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PREFACE TO THE FIRST EDITION

For some time past it has been felt that a gap existed between
the many excellent popular and non-mathematical works on
Astronomy, and the standard treatises on the subject, which involve
high mathematics. The present volume has been compiled with the
view of filling this gap, and of providing a suitable text-book for
such examinations as those for the B.A. degree of the University
of London.

It has not been assumed that the reader’s knowledge of mathe-
matics extends beyond the mbre fundamental portions of Geometry,
Algebra, and Trigonometry. A knowledge of elementary Dynamics
will, however, be required in reading the last three chapters.

The principal properties of the Sphere required in Astronomy
have been collected in the first chapter ; and, as it is impossible to
understand Kepler’s Laws without some knowledge of the properties
of the Ellipse, the more important of these have been collected in the
Appendix for the benefit of students who have not read Conic Sections.

- Articles marked with an asterisk are of special difficulty or of
relatively small importance and may be omitted at discretion.
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PREFACE TO THE FIFTH EDITION

For half a century ““ Barlow and Bryan ” has remained one of the
standard textbooks on elementary mathematical astronomy. During
this time there have been great advances in physical astronomy, or
astrophysics, as this branch of astronomy is commonly called. This
subject is mot treated in this book, which is concerned with the
foundations of astronomy—the general mathematical and dynamical
structure upon which everything else depends.

For the present edition the work has been completely revised and,
though the original plan has been adhered to, there has been consider-
able rearrangement of the chapters. The conceptions of apparent
and mean sidereal time, made necessary by the precision of modern
time-keepers, have been introduced. The definition of the equation
of time has been brought into accordance with the ‘ Nautical
Almanac ” and common usage of to-day. The chapters on Refraction,
Parallax and Aberration—the phenomena that affect the observed
position of a celestial body—have been brought together. A chapter
on Precession and Nutation, including the reduction from apparent
to mean place of a star, has been introduced. A brief description of
the bubble sextant, for observations in aircraft, is given and the section
dealing with the position line method of determining the position of
a ship or aircraft has been considerably expanded. An account is
given of the arrangement of data in the ““ Air Almanac.” The sections
dealing with the obsolete method of finding longitude by the method
of lunar distances and various other sections of little interest have been
omitted.

It is hoped that in this new edition the work will be found of increased
usefulness, both as a textbook and for reference purposes.

H. SPENCER JONES.
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MATHEMATICAL ASTRONOMY

CHAPTER 1
SPHERICAL GEOMETRY

1. The Sphere; Great Circles; Small (hrcles

A knowledge of the properties of the sphere is required in mathe-
matical Astronomy. It is convenient, therefore, to summarise the
properties that will be referred to in the course of this volume.

A Sphere may be defined as a surface, all points on which are at the
same distance from a certain fixed point. This point is the Centre,
and the constant distance is the Radius.

The surface formed by the revolution of a semicircle about its diameter
is a sphere. For the centre of the semicircle is kept fixed, and its
distance from any point on .
the surface generated will be
equal to the radius of the
semicircle.

In Fig. 1 let PgQP’ be &
any position of the revolving
semicircle whose diameter PP’
isfixed. Let OQ be the radius
perpendicular to PP’, Cq any
other line perpendicular to
PP’, meeting the semicircle
in ¢g. (We may suppose these
lines to be marked on a semi-
circular disc of cardboard.)
As the semicircle revolves,
the lines 0@, Cq will sweep
out planes perpendicular to
PP’, and the points @, ¢ will trace out in these planes circles HQRK,
hgrk, of radii 0OQ, Cq respectively. From this it may readily be seen
that every plane section of a sphere is a circle.

A great circle of a sphere is the circle in which it is cut by any plane
passing through the centre (e.9. HQRK, PgQP’ or PrEP’). A small
circle is the circle in which the sphere is cut by any plane not passing
through the centre (e.g. hqrk).

The azis of a great or small circle is the dlameter of the sphere
perpendicular to the plane of the circle. The poles of the circle are
the extremities of this diameter. (Thus, the line PP’ is the axis, and
P, P’ are the poles of the circles HQK and hgk.)

M. ASTRON. 1
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Secondaries to a circle of the sphere are great circles passing through its
poles. (Thus, PQP’ and PRP’ are secondaries of the circles HQK, hqk.)

A great circle on a sphere is analogous to & straight line in a plane.
A straight line joining two points in a plane is the shorter distance
between those points; so also the shortest distance between two
points on a sphere is tne arc of the great circle through those points.
Thus, in Fig. 1, the shortest distance between the points QR is the arc
QR of the great circle HQRK. If the radius of the sphere is B and the
angle QOR, subtended by the arc QR at the centre of the circle, is .
denoted by O, the length of the arc QR is RO, where O is expressed in
circular measure, or radians. It is convenient to take the radius of the
' sphere as unity ; the length
of the arc QR is then equal
to 0. Thus the angular dis-
tance between two points on
a sphere is measured by the
arc of the great circle joining
them or by the angle which
this arc subtends at the centre
of the sphere. If the angle
QOR is 60°, we can say that
the length of the great circle
arc QR is 73 radians, or that
it is 60°.

Small circles on a sphere
are analogous in their general
properties to circles in a plane.

: Secondaries to a great circle
are analogous to perpendiculars on a straight line. The distance of
a point from any great circle is the length of the arc of a secondary
drawn from the point to the circle. Thus rR is the distance of the
point 7 from the great circle HQRK.

2, Spherical Angles
The angle between two great circles is the angle between their
planes. Thus the angles between the circles PQ, PR in Fig. 2 is the angle
between the planes PQP’, PRP’. 1t is called the spherical angle QPR.
The angle between two great circles is equal to—
(i) The angle between the tangents to them at their points
of intersection.
(ii) The arc which they intercept on a great circle to which
they are both secondaries.

(iii) The angular distance between their poles.
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Let Pt, Pu be the tangents at P to the circles PQ, PR, and let 4, B
be the poles of the circles. These tangents are perpendicular to OP
and therefore parallel to OQ, OR. If we suppose the semicircle PQP’
to revolve about PP’ into the position PRP’, the tangent at P will
revolve from P¢ to Pu, the radius perpendicular to OP will revolve
from OQ to OR, and the axis will revolve from O4 to OB. All these
lines will revolve through an angle equal to the angle between the
planes PQP’ PRP’, and this is the angle QPR between the circles.
Hence,

.Angle between circles PQ, PR = /tPu= /QOR = / AOB,

3. Spherical Triangles

A spherical triangle is a portion of the sphencal surface bounded by
three arcs of great circles. Thus, in Fig. 2, PQR is a spherical triangle,
but Pgr is not a spherical triangle, because ¢r is not an arc of a great
circle. We may, however, draw a great circle passing through ¢ and 7,
and thus form a spherical triangle Pgr.

A spherical triangle, like a plane triangle, has six parts, viz. its
three sides and its three angles. The sides are generally measured by
the angles they subtend at the centre of the sphere, so that the six
parts are all expressed as angles. No part is supposed to exceed two
right angles or 180°, The circumference of a great circle is 360°. Two
points on the sphere, such as @ and R in Fig. 2, can be joined by two
arcs of a great circle, one of which, @R, is less than or equal to 180°,
whilst the other, QHK AR, is greater than or equal to 180°. PQR is a
spherical triangle, but the figure PQHKARP is not a spherical triangle.
Similarly, no angle of a spherical triangle can exceed two right angles.

A spherical triangle has the property, in common with plane
triangles, that the sum of any two sides is greater than the third side.
But whereas the sum of the three angles of a plane triangle is equal to
two right angles, the sum of the three angles of a spherical triangle is
always greater than two right angles. The amount by which the sum
of the three angles exceeds two right angles is termed the spherical
excess.

A plane triangle may have one angle a right angle. A spherical
triangle, on the other hand, may have one, two, or three angles that
are right angles. Thus, in the triangle PQR (Fig. 2), the angles' PQR,
PRQ are both right angles because, PP’ being perpendicular to the
plane, HQRK, any plane through PP’, such as PQP’, is necessarily
perpendicular to the plane HQRK. If the planes PQP’, PRP', are at
right angles to one another, the three angles of the triangle PQR will
be right angles.

It may be noted that in a triangle such as PQR, in which the angles
PQR, PRQ are right angles, the two sides, PQ, PR are quadrants and
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therefore right angles. The third side @R is equal to the opposite
angle QPR

If, in addition, the angle QPR is a nght angle (Fig. 3), QR will be a
quadrant. The triangle PQR will, therefore, have all its angles right
angles, and all its sides quadrants, and each vertex will be the pole of
the opposite side.

The planes of the great circles forming the sides, are three planes
through the centre O mutually at right angles, and they divide the
surface of the sphere into eight of these triangles ; thus the area of each
triangle is one-eighth of the surface of the sphere.

If the sides of a spherical triangle, when expressed as angles are
very small, so that its linear dimensions are very small compared with
the radius of the sphere, the triangle is very approximately a plane
triangle.

Thus, although the Earth’s surface is spherical, a triangle whose
sides are a few yards in length, if traced on the Earth, will not be

distinguishable from a plane triangle. If
P the sides are several miles in length, the
triangle will still be very nearly plane.

4. Small Circles

All points on a great circle are at a

constant (angular) distance from its pole.

ol R For, as the generating semicircle revolves

about PP’ (Fig. 2), carrying ¢ along the

Fie. 3. small circle hk to r, the arc Pg is equal to

the arc Pr and the angle POq is equal to

the angle POr. The constant angular distance Pg is called the

spherical, or angular radius of the small circle. The pole P is
analogous to the centre of a circle in plane geometry.

Circles which have the same axis and poles lie in parallel planes.

For the planes HQK, hqk are parallel, both being perpendicular to the

axis PP’. Such circles are called parallels.

5. Length of Small Circle Arc

The arc of a small circle subtending a given angle at the pole is pro-
portional to the sine of the angular raduus.

Let gr be the arc of the small circle hgrk, subtending / qPr at P,
and let C be the centre of the circle. Evidently /¢Cr = /QOR (since
Cq, Cr are parallel to 0Q, OR). Hence, the arcs gr, QR are proportional
to the radii Cgq, OQ, therefore

arc gr Cq

Cq
e QR 00— ~ = sin POq = sin Pq.
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But QR is the arc of a great circle subtending the same angle at the
pole P, hence the arc ¢r is proportional to sin Pg, as was to be shown.
Since ¢ = 90° — Pg, therefore sin Pg = cos ¢@, so that the arc ¢r
is proportional to the cosine of the angular distance of the small circle
gr from the parallel great circle QR.

6. A TUseful Result

The following result is of great use in astronomy:—

Let AHBK (Fig. 4) be any given great or small circle whose pole
(i8 P, Z any other given point on the sphere, and let the great circle ZP
meet the given circle in the points 4, B. Then 4, B are the two points
on the given circle whose distances from Z are greatest and leasu
respectively. -

For let H be any other point on the circle. Join ZH, HP.

Then, in spherical A ZPH, ZP + PH > ZH. But PH = PA4;

therefore ZP + PA > ZH, W

i.e. Z4A > ZH.
Also, if Z is on the opposite side of the ’A
circle to P, then b4
ZH + PH > PZ; "’
ZH + PB > PZ; K

ZH > PZ - PB, Fre. 4.
i.e. ZH > ZB.
If Z’ be a point on the same side of the circle as P, then
PZ' 4+ Z’'H > PH. Butas PH = PB, PZ' { ZH > PB
or Z’H > PB — PZ',
i.e. Z'H > Z'B, as before.

Hence, 4 is further from Z, Z’, and B is nearer to Z, Z', than any
other point on the circle.

If H, K are the two points on the circle equidistant from Z, the
spherical triangles ZPH, ZPK have ZP common, ZH = ZK (by
hypothesis), and PH = PK, hence they are equal in all respects ; thus

/ZPH = /ZPK, and /PZH = / PZK.

Hence PH, PK are equally inclined to PB, as are also ZH, ZK.

Similar properties hold in the case of the point Z'. These properties
are of frequent use.

7. Application to the Earth

The results of the preceding sections can be illustrated by the
specification of positions on the surface of the Earth. We shall see
later that the Earth is very nearly spherical in form. For the present
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we assume that it is actually a sphere. It rotates about an axis, called
the polar awis, which meets its surface in two points, P, P’ (Fig. 5).
P is called the North Pole and P’ the South Pole. The terrestrial equator,
HQRK, is the great circle on the Earth whose plane is perpendicular to
the Earth’s axis. A terrestrial meridian, PgQP’, is the section of the
Earth’s surface by a plane passing through its axis. The Earth being
assumed to be a sphere, a meridian will be a great circle passing through
the terrestrial poles.

8. Telrestz‘ia;l‘ Longitude

The Longitude of a place on the Earth is the angle between the
terrestrial meridian through that place, and a certain meridian fixed
~ on the Earth, and called the Prime Meridian.

Thus, in Fig. 5, if PRP’ represents the prime meridian, the longitude
of any place ¢ is measured
by the angle RPqg.

The longitude of ¢ is also
measured by R, the arc
of the equator intercepted
between the meridian of the
place and the prime meri-

~ dian.

By international agree-
ment, the prime meridian
from which the longitudes
of all places on the Earth
are measured is defined as
the meridian passing through
the Airy transit instrument

Fe. 5. at the Royal Observatory,
Greenwich.

As all places on a given meridian have the same longitude, the
terrestrial meridians are often called meridians of longitude.

Longitudes are measured both eastwards and westwards from the
prime meridian, from 0° to 180°. Thus, if, in Fig. 5, PQP’ denotes the
prime meridian, the longitude of r is measured by the arc QR and is
eagt of Greenwich ; if PRP’ denotes the prime meridian, the longitude
of ¢ is measured by the arc’' RQ and is west of Greenwich.

The plane passing through the polar axis and Greenwich
divides the Earth into two hemispheres. All places whose longi-
tudes are between 0° and 180° E. lie in the eastern hemisphere ;
those whose longitudes are between 0° and 180° W. lie in the

western hemisphere.
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9. Terrestrial Latitude

The latitude of a place on the Earth is its angular distance from the
equator, measured along the meridian. Thus, in Fig. 5, the latitude of
g is the arc Qg, or the angle ¢Ogq. The equator, HQRK, divides the
Earth into two hemispheres, the northern hemisphere, which contains
the north pole, P, and the southern hemisphere, which contains the
south pole, P’. A place in the northern hemisphere, such as g, is said
to have a north latitude ; a place in the southern hemisphere is said to
have a south latitude. Latitude is measured in degrees, from 0° to
90° N. or 8.

All points on a small circle, kgrk, parallel to the equator, have the

same latitude. For this reason, parallels to the equator are usually

termed parallels of latitude. The angular radius of the parallel of |

latitude, Pg, is equal to 90°~¢@Q or, in other words, is the complement of
the latitude. v

The complement of the latitude is called the colatitude. The colati-
tude is the angular radius g of the parallel of latitude.

If we now consider two points, pg, on the same parallel of
latitude, the length of the small circle arc, gr, is, from Art. 5, equal to
QR cos QOg. But the great circle arc, @R, is the difference of longitude
between the two places, whilst the angle @Oq is the latitude, which
we denote by ¢. We thus have the distance, measured along the
parallel of latitude, between two places on the same parallel is equal
to (difference of longitude) X cos ¢. If the difference of longitude
is measured in degrees, the distance is also given in degrees.

It should be noted that, in forming the difference of longitude,
regard must be paid to whether the longitudes are east or west. Thus
the difference of longitude between two places whose longitudes are
120° W. and 30° W. is 90°; between two places whose longitudes are
120° W. and 30° E. is 150°. Similarly, in forming the difference of
latitude ‘between two places, regard must be paid to whether the
latitudes are north or south.

10. Principal Formulae for Solving Spherical Triangles

Any three given parts suffice to determine a spherical triangle, but
there are certain ‘‘ ambiguous cases” when the problem admits of
more than one solution.

The formulae required in solving spherical triangles form the
subject of Spherical Trigonometry, and are in every case different
from the analogous formulae in Plane Trigonometry. There is this
further difference, that a spherical triangle is completely determined
if its three angles are given.

Thus, two spherical triangles will, in general, be equal if they have
the following parts equal :—
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(i) Three sides. (iv) Three angles.
(i1) Two sides and included (v) Two angles and ad]a.cent
angle. - side.
(ili) Two sides and one oppo- - (vi) Two angles and one oppo-
site angle. site side.

Cases (ii1) and (vi) may be ambiguous.
4, B, C denote the angles of the triangle ; a, b, ¢ the sides opposite to
these.
The principal formulae, by the aid of which any spherical triangle
may be solved, are as follows :— '

cosa=cosbcosc -+ sinbsinccos A ....ccceeieiinininns (1)
cosAd= —cosBcosC +sinBsinCco8a ... (2)
‘ gsina@cos B=cosbsinc — sinbcosccos 4 ............... (3)
i sinacos C =coscsinb —sinccosbeos 4 ............ 3"
| cotasinb=cosbcosC +cot AsinC ..................... 4)
sina= sinb= sin ¢ 5)

A S B s O s
Proofs of these formulae may be found:in textbooks on spherical

trigonometry.

By the cyclic interchange of the three sides and of the three angles,
two other formulae corresponding to each of the formulae (1) to
(4) may be written down. The above
formulae are not all independent; thus
(3) may be readily deduced from two
a formulae of type (1); formulae of type
(3) may be deduced from formulae (4)
and (5).

5 Which of these formulae are used

Fig. 6. depends upon which parts of the spherical

triangle are known. If, for instance, two

sides and the included angle are given, the third side can be obtained

from (1). Three sides and one angle being then known, the remaining

angles can be found from (5). If two angles and the adjacent side are
known, the third angle can be found from (2), and so on.

The formulae take a specially simple form in the case of right-angled
triangles. The various formulae applicable in this case can be con-
veniently summarised in the following manner :—

RicET-ANGLED TrianGLES.—C being the right angle, there are
five other parts, which come in the following order, b 4 ¢ Ba. Thereis
a convenient general rule which embraces all the formulae of right-
angled spherical triangles.
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A1'range the following five quantities in order round a circle: b,
° — A4,90° —¢,90° — B,a. Then:—
(1) The sine of any of these quantities is equal to the product of the
tangents of the two adjacent quantities,
(ii) and also it is equal to the product of the cosines of the two
opposite quantities. '

e
=Y

Fi¢. Ta. . Fia. 7b.

In order to solve the triangle, we must know two of the five quanti-
ties, and one or other of these two formulae will enable us to find any
of the remaining three quantities.

In many cases the simplest way to solve a general triangle is to draw
a great circle through one of the angles at right angles to the opposite
side, and then apply the formulae applicable to right-angled triangles.

CHAPTER II
THE CELESTIAL SPHERE

I—DEFINITIONS—SYSTEMS OF COORDINATES

11. Astronomy—Descriptive, Gravitational, Physical

Astronomy is the science which deals with the celestial bodies.
These eomprise all the various bodies distributed throughout the
universe, such as the Earth (considered as a whole), the Moon, the Sun,
the planets, the comets, the fixed stars, and the nebulae. It is con-
venient to divide Astronomy into three different branches.

The first may be called Descriptive Astronomy. It is concerned with
observing and recording the motions of the various celestial bodies,
and with applying the results of such observations to predict their
positions at any subsequent time. It includes the determination of
the distances, and the measurement of the dimensions of the celestial
bodies. ' ]

The second, or Gravitational Astronomy, is an application of the
principles of dynamics to account for the motions of the celestial
bodies. It includes the determination of their masses.
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The third, called Physical Astronomy, is concerned with determining
the nature, physical condition, temperature, and chemical constitution
of the celestial bodies.

The first branch has occupied the attention of astronomers in all
ages. The second owes its origin to the discoveries of Sir Isaac Newton
in the seventeenth century ; while the third branch has been almost
entirely built up in the last and the present centuries.

In this book we shall treat almost exclusively of Descriptive and
Gravitational Astronomy.

12, The Celestial Sphere ,

On observing the stars it is not difficult to imagine that they are
bright points dotted about on the inside of a hollow spherical dome,
whose centre is at the eye of the observer. It.is impossible to form
any direct conception of the distances of such remote bodies; all

?
il
el
>

we can see is their relative directions. Moreover; most astronomical
instruments are constructed to determine only the directions of the
celestial bodies. Hence it is important to have a convenient mode of
representing directions. _
The way in which this is done is shown in Figure 8. Let O be the
position of any observer, A, B, C, etc. any stars or other celestial
bodies. About O, as centre, describe a sphere with any convenient
_length as radius, and let the lines joining O to the stars 4, B, C meet
this sphere in a, b, ¢ respectively. Then the points, a, b, ¢ will represent,
on the sphere, the directions of the stars 4, B, C, for the lines joining these
points to O will pass through the stars themselves. In this manner we
obtain, on the sphere, an exact representation of the appearance of the
heavens as seen from Q. Such & sphere is called the Celestial Sphere.
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This sphere may be taken as the dome upon which the stars appear
to lie. But it must be carefully borne in mind that the stars do not
actually lie on a sphere at all, and that they are only so represented for
the sake of convenience.

13. Angular Distances and Angular Magnitudes
Any plane through the observer will be represented on the celestial

sphere by a great circle. The arc of the great circle ab (Fig. 8) repre-
sents the angle a0b or AOB which the stars 4, B subtend at 0. This
angle is generally measured in degrees, minutes, and seconds, and is
called the angular distance between the stars. This angular distance
must not be confused with their actual distance 4B. In the same way,
when we are dealing with a body of perceptible dimensions, such as the
Sun or Moon (DF, Fig. 8), we shall define its angular diameter as the
angle DOF, subtended by a diameter at the observer’s eye. This
angular diameter is measured by the arc df of the celestial sphere, that
is, by the diameter of the projection of the body on the celestial sphere.
From the ﬁgure it is evident that

df DF

0d  OD

Since DF is the actual linear diameter of the body, measured in
units of length, the last relation shows us that the angular diameter
(df) of a body varies directly as its linear diameter DF, and inversely
as OD, the distance of the body from the observer’s eye.

As the eye can only judge of the dimensions of a body from its angular
magnitude, this result is illustrated by the fact that the nearer an object is
to the eye the larger it looks, and vice versa. Thus, if the distance of the object
be doubled, it will only look half as broad and half as high. This assumes the
angle subtended by the body is so small that its sine equals its circular measure.

14. The Directions of the Stars are very approximately Independent
of the Observer’s Position on the Earth

This is simply a consequence of the enormously great z'z
distances of all the stars from the Earth. Thus, let =
(Fig. 9) denote any star or other celestial body, S, E two
different positions of the observer. If the distance SE be
only a very small fraction of the distance Sz, the angle EzS
will be very small, and this angle measures the difference
between the directions of « as seen from E and from S.

In illustration, if we see a group of objects a mile or
two off, then move an inch or two in any direction, we
ghall observe no perceptible change in the apparent directions or
relative positions of the objects.

L
Fi1a. 9.
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If Ex’ be drawn parallel to Sz, the angle zEx’ will be equal to ExzS,
and will therefore be very small indeed. Hence, Ex will very nearly
coincide in direction with Ez’. Thus, considering the vast distances,
we see that the lines joining a star to different points of the Earth may be
considered as parallel (not true for Sun, Moon, planets).

The stars will, therefore, always be represented by the same points
on a star globe, or celestial sphere, po matter what be the position of
the observer. The great use of the celestial sphere in astronomy
depends on this fact.

15. Motion of Meteors

The projection of bodies on the celestial sphere is well illustrated
by the motion, relative to the earth, of a swarm of meteors. Where
such a swarm is moving uniformly, all the meteors describe (approxi-
mately) parallel straight lines. If we draw planes through these lines
and the observer, they will intersect in a commeon line, namely, the
line through the observer parallel to the direction of the common
motion of the meteors. The planes will, therefore, cut the celestial
sphere in great circles, having this line as their common diameter.
‘These great circles represent the apparent paths of the meteors on the
celestial sphere. The paths appear, therefore, to radiate from a
common point, namely, one of the extremities of this diameter.

This point is called the Radiant, and by observing its position the
direction of relative motion of the meteors is found.

16. Zenith and Nadir.—Horizon

If, through the observer, a line be drawn in the direction in which
gravity acts (i.e. the direction indicated by a plumb-line), it will meet
the celestial sphere in two points. One of these is vertically above the
observer, and is called the Zewith; the other is vertically below the
observer, and is called the Nadir. (Fig. 8, and Z, N, Fig. 10.)

The plane through the observer perpendicular to the direction to
the zenith will cut the celestial sphere in a great circle. This great
circle is called the Celestial Horizon. (Fig. 8, and sEnW, Fig. 10.)
Its poles are the zenith and the nadir.

~17. Diurnal Motion of the Stars

If we observe the sky at different intervals during the night, we
-shall find that the stars always maintain the same configurations
relative to one another, but that their actual situations in the sky,
relative to the horizon, are continually changing. Some stars will set
in the west, others will rise in the east. One star which is situated in
the constellation called the ““ Little Bear,”’ remains almost fixed. This
star 18 called Polaris, or the Pole Star. All the other stars describe on
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the celestial sphere small circles (Fig. 10) having a common pole P very
near the Pole Star, and the revolutions are performed in the same
period of time, namely, about 23 hours 56 minutes of our ordinary time.

18 Celestial Poles, Equators, and Meridian

. The common motion of the stars may most easily be conceived by

imagining them to be attached to the surface of a sphere which is made
_t6 revolve uniformly about the diameter PP,

The extremities of this diameter are called the Celestial Poles.
That pole, P, which is above the horizon in northern latitudes is called
the North Pole, the other, P’, is called the South Pole.

The great circle, EQRW, having these two points for its poles, is
called the Celestial Equator. It is, therefore, the circle which would be
traced out by the diurnal path of a star distant 90° from either pole.

The Meridian is the great circle (PZP'N, Fig. 11) passing through
the zenith and nadir and the celestial poles.
It cuts both the horizon and equator at
right angles, since it passes through their
poles.

19. The Cardinal Points. Verticals

. CarDINAL PoiNTs.—The East and West
Points (E, W, Fig. 11), are the points of
intersection of the equator and horizon.
The North and South Points (N, S) are the
intersections of the meridian with the
- horizon. )

VertIcaLs.—Secondaries to the horizon, i.e. great circles through
- the zenith and nadir, are called Vertical Circles, or, briefly, Verticals.
Thus, the meridian is a vertical. The Prime Vertical is the vertigal
circle (ZENW) passing through the east and west points.

Since P is the pole of the circle QERW, and Z is the pole of nEsW,
therefore E, W are the poles of the meridian PZP'N. Hence the
horizon, equator, and prime vertical which pass through E, W, are all
secondaries to the meridian; they therefore all cut the meridian at
right angles. ‘

20. Annual Motion of the Sun.—The Ecliptic

The Sun, while participating in the general diurnal rotation of the
heavens, possesses, in addition, an independent motion of its own
relative to the stars. This motion of the Sun relative to the stars is an
apparent motion caused, as we shall see in Chapter XVII by the
motion of the Earth round the Sun. The Earth completes one
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revolution in its orbit round the Sun in the course of a year, so
that the Sun returns to its same apparent position in the heavens,
relative to the stars, after a year.

Imagine a star globe worked by clockwork so as to revolve about
an axis pointing to the celestial pole in the same periodic time as the
stars, On such a moving globe the directions of the stars will always
be represented by the same points. During the daytime let the direc-
tion of the Sun be marked on the globe, and let this process be repeated
every day fora year. We shall thus obtain on the globe a representation
of the Sun’s path relative to the stars, and it will be found that—
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(i) The Sun moves from west to east, and returns to the same
position among the stars in the period called a year ;

(i) The relative path on the celestial sphere is a great circle, inclined
to the equator at an angle of about 23° 27’

This great circle (C o L ==, Fig. 11) is called the Ecliptic. We may,

. therefore, briefly define the ecliptic as the great circle which is the

trace, on the celestial sphere, of the Sun’s annual path relative to the
stars,

The intersections of the ecliptic and equator are called Equinoctial
Points. One of them is called the First Point of Aries; this is the
point through which the Sun passes when crossing from south to north
of the equator, and it is usually denoted by the symbol v, The other
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is called the First Point of Libra, and is denoted by the symbol =,
The inclination of the ecliptic to the equator is called the Obliquity.
In Fig. 11, QrC is the obliquity. This angle, which is about 23° 27’,
we shall denote by e.

21, Coordinates

In Analytical Geometry, the position of a point in a plane is defined
by two coordinates. In like manner, the position of a point on a
sphere may be defined by means of two coordinates. Thus, the
position of a place on the Earth is defined by the two coordinates,
latitude and longitude. For fixing the positions of celestial bodies,
the following different systems of coordinates are used :—

(i) altitude (or zenith distance) and azimuth (horizontal system);
(ii) right ascension and declination (equatorial system);
(iii) celestial latitude and longitude (ecliptic system).

These three systems of coordinates will be considered in order.

22, Altitude or Zenith Distances and Azimuth

Let Fig. 12 represent the celestial sphere, Z, N being the zenith and
nadir; n, s the north and south points and the great circle sXn the
horizon. P is the celestial pole and sZPn is the meridian. :

Let = be any star. Draw the vertical circle ZazX. Then the
position of  may be defined by either of the following pairs of co-
ordinates, which are analogous to the Cartesian and polar coordinates
of a point in a plane respectively :— :

(@) The arc nX and the arc Xz.
(6) The arc Zz and the angle nZz.

Practically, however, the two systems are equivalent; for, since Z
is the pole of sX, ZX = 90°, therefore

Zz = 90° — zX, and angle nZz = arc nX.

The Altitude of a star (X«) is its angular distance from the horizon,
measured along a vertical.

The Zenith Distance (abbreviation, Z.D.) is its angular distance
from the zenith (Zz), or the complement of the altitude.

The Azimuth (nX or nZz) is the arc of the horizon intercepted
between the north point and the vertical of the star, or the angle which
the star’s vertical makes with the meridian. The azimuth is measured
from 0° to 180° eastwards or westwards.

In Fig. 12, QuR represents the equator, w being the west pomt
It is a great circle whose pole is P. Hence PQ = 90°.
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. ow Z(), the angular distance of the zenith from the equator, is the
terrestrial latitude of the observer. But ZQ = Pn because ZQ + PZ

= PZ + Pn = 90°.
But Pn is the altitude of the pole, P. Hence we have the result

that the altitude of the pole is equal to the latitude of the observer.
The diurnal motion causes the star = to describe the small circle
UzV, parallel to the celestial equator, QuwR, with P as its pole. Both
the altitude and azimuth of the star change continually during the
course of the diurnal motion. From Art. 6, it follows that ZU is the
least, and ZV the greatest distance of Z from the small circle UzV.
Hence the star has its smallest zenith distance and its greatest altitude

-
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when it is on the meridian south of the zenith. At the instant when
the star is at U, it is said to south. The star has its greatest zenith

distance when it is on the meridian north of the zenith.

A celestial body is said to culminate when its zenith distance is

least or greatest.
at lower culmination the zenith distance is greatest.

23. Polar Distance, or Declination, and Hour Angle
From the pole, P, draw through z the great circle PzM
_circle is a secondary to the equator QWR. (Fig. 13).

At upper culmination the zenith distance is least

; this
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Then we may take for the coordinates of z the arc Pz and the
angle sPz. Or we may take the arc zM, which is the complement of
Pz, and the arc QM, which = angle QPxz.

The North Polar Distance of a star {abbreviation, NPD) is its
angular distance (Px) from the celestial pole.

The Declination (abbreviation, Decl.) is the angular distance from
the equator (zM), measured along a secondary, and is, therefore, the
complement of the N.P.D.

The great circle PzM through the pole and the star is called the
star’s Declination Crcle.

The Hour Angle of the star (ZPx) is the angle which the star’s
declination circle makes with the meridian.

Fre. 13.

The declination may be considered positive or negative, according
as the star is to the north or south of the equator ; it is also customary
to specify this by the letter N. or S., as the case may be, and this is
called the name of the declination. South declinations are always to
be regarded as negative.

The hour angle is generally measured from the meridian towards
the west, and is reckoned from 0° to 360°.

Either the declination and hour angle or the N.P.D, and hour angle
may be taken as the two coordinates of a star.

M. ASTRON. 2
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24. Declination and Right Ascension

The position of a celestial body is, however, more frequently defined
by its declination and right ascension. ,

The declination has been already defined, in Art. 23, as the angular
distance of the star from the equator, measured along a secondary.
(«M, Fig. 13.)

The Right Ascension (R.A.) is the arc of the equator intercepted
between the foot of this secondary and the First Point of Aries. Thus,
oM, Fig. 13, is the R.A. of the star 2.

The R.A. of a star is always measured from o eastwards reckoning
from 0° to 360°. Thus the star w Piscium, whose declination circle
cuts the equator 1° 34’ 18” west of °, has the R.A. 360° — 1° 34’ 18"
or 358° 25’ 42",

The Diurnal motion of the star z is along the small circle UzV,
parallel to the equator QMR. The declination, zM, and the north polar
distance, zP, therefore remain constant during the diurnal motion.
The hour angle ZPz or QM, however, increases at a uniform rate.

The First Point of Aries, <, partakes in the common diurnal
motion of the stars and its hour angle increases at the same rate as the
hour angles of the stars. The difference of hour angles of the First
Point of Aries and of a star therefore remains constant during the
diurnal motion. This difference of hour angle is M, the right
ascension of the star; or, otherwise expressed,

HAc — HA% = RA%.

The right ascension and declination of a star thus both remain
constant during the diurnal motion. It will be seen later that they
are subject to slow changes caused by the phenomenon known as the
precession of the equinoxes.

25, Celestial Latitude and Longitude

The position of a celestial body may also be referred to the eclptiic
instead of the equator.

The Celestial Latitude is the angular distance of the body from the
ecliptic, measured along a secondary to the ecliptic. (Hz, Fig. 14.)

The Celestial Longitude is the arc of the ecliptic intercepted between
this secondary and the first point of Aries, measured eastwards from .
(°r H, Fig. 14.)

The clestial latitude and longitude of a celestial body are unaffected
by the diurnal motion, because this motion does not alter the relative
positions of z, o» and H. These coordinates are most useful in defining
the positions of the Sun, Moon and planets, because the Sun always
moves in the ecliptic, °»H ==, whilst the paths described by the Moon
and planets are always very near the ecliptic.
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26. Relation between Horizontal and Equatorial Systems of Co-
ordinates

If the hour angle and declination of a star are given, its altitude and
azimuth may be found, and vice versa, by the formulae of spherical
trigonometry, the latitude of the observer being assumed to be known.

We denote the hour angle of the celestial body # by 4, and its
declination by 8. We also denote its azimuth by @ and its zenith
distance by z. The latitude is denoted by ¢. (See Fig. 15.)

In the spherical triangle PZz, the side PZ is 90° — ¢ ; the side
Pzis 90° — 8; theside Zrisz. The angle PZz is a. The angle ZPx
is the angle between the meridian and the star’s declination circle.
Two cases have to be distinguished; (i) if the star is west of the
meridian, the angle ZPz
is the hour angle, 4 ;
(i) if the star is east of
the meridian, its hour
angle is greater than
180°, since the hour
angle is measured from
the meridian towards the
west, from 0° to 360°;
but no angle of a spheri-
cal triangle can be
greater than 180° and
the angle ZPz is there-
fore 'in this case
360°+h. The spherical
triangle ZPxz is shown
at the side of Fig. 15 for
the two cases when the
star is respectively west Fre. 14.
and east of the meridian.

(i) We suppose first that we know the azimuth and zenith distance,
and require to find the hour angle and declination. We use the formu-
lae given in § 10. From formulae (1) taking Px as the side a, we have

gin 8 = sin ¢ cos 2 4 cos ¢ sin z cos @
which gives 8, since ¢, z, a are assumed known. & lies between 0° and
90°; if sin & is positive, & is positive and the declination is north ; if
sin 8 is negative, 8 is negative and the declination is south.

The side Pz of the triangle now being known, % can be obtained by
a further application of formula (1), Art. 10, in the form

cos & cos ¢ cos k = cos z — sin & sin ¢.
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This formula holds whether the star is east or west of the meridian.
There is only one value of % between 0° and 180° which satisfies this
equation ; the hour angle of the star is A, if the star is west of the
meridian and 360° — &, if it is east of the meridian.

(ii) We suppose next that we krow the hour angle and declination
and require to find the azimuth and zenith distance.
We again use the formula (1) to find 2, in the form
cos z = sin & sin ¢ +- cos 8 cos ¢ cos k.

The zenith distance z must lie between 0° and 180°. If cos 2 is positive,

STAR EAST
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2 is less than 90° ; if cos 2 is negative, z is greater than 90° and the star
is below the horizon.

Having found z, a is determined from
cos ¢ sin 2 cos @ = sin 8 — sin ¢ cos 2

a lies between 0° and 180°. If % is less than 180°, the azimutjl is
westerly ; if h is greater than 180°, the azimuth is easterly.

27. Recapitulation
Below is a list of all the definitions of this chapter, with references
to Fig. 16. '
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GREAT CIRCLES. TrEIR PoLES.
Horizon, nEsW. Zenith, Z; Nadir, Z'.
Equator, EQWR. North Pole, P ; South Pole, P'.
Meridian, ZsZ'm East Point, E ; West Point, W.

Prime Vertical, ZEZ'W. North Point, # ; South Point, s.

Ecliptic, v C== L ; Equinoctial Points, ", == viz :—First Point of
Aries, o0, and First Point of Libra, == ; Vertical of Star, ZzX ; Declina-
tion Circle of Star, PzM.

2"
Fie. 16.
COORDINATES.
Altitude, Xz ; .
or Zenith Distance, Zz. } Azimuth, sX = sZz.

North Polar Distance, Pz. Hour Angle, QM = ZPx.
Declination, Mz. Right Ascension, ¥ M.
Celestial Latitude, Hz. Celestial Longitude, v H.

OTteER AneLEs.—Obliquity of Ecliptic (¢) = C Q. Observer’s
Latitude (¢) = ZQ = nP. Colatitude = PZ.

Notice that the circles on the remote side of the celestial sphere are dotted.
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II. THE D1uRNAL ROTATION OF THE STARS

28. Sidereal Day and Sidereal Time

The rotation of the Earth causes the stars to transit in succession
across any given meridian. The interval between two successive
passages of a fixed star over the meridian of any place is called a sidereal
day. The sidereal day is the true period of the Earth’s rotation.
Like the civil day, it is divided into 24 hours (A.), and these are sub-
divided into 60 minutes (m.) of 60 seconds (s.) each. From the facts
stated in Art. 17, it appears that the sidereal day is about four minutes
* shorter than the civil or mean solar day (see Art. 58); its actual length
is 23h. 56m. 4:100s. of mean solar time. In actual practice, however,
transits of the First Point of Aries and not of a star are used to define
the sidereal day. We shall see, in Art. 468, that the position of the
First Point of Aries is not fixed but that it has a slow retrograde motion
along the ecliptic, amounting to about 50” a year, due to the phenomenon
known as precession. The conventionally adopted sidereal day is in
consequence 0-009s shorter than the true period of rotation of the
Earth and is equal to 23h. 56m. 4-091s. of mean solar time.

The beginning of the sidereal day, corresponding to Oh. Om. Os.
sidereal time, is taken as the instant when the first point of Aries crosses
the meridian. - Sidereal clocks, showing sidereal time, are used in
observatories. The hands should indicate Oh. Om. Os. when the first
point of Aries crosses the meridian. The hours are reckoned from
Oh. up to 24h. when o again comes to the meridian and a new day
begins.

The rotation of the Earth is subject to very small irregularities,
which can not be detected except by observations of very great refine-
ment. We therefore assume that the earth revolves at a perfectly
uniform rate, so that the angles described by any star about the pole
are proportional to the times of describing them. Thus, the hour angle
of a star (measured towards the west) is proportional to the interval of
sidereal time that has elapsed since the star was on the meridian.

Now, in 24 sidereal hours the star comes round again to the meridian,
after a complete revolution, the hour angle having increased from 0°
to 360°. Hence the hour angle increases at the rate of 15° per hour.
Hence, also, it increases 15" per minute, or 15” per second.

The hour angle of a star is, for this reason, generally measured by
the number of hours, minutes, and seconds of sidereal time taken to
describe it. It is then said to be expressed in time. Thus—

The hour angle of a star, when expressed in time, is the interval of
sidereal time that has elapsed since the star was on the meridian.

In particular, since the instant when % is on the meridian is the
commencement of the sidereal day, we see that
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The sidereal time is the hour angle of the first point of Aries when
expressed in time.

It should be noted that at any instant the sidereal time is different
for two different meridians, because the hour angle of the first point of
Aries is different for two different meridians. Thus the sidereal time
at any instant is related to the observer’s meridian and for this reason
it is often called local sidereal time.

28a. Changing the Measure of an Angle

To reduce to angular measure any angle expressed in time. Multiply
by 15. The hours, minutes, and seconds of time will thus be reduced
to degrees, minutes, and seconds of angle. Conversely :—

To reduce to time from angular measure. Divide by 15, and for
degrees, minutes, and seconds write hours, minutes, and seconds.

Examples.—1. To find, in angular measure, the hour angle of a star at 15h.
21m. 50s. of sidereal time after its transii.
The process stands thus—
16 21 50
15
230 27 30
The angular measure of the hour angle is 230° 27/ 30,

2. To find the sidereal time required to describe 230° 27’ 30" (converse of Exz. 1)
15) 230 27 30

156 21 50; Required time= 15h. 21m. 50s.

29. Transits
The passage of the star across the meridian is called its Transit.
Let z be the position of any star in transit (Fig. 17). In Art. 24,
the right ascension of a star was defined as the arc of the equator
intercepted between the First Point of Aries and the foot of the
secondary through the Pole and the star, measured eastwards from <.

The star’s R.A. = @ or v PQ = hour angle of °y
= sidereal time expressed in angle.

Hence, the right ascension of a star, when expressed in time, is equal
to the sidereal time of its transit.

When the Sun is at o, its right ascension is zero. As the sun
moves eastwards along the ecliptic, its right ascension increases.
It is for this reason that right ascension is measured in the
eastward direction.

In practice the R.A. of a star is usually expressed in time. Thus,
the R.A. of a Lyrae is given in the tables as 18h. 34m. 54-3s. and not
as 278° 43’ 345",
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Again, let z be the meridian zenith distance Zz, considered positive
if the star transits north of the zenith, 8 the star’s north declination
Qz, and ¢ the north latitude QZ. We have evidently

Qz = QZ + Zz;
or 8=¢ +2
or (star’s N. decl.) = (lat. of observer) -+ (star’s meridian Z.D. north).

This formula will hold universally if declination, latitude, and
zenith distance are considered negative when south.

Hence the R.A. and decl. of a star may be found by observing its
sidereal time of transit and its meridian Z.D., the latitude of the
observatory being known.

Conversely, if the R.A. and decl. of a star are known, we can, by
observing its time of transit and meridian Z.D., determine the sulereal
time and the latitude of the observatory.

By finding the sidereal time we may set the astronomical clock.
It is impossible, however, to construct a clock that will keep time with
perfect accuracy. What is required
is to know the clock-error, the
amount by which the clock is fast
or slow, and the clock-rate, the
rate at which the clock-error is
increasing or decreasing. If the
error of the clock at a certain time
is known and also the rate of the
clock, the error at some subsequent
time can be estimated. The time
given by the clock at this instant,
when corrected for the error, will be.the sidereal time at that instant,
it being supposed that the clock-rate is uniform.

30. General Relation between R.A. and Hour Angle
Let 2, (Fig. 17) be any star not on the meridian. Then
/. QPr, = [/ QPY — / v Pz, = / QPY — v M;
hence, if angles are expressed in time :—
(star’s hour angle) = (sidereal time) — (star’s R.A.). .

Hence, given the R.A. of a star, we can find its hour angle at any
given sidereal time ; if we are also given the declination or its equiva-
lent, the north polar distance, we can determine the star’s position on
the observer’s celestial sphere, because the hour-angle determines the
declination circle on which the star lies, whilst its north polar distance
fixes the position of the star on that declination circle. Or we can
construct the star’s position thus: On the equator, in the westward
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direction from @, measure off Q°y equal to the sidereal time (reckoning
15° to the hour). From v eastwards, measure oM equal to the star’s
R.A.; and from M, in the direction of the pole, measure off Mz, equal
to the star’s declination. We thus find the star ,.

31. Circumpolar Stars

A Circumpolar Star at any place is a star whose polar distance is
less than the latitude of the place. Its declination must, therefore, be
greater than the colatitude. We have seen, in Art. 22, that the altitude
of the pole is equal to the latitude.of the place. At lower culmination,
when the star is on the meridian north of the zenith, the distance of the
star from the pole is less than the distance of the horizon from the pole,
since this is equal to the latitude. Hence at lower culmination, when
the zenith distance of the star is greatest, the star is above the horizon.
In other words, a circumpolar star never reaches the horizon and
therefore never rises or sets. The whole of its diurnal path in the
sky is above the horizon; it is
for this reason that such stars are
called circumpolar stars.

On the meridian let Pz and
Pz’ be measured, each equal to
the N.P.D. of such a star (Fig. 18).
Then = and 2’ will be the positions
of the star at its transits. Both &’
and =z will be above n. Hence,
during a sidereal day a circum- Fig. 18.
polar star will transit twice, once
above the pole (at x) and once below the pole (at «'), and both
transits will be visible. They succeed one another at intervals of
12 sidereal hours (since zPx’ = 180°). Now (Fig. 18) :—

ne — nP = Pxr = Px’ = nP — na';

B, T Sy
- W ———

.

or nP = % (nz + nx');

' that is, the observer’s latitude is half the sum of the altitudes of a circum-
polar star at upper and lower culminations.

Algo, Px = } (nx — nz') ;

that is, the Star’s N.P.D. is half the difference of its two meridian altitudes.
We have here neglected the effects of refraction by the atmosphere
of the Earth. The altitudes should be corrected for refraction as
explained later in Chapter VL.
These results will require modification if the upper culmination
takes place south of the zenith as at S. The meridian altitude will
then be measured by sS, and not #S. Here, n8 = 180° — &8, and we
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shall, therefore, have to replace the altitude at upper culmination by
its supplement.

Souts CIRcUMPOLAR STARS.—If the south polar distance of a star
is less than the north latitude of the observer, the star will always
remain below the horizon, and will, therefore, be invisible. Such a
star is called a South Circumpolar Star.

ExamrLE.—The constellation of the Southern Cross (Cruz) is
invisible in Europe, for the declination of its principal star, which forms
the base of the cross, is 62° 46’ S ; therefore its south polar distance is
27° 14’, and it will not be visible in north latitudes higher than 27° 14’

32. Rising, Southing, and Setting of Stars

If the N. and 8. polar distances of a star are both greater than the
latitude, it will transit alternately
above and below the horizon. This
shows that the star will be invisible
during a certain portion of its diurnal
course. Astronomically, the star is
said to rise and set when it crosses
the celestial horizon.

Let b, b’ be the positions of
any star when rising and setting
respectively.

The spherical triangles Pnb, Pnb’
are equal, since the sides Pb and

Fia. 19. Py’ are equal, each being the stai’s
N.P.D., the side Pn is common and
the angles at » are right angles. Therefore
/nPb = /nPV,
and the supplements of these angles are also equal, that is,
/8Pb= /sPb.
But the angle sPb, when reduced to time, measures the interval of time
taken by the star to get from b to the meridian, and sPb’ measures the
time taken from the meridian to 4. Hence :—

The interval of time between rising and southing is equal to the interval
between southing and setting.

Thus, if ¢, ¢’ are the times of rising and setting, and 7' the time of
transit, we have

T —t=¢ —-TgivingT=%(t + t), or:—

The time of transit is the arithmetic mean between the times of rising

and setting.
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If the star is on the equator, it will rise at £ and set at W. Since
EQW is a semicircle, exactly half the diurnal path will be above the
horizon, and the interval between rising and setting will be 12 sidereal
hours. If the star is to the north of the equator, it will rise at some
point b between E and n, so that

/.bPs > / EPs,
i.e. £bPs > 90°,

and the star will be above the horizon for more than 12 hours. Similarly,
if the star is south of the equator, it will rise at a point ¢ between E
and s, and will be above the horizon for less than/12 hours.
From the equality of the triangles bPn, b’'Pn (Fig. 19), we also see
that
nb = nb’, and sb = sb'.

Hence the diameter (ns) of the celestial sphere, joining the north and
south points, bisects the arc (bb’) between the directions of a star at
rising and setting.

This gives us an easy method of roughly determining, by observa-
tion, the directions of the cardinal points; but, owing to the usual
irregularities in the visible horizon, the method is not very exact.

33. Hour-Angle and Azimuth of Rising and Setting

When the latitude of the observer, ¢, and the declipation of the
star, 8, are known, the hour-angles and azimuths at rising and setting
are easily found. If %, A, are the hour-angles at rising and setting and
a is the azimuth east of north at rising or west of north at setting, we
have in the trian gles Pbn, Pb'n (Fig. 19) Pb= P’ = 90°—8 ; Pn=¢;
bn=1¥bn=a; LbPn=h —180°; /b'Pn = 180° —k, and the
angles Pnb, Prnb’ are right angles.

From the rules for right-angled triangles in Art. 10 we obtain :—

cos bPn = tan Pn cot Pb; cos b’Pn = tan Pn cot Pb’
or cos h, = — tan ¢ tan § = cos h,,

hy, hy are thus the two values of % between 0° and 360° which satisfy
the equation cos k. = — tan ¢ tan 8. &, is the larger of the two values,
whose sum is 360°.

The azimuth a is given by cos Pb = cos Pn cos bn or

» gin & = cos ¢ cos a.

From these formulae for & and a, it readily follows that when the
star is on the equator, so that 8 = 0, cos % and cos a are both zero.
Therefore h; = 270° = 18k., hy = 90° = 6kh. and @ = 90°. Thus

there is an interval of 12 hours between rising and setting, which occur
at the east and west points respectively.
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If ¢, ¢’ are the times of rising and setting and T is the time of transit,

we have
T —t=2360°—hy; ¢ — T =h,

The sidereal line of transit 7' is equal to the star’s R.A. If this is
known, the sidereal times of rising and setting can be found when 2,,
hy have been computed.

We have neglected the effect of refraction on the times of rising and
setting. This will be considered in Chapter VI.

III.—TeE SUunN’s ANNUAL MoTiON IN THE ECLIPTIC—PRACTICAL
APPLICATIONS

84, The Sun’s Motion in Longitude, Right Ascension and Declination

In Art. 20, we briefly described the Sun’s apparent motion in the
heavens relative to the
fixed stars. We defined
a Year as the period of
a complete revolution,
starting from and return-
ing to any fixed point on
the celestial sphere. The
Ecliptic was defined as the
great circle traced out by
the Sun’s path, and its
points of intersection with
the Equator were termed
the First Point of Aries
and First Point of Libra,

Fia. 20. or together, the Equinoc-

tial Points.

We shall now trace, by the aid of Fig. 20, the variations in the Sun’s
coordinates during the course of a year, starting with March 21st,*
when the Sun is in the first point of Aries. We shall, as usual, denote
the obliquity by e so that e = 23° 27" nearly.

On March 21st the Sun crosses the equator, passing through the
first point of Aries (¢¢). This is the Vernal Equinoz, and it is evident
from the figure that

Sun’s longitude = 0°, R.4. = Oh, Decl. = 0°.

From March 21st to June 21st the Sun’s declination is north, and
is increasing.

* Owing mainly to the fact that the year is not an integral number of days,
such dates vary somewhat from year to year.
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On June 21st the Sun has described an arc of 90° from % on the
ecliptic, and is at C (Fig. 20). This is called the Summer Solstice.
The Sun’s polar distance CP is then a minimum and therefore its
decl. a maximum.

Also Q= 90°and CQ = /CvQ = e. Hence
Sun’s longitude = 90°, R.4. = 90° = 6h.,
N. Decl. = € (a mazimum).

From June 2Ist to September 23rd the Sun’s declination is still
north, but is decreasing.

On September 23rd the Sun has described 180°, and is at the first
point of Libra (==), the other extremity of the common diameter of
the ecliptic and equator. This is the Autumnal Equinoz, and we have

Sun’s long. = 180°, R.4. = 180° = 12h., Decl. = 0°.
From Sept. 23rd to Dec. 22nd the Sun is south of the equator, and
its south declination is increasing.
On December 22nd the Sun has described 270° from <, and is at
L. This is called the Winter Solstice. The Sun’s polar distance LP
is then a maximum, and
=R==L = 90°, LR= /L= R=¢e. Hence
Sun’s longitude = 270°, R.4. = 270° = 18h,,
S. Decl. = € (a maximum).

From December 22nd to March 21st the Sun’s declination is still
south, but is decreasing.

Finally, on March 21st, when the Sun has performed a complete
circuit of the ecliptic, we have

Sun’s long. = 360°, R.A. = 360° = 24h., Decl. = 0°.
The longitude and R.A. are again reckoned as zero, and they,

together with the declination, undergo the same cycle of changes in
the following year.

35. Sun’s Variable Motion in R.A.

We observe that the Sun’s right ascension is equal to its longitude
four times in the year, viz. at the two equinoxXes and the two solstices.

At other times this is not the case.

For example, between the vernal equinox and summer solstice we
have P M <8, or Sun’s R.A. < longitude.

Hence, even if the Sun’s motion in longitude be supposed uniform,
its R.A. will not increase quite uniformly. There is a further cause of
the want of uniformity, namely, that the Sun’s motion in longitude is
not quite uniform; but this need not be considered in the present
chapter. :
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36. Direct and Retrograde Motions

The direction of the Sun’s annual revolution relative to the stars,
i.e. motion from west through south to east, is called direct. The
opposite direction, that of the diurnal apparent motions of the stars
or revolution from east to west, is called retrograde.

The real revolutions of all bodies forming the solar system, with
the exception of some comets and a few satellites are direct, but as
seen from the Earth the planets frequently appear to have retrograde
motion. h

The apparent retrograde diurnal motion is accounted for by the
direct rotation of the Earth about its polar axis.

37. Equinoctial and Solstitial Points—Colures

. From Art. 34 it appears that the Summer and Winter Solstices may
be defined as the times of the year when the Sun attains its greatest
north and south declinations respectively. At these times the declina-
tion is therefore practically stationary for a few days. The meridian
zenith distance of the Sun is least at the summer solstice and greatest
at the winter solstice. At the summer solstice the sun halts in its
northern motion in the sky before beginning to move southwards again ;
at the winter solstice it halts in its southern motion before beginning
to move northwards again. This is the reason why C and L are called
solstices (meaning standing still).

The corresponding positions of the Sun in the ecliptic (C, L, Fig. 20)
are called the Solstitial Points. In the same way the Equinoctial
Points (v, ==) are the positions of the Sun at the Vernal and dutumnal
Equinozes when its declination is zero. We have seen in Art. 33 that
when a celestial body is on the equator, the interval between rising
and setting is 12 hours. Then when the Sun is at < or =, the lengths
of day and night are equal, whence the term equinoctial points.

The declination circle PP’ ==, passing through the equinoctial
points, is called the Equinoctial Colure. The declination circle PCP'L,
passing through the solstitial points, is called the Solstitial Colure.
The latter passes through the poles of the ecliptic (K, K’).

38. To find the Sun’s Right Ascension and Declination

In the Nautical Almanac, the Sun’s R.A. and Dec. are tabulated for
midnight (Oh.) for every day of the year, together with the change in
24 hours. To find their values at any time of the day we have only to
multiply the daily variation by the fraction of the day from the nearest
midnight and add this quantity to the value at that midnight, if the -
preceding midnight has been used, or subtract it, if the succeeding
midnight has been used.
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Example.—To find the Sun’s R.A. and Dec. on March 30th, 1940, at Th. 56m. in
the afternoon.
We find from the Almanac for 1940,
(i) Sun’s R.A. at March 31-0 = Oh. 37m. 13-8s.
Daily variation = -+ 218-4s.
7Th. 56m. in the afternoon is 4h. 04m. before midnight = 0-1694 days.

R.A. at March 310 = Oh. 37m. 13-8s.
— +1694 X 218-4s. = — 37-0

Required R.A. = Oh. 36m. 36-8s.
(ii) Sun’s Dec. at March 31-0 = 4 4° 00’ 44”
. Daily variation = + 1395
Sun’s Dec. at March 31-0 = + 4° 00’ 44"
— 1694 x 1395" = — 3’ 56"

Required Dec.= - 3° 56" 48"

39. Rough Determination of the Sun’s R.A.

We can, without the Nautical Almanac find to within a degree or
two, the Sun’s R.A. on any given date, as follows :—

A year contains 365} days. In this period the Sun’s R.A. increases
by 360°. Hence its average rate of increase is very nearly 30° per
month, or 1° per day.

‘Knowing the Sun’s R.A. at the nearest equinox or solstice, (0° on
March 21st, 90° on June 21st, 180° on September 23rd, and 270° on
December 22nd, approximately) we add 1° for every day later, or
subtract 1° for every day before that epoch. If the R.A. is required
in time, we allow for the increase at the rate of 2h. per month, or 4m.
per day.

40. The Gnomon.—Determination of Obliquity of Ecliptic

The Greek astronomers observed the Sun’s motion by means of the
Gnomon, an instrument consisting essentially of a vertical rod standing
in the centre of a horizontal floor, The direction of the shadow cast
by the Sun determined the Sun’s azimuth, while the length of the
shadow, divided by the height of the rod, gave the tangent of the
Sun’s zenith distance. To find the meridian line, a circle was described
about the rod as centre, and the directions of the shadow were noted
when its extremity just touched the circle before and after noon. The
sun’s Z.D.s at these two instants being equal, their azimuths were
evidently equal and opposite, and the bisector of the angle between
the two directions was therefore the meridian line.

The Sun’s meridian zenith distances were then observed both at
the summer solstice, when the Sun’s N. decl. is € and meridian Z.D.
least, and at the winter solstice, when the Sun’s 8. decl. is € and meridian
Z.D. greatest. Let these Z.D.’s be 2, and z, respectively, and let ¢
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be the latltmde of the place of observation. From Art 29, we readily
see that
n=¢—ezn=9¢+e¢
sothat ¢=13(za +2), e =1%(2a—2);
thus determining both the latitude and the obliquity.

41, The Zodiac

The position of the ecliptic was defined by the ancients by means of
the constellations of the Zodiac, which are twelve groups of stars,
distributed at about equal distances round a belt or zone, and extending
about 8° on each side of the ecliptic. The Sun and planets were
observed to remain always within this belt. The vernal and autumnal
equinoctial points were formerly situated in the constellations of Aries
and Libra, whence they "were called the First Point of Aries and the
First Point of Libra. Thelr positions are very slowly varying, but the
old names are still retained. Thus, the ““ First Point of Aries” is now
situated in the constellation Pisces.

The early astronomers probably determined the Sun’s annual path by noting
the morning and evening stars. After a year the same stars would be seen, and
it would be cbncluded that the Sun performed a revolution in a year. We learn
from EgyptlaJn records that the heliacal rising of Sirius, i.e. the first occasion the
star was seen|in morning twilight, was noted with special care.

42, Astronomical Diagrams and Practical Applications

We can now solve many problems connected with the motion of the
celestial bodies, such as determining the direction in which a given
star will be seen from a given place, at a given time, on a given date,
or finding the time of day at which a given star souths at a given time
of year.

We have, on the celestial sphere, certain circles, such as the meridian,
horizon, and prime vertical, also certain points, such as the zenith and
cardinal points, whose positions relative to terrestrial objects always
remain the same. Besides these, we have the poles and equator, which
remain fixed, with reference both to terrestrial objects and to the
fixed stars, We have also certain points, such as the equinoctial
points, .and| certain circles, such as the ecliptic, which partake of the
diurnal motion of the stars, performing a retrograde revolution about
the pole once in a sidereal day. Lastly, we have the Sun, which moves
in the ecliptic, performing one retrograde revolution relative to the
meridian in a solar day, or one direct revolution relative to the stars
in a year. | We can assume in these problems that the Sun is on the
meridian at noon and that its hour-angle increases at the rate of 15°
per hour.
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In drawing a diagram of the celestial sphere, the positions of the
meridian, horizon, zenith, and cardinal points should first be represented,
usually in the positions shown in Fig. 21. Knowing the latitude nP
of the place, we find the pole P. The points @, R, where the equator
cuts the meridian, are found by making PQ — PR = 90°; and the
points @, B, with E, W, enable us to draw the equator.

We now have to find the equinoctial points. How to do this
depends on the data of the problem. Thus we may have given—

(1) The sidereal time ;
(i1) The hour angle of a star of known R.A. and decl. ;
(iii) The time of day and time of year.

In case (i), the
sidereal time multi-
plied -by 15 gives,
in degrees, the hour
angle (@) of the
first point of Aries.
Measuring this angle
from the meridian ! .
westwards, we find 7o
Aries, and take .
Libra opposite to it.
Any star of known
decl. and R.A. can
be found by taking
on the equator P M
= gtar’s R.A., and
taking on MP, Mz

- -
LT L4

= star’s decl. /
The ecliptic may —u-
be drawn passing Fie. 21.

through Aries and
Libra, and inclined to the equator at an angle of about 233° (just over
1 right angle). As we go round from west to east, or in the direct
sense, the ecliptic passes from south to north of the equator at Aries ;
this shows on which side to represent the ecliptic. Knowing the time
of year, we now find the Sun (roughly) by supposing it to travel to or
from the nearest equinox or solstice about 1° per day from west to east.
In case (ii), we either know the hour angle, QM or QPM of a known
star (z), or, what is the same thing, the sidereal interval since its transit ;
or, in particular, it is given that the star is on the meridian. Each of
these data determines M, the foot of the star’s declination circle.
M. ASTRON. . 3
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From M we measure M westwards equal to the star’s R.A. This
finds Aries.

In case (iii), the solar time multiplied by 15 gives the Sun’s hour
angle QPS in degrees. From the time of year we can find the Sun’s
R.A., vPS. From these we find QP and obtain the position of
Aries just as in case (ii).

- Tt will be convenient to remember that hour angle is measured from

the southern meridian westwards, that azimuth is measured from the
north point eastwards or westwards, while right ascension and celestial
longitude are measured from the first point of Aries eastwards. Thus,
since the Sun’s diurnal motion is retrograde, and its annual motion
direct, the Sun’s
hour angle, R.A,,
and longitude are
all increasing.

Most  problems
of this class depend
for their solution
chiefly on the con-
sideration of arcs
measured along the
equator, or (what
amounts to the
same) angles mea-
sured at the pole.

In another class
of problems depen-
ding on the relation
between the lati-
tude, a star’s decl.

FIG‘N22. ‘ and meridian lati-

tude (Art. 29), we

have to deal with arcs measured along the meridian. These two

classes include nearly all problems on the celestial sphere which do
not require spherical trigonometry.

Examples.—1. Represent, in a diagram, the positions of the Sun and the star [
Herculis as seen by an observer in London on Aug. 19th, 1940, at 8 p.m.,* the following
data being given —Latitude of London = 51°, R.A. of { Herculis = 16k, 39m.,
decl. = 31° 43’ N.

The construction must be performed in the following order :—

(i} Draw the observer’s celestial sphere, putting in the meridian, horizon,
zenith Z, and four cardinal points n, B, s, W.

* The times in these examples are assumed to be the times as given by a sun-
dial. Summer time is not taken into consideration.
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(ii) Indic#te the position of the pole and equator. The observer’s latitude is
51°. Make, therefore, nP = 51°. P will be the pole. Take PQ = PR = 90°,
and thus draw the equator, QERW.

(iif) Find the declination circle passing through the Sun. The time of day is
8 p.m. Therefore the Sun’s hour angle is 8 X 15° or 120°. On the equator
measure QK = 120° westwards from the meridian. Then the Sun © will lie
on the declination circle PK. Since QW = 90°, we may find K by taking
WK = 30°= } WR.

(iv) Find the first points of Aries and Libra. The date of observation is
August 19th. Now, on September 23rd the Sun is at =. Also from August 19th
to September 23rd is 1 month 4 days. In this interval the Sun travels about 34°
from west to east. Hence the Sun is 34° west of ==. And we must measure
K == = 34° eastwards from K, and thus find =,

The first point of Aries (°r) is the opposite point on the equator.

(v) We may now draw the ecliptic C* L == passing through the first points of
Aries and Libra, and inclined to the equator at an angle of about 233° (i.e. slightly
over } of a right angle). The Sun is above the equator on August 19th ; hence

Fia. 23. Fia. 24.

the ecliptic cuts PK above K. This shows on which side of the equator the
ecliptic is to be drawn; we might settle this by remembering that the ecliptic
rises above the equator in the direction of increasing longitude from . -

The intersection of the ecliptic with PK determines (3, the position of the Sun.

(vi) Having found <, we can now find { Herculis. Its right ascension is
16h. 39m., in time, = 249° 45’ in angular measure. On the equator measure off
rM = 259° 45" in the direction west to east (i.e. the direction of direct motion)
from < ; we must, therefore, take =~ M = 69° 45°. On the declination circle
MP, measure off Mz = 31° 43’ towards P. Then « is the required position of
¢ Herculis.

2. Find (roughly) at what time of the year the Star o Cygni (R.A.
= 20h. 39m., decl. = 45° 04’ N.) souths at T p.m.

Let a be the position of the star on the meridian (Fig. 23). At 7 p.m. the
Sun’s western hour angle (QS or QPS) = Th. = 105°.

Also ¢ RQ, the Star’s R.A.= 20h. 39m. Hence RS, the Sun’s R.A. =
20h. 39m. — 7h. = 13h. 39m.; or, in angular measure, Sun’s R.A. = 204° 45,
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Now, on September 23rd, Sun’s R.A. = 180° and it increases at about 1° per day.
Hence the Sun’s R.A. will be 205° about 25 days later, i.e. about October 18th.

3. At noon on the longest day (June 25th) a vertical rod casts on a horizontal Plane
a shadow whose length is equal to the height of the rod. Find the latitude of the place
and the Sun’s altitude at midnight. (See Fig. 24).

From the data, the Sun’s Z.D. at noon, Z(), evidently = 45°.
Also, if QR be the equator, ©Q = Sun’sdecl. = e= 23°27’ (approx.) ;
Therefore latitude of place = ZQ = 45° 4 23° 27’ = 68° 27",
If (O’ be the Sun’s position at midnight,
PO’ = PG = 90° — 23° 27" = 66° 33".
But Pn = lat. = 68°27".
So that (O'n = 68° 27" — 66° 33’ = 1°54";
and the Sun will be above the horizon at an alt. of 1° 54’ at midnight.

EXAMPLES

1. Why are the following definitions alone insufficient ?-—The zenith and nadir
are the poles of the horizon. The horizon is the great circle of the celestial sphere
whose plane is perpendicular to the line joining the zenith and nadir.

2. The R.A. of an equatorial star is 270°; determine approximately the times
at which this star rises and sets on the 21st June. In what quarter of the heavens
should we look for the star at midnight ?

3. Explain how to determine the position of the ecliptic relatively to an observer
at a given hour on a given day. Indicate the position of the ecliptic relatively to
an observer at Cambridge at 10 p.m. at the autumnal equinox. (Lat. of Cambridge
= 52° 12’ 51-6".)

4. Prove geometrically that the least of the angles subtended at an observer by

a given star and different points of the horizon is that which measures the star’s
altitude.

5. Show that in latitude 52° 13’ N. no circumpolar star when southing can be
within 75° 34’ of the horizon.

6. Represent in a figure the position of the ecliptic at sunrise on March 21st
as seen by an observer in latitude 45°.  Also in latitude 674" .

7. If the ecliptic were visible in the first part of the preceding question, describe
the variations which would take place during the day in the positions of its points
of intersection with the horizon.

8. Determine when the star whose declination is 30° N. and whose R.A. is
356° will cross the meridian at midnight.

9. The declination and R.A. of a given star are 22° N. and 6h. 20m. respectively.
At what period of the year will it be (i) a morning, (ii) an evening star? In what
part of the sky would you then look for it ?

10. Find the Sun’s R.A. (roughly) on January 25th, and thus determine about
what time Aldebaran (R.A. 4h. 33m.) will cross the meridian that night.

11. Where and at what time of the year would you look for Fomalkaut? (R.A.

~ 22h. 54m., decl. 29°. 56 S.)
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12. At the summer solstice the meridian altitude of the Sun is 75°. What is
the latitude of the place? What will be the meridian altitude of the Sun at the
equinoxes and at the winter solstice ?

EXAMINATION PAPER

1. Explain how the directions of stars can be represented by means of points
on a sphere. Explain why the configurations of the constellations do not depend
on the position of the observer, and why the angular distance of two different
bodies on the celestial sphere gives no idea of the actual distance between them.

2. Define the terms—horizon, meridian, zenith, nadir, equator, ecliptic, vertical,
prime vertical, and represent their positions in a figure.

3. Explain the use of coordinates in fixing the position of a body on the
celestial sphere, and define the terms—altitude, azimuth, polar distance, hour angle,
right ascension, declination, longitude, latitude. Which of these coordinates always
remain constant for the same star?

4. Define the obliquity of the ecliptic and the latitude of the observer. Give
(roughly) the value of the obliquity, and of the latitude of London. Indicate in
a diagram of the celestial sphere twelve different arcs and angles which are equal
to the latitude of the observer.

5. What is moeant by a sidereal day and a sidereal hour? How could you find
the length of a sidereal day without using a telescope? Why is sidereal time of
such great use in connection with astronomical observations?

6. Show that the declination and right ascension of a celestial body can be
determined by meridian observations alone.

7. What is meant by a circumpolar star? What is the limit of declination for
stars which are circumpolar in latitude 60° N.? Indicate in a diagram the belt of
the celestial sphere containing all the stars which rise and set.

8. Define the terms—year, equinozes, solstices, equinoctial and solstitial points,
equinoctial and solstitial colures. 'What are the dates of the equinoxes and solstices,
and what are the corresponding values of the Sun’s declination, longitude, and
right ascension? Find the Sun’s greatest and least meridian altitudes at London.

9. Why is it that the interval between two transits of the Sun is rather greater

than a sidereal day? Show how the Sun’s R.A. may be found (roughly) on any
given date, and find it on July 2nd, expressed in hours, minutes, and seconds.
" 10. Indicate (roughly) in a diagram the positions of the following stars as
geen in latitude 51° on July 2nd at 10 p.m. :—Capella (R.A. 5h. 12m. 15s., decl.
45° 56’ 21” N.); a Lyrae (R.A. 18h. 34m. 54s., decl. 38° 43’ 36” N.); a Scorpii
(R.A. 16h. 25m. 43s., decl. 26° 18" 2" 8.); a Ursae Majoris (R.A. 11h. Om. 2s.,
decl. 62° 4’ 31" N.).



CHAPTER I1II
ON TIME
I—TeE MEaN Sux AND Equations or TiME

43. Disadvantage of Sidereal Time

In Chapter II, Section II, we explained how the rotation of the
Earth with respect to the stars could be used to provide a means of
reckoning time. This time, called sidereal time, was defined by the
diurnal motion of the first point of Aries. We shall show that this
measure of time is not suitable for everyday use.

The sidereal time of the Sun’s transit across the meridian, which
occurs at midday, is equal to the Sun’s R.A. (Art. 29). But we have
seen (Section II, Art. 34) that the Sun’s R.A. increases throughout the
year at the rate of approximately 1° per day. The time of the Sun’s
transit, in the sidereal time system, therefore gets later and later day
by day, and by a total amount of 24h. in the course of the year.

Thus, e.g. the time of noon would be Oh. on March 21st, 6h. on June
21st, 12h. on September 23rd, and 18h. on December 22nd, and the
phenomena of day and night would bear no constant relation to that
time. This makes it impossible to use sidereal time for everyday
purposes. The Sun is the heavenly body which is most closely related
to human activities, because it is the apparent diurnal motion of the
Sun that controls the hours of darkmess and light. It is therefore
necessary, for the purposes of everyday life, to choose a system of time
that is closely ‘related to the Sun and such that the middle of each day
comes at or near the time when the Sun transits across the meridian.

_The most natural system of time to choose to meet this requirement is

apparent solar time, which is the time as indicated by a sun-dial.

44. Apparent Solar Time

Apparent Noon is the time of the Sun’s upper transit across the
meridian, that is, in north latitudes, the time when the Sun souths.
Apparent Midnight is the time of the Sun’s transit across the meridian
below the pole (and usually below the horizon).

An Apparent Solar Day is the interval between two consecutive
apparent noons, or two consecutive midnights.

Like the sidereal day, the solar day is divided into 24 hours, which
are again divided into 60 minutes of 60 seconds each. For ordinary
purposes the day is divided into two portions: the morning, lasting
from midnight to noon ; the evening, from noon till midnight ; and in
each portion times are reckoned from Oh. (usually called 12h.) up to
12h. For astronomical purposes the practice up to the end of the year
1924 was to measure the solar time by the number of solar hours that

38
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have elapsed since the preceding noon. Thus, 6.30 a.M. on January
2nd was reckoned, astronomically, as 18h. 30m. on January 1st. On
the other hand, 12.53 p.M. was reckoned as Oh. 53m., being 53 minutes
past noon. Since the beginning of the year 1925 the astronomical day
has been considered to begin at midnight, like the civil day. But the
former astronomical method occurs so frequently in astronomical works
that the student should be acquainted with it.

During a solar day the Sun’s hour angle increages from 0° to 360°
at the rate of 15° per hour. Hence :—

Apparent solar time = Sun’s hour angle expressed in time.

At noon the Sun is on the meridian. The sidereal time, being the
hour angle of <, is the same as the Sun’s R.A., i.e.

Sidereal time of apparent noon = Sun’s R.A. at noon.

At any other time, the difference between the sidereal and solar
times, being the difference between the hour angles of & and the Sun,
is equal to the Sun’s R.A. Hence, as in Art. 30, we have

(Sidereal time) — (apparent solar time) = Sun’s R.A.

If a and a + = are the right ascensions of the Sun at two consecutive
noons, then, since a whole day has elapsed between the transits, the
total sidereal interval is 24¢h. + &, and exceeds a sidereal day by the
amount . But the interval is a solar day.

Hence, the apparent solar day is longer than the sidereal day, and the
difference is equal to the sun’s daily motion in R.A4.

45. Disadvantage of Apparent Solar Time

Apparent, solar time, as defined in the preceding section, avoids the
disadvantage of sidereal time mentioned in Art.43. In apparent solar
time, 12h. is the instant of apparent noon. But this system of reckon-
ing time entails an inconvenience of a different nature. We have seen
that the difference in length between the apparent solar day and the
sidereal day is equal to the Sun’s daily increase in R.A. In Art. 35, we
showed that this increase takes place at a rate which is not quite the
same at different times of the year. Hence, the difference between a
solar and a sidereal day is not quite constant. But the length of a
sidereal day is constant (Art. 28). Hence the apparent solar day is not
quite constant in length, and apparent solar time cannot be measured
by a clock whose rate is uniform. If a clock, whose rate: was perfectly
uniform, were rated so that 24h. by the clock corresponded exactly to
the average length of the mean solar day, then the extreme differences
between the clock and apparent solar time would amount to about a
quarter of an hour in either direction. A good pendulum clock will
keep a uniform time to an accuracy of about one second a year. To
keep apparent solar time, it would be necessary for clocks to be altered
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day by day and by amounts that varied progressively through the
course of the year. To avoid such inconveniences we adopt a system
of time that is called mean solar time.

46. The Mean Sun.—Definitions

Mean solar time is defined by means of what is called the Mean Sun.
This is not really a Sun at all, but simply a point, which is imagined
to move round the equator on the celestial sphere.* The hour angle
of this moving point measures mean time, just as the hour angle of o
measures sidereal time ; and the mean Sun has to satisfy the following
requirements :—

1st. It must never be very far from the Sun in hour angle.

2nd. Its R.A. must increase uniformly during the year.

Now the inequalities in the motion in R.A. which render the true
Sun unsuitable as a timekeeper, are due to two causes.

1st. The Sun does not move uniformly in the ecliptic, its longitude
increasing less rapidly in summer than in winter. This is a consequence
of the distance from the Sun to the Earth not being constant through
the year.

2nd. Since the Sun moves in the egliptic, and not in the equator, its
celestial longitude is in general different from its R.A. Hence, even if
the Sun were to revolve uniformly, its R.A. would not increase uniformly.

In defining the mean Sun, or moving point which measures mean
time, these two causes of irregularity are obviated separately as
follows : —

The Dynamical Mean Sun is defined to be a point which coincides
with the true Sun at perigee, when the distance between the Sun and
the Earth is least, and which moves round the ecliptic in the same
period (a year) as the true Sun, but at a uniform rate.

Thus, in the dynamical mean Sun, irregularities due to the Sun’s

unequal motion in longitude are removed, but those due to the obliquity

of the ecliptic still remain.

The Astronomical Mean Sun is defined to be a point which moves
round the equafor in such a way that its R.A. is always equal to the
longitude of the dynamical mean Sun.

Since the longitude of the dynamical mean Sun increases uniformly,
the R.A. of the astronomical mean Sun increases uniformly. Hence
the motion of the latter point does give us a uniform measure of time.

The astronomical mean Sun is, therefore, the moving point chosen
in defining mean time. It is usually called simply the Mean Sun.

* The conception of the mean Sun as a moving point is important. It would be
physically impossible for a body to move in this manner.
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47. Mean Noon and Mean Solar Time.—Equation of Time -

Mean Noon is defined as the time of transit of the mean Sun. .

A Mean Solar Day is the interval between two successive mean
noons. Like the apparent and sidereal days, it is divided into 24
mean solar hours. During this interval, the hour angle of the mean
Sun increases from 0° to 360°. Hence the mean solar time at any
instant is measured by the mean Sun’s hour angle, converted into time
at the rate of 1h. per 15°, or 4m. per 1°.

. The Sun itself is frequently spoken of as the True Sun, or Apparent
Sun, to distinguish it from the mean Sun. As explained in Art. 44 the
hour angle of the true Sun measures the apparent solar timg, and its
time of transit is called apparent noon.

The Equation of Time* is the name given to the amount which must
be added to the mean time to obtain the apparent time.

Thus, the time indicated by a sun-dial is determined by the position
of the shadow thrown by the true Sun, and is the apparent solar time ;
while a clock, which should go at a uniform rate, is regulated to keep
mean time. The equation of time will then be defined by the relation,

(T'¥me by clock) -+ (Equation of time) = (Time by dial).

The equation of time is positive if the Sun is ““ before the clock,”
or the true Sun transits before the mean Sun. If the Sun is ““ after the
clock,” or the mean Sun transits first, the equation of time is negative
The value of the equation of time for Oh. of every day in the year is
given in the Nautical Almanac.

48, The Two Components of the Equation of Time

The equation of time is divided into two parts. The first, which
is called the equation of time due to the eccentricity, or to the unequal
motion, is measured by the difference between the hour angles of the
true and dynamical mean Suns. The second, or the equation due to
the obliquity, is measured by the difference of hour angle between the
dynamical and astronomical mean Suns.

49. Equation of Time due to Unequal Motion

We shall now trace the variations during the year of that portion of
the equation of time which is due to the Sun’s unequal motion in the
ecliptic. We shall denote this portion by E,.

We shall see in Art. 129 that the apparent path of the Sun round
the Earth is an ellipse. The distance between the Sun and the Earth
is least on December 31st, when the Sun is said to be in perigee, and
greatest on July 1st, when the Sun is said to be in apogee. The Sun’s

* Thus, equa.txoh of time ** is not an equation at all in the generally accepted
sense of the word but an interval of time (positive or negative).
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longitude changes more rapidly the nearer the Earth is to the Sun.
Hence its rate of change is greatest at perigee and least at apogee.

Let the true Sun be denoted by S, and the dynamical mean Sun
(which moves in the ecliptic) by S;. If angles are measured in time,
then (Fig. 25).

= (hour angle of S) — (hour angle of S;) = /SPS; ;
~or B, = (R.A.of 8;) — (R.A. of 8) ;
since R.A. and hour angle are measured in opposite directions.

When the Sun is in perigee (p) (on December 31st), S; coincides with
8 by definition ; so that B, = 0.

From perigee (p) to apogee (a), the Sun has deseribed 180°, and the
time taken is half that of a complete revolution. Hence, S, will also
have described 180°, thus at apogee (July 1st), E; is again 0.

Now since S is moving
most rapidly at perigee,
and most slowly at apogee,
S will move ahead of 8,
after perigee and S will lag
behind 8, after apogee.

Thus: From perigee to
apogee K is negative,
From apogee to perigee

E, s positive,
and E;, vanishes twice a
year, viz. at perigee and
Fia. 25. ’ apogee.
50. Equation of Time due to Obliquity

Let the portion of the equation of time due to the obhqulty be
denoted by E,.

Take S, on the equator so that o»S,= 8,. Then S, will be the
astronomical mean Sun. Draw PS,M, the secondary to the equator
through S;. Then

E, = hour angle of 8; — hour angle of S,
= /8,P8S, (taken positive if S, is west of S,)
= LPP8;— /L VPS8 = PS8, — PM = S, — M,
all angles being supposed converted into time at the rate of 15°to the hour.

At the vernal equinox,* when S, is at o, S, will also be at op;

80 that E,=0.

* The vernal and autumnal equmoxes are, stnctly, the times when 8, and not
8,, coincides with the equinoctial points, but, as 3, is always near S, the dlstmctmn
need not be considered here. The same remarks apply to the solstwes
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Between the vernal equinox and summer solstice, the angle S, M
will be < 90°, and, therefore, << v MS, ; hence, P M <S8, ; therefore
M < SYv,; and E, is positive.

At the summer solstice, S, is at 0, and S, at @, where Y@ = vC =
90°. Hence rQC = 90°; and M is also at Q; so that E, = 0.

: Between the summer solstice and autumnal equinox we shall have
M= <8,= But PM=o= S, o==180°; therefore Y M > S, ;
YM > °r8S,; and E, is negative.

At the autumnal equinox, since ¥C=== PQ===180° §,, S,
will both coincide with == ; so that E, = 0.

In a similar manner we may show that :

From the sutumnal equinox to the winter solstice, E, s positive.

At the winter solstice, E, = 0.
From the winter solstice to the vernal equinox, E, is negative.
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Fie. 26.

Collecting -these results, we see that
(i) From equinox to solstice E, is positive.
(ii) From solstice to equinox E, s negative.
(iii) E, vanishes four times a year, viz. at the equinoxes and solstices.

51. Graphic Representation of Equation of Time ,

The values of the equation of time at different seasons may now be
represented graphically by means of a curved line, in which the abscissa
of any point represents the time of year, and the ordinate represents
the corresponding value of the equation of time.

In the accompanying figure (Fig. 26) the horizontal line or axis
from E, to E; represents a year, the twelve divisions representing the
different months as indicated. The thin curve represents the values
of E,, the portion of the equation of time due to the unequal motion ;
this curve is obtained by drawing ordinates perpendicular to the
horizontal axis and proportional to E,. Where the curve is below the
horizontal line E, is negative.
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The thick curved line is drawn in a similar manner, and represents,
on the same scale, the values of E,, the equation of time due to the
obliquity.

In drawing the diagrams to scale, it is necessary to know the maxi-
mum values of E,, E,.

We can calculate £, with more than sufficient accuracy by the following method.

In Fig. 27 ABA’B’ represents the apparent orbit of the Sun around the Earth
E, which is an ellipse of small eccentricity, such that EC is about ;th of C4. H
is the second focus of the ellipse (see Appendix, § 2), ACA’ is the major axis and
EL, OB, HK are perpendicular.to 44’". '

If we neglect the slight curvature of BK (which is really much less than in the
figure, EC and HC being exaggerated) the triangle BKM is equal to ECM. To each
add the figure ALBME, then the sector ALBKME = ALBC = } of the whole
ellipse. Hence the time of describing the arc ALBK is } of the periodic time ;
therefore an imaginary Sun whose angular velocity about § is uniform has moved
through 90° from 4, and is at L when the true Sun is at K.

The angle KEL has KL/LE for tangent:
KB L now KL= HE= J5 of CA; and EL is
nearly equal to CA. Hence
tan KEL = }; = -0333.
™ From the tables KEL =1°54’. This is
the difference of R.A. between the true Sun
' and the dynamical mean Sun. In time it is
A g HC| E A equivalent to 7m. 36s. or 7-6m.

Since this is the difference if R.A. at
the middle of the period from perihelion to
aphelion, we assume that it is the maximum

difference.
B’ E, can be calculated approximately by
Fro. 27. using the formulae for right-angled triangles

given in Art. 10. In the spherical triangle

v MS, (Fig. 25), the angle at M is a right-angle. The angle at ¥ is ¢ the
obliquity of the ecliptic, 23° 27. We have
- cos € = cot S, tan Y M.

Since E, vanishes for longitudes 0° and 90°, we may assume it to have its
maximum value for a longitude of about 45°. Putting »8, = 45° we obtain

: M = 42° 32",

Hence E,, which is measured by the difference between %8, and <« M, has

a maximum value of about 23° = 10m. in time.

From the above we have then :—

The greatest value of E, is about T minutes.
I EZ 2 10 2

Hence the greatest distances of the thin and thick curves from the
horizontal axis should be taken to be about 7 and 10 units of length
respectively.

9 2 2
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We may now draw the diagram representing E, the total equation

of time. We have
E=E, + E,.

Hence, at every point of the horizontal line we must erect an
ordinate whose length is equal to the algebraic sum of the ordinates
(taken with their proper sign) of the two curves which represent E;
and E,. The extremities of these ordinates will determine a new curve
which represents E.

This curve is drawn separately in Fig. 28.

It cuts the horizontal axis in four points. At these points the
ordinate vanishes, and E is zero. Hence—

The Equation of Tvme vanishes four times a year.

Fie. 28.

52. Miscellaneous Remarks

From Fig. 28 it will be seen that the largest fluctuations in the
equation of time occur in the autumn and winter months ; during
spring and summer they are much smaller.

The days on which the equation of time vanishes are about April
16th, June 14th, September 1st, and December 25th.

Between these days E increases numerically, and then decreases,
attaining a positive or negative value at some intermediate time.
These maxima are :

_ 14m. 21s. on or about Feb. 12th ; -+ 3m. 45s. on or about May 15th.

— 6m. 22s. on or about July 27th; — 16m. 22s. on or about Nov. 3rd.

53. Inequality in the Lengths of Morning and Afternoon
If we neglect the small change in the Sun’s declination during the
day, the interval from sunrise to apparent noon is equal to the interval
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from apparent noon to sunset. But by morning and afternoon are
meant the intervals between sunrise and mean noon, and between
mean noon and sunset respectively. Hence, unless mean and apparent
noon coincide, 4.e. unless the equation of time vanishes, the morning
and afternoon will not be equal in length.

Let 7, s be the mean times of sunrise and sunset, E the equation
of time. Then:—

12h. — r = interval from sunrise to mean noon.
But mean noon occurs later than apparent noon by E; thus:—
12h. — r — E = interval from sunrise to apparent noon.

Similarly, s 4+ E = interval from apparent noon to sunset ;
therefore :—
12h. —r — E = s + E,
or r + s= 12h. — 2E,

80 that the sum of the times of sunrise and sunset is less than 12 hours by
twice the equation of time.

The length of the morning is 12h. — 7, and that of the afternoon iss.
Now the last relation gives '

2E=(12—7r)—s

or 2 (equation of time) = (length of morning) — (length of afternoon).

About the shortest day (December 22nd) the curve representing
the equation of time is going downwards, hence F is decreasing. But
the length of day is changing very slowly (because it is a minimum),
hence, for a few days, the half length, s + E, may be regarded as
constant. Hence, s must increase, and, therefore, the mean time of
sunset is later each day. Similarly, it may be shown that sunrise is
also later. The afternoons, therefore, begin to lengthen, while the
mornings continue to shorten.

Similarly, about June 21st, the afternoons continue to lengthen
after the longest day, although the mornings are already shortening.

Example.—On Now. 1, the sundial ts 16m. 20s. before the clock. Given that
the Sun rose at 6h. 54m., find the time of sunset.

Time from sunrise to mean noon = 12h. — 6h. 54m. = 5h. 6m.
Time from apparent noon to mean noon = Oh. 16m. 20s.
So that time from sunrise to apparent noon = 4h. 49m. 40s.
And time from apparent noon to sunset = 4h. 49m. 40s.
And time from mean noon to sunset = 4h. 49m. 40s. — 16m. 20s.

= 4h. 33m. 20s.

Hence, the time of sunset was 4h. 33m. correct to the nearest minute.
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II.—TeE SUNDIAL

54. The Appliance

The Sundial consists essentially of a rod or flat blade, called a
gnomon or style (OA, Fig. 29), which is fixed with its edge parallel to
the Earth’s axis, and therefore pointing in the direction of the celestial
pole. The shadow from OA4 is thrown on the dial-plate, which is
usually either horizontal or on a wall facing south. The direction of
the edge of the shadow determines the hour angle of the Sun, and
therefore the apparent time.

The plane through 04, the edge of the style, and through the edge
of the shadow, evidently passes through the Sun ; also it passes through
the celestial pole, therefore it will meet the celestial sphere in the
Sun’s hour or declina-
tion circle.

Let OAxm be the
meridian plane, which is
the plane of the shadow
at apparent noon, and
whose position is sup-
posed known. Then, in
order to graduate the
plate for the times 1,
2, 3... o’clock, it is only
necessary to determine
the positions of the
planes 041, 0411, 041,
etc., which make angles
of 15°, 30°, 45° etc.,
with the meridian plane.
Since the Sun’s hour
angle increases 15° per Fre. 29.
hour, these planes will
be the planes bounding the shadow at 1, 2, 3... o’clock respectively.

If we join the points O1, O, O, etc., these will be the correspond-
ing lines of shadow in the plane of the gnomon, and will meet the
circumference of the dial-plate (which is usually circular) at the required
points of graduation 1, 2, 3, etc.

55. Geometrical Method of Graduating the Dial-plate

To find the planes OA1, 0A4rr, OAm, etc., suppose a plane AKR
drawn through A perpendicular to 04, meeting the plane of the dial-
plate in KR and the meridian plane in Axm. If, in this plane, we
take the angles x11d1, 1411, mdmr, etc., each = 15°, the points 1, 11,
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mr...., ete., will evidently determine the directions of the shadow at
1, 2, 3,... o’clock respectively.

But in practice it is much more convenient to perform the construc-
tion in the plane of the dial itself. Imagine the plane AKR of Fig. 30 (a)
turned about the line KR till it is brought into the plane of the dial,
the point 4 of the plane being brought to U [Fig. 30 (6)]. Then, by
making the angles xuU1, 1Un, U, ete., each = 15° we shall
obtain the same series of points 1, 11, i1 as before.

If the dial-plate is horizontal, and ¢ is the latitude of the place
(x1104), we have evidently therefore the following construction :—

On the meridian line, measure Ox11 = 04 sec ¢, and xulU = x14
= Oxirsin ¢. Draw K x:° R perpendicular to OU. Make the angles

(a) Fra. 30. &)

xuU1, 1Un, nU, ete., each = 15° taking 1, 11, 11, etc., on KR.
Join O1, O, Om1, etc., and let the joining lines meet the circumference
of thedialin1, 2, 3, etc. These will be the required points of graduation
for 1, 2, 3,...0’clock respectively.

IJII.—APprPARENT AND MEAN SipeErREAL TIiME

56. Apparent Sidereal Time

In Art. 28, we have mentioned that the position of the first point of
Aries is not fixed, but that it has a slow retrograde motion along the
ecliptic, amounting to about 50" per year. This motion of the first
point of Aries is caused by the phenomenon of precession, which is
explained in Chapter XVIII, Sect. IIT. It is sufficient at this stage to
state that it is due to the Earth being a spheroid and not a true sphere.
The Earth is flattened towards the poles and bulges slightly along the
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equator ; the gravitational attractions of the Sun and the Moon on the
equational bulges tend to tilt the axis of the Earth and give rise, as we
shall see, to the precession of the equinoxes—the first points of Aries
and Libra.

A complication is introduced by the fact that the precession of the
equinoxes is not uniform. The Moon’s orbital plane does not coincide
with the ecliptic and is not constant with respect to the background of
the stars. In consequence the action of the Moon, which contributes
to the precession is not uniform. The variable part of the Moon’s
action, together with a similar but smaller variable part of the Sun’s
action, give rise to irregularities in the precession of the equinoxes,
which are known as nutation. A fuller explanation of nutation is
given in Chapter XVIII, Art. 469.

Now since the right ascension of a celestial body is equal to the
sidereal time of its transit or meridian passage (Art. 29) and since mean
noon is, by definition, the instant of transit of the mean Sun (Art. 47), it
follows that the sidereal time at mean noon is equal to the right ascension
of the mean Sun. The right ascension of the mean Sun is measured
from the true equinox; if the equinox were fixed or if it had a
uniform motion, the right ascension of the mean Sun would increase
at a uniform rate. But, on account of the irregularity in the
motion of the equinox, known as nutation, the right ascension of
the mean Sun does not increase quite uniformly. Hence also the
sidereal time at mean noon does not increase uniformly. It follows
that the sidereal days, which are measured by transits of the true
equinox, are not of equal length.

Sidereal time, as defined in Art. 28, such that Oh. Om. Os. is the
ingtant of transit of the true vernal equinox or first point of Aries is
therefore not uniform. In this respect it is analogous to apparent or
true solar time. For this reason the sidereal time so defined is termed
apparent sidereal time or true sidereal time.

The time that is determined from observations of the stars is
apparent sidereal time, just as the time that is given by observations
of the actual Sun is apparent solar time.

57. Mean Sidereal Time

We imagine a mean equinor which has a uniform motion along the
equator and which is so chosen that the extreme irregularities in position
of the true equinox with respect to the mean equinox are of equal
amount in both directions. The right ascension of the mean equinox
measured from the true equinox is termed nutation in right ascension.
The extreme values of the nutation in R.A. are 4-15-2,

The right ascension of the mean sun when measured from the mean
equinox will increase uniformly and sidereal days, measured by transits

M. ASTRON. 4
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of the mean equinox, will be exactly equal in length. The time kept
by a perfect clock, which always reads Oh. Om. Os. at the instant of
transit of the mean equinox, is termed mean sidereal time. It is analo-
gous to mean solar time.

Tt will be noted that the extreme differences between mean sidereal
time and apparent sidereal time (4 1%-2) are very much smaller than the
extreme differences between mean solar time and apparent solar time.
The introduction of clocks led to the necessity for mean solar time, for
it would be an extremely bad clock that gave a time as non-uniform as
apparent solar time, The improvement in the performance of precision
clocks, used as standards of time in observatories, has reached a stage
when a good clock will give a time that is more uniform than apparent
gidereal time. The introduction of mean sidereal time has thus become
necessary. ‘

From the definition of the nutation in R.A., it follows that the right
ascension of a star measured from the true equinox is equal to the sum
of its right ascension measured from the mean equinox and the nutation
in R.A. But the right ascension of a celestial body is equal to the
gidereal time of its transit. It follows that :—

Apparent sidereal time = Mean sidereal time + nutation
or Mean sidereal time = Apparent sidereal time — nutation.
comparing with
Apparent solar time = Mean solar time + equation of time.

We see that the nutation in R.A. is analogous to the equation of time.
The analogy between solar and sidereal times can be expressed thus :—

SorLar SIDEREAL
Observations determine Apparent solar time Apparent sidereal time.
Clocks ke-ep Mean ” i) Mean ”» 3
The difference is Equation of time Nutation in R.A.

IV.—CoMPARISON OF MEAN AND SIDEREAL TIMES

58. Relation between Units

One of the most important problems in practical astronomy is to
find the sidereal time at any given instant of mean solar time, and
conversely, to find the mean time at any given instant of sidereal time.
Before doing this it is necessary to compare the lengths of the mean
and sidereal days.

The length of the tropical year, the period between two successive
vernal equinoxes on which the return of the seasons depends, is about
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3651 mean solar days. In this period both the true and mean Sun
describe one complete revolution, or 360° from west to east relative
to P ; or, what is the same thing, v describes one revolution from east
to west relative to the mean Sun. But the mean Sun performs 365}
revolutions: from east to west relative to the meridian at any place.
Therefore < performs one more revolution, i.e. 366} revolutions, relative
to the meridian.

Now, a sidereal day and a mean solar day have been defined
(Arts. 28, 47) as the periods of revolution of ¢ and of the mean Sun
relative to the meridian ; so that

365} mean solar days = 366} sidereal days.

From this relation we have :—

One mean solar day = (1 + ) sidereal days

1
365}
= (1 + -002738) sidereal days
= 24h. 3m. 56-5s. sidereal time
= 1 sidereal day 4 4m. — 4s. nearly ;
or one mean solar hour = 1h. '—I— 10s. — }s. sideréal time,
and 6m.of mean solar time = 6m. - 1s. sidereal time nearly.

In like manner we have
: o1
One sidereal day = (1 — :?(";ﬁ.) mean solar days

= (1 — -002730) mean days
= 23h. 56m. 4-1s. mean time
" = 1 mean day — 4m. - 4s. nearly ;
or one sidereal hour = 1h. — 10s. + }s. of mean time,
and 6m. sidereal time = 6m. — 1s. mean solar time nearly.

59. Approximate Rules

From the results of the last paragraph we have the following
approximate rules :—

(i) To reduce a given interval of mean time to sidereal time, add 10s,
for every hour, and 1s. for every 6m. in the given interval. For every
minute so added, subtract 1s.

(ii) To reduce a given tnterval of sidereal time to mean time, subtract
10s. for every hour, and 1s. for every 6m. in the given interval. Then
add 1s. for every minute so subtracted.
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Examples.—Ezpress in sidereal time an interval of 13h. 23m. 25s. mean time.

The calculation stands as follows :— H M. 8.
Mean solar interval .. =13 23 25
Add 10s. per hour on 13h. 2 10
,»» s, per 6m. on 23m. ... 4
13 25 39
Subtract 1s. per 1m. on 2m. 13-8s. 2
Required sidereal interval s .. = 13 25 37

9.—_Find the mean solar interval corresponding to 14h. 45m. 53s. of sidereal time.
The calculation stands as follows :— H. M. S.
Given sidereal interval ... .. = 14 45 53
Subtract 10s. per hour on 14¢h. = 2m. 20s. } 9 98

» 1s. per 6m. on 46m. (nearly) = 8s.

14 43 25

Add 1s. per 1m. on 2m. 28s, 3
Required interval of mean time e .. = 14 43 28

If accuracy to within a few seconds is not required, the second
correction of 1s. per 1m. may be omitted. On the other hand, if the
interval consists of a considerable number of days, or if accuracy to the
decimal of a second is needed, the results found by the rules will no
longer be correct. We must, instead, add 1/865% of the given mean
solar interval to get the sidereal interval, or subtract 1/366} of the
given sidereal to get the mean solar interval.

The Nautical Almanac contains tables for converting intervals of
mean solar time into equivalent intervals of mean sidereal time and
conversely. These enable the conversions to be done without any
calculation.

60. To find the Sidereal Time at a given instant of Mean Solar
- Time on a given date at Greenwich

The Nautical Almanac* gives under the heading * Sidereal Time
the sidereal time of mean midnight at Greenwich on every day of the
year. Before 1931 it was given for mean noon.

Now the given mean time represents the number of hours, minutes,
and seconds which have elapsed since mean midnight,t expressed in
mean time. Convert this interval into sidereal time; we then have
the sidereal interval which has elapsed since mean midnight. Add
this to the sidereal time of mean midnight ; the result is the sidereal
time required.

* Or Whitaker’s Almanack, which may be used if the Nautical Almanac is not
at hand.

+ Since the beginning of the year 1925, mean time has been reckoned from
midnight, not from noon.
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Thus, let m be the mean time at the given instant, measured from
the preceding mean midnight, s, the sidereal time of mean midnight from
the Nautical Almanac, and let & = 1/365} ; so that 1 + & is the ratio
of a mean solar unit to the corresponding sidereal unit.

Then, from mean midnight to given instant :—

Interval in mean time =m;
So that interval in sidereal time = m + km.
But, at mean midnight, sidereal time = s,; therefore, at

given instant :—
required sidereal time, s = sq + m + knh.
If the result be greater than 24h., we must subtract 24h., for times
are always measured from Oh. up to 24h.

Example.—Find the sidereal time corresponding fo mean time 8h. 16m. 40s. A.M,
on Dec. 20th, 1940, given that the sidereal time of mean midnight was 5h. 53m. 42s.

From mean midnight to the given instant, the interval in mean time is

8h. 156m. 40s.
Converting this interval to sidereal time, by the method of Art. 59, we have
Mean solar interval = 8h. 16m. 40s.
Add 10s. per hour on 8h. = 1m. 20s.
Add 1s. per 6m. on 15m. 40s. = 3s.
8h. 17m. 3s.
Subtract 1s. per 1m. on 1m. 23s. 1s.
Thus, sidereal interval since mean midnight = 8h., 17m. 2s.
But sidereal time of mean midnight = b5h. 53m. 42s,
Sidereal time at instant required = 14h. 10m. 44s.

6l. To find the Sidereal Time at a given instant of Mean Solar Time
on a given date at Greenwich (alternative method)
Under the heading  Transit of First Point of Aries,” the Nautical

Almanac gives for each day the mean time when < is on the meridian,
i.e. the mean time corresponding to sidereal time Oh. Om. Os This is

called sidereal noon.

Let the given mean solar time = m
Let the mean time of preceding sidereal noon (s.e. Oh.) == my.

Then from sidereal noon to given instant :—
Interval in mean time = m — my;
so that interval in sidereal time = (m — my) + k (m — my)
and required sidereal time s=(m — mg) + k (m — my)
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Example.—Find the sidereal time corresponding to mean time 8h. 15m. 40s. on
Dec. 20th, 1940, given that mean time at Oh. sidereal on Dec. 20th was 18kh. 3m. 20s.

As the mean time instant for which sidereal time is required is earlier than the

mean time at Oh. sidereal, we have interval in mean time = — 9h. 47m. 40s.
Converting this interval to sidereal time, by the method of Art. 59, we find
interval in sidereal time = -— 9h. 49m. 16s.

As this interval is measured from Oh. = 24h. Om. Os., the required sidereal
time is 14h. 10m. 44s,, as before.

62. To find the Mean Solar Time corresponding to a given instant
of Sidereal Time at Greenwich

Subtract the sideral time of mean midnight from the given sidereal
time ; this gives the interval which has elapsed since mean midnight,
expressed in sidereal time. Convert this interval into mean time ; the
result is the mean time required.

Let &' = 1/366} ; so that 1 — %’ is the ratio of a mdereal to a mean
solar unit.

Let the given sidereal time = s, and let the sidereal time of the
preceding mean midnight = s, ;

Then from mean midnight to given instant :—

Interval in sidereal time =5 —8;
so that interval in mean time = (s — s5) — %' (s — s,).
and required mean time m = (s — 89) — k' (s — o).

If s be less than sy, we must add 24h. to s in order that the times
s, s, may be reckoned from the same transit of or.

Example.—Find the solar time corresponding to 16h. 6m. 57s. sidereal time on
May b5th, 1940, sidereal time at mean midnight being 14h. 50m. 5ls.

Sidereal interval since mean midnight
= 16h. 5m. 57s. — 14h. 50m. 51s. = 1h. 16m. 6s.

Mean solar interval (Art. 59)
= 1lh. 16m. 6s. — 108. — 3s. = 1h. 15m. 53s.

Hence 1h. 15m. 53s. is the mean time. The sidereal time was also 16h. 6m.
57s. a sidereal day or 23h. 56m. 4s. previously, ¢.e. 1h. 19m. 49s. a.m. on the morning
of May 4th. :

63. To find the Mean Time corresponding to a given instant of
Sidereal Time at Greenwich (alternative method)

The Nautical Almanac also contains, under the heading ‘‘ Transit
of First Point of Aries >’ the mean time when < is on the meridian,
or when the sidereal time is Oh. Om. Os., 7.e. the mean time of sidereal
noon. Let this be m,, and let s be the given sidereal time, &’ the factor
1/366% as before. Then

From sidereal noon to given instant, sidereal interval = s;
and from sidereal noon to given instant, mean solar ,, =s—¥k's.
But, at sidereal noon. mean time =my;
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Therefore, at given instant :—
The required mean time = mgy + s — k's.

Example.—Find the solar time corresponding to 16h. 6m. 57s. sidereal time on
May b5th, 1940. Mean time at sidereal noon on May 4th is 9h. 11m. 35s. and on
May 5th, 9. Tm. 39s.

From sidereal noon on May 4th to given instant

. 16h. 6m. 57s. sidereal time
16h. 4m. 18s. mean solar time.
9h. 11m. 35s. 4+ 16h. 4m. 18s.
25h. 16m. 53s. on May 4th.
1h. 16m. 53s. on May 5th.

Hence required mean time

[ T T

or, alternatively,
From sidereal noon on May, 5th to given instant
= — 7h. 53m. 3s. sidereal time
= — 7h. 51m. 46s. mean solar time.
Hence required mean time = 9h. 7m. 39s. — 7h. 51m. 46s. on May 5th.
) = 1h. 16m. 53s. on May 5th.

64. Effect of Difference of Longitude

If 4, B (Fig. 31) be two places whose difference of longitude is
L°: L hours, the transits
of stars at 4 and B will take
place when the meridian planes
PAP' and PBP’ (which are
evidently also the planes of
the celestial meridians of 4, B
respectively), pass through the
direction of the star. Hence
the transits will occur % L
hours earlier at B than they
will oceur at 4.

Now an observer at B will
set his sidereal clock to in-
dicate Oh. Om. Os. when ¥
crogses the meridian of B.
When o transits at 4, the
clock at B will mark 1% L h., but an observer at 4 will then set his
clock at Oh. Om. Os. Hence, if the two clocks be brought together
and compared, the clock from B will be 5 Lh. faster than the
clock from 4. This fact may be expressed briefly by saying that
the “ local » sidereal time at B is i1 L h. faster than the local sidereal
time at 4.

Since the Earth makes one revolution relative to the Sun in a
solar day, in like manner the local solar time at B will bé % L solar
hours faster than the local solar time at 4.
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Therefore, whether the local times be sidereal or solar, We have :—

Longitude of A west of B = long. of B east of A = 15 {(local time at
B) — (local time at A)}.

In particular, Longitude west of Greenwich

= 15 {(Greenwich time) — (local ttme)}
5 15 (Greenwich time of local midnight).

65. To find the Sidereal Time from the Mean Solar, or the Mean
Time from the Sidereal, in any given Longitude

If the longitude is not that of Greenwich, the above methods will
require a slight modification, because the sidereal time of mean mid-
night, and mean time of transit of o are tabulated for Greenwich.

In such cases, the safest plan is as follows :—Find the Greenwich
time corresponding to the given local time (Art. 64). Convert this
Greenwich time from mean to sidereal, or sidereal to mean, as the
case may be, and then find the corresponding local time again.

Let the longitude be L° west of Greenwich (L being negative if the
longitude is east),

Let m, be the mean and s; the sidereal local time, and m, s the
corresponding times at Greenwich,

Let &, &', m,, s, have the same meanings as in Arts. 58-63.

By Art. 64 we have, whether the times be local or sidereal,
(Greenwich time) — (local time in long. L° W.) = % Lh. = 4L m.

—_ 1 —_
Therefore s—s8 =5 L=m—m,.

(i) If m, is given and s, is required, we have (in hours),
m = m, + < L.
By Arts. 60, 61, s=sy+ m + kmor= (m — my) + k& (m — my);
‘ i.e. s=so+my +km + L& L+ kL
= (my — my) + k(m; — mp) + {5 L + 75 kL,
so that 8y = § — 1% L= (my — mg) + k(m; — my) + kL

= §¢ + my + kmy + 2 kL.
(i) If s, is given and m, is required, we have
s=3s, + 7 L.
By Arts. 62,63, m= (s — sg) — k'(s —sg)or =my +s — k's;
z.e. m = (8; — 8o) — K'(8; — 8p) + 5L — k'L
=my + 8 — k's; + &L — %K' L;
so that my=m — % L= (s; — 80) — k(8 — 8p) — 5F'L

=my + 8, — k's; — KL
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Example.—Find the solar time when the local sidereal time is 5h. 17m. 32s. on
March 21st, the place of observation being Moscow (long. 37° 34’ 156" E.); given that
stdereal time of mean midnight was 11h. 50m. 12s. at Qreenwich.

Reduced to time 37° 34’ 15” is 2h. 30m. 17s.

Therefore Greenwich sidereal time at instant required

= 5h. 17m. 32s. — 2h. 30m. 17s. = 2h. 47m. 15s.

Sidereal interval since Greenwich midnight )

= 2h, 47m. 15s. + 24h. — 11h. 50m. 128. = 14h. 57m. 3s.

So that Greenwich mean time = 14h. 57m, 3s. — 2m. 27s. = 14h. 54m. 36s.

and Moscow mean time = 14h. 54m. 36s. + 2h. 30m. 17s. = 17h. 24m. 53s.

66. Practical Applications

In Art. 42 we showed how to determine roughly the time of night
at which a given star would transit on a given day of the year. With
the introduction of mean time, in the present chapter, we are in a
position to obtain a more accurate solution of the problem.

For the R.A. of any star (expressed in time) is its sidereal time of
transit. If this be given, we only have to find the corresponding mean
time ; this will be the required time of transit, as indicated by an
ordinary clock.

In the calculations required in converting the time from one measure
to the other, it is advisable not to quote the formulae of Arts. 60-65,
but to go through the various steps one by one.

If neither the sidereal time of mean midnight nor the mean time
of sidereal noon is given, we must fall back on the rough method
of Art. 39.

The disadvantages of using local time are obviated in Great Bntaln
by the universal use of ““ Greenwich Mean Time.”

67. Worked Examples

Examples.—1. As an example of the method of reckoning time before 1925, find
the solar time at 5h. 29m. 28s. sidereal time on July 1st, 1891 ; mean time of sidereal
noon being 17h. 20m. 8s.

Sidereal interval from sidereal noon to the given instant = 5h. 29m. 28s.

Mean solar interval = 5h. 29m. 28s. — 50s. — 5s. 4- 1s. = 5h. 28m. 34s.,

i.e. Mean solar time = 5h. 28m. 34s. + 17h. 20m. 8s. = 22h. 48m. 42s. or,
10h. 48m. 42s. A.M., July 2nd.

It was also 5h. 29m. 28s., a sidereal day or 23h. 56m. 4s. previously, i.e. 10h.
52m. 38s. A.M., July 1st.

2. To find the mean time of transit of Aldebaran at Gr ich on December 12th,
1940. Given :— H. M. 8.

R.A. of Aldebaran 4 32 33

Sidereal time of midnight, December 12th 1931 5 22 10
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Since the star’s R.A. is less than the sidereal time of: midnight, we must increase
the former by 24h., in order that both may be measured from the same ** sidereal

noon.” H. M. 8.
Sidereal time of transit 4+ 24h. . .. = 28 32 33

Subtract ,, » midnight ... . = 5 22 10
Sidereal interval from midnight to transit ... .. =23 10 23
To convert into mean solar units, subtract ... 0 3 48
Mean Solar interval from midnight to transit =23 ,6 35

So that Aldebaran transits at 23h. Gm 358. mean tune

3. To find the (local) sidereal time at New York at 9h. 25m. 31s. (local mean
time) on the morning of September 1st, 1940.

Longitude of New York = 74° W.
Sidereal time of mean midnight at Greenwich, Sept. 1st = 22h. 40m. 1s.

H M. 8.
Local mean time at New York . . 9 25 31
Add for 74° west longitude reduced to tlme e = 4 56 0
Therefore Greenwich mean time is, September Ist 14 21 31
To convert this interval to sidereal units, add 0 2 22
‘Whence sidereal time elapsed since Greenwich midnight ... = 14 23 53
But at Greenwich midnight sidereal time (by data) =22 40 1
Sidereal time at Greenwich is therefore 13 3 54
Subtract for 74° west longitude 4 656 O

Sidereal time at New York = 8h. 7m. 54s.
4. To find the Paris mean time of transit of Regulus at Nice on December 26th,

1940. H M. 8.
Longitude at Paris = 2° 21’ E. R.A. of Regulus = 10 & 15
Nice = 7° 18’ E.
Slderea.l time at Greenwich midnight e = 6 17 21
Here local sidereal time of transit at Nice ... =10 b5 15
Subtract east longitude of Nice, 7° 18/, in time 0 29 12
Therefore, Greenwich sidereal time of transit at Nice = 9°3 3
Subtract Greenwich sidereal time at midnight 6 17 21
Sidereal interval since Greenwich midnight ... = 3 18 42
To convert to mean solar units, subtract = 0 0 33
Greenwich mean time is therefore ... = 3 18 9
Add east longitude of Paris, expressed in tlme = 0 9 24
Paris mean time of transit ... = 3 27 33

That is, 3h. 27m. 33s. in the mormng on December 26th.

5. This example is given as an example of the old method of time reckoning.

Find the R.A. of the Sun at true noon on October 8th, 1891, given that the equation
of time for that day is + 12m. 24s., and that the sidereal time of mean noon on March
21et was 23h. 54m. 52s.
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Mean solar interval from mean noon March 21st to mean noon Oct. 8th
= 201 days.
Mean solar interval from mean noon to apparent noon on Oct. 8th
= — 12m. 24s.
Hence, interval from mean noon on March 21st to apparent noon on Oct. 8th
= 201d. — 12m. 24s.
Now, in 365} days the mean Sun’s R.A. increases 24h., and the increase takes

place uniformly.
Therefore, increase in mean Sun’s R.A. in 201 days H M. S.
= 24h. X 201 =~ 365} = 13 12 27
Add mean Sun’s R.A. on March 21st
( = sidereal time of mean noon) = 23 54 52
Mean Sun’s R.A. at mean noon Oct. 8th =37 71
or, subtracting 24h. ... =13 7 19
Subtract change of R.A. in 12m 24s = 2
Mean Sun’s R.A. at apparent noon Oct. 8th e =18 7 17
But true Sun’s R.A. — mean Sun’s R.A. = — equation of
time = — 12 24
So that true Sun’s R.A. at apparent noon Oct. 8th .. =12h. 54m. 53s.

V.—Tae CrviL Day : TiME ZoNES : STANDARD TiMEs

68. The Civil Day

Up to the present we have been concerned with local mean time and
local apparent time. Local mean time at any place is the moment of
passage of the mean Sun across its meridian. At two places which
differ in longitude, the local mean times will be different, as we have
seen in Art. 64. There would obviously be great inconveniences if local
times were kept throughout a country. A person travelling in an
easterly or westerly direction would need to be continually adjusting
his watch. It is therefore customary for a country to adopt as the
legal time of the country the mean time of a standard meridian. In
Great Britain the standard meridian adopted for this purpose is the
meridian of Greenwich and the time kept throughout Great Britain is
based on Greenwich Mean Time (G.M.T.), often denoted Universal
Time (U.T.)

The civil day is the day beginning at mean midnight and ending at
the following mean midnight, according to the system of time adopted
in the particular country.

69. Time Zones

In the case of a ship at sea, it is convenient to keep a time that
does not differ greatly from the local mean time or, as it is usually
called at sea, the ship mean t¢me. In the merchant and passenger
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services, it is usual to alter the clocks each night by & number of minutes
such that, at local noon the following day, the time shown by the
clocks shall be approximately 12h. The time shown by the ship’s
clocks is called ship time. In the British Navy, a system of zone times,
each of which differs by an integral number of hours from Greenwich
mean time is used. The zones are bounded by meridians of longitude
at intervals of 15°, or 1 hour, apart ; within each such time zone, the
mean time appropriate to the central meridian is kept. Thus, in the
zone between longitudes 73° E. and 73° W., Greenwich mean time is
kept. This zone is designated zone 0. The next zone to the westward
lies between longitudes 74° W. and 223° W (or Oh. 30m. W. and 1h. 30m.
W.); the time kept is one hour slow on Greenwich Mean Time and the
zone is designated zone 4+ 1. The next zone to the westward lies
between longitudes 224° W. and 373° W. (or 1h. 30m. W. and 2h. 30m.
W.): the time kept is two hours slow on Greenwich Mean Time and the
zone is designated zone + 2, and so on. Similarly, the first zone
eastwards from the central zone is designated zone — 1 ; it is bounded
by longitudes 73° E. and 22}° E. and the time kept in it is one hour
fast on Greenwich. The successive zones eastwards are designated
zones — 2, — 3, —4, ........
Tt should be noted that in cach zone, the designation of the zone (in
hours) is to be added to the zone time to obtain Greenwich mean time.

70. The Date Line

Proceeding eastwards from Greenwich the time in the twelfth zone
(which is bounded by the meridians 1724° E. and 1724° W., or 11h.
30m. E. and 11h. 30m. W.) will be 12 hours fast on Greenwich mean
time, whilst proceeding westwards the time in the same zone will be
12 hours slow on Greenwich mean time. Zones — 12 and + 12 are
identical ; in order to avoid confusion, the half of this zone lying in the
eastern hemisphere and bounded by the meridians 11h. 30m. E. and
12h. Om. E. is called zone — 12, whilst the other half, which lies in the
western hemisphere and is bounded by the meridians 11h. 30m. W.
and 12h. Om. W. is called zone -+ 12. The 180th meridian from Green-
wich is called the date line.

If, at Greenwich, it is midnight on the night of say, December
14-15, the time carried by a ship approaching at that instant the date
line from the west will be noon on December 15th, but on one approa.ch-
ing it from the east it will be noon on December 14th. On crossing the
date line, the date on the former ship will be changed to December 14th,
one day being thus repeated ; the date on the latter ship will be changed
to December 15th, and one day will be missed out.

The actual date line is slightly different from the 180th meridian
from Greenwich, where this runs over or is adjacent to land areas.
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The date line is slightly distorted in order to avoid inconvenient
differences of date in contiguous portions of eastern Siberia, or in the
groups of Pacific Islands which form geographical units.

71. Standard Times
Each country formerly adopted its own zero or prime meridian
from which longitudes were measured. This resulted in many incon-
veniences ; for instance, the longitude of the same place was different
on maps prepared in different countries. In 1884 a Prime Meridian
Conference met in Washington and it was recommended that the
meridian through Greenwich should be universally adopted as the
prime meridian from which all longitudes should be measured. The
Conference further recommended that a system of standard times,
differing by an integral number of hours from Greenwich mean time,
should be introduced and that each country should use the particular
standard time that was most appropriate to its longitude. This recom-
mendation was not at once implemented by all countries, but most
countries have now adopted standard times based on Greenwich mean
time, with the modification that some of the standard times in use differ
from Greenwich time by an integral number of hours 4 half an hour.
In countries that extend over a wide range of longitude, several
standard times may be used. Thus, for instance, in the United States,
times 4h, 5h, 6h, 7Th and 8h. slow on Greenwich are used, according
.to the longitude; these times are known respectively as Atlantic,
Eastern, Central, Mountain and Pacific times. A full list of standard
times in use is given in the Nautical Almanac.

72. The Greenwich Date

In the Nautical Almanac the data for the Sun and planets are
given for Oh. G.M.T. for each day of the year; the data for the Moon
are given for each hour of G.M.T. throughout the year. When data
have to be extracted from the Almanac it is important that the correct
date should be used. Thus, suppose in zone — 8, an observation of the
Moon has been secured at zone time 6h. 14m. on April 1st. The G.M.T.
of the observation is obtained as follows :— :

April 1d. 6h. 14m. = March 32d. 6h. 14m.
Add zone — 8 — 8 0
March 31d. 22h. 14m.
The position of the Moon at the time of observation will be obtained
by interpolating between the positions for G.M.T. 22h. and 23h. on

March 31st.
The Greenwich Date and Time is always obtained by adding the
zone number in hours to the Zone Date and Time.
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78. Summer Time

In many countries, it has become customary to advance the clocks
during a certain portion of the year (around the summer months) by
an amount that is usually one hour, but which in some cases is 30
minutes. This time, as so altered, is termed Summer Time.

Thus, in Great Britain, the clocks are normally advanced by one
hour on a date in April and put back by one hour on a date in October.
To cause the minimum of inconvenience, the change is made at 2 a.m.
on a Sunday morning. During the period of summer time, this time
becomes the legal time of the country.

British summer time, being one hour fast on G.M.T. is simply the
time for the Zone — 1.

As a war measure, British summer time (B.S.T.) was extended to
apply to the whole of the year in 1940 and subsequently. The clocks
were advanced an additional hour between a date in May and a date in
August, fixed by Order in Council, in 1941 and subsequent years. This
time, known as Double Summer Time, is the zone time for Zone — 2.

VI.—Units oF TiME—THE CALENDAR

74. Tropical, Sidereal, and Anomalistic Years

Hitherto we have defined a year as the period of a complete revolution
of the Sun in the ecliptic. In order to give a more accurate definition,
however, it is necessary to specify the starting point from which the
revolution is measured. We are thus led to three different kinds of years.

A Tropical Year is the period between two successive vernal equi-
noxes, or the time taken by the Sun to perform a complete revolution
relative to the first point of Aries. This year is the natural unit marked
out for the use of man, because the seasons recur after the interval of
a tropical year. If, therefore, the civil year is adjusted to agree in the
mean with the tropical year in length, the seasons will always recur at
about the same dates in each year.

The length of the tropical year in mean solar time is very approxi-
mately 365d. 5h. 48m. 45-98s. at the present time. For many purposes
it may be taken as 3651- days.

A Sidereal Year is the period of a complete revolution of the Sun,
starting from and returning to the secondary to the ecliptic through
some fixed star. Thus, after a sidereal year the Sun will have returned
to exactly the same position among the constellations.

If o» were a fixed point among the stars, the sidereal and tropical
years would be exactly of the same length. But < has an annual
retrograde motion of 50-26” among the stars. Consequently, the
tropical year is rather shorter than the sidereal.
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An Anomalistic Year is the period of the Sun’s revolution relative
to the apse line, or major axis of its orbit—in other words, the interval
between successive passages through perigee or apogee. '

Owing to a progressive motion of the apse of line, the positions of
perigee and apogee move forward in the ecliptic at the rate of 11-25”
per annum (Art. 137). Hence the anomalistic year is rather longer
than the sidereal. '

It is easy to compare the lengths of the sidereal, tropical, and
anomalistic years. For, relative to the stars—

In the sidereal year the Sun describes 360°,
In the tropical year it describes " 360° — 50-26”,
In the anomalistic year it describes  360° 4 11-25”;

whence :—(Sidereal year): (Tropical year): Anomalistic year)
= 360°: (360° — 50-26") : (360 4 11-25”).

From this proportion it will be found that the sidereal year is about
20m. longer than the tropical, and 4im. shorter than the anomalistic.

75. The Civil Year

For ordinary purposes, it is important that the year shall possess
the following qualifications :—

1st. It must contain an exact (not a fractional) number of days.

2nd. It must mark the recurrence of the seasons.

Now the tropical year marks the recurrence of the seasons, but its
length is not an exact number of days, being, as we have seen, about
365d. bh. 48m. 45-98s. To obviate this disadvantage, the civil year
has been introduced. Its length is sometimes 365, and sometimes
366 days, but its average length is almost exactly equal to that of the
tropical year.

Taking an ordinary civil year as 365d., four such years will be less
than four tropical years by 23h. 15m. 3-92s., or nearly a day. To
compensate for this difference, every fourth civil year is made to
contain 366 days, instead of 365, and is called a leap year. For con-
venience, the leap years are chosen to be those years the number of
which is divisible by 4, such as 1892, 1896.

The introduction of a leap year once in every four years was due to
Julius Caesar, and the calendar constructed on this principle is called
the Julian Calendar.

Now three ordinary years and one leap year exceed four tropical
years by 24h.—23h. 15m. 3-92s., 7.e. 44m. 56-08s. Thus, 400 years of
the Julian Calendar will exceed 400 tropical years by

(44m. 56-08s.) X 100, z.e. by 3d. 2h. 53m. 30s.
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To compensate for this difference the calendar now in use was
introduced by Pope Gregory XIII in 1582. In the Gregorian Calendar
it is arranged that three days shall be omitted in every 400 years.
This correction is called the Gregorian correction and is made as follows :
Every year whose number is a multiple of 100 is taken to be an ordinary
year of 365 days, instead of being a leap year of 366, unless the number
of the century is divisible by 4 ; in that case the year is a leap year.

ExampLEs.—(i) 1892 is divisible by 4, and the year 1892 is a leap
year. (ii) 1900 is a multiple of 100, and 19 is not divisible by 4, so
that 1900 is not a leap year. (iii) 2000: the number of the century
is 20, and is divisible by 4, and therefore 2000 is a leap year.

The Gregorian correction still leaves a small difference between
the tropical year and the average length of the civil year, amounting
to only 1d. 4h. 55m. in 4000 years.

76. The Julian Day

The change of style, combined with the change of sign in B.c. years,
and the two methods of expressing these years, all make it desirable
to have some mode of reckoning time that goes on continuously,
without any change either of sign or of method. Such a system was
devised by Joseph Scaliger (1540-1609). He simply made a count of
mean solar days, his zero point being the year B.c. 4713 : his reasons
for choosing this date need not be given ; the important point is that
it is earlier than any events to which accurate dates can be assigned,
so that the reckoning is always positive. His father’s Christian name
was Julius, so he called it the system of Julian days. He was mainly
occupied with dating early events, so he chose the longitude of Alex-
andria by which to reckon the beginning of his days; but in modern
times the Julian Day has been considered to begm at Greenwich Mean
Noon.

‘When, at the commencement of the year 1925, the beginning of the
astronomical day was changed from Greenwich noon to midnight, it
was decided by international agreement that the Julian day should
continue to begin at Greenwich noon. The reason was that the argu-
ment in favour of the change in the beginning of the astronomical day
did not apply to the Julian system of reckoning. Observations of
variable stars are usually recorded in Julian days, thereby enabling the
time interval between any two observations to be at once obtained ;
it would be inconvenient to introduce a discontinuity of half a day
into the system.

The Nautical Almanac has for many years given tables for reducing
calendar dates to Julian days. It will suffice to give here the equiva-
lents for noon on January 1st in the years 1900, 1940, 2000, respectively :
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they are 2415021, 2429630, 2451545. The student will find the Julian
system useful in calculating the dates of future eclipses by the cycles
given in Chapter IX. We can also use it for finding the day of the
week ; divide the Julian number by 7 ; then remainder 0 is Monday,
1is Tuesday, 2 is Wednesday, 3 is Thursday, 4 is Friday, 5 is Saturday,
6 is Sunday. .

EXAMPLES

. 1. To what angles do Sidereal Time, Solar Time, and Mean Time correspond
on the celestial sphere? Are these angles measured direct or retrograde ?

2. Draw a diagram of the Equation of Time, on the supposition that perihelion
coincides with the vernal equinox.

3. On May 14th the morning is 7-8 minutes longer than the afternoon: find
the equation of time on that day.

4. On a sundial placed on a vertical wall facing south, the position of the end
of the shadow of a gnomon at mean noon is marked on every day of the year.
Show that the curve passing through these points is something like an inverted
figure of eight. . ‘

5. Why are not the graduations of a level dial uniform? Show that they will
be so if the dial be fixed perpendicular to the index.

6. Show that if every 5th year were to contain 366 days, every 25th year
367 days, and every 450th year 368 days, the average length of the civil year
would be almost exactly equal to that of the tropical year. How many centuties
would have to elapse before the difference would amount to a day ?

7. Give explicit directions for pointing an equatorial telescope to a star of
R.A. 22h., declination 37° N., in latitude 50° N., longitude 25° E., at 10h. Green-
wich mean time, when the true Sun’s R.A. is 14h. 47m. 17s., and the equation of
time is + 16m. 14s.

8. If the mean time of transit of the first point of Aries be 21h. 41m. 24-4s.,
find the time of the year, and the sidereal time of an observation on the same day
at 13h. 22m. 135s.

9. At Greenwich, the equation of time at apparent noon to-day is + 3m. 39-42s.,
and at apparent noon to-morrow it will be 4+ 3m. 35-39s. Prove that, the mean
solar time at New York carresponding to apparent time 9 A.M. there this morning
is 8h. 56m. 20-9s., having given that the longitude of New York is 74° 1’ W.

10. Find the sidereal time at apparent noon on Sept. 30th, 1931, at Louisville
(long. 85° 30’ W.) having given the following from the Nautical Almanac :—

At mean midnight.

Sun’s apparent right Equation of time
ascension. to be added to mean time.
Sept. 30 12h. 21m. 32-60s. 9m. 34-26s.
Oct. 1 12h. 26m. 9-38s. 9m. 54-03s.

EXAMINATION PAPER
1. Define the dynamical mean Sun and the mean Sun, stating at what points
they have the same R.A., and when the former coincides with the true Sun. Show
that the mean Sun has a uniform diurnal motion, and state how it measures mean
time.
M. ASTRON. ] b
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2. Define the equation of time. Of what two parts is it generally taken to

" consist? State when each of these parts vanishes, is positive, or negative. Give

roughly their maximum values, and sketch curves showing their variations
graphically.
3. Show that the equation of time vanishes four times a year.

4. If, on a certain day, the sundial be 10 minutes before the clock, what is the
value of the equation of time on that day? Will the forenoon of that day or the
afternoon be longer, and by how much ?

5. Define the terms solar day, mean solar day, sidereal day. What is the
approximate difference and the exact ratio of the second and third ? '

6. Define the terms civil year, tropical year, Julian day. Why was this last
introduced ?

7. Show how to express mean solar time in terms of sidereal time, and wice
versa.

. 8. If the mean Sun’s R.A. at mean midnight at Greenwich on June lst be
4h. 36m. 54s., find the sidereal time corresponding to 2h. 356m. 458. mean time
(1) at Greenwich, (2) at a place in longitude 25° E.

9. On what day of the year will a sidereal clock indicate 10h. 20m. at 4 P.M.1?
10. In what years between 1800 and 2100 are there five Sundays in February ?

CHAPTER 1V
THE EARTH

1.—PHENOMENA DEPENDING ON CHANGE OF PoSITION ON THE EARTH

77. Early Observations of the Earth’s Form

One of the first facts ascertained by the early Greek astronomers
was that the Earth’s surface is globular in form. Even Homer (B.c.
850 circ.) speaks of the sea as convex, and Aristotle (B.c. 320) gives
many reasons for believing the Earth to be a sphere. Among these
may be mentioned the appearances presented when a ship disappears
from view. If the surface of the ocean were a plane, any person
situated above this plane would (if the air were sufficiently clear) see
the whole expanse of ocean extending to the furthermost shores, with
all the ships sailing on its surface. Instead of this, it is observed that
as a ship begins to sail away its lowest part will, after a time, begin to
sink below the apparent boundary of the surface of the sea; this
sinking will continue till only the masts are visible, and finally, these
will disappear below the convex surface of the water between the ship
and the observer.

Another reason is suggested, by observing the stars. If the Earth’s
surface were a plane, any star situated above the plane would be seen
simultaneously from all points of the Earth, except where concealed
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by mountains or other obstacles, and any star below the plane would be
everywhere simultaneously invisible. In reality, stars may be visible
from one place which are invisible from another ; and all the appear-
ances presented were found by the Greeks to agree with what might
be expected on a spherical Earth. Eratosthenes even made a calcula-
tion of the Earth’s size from the distance between Alexandria and
Assouan and their latitudes deduced from the Sun’s greatest meridian
altitudes. He found the circumference to be 250,000 stadia, or furlongs.

Lastly, the Earth’s spherical form will account for the circular form
of the Earth’s shadow in a lunar eclipse.

78. General Effects of Change of Position

In Art. 14 we showed that, owing to the great distance of the stars,
they are seen in the same direction whatever be the position of the
observer. In confirmation of this fact, it is found by observation that
the angular distance between any two stars (after allowing for refraction)
is observed to be independent of the place of observation.

But the directions of the zenith and horizon vary with the position
" of the observer. If we suppose the Earth spherical, the vertical at
any point on it will be the radius drawn from the Earth’s centre, while
the plane of the horizon will be a tangent plane to the Earth’s surface ;
both will depend on the place. This circumstance accounts for the
difference in appearance of the heavens as seen simultaneously from
different places.

79. Earth’s Rotation

- The apparent rotation of the heavens is accounted for by supposing
that the stars are at rest, and that the Earth rotates once in a sidereal
day, from west to east, about an axis parallel to the direction of the
celestial pole. The observer’s zenith, horizon and meridian turn about
the pole from west to east, relatively to the stars, and this causes the
hour angles of the stars to increase by 360° in a sidereal day, in accord-
ance with observation.

It is impossible to decide from observations of the stars alone
whether it is the Earth or the stars which rotate, just as when two
railway trains are side by side it is very difficult for a passenger in one
train, when observing the other, to decide which train is in motion,
That the Earth rotates has, however, been conclusively proved by
means of experiments, which will be described when we come to treat
of dynamical astronomy. '

The terrestrial poles are the two points in which the axis of rotation
meets the Earth’s surface. The terrestrial poles, equator and meridians
(Art. 7) should be distinguished from the celestial poles, equator and
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meridians (Art. 18). Whilst the terrestrial poles, equator and meridians
are on the surface of the Earth, the celestial poles, equator and meridians
lie on the imaginary celestial sphere. :

80. Phenomena depending on Change of Latitude

Assuming the Earth to be spherical, let pOgp'r be a meridian
section, C' being the Earth’s centre, p, p’ the poles, ¢, 7 points on the
equator. Then, if an observer is situated on the meridian at O, the
direction of his celestial pole P will be found by drawing OP parallel
to the Earth’s axis p'Cp, while his zenith Z will lie in CO produced, if
gravity acts towards the centre.

Since OP is parallel to CpP;, therefore : angle ZOP = 0Cp.

The altitude of the pole at O = 90°— ZOP = 90° —OCp = qCO
or, in other words, the altitude of the
pole at O is equal to the latitude of O.
This result has already been obtained in
Art. 22.

Since the angle gCO is proportional
to the arc ¢O, the latitude of a place is
proportional to its distance from the
equator.

Suppose the observer to go north-
wards along the meridian from O to (',
then, from what has just been shown,
the altitude of the pole increases from
/qC0 to £gCO’, hence the increase in

Fie. 32. the altitude of the pole (= £ OCO’) is
, proportional to the arc O0', i.e. to the
distance travelled northwards.

81. Southern Latitudes

To an observer situated in the southern hemisphere of the Earth,
as at 0", the North Pole of the heavens is below, and the South Pole,
*p" is above the horizon. The South Latitude of the place is measured
by the altitude of the South Pole, p”, and is equal to the angle ¢CO".

At the terrestrial equator, the altitude of the pole is zero ; hence the
pole is on the horizon. At the terrestrial North Pole p, the altitude of
the celestial pole is 90°, therefore the celestial pole coincides with the
zenith.

At the Earth’s North Pole, those stars are only visible which are
north of the equator, and they always remain above the horizon. On
travelling southwards, other stars, whose declination is south, are seen
in the south parts of the celestial sphere, and on reaching the Earth’s
equator all the stars will be above the horizon at some time or other,
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but the Pole Star will only just rise above the horizon, near the north
point. After passing the equator, the Pole Star and other stars near
the North Pole disappear.

82. Radius of the Earth

The Earth’s radius may be found by measuring the distance between
two places on the same meridian and finding their difference of latitude.

Let the places of observation be O, 0’ (Fig. 32). Let the latitudes
qCO,.qC0’ be ¢ and ¢’ respectively, expressed in degrees, and let the
~ length 00’ = s. We have, supposing the Earth spherical,

angle 0CO" arc 00’ .
360°  circumference of Earth’
So that Earth’s circumference = s X ‘#73?_0—(# ;
and Eartl’s radius — Srowmference 180 s
‘ 27 T ¢ —¢

which determines the Earth’s radius in terms of the data.

By observations of this kind the Earth’s radius is found to be very
nearly 3960 miles. For many purposes it will be sufficiently approxi-
mate to take the radius as 4000 miles. Its circumference is found by
multiplying the radius by 2, and is about 24,855 miles, or, roughly,
25,000 miles. v

Conversely, knowing the Earth’s radius, we can find the length of
the arc of the meridian corresponding to any given difference of latitude.

83. Metre, Nautical Mile, Geographical Mile, Fathom

The French Metre was originally defined as the ten-millionth part
of the length of a quadrant of the Earth’s meridian through Paris.
Owing to an error in the estimation of the quadrant, the length of the
metre defined in this way is not exactly equal to the length of the
standard metre. The definition is sufficiently accurate, however, for
general purposes. -

A Nautical Mile is defined as the length of a minute of arc of the
meridian. Thus a quadrant of the meridian contains 90 X 60, or
5400 nautical miles, and the Earth’s circumference contains 21,600
pautical miles. The nautical mile is equivalent to about 6080 feet or
about 1-15 statute miles.

A Nautical Fathom is 155 of a nautical mile = 6ft. 1in. nearly.
A fathom is commonly taken as 6 feet.

A Geographical Mile is defined as the length of a minute of arc
measured on the Earth’s equator. Taking the Earth as a sphere, the
nautical mile and geegraphical mile are equal.
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84. The Knot—Use of the Log Line in Navigation

The Knot is the unit of velocity used in navigation, being a velocity
of one nautical mile per hour. Thus, a ship sailing 12 knots travels at
12 nautical miles an hour.

The velocity of a ship is measured by means of the Log Line. This
consists of a “log,” or float, attached to a cord which can unwind
freely from a small windlass. The log is “ heaved > or dropped into
the sea, and allowed to remain at rest, the cord being *‘ paid out ” as
the ship moves away. By measuring the length paid out in a given
interval of time (usually half a minute), the velocity of the ship may be
found. To facilitate the measurement, the line has knots tied in it at
such a distance apart that the number of knots paid out in the interval
of time is equal to the number of nautical miles per hour at which the
ship is sailing. It is from these that the unit of velocity derives the
name of knot. i

Now one nautical mile per hour = 1 nautical mile per half-
minute. Hence, for this interval, the knots should be tied on the line
at intervals of ;1 of a nautical mile apart.

Examples.—1. To find the number of miles in an arc of 1°.

circumference of Earth _ 24855

360 = 380 miles = 6954 miles.

An arc of 1° =

2. To find the number of feet in one fathom.

By Ex. 1, 60 nautical miles = 697; ordinary miles; ¢.e. 60,000 fathoms
. = 694 X 5280 feet;

1
and 1 fathom = w

60000 feet = 6-077 feet.

3. To express a metre in terms of a yard.

By definition, 40,000,000 metres= Earth’s circumference = 24,855 miles;

24855 X 1760

20,000,000 yards = 1-0936 yards.
’ ’

and 1 metre =

85. The Departure

It was shown in Art. 9 that the distance, measured along the parallel
of latitude, between two places on the Earth on the same parallel is
equal to the product of their difference of longitude by the cosine of
the latitude. If the difference of longitude is expressed in degrees, the
distance is also obtained in degrees on the Earth’s surface. If, however,
the difference of longitude is expressed in minutes of arc, the distance
will be obtained in nautical miles, because a distance of one nautical
mile subtends an angle of one minute of arc at the earth’s centre. The
distance between the two points is then called the departure.
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Example.—A ship steams along the parallel of latitude 38° 54’, from a point with
longitude 12° 15’ W. to a point with longitude 55° 36’ W. Find the departure between
the two points.

The difference of longitude = 55° 36" — 12° 15
= 43° 21’ = 2601'.
Hence the departure = 2601 X cos 38° 54’
= 2601 X -7782
= 2024 nautical miles.

II.—Dre or THE HoRIZON
86. Definitions

Let O be an observer situated above the surface of the land or
sea. Draw OT, OT' tangents to
the surface. Then it is evident,
from the figure, that only those
portions of the Earth’s surface will X
be visible whose distance from the L,
observer O is less than the length -
of the tangents OT, OT". T\ 0

The boundary of the portion T~ T ’
of the Earth’s surface visible from N . o'
any point is called the Offing or { A
Visible Horizon. Hence, if OACB
be the Earth’s diameter through
0, and the Earth be supposed c
spherical, the offing at O is the
small circle TtT’, formed by the
revolution of T about OB, and
having for its pole the point 4
vertically underneath 0. If, how-
ever, the Earth be not supposed Fie. 33.
spherical, the form of the offing
will, in general, be more or less oval, instead of circular.

Conversely, since it is observed that the “ offing” at sea is very
approximately circular, whatever be the position of the observer, it
may be inferred that the Earth is approximately spherical.

The Dip of the Horizon at O is the inclination to the horizontal plane -
of a tangent from O to the Earth’s surface.

- Hence, if HOH' be drawn horizontally (i.e. perpendicular to OC),
the dip of the horizon will be the angle HOT.
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87. To Determine the Distance and Dip of the Visible Horizon at
a given Height above the Earth

Let h = AO = given height of observer ;
a = CA = Earth’s radius;
d = OT = required distance of horizon ;
D = /HOT = required dip in circular measure ;
D" = the number of seconds in the dip D.
(i) Since OT is tangent to the circle at T, we have :—
OT* = 04, OB
or d® = k(2 + k)= 2ah + B2

This determines d accurately. But in practical applications % is
always very small compared with 2a ; therefore 2> may be neglected
in comparison with 2ak, and we have the approximate formula

d® = 2ah, or d= +/(2ah).

(i1) Since CTO is a right angle :—
/. 0CT = complement of / COT = /TOH = D.
Therefore, D being expressed in circular measure, we have :—
_ arc AT
" radius CT"
- Now, in practical cases, where the dip is small, the arc 47" will not
differ perceptibly in length from the straight line OT. We may,

therefore, take arc AT = d ;
. _d__ +/(2ak) 2h
x“whence, D_&~ . = '\/;.
To reduce to'seconds, we must multiply by 180 X 60 X 60/w, the
number of seconds in a unit of circular measurement, and we have

, 180 X 60 X 60  /2h
D ;—ﬂ—\/;.

ks

CoroLLARY 1.—Let a, %, d be measured in miles, and let 2’ be the
number of feet in the height A.
Then &' = 5280k, and taking the Earth’s radius a as 3960 miles,

we have
2 x 3960 x A’ 3h
1= = (%),
a very useful formula.

CoroLLARY 2.—Since the offing is a circle whose radius is very
approximately equal to OT or d, we have

Area of Earth’s surface visible from O = nd? = 2mah = 3ok’ in
square miles. ’
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*88, Accurate Determination of Dip
The use of approximations can be avoided by the exact formula :

np= 10 VORI _ /MR
cT a =

which is adapted to logarithmic computation.

In this, as in the preceding formulae, no account has been taken of
the effect of refraction due to the atmosphere.

For this reason it is important to determine dip of the horizon
by practical observations. An instrument called the Dip Sector is
constructed for this purpose.

Tables have also been constructed, giving the dip of the horizon
as seen from different heights. They are of great use at sea, where
the altitude of a star is usually found by observing its angular
distances from the offing.

89. Disappearance of a Ship
at Sea :
When a ship has passed
the offing, the lower part will
be the first to disappear.
Let 4’0’ (Fig. 33) be the
position of the ship; let its
distance 00’ be s, and let
k= A’0’ be the height above
sea-level of the lowest. por- Fre. 34.
tion just visible from 0. By
the approximate formula we have OT =+/ (2ah), O'T =4+/(2ak), so that

s = 4/(2ah) + +/(2ak).

This formula determines the distance s at which an object of given
height % disappears below the horizon. :

90. Effect of Dip on the Times of Rising and Setting

To an observer on land, the offing is generally more or less broken
by irregularities of the Earth’s surface. At sea, however, the offing
is well defined, and if the dip of the horizon in seconds be D", the
visible horizon, which bounds the observer’s view of the heavens, is
represented on the celestial sphere by a small circle parallel to the
celestial horizon, and at a distance D” below it (n'E’s’, Fig. 34).

Hence the stars appear to rise and set when they are at an angular
distance D" below the celestial horizon. Thus they will rise sooner
and set later than they would if there were no dip.



4 Tee EartH

Taking the observer’s latitude to be ¢, let 2, z be the positions of a
star of declination 8, when rising across the visible horizon #’E’s’ and
the celestial horizon nEs respectively. Draw «'H perpendicular to
nEs, then o' H = D".

Then, if the star rise ¢ seconds earlier at «’ than at x, we have :—

15¢ = /z'Pz (in seconds of angle)

arc xx’ _ arc zz’ b
“sin «P  cos o (by
But treating the small triangle 'z H as plane and remembering
that / Pxx’ = 90°, we have :—
«dH D
~ sinzzH  cos naP’

Art. 5).

4

T

therefore, ¢ = 1—15 D" secd secnzP.

Evidently the acceleration at rising = retardation at setting.

CoroLLARY 1.—To an observer at the Equator, P coincides with n,
8o that /maP = 0, it follows that the time of rising is accelerated by
+5D" sec & seconds.

CoroLLARY 2.—If the star is on the equator, 8 = 0, ¢ coincides with
E, and /nEP = nP = ¢, and the acceleration = ' D" sec ¢ seconds.

I1I.—GEoDETIC MEASUREMENTS—FIGURE OF THE EARTH
91. Geodesy

Geodesy is the science connected with the accurate measurement of
arcs on the surface of the Earth. Such measurements may be per-
formed with either of the two following objects :—

(i) The construction of maps.

(ii) The determination of the Earth’s form and magnitude. Only
the second application falls within the scope of this book.

92. A Simple Approximate Method of Finding the Earth’s Radius

An approximate

[, M K  measure of the Earth’s

\\\\\\\ radius can be readily

found by means of the

following simple experi-
ment.

Let L, M, N (Fig.

Fie. 35. 35) be the tops of three
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posts of the same height set up in a line along the side of a straight
canal. Owing to the Earth’s curvature the straight line LM will, if
produced, pass a little above N. Hence, in order to see L, M in a
straight line, an observer at the post N will have to place his eye
at a point K, a little above N, and the height KN may be measured.
Let KL, KM be also measured. : .

Since the posts are of equal height, L, M, N will lie on a circle
concentric with, and almost coinciding with, the Earth’s surface. Let
the vertical KN meet this circle again in n. Then, by the geometry of
the circle,

KL.KM = KN.Kn; or Kn= KL.KM|KN,

KL .KM
2KN

This method cannot be relied on where accuracy is required, for
the small height KN is very difficult to measure, and a very slight error
in its measurement would affect the final result considerably. More-
over the observations are considerably affected by refraction.

If the distances LM, MN are each one mile, the height KN is
about 16 inches. If the distances LM, MN are each half a mile, the
‘height KN is about 4 inches.

and Radius of Earth = }Kn (very approximately) =

93. Ordinary Methods of Finding the Earth’s Radius

Where greater accuracy is required, the radius of the Earth is
obtained by measuring the length of an arc of the meridian and deter-
mining the difference of latitude of its extremities; the radius may
then be calculated as in Art. 82. The instruments required for the
observations include—

(1) Measuring rods or tapes;,
(ii) A theodolite, for measuring angles ;
(ii1) A zenith sector.

94, Measurement of a Base Line

The first step is to measure, with extreme accuracy, the length of the
arc joining two selected points, several miles apart, on a level tract of
country ; this line is called a Base Line. A series of short upright
posts are placed at equal distances apart along the base line, and they
are adjusted till their tops are seen exactly in the same vertical plane,
and are on the same level as shown by a spirit-level. Across these
posts are laid measuring rods of metal, whose length is very accurately
known, and these are also adjusted in a line, and made level by the
spirit-level. These rods are not allowed to touch, but the small dis-
tances between their ends are measured with reading microscopes. In
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this way, a base line several miles long can be measured correctly to
within a small fraction of an inch.

The length of the rods will depend upon their temperature, which
must be noted at frequent intervals during the observations. It is
now customary to use flexible tapes, instead of rods, made of a special
alloy, called tnvar, whose coefficient of expansion is practically zero.

95. Triangulation ~

When once a base line has been measured, the distance between '
any two points on the Earth can be determined by the measurement of
angles alone. For, calling the base line 4B, let C be any object visible
from both A and B. If the angles CAB, CBA be observed, we can
solve the triangle 4BC and determine the lengths of the sides C4, CB.
Either of these sides, say C4, may now be taken as the base of a new
triangle, whose vertex is another point, D. Thus,
by observing the angles of the triangle ACD we can
determine DA, DC in terms of the known length of
AC. Proceeding in this way, we may divide any
country into a network of triangles connecting different
places of observation 4, B, C, D, and the distance
between any two of the places calculated, as well as
the direction of the line joining them. Finally, two
stations O, G are taken, which lie nearly on the same
meridian. A perpendicular GH is let fall on the
meridian, then the distance CH is calculated ; in this
way, it is possible to measure an arc of the meridian.

96. The Theodolite

Fia. 36. The measurement of the angles is far easier in
practice than the measurement of a base line. The

instrument used for measuring angles is called a Theodolite. This
consists of a small telescope, mounted so that it can be moved in
altitude or azimuth, by turning about horizontal and vertical axes.
The horizontal azimuth circle is accurately divided and provided
with two verniers and reading microscopes, at a distance of 180°
apart, to enable the setting to be read with accuracy. The vertical
circle is usually limited to a small arc, sufficient for measuring the
altitude of one terrestrial object as seen from another. The instru-
ment is provided with sensitive spirit-levels, by means of which it
can be adjusted so that the horizontal circle is truly horizontal and
the vertical axis, therefore, truly vertical. A compass needle is usually
provided, as an approximate guide to the direction of the north point.
By reading the horizontal circle of the theodolite, the azimuths of

B, O, as seen from A4, are found. By using the difference of azimuth
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instead of the angle CAB, it becomes unnecessary to take account of
the height of the various stations above the Earth. Forif 4, B, C are
replaced by any other points, 4', B', (', at the sea level, and vertically
above or below 4, B, C, the vertical planes joining them will be unaltered
in position, and therefore the azimuths will also be unaffected.

97. The Zenith Telescope

Having thus found, with great accuracy, the length of the arc
joining two stations on the same meridian, it only remains now to
observe their difference of latitude.

The Zenith Telescope is the most useful instrument for this purpose.
It is essentially similar to a theodolite, being provided with movements
in altitude and azimuth, but the eye-end is provided with a movable wire
and a micrometer. Observationsare made by the Talcott method, which
depends upon the observation of a pair of stars, situated at approxi-
mately equal distances to the north and south of the zenith respectively.

If Sy, 8s are respectively the declinations of the north and south
stars, Zx, Zs their distances north and south of the zenith respectively,
and ¢ the latitude, it is readily seen that :—

ZN=8n—¢, Zs=¢—ss
so that Zxy — Znx = } (8s + 8s) — ¢.

The telescope is adjusted so that the axis about which it turns is
truly vertical and so that the telescope lies in the meridian. It is set
to observe the transit of, say, the northern star and the horizontal
micrometer wire is moved to bisect the star image, as it crosses the
centre of the field at transit. Without altering the setting of the
telescope, the instrument is then turned through 180° and a similar
observation is made of the south star. The difference in the zenith
distances (which are nearly equal, because of the choice of stars) is
given at once by the difference of the readings of the micrometer at
the two observations. The declinations of the two stars being known,
the latitude can be at once determined.

A great advantage of this method of observation is that it is prac-
tically independent of atmospheric refraction. As we shall see in
Chapter VI, the effect of refraction is to lift a star towards the zenith
by an amount that increases with the zenith distance. As the two
stars observed with the zenith telescope are at almost the same
distance from the zenith, they are equally affected by refraction and
the difference of the zenith distances is independent of the refraction.

The observations are repeated at the second station. It should be
noted that if the same stars are observed at both stations, the difference
in the observed latitudes is independent of any errors in the assumed
declinations of the stars. .
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If s is the measured length of the arc of the meridian joining the
stations, whose latitudes are supposed to be ¢, and ¢, (expressed in.
degrees) and if 7 is the radius of the earth, then Art. 82 gives :—

_180 s
™ .¢1_¢2'
98. Exact Figure of the Earth

If the Earth were an exact sphere, the same value would be
found for the radius » in whatever latitude the observations were
made. But in reality the length of a degree of latitude, and there-
fore also 7, is found to be larger when the observation is made
near the poles than when made near the equator, and hence it is
inferred that the meridian curve is somewhat oval.

Let PQP'R (Fig. 37)
represent the meridian

r

P o' curve, OO’ two near places
/ Q of observation on it.

/ Then, if OK and O'K be

/ drawn normal (i.e. perpen-

dicular) to the Earth’s
surface at 0, O’, they will
be the directions of the
plumb-lines of the zenith
sectors at O, O’. Hence
the observed difference of
latitudes or meridian
altitudes at 0, O’ will give
the angle OKO'.
Fra. 37. Regarding the small arc
OO0’ as an arc of a circle
whose centre is K, we shall have approximately,

Circular measure of OKQ' = arc 00’ = OK,

OK arc 00’ _ 180 s
or " circ. measure of OKO' ~ # ¢, — ¢5
and hence 7, calculated as in Art. 97, is the length OK,

The length OK is called the radius of curvature of the arc, and K is
called the cenire of curvature; they are respectively the radius and
centre of the circle whose form most nearly coincides with the meridian
along the arc 00'.

This radius of curvature OK is not, in general, equal to OC, the
distance from the centre of the Earth, owing to the Earth not being
quite spherical.
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As the result of numerous observations, the meridian curve is found
to be an ellipse (see Appendix), whose greatest and least diameters,
called the major and minor azes, are the Earth’s equatorial and polar
diameters respectively. The Earth’s surface is the figure formed by
making the ellipse revolve about its minor axis PCP’. This figure is
called an oblate spheroid. :

99. To find the Equatorial and Polar Radii of Curvature of the
Meridian Curve, supposing it to be an Ellipse

Let PQP'R be the ellipse. Let 2a, 2b be the lengths of its equatorial
and polar diameters QCR, PCP’. Let r;, r, be the required radii of
curvature at  and P respectively.

Take any point O on the ellipse, and let the normal at O meet the
two axes in G and g respectively.

It is proved in treatises on Conic Sections* that

0G:09 = CP?:0Q* = b?: o’

First take O very near to . Then OG will become equal to the
radius of curvature r, ; also Og will evidently become ultimately equal
to CQ or a. Therefore :—

ria="0b:a; or r="ba.
Next take O very near to P. Then OG will become equal to b and
Og to r,. Therefore :—
birg=10:a%; or r,= a?fb.
Thus 7,, 7, are found in terms of a, b.

Conversely, if r, and r, are known, ¢ and b may be found ; for, by
solving, we find

a =+ (rg’r), b= V/ (r°ry).
We notice that, since a > b, r; <7,

That the equatorial radius of curvature is less than the polar is
also evident from the shape of the curve. This, as the figure shows,
is most rounded at.Q, R, and flattest or least rounded at P, P’. Hence
it will require a smaller circle to fit the shape of the curve at the equator
than at the poles.

100. Exact Dimensions of the Earth

The lengths of the Earth’s equatorial and polar semi-diameters,
a, b, are, according to Hayford (1909),
a = 3963-35 miles, b = 3950-01 miles.
'Thus, the Earth’s equatorial semi-diameter exceeds its polar semi-
diameter by 13-34 miles.

* Appendix, Ellipse (9).
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The mean radius of an oblate spheroid is the radius of a sphere of
equal volume, and is equal to 4/(a®). Thus, the Earth’s mean radius
is approximately 3958-9 miles.

The ellipticity or compression (c) is the fraction

@ — 1
c= For the Earth, ¢ = 397 nearly.
The eccentricity (e) is given by the relation :—
a® — b
e = praa

Hence 8% = a2 (1 — ¢?) = a? (1 —¢)?;
and 1—e2=(1—¢)2=1—2+ ¢?;
or e=2c—ct=c¢(2—c).
Since ¢ is small, 2 — ¢ = 2, approx.; therefore e? = 2¢, approx.,
which gives the Earth’s eccentricity e = -0820.

101. Geographical and Geocentric Latitude

The Geographical Latitude of a place is the angle which the normal
to the Earth’s surface at that place makes with the plane of the equator.
It is the latitude determined by astronomical observations. Thus,
£.QGO (Fig. 37) is the geographical latitude of O.

The Geocentric Latitude is the angle subtended at the Earth’s centre
by the arc of the terrestrial meridian between the place and the equator.
Thus, /QCO is the geocentric latitude of O.

102. Relations between the Geocentric and Geographical Latitudes
Let /QGO = ¢, £QCO = ¢’. Draw ON perp. to CQ. Then
GN:CN= 0Q:0g= b%:a?; so that NO/CN = (NO|GN) x (b*/a?);
‘ or tan ¢’ = tan ¢ X b%fa® = (1 — e?) tan ¢.
We deduce also tan (¢ — ¢’) = ———cﬂd’— = }e?sin 2¢ (approx.),
2 (1 — e? sin? ¢)
since ¢? is small. Hence the difference between ¢ and ¢’ is a maximum at
latitude 45°, where it amounts to 11’ 36”.

EXAMPLES

1. Show that the locus of points on the Earth’s surface at which the Sun rises
at the same instant is half a great circle; and state the corresponding property
possessed by the other half.

2. Find the least height of a mountain in Corsica in order that it may be visible
from the sea-level at Mentone, at a distance of 80 miles.

3. At the equator, in longitude L°, a given vertical plane declines a® from the
north towards the west; find the latitude and longitude of the plaees to whose
horizon the given plane is parallel. -
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4. Prove that, at either equinox, in latitude I, a mountain whose height is

1/n of the Earth’s radius will catch the Sun’s rays in the morning % ;21,
™

hours before he rises on the plain at the base.

5. Estimate to the nearest minute the value of this expression for a mountain
" three miles high in latitude 45°.

6. Find the distance of the horizon as seen from the top of a hill 1056 feet high.

7. Find, to the nearest mile, the radius of the Earth, supposing the visual line
of a telescope from the top of one post to the top of another post two miles off,
cuts a post, half way between, 8 inches below the top, the posts standing at equal
heights above the water in a canal.

8. In Question 7, what would be the length of a nautical mile, adopting the
usual definition ?

9. Supposing the Earth spherical, and of radius 7, and neglecting the refraction
of the air, show that, if from the top of a mountain of height a above the level of
the sea, the summit of another mountain is seen beyond the horizon of the sea, and
at an elevation e above the horizon, and if its distance be known to be D, its height
is approximately given by

a+eD+D(§—\/§75).

10. A railway train is moving north-east at 40 miles an hour in latitude 60°;
find approximately, in numbers, the rate at which it is changing its longitude.

MISCELLANEOUS QUESTIONS

1. Explain the different systems of coordinates by which a star’s position is
fixed in the heavens. .

2. Show, by a figure, where a star will be found at 9 p.m. on the 5th of June in
latitude 50° N, if the star’s right ascension is 12 hours and its declination 5° south.

3. Define dip, azimuth, culmination, circumpolar, zenith. Why would it be
insufficient to define the declination of a star as its distance from the equator
measured along a declination circle ?

4. Three stars, 4, B, C, are on the same meridian at noon, B being on the
equator, and 4 and C equidistant from B on either side. Prove that the intervals
between the setting-times of 4 and B and B and C are equal.

5. Show how to find approximately the Sun’s R.A. at a given date. Obtain
its approximate value for March 1st, August 10th, October 23rd, and January 15th.

6. Explain the terms apparent sidereal time and mean sidereal time.

7. Define a morning and evening star. Show that on the 1st of September a
star, whose declination is 0°, and R.A. 11h. 28m., is an evening star, but that it is a
morning star three weeks later.

8. Assuming the Earth to be a sphere, show how its radius may be practically
measured.

9. Explain clearly the nature and uses of the zenith telescope.

10. 4, B, C are the tops of the masts of three ships in a line, and are at equal
heights above the sea-level, and O is the centre of the Earth. If the distance BC

M. ASTRON. 6
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be z miles, and r is the Earth’s radius in miles, show that £/ BAC = } / BOC;
and hence deduce that
180 X 60 X 60 z

/ BAC = — % seconds.
Find this angle, having given # = 2, r = 3960, = = 3}.

EXAMINATION PAPER

1. Assuming the Earth to be a sphere, show that, as we travel from the equator
due north, our astronomical latitude (s.e. the altitude of the Pole) will increase.
Taking this increase as 1° for every 69 miles, find the circumference and the radius
of the Earth.

2. Define the metre, the nautical mile, and the knot, and calculate their values
in feet and feet per second respectively, taking the Earth's radius as 3960 miles.

3. How is the speed of a ship estimated ? Find, in feet, the distance apart of
the knots on a log line, so constructed that the number run out in half a minute
measures the ship’s velocity in nautical miles per hour.

4. What are the difficulties in measuring an arc of the meridian and how are
they met?

5. Find the Earth’s radius in fathoms, and in metres. Express the nautical
mile in French units of length.

6. Obtain formulae for the distance of the visible horizon from a place whose
height is given. Deduce that, if the height % be measured in inches, the distance

in miles will be \/lz, taking the Earth’s radius as 3960 miles.

7. Define the dip of the horizon, and show how to find it. Prove that the number
of seconds in the dip is nearly 52 times the distance in miles of the offing.

8. If 4, B, and C be the tops of three equal posts arranged in order two miles
apart along a straight canal, show that the straight line AB passes 5 feet 4 inches
above C, and that AC passes 2 feet 8 inches below B.

9. Find the length of a given parallel of latitude intercepted between two given
circles of longitude.

10. Is the Earth an exact sphere? Show that a degree of latitude increases
in length as we go northward. Distinguish a nautical from a geographical mile.



CHAPTER V
THE SUN’S APPARENT MOTION IN THE ECLIPTIC

I.—TaE SEAsoONS

103. Introduction

In Section III of Chapter IT* we described the Sun’s annual motion
among the stars, and showed how, in consequence of this motion, the
Sun’s right ascension increases at an average rate of nearly 1° per day,
while his declination fluctuates between the values 23° 27’ north, and
23° 27" south of the equator. We shall now show how this annual
motion, combined with the diurnal rotation about the poles, gives rise
to the variations, both in the relative lengths of day and night, and in
the Sun’s meridian altitude, during the course of the year ; how these
variations are modified by the observer’s position on the Earth ; and
how they produce the phenomena of summer and winter.

Although both the diurnal and annual apparent motions of the Sun
are known to be really due to the Earth’s motion, it will be convenient
in this section to imagine the Earth to be fixed, while the Sun and stars
are moving ; thus the zenith, pole, horizon, meridian, and equator will
be considered fixed, as they actually appear to be to an observer on
‘the Earth.

As the change in the Sun’s declination during a single day is very
small, the Sun’s apparent path in the heavens from morning till night
is very approximately a small circle parallel to the equator, and may be
regarded as such for purposes of explanation. The effects of the
variation in the declination will, however, become very apparent when
we compare the Sun’s diurnal paths at different seasons of the year.

Throughout this section we shall denote the obliquity of the ecliptic
by e, the Sun’s declination at any time by §, his zenith distance at
noon by z, and the observer’s latitude by ¢.

104. Zones of the Earth.—Definitions

From Art. 30 it is evident that if the Sun.passes through the zenith
at noon, & must be equal to ¢. But & lies between e (north) and e
(south). Therefore ¢ must lie between the limits € N. and € 8.

Thus, if the Sun be vertically overhead at some time in the year,
the latitude must not be greater than 23° 27' N. or 8.

Again, from Art. 31 we see that the Sun, like a circumpolar star,
will remain above the horizon during the whole of its revolution
provided that 90° — 8§ << ¢. This requires that ¢ > 90° — e.

Thus, if the Sun be visible all day long during a certain period of
the year, the latitude must be greater than 66° 33’ N. or S. ,

* The student will do well to revise Chapter 11, Section III, before proceeding
further.

83
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These circumstances have led to the following definitions :—

The Tropics are the two parallels to the Earth’s equator in north
and south latitude e, or 23° 27’. The northern tropic is called the
Tropic of Cancer, the southern the Tropic of Capricorn.

The Arctic and Antarctic Circles are respectively the parallels of
north and south latitude 90° — e, or 66° 33'.

These four parallels divide the Earth’s surface into five regions or
zones.

The portion between the tropics is called the Torrid Zone.

The portion between the tropic of Cancer and the arctic circle is
called the North Temperate Zone. The portion between the tropic of
Capricorn and the antarctic circle is called the South Temperate Zone.

. The portions north of the arctic circle, and south of the antarctic

‘ circle are called the Frigid Zones, and are dis-

Ao tinguished as the Arctic and Antarctic Zones.

| 105. Sun’s Diurnal Path at Different
; Seasons and Places

N ' We shall now describe the various appear-
g ances presented by the Sun’s diurnal motion
at different times of the year, beginning in
P\ each case with the vernal equinox. We
B7~——R' shall first suppose the observer at the
Tre. 38. Earth’s equator, and shall then describe
how the phenomena are modified as he

travels northward towards the pole.

0

1

\
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1
3
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106. At the Earth’s equator )

At the Earth’s equator ¢ = 0, and the poles of the celestial sphere
are on the horizon (P, P, Fig. 38). Hence, between sunrise and sunset,
the Sun has always to revolve about the poles through an angle 180°,
and the days and nights are always equal, each being 12 hours long.

On March 21st the Sun is on the celestial equator, and it describes
the circle EZW, rising at the east point, passing through the zenith at
noon, and setting at the west point.

Between March 21st and Sept. 23rd, the Sun is north of the celestial
equator ; it therefore rises north of E., transits north of the zenith Z,
and sets north of W. Tts N. meridian zenith distance z is always equal
to its N. declination & (since by Art. 30, z = 8 — ¢ and ¢ = 0).

Hence, from March 21st to June 21st, z increases fromO0to e N. On
June 21st, 2 has its greatest N. value e, and the Sun describes the circle
E'QW’, where ZQ' = e.

From June 21st to Sept. 23rd, z decreases from e to 0.

On Sept. 23rd, the Sun again describes the great circle EQW.
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Between Sept. 23rd and March 21st, the Sun is south of the equator,
and therefore it transits south of the zenith. We now have z = §,
both being S.

From Sept. 23rd to Dec. 22nd, the Sun’s south Z.D. at noon, 2,
increases from O to e.

On Dec. 22nd, z has its greatest value e (south) and the Sun
describes the circle E"Q"W” where ZQ" = e.

From Dec. 22nd to March 21st, z diminishes again from e to O.

On March 21st, the Sun again describes the circle EQW, and the
same cycle of changes is repeated the following year.

107. In the Torrid Zone North of the Equator

On March 21st, the Sun describes the equator EQW (Fig.
39), rising at E and setting at W. Here
/ ZPE = / ZPW = 90°, and the day and
night are each 12h. long. The Sun transits
S. of the zenith at Q, where ZQ = z = ¢.

From March 21st to June 21st, 3 increases
from O to e, and the Sun’s diurnal path s
changes from EQW to E'Q'W’. P

The hour angles at rising and setting
increase from ZPE and ZPW to ZPE’ and P\
ZPW’,respectively ; hence the days increase R %
and the nights decrease in length. The day Fie. 39.
is longest on June 21st, when the hour angle
ZPE' is greatest. The increase in the day is proportional to the

“angle EPE’, and is greater the greater the latitude 4.

At first the Sun transits S. of the zenith, and 2 = ¢ — 3. ‘

When 8§ = ¢, z = 0, and the Sun is directly overhead at noon.

After this, the Sun transits N. of the zenith, and z = 8§ — ¢.

On June 2lst, z attains its maximum N. value Z' = ¢ — ¢.

From June 21st to Sept. 23rd, the phenomena occur in the reverse
order. The diurnal path changes gradually back to EQW. The day
diminishes to 12h. The Sun, which at first continues to transit N. of
the zenith, becomes once more vertical at noon when 8 again = ¢, and
than transits S. of the zenith.

From Sept. 23rd to Dec. 22nd, the Sun’s path changes from EQW
to E"Q"W".

The eastern hour angle at sunrise decreases to ZPE" ; thus the days
shorten and the nights lengthen. The day is shortest on Dec. 22nd.

Also z increases from ¢ to ¢ -+ e.

On Dec. 22nd, 2 attains the maximum value ZQ" = ¢ + ¢, and the
Sun is then furthest from the zenith at noon.

(2 QZQ'
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From Dec. 22nd to March 21st, the length of the day increases again
to 12 hours, and the Sun’s meridian zenith distance decreases to z= ¢.

108. On the Tropic of Cancer

Here ¢ = €. The variations in the lengths of day and night
partake of the same general character as in the Torrid Zone. But the
Sun only just reaches the zenith at noon once a year, namely, on the
longest day, June 21st. At other times the Sun is south of the zenith
at noon, and z attains the maximum value 2¢ on December 22nd.’

109. In the North Temperate Zone

In the North Temperate Zone ¢ > ¢ but << 90° — e. Here the
variations in the lengths of day and night are similar, but more
marked, owing to the greater latitude.

On March 21st, the Sun describes the equator EQWR (Fig. 40),
which is bisected by the horizon ; hence the
day is 12h. long.

The length of the day increases from
March 21st to June 2lst. The day is
longest on June 21st, when the Sun describes
E'Q'W’'R, and the hour angles ZPE', ZPW'
are greatest.

The days diminish to 12h. on Sept. 23rd,
when the Sun again describes EQWR. The
day is shortest on Dec. 22nd, when the Sun
describes E"Q"W"R".

From Dec. 22nd to March 21st, the days
increase in length, and on March 21st the day is again 12 hours long.

The difference between the longest and shortest days is the time
taken by the Sun to describe the angles E'PE”, W PW’, and is therefore:

=5 (LEPE" + /W'PW)= & . /E'PF,
the time being measured in hours and the angles in degrees.

It will be seen that / E’PE" is greater in Fig. 40 than in Fig. 39,
thus the variations are more marked in the temperate zone than in the
torrid zone. The variations increase as the latitude increases.

The Sun never reaches the zenith in the temperate zone, but always
transits south of the zenith. The Sun’s zenith distance at noon is
least on June 21st, when 2z = ZQ' = ¢ — ¢, and is greatest on Dec.
22nd, when z = ZQ" = ¢ + . At the equinoxes (March 2Ist and
Sept. 231d), z = ZQ = ¢. :

110. On the Arctic Circle
Here ¢ = 90° — e. Hence on June 21st, when the Sun’s N.P.D.
= 90° — ¢, the Sun at midnight will only just graze the horizon at the




Sun’s DIURNAL PaTH AT DIFFERENT SEASONS 87

north point without actually setting. On Dec. 22nd at noon, the Sun’s
Z.D. = 90°, and the Sun will just graze the horizon without actually
rising. As in the preceding case, the days increase from Dec. 22nd to
June 21st, and decrease from June 21st to Dec. 22nd ; on March 21st
and Sept. 23rd, the day and night are each 12h. long.

111. In the Arctic Zone

In the Arctic Zone we have ¢ > 90° — ¢, and the variations are
somewhat different (Fig. 41). ‘

On March 21st, the Sun describes the circle ZQW, and the day is
12h. long.

As 8 increases, the days increase and the nights decrease, and this
continues until § = 90° — ¢. When this happens, the Sun at mid-
night only grazes the horizon at =.

Subsequently, while § > 90° — ¢, the Sun remains above the
horizon during the whole of the day, circling about the pole like a
circumpolar star. This period is called the
Perpetual Day.

During the perpetual day, the Sun’s path
continues to rise higher in the heavens every
twenty-four hours until June 21st, when the
Sun traces out the circle R'Q’. The Sun’s
least and greatest zenith distances will then
be ZQ =¢ —¢, and ZR'=180°—e— ¢
respectively.

After June 21st, the Sun’s path will
sink lower and lower.

When 8 is again = 90° — ¢ the perpetual day will end. Subse-
quently, the Sun will be below the horizon during part of each day.
The days will then gradually shorten and the nights lengthen.

On Sept. 23rd, the Sun will again describe the circle EQW, and
the day and night will each be 12 hours long. : ‘

The days will continue to diminish till the Sun’s south declination
8 = 90° — ¢. When this happens the Sun at noon will only just
graze the horizon at s. '

‘While 8’ > 90° — ¢, the Sun remains continually below the horizon.
This period is called the Perpetual Night.

On Dec. 22nd the Sun traces out the circle R"Q” below the horizon.

When &' is again = 90° — ¢, the perpetual night will end.

Subsequently, the day will gradually lengthen until March 21st,
when it will again be 12 hours long.

112. At the North Pole
Here (Fig. 42) the phenomena are much simpler. The celestial
equator coincides with the horizon. Hence, from March 21st to
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Sept. 23rd, the Sun will be above the horizon, and there will be
perpetual day. The Sun’s altitude will attain its greatest value e on
June 21st, when the Sun will trace out the circle Q'R’.

From Sept. 23rd to March 21st there will be perpetual night. The
Sun will be at its greatest depth below the horizon on Dec. 22nd, when
it will trace out the circle Q"R".

113. Phenomena in the Southern Hemisphere
At a place south of the equator, the variations will partake of the
same general character as those in the corresponding north latitude,
but the seasons will be reversed. The south pole will be above the
horizon, instead of the north pole, and the days will increase in length
as the Sun passes to the south of the equator. In fact, if we consider
two antipodal points or places at opposite ends of a diameter of the
Earth, the day at one place will coincide with the night at the other.
Hence, at any place between the
Z equator and antarctic circle, Dec. 22nd will

be the longest day, and June 21st the

@, R shortest.
Within the antarctic circle there will
g be perpetual day for a certain period before
, and after Dec. 22nd, and perpetual night
¢ R for a certain period before and after June

v 21st.

5 The variations in the Sun’s north zenith

Fig. 42. distance at noon will be the same as the
variations in the south zenith distance in

the corresponding north latitude six months earlier.*

114. The Seasons
Having thus described the variations in the Sun’s daily path at
different times and places, we shall now show how these variations
account for the alternations of heat and cold on the Earth.
Astronomically, the four seasons are defined as the portions into
which the year is divided by the equinoxes and the solstices. Thus,
in northern latitudes,

Spring commences at the Vernal Equinox (March 21st),

Summer ” ’ Summer Solstice  (June 21st),
Autumn " ” Autumnal Equinox (Sept. 23rd),
‘Winter ’ " Winter Solstice (Dec. 22nd).

It is obvious that the temperature at any place will depend in a

* The student will find it instructive to trace out fully the variations in S.
latitudes corresponding to those described in Arts. 106-112.
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great measure upon the length of the day. The portion of the Earth’s
surface for which the Sun is above the horizon is receiving a consider-
able portion of the heat of his rays, the remaining portion being absorbed
by the Earth’s atmosphere through which the rays have to pass. From
the portion of the surface for which the Sun is below the horizon, heat is
radiating away into space, although the heated atmosphere retards this
radiation to a considerable extent. Thus, on the whole, the Earth is
most heated when the days are longest, and conversely.

The variations in the Sun’s meridian altitude have a still greater
influence on the temperature. When the Sun’s rays strike the surface
of the Earth nearly perpendicularly, the same pencil of rays will be
spread over a smaller portion of the surface than when the rays strike
the surface at a considerable angle ; hence the quantity of heat received
on a square foot of the surface will be greatest when the Sun is most
nearly vertical. The Sun’s heating power when above the horizon is
proportional to the cosine of the Sun’s zenith distance or the sine of its
altitude.

In this statement, however, the absorption of heat by the Earth’s
atmosphere has been neglected. But when the Sun’s rays reach the
Earth obliquely, they will have to pass through a greater extent of the
Earth’s atmosphere, and will, therefore, lose more heat than when they
are nearly vertical. This cause will still further increase the effect of
variations in the Sun’s altitude in producing variations in the
temperature.

115, Further Details

BeTweeN THE Trorics.—Here the combination of the two causes
above described tends to produce high temperatures, subject only to
small variations during the year. The Sun’s meridian altitude is
always very great, and the variations in the lengths of day and night
are small. If the latitude be north, the Sun’s heating power is greatest
while the Sun transits north of the zenith. During this period the
Sun’s meridian altitude is least when the days are longest. Thus the
effects of the two causes in producing variations in the Sun’s heat
counteract one another, to a certain extent, and give rise to a period of
nearly uniform but intense heat.

In THE NorTH TEMPERATE ZONE.—In the North Temperate Zone
the Sun is highest at noon when the days are longest, and therefore both
causes combine to make the spring and summer seasons warmer than
autumn and winter. But the highest average temperatures occur some
time after the summer solstice ; for the Earth is gaining heat most
rapidly about the summer solstice, and it continues to gain heat, but
less rapidly, for some time afterwards. Similarly, the Earth is losing
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heat most rapidly at the winter solstice, and it continues to lose heat,
but less rapidly, for some time afterwards. For this reason, summer
is warmer than spring, and winter is colder than autumn.

As we go northwards, the Sun’s altitude at noon becomes generally
lower throughout the year, and the climate therefore becomes colder.
At the same time, the variations in the length of the day become more
marked, causing a greater fluctuation of temperature between summer
and winter.

‘WitHIN THE ARCTIC CIRCLE.—Here there is a warm period during the
- perpetual day, but the Sun’s altitude is never sufficiently great to cause
very intense heat. During the perpetual night the cold is extreme ;
and the low altitude of the Sun, when above the horizon at intermediate
times, gives rise to a very low average temperature during the year.

In THE SouTHERN HEMISPEHERE.—In this Hemisphere the seasons
are reversed ; for, in south latitude ¢, when the Sun’s south declination
is 8, the same amount of heat will be received from the Sun as in north
latitude ¢, when his north declination is 8. Hence, the seasons corre-
sponding to our spring, summer, autumn and winter will begin respec-
tively on September 23rd, December 22nd, March 21st, and June 21st,
and will be separated from the corresponding seasons in north latitude
by six months.

116. Other Causes affecting the Seasons and Climate

It is found (as will be explained in section ITI) that the Sun’s
distance from the Earth is not quite constant during the year. The
Sun is nearest the Earth about January 3rd, and furthest away on
July 4th (these are the dates of perigee and apogee respectively). But
the heat radiation received from the Sun varies inversely as the square
of the Sun’s distance. Hence the Earth receives, on the whole, more
heat from the Sun after the winter solstice than after the summer
solstice. This cause tends to make the winter milder and the summer
cooler in the northern hemisphere, and to make the summer hotter, and
the winter colder in the southern hemisphere.

The variations in the Sun’s distance are, however, small, and their
effect on the seasons is more than counteracted by purely terrestrial
causes arising from the unequal djstribution of land and water on the
Earth. The sea has a much greater capacity for heat than the rocks
forming the land ; it is not so readily heated or cooled.  In the southern
hemisphere the sea greatly preponderates, the largest land-surfaces
being in the northern hemisphere. Hence, the climate of the southern
hemisphere is generally more equable, and the seasons are not so marked
as in the northern hemisphere, quite in contradiction to what we should
expect from the astronomical causes.
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117. Times of Sunrise and Sunset

The Nautical Almanac gives each year a table of the local mean
times of sunrise and sunset for every day of the year, and for 13 selected
values of latitude, extending from the equator to 60° North. It also
gives a table by which the times for a southern latitude can be
inferred from those for the corresponding northern latitude by taking
the times for the northern latitude for a different day of the year,
about six months away from the actual day, and applying a tabulated
correction which depends upon the difference of the equations of time
for the two dates. :

The times given are for the Sun’s upper limit, so that sunrise corre-
sponds to the moment when the Sun, affected by refraetion (Chapter
VI), is about to begin to appear above the horizon and sunset corre-
sponds to the moment when the Sun, also affected by refraction, has
just disappeared entirely below the horizon.

The Sun’s declination very nearly repeats itself on the same day
after four years, and the times of sunrise and sunset do so likewise.

The times found in this manner will be the local solar times. To
reduce to Greenwich mean time we must add or subtract 4m. for each
degree of longitude, according as the place is W. or E. of Greenwich.

Examples.—(1) Find the times of sunrise and sunset at Glasgow (Long. 4° 18’ W,
lat. 55° 53’ N.) on Dec. 1st, 1940.

The Nautical Almanac tables give the local mean times of sunrise and sunset for
latitudes + 54° and + 56°. Interpolating for the latitude of Glasgow, we obtain

Sunrise Sunset
Local mean time ... 8h. 5m. 15h. 32m.
Add longitude (4° 10’ = 17m.) ... + 17 + 17
G.M.T. 8h. 22m. 15h. 49m.

The Sun therefore rises at 8.22 a.m. and sets at 3.49 p.m.

(2) Find the South African Standard Times of sunrise and sunset at Capetown
(Long. 18° 44’ E, lat. 33° 56’ 8.) on April 16th, 1940.

The Nautical Almanac table for southern latitudes gives October 19th as the
date for northern latitudes corresponding to April 16th for southern latitudes.

Interpolating the table for northern latitudes, under date October 19th, for
the appropriate latitude, we obtain for the local mean times of sunrise and sunset
respectively 6h. 8m. and 17h. 22m. respectively. The correction for date April
16th is + 16m. We thus obtain .

Sunrise Sunset
Local mean time ... 6h. 23m. 17h. 37m.
Subtract longitude (= 1h. 156m.) —1 15 —1 15
G.M.T. . 5h. 8m. 16h. 22m.

Hence South African Standard Time (2 hours fast on G.M.T.) of sunrise is
7.8 a.m. and of sunset is 6.22 p.m.
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118. To find the length of the Perpetual Day and Night at places
within the Arctic or Antarctic Circles

The perpetual day lasts while the Sun’s declination at local midnight
is greater than the colatitude (or complement of the latitude), during
spring and summer. The perpetual night lasts while the Sun’s S.
decl. at local noon is greater than the colat. during autumn and winter.
The Sun’s decl. at Greenwich midnight being given for every day of the
year, in the Nautical Almanac, it is easy to find approximately the
durations of the perpetual day and night in any given latitude greater
than 66° 33",

119. To find the time the Sun takes to Rise or Set

Let D” be the Sun’s angular diameter, measured in seconds. When
the Sun begins to rise, his upper limb just touches the horizon, and his
centre is at a depth 1D” below the horizon. When the Sun has just
finished rising, his lower limb touches the horizon, and his centre is at
an altitude D" above the horizon. During the sunrise, the centre
rises through a vertical height D”. The problem is closely similar to
that of Art. 90, where the effect of dip is considered. Hence if ¢
seconds be the time taken in rising, 8§ the declination of the Sun’s
centre, and z the inclination to the vertical of the Sun’s path at
rising (Hz'z or naP, Fig. 34) we have

t = 1% D" sec 3 sec «,
= 4 sec § sec z X (©’s angular diameter in minutes).
As in Art. 90, this gives, for a place on the equator,
t = x D" sec §,
and at an equinox in latitude ¢,
t = 5 D" sec ¢.

ExaMPLE.—At an equinox in latitude 60°, the ©’s angular diameter
being 32’, the time taken to rise will be = 4 X 32 X sec 60° seconds
= 256s. = 4m. 16s.

120. Note

It may be mentioned that, owing to atmospheric refraction, the
Sun really appears to rise earlier and set later than the times calculated
by theory. As the phenomena of refraction will be discussed more
fully in Chapter VI, it will be sufficient to mention here that the rays
of light from the Sun are bent to such an extent by the Earth’s atmo-
sphere that the whole of the Sun’s disc is visible when it would just be
entirely below the horizon if there were no atmosphere.

Moreover, there is daylight, or rather twilight, for some time after
the Sun has vanished, so that what is commonly called night does not
begin for some time after sunset.
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For the same reasons, the perpetual day at a place in the arctic
circle is lengthened, and the perpetual night shortened, by several days.

The time taken in rising and setting is, however, practically
unaffected in moderate latitudes.

II.—TrE EcLipTIC
121. The First Point of Aries

In determining the right ascensions of stars, the first step must
necessarily be to find accurately the position of the first point of Aries,
since this point is taken as the origin from which R.A. is measured.
Observations of the stars will only enable differences of R.A. to be
determined. Thus, for instance, the sidereal time at which a star
transits across the meridian is equal to the R.A. of the star. We can
determine with the transit circle, by the methods that will be explained
in Chapter XIII, the times of transit of stars across the meridian ;
we thereby obtain the differences of their R.A.’s. If the R.A. of one
star is known, the R.A.’s of the others are then obtained. But since
the origin from which R.A.’s are measured is defined as the point of
intersection of the ecliptic and equator and the ecliptic is determined by
the apparent path of the Sun in the sky, observations of the Sun"are
required for finding the position of the first point of Aries. Two methods
by which this position may be found will be described.

122. First Method for finding the First Point of Aries

The position of < may be found thus :—At the vernal equinox the
Sun’s declination changes from south to north, or from negative to
positive. Let the Sun’s declination be observed by the transit circle
at the preceding and following noons, and let the observed values be
— 8, and + 8, (i.e. 8 8., and 8, N.). Let ¢, ¢, be the corresponding
times of transit of the Sun’s centre, as observed by the astronomical
clock, and let T, the time of transit of any star, be also observed. Then:

T —¢, = difference of R.A. of Star and Sun at first noon.

T —1t, = . ’ ' at second noon.
Let T —t, = a; and T —t, = a;. We have:—
Increase in Sun’s decl. in the day = 8, — (— 8;) = 33+ 8y,
. » RA. = I, —t; = a; — oy,
and both coordinates increase at an approximately uniform rate
during the day.
Therefore the ®’s decl. will have increased from — &, to 0 in a time
8,/(8; -+ 8,) of a day, and the corresponding increase in R.A. will be :—

(a1 — ap) X 81/(81 + 82)
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The Sun is now at v, so that (O’s R.A. is now = 0. Hence :—

(o — a)8; a8, + a8,
The star’s R.A. = a, — = .
o sare s 3 + 3, 8 + 8,

123. Second Method for finding the First Point of Aries

The principle of the method now to be described is as follows :—
Let S;, 8 be two positions of the Sun shortly after the vernal and before
the autumnal equinox respectively, and such that the declinations
S, M, and SM are equal. Then the right-angled triangles vM,S,
and == MS will be equal in all respects, and we shall therefore have
rM === M.

At noon, some day shortly after March 21st, the Sun is observed
with the transit circle, say when at S;. “"We thus determine its meridian
zenith distance z;, and also
the difference between the
times of transit of the Sun
and some fixed star u,
whose R.A. 'is required.
This difference, which is the
difference of R.A. of the Sun
and star, we shall call a,.
If 8, be the Sun’s declina-
tion, and ¢ the observer’s
latitude, we shall have

SMy =38 =¢—z,
MN = q,.

Fia. 43. We now have to deter-

mine MN, the difference of

R.A. of the Sun and star shortly before September 23rd, when the

Sun’s declination SM is again equal to §,. But the Sun can only

be observed with the transit circle at noon, and it is highly improb-

able that the Sun’s declination will again be exactly equal to §;

at noon on any day. We shall, however, find two consecutive days

in September on which the declinations at noon, S,M, and S;M,,
are respectively greater and less than §,. '

Let z, and z; be the observed meridian zenith distances at S, and
8S3; 0, and 3, the corresponding declinations S,M,, S;M;; a, and aq
the observed arcs M,N and M,N, being the differences of R.A. of the
Sun and star on the two days.

- During the day which elapses between the observations at S,, S,,
we may assume that the Sun’s decl. and R.A. both vary at a uniform
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rate, so that the change in the decl. is always proportlonal to the
corresponding change in R.A.* Therefore :—

MM S,M,—SM _ §,—3,
MMs = 5,0, — 8,M, a =3,
85— 8 8, — 8,
or M2M— — M2M 2= 5, s, —8 (0 — ap),

2

and MN= M,N —M,M = az—

— ay).

82—— 8
Now we have shown that :—
M, =M=
ie. Y N— M,N= MN —=N
or MN + M\N = ‘PN—&—-"-N—2<Y’N—180°—2‘Y’N——12hours,
therefore N = 6h. + } (M,N + MN)

§y— 8
or N =6h.+} za1+a2—hl(a2—a3) .
2 3

This determines PN, the star’s R.A., in terms of a, a,, a; the
observed differences between the times of transit of the Sun and star,
~and §,, 8,, 8;, the Sun’s declinations at the three observations. But
we need not even find the declinations, for
=¢—2z, Sh=¢—2 &= ‘ﬁ‘—zs;.
therefore, substituting, we have:—

The star’s R.A., N — 6h. 4} { o+ o — 22 (o — o).
3T ~2

This. method was first used in the seventeenth century by
Flamsteed, the first Astronomer Royal.

In applying either of the above methods to the numerical calculation
of the right ascension of any star, it is advisable to follow the various
steps as we have described them, instead of merely substituting the
numerical values of the data in the final formulae.

*]124. The Advantages of Flamsteed’s Method
Among these the following may be mentioned :—

1st. The method does not require a knowledge of the latitude, for
we do not require to find the Sun’s declination. Hence, errors arising
from inaccurate determination of the latitude are avoided.

2nd. One great source of error in determining Z.D.’s is the refraction
of the Earth’s atmosphere. Since the Sun is observed each time in
the same part of the sky, 2, 2,, 2; will be nearly equally affected by

* In other words, we assume, as in trigonometry, that the ‘‘ principle of
proportional parts ** holds for the small variations in decl. and R.A. during the day.
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<

refraction. Hence, the “ principle of proportional parts’’ will hold
so that the small differences in the true Z.D.’s are proportional to the
differences in the observed Z.D.’s. Hence we may use the observed
Z.D.’s uncorrected for refraction. Since, however, refraction varies
with the barometer and thermometer, it must not be neglected where
an accurate result is desired.

Example.—Find the Right Ascension of Sirius and the clock errors in March
and Sept. 1940, from the following data, the rate of the clock being supposed correct.
(Decl. of Sirius = 16° 37" 577 8.)

1940. Mar. 24. Sept. 18. | Sept. 19.

Dec. of Sun at noon 1° 28" 25”7 1° 49 40”7 1° 26’ 24"
Time of transit of Sun Oh. 13m. 48s. | 11h. 43m. 4s. | 11h. 46m. 39s.
Time of transit of Sirius | 6h. 42m. 43s. 6h. 42m. 29s. 6h. 42m. 29s.

On Mar. 24th (R.A. of Sirtus) — (Sun’s R.A.) = 6h. 42m. 43s. — Oh. 13m. 48s.
= 6h. 28m. 55s.

Hence, in angular measure, the difference of R.A. is about 97°. )

Draw the diagram as in Fig. 49, but make the angle S,PN = 97°; N will
therefore lie between M, and M,, instead of where represented.

Also, since Sirius is south of the equator, it should be represented at a point = -
on PN produced through N. In this figure we shall have :—

8, M,= 1°28"25"; M,N= ©6h.42m.43s. — Oh. 13m. 48s. = 6h. 28m. 55s.

8, M,= 1°49 40"; NM,;= 11h.43m. 4s.— 6h. 42m. 29s.= 5h. Om. 35s.

S My= 1°26’24”; NMz;= 11h.46m. 39s. — 6h. 42m. 29s. = 5h. 4m. 10s.

Also, SM is by condtruction equal to 8,M,. Hence, applying the principle of
proportional parts, we have
MM S,M,—8,M, 2U'15 1275
M,M,” S,M,—S8,M, 23 16" 1396
and M,M;= 3m. 35s. = 215s.;

therefore M,M = 215 X 1275/1396 = 196 seconds ;

and NM = 5h. Om. 35s. + 3m. 16s. = 5h. 3m. 51s.

Now, NM,— NM = Ny — N== 2Ny — 12h.

Hence, TN = 6h.+}NM,—NM)= 6h.+3}(6h. 28m. 55s. — 5h. 3m. 51s.)
= 6h.+}(1h. 25m. 48.) = 6h. 42m. 32s.
Thus the right ascension of Sirius = 6h. 42m. 32s.
Also, clock error in March = 6h. 42m. 32s. — 6h. 42m. 43s. = — 1ls.
- . 5 5> Sept. = 6h. 42m. 32s. — 6h. 42m. 29s. = + 3s.

|

I

125. Precession of the Equinoxes

Thus far we have treated the first point of Aries as being fixed, and
this will evidently be the case if the equator and ecliptic are fixed in
direction. But if the right ascensions of various stars are observed over
an interval of several years, it will be found that the position of the
first point of Aries is slowly changing, and that it moves along the
ecliptic in the retrograde direction at the rate of about 50-26" in a year.
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This motion is called Precession of the Equinoxes, or, briefly, Precession
(see Art. 28).

Precession is the consequence almost entirely of gradual changes in the
direction of the plane of the equator, the ecliptic remaining almost fixed
among the stars. Its effect is to produce a yearly increase of 50-26”
~ in the celestial longitudes of all stars, their latitudes being constant.

In a large number of years the effect of precession will be consider-
able. Thus, T will perform a complete revolution in the period
360 x 60 x 60

50-26
a complete revolution is variable by many years ; for precession varies
with the amount of obliquity, and this fluctuates, according to Newcomb,
between the limits 24° 13’, attained 9100 years ago, and 22° 35’, which
will be attained 9600 years hence. '

About the year 60 B.c. the vernal equinoctial point moved out of
the constellation Aries into the adjoining constellation Pisces. It
still, however, retains the old name of ““ First Point of Aries.”

It will move into the constellation Aquarius about the year 2740 a.p.

126. Determination of Obliquity of Ecliptic

The method now used for finding the obliquity of the ecliptic is
similar in principle to that
of Art. 40, but the Sun’s
meridian zenith distance is
observed by means of the
transit circle instead of the
gnomon. ‘

The obliquity is equal
to the Sun’s greatest de-
clination at one of the
solstices. Since observa-
tions of the Sun with the
transit circle can only be
performed at apparent
noon, while the maximum
declination will probably
occur at some intermediate
hour of the day, it will be necessary to apply a correction for the
change of declination in the interval.

The correction required can be derived as follows : in the triangle
M8, the sides v M, MS are a, 3, the right ascension and declination
of the Sun. The angle S M is e, the obliquity and the angle at M
is a right angle. From the formulae for a right-angled triangle
(Art. 10), we have :— o1 ¢ gin a — tan 8.

years, t.e. about 25,800 years. Actually the period of

' M. ASTRON., 7
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Suppose that when o becomes (a 4 s), & becomes (8§ — x), then :—
tan € sin (a -+ s) = tan (8 — z).
Therefore tan ¢ {sin (@ 4 s) — sin a} = tan (8 — x) —tan &
sin ©

8
or 2ta,nesm2 cos (a+ §>—~<m———w).

Now suppose that a, 8 refer to the solstices and that s and = are
small. « is 90° when the Sunis at C and 270° when itisat L; 8is + ¢
at C and — e at L. Then :—

. 8 8 s s .
31n§—2, cos<a+§)—:i:§, sinz=1x; cos (8 —z)=cosd

2
sothat = + s'—tan ecos?

32
= -} — sin € cos €.
2

z and s are here expressed in circular measure. If s is expressed
in seconds of time and z in seconds of arc, we obtain

z = -1~ 000273 sin 2¢ . s2.

We can put sin 2e = 730, since the value of ¢ is known approxi-

mately, giving
z = - -000199". s

where s is the number of seconds of time by which the Sun’s observed
R.A. differs from 6h. or 18h. The observed declination must always be
increased numerically by the correction « in order to give the obliquity.

As an example of the magnitude of the correction, if s = 200
seconds of time, the correction is 7-96".

126a. Obliquity and Longitude

When the position of o has been determined, the obliquity can
also be found by a single observation of the Sun’s R.A. and decl. For
we thus find the two sides °» M, MS of the spherical triangle °MS,
and these data are sufficient to determine both the obliquity M S,
and the Sun’s longitude 8.

II1.—TaE EarTH’s ORBIT ABOUT THE SUN

127. Observations of the Sun’s Relative Orbit

By daily observations with the transit circle, the decl. and R.A. of
the Sun’s centre at noon are found for every day of the year. From
these data the Sun’s longitude is calculated, as in Art. 126a, by solving
the spherical triangle v SM (Fig. 44). If the obliquity of the ecliptic is
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also known, we have three data, any two of which suffice to determine
the longitude 8. Thus the accuracy of the observations can be
tested, and the Sun’s motion at various times of the year can be
accurately determined.

Although the determination of the Sun’s actual distance from the
Earth in miles is an operation of great difficulty, it is easy to compare
the Sun’s distance from the Earth at different times of the year, for
this distance is always inversely proportional to the Sun’s angular
diameter. This property is proved in Art. 13, but numerous simple
illustrations may also be used to show that the angular diameter of any
object varies inversely with its distance.*

The Sun’s angular diameter may be observed by means of any form
of micrometer. The Sun’s distances at two different observations will
be in the reciprocal ratio of the corresponding angular diameters.
Thus, by daily observation, the changes in the Sun’s distance may be
investigated. .

If the circular measure of the Sun’s angular diameter is 27, then
ar? is called the Sun’s apparent area. In fact, this is the area of a disc
which would look the same size as the Sun if placed at unit distance
from the eye.

Example.—The Sun’s angular diameter is 31’ 32" at midsummer, and 32’ 36" at
midwinter. Find the ratio of its distances from the Earth at these times.
The distances being inversely proportional to the angular diameters, we have
Dist. at midsummer _ 32’ 36” _ 1956 489 _ 1L "
- Dist. at midwinter ~ 31’ 32° 1892 473 30 NeATy-
Hence the Sun is further at midsummer than at midwinter, in the proportion
of very nearly 31 to 30. )

128. Kepler’s First and Second Laws

We may now construct a diagram of the Sun’s relative orbit. Let
E represent the position of the Earth, E< the direction of the first
point of Aries. Then, by making the angle Y ES equal to the Sun’s
longitude at noon, and ES proportional to the Sun’s distance, we
obtain a series of points 8,8" ..., S; .. ., representing the Sun’s
position in the plane of the ecliptic, as seen from the Earth at noon on
different days of the year. Draw the curve passing through the points
8,8 ...,8...; this curve will represent the Sun’s orbit relative
to the Earth, and it will be found that

L. The Sun’s annual path is an ellipse, of which the Earch is one focus,

II. The rate of motion is everywhere such that the radius vector (i.e.
the line joining the Earth to the Sum) sweeps out equal areas in equal
intervals of time.

* This law only holds when the object subtends so small an’ angle that its
sine and its circular measure are appreciably equal.
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These laws were discovered by Kepler for the motion of Mars about
the Sun, and he subsequently generalised them by showing that the
orbits of all the other planets, including the Earth, obeyed the same
laws. In their general form they are known as Kepler’s First and
Second Laws. (See p. 199).

129. Perigee and Apogee

When the Sun’s distance from the Earth is least, the Sun is said to
be in perigee. When the distance is greatest, the Sun is said to be in
apogee.

The positions of perigee and apogee are called the two Apses of the
orbit ; they are indicated at p, @ in Fig. 45. The line pEa joining
them is the major axis
of the ellipse (Ellipse,
4), and is sometimes
also called the apse line.

e

130. Verification of-
Kepler’s First Law

The Sun’s angular
diameter is observed to
be greatest about Jan.
3rd, and least about
July 4th ; we therefore
conclude that these are
the days on which the
Sun passes through
perigee and apogee
respectively. The posi-
tions of perigee and
apogee beingthusfound,

Tig. 45. ’ the angle between E<p
and Ep is known, which
is the longitude of perigee, when measured anticlockwise from < to p.

From the winter solstice to perigee is about 12 days. Hence,
during this interval the Sun will have moved through an angle of about
12°; thus:— X

longitude of perigee = 270° +- 12° = 282° roughly.

To verify that the orbit is an ellipse, it is now only necessary to
show that the relation connecting ES and the angle pES is the same
as that which holds in the case of the ellipse. If the orbit is an ellipse
of eccentricity e, we must have :—

ES X (1 + e cos pES) = 1 (a constant). (p. 373).

T




VERIFICATION OF KEPLER’S FIrsT Law 101

Therefore the Sun’s angular diameter must be always proportional to
1 + e cos pES. :

As the result of numerous observations, it is found that this is
actually the case, and the truth of Kepler’s First Law for the Sun’s
orbit relative to the Earth is confirmed.

131. To find e, the Eccentricity of the Ellipse

A simple plan is to compare the greatest and least angular diameters
of the Sun, 4.e. the diameters at perigee and apogee. Since at these
. positions pES becomes 0° and 180° respectively, we have, from the above—

Angular diameter at p : ang. diam. at @ = 1/Ep : 1/Ea
=1+ ecos0°:1 4 e cos 180°
=1-+e:1—e¢

from which proportion e can be found.

The greatest angular diameter of the Sun is 32'35", about January

3rd ; the least is' 31’ 317, about July 4th. We have, therefore—
14+e 32735”1955
1—e 31'31" 1891

So that e == 64/3846 = 1/60, approximately.

The eccentricity can, however, be found far more accurately by -
studying the rate of the Sun’s motion in longitude at different times of
the year. Using the method of Art. 51, we find that early in April the
Sun is 1° 54’ ahead of its mean place, while early in October it is the same
amount behind its mean place. We have thus an arc of 3° 48’ from
which to deduce e, instead of an arc of 64”, using the method of diameters.

Owing to the smallness of e, the orbit is very nearly circular, being,
really, much more nearly so than is shown in Fig. 45. However, the
Sun is quite appreciably out of the centre of the orbit, being 3 million
miles nearer to the Earth in perigee than in apogee.

132. Verification of Kepler’s Second Law

It is found, as the result of observation, that the Sun’s increase in
longitude in a day, at different times of year, is always proportional to
the square of the angular diameter, and is, therefore, inversely pro-
portional to the square of the Sun’s distance. The following figures
illustrate this relationship:—

Date Daily motion in longitude | Apparent Diameter
Jan. 3rd 3670" 32’ 35" = 1955"
April 3rd 3547" 32" 2" = 1922"

. July 4th 3434" 31’ 31" = 1891"
Oct. 3rd 3547" 32" 2" = 1922"
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If the apparent diameters are squared and divided by the daily
motion in longitude, it will be found that the result is in each case the
same, viz. 1041-4. :

From this relationship it may be readily deduced, in the following
way, that the area described by the radius vector in one day is the
same in any part of the orbit :— , :

Let 88’ (Fig. 45) represent the small arc described by the Sun in a
day in any part of the orbit. Then the sector ESS’ is the area swept
out by the radius vector. This sector does not differ perceptibly from
the triangle ESS’; therefore, by trigonometry,

area BESS" = $ES.ES'. sin SES'.

Since the change in the Sun’s distance in one day is imperceptible,
we may write ES for ES’ in the above formula without materially
affecting the result ; also, since the angle SES’ is small, the sine of
SES’ is equal to the circular measure of the angle SES". Therefore :—

_ area ESS’ = 1ES? x /SES'.
. But, by hypothesis, the change of longitude SES’ varies inversely
as ES?% so that ES? x /SES’ is constant; it follows that the area
ESS’ is constant, that is, the area described by the radius vector in a
day is constant. Thus, the area described in any number of days is
proportional to the number of days, and generally the areas described
in equal intervals of time are equal.

133. Deduction from Kepler’s Second Law

(i) If the circular measure of the Sun’s angular diameter is 2r, then
mr* is the Sun’s apparent area. Hence the Sun’s daily rate of change
of longitude is proportional to the apparent area of its disc.

(ii) Since the intensity of the Sun’s heat and its rate of motion in
longitude both vary as the inverse square of its distance, they are
proportional to one another. Hence the Earth, as a whole, receives
equal amounts of heat while the Sun describes equal angles. In
particular, the total quantities of heat received in the four seasons
are equal.

(iii) The Sun’s longitude changes most rapidly on January 3rd, and
least rapidly on July 4th.

(iv) Since the apse line, or major axis, pSa, bisects the ellipse, the
time from perigee to apogee is equal to the time from apogee to perigee.

134. The Lengths of the Seasons

If or, K, ==, L represent the Sun’s positions at the equinoxes and
solstices, we have :—

L VEK = {KE== /=EL= /LEp = 90,
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and it is readily seen from figure 45 that :—
area LEP < area = EL < area YEK < area KE =,

and the lengths of the seasons, being proportional to these areas, are
unequal, their ascending order of magnitude being
Winter, Autumn, Spring, Summer.

The actual lengths of the seasons may be readily determined from
the motion of the mean Sun.

The equation of time, as defined in Art. 47, is the quantity that
must be added to mean time to obtain apparent time. Since, however,
apparent solar time is measured by the Sun’s hour angle and mean
solar time is measured by the hour angle of the mean Sun, the equation
of time is the quantity that must be added to the hour angle of the mean
Sun to obtain the hour angle of the true Sun. But since hour angle
and right ascension are measured in opposite directions, the equation
of time must be subtracted from the right ascension of the mean Sun to
obtain the right ascension of the true Sun. Since, by the definition of
the mean Sun, its right ascension increases uniformly, the lengths of
the seasons can be compared.

At the vernal equinox, Sun’s R.A. = Oh., equation of time = — 7m. 29s'
,» », summer solstice ' =6h., ,, ) — 1m. 37s.
. » autumnal equinox ,, =12h.,, » -+ Tm. 33s.
,, 5, Winter solstice ’s = 18h., ,, . 4+ 13m. 4s.

Thus, in spring, from the vernal equinox to the summer solstice,
whilst the R.A. of the true Sun increases from Oh. to 6m. the R.A. of the
mean Sun increases from Oh. — (Tm, 29s.) = 23h. 52m. 31s. to 6h. — -
(lm. 37s.) = 5h. 58m. 23s., or by 6h. 5m. 52s. But in a year, the R.A.
of the mean Sun increases by 360° = 24h. Hence, since the motion
of the mean Sun is uniform, the length of spring is the fraction 6h.
5m. 52s./24h. of the year. Similarly for the other seasons. In this
way, the lengths of the seasons are found to be

Spring 92d. 19-2h.
Summer 93d. 15-2h.
Autumn  89d. 19-Oh.
‘Winter 89d. 0-4h.

135, To find the Position of the Apse Line

The Sun’s distance remains very nearly constant for a short time
before and after perigee and apogee, hence it is difficult to tell the exact
instant when this distance is greatest or least. For this reason, the
following method is generally used : — '

The Sun’s longitude is observed at two points, S, 8,, before and
after the apse, when its angular diameters, or its rates of motion in
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longitude, are found to be equal. Then ES = ES,, and the symmetry
of the ellipse shows that /pES= /pES, and /aES= /aES,.
Hence the longitude of the apse is the arithmetic mean of the Sun’s
longitudes at the two observations.

ProcrEssive MoTtioN oF APSE LiNE .

From such observations, extending over a long period of years, it is
found that the apse line is not fixed, but has a forward or direct motion
in the ecliptic plane of 11-25” in a year.

This is referred to a fixed direction in space ; hence the longitude
of the apse increases 11:25” -+ 50-26” = 61-51" in a year.

136. The Sun’s Apparent Annual Motion may be accounted for by
supposing the Earth to revolve round the Sun

The annexed diagram
will show how the Sun’s
annual motion in the eclip-
tic, as well as the changes
in the Seasons, may be
accounted for on the theory
that the Sun remains at rest
while the Earth describes an
ellipse round it in the course
of the year in a plane in-
clined at an angle 23° 27’
to the plane of the Earth’s
equator.

The distance of the
nearest of the fixed stars
is known to be over 200,000
times as great as the Earth’s
distance from the Sun.
Hence, Art. 14 shows that the directions of the fixed stars will not
change to any considerable extent, as the Earth’s position varies. We
ghall, therefore, in the present description, consider the directions of the
stars to be fixed. The directions of the various points and circles of
the celestial sphere, such as the first point of Aries, will also be fixed.

On March 21st, the Earth is at E,, and the Sun’s direction E,S
determines of <, the first point of Aries. The Sun is vertical at a
point @ on the equator, and as the Earth revolves about its axis through
P, all points on the equator will come vertically under the Sun. There
is night all over the shaded portion of the Earth, day over the rest.
The great circle bounding the illuminated part passes through the
pole P, and, therefore, bisects the small circle traced out by the daily
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rotation of any point on the Earth ; thus, the day and night are every-
where equal. At the pole P the Sun is just on the horizon.

On June 21st, the Earth is at E,, and the Sun’s longitude P E,S =
90°. The Sun is vertical at a point on the tropic of Cancer. Since the
arctic circle is entirely in the illuminated part there is perpetual day
over the whole arctic zone. :

On September 23rd, the Earth is at E,, and the Sun’s longitude
PEyS is 180°. The Sun is once more vertical at a point R on the
equator, and the day and night are everywhere 12 hours long, as they
are at E,.

On December 22nd, the Earth is at E,, and the Sun’s longltude
Y E,S (measured in the direction of the arrow) is 270°. The Sun is
now at its greatest angular distance south of the equator, and overhead
at a point on the tropic of Capricorn ; this tropic is not represented, being
on the under side of the sphere. Since the arctic circle is entirely within
the shaded part there is perpetual night over the whole arctic zone.

New DErFINITIONS AND FacTs

According to the theory of the Earth’s orbital motion, Kepler’s
First and Second Laws can be re-stated thus for the Earth.

1. The Earth describes an ellipse, having the Sun tn one focus.

II. The radius vector joining the Earth and Sun traces out equal
areas in equal times about the Sun.

The ecliptic is now defined as the great circle of the celestial sphere,
whose plane is parallel to that of the Earth’s orbit.

The Earth is nearest the Sun on January 3rd, and is then said to be
in perikelion. The Earth is furthest from the Sun on July 4th, and is
then said to be in aphelion. Thus, when the Sun is in perigee the Earth
is-in perihelion, when the Sun is in apogee the Earth is in aphelion.
The positions of perihelion and aphelion are indicated by the letters p,
a in Fig. 46. The line joining them is the apse line.

137. Geocentric and Heliocentric Latitude and Longitude

Hitherto we have been dealing only with the directions of the
celestial bodies as seen from the Earth.

In dealing with the motion of the planets, it is more convenient, as
a rule, to define their positions by the directions in which they would be
seen by an observer situated at the centre of the Sun.

In every case, the direction of a celestial body may be specified by
the two coordinates, celestial latitude and longitude, which measure
respectively the arc of a secondary from the body to the ecliptic
and the .arc.of the. ecliptic between this secondary and the first point
of Aries (Art. 25).
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These coordinates are called the Geocentric Latitude and Longitude
when employed to define the body’s geoceniric position, or position
relative to the centre of the Earth. The names Heliocentric Latitude
and Longitude are given to the corresponding coordinates when
employed to define the body’s heliocentric position, or position relative
to the Sun’s centre.

When the distance of a fixed star is immeasurably great compared
with the radius of the Earth’s orbit, its geocentric and heliocentric
directions coincide, and there is no difference between the two sets of
coordinates. There is a slight difference between the geocentric and
heliocentric positions of a few of the nearest fixed stars. There are
perhaps some 200 stars for which the difference exceeds a tenth of a
second of arc. But, in the case of the planets, and of comets, the
heliocentric latitude and longitude differ entirely from the geocentric,
and laborious calculations are required to transform from one system
of coordinates to the other.

One fact may, however, be noted. The direction of the Earth as
seen from the Sun is always opposite to the direction of the Sun as
seen from the Earth. Hence :—

The Earth’s heliocentric longitude differs from the Sun’s geocentric
longitude by 180°.

This may be illustrated by referring to Fig. 46. We see that

VPSE; = 0°, vSE, = 90°, vSE, = 180°, vSE, = 270°;
thus, the Earth’s longitude is 0° on September 23rd, 90° on December
22nd, 180° on March 21st, and 270° on June 21st.

EXAMPLES
. 1. Describe the phenomena of day and night at a pole of the Earth.

2. Show how to find how long the midwinter Moon when full is above the
horizon at a place within the arctic circle of given latitude.

3. Show that the ecliptic can never be perpendicular to the horizon except at
places between the tropics.

4. Show that for a place on the arctic circle the Sun always rises at 18h. sidereal
time from December 21st to June 20th, and sets at the same sidereal time from
June 20th to December 21st. ‘ .

5. Find the angle between the ecliptic and the equator in order that there
should be no temperate zone, the torrid zone and the frigid zone being contiguous.

6. Show how, by observations on the Sun, taken at an interval of nearly six
months, the astronomical clock may be set to indicate Oh. Om. 0s. when < is on
the meridian.

7. On March 24th, at noon, the Sun’s declination was 1° 29’ 5-1*, and the
difference of right ascension of the Sun and a star 6h. 1m. 34-45s. On September
18th, at noon, the Sun’s declination was 1° 49’ 30-2”, and it was distant from the
star 5h. 27m. 32-97s. in right ascension. On September 19th, at noon, the Sun’s
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declination was 1° 26’ 12-8”, and it was distant from the star 5h. 31m. 8-3s. in right
ascension. Find the right ascension of the star and that of the Sun at the first
observation. .

8. Describe the appearance presented to an observer in the Sun of the parallels
of latitude and the meridians of the Earth, any day (i) between the vernal equinox
and the summer solstice, (ii) between the autumnal equinox and the winter solstice.

9. If a sunspot be situated near the edge of the Sun’s disc, describe how its
position, relative to the horizon, will change between sunrise and sunset.

10. Describe how the Sun’s apparent velocity in the ecliptic varies throughout
the year; and give the dates of apogee and perigee. Compare the daily motion
in longitude at these dates, having given that the eccentricity of the Earth’s orbit
is &%- .

EXAMINATION PAPER )

1. What is the astronomical reason for the Earth being divided into torrid,
temperate, and frigid zones? :

2. Assuming your latitude to be 52°, show by a figure the daily path of the Sun
as seen by you on June 21st, December 22nd, and March 21st respectively.

3. Explain the causes of variation in the length of the day on the Earth. Give
the dates at which each season begins, and calculate their lengths in days.

4. Discuss the variations in the length of the day at points within the arctic
circle ; and show how to find, by the Nautical Almanac, the length of the perpetual
day. )

5. Prove that, in the course of the year, the Sun is as long above the horizon
at any plaeo as below it (neglect refraction).

6. Explain how it is that winter is colder than summer, although the Sun is
nearer. ’

7. Investigate Flamsteed’s method of determining the first point of Aries.

8. From the following observations calculate the Sun’s R.A. at transit over the
meridian on March 30th, 1872 :—

Sun’s Sun crossed a Serpentis
declination. meridian. crossed meridian.
March 30th, 1872 4° ¢ 81 Oh. 1m, 4-47s. 15h. 1m. 54-76s.
Sept. 11th, 1872 4° 20’ 58-8” Oh. 1m. 4-09s. 4h. 19m. 11-38s.
Sept. 12th, 1872 3° 58" 3-0” Oh. 1m. 4-07s. 4h. 16m. 49-33s. -

9. State Kepler’s First Law for the orbit of the Earth relative to the Sun, and
explain how the eccentricity of the orbit can be found by observations of the Sun’s
angular diameter.

10. State Kepler’s Second Law, and find the relation between the Sun’s angular
velocity and its apparent area.



CHAPTER VI
ATMOSPHERICAL REFRACTION AND TWILIGHT

138. Laws of Refraction

It is a fundamental principle of Optics that a ray of light travels in
a straight line, so long as its course lies in the same homogeneous
medium ; but when a ray passes from one medium into another, or
from one stratum of a medium into another stratum of different density,
it, in general, undergoes a change of direction at their surface of separa-
tion. This change of direction is called Refraction.

Let a ray of light SO (Fig. 47) pass at O from one medium into
another, the two media being separated by the plane surface 4B, and
let OT be the direction of the ray after refraction in the second medium.
Draw ZOZ' the normal or perpendicular to the plane AB at O. Then
the three laws of refraction may be stated as follows : —

Law L. The incident and refracted rays SO, OT and the normal
ZO0Z' all lie in one plane.

Law II. The ratio S%L,Ooi, is a constant quantity, being the same
for all directions of the rays, so long as the two media are the same.*

This constant ratio of Law II is called the relative indew of refraction
of the two media, and is usually denoted by the Greek letter p.

Thus, if 70 be produced backwards to S’, we have :—

sin ZOS = p sin Z'0T = p sin ZOS’,
- The angles ZOS and Z'OT are usually called the angle of incidence

and the angle of refraction respectively.

Law III. When light passes from a rarer to a denser medium, the
angle of incidence is greater than the angle of refraction.
Since /208 > /Z'OT, sin ZOS > sin Z'OT and p > 1.

139. General Description of Atmospherical Refraction

If the Earth had no atmosphere, the rays of light proceeding from
a celestial body would travel in straight lines right up to the observer’s
eye or telescope, and we should see the body in its actual direction.

But when a ray Sa (Fig. 48) meets the uppermost layer 44’ of the
Earth’s atmosphere, it is refracted or bent out of its course, and its
direction changed to ab. On passing into a denser stratum of air at
BB, it is further bent into the direction bc, and so on ; thus, on reaching

* The value of the ratio varies slightly for rays of different colours but with
this we are not concerned in the present chapter.

108
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the observer, the ray is travelling in a direction OT, different from its
original direction, but (by Law I) in the same vertical plane.

The body is, therefore, seen in the direction OS’, although its real
direction is aS or OS. Also, since the successive horizontal layers of
air A4’, BB', CC', . . . are of increasing density, the effect of refraction
is to bend the ray fowards the perpendicular to the surfaces of separation,
that is, towards the vertical.

Hence the apparent altitudes of the stars are increased by refraction.

In reality, the density of the atmosphere increases gradually as we
approach the Earth, instead of changing abruptly at the planes 44’,
BB'. . . . Consequently, the ray, instead of describing the polygonal
path SabcO, describes a curved path, but the general effect is the same.

G o
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’ ,II ""’,’
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Fia. 47. Fie. 48.

140. Law of Successive Refractions

Let there be any number of different media, separated by parallel
planes AA', BB, CC', HH' (Fig. 48), and let SabcOT represent the
_ path of a ray as refracted at the various surfaces.

Since the media are separated by parallel planes, it is evident that
the angle of refraction at the surface A4 is equal to the angle of inci-
dence at the surface BB; the angle of refraction at the surface BB is
equal to the angle of incidence at the surface CC, and so on. _

Now experiment shows that if p,, p, are the refractive indices of
two media, 4 and B, relative to a vacuum, the relative refractive index
for refraction from medium A4 to medium B is p,/u,. The law of
refraction from medium 4 to medium B can therefore be written as :—

sin ZOS = £= sin Z0S’
Fa
or p,sin Z, = p,sin Z,

where Z,, Z are respectively the angles that the directions of the
ray in mediums 4 and B make with the zenith.
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Since the interfaces of the media are parallel, this result will hold at
each refraction and we shall have :— '
pSnZ, = p,sinZ, = p,sinZ, = . .. = p,sin Z,
if N denotes the last mediam. Thus:—
sin Z, = Py gin Z,
[\ ‘

But u/p, is the relative refractive index for refraction direct from
the first medium to the last. It follows, that the final direction 8’7
of the ray is parallel to what it would have been if the ray had been
refracted directly from the first into the last medium without traversing
the intervening media.

Thus, if a ray SO, drawn parallel to Sa, were to pass directly from
the first medium to the last by a single refraction at O, its refracted
direction would be the same as that actually taken by the ray Sa, and
would coincide with OT.

141. 'The Formula for Astronomical Refraction

We shall now apply the above laws to determine the change in the -

apparent direction of a star produced by refraction.

Since the height of the atmosphere is only a small fraction of the
Earth’s radius, it is sufficient for most purposes of approximation to
regard the Earth as flat, and the surfaces of equal density in the atmo-
sphere as parallel planes. With this assumption, the effect of refraction
is exactly the same (Art. 140) as if the rays were refracted directly into
the lowest stratum of the atmosphere, without traversing the inter-
vening strata.

Let OS (Fig. 47) be the true direction of a star or other celestial
body. Then, before reaching the atmosphere, the rays from the star
travel in the direction SO. Let their direction after refraction be
S'OT, then OS' is the apparent direction in which the star will be seen,
and the angle SOS’ is the apparent change in direction due to refraction.
The normal OZ points towards the zenith. Hence ZOS is the star’s
true zenith distance, and ZOS’ or Z'OT is its apparent zenith distance,
and the first and third laws of refraction show that the star’s apparent
direction is displaced towards the zenith.

Let /208" =2 /S0S=wu, sothat /ZOS= 2z + u; and let
p be the index of refraction of the atmosphere at 0. By the second
law of refraction.

sin (z + u) = p sin 2.
or sinzcos % - cos z sin % = y sin 2.

Now the refraction w is in general very small. Hence, if u be
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measured in circular measure, sin ¥ = u, and cos 4 = 1 very approxi-
mately. Therefore we have : '
sinz 4+ wcosz= psinz;
or u= (p—1)tanz.

Let U be the amount of refraction in circular measure when the

zenith distance is 45°. Putting z = 45°, we have
U=p—1.
so that u = Utanz.

Thus the amount of refraction is proportional to the tangent of the
apparent zenith distance.

The last result does not depend on the fact that the refraction is
measured in circular measure. Hence, if u”, U” be the numbers of
seconds in %, U, we have

u” = U" tan 2,

The quantity U” is called the coefficient of refraction. Since U is

the circular measure of U”, we have :—

- 1§_Q_><_(’3:).><_69 U = 206265 (u — 1),

whence, if U” is known, p can be found, and conversely.

UII

142, Observations on the preceding Formula

In the last formula u” represents the correction which must be
added to the apparent or observed zenith distance in order to obtain
the true zenith distance. By the first law, the azimuth of a celestial
body is unaltered by refraction. '

Thus the time of transit of a star across the meridian, or across any
~ other vertical circle, is unaltered by refraction.

In using the transit circle, there will, therefore, be no correction for
observations of right ascension, but in finding the declination the
observed meridian Z.D. will require to be increased by U” tan z.

A star in the zenith is unaffected by refraction, and the correction
increases as the zenith distance increases. When a star is near the
horizon, the formula »” = U” tan 2 fails, since it makes u" = 00, when

‘= 90°. In this case u is no longer a small angle, so that we are not
justified in putting sin » = w and cos » = 1. But there is a more
important reason why the formula fails at low altitudes, namely, that
the rays of light have to traverse such a length of the Earth’s atmo-
sphere that we can no longer regard the strata of equal density as
bounded by parallel planes. In this case, it is necessary to take into
account the curvature of the Earth in order to obtain any approach to
accurate results.
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For zenith distances less than 75° the formula gives satisfactory
results ; for greater distances the correction is too large.

The coefficient of refraction U” is found to be about 58-2” when the’
height of the barometer is 30 inches and the temperature is 50°. But
the index of refraction depends on the density of the air, and this
again depends on the pressure and temperature. Hence, where accurate
corrections for refraction are required, the height of the barometer and
the thermometer must be read. Any want of uniformity in the strata
of equal density, or any uncertainty in determining the temperature,
will introduce a source of error ; hence it is desirable that the correc-
tions shall be as small as possible. Observations near the zenith are
the most reliable.

It is useful to note that since the circular measure of 1° is 1/57-3, the
refraction at 1° from the zenith is almost exactly 17, at 2° it is 2”, and so
on, so0 long as the tangent can be taken as equal to its circular measure.

143. Effect of Barometric Height and Temperature

As mentioned in the preceding section, the constant of refraction
depends on the pressure or barometric height and on the temperature.
If U, denotes the constant refraction when the height of the barometer
is B inches and the temperature is 7° Fahrenheit and U denotes the
constant when the height of the barometer is 30 inches and the tempera-
ture is 50°F., which are taken as standard conditions, the relationship
between U, and U is given by

U,_ 1B
U 4604+ T
so that under these conditions the refraction becomes
” 17B ”
u" = m U’ tan z.

*144. Cassini’s Formula

The law of refraction was also investigated by Dominique Cassini on the
hypothesis that the atmosphere is spherical but homogeneous throughout ; in this
way he obtained the approximate formula

u= (p—1) tan z (1 — n sec?z),
where n is the ratio of the height of the homogeneous atmosphere to the radius of
the Earth. ’

Cassini’s formula may be proved as follows :—Let SO’O be the path of a ray
of light from a star S. By hypothesis this ray undergoes a single refraction on
entering the homogeneous atmosphere at 0’. Let O be the position of the observer,
C the centre of the Earth. Produce 00’ to §’, CO to Z, and CO’ to Z’. Let
u= / SO (in circular measure), z= / ZOS', 2’ = / Z'0S'.

Then, by Art. 183, if u is small, we have

u= (pg—1)tanz’;




Cassint’s FormuLa 113

but here 2’ is not the apparent zenith distance, so that we must express tan z’ in
terms of tan z.
Draw CT perpendicular to 0’0 produced, and O’N perpendicular to COZ.
Then :—
O'T tan z’ = TC = OT tan z;;
tanz _ OT 0’0 ON sec z ON
tanz = 07 — ' T oF =1 ¥ 00 cosz 1+ pe oo™

But ON is very approximately the height of the homogeneous atmosphere

OH, and is therefore = n . OC; so that
—::::,: 14 msec?z; or tanz' = 1 7 soc%z +ta:;c2z;
whence, by substituting in the formula, we have
w= (p—1) tan z
1 + n sec’z
or u= (u— 1) tan z {1 — n sec’z + nisec’z — n3sec®z, eto.}.

Now n is very small; we may therefore neglect
its square and higher powers; hence we obtain
approximately

u= (p— 1) tan z (1 — n sec%),
which is Cassini’s formula. If the value of n be
properly chosen, Cassini’s formula is found to give
very good results for all zenith distances up to 80°.

Since sec?z = 1 -4 tan?z, Cassini’s formula has
the form

u= A tan z + B tan’z
By determining the constants 4 and B from
observations, instead of using their theoretical values,
a much improved representation of the true refrac-
tion by the formula can be obtained.

145. To Determine the Coefficient of Refrac- Fre. 49.
tion from Meridian Observations

Assuming the “ tangent law,” u = U tan 2, the coefficient of refrac-
tion U may be found from observations of circumpolar stars as follows.

Let 2, 2,, the apparent zenith distances of a circumpolar star, be
observed at upper and lower culminations respectively. Then the
true zenith distances will be

2, + U tan z and z, 4+ U tan z,

Now, the observer’s latitude is half the sum of the meridian altitudes

at the two culminations (Art. 31), hence if ¢ be the latitude, we have :—

¢ = 3{(90° — 2, — U tan 2;) + (90° — 2, — U tan %)},
or 90° — ¢ =1%(2y +2) + 3U (tanz 4 tanz) ............ (1)
Now let a second circumpolar star be observed. Let its apparent

. zenith distances at upper and lower culminations be 2" and 2”. Then we
obtain in like manner

90° — ¢ =3 (2 +2") + 3U (tan 2’ + tan2") ............ (i1)

M. ASTRON. 8
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Eliminating ¢ from (i) and (ii) by subtraction, we have
_ (7 + 2) — (' +2)
(tan z; 4 tan z,) — (tan z’.+ tan 2")
If the two stars have the same declination, we shall have z, = 2’ and
2y = 2", and the above formula will fail. Hence it is important that
the two observed stars should differ considerably in declination ; the

best results are obtained by selecting one star very near the pole (e.g.
the Pole Star), and the other about 30° from the pole.

146. Alternative Method (Bradley’s)

Instead of using a second circumpolar star, Bradley observed the
Sun’s apparent Z.D.’s at noon at the two solstices. Let these be
Z,, Z,. Now by Art. 40 since the true Z.D.’s are

Z, + U tan Z, and Z, + U tan Z,,
Z,+UtanZ,= ¢ — ¢, Z, + Utan Z,= ¢ + ¢; (e = obliquity.)
or 2d=2,+2Z,+ U (tanZ; + tan Z,) ............ (ii1)
Eliminating ¢ from (i), (iii), we have :—
U (tan z, + tan 2, 4 tan Z; + tan Z,) = 180° — (2 + 2, + Z; + Z,),
whence U is found.

147. Other Methods of finding the Refraction

Suppose that at a station on the Earth’s equator, either a star on
the celestial equator, or the Sun at an equinox, is observed during the
day. Itsdiurnal path from east to west passes through'the zenith, and
during the course of the day its true zenith distance will change uni-
formly at the rate of 15° per hour. Thus the true Z.D. at any time is
known. Let the apparent Z.D. be observed with an altazimuth. The
difference between the observed and the calculated Z.D. is the displace-
ment of the body due to refraction.

By this method we find the corrections for refraction at different
zenith distances without making any assumptions regarding the law of
refraction.

Except at stations on the Earth’s equator, it is not possible to
observe the refraction at different zenith distances in such a simple
manner. Nevertheless, methods more or less similar can be employed.
For this purpose the zenith distances of a known star are observed at
different times. The true zenith distance at the time of each observa-
tion can be calculated from the known R.A. and declination. Hence
the refraction for different zenith distances of the star can be determined.

This method is very useful for verifying the law of refraction after
the star’s declination and the observer’s latitude have been found
with tolerable accuracy. Moreover, it can be employed to find the
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corrections for refraction at low altitudes when the “ tangent law ”
ceases to give approximate results.

148. Tables of Mean Refraction
From the results of such observations tables of mean refraction
have been constructed. The tables prepared by Bessel are calculated
for temperature 50° and height of barometer 29-6 inches; they give
the refraction for every 5’ of altitude up to 10°, for larger intervals at
altitudes between 10° and 54°, and for every 1° at altitudes varying
from 54° to 90°. Subsidiary tables give the corrections, which must be
added to or subtracted from the mean refraction given in the first table
in allowing for differences in the temperature and barometric pressure.
- The corrections for temperature and pressure are applied separately.
Still more refined tables, published by the Pulkova Observatory,

have now been generally adopted.

149, Effects of Refraction on Rising and Setting

At the horizon the mean refraction is about 33’; consequently a
celestial body appears to rise or set when it is 33’ below the horizon.
Thus, the effect of refraction is to accelerate the time of rising, and to
retard, by an equal amount, the time of setting of a celestial body.
In particular, the Sun, whose angular diameter is 32’, appears to be
just above the horizon when it is really just below.

The acceleration in the time of rising due to refraction can be
investigated in exactly the same way as the acceleration due to dip
(Art. 90). If »" denotes the refraction at the horizon in seconds, & -
the declination,  the inclination to the vertical of the direction in which
the body rises, the acceleration in the time of rising in seconds is :—

l 4" sec x sec &
15 :

Taking the horizontal refraction as 33, or 1980”, and putting
x = 0, 8§ = 0, we see that at the Earth’s equator at an equinox, the
time of sunrise is accelerated by about 2m. 12s. owing to refraction.
The time of sunset is retarded by an equal amount.

When the Sun or Moon is near the horizon, it appears distorted into
a somewhat oval shape. This effect is due to refraction. The whole
disc is raised by refraction, but the refraction increases as the altitude
diminishes ; so that the lower limb is raised more than the upper limb, .
and the vertical diameter appears contracted. The horizontal diameter
is almost unaffected by refraction. Hence, the disc appears some-
what flattened or elliptical, instead of truly circular. According to
the tables of mean refraction, the refraction on the horizon is 33,
while at an altitude 30’, the refraction is only 28’ 23", and at 35
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it is 27" 41”. Hence, taking the Sun’s or Moon’s diameter as 32,
the lower limb when on the horizon is raised about 5’ more than the
upper. The contraction 6f the vertical diameter, therefore, amounts
to 5, 4.e. about one-sixth of the diameter itself, so that the apparent
vertical and horizontal angular diameters are approximately in the
ratio of b to 6.

Even the horizontal diameter is slightly reduced, for its two extremi-
ties are moved towards the zenith on converging great circles. The
amount is nearly constant at all altitudes, about 0-5".

150, Ilusory Variations in Size of Sun and Moon
~ The Sun and Moon generally seem to look larger when low down
than when high up in the sky. This is not an effect of refraction. It is
merely a false impression formed by the observer, and is not in accord-
ance with measurements of the
angular diameter made with a micro- '
meter. When near the horizon, the
eye is apt to estimate the size and
distance of the Sun and Moon by
comparing them with the neighbour-
ing terrestrial objects (trees, hills,
Fre. 50, etc.). When the bodies are at a con-
siderable altitude no such comparison
is possible, and a different estimate of their size is instinctively formed.

151. Effect of Refraction on Dip, and Distance of the Horizon

Since refraction increases as we approach the Earth, its effect is
always to bend the path of a ray of light into a curve which is concave
downwards (Fig. 50).

Let O be any point above the Earth’s surface, and let T'0 be the
curved path of the ray of light which touches the Earth at 7" and
passes through O. Then OI" is the distance of the visible horizon.
Draw the straight tangent OT, then OT would be the distance of the
visible horizon if there were no refraction ; hence, it is evident from
the figure that—

The Distance of the horizon is increased by refraction.

Draw OT”, the tangent at O to the curved path OT", then OT” is
the apparent direction of the horizon. Hence, from the figure we see
that—

The Dip of the horizon s diminished by refraction.

Both dip and distance are still approximately proportional to the
square root of the height of the observer.
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152. FEffect of Refraction on Lunar Eclipses and on Lunar
Occultations

In a total eclipse the Moon’s disc is never perfectly dark, but appears
of a dull red colour. This effect is due to refraction. The Earth
coming between the Sun and Moon prevents the Sun’s direct rays from
reaching the Moon, but those rays which nearly graze the Earth’s
surface are bent round by the refraction of the Earth’s atmosphere,
and thus reach the Moon’s disc. The red colour is due to the same
cause that makes the setting sun look red. The long red light waves
have more penetrating power than the short violet ones. :

From observing the “ occultations > of stars when the unilluminated
portion of the Moon passes in front of them, we are enabled to infer that.
the Moon does not possess an atmosphere similar o that of our Earth.
For the directions of stars would be displaced by the refraction of such
an atmosphere just before disappearing behind the disc, and just after
the occultation.; and no such effect has been observed.

153. Twilight

The phenomenon of twilight is also due to the Earth’s atmosphere,
and is explained as follows :—After the Sun has set, its rays still continue
to fall on the atmosphere above the Earth, and of the light thus received
a considerable portion is reflected or scattered in various directions.
This scattered light is what we call twilight, and it illuminates the Earth
for a considerable time after sunset. Moreover, some of the scattered
light is transmitted to other particles of the atmosphere further away
from the Sun, and these reflect the rays a second time ; the result of
these second reflections is to increase further the duration of twilight.
Twilight is said to end when this scattered light has entirely disappeared,
or has at least become imperceptible. From numerous observations,
twilight is found to end when the Sun is at a depth of about 18° below
the horizon. .

The duration of twilight, especially in high latitudes, varies with the
season of the year and may even last all night. But any given degree.
of indirect illumination will be associated with the same depression of
the Sun below the horizon. It is therefore convenient to subdivide the
interval between sunrise and complete darkness into three periods,
indicating times that have equal degrees of illumination.

The name civil twilight is applied to the time when the centre of the
Sun is 6° below the horizon. It corresponds approximately to the
time when ordinary outdoor civil occupations are impracticable without
artificial light. The name nautical twilight is applied to the time when-
the centre of the Sun is 12° below the horizon. The name astronomical
twilight is applied to the time when the centre of the Sun is 18° below
the horizon : it is usually called simply twilight.
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The Nautical Almanac gives tables of the times of beginning of
civil, nautical and astronomical twilights in the morning and of their
ending in the evening for a sufficient number of different latitudes
between the equator and 60°N. to permit the times for any other
latitude to be interpolated readily. The times for southern latitudes
are found with the aid of an auxiliary table.

154, Times of Beginning and Ending of Twilight

In Fig. 51, Z denotes the zenith, P the pole, nXs the horizon. X
denotes the position of the Sun when on the horizon and Y its position
when 18° below the horizon. We denote the angle ZPX by H, the
hour angle of the Sun at setting, and the angle XPY by &, so that
H + h is the hour angle
of the Sun at the
end of astronomical
twilight. % is then a
measure of the duration
of twilight.

Inthe triangle ZPX,
the side ZX is 90° ; the
side PZ is 90°— ¢,
where ¢ denotes the
latitude ; the side PX
is 90° — 3, where 8 is
the declination of the
Sun.

From Art. 10, for-
mula 1, we have

Fe. 51. sin 8 sin ¢ + cos §
cos ¢ cos H = 0.

In the triangle ZPY, the side ZY is 108° ; the side PY is 90° —§ ;
the side PZ is 90°— ¢. The same formula (Art. 10) gives

sin & sin ¢ -+ cos & cos ¢ cos (H + h) = cos 108°.

The first of these formulae gives H, when §, ¢ are known; the
second gives (H -+ k). The duration of twilight, and also the hour-
angle of the Sun at its beginning (in the morning) or ending (in the
evening) are thus obtained.

At any point on the equator, ¢ = 0. The first formula gives
cos H = 0, so that H = 90° or 270°. The second formula gives :—

cos & cos (H + h) = cos 108°

or cos 8 sin & = -4 cos 108°.
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The value of sin %, and therefore k, is greatest when cos & has its
smallest value, i.e. at the summer and winter solstices. Also sin % has
the same value for the two values - 8, — & of the declination. Thus,
at a place on the equator, the duration of twilight is greatest at the two
solstices and least at the equinoxes. At two times symmetrically
placed on either side of an equinox, the durations of twilight are equal.

The variations in duration of twilight on the equator are not large,
however. The duration is 1h. 19m. at the summer and winter solstices
and 1h. 12m. at the equinoxes. The effect of refraction has been
neglected ; it delays the time of sunset and sunrise and shortens the
duration of twilight by a few minutes.

The investigation of the duration of twilight for any latitude and
declination of the Sun is a little complicated. The general effect of
change of latitude can be seen by taking the case of 8= 0, when the
Sun is on the equator. H is then 90° or 270°, so that :—

cos 108° = cos ¢ cos (H + £)
= - cos ¢ sin k.
Thus % is greater, the higher the latitude. v

If the Sun, when it is 18° below the horizon is at R’ on the meridian,
the end of evening twilight will coincide with the beginning of morning
twilight. When this is the case, it is'seen from Fig. 51, that

RR 4+ R'n + nP = 90°
or &4 18° + ¢ =90°
so that ¢ = 72° — 8.

If R'n = 90° — ¢ — & < 18° or if ¢ > 72° — 8 the Sun’s depth
below the horizon never gets as great as 18° and twilight lasts all night.
But the greatest value of 8 is nearly 234°, the obliquity of the ecliptic,
and occurs at midsummer. Hence there is twilight all the night about
midsummer at any place whose latitude ¢ is greater than 72° — 23}° or
483°. This includes the whole of the British Isles.

EXAMPLES

1. What would be the effect of refraction on terrestrial objects as seen by &
fish under water ?

2. For stars near the zenith show that the refraction is approximately propor-
tional to the zenith distance, and that the number of seconds in the refraction is
equal to the number of degrees in the zenith distance. (Take coefficient of refrac-
tion = 577). X

3. From the summit of & mountain 2,400 feet above the level of the sea, it is
just possible to see the summit of another, of height 3,450 feet, at a distance of
‘143 miles. Find approximately the radius of the Earth, assuming that the effect
of refraction is to alter the distance of the visible horizon in the ratio 12 : 13.
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4. Trace the changes in the apparent declination of a star due to refraction in
the course of a day, at a place in latitude 45° N., the actual declination being 50° N.

5. Prove that if the declination of a star observed off the meridian is unaffected
by refraction, the star culminates between the pole and the zenith, and that the
azimuth of the star from the north is a maximum at the instant considered.

6. Show how the duration of twilight gives a measure of the height of the
atmosphere.

7. What is the lowest latitude in the arctic circle at which there is no twilight
at midwinter, and what is the corresponding distance from the North Pole in miles ?

EXAMINATION PAPER

1. What effect has refraction on the apparent position of star? Show that the
greater the altitude of the star the less it is displaced by refraction, and that a star
in the zenith is not displaced at all.

2. Prove (stating what optical laws are assumed) that, if the Earth and the
layers of the atmosphere be supposed flat, the amount of refraction depends solely
on the temperature and pressure at the Earth’s surface.

3. Prove the formula for refraction, # = (u — 1) tanz. Is this formula
universally applicable? Give the reason for your answer.

4. Given that the optical coefficient of refraction of air (p) = 10003, find the
astronomical coefficient of refraction (U) in seconds.

5. What is the refraction error? How may we approximately determine the
correction for refraction from observations made on the transits of circumpolar
stars ?

6. Show how the constant of refraction (on the usual assumption that the
refraction is proportional to the tangent of the zenith distance) might be determined
by observing the two meridian altitudes of a circumpolar star whose declination
is known.

7. Assuming the tangent formulae for refraction, find the latitude of a place at
which the upper and lower meridian altitudes of a circumpolar star were 30° and
60° (4/3 = 1-732), the coefficient of refraction being 577,

8. Why is the Moon seen throughout a total eclipse ?

9. It has been stated that ‘ The atmosphere by its refraction acts as a lens,
producing an apparent increase in the diameter (of the Sun and Moon) near the
horizon. When we consider that the atmosphere, as seen from the surface of the
globe, is a section of a vast lens whose radius is the semi-diameter of the Earth, it
is reasonable to assume a small increase in the size of the objects seen through it,
and a still greater increase when seen in the obliquity of the horizon.”” Why is the
above statement altogether incorrect ?

10. Find the duration of twilight at the equator at an equinox.




CHAPTER VII

GEOCENTRIC AND ANNUAL PARALLAX
1.—GEOCENTRIC PARALLAX

155. Definitions

By the Parallax of a celestial body is meant the angle between the
straight lines joining it to two different places of observation.

In Art. 14 we stated that the fixed stars are seen in the same
direction from all parts on the Earth; hence such stars have no
appreciable parallax. The Moon, Sun, and planets, on the other
hand, are at a (comparatively) much smaller distance from the Earth,
and their parallax is a measurable quantity.

To avoid the necessity of specifying the place of observation, the
direction of the Moon or any other celestial
body is always referred to the centre of the o
Earth. The direction of a line joining the
body to the Earth’s centre is called the body’s
geocentric direction. The angle between the
geocentric direction and the direction of the
body relative to any given observatory is z
called the body’s Geocentric Parallax, or more 0
shortly, its Parallaz. Thus the geocentric
parallax is the angle subtended at the body
by the radius of the Earth through the point Fia. 52.
of observation.

The Horizontal Parallaz is the geocentric parallax of a body when on
the horizon of the place of observation.

156. GCeneral Effects of Geocentric Parallax

Assuming the Earth to be spherical, let C (Fig. 52) be the Earth’s
centre, O the place of observation, and M the centre of the Moon or other
observed body. Then the angle OMC is the geocentric parallax of M.

Produce OO to Z ; then OZ is the direction of the zenith at O, and
ZOM is therefore the zenith distance of M as seen from O (corrected
of. course for refraction). Now

/Z0M — /ZCM + /OMC;

therefore the apparent zenith distance of M is increased by the amount
of the geocentric parallax. Conversely to find / ZCM we must sub-
tract the parallax OMC from the observed zenith distance ZOM.

The azimuth is unaltered by parallax, because OM, CM lie in the
same plane through OZ.

121
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157. To find the Correction for Geocentric Parallax
In Fig. 52, let

a = CO = Earth’s Radius,

d CM = Moon’s (or other body’s) geocentric distance,

2z = ZOM = observed zenith distance of M,

p = OMC = parallax of M.

Since the sides of AOMC are proportional to the sines of the opposite
angles,

sin CMO CO . snp a
sin COM ~COM’ that is sinz d

Therefore . a .
sin p = a sin z.

Let P be the horizontal parallax of M. Then, when z = 90°,
p = P, and therefore the last formula gives

sin P = & sin 90° = 2.

Hence, by substitution,

" sinp=sinP.sinz

This formula is exact. But the angles p and P are in every case
very small, and therefore their sines are very approximately equal to
their circular measures: for the Moon this assumption involves an
error of 0-15” ; for all other bodies it is insensible. Hence we have the
approximate formula

p= P .sing,
or, The parallax of a celestial body wvaries as the sine of its apparent
zenith distance.

The last formula holds good no matter what be the unit of angular
measurement. Thus, if p”, P” denote the numbers of seconds in p, P
respectively, we h