1) Then let the sun be assumed to effect the greatest addition of 2°23/, and
also the moon itself to effect first the greatest subtraction of 5°1’ so that angle
AEB contains 14°48’, the double of the 7°24’ of the two together. And let the
tangent FH from I to the epicycle be drawn, and the perpendicular BH be
joined; and also let DM be drawn from D perpendicular to BE.

Since, then,

angle AEB =14°48’
=29°36" to 2 rt.,
therefore also, on the circle about right triangle DEM,
. arc DM =29°36,
and, as remainder of the semicircle,
arc EM =150°24’.

And
chord DM =30°39,
chord EM =116°1’
where
 hypt. DE=120v.
And so ,
DM =238,
EM =9059
where
1. betw. ¢. DE=10r19’
and
ecc. rad. BD =49r41".
And since ‘

sq. BD -sq. DM =sq. BM,
therefore, in length,
BM =49°37’,
and, by addition, ‘
BME =59°36’

where
epic. rad. BH =5r15.
And therefore
BH =10734'
where

hypt. BE=120r;
and, on the circle about right triangle BEH,

arc BH=10°¢".
And therefore, as the angle of greatest anomalistic difference,

angle BEH =10°¢" to 2 rt.
—_ 503/

instead of the 5°1’ produced when the epicycle is at the apogee A. Therefore
from this cause the anomalistic difference diverges by 2/, which is an error of less
than }{g of an hour.
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(2) Again let the moon be supposed at
L the mean perigee, so that angle AEB
clearly contains very nearly the double
of the sun’s anomaly alone, that is 4°46’.
And with £L joined in a figure similar to
the last, let the perpendiculars LN, DM,
and FX be dropped from 1, D, and F to
BE produced. And, just as before, since
angle at £ =4°46’
=9°32’ to 2 rt.,
therefore, on the circles about right tri-
angles EDM and EFX,
arc DM =arc FX =9°32".
And, as remainders of semicircles,
arc EM =arc EX =170°28".
And therefore

chord DM =chord F X =9r58,
chord EM =chord EX =119*35’

where
hypt. DE=hypt. EF =120p,
And so

DM =FX =051,

EM=EX=10°r17'
where ‘ L

DE=EF=10°19
and

ecc. rad. DB =49r41’,

And since

sq. BD=sq. DM =sq. BM,
therefore, in length,

BM =49r41’.
And so
BE = 5958’
and, by addition,
BX =70r15
where
FX =0r51".

And, in the same way also,
hypt. BF =70°15".

And
BF . FX ::BL:LN .
BF . BX ::BL : BN.
And so
LN =074,
BN =5r15",
and, by subtraction,
EN =54r43'

where
epic. rad. BL=5°15'
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and it was proved

BE =59°58’.
And since, therefore, the hypotenuse EL differs inappreciably from 5443, it is
inferred that

LN =008
where
hypt. EL=120°;

and that, on the circle about right triangle ELN,

arc LN =0°%".
And, therefore, angle BEL, by which the moon differs because of the inclination
to F, will also be 0°8’ to 2 right angles’ 360°, or 0°4’.

So in this case the moon’s anomalistic difference has diverged by 4’, which
produces no appreciable error in the appearances at the syzygies, and hardly
amounts to L¢ of an hour. And it is not extraordinary for such an error to occur
often in the observations themselves.

We have added all this, not because it is impossible to calculate these differ-
ences along with the examination of the syzygies, but because there is no ap-
preciable error for us in the proofs by means of the lunar eclipses we have set
out, even if we have not used the hypothesis of eccentricity in the developed
form we give it in what follows.

11. Ox THE MooN’s PARALLAXES

Now, the means used in getting the true passages of the moon would be gen-

erally speaking these: Since in the case of the moon it turns out that the appar-
ent passage 1s not sensibly the same as the true passage (because, as we said, the
earth does not have the ratio of a point to the radius of the moon’s sphere) it
would be necessary, and consequent, both for other appearances and especially
for those observed about the solar eclipses, to get the measure of the parallaxes
from which one will be able to determine the passages considered from the ob-
server’s eye—that is, from some part of the earth’s surface—by means of the
true passages conceived with respect to the centre of the earth and ecliptic; and,
conversely, to determine the true passages by means of the apparent.
- Since it is a necessary condition of this research that the particular magni-
tudes of the parallaxes cannot be worked out without one’s having as given the
ratio of the linear distance nor the ratio of the linear distance without some
parallax’s being given, it is clear that in the case of those stars having no sensible
parallax (that is, those with respect to which the earth is in the ratio of a point)
getting the ratio of the distance would be impossible. But only in the case of
those which display a parallax, as the moon, would it be possible to find the
ratio of the distance by means of some first-given parallax, because a parallactic
observation can be gotten in itself, but not the size of the distance.

Now, Hipparchus made this examination chiefly from the sun. Since, from
certain other incidents of the sun and moon about which we shall give an ac-
count later on, it follows that when the linear distance for one of the luminaries
is given the distance for the other is also given, he tries by conjecturing the sun’s
distance to demonstrate the moon’s. He first supposes the sun to display only
the least sensible parallax in order to get its distance. And then by means of the
solar eclipse recorded by him, from calculations with the sun—first as if dis-
playing no sensible parallax and secondly as if displaying a sufficient parallax—
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he arrives at the ratios of the lunar distance, different for eac
ses, although not only is the magnitude of the sun’s parallax
but also whether it displays any parallax at all.

12. O~ THE CONSTRUCTION OF AN INSTRUM
FOR DETERMINING PARALLAXES

To record nothing unclear in this research, we built an ir
we could observe as accurately as possible how much and
tance from the zenith on the great circle through the moo
poles the moon displays a parallax. ’

We made two four-sided rods, not less than four cubits i
divide them into a great many parts, and proportionate in c
be bent by their length, but to be extended very true and ;
each of their sides. Then we drew straight lines on each of tt
the wider side. At each end of one of the rods on the cent:
square right prisms equal and parallel, each having a hole
middle—the one for the eye having a small hole, the one fo
hole—so that, when an eye is placed at the prism with tl
whole moon can appear through the other hole in a straight

Then we bored evenly each of the rods on the centre lir
extremities; in the case of the rod with the prisms, near th
the prism with the larger hole. Through them both we fitted
of the rods with the lines would be bound together as if by a
the prisms could thus be turned in any direction without.v
rod, the one without prisms, we fixed on a base. On the cer
we took points equidistant from the lower extremities and as
the axle-centre, dividing the line so defined on the. fixed ro
each of these into as many as possible. And on the back of th
extremities, we placed small prisms having their sides in the
straight line with each other and everywhere equidistant frc
line, so that the rod could be stood straight and without inc
zon’s plane by hanging a plumb-line through them. -

Having the meridian line already established in a plane
zon’s, we stood the instrument upright in a shadowless place
the rods, where they were joined together by the axle, were
parallel to the meridian line, and so that the rod with the
without inclination and fixed without deviation, while the
revolved around the axle in the plane of the meridian, subje
added also another small thin rod, fitted on straight for revc
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until its centre was sighted through both holes at the centre of
a‘nd marking on the fine small rod the distance between the ends
lines on the other rods and applying it to the line of the upright
been cut into 60 parts, we found out how many parts the chord

has to the 60 of the radius of the circle described by the revolutic
ian plane. And getting the arc subtended by & chord of such 1
had the are by which the moon’s apparent centre was distant f
along the great circle drawn through the poles of the horizon an
centre—a great circle which at that time was the same as the me
the poles of the equator and of the ecliptic.

For observing the moon’s greatest latitudinal passage, we u
especially when it was at the summer tropic point and again a
most limit of the moon’s oblique circle. This was done becaus
points for some distance sensibly the same latitudinal passage is ¢
because the moon, at those times being near the zenith in the p
andria where we made the observations, has very nearly the
position as true position. In every case the moon’s centre was ol
passages to be very nearly 214 from the zenith so that, from th
its greatest latitudinal passage on either side of the ecliptic is d
be 5°. And this is almost exactly the difference between the 23%5
the equator to the summer tropic point, and the 30°58’ from th
equator in Alexandria less 214°.

But for getting the inquiry into the parallaxes done, we again i
observed the moon about the winter tropic for reasons already
cause also (being at that time away from the zenith by a simila
the meridian) it provides a greater and more easily observed para
many parallaxes observed by us in such passages, we shall again
means of which we shall at once both present the manner of «
demonstrate the other things as immediate consequences.

13. DEMONSTRATION OF THE MooN’s DISTANCE:

For we observed the moon culminating in the year 20 of Had:
wise Athyr 13, 5414+ 14 equatorial hours after noon, as the su
set; its centre appeared to us through the instrument at a distan
14+145)° from the zenith. The distance on the small light rod w:
parts to the 60 parts of the radius of the circle of revolution, and
length subtends an arc of (50+14+24+1{2)°. But the time 1:1-<)x
the year 1 of Nabonassar, up to this observation, is 882 Ligyptian
and 5414414 equatorial hours simply con.sidered, but 5!3 h
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circle. And the equator is 30°58’ from the zenith in Alexandria, and likewise
south of it. Therefore the moon’s centre was truly 49°48’ from the zenith, but
it appeared to be 50°55" from it. Therefore the moon displayed a parallax, for
the distance at this passage, of 1°7’ along the great circle drawn through the
moon and the horizon’s poles, its true position being 49°48’ from the zenith.

Now that this is clear, in the plane of the circle through the horizon’s poles
and the moon let the following great circles
be drawn concentric: the earth’s great circle
AB; that through the moon’s centre at the
observation, CD; and the circle EFGH to
which the earth has the ratio of a point.
And let K be the common centre of them
all, and KACE the straight line through the
zenith points. And let the moon’s true posi-
tion be supposed at the point D 49°48’ from
the zenith as in the preceding instance; and
let KDG and ADH be joined. Moreover,
from A, which is the observer’s eye, let AL
be drawn perpendicular to KB, and AF
parallel to KG.

It is clear that the moon displays a par-
allax of arc GH for those observing from 4,
so that

)

arc GH=1°7'

as gotten by observation. But since arc FH is not appreciably greater than GH
because of the whole earth’s being in the ratio of a point to the circle EFGH,
therefore

arc FGH=1°7".
And so, agam because the point A is indistinguishable from the centre with re-
spect to circle FH,

angle FAH=1°7
=2°14" to 2 rt.
And
angle ADL=angle FAH =2°14" to 2 rt.

And therefore, on the circle about right triangle ADL,

arc AL=2°14,

chord AL=2r21’
where

hypt. AD=120°.
And DL is indistinguishably less than AD. Therefore

DL=120°
where
AL=2r21".
Again, since it is assumed

arc CD =49°48/,

therefore, being at the centre,
angle CKD =49°48".
=99°36’ to 2 rt.
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And so, on the circle about right triangle ALK,
arc AL =99°36",
and, as remainder of the semicircle,
arc LK =80°24.
And therefore
chord AL=91739,
chord KL=77°27

where
hypt. AK =120p,
And so
AL=0r46",
KL =0r39%
where, as the earth’s radius,
AK=1v,
But it was shown that
DL=120r
where
AL=2r21,
and therefore
DL =396’
where
AL=0r48’,
And, of the same parts,
KL=0r39’
and, as the earth’s radius,
AK =1,

Therefore the whole line KLD, embracing the moon’s distance at the observa-
tion, will be 39r45” to the 17 of AK, the earth’s radius.

Now that this has been shown, let there be the moon’s eccentric circle ABC
with centre D and diameter ADC, on which .
let there be the ecliptic’s centre E, and th
epicycle’s point of inclination F. With the
epicycle GHKL drawn about the point B,
let the straight lines GBHE, BD, and BKF
be joined. And let the moon in this obser-
vation be supposed at the point L. Let LE
and LB be joined, and let line DA be drawn
from point D, and FN from point F, both
perpendicular to BE.

Since, then, at the time of the observa-
tion the number of the elongation was
78°13’, therefore, through things already
seen,

A

angle AEB=156°26",
and, as supplementary angles,
angle FEN =angle DEM =23°34’
=47°8’ to 2 rt.
And so, on circles about these right tri-
angles . :
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arc DM =arc FN =47°8’
because
DE=EF;
and
arc EM =arc EN =132°52,
And therefore
chord DM =chord FN =47r59'

and
chord EM =chord EN =110°
where
hypt. DE =hypt. EF =120v.
And so
DM =FN =4r8’,
EM =EN =927’
where
DE=EF=10°19
and :
ecc. rad. BD=49r41’,
And since

sq. BD —sq. DM =sq. BM,
we shall have, in length,

BM = 49937,
and likewise
BE =40r4’
and, by subtraction,
BN =30°37
where
FN =4r8',
And since

sq. BN+sq. FN =sq. BF,
we shall have, in length,
hypt. BF =30r54’.
And so
g FN =1672’
where
hypt. BF =120r;
and, on the mrcle about right triangle BFN,
arc F'N = 15°21’.
And therefore
angle FBN =15°21" to 2 rt.
=740,
Therefore, on the epicycle,
arc HK =7°40,

Again, since the moon was 262°20’ from the epicycle’s mean apogee at the
time of the observatlon, and clearly the addition to the semicircle or 82°20’ from
the mean perigee K, therefore also

arc KL =382°20,
and, by addition,
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arc HKL=90°.
Therefore
angle HBL =rt. angle.
And so, since it was shown that

BE =40r4’'
where
ecc. rad. BD=49741’
and
epic. rad. BL=571%,
and since

sq. BL+sq. BE=sq. EL,
we shall also have, in length,
EL=40725".

- The moon’s linear distance at the observation is hence 4025’ to the assumed
5°15' of the epicycle’s radius BL; to the 60° of EA, the radius from the earth’s
centre to the eccentric’s apogee; and to the 39022’ of EC, the radius from the
earth’s centre to the eccentric’s perigee.

But it was shown that the moon’s distance at the observation (that is, the
straight line EL) was 39745’ to the 17 of the earth’s radius. And, therefore, the
straight line EA or the mean distance at the syzygies is 59°; and EC or the mean

distance at the first and third quarters is 38#43’; and the epicycle’s radius 5710’

to the 39745’ of the straight line EL, or the moon’s distance at the observation.
Which things it was required to show.

And now that the moon’s distances have been shown in the manner described,
it would next be in order to demonstrate at the same time the sun’s distance too,
since it is readily accessible geometrically if, in addition to the moon’s dlstances
at the syzygies, there should be given the magnitudes of the angles at the eye In
the syzygies, subtended by the diameters of the sun, moon, and shadow.

14. ON THE MAGNITUDE OF THE APPARENT DIAMETERS OF THE SUN, MooN,
AND SHADOW DURING THE SYZYGIES

Of the methods for such an inquiry, we rejected all those which measure these
luminaries by means of waterclocks or the times of equatorial ascensions, be-
cause of the impossibility of getting what is proposed by such means. But con-
structing ourself the four-cubit rod dioptra described by Hipparchus,! and
making observations with it, we find the sun’s diameter everywhere contained

1Pappus in his Commentary on Book v gives a description of the waterclock, and the follow-
ing description of the dioptra.

“For let there be a rod not less than 4 cubits in length and of width and thickness sufficient

to keep the rod rigid. Let its upper lateral surface

< be conceived as the parallelogram AB. And let

there be a groove on it along the straight line PO

R through the middle of it, so that a little block is

4 easily moved as we wish along the whole length

4 of the rod without falling from it. And let a suit-

able prism CD be added on, perpendicular to the

rod and stable, having BSD as its side toward the

B block and the straight line CE at the top of the

prism. Let there be another suitable perpendicu-

lar prism F@ at one end of the rod, and let it have

a small hole, not at the rod but in the middle like K, so that, when our eye is pla.ned at it for
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by very rearly the same angle with no variation worthy of mention resulting
from its distances. But we find the moon’s diameter contained by the same angle
as the sun’s, then, only when during the full moons it is at its greatest distance
from the earth, being at the epicycle’s apogee; and not when it is at the mean
distance as in the hypotheses of older astronomers. Moreover, we also found
these angles a good deal smaller than those handed down, and that without
using the measurement on the rod, but by calculating with lunar eclipses. For
it was easy to see when each of the diameters subtends the same angle, from the
fact that no comparative measurement is available in such a situation. But how
large they were seemed very doubtful to us since, even when the comparison is
greatest in the to-and-fro movements of the covering width along the length
from the eye to the prism, it can be off the true one. But once the moon at its
greatest distance appeared to make an angle at the eye equal to the sun’s, by
means of the lunar eclipses observed at that distance we calculated the angle
subtended by the moon, and immediately we had that of the sun also. And,
again, by two eclipses set out below, we shall render the method of this general
theory very understandable.

For in the year 5 of Nabopollassar (which is the year 127 of \abona,ssar
Egyptianwise Athyr 27-28 at the end of the eleventh hour) the moon began to
be eclipsed in Babylon; and the greatest extent of the eclipse was 14 of the di-
ameter from the south. Since, then, the beginning of the eclipse took place 5
seasonal hours after mldmght and the middle very nearly 6 hours after. mid-
mght which in Babylon amounted to 5+ 14+ 14 equatorial hours because of the
sun’s true position’s being 27°3’ within the Ram, therefore it is clear that the
middle of the echpse, when the greatest part of the diameter fell within the
shadow, took place in Babylon 5+ 14414 equatorial hours after midnight, but
in Alexandria only 5 hours after. And the total time from the epoch amounts to
126 Egyptian years, 86 days, and 17 equatorial hours simply considered, but in
terms of mean solar days 16414414 equatorial hours. The moon’s mean longi-
tudinal passage was thus 25°32’ within the Balance, and its true position 27°5';
also it was 340°7' from the epicycle’s apogee and 80°40" from the northern limit
of the oblique circle. And it is evident that, when the moon’s centre (the moon
now being near its greatest distance) is 914° along the oblique circle from the
nodes, and when the shadow’s centre lics on the great circle drawn through the
moon at right angles to the oblique circle in which position the greatest obscura-
tions take place, then a quarter of the diameter falls within the shadow.

Again, in the year 7 of Cambyses (which is the year 225 of ‘Nabonassar,
Egyptlan\\ ise Phamenoth 17-18 one hour before midnight) the moon was
eclipsed in Babylon to the extent of a half of its diameter from the north. There-
fore the eclipse also took place in Alexandria very nearly 1+ 14414 equatorial
hours before midnight. And the total time from the epoch amounts to 224
Egyptian years, 196 days, and 1014 equatorial hours mmply considered, but 9+
14414 hours accurately considered, because of the sun’s being 18°12’ wlthm the
Crab. And so the moon’s mean long 1tud1nal position was 20°22’ within the Goat,
but its true one 18°14’; also it was 28°5’ from the epicycle’s apogee, and 262°12’
from the oblique circle’s northern limit. Therefore it is evident that, when the
moon’s centre (’ch’e moon being near the same greatest distance) is 744° along

use, the straight hnes drawn from it to the moving prism CD through its bld? edges can con-
tain the whole apparent diameter of the sun, touching it at its extremities.”
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the oblique circle from the nodes, and the shadow’s centre has the position we
just described with respect to the moon’s centre, one half of the moon’s diame-
ter falls within the shadow.

But if the moon’s centre is 914° along the oblique circle from the nodes, it is
0°48}%" from the ecliptic along the great circle drawn through itself at right
angles to the oblique circle. And when it is 744° along the oblique circle from the
nodes, it is 0°4024’ from the ecliptic along the great circle drawn through itself
at right angles to the oblique circle. Since, then, the difference between the two
eclipses embraces a quarter of the moon’s diameter, and since the difference be-
tween the two distances of its centre from the ecliptic, that is from the shadow’s
centre, is (74+14414)’, therefore it is evident the whole diameter of the moon
subtends an arc of a great circle amounting to 0°3114°.

It is immediately easy to see that the radius of the shadow at the moon’s
greatest distance subtends 0°4024’. For, when the moon’s centre was that dis-
tance from the shadow’s centre, it was tangent to the shadow’s circle, half of the
moon’s diameter being eclipsed. And the shadow’s
radius is very little less than 234 times as great
as the moon’s radius which is 0°1524’. By means of
several other such observations we got very nearly
these same magnitudes, and we have used them

\C for other things about eclipses. We now use one
of them which Hipparchus also followed, for the
demonstration of the sun’s distance to be made
in this same way, since the circles intercepted by
the cones on the sun, moon, and earth are not
appreciably different from the great circles them-
selves described -on those spheres and their dia-~
meters.?

15. O~ TtHE SUN’s DisTaNCE AND DEMON-
s ; STRATIONS RELATED THERETO
Now that these things are given, and seeing that
the moon’s greatest distance is 64°10’ to the 1° of
the earth’s radius because it has been shown the
M mean distance is 59 and the epicycle’s radius
R

5°10', let us find out also how great is the sun’s
distance. .

For let there be the great circles of the spheres
in the same plane: ABC the sun’s with centre D,
EF(@ the moon’s at its greatest distance with cen-
tre H, and KLM the earth’s with centre N. Of the
planes through the centres, let AXC be that con-
taining the earth’s and the sun’s, and ANC that
containing the sun’s and the moon’s. Let there be
the common axis DHN X and let there be the par-
allel lines through the points of tangency, clearly
equal to the diameters as far as the senses are con-

1This demonstration in all its details for the case of the moon is given by Aristarchus in his
Treatise on the Sizes and Distances of the Sun and Moon.
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cerned: that of the sun’s circle, ADC; that of the moon’s circle, EHG; that
of the earth’s circle, KNM; and OPR of the shadow’s circle into which the
moon falls at its greatest distance. And so
HN =NP =64°10/
where, as earth’s radius,
LN=1r~ .

Then it is required to find what ratio the line DN, the sun’s dlsta.nce, has
to LN, the earth’s radius.

Now let EGS be produced. And since we have shown that the moon’s
diameter at the given greatest distance in the syzygies subtends an arc
of 0°31'20” on the circle drawn through the moon about. the earth’s centre, it
follows that »

angle ENG =0°31"20"
and, as half of it, S
angle HNG=0°31'20" to 2 rt.
And so, on the circle about right triangle HGN,

arc GH =0°31'20"

and, as remainder of the semicircle,

arc HN =179°28'40".
And therefore

chord GH =0r32'48”

where

diam. GN =120r
and

chord HN =120r.

And so also
GH =0r17'33"
where
HN =64r10’

and

earth’s rad. M N =1,
But since, very nearly,
PR :GH ::2736" : 1»,

therefore
PR=0r45'38".
Therefore
GH+PR=173'11"
where
MN =1r.
But
HS+PR=2v,
because
HS+PR=2MN.
For, as we said, they are all parallel, and
NP=HN.

And therefore, by subtraction,
GS =0r56'49”
where
MN =1r,
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And
MN :GS::CN :CG::DN :DH.
Therefore also

DH =0r56"49"
and, by subtraction,
: HN =0r3'11"
where
DN =1,
And so we shall have also, as the sun’s distance,
DN =1210r
where
HN =64r10/
and
MN=1r,

And since likewise it was shown that
PR=0r45'38"

where
MN=1r,
and since
MN:PR::NX:PX,
therefore

PX =0r45'38",
and, by subtraction,
NP=0r14'22"

where

g NX=1»,

And therefore
PX =203°50’,
NX =268

where

: NP =¢64r10'
and

earth’s rad. MN =1r,
Therefore to the 1 of the earth’s radius, we have concluded that the moon’s
mean dlstance in*the syzygies is 59, the sun’s 1210, and from the earth’s centre
to the vertex of the shadow’s cone 268.

16. ON THE MAGNITUDES OF THE SUN, MoON, AND EARTH

Furthermore, the ratio of these solid magnitudes is easily and immediately
seen from the diameters of the sun, moon, and earth.

For smce it has been shown that
moon’s rad. GH = 0P17’33”

and
: HN =64r10/
where
; earth’s rad. MN =1¢p,
and since

HN :GH : : DN :CD,
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therefore, having shown
DN =12107,
we shall also have
sun’s rad. CD=514p,
And, therefore, the ratios of the diameters will be the same.

The earth’s diameter will hence be very nearly 324, and the sun’s 1844, to the
moon’s 1. Therefore the earth’s diameter is 324 times as great as the moon’s, and
the sun’s 184% times as great as the moon’s, and very nearly 514 times as great
as the earth’s. Accordingly, since the cube of 1 is 1, and the cube of 3%4 is very
nearly 3914, and the cube of 1844 likewise very nearly 664414, therefore we have
concluded [Eucl. X1II, 18] that the earth’s solid magnitude is 3914, and the sun’s
664414, to the moon’s 1. Therefore the sun’s solid magnitude is very nearly 170
times the earth’s.

17. O~ THE PARTICULAR PARALLAXES OF THE SUN AND MooxN

Now, with these things supposed in this way, it would next follow that we
show in addition and very briefly how one could compute, from the distances of
the sun and moon, their particular parallaxes—and, first of all, those considered
on the great circle drawn through the zenith and themselves.

Again, then, let there be in the plane of this great circle the earth’s great circle
AB, the circle at the sun or moon CD, and
the circle EFGH to which the earth has the -
ratio of a point; and let K be the centre of
them all, and KACE the diameter through
the zenith points. With are CD cut off from
the zenith C at 30° as an example, again let
KDG and ADH be joined; and from A let
AF be drawn parallel to KG, and AL per-
pendicular to it. :

Now, since the distance of each of these
luminaries is not always the same, and
since the difference of the parallaxes result-
ing from this cause will be, for the sun, alto-
gether small and imperceptible because its
circle’s eccentricity is small and its distance
great, but since for the moon it would be
quite perceptible both because of its epicy-
clic motion and because of the epicycle’s movement on the eccentric which
makes a considerable difference at either distance, we shall show the sun’s
parallaxes only in the one ratio (I mean the ratio of 1210 to 1) and the moon’s
in those four ratios which will be the more accessible to successive calculations.
Of these four distances we have taken, first, those two which result from the
epicycle’s being at the eccentric’s apogee; and, of these two, first the distance to
the epicycle’s apogee which we have already shown to be 64710 to the 1° of the
earth’s radius, and second the distance to the epicycle’s perigee found to be
53°r50’. The remaining two we have taken when the epicycle is at the eccentric’s
perigee; and again, of these, first the distance to the epicycle’s apogee which was
found (as already shown) to be 43753’ to the 1 of the earth’s radius, and second
to the epicycle’s perigee found to be 33033’
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Since then
arc ('D=30°,
therefore also
angle CKD=30°

=060° to 2 rt.
And so, on the circle about right triangle AKL,
arc AL=060°

and, as remainder of the semicircle,

arc KL =120°.
And therefore

chord AL=060r

chord K L=103r55'
where
diam. AK =120r,
And therefore

AL =030
KL=0r52'
where
AK=1r,
And, for the sun’s distance,
KLD=1210¢;

and, for the lunar distances, at the first term

KLD=64°10';
at the second term

KLD=53°30";
at the third term

KLD =43°53';
and at the fourth term

KL1D=33r33".
Therefore, since the remainder, line LD, differs from AD by an indistinguish-
able amount, for the solar distance,

AD=1209°8';
and for the lunar distances, at the first term

AD=63r18';
at the second term

AD=52r58';
at the third term

AD=43r1";

and at the fourth term

AD=32vr4]’,

And so, in the same order to avoid repetition,

AL=002'59",

AL=0r56"52",

AL=1°7'58",

AL=1°23'41",
and

AL=1750"9",
where

hypt. AD=120r.
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And, therefore, on the circle about right triangle ADL,
arc AL=0°2'50",
arc AL=0°54'18",
arc AL=1°4'54",
arc AL=1°20,

and
arc AL=1°45".
And, since
angle ADB=angle FAH,
therefore
angle FAH =0°2'50" to 2 rt.,
=0°1"25";
angle FAH =0°54"18" to 2 rt.,
=0°27"9";
angle FAH =1°4'54" to 2 rt.,
=0°32'27";
angle FAH =1°20’ to 2 rt.,
=0°40";
and

angle FAH =1°45' to 2 rt.
=0°52'30".

And so—since the point A is indistinguishable from the center K, and are
FGH is not appreciably greater than arc GH because of the whole earth’s being
in the ratio of a point to circle EFGH—arc GH of the parallax will be, for the
solar distance, 0°1’25” ; and for the lunar distances, at the first term 0°27'9” at
the second term 0°32'27”, at the third term 0°40’, and at the fourth term
0°52'30”. Which it was required to show.

In the same way, for the other distances from the zenith, we calculated the
resulting parallaxes for each term at intervals of 6° up to the quadrant of 90°,
and we drew up a table for the determination of parallaxes, again in 45 rows and
9 columns. In the first column we put the 90° of the quadrant making them in-
crease by 2°; in the second column, the sixtieths of the solar parallaxes corre-
sponding to each section; in the third column, the moon’s parallaxes at the first
term; in the fourth, the excesses of the second term’s parallaxes over the first
term’s;in the fifth, the parallaxes at the third term; and in the sixth, the excesses
of the fourth term’s parallaxes over the third term’s.

For example, compared to 30° there is the sun’s 0°1’23”, then next the 0°27'9”
of the moon’s first term, and then 0°5’18” which is the excess of the second term
over the first, then again the third term’s 0°40’, and next 0°12’30” which is the
excess of the fourth term over the third. And in order to find easily and sys-
tematically the parallaxes in the distances between the apogees and perigees
proportionate to the particular sections, from the parallaxes at the four terms,
by comparing the sixtieths, we added the remaining three columns for com-
paring such differences as were calculated in the following way:

Let there be the moon’s epicycle ABCD about E as centre; and let F' be the
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A centre of the earth and the ecliptic. With AEDF joined,
let FCB be drawn, and BE and CE joined. And let BG
G 8 bedrawn from B, and CH from C, perpendicular to AD.
First let the moon be supposed the distance of arc AB
E from the true apogee at A considered relative to centre
F. And let the arc be 60°, for example, so that
angle BEG =00°
" / =120° to 2 rt.
5 And so, on the circle about right triangle BEG,
arc BG=120°
and, as remainder of the semicircle,
arc G =60°.
And therefore
chord BG=103°55,
chord EG =60°
where
diam. BE =120¢,
But, when the epicycle’s centre E is at the eccentric’s
apogee,
f EF : BE ::60° : 5015/,
And therefore
BG=4r33’,
EG=2r38’,
GEF =62r38’,
where
BE=5°1%.
And, since
sq. FG+sq. BGd=sq. BF,
therefore
BF =62r48’
where, as the first term’s distance,
AF=65r15,
and, as the second term’s distance,
DF =54r45,
and, as the difference between the two terms, .
AD=10°30'.

And therefore the difference at B with respect to the first term’s distance is 2r27/
to the whole difference’s 10°30".

And so the difference at that time will be 14 to the whole difference’s 60.
Therefore we shall place this 14 in column 7 in the row containing half the num-
ber 60 (that is, opposite 30) because the whole 90° in the first column of the
table are only half the 180° from A to D.

In the same way, if we suppose

arc CD=60°,
then it will be shown that
CH =4°33/,
EH =2r38’,
and, by subtraction,
FH =57°22
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where
rad. CE=5r15',
And likewise
hypt. CF =57733".

Again subtracting these from the first term’s 65215, we shall get the remain-
der 742" which is 44 sixtieths of the whole difference. And we place this 44 in
the same column opposite the number 60 because the are ABC is 120°.

Again, with the same things assumed, let the centre E be conceived at the
eccentric’s perigee, in which position the third and fourth terms are contained.
Since, then, at this position

EF :BE ::60:8,
therefore, whenever it is assumed

arc AB=60°
or
arc CD=60°,
then
BG =6756’
or
CH =6r56"
where
BE=8§r
and
EF =60r,
And
EG=4r
or
EH =4r,
And so, with
FG=64r
and
FH=>56v,

likewise also
hypt. BF =64723’,
hypt. CF = 56026/
where the third term’s

AF =68»
and, as difference between the third and fourth term,
AD=16",

Therefore, if we subtract 64°23’ from 68P, we shall have left 3237’ which is 13
and 33’ sixtieths of the whole difference’s 16°. And we shall place this likewise
opposite the number 30 in column 8. And if we subtract 56°26” from the same
68°, we shall have left 11,34" which is 43 and 24’ sixtieths of the whole differ-
ence’s 16P. And we shall likewise place this opposite the number 60 in column 8.

The differences resulting from the moon’s movement on the epicycle will be
set out by us in this way, and we shall systematically handle those resulting
from the epicycle’s passage on the eccentric in the following manner:

Let there be the moon’s eccentric circle ABCD with centre £ and diameter
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AEC, on which let there be conceived the ecliptic’s centre F. And with BFD
drawn, again let each of the angles AFB and CFD be 60°. This takes place if the
elongation is 30° when the epicycle’s centre is at B, and 120° when at D. And,
with BE and DE joined, let the straight line E@ be drawn from E perpendicular
to BFD.
A Now, since
angle AFB=120° to 2 rt.,

therefore, on the circle about right triangle EFG,

arc EG=120°
B and, as remainder of the semicircle,
arc F'G=60°.

And therefore
chord EG=103r55,
chord FG=60r.

where
hypt. EF =120r.
And so

EG=8r56¢,

FG=5°10
where

1. betw. ¢. EF =10°19’
and
. ecc. rad. 49041,
And since
sq. BE—sq. EG=sq. BG,

therefore

BG=DG =48°53".

BF =54r3’
where, for the first pair of limits,

And so, by addition,

AF =60r°
and, for the second pair of limits,
CF =39v22’,
and the difference between them is 20°38’. Also, by subtraction,
DF =43r43’".

Since, then, 60° exceeds 543’ by 5»57’ which is 17 18’ sixtieths of the whole
difference’s 20738’, and exceeds 43743’ by 16r17’ which is 47 21’ sixtieths of
20°38’, we place the 17 and 18’ in column 9 opposite number 30 of the elongation
and the 47 and 21’ opposite the number 120 (or, rather, 60, because the elonga-
tion of 60° is equal in distance to that of 120° when the perigee is at 90°).

For the other arcs we calculate in this same way the resulting sixtieths of the
differences according to the three differences just set out, by sections of twelve
which become sections of six for the numbers in the table, the 180 parts from the
apogees to the perigees corresponding to the 90 parts in the table. And we have
put down for each of the numbers given the corresponding sixtieths all worked
out. Those corresponding to the parts in between these we have worked out ac-
cording to the regular increase of the sixth parts of the difference; for there is no
discrepancy worth mentioning between those so gotten and those derived geo-
metrically for differences of this size, either in the sixtieths or in the parallaxes
themselves. And here is the table:
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18. PararracTtic TABLE
1 2 3 4 5 6 7 8 9
Paral- Differ- Paral- Difier- Sizti- | Siziz-
» lazes ences lazes ences eths eths | .Sizti~
2 Sun’s of the of the of the of the of the | of the eths
§ Paral- moon’s moon’s moon’s moon’s epi- epi- of the
= lazes first second third Sfourth cycle’s | cycle’s | eccen-
term term term term  -| apogee | perigee| ric
210]0| 7|0 1{54{04 0|23|0| 3| 0]0| 0}50( O]14f 0]|11| 015
410013/ 0 3{48|/ 0 0|45;0 ] 6| O]0 | 1J40| 0]28].0(22| 030
6/0|019|/0 | 5|41]0 | 1| 7{0) 9] 0]0 | 230 0,42} 0|33 0|45
8100|256/ 0] 7134|101 1129]0111{40}J0 | 3|20 1|22} 1| 7| 1{33
10000 1{31({0} 9{27| 0 1(51|0 (14|20 0 | 410} 2| 2| 1{41| 2|21
12|00 (37| 0 |11}19]0 | 2{12]0 (17| 0|0 | 5| O| 2142| 2|15| 3| 9
14|10 |0 42| 0 |13]10[{ 0 | 2/83|0 ({19140 0| 5|50 3|35} 3|13| 4]22
16/ 0 |0 (48| 0 15| O| 0| 21540 (22{20;0 | 6|40] 4|28 4{11} 5(35
18/ 0 {0 (530 (164910 ] 3]15{0 25} 0| 0| 7|30] 5(21{ 5} 9| 648
2000 1({0 |58]01{18(36]0 | 3360 |27|40f0 | 8(20] 6/39; 6|25] 8|25
2210 (1| 4]0 204220 | 3{57|0(30120|0 | 9|10] 7|57 7141110} 2
24101 9{0|22] 6/]0] 4,18/ 0{33{ 0|0 (10| O] 9|15 8|57| 11|39
26101 |14;0(23{49|0| 4|39|,0135{20}/0[10|50|10|50|10|29| 13|32
2810 11(20|0 (251300 4159101374010 |11{40|12{25(12; 1|15|25
3010{1125/0(27y 9/0| 5]18| 0 40} 0| 0 |12|30{14| 0[13|33| 17}18
321 011130]0|28(46|/0 ] 5[37]0 (421201 01{13120j15|52(15(22| 19|23
341011135/ 01(30]21]0] 5|556{0 {44{40| 0 |14|10}17({44{17;11]21(28
36|10 1|40/ 0 |31|54{0] 6{13|0 |47 0] O 15| 0];19|36|19| 0| 23|33
38101 (44(0(33|2410 | 6{30/0 (49| 0|0 {15|40,21|36(20|59| 25|40
4010 |1 (49(0[34|51{0 | 6{4710 |51 0] 0 |16|20|23|36|22|58| 27|47
42101154/ 0(36[(14;0 | 71 4[0 53] 0] 0 |17| 0|25(36(24|57| 29|54
441011158 0137370 7(20[0 55| 0|0 }17|40{27(40/27) 1]|32] 0
4610 |21 3|10 138{57| 0| 7({35[0 (57| 0{0[18/20[20(44|29| 5| 34| 6
4810 |2} 8[0(40({14| 0| 7[49|0 59| 0} 019} 0314831} 9| 36|12
5001|2120 (41{280{ 8| 3|1 0[40|019|40|33{52}33|14|38{ 9
5210 2116]0|42{39| 0| 8|16] 1| 2|120]0 (20(120|35|56|35{19{40| 6
5401212010 143({45/ 0| 8|20 1| 4| 0; 0|21} 0138} 0}37:24|42]| 3
56| 01212310 144/48) 0 8[421 1| 5{20]|0|21{20(40] 0(39}24]| 4349
58101226/ 045(48[0 | 8[{53| 1| 6/40] 0 |21]|40|42| 0[41{24|45|35
6001 2(29/0146|46)0 | 9 3|1 | 8] 0/ 0 (22| 0/44| 0[43[24]|47]|21
62012132/ 0147(4010 | 9{13] 1| ©120]| 0 ]22]20{45[50|45]13| 48|49
64012 (34,0 148/30]0 [ 9122]|1|10|40| 0 [2240]147140|47| 2]50(17
66| 01236 0149|15/ 0| 931|112} 0|0 [23] 0[49/30(48|51| 5145
68,02 |38|0 49|57/ 0| 9{39|1 |13 0|0 (23]10|50]56|50|24| 52{57
701 012 |40| 0 [50!36{0 | 9{46| 1 |14} 0| 0 {23|20|52{22|51 57| 54| 9
7210124210 151|1110 4 91531 |15 00 ]23}30|53|48/53|30]| 55|41
7410|2440 {51440 | 9|59|1(15/40)| 0 123|40{54|57|54|41) 56|12
761 01 2 |46| 0 [52(12] 0 |10 4| 1 |16{20] 0 {23{50|56| 6(55]52| 57| 3
78102 (|47|0 |52{34/0|10] 8|1 |17] 00 [24| 0]|57|15!57| 3| 57|54
80| 01248/ 0 ]52|53] 0 110({11} 1 |17[20] 0 [24]10)|57{57] 5747 58|26
821021490 (53] 910 110(14| 117|400 [24]|20|58]39]58|31]| 58|58
841012500 (53/21/0{10/16|1 18] 0/ 0 [24/30|59{21{59|15} 5930
8610|250/ 0(53]29]0(10{16] 1 [18{20| 0 |24[40|59}34|59{30| 5940
88102 151{0[53|33|0|10(17| 1 18[40( 0 {24|50[59|47|59|45} 5950
9010215110 53]34)0}10)17) 1 19| 010 |25] 0({60| 0{60| 0{60| O
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19. O~ THE DETERMINATION OF PARALLAXES

Whenever we wish to determine what parallax the moon displays in each of
its passages—first along the great circle through itself and the zenith—we shall
look to see how many equatorial hours it is from the meridian of the given
parallel. And taking the number found to the Table of Angles of the proper
parallel and of the proper sign [Chap. 13, Book 11],! we shall find in the second
column the degrees corresponding to that hour either entire or in proportion to
the part of the hour. These are the degrees of the moon’s distance from the
zenith along the great circle drawn through them both. And carrying this num-
ber to the Table of Parallaxes, we shall look to see what row of the first column
it falls in, and we shall note down each of the numbers corresponding to it in
the four successive columns following the solar parallaxes—that is, columns
3, 4, 5, and 6.

Then, taking the anomalistic number determined for that hour with respect
to the true apogee, either the number itself or (if it exceeds 180°) the difference
between it and 360°, we carry the half of the number of the degrees so obtained
to the same numbers [in column 1], and we look to see how many sixtieths in
columns 7 and 8 correspond to that number. As many sixtieths as are found in
column 7, just so many sixtieths shall we take of the difference in column 4, al-
ways adding it in turn to the parallax in column 3. And as many sixtieths as are
found in column 8, just so many sixtieths shall we take of the difference in
column 6, always adding it in turn to the parallax of column 5. And we shall
set out the difference of the two parallaxes gotten in this way.

Next, taking the number of degrees of the moon’s mean distance either
from the sun or from the point diametrically opposite according to whichever
yields the nearer distance, we shall also carry these to the numbers in column
1. And again, as many sixtieths as correspond in the ninth and last column,
just so many sixtieths shall we take of the difference between the paral-
laxes set out, always adding the result to the lesser of the two parallaxes—
that is, to the parallax determined from columns 3 and 4.2 And we shall
have the total parallax the moon displays along the great circle through itself
and the zenith.

For solar eclipses, the solar parallax simply considered is immediately ob-
tained at the similar position from the degrees in column 2 corresponding to the
magnitude of the arc from the zenith.

1To use this table with accuracy, the moon must be supposed at the beginning of the sign
and to be on the ecliptic.

*Here, as in the preceding paragraph, the procedure is prac-
tically true, not strictly and mathematically true. Ptolemy, here
and in the preceding paragraph, is supposing that, between the
smaller parallax at the greater distance and the larger parallax at
the lesser distance, the differences in the parallaxes are propor-
tional to the differences in the distances.

Thus, consider the centre of the earth K, the observer’s eye 4,
the zenith point C, and the three distances of the moon, D, D’, and
D” with the three corresponding parallactic angles ADK, AD'K,
and AD”K. The supposition is that

angle AD'K — angle AD"K :angle ADK — AD"K : : KD’ —

KD : KD” — KD, or that
angle D”AD’ : angle D"AD : : D"D’ : D"D.
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Now, to determine also the parallax displayed at that time with respect to
the ecliptic, longitudinally and latitudinally, we shall take again the same equa-
torial hours of the moon’s distance from the meridian to the same part of the
Table of Angles. And we shall look for the number of degrees corresponding to
the number of hours, in column 3 if the moon is antemeridian, but in column 4
if the moon is postmeridian. If it is within 90°, we shall write it down; if above
90°, we shall write down what is left from 180°. For the lesser of these angles
about the intersection will be just so many degrees to one right angle’s 90°.
Then, doubling the number of degrees noted down, we carry it to the Table of
Chords, the number itself and the remainder from 180°. And whatever ratio the
chord subtending the arc of twice the number of degrees has to the chord sub-
tending the remainder of the semicircle, that ratio the latitudinal parailax has
to the longitudinal, since arcs of such size do not differ appreciably from their
chords. Then, multiplying the numbers of the corresponding chords by the par-
allax found on the great circle drawn through the zenith, and dividing the result
by 120, we analytically derive the degrees resulting from the division as the de-
grees of the particular parallax.

In general, in the case of the latitudinal parallax, whenever the zenith is
farther north on the meridian than the point of the ecliptic then culminating,
the parallax will be to the south of it; and whenever the zenith is farther south
than the point of the ecliptic culminating, the latitudinal parallax will be to the
north. In the case of the longitudinal parallaxes, since the magnitudes of the
angles laid out in the table contain the northern angle of the two angles con-
tained by the eastward section of the ecliptic to either side of it, when the lati-
tudinal parallax is to the north (if the angle in question is greater than a right
angle) the longitudinal parallax will be westward; if less than a right angle, east-
ward. But, contrawise, when the latitudinal parallax is to the south, if the angle
in question is greater than a right angle, the Iongltudlnal parallax is eastward;
if less than a right angle, westward.

Now, we have used the things previously demonstrated concerning the sun
as if it displayed no sensible parallax—not because we were unaware that its
parallax when later worked out would make some difference in these matters,
but because we did not think any appreciable error would follow from this with
respect to the appearances, so as to make it necessary to change any of the de-
tails worked out already and without regard to this small difficulty. Likewise,
with respect to the moon’s parallaxes, we were satisfied with the ares and angles
made with the ecliptic by the great circle drawn through the horizon’s poles in
the place of those considered with respect to the moon’s oblique circle. For the
difference resulting at the ecliptic syzygies would be imperceptible, and setting
them out requires many proofs and long calculations, the distances from the
nodes not being fixed for cach of the moon’s passages in the zodiac, but suffering
various changes in magnitude and position.

For an easy understanding of what has been said, let there be taken the sec-
tion of the ecliptic ABC, and the section of the moon’s oblique circle AD; and
let the point A be supposed the node, and D the moon’s centre. From D let there
be drawn the arec DB perpendicular to the ecliptic. Let the point £ be the hori-
zon’s pole, and let there be drawn through it EDF as a section of the great circle
through the moon’s centre, and section EB through B. And let the moon display
a parallax of arc DG, and let the ares GH and (A be drawn through G perpen-
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dicuiar to the arcs BD and BF so that, of the lon-
gitudinal distances from the node, arc 4B is the
true one, and AK the apparent one; and, of the
latitudinal distances from the ecliptic, the true one
isarc BD and the apparent one KG; so that, of the
parallaxes from D@ considered with respect to the
ecliptic, the longitudinal is equal to HG and the
latitudinal to DH.

Now, since the parallax DG is found by the
means presented above when arc ED is given, and
since each of the parallaxes DA and IIG is found
when angle CFE is given, and since we previously
demonstrated the angles and arcs of the great
circle through the zenith with respect to given points on the ecliptic and thus we
have only point B of the ecliptic given, it is clear that we are using arc EB in-
stead of arc £D, and angle CBE instead of angle CFE.

Hipparchus tried to make this correction, and he appears to have attacked
the problem in an ill-considered and illogical fashion. For, first, he used one
distance AD, and not all or several distances as would have been consequent
upon his desire to be exact in small things. Then, too, he failed to notice that he
was falling into several absurdities. For after he himself has already demon-
strated the arcs and angles considered with respect to the ecliptic, and had

demonstrated that, when arc ED is given, arc DG is gotten (for he demonstrates
this in Book 1 of his Treaiise on Parallazes), he uses arec EF and angle EF(C as
given for getting arc £D. Thus in Book 11, after having calculated arc FD, he
assumes the remainder £D; and he came to these conclusions because he did not
notice that the point B, and not /, is given on the ecliptic; and therefore arc £B3
is given and not arc £F, and angle EBC is given and not EFC. Therefore, to
make a partial correction, he had upset everything. For there is quite a sensible
difference between arcs ED and EF, the latter being much less given than the
former. But since actually BE is given, the difference with respect to £D will be
at most only the magnitude of arc BD for each of the distances from the node.!
Now we can see what follows from the correction rightly made, in this way:

1IFor BD would always be less than DF, and BE in nearly all cases would differ from DE
by less than BD.
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Let there be the ecliptic ABC and the circle DBE at right angles to it. And
let the moon, either at D or at E, be distant from the ecliptic ABC by a given
are, such as BD and BE, so that the arcs from the zenith to the ecliptic point B
and the angles at B are given, and the arcs and angles with respect to. D or E
are sought.

If, then, the ecliptic has a position such that it is at right angles to the great
cxrcle drawn through the point B and the point F, which is to be taken at the
horizon’s pole (for example the great circle FB), then, clearly, it will coincide
with arc DE, and the angle considered at D and E will be no different from that
supposed at B. For they are right angles and therefore relative to the ecliptic.
And arc FD will be less than arc FB by arc BD,
and arc FE greater by arc BE, with ares BD and
BE given.

Furthermore, if the ecliptic A BC coincides with
the great circle drawn through the zenith, and if
(assuming A to be the horizon’s pole) we join the
arcs AD and AE, they will differ from arc AB, and
the angles BAD and BA E will differ from the angle
which in the former case did not exist. But ares B
AD and AFE are given, since they are as straight
lines very nearly, from arcs 4B, and BD and BE
which are given. For the sums of their squares give <
the squares on AD and AE. And angles BAD and
BAE follow from them.

But with the ecliptic’s position inclined, if from F the honzon s pole we Jom
FB, FGD, and FEII, then both arc FB and angle ABF are given; and again,
certainly, arcs BD a.nd BE. And arcs FD and FE, and angles AGF and AHF
must be given; and they are given, once DK and
EL are drawn perpendicular to FB.

For, since angle ABF is given and angle ABE is
always a right angle, the right triangles BKD and
BLE are given and also the ratio of F B to the sides
about the right angles, since it is given relative to
the hypotenuses DB and BE. And so the hypote-
nuses FD and FE are given, and therefore also
angles DFK and EFL which are the differences
with the angles desired. For angle AGF is greater
than angle A BF by angle DFB; and angle AHF is
less than angle A BF by angle EFL.

It is clear that, with the same latitudinal dis-
tance supposed, the greatest difference between
the angles occurs when the point B itself is the zenith. For with no angle at B,
the arcs from the zenith to D and E make right angles with the ecliptic. The
greatest difference between the arcs occurs when the position is the same; for
again, with no arc at B, the arcs at D and E will be as great as those of the
moon’s latitudinal passage; and also when the great circle through the zenith is
at right angles to the ecliptic. For, again, arcs FD and FE will differ from FB by
the whole latitudinal passage. But in the other positions with DE inclined to
FB, the differences of both the arcs and angles will come to less. Therefore, when

A
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the moon is distant 5° in latitude from the ecliptic, the greatest difference of the
parallaxes will be very nearly 10 sixtieths, the 5° of the greatest difference in arcs
making just this many sixtieths of parallax in the case of the greatest excesses
and least distances. But when the moon is at its greatest distance in the solar
eclipses and the latitudinal passage is very nearly 114° then the difference of
parallax will be the same number of sixtieths, 114, which rarely happens.

Now, the method for the correction of the angles and ares (for those who wish
it for such small ratios) would be available as follows: In general, doubling the
number of the angles, we take it to the Table of Chords; and multiplying the
numbers corresponding to it and to its supplement by the degrees of latitude,
we write down }{9¢ of each.! And we subtract the resulting number for the
first angle from the given arc from the zenith when the moon is on the same side
of the ecliptic as the zenith; and we shall add when it is on the opposite side of
the ecliptic. And squaring the result and adding to the square from the supple-
ment, we shall have the arc required by taking the square root of this sum.

Then multiplying the numbers of the second or supplementary angle by 120,
and dividing the results by the arcs just found, we take the halves of the arcs
corresponding to these numbers in the Table of Chords and add them to the arcs
of the original angle if the corrected arc is greater; and we subtract, if less. And
thus we have the corrected angle.

As an example, let the arc FB of the last figure be supposed 45°, the angle
ABF 30°, and each of the arcs DB and BE 5° in latitude.

Now, since a chord of 607 corresponds to double 30°, or 60°, and a chord of
very nearly 104® to the supplement or 120°, therefore

BL:BE ::BK : DK ::60:120
where
hypt.=120.
Then, multiplying each of the numbers by the 5° of the hypotenuse and taking
a0 of the results, we have
arc BK=arc BL=2°30,
arc DK =arc K1, =4°20’.
Then first we subtract the 2°30, if the moon is supposed at point E, from the
45° of arc F'B because the moon’s latitudinal distance is on the same side as the
zenith—that is, because they are both either north or south of the ecliptic. And
we have
arc FL=42°30".
And if the moon is at D, we add to it because of the contrary situation, and we
have
are FK =47°30'.

Then, adding the square of FL to the square of LE, and the square of FK to the
square of DK (that is, the square of 4°20" to the square of 42°30’, and the square

{For in the last figure angle LEB equals angle AFB, angle LBE equals 90° less angle AFB.
If we now conceive a circle about right triangle BLE, considering it to be rectilinear for the
small arcs, we shall have the vulues of BL and LE in terms of the chords where BE equals 120.
Let BL be s. But we know BE is so many degrees of are, say n. Therefore, if z is the number
of degrees of BL to be found,

z:n=s:120.

Whence

1202 =n . s
The same kind of calculation is used in the next paragraph.
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of 4°20/ to the square of 47°30’) and taking the square roots of the results, we
have
arc EF =42°4¢/,
arc DF =47°44,
Finally, multiplying 4°20’ by 120 and dividing separately by 42°46’ and by
47°44’) we have
chord EL=1278'

where
hypt. EF =120v;
and
chord DK = (10+144-14)»
where

hypt. DF =120

An arc of 113%° corresponds to the chord of 1278, and an arc of very nearly
1014° corresponds to the chord of (10+14+414)r. Taking the halves of these
arcs, on the one hand we subtract the 55° of angle EFL from the 30° of angle
ABF, because arc EF is less than arc BF, and we have

angle AHF =2414°.
On the other hand, if we add it to the same 30° because arc DF is greater than
arc BF, we have

angle AGF =351¢°.
Which it was required to work out systematically.



BOOK SIX

1. On ConsuncTioNs AND FuLL Mooxs

THE treatment of the ecliptic syzygies of the sun and moon comes next in order,
and this in turn is preceded by the examination of the conjunctions and full
moons truly considered. For a first understanding of such things, we think that
the periodic and irregular movements already demonstrated for each of the
luminaries are sufficient. By means of these it is possible, for anyone sufficiently
industrious, to determine their particular positions each time, and to calculate
the places and times of the future syzygies—both those taken with respect to
mean movements and the true ones with the anomaly. Nevertheless, to have
them at hand systematically, we first set out the times and places of the periodic
conjunctions and full moons, and the moon’s anomalistic and latitudinal posi-
tions at the mid-eclipses. For by means of these last the correction for the true
syzygies is effected, and from these the correction for the ecliptic syzygies. And
we built tables of the following kind for such an examination.

2. CONSTRUCTION OF THE TABLES OF THE MEAN SYZYGIES

First, to establish the epochs of the months (like the other epochs, from the
year 1 of Nabonassar), we took the surplus of the noon elongation, 70°37’, al-
ready demonstrated for the first of the Egyptians’ Thoth, and we found 5 days
47’ 33” of mean movement of elongation corresponding to it; so that by just so
much time had the mean conjunction preceded noon of the first day of Thoth.
And the next one, therefore, took place very nearly 23 days 44’ 17”7 after that
same midday—that is, 44’ 17” of a day after noon of the 24th. But in 23 days 44’
17” the sun’s mean movement is 23°23” 50”, and the moon moves 310° 8 13” of
anomaly and 314° 2’ 21” in latitude. Furthermore, at noon of the first of Thoth,
the sun’s mean position was 0° 45’ within the Fishes and, for greater facility,
265°15’ from its apogee, while the moon’s position in anomaly was 268°49’ from
the epicycle’s apogee, and 354°15” in latitude from the oblique circle’s northern
limit. Therefore, at the time of the mean conjunction after the first of the month,
the sun and moon were both 288°38’50” in mean movement from the sun’s apo-
gee—that is, 5°30” within the Twins; and the moon was 218°57/15” of anomaly
from the apogee and 308°17/21” in latitude from the northern limit.

Now, we shall first arrange a synodic table, again in 45 rows and 5 columns.
For the first row we shall place, in the first column, the first year of Nabonassar;
and, in the second column, the 24 days 44’17” of Thoth since the extra sixtieths
are from noon of the 24th. In the third column we shall place the 288°3850” of
the mean position from the sun’s apogee; in the fourth, the 218°57/15” from the
apogee of the lunar anomaly ; and, in the fifth, the 308°17/21” from the northern
limit of latitude.

Since, moreover, in half a mean month’s time there are contained very nearly
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14 days 4555”7, 14°33’12” of solar position, 192°54’30” of lunar anomaly, and
195°20’6” of latitude, we shall subtract these numbers from those of the con-
junction first given; and we shall arrange the remainders in a second and similar
table, which will be plenilunar, in the same way as before. And there are left 9
days 58'22”, 274°5’38” from the sun’s apogee, 26°2'45” of anomaly from the
moon’s apogee, and 112°57’15” in latitude from the northern limit.

nearly are completed, and the sun adds on in mean movement (once and above
complete circles) 353°521341113i11 and the moon 57°211441i11i! of anomaly and
117°121491i54i1i jn latitude, we shall increase the first columns of the two tables
by successive additions of 25 years, the second celumns we shall successively de-
353°52i341i131ii the fourth by 57°21144i11iii and the fifth by 117°12i40ii541ii,

Following these, we shall arrange a table by years in 24 rows and another by
months in 12 rows, each of them with as many columns as the first tables. And,
in the case of the table by months, for the first row, we place in the first column
the first month; in the second column the 29 days 311501i811i20iv; in the third the
of the moon’s anomaly; and in the fifth the 30°40i14ii9iii jn latitude. And we
successively inerease these by these same numbers of the first row.

In the case of the table by years, for the first row, we place in the first column
the first year; in the second the 18 days 53152ii48!ii additional in 13 months; in
the third the 18°22i5931181ii of the solar surplus for that much time; in the fourth
the 335°37i111511 of lunar anomaly; and in the fifth the 38°43131i5111i in latitude.
With a view to setting out the first syzygy following upon the whole Egyptian
years, we also successively increase at one time by the thirteen-month surplus
already given, and at another by the twelve-month surplus which comes to 354
days 2211i140ii1 to 349°16i361116!i in solar position, to 309°48i11i421i in lunar
anomaly, and to 8°2149i1421i in latitude. Nevertheless it will suffice to take the
tabulated numbers out to the second sixtieths. And here is the result reduced
to tables: '
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3. TABLE oF CONJUNCTIONS
1 2 3 4 5
256-Tear - *Days of Degrees of Degrees of Degrees of
Periods Thoth Solar Position | Lunar Anomaly Latitude

(<] ' 17 ] ’ 17 o ! ”
1 24 44 17 [ 288 38 50 (218 57 15 {308 17 21
26 24 41 30 [282 31 24 (276 18 59 65 30 11
51 24 38 43 {276 23 58 | 333 40 43 | 182 43 1
76 24 35 56 270 16 33 31 2 27 1299 55 51
101 24 33 9 1264 9 7 88 24 11 57 8 41
126 24 30 22 |28 1 41 (145 45 55 | 174 21 31
151 24 27 35 (251 54 15 (203 7 39 |291 34 20
176 24 24 47 [ 245 46 50 | 260 29 23 48 47 10
201 24 22 0 | 239 39 24 | 317 51 7 166 O 0
226 24 19 13 [ 233 31 58 15 12 51 1283 12 50
251 24 16 26 | 227 24 32 72 34 35 40 25 40
276 24 13 39 | 221 17 6 | 129 56 19 | 157 38 30
301 24 10 52 | 215 9 41 | 187 18 31214 51 20
326 24 8 5120 2 15 | 244 39 47 32 4 10
3561 24 5 18 | 202 54 49 | 302 1 31 | 149 17 0
376 24 2 31 [ 196 47 23 |359 23 15 | 266 29 50
401 23 59 44 | 190 39 57 56 44 59 23 42 39
426 23 56 57 | 184 32 32 | 114 6 43 | 140 55 29
451 23 54 10 | 178 25 6 | 171 28 27 | 238 8 19
476 23 51 23 [ 172 17 40 ] 228 50 11 15 21 9
501 23 48 35 166 10 14 (286 11 55 {132 33 59
526 23 45 48 | 160 2 49 | 343 33 39 | 249 46 49
551 23 43 1 | 153 55 23 40 55 23 6 59 39
576 23 40 14 | 147 47 57 98 17 7 124 12 29
601 23 37 27 {141 40 31 |155 38 51 | 241 25 19
626 23 34 40 | 135 33 51213 0 35 | 358 38 9
651 23 31 53 [129 25 40 {270 22 19 {115 50 58
676 23 29 6 | 123 18 14 | 327 44 3 | 233 3 48
701 23 26 19 | 117 10 48 25 5 47 | 330 16 38
726 23 23 32 | 111 3 22 82 27 31 | 107 29 28
751 23 20 45 | 104 55 57 | 139 49 16 [ 224 42 18
776 23 17 57 98 48 31 | 197 11 0 | 341 55 8
801 23 15 10 92 41 5 | 254 32 44 99 7 58
826 23 12 23 86 33 39 | 311 54 28 |216 20 48
851 23 9 36 80 26 13 9 16 12 (333 33 38
876 23 6 49 74 18 48 66 37 56 90 46 28
901 23 4 2 68 11 22 | 123 59 40 207 59 17
926 23 1 15 62 3 56 | 181 21 24 | 325 12 7
951 22 58 28 55 56 30 | 238 43 8 82 24 57
976 22 55 41 49 49 4 | 296 4 52 | 199 37 47
1001 22 52 54 43 41 39 | 333 26 36 |316 50 37
1026 22 50 7 37 34 13 50 48 20 4 3 27
1051 22 47 20 31 26 47 | 108 10 4 1191 16 17
1076 22 44 32 25 19 21 [1656 31 48 | 308 29 7
1101 22 41 45 19 11 56 | 222 53 32 656 41 57
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TasLE oF FuLL Moons
1 2 3 4 5
25-Year Days of Degrees of Degrees of Degrees of
Periods Thoth Solar Position | Lunar Anomaly Latitude

o ’ n [~ ’ " o ’ 1"
1 9 58 22 |214 5 38 26 2 45 | 112 57 15
26 9 55 35 |267 58 12 83 24 29 | 230 10 5
51 9 52 48 | 261 50 46 | 140 46 13 | 347 22 55
76 9 50 1 [ 25656 43 21 | 198 7 57 | 104 35 45
101 9 47 14 | 249 35 55 | 255 29 41 | 221 48 35
126 9 44 27 | 243 28 29 |312 H51 25 (339 1 25
151 9 41 40 | 237 21 3 10 13 9 96 14 14
176 9 38 52 {231 13 38 67 34 53 ;213 27 4
201 9 36 51225 6 12 124 56 37 | 330 39 54
226 9 33 18 [ 218 58 46 | 182 18 21 87 52 44
251 9 30 31 |212 51 20 | 239 40 5 205 5 34
276 9 27 44 | 206 43 54 (297 1 49 | 322 18 24
301 -9 24 537 1200 36 29 354 23 33 79 31 14
326 9 22 10 | 194 29 3 51 45 17 | 196 44 4
351 9 19 23 |18 21 37 [109 7 1 |313 56 54
376 9 16 36 {182 14 11 | 166 28 45 71 9 4
401 9 13 49 {176 6 45 [ 223 50 29 {188 22 33
426 9 11 2 1169 59 20 | 281 12 13 | 305 35 23
451 9 8§ 15 163 51 54 [338 33 57 62 48 13
476 9 5 27 | 157 44 28 35 55 41 | 180 1 3
501 9 2 40 | 151 37 2 93 17 25 | 297 13 53
526 8 59 53 | 145 29 37 | 150 39 9 54 26 43
551 8 .57 6 | 139 22 11 208 O 53 |171 39 33
576 8 54 19 | 133 14 45 | 265 22 37 | 288 52 23
601 8§ 51 32 127 7 19 |322 44 21 46 5 13
626 8 48 45 | 120 59 53 20 6 5 1163 18 3
651 8 45 58 | 114 52 28 77 27 49 {280 30 52
676 8 43 11 | 108 45 2 | 134 49 33 37 43 42
701 8 40 24 1102 37 36 | 192 11 17 | 154 56 32
726 g 37 37 96 30 10 | 249 33 11272 9 22
751 8 34 50 90 22 45 | 306 54 45 29 22 12
776 8 32 2 84 15 19 4 16 29 | 146 35 2
801 8 29 15 7 7 53 61 38 14 | 263 47 52
826 8 26 28 72 0 27 | 118 59 58 21 0 42
851 8§ 23 41 65 53 1 {176 21 42 | 138 13 32
876 8 20 54 59 45 36 | 233 43 26 | 255 26 22
901 8 18 7 53 38 10 {291 5 10 12 39 11
926 8 15 20 47 30 44 | 348 26 54 | 129 52 1
951 8 12 33 41 23 18 45 48 38 | 247 4 51
976 8 9 46 35 15 52 | 103 10 22 4 17 41
1001 8 6 59 29 8 27 | 160 32 6 | 121 30 31
1026 8 4 12 23 1 1 1217 53 50 | 238 43 21
1051 8 1 25 16 53 35 {275 15 34 | 335 56 11
1076 7 58 37 10 46 9 (332 37 18 | 113 9 1
1101 7 55 50 4 38 44 29 59 2 123 21 51
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YEARLY SURPLUSES AT CONJUNCTIONS AND FULL MOONS
1 2 3 4 5
Single Degrees of Degrees of Degrees of
Years Days Solar Position | Lunar Anomaly Latitude

o 4 I{s [+ ’ 7 o ’ "
1 18 53 52 18 22 39 | 335 37 2 38 43 4
2 8 15 353 7 39 36 | 285 25 4 46 45 54
3 27 9 45 26 2 35 | 261 2 5 8 28 57
4 16 31 47 15 19 11 | 210 50 7 93 31 47
5 5 353 49 4 35 47 | 160 38 9 | 101 34 37
6 24 47 40 22 H8 47 {136 15 11 | 140 17 41
7 14 9 42 12 15 23 86 3 12 1148 20 30
8 3 31 44 1 31 59 35 51 14 | 156 23 20
9 22 25 36 19 54 59 | 11 28 16 | 195 6 24
10 11 47 37 9 11 35 [321 16 18 | 203 9 14
11 1 9 39 368 28 11 |271 4 19 | 211 12 3
12 20 3 31 16 51 10 [ 246 41 21 | 249 55 7
13 9 25 32 6 7 47 | 196 29 23 | 257 57 5T
14 28 19 24 24 30 46 | 172 6 25 | 296 41 1
15 17 41 26 13 47 22 | 121 54 27 | 304 43 50
16 7 3 28 3 3 59 71 42 28 | 312 46 40
17 25 57 19 21 26 58 47 19 30 1351 29 44
18 15 19 21 10 43 34 | 357 7 32 133 32 34
19 4 41 23 0 0 10 [ 306 565 33 7 35 23
20 23 35 14 18 23 10 | 282 32 35 46 18 27
21 12 57 16 7 39 46 {232 20 37 54 21 17
22 2 19 18 | 356 56 22 1182 8 39 62 24 7
23 21 13 10 15 19 22 {157 45 41 | 101 7 10
24 10 3 11 4 35 58 | 107 33 42 {109 10 0

Mean Passages

Solar limits from 69°19’ to 101°22’ and from 258°38’ to 290°41’

Lunar limits from 74°48’ to 105°12’ and from 254°48’ to 285°12’

Months

QOO IO W~

10

12

29

59

88
118
147
187
206
236
265
295
324
354

Days

31

3
35

7
39
1
42
14
46
18
50
22

50
40
30
21
11

51
41
31
21
12

Solar Position

29 6 23

58 12 46

87 19 9
116 25 32
145 31 55
174 38 18
203 44 41
232 31 4
261 57 27
201 3 50
320 10 13
349 16 36

Lunar Anomaly

25 49
51 38
77 27
103 16
129 5
154 54
180 43
206 32
232 21
258 10
283 59
309 48

NN = =00 O

Latitude

30 40 14
61 20 28
92 0 42
122 40 57
153 21 11
184 1 25
214 41 39
245 21 53
276 2 7
306 42 21
337 22 36
8 2 50



194 PTOLEMY

4. How To LocaTE THE PERIODIC AND TRUE SYZYGIES

Now, whenever we wish to get the mean syzygies for some one of the required
years, we calculate how far the supposed year is from the year 1 of Nabonassar.
And looking to see which rows of either of the first two 25-year tables together
with the third table’s years contain that number of years, we add the corre-
sponding numbers in each of the columns of the two rows: for the synodic syzy-
gies those from the first table to those from the third, and, for the plenilunar
syzygies, those from the second table to those from the third. From the sums in
the second column we shall have the time of the syzygy from the beginning of
that year: for instance, if they add up to 24 days 44’, then 44 sixtieths of a day
after midday of Thoth 24; and again, if they add up to 34 days 44’, then the
same sixtieths of a day after midday of Pleophi 4. From the third column we
shall have the degrees from the sun’s apogee; from the fourth, the degrees from
the apogee of the moon’s anomaly; and, from the fifth, the degrees from the
northern limit of latitude.

Accordingly, we can readily calculate those that follow, whether we wish to
get them all or some of them, through the proper sums in the fourth or monthly
table, having changed the times, for greater facility, from the sixtieths of a day
to equatorial hours. The resulting surplus of hours will be as of regular solar
days, for the surplus taken seasonally is not always the same, but as of irregular
solar days. And then we shall correct this by estimating the difference, sub-
tracting it from the mean sum if the surplus of time for the irregular interval is
greater, and adding it to it if it is less.

Now, once the synodic or plenilunar date considered with respect to mean
passages has been gotten in this way along with the anomalies for each of the
luminaries, it will be very easy to get the date and place of the true syzygy, and
even the moon’s latitudinal passage, from the combination of both anomalies.
For in each case we examine the true passage of the sun, moon, and latitude at
that periodic time by means of the addition-subtraction obtained. And if they
are found to be at the same degree or directly opposite, we also have the time of
the true syzygy; and if not, taking the degrees of the interval between them and
adding to them a twelfth of them?!, we see in how many equatorial hours the
moon will move that number of degrees. If the moon’s true passage is less than
the sun’s, we add that number of hours to the periodic time; and if greater, we
subtract it. And thus, if the moon’s true passage at the periodic time is less than
the sun’s, we add the degrees of the interval between, together with the twelfth
of them to the moon’s true passage both in longitude and latitude; and if greater,
we subtract them. In this way we shall have the time of the true syzygy and
very nearly the moon’s true passage on its oblique circles.

Now, the moon’s hourly irregular movement at the syzygies is each time
gotten in this way. Carrying the number of anomalistic degrees for the supposed
date to the Table of the Moon’s Anomaly, we take from the excess of the addi-
tion-subtractions lying opposite it the difference belonging to one degree of anom-

1That is, the number of degrees between them if the syzygy is synodic; between one of
them and the point opposite the others, if the syzygy is plenilunar. Now while the moon
moves along the ecliptic nearly 13° the sun moves nearly 1° or the moon moves thirteen
times as fast. And while the moon moves that 1° the sun again 1/13°. Therefore, for all
practical purposes, 1/13° is 1/12 of the original 13°, This approximation is even truer for the
smaller numbers involved here. See Chapter 5.
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aly. This difference we multiply by the hourly mean movement of anomaly

which is 0°321401i0iii, If the anomalistic number is in the rows above the greatest
addition-subtraction, we subtract this product from the hourly mean movement
a result, how much the moon moves irregularly in longitude in one equatorial
hour at that particular time!.

The time of the true syzygies for Alexandria will be gotten systematically by
us in this way, because all the epochs have their hours established with respect
to the meridian through Alexandria. And it is easy from the times in Alexandria
to find the times which will result in any region for the same syzygy, given the
number of hours of its distance from that meridian. For, if, from the difference
of the localities, we consider the meridian through the place required, then, by
as many degrees as it differs from that through Alexandria, by just so much time
later will the appearance seem to be observed if the meridian through the place
required is east of that through Alexandria; but by so much earlier if west of it,
with fifteen time-degrees still making, of course, one equatorial hour.

5. Ox tE Ecvurpric LiMrts oF THE SuN AND MooN

Now that these things have been worked out, the next job it to present those
matters having to do with the ecliptic limits of the occultations of the sun and
moon, so that, even if we do not choose to compute all the periodic syzygies but
only those which can fall within the zone of ecliptic markings, we can have ready
to hand a diserimination of this kind from the moon’s mean latitudinal passage
for each of the periodic syzygies.

Now, in the preceding Book, we have shown that the moon’s diameter sub-
tends at its greatest an arc of the great circle drawn about the ecliptic’s centre
equal to 0°31'20”, calculating it to be such by two eclipses which oceured at the
apogee of its epicycle. Since we now wish to get the greatest limits of the ecliptic
syzygies, and since these occur when the moon is about the perigee of its epi-
cycle, we shall show by means of two eclipses observed near the perigee (for the
proof of these things would be more certain by means of their appearances)

1This description of the method by Ptolemy is far from clear. Theo of Alexandria in his
Commentary on Book V gives a better one as follows:

“For taking the anomalistic number . . . he carries it to the Table of the Moon’s Simple
Anomaly. And taking the difference of the numbers lying in a line with the nearest anomalistic
numbers greater and less than it, he divides it by the difference of the common [%.e., anomalis-
tic] numbers. For example, if the anomalistic number is 33°, taking the 2°19’ corresponding
to 30° and the 2°44’ corresponding to 36°, he finds their difference which is 0°25’. And dividing
this 0°25’ by the difference between 30° and 36° (that is, by 6) he gets 0°4'24”; and this is the
difference belonging to one degree of the anomaly. And multiplying 0°4’24” by the 0°32'40”
of the mean hourly movement of anomaly, we subtract the product from the hourly mean
moverent in longitude of 0°32’56” if the given anomalistic number is in the rows above the
greatest addition-subtraction—that is, from 1 to 96 and from 264 to 360. But if it is from
96 to 180 and from 180 to 264, or in the rows below the greatest addition-subtraction, we shall
add it to the 0°32’ 56”.”

Theo of Alexandria goes on to give the reasoning behind this method. But it is clear from
the method itself. One finds the average change along the ecliptic affected by a degree of
anomaly for the section of the anomaly the moon happens to be at. This, being multiplied by
the number of degrees of anomaly the moon moves in one hour, becomes the change produced
along the ecliptic for an hour’s movement in anomaly at that particular section of the epicycle.
It can, of course, only be approximate. This hourly change is then added to or subtracted
from, as the case may be, the moon’s mean movement along the ecliptic.
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how much of an are the moon’s diameter likewise intercepts at this point.

In the year 7 of Philometor then, (. e., the year 574 of Nabonassar, Egyptian-
wise Phamenoth 27-28 from the beginning of the eighth hour to the end of the
tenth hour), in Alexandria the moon was eclipsed up to 7 digits from the north.
Now, the middle occurred 214 seasonal hours after midnight (or 214 equatorial
hours, because of the sun’s true position’s being 6°4’ within the Bull). And the
time from the epoch to the middle of the eclipse comes to 573 Egyptian years,
206 days, and 1414 equatorial hours simply considered but only 14 with respect
to regular solar days. And for this much time the mean position of the moon’s
centre was 7°49’ within the Scorpion but its true position 6°16; and its centre
was 163°40’ from the epicycle’s apogee and 98°20’ from the northern limit of the
oblique circle. Therefore it is evident that, when the moon’s centre, being near
its least distance, is 8°20’ from the nodes along the oblique circle, and the shad-
ow’s centre is on the great circle drawn through the moon’s centre at right angles
to the oblique circle at which passage the greatest shadowings are effected, then
1454145 of its diameter falls within the shadow.

Once again, in the year 37 of the Third Callippic Period (which is the year 607
of Nabonassar, Egyptianwise Tybi 2-3), the moon began to be éclipsed at the
beginning of the fifth hour in Rhodes and was obscured at the most 3 digits from
the south. Here once more the beginning of the eclipse occurred two seasonal
hours before midnight, which were 214 equatorial hours both in Rhodes and in
Alexandria because of the sun’s true position’s being 5°8’ within the Water
Bearer, and the middle (when it was obscured the most) occurred very nearly
1414+ 14 equatorial hours before midnight. And here the time from the epoch
to the middle of the eclipse adds up to 606 Egyptian years, 121 days, and 1014
equatorial hours considered both simply and with respect to regular solar days.
And for this much time the mean position of the moon’s centre was 5°16’ within
the Lion, but its true position 5°8’; and its centre was 178°46’ from the epicycle’s
apogee and 280°36’ from the northern limit on the oblique circle. It is therefore
evident that, when the moon’s centre, being near its same least distance, is
10°36’ from the nodes along the oblique cirele, with the shadow’s centre situated
on the common section of the ecliptie, and the great circle drawn through the
moon’s centre at right angles to the oblique cirele, then the fourth part of the
moon’s diameter will fall within the shadow.

But if the moon’s centre is 814° from the nodes along the oblique circle, it is
4314, sixtieths of one degree [¢. e., 43’3”] from the ecliptic along the great circle
drawn through the oblique circle’s poles; and, when it is 1034° from the nodes
along the oblique circle, it is 544 144- 14 sixtieths of one degree from the ecliptic
along the great circle drawn through the oblique circle’s poles. Now, since the
difference between the two eclipses contains a third of the moon’s diameter, and
since the difference of the two distances of its centre along the same great circle
from the same ecliptic point (that is, from the shadow’s centre) is 0°11°47”, it is
clear that the moon’s whole diameter, at its least distance, subtends an arc of
very nearly 3514 sixtieths of one degree on the great circle drawn about the
ecliptic’s centre. And since also in the second of the eclipses (in which 14 of the
moon’s diameter was eclipsed) the moon’s centre was 5441414 sixtieths from
the shadow’s centre, and 14 of the moon’s diameter or 8414+ 14 sixtieths from
the point where the line joining their centres cuts the shadow’s circumference,
it is immediately evident that the shadow’s radius at the moon’s least distance
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is the remainder, 46 sixtieths. This is hardly greater than two and three-fifths
times the moon’s radius, which is 0°1724’. But the sun’s radius likewise subtends
an arc of 0°15’40” on the great circle drawn through the sun about the ecliptic’s
centre. For the sun and moon were shown to measure off equally on their circles
in the syzygies at the greatest distance. Therefore, when the moon’s apparent
centre is 0°33'20” from the sun’s centre on either side of the ecliptic, it will first
be possible for the moon’s apparent position to be one of tangency to the sun.

For example, if we conceive arc AB of the ecliptic and arc CD of the moon’s
oblique circle as being sensibly parallel as far as the pas-
sages at eclipse times, and if we draw arc AEC of the
E great circle through the poles of the oblique circle, and
conceive the sun’s semicircle about point A and the
moon’s apparent semicircle about E so that it is just
touching the sun’s at point F, then arc AE, the distance
of the moon’s apparent centre £ from the sun’s centre 4,
can become the 0°3320” just given.

But in the places from Merog, where the longest day
A is 13 equatorial hours, to the mouth of the Borysthenes,

where the longest day is 16 equatorial hours, the moon,

at its least distance in the syzygies, displays a northward
parallax of at most very nearly 0°8” (the sun’s parallax being taken into ac-
count), and likewise a southward parallax of at most 0°58’. And when it displays
its northward parallax of 0°8’, it displays its greatest longitudinal parallax of
very nearly 0°30” about the Lion and the Twins; but when it displays its greatest
southward parallax, it displays its greatest longitudinal of very nearly 0°15
about the Scorpion and the Fishes.

Therefore—if we suppose the moon’s true centre at D and we join the DF of
the whole parallax-——the arc CD will be very nearly the arc of the longitudinal
parallax, and CE that of the Jatitudinal. And so, whenever the moon is north of
the sun and displays its greatest southward parallax,

arc CD=0°15,
arc AEC=1°31".
Since the ratio of the arc from the node to C to the arc AC at the distance be-
tween the ecliptic limit is that which 1114 has to 1 (this being easily understood
from things already demonstrated on the obliquity of the lunar circle), the arc
from the node to C will be 17°26/, and added to CD it will be 17°41’. But when
it is south of the sun and displays its greatest northward parallax,
are CD=0°30/,
arc AEC =0%1;
and for the same reasons the arc from the node to C will be 7°52/, and added to
CD it will be 8°22’. Therefore, whenever the moon’s centre is truly 17°41’ from
either of the nodes northward along the oblique circle, first in the given places of
the inhabited world can its apparent position become one of tangency to the sun.

Again, inasmuch as the greatest difference of solar anomaly was demonstrated
to be 2°23’, and the greatest difference of lunar anomaly about the syzygies 5°1/,
it is possible at times for the moon to be truly 7°24’ fromn the sun at the periodic
syzygies. But while the moon is {raversing that many degrees, the sun will tra-
verse 1{3 that many, or very nearly 0°34’; and again, while the moon moves
these 0°34’, the sun will traverse also {3 that many, or very nearly 0°3’; and

C D
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14{3 of this is not worthy of mention. If, therefore, we add to the 2°23’ of solar
anomaly the total of 0°37’ which is 1{ of the original 7°24’, we shall then have the
3° by which the true syzygies differ very nearly the most from the mean longi-
tudinal and latitudinal passages in the periodic syzygies. Consequently, when-
ever the mean passage of the moon’s centre is 20°41’ from the nodes northward
along the oblique circle and 11°22’ southward, then first, in the given places of
the inhabited world, can its apparent position become one of tangency to the
sun. Therefore, whenever the number of degrees from the northern limit of the
moon’s oblique circle corresponding to the periodic syzygies falls between 69°19/
and 101°22’ or between 258°38" and 209°41’, then only in the given places can
the proposed thing happen.

Yet again, respecting the moon’s ecliptic limits: since the moon’s radius at its
least distance was shown to subtend an arc of 0°17/40”, and since the shadow’s
radius (being very nearly two and three fifths times as large as the moon’s)
comes to 45°567, it is also clear that, whenever the moon’s centre is truly 1°3’36”
from the shadow’s centre on either side of the ecliptic along the great circle
drawn through the centres and the oblique circle’s poles, and is very nearly
12°12’ from either of the nodes along the moon’s oblique circle (according to the
ratio of 1 to 1114) then first can the moon be tangent to the shadow. For the
same reasons as already demonstrated concerning the anomaly, whenever the
moon’s centre taken at the mean passage is 15°12’ from the nodes along the
oblique circle—so that, for numbers indicating distance from the northern limit,
it falls between 74°48’ and 105°12" and between 254°48 and 285°12, then first
can the moon be tangent to the shadow.

We shall now place beside the appointed tables of the syzygies the numbers
belonging to the solar and lunar limits of the moon’s latitude so that we can
readily judge those capable of falling within an eclipse.

6. ON THE INTERVAL oF EcLirTic MONTHS

And to these things it would be useful to add how many months apart,
in general, the ecliptic syzygies can occur, so that, if we take the position
of one ecliptic syzygy, by an examination of the terms we may get not all the
syzygies which follow but only those at month-intervals in which an eclipse can
oceur.

Now, it would be immediately clear that the sun and moon can be eclipsed at
six-month intervals, since the moon’s mean latitudinal passage comes to
184°1’25” in six months, and since the arcs between the ecliptic limits, both for
the sun and moon, embrace fewer degrees than this when they are within a semi-
circle and more when they are above a semicircle. For, as demonstrated, since
the solar limits cut off 20°41’ from either of the nodes northward along the
moon’s oblique circle, and southward 11°22’, the northern anecliptic arc is
138°38’, and the southern is 157°16’. As the lunar limits cut off to either side of
the ecliptic 15°12’ from the nodes along the same circle, each of the anecliptic
arcs comes to 149°36'.

That by means of these hypotheses it is possible for an eclipse of the moon to
occur at an interval of the greatest five months—that is, when the sun is making
its greatest passage and the moon its least—we can see as follows:

Since in the mean five-month interval we find the longitudinal passage of each
luminary adding on 145°32’ in terms of mean movement, and the moon 129°5
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of anomaly on the epicycle; since at its greatest passage either side of the peri-
gee the sun’s 145°32" add 4°38’ to the mean passage: and since at its lesst pas-
sage either side of the apogee the 129°5" of the moon’s epicycle, subtract $°40
from the mean passage, it follows that in the time of the mean five-month period,
whenever the sun effects its greatest and the moon its least passage, the moon
will be west of the sun by the combined anomalies of both: 13°18’. Again, taking
142 of this for reasons already demonstrated, we shall have very nearly the 1°6
which the sun moves forward until it is overtaken by the moon.

Now, since it had added on 4°38’ from its own anomaly and another 1°6° from
the time required for overtaking at the true syzygy, the greatest five-month in-
terval will have added on 5°44’ in longitude beyond the mean. Therefore the
moon’s latitudinal passage along the oblique circle will have added on just that
many degrees to very nearly 133°21’ in latitude resulting for the five-month
interval. And so the latitudinal passage, truly considered in the greatest tive-
month interval, will come to 159°5.

But the moon’s ecliptic limits either side of the ecliptic circle, at the moon’s
mean distance, embrace very nearly 1° on the great circle drawn through the
poles of the oblique circle, since at the least distance it is 1°3’36” and at the
greatest distance 0°56'24”; and they embrace 11°30’ from the nodes along the
oblique circle. Therefore the anecliptic arc between them comes to 157°, which
for the greatest five-month interval is less by 2°5’ than the additional 159°5°
of the oblique circle. Now, it is clear for these reasons that it is possible
for the moon, within the greatest five-month interval, to be eclipsed at the
first full moon in its withdrawal from either node, and to be eclipsed again
at the last full moon in its approach to the opposite node. For in both eclipses
the occultation occurs on the same side of the ecliptic, and never on oppo-
site sides.

In this way we have seen how the greatest ive-month period can produce two
lunar eclipses. And that it is impossible for the same thing to happen in a seven-
month interval even if we suppose the least seven-month interval (that is, dur-
ing which the sun effects its least passage and the moon its greatest) we can see
by working in the same way as before.

For since, again, in the mean seven-month interval, the mean longitudinal
passage of both luminaries takes on an additional 203°45’, that of the moon on
its epicycle 180°43’; since the sun’s 103°45” at its least passage either side of the
apogee subtracts 4°42’ from the mean movement; and since the 180°43’ of the
moon’s epicycle at its greatest passage either side of the perigee adds 9°53’ to
the mean movement, it follows that in the time of a mean seven-month interval,
whenever the sun effects its least passage and the moon its greatest, the moon
will have passed the sun by the combined 14°40’ of both anomalies. For the
same reasons, taking }{s of this and adding it to the 442’ of the subtractive
solar anomaly, we shall have all told very nearly 5°55 by which the longitudinal
passage in the least seven-month interval will lag behind that in the mean, and
just so will the latitudinal passage fail of the total 214°42’ for the mean seven-
month interval. Therefore in the least seven-month interval the moon will have
added on 208°47’ in latitude along the oblique circle, whereas the whole greatest
arc on the oblique circle between the moon’s ecliptic limits at its mean distance,
from the approach to one of the nodes to the withdrawal from the opposite
node, is 203°. It is consequently not possible for the moon, in the least seven-
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month interval, to be eclipsed ever so little at the first full moon and again at
the last.

Then again it must be shown that it is possible for the sun to be eclipsed
twice in the greatest five-month interval for the same people and in all parts of
the world inhabited by us.

For we demonstrated the moon’s latitudinal passage in the greatest five-
month interval to be 159°5” while the anecliptic arc for the sun, at the moon’s
mean distance, is 167°36’. For the ecliptic limits are 0°32’20” from the ecliptic
along the oblique circle. Therefore it is clear that, if the moon displays no paral-
lax, the required result is impossible, because the anecliptic arc is greater than
the passage in the greatest five-month interval by 8°31” along the oblique circle,
and by very nearly 0°45” along the circle at right angles to the ecliptic, but that,
wherever it can display a parallax such that the parallaxes in either of the ex-
treme conjunctions or the parallaxes of both together exceed 0°45’, in such a
place both of the extreme conjunctions can be ecliptic.

Now, since we showed that, in the time of the greatest five-month interval,
whenever the moon effects its least passage and the sun effects its greatest from
two-thirds within the Virgin to two-thirds within the Water Bearer, the moon
falls west of the sun by the 13°18’ of both anomalies, and since the moon moves
in mean terms this much and {5 as much more in 1 day and 24 hours, it is
clear that, while the time of the mean five-month interval is 147 days and very
nearly 15414414 hours, the time of the greatest five-month interval is 148
days and 18 hours. And, for this reason, if the first conjunction is nearly two-
thirds within the Virgin, the last one nearly two-thirds within the Water Bearer
will be earlier by the six hours lacking to fill out the whole days. Therefore one
must seek where and when the moon can display a parallax of more than these
0°45’, either in one or the other of these two dodecatemories or in both, at a po-
sition 6 hours earlier in the Water Bearer than in the Virgin.

Now nowhere in the world inhabited by us is the moon found to display such
a parallax northward, as we have said. Whence it is impossible for the sun to be
twice eclipsed in the greatest five-month interval with the moon’s passage south
of the ecliptic—that is, whenever the moon at the first conjunction is withdraw-
ing from the descending node and at the last conjunction is approaching the
ascending node. But it can display just such a parallax southward, for those
living helow the equator northward, in both these dodecatemories at a position
six hours earlier whenever two-thirds the Virgin is supposed setting at the first
conjunction and two-thirds the Water Bearer is culminating at the second. For
in such positions we find the moon, in its mean distance, displaying a southward
parallax (the sun’s parallax being accounted for) of very nearly 0°22" at the
equator when it is in the Virgin, and of 0°14” when it is in the Water Bearer;
but where the longest day is 1214 hours, 0°27” when it is in the Virgin, and 0°22’
when it is in the Water Bearer; so that in this case the two parallaxes together
exceed the 0°45’ by 4 sixtieths. And since the southward parallax becomes
greater for the still more northern places, therefore it is evident that it will be
even more possible for the sun to appear twice eclipsed in the least five-month
interval for those inhabiting these places, but only at the moon’s passage north
of the ecliptic—that is, when the moon in the first eclipse withdraws from the
ascending node and, in the second, approaches the descending node.
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Thus I say again that, also in the least seven-month interval, it is possible for
the sun to be twice eclipsed for the same people. For in the least seven-month
interval we demonstrated the moon’s latitudinal passage to be 208°47'. And
since the greatest arc of the oblique circle cut off between the ecliptic limits is
that from the limit at the approach to one node to the limit at the withdrawal
from the other, therefore, in the case of the sun this distance will come to 192°24’
at the moon’s mean distance. Therefore it is clear that, if the moon displays no
parallax, the required appearance will be impossible, because the oblique circle’s
arc of the least seven-month interval is greater than the greatest arc cut off by
the sun’s ecliptic limits which is 16°23’ along the oblique circle and 1°25’ along
the circle drawn through the ecliptic’s poles. But wherever it can display a par-
allax such that the parallaxes in either of the extreme conjunctions or both par-
allaxes together exceed this 1°25’, in such a place can both extreme conjunections
be ecliptic.

Now since we showed that, in the time of the mean seven-month interval,
whenever the moon effects its greatest passage, and the sun its least passage
from the last part of the Water Bearer to the middle of the Virgin, the moon has
already truly passed the sun by 14°40’. Since the moon moves in mean terms
just that many degrees together with {9 of them in 1 day and 5 hours, there-
fore it is evident that, while the time of the mean seven-month interval em-
braces 206 days and very nearly 17 hours, the time of the least seven-month
interval will be 205 days and 12 hours. For this reason the time of the last con-
junction near the middle of the Virgin will be 12 hours later than the first near
the end of the Water Bearer. Therefore one must seek where and when the moon
can display a parallax of more than 1°25, either in one or the other of the given
dodecatemories or in both at positions 12 hours apart—that is, when the one is
setting and the other is rising. For not otherwise could both eclipses occur above
the earth.

Now again, in the world inhabited by us, the moon is nowhere found in any
position displaying such a parallax northward; and even to those living under
the equator a parallax of not more than the 23 sixtieths of the latitudinal paral-
lax at the greatest distance. Whence it is impossible for the sun to be twice
eclipsed in the least seven-month interval with the moon’s passage south of the
ecliptic; that is, whenever it approaches the ascending node at the first conjunc-
tion and withdraws from the descending node at the last. But we find such a
parallax effected southward from around the parallel through Rhodes whenever
the last of the Water Bearer is rising and the middle of the Virgin setting. For at
its mean distance in Rhodes and in places under the same parallel, the moon dis-
plays in either position a southward parallax (the solar parallax being sub-
tracted) up to very nearly 0°46’, so that the parallaxes at both conjunctions are
together greater than the 1°253’. Now, since the southward parallax is even
greater in those places north of this parallel, it is evident that, for those inhabit-
ing these places, it is possible for an eclipse of the sun to appear twice in the
least seven-month interval, but again only at the moon’s passage north of the
ecliptic—that is, when the moon in the first eclipse approaches the descending
node and in the second withdraws from the ascending node.

It remains further to be shown, moreover, that at an interval of one month
it is not possible for the sun to be twice eclipsed in the world inhabited by us,
either in the same parallel or in different parallels, even if one supposes all to-
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gether those things which cannot concur, but as combined to make the required
appearance possible; I mean, even if we suppose the moon at its least distance
so that it may display a parallax (the month the least so that the monthly lati-
tudinal passage may be greater, by as little as possible) that is greater than that
embraced by the sun’s ecliptic limits, using indifferently hours and dodecate-
mories in which it appears to make the greatest parallaxes.

Since, then, in the mean month the longitudinal passage of each of the lumi-
naries takes on 29°6" in mean terms, and the passage on the moon’s epicycle
takes on 25°49’; and since of these the sun’s 29°6’ at its least passage either side
of the apogee subtract 1°8’ from the mean, and the 25°49’ of the moon’s epicycle
at its greatest passage either side of the perigee add 2°28’ to the mean—if, ac-
cording to what has already been demonstrated, we combine the addition-sub-
tractions of both anomalies which come to 3°36’ and add on a twelfth or 0°18’
to what the sun lacked, we shall have 1°26’. And by just this amount we shall
have the least month’s passage less than the longitudinal and latitudinal in the
mean month. And so, since the mean month’s latitudinal passage is 30°40’, the
least month’s passage is 29°14’, which makes very nearly 2°33’ along the great
circle at right angles to the ecliptic. But the whole passage of the sun’s ecliptic
limits comes to 1°6” when the moon is at its least distance, so that the least
month’s passage is greater by 1°27’.

Now, if the sun were to be twice eclipsed in one month, it would be absolutely
necessary, either that the moon display no parallax at one of the conjunctions
and one greater than 1°27’ at the other; or that it display parallaxes in the same
direction at both conjunctions with the difference between the parallaxes greater
than 1°27’; or that both parallaxes come to something greater when the parallax
at one conjunction is northward and at the other southward. But nowhere on
the earth in the syzygies—not even at its least distance—will the moon display
(the sun’s parallax being accounted for) a parallax greater than one degree.
Therefore it is not possible in the least month for the sun to be twice eclipsed,
either when the moon displays no parallax at one of the conjunctions, or when
it displays one in the same direction at both, since their difference is never
greater than one degree although it needs to be greater than 1°27.

The required appearance could happen only if the total number of degrees
from both parallaxes, one being in an opposite direction to the other, should
total more than 1°27’. And this is possible in different regions because the moon
can display, to those north of the équator in the regions inhabited by us, a
southward parallax, and to those south of the equator in what is called the
antichthones, a northward parallax of from 0°25’ to 1° beyond the sun’s paral-
lax. But this could never happen for the same region. Because the moon displays
in like manner a greatest parallax northward and southward of not more than
0°25’ for those under the equator; and to the most northern and most southern
not more than the stated 1° in the opposite directions, so that in this way both
parallaxes still total less than 1°27’. Inasmuch as each of the opposite parallaxes
would always be much less in the case of regions betwcen the equator and one of
the limits, the impossibility would be even greater for them.

Nowhere on the earth for the same latitude, therefore, can the sun be twice
eclipsed in one month; and for different latitudes nowhere in the same inhabited
region. Which things we were required to show.
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7. ConsTrUCTION OF [lcLipric TaBLis

It has now become clear to us what intervals of syzygies we must take for a
research into the eclipses. In order that, when the mean times at them have been
distinguished and the moon’s passages for those times calculated both in the
case of the apparent conjunctive syzygies and in the case of the true plenilunar
ones we might (by means of the moon’s latitudinal positions) be able easily to
review those of the syzygies certain to be ecliptic, their magnitudes, and the
times of the obscurities, we constructed tables for so distinguishing them: two
for solar eclipses and two for lunar ones, both at the moon’s greatest and least
distance, supposing the increase of the obscurations through twelve parts of the
obscured diameter of each of the luminaries.

Now, the first table of the solar eclipses, which contains the ecliptic limits at
the moon’s greatest distance, we bave arranged in 25 rows and 4 columns. The
first two columns contain the moon’s apparent latitudinal passage along the ob-
lique circle for each of the obscurations. Since the sun’s diameter is 0°31/207,
and the moon’s was shown to be also 0°31°20” at its greatest distance—and
since, therefore, whenever the moon’s apparent centre was 0°31'20” from the
sun’s centre along the great circle through hoth centres, and 6° from the node
along the oblique circle according to the ratio previously set out of 1114 to 1,
then first will the moon be in a position of tangency to the sun, therefore, in the
first rows of the columns we shall place 84° for the first, and 206° for the second;
and, in the last rows, 96° for the first, and 264° for the second. And since very
nearly 30 sixtieths of one degree along the oblique circle correspond to one-
twelfth of the sun’s diameter, we shall continually increase and decrease these
two columns by just so much, beginning from the extremes and going to the
middle. At the middle rows we shall put 90° and 270°. The third column will
contain the magnitudes of the ohscurations: in the ease of the end rows, the cor-
responding zero of tangeney; and in those following them one digit for each 114
of the diameter; and thus for the rest a continual increase of one digit to the
middle row, to which the number of twelve digits will correspond. And the
fourth column will contain the resulting passages of the moon’s centre for cach
obscuration, without any calculations of the added movements of the sun or of
the added parallaxes of the moon.

The second table of solar eclipses, which containg the ecliptic limits at the
moon's least distance, we shall arrange as to other things like the first, but in
27 rows and 4 columns. Because the moon’s radius at its least distance has been
shown to be 17°40’ to the 15°40’ of the sun’s radius; and whenever the moon first
becomes tangent to the sun, then its apparent centre is 0°33/20” from the sun’s
centre and 6°24’ from the nodes along the oblique circle. The numbers of appar-
ent latitude in the end rows are 83°36" and 206°24’ and again 96°24’ and 263°3¢’,
and for the middle row of the digits, the number is twelve digits and, because of
a like excess, four fifths of a digit for the delay of occultation.

Each of the two lunar tables is arranged in 45 rows and 5 columns, the first
table being furnished with latitudinal numbers as of the moon at its greatest dis-
tance. For, since the moon’s radius was shown to be 0°15’40” at its greatest
distance and the shadow’s radius 0°40’44” (so that, whenever the moon is first
tangent to the shadow, its centre is 0°56’24” from the shadow’s centre along the
great circle through both centres, and 1°48’ from the nodes along the oblique
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circle), therefore, in the first rows we shall place the numbers 79°12” and 280°48’,
and, in the last rows, the numbers 100°48” and 259°12’. For the same reasons as
the first we shall continually increase and decrease them by the 30 sixtieths cor-
responding to 145 of the lunar diameter at that time.

The second table we shall furnish with latitudinal numbers as of the moon at
its least distance, at which distance its radius was shown to be 0°17°40” and the
shadow’s radius 0°45’56” so that, whencver the moon first touches the shadow,
then its centre is likewise 1°3’36” from the shadow’s centre and 12°12’ from the
node along the oblique circle. Now, therefore, putting the numbers 77°48’ and
282°12’ in the first rows, and the numbers 202°12" and 257°48’ in the last, we
shall again continually increase and decrease them by the 34 sixtieths corre-
sponding to 1{o of the lunar diameter at that time.

And they will contain third columns of digits like the solar tables; and like-
wise succeeding columns containing the moon’s passages for each obscuration,
those of immersion and those of emersion, and further those of half the delay of
occultation.

We calculated geometrically for each obscuration the given passages of the
moon. But we treated the proofs as if in one plane and in straight lines, because
arcs of that magnitude differ insensibly from their chords, and the moon’s pas-
sage along the oblique circle differs hardly at all from that considered along the
ecliptic. Let no one suppose that we do not know that, in general, with respect
to the moon’s latitudinal passage, there is a difference in using the arcs of the
oblique circle for those of the ecliptic; furthermore it does not follow that the
times of the syzygies are exactly the same as the mid-eclipses.

For if we cut off from the node 4 two equal arcs AB and AC of the proposed
circles, and, joining BC, draw BD from
B at rlght angles to AC then it will be
immediately evident that, with the moon \
supposed at B, if we use arc AC of the
ecliptic instead of the AD used because €D A
of considering the passages relative to it
with respect to circles through the ecliptic’s poles, then the difference due to the
inclination of the lunar circle will be CD. Again, if the sun or the shadow’s centre
is conceived at B, the time of the syzygy, in accordance with the little difference
between the circles, will be when the moon is at C; and the mid-eclipse will be
when the moon is at D, because the mid-times of the obscurations are considered
with respect to the circles through the poles of the lunar circle. And the time of
the syzygy will differ from the mid-eclipse by are CD.

The cause of our not calculating these arcs in detail is that their differences
are small and insensible, and that (while not knowing this is absurd) yet, be-
cause of the difficulty in working out each case, this willing neglect of something
which can be overlooked both in the hypotheses and the observations makes the
greatest difference in the usefulness of a simple method, and no difference or
very little in the discrepancy with appearances. Now, we find the arc similar to
CD to be, In general, not greater than 5 sixtieths of one degree. This is proved
by the same theorem as that by which we calculated the differences of the equa-
torial arcs with respect to those of the ecliptic for circles drawn through the
equator’s poles. But in the case of the eclipses we find it to be not greater than
2 sixtieths, since BD is almost 1° to the 12 ° of each of the ares AB and AC. For
the moon’s passages at eclipses reach almost that far. Therefore arc AD is very
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nearly 11°58’, and that leaves CD equal to 2 sixtieths of a degree, which does
not make one sixteenth of an equatorial hour. Concern over such a fractional
degree is more vanity than love of truth.

Now, by these means, we also worked out the required passages of the moon’s
obscurations as if the circles differed insensibly. And our calculation for one or
two examples is as follows:

Let there be the sun’s or the shadow’s centre A, and the straight line BCD in

A place of the lunar circle’s are. And let B be supposed
the moon’s centre when it first touches the sun or
shadow as it approaches; and D as it withdraws. And
with AB and AD joined, let AC be drawn from 4
perpendicular to BD.

Now, that the mid-time of the eclipse and the
greatest obscuration occurs when the moon’s centre
is at C is evident from A B’s being equal to AD; and,
therefore the passage B(’s being equal to CD, and from AC’s being less than
all the lines joining the two centres to BD. It is clear also that either of the
lines AB and AD contains both the radius of the moon and of the sun or
shadow, and that line AC is less than either of them by that part of the dia-
meter of the body being eclipsed which is cut off by the obscuration.

With these things so, let the obscuration be 3 digits as an example, and let 4
be first supposed the sun’s centre. Now, therefore, when the moon is at its great-
est distance,

AB=3120",
and
sq. AB=9081"47".
And
AC=23'30",
for it is less than AB by the 3 twelfths of the sun’s diameter, or 7°50’. And
sq. AC=55215".
And so
sq. BC'=429'32",
and, in length,
BC'=2043",
which we shall place in the first table of the solar eclipses beside the 3 digits in
the fourth column.
Again, in the case of the moon’s least distance,
AB=33'20",
and
sq. AB=11117",
and
AC =25'30",