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PREFACE.

THE Geometry of Legendre has held its high place among works
on Elementary Geometry for more than sixty years. During this
period a number of modifications have been suggested by various
editors and commentators in the methods of treating particular-sub-
jects, but the great body of his work has stood the test of time as the
most successful modification of Euclid which has ever appeared. It
forms the basis of all the later text-books on Elementary Geometry
which have appeared in France, and of all the recent works designed
to modernize the Euclidian Geometry for the schools and colleges of
England, and of nearly all the geometrical instruction in America,
for thirty or forty years.

In the preparation of the present edition a careful analysis has been
made of such works as Planche (Cahiers de Géométrie pour servir
de complement au traité de Legendre), Blanchet’s Legendre, Bobil-
lier, Amiot, and of the very complete work of Rouché and De Com-
berousse, and the editor has adopted such additions and changes as
he considered improvements on the original. These changes consist
mainly in the discussion of parallels; in the treatment of tangcncies
(in Book IL.); in the addition of some theorems and the omission
of a few ; in the substitution of tlre method of limits for the method
of the reductio ad absurdum in the treatment of the measure of the
circle and of the ‘‘three round bodies ;” and in the fuller treatment
of the plane and the triedral in Book V.

While this edition is made from a completely new translation of the
French edition of Legendre of 1865, yet the translation has been
carefully compared with that of Sir David Brewster, and his words
adopted where they seemed fittest. Brewster’s example has also been
followed in making the ¢ Doctrine of Proportion” introductory,

........



4 ’ PREFACE.

instead of breaking the continuity of the text, by inserting it between
two of the books. ,

The chief new feature of the edition is the addition, to each book,
of exercises adapted to the order of the theorems of the book. These
exercises are such as have been thoroughly tested in the instruction
of classes in Elementary Geometry. They serve the purpose of in-
creasing the pupil’s knowledge of geometrical truths as well as the
more important one of giving him thorough instruction in the
methods of Geometrical Analysis. They are numerous, in order
that the teacher may have a wide range of selection. They have
been chosen mainly from the work of Planche, alluded to above, but
some of them from the collections of Guilmin, Amiot, Ritt, Rouché
and De Comberousse, and from Potts’ Euclid.

While most of the exercises relate to the methods of pure Geome-
try, a number of numerical problems have been added to some of the
books. It is believed that these arithmetical applications will interest
the pupil and help to fix his knowledge of the theorems on which
they depend.

The feature of Hints to the Solutions, which serve as a guide to
the study of Geometrical Analysis, will be appreciated both by teach-
ersand pupils. For, while it is most desirable to engage the atten-
tion of beginners with geometrical exercises, help enough should be
given to prevent them from being disheartened.

In conclusion, the editor cannot refrain from adverting to the
excellence of the mechanical execution of the book and from express-
ing the hope that this will prove a pmcﬁmlly useful edition of Ele-

mentary Geometry. A
v CHuas. S. VENABLE.

UNIVERSITY OF VIRGINIA,
January, 187s.
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EiLemENTS oF (GEOMETRY.

INTRODUCTION.

[For the sake of those who have not-studied the Doctrine of Proportion, it is
requisite to prefix to the treatise of Legendre a brief outline of its fundamental
principles. After studying Book I. and Book II. to Prop. XVI.. the beginner
should study Sections II. and III. of this Introduction ; reserving, whenever it is
thought advisable, the remaining sections for the review of the book.]

I. PRELIMINARY NOTIONS.

1. Our first notion of whole numbers arises from considering dis-
tinct and similar objects. The measure of magnitudes brings us to a
necessary extension of this first notion.

2. When a magnitude is the sum of 2, 3, 4 - - - parts, equal to
another magnitude of the same species, we say that the first is a multi-
Ple of the second, and that the second is an aliguot part of the first.

3. Two magnitudes are said to be commensurable with each other
when they are both multiples of a third magnitude, which is called
their common measure. When there is no third quantity of which they
are both multiples, they are said to be incommensurable with each
other.

4. To measure a magnitude, we seek a common measure between
this magnitude and an arbitrary magnitude of the same species, which
we call the unit of measure, or simply the unit.

If this common measure is the unit itself, and the given magnitude
contains it, for example, three times, we say that the magnitude is
measured by the number 3. If the common measure is an aliquot
part of the unit; for example, if, when the unit is divided into five
equal parts, the given magnitude is the sum of three of these parts;
we say that this magnitude is three-fifths of the unit, and that it is
measured by the fractional number $.

To sum up : /o measure a magnitude commensurable witk the uni, is
10 seck how often this magnitude contains the umit or aliguot parts of the
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unif, According as the magnitude is a multiple of the unit or a
maultiple of an aliquot part of the unit, the number which expresses ils
measure is enlire or fractional. Conversely, every magnitude measured
by an entire or fractional number is commensurable with the unit of
measure.

5. Let us now consider a magnitude incommensurable with the
chosen unit of measure. Here we shall find useful - the following
definition :  The limit of a variable number is a number which that vari-
able number may approack in value as near as we please, but which it can
never reach. :

Now, conceive the unit to be divided into any number, #, of parts
equal to one another and less than the magnitude, G, to be measured.
Taking 1, 2, 3, 4 - - - - of these parts we shall form a series of

magnitudes,

A A A A - Ay A (1)
measured respectively by the numbers

1z 34 B oAt

nonoanon ‘n n

By going far enough in the series (1) we shall find two consecutive

magnitudes, A; and A,,,, between which G lies. Now G differs from
A, or A,,, by a quantity less than A,,, — A,, and this difference, be-
ing the nth part of the unit, can be made as small as we please by
making 7 sufficiently great.

The magnitude G being then the common limit of the commen-
surable numbers A, and A,,,, the number which measures it is, by

. definition, the common limit of the numbers gﬁnd k—:-l , which meas-
. . E k+1
ure A, and A,,,; for, as this measure differs from ST by less

I ' . .
than 5 Wecan make either of these numbers approach it as near as

" we please by taking 7 sufficiently great.

6. A number is called commensurable or incommensurable accord-
ing as the magnitude of which it expresses the measure, is commen-
surable or incommensurable with the unit adopted. The commen-
surable numbers are entire numbers or fractions.

The result of operations to be performed on incommensurable
numbers, is the limit of the results obtained by substituting for them
commensurable numbers which approach them more and more nearly
in value,
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II. RATIOS.

NoTe.—In treating of Ratios and Proportion we shall ﬁrst confine the dis-
cussion to commensurable quantities, and then extend the demonstrations to in-
commensurable quantities. .

. Ratio is the relation which one quantity bears to another in re-
spect of magnitude, the comparison being made by consxdenng what
multiple, part, or parts, one is of the other.

Thus, in comparing 6 with 3 we observe that it has a certain mag-
nitude with respect to 3, which it contains twice ; again, in comparing
it with 2 we see that it has a different re/afive magnitude, for it con-
tains 2 three times ; or, 6 is greater when compared with 2z than it is
when compared with 3. The ratio of  to & is usually expressed by
two points placed between them thus, @¢:4; and the former, q, is
called the antecedent of the ratio, the latter, 4, the consequent,

2. Since in the ratio a: & the comparison is made in regard to
quantuplicity, the ratio rr_lay' evidently be expressed by what is neces-

sary to mulfiply b by /o oblain a.  But this multiplier is the fraction g.

Then the ratio a: 4 is measured by the fraction ;, and for shortness

we may say that the ra#o of a to & is equal to 2 30 is Z’ or, in general,

. A ratio is measured by the fraction whick has for ils numerator the
anlecedent of the ratio, and for its denominator the consequent of the ratio.
3. Hence, we may say that the ratio of a to & is equal to the ratio
a_ ¢
ofctozl,whenzzz,. ‘
4. If the terms of a ratio be multiplied or divided by the same
quantity, the ratio is not altered.

a ma
For 3= 5

REMARK.—ma and mb are called equimultiples of a and 4.
5. In general, we can operate on ratios by the rules for operating
on fractions. .
IIT. PROPORTION.

Four quantities are said to be proportionals when the first is
the same multiple, part, or parts of the second that the third is of

. a ¢
the fourth; that is, when - = -

i= 7 the four quantities a, 4, ¢, d, are
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called proportionals. This is usually expressed by saying a is to 4 as
cistod, and is thus represented @ : & :: ¢: d, orthus, a: d=c: 4.
The terms @ and J are called the ex‘remes, and 4 and ¢ the means.

ThHeorEM 1.

If four quantities are proportionals, the product of the extremes is equal
20 the product of the means.

Let a, 6, ¢, d be the four quantities ; then, since they are propor-
. a ¢ . . .

tionals, ;=7 and, by multiplying both sides of the equation by &d,
we have ad = éc.

Note.—It is evident that since the product of two magnitudes has no mean-
ing, the multipliers, at least, must be abstract numbers.

CororrLArY 1. Hence, if the first is to the second as the second is
to the third, the product of the extremes is equal to the square of the
mean. Thus, ifa: §=145: ¢, then ac = &

Cor. 2. Any three terms in a proportion being given, the fourth
may be determined from the equation ad = éc.
be c_ad 6_04' a_bc
e’ T 8T T T d’

Hence, we have the Single Rule of Three in Arithmetic.

Ford =

Turorem II.

If the product of two quaniilies be equal lo the product of two others, the
Jour are proporitionals ; the faclors of either product being laken for the
means and the factors of the other for the extremes.

,orx:a=~é:y.

o

Let xy = ab ; then, dividing by ay, thus, ’;‘ =

Tueorem IIL
Ifa:b=c:dand c:d=¢c:/f thenalso a:b=¢:f

¢ a_ ¢
7 therefore r =-, ora: b=c¢: f

=7

a ¢ c
Because 377 and 7=

Tueorem IV,

If four quantities be proportionals, they are proporiionals when laken
inversely.
Ifa:bd=c:d thenédé:a=d: ca
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For

g:t—; divide unity by each of these equal quantities, thus,

Q NI
il
N DIR

or, b:

THEOREM V.

If four quantilies be proportionals, they are proportionals when taken

alternately.
If a:b:c:d,thena:c:b:d.
a ¢ a_ b
For 3=a0 -multiply by thus, =5
or, a:c=6b:4d.

REMARK I.—Theorems IV. and V. are immediate consequences of Theorem
II. For we can change the order of the terms in any way which still renders
the product of the extremes equal to the product of the means.

KEMARK 2.—Unless the four quantities are of the same kind, the alternation
of the terms cannot take place ; because this operation supposes the first to be
some multiple, part, or parts of the third. One line may have to another line the
same ratio as one weight has to another weight, but there is no relation with re-
spect to magnitude between a line and a weight. In such cases, however, if the
four quantities be represented by numbers, or by other quantities which are all of
the same kind, the alternation may take place, and the conclusions drawn from
it will be just.

THeOREM VI.

When four quantities are proportionals, the first logether with the
second 1s 1o the second, as the third logether with the fourth is fo the

Jourth,
If a:b=c:d thena+b:b=c+d:d

For%:é ; and, adding 1 to both sides,
a+l ¢
FHI=gt s

. a+b c+d
that is, —— =g
or, a+b:b=c+d:d

This operation is called componendo, and the quantities are said to
be in proportion by composition.
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Tueorex VII

Also, the excess of the first above the second is 1o the second, as the excess
of the third above the fourth is lo the fourth.

For 2 = 5 ; subtracting 1 from both sides,

]
a_ . _°¢
] —d ’
. a—b c—d
that is, 5 =7
or, a—6b:b=c—d:d

This operation is called diidendo, and the quantities are said to be
proportionals by division.

4 —g (Theorem IV.), then Theorems

. a__c .
Cor. Since ; = 7 Bives —=

I/

V1. and VIL give

at+bia=c+d::

a—b:a=c—d:q
or, by inversion,

@a:at+b=c:c+d

a:a—b=c:c—d.
That is, #ke first is to the sum of the first and second, as the third is fo the
sum of the third and fourth. Again, the first is fo ils excess above the
second, as the third is fo its excess above the fourth. This last operation
is called convertendo.

Turorem VIII.

When _four quantities are proportionals, the sum of the first and second
is Jo thetr difference, as the sum of the third and fourth is lo their differ-
ence.

Ifa:b=c:d thena+bé:a—b=c+d:c—d

For (Theorem VI.) 2 _; b_c -; d,
and (Theorem VIIL.) 2 ; b c—;—f s
Therefore,

a+b a—8b c+d c—d
s % T d T d’
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that is,
a+b _c+d
a—&6" ¢c—4d’

or, e+b:a—b=c+d:c—d.

THEOREM IX.

When any number of quantities are p;qz)orlzbnak as one anlecedent is
1o ils consequent, so is the sum of all the antecedents to the sum of all the
consequents.

Let a:b:c:d:e:f;
then a:6=a+c+e:b+d+f
a ¢
Because 377 ad = bc; because = ;= _7’ af = be; also, ab = da,
hence, ) ab + ad + af = ba + bc + be,
that is, a(b+d+f)=0b(a+c+e)

Hence (Theorem II.), S
a:b=a+ct+e:b+d+f;
and similarly when more quantities are taken.

- TueorEM X.

When _four quantities are proportionals, if the first and second be multi-
plied or divided by any quantity, as also the third and fourth, the resulting
quantities will be proportionals.

Let a:b=c:d; then ma : mb=nc: nd.
a ¢ ma  nc
For 3= therefore, =’
or, ma : mb = nc : nd.

Turorem XI.

If the first and third be multiplhied or divided 3y any quantity, and alse
the second and fourth, the resulting quantities will be proportionals.

Let a:b=c:d then ma :nb=mc : nd.
a_ ¢ ma  me ma  mc
For i therefore, =7 and 3= nd’

or, . ma : nb = mc : nd,
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Tueorem XII.

In two ranks of proportionals, if the corresponding lerms be multiplied
logether the products will be proportionals.

Ir - a:b=c:d,

and e:f=g:h;

then ae : bf_—_ cg :dh

3 ‘_‘_ﬁ ¢ = *_%
For = - and 7 lz’ therefore, 7= 7’
that is, ae : bf = cg : dh.

This is called compounding the proportions. The proposition is
true if applied to any number of proportions. "

Tueorem XIII.

If four quantities be proportionals, the like powers or roots of these
quantities will be proportionals.

If a:b=c:d then a*:0* = :d"
For g = {2’ therefore, %; = g when 7 may be whole or fractional ;
that is, a* bt = dn

Tueorem XIV.

If three quantities, a, b, c, be in continued proportion,

that is, if a:b=46&:c then a:c=a": 5.
For g:é; multiply byé,
a a a b
therefore, 3%3=3 x -,
. a a
that is, F=o
or, a:c::a ;b

IV. INCOMMENSURABLE QUANTITIES.

These theorems-are applicable to incommensurable quantities.
In the definition of Proportion, it is supposed that one quantity is



PROPORTION. 15

some determinate multiple, part, or parts of another : or that the frac-

tion formed by taking one of the quantities as a numerator and the

other as a denominator, is a determinate fraction. This will be the

case whenever the two quantities have any common measure whatever.

Let x be a common measure of ¢ and 4, and let ¢ = mx, b = nx,
mx

a m .
then, - = — = —, where m and 7 are whole numbers,
b nx n

. - o . a
But, if the quantities are #commensurable, the value of 3 cannot be

L oom .
exactly expressed by any fraction, ol whose numerator and denomina-

tor are whole numbers. Yet a fraction of this kind may be found

which will express its value to any required degree of accuracy—that is, a

fraction which may approack the limit % as nearly in value as we please.

Suppose x to be a measure of 4, and let & = nx; also let a be
greater than mx, but less than (m + 1)x; then g is greater than

m 4+ 1 m a

, or, the difference between - and 3 is less

m

—, but less than
n

1 . e e . .. I

than % and as x is diminished, since »x = 4, # is increased and "

L. e . m

diminished ; therefore, by diminishing x, the difference between ;

and % may be made less than any that can be assigned. In other

. .oa. L .
words, the incommensurable ratio 31 the Zimit which a varying com-

..om .
mensurable ratio 5 Y approach as nearly in value as we please,
but never reach.

If c and d as well as @ and & be incommensurable, and if, when %

. m m+1 ¢, m
lies between - and i lie also between — and
n

m 1
, how-
n

. . a . c
ever the magnitudes m and » are increased, then 7 s equal to 7
For, if they are not equal, they must have some assignable difference ;
m+ 1

and because each of them lies between - and , thisdifference
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is less than i; but since #» may, by the supposition, be increased

without limit, - may be diminished without limit, that is, it may be-

a

come less than any assignable magnitude ; therefore, 3

c
and 7 have

: . . c
no assignable difference ; that is, ; =3

Hence, all the propositions respecting proportionals are true of the

four magnitudes q, §, ¢, d, when incommensurable,

V. EUCLID'S DEFINITION OF PROPORTION.
It will be useful to compare the definition of proportion which has
been given in this chapter with that which-is given in the Fifth Book
of Euclid.

The latter definition may be stated thus : Four guantities are pro-
portionals when, if any equimultiples be laken of the first and third, and,
also, any equimulliples of the second and fourth, the mulliple of the third
is greater than, equal lo, or less than the multiple of the fourth, according
as the mulliple of the firsl is grealer than, equal lo, or less than the mulli-
Ple of the second.

We will first show that the property involved in this definition fol-
lows from the algebraical definition.

. .

For, suppose a : 6 :: ¢ : d, then ‘—Z: ‘51, therefore,?—Z:%‘;.
Hence, pc is greater than, equal to, or less than ¢d, according as pz
is greater than, equal to, or less than gé.

Next, we may deduce the algebraical definition of proportion from
Euclid’s. Let a, 4, ¢, d be four quantities, such that pc is greater

than, equal to, or less than ¢d, according as pa is greater than, equal
to, or less than ¢, then shall g = :—; First, suppose ¢ and d are com-
mensurable ; then we can take p and ¢ such that pc = ¢d; hence, by
hypothesis, pa = ¢ .

Thus ﬁ—lzﬁ’

a c
and =7
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If, however, a, &, ¢, d be incommensurable,-the above equalities
cannot be obtained ; but we can always make pa approach as near as
we please to ¢b by giving proper values to p and ¢: # e., we can
make pa differ from ¢é by a quantity less than &, or make pa lie be-
tween ¢gb and (¢ + 1)b. Then, also, will pc lie between ¢gd and

(¢ + 1)d; 4 e, both % and 2, lie between % and q_—% . Also, p
and ¢ may be increased without limit ; therefore, ‘—; = 2,, ora, b c,d

are proportionals according to the algebraical definition.
It will be seen that Euclid’s definition of proportion includes both
commensurable and incommensurable quantities.

2






PLANE GEOMETRY.

BOOK 1.

FUNDAMENTAL PRINCIPLES.

DEFINITIONS.

1. GEOMETRY is the science which has for its object the measure-
ment of extension.

Extension has three dimensions, length, breadth, and height.

2. A Zine is length without breadth. The extremities of a line are
called points ; a point, therefore, has no extension.

3. A straight line is the shortest distance from one point to another.

4. Every line which is nelther a straight line, nor composed of
straight lines, is a curve line.

Thus, AB is a straight line. ACDB a broken E
line, or a line composed of straight lines, and
AEB is a curve line. ) A B

5. A surface is that which has length and
breadth without height or thickness. D

6. A plane is a surface in which any two points being taken, the
straight line joining them lies wholly in the surface.

7. Every surface, which is neither a plane surface nor composed of
plane surfaces, is a curved surface.

8. A solid, or body, is that which combines all the three dnmenswns
of extension.

Note.—The word wolume is often used to designate a solid.

9. When two straight lines, AB, AC, meet each
other, the quantity, greater or less, by which they
are separated from each other, in regard to their po-
sition, is called an angle. The point of meeting or
tnlersection, A, is the wverfex of the angle, and the A
lines AB, AC are its sides.
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The angle is sometimes designated simply by the letter at the ver-
tex, sometimes by three letters, BAC or CAB, care being taken to
place the letter at the vertex in the middle.

Angles, like all other quantities, are
susceptible of addition, subtraction, mul-
tiplication, and division : thus, the angle
DCE is the sum of the two angles DCB,
BCE ; and the angle DCB is the differ- B
ence of the two angles DCE, BCE.

D

®

>
G

NoTeE.—Two angles, DCB and BCE, which have the same vertex, C, and &
common side, CB, are called adjacent angles.

10. When a straight line, AB, meets another
straight line, CD, so as to make the adjacent
angles, BAC, BAD, equal to one another, each
of these angles is called a right angle, and the
line AB is said to be perpendicular to CD.

11. Every angle, BAC, less than a right angle, is an acute angle ;
and every angle, DEF, greater than a right angle, is an obfuse angle.

D

E ¥

12. Parallel straight lines are such as arein A—————B
the same plane, and which, being produced
ever so' far both ways, do not meet.

13. A plane figure is a plane terminated on all sides
by lines. If the lines are straight, the space which they
enclose is called a rectilineal figure, or polygon. The
lines themselves are called the sides ; and taken to-
gether they form the contour, or perimeter, of the poly-
gon.

14. The polygon of three sides, the simplest of all, is called a
triangle ; the polygon of four sides is called a guadriafteral ; that of
five sides, a pentagon ; that of six, a kexagon, etc.

15. An eguilateral Iriangle is one which has three equal sides; an
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isosceles triangle is that which has two sides equal ; and a scalene #ri-
angle is one which has three unequal sides.

16. A right-angled triangle is one which has a

right angle. The side opposite the right angle is
called the Aypothenuse: thus, ABC is a right-angled :
triangle, with the right angle at A ; the side, BC,

B A

being the hypothenuse.

17. Among the quadrilaterais we distinguish :
The square, which has its sides equal, and its
angles right angles.  (See Prop. xxx., Book I.)

The rectangle, which has its angles right angles,
but not all its sides equal.  (See the same Prop.)

. The parallelogram, or rhombord, which has its
opposite sides parallel.

The lozenge, or rhombus, which has all its sides equal,
but its angles are not right angles.

Lastly, the /rapezoid, of which only two sides are
parallel.

18. A diagonal of a polygon is a line which
joins two vertices, not adjacent to one another.
Thus, AC, AD, AE, AF, are diagonals.
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19. An equilateral polygon is one which has all its sides equal ; an
equiangular polygon, one which has all its angles equal.

20. Two polygons are mutually equilateral, when they have their
sides equal, each to each, and placed in the same order ; that is to
say, when following their perimeters in the same direction, the first
side of the one is equal to the first side of the other, the second of
the one to the second of the other, the third to the third, and so on.

In the same way with respect to their angles, two polygons are said
to be mutually equiangular.

In both cases, the equal sides, or the equal angles, are called Zo-
mologous sides or angles.

N. B.—In the four first books, it is only plane figures, or figures
traced on a plane surface, which will come under consideration.

_EXPLANATION OF TERMS AND SIGNS.

An axiom is a self-evident proposition.

A theorem is a truth which becomes ev1dent by means of a course
of reasoning, called a demonstration.

A problem is a question proposed, which requires a solution.

A lemma is a subsidiary truth employed for the demonstration of a
theorem or the solution of a problem.

The common name, proposttion, is applied indifferently to theorems,
problems, and lemmas.

A corollary is an obvious consequence which flows from one ‘or
more propositions.

A scholium is a remark on one or more preceding propositions,
tending to point out their connection, their use, their restriction, or .
their extension.

An Aypothkesis is a supposition made either in the enunciation of a
proposition, or in the course of a demonstration.

AXIOMS.

1. Things Wthh are equal to the same thing are equal to one

another

2. The whole is greater than its part.

3. The whole is equal to the sum of all its parts.

4. From one point to another only one straight line can be
drawn.

5. Two magnitudes, lines, surfaces, or solids, etc., which coincide
throughout their whole extent, are equal to one another.



23

- PROPOSITION L

THEOREM.

Two straight lines which have two poinis, A and B, common, coincide
throughout therr whole exlent.

In the first place, the two lines coincide between A and B; for,
otherwise, there would be two straight lines from A to B, which is im-
possible (Ax. 4). Suppose, however, that they separate from each
other at B, the one becoming BC, the other, BE. Turn the line

G -

A: \{

by >
ABE about the point A until one of the points, E, of the line falls on
one of the points, F, of the line ABC. In this movement the point B
will fall on some point above, as G, and the line ABED will take the
position AGFH. Whence, it would follow, that from the point A to
the point F there could be two straight lines, which is impossible
(Ax. 4). Hence, the lines cannot separate, and, therefore, they
coincide throughout their whole extent.

PROPOSITION II.

THEOREM.

Through a point, C, on a siraight line, AB, only one perpendicular,
CD, can be drawn to that line. .

For, through the point C draw any other straight line, CK. Then
we shall have the angle ACK greater than
ACD (Ax. 2). But ACD is equal to BCD »ox
(Def. 10). Therefore, ACK is greater than i
BCD ; but BCD is greater than BCK (Ax. 2);
much more, then, is ACK, greater than BCK.
Hence, the straight line CK makes with AB
angles which are not equal, and is, therefore,
not perpendicular to this line (Def. 10). Therefore, etc.

-
= TSeel
&
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PROPOSITION III.

THEOREM.

All right angles are equal to one another.

Let the straight line CD be perpendicular to AB, and GH to EF,
then shall the angles ACD, EGH, bé equal to one another. Take
the four lines, CA, CB, D X

GE, GF, all equal to one / H
another ; the line AB is, /
then, equal to the line EF. /
Place the line EF on AB / 3
C ¥ e} ¥

so that the point E shall

fall on A and the point F on B. These two lines thus placed shall
coincide with one another ; for, otherwise, there would be two straight
lines from A to B, which is impossible (Ax. 4) ; then G, the middle
point of EF, falls on C, the middle point of AB. The side GE be-
ing thus applied to CA, the side GH will fallalong CD ; for, suppose,
if possible, that it falls along a line, CK, different from CD ; then we
should have two perpendiculars, CD and CK, through the same
point, C, to the same straight line, which is impossible (Prop. IL);
then, the side GH cannot fall along a line different from CD, and,
therefore, it falls along CD, and, therefore, the angle EGH is equal
to the angle ACD, Therefore, all right angles are equal.

PROPOSITION 1V.

THEOREM.

Euvery straight line, CD, whick meels another straight line, AB, makes
with il two adjacent angles, ACD, BCD, whose sum is equal to two right
angles. .

At the point C, erect on AB the perpendicular CE.. The angle
ACD is the sum of the angles ACE, ECD ; there-
fore, ACD + BCD is the sum of the three angles E
ACE, ECD, BCD; but the first of these three
angles is a right angle ; and the other two together
make up the right angle BCE ; therefore, the sum
of the two angles ACD, BCD, is equal to two X
right angles,

Cor. 1. If one of the angles, ACD, BCD, be a right angle, the
other must be a right angle also.

he-o—-
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Cor. 2. If the line DE is prependicular to AB, then, reciprocally,
AB will be perpendicular to DE. Fbr, since DE
is perpendicular to AB, the angle ACD must be
equal to its adjacent angle DCB, and both of them
must be right angles. But, since ACD is a right

x
angle, its adjacent ACE must also be a right angle ; c
therefore, the angle ACE = ACD; hence, AB is
perpendicular to DE,
Cogr. 3. All the successive angles, BAC, »

CAD, DAE, EAF, formed on the same Y -
side of the straight line BF, taken together,
are equal to two right angles; for their
sum is equal to that of the two adjacent
angles BAC, CAF,

PROPOSITION V,
THEOREM.

If two adjacent angles, ACD, DCB, kaving the same vertex, C, are
logether equal fo two right angles, the fwo exterior sides, AC, CB, shall
be in the same straight line.

For, if CB is not the prolongation of AC, let CE be that prolong-
ation ; then the line ACE being straight, the angles ACD, DCE are
together equal to two right angles (Prop.

IV.). But, by hypothesis, the angles D
ACD, DCB, are, together, also equal to /
two right angles ; therefore, ACD + DCB 4 B
must be equal to ACD + DCE; from d\]

these equals take away the common angle
ACD, and there remains the part DCB, equal to the whole, DCE,
which is impossible ; therefore, CB is the prolongation of AC,

PROPOSITION VI.

THEOREM.

Whenever two straight lines, AB, DE, cut one another, the opposite or
vertical angles are equal.

For, since DE is a straight line, the sum of the angles ACD, ACE,
is equal to two right angles (Prop. IV.) ; and since AB is a straight
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line, the sum of the angles ACE, BCE, is also equal to two right angles ;
therefore, the sum ACD + ACE is equal to the sum ACE + BCE.
From each of these take away the same angle,

ACE, and there remains theangle ACD, equal  # ‘ B
to its opposite or vertical angle, BCE. It may
be shown in the same manner that the angle _

D B

ACE is equal to its opposite angle BCD.

Scuorium.—The four angles formed about a point by two straight
lines which cut each other, are, together, equal to four right angles ;
for the angles ACE, BCE, taken together, are equal to two right
angles, and the two others, ACD, BCD, are
likewise equal to the same.

In general, when any number of straight
lines, CA, CB, etc., meet in a point, C, the
sum of all the successive angles, ACB, BCD,
DCE, ECF, FCA, is equal to four right angles ;
for, if four right angles were formed at the %
point C by means of two lines perpendicular to
each other, the same space would be occupied by the four right
angles which is filled by the successive angles ACB, BCD, etc.

B

o

PROPOSITION VII.

THEOREM.

Two triangles are equal, when an angle and the two sides whick con-
lain il tn the one, are equal 1o an angle and the two sides whick contain it
in the other, eack to each.

Let the angle A be equal to the angle D, the side AB equal to the
side DE, and the side AC equal to DF ; then shall the triangle ABC
be equal to the triangle DEF. For these triangles may be placed

o A
P e e N

E ¥ B o]

the one on the other, so that they shall perfectly coincide. First, if
the side DE be placed on its equal, AB, so as to coincide with it, the
point D will fall on A and the point E on B; and since the angle D
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is equal to the angle A, when the side DE is placed on AB, the side
DF will fall along AC. Besides, DF is equal to AC; therefore, the
point F will fall on C, and the third side, EF, will exactly cover the
third side, BC (Ax. 4) ; therefore, the triangle DEF is equal to the
triangle ABC (Ax. 5).

Cor. When in two triangles these three things are equal, namely :
the angle A = D, the side AB = DE, the side AC = DF, the three
others are equal also ; namely : the angle B = E, the angle C = F,
and the side BC = EF.

PROPOSITION VIIIL.

THEOREM.

Two triangles are equal, if fwo angles and the inlerjacent side of the one
are equal lo two angles and the interjacent side of the other, eack lo each.

Let the side BC be equal to the side EF, the angle B equal to the
angle E, and the angle C to the angle F; then shall the triangle
DEF be equal to the triangle ABC.

. For, to apply the one to the other, let EF be placed on its equal,
BC; the point E will fall on B, and the point F on C. And since
the angle E is equal to the angle B, the side ED will fall along BA ;

D A

E ¥ B [3)

and the point D will be found somewhere in the line BA. In like
manner, since the angle F is equal to the angle C, the line FD will
fall along CA, and the point D will be found somewhere in the side
CA. Hence, the point D, which is found at the same time in the two
lines BA and CA, must fall at their intersection, A ; therefore, the
two triangles ABC, DEF, coincide with each other and are perfectly
equal.

Cor. Whenever in two triangles these three things are equal,
namely : BC = EF, B=E, C = F; the other threeare equal also;
namely : AB = DE, AC = DF, and A = D. i
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PROPOSITION IX.

THEOREM.

In every Iriangle, any side is less than the sum of the other tfwo.

For, the straight line BC, for example, is
the shortest distance from B to C (Def. 3);
therefore, BC is less than AB + AC.

B 4]

Cor. The difference, BC — AC, of any two sides is less than the
third side, AB. For, since BC < AB + AC, take AC from both,
'then BC — AC < AB.

PROPOSITION X.

THEOREM.

If from any point, O, within the triangle, ABC, two straight lines,
OB, OC, be drawn fo the extremities of either side, BC, the sum of these
. two straight lines will be less than that of the two other sides, AB, AC.

Let BO be produced to meet the side ACin D; A
the straight line OC is shorter than OD + DC (Prop.
IX.) ; add BO to each, and we have

BO + OC < BO + OD + DC,

BO + OC < BD + DC. B [
In like manner BD < BA + AD; add DC to each and we have
BD + DC < BA + AC.
But we have just found
BO + OC < BD + DC.
Therefore, still more is
BO + OC < BA + AC.

ScuoLroM.— When two triangles, ABC and EBC, which have a com-
mon side, BC, cut each other, the sum of the two sides whick do not inter-
Sect is less than the sum of the sides whick do infersect.

or,
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For, in the triangle ABD we have

AB < AD 4 DB, and in the triangle ECD, A s
EC < DC + ED.
Adding these two inequalities, member to
member, we obtain B q

AB + EC < AC + EB.

PROPOSITION XI.

THEOREM.

If two sides, AB, AC, of a triangle, ABC, be equal o the two sides,
A'B', A'C, of another iriangle, A'B'C’, each o each ; and if the angle,
BAC, contained by the former, is greater than the angle, B'A'C’, con-
lained by the latter, the third side, BC, of the ﬁr.rl triangle shall be greater
than the third side, B'C', of the second.

For, place the triangle A’B'C’ on the triangle ABC so that A'B’ co-
incides with its equal, AB, and the side A'C’, which makes, with
A'B/, an angle less than BAC, falls along AD within the angle BAC.
Then BD is equal to B'C’' (Prop. VIL ), and we have only to show
that BC is greater than BD.

Now, there may be three cases, according as the point D falls on
BC, or within the triangle ABC, or without it.

D S—
A Al
In the first case the truth of the
theorem is evident, since BD is a
part of BC.
B D C B o'

In the second case we have AC + BC > AD + BD (Prop.
A ,—“

A

b5 0 (i
Bl
X.). Whence, taking AC from one side and its equal, AD, from
the other, we have BC > BD.
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In the third case (Prop. X., Schol.); AD+ BC> AC 4 BD;

A ———
.A'
4 ’ A
B D
B ¢’
whence, taking from the one side AD and from the other its equal,
AC, we have BC > BD.

PROPOSITION XII.

THEOREM.

Two triangles are equal, when the three sides of the one are equal to the
three sides of the other, cack lo each.

Let the side AB = DE, AC = DF, BC = EF; then shall the
angless A=D, B=E, C=F.

For, if the angle A were greater than the angle D, as the sides AB,
AC, are respectively equal to the sides DE, DF, it would follow (by
the last Proposition) that the side BC must be greater than EF ; and

D
—_——

E ¥ B [
if the angle A were less than D, it would follow that the side BC must
be less than EF ; but BC is equal to EF ; therefore the angle A can
be neither greater nor less than the angle D ; it is, therefore, equal
toit. In the same manner it may be shown that the angle B =E,
and that the angle C = F.

ScroLium.—It may be observed that the equal angles are opposite
to the equal sides : thus, the equal angles A and D are opposite to
the equal sides BC, EF.

PROPOSITION XIIIL

THEOREM.
. In an isosceles Iriangle, the angles opposite to the equal sides are equall.
Let the side AB = AC; then shall the angle C be equal to B. Join
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the vertex A, and D, the middle point of the base, BC; the two tri-
angles ABD, ADC, have the three sides of the one
equal to the three sides of the other, each to each;
namely, AD common, AB = AC by hypothesis,
and BD = DC by construction ; therefore (by the
last Proposition) the angle B is equal to the
angle C. B ¢

A

Cor. Hence, every equilateral triangle is also equiangular.

ScHoLium. —From the equality of the triangles ABD, ACD, it fol-
lows, also, that the angle BAD is equal to DAC, and BDA to ADC,
hence, the latter two are right angles ; therefore, a siraight line drawn
Jrom the verlex of an isosceles triangle fo the middle of ils base, is perpen-
dicular fo that base, and divides the angle at the vertex into fwo equal parts.

In a triangle which is not isosceles any side is taken indifferently
as the base, and then the zerfex is the vertex of the opposite angle.
In an isosceles triangle, the base is that side which is not equal to one
of the others. '

PROPOSITION XIV.

THEOREM.

Conversely, if two angles of a iriangle be equal, the sides opposite them
shall be equal, and the triangle shall be isosceles.

Let the angle ABC be equal to ACB; then the side AC shall be
equal to the side AB. For, if these sides be not equal, let AB be the
greater ; from AB cut off BD = AC, and join DC.

The angle DBC is (by hypothesis) equal to ACB ; and

the two sides DB, BC are equal to the two sides AC, D,
CB; therefore, the triangle DBC (Prop. VIIL.) must be
equal to the triangle ACB. But the part cannot be
equal to the whole (Ax. z); hence, the sides AB,
AC cannot be unequal ; therefore, the triangle ABC
is isosceles.

A

PROPOSITION XV.

THEOREM.

Of two sides of a triangle, that one is the grealer whick is opposile lo the
greater angle.  And conversely, of two angles of a triangle, that one is the
grealer whick is opposite lo the greater side.
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First.—Let the angle C be greater than B; then shall the side AB,
opposite to C, be greater than the side AC, opposite to B. Make
the angle BCD = B ; then in the triangle BDC we shall

have BD = DC (Prop. XIIL). But AD + DC > AC 1}

(Prop. IX.), and AD + DC = AD + DB = AB; there-

fore, AB is greater than AC, D
Secondly.—Suppose the side AB > AC; then shall

the angle C, opposite to AB, be greater than the angle B, B

opposite to AC. For if C were less than B, then by

what has just been shown we must have AB < AC, which is contrary
to the hypothesis; if we had C = B it would follow (Prop. XIIIL)
that AB = AC, which is also contrary to the hypothesis; therefore,
the angle C must be greater than the angle B.

PROPOSITION XVI.

THEOREM.

From a point, A, without a straight line, EF, only one perpendicular
can be drawn to that line.

For, suppose it is possible to draw two perpendiculars, AB and
AC; produce one of them, AB, till BD = AB, and join DC.

The triangle CBD is equal to ABC : for the angles CBD and CBA
are right angles, the side CB is common, and
the side BD = AB; therefore, the triangles are
equal (Prop. VIL), and hence, the angle
BCD = BCA; but the angle BCA is a right
angle, by hypothesis ; therefore, the angle BCD = B ¥
is also a right angle.  But, if the adjacent angles -
BCA, BCD, are together equal to two right
angles, the line ACD must be straight (Prop.
V.) ; whence it follows that from the point A to the point D, two
straight lines, ABD and ACD, can be drawn, which is impossible
(Ax. 4) ; therefore, it is equally impossible that two perpendiculars
can be drawn from the same point to the same straight line.

PROPOSITION XVIIL

THEOREM.
If, from a point, A, withou! a straight line, DE, a perpendicular,
AB, be drawn fo that line, and oblique lines, AE, AC, AD, etc., be drawn
to different points of the same hine :
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First.—The perpendicular AB shall be shorter than any oblique line :

Secondly.—Two obligue lines, AC, AE, whick meet DE on different
sides of the perpendicular, a! equal disiances, BC, BE, from it, shall be
equal.

Thirdly.—Of any two obligue lines, AC and AD, or AE and AD, that
which meels DE farther from the perpendicular shall be the longer.

Produce the perpendicular AB till BF is equal to AB, and draw
FC, FD.

First.—The triangle BCF is equal to the triangle BCA, for the
right angle CBF = CBA, the side BC common, and the side
BF = BA ; therefore, the third side, CF, is
equal to the third side, AC. Now, the
straight line AF is shorter than AC + CF,

a broken line ; hence, AB, the half of AF, D

y
is shorter than AC, the half of AC + CF, . NB E

\

therefore, the perpendicular is shorter than
any oblique line.

Secondly.—If we suppose BE = BC, then,
as AB is common and the angle ABE = ABC, it follows that the tri-
angle ABE = ABC (Prop. VIL); hence, the sides AE, AC are
equal ; therefore, two oblique ‘lines, meeting DE at equal distances
from the perpendicular, are equal.

Thirdly.—In the triangle DFA the sum of the lines AC, CF, is less
(Prop. X.) than the sum of the sides AD, DF ; therefore, AC, the
half of the line AC + CF, is shorter than AD, the half of AD 4 DF;
hence, the oblique line which meets DE farther from the perpen-
dicular, is the longer.

¥

Cor. 1. The perpendicular measures the true distance of a point
from a line, since it is shorter than any other distance.

Cor. 2. From the same point three equal straight lines cannot be
drawn to the same straight line; for, if there could, we should have
two equal oblique lines on the same side of the perpendicular, which
is impossible.

Cor. 3. Any two equal oblique lines, AC and AE, must cut DE
at equal distances from the perpendicular.

For, if BC be greater or less than BE, then by the Proposition it
would follow that AC would be greater or less than AE ; but both of
these results are contrary to the hypothesis ; therefore, BC = BE.

Cor. 4. In like manner, we may prove (the converse of Thirdly)
3
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that of two unequal oblique lines, AD and AE, the longer cuts the
line DE farther from the perpendicular. ]

Cor. 5. Since AB is less than any oblique line, AC, theangle ACB
is less than the right angle ABC (Prop. XV.).  Zkerefore, when two
lines, AC and DE, inlersect, the perpendicular drawn from any poini of
one on the other falls on the side of the acute angle. Hence, in every
right angled triangle two of the angles are acute,

PROPOSITION XVIIIL

THEOREM.

If from C, the middle of the straight line AB, a perpendicular, EF, &e
drawn o this line :  then, first, every point in the perpendicular is equally
distant from the two extremities A, and B, of the line; secondly, every point
without the perpendicular is unequally dislant from these extremaities.

First.—Since we suppose AC = CB (Hyp.), the by
two oblique lines AD, DB, are equally distant from
the perpendicular; and, therefore, equal. There- 1\
fore, every point in the perpendicular is equally /) B A\
distant from the extremities A and B. X

Secondly.—Let I be a point without the perpen-
dicular. Join IA, IB; one of these lines will cut
the perpendicular in D; from D draw DB; we ]
shall have DB = DA. But the straight line IB is
less than ID + DB, and ID + DB = ID + DA = IA. Therefore,
IB < IA. Therefore, every point out of the perpendicular is un-
equally distant from the extremities A and B.

Cor. 1. It results from the above that the points on the perpen-
dicular drawn to a line at its middle point, are the only points in the
plane of the figure which possess the property of equidistance from
the extremities of the line.

In Plane Geometry the name Geometric Locus is given to a line con-
taining all the points in the plane whk fulfil a given geometrical con-
dition, or, as it is expressed, possess a particular geometric property.

We can now express the double theorem above, thus : Z%e perpen-
dicular, drawn to a straight line at ifs middle point, is the geometric locus
of the points which are equidistant from the extremities of the line.

Cor. 2. Two points determine a straight line. Therefore, when a
straight line has two points equally distant from the extremities of
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another straight line it is perpendicular to that line at its middle
point.

PROPOSITION XIX.

THEOREM.

Two right angled Iriangles are equal, when the hypothenuse and the side
of the one are equal to the hypothenuse and the side of the other, each to
each.

Let the hypothenuse AC = DF, and the side AB= DE. Then
shall the triangle ABC be equal to the triangle DEF. This equality
will be manifest if the remaining sides, BC and EF, are equal. Now

F—Mﬁ
A D
B ¢ ¥ ) F

conceive the two triangles to be placed so that the equal sides ABand
DE coincide. Then, since the right angle B = E, the sides BC and
EF will form one and the same straight line (Prop. V.). Hence,
AC and DF being two equal oblique lines, the distances BC and EF
from the perpendicular must be equal (Prop. XVIL. Cor. 3,). There-
fore, the two triangles are equal.

PROPOSITION XX.

THEOREM.

Two right angled iriangles are equal, when they have the hypothenuse
and an acute angle of the one respectively equal to the hypothenuse and
an acule angle of the other.

In the triangles ABC and DEF, right angled at B and E, let
AC=DF and C=F. Apply DEF on ABC

so that the angle F shall coincide with the angle x
C, DF will then coincide with AC, the point
D falling on A, and FE will fall along CB.

Therefore, the side DE, perpendicular to FE, » ¢

D
must coincide with AB, perpendicular to CB,
otherwise there would be two perpendiculars
drawn from the same point to the same straight

b ¥
line. Hence, the point E, being in AB and BC,
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must fall on B; and the two triangles coincide throughout their
whole extent, and are therefore equal (Ax. §5).

Scuorium. Two right angled triangles are equal when they have
two sides of the one equal to two sides of the other, or one side and
an acute angle of one equal to one side and an acute angle of the

other.
DEFINITIONS.

To &isect means in Geometry to divide into two equal parts.
The line which divides an angle into two equal parts, is called the
bisectrix of that angle.

PROPOSITION XXI.

THEOREM.

1. Any point, M, on the bisectrix, AD, of an angle, BAC, s equally
distant from the two stdes of that angle.

2, Conversely, Euvery poinf, M, in the interior of the angle, BAC,
whick is at equal distances from the sides, AB and AC, skall lie on AD,
the bisectrix of that angle

First.—The perpendicular ME, drawn from M to AB, and the per-
pendicular MF, drawn from M to AC, measure the
distances from M to these lines respectively. If M be
on the bisectrix AD, then shall ME = MF. For the
two right angled triangles MAE and MAF, have the
hypothenuse MA in common, and the acute angle N
MAE = MAF, since AD bisects the angle BAC.

Hence, the triangles are equal (Prop. XX.). There- )
fore, ME = MF.

Secondly.—Conversely, suppose ME = MF, then shall M be on the
bisectrix AD of the angle BAC. For, join MA ; the two right angled
triangles MAF and MAE have the hypothenuse MA in common,
and ME = MF by hypothesis ; hence they are equal (Prop. XIX.).
Therefore, the angle MAE = MAF, and MA divides the angle BAC
in half, hence, M lies on the bisectrix AD of the angle BAC.

It follows that any point within the angle BAC not on the bisectrix,
must be unequally distant from the sides AB and AC.

A

CoR. The bisectrix of an angle is the geomelric locus of all points situ-
ated within the angle whick are equidistant from s sides.
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PROPOSITION XXII.

THEOREM.

Two siraight lines, AC and BD, which are perpendicular to the same

straight line, EF, are parallel.
a
- For, if they could meet there would be two perpen-
diculars drawn from their point of intersection, M, to
the same straight line, EF, which is impossible
(Prop. XVL).
E ¢ D F

Cor. 1. The square and rectangle are parallelograms.

Cor. 2. Through a point, A, without a siraight line, BC, one parallel
can always be drawn fo that line.

From the point A draw AD perpendicular A E
to BC, and draw also AE perpendicular to

AD. The two straight lines AE and BC, be-
ing both perpendicular to AD, are parallel. B D d

Axrom 6.
Two intersecting straighi lines cannot be parallel lo the same straight line.

Hence it follows :

1. Through a point without a straight line only onme parallel can be
drawn fo that line.

IL. Two straight lines, A and B, whick are parallel lo a third, C, are
parallel to eack other.

B

For if A and B could meet we would have > ar
two intersecting straight lines parallel to the 5
same straight line. E——F

PROPOSITION XXIII.

THEOREM. -

When two straight lines, AB and CD, are parallel, every straight line,
EF, perpendicular to the one, AB, shall be perpendicular lo the other,
CD.
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For, EF, perpendicular to AB, must meet CD (Ax. 6). Through
the point of intersection, F, conceive a per-
pendicular to be drawn to EF. This perpen- , - B
dicular will be parallel to AB (Prop. XXII.)
and must coincide with CD, since from F
only one parallel can be drawn to AB. There- © ¥ D
fore, EF is perpendicular to CD. ’

This theorem is often enunciated more briefly, thus:

Two parallels have their perpendiculars common.

DEFINITIONS.

When two straight lines, AB and CD, are E
cut by a third, EF, the eight angles at their
points of intersection, G and H, are named as
follows :

1. The four angles, 1, 4, 5, 8, which lie with-
in the lines AB and CD, are called nterior
angles.

2. The four others, 2, 3, 6,7, which lie with-
out, are called exterior angles.

3. Two intetior angles on opposite sides of the secant line and not
adjacent, as I and 5 or 4 and 8, are called alternate inlerior angles, or
simply, alternate angles.

4. Two exterior angles on opposite sides of the secant line and not
adjacent, as 2 and 6 or 3 and 7, are called alfernate exterior angles.

5. Two angles on the same side of the secant, one exterior and the
other interior, and not adjacent, are called corresponding angles. Such
are 1 and 7, or 4 and 6, or 2 and 8, or 3 and s.

6. Finally, the two angles 1 and 8 or 4 and 5 are called #nterior
angles on the same side ; and the angles 2 and 7 or 3 and 6 are exterior
angles on the same side.

7. Two angles which together are equal to two right angles are
said to be supplements of each other, or supplementary. Hence, two
angles which are supplements of the same angle are equal to each
other.

V]
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PROPOSITION XXIV.

THEOREM.
If two parallel lines, AB and CD, are cut by a third line, GH :

1. The allernate inierior angles are equal.

2. The allernate exterior angles are equal.

3. The corresponding angles are equal.

4. The sum of the inlerior angles on the same side is equal o two right
angles.

5. The sum of the exterior angles on the same side is equal fo two
right angles.

First. —Through the middle point, O, of the secant line, EF, draw
MN, a common perpendicular, to the parallels. OM will fall in the
acute angle FEA and ON in the acute angle
EFD. The two right angled triangles MOE
and ONF have their hypothenuses, OE and OF, 4 M 7]‘1};
equal by construction, and the opposite or verti- 5 :
cal angles, MOE and FON, equal. These tri- 0741(\1,
angles are therefore equal, and hence the alter-
nate interior angles MEO and OFN are equal.

Also, the alternate interior angles BEF and EFC are equal, for these
angles are the supplements respectively of the equal angles MEO,
OFN.

Secondly.—The alternate exterior angles GEB and CFH are equal,
for they are the opposite or vertical angles respectively of the angles
MEO, OFN. So, also, HFD = GEA.

Thirdly.—The corresponding angles GEB and EFD are equal.
For GEB = AEF, and AEF = EFD. Therefore, GEB = EFD.
So, also, AEG = CFE, etc.

Fourthly.—The sum of the interior angles on the same side, FEB
and EFD, is equal to two right angles. For we have BEF + AEF =
two right angles; but AEF = EFD ; therefore, BEF + EFD = two
right angles.  So, likewise, AEF + CFE = two right angles.

Fifthly.—The sum of the exterior angles on the same side,
GEB + HFD, is equal to two right angles. For HFD 4+ EFD =
two rights, and EFD = corresponding angle GEB, Therefore,
HFD + GEB = two rights.

'SCHOLIUM. When the secant line is perpendicular to one of the
parallels the eight angles formed are all right angles. When it is




40 ELEMENTS OF GEOMETRY.

oblique to the parallels, there are formed four equal acute angles and
four equal obtuse angles, and each acute angle is the supplement of
each obtuse angle.

PROPOSITION XXV.

THEOREM.
Conversely, When two straight lines, AB and CD, are cut by a third,
GH, so as fo make : .

1. The alternale inlerior angles equal ; or,

2. The alternale exterior angles equal ; or,

3. The corresponding angles equal ; or,

4. The sum of the interior angles on the same side equal fo two right
angles ; or,

5. The sum of the exterior angles on the same side equal o fwo right
angles—Then these two straight lines are parallel.

First.—Let the angle AEF be equal to its alternate angle EFD.
Conceive a line drawn through F parallel to AB. This parallel must
make, with GH (Prop. XXIV.), an angle equal

to AEF, and, therefore, equal to EFD. Hence, A - :G B

this parallel coincides with FD, and, therefore,

CD is parallel to AB. AP
Second.—If the alternate exterior angles GEB ¢ »~ X D

and CFH are equal, then their opposite or ver-
tical angles are equal, that is, AEF = EFD ; and, therefore (1), AB
is parallel to CD.

Third.—Let the corresponding angles GEB and EFD be equal.
Then, since GEB is equal to AEF we have AEF = EFD. There-
fore (1) AB is parallel to CD.

Fourth.—If the sum of the interior angles on the same side, BEF
and EFD, is equal to two right angles, then, since BEF + AEF =
two right angles, we must have AEF = EFD. Therefore (1), AB is
parallel to CD.

Fiyfth—Let GEB + HFD = two right angles; then, since
EFD + HFD = two right angles, we must have GEB = EFD.
Therefore (3) AB is parallel to CD.

Cor. 1. From the Propositions XXIV. and XXV., it follows
that if two straight lines are cut by a third so that the angles formed
do not fulfil the conditions which we have just enunciated, #e fwo
tines are not parallel, In particular, 7f a straight line meet two straight
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lines so as fo make the fwo inlerior angles on the same side of it less than two
right angles, these siraight lines being continually produced will meet on the
side on whick the angles are whose sum is less than fwo right angles.

Note.—This is Euclid's axiom, on which he bases the theory of parallels.

Cor. 2. Two straight lines, EF,GH, respectively
perpendicular fo two siraight lines whickh intersect
eack other, mus! also infersect, For, drawing the
line EG, we see that each of the interior angles, £ B
FEG, HGE, is less than a right angle ; there- @
fore, the sum of these angles is less than two i
right angles. Hence, EF and GH must meet.

PROPOSITION XXVI.

THEOREM.

Two parallels, AC,BD, intercepted between fwo parallels, AB, CD,
are equal. !

For, join AD. The angles BAD, ADC are equal, being alternate
angles with reference to the parallels AB,
CD (Prop. XXIV.); also the angles ADB, A\\ P
DAC are equal, being alternate angles with / \\\/
reference to the parallels AC, BD. Hence,
the two triangles ABD, ACD have a common
side, AD, and two adjacent angles in each equal; hence, these tri-

angles are equal ; therefore, the side BD, opposite the angle BAD, is
equal to the side AC, opposite to the angle ADC.

Cor. If the two lines AC and BD are perpendicular to AB, and,
hence, also to CD, they measure the distances

of the points A and B of the straight line AB —% 2
from the straight line CD. But AC and BD are
equal, being parallels intercepted between paral- &

lels. Therefore, since A and B are any two
points on AB, it follows that fwo parallels are everywhere equally distant,

PROPOSITION XXVII.

THEOREM.

Two angles whick have their sides parallel, eack o eack, are equal or
supplementary.
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1. Let ABC, DEF be two angles whose sides are parallel and Ze 1
the same direction. 'Then will these angles be equal. For, the angles
DLC, DEF are corresponding angles, and therefore
equal. But for the same reason DLC = ABC;
therefore, ABC = DEF.

2. Let ABC, MEN, be two angles whose sides
are parallel, but le in opposite directions. Then
will these angles be equal. For MEN = DEF,
and DEF = ABC. Therefore, MEN = ABC.

3. Lastly, Let the angles be ABC, DEM, whose
sides are parallel, but two of these sides, BA and ED,
lie in the same direction, and the two others, BC and EM, in contrary
directions. Then will these angles be supplements of each other.
For DEM is the supplement of DEF, and DEF = ABC. Therefore,
DEM is the supplement of ABC.

N

Scrorium. Two parallel sides of two angles are
said to lie in the same direction when they are both
on the same side of the line which joins the vertices
of the two angles. They are said to lie in opposite
directions when they are on gpposite sides of this line,

PROPOSITION XXVIIIL

THEOREM.

If two angles have their sides perpendicular, each lo each, these angles
will be either equal or supplementary.

1. Let BAC, DEF be two angles whose
sides are perpendicular, each to each.
Through the point A draw the straight line B
Al perpendicular to AB, and the straight
line AH, perpendicular to AC ; the lines A1,
AH, will be respectively parallel to the lines
DE, EF, and lie in the same direction;
hence, the angle IAH is equal to DEF.
But we have BAC + HAB = one right angle.
and IAH + HAB = one right angle, -
Therefore, BAC = IAH,
or, BAC = DEF, the equal of IAH.

hid ¥
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2. If we consider the angle formed by the straight line EF and the
prolongation of DE, we see that the angle FEG is the supplement of
the angle BAC.

PROPOSITION XXIX.

THEOREM.

In every triangle the sum of the three angles is equal fo two right angles.

Let ABC be any triangle. Produce the side CA towards D ; and at
the point A draw AE, parallel to BC. Since AE and CB are parallel,
and CAD cuts them, the angle DAE is equal to
its corresponding angle ACB ; also, since AB cuts ¥, E
the parallels, the alternate angles ABC and BAE
are equal. Hence, the sum of the angles of the
triangle ABC is equal to the sum of the three
angles CAB, BAE, EAD, formed about the point
A on the same side of the straight line CD ; therefore (Prop. IV.),
the sum of the three angles of the triangle is equal to two right angles.

c A D

Cor. 1. Any angle of a triangle is the supplement of the sum of the
other fwo, and thus, two angles of a triangle being given, or merely
their sum, the third is found by subtracting this sum from two right
angles.

Cor. 2. If two angles of one triangle are respectively equal to two
angles of another triangle, the third angle of the first will be equal to
the third angle of the second, and the two triangles will be mutually
equiangular. .

Cor. 3. Two triangles which have a side and two angles of the one
respectively equal to a side and two angles of the other, are equal,

whether these angles be adjacent to the side or not.

Cor. 4. At least two of the angles of every triangle are acute.

Cor. 5. In every right angled triangle the sum of the two acute
angles is equal to one right angle.

Cor. 6. In an equilateral triangle each angle is the third part of
two right angles or two-thirds of one right angle ; so that if the right
angle is expressed by unity the angle of an equilateral triangle will be
expressed by %. :

Cor. 7. The angle BAD is equal to the sum of the two angles B
and C. Thus, every exterior angle of a friangle, that is, every angle
formed by one side and the prolongation of another, is egual fo the
sum of the two inlerior angles which are not adjacent fo 1.
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PROPOSITION XXX.

THEOREM.

The sum of all the inlerior angles of a polygon is equal fo as many
times two right angles as there are units in the number qf sides, dimin-
isked by fwo. :

Let ABCD, etc., be the proposed polygon. 1If, from the vertex of
any one angle, A, diagonals, AC, AD, AE, etc., be drawn, it is plain
that the polygon will be divided into five triangles,
if it has seven sides; into six triangles, if it has
eight sides ; and, in general, into as many triangles
as the polygon has sides, less two ; for these tri-
angles may be considered as having the point A
for a common vertex, and for bases, the several
sides of the polygon, excepting the two sides which G
form the angle A. It is evident, also, that the sum of all the angles
of these triangles does not differ from the sum of the angles of the
polygon ; hence, this last sum is equal to as many times two right
angles as there are triangles in the figure ; that is, as there are units
in the number of the sides of the polygon, less two. :

B

Cor. 1. The sum of the angles of a quadrilateral is equal to two
right angles multiplied by 4 — 2, which makes four right angles.

Therefore, if all the angles of a quadrilateral are equal, each one
of them will be a right angle. And this justifies Definition 17, where
it was supposed that the four angles of a quadrilateral are right angles,
in the case of the rectangle and the square.

Cor. 2. The sum of the angles of a pentagon is equal to two right
angles multiplied by 5 — 2, which makes six right angles. There-
fore, when the pentagon is equiangular, that is to say, when its angles
are equal, the one to the other, each one of them is equal to the fifth
part of six right angles, or to § of one right angle.

Cor. 3. The sum of the angles of a hexagon is equal to z X (6—2)
or eight right angles; therefore, in the equiangular hexagon each
angle is § or 4 of a right angle.

Cor. 4. If we designate the number of the sides of the polygon by
n, the sum of its angles (the right angle being unity) will be ex-
pressed by 2(n — 2) or, 2z — 4.
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ScrorLium. When this proposition is applied to.
polygons which have re-enfrant angles, each re-
entrant angle must be regarded as greater than two
right angles. But to avoid all ambiguity we shall
henceforth limit our reasoning to polygons with
salient angles, which may be otherwise named conzex v
polygons.  Every convex polygon is such that a straight line, drawn
at pleasure, cannot meet the perimeter of the polygon in more than
two points.

PROPOSITION XXXI.

THEOREM.

The opposite sides of a parallelogram are equal and the opposite angles
are also equal.

1. Two opposite sides, AB and CD, for ex- 1p g

ample, are equal to each other ; for, by defini-
tion, they are two parallels intercepted between
two parallels.

2. Any two opposite angles, ADC, ABC, are N ®
equal, for they are formed by parallel sides lying in opposite direc-
tions (Prop. XXVIL). And the same is true of opposite angles
BAD, BCD. '

Cor. A diagonal divides a parallelogram into two equal triangles.

PROPOSITION XXXII.

THEOREM.

If the opposite sides of a quadrilateral, ABCD, be equal, so that
AB = CD and AD = BC, the equal sides shall be parallel, and the figure
shall be a parallelogram.

Draw the diagonal BD. The two triangles D
ABD, BDC, have the three sides of the one .
equal to the three sides of the other, each to
each; therefore, they are equal; hence the B
angle ADB, opposite the side AB, is equal to
the angle DBC, opposite to the side CD ; therefore (Prop. XXV.)
the side AD is parallel to BC. For a like reason, AB is parallel to

CD ; therefore, the quadrilateral ABCD is a parallelogram.
Cor. The rhombus is a parallelogram.
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PROPOSITION XXXIII.

THEOREM.

If two opposite sides, AB, CD, of a guadrilaleral are equal and paral-
lel, the two other sides are also equal and parallel, and the figure, ABCD,
is a parallelogram. ’

Draw the diagonal BD. Since AB is paral- D g
lel to CD, the alternate angles, ABD, BDC,
are equal (Prop. XXIV.). Moreover, the -
side AB = DC, and the side DB is common ; 4 B
therefore, the triangle ABD is equal to the tri- i
angle DBC (Prop.- VIL.) ; hence, the side AD = BC, and the angle

ADB = DBC, and, consequently, AD is parallel to BC; therefore,
the figure ABCD is a parallelogram.

PROPOSITION XXXIV.

THEOREM.

" The two diagonals, AC, DB, of a parallelogram divide eack other
mutually into two equal parts, that is, mutually bisect each other.

For, comparing the triangles ADE, CEB, we

B [
find the side AD = CB, the angle ADE =CBE V
(Prop. XXIV.), and the angle DAE = ECB;
hence, these triangles are equal (Prop. VIIL) ;

therefore, AE, the side opposite the angle ADE,
is equal to EC, the side opposite the angle EBC;
hence, . also, DE-= EB. - -

ScHoriuM 1. In the case of the rhombus, the dnagonals
are at right angles to each other. For, the sides AB and

}

AD being equal, and, also, CB and CD, it follows
(Prop. XVIIL., Cor. 2) that AC is perpendicular to DB.

_ Scuortum 2. In the case of the rectangle the diag-

onals are equal. For the tworight angled triangles, A B
ACD and BCD, have the side DC common, and the
side AD = BC ; hence, they are equal, and the hy-
pothenuse AC = the hypothenuse DB.

Q
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¢ Scuorium 3. In the case of the square the diagonals are at right
angles to each other, and are also equal.

EXERCISES ON BOOK I

These exercises are theorems to be demonstrated, illustrative of the
methods of demonstration used in Book I. These methodsare (1) the
reduclio ad absurdum (applied generally to prove the converse of theo-
rems), (z) superposition, (3) the comparison of equal triangles, and
(4) the comparison of angles by parallels, or (5) by the use of Prop.
XXIX. and its consequences. [Ses Hints to Solutions, p. 321.]

No auxiliary lines will be needed in these demonstrations except
those indicated in a few of the propositions.

1. The distance of any point, M, of a straight line, AB, from the
middle point, O, of this straight line, is equal to the half difference of
the distances of this point M, from the extremities, A and B, of the
line. If the point M is taken on the prolongation of the line AB, the
distance MO is the half sum of MA and MB.

2. ACB being an angle, CO its bisectrix, and CM a straight line
drawn at pleasure from the vertex so as to fall within the angle, the
angle MCO is equal to the half difference of the angles MCA, MCB.
If the straight line CM is exterior to the angle ACB, the angle MCO
is the half sum of the angles MCA, MCB.

3. If through a point, O, on a straight line, AB, we draw two
straight lines, OC and OD, on different sides of AB, so that the angle
AOC = BOD, the two straight lines OC and OD are one and the
same straight line.

4. If four straight lines, OA, OB, OC, OD, are drawn through the
same point, O, so that the opposite angles, DOA and BOC, are equal
to one another, and also the angles AOB, COD, then the sides OA
and OC are in the same straight line, and also the sides OB and OD.

5. If two straight lines, AB and CD, intersect each other in O, and
two straight lines, OM and ON, bisect the opposite angles, AOC,
BOD, these lines, OM and ON, form one and the same line ; and if
OM and OP bisect two adjacent angles, AOC and AOD, these two
lines, OM and OP, are perpendicular to each other.

6. Two quadrilaterals which have two angles of thc one equal to
two angles of the other and contained by three sides, equal, each to
each, and similarly placed, are equal. :
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7. Two quadrilaterals which have two sides of the one equal to two
sides of the other, and adjacent to three angles, equal, each to each,
and similarly placed, shall be equal.

8. Definition : A median of a triangle is a line joining a vertex
with the middle point of the opposite side.

THeorREM. A median of a triangle is less than the half sum of the
two sides which contain the angle from whose vertex it is drawn.
(Auxiliary Construction : Produce the. median beyond the middle
point of the side on which it rests, until the part produced is equal to
the median, and join the extremity of the produced line with either
extremity of the side.) :

9. The sum of the medians of a triangle is less than the sum of the
three sides of the triangle, and greater than half this sum.

10. Any convex polygonal line, ACDEFB (one which has no re-
entrant angles), is less than the line which envelops it, and termi-
nates in the same line, AB. (Auxiliary Construction : Produce AC,
CD, DE, EF, until they meet the enveloping line.)

11. Any convex polygonal line is less than the line which envelops
it entirely.

12. The sum of the three lines OA, OB, OC, from a point, O,
within the triangle ABC, to the three vertices, is less than the sum of
the three sides of the triangle, and greater than half this sum.

13. Two quadrilaterals which have one angle in each equal, and
the four sides of the one equal to the four sides of the other, each to
each, and similarly placed, are equal.

14. Two quadrilaterals are equal when they have one diagonal and
four sides of the one equal to one diagonal and four sides of the
other, each to each.

15. Two quadrilaterals are equal when they have the two .diago-
nals and three sides of the one equal to the two diagonals and three
sides of the other, each to each.

16. If on the sides of a regular (equiangular and equilateral) poly-
gon, ABCDEFGH, we take points a, 4, ¢, d, ¢, f; & A, so that
Aa = Bb =C¢, etc, and join these points, we form a polygon
abedefgh, also regular,

17. If in the same polygon lines be drawn through the vertices
A, B, C, D, etc., making equal angles with the sides AB, BC, CD,
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etc., they will form a polygon which is also regular. Also show the
same if the lines be drawn through the points &, 4, ¢, d, etc.

18. If from two given points two straight lines be drawn to the
same point in a given right line, and equally inclined to this line, the
sum of these two lines will be less than the sum of the two lines drawn
from the two given points to any other point of the given line.
(Auxiliary Construction : Draw a perpendicular from one of the
given points to the straight line, prolong it till the part below the
line is equal to the part above, and join its extremity with the other
given point. ) ‘

19. Definition : Two points, A and A’, are said to be symmetrical
with regard to an indefinite straight line, xy, when this line xy is per-
pendicular to the line AA’ at its middle point.

TueoreM. If A and A’ and B and B’ are symmetrical with regard
to xy, then the two symmetrical straight lines AB, A'B’, are equal.
Also, the angle CAB of two straight lines, AB and AC, is equal to the
angle C'A'B’ of the two symmetrical lines A'B’, A'C".

zo. If, through the vertex, A, of a triangle, ABC, the line xy be
drawn perpendicular to the bisectrix of the angle A, and M be any
point of xy, then the perimeter of the triangle BMC is greater than
that of the given triangle ABC.

The preceding theorems can be demonstrated. without using the theory of
parallels. )

21. If, through the middle point of a straight line terminating in
two parallel lines, a second straight line be drawn, also terminating
in the parallels, this second straight line will also be bisected at this
point.

22. If two equal straight lines, AB and CD, terminating in two
parallels, AC and BD, cut one another in O, we shall have AO=0C
and OB = OD.

23. Conversely, if two straight lines, AB and CD, contained be-
tween two parallels, cut each other in O, so that AO = OC, then
shall AB = CD.

24. If, through each of the vertices of a given triangle, a line be
drawn parallel to the opposite side, a new triangle will be formed,
equal to four times the given triangle. And each side of the new tri-
angle is double the corresponding side of the given triangle.

25. (Corollary of 24.) The straight line which joins the middle
: 4
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points of two sides of a triangle is parallel to the third side and equal
to the half ofit. And, conversely, if, through the middle point, D, of.
the side, AB, of a triangle, ABC, a straight line, DE, be drawn paral-
lel to the side BC, the line DE, will meet AC at its middle point,
and will be equal to the half of BC.

26. The locus of the middle points of any number of straight lines
which extend from a given point to a given straight line is a straight
line parallel to the given line.

27. The perpendiculars erected to the sides of a triangle, ABC, at
their middle points meet in a common point. [Method of proof by
means of loci : First, the perpendiculars to AB and BC at their mid-
dle points, must meet (Prop. XXV., Cor.) in some point, O. But
any point on the perpendicular to AB is equidistant from A and B,
and any point on the perpendicular to BC is equidistant from B and
C, hence, their intersection, O, is equidistant from A and C, and
must, therefore, be on the perpendicular to AC at its middle point,
since that is the locus of all points equidistant from A and C. There-
fore, O is the common point of intersection of the three perpendicu-
lars. ]

28. The three altitudes of a triangle (the three perpendiculars let
fall from the vertices on the opposite sides) meet in a common point,
(An easy Corollary of 27, by constructing. the triangle whxch is four
times the given triangle, 24.)

" 29. The three lines which bisect the angles of a triangle meet in a
common point. (Proof by method of loci, as in 27.)

30. The bisectrix of the angle A, and the bisectrices of the two ex-
terior angles at B and C, of a triangle, ABC, meet in a common point.

31. The three medians of a triangle (the lines which join the three
vertices to the middle points of the opposite sides) meet in a common
point, which divides each median in the ratio of two to one. (Auxil-
iary lines—a line joining the feet of two of the medians, and a second
line joining the middle points of the parts of these two medians
between their point of intersection and the vertices from which they are
drawn. Then use 25.)

32. The two bisectrices of the angles at the base of a triangle form,
with this base, a second triangle, the angle at the vertex of which is
equal to one right angle plus the half of the angle at the vertex of
the given triangle, Also, find the value of the angle at the vertex of
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_the second triangle, when the given triangle is equilateral—when it is
isosceles, and the angle at the vertex is the half of one of the angles
at the base.

33. 'In any right angled triangle, ABC, right angled at A, the me-
dian AO is equal to one-half the hypothenuse BC.

34. Conversely, if the median AO of the triangle ABC is equal to
one-half the side BC, the triangle ABC is right angled at A.

35. If, in a triangle, ABC, right angled at A, the hypothenuse,
BC, is double the side AB of the right angle, the angle C, opposite to
AB, is one-third of a right angle. (Auxiliary construction : Produce
BA, beyond A to D, until the part produced, AD, is equal to AB,
and join DC.)

36. Conversely, if, in a right angled triangle, one of the acute
angles is one-third of a right angle, the side opposite to this acute
angle is one-half the hypothenuse.

37. If through the three vertices of a triangle, ABC, three bisectrices
of the exterior angles be drawn, the three partial triangles and the
whole triangle thus formed will be mutually equiangular.

38. Show; also, that each one of the angles of the given triangle
ABC will be the supplement of the double of the opposite angle, in
the large triangle of the preceding construction.

39. The angle made by the median, AO, of a triangle right angled
at A, with the altitude, AD, is equal to the difference of the two
acute angles.

40. If the sides of a convex polygon be extended in the same di-
rection (that is, if, beginning at any vertex, we extend the sides in
order at all the vertices in succession, making the complete circuit
of the figure in the same direction), the sum of the exterior angles
thus formed is equal to four right angles.

41. If the sides of an equiangular and equilateral pentagon be
produced to meet, the angles formed by these lines are equal, and
their sum is equal to two right angles.

42. If the sides of an equilateral and equiangular hexagon be pro-
duced to meet, the angles formed by these lines are together equal
to four right angles.

43. If an exterior square be described on each side of an equi-
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angular and equilateral hexagon, and if, then, the consecutive ver-
tices of the adjacent squares be joined, the figure produced will be
an equiangular and equilateral dodecagon.

44. What number of sides has the polygon, the sum ‘of whose
angles is twenty-six right angles?

45. What equiangular polygon has each angle equal to § of a right
angle?

46. Find angle of each equiangular polygon up to twenty sides.

47. The entire plane space about a point can be filled without
leaving vacant intervals, by equal equilateral triangles ; also by equal
squares ; also by equal regular hexagons.

48. These are the only three regular polygons which, by taking
any number of the same polygons, serve to fill up plane space without
leaving vacant intervals.

49. The space can be filled by using regular octagons and squares
together ; also by using regular dodecagons and equilateral triangles
together.

so. If, in a quadrilateral, the opposite angles are equal the figure
is a parallelogram.

51. The four bisectrices of the angles of a quadrilateral form a
second quadrilateral, whose opposite angles are supplementary.
Show, also, if the first quadrilateral is a parallelogram, the second
will be a rectangle whose diagonals are parallel to the sides of the
given parallelogram, and equal to the difference between two ad-
jacent sides—and, finally, if the first figure is a rectangle, the second
will be a square.

52. Definition : The centre of a figure is a point which bisects all
lines drawn through it terminating in the perimeter of the figure.

TuroreM. The intersection of the diagonals of a parallelogram is
the centre of the parallelogram, and every line passing through this
centre divides the parallelogram in half. Conversely, a quadrilateral,
the intersection of whose diagonals is the centre of the figure, is a
parallelogram.

53. The lines which join the middle points of the sides of a quad-
rilateral successively, form a parallelogram equal to one-half of the
quadrilateral, whose perimeter is equal to the sum of the diagonals
of the quadrilateral. Also show when this parallelogram is a rhom-



BOOK 1I. 53

bus ; when it is a rectangle ; and when it is a square. (Auxiliary
lines : First, the diagonals of the quadrilateral to prove the parallelo-
gram ; and, Second, lines joining the points where the diagonals of
the quadrilateral meet the sides of the parallelogram, to prove the
parallelogram one-fourth of the quadrilateral, using (24).

54. The lines which join the middle points of the opposite sides
of a quadrilateral, bisect each other. (Corollary of 53.)

55. If, through the extremities of each diagonal of a quadrilateral,
parallels be drawn to the other diagonal, a parallelogram will be
formed equivalent to double the quadrilateral.

56. The diagonals of a parallelogram inscribed in a given paral-
lelogram (that is, which has its vertices on the sides of a given paral-
lelogram), intersect in the centre of this parallelogram.

57. Parallelograms can always be inscribed in a rectangle whose
sides are respectively parallel to the diagonals of the rectangle, and
therefore at any vertex the sides make equal angles with the side of
the rectangle, and the perimeter of each parallelogram is equal to
the sum of the diagonals of the rectangle. (Auxiliary Construction :
Prolong the line drawn through any point of one side parallel to a
diagonal, until it meets the opposite side produced.)

58. (A billiard ball, striking the cushion of the table, rebounds,
making the angle of reflexion equal to the angle of incidence.)
Show that a ball, sent parallel to one of the diagonals of the table,
will, after striking the four cushions, return to the point from which
it set out.

59. If from any point on the base of an isosceles triangle, perpen-
diculars be let fall on the two other sides, the sum of these two per-
pendiculars is equal to the perpendicular let fall from the vertex of
one of the angles at the base on the opposite side. (Auxiliary lines:
Through one of the extremities of the base draw a line parallel to the
other side of the triangle, and prolong the perpendicular on that side
till it meets this parallel.)

60. The sum of the three perpendiculars, drawn from any point
within an equilateral triangle on the three sides, is equal to the alti-
tude of the triangle. (Auxiliary line : Through the point draw a
parallel to the base. The theorem is then an easy corollary of 59.)




BOOK II.
THE CIRCLE, AND THE MEASUREMENT OF ANGLES.

DEFINITIONS.

" 1. The circumference of a circle is a curve. line, all the points of
which are equally distant from a point
within, called the centre.

The circle is the space terminated by this
curved line.

N. B.—Sometimes, in common lan- A < B
guage, the circle is confounded with its cir-
cumference ; but it will be always easy to D
recur to the correct expression, by recol-
lecting that the circle is a surface, which
has length and breadth, while the circumference is but a line,

E

2. Every straight line, CA, CE, CD, etc., drawn from the centre
to the circumference, is called a radius or semi-diameler ; every line, as
AB, which passes through the centre, and which is terminated on
both sides, at the circumference, is called a diameter.

. From the definition of a circle, it follows, that all the radii are
equal ; that all the diameters are equal also, and each double of the
radius.

3. A portion of the circumference, such as FHG, is called an are.
The chord or sublense of the arc is the straight line FG which joins
its two extremities.

4. A segment is the surface or portion of a circle comprised between
the arc and its chord. ‘

N. B.—To the same chord, FG, correspond always two arcs, FHG,
FEG, and, consequently, also two segments ; but the smaller one is
always meant unless the contrary is expressed.

5. A sector is the part of the circle included between an arc, DE,
and the two radii, CD, CE, drawn to the extremities of that arc.
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6. A straight line is said to be inscribed in a cir-
cle, when its extremities are in the circumference,
as AB.

An inscribed angle is one, such as BAC, whose
vertex is in the circumference, and which is formed
by two chords.

An inscribed triangle is one which, like BAC,
has its three vertices in the circumference.

And, in general, an scribed figure is one of which
all the angles have their vertices in the circumference,
The circle is said at the same time to be circumscribed

about this figure.

7. A secanf is a line which meets the circum- N
ference in two points : AB is a secant. ®
8. A tangent is a line which has only one point
in common with the circumference : CD is a tan-
ent.
g c D

The point, M, is called the point of contact. M

)
: >
Q

9. In like manner, two circumferences are fangent to each other
when they have only one point in common.

10. A polygon is circumscribed about a circle when v
all its sides are tangents to the circumference : in the
same case we say that the circle is #nscribed in the
polygon.

PROPOSITION 1,

THEOREM.

FEvery diameter, AB, divides the circle and its circumference into fwo
equal paris.

For, if we apply the figure AEB to AFB, the ¥
common base, AB, retaining its position, the
curve line AEB must fall exactly on the curve
line AFB, otherwise, there would be, in the one 0
or the other, points unequally distant from the
centre, which is contrary to the definition of a
circle.

o
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PROPOSITION II.

THEOREM.

FEvery chord is less than the diameler. r
D
For, if the radii AC, CD be drawn to the ’
extremities of the chord AD, we shall have the ‘/‘t
straight line AD < AC + CD, or AD < AB. v

Cor. Hence, the greatest straight line which can be inscribed in a
circle is equal to its diameter.

PROPOSITION III.

THEOREM.
A siraight line cannol meet a circumference in more than two points.

For, if it met it in three, those three points would be equally dis-
tant from the centre ; there would, therefore, be three equal straight
lines drawn from the same point to the same straight line, which is
impossible (Book I., Prop. XVIL Cor. 2).

PROPOSITION 1V.

THEOREM.

In the same circle, or in equal circles, equal arcs are sublended by equal
chords ; and, conversely, equal chords sublend equal arcs.

If the radii AC and EO are equal, and the arc AMD equal to the
arc ENG, then the chord AD will be equal to the chord EG. For,
since the diameters AB, EF, are
equal, the semicircle AMDB -y

may be applied exactly to the N
semicircle ENGF, and the curve E -
line AMDB will coincide entire-. ¢ °

ly with the curve line ENGF.
But the part AMD is equal to
the part ENG by hypothesis;
therefore, the point D will fall on the point G ; therefore, the chord
AD is equal to the chord EG.

X —
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Conversely, supposing the radius AC = EQ, if the chord AD = EG,
then will the arc AMD be equal to the arc ENG. For, drawing the
radii CD, OG, the two triangles ACD, EOG, having all their sides
equal, *each to each, viz.: AC = EQO, CD = OG, and AD = EG, are
themselves equal (Book I., Prop. XII); therefore, the angle
ACD = EOG. But, placing the semicircle ADB on its equal, EGF,
since the angle ACD = EOG, it is evident that the radius CD will
fall on the radius OG, and the point D on the point G ; therefore,
the arc AMD is equal to the arc ENG.

PROPOSITION V.

THEOREM.

In the same circle, or in equal circles, a greater arc is sublended by a
greater chord ; and, conversely, the greater chord sublends the grealer arc;
the arcs being always supposed lo be less than a semi-circumference.

Let the arc AH be greater than

"
the arc AD, and draw the chords 7 .
AD, AH, and the radii CD, CH :
the two sides AC, CH, of the tri- < E 0 o
angle ACH are equal to the two
sides AC, CD, of the triangle :
X ——

ACD; the angle ACH is greater
than ACD; therefore (Book I., Prop. XI.), the third side, AH, is
greater than the third side, AD ; therefore, the chord which subtends
the greater arc is the greater.

Conversely, if we suppose the chord AH greater than AD, we
conclude from the same triangles that the angle ACH is greater than
ACD, and, therefore, that the arc AH is greater than AD,

ScroriuM. The arcs here treated are less than the semicircumfer-
ence. If they were greater, the reverse property would exist in them ;
as the arc increased, the chord would diminish, and conversely ;
thus, the arc AKBD being greater than AKBH, the chord AD of the
first is less than the chord AH of the second.

PROPOSITION VI.

THEOREM.

The diameter, GH, perpendicular to a chord, AB, divides this chord
and also the arcs AGB, AHB, which it sublends, into fwo equal paris.
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Let C be the centre of the circle, and D the point in which the diam~
eter HG meets the chord AB. The radii CA, CB, considercd with
regard to the perpendicular CD, are two equal oblique lines ; hence,
they lie equally distant from that perpendic-

H
ular (Book I., Prob. XVIIL., Cor. 3) ; hence
AD==DB, or the chord AB is bisected at D. :
Again, as we have shown that CG is per-
pendicular to AB at its middle point, every < N
point of the perpendicular must be equidis- A
G

tant from A and B. Now, G is one of those *
points ; therefore the chords GA and GB are
equal ; hence, the arcs GA and GB are also
equal : or the arc, AGB, is bisected at the point G. In like manner
we may show that the arc AHB is bisected at the point H.

ScrHorruM. The centre, C, the middle point, D, of the chord AB,
and the middle points, G and H, of the arcs subtended by this
chord, are four points situated in the same line, perpendicular to the
chord. Now, two points determine a straight line ; therefore, every
straight line which passes through two of the points mentioned,
must necessarily pass through the third, and will be perpendicular to
the chord.

It follows, also, that #%e perpendicular, drawn fo a chord at ils middle
point, will pass through the centre and through the middle points of the
arcs subtended by that chord. Also, the geometric locus of the middle
points of a system of parallel chords is the diameter perpendicular lo those
chords.

PROPOSITION VII.
THEOREM.

. Through three given points, A, B, C, nol in a straight line, one circum-
Jerence may always be made lo pass, and but one.

We are to prove that there is one point, and only one, equally dis-
tant from the three points, A, B, C.

Draw AB, BC, and bisect those straight
lines by the perpendiculars DE, FG. These
lines, DE and FG, being perpendicular
respectively to two lines, AB and BC,
which meet, will meet each other in a
point, O (Book I., Prop. XXV., Cor.).

And, moreover, since this point, O, lies
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in the perpendicular DE, it is equally distant from the two points A
and B (Book I., Prop. XVIIL. ) ; and since the same point, O, lies in
the perpendicular FG, it is also equally distant from the two points
B, C; therefore the three distances, OA, OB, OC, are equal ; there-
fore the circumference described from the centre O, and with the
radius OB, will pass through the three given points, A, B, C.

We have now shown that one circumference may always be made
to pass through three given points, not in a straight line ; it may also
be proved that only one cu‘cumference can be made to pass through
these points.

Tor, if there were a second circumferenice passing -through them,
its centre, being cqually distant from A, B, and C, must be at the
same time in the two lines DE, FG. Now, two straight lines cannot
cut each other in more than one point ; therefore, there is only one
circumference which can pass through three given points.

Scuorium. This theorem may be enunciated thus : Z%ree points not
in the same straight line defermine a circumference.

Cor. Two circumferences cannot meet in more than two points;
for if they have three points common, they must have the same
centre, and form one and the same circumference.

PROPOSITION VIIIL

THEOREM.

Two equal chords of a circle are equally distant from llze cenire ; and
of two unequal chords, the less is the farther from the centre.

First.—Let the chord AB=DE ; bisect those chords by the per-
pendiculars CF, CG, and draw the radii CA,
CD.

In the right angled triangles CAF, CDG,
the hypothenuses, CA, CD, are equal ; and
the side AF, the half of AB, is equal to the
side DG, the half of DE ; hence, the triangles
are equal (Book I., Prop. XIX.), and CF
is equal to CG: therefore, the two equal
chords, AB, DE, are equally distant from
the centre. ’ '

Second.—Let the chord AH be greater than DE.  The arc AKH
will be greater than the arc DME (Prop. V.) ; on the arc AKH take
the part ANB = DME, draw thé chord AB, and let fall CF, perpen-
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dicular to this chord, and CI, perpendicular to AH. It is evident
that CF is greater than CO, and CO greater than CI (Book I., Prop.
XVIL) ; much more, therefore, is CF > CL

But CF = CG, since the chords AB, DE, are equal ; hence, we
have CG > CI : therefore, of two unequal chords, the less is the
farther from the centre,

PROPOSITION IX.

THEOREM.

The perpendicular, BD, drawn to the radius, CA, af ils extremity, A,
is a langen! to the circumference.

For, every oblique line, CE, is longer than the perpendicular, CA
(Book II., Prop. XVIL ) ; therefore the
point E is outside of the circle ; there-
fore the line BD has no point but A
common to it and the circumference ;
hence, BD is a tangent (Def. 8).

Reciprocally. The radius, CA, drawn
to the point of contact of the tangent, BD, g
is perpendicular lo the langent.

For all the points of the tangent, BD, except the point A, are ex-
terior to the circumference ; hence, the radius CA is the shortest
line which can be drawn from the centre to the tangent, and is,
therefore, perpendicular to it.

B A E
Q

Cor. 1. Through a point, A, of a circumference, one langent can
always be drawn lo this circumference, and but one.

Cor. 2. Ewery langent is parallel to the chords which are bisected by the
diameter through the point of conlact, and two langents at the extremilies
of the same diameter are parallel.

Cor. 3. Al the straight lines ata gtven distance from a grven point,
are langent lo a circumference of which the given point is the centre and
the given distance is the radius.

PROPOSITION X.

THEOREM,

Two parallels, AB, DE, intercept equal arcs, MN, PQ, on the circum-
Sference, ’
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There may be three cases. b

First.—If the two parallels are secants, D
draw the radius CH perpendicular to the A
chord MP; it will be, at the same time,
perpendicular to its parallel NQ (Book 1.,
Prop. XXIIIL.) ; therefore the point H will
be at once the middle of the arc MHP, and
of the arc NHQ (Prop. VL) ; therefore we
shall have the arc MH = HP, and the arc NH = HQ : from this
results MH — NH = HP — HQ, in other words, MN = PQ,

Second. —When, of the two parallels, AB, DE, one is a secant, and
the other a tangent ; draw the radius CH at the point of contact, H.
This radius will be perpendicular to the
tangent DE (Prop. IX.), and also to its P B
parallel, MP. But since CH is perpendic- 4 73f P D
ular to the chord MP, the point H is the
middle of the arc MHP ; therefore the arcs

H

MH, HP, included bctween the parallels ¢
AB, DE, are equal.
Third.—If the two parallels, DE, IL, are
T X L

tangents, the one at H, the other at K, then
H and K must be the two extremities of a diameter ; and therefore
the arc HMK = HPK : each one of these arcs being a semi-circum-
ference.

DEFINITIONS.
Two points which are situated on the same perpendicular to a
straight line, and at equal distances from the foot of the perpen-

dicular, are said to be symmetrical points, with reference to the line,
The line is called an axis of symmetry, with reference to the points.

PROPOSITION XI.

THEOREM.

If two circum/ferences have a common point, A, situated withou! the line,
CO, whick joins the centres C and O, these two circumferences have another
common poini, B, whick is symmetrical with A with reference o this line
of centres CO.

Draw AD perpendicular to CO, and produce it until DB = AD.

- et T S ke R
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Join OA, OB, also CA, CB. Since A
DB = AD the oblique line OB =
OA. Hence, the circumference
described from the centre O with
the radius OA, must pass through D ¢
the point B. In like manner CB
= CA, and the circumference de-
scribed from the centre C with ra-
dius CA, must pass through B,
The point B is then a second point common to the two circum-
ferences.

B

Cor. 1. AB will be a common chord of the two circumferences.
Therefore, when two circumferences cut eack other, the line which joins
thetr cenlres is perpendicular 1o thetr common chord al ils middle point.

Cor. 2. If two circumferences are langen! lo each other, the point of
conlact s situaled on the line of the centres. For otherwise the circum-
ferences would have a second common point, and consequently
would cut cach other.

ScrorLvm. Two circumferences can have fwo points in common,
that is, cut each other ; or have onze point common, that is, be tan-
gent to one another, externally or internally ; or, finally, have 7o
point common, that is, be entirely exterior to one another, or one
interior to the other. Their possible relative positions are therefore
Jfve in number.

PROPOSITION XII.

THEOREM.

If two circumferences cuf each other, the distance befween their centres is
less than the sum of their radit, and grealer than the difference.

Tor, join the centres, C and D, to one of the points of intersection,
A. We thus form a triangle in which the line of centres, CD, and

AN

the radii DA and CA are the three sides, Hence it follows that the
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side CD < CA + DA, and also CD > DA — CA (Book I., Prop.

IX., and Cor.).
PROPOSITION XIIIL

THEOREM.

If two circumfercnces louch cach other externally, the distance, CD, be-
tween thetr cenlres, is equal lo the sum of therr radii, CA AD.

Let A be the point of contact. It must
be situated on the line joining the centres
(Prop. XI., Cor. z). We have, there-
fore, CD = CA + AD,

PROPOSITION XIV,

THEOREM.

If one circumference louches another inlernally, the distance, CD, &e-
tween heir cenlres is equal 1o the difference of their radii, CA, AD.
x

The point of contact, A, is on the line of m
centres (Prop. XI., Cor. 2z). We have,
w

therefore, DC = DA — CA.

ScuorLivM. If two circumferences are tangent externally or in-
ternally, they have a common tangent at the point of contact.

PROPOSITION XV,

THEOREM.

If two circumferences are wholly exterior fo eack other, the distance be-
tween their centres is greater than the sum of the radil.

For, draw the line of centres, CD, '
cutting the circumferences in A and B
respectively. We then have
CD =CA + AB + DB.
Therefore, CD > CA + DB. ,
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PROPOSITION XVI.
" THEOREM.

If two circumferences have no point in common, and one lics within the
other, the dislance between the centres is less than the difference of their radii.

Let the line CD, which joins the centres, cut the
two circumferences in the points A and B respect-

ively. We then have
:  CA=CD+ DB+ BA; ~ A

hence, CA > CD + DB,
and, therefore, CD < CA — DB.

Scuorium. If the distance between the centres of two circles is
nothing, that is, if they are described from the same centre, they are
said to be concentric.

Cor. 1. The reciprocals of the preceding theorems with regard to
the positions of two circumferences are true. They may be enun-
ciated as follows :

1. If the distance between the cenires is less than the sum of the radi,
and greater than the difference, the two circumferences cut each other.

2. If the dislance between the cenires is equal to the sum of the radi, the
two circumferences will louck eack other externally.

3. If the distance between the centres is equal lo the difference of the
radit, one circumference will louch the other internally.

4. If the distance between the centres is greater than the sum of the
radii, the circumferences have no point in common, and are exterior lo
each other. :

5. If the distance between the centres is less than the difference of the radi,
the circumferences have no point in common, and one lies within the other.

Cor. 2. All circles which have their centres on the right line CD
(See Fig., Prop. XIV.), and which pass through the point A, are tan-
gent to each other ; they have only the point A common. And, if,
through the point A, the straight line AE be drawn perpendicular to
CD, it will be a common tangent to all the circles.

PROPOSITION XVIIL,

THEOREM.

In the same circle, or in equal circles, equal angles, ACB, DCE, having
their vertices at the centre, infercept equal arcs, AB, DE, on the circum-
Serence, .



BOOK 1II. 63

Conversely, if the arcs AB, DE, are equal, the angles ACB, DCE,
will also be equal.

First.—Since the angles ACB and DCE may be placed the one
upon the other, and since their sides are equal, it is plain that the
point A will fall on D, and the
point Bon E. But, in that case,
the arc AB must also fall on the
arc DE ; for if they did not exactly
coincide, there would be, in the
one or the other, points unequally
distant from the centre; which is im-
possible ; hence the arc AB = DE.

Second.—If we suppose AB = DE, the angle ACB will be equal to
DCE; for, if these angles are not equal, suppose ACB to be the
greater, and let ACI be taken, equal to DCE. From what has just
been shown, we shall have AI = DE : but, by hypothesis, the arc
AB = DE ; therefore we should have AI = AB, or a part equal to
the whole, which is absurd : therefore the angle ACB = DCE.

———t—

PROPOSITION XVIIL

THEOREM.

In the same circle, or in equal circles, if tfwo angles at the centre, ACB,
DCE, are lo each other as two whole numbers, the infercepled arcs, AB,
DE, will be to each other as the same numbers, and we shall have

the angle ACB : the angle DCE : : the arc AB : the arc DE.

Suppose, for example, that the angles ACB, DCE, are to each
other as 7 is to 4 ; or, which is the same thing, suppose that the angle

\
i
'

i
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i

M, which may serve as a common measure, is contained seven times
in the angle ACB, and four times in DCE,

The seven partial angles ACm, mCn, nCp, etc., into which ACB is
5 .
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divided, being each equal to any one of the four partial angles into
which DCE is divided ; each of the partial arcs Am, mn, np, etc.,
will be equal to each of the partial arcs Ax, ay, etc. (Prop. XVIL);
therefore, the whole arc AB will be to the whole arc DE, as 7 is to 4.

But the same reasoning would evidently hold good if] in place of 7
and 4, we had any other numbers whatever ; hence, if the ratio of
the angles ACB, DCE, can be expressed in whole numbers, the arcs
AB, DE, will be to each other as the angles ACB, DCL.

Scuorium. Conversely, if the arcs AB, DE, are to each other as
two whole numbers, the angles ACB, DCE, will be to each other as
the same whole numbers, and we shall have ACB : DCE :: AB : DE;
for the partial arcs Am, mn, etc., Dx, xy, etc., being equal, the par-
tial angles ACm, mCn, etc., DCx, xCy, etc., will also be equal.

PROPOSITION XIX.

THEOREM.

Whatever be the ratio of the two angles ACB, ACD, these fwo angles
will always be fo eack other as the arcs, AB, AD, inlercepted between their
sides and described from f/zez'r verlices, as centres, with equal rad:i.

Let the less angle be placed on the greater If the proposition is
not true, the angle ACB will be
to the angle ACD as the arc g —

ABis to an arc greater or less
than AD. Suppose this arc
to be greater, and let it be rep- X
resented by AO ; we shall thus oo M
DI
have :
The angle ACB : angle ACD :: arc AB : arc AO.

Next, conceive the arc AB is divided into equal parts, each of which
is less than DO ; there will be at least one point of division between
Dand O: letI be that point ; and join CL "The arcs AB, Al will
be to each other as two whole numbers, and we will have, by the
preceding theorem :

The angle ACB : angle ACI : : arc AB : arc AL

Comparing these two proportions with each other, and observing
that the antecedents are the same, we conclude that the consequents’
are proportional, and thus we find B

The angle ACD : angle ACI : : arc AO : arc AL
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But the arc AO is greater than the arc Al ; hence, if this propor-
tion be truc, the angle ACD must be greater than the angle ACI;
on the contrary, however, it is less ; hence, the angle ACB cannot be
to the angle ACD as the arc AB is to an arc greater than AD.

By a process of reasoning entirely similar, it may be shown that
the fourth term of the proportion cannot be less than AD ; hence it
is AD itself, and therefore we have,

Angle ACB : angle ACD :: arc AB : arc AD.

Cor. Since the angle at the centre of a circle, and the arc inter-
cepted between its sides, have such a connection that when one of
them increases or diminishes in any ratio whatever, the other in-
creases or diminishes in the same ratio, we are authorized to estab-
lish the one of those magnitudes as the measure of the other, provided
we lake as unit-angle hé angle at lhe centre which inlercepls on the circum-
Jerence the arc chosen as unil-arc ; and we shall henceforth assume in
this sense, that coery angle at the centre has jfor tts measure the arc in-
lercepted between ifs sides. It is only required that, in the comparison
of angles with cach other, the arcs which serve to measure them be
described with equal radii, as all the foregoing propositions imply.

Scuorium 1. It appears most natural to measure a quantity by a
quantity of the same species; and upon this principle it would be
convenient to refer all angles to the right angle ; which, being made
the unit of measure, an acute angle would be expressed by some
number between o and 1 ; an obtuse angle by some number between
1 and 2. It has been found, however, more simple to measure
angles by arcs of a circle, on account of the facility with which arcs
can be made equal to given arcs, and for various other reasons. It
is easy, also, to obtain the direct measurement in rzgk/ angle units
through this indirect measurement by arcs, since, on comparing
the arc which serves as a measure to any given angle, with the fourth
part of the circumference, we find the ratio of the given angle to a
right angle, or its direct measure,

Scuorium 2. In order to facilitate the comparison of angles by
means of arcs, the circumference is divided into 360 equal parts, called
degrees ; each degree into 6o equal parts, called minutes ; and each
minute into 60 equal parts called seconds. Arcs are valued in degrees,
minutes, and seconds, of the circumference. Thus, we say an -arc of-
36 degrees, 15 minutes, 21 seconds, which we write, 36° 15" 21".
And we call an angle of 36° 15’ 21", the angle which intercepts be-
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tween its sides on any circumference described from its vertex or
centre an arc of 36° 15’ 21"

SchoLiuM 3. By repeating almost literally the demonstrations of
the preceding theorems, we can show that #wo secfors, ACB, ACD,
laken in the same circle, or in equal circles, are lo each other as the arcs
AB, AD, the bases of these seclors,

PROPOSITION XX.

THEOREM.

The inscribed angle BAD is measured by half the arc, BD, included be-
" fween ils stdes.

Let us first suppose that the centre of the cir-
cle lies within the angle BAD. Draw the di-
ameter AE, and the radii CB, CD. The angle
BCE, being exterior to the triangle ABC, is
equal to the sum of the two interior angles
CAB, ABC (Book 1., Prop. XXIX., Cor. 7);
but the triangle BAC being isosceles, the angle
CAB = ABC; hence, the angle BCE is double
of BAC. Since the angle BCE lies at the centre, it is measured by
the arc BE ; hence, BAC will be measured by the half of BE. Tor a
like reason, the angle CAD will be measured by the half of ED;
hence, BAC + CAD, or BAD, will be measured by the half of
BE + ED, or of BD.

Suppose, in the second place, that the centre,
C, lies without the angle BAD, then, drawing
the diameter AE, the angle BAE will be meas-
ured by the half of BE ; the angle DAE by the C
half of DE ; hence, their difference, BAD, will
be measured by the half of BE minus the half
of ED, or by the half of BD.

Therefore, every inscribed angle is measured
by half the arc included between its sides. D

A

B

Cor. 1. All the angles, BAC, BDC, etc., in-
scribed in the same segment, are equal; for
they are measured by the half of the same arc, B
BOC.
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Cor. 2. Every angle, BAD, inscribed in a
semi-circle, is a right angle ; for it is measured by
the half of the semi-circumference BOD, or the B
fourth part of the circumference. The same
thing may be shown in another way by a reference 0
to the Theorem 33, Exercises on Book I

Cor. 3. Every angle, BAC (Se Fig., Cor. 1), inscribed in a seg-
ment greater than a semi-circle is an acute angle, for it is measured
by the half of the arc BOC, less than a semi-circumference. And
every angle, BOC, inscribed in a segment less than a semi-circle is an
obtuse angle ; for it is measured by the half of the arc BAC, greater
than a semi-circumference.

Cor. 4. The opposite angles, A and C, of an inscribed quadrilater-
al, ABCD, are together equal to two right angles ; for the angle BAD
is,measured by half the arc BCD ; and the angle
BCD is measured by half the arc BAD ; hence, 3
the two angles BAD, BCD, taken together, are
measured by half the circumference ; hence, their
sum is equal to two right angles. D

This corollary may also be conveniently ex-
pressed as follows : Every angle, BAC (See Fig.,

Cor. 1), inscribed in one of the segments determined by the chord
BC, is the supplement of any angle, BOC, inscribed in the other seg-
ment determined by the same chord, BC.

PROPOSITION XXI.

THEOREM.

The angle, BAC, formed by a langent and a chord, is measured by half
the arc, AMDC, included between its sides.

From A, the point of contact, draw the D
diameter AD. The angle BAD is right
(Prop. IX.), and is measured by half the

semi-circumference, AMD ; the angle DAC °
is measured by the half of DC; hence,
BAD + DAC, or BAC, is measured by the
half of AMD plus the half of DC, or by half 5 e -

the whole arc, AMDC. In like manner it
may be shown that the angle CAE is measured by half the arc, AC,
included between its sides.
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PROPOSITION XXII.

THEOREM.

The angle, AOB, whose vertex, O, is within the circumference, is meas-
ured by half the arc, AB, included between ils sides, plus half the arc,
DC, included between their prolongations.

For, join DB. The angle, AOB, exterior
to the triangle, ODB, is equal to the sum of
the two interior angles, D and B (Book L.,
Prop. XXIX., Cor. 7). But D is measured
by half of the arc AB, and B by half the arc
CD (Prop. XX.). Hence, the angle AOB
is measured by the half of AB, plus the half
of CD.

PROPOSITION XXIII.

THEOREM.

The angle, AOB, whose vertex is withoul the circumference, and whose
sides are secants, is measured by half the greater arc, AB, infercepled be-
tween ils, sides, minus half the less arc, CD.

Join CB. The angle ACB, exterior to the
triangle OCB, is equal to the sum of the in-
terior angles, Oand B. Then the angle O
is equal to the difference of the angles ACB
and B.  But the angle ACB is measured
by half of AB, and the angle B by half of
CD. Hence, the angle O is measured by
the half of AB minus the half of CD.

B

Scuortum. This proposition is still true when one of the sides of
the angle is tangent to the circumference, also when both of them
are tangents ; and the demonstration is the same.

Cor. The arc, BAC, of the circumference, in which the angle CDB
is inscribed, is the Jocus of the vertices of the angles equal to CDB,
whose sides pass through C and B, and which lie on the same side
of CB with D.
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For, first, every angle inscribed in BAC has the same measure as
CDB, that is, half the arc CB; second, every

angle, CMB, whose sides pass through C and B, ¢ D A

and whpse vertex, M, lies within the segment, has N
a greater measure than half the arc CB (Prop.

XXIL); and, third, every angle CGB, whose J A

sides pass through C and B, and whose vertex lies
without the arc BAC, has a less measure than half
the arc CB (Prop, XXIIL),

PROPOSITION XXIV.

THEOREM.

If two opposite angles, ADC, ABC, of a quadrilaleral, are logether
equal 1o two right angles, this quadrilateral may be tnscribed in a circle.

Describe a circumference through the three
points A, D, C, and join AC. The angle
~ ADC will be measured by half the arc AMC;
hence, the angle ABC, being the supplement
of ADC, is equal to any one of the angles in-
scribed in the segment AMC. Hence, its vertex,
B, must be on the arc AMC (Prop. XXIIL, :
Cor.). Therefore, the circumference passing through A, D, and C,
passes also through B.

Cor. If the sum of two opposite angles of a quadrilateral is greater
or less than two right angles, the quadrilateral cannot be inscribed
in a circle.

- PROBLEMS- RELATING TO THE FIRST TWO BOOKS.

PROBLEM I

T divide the given straight line AB into two equal paris.

From the points A and B, as centres, with a radius greater than the
half of AB, describe two atcs cutting each other in D. The point D
will be equally distant from the points A and B. Find, in like
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‘manner, above or beneath the line AB, a second
point, E, equally distant from the points A and B;
through the two points D, E, draw the line DE:
it will bisect the line AB at the point C.

For the two points D and E, being each equally

T

distant from the extremities A and B, must both be &  [© B
in the perpendicular raised from the middle of AB

(Book 1., Prop. XVIIL, Cor. 2). But through two %n
given points only one stralght line can pass ; hence,

the line DE will itself be that perpendicular which divides the line
AB into two equal parts at the point C.

ScuoriuM. The problem, On a given line, AB, as diameler, describe
a circle, depends immediately on the above. For the first step is to
find the middle point of the line AB, which is the centre of the circle.

PROBLEM 1II.

At a given point, A, in the line BC, lo erect a perpendicular lo this line.

Take two points, B and C, at equal distances
from A ; then, from the points B and C, as centres,
with a radius greater than BA, describe two arcs
‘cutting each other in D ; draw AD, and it will be
the perpendicular required.

For the point D, being equally distant from
B and from C, belongs to the perpendicular erected at the middle
of BC; therefore, AD is that perpendicular.

D

A

Scxortum. If the point, P, were the extremity of the line, and if
the line could not be produced beyond it, then
a different construction must be employed.

Thus, from any point, 'C, taken without the B
line, with a radius equal to the distance CP, de-
scribe a circumference, and from D, where it
cuts AP, draw the diameter DE, and join EP; , A

it will be the perpendicular required (Prop. D

XX., Cor. 2).

PROBLEM IIL

From a given point, A, without the straight line BD, fo let fall a per-
pendicular to this line.
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From the point A, as a centre, and with a radius sufficiently

great, describe an arc, cutting the line BD at
the two points, B and D ; then mark a point,
E, equally distant from the points B and D,
and draw AE ; it will be the perpendicular re-
quired. .

For the two points A and E are each
equally distant from the points B and D ; there-
fore, the line AE is perpendicular to BD, at
its middle point.

[s ‘

Scuorrum. If the point P were opposite the extremity of the line

AB, or nearly so, and if AB could not be pro-
duced beyond this extremity, the following
construction may be employed.

From any point, A, of AB, with a radius
equal to its distance from P, describe an arc;
then, from a second point in AB, with its dis-
tance from P as a radius, describe another arc.
Join P with the other point of intersection of
these arcs, and this line will be the perpendic-
ular required (Prop. XI., Cor. 1).

PROBLEM 1V.

At the poinl A in the line AB, lo make an angle equal lo the given

angle, K.

From the vertex, K, as a centre, and with any radius, describe the
arc IL, terminating in the two sides of the angle; from the point A,

as a centre, and with a radius, AB,
equal to KI, describe the indefinite

arc BO ; then take a radius equal %
to the chord LI ; with which, from
K

the point B, as a centre, describe
an arc cutting the indefinite arc

BO in D; draw AD, and the angle DAB will be equal to the given

angle K.

For the two arcs, BD, LI, have equal radii and equal chords;
therefore, they are equal (Prop. IV.); therefore, the angles BAD,

IKL, measured by them, are equal.
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PROBLEM V.

To divide a given arc, or a given angle, into two equal paris.

First.—To divide the arc AB into two equal parts. From the
points A and B, as centres, and with the same
radius, describe two arcs cutting each other.in c
D; through the point D and the centre C draw
CD, it will bisect the arc AB in the point E. -

For, the two points C and D are each equally
distant from the extremities A and B of the
chord AB; therefore, the line CD is perpendic-
ular to the middle of this chord ; hence, it di-
vides the arc AB into two equal parts at the point
E (Prop. VL, part 2).

Second.—To divide the angle ACB into two equal parts, we first
describe the arc AB, from the vertex C, as a centre ; and bisect this
arc as above. It is plain that the line CD will divide the angle ACB
into two equal parts.

ScHorLiumM. By the same construction we may divide each of the
halves, AE, EB, into two equal parts. Thus, by successive subdi-
visions, we may divide a given angle, or a given arc, into four equal
parts, into eight, into sixteen, and so on.

PROBLEM VI

Through a grven goint, A, to draw a parallel fo the given line BC.

From the point A, as a centre, and with a radius sufficiently great,
describe the indefinite arc EO ; from the
point E  as a centre, with the same

radius, describe the arc AF; take /\/ /./'/ \
ED = AF, and draw AD; this will be udl -

the parallel required.

For, joining AE, we see that the alternate angles AEF, EAD,
measured by equal arcs, are equal; therefore, the lines AD, EF, are
parallel (Book L., Prop. XXV.).
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PROBLEM VII.

Two angles, A and B, of a triangle, being given, fo find the third.

Draw the indefinite line DEF. At any point, as E, make the
angle DEC = A (Prob. IV.), and o '
the angle CEH = B ; the remain-
ing angle, HEF, will be the third

angle required ; for, these three H
angles taken together are equal to
two right angles, D E by

PROBLEM VIII.

Two sides, B and C, of a lriangle, and the angle A, whick they contain,
being given, lo describe the triangle.

Having drawn the indefinite line DE, .
make, at the point D, the angle EDF, B E
equal to the given angle A (Prob. IV.); e

then take DG = B, DH = C, and draw
GH : DGH will be the required triangle
(Book 1., Prop. VIL)

PROBLEM IX.

One side and two angles of a Iriangle being given, lo describe the
triangle.

The two given angles will be either both adjacent to the given side,
or the one adjacent, and the other opposite : in the latter case, find
the third angle (Prob. VIL), and the two @
adjacent angles will thus be known ; draw H
the straight line DE, equal to the given side ;

" at the point D make an angle, EDF, equal to
one of the adjacent angles, and, at E, the P
angle DEG, equal to the other : the two lines DF, EG, will cut each
other in H, and DEH will be the triangle required.

ol

E
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PROBLEM X.

The three sides, A, B, C, of a lriangle being given, to describe the
triangle.

Draw DE, equal to the side A. From ¥
the point E, as a centre, with a radius |
equal to the second side, B, describe an

rc; from D, as a centre, and with a
radius equal to the third side, C, describe
another arc cutting the former in F;
draw DF, EF, and DEF will be the tri-
angle required. ¢

6 Y

Scuorium. If one of the sides were greater than the sum of the
other two, the arcs would not cut each other ; and the solution will
be possible only when the sum of two sxdes, however taken, is greater
than the third side.

PROBLEM XI.

Two sides, A and B, of a Iriangle, and the angle C, opposite to the
side B, being given, lo describe the triangle.

There are two cases.

First.—When the angle, C, is right or
obtuse, make the angle, EDF equal to
the angle C; take DE = A; from the

point E, as a centre, with a radius equal *

to the given side B, describe an arc, cut- o
ing DF in F; draw EF; then DEF will A

be the triangle required.

In this first case, the side, B, must be
greater than A, for the angle C, being
right or obtuse, is the greatest angle of the triangle ; and the side
opposite to it must, therefore, also be the greatest.

A

-
P

Second.—If the angle, C, is acute,

E
and B greater than A, the same con-
struction will again apply, and DEF
will be the triangle required.
D y
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But, if the angle, C, is acute, and the
side B less than A, then the arc described
from the centre, E, with the radius EF=B, ¢
will cut the side DF in two points, F B
and G, lying on the same sside of D ; there-
fore, there will be two triangles, DEF,
DEG, either of which will satisfy the prob-

lem.
D

¥ ———8&

SchorLtum. The problem would be impossible in all cases, if the
side B were less than the perpendicular let fall from E on the line
DF. '

PROBLEM XII !

The adjacent sides, A and B, of a parallelogram, and the angle, C,
whick they conlain, being given, lo describe the parallelogram.

Draw the line DE = A; at the point D, make the angle
FDE =C; take DF = B; de-
scribe two arcs, one from F, asa [ by @
centre, with a radius FG = DE,
the other from E, as a centre, with
a radius EG = DF; to the point

G, in which these two arcs cut D E
each other, draw FG, EG ; DEGF | , f
will be the parallelogram required. 5 (o

For, by construction, the oppo-
site sides are equal ; hence, the figure described is a parallelogram
(Book I., Prop. XXXIL.), and it is formed with the given sides and
the given angle.

Cor. If the given angle is right, the figure will be a rectangle ; if,
further, the sides are equal, it will be a square.

PROBLEM XIII.

To describe a circum/ference through three given points, A, B, C.

Join AB, BC, or suppose them to be joined. The centre of
the required circle must be in a perpendicular to AB at its middle
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point, and also in a perpendicular to BC
at its middle point.

Therefore, bisect AB and BC by the
perpendiculars DE, FG (Prob. 1.) ; the
point O, where these perpendiculars
meet, will be the centre sought. The

"centre being -known, we can describe
the circumference with one of the equal
lines, OA, OB, OC.

Scuorium. The above construction serves for describing a circum.
ference in which a given triangle, ABC, shall be inscribed. Also,

70 find the cenlre of a given circle or arc, we take upon it three points,
A, B, C, and apply the above solution. ’

PROBLEM XIV.

Through a given point, lo draw a langent lo a given circle.

D A

If the given point, A, is in the circumference,
draw the radius CA, and draw AD perpendicular
to CA ; AD will be the tangent required (Prop.
IX.).

If the point A lies without the circle : suppose the problem solved,
and AB to be a tangent drawn from A to the circle, and B the point
of contact. Since the tangent is perpendicular
to the radius at its extremity, CBA is a right
angle, and hence the point B must lie on the
circumference, which has AC for its diameter.
Hence, to solve the problem, we have the fol-,
lowing construction : Join A, and the centre
C, by the straight line AC. On AC, as di-
ameter, describe a circumference intersecting
the given circumference in B: join AB; this
will be the tangent required. Since the cir-
cumference on AC cuts the given circle in
two points, there will be two tangents from A.
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ScHoLwuM. Two langenis, AB, AD, can be drawn fo a given circle
Jrom a point, A, without. These are equal, and ithe straight line whick
Joins the point A with the centre of the circle, bisects the angle BAD of
the langenls, and also the angle BCD of the two radii o the poinis of
conlacl.

For the right angled triangles CBA, CDA, have the hypothenuse
CA common, and the sidle CB= CD; hence, they are equal;
hence, AD = AB, angle CAD = CAB, and also angle ACB = ACD.

PROBLEM XV.

T inscribe a circle in a given triangle, ABC.,

Suppose the problem solved. Since AB and AC are tangents to
the inscribed circle, the centre, O, must lie on the bisectrix, AO, of
the angle A, of the triangle (Prob.
XIV., Schol.). So, also, it must lie
on the bisectrix, BO, of the angle B.

Hence the construction:  Bisect the
angles A and B by the lines AO and
BO (Prob. V.). These lines will meet
(Book I., Prop. XXV., Cor. 1) in a
point, O, equally distant from the thrce ,
sides AB, AC, BC (Book I., Prop. XXI.). If, then, from O, perpen-
diculars, OD, OF, OE, be drawn to the sides of the triangle, these
perpendiculars will be equal, and the circumference described from
the point O, as centre, with OD as radius, will be tangent to the
three sides (Prop. IX.).

Schorium 1. The point O, being equally distant from the sides
BC, AC, lies also on the bisectrix of the angle C; hence, ke three
bisectrices of the angles of a triangle meel in the same point.,

Scuortum 2. We sce, in like manner, that the bisectrices of the ex-
terior angles of a triangle intersect each other in the points E, F, G,
each one of which lies on one of the bisectrices of the interior angles.
Each one of these points, then, is equally distant from the sides of
the triangle, and each is the centre of a circle which is tangent to one
of the sides of the triangle, and to the prolongation of the two other
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sides. These three circles are called the escribed circles of the tri-
angle,

G

There are, then, in general, four circumjerences langent lo lhree given
siraight lines which intersect so as to_form a Iriangle.

PROBLEM XVIL.

Ona given straight line, AB, fo describe a segment of a circle whickh
shall conlain a given angle ; that is, a segment all the angles tnscribed
in whick shall be equal to a given angle.

At the point B make the angle ABF, equal to the given angle
(Prob. IV.). Then, if a circle be described to touch BF in B, and
to pass through A, the segment AMB of
that circle will be the segment required.

For, the angle ABF, formed by a tan-
gent and a chord, will be measured by half 0
the arc AB (Prop. XXI.), and any angle
inscribed in AMB will also be measured by
the half of AB (Prop. XXIIL, Cor.). To
find the centre of this circle draw BO per-
pendicular to EB, and GO perpendicular.
to ABatits middle point. The point of intersection, O, of these per-
pendiculars is the centre of the circle required (Props. IX. and VL. ).
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With the centre O and radius OA or OB, describe a circle 5 it will
touch BE at B and pass through A, and, therefore, the segment
AMB contains an angle equal to the angle ABF, that is, to the given
angle.

PROBLEM XVII.

To draw a common langent fo two given circles.

Let the centres of the circles be C and O.

First. —With centre O and radius OD, equal to the difference of
the radii OA and CB of the given circles, describe a circle. From the
centre C, draw a tangent, CD, to this circle, touching it in D. Join

¥

OD, and let it be produced through D to meet the given circumfer-
ence whose centre is O, in the point A. Through C draw CB, paral-
lel to OA, and join AB. AB will be tangent to both circles.

For, DA is, by construction, equal and parallel to CB; hence, AB
is parallel to CD. But, CD is perpendicular to OA, since it touches
the circle at D ; hence, ABDC is a rectangle, and AB is perpendicular
to the radii OA and CB, and is therefore tangent to both circles.

The construction shows that \there are two exterior common tan-
gents, since two tangents can be drawn from C to the circumference
whose radius is OD. The problem is always possible unless one of
the circumferences is interior to the other.

Second. —With centre O, and radius OG, equal to the sum of
the radii of the given circles, describe a circle. From the centre C,
draw a tangent.to this circle, touching itat G. The remainder of the
construction is the same as in the first case ; EF will be tangent to

both circles, )
6
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There are two solutions, also, in this case, the two tangents being
called interior tangents. The problem is impossible in this case if
the two circles cut each other.

ScuoLium 1. Two circles which are wholly outside one another
have four common tangents, two exterior and two interior.

Two circles which touch exter-
nally have three common tangents,
two exterior and one interior.
Two circles which intersect one an- /°
other have two common tangents which
are exterior.
Two circles which touch internally have one com-
mon tangent. ‘
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Where one of the circles is wholly inside the other, they have no
common tangent.

Schorium 2. It is evident (Prob. XIV., Schol.) #kaf the two exterior
langents are equal, and, also, the fwo interior langents are equal, and
the two interior and the fwo exlerior inlersect respectively on the line of the
cenires of the circles, and this line bisects their angles.  If the circles are
equal, the exterior tangents are parallel.

PROBLEM XVIIL

T% find the numerical ratio of fwo given siraight lines, AB, CD, pro-
vided that these two lines have a common measure.

From the greater line, AB, cut off a part equal to the less, CD, as
many times as possible : for example, twice, with the remainder, BE,

From the line CD cut off a part equal to the remainder,
BE, as many times as possible, once, for example, with the
remainder, DF.

From the first remainder BE, cut off a part equal to the ¥
second remainder, DF, as many times as possible, with the
remainder, BG.

From the second remainder, DF, cut off a part equal to
the third, BG, as many times as possible.

A O

]

Continue thus until you have a remainder which is con- +E.
tained exactly a certain number of times in the preceding g
one. L

Then this last remainder will be the common measure of
the proposed lines ; and regarding it as unity we shall easily find the
values of the preceding remainders ; and at last, those of the two pro-
posed lines, and, hence, their ratio in numbers.

For example, if we find GB to be contained exactly twice in FD,
BG will be the common measure of the two proposed lines. If we
make BG = 1, we shall have FD = 2 ; but EB contains FD once
plus GB; therefore, EB = 3; CD contains EB once plus FD;
therefore, CD = 5; and, lastly, AB contains CD twice plus EB;
therefore, AB = 13 ; therefore, the ratio of the two lines AB, CD,
is that of 13 to 5.  If the line, CD, was taken for unity, the line AB
would be 4 ; and if the line AB was taken for unity, the line CD
would be .

ScroLuM, The method which has.just been explained is the same
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as that prescribed by arithmetic for finding the common divisor of
two numbers ; it needs, therefore, no other demonstration.

It is possible that, how far soever we continue the operation, we
may never find a remainder which is contained an exact number of
times in the preceding. In that case the two lines have no common
measure, and are sncommensurable. An instance of this will be seen
hereafter in the ratio of the diagonal to the side of the square. In
such cases, then, the exact ratio in numbers cannot be found.

The Ratio of Incommensurables is the limiting term of a series of
ratios expressed in numbers, (See Introduction.)

PROBLEM XIX.

Two angles, A and B, being given, to find their common measure, if
they have one, and, by means of i, their ratio in numbers.

Describe, with equal radii, the arcs CD, EF, to serve as measures
for the angles ; proceed then in the comparison of the arcs CD, EF,
as in the preceding problem ; for an
arc may be cut off from an arc of the
same radius, as a straight line from a
straight line. )

We shall thus arrive at the common € D
measure of the arcs CD, EF, if they ° x5 ¥
have one, and thence to their ratio in ’
numbers. This ratio will be the same as that of the given angles
(Prop. XVIL); and if DO is the common measure of the arcs,
DAOQ will be that of the angles.

ScHorium. It may happen, also, that the arcs compared have no
common measure. In that case, the remark with regard to Incom-
mensurables in the Scholium of the previous proposition, applies.

——H e — B

GEOMETRICAL ANAILYSIS.

The words Analysis and Synthesis are used in Geometry in a spe-
cial sense. Synthesis is a mode of reasoning which begins with
some established truth or something given, and ends with some new
result, with something required either to be done or to be proved.
Synthesis leads from principles to consequences.

Analysis, or the method of resolution, is the reverse of Synthesis,
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or a method of reasoning from consequences to principles. The
course of consecutive deduction is the same in both.

The synthetic method is pursued by Legendre as by Euclid in his
elements of Geometry. They commence with certain assumed prin-
ciples and definitions, and proceed to the solution of problems and
the demonstration of theorems by successive inferences from them.
The student has only to follow the reasoning by which the successive
truths are established, without regard to the method of the discovery
of these truths.

In Geometrical Analysis, we begin with assuming the truth of
some theorem, or the solution of some problem ; that is, assuming
that what is required to be done has been effected ; and we deduce
from this assumption consequences which we can compare with
known results, and thus test the truth of our assumption.

As Leslie has expressed it: ‘‘Analysis presents the medium
of invention, while Synthesls naturally directs the course of instruc-
tion.” :
It is impossible to-indicate any general and certain method for the
demonstration of new theorems, or for the solution of problems by
Analysis.  Yet certain steps may be given which will render the in-
vestigation of new propositions easy and natural. These do not con-
stitute so much a direct method of solution as a convenient way of
searching for a suggestion. We give these steps separately for theo-
rems and problems, remarking that the Geometrical Analysis is more
extensively useful-in discovering the solution of problems than for in-
vestigating the truth of theorems,

ANALYSIS OF THEOREMS.®

Assume that the Theorem is true.

Construct the figure and examine any consequences that result
from this assumption as a truth temporarily admitted, by the aid of
other known truths respecting the figure. If any one of these conse-
quences is known to be false, we have arrived at a reductio ad absur-
dum, which proves that the theorem is false. If a consequence can
be deduced which coincides with some result already established,
we start from this consequence, and endeavor, by retracing our steps,
to give a synthetical demonstration of the theorem. This retracing
our steps synthetically is essential, because a proposition may be
false and yet furnish consequences that are true,
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These directions are necessarily vague, however, as no certain rule
can be given by which we can combine our assumption with truths
already established. Nothing but experience, ingenuity, and a
ready recollection of these truths will here avail the student. Asan
example to illustrate the steps indicated, we give the following

THEOREM.

If two opposite sides of a parallelogram be bisected, and two lines be
drawn_from the poinis of bisection lo the opposite angles, these two lines
trisect the diagonal.

Let ABCD be a parallelogram of which the diagonal is AC., Let
AB be bisected in E, and DC in F; also let DE, FB, be joined,
cutting the diagonal in G, H. Then is
AC trisected in G and .

Assume the theorem to be truc; that
is, AG = GH = HC, and draw EX par-
allel to GH.

Now (Book I., Prop. XXXIIL), ED and P ¥ ¢
FB are parallel, and therefore EK = GH, being parallels intercepted
between parallels. And, hence, if the theorem. is true, EK = AG.
Therefore, the two triangles AGE and EKB are equal, as a con-
sequence of an assumption, as they have AE=EB, angle EAG=BLK
by reason of the parallels, and AG = EK by assumption.

Now, let us see whether these triangles are equal, from the known
relations of the parts of the figure.

We have AE=EB by construction, EAG=BEK, and ALG=IDBK,
by reason of the. parallels; hence, these two triangles are equal
(Book I., Prop. VIIL ), and so the consequence deduced from our
assumption agrees with previously established results.

We now retrace our steps and give the Syntkesis. Draw LK par-
allel to AC. The two triangles AGE and EKB are equal, hav-
ing AE = EB, and the angles adjacent to these sides equal. There-
fore, AG = EK. But EK = GH, being opposite sides of a paral-
lelogram. Hence, AG = GH. Similarly, by drawing through F a
line parallel to GH, and meeting DE, we can prove GH = HC.
Thercfore, AG = GH = HC, and the diagonal AC is trisected in G
and I.
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EXERCISES ON BOOK IIL

THEOREMS.

1. A line from a point, A, without a circle, to the centre, O, meets
the circumference in the points B and C. Show that AB is the
shortest line, and AC the longest line, which can be drawn from A
to the circumference. Prove, also, the same for a point, A, within
the circle.

2. Show that the shortest distance between two circumferences is
measured on the line which joins the centres : taking, first, the circles
exterior to each other ; and, second, one interior to the other.

3. The chord through a point, A, in a circle, which is perpen-
dicular to the radius through that point, is shorter than any other
chord which can be drawn through A.

4. If two equal chords cut each other, the parts of the one are
equal to the parts of the other respectively.

5. Conversely, if two chords which intersect each other have one
part equal in each, the two chords are also equal.

6. If two tangents to a circle intersect each other, the parts of
these tangents, from the point of intersection to the points of contact,
are equal ; and, also, the bisectrix of the angle of the two tangents
passes through the centre of the circle.

7. The sum of two of the opposite sides of a circumscribed quad-
" rilateral is equal to the sum of the two other opposite sides.

8. Prove the converse of Theorem 7. That is, if the sum of two
opposite sides of a quadrilateral is equal to the sum of the two other
opposite sides, then a circle tangent to three sides will be tangent to
the fourth.

9. The square and rhombus are the only parallelograms in which
a circle can be inscribed.

10. If three circles are tangent to each other externally, the tan-
gents drawn through the threce points of contact meet in one point.

11. If a circle be inscribed in a triangle, the distance from the
vertex of any angle to the points of contact of its sides is equal to the
semi-perimeter, minus the side lying opposite to this angle.

12. Suppose a circle, O, tangent to the two sides, AB and AC, of
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an angle, BAC, at the points B and C; then draw a tangent, DE,
to this circle, terminating in the two sides of the angle. Show that
the perimeter of the triangle ADE is constant, whatever point of the
arc BC we take as the point of contact of the tangent DE.,

13. Show that if in the above figure we join D and E with the
centre, O, the angle DOE is constant.

14. If through one of the points of intersection of two circumfer~
ences a line be drawn parallel to the line of centres, the sum of the
two chords intercepted on this parallel is double the distance of the
centres.

The preceding theorems can be demonstrated without using the theorems of
Book II. which relate to the measure of angles.
~_15. If two chords intersect on the circumference, the angle con-

tained by one of them and the prolongation of the other (called an
exscribed angle), is measured by half the sum of the arcs of the
chords.

16. If two triangles have their angles equal, and are inscribed in
the same circle, they are equal.

. 17. Three circumferences which pass respectively through the three
vertices of a triangle and cut each other on the sides, all meet in the
same point. .

18. The circle which passes through the vertex of a triangle and
through the adjacent feet of two perpendiculars, from the vertices on
the opposite sides, passes also through the point of intersection of
the perpendiculars.

19. The angles of the triangle formed by joining the three feet of
the altitudes of a triangle, are bisected by these altitudes. (Use one of
the circles described in the previous theorem, and the circle described
on one side as a diameter, and compare inscribed angles.)

20. If two chords, AB, CD, intersect each other in a circle, the
sum of the arcs, AC + BD, which they intercept on the circumference
is equal to the sum of the arcs intercepted by two diameters parallel
to these chords. '

21. If the three vertices of an equilateral triangle, ABC, be joined
to any point, P, of the circumscribed circle, by lines PA, PB, PC,
then the line of junction, PA, which crosses the triangle, is equal to
the sum of the other two. (Auxiliary Construction: On PA take
PD = PB, and join BD, in order to obtain triangles for comparison. )
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22. If, from the middle point, A, of an an arc, BC, two chords,
AD, AE, be drawn, which cut the chord BC in the points F and G,
the four points D, E, F, and G belong to the same circumference
(that is, DEFG is an inscriptible quadrilateral).

23. Through the point of contact of two circles, tangent externally
or internally, two straight lines are drawn which cut the two circum--
ferences in four other points; then, if the two points on the first
circle be joined, and the two points on the second also joined, these
chords of junction will be parallel.

24. If, from any two points in the circumference of a circle, there
be drawn two straight.lines to a point in a tangent to the circle, they
will make the greatest angle when drawn to the point of contact.

GroMeTrRIC Loct To BE DETERMINED.

" 1. Find the locus of all the points which are at a given distance
from a given point.

.2. Find the locus of all the points which are at a given distance
from a given straight line.

3. Find the locus of all the points at a given distance from a given
circumference. .

4. The locus of all the points, any one of which is equidistant
from two straight lines (parallel or intersecting).

5. The locus of all the points, any one of which is equidistant
from the circumferences of two equal circles.

6. The locus of the vertices of right angled triangles having the
same hypothenuse.

- 7. The locus of all the points, the sum of whose distances from
two intersecting straight lines is equal to a given line, is the perimeter
of a rectangle of which the two given lines are diagonals (See Book
I, Exercise 59).

8. Find the locus of the middle points of chords of a circle paral-
lel to a given straight line.

9. Find the locus of the middle points of chords equal to a given
line.

10. Find the locus of the middle points of chords of a circle which
pass through a given point. (Let the point be taken within the circle,
on the circumference, and exterior to it.)

B ——rerroeomeewsvenayTreci e §
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11. Find the locus of the extremities of lines of given length drawn
from every point of a given straight line parallel to a given line and
all in the same direction.

12. The same, when the parallels are drawn from every point of a
given circumference.

13. Two straight lines being given, from all the points of the first
perpendiculars are let fall on the second, and these perpendiculars are
prolonged until the parts prolonged are equal to the perpendiculars ;
find the locus of the extremities.

14. All the points of a straight line are joined with a given point,
and all these lines of junction are prolonged till the prolongations are
equal to the lines themselves ; find the locus of their extremities.

15. The same problem, taking a circle instead of a straight line.

16. Find the locus of all the points from which tangents of a given
length, equal to a given line, can be drawn to a given circle.

17. Find the locus of all the points of intersection of pairs of tan-
gents which make with each other an angle equal to a given angle.

18. The locus of the vertices of triangles having the same base and
their angles at the vertex equal to a given angle, is the arc of a seg-
ment of a circle containing the given angle, and constructed on the
base of the triangle as chord (See Prob. XVI.).

19. The locus of the centres of the inscribed circles of these same
triangles is the arc of a segment constructed on the base, and contain-
ing an angle equal to one right angle plus one half the given angle
at the vertex.

20. Find the locus of the points of intersection of the altitudes of
these same triangles.

21. Find the locus of centres of circles of given radius which divide
a given circumf2rence in half.

22. Find the locus of centres of circles which pass through two
given points, A and B.

23. Find the locus of the centres of circles which are tangent to a
given straight line at a given point.

24. Find the locus of the centres of circles tangent to a given circle
4t a given point.
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25. Find the locus of centres of circles of given radius tangent to a
given straight line.

26. Find the locus of centres of circles of given radius tangent to
a given circle.

27. Find the locus of the centres of circles tangent to two parallel
straight lines.

28. Find the locus of the centres of circles tangent to two inter-
secting straight lines.

29. An equilateral triangle being given, find the locus of all the
points, the distance of any one of which from one of the vertices of
the triangle is equal to the sum of its distances from the two other
vertices (.Se¢ Theorem, Exercise z1).

SoLutioN oF PrROBLEMS BY THE INTERSEcTION oF Locr

The method of intersection of loci is one that admits of very fre-
quent application in the solution of problems. When a point has
to be found which satisfies one condition, it gives, as we see above, a
locus. 'These problems are sometimes called /oca/ problems. When
a point has to be found which satisfies fwo conditions, the problem is,
if it is possible, determinate, and the point is the intersection of the
loci,-which are obtained by imposing each condition separately.
Thus, when a point is to be found at a given distance from two given
points, we find it at the intersection of two circles described from the
given points as centres, with the given distance asradii. These circles
being the loci of points at the given distance from the given points
respectively. Again, if a point is to be found equally distant from -
two given points, and, also, equally distant from two given straight
lines, this point must be at the intersection of the two loci which
arise from the solution of the local problems.

The only loci used in Elementary Plane Geometry are the straight
line and the circle.

Problems I., II., X., XIII, XIV., etc.,, are instances of the
method of intersections of loci.

The determinate problems which result from the thirty loci found
in the preceding exercises and in Book I., Prop. XVIIIL., and which
are obtained by the combination of these loci, two and two, are 435
in number, and are very easy to make.
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DETERMINATE PROBLEMS.

The solution of a problem in Elementary Geometry consists,

1. In indicating how the ruler and compasses are to be used in
making the construction required.

2. In proving that the construction so given is correct.

3. In showing when there is more than one solution, and in dis-
cussing the limitations which in some cases exist, within which alone
the solution is possible.

SoLuTiON OF PROBLEMS BY GEOMETRICAL ANALYSIS,

As has been stated in connection with the demonstration of
Theorems by Analysis, Geometrical Analysis is not so much a
method, as a way of searching for a suggestion. We assume that the
problem is solved, draw the figure, and deduce consequences from
this assumption, combined with truths and results already established.
Ifa consequence can be deduced which contradicts some truth al-
ready established, this amounts to a demonstration that our assump-
tion is inadmissible ; that is, the problem cannot be solved. If a
consequence can be deduced which coincides with some established
truth, we then endeavor, starting from this consequence, to retrace
our steps and give a synthetical solution of the problem.

We cannot prescribe any certain rule by which we are to combine
our assumption with previously established truths, so as to discover
the relation which gives a clue to the construction. This must de-
pend on the student’s familiarity with the truths previously estab-
lished, and his ingenuity in applying them. It will be seen,
however, that, in general, we proceed by successive substitutions ;
that is, we bring the proposed problem to depend on another, and
this on a third, etc., until we arrive at a problem whose solution is
known.

For example : Problem VI. is reduced to the problem previously
solved, of the construction of an angle equal to a given angle ; and
all the problems with reference to perpendiculars are reduced to
finding points equidistant from two given points; and the problem
of drawing a common tangent to two circles, is reduced to the draw-
ing a tangent to a circle from a point without. We add one or two
more instances of the solution of problems by analysis,
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(1.) ¢ is requived Jo draw a line whick shall pass through a given
poind, and make equal angles with two given inlersecting lines.

Let O be the given point, and AB, AC, the given lines..
Analysis.—Suppose the problem solved, and the line MON were
the line required ; and the angle M = angle N.

Then MAN would be an isosceles triangle of A
which MON is the base. And, therefore, MON

would be perpendicular to the bisectrix of the

angle MAN. Hence, beginning with this last - X 5
step, we have the following D B

Solution.—Bisect the angle MAN by the line
AD, and through O draw a perpendicular to AD, and prolong it to
meet the sides AB, and AC, in Mand N. MON will be the line
required, since it is plain it must make equal angles with AB and AC.

(2.) Regquired lo construct a triangle, given the angles, and the pe-
rimeler. .

Let C'C" be a line equal in length to the perimeter.

Suppose the problem solved, and BAC to be the triangle requn'ed
It follows, then, that AC'= AC and g
BC”= BC, and if lines be drawn connect- W
ing C with C' and with C", then these tri- X 4 o
angles CAC’' and CBC" are isosceles, and
the angle C'= {A, and C""= }B. We know, then, the side C'C",
and the angles C'and C”, and can construct the triangle CC'C”,
and then use it to construct BAC. Hence, the following

Solution.—Draw a straight line, C'C", equal to the perimeter, At
C’ and C", make the angles C' and C”, equal to one-half the given
angles A and B respectively. We get, thus, the triangle C'C"'C.
Erect perpendiculars to the middle points of C"C and C'C, and pro-
duce them till they meet the line C'C"” in B and A respectively.
Join CA, CB, then ACB is the triangle required.

EXERCISES IN THE SOLUTION OF DETERMINATE PROBLEMS,

. Erect a perpendicular to a given line at its extremity, without
prolongmg the line (by a construction dlffenng from that given in
the text).

2. Through a given point without a straight line, draw a second
straight line which shall make with the first a given angle,
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3. Draw a tangent to a circle, parallel to a given straight line.

4. Draw, in a circle, a chord of given length, passing through a
given point.

5. Draw, in a circle, a chord of given length, and parallel to a
given straight line.

6. Between two parallels draw a straight line of given length
passing through a given point.

7. Between two intersecting straight lines draw a straight line of
given length, and parallel to a given straight line.

8. With a given radius describe a circle which shall pass through
two given points.

9. With a given radius describe a circle which shall pass through
a given point, and be tangent to a given straight line.

10. With a given radius describe a circle which shall pass through
a given point, and be tangent to a given circle.

. 11. With a given radius describe a circle tangent to two given
straight lines.

12. With a given radius describe a circle tangent to a given straight
line and given circle.

13. With a given radius describe a circle tangent to two given
circles.

14. Describe a circle which shall cut three equal chords of given
length from three given straight lines.

15. With a given radius describe a circle which shall be at the same
given distance from three given points not in the same straight line.
16. Inscribe a circle in a given rhombus.

17. Find a point on a given straight line, at equal distances from
two given points.

18, Trisect a right angle.
19. Trisect a given straight line.

20. From the vestices of a triangle as centres, describe three
circles which shall touch each other, two and two.

21.  Find how many circles may be constructed equal to a given
circle, touching it, and tangent to each other, two and two,
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CoNSTRUCTION OF TriaNGLES, Etc.

22. Construct an isosceles triangle, given its base and adjacent
angle.

23. Construct an isosceles triangle, given its base and the radius
of the inscribed circle.

24. Construct a right angled triangle, given the hypothenuse and
one of the acute angles.

25. Construct a right angled triangle, given the hypothenuse and
the perpendicular let fall from the right angle on the hypothenuse.

26. Construct a right angled triangle, given the hypothenuse and
the radius of the inscribed circle.

27. Construct a triangle, given one side, an adjacent angle, and
the sum of the two other sides.

28. Construct a triangle, given one side, an adjacent angle, and
the difference of the two other sides.

29. Construct a right angled triangle, given the radius of the in-
scribed circle, and the radius of the circumscribed circle.

30. Construct a right angled triangle, given the radius of the in-
scribed circle, and one of the acute angles.

31. Construct a right angled triangle, given the radius of the
inscribed circle, and one of the sides containing the right angle.

32. Construct a right angled triangle, given the median and alti-
tude drawn from the vertex of the right angle.

33. Construct a triangle, given two sides and one altitude (two
problems).

34. Construct a triangle, given two sides and one median line
(two problems).

35. Construct a triangle, given the angles and the radius of the
circumscribed circle.

36. Construct a triangle, given the three medians.
37. Constructa triangle, given the middle points of the three sides.

38. Construct a triangle, given two vertices ; and, first, the point
of intersection of the medians ; second, the point of intersection of
the three altitudes; third, the point of intersection of the three

- bisectrices of the angles,
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39. Construct a triangle, given one vertex and the feet of two

altitudes. P
40. Construct a triangle, given the feet of the three altitudes.

41. Construct a triangle, given the centres of the three escribed
circles.

42. Construct a triangle, given the radius of the inscribed circle,
the radius of an escribed circle, and one angle.

43. Construct a triangle, given the angles and one altitude.
44. Construct a square, given its diagonal.

45. Construct a rhombus, given its two diagonals.

46. Construct a rectangle, given the diagonal and one side.

47. Construct a square, given the sum of its diagonal and side.

48. Construct a square, given the difference of its diagonal and
side.

49. Construct a trapezoid, given its four sides, and it being stated,
also, which two are parallel.

so. Construct a pentagon, given the middle points of its sides.
51. Construct a rectangle, given its perimeter and its diagonal.

52. Construct a rhombus, given one side and the sum of its
diagonals.

53. Construct a rhombus, given one of its angles and the radius
of the inscribed circle.
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THE PROPORTIONS OF FIGURES.

DEFINITIONS.

1. Those figures whose surfaces are equal, we shall call equivalent

Sigures.
Two figures may be equivalent, although very dissimilar: for ex-

ample, a circle may be equivalent to a square, a triangle to'a rect-
angle, etc.

The denomination of egual figures we shall reserve for such as
when applied the one to the other, coincide in all their points: of
this kind are two circles the radii of which are equal, two triangles of
which the three sides are equal, each to each, etc.

2. Two figures are simiar when they have their corresponding
angles equal, each to each, and their Aomologous sides proportional.

By ‘fomologous sides are meant those which have a corresponding
position in the two figures, or which are adjacent to equal angles.
These angles themselves are called komologous angles.

Two equal figures are always similar ; but two similar figures may
be very unequal.

3. In different circles similar arcs, similar sectors, similar segments
are those which correspond to equal angles at the centre.

A
Thus, if the angle A is equal to the angle ' 2
O, the arc BC will be similar to the arc DE, é
the sector ABC to the sector ODE, etc. D E -
B [}

4. The altitude of a parallelogram is the perpen- y - g
dicular, EF, which measures the distance between i E
the two opposite sides, AB, CD, taken as bases. £ F 8.

7
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5. The altitude of a triangle is the per- A
pendicular, AD, let fall from the vertex of .
an angle, A, on the opposite side, BC, taken
as a base,
B D ¢
) D_E ¢
6. The altitude of a trapezoid is the perpendicular,
EF, drawn between its two parallel sides, AB, CD.
W N

7. The area and the surface of a figure are terms which are nearly
synonymous. Area designates more particularly the superficial mag-
nitude of a figure, in so far as it is measured, or compared, with other
surfaces. '

N. B.—In order to understand this and the following books, it
will be necessary to bear in mind the theory of proportions, for which
we refer to the introduction. [See Introduction.] We shall make
only one observation, which is very important for fixing the true im-
port of propositions, and for dissipating all obscurity, whether in
their enunciation or their demonstration.

If we have the proportion A : B :: C : D, it is known that the prod-
uct of the extremes, A x D, is equal to the product of the mecans,
BxC. ) .

This truth is incontestible for numbers : we add that it is equally
so for magnitudes of any kind whatever, provided they be expressed,
or we may imagine them expressed, in numbers ; and this may always
be supposed. For example, if A, B, C, D are lines, we may con-
ceive that one of these four lines, or a filth, if requisite, serves for a
common measure for them all, and that it is taken for unity ; then
A, B, C, D will each represent a certain number of units, entire or
fractional, commensurable or incommensurable, and the proportion
between the lines A, B, C, D becomes a numerical proportion.

The product of the lines A and D, which is also named their
reclangle, is then nothing else than the number of linear units con-
tained in A, multiplied by the number of linear units contained in’
B; and it is easily conceived that this product can be, and must be,
equal to that which results similarly from the lines B and C.

The magnitudes A and B may be of one kind, for example, lines ;
and the magnitudes C and D of another kind, for example, surfaces;
in this case it will be necessary always to regard these magnitudes as
numbers; A and B will be expressed in linear units, C and D in
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superficial units, and the product, A x D, will be a number, as will
be the product Bx C,

In general, in every operation connected with proportions, the
terms of these proportions must be regarded as so many numbers,
each of the kind appropriate to its nature, and there will be no
difficulty in conceiving these operations and the consequences which
result from them.

We must call attention, also, to the circumstance that several of
our demonstrations are founded on some of the simplest rules of
algebra, which are themselves based upon familiar axioms : thus, if
we have A = B + C, and if ‘we multiply each member by the same
quantity, M, we conclude A x M =B x M+ C x M; likewise,
if v have A=B+ C,and D=E —C, and if we add together
these equations, cancelling +C and- —C, which destroy each other,
we shall have A + D =B + E, and so in other cases. All this is
sufficiently evident in itself; but in case of difficulty, it will be well
to consult the books on algebra, and thus to combine the study of
the two sciences,

PROPOSITION 1.

THEOREM.

Parallelograms whick have equal bases and equal allitudes, are
equivalent,

Let AB be the common base of the two parallelograms, ABCD,
ABEF. Since they are supposed to have the same altitude, the
upper bases, DC, FE, will both lie in > Ep F cx
one straight line parallel to AB. Now,
from the nature of parallelograms, we W \/ \/
have AD = BC, and AF =BE; for
the same reason we have DC = AB,
and FE = AB; therefore, DC = FE ; hence, if DC and FE be taken
away from the same line, DE, the remainders, CE and DF, will be
equal. It follows that the triangles DAF, CBE are mutually equi-
lateral, and consequently equal (Book L., Prop. XIL).

But if, from the quadrilateral ABED we take away the triangle,
ADF, there will remain the parallelogram ABEF ; and if, from the
same quadrilateral, ABED, we take away the triangle CBE, there
will remain the parallelogram ABCD ; therefore, the two parallelo-
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grams ABCD, ABEF, which have the same base and the same alti-
tude, are equivalent.

Cor. Every parallelogram, ABCD, is equivalent
to the rectangle, ABEF, which has the same base
and the same altitude,

PROPOSITION II.

THEOREM.

Every triangle, ABC, is the half of the parallelogram whick has the
same base and the same altitude.

Draw through the vertices A and C of ¥ y >
the triangle parallels, AD and CD, to the
opposite sides. We form, thus, a parallelo-
gram, ABCD, of same base, BC, and same
altitude with the triangle, ABC is the half 3 ¢
of ABCD.

For the triangles ABC, ACD are equal (Book I., Prop. XXXI,
Cor. ).

Cor. 1. Therefore, a triangle, ABC, is the half of the rectangle,
BCEF, which has the same base, BC, and the same altitude, AO ;
for the rectangle, BCEF, is equivalent to the parallelogram, ABCD.

Cor. 2. All triangles which have equal bases and equal altitudes
are equivalent.

PROPOSITION III

THEOREM.
Two rectangles of the same allitude are lo. eack other as thetr bases.

Let ABCD, AEFD, be two rectangles which have AD for their
common altitude ; they will be to each other as their bases, AB, AE.

Suppose, first, that the bases, AB, AE,
are commensurable, and are to each other,
for example, as the numbers 7 and 4. If
we divide AB into seven equal parts, AE will
contain four of these parts ; at each point of - b5 0
division, erect a perpendicular to the base,
and seven partial rectangles will thus be formed, which will be equal:
to each other, because all have the same base and thz same altitude.

D F [o]
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The rectangle ABCD will contain seven partial rectangles, while
AEFD will contain four ; therefore, the rectan;ie ABCD is to the
rectangle AEFD as 7 is to 4, or as AB is to AE. The same reason-
ing may be applied to any ratio as well as to that of 7 to 4 ; hence,
whatever be that ratio, provided its terms be commmensurable, we

shall have
ABCD : AEFD ::AB : AE.

Suppose, in the second place, that the bases,

AB, AE, are incommensurable : it is to be shown 7
that still we shall have
ABCD : AEFD :: AB : AE.
A EI0B

For, if this proportion is not true, the three first
terms remaining the same, the fourth term will be greater or less
than AE.

Suppose it to be greater, and that we have

ABCD : AEFD :: AB : AO.

Divide the line AB into equal parts less than EO. There will
be at least one point, I, of division between E and O; from this
point draw IK, perpendicular to AI; the bases AB, AI will be
commensurable, and thus, from what is proved above, we shall have

ABCD : AIKD :: AB : AL
But, by hypothesis, we have
ABCD : AEFD :: AB: AO.

In these two proportions the antecedents are equal; hence, the
consequents are proportional, and we find

AIKD : AEFD :: Al : AO.

But AO is greater than AI; hence, if this proportion be correct,
the rectangle AEFD must be greater than AIKD.; on the contrary,
however, it is less ; hence, the proportion is impossible ; and, there-
fore, ABCD cannot be to AEFD as AB is to a line greater than AE.

Exactly in the same manner it may be shown that the fourth term
of the proportion cannot be less than AE ; therefore, it is equal to
AE.

Therefore, whatever be the ratio of the bases, two rectangles,
ABCD, AEFD, of the same altitude, are to each other as their bases,
AB, AE. : . '
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PROPOSITION 1V.

THEOREM.

Any two rectangles, ABCD, AEGF, are /o eack other as the products
of their bases multiplied by their altitudes, so that

ABCD : AEGF :: ABxAD : AE xAF.

Having placed the two rectangles so that
the angles at A are opposite angles at the
vertex, produce the sides GE, CD, till they
meet in H. The two rectangles ABCD, = . 3
AEHD, having the same altitude, AD, are
to each other as their bases AB, AE : in like
.manner the two rectangles AEHD, AEGFT,
having the same altitude, AE, are to each other as their bases, AD,
AT ; thus we have the two proportions

ABCD : AEHD :: AB: AL,
AEHD : AEGF :: AD: AF.

Multiplying the corresponding terms of these proportions together,
and observing that the mean term, AEHD, may be omitted, since it
is a multiplier of both the antecedent and the consequent, we shall
have

I D c

G ¥

ABCD : AEGF :: AB x AD : AE x AF.

ScroLium 1. Hence, the product of the base by the altitude may
be assumed as the measure of a rectangle, provided we understand by
this product the product of two numbers, one of which is the number
of linear units contained in the base, and the other the number of
lincar units contained in the altitude.

This measure, however, is not absolute, but only relative ; it sup-
poses that the area of any other rectangle is computed in a similar
manner by measuring its sides by the same linear unit: we thus ob-
tain a second product, and the ratio of the two products is equal to
that of the rectangles, agreeably to the proposition just demonstrated.

For example, if the base of the rectangle A, contains three units,
and its altitudg ten, that rectangle will be represented by the number
3 X 10, or 30, a number which, when thus isolated, signifies nothing;
but if we have a second rectangle, B, whose base contains twelve
units, and whose altitude contains seven, the second rectangle will
be represented by the number 7 x 12, or 84 : whence we shall infer
that the two rectangles, A and B, are to each other as 30 is to 84 ;
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therefore, if we agree to take the rectangle A, for the unit of measure
of surfaces, the rectangle B, would, in that case, have §# for its ab-
solute measure ; that is to say, it would be equal to §4 of superficial
units.

It is more common and more simple to take the square for the
unit of surface, and the square is chosen whose side is the unit of
length ; then the product of the base and altitude expresses the num-
ber of unit-squares in the rectangle.

Tor cxample, the number 30, A
by which we have measured the
rectangle A, represents 30 super-
ficial units, or 30 of these squares
whose side is equal to unity.
This is evident in the accompanying figure.

In geometry, the product of two lines is frequently spoken of as
synonymous with their recfangle, and this expression has even passed
into arithmetic, to designate the product of two unequal numbers, as
the expression sguare is used to express the product of a number
multiplied by itself.

The squares of the numbers 1, 2, 3,
etc., are I, 4, 9, etc. We see, also,
that the square made on a double line i

is four times as great as the square
made on a single one; on a triple line
it is nine times as great, and so on.

Scuorrum 2. The measure of the rectangle may be presented in a
more general manner. Thus, if R, R’ be two rectangles, B, H,
and B, IT’, their bases and altitudes respectively, then

R _ BxH
R'™ B'x H"’

and if we take R’ for the unit of measure of R, we have

_ BxH

T B'x H”

Thus, the measure of a reclangle, when we take another reclangle for
the unit, is equal lo the product of ils base and altitude, divided by the prod-
uct of the base and allitude of the unit rectangle.

When we take as this unit rectangle the square whose side is equal
to the unit of length, so that B'=H'=1, then the denominator,
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B'x H'=1, and R=BxH. In this case, then, #¢ measure of Ilze
reclangle is the product of ils base by its altiiude.

PROPOSITION V.

THEOREM.

The area of any parallelogram is equal lo the product of is base by ils
allitude.
For the parallelogram ABCD is equivalent to

the rectangle, ABEF, which has the same base, » » ® 0
AB, and the same altitude, BE (Prop. 1.) ; but

this rectangle has for its measure AB x BE (Prop. :
IV.); therefore, ABx BE is equal to the area of £ B

the parallelogram ABCD.

~ Cor. Parallelograms of the same base are to each other as their
altitudes, and parallelograms of the same altitude are to each other
as their bases: for, A, B, C being any three magnitudes, we have,

generally,
AxC:BxC::A:B

PROPOSITION VI.

THEOREM.
. The area of a Iriangle is equal lo the product of ils base by half ils al-
titude.
For the triangle, ABC, is the half of the parallelo- A -
gram, ABCE, which has the same base, BC, and the.
same altitude, AD (Prop. II.) : but the surface of
the parallelogram =BCx AD (Prop. V.); there- f——5—y
fore, that of the triangle =4BC x AD, or BC x $AD.

Cor. Two triangles of the same altitude are to each other as their
bases, and two triangles of the same base are to each other as their
altitudes.

PROPOSITION VII.

THEOREM.

The area of the lrapezoid, ABCD, is equal fo its altitude, EF, multi-
lied by half the sum of ils parallel bases, AB, CD.
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Through I, the middle point of the side CB, draw KL, parallel to
the opposite side, AD ; and produce DC till it meets KL.

In the triangles IBL ICK, we have the side IB=IC, by con-
struction ; the angle LIB=CIK ; and since CK
and BL are parallel, the angle IBL=ICK P& ¢ X
(Book I., Prop. XXIV.); hence, the triangles
are equal (Book I., Prop. VIL) ; therefore, the
trapezoid ABCD is equivalent to the parallelo-
gram ADKL, and is measured by EF x AL.

But we have AL=DK ; and since the triangles IBL and KCI are
equal, the side BL=CK ; hence, AB+CD=AL+DK=2AL, and
accordingly, AL is half the sum of the bases AB, CD ; hence, the
area of the trapezoid ABCD is equal to the altitude, EF, multiplied
by half the sum of the bases, AB, CD, which is expressed thus :

(1_\£ + CD)
7 )

H v

A ¥ L B

ABCD = EF x

ScroriuM. If through I, the middle point of BC, IH be drawn,
parallel to the base AB, the point H will also be the middle of AD;
for, since the figure AHIL is a parallelogram, as also DHIK, their
opposite sides being parallel, we have then AH = IL and DH = IK ;
but, since the triangles BIL, CIK are equal, we already have
IL = IK ; therefore, AH = DH.

AB + CD

It may be observed that the line HI = AL = — there-

fore the area of the trapezoid may also be expressed by EF x HI; it
is therefore equal to the altitude of the trapezoid multiplied by the
line which joins the middle points of its inclined sides.

PROPOSITION VIIIL

THEOREM.

If a line, AC, is divided into two parts, AB, BC, the square described
on the whole line AC is equivalent lo the square described on one part, AB,
plus the square described on.the other part, BC, plus twice the reclangle
contained by the fwo parts AB, BC ; which is expressed thus :

AC', or (AB + BC)* = AB + BC'+ 2AB x BC.

Construct the square ACDE ; take AF = AB; draw FG parallel.
to AC, and BH parallel to AE. The square ACDE is divided into
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four parts: the first, ABIF, is the square described
on AB, since we made AF=AB ; the second, IGDH,
is the square described on BC; for, since we have ¥ ¢
AC = AE, and AB = AT, the difference AC — AB
is cqual to the difference AE — AF, which gives
BC = EF; but IG = BC, and DG = EF, since the & B C
lines are parallel ; therefore, HIGD is equal to the square described
on BC, and these two squares being taken away from the whole
square, there remain the two rectangles BCGI, EFIH, each of which
is measured by AB x BC, hence, the proposition is true.

Scrortum. This property is equivalent to that which is demonstrated
in algebra in obtaining the square of a binomial, which is expressed

thus,
(@ +8)*=a"+ 2ab + 8.

PROPOSITION IX.

THEOREM.
If the line AC is the difference of the two lines AB, BC, the square de-
scribed on AC 1s equivalent lo the square on AB, plus the square on BC,
minus twice the rectangle contained by AB and BC ; that is 1o say, we
will have
‘ AC’, or (AB — BC)'= AB'+ BC'— zAB x BC.
Construct the square ABIF; take AE = AC; draw CG parallel to
BI, HK parallel to AB, and complete the

L_F
square EFLK.
The two rectangles CBIG, GLKD are each ! + n bee
measured by AB x BC: if we take these rect-
angles from the whole figure, ABILKEA,
which is equivalent to AB’ + BC', there will L U

evidently remain the square ACDE ; hence,
our theorem is true.

. Scuorivm. This proposition is equivalent to the algebraic formula,
(@ —b8)'=a" + & — 2ab.

PROPOSITION X.

THEOREM.

The reclangle contained by the sum and . the difference of fwo lines, is
equal 1o lhe difference of the squares of these lines ; and thus we have

(AB + BC) x (AB — BC) = AB'— BC..



BOOK III. 107

On AB and AC construct the squares ABIF, ACDE ; produce AB
till BK = BC, and complete the rectangle

AKLE. The base, AK, of the rectangle is T —
the sum of the two lines AB, BC; its alti- x S——L
tude, AE, is the difference of the same lines;
therefore, the rectangle
"AKLE = (AB + BC) x (AB — BC). R
A C B X

But this same rectangle is composed of the
two parts ABHE + BHLK ; and the part BHLK is equal to the
rectangle EDGF, for BH = DE, and BK = EF; therefore,
AKLE = ABHE + EDGF. These two parts make up the square
ABIF minus the square DHIG, which latter is the square described
on BC; therefore, finally,

(AB + BC) x (AB — BC) = AB'— BC.
Scrorivm. This proposition is equivalent to the algebraic formula
(@ + 8)(a—b)=a'— .

PROPOSITION XI.

THEOREM,

The square described on the hypothenuse of a right angled triangle is
equtvalent o the sum of the squares described on the other two sides.

Let the triangle ABC be right angled at A. Having formed
squares on the three sides, let fall, from A, on the hypothenuse, the
perpendicular AD, which prolong to x
E; and draw the diagonals AT, CH.

The angle ABF is made up of the 3

angle ABC, together with the right 1
angle CBF ; the angle CBH is made ' NG

up of the same angle, ABC, together HeX
with the right angle ABH ; hence, B B A T (v
the angle ABF = HBC. But

AB=BH, being sides of the same \
square, and BF = BC, for the same \
reason ; therefore, the triangles ABF,

HBC have two sides and the in- F E ¢
cluded angle in each cqual; therefore, they are themselves equal
(Book I., Prop. VIL)
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The triangle ABF is the half of the rectangle BDEF (or, for the
sake of shortness, BE), which has the same base, BF, and the same
altitude, BD (Prop. 1I.). The triangle HBC is likewise the half of
the square AH ; for, the angles BAC and BAL being both right, AC
and AL form one and the same straight line, parallel to HB; there-
fore, the triangle HBC and the square AH, which have the common
base BH, have also the common altitude AB; therefore, the triangle
is the half of the square.

It has already been proven that the triangle ABF is equal to the
triangle HBC ; hence, the rectangle BDEF, which is double of the
triangle ABF, is equivalent to the square AH, which is double of the
triangle HBC. In the same manner it may be proved that the rect-
angle CDEG is equivalent to the square Al; but the two rectangles’
BDEF, CDEG, taken together, make up the square BCGF ; there-
fore the square BCGF, described on the hypothenuse, is equal to the
sum of -the squares ABHL, ACIK, described on the other two sides;
in other words, o

E’: K—E’-i- E‘ .

Cor. 1. Hence, the square of one of the sides of the right angle is
equivalent to the square of the hypothenuse diminished the square of
the other side, which is expressed thus :

AB'=BC'— AC.
Cor. 2. Let ABCD be a square, and AC its diagonal ; the triangle

ABC being right angled and isosceles, we will have » @
H

Ezz A—B2+ ]?(?—: zﬁa;

therefore, the square described on the diagonal AC is
double the square described on the side AB.

This property may be made evident by drawing ¥ B ¥
parallels to BD through the points A and C, and parallels to AC
through the points B and D; we will thus form a new square,
EFGH, which will be the square of AC. Now, EFGH evidently
contains eight triangles, each equal to ABE; and ABCD contains
four of these ; hence, the square EFGH is double ABCD.

Since AC : ﬁgz:z:x,
by extracting the square root, we shall have

AC:AB:: vz :1;
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therefore, the diagonal of a square is incommensurable with its side. A
property which will be explained more fully in another place.

Cor. 3. It has been shown in the proposition that the square AH
is equivalent to the rectangle BDEF (See the figure for Prop. XL.);
but, by reason of the common altitude BF, the square BCGF is to
the rectangle BDEF as the base BC is to the base BD ; therefore,

BC':AB":: BC: BD.

Hence, the square of the hypothenuse is to the square of one of the
sides of the right angle as the hypothenuse is lo the segment adjacent to that
side. We call segment here the part of the hypothenuse cut off by the
perpendicular let fall from the right angle; thus, BD is the segment
adjacent to the side AB, and DC is the segment adjacent to the side AC.

We would have also,

BC': AC":: BC : CD.

Cor. 4. The rectangles BDEF, DCGE, having also the same alti-
tude, are to each other as their bases, BD, CD. But these rectangles
are equivalent to the squares AR’ AC" ; hence,

AB :AC ::BD:DC.
Therefore, the squares of the two sides of the right angle are lo each
other as the segments of the hypolhenuse adjacent to these sides.
DEFINITION.

The projection of a straight line, AB, on another, CD, is the dis-
tance, b, between the feet of the perpendiculars let fall from the

B
I r

!
¢ A ) D

points A and B on CD. If one of the points of AB, as A, is on CD,
then Aé is the projection.

PROPOSITION XII.

THEOREM.

In any triangle, the square qf the side opposite 1o an acule angle is less
than the sum of the squares of the other two sides, by twice the rectangle
 conlained by one of these sides, and ike projection of the other on i,
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Let C be an acute angle of the triangle ABC; draw AD perpen-
dicular to BC. Then shall

AB'= AC" + BC' — 2BC x CD.
There are two cases.

First.—When the perpendicular falls within the triangle ABC, we
have BD = BC — CD, and consequently (Prop. IX.),

BD'=BC + CD' — 2BC x CD. A

A
Adding AD? to each, and observ-
ing that the right angled triangles
ABD, ADC give

AD' + BD' = AB, £ 8 % S
and AD' + DC'=AC,
we have AB'=BC + AC — 2BC x CD.

Second.—When the perpendicular AD falls without the triangle
ABC we have BD = CD — BC, and, consequently (Prop. IX.),

BD'=CD’ + BC' — 2CD x BC.
Adding AD’ to both we find, as before,
AB'=BC + AC — zBC x CD

PROPOSITION XIIL

" THEOREM.

In any triangle having an obtuse angle, the square of the side oppostle the
obtuse angle is greater than the sum of the squares of the other two sides,
by twice the reclangle contained by either of these sides and the projection
of the other on il.

Let AB be the side opposite the obtuse angle C, of the triangle
ABC; draw the perpendicular AD from A to BC. We shall have
AB' = AC' + BC' 4 2BC x CD.

The perpendicular cannot fall within the triangle ; for if it fell at
any point, such-as E, the triangle ACE would have both the right
angle E and the obtuse angle C, which is impossible (Book I., Prop.
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XXIX.); hence, the perpendicular falls without, A
and we have BD = BC + CD. - From this . we
have (Prop. VIIL),

BD' = BC" + CD" + 2BC x CD. L S

Adding AD’ to each member of this equation, and reducing, as in
the preceding theorem, we shall get

AB'=BC' + AC + zBC x CD.

ScHorLium. The right angled triangle is the only triangle in which
the sum of the squares of the two sides is equal to the square of the
third side ; for, if the angle included by these sides is acute, the sum
of their squares will be greater than the square of the opposite side ;
and if it is obtuse, the sum will be less.

PROPOSITION XIV.

THEOREM.

The sum of ke squares of two sides of a Iriangle is equivalent lo fwice
the square of the median lo the third side logether with tfwice the square of
half the third side.

Let ABC be the triangle, AE the median to the side BC (that is,
the line which joins the vertex A to the middle point of BC). Then
we shall have

AB' + AC' = 2AE + 2BE.

Let fall the perpendjcular AD on the base BC. The triangle AEC

gives (by Theorem XII.)

AC'=AE’ + EC" — 2EC x ED.
The triangle ABE gives (by Theorem XIIIL)
AB'= AE + EB’ + 2EB x ED. 5 BD O
Hence, by adding, and observing that EB = EC, we shall have

A

AB' + AC" = 2AE + 2EB",
Cor. 1. Hence, i every parallelogram, the sum of the squares of the
sides is equal fo the sum of the squares of the diagonals.
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For the diagonals, AC, BD, bisect each other 5
(Book L., Prop. XXXIV.); consequently, the ~
triangle ABC gives

AB® + BC' = 2AE" + 2BE".
The triangle ADC gives likewise,
AD' + DC' = 2AE' + 2DE"

Adding these two equations, member to member, and observing

that BE = DE, we shall have
AB' + AD' + DC" + BC' = 4AE’ + 4DE.
But 4AE is the square of zAE, or of AC; 4DE’ is the square of

BD ; therefore, the sum of the squares of the sides is equal to the
sum of the squares of the diagonals.

Cor. 2. If] in the figure of the proposition, we suppose the points A
and C to remain fixed, and the point B to change its position so that
AB?+ BC? remains constant, then, since AB' + BC = 2AE + 2BE’,
it follows that BE remains constant. Hence, the point B must lie
on a circle of which E is the centre, and BE the radius.

PROPOSITION XYV,

THEOREM.

. The difference of the squares of two sides of a Iriangle is equal lo fwice
the rectangle contained by the third side and the projection of ils median
on the third side.

Let ABC be the given triangle.
We have, as in the last proposition,
AB' = AE' + EB’ + 2EB x ED,
AC' = AE' + EC' — 2EC x ED.
Subtract the second from the first, observing
that EB = EC, we have
AB' —AC'=4EB x ED; or,
AB',— AC" = 2BC x DE.
Cor. If the points B and C remain fixed, while the vertex A moves _
so that the difference, AB* — AC’, remains constant, the equation
above shows that the projection DE, of the median from A, remains

constant. Hence, A must always be in a straight line perpendicular
to BC. : ' -
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PROPOSITION XVI.

THEOREM.
The line DE, drawn parallel to the base of a iriangle, ABC, divides the
- sides AB, AC, proportionally ; so that we have
AD : DB :: AE : EC.
Join BE and DC. The two triangles BDE, DEC, have the same
base, DE ; they have also the same altitude, since A
the vertices, B and C, are situated in a line parallel

to the base ; hence, these triangles are equivalent
(Prop. IL.). The triangles ADE, CDE, whose

common vertex is D, have also the same altitude, D E
and are to each other as their bases, AE, EC; :
herefore, ADE : DEC :: AE : EC.

In the same way, ADE : BDE :: AD : DB. B ¢
But the triangle BDE = DEC; therefore, because of the common
ratio in these two proportions, we shall have

AB:DB:: AE : EC.
Cor. 1. Hence, by composition, we have
AD +DB:AD :: AE+ EC: AE; or, AB: AD :: AC : AE,
and also AB:BD:: AC:CE.

Cor. 2. If between two straight lines, AB, CD, any number of parallels
be drawn, as AC, EF, GH, BD, ef., those straight lines will be cut
proportonally, and we shall have

AE :CF:: EG:FH :: GB: HD.

For let O be the point where the straight lines AB, CD, meet.
In the triangle OEF, the line AC being drawn

rallel to the base EF, we shall have a2
) OE : OF :: AE : CF.
In the triangle OGH, we shall likewise have ¢
OE : OF :: EG : FH. r

And by reason of the common ratio, OE : OF,
those two proportions give
/ AE : CF :: EG : FH.
It may be proved, in the same manner, that
EG:FH :: GB: HD,
8
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and so on ; hence, the lines AB, CD, are cut proportionally by the
parallels EF, GH, etc.

PROPOSITION XVIL

THEOREM.

Conversely, if the sides AB, AC, are cut proportionally by the line
DE, this line will be parallel to the third side, BC.
Tor, if DE be not parallel to BC, suppose that DO is ; then, by the
corollary of the preceding theorem, we shall have
AB:AD:: AC: A0 (1)
But by hypothesis,
AD : BD :: AE : EC, and also
AB : AD:: AC : AE (3).
B
Comparing (1) and (3), we see that AO must be equal
to AE, which is impossible; hence, the parallel to BC, drawn

through the point D, cannot differ from DE ; hence, DE is that
parallel.

PROPOSITION XVIIIL

THEOREM.

The bisectrix of the angle BAC, of a Iriangle, divides the opposite side
BC inlo two segments, BD, DC, proportional to the aq’/acenl sides AB,
AC ; so that we shall have

BD :DC:: AB: AC.

Through the point C draw CE parallel to AD, till it meets BA
produced. In the triangle BCE, the g
line AD is parallel to the base CE:

hence, we have the proportion (Prop. | \
XVL), A

BD:DC :: AB: AE.
But the triangle ACE is isosceles;
for, since AD and CE are parallel, we
have the angle ACE = DAC, and the o > B
angle AEC = BAD (Book I., Prop. XXIV.): but, by hypothesis,
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DAC = BAD; hence, the angle ACE = AEC, and consequently
AE=AC (Book L, Prop. XIV.) ; substituting then AC in the place
of AE in the above proportion, we shall have

BD :DC:: AB: AC.

ScuoviuM. The bisectrix, AF, of the exterior angle CAE infercepls on
the base produced two segments, BF, CF, also proportional lo the sides
AB, AC.

Draw CG parallel to AF ; in the tri-
angle BAF we have

BF : FC:: BA : AG.

We can, then, in the same manner
as above, show that the triangle AGC ¥
is isosceles, and that AG = AC,

Therefore, BF : FC:: AB: AC.

s

PROPOSITION XIX.

THEOREM.

A straight line, DE, drawn parallel o one of the sides, BC, of the tri-
angle ABC, culs off a triangle, ADE, similar 1o ABC.

For, first, the two triangles ADE, ABC, have their angles respect-
ively equal. For the angle A is common, and the A
angles ADE=ABC, by reason of the parallels DE,
BC, as also AED = ACB.

Secondly, the homologous sides are propor-
tional ; for DE being parallel to BC, we have
(Prop. XVL.)

AD : AB:: AE : AC,.

and, drawing EF parallel to AB, we have
AE : AC:: BF : BC.

And since the parallels DE, BF, intercepted between parallels, are

equal.
AE : AC:: DE : BC.

Therefore, the triangles ADE and ABC, having their angles equal,
and their homologous sides proportional, are similar (Def. 2).

Scuorium. The proposition holds true when the parallel DE is

.



116 ELEMENTS OF GEOMETRY.

‘below BC, or above A, the demonstration being the same in these
‘cases.

PROPOSITION XX.

THEOREM.
Two equiangular iriangles are similar.

Let ABC, DEF, be two triangles which have their angles equal,
each to each, namely, A=D1, B=E, C=F. Then the triangles
will be similar. For, on AB, homologous to
DE, take AG = DE, and draw GH parallel to
BC. The triangle AGH thus formed is simi- D
lar to ABC (Prop. XIX.). But the triangles
DEF and AGH have the angle A=D by
hypothesis ; the side AG=DE by construction, 3 ¢
and the angle AGH=E, since each is equal to
the angle B. Hence, these triangles are equal, and therefore DEF
is also similar to ABC.

)
A

H

q[

Cor. For the similarity of two triangles it is enough that they
have two angles equal each to each ; since the third angle will then
be equal in both, and the two triangles will be equiangular. Two
right angled triangles are similar when they have one acute angle
equal.

" ScuoLtum. Observe that in similar triangles the homologous sides
are opposite to the equal angles.

PROPOSITION XXI.

THEOREM.
Two lriangles which have their homologous sides proporfional, are
similar.
Let ABC, DEF, be the two triangles, and suppose,
AB : DE :: AC : DF, and
AB:DE :: BC: EF.
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Then will the two triangles be similar. For on AB take AG= DE .

and draw GH parallel to BC. The triangle , :

AGH is similar to ABC (Prop. XIX.), and

their homologous sides give the proportion, D
AB : AG :: AC: AH; or, since AG=DE, € N B
AB:DE:: AC: AH.

But we have by hypothesis,
AB :DE :: AC: DF.

Hence, AH = DF. In like manner we can prove GH =EF.
Hence, the triangle AGH is equal to the triangle DEF, and there-
fore DEF is similar to ABC.

Scuortum 1. It results from the last two propositions, that iz #s-
angles equalily among the angles is a consequence of proportionality of the
stdes, and conversely. This fundamental property is not true of other
polygons. For example, a square and a rectangle have their angles
equal, but their homologous sides are not proportional. And a
square and rhombus have their sides proportional, but their angles
are not equal.

3 0 E r

ScHorium 2. The two preceding propositions, which are in reality
only one, together with that concerning the square of the hypothe-
nuse, are the most important and fruitful propositions of geometry ;
they are sufficient, almost, of themselves for application to all cases,
and for the solution of every problem. The reason is, that all figures
may be divided into triangles, and any triangle into two right angled
triangles. Thus, the general properties of triangles mvolve, by im-
plication, those of all figures.

PROPOSITION XXII.

THEOREM.

Tawo triangles whick have an equal angle included between proportional
Sides, are similar.
Let the angle A = D, and suppose we have
AB:DE :: AC:DF;

then shall the triangle ABC be similar to DEF. :
Take AG = DF, and draw GH parallel to BC; the triangle AGH
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will be similar to the triangle ABC (Prop.
XIX.) ; we shall have, therefore,

AB:AG::AC: AH; D
G "
but, by hypothesis, \ ’\
AB : DE :: AC : DF, ¢ E

and, by construction, AG = DE; hence,

AH = DF. The two triangles AGH, DEF, have, therefore, an
equal angle included between equal sides; hence, they are equal;
therefore, DEF is also similar to ABC.

Cor. Two right angled triangles are similar, when they have any
two sides of the one proportional to the homologous sides of the
other.

PROPOSITION XXIII.

THEOREM.

Two triangles whick have their homologous sides parallel, or perpendicu-
lar 1o each other, are similar.

For, First, if the side AB is parallel to DE, and G
BC to EF, the angle ABC will be equal to DEF
(Book I., Prop. XXVIL.) ; if, further, AC is par- A
allel to DF, the angle ACB will be equal to DFE, D
and, also, BAC to EDF; hence, the triangles
ABC, DEF, are equiangular; consequently they 2 T
are similar. Y )

Second. If the side DE is perpendicular to AB, and the side DF
to AC, twoangles, I and H, of the quadrilateral AIDH will be right ;
and, since the four angles together are equal
to four right angles (Book I., Prop. XXX.),
the remaining two, IAH, IDH, are equal to
two right angles. But the two angles EDF,
IDH, are also equal to two right angles;
therefore, the angle EDF is equal to IAH or
BAC. 1In like manner, if the third side EF
is perpendicular to the third side BC, it may
be shown that the angle DFE = C, and DEF = B; hence, the two
triangles ABC, DEF, which have the sides of the one perpendicular
to the corresponding sides of the other, are similar.
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ScroLtum 1. In the case of the sides being parallel, the homolo-
gous sides are the parallel sides, and in the case of the sides being
perpendicular, the homologous sides are the perpendicular sides.
Thus, in the latter case, DE is homologous to AB, DF to AC, and
EF to BC.

Scuortum 2. The case of the sides being perpendicular might fur-
ish a relative situation of the two triangles different from that which
is supposed in the last figure, but we can always suppose within the
triangle ABC, a triangle DEF to be constructed, whose sides should
be parallel to those of the triangle compared with ABC, and then the
demonstration would be the same with that given in the case of the
last figure.

Both cases of the proposition are sometimes proved thus: By
(Book I., Props. XXVII. and XXVIII.) two angles which have their
sides parallel or perpendicular are either equal or supplementary.
Now, no two pair of these corresponding angles of the triangles can
be supplementary, for then the sum of the angles in the two triangles
would be greater than four right angles. Hence, at least two of the
angles in one triangle must be equal to two of the angles in the
other, and, therefore, the third angle must be equal ; therefore, the
triangles, being equiangular, are similar.

PROPOSITION XXIV.

THEOREM.

The lines AF, AG, elc., drawn a! pleasure from the vertex of a iri-
angle, divide proportionally the base BC and ils parallel DE, so that we
have

DI:BF ::IK : FG :: KL : GH, etc.
For, since DI is parallel to BF the triangles ADI and ABF are
equiangular, and we have the proportion
DI:BF :: Al : AF;
and, since IK is parallel to FG, we have 4
Al : AF :: IK : FG;

hence, the ratio AI : AF being common, we

will have b))
DI:BF::IK : FG.

In the same manner we shall find B ¥ ¢ H O
IK : FG :: KL : GH, etc.;
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therefore, the line DE is divided at the points I, K, L, in the same
proportion as the base BC is at the points F, G, H. .

Cor. Therefore, if BC were divided into equal parts at the points
F, G, H, the parallel DE would also be divided into equal parts at
the points I, K, L.

PROPOSITION XXV.

THEOREM.

If from the right angle, A, of a right angled triangle, the perpendicular
AD be let_fall on the hypothenuse,

First.—The fwo partial triangles, ABD, ADC, will be similar fo eack
other, and to the whole iriangle, ABC ;

Second.—Either side, AB or AC, will ¢ a mean proportional between
the hypothenuse BC and the adjacent segment BD or DC;

Third.—The perpendicular AD will be a mean proportional between the
two segments BD, DC.

First,—The triangles BAD and BAC have the common angle B;
also the right angle BDA is equal to the right A

angle BAC ; therefore, the third angle, BAD, of
the one is equal to the third angle, C, of the .
other : hence, those two triangles are equi-

angular and similar. In the same manner it D ¢
may be shown that the triangle DAC is similar to the triangle BAC ;
hence, all the triangles are similar.

Second.—Since the triangles BAD and BAC are similar, their ho-
mologous sides are proportional. Now, BD in the small triangle,
and BA in the large one, are homologous, because they lie opposite
to equal angles, BAD, BCA ; the hypothenuse BA, of the small tri-
angle, is homologous with the hypothenuse BC of the large triangle ;
hence, the proportion ,

BD : BA :: BA : BC.
By the same reasoning we should find

DC:AC:: AC: BC.
Hence, each of the sides AB, AC, is a mean proportional between
the hypothenuse and the segment adjacent to this side.

Third.—Since the triangles ABD, ADC, are similar, by comparmg
their homologous sides, we have

BD:AD:: AD:DC;
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hence, the perpendicular AD is a mean proportional between the
segments BD, DC, of the hypothenuse.

ScroriuM. Since BD : AB :: AB : BC, the product of the extremes
will be equal to that of the means, or AB'= BDx BC. In the same

way we have AC' = DC x BC : therefore,

AB' +AC = BD x BC + DC x BC;
the second member is the same thing as (BD + DC) x BC, and it
reduces to BC x BC, or BC ; therefore we have AB' +AC =BC ;
therefore, the square described on the hypothenuse BC is equal to
the sum of the squares formed on the other two sides, AB, AC.
Thus we again arrive at the property of the square of the hypothe-
nuse by a path very different from that which was previousiy pursued ;
from which it is seen that, strictly speaking, the proposition of the
square of the hypothenuse is a consequence of the proportionality of
the sides in equiangular triangles.
. Thus, the most important propositions of geometry are reduced, so
to speak, to this single one, that equiangular triangles have their
homologous sides proportional.

Cor. If, from a point, A, of the circumference, we draw the two
chords, AB, AC, to the extremities of the diameter

BC, the triangle BAC will be right angled at A
(Book IIL, Prop. XX., Cor. 2); hence, first, Zke
perpendicular AD is a mean proportional between the )

two segments, BD, DC, of the diameler, or, what
amounts to the same, the square AD’ is equal to the rectangle
BD x DC.

Hence, also, in the second place, #ke chord AB is a mean propor-
tional between the diameter BC and the adjacent segment BD, or, what is
the same thing, AB = BD x BC. In like manner, we have
AC'=CD x BC;; therefore, AB' : AC :: BD : DC. Also, comparing
AB"and BC, we have AB' : BC :: BD : BC; we would likewise
have AC' :BC’::DC:BC. These proportions between the
squares of the sides, compared with each other or with the square of
the hypothenuse, have been already given in Corollaries 3 and
4 of Proposition XL
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PROPOSITION XXVI.

THEOREM.

Two triangles, whick have one angle in eack equal, are fo each other
as the reclangles of the sides which contain the equal angle. Thus, lhe
triangle ABC is to the triangle ADE as the rectangle AB x AC is fo the
rectangle AD x AE.

Draw BE. The two triangles ABE, ADE, whose common vertex
is E, have the same altitude, and are A
to each other as their bases, AB, AD
(Prop. VL., Cor.) ; therefore,

ABE : ADE :: AB : AD.
In like manner we have
ABC : ABE :: AC : AE.

Multiplying these two proportions together, term for term, and
omitting the common term ABE, we shall have

ABC : ADE :: ABxAC : AD X AE.

Cor. Hence, the two triangles would be equivalent, if the rectangle
AB x AC were equal to the rectangle AD x AE, or if we had
AB : AD :: AE : AC, which would be the case if a line drawn from
D to C were parallel to BE.

PROPOSITION XXVII.

THEOREM.

Two similar triangles are o eack other as the squares of their homol-
ogous sides.

Let the angle A = D and the angle B=E. Then, first, by reason
of the equal angles A and D, we shall have, according to the last
proposition,

ABC : DEF :: AB x AC : DE x DF.

Moreover, because of the similarity of the tri-

. G H
angles, we have \

AB:DE:: AC: DF. 0 ¥

A
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If we multiply this proportion, term by term, by the identical pro-
portion
AC : DF :: AC : DF,
we shall have
AB x AC : DE x DF :: AC : DF.
Therefore,
ABC : DEF :: AC : DF.

Therefore, two similar triangles, ABC, DEF, are to each other as
the squares of the homologous sides AC, DF, or as the squares of
any other two homologous sides.

PROPOSITION XXVIII.

THEOREM.

Two similar polygons are composed of the same number of friangles,
similar, each lo each, and similarly situaled,

From any angle, A, in the polygon ABCDE, draw the diagonals
AC, AD, to the other angles. From the corresponding angle, F, in

the other polygon, FGHIK, draw diagonals FH, FI to the other
angles.

Since the polygons are similar, the angle ABC is equal to its ho-
mologous angle FGH (Def. 2) ; and the sides AB, BC must also be
proportional to the sides FG, GH ; that is,

AB : FG :: BC : GH.

Wherefore, the triangles ABC, FGH have each an equal angle con-
tained between proportional sides; hence, they are similar (Prop.
XXIL ) ; therefore, the angle BCA is equal to GHF. Take away
these equal angles from the equal angles BCD, GHI, there remains
ACD = FHI; but since the triangles ABC, FGH are similar, we

have
AC:FH :: BC:GH;
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-and since the polygons are similar (Def. 2),

BC:GH ::CD: HI;
therefore,

AC:FH ::CD: HL
But the angle ACD we already know is equal to FHI; hence, the
triangles ACD, FHI have an equal angle contained by proportional
sides, and are consequently similar.

In the same manner might all the remaining triangles be shown to
be similar, whatever were the number of sides of the proposed poly-
gons; therefore, two similar polygons are composed of the same
number of triangles, similar and similarly situated.

Scaorium. The converse proposition is equally true :

If two polygons are composed of the same number of lriangles, similar
and similarly situated, those two polygons will be similar.

For the similarity of the respective triangles will give the angles
ABC = FGH, BCA = GHF, ACD = FHI; therefore BCD = GHI;
likewise, CDE = HIK, etc. Further, we shall have

AB:FG::BC:GH :: AC:FH :: CD : HI, etc. ;

hence, the two polygons have their angles equal and their sides pro-
portional ; therefore, they are similar.

PROPOSITION XXIX.

THEOREM.

The contours or perimeters of similar polygons are fo each other as their
homologous sides, and the surfaces are lo eack other as the squares of
these sides.

First.—Since, by the nature of similar figures we have

AB:FG::BC:GH ::CD : HI, etc.,

]
H
B G
D X
F
A
—_— X
E .

we conclude from this series of equal ratios that the sum of the ante-
cedents, AB + BC + CD, etc. (the perimeter of the first polygon), is
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to the sum of the consequents, FG + GH + HI, etc. (the perimeter
of the second polygon), as one of the antecedents is to its consequent,
or as the side AB is to its homologous side FG.
Second.—Since the triangles ABC, FGH are similar, we shall have
(Prop. XXVIIL.)
ABC : FGH :: AC : FH';

in the same manner, the similar triangles ACD, FHI give
ACD : FHI ::A‘C’:ﬁ’;

therefore, by reason of the common ratio AC’ : FH' we have
ABC : FGH :: ACD : FHL

By the same mode of rea‘soning we should find
ACD : FHI :: ADE : FIK ;

and so on, if there were more triangles.

From this series of equal ratios we conclude: That the sum
of the antecedents, ABC + ACD + ADE, or the polygon ABCDE,
is to the sum of the consequents, FGH + FHI + FIK, or the
polygon FGHIK, as one antecedent, ABC, is to its consequent,
FGH, or as ABis to FG' ; therefore, the surfaces of similar poly-
gons are to each other as the squares of their homologous sides.

Cor. If three similar figures be constructed on the three sides of a
right angled triangle, the figure constructed on the hypothenuse will
be equal to the sum of the other two : for the three figures are pro-
portional to the squares of their homologous sides; but the square
of the hypothenuse is equal to the sum of the squares of the other two
sides ; therefore, etc.

PROPOSITION XXX.

THEOREM.

The segments of two chords, whick intersect eack other in a circle, are
reciprocally proportional ; that is lo say, we will have

AO : DO :: CO : OB.
Join AC and BD. In the triangles ACO, BOD, the angles at O



126 : ELEMENTS OF' GEOMETRY.

are equal, as being opposite angles at the vertex ;
the angle A is equal to the angle D, because both
are inscribed in the same segment (Book II.,
Prop. XX., Cor. 1) ; for the same reason, the angle
C=B: the triangles are therefore similar, and their
homologous sides give the proportion

AO : DO ::CO : OB.

Cor. From this follows AO x OB = DO x CO ; therefore, the
rectangle of the two segments of one of the chords is equal to the
rectangle of the two segments of the other. .

PROPOSITION XXXI.

THEOREM.

If, from the same point, O, without a circle, the secanis OB, OC, &e
drawn, terminating in the concave arc, the whole secanis will-be reciprocally
proportional to their external segments ; thal is lo say, we shall have

OB ¢ OC :-OD : OA. o
a ot .o .

For, joining AC, BD, the triangles OAC, OBD, A
have the angle'O common ; and the angle B=C D
(Book II. Prop. XX., Cor. 1) ; these triangles are,
therefore, similar, and their homologous sides' give
the proportion '
OB :0C ;: 0D : OA. B o

Cor. Therefore, the rectangle OA x OB is equal to the rectangle

OC x OD. :

ScuortuM. It may be observed that this proposition bears a great
analogy to the preceding, and that it differs from it only in the cir-
cumstance that the two chords, AB, CD, instead of intersecting each
other within the circle, intersect outside of it.

The following proposition may also be regarded as a particular
case of this one, -

PROPOSITION XXXII.

THEOREM.

If, from the same point, O, without a circle, a tangent, OA, and a
secant, OC, be drawn, the tangent will be a mean proportional belween
the secant and its external segment ; so that we shall have
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OC:0A::0A:0] | 1, OA' = OC x OD.

For, joining AD and AC, the triangles OAD, QAC, have the
angle O common ; further, the angle OAD, formed
by a tangent and a chord (Book II., Prop. XXI.),
has for its measure the half of the arc AD, and the
angle C has the same measure ; hence, the angle
OAD = C; therefore the two triangles are similar,
and we have the proportion,

OC : 0A :: OA : OD,
which gives  OA’ = OC x OD.

PROPOSITION XXXIIIL.

THEOREM.

In a triangle, ABC, if the angle A be bisected by the line AD, fermina-
ting 1n the opposite side, the reclangle of the sides AB, AC, will be equal
- lo the rectangle of the segments BD, DC, logether wilh the square of the
bisecting line AD,

Describe a circumference to pass through the three points A, B,
C; prolong AD till it meets the circumference,

and join CE. \
The triangle BAD is similar to the triangle _ A‘ o

EAC; for, by hypothesis, the angle BAD=EAC;
also, the angle B=E, since they are both meas-
ured by half of the arc AC; hence, these tri-
E

angles are similar, and the homologous sides
give the proportion BA : AE : : AD : AC; hence,
BAxAC=AE x AD; but AE = AD + DE, and, multiplying both

members by AD, we have AE x AD =AD" + AD x DE; but
AD x DE = BD x DC (Prop. XXX.) ; therefore, finally,

BA x AC=AD’ + BD x DC.

PROPOSITION XXXIV.

THEOREM.

In every triangle, ABC, the rectangle of the two sides, AB, AC, is
equal 1o the rectangle contained By the diameter, CE, of the circumscribed
circle and the perpendicular, AD, ki fall on the third side, BC.
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For, joining AE, the triangles ABD, AEC,
are right angled, the one at D, the other at A ;
also, the angle B=E ; these triangles are, there-
fore, similar, and they give the proportion

AB:CE :: AD : AC;
and hence, ABxAC =CE xAD.

Cor. If these equal quantities be multiplied by the same quantity,
BC, we shall have ABx ACx BC=CExAD xBC. Now, AD xBC
is double- of the surface of the triangle (Prop. VI.) ; therefore, Ze -
product of the three sides of a triangle is equal fo ils surface multiplied by
twice the diameler of the circumscribed circle.

The product of three lines is sometimes called a solid, for a reason
which will be seen hereafter. -Its value is easily conceived by imagin-
ing that the lines are reduced to numbers, and multiplying together
the numbers in question.

Scuorium. It may also be demonstrated that the area of a iri-
angle is equal lo s perimeler mulliplied by half the radius of the in-
scribed circle.

For, the triangles AOB, BOC, AOC, which haye a common vertex
at O, have for a common altitude the )
radius of the inscribed circle ; hence, the
sum of these triangles will be equal to
the sum of the bases AB, BC, AC, mul-
tiplied by the half of the radius OD;
hence, the surface of the triangle ABC is
equal to its perimeter multiplied by the
half of the radius of the inscribed circle.

PROPOSITION XXXV.

THEOREM.

In every quadrilateral, ABCD, inscribed in a circle, the reclangle of .
the two diagonals, AC, BD, is equal 1o the sum of the reclangles of the
opposite sides, so thal we have

AC x BD=AB x CD + AD x BC.

Take the arc CO = AD; and draw BO, meeting the diagonal AC
in I. The angle ABD = CBI, since the one is measured by the half
of AD, and the other by the Lalf of CO, equal to AD; the angle
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ADB = BCI, because they are both inscribed in the same segment
AOB; hence, the triangle ABD is similar to the triangle IBC, and
we have the proportion

AD :CIl::BD:BC;
from which results
AD x BC = CI x BD.

Again, the triangle ABI is similar to the tri-
angle BDC; for the arc AD being equal to
CO, if we add OD to each, we shall have the
arc AO = DC ; hence, the angle ABI = DBC;
also, the angle BAI = BDC, because they are inscribed in the same
segment ; hence, the triangles ABI, DBC are similar, and their ho-
mologous sides give the proportion

AB:BD::Al:CD;

from which results
AB x CD = AI x BD.

Adding the two results found, and observing that

AI x BD + CI x BD = (AI + CI) x BD = AC x BD,

we shall have
AD x BC 4+ AB x CD = AC x BD.

ScroLum. Another theorem concerning the inscribed quadrilateral
may be demonstrated in the same manner.
The similarity of the triangles ABD and BIC, gives the proportion

BD : BC:: AB: BI,
hence, ,
BI x BD = BC x AB.

If CO be drawn, the triangle ICO, similar to ABI, will be similar to
BDC, and will give the proportion

BD :CO :*DC:0I;
OI x BD = CO x DC,

or, because CO = AD, )
OI x BD = AD x DC.

Adding together the two results, and observing that

BIx BD + OI x BD is equal to BO x BD,
we shall have

hence,

BO x BD=AB x BC + AD x DC,
9
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If we had taken BP = AD, and had drawn CKP, a similar course
of reasoning would have given us

CP x CA=AB x AD + BC x CD.

But the arc BP being equal to CO, if BC be added to each of them
it will follow that CBP = BCO ; hence, the chord CP is equal to the
chord BO, and, consequently, the rectangles BO x BD and CP x CA
are to each other as BD is to CA ; therefore,

BD:CA:: AB x BC+ AD x DC : AD x AB + BC x CD,

Therefore, the two diagonals of an inscribed gquadrilateral are fo each
other as the sums of the reclangles of the pairs of sides whick lerminale
al the extremities of each diagonal,

These two theorems may be used for finding the diagonals when
the sides are known,

PROBLEMS RELATING TO BOOK III.

PROBLEM 1.

To divide a given. straight line inlo any number of equal parts, or info
parts proportional fo given lines.

First.—Let it be proposed to divide the line AB into five equal
parts. ‘Through the extremity A, draw the indefi-
nite straight line AG, and taking AC of any magni-
tude, apply it five times on AG. Join the last point
of division, G, and the extremity B, by the line GB;
then draw CI parallel to GB: then will AI be the
fifth part of AB, and thus, by applying Al five times
on AB, the line AB will be divided into five equal
parts.

For, since CI is parallel to GB, the sides AG, AB
arc cut proportionally in Cand I (Prop. XVI.). But
AC is the fifth part of AG; therefore, Al is the fifth part of AB.

Second.—Let it be proposed to divide the line AB into parts pro-
portional to the given lines P, Q, R. Through the extremity A
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draw the indefinite line AG; take AC=P, CD=Q, DE=R;

join the extremities E and B, and

through the points C, D, draw CI, © A I X B

DX, parallel to EB; the line AB

will be divided into parts A, IK,

KB, proportional to the given lines P————1

P, Q R. o— 3
For, on account of the parallels 1

CI, DK, EB, the parts Al, IK, E

KB, are proportional to the parts

AC, CD, DE (Prop. XVL, Cor. 2); and, by construction, these are

equal to the given lines P, Q, R.

G

PROBLEM IL

T find a_fourtk proportional fo three given lines, A, B, C.

Draw the two indefinite lines DE, DF, making any angle with each
other. On DE take DA = A and DB = B; on DF take DC =C,
draw AC, and through the point

B draw BX, parallel to AC; DX 2 \\
will be the fourth proportional

required : for, since BX is paral- x A
lel to AC, we have the proportion B—
DA :DB::DC:DX; f g d —
¥
now, the first three terms of this 5

proportion are equal to the three
given lines ; therefore, DX is the fourth proportional required.

Cor. In the same manner may be found a third proportional to
two given lines A, B, for it will be the same as the fourth proportional
to the three lines A, B, B.

PROBLEM IIIL

T find a mean proportional between fwo gtven lines, A and B.

On the indefinite line DF take DE = A, and EF = B; on the
whole line DF, as a diameter, describe the semicircle DGF ; at the
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\

point E erect, on the diameter, the perpendicular EG, meeting
the circumference in G; EG will be the
mean proportional sought. G

For, the perpendicular GE, let fall from
a point of the circumference on the diame-
ter, is a mean proportional between the two b ¥
- segments of the diameter DE, EF (Prop. B—————
XXV., Cor.); now, these segments are A—
equal to the given lines Aand B.

PROBLEM 1V.

To divide the given line AB into extreme and mean ratio, that is, into
two parts, so that the greater part shall be a mean proportional between the
whole line and the other part. -

At the extremity, B, of the line AB erect the perpendicular BC,
equal to the half of AB; from the point C, as a centre, and with the
radius CB, describe a semicircle ; draw
AC, cutting the circumference in D ;
and take AF = AD: the line AB will c
be divided at the point F in the man-
ner required, that is to say, we shall
have

B

AB : AF :: AF : FB. A . F B

For AB, being perpendicular to the extremity of the radius CB, is
a tangent ; and if AC be produced till it again meets the cnrcumfer-
ence in E, we shall have (Prop. XXXII.)

AE : AB:: AB:AD;
hence, by division,

AE—AB : AB:: AB—AD : AD.
But, since the radius BC is the half of AB, the diameter DE is equal
to AB, and, consequently, AE — AB = AD = AF; also, because
AF = AD, we have AB — AD = FB; therefore,
AF : AB :: FB : AD, or AF;

therefore, by inversion,

AB : AF :: AF : FB.

ScuoLium.. This division of the line AB is called division in mean
and extreme ratio. It may further be observed that the secant AE is
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divided in mean and extreme ratio at the point D; for, since
AB=DE, we have
AE : DE:: DE : AD.

PROBLEM V.

T describe an isosceles triangle in whick eack of the angles at the base
shall be double the angle at the vertex.

Consider the problem solved so that each of the angles at B and D
is double of the angle at A. Bisect the angle at D by the straight
line DC. Then the angle ADC is equal to the angle
A, and BCD = ADC + A is equal to twice the angle
A. But, by hypothesis, the angle ABD is equal to
double the angle A. Therefore, BD=DC=CA, and, ¢
since the angle BDC is equal to the angle at A, the
straight line BD will touch the circle described around 2 D
the triangle ACD in D (Book II., converse of Prop. XXI.). There-
fore, ABxBC = BD' = AC". Hence, AB : AC :: AC : BC, and AB
is divided at C in extreme and mean ratio (Prob. IV.).

Hence, to describe the required isosceles triangle, take two equal
lines and the greater part obtained by dividing one of them in mean
and extreme ratio, and with these construct the triangle.

PROBLEM' VI.

Through a given point, A, in the given angle BCD, fo draw the line BD,
so that the parts AB, AD, comprised between the point A and the two sides
of the angle, shall be equal.

Through the point A draw AE parallel to
CD, take BE = CE, and through the points B
and A draw BAD, which will be the line re-
quired. For, AE being parallel to CD, we have

BE:EC::BA : AD;
or BE = EC; therefore, BA = AD.

(o}

PROBLEM VIL

T construct a square equivalent lo a given parallelogram, or to a given
Iriangle.
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First.—Let ABCD be the given parallelogram, AB its base, and
DE its altitude ; between AB and DE find a mean proportional, XY

(v
[al
d

Al

- D o

A E B

(Prob. IIL) ; the square constructed on XY will be equivalent to the
parallelogram ABCD. For we have, by construction

AB:XY ::XY :DE;
therefore, XY’ = AB x DE; now AB x DE is the measure of the

parallelogram, and XY that of the square, therefore, they are equiva-~
lent.

Second.—Let ABC be the given triangle, BC its base, AD its alti-
tude ; find a mean proportional between BC and the half of AD, and
let XY be that mean ; the square

constructed on XY will be equiva- A\\

lent to the triangle ABC,
For, since we have x

BC : XY :: XY : }AD,

it follows that XV' = BC x $AD; e

hence, the square constructed on XY is'equivalent to the triangle
ABC.

PROBLEM VIIL.
On a given line, AD, fo construct a reclangle, ADEX, that shall be
equwalent fo the given reclangle ABFC.

Find a fourth proportional to the three lines AD, AB, AC, and
let AX be that fourth proportional ; the rectangle constructed on
AD and AX will be equivalent to the rectangle ABFC,

X B
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For, since we have
AD : AB:: AC: AX,

there results from this AD x AX = AB x AC; therefore, the rect-
angle ADEX is equivalent to the rectangle ABFC,

PROBLEM IX.

To find two lines whose ratio shall be the same as the ratio of the rect- .
angle of the two given lines A and B lo the reclangle of the two given lines
C and D.

Let X be a fourth proportional to the three lines B, C, D; then
will the two lines A and X have the same ratio as

the two rectangles A x B, C x D. A—
For, since we have B:C :: D : X, it follows | B——
that C x D =B x X; therefore, o—i
D

AxB:CxD::AxB:BxX::A:X X——

Cor. Hence, to obtain the ratio of the squares constructed on the
given lines A and C, find a third proportional, X, to the lines A and
C,soastohave A : C:: C: X, and you will have A* : C* :: A : X,

PROBLEM X.

T find a triangle that shall be equivalent lo a given polygon.

Let ABCDE be the given polygon. Draw first the diagonal CE,
cutting off the triangle CDE; through the ' 0
point D draw DF, parallel to CE, and meet-
ing AE prolonged ; join CF, and the polygon
ABCDE will be equivalent to the polygon
ABCF, which has one side less.

For, the triangles CDE, CFE, have the @ A E x
common base CE ; they have also the same altitude, since their ver-
tices D, F, are situated in a line, DF, parallel to. the base ; therefore,
these triangles are equivalent. Add to each the figure ABCE, and
there will result the polygon ABCDE, equivalent to the polygon
ABCF.

In like manner we may cut off the angle B by substituting for the
triangle ABC the equivalent triangle AGC, and thus the pentagon
ABCDE will be changed into an equivalent triangle, GCF.
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The same process can be applied to any other polygon, for by
diminishing the number of its sides successively one by one, we shall
arrive finally at the equivalent triangle. .

. ScHoLium. We have already seen that every triangle may be
changed into an equivalent square (Prob. VI.) ; and thus a square
may always be found equivalent to a given rectilineal figure, an oper-
ation which is called squaring the rectilineal figure, or finding its
guadrature. '

PROBLEM XI.

To construct a square whick shall be equal lo the sum, or fo the differ-
ence of fwo given squares.

Let A and B be the sides of the given squares.
First.—If it is required to find a square equivalent to the sum of
these squares, draw the two indefinite lines ED, EF, at right angles
to each other; take ED=A and EG=B;

draw DG, and DG will be the side of the ¥
required square. s "
For, the triangle DEG being right B i

angled, the square made on DG is equal
to the sum of the squares made on ED
and EG.

Second.—If it is required to find a square equal to the difference
of the given squares, form the same right angle FEH ; take GE,
equal to the shorter of the sides A and B; from the point G, as a
centre, with a radius GH, equal to the other side, describe an arc
cutting EH in H ; the square described on EH will be equal to the
difference of the squares described on the lines A and B.

For, the triangle GEH is right angled, its hypothenuse GH = A,
and the side GE = B; hence, the square constructed on EH, etc.

Scuorum. Thus may be found a square equal to the sum of any
number of squares ; for the construction which reduces two of them
to one, will reduce three of them to two, and ‘these two to one, and
so for the others. It would be the same, if any of the squares were
to be subtracted from the sum of the others.

PROBLEM XII.

T construct a square whick shall be o the given square ABCD, as the
line M s fo the line N,
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On the indefinite line EG, take EF = M, and FG = N; on EG,
as a diameter, describe a semicircle, and at the point F erect on the
diameter the perpendicular FH. From the poini H draw the chords

D [V i
N
38
y 2 > A‘r\
—_—

HG, HE, and prolong these chords indefinitely ; on the first, take
HK, equal to the side AB of the given square, and through the point
K draw KI, parnallel to EG; HI will be the side of the square
sought. .
For, by reason of the parallels KI, GE, we have
HI:HK :: HE : HG;
hence,
HI : HK :: HE': HG';
but, in the right angled triangle EHG (Prop. XI., Cor. 4), the square
of HE is to the square of HG as the segment EF is to the segment
FG, oras M is to N ; therefore, )

HI':HK ::M:N.

But HK = AB; therefore, the square constructed on HI is to the
square constructed on AB as M is to N.

PROBLEM XIII.
On the side FG, homologous to AB, to describe a polygon similar fo the
gtven polygon ABCDE.,

In the given polygon draw the diagonals AC, AD; at the point F
make the angle GFH = BAC, and at the point G, the angle

pa
B ¢
> I
i .
A
———— X
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FGH = ABC; the lines FH, GH, will cut each other in H, and
FGH will be a triangle similar to ABC; likewise, on FH, homolo-
gous to AC, construct the triangle FIH, similar to ADC, and on FI,
homologous to AD, construct the triangle FIK, similar to ADE.
The polygon FGHIK will be the required polygon, similar to
ABCDE.

For these two polygons are composed of the same number of tri-
angles, similar to each other and similarly situated (Prop. XXVIIL).

PROBLEM XIV.

Two similar figures being gtven, fo consiruct a similar figure whick
shall be equal fo their sum, or lo their difference.

Let A and B be two homologous sides of the given figures; find a
square equal to the sum, or to the difference of the squares con-
structed on A and B ; let X be the side of this square, and X will be,
in the required figure, the side homologous to A and B in the given
figures. The figure itself may then be constructed by the preceding
problem.

For, the similar figures are as the squares of their homologous
sides ; now, the square of the side X is equal to the sum, or to the
difference of the squares constructed on the homologous sides A and
B; therefore, the figure constructed on the side X is equal to the
sum or to the difference of the similar figures constructed on the
sides A and B.

PROBLEM XV.
To construct a figure similar to a given figure, and whickh shall bear fo
it the given ratio of M 7o N.

Let A be a side of the given figure, X the homologous side in the
figure sought. The square of X must be to the square of A as M is
to N (Prop. XXIX.). X will be found, therefore, by Problem XII ;
X being known, the rest will be accomplished by Problem XIII.

PROBLEM XVI.

To construct a figure similar lo the figure P, and equivalent lo the
figure Q.
Find M, the side of the square equivalent to the figure P, and N,
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the side of the square equivalent to the figure Q. Then, let X be a
fourth proportional to the three given
lines, M, N, AB; on the side X, ho-

mologous to AB, describe a figure simi-
lar to the figure P; it will also be
equivalent to the figure Q.
For, calling Y the figure constructed
on the side X, we have
PA:Y::E’ : X%
but, by construction,
AB:X::M:N, orAB : X*:: M* : N*;
therefore,
P:Y::M:N.
But, by construction, also, M* = P and N* = Q ; therefore,
P:Y::P:Q;

hence, Y = Q ; hence, the figure Y is similar to the figure P, and
equivalent to the figure Q.

PROBLEM XVII.

To construct a rectangle equivalent o a grven square, C, and whick
shall have the sum of ils adjacent sides equal fo a given line, AB.

On AB, as a diameter, describe a semicircle ; draw the line DE
parallel to the diameter, at a distance, AD, from it equal to the side
of the given square C; from the point E, where the parallel cuts the
circumference, draw EF perpendicular to the diameter ; AF and FB
will be the sides of the rectangle required.

D ?\
7 ;

A FB

For, their sum is equal to AB; and their rectangle AF x FB is
equal to the square of EF (Prop. XXV., Cor. ), or the square of AD ;
hence, that rectangle is equivalent to the given square C.

Scuorivm. To render the problem possible, the distance AD must
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not exceed the radius; that is to say, the side of the square C must
not exceed the half of the line AB.

PROBLEM XVIIIL

To construct a reclangle equivalent to a square, C, and the difference of
the adjacent sides of which shall be equal 1o a given line, AB.

On the given line AB, as a diameter, describe a circle; at the
extremity of the diameter draw the tangent AD, equal to the side of
the given square C; through the point D
and the centre O draw the secant DF; DE
and DF will be the adjacent sides of the re-
quired rectangle.

For, first, the difference of these sides is
equal to the diameter EF or AB; second, the
rectangle DE x DF is equal to AD' (Prop.
XXXIL.) ; therefore, this rectangle will be
equivalent to the given square C. 7

D

PROBLEM XIX.

75 find the common measure, if there is one, between the diagonal and
the side of a square.

Let ABCG be any square whatever, and AC its diagonal. We
must first apply CB on CA as often as it can be contained there
(Book 1I., Prob. XVIIL); and for that purpose let the semicircle
DBE be described from the centre, C, with the radius CB. 1t is evi-
dent that CB is contained once in AC with the remainder AD ; the
result of the first operation is, therefore, the -
quotient 1 with the remainder AD, which
must be compared with BC, or its equal, AB.

We may take AF = AD, and actually ap- 4 c
ply AF on AB; we should find it to be con-
tained twice with a remainder ; but, as that
remainder and those which succeed it goon | p
diminishing, and would soon elude our com-
parison by their smallness, this would be but “
an imperfect mechanical method from which we could draw no con-
clusion for determining whether the lines AC, CB, have, or have nota

¥ B
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common measure. There is a very simple way, however, by which
we may avoid these decreasing lines, and operate only on lines which
remain always of the same magnitude.

Thus, the angle ABC being right, AB is a tangent, and AE a se-
cant drawn from the same point, so that we have (Prop. XXXIL.),

AD : AB:: AB: AE.

Accordingly, in the second operation, in which AD is to be com-
pared with AB, we may, instead of the ratio of AD to AB, take that
of AB to AE ; now, AB, or its equal, CD, is contained twice in AE,
with the remainder AD ; therefore, the result of the second operation
is the quotient 2 with the remainder AD, which must be compared
with AB.

Thus, the third operation again consists in comparing AD with
AB, and may be reduced in the same manner to a comparison of AB,
orits equal, CD, with AE, and we shall again have 2 for a quotient
and AD for a remainder.

" Hence, it is evident the process will never terminate, and, there-
fore, there is no common measure between the diagonal and the side
of a square ; a truth which was already known by arithmetic (since

these two lines are to each other :: 4/2 : 1) (Prop. XL ), but which
acquires a greater degree of clearness by the geometrical investigation,

Scrortum. It is hence impossible, also, to find in numbers the
exact ratio of the diagonal to the side of the square ; but an approx-
imation may be made to it as near as we please, by means of the con-
tinued fraction, which is equal to that ratio. * The first operation gave
us I for a quotient ; the second, and all the others ad infinitum give
2 ; thus, the fraction in the case is

I+1
241
241
241

3 +1, etc., ad infinitum.
2

For example, if we calculate this fraction as far as the fourth term
inclusively, we find that its value is 14% or 4§ ; so that the approx-
imate ratio of the diagonal to the side of the square is : : 41 : 29. A
closer approximation to the ratio might be found by calculating a
greater number of terms,
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EXERCISES ON BOOK IIL

THEOREMS.

1. If, through any point in the diagonal of a parallelogram, lines
be drawn parallel to the sides, the two parallelograms so formed
through which the diagonal does not pass are equivalent to one
another. ) '

2. The area of a trapezoid is equal to one of the non-parallel sides
multiplied by the half sum of the perpendiculars let fall on this side
from the extremities of the opposite side.

3. The square constructed on a line equal to the sum of three lines
is equal to the sum of the squares on these lines, together with twice
the sum of the rectangles on these lines, taken two and two.

4. If, on the two sides AB, AC, of a triangle, ABC, parallelograms
ABEF, ACGH, be constructed, and then the point A be joined
with the intersection D of the sides EF and GH, the sum of these
two parallelograms is equal to the parallelogram one of whose sides is
BC, and the other equal and parallel to AD.

From this theorem deduce Proposition XI.

5. Demonstrate Proposition XII. independently of Proposition XI.,
by the construction of the squares on the sides, and completing the
construction after the manner of XIL.

6. Demonstrate Proposition XIII. after the same manner.
7. If, in figure, Proposition XI., the lines FH, GI, LK be joined,
each of the triangles so formed is equal to the triangle ABC.

8. The irregular hexagon formed by joining the exterior corners
of the squares as above, is equal to the area of the square described on
the hypothenuse of a right angled triangle, one of whose sides is
equal to the hypothenuse of the original triangle and the other is
equal to the sum of its sides. '

9. Ifa straight line be drawn from one of the acute angles of a,
right angled triangle bisecting the opposite side, the square upon that
line is less than the square upon the hypothenuse by three times the
square upon half the bisected side.

10. If, from the middle point of a straight line as centre, with any

radius, a circle be described, the sum of the squares of the distances
of any point of this circle from the two extremities of the straight line
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' is constant. Consider the case in which the radius of the circle is
\qual to half of the given straight line.

Q 11. If, from the middle point of the line joining the centres of two

given circles as a centre, with any radius, a circle be described, the
sum of the squares of the tangents drawn from any point of this circle
to the two first circles is constant.

.y

M 12. If, at any point of a straight line a perpendicular be drawn to

—~this line the difference of the squares of the distances of any point of
this perpendicular from the two extremities of the given line is con-
stant.

13. If we draw a perpendicular to the line joining the centres of
o circles, the difference of the squares of the tangents drawn from
~any point of this perpendicular to the two circles is constant.

14. Hence, show (and without having recourse to the Prop. XXXII.

9Book IIL )that when two circles intersect each other the tangents

drawn to the two circles from any point of the line of intersection
produced are equal.

15. Ifthrough a point in the interior of a circle two chords be
drawn at right angles to one another, the sum of the squares of the
four segments (parts) of the chords is equal to the square of the di-

er.

16. In any quadrilateral the sum of the squares of the sides is
equal to the sum of the squares of the diagonals p/us four times the
square of the straight line which joins the middle points of these di-
agonals.

17. The sum of the squares on the diagonals of a quadrilateral is
double the sum ‘of the squares on the sides of the parallelogram
formed by joining the middle points of its sides.

18. Hence, show that this sum is also double the sum of the
squares on the lines which join the middle points of the opposite sides
of the quadrilateral.

19. O is the point of intersection of the diagonals of a square,
ABCD, and P any other point whatever. Prove that
AP + BP* 4 CP* + DP* = 40A* + 40P

20. In a trapezoid the sum of the squares of the diagonals is equal
to the sum of the squares of the opposite non-parallel sides plus twice
the rectangle of the opposite parallel sides.
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21. The sum of the squares of the three sides of a triangle is three
times the sum of the squares of the three straight lines which join the
vertices to the point of intersection of the medians.

22. Four times the sum of the squares of the medians of a triangle
is equal to three times the sum of the squares on the sides of the tri-
angle.

23. If G be the point of intersection of the medians of a triangle,
ABC, and M any point whatever in the plane of the triangle, then

MA® + MB* + MC* = AG’ + BG* + CG* + 3MG".

24. If, from a point, O, in the plane of a triangle, ABC, perpendic-
ulars, OD, OE, OF, be let fall on the three sides, the sum of the
squares on the three non-adjacent segments, CE, BD, AF, is equal to
the sum of the squares of the three other segments, AE, CD, BF, and
we shall have

CE’ + BD* + AF* = AE® 4+ CD® + BF~.

25. Conversely, if points, D, E, F, be taken on the sides of a tri-
angle, ABC, so that CE* + BD* + AF’ = AE’ + CD”+ BF?, the per-
pendiculars to the sides erected at D, E, F, respectively, meet in the
Same point.

26. Show that Proposition 24 is true for any polygon.

27. Deduce from Proposition 25, first, that the perpendiculars
drawn to the sides of a triangle, at the middle points, meet in the
"same point. Second, that the three altitudes of a triangle meet in a
common point. Third, that the perpendiculars drawn to the sides
of a triangle at the points of contact of the escribed circles, meet in a
common point. .

N. B.—All the preceding theorems can be demonstrated without
asing Proposition XX., Book III.

28. First. If any point in the plane of a polygon be joined with
the vertices of this polygon and all these lines of junction be pro-
duced so that the prolongations are proportional to the lines them-
selves, the polygon which is formed by joining the extremities of these
lines will be similar to the given polygon. Second. Prove the same,
substituting the condition that the lines of junction all be revolved
through the same angle.

29. If two circles are tangent externally, the portion of the exterior
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common tangent comprehended between the points of contact isa
mean proportional between the diameters of the two circles.

30. If two triangles have an angle in one equal to an angle in the
. other, and a second angle in one supplementary to an angle in the
other, the sides of the triangles respectively opposite to these angles
are proportional.

31. In every triangle the distance of the centre of the circumscribed
circle from one of the sides is equal to half the straight line which
joins the opposite vertex to the point of intersection of the altitudes.

32. In any triangle, ABC, the middle points of the sides, a, §, ¢, the
feet of the altitudes, a, 8, y, the middle points, , ¢, 7, of the distan-
ces of the vertices from the point of intersections of the altitudes are
nine points situated on the same circumference. The centre of this cir-
cle is the middle point of the straight line which joins the centre, O, of
the circumscribed circle of the triangle with the point of intersection
of the altitudes, and its radius is equal to half the radius of thiscircle.

NoTEe.—This circle is known in ancient and modern geometrical analysis as
the nine points circle.

33. If, from the three vertices of a triangle and from the intersec-
tion of its medians perpendiculars be let fall on any line whatever, the
last perpendicular is one-third of the sum of the three first.

34. The area of a triangle contained by the medians of a given tri-
angle is three-fourths of the area of the given triangle.

35. The straight lines drawn through the point of contact of two
circles which touch externally or internally are cut proportionally by
the circles.

36. If in two circles two radii be drawn parallel and in the same
direction, the line which joins the extremities of the two radii passes
through the point of intersection of the common exterior tangents ;
if the parallel radii are drawn in opposite directions the straight line
which joins their extremities passes through the intersection of the
common interior tangents.

37. The point of intersection of the three altitudes of a triangle,
that of the three medians, and the centre of the circumscribed circle
are in the same straight line, and the second divides the distance be-
tween 'the first two in the ratio of 1 to 2.

38. If between the two sides of an angle any number of parallel
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lines be drawn, all the middle points of these parallels are on a straight
line which passes through the vertex of the angle.

39. The intersections of the diagonals of the trapezoids which we
obtain in considering these parallels two and two respectively, are in
the same straight line.

40. The three common chords of three circles which intersect each
other, two and two, meet each other in one point.

41. If P be a given point within a circle on the radius AC, and a
point Q be taken without on the prolongation of the same radius, so
that CP : CA :: CA : CQ; then, if from any point, M, in the cir-
cumference the straight lines MP and MQ be drawn, they will bear
to each other everywhere a constant ratio, and we shall have
MP : MQ :: AP : AQ.

42. Prove the converse of Proposition XXXI.,

GeomeTrIC Loci.

1. Find the locus of all the points such that if any one of these
points be joined with two given points the triangle thus formed has a
given area.

2. A straight line being given, find the locus of all the points such
that the perpendicular let fall from any one of them on the line shall
be a mean proportional between the segments of the line between the
foot of the perpendicular and the two extremities.

3. The locus of all the points, the sum of the squares,of the distan-
ces of any one of which, from two fixed points, is equal to a given
square, is a circle.

4. Find the locus of all the points, the sum of the squares of the
distances of any one of which from #kree given points is equal to a
given square ; from four points ; from any number of points.

5. Find the locus of all the points, the sum of the squares of the
tangents from one of which to Zwo given circles shall be equal to a
agwen square ; the same for #kree given circles ; for any number of
given circles.

6. The locus of all the points, the difference of the squares of the
distances of any one of which from two given points shall be equal to
a given square, is a straight line perpendicular to the line which joins
the two given points, '

\
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7. The locus of all the points, the difference of the squares of the
tangents of any one of which to two given circles shall be equal to a
given square, is a straight line. Consider the case when the given
difference is nothing, that is, when the tangents are equal.

Definition : This last locus is called the radical axis of the two cir-
cles; that is, the radical axis of two circles is the line the tangents
from any point of which to the two circles are equal. ‘

8. The radical axes of three circles are parallel or meet in the same
point.

Definition : The point of meeting of the radical axes of three cir-
cles is called the radical centre.

9. The radical axis of two circles is the locus of the centres of the
circles which cut the two given circles at right angles.

10. Find the locus of all the points such that the sum of the
squares of the distances of any one of them from the two sides of a
right angle shall be equal to a given square.

11. Find the locus of all the points the sum of the squares of the
distances of any point of which from the four sides of a rectangle shall
be equal to a given square.

12. A straight line and a point being given, the point is joined
with all the points of the straight line, and all the lines of junction
are divided into segments proportional to the given lines, find the
locus of the points of division.

13. The same problem, replacing the straight line by a circle.

14. The locus of all the points, the ratio of the distances of any one
of which from two given straight lines is a given number, is a straight
line.

15. The locus of_points, the ratio of the distances of any one of
which to two fixed points is a given number, is a circle.

16. The locus of points from any one of which two given circles
subtend the same angle between the tangents is a circle. <

17. Any number of parallel lines cut two given straight lines.
Find the locus of the middle point of these parallels.

18. Find the locus of the intersection of the diagonals of the trapes
zoids formed in the figure of the preceding problem.
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PROBLEMS.

1. Deduce from the properties of chords which intersect in a cir-
cle (Prop. XXX.) a means of constructing a fourth proportional to
three given lines ; also, a third proportional to two given lines.

2. Through a given point within a given angle draw a straight line
which shall be divided at this point in the ratio of m : n. Consider
the case in which the point is exterior to the angle.’

3. Through a given point on one of the sides of a triangle draw a
straight line which shall divide the triangle into two equivalent parts ;
also, into parts proportional to the lines 7 and #.

4. Construct a square which shall be a mean proportional between
two given parallelograms.

5. Construct a rectangle equivalent to a given rectangle and the
sum of two adjacent sides equal to a given line.

6. Find in the interior of a triangle a point which, if we join to the
three vertices of the triangle, the triangles thus obtained shall be
equivalent,

7. Divide a triangle into two equal parts by a straight line parallel
to a given straight line.

8. Construct a right angled triangle, given the hypothenuse and
knowing that one of the sides of the right angle is equal to the seg-
ment of the hypothenuse not adjacent to it.

9. Construct a triangle, given the three altitudes.
10. Construct a triangle, given one median and the angles.
11. Construct a triangle, given one altitude and the angles.

12. Construct a right angled triangle, given one of the sides con-
taining the right angle and the non-adjacent segment of the hypoth-
enuse formed by the perpendicular let fall from the nght angle on the
hypothenuse.

.\ 13. Describe a circle which shall pass through two given points
and be tangent to a given straight ]ine &

14. Describe a circle which shall pass through two /given points
and be tangent to a given circle.

5t' 15. Describe a circle which shall pass through a given point and
be tangent to two given straight lines,
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16. Describe a circle which shall pass through a given point and
shall touch a given straight line and a given circle.

17. Describe a circle which shall pass through a given point and
be tangent to two given circles.

18. Describe a circle which shall be tangent to two given straight
lines and to a given circle.

19. Draw a chord through a given point in the interior of a circle
which shall be divided in a given ratio at the given point.

20.- Through a given point exterior to a circle draw a secant such.
that the exterior part shall be four-fifths of the whole secant.

21. Construct a triangle, given the base, the line which joins the ver- J
tex to the middle point of base, and the ratio of the two other sides.

22. Construct a triangle, given two sides and the bisectrix of the
angle which they contain.

23. Construct a triangle similar to a given triangle and the vertices
of which shall rest on three given concentric circles.

24. Inscribe a square in a given triangle.

25. Find a point in the interior of a triangle so that the lines drawn
from it to the three vertices of the triangle shall divide it into three
equal triangles,

26. Find the radical axis of two circles which do not intersect or
touch one another.

27. Three circumferences being given, find upon one of them a
point so that the tangents drawn from this point to the other two cir-
cumferences shall be equal.

28. Three circles being given, find on one of them a point so that
the difference of the squares of the tangents drawn from this point to
the two other circumferences shall be equal to a given square.

29. Given two points and a circumference, find on this circumfer-
ence a point, C, the distances of which from the two points, A and B,
shall be in the ratio of two given lines.

30. Given a circumference and a triangle, ABC, find on the cir-
cumference a point, X, so that the sum of the squares of the distan-
ces of this point from the three vertices, A, B, C, shall be equivalent
to a given square,
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NuMERICAL PROBLEMS.

1. Find the area of a triangle whose base is 548 yards and perpen-
dicular 265 meters.

2. Find the area of a trapezoid whose two parallel sides are 48.2
meters, 30.5 meters, and altitude 27.45 meters.
(Compute the same in feet, the meter being 39.37 inches, nearly.)

3. Compute the area of a parallelogram whose base is s 145. 6 meters,
and altitude 72.48 meters.

4. Two sides of a triangle are respectively 15 and 12 feet, and the al-
titude corfresponding to the third side is g feet. Find the third side
and the distances of the other two sides from the opposite vertices.

5. The sides about the right angle of a R. A. T. are 3 meters and
4 meters respectively. Determine, to within a centimeter,—

First —The hypothenuse and corresponding altitude.

Second.—The projections of the given sides on the hypothenuse.

Third.—The radii of the inscribed and circumscribed circles.

Fourth.—The portions of the sides fixed by the points of contact
of the inscribed circles. .

Fifth.—The segments of each side determined by the bisectrix of
the opposite angle.

Sixth.—The lengths of the three bisectrices.

Seventh.—The three medians.

6. Two circles whose radii are respectively 1.2 meters and 3 deci-
meters cut each other at right angles (that is, their tangents at the
point of intersection are perpendicular to each other). Compute,

First.—The length of the common chord.
Second.—The length of the part of the line of centres intercepted
between the centres of the two circles.

7. The sides of a triangle are 3 meters, 5 meters, and 6 meters,
respectively. Compute to within a centimeter,

First.—The segments cut off on each side by the bisectrix of the
opposite angle.

Second.—The segments determined by the points of contact of the
inscribed circle.

Third.—The lengths of the three bisectrices.

B .
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Fourth.—The segments of each side determined by the correspond-
ing altitudes.

Fifth.—The three altitudes. N

Sixth.—The three medians.

Seventh.—The radius of the circumscribed circle.

Eighth.—The radius of the inscribed circle.

8. Given in the straight line AC, AB = 4 inches, BC = 5 inches,
and in the line A'C’, parallel to AC, A'B’ = 1.24 inches, and B'C'=
3.10 inches : discover whether AA’, BB, and CC’, meet in the same
point.

9. Given the side of an equnlateral triangle equal to 10 feet: find
its area.

10. Given the area of an equilateral triangle equal to 36 square
feet : find its side to within .co1 of a foot.

11. Given one of the equal sides of an isosceles triangle equal to 10
feet, and one of the equal angles equal to one-third of a right angle :
find the area of the triangle.

12. Given the sum of thesquares of the distances of a point, P, from
two points, A and B (12 inches apart), equal to 200 square inches:
find the radius of the circle which is the locus of P.

13. The length of a tangent, AB, to a circle (whose radius is 2o
feet) from the point of contact, A, to the point B is 100 feet. If this
tangent is divided into four equal parts, find the lengths of the per-
pendiculars erected to it at the three points of division, and termi-
nating in the circumference.

14. With the same data as in Problem 13, determine the external
portions of the secants from the three pomts of division which pass
through the centre of the circle.
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OF REGULAR POLYGONS, AND THE MEASUREMENT
OF THE CIRCLE.

" DEFINITION.

A polygon which is at once equiangular and equilateral, is called
a regular polygon.

Regular polygons may have any number of sides. The equilateral
triangle is one of three sides ; and the square, one of four.

PROPOSITION 1.

THEOREM. /

Two regular polygons of the same number of sides are similar figures.

For example, le¢ ABCDEF, abcdef; be two regular hexagons,
The sum of all the angles is the same in
each figure, being equal to eight right
angles (Book I., Prop. XXX.). The
angle A is the sixth part of that sum ; so F
is the angle @ ; hence;” the angles A and
a are equal; and for the same reason,
the same is true of the angles B and 5, e a
C and ¢, and so on.

Again, since from the nature of the s
polygons, the sides AB, BC, CD, etc.,
are equal, and likewise the sides a3, &, @ h
cd, etc., it is plain that AB :ab :: BC :4c::CD : cd; hence, the
two figures in question have their angles equal and their homologous
sides proportional ; therefore they are similar (Book III., Def. 2).

E D

Cor. The perimeters of two regular polygons having the same
number of sides are to each other as their homologous sides, and

— A e e S - o ——
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their surfaces are as the squares of these same sides (Book III.,
Prop. XXIX.).

Scuorivm. The angle of a regular polygon is determined by the -
number of its sides (Book I., Prop. XXX.).

PROPOSITION II.

THEOREM.

. s
A circle may be circumscribed about any regular polygon ; and a circle
may be inscribed in any regular polygon.

Let ABCDE, etc., be a regular polygon ; describe a circle through
the three points A, B, C; O being the centre, and OP the perpen-
dicular let fall from it on the middle of the
side BC; join AO and OD.

If the quadrilateral OPCD be placed on
the quadrilateral OPBA, they will coincide,
for the side OP is common ; the angle
OPC = OPB, being right; hence, the side
PC will fall along its equal PB, and the point
C will fall on B.

Besides, from the nature of the polygon,
the angle PCD = PBA, hence, CD will fall along BA, and since
CD = BA, the point D will fall on A, and the two quadrilaterals will
entirely coincide. The distance OD is therefore equal to AO; and
consequently the circle which passes through the three points A, B, C,
will pass also through the point D : by similar reasoning it may be
shown that the circle which passes through the three vertices B, C, D,
will pass through the vertex E, and so of all the rest; hence, the
circle which passes through the three points A, B, C, passes through
the vertices of all the angles of the polygon, which is therefore
inscribed in this circle.

Again, in reference to this circle, all the sides AB, BC, CD, etc.,
are equal chords ; they are therefore equally distant from the centre
(Book II., Prop. VIIL); hence, if from the point O, as a centre,
with the radius OP, a circle be described, it will touch the side BC
and all the other sides of the polygon, each at its middle point, and
the circle will be inscribed in the polygon, or the polygon circum-
scribed about the circle. ‘

Scuorium. The point Q, the common centre of the inscribed and
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circumscribed circles, may be regarded also as the centre of the
polygon, and the angle AOB, formed by the two radii drawn to the
extremities of the same side, AB, is called the angle af the centre,
Since all the chords AB, BC, etc., are equal, it is plain that all the
angles at the centre are equal ; and therefore the value of each is
found by dividing four right angles by the number of the sides of the

polygon.

PROPOSITION III

THEOREM. 7

Euvery equilateral polygon inscribed in a circle is regular,

Let ABCDE be an inscribed equilateral poly- A :
gon. Then, since the chords AB, BC, etc., are \
equal, the arcs AB, BC, etc., are equal ; hence, / E
the arcs ABC, BCD, etc., are also equal ; and B
therefore the angles A, B, C, etc., inscribed in \

equal arcs, are equal. Hence the polygon
ABCDE is regular. o~—_—_—">

Scrorium. In order to inscribe a regular polygon of -a certain
number of sides in a given circle, we have to divide the circumference
into as many equal parts as the polygon has sides, and join the
points of division.  This division of the circumference can, however,
be effected geometrically in only a limited number of cases.

PROPOSITION 1V.

THEOREM.
FEvery equiangular polygon circumscribed about a circle is regular.

Let GHIKLM be a circumscribed
polygon, and let the angles

G=H=I=K=L=M.

Since the centre O is equally
distant from the sides GH, HI,
etc., the bisectrices of the angles
G, H, I, etc., must all pass through
this centre. And since H=G, the
angle OHG = OGH ; therefore,
OG=0H. We show, in the same
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manner, that OG=0M, OH=O0C, etc. Hence, the sides GH,
HI, etc., are chords of the same circle, and equidistant from the
centre. They are, therefore, equal, and the polygon GHIKLM is
regular.

Cor. The arcs AB, BC, CD, etc., are all equal. Therefore, to
circumscribe a regular polygon of a certain number of sides about a
given circle, we have to divide the circumference into as many equal
parts as the polygon has sides, and draw tangents to the circle at the
points of division.

PROPOSITION V.

PRrROBLEM.

To inscribe a square in a given circle.

: B
Draw two diameters, AC, BD, cutting each
other at right angles ; join the extremities
A, B, C, D; the figure ABCD will be the

inscribed square ; for the angles AOB, BOC, < o o

etc., being equal, the chords AB, BC, etc.,
. will be equal, and the angles ABC, BCD,
etc., being inscribed in semicircles, are right.

D
Scrortum. The triangle BOC being right angled and isosceles, we

have (Book IIL., Prop. XI.) BC : BO :: 4/2 : 1 ; hence, the sids of
the snscribed square is lo the radius as the square rool of 2 is fo unity.

PROPOSITION VI.

PROBLEM.

In a given circle, lo inscribe a regular hexagon and an equilateral .
irangle.

Suppose the problem solved ; and that AB is a side of the inscribed
hexagon : the radii AO, OB, being drawn, the triangle AOB will
be equilateral.

For the angle AOB is the sixth part of four right angles; hence,
taking the right angle for unity, we shall have AOB =4 == §; and
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the two other angles, ABO, BAO, of the same triangle, are together
equal to 2 — § or 4, and being equal,
each one of them =% ; hence, the tri-
angle ABO is cquilateral ; therefore,
the side of the inscribed hexagon is
equal to the radius.

Hence, to inscribe a regular hexag:on
in a given circle, the radius must be
applied six times to the circumference ;
which will bring us back to the point
from which we set out.

The hexagon ABCDEF being in-
scribed, the equilateral triangle ACE
may be formed by joining the vertices of the alternate angles.

b1

a

ScuorLrum. The figure ABCO is a parallelogram, and even a
rhombus, since AB=BC=CO=AO; hence (Book IIIL; Prop. XIV.

Cor. 1), the sum of the squares of the diagonals, AC +1_?>6’, is equal
to the sum of the squares of the sides, which is 4@’ or 4%’ ; and
taking away BO’ from both, there will remain AC = 3%’ ; hence,
AC :BO :: 3:1, or AC : BO : : 4/3 : 1; therefore, the side of the
tnscribed equilateral iriangle is 1o the radius as the square rool of 3 is fo
unity,

PROPOSITION VII.

ProBLEM.

In a given circle, lo inscribe a regular decagon, then a penfagon, and
also a regular polygon of fifteen sides.

First.—Suppose the problem solved,
and that AB is a side of the inscribed
decagon. Draw the radii AO, BO.
. Taking the right angle equal to unity,
we shall have the angle AOB at the
centre = 4 = % ; and the two other
angles, OAB and OBA, of the same
triangle are together equal to z—$=3$,
and being mutually equal, each of
them must be equal to 4 Hence,
each of the angles QAB and OBA is
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double the angle AOB. Therefore, to find AB we must construct
on the radius OA, as one of the equal sides, an isosceles triangle, with
the angle at the base double the angle at the vertex (Book III.,
Prob. V.). To do this, we divide OA in extreme and mean ratio at
the point M (Book IIIL., Prob. IV.), and take AB equal to the greater
part OM ; AB is then the side of the regular inscribed decagon.

Second. By joining the alternate corners of the regular decagon,
the regular inscribed pentagon ACEGI will be formed.

Third. —AB being still the side of the decagon, let AL be the side
of the hexagon; the arc BL will then, with reference to the whole
circumference, be } — 4% = % ; hence, the chord BL will be the
side of the regular polygon of fifteen sides or pentadecagon. Itis
evident, also, that the arc CL is one-third of CB.

ScHoLiuM. A regular polygon being inscribed, if we divide the arcs
subtended by its sides into two equal parts, and draw the chords of
the semi-arcs, these chords will form a new regular polygon of double
the number of sides of the first ; thus it is seen that the square may
serve for inscribing successively regular polygons of 8, 16, 32, etc.,
sides. In like manner, the hexagon may te used for inscribing regu-
lar polygons of 12, 24, 48, etc., sides; the decagon, for inscribing
polygons of 20, 40, 8o, etc., sides; the regular polygon of 15 sides,
for inscribing polygons of 30, 60, 120, etc., sides (1). '

PROPOSITION VIIL

PrOBLEM.

A regular inscribed polygon, ABCDEF, being given, lo circumscribe a
stmilar polygon about the same circle.

There are two ways of readily solving this problem :
First.—Draw the radii OT, ON, etc., perpendicular to the sides

(1) It was for a long time believed that these polygons were the only ones
which could be inscribed in a given circle by the process of elementary geome-
try, or, what is equivalent to the same thing, by the resolution of equations of
the first and second degree ; but it has been proved by Gauss, in his work en-
titled Disquisitiones Arithmetice, that by the same means may be inscribed a
regular polygon of seventeen sides, and in general one of 2»+ I sides, provided
that 27+ 1 is a prime number.
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e S, | ¢

AB, BC, etc., and then draw B 4

tangents to the circle at the N 8
points T, N, etc., we thus have

a regular circumscribed poly- . o

gon (Prop. IV., Cor.) of the
same number of sides with
ABCDEF, and, therefore, sim- T R
ilar to it (Prop. L).

X Q L

Second.—Draw tangents to the cir-
cle at the corners of the inscribed
polygon A, B, C, D, E, F, we thus
form a regular circumscribed poly-
gon (Prop. IV., Cor.) equal in all
respects to the one constructed by
the first method.

Cor. 1. Conversely, if the circumscribed polygon GHIK, etc., were
given, and we were required to deduce from it the inscribed polygon
ABC, etc., it would only be necessary to draw from the vertices G,
H, I, etc., of the given polygon, lines OG, OH, etc., meeting the
circumference at the points A, B, C, etc. Then join AB, BC, etc.,
and thus prove the regular inscribed polygon. An easier solution
would be simply to join the points of contact of the circumscribed
polygon. This would likewise form a regular inscribed polygon
similar to the circumscribed.

Cor. 2. Therefore, we can circumscribe about a circle all the reg-
ular polygons which may be inscribed within it, and conversely.

PROPOSITION IX.

THEOREM.

The area of a regular polygon is equal to ils perimeler multiplied by the
half of the radius of the inscribed circle.

Let, for example, GHIK, ectc., be a regular polygon. The tri-
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angle GOH will be measured by GH x 3OT, and the triangle OHI
by HIx4ON; but ON = OT;

H T G
hence, the two triangles taken
together will be measured by B
(GH + HI) x $}OT. By con- Y, 8
tinuing the same operation for
the other triangles, it will be [
G o

seen that the sum of them all,.
or the whole polygon, is meas-
ured by the sum of the bases T R
GH, HI, IK, etc., or the pe-
rimeter of the polygon, multi- '

plied by $OT, the half the ra- o ¢ L
dius of the inscribed circle. '

ScrorLiuM. The radius of the inscribed circle, OT, is nothing else
. than the perpendicular let fall from the centre on one of the sides ; it
is called the apothem of the polygon.

PROPOSITION X.

THEOREM.

" The perimeters of regular polygons having the same number of sides are
1o each other as the radit of the circumscribed circles, and, also, as the
radii of the inscribed circles ; ther surfaces are lo each other as lhe
Squares of these same radii.

Let AB be a side of the one polygon, O its centre, and, conse-
quently, OA the radius of the circumscribed circle, and OD, perpen-
dicular to AB, the radius of the inscribed
circle. In like manner, let ¢4 be a side '
of the other polygon, o its centre, oa and / A2
od the radii of the circumscribed and in- , 4
scribed circles.

The perimeters of the two polygons are
to each other as the sides AB and a4 ; but
the angles A and a are equal, as being
each a half of the angle of the polygon;
so, also, are theangles B and & ; therefore,

the triangles ABO, ado, are similar, as are also the right angled tri-
anglés ADO, adv ; therefore AB :ab :: AO : a0 :: DO : do; hence,

] o
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the perimeters of the polygons are to each other as the radii AO, ao,
of the circumscribed circles, and, also, as the radii DO, 4o, of the in-
scribed circles.

The surfaces of those polygons are to each other as the squares of
the homologous sides AB, aé; they are, therefore, to each other,
also, as the squares of the radii of the circumscribed circles, AO, ao,
or as the squares of the radii of the inscribed circles, OD, od.

PROPOSITION XI.

LEMMA.

Any curved, or polygonal line, which envelops the convex line AMB
Jrom one extremily fo the other, is longer than the enveloped line AMB.

We have already said that by convex line we understand a line,
polygonal or curve, or partly curve and partly polygonal, such that
a straight line cannot cut it in more than two points. The arcs of a
circle are essentially convex ; but the
present proposition extends in its ap-
‘plication to any line which fulfils the
required condition.

This being premised, if the line
AMB is not shorter than any of those
which embrace it, there will be among
these latter one line shorter than all the others, which will be shorter
than AMB, or, at most, equal to AMB. Let ACDEB be this en-
veloping line ; anywhere between those two lines, draw the straight
line PQ, not meeting the line AMB, or, at least, only touching it.
The straight line PQ is shorter than PCDEQ ; hence, if, instead of
the part PCDEQ, we substitute the straight line PQ, we will have
the enveloping line APQB shorter than APDQB. But, by hypothesis,
this must be the shortest of 3ll ; therefore, that hypothesis is false ;
hence, all the enveloping lines are longer than AMB.

A B

SchoLtum. In the same manner it can be
shown that a convex line AMB, returning into
itself, is shorter than any line enveloping it on
all sides, whether the embracing line FHG
touches AMB in one or several points, or sur-
rounds without touching it.
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MEASURE OF THE CIRCLE.

Limits.

DEFINITIONS.

1. A variable magnitude is one which takes successively different
values according to some law.

Examples: The angle of regular polygons take different values
according to the number of sides of the polygon. The perimeter of
a polygon, inscribed in a given circle, varies when the number of
sides changes, as also the perimeter of a polygon circumscribed about
a given circle.

2. If the successive values of a variable magnitude approach nearer
and nearer to a constant magnitude of the same kind, so that the
difference between it and the constant magnitude may be made less
than any magnitude of the kind that can be assigned, the Constant
is called the Zmut of the Variable, and the Variable is said to converge
to the Constant.

The limit of a variable, therefore, is thal constant quantity of the same
kind lo which the variable may be brought as near as we please, but which
1t can never reach.

Examples : Arithmetic and Geometry furnish numerous examples
of Zimi/s which variables thus approach.
The angle of a polygon of 7 sides has for its value

(the right angle being unity).
Now, if we suppose the number of the sides of the polygon to in-
crease the value of the angle increases, and since we can take m as

great as we please, —;'7 may become as small as we please. We con-

clude, therefore, that the successive values of the angle of the regular
polygons will have two right angles for the Zmal.

In the same manner, if we take the middle point, ¢, of a straight
line, AB, and then the middle point, ¢/, of
¢B, and so on in succession, the lines Ac,
A, Ac”, will have AB for a limit.

It is well to observe that a magnitude may vary without having a
limit.

A c ¢ eB

II
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FunpaMENTAL PrINCIPLE OF LimITs.

If the corresponding successtve values of two variables are akways equal,
and each one converges to a limit, then shall the two limils be equal.

In fact, two magnitudes always equal only present a single value,
and it seems useless to demonstrate that one variable value cannot
converge at the same time to two constant magnitudes which differ
from each other. But this important principle can perhaps be made
clearer by the following demonstration.

Suppose the two constant limits A and B of the variables, differ by
a quantity D. Then, as the variable which has A for a limit may be
made to differ from it by a quantity less than }D, and the second
variable may be made to approach B to within less than 1D, the
variables would be unequal, which is contrary to the hypothesis.
Therefore, the limits A and B cannot be unequal.

Consequences of the principle :

First.—The limit of the sum of two variables is equal to the sum
of the limits of these variables.

Second.—The limit of the product of two variables is equal to the
product of their limits. ‘

Third.—The limit of the product of a variable by a constant is
equal to the product of the limit of the variable by the constant.

Fourth.—The limit of the ratio of two variables is equal to the quo-
tient of their limits.

PROPOSITION XII.

THEOREM.

1. The circumference is the common limit fo which the perimeters of
similar regular inscribed and circumscribed polygons converge when we
continue to double the number of thetr sides.

2. The area of the circle is the limit o whick the areas of these same
polygons converge.

First —Let abc be a regular inscribed

polygon, and ABC the regular similar cir- A X B
cumscribed polygon. 7 —A
The length of the circumference is com- 0
prised between the perimeters of these poly-
gons ; and if the number of their sides be <

doubled, it is evident that the perimeter of
the inscribed polygon will continually in- o
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crease, while the perimeter of the circumscribed polygon diminishes.
They then approach nearer and nearer to the circumference of the
circle as we continue to double the number of their sides; and to
prove that they approach it as near as we please, we shall show that
their difference can become less than any assigned magnitude. Let
P and p be the perimeters of the polygons ABC, aéc, then,

P:p::0M: O]

whence, P—»:P::0OM—OI or IM : OM.
. P x IM
From this we find P—- ~OM

But, IM is shorter than Mé; M is shorter than the arc which it
subtends ; and the subtended arcs can decrease without limit, for
they follow the terms of the progression, 1, 4, 4, %, {% - - - -; be-
sides, P diminishes continually and OM is constant ; hence, P — p
converges to zero. Therefore, P and p converge to the same limit,
the circumference-of the circle.

Second.—Let S and s be the areas of the same polygons. We can
show as above that S and s continue to approach the area of the cir-
cle as the number of the sides of the polygons is doubled. To prove
that the circle is the limit of these areas we must show that S — s can
be made smaller than any assigned magnitude.

But we have

S:s::0M: _C_)?,
whence,
S—s:S::OM* —OI* or I3': OM"

We deduce from that

S x I¢*
S—s= -5y

and it is evident that the difference converges to zero, for S diminishes
as the number of sides increases; 16 less than Mé can become as
small as we please, and OM is constant. Hence, S — s converges to
zero, and, therefore, S and s both converge to the circle as a common
limit.

REMARK.—The apothems of the successive inscribed polygons have the
radius of the circle as their limit, ’
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PROPOSITION XIIIL

THEOREM.

Y. The circumferences of two circles are to eack other ‘as their radi.
2. The areas of two circles are fo each other as the squares of thetr radi,

First. —Inscribe in the two circles whose radii are OB and CA two
_ regular similar polygons. Let P and P’ be the perimeters of these

A

~

B
E —T— F

- 7T T\,

m L)
: N

polygons ; designate the radii OB and CA by R and R’ and the cir-
cumferences by C and C'. Then, from Prop. X.,

P_R
PP R
This proportion is true whatever be the number of sides of the poly-

gons. But when the number of these sides is increased the perim-
eters P and P’ converge to the limits C and C', and their ratio to the

limit ¢
(O
C R
Therefore, TR (1).

Second.—Let A and A’ be the areas of the same circles, S and S’
the areas of two regular similar inscribed polygons. We shall have
(Prop. X.)
’ S R?

ST R"
This proportion is true whatever be the number of the sides of these
polygons. . But when the number of sides is increased without limit,
s A
S and S’ converge to the limits A and A’ and their ratio to x
A R

Therefore, = RA
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C_R

CI—RI)
-c_c c_c
RTR"UZRT R

Cor. 1. Since

we have

Hence, the ratio of a circumference to its diameter is the same for
all circumferences ; or, in other words,

The ratio of the circumference lo the diameler is a conslani number.

This number, which is usually represented by =z, is incommensur-
able.* It can be expressed then only approximately in figures; but
it can be computed (as we shall show) with any degree of approxima-
tion we may wish. Its value in decimals and that of its reciprocal
are

7 = 3.14159265358979323846 - - « «

% =0.31830988618379067153.

Cor. 2. From —9 = & we have
2R

C=27nR, also R = S
) 27

We see, ‘

First.—To compute the length of a circumference when the radius is
grven we mulliply twice the length of the radius by the number .

Second.—To compute the radius of a given circumference we divide the
semi-circumference by the number 7.

PROPOSITION XIV. .

THEOREM.

1. Similar arcs, AB, DE, are lo eack other as their radii, AC, OD.
2. Stmilar sectors, BCA, DOE, are fo eack other as the squares of
their radi.

* NoTE.—Lambert demonstrated first that 7 is incommensurable. Legendre
proved later that the same is true of the squarg of .



166 ELEMENTS OF GEOMETRY.

First.—We have
Arc BA : circumference AC :: C : 4 right angles,
Arc DE : circumference OD :: O : 4 right angles.

A B

. ¢ DQE

0
Also, angle C = O.
Hence, arc BA : arc DE :: cir. AC : cir. OD :: AC : OD.
Second.—In like manner we have
Sect. ACB : area AC :: C : 4 right angles,

Sect. DOE : area DO :: O : 4 right angles.
Hence, .

Sect. ACB : sect. DOE : : area AC : area DO :: AC : DO".

Cor. Similar segments are to each other as the squares of the radii
of their respective circles.

PROPOSITION -XV.

THEOREM.

The area of a circle is equal to the product of ils circumference by half
the radius.

The area of the circle is the limit of the areas of regular inscribed
polygons, the number of whose sides increase without limit. LetS, C,
and R be the area, circumference, and radius of the

given circle, and s, p, a, the area, perimeter, and B¢
apothem of a regular polygon inscribed in this cir- / \
cle. We have (Prop. IX.) s = p X }a. 4 D

When we continually double the number of sides \ /
of the polygon, s converges to the limit S, p to the F—E&

limit C, and & to the limit R.  We have then S=C x }R.
Cor. 1. We have seen that C = 2#R,

therefore, S=22R x %: zR? or % =
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Hence, the number 7, the ratio of the circumference of the circle to the
diameter, is also the ratio of the area of the circle to the square on the
radius.

S

And S=7zR’givesR’=§,orR= o
T ”

Hence, .

First.—To compule the area of a circle of grven radius, we multiply
the square of the radius by m.

Second.—Tv compute the radius of a circle of given area, we.divide the
area by 7, and lake the square roof of the result.

Cor. 2. The area of a sector is equal to the M
arc of this sector multiplied by half the radius.

For the sector ACB : the whole circle ::
the arc AMB : the whole circumference ABD ;

or, :: AMB x }AC : ABD x $AC.
But the whole circle =ABD x $AC.
Hence, the sector ACB=AMB x }AC.

Scuorium. We have seen, already, that the problem of the quad-
rature of the circle consists in finding a square equal in area to a
circle whose radius is given. This problem is solved when we know
the ratio of the area of the circle to the square on the radius, or,
what is the same thing, the ratio of the circumference to the radius
or the diameter.

As we have said, this can only be found approximately, but the
approximation may be carried as far as we please. So this question,
which occupied much of the attention of Geometers when the
methods of appfoximation were less known, is now classed among
the idle questions with which those only concern themselves who
possess the most elementary ideas of geometry.

This approximation is made by the method of series, a method
purely algebraic. ‘‘ Before the discovery of these series an approx-
imation was made to the value of # by calculating the lengths of the
perimeters of an inscribed and circumscribed regular polygon of the -
same number of sides. Thus Archimedes (250 B.c.) found #=2¢, a
result which is too great by nearly g5 of the diameter. Peter Metius
(1571-1635), by a similar process, obtained $§4 for an approximate
value of 7, a remarkable result, which is accurate to 5 places of dec-
imals. Vieta (1540-1663) extended this approximation by the same
method to 10 places of decimals, which number was increased to 35
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by Ludolph Van Ceulen ; a labor of vast extent when the means are
considered, and of which he was so proud that he directed, after the
example of Archimedes, that the numbers should be engraved upon
his tomb.

De Lagny (1660-1734), by a process not given, but most probably
by a very convergent series, found the value of 7 to 127 places of
decimals, and some notion of the prodigious accuracy of this deter-
mination may be formed from the following hypothesis :

If the diameter of the Universe be 100000 times the distance
of the sun from the Earth, and if a distance which is 100000000000
times this diameter, be divided into parts each of which i
100000000000th part of an inch ; then, if a circle be described whose
diameter is 100000000000 times that distance, repeated 100000000000
times as often as each of those parts of an inch is contained in it :
then the error in the circumference of this circle, as calculated from
this approximation, will be less than 100000OOOOOOth part of the
100000000000th part of an inch.”—(Peacock’s Calcwlus, Art. 37.)

It may be added that some enthusiastic computer has carried the
approximation to 600 decimal places.

We shall proceed to give two of the simplest elementary methods
of obtaining an approximation for the value of 7.

PROPOSITION XVI.

PrOBLEM.

Given the radius v and the apothem a of a regular polygon, find the
radius v' and the apothem ' of the regular polygon whick has the same
pertmeler and double the number of sides.

Let AB be the side, and O the centre of the given polygon. Draw-
ing the radius OGC perpendicular to s

AB, we shall have OC =r, OG =a. X

Draw CA and CB, and join the I3
middle points, D and E, of thesetwo 4 : T B
chords. The straight line DE, par+
allel to AB, and equal to the half of NM
it, will be the side of the regular °
polygon which has the same perimeter as the first, and twice its:
number of sides. Besides, the angle DOE, being the half-of the:
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angle at the centre, AOB, of the first polygon, the point O will be the
centre of the new polygon, and we shall have

OD=7 OF=d.
But the point F is the middle of CG ; then,
OF = $(0OG + OC) or @' = }(a +7) (1).
Moreover, the right angled triangle ODC gives
OD*=0C x OF, or 7' = /7 x @ (2).
The relations (1) and (2) solve the problem proposed.

" Scuorrum. We see from the figure that OF is greater than OG, and
that OD is less than OC. Then, when we pass from a regular polygon
lo a regular isoperimetrical polygon of double the number of sides, the apo-
them increases and the radius diminishes, so that the difference between
the radius and apothem diminishes continually. The triangle AOG
shows that this difference, OA — OG, is less than AG, that is, less
than the half of the side of the corresponding polygon. But the per-
imeter of the polygon remaining constant the length of each side con-
verges to zero when we double their number. © Hence, the excess of
the radius over the apothem can become as small as we please,

PROPOSITION XVII.

PROBLEM.

Given the perimeters, p, P, of two similar regular polygons inscribed
and circumscribed about the same circle, find the perimeters p', P', of the
regular inscribed ar‘zd circumscribed polygons of a double number of sides.

Let AB, EF, be the sidesof thepoly- =2 M o ¥
gons whose perimeters are p, P, and =,
the number of these sides. Draw the
chord AM, and at the points A and B
construct the tangents AP, BQ ; finally
draw the straight line PC ; AM and PQ
will be the sides of the inscribed and
circumscribed polygons of 2m sides, the
perimeters of which are g/, P’.

We have then

P_CE
?  CAorCM.
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And as CP is the bisectrix of the angle ECM we have, also,

PE _ CE
PM ~ CM°
Then, by cause of the common ratio,
P_PE
p» PM°
P+p EM

Whence, zp ~ 2PMor PQ.

But the straight lines EM, PQ, are contained 2m times in the
perimeters P, P'.

_ , _ 2Pp
7 = or P’ = P15
To find p’ we remark that the two triangles PMN, MAD, are
equiangular, and, therefore,
AM _PM
AD T MN’
but the straight lines AM, AD, are contained zm times in p’ and p,
and the straight lines PM, MN, 4 times in P’ and p'. Therefore,

Hence,

PROPOSITION XVIIIL.

PrOBLEM.

70 find the approximate ratio of the circumference lo the diameler, that
15, the approximate value of .

We can now use the results of Props. XVIL. and XVIL to find an
approximate value of #.  First, Prop. XVI. gives the

METHOD OF ISOPERIMETERS.

. C .
Let us take the circumference C = 2z ; the formula 7 = 2R 8ives,

I I . I, .
then, 7 = RO 5= R. That is, the number =18 the radius of the

circumference which is equal to 2. Hence, the apothem, ¢, and ra-
dius, 7,of every regular polygon whose perimeter is equal to 2, are ap-
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. I . . . . .
proximate values of ol because the inscribed and circumscribed cir-

cumferences of such a polygon being the one less and the other
greater than 2, their radii, @ and 7, must contain between them the

. . . I
radius, R, of the circumference, equal to 2, thatis, the number = must

lie between a and 7 in value.

Now, take a square as our first polygon, with perimeter equal to 2,
its side is equal to §, its apothem @, = }, and its radius r, = }V2.
From these we can find successively the apothems and radii of the
regular polygons of this same perimeter 2, and eight sides, using the
formule a, = §(a, + ,) ;7, = Va, x r,, etc., and proceeding in the
same manner we find the apothems and radii of isoperimetrical poly-
gons of 16, 32, etc., sides.

In this series,

a

3 7,

3 @

a,r, a,,?7”

. r,, etc.,

1) 1) 2 4 4
of which each term, beginning with the third, «,, is alternately the
arithmetical and geometrical mean between the two which precede it,

the odd terms, ¢,, q,, a,, etc., go on increasing but are always less

I . .
that R or = while the even terms, r, 7,, r,, etc., continually de-

I .
crease but are always greater than R or pt Moreover, since the

difference, », —a,, 7,— a,, etc. (Prop. XVL), become less than
any assignable quantity by carrying the process far enough, it follows

. I e
that the terms of the series have = for their limit.

Now, @, =} is the arithmetical mean between o and §, and
7, = $V/z is the geometric mean between } and }.

Therefore, we can give the following theorem, called Schwab’s
rule, having been first published by that mathematician in 1813:

The number -:—r is the limit of the terms of a series of numbers of whick

the first term is o, the second §, and each ferm beginning with the third is
allernately the arithmetical and the geometrical mean between the fwo preced-
ing lerms. :

Computing these means until we find two consecutive terms which



172 ELEMENTS OF GEOMETRY.
agree to m 4 1 places of decimals, either of these will be an approx-
imate value of -:—r true to within a decimal place of the m + 1th order.

Below is such a table computed to a polygon of 8192 sides.

TABLE.
NUMBER OF SIDES

OF POLYGON. APOTHEM. RADIUS.
4 @, = .2500000 r1=.3535534
8 : ay=.3017767 7 3= .3266407
16 a3 =.3142087 7 3= .3203644
32 a,=.3172866 7= .3188218
64 a;=.3180541 rs=.3184376
128 a,=.3182460 7¢=.3183418
256 a,=.3182939 r,=.3183179
512 ag=.3183059 rg=.3183119
1024 a,=.3183089 ro=.3183104
2048 a,, = . 3183096 7= .3183100
4096 a,;, = .3183098 ry = .3183099
8192 a,, = .3183099 s =.3183099

I -

T = —5—— = 3.14159, true to five decimal places.

.3183099 3-14159 . P

Second. —Using the results of Prop. XVII., we have for determin-
ing"the approximate value of z, the

MEeTHOD OF PERIMETERS.

For R =£ the formula 7 = 'zgR becomes # = C; the number 7

is equal to the circumference whose diameter is equal to 1. There-
fore, the perimeter of every polygon inscribed in this circumference
is an approximate value of 7z less than #. And the perimeter of
every polygon circumscribed about this circumference is an approxs
imate value of  greater than 7.

. Now, beginning with the perimeters of the inscribed and circum-

scribed squares, we have p = 24/z, P=4, and if we use the formule
P'= ;—I_Z) and p'=4/P' x p of Prop. XVII., we can compute a series
of values of perimeters of inscribed amd circumscribed polygons
nearer and nearer in value to one another and to their limit z.
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For the octagons we would get
P'=3.3137085  p'=3.0614675,

and continuing the process to P,, and p,, of the circumscribed and
inscribed polygons of 8192 sides, we would get
P,=3.1415928  p,=3.1415926;

hence, r, which lies between these two numbers, may be taken equal
to 3.1415927 to within a decimal of the 7th order. .

The method of perimeters thus given is a very laborious one, but
a very simple one in principle. Archimedes used a method of perim-
eters beginning with the hexagon and continuing the process to
polygons of 96 sides, and found the value & = & before given, which
is sufficient approximation for ordinary application.

Cor. The formule P'= ;—Z and p'=4/P’ p may be written
LoX(iad) Lo /T
P2 P 2 )Pl_ PI.;,

. 1. A I I b ¢

and since — is the limit of =;, and of ~ when R == i

p- P y; R 5 Wearrive
again at Schwab’s Theorem, given under the method of Isoperim-
eters.
S S I ¢
ForP,;,F,;...
nately the arithmetical and geometrical means between the two bre-
ceding terms. And beginning with the circumscribed and inscribed

I 1 I 1 vz
squares, we have for R=-, ===, and - = —=
q ) (o) Py 2 d 7= and we have

Schwab’s Theorem in the same words as before given.

- are, beginning with the third term, alter-

PROPOSITION XIX.

THEOREM.

Two angles al the centres of unequal circles are fo each other as their
inlercepted arcs divided by the radii of the circles.

Let the angles C and O be at the centres of the circles AC, DO,
respectively. Then shall we have
AB DE

angleC:angleO::E ' Do
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Take radius CF = OD and describe the circle CF, then, since
FG is included between radii AC and CB,

angle C : angle O :: FG : DE;

"
SO,

or, since CF = DO,

FG DE
angle C :angle O :: CF ' DO

But, by reason of similar arcs,

FG _AB

CF — AC’

AB DE )
Hence, angle C :angleO :: iC Do’ which was to be proved.
Cor. The —— may be taken as the measure of the angle. The
radius

unit of this measure is the arc equal in length to the radius. This
measure of angles is called Circwlar measure; or, better, Radial
measure. To express the unit in degrees, minutes, and seconds, we
have semi-circumference = 7R = 180°,
180° 180°
R=e—=—"—"""=57° 17" 44".8 = .8 = 206254".8.
po 31416 57 17 44 3437 54

These values of the radius in degrees, minutes, and seconds, are of
the greatest importance in numerical problems connecting the meas
ure of the circle and of angles.
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EXERCISES ON BOOK 1V.

THEOREMS.

1. An inscribed equiangular polygon is i'egular if the number of
its sides be odd.

2. A circumscribed equilateral polygon is regular if the number
of sides be odd.

3. The diagonals of a regular hexagon divide each other in the
ratio of two to one.

4. The regular inscribed hexagon is double the equilateral tri-
angle inscribed in the same circle, and one-half of the circumscribed
equilateral triangle.

5. The regular inscribed hexagon 1s three-fourths of the regular
hexagon circumscribed about the same circle.

6. The side of the circumscribed equilateral triangle is double the
“side of the inscribed equilateral triangle, and the altitude is three
times the radius of the circle.

7. The area of the regular inscribed dodecagon is equal to three
times the square of the radius.

/ '8. The square of the side of the regular inscribed decagon, to-
gether with the square of the radius, is equal to the square of the
side of the regular inscribed pentagon.

9. The diagonals of a regular pentagon divide each other in ex-
treme and mean ratio.

10. If we join the first, fourth, seventh, etc., vertices of a regular
inscribed decagon, each one of the joining chords is equal to the
radius of the circle plus the side of the decagon. And, applying this
chord to the circumference, atter going around three times the ex-
tremity will fall at the point of starting. And thus a regular re-
entrant decagon will be formed (called a star decagon).

11. If the first, fifth, ninth, etc., vertices be joined, we form the
star pentagon, or we effect the same by joining the alternate vertices
of the above star decagon.

12. If a circumference be divided into five equal parts, and the
points of division, A, B, C, D, E, be joined by the liges AC, CE,
EB, BD, DA, these lines will form by their intersection a regular
pentagon.
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13. If, from any point within a regular polygon of # sides, we let
fall perpendiculars on the sides, the sum of these perpendiculars will
be equal to 7 times the apothem of the polygon.

- 14. If, on the side of a square, we take distances from the vertices
equal to one-half of the diagonal, and join the points thus taken on
adjacent sides, we form a regular octagon.

15. If two circles cut each other at right angles (that is, if their
tangents at the point of intersection be perpendicular to each other),
and if the distance between the centres be double one of the radii,
then the common chord, is the side of a regular hexagon in the
greater circle, and of an equilateral triangle in the other. -

» 16. If we describe two equal semi-circumferences on the diameter
of a given semicircle, and then inscribe a circle in the space between
these three semicircles, touching the three semi-circumferences, the
diameter of this circle will be one-third of the diameter of the first
circle.

17. If, on the sides.of a triangle, ABC, right angled at C, we de-
scribe three semicircles, AMCNB, AOC, and BPC (these last two
exterior to the triangle), then the curvilinear spaces, cut off by the
semi-circumference on the hypothenuse from the other two semi-
circles, are together equal to the area of the triangle (these spaces are
called the Lunules of Hippocrates).

18. Show, by the consideration of the perimeters of the regular
inscribed hexagon and circumscribed square, that the value of 7z is
comprised between the numbers 3 and 4.

19. Show that the semi-circumference of the circle is nearly equal
to the sum of the side of the inscribed equilateral triangle and the
" side of the inscribed square.

20, If we divide the diameter, AB, of a circle into two parts, AC,
CB, and describe semi-circumferences on AC and CB, on different
sides of AB: 1st, the curve line composed of these two semi-circum-
ferences divides the circle into two parts proportional to AC and
CB; and 24, this line is also equal to the semi-circumference on
AB. '

21. If we divide the diameter, AB, of a circle into any number
of equal parts, as, for example, five, so that the points of division
fall at C, D, E, and F, and if upon AC, AD, AE, and AF, we
describe semi-circumferences on one side of AB, and semi-circums«

P . .t et ok e e o gt ST e e
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ferences on BC, BD, BE, and BF, all falling on the other side of
AB, then the curve lines made up of these semi-circumferences, two
and two respectively, shall divide the circle into five equal parts.

22. A circular ring (that is, the space included between two con-
centric circles) is equal to the circle which” has for its diameter the
chord of the greater circle which is tangent to the smaller.

23. If we describe a semi-circumference on CA, the radius of a
given circle whose centre is C, and, dividing this radius into any
number of equal parts, for example, into four, erect perpendiculars
at the points of division, meeting the semi-circumference on AC in
the points M, N, and O : then the circles described with the centre
C and radii AM, AN, and AO, .respectively, will divide the circle of
radius CA into four equal parts.

24. If we make a circumference roll along a fixed circumference

of double radius, and within it, then, a point on the rolling circum-
ference will describe a diameter of the fixed circle.

PROBLEMS.

1. In an equilateral triangle inscribe three equal circles touching
one another, and each touching two sides of the triangle.

2. In a given circle inscribe three equal circles touching one
another and the given circle.

3. Ina given square inscribe four equal circles tangent each to
two of the others and to one side of the square,

4. In a given circle inscribe four equal circles, tangent each to
two of the others and to the given circle.

5. Compute the side of a regular decagon, the radius of the circle
being R ; also the side of the regular pentagon.

6. Determine by a single and the same construction the side of the
regular decagon, and the side of the regular pentagon inscribed in a
given circle.

v

7. Compute the area of the regular inscribed hexagon, octagon, .

dodecagon, and equilateral triangle, the radius of the circle being 2.4
meters. Make the computation also in feet (the meter belng 39.37
inches nearly).

8. Three equilateral triangles whose sides are respectively 3 feet, §

“ \
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feet, and 2 feet, being given, find the equilateral triangle equal to
their sum. '

9. Radius of circle being 3.20 meters, compute to within .oco1
meter the area of inscribed and circumscribed equilateral triangle,
and area of regular inscribed and circumscribed hexagon (compute
the same in feet).

10. Area of regular dodecagon being 3888 square meters, find the
area of regular decagon inscribed in the same circle.

11. Construct a circle equivalent to the sector of a given circle
whose arc is 32° 24'.

12. The fore wheels of a carriage have a radius of 24 centimeters,
the hind wheels a radius of 40 centimeters ; how many revolutions
does each make in five kilometers.

13. The area of a regular hexagon being 6400 square feet, find
the area of the circle circumscribed about it.

14. Find the area of a segment whose arc is 60°, the radius of the
circle being 512 meters.

15. Find the area of a circle in which the area of the sector whose
arc is 36° 40/, is 1200 square meters.

16. A circle, a square, and an equilateral triangle, all have the
same perimeter, equal to one meter. Compare their areas.

17. The radius of the circumscribed circle being unity, compute
the side and apothem of each of the following regular polygons :

First, Equilateral triangle ; Second, Square; Third, Octagon ;
Fourth, Pentagon ; Fifth, Decagon ; Sixth, Dodecagon ; Seventh,
Polygon of 20 sides.

18. Three equal circumferences, with the radius 6 inches, touch
each other. Compute the area inclosed between them.

19. Four equal circles are inscribed in a square, each touching
two of the others, the side of the square being four inches. Com-
pute that part of the surface of the square which is exterior to the
circles.

2o0. Ifan arc of 45° on one circumference is equal to an arc of 60°
on another circle, what is the ratio of the areas of the circles.

21. Find the number of degrees, minutes, and seconds in the
angle 4 (the unit of measure being the angle corresponding to the
arc equal to the radius).
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22. Express 224° in radial measure.
23. Express angle . 7854 in degrees, minutes, and seconds.

24. Find the radial measure of an angle whose arc is 7 feet, the
radius of the circle being z yards.

25. What is the radius of a circle the arc of 8".9 on which is 3956
miles long.

26. What is the length of an arc of 16’ 2" on a circumference
whose radius is 91684792 miles.

27. The circumference of a circle is 300 feet, find its area.
28. The area of a circle is 1000 square meters, find its radius.

29. Find the radius of a circle which is equal in area to the sum
of the areas of three circles whose radii are 4, 6, and 6. 93 feet, respect-
ively.



- GEOMETRY IN SPACE.

BOOK V.
PLANES AND SOLID ANGLES.
I. DETERMINATION OF PLANES IN SPACE, ETC.

DEFINITIONS.

1. We have seen (Def. 6, Book I.) that a plane is a_surface in
which any two points being taken, the straight line joining them lies
wholly in the surface.

Note.—This surface is indefinite in extent, yet, to represent it we assign
limits to it—that is, we represent a plane by a figure traced in it—but the plane
must be conceived to extend indefinitely beyond the sides of the figure. This
figure is usually a parallelogram in the Theorems of this Book.

2. A straight line is perpendicular to a plane
when it is perpendicular to all the straight lines
which pass through its foot in the plane. Con-
versely, the plane is perpendicular to the line. -
The foo? of the perpendicular is the point in
which it meets or pierces the plane.

3. A straight line is odligue to a plane when it meets the plane
without being perpendicular to it.

4. A straight line is parallel to a plane

when it cannot meet that plane, how far
soever both be produced. Conversely,
this plane is parallel to the line.

-— - ——
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5. Two planes are parallel to each
other when they cannot meet, how far \ A

soever both be produced.

6. The projection of a point, A, on a \ \
plane, P, is the foot, @, of the perpendic-
ular let fall from the point on the plane. A
The perpendicular Aa is called the pro-

Jecting line of the point, and the plane p
is called the plane of projection. \ lz \
7. The projection of a line on a

plane is the line which contains the feet of the perpendiculars let
fall from all the points of the line on the plane.

PROPOSITION 1.

THEOREM.
A straight line cannot be partly in a plane and partly out of il.

For, by Definition 1, when a straight line has two points common
with a plane, it lies wholly in that plane.

Cor. A straight line can meet a plane in one point only.

ScHorium. To discover whether a surface is a plane, we must apply
a straight line in different directions to the surface, and observe if it
touches the surface throughout its whole length.

PROPOSITION 1I.
THEOREM.

Two planes, P and Q, whick have three points, A, B, and C; not in
the same straight line, in common, cotncide throughout thetr whole extent.

Join any two of the points, as A and B. Let D be any point of
the plane P, on the opposite side of AB from C. Join CD. The
lines CD and AB, being in the same plane, P, must meet each
other in some point, E. But, since
the point C, the straight line AB, and ©~ . B
its point, E, are in the plane Q, by
hypothesis, the straight line CE, and
its point, D, must be in this plane 4~ D
(Prop. I.). Hence, the point D is
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common to both planes. And, as we may make the same con-
truction for each of the points, A, B, and C, and the line joining
the other two, it follows that every point of the plane P is common
to the plane Q ; therefore the two planes coincide.

Cor. 1. Through three points, not in the same siraight line, one plane
may be made fo pass, and bul one. In other words, Three points not in
the same straight line defermine the position of a plane.

Cor. 2. A point, C, and a straight line, AB, determine the position of
a plane.

Cor. 3. Two straight lines, AB and AC, which inlersect each other,
delermine the position of a plane.

For the plane P of the three points A, B, and C
contains the lines AB and AC, since each of these
lines will have two points in that plane ; and con- c
versely, the plane of ABand AC cannot be different

from the plane P, since it is the plane of the three Y,
points A, B, and C.

Cor. 4. Hence also two parallels, AB E/ B
and CD, determine the position of a
plane ; for, drawing the secant EF, the
plane of the two straight lines, AE, EF, ¢ D
is that of the parallels, AB, CD. /F

Cor. 5. Hence, through a point we can draw in space only one par-
allel to a given straight line.

For a line drawn through this point, parallel to the given line, must
be in the plane determined by the point and the given line, and in a
plane only one parallel can be drawn to a-given line through a given
point. ‘

ScHorivM 1. In Geometry in Space, the name Geometric Locus is
given to a line or a surface containing @/ the points in space which
fulfil @ given condition as to position, or, as it is expressed, possess a
particular geometrical property. Thus it follows from this Proposition
that : The Geometric Locus of a line which passes through a fixed point
and meets a fixed line is the plane determined by the point and fixed line.

- e -
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Scuortum 2. The plane of an
angle, BAC, may be generated
by a straight line moving along
the side AB, and remaining con-
stantly parallel to the side AC;
or, more generally, by a straight
line which moves, resting in any manner whatever on the two lines
AB and AC.

B

PROPOSITION III
THEOREM.
If two planes cut each other, therr common inlersection will be a straight
line.
For, if among the points common to the two planes, there be three
which are not in the same straight line, then the planes passing each

through these three points must form only one and the same plane,
which contradicts the hypothesis.

Cor. 1. Three planes may meet in a point.
This point is where the line common to two
of the planes pierces the third plane. 7t

Cor. 2. Through three points, A,
B, and C, in the same straight line,
any number of planes may be drawn.
Hence, at each point of a straight
line, AB, any number of perpendicu-
lars may be drawn to that line. For we can draw one in each of the
planes which contains AB.

PROPOSITION 1V.
THEOREM.

At any point, O, of @ plane, MN, one perpendicular can always be drawn

1o that plane, and but one. X

First.—From the point O draw a
perpendicular, OC, to any line AB of = \p
the plane, and at C erect another per- \
pendicular, CR, to this line. Finally, M
in the plane OCR, determined by CO
and CR, let the perpendicular OD be A]Y
drawn to the line OC. Then will OD
be perpendicular to any line, OP,drawn B N
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through its foot in the plane MN—that is, it will be perpendicular to
the plane (Def. 2). For, join DP, then the right angled triangles
DCP, GCP, and DO, give (Prop. XI., BookJ®.) the equations

DP* = D¢* + CP?

0OC* + CP*' = OP*

DC* = OC* '+ OD*
Adding and striking out OC?, DC? and CP?, common to both sides,
and we have DP* = OP* + OD’. Hence, the angle DOP is a right
angle, and the line DO is perpendicular to the plane MN.

Secondly.—Any other line, OH, drawn through O, will be oblique
to the plane MN. For the plane determined by OD and OH cuts
the plane MN in the line OS, and since DOS is a right angle, HOS
is less than a right angle. Therefore, OD is the only perpendicular
which can be drawn to the plane MN, at the point O.

PROPOSITION V.
THEOREM.

From a point, D, without a plane, MN, one perpendicular can be
drawn o that plane, and but one. .

First.—From the point D draw a perpendicular, DC, to any line,
AB, of the plane. Then, at C, draw in the plane MN another perpen-
dicular, CS, to the line AB; and
finally, from D let fall the perpendicu-
lar DO, on the line CS. We can
then show, as in the preceding proposi-
tion, that DO will be perpendicular to
MN.

Secondly.—T1t is impossible to draw
another perpendicular to the plane
from the point D. For, let DE be
that perpendicular, and join OE. Then
the triangle DOE would have two right angles, DOE and DEO,
which is impossible.

PROPOSITION VI.

THEOREM.
If a straight line, OP, s perpendicular fo two others, PB, PC, whick

tnlersect each other at its foot P in the plane MN, it will be perpendicu-
lar fo that plane.
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Draw any other line, PD, in the plane, then we have to show that
OP will be perpendicular to this line.

For, draw the line BDC, cutting the lines PB, PD, and PC, in B, D,
and C, respectively. Prolong OP until PQ is equal to OP, and join OB,
OD, OC, and QB, QD, QC. The tri-
angles QBC and OBC are equal, be-
cause they have BC common ; the
oblique line OB = QB, and OC = QC
(Book I., Prop. XVIL.). Hence, the m
angle OCB == angle QCB. Hence, the
triangles OCD and QCD, having the
side DC common, and OC = QC, and
the angles OCB and QCB equal, are
equal, and therefore OD=QD. Hence,
the straight line PD, having two of its ‘
points, P and D, equally distant from e
the extremities O and Q of the line OQ, is perpendicular to it at the
point P. Hence the line OP is perpendicular to every line drawn
through its foot in the plane MN, and is therefore perpendicular to
the plane (Def. 2).

[

Scuortum. Thus it is evident, not only that a straight line may
be perpendicular to all the straight lines which pass through its foot
in a plane, but that it always must be so whenever it is perpendicu-
lar to two straight lines drawn through its foot in the plane ; which
shows the propriety of our second definition.

PROPOSITION VII.
THEOREM.

At a point, O, of a straight line, AB, a plane can always be drawn
perpendicular to this line, and but one.

First.—At the point O erect two perpendicu- A
lars, OM and ON, tothe line AB, in any two
planes containing AB. Then that line is perpen-
dicular to the plane MON, determined by these
lines, OM and ON (Prop. VI.), and conversely,
the plane MON is perpendicular to AB.

Secondly.—Any other plane drawn through
O will be oblique to AB. For, let OP and

OQ be the intersections of this plane with the
t

W
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planes AOM and AON. We have the angle AOP < the right
angle AOM, and the angle AOQ < the right angle AON. Hence,
AB is oblique to the plane POQ, and conversely, the plane POQ is
oblique to that line. Therefore only one plane can be drawn
through O perpendicular to AB.

Cor. The locus of the perpendiculars OA, OB, OC, OD, et., drawn
Yo the same point, O, of a straight line, PQ, .&s a plane perpendicular to
that line.

For, if three of these perpendicu-
lars, as OA, OB, and OC, are not in 2 o
the same plane, there would be three \ ) /"j
planes, AOB, AOC, BOC, perpen-
dicular to the line PQ, at the same
point, O, which is impossible. Q

PROPOSITION VIIL

THEOREM.

From a point, O, without a siraight line, AB, one plane can be drawn
perpendicular fo that line, and bul one.

First.—From the point O let fall the perpendicular OCon AB ; then
at the point C erect another perpendicular, CD, to this line. Then
the line AB is perpendicular to the plane OCD,
determined by the lines OC and CD, and con-
versely, the plane OCD is perpendicular to é
AB. Qx|

Second]y.—Suppose it possible to draw through
O another plane perpendicular to this line ; and cl
let OPQ be that plane. Join O and the point,
K, in which the line AB meets the plane OPQ.
Then OK will be perpendicular to AB, and we B
shall have two perpendiculars, OC and OK,
from the same point to the same straight line, which is impossible.
Hence, OCD is the only plane which can be drawn through O per-
pendicular to AB.

A




BOOK V. 187

PROPOSITION IX.
THEOREM.

If from any point, A, withou! a plane, MN, we le! fall a perpendicular
on that plane, and draw different obligue lines lo meet the plane, then,

1. The perpendicular is shorter than any oblique line.

2. Obligue lines which meet the plane at points equally dislant from the
perpendicular are equal.

3. Of obligue lines unequally distant from the perpendicular the more
distant s the longer. .

First, We have AP < AB, because in a plane APB the perpendic-
ular to the straight line PB is shorter than any oblique line drawn to
the same.

Secondly. The angles APB, APC,
APD being right, if we suppose the 4\
distances PB, PC, PD equal to each
other, the triangles APB, APC, and
APD will each have an equal angle
contained by equal sides, hence they
are equal. Therefore the hypothe-

nuses, or the oblique lines AB, AC,
AD, will be equal to each other.

=

Thirdly. 1If the distance PE is greater than PD or its equal, PB, itis
plain that the oblique line AE will be greater than AB (Prop. XVII.,
Book I.), or its equal AD.

Cor. 1. The perpendicular AP, being the shortest of all the lines
which join the point A to the plane MN, measures the true distance
from the point to the plane.

Cor. 2. All the oblique lines which terminate in the circumference
BCD, described from P, the foot of the perpendicular, as a centre, are
equal ; therefore a point, A, out of a plane being given, the point P, at
which the perpendicular let fall from A would meet the plane, may
be found by marking upon that plane three points, B, C, D, equally
distant from the point A, and then finding the centre of the circle
which passes through these points; this centre will be P, the point
sought.
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Cor. 3. Every straight line which has two
of its points, A and M, equally distant from
"the three vertices, B, C, D, of a triangle,
BCD, is perpendicular to the plane of this
triangle ; and the foot of the perpendicular, -
O, will be the centre of the circle circum-
scribing the triangle BCD.

PROPOSITION X.
THEOREM.

If from the fool, P, of a perpendicular, PA, lo the plane MN, a per-
pendicular, PD, be drawn to a line, BC, of the plane, any line, DA, whick
Jjoins the fool, D, of this second perpendicular to a point, A, of the first, will
iiself be perpendicular to the line BC of the plane.

Take DB = DC, and join PB, PC, AB, A
AC. Since DB = DC, PB= PC, and hence [\
the oblique line AB = AC (Prop. IX.).

Therefore, the line AD has two of its points, ¢

A and D, equally distant from the extremi- ®h D

ties Band C. Hence, AD is perpendicular l'

to BC at its middle point (Book I., Prop. ; — B &
XVIIL, Cor. 2). This proposition is called ] /’/

the Theorem of the three perpendiculars. o

Cor. It is evident that BC is perpendicular to the plane APD,
since it is at once perpendicular to the two straight lines AD and PD.

Scuortum. The two straight lines AE, BC, afford an instance of
two lines which cannot meet, and still are not parallel. BC lies in
the plane MN, and AE pierces that plane in the point P. The two
lines are, therefore, not situated in the same plane, and hence cannot
meet. We may say that two straight lines drawn arbitrarily in space
do not generally meet. For none of the lines drawn in the plane
MN will meet AE, except those which pass through the point P.
Both the lines AE and BC are perpendicular to the line PD. Hence,
tn space lwo lines may be perpendicular to the same siraight line and stll
not be parallel.
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PROPOSITION XI.
THEOREM.

If the line AP is perpendicular 1o the plane MN, every line, DE, par-
allel to AP will be perpendicular to the same plane,

The plane of the parallels AP, DE must meet the plane MN,
since AP meets that plane, and its
intersection with MN will be PD ;
and ED must meet PD, and there-
fore also must meet the plane MN ;
in the plane draw BC perpendicular
to PD, and join AD. By the corol-
lary of the preceding Theorem,
BC is perpendicular to the plane
APDE ; therefore the angle BDE N
isa right angle : but the angle EDP is a right angle also, since AP
is perpendicular to PD, and DE is parallel to AP ; therefore, the line
DE is perpendicular to the two straight lines DP, DB; hence it is
perpendicular to their plane, MN (Prop. VI.).

Cor. 1. Conversely, if the straight lines AP, DE are perpendic-
ular to the same plane, they will be parallel ; for, if they be not so,
draw through the point D a line parallel to AP ; this parallel will be
perpendicular to the plane MN ; and therefore, at the same point,
D, more than one perpendxcular might be drawn to the same plane,
which is impossible (Prop. IV.).

Cor. 2. Two lines, A and B, parallel to a third line, C, are par-
allel to each other ; for, conceive a plane perpendicular to the line
C; the lines A and B, parallel to this perpendicular, will be perpen-
dicular to the same plane; therefore, by the preceding corollary, !
they will be parallel to each other. '

It is understood that the lines are not in the same plane, for if so,
the proposition would be already known (Book I., Axiom 6).
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PROPOSITION XII.
THEOREM.

Al the planes, AD, AF, AH, et., which contain a straight line, AB,
parallel 1o a plane, MN, inlersect this plane in lines, CD, EF, GH, par-
allel 1o AB, and fo eack other.

The straight line AB, being in the same plane with each one of
the intersections, CD, EF, GH, etc., is
parallel to each. For, if it met any
one of these lines lying in the plane 4
MN, it would meet that plane, which is
impossible by the hypothesis (Def. 4).

Also, the lines CD, EF, GH, etc.,
being parallel to AB, are parallel to
each other (Prop. XI., Cor. 2). °

~

Cor. 1. If a line, AB, is parallel to a plane, MN, through any
point, C, of this plane, a line may be drawn parallel to AB in the
plane. For, if through the point A B
C and the line AB we passa plane,
the intersection, CD, of this plane

with MN will be parallel to AB, — /
Conversely, when a line, AB, is \ é 4 \
N

parallel to a plane, MN, a paral-

lel to AB through any point, C, of

MN lies in that plane ; otherwise there would be two parallels through
the same point, C, to the same straight line, AB.

Cor. 2. A4 straight line, AB, parallel to fwo planes, MN and PQ,

whick intersect eack other, is parallel 1o their line of intersection.

x B
For, the parallel to AB through any

point, C, of their intersection, must lie ™ Y — )
in both planes. NEVAN

i 4

PROPOSITION XIII.

THEOREM.

If a straight line, AB, is parallel to a straight line, CD, drawn in
the plane MN, it will be parallel to that plane.

N\
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For, if the line AB, which is in the plane ABCD, could meet the
plane MN, this could only be in A B
some point of CD, the common
intersection of the two planes; 4

but AB cannot meet CD, since it ] /
is parallel to it ; hence it will not $ )
N

meet the plane MN. Therefore
(Def. 4) it is parallel to that
plane.

Cor. 1. 4 straight line, AB, and a plane, MN, perpendicular o the
same straight line, OP, are parallel.

o
For the plane BAP intersects the L_____

plane MN in a line, PC, perpendicu- -
lar to OP, and therefore parallel to o
AB. Hence, AB is parallel to MN. B b

Cor. 2. Through a point, A, without a plane, MN, any number
of lines may be drawn parallel to that plane.

Cor. 3. If two intersecting planes, AF and CF, contain two

parallels, AB and CD, their common P D
intersection, EF, will be parallel to these \ \
lines. For, the straight line AB, being ) x

parallel to CD, must be parallel to the

plane CF, and being parallel to this & B

plane it must be parallel to EF, and similarly, CD must also be
parallel to EF.

CoR. 4. The parallels intercepted between a plane, MN, and a straight
line, AB, parallel fo it, are equal.

Thus, AC and BD (see diagram above) are equal, for the figure
ABCD is a parallelogram.

W PROPOSITION XIV.

THEOREM.

Two planes, MN, PQ, perpendicular to the same siraight line, AB,
are parallel 1o eack other,
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For, if they meet, let O be one point of their common intersec«
tion. Then, from O we would

have two planes perpendicular to M

the straight line AB, which is im- \ . § ------- A 5
possible (Prop. VIIL). Hence o\ ¥
the planes MN and PQ cannot LB

meet. Therefore they are parallel EQ
(Def. 5).

Cor. The geomelric locus of the straight lines drawn parallel fo the

plane MN through the same point, A, is a plane, parallel lo the plane MN,

For these lines all lie in a plane °

perpendicular to the line AP (Prop. = L
VII., Cor.), which is perpendicular to 2

the plane MN (Prop. XIIIL, Cor. \ e _...__.g
1)

PROPOSITION XV.

THEOREM.

Tke tntersections, EF, GH, of two parallel planes, MN, PQ, witk a
third plane, ¥G, are parallel.

P E

For, if the lines EF, GH, which | VAN

lie in the same plane, were not paral- F XN
lel, they would meet each other when
produced ; and ‘therefore, the planes
MN, PQ, in which these lines lie,
would also meet, which is impossi-

ble (Def. 5). Hence, EF and GH E

a
are parallel, \ \/
i

PROPOSITION XVI

THEOREM.

Any straight line, AB, perpendicular fo a plane, MN, is also perpen-
dicular o a plane, PQ, parallel o MN.
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Any plane, ABCD, ccntaining AB, M
meets the planes MN and PQ in two T
parallel lines, AD, BC (Prop. XV.). :
But AB is perpendicular to AD by hy- P ¥
pothesis (Def. z). Hence, it is also
perpendicular to its parallel, BC. There- B 3

fore, AB is perpendicular to any line,
BC, drawn through its foot in the plane
PQ, and is therefore perpendicular to that plane (Def. 2).

O

Cor. 1. Two planes, A and B, parallel 1o a third plane, C, are parallel
to each other. ‘

For if a straight line be drawn perpendicular to the plane C, it will
be also perpendicular to the planes A and B, which are therefore
parallel to each other (Prop. XIV.).

Cor.~2. Through a given point only one plane may be drawn parallel'
{0 a grven plane. )

PROPOSITION XVII.

THEOREM.

T%e parallels, EG, FH, included between two parallel planes, MN,
PQ, are equal.
»n x
AN
Through the parallels EG, FH, VAN .
pass the plane EGHF, meeting the ’ /TN
parallel planes in EF, GH. The
intersections EF, GH are parallel
to each other (Prop. XV.), as are
also EG, FH (by hypothesis) ;
hence, the figure EGHF is a paral- 2 (¢
lelogram ; therefore, EG = FH. \\/
T H

Q

Cor. Hence it follows that fwo parallel planes are everywhere equi-
distand, for if EG and FH are perpendicular to the two planes MN,
PQ, they will be parallel to each other (Prop. XI., Cor. 1); hence
they are equal.

13
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PROPOSITION XVIIIL

THEOREM.

If two angles, CAE, DBF, not situated in the same plane, have their
sides parallel and lying in the same direction, these angles will be equal,
and their planes will be parallel.

Take AC = BD, AE = BF,and M
join CE, DF, AB, CD, EF. Since

AC is equal and parallel to BD,
the figure ABDC is a parallelo- A
gram (Book I., Prop. XXXIII. ). =

Therefore CD is equal and par-
allel to AB. For a similar reason P

EF is equal and parallel to AB;
hence also CD is equal and par- | D

allel to EF; hence the figure

CEFD is a parallelogram, and the ¥

side CE is equal and parallel to ’ ¢
DF ; therefore the triangles CAE and DBF are equal (Book 1., Prop.
XIL). Therefore the angle CAE = DBF.

Again, the planes CAE and DBF are parallel. For these planes
contain the parallels CA, DB, and the parallels AE, BF, and if they
could intersect each other, their common line of intersection would
be parallel both to AC and AE (Prop. XIIL, Cor. 3), which is
absurd (Book I, Ax. 6, p. 37). Hence these planes cannot meet ;
they are, therefore, parallel.

/‘
.

Cor. If two parallel planes, MN, PQ, are met by two other planes,
CABD, EABF, the angles CAE, DBF formed by the intersec-
tions of the parallel planes will be equal. For (Prop. XV.) the
intersection AC is parallel to BD, and AE to BF, therefore the angle
CAE = DBF.

ScHorLium 1. We see, moreover, here a method of drawing a plane
through a given point parallel to a given plane. Draw through the
point two straight lines parallel to any two intersecting lines lying in
the plane, and pass a plane through the two parallels thus drawn.

ScrorLium 2. We measure the nclination or angle of two lines whick
cannof meet in space, by the angle which is formed by drawing through
the same point parallels to these two straight lines. And by this
Proposition this angle is the same whatever point we take. We thus
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speak of lines at right angles to one another which do not meet.
For example, in figure, Prop. X., the lines AP and BC are perpen-
dicular to each other without meeting ; for AP is perpendicular to a
line through P, parallel to BC.

PROPOSITION XIX.
THEOREM.
If three straight lines AB, CD, EF, not situated in the same plane,
are equal and parallel, the Iriangles ACE, BDF, formed respectively
by joining the extremities of these straight lines, will be equal, and their

Planes will be parallel.
u

For, since AB is equal and par-

allel to CD, the figure ABCD is a
parallelogram ; therefore, the side A
AC is equal and parallel to BD. E
For a similar reason, the sides AE,
BF, are equal and parallel, as well

®

as also CE, DF; therefore the
two triangles ACE, BDF are D

equal : and, as in the last propo-

sition, their planes are parallel.

PROPOSITION XX.

THEOREM.

Two straight lines, AB, CD, whick are cut by three parallel planes, are
cut proportionally.

Suppose the line AB to meet the
parallel planes MN, PQ, RS at the )
points A, E, B, and the line CD to A/ \
meet the same planes at the points /\

;)

C, F, D; then shall we have
AE . EB::CF : FD.
DRaDraw AD, meeting the plane PQ E—4a

in G, and join AC, EG, GF, BD; f
the intersections EG, BD, of the par- / \\

allel planes PQ, RS, by the plane 5 \
ABD, are parallel (Prop. XV.) ; there- MD
fore, AE : §B:: AG : GD (Book
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IIL., Prop. XVL); likewise, the intersections AC, GF being par-
allel, we have AG : GD : : CF : FD; therefore, by reason of the
common ratio, AG : GD, we have

AE : EB:: CF: FD.

Schorium. All lines drawn from A to the plane RS, are cut pro-
portionally by the parallel plane PQ.

PROPOSITION XXI.

THEOREM.
The projection of a straight line, AB, on a plane, MN, s a straight line.
For all the perpendiculars, Ae, Bj, Cc,
let fall from the different points of the line ) A

ABon the plane MN are parallel (Prop. p_— |
XI., Cor. 1), and they lie in the plane ABa, 5

and their feet must lie in the straight line,

ab, in which this plane meets the plane 2 ° «
MN. Hence, the straight line 4 is the N
projection of AB on the plane MN.

Scrorium. (1.) When the straight line meets the plane, the point of
intersection is evidently one point of its projection on the plane.

(2.) When the straight line is parallel to a plane, it is parallel
to its projection on that plane.

(3.) When a straight line is perpendicular to a plane, its projec-
tion on that plane is a point.

PROPOSITION XXII.

THEOREM.
The acute angle, ABa, whick a straight line, AB, makes wilk ils pro-
Jection, aB, on the plane MN, is smaller than the angle, ABC, which
AB makes with any other line, BC, in the plane MN.

For, take BC = Bg, and join AC, A
The two triangles ABez and ABC have
the side ABcommon, Be = BC, and the

third side, AC, of the one greater than MK
B

the third side, Aa, of the other (Prop.
IX.). Therefore, the angle ABa, op-
posite Aa, is less than the angle ABC,
opposite to AC (Book I., Prop. XL).
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Cor. The obtuse angle which a line makes with the prolonga-
tion of its projection on a plane, is greater than the angle which
it makes with any other line in the plane.

ScuoriuM. The angle which a straight line makes with its pro-
jection on the plane, is called tke angle of the straight line and the plane.
It is the complement of that which the straight line makes with the
perpendicular let fall from any one of its points on the plane.

II. DieprAL AND SoLID ANGLES.

DEFINITIONS.
B

1. A diedral angle, or diedral, is the mutual
inclination or opening of two planes, BAC,
BAD, which meet each other. The- planes,
BAC, BAD, are called the faces of the diedral,
and their intersection, AB, is called the edge of
the diedral. A diedral is denoted by four letters,
those of the edge being placed in the middle. A ]
Thus we say, Diedral CBAD.

2. The rectilineal angle of a diedral, CBAD, is the angle, MON,
formed by two lines, OM and ON, perpendicular to the edge, AB, at
the same point, O, and lying respectively in the two faces, BAC, BAD.

3. Two planes which intersect each other \ /"'/ \/ \

form four diedrals.

4. A plane, CAB, is perpendicular to an-

other plane, MN, when it makes with it P
two adjacent diedrals, CABM, CABN, equal A
to each other. The equal diedrals are ™
then called rig4¢ diedrals. \ \
. B b ¢
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5. A solid or polyedral angle is the angular
space inclosed between several planes which
meet at the same point. Thus, the solid angle
S is formed by the planes ASB, BSC, CSD,
DSA. The point S is called the vertex of the
solid angle. The straight lines SA, SB, SC,
SD are called its edges.

" 6. The plane angles or faces ASB, BSC, CSD,
DSA, and the diedrals ASBC, BSCD, BASD,
ASDC, which the faces make with each other,
are called the parss of.the solid angle. The
number of these parts is always double the number of the edges.

7. The simplest solid angle is the #riedral, formed
by three planes. Its parts are three plane angles and
three diedral angles.

8. A rectangular triedral is one which has one of its diedrals right,
a bi-rectangular triedral has two of its diedrals right, and a #ri-reclangu-
lar triedral has all three of its diedrals right.

9. An #so-edral triedral has two of its faces or plane angles equal.
An #so-angular triedral has two of its diedrals equal.

10. A solid angle is eguiedral when all its faces are equal, and egus-
angular when all its diedrals are equal.

11. A solid angle is said to be convex
when the plane of no one of its faces pro-
duced can ever cut it. If this condition
is not fulfilled, the solid angle is concave,
or has re-entrant angles. A /friedral is
always convex.

PROPOSITION XXIII.

THEOREM.

Any two rectilinear angles, MON, SPR, of a diedral, CBAD, are
equal. g
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For, the straight lines OM and PS, being
perpendicular to the edge AB in the plane
BAC, are parallel. In like manner ON and
PR are parallel. Hence, the angle MON = «
angle SPR (Prop. XVIIL). Therefore, the °[<< il
rectilineal angle of any diedral, CABD, is in- ~
variable, whatever be the position of its vertex & e
on the edge, AB.

ScroLtum. The plahe of the rectilineal angle of a diedral is per-
pendicular to its edge.

PROPOSITION XXIV.

THEOREM.

Two equal diedrals, CABD and GFEH, have their rectilineal angles,
- MON and SPR, equal ; and conversely. -

Place GFEH on CABD so that they shall coincide, and so that
the point P shall fall on the point O. The sides PS and PR will
coincide with OM and ON respectively,
because we can only draw one perpen-
dicular to the line AB at the point O in
each of the planes BAC, BAD. Hence, M P P
the angle MON == angle SPR.

Conversely, Let MON = SPR, then o ®
shall the diedrals be equal. For, place c ¥ (
the diedral GFEH on CABD so that the
angle SPR coincides with MON. Then b =
the edge EF, perpendicular to the plane SPR, will coincide with the
edge AB, perpendicular to the plane MON, since only one perpen-
dicular can be drawn from the point O to this plane. Thus, the
plane EFG of the angle EPS will coincide with the plane BAC of
the angle BOM (Prop. II., Cor. 3). For the same reason the planes
FEH and BAD will coincide. Hence

B E

‘diedral GFEH = diedral CABD.

CoRr. 1. 4 right diedral angle, CABD, has a right rectilineal angle,
MON, and conversely.
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For, since the diedral CBAD = die-
dral FABD, angle MON = angle LON, '

Hence, MON is a right angle (Def. 10, D
Book I.). Conversely, if MONis a A o
right angle, MON = LON, and there- \ \
fore CABD = FABD. Hence, CABD =x °

is a right diedral. \ X

b J B

Cor. 2. Through a straight line, AB, lying in a plane, FC, we can
always pass one plane, AD, perpendicular lo that plane, and but one.

Cor. 3. AUl right diedrals are equal.

PROPOSITION XXV.

THEOREM.

Two diedrals, CBAD, CBAF, are to cack other as their rectilineal
angles, CAD, CAF.

First.—Suppose the two rectilineal angles CAD, CAF to be com-
mensurable, and that their greatest common meas- »
ure, CAK, is contained five times in the first and
three times in the second. So that

CAD :CAF ::5:3. (r.)
The planes determined by the edge, AB, and
the lines of division, will divide the diedral CBAD A

into five, and the diedral CBAF into three diedrals,
each equal to CBAK (Prop. XXIIL.). Hence

Diedral CBAD : Diedral CBAF :: 5 : 3. (z.)

And by reason of the common ratios in proportions (1) and (2) we
shall have

diedral CBAD : diedral CBAF :: CAD : CAF.
Secondly.—Suppose the angles CAD and CAF to be incommensura-
ble, then we shall still have CBAD : CBAF : : CAD : CAF. (1.)

For, if this proportion be not true let the fourth term be CAM in-
stead of CAF. So that CBAD : CBAF : : CAD : CAM. (2.)

Divide the angle CAD into equal parts smaller than FAM, so that
at least one line of division, AP, falls between AF and AM. The
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angles CAD and CAP being commensurable, it 5
follows that
CBAD : CBAP : : CAD : CAP. (3)

Now, by reason of the common antecedents in
hese two proportions (2z) and (3), we shall have

CBAF : CBAP :: CAM : CAP,

which proportion is false,

s’ nece CBAF is less than CBAP,
while CAM is greater than CAP.
Hence, the fourth term of proportion (1) cannot differ from CAF.

Cor. 1. We can assume the rectilineal angle of a diedral as its
measure. For the ratio of a diedral to a right diedral is equal to
the ratio of its rectilineal angle to a right angle. This is usually
expressed as follows : Zhe angle between two planes is the angle formed
by two lines drawn, one in each plane, perpendicular lo their common inter-
section al the same poind.

Cor. 2. When two planes cut each other,

1. The sum of the jfour diedrals )
thus formed is equallo four right die-
drals.

2. The adjacent diedrals are supple-
menlary. \

3. The opposite diedrals are equal.

For, the intersections of these
planes with a‘third plane perpen-
dicular to their common edge, form
four rectilineal angles,' which measure the four diedral angles respect-
ively.

Cor. 3. When two planes cul each
other,

1. The plane bisectors of the opposile
diedrals coincide.
2. The plane bisectors of the adjacent
diedrals are al right angles lo each other.
(The same demonstration. )
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Cor. 4. In general, the angles formed by parallel planes and a
secant plane, have the same prop-
erties as the angles formed by two
parallel lines and a secant line

given in (Prop. XXIV., Book L.). {— \
The reciprocals of these properties  \ -\
(Book I., Prop. XXV.) are only
true for planes when the diedrals
considered have parallel edges. The " \
properties of plane angles demon-  \ \

strated in Prop. XXVII., Book I.,
are also true for diedrals.

PROPOSITION XXVL

THEOREM.

If the line AP be perpendicular to the plane MN, any plane, APB,
passed through AP, will be perpendicular lo the plane MN. '

Let BC be the intersection of the planes AB, MN; in the plane
MN draw DE, perpendicular to BP;
then the line AP, being perpendicular
to the plane MN, will be perpendicular
to each of the two straight lines BC, 2t
DE (Def. 2); but the angle APD,
formed by the two perpendiculars PA,
PD to the common intersection, BP,
measures the angle of the two planes
(Prop. XXV., Cor. 1). Therefore, ‘ N
since this angle is right, the two planes are perpendicular to each

other.
v

Scuorium 1. This theorem can be enunciated thus : 4 plane, MN,
perpendicular o a straight line situated in a second plane, is perpendic-
ular to that plane.

Scuorium 2. When three straight lines, such as AP, BP, DP, are
perpendicular to each other, each of those lines is perpendicular to
the plane of the other two, and the three planes are perpendicular
to each other.
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PROPOSITION XXVII.

THEOREM.

If the plane AB is perpendicular to the plane MN, any line, PA, drawn
in the plane AB, perpendicular lo the common intersection, PB, will be per-
pendicular fo the plane MN.

For, in the plane MN, draw the line
PD perpendicular to PB ; then, because
the planes are perpendicular, angle APB 4
is right; therefore, the line AP is per- Bl
pendicular to the two straight lines PB,

PD; therefore, it is perpendicular to
their plane MN. D )

‘Cor. If the plane AB is perpendicular fo the plane MN, and, al a
point, P, of the common intersection, we erect a perpendicular lo the
plane MIN, that perpendicular will be in the plane AB; for if not,
then in the plane AB we could draw a line, AP, perpendicular to
the common intersection, BP, which would be at the same time per-
pendicular to the plane MN. Therefore, at the same point, P, there
would be two perpendiculars to the plane MN, which is impossible
(Prop. IV.).

PROPOSITION XXVIII

THEOREM.

If two planes, AB, AD, are perpendicular to a third plane, MN, their
common inlersection, AP, will be perpendicular lo that third plane.

For at the point P we erect a perpen- ’
dicular to the plane MN ; that perpen- '
dicular must be at once in the plane
AB and in the plane AD (Prop.
XXVII., Cor.); therefore, it is their
common intersection, AP.

\".: N
1
1
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PROPOSITION XXIX.
THEOREM.

Through a straight line, AB, obligue io the plane MN, one plane can
always be drawn perpendicular fo MN, and bui one.

For if from any point, C, of the line AB, a perpendicular, Cc, be let
fall on the plane’ MN, the plane deter- A
mined by AB and C¢ will be perpendic- c— |
ular to that plane. Moreover, it is the B —"
only plane through AB, perpendicular to M
MN ; because if we can draw two planes .
through AB, perpendicular to MN, then ¢ “

AB, itsclf, must be perpendicular to that N
plane (Prop. XXVIIL. ), which is contrary to the hypothesis.

PROPOSITION XXX.

THEOREM.

The perpendiculars, OP, OQ, let fall onthe faces, AC, AD, of a diedral,
CABD, from an interior point, O, form an angle, POQ, whose plane
is perpendicular lo the edge, AB, and which is the supplement of the
diedral.

The planes AC, AD, being perpendicular to the straight lines OP,
0OQ, are both perpendicular to the plane, POQ, of these lines (Prop.
XXVI.). Hence, their common intersection, g
AB, is perpendicular to this plane (Prop.
XXVIIL. ), and, conversely, the plane POQ is
perpendicular to AB at N ; therefore, the die-
dral CABD is measured by PNQ (Prop. XXV. ¥ W
Cor. 1). Butin the quadrilateral OPNQ, OPN a
and OQP are right angles. Hence, the angles
POQ and PNQ are supplementary—that is, # o
POQ = 2 right angles — PNQ. D

PROPOSITION XXXI.
THEOREM.

The shortest distance between two straight lines, AB and CD, not situ-
ated in the same plane, is the straight line which meels them both at right
angles. N
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First.—Such a line can always be drawn. Through any point, A,
of the line AB, draw AE parallel to CD. Then the plane P, deter-
mined by AB and AE, is parallel to CD (Prop. XIII.). Now, from
any point, D, of CD, let fall the perpendicular DO, on the plane P.
The intersection, OM, of the plane CDO with P, is parallel to CD
(Prop. XIIL.). Finally, through the

point of intersection, M, of OM and - ?

AB, draw MC perpendicular to MO. A £
This line will meet CD. It is, more-

over, perpendicular to the plane P, to M / h
the line AB, and to the line CD, par- ®

allel to MO. We have thus a com-
mon perpendicular, MC, to the lines CD and AB.

Secondly.—MC is shorter than any other line, DB, joining AB and
CD. For DO, perpendicular to P, is shorter than the oblique line
DB (Prop. IX.), and MC = DO. Hence, MC is shorter than DB.

PROPOSITION XXXII.

THEOREM.

In a triedral, the sum of any two of the plane angles is grealer than
the third. ‘ ’

This proposition requires a demonstration g
only when the plane angle which is compared .
to the sum of the other two is greater than
either of them. Suppose, then, the triedral S
to be formed by three plane angles, ASB, ASC,
BSC, whereof the angle ASB is the greatest ;
we are to show that ASB < ASC + BSC. A v

In the plane ASB make the angle BSD = )
BSC; draw the straight’line ADB at pleasure ; and, having taken
SC = SD, join AC, BC.

The two sides BS, SD are equal to the two sides BS, SC; the
angle BSD = BSC; therefore, the triangles BSD, BSC are equal;
therefore BD = BC. But AB < AC + BC; taking BD from one
side, and from the other its equal BC, there will remain AD < AC. .
The two sides AS, SD are equal to the two sides AS, SC; the third
side AD is less than the third side AC; therefore (Book I., Prop.
XL.), the angle ASD < ASC. Adding BSD = BSC, we shall have
ASD + BSD or ASB < ASC + BSC.
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Cor. In-a triedral, one of the plane angles is always grealer than the
difference of the other fwo. For, since ASC + BSC > ASB, we have
ASC > ASB — BSC.

PROPOSFFION XXXHI.

THEOREM.

The sum of the plane angles whick form a solid angle is always less
than _four right angles.

Cut the solid angle S by any plane, ABCDE ; from a point, O, in
that plane, draw to the several angles the lines OA, OB, OC, OD, OE.

The sum of the angles of the triangles ASB,
BSC etc., formed about the vertex S, is equiva-
lent to the sum of the angles of an equal num-
ber of triangles, AOB, BOC, etc., formed about
the vertex O. But at the point B, the angles
ABO, OBC, taken together, make the angle
ABC less than the sum of the angles ABS, SBC
(Prop. XXXII); in the same manner, at the
point C, we have BCO + OCD < BCS + SCD;
and so with all the angles of the polygon ABCDE
Whence, it follows, that the sum of the angles at the bases of the
triangles whose vertex is in O, is less than the sum of the angles at
the bases of the triangles whose vertex is in S; hence, to make up
the deficiency, the sum of the angles formed about the point O is
greater than the sum of the angles about the point S. But the sum
of the angles about the point O is equal to four right angles (Book
I, Prop. VI, Scholium) ; therefore, the sum of the plane angles
which form the solid angle S is less than four right angles. '

Scuorium. This demonstration supposes that the solid angle is
convex ; if it were otherwise, the sum of the plane angles would be
unlimited, and might be of any magnitude.

PROPOSITION XXXIV.

THEOREM.
An iso-edral triedral is also iso-angular, and conversely.
Let ASC = BSC; from a point, N, of the edge SC, let the planes
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NPO, NQO be drawn perpendicular to the edges SA, SB; they will be
perpendicular to the plane ASB (Prop. XXVL.). Their intersection,
NO, being perpendicular to this plane (Prop. XXVIIL), the angles
NOP and NOQ are right (Def. 2). The two
right angled triangles NPS and NQS have the
angles NSP = NSQ by hypothesis, and the hy-
pothenuse SN common. They are, there-
fore, equal ; hence NP = NQ.

Hence, the two right angled triangles NOP
and NOQ have the hypothenuse NP = hy-
pothendse NQ, and NO common. They are,
therefore, equal, and angle NPO = NQO.
But these angles measure the diedrals CSAB
and CSBA (Prop. XXV., Cor. 1). Hence CSAB = CSBA, and the
triedral is iso-edral.

Conversely. Let the diedral CSAB = diedral CSBA. Then the
triangles NPO and NQO have the angle NPO = angle NQO by
hypothesis, and the side NO common. They are, therefore, equal,
and NP = NQ. Then the triangles NSP, NSQ, having the hypothe-
nuse NS common and NP = NQ, are equal, and hence NSP = NSQ,
or ASC = CSB, and the triedrals are iso-angular.

Cor. 1. An equiedral triedral is equiangular, and conversely.

Cor. 2. If two diedrals, BSAC, ASBC, of a triedral are right, the
plan‘e angles opposite to them are also right. For the faces ASC,
BSC, being in that case perpendicular to ASB, their common inter-
section, SC, is also perpendicular to that plane, and hence CSB and
CSA are right angles ¢Def. 2).

CoR. 3. The three plane angles of a tri-rectangular triedral are right.

PROPOSITION XXXV.
THEOREM.

Ttwo triedrals may have all the parts of the one equal to all the parts
of the other, each to each, and yet not coincide when placed the one upon
the other.

Prolong the three edges of any triedral, SABC, in such manner as
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to form the triedral SA’B'C’ opposite to SABC, at the vertex. Then,
in these two triedrals, .

ASB = A'SB, BSC = B'SC’, CSA = C'SA,

since they are opposite or vertical plane angles.
Also

diedral CSAB = C'SA'B’
diedral ASBC = A'SB'C’
diedral BSCA = B'SC'A/,

because they are diedrals opposite at the same
edge. Thus the two triedrals have the six parts of
the one equal to the six parts of the other, each to
each. Nevertheless they cannot coincide. For,
if we apply A'SB’ to ASB so that SA’ falls along SA, and SB’ along
SB, the edges SC’, SC will be on different sides of ASB. If we
let SA’ fall along SB, and SB'along SA, the equal parts do not
then  correspond. Hence, the triedrals S-ABC and S-A'B'C’ do
not admit of superposition.

Two triedrals thus related, that is, having all their parts equal,
but arranged in different order, are called symmetrical triedrals, or
Iriedrals equal by symmetry.

[*31

ScHOLIUM. An iso-edral triedral has no symmelrical triedral.

For, if the angle ASB = angle BSC, we can effect the superposi-
tion of the triedrals S-ABC, S-A'B'C’, by placing A'SB’ on its equal,
ASB, so that SA' falls along SB and SB’ on SA. Hence, #wo zs0-
edral Iriedrals having all the paris of the one equal lo all the parts of the
other, each to each, coincide when applied one lo the other.

.

PROPOSITION XXXVI.

THEOREM.

Two triedrals are either equal or symmetrical when a diedral and the
two plane faces whick contain it in the one are equal lo a diedral and the
two plane faces whick conlain il in the other, eack lo each.

If the parts are arranged in the same order, we demonstrate the
equality of the two triedrals by coincidence, as in Prop. VII., Book
I., Plane Geometry.
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If the parts are not placed
alike in the two figures, we
cause the second triedral
to coincide with the triedral
which is opposite to the
first at the vertex, and
thence conclude that the
two given triedrals are symmetrical.

PROPOSITION XXXVII.

THEOREM.

Two triedrals are either equal or symmetrical, if kwo diedrals and the
tnlerjacent plane face of the one are equal lo two diedrals and the inter-
Jacend plane face of the other, eack to each.

'The demonstration is similar to that in Proposition VIII., Book
I. We cause thus the sccond triedral to coincide either with the
first or with its symmetrical triedral.

PROPOSITION XXXVIIL

THEOREM.

Two triedrals are either equal or symmetrical when the plane angles of
the one are equal to the plane angles of the other, each lo each.

Let the angle' ASB = A'S'B/, BSC == B'S'C’, CSA = C'S’A’. Take
SL = S’L’, and at the point L erect in the planes ASB, ASC, re-
spectively, two perpendicu- s
lars, LM, LN, to the edge
SA, and join MN. Simi-
larly, in the planes A'S'B,
A'S'C', draw two perpendicu-
lars, L'M’, L'N’, to the edge
S’'A’, and join M'N’.

The triangles SLM and S'L'M’ are equal, having SL = S'L’
by construction, angle ASB = A'S'B’ by hypothesis, and SLM =

S'L'M’, being right angles. Hence

SM = S§'M’, and LM = L'M’.
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Similarly, triangle SLN = triangle S'L'N’, and hence
SN = SN, LN = L'N"

. Therefore, the triangles MSN and M'S'N’ are equal (Prop. VII.,
Book 1.), and hence MN = M'N".

Hence the two triangles LMN and L'M'N’ are equal (Book L.,
Prop. XIL), and therefore the angle MLN = M'L'N’. But these
angles measure the diedrals BSAC, B'S'A'C’, respectively (Prop.
XXV., Cor. 1). Hence, BSAC = B'S'A'C’. Hence (Prop. XXXVL.)
the two triedrals are either equal or symmetrical.

Scuorium. This demonstration fails when two plane angles, ASB
and ASC, are right (as will be seen from the construction). But, in
that case, the edge SA is perpendicular to the plane BSC, and the
edge S'A’ to the plane B'S'C'. Hence, when we place B'S'C' on
BSC, the perpendicular S'A’ will coincide with SA (Prop. IV.),
and thus the two triedrals will coincide.

PROPOSITION XXXIX.

THEOREM.

The perpendiculars, S'C', S'A’, S'B', drawn from an interior poini,
S', of a triedral, S, on ils three faces, ASB, ASC, BSC, form a second
Iriedral, S', the plane angles and diedrals of which are respectively the
supplements of the diedrals and plane angles of the triedral S.

Iirst, we have (Prop. XXX.)

angle B'S'C' = 2z right angles — diedral BSAC
angle C'S'A’ = 2 right angles — diedral CSBA
angle A'S'B’ = 2 right angles — diedral ASCB.

Moreover, the three planes, B'S'C/, C'S’A’,
A'S'B’ are perpendicular, respectively, to the
edges, SA, SB, SC (Prop. XXX.); hence, con-
versely, the triedral S has the same properties with
regard to the triedral §' that S’ has with regard to S.

Hence, we have

angle ASB = 2 right angles — diedral A'S'C'B’ &
angle BSC = 2z right angles — diedral B'S'A'C’
angle CSA = 2 right angles — diedral C'S'B'A".
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Scuorium 1. These triedrals, S and S', are said to be supplementary
to each other, or the two taken together are called suptlementary trie-
drals.

Scuorium 2. If perpendiculars be drawn, at S/, to the planes ASB,
ASC, BSC, so that they shall fall on the same sides of these planes
with the edges SC, SB, SA, respectively, opposite to these planes,
the triedral thus formed will be also sugplementary to S’-ABC, since
it will fulfil all the conditions of S-A’B'C".

PROPOSITION XL.
THEOREM.

Two triedrals are either equal or symmeltrical when the three diedrals of
the one are equal to the three diedrals of the other, each lo each.

If we construct the triedrals supplementary to these two, these
new triedrals will (Prop. XXXIX.) have the plane angles of the
one equal to the plane angles of the other, and hence (Prop.
XXXVIIL) the diedrals of the one will be equal to the diedrals of
the other, each to each. ~ Therefore (Prop. XXXIX.), the given
triedrals will have their plane angles equal, each to each. And
hence, since all the parts of the one are equal to all the parts of the
other, each to each, these two tnedrals will either be equal or sym-
metrical. :

PROPOSITION XLI.
THEOREM.

The sum of the three diedrals of a tnedral s always greater than two
right angles and less than six.

Since each diedral of a triedral is equal to two right angles, minus
- the opposite plane -angle of the supplementary triedral, the sum of
the three diedrals is equal to six right angles, minus the sum of the
plane angles of the supplementary triedral.  But this sum (Prop.
XXXIII ) is less than four right angles.. Therefore, the difference
above is greater than two right angles. .

The second part is evident, since each diedral is less than two right
angles.

P
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EXERCISES ON BOOK V.
THEOREMS.

1. If we draw a plane perpendicular to a straight line at its middle
point, 1st. Any point on this plane will be equally distant from the
extremities of the line. 2d. Any point not on this plane will be
unequally distant from these extremities.

2. If any angle, BAC, revolve about its side AB, returning to its
first position, every point of AC will describe a circumference, the
plane of which is perpendicular to AB.

3. Two planes which are parallel to the same straight line, are
either parallel to each other or their intersection is parallel to this line.

4. Two planes which are parallel to two planes which intersect
each other, will also intersect, and the line of intersection of the first
planes will be parallel to the line of intersection of the second.

5. If from the projections, P and Q, of the same point, O, upon two
planes which intersect, perpendiculars be drawn to the line of inter-
section, they will meet it at the same point.

6. Conversely, if the perpendiculars from two points, P and Q, on
the common intersection of the two planes in which they lie, meet
that intersection at the same point, then P and Q are the projections
of the same point, O, in space on these two planes.

7. Two planes perpendicular to the same plane, P, and containing
two lines, AB, A’'B’, parallel to each other, are parallel. Show also
that this is not true if the lines AB and A’B' are perpendicular to the
plane P.

8. The projections of two parallel lines on the same plane are par-
allel. Show also that the converse of this is not true.

9. The angles which two parallel lines oblique to a plané make
with that plane, are equal.

10. If two planes, P and Q, intersect each other, a straight line in
P, perpendicular to their common intersection, makes a greater angle
with the plane Q than any other straight line drawn in P.

NoTE.—This line through any point in P, perpendicular to the common inter-
section, is called the Zine of greatest inclination to the plane Q.

11. A straight line and plane which are perpendicular to the same
plane are parallel.
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12. Any point on the plane bisector of a diedral angle is equally
distant from the faces of the diedral, and any point within the diedral
" not on this plane bisector is unequally distant from the faces of the
diedral.

13. The perpendiculars let fall from the same point on planes which
have a common intersection are all in the same plane. Show also
- that this is true of perpendiculars let fall from the same point on
planes whose intersections are parallel.

14. If, through one of the diagonals of a parallelogram, we pass
any plane, the perpendiculars let fall from the extremities of the other
diagonal on this plane will be equal.

15. In any triedral, the three planes perpendicular to the three
faces, and containing the bisectrices of the plane angles, meet in the
same straight line.

16. The three planes which bisect the diedral angles of a triedral
meet in the same straight line. -

17. The three planes containing the three edges of a triedral and
the bisectrices of the opposite plane angles meet in the same line.

18. The three planes drawn through the three edges of a triedral,
perpendicular to the opposite faces, meet in the same line.

19. Show that if, in the place of the triedral, we have three planes
whose intersections two and two are parallel, the last four theorems
are equally true.

20. If through the middle point of the perpendicular to two straight
lines, not situated in the same plane, we draw a plane parallel to these
_ two lines, this plane will bisect every line which joins the two lines.

21. When a straight line is parallel to a plane, the shortest distance
from this line to any line of the plane not parallel to the first line is
constant.

22, If three straight lines, A, B, C, not situated in the same plane,
lie two and two in the same planes, these lines either all meet in the
same point or are all parallel.

23. Every section of a rectangular triedral, by a plane perpendlcular
to one of its edges, is a right angled triangle.

24. In any triedral the greater plane face lies opposite the greater
diedral, and conversely.
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GeometrIc Loct.

1. Find the locus of all the points at a given distance from a given
plane.

2. Find the locus of all the points, any one of which is equally
distant from two given points.

3. Find the locus of all the points in space, any one of which is
equally distant from two given straight lines which lie in the same
plane.

4. Find the locus of all the points, any one of which is equidistant
from two given planes.

5. Find the locus of all the points, any one of which is equidistant
from three given points.

6. Find the locus of all the points, any one of which is at equal
distances from three given straight lines situated in the same plane.

7. Find the locus of all the points, any one of which is equally
distant from three given planes.

8. Find the locus of all the points, any one of which-is equally
distant from the three edges of a given triedral.

9. Find the locus of the points, any one of which is equidistant
from two given points, and also equidistant from two given straight
lines which lie in the same plane.

1o. Find the locus of the points, any one of which is equidistant
from two given points and also from two given planes.

11. Find the locus of the points, any one of which is equidistant
from two given straight lines in the same plane, and also from two
given planes.

NoTE.—In problerﬁs 9, 10, and 11, we determine a locus by the intersection
of two loci, as in a plane we solve a determinate problem by the intersection
of two loci.

12. Find the locus of two points, the difference of the squares of the
distances of each one of which from two given points is constant.

13. Find the locus of the points in space, any one of which is
equally distant from all points of the circumference of a circle.

14. Find the locus of all the points in a given plane, which are at
a given distance from a given point, A, without the plane.

15. Find the locus of the points in a plane such that the sum of
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the squares of each one of them from two given points, A and B, with-
out the plane, is constant.

16. Find the locus of the points in a given plane, the difference of
the squares of the distances of each one of which from two given
points, A and B, without the plane, is constant.

4/17. Find the locus of the feet of the perpendiculars drawn from a
given' point, A, without a given plane, to the different straight lines
drawn through a given point, B, in the plane.

ProBLEMS.

1. Through a given point draw a straight line parallel to two given
planes.

2. Through a given point drawn a plane parallel to two given
straight lines.

3. Through a given point draw a plane perpendicular to two given
planes.

4. Through a given point draw a straight line which shall meet two
given straight lines not situated in the same plane.

. Draw a line parallel to a given straight line which shall meet
two given straight lines not situated in the same plane. .

6. Find a point equidistant from four given points not in the same
plane. Discuss the problem if the four points are all in the same
plane.

7. Find upon a straight line a point such that the difference of the
squares of its distances from two given points is a given square.

8. Through a given straight line draw a plane which shall be par-
allel to a given straight line,

-9 In a given plane and through a given point in this plane, draw
a straight line perpendicular to a straight line in space.

iven a plane, P, and two points, A and B, situated on the
same side of the plane, find a point, M, in P, such that the sum of the
distances AM, BM shall be the least possible.

11. Given a plane, P, and a triangle, ABC, find the point of the
plane equidistant from the three points A, B, C.

12. Cut a quadriedral angle by a plane, so as to make the section
a parallelogram.

—
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POLYEDRONS.

DEFINITIONS I.

1. The name solid polyedron, or simply polyedron, is given to every
solid terminated by planes or plane faces. (These planes will them-
selves be terminated, it is evident, by straight lines.)

. The polyedron which has four faces, is named a Zefraedron ; that
- which has six, a hexaedron ; that which has eight, an ocfaedron ; that <
which has twelve, a dodecaedron ; that which has twenty, an icosaedron,
and so on.

The tetraedron is the simplest of all polyedrons; because at least
three planes are required to form a solid angle, and these three planes
leave an opening which requires at least a fourth plane to close it.

2. The common intersection of two adjacent faces of a polyedron.
is called the side or edge of the polyedron. .

3. A regular polyedron is one whose faces are all equal regular poly-
gons, and all whose solid angles are equal to each other.. There
are five such polyedrons. (See Appendix to Book VI.)

4. The prism is a solid bounded by several parallelograms, ter-
minated at both ends by equal and parallel polygons. =

To construct this solid let ABCDE be any
polygon ; then if in a plane parallel to ABC,
the lines FG, GH, HI, etc., be drawn, equal
and parallel to the sides AB, BC, CD, etc.,
thus forming the polygon FGHIK, equal to
ABCDE; if, in the next place, the vertices of
the angles in one plane be joined with the
homologous vertices in the other, by the
straight lines AF, BG, CH, etc., the faces
ABGF, BCHG, etc., will be parallelograms,
and the solid ABCDEFGHIK, thus formed, will be a prism.

5. The eqﬁal and parallel polygons ABCDE, FGHIK are called
the bases of the prism ; the parallelograms, taken together, constitute
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the lateral or convex surface of the prism ; the equal straight lines
AF, BG, CH, etc., are called the sides of the prism.

6. The allifude of a prism is the distance between its two bases, or
the perpendicular let fall from a point in the upper base on the plane
of the lower base.

7. A prism is right when the sides, AF, BG, etc., are perpendic-
ular to the planes of the bases ; and then each of them is equal to the
altitude of the prism, and the faces are rectangles. In any other case
the prism is obligue, and the altitude less than the side.

8. A prism is friangular, quadrangular, pemlagonal, hexagonal,
etc., according as its base is a triangle, a quadrilateral, a pentagon,
a hexagon, etc. ® h; 4

9. The prism whose base is a parallelogram
has all its faces parallelograms. It is called a
parallelopipedon.  Parallelopipedons are righf or Al
obligue. The faces of the right parallelopipedon
are rectangles. B ¢
p &

" 10. Among right parallelopipedons we distinguish the € i
rectangular parallelopipedon, whose bases are rectangles
as well as its faces. Dol

11. Among rectangular parallelopipedons we dis- X G
tinguish the regular hexaedron or cube, bounded
by six equal squares. The lengths of three edges,
AB, AD, AE, of a rectangular parallelopipedon,
which meet in the same vertex, are called the di-
mensions of the parallelopipedon. The dimensions
of a cube are equal. " 3

12. A pyramid is the solid bounded by several
triangular planes, proceeding from the same
point, S, and terminating in different sides of
the same polygon, ABCDE.

The polygon ABCDE is called the dase of b
the pyramid; the point S its vertex, and the |,
triangles ASB, BSC, etc., taken together, form
the convex or lateral surface of the pyramid.
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13. The altitude of a pyramid is the perpendicular let fall from
the vertex upon the plane of the base (produced, if necessary).

14. A pyramid is friangular, quadrangular, etc., ac- T
cording as its base is a triangle, quadrilateral, etc.
Among these we note, especially, the triangular pyramid
or felraedron (mentioned in Def. 1.), a figure with four
triangular faces, four vertices, and sixv edges. : ]

~JF

15. A pyramid is regular when its base is a regular polygon,
and when, at the same time, a perpendicular let fall from the vertex
on the plane of the base passes through the centre of the base ; thi¢
line is called the axis of the pyramid. !

16. The frustum of a pyramid or fruncated pyra-
mid, is the part of the pyramid which remains when
any part towards the vertex is cut off by a plane
parallel to the base. Thus ABCDE, abcde, is a frus-
tum of a pyramid, S, ABCDE.

17. The diagonal of a polyedron is the straight line which joins the
vertices of two solid angles which are not adjacent.

18. By the zertices of a polyedron, we mean the points situated at
the vertices of its different solid angles.

NoTE.—The only polyedrons we intend at present to treat of, are polyedrons
with salient angles, or convex polyedrons. They are such that their surface can-
not be intersected by a straight line in more than two points. In polyedrons
of this kind, the plane of any face, when produced, can in no case cut the solid ;
the polyedron, therefore, cannot be in part above the plane of any face and part
below it. It must be wholly on the same side of this plane.

19. By the wolume or solidity of a polyedron, we mean its magni-
tude or extent.

PROPOSITION 1.

THEOREM.

Two polyedrons having the same number of verfices, and these vertices
being the same points, will coincide.

For, suppose one polyedron to be already constructed ; if a second
is to be formed, having the same vertices, and in the same number,
the planes of the latter cannot all pass through the same points with
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those of the former, else the two polyedrons will not differ from each
other ; but if they do not all pass through the same points with the
planes of ‘the first, some of the new planes must cut the first poly-
edron, one or more of whose vertices will therefore lie above these
planes, and one or more below, which cannot be the case in a convex
polyedron : hence, if two polyedrons have the same vertices, and in
the same number, they must necessarily coincide,

PROPOSITION II.

THEOREM.
In every parallelopipedon the opposite faces are equal and parallel.,

By the definition of this solid, the bases, ABCD, EFGH, are equal
parallelograms, and their sides are parallel ; it - x
remains then to show that the same is true for
any two opposite lateral faces, such as AEHD, “
BFGC. Now, AD is equal and parallel to BC,
since the figure ABCD is a parallelogram. For A
a like reason AE is equal and parallel to BF;
hence the angle DAE is equal to the angle
CBF (Book V., Prop. XVIIL. ), and the plane DAE parallel to CBF ;
hence also the parallelogram DAEH is equal to the parallelogram

CBFG. In the same way it may be shown that the opposite paral-
lelograms, ABFE, DCGH, are equal and parallel.

G

Cor. 1. Since the parallelopipedon is a solid bounded by six planes,
of which those lying opposite to each other are equal and parallel, it
follows that any fwo opposite faces may be laken jfor the bases of lhe par-
allelopipedon.

Cor. 2. If a plane culting a parallelopipedon meels two opposite faces,
the section will be a parallelogram.

i

For the opposite sides of the section IKLM DAY

are parallel, being the intersections of the same K.

plane by two parallel planes; hence, IKLM is D

a parallelogram. /
ScuoLtum. —If three straight lines, AB, AE, AD, passing through

the same point, A, and making given known angles with each other,
are known, a panallelopipedon may be constructed on them. For
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this purpose a plane must be passed through the extremity of each
line, parallel to the plane of the other two ; that is, through the point
B, a plane parallel to DAE, through the point D, a plane parallel to:
BAE, and through the point E, a plane parallel to BAD. The
mutual intersections of these planes will form the parallelopipedon
required.

PROPOSITION III
THEOREM.

In every parallelopipedon the opposite solid angles are symmetrical ; and
the diagonals drawn through the verlices of these angles bisect eack olher.

First.—Compare the solid angle A z S
with its opposite one, H ; the angle DAF,
equal to DEF, is also equal to CHG ; the
angle BAF = BGF = CHE; and the
angle BAD = BCD = GHE. Hence, the
three plane angles which form the solid
angle A are respectively equal to the p
three plane angles which form the solid
angle H ; moreover, it is easy to see that /.
their arrangement in one is different from A¥"
that in the other; hence, the two solid angles A and H are sym-
metrical (Book V., Prop. XXXV.). ,

Secondly.—Let two diagonals, FC, AH, be drawn respectively
through opposite vertices ; since AF is equal and parallel to CH, the
figure AFHC is a parallelogram ; hence, the diagonals FC, AH will
mutually bisect each other. It may be shown in the same manner
that the diagonal FC, and another, EB, also bisect each other ; hence,
the four diagonals mutually bisect each other in a common point.

Scrorium 1. The opposite solid angles of a rectangular parallelo-
pipedon, being equiedral triedrals, are not symmetrical but equal.

Schorium 2. The point, O, of intersection of the four diagonals
of a parallelopipedon may be regarded as the centre of the paral-
lelopipedon.  For, any line, MN, passing through O, and termina-
ting in the surface of the parallelopipedon, is bisected at the point O.
For the plane determined by this line and the diagonal AH will
cut the opposite faces, ABGF and DCHE, in parallel lines, AM and
HN; the two triangles AOM, HON are therefore equal, and OM
= ON. (The figure is easily constructed. )
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PROPOSITION IV,

THEOREM.

In any parallelopipedon the sum of the squares of the four diagonals
is equal 1o the sum of the squares of the twelve edges.

- The parallelograms
ACHF, BDEG, ABCD
give (Book IIL, Prop. XIV., Cor.),

1. AH® + CF* = 2AF* +:2AC?
2. BE' + DG® = 2DE* +2BD?
3. AC’ + BD® =2AB’ +2AD*;

adding these equations, after multiplying
the third by two, noting that DE = AF, \
and cancelling terms common to both 4% ~B
sides, we have )

AH® + BE® + CF* + DG’ = 4AB? + 4AD? + 4AF?,

Ef B

that is, the sum of the squares of the twelve edges, since they are
equal to each other four and four.

Cor. 1. In a rectangular parallelopipedon the square of a diagonal is
equal 1o the sum of the squares of three edges g N\
which meet in the same vertex. &

-}

For, since each of the parallelograms, as ./‘ :
ACHF, which determine the diagonals is ,;" i
in that case a rectangle, the four diagonals |
are all equal, that is, AH = BE=CF =
DG.

Hence, 4AH? =4AB® + 4AD? + 4AF,
or AH?= AB®* + AD® + AF".

Cor. 2. The diagonal of a cube is fo ils edge as /3 is to 1. For,
since, in the cube, AB = AD = AF, we have

AH® = 3AF?, whence AH = AFV/3.
~#AH :AF::4/3:1
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PROPOSITION V.
THEOREM.

In every prism, ABCl, the sections, NOPQR, STVXY, formed b
parallel planes, are equal polygons.

For the sides NO, ST are parallel, being the intersections of
two parallel planes by a third plane, ABGF.
These same sides, NO, ST, are included between
the parallels NS, OT, which are sides of the
prism ; hence, NO is equal to ST. For like
reasons, the sides, OP, PQ, QR, etc., of the sec-
tion NOPQR are respectively equal to the sides,
TV, VX, XY, etc, of the section STVXY.
And since the equal sides are at the same time
parallel, it follows that the angles, NOP, OPQ,
etc., of the first section, are respectively equal to
the angles, STV, TVX, etc., of the second (Book
V., Prop. XVIIL). Hence, the two sections,
NOPQR, STVXY, are equal polygons.

Cor. LEuery section of a prism made by a plane parallel o its base, is
equal o that base.

ScroLiuM 1. A section of a prism made by a plane perpendicular
to its lateral edges is called the right section.

ScHoLtuM 2. A fruncaled prism is a part of a prism cut off by a
plane nof parallel to the base.

PROPOSITION VI.
THEOREM.

The convex surface of a prism is equal to the product of the perimeter
of s right sectio: by ils lateral edge.

Let LMNOP be the right section of the prism AH. The sides,
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LM, MN, NO, etc., of this section are the altitudes
of the parallelograms, ABGF, BGHC, etc., which
form the convex surface of the prism. And these
parallelograms have then for bases the equal lateral
edges, AF, BG, CH, etc., of the prism. The sum
of their measures will then be

AFxIM+BGxMN..... +EK x PL,
or,since, AF=BG=..... EK,’

convex surface = AF(LM + MN + NO + OP + PL)
= AF x perimeter of right section.

h.

Cor. The convex surface of a right prism is equal to the product of the
perimeler of ils base by its altitude.

Scrorium 1. To obtain tke whole surface of a prism we add 1o the
convex surface found above, twice the area of the base.

Scuorium 2. The whole surface of a rectangular parallelopipedon
whose three edges from the same 'vertex are a, §, and ¢, is z(aé +
ac + &c). The whole surface of a cube whose edge is ¢, is 6¢*.

ScHoLium 3. If p = perimeter of the base, » = the apothem of
tne same, and /4 the altitude of a right prism with regular base, its

whole surface = p& + 2p x g, or p(% + r) (Book IV., Prop. IX.).

PROPOSITION VII.

THEOREM.

Two prisms are equal when a solid angle in each s conlained By three
Dlanes whick are respectivly equal and similarly placed.

Let the base ABCDE X — sk

be equal to the base abcde,
the parallelogram ABGF
equal to the parallelogram
abgf, and the parallelogram
BCHG equal to the paral-
lelogram échg, then will the p
prism ABCI be equal to ,/~
the prism aber.

For, lay the base ABCDE
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upon its equal, adcde ; these two bases will coincide. But the three
plane angles which form the solid angle B are respectively equal to
the three plane angles which form the solid angle 4, namely, ABC =
abe, ABG = abg, and GBC = géc ; they are also similarly situated ;
hence the solid angles B and 4 are equal (Book V., Prop. XXXVIII.),
and therefore the side BG will fall on its equal, 4g. It is likewise
evident that, by reason of the equal parallelograms, ABGF, adg/, the
side GF will fall on its equal, g/; and in the same manner, GH on
g# ; hence, the upper base, FGHIK, will exactly coincide with its

- equal, fghtk, and the two solids will be identical, since they have the
same vertices.

PROPOSITION VIIL
THEOREM.
Two right prisms which have equal bases and the same altitude are equal.

For, if we make the lower bases coincide, the lateral edges at the
coinciding vertices will coincide (Book V., Prop. IV.); and since
these are equal to the given altitude, the upper bases of the prisms will
also coincide (Book V., Prop. VII.). Therefore, the prisms are equal.

ScroriuM. The preceding demonstration applies to the case of two
right truncated prisms of the same base, whose corresponding lateral
edges are equal. Hence, fwo right truncaled prisms whick have equal
bases and equal corresponding lateral edges are equal,

PROPOSITION IX.
THEOREM.

Every obligue triangular prism is cquivalen! to the right triangular
prism whick has _for ils base the right section of the obligue prism, and for
ils altitude the lateral edge of the obligue prism.

Let ABCDEF or AF be the oblique prism.
Through the point E', of the edge BE, draw
arightsection, D'EF’. Prolong the edge BE,
below the base ABC, till BB’ == EE’, and
through B’ draw a plane parallel to the
right section. The intersection of this plane
with the prolongations of the faces of the
prism will form a triangle, A’B'C’, equal to
the triangle D’E’'F’, and A’'B'C'D'E'F’ will
be a right prism, having for its base the
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right section of the oblique prism, AH, and for its altitude the lat-
eral edge, BG. For since BB’ = EE’, B'E’ is equal to BE.

The prism AF = prism A'F’, because the part ABCD'E'F’ is com-
mon to both, and the truncated right prism A'B'C’'ABC is equal to
the\truncated right prism D’E'F'DEF (Prop. VIII., Scholium).

Scuorrum. This proposition is equally true of any polygonal oblique
prism. ‘

PROPOSITION X.

THEOREM.

The two Iriangular prisms into which a parallelopipedon is divided by a
Dlane passing through ils opposite diagonal edges are equivalent.

First.—If the parallelopipedon is a right one, the proposition is
evident (Prop. VIIL ), since the two prisms will be right prisms with
equal bases and altitudes.

Secondly.—Let AG be an oblique parallelopipedon. The plane
AEGC, containing the opposite edges, AE and
GC, divides this parallelopipedon into two tri-
angular prisms, ABCEFG, ACDEGH, which
we are to prove equivalent. Draw the right
section of the parallelopipedon AG." This sec-
tion,"OKLM, is a parallelogram (Prop. II.,
Cor. 2), and the two triangles, KLM and KMO, into which it is
divided by the diagonal, KM, are respectively the righ/ sections of the
prisms ABCEFG, ACDEGH.

The triangular prism ABCEFG is equivalent to the right prism
which. has KLM for its base and AE for its altitude (Prop. IX.),
the triangular prism ACDEGH is equivalent to the right prism
which has KMO for its base and AE for its altitude. But these
two right prisms are equivalent (Prop. VIIL ). Therefore, the two
triangular prisms ABCEFG, ACDEGH are equivalent, and each one
of them is one half of the parallelopipedon AG.

PROPOSITION XI.

THEOREM.
If two parallelopipedons, AG, AL, have a common base, ABCD, and

their upper bases, EFGH, IKLM, in the same plane, and between the
same parallelsy EX, HL, they will be equivalent.

I5
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There may be three cases, according as EI is greater than, equal
to, or less than EF ; but the demonstration is the same for all. In

the first place, then, we shall o -
DA
A e
e b
{

AEIDHM is equal to the trian-
gular prism BFKCGL.

Since AE is parallel to BF, and

HE to GF, theangle AEI = BFK, 7]
HEI = GFK, and HEA = GFB.
Of these six angles the first three
form the solid angle E, the other
three the solid angle F; hence, since the plane angles are respect-
ively equal, and similarly arranged, it follows that the solid angles,
F and F, areequal. Now, if the prism AEM is placed on the prism
BFL, the base AEI being laid on the base BFK will coincide with it,
because they are equal ; and, since the solid angle E is equal to the
solid angle F, the side EH will fall along its equal, FG : nothing
more is required to prove that the two prisms will coincide through-
out their whole extent (Prop. VIL); for the base AEI and the
edge EH determine the prism AEM, as the base BFK and the
edge FG determine the prism BFL (Def. 5) ; hence, the prisms
are equal. . :

- But, if the prism AEM is taken away from the solid AL. there
will remain the parallelopipedon AIL ; and if the prism BFL is taken
away from the same solid, AL, there will remain the parallelopipedon
AEG ; hence, the two parallelopipedons, AIL, AEG, are equiva-
lent,

show that the triangular prism

s
e
-

A

PROPOSITION XII.

THEOREM.

Two parallelopipedons having the same base and the same allitude are
equivalent.

. Let ABCD be the common base of the two parallelopipedons
AG, AL ; since they have the same altitude, their upper bases, EFGH,
IKLM, will be in the same plane. Also, the sides EF and AB
will be equal and parallel, as well as IK and AB; hence, EF is
equal and parallel to IK ; for a like reason, GF is equal and paral-
lel to LK. Let the sides EF, HG be produced, likewise, LK,
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IM, till, by their intersections they form the parallelogram NOPQ ;
this parallelogram will evidently q P u ¢
be equal to each of the bases, \ ~ \ /\ T\
EFGH, IKLM. Now, ifathird X L W ¢
parallelopipedon be conceived, M —X / /
having for its lower base the same, . K/'/ VA
ABCD, and NOPQ for its upper, SRV a4
this third parallelopipedon will A S

be equivalent to the parallelo- S S
pipedon AG (Prop. XI.), since, AR N

with a common lower base, their -----:‘-/-----.c Ve

upper bases lie in thesame plane, /
and between the parallels GQ, A B

FN.

For the same reason, this third  parallelopipedon will also be
equivalent to the parallelopipedon AL ; hence the two parallelopip-
edons AG, AL, which have the same base and same altitude, are
equivalent.

PROPOSITION XIII.

THEOREM.

Any parallelopipedon may be changed into an equivil:nt re}tangular
parallelopipedon, having the same allitude and an equivalent base.

Let AG be the proposed parallelopipedon. From the points
‘A, B, C, D, draw AL, BK, CL, @ P

k¥ G
DM, perpendicular to the plane \ \0 /\ ,\
of the base, thus forming the Nm " /,’ 7E /' ¥
A K/’/ S /

having its lateral faces, AK, BL, A

etc., rectangles. Hence, if the FARRY

base, ABCD, is a rectangle, AL VA
will be the rectangular parallelo- ’ VR
pipedon, equivalent to the pro- D A—c| /
posed parallelopipedon AG. \l/ N/
~ "But, if ABCDis nota rectan- A B

.gle, draw AO and BN, perpendicular to CD, and OQ and NP,
‘perpendicular to the base ; you will then have the solid ABNOIKPQ,

parallelopipedon AL, equivalent
to the parallelopipedon AG, and I

~
N
SRS TS
N,
.
<
<
N
S
\ .
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which will be a rectangular parallelopipedon : for, by construction,
the bases ABNO and IKPQ are rectangles ; so also are the lateral
faces, since the edges, AI; OQ, etc., are perpendicular to the plane
of the base; hence, the solid AP is a rectangular , , LP
parallelopipedon. But the two parallelopipedons, 2
AP, AL, may be considered as having the same i A\
base, ABKI, and the same altitude, AO ; hence, i
they are equivalent ; hence, the parallelopipedon :

AG, which was first changed into an equivalent
parallelopipedon, AL, is again changed into an
equivalent rectangular parallelopipedon, AP, hay- D
ing the same altitude, AI, and a base, ABNO, \
equivalent to the base ABCD.

PROPOSITION XIV.

THEOREM.

Two reclangular parallelopipedons, AG, AL, whick have the same base,
ABCD, are to eack other as thar allitudes, AE, Al

First.—Suppose that the altitudes, AE, AI, are to each other as
two whole numbers, for example, as 15 is to 8. Divide AE into fif-
teen equal parts, whereof AI will contain eight,and g . "
through the points of division, x, y, 2, etc., draw
planes parallel 1o the base. These planes will cut ¥
the solid AG into fifteen partial parallelopipedons, ©
all equal to each other, because they have equal IF™-1----
bases and equal altitudes ; equal bases because
every section, as MIKL, of a prism, made parallel
to its base, ABCD, is equal to this base (Prop.
V., Cor.) ; equal altitudes because these altitudes N
are the equal divisions, Ax, ay, ¥z, etc. But, of the ,
fifteen equal parallelopipedons, eight are contained s
in AL ; hence, the solid AG is to the solid AL as 15 isto 8, or,
generally, as the altitude AE is to the altitude Al

«Q

b nan

Secondly.—If the ratio of AE to Al cannot be expressed in num-
bers, it can be shown, nevertheless, that

solid AG : solid AL : : AE : AL

For, if this proportion is not correct, suppose
solid AG : solid AL : : AE : AQ.
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Divide AE into equal parts, such that each shall be less than OI;
there will be at least one point of division, m, between O and I.

Let P be the parallelopipedon having for base ABCD, and for
altitude Am ; since the altitudes, AE, Am, are to each other as two
whole numbers, we shall have

sol. AG : P:: AE : Am.
But, by hypothesis, so/. AG : 50l AL : : AE : AO;
hence, . sol. AL : P::AO : Am.

But AO is greater than Am ; hence, for the proportion to be correct,
the solid AL must be greater than P. Now, on the contrary, it is
less ; hence, it is impossible that the fourth term of the proportion,
. sol. AG : sol. AL : : AE : x,

can be a greater line than AI. By like reasoning it may be shown
that the fourth term cannot be less than AI; hence it is equal to AI;
therefore rectangular parallelopipedons having the same base, are to
each other as their altitudes.

PROPOSITION XV.

THEOREM.

Two rectangular parallelopipedons, AG, AK, having the same altitude,
AR, are to each other as their bases,, ABCD, AMNO.

Having placed the two solids by the side of each other, as the fig-
ure represents, produce the plane
ONKL until it meets the plane
DCGH in PQ; we will thus have x T
a third parallelopipedon, AQ,
which may be compared with each ¥
of the parallelopipedons, AG,
AK. The two solids, AG, AQ, .
having the same base, AEHD,
are to each other as their altitudes,
AB, AO; in like manner the two
solids, AQ, AK, having the same 2t A 2
base, AOLE, are to each other i iy
as their altitudes, AD, AM. N 0 P
Thus we have the two propor-
tions : B [V

sol. AG :sol. AQ : : AB: AQ,
sol. AQ :sol. AK:: AD : AM.

I ;s

==
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Multiplying together the corresponding terms of these two pro-
portions, and omitting in the result the common multiplier, So/. AQ,

we have sol. AG : sol. AK : : AB x AD : AO x AM.

But AB x AD represents the base ABCD, and AO x AM repre-
sents the base AMNO ; hence, two rectangular parallelopipedons
having the same altitude are to each other as their bases.

PROPOSITION XVI.
THEOREM.

Any two reclangular parallelopipedons are to eack other as the products of
their bases by their allitudes, or as the products of therr three dimensions.

For, having placed the two solids, AG, AZ, so that their surfaces
have the common angle BAE, 1 b1
produce the planes necessary to
complete the third parallelopipe- LS ] +\Q
don, AK, having the same alti- \
tude as the parallelopipedon AG. F |
By the last proportion we shall ] X
have : i

sol. AG : sol, AK::ABCD :AMNO |

But the two parallelopipedons
AK, AZ, having the same base, Y
AMNO, are to each other as i 4
their altitudes, AE, AX ; thus we ¥ 0 X
have

sol. AK : sol. AZ : : AE : AX.

Multiplying together the corresponding” terms of these two pro-
portions, and omitting in the result the common multiplier, So/. AK,
we obtain

sol. AG : sol. AZ : : ABCD x AE : AMNO x AX.

In the place of the bases, ABCD, AMNO, put AB x AD and
AO x AM ; it will give

sol. AG : sol. AZ : : AB x AD x AE : AO x AM x AX.

Hence, any two rectangular parallelopipedons are to each other,
etc.
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PROPOSITION XVIL

THEOREM.

The volume of a rectangular parallelopipedon, P, is equal lo the product
of 1ls base, a x b, by dls height, ¢, or cqual to the product of ils three di-
menstons, a X b X c.

For, comparing the parallelopipedon P with the
cube Q, constructed on the edge 7, we have

P:Q::axbxc:nxnxn, -
P a & ¢ Qi el
or —=—X - X - a\™
Q n ' n =n . 7 .
Now, if we suppose the cube Q to be the unit » A
of measure of the parallelopipedon, and 7 the a

linear unit on which it is constructed, then the ratio 0 will express
the measure of the volume of the parallelopipedon P, and the
. ab ¢ . . . .
ratios A are its three dimensions considered as abstract num-
3

bers. Hence, volume P =a x 4 X c.

Scuorium 1. Let @ = 3 inches, & = 2 inches, ¢ = 5 inches, and
let the cubic inch be the unit of solid measure of volumes.

Then the ratio

cubicinch — 3 ¥ 2X5=39%
or Volume P = 30 X cubic inch = 30 cubic inches.

In order, then, to comprehend the nature of this ::”,:su:ﬁﬁéﬁf,uft 1S
necessary to reflect that the product of the inree dimensions of a paral-
lelopipedon is a number which sigr..fies nothing of itself, and would
be different if a different linear unit had been assumed. But if the
three dimensions of another parallelopipedon are valued according to
the same linear unit, and maltiplied together, the two products will’
be to each other as the <oiids, and will serve to express their relative
magnitude. o

Scrorium 2. The three dimensions of a cube being equal to each
other, if the side is 1, the volume will be 1 x 1 x 1 = 1; if the side
is 2, the volume will be 2 x 2 x 2 = 2* = 8 if the side is ¢, the
volume will be¢ x ¢ x ¢ =¢*. Hence it is that in arithmetic the
cube of a number is the name given to the third power of the number.
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Scuortum 3. The side, x, of a cube equivalent to a given volume,
V, is equal to the cube root of V. Forx® =V ; and hence x = 4/V,
The problem of the duplication of the cube, famous among the ancient
Greek Geometers, consists in determining the side of a cube which
shall be double a given cube. Now, if x and ¢ be the sides of the
two cubes, then x* = 2¢% or x = ¢4/2, that is, the side of the re-

quired cube would have to be to the side of the given cube as the
cube root of 2 s fo unity. Now, the square root of 2z is easily found
by a geometrical construction. But the cube root of 2 cannot be so
found, that is, by the simple operations of elementary Geometry,
which employ no other lines than straight lines and circumferences.
- The problem admits of solution, however, by other methods no less
rigorous than those of elementary Geometry.

PROPOSITION XVIIIL.

THEOREM.

The volume of a parallelopipedon, and generally of any prism, is equal
o the product of its base by ils altitude.

First.—Any parallelopipedon is equivalent to a rectangular par-
allelopipedon having the same altitude, and an equivalent base
(Prop. XIIL.). Now, the volume of the latter is equal to its base
multiplied by its altitude ; hence the volume of the former is like-
wise equal to the product of its base by its altitude.

Secondly.—Any triangular prism is half the parallelopipedon so
constructed as to have the same altitude and a base twice as great
(Prop. X.). _But the volume of the latter is equal to its base multi-
plied by its altitude ; heénce, that of a triangular prism is equal to the
product of its base (half tha. of the parallelopipedon) multiplied by
its altitude. v

Zhirdly.—Any prism may be diviasd into triangular prisms having
for their bases the different triangles which form the polygon which
serves as its base, and for their common altitude the altitude of the
prism. But the volume of each triangular prism ic equal to its base
multiplied by its altitude ; and, since the altitude is the same for all,
it follows that the sum of all the partial prisms will be equal to the
sum of all the triangles which constitute their bases, multiplied by the
common altitude. '

Hence, the volume of any polygonal prism is equal to the product
of its base by its altitude.
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Cor. 1. The volume of any prism is equal to the product of ils right
section by its lateral edge (Prop. IX.).

Cor. 2. First.—Any two prisms are equivalent when they have equal
bases and equal allitudes, or when the products of their bases by their alt-
tudes respectively are equal,

Secondly.—Two prisms of the same allitude are fo each other as their
bases.

Thirdly.—Two prisms of equivalent bases are lo each other as their
alfitudes.

PYRAMIDS.
PROPOSITION XIX.

THEOREM.

The convex surface of a regular pyramid S-ABCDE is equal lo the
perimeter of the base, ABCDE, multiplied by half the slant height, SH.

For, the convex surface, S, is composed of five

isosceles triangles, each equal to SAE = AE x STH

Hence, convex surface S = 5AE X SZ—H But sSAE=

(AB+ BC + CD . - . . ) = perimeter, ABCDE.

Therefore, S = perimeter, ABCDE x STH

ScuoLium. The area of the base, ABCDE, being equal to the prod-
uct of its perimeter by half the apothem, OH (Book IV., Prop. 1X.),
the whole surface of the pyramid is

perimeter ABCDE x 5? + perimeter ABCDE x %I—_-I,

or

perimeter ABCDE x SH + OH .

PROPOSITION XX.

THEOREM.

The convex surface of the frustum, AD', of a regular pyramid, is
equal fo the sum of the perimelers of its bases, ABCDE, abcde, multiplied
by half the slant height, Hh, of the frustum.
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For this convex surface, S, is composed of five
trapezoids, each equal to AEae, and therefore each

measured by &:—_ae x H#k. Therefore,

S=5(éE—2iie) x Hi = (5AE + 5a¢) x Hle

But 5AE = perimeter ABCDE, and s5a¢ = perim-
eter abcde. Hence, S = (perimeter ABCDE + perim-

eter abcde) x Hle

ScuoriuMm. To get the whole surface of the frustum, we add to the
convex surface the areas of the two bases, ABCDE, aécde.

PROPOSITION XXI

THEOREM.
If a pyramid, S-ABCDE, is cut by a plane, abd, parallel to ils base,
1. The edges, SA, SB, SC, elc., and the altitude, SO, will be divided
proportionally at a, b, ¢, o.

2. The section abcde will be a polygon similar fo the - 8
base, ABCDE.

Firsft.—Conceive a plane to pass through the ver-
tex, S, parallel to the planes ABCDE, abcde. Then
all the edges, SA, SB, etc., and the altitude, SO, be-
ing cut by three parallel planes in the points S, A,
a, B, 4, O, o, etc., will be divided proportionally e
(Bouk V., Prop. XX., Schol.), and we shall have 4

SA:Se::SB:Sk:: SO : Se

Secondly.—Since ab is parallel to AB, éc to BC,
«d to CD, etc., the angle abc = ABC, écd = BCD, and so on. Alsg
by reason of the similar triangles SAB, Sab, we have

AB:ab::SB: S,
and by reason of the similar triangles SBC, Séc, we have
SB:Sb:: BC:bc;
hence AB: ab:: BC: be
In like manner we may prove
BC: bc:: CD :cd, and so on.

\
\
\
\
\
\
\
p:
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Hence, the polygons ABCDE, abcde have their angles respectively
equal, and their homologous sides proportional, hence they are
similar,

PROPOSITION XXII.
THEOREM.

If two pyramids, S-AABCDE, S-XYZ, whick have the same allitude and
the bases in the same plane, be cul by the same plane parallel fo the plane
of the bases, the sections, abede, xyz, will be lo eack other as lthe bases,
ABCDE, XYZ.

For the polygons ABCDE, abcde,
being similar (Prop. XXI.), are to
each other as the squares of their
homologous sides AB, ab (Book
1I1., Prop., XXIX.).

But AB:ab:: SA: Sa.

Hence

ABCDE : abcde : : SA* : Sa’.

For the same reason

XYZ : xpyz ;0 SX* @ Sa’.
But since @bc and ayz are in one plane, we have likewise
SA :Sa:: SX : Sx (Book V., Prop. XX., Schol.) ;

hence
ABCDE : abcde : : XYZ : xyz,
or abede : xyz : : ABCDE : XYZ.
Cor. Hence
If the bases, ABCDE, XYZ, are equivalent, the sections made af equal
“allitudes are also equivalent. .

PROPOSITION XXIIL

THEOREM.
Two Jwsamsguadar” pyramids which have equivalent bases and equal alti-

tudes, are equivalent.

Let S-ABC, s-abc, be the two pyramids. Let their equivalent bases,
ABC, abc, be situated in the same plane, and let AT be their com-
mon altitude. If these pyramids are not equivalent, let s-abc be
the smaller, and suppose Ax to be the altitude of a prism which,
constructed in the base ABC, is equal to their difference.
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Divide the common altitude, AT, into equal parts smaller than
Ax, and let # be one of these parts ; through the points of division
pass planes parallel to the plane of the bases: the sections made in the
two pyramids by each of these planes will be equivalent (Prop. XXIL,,
Cor.), namely, DEF to d¢/; GHI to ghs;, etc. This being granted,

T,

b

upon the triangles ABC, DEF, GHI, etc., taken as bases, construct
exterior prisms, having for edges the parts AD, DG, GK, etc., of
the edge SA ; in like manner upon the triangles def; g4i, kim, etc.,
taken as hases, construct in the second pyramid interior prisms, hav-
ing for edges the corresponding parts of sz ; all these .partial prisms
will have the common altitude 4.

Now, the sum of the exterior prisms of the pyramid S-ABC is greater
than that pyramid, and the sum of the interior prisms of the pyramid
s-abe, is less than that pyramid ; hence, the difference between the
sum of all the exterior prisms, and the sum of all the interior ones,
should be greater than the difference between the two pyramids.

But, beginning with the bases, ABC, adc, the second exterior
prism, DEFG, is equivalent to the first interior prism, defa, because
their bases, DEF, def; are equivalent, and they have the same alti-
tude, 4 ; for the same reasons, the third exterior prism, GHIK, and
the second interior prism, ghid, are equivalent ; the fourth exterior
and third interior ; and so on to the last of each series. Hence, all
the exterior prisms of the pyramid S-ABC, excepting the first, ABCD,
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have equivalent corresponding ones in the interior prisms of the pyra-
mid s-adc ; therefore, the prism ABCD is the difference between the
sum of the exterior prisms of the pyramid S-ABC, and the sum of the
interior prisms of the pyramid s-aéc. But, the difference between
these two sets of prisms has already been proved greater than the dif-
ference between the two pyramids, which latter difference we sup-
pose to be ABCx; hence, the prism ABCD, must be greater than
the prism ABCx; but in reality it is less; for they have the same
base, ABC, and the altitude, #, of the first, is less than the altxtude,
Ax, of the second.

Hence, the supposed inequality between the two pyramids cannot
exist. Hence, the two pyramids, S-ABC, s-abc, having equivalent
bases and equal altitudes, are equivalent.

PROPOSITION XXIV.

THEOREM.

Ei{erj Iriangular pyramid is the third part of the lriangular prism
having the same base and the same altitude.

Let S-ABC be a triangular pyramid, ABCDES a triangular prism,
having the same base and the same altitude ; then will the pyrampid
.be equal to a third of the prism. Cut from the prist the pyramid
S-ABC by the plane SAC; there will re- b , D
main the solid S-ACDE, which may be
considered as a quadrangular pyramid
whose vertex is S, and whose "base is the
parallelogram ACDE: draw the diagonal
CE, and pass the plane SCE, which will di-
vide the quadrangular pyramid into two tri-
angular pyramids, S-ACE, S-DCE. These
two triangular pyramids have for their com- #
mon altitude the perpendicular let fall
from S on the plane ACDE; they have
equal bases, the triangles ACE, DCE B
being halves of the same parallelogram ; hence, the two pyramids,
S-ACE, S-DCE, are equivalent (Prop. XXIIL). But, the pyramid
S-DCE, and the pyramid $-ABC, have equal bases, ABC, DES ; they
have also the same altitude, for this altitude is the distance- of the
parallel planes, ABC, DES. Hence, the two pyramids, S-ABC,
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S-DCE, are equivalent. Now, the pyramid S-DCE has already been
proved equivalent to the pyramid S-ACE ; hence, the three pyramids,
S-ABC, S-DCE, S-ACE, which compose the prism ABCD, are
equivalent. Hence, the pyramid S-ABC is the third of the prism
ABCD, which has the same base and the same altitude.

Cor. The volume of a triangular pyramid is equal lo one-third of the
product of ifs base by its allitude.

PROPOSITION XXV.

THEOREM.

Every pyramid, S-ABCDE, is measured by the third part of the prod-
uct of s base, ABCDE, by ils altitude, SO.

For, by passing the planes SEB, SEC through the diagonals EB,
EC, the polygonal pyramid S-ABCDE will be di-
vided into several triangular pyramids, having the
samealtitude, SO. But, by the preceding theorem,
each of these pyramids is measured by multiply-
ing its base, ABE, BCE, or CDE, by the third
part of its altitude, SO ; hence, the sum of these
triangular pyramids, or the polygonal pyramid
S-ABCDE, will be measured by the sum of the
triangles’” ABE, BCE, CDE, or the polygon
ABCDE, multiplied by one-third of SO j Aence,
every pyramid is measured by the third of the product
of s base by its altitude.

Cor. 1. Every pyramid is the third part of the prism having the same
base and the same allitude.

Cor. 2. First.—Any two pyramids are {o each other as the products of
their bases by their altitudes.

Secondly.—Two pyramids having the same altitude are lo each other as
their bases. '

Thirdly.—Two pyramids having equivalent bases are lo each other as
their allitudes.

ScuoLium 1. In order to find the volume of a polyedron, we divide
it into pyramids, compute the volumes of these pyramids, and add
together the numbers thus obtained.

In order to divide the polyedron into pyramids, we can assume any
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point whatever in space and join it to all the vertices of the polyedron.
The bases of the different pyramids thus formed will be the faces of
the polyedron, and the altitudes of the pyramids the perpendiculars
let fall from the point taken upon the planes of these faces. The
volume of the polyedron will be the arithmetical or the algebraic
sum of the volumes of the pyramids, according as their common
vertex (the point taken) is within or without the polyedron.

Sometimes the division of the polyedron into pyramids is effected
by taking one of the vertices, and from that drawing dnagonals to all
the other vertices not adjacent to this.

ScroLium 2. When a point can be found in the interior of a polye-
dron, equidistant from all its faces, the pyramids composing the
polyedron, which have this point for a common vertex, will have as
a common altitude the perpendicular let fall from this point on any
one of the faces, and ke volume of the polyedron will have for ils meas-
ure the third of the product of ils surface by this perpendicular.

As any polygonal pyramid may be divided into triangular pyramids
(tetraedrons), it is evident that any polyedron may be divided also into
tetraedrons.

PROPOSITION XXVI.
THEOREM.

If a polygonal pyramid, S-ABCDE, and a triangular pyramid,
T-FGH, laving equrvalen! bases lying in the same plane and the same
allitude, be cut by a plane, abd, parallel fo the plane of the bases, the frus-
tums, ABD-abd, FGH-fzh, thus cut off, will be equivalent.

For the plane aéd, produced, forms in the triangular pyramid a
section, /g4, situated at the same height above the common plane of
the bases ; and therefore, since the
base ABCDE is equivalent to
FGH, the section abcde will be
equivalent to the section _fg4
(Prop. XXII., Cor.).

Hence, the pyramids S-abcde and
T-fg4 are equivalent, for their alti-
tude is the same and their bases
are equivalent. The whole pyra-
mids S-ABCDE, T-FGH are equivalent for the same reason ; hence,
the frustums ABD-aéd, FGH-/g#%, which remain after taking the small
pyramids from the wholes respectively, are equivalent.

B e
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PROPOSITION XXVII.

THEOREM.

- Every frustum of a pyramid is equal lo the sum of three pyramids,
having for thetr common allitude the allitude of the frustum, and for
bases the lower base of the frustum, the upper base, and a mean propor-
tional between the two bases.

From the preceding theorem it follows that if the proposition can
be proved in the single case of the frustum of a triangular pyramid,
it will be true of any other frustum. Let ABC-DEF
be the frustum of a triangular pyramid. The
planes AEC, DEC divide it into three triangular
pyramids, E-ABC, E-DCF, E-DCA. The first,
E-ABC, has for its base the lower base, ABC, of the
frustum ; its altitude is likewise that of the frus-
tum, since its vertex E lies in the plane of the upper base, EDF.

If we take the point C for its vertex, the second pyramid, E-DCF,
has for its base DEF, the upper base of the frustum ; its altitude is-
also the altitude of the frustum, since its vertex, C, lies in the lower
base, ABC.

Thus we know two of the pyramids which compose the frustum.
It remains to consider the third pyramid, E-DCA. To measure this,
we compare it with the second, E-DCF. These two pyramids having
the same altitude (considered with reference to the common vertex,
E), are to each other as their bases, CDA, CDF.

But CDA : CDF : : AC: DF,
since the triangles have the same altitude. Hence

E-DCA : E-DCF : : AC: DF.
But since the bases of the frustum, ABC and DEF, are similar,

AC : DF :: /ABC : /DEF (Book III., Prop. XXVIL).
‘Therefore ‘

E-DCA : E-DCF : : 4/ABC : 4/DFEF,

or
E-DCA = E-DCF —'éB;g
4+/DEF

Now

E-DCF = DEF x % of the altitude of frustum.
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Hence
E-DCA = 4/ABC - 4/DEF - x ; of the altitude of the frustum.

Therefore, the third pyramid, E-DCA, is equivalent to a pyramid
having for its base a mean proportional between the two bases of the
frustum, and for its altitude the altitude of the frustum.

Hence, the frustum of a pyramid is equivalent to three pyramids
whose common altitude is the altitude of the frustum, and whose
bases are respectively the lower and upper bases of the frustum, and
a mean proportiona: between these two bases.

Scuorium. Let V be the volume of a frustum of a pyramid, B and
B’ its bases, and H its altitude. The volumes of the three pyramids
being

H H ,— H_
Bx--, B x— 4BB x;
3 3 v 3
we have
H

V=(B+B’+x/W’)x3-

SIMILAR POLYEDRONS.

DEFINITIONS IIL

1. Two tetraedrons, S-ABC, T-DEF,
are similar when they have all their
homologous edges proportional, that is,
when SA: TD::SB: TE::SC:TF::
AB : DE, etc.

2. Two polyedrons are similar when
they are composed of the same number
of similar tetraedrons, similar each to
each, and similarly situated.

PROPOSITION XXVIII.

THEOREM.

In two similar tetraedrons, S-ABC, T-DEF, the homologous faces are
similar, and the komologous lriedrals are equal.,

16 L/ "_/
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Any two homologous faces, SAD,
TDE, are similar, because their sides
are, by definition, proportional. And
since the plane angles of a triedral in
one tetraedron are therefore equal re-
spectively to the plane angles of the
homologous triedral in the other, these
triedrals are equal (Book V., Prop.
XXXVIIL).

PROPOSITION XXIX.

THEOREM.

Conversely, Two letracdrons are similar, 1st, when their homologous
Jaces are similar ; 2d, when therr homologous Iriedrals are equal.

First —When the homologous faces are similar, the homologous
edges are proportional, and therefore the tetraedrons similar.

Secondly.—When the homologous triedrals are equal, the plane
angles which form them are respectively equal, and therefore the
homologous faces have the angles of the one equal to the angles of
the other, and are therefore similar. Hence, the tetraedrons are sim-
ilar.

Cor. 1. Two similar lefraedrons have their six homologous diedrals
equal each to eack, and conversely.

Cor. 2. Every section, abcde, parallel to the base of
a pyramid, S-ABCDE, defermines another pyramid,
S-abede, similar to the first. ’

For the planes SEC, SEB, divide the two pyra-
mids into tetraedrons, S-ABE and S-abe, S-BCE
and S-bce, S-CDE and S-cde. similar each to each,
because their faces are similar. These tetraedrons
are also similarly situated. Hence, by definition, *
the two pyramids are similar.
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PROPOSITION XXX.

THEOREM.
In two similar polyedrons : ‘ .
1. The homologous faces are similar, eack lo eack, and their inclinations
are the same. '
2. The homologous solid angles are equal.

First.—The two polyedrons being composed of the same number
of tetraedrons, similar each to each and similarly situated, their
surfaces are also composed of the same number of triangles, similar
each to each and similarly grouped. Moreover, the inclination of
two adjacent triangles of the first surface is equal to the inclination
of the two homologous triangles of the second ; for these inclinations
are either the homologous diedrals of two similar tetraedrons, or they
are the sums of a like number of homologous diedrals : whence it re-
sults that two similar polyedrons are contained by the same number
of faces, similar each to each, and equally inclined to each other.

Secondly.—The homologous solid angles are equal; for all their
plane angles and diedrals are equal each to each and similarly
grouped.

CoRr.—T%e edges, the diagonals, and in general all the homologous lines
of two similar polyedrons, are proportional,

PROPOSITION XXXI. )

THEOREM.

Similar letraedrons are fo each other as the cubes of thetr homologous
edges.

We can always place the two tetraedrons so that they shall have a
triedral, S, in common (Prop. XXIX, Cor. 2.). Then,
since the bases, ABC, DEF, are similar, we have,

ABC : DEF :: AB" : DE". (1)
And since the angles SAB and SDE are equal, as

also SBC and SEF, the plane DEF is parallel to 4
the plane ABC. Therefore,

SH :S4::SA :SD :.: AB: DE,
or, 4SH : §S% :: AB : DE. (2)
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Multiplying the proportions (1) and (2), term by term, we have,
ABC x 4SH : DEF x 4S% :: AB° : DE*,

That is, .

S-ABC : S-DEF :: AB* : DE’,

PROPOSITION XXXII.

THEOREM.

In two similar polyedrons : .
1. The surfaces are lo each other as the squares of their homologous edges.
2. The volumes are to each other as the cubes of these edges.

First. —The areas of similar polygons being proportional to the
squares of their homologous sides, the homologous faces of the two
polyedrons form a series of equal ratios; hence, the sums of these
faces, that is, the surfaces of the two polyedrons, are to each other as
the squares of these same sides or edges. -

Secondly.—Similar tetraedrons being proportional to the cubes of
their homologous edges, the tetraedrons of which the two polyedrons
are composed form a series of equal ratios; hence the sums of the
antecedents and of the consequents, that is, the volumes of the two
polyedrons, are to each other as the cubes of these same edges.

Cor.—Two similar pyramids are fo each other as the cubes of their
komologous edges, as also two similar prisms.

—_—
EXERCISES ON BOOK VI.

THEOREMS.

1. Show that two tetraedrons are equal,

First.—When they have an equal diedral contained by two plane
faces equal each to each, and similarly situated.

Second.—When they have an equal face adjacent to three diedrals,
equal each to each, and similarly situated.

Zhnird. —When they have three faces equal each to each, and simi-
larly situated.

Fourth, —When they have one edge equal, and the plane angles of
three faces equal, and similarly situated.

Fifth.—When they have an edge and five diedrals equal each to
each, and similarly situated.
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2. Two triangular prisms are equal when they have their lateral
faces equal and arranged in the same manner.

! 3. The volume of a triangular prism is equal to the product of one
of its lateral faces by half the distance from this face to the opposite
edge

/4.VEvery plane which contains the line joining the middle points
of two opposite faces of a parallelopipedon will divide that parallelo-
pipedon into two equal parts.

5. Show that the formula
2 ' (a +6)°’ =a* + 3d% + 3q8° + &

is verified by the geometrical construction when « and & are two parts
of a given line.

6. Two tetraedrons which have a solid angle equal, are to each
other as the product of the three edges which meet in the vertices of

Wl solid angles.
~~ 7. The plane bisector of a diedral angle of a tetraedron divides the

oppesite edge into two parts proportional to the faces adjacent to this
diedral. )

8. If a plane be drawn, containing one edge of a tetraedron and
the middle point of the opposite edge, it will divide the tetraedron
into two equivalent tetraedrons.

’3 9. Every plane which passes through the middle points of two
opposite edges of a tetraedron, divides this body into two equivalent
parts.

0. The six planes drawn perpendicular to the six edges of a

" tetraedron at their middle points, meet in a common point which
is equidistant from the four vertices of the tetraedron.

11. The six plane bisectors of the diedral angles of a tetraedron
meet in a common point equidistant from the four faces of the tetrae-
~  dron.

12. The four straight lines which join the vertices of a tetraedron
with the intersections of the medians of the opposite faces meet in a
common point which divides each line of junction in the ratio of
3 to 1. (That is, the part of the line towards the vertex will be to

yﬂ towards the face as 3 to 1.)
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13. The four perpendiculars erected to the faces of a tetraedron
at the centres of their circumscribed circles meet in a common
point.

14. The three straight lines which join the middle points of the
opposite edges of a tetraedron meet in a common point which bisects
these lines. .

J - 15. The different points of intersection mentioned in Exercises
9 to 14 inclusive, all become one and the same point when the tetrae-
dron is regular.

___—16. When a tetraedron has one of its triedrals trirectangular, then
the square of the area of the face opposite to this right triedral is
equal to the sum of the squares of the other three faces.

17. The distance of the centre of a parallelopipedon from any plane
\A is equal to one-eighth of the sum of the distances of its eight vertices
from the same plane.

18. If a point is at a constant distance from the centre of a par-
allelopipedon, the sum of the squares of its distances from the vertices
is constant.

- ’/19. The altitude of a regular tetraedron is equal to the sum of the
perpendiculars let fall from any point taken in the interior of the
tetraedron on its four faces.

20. First.—The volume of a truncated triangular prism is equiva-
lent to three pyramids, having the base of the prism for a common
base, and the three points in which the three edges pierce the inclined
cutting plane as vertices.

Second.—1It is also equivalent to its base multiplied by one-third
of the distance of this base to the point of intersection of the medians
of the inclined upper base. )

Third.—It is also equal to its right section multiplied by one-third
of the sum of its three edges.

21. The volume of a truncated parallelopipedon is equal to the
product of its right section by the arithmetical mean of its four lateral
edges.

" 22. If planes be drawn through the vertices of a tetraedron par-
allel to the opposite faces, the tetraedron formed by these planes is
not similar to the first.

e e e e
- —
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23. The squares of the volumes of two similar polyedrons are pro-
portional to the cubes of their homologous faces.

PROBLEMS.

1. Find a point in the interior of a tetraedron, such that being
joined to the four vertices, the tetraedron is divided into four equiva-
lent tetraedrons.

2. Draw a plane parallel to the base of a pyramid cutting off a
small pyramid which shall be § of the given pyramid — g% — ¥4

3. In a tetraedron, S-ABC, through E, the middle point of the eds>
SB, let the plane DEF be passed parallel to the base ABC ; the piane
EGH, parallel to the face ASC, and the plane EDH ; the pyramid,
S-ABC, is thus divided into two equivalent triangular prisms, and into
two tetraedrons of the same base and altitude. Divide these two
pyramids in the same manner, and deduce the volume of the pyramid .
as the limit of the sum of the series of successive prisms thus obtained.

4. Cut a cube by a plane so as to make the intersection a regular
hexagon.

5. Compute the altitude of a prism, knowing the volume, », and the
base, &; the same of a pyramid.

6. Given in a frustum of a pyramid the lower base, B, the height,
4, and the volume, . Compute the other base.

7. Compute the surface and volume of a regular tetraedron, the
edge being given.

8. Find the entire surface of a regular pyramid, the slant height
being 12 feet, and each side of the hexagonal base being 3 feet.

9. Find the convex surface of the frustum of a pentagonal regular
pyramid whose slant height is 40 feet, each side of the lower base
8 feet, and each side of the upper base g feet.

1o. Find the surface and volume of a frustum of a pyramid whose
bases are squares, each side of the lower base being 12 feet, each side
of the upper base 6 feet, and the height 4 feet.

11. Find the surface and volume of a block of marble in the shape
of a rectangular parallelopipedon whose three dimensions are 4 feet
6 inches, 2 feet 3 inches, 3 fect g inches.

12. Find the whole surface of a triangular prism whose altitude is
15 feet, and its bases equilateral triangles, whose sides are 4 feet.
»
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13. Find the volume of a regular hexagonal pyramid whose slant
height is 18 feet, and each side of the base 5 feet.

14. Find the volume of the frustum of a pyramid, given the altitude
12 feet, and the bases regular dodecagons, the radii of whose circum-
scribing circles are 3.6 and .8 feet respectively.

15. Compute the three dimensions of a rectangular parallelopipe-
don, knowing that they are proportional to the numbers , 4, and i-,
the volume of the parallelopipedon being 2 cubic yards.

16. Compute the volume of a rectangular parallelopipedon, of
which the surface is 5 square yards, and the three dimensions propor-
tional to the numbers 4, 6, 9.

17. The height of a pyramid is 4.5 meters, and its base is a square
whose side is 1.2 meters. Compute the corresponding dimensions
of a similar pyramid, the volume of which is 7.29 cubic meters.

18. The base of a regular pyramid is a hexagon, each of whose
sides is 3 feet in length, and its convex surface is ten times the area
of its base. Find its height.

19. Find the volume of a right truncated triangular prism whose
base is an equilateral triangle, the side of which is 6 feet, and the
three lateral edges of Wthh are 10, 12, and 15 feet. (See Exercises,
Theorem zo.)

20. The greatest pyramid of Egypt is 150 yards high, and its base
is a square whose side is 250 yards. Find its volume and its convex
surface.

21. The edge, SA, of a pyramid, S-ABCD, being four feet six inches
long, find the parts into which it is divided by a plane parallel to the
base which divides the convex surface, first, into two equivalent parts;
sccond, into two parts proportional to the numbers 3 and s.

22. A regular pyramid has a hexagon for its base whose side is 15
feet, and its faces make with the base an angle equal to two-thirds of
a right angle. Find the volume.

23. A right prism has for its base a regular hexagon. Find its
altitude, knowing that its volume is 3 cubic feet and its convex sur-
face 12 square feet.




BOOK VI. : 249

APPENDIX TO BOOK VI.

THE REGULAR POLYEDRONS.
PROPOSITION L
THEOREM.

There can only be Jfive regular polyedrons.

For regular polyedrons were defined as those all of whose faces are
equal regular polygons, and all whose solid angles are equal. These
conditions cannot be fulfilled except in a small number of cases.

First.—If the faces are equilateral triangles, polyedrons may be
formed of them, having solid angles contained by three of those tri-
angles, by four, or by five: hence arise three regular bodies, the
lelraedron, the octaedron, and the wosaedron. - No other can be formed
with equilateral triangles, for six angles of these triangles are equal
to four right angles, and cannot form a solid angle (Book V., Prop.
XXXIIL).

Secondly. —If the faces are squares, their angles may be arranged
by threes ; hence results the Aexaedron, or cube.

Four angles of a square are equal to four right angles, and cannot
form a solid angle.

Thirdly.—In fine, if the faces are regular pentagons, their angles
may likewise be arranged in threes; and the regular dodecaedron
will result.

We can go no farther; for three angles of a regular hexagon are
equal to four right angles ; three of a heptagon are greater.

Hence, there can be only five regular polyedrons; three formed
with equilateral triangles, one with squares, and one with pentagons.

Scrortum. Tt will be proved in the following proposition that these
five polyedrons actually exist, and that all their dimensions may be
determined when one of their faces is known.

PROPOSITION 1II.

ProBLEM.

One of the faces of a regular polyedron beng given, or only its side,
1o construct the polycdron.

This problem embraces five, which will be solved in succession.

1. CONSTRUCTION OF THE TETRAEDRON.

Let ABC be the equilateral triangle which is to be one face of
the tetraedron. At the point O, the centre of this triangle, erect
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OS perpendicular to the plane ABC; terminate this perpendicular
in S, so that AS = AB; join SB, SC, and the
pyramid S-ABC will be the required tetrae-
dron.

For, by reason of the equal distances OA, OB,
OC, the oblique lines SA, SB, SC are equal
(Prop. IX., Book V.). One of them, SA =
AB; hence, the four faces of the pyramid
S-ABC are triangles equal to the given triangle
ABC. And the solid angles of this pyramid,
are all equal, because each of them is formed by three equal plane
angles ; hence this pyramid is a regular tetraedron.

2. CoNSTRUCTION OF THE HEXAEDRON.

Let ABCD be a given square; on the base,
ABCD, construct a right prism whose altitude, AE,

shall be equal to the side AB. It is evident that ~ P

the faces of this prism are equal squares, and that > v/

its solid angles are equal, since they are each formed “\ |77 oy

by three right angles ; hence, this prism is a regular \

hexaedron, or cube. J i
£ B

3. CoNsTRUCTION OF THE OCTAEDRON. =~

Let AB be the given edge: on AB de-
scribe the square ABCD ; at the point O,
the centre of this square, erect TS perpen-
dicular to its plane, and terminating on
both sides in T and S, so that OT = OS =
AQ; then join SA, SB, TA, etc. ; you will
have a solid, SABCDT, composed of two
quadrangular pyramids, SSABCD, T-ABCD,
united together by their common basc,
ABCD; this solid will be the required
octaedron.

For the triangle AOS is right angled at O, as is the triangle AOD ;
the sides AO, OS, OD are equal ; hence, those triangles are equal ;
hence, AS = AD. It may be shown in like manner that all the
other right angled triangles, AOT, BOS, COT, etc., are equal to the
triangle AOD ; hence all the sides, AB, AS, AT, etc., are equal, and
consequently the solid SABCDT is bounded by eight equilateral
triangles whose sides are equal to AB. Moreover, the solid angles
of this polyedron are all equal ; for instance, the angle S is equal to
the angle B.

For it is evident that the triangle SAC is equal to the triangle
DAC, and therefore the triangle ASC is right ; hence the figure SATC
is a square, equal to the square ABCD. But, comparing the pyramid
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B-ASCT with the pyramid S-ABCD, the base of the first may be placed
on the base, ABCD, of the second ; then the point O being a common
centre, the altitude OB of the first will coincide with the altitude OS
of the second, and the two pyramids will exactly apply to each other
in all points ; hence the solid angle S is equal to the solid angle B ;
hence the solid SABCDT is a regular octaedron.

ScHoLrum. If three equal straight lines, AC, BD, ST, are perpen-
dicular to each other, and bisect each other, the extremities of these
straight lines will be the vertices of a regular octaedron.

4. CONSTRUCTION OF THE DODECAEDRON.

Let ABCDE be a given regular pentagon ; let ABP, CBP be two
plane angles equal to the angle ABC; with these plane angles form
the solid angle B. The mutual inclination of two of these planes,* we
will call K. In like manner, at the points C, D, E, A, form solid
angles equal to solid angle B, and similarly situated : the plane CBP
will be the same as the plane BCG, since they are both inclined by
the same quantity, K, to the plane ABCD. Hence, the pentagon
BCGFP, equal to the pentagon ABCDE, may be described in the

plane PBCG. If thesame thing is done in each of the other planes, . -
CDI, DEL, etc., we shall have a convex surface, PFGH, etc., composed
of six equal regular pentagons, and each inclined to its adjacent plane
by the same quantity, K. Let p/fg#, etc., be a second surface equal
to PFGH, etc., then may these two surfaces be united so as to form
a single continuous convex surface. For, the angle gp/, for example,
may be joined to the two angles OPB, BPF, to make a solid angle, P,
equal to the angle B; and in this junction no change will take place
in the inclination of the planes BPE; BPO, that inclination being
already such as is required to form the. solid angle B. But, whilst the
solid angle P is formed. the side g/ will fall along its equal PF and at
the point F will be found the three planes, PFG, p/%, e/g, united and
forming a solid angle equal to each of the solid angles already formed :

* K is (etgrmined by methods not given in these elements.
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and this junction will take place without changing either the state of
the angle P, or that of the surface ¢/g#4, etc. ; for the planes PFG,
¢/p, already united at P, have the proper inclination K, as have the
planes ¢fg, ¢/p. Continuing the comparison thus, step by step, we
see that the two surfaces will mutually adjust themselves to each
other so as to form a single continuous convex surface ; which will
be that of a regular dodecaedron, since it is composed of twelve equal
regular pentagons, and has all its solid angles equal.

5. CONSTRUCTION OF THE ICOSAEDRON.

Let ABC be one of its faces : we must first form a solid angle with
five planes equal to ABC, and each equally inclined to its adjacent
plane. To do this, on the side B'C’ equal to BC, construct the regu-
lar pentagon B'C'H’I'D’ ; at the centre of this pentagon erect a per-

ndicular to its plane, terminating in A’, so that B’A’ = B'C’; join
A'C’, A'H’, A'T", A'D’ ; the solid angle A’, formed by the five planes
B'A'C’, C’'A’H’, etc.,will be the solid angle required. For, the ob-
lique lines A'B, A'C’, etc., are equal, and one of them, A'B, is
equal to the side B'C’ ; hence, all the triangles, B'A’C’, C'A’H’, etc.,
are equal to each other, and to the given triangle, ABC.

D

It is further manifest that the planes B'A'C’, C'A'H/, etc., are each
equally inclined to their adjacent planes ; for, the solid angles B/,
- C), etc., are all equal, being each formed by two angles of equilateral
triangles, and one of a regular pentagon. Let the inclination of the
two planes in which are the equal angles be called K ; the angle K
will, at the same time, be the inclination of each of the planes com-
posing the solid angle A’ to its adjacent plane.

This being granted, if at each of the points A, B, C, a solid angle
be formed equal to the angle A’, we will have a convex surface,
DEFG, etc., composed of ten equilateral triangles, each one of which
will be inclined to its adjacent triangle by the quantity K ; and the
angles D, E, F. etc., of its contour will alternately combine three
angles and two angles of equilateral triangles. Conceive a second
surface equal to the surface DEFG, etc. ; these two surfaces may be
~mutually adapted to each other, if each triple angle of one is joined
to a double angle of the other ; and, since the planes of these angles
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have already to each other the inclination, K, requisite to form a
quintuple solid angle equal to the angle A, there will be nothing
changed, by this junction, in the state of each particular surface, and
the two together will form a single continuous surface, composed of
twenty equilateral triangles. This surface will be that of the regular
icosaedron, since all its solid angles are also equal.

ScHorium 1. The following table of the numbers of the different
elements of the regular polyedrons enables us to notice particularly
some of the properties of each:

TaBLE oF ParTs oF REGULAR PoLYEDRONS.

. No. Plane
No. N?'Sldﬁs No. Ver-| Angles of
Faces.| ° “*°" | tices, 'Each Solid No. Edges.
ce Angle.
Regular Tetraedron 4 3 4 3 6
Regular Hexaedron 6 4 8 3 12
Regular Octaedron 8 3 6 4 12
Regular Dodecaedron 12 5 20 3 30
Regular Icosaedron 20 3 12 5 30

1. In the regular tetraedron the number of vertices is the same
as the number of faces.

2. The number of yertices of the regular hexaedron is equal to
the number of faces of the octaedron, and reciprocally.

3. The number of the vertices of the dodecaedron is equal to the
number of faces of the icosaedron, and reciprocally.

4. The number of edges of the hexaedron and octaedron is the same.

5. The number of edges of the dodecaedron and icosaedron is
the same.

The following properties may also be observed in considering these
bodies :

6. In a tetraedron the edges are opposite two and two, and each
vertex is opposite to a face.

7. In the hexaedron and octaedron the vertices are opposite two
and two. The same is true of the edges and faces.

8. In the dodecaedron the faces are opposite two and two, but
neither the edges nor the vertices; but each edge is opposite to a
vertex.

9. In the regular icosaedron the vertices are opposite two and two,
but neither the edges nor the faces; but each edge is opposite to a
face.

Scuortum 2. The figures below represent the developments of the
surfaces of the five regular polyedrons in their order. We can form
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these bodies thus: first, draw these figures on card-board ; then cut
them out, and also cut half through the board along the dotted lines.
We can then bring the faces together in the required shape. -

(2)

EXERCISES ON APPENDIX TO BOOK VI.
THEOREMS.

1. The polyedron which has for its vertices the centres of the four
faces of a regular tetraedron is also a regular tetraedron.

2. The polyedron which has for its vertices the centres of the six
faces of a regular tetraedron, is a regular octaedron.

3. Conversely, the polyedron which has for vertices the centres of
the eight faces of a regular octaedron, is a regular hexaedron.

4. 'The polyedron which has for its vertices the centres of the faces
of a regular dodecaedron, is a regular icosaedron.

5. Conversely, the polyedron which has for vertices the centres of
the faces of a regular icosaedron, is a regular dodecaedron.

6. The polyedron which has for its vertices the middle points of
the six edges of a regular tetraedron, is a regular octaedron.

7. Show that the volume of the regular tetraedron formed as indi-
cated in I, is g% of the volume of the first tetraedron.

PROBLEMS.

1. Compute the volume of a regular octaedron whose edge is given.

2. Compute the volume of a regular octaedron, the vertices of
which are the middle points of the six edges of a regular tetrae-
dron whose edge is given.

3. Compute the volume of a regular octaedron, the vertices of
which are the centres of the six faces of a regular hexaedron whose
edge is given.

4. Compute the volume of a regular hexaedron, whose vertices are
the centres of the eight faces of a regular octaedron whose edge is given.
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THE SPHERE.

DEFINITIONS.

1. The sphere is a solid terminated by a curved surface; all the
points of which are equally distant from a point within called the centre.

The sphere may be conceived as generated by the revolution of a
semicircle, DAE, about its
diameter, DE ; for the surface ¥ ﬁZRG
described in this movement
by the semi-circumference, 3 T
DAE, will have all its points
equally distant from the centre,
C. This surface, generated by
DAE, is called the surface of
the sphere, or the spherical sur-
Sace.  And for the sake of
shortness, this surface is often
called the sphere, as the cir-
cumference of a circle is often
called the circle.

<

2. The radius of a sphere is a straight line drawn from the centre
to any point of the surface; the diamefer or axisis a line passing
through the centre and terminated on both sides by the surface.

All the radii of a sphere are equal ; all the diameters are equal,
and each double of the radius.

3. All the sections of a sphere by planes
passing through its centre are obviously equal
circles, which have the centre for their com-
mon centre, and for radii the radii of the
sphere. It will be shown (Prop. II.), that
all other sections of a sphere by planes, will
be circles of smaller radii than the radii of the
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sphere. This granted, a greaf circle is a section which passes
through the centre; a small circle one which does not pass through
the centre.

4. A plane is fangent to a sphere when their
surfaces have but one point in common. This
point is called the pomt of contact or of fan-

gency.

5. The pole of a circle of a sphere is a point in the surface equally
distant from all the points in the circumference of this circle. It
will be shown (Prop. VIIL) that every circle of a sphere, great or
small, has two poles.

6. The angle of two arcs of greal circles on the sphere is the angle
of the planes of those arcs. Thus, the angle ADM (Fig. Def. 1),
of the arcs AD and MD, is the angle of the planes ACD and
MCD.

7. A spherical triangle is a portign of the surface of a sphere bounded
by three arcs of great circles.

These arcs, named the sides of the triangle, are always supposed
to be each less than a semi-circumference. ABC (Fig. Def 12)
is a spherical triangle of which AB, AC, and BC, are the sides.

8. A spherical triangle takes the name of scalene, isosceles, eguzlaleral
in the same cases as a rectilineal triangle.

9. A spherical polygon is a portion of the surface of a sphere termi-
nated by several arcs of great circles. MN (Fig. Def 12) is a
spherical polygon. The spherical iriangle is the simplest of the spheri-
cal polygons.

10. A /une is that portion of the surface
of a sphere which is included between two
great semi-circumferences meeting in the
extremities of a common diameter.
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11. A spherical wedge or ungula is that
portion of the solid sphere which is included
between two great semicircles meeting in a ,
common diameter. The wungula has a lune
for its exterior spherical surface or dase.

12. A :p/zerz'calr/ pyramid is a portion of the
solid sphere incladed between the planes of
a solid angle whose vertex is the centre, and
which terminate in the surface of the sphere. ¢
The base of the pyramid is the spherical poly-
‘gon intercepted by these planes.

13. A zone is the portion of the sur-
face of the sphere included between two
parallel planes which form its bases. .
- One of these planes may be tangent to
the sphere ; in which case the zone has B
only a single base."

14. A spherical segmen! is the portion of
the solid sphere included between two paral-
lel planes which form its dases. One of these
planes may be tangent to the sphere; in
which case the segment has only a single
base. " The segment has a zone for the
curved or spherical part of its surface.

15. The altitude of a zome or of a segment is the distance between
17
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the two parallel planes which form the bases of the zone or segment,
or the distance from the pointof contact of the parallel tangent plane
to the base, when they have only a single base.

16. Whilst the semicircle, DAE (Fig. Def. i), revolving round its
diameter, DE, describes the sphere, any circular sector, as DCF or
FCH, describes a solid which is named a spkerical sector.

17. A polyedron is said to be inscribed in a sphere when the vertices
of all its solid angles are on the surface of the sphere.

18. A polyedron is said to be circumscribed about a sphere when all
its faces are tangent planes to the spherical surface.

PROPOSITION 1.

THEOREM.

A straight line cannot meet the surface of a sphere in more than two
poinis. » ’

The demonstration is exactly the same as that of Proposition IIL,
Book II.

. PROPOSITION II.

) THEOREM.
Euvery section of a sphere, made by a plane, is a circle.

Let AMB be a section made by a plane in
the sphere whose centre is C. From the % %
point C, draw CO, perpendicular to the plane ,

AMB ; and different lines, CM, CM, to differ- Y
ent points of the curve AMB, which terminates . —
the section.

The oblique lines CM, CM, CB are equal,
since they are radii of the sphere; they are
therefore equally distant from CO (Book V.,

Prop. IX.) ; hence all the lines OM, OM, OB are equal ; hence the
section AMB is a circle, of which the point O is the centre.

.)g

Cor. 1. If the section passes through the centre of the sphere, its
radius will be the radius of the sphere ; and all great circles are equal,
as we have seen before (Def. 3). All other sections, since.they have
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for diameters chords of the great circle, are smaller than the great
circle.

Cor. 2. Two great circles abways bisect eack other.  For their com-
mon intersection, passing through the centre, A
is a diameter.

CoRr. 3. Every great circle divides the sphere Q
and s surface inlo fwo equal paris; for
if the two hemispheres were separated and
afterwards placed in the common base, with
their convexities turned to the same side, the
two surfaces would coincide, no point of the B
one being nearer the centre than any point of the other.

Cor. 4. The centre of a small circle and that of the sphere, are in t}ze
same straight line perpendicular lo the plane of the small circle.

CoR. 5. One arc of a greal circle, and but one, may be made fo pass
through two gtven points in the surface of a sphere; which are not the
extremities of a diameter ; for the two given points and the centre of
the sphere make three points, which determine the position of a plane.
If, however, the two given points were at the extremities of a diame-
ter, then these two points and the centre of the sphere could be
in a straight line, and an infinite number of great circles might be
passed -through the given points. Three points on the surface of a
sphere are necessary to determine a small circle.

Cor. 6. Any great semicircle whatever of the sphere revolving
about its diameter would generate the sphere.

Cor. 7. Small circles are the less the further they lie from the centre
of the sphere; for the greater CO is, the less is the chord AB, the
diameter of the small circle AMB. :

Or we may enunciate this corollary thus : Zwo small circles equally
distant from the centre of the sphere are equal ; and of two small circles
unequally distant from the centre of the sphere the greater is that one nearer
to the centre.
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PROPOSITION I1I.
THEOREM.

Through four points, A, B, C, and D, not in the same plane, the sur-
Jace of one sphere may be made lo pass, and but one.

First.—Join AB, AC, AD, BC, CD, forming the triangles ABC,
ADC, whose planes meet in AC. Erect a perpendicular, ON, to the
plane of the triangle ABC, at O, the centre of its circumscribed circle.
Erect a perpendicular, O'P, to the plane of ADC, at O, the centre of
its circumscribed circle. Draw perpendic-
ulars from O and O’ to AC. They will
meet AC at its middle point H. Hence,
the planes NOH and PO'H are perpendic-
ular to AC, at H (Book V., Prop. X., Cor.),
and must, therefore, coincide (Book V.,
Prop. VIL.). Hence, ON and O'P lie in
the same plane, and they must meet, since
they are perpendicular to lines OH and
O'H, which meet (Book I., Prop. XXV., Cor. 2). The point M of
their intersection is equally distant from A, B, and C, since it is on
ON (Book V., Prop. IX., Cor. 3), and from A, C, and D, since it is
on O'P. Hence, the four distances MA, MB, MC, and MD are
equal. Therefore, the surface of a sphere with centre M and radius
OA, will pass through the points A, B, C, D.

Secondly.—Only one sphere can be made to pass through these four
points ; for its centre, being equally distant from A, B, C, D, must be
at the same time on the lines OM and O’P, and these lines have but
one point of intersection. Hence, it must have the same centre and
radius as the sphere alrecady found, and hence be the same sphere.

Scuorrum. This theorem may be enunciated thus: Four points nol
in the same plane determine the surface of a sphere.

PROPOSITION 1V,
‘ THEOREM.

Euvery plane perpendicular fo a radius al ils extremily is langent to the
sphere.  Conversely, Every plane tangent to a sphere is perpendicular lo
the radius at the point of contacl.

Let MN be a plane perpendicular to the radius OC, at its extremity
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C. Any point, E, being taken in this plane, and OE and CE joined,

the angle OCE will be right, and thds the

distance OE will be greater than OC. Hence,

the point E is outside the sphere; and as the

same is the case with every other point in the w -

plane MN, it follows that this plane has only M

the single point C in common with the sur- .

face of the sphere ; hence it is tangent to that surface (Def. 4).
Secondly.—The converse is true, because every point of the tangent

plane MN, except the point C, being exterior to the sphere, the

radius OC is the shortest line which can be drawn from the centre,

O, to the plane MN. It is therefore perpendicular to this plane
(Book V., Prop. IX.).

Cor. 1. Through a given poinl on the .s‘u':face of a sphere, only one
langen! plane can be drawn lo this surface.

Cor. 2. Euvery langent plane is parallel fo the planes of the small circles
whose diamelers are bisecled by the radius through the point of conlacl.
And two tangent planes at the extremities of the same diameter are
parallel.

ScuorLium. A tangent plane to the.sphere contains all the tangents
drawn through the point of contact to the sections of the sphere which
pass through this point. Two of these tangents determine the tan-
gent plane.

PROPOSITION V.

THEOREM.

If two spheres have a common poin! situated without the line joining
thar centres, these two spheres will cut each other in a circle, the centre of
which is on the line of their centres, and the plane of which is perpen-
dicular to this line.

Suppose the two spheres have the centres O and C, and both sur
faces passing through the point A.
From the point A let fall the per-
pendicular AD on the straight line

A

B
OC; and through AD draw a 0= ¢

plane perpendicular to the line OC. U

In this plane, from the point D as
a centre, describe a circle with a
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radius equal to DA ; every point upon the circumference of this cir-
cle will be one of the pointsof intersection of the two spheres. For,
taking any point, B, of the circumference, and joining BD, OA, OB,
CA, CB, the lines OA and OB are equal, since the right angled
triangles ODA and OBA are equal. Hence, the point B is on the
surface of the sphere of which O is the centre and OA the radius.
The two equal triangles ADC, BDC give also AC = BC; hence B is
on the sphere of which C is the centre and CA the radius, and hence
B is common to both spheres. Hence, the common intersection of
the two spheres is the circle DA, etc., etc.

Cor. 1. If two spheres are langent lo each other, the point of contact
is situaled on the line joining their centres. For, otherwise, the spheres
would have other common - points, and consequently would cut each
other.

Cor. 2. The surface of a sphere cannot be passed through .four
points situated in the same plane, unless these four points are on the
same circumference, and then any number of spheres may be passed
through them, whose common intersection will be this circumfer-
ence.

Schorium. Two spheres can have a common circle—that is, cut each
other ; or have ore point in common—that is, be tangent to each
other externally or internally ; or, finally, be entirely exterior to each
other, or one interior to the other. Their possible relative positions
are thus fige in number. Propositions XII., XIII., XIV., XV., XVIL,,
and the Corollaries of XVI., of Book II., with regard to the different
relative positions of two circles, apply equally to two spheres.

Spheres having the same centre are named concentric spheres.

PROPOSITION VI.

THEOREM.

In every spherical triangle, ABC, any side is less than the sum of the
other two.

Let O be the centre of a sphere; draw the radii OA, OB, OC.
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Conceive the planes AOB, AOC, COB drawn ; .

these planes will form a triedral angle at the \

centre, O, and the angles AOB, AOC, COB B
will be measured by AB, AC, BC, the sides
of the spherical triangle ABC. But each of the
three plane angles which form the triedral
angle is less than' the $um of the other two.
(Book V., Prop. XXXII.); hence any side
of the triangle ABC is less than the sum of the
other two.

o

Cor. 1. Each side of a spherical triangle is greater than the differ-
ence of the other two.

Cor. 2. Any side, AB, of a spherical polygon is less than the sum of the
other sides, AE + ED +DC + CB.

Join AD, AC, then we have g
AD < AE + ED; i
AC < AD + DC;
AB < AC + BC.

Adding these inequalities, and cancelling the A B
equal terms on the two sides of the results,

we have :
AB < AE + ED + DC + CB.

Scorium. The demonstration of this theorem shows that each
property of a triedral relative to its plane angles or its diedrals, per-
tains also to the sides and angles of a spherical triangle. For the
plane angles of the triedral, constructed as in the proposition, are
measured by the sides of the spherical triangle, and its diedrals are,
by definition, equal to the angles of the triangle. There exists then
a perfect analogy between the spherical triangle and the triedral which
has for its vertex the centre of the sphere, and for its edges the radii
to the vertices of the triangle.

The same remark applies to any spherical polygon, and its cor-
responding solid angle with vertex at the centre of the sphere. Thus,
from Cor. 2, we can draw the conclusion #at any one plane angle of
a solid angle is less than the sum of all the others.
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PROPOSITION VII.

s THEOREM,

The sum of the sides of every convex spherical polygon is less than the
circumference of a great circle.

For, joining the vertices of the polygon with the centre of the sphere
we form a solid angle whose plane angles are measured respectively
by the sides of the polygon. But the sum of these plane angles is -
always less than four right angles (Book V., Prop. XXXIIIL. ). Hence,
the sum of the sides of the polygon is less than the measure of four
right angles or the circumference of a great circle.

Schorium. The direct demonstration is also easy.

Consider the triangle ABC.  Prolong the sides AB, AC till they
meet again at D. The arcs ADB, ACD
are semi - circumferences (Prop. IIL,
Cor. 2). But in the triangle BCD we
have,

BC < BD + CD (Prop. VL.). A
Adding AB + AC to each, we have,
AB + AC + BC < ABD + ACD,

that is to say, less than a circumference -
of a great circle.

Operating in the same manner on a poly-
gon, replacing one side by the prolongations
of the two sides adjacent to it, we see that
if the theorem is true for any one convex
polygon, it is true for the convex polygon
which has one more side. Hence, it is true
of all convex polygons.

(o}

PROPOSITION VIIIL

THEOREM.

If the diameter DE be drawn perpendicular to the plane of the grea!
circle AMB, ifs extremities, D and E, will be the poles of the circle AMB
and of all the small circles, as FNG, efc., parallel to it '
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For DC, being perpendicular to the plane AMB, is perpendicular
to all the straight lines, CA,

CM, CB, etc., drawn through P
its foot in this plane: hence, ﬁ ¢
all the arcs DA, DM, DB, etc., 11 I

are quarters of the circumfer-
ence ; the same is the case with
the arcs EA, EM, EB, etc. ;
hence, the points D and E are e
each equally distant from all
the points of the circumference
AMB; hence, they are the"
poles of this circumference
(Def. s5).

. Again, the radius DC, per-
pendlcular to the plane AMB, is perpendicular to 1ts parallel, FNG;
hence, it passes through the centre, O, of the circle FNG (Prop. II.,
Cor. 4) ; hence, if the oblique lines DF, DN, DG be drawn, these
oblique lines will be equally distant from the foot of the perpendicu-
lar DO, and will be equal (Book V., Prop. IX.). But the chords
being equal, the arcs are equal ; hence all the arcs DF, DN, DG,
etc., are equal to each other ; hence the point D is the pole of the
small circle FNG, and for like reasons the point E is the other pole.

lb-

Cor. 1. Every arc, DM, drawn from a poini in the arc of a great
circle, AMB, f0 its pole is a quarter of the circumference, and is called,
Jor the sake of shoriness, a quadrant, and this quadrant makes al lhe
same lime a right angle with the arc AM. For, the line DC being
perpendicular to the plane AMC, every plane, DMC, which contains
the line DC, is perpendicular to the plane AMC (Book V., Prop.
XXVIL.). Hence, the angle of these planes, or (Def 6) the angle
AMD, is a right angle.

Cor. 2. One of the poles, D, of a given arc, AM, is on an arc, MD,
perpendicular to AM, and at a quadrant’s distance from M, measured
on this arc; or, rather, the pole, D, of the arc AM is the point of in-
tersection of two arcs, AD and MD, perpendicular to AM.

Cor. 3. Conversely, If the distance of the point D to each of the
points A and M is equal to a quadrant, then the point D will be the
pole of the arc AM, and at the same time the angles DAM and AMD
will be right.
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For, let C be the centre of the sphere, and draw the radii CA, CD,
CM ; since the angles ACD, MCD are right, the line CD is perpen-
dicular to the plane of the two straight lines CA and CM (Book V.,
Prop. VI.). Hence, the point D is the pole of the arc AM, and
consequently the angles DAM, AMD are right.

ScrorLium 1.—The properties of poles enable us to describe arcs
of acircle on the surface of a sphere with the same facility as on a
plane surface. It is evident, for instance, that by turning the arc
DF, or any other line extending to the same distance, round the point
D, its extremity F will describe the small circle FNG ; and by turn-
ing the quadrant DFA round the point D, its extremity A will de-
scribe the arc of the great circle AM.

The poles are sometimes called centres, and the arcs used to de-
scribe the circles polar distances. The polar distances for the descrip-
tion of arcs of great circles are guadrants. Knowing the quadrant’s
length, we can thus easily solve the following

ProBLEMS.

1. Geen fwo points, A and M, of the arc, AM, of a greal circle, pro-,
duce that arc.

Determine che pole, D, of AM, by the intersection of two arcs de-
scribed from the points A and M, as centres, with a polar distance
equal to a quadrant; then from the pole, D, with the quadrant as a
polar distance, describe AM and its prolongation as required.

2. At a given point, M, of an arc, AM, of a greal circle, draw an arc
of a great circle perpendicular fo AM.

Find the pole, D, of AM, as above, .and with D as a centre and a
quadrant as polar distance, prolong AM to S, until MS is a quadrant,
then, with S as a centre, and SM as a polar distance, descrlbe MD.
It will be the perpendlcu]ar required.

3. From a given point, P, draw an arc perpendicular to the given arc
AM.

Determine the pole, D, of AM, and prolong AM ; from P as a cen-
tre, with a quadrant as polar distance, describe an arc cutting AM pro-
longed in S. Then from S as a centre, with the same polar distance,
an arc through P, cutting AM in M. It will be the perpendicular,
"PM, required. The arc, MP, prolonged through D, will also be per-
pendicular to the arc AMB, prolonged on the other side of the sphere.
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ScroLium 2. In order to determine the quadrant necessary for the
above graphical constructions on a sphere, we must determine the
radius. This can be done by the following graphical construction in
a plane.

PROPOSITION IX.

ProBLEM.
Determine the radius of a solid sphere or globe.

Take two points, A and B, on the surface of the globe, and with
the same opening of the dividers describe two arcs cutting each other
in C; then, from A and B, with another opening of the dividers, de-
scribe two other arcs cutting each other in D ; then again, in like
manner, two arcs cutting each other in E. The three points, C, D,
and E, thus determined, lie on the circumference of a great circle
of the sphere. For these points, being
each equally distant from the points A and
B, must be on a plane perpendicular to
the straight line which joins these points
at its middle point (Book V., Exercises ;
Theorem 1), and this plane must pass
through the centre of the sphere, as that
is also equidistant from A and B. Hence,
the three points C, D, E are on a plane
passing through the centre of the sphere,
and therefore on the circumference of a great circle, Take off be-
tween the points of the dividers the distances CD, DE, CE, and with
these construct the plane triangle CDE (Book 1I., Prop. X.). Then
construct the circumference which circumscribes this triangle. This
will be a great circle of the sphere, and its radius the radius of the
sphere.

Scrorium. We can find the poles of an arc of a small circle when
we know three points, A, B, C. They are the intersections of two
great circles, one perpendicular to the arc of a great circle which joins
the two points A and B at its middle point, and the other drawn per-
pendicular to the arc of the great circle which joins B and C at its
middle point.
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PROPOSITION X.

THEOREM.

The angle, BAC, formed by two arcs of great circles, AB, AC, is equal
2o the angle, FAG, formed by the langents of these arcs at the point A ;
and is measured by the arc DE, described from the point A as a pole con-
tained between the sides AB, AC, produced, if necessary.

For the tangent AF, drawn in the plane of the arc AB, is perpen-
dicular to the radius AO; and the tangent AG, '
drawn in the plane of the arc AC, is perpendicu-
lar to the same radius, AO. Hence, the angle
FAG is equal to the diedral angle of the planes
OAB, OAC (Book V., Prop. XXV., Cor. 1),
which is that of the arcs AB, AC (Def. 6), and
is called BAC. ' 0

In like manner, if the arc AD and AE are both .
quadrants, the lines OD, OE will be perpendicu-
lar to AQO, and the angle DOE will still be equal
to the angle of the planes AOD, AOE ; hence,
the arc DE is the measure of the angle contain-
ed in these planes, or the measure of the angle
CAB.

Cor. 1. The angle, BAD, of two arcs of greal circles has also for dis
measure the arc of the great circle whick joins the corresponding poles, P
and P', of the arcs AB and AD. For, if we take,
on the arc BD of which A is the pole, BP and DP'
on the same side of B, each equal to a quadrant,
the point P will be the pole of the arc AB, and P’
the pole of the arc AD, and the arc PP’ equal to
the arc BD, each being equal to a quadrant dimin-
ished by DP.

Cor. 2. The angles of spherical triangles may be compared to-
gether by means of the arcs of great circles described from their
vertices as poles, and included between their sides: thus it is easy to
make an angle equal to a given angle.
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Scuorium. The angles opposite at the ver-
tex, such as ACO and BCN, are equal, for
either of them is always the angle formed by

the two planes ACB, OCN.

" It is farther evident, that in the intersection
of two arcs, ACB, OCN, the two adjacent
angles, ACO, OCB, taken together, are always
equal to two right angles.

PROPOSITION XI.
THEOREM.

If from the vertices, A, B, C, of the iriangle ABC, as poles, the arcs
EF, FD, DE e described, forming the triangle DEF, then will the
three points D, E, F be reciprocally the poles of the sides BC, AC, AB.

For, the point A being the pole of 1
the arc EF, the distance AE is a
quadrant ; the point C being the
pole of the arc DE, the distance CE
is also a quadrant ; hence, the point
E is at the distance of the length of a
quadrant from each of the points A
and C; hence it is the pole of the arc
AC (Prop. VIIL). It may be shown
by the same method that D is the pole
of the arc BC, and F that of the arc AB.

Cor. Hence the triangle ABC may be described by means of DEF,
as was DEF by means of ABC. Each triangle is said to be the po/ar
riangle of the other, and triangles thus associated are called polar
triangles.

Scuorium. The two triedrals, OABC, OA'B'C’, which correspond
to two polar triangles, ABC, A'B'C/, are supplementary triedrals (Book
V., Prop. XXXiX., Scholium 2). For, by the
construction for determining the point C’, we see’
that the edge OC’ is perpendicular to the plane
AOB (Prop. VIIL), and it lies on the same
side of this plane as OC, and we can reason
in the same manner with regard to other edges,
OB, OA’. Since these triedrals, OABC, OA'B'C’,
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are supplementary, it follows that each angle of one of the triangles
ABC, A'B'C' is the supplement of the opposite side of the other triangle.
But this property, by virtue of which polar triangles are also called s%p-
plementary triangles, is important enough for a direct demonsu;atnon,
which we give in the next theorem. L CT

-
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PROPOSITION XIL. (..
THEOREM.

Eack angle in one of the two polar triangles, ABC, DEF, will be
measured by the semi-circumference, less the opposite side in the other triangle.

Produce, if necessary, the sides AB, AC until they meet EF in G
and H; since the point A is the
pole of the arc GH, the angle A will
be measured by the arc GH (Prop.
X.). But the arc EH is a quad-
rant, and likewise GF, E being
the pole of AH, and F the pole of
AG ; hence, EH + GF is equal to
a semi-circumference. Now EH +
GF is the same as EF + GH;
hence, the arc GH, which measures
the angle A, is equal to a semi-cir- ¢
cumference minus the side EF ; in like manner the angle B w111 be
measured by } czrc. — DF, and the angle C by ¥ circ. — DE.

This property must be reciprocal in the two triangles, since each of
them is described in the same manner by means of the other. Thus
we shall find the angles, D, E, F, of the triangle DEF to be
measured respectively by § circ. — BC, } circ. — AC, } circ. — AB.
The angle D, for example, is measured by the arc MI; but MI+BC
=MC + BI = § aire. ; hence the arc MI, measure of the angle D,
‘= } circ. — BC, and so of the others.

ScrorLrum.—It must be observed that be-
sides the triangle DEF three others might be
formed by the intersection of the three arcs
DE, EF, DF. But the present proposition
refers only to the central triangle, which is
distinguished from the three others by the fact
that the two angles A and D lie on the same
side of BC, the two, B and E, on the same
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side of AC, and the two, C and F, on the same side of AB (see
diagram of Proposition).

PROPOSITION XIIIL

THEOREM.

Two spherical triangles may be formed on the surface of a sphere which
have all the paris of the one equal to all the paris of the other, eack fo each,
and yet so arranged tha! the triangles will not admil of superposition.

Let ABC be a spherical triangle. Construct the
triedral OABC with its vertex at the centre, and pro-
long its edges, AO, BO, CO, through O till they meet
the surface of the sphere in the points A’, B’, C', re-
spectively. The triedral OA'B'C’ thus formed will
be symmetrical with OABC (Book V., Prop. XXXV.).
And since the plane faces and diedrals of OA'B'C’
are equal, each to each, to the plane faces and diedrals of OABC, the
sides and angles of the triangle A'B'C’ are equal, each to each, to the
sides and angles of the triangle ABC. But these triangles will evi-
dently not admit of superposition, for-it would be impossible to apply
them to each other exactly, since the parts are not arranged alike.

Scuortum 1. The triangles ABC and A'B'C’ are called symmetrical
Iriangles. 'This designation cannot apply to isosceles spherical tri-
angles. For two isosceles triangles which have the parts of the one
equal to the parts of the other, ecch to each, will exactly coincide
when applied to one another.

Scroritm 2. This symmetrical of a spherical
triangle may also be formed by taking two of the
vertices, A and B, of the given triangle as poles,
and describing two arcs of small circles through
C, and then joining the other point of intersec-
tion, D, of these arcs with A and B, by arcs AD
and BD of great circles. ADB will thus be the
symmetrical of ABC. D
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PROPOSITION XIV.
THEOREM.

Two spherical iriangles on the same sphere or on equal spheres are equal
in all their parts :

1. When they have each an equal angle included between equal sides.

2. When two angles and the included side of the one are respectively
equal fo two angles and the included side of the other. .

This theorem is a consequence of the analogous properties of trie-
dral angles (Book VI., Props. XXXVI., .
XXXVIL). It can also be demonstrated A&
directly. For, if the parts of the two tri-
angles are arranged alike, one of them may
be placed on the other, as is done in the
like case of rectilineal triangles (Book I.,
Props. VII. and VIIL.).

If the parts are arranged in inverse order 3 ¥
in the two, then the first triangle may be
placed on the symmetrical of the seconhd so as to coincide with it.

¢ @ @

PROPOSITION XV.

THEOREM.

Two triangles on the same sphere or on equal spheres are equal in all
thetr parts :

1. When they have their sides equal, each fo each.

2. When they have therr angles equal, eack fo each.

This theorem is a consequence of the analogous properties of trie-
dral angles (Book V., Props. XXXVIIIL. and XL.).

Or, the second part may be proved from the first by the considera-
tion of the polar triangles of the two given triangles.

Scuorium. The second part of this proposition is not applicable
to rectilineal triangles, in which only proportionality among the sides
is the result of eguality among the angles. But the difference in this
respect between rectilineal and spherical triangles is easily accounted
for. In the present proposition, as in propositions which treat of
the comparison of triangles, it is expressly stated that the triangles
are drawn on the same sphere, or on equal spheres. Now, simi-
lar arcs are proportional to their radii; hence, on equal spheres,
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two triangles cannot be similar without being equal. Therefore, it is
not strange that equality of angles should produce equahty of sides.
The case would be different if the triangles were
drawn on unequal spheres; then, the angles being
cqual, the triangles would be similar, and the ho-
mologous sides would be to each other as the radii
of the spheres. These similar triangles would
have equal triedrals at the centres of the two spheres.

PROPOSITION XVI.

THEOREM.

In every isosceles spherical Iriangle, the angles opposite the equal sides are
equal ; and, conversely, if two angles of a spherical Iriangle are equal, the
triangle 1s isosceles.

This theorem is a consequence of the analogous o A
property of iso-edral and iso-angular triedrals
(Book V., Prop. XXXIV.). Or it may be demon-
strated directly after the manner of the same propo-
sitions with regard to rectilineal triangles (Book 1.,

Props. XIIL, XIV.). s\

ScuoLiunm. The last demonstration proves the angle BAD = DAC
and the angle BDA = ADC. Hence, the last two are right angles.
Hence, T%ke arc of a great circle drawn from the virtex of a spherical
isosceles triangle to the middle of the base is perpendicular to the base and
bisects the vertical angle.

PROPOSITION XVII.

THEOREM.

In any spherical iriangle the greater side is opposite the grealer angle,
and, conversely, the greater angle is opposile to the greater side.

This theorem is demonstrated in
the same manner as the similar
theorem for rectilinear triangles
(Book L; Prop. XV.). Itisalsoa 5
consequence of the analogous pro- 0
perty of a triedral (Book V., Exer- 5
cises, Theorem 24).

18

A
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PROPOSITION XVIII.
THEOREM.

The sum of the angles of a spherical triangle is less than six right angles
and greater than two right angles.

This theorem is a consequence of Proposition XLI. of Book V.
But we will give, also, a direct demonstration.

First, Each angle of a spherical triangle is less than two right
angles (see the following scholium); hence, the sum of the three angles
is less than six right angles.

Secondly, The measure of each angle of a spherical triangle is equal
to a semi-circumference minus the corresponding side of the polar
triangle (Prop. XII. ) ; hence, the sum of all the three is measured by
three semi-circumferences minus the sum of the sides of the polar tri-
angle. But this last sum is less than a circumference (Prop. VIL.).
Therefore, taking it from three semi-circumferences, the remainder
will be greater than a semi-circumference, which is the measure of two
right angles ; hence, the sum of the three angles of a spherical trian-
gle is greater than two right angles.

Cor. 1. The sum of the angles of a spherical triangle is not con-
stant like that of all the angles of a rectilineal triangle; it varies
between two and six right angles, without reaching either limit. Thus
two given angles do not serve to determine the third.

Cor. 2. A spherical triangle may have two or three angles right,
or two -or-three -obtuse— '

If the triangle ABC is bi-rectangular, that is to say, A
if it has two right angles, B and C, the vertex, A, will
be the pole of the base, BC (Prop. VIIL., Cor. 1), and
the sides AB, AC, will be quadrants. If, in addi-
tion, the angle A is right, the triangle ABC will be
Iri-reclangular ; its angles will be right and its sides 3l o

quadrants,
A

The tri-reclangular riangle is contained eight! - Q
times in the surface of the sphere, as is seen by
the figure, supposing the arc MN to be a M c
quadrant. ¥

The tri-rectangular triangle is evidently its

own polar triangle. Ty

[€]
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ScroLtum. In all the preceding observations we have supposed,
in conformity with Def 6, that our
spherical triangles have each of their sides
always less than a semi-circumference;
whence it follows that their angles are al-
ways less than two right angles ; for if the
side AB is less than a semi-circumference,
as also AC, both those arcs must be pro-
duced in order to meet at D. Now, the
two angles ABC, CBD, taken together, are
equal to tworightangles ; hence, the angle E
ABC alone is less than two right angles.

We may observe, however, that there are spherical triangles in
which certain of the sides are greater than a semi-circumference, and
certain of the angles greater than two right angles. Thus, if the side
AC be prolonged so as to form a whole circumference, ACE, the
part which remains after subtracting the triangle ABC from the
hemisphere is a new triangle, also designated by ABC, whose sides
are AB, BC, AEDC. It is evident, then, that the side AEDC is
greater than the semi-circumference AED; and at the same time
the angle B, opposite to it, exceeds two right angles by the quantity
CBD.

TFinally, we have excluded from the definition those triangles whose
sides and angles are so large, because their solution, or the deter-
mination of their parts, is always reducible to that of the triangles
included in the definition. Indeed, it is plain enough that if the
sides and angles of the triangle ABC are known, it will be easy to
find the angles and sides of the triangle of the same name which is
the difference between a hemisphere and the former triangle.

(o}

PROPOSITION XIX.

THEOREM.

The lune, AMBNA, is fo the surface of the sphere as the angle, MAN,
of this lune is to four right angles, @r as the arc, MN, whick measuxes
that angle, is to the a’rmmﬂrence}

Suppose, in the first place, that the ratio of the arc MN and the
circumference MNPQ is commensurable ; is, for example, as 5 is to 48.
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The circumference MNPQ being divided into 48 equal parts, MN
will contain 5 of them. And if the pole
A were joined withthe several points of
division, by as many quadrants, we will
have 48 triangles in the hemisphere AMNPQ,
all equal, because all their parts are equal.
Hence, the whole sphere must contain 96
of these partial triangles, and the lune
AMBNA will contain 10 of them ; hence,
the lune is to the sphere as 10 is to 96, or
as 5 is to 48, in other words, as the arc MN is-to the circumference.

If the arc MN is not commensurable with the circumference, we
can still prove, by a mode of reasoning frequently exemplified al-
ready (Books IL, IIL., V., VL), that in this case also the lune is to
the sphere as the arc MN is to the circumference.

Cor. 1. Two lunes are to each other as their respective angles.

Cor. 2. It has been already shown that the whole surface of the
sphere is equal to eight tri-rectangular triangles (Prop. XVIII., Cor.
2) ; hence, if the area of one such triangle is taken for unity, and T
be taken as the symbol of this unit, the surface of the sphere will be
represented by 8T.. This granted, the surface of the lune whose angle
is A will be expressed by 2A x T (the angle A being estimated by
taking the right angle as unity) ; for we have Lune : 8T :: A : 4;
hence, Lune = 2A x T. Here, then, we have two different unities ;
one for angles, being the right angle, the other for surfaces, being the
Iri-reclangular spherical friangle, or that triangle whose angles are all
right and whose sides are quadrants. It is in this sense that we say
a lune has for its measure the double of its angle. Thus, for in-
stance, if the angle of the lune is 30° or 4 of a right angle, the lune
is §, that is, % of the tri-rectangular triangle.

ScroLitM. The spherical ungula bounded by the planes AMB,
ANB, is to the whole solid sphere as the angle A is to four right
angles. For, the lunes being equal, the spherical ungulas will also
be equal ; hence, two spherical ungulas are to each other as the an-
gles formed by the planes which enclose them,
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PROPOSITION XX.
THEOREM.

Two symmelrical spherical Iriangles are equal in surface.

Let ABC, DEF be two symmetrical spherical triangles. Since the
sides of ABC are equal, each to each, to those of DEF, the rectilinear
triangles formed by the chords of these sides are equal. Hence, the
circles which pass through the points A, B, C, and through the points
D, E, F, are equal, and the correspond-
ing poles, P and Q, of thesecircles re- D
spectively are situated in the same
manner with regard to the given trian-
gles, and the polar distances of the
two circumferences are the same.
Hence, joining these poles to the ver-
tices of the triangles respectively by the
arcs of great circles, PA, PB, PC, QD,
QE, QF, these six arcs are all equal. Therefore, the triangles PAB
and QDE have their three sides equal, each to each; they are,
moreover, isosceles, hence they are superposable and equal. In
like manner, triangle PAC = QDF, and PBC = QEF. Hence,
DQF + FQE — DQE = APC + CPB — APB, or DFE = ABC.

A
:
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Scuorium. The poles P and Q might lie inside the triangles ABC,
DEF; then it would be necessary to add together the three triangles
DQF, FQE, DQE, to form the triangle DEF, and in like manner it
would be necessary to add the three triangles APC, CPB, APB, to
form the triangle ABC. In all other respects the demonstration and
the result would still be the same,

PROPOSITION XXI.

THEOREM.

If the circumferences of two greal circles, AOB, COD, tntersect each other
on the surface of the hemisphere, AOCBD, the sum of the opposite triangles,
AOC, BOD, ftkus formed, will be equal lo the lune whose angle is BOD.

For, producing the arcs OB, OD on the other hemisphere until -
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they meet at N, the arc OBN will be a semi-
circumference, and AOB one also: taking
OB from both, we shall have BN = AO. For
a like reason, we have DN = CO, and BD =
AC; hence, the two triangles AOC, BND
have their three sides respectively equal ; be-
sides, they are symmetrical ; hence they are
equal in surface (Prop. XX.), and the sum
of the triangles AOC, BOD is equivalent to
thé lune, OBNDO, whose angle is BOD.

Scuorivm. The symmetricality of the triangles AOC, BND could
be shown by constructing their cérresponding triedrals at the centre
of the sphere, which are symmetrical.

It is evident, likewise, that the two spherical pyramids which have
for bases the triangles AOC, BOD, taken together, are equivalent to
the spherical ungula whose angle is BOD. .

PROPOSITION XXIIL

THEOREM.

The surface of any spherical triangle is lo the surface of the tri-rectan-
gular triangle, as the excess of the sum of ils three angles above two right
angles is lo one right angle.

Let ABC be the proposed triangle ; produce its sides until they
meet the great circle DEFG, drawn at pleasure without the triangle.
By the preceding theorem, the two triangles
ADE, AGH, taken together, are equivalent to
the lune whose angle is A, and whose measure
is 2A x T (Prop. XIX., Cor. 2); thus we have
ADE + AGH = 2A x T; fora likereason, BGF
+ BID =2B x T, and CIH 4+ CFE = 2C x T.
But the sum of these six triangles exceeds the
hemisphere by twice the triangle ABC, and the
hemisphere is represented by 4T ; hence, twice
the triangle ABC = 2A x T 4+ 2B x T + 2C x T — 4T, and con-

ABC _A4+B+C—2

sequently e U e which was to be proved.
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Cor. 1. Making T = 1, we have ABC = A + B + C — 2. Hence
we sometimes say the spherical iriangle is measured by the excess of the
sum of ifs angles above two right angles. As many right angles as
there are in this measure, just so many tri-rectangular triangles, or
cighths of the sphere, which are the units of surface (Prop. XIX.,
Cor. 2), will be contained in the proposed triangle.

For example, if the angles of a given triangle are respectively 110°,
80°, and 20°, then the three angles are equal to 2} right angles, and
the proposed triangle will be represented by 24 — 2, or §; hence, it
will be equal to 4 of the tri-rectangular triangle, or to one-twenty-
fourth of the surface of the sphere.

Cor. 2. The spherical triangle ABC is equivalent to the lune whose

At I:—_F—(—: — 1; likewise the spherical pyramid whose base

angle is

is ABC is equivalent to a spherical ungula whose angle is,
’ A+B+C
— .

ScrorLium. While the spherical triangle ABC is compared with the
tri-rectangular triangle, the spherical pyramid, whose base is ABC, is
compared with the tri-rectangular pyramid, and from these compari-
sons the same proportions result. The solid angle at the vertex of the
pyramid is compared likewise with the solid angle at the vertex of the
tri-rectangular pyramid, and this comparison is established by the coin-
cidence of the parts. Now, if the bases of the pyramids coincide, it is
evident that the pyramids themselves will coincide, as also the solid
angles at their vertices. From this several consequences result.

First,.—Two triangular spherical pyramids are to each other as their
bases ; and since a polygonal pyramid may be divided into several
triangular pyramids, it follows that any two spherical pyramids are to
each other as the polygons which form their bases.

Secondly.—The solid angles at the vertices of these same pyramids
are likewise in proportion to the bases; hence, to compare any two
solid angles, their vertices must be placed at the centre of two equal
spheres, and these solid angles will be to each other as the spherical
polygons intercepted between their planes or faces.

The vertical angle of the tri-rectangular pyramid is formed by three
planes perpendicular to each other ; this angle, which may be called
a right solid angle, will serve as a very fit unit of measure for all other
solid angles. This granted, the same number that gives the area of
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a spherical polygon will give the measure of the corresponding solid

angle. For example, if the area of the spherical polygon is §, that
is, if it is } of the tri-rectangular triangle, the corresponding sohd
angle will also be } of the right solid angle.

PROPOSITION XXIIIL

THEOREM.

The surface of a spherical polygon is cgual o the sum of ils angles
minus the producl of two right angles by the number of sides in the poly-
gon less two ; the right angle being the unit of measure of angles, and the
Iri-reclangular Iriangle being the unit of measure of surfaces.

Through one of the vertices, A, let diagonals, AC, AD, be drawn to
all the other vertices ; the polygon ABCDE will 0
be divided into as many triangles, minus two, as D
it has sides. But the surface of each triangle
is measured by the sum of its angles minus E
two right angles; and it is cvident that the
sum of all the angles of all the triangles is
equal to the sum of the angles of the polygon ;
hence the surface of the polygon is equal to the sum of its angles
diminished by twice as many right angles as it has sides, mznus two.

A B

Scuorium. Let s be the sum of the angles of a spherical polygon,
n the number of its sides; the right angle being considered unity,
the surface of the polygon will be measured by

s—2(n—2),0rs —2n+ 4.
For example, let the angles of a spherical pentagon be 110°, 120°,
150° 85°, and 81°, respectively. Then s = 64 right angles, 22 = 10
right angles, and s — 272 + 4 = {5 of a right angle. Hence, the

polygon is 4% of the tri-rectangular triangle, or 145 of the whole sur-
face of the sphere.

PROPOSITION XXIV,

Lenma.

1. If the arc AB of a greal circle be equal fo the arc AC, then the
shortest path from A to B, on the surface of the sphere, will be equal to
the shortest path_from A fo C,
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2. If the arc AD s greater than the arc AC, the shortest path from
A 7o D, on the surface of the sphere, will be grealer than the shorlest path
Srom A to C.

First.—If we cause the arc AB to revolve about the diameter of the
sphere which passes through
the point A as an axis; then
AB, in one of its positions,
will coincide with AC, and the
shortest path from A to B will
coincide with the shortest path
fromAtoC.

Secondly.—1f we cause AD
and AC both to revolve about
the diameter through A, the points D and C will generate two circles
whose centres are on the diameter, and whose planes are perpendicu-
lar to the diameter, and every line on the surface of the sphere which
joins A to D will cut the circumference described by the point C. -
Therefore, the shortest path from A to D will be equal to the shortest
path from A to C, plus a certain line. Therefore, etc., etc.

PROPOSITION XXV.

THEOREM.

The shorlest path from one poini lo another on the surface of a sphere
is the arc of a great circle, less than a semi-circumfference, which joins the
fwo poinls.

Let AB be the arc of the great circle joining the two points. If AB
is not the shortest path from A to B; then suppose that A
there is without AB a point, M, on the shortest path.

Draw the arcs of great circles AM, BM, and take AN ==

AM. Then (Prop. XXIV.) the shortest path from A

to N is equal to the shortest path from A to M, and

hence, if our supposition be true as to M, the shortest 3( ¥
path from M to B must be less than the shortest path from '
N to B.

But (Prop. VI.) AB < AM + MB, and taking AN
from one side and its equal AM from the other, there re-
mains NB < MB, or (Prop. XXIV.) the shortest path from N to B
less than the shortest path from M to B. IHence, our supposition
of a point outside of AB, lying on a shorter path, has led us to an

B
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absurd contradiction. Hence, no point of the shortest distance from
A to B can lie without the arc AB of the great circle joining these
points. Therefore, etc.

EXERCISES ON BOOK VII.
THEOREMS.

1. Ifa point, C, without a sphere, be joined with the centre, O, of
the sphere, by the line CAOB, meeting the surface in the points C
and B, then CA is the shortest line and CB the longest line which
can be drawn from C to the surface of the sphere.

2. C is at equal distances from all points of any circle described
from A and B as poles.

3. If, from the centre, O, of a sphere, we draw OAC perpendicular
to the line EF without the sphere, meeting the sphere in A, and EF
in C, then AC is the shortest distance from the line EF to the sphere.

4. If, from the centre, O, of a sphere, we draw OAC perpendicular
to a plane, MN, without the sphere, meeting the surface of the sphere
in A and the plane in C, then will AC be the shortest distance from
the plane to the sphere.

5. The smallest circle whose plane passes through a given point
within a sphere, is that one whose plane is perpendicular to the radius
through the given point. -

6. If, from any point on a sphere as a pole, with a polar distance

equal to one-third of a quadrant, we describe a circle on the sphere,
the radius of this circle will be one-half the radius of the sphere.

. If we describe a circle with a polar distance equal to one-fifth
of a quadrant, the diameter of the circle will be the greater part of
the radius of the sphere when that radius is divided in extreme and
mean ratio. -

8. First.—If the sides of a spherical polygon A'B'CD'E’ be de-
scribed from the vertices of a polygon ABCDE, as poles, then will
the vertices of A'B'C'D'E’ be poles of the sides of ABCDE.

Secordly.—In two polar spherical polygons, each angle of one of
them is the supplement of that side of the other of which its vertex
is the pole.

9. If the arc of a great circle bisect the angle of two other arcs,



. BOOK VII. 283

\

then every point on this bisecting arc is equally distant from the two
sides of the angle, and every point within the angle not on this bisect-
ing arc is unequally distant from these two sides.

10. Two spherical triangles are equal in surface when their polars
have equal perimeters, and conversely. ’

11. The sum of two angles of a spherical triangle is always less
than the third angle increased by two right angles.

12. Show that if through any point in the surface of a sphere three
chords be drawn at right angles to each other, the sum of the squares
of these chords is equal to the square of the diameter.

13. If through a point within a sphere two chords be drawn, the
product of the parts of one chord is equal to the product of the parts
of the other. .

14. If from a point without a sphere two secants be drawn termi-
nating in the concave surface, the product of one secant by its external
part is equal to the product of the other by its external part.

15. If from a point without & sphere a secant and tangent be
drawn, the product of the secant by its external part is equal to the
square of the tangent.

16. Tangents drawn to two intersecting spheres from any point of
their plane of intersection are equal.

17. A sphere may be inscribed in, and one circumscribed about, any
one of the regular polyedrons, and these spheres will be concentric.

18. The surfaces of two regular polyedrons of the same number of
faces, are to each other as the squares of the radii of the inscribed
spheres ; and also as the squares of the radii of the circumscribed
spheres ; and their volumes are to each other as the cubes of these
radii.

19. The volumes of polyedrons circumscribed about the same
sphere, are to each other as their surfaces.

20. The tangent planes common to two spheres meet the line of
aentres in the same points.
GeoMmETRIC Locr

1. The locus of points, the sum of the squares of the distances of
each of which from two fixed points is constant, is a sphere.
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2. The locus of points, such that the distances of each one of them
from two fixed points are in a constant ratio, is a sphere.

3. Find the locus of the centres of sections made in a sphere by
planes which pass through a given point.

4. Find the locus of the centres of scctions made in a given sphere
by planes which contain a given straight line.

5. Find the locus of the points of contact of tangents drawn from
the same point to a given sphere.

6. Find the locus of points of contact of planes tangent to a sphere
and parallel to a given straight line.

7. Find the locus of the poles of great circles making a given angle
with a given great circle.

8. Find the locus of all the points on the surface of a sphere, each
one of which is equidistant from two given points on the surface.

9. Find the locus of all the points on the surface of a sphere; each
one of which is equidistant from two great circles of the sphere.

10. The locus of the vertices of a spherical triangle, whose vertical
angle is equal to the sum of the other two, is a small circle of the
sphere : find its pole and polar distance.

11. Find the locus of the points from which a given straight line
appears under the same angle.

12. Find the locus of the centres of spheres of a given radius tan-
gent to a given plane.

13. Find the locus of centres of spheres of a given radius tangent
externally to a given sphere.

14. What is the locus of the centres gf spheres tangent to a given
plane at a given point? to a given sphere at a givén point?

15. Find the locus of the centres of spheres of a given radius and
passing through two given points.

16. Find the locus of the centres of spheres which have three
points in common.

17. Find the locus of the centres of spheres of given radms which
are tangent to two given intersecting planes.
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18. Find the locus of centres of spheres tangent to three given
planes. '

19. Find the locus of the centres of spheres of given radius tan-
gent to two given spheres.

}
ProBLEMS. {
\\
1. Bisect a given arc of a great circle. _ =
2. Bisect the angle contained by two given arcs of great circles.
3. Circumscribe a circle about a given spherical triangle.

4. Inscribg a circle in a given spherical triangle.

Scholium : The pole of the circle inscribed in a spherical triangle
is also the pole of the circle circumscribed about the polar triangle ;
and the radii of these circles are complements of each other.

5. Ata point on an arc of a great circle draw a second arc making
a given angle with the first.

6. From a point without an arc of a great circle draw a second arc,
making a given angle with the first.

7. Construct a spherical triangle, given an angle and two adjacent
sides. .

Application : Given the latitudes and difference of longitudes of
two places on the earth, construct the distance between them, 7. e.,
the arc of great circle which joins them (regarding the earth as a
sphere).

8. Construct a spherical triangle, given one side and the adjacent
angles.

9. Construct a spherical triangle, given three sides.

Application : Given the latitudes of two places on the earth and
the distance between them, construct the difference of longitude.

10. Construct a spherical tfangle, knowing the three angles. !

NoTE.—The above pfoblems may be solved graphically on a globe with a pair
of spherical dividers or some simple substitute for these. In the absence of a
globe the solutions can be indicated merely. )

11. Compute the area of the spherical triangle in terms of the tri-
rectangular triangle, given its angles 61°, 109°, and 127°.

12. Compute the area of the spherical triangle in terms of the tri-
rectangular triangle, its angles being 52° 36', 72° 15', 87° 40"
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13. Compute the angles of a spherical triangle, knowing that they
are to each other as the numbers 4, 6, and 7, the area of the triangle
being one-fourth of the tri-rectangular triangle.

14. Given the radius of the inscribed sphere in each case, compute
the edges and volume of the regular tetraedron, hexaedron, and
octaedron.

15. Given the side of a cube, find the diameter of the circumscrib-
ing sphere by a plane construction.

16. A tangent to the earth’s surface (regarded as a sphere) from
the top of a vertical pole ten feet high touches the earth at a distance
of (about) four miles from the pole. Find the radius of the earth in
miles.

Indicate the solutions of the following problems :

17. Construct a sphere of given radius which shall pass through
three given points. :

18. Construct a sphere of given radius which shall pass through
two given points and be tangent to a given plane.

19. Construct a sphere of given radius which shall pass through a
given point and be tangent to two given planes which intersect each
other. ’

20. Construct a sphere of given radius which shall be tangerit to
three given planes.

21. Construct a sphere of given radius which shall be tangent to a
given sphere and pass through two given points.

22. Construct a sphere of_ given radius which shall pass through a
given point and be tangent to two given spheres:

2 3 Construct a sphere of given radius which shall pass through a
given point and be tangent to a given plane and a given sphere.
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MEASURES OF THE THREE ROUND BODIES,

DEFINITIONS.

1. A oylinder of revolution is the solid generated by the revolution
of a rectangle, ABCD, conceived to turn about the immovable side
AB. h

P
In this movement the sides AD, BC, remaining 5/ SA N
always perpendicular to AB, describe the equal circles \K—QH/
DHP, CGQ, which are called the bases of the cylinder, | M- |
and the side CD describes its convex surface. BN
The immovable line AB is styled the axis of the | i
cylinder. . 2 :\'\'5* N
Every section, KLM, made in the cylinder perpen- ¥ B[ °

dicular to the axis, is a circle equal to each of the ¢
bases : for, whilst the rectangle ABCD turns about AB, the line IK,
perpendicular to AB, describes a circular plane equal to the base,
and this plane is nothing else than the section made perpendicular
to the axis at the point L.

Every section, PQGH, made through the axis, is a rectangle, double
the generating rectangle ABCD.

Note.—The cylinder of revolution is often called a right cylinder with circu-
lar base.

2. A cone of revolution is the solid generated by the revolution of
the right-angled triangle SAB, conceived to turn about the immovable
side SA. :

In this movement the side AB describes a circle, BDCE, which
is called the dase of the come, and the hypothenuse, SB, describes its
convex surface.

The point S is called the wertex of the cone, SA the axis, or the
altilude, and SB the side, or slant height.
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Every section, HKFI, made perpendicular to the axis, is a circle ;
every section, SDE, made through the axis, is an

isosceles triangle, double the generating triangle
SAB.

Note.—The cone of revolution is often called a right
cone with circular base.

3. If from the cone SCDB we cut off the cone
SFKH, by a section parallel to the base, the re-
maining solid, CBHF, is called a fruncated cone,
or _frustum of a cone.

It may be conceived as described by the revolution of the trape-
zoid ABHG, whose angles, A and G, are right, about the side AG.
The immovable line AG is called the axds, or the altitude of the
Jrustum, the circles BDC, HFK are its dases, and BH is its side.

4. Two cylinders, or two cones, are stmilar when they are generated
by similar rectangles, or by similar triangles respectively, (7. e.) when
their axes are to each other as the diameters of their bases.

5. If, in the circle ACD, which forms the base N7K
of a cylinder, a polygon, ABCDE, be inscribed, ]-< I
and on the base, ABCDE, aright prism be erected, |2
equal in altitude to the cylinder, the prism is G H
said to be inscribed in the cy/inder, or the cylinder
to be circumscribed about the prism. -1t is evident
that the edges, AF, BG, CH, etc., of the prism,
being perpendicular to the plane of the base, are
included in the convex surface of the cylinder ;
hence, the prism and the cylinder touch each
other along these edges. p: q]

6. Similarly, if ABCD is a polygon circum-
scribed about the base of a cylinder, and on the
base, ABCD, a right prism be erected, equal in
altitude to the. cylinder, the prism is said to be
circumscribed about the cylinder, or the cylinder in-
scribed in the prism.

Let M, N, etc., be the points of contact of the
sides AB, BC, etc., and at the points M, N, etc.,
let MX, NY, etc., be drawn perpendicular to the
plane of the base ; it is evident that these per-
pendiculars will be at the same time in the sur-
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face of the cylinder, and in that of the circumscribed prism ; hence,
‘they will be their lines of contact.

7. If, in the circle which forms the base of a cone, a polygon,
abedef; be inscribed, and the ver-
tex S of the cone be joined to the
- vertices of the polygon, the pyra-
mid thus formed is said to be -
scribed tn the cone, and the cone to
be circumscribed about the pyra-
mid. The edges of the pyramid
are on the convex surface of the
cone, and hence are common to
both the pyramid and cone.

8. Similarly, if ABCDEF is a
polygon circumscribed about the
base of a cone, and if the vertices
of this polygon be joined to S, the vertex of the cone—a pyramid is
thus formed which is said to be circumscribed about the cone, and the
cone is said to be inscribed in the pyramid.

N. B.—The cylinder of revolution, the cone of revolution, and the sphere,
are the three round bodies treated of in “The Elements.” The treatment of
cylinders and cones, other than those of revolution, is usually left for the higher
branches of mathematics.

PROPOSITION I.*

LeMMA.

A plane surface, OABCD, is less than every other surface, PABCD,
lerminating in the same perimeter, ABCD.

This proposition is almost evident enough to be ranked asan axiom ;
for the plane may be regarded among surfaces as the straight line is
among lines : the straight line is the shortest
between two given points, as the plane is the
least of all surfaces having the same perimeter.
Yet, since it is expedient to reduce the axioms to
the least number possible, we give a demonstra-
tion that will remove all doubt concerning this truth.

A surface being extended in length and breadth, one surface can-

* Propositions I. and II. are prelim‘nary Lemmas concerning surfaces.
19
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not be conceived as greater than another unless the dimensions of
the first in some direction exceed those of the second ; and if it
should happen that the dimensions of one surface are in all direc-
tions less than the dimensions of another surface, the first surface
would evidently be the least of the two. Now, in whatever way we
pass the plane BPD, cutting the plane surface along BD, and the
other surface along BPD, the straight line BD will always be less
than BPD ; hence, the plane surface OABCD is less than the sur-
face PABCD, which envelops it. :

PROPOSITION II.
LEMmA.

Lvery convex surface, OABCD, is less than any other surface envelop-
ing it whilst resting on the same perimeter, ABCD.

We repeat here that by convex surface is understood a surface which
cannot he cut by a straight line in more than two points : neverthe-
less, it is possible that a straight line may apply
itself exactly, in a certain direction, to a convex
surface ; examples of this are seen in the surfaces
of the cone and the cylinder. We will also ob-
serve that the name convex surface is not limited
to curved surfaces alone; it includes polyedral
surfaces, or surfaces composed of several faces, and also surfaces
partly curved and partly polyedral.

This granted, we demonstrate this Lemma after the manner of
Proposition 1. For, if we make sections of the surfaces, in any di-
rection, the sections of the enveloped convex surfice OABCD will
+ always be less than the corresponding section of the enveloping su:-
face PABCD (Book IV., Prop. XI.). Hence, the surface OABCD
is less than the énveloping surface PABCD.

ScroLium. By an entirely similar mode of rea-
soning it may be proved :

First.—That if a convex surface terminated by
two perimeters, ABC, DEF, is enveloped by any
other surface terminated by the same perimcters, //
the enveloped surface will be the smaller of the ,°
two. ’
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Secondly.—That if a convex surface,
AB, is enveloped on all sides by another
surface, MN, whether they have any
points, lines, or planes in common, or ¢
have no point in common, the envel-
oped surface will always be less than
the enveloping surface.

PROPOSITION IIL

THEOREM.

The convex surface of a cylinder of revolution is greater than the convex
surface of any inscribed prism, and less than the convex surface of any
circumscribed prism.

For the convex surface of the cylinder and that of the inscribed
prism may be considered as having the same length, since every sec-
tion made in either, parallel to AF, is equal to
AF ; and if these surfaces be cut in order to ob- = .
tain the breadth of them by planes parallel to the K X
base, or perpendicular to theedge, the one section
will be equal to the circumference of the basc, the
other to the perimeter of the polygon, ABCDE,
which is less than that circumference.

Hence, with equal length the cylindrical surface

G 11

has greater breadth than the surface of the prism. e N
Hence, the former is greater than the latter. By ¢ ‘3:‘D
a similar demonstration the convex surface of the «

cylinder might be shown to be less than that of B ¢

any circumscribed prism, ABCDFGHI (See Fig. Def. 6).

PROPOSITION 1V.

THEOREM.

1. The convex surface of a cylinder of revolution is the common
limit of the convex surfaces of the inscribed and circumscribed regular
prisms when the number of sides of the bases of these prisms is increased
indefinitely.

2. The volume of the cylinder is at the same time the common limit
of the volumes of these two prisms.
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First.—The convex surface of the cylinder is comprised between
the convex surface of the inscribed prism
and that of the circumscribed prism.

The convex surface of inscribed prism =
perimeter of its base abcde/ x altitude
ak, and the convex surface of circum-
scribed prism = the perimeter of its base
ABCDEF x altitude AH. And thediffer-
ence of the two is

perimeter ABCDEF x AH — perim-
eter abedef x ah.

Now, the altitudes are equal, and equal to
that of the cylinder, and as the number of
sides of two bases is increased without limit, the difference of the
perimeters,

A

(ABCDEF — abcdef))

may be made as small as we please (Book IV., Prop. XIL).

Hence, the difference of the convex surfaces of the prisms may
be made as small as we please, and still more can the difference
between the convex surface of the cylinder and either of them be
made as small as we please. Therefore, the convex surface of the
cylinder is the common limit of the two convex surfaces of the prisms
when the number of sides of the bases is increased indefinitely.
(See Definition of Limit. Book IV., page 161.)

Secondly.—The volume of the cylinder is comprised between the
volumes of the two prisms. But the volume of inscribed prism =
area abcde x altitude ak. And volume of circumscribed prism =
area ABCDE x altitude AH. And the difference between these
volumes is

(area ABCDE — area abcde) x altitude AH.

Now, by increasing the number of sides of the bases indefinitely,
the difference between the areas of the bases can be made as small
as we please. Hence, the difference between the volumes of the
inscribed and circumscribed prism will become as small as we please,
and hence, still more may the difference between the volume of the
cylinder and either of them be made less than any assignable quan-
tity. Therefore, the volume of the cylinder is the common limit of
the volumes of the two prisms, when the number of sides of the
bases is increased without limit.
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PROPOSITION V.

THEOREM.

293

The comvex surface of a cylinder of revolution is equal o the product

of the circumference of ils base by ils altitude.

Let S = convex surface of the cylinder, circ. OA = circumfer-

ence of its base, and AF its altitude. Let s =
convex surface of the inscribed prism, p = the
perimeter of its base. Then s = p x AF (Book
VI, Prop. VL), whatever be the number of
sides of its base. But when the number of sides
is increased indefinitely, s converges to the limit
S (Prop. IV.), and p to its limit circ. OA.
Therefore, we have at the limit (see Fundamental
Principle of Limits, p. 162),

S = circ. OA x AF.

Hence, the convex surface of the cylinder is eqlial
to the product of the circumference of its base
by its altitude.

Cor. If a line EF revolve around a line AB to
which it is parallel, it will generate a surface which
is measured by the line EF, multiplied by the cir-
cumference MLKN, described by its middle point M.
For the surface described is the convex surface of the
cylinder, whose altitude is EF, and the circumference
of whose base is equal to that of any parallel section

MNKL.
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ScuoriuM 1. This theorem may also be established thus :

Beginning at any particular gener-

ating line, we may roll the convex
surface out on a plane ; this develop-
ment is a rectangle which has for its
altitude the altitude of the cylinder,
and for its base the circumference of
the base of the cylinder. Hence, it @il "

is equal to the product of these two
dimensions.
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Scrorium 2. If R = the radius of the base of the cylinder, and H
the altitude, then the convex surface S = 27R x H ; and to get the
whole surface, we add to this the sum of the areas of the two bases,
orzzR’. Thusthe whole surface = 2zzRH + 272R*= 22R(H + R).

PROPOSITION VI. )

THEOREM.

The volume of a cylinder of revolution is equal to the product of its base
by ils altitude. .

Let V, area OA, and AF, be the volume of the cylinder, the area

of its base, and its altitude ; let 2, 4, be the volume N XK
and area of the base of a regular prism inscribed Té/"
in the cylinder, we have N r‘

v =& x AF (Book VI., Prop. XVIIL),

whatever be the number of sides of the base 4 of
the prism. But when the number of these sides
is increased indefinitely, V is the limit of » and
circ. OA of polygon 6. Hence, passing to the [P FE%
limit, A p )

V =B x AF. i G

77
/
!/

Cor. 1. First.—Cylinders of the same allitude are lo each other as therr
bases.

Second. —Cylinders of the same base are lo eack other as their alti-
ludes.

Third.—Any fwo cylmders are 1o ecch other as the products of their
bases and altitudes.

Cor. 2. Similar cylinders are lo each other as the cubes of their alti-
Tudes, or as the cubes of the diameters cf their bases.

For, the bases being as the squares of the diameters, in the case of
similar cylinders are to each other as the squares of the altitudes
(Def. 3). Hence, the cylinders being to each other as the products
of the bases by their altitudes, are to each other, also, as the cubes of
their altitudes, and also (Def. 3) as the cubes of the diameters of
their bases.
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Scuorium. Let R be the radius of a cylinder’s base, and H the alti-
tude ; then area OA = 7zR’. Hence, the volume

V = nzR* x H = #zR’H,
also #R’H = 2z7RH x iR.

But 27RH is the convex surface of the cylinder (Prop. V., Scholium
2). Hence, Z%e volume of a cylinder of revolution is equal lo ils convex
Surface mulliplied by one half of its radius.

PROPOSITION YII.
THEOREM.

1. The convex surface of a cone of revolution is the common limit of the
convex surfaces of the inscribed and circumscribed regular pyramids when
the number of sides of thetr bases is increased without limit.

2. The volume of the cone is al the same fime the common limil of the
volumes of the two pyramads.

First.—We can show, as in the case of the convex surface of the
cylinder (Prop. IIL.), that the convex surface of the cone is
greater than the convex surface
of the inscribed pyramid, and less
than that of the circumscribed
pyramid, and is therefore com-
prised between these two convex
surfaces.

Now the convex surface of in-
scribed pyramid = perimeter of base
abedef x 4 slant height S& (Book
VI, Prop. XIX.).

And the convex surface of cir-
cumscribed pyramid = perimeter
of base ABCDEF x } slant height
SH.

Hence, their difference = perimeter ABCDEF x $SH — perim-
eter abedef x 4Sh.  But when the number of sides of the bases is
increased indefinitely, the perimeter abcdef converges to the perim-
eter ABCDEF (Book IV., Prop. XIL), and the slant height Sk
converges to the slant height SH, or the side of the cone, as its limit.
Hence, the difference between the convex surfaces of the pyramids
may be made as small as we please. Therefore, still more can the
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difference between the convex surface of the cone and either of these
be made as small as we please. Hence, it is the common limit of
these two convex surfaces.

Secondly.—The volume of the cone is comprised between the volumes
of the two pyramids, and, by exactly the same reasoning employed in
regard to the volume of the cylinder (Prop. IV.), it becomes evident
that the volume of the cone is the common limit of the volumes of
the inscribed and circumscribed regular pyramids when the number
of the sides of the bases is increased without limit.

CoR. The convex surface of the frustum of a cone is the limit of the
convex: surfaces of the inscribed and circumscribed frustums of regular
pyramids ; and also the volume of the frustum is the limit of the volumes
of these pyramidal frustums, when the number of sides of the bases is
increased indefinilely.

For the convex surface of the frustum of the cone ABCDEF,
abedef, is the difference of the convex
surfaces of the two cones, SSABCDEF 2
and S-abcdef.  And the convex surface of
the regular inscribed frustum of a pyra-
mid is the difference of the two pyra-
mids, S-ABCDEF and S-abcdef. But
the convex surfaces of the cones are the
limit of the convex surfaces of these
pyramids, when the number of sides
of the bases is increased, etc. Hence,
their difference, or the convex surface
of the frustum of the cone, is equal to
the limit of the difference between the
convex surfaces of the two inscribed .
pyramids, or the regular inscribed frus-
tum (see Fundamental Principle of Limits, Consequence First, page
162), and similarly for the convex surface of the regular circum-
scribed frustum.

The same reasoning applies to the volume of the frustum of the
cone.

PROPOSITION VIIL

THEOREM.

The convex surface of a cone of revolution is equal lo the circum/fer-
ence of ils base, mulliplied by half of ils side.
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Let S = convex surface of the cone, circ. OA = the circum-
ference of its base, and SA its side; o
and s = convex surface, p the perim-
eter of the polygon which forms its
base, and SH = the slant height of
the inscribed pyramid. Then

s=p x $SH (Book VL., Prop. XIX.),

whatever be the number of sides of the
base of the pyramid. Now, when this
number of sides is increased indefinitely,
the convex surface s converges to the
limit S (Prop. VIL.), p to the limit
circ. OA (Book 1IV., Prop. XII.), and
SH to the limit SA. Therefore,

S =circ. OA x }SA.

Cor. The convex surface of the cone is also equal /o the product of
ils side by the circumference of the circular section of the cone, made by
a plane parallel 1o the base through the middle point of ils side.

For the radius of this section is one-half the
radius of the base, and hence the circumference
of this section is one-half the circumference of
the base (Book IV., Prop. XIIL.). Hence,

S = circ. CA x }SC = circ. CA x SC =
circ. GF x SC.

ScHoLium 1. Another mode of demonstrating this theorem is as
follows : @

Since all the points of the circumference of
the base are equally distant from the vertex of
the cone, if we unroll the convex surface on a
plane, beginning at the side, Sa, the surface
rolled out will be a circular sector, Saa’, the
radius of which is the side Sa, and the arc, aa’,
of which is equal to the circumference Oa. }
Hence, the convex surface of the cone, which
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is this sector, is equal to aa’ x }Sa, or equal to
circumference Oa x }Sa.

.

ScrorLrum 2. If R =the radius of the base of the cone, and L
its side, then the convex surface

S = 272R x }L = #RL.

And to obtain the whole surface, we must add to this the area of
the base = #R*. Thus:

The whole surface = #R* + #RL = #zR(R + L).

PROPOSITION IX.

THEOREM.

The convex surface of the frustum of a cone of revolution is equal fo
ils side mulliplied by half the sum of the circumferences of s two bases.

Let S, Aq, circ. OA, circ. oa, be the convex surface, the side, and
the circumferences of the bases of the
frustum of the cone; s, HA, p, p', the
convex surface, slant height, and perim-
eters of the bases of the inscribed frus-
tum of the regular pyramid. Then

s =3(p+ ' )HA(Book VI.,Prop.XX.),

whatever be the number of sides of the
bases of the frustum. But, when the
number of sides is increased indefi-
nitely, s converges to the limit S (Prop.
VIIL., Cor.), H% to the limit Aq, p to
the limit circ. OA, and p’' to circ. oa
(Book IV., Prop. XIL).
Hence, passing to the limits,

S = 1(circ. OA + circ. 0z) x Aa.

Scuorivm. If R and R’ are the radii of the bases of the frustum
of the cone, and L its side, we have
' circ. OA = 27R,
and circ. oa = 2R’ ;
consequently S==n(R + R)L, ' ’
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And to get the whole surface we must add to S the sum of the areas
of the two bases #R* + #R"’,

Cor. If, through the middle point A’, of the side Az, we draw a plane
parallel to the bases; the radius of the circular
section determined by this plane is parallel to the
radii, AO, ao, of the bases, and equal to their half 4’
sum (Book IIL., Prop. VIL). It follows, then,
that the circumference A'O’ is equal to half the {------1--—-3p
sum of the circumferences AO, ao (Book IV,
Prop. XIIL.). Hence, it may also be asserted, that the sur/face of the
Jrustum of a cone is equal lo ils side mulliplied Ly the circumference of a
section at equal distances from the two bases.

ScHoLtuM. If any line lying in the plane with another line, and wholly
on one side of 1, revolve about this line as an axis, the surface generaled
is always equal lo the revolving line mulliplied by the circumference de-
scribed by ifs middle poinf. Tor this linc describes either the convex
surface of a cylinder, of a cone, or of the frustum of a cone, and in
each case the measure of the surface has been shown to be as above
stated (Prop. V. Cor., Prop. VIIL Cor., and Cor. above).

PROPOSITION X.

THEOREM.

The volume of a cone of revolution is equal to the product of ils base by
one-third of ils allitude.

Let V, area OA, and SO, be the volume of the cone, the area of
its base, and its altitude; let  and &
be the volume and area of the base of 8
a regular pyramid inscribed in this cone.
Then

2 =4 x 4SO (Book VI., Prop. XXV.)

whatever be the number of sides of the
base. But, when the number of these
sides is increased indefinitely, » con- |,
verges to V as its limit (Prop. VIL), FX
and 4 to the limit area OA. Hence,

V =arca OA x 180,
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or, the volume of a cone is equal to the product of its base by one-
third of its altitude.

Cor. 1. First.—A cone is the third of a cylinder having the same base
and the same altitude.

Second.—Cones of equal altitudes are lo each other as their bases.

Third.—Cones of equal bases are lo each other as their altitudes.

Fourth.— Similar cones are lo each other as the cubes of the diamelers
of their bases, or as the cubes of their allifudes.

Cor. 2. When a rectangle, ABCD, revolves about one of its sides,
AB, the triangle ABC generates a cone whose volume

is one-third of the volume of the cylinder generated by N
ABCD. Hence, the triangle ADC must at the same Y
time generate a volume which is two-thirds of the cylin- ]

der generated by ABCD. K e

Scuorivm. If R be the radius of the cone’s base, H the altitude,
and V the volume of the cone, then

V = aR* x 1H, or {7R’H.

PROPOSITION XI.
THEOREM.

The volume of the frustum of a cone is equivalent fo the volumes of
three cones whose common altitude is the altitude of the frustum, and whose
bases are the lower base of the frustum, the upper base of the frustum, and
a mean proportional between them.

Let V, area OA, area oa, and O,
be the volume, the area of the lower
base, the area of the upper base, and
the altitude of the frustum of the cone,
and », B, B', the volume, the lower
base, and the upper base of the frustum
of the regular pyramid inscribed in the
frustum of the-cone. We have (Bock

VL., Prop, XKVIL., Scholium),
v=100 x (B + B’ + /BB,
whatever be the number of sides of the

bases of the frustum. But, when the num-
ber of these sides is increased indefinitely,
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v converges to the limit V, ¢ to the limit area OA, and & to the
limit area oa, while Oo remains the same. Hence,

V=300 x (area OA + area oa + 4/area OA x area oa),
or
V =area OA x}O0 + area oz x $Oo +4/area OA x area oa x }Oo.

Or, which is the same thing, the volume of the frustum of the cone is
equivalent to the volumes of three cones, etc.

Scuorrum. If R is the radius of the lower base, and 7 the radius of
the upper base, then area OA = #R’ area oa = 77*, and hence

V=31xH(R* + " + Rr).

PROPOSITION XII

THEOREM.

The area of the surface generaled by the base, AB, of an isosceles tri-
“angle, OAB, which revolves about a fixed axis, xy, lying in ils plane, and
passing through ils verlex (without culling the triangle), is equal fo the
circumference which has_jfor its radius the altitude Ol of the triangle mul-
tiplied by the projection of the base, AB, on the axis, xy.

1) @) 3) B

A I B

a_c_(._ﬁ——lz)—yxA ﬁbn:yxc nbﬁ—y
The base, AB, of the triangle, may be parallel to the axis (Fig. 1),
or may meet it in A (Fig. 2), or may be inclined to it without meet-
ing it (Fig. 3).
In all these relative positions (Prop. IX., Scholium) the measure
of the surface is
circ. IM x AB.

Hence, when AB is parallel to xy, the theorem is true, since IM is the
altitude of the triangle, and AB is equal to its projection CD on ay.
For the other positions of AB, we have to show that

circ. IM x AB is equal to circ. OI x CD.

Draw AE (Fig. 3) parallel to xy till it meets BD in E.
Then the triangles ABE and OMI, having their sides respectively
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perpendicular to each other are similar. Hence, their homologous
sides give the proportion
MI:AE::OI: AB

Hence, MI x AB=0OI x AE=0I x CD. (Fig. 3.)
Therefore, _

27 x MI x AB=127 x Ol x AE =27 x OI x CD.
That is,

circ. MI x AB = circ. OI x AE = circ. Ol x CD.

Hence, the surface generated by AB is equal to circumference Ol
multiplied by its projection on axis xy.

PROPOSITION XIII.
THEOREM.

The area of the surface generaled by a portion of a regular broken line,
ABCD, revolving about an axis, FG, whick passes through the centre of
ils inscribed circle, is equal lo the projection, MQ, of the contour ABCD
on FG, multipled by the circumference of the circle inscribed in ABCD.

('
B D

I(
A h E

\

Vel
T A K N 0P Q G

For, since the broken line is regular, all the triangles, AOB, BOC,
etc., are equal and isosceles. Now, by the last theorem, the surface
described by AB, the base of the triangle AOB (which we shall call
surf. AB), is equal to MN x circumference OI.
~ So that we have,

surf. AB = MN x circ. OI
similarly, surf. BC = NO x circ. OI
and surf. CD = OQ x circ. OI
Hence, adding these we get
surf. ABCD = (MN + NP + PQ) circ. OI = MQ x circ. OL

Hence, it is equal to the altitude multiplied by the circumference
of the inscribed circle.
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Cor. If the regular broken line is the half perimeter of a regular
polygon of an even number of sides, and if the axis, FG, passes
through two opposite vertices, F and G, the whole surface described by
the revolution of the semi-polygon FACG will be equal to its axis,
FG, multiplied by the circumference of the inscribed circle. This axis
will, at the same time, be the diameter of the circumscribed circle.

PROPOSITION XIV.
THEOREM.

1. The surface of a sphere is the common limil of the surfaces described
by the revolution of the semi-perimeters of the regular inscribed and circum-
scribed polygons of a greal circle of the sphere aboul an cis which joins
tfwo opposite vertices, when the number of sides of the polygon is increased
without limit.

2. The surface of a zone, of one base, is the common limit of the sur-
JSaces described by the regular broken lines inscribed in and circumscribed
aboul the arc of the greal circle which gencrates the zone, when the number
of sides of these broken lines is increased without limil.

First.—The sphere is greater than the surface @, described by the
revolution of semi-perimeter of the inscribed polygon, because it
envelops it (Prop. II., Scholium). For the
same reason, it is less than the surface A, de-
scribed by the revolution of the regular cir-
cumscribed polygon. Hence, the sphere is
comprised between these two surfaces. But
(Prop. XIII., Scholium),

A = GK x circ. ON,and a = LB x circ. OP.
Hence,
A —a=GK x circ. ON — LB x circ. OP.

Now, when the number of sides of the poly-
gons is increased without limit, GK converges
to the limit LB, and circ. OP to the limit circ.
ON. Hence, the difference GK x circ. OA
— LB x circ. OP, or A — @, may be made as
small as we please. Hence, still more can the difference between
the surface of the sphere and either one of these surfaces be made
as small as we please, and therefore the surface of the sphere is the
common limit of the two when the number of the sides of the poly-
gons is increased indefinitely.

G
B

L
X
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Secondly.—The surface of the zone of one base is comprised between
the surfaces, S and s, described by the reg-
ular broken lines EFG, ACB, revolving
about GO.

For, the zone is greater than s (Prop.
IL., Scholium), since it envelops it. It
is also smaller than the surface S. For,
draw the tangent AH, the surfaces de-
scribed by EHFG and AHFG have a com-
mon part generated by HFG ; but the sur-
face described by EH is greater than that
described by AH, since the measure of the
first is

7#EH x $(HI + EM), and of the second is zAH x $(HI + AK)
(Prop. IX.), and EM > AK, and the oblique line HE > HA,
which is perpendicular to OA. Hence, the surface described by
EFG is greater than the surface described by AHFG, which is greater
than the zone, since it envelops it. Hence, surface EHFG is greater
than the zone. The surface of the zone being then comprised between
S and s, we can show exactly as in the case of the whole sphere,
that it is the common limit of these two surfaces when the number
of sides of the polygons is increased without limit.

PROPOSITION XV,

THEOREM.

The surface of a sphere is equal lo the product of its diameter by the
circumference of a greal circle.

Let S be the surface of the sphere, and OA
the radius of the generating great circle ; let s
be the surface generated by the semi-perimeter
of the regular inscribed polygon, and OI the
radius of the inscribed circle of this polygon.

Then s=AE x circ. OI (Prop. XIIL, Schol.); ¢

but when the number of sides of the polygon
is increased without limit, s converges to the
limit S (Prop. XIV.), and OI to the limit OA,
while the diameter AE remains fixed.

Hence, passing to the limit,

§ = AE X circ. 04,

P A
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or, the surface of the sphere is equal to the product of the diameter
by the circumference of a great circle.

Cor 1. The surface of the sphere is_four limes the area of a greaf circle.

For, let R = the radius of the sphere.
Then S =circ. R x 2R = 22R X 2R = 4#R* = 4 x area of
great circle, since the area of a great circle = zR*.

Cor. 2. Placing 2R = D, we have 4R* = D*.,
Hence, also S = #D? or the surface of the sphere is equal fo the area
of the circle whose radius is the diameler of the sphere.

CoRr. 3. The surfaces of two spheres are lo eack other as the squares of
their radit or the squares of their diamelers, or as the squares of the cir-
cumferences of therr greal circles.

For, let R, R’, D, D, C, C’, be the radii, diameters, and circum-
ferences of the great circles, respectively, of two spheres whose surfaces
are Sand S'.

Then

S:8 ::47R* :42R"™ :: R*:R?::D*: D*::C : C"

Scuorium. The surface of the sphere being thus determined and
compared with plane surfaces, it will be easy to find the absolute
value of the various lunes and spherical triangles whose ratio to the
surface of the whole sphere has been determined in Book VII., Props.
XIX., XXII "

First, the lune whose angle is A, estimated in right angles as units,
has been found to be zA x the tri-rectangular triangle; that is,
2A x } of the surface of the sphere.

Hence, if the radius of the sphere = R, the lune whose angle
isA=2A x} x 47R*= A x #R’. If the angle of the lune is
given in degrees ; for example, if it be a®, then

= E—, and the lune = & x 7R*;
90 90

or, since the surface of the lune is to the surface of the sphere as the
arc which measures the angle of the lune is to the circumference of a
great circle, the lune = diameter of the sphere X the arc whick measures
s angle. :
The spherical triangle whose angles, estimated in right angle units,
20
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are A, B, C, has been found to be (A + B + C — 2) x } of the -
surface of the sphere.
Hence, if radius of sphere = R,

zR*?

Area of this spherical triangle = (A + B 4+ C — 2)
2

; or, if a,
B, v, be the angles of the triangle in degrees ; then

A=2 g8 c_27
90’ 90’ 90’
(e + B+ y —180)
180

Hence, area of triangle = aR™.
The measurement of spherical polygons follows immediately from
that of triangles.

PROPOSITION XVI.

THEOREM.

The surface of a zone is equal lo the product of its altitude by the cir-
cumference of a greal circle of ils sphere.

First.—We will consider the zone of one base. Let S be the
surface of the zone generated by the revolution of the arc AB of
the great circle about the axis OB, and s ¢
the surface generated by the revolution
of the regular broken line inscribed in the
arc AB about the same axis. We
have,

s = circ. OP x BM (Prop. XIIL),

whatever be the number of sides of the reg-
ular broken line.
But, when this number of sides is in-

creased indefinitely, s converges to the limit S (Prop. XIV.), and
circ. OP to circ. ON, BM to BK. Hence, passing to the limits,

S = circ. ON x BK,

o

or, every spherical zone with one base is measured by its altitude
multiplied by the circumference of a great circle.
Secondly.—The zone with two bases, described by the arc HF, has
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also for its measure the circum-

ference of a great circle multi- - ﬁRG

plied by its altitude. For it
is the difference of two zones I T

of a single base described / > <
DH and DF. It has, therefor

for its measure
(DQ — DO) x circ. CA,
or

0OQ x circ. CA. 2

Hence,. any spherical zone is
measured by its altitude mul-
tiplied by the circumference of
a great circle.

Cor. First.—Two zones laken in the same sphere, or in equal spheres,
are lo each other as their altitudes ;

Second.—Any zone is to the surface of the sphere as the allitude of
the zome is to the diameler of the sphere.

Scuorium. If R = radius of the sphére, and H the altitude of
the zone, then

the surface of the zone, S = 22R x H.

PROPOSITION XVII.

THEOREM.

If the triangle BAC, and the rectangle BCEF, having the same base
and the same altitude, turn simullaneously aboul the common base BC, the
solid described by the revolution of the triangle will be a third of the
cylinder described by the revolution of the rectangle.

Let fall the perpendicular AD upon the axis; the cone described by
the.triangle ABD is the third part of the cylin-
der described by the rectangle AFBD (Prop.
X., Cor. 1); also the cone described by the
triangle ADC, is the third part of the cylinder 1
described by the rectangle ADCE ; hence, the
sum of the two cones, or the solid described by
ABC, is the third part of the two cylinders B »o0
taken together, or of the cylinder described by the rectangle BCEF.

b)) A E
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If the perpendicular AD falls without the triangle, the solid de-

scribed by ABC will be the difference of the _

cones described by ABD and ACD ; but, at the | 4
same time, the cylinder described by BCEF will
be the difference of the cylinders described by
AFBD, AECD. Hence, the solid described by
the revolution of the triangle will still be the third
of the cylinder described by the revolution of the ) b
rectangle of the same base and same altitude. i

Scuorium., The surface of the circle wﬁose radius is AD is 7 x
AD?; hence

x x AD? x' BC,
is the measure of the cylinder described by BCEF, and
{7 x AD* x BC, or 7z x AD x AD x BC, (1)

is that of the solid described by the triangle ABC.
Moreover, if we let fall the perpendicular BI on AC, we have

AD x BC = AC x BL
Hence, substituting AC x BI for AD x BCin (1), we have,
The volume described by triangle ABC = {7 AD x AC x BL

But # x AD x AC is the surface generated by the line AC (Prop.
VIIL). '
Hence, vol. ABC = surf. AC x {BL

That is, the volume generaled by a lriangle revolving around one of ils
stdes is equal lo the convex surface of the cone described by either one of
the other sides mulliplied by one-third of the distance of this side from the
opposite vertex.

PROPOSITION XVIIIL.

.

THEOREM.

The volume generaled by the revolution of a triangle about an axis sil-
ualed in ils plane and passing through ils vertex (without cutting lhe tri-
angle), is equal lo the surface described by the side opposite lo this verlex
mulliplied ‘b/ the distance of this side from the verfex.

First.—Let ACB be the triangle which turns about the axis CD,
passing through its vertex, C. Prolong AB to meet CD in D. Then
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vol. ABC = vol. ACD — vol. BCD.

But (Prop. XVIIL., Scholium), a3
vol. ACD = surf. AD x {CP,
and
vol. BCD = surface BD x §CP. ¢ ,,
Hence, vol. ABC = (surf. AD — surf. BD) x {CP,
or vol. ABC == surf. AB x 4CP./

Secondly.—When the base, AB, of the triangle ACB is parallel to the
axis through the vertex, C, the theorem
is still true. For the

vol. ACB = vol. BCP — vol. ACP.

Now, vol. BCP = % of cylinder described
by rectangle CNBP (Prop. X., Cor. 2),
or = surf. BP x 4CP (Prop. VI, Scholium).
Also vol. ACP =surf. AP x {CP. Hence,
vol. ACB == (surf. BP — surf. AP) x {CP, or = surf. AB x }CP.
If the perpendicular CP falls within the triangle, then
vol. ACB = vol. BCP +vol. ACP,
and we have the same result. ‘
Hence, etc.

A

PROPOSITION XIX.
THEOREM.

ABCD leing a portion of a regular broken line, if we conceve the polygonal
sector AOD, lying on one side of the diameter ¥ G in its plane, to make a revolu-
tion abou! this diameler, the volume described will be measured by the surface
. generaled by the perimeter ABCD, muliiplied by one-third of the apothem Ol.
For the volume generated by the polygonal sector AOD is the sum

I
B D

>
o)
7\
]

[~]
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of the volumes generated by the equal isosceles triangles AOB, BOC,
COD.
But, vol. AOB = surf. AB x {OL
vol. BOC = surf. BC x }OL
vol. COD = surf. CD x $OI.

Hence, add'ing these,
vol. AOD = (surf. AB + surf. BC + surf. CD) x $OI
=surf, ABCD x 3OL

Cor.—The volume described by the semi-polygon, if the whole
polygon has an even number of sides, and if the axis passes through
two opposite vertices, has for its measure surface FABCDEG x 4OL

PROPOSITION XX.

THEOREM.

The volume of a spherical sector is the common limil of the volumes gen-
erated by the revolution of similar regular inscribed and circumscribed
polygonal sectors of the corresponding circular seclor about the axis of the
seclor, when the number of sides of the polygonal lines is increased without
lLimit.

Let AOB be the circular sector, which, by its revolution around
AOQ, generates the spherical sector.

Inscribe in and circumscribe about the
arc AB two similar regular broken lines,
BCA, DEF. The volume of the sector is
evidently comprised between V and o, the
volumes generated respectively by the revo-
lution of the polygonal sectors DEFO, Pg
BCAO, about the same axis, AO.

But, V = surf. DEF x 4OL
and, ) v = surf. ABC x $OH.
Hence, V — » = §(surf. DEF x OI — surf. ABC x OH).

And, when the number of sides of these inscribed and circum-
scribed polygonal lines is increased indefinitely, we know that OH
approaches OI as its limit, and we have shown (Prop. XIV.) that
surf. DEF and surf. ABC approach the same limit. Hence, the
difference, V — », may be made as small as we please ; and, there-
fore, the volume of the sector, which is always comprised between
V and 7, is their common limit.

F
A
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Cor. The whole sphere is the common limit of the volumes gen-
erated by the revolution of similar regular inscribed and circumscribed
semi-polygons of its semi-great circle, about a diameter passing
through two opposite vertices.

PROPOSITION XXI.

THEOREM.

Every spherical seclor is measured by the zone which forms ils base
multiplied by one-third of the radius ; and the whole sphere has jfor ils
measure the product of its surface by one-third of ifs radius.

First. —Let V be the volume of the spherical sector, S the surface
of the zone which forms its base, OA the
radius of the sphere, » the volume generated
by the regular inscribed polygonal sector, s
the surface described by its regular broken
line, and OH its apothem.

Then 2=+ x $OH, whatever be the
number of sides of the regular broken line
of the polygonal sector (Prop.” XIX.). But
when we increase the number of these sides
indefinitely, » converges to the limit V
(Prop. XX.), s converges to the limit S (Prop. XIV.), and OH to
the limit OA.

Hence, V=S x 10A, 37‘A
or, the volume of the sector is equal to the sur- r/
face of its zone multiplied by one-third of the
radius.

Secondly. —The reasoning for the sector applies
without change to the whole sphere, or we may ¢
proceed thus : a circular sector may increase till
it becomes a semicircle, in which case the
spherical sector generated by its revolution is
the whole sphere. Hence, the volume of the
sphere is equal to its surfice multiplied by a
third of the radius. E

ScuoriuM 1. V being the volume of a sphere, R the radius, and D
the diameter, we have,
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V =surface of sphere x 4R = 47R* x {R = §zR".
And since R = D, R*=4D’. Hence, also, V= 47 x {D’= }2D",
ScHoriuM 2. V being the volume of a spherical sector, H the alti-
tude of its zone, and R the radius of the sphere, then
V =surface of zone x §R = 22RH x R, or, v = §7R’H.

Cor. 1. The volumes of two spheres are lo each other as the cubes of
their radit, or as the cubes of their diameters.

Cor. 2. The volume of a spherical wedge is equal to the lune
which forms its base multiplied by one-third of the radius.

PROPOSITION XXII.
THEOREM.

1. The surface of a sphere is lo the whole surface of the circumscribed
cylinder (including ils bases) as 2 is 1o 3.

2. The volumes of these two bodies are to each other in the same ratio.

First.—Let MNPQ be a great circle of the sphere, ABCD the circum-
scribed square ; if the semicircle PMQ, and the half square PADQ,
are made to revolve at the same time about

- ~

the diameter PQ, the semicircle will gene- 3¢ Q >
rate the sphere, while the half square will 1
generate the cylinder circumscribed about !
the sphere. - e i

to the diameter, PQ ; the base of the cylinder
is equal to the great circle ; its diameter, AB,
being equal to MN ; hence the convex sur- > L
face of the cylinder (Prop. V.) is equal to
the circumference of the great circle multiplied by its diameter. This
measure is the same as that of the surface of the sphere (Prop. XV.) ;
whence it follows that ke sur/face of the sphere is equal to the convex sur-
JSace of the circumscribed cylinder.

But the surface of the sphere is equal to four great circles (Prop.
XV., Cor. 1) ; hence the convex surface of the circumscribed cylinder
is also equal to four great circles ; adding to this the two bases, each
equal to a great circle, the whole surface of the circumscribed cylinder
will be equal to six great circles; hence the surface of the sphere is
to the whole surface of the circumscribed cylinder as 4 is to 6, or as
2 is to 3.

The altitude, AD, of the cylinder is equal ti’__,/
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Secondly.—The volume of the circumscribed cylinder is equal to its
convex surface multiplied by one-half the radius of its base (Prop.
VI., Scholium), that is, equal to four great circles x } radius of the
sphere while the volume of the sphere is equal to four great cir-
cles x } of the radius. Hence,

volume of sphere : volume of cylinder : : 4 : §, oras 2 : 3.

PROPOSITION XXIIIL

THEOREM.

The volume generaled by the circular segment BMD, revolving around a
diameter, AC, exterior fo tf, is equivalent o one-sixth of the cylinder whickh
has for ils radius the chord, BD, of the segment, and for ils altitude the
projection, EF, of this chord on the diameter, AC ; that is, it has jfor its
measure }rBD* x EF.

Let fall upon the axis the perpendiculars BE,
DF ; from the centre, C, draw CI perpendicular
to the chord BD, and draw the radii CB, CD. »
We have (Props. XXI. and XVIIL.), D -
spherical sector DCB == zone BMD x $CB =
$7CB* x EF;
also volume generated by triangle DCB = ¢
surf. BD x 4 CI = §2CI* x EF.
Hence,
vol. BMD = spherical sector DCB — vol. DCB =
47 x (CB*— CI') x EF.
But, in the triangle CBI,
CB’ — CI’ = BI’ = {BD"

2 —t

Hence, )
. vol. BMD = §7 x $BD* x EF = }#BD* x EF,
which was to be proved.

PROPOSITION XXIV.

THEOREM.

Every segment of a sphere included between two parallel bases s meas-
ured by the half sum of ils bases multiplied by s altitude plus the vclume
of the sphere whose diameler is this same allitude.

4
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Let BE, DF, be the radii of the bases of the

segment, EF its altitude, the segment being B oy
generated by the revolution of the circular space ML
BMDFE about the axis FE. The solid de- | -
scribed by the segment BMD is equal to 0

47BD* x EF (Prop. XXIIL);
the frustum of a cone described by BDFE is c
equal to $7EF x (BE’ + DF’ + BE.DF)

(Prop. XL.) ;

hence, the segment of the sphere which is the sum of these two solids
is equal to }7EF x (2BE’ + 2DF’ + 2BE.DF + BD?). (1)
But, drawing BO parallel to EF, we shall have,
DO =DF — BE, DO’ = DF* — 2DF.BE + BE? (Book IIL,
Prop. IX.), and consequently,
BD? = BO* + DO’ = EF* + DF* — 2DF.BE. + BE

Putting this value in place of BD? in the expression (1) for the value
of the segment, and striking out the parts which destroy each other,
we shall obtain for the volume of the segment

$7EF x (3BE’ + 3DF* 4 EF?),
an expression which may be decomposed into two parts ; the one,
zBE* + nDF’)
- )

4$7EF x (3BE’ + 3DF"), or EF x ( -

is the half sum of the bases multiplied by the altitude; the other,
4mEF’, represents the sphere of which EF is diameter (Prop. XXI.,
Scholium 1) ; hence every segment of sphere, etc.

Cor. If either of the bases is nothing, the segment in question be-
comes a segment with a single base. Hence, Any spherical segment
with a single base is equivalent to half the cylinder having the same base
and the same altitude, plus the sphere of which this altitude is the diameter.

GENERAL SCHOLIUM.

It is well to give a recapitulation of the expressions which have
already been found in the scholiums to the different propositions on
the measures of the three round bodies.
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1. Let R = radius of the cylinder, H its altitude.

Its convex surface = 22zRH.
Its whole surface = zzR(R + H).
Its volume = 7R*H.

2. Let R = the radius of the cone’s base, L its side, and H its alti-
tude. .
Its convex surface = #RL.

Its whole surface = 7#R(L 4 R).
Its volume = §7R’H.

3. Let R and R’ be the radii of the bases of the frustum of the
cone, L its side, and H its altitude.
The convex surface of the frustum = #L(R + R’).
The volume of the frustum = {7H(R* + R + RR’).

4. Let R = the radius of the sphere and D its diameter.
The surface of the sphere = 47R* = aD*
The volume of the sphere = 47R* = }=D".

5. Let R be the radius of the sphere, H the altitude of a zone.
The surface of the zone = 27RH.
The volume of the spherical sector which has this zone for its
base = §7R’H.
6. Let P and Q be the two bases of a spherical segment, H its
altitude.

+Q

The volume of the segment = P—z—— H + }=H"

If the spherical segment have but one base,
Its volume = }PH + }=H>

7. If A, B, C be the values of the angles of a spherical triangle,
expressed in right angle units, and R the radius of the sphere,

2
The area of the spherical triangle = Z:i(A + B4+ C—2),
or, if a°, B°, y° be the angles of a spherical triangle in degrees,

2
The area of the triangle = :r—sré(a + B + y — 180).
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EXERCISES ON BOOK VIIIL
THEOREMS.

1. If, through a point within or without a cylinder of revolution
and the axis of the cylinder, a plané be passed cutting the surface in
a straight line, the perpendicular drawn from the point to this straight
line will be the shortest distance from the point to the cylinder.

2. The volumes of two cylinders whose convex surfaces are equiva-
lent, are to each other as the radii of the bases divided by the alti-
tudes.

3. The convex surfaces of two cylinders whose volume is the same,
are to each other as the altitudes divided by the radii of the bases.

4. The convex surfaces of two similar cylinders are to each other
as the squares of their altitudes, or the squares of the diameters of
their bases.

5. The convex surface of a cone whose angle at the vertex is two-
thirds of a right angle, is double the area of the base, and one-half
of the area of a circle whose radius is equal to the side of the
cone. 14

6. The area of a zone with one base is equal to the area of the
circle whose radius is the chord of the arc which generates the
zone.

7. If the semi-circumference of a circle be divided into three equal
parts, and revolved about the diameter through its two extremities, the
zone generated by the middle one of the threearcs will be equivalent
to the sum of the two zones generated by the other two parts of the
semicircle. And the sector which has for its base the zone generated
by the middle arc will be equal to the sum of the two sectors which
have the other two zones for bases.

8. If the half of a regular polygon of an even number of sides be
inscribed in a semicircle, and a similar half polygon be circumscribed
about the same semicircle, the surface of the sphere generated by
the revolution of the semicircle about its diameter, will be a mean
proportional between the surfaces generated by the perimeters of the
two semi-polygons about the same diameter.

9. The volume of a cone which has for its base the great circle of
a sphere, and for its altitude a diameter of the sphere, is one-half the
volume of the sphere.
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10. The volume of a spherical shell (bounded by the surfaces of
two concentric spheres) is equal to four times that of the frustum
of a cone the radii of whose bases are the diameters of the two
spheres and whose altitude is the difference of these radii.

11. The volume of the solid generated by a triangle revolving
about a straight line which passes through its vertex (without cutting
the triangle), is equivalent to the area of the triangle multiplied by
the circumference described by the point of intersection of its me-
dians.

12. If, in each one of a number of concentric semicircles we draw
a chord of the same given length parallel to a common axis, passing
through the centre, and then revolve the circular segments thus ob-
tained about the common axis, the volumes generated by them will
all be equivalent.

13. If, through the points of division of the semicircle (when
divided as in Exercise 7), planes be drawn perpendicular to the axis
of revolution, the middle segment thus determined will be equivalent
to 4 of the sum of the two extreme segments.

14. The volume generated by the revolation of a regular hexagon

3
o . na
about one of its sides, ¢, has for its measure 9—2 .

15. The surface of the circumscribed cylinder of a sphere is a
mean proportional between the surface of the sphere and that of the
circumscribed equilateral cone. And the same relation exists between
the volumes of these bodies.

(NoTE.—An equilateral cone is one generated by the revolution of one-half
of an equilateral triangle about its altitude.)

16. If the surface of a sphere be represented by the number 16,
then will the convex surface of the inscribed cylinder whose section
through the axis is a square, its whole surface, the convex surface of
the inscribed equilateral cone, and its whole surface, be represented
respectively by the numbers 8, 12, 6, 9.

17. The surface of the sphere being 4, the convex surface of the
circumscribed equilateral cone, its whole surface, the convex surface
and whole surface of the circumscribed cylinder, will be respectively
6, 9, 4, 6.

18. If the volume of the sphere be 32, the volumes of the inscribed
equilateral cone, of the inscribed cylinder (whose section is a square),
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of the circumscribed cylinder, and of the circumscribed equilateral
cone, will be respectively 9, 124/z, 48, 72.

19. The volume generated by the revolution of a regular semi- -
hexagon about one of its diameters is equivalent to that of a cylin-

der whose altitude and the radius of whose base are equal to the
radius of the circumscribed circle of the hexagon.

20. If a parallelogram be revolved successively about two adjacent
sides, the two volumes generated will be reciprocally proportional to
these sides.

Locr.

1. What is the locus of all the points which are at a given distance
from a given straight line,

2. What is the locus of all the points which are at a given distance
from the surface of a given cylinder of revolution.

3. What is the locus of all the straight lines passing through a
given point, and making a given angle with a given plane,

4. What is the locus of all the points which are at a distance a
from a point A, and at a distance 4 from a point B.

5. What is the locus of all the points which are at a distance a
from a point, A, and a distance 4 from a plane, MN.

6. State what the locus would be of a point which is ata distance
a from a straight line, A, and at a distance 4 from a plane, MN.

7. What is the locus of all the points, M, from which, if lines be
drawn to three given points, A, B, C, the angles AMB and AMC
would both be right angles.

8. Find the locus of all the points, the distances from each one of
which from two given spheres of equal radii are equal.

9. Three points, A, B, C, being given, find the locus of all the
points, such that the sum of the squares of the distances from each
one of them to the two points A and B shall be equal to a given
square, and the sum of the squares of their distances from the two
points A and C is equal to a second given square.

PROBLEMS.

1. With a given altitude construct a cylinder whose convex sur-
face is equal to the sum of the areas of the two bases.
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2. Compute the radius of the base and the altitude of a cylinder,
given the convex surface and the volume.

3. Find the convex surface of a frustum of a cone, the radii of
whose bases are 5.4 feet and 3.6 feet, and whose altitude is 2.4 feet.

* 4. Find the volqme of a frustum of a cone, the radii of whose
bases are 5.4 feet, and 3.6 feet, and whose side is 3 feet.

5. Compute the volume of a cone, the radius of whose base is 8
feet, and whose side is 10 feet.

6. Compute the convex surface of a cone, whose altitude is 16
feet, and the radius of whose base is 12 feet.

7. Compute the volume and whole surface of a cylinder, the radius
of whose base is 16 feet g inches, and whose altitude is 2o feet.

8. The radius of the base of a cone is g feet, and its altitude is 12
feet. If this cone is rolled out completely on a plane (see Prop.
VIII., Schol. 1), find the radius and angle of the circular sector
which is the developed convex surface of the cone.

9. The side of a cone being 1.8 yards, find the parts into which it
is divided by a plane parallel to the base of the cone which divides
the convex surface, Firs/, Into two equivalent parts, Secondly, Into
two parts proportional to the numbers 3 and 5.

10. Find the surface of the sphere whose radius is 2o inches.

" 11. The surface of a sphere being 1000 square feet, find its vol-
ume.

12. The meter is one ten-millionth part of a quadrant of the
earth’s great circle (earth being regarded as a sphere). Find the
surface of the earth in square kilometers. 4 1,600,000,000

ns., —

13. The diameter of the earth (regarded as a sphere) is 7912.5
miles, find its surface in square miles.

14. Find the volume of a sphere whose radius is 6 feet.
15. The length of one second on the arc of a great circle of a
sphere being one foot, find the volume of the sphere.

16. The radii of two spheres are respectively 6 feet and 8 feet.
Find a sphere whose surface shall be equivalent to the sum of the
surfaces of these two spheres.

17. Find the volume of a spherical shell, the internal radius being
6 inches and the external radius g inches.
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18. Find the radius of a sphere whose volume is 12 cubic feet.

19. The diameters of the earth, the moon, and the sun are to each
other as the numbers 1, 3%, and 108. Compare the surfaces and
volumes of these bodies.

20. Find the surface of a zone whose altitude is 4 feet, the radius
of the sphere being 10 feet.

21. Find the surface of a zone of one base, the radius of the
sphere being 20 feet, and the radius of the base of the zone being 12
feet.

22. The angles of a triangle on the earth’s surface (regarded asa -
sphere) are 87°, 72° and 21° o’ 1".5, find the area of the triangle in
square miles, the diameter of the earth being 7912 miles.

23. Find the volume of a spherical segment of one base, whose
altitude is ¢ of a foot, the radius of the sphere being one foot.

24. Find the volume of a spherical sector generated by the revolu-
tion of a circular sector whose arc is 30° about one of its radii, the
radius of the sphere being 2.4 feet.

25. Given the volume generated by the revolution of an equilat-
eral triangle about one of its sides to be 27 cubic feet, find the side
of the triangle.

26. Compute the volume generated by the revolution of an equi-
lateral triangle whose side is 2 inches, about a perpendicular to its
base produced, which is at a distance of 2 inches from its nearest
vertex. Ans., 33.648068 cubic inches.

27. The side AB of a parallelogram, ABCD, is 10 inches, the side
BC 4 inches, and the angle ABC =} of a right angle. Find the
volume generated by this parallelogram, #7rsf, When it revolves about
AB. Secondly, When it revolves about BC.

28. If we join the middle points of two of the sides of a triangle
and then revolve it about the third side, what will be the ratio of the
volumes generated by the two parts of the triangle?

29. Given the radius of a sphere, find the sides respectively of its
inscribed regular tetraedron, cube, and octaedron.



HINTS TO SOLUTIONS OF EXERCISES.

BOOK 1.

1. MO is the difference of AO and MA, and also MO is the differ-
ence of MB and OB; hence, result. For second part, MO is the
sum of MB and OB, and MO is the difference of MA and OA,
hence, the conclusion.

2. The same reasoning applies in this case.
3. By reductio ad absurdum from Prop. VL
4. By reductio ad absurdum from Prop. VL.
5. By Props. V and VI.

6. By superposition (or by drawing diagonals and making com-
parison of equal triangles).

7. By superposition or by comparison of triangles, Prop. VII.

8. Construction given. Compare equal triangles and use Prop.
IX.

9. Get three inequalities, as in 8, and add.

10. Construction ‘given. Use Prop. IX. Sum the inequalities
thus obtained and cancel equals on the two sides of resulting ine-
quality. ’

11. Same method as in 10,

12. Use Prop. X. for first and Prop. IX. for last, getting in each
case three inequalities, and adding them respectively.

13. By comparison of triangles, Prop. VIIL

14. By comparison of triangles, Prop. VIL

15.. By comparison of triangles, Props. XII. and VIL
16. By comparison of equal triangles.

17. By similar method.

18. Construction given. Assume any other point and join it to
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two given points and extremity of produced perpendicular. Then
use Prop. IX.

19. Draw AA’ and BB’ and CC’, meeting xy in points M, N, and
O. Now conceive the part of figure above xy revolved around xy, the
points A, B, and C will fall on A’, B, C’, and thus proposition is proved.
This revolution is merely a convenient mode of superposition.

20. Corollary of 18.
21. By comparison of triangles, Props. XXIV. and VIL

'22. Let fall perpendiculars from A and C on the parallel BD, and
compare the two triangles thus formed. Then use Prop. XIV.

23. Use Props. XIIIL and XXIV.

24. Compare the triangles formed by the construction with the
original triangle.

25. An easy corollary of 24. The converse by the reductio ad ab-
surdum.

26. Follows directly from 25.

30. The bisectrix of the exterior angle at B is the locus of all .
points within this angle, equidistant from BC and AB, produced.
The bisectrix of the exterior angle, C, is the locus of points within
this angle, equidistant from BC and AC, produced. These bisectri-
ces must meet (Prop. XXV., Scholium, etc.).

32. Use Prop. XXIX.

33. Draw from O a line, OM, parallel to side AB, and then use
25 (converse), and compare the triangles AOM and COM.

34. Use Prop. XIIL in each one of the isosceles triangles, AOC
and AOB, and then converse of Prop. XXIX., Cor. 5.

35. Triangle BCD, formed by given construction, is an equilateral
triangle, and perpendicular CA bisects angle A, etc.

36. At C make angle ACD = BCA, and complete triangle ACD.
Then BCD is equilateral, etc.

37. Let the bisectrices of the exterior angles B and C meet in O;
of exterior angles A and C meet in N ; of exterior angles A and B in
M. Then use Prop. XXIX. to prove semiexterior angle A in triangle
ABM equal to angle O in triangle OCB. Using, also, triangles
NCA and OMN.
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38. Follows directly from 37, or equality of angle O and semi-
exterior angle A.

39. Angle DAO = a right angle minus angle AOD, and
AOD = 2C=C + C=C + a right angle diminished by B, whence
result.

40. Apply Prop. IV. at each vertex and then Prop. XXX. for the
sum of interior angles.

41. Apply Corollary of Prop. XXX. and Prop. XXIX.
42. Same method.

43. Angle of equiangular hexégon is 4 of a right angle. Hence,
the triangles formed by sides of squares and lines joining the corners
are equilateral, etc.

44. Let number of sides be x ; then sum of angles (Prop. XXX.,
Cor. 4) = 2x — 4 = 26, whence x.

x—4

. 2 _s
45. Each.angle === =3 whence x.

46. Apply Prop. XXX., Cor. 4, as above.

47 and 48. Compare the angles of these polygons and of others
with four right angles.

so. The sides are parallel, by XXIV.

51. Let quadrilateral be ABCD. Let also bisectrices of angles A
and B meet in M ; those of angles C and D meet in N ; first, angle
M = two right angles — 4(A + B), angle N = two right angles
— 3(C + D), etc. Hence M + N = two right angles. Second, if
ABCD is a parallelogram, angle M = two rights minus the half of
two rights, etc. (Prop. XXV.) Third. A rectangle with its diagonals
at right angles to one another, hence a square. Prop. XXXIV.,
Scholium 3.

52. See (21). Then draw diagonals and divide the surfaces to be
compared into triangles, which compare by VII.

53. See Exercises 25 and 24. This parallelogram is a rhombus
when the given quadrilateral is a rectangle ; and a rectangle when
the quadrilateral is a rhombus ; a square when the quadrilateral is a
square.

55. The figure is a parallelogram (Def. ). Compare the areas by
means of equal triangles, .
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56. See z1.

57. Let ABCD be the rectangle. Take a point, M, on the side
AB, and draw a line parallel to the diagonal AC, meeting the side BC
in the puint N.  Draw NP parallel to the diagonal BD, meeting DC
in P, and draw PQ parallel to AC, meeting AD in Q, and, lastly, join
QM. Then shall MNPQ be a parallelogram. Prolong MN to meet
DC, produced, in R. Then compare the triangles NCR and NCP,
and by means of these and the parallelogram CRMA, CP = AM.
Then compare triangles AMQ, NCP, etc.

58. Let H be position of ball in rectangle ABCD, and HM parallel
to diagonal BD. HMNPQS the path of the ball, making angles
HMA = DMN, MND = PNC, NPC = BPQ, BQP = AQS. Thep,
since HM is parallel to diagonal BD, and HMA = DMN,
DNM = ACD, and MN is parallel to AC. Similarly, NP is parallel
to DB, and PQ to AC, and QS to BD, and QS must meet AD in
point M (57). Itis easy to prove it must pass through H, and then
the length of path is shown by (57).

59. Either perpendicular prolonged as in auxiliary construction is
equal to the perpendicular from angle at base on opposite side.
Now compare the triangle formed by this construction, of which the
prolongation is one side, with the triangle cut off by the second per-
pendicular from the given triangle, and the demonstration is casy.

60o. The three altitudes of the equilateral triangle are all equal,
and the equilateral triangle cut off by the parallel to the base (auxili-
ary construction) has the property of the isosceles triangle demon-
strated in (59). And to these two perpendiculars (constructed as in
59) we have to add the perpendicular from point on base.

BOOK II

1. Draw another line from A, meeting circumference in M and N,
join OM and ON, and form inequalities by (Book L., Prop. IX.),
in the triangles AOM and AON. The demonstration is then easy.
Proceed in the same manner for point A within the circumference.

2. Let O and C be centres, and let OC meet the circumferences in
" M and N respectively. Take any other point, P, on one circumfer-
ence, and Q on the other, and compare PQ and MN. From P draw



HINTS TO SOLUTIONS OF EXERCISES. 325

PC to centre of other circle, meeting circumference in S. Now, PQ
is longer than PS, and by using inequality (Book I., Prop. IX.) of
sides of triangle PCO, we show MN less than PS. (This for circles
exterior to one another.) The second is easy after the above hints.

3. Analysis: If the chord perpendicular to the radius is the
shortest, it must be farthest from the centre (Prop. VIII). Hence,
draw any other chord through A, and compare its distance from
centre with the distance of this perpendicular chord from centre,

4. Join centre and point of intersection of chords, and let fall per-
pendiculars on chords from centre. If the theorem be true, the
parts between feet of perpendiculars and point of intersection of
chords must be equal.

5. Converse is easy.
6. Prob. XIV., Scholium.

7. From Scholium of Prob. XIV., the tangents from each vertex
of quadrilateral are equal. Then sum the equalities thus obtained
for each vertex.

8. Construct a circumference tangent to the three sides AB, BC,
AD, of the quadrilateral ABCD, which fulfils the conditions
AB 4+ CD = AD + BC. Assume that it is not tangent to the fourth
side, DC. Through D draw a tangent DC’ to the circle, and then
the reductio ad absurdum is easy.

9. A necessary corollary from 8 and the definitions of these
figures.

10. Join the centres of the three circles, and inscribe a circle in
this triangle. It is easy to show that this circle is tangent to the
sides of the triangle at the points of contact of the three circles
(Scholium, Prob. XIV.), and hence the three tangents are radii, etc,

11. Use Scholium, Prob. XIV., to get an equality at each vertex,
and from these equations the proof is easy. :

12. Let DE touch the circumference at the point M, then by
Scholium, Prop. XIV., DM = DB, and EM = EC, etc., whatever be
the position of M on the arc BC.

13. By same Scholium, angle ODE = {BDE = }(A + AED),
(Book L., Prop. XXIX., Cor.) and similarly for OED, and then
DOE = 2 right angles minus (ODE + OED), etc.
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14. This follows at once if we let fall perpendiculars from the
centres on this parallel.

15. The angle is the supplement of the inscribed angle between
the chords, and hence, Prop. XX., its measure as asserted in Ex-
ercise.

16. Props. XX. and IV.

17. Let triangle be ABC; draw any circumference through A,
cutting AB in H, and ACin K. Construct a second circumference
through points B and H, cutting BC in M, and the first circumfer-
ence in point I. We are to show that C, K, I, and M are on the
same circumference. Draw IH, IK, and IM, and prove (Prop. XX.,
Cor. 4) that angle MIK + angle C = two right angles, and then by
Prop. XXIV., etc.

18. This follows immediately from Prop. XXIV.

19. Construct circle through A, and feet M and N of perpen-
diculars from B on AC, and from C on AB. Let O be foot of per-
pendicular from A on BC. Construct also a circle on AB as diameter,
this circle will pass through M and O (Prop. XX., Cor. z). Then
(Prop. XX.) angle OMB = OAB, and BMN = OAB, etc.

20. Use Prop. XXVII., Book I., and Prop. XXII., Book II.

21. Analysis : If theorem be true, and we take PD = PB, then
must CP = DA, and hence, moreover, the triangles CPB and DBA
must be equal (Prop. XX., and Book I., Prop. VIL.), and, there-
fore, BD must be equal to BP. Hence, if our theorem be true,
BD = BP, or the triangle BDP is equilateral. Hence, we simply
prove this fact (by Prop. XX.), and then, by synthesis, retrace the
steps of our analysis to make clear the truth of the theorem.

22. Analysis: If the four points D, E, F, and G, are on the same
circumference, then the sum of the opposite angles D and G of the
quadrilateral is equal to two right angles. Hence, we endeavor to
show by Props. XX. and XXII., that D + G = 2 right angles.

23. Draw the common tangent. Then, by Props. XX. and XXI.,
and by Prop. XXV., Book I., by means of this tangent, show the
chords to be parallel.

24. Corollary of Theorem, Exercise 18, Book L.
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3. Two circumferences concentric with the given one, and at the
given distance from it (distance measured on radii, or radii pro-
duced).

4. The locus is a line parallel to the two lines, or, in second case,
two lines at right angles to each other, the bisectrices of the adjacent
angles of the intersecting lines (Book I., Prop. XXIL.).

5. Any point of this locus' must be also equidistant from the
centres of the circles. Hence, apply Cor. 1, Prop. XVIIL, Book L

6. Prop. XX., Cor. 2.

7. Let AB, AC, be the two given intersecting lines. At A erect
perpendiculars AP, AR, to AB and AC, each equal to the given line.
At their extremities draw lines PN and RM, parallel to AB and AC
respectively, cutting AC and ABin N and M. Then, by Theorem,
Exercise 59, Book I., any point on MN possesses the property re-
quired for the locus. Prolong NA and MA to equal distances on the
other side of A, etc.

8. Prop. VI, Scholium.
9. Prop. IX,, Cor. 3.

10. Let A be the given point, C the centre. Join AC, and join
middle point of chords through A with centre. Then apply 6.

"12. A circumference with centre at the given distance from the
given centre, the radius of which is equal to the given radius.

16. Circumference concentric with given circumference. Prob.
XIV., Scholium.

19 and 20. These problems the same as 18, as we can establish a
constant relation between the angle at the vertex of a triangle and the
angle at the centre of inscribed circle and the angle at the intersec-
tion of the altitudes from extremities of given base.

21 and 22. See Prop. VI

23. Prop. IX.

24. Props. XIII. and XIV.

25. See 2.

26. See 3.

27 and 28. See 4.
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DETERMINATE PROBLEMS.

2. At any point, O, of given line, AB, draw a line making with
OA an angle equal to given angle, etc.

3. Analysis : The radius perpendicular to the tangent must be per-
pendicular to the given straight line. Hence, construction (two so-
lutions).

4. Analysis : All chords of given length must be at the same dis-
tance from the centre, and must therefore be tangent to the circle de-
scribed with the given distance and concentric with the given circle.
Hence, construct to find distance of chord from centre, and then con-
struction is easy (two solutions). Prob. XIV., Scholium.

5. Same analysis as 4, and then use 3.

6. Suppose problem solved. Any line parallel to the required line
and intercepted between the parallels is equal to it. Hence, from
any point on one line as centre and radius of the given length de-
scribe a circle cutting the other line. Join the centre with the point
of intersection. The remainder of the construction is easy (two so-
lutions).

7. Analysis : If the line were drawn it would form with one of the
lines, a parallel to it, and a parallel to the required line through the
point of intersection of the two given lines of the required length, a
parallelogram. Hence, first draw through the point of intersection
of the two given lines a line parallel to the given straight line and of
the required length, etc.

8. The two loci, the intersection of which determine the centre, are,
first, the line perpendicular to the chord joining the two points; and
second, the circumference described from one of the points as centre
with given radius (two solutions).

9. The two loci in this case are, first, the circumference described
from the given point as centre with the given radius, and, second,
the lines parallel to tangent at a distance equal to given radius from
it (four solutions).

10. Loci are, first, the same as first in 9, and, second, a circle con-
centric with given circle, the radius of which is équal to the given ra-
dius plus the radius of given circle (two solutions).

11. Analysis : If problem is solved, the centre must be on one of
the bisectrices of angle between lines. Use 7 to draw a line equal to
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the given radius between one of the given lines and this bisectrix
(four solutions). If the two given lines are parallel the problem is
only possible when the given radius is equal to half the distance be-
tween the lines.

12. The loci the intersection of which gives the solution are ap-
parent from the previous problems (a circle and two straight lines).
(Four solutions possible, in general. )

13. These loci also apparent (tw6 circles). (Two solutions pos-
sible, in general.)

14. Analysis: If the problem be solved the centre of required cir-
cle is equally distant from the three sides. Hence, it is the centre of
the inscribed circle of triangle. The remainder of the construction is
easy.

15. Analysis: If centre be found it must be equally distant from
the three given points A, B, and C. Hence, find it as in Prob.
XIIIL., etc.

17. The locus of points any one of which is equidistant from the
two given points we have from Book I., Prop. XVIIIL., Cor. 1.

18. The angle of an equilateral triangle is § of a right angle.
This gives a very simple construction (Probs. X. and V.).

19. Use the theorem illustrating geometrical analysis (page 86).

20. Suppose problem solved. Then the points of contact are
(Theorem 10, Exercises) the points of contact of inscribed circle and
sides of triangle. Hence construction.

21. Six equal circles can be constructed fulfilling the conditions.

CoNsTRUCTION OF TRIANGLES, ETC.

23. Analysis : Conceive the problem solved and the figure drawn,
then the semi-base and the radius of the inscribed circle are sides of
a right angled triangle, one of whose acute angles is half the adjacent
angle. Hence, the construction is apparent.

25. The two loci the intersection of which determines the position
of the vertex, are a circle (Prop. XX., Cor. 2) and two straight lines
parallel to the hypothenuse (Geometric Loci, Exercise 2).

26. Let BAC, right angled at A, be the triangle required, and let
the inscribed circle be drawn. Then (Prop. XIV., Scholium) if
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r = radius, 2 + BC= AB + AC. Hence, one side, the angle op-
posite and sum of two other sides is given, to construct the triangle.

Suppose this problem solved and let BAC be the triangle required.
Prolong BA to O, so that AO = AC, and then join OC. Then
BO = BA + AC, and the angle BAC = twice the angle O. Hence,
O = }BAC. We know enough in triangle BOC 10 construct it, and
beginning with this we have the solution.

27. Consider the problem solved, and ABC the required triangle,
angle B, side BC, and BA + AC being given. If BA be prolonged
until BD = BA 4+ ACand DC be joined, the triangle CAD is isosceles,
and the triangle DBC can be constructed from the data. Hence, be-
gin the solution by constructing a triangle with BC, angle B, and
BD = BA + AC for the given parts. It is easy to complete the solu-
tion.

28. Consider the problem solved, and find, by proceeding in a
manner similar to the above, a triangle which can be constructed
from the data, and whose construction makes the solution of the
problem apparent.

29. Same problem as 26.

30. Construct acute angle. Draw circle tangent to the two sides
of it of the given radius by Exercise 11. Then use Exercise 3, to
complete the triangle.

3I. The triangle having the centre of the inscribed circle as vertex,
and the given side as base, can be constructed from the data, and its
construction leads to an easy solution of the problem.

32. The triangle of the median, and altitude, and part of base in-
tercepted between their extremities, can be constructed from the
data. The construction of this triangle renders the solution ap-
parent.

33. First. If the altitude corresponds to one of the given sides as
base, then the two loci, the intersection of which determines the posi-
tion of the vertex, are the straight line parallel to base at a distance
from it equal to the given altitude and a circle determined by the
other given side (two solutions). Second. If the altitude cor-
responds to the unknown side, then the foot of the altitude is de-
termined by the intersection of two loci (circles). (See Geometric
Loci, Exercises 1 and 6.) This point once determined, the solution
is easy (two solutions).
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34. First. When the median corresponds to one of the given sides,
the loci which determine the vertex are apparent. Second. When
the median corresponds to the unknown side, the loci are described
from the extremity and middle point of one of the sides as centres,
with the median, and half the other side as radii respectively.

35. Describe the circumscribed circle, and use Prop. XXI. for the
construction .of arcs measuring the given angles.

36. Construct a parallelogram ABCD, two adjacent sides, AB and
BC, of which are equal to zM and zM' (M, M/, and M", being the
given medians), and one of the diagonals, AC, isequal to zM". Draw
the other diagonal, BD, and divide it into three equal parts (19).
Join A with the points of division E and F. AEF is the requxred
triangle.  (Give the analysis of this solution.)

37. See Exercises 24 and 25, Book I.

38. The construction of a triangle in each case is possible from
the data, which renders the solution apparent.

40. Construct the triangle having for its vertices the three given
points, and then base the construction for the completion of the so-
lution on (Theorem 19 of Exercises).

41. Suppose the problem solved, and ‘the triangle ABC con-
structed.  Construct also the triangle OO'O”, of the centres of
escribed circles. Now, lines joining O, O, and O", respectively
with A, B, and C, bisect the angles A, B, and C, and are perpen-
dicular to O'0”, 00", and OQ’, respectively. Hence, we begin by
constructing OO'O”, and base the rest of the construction on
(Theorem 19, Exercises).

42. First. Let both circles be within the sides of the given angle.
Suppose the problem solved and the figure drawn. The third side
of the required triangle is evidently a common interior tangent to
the two circumferences. Second. Let the escribed circle be within
the sides of one of the unknown angles. Then, by supposing the
problem solved, and constructing the figure, we see that the third
side must be a common exterior tangent to the two circles. Hence,
use Prob. IV., and then Prob. 11. (Exercises), and then Prob. XVII.
Constructing in the second case the escribed circle within the sup-
plement of the given angle.

43. Draw a straight line, and take a point on it as the extremity
of the side (supposed to be along the line), to which the given alti-
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tude corresponds. Then the locus of the vertex is apparent. Draw
this focus, and then use Prob. IV., beginning at the assumed point.

47. Suppose the problem solved, and that from the line BE = the
sum of diagonal and side, we have found the part DE equal to
the side, and constructed the isosceles triangle BDC, right angled at
C, as one-half the required square. Join C with E, then the triangle
CDE must be isosceles. Hence, the angle E must be known (Book
I, Prop. XXIX., Cor. 7). The angle B is half a right angle. There-
fore, the triangle BEC can be constructed from the data, Prob. IX.,
and this triangle constructed, the solution is evident,

48. After solving 47, this problem presents no difficulty. See
also 28.

49. Suppose the problem solved, and through one extremity of
the shorter of the parallel sides, draw a line parallel to the inclined
side through the other extremity. This auxiliary line enables us
easily to bring back the solution to the construction of a triangle.

so. Join the given middle points. We thus construct a pentagon.
The diagonals of the required pentagon must be parallel to the sides
of this first pentagon, and double them in length (Book I., Exercise
25). Suppose the problem solved, and draw two of these diagonals
from the same vertex. The sides of the triangle formed by joining
the middle points of these diagonals with the given middle point of
the side of required pentagon opposite their vertex, are parallel to two
non-adjacent sides of the auxiliary pentagon (and equal to them),
and to the side of the required pentagon. This triangle can be con-
structed from the data of the problem, and its construction solves it.

s1. This is to construct a right angled triangle, given the hypothe-
nuse and sum of the other two sides. (The solution is indicated in
Hints to Solution of Problem 26.)

52. The same as the above.

53. This is the same as problem 25.
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BOOK IIIL

1. Calling these parallelograms (A) and (B) respectively, then
(A) and two triangles make up one-half of the given parallelogram.
Also (B) and two triangles which are respectively equal to the first
two make up the other half. Hence, etc.

2. Through each extremity of one inclined side, draw a parallel as
well as a perpendicular to the opposite inclined side. We construct
thus two parallelograms, each measured by this opposite inclined side
multiplied by one of the perpendiculars, and we have to show that
the trapezoid is equal to the half sum of these two parallelograms.

3. Construct the figure and demonstrate the theorem after the man-
ner of Prop. VIIL

4. Construct the figure and prolong DA until it divides the paral-
lelogram on BC, which call BOPC, into two parallelograms, by meet-
ing the side OP in the point M. Now prolong the sides OB and
PC until they meet respectively the sides EF and GH. We thus form
two parallelograms having AD for a common side, by means of which
we can compare (using Prop. I.) the parallelogram BM with ABEF,
and also CM with ACGH, - . . and prove their equivalence, etc.

To prove Theorem XI. from this we have only to show that the
diagonal through A of the rectangle formed by prolonging IK and
HL, is the prolongation of AD, and equal to the hypothenuse of the
triangle.

5. Take A as the acute angle, and then, by completing the con-
struction as in XI., and pursuing precisely the same method of com-
paring the rectangles by means of equal triangles, we find the square
on BC equivalent to the sum of two rectangles, one of which is less
than the square on AB by a certain rectangle (say M), and the other
of which is less than the square on AC by a second rectangle (N).
Then we can easily show (M) and (N) to be equivalent, and also to
be measured respectively as stated in the theorem.

6. Take A as the obtuse angle, and by the same mode we find the
square on BC equivalent to the sum of two rectangles, one of which
is greater than the square on AB by a rectangle (M), and the other
greater than the square on AC by a rectangle (N), and then it is easy
to show that (M) and (N) are equal, and each measured as stated in
Theorem XIII.

7. The triangle KAL (See Fig., Prop. XI.) can be easily proved to
13 :
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be equal to ABC. To compare either of the others, as ICG, with
ABC, conceive this triangle to revolve around the point C until CG
becomes the prolongation of CB, then CI will coincide with CA, and
the triangle ICG (in its new position) and the triangle ABC have
equal bases and the same vertex ; hence, etc.

8. This is easily shown by remembering (7), and adding up the
three squares and four triangles which make up the hexagon. -

9. This follows at once by applying XI. to the original triangle
and to the new right angled triangle formed by drawing the median
named.

10. An obvious corollary of Theorem XIV. For when we join a
point of circumference to the given points the median of this triangle
is the constant radius, and half the base is also constant.

11. A corollary of (10). Since the sum of the squares of the two
lines joining any point of the third circle with the centres of the two
given circles is constant, and these two lines with the tangents and
radii to the points of contact form right angled triangles, hence, by
Prop. XI. the sum of squares of tangents must also be constant.

12. An immediate corollary of Prop. XV, 7

13. Construct the figure and then by the same process as in (10)
show this to be"a corollary of (12).

14. Call the lines joining the point taken on line of intersection
with the centres of the circles 7 and #, and the radii of the circles
R and 7, respectively. Then the difference of the squares of the
tangents is m*— n’— (— R*) (13), but by (12) m’—n* = R'— 7%,
Hence, etc.

15. Let AB and DE be the chords intersecting at right angles in
0, and let C be the centre of the circle. Join AD and BE and the
diameter ECS, and join DSand BS. Then use Prop. XI. in triangles
AOD and BOE, and remember that, also, EDS, EBS are right
angles, and DS, therefore, parallel to AB, and hence, AD = BS, etc.

16. Construct the figure ABCD and join middle points M and N
of the diagonals, then join the middle point, M, of the diagonal, BD,
to the vertices A and C. Then apply Prop. XIV. to the triangles
DAB, DCB, and AMC, and combine the results.

17. Because each side of the parallelogram formed by joining the
middle points of sides is one-half the diagonal to which it is parallel
(Exercise 53, Book I.).
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/
18. Follows from (17) by corollary of XIV.

19. Form the triangles PAC and PBD and join PO. Then apply
XIV. and combine results.

20. First, show that the line joining the middle points of diago-
nals of a trapezoid is equal to half the difference of the parallel sides,
and then the theorem is an easy corollary of 16.

21. Use Prop. XIV. for each median, remembering (Exercise 31,
Book L), and also that the square on 4 of a line is equal to § of the
square on the line, and the square on £ of a line is equal to 4 of the
square on the line, and combine results.

22, Use Prop. XIV. for each median, and combine results.

23. Construct the figure, join M with A, B, C, and G, etc., and
then use XIV. and combine.

24. Construct the figure, join point O with vertices, apply Prop,
XI., and combine results.

25. Prove this by a reductio ad absurdum, granting (24).

26. Proceed as in (24) and combine the results by addition, as in
that exercise.

27. Simply show that in each case
CE® + BD® + AF’ = AE* +CD* + BF?,

when E, D, F are, first, the feet of the perpendiculars to middle
points of sides.  Second, the feet of the three altitudes. ‘Third, the
points of contact of the three escribed circles. (In this last case, we
must first show from the property that the two tangents from a point
without a circle are equal, that the distance from the vertex, C, of a
triangle to the point of contact, S, of escribed circle and side CB, is
equal to half the perimeter minus the side AC, etc., for the other
points of contact. )

28. Easy corollary of Prop. XX., and converse.

29. Construct the figure and also the circle within the greater cir-
cle whose radius is equal to the difference of the radii of the two given
circles. Then the square of the part of the common tangent named
is equal to the square of the distance between the centres plus the
square of the difference of the radii (Prob. XVIIL., Book II. and
Prop. XI.). But the distance between the centres is equal to the
sum of the radii. Therefore, etc.
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30. Let ABC and EBF be the two triangles, having angles at B
supplementary and angles C and F equal. Place them so that EB
shall fall along AB. (EB being the shorter.) Then FB and BC
will form one and the same straight line. Through E draw a parallel
to AC, meeting BC in M. Then EM will be equal to EF, and the
similar triangles BAC and BEM give an easy demonstration of the
theorem (Prop. XX.).

31. Draw through the vertices of the triangle parallels to the op-
posite sides. We thus construct a triangle equal to four times the
given triangle, whose sides are double the homologous sides of the
first (Book I., Exercise 24) and similar to it (Prop. XIX.). Now,
the distance from vertex to intersections of altitudes of the first tri-
angle is the distance of centre of circumscribed circle to the side of
second triangle. Therefore, this line is double the distance of centre
of circumscribed circle of the first triangle from the homelogous sides,
since these lines are homologous, and therefore bear the same ratio
to one another as the homologous sides.

32. Draw the altitudes Aa, BS, Cy, and let M be their point of
intersection.  Since triangle MBa is right angled at a the angle
gaM = ¢Ma. Similarly the angle raM = rMa. Hence, angle
gar = BMC ; also, we have by reason of parallels, angle gpr=BAC.

Therefore, gar + gpr = BAC + BMC = two right angles. There-
fore, the circle through pgr passes through a. Similarly, it may be
shown to pass through £ and y.

Again, garM is a parallelogram. Hence, angle gar = ¢Mr ; there-
fore gar + gpr = two right angles. Hence, the circle through p, ¢,
r passes through @, and; also, by similar proof, through & and ¢.

Second.—The lines aa, 58, cy, are chords of the circle, and per-
pendiculars erected at the middle points of these pass through the
centre. Now, any one of these perpendiculars, as that one at middle
point of aa, must (by property of trapezoid) meet OM at its middle
point, N (O being centre of circumscribed circle). Hence, N is the
centre, and the radius Np = one-half OA (Book I., Exercise 24).

33. Let ABC be the triangle, G the point of intersection of medi-
ans, and M the middle point of BC. Draw perpendiculars from A,
B, C, G, and I on the given line, then apply the property of the
trapezoid (Prop. VII., Scholium).

- 34. Construct triangle ABC and draw the medians AM, BN, CO,
meeting in G. Prolong AM until MO = MG and join CO. The
area of triangle COG, contained by sides equal to two-thirds of each
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median is equal to 4 of the area of this triangle of the medians (Props.
XXI. and XXVIL). Now, the triangle AGC = triangle CGO
(Prop. II., Cor.), and triangle AGC is one-third of the triangle ABC,
having same base and one-third of the altitude. Therefore, etc.

35. Use similar triangles. g

36. Construct the figure. Then, by similar triangles, in first, the
distances from point where secant cuts line of centres to the centres
respectively, are proportional to the radii. Then these quantities
being in proportion, are in proportion by division. Thus, three
terms of the proportion aré fixed, and, consequently, the fourth term
(the distance from one of the centres to the point of intersection)
is fixed, and the same which we get by proceeding with the common
tangent, etc., and similarly for the interior tangents.

37. Draw in triangle ABC the median AD, and DO perpendicular
to middle point of BC, to the centre, O, of the circumscribed circle.
Through A, B, and C draw parallels to the opposite sides of the tri-
angle, forming thus, A'B'C, similar to ABC. Through A, middle
point of B'C’, draw AO, perpendicular to B'C’, and prolong it to O',
the centre of circumscribed circle of A'B’C’. Q' is the intersection
of altitades of the triangle ABC (See 32).

Join OO’ meeting AD in G. The triangles O'GA and OGD are
similar, but (32) O'A =-20D; hence, AG = 2GD, and G is the
point of intersection of medians (Book I., Exercise 31). Moreover,
O'G = 20G.

39. The line in each case is parallel to the parallels.

40. Let the circles have the centres A, B, and C. Let the com-
mon chord, MN, of the circles A and B meet the common chord PR
of the circles B and C in the point O. We wish to prove that TS,
the common chord of circles A and C, will pass through this point.
Join SO, and suppose it meets circle A in some point, T’, instead of
T, and the circumference Cin T”. Then, using Prop. XXX., we
prove the theorem by easy reductio ad absurdum.

41. Join CM, then the triangles CMP and CMQ are similar (Prop
XXIL). The proportions resulting from this similarity serve to
demonstrate the theorem.

42. This converse is, If four points be situated on two straight lines,
meeting in any point, O, so that OA x OB = OD x OC, then the
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four points are on the circumference of the same circle. This is
proved readily by the reductio ad absurdum.

GeometrIc Locr

1. The locus is a line parallel to the line joining the two given
points,

2. See Prob. IIL

3. Prop. XIV. and Exercise 10, Theorems.

4. Prop. XIV., etc. Combining first two points and then this re-
sult with the third, etc.

5. See Exercise 11, Theorems, for #wo circles. Then combine
this result with third circle, etc.

6. See Exercise 12, Theorems.
7. See Exercise 13, Theorems, and also 14.

- 8. Let A, B, C, be the centres of the three circles, R, R’, R" their
radii. Suppose the radical axis of circle A and circle B, and the
radical axis of circles B and C meet in a point O. Then

_ First —OA'— OB’'= R*— R".  Second.—BO'— CO'=R"— R,
whence, by addition, OA’—CO’=R’—R'”. Hence, point O is
on radical axis of circles A and C. (This proof includes the case
proved*in Exercise 40, Theorems.) )

9. Let C and O be the centres of the given circles, and A and B
their points of intersection with a circle of centre P which cuts each
of these circles at right angles. The tangents drawn to the given cir-
clesat A and B must pass through centre P of the orthogonal circle
(being radii) and are therefore equal. Hence P is on the radical
axis. N. B.—Two circles cut orthogonally when their radii, at point
of intersection, are at right angles.

10. Let AOB be the angle and P one of the points, then let
PS* + PR? = constant = . Draw OP; OS=PR. .‘. PS’+PR?
= OP? = 4. Hence, OP, constant and locus, is a circle.

11. Also a circle by extending (10), or included in (4).

12. Construct the figure, and by reason of the proportionality of two
sides about a common angle, we have a number of pairs of similar
triangles. Hence, from equality of angles, the required locus is a
line parallel to the given line.



HINTS TO SOLUTIONS OF EXERCISES. 339

13. Let O be the point. A, B, etc., points on circumference C,
a, b, ¢, etc., points taken on OA, OB, and OC. Then, since by
hypothesis Oa 06 _Oc

OA~ OB~ OC’
lar. Also OBC and Odc. Hence, it is easy to prove ca = ¢4, and
the locus is a circle with centre c.

the triangles Oac and OAC are simi-

14. Let OA and OB be the two given lines, and M be a point
so that if MP and MN be its distances from OA and OB respect-
ively, l]\liFI = constant. Join O and M and we can readily show that
any other point on OM has this same property, etc.

15. Let A and B be the given points, and M a point so that
MB = constant = %. Draw AB and determine a point C on it, so
AC AD @
that CB= , and also a point D on AB produced so that &= D=5’
and then, by Prop. XVIIL. and Scholium, we can easily show the

locus to be a circle on the diameter DC.

16. The figure being constructed, and the half angles of the tan-
gents being equal, it will be clear from the similar triangles formed
by the tangents from the point M and the lines from M to centres
O and O/, and the radii, that ——11:/{8, = constant. Hence, the locus is
a circle, by (15).

17 and 18. See Exercises 38 and 39, Theorems.

PROBLEMS.

1. Take a point on an indefinite straight line, and lay off on this
line the lengths of two of the given lines, one on each side of the
point,and at the point lay off, in any direction, the third line. Pass
a circle through the three extremities of the lines thus laid off, etc.

2. Through the given point O draw a line parallel to one side,
.AC, of the angle BAC, meeting the other, AB, in D. Find a line
which bears to AD the ratio of 7 to m, and lay it off from D towards
B, as DH. Join HO, etc., using Prop. XVL

3. First.—Let ABC be the triangle, and M the point on the side
AC. Draw MB. If MC be greater than AM, the point of division
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of the required line must fall between Band C. Draw BD. Then,
MCD _ MC x CD
ACB ~ AC x CB’
M
.. AS Z% = % And we can construct CD, Prob. II
Second.—In view of the solution of first, second presents no diffi-
culty.

(Prop. XXVL), and this ratio is to be §.

4. Successive applications of Prob. III.
5. See Problem XVIIL

6. The point of intersection of the medians.  (See .Hint to Theo-
rem 34.)/

7. The solution depends on the Prob. XII.

8. This requires the division of the hypothenuse into extreme and
mean ratio, and then we must take the greater segment of the hypoth-
enuse equal to the side. (Use in this problem Prop. XXV., Cor.)

METHOD OF SimiLAR TRIANGLES.

The method of similar trianglesin the solution of problems consistsin
drawing a figure similar to the required figure, deducing from the
data of the problem all the elements necessary for the construction of
the new figure, or some of them, and taking the others at will. The
comparison of the known proportional lines in the two figures will
enable us to construct those of the proposed problem.

9. Let x, a2, " be the unknown sides AB, AC, BC of the re-
quired triangle ABC, and 4, %', 2"’ the corresponding given altitudes.
We must have

xb leh’ =xllbl',

U rn

b ¥ X x
whence Pl sty vl
bll

Construct, first, a fourth proportional @ to the three lines %, &', 4”,
’

so that ¢ = il Then construct a triangle A’B'C' with the sides

hll .
%, k', and a. A'B'C’ will be similar to ABC by reason of the pro-
portion
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" Now, taking upon one of the altitudes, A'D’, of A'B'C’, a line A'D"
equal to the homologous given altitude, as 4, and through D" draw-
- ing B"C" parallel to B'C/, the triangle A'B"C"” will be the triangle
required.

10. Construct a triangle having its angles equal to the given
angles. Draw a median (of course one particular median is given in
the required triangle) and on it take a line equal to given median, etc.

11. Solution after same manner by the method of similar triangles.

12. Use Prop. XXII., Cor., and then construct hypothenuse as third
proportional to the given segment and given side, etc.

13. Use Theorem XXXII. and Problem III. (first prolonging the
line joining the two points to meet the given line). (Two solutions.)

14. Suppose the problem solved (A and B being the given
points and O the centre of given circle). Suppose the common tan-
gent to the two circles, MC, meets the line ABin M. Then MC?’=
MA x MB. Also, if any other secant be drawn to the given circle
from M, as MFD, then MC?= MF x MD, and then MF x MD =
MA x MB, and A, B, F, D are on the same circumference (Prop.
XXXI, converse). Hence, the construction to find M is as follows :
Pass any circle through A and B, cutting the given circle in any two
points, F and D ; and the chords AB and FD determine M. Hence
the point of contact of required circle and given circle known.
(Two solutions), etc.

15. Take the case of intersecting lines; the locus of the centre
of the required circle is the bisectrix of the angle. Join the vertex
of the angle with the given point. Now, if the problem were .
solved and any number of circles were drawn tangent to the two
lines, the radii drawn to the points of intersection of one of these with
this straight line will be parallel to the radii of the others. Hence,
draw any circle touching the two lines, and draw the radii above
spoken of ; then, through given point, draw two lines parallel to these
radii until they meet the bisectrix, and we have the required centres
(two solutions). (A good illustration of the method of similar tri-
angles.) This problem may be solved more simply, thus : Construct
the bisectrix, let fall a perpendicular from the point M on the bisec-
trix, meeting it at O, and prolong this perpendicular till OM' =
OM, then M'is a point of the circle, and the problem becomes the
same as (13).
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16. Given circle with centre O, a straight line CD, and a point A.
Suppose the problem solved, and a perpendicular drawn from O to
CD, meeting it at N, meeting the circumference in E and F, and
draw FA, meeting the required circle also in M, and let P and H be
the points of contact of required circle with the given circle and given
line respectively, then N, E, P, and H are on one circumference,
and FN x FE = FP x FH (Prop. XXXI). Also, FA x FM =
FP x FH, therefore, FA x FM = FN x FE. Hence, we can find
point M by constructing FM, a fourth proportional to FN, FE,
and FA. M being determined, problem is brought back to (13).

17. Let A be the centre of the smaller circle, B the centre of the
larger one, and M the given point. Draw a common tangent to the
two circles, touching circle A at C and circle B at D, and meeting the
line of centres, AB, in P.  Join PM and divide it at N so that PM x PN
sha]l be equal to PC x PD. Then pass a circle through M and N,
touching either of the given circles (by 14). This will be the re-
quired circle. For, etc. (The exterior common tangent gives two
solutions ; so, also, in general the interior common tangent will give
two, thus making four in all.) ‘

18. Let AB, AC be the given lines and O the centre of the given
circle. Suppose the problem solved and O’ to be the centre of the
required circle, touching AB and AC and touching the given circle
in M. The centre, O’, must be on the bisectrix, AD, of the angle
BAC. From O let fall perpendicular OD on AD and prolong it
until DO = DO. A circle passing through O and O’ and touch-
ing two lines parallel to ACand AB, and at a distance from them equal
to the radius of given circle O, must be concentric with the required
circle.  Hence, construct a line parallel to AC and at a distance from
it equal to radius of given circle. Then pass a circle through O, O”
touching this line (13). The centre of this circle is the centre of the
required circle, etc.

19. Draw a diameter through the given poiﬁt and a chord perpen-
dicular to it. Suppose problem solved, and -then use Prop. XXX.
and also Prob. XII.

20, Draw any secant whatever. Then suppose the problem solved,
and use Prop. XXXI. and also Prob. IIIL

21. Since the base is given and the ratio of the two sides, the locus
of the vertex is a circle (See Exercise 15, Geometrical Loci); and
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since median is given the locus of the vertex is a second circle
described from middle point of base as centre. Hence, etc.

22. Suppose the problem solved ; BAC the triangle required and
AD the given bisectrix. Then (Prop. XVIIL) ]13)2 :(, (1), and,
also (Prop. XXXIIL), AB x AC=AD?+ BD x DC. Whence,
BD x DC=AB x AC — AD? We have then to construct, first,
a mean proportional between ABand AC, and then a square equal to
the difference of two squares ; thus we get BD x DC =2, or com-
bining with (1) BD’=/* x i—g Then construct BD, etc. (Prob.
II. and Prob. IIL).

23. Let ABC be the given triangle, O’ the centre of the three circles.
Suppose the problem solved and A’B'C’ the required triangle. Draw
the radii O’A’, O'B’, O'C'. At the given point C suppose CAO’
made equal to C’'’A’O" and ACO = A’C'O". Then the quadrilaterals
ABCO and A'B’C’'O’ would be similar. And, hence, if we knew
ABCO we could construct A'B'C'O’ and thus solve the problem.
Now we can construct ABCO by determining O through the intersec-

tion of two loci. For Og g?, (a known ratio), hence, locus of
; . OB _O'B'
O, a circle (See Geometrlcal Loci, Exercise 15) ; and oc = o

(a known ratio). Hence we know second locus of O, etc.

24. Suppose the problem solved. Construct the figure, and then,

b
by similar triangles, we find x, the required side, =a:- 5

fourth proportional to the base and altitude, and the sum of the two.

-ora

25. Same as 6.

26. Draw any circle whatever intersecting the two given circles
and draw their chords of intersection (radical axes), prolonging them
to their intersection. We thus determine the radical centre of the
three and at once the radical axis of the first two. '

27. Find radical axis of the two to which the equal tangents are to
be drawn, etc.

28. Use (Exercise 6, Geometrical Loci) to get a locus whose inter-
sections with the third circle give the points required.

29. Use the locus of a point whose distances from two fixed points
bear a fixed ratio (See Geometrical Loci, Exercise 15).
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30. Find the locus (Se¢ Geometrical Loci, Exercise 4) of the
point, the sum of the squares of the distances of which from the three
points A, B, and C is equal to a given square.

NuMERICAL PROBLEMS.

The chief theorems used in the solution of the Numerical Exercises
are the V., VI, VIL, XL, XIV., XX., XXV., and XXXII. By
a reference to these the solutions will be found very easy.

BOOK 1V.

THEOREMS.

1. From the equality of the angles we can show the equality of the
alternate arcs which the sides subtend. Hence, the alternate sides
are equal, and, therefore, all the sides, if the number be odd.

2. From the equality of the sides, by a comparison of equal tri-
angles, we show the alternate angles equal.

3. Let ABCDEF be the hexagon. Draw the diagonals AC, FB,
and FC. FCis parallel to AB and equal to twice AB. Then pro-
ceed by comparison of similar triangles.

4. A construction of the figure and a comparison of equal triangles
makes this clear.

5. The area of the inscribed is to that of the circumscribed as the
square of the radius is to the square of the apothem.

6. This follows from the construction of the figure, and the last
part from the property of the right angled triangle.

7. For the triangles having vertex at centre have for bases the radius
and for altitudes one-half of the radius.

8. Take MN as side of pentagon and AB as side of decagon, O
being centre of circle. Produce AB until AC = radius and draw
OM, ON, OA, OB, and OC. Now, compare the triangles OMN and
OAC. Then, from C draw a tangent, CP, to the circle, and join OP.
Then use (Book IIIL, Prop. XXXII.) and the property of the right
angled t.riangle. :

9. Let ABCDE be the pentagon. Draw the diagonals AC and
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BE, meeting; in O. Then examine the triangle BOC, and compare
the triangles ABO and ABC.

10. Construct the decagon ABCDEFGHIK, draw the diameter
AF and the chords BE and CF which subtend each ¢ of the circum-
ference. Let these meet in a point M. Then the line DM, pro-
duced, must pass through O, the centre of the circle. Then prove
the triangles FMO and CMD isosceles.

11. Presents no difficulty in the proof.

12. The lines form a regular star polygon, and by a comparison of
the isosceles triangles formed by their intersections and also by exam-
ining the isosceles triangles formed by drawing also AB, BC, etc., we
can readily prove the theorem.

13. Make the given point the vertex of  triangles, having the =
sides for bases. Compare the expression for the area of the polygon
thus obtained with that which we get by taking the centre of the
polygon as the vertex of 7 equal triangles.

14. This construction gives us an equiangular octagon and we can
easily find an expression for two of the sides and thus show the sides
all equal.

15. Since the tangents at the point of intersection are at right angles,
the radii are, also at right angles, and thus the right angled triangle has
the hypothenuse double one of the sides. Whence, the angles at the
centre of each circle corresponding to the common chord are known.

16. Join thewcentre of the small circle with the centre of the given
semicircle and also with the centre of one of the semicircles described
on the radius of the given circle. Then use Theorems XIIL. and
XIV., Book II., and Theorem XXXII., Book III. .

17. The semicircle in the hypothenuse is equal to the sum of the
other two semicircles, and also equal to the triangle, together with the
two segments on the two sides.

18. 7 is the semicircumference to the radius 1, and is in value be-
tween these two semiperimeters.

20. The second is true because circumferences are proportional to
their diameters. To prove the first, we compare the areas, remem-
bering that the one is . .
37AC" + }7AB’ — 32BC’, ’
and the other is

37BC’ + $7AB — §7AC,
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and also remembering that ¢* —4* = (@ + 6)(a — 8). Refer also to
Exercise 1, Book I. )

. A corollary of the preceding or proved by comparing the areas
after the same manner.

22. Because, if O be the centre and OB, OC, the radii, the area of
the ring is 7OB* — zOC".

23. We demonstrate this after the same manner as the solution of
Problem XII., Book III. (using Book III., Prop. XXV., Cor.).

24. The angle at the centre of the fixed circle between the radius
to point of contact of rolling circle and radius to the given point on
the circumference of the same in its changed position, is an inscribed
angle on the rolling circle, and, hence (Book IV., Prop. XIX.), the
* arc of fixed circle between the point of contact before rolling com-
menced and the point of contact in the new position is equal to the
arc of rolling circle between given point in its changed position and
point of contact. Therefore, etc.

PrOBLEMS.

1. If the problem be solved the three circles fulfilling the condi-
tions will be inscribed in the quadrilaterals formed by letting fall
perpendiculars from the point of intersection of the bisectrices on the
opposite sides ; that is by the prolongation of the bisectrices. Hence,
the construction is plain. (The distance of the centre of each small
circle from the foot of the altitude on which it lies will be equal to
one- half the side of the triangle).

L2 If the problem were solved the three small circles would each
touch one side of an equilateral triangle circumscribing the circle at
its point of contact with the circle. Hence, circumscribe this triangle
and divide it into three triangles by lines from the vertices to centres
of circle, etc. -

3. Draw the diagonals of the square, forming thus four equal tri-
angles, etc. If @ be the side, the radius of the inscribed circles

=i —1).

4. Conceive the problem solved and a square circumscribed about
the given circle having its sides tangent at the points of contact. We

-z
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see thus that the solution of the problem can be brought back to the
solution of the preceding one. ’

5. R being radius, let x = side of decagon .. (Book IV., Prop.
VIL) R:x::x:R —x, whence, a quadratic in x, and

= R@, and then Theorem 8 of exercises gives side of pen-
tagon. .
6. Theorem 8 of Exercises of Book IV., and the value of side of

(«/5 1)

construction. Draw a diameter AOB, and a radius OC, perpendicu-
lar to it.  Join C to M, the middle point of OA. Then, with Masa
centre and MC as radius, describe an arc of a circle cutting the di-
ameter AOB in point D on the other side of the centre ; OD is the
side of the decagon and CD the side of the pentagon.

inscribed regular decagon when radius-is R, R~—=———= give the

7. Area of the octagon found from that of the square, by using
Prop. XVI.

8. The triangles are proportional to the squares of their homolo-
gous sides, arid any one antecedent is to its consequent as sum of
antecedents to sum of consequents. Hence, if x be side of re-
quired triangle, x* = 9 + 25 + 4.

10. See Theorem 7, Exercises.

11. Find area of sector, and then, given area of circle, to find its
radius.

14. From area of sector, which is readily found, subtract equi-
lateral triangle whose side is the radius.

17. Compute side of octagon from that of square and of polygon
of 20 sides from decagon.

18. The difference between the sum of three equal sectors and an
equilateral triangle.

19. See Problem 3.

20. Areas of circles are proportional to the square of their circum-
ferences.

21, 22, 23. (See Prop. XIX. Cor.)
29. See Problem 8.
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BOOK V.

THEOREMS,

1. If the point be on the plane, join it with the middle point of
the given line, and with its extremities. Then demonstrate, as in
Prop. XVIIIL., Book I

If the point be not on the plane, join it to the two extremities of
the given line. The line joining the point to one extremity must
pierce the plane ; join this point of piercing with the middle point of
the given line, and with the other extremity ; we then have a figure the

same as that used in the second part of Prop. XVIIL.; referred to.

2. An easy corollary of Prop. IX. (see Cor. 2).
3. See Cor. 2, Prop. XIL

4. Let P and Q be two planes parallel, respectively, to two planes,
M and N, which intersect. If P be parallel to Q, then is also M par-
allel to Q, and then M and N, being both parallel to Q, would be
parallel to each other, which is contrary to the hypothesis.

Then, if, through any point of intersection of P and Q, we draw a
parallel to the intersection of M and N; being parallel to M, it must
lie in P, and being parallel to N, it must lie in Q, and hence, etc.

5. For they must both meet the line of intersection at the foot of
the perpendicular from O on that line (Prop. X.).

6. For the perpendiculars to the two planes erected at P and Q
must meet the perpendicular to the common intersection drawn as
above, in the same point (Prop. X.).

7. For if the two planes meet, their line of intersection would be
parallel to AB and A'B’, and hence this intersection is -impossible
(Prop. XXIX.), unless AB and A’B’ are perpendicular to P.

8. See 7, and Prop. XV.
9. See 8, and Prop. XVIII,

10. Draw in P, through the same point, A, the perpendicular AO,
and any other line, AM, to the common intersection of P and Q.
Project these lines on Q, in Oz and Ma, and then compare the angles
at M and O in the triangles thus formed (see Prop. XXIL.).

11. They cannot meet (see Props. XXVII. and XIIL).
12. Draw the faces of the diedral and the plane bisector. Then
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from a point in the plane bisector draw perpendiculars to these faces,
and from the feet of these perpendiculars draw perpendiculars to the
edge of the diedral and join their common foot with the assumed
point. Now compare the two right angled triangles thus formed.
(The second part may be demonstrated after the same manner as
secondly in Prop. XXI., Book I.).

13. First.—Each perpendicular is in a plane through the point
perpendicular to the common intersection (Exercises 5 and 6, and
Prop. V.).

Secondly.—Each perpendicular is in a plane, as above, perpendic-
ular to each one of the common intersections (then Prop. V.).

14. Construct the figure ; let fall the perpendiculars from extremi-
ties of diagonal on the plane, and prove them equal by a comparison
of triangles.

15. Let SA, SB, SC be the edges of the triedral. Every point
within the triedral equally distant from the edges SA, SB is on the
plane containing the bisectrix of the angle ASB, and perpendicular
to the plane ASB. Similarly for the plane perpendicular to the face
ASC, and containing the bisectrix of the angle ASC. These two
planes meet in a line, any point of which is equally distant from SB
and SC; hence, their line of intersection must be, etc., etc.

16. Use Exercise 12, and reasoning similar to the above.

17. Take SA, SB, SC all equal, and join AB, AC, BC. The bi-
sectrix of the angle ASB, of the isosceles triangle SAB, meets AB at
its middle point, and so of the other bisectrices. Draw the medians
of the triangle ABC ; each one of these lies in one of the planes con-
taining an edge and the bisectrix of the angle of the opposite face.
Hence, the intersection of these medians is common to all the planes,
hence, etc., etc.

18. Draw the planes. Let SM, SN, SO be their intersections with
the opposite faces. Through A draw AB perpendicular to SM at M,
and AC perpendicular to SN at N.  Then draw BC, BN, and CM.
Then CM and BN are perpendicular to ABand AC (Prop. X., Cor.), -
and their point of intersection is common to all three of the planes
(Book I., Exercise 28). Hence, as the planes have already S in
common, etc., etc.

19. In this case the proof varies but little for 15, and is the same
for 16. In (15) the planes perpendicular to the faces contain, in the
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new position, not the bisectrices of the angles of the two edges, but
the lines parallel to the edges in each face and midway between
them. A like change applies to 17. In the case of 18, the com-
mon line of intersection of the three planes is the perpendicular to
the plane ABC, erected at the intersection of its altitudes AM, AN.

20. Every perpendicular from a point on either given line to the
plane will be equal to one-half the perpendicular to the two given
lines. Draw any line meeting the two given lines in points A and B.
From the two points A and B let fall perpendiculars on the plane.
Join the feet of these perpendiculars with the point in which AB meets
the plane, and compare the triangles.

21. Because this shortest distance is in every case the distance from
the line to the plane (as will be seen by constructing this shortest
distance in one case (Prop. XXXI.).

22. A cannot be parallel to B and meet C (Prop. I, Cor. 5). A
cannot meet B in one point and C in another, for then all three lines
would be in the same plane. Hence, etc., etc.

23. Let SABC be the triedral, rectangular along the edge SA. If
the plane is perpendicular to the edge SA, the truth of the theorem
is evident. Let it be perpendicular next to SB, at any point, N, and
let it meet SA in M, and SCin O. Construct the triangle MNO.

It is easy to show that it is a right angled triangle (Prop. XXVIII.,
and Def. 2).

24. Let SABC be the triedral, having the diedral ASBC greater
than the diedral ASCB. Cut off from ‘ASBC a diedral, CSBD, equal
to ASCB; let SD be the intersection of the plane SBD with the
face ASC, then apply XXXIV. and XXXII., and make a demonstra-
tion similar to that in Book I., Prop. XV. The converse is proved
by an easy reductio ad absurdum.

Locr.
1. Two planes parallel to the given plane.

2. See Theorem 1, Exercises.

3. If lines parallel, plane perpendicular to plane of lines, and con-
taining line parallel to the two lines, and midway between them. If
lines intersect, the locus is two planes perpendicular to each other,
and to plane of the given lines. (See Book II., Exercises, Geometric
Locus 4.)
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4. Two perpendicular planes (see Exercises, Theorem 12).
5. See Prop. IX., Cor. 3.
6. Locus consisting of straight lines perpendicular to the plane of

the three given lines (see Locus 3), or a single line if the three
given lines meet in a point.

7. A locus consisting of straight lines (see Exercises, Theorems
12, 16, 19).

8. See Geometric Locus 3, and also Exercises, Theorem 15.
9. A straight line (See Loci 2 and 3).

10. A straight line (See Loci 2 and 4).

11. A straight line (See Loci 3 and 4).

12. A plane (See Geometric Locus 6, Exercises Book IIL).
13. See Prop. IX., and Locus 5.

14. See Prop. IX. A circle.

15. All the points in question must be at the same distance from
M, the middle point of AB (determined by the given sum of the
squares of its distances from A and B), (Book III., Prop. XIV.,
Cor. z). Hence, the locus (by Locus 14) is a circle.

16. A straight line. See Locus 12.

17. Let fall a perpendicular, AC, from A on the plane, C is one point
of the locus. Draw BC, and any other line, BM, in the plane through
B ; let AM be perpendicular to BM at point M, and join MC. Then,
Prop. X., Cor., MC is perpendicular to BM. Hence, the locus re-
quired is a circle on BC as diameter.

PRrOBLEMS.

NoTe.—For the most of these problems the pupil should be required simply
to indicate the solution, or to give an analysis without making the drawing.

1. See Prop. XII., Cor. 2.

2. Draw through the given point two lines which determine the -
required plane, using Prop. XIIL

3. Use Prop. XXVIIL

4. Pass a plane through the point and one of the lines ; find where
the second line meets this plane, etc. (Discuss the Problem).

5. Let A and B be the two given straight lines, not situated in the
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same plane, and C the straight line to which the required line meet-
ing A and B is to be parallel. Pass a plane through B parallel to
C (see Problem 8), and find where A meets it ; then, etc.

6. Let the points be A, B, C, D. For the locus of points, any
one of which is equidistant from A, B, and C, see Locus 5. Also
see the same Locus 5, for points equidistant from B, C, and D.
These lines are in the same plane and must meet {see Exercises,
Theorem 6), and their point of intersection is equidistant from A, B,
C, D. If the four points are in the same plane, the solution is im-
possible unless they are on the circumference of a circle, and then an
infinite number of points satisfy the conditions (see Locus 13).

7. Use Locus 12.

8. Atany point of the given straight line through which the required
plane is to be drawn, determine a second line of this plane, using
Prop. XIIIL ’

9. Prolong the straight line in space until it meets the given plane.
Through this point of meeting draw in the plane a line perpendicu-
lar to the given line. Then through the given point draw a line paral-
lel to this line (see Prop. XVIII., Scholium 2).

10. The point, M, required will be such that the lines AM and
BM shall make equal angles with the plane, P (see Book I., Exer-
cises, 18).

11. Use Locus s.

12. Let SO be the intersections of two diagonal planes through
opposite edges of the quadriedral. Through O, any point of SO, draw
AC and BD, so that they shall be bisected in O (see Book III.,
Problem VL.) ; these lines will be diagonals of the required parallelo-
gram, etc.

BOOK VI.
THEOREMS.

1. These propositions can be easily demonstrated by a reference
to Props. XXXVI., XXXVII., XXXVIIIL, XL., Book V., and by su-
perposition.

2. The bases must be equal, also, and hence, etc.

3. See Prop. XVIIL
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4. Construct the plane, then the comparison of the prisms (Prop.
XVIIL) makes the truth of the theorem clear.

5. Construct a cube on the line @ + 4. Draw through the points
of division, which separate the parts ¢ and 4 of the edges, planes
parallel to the faces. We will thus have one cube of the edge 4, three
rectangular parallelopipedons whose base is the square on a, and
whose altitude is 4, etc.

6. Let S-abc, and S-ABC be the two tetraedrons. Join Aé and C3,
thus forming a third tetraedron, S-A4C, which we can compare with
either of the others, having the same vertex, A, with A-SBC, and the
same \z/el'tex, &, with 8-Sac. Then, tetraedrons having the same altitudes
are to each other as their bases. But the bases SBC and S4C, corre-
sponding to the vertex A, are to each other as the edges SB, Sé (Book
III., Prop. VI, Cor.), and the bases SAC, Sac, corresponding to the
common vertex , are to each other as the products

SA x SC : Sa x Sc (Book III., Prop. XXVL).
A proper combination of the proportions demonstrates the theorem.

7. Let S-ABC be the tetraedron, and SAM (M being on BC) the
plane bisector of the diedral BSAC. The tetraedrons S-AMC and
S-AMB can be compared as having the common vertex S, and the
common vertex M. These give two proportions (Prop. XXV., Cor.
2), the combination of which demonstrates the theorem, if we
remember that the triangles AMC and AMB, having the same vertex,
are to each other as their bases.

8. See Prop. XXIIIL

9. Let S-ABC be the tetraedron, M and N the middle points of
the opposite edges, SA and BC. Pass the plane through M and N,
meeting AB in O, and SCin P. Join SO and SN. Then we see
that the polyedron SMPNOB is composed of the quadrangular pyramid
S-MONP, and the tetraedron S-ONB. Join PA and AN, then the
polyedron AMPNOC is composed of the quadrangular pyramid
A-MONP and the tetraedron P-ACN. Now, A-MONP and S-MONP
are equal, since they have the same base and equal altitudes (SM and
MA being equal). It remains then to show that the tetraedrons
S-ONB andP-ACN are equal. Their bases, ONB and ACN, are to
each other as BO : BA, and their altitudes are to each other as
SC : PC. Therefore,

S-ONB : P-ACN : : BO x SC : BA x PC (Prop. XXV., Cor.2).
23
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Now, the distances of the vertices B and A from the cutting plane
MONP, are equal respectively to the distances of C and S from the
same plane, since BN = CN and AM = MS. But the first two are
to each other as BO : AO, and the second two as PC : PS.

Hence BO: AO::PC:PS,
whence BO :AB::PC:SC, or BOx SC =AB x PC.
Theérefore, S-ONP = P-ACN.

10. Use Problem 6 and Locus 2, Exercises, Book V.
11. Use Theorem 16, Exercises, Book V.

12. Let S-ABC be the tetraedron. . The median lines SO and AO,
which join the extremities S and A of the edge SA with the middle
point, O, of the opposite edge, BC, are in the same plane.  Divide SO
and AO respectively, in the ratio of 2 tor at Mand'N. (See Exercise
31, Book I.). Draw SN and AM. These are two of the lines of which
the theorem treats. They will meet in some point, P. Join MN,
and compare the trianzles MPN and APS, etc.

13. Use Problem 6, Exercises, Book V. (See also Theorem 10.).
14. Conustruct the figure, and any two of these lines will be seen to
be the diagonals of a parallelogram.

15. Construct the figure, and the truth of the theorem becomes
plain from the fact that all the faces are equilateral triangles, all the
diedrals are equal, the feet of the perpendiculars from the vertices on
the opposite faces are the centres of circumscribed circles, and inter-
sections of medians, etc.

16. Let S be the vertex of the right solid angle, and ABC the op-
_posite face, then shall

(ABC)* = (ASB)* + (ASC)" + (BSC)".

Let fall the perpendicular CN from C on AB, and the perpendicular
SM from S on CN, join SN, MB, and MA. Then

ABC : ASB :: CN : SN, therefore : : SN : MN (Book IIL.,

Prop. XXV.).
But ASB : AMB :: SN : MN.
Hence (ASB)* = AMB-x ABC.
Similarly for BSC and ASC, etc. -

17. Construct the figure, then any diagonal, AH, of the parallelo-
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pipedon, the two perpendiculars A¢z and HZ%, from A and H on the
given plane, and the projection, a4, of the diagonal on the plarte, form
a trapezoid. In this trapezoid the perpendicular Oo from the centre
of the parallelopipedon on the plane, is parallel to Az and H4, and
equal to half their sum (Book III., Prop. VII., Schol.), etc., so that
we have 200 = (Ae + H#), and so on for the remaining opposite
corners.

18. Take a point, P, join it with O, the cer.tre of the parallelopipe-
don, and with the extremities A and H of a diagonal. Then use
Prop. XIV., Book IIL

19. Exactly analogous to Theorem 13, Exercises, Book IV.

20. First.—Let ABC-LMN be the prism. Pass the plane MAC,
cutting off the pyramid M-ABC, having M for a vertex and ABC for
a base, leaving the quadrangular pyramid M-ACNL. Divide this by
the plane MNA into the triangular pyramids M-ANC and M-ANL.
It can be easily shown that M-ANC is equivalent to A-BNC or
N-ABC, and that M-ANL is equivalent to B-ACL or L-ABC.

Second.—Let OO’ be the distance of the intersection of the medians,
O, of the triangle LMN, from ABC. Then OO’ =} of the sum of
the perpendiculars from L, M, and N, on the plane ABC. This can
be proved after the manner of Theorem 17, above, using the property
of medians proved in Theorem 31, Exercises, Book I.

Third.—Let EFG be the right section. Then the truncated prism
ABC-LMN is decomposed into two, ABC-EFG and EFG-LMN.
Then the measures of these two (by First) added together show the
truth of the assertion in Third.

" 21. Draw diagonal planes resting on the diagonals of the base, and
join the intersection of the diagonals of the base to the intersection
of the diagonals of the upper base. We thus have four triangular
prisms, which, added together, make twice the truncated parallelopip-
edon. Then apply Theorem 20, Z%ird.

22. The intersections of these planes give us triangles similar to the
faces respectively of the tetraedron. Hence, the diedrals of the new
tetraedron will be equal.  But they will nevertheless be not similar, as
their triedrals are symmefrical and not equal. -

23. Use Prop. XXXII. X

PROBLEMS.

1. The point is the point of intersection of the four stralght lines
spoken of in the Theorem 12 of these Exercises.
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2. Find the point in which the plane must cut the edge or altitude
by remembering Prop. XXXIIL

3. Calling 4 the area of the base of the pyramid S-ABC, and 2
its altitude, then the area of each one of the equivalent triangular

prisms EHG-DMA, DEF-MCH, will have for its measuref X - égé

Hence, the two together will be = %}' Each of the triangular prisms,

formed in the same manner, in the two tetraedrons S-DEF and B-EGH,

will be each one equal to % X Z— = g—f, and as there are four of them,
the four are equal together to M, etc.

16
The volume of tetraedron will then be 84(} + {5 + 5% etc., etc.,

without end). The limit of the series is . Hence, volume = é;i

4. Referring to the figure of the cube in Def. 10, the plane cutting
the edges AE, CG, EH, HG, AB, BC, at their middle points- will
make the intersection a regular hexagon.

5. See Props. XVIIIL. and XXV.

6. See Prop. XXVIL., Scholium.

7. See Prop. XIX., Scholium, and Prop. XXV. If the edge is q,

then the slant height = 324/3, the altitude = ‘%_;

3

8. Prop. XIX., Scholium. Apothem of base = $34/3 feet.

9. Prop. XX.

10. Props. XX. and XXVII.

11. Prop. VI., Scholium 2, and Prop. XVII.

12. Prop. VI., Scholium 3.

13. Prop. XXV. (The altitude, the slant height, and the apothem
of the base form a right angled triangle.)

14. Find the side of each decagon (Book IV., Prop. VIIL.), thence
the apothem, and area. Then apply Prop. XXVII., Scholium,

15. If §x be one of the edges, then the others are $x and $x.
Then apply Prop. XVIL '

16. If 4x be one edge, then the two other edges are 6x and gx.
Then apply Prop. VI., Scholium 2.
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17. Compute the volume of the first pyramid, then apply Prop.
XXXII. '

18. Apply Prop. XIX,

19. The area of the base = 1(6)*4//3. (Then use Theorem 20,
Exercises. )

20. Props. XIX. and XXV,

21. Let x be the point of division. Then convex surface of whole
pyramid : convex surface of pyramid cut off :: (4.6)* : Sx*. But
these convex surfaces are to each other, first, as 2 : 1 ; and secondly,

as 3 :5. In either case Sx is found by an easy computation or a
simple construction (Book III., Problem IIL).

22. The slant height of the pyramid and apothem of the hexagon
are in the ratio of 2 to 1 (Book I., Exercise 36). The altitude and
volume can.then be easily found.
© 23. If x = side of hexagon, and y = the altitude of prism, then

perimeter of the base = 6x, and area = §x* x 4/3. Hence, with
given convex surface and volume we can readily find x and y.

APPENDIX TO BOOK VI

THEOREMS.
1. It has four vertices, and its edges are all equal. Hence its
plane faces are all equal, and therefore its diedrals are all equal.
2, 3, 4, 5, 6. Similar réasoning to the above applies in these cases.

7. The centres of the faces are the intersections of the medians,
and the line joining the intersections of the medians in two faces is
one-third of the edge to which it is parallel. Therefore, etc., etc.
(Prop. XXXIIL.) :

ProBLEMS.

1. If the edge is 24, then the diagonal section is 4¢*, and the altitude
of each of the two square pyramids which form the octaedron is a4/z.
Then use Prop. XXV,

2. If the edge of the tetraedron is 44, that of the octaedron is 2q,
and its volume is found as in Problem 1.
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3. If the edge of the hexaedron be za, the edge of the octaedron

is a/2.

4. If the edge of the octaedron is a, then the edge of the hexae-
\/—

dron is —.

BOOK VII.

THEOREMS.
"1 See Exercises on Book II., Theorem 1.

2. See Book V., Prop. IX.

3. Any other line from O to EF is greater than OAC (Book I.,
Prop. XVII. ), and these lines have an equal part, equal to the radlus
of the sphere, ‘etc., etc.

4. The same reasoning applies as in 3, using Prop. IX., of Book V.

5. See Exercises, Book II., Theorem 3.

6. The angle at the centre of the sphere made by the radius of the
sphere, perpendicular to the plane of the small circle, and the radius

to the extremity of a diameter of the same, is one-third of a right
angle. Then refer to Book I., Exercise 36.

7'. The diameter will be the side of a regular decagon inscribed in
a great circle. Then see Book 1V., Prop. VII.

8. First.—This is demonstrated after the manner of Prop. XI.
Second.—This is demonstrated after the manner of Prop. XII.

9. Demonstrated after the manner of Prop. XXI.,‘Book I. (assum-
ing the perpendicular arc of the great circle to be the shortest distance
from a given point to a given arc).

10. See Props. XXII. and XII.

11. See Props. VI. and XIIL.

12. See Book VI., Prop. IV., Cor. 1.
13. See Book III., Prop. XXX.

14. See Book III,, Prop. XXXI.

15. See Book IIIL., Prop. XXXII.

16. A corollary of 15.

17. A point equidistant from any four of the vertices is equidis-
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tant from all of them. Whence follows the circumscribed sphere.
The small circles of the sphere which circumscribe the faces of the
‘polyedron thus inscribed in the sphere are all equal. Hence, their
centres are equally distant from the centre of the sphere. There-
fore, etc. ’

18. See Book VI., Prop. XXXII., and Book IV., Prop. X.
19. See Book VL., Prop. XXV., Scholium z.

20. There are two points, one for the exterior tangent planes,
and one for the interior tangent planes. See Book II., Problem
XVIIL.

Locr.
1. See Book III., Exercises, Geometric Locus 3.

2. See Book III., Exercises, Geometric Locus 15.
3. See Book II., Exercises, Geometric Locus 10.

(N. B.—The points of the surface found exterior to the given sphere do not
form part of the locus.)

4. Let O be the centre of the sphere, and EF the given line, and
M the foot of the perpendicular from O on o¢ne of the sections
made by a plane, MEF. Let fall MC perpendicular on EF at C, and
join OC. The locus is a sphere described on OC as diameter (see
Book II., Exercises, Locus 10). The remark made in 3, applies
also in this case. '

5. Let P be the point and O the centre of the sphere. Pass a
plane through SO.  This intersects the sphere in a great circle. Draw
two tangents from P to this circle. The chord joining the points of
contact is the diameter of the locus required.

6. A great circle, the plane of which is perpendicular to the given
line (see Book II., Exercises, Problem 3).

7. It is a circle of which the pole is the pole of the given are.
See Prop. X., Cor. 1.

8. See the Solution of Problem, Prc;p. IX., also Book V., Ex-
ercises, Geometric Locus 2.

9. See Exercises, Theorem g. Also Book II., Exercises, Geomet-
ric Locus 4.

1o. The circle has for its pole the middle of the base, and its polaz
distance is equal to one-half the base.
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11. See Book II., Prop. XXIII., Cor.

12. See Book V., Exercises, Geometric Locus 1.

13. See Book 1I., Exercises, Geometric Locus 3.

14. See Prop. IV. -

15. A circle whose centre is the middle point between the two
given points.

16. See Prop. V., and Book V., Exercises, Locus 5.

17. See Book V., Exercises, Geometric Locus 4. And also Book
I1., Exercises, Problem 7. The locus is four lines parallel to the
intersection of the planes.

18. See Book V., Exercises, Geometric Locus 7.

19. See Exercises, Locus 13.

ProBLEMS.

1. See Exercises, Geometric Locus 8, and also Book II., Prob-
lem I. . “ . a

2. See Prop. XVI., Scholium, and also Book II., Problem V.

3. Use 1 to find the pole of thecircle. See Book II., Problem
XIII.

4. Use 2 to find the pole of the circle. See Book II.‘, Problem
XV.

ScHoriuM. The arcs of the great circles bisecting the angles of one
of the triangles will be perpendicular to and will bisect the correspond-
ing sides in the polar triangle. Hence, the pole of the inscribed
circle of the first is the pole of the circumscribed circle of the second.
Again, if we join the angular points of the polar triangle to this com-
mon pole by arcs of great circles, these arcs will be perpendicular to
the sides of the first triangle at the points of contact of the inscribed
circle. Hence, etc.

5. The pole of the required arc must be on a small circle whose
pole is the pole of the given arc, and whose polar distance is the arc
which measures the given angle. See Geometric Locus 7, and also
Prop. X,, Cor. 1. It must also be on a great circle at a quadrant’s
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distance from the given point. Hence, the pole can be found, and
the required arc described. (There will be two solutions.)

6. Discussion similar to the above. Show when there is one solu-
tion, when two, and when the solution is impossible.

7. See Book II., Problem VIII. .Use 6.

Application : The complements of the latitudes form the two adja-
cent sides, and the difference of longitudes the included angle. The
required distance is the third side of the triangle.

8. See Book II., Problem IX. Use 6. \

9. See Book II., Problem X. (Discuss the problem as to when it
is possible, etc.)

Application : The complements of the latitudes and the distance
are the sides of the triangle, and the angle at the vertex opposite to
the distance will be the difference of longitude.

10. Construct the polar triangle, first finding its sides by Prop.
XII.

11. The area is equivalent to 1.3 times the area of the tri-rectangu-
lar triangle. See Prop. XXII., Cor. 1.

12. The excess over 180°is 32° 31’, or 1951". The right angle
= 90° = 5400".

Hence the area is 335§ of the tri-rectangular triangle.

13. Let 4x = angle A (in right angle units), 6x =angle B, 70 =
angle C. Then Prop. XXII., Cor. 1 will give us an equation to find
x, etc.

14. If R =radius of the inscribed sphere, then, Firs/, The edge
of the tetraedron is equal to 4R4/3. (Book VI., Exercises, Theorem
12.) For the volume see Book VI, Exercises, Problem 7. Second-
Yy, The side of cube = 2R.  Zhirdly, The radius of the inscribed
sphere of the octaedron being the perpendicular from the centre on
any face, is the perpendicular of a triangle of which half the edge is
the hypothenuse, and } of half the edge x 4/3 the base. Hence,
it is equal to the edge divided by 4/6. Therefore, the edge = Rx/ 6.
For the volume, see Appendix to Book V1., Exercises, Problem 1.

15. The diameter is to the side of the cube as 1/ 3 : 1 (Book VI,
Prop. IV., Cor. 2}. Then apply Scholium, Prop. VI., Book IV.

16. Theorem 15 (Exercises) will give (if we call the radius R in
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miles) the equation (4)' = z4$y (2R + 34%5), whence R can be
found.

17. One locus of the centre of the sphere isa sphere described
from any one of the given points with the given radius. The other
locus is given by Locus 16. The intersections of these loc give the
required centre. (There are two solutions. )

18. The intersections of the Loci 12 and 15 determine the centre
of the required sphere, and show the number of solutions.

19. The locus of the centres of spheres of given radius tangent to
two planes, is given in Exercises, Locus 17. The intersections of
this with a sphere described from the given point as centre, with the
given radius, determine the centre and the number of solutions,
etc.

20. Locus 18 gives one locus of the centre of the required
sphere, etc. If the sphere is to be in any particular triedral of the
three planes, we can find the locus of centres of spheres tangent to
three planes by Book V., Exercises, Theorem 16, and then apply to
this line of centres and to one of the edges, Problem 7, Exercises,
Book II.

21. The intersections of Loci 13 and 15 determine the centre of
the required sphere, etc.

22. The intersections of two Loci determined in 13, and the inter-
section of this intersection by a sphere described from the given point
as centre with the given radius, determine the centre of the required
sphere, etc.

23. The intersections of Loci 12 and 13, and the intersections of
this intersection by a sphere described from the given point as centre
with the given radius, determine the centre of the required sphere.

BOOK VIII

THEOREMS.

1. The perpendicular in question will be perpendicular to the plane
tangent to the cylinder along the line in which the plane through the
given point and the axis cuts the surface of the cylinder. Hence,
etc.
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2. Let R, H, C, V, be respectively the radius of the base, altitude,
convex surface, and volume of one cylinder, and R', H', C, V',
those of the other.

Then, V=C—2R-, V' = (% (Prop. VI, Scholium), and -since

C=C, and also RH = R'H/, the theorem easily follows.

_2v. ., 2V
3. C—-ﬁ’ C ——:R-7.

R”H’, the theorem is easily proved.
4. This follows from the fact that by definition4, R : R’: : H : H’,

Then, since V=V’, and also R°H =

5. See Book I., Exercise 36, and then apply Prop. VIIL

6. Prop. XVI., Cor., and Book III., Prop. XXV., Cor.

7. See Props. XVI. and XXI., and refer to Book I., Exercise
36.

8. Compare the surfaces described by any two corresponding sides
of each polygon, and the zone generated by the corresponding arc
of the great circle (Props. XIIL., XVI.), and then note the propor-
tion which the homologous sides of the halves of the isosceles tri-
angles with the common vertex at the centre resting on these corre-
sponding sides give.

9. See figure, Prop. XXII. Construct in it the cone having the base
and altitude of the cylinder. Then use this proposition, and also
Prop. X., Cor. 1.

10. Let R, R’ be the radii of the exterior and interior spheres
respectively. Then volume of shell = 4z(R* — R"™). Then find the
factors of R* — R”. Hence, etc.

11. Let ABC be the triangle, O the intersection of the medians,
and xy the axis of revolution passing through A. Let fall the per-
pendiculars BM and CN on the axis xy, also the perpendicular OP
‘from the point O on the same axis. Let BM = 4 and CN =¢, then
(Book III., Exercises, Theorem 33), OP = }(6 +¢). Now

vol. ABC = vol. BCNM — vol. ABM — vol. ACN = }7 x MN(* +
S +6c) —4mw x MA x 8 — 3w x NA x & =37(6 + ¢)(MA xc +

NA x 8) =7 x OP(MA x ¢ + NA x &). (1)
But area of triangle ABC = area of trapezoid BCNM — area ABM --
area ACN = }(MA x ¢ + NA x 4). (2)

Then (1) and (2) give the required result.
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12. This follows immediately from Prop. XXIIIL
13. See Exercise 7, and Prop. XXIV.

14. The volume generated consists of a cylinder whose side is a,
together with the two solids generated by the revolution of two tri-
angles (one above and one below the rectangle which generates the
cylinder) about an axis passing through their vertices.

15. For the side of the circumscribed equilateral cone and the
diameter of its base, see Book IV., Prop. VI., Scholium. See also
Prop. XXII. .

16. For the altitude of the inscribed cylinder and the diameter of
its base, see Book IV., Prop. V. For the side and diameter of the
base of the inscribed equilateral cone, each, see Book IV. Prop. VI,
Scholium. Then apply General Scholium, 1, 2, and 4.

17. Let R = radius of sphere. Then the side of equilateral cone
and diameter of base (See Book IV., Prop. VL., Scholium), etc.
Then apply General Scholium, 1, 2, and 4.

18. Find altitudes and radii of bases by reference to the Props. V.
and VI. of Book IV., and then apply General Scholium, 1, 2,
and 4.

19. See Prop. XIX., Cor.

20. Let a and & be the two adjacent sides, and % and %' tbe corre-
sponding altitudes. Then the volume generated about ¢ is 74* X a,
and that about 4 is w4 x &, but ak = 8%, etc.

Locr

1. The convex surface of a cylinder of revolution having this line
for an axis.

2. The convex surfaces of two cylinders of revolution having the
same axis with the given cylinder.

3. See Book V., Prop. IX.
4. This locus is the intersection of two loci.

5. The circumference of a circle, or the circumferences of two cir-
cles the intersection of two loci.

6. The curve of intersection of a plane and a cylinder, or the curves
of intersection of two planes and a cylinder.
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7. A circumference the intersection of two spheres (See Book II.,
Prop. XXIII., Cor., and Prop. XX., Cor. 2).
8. A plane.

9. Circumference of a circle. See Book VII., Exercises, Locus 1.

ProBLEMS.

1. See General Scholium, 1. The radius of the base is equal to
the given altitude,

2. Use General Scholium, 1.

3. The side is the hypothenuse of a right angled triangle,
whose altitude is the given altitude of the frustum, and whose base is
the difference of the radii of the bases of the frustum. This being
found, apply General Scholium, 3.

4. Find the altitude from the triangle, the construction of which is
given in Problem 3, and then apply General Scholium, 3.

5. Find the altitude from the data, and apply General Scholium, 2.
6. Find the Side from the data, and apply General Scholium, 2.
7. General Scholium, 1. '

8. Find the side of the cone from the data. This is the radius of
the sector. Then apply Prop. XIX., Book IV., to find the angle.

9. Let SA = 1.8 yards be the side of the given cone, and Sx the
unknown side of the cone cut off. Then the two convex surfaces
are to each other as SA? : Sx?, whence by the data Sx can be found
in both cases.

10. II. 12. 13. 14. 15. Apply General Scholium, 4.
16. See Pfop. XV., Cor. 3.

17. See these Exercises, Theorem 10,

18. Apply General Scholium, 4.

19. See Prop..XV., Cor. 3, and Prop. XXI., Cor. 1.
20. Apply General Scholium, s.

21. Find the altitude of the zone from the data, and then apply
General Scholium, 5.

22. Apply General Scholium, 7.
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23. Find the radius of the base from the data, and then apply
General Scholium, 6. .

24. Find the altitude of the zone of the sector from the data, and
then apply General Scholium, s.

25. Let & be the required side. Then Prop. XVII. gives the ex-
pression for the given volume, whence x can be found.

26. Let ABC be the triangle, MN the axis, C the nearest vertex,
BCN perpendicular to MN, so that CN = 2 inches. Let AO be the

altitude of the triangle. Then ON = 3 inches, and AO = 4/3,
and AM, parallel and equal to ON, = 3 inches. Then

vol. ABC = vol. ABNM - vol. ACNM.
Apply General Scholium, 3.

27. See Exercises, Theorem 2o.
First. ma’h, but h=3b.  Secondly. nbh', but ' =}a. (See
Book 1., Exercise 36.)

28. Let ABC be the triangle, and DE the line parallel to BC
bisecting the sides AB, AC at D and E and the altitlgie AM at the
point N. -

We are to compare the volumes described by the revolution of
ADE and DECB about BC, or what is more simple, to compare vol.
DECB with the vol. ABC. From D and E draw DO and EP per-
pendicular to BC, then

vol. DECB = vol. DEPO + vol. DOB + vol. EPC,
which is easily computed and compared with vol. ABC.

29. Let the radius of the sphere = R, then the side of the regular in-

scribed tetraedron = %‘ /3, the side of the inscribed cube = R

V3.
and the side of the inscribed regular octaedron is R4/z.  Hence
the volumes can be easily computed. (See Exercises, Appendix to
Book VI., Problems.)









