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PREFACE.

Tais work is altogether designed for the use of students
in the Dublin University, but as it may fall into the
hands of some not aware of this circumstance, and who
may expect many things not found therein, and may

. meet with other things to them apparently unsuitable,

or insufficiently illustrated, it is necessary to give som
explanation. -

A treatise on astronomy professing to be complete,
ought, in the first place, to abound with examples. In
a treatise, however, merely designed to teach the out-
lines of the science, and to point out what may incite and
lead to further inquiry, such examples are unnecessary.
In the necessarily limited portion of time devoted to as-
tronomical science in the course of a University educa-
tion, a multitude of examples would, to the mass of
students, be perfectly useless. It would be, therefore,
improper to increase thereby the size of this volume,
which has been prepared at the request of the college
for their use.

Again, it may be said, that more matter was intro-
duced than was absolutely necessary; that it was unne-

cessary, for instance, to introduce the subject of astro-
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nomical instruments. It rﬁay be answered in reply to
this, that their introduction is not only a benefit to the
student, but an assistance to the Astronomical Professor.
The latter, in his annual lectures, has an opportunity
of explaining and illustrating the uses of the different
instruments used in the practice of astronomy, to which
-lectures the students have free access; and the short
preparatory account of the instruments given in this vo-
lume enables him to give, with much greater effect,
a more minute explanation.

It may not be irrelevant to mention, that the greater
part of the substance of this volume, according to its
present arrangement, has been given by the author in
his annual lectures since the year 1799, as Professor,
and that the first sixteen chapters have been actually in
the hands of the students since 1808, having been then
for the first time printed for their use.

The student who is anxious for a more extended
knowledge of plane astronomy, and is desirous of fami-
liarizing himself with astronomical computations, can be
at no loss for assistance. The works of Professors
Vince and Woodhouse will afford him very extensive
information. The different publications, too, under the
sanction of the Board of Longitude, more especially the
Nautical Almanack, will furnish essential practical aid
to the student who desires it ; besides these and other
valuable British publications, the student may avail him-
self of a multitude of foreign works on the subject of
astronomical science. The transactions of learned so-
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cieties, both at home and abroad, constitute a third very
extensive source of information on this subject.

Works on trigonometry are so numerous, and its
applications so readily referred to, that in common in-
stances it has not been thought necessary to particular-
ize any author. In the Appendix, for which a more
extended knowledge of trigonometry is necessary, the
treatises of Professor Woodhouse and Mr. Luby have
been quoted. These works will be found quite suffi-
cient for obtaining the preparatory knowledge of tri-
gonometry necessary for the more difficult parts of
astronomy.

*.? The author had intended to prepare some ad-
ditions for this work, particularly on the subject of dou-
ble stars and comets, and on the temperature of the earth
and its variations. His distressing and tedious illness,
with the harassing duties of his ministry, unfortunately
prevented him from fulfilling this intention.

It isnow too late, with regard to the present edition,
to think of supplying the deficiency. The knowledge
of scientific men on the subjects alluded tois moreover
still in a very imperfect state, and the discussion of them
may therefore be fairly reserved for a future edition.
For a highly interesting detail of all that has been done
in these matters, as well as of the nature of the questions
themselves, and the various modes of subjecting them
to the tests of observation and calculation, the reader
is referred to the astronomical treatise in Lardner’s
Cyclopedia, by Sir J. Herschel.
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ADDENDA ET CORRIGENDA.

Page xvii. line 18, insert commas after the words ‘“ moon” and * planets.”
—— 4, —— 12, for in read on.

—— 25, ——17. The interposition of large opaque bodies revolving about them .
is assigned by Laplace as another explanation of this pheno-
menon.

—— 43, —— 23, for precison read precision.

—— 60, —— 17, for 56". 2 read 50" 2,

—— 77, —— 17. Thislawof Professor Bode would also fix a planet at the earth’s

distance from the sun, and thus it affords an argument for
the earth’s annular motion. Similar laws have been shewn
by Mr. Challis of Cambridge, to exist for the satellites, thus
for Jupiter’s satellites, for example :

Ist. ..., 7 =1
2nd. . ...744 =11

3rd.....7+4(%)=17
5\¢
4th. . . . .7+4(3)=32

See Cambridge Phil. Trans. vol. iii.

—— 102, — 17, for 1834, read 1835. By the calculations of Pontecoulant and
Damoiseau, the return of this comet to its perihelion was
fixed, by the former to the 7th, and by the latter to the 4th
of November, 1835.

—— 109, —— 15, for neighburhood read neighbourhood.

—— 139, —— 24, for polaris . . . = 00 54'37" read a polaris . . . Ob 54 37%.

~—— 158, —— 17, for a second, read half a second.

—— 177, —— 15, for 20 years, read 30 years.

—— 257, —— 14, for Pb read Pz.

—— 258, —— 20, for (art. 116) read (art. 110.)

— 260, —— 9, for v’ read p'.

— — 10, for ¢'t read rt'.

—— 262, —— 15, for sin read sin SP.

—— 263, —— 18, for rZP read ZrP.

——265, —— 26, for 133, read 176.
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INTRODUCTION.

Tur science of astronomy has advanced to its present state,
by means of a series of observations and discoveries made
during a long course of ages. We can now select from
these, such as will best conduce to demonstrate the true
system, and explain the various phenomena.

Astronomy, by making known to us the immensity of
the creation, necessarily increases our reverence of the
Divine Creator. This alone, is a sufficient reason for making
it a part of general education. It also, perhaps, furnishes a
more satisfactory application of the abstract sciences, than
any other part of Natural Philosophy. Its practical utility
is also considerable. It has always been useful in Geo-
graphy and Navigation, and lately has afforded splendid
assistance to the latter, by the lunar method of finding the
longitude at sea.

When the student first applies himself to subjects of
Natural Philosophy, it is of much importance that he should
proceed by the same strict and accurate manner of investi-
gation, to which he had been accustomed while engaged in

the rudiments of Mathematics.
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The perfection of modern instruments, and of modern
observations, admits of an arrangement, which will afford,
with respect to the most important facts in Astronomy,
nearly the same degree of conviction to the mind as it re-
ceives from the elements of Euclid, and which requires little
more preparatory knowledge. Such an arrangement has here
been had in view.

The phenomena of the celestial bodies observed by a
spectator fixed in one place are noticed. The uniform ap-
parent diurnal motion of the concave surface carrying with it
the sun, moon, planets and fixed stars, leads to the defini-
tions of the celestial equator, poles, meridian, declination,
&c. The considerations of the apparent motions of the
sun, moaon,and planets, on the apparent concave surface,
lead to the definitions of the ecliptic, of right ascension,
longitude, &c. The various problems of the sphere have
their origin from the apparent motion of the concave surface
and the apparent motions of the sun, moon and planets on
this surface. This is almost all the astronomical knowledge
that could be attained to by a spectator fixed to one spot,
and not possessing observations made in distant places. He
could form no accurate notions of the actual magnitudes,
and actual distances of the sun, moon and planets. All the
certain astronomical knowledge that existed for many ages
was limited to the doctrine of the sphere.

The next consideration is, in what manner we can ascer-

tain the actual magnitudes of the celestial bodies and their
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actual distances from us. Telescopes enable us to examine
more exactly their appearances, and serve to exhibit many
most interesting phenomena, but do not directly lead us
further.

The first step of importance is a knowledge of the form
and magnitude of the earth. The fixed stars appear in the
same relative situations, at the same angular distances from
each other, and from the visible celestial pole, in whatever
part of the earth we are. The most exquisite instruments
point out no alteration. The conclusion drawn from this is,
that the fixed stars are at distances so great, that lines
directed from all places on the surface of the earth towards
the same fixed star, or towards the visible celest‘ia.l pole,
must be considered as parallel. Combining this .with what
has been observed in so many places, that the variation of
altitude of the celestial pole is proportional to the space
gone over in a direction north or south, and that for a
change of altitude of one degree, the space is about 69%
miles, it is easily proved that the earth is nearly a sphere of
about 8000 miles in diameter.

This is an important step—We thus ascertain that a
space of 8000 miles is as nothing compared with the dis-
tances of the fixed stars.

It also follows that the altitude of the celestial pole is
equal to the latitude of the place. This conclusion enables
us to solve the problems arising fron; the situation of the

celestial circles in different places, and to explain the variety



XX INTRODUCTION.

of seasons over the whole earth, independent of the know-
ledge of the true system.

Having ascertained the form and magnitude of the
Earth, the next step is to investigate the magnitudes of the
sun and planets, or at least to show, that some of them
greatly exceed the earth in magnitude, and also to show the
vast distances of them compared with the diameter of the
earth. It is important that this should be done previously
to demonstrating the true system.

Certain observations, made with micrometers, at two
places considerably distant from each other, but nearly
under the same meridian, serve for this purpose. The stu-
dent will readily apprehend this method; he will see, that
by it we are enabled to ascertain the angle, the disc of the
earth would be seen under, could we remove ourselves to a
planet to make the observation. This angle can be ascer-
tained with as great precision, as we can measure the apparent
diameter of a planet seen from the earth. If, with respect
to some of the planets, the angle which the earth’s disc
subtends be so small, that it is within the limit of the errors
of observation, yet we obtain a limit of the magnitude of the
earth compared with the magnitude of the planet. Thus
the earth seen from Jupiter subtends an angle of four se-
conds, when Jupiter seen from the earth subtends an angle
of forty seconds. Now if it be contended that neither of
these angles can be ascertained to a second or two, it will

make no difference as to the purpose, for which this mode
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of ascertaining the relative magnitudes of the earth and
Jupiter is introduced. It will sufficiently show that the
magnitude of Jupiter greatly exceeds that of the eartﬁ, and
also will show, that the distance of Jupiter is many thousand
times greater than the diameter of the earth.

The spots upon the sun, and appearances in several of
the planets, show that they are spherical bodies, having a
motion of rotation on their axes. All this, being quite in-
dependent of any hypothesis as to the arrangement of these
bodies, assists much in the arguments by which the rotation
of the earth on its axis, and its annual motion round the sun
in an orbit nearly circular, may be proved.

The different motions of the planets on the concave sur-
face which appear so irregular, are easily explained by their
moving in orbits nearly circular about the sun.

By following an arrangement of this kind, any student
may without difficulty satisfy himself of the truth of the
Copernican system. He will find this manner of treating
the subject pursued in the first seven chapters of this work.
At the end of the seventh chapter is a short account of the
Ptolemaic System, now no longer interesting, except on
- account of the ingenuity exhibited in accommodating it to
the different phenomena.

After the true system has been explained, the subse-
quent arrangement in a treatise on astronomy scems of little
consequence.

In this work, after the motions of the primary planets




xxii INTRODUCTION.

are explained in a general manner, the motions of the moon
and secondary planets and several other circumstances con-
nected therewith are briefly noticed. This is followed by
some considerations respecting the solar system and fixed
stars.

A short account of instruments and observations, by
which the places and motions of the celestial bodies are
exactly ascertained, is followed by a more exact statement
of the planetary motions, and by an account of Kepler’s
discoveries; also by a more particular account of the motions
of the moon, of the satellites and of comets.

Several of the phenomena, which arise from, or are
pointed out by, the motions and bodies of the solar system,
are next considered. Such are the eclipses of the Sun and
Moon, the transits of Venus and Mercury over the Sun’s
disc, the velocity and aberration of light, and the equation
of time. '

The application of astronomy to navigation and geogra-
phy is also introduced, and the importance of the former has
occasioned a rather long detail.

The chapter on the discoveries in physical astronomy
contains little more than an historical account. It had been
at first intended that it should contain the elementary parts
of physical astronomy, as far as respected Kepler’s disco-
veries, Physical and plane astronomy are now so connected
that it is difficult to treat of them separately.

Facts in the history of astronomy have been only occa-
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sionally introduced. The student, who has made himself so
well acquainted with astronomy as to find its history inte-
resting, will easily procure for himself, from a variety of
authors, all the information he can desire.

Among the various advantages derived from the science
of astronomy, there is one eminently deserving of notice.
We see the most complex appearances and most intri-
cate apparent motions admitting of the simplest expla-
nations.

How intricate and various are the apparent motions
which depend only on a primary motion of projection and
the simple law of gravity! This may assist us in other
departments of natural science, and may encourage us to
expect that the most difficult phenomena may at last be
found to arise from the most simple laws.

The aberration of light furnishes a remarkable illus-
tration.

Light moves about 200,000 miles in a second; had it
moved only 50 miles in a second, it is probable astronomy
would not now have existed as a science. The motions of
the stars and planets would have appeared inextricable
confusion. The face of the heavens would have been con-
tinually changing, and could not have been divided into
constellations. Stars which at one time would be seen close
together, at another would appear many degrees asunder,
All this would be occasioned by the simple change of the

velocity of light, and, as is easily understood, would arise
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from a combination of the motion of light, and of the other
motions in the system. If this notion be pursued in all its
bearings, it cannot be doubted that a consequénce of such
an alteration in the velocity of light would have been, that
this science, by which our knowledge of the creation is so

much extended, would scarcely as yet have existed.
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CHAPTER 1L

ON THE DOCTRINE OF THE SPHERE.

1. TuE imaginary concave surface in which a spéc.t‘étb,r' at first
conceives all the heavenly bodies placed, is an heinisphere, in
the centre of the base of which he himself is situate. - -The base
of this hemisphere is the plane by which his view of the heavens
is bounded.. - It is called the plane of the horizon.

The numerous bodies observed on the concave surface differ
in lustre, and apparently in magnitude. .. All of them appear to
have a daily motion. . . Many of them emerge, as it were, from
below the plane of the horizon, and, after traversing the concave
surface, disappear, to rise again at the same points of the horizon
as before. - - Others in their paths never reach the horizon, but
continually move round a fixed point in the heavens.

Far the greater number of the celestial bodies prescrve the
same situation with respect to each other ; that is, they preserve
the same apparent distances from each other. .. These are called
JSixed stars.

B
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The sun, besides his diurnal motion of rising and descending,
seems also to have a motion on the concave surface, and in a
certain space of time, called a year, to return to the same posi-
tion with respect to the fixed stars.

The moon appears also, besides its diurnal motion, to have
a motion among the fixed stars, and in a space of time called a
month, returns nearly to the same position with respect to the
sun.
2. The spectator viewing those stars that do not set, will
observe one of them nearly immoveable. This is called the
Polar Star, from its vicinity to the point about which the stars
that do not set appear to move. The point itself is called the
North pole.—The face of the spectator being turned to this
point, the stars rise on his right hand, or in the east, and set on
his left hand, or in the west ; and thus the apparent diurnal mo-
tion of the celestial bodies that rise and set, is from east to west.

The apparent motions of the sun and moon among the fixed
stars, are in a contrary direction ; that is, from west to east.

Besides the sun and moon, and fixed stars, ten other celes-
tial bodies may be noticed, which, beside their apparent diurnal
motions, have apparent motions that at first seem not easily
brought under any general laws. Sometimes they appear to
move in the same direction among the fixed stars as the sun and
moon ; at other times in a contrary direction, and then are said
to be retrograde. At times they appear nearly stationary.
They are called planets. They have been named Mercury,
Venus, Mars, Ceres, Pallas, Juno, Vesta, Jupiter, Saturn, and
the Georgium Sidus. Of these, five have been noticed from
the remotest antiquity. The other five, lately discovered, are
only visible by the assistance of telescopes. The Georgium
Sidus was discovered by Dr. Herschel in 1780. Ceres was
discovered on the first day of the present century, at Palermo,
in Sicily, by M. Piazzi. The other three have been discovered
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since. Pallas, at Bremen, by Dr. Olbers; Juno, at Lilienthal, by
M. Harding ; and Vesta, by Dr. Olbers. Mercury and Venus are
remarked to be never far from the sun.  All but Pallas are always
found to be near the annual path of the sunin the concave surface.

3. The above are a few of the phenomena which offer them-
selves in contemplating the heavens. But the motions are in
general only apparent, and take place from a combination of a
variety of different motions. The difficulty of dedueing the ac-
tual circumstances of the magnitudes, and of distinguishing the
* true from the apparent motions of these bodies, however easy it
may appear when done, is such that we ought not to be sur-
prised that the ancients made so little progress toward the know-
ledge of the true system and tru¢e dimensions of the universe ;
nor ought we to think lightly of their efforts, and to treat them
with contempt for their errors. The moderns, by the joint as-
sistance of mechanics, optics, and mathematics, have advanced
the science of astronomy to a greater degree of prefection, per-
haps, than any other branch of natural knowledge.

4. For more readily explaining and referring to the pheno-
mena of the celestial bodies, certain circles are imagined to be
described on the concave surface. Distances on the concave
surface are measured by arches of great circles. The® present
division of the circle into 360 equal parts, called degrees, of
each degree into 60 equal parts, called minutes, and of each mi-
nute into 60 equal parts, called seconds, was not used till long
after astronomy had attained to a considerable degree of per-
fection.

It is much to be regretted, that, at the revival of learning in
Europe, a decimal division of the circle was not adopted, which

* The old mode of expressing the measure of an arch, was by stating its relation
to the whole circumference ; thus the diameter of the sun, measured on the con-
cave surface, was said to be 55 of a great circle.

B2
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would have greatly facilitated astronomical computations. The
French have lately adopted this division, but not generally.—

" . They divide the circle into 400 parts, each quadrant containing

1100, each of these parts into 100, &c. But it is much to be
doubted whether the advantages of this division will compensate
for the disadvantages now attending it ; which necessarily arise
from the number of books in which the old division is used,
and the great variety of measures of that division familiar to
astronomers. Accordingly, in France the old divisions scem
likely to prevail, and much inconvenience will probably result
from the new divisions having been adopted in some recent very
valuable works@h astronomy.®
The circles, and arches of circles, forming parts of the in-
struments used in practical astronomy, are actually divided into
degrees and parts of a degree, as far as the magnitude of the
radius will permit, so that the divisions may notbe too close to-
gether. The arches or limbs of the largest astronomical qua-
drants and circles are divided into intervals of 5 minutes. But
the measure of an angle can be obtained with great precision by
the assistance of ingenious contrivances, that will be noticed here-
after. The most improved instruments are thus adapted to mea-
sure angles to seconds. In general, with the best instruments,
the result of a single observation can now be depended on to a
very few seconds, and in many cases to one second.

5. Let us return to the consideration of the visible concave
surface of the heavens. The intersection of the plane of the
horizon, with the imaginary concave surface, is a great circle,

3 M. Laplace, in his great work, entitled ‘“ Mecanique celeste,” uses the deci-
mal division. In the new tables of the sun and moon, published by the Board of
Longitude in France, 1806, the sexagesimal division is used. 1n the tables of
Jupiter and Saturn, since published by them, the decimal division is used. These
are among the most important astronomical publications that have ever appeared.
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which may be called the celestial horizon. A plumb line hang-
ing freely and at rest, is perpendicular to the plane of the hori-

zon, and a small fluid surface at rest is in the plane of the hori- .«

zon.  These two circumstances are of the utmost importance to
the practical astronomer. The impossibility of having, except
at sea, an uninterrupted view, and other causes, make it difficult
for him to use the horizon itself, but the plumb line and ﬂuxd
surface fully compensate for these inconveniences.

-

The altitude of a celestial object is its distance frorﬁ—thr ‘0

horizon, measured, on a great circle passing through the object,
and at right angles to the horizon. Such a circle is called a se-
condary to the horizon ; a great circle at right angles to another
great circle, being called a secondary circle. And the zenith
distance of a celestial objeet is its distance from the upper pole
of the horizon, which is called the zenith. By the assistance of
a plumb line and quadrant, the altitude or zenith distancc may
be readily found. Let ACQ (Fig. 1.) be an astronomical qua-
drant, the arch AQ of which is divided into degrees, &c., the
radius AC is adjusted perpendicular to the horizon, by turning
the quadrant about the paint C, till a plumb line, suspended
from C, passes over a point A. The radius CQ is then hori-
zontal. A moveable radius or index CT is placed in the direc-
tion CO of the object, by means of plain sights at the extremi-
ties of the radius C and T (now rarely used), or by means of a
telescope affixed to the radius. The arch TQ will then shew
the altitude, for TCQ equals HCO the altitude; and the
arch TA will shew the zenith distance, for ACT equals OCZ
the zenith distance. The method of observing altitudes will be
more accurately described hereafter : it was thought necessary
to advert to it here; and also to mention how an angular dis-
tance on the concave surface may be measured. W
A circle HABG (Fig. 2) divided into degrees, &c., fux-
nished with a fixed radius AC, and a moveable radius BC, be-

f%"”
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ing placed in the plane passing through two objects and the eye,
the circle may be turned till the fixed radius AC passes through
one object, and then the moveable radius BC being made to
pass through the other, the arch AB will shew the angular dis-
tance. 'This method is now rarely used. The angular distance
of two objects when required, is seldom directly observed, on
account of the inconvenience of adjusting the plane of the in-
strument, and the two radii, to two objects, both of which per-
haps are moving, and with different motions. Therefore, in
this way, great accuracy cannot be attained : but the conception
of this method, although inaccurate, will be useful in what fol-
" lows. When an angular distance on the concave surface is re-
quired, it is generally obtained by computation from other ob-
servations, e. g. from the declinations and right ascensions (to
be explained hereafter). In one instance, indeed, iz the lunar
method of finding the longitude, it is necessary to observe, with
great precision, the distance of the moon from the sun or a fixed
star. This is done in a mammer hereafter described, by an
Hadley’s sextant, an invaluable instrument for the purpose. By
this instrument also the angular distance between any two ob-
jects may be measured.

6. To explain the phenomena of the apparent diurnal mo-
tions of the celestial bodies, we imagine an hemisphere below
our horizon, and in it a point diametrically opposite to the north
pole, which we call the south eelestial pole; we also imagine
that the concave surface turns uniformly on an axis, called the
axis of the world, passing through the north and south poles,
completing its revolution in the space of 23" 56™ nearly, carrying
with it the sun, moon, and stars, while the horizon remains at
rest. _

This hypothesis illustrates and represents the apparent diur-
nal motion of the several celestial objects in parallel circles, with
an equable motion, each completing its circular path in the same
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time. That the motion of each star is equable, and that they
describe parallel circles on the concave surface, we deduce from
observation and the computations of spherical trigonometry.
This will be readily understood from what follows.

The great circle, the plane of which is at right angles to the
axis of the world, is called the Equator. Thiscircle is bisected
by the horizon, and therefore all celestial bodies situated in it
are, during equal times, above and below the horizon; conse-
quently when the sun is in this circle, day and night are of equal
length, whence it is also called the equinoctial.

This representation of the diurnal motion, by the motion of
a sphere about an axis inclined to a plane representing the
horizon, on which sphere the celestial bodies are placed at their
proper angular distances, must have been among the first steps
in astronomy. Yet in the infancy of the science, doubtless, a
considerable time elapsed before it was known that the diurnal
paths of the stars were parallel circles, described with an equa-
ble motion. Without this, little progress indeed could have
been made. It is likely that at first it was little more than an
hypothesis, in some degree confirmed by the construction of a
sphere, to represent by its motion the celestial diurnal motions ;
for its confirmation, by the application of spherical trigonome-
try, seems to require a greater knowledge than we can suppose
then existed.

This diurnal motion, we now know, is only apparent, and
arises from the rotation of the earth about an axis, by which the
horizon of the spectator revolves, successively uncovering, as it
were, the celestial bodies, while the circles of the sphere are at
rest. But the phenomend are the same, whether the horizon is
at rest and the imaginary sphere revolves, or the horizon re-
volves and the imaginary sphere is at rest. By conceiving the
sphere to revolve and the horizon to be at rest, the phenomena
are more easily represented. Threc centuries since, this appa-
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rent diurnal motion was generally considered to be real; and.

~ had we not the knowledge derived from navigation; and the

communication of observations made in distant countries, we
might still contend for the truth of it. Now we only imagine it,
for more readily explaining the phenomena of the sphere and
the circles thereof.

7. Circles of the sphere.—Secondaries® to the equator are
called circles of declination, because the arc of the secondary,
intercepted between an object and the equator, is called its de-
clination north or south, according as the object is on the north
or south side of the equator.

The great circle passing through the pole and the zenith, is
called the meridian. This circle is at right angles, or a se-
condary, both to the horizon and equator. It is easy to see that
it divides the visible concave surface into two parts, eastern and
western, in every respect similarly situate as to the pole and pa-
rallel circles. The eastern parts of the parallel diurnal circles
being equal to the western, and the motions equable, the times
of ascent from the horizon to the meridian,’ are equal to the
times of descent from the meridian to the horizon.

In (Fig. 3) the circle HFKOGW represents the horizon, .
the centre C of which is the place of the spectator. The part

s A common celestial globe, or even a reference to the concave surface itself,
will much better assist the conception of the circles of the sphere, than figures
drawn on a plane surface, which are rather apt to mislead a beginner. The hori-
zon of the globe must be considered as continued to pass through the centre, where
the eye is supposed situate viewing the hemisphere above the horizon, and the axis
of the globe is to be placed at the same elevation, as the axis of the concave sus-
face of the spectator. 1In this way all the circles of the celestial sphere will be
easily understood. Any consideration of the form of the earth is entirely foreign
to a knowledge of the circles of the sphere. They were originally invented with-
out any reference to or knowledge of it.

b Vide Appendix, Prop. I.
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of the figure above this circle represents the visible concave sur-
face ; and the part below, the invisible. Z is the zenith ; P the
visible, and R the invisible pole. PZEHRNQO is the meri-
dian, EGQV the equator. AB a small circle parallel to the
equator, FLW the visible portion of another parallel to the
equator. A star, situate in AB, is continually above the hori-
zon. A star in the equator is only visible while in the part
GEV equal to VQG. A star in FLW is only visible in the
portion FLW above the horizon ; it rises at W, and sets at F.
ZSK is a portion of a secondary to the horizon. SK is the alti-
tude of the point S, and SZ its zenith distance. PSD is a se-
condary to the equator, or a circle of declination, and DS the
declination of the point S.

A telescope being directed to any star, and the time noted
by a clock, if the telescope remain fixed, the same star will again
pass through it after an interval of 23 56™ nearly. And the
time of passing over the aperture of the telescope being the
same to whatever part of the star’s diurnal path the telescope is
directed, proves the equable motion in that diurnal path. A
* telescope particularly fitted up, and placed so as to be conve-
_niently moved in the plane of the meridian, is of as much use in
the practice of astronomy as the quadrant : it is called a transit
instrument ; its uses will be afterwards explained, as well as the
method of finding the direction of the meridian.

The time of describing a diurnal circle by a star may be
nearly ascertained, without a telescope, by suspending two plumb
lines at two or three feet from each other, then observing when
the star appears in the plane of the strings, noting the time by a
clock well regulated : the same star will pass the plane again
after 23" 56™. An upright wall will serve for the same purpose.
Vice versi, this method will serve to ascertain the rate of going
of a clock. It may also be applied to ascertain the time of pas-
sage over the meridian, by adjusting the plumb lines in the

plane of the meridian.
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Secondaries of the equator are also called Aour circles, be-
cause the arc of the equator, contained between any one of these
circles and the meridian, shews the distance in time of that body
from the meridian, the equator being divided into 24 hours.

8. The meridian also passes through the nadir (the lower
pole of the horizon).

Secondaries of the horizon are called vertical circles. That
vertical circle which intersects the meridian at right angles is
called the prime vertical.

It will help the conception of the student to consider the
meridian and other verticals of the horizon as remaining at rest,
while the sphere revolves, carrying the equator and other circles.

The four points where the meridian and prime vertical inter-
sect the horizon, are called the cardinal points. Those of the me-
ridian, north and south ; those of the prime vertical, east and west.
The equator intersects the horizon in the east and west points
(being poles of the meridian), and its inclination to the horizon oo
equals the complement of the altitude of the celestial pole.” - -
The prime vertical also intersects the equator at the east and
west points, and at an angle equal to the altitude of the pole.

The azimuth® of a celestial object is measured by an arc of
the horizon, intercepted between the meridian and a vertical cir-
cle passing through the object. In (Fig. 3) KO is the azimuth
of the point S from the north.

The altitude of a celestial object, being its distance from the
horizon measured on a secondary of the horizon, is greatest when
the object is on the meridian.

9. The path of the Sun traced on the surface of the imagi-
nary celestial sphere, among the fixed stars, is a great circle,

®

» The complement of the azimuth, or the arc intercepted between the prime
vertical and the vertical through the object, is called the amplitude. Ed.
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which he moves over, in a direction from west to east. This
circle is called the ecliptic, because eclipses take place when the
moon, at the new and full, is in or near this circle. The appa-
rent motion of the sun, in this circle, is not entirely uniform ;
the motion being contrary to the diurnal motion, the interval
between two meridian passages of the sun is greater than that of
the fixed stars, and by four minutes nearly. This interval, be-
tween two passages of the sun over the meridian, is in its mean
quantity called 24 hours, or a day. In 365 days, 6 hours and
9 minutes, the sun appears to complete the ecliptic. The sea-
sons are connected with the positions of the sun in the ecliptic.
The period, therefore, of his motion, called a year, becomes one
of the most important divisions of time. '

10. The moon completes her course among the fixed stars,
by a motion from west to east, in 27 days 7 hours, returning
nearly to the same place. Its apparent path is nearly a great
circle, intersecting the ecliptic at an angle of about five degrees.
Tts motion also being contrary to the diurnal motion, the interval
between its successive passages or transits over the meridian is
greater than that of the fixed stars, and by 52 minutes, in its
mean quantity. The moon is said to be in opposition to the
sun, when near that part of the ecliptic opposite to the sun.
The interval between two oppositions is nearly 30 days, and at
each opposition the moon shines with a full phase. The use, in
civil life, of this striking phenomenon, makes another important
division of time, which is called a month.

11. The ecliptic necessarily intersects the equator, each be-
ing a great circle. The angle of intersection is nearly 23° 28'.
The circumstance of the inclination, or obliquity of the eclip-
tic to the equator, explains the change of seasons. The true
cause of the appearance of the obliquity of the ecliptic to the
equator, will be afterwards shewn. If the ecliptic coincided|”
with the equator, the sun would always rise and set in the east,
and west points, would always be at the same altitude when on
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| the meridian, and would be absent and present during equal

. spaces of time. Now the effect of the sun, with respect to heat,
depends upon the time of his continuance above the horizon,
and the greatest altitude to which he rises; therefore, if he
moved in the equator, no alteration would take place, because
these would be the same every day. But the ecliptic being in-
clined to the equator, when the sun is in that part which is be-
tween our visible pole and the equator, the greater part of each
of the diurnal circles which he describes, is above our horizon,
i. e. he is more than half the 24 hours above the horizon, and
he passes the meridian between the equator and zenith. When
southward of the equator, he is less than 12 hours above the ho-
rizon. When he is in the points of intersection of the ecliptic
and equator; he is just 12 hours above the horizon, and it is then
equal day and night. This latter circumstance takes place on
the 20th of March and 23rd of September.

The sun is in that part of the ecliptic nearest our visible pole
about the 21st of June, and then our days are longest, and in
the part farthest from it on the 21st of December, when our
days are shortest. The sun is about eight days longer on the
northern side of the ecliptic than on the southern, and hence

- summer is eight days longer than winter. The greatest heat is

~ not when the days are longest, but some time after, because the
increase of heat during the day is greater than the decrease dur-
ing the night, consequently heat must accumulate till the incre-
ments and decrements are equal ; afterwards the decrease being
greater than the increase, the heat will diminish. The same
may be said with respect to cold.

12. 'The two parallels to the equator, or parallels of decli-
nation, touching the ecliptic, are called tropics or tropical cir-
cles, because when the sun is in these points of the ecliptic, he
turns his course, as it were, back again toward the equator.

The points of the ecliptic of greatest declination, or the
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tropical points, are called solstices, because the sun appears sta- -

tionary, with respect to his approach to the poles.

13. A belt or zone extending on each side of the ecliptic
about 8° is called the zodiac, from certain imaginary forms of
animals conceived to be drawn in it, called signs of the zodiac.
There are twelve signs, probably from there being twelve lunations
during the course of the sun in the ecliptic. These are Aries,
Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagitta-
rius, Capricornus, Aquarius, and Pisces, and denoted by ¢, ¥,
o, &, 8, M, &, M, £, 18, 4%, X. The reason of dis-
tinguishing this space was, because the sun and planets were al-
ways observed within it. These figures served also to distinguish
the position of the stars with respect to one another, and were
therefore called the constellations of the zodiac. The space of
the zodiac has always been noticed from the earliest records of
astronomy. Some of the planets lately discovered are not con-
fined to this space. One of them, Pallas, sometimes is distant
above 62° from the ecliptic.

The first six constellations, beginning with Aries, were for-
merly on the northern side of the ecliptic, most probably when
the description of the zodiac was first invented, and the six
others on the southern. But by a comparison of observations
made at a considerable interval from each other, it is found that
the intersections of the ecliptic and equator move backward, in
respect to the signs of the zodiac, the obliquity of the ecliptic
remaining nearly the same. The equator moves on the eclip-
tic, the ecliptic continuing to pass nearly through the same stars,
The intersections or the equinoctial points move backward at
the rate of 1° in 71§ years, and therefore, at present, the con-
stellation Aries seems to be moved forward nearly 30° from the
equinoctial point, yet astronomers still commence the twelve
signs or divisions of the ecliptic at the equinoctial point, and
name them after the constellations of the zodiac. This distinction
ought to be attended to. :

L
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14. In the practice of astronomy, the most general and con-
venient method of ascertaining the position of any celestial ob-
ject on the concave surface, is to determine its position with
respect to the equator and vernal equinoctial point, that is, to
determine its declination and right ascension. The right
ascension of a celestial body is the arc of the equator inter-
cepted, (reckoning according to the order of the signs), between
the vernal equinoctial point, or the first point of Aries, and a
secondary to the equator passing through the object. This is
expressed both in time and space. Thus, if the arc intercepted
be 15°, the right ascension may be said to be 15° or one hour,
supposing the equator divided into twenty-four hours. The
measure of twenty-four hours for the time of the diurnal revolu-
tion of the fixed stars, or the celestial sphere, is called sidereal
time. Hence the interval in sidereal time between the passages
of two fixed stars over the meridian, is the same as the difference
of their right ascensions expressed in time.

The term, right ascension, originally had a reference to the
rising of the celestial bodies. Now its use is much more cir-
cumscribed, but much more important, and tberefore it might
have been better to have adopted another term for expressing
the arc intercepted between a secondary to the equator pass-
ing through the celestial object, and the first point of the
equhtor.

15. The position of a celestial body, with respect to the
equator, being ascertained, it is very often necessary to ascertain
its position with respect to the ecliptic, i. e. to determine its
longitude and latitude. This is done by spherical trigono-
metry.?

The longitude of a celestial object is measured by an arc
of the ecliptic, intercepted between the first point of Aries

a Vide Appendix, Prop. IV,
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(reckoning according to the order of the signs) and a secondary
to the ecliptic passing through the object. Its latitude is its
distance from' the ecliptic, measured on a secondary of the
ecliptic passing through the object.

16. The solstitial colure is a secondary to the equator pass-
ing through the solstices, and is therefore also a secondary to
the ecliptic.

The equinoctial colure is a secondary to the equator, pass-’
ing through the equinoctial points.

S —a
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CHAPTER IL

FIXED STARS—TELESCOPES — APPEARANCE OF STARS IN TELESCOPES.

17. LeT us now return to the consideration of the fixed
stars. We observe about 3000 stars visible to the naked eye,
very irregularly scattered over the concave surface of the hea-
vens. There are seldom above 2000 visible at once, even on
the most starry night. They are distinguished from the planets
not only by preserving the same relative position to each other,
but also by a tremulous motion or twinkling in their light, ap-
parently arising from the effect of the atmosphere on the rays
of light passing through it.

For the conveniency of arranging and referring to the diffe-
rent stars, the method of constellations was invented by the an-
cients. They imagined a number of personages of their mytho-
logy, also animals, &c. drawn on the concave surface, and in-
cluding particular groups of stars; these they called constella-
tions, and denominated the stars from the constellation in which
they were, and from their situation in that constellation. This
method, though certainly useful, is not adequate to the purposes
of astronomy in its present state, but for many obvious reasons
it has been retained. The stars do not form the figure of the
constellation, except in a few assemblages which have a remote
resemblance ; such are the Great Bear, the Hyades composing
the Bull’s head, &c. Some of the brighter fixed stars, and
those more remarkable by their position, had proper names as-
signed to them, as Arcturus, Sirius, Alioth, Algol, &c.
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18. Bayer, who published a celestial atlas in the year 1603,
much facilitated the arrangement of the fixed stars. He marked
those in each constellation by the letters of the Greek alphabet,
according to their then degrees of brightness.* The stars are
also divided according to their apparent brightness into magni-
tudes. The brightest are of the first magnitude, and so on to
the sixth, the least magnitude visible to the naked eye. There
are eleven stars of the first magnitude in the portion of the con-
cave surface visible to us, viz., Aldebaran, Capella, Rigel, a
Orionis, Sirius, Regulus, Spica Virginis, Arcturus, Antares, a
Lyre, and Fomalhaut.  In the remaining portion of the con-
cave surface there are six, viz., Achernar, Canopus, 3 Args, «
Crucis, a and 3 Centauri. There are about 50 of the second
magnitude, and about 120 of the third magnitude, visible
to us.

Some assemblages of the stars are more remarkable than
others; such are the Pleiades, Hyades, Cassiop=a’s chair, and
the great Bear. The eye unassisted by a telescope, remarks
also a very considerable irregular luminous belt called the
milky way. Likewise other small luminous spots, called from
their appearance nebul#, viz. Presepe, nebule in Perseus, in
the girdle of Andromeda, &c. By the assistance of telescopes,
we find that the number of the fixed stars is greater than can be
ascertained ; the number of those visible to the naked eye be-
ing incomparably smaller than of those which are only visible
by the help of telescopes.

19. The theory of telescopes properly belongs to the science
of optics, and therefore a very short account of their effects, and
of the improvements that have, from time to time, been made in
them, is all that is necessary here.

2 The constellation called the Great Bear is an exception, in it the principal
stars are marked in the order of their right ascensions. <
(o}
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The wuse of telescopes is to magnify objects, or to present
their images under a larger angle than the objects themselves
subtend ; and likewise to render objects visible that would
otherwise be invisible. Telescopes for common astronomical
purposes magnify from 40 to 200 times, and for particular pur-
poses from 200 to 1000 and upwards ; i. e. objects appear so
much nearer than when seen by the naked eye, and their parts
become more visible and distinct. We are enabled by a teles-
cope which magnifies 100 times to behold the moon the same as
we should if placed 100 times nearer than at present. A teles-
cope magnifying a thousand times, will exhibit the moon as we
should behold it could we approach within 240 miles of it.
Thus, although we cannot actually approach the moon at plea-
sure, we can form an image of the moon, and approach this
image at pleasure, and so make the image subtend a greater
angle than the moon itself. We can magnify the image by help
of a simple microscope, as we can magnify any minute object.
This is the principle of the common telescope. The object
glass forms an image of the moon, and we magnify this image
by help of the eye glass, which may be considered as a mi-
croscope.

20. Telescopes were accidentally invented at Middleburgh,
in Holland, about the year 1609. There is no foundation for
supposing them known earlier, although the single lens had been
in use for spectacle glasses since the beginning of the 14th cen-
tury. Galileo, hearing of their effects, soon discovered their
eonstruction, and applied them to astronomical purposes, from
whence a new ra may be dated in astronomy. After some
trials, Galileo made a telescope which magnified upward of 30
times, and with this instrument, so inferior in power to modern
telescopes, he made most important discoveries. - In little more
than a year he had observed the nebula of Orion, the telescopic
stars in the Pleiades and in Praesepe, had discovered the satellites
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of Jupiter, very accurately decribed the face of the moon, and
computed the height of some lunar mountains, observed an ex-
traordinary appearance in Saturn, occasioned by the ring, which
his telescope could not clearly shew, and had observed phases
in Venus similar to the phases of the moon.

Notwithstanding the importance of the telescope, it was but
slowly improved. Telescopes admitting of a high magnifying
power were of a very inconvenient length. A high magnifying
power could not be obtained by a short telescope, without ren-
dering the image indistinct by colour. The ardour and indus-
try of the astronomers of the latter end of the 17th century
overcame this difficulty, by using telescopes without tubes.
They affixed the object glass to the top of a pole, directing it
by means of a long string, so as to throw the image into its pro-
per place. Huyghens particularly distinguished himself by im-
portant discoveries with this inconvenient kind of telescope,
which has been called the aerial telescope. The discoveries of
Sir Isaac Newton, respecting light, induced astronomers to de-
sist from endeavouring to improve refracting telescopes, and to
aim at perfecting reflecting ones. Soon after the discovery of
the telescope, it was suggested that the image of the object
might be formed by reflection instead of refraction ; but as no
particular advantage could be shewn to arise from this altera-
tion, it does not seem to have been attended to, till James Gre-
gory proposed the construction of a reflecting telescope which
goes by his name. He intended by this construction to obviate
the errors of the object glasses of the common telescope, arising
from their being necessarily ground of a spherical form. The
discoveries of Newton on light shewed these errors to be com-
paratively of trifling consequence. Newton himself, as soon as
his experiments on light had shewn him the true obstacle to the
improvement of refracting telescopes, invented and executed a
reflecting telescope, which goes by his name. His construction

c?
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is better adapted to many purposes in astronomy ‘than that of
Gregory, although for common purposes Gregory’s may be con-
sidered most convenient.

Many;inconveniences attended the construction aund execu-
tion of reflecting telescopes. When made, they were liable to
tarnish, and to change their figure, an error in which is of much
greater consequence than in refractors. Thus much fewer ad-
vantages were derived from reflecting telescopes than had been
expected. And the improvement of telescopes seemed at a
stand, when, in the year 1757, a discovery of Mr. Dolland, an
optician in London, gave hopes of improving them far beyond
what had been hitherto done. He discovered that by a combi-
nation of lenses of flint glass and crown glass, he could form an
image free from colour. This enabled him to make telescopes,
admitting of high magnifying powers, of a very convenient
length. These teleseopes, called ackromatic, are now in com-
mon use, and fitted to those astronomical instruments by which
angles are measured. Expectations were formed of being able
to increase the breadth of the object glasses, to admit of very
high magnifying powers, without lengthening the telescope so as
to be inconvenient ; but this was prevented by the nature of flint
glass. This cannot be obtained fit for the purpose of teles-
copes, except in small portions of surface. It does not appear
that we can do more by achromatic telescopes, than astrono-
mers at the end of the 17th century did by telescopes without
tubes, if so much ; and achromatic telescopes, although an inva-
luable improvement by reducing the length of telescopes, have
not discovered to us more in the heavens than had been seen a
century before.

21. Under these circumstances, the very ingenious and inde-
fatigable Dr. Herschel set himself to improve reflecting teles-
copes, in which he has been highly sucgessful. His reflectors
are of the Newtonian kind. After repeated aitempts he suc-
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ceeded in making one 20 feet long and 18 inches aperture.
The great breadth of the aperture increased so much the bright-
ness of the image, that he was enabled, with great convenience,
to use very high magnifying powers. At last he attempted and
executed one 40 feet in length and of 4 feet aperture. A most
surprising performance, when the labour and difficulty of casting
and polishing the metal speculum, the obstacles he had to con-
tend with in the weight, and in the apparatus for moving it, are
considered. A full account of this telescope, by Dr. Herschel
himself, is given in the Phil. Trans. for 1795.

The discoveries of Dr. Herschel will be mentioned in their
places. In the mean time it may be remarked, in order to form
some idea of the effect of telescopes, when applied to the celes-
tial bodies, that the reflector of the 40 feet telescope forms an
image of the ring of Saturn, about % of an inch in diameter ;
we are enabled to magnify this by the eye glass, in the same
manner as we can magnify an object {% of an inch in breadth
by a common microscope.

22. The appearance of the stars seen in a telescope, is very
different from that of the planets. The latter are magnified, and
shew a visible disc. The stars appear with an increased lustre :
but with no disc. Some of the brighter fixed stars appear
most beautiful objects, from the vivid light they exhibit. Dr.
Herschel tells us, that the brightness of the fixed stars of the
first magnitude, when seen in his largest telescope, is too great
forthe eye to bear. When the star Sirius was about to enter the
telescope, the light was equal to that on the approach of sun
rise,and upon entering the telescope, the star appeared in all
the splendour of the rising sun, so that it was impossible to be-
hold it without pain to the eye.

The apparent diameter of a fixed star is only a deception
arising from the imperfections of the telescope. ‘The brighter
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stars appear sometimes in bad telescopes to subtend an angle of
several seconds, and this has led astronomers into mistakes res-
pecting their apparent diameters. The more perfect the teles-
cope, the less this irradiation of light. We know certainly that
some of the brighter fixed stars do not subtend an angle of 17,
from the circumstance of their instantly disappearing, on the ap-
proach of the dark edge of the moon. Dr. Herschel attempted
to measure the diameter of a Lyrz, and imagined it to be about
15 of a second.

23. Although the superior light of the sun effaces that of
the stars, yet by the assistance of telescopes we can observe the
brighter stars at any time of the day. The aperture of the te-
lescope collects the light of the star, so that the light received
by the eye is greater than when the eye is unassisted. The
darkness in the tube of the telescope also in some measure
assists. .

The most inferior telescope will discover stars that escape
the unassisted sight. By the telescope we discover that the
milky way, and some of the nebula above-mentioned, consist of
very numerous small stars. Others, even in the best telescopes,

® It appears by the principles of optics, that when an object is seen through
a telescope, the density of the light on the retina must be always less than when
the object is seen by the naked eye ; but the quantity of light in the whole image
may be much greater in the former case than in the latter. And it is certain that
our power of seeing the object with distinctness, depends on the quantity of light
in the whole image. Dr. Herschel, in a valuable paper in the Phil. Trans. 1800,
part L. on the power of penetrating into space, uses the terms absolute brightness
and intrinsic brightness, the former to distinguish the whole quantity of light in
the image on the retina, and the latter to distinguish its density. He gives
an instance in which the absolute brightness was increased 1500 times in a
telescope, and the intrinsic brightness was less than to the naked eye in the pro-
portion of 3 to 7.
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appear still as small luminous clouds. There is a very remark-
able one in the constellation of Orion, which the best telescopes
shew as a spot uniformly bright. It is a singular and beautiful
phenomenon. So great is the number of telescopic stars in some
parts of the milky way, that Dr. Herschel observed 588 stars in
his telescope at the same time, and they continued equally nu-
merous for a quarter of an hour. In a space about 10 degrees
long, and 2} degrees wide, he computed there were 258000
stars. Phil. Trans. 1795.

24. The most ancient catalogue of the fixed stars is that of
Hipparchus, who observed at Alexandria about 150 B. C. His
catalogue consists of 1022 stars. Although several celebrated
astronomers, as Tycho Brahe, &c. employed themselves in more
accurately observing the places of the fixed stars, yet the number
was not much increased till the time of Flamstead, whose cata-
logue, entiled the British Catalogue, appeared in 1725. It con-
tains about 3000 stars visible to the naked eye, and was the re-
sult of nearly 40 years labour. Later astronomers have ob-
served, with greater accuracy, the places of some of these stars,
particularly of those in and near the zodiac ; and very recently,
M. Piazzi, of the Observatory at Palermo, in Sicily, has recom-
pleted the whole catalogue. In 1802, M. Delalande published
a work entitled Histoire céleste Frangaise, in which are obser-
vations of 50000 stars, viz. of stars of the 6th magnitude not ob-
served by Flamstead, and of telescopic stars of the 7th, 8th, and
9th magnitudes. They were mostly observed by his nephew,
M. Lefrangais Delalande, and furnish a lasting monument of
his patience and industry. Great as is this number of stars of
the above magnitudes, it would not be difficult to increase it
considerably.

25. Some stars appearing single to the naked eye, when ex-
amined with a telescope appear double or treble, that is, con-
sisting of two or three stars very close together : such are Castor,
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a Herculis, the Pole Star, &c. Seven hundred, not noticed be-
fore, have been observed by Dr. Herschel. They are particu-
larly useful for trying and comparing the goodness of telescopes,
because if the telescope do not give a well defined image, these
stars will appear as one. In viewing these double stars a sin-
gular phenomenon discovers itself, first noticed by Dr. Her-
schel ; some of the double stars are of different colours, which,
as the images are so near each other, cannot arise from any de-
fect in the telescope. a Herculis is double, the larger red, the
smaller blue ; ¢ Lyre is composed of four stars, three white and
one red ; vy Andromedz is double, the larger reddish white, the
smaller a fine sky blue. Some single stars evidently differ in
their colour. Aldebaran is red, Sirius brilliant white.

From observations at different periods it appears considera-
ble changes have taken place among the fixed stars. Stars have
disappeared, and new ones have appear¢d. The most remarka-
ble new star recorded in history, was that which appeared in
1572, in the chair of Cassiopza. It was for a time brighter
than Venus, and then seen at mid-day : it gradually diminished
in lustre, and after sixteen months disappeared. That the cir-
cumstances of this star were faithfully recorded we can have no
doubt, since many different astronomers of eminence saw and de-
scribed it. Cornelius Gemma viewed that part of the heavens
on November 8, 1572, the sky being very clear, and saw it not.
The next night it appeared with a splendor exceeding all the
fixed stars, and scarcely less bright than Venus. Its colour
was at first white and splendid, afterwards yellow, and in
March, 1573, red and fiery like Mars or Aldebaran, in May
of a pale livid colour, and then became fainter and fainter till
it vanished.

Another new star, little less remarkable, appeared in Oc-
tober, 1604. It exceeded every fixed star in brightness, and
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even appeared larger than Jupiter. Kepler wrote a dissertation
upon it.

Changes have also taken place in the lustre of the permanent
stars ; 3 Aquile is now considerably less bright than 4. A
small star near  urse majoris is now probably more bright than
formerly, from the circumstance of its being named Alcor, an
Arabic word which imports sharp-sightednessin the person who
could see it. It is now very visible.

26. Several stars also change their lustre periodically;
o Ceti, in a period of 333 days, varies from the 2nd to the
6th magnitude. The most striking of all is Algol or 3 Persei.
Mr. Goodricke has with great care determined its periodical
variations. It is, when brightest, of the 2nd, and, when least,
of the 4th magnitude ; its period is only 2% 21": it changes
from the second to the fourth magnitude in 3} hours, and back
again in the same time, and so remains for the rest of the 2¢ 21".
These singular appearances may be explained, by supposing the
fixed star to be a body 1evolvmg on an axis, havmg parts of 1ts
surface > ot Juminous. , :v < Ler /"“{'_“‘.“ b e e
24" “Mhe ntimber of néb ulee is very oons;derable Dr. Her-
schel has discovered above 2000 : before his time only 103 were
known. But far the greater part of these 2000 can be only
seen with telescopes equal to his own. The vast quantity of
light obtained by his large speculums, renders his telescopes
very useful for discoveries among the fixed stars, for which light
is the principal thing to be desired. He has given an account
of several phenomena, which he calls nebulous stars, stars sur-
rounded with a faint luminous atmosphere. He describes one
observed Nov. 13, 1790. “ A most singular phenomenon : a
« star of the 8th magnitude, with a faint luminous atmosphere,
“ of a circular form, and of about 3’ diameter ; the star is per-
¢ fectly in the centre, and the atmosphere is so diluted, faint,
“ and equal throughout, that there can be no surmise of its con-
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“ sisting of stars; nor can there be a doubt of the evident con-
¢ nection between the atmosphere and the star. Another star,
¢ not much less in brightness, and in the same field with the
“ above, was perfectly free from any such appearance.” Phil.
Trans. 1791.

Dr. Herschel has, with unwearied attention, exerted himself
in examining and noting every thing remarkable in every part
of the visible celestial surface, by a regular review, so that little
can escape him. In consequence of his numerous discoveries,
many very ingenious and magnificent ideas have occurred to him
respecting the fixed stars and nebulze.

28. Having given a short statement of the simple appear-
ances of the bodies placed on the concave surface of the hea-
vens, which are such, that they must strongly excite our curio-
sity ; we may now leave the subject, and resume it after having
stated the knowledge that observations and deductions from
thence afford us, respecting the magnitudes, distances, and mo-
tions of the sun, moon, and planets. Then returning again to
the consideration of the fixed stars, and assigning them their
proper places in the universe, we shall discover what must fill
our minds with astonishment and awe, and must raise in us the
greatest admiration of the Almighty Creator. That which has
hitherto been stated, regards only what a spectator fixed to one
spot might discover. It is only by a change of place, or by
comparing the observations made at places distant from each
other, that we can readily arrive at a knowledge of the real dis-
tances and real motions of the celestial bodies. An isolated
observer, however he might be gratified by the spectacle of the
heavens on a fine evening, would be able to discover little of
what, when the true circumstances are known, add so much to
the wonderful variety we observe in terrestrial matters, of the
Creator’s power. He would only barely discover that the sun,
moon, and planets were.at different distances from the earth.
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He would also be able to form hypotheses to explain their mo-
tions, but few of those would he be enabled to submit to the
test of experience. Previously to this it would be necessary to
investigate the figure and dimensions of the earth upon which
he lives. This knowledge is obtained from the phenomena
which arise from a change of place.
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CHAPTER III

PHENOMENA DEPENDING ON A CHANGE OF PLACE, AND ON THE
FIGURE OF THE EARTH.

29. A sPECTATOR, without changing his situation on the
earth, would soon discover that the celestial bodies are not all
placed on the concave surface at fized distances from him ; for
he would remark that the sun, moon, and planets varied their
apparent magnitudes or diameters, which must arise either from
changes of distance, or changes in the actual magnitudes of
the bodies. The former solution is so much simpler than the
latter, thatno one could hesitate in adopting it, even if not con-
firmed by other circumstances. Likewise that the heavenly
bodies are not placed at equal distances from him. It was re-
marked that the apparent paths of the sun and moon intersected
each other. When they appear to meet at these intersections,
the moon is observed to obscure or eclipse the sun, consequently
the moon must be nearer than the sun. But to proceed in the
investigation of these distances, it will, as was observed, be ne-
cessary to become acquainted with the form of the earth on
which we live.

30. A spectator placed on the sea, or on a plain, where his
view is unobstructed, at first considers the surface as a plane co-
inciding with his horizon, and extended to the concave surface
of the celestial sphere. But it is immediately suggested to him,
that the surface of the earth is not flat or coincident with his
horizon, for on the sea he perceives the fops of the masts to dis-
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appear last, and on the plain he observes ‘the tops of distant
objects, when the bottoms are invisible. This cannot be ex-
plained otherwise than by a curvature on the earth’s surface.
The voyages of modern navigators have put this matter in the
clearest light; for, by continued sailing to the eastward or west- -
ward, they have arrived again at the port from which they set out.
This has been done in different courses on the surface, so that
thereby traversing the earth, they have ascertained its surface
to be a curved surface returning into itself. Eclipses of the
moon serve to point out that the figure of the earth must be
nearly spherical, for the boundary of the earth’s shadow seen on
the moon always appears circular, which could not always be
the case, unless the earth were nearly a sphere.

31. The magnitude of the earth is next to be considered ;
previously to which it is necessary to remark, that however dis-
tant two places on the earth’s surface are, the angular distances
of the same stars visible in each place are precisely the same ;
from whence it follows, that the distances of the fixed stars are
so great, that each inhabitant of the earth, in respect to them,
considers himself in the centre of the same imaginary sphere ;
or that all lines drawn from the surface of the earth to any star,
may be considered as parallel at the surface of the earth ; for the
inclination of the lines drawn from any two places towards the
same star, is less than can be measured, and therefore for all
purposes they must be considered as parallel.

32. Every spectator also observes the same celestial pole
and equator, that is, situate the same with respect to the fixed
stars ; but the situation of the celestial circles with respect to
the horizon will be different. The meridian altitudes of the
celestial objects will be different in different places, and the
altitude of the north celestial pole will be increased or dimi-
nished, according as an observer travels north or south. Actual
- admeasurement shews, that the space gone over in a direction
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north or south, is very nearly proportional to the variation of

the altitude of the celestial pole. Measurements shewing this

have been made in Lapland, Holland, England, Germany,

France, Italy, at the Cape of Good Hope, Hindostan, and in

North and South America.

33. From hence it 1s proved that the earth is nearly a sphere,

by which is explained the phenomenon of the variation of alti-
3 tude of the pole, being proportional to the space gone over in a
direction north or south.
" Let the circle LCS (Fig 4) represent a section of the earth,
"on the plane of a celestial meridian. LR a section of the hori-
zon of the place L, SO of the place S. LP and SP lines drawn
in the direction of the celestial pole, which are therefore parallel,
(Art. 31 and 32). Produce SO to meet LR and LP, in H and
B. Now PPSO=PBO, and PBO—PLR = LHB = C, there-
fore PSO—PLR =C. But C varies as LS, consequently the
difference of the elevations of the pole at L and S varies as LS.
Experiment shewing this to be nearly so, it follows that the
earth is nearly a sphere. It is also proved by navigators, in
distant voyages, making their computations of the distances
sailed, upon the supposition that the earth is a sphere, and the
result nearly agreeing with the distances ascertained by the rate
of sailing deduced by the log-line.

34. The measure of a degree on the earth’s surface is* 69!
British miles nearly, that is, if the difference of PLR and P’SO
be 1°, the distance LS = 69} miles, and therefore 360° or the
circumference of the earth =25000 miles nearly. Hence the
diameter, which is somewhat less than } of the circumference =

* The method of measuring a degree is afterwards explained in the application
of astronomy to geography, by which it is found that the earth is not exactly a
sphere, its equatoreal diameter being about 25 miles longet than the polar, accord-
ing to the latest results.
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8000 miles nearly. A vast magnitude, when measured byour
ideas, but almost nothing when compared with other bodies, the
existence of which, in the universe, we are enabled to ascertain.

35. It cannot now be determined how long the knowledge
of the spherical figure of the earth has existed, but just ideas of
it were early entertained. Above 2000 years ago it was com-
monly known among astronomers. Indeed it must have been
discovered in the very infancy of astronomy. It plainly ap-
peared that the eclipses of the moon were occasioned by the in-
tervention of the earth, and the termination of the shadow must
soon have pointed out to them the form of the earth. The mea-
sure given by Aristotle is the earliest upon record, who reports
it from more ancient authors. KEratosthenes, who observed at
Alexandria, and died 194 B. C. made use of a method for
measuring the earth susceptible of great accuracy. The result
of his measurement has come down to us ; but from the uncer-
tainty of the length of the stadium used, it has been supposed
that we are unable now to appreciate the accuracy of the ancient
measurements.  Although the spherical figure of the earth was

universally acknowledged among the astronomers, yet the exist- - - >~

ence of antipodes was long denied.

36. That diameter of the earth, parallel to the imagina-
ry celestial axis, is called the axis of the earth, and this is
properly so called, because, as will be shewn, the earth actually
turns upon this axis, thereby causing the apparent diurnal mo-
tion of the concave surface.

The great circle of the earth, the plane of which is perpen-
dicular to its axis, is called the terrestrial equator. Circles are
also conceived to be drawn on the earth, corresponding to the
imaginary circles in the heavens. The secondary of the terres-
trial equator passing through any place, is called the terrestrial
meridian of that place. The arc of the meridian intercepted
between the place and the equator, is called the latitude of the
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place, and the arc of the equator intercepted between the meri-
dian of any place and some one given meridian, is called the
longitude of that place, and is reckoned 180° to the eastward
or westward.

37. The British reckon their longitudes from the Observa-
tory of Greenwich ; the French from Paris, &c. When the
Canary Islands were the most westerly lands known, the longi-
tude was reckoned from the meridian of Ferro, one of those
islands. The use of the latitnde and longitude in fixing the
position of a place on the surface of the earth, was first intro-
duced by Hipparchus.

It may be remarked here that the progress in astronomy
was from the celestial circles to terrestrial, and not the contrary.

38. By passing to the southward of the terrestrial equator,
‘we are enabled to behold the part of the celestial sphere near
the south pole, which is invisible to us the inhabitants of the
northern hemisphere. The stars near the south pole have been
divided into constellations. Dr. Halley and De La Caille went
to the Cape of Good Hope, for the express purpose of observ-
ing the southern hemisphere.

. 39. The knowledge of the spherical figure of the earth ena-
bles us readily to determine the position of the circles of the
sphere, with respect to the horizon of any place, the latitude of

which is known. For,

" The altitude of the celestial pole at any place, is equal to
the latitude of that place.

Let SELNQ and HO (Fig. 5) be sections of the earth and

horizon, in the plane of the meridian of the place L. LP the .. ' -
direction of the celestial pole, parallel to the axis SN. ;' Then .

PLC = SCL, and therefore taking from each a right angle,
PLO = ECL, the latitude of the place L. Art. 36.

40. Hence it will be easy to understand the changes of sea-
sons over the whole earth. But it is necessary to premise that
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all observers, who observe the sun at the same instant, refer it
nearly to the same place in the celestial sphere. It will be
shewn hereafter that the greatest difference of place is 17", and
therefore we may consider the sun as appearing to describe the
same great circle to all the inhabitants of the earth.

41. In all places having north latitude, the portions of the
northern parallels of declination above the horizon will be
greater than those below the horizon, and consequently when
the sun is on the northern side of the celestial equator, the
days will be longer than the nights; the portions of the south-
ern circles of declination above the horizon will be less than
those below it, and therefore when the sun is on the south-
ern side of the celestial equator, the days will be shorter than
the nights. The contrary will take place in southern la-
titudes.

For all places, except at the equator and poles, the sphere_p <"
(reference being had to the position of the parallels of de37g ‘
clination, with respect to the horizon) is called an oblique
sphere. ) o

42. At the equator the celestial poles are in the horizon, '
and hence the celestial equator and parallels of declination are
all perpendicular to the horizon, and are bisected by it, and
therefore at the equator all the heavenly bodies appear and,
disappear during equal times. This position of the sphere is &=
called a right sphere. ‘

43. At the terrestrial poles, the celestial poles appear in
the zenith, and the celestial equator coincides with the horizon ; N
the parallels of declination are parallels to the horizon. At,
the north pole the southelfn parallels of declination are invisigl__
ble, therefore the sun is there invisible during six months? ©—
This position of the sphere is called a paralfel sphere.

The circumstances mentioned in the three last articles fol- §
low from Art. 39. (Fig. 6) will illustrate what has been said of
an oblique sphere ; (Fig 7), of a right sphere; and (Fig. 8)

: D
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of a parallel sphere. In these figures S and N represent the
poles, EQ the equator, HO the horizon, and Dd Dd parallels
of declination. The sphere is supposed to be viewed at right
angles to the plane of the meridian, that is, all points to be
transferred perpendicularly into the plane of the meridian.

44. At places having 663° northern latitude, the northern
parallel of declination, which is 23}° from the equator, will just
touch the horizon ; hence as the sun is in this parallel at the
summer solstice, the inhabitants of these places that have 66}°
north lat. will then observe the sun during 24 hours. The
same takes place at the winter solstice for places having 66}°
southern lat.

45. The ancients divided the globe into five principal zones.
The zone extending 234° on each side of the equator is called
the torrid zome. The sun is always vertical to some place in
this zone. The two zones between lat. 23}° and 664° are called
the temperate zones ; the two zones about the poles are called
the frigid zones. The parallel of latitude bounding the north-
ern frigid zone is called the arctio circle, and that bounding the
southern, the antarctic.

The parallel separating the torrid zone and northern tem-

" perate zonme, is called the northern tropical circle ; the sun,
when in the beginning of Cancer, is vertical to this circle. The
parallel separating the southern temperate zone from the torrid
zone, is called the southern tropic: the sun when in the begin-
ning of Capricorn is vertical to this.

The ancients also divided the globe into zones, the middle
of each zone differing half an hour in the length of their long-
est day. From the small extent of their knowledge of the
surface of the earth, theyimagined that places in the same zone,
which they called climate, differed little in temperature. If so,
many parts of Siberia ought to be of the same temperature as
Ireland : hence the propriety of disusing the division of the
globe into climates.



CHAP. 1v.] REFRACTION AND TWILIGHT. 3

CHAPTER 1V.

ON REFRACTION AND TWILIGHT.

46. As connected with the earth, we may here consider its
atmosphere, and how it affects the apparent places of the hea-
venly bodies. We know, from the science of pneumatics, that
the air surrounding the earth is an elastic fluid, the density of
which is nearly proportional to the compressing force, or the
weight of the incumbent air. Whence it follows thafthe den-
sity continually decreases, and at a few miles high becomes
very small. Now a ray of light passing out of a rarer medium
into a denser, is always bent out of its course toward the perpen-
dicular to the surface, on which the ray is incident. It follows
therefore that a ray of light must be continually bent in its
course through the atmosphere, and describe a curve, the tan-
gent to which curve, at the surface of the earth, is the direction
in which the celestial object appears. Consequently the appa-
rent altitude is always greater than the true.

47. The refraction or deviation is greater, the greater the
angle of incidence, and therefore greatest when the object is in
the horizon. The horizontal refraction is about 32. At 45°
altitude, in its mean quantity it is 573".

48. The refraction is affected by the variation of the quan--
tity or weight of the superincumbent atmosphere at a given
place, and also by its temperature. In computing the quantity
of refraction, the height of the barometer and thermometer
must be noted. The quantity of refraction at the same zenith

D2
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distance varies nearly as the height of the barometer, the tem-
perature remaining constant. The effect of a variation of tem-
perature is to diminish the quantity of refraction about ;3 part
for every increase of one degree in the height of the thermo-
meter. Therefore, in all accurate observations of altitude or
zenith distance, the height of the barometer and thermometer
must be attended to.* °

49. The refraction may be found by observing the greatest
and least altitude of a circumpolar star. The sum of these al-
titudes diminished by the sum of the refractions corresponding
to each altitude, is equal to twice the altitude of the pole : from
whence, (if the altitude of the pole be otherwise known),
the sum of the refractions will be had ; and from the law of va-
riatign of refraction, known by theory, the proper refraction to
each altitude may be assigned.

50. Otherwise, when the height of the pole is not known,
the ingenious method of Dr. Bradley may be followed, who ob-
served the zenith distances of the sun at its greatest declinations,
and the zenith distances of the pole star above and below the
pole. The sum of these four quantities must be 180° dimi-

- nished by the sum of the four refractions; hence he obtained

the sum of the four refractions, and then by theory apportioned
the proper quantity of refraction to each zenith distance. In this
manner he constructed his table of refractions.

» Theory shews that, whatever be the law of change of density, the variation of
refraction js as the tangent of _}!lgienitlLdiiLms, between the zenith and about
740 zenith distance. At greater zenith distances we cannot apply theory to obtain
the variation of refraction, because there the variation of the density of the air at
different heights will sensibly affect the quantity of refraction, and the law of this
variation is unknown. )

b The object of the observations.n this and the preceding article is to ascertain
the coefficients of refraction. If we suppose the refraction to vary as the tangent
of the zenith distance there is but one coefficient, which can be thus accurately de-
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51. The ancients made no allowance for refraction, although
it was in some measure known to Ptolemy, who lived in the se-
cond century. He remarks a difference in the times of rising
and setting of the stars in different states of the atmosphere.—
This however only shews that he was acquainted with a varia-
tion of refraction, and not with the quantity of refraction
itself. Alhazen, a Saracen astronomer of Spain, in the ninth
century, first observed the different effects of refraction on the
height of the same star above and below the pole.—Tycho
Brahe, in the sixteenth century, first constructed a table of re-
fractions. 'This was a very imperfect one.

52. As the atmosphere refracts light, it also 1eﬂects it,
which is the cause of a considerable portion of the day-light we
enjoy. After sun-set also the atmosphere reflects to us the light
of the sun, and prevents us from being plunged o instant-
darkness, upon the first absence of the sun. Repeated obser-
vations shew that we enjoy some twilight, till the sun has de-
scended 18° below the horizon. From whence it has been at-
tempted to compute the height of the atmosphere, capable of

reflecting rays of the sun sufficient to reach us; but there is

much uncertainty in the matter. If the rays come to us after
one reflection, they are reflected from a height of about 40 miles:
if after two, or three, or four, the heights will be twelve, five,
and three miles. The computation requires the assistance of

termined. Let the zenith distances of the sun be 8, §/; and of the star Z, Z/, then by
Bradley’s method we have 180°=8 +4- $'4Z 4 Z’{ A .(tan.S 4 tan. §' 4 tan.
Z-4-tan. 2'), if the refraction be represented by A. tan. zen. dist. in general; hence
A can be determined exactly. See Delambre Abregé d’ Astronomie, p. 136. Ed.
The investigation of the law of variation of refraction from theory, is much too
difficult to find a place in an elementary book. Reference may be had to Simp-
son’s Mathematical Dissertations; Vince’s Astronomy, chap. 7, p. 76 ; Laplace’s
Mecanique celeste, tom. iv. p. 267, &c., Trans. R. Irish Academy, vol. xii.

sS4
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the theory of terrestrial refractions. (See Professor Vince’s
Astronomy, Art. 206.)

53. The duration of twilight depends upon the latitude of
the place and declination of the sun. 'The sun’s depression be-
ing 18° at the end of twilight, we have the three sides of a
spherical triangle given to find an angle, viz. the sun’s zenith
distance (108°), the polar distance, and the complement of lati-
tude, to find the hour angle from noon. At and near the equa-
tor, the twilight is always short, the parallels of declination be-
ing nearly at right angles to the horizon. At the poles the twi-
light lasts for several months, at the north pole from 22nd Sep-
tember to 12th November, and from 25th January to 20th
March. When the difference between® the declination and
complement of latitude of the same name is less than 18, the
twilight Wets all night.

54. Refraction is the cause of the oval figures which the sun

. and moon exhibit, when near the horizon. The upper limb is

less refracted than the lower, by nearly five minutes, or 1 of the
'whole diameter, while the diameter parallel to the horizon re-
mains the same. The rays from objects in the horizon pass

“through a greater space of a denser atmosphere than those in
the zenith, hence they must appear less bright. According to
Bougier, who made many experiments on light, they are 1300
times fainter, whence it is not surprising that we can look upon
the sun in the horizon without injuring the sight.

55. Another striking phenomenon respecting the sun and
moon in the horizon, must not be entirely passed over, although
rather belonging to the science of optics, viz. their great appa-
rent magnitudes. The cause of this undoubtedly is the wrong
judgment we form of their distances then, compared with their

3 Or when the sun’s polar distance exceeds the latitude by a quantity less
than 18°—Ed.

@
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distances when their altitudes are greater. In estimating their
distances when in the horizon, we are led to judge them greater
than when considerably elevated, because of the variety of in-
tervening objects which furnish ideas. 'The apparent diameters
being nearly the same in both cases, we are apt to judge that
object largest, the distance of which we conceive greatest. This
explanation is a very old one, being given by Alhazen in the ninth
century. Roger Bacon, Kepler, Des Cartes, and others also,
were of the same opinion.

/
—y . o
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CHAPTER V.

MICROMETERS—DIAMETERS AND DISTANCES OF THE SUN, MOON,
AND PLANETS—SPOTS ON THE SUN AND PLANETS~—ROTATION
OF THE SUN AND PLANETS—MAGNITUDES OF THE SUN, MOON,
AND PLANETS.

56. Having attained to the knowledge of the magnitude
and figure of the earth, we are enabled to extend our inquiries
to the magnitudes and distances of the sun, moon, and planets.
The present improved state of astronomical instruments fur-
nishes means of making observations, by which we can obtain,
with considerable precision, the magnitudes of the sun, moon,
and planets, and ascertain the vastness of the distances of some
of them, relatively to the diameter of the earth. We can as-
certain the angle two remote places on the surface of the earth
subtend to a spectator at the sun, moon, or planets, and from
thence deduce the angle the disc of the earth, when seen from
any of these bodies, subtends. This angle can be obtained with
the same accuracy as we can measure the apparent diameter of
the disc of a planet. The method requires not the assistance of
any theory of the arrangement of the celéstial bodies, and there-
fore enables us to use the magnificent truths it furnishes, in es-
tablishing the true planetary system. The fixed stars appear,
as was observed, precisely in the same position with respect to
each other, in whatever part of the edrth we are ; but the planets
vary their position with respect to the neighbouring fixed stars,
the angular distance of a planet from a neighbouring fixed star

. ® §

-
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appearing greater in one place than in another. It is from the
difference of these angular distances that we obtain the angle
which we should see the two places subtend, could we remove
ourselves to the planet to make the observation.

57. Let us proceed to consider this method more particu-
larly, but first it may be proper to make a few remarks respect-
ing the method of measuring small angles on the concave sur-
face, and on the precision with which they can be measured.

The diameters of the sun, moon, and planets, that is, the
angles they subtend, can be measured with much accuracy, by
measuring the diameters of their images, formed by the object
glass of the telescope. The image is measured by means of two
parallel wires placed in the focus of the object glass. One of
these wires is capable of being moved parallel to itself, so that
the wiresmay be readily opened to touch the opposite sides of the
image of a planet’s disc, and the interval of the wires furnishes
at once the apparent diameter of the planet, the scale being pre-
viously settled by ascertaining the opening of the wires corres-
ponding to a given angle. This is one of the simplest kinds of
micrometers in its simplest state ; there are others which it is
unnecessary to mention here. The above is sufficient to give an
idea of the method of measuring small angles. Small angles
can be measured with much more accuracy than large angles.
In measuring large angles the whole telescope is moveable. In
micrometer measures, only the small apparatus of the wires is
moveable, which can be executed with much greater nicety and
exactness than the aggregate parts of a large instrument. The
parts of the micrometer have much greater stability than the parts
of an instrument for measuring large angles. Small angles may
be measured, by good instruments, with certainty, to less than
1". The difference of declinations of two stars, having nearly
the same declination, is also readily measured by moving the
~ télescope, and turning the system of wires, so that one of the

: p :
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stars moves on the fixed wire, and then moving the other wire
till the other star moves along it. This may be readily done,
even if the stars differ considerably in right ascension, but are
so near in declination, that they are both successively seen to
pass through the telescope while it remains fixed.

If the stars differ considerably in right ascension, the
quantity of refraction at each observation may be changed, on

* account of the variation of the barometer and thermometer, and

must be allowed for ; but when they are near together they are
both equally affected by refraction, and therefore no allowance
is necessary, which is a considerable advantage.

58. To.find the angle two distant places, in the same terres-
trial meridian, subtend at a planet. Let H and S (Fig. 9) be
two places, P a planet in the celestial meridian of these places.
HF” and SF the directions in which the same fixed star, also in
the meridian at the same time, is seen at the two places. The
star made use of is supposed to be very nearly in the same pa-
rallel of declination as the planet, that is, not differing in decli-
nation more than a few minutes. Produce HP to meet SF in
B: then because HF” and SF are parallel (Art. 31) HBS =
BHF’: therefore HPS (= HBS + PSB) = F"HP 4 PSF =
the sum of the apparent distances of the planet and star (the place
of the planet being supposed to be between the parallels).
These distances can be observed, as was said, with great accu-
racy, by means of a micrometer. We have thus the principal
thing necessary to enable usff6 advance by a most important step))

"ViZ> to obtain the angle the disc of the earth subtends, as seen
from a planet.*

s This angle is obtained in the following manner :
Draw the tangents PO and PO', (Fig. 10), and the OPO’ is the angle the

" earth’s disc subtends at the planet. Draw CHV and CSZ, C being the centre of

the earth. Produce PH and PS to meet OC and 0’C in D and E, and join P,C.
K v

AN
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59. The Cape of Good Hope is nearly in the same meridian
with many places in Europe, having observatories for astrono-
mical purposes, and therefore a comparison of the observations
made there, with those made in Europe, furnishes us with a
means of practising this method. By a comparison of the ob-
servations of De La Caille, made at the Cape of Good Hope,
with those made at Greenwich, Paris, Bologna, Stockholm, and
Upsal, the angles the earth’s disc subtends at Mars and at the
Moon, have been obtained with very considerable precision.
Comparisons of observations will also furnish the same for the
sun and other planets. But it will be seen hereafter, that know-
ing the angle the earth’s disc subtends at any one planet, we can
readily find it for the sun or any other planet.

Now for the sun and planets the angle HPS is very small, and even for the moon
not considerable, and therefore the distance PC is great, compared with OC.
Hence we may consider OC, CD, CE as proportional to the angles OPC CPH and
. CPS, and therefore OPC: CPH-}-CPS (= HPS):: 0C: CD 4-CE. Butas
the angles D and E are very nearly right angles, CD is the sine of the angle DHC
(=PHYV), and CE is the sine of CSE (=PSZ) to rad. 0C. Hence OC :
CD + CE: : Rad. : sin. VHP - sin. PSZ and OPO/=2 OPC=2 HPS X
Rad.
sin.VHP - sin. PSZ’
the angles VHP and PSZ, or the zenith distances of the planet at the two places.
But it is not necessary that these angles should be observed with much precisas,
since it is easy to see that an error of even a few minutes, in the quantities of these

Rad.
S, VAP Fem. PSZ’  1he

above is on the suppositions, 1st, that the starand planet are on the meridian to-
gether : 2nd, that the two places are on the same terrestrial meridian. If the star
and planet are not on the meridian together, yet their difference of declinations
being observed, it is the same as if there had been a star on the meridian with the
planet, If the two places are not under the same meridian, an allowance must be

Thus to obtain the angle OPO/ it is necessary to know

angles, will make no sensible error in the quantity

made for the planet’s motions in the interval between its passages over the two
meridians, and we obtain the difference of declinations that would have been ob-
served at two places under the same meridian.
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60. The method that has been described, yields only to one
other method in point of accuracy ; viz. to that furnished by the -
transit of Venus over the sun’s disc, which. will be particularized
hereafter. The above is fully sufficient for the purposes for
which it is given here ; which purposes are to enable us to com-
pare the magnitudes of the sun and planets with that of the
earth, and to shew the vast distances of some of them relatively
to the diameter of the earth.

The diameter of the earth when nearest to and seen from

The Sun is 17" Juno is g1

Mercury - 28" Vesta

Venus - 62" Jupiter - 4

Mars - 42" Saturn - P
Ceres ) _ g Georgium Sidus 17

Pallas} The Moon 20 2

A planet therefore appearing to us as small as the earth ap-
pears to the inhabitants of Saturn and the Georgium Sidus,
would not have been observed except by the assistance of the
telescope.

61. The Sun, Jupiter, Saturn, and Georgium- Sidus always
appear with discs nearly circular.

The Moon, Mercury, Venus, and Mars exhibit variable -
discs ; they however are always portions of circles. Their dia-
meters may be measured with micrometers, and are found to be,
when greatest, as follow :

The Sun - 1920” Jupiter - 40"
Mercury - 11" Saturn - 18
Venus - 57" Georgium Sidus 47
Mars - 2 The Moon 1920

The new planets, according to the most careful trials of Dr.
Ierschel, appear to subtend only a small part of a second.

62. Hence we can compare the real diameters of these bo-
dies with the diameter of the carth. For :—
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diameter of planet : diameter of earth :: angle planet subtends
at the earth : angle earth subtends from planet.

Whence calling the diameter of the earth unity, or 8000
miles in round numbers, the diameter of

Diam. of B Miles.

The Sun  is 111 or 888000 nearly.
Mercury - 04 - 3200 ~
Venus - 0,9 - 7200
Mars - 0,8 - 6400
Jupiter - 11 - 88000

. Saturn - 10 - 80000
Georgium Sidus 4 - 32000
The Moon - 0,25 - 2000

The largest of the new planets is supposed by Dr. Herschel
not to exceed 200 miles in diameter.

63. The above method of obtaining the proportion of the
diameter of a planet to that of the earth, admits of being re-
peated at pleasure, not being affected by the variableness of the
planet’s distance, and therefore a mean of many results being
taken, great accuracy can be attained to.*

3 Knowing the angle the earth’s disc subtends at the sun or a planet, we can
ascertain the distance, because the angle in seconds subtended by the earth : 206
265 (the seconds in arc equal radius) : : diameter of the earth : distance of the
pianet from the earth. But a small error in the angle subtended by the earth,
will occasion a considerable error in the distance, and therefore this method of as-
certaining the distance is not given, as affording much precision ; but it serves
sufficiently for shewing the vast distances of the sun and planets from the earth,
which is all that is necessary for our purpose here. If the angle subtended at the
sun by the earth be 17’;‘5 the sun’s distance from the earth is 206262 — 12133 dia-
meters of the earth, or 96 millions of miles nearly. '

In like manner taking 4, 2, and 17 for the angles subtended by the earth’s
disc at Jupiter, Saturn, and the Georgium Sidus, the distances of these planets
from the earth will be 51566, 103132, 206265 diameters of the earth respectively.
In this manner the mean distance of the moon from the earth is found to be about
60 semidiameters of the earth.
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64. Having dedueed the real magnitudes of the apparent
circular discs, the next step is to shew that the sun and planets
are spherical bodies. With respect to the sun we are assisted
by the consideration of its spots. By the help of telescopes we
often observe, on the bright surface of the sun, dark spots of va-
rious and irregular forms. These appear to move on the sur-
face from east to west, and after arriving at the western edge
disappear, and after a time again re-appear on the eastern edge.
The times of appearance and disappearance are nearly equal,
each being 13} days nearly. The deduction to be made from
these circumstances is, that the spots are on the surface of the
sun, for they carmot be bodies revolving about him, for then they
would not appear on his surface, and disappear during equal
times. The sun then must revolve on an axis carrying these
spots with him, or these spots must move on his surface with
such a motion as will account for the phenomena. The latter
hypothesis is much more complicated than the former, for each
spot separately must have such e motion given to it, as will
solve the phenomena of its appearance and disappearance. The
spots are not permanent, but are observed to increase and de-
crease, and at last cease to exist; yet till their entire disap-
pearance their apparent motions on the surface of the sun conti-
nue the same, which makes it still more improbable that the mo-
tion is in the spots themselves.

65. Concluding then that the sun revolves on an axis, we
immediately deduce that it is a spherical body, for no revolving
body but a sphere will always appear, at a distance, a circular
disc. The motions of the spots shew that the sun revolves on
an axis inclined to the ecliptic at an angle of 82°}, and that the
time of revolution is 25¢ 10" The process of computation is
too long? to insert here ; it is sufficient to observe that calcula-

8 See Vince’s Astronomy, vol. 1. art, 385, &c.
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tions from the motions of different spots give the same result, so
that it cannot be doubted that the sun’s rotation is the true cause
of the appearances we observe in the motions of the spots.

66. Few spots have been observed farther from the solar
equator than 30 degrees. Notvery unfrequently there are spots
in the sun so large that they may be seen by the naked eye,
when the sky is covered with a thin haziness. A spot observed
in April, 1779, by Dr. Herschel, measured 1’ 8" in diameter,
and was therefore above 30000 miles in diameter, because a
spot of the same diameter as the earth would only subtend an
agle of 17" (Art. 60.)

67. Various theories have been formed to explain the solar
spots. Astronomers generally agree that the sun is an opaque
body covered by a luminous fluid, and that changes in this fuid
occasion the appearance of spots. Many disputes have taken
place on this subject little worth attending to, as all the hypo-
theses hitherto offered seem to rest upon slight foundations.

68. As the spots are occasionally seen by the naked eye, it
is readily conceived they may be easily seen by the help of the
most indifferent telescopes: accordingly after the invention of
that instrument they soon became objects of much notice.
The first discovery of them is contended for.by Galileo, Schei-
ner, and Harriot. Harriot observed them in- England in
December 1610, which was about the same time when Galileo
mentions that he had observed them. It was not long after
they were first discovered, that the inclination of the solar axis
and time of revolution were ascertained.

69. By the apparent motion of spots on the discs, as well as
by other arguments to be mentioned hereafter, we know that the
planets Venus, Mars, Jupiter, and Saturn, are spherical bodies,
each revolving on an axis.

Venus revolves in 23* 30= Jupiter - - 9h52m

Mars - - - 24 40 Saturn - - 10 16
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The rotation of Saturn was ascertained from observation by Dr.
Herschel. That of Venus by M. Schroeter, a celebrated Ger-
man astronoiner. :

70. No appearances have been discovered in the other pla-
nets sufficient to determine their rotation, but it is highly proba-
ble from analogy that they revolve on axes. But we have
otherwise sufficient proof of their spherical form ; for if they were
circular discs or hemispheres, it is highly improbable that, their
motions among the fixed stars being so irregular as seen from
the earth, they would always keep the same face turned toward
it ; for the motions being observed to be sometimes direct, and
sometimes retrograde, the planet, unless it be a spherical body,
must, to preserve the same circular appearance, have contrary
motions about the same axis.

71. The rotations of the sun and planets are all in the same
direction.

72. The sun and planets being spherical bodies, their mag-
nitudes will be to that of the earth as the cubes of their diame-
ters to the cube of the diameter of the earth ; whence calling the
magnitude of the earth unity, the magnitude of

The Sun is - 1367631 Jupiter - - 1281
Mercury - 0,064 Saturn - - 995
Venus - - 0,72 Georgium Sidus 80
Mars - - 0,5 The Moon - o

73. The ancients had such very inadequate notions of the
magnitudes and distances of the sun and planets, that the earth
was considered, by them, a body of as much importance as any
other in the universe. Pythagoras, as may be collected from -
Pliny, considered the sun only three times more distant than the
moon, and the moon thirteen times less distant than it is ; hence
according to him the sun was distant only by seven diameters of
the earth instead of 12000, and so the diameter of the sun would
be.only ;- of the diameter of the earth. Aristarchus, in the
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third century before Christ, investigated the distance of the sun,
and found it to be only 1200 diameters of the earth. Kepler,
about two centuries ago, considered it nearly five times less dis- ;
tant than it is. i
74. A spectator observing a planet not in his zenith, refers t,’!‘
it to a place among the fixed stars, different from that to which \ ///;‘1 (
a spectator, at the centre of the earth, would refer it. a: \
place seen from the centre of the earth is called its true place :
the arc of the great circle intercepted between these imagi-
nary points is called the diurnal parallaz. 19
75. The diurnal parallax is equal to the angle subtended at,
the planet by the place of the spectator and centre of the earth. | > 2
For, to a spectator at H, (Fig. 10), a fixed star in the direction
HYV is in the zenith, and the distance of the planet from this
star is VHP, but at the centre the distance is VCP, and the
difference of these is the angle HPC. The diurnal parallax is
greatest when the planet appears in the horizon ; for the great-
est angle that can be formed by two lines, one drawn from the
planet to the centre of the earth, and the other to the surface,
is when the latter is a tangent. The parallax of a planet, when
in the horizon, is called the korizontal parallaz, and is equal to
the angle the semi-diameter of the earth subtends at the planet.
76. The diurnal parallax depresses an object; a planet, at
rising, appears to the eastward of its true place, and at setting,
to the westward, whence the term diurnal parallax. By observ-
ing the distance of a planet, at rising and setting, from a neigh-
bouring fixed star, the angle that the earth’s disc subtends at the
planet may be observed, and that by one observer ; but this me-
thod is not so convenient as the preceding. Observations near
the horizon are uncertain : and the planet’s motion in the inter-
val of the observations requires to be most accurately known.
Beveral other circumstances also render this method inferior to
the aboye.
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CHAPTER VL

THE ROTATION OF THE EARTH—MOTION OF THE EARTH ABOUT
‘THE SUN—GREAT DISTANCES OF THE FIXED STARS—PRECES-
SION OF THE EQUINOXES.

77. Havine acquired a knowledge of the vast distances of
the sun and planets, and of their magnitudes, we are led to con-
sider whether the diurnal motion we observe in these bodies be
a real or only an apparent motion. Real and apparent motions
are not at first readily distinguished from each other. The mo-
tions of a person in a ship, carriage, &c. daily afford instances
that vision alone is not sufficient to distinguish between true and
apparent motion. Either experience or judgment is necessary
to distinguish between them. _

Diurnal motion.—That the heavenly bodies really move,
and, by so doing, cause the apparent diurnal motion, we can
have no experience, nor can we readily perceive the motion of
our earth, as we, in that respect, are in the same circumstances
as a person in the cabin of a ship in motion. We could not
easily understand whether the whole motion was in the ship, or
in a bird, (the only visible external object), flying at a distance.
But examining the reasons for each, we distinguish which motion
is most probable, that of the earth round its axis or of all the ce-
lestial bodies in the space of 23" 56™. Either the celestial bo-
dies revolve in the space of 23 56™ in great or small parallel
circles, according to their apparent distance from the celestial
poles, or the cause of that apparent diurnal motion is.a real mo-
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tion of the earth about an axis in a direction from west to east.
That the latter supposition will explain the diurnal phenomena
is so evident, that it is hardly necessary to dwell upon it. By
the rotation of the earth about an axis, the horizon of each spec-
tator has a motion, and will revplve in the celestial sphere in-
stead of the sphere with its circles, so that the parts of the ce-
lestial sphere will be successively uncovered and become visible,
as they would do by a motion of the imaginary sphere itself, car-
rying the bodies situate in it.

78. The only argument against this motion is, that the spec-

tator appears at rest and the celestial bodies appear to moye.
But as experience every day points out to us motions only appa-
rent, nothing can be concluded from the apparent rest of the
spectator. The arguments from analogy.in favour of the rota-
tion of the earth are very strong. 'The Sun, Venus, Mars, Jupi-
ter, and Saturn, all spherical bodies like the earth, (of which,
three are vastly greater than the earth), revolve about their
axes. :
79. Also against the diurnal motions of the celestial bodies
about the earth, are the vast distances and magnitudes of the sun
and planets. The immense motions to be given to each of
these bodies at different and variable distances from the earth,
and apparently unconnected with each other and with the earth,
to produce their apparent diurnal motions, would require a very
complicated celestial mechanism. To suppose the sun above a
million times larger than the earth, to revolve about the earth in
24 hours, instead of the earth revolving about an axis in that
time, is contrary to that rule of philosophy by which effects are
deduced from the simplest causes.

80. Also we know that when a body moves in the circumfe-
rence of a circle, there is requisite a force tending to the centre
to keep it continually in that circle. Now we can assign no

force acting upon the sun and planets, to make them describe
ER
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the diurnal circles. No bodies are situate in the different cen-
tres of thosecircles, by the continual attraction of which they
might be' continually impelled from the tangent to the circumfe-
rence.*

81. We conclude, then, that the diurnal motions of the celes-
tial bodies are only apparent,and that these appearances are pro-
duced by the motion of the earth about an axis parallel to the
apparent celestial axis ; although every appearance may be ex-
plained by supposing the eye iirthe centre of 4 revolving sphere,
in the concave surface of which the heavenly bodies are situate.

* Although the arguments for the rotation of the earth are so satisfactory, that
no doubt whatever can remain ; yet it is interesting to consider whether the matter
cannot be subjected to a direct experiment. It will readily appear that a body let
“fall from a considerable height will, if the earth revolves from west to east, fall to
the eastward of the vertical line. Let C (Fig. 11) be the centre of the earth, T
the place from which the body is let fall, TB the vertical line in directiop of the cen-
tre. When the body reaches the earth let tb be the position of the vertical line,
in consequence of the earth’s motion. Take Bf= Tt and f will be the place of the
body ; because the body, leaving the top of the vertical with a motion equal to the
motion of the top, is, at the end of its fall, as far from the first position of the verti-
eal as the top of the vertical itself is from its first position. But Bb is less than
Tt and therefore than Bf, in the proportion of CB to CT, consequently f is to the
eastward of b. This is on the supposition that the place is at the equator, and it
may suffice for an illustration. An accurate investigation cannot conveniently be
inserted here, but may be found in Simpson’s Mathematical Dissertations, and La-
place’s Mecanique celeste, tom.iv. On account of the small height BT at which
we can make the experiment, bf must be very smali, and the utmost nicety is re-
quired : in this age, however, of accurate experiment, it has been attempted, and it
is said with success. It has been tried at Bologna from the height of 257 English
feet, also at Viviers and at Hamburgh ; at Hamburgh the height was 250 feet,
and the deviation found to be 0,35 inches to the east, and 0,13 inches to the
south. Computation, not taking into the account the air’s resistance, gives 0,34
inches to the east, and no perceptible deviation to the south.

Note by the Editor.—If h denote the height of the tower, and A the latitude, the
deviation to the east variesas l\i cos.\; and the deviation to the south as h3, sin, 2.
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82. The rotation of the earth has been established, beyond
all controversy, since the time of Galileo, but the notion is a
very old one; it is expressly mentioned by Cicero as the opinion
of Hicetas, who lived about 400 years before the commencement
of our 2ra. The words of Cicero are, ¢ Hicetas Syracusius, ut
« git Theophrastus, ccelum, solem, lunam, stellas, supera deni-
 que omnia stare censet ; neque preeter terram rem ullam in
“ mundo moveri: que cum circum axem se summa celeritate
« convertat et torqueat, eadem effici omnia, quasi stante terrd
« coelum moveretur.” Acad. Queest. Lib. 2.3
83. Annual motion.—The apparent annual motion of the sun
is explained, by supposing that either the sun moves round the
earth or the earth round the sun, in a path or orbit nearly cir-
cular. For the sun, as has been stated, appears in the course of
a year to describe, on the concave surface of the heavens, a great
circle called the ecliptic. Observation shews that its apparent
diameter does not vary much, its greatest being = 32’ 34" and least
31 29", consequently the variation of distance, compared with
the whole distance, is but small. Observations likewise shew
that its apparent motion in the ecliptic or change of longitude is
not equable, yetits difference from equable motion is not great.
The motion for any given interval of time, if it moved equably,
is found by dividing its whole motion in a year by the number
of given intervals in a year. Thus it moves 360° in about 365
days, therefore in an hour the motion is 2’ 28" nearly. This is
called the mean motion in an hour. Its greatest hourly motion
is 2/ 33" and its least 2’ 23"., Whence in a year the sun moves
in an orbit nearly circular, and with a motion nearly equable,
about the earth, or the earth moves in an orbit nearly circular,

3 Reperi apud Ciceronem primum Hicetam sensisseterram moveri. Inde igitur
occasionem nactus, coepi et ego de terree mobilitate cogitare.  Copernicus iz sud
ref. ad Paulum III. Ed.
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with a motion nearly equable, about the sun. That the latter
motion takes place is established by a variety of reasons.

84. It will be proved that the planets move about the sun in
orbits nearly circular, in different periodic times and at different
distances. Also that all the planets receive their light from the
sun, a body vastly greater than them all in magnitude, some of
which are of much greater magnitude than the earth. Again
there is a certain relation between the periodic times of the
planets and their distances from the sun, as will hereafter appear.
Now considering the earth as a planet revolving round the sun,
its distance and periodic time obey the law of the rest of the
planets: which circumstance affording such an harmony be-
tween the motions of all those bodies, receiving their light and
apparently their heat, the source of animal and vegetable life,
must at once persuade us to acknowledge the annual motion of
the earth, rather than that of the sun: although all the princi-
pal phenomena of the planetary motions may be explained, by
supposing them to revolve in orbits nearly circular round the
sun, while the sun and planets are together carried with an an-
nual motion round the earth.

85. But the most satisfactory proof is one that we cannot in-
troduce with its full effect here, it requiring some preliminary
principles of physical astronomy. This proof is from the know-
ledge of that universal attendant of matter, the principle of at-
traction or gravity. The sun, earth, and planets mutually at-
tract each other, in proportion to their quantities of matter or
their masses. It follows, from the laws of motion, that they
must come together, or each of them revolve in an orbit round
a fixed point, the common centre of gravity of all the bodies.
Now we shall see hereafter that the mass of the sun, as well as
its magnitude, is vastly greater than all the planets together, so
much greater, that the common centre of gravity lies within the
body of the sun ; and the sun, in fact, will move about this point,
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but in a path so small, compared with the orbits of the planets,
that it may be said to be at rest, and the planets said to revolve
about the sun, they revolving about a point so near his centre.

Another argument, derived from the velocity of light, will
be mentioned hereafter.

86. But it is necessary to shew how this annual motion will
explain the changes of the seasons, or rather how the annual mo-
tion of the earth will explain the apparent motion of the sun in
a great circle inclined to the equator ; for from this, as we have
seen, are explained the changes of seasons.

The annual motion of the earth in an orbit, the plane of
which passes through the sun, is independent of its motion round
the axis. That a globe may have two motions independent of
each other, one a progressive motion equally affecting each par-
ticle, and the otherq rotatory motion about an axis, is easily
shewn from mechanical principles. As the progressive motion
affects each particle equally, it cannot affect the rotation of the-
globe about its axis, and therefore this axis will, while the globe
has a progressive motion, remain parallel to itself. Supposing
then the earth to have two such motions, it is clear that the
axis cannot be perpendicular to the plane of the progressive mo-
tion, for otherwise the sun would always appear in the celestial
equator. But if the polar axis be inclined to the plane of the
earth’s orbit constantly at an angle of 66° 32/, a spectator any
where on the earth will see the sun, in the course of a year, ap-
parently describe a great circle on the surface of the celestial
sphere, inclined to the equator at an angle of 23° 28’. For the
plane of the orbit constantly making the same angle with the
terrestrial equator, it will intersect the surface in a great circle,
inclined to the equator at an angle of 23° 28/, and therefore an
eye at the centre of the earth will refer the place of the sun al-
ways seen in the plane of the orbit, to a great circle in the ce-
lestial sphere, which circle it will evidently appear to describe
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in the course of a year to an eye at the centre. But it was be-
fore shewn, that, from the vast distance of the sun compared
with the diameter of the earth, all spectators refer the sun nearly
to the same place on the concave surface ; whence we conclude,
that by the motion of the earth about the sun in an orbit, to
which the equator is inclined at a constant angle of 23° 28/, the
sun, seen from any part of the earth, will appear to describe, in
the space of a year, the great circle called the ecliptic.

87." The effects also of this inclination and parallelism of the
axis, will readily appear, by considering that a hemisphere (or
rather somewhat more) of the earth, the base of which is per-
pendicglar to the line joining the centres of the sum and earth,
is illuminated by the sun. The positions of the poles and pa-
rallels of latitude with respect to this hemisphere, will easily
shew the variation of the length of the days and of seasons.

Let HVTP (Fig. 12, 1) represent the path or orbit of the

2
“earth about the sun S; let also AB represent the axis of the

earth, B being the north and A the south pole. Conceive this
axis in a plane at right angles to the orbit, and that this plane
always continues parallel to itself, while the centre of the
earth moves about the sun, the axis will then, it is evident, also
move parallel to itself. Let AHB be the position of the axis
when this plane passes through the sun, and the angle SHB =
90° + 23° 28’. When the centre H has moved a right angle
about the sun to V, this imaginary. plane being parallel to its
former position, SV must be at right angles to it, that is, to
every line in it, therefore SVB is a right angle. When the
centre comes to T in SH produced, the plane again passes
through the sun, and because TB and HB are parallel, STB=
90°—23° 28, and is then least. When it comes to P opposite
to V, again SPB is a right angle. H will represent the place
of the earth at the winter solstice, V at the vernal equinox, T at
the summer solstice, and P at the autumnal equinox. Far, Fig.
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=2 12, 2 will represent the earth at H with its enhghtened and
=/ -» dark hemispheres, seen at nght angles, to the plane of the me-
i —>dsridian passing through the sun. The angle SHB is greater than
?in any other position, and the north pole B will be in the dark
A * hemisphere farthest removed from the circle of light and dark-
ness. 'The parallel of lat. Lan is the arctic circle; and will just
touch the circle® of light and darkness. All places on the north
side of the equator, will have a greater portion of their parallels
, of latitude in the dark than in the enlightened hemisplrere, and
- therefore the days will be shorter than the nights. The equator
" is equally divided, and the parallels on the southern side have a
greater portion in the enlightened than in the dark hemisphere.
rs will be the parallel to which the sun is vertical, and “will re-
present the southern tropical circle, because rHe = LHB =

L 23° 28".
4/ V will be the place of the earth at the vernal equinox ; for,
e~ Fig. 12,3 will represent the earth at V with its enlightened and

7

/, dark hemispheres, viewed at right angles to the plane of the
~{_| >4 meridian passing through the sun. The circle of light and

A _—

darkness will pass through the poles and equally divide the pa-
rallels of latitude ; therefore all places will have equal day and
L 2 night, and the sun will be vertical to the equator.
T will be the place of the earth at the summer solstice ; for,
Fig. 12, 4 will represent the earth at T, with its enlightened
and dark hemispheres viewed as before, and the same may be
¢ remarked with respect to the northern and southern hemispheres,
as was observed with respect to the southern and northern when
the earth was at H. Fig. 12, 3 may also represent the earth
whén at P, with its enlightened and dark hemispheres.
"~ 88. An objection to the motion of the earth must be consi-

aThe circle called the circle of light and darkness, is the circle, which is the
boundary, between the dark and enlightened hemispheres.




58 ELEMENTS OF ASTRONOMY. [cHAP. V1.

dered here, which at first sight may appear to have some weight.
No change is observed in the relative position of the fixed stars,
in consequence of that motion. The angular distances of the
fixed stars, observed at different seasons of the year, always re-
main the same, even when observed with the most exquisite in-
struments. But, supposing the motion of the earth in an orbit,
nearly circular, round the sun, the observer in one situation is
nearer some stars by 24000 diameters of the earth, (vid. note,
page 45), than in another, and consequently the angular dis-
tances of those stars ought to appear greater.®

“ Let TDE (Fig. 13) represent the orbit of the earth, T and E the places of
he earth at the solstices, when the axes Pp, P/ p/ of the earth are in a plane which
passes through the sun, and is perpendicular to the plane of the orbit. Let
F be a fixed star in this perpendicular plane. When the earth is at T the
observed distance of the star from the celestial pole is FTP, when at E it is
FEP'. Produce pP to meet FE in R: then the angle F= TRE— FTR =
FEP/—FTP. But these angles are constantly the same, not having any percepti-
ble difference, and therefore the angle subtended by the diameter of the earth’s
orbit, at a star situate in the solstitial colure, is imperceptible. Dr. Bradley took
much pains to ascertain the angle F in the case of y Draconis, a star of the second
magnitude, situate nearly in the plane above mentioned or in the solstitial colure,
about 15° from the pole of the ecliptic. This stanpassing the meridian near his
zenith, admitted of being observed by a zenith sector, an instrument particularly
adapted for observing with great precision near the zenith, where also no errorcan
occur from the uncertainty of refraction. He found the angle F imperceptible by
his observations. My own observations, and those of Mr. Pond, the present As-
tronomer Royal, agree also as to this star, in shewing that the angle F isimpercep-
ble. Let us suppose the angle F = 2", draw the perpendicular EK, then 2 :
206265" (the seconds in an arch = radius) : : sin. 2”: rad : : EK : FE. But
EK :TE: : sin. ETK : radius. For y Draconis the angle ETK == 75° nearly,
hence EK = ,97.TE, and therefore FE = .’%&’{X ,97.TE = 100000.TE nearly.
If the earth therefore move about the sun, the distance of y Draconis must be at
least 200000 times greater than the distance of the sun from the earth, or above
two thousand million diameters of the earth.

The greatest angle the diameter of the earth's orbit subtends at any fixed star,
which is called the parallax of the star, has been, till lately, thought impercepti-
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89. The distance of the fixed stars, proved by the motion of
the earth, is indeed wonderful, yet there is nothing contrary to
our reason or experience in admitting it. 'Why should we limit
the bounds of the universe by the limits of our senses? We see
enough in every department of nature to deter us from rejecting
any hypothesis, merely because it extends our ideas of the crea-
tion and divine Creator.

The best telescopes do not magnify the fixed stars, so as to
submit their diameters to measurement, but it is well ascertain-
ed that the apparent diameter of the brightest of them is less
than 1”. Now being self shining bodies, and not subject, ex-
cept in a few instances, to any apparent alteration, we may con-
clude them to be bodies of the nature of our sun. Butthat the
diameter of the sun may appear less than a second, it must be
removed 1900 times farther from us than at present ; which is
an argument in favour of the vast distance of the fixed stars. It
must however be confessed, that this argument from analogy is
much too weak to be in any degree decisive, and our positive

ble. M. Piazzi, from his observations made at Palermo, suspected a parallax of a
few seconds in several stars. (Vid. Con. des temps, 1808, p. 432). Particular
attention has been paid by myself to this subject, and my observations made with
the circle, 8 feet in diameter, belonging to the Observatory of Trinity College,
Dublin, appeared to point out.a parallax in several stars. The agreement of re-
sults obtained by different sets of observations, seemed to leave no doubt on this
head. However, observations made elsewhere do not confirm my results. An
opportunity will offer further on of again mentioning this question.

Note by the Editor—The celebrated Hooke was the first person that asserted the
existence of annual parallax. His object was that it should serve as an experimen-
tum crucis to determine between the Tychonic and Copernican systems. Hooke’s
observations, however, were too inaccurate to be at all relied on. Flamstead also
asserted the existence of parallax, but did so from having confounded it with aber-
ration. Bradley completely separated these inequalities, and denied the exist-
ence of sensible parallax for the fixed stars.
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knowledge of the immense distance of the fixed stars must de-
pend upon the certainty of our knowledge of the earth’s motion,
of which we have such evidence as must be considered conclu-
sive.

90. Precession of the equinozes.—Although the place of
the celestial pole among the fixed stars has been considered as
not changed by the annual motion of the earth, yet in a longer
period of time it is observed to be changed, and also the situa-
tion of the celestial equator ; while the ecliptic retains the same
situation among the fixed stars. Observation shews that this
change of situation of the pole and equator is nearly regular.
The pole of the celestial equator appears to move with a slow
and nearly uniform motion, in a lesser circle, round the pole of
the ecliptic ; while the intersections of the equator and ecliptic
move backward on the ecliptic, with a motion nearly uniform.
This motion is at the rate of about 1° in 72 years, or more ac-
curately 5@, 2 in a year ; consequently the sun returns again to
the same equinoctial point before he has completed his revolu-
tion in the ecliptic ; so that the equinoxes precede continually
the complete apparent revolution of the sun in the ecliptic: and
hence the term precession of the equinoxes. In consequence of
this apparent motion all the fixed stars increase their longitudes
by 50", 2 in a year, and also change their right ascensions and
declinations. Their latitudes remain the same. The period of
the revolution of the celestial equinoctial pole about the pole of
the ecliptic is nearly 26000 years.

The north celestial pole therefore will be, about 13000 years
hence, nearly 49° from the present polar star ; and about 10000
years hence, the bright star a Lyree will be within 5° of the
north pole. This star therefore which now, in these latitudes,
passes the meridian within a few degrees of the zenith, and
twelve hours after is near the horizon, will then remain nearly
stationary with respect to the horizon. All which will readily
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appear, from considering the celestial concave surface as repre-
sented by a common celestial globe.

91. This motion of the celestial pole originates from a. real
motion in the earth, whereby its axis, preserving the same in-
clination to its orbit, has a slow retrograde conical motion.
The cause of this motion is shewn, by physical astronomy, to
arise from the attraction of the sun and moon on the excess of
matter at the equatoreal parts of the earth. By physical astro-
nomy we are also enabled to account for a small change in the
plane of the ecliptic. Observations, separated by a long in-
terval, point out that the obliquity of the ecliptic is diminish-
ing at nearly the rate of half a second in a year, that is, the
ecliptic appears approaching the equator by half a second in
a year. Physical astronomy shews that this arises from a
change in the plane of the earth’s orbit, occasioned by the
action of the planets: that this change of obliquity will
never exceed a certain small limit: and that by this action of
the planets, the ecliptic is progressive on the equator 14" in a
century.®

The precession of the equinoxes is not entirely uniform, for
a small inequality in the precession, and change in the obli-
quity of the equator to the ecliptic, depending on the position
of the moon’s zodes (the intersections of its path and the eclip-
tic) were discovered by Dr. Bradley, and are confirmed by
physical astronomy. The poles of the equator describe round
their mean places a small ellipse, not differing much from a
circle about 18” in diameter, in 18 years.®

s Hence the annual precession arising from the spheroidical figure of the earth
i8 507,19 4 0//, 14= 50/, 33 annually.

b There is also a solar inequality of precession, depending on the place of the
sun in the ecliptic ; this is never greater than 17,1,
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92. The precession of the equinoxes was first discovered
by Hipparchus. As the quantity of it is so perceptible in a
hundred years, a comparison of the position of the circles of
the sphere, as recorded in the earliest 2ra of astronomy, and of
their position now, has been used to assist chronology.
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CHAPTER VIIL.

ON THE MOTIONS OF THE PRIMARY PLANETS—THE SOLAR OR
COPERNICAN SYSTEM—THE PTOLEMAIC SYSTEM.

93. Havine stated some of the principal arguments for the
motion of the earth, in ‘an orbit nearly circular about the sun,
let us now consider the planets in general. Astronomy has add-
ed much indeed to our knowledge of the creation, by enabling
us to ascertain that the planets are vast bodies, revolving round
the sun in orbits nearly circular, some at greater and others at
less distances than the earth; that some of these bodies are
smaller and others much larger than the earth: and that, ac-

cording to a high degree of probability, they are bodies of the
" same nature as that on which we live. :

94. The principal planets are always observed to be nearly
in the ecliptic, the annual path of the sun on the concave sur-
face ; and for the present let us consider them as seen in the
»eclipti'c.

The most striking circumstance in the planetary motions is
the apparent irregularity of those motions, the planets one while
appearing to move in the same direction among the fixed stars
as the sun and moon, at another in opposite directions, and
sometimes appearing nearly stationary. These irregularities
are only apparent, and arise from a combination of the motion
of the earth and motion of the planet ; the observer, not beihg
conscious of his own motion, attributing the whole motion to
the planet.

95. The planets really move, according to the order of the
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circular about the sun in the centre. As the computed place
always agrees with the observed place, it necessarily follows that
the retrograde, stationary appearances, and direct motions, of
these planets, are explained, by assigning these circular motions
to them.
98. It is easy to demonstrate the retrograde and stationary
appearances.
To do this more clearly, it will be necessary to consider the
. effect of the motion of the spectator arising from the motion of the
/ﬁarth, in changingthe apparent place of a distant body. The spec-
j 7 tator, not being conscious of his own motion, attributes the motion
J V to the body, and conceives himself at rest. Let S be the sun, (Fig.
/ 15) ET the space described by the earth in a small portion of time
which therefore may be considered as rectilinear. The motion
is from E toward T. Let V be a planet, supposed at rest, any
where on the same side of the line of the direction of the earth’s
motion as the sun. Draw EP parallel to TV, then while the
earth moves through ET, the planet supposed at rest will ap-
pear to a spectator, unconscious of his own motion, to have
moved by the angle VEP, which motion is direct, being the
same way as the apparent motion of the sun. ‘And because the
earth appears at rest with respect to the fixed stars, the planet
will appear to have moved forward among the fixed stars by
. the angle VEP = EVT = the motion of the earth, as seen from
the planet supposed at rest. Thus the planet being on the same
side of the line of direction of the earth’s motion as the sun,
will appear, as far as the earth’s motion only is concerned, to
move direct. Let M be a planet any where on the opposite
side of the line of direction, then the planet will appear to move
retrograde by the angle MER. And therefore, as far as the
motion of the earth only is concerned, a planet, when the line of
direction of the earth’s motion is between the sun and planet, will
appear retrograde.
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99. To return to the apparent motion of the inferior planets.
Let the earth be at E, (Fig. 14), and draw two tangents GE and
ED. Then when the planet is at D or G, it is at its greatest
elongation from the sun S. It is clear that the planet being in
the inferior part of its orbit between D and G, relatively to the
carth, and the earth being supposed at rest, the planet will ap-
pear to move from left to right, that is, retrograde : and in the
upper part of the orbit from right to left, that is, direct. But
the earth not being at rest, we are to consider the effect of its
motion. In the case ofan inferior planet, the planet and the sun
are always on the same side of the line of direction of the earth’s
motion, and therefore the effect of the earth’s motion is always
to give an apparent direct motion to the planet, (Art. 98).
Hence in the upper part of the orbit between the greatest elon-
gations, the planet’s motion will appear direct, both on account
of the earth’s motion and its own motion. In the inferior part
of the orbit the planet’s motion will only bhe direct, between the
greatest elongation and the points where the retrograde motion
from the planet’s motion becomes equal to the direct motion
from the earth’s motion. At these points the planet appears
stationary : and between these points, through inferior conjunc-
tion, it appears retrograde. .

100. Next, for the superior planets, or those planets which
are farther from the sun than the earth is. The interval of time
between two succeeding oppositions of a superior planet to the
sun can be observed. A superior planet is in opposition, when
the earth is between the sun and planet. It is known when a
superior planet is in opposition, by observing when it is in the
part of the zodiac opposite to the place of the sun. Let T re-
present the time between two successive oppositions, then view-
ing the planet from the sun, the earth will appear to have gained
an entire revolution, or 360° on the planet, in the time T ; and
the earth and planet being supposed to move with uniform an-

F2
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gular velocities about the sun, the angle gained by the earth will
increase uniformly. )

101. Let TEL (Fig. 16) represent the orbit of the earth,
CDOG that of a superior planet; N the place of the planet
when the earth is at E. Then, in the triangle SNE, we have
the angle SEN by observation, and the angle NSE by compu-
tation. For NSE is the angle at the sun which the earth has
gained on the planet since the preceding opposition. This an-
gle : 360° : : time since opposition: T. The two angles NSE
and SEN being known, the angle SNE is known, and therefore
SN relatively to SE. For sin. SNE : sin, SEN : : SE : SN.
Having thus obtained the distance of a superior planet from the
sun, we can, at any time, by help of the time T, and time of
preceding opposition, compute the angular distance of the earth
from the planet, as seen from the sun, and thence, by help of
the earth’s distance and planet’s distance from the sun, we can
compute the planet’s elongation from the sun. Thus the planet
being at R and the earth at E, we compute the angle RSE, and
knowing the sides ES and SR, we can (by plane trig.) compute
the angle RES, the elongation of the planet from the sun.
This being compared with the observed angle, we always find
them nearly agreeing, and thereby is shewn that the motions of
the superior planets are explained, by those planets moving in
orbits nearly circular about the sun. As the computed place
nearly agrees with the observed place, it necessarily follows that
the retrograde and direct motions, and the stations, of these pla-
nets are explained, by assigning to them these circular motions.

102. And it is easy to demonstrate these appearances. It
is clear that the planet being in any part of its orbit, and the
earth being supposed at rest at any point E, the planet will ap-
pear to move from west to east, or direct. But the earth not
being at rest, we are to consider the effect of its motion. The
earth being at E, draw the tangent DEG, then -if the planet is
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in the upper part of the orbit DCG, it is on the same side of the
line of direction of the earth’s motion as the sun, and therefore
the effect of the earth’s motion is to give an apparent direct mo-
tion to the planet. The earth being at E, and the planet at D
or G, the planet issaid to be in quadrature ; consequently from
quadrature to conjunction, and from conjunction to quadrature,
the planet appears to move direct, both on account of its own
motion and the motion of the earth. If the planet is in the
lower part of the orbit DOG, the effect of the earth’s motion is
to give an apparent retrograde motion to the planet; conse-
quently from quadrature to opposition, and from opposition to
quadrature, the planet moves direct or retrograde according as
the effect of the planet’s motion exceeds, or is less than, the
effect of the earth’s motion. Between quadrature and opposi-
tion their effects become equal, and the planet appears station-
ary, and afterward through opposition to the next station retro-
grade.

103. The apparently irregular motions of the planets among
the fixed stars, must strike the most cursory observer, and it
would not at first be expected that these motions could be.ex-
plained by so simple an arrangement of the bodies. But it is
not enough to establish the true arrangement and true motions
of the bodies, taat the general appearances are explained. It is
necessary that the most minute circumstances of their apparent
motions can be shewn to arise from that arrangement. We have
supposed above that the orbits are accurately circular, that the
planes of these orbitsand that of the earth coincide, and that the
angular motions were uniform ; but if the planes of the orbits co-
incided, if the orbits were accurately circular, and were uniformly
described, the planets would always appear in the ecliptic, and
would always be found exactly in the places which the computa-
tionon the circular hypothesis points out ; but none of these things
take place exactly. The deviation however ean be explained, by
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shewing, that the planes of the orbits of the planets are inclined
to the plane of the earth’s orbit at small angles, and that the or-
bits are not circles, but only nearly circles, being ellipses, not
differing much from circles, as will be shewn farther on. Every
phenomenon, even the most minute, can be deduced from such
an arrangement ; ho doubt therefore would remain of the mo-
tions of the planets, in such orbits, round the sun, even had we
not the evidence derived from physical astronomy.

Another arrangement, known by the name of the Ptolemaic
system, will explain the general appearances of the planetary
motions, will shew when they are direct, stationary, and retro-
grade, and will enable us to compute nearly their apparent
places; but when applied to the more minute circumstances of
their motions, it totally fails.

104. The periodic times of the inferior planets can be de-
duced nearly, from observing the time between two conjunctions,
their orbits being supposed circular.

Let T = the time between two successive inferior or supe-
rior conjunctions.

E = periodic time of the earth.

P = periodic time of the planet.

Then considering the planet’s angular‘motion as uniform, P : E
: : 4 right angles : angle described by planet about the sun in
time of earth’s revolution = 4 right angles -}- angle gained by
planet on earth in time of earth’s revolution.

But the angles gained are as the times of gaining them ;
therefore 4 right angles : 4 right angles 4 angle gained by pla-
net on earth in time of earth’s revolution : : T : T + E

E, conse-

+

a Otherwise thus :—The angle described by the planet in the unit of time is

360 ——, and that by the earth T hence their separation in this time is %EO -—-3—6—0,

E
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quently knowing the time between two inferior conjunctions,
which can be readily observed, we obtain the periodic times of
the planets Mercury and Venus.

The interval between the inferior conjunctions of Mercury is

. . © v e 115%X365 _
115 days, therefore its periodic time = Ti54365 = 87 days.

The interval for Venus is 584 days, and consequently its pe-

584%365 N
MS = 224 dﬂ)s.

105. The periodic times also of the superior planets can be
obtained, from observing the time between two successive oppo-
sitions.

Let T, E, and P represent asbefore. ThenP : E : : 4 right
angles : angle described by planet in time of earth’s revolution =
4 right angles—angle gained by earth on planet intime of earth’s
rev. Also 4 right angles : 4 right angles—angle gained by earth
intimeE:: T:T—E, hence P :E : : T : T—E, therefore P=
TXE
T—E'

The interval between two oppositions of the Georgium Sidus
is 369§ days ; hence the periodic time of the Georgium Sidus

369,75%365,2 X :
=20TIXI53 _ g9 x 365 = 82 years. For Saturn, the in-

riodic time =

4,5
terval is 378 days, and consequently the periodic time of Saturn
=::—:i%%i=295 X 365} = 29} years. In like manner the pe-

riodic times of the other superior planets may be nearly deter-

mined.
106. The inclinations of the planes of the orbits of all the

but since they separate by 360 in the time T their separation in the unit of time is
- TE
also 3T(?9: equating these quantities we have % —--]1: =.,Il‘. whence l’=m

. T
For the superior planets the equation is %— % =—i- ,whence P = l_E —Fd.

it
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planets, except Pallas, to the plane of the earth’s orbit are small.
The method of ascertaining the inclinations will be afterward
shewn. The points, in which a planet’s orbit intersects the
plane of the earth’s orbit, are called nodes. The node through
which the planet passes from the southern to the northern side
of the ecliptic, is called the ascending node, and the other the
descending node.

When an inferior planet is near one of its nodes at inferior
conjunction, it appears a dark spot on the sun’s surface, and
thereby is shewn that the inferior planets receive their light
from the sun. When Venus is in superior conjunction, at a
considerable distance from its node, it may be seen, by help of
a telescope, to exhibit an entire circular disc. Indeed all the
different appearances of the inferior planets, as seen through a
telescope, are consistent with their being opaque bodies, illu-
minated by and moving about the sun in orbits nearly circular.
Near inferior conjunction they appear crescents, exhibiting the
same appearance as the moon a few days old. At the greatest
elongation they appear like the moon when halved, and between
the greatest elongation and superior conjunction they appear
gibbous, or like the moon between being halved and full.

107. These appearances are easily explained.—The planet
being a spherical body, the hemisphere turned toward the sun
is illuminated. A small part only of this hemisphere is turned
toward the earth, when the planet is near inferior conjunction.
Half the enlightened hemisphere is turned toward the earth,
when the planet is at its greatest elongation. More than half,
when the planet is between its greatest elongation and superior
conjunction. »

For, generally, both with respect to inferior and superior
planets, the greatest breadth of the part of the illumined hemis-
phere turned toward the earth, is proportional to the exterior
angle at the planet, formed by lines drawn from the planet to
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the sun and earth. Let PS (Fig. 17) be in the direction of the
sun, PE in that of the earth, IPHLO the section of the planet
in the plane of the earth’s orbit. Draw HO perpendicular to
EP, and HIO is the greatest breadth of the hemisphere turned
toward the earth ;- IL being perpendicular to SP, IHL is the
greatest breadth of the illuminated hemisphere ; and HI com-
mon to each, is the greatest breadth of the illuminated part seen
from the earth. The measure of this is the angle IPH = IPS
<+ SPH = HPG + SPH = SPG the exterior angle at the
planet. Now near inferior conjunction the exterior angle is.
less than a right angle ; at the greatest elongation it is a right
angle ; and afterwards greater than a right angle. Therefore
the breadth of the illuminated part is respectively less than a
quadrant, equal to a quadrant, and greater than a quadrant.

108. It is easy to see that as the planets appear flat discs on
" the concave surface, so their illumined parts will be projected
on the flat surface, and the greatest breadth will be projected
into its versed sine, as in Fig. 18. 1, 18. 2, 18. 3, where IH is '
projected into its versed sine AB. Because the projection of a
circle, inclined to a surface, by right lines perpendicular to that
surface, is an ellipse, the inner termination PS of the enlight-
ened part appears elliptical, and the enlightened surface : surface
of planet : : AB: AC : : versed sine of exterior angle : dia-
meter.

109. With respect to the superior planets ; the exterior an-
gle of the planet is least when the planet is in quadrature. For,
when the exterior is least the interior is greatest. Now it is
evident that SGE, (Fig. 16) when GE is a tangent to the orbit
of the earth, is greater than when E is at any other point, and
therefore the planet being in quadrature, the exterior angle is
least. SGE for every superior planet is acute, and the exterior
angle obtuse, and consequently its versed sine is greater than ra-
dius. Whence more than half the disc of a superior planet is
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always seen, and it appears most gibbous in quadrature. Mars
then appears gibbous about } of his diameter; Jupiter only
by about +}5 of his diameter, which quantity is imperceptible,
even by a telescope ; because Jupiter’s disc then only subtends
an angle of 30". Accordingly all the superior planets, except
Mars, appear always with a full face. The new planets appear
so small, that it cannot be expected that they should appear in
any degree gibbous.

110. The brightness of a planet depends both on the quan-
tity of illuminated surface and its distance. The greater the
distance is, the less the brightness ; which, the illuminated sur-
face remaining the same, decreases as the square of the distance
increases, so that in computing when a planet appears brightest,
both the illuminated surface and distance must be taken into the
account. Both circumstances concur in making a superior pla-
net appear brightest at opposition. The inferior planets are
not brightest at superior conjunction, because of their greater
distance ; and near inferior conjunction, the illuminated part
visible to us is very small. The place of greatest brightness
then lies between inferior and superior conjunction.

The solution of the problem to find when Venus appears
brightest, gives her elongation then about 40 degrees. The
places of greatest brightness are between the places of greatest
elongation and inferior conjunction. This agrees very well
with observation. When she is near this position she occasions
a strong shadow in the absence of the sun ; and for a consider-
able time both before and after she is at this elongation, she
may be readily seen in full day-light by the naked eye.

111. From inferior to superior conjunction Venus is to the
westward of the sun, and therefore rises before the sun, and by
the splendor of her appearance, being much noticed, is called
the morning star. From superior to inferior conjunction she
appears to the eastward of the sun, and therefore does not set
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till after the sun, and is then called the evening star. Jupiter,
which approaches much nearer in splendor to Venus than any
other planet, is sometimes called a morning or evening star,
according as it rises before or sets after the sun, and when
near opposition may be called both an evening and morning
star.

112. The following TABLE exhibits at one view the princi-
pal outlines of the planetary system.
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The times and arcs of retrogradation are computed on the
supposition that the orbits are circular.

The apparent diameters of the new planets have not been
ascertained. They are too small to be measured by micro-
meters.

Dr. Herschel thinks that if the diameter of any one of them
amounted to { of a second, he should have been able to have
ascertained it.—Phil. Tran. Part. 1, 1805.

The minuteness of these bodies has induced him to class
them as distinct from the planets, under the name of Asteroids.
It may be observed that an apparent diameter of } of a second
in opposition would give a real diameter of 222 miles.

113. Perhaps the most striking circumstance in the above
table, is the great velocities with which the planets move ; and
this is more impressed, when we consider that of the earth on
which we live, the velocity of which is 90 times greater than
the velocity of sound. In contemplating these velocities, it
cannot but occur to us how great a power is necessary to be
continually acting, to circumflect the planets about the sun, and
compel them to leave the tangential direction. A power that
acts incessantly, and is able to counteract the great velocities of
the planets, must excite our inquiries as to its origin and law
of action.

We can ascertain that this power is constantly directed to-
wards the sun, increases in intensity as the square of the distance
from the sun decreases, and. that it is the same power which is
diffused through the whole planetary system, only varying in
quantity as the square of the distance from the sun is varied.
So far physical astronomy teaches ; but the proximate cause of
this power, or solar gravity, as it may be called, is unknown.
We cannot trace by what agency the Supreme Being, from
whom all things originate, has ordained the operations and laws
of gravity to be executed.




CHAP. VIL] PTOLEMAIC SYSTEM. 77

114. By a comparison of the distances and periodic times,|
which are determined independently of each other, it will be
seen that the squares of the periodic times are as the cubes of
the distances. This relation was first found out by Kepler.
For a long time no necessary connexion was discovered between
the periodic times and distances, till at last it was shewn to be
a consequence of the law of gravity above-mentioned. .

115. At present we know of no secondary cause that could
have any influence in regulating the respective distances of the
planets from the sun ; yet there appears a relation between the
distances, that cannot be considered as accidental. This was
first observed by Professor Bode of Berlin, who remarked that
a planet was wanting, at the distance at which the new planets
have since been discovered, to complete the relation. Accord-
ing to him, the distance of the planets may be expressed nearly ‘-
as follows, the earth’s distance from the sun being 10.. ' .

4 . %\L A

Mercury 4 =

Venus 443x%x1 = 7
Earth 443x2 = 10
Mars 44-3%x2* = 16
New planets 443x23 = 28
Jupiter 443x2¢ = 52
Saturn 44-3x2° = 100
Georgium Sidus 443X 2° = 196

Comparing these with the mean distances above given, we
cannot but remark the near agreement, and can scarcely hesitate
to pronounce that these mean distances were assigned according
to a law, although we are entirely ignorant of the exact law and
of the reason for that law.

116. Astronomy must have been considerably advanced be-
fore any attempts were made to ascertain the position of the
planets with respect to the sun and to each other, and to deve-
lope their motions. It is said, however, that the Egyptians very
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) early concelved the motions of the planets Mercury and Venus
to be about the sun, and also that the Pythagoreans considéred
the sun as the centre about which the planets performed their
motxons But their opinions are so 1mperfectly expressed in the
few scattered notices which are found in different authors, that
little can be known with certainty about them.
" The distinguished astronomers of the Alexandrian school,
Aristarchus, Eratogthenes, Hipparchug, and others, seem not to
have attempted any theory of the planetary motions, notwith-
standing they far excelled in other parts of astronomical know-
ledge all that had gone before. And we are certain that till
Ptolemy, who wrote about 140 years after the birth of Christ,

published the system that goes by his name, the motions of the

planets were not submitted to regular calculation.

In the Ptolemaic system, the earth is supposed immoveable
in the centre, about which: the Moon, Mercury, Venus, the Sun,
Mars, Jupiter, and Saturn are supposed to revolve in different

periodsand in the order stated. = All these bedies, as well asthe -

fixed stars, were likewise supposed to be carried round the earth
by the motion of the primum mobile in 24 hours. The latter
opinion appears now so unphilosophical, that we are apt to
judgeby it of the rest, and despise the whole Ptolemaic system,
as unworthy of consideration. However, that part of the system
by which the inequalities of the planetary motions were ex-
plained ¢s well worthy of examination, and seems in some mea-
sure entitled to the credit which it possessed for near fourteen
centuries.

117. The motions of the inferior planets were supposeé to
be as follow. Let E (Fig. 19) be the earth, SS’ the path of
the sun, V Venus in inferior conjunction. Venus is supposed
to move uniformly in a circle which is carried uniformly round
the earth. Let V N be the circle in which Venus moves, while
this circle is moved uniformly about the earth. The circle in

Qi
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which the planet moves is called the epicycle, and that on which
the centre of the epicycle moves is called the deferent. The
epicycle is described in the time between two inferior conjunc-
tions of the planet, and the deferent is described in the time of
the earth’s revolution about the sun. It is easy to see that such
a combination of motions will represent the motion of the pla-
net. AtV the motion of the planet being towards N, and that
of the epicycle towards D', the former motion about E exceed-
ing the latter, the planet appears retrograde when seen from E.
But it will readily appear generally, that the angular distance
of the planet from the sun is always rightly represented in this
system, and therefore the apparent motion of the planet. When
D has moved to D’, let V’ be the place of the planet. Pro-
duce ED'to S/, and S’ will be the place of the sun; because
the time of describing the deferent is the same as the period of
the sun’s motion. The angle V'D’E will answer to the angle
gained by the planet on the earth in Art. 97, and Fig. 14.
Hence if the radius of the deferent : radius of epicycle : : SE :
SP (Fig. 14) : : distance of earth from sun : distance of planet
from sun in the true system ; the triangle EV’'D’ will be always
equiangular to the triangle ESP; and therefore as we have -
shewn that the angle SEP rightly represents the elongation of
the planet from the sun, S"EV’ will also rightly represent the
elongation, and therefore this system will rightly represent the
motion of the inferior planets. .‘
118. The motions of the superior planets were supposed to
“be in epicycles, each descrlbed in the time between two conjunc- °
tions or oppositions ; but the deferents were described in the
same times as the planets revolve round the sun in the true sys-
tem, that is, the epicycle of Saturn was described in 378 days,
and the deferent in 29} years. Let DD’ (Fig. 20) be the de-
ferent of a superior planet, M the planet in opposition, the sun
being at S. 'When the centre of the epicycle is at D/, let M’
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be the place of the planet and §' that of the sun, produce D’E
to P. Then M'DE will answer to the angle gained by the
earth on planet in Art. 101, and Fig. 16, but SES — DED’ =
angle gained, because the deferent is described in the periodic
time of the planet. Hence M'D’E = S’/ES — PES = PES’ :
therefore D’M’ and S’E are parallel, and consequently MES' =
D'M’E. But if the radius of the epicycle : radjus of the de-
ferent : : SE : SN (Fig. 16) : : distance of earth from sun:
distance of planet from sun in true system ; the triangle ED’M’
will be always equiangular to SEN (Fig. 16). Hence D’'M'E,
and therefore S’EM’ will always shew the true angular distance
of the sun from the planet, and so the motions of the superior
planets will be rightly represented.

119. There are some circumstances in the Ptolemaic system
that ought naturally to have led to the true system. The for-
mer determines nothing with respect to the distances of the pla-
nets from the earth; it only requires that the proportion of the
radii of the deferent and epicycle be such as to represent the

" motion for each planet. The distances therefore are arbitrary.
If we take the radius of the deferent of an inferior planet equal
to the radius of the sun’s orbit, we immediately have the inferior
planets revolving round the sun, while the sun is carried round
the earth, according to the reported system of the Egyptians.
This simplification of the Ptolemaic system with respect to the
inferior planets is so obvious, that we may suppose it soon oc-
curred without any reference to the Egyptian system, and to have
been the first advance toward the true system. We know it is
mentioned by Martianus Capella, who appears to have lived in
the fifth century, and by others long before the time of Coper-
nicus. If we take the radius of the deferent of a superior pla-
net equal to the planet’s true distance from the sun, the radius
of the epicycle for each planet will be the earth’s distance from
the sun. This striking circumstance might have led Coperni-
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cus to simplify the system, by giving a motion to the earth, by
which one circle is made to serve the purpose of several equal
ones.

120. Although the Ptolemaic system explains the general
appearances with much simplicity ; yet when it was applied to
explain those appearances which arise from the inclination of
the orbits to the ecliptic, from the eccentricities and the une-
qual motions in those orbits, the introduction of other circles
beside the deferent and epicycle being necessary, the system be-
came very complex, and much ingenuity and mathematical sa-
gacity were shewn in adapting it to different circumstances.
Had the instruments now in use then existed, a very few obser-
vations would have been sufficient to have completely over-
thrown all those speculations. But the state of instruments and
of observations was such in the time of Copernicus, after whom
the true system has justly been named, that he could use scarcely
any arguments in support of his system but what he derived
from its simplicity. It was only a short time before his death,
in 1543, at the age of 71, he ventured to propose his system to
the world, in his work entitled «De Revolutionibus Orbium,”
after having meditated upon it above 36 years. It does not
seem to have made much impression till above half a century
after, when Galileo, aided by his telescope, was enabled to bring
most powerful arguments in favour of it. His observation of
the gibbosity of Venus was decisive in favour of the motion of
Venus about the sun. Had the motion of Venus been accord-
ing to the Ptolemaic system, it must always have appeared in a
telescope as a crescent.

121. The ancients observing that the planets moved faster
or slower according to the place of the ecliptic they were in,
when in opposition, or near conjunction, named this the first
inequality. 'The retrograde, stationary, and direct appearances
they called the second inequality. Copernicus, who conceived

G
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that the celestial motions were necessarily performed in circles,
was obliged to retain epicycles to explain the first inequality.

. 122. Although there was nothing in the Ptolemaic system,
that could properly lead to the knowledge of the actual distances
of the planets from the earth ; yet as the system appeared very
imperfect without it, astronomers substituted an hypothesis rest-
ing on no foundation. They imagined that the convex boundary
of the space, within which the epicycle of a planet performed
its motion, was the concave boundary of the space belonging to
the next ; and as they knew, although inaccurately, the distance
of the moon, they obtained from it the distance of Mercury ;
from the distance of Mercury that of Venus, &c. The dis-
tances obtained in this way differed extremely, as might be ex-
pected, from the truth. Till therefore the Copernican system
was established, nothing whatever was known with respect to
the actual distances, and consequently the magnitudes, of any of
the planets. But the distances of the sun and moon, although
very inaccurate, were deduced from just principles.
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CHAPTER VIIL

ON THE SECONDARY PLANETS AND MOON—ATMOSPHERES OF PLA-
NETS—RINGS OF SATURN—COMETS.

123. Four small stars, only visible by the help of telescopes,
always accompany Jupiter, and are continually changing their
positions with respect to each other and Jupiter. They are call-
ed satellites and secondary planets. The first satellite is that
which elongates itself least from Jupiter, &c. They clearly
shew that Jupiter is an opaque body enlightened by the sun ;
for when they intervene between him and the sun, they project
a shadow on his disc. They themselvesare also opaque bodies
illuminated by the sun ; for when the planet intervenes between
any of them and the sun, they are eclipsed. The phznomena
prove that they revolve about their primary at different distances
in orbits nearly circular, while they are carried together with
their primary about the sun. Their orbits are inclined to the
plane of Jupiter’s orbit, as is concluded from the unequal dura-
tions of the eclipses of the same satellite. The fourth satellite
is sometimes in opposition to the sun, without being eclipsed. !
This is owing to the inclination of its orbit and great distance
from Jupiter. The third and fourth satellites disappear and
re-appear on the same side of Jupiter. Only the beginnings or
the endings of the eclipses of the first and second satellite are
visible.

124. Let S (Fig. 21) be the sun; I Jupiter and its shadow;
A and P the earth before and after the opposition of Jupiter ;

G2
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sp the path of the first satellite in the shadow ; A¢ a tangeént to
Jupiter. When the first satellite enters the shadow, the appa-
rent distance of the satellite from the body of Jupiter is ¢As ;
but at its emersion, the line pA always passes through Jupiter,
and therefore the emersion is invisible ; but after opposition, the
earth being at P, the emersion and not the immersion will be
visible. The same things take place with respect to the second
satellite. If mn be the path of the third satellite, mA frequently
lies without the body of Jupiter, and therefore both the immer-
sion and emersion are visible ; and the phznomena are very
striking, from the circumstances of the satellite disappearing
and re-appearing at a distance from the body of Jupiter on the
same side. The same may be observed with respect to the
fourth satellite. Before the opposition of Jupiter to the sun, the
eclipses happen on the west side of Jupiter ; after opposition, on
the east. If the telescope invert, the contrary takes place.

125. It has long been suspected, that the satellites of Jupi-
ter revolve on their axes ; and lately Dr. Herschel has observed
that each of them revolves in the time of its revolution round
the primary.2 Their motions about the primary, and their mo-
tions about their axes, are from west to east.

126. Their distances in semi-diameters of Jupiter, and their
periodic times are nearly as follow :

Sat. Dist, Per. Sat. Dist. Per.
I - 6 - 1418 IIm - 14 - 74 4r
IIr - 9 - 3113 IVv. - 26 - 16%16"

They must be very magnificent objects to the inhabitants of
Jupiter. The first satellite appears to them with a disc four
times greater than ‘that of our moon appears to us, and goes
through all the changes of our moon in the short space of 42

 Phil. Trans. 1797, page 332.
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hours, within that period being itself eclipsed, and causing an
eclipse of the sun on the surface of Jupiter.

127. The order of their magnitudes is 3¢, 4%, 1st, 24, ac-
cording to Dr. Herschel. Their masses, that of the earth be-
ing 1000, and therefore of the moon 14, are

Sat. Mass. Sat. Mass.
el - - 5 m - - 27
Im - - 7 Iv. - - 13

123. The satellites of Jupiter, at their greatest elongations,
appear nearly in the direction of the equator of Jupiter, because
the equator of Jupiter and the orbits of the satellites are inclined
at small angles, to the plane of Jupiter’s orbit. The direction
of Jupiter’s equator is marked by the delts of Jupiter, which are
faint shades, parallel to each other, on the body of Jupiter, and
which frequently undergo such changes, that they have been
supposed to be somewhat of the nature of clouds in his atmos-
phere ; but, from some unknown cause, more permanent than
our clouds. ,

129. Galileo discovered the four satellites of Jupiter, Jan.
7, 1610. This, which might naturally have been a source of
delight, was at first a subject of disappointment. He supposed
them to be fixed stars, and found, looking at them on the next
night, that Jupiter was to the eastward of them, whence he con-
cluded the motion of Jupiter direct ; whereas, according to the
Copernican system, it ought then to have been retrograde ; but
he soon discovered that the motion was in what he took for fixed
stars, and announced his discovery to the world. Harriot also
appears to have discovered them about the same time that Ga-
lileo did.

® These masses are according to the determination of M. La Place, (Mecan. Ce-
lest. tom. 4, p. 126). It has been thought right to mention their masses, as well as
some other particulars of the satellites, although they require investigations that
could not properly be stated here.
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This discovery was very important in its consequences. It
furnished, as we shall see, a ready method of finding the longi-
tude of places by means of the eclipses of the satellites that so
frequently take place. This made the echipses be particularly
attended to; which led Roemer to discover that the transmis-
sion of light is not instantaneous ; and this led Bradley to ac-
count for a small apparent motion of the fixed stars, called the
aberration of light, which has furnished an independent proof
of the motion of the earth, as strong as that from physical con-
siderations.

130. Saturn has seven satellites revolving about him in orbits
nearly circular. Of which the sixth is seen without much diffi-
culty, and was called the Huygenian satellite, from having been
discovered by Huygens. The 3d, 4th, 5th, and 7th were after-
ward discovered. Dr. Herschel discovered the first and se-
cond.

It has long been supposed that the 7th (formerly the 5th)
satellite revolved on its axis in the time of its revolution round
Saturn. This has been confirmed by the observations of Dr.
Herschel. These satellites, except the sixth, require a very
good telescope to render them visible. On which account they
have been much less attended to than the satellites of Jupiter.
The distances from Saturn in semi-diameters of Saturn, and pe-
riodic times, are nearly as follow :

Sat. Dist. Per. Sat. Dist. Per.

I - 28 - 0a22h vV - 87 - 44]2
I - 35 - 14 8 VI - 20,3 - 154220
I - 48 - 1421t VII - 59,1 - 79¢ Tv

IV - 63 - 2417

131. Dr. Herschel long ago discovered two satellites to the
Georgium Sidus. Their orbits are nearly perpendicular to the
orbit of their primary. He has since observed four others.

The relation of the periodic times, and distances of the sa-



CHAP. VHI.] SECONDARY PLANETS. . 87

tellites from their primary, holds in all the secondaries of each
planet respectively.

132. Next to the sun, the most interesting to us, of all the
celestial bodies, is our own satellite, the moon. It apparently.
describes, by a motion from west to east, on the concave surface
of the celestial sphere, a great circle nearly, intersecting the
ecliptic at an angle of about 5°. This apparent motion is ex--
plained by a real motion round the earth, in an orbit inclined to
that of the earth, at an angle of 5°. The periodic time, or time of
return to the same point of the concave surface, or the same fixed
star, is 27 d. 7 h. 43m. The variation of diameter shews the
variation of distance is greater than the variation of the sun’s
distance. The greatest diameter is 33'%, least 29'%, and the
mean 31’z. The moon is carried with the earth in its annual
motion round the sun. This necessarily follows, if the motion
of the earth be granted, and is well illustrated by the motion of
the satellites of Jupiter and Saturn. The apparent motion of
the moon on the celestial concave surface varies considerably
from its mean quantity, and its variations seem very irregular.
Its greatest hourly motion in its great circle is 33/ 407, its least
27, mean 32’ 56" ; so that in its mean quantity it moves over an
arch equal to its apparent diameter in about an hour.

133. The intersections of its apparent path with the ecliptic,
or the intersections of its orbit and the earth’s orbit, called its
nodes, are not fixed, but move backward, completing a revolu-
tion in 6798 days = 18 years 228 days. If we conceive then,
a great circle inclined to the ecliptic, at an angle of 5 degrees,
and a body moving in this circle at the rate of about 33’ in an
hour, while the circle itself is carried backward with a slow mo-
tion of 8" an hour, the path of this body on the concave surface
will in some measure represent the path of the moon. The more
accurate considerations of the lunar motions will be resumed
hereafter. The full investigation of the motions of the moon is
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one of the most intricate, and, as connected with finding the lon-
gitude at sea, one of the most useful problems in astronomy.
Perhaps in no instance has modern science reaped so much cre-
dit as from the success that has followed the attempt to com-
pletely develope the lunar motions.

134. The phases of the moon are particularly interesting ;
they prove the moon to be a spherical body illumined by the
sun. When in conjunction with the sun, the moon is invisible :
when, moving from the sun toward the east, it is first visible, it is
cailed the new moon, and appears a crescent : when 90 degrees
from the sun it is halved, when more distant it is’ gibbous, and
when in opposition, it shines with a full face ; approaching the
sun toward the east, it becomes again gibbous, then halved, and
lastly a crescent, after which it disappears, from the superior
lustre of the sun, and the smallness of the illumined part which
is turned toward the earth.

135, The enlightened part varies nearly as the versed sine

of the angle of elongation from the sun. It is proved in the

same manner® as for the planets, that the enlightened part varies
as the versed sine of the exterior angle at the moon. But, this
exterior angle is equal to the angle of elongation 4- angle sub-
tended at the sun by the earth and moon. The latter angle ne-
ver amounts to 10, and therefore is inconsiderable.

136. The time between two conjunctions or two oppositions
called a lunation, and synodic month, is greater than the time
of a revolution in the orbit, or the time of return to the same
fixed star. Because, when the latter time is completed, the
moon has to move a farther space to overtake the sun.

Let S =period of sun’s apparent motion about the earth.

P = period of moon’s motion about the earth.

a Art. 107 and 108.
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L = period between conjunction and conjunction, or of
a lunation.

Then S: P : : 4 right angles : angle described by sun in the
moon’s periodic time = angle gained by the moon in the time
L—P.

But the angles gained by the moon are as the times of gain-
ing them. Therefore,

4 right angles : angle gained by moon in time L—P:: L:
L—P. Hence
8S:P::L:L— PorS'L::P;L—PorS:S-i-L::

SXL __ 365,25%29,53
P: L, therefore P = ¢ :L % 4?;8— = 27 days, 7 hours,

40 minutes nearly.

137. In 19 solar years of 3654 days, there .are 235 luna-
tions and 1 hour. Therefore, considering only the mean mo-
tion, at the end of 19 years, the full moons fall again upon the
same days of the month, and only one hour sooner. This is
called the Metonic Cycle, from Meton, who published it at the
Olympic Games, in the year 433 B. C. 'This period of 19 years

has been always in much estimation for its use in forming the |

calendar ; and from that circumstance, the numbers of this ‘

cycle have been called the golden numbers.

138. The cause of the appearance of the whole moon, ob-
served a few days before and after the new moon, is the reflec-
tion of light from the earth. When the moon becomes consi-

3600 3600, it is lo360

3 Or thus :—The separation in the unit of time is —— S T b

hence we have = — 1 = L and therefore P=S:I | The quantity L here used
P S L S+L
may be computed as follows ; let the mean daily motions of the sun and moon about
the earth be a and b, then in the time L the separation will be L.. () — @) == 360°,
360 _Ep.
—a

therefore L =
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derably elongated from the sun, itis then out of the way of this
reflection. 'This pheenomenon affords a remarkable proof, that
of two objects of the same magnitude, the brighter object ap-
pears larger.

139. One of the earliest attempts upon record to discover
the distance of the sun from the earth, was from observing when
the moon was exactly halved or dichotomised. At that time
the angle at the moon, formed by lines drawn from the moon to
the sun and earth, is exactly a right angle ; therefore if the elon-
gation of the moon from the sun be exactly observed, the dis-
tance of the sun from the earth will be had, that of the moon
being known, by the solution of a right angled triangle, that is,
sun’s distance : moon’s distance : : rad : cos. moon’s elongation.
The uncertainty in observing when the moon was exactly dicho-
tomised, rendered this method of little value to the ancients.
However, by the assistance of micrometers, it may be performed
with considerable accuracy. Vendelinus, observing at Majorca,
the climate of which is well adapted to observation, determined,
in 1650, the sun’s distance, by this method, very considerably
nearer than had been done at that time by any other method.

This method is particularly worthy of attention, being the
first attempt for the solution of the important problem of finding
the sun’s distance. It was used by Aristarchus of Samos, who
observed at Alexandria, about 280 years before the commence-
ment of the christian @ra.

140. Viewing the moon with a telescope, several curious
phenomena offer themselves. Great variety is exhibited on her
disc. There are spots differing very considerably in degrees of
brightness. Some are almost dark. Many of the dark spots
must necessarily be excavations on the surface or valleys between
mountains, from the circumstances of the shades of light which
they exhibit. There is no reason to suppose that there is any
large collection of water in the moon ; for if there were, when

—_—— -
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the boundary of light and darkness passes through it, it must
necessarily exhibit a regular curve, which is never observed.
The non-existence of large collections of water is also probable
from the circumstance of no changes being observed on her sur-
face, such as would be produced by vapours or clouds ; for, al-
though, as will be remarked, the atmosphere of the moon is
comparatively of small extent, yet it is probable that an atmos-
phere does exist.

141. That there are lunar mountains is strikingly apparent,
by a variety of bright detached spots almost always to be seen
on the dark part, near the separation of light and darkness.

These are tops of eminences enlightened by the sun, while
their lower parts are in darkness. But sometimes light spots
have been seen at such a distance from the bright part, that
they could not arise from the light of the sun. Dr. Herschel
has particularly noticed such at two or three different times.
These he supposes are volcanoes. He measured the diameter
of one, and found it = 3", which answers to four miles on the
surface of the moon.

142. The heights of lunar mountains may be ascertained by
measuring with a micrometer the distance between the top of
the mountain, at the instant it first becomes illuminated, and the
circle of light and darkness. This measurement is to be made
in a direction perpendicular to the line, joining the extremities
of the horns.

Let ADB (Fig. 22) be the circle of light and darkness, T
the top of a mountain just illumined by the ray DT coming in
a direction perpendicular to the plane of the circle ADB, and
being a tangent to the surface at D. Let S be at the surface,
or the bottom of the mountain, and C the centre of the moon ;
then (by Euclid, 3 B. 36.) TS (TS + 2CS) = DT* or, TS be-
ing very small compared with CS, TS X 2 CS = DT?,or TS=
DT*

2CS" We cannot measure DT d{rectly, because we observe

/7]
=
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only the projection of DT on the plane of the circle of vision
AOB. Now DT is perpendicular to the plane of the circle
ADB, and therefore makes an angle with the plane of the cir-
cle of vision = the complement of the spherical angle OAB.
Therefore DT observed = DT X sine OAB = DT X sine® of
the angle of elongation of the moon from the sun. Hence DT =
DT observed (DT observed)*

sin. elong. and consequently TS = 2CS x sin.? elor)lg.

Old writers on astronomy, when mentioning this problem,
have not considered that the projection of DT was only mea-
sured, and not DT itself, as has been remarked by Dr. Her-
schel. Their methods therefore only held when the moon was
elongated 90° from the sun.?

8 Art, 135.

b Ricciolus mentions that, on the fourth day after new moon, he observed the top
of the hill, called St. Catherine’s, to be illuminated, and that it was distant from the
confines of the lucid part, about a sixteenth of the moon’s diameter. Hence com-
puting according to his method, that is, supposing DT itself §; part of the moon’s
diameter, and calling the moon’s diameter unity,

" TS==J; X j==1g)s part of the moon’s diameter, and as the moon’s diameter =

2000 miles nearly, TS = ’:-5;': == 8 miles nearly, the height of St. Catherine’s accord-

ing to Ricciolus : but on the fourth day after new moon, the moon could not be far-
8 miles

ther elongated from the sun than 48°. Therefore TS could not be less than T

8
= (—7—4)—,-= 143 miles nearly. But later astronomers are not inclined to allow of so
ol

great an elevation to any of the lunar mountains. Dr. Herschel investigated the
heights of a great many ; and he thinks that, a few excepted, they generally do not
exceed half a mile. But there seems to be little doubt that there are mountains on
the surface of the moon, which much exceed those on the surface of our earth, tak-
ing into consideration the relative magnitudes of the moon and earth. M. Schroeter
determined the height of one, called Leibnitz, to be 25,000 feet, whereas the hcight
of Chimborazo is not 20,000 feet: so that, taking into consideration the relative
magnitudes of the earth and moon, this lunar mountain will be five times higher
than any of the terrestrial mountains.
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143. It is not the least remarkable circumstance of the moon,
that it always exhibits nearly the same face to us. We always
observe nearly the same spots, and that they are always nearly
in the same position with respect to the edge of the moon.
Therefore as we are certain of the motion of the moon round the
earth, we conclude that the moon must revolve on an axis nearly
perpendicular to the plane of her orbit, in the same time that
she moves round the earth, viz. in 27} days. This must neces-
sarily take place in order that the same face may be continually
turned toward the earth during a whole revolution in her orbit.
The motion of the moon in her orbit is not equable, therefore if
the rotation on her axis be equable, there must be parts in her
eastern and western edges, which are only occasionally seen.
These changes, called her libration in longitude, are found to
be such as agree with an equable motion of rotation. There
are parts about her poles only occasionally visible. This, called
her libration in latitude, arises from her axis being constantly
inclined to the plane of her orbit, in an angle of 86°. A diur-
nal libration also takes place ; at rising, a part of the western
edge is seen, that is invisible at setting, and the contrary takes
place with respect to the eastern edge. This is occasioned by
the change of place in the spectator, occasioned by the earth’s
rotation.

144. A few remarks may be here made concerning the rising
and setting of the moon, at different seasons, and of some other
circumstances of moon-light.

The rising and setting of the moon is most interesting at and -
near full moon. At full moon, it is in or near that part of the
ecliptic, opposite to the sun. Hence at full moon, at midsum-
mer, it is in or near the most southern part of the ecliptic, and
consequently appears but for a short time above the horizon ;
and so there is little moon-light in summer, when it would be
useless. In mid-winter, at full, it is near or in the northernmost
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part of the egliptic, and therefore remains long above the hori-
zon, and the quantity of moon-light is then greatest when it is
most wanted ; and this is the more striking, the nearer the place
is to the north pole. There, at mid-winter, the moon does not
set for fifteen days together, namely, from the first to the last
quarter.

145. The moon, by its motion from west to east, rises later
every day, but the retardations of rising are very unequal. In
northern latitudes, when the moon is near the vernal intersection
of the eclipticand equator, or the beginning of Aries, the retar-
dation of rising is least, and when near the beginning of Libra,
greatest. 'This will appear by considering that when Aries is
rising, the part of the ecliptic below the horizon makes the least
angle with the horizon, and when Libra is rising, the greatest.2

8 To explain thismore fully, let H’ CH (Fig. 23) represent a portion of tbe hori-
zon, CL a portion of the ecliptic when the beginning of Aries is at C, and CMN a
portion of the equator. Suppose the moon to rise at C on one night, then after a
revolution of the concave surface, the circles will come again into the same position
with respect to the horizon, but the moon will have advanced, suppose to L (in this
illustration we consider the moon as moving in the ecliptic). Let HL be a parallel
to the equator, then on the second night the moon will rise nearly at H, and there-
fore HM and LN being s daries to the equator, MN +- 23k 56@ or CN — CM -
23h 56m will be the interval elapsed between two successive risings. If CL/ be a

portion of the ecliptic when the moon in Libra is rising, and L’ the place of the
moon on the second night, then H’ will be nearly the place of its rising, and the in-
terval will be M'N-4-23056™ or CN4 CM/—|-23h 56m, It will readily appear that
CM’ =CM, because LN = L/N nearly. Hence the retardation, when the moon
rises in Libra, is greater than the retardation when the moon is in Aries, by 2CM
reduced to time. It is easy to see that these are the two extremes of retardation.
The angle kCN = obliquity of the ecliptic, and H’CM/ == HCM = compl. of Lat.
Hence by spherical trigonometry,

sine LN (HM) =sine ob. ecl. X sine CL.

tan. CN ==cos. ob. ecl. X tan. CL.

sine CM == tan. lat. % tan. HM,
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146. The variation of the retardation of rising, according as
the moon is in or near different parts of the ecliptic, being un-
derstood, the explanation of the karvest moon is very easy.

At the full moon nearest the autumnal equinox, the moon is
observed to rise nearly at sunset, for several nights together.
This moon, for its uses in lengthening the day, at a time when
a continuance of light is most desirable to assist the husbandman
in securing the fruits of his agricultural labours, is called the
harvest moon.

The moon, at full, being near the part of the ecliptic, oppo-
site to the sun, and at the autumnal equinox the sun being in
Libra, consequently the moon must be then near Aries, when,
from what has been stated, the retardation’ of her rising only
amounts to a few minutes ; and as the moon at full always rises
at sunset, the cause of the whole phenomenon is apparent. In

Now CL in its mean quantity is about 12°, and therefore for lat. 53°, 23/, we shall
find by actual computation,
CN =110 o }Hence CN — CM == 4° 38/orin time = 18™ 32*

CM= 6 24 (. 4CN + CM= 17° 26/ or in time 1b 9m 445

Hence the interval between the rising of the moon on two different nights, when
in Aries == 23 56™ --18}™ == 24b 14{™ nearly, and the retardation is only 14}™.
When the moon rises in Libra, the interval is 23k 56™ -}~ 1h 930 = 25h 5™, and
the retardation is 1h 5§™.* )
This difference is still greater, the nearer we approach the Arctic circle, and there

v

retardation of rising, when in Aries, becomes smaller, for then HCN (the
p. of lat.) approaches to equality with LCN, the obliquity of the ecliptic ; and
efore the points H and L approach each other, and quently MN b
fller. At the Arctic circle itself, the ecliptic coincides with the horizon, when
Angw is rising, and MN vanishes, and therefore the interval between two succes-
sive ‘Fisings is only 23h 56™. So that there the moon actually rises four minutes
sooner.

 This effect will be increased from the inclination of the moon’s orbit to the
ecliptic, when the ascending node is between Capricorn and Cancer, and decreased,
when between Cancer and Capricorn.
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places near the Arctic circle the phenomenon is still more
striking, and there it is of greater use, where the changes of
seasons are much more rapid.

ON THE ATMOSPHERES OF THE PLANETS AND MOON.

147. In tracing analogies between the planet on which we
live and the other planets, we naturally enquire respecting their
atmospheres. The atmosphere which surrounds the earth has
such various and important uses, that we can hardly suppose the
planets destitute of an element, of which we know not whether
the simplicity of construction, or the complicated advantages of
it, are most to be admired.

We can ascertain that Venus, Mars, and Jupiter are sur-
rounded by transparent fluids, which reflect and transmit light,
and are therefore, according to much probability, of the same
nature as our atmosphere.

The spots and belts of Jupiter are not exactly stationary on
his disc, but are observed to undergo changes and small mo-
tions similar to what would be observed, from a distance, of the
clouds of our atmosphere ;. whence they are supposed to be
clouds in his atmosphere; from some cause unknown to us,
more permanent than any of the clouds of the earth. From ob-
serving the revolutions of some spots at different times, Dr.
Herschel has discovered a difference very similar to what would
arise, did monsoons take place in the atmosphere of Jupiter, as
they do in that of the earth.

Appearances in Mars strongly indicate the existence of an
atmosphere. A small star, hid by Mars, was observed to be-
come very faint before its appulse to the body of Mars.

But the existence of an atmosphere about Venus, as dense,
or probably denser than that of the earth, seems to be put be-
yond all doubt, by the observations of M. Schroeter. He, for
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a series of years, observed Venus with great attention with re-
flecting telescopes of his own and of Dr. Herschel’s making,
and also with achromatic telescopes.

The® results of his observations are, that Venus revolves on
an axis, in 23" 21™ ; has mountains like the earth, and enjoys a
twilight. He, in several favourable circumstances, when Venus
was seen a thin crescent, measured the éxtension of light beyond
the semicircle of the crescent, and found it to be such, that the
observed zone of Venus, illuminated by twilight, must have been
at least four degrees in breadth. Now for the twilight to be
seen by us through the atmosphere of Venus and our own, ex-
tending through such an arch, makes it very probable that the
inhabitants of Venus enjoy a longer twilight than those of the
earth, and that her atmosphere is denser.

148. The existence of an atmosphere in some of the planets
being ascertained, we are led to make inquiry with respect to the
satellites. We can have little hopes of being able to ascertain
the point, except in our own satellite, the moon.

Many astronomers formerly denied the existence of an at-
mosphere at the moon ; principally, from observing no variation
of appearance on the surface, like what would take place, did
clouds exist as with us: and also, from observing no change in
the light of the fixed stars on the approach of the dark edge of
the moon. The circumstance of there being no clouds, proves
either that there is no atmosphere similar to that of our earth,
or that there are no waters on its surface to be converted into
vapour : and that of the lustre of the stars not being changed,
proves that there can be no dense atmosphere. But astrono-
mers now seem agreed that an atmosphere does surround the
moon, although of small density when compared to that of our

* Phil, Trans. 1795. »
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earth. M. Schroeter has observed a small twilight in the moon,
such as would arise from an atmosphere capable of reflecting
the rays at the height of about a mile.

Had the moon an atmosphere of considerable density, it
would readily be discovered by the durations of the occultations
of the fixed stars. The duration of an occultation would be sen-
sibly less than it ought to be, according to the diameter of the
moon. The light of the star passing by the moon would be re-
fracted by the lunar atmosphere, and the star rendered visible
when actually behind the moon ; in the same manner as the re-
fraction by the earth’s atmosphere enables us to see the celestial
objects for some minutes after they have actually sunk below
our horizon, or before they have risen above it. Now the du-
ration is certainly never lessened eight seconds of time, which
proves that the horizontal refraction at the moon must be less*than
2", which therefore shewsthat if alunar atmosphere exists, it must
be 1000 times rarer than the atmosphere at the surface of the
earth, because the horizontal refraction by the earth’s atmos-
phere is nearly 2000”. With such a rare atmosphere, the lunar
inhabitants must be deprived of many of the advantages we en-
joy, from the existence of our own. Indeed the loss of one ad-
vantage, that of twilight, is, on account of the length of their day,
not of much consequence, and from the apparent irregularities
of the lunar surface so much light may be reflected, that the as-
sistance of the atmosphere to make day-light, may not be so ne-
cessary as with us. '

149. The existence of a solar atmosphere is also made pro-
bable by some circumstances, or an atmosphere external to the
luminous atmosphere, which, according to the opinion of many

@ For the duration being lessened by 8", the beginning of the occultation would
be retarded 4" of time, during which the moon moves over 2” of space.

This seems to be caused by a double horizontal refraction, if so the lunar atmos-~
phere must be 2000 times rarer than the terrestrial. Eb.
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astronomers, covers the opaque body of the sun. Bougier, by
some curious experiments, on the light of different points of the
disc of the sun, found the light from the centre stronger than
from the borders, which seems to shew that the light from the
borders is rendered weaker by an atmosphere.

OF THE RINGS OF SATURN.

150. Soon after the invention of telescopes, a remarkable
appearance was observed about Saturn. After a considerable
interval of time, Huygens having much improved them, disco-
vered, by careful observations, a phenomenon unique, as far as
we know, in the solar system. He found that Saturn is encom-
passed with a broad thin ring, inclined by a constant angle of
about 30° to the plane of Saturn’s orbit; and therefore at nearly
the same angle to our ecliptic, and so always appearing to us
obliquely. When its edge is turned toward us, it is invisible,
on account of its thinness not reflecting light effough to be visi-
ble, except in the very best telescopes. When the plane of the
ring passes between the earth and sun, it is also invisible, be-
cause its enlightened part is turned from us; and when it passes
through the sun, it isalso invisible, the edge being only illumi-
nated ; so that it may have, in the same year, two disappearances
and re-appearances. This takes place when Saturn is near the
nodes of the ring. h

151. The ring is a very beautiful object, seen in a good te-
lescope when in its most open state. Tt then appears elliptical,
its breadth being about half its length. Through the space be-
tween the ring and the body, fixed stars have sometimes been
seen. 'The surface of the ring appears more brilliant than that
of Saturn himself.

152. Among the numerous discoveries of Dr. Herschel,
those he has made with respect to Saturn and his ring are not
the least. He has ascertained that the ring, which heretofore

‘ H2
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had generally been supposed single, consists of two exactly in
the same plane, and that these both revolve on their axes* in the
same time as Saturn, and in the plane of Saturn’s equator. He
also saw the ring when it had disappeared to other observers,
either from the reflection of the edge, or from the dark side en-
lightened by the reflection of Saturn, as we see the whole moon
near new moon. He observes that the ring is very thin, com-
pared with its width, its thickness being only about 1000 miles.

The outside diameter of the larger ringis - 200000
Its width - - - - - 6700
Distance between rings - - - 2800
Outside diameter of smaller ring - - 180000
Its width - - - - © - 19000

At the mean distance of Saturn, the apparent diameter of
the larger ring is 47"}.

153. Dr. Herschel tells us, he suspects two rings to the
Georgium Sidus, perpendicular to each other, but at present
can only hint at so curious a circumstance.

ON COMETS.

154. Comets are luminous bodies, occasionally appearing,
and generally in the part of the heavens, not far from the sun.
They are not so bright as the planets, but have somewhat of a
nebulous appearance. They do not appear long together ; some
are seen only for a few days, and those that appear longest, only
for a few months. Tt is probable that they receive their light
from the sun, although this cannot be exactly proved. Inthe di-
rection of their motion about the sun, they differ from the planets,
some being direct, and others retrograde. Their paths, with
respect to the ecliptic, are also very different: some move in a

3 It ought to be noticed that this is doubted by Harding and Schroeter. See
Conn. des. Temp. 1808, p. 429.
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direction nearly perpendicular to it. But the most striking
phenomenon, and what makes them objects of attention to all
mankind, is the tail of light which they often exhibit. When
approaching the sun, a nebulous tail of light is seen to issue
from them in a direction opposite to the sun: this, after having
increased, again decreases till it disappears. The stars are vi-
sible through it.

155. Vefy many comets have been recorded in history ;
the motions of at least one hundred have been computed. It
may be sufficient to observe here, that they move about the sun
in eccentric ellipses, the sun being in one of the foci. The other
considerations of their orbits and motions, are deferred till after
the account of the discoveries of Kepler. Little would have
been known on this subject but for the discoveries of Kepler and
Newton ; and although the discoveries of Kepler might by
analogy have led to a knowledge of the motion of comets, yet
nothing of consequence was done till Newton himself illustrated
the subject.

156. The appearance of one comet has been several times
recorded in history, viz. the comet of 1680. The period of this
comet is 575 years. Itexhibited at Paris a tail 62° long, and at
Constantinople one of 90°. When nearest the sun it was only
% part of the diameter of the sun distant from his surface ; when
farthest, its distance exceeded 138 times the distance of the sun
from the earth.

157. When the theory of the motion of comets was under-
stood, Dr. Halley examined the comets that had been previously
recorded in history, and been observed by astronomers. In ge-
neral, he found the circumstances so vaguely delivered, or the
observations so inaccurately made, that he was able to deter-
mine with much probability the identity of only one comet.
He supposed also that the comets observed in 1532 and 1661
were the same, and, that therefore it might be expected again
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in 1789 ; but it did not appear. However Dr. Halley was very
doubtful of their identity, on account of the imperfection of the
observations of Apian in 1532. Farther notice will be taken of
this, when we mention more particularly the return of comets.
The comet, which Dr. Halley predicted with a degree of confi-
dence, returned in 1759. It had been previously observed with
accuracy, in 1682 and 1607, and had also been noticed in 1531,
1456, and 1305. Its return was anxiously looked for by astro-
nomers, and some curious circumstances attending it will be
afterwards noticed. With what satisfaction it was received by
the scientific part of mankind may easily be conceived, and how
strikingly contrasted with the reception of the same comet in
1456, when all Europe behéld it with fear and amazement.
The Turkswere then engaged in the successful war,in which they
destroyed the Greek empire ; and Christians in general thought
their destruction portended by its appearance. We may be . .
nearly certain that this comet will re-appear again in 183l..§: fiut frele

158. With respect to the tails of comets, little satisfactory
can be offered, in recording the various opinions on this subject.
According to Sir Isaac Newton, they arise from a thin vapour,
sent out from the comet, by the heat of the sun, and supported
in the solar atmosphere.

This hypothesis has been controverted by several authors,
and very ably by Dr. Hamilton, late Bishop of Ossory.

Dr. Hamilton supposes the tails of comets, the aurora bo-
realis, and the electric fluid, to be matter of the same kind.
He supports this opinion by many strong arguments, which are
found in his ingenious essay on the subject. According to his
hypothesis, it would follow, that the tails are hollow ; and there
is every reason to suppose this, from the scarcely perceptible di-
minution of the lustre of the stars seen through them. He sup-
poses that the electric matter, which continually escapes from
the planets, is brought back by the assistance of the comets.
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But much is yet to be known on this subject. Objections
may be made to his hypothesis, although so ingeniously sup-
ported. According to the opinion of Kepler, the rays of the
sun carry away some gross parts of the comet, which reflect
other rays of the sun, and give the appearance of a tail.
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CHAPTER IX.

CONSIDERATIONS ON THE SOLAR SYSTEM AND FIXED STARS.

.

159. Many of the principal phe@nomena have now been ex-
amined, and the chief steps gone over, by which we arrive at
the true arrangement, and motions of the bodies, that, on first
viewing the heavens, are considered as all placed in the imagi-
nary concave surface. 'The true motions have been distinguish-
ed from the apparent, and the magnitudes of the sun, moon, and
planets have been ascertained, as also their situation with res-
pect to the planet on which we live. This arrangement, that,
with reference to the Sun, ought strictly to be called the Solar,
is usually called the Copernican system. To give due honour
to the memory of the discoverer, this name ought to be pre-

-served ; but, in retaining it, especial care should be taken, that
the name attached may not occasion it to be ranked as a system
of conjecture. It is not a system of hypothesis, but the system
of nature.

160. The next steps in the science are the considerations of
those observations, by which the motions of the celestial bodies
may become more accurately known. An accurate knowledge
of the laws of their motions is necessary to point out their places
at any future period, and predict those phznomena which are a
source of delight to the learned, and of fear to the ignorant.
Long since mankind applied the motions of the celestial bodies
to assist the sciences of Geography and Navigation. In more
modern times it has been found, that the improved state of these
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sciences requires a most accurate knowledge of the places and
motions of those bodies. This has called the attention of astro-
nomers and mathematicians to more particular exertions, and we,
probably, owe thereto many most valuable discoveries, which,
although not magnificently striking, are such as the mind must
dwell upon with much pleasure; and which, perhaps, without
the motive of utility, the love of science might not have investi-
gated. Before we proceed to these parts, let us take a short
review of the Solar or Copernican system, and of some circum-
stances connected therewith, which, if not equally certain, are
many of them highly probable.

161. The earth, a spherical body of vast magnitude, when
measured by our ideas, revolves on an axis in 23" 56m, succes-
sively exposing its different parts to the light and influence of
the sun, about which it moves annually in an orbit nearly circu-
lar, to which its axis is inclined at an angle of 66° 32/, and by
its inclination causing the changes of seasons, It is attended by
the moon, a spherical body, the magnitude of which is g4 that of
the earth,and which, moving round the earth in amonth, iscarried
together with it annually about the sun. The moon, by affording
light during the absence of the sun, and by moving the waters of
the ocean, is of great utility to the inhabitants of the earth.
Yet we must not judge that for these causes solely the moon
was formed : doubtless much weightier causes lie hid in the
counsels of the Almighty, some of which at a future day it may
be permitted to man to know. We perceive that in many res-
pects it differs from the earth : it revolves about its axis in a
much longer period : it is nearly destitute of an atmosphere :
the irregularities of its surface are much greater than those of
the earth : and probably it has no fluids on its surface similar
to our own.

162. But the planets which revolve about the sun, we may
consider as serving the same ends in the creation, as our earth.
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In them we contemplate the noble spectacle of ten great bodies,
revolving together with the earth round the sun, at different dis-
tances, and in different periods, but preserving a certain relation
between their periods and distances. Of these Ceres, Pallas,
Juno, and Vesta, are far less than the earth, but perform their
revolutions round the sun, by precisely the same laws as the
other planets.* Mercury and Mars are also less than the earth,
and Venus nearly equal. Jupiter, Saturn, and the Georgium
Sidus are considerably larger. Jupiter has four bodies carried
with him round the Sun, and, as far as we can judge, subservient
to the same ends as our moon. Saturn has seven, besides a
double ring of stupendous dimensions ; of the use of this, our
limited knowledge will not permit us to judge ; we can only
perceive that it must, by its light, be most grateful to the inha-
bitants of the planet. The Georgium Sidus, so lately pointed
out to our view, although in surface sixteen times, and in mag-
nitude sixty-four times, larger than our earth, has six satellites
visible to us: and their number will probably be increased with
the goodness of our telescopes.

2 The very small magnitudes of the new planets Ceres and Pallas, and their
nearly equal distances from the sun, induced Dr. Olbers, who discovered Pallas in
1802 nearly in the same place where he had observed Ceres a few months before, to
conjecture that they were the fragments of a larger planet which had, by some un-
known cause, been broken in pieces. It follows from the law of Gravity, by which
the planets are retained in their orbits, that each fragment would again, after every
revolution about the sun, pass nearly through the place in which the planet was
when the catastrophe happened, and besides the orbit of each fragment would inter-
sect the continuation of the line joining this place and the sun. Thence it was easy
to ascertain the two particular regions of the heavens through which all these frag-
ments would pass. Also by carefully noting the small stars thereabout, and examin-
ing them from time to time, it might be expected that more of the fragments would
be discovered.—Mr. Harding discovered the planet Juno in one of these regions, and
Dr. Olbers himself also, by carefully examining them from time to time, discovered

Vesta.
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163. In all these bodies, judging from analogy, probably
the same admirable varieties of animate and inanimate beings
are exhibited which we behold on this earth. We know that
several of them revolve on their axes, that their times of revolu-
tion are not very different from that of the earth, and that they
are surrounded by atmospheres. Mars and Saturn have nearly
the same variety of seasons as the earth. Jupiter considerably
less. Venus has an atmosphere and mountains, and revolves on
an axis.

We have no argument against the planets being inhabited by
rational beings, and consequently by witnesses of the Creator’s
power, magnificence, and benevolence, unless it be said that
some are much nearer the sun than the earth is, and therefore
must be uninhabitable from heat, and those more distant from
cold. Whatever objection this may be agaiunst their being in-
habited by rational beings, of an organization similar to those
on the earth, it can have little force, when urged with respect to
rational beings in general. But we may examine, without in-
dulging too much in conjecture, whether it be not possible that
the planets may be possessed by rational beings, and contain
animals and vegetables, even little different from those with
which we are familiar.

164. On our earth the influence of the sun causes the heat
of summer, and, from its absence, the cold of winter takes place ;
but is the sun the principal cause of the temperature of the
earth? We have reason to suppose that it is not. The mean
temperature of the earth, at a small depth from the surface,
seems constant in summer and in winter, and is probably coeval
with its first formation. The sun, by its influence, appears only
to change the temperature at its surface, where heat is accumu-
lated on account of the matter of the earth not suffering a far-
ther transmission : this heat disappears in a variety of ways, by
forming vapour, and so becoming latent, by being conducted to
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the adjacent bodies, by coming into contact with cold air, &c.,
so that when the sun in winter remains only for a short time
above the horizon, shines through a denser medium, and more
obliquely, the consumption of heat is greater than the supply,
and the cold of winter comes on. We may also suppose that
the matter of heat does not actually pass to us from the sun, but
is only extricated, as it were, by his influence from substances
in which it is compounded ; for otherwise the temperature of
the earth, either at the surface, or at a small depth from it, must
be continually increasing, and that increase in a few years be-
come sensible ; since we know of no way for the heat which as-
sists vegetation, which unites with fluids, &c. to pass off from
the earth again. Besides heat seems to exist in a state of com-
bination in such profusion, that it requires only to be decom-
posed to answer every purpose. Is it not then unnecessary to
have recourse to a continual supply from the sun; and may we
not conceive, with some degree of probability, thatin all the pla-

- nets of our system, the temperature may be such as not to be in-
consistent with a creation of animals and vegetables not very
dissimilar to our own? And this, without appearing to limit
the diversity of works in the universe, which we certainly are
not authorized to do ; for, wherever our senses or the deduc-
tions of reason can reach, we are sure of finding endless
variety.

165. At the planet Mercury, the direct heat of the sun, or
power of causing heat, is six times greater than with us. If we
suppose the mean temperature of Mercury to be the same as of
the earth, and the planet to be surrounded with an atmosphere,
denser than that of the earth, less capable of transmitting heat,
or rather the influence of the sun to extricate heat, and at the
same time more readily conducting it to keep up an evenness of
temperature ; may we not suppose the planet Mercury fit for
the habitation of men, and the production of vegetables similar
to our own ?

™~
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At the Georgium Sidus, the direct influence ofthe sun is 360
times less than at the earth, and the sunis there seen under an
angle not much greater than that under which we behold Venus,
when nearest. Yet may not the mean temperature of the Geor-
gium Sidus be nearly the same as that of the earth? May not
its atmosphere more easily transmit the influence of the sun, and
may not the matter of heat be more copiously combined, and
more readily extricated, than with us? Whence changes of
seasons similar to our own may take place. Even in the comets
we may suppose no great change of temperature takes place, as
we know of no cause which will deprive them of their mean
temperature, and particularly if we suppose, that on their ap-
proach towards the sun, there is a provision for their atmos-
pheres becoming denser. The tails they exhibit, when in the
neighliurhood of the sun, seem in some measure to countenance
this idea.

We can hardly suppose that the sun, a body three hundred
times larger than all the planets together, was created only to
preserve the periodic motions, and give light and heat to the
planets. Many astronomers have thought that itsatmosphere is
only luminous, and its body opaque, and probably of the same
constitution as the planets. Allowing therefore that its lumi-
nous atmosphere only extricates heat, we see no reason why the
sun itself should not be inhabited. .

166. Our knowledge of the fixed stars must be much more
circumscribed than of the planets ; we can, however, ascertain
enough to be assured that our system is a portion of the universe
most minute indeed. The fixed stars, we have seen, are at im-
measurable distances from us, at distances compared with which
the whote solar system is but & point. Their diameters are less
than we can measure, yet théir light is more intense than that of
the planets. We conclude, therefore, that they are self-shining
bodies, and, according to a high degree of probability, like our
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sun, the centres of planetary systems. Admitting this, the
multitudes of fixed stars, that may be discovered with the most
inferior telescopes, shew us an extent of the universe, that our
imagination can scarcely comprehend ; but what is even this, -
compared to the extent that the discoveries and conjectures of
Herschel point out? ’

167. We cease to have distinct ideas, when we enumerate by
ordinary measures the distances of the fixed stars, and we re-
quire the aid of other circumstances to enable us to comprehend
them. Thus, we compute that the nearest of the fixed stars is
so far distant, that light will take above a year in coming from
the star to the earth ; that the light of many telescopic stars
may have been many hundred years in reaching us; and still
farther, that, according to Dr. Herschel, the light of some of the
nebul, just perceptible in his forty-feet telescope, has been
above a million of years on its passage.

168. We know, from the eclipses of Jupiter’s satellites, that
the velocity of light is so great, that it takes only about eight
minutes in travelling from the sun to the earth ; while the earth
itself, moving with its velocity of nineteen miles in a second,
would take nearly two months to pass over the same space.
We also know, as will be explained farther on, that the light
of the fixed stars moves with the same velocity as the reflected
light of the sun. Hence, as we are certain that the distance of
the nearest of the fixed stars exceeds 80,000 times the distance
of the sun from the earth, the distance of the nearest star is such,
that light must be above 400 days in passing from it to the
earth.

169. The limit of the distance of the nearest fixed star may
be considered as well ascertained; but any thing advanced
with respect to the distances of the others, must be in a man-
ner conjectural.

The brighter fixed stars have been supposed to be nearer to
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us than the rest. Besides their superior lustre leading to this
conclusion, many of them were discovered to have small motions
called proper motions, that only could be explained by sup-
posing them to arise from a real motion in the stars themselves,
or in the sun and solar system, or from a motion compounded
of both these circumstances. ‘

Now whichsoever of these suppositions was adopted, it was

reasonable to suppose, that the cause of the smaller stars not
appearing to be affected, could only arise from the greater dis-
tance of those stars. However it is now ascertained that some
of the smaller stars appear to have proper motions, much greater
than those of the brightest stars.
-4 Hence conclusions deduced from the proper motions of the
bright stars, respecting the relative distances of those stars must
tend to weaken conclusions that might be deduced from their
brightness and apparent magnitudes.

There is a double star of the sixth magnitude, the 61st star
of the coustellation of the Swan, which consists of two stars,
within a few seconds of each other. Both of these stars are
moving nearly at the same rate, at the rate of about 6/ in a year.
It is likely they are also moving about their common centre of
gravity. At present they preserve nearly the same distance
from each other. This proper motion is far greater than has
been observed in any of the brighter stars, or indeed in any star.
It might be supposed, on this account, that these stars (61 Cygni)
are nearer to us than the brighter stars. To ascertain this point,
I have made observations of the zenith distances, at the opposite
seasons, to endeavour to discover any sensible parallax in these
stars. But there appears to be no sensible parallax. Mr. Bes-
sel has compared these and some of the neighbouring stars by
observations on the right ascensions, and found no sensible pa-
rallax. Still the arguments formerly adduced, for the brighter
fixed stars being nearer to us, are considerably weakened by the
great proper motions observed in some of the smaller stars.
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The star 40 Eridani has a proper motion of about four se-
conds in a year. The annual proper motion of Arcturus is
about two seconds.

In many of the stars there is no proper motion perceptible.

Besides the proper motions, it has been remarked by Dr.
Herschel, that in several instances, the line joining two stars very
near together, changes its position.

This is in some cases explained by a proper motion in the
brighter star; in other cases it seems to indicate the revolution
of one star round another. The double star Castor is a striking
instance : during the last fifty years, the line joining the two stars,
which are about five seconds asunder, has had a motion of rota-
tion at the rate of about a degree in a year, while the interval
between the stars has remained nearly the same. Of the three
circumstances which explain the apparent motion of a star, that
which supposes it to arise from a combination of the motion of
the solar system and of the star is most probable. The sun and
nearest fixed stars are probably all in motion round a centre, the
centre of gravity, perhaps of a nebula, or cluster of stars, of
which the sun is one, and the milky way a part, as Dr. Herschel
supposes, while this nebula revolves with other nebul about a
common centre.

170. The direction of the motion of our system cannot with
certainty be ascertained, because, from the whole motion we ob-
serve in a fixed star, we have nothing to help us in assigning that
which belongs to the sun. Dr. Herschel has particularly consi-
dered this subject (Phil. Trans. 1805 and 1806), and has con-
cluded that our sun is moving towards a point in the constella-
tion Hercules, the declination of which is 40°, and right ascen-
sion 246°. His arguments are very ingenious, but there is ne-
cessarily so much hypothetical in them, that the mind cannot
feel much confidence in his conclusion. That our system is in
motion, there can be no doubt ; the difficulty is to ascertain the
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‘precise direction and velocity : and from the circumstances of
the case, there seems to be little probability that the knowledge
will ever be here attained to by man.

Dr. Herschel conjectures that the distances of the fixed stars
are nearly inversely as their apparent magnitudes. From thence,
and a train of ingenious reasoning, relative to the faintest nebulce
discoverable by his 40 feet telescope, he has concluded that the
distances of these nebul® are so great, that light issuing from
them must have been two millions of years in reaching the
earth. But the recent discoveries relative to the proper motions
of the smaller fixed stars must, as has been said, in some mea-
sure weaken the conclusions formerly adopted respecting the
relative distances of the fixed stars. The discoveries of Dr,
Herschel have also made us acquainted with many nebule,
which are not resolvable into stars, but apparently formed of
luminous matter, gradually condensing, by the principle of uni-
versal attraction, into masses, as if about to form the suns of fu-
ture systems. Distant ages only can appreciate these conjec-

tures.
*
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CHAPTER X.

OBSERVATIONS FOR ASCERTAINING THE DECLINATION—DISTANCE
OF THE POLE FROM ZENITH—OBLIQUITY OF ECLIPTIC—RIGHT
ASCENSION.

~171. PreviousLy to a more minute statement of the motions
of the celestial bodies, it will be necessary to give some account
of the nature of the principal observations, by which these mo-
~ tions are ascertained, and of the instruments by which the obser-
vations are made.

The most important observations, and which admit of the
greatest accuracy, are those for the declination and right as-
cension. Having obtained the declination and right ascen-
.| sion, or the position with respect to the celestial equator, we can
by spherical trigonometry obtain the longitude and latitude, or
the position with respect to the ecliptic. The latitude and lon-
gitude of any of the bodies of the solar system, as they would

e observed from the centre of the earth, are called their geo-
centric latitude and longitude. ’

The tables give the distance of the body from the sun, and
its place, as seen from the sun, or its keliocentric- longitude and
latitude, from whence we can compute its geocentric latitude
and longitude, and compare them with those observed.

172. The declination of an object is best found by observing
its distance, when on the meridian, from the zenith or from the
horizon. Either of these distances being found, if we previously
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know the distance of the pole from the zenith of the place, we
find by addition or subtraction the distance of the object from
the elevated pole, and consequently its declination. Thus let
HESZPO (¥Fig. 24) represent the meridian, HO the horizon,
E, S, Z, P the places of the equator, object, zenith, and pole ;
we observe HS or SZ in the way that will be presently shewn ;
and if we have ZP, we easily obtain SP, the polar distance, or
ES the declination. There is an advantage in using the polar
distance instead of the declination, because in the former there
is no ambiguity ; but when the declination is used, it is neces-
sary to note whether it be north or south. Accordingly many
astronomers use in their catalogues of stars north polar distance
instead of declination: thus, ifthe declination be 20° S. its
north polar distance is 110°.

It must be understood, that the zenith distance, or altitude
observed, is to be corrected by refraction, and by some other
small quantities, assometimes by parallax, (to reduce it to what
would be observed at the earth’s centre), by aberration of light
and nutation of the earth’s axis; which corrections will be ex-
plained hereafter, and are usually obtained from tables.

173. The distance of the zenith from the pole is found by
observing the zenith distance of a star that does not set, when on
the meridian above and below the pole : thus let ZR (Fig. 24)
be the zenith distance, corrected for refraction, of a star, when
above the pole, and Zr the zenith distance, corrected for refrac-
tion, when below the pole; then ZP = ZR + RP and ZP =
Zr —rP=Zr—RP. Henee 2ZP = ZR + Zr. PO, as
we have seen, (Art. 39), is equal to the latitude of the place,
and therefore ZP is the complement of latitude. Hence the
observations for ascertaining the distance of the pole from the
zenith, give us the latitude of the place of observation.

By repeating this observation for the same star, and for dif-
ferent stars, a great many times, the distance of'the pole from

12
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the zenith may be had with great exactness, that is, with good
instruments, to less than a second. This element being once
established, we are enabled, as stated above, to obtain by obser-
vation the declination or polar distance of any celestial phano-
menon. It is necessary in this mode of observation to know
with some degree of exactness when the object is at the meri-
dian ; this will be explained hereafter. '

174. The declination of an object may also be obtained by
observations made out of the meridian : Thus, if we observe the
distance from the zenith ZF, and azimuth FZP, and know ZP,
we obtain, by the solution of the spherical triangle ZPF, PF the
polar distance : or if ZF be observed, and we know ZP and the
angle FPZ (known by the distance in time of the body from
the meridian) we can compute FP: but the instruments, re-
quired to make these double observations, are too complicated
in their construction to be used with advantage in making very
accurate observations ; to which may be added the inconvenience
in computing the effects of parallax and refraction. Refraction
and parallax, when the body is in the meridian, only affect the
declination ; they affect both right ascension and declination,
when the body is not in the meridian.

175. There is also a method of obtaining both the declina-
tion and right ascension at the same time, by an instrument cal-
led an equatoreal instrument.* Although' this, when well exe-
cuted, is a very valuable instrument, yet being complicated, and
admitting of less precision for the declination than the method
described, it will not be necessary to dwell upon it here. It
may, however, be proper to remark, that sometimes objects of
faint light, such as comets, pass the meridian in day light, and
cannot be then observed ; for these an equatoreal instrument is

2 Professor Vince’s Practical Astronomy. See also a description of one made for
Sir George Shuckburgh, Phil, Trans. 1793.
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very convenient. A very advantageor method of ascertaining
the right ascension and declination ot such objects, is by ebserv-
ing, with a micrometer, the differences of right ascension and
declination between the object and a neighbouring fixed star :
the position of the latter is previously known, or may be ob-
served at leisure.

176. In computing the longitude and latitude of an object,
from knowing its right ascension and 'declination, we use the ob-
liquity of the ecliptic. The obliquity of the ecliptic is found
by observing the greatest declination of the sun. If many de-
clinations be observed when the sun is near the solstice, each of
these may by a small correction be reduced to the declination at
the solstice, and the mean of all taken. The advantage of this
is, that the declination observed within a few days of the solstice
may easily be reduced to the greatest declination, without know-
ing with great accuracy the right ascension of the sun. The
summer solstice is to be preferred to the winter one, on account
of refraction being more uncertain at lower altitudes.

177. To ascertain the right ascension of an object, it is ne-
cessary to find the arch of the equator intercepted between the
first point of Aries and a secondary passing through the object :
for this purpose we make use of a portion of durationy called
sidereal time. The whole concave surface revolves uniformly
in twenty-four hours of sidereal time (Art. 14), and any portion
of the equator is measured by the sidereal time elapsed between
the passages of its extremities over the meridian : thus the ex-
tremities of an arch of 15° pass the meridian at an interval of
one hour. Hence we conclude, that the difference of right
ascension of these extremities is 15° or one hour: so that the
right ascension of any object is measured by the portion of side-
real time elapsed between the passages or transits of the first
point of Aries (the intersection of the ecliptic and equator), and
of the object over the meridian. Hence if a clock be adjusted
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to shew twenty-four hours during the rotation of the concave
surface, and commence its reckoning when the first point of
Aries is on the meridian, it will shew the right ascension of all
the points of the concave surface on the meridian at any time ;
and all that is necessary to ascertain the right ascension of any
object, is to observe the time shewn by the clock when that
object passes the meridian. This time is the right ascension,
and being multiplied by 15, gives the right ascension in de-
grees, &c.

The instrument by which the time of the transit over the
meridian is accurately observed, and the manner of observing it,
will be presently explained. v

178. The intersection of the ecliptic and equator not be-
ing marked on the concave surface, we must, for regulating the
clock, make use of some fixed star, the right ascension of which
is known : the ¢lock may be put nearly to sidereal time, and the
exact time being noted when a star, the right ascension of which
is known, passes the meridian, the error of the clock will be
known. Thus if the clock shew 1* 15 145, when a star, the
right ascension of which, is 1" 15 10, passes, the error of the:
clock will be 4% and every right ascension observed must be
corrected by this quantity.

179. It is evident then, that the right ascension of some one
star being known, the right ascensions of the rest may be obtain-
ed with much facility. The method which follows, has been
used by Mr. Flamstead, and by astronomers in general, to ab-
tain the right ascension of a Aquile.

When the sun between the vernal and autumnal equinoxes
has equal declinations, its distances in each case, from the res-
pective equinoxes, are equal. We can ascertain when the sun
has equal declinations, by observing the zenith distances for two
or three days, soon after the vernal equinox, and for two or
three days about the same distance of time before the autumnal,

Y
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and then, by proportion, ascertain the precise time when the
declinations are equal : at these times also we can ascertain, by
proportion, the differences of the right ascension of the sun and
some star, by observing the differences at noon for two or three
days. Let

E = the right ascension of the sun, soon after the vernal
equinox, then 180°—E =the right ascension before the au-
tumnal, when it has equal declination.

A = the right ascension of the star in the former instance.

A 4 p = the right ascension in the latter.

We obtain by help of observations A— E and (180 — E)
—(A + p). Let these differences of right ascension be D and
D/, that is,

A—E=D
and (180 —E) — (A 4 p) = D’. From which we can deter-
mine E and A. For, adding these equations 180° —2E —p

=D+ Dor E‘=, 1800_(2 +D)—p and thence A = D

+ Eisknown. The value of p arises from the change of right
ascension of the star in the interval between the times of equal
declinations, and is therefore known from the tables of precession
and aberration, &c.

This kind of observation may be repeated many times for
the same star between two successive equinoxes, and likewise in
different years ; and, by taking a mean of many results, great
precision will be obtained.

The advantage of thls method is, that the sun’s zemth dls-

n~
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has arrived at such a degree of perfection, that, for many
months together, their rate of going can be depended on, to less
than a second in twenty-four hours. This accuracy has been
obtained by the nice execution of the parts, in consequence of
which the errors from friction are almost entirely avoided, and,
by using rubies for the sockets, and pallets, where the action
is most incessant, the effect of wear is almost entirely obviated.
But the principal source of accuracy is the construction of the
pendulums, which are so contrived, that even in the extremes
of heat and cold they remain of the same length. This is ge-
nerally effected by a combination of rods of two different me-
tals, differing considerably in their expansive powers. They
are so placed as to counteract each other’s effects on the length
of the pendulum. Formerly brass and steel were used, the
former expanding much more by heat than the latter. In this
construction nine rods or bars were placed by the side of each
other, and the pendulum, from its appearance, was called a
gridiron pendulum. A composition of zinc and silver is now
frequently applied instead of brass, on account of its greater ex-
pansion, by which five bars are made to serve. Other construc-
tions are also used, for preserving the same length in the pen-
dulum, but not so commonly.

181. A clock of this description is absolutely necessary for
an observatory. It is regulated to sidereal time, and the hours
are continued to twenty-four, beginning when the vernal inter-
section of the ecliptic and equator is on the meridian ; and not
like common clocks, at noon. But however well executed the
clock may be, it is depended on only for short intervals; the
time it shews being examined by the transit of fixed stars, the
right ascensions of which have been accurately settled. For
this purpose the right ascensions of thirty-six principal stars
were determined with great exactness by Dr. Maskelyne.
Several of these may be observed every day, each observation
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pointing out the error of the clock ; and the mean of the -
errors will give the error more exactly. Nothing more then is
necessary for determining the right ascension of a celestial ob-
ject, than to observe the sidereal time of its transit by the clock:
that time, being corrected, if necessary, by observations of the
standard stars, is the right ascension.
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CHAPTER XI.

METHODS OF ASCERTAINING MINUTE PORTIONS OF CIRCULAR ARCHES
—ASTRONOMICAL QUADRANT—ZENITH SECTOR—CIRCLE—AND
TRANSIT INSTRUMENT—METHODS OF FINDING THE MERIDIAN.

182. As the arches or limbs, as they are called, of astrono-
mical instruments, are seldom divided nearer than to every five
minutes, it is necessary briefly to explain the methods by which
smaller portions may be ascertained : there are three methods
now principally used, 1. by a vernier ; 2. by amicrometer screw ;
3. by a microscope.

183. The first method is of more general use than the other
two, and is applied to a great variety of philosophical instru-
ments. It is named after its inventor. It will be easily under-
stood by an instance. Let the arch iz (Fig. 25) be divided into
equal parts, lA, hm, mn, np, &c. each 20’, and let it be required
to ascertain smaller portions, for instance, the distance of P from
pA. Let another circular-arch, called the vernier, 7° long,
slide upon the arch /¢, and let it be divided into twenty equal
7 >2<060 = 21" If these parts be bc,
cd, de, &c. then the division d coinciding with the division m,
the division ¢ will be (21’ — 20’) or 1’ beyond the division 7 ;
the division & 2’ beyond the division p, &c. So that in this
way we can ascertain portions of 1’, 2/, &c., although the arches
themselves are divided only into portions of 20. To apply this,
suppose it were required to ascertain the distance of P from pA :

parts, that is, each part =
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let the vernier be slided till its commencement & coincides with
P, then it will be seen what division of the vernier coincides
with a division of the limb: the divisions of the vernier are
numbered from its beginning 0, 1, 2, 3, &c. The number of
the coinciding division of the vernier will, it is manifest, shew
the distance of the commencement of the vernier from the divi-
sion on the imb or PA. In the application of this instrument
to astronomical purposes, the vernier is so attached, that its com-
mencement or point of Zero, as it is called, is always brought
by the process of making the observation to the point from
which the reading is to be made. In other applications, in the
barometer, for instance, the commencement of the vernier is to
be moved to that point.

This method of ascertaining the extent of small arches is
more frequently used, where the measurement is only to be
made to the nearest minute, but it may be readily applied to
ascertain much smaller portions. Thus, if the limb be divided
into portions of 20/, and a vernier = 19° 40’ be divided into
sixty parts, each of these parts will be 19’ 40" ; and therefore an
interval on the limb exceeds an interval on the vernier by 20,
and so a space of 20" is ascertained.

Again, if the limb be divided into parts of five minutes each,
and a vernier = 4° 55’ be divided into sixty parts, each of these
parts will be 4’ 55" ; and therefore an interval on the limb ex-
ceeds an interval on the vernier by 5".

184. To ascertain still smaller portions, a micrometer screw
answers better ; which is a very fine screw, requiring to be well
executed, so fine that the interval between two threads is some-
times only the ;% of an inch. A circular head is fixed to this
screw. 'This head is divided into equal parts, the whole being
the number of seconds answering to the interval between the
threads. This screw is attached to the part of the instrument
~ carrying the point P, (Fig. 25) moves at right angles to the ra-
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dius, and is to be turned till the point P coincides with A. The
number of complete revolutions, and the part of a revolution will
give the seconds in PA.

185. The above is very convenient and exact, but it yields
to Mr. Ramsden’s method, by microscopes, in which the image
of the arch and of the point P is formed in the focus of a com-
pound microscope, the axis of which is perpendicular to the
plane of the limb: a wire in the focus of this microscope is
moved by a micrometer screw, and made to pass successively
over the images of the points P and A, and the motion of the
screw shews the interval. The advantage of this method arises
from the distinctness and magnitude of the image in the micro-
scope. The exact coincidence also of it with the wire in the
focus assists much the accuracy of observation. This application
of microscopes is justly considered as a very valuable improve-
ment in astronomical instruments.

THE ASTRONOMICAL QUADRANT AND CIRCLE.

186. The quadrant for measuring zenith distances, is moveable
ona vertical axis, or fixed to a solid wall in the plane of the meri-
dian. In the latter case it is called a mural quadrant. The teles-
cope, which is moveable about the centre of the quadrant, has an
index, usually a vernier, fixed to it, and moving on the divided
arch of the quadrant. The plane of the quadrant being perpen-
dicular to the horizon, and in the same vertical circle as the ob-
ject, the telescope is moved till the object appears near the cen-
tre of the field of view, touching or bisected by a wire, placed
in the principal focus of the telescope, parallel to the horizon, or
at right angles to the plane of the quadrant. The arch then be-
tween (0) on the vernier, and the lowest point of the quadrant
from which the divisions commence ( (0) of the arch), shews the
zenith distance, provided the radius passing through (o) of the
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arch be vertical, and provided also that the line of collimation
of the telescope be parallel to the radius passing through (o) of
the vernier. The methods of ascertaining the exact place of the
arch, pointed out by (0) on the vernier, have been shewn in Art.
183, &c. The radius passing through (o) of the arch is gene-
rally made vertical, by help of a plumb line. The plumb line
bisecting a point near the centre of the quadrant, is made to bi-
sect another point on the arch, by moving the quadrant in its
own plane. These two points are placed by the maker, parallel
to the radius, passing through (o) of the arch.

187. The line of collimation of a telescope, is the line join-
ing the centre of the object glass, and the place of the image in
the principal focus: this is the true direction of the object, in
which it would be viewed by the naked eye. Hence it is evi-
dent that this line ought to be parallel to the radius passing
through (o) on the vernier, that the angle measured by the dis-
tance of (o) on the vernier from (o) on the quadrant, may shew
the angle contained by a vertical line, and the line of direction
passing through the object, which angle is equal to the zenith
distance of the object.

Thus OP (Fig. 26) represents the plumb line passing over
two points. 'The line which joins these points is parallel to the
radius CL, passing through (o) of the arch. The dotted line
DI is the line of collimation, parallel to the radius CV passing
through (o) of the vernier. LV measures the zenith distance of
the object, the image of which is at I. The vernier being fixed
to the telescope, the radius CV, while the telescope moves, al-
ways preserves the same relative position to the line of collima-
tion. The position of the line of collimation must always be
scrupulously attended to, and, if erroneous, must either be ad-
justed by moving the wire in the focus of the telescope, or the
error allowed for ; the latter is generally better, when the error
amounts only to a small quantity.

188. To enable the observer to ascertain the error of the
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line of collimation in those quadrants that move on a vertical
axis, the arch is continued several degrees beyond (o) (Fig. 26)
as PS, and the zenith distance of the same object is to be ob-
served with the arch of the instrument facing different ways.
Thus, when a star near the zenith is observed, let CT (Fig 27.
1) be the radius, parallel to the line of collimation of the teles-
cope, CV the radius passing through (o) on the vernier. Then
LV is the arch read off or observed ; which is too little by TV.
Let the quadrant be moved on its vertical axis half round : the
position of the above lines will be as in Fig. 27. 2. Then that
the telescope may be directed to the same star, it must be moved
over the arch T'TY, till it is parallel to its former position CT
| (Fig. 27. 1.) so that L'TY = LT. The point V is transferred
| by the motion of the telescope to V’, &c. The arch now mea-
| sured is VL too great by V/I' = VT. Hence 2VT (double
i the error of the line of collimation) = difference of the zenith
* distances of the same star, observed in the two positions of the
i\ quadrant.

189. This method cannot be adopted for mural quadrants ;
for these another instrument is necessary. A zenith sector is
used, at the Royal Observatory at Greenwich, to ascertain the
errors of the lines of collimation of the mural quadrants. This
instrument is principally composed of an arch of a circle of a
long radius, fixed to a telescope of the same length, passing
through the centre and middle of the arch. The instrument is
suspended vertically : the telescope can be moved (the arch be-
ing fixed to it) a few degrees on each side of the vertical line,
so as to observe stars within a few degrees of the zenith. A
plumb line suspended from the centre of the instrument, and
passing over the arch, shews the angle between the point of (o)
at the telescope and the vertical line. This instrument is capa-
ble of having its face turned both east and west ; therefore, if
observations of the same stars be compared in both circumstances,
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the error of the line of collimation will be had as in a quadrant
moving on a vertical axis : consequently, if observations are made
at the same time with a mural quadrant, and compared with the
observations made with the zenith sector, the error of collima-
tion of the mural quadrant will be ascertained. The error of
the line of collimation of a quadrant is not much liable to vary.
190. The brief account of astronomical instruments, here
given, is only intended to contain enough to afford such a gene-
ral conception of their uses, that the observations mentioned may
be understood. We may refer to Professor Vince’s Practical
Astronomy for a more particular account of astronomical instru-
ments: where the astronomical quadrant, its uses and adjust-
ments, are minutely described ; as also the zenith sector, used
at the Greenwich Observatory. A zenith sector, constructed for
the purpose of the great trigonometrical survey, now carrying on
in England, is particularly described in Phil. Trans. for 1803.
191. The radius of each of the Greenwich mural quadrants
is eight feet, and their arches are divided into parts of 5" each,
and, by means of the micrometer screw, angles are easily ascer-
tained to seconds of a degree ; a second of a degree in these in-
struments i8 5% of an inch nearly. They were divided by Mr.
Bird, the first artist who attained a great degree of perfection in
the divisions of large instruments, and who, perhaps, has not since
been excelled. The quadrant facing the east, with which all ob-
servations to the south of the zenith are made, is superior to the
other. This instrument will always be celebrated in the history
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192. The present state of Astronomy requires the utmost
perfection in the instruments : those for zenith distances ought
to admit of a degree of precision, enabling us to observe the ze-
nith distance with certainty to two or three seconds; so that, by
taking a mean of a number of observations, we may have the
zenith distance to 1" or less. This accuracy is necessary
to ascertain the motions of the moon to the requisite exact-
ness, and to determine the effects of the mutual disturbances
of the system, many of which, at their maxima, amount only to
a few seconds.

193. A quadrantal arc appears, at first view, to be all that is
necessary for observing the zenith distance of a celestial object ;
a larger portion of a circle seems useless, and, by confining the
instrument to a quadrantal arc, we may have the advantage of a
much longer radius ; but experience has shewn that quadrants
yield in accuracy to complete circles.

The astronomical quadrants will probably soon be entirely
superseded by circles.> There is reason to suppose that much
greater accuracy will be obtained by the latter than by the for-
mer, even when the diameter of the circle is far less than the
radius of the quadrant. Nearly a century ago, an entire meri-
dian circle had been executed : yet there was nothing in this
that can lessen the credit due to the late Mr. Ramsden, who
above twenty years ago, proposed to substitute the circle for the
quadrant. The astronomical circle serves exactly the same pur-
poses as the quadrant. Mr. Ramsden made his first circle, five
feet in diameter, for the Observatory at Palermo. Since that
time several circles have been constructed by other artists, par-
ticularly by Mr. Troughton. The Observatory of Trinity Col-
lege, Dublin, possesses a most superb circle eight feet in diameter.

a For an account of astronomical circles, see Mr. Vince’s Practical Astronomy
and Phil. Trans. 1806, part 2.
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This instrument was begun by Mr. Ramsden, and finished by
his successor, Mr. Berge,* and has been in use since the latter
end of 1808.

194. The advantages, proposed to be obtained by the astro-
nomical circles, are :

1. The telescope is fixed to the circle, and the whole moves
together on an axis, which is a great advantage, as all imperfec-
tions of centre work, danger from the telescope bending, or the
centre work wearing, are avoided.

2. All parts of the instrument can be readily exposed to the
same temperature.

3. The instrument balances itself.

4. All imperfections of the divisions are readily discovered,
as the same angles can be observed on different parts: also the
instrument can be much more accurately divided in consequence
of the person, who divides, being enabled to examine opposite
points.®

5. One of the greatest advantages of our instrument is the

& This instrument was originally begun by Mr. Raméden, directed by my prede-
cessor, Dr. Usher, at the desire of the College, about the time when it was first in
contemplation to substitute circles instead of quadrants. After furnishing one of five
feet in diameter, for the Observatory at Palermo, Mr. Ramsden engaged to finish
one of ten feet for our Observatory ; but most tedious delays, much indeed to be re-
gretted, intervened. After having partly executed one of ten feet, he rejected it for
one of nine feet; and this, after the circle itself was actually divided, was laid aside
for the present one of eight feet, which he left to his successor, Mr. Berge, to divide
and finish, and share the credit due for the execution of such an instrument. In
speaking of this instrument, the liberality of the Provost and Senior Fellows of the
University of Dublin ought not to be passed over. With their usual zeal for the
promotion of knowledge, they spared no expense to obtain, for their Observatory,
the first instrument of its kind : .shewing on this, and on all occasions, where the in-
terest of science is concerned, an example well worthy of imitation.

b Mr. Troughton has described his very ingenious method of dividing Astrono-
mical Instruments, in the Phil, Tran. 1809, Part. 1.

K
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facility with which the error of the line of collimation may be
found, by observing a star at any distance from the zenith, with
the face of the instrument turned different ways. Thus a ze-
nith sector, which would be absolutely necessary for a mural
quadrant, can be dispensed with.

6. The method of reading off by compound microscopes,
which Mr. Ramsden has adapted to this instrument, is greatly
preferable to the methods by the vernier or micrometer screw.
Art. 183 and 184.

In our circle* three microscopes are used ; one is placed
opposite to the lowest part, and two opposite to the horizontal
diameter ; by which the same angle may be read off on three
different parts of the circle, and thus the errors from difference
of temperature may be obviated, and the effect of any inaccuracy
in the divisions considerably lessened. This circle was only in-
tended for meridional observations, but, on account of the stabi-
lity of the vertical axis, arising from the firmness of its support,
it may with much advantage be used for a few minutes before
and after the passage of the object over the meridian, as the
time of making the observation can be readily noted by the
transit clock, and thence the correction computed for reducing
the observation to what it would have been, had it been made
on the meridian.

In the year 1812 a mural circle of exquisite workmanship,
six feet in diameter, made by Mr. Troughton, was placed in the
Observatory at Greenwich. = This instrument is now used in-
stead of the mural quadranis. It gives north polar distances,
and not being capable of being reversed by a vertical motion,
the observations are corrected by means of the north polar dis-

& Four microscopes placed at the extremities of the vertical and horizontal dia-
meters, would have afforded greater accuracy : but a microscope opposite to the bot-
tom microscope would have been very inconveniently situated for use.
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tances of certain standard stars, in a manner similar to that by
which observations of the transit instrument are corrected for the
error of the clock. (Vid. Art. 181.)

195. The observations made with the quadrant and circle
being for the same purposes, an example from the latter will
suffice. ‘

Example. Aug. 23, 1808, at the Observatory of Trinity
College, Dublin, observed, by the astronomical circle, the polar
star above and below the pole,

ZD. above 34° 53’ 10",1 Barom. 29,99 Ther. 58°
‘below38 18 59,1 =~ - 2997 - 67
Each of these zenith distances is from a mean of observations,
made with the instrument facing east and west. To determine
the zenith distance of the pole, and polar distance of the polar
star.
34 53 107,1 38 18 59,1
Ref. + =39, 84 + 4447

34 53 49,94 38 19 43,57
38 19 43, 57

2] 73 13 33, 51
36 36 46, 75 zenith distance of pole or co-lati-
tude.
This observation therefore gives the latitude of the observa-
tory =53° 23’ 13/, 3.
Half the difference of the zenith distances = 1° 42’ 56,

8 The above refractions are computed by a table, which is given in the Appen-
dix. The results of my observations relative to refraction agree nearly with the
French (M. Delambre’s) Tables as far as about 80° Z. D. Nearer the horizon re-
fractions become so uncertain, that observations cease to be of use. ,

K2
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81 = the observed polar distance of the polar star. This must
be reduced to its mean quantity at some given time or epoch,
as it is called, suppose, Jan. 1, 1813.
The change of N. polar distance
by the recession of the equator
on the ecliptic (Art. 90,) from
January 1, 1808, to January 1,
1813,) the change in a year be-
ing = — 197, 50.)
By Precession from Jan. 1, to Aug. 23 — 12, 50

— 137", 50

Aberration of light - - - 413,38
Nut. of the earth’s axis from moon - — 3,32
from sun - — 0, 46°

D —

Sum according to their signs - — 2,90
This is to be subtracted from the mean polar distance, Jan.
1, 1808, to obtain the apparent polar distance, Aug. 23, 1808.
Hence the mean polar distance, Jan. 1, 1808, deduced from
this observation is the sum of this quantity and the polar dis-
tance observed. Therefore
1° 42 56, 81
+ 2,9
1 42 59,71
— 137,50

o e

1 41 22,2 = mean polar distance of the pole star,
Jan. 1, 1813.

s General Tables of Aberration. Professor Vince’s Astron. vol. i. p. 327.

b General Tables of Nutation, do. vol. ii. p. 134.

¢ Dr. Maskelyne’s Tables. Tab. 30. The aberration oflight and its effects are '
explained hereafter. Nutation has been mentioned, art. 91. Solar nutation in
NPD = —0", 48 sin. (2 lon. sun—R. A, star.)
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By the mean of a number of observations it is 1° 41/ 2178,
By the Greenwich circle it is 1° 41’ 217, 7. '

TRANSIT INSTRUMENT.

196. The transit instrument, equally necessary in practical
astronomy, as the quadrant or circle, is a telescope fixed at right
angles to a cross axis. This axis is placed upon horizontal
supports, upon which it turns. The instrument is to be so ad-
justed, that the line of collimation, when the telescope is turned
with its axis, may move in the plane of the meridian. In the
principal focus of the object glass are placed three or five wires,
- parallel to each other, and perpendicular to the horizontal axis.
Another wire bisecting the field of view is also usually placed at
right angles to these. The transit instrument in the Observa-
tory of Trinity College, Dublin, is six feet long, the cross axis
four feet, and there are five parallel and equidistant wires in the
principal focus, and one at right angles to these.

In Fig. 28 the wires are represented.

To make the centre wire Cd move in the plane of the meri-
dian, three adjustments are necessary.

1st. To make the axis level : this is done either by a spirit
level or plumb line. 2dly. To make the line of collimation,
that is, a line joining Cd, and the centre of the object glass;
perpendicular to the axis : this is done as follows: let the image
of a distant object be bisected by the middle wire, and then take
the axis off its supports, and reverse it ; if the image is then bi-
sected, the line of collimation is exact, if not, half the error must
be corrected by moving the system of wires, and half by moving
one of the supports of the axis. There is a provision for both
these motions. The axis being again reversed, will verify the
adjustment. 3dly. The line of collimation is to be placed in
the meridian : this is done by the help of a mark placed at a
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considerable distance ; for instance, at the distance of one or two
miles, in the direction of the meridian of the centre of the in-
strument. The whole telescope is moved by moving one of the
supports of the axis, till the middle wire bisects the image of the
mark. The meridian mark will serve to adjust the line of col-
limation ; andindeed, in practice, the order of these adjustments
should be reversed.

197. The use of the transit instrument is to determine the
right ascensions of the celestial bodies, and also the mean and
apparent time. In observing the right ascension, the telescupe
is usually directed to the object, by help of a divided semicircle,
placed at one end of the axis, on which an index attached to,
and perpendicular to the axis, and also parallel to the line of .
collimation, moves ; this index is to be set to the polar or ze-
nith distance of the object, according as the semicircle shews
polar or zenith distances.

This being done, the time of passage of the object over each
wire is noted by the clock, beating seconds and shewing sidereal
time, placedn ear the transit instrument. The mean of the ob-
served times of passing each wire is to be taken to shew more
accurately the time at the middle wire. The time of passing
each wire may be observed with great accuracy, because the te-
lescope magnifies the diurnal motion, so that at one beat of the -
clock a star may be observed on one side of the wire, as at a,
and at the next beat, at 5. The eye is capable of pretty accu-
rately proportioning the intervals ac and-bc, so that the time
may be noted to tenths of a second, and the mean from the
five wires rarely deviates % of a second of time from the truth,
or 3" of a degree. Thus right ascensions may be determined
with nearly the same accuracy as zenith distances. For, as has
been already shewn, the time of the passage by the clock is the
right ascension, provided the clock shews accurate sidereal time.
This is seldom the case, and ought always to be examined by
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observing some of the thirty-six stars before mentioned, (Art.
181) the right ascensions of which have been determined with
great accuracy by Dr. Maskelyne.
198. Example. Observed at the Observatory of Trinity
College, Dublin, Nov. 2, 1793, the transits over the meridian of
aCygni at 20" 34™ 15, 72 sidereal time.
oAquarii 21 52 29,89
Fomalhaut 22 46 4,65 the clock losing 1%, 5 in 24 hours.
To find the mean right ascension of o Aquarii.
Mean A. R. Jan. 1, 1793,
by Dr. Maskelyne’s a Cygni Fomalhaut

Catalogue 20 34 2257 22 46 10,72
Aber. and preces. - 4 1,53 4+ 343
*1 Nutation - 0,00 — 085
App. A. R. - 20 34 24,10 22 4613,30
Observed - 20 34 15,72 22 46 4,65
Clock slow - 8,38 8,65
Mean at 21* 40™ slow 8:,51
At 21 52 slow 8,52
Observed o Aquarii - - 21 52 29,89
Clock slow - - - + 8,52
Apparent A. R. - - 21 52 3841
Precess. from Jan. 1, 1790 - — 11,87
Aberration - - - — 0,32
v { Nutation - - - + 0,55

Mean A. R. Jan. 1, 1790 21 52 26,77

® Professor Vince’s Astronomy, vol. ii. p. 306, &c. Dr. Maskelyne’s Tab. 17
and 18.
b By general tables referred to in Art. 195.



136 , ELEMENTS OF ASTRONOMY. [cHaP. Xr

From Dr. Bradley’s observ. - 21 52 268
= Mr. Pond’s observ. in 1816 21 52 26,6

199. The transit instrument serves also for finding the mean,
and thence the apparent time.

If the sun, instead of appearing to move in the ecliptic with
an unequable motion, appeared to move in the equator with an
equable motion, in the period of its motion in the ecliptic, its
return to the meridian would each day be later than the return
of a fixed star, by 3™ 56° nearly ; and a clock put to twelve
o’clock, when the sun was in the meridian, would, if rightly ad-
justed, always continue to shew twelve, when the sun, so moving,
passed the meridian; and the time pointed out by the clock
would be mean time.

The distance of an imaginary sun, so moving in the equator,
from the vernal equinox, is equal to the mean longitude of the
sun, or its mean distance from the vernal equinox ; and this dis-
tance, reduced into time, is the right ascension of the imaginary
sun. The mean longitude of the sun is given in the Solar Ta-
bles for the beginning of each year, and the mean motion in lon-
gitude, between the beginning of the year and each day, is also
given. Whence the mean longitude is known, which reduced
into sidereal time, at the rate of 15° for 1 hour, gives the right
ascension of the imaginary sun, after being corrected, to reduce

_it to the true equinox. Hence, having the sidereal time, by a
clock, or from the time shewn by a clock corrected by observ-
ing the transit of a star, the mean time is readily found. For,
the difference between the imaginary sun’s right ascension at
noon (the mean longitude of the sun converted into time), and
the given sidereal time, is the sidereal time from noon : this is
to be reduced into mean time, by diminishing it in the propor-
tion of 24" : 23" 56™ 4s, 1, or of 366 : 365 nearly. The mean

® This star, therefore, has no perceptible proper motion.
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time being found, the apparent time will be had by applying the
equation of time, which will be explained hereafter.

200. Example. To find the mean time at Greenwich, Nov.
8, 1808, at 20" 30™ 7%, by the sidereal clock.

" N.
* Sun’s mean long. '
Jan. 1, 1808. °} 9 9058 17,1 337

Mean motion, Nov.8. 10 7 31 19 46

717 29 20,1 383
Equat. equinoxes } + 11,1

m R.

Mean long. at noon)
from true equinox.} 717 29 31,2

This reduced to time gives
Sidereal time atnoon 15® 9= 58s,1
20 30 7

Interval from noon
in sidereal time } 5 2 89

reduction to mean time — 524

Mean time 5 19 16,5

For any other place, the change of the sun’s mean longitude,
according to the longitude of the place, must be allowed for.
Thus, for the Observatory of Trinity College, Dublin, the sun’s
mean longitude is 1’ 17, 6 greater than at Greenwich, or 4¢, 16
in sidereal time.

® Vince’s Astronomy, vol. 3, pp. 4, 20, p. 40. Table 8. Solar Tables.

® It is convenient to have Tables by which the mean longitude of the sun may
be found at once in sidereal time. Such are Tables 19 and 20 in Dr, Maskelyne’s
Collection. '
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/ / METHODS OF FINDING A MERIDIAN LINE.

201. The knowledge of the direction of the meridian is use-
ful for several purposes, but absolutely necessary for adjusting a
transit instrument. The first step, and that the most difficult, is
to find it nearly : when this is done, it may easily be corrected
by help of the transit instrument itself. Either of the two fol-
lowing methods, especially the second, will serve at once for
finding it sufficiently near for most purposes, except for the
transit instrument.

202. On an horizontal plane describe several concentric
circles of a few inches in diameter. In the centre place a wire,
a few inches long, at right angles to the horizontal plane. Note
in the forenoon the point where the shadow of the top of the
wire just reaches any of the circles, and watch in the afternoon
the point where the extremity of the shadow again reaches the
same circle. The arch intercepted between these two points
being bisected by a radius, the radius will be in the direction of
the meridian ; because the direction of the shadow is in the
plane of the vertical circle passing through the sun, and the sun
bhas equal azimuths at equal distances from noon, unless as far
as the change of declination interferes.

This meridian may be transferred to any near place, by sus-
pending a plumb line directly over the southern extremity of
the line drawn as above, and noting when the shadow falls on
that line: at this time another plumb line, suspended at the
place where the meridian line is required, will, by its shadow,
shew the meridian.

The imperfections of this method of finding a meridian line
arise from the inexact termination of the shadow, and from the
change of the sun’s declination in the interval of the two obser-
vations. The latter inconvenience is least in June and Decem-
ber near the solstices.



CHAP. XI.] THE MERIDIAN. . 139

203. The other method is perhaps as simple and exact as
can be expected without the assistance of a telescope, and is
applicable, even with a transit instrument. Observe when the
pole star above the pole, and ¢ Urse Majoris, called Alioth, are
in the same vertical ; a plane passing through these stars at that
time is nearly in the plane of the meridian.

The pole star and Alioth pass the meridian within about -
nine minutes of each other, the former being 1° 45’ above the
pole, and the latter 33° below it. Alioth passing the meridian
below the pole, about nine minutes before the pole star passes
above the pole; it follows that the vertical circle passing through
the polar star, and approaching the meridian, will be met by the
vertical circle passing through Alioth, receding from the meri-
dian, and therefore Alioth and the pole star will be in the
same vertical within less than nine minutes of time of the pas-
sage of the pole star: and as the pole star changes its azimuth
very slowly, the vertical circle passing through these two stars
must be nearly in the plane of the meridian.

204. The deviation of this vertical circle from the plane of
the meridian may be easily computed : for in general the sine
of the azimuth is to the sine of the hour angle at the pole, as
the sine of the polar distance is to the sine of the zenith dis-
tance. Now the mean R. Asc. on Jan. 1, 1810,

Of a Polaris - = Ot 54’ 37"
Of Alioth - - = 1245 41

Hence when Alioth is on the meridian below the pole, the
hour angle at the pole star (= 8™ 56° in time) = 2° 14/, and
therefore the sine of the azimuth of the pole star when Alioth
szn. 2°14'. sin. 1° 45° = (in lat. 53° 23,) sin. 7/ nearly.
sin. (co. lat.—1° 45")
This is the azimuth of the pole star, when Alioth is passing the
meridian below the pole. When they are in the same vertical,

passes =

~4.
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the common azimuth is somewhat less ;* but the difference is so
small, that it is scarcely worth notice in this approximation to
the meridian, which serves without farther correction for most
common purposes. The changes of the right ascension from
aberration are not noticed, because the method is only given
here for an approximation.

205. The following is a convenient way of practising this
method. Suspend two plummets, A and B, (Fig. 29), to each
end of a rod CD. Vessels of water should be used for steady-
ing the plummets. A pivot fixed to the middle of the rod
should be supported ona socket at E ; so that the rod may turn
steadily and freely. If Alioth and the pole star be observed in
the plane of the plumb lines, that plane will be, in these lati-
tudes, within about 7’ of the meridian. The eye will readily
shew when they are nearly in the same vertical, and then the
plumb lines, by turning the rod on its socket, may be easily made
to pass through them, when exactly on the same vertical.”

206. Instead of the plumb lines, a transit telescope turning
on an horizontal axis may be used. The deviation from the
meridian of the telescope, so adjusted, may be found by observ-
ing the transits of a star to the south of the zenith, and of the
pole star. The transit of the former will give the sidereal time

8 The correction of the azimuth is very easily comi)uted; for the angular motion
of the vertical of the pole star is to the angular motion of the vertical of Alioth, as
sine polar dist. of pole star _sine polar dist. of Alioth (in lat. 530 23/) : : sin. 1045/

sine zenith dist. © 7 sin. zenith dist. “sin. 34 52°
sin. 33°
S0 69.37- ::1:11 nearly, Therefare the azimuth of common vertical is to azi-

muth of pole star, when Alioth passeth, as 11 to 12 nearly ; and therefore azimuth
of common vertical = {} X 7/ = 6,4 nearly.

b This method can only be used when the polar star passes the meridian above
the pole, when it is dark, that is, from the end of August to the end of January.
There are no other stars so convenient for this method, although Capella below the
pole, and ¢ Urse Minoris above the pole, may serve.

c
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nearly, and comparing the time so found with the sidereal time
given by the polar star, the difference, which may be considered
as entirely the error from the pole star, will give the deviation
from the meridian : for the deviation in seconds of a degree is
to error in seconds of a degree of sidereal time of transit of pole
star, as the sine of the polar distance of the pole star to the sine
of the zenith distance. The reason of considering the whole
difference, as the error of the pole star, is, that when the devia-
tion from the meridian is small, the error of sidereal time from
a star, southward of the zenith is very small, compared to the
error from the polar star. This is a very convenient method of
approximating at pleasure to the meridian.

207. The deviation from the meridian may also be found by e
comparing the times of continuance of a circumpolar star on the hla‘
east and west sides of the meridian.? .

A quadrant having an azimuth circle is very convenient for
ascertaining the meridian, by observing equal altitudes on each
side of the meridian, and then bisecting the arch of azimuth.
If the sun be used, allowance must be made for the change of
declination.

A good clock will serve instead of an azimuth circle, by ob-
serving equal altitudes of the sun or a star, half the interval of
time corrected (if the sun is observed) will shew when the ob-
ject was on the meridian, and thence the error of the clock will
be ascertained, and so the time of the transit of any star may be
computed, and the instrument adjusted at the time of that
transit.

8 Professor Vince’s Practical Astron. p. 82.
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CHAPTER XIIL

GEOCENTRIC AND HELIOCENTRIC PLACES OF PLANETS—NODES AND
INCLINATIONS OF THEIR ORBITS—MEAN MOTIONS AND PERIODIC
TIMES—DISCOVERIES OF KEPLER—ELLIPTICAL MOTIONS OF PLA-
NETS.

208. THE fixed stars, as has been noticed, appear in the
same place with respect to the ecliptic from whatever part of
the solar system they are seen, but not so the planets: their
places as seen from the sun and earth are very different, aud as
their motions are performed about the sun, it is necessary to de-
duce from the observatious made at the earth, the observations
that would be made by a spectator at the sun. By this we ar-
rive at the true knowledge of their motions, and discover that their
orbits are neither circular, nor their motions entirely equable
about the sun, although a uniform motion will, in some measure,
solve the pheenomena of their appearances.

It has before been shewn how the distances and periodic
times of the planets are found, on the hypothesis of their orbits
being circular, and their motions uniform ; it remains to shew
how the places of the nodes and inclinations of the orbits may
be found nearly, before we proceed to more accurate investiga-
tions. For this, it is necessary to find from the geocentric lon-
gitude and latitude (computed, from the right ascension and
declination observed,) and the distance of the planet from sun
known nearly (art. 97 and 101) the heliocentric latitude and lon-
gitude.

209. Let S and E (Fig. 30) be the sun and earth, P the -
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planet, O its place, projected perpendicularly on the plane of
the ecliptic, SA the direction of Aries, and EH parallel to SA.
Then OEH and OEP are the geocentric longitude and latitude
of the planet, and OSA and PSO are the heliocentric longitude
and latitude. From the right ascension and declination ob-
served, and the right ascension and declination of the sun, we
can compute the planet’s angular distance from the sun, or the
angle SEP. For we have then the angle subtended at the pole
between the sun and the planet, and the polar distance of each.
Therefore in the triangle SEP, we know SP, SE, and the angle
SEP ; from thence we can deduce PE, and thence OE, because
OE : PE : : cos. OEP (geocent. lat.) : rad. Hence in the tri-
angle SOE, ES, OE and angle SEO (diff. long. of planet and
sun) are known, and so we can compute OSE. Whence, be-
cause ESA = earth’s longitude seen from sun = sun’s longi- K
tude 4+ 180° we obtain OSA the heliocentric longitude. Also’
because PS x sin. PSO = OP x rad. = EP x sin. OEP, we
have sin. hel. lat. : sin. geo. lat. : : EP : PS, and thus the heli-
ocentric latitude is known.
210. From two heliocentric longitudes and latitudes, the
place of the node and inclination of the orbit may be found.
Let AR and AS (Fig. 31) be two heliocentric longitudes, PR
and QS the heliocentric latitudes, and N the ascending node.
. . sin. NR (= AR—AN
Then by spherical trigonometry tin PR ) = co-
sin. NS (= AS—AN)
tan. QS.
of the difference of two arches)
sin. AR X cos. AN—cos. AR X sin. AN__
tan. PR. -
sin. AS X cos. AN —cos. AS X sin. AN
tan. QS.
hence is deduced tan. AN =

tan. PNR = , or (by Theorem. for sine
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sin. AN _sin. AR X tan. QS—sin. AS x tan. PR,

cos. AN cos. AR X tan. QS—cos. AS X tan. PR.
AN is the longitude of the ascending node ; this being found,
we have cot. PNR (inclin. of orbit) = ——Zz(éSS—AN) .

The best observations for ascertaining the place of the node,
are those made when the planet is near its node on each side:
the best, for ascertaining the inclination, are when the planet is
farthest from the ecliptic.

The above is applicable to finding accurately the place of
the node and inclination of the orbit, provided we had the pla-
net’s distance from the sun, at each observation, accurate. - How
these may be found, will appear farther on. Therefore thus far
it has only been shewn,how the distances, periodic times, places
of the nodes, and inclinations of the orbits, may be nearly found.

211. Among the most valuable observations for determin-
ing the elements of a planet’s orbit, are those made when a su-
perior planet is in or near opposition to the sun, for then the he-
liocentric and geocentric longitudes are the same. And a num-
ber of oppositions being observed, the planet’s motion in longi-
tude, as would be observed from the sun, will be known. The
inferior planets also, when in superior conjunction, have the same
geocentric and heliocentric longitudes: when in inferior con-
junction, they differ by 180°; but the inferior planets can sel-
dom be observed in superior conjunction, or in inferior conjunc-
tion, except when they pass over, which they rarely do, the sun’s
disc. Therefore we cannot so readily ascertain by simple ob-
servation, the motions of the inferior planets seen from the sun,
as we can those of the superior.

212. The principal element for determining the place of a
planet, is the mean angular velocity about the sun, called the
mean motion. The periodic time is considered as invariable ;
but neither the real motion in its orbit, nor its angular motion’

— — —
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about the sun are equable. The periodic time, being constant,
may be taken as the measure of its mean motion ; or rather the
mean angle described in any given time, as twenty-four hours
(deduced by proportion, from 360° being described in the pe-
riodic time.)

If the planet’s place in its orbit, as seen from the sun, at
any time, be known, its place at any other time will be had
within a few degrees or less, by adding its mean motion, in the
interval, to the former place : this is to be corrected according
to the deviation of the true motion from the mean place.

To obtain accurately the periodic time of a planet. Find
the interval elapsed between two oppositions separated by a long
interval, when the planet was nearly in the same part of the zo-
diac. From the periodic time known nearly, it may be foundl
when the planet has the same heliocentric longitude, as at the
first observation. Hence the time of a complete number of re- -
volutions will be known, and thence the time of one revolution.
‘The greater the interval of time between the two oppositions,
the more accurately the periodic time will be obtained, because
the errors of observation will be divided among a great number
of periods ; therefore by using very ancient observations, much
precision may be obtained.

213. The planet, Saturn, was observed in the year 228 B.c.
March 2, (according to our reckoning of time) to be near the
star y Virginis, and at the same time was nearly in opposition to
the sun. The same planet was observed in opposition to the
sun, and having nearly the same longitude, in Feb. 1714.

Whence it was found that 1943 common years, 118 days,
21 hours, and 15 minutes had elapsed while the planet made
66 revolutions. It being readily discovered that the time of a
revolution was 294 years nearly, it was easily ascertained that
exactly 66 revolutions had been completed in the above inter-
val, and therefore it follows that 29¥ 1624 4h 19m js the time of

L
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one revolution, which gives 2’ 07, 58 for the mean motion in 24
hours. The above time of revolution is with respect to the
equinoctial points, and, as the equinoctial points recede, the
time of a complete revolution in the orbit will be had by finding
- the precession of the equinoxes in longitude in the above time
of revolution, and thence computing, by proportion, the time
the planet takes to go over the arch of longitude equal to the
precession. In this way the time of a complete revolution is
found to be 29v 1749 11» 29™: this is called a sidereal revolu-
tion, because it is the time elapsed between two successive re-
turns of the planet to the same fixed star, when seen from the
sun. The time of revolution with respect to the equinoxes, the
same as the time of revolution with respect to the tropics, is
called the tropical revolution.

In the same manner ancient observations have been used for
the other planets. Ptolemy has recorded several oppositions
of Jupiter and Mars observed by him in the second century.
From these Cassini computed, by the help of modern observa-
tions, the periodic times with much exactness. Ancient obser-

. vations have also been used for Venus. Mercury, before the
invention of telescopes, could not be seen, when near either in-
ferior or superior conjunction, and therefore for this planet mo-
dern observations only have been used : however its transits over
the sun’s disc have enabled us to obtain the periodic time with
sufficient accuracy.

214. The exact periodic time of the earth is readily found
by a comparison of two distant equinoxes ; the time of the equi-
nox is known by observing the sun’s declination before and
after the equinox, and thence the time when the sun had no de-
clination, may be computed by proportion. Comparisons of
good observations, separated by a long interval, give the time of
returning to the same equinox, or the length of a tropical year =
365¢ 5" 48m 48+ and as the recession of the equinoctial points
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is 50”4 in a year, the sun will appear to move over this space in
20™ 23:1. Hence the periodic time of the earth or a sidereal ,
year = 365¢ 6 9m 11¢,

215. The ancient observations of Jupiter and Saturn, com-
pared with the modern ones, give the periodic time of the for-
mer greater, and that of Saturn less, than what are found by a
comparison of the modern observations. The cause of this is
satisfactorily e;(plained by the mutual attraction of these bodies
to each other, and the quantity of variation has been computed
by the help of physical astronomy.

The tropical year is less now than in the time of Hippar-
chus, according to the determination of Laplace, by about 10°.

216. The next inquiry is the deviation of a planet’s motion
from equable motion, for which the knowledge of the form of
the orbit, and law of metion in that orbit, are necessary. This
brings us to the discoveries of Kepler, who first ascertained,
from the observations of Tycho Brahe, that the planets move ig
elliBses about the sun, which is in one of the foci ; that the law
of the motion of each planet is sych, that it describes about the
sun equal areas in equal times, and that the squares of the perio-
dic times are as the cubes of the greater axes of their orbits.
Kepler, to whom we owe these-important discoveries, was born
in 1571, and cxstinguished himself early in the seventeenth cen-
tury. Naturally possessed of a most ardent desire of fame, it
was fortunate for the progress of astronomy that he applied him-
self to this science. He had the advantage of referring to the
numerous and celebrated observations of Tycho Brahe; whe
having, with unwearied exertions, constructed instruments, far
better than had ever been made, used them with equal assidu-
" ity in forming a connected series of most valuable observations.
Tycho Brahe observed in the Island of Huine, near Copenha-
gen; from whence, in consequence of most unmerited treat-

L2
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ment, he was obliged to retire to Prague, whither Kepler, at his
persuasion, came to reside.

217. Kepler first applied himself to investigate the orbit of
Mars,®* the motions of which planet appeared more irregular
than those of any other, except Mercury, which, from being
seldom seen, had then been little attended to. He has left us
the result of his inquiries, in his work, “ De Motibus Stellee
Martis,” which will always deserve to be studied as a record of
industry and ingenuity. It will not be convenient to enter here
into many particulars of his labours. One of the most remarka-
ble is, his long adherence to the hypothesis, that the orbits of all
the planets must be circular, because a circle is the most per-

|fect figure. The planet was supposed to move in a circle de-

scribing equal angles about a point (punctum @quans) at a cer-
tain distance from the sun. In this he was sanctioned by all
who had gone before him, and it was not till having in vain
spent near five years in attempting to accommodate this hypo-
thesis to the observations, that he could persuade himself to re-
ject it. ¢ Primus® meus error fuit viam planeta perfectum esse
circulum; tanto nocentior temporis fur, quanto erat ab authori-
tate omnium Philosophorum instructior et metaphysica in spe-
cie convenientior.” He afterwards proceeded by a method in
which all conjecture was laid aside. From the numerous obser-
vations of Tycho Brahe, that had been continued upwards of
twenty years, he obtained many distances of Mars from the sun,
and the angles at the sun contained by these distances, and at
last discovered that the curve passing through the extremities of
these distances was an ellipse ; in this manner arriving at a con-
clusion, which he considered as fully repaying him for his trou-
ble. His attempts, his repeated disappointments, all of which

 This was merely accidental. Vid. Kepler De Motibus Stellee Martis, p. 53.
b De Motibus Stelle Martis, cap. 40, p. 192,
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he has ingenuously recorded ; his ready invention in surmount-
ing difficulties ; his perseverance at last crowned with success ;
remain as highly useful examples to shew the value of genius
and industry united. His adherence to the eircular hypothesis,
which was principally supported by its antiquity, affords a useful
illustration of the inconveniences that may arise from not taking
experiment and observation for our guides ; and by his ultimate
success he may be said to have given an illustrious example of
that method of philosophising, which a few years afterwards was
so strenuously recommended by Lord Bacon.

218. Kepler’s method, by which he at last obtained the or-
bit of Mars, will serve as a plain example of the manner of find-
ing the orbit of a planet, and therefore may be considered as
proper for an elementary work, although the present advanced
state of astronomy furnishes others more convenient, but not so .
simple.

He considered the orbit of the earth as circular, the sun be-
ing at a small distance from the centre, which the observations
of Tycho were not sufficiently accurate to contradict, the orbit
of the earth deviating so little from a circle. Thus he was ena-
bled to ascertain with sufficient precision the relative distances
of the earth from the sun at different times, and the angles de-
scribed about the sun ; having discovered that the point of equa-
ble motion was not, as astronomers at that time supposed, in the
centre of the circle, but in the continuation of the line joining the
sun and centre, and equally distant from the centre as the sun.®

Let T and E (Fig. 32) be two places of the earth, when
Mars is in the same place of its orbit. (These times are known
from knowing the periodic time of Mars) ; P Mars, and M its

2 The ancient astronomers had supposed this to be so with respect to the pla-
nets, but the hypothesis had been rejected by Copernicus. It is only nearly true in
the orbits that are of small eccentricity.
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projection on the plane of the ecliptic ; S the sun. The angles
MTS and MES are known from observations: TS, SE, and
angle TSE from knowing the orbit and motion of the earth.
In the triangle TSE we can find STE and TES and TE. From
these angles we find MTE and MET, and thence by help of
TE we compute MT. Knowing MT, TS, and the included an-
gle, we find MS.

MT : MS : : cot. PTM (geo. lat.) : cot. PSM (hel. lat.) thus
we obtain the heliocentric latitude. Then cos. PSM (hel. lat.):
rad. : : SM : PS.

219. By the numerous observations of Tycho Brahe, Kep-
ler was enabled to verify the same distance from several pairs
of observations, and also to find many different distances, and
the angles at the sun contained by these distances. In this -
manner he also found the greatest and least distances. Sup-
posing the orbit circular, he had from these the diameter of the
circle, and he could deduce any other distance at pleasure ; by
which means he compared the distances computed on this hy-
pothesis with the distances computed from observation, and
found that the distances in the circle were always greater than
the observed distances. Hence he was assured that the orbit
was not circular, but oval. He was at last led to try an ellipse,
having the sun in one of the foci: this he found to answer by a
comparison of a great number of observations of Mars. He
soon concluded the same true for all the planets, and soon ascer-
tained that each described equal areas in equal times round the
sun.

220. The last discovery of Kepler was, that the squares of
the periodic times are as the cubes of the greater axes of the
ellipses. This discovery was made many years after the two
former : he conceived there must be some relation between the
motions of the respective planets, which led him to search for
that relation, and the above law was the result, which seems to
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have given him as much pleasure as any of his discoveries. We
now know that this remarkable proportion is a simple result,
from the principle of universal attraction which pervades all bo-
dies. How great must have been the satisfaction of Newton,
who first established the existence of universal gravity, and by
the application of mathematical principles, shewed that the three
famous discoveries of Kepler were necessary consequences of that
universal property of bodies.

221. Tt will not be convenient here to enter into a farther
detail of the methods by which all the particulars of the ellipti-
cal motions of the planets have since been established. They
may be found in the copious astronomical treatises of Lalande,
Professor Vince, Delambre, and others.

The computations made from the elements of the elliptical
motions, agree so precisely with observation, that not a shadow
of doubt can remain, that the planetary motions are performed
according to the above laws; and all that may be thought neces-
sary here is to shew briefly, how the geocentric place of a planet
may be computed from the elements of its motion in an elliptic
orbit about the sun, and so compared with the same given by
observation.

222. When a planet isat its greatest and least distances from
the sun, it is said to be in dphelion and Perihelion. The dis-
tance of the sun from the centre of the ellipse is called the ec-
centricity of the orbit. If the angular motion of the planet
about the sun were uniform, the angle described by the planet
in any interval of time, after leaving Aphelion, might be found
by simple proportion, from knowing the periodic time, in which
it describes 360°: but as the angular motion is slower near
Aphelion, and faster near Perihelion, to preserve the equable
description of areas, the true place will be behind the mean
place in going from Aphelion to Perihelion ; and from Perihe-
lion to Aphelion, the true place will be before the mean place.
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The angle at the sun contained between the true and mean place
is called the equation of the centre. The angle between the
Apbhelion and mean place is called the mean anomaly, and the
angle between the true place and Aphelion, the true anomaly.

223. The tables give the mean place of the planet in its or-
bit at some given time, called the epoch ; from thence the mean
plaee at any other time may be found, either by the tables, or
by proportion : if from this the place of the Aphelion be sub-
tracted, the mean anomaly of the planet is obtained, and from
thence the true place is to be found. The numerous calcula-
tions, now requisite in astronomy, make it necessary that all the
aid possible should be derived from tables. Accordingly the
tables give the mean mation about the sun for years, days, hours,
&c., the place of the Aphelion,* and the equation of the centre
and distance from the sun, for different degrees of mean ano-
maly. Thus we obtain the true place of the planet as seen from
the sun, and its distance from the sun. The difference between
the place in its orbit and the place of the node gives its distance
from the node ; whence, from knowing the inclination, we can
compute its angular distance on the ecliptic from its node, and
also its angular distance from the ecliptic, and thus find its he-
liocentric longitude and latitude. Hence, knowing the earth’s
distance from the sun, and its place, as seen from the sun, we
can compute, by the converse of the method in art. 209, the
geocentric latitude and longitude.

The best tables of the motions of the planets contain the cor-
rections to be applied, on account of the mutual attraction of

s The latest French tables reckon the anomaly from Perihelion, instead of
Aphelion, as has been usual hitherto. This was done to make the mode of reckon-~
ing similar to that for comets, the motions of which are necessarily estimated from
Perihelion, and the intention seems to be, that in future the anomaly of the planets
should be computed in the Mf manner.

-
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the bodies of the system, by which their motions are disturbed,
and by which also their nodes and Aphelia. slowly change their
places.

224. The true place of the planet in the elllpse, or the true
anomaly, may also be deduced from the mean in the following
manner.

Let AN (Fig. 33) be the axis major of the orbit, S the sun,
P the planet, NLIA a semicircle described on the axis major,
and ACL = the mean anomaly. Draw IPD perpendicular to
AN. The area ACL : area ALN : : mean anomaly : 180° : :
time of describing AP : time of describing APN : area® ASP:
area APN : : (by prop. ellipse) area ASI : area ALN. Hence
area ACL = area ASI. Therefore sector LCI = triangle SIC.
But as LI is small, the space between the chord and arc is very
small, and therefore the triangles LCI and SIC are nearly equal,
and consequently CI and LS are nearly parallel, and the angle
LSC = ICD nearly. The angle ICD is called the eccentric
anomaly. The sum of the angles LSC and SLC = LCA =
the mean anomaly, CL + SC = SA, and CL — SC = SN.
Therefore (by trigonometry) Aphelion distance SA : Per. dist.
SN : tan 5 mean anomaly : tan L diff. angles LSC and SLC.
ICA (the eccentnc anomaly) neﬁrﬁé eccentric anomaly
so found may be easily farther corrected, at pleasure, in the fol-
lowing manner. Because the sector LCI = the triangle SCI,
we have® LCI x CI* = sin. SCI x SC x CI or LCI =
s 00 X O ICI% x SC Consequently, if we use the eccentric ano-
maly just found, for ICD, the error of LCI will be less than
that of the sine of ICD, in the proportion of SCto CI. Hence

® Art. 219,
b Not the degrees, &c. m LCJ, but the measure of LCI to radius unity. '/(

‘1
I o = S0 oz i e yﬁw
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subtracting LCI so found, from the mean anomaly, a much
nearer value of the eccentric anomaly will be had.  Using this
new eccentric anomaly as before, a still nearer value will be had,
&c. Two corrections will nearly suffice for all the planets.
This is one of the most obvious methods of correcting the ec-
centric anomaly found above, but not the best adapted to prac-
tice :* one much better may be derived from it.

The eccentric anomaly being found, the true anomaly may
be easily deduced. For, from thence the angle ISC in the tri-
angle SCI can be found, and tan. ISD: tan. PSD : : ID :PD::
axis major : axis minor. Therefore PSD is known.b

225. The problem for finding the true from the mean ano-
maly, or, which comes to the same, to divide the area of the
semicircle, by a line drawn from a point in_the diameter, in a
given ratio, has long been celebrated, and known by the name
of Kepler’s problem ; he first endeavoured to solve it in conse-
quence of his discovery, that a planet describes equal areas in
equal times, about the sun. No exact solution can be given;
it must be done either by continued approximation, or by help

of a series.

- 226. Astronomers were not long in adopting Kepler’s dis-
covery of the elliptical motions of the planets, but they long he-
sitated in adopting the equable description of areas, in conse-
quence of the difficulty it involved of finding the true from the
mean place. They instead-thereof had recourse to such hypo-
theses for the law of motion, as would afford them easy rules
for finding the true from the mean place, and at the same time
would give the computed place nearly within the limits of the
errors of observation. One of the most.celebrated was that of

* Vide Appendix.
l ( b This, although obvious, is not best adapted for practice. For tan. ] eccent.

anom. : tan. } true anom, : : 4/aph. dist.) : y/per. dist.) vide Appendix.
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" Seth Ward,* known by the namé of the Simple Elliptic Hypo-
thesis : its value was derived, not from its accuracy, but from
the elegance of the analogy used. He supposed the motion
equable about the focus in which the sun was not ; and from
thence it easily follows, that the Aphelion dist. : Perihelion
dist. : : tan } mean anomaly : tan. } true anom. The anomaly
thus found, may sometimes differ in the orbit of the planet Mer-
cury 33’ from the truth, and in that of Mars 7°.> The laws of
motion assigned by other authors differed less from the truth,
but required more complex computations. As no satisfactory
reason could be assigned for Kepler’s law, any other law that
appeared to shew with equal accuracy the motions of the pla-
nets about the sun, had an equal claim to attention. This oc-
casioned the invention of several different hypotheses before the
time of Sir Isaac Newton : but his discoveries having fully esta-
blished the Keplerian law, they were soon laid aside.

The first approximation above given for the eccentric ano-
maly, may occasion an error of 5 in the anomaly of Mercury,
of 20" in that of Mars, &c.

8 It has generally gone by the name of Ward’s Solution ; yet he did not claim
it as his own, but acknowledged himself indebted to Bouilliald for the higt that led
him to it. The fact is, that Kepler himself was not ignorant of it as an approxima-
tion, but rejected it as not sufficiently accurate.

b Trans. R. I. Academy, vol. ix. p. 143, &c)
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227. The following table exhibits the elliptic elements of
the orbits of the principal planets.

Merc.| Ven. |Earth|Mars.| Jup. | Sat. |Geor.

Eccentricity of|
the orbit, the
mean distance
1000. 206 | 7 17 | 93 | 48 56 | 47

Places of the
Aphelion seen

s o
from the sun. 11 17

oo
—
'S
K]
[ K]
%4
—
—
3
N
©

10 849 94

Mean motion
in 24 hours as
seenfromsun [4 5 3/1368/59 831 274 592 5,60 42,0

Illol"l wior o mr Ay Zan "

=)

|Greatest equa-
tion of centre
or deviation|

from mean|® ‘o ‘lo ‘jo o ‘lo "o
place. 23 40/0 47|]1 5510 405 30i6 275 21
New planet Vesta.
The eccentricity of the orbit - - 88
Place of Aphelion - - - . 2 90 20
Mean motion in 24 hours - - - 16/ 18"
Juno. A
Eccentricity of the orbit - - - - 251
Place of Aphelion - - - . 8 22 49
Mean motion in 24 hours - - - 13" 35"
Ceres.
The eccentricity of the orbit - - 79
Place of Aphelion - - - - 10° 26 9
Mean motion in 24 hours - - - 12 5017
Pallas.
Eccentricity of the orbit - - - 245
Place of Aphelion -~ - - - 100 10 7

Mean motion in 24 hours - - - 12/ 50",9
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CHAPTER XIIIL

)

ON THE MOTIONS OF THE MOON——SATELLITES=—COMETS.

228. Tak satellites also revolve in elliptic orbits round their
respective primary planets, having the same law of periodic.
times, but considerable deviations from the equable description
of areas take place, in consequence of the disturbing force of the
sun on the satellites, and of the satellites on each other.

The moon being a solitary satellite, we cannot apply the law
of the periodic time to it. But its orbit is nearly an ellipse, and
it nearly describes areas proportional to the times, the deviation
from which arises from the disturbing force of the sun. This
ellipse, however, does not retain the same position ; that is, its
points of greatest and least distance, called its apogee and peri-
gee, do not retain the same position, but move according to the
order of the signs, completing a revolution in about nine years.

The laws of the principal irregularities® of the moon were
discovered long before the cause of them.

229. The greatest difference between the true and mean
place of the moon, arising from its elliptic motion, or the great-
est equation of the centre, is 6° 18/, and this is the most consi-
derable deviation from its mean place. But besides the quick
motion of the apogee, completing a revolution in nine years, the
eccentricity of the ellipse is also variable: hence the motions of
the moon appear so irregular, that it would have been almost

® The corrections for these irregularities (improperly so called) are styled
equations. .
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impossible to have developed the elliptic motion from the phee-
nomena ; and therefore without a knowledge of the form of the
planetary orbits, it is hardly to be supposed that an ellipse could
have been applied for explaining the motions of the moon, al-
though at first sight the superior advantage of being in the cen-
tre of the orbit might lead us to suppose that the laws of its mo-
tions would be more easily known.

230. The periodic time of the moon may be ascertained
with great exactness from the comparison of ancient eclipses with
modern observations. At an eclipse of the moon, the moon be-
ing in opposition to the sun, its place is known from the sun’s
place, which can, back to the remotest antiquity, be computed
with precision. Three eclipses of the moon, observed at Baby-
lon in the year 720 and 719 B. c. are the oldest observations re-
corded with sufficient exactness. By a comparison of these with
modern observations, the periodic time of the moon is found to
be 27¢ 70 43™ 11}, not diﬁ'eriﬁ'g‘a second from the result ob-
tained by recent observations. Yet we cannot use those ancient
observations for determining the mean motion at the present
time ; for by a comparison of the above-mentioned eclipses with
eclipses observed by the Arabians in the 8th and 9th centuries,
and of the latter with the modern observations, it is well ascer-
tained that the motion.of the moon is now accelerated. This
was first discovered by Dr: Halley, and, since his time, has been
perfectly established by more minute computations. Fora con-
siderable time the cause remained unexplained ; till M. La-
place shewed it to be a variation of a very long period, arising
from the disturbance of the planets in changing the eccentricity
of the earth’s orbit. He has computed its quantity, which closely
agrees with that deduced from observation. The moon’s secu-
lar motion, the motion in a century, is now 7’} greater than it
was at the time the above-mentioned eclipses were observed at
Babylon.
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231. The two principal corrections of the mean place of the
moon, beside that of the equation of the centre, are called the
evection and variation. The evection depends upon the change
of the eccentricity of the moon’s orbit, and sometimes amounts
to 1° 20. This was discovered by Ptolemy. The variation
which was discovered by Tycho Brahe depends upon the angu-
lar distance of the moon from the sun, and amounts, when
greatest, to 35’. The other corrections arise only to a few mi-
nutes. But the number of corrections or equations used at pre-
sent in computing the longitude- alone of the moon, are thirty-
two, and in computing the latitude, twelve.

232. It was before mentioned, that the nodes of the lunar
orbit move retrograde, completing a revolution in eighteen years
and a half. This motion is not uniform. The inclination of
the orbit remains nearly the same, but not exact. The motion
of the apogee is subject to considerable irregularities : its true
place sometimes differs 12}° from its mean place. This was
known to the Arabian astronomers, but seems to have been first
accurately stated by Horrox, whose extraordinary astronomical
attainments will be afterwards noticed. He shewed the law of
its change, and gave a construction for determining its quantity,
which was adopted by Newton.

233. On all these accounts the computation of the exact
place of the moon from theory is very difficult, and the formation
of proper tables is one of the greatest intricacies in this science.

No small degree of credit is due to the industry of those
who, by observation alone, discovered the laws of the principal
irregularities. Ptolemy, by his observations and researches, de-
termined the principal elements of the lunar motions with much
exactness. Horrox, who adopted the discoveries of Kepler,
formed, about the year 1640, a theory of the moon, founded
partly on his own observations. From this theory, Flamstead,
about the year 1670, computed tables, which he found gave the
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place of the moon far more accurate than any other. Flamstead
himself soon after furnished observations, by which Sir Isaac
Newton was enabled to investigate, by the theory of gravity, the
lunar irregularities, which he has given in his ever memorable
work. Notwithstanding the field opened by the publication of
the “ Principia,” and the known necessity of exact tables of the
moon for the discovery of the longitude at sea, seventy years
elapsed from the publication of that great work, before any ta-
bles were formed for the moon, which gave its place within one
minute. Clairaut made, after Newton, the first considerable
advances in the improvement of the lunar theory from the prin-
ciples of gravitation. Professor Mayer, of the university of
Gottingen, first published tables, by which the moon’s place
might be computed to one minute. The ingenuity exhibited
in his theory and tables, and the incredible labour exerted in
their computation and verification, will always render his me-
mory distinguished. He died in 1762, at the early age of
thirty-nine, worn out by his great and incessant exertions. His
widow received from the British parliament a reward of £3000.
About the year 1780, Mr. Mason, under the direction of Dr.
Maskelyne, to whom modern astronomy is so much indebted,
improved, by considerable alterations and additions, the tables
of Mayer. Till very lately these were the tables generally used.
Improved tables have now been furnished by M. Burg of Vienna,
which appear to give the place of the moon to less than twenty
seconds. The improvements in these tables were founded en-
tirely on the observations of Dr. Maskelyne, for which purpose
3600 places of the moon, observed at Greenwich in the space
of about thirty years, were used.

The tables of M. Burg have been superseded by those of M.
Burckhardt, which are now used in computing the Nautical
Almanac, and Conn. des Temps. They are probably more ac-
curate, and certainly more convenient than those of M. Burg.

\
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234. Eclipses of Jupiter’s satellites furnish us with ready
methods of finding the principal elements of their orbits. Their
mean motions about the centre of Jupiter are deduced by ob-
serving, after a long interval, the time elapsed between two
eclipses of the same satellite, when Jupiter is near opposition.
In this manner the mean motion may be attained to with great
accuracy. The places of the nodes and the inclinations of their
orbits, may be found by observing the different durations of the
eclipses of the same satellite. Their orbits are all inclined by
angles less than 4° to the plane of Jupiter’s orbit. The two first
satellites move in orbits very nearly circular, as astronomers
have not been able to detect any eccentricity. The third has a
variable eccentricity. The orbit of the fourth satellite is more
eccentric. The inclinations of their orbits, and the places of
their nodes, are variable.

The complete illustration of the motions of the satellites
from gravity was, till about thirty years ago, a desideratum in
astronomy. The attraction of the satellites to each other prin-
cipally occasions the difficulty. M. Laplace has since fully de-
veloped their motions, and furnished Theorems, by which M.
Delambre has computed tables, which give the.times of the
eclipses with great exactness.

235. It is a very remarkable circumstance, that the mean
longitude of the first satellite, together with twice that of the
third, always exceeds three times the mean longitude of the se-
cond by 180°. From whence it follows, that the mean motion
of the first, together with twice that of the third, is equal to
three times the mean motion of the second. M. Laplace sup-
poses this was only nearly true with respect to the primitive
motions, and that the mutual action of the satellites rendered
the relation exact, as we find it. From the former relation it
follows, that the three inner satellites can never be eclipsed at
the same time.

M
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The three inner satellites of Jupiter return to the same po-
sition, with respect to one another, in 437§ days. Hence this is
the period of the irregularities of the three first satellites arising
from their mutual disturbance.

236. Little more is known of the satellites of Saturn than
their periodic times and distances from Saturn, and that the
planes of the orbits of the first six are nearly in the plane of the
ring, while that of the seventh is considerably inclined to that
plane.

ON THE ORBITS AND PERIODIC RETURNS OF COMETS.

237. When a comet appears, the observations to be made
for ascertaining its orbit are of its declinations and right ascen-
sions, from which the geocentric latitudes and longitudes are
obtained. These observations of right ascension and declina-
tion must be made either with an equatoreal instrument, or by
measuring with a micrometer, the differences of the declination
and right ascension of the comet, and a neighbouring fixed star.
The observations ought to be made with the utmost care, as a
small error may occasion a considerable one in the orbit. The
orbits of the planets being elliptical, it would naturally occur to
try whether the motions of the comets are not also in elliptical
orbits. But here the difficulty is much greater than for the
planets. For the latter we have observations in every part of
their nearly circular orbits. For the comets we have observa-
tions only in a small part of their orbits, which are very eccen-
tric, and of which many make considerable angles with the eclip-
tic. Hence to determine the orbit of a comet, from such ob-
servations as we can make during its appearance, ranks among
the most difficult problems in astronomy. :

238. Before the time of Newton, astronomers either did not
suppose their orbits elliptical, or despaired of being able to de-
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termine them from observation. Not long, however, before the
. publication of the ¢ Principia,” M. Doerfell, a German, found
that the motion of the famous comet of 1680, might be nearly
represented by a parabola, having the sun in its focus. This
comet appeared to approach the sun directly, and descend from
it again in the same manuer.

When the action of gravity was subJected to calculations by
the illustrious Newton, the theory of the motions of comets be-
came perfectly understood, and it was concluded that their or-
bits in general were very eccentric ellipses. But in computing
an orbit from observations, all we are in general able to do, is
to represent, with accuracy, the comet’s motion while in the
neighbourhood of the sun, and visible to us. We can do this
by supposing the orbit a parabola, and on that hypothesis,
computing its elements, in which- way we can determine its path
with sufficient exactness to make the observed and computed
places agree very nearly with each other. It is seldom, indeed,
that we can expect to compute the elliptic orbit from the few
observations we are enabled to make. 'We mayj, it is true, de-
duce many eccentric ellipses that will represent, with the same
accuracy as the parabola, the apparent motion. Were we to at-
tempt to compute the exact ellipse, the necessary errors of ob-
servation would render our conclusions quite uncertain. Hence,
in general, we have no knowledge of the axis, and consequently
of the periodic time, but from former observations of the same
comet.

239. There are five elements which we may consider as de-
termining the identity of a comet : these are the Perihelion dis-

» Sir Isaac Newton first gave the solution of this preblem, which he calls “longe
difficillimum.”  Different solutions have since been given by various authors. The
best seems to be that of Laplace. (Mecanique Celeste, tom. 1, p. 221.)

o M2
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tance, the place of the Perihelion, the place of the node, the in-
clination of its orbit, and its motion being direct or retrograde.
If two comets, recorded in history, are found to agree in these
circumstances, there can hardly be any doubt of their identity,
and consequently we obtain the knowledge of its periodic time,
and are enabled to point out the future appearances of the
comet.

240. Dr. Halley found that the comet which he observed in
1682, agreed in these circumstances with that observed by Kep-
ler in 1607, and with that observed by Apian in 1531, whence
he foretold that it would return again in the latter end of 1758,
remarking, that it would be retarded by the attraction of Jupi-
ter. Its motion was retrograde, and the elements of the orbit
deduced by Dr. Halley from the observations of Apian in 1531,
of Kepler in 1607, and of himself in 1682, also the elements de-
duced from the observations in 1759, were as follow :

Passage through El::h"i;‘:ij Place of | Place of |Inclination
Perihélion. unity. Perihelion. node. to ecliptic.
y.
P. H. s o '’ s o ° ’
1531 Aug. 21 18 ,567 10 139 119 30 17 51
1607 Oct. 26 8 ,587 10 216 120 21 17 2
1682 Sep. 14 4 ,583 10 2 52 12116 17 58
1759 Mar. 12 14 ,585 10 3 8 123 45 17 40

This comet was retarded by the action of Jupiter, as Dr.
Halley had foretold. This retardation was more exactly com-
puted by Clairaut, who also calculated the retardation by Sa-
turn. The result of his computation, published before the re-
turn of the comet, fixed April 15 for the time of the passage
through Perihelion : it happened on March 12, Dr. Halley’s
own computation appears also very exact, when it is considered
that he did not allow for the retardation by Saturn.
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A comet was expected in 1789, because one observed in
1532 was supposed to be the same as one observed in 1661.
Halley mentioned the probability of their being the same, but
not with confidence, and the event has made it very doubtful
whether they were the same.

241. An ingenious computation has been made by Laplace
from the doctrine of chances, to shew the probability of two co-
mets being the same, from a near agreement of their elements.
It is unnecessary to detail at length the method here. It sup-
poses that the number of different comets does not exceed one
million, a limit probably sufficiently extensive. The- chance
that two of these, differing in their periodic times, agree in each
of the five elements within certain limits, may be computed, by
which it was found to be as 1200 : 1 that the comets of 1637
and 1682 were not different, and thus Halley was justly almost
confident of its re-appearance in 1759. As it did appear then,
we may expect, with a degree of probability approaching almost
without limit to certainty, that it will re-appear in 1835 at the
completion of its period. But with respect to the eomet pre-
dicted for 1789, from the supposition that those of 1661 and
1532 were the same, the case is widely different. From the dis-
crepancy of the elements of these comets, the probability that
they were the same is only 3 to 2, and we cease to be surprised
that we did not see one in 1789. )

Comets that appeared in 1264 and 1556 are supposed to
have been the same, whence this comet may again be expected
in 1848.

242. A comet appeared in 1770, very remarkable from the
result of the computations of Lexell, which indicated a period
of only 5% years; it has not been observed since. There can
be no doubt that the periodic time of the orbit, which it de-
scribed in 1770, was justly determined ; for M. Burckhardt has
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since, with great care, re-computed the observations, and his re-
sult gives a periodic time of 5} years.?

Lexell had remarked, that this comet, moving in the orbit
he had investigated, must have been near Jupiter in 1767, and
and would also be very near it again in 1779, from whence he
concluded that the former approach changed the Perihelion dis-
tance of the orbit, by which the comet became visible to us, and
that in consequence of the latter approach, the Perihelion dis-
tance was again increased, and so the comet again became invi-
sible, even when near its Perihelion. This explanation has been
in a manner confirmed by the calculations of Burckhardt, from
formulas of Laplace. He has found, that before the approach
of Jupiter, in 1767, the Perihelion distance might have been
5,08, and that after the approach in 1779, it may have become
3,33, the earth’s distance being unity. With both these
Perihelion distances the comet must have been invisible dur-
ing its whole revolution. The Perihelion distance in 1770
was 0,67. ,

243. This comet was also remarkable by having approached
nearer the earth than any other comet that has been observed :
and by that approach having enabled us to ascertain a limit of
its mass or quantity of matter. Laplace has computed, that if
it had been equal to the earth, it would have shortened the
length of our year by § of a day. Now it has been perfectly
ascertained, by the computations of Delambre on the Greenwich
observations of the sun, that the length of the year has not been
changed in consequence of the approach of that comet by any
perceptible quantity, and thence Laplace has concluded that
the mass of that comet is less than k5 of the mass of the
earth. The smallness of its mass is also shewn by its having

2 Laplace Mecanique celeste. Tom. 4, p. 223.
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traversed the orbits of the satellites of Jupiter without having
occasioned any alteration in their motions. From these and
other circumstances, it seems probable that the masses of the
comets are in general very inconsiderable ; and therefore that
astronomers need not be under apprehensions of having their
tables deranged in consequence of the near approach of a
comet, to the earth, or moon, or to any bodies of the system.
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CHAPTER XIV.

ON ECLIPSES OF THE SUN AND MOON—TRANSITS OF VENUS AND
MERCURY OVER THE SUN’S DISC.

244. THE eclipses of the sun and moon, of all the celestial
phenomena, have most and longest engaged the attention of
mankind. They are now in every respect less interesting than
formerly ; at first they were objects of superstition ; next, be-
fore the improvements in instruments, they served for perfecting
astronomical tables ; and last of all, they assisted geography and
navigation. Eclipses of the sun still continue to be of impor-
tance for geography, and in some measure for the verification of
the tables.

ECLIPSES OF THE MOON.

245. An eclipse of the moon being caused by the passage
of the moon through the conical shadow of the earth, the mag-
nitude and duration of the eclipse depend upon the length of
the moon’s path in the shadow.

, Let AB and TE (Fig. 34) be sections of the sun and earth
by a plane, perpendicular to the plane of the ecliptic. Let.
ATV and BEV touch these sections externally, and BPG and
AMN internally. Let these lines be conceived to revolve
about the axis CKV ; then TVE will form the conical shadow,
from every point of whlch the light of the sun will be excluded.
The spaces between GT and PV and between VE and MN will
form the penumbra, from which the light of part of the sun will
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be excluded, more of it from the parts near TV and EV than
from those near PG and MN.

The semi-angle of the cone (TVK) sem. diam. sun
(CTA)—horizontal parallax of the sun (TCK). The angle
subtended by the semi-diameter of the section=SKV =TSK —
KVT = horizontal parallax of the moon 4 horizontal parallax
of the sun—semi-diameter of the sun.

The angle of the cone being known, the helght of the sha-
dow may be computed. For height of shadow : rad. of earth :
rad. : tan. } angle of cone; also the diameter of section of the
shadow at the moon is known, for } SO : dist. moon : : tan. sem.
diam. of section of shad. : radius.

The height of the shadow varies from 213 to 220 semi-dia-
meters of the earth, and nearly varies inversely as the apparent
diameter of the sun. )

246. When the moon is entirely immersed in the shadow,
the eclipse is total ; when only part of it is involved, partial ;
and when it passes through the axis of the shadow, it is said to
be central and total. The breadth of the section of the shadow
at the distance of the moon is about three diameters of the
moon ; therefore when the moon passes through the axis of the
shadow, it may be entirely in the shadow for nearly two hours
(art. 132.) '

The angle SKYV is, when greatest, about 46’ : therefore as
the moon’s latitude is sometimes above 5°, it is evident an
eclipse of the moon can only take place when it is near its
nodes.

247. The circumstances of an eclipse of the moon can be
readily computed. “The lat. of the moon at opposition, the time
of opposition, the horizontal parallax of the moon, and diame-
ters of the sun and moon are known from the tables. Let the
circle OCK (Fig. 35) represent the section of the shadow at
the moon, EF the path of the centre of the moon, OC the eclip-
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tic, and CL the latitude of the moon at opposition. In the right
angled triangle CHL we know CL and HCL (= the inclina-
tion of the lunar orbit nearly). Hence we find HC and HL.
HC never differs more than a few seconds from CL. From
HC and CF (the sum of the semi-diameters of the section of
the shadow and moon) we compute FH (=HE) and thence EL
and LF. By the tables we can compute the angular velocity of
the moon in its orbit relatively to the sun (or its opposite point
C) at rest. Thence we can find the time of describing FL and
LE, or the time from the beginning of the eclipse to opposition,
and the time from opposition to the end. And as the time of
opposition is known, the times of beginning and ending of the
eclipse are known.

If the diameter r6H¢ of the moon be divided into twelve
equal parts, called digits ; then, according to the number of these
in bt, the eclipse is said to be of so many digits.

248. The greatest distance of the moon, at opposition, from
its node, that an eclipse can happen, is above 114°, and is called
its ecliptic limit. 'When the moon is nearest the earth, let CD
(Fig. 36) represent the semidiameter of the shadow at the
moon, and LD the semidiameter of the moon touching it ; LN -
the apparent path of the moon, and N the place of the node.
Then NC is the limit of the distance of the node from conjunc-
tion, at which an eclipse can happen.

Sin. angle N (5° 17’) : rad. : : sin. CL (sem. moon + sem.
section = 63’ when greatest) : sin. NC (11j°.). '

249. If the moon’s nodes were fixed, eclipses would always
happen at the same time of the year, as we find the transits of
Venus and Mercury do, and will continue to do for many ages:
but as the nodes perform a revolution backward in about 18§
years, the eclipses happen sooner every year by about nineteen
days. '

In 223 lunations, or 18 years, 10 days, 7 hours, and 43 mi-




OHAP. X1V.] ON ECLIPSES. 171

nutes, or 18 years, 11 days, 7 heurs, and 43 minutes, according
as there are five or four leap years in the interim, the moon re-
turns to the same position nearly with respect to the sun, lu-
nar nodes, and apogee, and therefore the eclipses return nearly
in the same circumstances : this period was called the Chaldean
Saros, being used by the Chaldeans for foretelling eclipses.

250. From the refraction of the sun’s light by the atmos-
phere of the earth, we are enabled to see the moon in a total
eclipse, when it generally appears of a dusky red colour. The
moon has, it is said, entirely disappeared in some eclipses.

The Penumbra makes it very difficult to observe accurately
the commencement of a total eclipse of the moon ; an error of
above a minute of time may easily occur. Hence lunar eclipses
now are of little value for finding geographical longitudes.
The best method of observing an eclipse of the moon is by
noting the time of the entrance of the different spots into the
shadow, which may be considered as so many different obser-
vations.

ECLIPSES OF THE SUN.

251. From what has been said of the earth’s shadow, it is
easy to see that the angle of the moon’s shadow is nearly equal
to the apparent diameter of the sun. Hence we compute that
the length of the conical shadow of the moon varies from 60} to
55% semidiameters of the earth. The moon’s distance varies
from 65 semidiameters to 56. Therefore sometimes when the
moon is in conjunction with the sun, and near her node, the
shadow of the moon reaches the earth, and involves a small por-
tion in total darkness, and so occasions a total eclipse of the
sun. The part of the earth involved in total darkness is always
very small, it being so near the vertex of the cone ; but the part
involved in the Penumbra extends over a considerable portion
of the hemisphere turned toward the sun: in these parts the
sun appears partially eclipsed.
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252. The length of the shadow being sometimes less than
the moon’s distance from the earth, no part of the earth will be
involved in total darkness; but the inhabitants of those places
near the axis of the cone will see an annular eclipse, that is, an
annutus of the sun’s disc will only be visible. Thus let HF,
LU (Fig. 37) be sections of the sun and moon. Produce the
axis SV of the cone, to meet the earth in B: from B draw tan-
gents to the moon, intersecting the sun in Iand N. The circle,
of which IN is the diameter, will be invisible at B, and the an-
nulus, of which IH is the breadth, will be visible.

It has been computed that a total eclipse of the sun can ne-
ver last longer, at a given place, than 7™ 38%, nor be annular
longer than 12® 24*. The diameter of the greatest section of
the shadow that can reach the earth is about 180 miles.

253. The general circumstances of a solar eclipse may be
represented by a projection with considerable accuracy, and a
map of its progress on the surface of the earth constructed.
(Professor Vince’s Astron. vol. 1.)

" The phanomena of a solar eclipse at a given place may be
well understood by considering the apparent diameters of the
sun and moon on the concave surface, and their distances as
affected by parallax. When the apparent diameter of the sun
is greater than that of the moon, the eclipse cannot be total, but
it may be annular.

From the tables we compute for the given place the time
when the sun and moon are in conjunction, that is, have the
same longitude. From the horizontal parallax of the moon,
given by the tables, at this time, we compute its effects® in lati-
tude and longitude ; by applying these to the latitude and lon-
gitude of the moon, computed from the tables, we get the appa-
rent latitude and longitude, as seen on the concave surface ; and

*Or rather the effects of the difference of the parallaxes of the sun and moon.
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knowing the longitude of the sun, we compute the apparent
distanee of their centres, from whence we can nearly conclude
the time of the beginning and ending of the eclipse, especially
if we compute by the tables the apparent horary motion of the
moon in latitude and longitude at the time of the conjunction.
About the conjectured time of beginning, compute two or three
apparent longitudes and latitudes, and from thence the appa-
rent distances of the centres, from which the time may be com-
puted by proportion when the apparent distance of the centres
is equal to the sum of the apparent semidiameters, that is, the
beginning of the eclipse. In like manner the end may be de-
termined. The magnitude also of the eclipse at any time may
be thus determined : let SE (Fig. 38) be the computed appa-
rent difference of longitude of the centres L and S, LE the
computed apparent latitude of the moon. In the triangle LSE
we have therefore LE and ES to find SL the distance of the
centres. Hence mn (the breadth of the eclipsed part of the
sun) = La 4 Sm—SL is known.

254. The ecliptic limits of the sun (the greatest distance of
the conjunction from the node when an eclipse of the sun can take
place) may be found as follows: let CN and NL (Fig. 39) be
the ecliptic and moon’s path, and CN the distance, when great-
est, of the conjunction from the node; as the angle N (the ir-
clination of the orbit) may be considered as constant, when CN
is greatest, CL, the true latitude of the moon, is greatest. The
true latitude —apparent latitude + parallax in latitude = (when
an eclipse barely takes place) sum of the semidiameters +
parallax in latitude. Therefore at the ecliptic limits the paral-
lax in latitude is the greatest possible, that is, when it is equal
to the horizontal parallax. Hence CL = semidiameter moon
+ sem. diam. sun + hor. par. moon.* Therefore CL (when

® Itis scarcely necessary to mention the horizontal parallax of the sun in this in-
vestigation. It should properly be the horizontal parallax ofthe moon~hor. par. sun,
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greatest) =2 33’ 4 61’ (= 1° 34’) nearly. And because sin.
NC = %t N:;dtan. LC, we find NC = 17° 12 nearly. An
eclipse may happen within this limit ; but if we take CL = 30’
+ 54’ (the least diameters and least parallax) = 1° 24’ we find
NC = 15° 19’ and an eclipse must happen within this limit.

255. There must be two eclipses, at least, of the sun every
year, because the sun is above a month in moving through the
solar ecliptic limits. But there may be no eclipse of the moon
in the course of a year, because the sun is not a month in mov-
ing through the lunar ecliptic limits.

When a total and central eclipse of the moon happens, there
may be solar eclipses at the new moon preceding and following,
because, between new and full moon, the sun moves only about
15°, and therefore the preceding and following conjunctions will
be at less distances from the node than the limit for eclipses of
the sun. As the same may take place at the opposite node,
there may be six eclipses ina year. Also when the first eclipse
happens early in January, another eclipse of the sun may take
place neer the end of the year, as the nodes retrograde nearly
20° in a year. Hence there may be seven eclipses in one year,
five of the sun, and two of the moon.b

256. Thus more solar than lunar eclipses happen, but few
solar are visible at a given place.

A total-eclipse of the sun, April 22, 1715, was seen in most
parts of the south of England. A total eclipse of the sun had
not been seen in London since the year 1140.

The eclipse of 1715 was a very remarkable one ; during the
total darkness, which lasted in London 3™ 23¢, the planets Jupi-
ter, Mercury, and Venus were seen; also the fixed stars Capella

* Art. 60, 83, and 132.
b Or four of the sun and three of the moon.—Eb.
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and Aldebaran. Dr. Halley has given a very interesting ac-
count of this eclipse,® which is said by Maclaurin to be the best
description of an eclipse that astronomical history affords. A
particular account is also given in the Phil. Trans. by Maclau-
rin of an annular eclipse of the sun, observed in Scotland, Feb.
18, 1737. He remarks, that this phenomenon is so rare, that
he could not meet with any particular description of an annular
eclipse recorded. This eclipse was annular at Edinburgh dur-
_ing 5m 48,

257. The beginning and end of a solar eclipse can be ob-
served with considerable exactness, and are of great use in de-
termining the longitudes of places : but the computation is com-
plex and tedious, from the necessary allowances to be made for
parallax, '

TRANSITS OF VENUS AND MERCURY.

258. The planets Venus and Mercury are sometimes in in-
ferior conjunction when near their nodes : they then appear as
dark and well defined spots on the body of the sun. Mercury
can only be seen by the assistance of a telescope, but Venus may
be seen by the eye, defended with a smoked glass, or on the
image of the sun formed in a dark room by an aperture in the
window. Venus appears in a telescope, a well defined black
spot, 57" in diameter. The diameter of Mercury is only about
117

259. The transits of Mercury are much more frequent than
those of Venus. This is merely accidental, arising from the
proportion of the periodic time of Mercury to that of the Earth,
being nearly expressed by several pairs of small whole numbers.
If an inferior planet be observed in conjunction near its node

3 Phil, Trans. Vol. 29, -
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(or in a certain place of the Zodiac), it will be in conjunction in
the same place of the Zodiac, after the planet and the earth
have each completed a certain number of revolutions. Now it
is easily computed from the periodic times of Mercury and the
Earth, that nearly

7 per. of the Earth’s rev. = 29 per. of Mercury’s.

13 - of the Earth = 54 - of Mercury.

33 . of the Earth = 137 - of Mercury.
Therefore transits of Mercury, at the same node, may happen
at intervals of 7, 13, 33, &c. years.

8 per. of the Earth’s rev. = nearly 13 per. of the rev. of
Venus.

There are no intervening whole numbers till

235 per. of the earth = nearly 382 per. of Venus.

Hence a transit of Venus, at the same node, may happen
afier an interval of 8 years. If it does not happen after an in-
terval of 8 years, it cannot happen till after 235 years.

At present the ascending node of Venus, as seen from the
sun, is in 2¢ 14°, and the descending node in 8¢ 14°. The
earth, as seen from the sun, is in the former longitude in the be-
ginning of December, and in the latter in the beginning of
June. Hence the transits of Venus will happen for many ages
to come in December and June. Those of Mercury will hap-
pen in May and November.

260. A transit of Mercury happened at the descending node
in May, 1832, and the next will take place at that node in 1845.
One happened in 1815 at the ascending node, another in 1822,
and a transit will take place at that node in 1835.

In the years 1761 and 1769 there were transits of Venus,
Venus being in her descending node: the next trausit at that
node will happen in the year 2004. But a transit was observed
at the ascending node in the year 1639 by Horrox, who had pre-
viously computed it, from having corrected the tables of Venus
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by his own observations, all other astronomers having been ig-
norant of its occurring. This transit will again happen at the
end of 235 years from that time, or in the year 1874.

261. Horrox, who resided near Liverpool, when quite a
youth, engaged in the study of astronomy with extraordinary
enthusiam and success. His having improved the tables of the
motion of Venus so as to predict and observe this curious phe-
nomenon, is one of the least of his astronomical performances.

He wrote an account of his observation in a dissertation, en-
titled, « Venus in sole visa,” which, many years after his death,
was published by Hevelius at Dantzic. This roused the atten-
tion of his countrymen to make inquiries respecting him, and
to examine whether any of his manuscripts were remaining. A
small part only of what were known to have existed, were found,
and were published by Dr. Wallis about>.#® years after his
death.* Thus had not his manuscript “ Venus in sole visa” ac-
cidentally fallen into the hands of Hevelius, there is reason to
suppose, that in a few years, scarcely ‘any trace of this extraor-
dinary young man would have remained. The apparent ne-
glect of his countrymen must be attributed to the civil wars,
which almost immediately followed his death. He had no as-
sistance in his labours, except from a friend, of the name of
Crabtree, who lived at the distance of 20 miles. He also culti-
vated, with much ardour and ability, this science. Their cor-
respondence is extant. Crabtree, informed by Horrox, ob-

3 The account Dr. Wallis has given of the fate of Horrox’s manuscripts is inter-
esting. Some were brought to Ireland by his brother, who died here; these have
never been found. Many were burned, during the civil wars of England, by some
soldiers, who, searching for plunder, found them where they had been concealed.
Some were used in composing a set of astronomical tables, called the British Tables,
published in 1653. These were afterwards destroyed in the great fire at London,

in 1666. The part that Dr. Wallis has published, was found in the ruins of a house

at Manchester, in which his friend Crabtree had resided many years before.
N
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served the transit at his own place of abode. Horrox died at
the early age of 22, in the year 1641 ; and from what we see of
his works that remain, it appears highly probable that, had
his life been longer spared, his fame would have surpassed that
of all his predecessors. His Theory of the Moon has been be-
fore mentioned (Art. 233.) He seems to have been the first
astronomer who reduced the sun’s parallax to nearly what it has
since been determined. All astronomers before Kepler had
made it more than two minutes : Kepler stated it at 59" : but
Horrox, by a variety of ingenious arguments, evincing his su-
perior knowledge in the science, shewed it highly improbable
that it was more than 14”.2 He also supposed that the disc of
Venus, when seen on the sun, would not subtend a greater an-
gle than 1’; whereas, according to Kepler, it would be 7.
Horrox, soon after he had entered on this science, was convinced
by his own observations of the value of Kepler’s discoveries.

262. The transits of the inferior planets afford the best ob-
servations for obtaining accurately the places of their nodes, and
also the best observations for determining their mean motions.

The transits of Venus also afford us far the most accurate
method of ascertaining the sun’s distance from the earth, and
therefore the magnitude of the whole system.

Dr. Halley first proposed this method of finding the sun’s
distance. He had observed, at the island of St. Helena, a tran-
sit of Mercury over the sun’s disc, and thence had concluded
that the total ingress and the beginning of the egress of Venus
might be observed to 1° of time : from whence, as he said, the
sun’s distance might be determined within z}5 of the whole
distance. Experience afterward shewed, that the times of total
ingress and the beginning of egress could not be observed with
certainty nearer than three or four seconds.

* Dr. Halley, above sixty years after, by arguments, not very dissimilar to those
of Horrox, endeavoured to shew that it was not more than 12",
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263. To explain from whence the accuracy of this method
arises, let usconsider Venus and the sun as moving in the equa-
- tor, and that observations of the total ingress are made at twe
places in the terrestrial equator : let AB (Fig. 40) be the equa-
tor, S and V discs of the sun and Venus, perpendicular to, and
as seen from the equator. To a spectator at A the internal
contact (er the total ingress) commences, when to a spectator at
B, the edge of Venus is distant from the sun by the angle VBS.
The difference then between the times of total ingress, as seen
from B and A, is the time of describing VBS by the approach
of the sun and Venus to each other, Venus being retrograde and
the sun direct. Hence from this difference of times, and the
rate at which Venus and the sun approach each other, we find
VBS. And the sine of VBS : sine of VSB : : Venus’s distance
from the sun: Venus’s distance from the earth. The relation
of Venus and the earth’s distance from the sun, as found by the
method in art. 97, may be used. Therefore the angle VSB,?
the angle subtended by the two places A and B at the sun is
known, and consequently the angle the semidiameter of the
earth subtends, will be found in a manner similar to that in the
note of art. 58.

264. This simplification ef the problem may serve for an
illustration, and to point out its superior accuracy. But the ac-
tual computation of the problem is very complex, principally on
account of the inclination of Venus’s orbit to the ecliptic, and
on account of the situations of the places of observation at a dis-
tance from the equator. The accuracy of the method consists
in this: that the times of internal contact can be observed with
great exactness, and thence the angle VBS computed, and
therefore ASB.

* For extreme accuracy the distance of the places A and B is'to be diminished
by the arch of the equator, described in the interval of the ingresses at each

place.
N2
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At inferior conjunction, the sun and Venus approach each
other at the rate of about 240" in an hour, or 4" in a minute.
Hence if the time of contact be erroneous at each place 4* of
4x8

time, the angle VSB may be erroneous = % of asecond,

and therefore the limit of the error of ASB about % of a se-
cond.*

265. This method then in fact comes to the same as to find
the angle at the sun, subtended by two distant places on ‘the
earth’s surface; but this angle can be determined much more
accurately by the times of ingress, than by the micrometer. On
account of the difference of the apparent magnitudes of Venus
and Mercury, the internal contact of the former can be deter-
mined much more accurately than of the latter. '

This method requires the difference of longitude of the
places to be accurately known, in order to compare the actual
times of contact. The longitude of the Cape of Good Hope
being well ascertained, observations of the transit of Venus in
1761, made there, were compared with many made in Europe,
and the mean result gave the parallax = 8,47 seconds.

266. But it seemed more convenient not to depend on the
knowledge of the difference of lengitudes of two places. It ap-
peared better to compare the differences of duration at two
places, at one of which the duration was lengthened and at the
other shortened. If we assume -the parallax of the sun, which
we knew nearly, we can compute the difference of duration at
any place from what it would have been, had it been observed

® This comes to the same, as being able to observe a thread of light (the interval
between the limbs of Venus and the sun, when the former has justeentered upon
the body of the sun) of only ¢ of a second in breadth. Thus by the transit of
Venus we can probably measure a smaller angle than by any other method.
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at the earth’s centre.* Hence we can compare the difference of
duration at two places, at one of which the duration is shortened
and at the other lengthened. Thus we shall have a double
effect of the parallax, and we can compare the computed result
with the difference observed. From the error we can correct
the horizontal parallax assumed.

The transit of Venus in 1769 was observed at Wardhus in
Lapland, and at the island of Otaheite in the South Sea.

Assuming the sun’s parallax 8,83 seconds,

By computation the duration was

lengthened at Wardhus - 11 1629
Diminished at Otaheite - 12= 1050
Duration greater at Wardhus than ~ ———-

at Otaheite - - - 23m 26:9

By observation - - 23= 1040

This shews the parallax is less than the parallax assumed,
and {o make the observed and computed difference of durations
agree, the parallax must be taken 8",72. This last conclusion
points out the accuracy of which the method is susceptible.
difference of excess of duration of 17¢ makes only a difference
of 1% of a second in the parallax.

267. The observations of the transit of 1761 were not so
well adapted for determining the sun’s parallax as those of 1769.
From the latter the parallax was ascertained with great exact-
ness. The mean of the results seems to give 8",72the sun’s pa-
rallax at the mean distance, which probably is within ; of a
second of the truth. The transit of 1769 occurring in the mid-
dle of summer, very many places of high northern latitude were
well situate for observing it, but in all those the duration was
affected in the same way.

2 See Dr. Maskelyne's Method and Computation, page 398 of Professor Vince's
Astr. vol. i



182 ELEMENTS OF ASTRONOMY. [cuap. x1v.

The duration is most lengthened when the commencement
is near sunset, or when the sun is near the western horizon, and
the end near sunrise or when the sun is near the eastern hori-
zon. The duration of the transit in June, 1769, was about six
hours. That the commencement and end should take place
under the circumstances above mentioned, it evidently required
that the place of observation should have considerable north la-
titude. Wardhus near the North Cape is in 70° 22’ N. lat.
The commencement was there at 9* 34™ in the evening, and end
at 15" 27™,

The duration would be most shortened when the commenee-
ment was near sunrise, and end near sunset, and the duration
being only about six hours, this required that the days should
be shorter than the nights, and therefore the place must be or
the south side of the equator, and such that the commencement
must be after sunrise and end before sunset. Consequently the
choice of situations was much circumscribed.

Astronomers were therefore much at a loss for ‘a proper
place for observfng this transit, when fortunately Otaheite was
discovered. The situation of this island was as favourable as
could be desired, and the British government, induced by a me-
morial from the Royal Society, ordered thither a shifif¥ith pro-
per persons to make the observation. In consequence of which,
the first of the celebrated voyages of Cook tock place. The
transit commenced at Otaheite about half past nine in the morn-
ing, and ended about half past three in the afternoon, and thus
happened during the most favourable part of the day.
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CHAPTER XV.

THE VELOCITY OF LIGHT, AND ABERRATION OF THE FIXED STARS
AND PLANETS—THE EQUATION OF TIME—DIALS.

268. THE velocity of light is the greatest velocity that has
yet been ascertained. ~Astronomy furnishes two methods of
measuring it. Without the discoveries in astronomy, the velo-
city of light would have remained unknown. The eclipses of
Jupiter’s satellites, and the aberration of the fixed stars, shew
us that the velocity of the reflected light of the sun, and the ve-
locity of the direct light of the fixed stars, are equal.

269. The elder Cassini suspected from observations of the
eclipses of Jupiter’s first satellite, that light was not instanta-
neous, but progressive. Roemer first fully established this fact,
by a great variety of observations of the echpses of the satellites
of Jupiter. a

Let the mean motion of a “satellite be computed from two
eclipses separated by a long interval, Jupiter being at each at its

mean distance from the earth. Then an eclipse, when Jupiter
s approaching conjunction, and therefore farther from the earth,
happens later than is computed by the mean motion so deter-
mined. When Jupiter is in opposition, it happens sooner than
according to the mean motion so determined.

From a great variety of observations, it appears that the ve-
locity of light is such, that, moving uniformly, it takes sixteen
minutes to move over the diameter of the earth’s orbit, or eight
minutes in moving from the sun to us. This velocity is about
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10,000 times greater than the velocity of the earth, which, as
has been said, moves nineteen miles in a second. (Art. 112.)

ON THE ABERRATION OF THE FIXED STARS AND PLANETS.

270. Another proof of the velocity of light is derived from
the aberration of the fixed stars. The fixed stars appear, by ob-
servations made with accurate instruments, to have a small an-
nual motion, returning at the end of a year precisely to the same
place. A star near the pole of theecliptic appears to describe
about the pole a small circle parallel to the ecliptic ; the dia-
meter of this circle is 40”. Stars in the ecliptic appear to de-
scribe small arcs of the ecliptic 407 in length. And all stars
between the ecliptic and its poles appear annually to describe
ellipses, the greater axes of which are parallel to the ecliptic,
and equal to 40”. The axis minor is found by diminishing 40"
in the proportion of the sine of the star’s latitude to radius.
These phenomena cannot take place from the parallax of the
annual orbit, because by it the latitude of a star would be great-
est when in opposition to the sun, whereas then there is no aber-
ration in latitude. '

271. Dr. Bradley, who first discovered this apparent annual
motion, when endeavouring to discover the parallax of y draco-
nis, also first explained the cause of it. It arises from the velo-
city of the earth in its orbit, combined with the velocity of
light.» '

272. The application of a few mathematical principles ena-

2 Dr. Bradley’s own acceunt of this phenomenon is very interesting, and is
found in the Phil. Trans. vol. 35. His observations were made with a zenith sec-
tor. In the present state of astronomy, an instrument, whether a quadrant or tran-
sit, that will not readily shew the changes of the quantity of aberration, must be
considered as a very inferior instrument.

.
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bles us to explain and compute, with the greatest exactness, the
laws of this pheenomenon, which although not the most striking,
is perhaps one of the most pleasing objects of astronomical con-
templation. The apparent irregularities of the motions of the
different stars, might, for a long time, have baffled the exertions
of astronomers, had not the happy thought of applying the mo-
tion of light occurred to Bradley himself.

Let SA (Fig. 41) be the direction of light coming from a
fixed star, and entering the telescope AD, carried in the direc-
tion DEF, by the motion of the earth. If the direction of the
telescope be the same as the direction of the rays of light, it is
clear that no ray can come to an eye at- D, as from the motion
of the telescope with the spectator, they will be all lost against
the interior of the tube. But if the tube be inclined in the po-
sition DB, so that BE : DE : : vel. of light : vel. of the earth,
then a ray SB parallel to SA entering the tube at B, will pass
through the axis of the tube in motion, and be seen by the eye
arrived with the telescope at E, while the light is passing from
B to E. The ray of light will be always found in the axis of
the telescope, carried by the motion of the earth, parallel to it-
self. The telescope being in the position EC, the star is judged
to be in that direction, although it be actually in the direction
EB. Hence BEC is the angle of aberration, and the aberra-.
tion is always toward that part of the heavens, to which the earth
is moving. As BE is above 10,000 times ‘greater than DE, it
follows that the angle DBE must be very small, and therefore
its equal BEC, the aberration must be very small. It is evi-
dent that DBE, and therefore BEC, is a maximum when BDE
is a right angle, because sin. DBE : sin. BDE: : DE: BE : :
vel. earth : vel. light, a given ratio. Therefore when sin. DBE
is greatest, the sin. BDE is greatest, that is, when BDE is a
right angle. Then vel. of light : vel. of earth: : sin. BDE (rad.)

7 =
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: sin. of greatest aberr. and therefore sin. of greatest aberr. =
rad. X vel. of earth
vel. of light.

273. It may illustrate this matter, to consider the earth at
rest, and the particles of light from the star having motions in
two directions, viz. the actual velocity of light in the direction
BE, and another in a direction parallel and opposite to the
earth or motion DE; by this compound motion, the particles
of light would pass down the tube DB.

To the naked eye the sensation must be the same, whether
thelight strikes the eye with a motion in the direction ED, or the
eye strikes the light in the opposite direction ; and therefore we
may consider the light meeting the eye as coming in a direction
compounded of two motions, that of light, and that of the earth,
and therefore the same aberration takes place as in a telescope.

274. The direction of the earth’s motion is always toward
the point of the ecliptic 90° behind the sun. Hence the stars
all aberrate toward this point of the ecliptic, from which consi-
deration the general phanomena of the aberration may be easily
* understood.

Also the phaenomena of the aberration may be thus shewn :

Conceive a plane passing through the star, parallel to the
plane of the earth’s orbit, and a line in this plane, parallel to the
direction of the earth’s motion, the length of which is to the
star’s distance, as the velocity of the earth to the velocity of
light, the extremity of this line will be the place in which the
star appears. Now we may consider, without sensible error, the
orbit of the earth as circular, and its velocity as uniform ; there-
fore this imaginary line drawn from the star, parallel to the tan-
gent to the earth’s orbit, will be always of a constant length ;
and as the tangent in the course of a year completes a revolu-
tion, this imaginary line will also, in the course of a year, com-
plete a revolution, and its extremity describe a circle about the

= sine 20" nearly.
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star. To a spectator on the earth, the star, in the course of a
year, will appear to describe the circumference of this imagi-

nary circle, the plane of which is parallel to the plane of the

earth’s orbit : and he will orthographically project this circle
on the concave surface, by which it will appear an ellipse. To
find the axis major of this ellipse, we are to consider that the
diameter of the circle of aberration, perpendicular to a circle of
longitude passing through the star, will be projected into the
axis major of the ellipse. When the earth, seen from the sun,
is in this circle of longitude, the line joining the star and earth
will be at right angles to the direction of the earth’s motion,
and therefore the aberration will be then greatest, and equal to
20" (Art. 272.) Hence the semiaxis major of the ellipse is 20".
The star’s longitude is most increased when the star’s and sun’s
longitudes differ by 180°, and most diminished when the longi-
tude of the sun is the same as that of the star. When the sun’s
longitude exceeds that of the star by 90°, the radius of the cir-
cle of aberration is in the plane of the star’s circle of longitude,
and is diminished by projection on the concave surface, in pro-
portion of the sine of the star’s latitude to radius. ~ The radius
of the imaginary circle, thus diminished, becomes the semiaxis
minor of the ellipse. The star’s latitude is most diminished

when the sun’s longitude exceeds that of the star, by 90°, and

most increased when the sun’s place is 90° behind the star.
When the star is in the ecliptic, it is evident that the ima-
ginary circle of aberration must be projected into a right line,

or rather an arch of 40”. A star in the pole of the ecliptic ap-
pears to describe a circle 40” in diameter, because the imagi- /

nary circle is not changed by projection. In practice it is ne-
cessary to compute the effects of aberration in right ascension
and declination.® \

* Vid. Appendix.

<
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275. The aberration of a planet is somewhat different from
that of a star ; for if the planet’s motion were equal and parallel
to that of the earth, no aberration would take place. From the
small velocity of the moon about the earth, compared with the
velocity of light, no sensible aberration takes place with regard
to its velocity about the earth ; and the moon and earth being
carried together round the sun with nearly the same velocities,
no aberration from thence occurs in the place of the moon.

The best method of finding the aberration of a planet or
comet, is by first considering the effect of the earth’s motion on
the apparent place : this is the same as for a fixed star ; and
then the aberration arising from its own motion ; this is readily
computed ; for the planet, supposing the earth at rest, appears
in the place it was in at the emission of the light which reaches
the eye, and therefore it is only necessary to compute the place
of the planet for a time, so much earlier by the space of time
that the light is coming from the planet to the earth.

276. The velocity of light determined by the eclipses of
Jupiter’s satellites has been considered as exactly the same as
that determined by the aberration of the fixed stars.

As we are certain of the velocity of light by the eclipses of
Jupiter’s satellites, and also that the consequence of that velo-
city, and of the velocity of the earth, must be an aberration in

a The maximum of aberration deduced from the velocity of light, as determined
by the eclipses of Jupiter’s satellites, appears to be 20, 25. Bradley's observations
appear to give the same quantity ; but Bradley himself, on a revision of his observa-
tions, fixed it at 20/. But recent observations, made at the Observatory of Trinity
College, Dublin, with the 8 feet circle, give it so great as 20”, 80. M. Bessel, from
Dr. Bradley’s Greenwich observations makes it 20", 71. Lindenau, from observa-
tions of the pole star in R. Ascension, makes it 20", 45. M. Struve, from obser-
vations in Right Ascension, makes it 20, 60. It appears, therefore, highly proba-
ble, that it exceeds 20", 25. By continuing the observations, it is hoped, greater
certainty will be obtained in this important element. :



CHAP. XV.] EQUATION OF TIME. 189

the fixed stars; we have, from the observation of the aberration,
an independent proof of the motion of the earth.

EQUATION OF TIME.

277. The rotation of the earth on its axis is among the few
perfectly equable motions known ; the period of which, or 24
hours of sidereal time, might serve as a measure of duration ;
but this is not convenient for the purposes of civil life. For
these, the period of a solar day, or the interval elapsed between
two successive passages ot the sun over the meridian, is a much
more convenient measure of time. But this interval is variable,
for it is greater than the time of the earth’s rotation by a varia-
ble quantity. This variable quantity is the time the hour cir-
cle passing through the sun takes to move over an arch equal to
the increase of the sun’s right ascension during a solar day.
Now the daily increase of the sun’s right ascension is variable
from two causes, viz., the inclination of the ecliptic to the equa-
tor, and the unequal apparent motion of the sun in longitude.
It is evident that the sun’s increase of right ascension must be
variable, on account of the obliquity of the ecliptic to the equa-
tor ; because, when the sun is in Aries, its motion being oblique
to the equator, the rate of increase of right ascension must then
be less than the rate of increase of longitude ; when at the tro-
pics, its motion is parallel to the equator, and being nearer the
pole of the equator than the pole of the ecliptic, its motion in
right ascension must be then greater than its motion in longi-
tude.® Hence it is evident that the length of a solar day must

3 It is not difficult to prove that the rate of increase of the sun’s right ascension
is, to the rate of increase of its longitude, as radius multiplied by the cosine of the
obliquity of the ecliptic, is to the square of the cosine of the sun’s declination. The

last term decreases from the equinox to the solstice, and therefore the first must '

increase.
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be variable, and consequently that time, which is called appa-
rent solar time, or apparent time measured by a solar day and
parts of a solar day, must require a correction, which is called
the Equation of Time. The perfection of the mechanism of a
clock depends on the uniformity of its motion ; therefore a clock
intended to shew solar time, must be regulated according to
mean® solar time, and the equation of time must be allowed in
deducing apparent time from the time shewn by a clock. Ap-
parent time is better adapted for civil purposes, mean time is
necessary in computing the circumstances of the various celes-
tial phaenomena.

278. If the sun, instead of moving in the ecliptic, moved
uniformly in the equator, the interval between two transits of the
sun ever the meridian would then be always the same, and
would be an exact measure of time. Let us suppose then an
imaginary sun moving uniformly over the equator in the same
time in which the sun appears to move over the ecliptic, and
having its right ascension, or distance from the beginning of
Aries, equal to the mean longitude of the sun. The time mea-
sured by this imaginary sun so moving, is called mean solar
time or mean time. 'The hour circle passing through the ima-
ginary sun describes 360 degrees in 24 hours mean time, and
that through the real sun the same in 24 hours apparent time,
therefore each describes 15 degrees in an hour.?

279. The difference between mean and solar time, the
equation of time, is evidently equal to the difference between
the right ascension of the sun and the mean longitude of the
sun, converted into time at the rate of 360° for 24", or 15° for
1 hour.

® Art. 199.

b The greatest difference between 24 hours mean time, and 24 hours apparent ’

time is 30%

X gz TH *7:’:"/%"%/

—
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The sun’s mean longitude is given by the solar tables, and
thence the true longitude: by the latter, and the obliquity of
the ecliptic, the right ascension may be computed, and then
the difference* of mean longitude and right ascension, converted
into time at the rate of 15° to an hour, is the equation. Hence
the computations for finding the right ascension of the sun, will
also serve for finding the equation of time.

280. The changes of the quantity of the equation of time in
different parts of the year, may be readily understood, for let
VMPQEAONR (Fig. 42) represent the celestial equator ex-
tended into a right line, VJGQDLR the ecliptic, J the sun at
the summer solstice, D at the winter solstice. Take VG = 3¢
9°}, and G is the place of the sun when the earth is in Aphe-
lion. Take GQL = 180°, and L is the place of the sun when
the earth is in Perihelion. Let M, E, A, and N, be the places
of the imaginary sun, when the sunisat G, Q, L, and R, or V,
respectively. Then VM = VG, because at Aphelion the true -
and mean longitudes are the same®, (Art. 222), therefore by V
spherical trigonometry M is between V and hour circle GP,
that is, M is to the westward of the hour circle passing through
the sun, and therefore mean time then precedes apparent time :
and because between G and L the true angular motion is less
than the mean, (Art. 222), ME is greater than GQ = MQ,
and therefore E is to the eastward of Q, consequently mean
time then follows apparent time. A is to the westward of the

* Accurately the equation of time is the difference between the sun’s right as-
cension, and mean longitude reckoned on the equator from the true equinox, because
the right ascension is computed from the true equinox. By the sun’s mean longi-
tude, reckoned on the equator from the true equinox, is meant, the sun’s mean lon-
gitude (always reckoned from the mean equinox) corrected for the equation of the
equinoxes in right ascension.

S

b This is so, not taking into consideration the small effects of the lunar equation ‘,

and equations for the disturbances of the planets,

» fhkas /7’ = %Lm;”f% '
+47 >
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hour circle OL, because QA = QL = 3¢ 9°1, and therefore
then mean time precedes apparent. N is also to the westward
of R, because from L to R the motion in longitude is greater
than the mean motion, and therefore AN is less than LR =
AR, and therefore then mean time precedes apparent. And,
considering these circumstances, it will appear that between G
and Q the equation vanishes, and also between Q and L, but
not between L and R, but between V and G it twice vanishes.
Thus mean and apparent time coincide four times in a year:
these times will be found to be about April 15, June 15, Aug.
31, and December 24. The equation, it is easy to see, will be
at its maximum, somewhere between Q and L ; because when
the sun is at Q, the mean sun will be behind it at E, and will
become still more behind, because it moves faster in longitude
than the true, and the effect of the increase of longitude of the
sun is diminished by the. obliquity of the ecliptic for some time
after it has passed Q. The maximum is 16™ 16¢, and happens
about the second of November.

A more particular consideration of the equation of time
would be useless here. Indeed every thing of consequence may
be considered as explained, when it is said to be equal to the
difference, converted into time, between the sun’s true right
ascension and mean longitude, corrected for the equation of
equinoxes in right ascension.

281. It is to be observed, that the circumstances of the
equation of time will change, with a change in the longitude of
the earth’s Aphelion, which moves forward from the equinox at
the rate of 1’ 2" in a year. The longitude at present, as seen
from the sun, is 9* 9°§.  About 4000 years B. c. (the supposed
time of the creation) it coincided with the place of the earth at
the vernal equinox. '

The time shewn by a dial is apparent time, for it is the an-
gle between the hour circle passing through the sun and the me-
ridian, converted into time.
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ON DIALLING.

282. In a dial, the shadow of a straight line, by its inter-
section with a given plane, points out the apparent hour. - The
line by which the shadow is made, is called the style or gnemon.
Let a meridian line be drawn on a horizontal plane, (art. 202,
&c.) and on this plane a gnomon or stile fixed, making an angle
with the meridian line equal to the latitude of the place, and
being also in the plane of the meridian. This gnomon then will
be in the direction of the celestial axis, (art. 39), the shadow
therefore will always be in the plane of the hour circle in which
the sun is, and because the sun is always in the same hour cir-
cle at the same distance from noon, whatever be its declination, -
it follows that the intersection of the shadow and horizontal
plane is always the same at a given hour. Therefore these in-
tersections of the shadow being marked, will always serve for
pointing out the hour from noon. These intersections are call-
ed hour lines of the dial, and a dial thus constructed is called-
an horizontal dial. The angles that these hour lines make with
the meridian may be determined as follows:

283. Let PO (Fig. 43) be the elevation of the pole, HP
the hour circle 15° distant from the meridian, intersecting the
horizon HO in H. Then HCO, C being the centre of the
sphere, is equal to the angle between the hour line of one o’clock
and the meridian on the dial : for CH is the horizontal inter-
section of the shadow of the axis PC at one o’clock.

By spherical trigonometry,

Rad. : sin. PO (lat.) : : tan. HPO (15°) : tan. HO (HCO.)

Thus the angle which any hour line makes with the meri-
dian, may be found, and a horizontal dial constructed.

If a vertical plane, facing the south, at right angles to the
meridian, be used, the interseetions of the shadow and this

g o R
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plane, or the hour lines of the dial will be found, by computing
the distances of the hour circles from the meridian on the prime
vertical. A dial so constructed is called a vertical dial.

It is evident that the plane of the dial may make any given
angle with the prime vertical, and the hour lines be readily
computed by a spherical triangle. When the plane of the dial
faces the east or west, the stile is placed at a distance from, and
parallel to its plane, because the plane of the dial is itself in the
plane of the meridian.
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CHAPTER XVIL

APPLICATION OF ASTRONOMY TO NAVIGATION—HADLEY’S SEXTANY
" —LATITUDE AT SEA—APPARENT TIME—VARIATION OF THE
COMPASS—LONGITUDE AT SEA.

284. THE uses of astronomy in navigation are very great. It
enables the seaman to determine by celestial observations his
latitude and longitude, and thence discover his situation with
an accuracy sufficient to direct him the course he ought to steer
for his intended port, and to guard him against dangers from
shoals and rocks. It also enables him to find the variation of
his compass, and so affords him the means of sailing his proper
course.

Almost all the astronomical observations made at sea, con-
sist in measuring angles, and the difficulty of taking an angle at
sea, on account of the unsteady motion of the ship, is sufficiently
obvious. In taking an altitude, the plumb-line and spirit-level
are entirely useless. In observing the angular distance of two
objects, the unsteadiness of the ship makesit impossible to mea-
sure it by two telescopes, or by ene telescope successively ad-
justed to each object.

285. These difficulties were soon seen when nautieal astro-
nomy began to be improved. Many attempts were made to in-
vent a proper instrument. The ingenious Dr. Hooke proposed
several methods. Many years afterwards Mr. Hadley proposed
the instrument called Hadley’s quadrant, now however usually
called Hadley’s sextant, for a reason that will be mentioned.
A few years after Mr. Hadley’s invention was communicated to

02
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the world, a paper of Sir Isaac Newton’s was found, describing
an instrument nearly of the same construction. The principle
of this invaluable instrument is, that in taking the angular dis-
tance of two objects, the image of one of them seen after two
reflections, coincides with the other object seen directly ; and
this coincidence is in no wise affected by the unsteadiness of
the ship. The operation by which the coincidence is made,
measures the angular distance of the objects.

286. Let A and B (Fig. 44) be two celestial or very distant
objects ; HO, IN the sections of two plane mirrors, in the plane
passing through the objects and eye. The mirrors are supposed
to be perpendicular to this plane. Let a ray of light, AC, from
the object A, incident on the mirror IN, be reflected in the di-
rection CR, and so be incident on the mirror HO, from whence
it is again reflected in the direction RE, coinciding with the
direction of a ray, BR, from the other object, B. Then an eye
any where in the direction of the line RE, will see the object
A, coincident with the object B, if a portion of the mirror, im-
mediately above the section HO be transparent. Thus we may
make two distant objects appear to coincide by a proper posi-
tion of the mirrors, viz., by inclining the mirrors at an angle
equal to half the angular distance of the objects. For produce
the ‘sections of the mirrors to meet in M, and produce AC to
meet BRE in E.  Then E = BRC—RCE = (by the princi-
ples of reflection) 2 HRC —2 RCM = 2 M, or the angular dis-
tance of the objects equals twice the inclination of the reflectors.
Hence if we move the reflector IN, so that both objects may
appear to eoincide, and can then measure the inclination of the
reflectors, we shall obtain the angular distance of the objects.
This principle is used in Hadley’s sextant as follows.

287. ACB (Fig. 45) may represent the sextant. The an-
gle ACB is 60°, but the arch AB extends a few degrees beyond
each radius. A moveable radius, CV, called the index, re-
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volves about the centre C, carrying a plane mirror, IN, perpen-
dicular to the plane of the sextant, which mirror faces another
mirror, H, also perpendicular to the plane of the sextant. This
latter mirror is fixed with its plane parallel to CA, the position
of the mirror IN, when the radius CV passes through zero or
(o) of the arch. The upper part of the mirror H is transpa-
rent, through which, by help of a telescope fixed at T, parallel
to the plane of the sextant, the object S may be seen directly,
while the image of M, seen by reflection, appears to touch it.
The angular distance of the objects M and S, is then, as has
been shewn, = twice the inclination of the mirrors H and IN =
(because H is parallel to CA) 2 VCA. Hence the degrees,
minutes and seconds in VA, shewn by a vernier, attached to the
extremity of the index, would give half the angular distance of
the objects ; but as the arch VA is only half the angular dis-
tance of the objects, for convenience each degree, &c. is reckon-
ed double ; thus if VA be actually 42°, it is marked 84°, &c.

The mirror IC is called the index glass, and H the Aori-
zon glass, because in taking the altitude of the sun at sea, the
horizon is seen, directly, through this glass.

In most sextants there is a provision for adjusting the plane
of the horizon glass, parallel to the radius passing through zero of
the arch, or rather parallel to the plane of the index glass, when
the index is at zero of the arch. This is done by making an
image coincide with its object seen directly, when the index
passes through zero. Or the quantity of the error may be de-
termined by measuring a small angle, for instance, the sun’s
diameter, on each side of zero of the arch. Half the difference
is the error of the index, and it is most convenient to allow for
this, as it cannot be corrected so exactly as its quantity can be
ascertained.

For a more particular account of this instrument and its ad-
justments, see Professor Vince’s Practical Astronomy.
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288. The best instruments, intended for taking the angular
distance of the moon from the sun and stars, are made with
great exactness. The radius of a sextant varies in length from
five to fourteen inches. The usual length is about ten ortwelve
inches, and these admit of measuring an angle to 10” or less, by
help of the vernier. Ordinary instruments are also made,
merely for taking altitudes. Plain sights are only used with
these, and they are seldom adapted to take altitudes nearer than
two or three minutes.

As an altitude is never greater than 900, it is evident, for an
altitude, a greater arch than 45° is not required. The instru-
ments, therefore, made only for taking altitudes, should properly
be called octants, instead of quadrants, as they are sometimes
named. The angular distance of the moon from a star is some-
times measured when 120°, for such distances an arch of 60° is
necessary, and therefore the instruments intended for the longi-
tude at sea are called sextants. ,

In the octants, particularly, there is often a provision for
measuring angles greater than 90°, by measuring the supple-
ment to 180°, by what is called the back observation ;* this is
not often used.

289. The celebrated Mayer, whose lunar tables have been
mentioned, recommended a complete circle for measuring the
angular distance of the moon from the sun or stars by reflec-
tion, as in Hadley’s instrument. Some of the advantages pro-
posed, were similar to those of the astronomical circle over
the astronomical quadrant; also by making the horizon glass
moveable, the same angle could be repeated on different parts
of the limb, and by repeating the angle many times, and taking
a mean, the errors of division were almost entirely done away.

2 Professor Vinee's Practical Astronomy.
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Two causes may, perhaps, be assigned for this construction not
having been at first adopted ; the weight of the instrument ren-
dered it inconvenient, and the superior skill of the London art-
ists so constructed and divided sextants, that they seemed fully
adequate to the purposes of the lunar method of finding the lon-
gitude in its early state. In its present state every minute
source of accuracy is sought after, and it is now likely that re-
flecting circles will supersede sextants. The French use an im-
provement of Mayer’s circle by Borda. In some reflecting cir-
cles made by Mr. Troughton of London, the advantage of the
repeating principle is only in a small measure sought for. This
is of less consequence, from the accuracy with which small cir-
cles may be divided by the machine invented by Mr. Ramsden ;
and otherwise Mr. Troughton’s circles seem more convenient
than repeating circles for nautical purposes.

290. Let us proceed to the application of the sextant for
finding the latitude, apparent time, variation of the compass,
and longitude at sea.

The latitude at sea is most readily and usually found by ob-
serving the meridian altitude of the sun. At sea the horizon
is generally well defined. The sextant being placed in a ver-
tical position, the upper or lower limb of the sun, by moving
the index, is brought down to the horizon seen directly. The
index shews the altitude ; but it must be noted, that as the eye
of the spectator is elevated above the level of the sea, the appa-
rent altitude is to be diminished by the depression of the hori-
zon, called the dip. The sun is known to be on the meridian
when it ceases to rise higher, or when the index angle ceases to
increase. An error of one or two minutes is of little conse-
quence in finding the latitude at sea, as it makes only an error
of one or two miles in the place of the ship. Oftentimes the
horizon is not sufficiently defined to attain to great accuracy.
A star can seldom be used, on account of the horizon not being
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sufficiently visible, but the moon oftentimes may. The correct
meridian altitude and the declination being known, the latitude
is easily found, being always equal to the sum or difference of
the zenith distance and declination.

291. It often happens that it is cloudy at noon, and there-
fore an observation cannot be made : this sometimes is the case
for several days together, when perhaps the sun is occasionally
seen during that time. The latitude in such circumstances
may be obtained by observing two altitudes of the sun, and
noting the interval of time between, by a good watch: from
these data and the declination the latitude may be found.

It may be mentioned, once for all, that it is here only in-
tended to give a general account of the observations necessary
for nautical purposes. The particulars of the methods of com-
putation are to be found in the different works on nautical astro-
nomy, more especially in the work published by Dr. Maskelyne,
entitled ¢ Tables requisite to be used with the Nautical Alma-
nac.”

292. The apparent time may be found at sea, by observing
the altitude of the sun. 'Then, knowing the latitude of the
place and the sun’s declination, we have the three sides of a
spherical triangle, viz., the sun’s zenith distance, the polar dis-
tance, and the co-latitude of the place, to find the hour-angle,
which therefore may be had from one proportion. The hour-
angle converted into time at the rate of 15° for one hour gives
the apparent time from noon at the place of observation.

~ 293. The latitude being known, the variation of the com-
pass is easily found.

Previously to the discovery of the polarity of the magnetic
needle, navigators had no means of ascertaining their course
upon losing sight of land, but by the sun and stars, particularly
the polar star. They therefore seldom dared to venture far
from land, knowing that a short continuance of cloudy weather
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might occasion their destruction. On the discovery of the’com-
pass, an end was put to this difficulty. It must have been known
at first that the needle did not point exactly north, but the de-
viation or variation was supposed every where the same. So
slow was the progress of navigation, that nearly two centuries
elapsed from the time that the polarity of the magnet was well
known in Europe, before it was discovered that in different
places the variation was different. Columbus, in his first voy-
age, seems to have been the first who observed it. About a
century later, the variation of the variation was discovered, that
is, that the deviation from the northat a given place is variable.
The variation at London, two centuries ago, was 11° 15’ east,
and is now 25° west. » A

294. On these accounts it is obvious, that the seaman must
first ascertain the variation of the compass in the place in which
he is, previously to his making use of it for his course : this he
practises by a very simple astronomical observation: he notes,
by the compass, the direction, called the bearing, of the sun
when it rises or sets. If the bearing is measured from the east
or west, it is called the amplitude. From the latitude of the
place and the sun’s declination, the azimuth at sun-rise or sun-
set may be computed by the solution of a right angled spherical
triangle. For in the right angled triangle formed by the sun’s
polar distance, elevation of the pole and azimuth, cos. lat. : ra-
dius : : sin. dec. : cosin. azimuth. The difference of the ampli-
tude observed and computed gives the variation.

Sometimes the sun’s azimuth and altitude are observed :
from the altitude, latitude, and declination, the azimuth may be
computed, and thence the variation found : or knowing the la-
titude, sun’s declination and time of day, the azimuth may be
computed, and then compared with the azimuth observed.

295. Places not far distant have nearly the same variation,
exeept near the poles.
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It has been supposed that the variation of the needle, and
latitude, would ascertain the position of a place, as well as its
latitude, and longitude ; and therefore that the variation of the
needle would serve for finding the longitude. But the variation
cannot be obtained with sufficient accuracy to apply it to this
purpose. It seldom can be determined at sea, nearer than a
degree.

296. The next subject to be explained, is the method of
JSinding the longitude at sea.

The difference of the apparent times at two places, found by
the difference of the sun’s angular distances from the meridian,

at any instant, at each place, is the difference of longitude, the .

whole equator being considered as divided into twenty-four
hours.

297. If then we have the time of day at any place, the situ-
ation of which is known, and compare it with the time at the
place in which we are, we obtain the difference of longitude.
It is easy to find the time at the place we are in, (art. 292,) and
therefore the finding its longitude is reduced to find the time of
day at some given place, as at Greenwich, from whence we, in
these islands, reckon our longitude.

There are two methods of doing this: by time-keepers, or
chronometers, as watches for this purpose are now usually called,
and by making the motions of the celestial bodies serve instead
of time-keepers. :

208. It is evident, that did a watch or clock move continu-
ally at a uniform rate, it would afford us a ready means of find-
ing the longitude: for if the chronometer, going mean time,
were set to the time at Greenwich, it would continually point
out the time at Greenwich, and therefore by comparing that
time with the mean time at the ship, we should at once have the
difference of longitude between Greenwich and the ship. The
apparent time at the ship can be found with all the accuracy




CHAP. XVL] APPL. OF ASTRONOMY TO NAVIGATION. 203

necessary, (art. 292,) and then applying the equation of time,
the mean time will be obtained.

299. It became therefore an object of great importance to
construct a machine, the uniform metion of which might be de-
pended on for a length of time.

About the middle of the seventeenth century, Huygens and
Hook made their celebrated improvements toward obtaining a
regular movement in clocks and watches, the former by apply-
ing the pendulum to clocks, and the latter by applying a spiral
spring to the balance of watches.

Huygens himself proposed the pendulum clock, for find-
ing the longitude at sea, and quotes trials actually made ; but it
is obvious, on a variety of accounts, that a pendulum clock must
be very unfit for a long voyage. Watches also when made with
the utmost care were found to be by much too irregular in their
rates of going, to be depended on for a length of time.

Under these circumstances an act was passed in the reign of
Queen Anne, in consequence of a petition from the merchants,
for encouraging the discovery of a method of finding the longi-
tude at sea within certain limits, for appointing a board of lon-
gitude, and for appropriating certain sums for encouraging at-
tempts. It was understood that the most desirable method, on
account of its easy practice, would be by time-keepers. Mr.
John Harrison early applied himself to the improvement of
time-keepers, and during a long life was continually intent on
that object. After many attempts which did his inventive ge-
nius the highest credit, and for which he received encourage-
ment from the board of longitude, he at last completed a watch,
which he considered -perfect enough to entitle him to £20,000,

“the highest reward offered. Accordingly in the year 1761, a
trial was made by sending the watch to the West Indies, and he
was considered as entitled to £10,000, and the remainder was
to be granted to him upon strictly complying with the terms of
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the act. In the end, the whole, in consideration of his long
and meritorious exertions, was granted to him.

The act of Queen Anne only specified that to obtain the re-
ward of £20,000, the error of longitude, in @ voyage to the West
Indies, should not exceed thirty miles. This, in time, is about
an error of two minutes. Harrison’s watch went within this
limit : but it was soon found that the object of finding the lon-
gitude at sea, by time-keepers, was far from being attained.
The construction of Harrison’s watch was extremely difficult.
It seems that not more than one or two have ever been made on
his principles. He may be considered as having led the way,
and as having the credit of attempting the two principles of
perfection, which have for many years past been introduced
in the construction of chronometers.

300. The two circumstances, by which chronometers differ
from common watches, are, 1. The short time in which the main
spring acts upon the balance. This is accomplished by an
escapement, called the detached escapement. The action of the
main spring is suspended during the greater part of the vibra-
tion of the balance, and therefore the isochronism of the balance
spring is only slightly affected by the external impression of the
main spring, through the intervention of the wheel work. 2dly.
The contrivance for preventing the time of the vibration of the ba-
lance from being affected by heator cold. The balance, instead
of being an entire circle, as in common watches, is composed of
two arches (sometimes, but rarely, of three) to the end of each
of which a small mass is attached : the external part of the arch
is brass, and the internal part steel : these are soldered together,
and from the different expansive powers of the two metals, by
cold the arch becomes less curved, and by heat the contrary
takes place. Thus the distance of the attached masses from
the centre is always such as to preserve the isochronism. Chro-
nometers well executed may be depended on to 1° in a day.




CHAP. XVI.] APPL. OF ASTRONOMY TO NAVIGATION. 205

These improvements in the construction of watches have been
claimed by several artists, principally by the late Mr. Arnold
and Mr. Earnshaw.* This is not the place to discuss, in any
manner, their respective claims, or to enter into a comparison
of the merits of the watches of different artists. More has al-
ready been said than may be thought to belong to our subject ;
but the utility of chronometers, in their present state of perfec-
tion, is such as to have, in a manner, identified them with nau-
tical astronomy. They are become extremely common, being
furnished by several artists, at comparatively small prices, and
are of most essential value on distant voyages. By them the
longitude can often be found with great exactness, and by car-
rying on the reckoning, when astronomical observations neces-
sary for finding the longitude camnot be made, they will serve
to point out the longitude in the interim.

It is evident, that in long voyages, chronometers ought not
to be trusted to, unless means of verifying them frequently offer;
they are also subject to a variety of accidents that cannot be re-
medied at sea. Hence the lunar method now to be described
must be considered as much more valuable.

301. Of all the celestial bodies, the moon is to us far the
most convenient for the purpose of determining the longitude :
its motion, as seen from the earth, being much quicker than that
of the sun or any of the planets.

By the theory of the moon’s motion, its place on the concave
surface is known at any time ; that is, knowing the time of the
day at Greenwich, the place of the moon is known, and vice
versa knowing the place of the moon, the time at Greenwich is
known ; so that if the lunar tables shew that the moon, seen
from the centre of the earth, will be 10° from a certain fixed

* The merits of both these artists have been acknowledged by considerable grants
from the Board of Longitude,
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star, at six o’clock in the evening, at Greenwich, and we make
an observation at any distant place, and find that the moon’s dis-
tance from the star, reduced by computation to what it would
be, seen from the centre of the earth, is 10°, we immediately
conclude that it is 6 o’clock at Greenwich.

Thus the moon, with the brighter fixed stars near its path,
may be considered as a chronometer, not made indeed by human
hands, but perfect in its construction. ) It cannot, however, .be .
easily used by us. The difficulty principally arises from:the
slowness of the apparent motion of the moon on the concave gur-
face, and therefore great nicety is required in measuring the
angular distance of the moon from the fixed star. The intri-
cacy of the lunar motions is also another source of difficulty.

But these inconveniences have now in a great measure been
overcome by the improvements in instruments, and in the lunar
theory ; and navigators now use with much success this method.

302. It is briefly as follows:

The observer measures the moon’s distance from the sun or
a bright star in the zodiac by means of an Hadley’s sextant or
a reflecting circle. This distance must be corrected for refrac-
tion, and reduced to the distance that would be observed from
the centre of the earth, that is, corrected for parallax. The lu-
nar tables are formed to give the place of the moon, as would
be seen from the centre of the earth. For more readily com-
puting the effects of parallax and refraction, another observer
should, at the time of observing the distance, observe the
heights of the moon and star. These altitudes need not to be
observed with great accuracy.

It being found by a reference to the tables at what time the
moon was at this observed distance so corrected, the time at
Greenwich is known.

To find the corrected distance, or to clear, as it is termed,
the observed distance from the effects of parallax and refrac-
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tion, let Z (Fig. 46) be the zenith. The star is elevated in a
vertical circle by refraction, and the moon is depressed by pa-
rallax and elevated by refraction also in a vertical circle. Let
RP be the apparent distance, R being the star and P the moon.
In the vertical SZ take SR = the refraction of the star, and PM
the difference between the moon’s parallax and refraction, then
SM will be the true distance. =

M1H' = the app. altitude of the moon.~ #x

T 80 =h = the true altitude of the sun or star. .
A N=h’ = the true altitude of the moon. LS /b_/ —

N

1 A = the diff. of apparent altitudes. ol
a = the diff. of true altitudes. BT
L. Then by spherical trigonometry, o
"cos. A—cos. RP_ cos. a—cos. SM
cos. H cos. H. ~ cos. h cos. I
equal to the versed sine of the angle Z. Hence cos. SM = cos.
’
a— D09 YO8 D (cos. A= cos. RP)

Different methods of shortening the computation of this for-
mula, for the correct distance, are given in the works which ex-
pressly treat on the subject. There are other methods by
which the correction of the observed distance is obtained.?

303. The inconveniences of the lunar method ‘of finding the
longitude are,

1st. The great exactness requisite in observing the distance
of the moon from the star or sun, as a small error in the distance
makes a considerable error in the longitude. The moon moves
at the rate of about a degree in two hours, or one minute of

both these quantities being

& Vid. “Tables requisite to be used with the Nautical Almanac.”
Mendoza’s Treatise on Nautical Astronomy. Mackay on the Longitude,
Transactions Royal Irish Academy, Vol. xi.
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space in two minutes of time. Therefore, if we make an error
of one minute in observing the distance, we make an error of
two minutes in time, or 30 miles in longitude at the equator.
A single observation with the best sextants may be liable to an
error of more than half a minute : but the accuracy of the result
may be much increased by a mean of several observations, taken
to the east and west of the moon.

If the moon had moved round the earth in about three days,
the longitude would have been as easily found as the latitude.
The first satellite of Jupiter enables the inhabitants of that pla-
net to find their longitudes with as great accuracy as can be de-
sired.

2dly. The imperfection of the lunar tables has also long been
considered as an obstacle in this method. The improved tables
of Mason were frequently erroneous by nearly one minute,
‘which occasioned an error of thirty miles. But there is reason
to suppose that the error of the new tables of Burg and Burck-
hardt will rarely exceed 15", which are only equivalent to seven
miles and a half. .

3dly. Another source of inconvenience is the length of the
computation necessary in this method. Every thing possible
was done by the late Dr. Maskelyne for obviating this difficulty.
He recommended the publication of the Nautical Almanac,
which is now annually continued. In it the moon’s distances
from the sun and several zodiacal stars of the first and second
magnitude, are given for every three hours. Such plain rules
also, for reducing the observed distance to the true, have been
laid down, more particularly in publications directed by him,
that the computation is very short, and merely mechanical, so
that it cannot be mistaken by a person tolerably versed in arith-
metic.

304. The method above described is now universally prac-
tised in the service of the East India Company, and begins to
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be held in much estimation in the navy. The East India Com-
pany makes the knowledge of the practice of this method a ne-
cessary requisite in its officers.

By it the longitude will be generally known to less than
twenty miles, very often much nearer. This, although less ac-
curate than the latitude, is an invaluable acquisition to the sea-
man : it gives him sufficient notice of his approach towards dan-
gerous situations, or enables him to make for his port without
sailing into the parallel of latitude, and then, in the seaman’s
phrase, running down the port on the parallel, as was done be-
fore this method was practised. Fifty years ago navigators
did not attempt to find their longitude at sea, unless by their
reckoning, which was hardly ever to be depended on. The
difficulties they experienced are easily conceived.

305. The present age must consider itself as principally in-
debted to the late Dr. Maskelyne, the Astronomer Royal, for the
advantages which we derive from the lunar method of finding the
longitude, and doubtless to him also posterity will acknowledge
their great obligations. He, by his own experience, on his voy-
age to St. Helena in 1761, first satisfactorily shewed the practi-
cability of this method. He strenuously recommended,* and
then superintended the publication of the Nautical Almanac
and of those tables, without the assistance of which, this me-
thod would have been of little value to the seaman. To his
observations is owing the present perfection of the lunar tables;
and he unremittingly assisted and encouraged every attempt to
forward the discovery of the longitude at sea, whether by this
method or by time-keepers.®

3Vid. Dr. Maskelyne's memorial, presented to the Commissioners of the Lon-
gitude, Feb. 9, 1765, printed in the Appendix to Mayer’s Tables.

b The Theory of the lunar method is very old; indeed it is so obvious, that it
could scarcely have been overlooked in the infancy of astronomy : but the practice
of it long d subject to insur table difficulties.

P




210 ELEMENTS OF ASTRONOMY. [cHAP. xVI.

306. It has been supposed that the eclipses of Jupiter’s sa-
tellites might be of great use in finding the longitude at sea.
Experience, however, has shewn the contrary; it has been
found impossible to manage a telescope on shipboard so as
to observe the eclipses. All attempts to remedy this difficulty
have hitherto failed.
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CHAPTER XVIL

APPLICATION OF ASTRONOMY TO GEOGRAPHY—MEASUREMENTS OF
DEGREES OF LATITUDE.

307. AstroNomy furnishes several methods of finding lati-
tudes and longitudes at land. But the latter are found with
much greater trouble, and less accuracy than the former. The
methods of finding the latitude of a place by observations made
‘by the larger instruments, have been before mentioned, and it
will here be only necessary to take notice of the use of Hadley’s
sextant for this purpose. By means of this portable instrument,
the latitude may be found from observations of the sun’s meri-
dian altitude, with a degree of accuracy sufficient for many pur-
poses of geography.

308. At sea, the horizon is generally sufficiently defined to
serve for measuring the sun’s altitude, by Hadley’s sextant ; but
at land, an artificial horizon is necessary, that is, we must make
use of an horizontal reflecting surface, by which an image of the
sun may be formed by reflection. We measure, by the sextant,
the angular distance between the upper or lower limb of the sun
and its reflected image, which distance is twice the altitude of
the limb, because the rays of light are so reflected that the an-
gles of incidence and reflection are equal.

There are various methods of forming this artificial horizon.
Mercury and water afford the most convenient horizontal sur-
faces, when sheltered from the agitation of the air. For general
use, perhaps, water ought to have the preference.

309. With respect to the longitudes of places at land, our

' rp2
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means of obtaining accuracy are much greater thanat sea. We
can repeat our observations at our leisure, and use such obser-
vations only as admit of the greatest precision. From the pre-
sent state of Geography, as to the more known parts of the
world, it cannot be much advanced by the lunar method of ob-
taining the longitude.

An occultation of a fixed star by the dark edge of the moon,
observed at two places, the longitude of one of which is known,
affords the greatest precision ; because this phenomenon is in-
stantaneous.

Eclipses of the sun rank next, but are not quite so accurate,
because the beginning and end of an eclipse of the sun cannot
be observed so exactly as the occultation of a star by the dark
edge of the moon. The transits of the inferior planets also
afford much accuracy.

The observations, however, which occur most frequently are
the eclipses of the satellites of Jupiter. The first satellite
passing more quickly into the shadow of Jupiter than the others,
is best adapted for this purpose. By taking a mean of the re-
sults of the observations made on the first satellite, both in its
immersions and emersions, great accuracy can be obtained.

310. By the assistance of a transit instrument, the longitude
of a place can be had from observation of the difference of the
times of the passages of the moon and a fixed star, compared
with the difference observed at Greenwich or in some place of
known longitude.

For the difference of the differences arises from the increase
of the moon’s right ascension in the interval of its passages over
the respective meridians. From the rate of increase of the
moon’s right ascension is known the time corresponding to any
given increase, hence the interval of time elapsed between the
passages of the moon over the two meridians, and then the in-
terval of sidereal time elapsed between the passages of the fixed
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star over the two meridians, which is the difference of longi-
tude.

311. For particulars of the practice and computation of all
the above methods, reference must be had to the larger astrono-
mical works.

The computations for occultations, for transits of the inferior
planets, and for eclipses of the sun, are long and complex. This
arises from the effects of parallax, the phenomena not being ob-
served at the same instant by each observer.

The only difficulty, whether at sea or land, for finding the
longitude, is to ascertain the time at a place where the longi-
tude is known. This may be ascertained for near places as well
by terrestrial signals, as by celestial observations. An eclipse
of a satellite of Jupiter may be compared to a signal. An ex-
plosion or an instantaneous exhibition or extinguishment of a
light being observed at two places, and the time noted exactly
at each when it took place, the difference of longitudes will be
had by simply taking the difference of the times. In this man-
ner considerable assistance has been afforded to Geography.

312. But the mere knowledge of the latitudes and longi-
tudes of places is not sufficient for the Geographer. The exact
figure and exact magnitude of the earth are also necessary in
order to ascertain the exact distances of places, to describe and
to plan the several countries. .

On the hypothesis of the earth being a sphere, nothing more
is necessary toward ascertaining its dimensions than to measure
the length of a degree of latitude : that is, to determine the
length of an arch of a terrestrial meridian, the latitudes of the
extremities of which differ by one degree. The mode of ascer-
taining this is easily understood.

The difference of latitude of two places in nearly the same
meridian is to be ascertained by celestial observations. The
distance, on the meridian, between these two places, is to be ob-
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tained by terrestrial measurement. A horizontal base line of a

few miles in length, is to be measured in a convenient situation,

and this base is then to be connected with the two places by

forming a series of triangles, the angles of which are to be mea-

sured by a proper instrument, and then the distance of the two
places computed by trigonometry.

313. Let Qand T (Fig. 47) represent two places nearly in
the same meridian QM : the line AC the base, the length of
which is ascertained by actual measurement. The angles of the
triangles ACH, APH, NPH, PNQ, also of CHK and CTK
are to be ascertained by an instrument adapted for taking angu-
lar distances. Two angles of each triangle would be sufficient,
as from thence the third angle is known: but to verify the ob-
servations it is usual to observe all the angles of each triangle.

The base AC and the angles of the triangle ACH being
known, the other sides AH and HC are had by computation,
and thence the sides of the triangles APH, PHN, PNQ, CHK,
and CTK.

From T draw TMG perpendicular to the meridian QM,
also let DQ, PE, aud CF be perpendicular to QM, and PD,
AE, AF, and CG parallel to the same.

Now QM = DP 4 AE 4 AF 4 CG. The sides PQ,
PA, &ec. being known, PD, AE, %c. will be had by the solution
of right angled triangles, provided the angles DQP, EPA, &c.
are known. These angles will be known if the angle PQM, or
the angle that the direction of one of the stations P seen from
Q makes with the meridian, be known. This angle may be
obtained by different methods.

The sun being observed in the same vertical circle as the
object P, the azimuth of the sun may be computed from the la-
titude of the place, the declination and distance in time of the
sun from the meridian : thus the azimuth of P or the angle
PQM will be had.
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The pole star, when near its greatest elongation from the
meridian changes its azimuth [very slowly, and therefore is
very convenient for ascertaining the direction of the object in
respect to the meridian. The differences between the azimuth
of the pole star, when at its greateat elongations east and west,
and the azimuth of the object being obtained, half the sum or
difference of these will be the azimuth of the object.

It isevident that when the inclination of PQ to the meridian
is known, the inclinations of PA, AC, &c. to the meridian and
its parallels will also be known, because the inclinations of these
lines to each other are known. .

The observations being made for ascertaining the length of
QM, the difference of latitudes of the stations Q and P is to be
observed with the utmost accuracy, by means of a zenith sector
or other instrument affording sufficient exactness.

For this purpose the zenith distance of a star near the ze-
nith is to be observed at each place, and the sum or difference,
according as the star is on a different, or on the same side of the
zenith at each place, will give the difference of latitude. The
changes in the apparent place of the star between the observa-
tions, arising from aberration, &c., must be taken into the ac-
count.

The length of the arc of the meridian, corresponding to a
known difference of latitude, being thus found, the length of one
degree will be had by a simple proportion.

314. The minute particulars that must be attended to, in
order to obtain the greatest accuracy, cannot be enumerated
here. They are to be met with in the several accounts of the
modern measurements.

If the instrument, used in measuring the angles, give the
angular distance and not the horizontal angular distance be-
tween the objects, the elevations or depressions must be also
observed, that the horizontal angles may be computed.
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The triangles formed are not plane triangles, but spherical
triangles not differing much from plane. The sum of the three
angles of each, is therefore somewhat more than 180° ; but this
excess is easily computed, and therefore the sum of the three
angles may be still used for verification.

The computations of spherical triangles being more difficult
than of plane triangles, mathematicians have devised ingenious
methods to reduce the computation of these spherical to plane

triangles, being assisted by the small difference between them
and plane triangles.

315. The results of different measurements have shewn that
the degrees towards the poles are longer than those nearer the
equator ; and therefore that the earth is not exactly a sphere.
This will be better understood by a short account of the prin-
cipal steps by which we have arrived at our present knowledge
of the form and dimensions of the earth.

316. The first modern measurement distinguished by a to-
lerable degree of accuracy is that of Norwood in 1635. He
ascertained the difference of the latitudes of London and York,
and then measured their distance, allowing for the turnings of
the roads and for the aseents and descents. From which he de-
duced the length of a degree = 122,399 English yards. Ac-
cording to the latest determinations it should have been =
121,660 yards.

At this time no circumstances were known, which could tend
to a knowledge of the exact figure of the earth.

In the year 1671 it was discovered, by a comparison of the
times of vibrations of the pendulums at Cayenne and Paris,
that the weights of bodies were less near the equator than at
Paris. From whence Huygens considered it probable that the
form of the earth was not spherical, but that it was a figure
formed by the revolution of an ellipse about the lesser axis.

Sir Isaac Newton, arguing from juster principles than those of -
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Huygens, was also led to the same con(':lusion, and actually com-
puted the ratio of the equatoreal and polar diameters, on the hy-
pothesis of the earth having been at first an homogeneous fluid,
revolving on its axis. The ratio of the equatoreal to the polar
diameter he found to be 230 : 229. At this time, 1686, no
evidence from actual measurement existed, but Newton lived till
it was ascertained by observation, that the ratio of the polar and
equatoreal diameters of Jupiter was nearly such as his theory
gave on the Hypothesis of an uniform density. He also lived
till the results of actual measurements made in France appeared
entirely inconsistent with the form which he had assigned.
- Subsequent measurements, made soon. after Newton’s death,
fully established that the equatoreal exceeded the polar dia-
meter.

317. Picard in 1670 measured an arc of the meridian, com-
mencing near Paris and extending northward, and found, in lati-
tude 494°, a degree = 121,627 yards, differing only by about
35 yards, from what is now considered as the most exact length.
This accuracy seems to have been accidental, and obtained by
a compensation of errors.

A few years afterward, by order of the French King, Cas-
sini, assisted by several other astronomers, undertook the mea-
sure of the whole arc of the meridian extending through France
from Dunkirk to Collioure. This work was finished in 1718.
Among the results obtained, it was found, that in latitude 46°
a degree of the meridian = 121,708 yards, and in latitude
50° = 121,413.

Thus the degrees appeared to diminish as the latitude in-
creased, instead of the contrary. For it is evident that if the
curvature of the earth diminish as we recede from the equator
toward the poles, the degrees of latitude ought to increase, be-
cause the less the curvature, the greater space must be gone over
to change the elevation of the pole by one degree. This result
therefore appeared to contradict Newton’s conclusion, that the
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carth was ncarly an oblate spheroid, that is a solid, formed by
the revolution of an ellipse about its lesser axis. To support
Newton’s conclusion, it was objected that these degrees were so
near each other, that the errors of observation and measurement
might greatly exceed the difference of degrees that would come
out from computation by Newton’s figure. But this mode of
getting over the difficulty was not satisfactory. It was still con-
tended by some of the French Academicians that the polar dia-
meter of the earth was greater than the equatoreal.

To remove all doubt, it was proposed that two degrees
should be measured, one, as near to the equator, and the other
as far northward, as conveniently could be done.

Accordingly in 1736, a company of French and Spanish
astronomers went to Peru, to measure an arc near the equator,
and a company of French and Swedish astronomers undertook to
go to Lapland and measure an arc near the Arctic circle.

The interesting particulars of their labours and difficulties
have been minutely described by themselves, and their exertions
for attaining the utmost accuracy cannot be sufficiently admired.

From a comparison of the measurements in Peru and in
France, the equatoreal diameter® appeared to exceed the polar
by about 535 part of the whole.

From a comparison of the measurements in Lapland and in
France, the excess appeared to be 5{5.

Thus the principal point was settled, that the earth was

a If the density of the earth were uniform, and if the earth had been originally
in a fluid state, its form would be accurately that of a spheroid, generated by the
revolution of an ellipse about its minor axis. The proportion of its diameters would
then be readily investigated from a comparison of the lengths of two degrees of lati-
tude. (Vinee’s Astronomy, Vol. ii. p. 08.). As, however, the exact form of the
earth is not known, the investigation of the proportion of the diameters from the
comparison of two degrees of latitude is only to be considered as a near approxi-

mation.
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flatter towards the poles ; but the quantity of that flatness seem-
ed by no means ascertained. The measures in Lapland and in
Peru seemed quite discordant. But from several circumstances,
greater confidence was placed in the measure in Peru than in
Lapland ; although the latter seemed ekecuted with all due
care.

318. Arcs of the meridian have since been measured in se-
veral countries : but till very lately, no satisfactory conclusion
was drawn respecting the degree of ellipticity in the earth, and
even now greater exactness is desired.

In the year 1787, it was determined to connect the observa-
tories of Greenwich and Paris by a series of triangles; and to
compare the differences of longitudes and latitudes, ascertained
by astronomical observations, with those ascertained by actual
measurement. The late Major General Roy conducted the
British measurement. The British . Triangles were connected
with those of the French, by observations made across the straits
of Dover. In this manner assuming the latitudes of the respec-
tive observatories, as had been previously ascertained, it was
found that in latitude 50° 10’ a degree of the meridian was
121,686 yards.

The measurement in England, which was begun with a re-
ference only to the relative situations of the observatories of
Greenwich and Paris, was extended to a survey of the whole
kingdom. This, General Roy having died, was conducted by
Colonel Mudge, with great skill and assiduity. In the course
of his survey, in the year 1801, he measured an arc of the me-
ridian, between Dunnose in the Isle of Wight and Clifton in
Yorkshire. The difference of latitude (nearly three degrees)
was ascertained by an excellent zenith sector, made for the oc-
casion.

From this measurement it resulted, that the length of a de-
gree in latitude 52° 2’ = 121,640 yards.
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319. An arc of the meridian of nearly 10° in length has
been measured in India, between a station near Cape Comorin,
in lat. 8¢ 9/, and a station in the Nizam’s dominions in latitude
18° 3. This has been achieved by the exertions of Major
Lambton continued during several years. He was furnished
with excellent instruments, similar to those used by Colonel
Mudge. The result of Major Lambton’s measurement gives
120,975 yards for the length of the degree in latitude 13°. 3’ N.

A comparison of the degrees ascertained by Colonel Mudge
and Major Lambton, gives the excess of the equatoreal above
the polar diameter = y1}5. ’

320. At the time the English measurement was going on,
the French astronomers Mechain and Delambre engaged in
measuring the arc of the meridian from Dunkirk to Barcelona,
which places are nearly under the same meridian, and differ in
latitude by about 93°. Their operations commenced in 1792,
and after struggling with the greatest difficulties arising from
the unhappy situation of their country, they succeeded in accom-
plishing the objects of their labours. From this measurement,
compared with the measurement near the equator in 1736, &c.,
they deduced the excess of the equatoreal above the polar dia-
meter = x35.

321. In the year 1802, M. Swanberg and other Swedish
astronomers undertook to repeat the operations of the French
Academicians, which they had performed near Tornea in Lap-
land in 1736. This was an object of considerable importance,
on account of the different results deduced from the compari-
sons made with the measurements in France and Peru.

M. Swanberg has given a most able detail of this operation
and of the computations. The result which he deduces from a
comparison with the new measurement in France, is an excess
of the equatoreal above the polar diameter = x}..

A comparison of the measurement of Major Lambton and
of his own, gives the excess, the same, viz. y3.
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Other comparisons incline him to fix the most probable ex-
cess at 1. :

The discordance of the degree measured in Lapland in
1736 and 1802, led to an examination of the source of the dif-
ference ; and it appeared that the French Academicians had
erred ten or eleven seconds in the latitude of one of their sta-
tions. All their other measurements were verified. This error
was sufficient to account for the difference of results.

322. After all that has been done, much uncertainty remains
as to the true figure of the earth: several measurements of de-
grees of longitude, compared with the degrees of latitude, give
a much greater difference of diameters: however the measure-
ment of a degree of longitude cannot be so accurate as that of a
degree of latitude, on account of the difficulty of ascertaining the
difference of longitudes of the extremities. '

323. The operation of measuring a degree of latitude con-
sists in ascertaining the length of the arc of the meridian, and
in ascertaining the difference of latitudes of the extremities.
The latter part is not susceptible of near so great accuracy as
the former. A second in latitude answers to about 33 yards,
and the difference of latitude cannot be probably ascertained
nearer than two seconds, supposing no cause of irregularity to
affect the plumb line. But there is sufficient proof that the
plumb line is sometimes displaced several seconds by the at-
traction of mountains or of different strata. Colonel Mudge
and the French astronomers experienced this, in a considerable
degree.

The terrestrial measurements are susceptible of great accu-
racy. Itis usual to measure a base of verification, as far dis-
tant from the first base as can conveniently be done, and then
compare this base with its length deduced by computation, from
the first base and the angles measured : this was done by the
French astronomers in their late survey. The length of the

&
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base of verification measured was upward of 7 miles, and at the
distance of above 400 miles from the former base, and yet it did
not differ by 12 inches from the length inferred by computations.

324. The instruments used in the English measurement,
and in that by Major Lambton, were a steel chain, an instru-
ment for taking horizontal angles, the circles of which were 3
feet in diameter, and a zenith sector. Mr. Ramsden exerted
his great talents in making the construction of these instruments
as perfect as possible.

The first base in the English measurement was above five
miles in length, and was measured in 1787 by glass rods : it was
again measured in 1791 by the steel chain, and the two mea-
surements differed only by about 3 inches.

The instrument for taking the angles, sometimes called
Ramsden’s Theodolite, besides the accuracy it afforded, gave at
once the horizontal angles, in which it had a great superiority
over the instruments by which the angular distances between
the stations were taken, and which afterwards required to be re-
duced by computation to the horizontal angles.

325. In the recent measurements in France and Lapland, a
repeating circle, of which the radius was only a few inches, was
used for taking the angles and making the observations for the
difference of latitudes of the extremities of the arcs. However
inadequate at first sight such an instrument may appear to ob-
tain conclusions in which extreme accuracy is required, it must
be allowed that it fully answered the purposes for which it was
intended. The length of the computation was much increased,
as the angles observed were to be reduced to the horizon, and
other reductions made : but these inconveniences seem much
more than compensated by the portableness of the instrument.

The French base was measured by rods of platina: the
Swedish by rods of iron : the requisite allowance was made for
the changes of temperature during the operations.

’\
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326. The result of the measurement in France has been
used to ascertain a standard of measure. The length of a qua-
drant of the meridian was computed and found to be 5,130,740
toises or 10,936,578 English yards. This was divided into ten
million parts, and one part, which was called a metre, was made
the unit of measure. All other French measures are deducegd
decimally from this. The French metre then is 1,0936578
yards, or 39,37 inches nearly.

Computing from the length of the degree in latitude 45° the
mean diameter of the earth comes out 7912 English miles
nearly, and adopting the fraction 35, the equatoreal diameter
will exceed the polar by about 25 miles.

3 A relation of the measurement in Lapland in 1736, was published by Mau-
pertuis, and also by the Abbé Outhier, which is more minute than that of Mauper-
tuis; (vid. Conn. des Temp. 1808.) Separate accounts of the measurements in
Peru, were published by Ulloa, Bouguer, and Condamine.

A very particular account of the measurement in France was published by Cas-
sini in 1744.

The particulars of the recent measurement in France have been published by
Delambre, and of that in Lapland by Swanberg ; (vide Conn. des Temps, 1808.)

An account of the measurement by General Roy, will be found in the Phil.
Trans. for 1787 and 1790. Of that by Col. Mudge in the Phil. Trans. for
1803.

The latest account of Major Lambton’s measurement is given in the Phil. Trans.
1818, p. 2.

An interesting account of the different measurements is also given under the
article “ Degree” in Rees’s Cyclopzdia.
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CHAPTER XVIIL

ON THE CALENDAR.

327. Among the different divisions of time, the civil year
is one of the most important. The solar year, or the interval
elapsed between two successive returns of the sun to the same
equinox, includes all the varieties of seasons.

The civil year must necessarily consist of an exact number
of days. But the solar year consists of a certain number of days
and of a part of a day, (art. 214.) Hence an artifice is neces-
sary to keep the commencement of the different seasons, as
nearly as possible, in the same place of the civil year: that is,
if the sun enter the equator on the 20th of March in one year,
that it may always enter it on the same day, or nearly on the
same day, and that the solstices may be always as nearly as pos-
sible on the same day.

The common civil year consists of 365 days. The solar year
of 365 days, 5 hours, 48 minutes, and 50 seconds, or 365 days,
6 hours nearly.

It is evident that if each civil year were to consist of only
365 days, the seasons would be later and later every year, and
in process of time change through every part of the year.

328. In the infancy of astronomy, it was not to be expected
that the exact length of the solar year could be obtained with_
much accuracy, and we find the Egyptians and other nations
availing themselves of another method, by which they regulated
the times of their agricultural labours. They observed when
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Sirius or Arcturus, or some other bright star, after it had been
obscured by the splendor of the solar rays, first became visible
in the east, before sun-rise. This is called the heliacal rising
of a star. From this time they reckoned a certain number of
days to the commencement of the respective seasons of plough-
ing, of sowing, and of other labours in husbandry.

In this manner they dispensed with an exact knowledge of
the length of the year. They were ignorant of the precession
of the equinoxes, which in a few centuries would have occasioned
their rules to fail, or rather to change. ' ' ‘

329. The first useful and tolerably exact regulation of the
civil year, by help of the solar, took place in the time of Julius
Cesar. It was then provided that every fourth civil year should
consist of 366 days, and the addition of the day should be made,
« die sexto calendas martias,” whence the term bissextile applied
to the year that consists of 366 days: we usually call it leap
year, and the additional day is called the 29th of February.

The Calendar so ordered was called the Julian Calendar.

330. By the council of Nice, held in the year 325, it was
fixed that the feast of Easter, by which the moveable fasts and
festivals of the church are regulated, should be the first Sunday
after the first full moon, which happened on or after the 21st of
March. At that time the equinox happened on the 21st of
March. Thus the festival of Easter was intended to be regu-
lated by the spring equinox.

At that time it must have been known that the excess of the
solar year above 365 days was not quite six hours, and that
therefore, in using the Julian Calendar, the equinox would hap-
pen sooner every year. There however seems to have been no
provision made on that account.

The true length of the solar year being less than 365 days,
6 hours, by 11 minutes nearly, the equinox every fourth year
was nearly 44 minutes earlier, and in course of time the 21st

Q
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of March, instead of being the day of the equinox, might have
been the day of the summer solstice. Thus the fast of Lent and
festival of Easter might have been observed in the middle of
summer.

This inconvenience was foreseen before any material altera-
tion had taken place. In the time of Pope Gregory, in 1577,
the equinox happened on the 11th of March, or ten days be-
fore the 21st. It was then determined to remedy the error that
had already taken place, and to provide against a future accu-
mulation.

It must he generally allowed, that it was right to guard
against an increase of the error, but it may be doubted whether
a greater inconvenience did not take place to the people in ge-
neral by correcting the error of the ten days, than if it had re-
mained.

331. The 5th of October, 1582, was called the 15th, and
thus the equinox was restored to the 21st of March.

A recurrence of error was prevented in the following man-
ner. The true length of the solar year, as far as it was then
known from the best tables, founded on the observations of Co-
pernicus, Ptolemy, and Hipparchus, was 365 days, 5 hours, 49
minutes, and 16 seconds. By adding a day every fourth year,
in 4 years the addition was 4 x (10™ 44*) too much, or the ac-
cumulation of error in 400 years = 400 x (10™ 44%) = 2 days,
23 hours, and 33 minutes nearly. Hence if, instead of making
every fourth year leap year, every hundredth year for three cen-
turies successively be made a common year, and the fourth hun-
dred year be a leap year, the error in 400 years will be only
about 27 minutes, and therefore the error in 20000 years would
not be more than a day.

Hence the correction adopted by Pope Gregory, that the
years 1700, 1800, 1900. 2100, 2200, 2300, 2500, &c., which,
by the Julian Calendar, are leap years, should be common years,
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and that the years 2000, 2400, &c. should remain leap years, is
quite sufficient. The more correct length of the solar year, as
now determined, proves the Gregorian correction less exact, but
not materially so.

332. The Gregorian, or the new style, was not adopted in
Protestant countries, till a considerable time had elapsed.
When it was adopted in England in the year 1752, the error
.amounted to 11 days. This was remedied by calling the 2nd

of September, 1752, the 13th.
' The effect of thus putting, as it were, the seasons backward
by 11 days, must at that time have been disagreeable. That
our mode of reckoning time was made the same as that of
other nations, was doubtless a convenience. But it might have
been more conformable to our climate and the original notions
of the festival of Easter, which regulates the other moveable
fasts and festivals of the church, if the error that had already
accumulated from the Julian Calendar had remained, and the
Gregorian correction against future error had been only adopted.

The early climate of [taly might have principally induced
Pope Gregory to bring back Easter to the regulations of the
equinox : and it may have been a powerful motive in Russia for
not adopting the Gregorian alteration in the style, that by re-
taining and suffering the errors of the Julian Calendar to accu-
mulate further, the fast of Lent and festival of Easter will fall at
times more convenient in respect to their seasons.

The year 1800 having been by the Julian Calendar a leap
year, and by the Gregorian a common year, the Russian date is
now 12 days behind that of the other countries of Europe.

333. The time of the festival of Easter depends on the first
full moon on or after the 21st of March, and therefore, strictly,
recourse should be had to astronomical calculation to ascertain
the time of Easter for each year. But it is sufficient for this

Q2
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purpose to use the Metonic Cycle, (art. 137,) the numbers of
which are called Golden numbers. '

Short rules and brief tables are given in the Act of Parlia-
ment for changing the style, and are usually prefixed to the
Book of Common Prayer, by which the times of Easter may be
found for any number of years to come. The computation so
made, must sometimes differ from what a more exact calcula-
tion would give, and the time of Easter, if exactly computed,
may vary considerably from the computations founded on the
Metonic Cycle. However, as the latter mode of calculation is
prescribed by the Act of Parliament, no inconvenience, from
uncertainty as to the time in which the festival of Easter is to be
observed, can arise.

By exact computation the 1st of April, 1798, should have
been Easter Sunday, whereas by the Calendar prescribed it was
not celebrated till the Sunday after. Also the 29th of March,
1818, should have been Easter Sunday, instead of the 22nd of
March, as found by the prescribed mode of calculation.
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CHAPTER XIX.

ON THE DISCOVERIES IN PHYSICAL ASTRONOMY.

334. THE astronomical knowledge, that existed before the
time of Sir Isaac Newton, was derived from long and tedious
observations, which had been continued through many ages.
The various discoveries, such as the elliptical motions of the
planets, the law of the periodic times, the precession of the equi-
noxes, the direct motion of the apogee of the moon’s orbit, the
retrograde motion of its nodes, the variation and evection of
the moon, were apparently so many unconnected circumstances.

It was Newton who first, from a few general laws of matter
and motion, by help of mathematical principles, shewed the ori-
gin and connexion of these different phenomena, and that they
were simple results of the general properties which the Creator
has ordained should belong to matter and motion. Before his
time Physical Astronomy did not exist. - The attempts of Kep-
ler, Des Cartes, and others, to explain several astronomical
phenomena from physical prineiples, now scarcely. deserve
notice.

335. It would be incompatible with the plan of this work
to enter into any detail of the mathematical principles of physi-
cal astronomy. But the discoveries in physical, are so connect-
ed with plane astronomy, and so important, that it was not pos-
sible to avoid the mention of many of them, when occasion
offered ; and it may not be deemed improper to conclude with
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a short account of the general advantages, the science of astro-
nomy has received from the application of physical principles.

Sir Isaac Newton has shewn that all the bodies of the solar
system mutually attract each other. That the gravitation or
the force of attraction exerted by, or toward any body, is in pro-
portion to the mass of the attracting body. That this force, is
greater or less, according as the distance from the attracting
body is less or greater, and that in proportion to the square of
the distance.

336. Of the immediate cause of gravitation, he confesses
himself ignorant. He says,® that gravity must be caused by an
agent acting constantly according to certain laws : but whether
this agent be material or immaterial, he did not attempt to de-
cide. He reflected much on this subject, but it does not ap-
pear that he ever came to any conclusion which satisfied him-
self. At this day"we are not advanced one step farther toward
the knowledge of the proximate cause of gravity, than Newton
himself had advanced.

The knowledge of the proximate cause, however, is not ne-
cessary to ascertain the existence and laws of the action of gra-
vity. The latter are collected from a variety of facts.

From the laws of the action of gravity combined with laws
of matter and motion, deduced from observations on terrestrial
matter, Newton explained the motions observed in the solar
system.

The sun situate in the midst of the planets attracts them all
toward itself, while they also attract the sun, but from the
greater mass of the sun, the effect of the planets in moving the
sun is very small, compared with the attraction of the sun on
the planets.

2 Letter to Dr. Bentley, page 438, vol. 4. Hors'ey’s Edition of Newton’s
Works. '
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‘Had no other impulse been given to each of the planets,
they and the sun would have come together in consequence of
their mutual attraction. But a proper impulse was given to
each planet in a direction either perpendicular, or nearly per-
pendicular to a line joining the sun and planet. In consequence
of this impulse, and of the attraction of the sun, each planet
continues to revolve round the sun in an elliptical orbit not dif-
fering much from a circle, that is, not very eccentric. These
impulses must have been given at the creation. These impulses
required, to use the words of Newton,* ¢ the Divine Arm to im-
press them according to the tangents to their orbits.”

The simple laws of matter and motion, which the Almighty
has been pleased to ordain, are sufficient to preserve the mo-
tions of the system for a length of time, to which our bounded
intelligence cannot put a limit. . '

337. The preparatory steps of Newton consist, principally,
in shewing, that a body projected, and attracted to a fixed cen-
tre, describes equal areas in equal times, about that centre, and
in investigating the laws of the variation of the force by which
a body attracted toward a given point, may be made to move in
a given curve.

He particularly shews by an interesting application of ma-
thematical principles, that a body moving in an ellipse and de-
scribing equal areas in equal times, about one of the foci, must
be attracted toward that focus, by a force varying inversely as
the square of its distance from the focus: that the squares of
the periodic times of bodies, moving in different ellipses about
a common centre of force in the common focus, are as the cubes
of the greater axes.

He also, conversely, proves that a body attracted to a fixed

3 Third Letter to Dr. Bentley.
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centre, by a force varying inversely as the square of the distance,
and projected in a direction, not passing through the centre,
with a velocity, not exceeding a certain limit, will describe an
ellipse about the fixed centre. The increase, or decrease of ve-
locity, generated by the attractive force, is so exactly eombined
with the velocity of projection, that the efficacy of the attractive
force in drawing it from the tangent of the curve, in which tan-
gent it would continue, were the attractive force to cease, issuch
as always to retain it in the circumference of the ellipse.

After considering a variety of cases about a fixed centre, he
considers two or more bodies, mutually attracting each other.

He also demonstrates that if a globe consist of particles each
of which attracts with a force varying inversely as the square of
the distance, that the united forces of all the particles, compose
a force tending to the centre of the globe, and varying inversely
as the square of the distance from the centre of the globe.

338. The application of his investigations to the system of
the world, may be briefly stated as follows.

The effort by which all bodies within our reach, tend toward
the surface of the earth, we call gravity. If left to themselves,
bodies fall toward it in a right line, but if projected, they tend
toward it in a curvilinear course.

By gravity also a pendulum, when removed from a vertical
position, tends to it again, and so vibrates.

Experiments on the motions of falling bodies and the vibra-
tions of pendulums, after proper allowances made for the resist-
ance of the air, shew that this force of gravity, measured by the
velocity produced in a given time, is nearly the same in the same
place, at any distance from the surface to which our experiments
‘can reach.

But along with thie knowledge of this fact, we also arrive at
another, of great importance, viz. that however dissimilar bodies
are in their visible properties, yet they are all equally affected
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by gravity, that each particle of a body is acted upon, by the
same force, that the component parts of air and gold, are equally
impelled toward the earth. This knowledge is derived from
observing that all bodies, at the same place, describe, in falling
toward the earth, equal spaces in equal times, abstracting from
the resistance of the air.

To these laws of gravity, we are enabled also by experiment
toadd a third; that the]gravitation toward the earth is the united
effect of gravitation toward its separate parts, or that each parti-"
cle of matter attracts ; from whence it follows, that the attrac-
tion of gravitation between terrestrial matter is mutual.® Seve-
ral strong arguments induced Newton to adopt this, as an Hy-
pothesis, but it seems not to have been fully verified, till long
after his death. No facts, proving it, were known to him.

Although we are ignorant of the cause of gravitation, yet we
can inquire whether it be a principle which has no other con-
nexion with the earth, than that of impelling bodies toward its
centre, or whether it be a principle attached to each particle of
matter, and so whether the force by which bodies are impelled
towards the centre of the earth, arises from the joint attractions
of the particles of which the earth is composed. Newton, as

® If the Earth had been originally a fluid of uniform density, it would have fol-
lowed from the mutual attraction of its parts, and from its rotation on its axis, that
the increase of the length of a pendulum vibrating seconds would have been nearly
as the square of the sine of latitude. Also if the Earth had been originally a fluid
of unequal density, the denser parts would have so arranged themselves towards
the centre, that the law of increase of the length of the pendulum would still be as
the square of the sine of latitude. Now we know that the interior of the Earth is
denser than the surface, and a great number of experiments have shewn, that in
both hemispheres the increase of the length of the pendulum is as the square of the
sine of latitude. From hence it has been inferred that the Earth was originally in
a fluid state.

The above is one of the results of analysis and experiment that, according to
Laplace, ought to be ranked among the few certainties that Geology furnishes,
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was said, adopted the hypothesis of this latter mode of the ac-
tion of gravity ; but it was not necessary for his theory, that gra-
vity should arise from the gravitation toward the particles of
each body.

339. The effect of the attractions of the mountains in Peru,
on the plumb line, observed when the measurement of an arc of
the meridian was carrying on, was the first direct proof. Some
circumstances, however, made the result of the experiments du-
bious. But it was fully verified by the experiments of Dr. Mas-
kelyne on the attraction of Mount Schehallien in Scotland.
(Phil. Trans. 1775.) It has since been confirmed by Mr. Ca-
vendish’s experiments on the effects of the attraction of balls of
lead, (Phil. Trans. 1798.)*

The experiment of Dr. Maskelyne was made by observing
the effect of the attraction of the mountain in drawing the plumb
line of a zenith sector from a vertical position toward itself.
The observations being made with the utmost care and accu-
racy, as might be expected from the long experience of Dr.
Maskelyne, the result was, that the difference of latitude from
measurement was less by 117, than by observation of the diffe-
rence of the zenith distances of the same star. Thus the attrac-
tion of the mountain, occasioned the plumb line to deviate about
51" from a vertical situation.

340. Before the time of Newton, it appears that several

® Laplace has shewn that the effect of the attraction of the excess of matter at
the equator, causes two equations in the moon’s motion, one in latitude and the
other in longitude. The quantities of these equations, having both been well ascer-
tained by an examination of a very great number of observations, have served to de-
duce the excess of the equatoreal above the polar diameter. Each equation gives
the same excess very nearly, viz. y};. Laplace also has shewn that the excess of
matter at the equator of Jupiter occasions certain equations in the motions of the
Satellites,

-

A aam———
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eminent men had notions respecting a mutual attraction in the
system. Kepler in his work « De Stella Marte,” speaks of the
mutual gravitation of the earth and moon. He says that if they
were not retained at their proper distances, the earth and moon
would come together, the moon coming over 53 parts of the dis-
tance, and the earth over one part. He also seems aware, that
not only the tides are caused by the attraction of the moon, but
also that the irregularities of the moon are caused by the united
actions of the sun and earth. But it does not appear that either
he, or any other person before Newton, had an idea that the
force of gravity toward the earth, combined with the projectile
velocity, retained the moon in her orbit, or any notion of the va-
riation of gravity, at different distances from the earth.*
Kepler, although an excellent mathematician, seems not to
have been able to apply that science to his ideas of gravitation,
and Galileo had the merit of first applying the principles of
mathematics to investigate the effects of gravity at the earth’s
surface. He first shewed that a projectile acted upon by the
uniform force of gravity, in parallel lines, describes a parabola.
We find no mathematician between him and Newton pushing
the inquiry farther and investigating the curve in case of a pro-
jectile taking such a range, that gravity could no longer be con-
sidered to act in parallel lines. About the time however that
Newton applied himself to these inquiries, we see several ma-
thematicians considering the laws of action by which bodies
may revolve with uniform velocities in different circles about
the same centre.
We are told that an accidental circumstance first led Newton

a It may be considered as a curious circumstance that Galileo computes how long
a body would take to fall from the moon to theearth. He supposes the force of gra-
vity to continue the same throughout the whole distance.
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to consider the effects of the gravity of the earth, at a distance
from the surface, and to inquire whether that gravity did not
extend to, and retain the moon in her orbit: the moon by the
continual action of this force being drawn from a rectilineal
course, and made to revolve about the earth in a nearly circular
orbit.

To examine this point, he was enabled, from knowing the
moon’s distance from the earth and its periodic time, to com-
pute how much it deviated, or was drawn from its rectilineal
course in one minute, which he found to be nearly 16 feet. He
thus found that a force tending to the earth existed at the dis-
tance of sixty semidiameters, which impelled the moon toward
the earth, 16 feet in one minute. The next inquiry was whe-
ther this force were constant or variable at different distances
from the earth, or rather what was the law of its variation. He
saw that if it increased as the square of the distance decreased,
at the earth’s surface, it would impel a body 3600 X 16 feet in
one minute, or 16 feet in one second. This is the space a body
falls by gravity in one second. Hence he concluded that the
force of gravity, diminished in the duplicate proportion of the
semidiameter of the earth, to the moon’s distance, was the force
acting at the moon and retaining it in its orbit.

341. We deduce somewhat more easily the law of gravita-
tion towards each of the planets, which have satellites. It is
found that the satellites of Jupiter move round Jupiter in
orbits nearly circular, and that the squares of the periodic times
are as the cubes of their distances from the primary. Whence
it may be easily shewn, that they are constantly impelled toward
or attracted by Jupiter, by a force increasing as the square of
the distance from Jupiter decreases. The same may be said of
Saturn and the Georgium Sidus. Here then are the Earth,
Jupiter, Saturn, and the Georgium Sidus, each attended with an
attractive influence, acting by the same laws, and therefore, by




CHAP. XIX.] ON PHYSICAL ASTRONOMY. 237

analogy, we may justly conclude, that the remaining planets at-
tract by the same laws.

342. Newton’s investigations of the motions of bodies about
the same centre of force, combined with Kepler’s discoveries,
prove that each of the planets is attracted toward the sun, by
a force varying inversely as the square of the distance from the
sun.

For Kepler shewed that each planet moved in an ellipse,
and described equal areas in equal times about the sun in the
focus, and that their periodic times were as the cubes of the
greater axes of their orbits. Newton demonstrates, that when
this takes place the law of attraction is as above stated.

343. Thus then by the moon we ascertain that the earth
exerts an attractive influence; by the satellites of Jupiter, Sa-
turn, and the Georgium Sidus, that these planets exert a simi-
lar influence ; and by the forms of the planetary orbits and laws
of motion in those orbits, that the sun also possesses an attractive
force. We find the law of action is the same in all the attract-
ing bodies. But if we examine farther we find the forces exert-
ed very different at the same distance from each body. If we
compute the force exerted by the earth, at the distance of the
sun, by diminishing the force of Gravity at the earth’s surface
in the duplicate proportion of the semidiameter of the earth to
the sun’s distance, we shall find it small indeed, compared with
the force the sun exerts on the earth.*

: » The masses and densities of those planets, which have satellites, have been as-
certained by their attractive actions on the Satellites. The density of water being
called unity, then nearly,

the density of the Sun =13
of the Earth == 5,0
of Jupiter =10
of Saturn = 0,6
of Georg. Sidus. = 1,5
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344. As the planets are attracted toward the sun and attract
their satellites, we may conclude that they attract one another
and thesun. Also, as we find the attraction of the earth made up
of the attractions of its parts, so we may conclude the attractions
of the sun and planets composed of the attractions of their parts,
and that the law in the system is, that every body attracts with
a force at a given distance in proportion to its mass, and that the
force diminishes as the square of the distance of the attracted
body is increased.

345. As soon as Newton had published his discoveries,
there could be no rational doubt of this being the law which
exists throughout the solar system; and every step, that has
since been made in Physical Astronomy, has furnished addi-
tional proofs.

"It is probable that Newton derived no assistance in the dis-
covery of the law of gravity : yet he does not seem unwilling
that others should have a share in the merit. He ingenuously
tells us that Wren, Hook, and Halley had separately discovered
from Kepler’s law of the periodic times, the law of attraction to-
wards the sun, if the planets moved in circular orbits. But the
great fame of Newton rests not upon this foundation, that he
merely discovered the law of gravity. He proceeded by syn-
thesis to examine the phaenomena that would offer themselves
in a system so regulated. His transcendent mathematical pow-
ers enabled him to point out the origin of all the more splendid
discoveries of former ages. He shewed that the planetary or-
bits must be elliptical, that the lunar irregularities, the preces-
sion of the equinoxes, and the phanomena of the tides must
take place from the principle and law of universal attraction,

the density of Venus is supposed to be somewhat greater than the density of the
earth from the effects of that planet in diminishing the obliquity of the ecliptic, and
by changing the plane of the earth’s orbit. )
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thereby evincing, in the strongest manner, that he had arrived
at the knowledge of those laws, which the Creator had willed
for upholding the system of the world.

346. Newton had extended the boundaries of mathematical
knowledge, as much as he had those of physical. He preferred
exhibiting his investigations and conclusions in a geometric, ra-
ther than in an analytic form, as better suited to the general
outlines of physical astronomy, and also as better adapted to call
the attention of the world to his great discoveries. To extend
the limits of physical astronomy, and to explain discoveries that
have been made by comparing modern and ancient observa-
tions, it has been found necessary to adopt entirely the analytic
method.

A considerable time elapsed from the publication of New-
ton’s Principia in 1687, before any attempt was made to extend
the investigations of Newton. In 1740 Maclaurin, Euler, and
Bernouilli shared a prize given by the Royal Academy of Sci-
ences at Paris, for their dissertations on the tides, in which
they made considerable advances in the path pointed out by
Newton.

Soon after, Euler, D’Alembert, and Clairaut, engaged in
the famous problem of the three bodies, as it has been called.
. That is, to investigate the motions of three bodes, acting upon
each other according to the laws of gravity. The problem in
its general extent is far beyond the powers of analytics in their
present state : but in the case of the sun, earth, and moon, we
can approximate to the solution with sufficient exactness. For,
the sun disturbs the motions of the'moon, as seen from the earth,
only by the difference of its attractions on the moon and earth,
which difference is always very small, compared with the force
by which the moon is attracted towards the earth.

The importance of an exact knowledge of the lunar motions
in finding the longitude atsea, seems principally to have incited
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the exertions of these mathematicians. A difficulty soon occurred
which made them at first doubt of the exactness of the New-
_ tonian law of gravity. They could not reconcile the mean mo-
tion of the lunar apogee, as determined by calculation, with that
deduced from observation.* They saw the latter was double
of the former. At last Clairaut, by extending his approxima-
tions® overcame this difficulty, and added a new proof of the
law of gravity.

347. There were two phenomena, however, to which Flam-
stead and Halley first called the attention of astronomers,
which for many years baffled all attempts to account for them,
from the received laws of gravity. These were the acceleration
of the moon’s motion, (art. 230,) and the acceleration of Jupi-
ter’s, and retardation of Saturn’s motions (art. 213.)

Dr. Halley’s computations on the ancient observations had
been verified by other astronomers, and no doubt remained of
the facts. The acceleration of the moon’s motion had also
been verified by computations made on three eclipses observed
by Ibn Junis near Cairo, towards the end of the 10th Century.

* Newton himself seems to have long been sensible of this difficulty, and to
have exerted himself in the computation without success. In the first edition of the
Principia he mentions computations by which he had ascertained the agreement
nearly of his Theory with Flamstead’s Tables, accommodated to the Hypothesis of
Horrox. But he says,  Computationes autem ut nimis perplexas et approxima-
tionibus impeditas, neque satis accuratas, apponere non lubet.”” In the subsequent
editions of the Principia, he does not attempt to reconcile the observed motion of
the apogee with his Theory. It would be very interesting to know the particulars
of his computation;

b Not considering the eccentricity and inclination of the lunar orbit, the mean
motion of the lunar apogee, that of the moon being unity, is expressed by a _series

325 periodic time of the moon

3 -
Sms e 222 s, =
ofterms of the form i + 32 m34- &c. were m periodic time of the sun,

P

1 3
=7 nearly. Clairaut’s first appproximation extended only to the term Tm’.

Yide Trans. Royal Irish Academy, vol. 13.
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348. Euler, who, as a mathematician, ranks so high, di-
rected his attention to the motions of Jupiter and Saturn. So
early as the year 1748 he published an investigation of them,
but failed to explain the difficulty. Other mathematicians
engaged in the inquiry. For a long time the object of their
pursuit eluded them, but their exertions tended much towards
perfecting physical astronomy.

Euler investigated many of the disturbances which take
place by the mutual action of the sun and planets. He first
shewed that the diminution of the inclination of the ecliptic to
the equator, which ancient observations appeared to show, was
occasioned by the action of the planets by which the plane of
the earth’s orbit is gradually changed.

Lagrange, who has become so distinguished by his many
splendid improvements in mathematics and mathematical phi-
losophy, about 1765 published® his investigations respecting
the motions of Jupiter and Saturn.

The celebrated Laplace in 1773 shewed that the mean mo-
tions and mean distances of the planets were not subject to any
variation arising from their mutual actions on each other, or at
least were so nearly constant that nothing could appear to the
contrary from the most ancient observations. Hence the ex-
planation of the acceleration of Jupiter and retardation of
Saturn, that Lagrange and others had given, could not be the
true one.

Soon after Lagrange himself proved strictly, what Laplace
had proved only by approximation, that neither the mean
motions, nor mean distances of the planets were subject to any
perceptible alteration from their mutual attraction.

It was not till 1786 that Laplace discovered the true expla-
nation of the difficulties as to Jupiter and Saturn, after it had

® Turin Memoirs. Vol. 3.
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been sought for in vain, above thirty years, by the continued
exertions of the first mathematicians.

His investigations furnished another confirmation of the
mutual attraction of the system. He shewed that the quantity
of acceleration in the motion of Jupiter and retardation in that
of Saturn deduced from computation, agreed with observation.

349. The difficulty of the acceleration of the moon’s motion
yet remained, and it had fully as much occupied the attention
of those who endeavoured to improve Physical astronomy, as
that just mentioned.

The Royal Academy of Sciences at Paris had proposed it
several times as the subject of their prize. It had eluded the

® Tt is not easy to make his discovery intelligible to those not conversant in
the computations of physical astronomy. The eguations arising from the mutual
attraction of the bodies of the system, are divided into secular and periodical. In
fact it is now known, that all equations are periodical, but the term, ¢ secular’
distinguishes those that do not depend on the position of the bodies as to each other.
As these equations appertain to a long period, they are called secular. Periodical
equations are those that depend on the position of the bodies to each other.

Thus the variation of the moon (art. 231.) depends on the angular distance of
the moon from the sun, being proportional to the sine of twice the angular distance
of the moon from the sun, and is called a periodical equation. The acceleration of
the moon’s motion not depending on the positions of the sun, moon, and earth, is
called a secular equation.

Lagrange had at first conceived, that the acceleration of Jupiter was from a
secular equation; but Laplace, and then he himself, shewed that no such equation
could exist in the planetary motions. Therefore Laplace was led to look for a
periodical equation, and he observed that as twice the mean motion of Jupiter was
very nearly equal to five times that of Saturn, an equation of a very long period
would result from thence, which might be sensible. To investigate this, it was
necessary to extend the approximations to a greater length than had hitherto been
done. It might, and, it is likely it did occur to others before this time, that this
was a probable source of the phenomena, but till the existence of a secular equation
had been disproved, the formidable calculations might have deterred. Equations
depending on the difference between five times the motion of any planet and twice
that of another, actually exist, but are insensible in the other planets.
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researches of Lagrange, yet his investigations on the subject
gained the prize in 1772. Bossut had endeavoured to explain
it by the resistance of an ether, or subtile fluid pervading the
whole system. Laplace endeavoured to explain it by supposing
that the transmission of gravity, like that of light, was not in-
stantaneous, and on this hypothesis he made some important
investigations. At length in 1787 Laplace himself discovered
the true cause ; that it was a simple result of the laws of gra-
vity. 'The actions of the planets, besides changing the plane of
the earth’s orbit, change also its eccentricity. The eccentricity
now is diminishing, and will continue, for many ages to come,
to do so. It will afterwards increase, and thus be subject to
periodical changes. These changes will affect, through the
action of the sun, the angular velocity of the moon about the
earth, and hence at the present time an acceleration takes
place. Nothing can be more satisfactory than the results of
Laplace on this subject. He has shewn that the mean mo-
tions of the apogee and of the node are affected by the same
cause, and it appears that the quantities assigned by compu-
tation agree with the results arising from a comparison of an- -
cient and modern observations.

" The true cause of the acceleration or secular equation of
the moon’s mean motion being discovered, Laplace’s former
investigations, on the hypothesis that the transmission of gravity
was not instantaneous, have served to prove that the transmis-
sion of gravity, if not instantaneous, is immeasurably quicker
than that of light.

350. The results of all the improvements in physical astro-
nomy, since Newton first called the attention of mankind to it,
have been given to the world by Laplace in his great work,
entitled ¢« Mecanique Celeste.” This and the Principia of
Newton will probably be considered by late posterity as the
two noblest monuments of human science. The Principia of

R2
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Newton was the work of one mind, which could derive no
assistar:ce from those who had gone before. The energies of
the most distinguished abilities had been for many years em-
ployed in collecting materials for the fabric that Laplace has
erected. Newton and Lagrange have assisted in an eminent
degree. Maclaurin, Euler, T. Simpson, Clairaut, D’Alembert,
and others, greatly contributed. Laplace himself, besides the
merit of planning, and of selecting, and arranging the materials,
has the honor of having executed many of the most difficult
and highly finished parts of this great work.

351. No motion is now known to exist in the system, but
what we can shew to be conformable to the laws of universal
gravitation.* 'The mean motions and mean distances of all the
planets are to be considered invariable, and the effects of their
mutual actions are all periodical. We can now ascertain for
thousands of years the state of the system, should such a conti-
nuance be permitted by the Divine Author.

The obliquity of the ecliptic, which now is diminishing by
a small quantity every year, will never be diminished by more
than a degree or two. This is a very interesting result. Had
the obliquity continued to decrease, the equator at last would
have coincided with the ecliptic, and a great part of the earth
would have been rendered incapable of producing the necessary
food for the existence of men and other animals.

v

* It must not however be supposed that the analytical science, as applied to
physical astronomy, is perfect, or even in a state approaching to perfection. Not-
withstanding the great progress that has been made during the last century, much
remains to be done. Because the orbits of the planets are inclined at small
angles to the ecliptic and to each other, and because the eccentricities of the orbits
are small, we are enabled with tolerable facility to compute by approximation the
disturbing effects of the planets on each other. But it will be a work of great labor
and difficulty to compute the disturbances of the new planet Pallas, b its
orbit is so much inclined to the orbits of the other planets.
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352. In all our inquiries into the operations of nature, by
which should always be understood, the modes of existence and
laws assigned to the objects of the creation by the Divine
Creator, we meet with sources of delight and admiration ; but
in none more, than when in contemplating the objects of
astronomy.

The magnitudes and the distances of the bodies of the
solar system when measured by our ideas so vast, the immense
number of the fixed stars placed at immeasurable distances
from us, and from each other, shew us the magnificence of the
creation.

By the discoveries of Newton we are permitted, as it were,
to understand some of the Counsels of the Almighty. From
these we can, by demonstration, overturn the absurd doctrine
of blind chance. We see that a Supreme Intelligence placed
and put in motion the planets about the sun in the centre, and
ordained the laws of gravitation, having provided against the
smallest imperfection that might arise from time. And let us
not imagine that only in these vast bodies the Supreme care
was employed. Let us not imagine that man, apparently so-
insignificant, cannot be an object of attention in a world so
vast. The protecting hand of the Creator is equally visible in
the smallest insects and vegetables, as in the stupendous fabrics
which astronomy points out to us. He, who formed the human
mind so different in its powers and mode of existence from the
rest of the works of the creation, has assigned laws peculiarly
suited to ifs preservation and improvement : laws not mecha-
nical, but moral: laws only obscurely seen by the light of
reason, but fully illumined by that of revelation.






APPENDIX.

Tue following Problems are intended to illustrate several of
the articles in the foregoing treatise, and also to explain the prac-
tical mode of solving some of the more useful problems in
astronomy.

To understand several of these problems, a tolerably extensive
knowledge of plane and spherical trigonometry is required, more
particularly, a knowledge of the elegant and very useful rules for
the circular parts of a right angled spherical triangle, and the
analogies for oblique angled spherical triangles, discovered by
Napier the inventor of Logarithms. A knowledge of the solutions
of the cases of oblique angled spherical triangles, not included in
Napier's Analogies, and also of many of the trigonometrical ex-
pressions for two arcs is required. These expressions depend on
the fundamental formula

Sin (A 4 B) =sinA.cosB 4 cosA.sin B
where A and B represent any arcs positive or negative.

The Astronomical problems given, are of two kinds.

1. Problems in the solutions of which great circles of the
sphere, only, are used.

2. Problems in which small circles are used, and small varia-
tions of the parts of spherical triangles.

For the latter, the fluxional or differential calculus, would have,
in some few cases, furnished solutions somewhat more concise, but
not materially so, in any of the examples given. Oftentimes the
differential calculus, applied to trigonometrical formule, leads to a
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very complicated process; which might be avoided by the consi-
deration of differential triangles.

Unnecessary repetition will be avoided by mentioning here,
that in the following Problems, radius is unity, and therefore is not
put down: that when the rules of circular parts are referred to, it
is not meant that the equation is put down exactly as given by the
rules, but such as may easily be deduced from thence. Thus be-
cause tang. cot =1, the reciprocal of the tangent is sometimes put
for the co-tangent, &c.

Prop. I. To prove that the time from a star's rising to its
coming to the meridian is equal to the time from coming to the
meridian to setting.

Let PH (fig. 48) represent the meridian, RS the horizon, and
Ro8 the star’s path, rising at R and setting at S.

Since RP is equal to PS; and PH common to the two triangles
RPH, HPS; by the rules for circular parts we shall have obvi-
ously the angles RPH, HPS, equal to each other, and therefore
the angles RPo, oPS are equal; and hence the time of describing
Ro equal to the time of describing oS, since the motions are
equable.

' For the sun or moon the angles RPo, oPS are not equal, be-
cause the polar distances RP, PS are not equal. For the sun the
forenoon exceeds the afternoon from midsummer to midwinter;
and from midwinter to midsummer the afternoon exceeds the fore-
noon.

Prop. I. Given the sun’s longitude, to find its right ascen-
sion and declination.

In fig. 49 ES represents the ecliptic, ED the equator, and SD
a circle of declination.

By the rules for circular parts ©<- [
'| tan ED = cos E.tan ES
and sin SD = sin ES.sin E
or tan R. Ascens = cos Ob. Ecl. tan Long.
sin Decl. = sin long. sin Ob. Ecl.

4

S S AT
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When the tang of longitude is negative, the tang of R. Ascens. LRA
will be so likewise, and the R. Ascens. and long. will be always in
the same quadrant, as is otherwise evident.

The sine of declination has the same sign as the sine of long, | N g
and therefore between 180° and 360° of longitude will be south, as Lo
is otherwise obvious. These remarks are only made here to call
the attention to the signs of the quantities.

The sun’s longitude at any time is found by the solar tables,
and is also given in the Nautical Almanac for every day at apparent
noon at Greenwich, hence may be found for any given time, at any
place, the longitude of which is known. Therefore the obliquity
of the ecliptic being known, the right ascension and declination will
be had as above.

The mean obliquity of the ecliptic for 1800 was 23° 27’ 57" and
it diminishes 0", 45 every year. For the mode of finding the true
obliquity from the mean, see Prop. 18.

Prop. II1. 1. To find the time of sunrise in a given latitude
on a given day. 2. When due East. 3. The time of its being
at a given altitude.

In fig. 50 the circles of the sphere are supposed to be seen
from a point in the continuation of a radius, at right angles to the
plane of the meridian, and therefore the horizon, equator, and
prime vertical appear right lines, as HO, EQ and ZN. Dd is the
sun’s parallel of declination. R the place of the sun when rising,
V the place when on the prime vertical or due east, and FB the
given altitude.

On a given day, the sun’s declination may be found as in the
preceding problem, or may be deduced from the Nautical Almanac,
where it is given for every day at noon at Greenwich.

1. RPO= hour angle from midnight, R being the place of the
sun at rising.

From the right angled triangle RPO, by circular parts, cos
RPO = cot RP. tan PO. *
or cos hour angle from midnight = tan decl. tan lat. )
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i  When the declination is south, its tangent is negative, and
itherefore the cos hour angle is negative, and the angle is greater
'than 90°. The hour angle being reduced to hours, &c. by dividing
by 15 gives the time of rising.

2. To find ZPV. From the right angled triangle ZVP, by
circular parts.

Cos ZPV =cotPV.tanZP, or

Cos hour angle from noon = tan decl. cotlat.

3. In the oblique angled triangle, BZP, are known the three
sides to find the angle BPZ. Let P=BP+4ZP 4 BZ. By spher.
trig.* sin BP. sin ZP : sin }P. sin (3P —BZ), :: rad® : cos 3 ZPB.
Hence ZPB is found, and therefore the time from noon.

When }ZPB is small it cannot conveniently be found with
accuracy, from its cosine, because the cosines of small arcs vary
very slowly. The following analogy will then serve* sin BP. sin
ZP :sin (§ P—BP).sin (3 P—ZP) :: rad * : sin * § ZPB.

The first analogy is to be used when ZPB is greater than 90°,
and the second when less.

If great accuracy be desired, the effect of refraction should be
considered by correcting the altitude. Also the sun’s declination
should be exactly computed.

The effect of refraction on the rising of the sun will be after-
wards investigated.

This problem contains the computations mentioned in articles
53 and 292.

Prop. IV. Given the right ascension and declination of an
object, to find its latitude and longitude. Art. (15).

In fig. 51, let P and N be the poles of the ecliptic and equator,
and S the object.
If the Right Ascension be > 0°<& 90°, PNS=90° 4R. A.
cveeterariarssssseesss D270 K360 , PNS=R.A.—270
Ceeerersrisaesasaees s> 90 K270 , PNS=270—R.A.

- 3 See Luby’s Trig. 2d edit. art. 135. p. 81.
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NS =900 == decl.,, PN = obliq. of ecl.
By spherical trig.
cos PS=cos PN .cos NS 4 sin PN.sin NS. cos PNS.
Hence may be deduced?®
sin®3 PS = sin (}(PN + N§) + M). sin (}(PN 4 NS)—M),
When M is an auxiliary arc, such that
sin *M = sin PN..sin NS. cos *} PNS.

The application of the tables of logarithms to find M and then
PS8, the distance from the pole of the ecliptic, is very simple, and
no distinction of cases occurs.

The angle SPN can now be found from the sides of the triangle
SPN, as in Prop. IIIL

If SPN <£90°......long= 90°—SPN
R. A.>270°< 900 g ceeee>90 ......long =450 —SPN
RA> 9 <270 00veveeseseassesss.dong= 90 4 SPN.

The above solution is rather longer than those usually given,
but it has the great advantage of not being embarrassed by a
difficult distinction of cases. PS having been found, SPN might
have been found from the simple theorem of the sines of the sides
being as the sines of the opposite angles; but then an ambiguity
would have arisen. Now this latter theorem may be made use of
for verifying the computation. Thus

log. sin SN + log. sin SNP = log. sin SP 4 log. sin SPN,
or, as readily follows,

log. cos decl. 4 log. cos R. A. = log. coslat 4 log. cos long.

Prop. V. To find at any time the height and longitude of the
nonagesimal point.

The nonagesimal point or degree is that point of the ecliptic
90° from the horizon, and is therefore the highest point of the

& See Trig. art. 137, p. 84, 2d method.

*
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ecliptic. The continuation of the notice of this point by astrono-
mers has been on account of its use, in computing the parallax of
the moon in latitude and longitude in eclipses.

Let HO (fig. 52) represent the horizon, HNO the ecliptic,
P the pole of the ecliptic, and Z the zenith. Draw through P, Z
the great circle PZN, and N is the nonagesimal point; for the
right angled triangles HZN and NZO are equal, and therefore
HN=NO. Now ZN the co-altitude of N, is the latitude of the
zenith point, and the longitude of Z is the same as the longitude
of N.

Hence if we find the latitude and longitude of the zenith point,
we have the co-altitude and longitude of the nonagesimal. Now at
a given time we know the right ascen. of the zenith point, which is
the right ascen. of the meridian or the sidereal® time, and the de-
clination of the zenith is the latitude of the place. Hence this
problem is contained in the last.

-The introduction of the term nonagesimal was unnecessary,
because the latitude and longitude of the zenith point$ will serve
more conveniently the purposes of the height and longitude of the
nonagesimal.

Prop. VI. To find the time of rising of a giver star on any
day in a given place.
The sun’s right ascens. (8) is given in the Nautical Almanac, or
" may be found as in Prop. II. Let F represent the right ascension
"~ T of the star.
Then S—F will be the angle at the pole of the equator between
the star and sun.
Compute as in Prop. 3, (fig. 50), by help of the star’s declina-
tion and latitude of the place, DPR the angular distance of the
star from the meridian at rising. Then the angular distance of the

noon, by increasing the mean time in the ratio of 366 : 365, and adding the sun’s

g 3 The sidereal time is found from the mean time, reckoned from the preceding
mean longitude at preceding noon.

Y
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sun from the meridian when the star is rising = DPR 4-S—F,
which reduced into time at the rate of 15° for one hour will give
the time of rising. When DPR 4 S—TF is negative, or greater
than 180°, the sun, at the rising of the star, is to the west of the
meridian, otherwise to the east.

For great accuracy an allowance should be made for refraction,

and also the sun’s right ascension should be computed for the time
of rising.. Therefore when the time is found with the sun’s right
ascension at noon, the sun’s right ascension should be computed
for the time of rising, found nearly, and then the operation re-
peated.
DPR
B
proportion in the ratio of 365 : 366 will give the interval between
the rising of the star and its passage over the meridian. Hence if
its passage over the meridian be known, its time of rising will be
known. The times of the passages of the planets over the meri-
dian of Greenwich, and the declinations, are given in the Nautical
Almanac, therefore the times of rising or setting, may in this manner
be found nearly.

Remark. reduced to the solar time by diminishing it in

Prop. VII. To find the time of the rising of the moon on a
given day.

The right ascensions and declinations of the moon are given in
the Nautical Almanac for noon and midnight at Greenwich, and
therefore may be found by proportion for any given place. If we
knew the right ascension and declination of the moon at rising,
the problem would be solved exactly the same as the last problem.
But we cannot exactly know the right ascension and declination of
the moon at its rising without knowing the time of rising. This is
the inconvenient circumstance in this problem. But the difficulty
is obviated by. using the right ascension and declination at the noon
or the midnight at Greenwich nearest the time of rising, and then
finding the time of rising, as for a star (Prop. 6.) With this time
find, by the help of the difference of longitude, the corresponding
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time at Greenwich, and thence the right ascension and declination
of the moon. With these find the time of rising more accurately.
In like manner a third operation might be used, but this will
scarcely be necessary.

The horizontal parallax of the moon being always greater than
the horizontal refraction, the rising of the moon is retarded. The
computation of the quantity will be shewn in a subsequent pro-
blem.

Prop. VIIL. To find when a star rises heliacally (art. 327.)

. A star of the first magnitude rises heliacally, or first becomes
visible after having been obscured by the solar rays, when the sun
is about 12° below the horizon.

Let F (fig. 53) be the star rising; DA the right ascension of
the star, A being the first point of aries; AXL, the ecliptic; and
the arc KL perp. to the horizon = 12°.

Then L is the place of the sun, when the star rises heliacally.
From the right angled triangle CED by circular parts.

Sin CD =tanlat.tan decl. Hence, from the right ascension of
the star, AD, AC is known in the triangle ACX, and also the adja-
cent angles A and C are known.

By Napier’s Analogies®

cos}(C 4 A):cos} (C—A)::tan} (AC) : tan $(AX 4 CX).

sin}(C 4- A):sin(C—A) : : tan}(AC) : tan (AX — CX).
Hence AX is known, and therefore the angle X is easily found.
sin XL = SRKL (122)
sin X
Whence AL the sun’s longitude is known, and therefore the
day when the heliacal rising takes place.
To investigate the heliacal rising of a star 2000 years ago, we
must decrease the present longitude of the star by 2000 x 50, 1 =
28¢ nearly. Then with the longitude and latitude of the star, and

* Luby’s Trig. art. 137, p. 83.



APPENDIX. 255

obliquity of the ecliptic, compute the right ascension and declina-
tion,* and then as above find the sun’s longitude at the heliacal
rising ; it will be sufficiently exact to find by common proportion
the number of days from the equinox from the longitude of the sun
thus found, taking 59'.8" for the motion in 24 hours.®

Prop. IX. To find the sun’s declination when the twilight is
shortest in a given latitude.

Let R (fig. 54. 1) represent a parallel circle 18° below the ho-
rizon HO (art. 52). KNTYL a great circle touching R# in T and
intersecting the equator EQ so that the angle Y = HCE (the co-
latitude). Draw any parallel of the equator MNS. When the sun
is in this parallel the arch MN is described in the same time, as
the arch CY when the sun is in the equator. For let the arches
MW and NX be perpendicular to the equator, then the right angled
triangles MWC and NXY will be equal, and WC=XY, conse-
quently WX =CY. Therefore since MN and WX are described
in equal times, MN and CY will be described in equal times.
Hence the portion AT of a parallel of the equator between the
horizon and its parallel R is described in less time than the por-
tion of any other parallel to the equator between the same circles,
because the time of describing AT = the time of describing CY =
the time of describing MN, less than the time of describing MS.
Hence the twilight is shortest when the sun describes the parallel
AT, that is, when the sun’s declination is TL

Now, because KTL touches R#, the vertical circle ZFT is at
right angles to KTL. Hence in the right angled triangles CFB and
BTY, the vertical angles are equal and C =Y, therefore these
triangles are equal, TB=BF and each =9°. Also DF at right
angles to EQ = TT the declination. Hence if we conceive the cir-

@ Converse of prop. 4.

b The latitude of the star and obliquity of the ecliptic should also be reduced to
what they were 2000 years ago, but this degree of accuracy would be quite unne-
cessary, in regard to any use that could be made of the result.



256 APPENDIX.

cles of the sphere projected perpendicularly on the plane of the
meridian, and FG be drawn perpendicular to HO, and to meet EQ
in G, FG will be the tangent of FB, and FD = the sine of the
declination, and DGF = the latitude. Therefore by plane trigo-
nometry
rad : sin CGF : : FG : FD, or
rad : sinlat:: tan 9° : sin declination,
when the twilight is shortest
This Prop. may be resolved in somewhat a more general form,
as follows :—
To find the declination of the sun or star, when the time
of change from a given altitude A to a given altitude B is the
shortest possible.

In fig. 54. 2, Land M are the places of the object when the
angle LPM is the least possible, the given zenith distances being LZ
and ZM. Considering the triangles ZLPand ZMP, and the differen-
tial triangles that may be formed at L and M, it readily appears that
the angles ZLP and ZMP are equal, and thence that MZP and LZP
are thesupplements of each other, as their sines are equal. Their sines
are equal because the sides LP and MP are equal, and the side ZP
common to the two triangles. The same may also be readily de-
duced as follows, but not so simply as by the differential triangles.
Indeed this is an example, among many others, of the extreme faci-
lity of obtaining results by differential triangles as compared with
the manner of obtaining the same by trigonometrical formule. .
By trigonometry

cos ZM = cos ZPM. sin ZP. sin PM 4- cos ZP. cos PM.

And since ZM and ZP are constant, the differential equation is

= —sinZPM . 5in ZP. sin PM.d.ZPM + cos ZPM.sin ZP.

cos PM.d.PM—cosZP.sinPM.d.PM.
therefore :

d.ZPM _ cos ZPM.sinZP. cos PM —cos ZP. sin PM
d,.PM — sin ZPM . sin ZP . sin PM
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. - cos ZMP. sin ZM
= 7 sinZPM.sinZP.sin PM
_ cos ZMP .sin ZP. sin ZM
= sin ZMP. sin ZP . sin ZM . sin PM
- .
~  tanZMP.sinPM"’
Also for the same reason
d.ZPL _ 1 .
d.PL — tanZLP.sinPL’
Now LPM is a minimum, and therefore

d.LPM=d.ZPM—d.ZPL =0,

8 This immediately appears from the differential triangles, but even the consi~ 74
deration of this expression is y, as the equality of the differential trian~
gles at L and M is at once seen.

Note by the Editor.—The prop. in its general state may be solved very simply l

as follows. Let the object cross on the parallel bm, fig. 54. 3. then the angle
mPb is to be amin. Make zPs on the sphere’s surface equal to mPd, and
Ps= P“and draw the arc of a great circle Zs, and join sm. Then since ZP is
oonstant, and the angle ZPs a min. the arc Zs must be a min., but the spherical
triangles bPZ, m Ps being obviously in every respect equal, we have sm=25,
and therefore given. Hence in the spherical triangle sm Z, the two sides sm, mZ
are given, and the third side to be a min. This will obviously be the case when
sm, mZ coincide. The object must consequently describe such a parallel nv, that
Zn, sn may coincide.

We may from this readily compute as follows :—let fall the perpendicular Pz,
*then 27 is obviously half the sum, and xZ half the difference of the given zenith
distances, which we shall call £ and 2". From the right angled triangles zPZ,
xPn, we have

_cosPZ —=cos Pz = cosPn
cos} (z—2) = cosj(z4-2)’
whence
. . cos k (24-2') II
s_up decl.=—sinlat, X o5} (z—7) .

For shortest twilight 2=108° and z'=90°, hence cos} (z42") =—sin 9%,
and cos} (z—z')=c0s9°, therefore, &c.
This mode of solution exemplifies the advantage of discussing by spherical
geometry, previous to converting a question into formule.
S
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ord.ZPM=d.ZPL, also PM=PL, and d. PM=d.PL; conse-
quently, tanZMP = tan ZLP, and these angles are equal.
Hence
. sinZMP. sinMP _ sinZLP.sinLP
snMZP=——"7p = wmzP
Therefore one of these angles must be the supplement to the other,
and consequently LZC = CZM.

Conceive the circles of the sphere orthographically projected
on the plane of the meridian. Then LK =sinLZ.sinLZK, and
IM =sin MZ.sinIZM.

Also 0K = L_:;;(:‘.L;](\{ = (since LZK =1ZM.) cs_——_(:;izz -{-i?:éﬁ .
sinLZ=tan} (ZM—LZ).sinLZ. And OC=KC—OK=cosLZ
—tan4 (ZM—LZ).sin LZ, and then OG (the sine of declination)
=O0C.sinlat.

For the shortest twilight LZ =90° and ZM =108°, hence
OC =—1tan9°, and therefore sin decl south = sin lat tan 9°.

sin LZP..

Prop. X. To find when Venus is brightest.

LetS, T and V, (fig. 55,) be the Sun, the Earth, and Venus

when brightest. Let TV also meet the orbit of Venus, supposed
circular, in H, and join S, H, and S, V. The brightness of Venus
varies as the versed sine of the exterior angle directly, (art. 110,)
and as the square of the distance from the earth inversely. For
the density of light decreases as the square of the distance from
the radiating body increases.
vsinSVH
TV?
therefore vsinSHV X TH® is a maximum, because TH X TV is
constant, and therefore TH varies inversely as TV.
Let TH=%, ST=1 and SH=m. Then by plane trigono-
- metry,?

Hence when Venus is brightest is a maximum, and

m* 4 a*—2mz.cos SHT=1.

2 Luby’s Trig. p. 32.

2 =1
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and because v. sin SHT =1 —cos SHT,

l—m*—=a2* 4 2ma

it follows that v. siﬁ SHT =
2ma

—_—mt—ar 4 2m 2
2m

Therefore ! X & is a max.

or #—mrtx—a* + 2m 2% is a max.
Hence by the principles of the diff. calc.
' l—m—3a2* + 4ma=0,
dme _1—m 7K

This equation gives Q)
:p=2?m +3¥ 3+ m*. The upper sign can only be used, be- l\

cause 4/ '3 | " is always greater than 2m.

By this value of & the angle STV will be found about 40° for
Venus (art. 110), and the point V of greatest brightness lies be-
tween inferior conjunction and greatest elongation. If the distance

of Venus from the sun were = J-;-, the greatest brightness would

2
be at the greatest elongation, for then 2= V—'

Prop. XI. 7o find when a planet appears stationary, ‘ o

Let S (fig. 56) represent the sun; T and .P the earth and
planet respectively, their orbits being supposed circular.

When P and T are stationary with respect to each other, the
line TP moves parallel to itself, and the angles T and P only vary
by the apparent motions of the sun, as seen from the earth and
planet: which motions are equal to the angular motions of the
earth and planet as seen from the sun.

Now the angular motions of the planets about the sun are to
each other inversely as their periodic times; and by Kepler's law,
the squares of the periodic times are as the cubes of the distances;

A s2
a- :J;:‘/_;gf;ﬁ%f
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hence the squares of the angular velocities of the planets are in-
versely as the cubes of their distances.
Let t=T, p=P, r=ST, and »/=SP, #= a small variation
in T, and /= a corresponding small variation in P.
(1) By trig. rsinz=17'sinp,
(2) and rsin (¢ 4 ¢) =7'sin (p + 2).
By equat. (2) :
rsint.cos? + 7 cost.sin?’=#sinp.cosp + ' cosp.sinp’.
//1 ') Since/ and # are to be supposed indefinitely small, we may sub-
” gtitute 1=cos# and ¢ =sin#, &c. Therefore rsin¢+- M. cost=
o.sinp + 7. p/ cos p.
(3) Hence by equat. (1) 7#.cost=7". p'cosp.
But as was shewn above, however small # and p' are
ptiirti
By squaring equat. (3), and substituting from this proportion
7. cos¥t=r.cos*p,
‘or 7 (1 —sinst) = (1 —sin"p). Hence, by equat. (1),
]
7 (1 —sin)=»(1 —;—, sin *%).
Whence is easily deduced

sin¥% = reerrt o -
= Pr— —r"-{-?‘?"-{-r’"
and therefore ¢ is known.
This solution,* it is evident, answers both for a superior and

ah inferior planet.

Problems in which Approximations are used.

In many of the more useful investigations in astronomy, it is
sufficient to make use of approximate solutions, as, for instance,
in those for finding the effects of the precession of the equinoxes
in right ascension and declination; for the effects of the aberration

 For a different solution of this Prop. see Luby’s Trig. chap. 4, part II,
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of light in right ascension and declination ; for the effects of pa-
rallax in latitude and longitude; and for a great variety of other
problems, of which instances are to be found in every part of
astronomy. These solutions, although only approximate, admit of
all the accuracy that is necessary, and in general are obtained
with much greater facility than exact solutions could be. In these
solutions it often happens that we substitute the sine instead of the
arc, radius instead of the cosine, the tangent instead of the arc,
and conversely. It is therefore of some importance to know the
limits of the differences of these quantities. Let @ =an arc, s=
its sine, c= its cosine, and ¢= its tangent, radius being unity :
then

3
8 =a— %-l- &c.?
al
c=]— 9 + &ec.

t=at G+ ke

al

Hence a small arc exceeds its sine by 6

nearly,
1]
the radius exceeds the cosine by %- nearly,

8
and the tangent exceeds its arc by %— nearly.

From whence by the trigonometrical tables it will easily be
found that the difference between the arch of 1°.46’ and its sine is
only 17, and therefore in many cases one may be safely substituted
for the other. The difference between the tangent 53 and the arc
is only 1”.

1t is often of use in these problems to reduce a small arc, sine,

® These expressions are easily proved by the diff. calc., and some writers have
proved them by principles purely trigonometrical. See Luby’s Trig. chap. 1.
pert I
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&c. expressed in decimals of the radius (unity) to seconds, and the

contrary. Which may be done as follows, let =arc in decimals
* of the radius, a= the seconds in the arc, then as the sine of 1” and
: the arc of 1” are nearly equal, we have

=a. Hence also a=a.sin]".

1 n.q”.. . a
sinl”:1 "a‘sinl'
O  Prop. XIL 7o find how much the time of rising of the sun

or a star is advanced by refraction.

Let RS (fig. 57) represent part of the sun’s parallel of declina-
tion, R the true place of the sun, when it appears rising at D.
Then the time of rising is advanced by the angle SPR, the mea-
sure of which is the arc of the equator HL; and also the arc DR

= the horizontal refraction.
The small triangle SRD may be considered as a plane triangle

and
RD:SR:: sin RSD=cos PSQ: rad.
SR : HL:: rad parallel : rad equat :: sin §P; rad.
therefore RD : HL : : cos PSQ X sin SP : rad®,
RD
cos PSQ X sin SP. (cosdecl)

. _sinPQ _ sinlat
But sin PSQ—m— cos decl

known, and consequently HL, which, divided by 15, gives the
time required.

A somewhat more simple solution may be deduced from the
above.

or HL=

, and therefore the cos PSQ is

cos*PSQ=1— sin’ PQ _ sin*PS—sin'PQ _

sin*PS — sin*PS -
sin (PS 4+ PQ) x sin (PS—PQ) ,
sin* PS . ?

* Trig. p. 23, formula 34,
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ﬁv
RD (198%)
¥/ (sin (PS PQ) X sin (PS—PQ))’
1327 )
4/ (cos (lat—decl) x cos (lat 4 decl) )’

See remarks on this problem in Lalande’s Astr. 3d edition, vol.
3, art. 4028. Cagnoli Trig. p. 368.

Cor. 1. If RD be taken equal to the diameter of the sun, the
time the sun takes in rising will be had.

Cor.2. If RD be taken equal to the difference between the
horizontal parallax of the moon and the horizontal refraction, the
time will be had of thé retardation of the moon in rising.

therefore HL =

HL .
and T (time) =

Prop. XII1. Given the error in altitude, or in zenith dis- O
tance, to find the error in time.

Let »Z (fig. 58) be the observed zenith distance, and Zs the
true zenith distance, 7P =8P the polar distance. Join 78, and
draw 77 a portion of a parallel to the horizon. Then 7 = error
in zenith distapce, and » P 8= the error in the hour angle.

sn:8r::s8ingrn=sin ZrP: rad
sr:rPg::sinrP:rad
hence 87 : 7»Ps::sinrZP Xsinr P : rad®.
But sin Z» P X sinr P=sin 7 ZP X sin ZP.

hence the e in time = an
nice the error In Ume = T N7 ZP X s ZP

_ error in alt.
T 15sin azim. X coslat.’

Otherwise thus :—By spher. trig. art. (106), p. (67).

cos7Z=sinZP.sinr P.cosZPr 4 cosZP. cos » P.

Hence
sin?Z.d.rZ=sin ZP.sinr P .sinZPr.d.ZPr

=sinZP.sinrZ.sinrZP.d.ZPr.
Consequently '
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d.rZ
4. P r= s n T I’

or, as above, °
error in alt.

error in time = -———
15sinaz. cos lat.’

Cor. In agiven lat. the error in time is least when the sine of
the azimuth is greatest, that is, when the azimuth is 90°, or when
{ thebody is in the prime vertical. Hence for finding the apparent
’ time (art. 301) the observation should be made on or near the
| prime vertical.

Prop. XIV. To find when the part of the equation of time,
which arises from the obliquity of the ecliptic to the equator, s
a mazimum.

If the sun moved equably in the ecliptic, the difference between
its longitude (AL) (fig. 59) and the right ascension (AR) would be
the equation of time. The longitude and right ascension are equal
at the equinox and also at the solstice : and somewhere between,
the difference is a maximum. It is evident the maximum will be
when the difference ceases to increase, that is, when the increase
of AL = the increase of AR.

Draw the circle of declination /7 very near LR and meeting LR
produced in the pole P.

Draw also /v a parallel of the equator. Then

L?:lv::rad:sin ALR.
lo:Rr::sinPov:rad. Thesine Po=cos LR ncarly.
Hence
Li:Rr::cosLR: sinALR:EC—)?ﬁ(—l;a—(-i
cosLR

Therefore LZ: R7:: cos? LR : cos A X rad.?
Hence when the equation is a maximum,
cos' LR =cos A X rad

or cos?decl = cosob. ecl.

®_Sec note, page 189.
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Otherwise thus :—The difference of AR and AL is a max.
therefore, d. AL—~d. AR=0. Now tan AR =cosA. tan AL,
hence

d.AR _ cosA.d.AL
cos?AR™  cos®*AL
Hence, since d.AL=d.AR, we have
cos®*AL = cosA.cos?AR.

But
cos*LR. cos*AR = cos?AL.
Hence
cos*LR=cos A, as above.

Prop. XV. To deduce the sun’s change ir declination near [ "y
the solstice. '
Let O=ob.ecl.
S=sun’s distance from the solstice in seconds,
&= change in declination.
By circular parts
sin ob. ecl X sin long = sindecl,
or, 8inO X cosS =sin (O—2) =sin0. cos#—cos 0. sin 2, (261).
cosS=1 —4S%in®l"; sinz==2.sin1", and because z is very
small compared with S, cosz=1.
Hence by substitutions
1S%sin?1”.5in 0 =2sin1”. cos O,
or #=34S%sin1".tan O =,00000 1052 S*.
If D = sun’s distance from solstice in degrees, 2"=13, 63 D?,
2 will thus be had sufficiently exact for several days before and
after the solstice, (see art. Wil /> 4)

Prop. XVL. 7o deduce the change of altitude of the sun or //
a star, when near the meridian, in a given time. '
Let p = SP the polar distance of the object (fig. 60), ¢ =ZP
the co-latitude, and m 4 2=ZS the zenith distance, 7 being the ze-
nith distance when on the meridian, and # =the change required.
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(1). . By trig. cos (m + &) =cosp.cosc 4 sinp.sinc. cos P,
(2)..cos (m 4 &) =cosm—sin2.sinm, because
2 being supposed very small cos # =1 nearly.
(3). .cosm =rcos (p—¢)=cosp. cosc + sinp.sinc.
Hence equating the second members of (1), (2), and substitut-
ing for cos m as in (3),
sinp.sine¢ (1 —cosP)
sin (p—-c)
But 1 —cosP=2.sin*} P,
and sin& = #sin 1" (page 261.)

there results sinz =

2sinp.sinc.sin?§ P
sin (p—c).sinl"
2cosD.cosL.sin®} P
= sinm.sin1” )

Where D and L = the declination and latitude respectively,
and P= the time from the meridian reduced into space.

When L and D are nearly equal, and of the same kind, this
expression can only be used at a very small distance of time from
the meridian.

This problem is of much importance, when meridional alti-
tudes are taken by the repeating circle.

Hence # (in seconds) =

Prop. XVIL.  To investigate nearly the quantity and law of
atmospherical refraction.

Let LI (fig. 61) be a ray of light falling on the atmosphere at
I, and refracted in the curvilineal course IS. The object appears
to a spectator at S in the direction ST, a tangent to the curve, and
VST is the apparent zenith distance.

The space in the figure between the concentric circles represents
all the atmosphere, which has any effect on the ray of light, so
that the light may be considered as passing out of a vacuum into
" this space.

If the surface of the earth were a plane, the different strata of
air nright be considered as parallel thereto, and by the principles
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of optics, the refraction would be the same as would take place
were the ray of light to pass from a vacuum into air of the same
density as that at the surface. It is therefore evident that if we
take into account the spherical form of the earth and atmosphere,
the error resulting from the supposition of an uniform atmosphere
will, necessarily, be very small compared with the change occa-
sioned by considering the atmosphere spherical, provided that
change be small.

Letm: 1::sin of incidence:sin of refraction, when a ray of
light passes from a vacuum into air of the density of that at the
surface of the earth. Suppose all the air contracted into an uni-
form atmosphere, then SI is a right line. Let HIL=:, SIC=~.
VSI=z, SC =a, the height of the uniform atmosphere =/, or
Cl=a + A

a+!l:a::sinz:sinr

1:m::sin7: sine.

Hence sinz="w =m.8inz. (1 _l) nearly,
a4 a
sinr—g'ﬁ—nz—sinz (l i nearl
L () P

Let i=r + R, then R is the quantity of refraction, sin (»+ R)
= sins.
or because R is small, sin# 4 cos7.sin B =sin¢,
or sinr+4 R .sinl”.cosr=sin¢,
substituting in this equation for sin# and sin¢ as above, also for

cnr, 4/ (1=sive (1= 1)) =4/ (smore4 osnse)

=cos 2. (l + 5 .tan ’z) nearly, we obtain

(m—1).sinz. (1—5)

sini—sin7 _
~ sinl".cos»

. !
ginl”.cosz. (l + ‘-z-.tan ’z)
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tanz—i.tanz
_m—1 a

~ sinl”’

] o
- 1 + ; .tan*2
Hence by actually dividing

m—1 ; ) . g
—sinT. tan z—;. (tanz + tan 2) &e.

=:';nl’l" z ”slinl: .‘—f.tanz. sec®z nearly.

Taking 2=80°, /=35, and a=4000 miles, the second term
(arising from the spherical figure of the atmosphere) = 10" nearly.
If @ were infinite, that is if the surface of the earth were a plane,
this second term would vanish. Hence we may safely conclude,
that as far as 80° zenith distance, the error arising from supposing
the atmosphere of uniform density must be much less than 10", and

. that consequently the above expression gives the refraction as far

as 80° from the zenith with sufficient accuracy. If we neglect the
second term, the refraction will vary as the tangent of the zenith
| distance.

The exact experiments of MM. Biot and Arago have deter-
mined the value of 72—1 =, 0002946 when the barometer is at
29,93 in (Metre) and Far. Therm, at 32°. From their experiments
and the law of expansion of air it may be inferred that
m—1__ 1,0375 b
s’ 14 ,002083 (t—32) X 29, 60
height of the barometer, and ¢ that of Farenheit’s thermometer.

When #=250° and b = 29,60 inches, this expression gives
m—1

sinl”

The French tables of refraction, by Delambre, founded on
astronomical observations, give

m—1 "

i =57",72.
By upwards of 500 observations made by myself with the eight feet
astronomical circle,

% 57",82 nearly, where b is

—=57",82, a result independent on astronomical observations.

Ly
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m—1
sinl”

The above value of R is quite exact enough for all observations
as far as 80° from the zenith.

From about 80° to the horizon the changes of refractions are
80 uncertain that observations are useless for the nicer purposes of
astronomy.

The following tables will be found very convenient for com-
puting the quantity of refraction for all the zenith distances not
greater than 80°. For the particulars of the construction of these
tables, and for several investigations relative to astronomical re-
fractions, references may be had to the 12th volume of the Trans-
actions of the Royal Irish Academy ; in which I have deduced the
above expressions for refraction, independent of any hypothesis
relative to the variations of density in the atmosphere.

By help of Table L. the first term of 22 is obtained. The second
table gives the second term of R, which near 80° has been slightly
modified.

=57, 56.
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TABLES FOR REFRACTION.

TasLe I.
“ar. | Loga- || Far. | Loga- ' Far. | Loga-
Therm.| rithms. |Therm.| rithms. 'Theorm rithms.
[} ° |
10 | 0.3283 34 0.3048 58 | 0.2827
11 0.3273 35 | 0.3039 59 | 0.2818
12 | 0.3263 36 0.3030 60 | 0.2809
13 | 0.3253 37 | 0.3020 61 0.2800
14 | 0.3243 38 | 0.3011 62 | 0.2791
15 | 0.3233 39 | 0.3001 63 | 0.2782
16 | 0.3223 40 0.2992 64 | 0.2773
17 | 0.3213 41 0.2983 | 65 | 0.2764
18 | 0.3203 42 0.2974 66 | 0.2755
19 | 0.3193 43 | 0.2965 67 | 0.2746
20 | 0.3183 44 | 0.2956 68 | 0.2737
21 0.3173 45 | 0.2946 69 | 0.2728
22 | 0.3163 46 | 0.2937 70 | 0.2720
23 | 0.3154 47 | 0.2928 71 0.2711
24 | 0.3144 48 | 0.2919 72 | 0.2703
25 | 0.3134 49 | 0.2910 73 | 0.2694
26 | 0.3124 50 | 0.2900 74 | 0.2685
27 | 0.3114 51 0.2891 .| 75 | 0.2677
28 | 0.3105 52 | 0.2881 76 | 0.2668
29 | 0.3095 53 | 0.2872 77 | 0.2660
30 | 0.3086 54 | 0.2863 78 | 0.2652
31 | 0.3076 55 | 0.2854 79 | 0.2644
32 | 0.3067 | 56 | 0.2845 80 | 0.2636
33 | 0.3058 | 57 0.2836 81 | 0.2627

Logarithm in Table I. 4 log barom. - log tan zenith dis-

tance = log approximate refraction.
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Prop. XVIIL. From given small variations in the longitude
of a celestial object, and in the obliquity of the ecliptic, to de-
duce the variations of the right ascension and north polar
distance.

1. For the effects of the variation in longitude. Let P (fig. 62.
1) be the pole of the ecliptic, N that of the equator, and F the
fixed star or other object. Let FPM = the increase of longitude,
the distance PM from the pole of the ecliptic remaining the same.
Then FNM is the increase in right ascension, and drawing MR
parallel to the equator, FR is the decrease of north polar distance.
FNM:RM:: rad: sin MN
RM : FM:: sin RFM = cos PMN : rad
FM: FPM :: sinPM : rad.

Hence FNM = FPM. sm.PM' °o8 PMN, (because sin PM. sin
sin MN

PMN = sin PNM. sin PN)

FPM. sin PNM. sin PN. cot PMN
= sin MN '
By spherical trigonometry*.
8in PNM.cot PMN = cot PN . sin NM — cos PNM . cos NM.
Hence by substitution

FNM=TFPM. (cos PN —sinPN.cos PNM.cotNM).  (a)
Also FR=FM. sin FMR = FM.sin PMN
=FPM.sin PM. sin PMN = FPM.sin PN.sin PNM. )

2. For the effects of the variation in the obliquity of the eclip-
tic. Let AP, PS (fig. 62, 2) represent the right ascension and de-
clination of the point S, and AQ, QS the right ascension and decli-
nation when the obliquity of the ecliptic is changed by the angle
PAQ. Then when this angle is very small, PR = the change of
north polar distance nearly, and RQ = the change of right ascen-
sion nearly.

2 Trig. p. 69, art. 112.
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sinRP: sinA:: sinAP: sinARD,
or RP = A.sin7. ascension nearly. ()
Also cotARtan RP=cos ARP = tanRQ. cotSR, hence RQ =
RP.cotAR.tanSR,
and RQ = A. cos (rt. asc.} . cot (north polaf distance). (@)

Application of the preceding Prop.

The above proposition enables us to deduce the apparent right
ascension and north polar distance from the mean, as affected by
precession, lunar nutation and solar nutation.

The actions of the sun and moon causing® a change of place of
the intersections of the ecliptic and equator, the longitude of each
object is changed by the same quantity. The same action also
occasions the obliquity of the ecliptic to be variable. The action
of the planets also changes the plane of the earth’s orbit, and
therefore the intersections and inclination of the ecliptic and
equator.

Let L= the mean longitude of a star in the beginning of
1820. Then for the time 1820 4 ¢, ¢ being taken negatively or
positively, '

App. long =L+ 50"",19.£—17",30.sinlong Y ’s node 4 0”,21.
cos2long ) ’s node—1",25. sin2long®@—0",21 .sin2long > . (e)

App. obliq. of ecl. (O), for 1820 4 ¢ =23° 27" 47" —0",45.t 4
9”.25. coslong Y ’s node —0,09. sin2long ) ’s node 4 0”,54. cos
2long ® 4-0",09.cos2long ). . . (f)

The form of these quantities has been obtained by investiga-
tions in physical astronomy, the larger coefficients and 0”,45 have
been obtained by observation.

In the above the term 50, 19¢ increased by 0", 13¢ serves for
determining what is usually called the effect of precession in
right ascension and north polar distance. When so increased it
is the mean effect (luni-solar) of the sun and moon. The part 0/,

s Art. 90, &c.
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13¢ is occasioned by the action of the planets, and diminishes the
effect of the actions of the sun and moon. This affecting only the
ecliptic, does not affect the north polar distance.

The terms depending on the longitude of the moon’s node serve
for determining the effect of what has been called the Junar nuta-
tion. The terms depending on the longitude of the sun serve for
determining what has been called the solar nutation. The terms
depending on twice the longitude of the moon, and twice the longi-
tude of the sun, are too small to be noticed, except in the nicest
researches. '

1. Precession irn right ascension (A), and north polar distance
_(NPD).

Taking the angle FNM (the change of longitude in the preced-
ing problem = 50", 327, ¢ not exceeding a few years, by equa-
tion (a).

The luni-solar precession in right ascension =

50", 32¢. (cosO +48in O.sin A . cot NPD) =
46",18¢ 4 20", 04 ¢.sin A.cot NPD,

from which subtracting 07, 13¢, the general precession in right
ascension will be had.
By equation (3) the precession in NPD =
—50",32¢.8in0.cos A =—20",04¢.cos A.

Cor. 1. The precession in right ascension will be subtractive,
when sin A. cot NPD is negative and greater than cotO, which can
never happen but when cot NPD is greater than cotO. Therefore
the right ascension of every star, the polar distance of which is
greater than 23° 28/, is always increased by precession.

Cor. 2. Precession affects equally the north polar distance of
every star having the same right ascension.

II. Lunar nutation in right ascension and north polar
distance.

Let the angle FNM=-—17/,30.sinN, N being the longitude
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of the moon’s node, and the change of obliquity =9, 25. cosN.
See equations (¢) and (f). Then by equations (a), (d).
Nutation in right ascension =

—17%,30.8in N. (cos O4-sin O.sin A. cot NPD),
+9",25.cosN.cosA.cotNPD =
—15,87.sin N—[8".07 .cos (A—N)41",18.cos (A+N) 1.
cot NPD.
By equation (b) and (¢),
The nutation in north polar distance =
177,30 .s8in N .sin 0. cos A—9",25.cos N .sin A,
—8",07 .8in (A—N) —17,32 .5in (A 4+ N).

III.  Solar nutation in right ascension and north polar
distance.

Let the angle FNM =1, 25.5in2 S, S being the longitude of
the sun, and the change of obliquity =0, 54.c0s2S, and we ob-
tain by a process similar to that in IL

Solar nutation in right ascension =

—1",15.5in28—[0, 51 . cos (A—28) 4 0, 02. cos (A 4-28)].
cotNPD.

Solar nutation in north polar distance =

—0",51.8in (A—28)—0",02.5in (A + 28).
The solar nutation has also been called the semi-annual equa-

tion, because depending on twice the sun’s longitude it goes
through its period in half a year.

Prop. XIX. To deduce the effect of the aberration of light
on the right ascension and declination of a star.

Let S (fig. 63) be the star; ED the equator, N its pole; MELH
the ecliptic, and MS a great circle perpendicular to the circle of
declination NSHD.

Let L be the point of the ecliptic towards which the earth is
moving, which is always 90° behind the place of the sun, Take

T2
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Sp so that sinSp : sin SL : : vel. of earth: vel. of light : : 5in20"} :
rad, or which comes to the same,

Sp:20"}::8inSL: rad,
then p is the apparent place of the star as affected by aberration
(art. 281 and 283).

Draw pgq parallel to the equator, and then Sg = aberration in
declination. Also p N g = aberration in right ascension. Let 7
= 20"},

1..p9:Sp::8inpSgq:rad
Sp:x::sinSL: rad
»Ng:pq::rad: sinNg, or sin NS sufficiently near.
n.sinpSq.sinSL _ z.sinH.sinLH
sin NS - sinNS  °
20"} .sin H. sin LH
cosdecl.

Hence pNg = or aber-

ration in R. ascen. =

2. .Aberration in decl.=S¢=8p.cospS¢ =n.sinSL. sin MSL
=20"}.sin M. sin ML..

From the above expressions very convenient practical formulas
may be deduced.

%}—ll, and z.sinM are constant for a given star, the
aberration in right ascension varies as the sine of LH, and the
aberration in declination varies as the sine of LM.

1. Let L = the sun’s longitude, then, because the aberration
in right ascension (A) varies as sin LH=

sin (EH— (L—90°)) =sin (90° — (Lo EH)) =
cos (LwoEH), we may express it by m. cos (Lw K), and supposing
m positive, K =EH will be the sun’s longitude when the aberra-
tion is a maximum and positive. K and m may be found in the
following manner :

tan ED _tanA
cos HED T cos O

When L = 90°, the point Lis in E.

tanK (EH) =
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Then m (cos 90 —K) = m .sin K = ab. in R. ascens. =
—20"1.sinH.sinEH _ —20"1.sin A
cosD - cosD °
—20"L.sin A
cosD.sinK *

Hence m =

It only remains to be known to what quadrant K belongs:
tan K has the same sign as tan A.

. . A . . .
Because m is positive :;;K must be negative, cos D being

always positive. Therefore A and K must be in opposite semi-
circles; and, their tangents having the same signs, they must be in
opposite quadrants.

2. Again, because the aberration in declination varies as sin ML
= sin (ME 4 L—90) =cos (180—ME—L), we may express it
by 2. cos (Lx2K'), and supposing ¢ positive, K'=180°—ME
will be the sun’s longitude when the aberration is a maximum
and positive.

K’ and m' are found in the following manner :

tan K/ =— tan ME.

By spherical triangle* PEM
sin PE

tan ME = cotP.sinE+cos PE. cos E
Therefore, because cot P = —cotSPD . (=decl.)

cosA
cotD.sinO—sinA. cos O

tan K'=

Also sin M.sin ME =sin PE.sinP=cos A.sin D.
—20"}.cosA.sinD

sin K’ :
K' belongs is thus determined, the sign of tan X' is known from its
value above given. The sign of 7' being positive, cos A.sinD
and sin K’ must have different signs, but knowing the signs of tan-
gent and sine of an arc the quadrant is known.

Therefore m' = The quadrant to which

8 Caguoli Trig. p. 270. Luby’s Trig. p. 73, art. 120.
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The quantities m, m’/, K, K’ being constant for the same star,
render this a very concise method of computation, when the aber-
rations of the same star for several days are required, or when
tables of the aberrations of a given star are required.

Indeed 7 and m' are not strictly constant on account of the
variable velocity of the earth, but the variation is so small that
usually it is not considered.

When a single place of a star is required, then general tables are
more convenient.*

The three last problems containing the effects of refraction,
precession, nutation solar and lunar, and aberration of light, are of
constant use in practical astronomy.

't Prop. XX. Given the mean anomaly of a planet, to find
/ the true anomaly.

.

Let the semiaxis major of the planet’s orbit =1, its eccentri-
city =e, m = the mean anomaly, 2 = the eccentric anomaly, and
% = the true anomaly.

Find the arc 4, so that
1—
1+
then §m 4 d = eccentric anomaly nearly, (art. 233) for which sub-
stitute p, and let p 4 2 = 2, the eccentric anomaly.

Now by the same article

(fig. 33) ACL (m) = ACI (p<42) 4+ LCL
Now LC.arcLI =2area LCI =2 area SIC =SC.CI.sinICD,

(1)..tand =

e
- tan}.m,

or
Arc LI = SC. sin ICD,

SC.sinICD

Hence the seconds in LI, or the angle LCI = :
sin [

e.sin(p42) _

Therefore m =p<4-2 4 1

@ Woodhouse’s Astr. p. 466, &c. Conn. des Temps. 1810, p. 422 and 442.
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+ea: cosp, because 2 is small.

pats

If, to adapt this expression to logarithms, we use the auxiliary
arc b

sin l"

so that e.cos p = cosd, .
then 14-¢. cosp=1 4 cosb=2cos *}b.

e. smp

Also letp+ — ———=m.
Then m = m'+ 22.cos *}0b.
m—mn
(2) W OrT = 2(:0—8’%_6-.

The eccentric anomaly (p 4 2) thus found will be sufficiently
exact to give the true anomaly to less than a second for all the
planets. And by repeating the process, using this last eccentric
anomaly instead of p, the eccentric anomaly will be obtained in
the most eccentric orbits. To find the true anomaly, the following
equation *has long been used.

(3)..tan’§y=:::

The solution furnished by the equations (1), (2), (3), appears to
be better adapted to practice, and it affords a more exact result
than the solutions usually given of this problem. The particulars
of this method of solving this important problem, and the practi-
cal rule resulting, are stated in the Transactions of the Royal Irish
Academy, vol. ix. p. 143, &c.

» This may be proved as follows :—Referring to fig. 33, we have e--cosz2=

1_ *

SD = PS. cosy = —— :;;; cosy. See Lloyd's Analytic Geom. p. 110. art. 51.

Hence cos 2= I—c%:—y. Then subtracting each side of this equat. from and
. . o 1—cosz__14-e  1—cosy
adding it to unity, and by division there oz T—e¢ T¥cosy

Hence by Trig. p. 24, form. 52, we have tan?} y= :__l::. tan?} z.
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Prop. XX1. Given the horizontal parallax of the moon and
apparent altitude, to find the parallaz in altitude.

2. Given the hor. parallax and true altitude of the moon, to
Jind the parallaz in altitude.

3. From the apparent altitude and horizontal parallaz, to
Jind the apparent diameter of the moon.

1. Let the apparent zenith distance =z, the true zenith dist.
=1, the parallel in alt. = p, the horizontal parallax =%, SC=1,
CL =d (fig.64).
then sin VSL(2) : sinSLC(p) :: d: 1
sinz

d b

or sin p =

when 2=90°, p=£%,

therefore then sink = :—Z'
consequently sin p = sin 4. sin 2,
or sufficiently near, p=~A.sinz.

The equatoreal parallax, that is, the horizontal parallax at the
equator, is given for noon and midnight at Greenwich in the Nau-
tical Almanac, and therefore the horizontal parallax may be found
for any latitude by diminishing the horizontal parallax in propor-
tion of the distance from the centre of the earth to the equatoreal
semidiameter. .

2. As above, sinp =sink.sin 2 =sink. sin (v 4+ p) =sink.
sinv. cosp + sink. cosv.sinp.
sink.sino sing _

Therefore - =
1—sinhk. coso ~ cosp

From which may be found by a particular process?

sink.sin® _ sintk.sin2% |, 'sin*%.sin30v
P=—gn1 , 8in 2" + sin 3" -+ e

[- 3. By what appears the most accurate result, the moon’s dia-

3 Astron. Delambre, tome 1. p. 214. Trig. part IL. ch. 4,
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meter, as seen from the centre of the earth, : horizontal equatorea]\
parallax :: 5455 : 10000, Let this ratio be expressed by the ratio
ofm:1.

The apparent diameter of the moon from S : apparent diameter
from centre:: CL:SL:: sin2:sin (z—p). If the horizontal
equat. parallax be expressed by e, then the moon’s apparent dia-
meter as seen from the centre = me.
m.e.sinz
sin (z—p)’

Hence the app. diam. from S =

Prop. XXII. 7o find the moon’s parallax in longitude and
latitude, having given the horizontal parallaz.

Let Z (fig. 65) be the zenith; P the pole of the ecliptic; T the
true place of the moon, and A its apparent place in the same ver-
tical circle ZTA. Then TPA is the parallax in longitude, and AQ
is the parallax in latitude, QT being parallel to the ecliptic.

PZ the distance of the pole of the ecliptic from the zenith,
which is equal to the height of the nonagesimal degree, and also
the longitude of the zenith point, are found by Prop. 5.

Hence ZPT, the difference between the true longitude of the
moon and the longitude of the zenith point is known. Therefore
in the triangle ZPT are known ZP, PT, the distance of the moon
from the pole of the ecliptic, and the included angle ZPT. Hence
TZ, the tfhe zenith distance of the moon, and ZTP may be com-
puted.

TZ being found, TA the parallax in altitude will be found by
the last pgéblem.

Thex'{n the triangle ATP are known TP, AT, and the included
angle ATP, hence the side AP and the angle APT may be found.

This solution of the problem has the advantage of being exact,
and also of requiring the solution of two oblique angled triangles of
exactly the same data.

1t Has’the disadvantage of requiring seven places of logarithms.

The parallaxes in longitude and latitude may be also found by
approximate formule, in the computation of which five places of
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logarithms are sufficient.* But such formule are in some respects
inconvenient, and perhaps on the whole have not much advantage
over the above.

The above is on the supposition that the earth is spherical.
An allowance is made for its spheroidical figure, as Mayer first
shewed, by simply diminishing the latitude of the place by the
| angle contained between a perpendicular to the surface and a line
drawn from the place to the centre of the earth. This angle is
easily computed, and is, taking the excess of the diameters 45, in
'the lat. of Dublin =10 0”. No other change is necessary than

‘.using the latitude thus diminished in computing the nonagesimal.
|

Prop. XXII. To find the longitude of a place by observing
the difference of the times of the transits of the moon and a
fized star, the same observations having been made at a place,
the longitude of which is known. (art. 310).

As the observations require a transit instrument, and as the
clock used with the transit instrument generally shews sidereal
time, the difference of times is supposed to be sidereal time.

If the moon did not move, the difference of times of its transit,
and of that of a fixed star would be the same at each place. The
difference of the differences arises entirely from, and is equal to the
increase (I) of the moon’s right ascension in time, in the interval
between the passages of the moon over the meridian of each place.

Hence if we know the increase (N) of the moon’s right ascen-
sion in one hour of sidereal time,

N:I::1%:X = the angle in time described by the western
meridian in the interval of the passages of the moon = diff. of long.

+L

Hence diff. of long. =X —I= %—— L

By the Nautical Almanac the moon’s right ascension is given at

2 Vince’s Astr. vol. L. p. 67. Woodhouse's Astr. p. 366 and 367.
Astron. Delambre, tom. 2. p. 408. -

-
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apparent noon and midnight to minutes of a degree. From thence
its increase in an hour of sidereal time may be found.

The increase for that hour should be used, the middle of which
is nearly in the middle of the interval which includes the obser-
vations.

This method is susceptible of great accuracy, and when the
places differ much in longitude, the increase of right ascension of
the moon should be computed more accurately than can be done
from the right ascensions given in the Nautical Almanac. But the
right ascensions can be obtained from the latitudes and longitudes
given in the same work as accurately as can be desired, by the con-
verse of Prop. 4.

The best method then would be to assume the difference of lon-
gitude =1L/, which can be done nearly, and then compute the
increase (E) of the moon’s right ascension in the sidereal time L’
and then

E:I::L’:X:%',
and the exact diff. of longitude
=L
=5 L

But this exactness is only necessary when the places differ con-
siderably in longitude.

The moon’s limb is observed by a transit instrument and not
the centre, but this makes no difference except when the places
differ much in longitude. It may then be necessary to make an
allowance for the moon’s alteration of distance, which changes its
apparent diameter, and also for its change of declination, which
changes its semi-diameter in right ascension.

A mean of many results obtained by observing the transits of
the moon before and after opposition, when different limbs are en-
lightened, will give great accuracy.

Prop. XXIV. To find the longitude of a place from the
comparison of the observations of the beginning or end of an
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eclipse of the sun, made at two places, the longitude of one of
which is known.

1. At one of the places let, at the time of observation of the
beginning of the eclipse, the sun’s semi-diameter + the moon’s
semi-diam.=S. The moon’s semi-diameter is to be increased
according to its altitude (Props. 21 and 22).

Let the true latitude and longitude of the moon at the time of
observation be found from the Nautical Almanac. These should
be corrected for the errors of the tables if known by observation.

The apparent latitude (L) of the moon and the parallax in lon-
gitude are to be found by Prop. 22. At the same time the apparent
diameter of the moon may be found.

By the right angled triangle formed by S, L and the apparent
difference of longitude of the moon and sun, we can find this ap-
parent diff. its log. being equal to the log.

V(8 —LY) =}10g (S + L) + }log (S—L).

The apparent difference of longitude between the sun and moon
being known, the true difference is known, by help of the moon’s
parallax in longitude.

Hence the interval between the time of observation and the time
of conjunction as seen from the centre of the earth, is known, by
the help of the sun’s and moon’s motions in longitude given in the
Nautical Almanac. Therefore the time of the true conjunction is
known at one of the places.

2. By a similar proceeding the time of the true conjunction will
be known from the observation of the beginning at the other place.

The difference of these times is the difference of longitudes.

The mode of proceeding is the same for determining the differ-
ence of longitudes by observations of the end of the eclipse.* From

a It is convenient to carry on the computation so that the effect of any errors
in the data on the result may be known, and thus the degree of the accuracy of
the conclusion estimated. This may be done as follows:

Let ds= the error in the sum of the semi-diameters,
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the above also may be understood the mode of proceeding in deter-
mining the longitude by an occultation of a star.

Prop. XXV. Considering the earth as an oblate spheroid,
the equatoreal diameter exceeding the polar diameter by only a
small quantity, to find the arc of the meridian intercepted be-
tween the equator and a given place.

APN (fig. 66) is the elliptic quadrant, N the pole, AOM the
circular quadrant, and OT, TPR are tangents.

Let AC=m, CN==, the lat of the place P(=OPR) =/,
TOB=¢, AB=2, and AP=z,

cotl:cotc::PB: OB::%:m,
cot! makings— 1—-2,
m’

1—
_ L
sin®¢™ 1—3s" sin%l’

m
whence cote = - cot! =

Hence

Also z=m—m.cosTOB=m—m.cosc. Hencedz =m.dec. '
m dl. sinte
I—s sin*7
To develope the right hand side of this equation, regarding only
the first power of the small quantity s; lete =/=4%. Then sin

sinc; butdz = dz.sin/, therefore dz =

d I= the error in the latitude of the moon,
dp= the error in the horizontal parallax.

Then if the computation be carried through with these quantities annexed to
the sum of the semi-diameters, latitude of the moon, and horizontal parallax ; we
shall have, calling T the time of conjunctiou computed as in the above solution
from the eastern observation, and T’ that from the western.

The time of conjunction at eastern place....=T<-ads<bdI4cdp,

The time of conjunction at western place. . ..=T'4-a'd s+ ddi4-c'dp.
Where q, b, ¢, d, ¥, ¢, are coefficients resulting from the computation.
Hence the diff. of longitude =
T—T4-(6—d"). ds+4(b—).dl4(c— ). dp.

From the magnitude of the coeff. (¢ —a'), &c., the accuracy of the result may
be estimated. Thus if (a—a'), &c., be very small quantities considerably less
than unity, the observations are adapted to give the difference of longitude to con-
siderable accuracy. Vid. Conn, des Tem. 1811, p. 458.



286 APPENDIX.

. . (0) g
k:sanfP:smTPO.(T-r.

But g,-g =g§. g—g:mfg—ﬁ cosc=8.cos (I— k).
Thus 8in % is of the same order of magnitude as 8, and therefore
(since cos ({—%) =cos!. cosk 4 sinl. sink =cos! 4 k. sin /), re-
garding only the first powers of 8, we have k=¢. sin/. cos’.
Now sin¢ =sin {({— k) = sin (! — &8.sin/. cos /) =sin/—3s.sin
!.cos*l. Hence we have
dz = m—dl
l—s
=m.dl.(1—}s8—¢.8.cos2i).
Hence integrating
g=m,(".sinl”"—4}sl.sin1"—£ .e.5in21),
7' denoting the latitude in seconds.

(1—3s.cos®l)

Prop. XXVI. Given (a) the length of the arc of the meri-
dian between 1! and L'+ D, and (b) the length of the arc betweer
L' and 1''4-D, to find the equatoreal and polar diameters (m)
and (r).

We first find m# or m —n, and then m as follows; s is called
the compression. Let D denote the seconds in D; then by the
preceding prop.

a=m.{D".sinl"—3}s.D".sin1”"—$ .8.8in QL' 4-2D)4-3.
s.sin21/} )
b=m.{D".sin1"—48.D".sin1"—§.8.5in QL" 4 2D) + 2.
&.8in 2L/}
b—a=3%.sm. {sin(2L' 4 2D)—sin 2L'—sin(2L"' 4-2D) 4-sin2L." } .
But? sin(2L/ 4-2D) —sin2L/=2sin D. cos (2L’ 4 D)
sin(2L" 4 2D'—sin 2L"=2sinD. cos (2L""+4 D)
c08(2L 4 D) — cos(2L"+D) =2 sin (L' 4 L"4D).
sin (L"—L/’)

@ See Trig. p. 21. formule (13), (14).
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Hence
b—a= 3m a,ng sin (L—L/).sin (L4 L'+ D)
Whence
b—a
3.8inD.sin(L”—L).sin (L 4-L'4- D)
By equation (1)

me =

, sinD
M= ey sml,,-l-}m .84 3ms. cos (2L'4 D). T
sinD

If D be a small arc e. g. l°,D,, Ty

=1 nearly,

and m:;ln‘—zﬁ+;ms+%.ms.cos(2ll+D). Also n=m—ms.

Ezample. Colonel Mudge found the degree commencing lat.
51° 32’ north =121640 yards. Major Lambton found the degree
commencing lat. 12° 33’ north = 120975 yards.

By the above formulse, m—n =22167 yards, m =6972238
yards = 3961,5 miles, # = 6950071 yards=3948,9 miles, and

s= 3'][3.











