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PREFACE

N this book the authors have endeavoured to produce
a text-book which will be of use alike to the student
and to the practical surveyor. No attempt has been
made to deal with geodesy, on which subject several
excellent treatises are available, but the work is
confined to an explanation of the principal methods
of making such astronomical observations and com-
putations as will require to be made by geodetic and
topographical surveyors, prospectors, and explorers
and others interested in the application of astronomy
to surveying.

These methods can be applied without a detailed
theoretical analysis of the underlying principles in-
volved, but the authors have thought it well to include
a certain amount of such analysis for the benefit of
those who wish to understand the theoretical as well
as the practical side of the subject.

The authors are indebted to Sir Henry Lyons,
F.RS., Dr. J. Ball of the Egyptian Desert Survey,
and Dr. H. Knox-Shaw, for many helpful suggestions.

M. K. R.-O.

W.V. &
October 1928



ASTRONOMY FOR SURVEYORS

CHAPTER I
GENERAL

Plane Surveying.—In plane surveying it is assumed
that the mean surface of the earth within the area sur-
veyed is a horizontal plane, i.e. a plane normal to the
direction of gravity as indicated by a plumb line, and no
account is taken of the fact that, owing to the curvature
of the earth’s mean surface, the dimction of a plumb line
at one point on such a survey is not, in normal circum-
stances, parallel to the direction of a plumb line at another
point on the same survey.

This assumption is justified where the area of the survey
is small, and errors arising from it may be neglected.
However, it is obvious that in the survey of large areas
or in the setting out of inter-state boundaries or long
lengths of railway and other lines the curvature of the
earth must be taken into account and its surface can no
longer be considered as a horizontal plane.

Geodetic Surveying.—Surveying which takes the earth’s
curvature into account is known as Geodetic surveying.
In general, the area over which the earth’s surface may
be considered as a plane for survey work may be taken
as about 20 square miles; for an area of 20 to 20,000
square miles it may be considered as part of a sphere,
and as part of a spheroid for an area of over 20,000
Ssquare miles,

1




2 ASTRONOMY FOR SURVEYORS

Geodetic surveying necessitates the determination of
not only the relative positions of a number of points on
the carth’s surface but also their absolute position, re-
ferred to certain definite axes, and for this latter purpose
recourse must be had to astronomical observations.

It will also be apparent that in plane surveying it is
sometimes necessary to know the absolute position on
the earth’s surface of one or more stations in the survey,
as, for example, to fix the location of a proposed line of
railway in a country where pegs would be quickly obliter-
ated by tropical growth or other circumstances.

Field Astronomy.—Observations for these and similar
purposes, and the interpretation of their results, come
under the heading of Field Astronomy and deal infer
alia with the determination of true meridian, latitude,
longitude, and time. The principles involved are the
same as those in daily use in aerial and marine
navigation, but, the circumstances being different, the
methods are naturally somewhat different and different
instruments are used.

Earth’s Relation to other Heavenly Bodies.—In order
to understand fully the methods used in Field Astronomy
it is necessary to have a clear conception of the relation
in which the earth stands, as regards position and motion,

to the other heavenly bodies, viz. the sun, moon, stars,

and planets, as observations on these bodies supply the
data for computations by which the required results are
obtained.

The apparent movements of these bodies having been
observed from the remotest times, the conception of what
may be called the mechanism of the system has been
deduced and so firmly established that there is no doubt
as to its correctness, and the results of every observation
are consistent with it.

The solar system consists of the sun with a number of
planets, of which the earth is one, moving around it,
some of which planets have attendant satellites. The
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distances separating the bodies forming the solar system
though great, are as nothing compared with thj:a dis-
tances which separate the solar system from the stars
The latter, therefore, form a background on which the
sun, moon, and planets appear to move in consequence
of their own movement and that of the earth from which
we view them.

As before mentioned, the apparent movements of th

- 4 e
bodies forming the solar system have been studied from
the ea.rh-est times, and from the results of the mass of
observations Kepler (b. 1571) deduced the following laws
go;';m;ng their movements.

Lepler’s Laws.—1. Each planet moves in an ellipti
orbit of its own round the sun, the latter being ixllmtcli
planeTcg thri‘;ajmpse and in one focus thereof,

2. The us vector, or line joining the tre
planet to that of the sun, describes equal arec:snin egiaai
times. Thus (Fig. 1) if the planet moves in a given time
from E, to E,, and from E; to E, in the same length of
tlme.'lt%e area A, will be equal to the area A,

3. The square of the time that each planet takes t
complete its orbit varies as the cube s
maFj‘or of that orbit, T e

rom these laws Newton (b. 1642) deduced the 1
gravitation, namely, that each planet is acted on a]:; O:
:ﬂ?f of ag.:?,cthn ::s\;lards the sun, the magnitude of

force being inversely proportional to th

th; dlstan]t:e of the planet from tplfe sun. e
rom the second law it will be seen that the angular
;iesloc:ty of a planet varies inversely as the square of its
1:htal.nce from the sun. Let the planet, distant R from
fe sun, move from E; to E, (Fig. 1) in a small interval
of time df with linear velocity » and angular velocity
;_rg;ndES;t thEe:n since d¢ is small the pathof the planet
S v:it. o Eq may be considered as straight and of

The area described by the radius vector in the time
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dt is the area of the triangle E;SE,, which is 4vd¢R sin 4,
where @ is the angle between the radius vector and the
tangent to the curve at E;; but the component of the
velocity of the planet at right angles to the radius vector
is v sin ¢, and this is equal to R x &.

Therefore the area of the triangle =3R%d!; but for
any given interval of time df the area of the triangle
described by the radius vector is, by Kepler’s second law,
constant, therefore R%» is constant, or, in other words,
w varies inversely as R2.

The foregoing is a statement, necessarily brief, of the
laws which govern the movements of the planets in their
orbits around the sun. The same laws apply, mutatis
mutandis, to the movements of a satellite, such as the
moon, around its primary, the earth.

The Earth’s Orbit.—As in the case of the other planets,
the earth’s orbit around the sun is an ellipse. The plane
of this ellipse is called the ecliptic; the eccentricity, e,
of the ellipse is small, as is therefore also its ellipticity, E.
since, as shown below, the ellipticity is equal to one-half
the square of the eccentricity.

:
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In the ellipse (Fig. 1), SB =0A
- 0S
and the eccentricity e =0A

- b b
S (=2 (1+)
where OA =a, and OB =5,
or e2 =(I—£)(I +f-:); but the ellipticity E =a%b ==I—-2;
therefore &* =E(I +g).

If the eccentricity be decreased, b approaches more
nearly in value to @, and in the limit ¢ =2E.
The eccentricity of the earth’s orbit is 0-01679, or about

I g oraca I
&’ and the ellipticity therefore about 7200°

0S
N o e oxees TTOR
Tn the ellipse (Fig. 1), 53 = G408 ~—08 ~1=¢
I_.—
OA

The ratio of the greatest and least distances of the

’ I+0'0I
earth from the sun is therefore ﬁ or 10341 :1.

It will be seen (Fig. 2) that the earth is nearest to the
sun at A ; it is in this position on 1 January and is then
said to be in perihelion, the sun being in perigee. The
earth is farthest from the sun when at C on 2 July, and is
said to be then in aphelion and the sun in apogee.

The line joining A to C is called the apse line and the
points themselves, situated at the ends of the major axis,
the apses of the orbit.

The movement of the earth in its orbit is accompanied
by a rotation about its own axis, the earth making approx-
Imately 365} turns in the period of describing the orbit,
1.e. 1n one year. The points at which the axis of rotation
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meets the surface of the earth are termed the ferresirial
poles, North and South respectively.

The terrestrial equator is the plane at right angles to the
axis of rotation and passing through the centre of the earth.

1
/

F1G. 2.

The ferrestrial meridian of any place on the earth is
the plane passing through that place and containing the
earth’s axis. The angle between the terrestrial meridians

of two places is called the difference of longitude between
the places.

.
~
\_r T =
Ae .
= L!Afhd:bn
1 Wuly2)

GENERAL 7

Obliquity of the Ecliptic.—The plane of the ecliptic is
not coincident with that of the equator; the angle between
the two planes is called the obliguity of the ecliptic, and
has a value of about 23° 27/, which is subject to a small
and slow periodic change. The axis of the earth is ob-
viously inclined to the plane of the ecliptic at an angle
of 9o° minus the obliquity, i.e. at about 66° 33’, and remains
practically parallel to itself during the period of describing
the orbit.

On or about 22 June and 22 December, ie. about nine
days before the earth in its orbit reaches aphelion and
perihelion respectively, the plane containing the axis of
the earth and the radius vector, i.e. the line joining the
earth and sun, is perpendicular to the plane of the ecliptic
(Fig. 2), the radius vector then making an angle with
the plane of the equator equal to the obliquity of the
ecliptic. The instants at which this is the case are known
as the summer solstice and winter solstice respectively.

On or about 22 March and 24 September the axis of
the earth is at right angles to the radius vector; the sun
is therefore in the plane of the earth’s equator and, as
will be seen, day and night are then of practically equal
duration all over the world. The corresponding positions
of the earth and sun are therefore known as the equinoxes,
vernal and autumnal respectively.

The line joining the equinoxes is obviously at right
angles to the line of solstices.

Celestial Sphere.—The movement of the earth around
the sun and the rotation of the former on its axis having
been considered briefly, the conception of the celestial
sphere may now be introduced.

It may be stated here that any plane containing the
centre of a sphere cuts the surface of the sphere in what
is called a great circle, and any other plane, i.e. not con-
taining the centre of the sphere, cuts the surface in what
is called a small circle. In the case of the celestial sphere
any great circle passing through the zenith is called a
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vertical circle, the zenith being, as explained later, the point
vertically above the observer.

It is to be noted that the earth’s orbit, large as it is, is
but a point compared with the distances separating the
solar system from the stars, since the mean distance of
the sun from the earth is only about 1/125000 that of
the nearest star, so that straight lines from a star to all
points on the earth, at all positions in its orbit, may for
all practical purposes be considered parallel.

The angular positions of the stars. and not their linear
distances from the earth, are observed, and hence it is
convenient to consider them as fixed upon the inner
surface of an imaginary sphere, called the celestial sphere,
at the centre of which the observer is stationed. It is
obvious that as a result of the rotation of the earth the
observer's view of the celestial sphere appears exactly
the same as if the earth were stationary and the celestial
sphere rotating around the same axis, with the same
angular velocity, but in the opposite direction, ie. from
East to West. It is clear that the points called the North
and South celesiial poles, where the axis of the earth if
produced would meet the celestial sphere, would appear
stationary and the stars would preserve their angular
distances from these points and from each other constant,
appearing to travel along concentric paths or diurnal
circles with uniform angular velocity.

Rotation of the Earth on its Axis.—The earth may be
regarded as a nearly spherical body rotating on an axis,
the rotation being capable of experimental proof apart
from astronomical observations, and the axis of rotation
remaining nearly parallel to itself during the earth’s
revolution round the sun.

It must here be observed that the figure of the earth
is not a true sphere but very néarly an oblate spheroid.
If it were a true sphere, the resultant attraction of the
sun and moon would pass through the centre of the earth
and could have no effect on the direction of the earth’s
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axis, and the position of the equinoxes would remain
fixed. The effect of the equatorial protuberance is that
there is a disturbing couple which would tend to put the
axis perpendicular to the ecliptic if the earth were station-
ary, but as the earth is in rotation gyrostatic action con-
sequently causes the axis to describe a cone, the axis of
which is perpendicular to the plane of the orbit. If the
earth were hollow its axis would describe this cone in a

FiG. 3.

comparatively short period, but since it is loaded with a
heavy interior the rotation in the cone is slow and takes
about 25,800 years.

In Fig. 3 is shown the ecliptic, of which # is the pole,
and in consequence of the conical movement of the earth’s
axis the celestial pole P is not fixed relative to the stars,
but describes a small circie PP'P on the celestial sphere
in the period of about 25,800 years above mentioned.
The plane QR of the equator is always perpendicular to
OP. The intersection O== of the planes of the equator
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and ecliptic therefore also rotates in the same direction
about the point O, causing the point of intersection ¥ to
move towards the left and the other point of intersection
== to move towards the right, as shown by the arrows
adjacent to these points. This slowmovementof these points
of intersection is known as precession. The apparent move-
ment of the sun in the ecliptic being in the direction of the
arrow at S, which may be called the forward direction, the
point 7V, known as the First Point of Aries, has a retrograde
movement ; consequently the sun S arrives at P slightly
before it, the sun. has completed an entire circuit of its
orbit relative to the stars; the equinox thus precedes its
position in each revolution relative to its former position.
When the sun in its orbital movement reaches the point ¥
it is in the plane of the equator and crossing it from South
to North, ie. the point 9 is the vernal equinox, about
2I March; and when at the point ==, the First Point of
Libra, the sun is again crossing the plane of the equator,
now from North to South, i.e. the point = is the autumnal
equinox, about 21 September ; and the line = is the line
of equinoxes.

The point ¥ is highly important, as it is used as a
reference point for cataloguing the positions of stars in the
system in general use.

The phenomena arising from the rotation of the earth

about its axis may now be considered.

Let Fig. 4 represent the earth with an observer situated
at A. The observer has a movement of translation with
the earth in its orbit round the sun, and also a movement
of rotation about the axis PP’. The former movement,
owing to the dimensions of the orbit being small com-
pared with the distance to the nearest star, has little
effect on the appearance presented by the celestial sphere,
but the daily rotation about the axis PP’ causes the
celestial sphere to appear to have a movement of rotation
in the opposite direction about the axis PP’ produced to
meet the celestial sphere at the celestial poles. There

GENERAL 11
fore the points where PP’ produced cut the celestial

here appear to be fixed points.
spH a hr?é)e Ap of infinite length be assumed drawn through

b

™=
-

i T g e

Fi1G. 4.

A parallel to PP’ it will cut the celestial sphere in the
same point as the latter produced, since the sphere is of
infinite radius, and to the observer at A the celesha.l
sphere will appear to rotate about the axis Ap; likewise,
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to an observer at B the celestial sphere will appear to
rotate about Bp, p being one point for all possible positions
of the observer at any time of the day or year, although
he cannot see the whole celestial sphere at any one time,
since the solid earth below him hides one half. For
example, the view of an observer at B is bounded by his
horizon, which is a tangent at B to the sphere.

Altitude of the Celestial Pole.—Obviously only one of
the celestial poles is visible to the observer at B, unless
he is on the equator, and it will be at an angle of elevation
geabove his horizon, i.e. its altitude will be ¢ and it will

directly above the north point of his horizon for the
northern hemisphere. Twelve hours later the observer
will have been carried to B’ by the rotation of the earth,
and the celestial pole will still be at the same altitude e,
and similarly for any intermediate time, i.e. the altitude
of the pole will remain fixed.

Celestial Equator.—Fig. 5 represents the appearance
presented by the celestial sphere to the observer at O,

the celestial pole P being elevated at an angle PON above -

his horizon.

The celestial equator QR is the great circle, perpendicular
to PP’, in which the earth’s equatorial plane, when pro-
duced, cuts the celestial sphere. The line EW is the
intersection of the plane of the equator with that of the
horizon.

Zenith.—The point Z on the celestial sphere vertically
above the observer is the zenith, OZ being perpendicular
to the horizon plane NESW. OZ is the direction of a
plumb line at O. ZS, is the zenith distance of the star S

Meridian Plane.—The plane containing ON, OP, and
OZ is a vertical plane and is called the meridian plane,
i.e. the meridian plane is a vertical plane passing through
the pole and the zenith, and therefore also Ppassing through
the North and South points of the horizon.

Since the meridian plane contains both the lines OP
and OZ, it is perpendicular to each of the planes QERW

GENERAL 18

i i tor and

d NESW, i.e. to the plane of the celestial equator A

i: the plane of the horizon, and therefore to t_he:r 1{1“}&{

section EW. From this it follows that _the h_ne E £ ‘;‘sr
at right angles to the line NS. The vertical circle E

is known as the prime vertical. s
o The line NOS in which the meridian plane cuts the

MZ

Fi1G. §.

; ; Bt : e
lane of the horizon is ca]_Lled the meridian line, an
fhe line of true or geographical North and South.

iurnal Circles.—The celestial sphere then appears to
rot?t’ie in a period of 24 hours about the axis POP’, and
each star describes a circle having P as its centre. Any
star not actually on the celestial equator describes a small
circle of the sphere, and the paths of all stars are small
parallel circles of which P is the pole; except that those
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on the celestial equator have a path which is a great
circle,

The circle described by a star such as S, in the neigh-
bourhood of the pole P is entirely above the observer's
horizon NESW, and the star never sets, but would
always be visible to him if atmospheric conditions were
favourable and its light were not obscured by that of
the sun.

The circle described by a star such as S, lies partly
above and partly below the horizon, and the star rises
and sets daily, rising at @ in the North-East and setting
at b in the North-West, being above the horizon for the
greater part of the 24 hours,

A star situated exactly in the plane of the equator rises
in a due easterly direction at E and sets in a due westerly
direction at W, being above the horizon for 12 hours.

A star such as S, south of the equator is obviously
above the horizon for a few hours only, its path being
for the greater part below the horizon.

A star such as S, has its path entirely below the horizon
and is never visible to an observer whose horizon is NESW.

Culmination or Transit.—If the path of a visible star,
such as Sy, for example, be followed it will be seen that
when it crosses the meridian NPZS, as defined above, at
M, it reaches its greatest altitude above the horizon.
Crossing the meridian is known as culminatiom, transit,
or meridian passage.

Stars in the neighbourhood of the pole, the paths of
which lie entirely above the horizon, evidently cross the
meridian above the horizon twice in the 24 hours, once
above the pole P and once below it. The term culmina-
tion is limited to the upper crossing of the meridian or
upper transit, e.g. the upper transit of S, is at , the lower
transit at o. _

In the figure, S, represents the position of a star at any
instant in its daily path. The latter is described with
uniform velocity, as the earth rotates with uniform angular
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ity, and the ition of the star with_rgtere_nce to
:liocliosttizon and “ﬁgﬁ reference to the meridian is con-
tinually changing, in h)?a.t:t su(l:th change is apparent to a

observer in an hour or two. 3

cas;li]imde and Azimuth.—The angular elevation of the
star above the horizon, viz. the vertical angle S,0H
(Fig. 5) or the arc S,H of the vertical circle ZS,H, is called
the altitude of the star; the horizontal angle PZS, or
the arc NH, is called the azimuth of the star, })emg the .
angle between the meridian plane and the vertical plane
containing the star. Both the altitude and the azimuth
refer to a particular instant, since their values change
as the star moves in its diurnal circle. The maximum
altitude is the altitude at transit, and is known as the
meridian altstude. The instrument in general use in field
astronomy is the theodolite, which is ac_lapted for the
measurement of these vertical and horizontal angles.
Azimuth is always measured in the clockwise direction,
and usually from the elevated pole.




CHAPTER II
TIME

Hour Angle.—As the earth rotates with uniform
angular velocity, and as the stars maintain their positicns
relative to one another over long periods with only minute
changes, the interval between successive transits of any
star would be the same as for any other star, if the earth’s
axis kept parallel to itself, ie. if the position of the pole
were constant.

The diurnal movement of any selected star might clearly
be used for the measurement of time, e.g. the time of the
star’s upper transit over the meridian might be called
oh om os and the interval to the next transit be divided
into 24 hours. A clock set to read oh om os at one transit
and baving 24 equal hour spaces on its dial could then
be so rated as to read oh om os again at the next upper
transit. The time at any instant between the transits
would be measured by what is called the howr angle of
the star, which may be defined as follows :

Let S, (Fig. 6) represent the position of a star a short
time, say an hour or two, after it has crossed the meridian.
The great circle passing through S, and containing the
axis OP rotates with uniform velocity about the axis
OP, and at the instant of the star’s transit this great circle
coincides with the meridian PZS, and the time according
to the notation indicated above would be oh om os.

When the star is at S; the spherical angle ZPS, is its
hour angle at that instant, and obviously bears the same
ratio to 360° as the time elapsed since its transit bears
to 24 hours of the kind shown by the clock; in fact, the

16
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clock can be regarded as having an hour hand synchronizing
with the arc PS, and showing oh om o0s when the star is
on the meridian, and supplemented by a minute and a
second hand to define the exact position of the hour hand
at any instant.

For the sake of uniformity, the hour angle is always

Fi1G. 6.

reckoned westwards from the meridian, but for the pur-
poses of computation it is sometimes convenient to state
it the shortest way from the meridian, provided that it is
expressed so that there can be no ambiguity.

Sidereal Day.—A day of the length described above
would be very nearly what is called a sidereal day ; there
is, however, a small difference, due to the fact already

2
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mentioned that the direction of the axis of the earth,
owing to precession, does not remain /absolutely un-

The variation in the direction of the earth’s axis intro-
duces a corresponding slight deviation from the other-
wise strictly circular path of a star, and consequently
an inequality in the intervals between successive transits
of a star and in the length of the day so measured ; the
extent of such deviation would depend on the position
of the selected star on the celestial sphere. For the
measurement of a day of absolutely uniform length it
becomes necessary to select, in place of the transits of
any star, the transits of a point so situated on the celestial
sphere that the interval of time between successive transits
is not affected by the change in the direction of the earth’s
axis, small though such change may be. It may now be
stated that the point selected to define by its transits
the sidereal day is one of the two points of intersection
of the equator and ecliptic, viz. the First Point of Aries,
P, of Fig. 3, which point, owing to the precessional move-
ment of the pole P, moves slowly along the ecliptic with
a motion corresponding to that of the pole P in the small
circle PP’P. The intervals between successive transits
of this point are so nearly equal that they may for all
practical purposes be treated as being exactly so. The
selected point, 9, therefore makes a complete circuit of
the ecliptic in the same period, about 25,800 years, as
the pole P takes to describe its path (Fig. 3), which, being
due to the conical movement of the earth’s axis, is also
circular.

Sun’s Apparent Diameter.—The earth’s orbit round
the sun has already been stated to be an ellipse with the
sun in one focus. The sun being in the plane of the earth’s
orbit, the sun’s centre as seen from the earth appears in
consequence to describe a great circle on the celestial
sphere, and as the distance from the earth to the sun

varies, the sun’s apparent angular diameter likewise varies, \
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being greatest where the distance is least, and vice versa.
The apparent or angular semi-diameter is given for each
day of the year in the Nautical Almanac, and the method
of dealing with it in observations on the sun is explained
on page 84 of this book.

The Nautical Almanac, published by the Admiralty
for three years in advance, contains, in common with
similar foreign publications, particulars of the varying
positions of celestial bodies and other data required for
the reduction of observations, and is in constant use for
field astronomy and all astronomical work. An abridged
edition, which will be found sufficient in many cases for
field astronomy, is also published. Further details of the
information given in the Nautical Almanac will be found in
Appendix II.

Whitaker's Abmanack gives, in necessarily restricted form,
some useful astronomical information.

Declination and Right Ascension.—Referring to Fig. 7,
which shows the apparent diurnal path of a star S,, let S,
represent the position of a star at an instant. Join ZS,
by a great circle and produce it to cut the horizon at
A. The star’s altitude above the horizon is measured by
the arc AS,, which is the elevation which must be given
to the telescope of the theodolite in order to bring the
star to the Cross wires. The star’s aliitude is, however, in
general changing continuously. The angle between the
meridian plane ZPN and the vertical circle ZS,A has
already been defined as the star’s azimuth at the instant,
which is also in general changing continuously as the
star describes its diurnal circle. The co-ordinates altitude )
and azimuth therefore depend on time and on the position |
of the observing station -

In order that the position of a body on the celestial
sphere may be catalogued, it is necessary to select planes
of reference which are independent of the location of the

observing station, and as far as possible independent also
of time.
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The planes of reference selected are (1) the equator and
(2) the plane passing through the poles and ‘through the

.First Point of Aries, 7.

The angular distance from the equator is called the
declination, which may be either North or South. PS;M

I
Fic. 7.

(Fig. 7) being a great circle, the arc MS,, expressed in an-
gular measure, is the declination of S,. The great circle
PS,M is called the star’s declination circle or hour circle,
and it accompanies the star during its diurnal rotation.
The arc PS,, also expressed in angular measure, is the
dolar distance, and is the complement of the declination:
The angular distance of M from the plane PPP’, i.e. the
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arc M, is known as the right ascension (R.A.) of the star,
S,, or of any other star on the great circle passing through
P and M.

The R.A. is always measured eastwards from 9, and is
always expressed, not in degrees, minutes, and seconds
of arc, but in hours, minutes, and seconds of time, 360°
corresponding to 24 hours, since a complete revolution
of the celestial sphere with reference to the earth takes
24 hours.

The angular distances, such as M, measuring the right
ascension, are accordingly converted into hours, minutes,
and seconds at the rate of 15° per hour, and catalogued in
that form as right ascensions.

It is to be noted that owing to precession the pole P
is not an absolutely fixed point on the celestial sphere,
but is moving slowly in a small circle around #. Con-
sequently the plane of the equator, and with it 7, is also
moving with respect to the stars, i.e. both the declination
and the R.A. are affected by a gradual slow change. The
co-ordinates of stars are given in the Nautical Almanac
for every tenth day—in some cases for every day.

Sidereal Time.—The approximate sidereal day has
already been referred to. A sidereal day is strictly defined
as the interval between successive transits of P, and a
clock showing sidereal time should mark oh om os when
P is on the meridian. Stars succeed one another across
the meridian in the order of their right ascensions, and
as the latter are measured from P the declination circle
of P synchronizes with the hour hand of the sidereal clock,
and the sidereal time when any star is on the meridian
is the same as the star’s R.A.

The sidereal time at any instant is the hour angle of ¥
reckoned westward: from the meridian.

Fig. 8 represents the earth in plan with an observer at
any point « in the plane APA’ and a star S in his meridian.
The same star as seen by an observer at b in the plane
BPB’ would not be in his meridian, but would be at an
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hour angle of 4, and the angle «Pb, the difference in
longitude between the points @ and b, is also equal to 4.

The sidereal times at @ and b would differ by L0 987°cS)

I5
hours.

If R.A. be the right ascension of the star, the L.S.T.
(local sidereal time) at a for the instant represented, viz.
when the star is on the meridian, is also R.A.

And the LS.T. at 5=R.A. +f_;

or L.S.T. =R.A. +hour angle.

The observer will in all cases be provided with a clock,
from which he knows the approximate local time at any
instant, but the clock will in practically all cases have an
error, i.e. it will be either fast or slow, and.in order to
determine its error, the L.S.T. can be ascertained by an
observation for the hour angle of a suitable star.

The hour angle cannot be directly observed with a
theodolite, but the altitude of the star can be observed
and the clock read at the same instant.

The declination being known, the hour angle can be
computed by the methods of spherical trigonometry, and
this added to the R.A. gives the L.S.T,
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If a sidereal clock is used, the difference between the
L.S.T. thus ascertained and the clock reading is the
clock error; if a mean time clock is used, its readings
must be corrected to reduce them to sidereal time by
methods which will be explained later.

In the above remarks the meridian is to be regarded
as a plane rotating with uniform angular velocity about
the axis PP’

Using the ordinary conception of longitude, it is seen
that if the difference of longitude expressed in degrees,
minutes, and seconds between two places be converted
into hours, minutes, and seconds at the rate of one hour
to 15° the result expresses the difference between the
local sidereal times at the two places.

Apparent or Solar Time.—The sun as seen from the
earth appears to describe a great circle of the heavens in
the course of the year, viz. the ecliptic, but as the actual
angular velocity of the earth about the sun is not uniform,
the apparent angular velocity of the sun is also not
uniform. In addition, the ecliptic is inclined to the
equator.

The effect of these two circumstances on the solar
day, i.e. the day as measured by the sun, can be readily
seen.

In Fig. 9 the outer circle represents the earth as seen
from a point in the direction of the axis produced, P, the
north pole, being in the centre of the circle.

The sun, if in the direction of the dotted line 1, ie.
if anywhere in the plane containing the axis of the earth
and the dotted line 1, would be on the meridian of any
point such as A in that plane. When the earth has
rotated 360° relatively to the celestial sphere, the same
part of the celestial sphere will again be on the meridian
of A ; but the sun has in the meantime moved to a position
indicated by the dotted line 2, and the earth has still to
rotate through a small angle before the meridian of A
will overtake the sun, ie. before it will again be apparent
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noon at A, apparent noon being the instant at which the
centre of the true sun is on the meridian. The angular
distance between the lines 1 and 2 represents movement
in right ascension ; any change in the declination of the
sun would make no difference to its meridian passage.
Now since the earth is rotating with uniform angular
velocity, if the sun were moving with uniform angular
velocity in right ascension the intervals between its suc-
cessive meridian passages for any one place would always

Fi1G. 9.

I

be equal, and the sun could be used as a time measurer
with perfect accuracy and great simplicity. However,
this is not, in fact, the case. The two circumstances
just mentioned, viz. the fact, firstly, that the apparent
movement of the sun on the celestial sphere is not per-
formed with uniform angular velocity, and secondly that,
even if it were so performed, the fact that the ecliptic is
inclined to the equator, would cause the movement of the
sun in right ascension to be variable.

Accordingly, the intervals between successive meridian
passages of the sun are not equal, and if the sun is to be
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used as an exact measurer of time for civil purposes,
allowance has to be made for this.

Mean Time.—The sun completes its apparent path in
the ecliptic relative to the First Point of Aries in a definite
interval of time, called a #ropical year, which is found to
be 366-24222 sidereal days, i.e. the earth has rotated
366-24222 times relative to 9 in a tropical year, or the
point T on the celestial sphere appears to have made
36624222 revolutions during one tropical year. Now as
the sun has, during the same period, described its orbit
once in the opposite direction, the earth has rotated
366-24222—1, i.e. 36524222 times relative to the sum,
and the tropical year accordingly contains 365-24222 mean
solar days, which is therefore the period of the annual
return of the seasons.

The actual days as measured by successive meridian
passages of the true sun are not equal in length, owing
to its unequal motion in right ascension. Accordingly,
an imaginary body called the mean sum is introduced,
having a uniform motion in R.A. equal to the mean motion
of the true sun in R.A.

In order that the mean sun may never at any time of
the year differ greatly in R.A. from the true sun, its relation
to the true sun is fixed as follows :

When the true sun is in perigee, a body called the
dynamical mean sun is assumed to be started off along the
ecliptic with a uniform angular velocity equal to the
mean angular velocity of the true sun. The dynamical
mean sun would, owing to the orbit being symmetrical
about the major axis, again coincide with the true sun
at apogee. However, the time intervals between suc-
cessive meridian passages of the dynamical mean sun
would not be equal, in spite of its uniform angular velocity,
on account of the inclination of its orbit to the equator.
At the instant when the dynamical mean sun passes
through the First Point of Aries, a second imaginary body,
called the astronomical mean sun, is assumed to be started
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off from 7 along the celestial equator with the same angular
velocity as the dynamical mean sun. The motion of the
astronomical mean sun in R.A. is accordingly uniform,
and the intervals between successive meridian passages
thereof are equal.

The astronomical mean sun thus defined is generally
referred to simply as the mean sun.

Mean time is measured by the hour angle of the mean
sun, the instant when the mean sun crosses the meridian
above the horizon of any station being local mean
noon for that station or local mean time (L.M.T.)
1zh oom 00s.

The instant when the centre of the true sun is on the
meridian of a station is local apparent noon (L.A.N.) of
that station, and the hour angle of the true sun, measured
westwards from the meridian, gives local apparent time
(L.A.T.), it being observed that when the hour angle is
zero the L.A.T. is 12h oom oos.

At any instant the local mean time is the hour angle
of the mean sun, measured westwards from the meridian,
+12 hours, the instant when the mean sun is on the
meridian being mean noon, or 12 hours L.M.T.

Equation of Time.—In general the hour angles of the
true sun and of the mean sun will differ, i.e. the L.M.T.
and L.A.T. will not agree. The difference between them,
expressed in minutes and seconds of time, is called the
equation of time. The equation of time is to be regarded
as a correction to be applied to L.A.T. to derive the
LMT. at any instant, or by applying it with the
opposite sign to L.M.T. the L.A.T. is obtained. The
equation of time has to be applied in all cases of observa-
tions on the sun. Being the difference between the
hour angles of two bodies, each of which has a definite
position on the celestial sphere, the equation of time is
consequently the same at any given instant for all parts
of the earth. :

Longitude.—The difference of longitude between two
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is the angular distance between their terrestrial
pml:f'iegialr?s. The gr:‘llleridian of Greenwich is taken as the
zero of longitudes, longitudes being expressed either as
hours, minutes, and seconds of time, or dggrees, minutes,
and seconds of arc, east or west of Greenwich.

From the foregoing it will be seen that if two places
differ in longitude by say 30° i.e. if their terrestrial meri-
dians are 30° apart, the difference between their local
times, whether sidereal or mean, is 2 hou_rs: for the reason
that the time interval between the meridian passages of
the First Point of Aries at the two places is two sidereal
hours, and the time interval between the meridian passages
of the mean sun is two mean time hours. p

Standard Meridian Time.—To avoid the confusion
which would result from the use of the local mean times
of a large number of places, the world has been divided
into a number of time zones, each of which uses a mean
time differing from that of Greenwich, or G.M.T., by an
integral number of half-hours, according to the longitude
of the place or country concerned. For instance, G.M_.T.
is used in the British Isles, France, Belgium, Spain ;
Germany and various other countries use the time of the
meridian 15° E., ie. one hour ahead of Greenwich, and
S0 on. e

Each country thus uses for ordinary civil purposes what
is called standard meridian time, being the LM.T. of the
most convenient meridian differing from that of Greenwich
by a multiple of half an hour. The sta{ldard time adopted
in various countries is given in Appendix IV; a somewhat
shorter list can be found in the N.4.

Examples.—A place is situated in longitude 40° E. of Greenwich.
Find tlfca G.M.'?. (Greenwich mean time) when the L.M.T. is
h 3om oos p.M. ) e
/ IE should be noted that in all cases the day begins at midnight,
noon being 12h oom 00s, consequently the given time is L. i 1
g into ti the rate of

Now 40° of longitude when converted into time at the rate o
15° per hour corresponds to zh 4om oos, which is the difference




28 ASTRONOMY FOR SURVEYORS

between the L.M.T. and the G.M.T. at any instant. The place
being east of Greenwich, the L.M.T. is ahead of the G.M.T., since
the earth turns from west to east; therefore to obtain the G.M.T, the
difference of longitude must be subtracted from the L.M.T.

The conversion, therefore, is as follows :

h m s
LMT.=15 30 oo
long. E.= 2 40 o0

GMT.=12 50 00

The following example involves both the equation of time and
the longitude.

Find the L.A.T. correa?onding to L.M.T., 4 March 1928,
8h sm A.M., in longitude 60° 45° W.

hL . A
L.M.T., 4 March= 8 o5 oo
long. W.= 4 03 oo

G.M.T.=12 08 oo

Equation of time (E)at G.M.N., from N.4.,=11m 525-05 (decreasing)
Variation in 1 hour=0-5354s

Therefore E at 12h 08moos=11m 525-05—(0-554><6%)
=I1im 525 to be added to a.pfarent

time or subtracted from
mean time.

TR T
But GM.T.=12 08 o0
E= 1. 3

GA.T.=11 56 o8
long. W.= 4 03 oo

LAT.= 7 53 o8

Conversion of Time.—The fundamental ideas of time—
sidereal, apparent solar, and mean—having been discussed,
it becomes necessary to show how the time at any instant,
expressed in one of the three systems named, can be
converted into either of the other systems.

The necessity for such conversion arises from the fact
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that star observations depend on sidereal time, and sun
observations depend on apparent time, whereq.s the
chronometer in use may be either a mean time or a sidereal
time chronometer. i y

The conversion of sidereal to mean time and vice versa

ill be dealt with first. '
m}lt has already been stated (p. 25) that the tropical
year contains 366-24222 sidereal days, and therefore
365-24222 mean solar days. ; :

The actual interval of time is the same, viz. a tropical
year, in both systems of time measurement, but the
numbers expressing it differ in the two systems, the ratio
of the numbers being 366-24222 : 365-24222.

This ratio is therefore the ratio between the num}:ers
expressing any time interval in sidereal or mean time.

Let M be the expression of a time interval in mean
time. :
Let S be the expression of the same time interval in
sidereal time.
M _365-24222 _
Then 5 =356.24222 099726957
S _366-24222 _
and M 36524222 1:00273791
The mean time clock thus loses on the sidereal clock,
the rate of the sidereal clock relative to the mean time
clock being 100273791 :1. This rate when reduced to
minutes and seconds shows that in 1 hour of mean
time the sidereal clock registers Th oom 0gs-8565, i.e. the
sidereal clock gains 9-8565 sidereal seconds on the mean
time clock in 1 hour of mean time. f
Correspondingly, in 1 hour as registered by the sidereal
clock the mean time clock will register 9-8296 mean time
seconds less than 1 hour. /
The quantity 9-8565 seconds represents what is called
the acceleration of the sidereal clock per M.T. hour, and
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9-8296 seconds represents what is called the refardation
of the M.T. clock per S.T. hour.

The N.A. gives for each day of the year the Greenwich
sidereal time at Greenwich mean noon (S.7.G.M.N.). This
figure thus forms the starting-point for conversion of
mean time to sidereal time at that or any other place for
which S.T. is required.

The first step in all time conversions is to apply the
difierence of longitude to the given local time and thus
obtain the corresponding Greenwich time of the given
kind. The conversion of this corresponding Greenwich
time into the required kind of time for the longitude of
Greenwich is then made, and finally the difference of
longitude is applied to obtain the required local time.
The latitude of the station has no effect on the local time,
which depends on the longitude only.

Example.—A station is situated in lo:
latitude 25° N. Find the L.S.T. when
on 30 December 1927.

B,
24 40! 0= 1 38

s
42
LMT.=16 30 00
long. E.= 1 38 42

itude 24° 40’ 30* E. and
e L.M.T. is 4h jom p.M.

GMT.=14 s1 18
M.T. interval from G.M.N.= 2 51 18

From N.A4., S.T.G.M.N.=18 31 4340
acceleration in 2h = 19:713
" wo 5Im= 8-378
" ” 185 = 0-049
G.S.T.=21 23 320954

long. EE=1 38 42
LS.T.=23 02 1184

Example.—At a station in longitude 1s5m 455 W. the L.M.T.
is oh 35m 40s A.M. on 19 October 1928, Find the L.S.T. at the
instant.

The difference of longitude being here expressed in time, it can
be applied directly.
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h.
LMT.=9
long. W.=

GMT.= 9

M.T. interval from G.M.N., 18 Oct.=21
acceleration for 21th =

5im =

258 =

(1 L

S.T. interval from G.M.N., 18 Oct.=21
From N.4., S.T.G.M.N,, 18 Oct.=13

G.5.T.=35

The clock reads only to 24h, so
24h is subtracted from the foregoing

G.S5.T. to give
GS.T.=11
long. W.=
LS. T. =11

Instead of working from the

M.T. interval to G.M.N., 19 Oct.= 2
acceleration for 2zh =
8m =

358 =

" ”

" ”

S.T. interval to G.M.N., 19 Oct.= 2
From N.4., S.T.G.M.N,, 19 Oct.=13

GS.T.=11
long. W.=
LS. T.=11

h.

LMT.= 9
long. W.=

GM.T.= 9

55
46

41

15

26

m.
35
15
51

08

o8
50

41
15

26

81

25
26-086

8-378
0-068

00432
5414

54-572

54°57
45

0957

evious G.M.N., as has been done
above, the G.S.T. at the following G.M.N. might have been used,
as the time interval to that instant is shorter, thus:

s.
40
45

25

35

19-713
1-314
0096

56-123
50690

54-567
45

09-57 as before.
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Example.—At a station in long‘:ude 1sm 458 W., the L.S.T.
is gh 35m 4os,Tthe date being 19 October 1928. Find the corre-

sponding G.M.
nl e
LST.=9 35 40
long. W.= 15 45
T.= o 51 25
S.T.G.M.N., 19 Oct.=13 350 50-69
S.T. interval to GM.N.= 3 30 23569
retardation for 3h = 29-480
4 »  59m = 9-666
" " 258 = 0-068
" »w 0698 = 0002
Total retardation= 39-225
S.T. interval to G.M.N.= 59 2569

M.T. interval to G.M.N.= 58 46-465
GMT.= 8 o1 1334

It will be found, as already stated, that in all cases the
most direct method of performing any time conversion is
by at once converting the given locai time into the cor-
responding Greenwich time by application of the longitude
with the appropriate sign. Methods are sometimes used
in which the LS.T. at L.M.N. is deduced from the
G.S.T. at G.M.N. given in the Nautical Almanac; such
methods have little to recommend them and should be
avoided.

In connection with what has been stated so far the
following points should be borne in mind : .

I. The true sun moves along the ecliptic (inclined at '

about 23° 27 to the equator) with a variable motion in
R.A., the want of uniformity being due to two causes,
viz., firstly the unequal velocity of the earth in its orbit,
and secondly the inclination of that orbit to the equator.

2. The mean sun moves along the equator with a uniform
motion in R.A.

3. The equation of time, ie. the difference between
apparent solar time and mean solar time, is the same all

over the earth at any instant. It is the difference between
the hour angles of the mean sun and the true sun.

4. The difference between L.S.T. and L.M.T. is the
same all over the earth at any instant, being the difference
between the hour angle of the First Point of Aries and that
of the mean sun, plus or minus 12 hours, as L.S.T. is
measured from the upper transit of 9, whereas the upper
transit of the mean sun is 12 hours L.M.T,

For observations on the sun it is usually necessary to
know both the sun’s declination and the equation of time
at the instant.

Interpolation of ‘‘ N.A.”’ Values.—It has already been
shown (p. 7) that the sun is in the plane of the earth’s
equator at the vernal equinox, ie. on or about 22 March ;
at that time the sun’s declination is therefore 00° 0o’ 00”.
Again, at the autumnal equinox, ie. on or about 24
September, the sun is also in the plane of the earth’s
equator, and its declination is therefore again 00° 00’ 00" ;
but at the summer solstice, i.e. on or about 22 June, the
line joining the earth to the sun makes an angle with
the plane of the equator equal to the obliquity of the
ecliptic (Fig. 2), so that the sun’s declination is then
about 23° 27’ N.; at the winter solstice, i.e. on or about
22 December, the sun’s declination is, for the same reason,
about 23° 27" S. The sun's declination thus changes during
the year between the values of 23° 27” N. and 23° 27’ S.

The N.A. gives the declination and the equation of time
both for mean noon and for apparent noon at Greenwich
for every day of the year, with the variation in one hour
at G.AN. in each of these quantities. The variation in
one hour from G.M.N. may be taken as being the same
as the given variation in one hour from G.A.N. The
declination or the equation of time at any other instant
of Greenwich time can be readily derived.

For example, suppose that an observation on the sun

been taken at a station in longitude 2h osm oos East,
20 October 1928, at 16h 30m 20s standard meridian time
3
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—2 hours East—and it is required to find the sun’s de-
clination at the instant of the observation.

O
S.M.T. of observation . : o G 30" 29
Longitude of standard meridian, E. . 2 00 o0
G.M.T. of observation . ; I4 30 20

iee. 2 30 20PM.

By reference to the Nautical Almanac it is found that
on 20 October 1928 the sun’s apparent declination at
G.M.N. is 10° 21’ 16”7 S. (the explanation of the use of the
word “apparent’’ in the precept or heading to this column
is given in Appendix II), and that the variation in 1 hour
at G.A.N. =53"-86. i

When the interval between Greenwich noon and the
instant of observation is short, it will be sufficiently
accurate for most purposes to multiply the variation in
one hour by the length of the interval, in hours, from
Greenwich noon, to obtain the total variation which has
occurred since Greenwich noon.

Thus : variation in 1 hour = 53”.86
»w 2 hours =107"%72
» 30 mins. = 26”93
» 20 secs. = 0730

Total variation since G.M.N. =134"95 = 2’ 14”9
Declination at G.M.N. =10° 21 16 S.

Declination at instant of observation =10° 23’ 31”6

This method is only approximate, as the rate of varia-
tion is not constant. If a more accurate value is wanted,
the procedure is as follows :

The quantity 53”86 is the actual variation in 1 hour
at G.AN.; but what is required is the mean rate of
variation over the period separating the instant of observa-
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tion from G.M.N., as this mean rate multiplied by the
length of the interval (2h 30m 2o0s in this case) gives the
total variation in declination since G.M.N. to be applied
to the declination at G.M.N. in order to obtain the de-
clination at the instant of observation. The mean rate
of variation over the period of 2h 30m 2o0s elapsed since
G.M.N. may be taken as being the variation at the middle
of the said interval, i.e. at G.M.T. 1h 15m 10s P.M.

The declination of the sun is increasing, and the
Variation in 1 hour at G.A.N. 20 Oct. is53”-86 from N.A.
" - " 21 Oct.is53"46 ,, .,

Therefore change in rate in 24 hours 0”40 (decreasing)
» 5 o 1h 15m 10s 0”021

Hourly variation at G.AN. 53”-86

Therefore hourly variation at th 15m 10s =53"-84
Total variation in zh 30m 20s =134"9 or 2’ 14”9
Declination at G.M.N., from N.4., 10° 21’ 16”4

Therefore declination at instant of observation, 10° 23’ 3176

The result is in this case the same as that obtained by
the approximate method, but had the observation been
made at another time of the year, when the hourly varia-
tion was changing more rapidly, the results would have
shown a small difference.

Even this method is not mathematically strictly accurate,
but the error will amount at the most to a fraction of a
second of arc, and sun observations are not relied on for
observations requiring such a degree of accuracy. That
the error is small may be seen by computing, from the
sun’s declination at G.M.N. of one day, the declination
for the following G.M.N. The result will be found to differ
but slightly from the declination given in the N.4. for
that day. A precisely similar method is used in inter-
polating for the value of the equation of time at any instant
of G.M.T. other than G.M.N. or G.A.N.
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Example.—To find the equation of time (E) at local apparent
time 3h 45m 20s P.M. in 1cmgi1:1.|d|1=.1 95° W. on 31 October 1928.
L

LAT= 3 45' 20 P.M.
long. W.= 6 20 o0

G.AT.=10 05 20P.M.

m.
From N.4.,variationinequationof timein 1 hr.atG.A.N.= 0099

" " " 1oh " - 099

" " " sm n = 0-008

" " " 208 " e 0-000
From N.A., equation of time at G.A.N. (increasing) =16 19-27

.. required value of E=16 20-27
s.

Alternatively :
From N.4., variation in E in 1 hour at G.A.N., 31 Oct.= 0099
" " " " 1 NOV.= 0‘065
o chan&a in variation in 24 hours= 0034
.. variation in 1 hr. at middle of interval, viz. at s p.m., is
m., 5

°'°99"'(?i xo-o34) = 0092

.. variation in 10h = 092
" sm = 0-008
" 208 = 0-000

E at GAAN.=16 1927

.. required value of E=16 20-20

The difference in the results obtained by the two methods is in
this case only in the second place of decimals,

CHAPTER 111

SPHERICAL TRIGONOMETRY

IN observations for the purposes of field astronomy the
body observed, for example, a star or the sunm, gives a
line of sight of indefinite length, the origin of this line of
sight being the centre of the imaginary celestial sphere.

To fix the direction of this line of sight, two others,
also of indefinite length, are observed or deduced, one in
the direction of the zenith Z, the other in the direction of
the pole P, both also having their origin at O (Fig. 10).

Sides and Angles of Spherical Triangles.—Thus OZ, OS,
and OP define three planes passing through one point O
and inclined to each other, and to obtain the desired results
from the observations it is necessary to determine the
plane trigonometrical ratios which obtain between the
angles at which these three planes are inclined to each
other, as measured in planes perpendicular to their lines of
intersection. As already stated, it is assumed in astro-
nomical work that the points S, Z, and P are on the surface
of an imaginary celestial sphere, and therefore it is con-
venient to assume that the three intersecting planes are
bounded by a spherical surface having its centre at the
common point of origin O. The three planes therefore
cut the bounding sphere in great circles, the radius of
which is the same as that of the sphere. The arcs of these
great circles on the surface of the bounding sphere, namely
the arcs PS, SZ, and PZ, form the sides of the spherical
iriangle PZS, but these arcs or sides are measured by the
angles, namely, POS, SOZ, and ZOP, which they subtend
at the centre, O, of the sphere.

The angles between the three planes, measured in planes
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perpendicular to their lines of intersection, are called the
angles of the spherical triangle. In astronomical work
they are usually denoted by the capital letters P, Z, and S,
indicating the points at which the lines of intersection of
the planes cut the bounding sphere ; thus the angle SZP is
the angle between the planes SOZ and ZOP, the angle ZPS
is the angle between the planes ZOP and POS, and the
angle PSZ is the angle between the planes POS and SOZ.

90 =P ue

0

Fi1G. 10.

Bearing in mind the definitions already given, and
referring to Fig. 10, which may be compared with Fig. 7,
Angle SZP is the azimuth

- ZPS ,, hour angle =¢
. PSZ ,, parallactic angle
Side PS ,, codeclination or polar distance
=90°—d =p
» SZ ,, zenith distance =z
) PZ ., colatitude =90°—p =c.

Some of these quantities being given or observed, it
becomes necessary to determine one or more of the others
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in order to obtain the desired results, and to this end
spherical trigonomet is made use of.

The forrl:ﬁlse nece?;ary for the solution of a spherical
triangle may be obtained by the methods of analytical
geometry. This will necessitate making use of the relation-
ship between the co-ordinates of a point, as referred to
two different pairs of axes in the same plane, which relation-
ship may, as a preliminary, be seen by reference to Fig. 11,
where P is a point whose co-ordinates with reference to the
axes OX and OY are x and y, and with reference to the

L Y

e

0 M X
F1G. 11.

axes OK and OL are % and [, the axes OX and OY being
in the same plane as OK and OL, and being in fact the
axes OX and OY rotated through an angle 4.
The relationship between the co-ordinates is :
% =ON =OM cos § +PM sin § =x cos § +y sin d
1=PN =PM cos §—OM sin § =y cos §—x sin ¢
Now let ABC (Fig. 12) represent a spherical triangle on
the surface of a sphere the radius of which is 7 and the
centre of which is at O. Take three rectangular axes OX,
OY, OZ such that the side AB of the spherical triangle
lies in the plane OX, OY, and let the co-ordinates of C be x,
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¥, and z. Let OX’ and OY’ be the position of the axes
OX and OY when rotated through an angle ¢ in the plane
OX, 0Y, and let #’, y’, z be the co-ordinates of C with
reference to OX’, OY’, OZ. Draw CN perpendicular to

the plane OX’, OY’, and CS perpendicular to OX and
CS’ perpendicular to OX’. Join S’S.

P4

14

Fic. 12.

Then x=0S=rcosCOS=rcosbh ~
y=SN=CScos A =7sinb cos A
2=CN =CSsinA =rsinbsinA ;

but, as shown above, x’=x cos ¢+y sin ¢,
y =y cos c—x sinc,
2=z

~l
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Further, 2’ =0S’ =r cos a
y' =—8'N=—CS8 cos B=—rsina cos B
2z’ =CS’ sin B =7 sin a sin B.
Substituting in the three previous equations,
r cosa=r cos bcosc+rsinb cos A sin¢
— sin @ cos B =7 sin & cos A cos c—r cos b sin ¢
7 sin a sin B =7 sin b sin A.
Therefore, dividing by 7,

cosa=cosbcosc+sinbsinccosA . . . . (3)
sinacos B=cosbsinc—sinbcosccosA . . (2)
smasmB=sipbsnA. . . . . . . . )
Dividing eqliation (2) by sin & gives
A =si tb__sinaccosB 'I
COS ¢ COS A =SIN ¢ Co w{
=sinccotb—sinAcotB .' . . (4

In the triangle ABC, for simplicity each “angle has been
made less than go° and the point N therefore falls between
OX and OX’, thus giving ¥ and 9’ opposite signs, i.e.
y =S8N, and 5’ =—SN.

Fundamental Equations.—The equations (1), (2), (3),
and (4) are the fundamental formula of spherical trigono-
metry, and are true for every spherical triangle, whatever
be the values of the sides and angles, and therefore niay
be applied to the special case of a triangle with one angle,
such as A, a right angle, in which case sin A=1 and
cos A =o,

Right-Angled Triangles.—Substitution of these values
in equations (1), (2), and (3) gives
: cos @ =cos b cos ¢ from equation (1),
tan ¢

m5B=tana T " (I) Md (2)*
tan b
tan B =Sin y; " " (2) a‘nd (3}!

sin B =s‘._' . " (3)'
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To apply the equations obtained above, it is only
necessary to substitute the astronomical nomenclature for
that employed, for generality, in these equations; thus in
Fig. 13, if Z is the zenith, P the pole, and S a star, the
great circles forming the meridian circle, the declination
circle, and the vertical circle passing through these points
form a spherical triangle ZPS identical with the spherical
triangle ABC, and the equations for the latter can be
applied to the astronomical triangle. Thus from equation (1)

cosa=cosb cosc+sinb sinc cos A,

and applying this to the astronomical triangle, the equation
becomes

€OS z =C0S ¢ cos p +sin ¢ sin p cos P.
Similarly, cos  =cos z cos ¢ +sin z sin ¢ cos Z.

Equation (1) can therefore be applied to any case in
which two sides and the included angle, or three sides, are
given.

““Cot ” Formula.—Equation (4), viz.
cos ¢ cos A =sin ¢ cot b—sin A cot B,
is sometimes known as the cot formula, and may be memor-

ized as follows. If any four consecutive parts, i.e. sides
and angles, of the spherical triangle be taken, either clock-
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wise or anti-clockwise, such as angle B, side ¢, angle A,
side b, i.e. B, ¢, A, b, then cos (inner side) cos (inner angle)
=sin (inner side) cot (other side)
—sin (inner angle) cot (other angle).
Therefore, applying this to the four consecutive parts
Bre A b,
cos ¢ cos A =sin ¢ cot b—sin A cot B.
In applying this rule, the first of the four consecutive
may be a side ; thus for the four consecutive parts
b, C, a, B the equation becomes
cos a cos C =sin a cot b—sin C cot B,

Some of the applications of these equations for practical
purposes will now be given for reference.

Formulz for Time Observations.—For time observa-
tions such as described later in Chapter VII the
fundamental formula

COS 2 =C0S ¢ COS p—+sin ¢ sin p cos P
can be modified to obtain the desired results.

The quantity observed is zenith distance, ZS=z
The N.A. gives the declination § from

which PS=90°—d =p
A _known quantity is the latitude ¢ from
which PZ=90°—p=¢

ie. each of the three sides of the spherical triangle
PZS (Fig. 13) is known, and the angle ZPS is to be com-
puted.
~The above-mentioned fundamental formula gives
€OS 2—C0S ¢ COS p cos z—sin P sin
sincsinp ~  cosQ cosd
=cos z secd sec p—tand tan@ . . . (5)
The two terms of the right-hand side of the equation are
computed separately by log tables, and their difference
gives the natural cosine of the angle ZPS. The log of
this natural cosine is then taken and the corresponding

cos P=
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angle looked up in the tables of log cosines to obtain the
value of ZPS,

A formula more suitable for logarithmic computation
may be derived as follows : .

€Os z=c0s ¢ cos p-+sinc sin p cos P

and cos P=1—2 sin’g—

P cos z—cos ¢ cos p

I—2 sin?— ¢ -
2 sin ¢ sin p
2 sint.X. 1008 2—C0s ¢ cos p
2 sin ¢ sin p
_sin ¢ sin p+4-cos ¢ cos p—cos z
sin ¢ sin p
_ €08 (p—c)—cos z
~ sincsing
IPPIIN i <. . sin2=¢—*
i sin ¢ sin p
asin PHEITC o Bte—p
2sin? = = .2 - 2
2 sin p sine
Let 2s=p+c+z;
then s=""'_i_":2+“g
and s—p =z+°2_p
and §—C =ﬁf_—;ﬁ

i P _2 sin (s—¢) sin (s—p)
sin ¢ sin p

2
" in (s—c) sin (s—
or sm;=\/sm(:in?.s;il;$ . LS (6)
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This form of the equation is suitable for direct logarithmic
computation, as p, ¢, and z are all known. The form given
in equation (5) has, however, certain advantages, as, if
observations are to be made for several days at one station,
the values of tan @ and sec ¢ remain constant, and the
values of tan § and sec § change but slightly for any par-
ticular star. ;

An analogous expression for cos : can also be found,
as follows : 2

Since ¢os z2=cos p cos ¢+sin . sin ¢ . cos P
COS z—C0S P €os ¢

cos P= : :
sin $ . sin ¢
P €OS 2—COS P . COS ¢
2c08? ——1= : ?
2 sinp.sinc¢
P cos z—(cos c—sin $ sin ¢
2 cos? - = ( ?cos_ gy
2 sin p sin ¢ .
-
_C0s z—cos (p +¢)
sinp sin¢
. pre+z . 2—p—
—2sm?b °T% sin i
2 2 2
sinp sin¢
_2sin s sin (s—2)
sinp sin ¢
' P sin s sin (s—z)
ot G, A v R M.

The value of E-' may thus be found from either its sine
or cosine, and consequently also from its tangent, as

T
P sin (s—c) sin (s—p)
tani'—"cosl_:':N/ sin s sin (s—z) =~ ° @
2
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Formula for Determination of Latitude by Observa-
tion of Polaris.—In the method to be described on
page 115 for the determination of latitude by observation
of Polaris, the fundamental equation, No. (1), is reduced
to the form

sin & =sin (& +x) . cos p +cos (k+x) . sin p . cos ZPS,

and it is required to find the value of x in terms of
i and p.

Since p and x are both small, Taylor’s theorem may be
applied :

: " Lol x®

sin (b +x) =sin & +x cos h_E sin k-—-lé o8l - o a iRy
Lot s

cos (h +x) =cos h—xsmh—l—icoshﬂjsinh sabi . U

The substitution of these values in the above equation
for sin & gives

sin & =cos p x (a) +sin p x (b) x cos ¢,
¢ being the angle ZPS ; or
2 4
sinh=(1=2+2".. Ysin +x cos h—"sin h—gcosh. )

2 4 2 3
+(p—g+g...)(cos h—= & h—-gcosh+§sinh...)cost

2
=sin h+x cos h+p cost ., cos h—-% sin A—px cos ¢ sin &
. %
—i—sink . . .
|2
g 2, - P
S—xcosh=p costcosh—E sin 2—px cos ¢ sin h-—’; sink..

%2 P2
Ia—tan h+px cos ¢, tan h+— tan h+ ...

2 2

Sx=—pcosi+

! / L . 8 LN

J ~ »
f |

>
v
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The first approximation is x =—p cos .
Substituting this value for x in succeeding terms,

x=—p cos t+4p? cos® t.tan h—p? cos® £. tan h+3p? tan
=—p cos t—3(p* cos® . tan h—p? tan i)
=—p cos ¢ +3p* tan k (1—cos*® {) _
=—pcost+ip?sin®é.tank . . . . .. . (9

Computation of the Position of a Star for a Pre-
arranged Instant.—When it is required to compute the
position of a star at a prearranged instant for observation in
daylight or twilight, as described on page 149, the following
quantities are known :

The polar distance (go°—8) =p =PS (Fig. 13)
The colatitude (90°—@) =c=PZ
The angle ZPS (L.S.T.—R.A. for a west star, or
24—(L.S.T.—R.A.) for an east
star)
ie. in the triangle ZPS the two sides PZ and PS are
known, and also the included angle ZPS.
The quantities required to be computed are :
the zenith distance . ok
the azimuth angle . . PZS
z can be found conveniently by the fundamental formula
co8'z =cos p cos ¢ +sin p sin ¢ cos P
By formula No. (3) :
sinz _ sinp
sin P sin PZS

and sin PZS =~

In this equation the quantities p, P, and z are known,
z having just been computed, and therefore sin PZS can
be computed, but as sin A =sin (180°—A) there will be a
doubt as to which of the two possible values of PZS is
the correct one ; in fact, one of the two values will be the
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angle PZS, and the other the supplement of that angle.
It will frequently bappen that the surveyor will know
from his acquaintance with the stars which of the two
values is the correct one. The two values will, of course,
correspond to two azimuths equally inclined to the prime
vertical, one being north and the other south of it.

However, a definite single solution for the angle PZS
can be found by alternative methods.

z having been computed as above, on page 44 it was
shown that

in P_ _ /sin (s—p) sin (s—¢)
sin P \/

sin p sin ¢
and likewise it may be shown, or by analogy it may be
seen, that

. Z  [sin (s—z) sin (s—c¢)
— smzsinc - - - (1)
further, cel fmimney) @ . (11)
2 sin z sin ¢

from either of which g may be found; and as its value

will never exceed go°, the value of PZS is obtained without
ambiguity ; but as the angle PZS may be measured either
eastwards or westwards from P, it is necessary to determine
from the star’'s R.A. whether it is east or west of the
meridian.

Formula for Azimuth Determination.—In observa-
tions for azimuth as described in Chapter VIII, the differ-
ence of azimuth between a terrestrial reference mark and
a heavenly body is observed at a known instant of time ;
it is then necessary to compute the azimuth of the heavenly
body at that instant. In the preceding paragraph methods
for this computation have been given, but an additional
method largely used is as follows :
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In the triangle PZS (Fig. 13), applying the cot formula
to the four consecutive parts Z, ¢, P, and p,

cos ¢ cos P =sin ¢ cot p—sin P cot Z
sin ¢ cot p—cos ¢ cos P

sooot Z= sin P

Multiplying numerator and denominator by sin p gives
sin ¢ cos p—cos ¢ sin p cos P

i sinp sin P
Let ksinx=sinp cos P
and kcosx=cosp;
then tan x =w =tan p cos P,
0s p

k sin ¢ cos x—£k cos ¢ sin x

and cot Z=— s P
___k sin (c—x)
sin p sin P

Multiplying numerator and denominator by cos P gives

k sin (c—x) cos P
sin $ sin P cos P
_sin (¢—x) cot P
e

cot Z=

(12)

Accordingly, to compute the azimuth angle Z the sub-

sidiary angle x is first determined from the equation
tan x=tan p cos P; Z is then computed from equation
12).
: l-)Tormula for Latitude by Circum-Meridian Altitudes.
—In observations for latitude by the method described
in Chapter VI, known as circum-meridian altitudes, it is
necessary to compute the difference between the altitude
of a star a few minutes before or after its transit and its
altitude at transit, i.e. its meridian altitude.

The known quantities are the star’s declination and

4



50 ASTRONOMY FOR SURVEYORS

therefore its polar distance, its altitude at an instant, and
its hour angle at that instant. The star is describing a
small circle about the pole, and it is required, as stated
above, to find an expression, or an approximate expression,
for the difference between its altitude at the instant of
observation and its meridian altitude, the instant of
observation being separated by only a short interval of
time from the transit.

Let Ay, be the meridian altitude of the star.
h be the altitude when the star is at a small
hour angle ¢ before or after transit.
»w Zmand z be the zenith distances corresponding to
iy, and e respectively.
Equation (1) gives cos z=cos $ cos ¢ +sin p sin ¢ cos ¢,
or, sin A =sin @ sin §+cos @ cos § cos ¢,
and %, 9, and ¢ being known, @ could be computed.

This equation holds for all values of ¢ however great,
but for small values of £ a more convenient approximate
expression can be found, as follows :

sin % =sin @ sin & +cos @ cos 5(1_2 sin? g_)

., sin h=cos (p—8)—2 cos @ cos § sin® Et

and @—20 =2, =90°—h,,

*. sin h=sin h,—2 oosqocosasin’g

or, sin h,—sin A =2 cos @ cosBsin*‘g

btk gin k’“"h=zcoscpcosﬁsin'i
2 } B 2

Now if the altitude be observed near the meridian,
By + R
2

', 2 COS

=h (approximately),
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and sin 3(hn—h) =3(km—h) (approximately, as hn—h is
small)

then cos h x §(hn—h) =cos @ cos & sin? %
. _cospcosd . . ¢
and hpy—h = .3 sin? =

In this expression %, and & are in radians, and the
difference h,—#h is also in radians. In order that the
difference may be in seconds of arc the expression for
Im—h must be multiplied by the numbers of seconds in
one radian, or it may be expressed thus :

t

2 sin? ~

__p\» _COS @ cos d 2
(em—P) cosh " sin1”

The above is the approximate expression for the
difference of altitude of a star when at an hour angle
¢t from its meridian altitude, provided the hour angle
be small. The expression is known as the reduction to
the meridian.

Formula for Calculation of Azimuth from Latitudes
and Difference in Longitude.—To find the remaining
angles when two sides and an included angle are known.
From equation (11)—

- Z _ /sin (s—z) sin (s—c¢)
2 sin s sin (s—p)

This may be written in general terms

tan? A =sin-{s—c) sin (s—b)
2 sin s sin (s—a)

tan }A +tan 4B

But tan A+B)=—-" A tan 3B
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Substituting in this equation for tan $A and tan B their
values obtained from the above equation, viz.
tan® A =sin _(s—c? sin (s—b)

2 sin s sin (s—a)

_(_sin (s—¢) sin s \}/sin (s—b) +sin (s—a)
tan }(A +B) (sin (s—a) sin (s—-b)) ( sin s—sin (s—c¢)
S 2s—b—a o (a—-b)
2 2

I
- - S .cot EC
. COS

and reducing, gives

CHAPTER 1V
INSTRUMENTS

Transit Theodolite.—The observer in the field will in
most cases be restricted to the use of one form of theodo-
lite only, namely the ordinary portable transit theodolite,
and a more complete equipment, such as a geodetic the-
odolite for azimuth, a zenith telescope for latitude, or a
prismatic astrolabe will not be available on account of
expense and questions of transport. These instruments
will therefore not be referred to, as all the observations
described in this book can be made with the ordinary
portable transit theodolite.

All sizes of transit theodolite from 3 in. to 12 in. are
employed for the purpose of field astronomy, but, bearing
in mind the degree of accuracy required and the question
of portability, the 5-in. or 6-in. micrometer instrument,
reading direct to 10 secs. and by estimation to I sec., is
probably the most useful.

A good engineer’s vernier theodolite may be used for
field astronomy, but micrometer reading of the circles
instead of by verniers is very desirable, as is also the
provision of a sensitive spirit level on the T-arm carrying
the vertical circle micrometers or verniers. In addition,
a striding level should be provided to ensure that the
horizontal axis is horizontal, or to measure its departure
from the horizontal.

Various accessories not always found with the transit
theodolite will be required, such as :

(@) A diagonal eyepiece for use when the altitude
exceeds about 45°; and in this connection it may be noted

53
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that the proportions of the instrument should be such
that it can be transited without the focus of the eyepiece
having to be altered. In observing with the diagonal
eyepiece the prism inverts the image, so that with the
ordinary Ramsden type of eyepiece the image appears
inverted, but correct as regards right and left.

(b) Means for illuminating the field of view. A small
electric lamp is best for this purpose, the rays being pro-
jected through a lens in the hollow trunnion axis on to a
small mirror which reflects them on to the wires. The
lamp-socket is attached to ome of the standards. A
small oil lamp should be available in case of failure of the
dry battery used for the electric lamp. If the instrument
is not provided with a hollow trunnion, a paper reflector
may be attached in front of the object glass. It is bent
over the glass and provided with an opening to enable
the light from the star to enter the telescope, the lamp
being placed so that its light is reflected down the tube.
Another method of illuminating the wires is to place a
blob of white wax on the object glass, and the light from
a lamp shining on this will be diffused down the telescope
tube.

(c) Sighting points fixed to the upper and lower sides
of the telescope tube to give a line of sight parallel to
the line of collimation, to facilitate pointing to a star.

(@) A dark glass to be attached to the eyepiece when
observing the sun.

Mechanical Condition.—In order that satisfactory
results may be obtained with an instrument such as that
indicated above, it is essential that it should be kept in
good mechanical condition and in a satisfactory state of
adjustment. The tripod should be examined carefully
from time to time in order to see that there is no shake
in it. The nuts and screws of the metal-work should be
tightened up and also the shoe fastenings, the shoes being

sharpened up if necessary. When placing the instrument
on its tripod it may be turned in the direction of unscrewing
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ick i indicati t the threads
i ioht click is heard indicating that the
hlmtll :oxfll;g?o :he correct position where they will engage
o:v:crewing up. When carrying the mstrlt:menlz, tlgh:ﬁg
that no movement can take place;
:ﬁur:g‘z{ﬁmslg also be tightened aftelr the lrllstmmer;ft 1:;:2
into its case with the clamps loose.
m!;ur}:ll::lt]?s on its tripod but notdm actual use, it should
d with a waterproof hood. v
be\;’%‘;;rilandling a theodolite it should be lifted by the
tribrach and not by the standards or micrometer arms.
In general, care and cleanliness are essential for keeping
i ent in order. ;
the;fmt;t:u i:lstmment does not revolve smoothly on its azches,
these should be cleaned with a piece of fine wash-leather
light oil.
a.n;lf Etcheg focusing tube of the telescope appears tlc: mogz
harshly, a piece of grit has probably got on to tde tu
bearing ; this should be attended to at once, as the damage

ill i e.
wl'l%‘h]gcrse}zsw motion tangent screws should be clea%t;d
periodically with an old toothbrush and petrol or parathn,
and replaced with vaseline or tallow on the thre:ads. ]

The graduations on the horizontal.and ve_rtlcal circles
should be cleaned when necessary with a piece of cl;;:lan
soft rag and light oil after first dusting off all grit with a
camel-hair brush. If the graduations require re-blacking
a little black oil paint from a tube should be smeared over
the divisions and cleaned off with a piece of soft tissue

E; :
Pa}l)';e lenses should always be kept clean and their sur-
faces free from moisture and dust. k [

If the inner surfaces of the object glass require clealmng,
it should be taken to pieces very carefully and the g a.sse.ﬁ
replaced in exactly the same position relatively to eac
other; most object glasses have a slot and a ma.rkkon
the edge to facilitate assembling. Care must l'l)e ta :n
not to screw the counter-cell too tightly or the glass may
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become strained. There is usually a mark on the outside
edge of the object glass cell so that it can be screwed
back into the telescope in the original position.

The focusing lenses of internal focusing telescopes
can be cleaned by removing the object glass and the
diaphragm ; each side of the glass is then cleaned in turn
with a small stick round which a piece of wash-leather
is wrapped.

A glass diaphragm or graticule can usually be cleaned
with a camel-hair brush, but if not it should be cleaned
in the same way as a lens. If the ruled lines of the
diaphragm appear too faint, they can be blackened in
with a piece of soft tissue paper that has first been rubbed
with a very soft blacklead pencil, the surface being then
cleaned with the newly torn edge of a piece of card.

If the wire of a web diaphragm is broken, it may be
repaired as follows with a spider line. A cardboard frame
is made and a spider placed on one edge. The frame
is then gently shaken so that the spider hangs from it,
the fibre being wound up with the turns wide apart and
the end secured in a notch. To fix the wire the diaphragm
ring is taken out, the old wire removed, and the varnish
cleaned from the notches with spirits of wine and warm
water. A clean uniform piece of line is then selected and
two little balls of wax attached to the ends, one of the
balls being held while the other hangs freely in order to
untwist the fibre. The line is then cleaned by rubbing it
gently with a paint brush dipped in clean water. The
diaphragm ring is placed on a block of wood and the line
stretched across the ring and adjusted by means of a pin
to be exactly in the notches, the wax balls hanging freely
on either side. One end of the line is fixed by a small
drop of shellac, and when this has hardened the other end
is fixed likewise, care being taken that the line remains
taut. Sealing-wax dissolved in spirits of wine may be
used instead of shellac.

Requirements in the Non-adjustable Parts.—In spite
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of attention to the mechanical and optical condition of
the instrument, defects will develop by constant use, and
owing to these and imperfections in workmanship the
ideal requirements of a theodolite are only partially ful-
filled, and there will always be instrumental errors due to
defects in different parts of the instrument.

A particular routine in observing may be adopted for
reducing or eliminating the effect of small defects in the
non-adjustable parts, whilst provision is made for adjusting
other parts to eliminate the more serious errors.

Requirements in the non-adjustable parts are as follows :

1. The whole instrument should be stable. To test for
this, set up the instrument and sight a well-defined point,
fixing all clamps lightly. Apply a firm but gentle lateral
pressure to the eyepiece. The intersection of the cross
wires will probably leave the sighted point, but should
return to it on removing the pressure.

2. The inner and outer vertical axes should have the
same geometrical axis of rotation, namely the vertical
axis of the instrument. To test for this, set up the instru-
ment, and with the lower plate clamped bring the level
on the vertical circle T-arm parallel to two foot-screws,
and bring the bubble to the centre of its run by means
of the foot-screws alone. Turn through ¢o° and bring
the bubble, if necessary, to the centre of its run by the
third foot-screw. Repeat until the bubble is central in
these two positions. Turn through 180° from the original
position ; if the bubble has left the centre of its run, bring
it half-way back by the foot-screws and half-way by the
T-arm clip-screws. Repeat until the bubble remains central
in all positions. Now loosen the bottom horizontal plate,
and clamp the top and turn the plates round. If the
bubble does not remain central, the outer axis of rotation
iIs not vertical, and therefore not parallel to the inner
axis. If the error is large, the instrument must be sent
for repair. _

3- The division of the horizontal and vertical circles
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should be accurate. The accuracy of the divisions cannot
be readily tested, but with modern methods of division
the errors are unlikely to be large, and their effect can be
reduced to any desired extent by repeating the measure-
ment on different parts of the horizontal circle and taking
the average of the results. In the case of the vertical
circle, since this is fixed to the telescope this procedure is
not possible, and the only precaution that can be taken
to lessen the resulting error is to read both verniers as
explained later.

4. The zero readings of the verniers should be at the
opposite ends of the same diameter. To test, read both
verniers in any position and note the difference between
the readings. Move the verniers, and again note the
difference. A constant difference other than 180° indicates
that the required condition is not fulfilled. Error from
this source will arise if one vernier is used for orienting
and the other for reading the angle. Either vernier will
give the correct measurement if the same vernier is used
for orienting and reading the angle.

5. The centre of graduation of the horizontal circle
should be in the vertical axis and that of the vertical circle
in the horizontal axis. To test, read both verniers in any
position and note the difference, then rotate the verniers
through about go° and again ascertain the difference in
their readings. If the difference is constant there is no
eccentricity. If there is a difference, the error is elimin-
ated by averaging the values of the angle given by each
vernier,

In Fig. 14 let O be the centre of the graduated circle
and O, the centre of the vernier circle or axis of rotation.
When the line of sight is in the position CO,D the vernier
readings at A and B differ by 180° If the line of sight
is now turned through an angle & into the position EF,
the vernier at A moves through an angle « to G and that
at B through the same angle to H, but neither vernier re-
cords the angle . The reading at H is BOH or (¢—error),
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and that at G is (180°+AOG) =(180°+« +error), since

OHO, =0GO, =error (¢). The readings differ, therefore,

by 180°+twice the error., If both verniers are read,
- —e) +(180° :

the mean is (&= (2 +“+8), i.e. the error due to

eccentricity of the circle is eliminated.

6. The plane of the graduated edge of the horizontal

circle should be at right angles to the vertical axis, and

Fi1G. 14.

that of the vertical circle at right angles to the horizontal
axis. This condition is easily satisfied by the instrument
maker within limits of error which will have no appreci-
able effect on the readings. If the condition is not
satisfied, for example, in the case of the horizontal circle,
then when the vertical axis is vertical the horizontal
circle is oblique and an observed horizontal angle is not
measured in the horizontal plane; the error will, however,
be so small as to be negligible.
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7. The relation between the greatest magnification of
the telescope and the pitch of the tangent screw should
be such that a just perceptible movement of the tangent
screw will cause a just perceptible movement of the wires
across an object observed. A similar relation should exist
between the magnification of the micrometer lenses and
the pitch of the micrometer screws. To test for this
condition, centre the cross wires on a well-defined point
and read the vernier or micrometer with all clamps fixed.
Move the vernier or micrometer through its least count,
or a fraction of it, if discernible, and note if the line of
sight has moved perceptibly.

Adjustable Parts.—The above are the more important
requirements in the non-adjustable parts of the transit
theodolite, and the question of the examination and
elimination of errors in the adjustable parts will now be
considered.

The adjustment of the portable transit theodolite as
used for field astronomy does not differ to any great
extent from that of the ordinary transit theodolite, except
that a striding level is supplied with the former for
horizontal axis adjustment.

Parallax.—If the image formed by the objective is not
in the plane of the cross wires, the image will appear to
move relatively to the cross wires as the observer moves
his eye, and accurate sighting will be impossible, as the
line of sight may be made to appear to intersect different
points according to the position of the eye. This state
of affairs is known as eyepiece parallax and is eliminated
as follows :

1. It is first necessary to focus the eyepiece for distinct
vision of the cross wires ; to do this, point the telescope
to the sky or turn the focusing screw until no object can
be distinguished in the field, and adjust the eyepiece until
the wires are sharply defined and on closing the eye and
reopening it the wires appear perfectly distinct at once
without the eye having to accommodate itself. If
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necessary, light may be reflected down the telescope tube
with a piece of white paper to illuminate the cross wires.
The position of the eyepiece for correct focus depends on
the individual's eyesight.

2. It is next necessary to bring the image of the object
into the plane of the cross wires. To satisfy this condition,
sight the telescope on to the object and, keeping the eye
on the cross wires, turn the focusing screw until the image
appears sharply defined and until, on moving the eye
slightly, there is no apparent movement of the wires over
the image since they are in the same plane. The position
of any particular object glass for correct focus depends
only on the distance of the object observed, and is in-
dependent of the observer's eyesight.

Adjustment of the Horizontal Plate Levels.—Set up
the instrument and bring the level attached to the vertical
circle T-arm parallel to two foot-screws, and bring the
bubble to the centre of its run by these screws. Turn
through go°, and bring the bubble to the centre by the

~ third foot-screw. Repeat until the bubble is central in
both these positions. Now turn through 180° from the
first position, and if the bubble has left the centre of its
run bring it back half by the foot-screws and half by the
clip-screws. Repeat until the bubble remains in the
centre of its run when the horizontal plate is turned into
any position. The vertical axis being now vertical, the
bubbles on the levels of the horizontal plate should be
brought to the centres of their run by their own adjusting
screws alone, when the axes of the tubes will be at right
angles to the vertical axis.

The T-arm level is used as being more sensitive than
the levels on the horizontal plate, but its use may be
dispensed with as follows :

Set up the instrument and bring the longer level on the
horizontal plate parallel to two foot-screws, and bring the
bubble to the centre of its run by these screws. Turn
through go°, and bring the bubble to the centre of its run
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by the third foot-screw. Repeat until the bubble is
central in both these positions. Now turn through 180°
from the first position, and if the bubble has left the
centre of its run bring it back half-way by the foot-screws
and half by its own adjusting screws. Repeat until the
bubble remains at the centre of its run when the plate
is turned to any position. If the bubble of the shorter
level on the horizontal plate is not at the centre of its
run, bring it to the centre by means of its own adjusting
screws alone.

Adjustment of the Striding Level.—The object of
the striding level, as already stated, is to test the hori-
zontality or otherwise of the horizontal axis of the tele-
scope. The V-foot of each leg of the level gives two
points of support on the horizontal axis; it is necessary
that the level axis, ie. the horizontal line tangential to
the surface of the centred bubble, which lies in the vertical
plane through the axis of the bubble tube, shall be parallel
to the line joining the points midway between these two
points of support in each V.

To adjust, place the striding level in position on the
pivots of the horizontal axis and bring the bubble to the
centre of its run by the foot-screws. Test for wind by
rocking the level slowly backwards and forwards. If the
bubble does not remain at the centre of its run, then the
bubble axis and the horizontal axis of the telescope lie
at an angle to each other when projected upon a horizontal
plane, and the striding level is said to have wind. Correct
this wind by the lateral adjusting screws at the end of
the bubble tube.

The second step is to level the instrument as before
and place the striding level on the horizontal axis, and if
the bubble is not exactly at the centre of its run bring it
central with the foot-screws. Lift off the striding level
and carefully replace it end for end. If the bubble is
not now in the centre of its run, bring it half-way
back by means of its vertical adjusting screw. Re-level
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with the foot-screws and repeat until the adjustment is
ct.

pei?ijustment of the Horizontal Axis.—When the
instrument is levelled up the vertical axis is truly vertical,
and it is desirable, but not absolutely necessary, as ex-
plained in Chapter V, that the horizontal axis of the
telescope shall then be truly horizontal, i.e. at right
angles to the vertical axis. ' i ol

If the level on the horizontal plate is but little inferior
in sensitivity to the striding level, as is often the case,
the adjustment may be made as follows, after ha_vmg
adjusted the plate and striding levels as already described.

Make the vertical axis truly vertical, and place the
striding level in position. If the bubble of this level is
not at the centre of its run, bring it to the centre by means
of the adjusting screws alone which control the trunnion
support in one standard.

If the vertical axis is not made truly vertical, then the
amount by which the striding bubble is displaced on

r“rotating the telescope in azimuth through 180° must be
corrected half by means of the trunnion adjusting screws
and half by the foot-screws, and the adjustment continued
until the bubble remains in the centre of its run.

In the case of a theodolite not provided with a striding
level, the lorizontal axis of the telescope may be adjusted
after the collimation adjustment (which is described later)
as follows :

Level up the instrument and sight on to a well-defined
object at a considerable altitude, such as the top of a
lightning conductor, and clamp the horizontal circles.
Now depress the telescope, and note the exact reading of
the vertical wire on a staff laid horizontally on the ground
in front of the telescope as far from it as convenient. If
the horizontal axis is horizontal, the vertical wire should
intersect the staff truly vertically below the object sighted,
since the collimation adjustment will have put the line of
collimation at right angles to the horizontal axis. Loosen
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the top plate and turn it approximately 180° and again
sight the observed object at high altitude ; this obviously
will necessitate transiting the telescope. Clamp the hori-
zontal plates and again depress the telescope, and take
the reading of the vertical wire on the staff. If the hori-
zontal axis is horizontal, the reading will be the same as
before. If not, the mean of the readings is the one which
is truly vertically beneath the observed object, and the
trunnion axis is adjusted until on sighting the observed
object and depressing the telescope this true reading is
given by the vertical wire.

Adjustment of the Vertical Circle Zero Reading.—
It is obvious that the vertical circle reading should be
zero when the line of sight is horizontal. This condition,
however, is not absolutely essential if the mean of face-
right and face-left readings is taken, as a reversal of face
will cause a reversal in sign of the error, which will conse-
quently be eliminated, as may be seen from an examina-
tion of Fig. 15. It is, however, preferable to adjust the
instrument so that the reading is zero when the line of sight
is horizontal, and this adjustment is carried out as follows :

Level up the instrument by means of the foot-screws
and horizontal plate levels, and having brought the bubble
of the T-arm level to the centre of its run by the clip-screws,
take the mean of the vertical circle readings when the hori-
zontal wire intersects a well-defined point as far away as
possible. Transit the telescope in order to reverse face, and
on turning the telescope in azimuth through 180° having
again adjusted the bubble of the T-arm level, bring the
horizontal wire to the same point as observed previously
by means of the vertical circle tangent screw, and take the
mean of the vertical circle readings. The mean of the
face-right and face-left readings is the true reading. Set
the telescope by means of the tangent screw to give this
reading ; this will cause the horizontal wire to move off
the observed point, and it is brought back to this point by
means of the T-arm clip-screws. This eliminates the error,
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and the vertical circle reading will be zero when the angle
of elevation of the line of sight is zero, i.e. when the line of
sight is horizontal. The bubble of the level attached to

Foce Righr

F1c. 15.

the T-arm will not now be at the centre of its run ; bring

it to the centre by the adjusting screws at the end of the
bubble tube.

Owing to the difficulty of making the above-described
5
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adjustment perfectly, it will nearly always be found that
the F.R. and F.L. readings on one and the same point,
even with the T-arm level truly centred for each pointing,
will differ slightly. The difference of either reading from
the mean of the two readings is the error of collimation in
altitude, or what is called frequently index error. It is
eliminated by reversal of face. It is due partly to the
fact that the line of collimation (which joins the inter-
section of the cross wires to the optical centre of the object
glass) does not coincide exactly with the optical axis
(which joins the optical centre of the eyepiece to that of
the object glass), and partly to the fact that, even if the
line of collimation did so coincide, the circle reading would
not be exactly zero if the optical axis were truly horizontal.
In the case of pointings made only on one face, the correction
for collimation in altitude may be applied, this correction
being constant and known for a particular instrument,
and equal to half the difference between the F.R. and F.L.
readings on a point.

Adjustment of the Line of Collimation.—The object
of this adjustment is to make the line of sight or line of
collimation at right angles to the horizontal axis. The
adjustment is made by means of the diapbragm screws,
and it is convenient to test first whether the wires are
horizontal and vertical respectively when the instrument
is levelled up.

To do this, level up the instrument and clamp the
vertical circle. Sight a well-defined point at one end of
the horizontal wire. Turn the telescope slightly so that
the wire moves across the point until the latter is at the
other end of the wire. If the wire is still on the point, it is
horizontal ; if not, loosen the diaphragm screws and rotate
the diaphragm around the longitudinal axis of the telescope,
and test again until the desired horizontality is obtained.
The vertical wire is fixed relatively to the horizontal wire,
and should therefore be truly vertical when sighted to a
plumb line suspended in front of the object glass,
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Next, level up the instrument on fairly level ground
midway between two staffs placed horizontally at the same
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level (Fig. 16), the staffs being as far as convenient from
the instrument, and as nearly as possible in the plane of
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the horizon of the instrument to obviate errors due to
incorrect levelling. .

Sight on to staff A, and take the reading of the vertical
wire on the staff after clamping the horizontal movement.
Transit the telescope, and take the reading of the vertical
wire on staff B. Unclamp the upper plate, and rotate the
instrument in azimuth until the vertical wire reading on
staff A is as before. Again, keeping the horizontal move-
ment clamped, transit the telescope, and if the reading of
the vertical wire on staff B is as before, the line of sight is
perpendicular to the horizontal axis. If the reading is not
the same, correct one-quarter of the difference with the side
diaphragm-adjusting screws, and repeat till as nearly
perfect as possible. The length of sights being equal, no
change of focus is required. One-quarter of any residual
difference divided by the distance of the staff from the
instrument will give in angular measure the collimation
error ¢. If there is any defect in the focusing mechanism,
collimation error may arise when the focus is altered. To
test for this, the above test may be repeated with the
instrument much nearer to one staff than the other; and
if there is an error it may, in some instruments, be adjusted
by lateral screws bearing on the slide.

If the construction of the instrument be such that the
telescope can be reversed in the wyes, the collimation
adjustment may be made as follows:

Level up the instrument. The clip-screws being slack,
point the intersection of the cross wires to a well-defined
object on which an accurate pointing can be got. With
the horizontal plates clamped, lift out the telescope
carefully from the wyes, rotate it 180° about its
longitudinal axis and replace it in the wyes, so that
the pivots are now interchanged in the bearings and
the telescope directed towards the object. If the object
is not now intersected by the vertical wire, correct half
the discrepancy by the diaphragm screws and again
cause it to intersect the object by means of the hori-
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zontal plate tangent screw. Repeat the test to check
the adjustment.

With regard to all the above adjustments it may be
said that in general the routine of the observations should
be such that, although the instrument has been carefully
adjusted, any residual instrumental errors are eliminated
as far as possible ; and to this end the observations must
consist of an equal number of face-right and face-left
sights, and the circle readings must be obtained on all
the verniers or micrometers concerned. It must, how-
ever, be remembered that in the case of observations such
as those of equal altitude where the aim is to preserve
constant conditions of the instrument, a change of face
is not required.

Micrometers,—It has already been stated that the
theodolite employed should preferably have micrometers
for reading the horizontal and vertical angles. The micro-
meter consists essentially of a compound microscope with
a micrometer box mounted between the objective and
eyepiece at such a distance from each that movable wires
in the micrometer box can be brought into the focal
plane of each lens system. The mechanical arrangements
of the micrometer box vary slightly on different instru-
ments, but it consists essentially of a metal box into
which the eyepiece and objective tube are screwed on
opposite sides. The box contains a slide which can be
moved laterally by turning a graduated drum (3, Fig. 17).
Across the opening of the movable slide are stretched
two closely spaced vertical wires, and the slide is acted
on by two light springs to prevent backlash when it is
moved by turning the graduated drum. The distance
of the objective from the vertical wires, and the distance
of the microscope as a whole from the graduated circle
which it is desired to read, are so arranged that the
Image of the circle graduations is formed in the plane of
the wires, and the width of the image of one graduated
circle division is such that an exact number of turns of

Ty
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the graduated drum will carry the vertical wires exactly
across this division, i.e. from one graduation to the next.
Thus fractional parts of a graduated circle division ‘can
be measured. In reality, the fractional part is measured
on a chord (since the vertical wires are caused to move
in a straight line) instead of on an arc, but the error is
not appreciable.

There must obviously be a line of reference from which
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to obtain the readings ; this point is usually the imaginary
line midway between the vertical wires when they occupy
the centre of the field of view, the reading of the graduated
drum being zero. This point is located approximately
by a V-shaped notch in front of the plane of the wires
as shown in Fig. 17, and this notch gives the approximate
reading.

Least Count of a Micrometer.—The graduated circle
of the theodolite should first be examined to determine
the value of one division: this will usually be 10 minutes.
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On turning the graduated revolving drum, the number
of turns required to move the vertical wires from the
image of one graduation to the next is measured, the
fact that there are two vertical wires instead of one
facilitating the centring over a graduation. If » turns
are required, and the circumference of the drum is divided
into p divisions, then the value of each division on the

0 ¥ s
drum is —- of a circle division.

In 5-in. and 6-in. theodolites with the circles graduated
to 10 minutes, » is usually 1, and the graduated drum has
60 divisions, so that the value of each of these 60 divisions
is 10 seconds.

To Read the Micrometer.—Referring to Fig. 17, in
order to obtain the micrometer reading, it will be observed
that the notch reading is between 181° 10’ and 181° 20",
The vertical wires are moved laterally until they lie one
on each side of the image of a circle graduation adjacent
to the notch, e.g. 181° 20’, it being immaterial on which
side of the notch the selected graduation is situated.

The minutes and seconds are now read off on the gradu-
ated drum; in the figure this reads 6’+ between 20"
and 30”, or by estimation 24”, so that the complete reading
is 181° 16’ 24".

The same procedure is then followed for the graduation
on the other side of the notch, the drum being revolved
in the opposite direction when bringing the wires to the
graduation, ie. in the final centring of the wires over
the graduations the direction of motion of the wires
should be contrary in the two cases. The mean of the
two drum readings is taken as the micrometer reading.

Adjustment for Parallax and Focus.—It is seldom
that this adjustment is required, but it applies to every
micrometer microscope and should be carried out in con-
junction with the adjustment for run which is referred to
below. A piece of white paper should first be placed on
the graduated circle under the microscope and illuminated



72 ASTRONOMY FOR SURVEYORS

by the reflector, and the vertical wires then brought into
sharp focus by adjusting the eyepiece. As in the case of
the eyepiece of the theodolite, this is an adjustment de-
pending on the eyesight of the observer. The paper is
now removed, and if the graduations of the circle are
not distinct the microscope must be moved bodily nearer to
or away from the circle. To do this, the clamp-screw of
the microscope socket must be eased. One of the gradua-
tions of the circle is then brought to the centre of the
field of view and the vertical wires moved to lie one on
each side of it by turning the graduated drum. If on
moving the eye to the left or right there is no apparent
movement of the wires relative to the graduation, there
is no parallax; but if there is movement, the microscope
must be moved slightly away from or to the circle until
such movement is eliminated.

Taking Runs.—As stated above, an exact number of
turns (usually 1) of the revolving drum should carry the
vertical wires exactly across one division of the graduated
circle, and this should be tested occasionally, the test
being known as taking runs. 1f it is found that, on moving
the wires exactly across one circle division, the reading
of the revolving drum shows that exactly one complete
revolution of the drum has not been made, i.e. the first
and second readings differ, the difference between the
readings and the nominal value of the space is known as
the run of the micromeler.

In testing, the mean of two or three runs should be taken,
and if the error is not more than 2 or 3 seconds it can be
neglected.

The microscope can be adjusted for errors of run, but
the adjustment is a delicate one for field purposes, and
if the degree of accuracy required warrants it the effect
of the error may be eliminated by applying a correction,
but this is seldom necessary for field astronomy purposes
except for the mostf precise work.

To eliminate errors due to backldsh in the parts of
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micrometer, back and forward micrometer readings
$§uld be taken and averaged as explained. This will also
reduce the error arising from lack of precision in centring

e wires on the graduations. !

thTimekeepers.EIThe most precise portable timekeeper
either for mean or sidereal time is the box chronometer,
such as employed on board ship and in observatories.
Such an instrument is suitable for field astronomical
purposes if it can be kept stationary, but is too delicate to
maintain a constant rate during transport. !

The best timekeeper for field use is a good watch with
lever escapement, and a useful accessory is a good stop-
watch registering to 0-01 second. )

A chronometer watch differs from a chronometer in the
following details :

1. The fusee is eliminated.

2. A lever escapement is used. ;

3. A different form of compensation balance is used,
but the general working principles are the same. The

¢lever escapement, as compared with that of a chronometer,
gives two impulses to the latter’s one, and with this escape-
ment it is practically impossible to stop a watch by any
such turning about as would stop one with a chronometer
escapement ; it also has the advantage of being self-starting.
The lever escapement action involves sliding friction in the
mechanism, viz. between the escape wheel teeth and the
pallets, which have to be oiled, and this is a disadvantage,
as the thickening of the oil must in time affect the going
of the watch. ]

However, a good chronometer watch, with ca.reiul' and
intelligent handling, is capable of giving results practically
equal to those of a chronometer. S1_.1ch a watch is 'tested
for position error by the makers, as it is not slung in glmba]s
like a chronometer, its going being observed with the
figures XII, III and IX successively uppermost, and the
results compared with each other and with the results when
horizontal, dial uppermost. A good quality watch will
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have practically no position error ; but, to reduce the wear
on the mechanism as far as possible, and to give its time-
keeping qualities the best scope, it should be kept hori-
zontal with the dial uppermost, and it should be wound
carefully at the same hour each day. The watch should
be exposed as little as possible to change of temperature or
atmospheric humidity.

Watch Error.—In spite of the precautions suggested
above, the watch will not always register correct time,
owing to various imperfections, i.e. there will always be an
error. The watch error at any instant is the difference
between the correct time and the time as indicated by the
watch, and this error will not, as a rule, maintain a constant
value.

It is required of a good watch that, when subject to
a particular set of conditions, it shall go at a uniform speed
so that its error changes uniformly.

Watch Rate.—The daily change of error is known as the
waich rate, and it may be either a gaining or a losing one.

The rate will differ according as the watch is stationary
(ie. standing rate) or travelling (i.e. travelling rate).

Determination of Standing Rate.—The standing rate
is determined by obtaining, at the place where the watch is
situated, not less than two sets of time signals or observa-
tions, as explained in Chapter VII, separated by an interval

of a few days, each time observation being made as far as
possible in the same manner.

Example—A time observation on 12 June at about 23h 1om
G.M.T. showed the watch to be 1om 19s-6 slow, and at the same
lace on 17 June at about 22h 3om the watch was tom 5458 slow.
ind the watch rate.
d. h. m.

une 17 22 30
une 12 23 10

Interval between observations =4 23 20=4-972 days.
Change of error=10m 54s-8 —om 19s:6 =335s-2 lost.

353

T 4972

.~ rate =7s-08 losing, daily.
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d by taking
tancy of the rate may be checked
timq;hib?szgvsaﬁgs every second night for a period of say
ten days. iy
se‘g:tz:nﬁnatiﬁ: of Travelling R.ate.—.The con%tmns'
under which the watch will be travelling will be as fo gewsf
1. Between two stations, the difference of longitude o
which is known. . .
turning to the starting station. ]
; gﬁt retmg*ning to the starting station, and longitude
t being known. ) A
m{;’u‘c:.sléor th‘:gwatch error is determined at starting and
on arrival by time observations or from wireless time
signals, and any change of error is obviously then partly
due to the difference between the local times of the two
places, i.e. to the difference in longitude. _This dlﬁere;ice
being imown, the change in error due to this is .allo\:ved o;'i
and the remaining difference is divided by the time interv;
the observations to get the rate. :
be}.(“::?:ﬂlineg (:'ate conditions include the normal stationary
period at night, but if a halt be made for several days the
period of the halt must be allowed for in computing t]ﬁg
travelling rate if the watch is kept stationary during t
halt. ] :
In case 2 the calculation is performed as for standing
rate, since the time observations are taken at the same
lace. :
Y In case 3 the travelling rate must be determined beftfn'e
the journey is commenced, and the calculations are as for
standing rate, but during the interval between the observ:l;
tions for error the watch must be carried on a daily mtgr
under as nearly as possible the same conditions as those
likely to be met with on the journey, and of the same

A

. average daily duration.

i i bservation
Je.—Before commencing a survey tour a time o
shf\:::i” ﬁhge chronometer watch to be 4m 1358 fast. At the end
of the tour the error was found to be om 35s slow, the time interval
being 11-34 days.
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The difference in longitude was 2° 07’ 19”6, and the tour east-
wards. Find the travelling rate.

Difference of longitude expressed in time

2°07" 19”6
=--T-=8m 20s-3,
and since the jl:mrney was eastwards the difference in longitude
makes the watch 8m 29s-3 slower than it apparently was.
Apparent change of error=(4m 13s:8 +-om 55s)=5m 8s-8 lost.
.. change of error due to rate
=(8m 29s-3—5m 85-8)=3m 20s-5 gained,
5 A P 0 i
.. travelling rate—".“—lys 68 gaining.

Wireless Receiving Sets.—As described in Chapter IX,
wireless time signals are broadcast from various stations
in different parts of the globe, and there are now few
localities in which the surveyor with a comparatively
small receiving set cannot pick up a time signal from one
or other of these stations. Constant improvements are
being made in receiving sets, and an intending purchaser
is well advised to consult a firm of reputable manufacturers
as to the best type for his particular locality. In general,

the manufacturers will require to know what transmitting .

stations are likely to be made use of, the nature of the
country to be surveyed, the means of transport available,
and facilities for maintenance or renewal of dry batteries
or accumulators. The manufacturer, with this information
at hand, can then design the receiving set with due regard
to the wave length of the signals available, the strength of
signal required so as not to be unduly interfered with by
atmospherics, the best type of aerial and earth, the best
source of power for the valves, and the desirable size and
weights of the various components.

CHAPTER V

ASTRONOMICAL AND INSTRUMENTAL
CORRECTIONS TO OBSERVATIONS

:R the heading of astronomical corrections to observa-
g:rgrare inclug:ig two corrections which have, in cevr:r]n
cases, to be applied to the observed positions of hea - N
bodies in order to obtain their true positions. These
two corrections are (a) asironomical refraction, (b) geo-
centric parallax. They are independent of instrumental
corrections and would exist even if the instruments used
were in perfect adjustment and free from any errors.

Astronomical Refraction.—In passing from one medium
to another of different density, light is, in general, deflected
¢or refracted, on account of the fact that the velocity of
light differs in media of different density, being, with few
exceptions, less the greater the density of the medium.
If light is passing from a medium in which its velocity 1;
v, into another medium in whnchllts. velocity is v,, and
the incident ray makes an angle ¢ with the normal to the
surface of separation at the point of incidence, and if »
is the angle between the refracted ray and the said normal

siné _vy
sinr v,

the ratio 22 is the coefficient of refraction, and is usually
v,

2
by the symbol p.
de%ﬁ%er?ttll:e p{arrr:e coﬁtaining the incident and ref;acted
rays contains the normal to the surface of separation at
the point of incidence, or, in othey .words, t_he'refracted
ray always lies in the plane containing the incident ray,
7
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and the normal to the surface of separation at the point
of incidence.

The atmosphere is extremely rarefied in the upper
regions, its density increasing continuously in the down-
ward direction owing to the increased pressure due to the
superincumbent layers ; this increase is approximately in
geometric progression. Accordingly a ray of light in

from one point to another at a different height
above the earth’s surface is traversing a medium of varying
density and is, therefore, refracted. Since the deflection

is towards the normal when the second medium is denser
thz_;n the first, if the observer is at a lower level than the
object observed, the light reaching him has been deflected
towards the normal to the surface of separation, that is
1t%;s beﬁn deflected towards the vertical, ' :
us the rays by which an object M (Fig. 18) i
at O have not travelled in the str]aight ljxge !§IO,81JJ11]§ fl?:;
have been deflected or refracted continuously as the
atmospheric density increases downwards and have followed
a curved path as shown by the curved dotted line MO.
The tangent, OT, at O to this curved line is the direction
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in which the object M is seen by an observer at O, being
the direction in which the rays meet his eye.

The apparent altitude of M as seen from O is greater
than its true altitude by the amount of the atmospheric
refraction. To obtain the true altitude the apparent
altitude has to be ‘ cleared of refraction,” or the apparent
altitude is  affected with refraction.’

If O were observed from M, the path of the ray of light
would also be the curved dotted line OM, and the true
altitude would still be less than the apparent altitude.
It may happen in hot climates that the lower strata of
the atmosphere, on account of their proximity to the
heated ground, are less dense than the strata for some
distance above them, and in this case the true altitude will
be greater than the apparent altitude; this is unlikely
to apply to astronomical observations, but may be the
cause of obscure errors in levelling operations.

In the case of light which reaches the earth from a
celestial body, the rays undergo the entire refraction due
E passing from the vacuous surrounding space through

e increasingly dense strata of air to the observer. If
the atmospheric density were a function only of height
above sea-level, and if a sufficient portion of the earth’s
surface, with the overlying strata of air, might be con-
sidered plane surfaces, the question of refraction would be
comparatively simple. But the question is complicated
by the curvature of the earth’s surface and the correspond-
ing curvature of the atmospheric strata above it ; how-
ever, even under these conditions the amount of refraction
for any given altitude would be the same for all points
of the compass. But the density is by no means a function
only of the height above the earth’s surface, but is con-
stantly varying at any one point, due to temperature
changes and to the movements of the air, and the amount
of refraction may, therefore, vary in different compass
directions. Astronomical or atmospheric refraction thus
introduces a serious difficulty into astronomical work.




80 ASTRONOMY FOR SURVEYORS

As far as possible, observations should be so arranged in
pairs that the effect of an error in the assumed refraction
may be eliminated.

It will readily be seen that if it be assumed that the
atmospheric density is a function only of the height above
sea-level, the refraction will be entirely in a plane con-
taining the plumb line and only altitudes of an observed
body will be affected, the refraction having no effect on
azimuth. While this, assumption is not always correct,
it is nearly so in most cases; any effect of refraction on
azimuth would be eliminated by taking a number of
observations under different meteorological conditions, as
it is not possible to allow for it otherwise.

There are several formulz for refraction, based partly
on theoretical considerations as to the rate of change of
density with altitude, and partly on the results of observa-
tions for the values of the constants which appear in the
formulze.

Depending as it does on the density of the atmosphere,
refraction is a function of those quantities which affect
the density, viz. the atmospheric temperature and pres-
sure, increasing with increase of barometric pressure, and
decreasing with increase of temperature. Its value is very
nearly proportional to the tangent of the zenith distance
for zenith distances up to about 60°, being, of course, zero
at the zenith itself,

A formula which gives its value accurately enough for
most purposes is

refraction =58"2 cot 4,
to be subtracted from the observed altitude .

The most accurate refraction tables are those of Bessel, '

which are given in various mathematical tables with the
method of applying the corrections for pressure and
temperature. An abbreviated table of mean refraction
with the corrections to be applied for pressure and tempera-

ture is given in Appendix V.
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Geocentric Parallax.—The term parallax is applied
in general to the apparent displacement in the position of
an object resulting from a change in position of the point
from which it is viewed. Quantitatively, it is the apparent
change in the direction of the body resglting from such
change in the view-point. Direction is measured by
reference to a line assumed to be fixed in space ; the nearer
an object is, the greater will be its parallax for a given
change in the position of the view-point. If an object
at a moderate distance be seen against a more distant back-
ground, any movement of the observer except in the
direction of the line joining him to the object, will cause a
parallactic displacement of the object relative to the back-
ground, which displacement will be the greater the nearer
the object is to the observer ; and if the distance of the
background be known, the amount of the apparent dis-
placement due to a known movement of the observer
provides a means of determining the distance of the object
from the observer. Further, if the directions of the object
as seen from two view-points at a known distance apart
can be compared by referring them to a definite unvarying
direction in space, the distance of the object can equally
well be determined. Such parallactic displacements form
the basis of all determinations of distances of inaccessible
objects, both in terrestrial and in astronomical work ; for
instance, the distance of the sun from the earth is deter-
mined by a comparison of its apparent position as seen
from two widely separated stations on the earth, and the
distances of stars are determined by comparison of their
apparent positions when observed from opposite points of
the earth’s orbit, i.e. from two points about 185,000,000
miles apart.

Geocentric parallax, as its name implies, is the angular
difference between the directions of a celestial body as seen
by an observer on the earth, and its position as it would be
seen from the centre of the earth. All celestial bodies,
with the exception of those forming the solar system, are

6
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at such vast distances that even when observed from
opposite points of the earth’s orbit the apparent change in
their directions (annual parallax), due even to this large
displacement of the observer, does not in any case amount
to one second of arc, consequently their geocentric parallax
is absolutely negligible. This is, however, not the case
with the sun, the moon, or the planets, which have an
appreciable geocentric parallax. Their apparent places,
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tabulated in the N.A., are as they would be if seen from
the centre of the earth, which is the most convenient form
in which to express them, as observations taken at any
part of the earth can readily be reduced to the corre-
sponding values for the centre of the earth, as will presently
be shown, and this reduction or correction is to be applied
to all observations on the sun, moon, or planets. In Fig. 19
the circle represents the earth, assumed spherical, and S a
celestial body, seen from A in the direction AS. Its zenith
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distance is the angle ZAS, and its altitude is the angle HAS,
If it could be seen from C and referred to the same zenith Z,
its zenith distance would be the angle ZCS, and its altitude
the angle DCS, and the geocentric parallax is ZAS — ZCS,
i.e. the angle ASC.

The geocentric parallax is accordingly the angle ASC,
which is the angle subtended at S by the radius joining A
to the centre C of the earth.

This angle is zero for an object in the zenith, and to
obtain its value at any zenith distance

AC sinASC  sin parallax
CS “sin CAS ~sin zenith distance

i AC .
sin parallax =g Xsin z.

The parallax for the observer at A is therefore a maximum
when sin z =1, i.e. when z =g0°, and its value for that case

(is termed the horizontal parallax. Accordingly

sin (horizontal parallax) =‘é—g

and sin parallax =sin (hor. parallax) xsin z,

The horizontal parallax is in all cases a small angle, and
the above may therefore be written

parallax in secs. of arc
=hor. parallax in secs. of arc xsin z,

In the case of the sun, the horizontal parallax is given on
page 1 of the N.4. for every tenth day of the year, to two
places of decimals. It varies between about 8”66 and 8”-gs,
the latter value corresponding to the earth’s perihelion on
I January: a mean of 8”-80 may be taken for field work.

The efiect of parallax on a body at a measurable distance
from the earth is to make its apparent zenith distance
greater than its true zenith distance as seen from the
earth’s centre, and referred to the same zenith. The
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correction is, therefore, additive to apparent altitudes, and
of opposite sign to refraction, which is subtractive from
apparent altitudes. For a spherical earth, geocentric
parallax would have no effect on the azimuth of a heavenly
body.

In the foregoing, a spherical earth was assumed. As the
true figure of the earth departs to some extent from a
sphere, the results are not strictly applicable ; in fact,
geocentric parallax causes an error in both altitude and
azimuth, in general, but the parallax in azimuth is so small
as to be negligible in field work. Further, as the correction
for geocentric parallax is only applicable to members of
the solar system, and in particular to the sun and moon,
which are not relied on for precise work, it is unnecessary
to consider parallax in azimuth, which is only the small
component, due to the ellipticity of the earth’s figure, of
the total parallax, whereas the parallax in altitude is an
appreciable quantity and is always to be corrected for in
sun or moon observations.

The apparent displacement, due to parallax of any kind,
whether geocentric or otherwise, is always towards the
point from which the observer moves. For a spherical
earth the assumed transference of the observer from the
surface of the earth to its centre therefore displaces the
observed body towards his zenith ; for a spheroidal earth
the transference of the view-point from the earth’s surface
to its centre would cause an apparent displacement towards
the geocentric zenith, which is at an angular distance from
the geographical zenith equal to the reduction of latitude.
This will be referred to later in Chapter VI. The displace-
ment is therefore mainly in altitude, but partly also in
azimuth, except when the observed body is on the meridian,
when there is no parallax in azimuth.

Correction for Sun’s Semi-Diameter.—In observations
on the sun, which presents a disc the apparent diameter
of which varies during the year from about 31’ 30” to
32’ 35", it is usual to make the observation on the limb or
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edge of the disc, which is brought into contact with the
horizontal wire for an altitude observation, or with the
vertical wire for an azimuth observation. The angle sub-
tended at the earth’s centre by the sun’s radius is known
as the sun’s semi-diameter, and its value obviously varies
inversely as the distance of the sun from the earth ; when
the sun is nearest to the earth, i.e. on or about 1 January,
the semi-diameter is a maximum, when the sun is farthest

from the earth, i.e. on or about 2 July, the semi-diameter
is a minimum, hence
sun’s minimum semi-diameter sun’s maximum distance
[] - 0l £l = 0 0
sun’s maximum semi-diameter sun’s minimum distance ’

The latter ratio was shown on page 5 to be 1°0341: I.
The sun’s semi-diameter is given in the Nautical Almanac
for G.M.N. for every day of the year to 001 of a second of
arc, and in the abridged edition to one-tenth of a minute
of arc. The altitude of the centre of the disc is clearly
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equal to the altitude of the upper or lower limb, diminished
by or increased by the semi-diameter, which is therefore
the correction to be applied to an observed altitude of
the limb, to obtain the altitude of the centre.

The azimuth of the centre differs, however, from the
azimuth of the limb by a quantity which depends not
only on the semi-diameter, but also on the sun's altitude,
as will be seen from consideration of Fig. 20 in which S is
the centre of the small circle representing the sun’s disc,
ZSA is a vertical circle through S, ZTB is a vertical circle
tangential at T to the limb of the disc, and ST is part of
a great circle and is therefore perpendicular to ZT.

The difference in azimuth between the centre S and
the limb at T is the angle SZT or AZB, which may be
called 3A.

Let the angular semi-diameter be s. Then in the
triangle ZTS

sinST sinSZ | sins _sinz
sin SZT sin STZ *" sin A sin go°
where SZ =z, the zenith distance.
sin 0A =sin s. cosec z,

or, since s is a small angle, and as azimuth observations

will only be done when z is large and consequently A
small,

8A =s.cosec z
=s.sec h, if k be the altitude.

The correction to the horizontal circle reading, if a
limb has been observed for azimuth, is therefore + s.sec A.

Instrumental Errors.-—~When all the relative adjust-
ments discussed in Chapter IV have been made as nearly
perfect as possible, the conditions as to perpendicularity
of axes to one another will still not be fulfilled with mathe-
matical accuracy, but slight residual errors will always
be present, which can in most cases be eliminated either
by making observations on both faces of the instrument,
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by the application of appropriate corrections to the
:;adisl:gs of t[l;)li circles ; the nature and amount of such
corrections are determined from the bubble tube readings,
which indicate the magnitude of the errors, by methods
explained in the following pages. Even if the instrument
jtself were in perfect adjustment, there would still in all
probability be a slight error in the setting up and levelling,
as a result of which the vertical axis, instead of being truly
vertical, would be inclined at a small angle to the vertical,
producing a corresponding deviation of the other axes
from their correct positions. The effect of these errors
on both horizontal and vertical angular measurements
will now be considered. The errors will be treated in
the following order :

a) Collimation error,

Eb} The horizontal axis not being perpendicular to the

vertical axis, 1

(¢) The vertical axis not being set up truly ve_rtlcal.ly:
and it will be assumed in each case that the instrument
is free of errors other than the particular one under con-
sideration. 5 )

(a) Collimation error—This exists when the line joining
the intersection of the wires to the optical centre of the
object glass is not perpendicular to the horizontal axis,
but is inclined to one side or the other of the true per-
pendicular. When this is the case, the rotation of the
telescope on the horizontal axis causes the line of sight
to generate a conical instead of a plane surface, the inter-
section of which with the celestial sphere will be a small
circle parallel to the vertical great circle which it ought
to sweep out. Thus,\in Fig. 21, let HR represent the
horizontal axis of the theodolite. If there were no col-
limation error the line of sight would sweep out the
vertical circle AZA’, but a collimation error will cause it
to sweep out a small circle BZ’'B’ parallel to the great
circle AZA’. The angular distance AB is the collimation
error ¢ referred to on page 68.
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The magnitude of the errors in the measured values of
horizontal and vertical angles arising from an error of
collimation is determined as follows :

Let S represent an object the image of which is observed
to be on the intersection of the cross wires ; its true zenith
distance is ZS, but its observed zenith distance is ZS’ or
the angle ZHS’, where SS’ is part of the great circle through
H, S, and R, and is therefore perpendicular to ZA.

In azimuth observations on a star, the quantity which

c .B A =
Fic. 21.

it is usually desired to determine is the comparative
azimuth of the object referred to that of a fixed terrestrial
reference object, that is, the horizontal angle between
the fixed terrestrial point and the object. Such terrestrial
point will usually be chosen as near to the horizon as
possible ; it may be supposed for the present purpose to
be on the horizon and represented by E. In order to
measure the horizontal circle reading between E and the
object S, the telescope is first directed towards the point
E so that the image of E appears on the vertical wire.
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On account of the collimation error the true axis of
collimation does not intersect E, but cuts the horizon
at a point D at an angular distance ¢=AB along the
horizon from E. The instrument is then rotated until
the image of S is brought to the intersection of the cross
wires, which will necessitate a rotation about the vertical
axis until the true axis of collimation reaches the vertical
circle ZA, when the vertical wire will intersect the object
S on the telescope being tilted. The horizontal angle as
measured is therefore DZA or the arc DA, which is equal
to the arc EB. The observed difference in azimuth is
therefore the arc DA or the angle DZA, or EZB, whereas
the true difference in azimuth is the angle EZS or the
arc EC.

Consequently the error in the value of the measured
horizontal angle between E and S is EC—-EB=BC=AC
—AB.

Then from the triangle SZS’
sin ZS _ sin 8§’
sin ZS'S sin SZS'
or ——.smzo=—-§m° -, sin AC=omf
sin go°® sin AC sin z

and as ¢ and AC are small angles, AC =sir‘i‘2 =¢ COSEecC 2.

.. the error in the measured value of the horizontal angle,
viz. AC —AB, is ¢ cosec z —¢, or ¢(cosec z —1), i.e. ¢(sec h—1),
where ¢ cosec z=AC and ¢ =DE =AB.

The correction to be applied to the horizontal circle
reading for a collimation error ¢” is ¢” sec’ for an object
at an altitude 4. The correction must also be applied
to the horizontal circle reading on the fixed reference
object ; it will be ¢” for a reference object on the horizon.

If, as in Fig. 21, the line of sight lies to the observer’s
right of the true axis of collimation, each reading of the
horizontal circle requires to be increased to obtain the
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true reading, i.e. the correction is +c¢ cosec z, whereas
if the line of sight be to the left of the true axis of collima-
tion the correction is —c cosec z, z being in each case the
zenith distance of the object observed, i.e. of the reference
mark or the star.

So far as collimation error is concerned, no error would
exist in the values of measured horizontal angles between
objects at equal altitudes, as the correction would be the
same for both, and one pointing on either face to each
object would give the true horizontal angle between them.
If the objects are at different altitudes, the error in the
measured horizontal angle is obviously eliminated by taking
readings of the angle both F.R. and F.L., as the errors
will be equal, but of opposite signs in the two cases.

For the error in observed zenith distances, from the
triangle SZS’,

cos ZS =cos ZS' cos SS’ +sin ZS’ sin SS’ cos ZS'S
or cos z=cos Z cos ¢, since cos ZS'S =cos go° =0

z' being the observed zenith distance.

If, then, ¢ be a small angle, cos ¢ is very nearly 1, and
cos z=cos z’ or z=z', that is, a small collimation error
produces no appreciable effect on measured zenith dis-
tances or altitudes.

(b) Error due to the horizontal axis not being perpendicular
to the vertical axis.—In TFig. 22 let H'R’ represent the
horizontal axis, inclined at an angle b to the true horizon
HR. If the telescope be rotated about H'R’ the inter-
section of the cross wires will sweep out the great circle
AZ'A’, the angular distance from the true zenith Z to
Z' being b. Let S represent the position of an object
the image of which is on the cross wires. As in treating
of collimation error, it will be supposed that it is desired
to measure the difference in azimuth between S and a
fixed reference mark, which may be supposed to lie on
the true horizon. Draw ZSC, the vertical circle through
Z and S cutting the horizon at C,
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If the azimuth of A referred to that mark be 4, then
the correct azimuth of S referred to the same mark is
0 +AZS, but on account of the tilt of the axis the observed
azimuth of S will be the same as that of A, viz. . The
error in the horizontal circle reading for the point S is
therefore AZS, or the arc AC. :

In the spherical triangle ASC, from the four consecutive
parts SC, SCA, CA, CAS,

cos CA cos SCA =sin CA cot SC —sin SCA cot CAS.

\

N - k

0 R
F1G. 22.

But SCA =go° and CAS =go ®—b and SC =altitude =
sin CA cot & =cot (9o°—b).

. sin CA cot & =tan b.

or sin CA =tan b tan A.

Therefore, since CA and b are small,
CA” =0" tan h.

That is to say, if the horizontal axis be inclined at an
angle b to the true horizon, and if the telescope be directed
to a point S at an altitude %, the reading of the horizontal
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circle differs from the reading which would be obtained
if the horizontal axis were truly horizontal by an amount
b tan &, which is the correction to be applied to the circle
reading : positive if the end of the trunnion axis on the
observer’s left is the higher, and negative if lower. The
value of 4 is measured by means of the striding level, as
explained on page 100.

For the error in observed zenith distances,

let z=ZS, the true zenith distance,
and 2’ =Z'S, the observed zenith distance.
Then, from the triangle ASC,

sin SA _ sin SC
sin go° sin (go° —b)
cos z‘=—~-5

and as b is small cos b=1 and z=2, i.e. there is no
appreciable error in the measurement of zenith distances
due to a small inclination of the horizontal axis.

(c) Error due lo the vertical axis not being set up verti-
cally.—In the following it will be assumed that the instru-
ment is in perfect adjustment as regards the perpendicu-
larity of its axes to one another, but that owing to the
setting up being faulty the vertical axis is inclined at a
small angle v to the true vertical. In Fig. 23 the position
of the true zenith is indicated by Z, while Z’ at an angular
distance » from Z is the point where the vertical axis, as
set up, cuts the celestial sphere. If the instrument had
been set up accurately, its horizontal circle would have
met the celestial sphere in the true horizon FKC, but
owing to the inclination of the vertical axis the hori-
zontal circle is tilted and cuts the celestial sphere in
the great circle F'KC’ inclined at the small angle v to
the horizon FKC and intersecting it in the horizontal
diameter KK'.

Let P represent an elevated point which is to be observed,
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the great circles ZPD and Z’PEH. The true azimuth
?fr;’wreferf:d to K and its true zenith distance are respec-
tively KD and ZP, whereas its azimuth referred to K
and its zenith distance, both measured by the instrument
as set up, are KE and Z'P r&gpect;vely. The errors in
the observed azimuth and zenith distance are therefore

KE—KD and Z’P—ZP respectively.
/

Zov. 2
T

The error in azimuth, viz. KE—KD, will be dealt with
first, and it is required to find an expression for the magni-
tude of this error. In order to do so, the position of the
horizontal axis of the instrument will be considered. If
the setting up had been accurate, the position of the hori-
zontal axis in order to sight P would have been AB, in the
plane FKC, and such that DA =9o°; the actual posﬂ:;w{l
of the horizontal axis when P is sighted is, however, A ]'3 ,
in the plane F’KC’, and such that EA’=go° If F'C
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represent the line of greatest inclination in the plane F'KC’,
then F’K and FK will each be go°, i.e.

FD +DK =qo0°, and DK + KA =qo0°, ;, FD =KA
F’E +EK =go0°, and EK + KA’ =go°, ... FE=KA’,

The horizontal axis A’B’ has therefore a definite position in
the plane F'KC’, such that KA’ =F’E, and it is inclined at a
small angle to the horizon, which angle may be called & as
before. The maximum value of b, viz. », will occur when
thg position of the point P is such that A’B’ coincides with
F'C’.

Draw ZM part of a great circle perpendicular to Z'P.
A’ and B’ are the poles of the great circle Z’PEH, and the
inclination of A’B’ to the horizon is therefore equal to the
inclination of Z’PEH to the vertical, ie. b=arc ZM.
Further, M is the point of Z’PEH nearest to the true zenith,
and is therefore the highest point of Z’PEH, consequently
HM =qgo°.

It was shown in discussing the error DH in azimuth due
to an inclination b of the horizontal axis that the error
DH =b tan h, where h=PD. In the right-angled triangle
KEH, applying the cot formula to the four consecutive
parts HK, HKE, KE, and KEH,

cos KE. cos HKE =sin KE. cot HK—sin HKE . cot KEH ;
and as KEH =go°, and HKE =y,

cos KE. cos v =sin KE. cot HK.
As v is small, cos » may be taken as 1, and then

tan KE =tan HK, or KH =KE,

Therefore the error in the measured azimuth, viz. KE—KD,
is equal to

KH—KD =DH =b tan &,

The error in azimuth is therefore in this case, as in the

ey el A e

CORRECTIONS TO OBSERVATIONS 95

case where the inclination is due to non-perpendicularity of
the axis, also b#an h, where b is the inclination of the hqn-
zontal axis and A is the true altitude _0{ P, viz. PD, which
differs by only a small quantity, negligible for the evalua-
tion of the correction, from its measured altitude PE.

The inclination b of the horizontal axis is measured in
seconds of arc by means of the striding level, as will be
explained presently, and it is a matter of .mdlfiereuoe
whether such inclination be due to error of adjustment or
error of setting up. The correction b fan h is to be applied
with the appropriate sign to the actual circle reading, in
order to eliminate the errors due both to faulty adjustment
and to faulty setting up. The sign of the correction de-
pends upon which end of the axis is the h.lg,her: If, as in
Fig. 23, the end of the axis on the observer’s right be the
higher, and if, as is usual, the horizontal circle is so gradu-
ated that the readings increase from K towards E, the
correction is negative, as KE is greater than KD ; con-
versely, if the left-hand end of the axis be the _lugher, the
correction is positive. A change of face of the instrument
will not alter the inclination of the horizontal axis due to
this cause, and the error cannot be eliminated by that
procedure ; but the actual inclination of the axis is to be
measured for the pointing on each face, and the corre-
sponding correction applied to each circle reading, when the
mean of the corrected F.R. and F.L. readings will give the
true reading of the azimuth circle. In general, the inclina-
tions of the axis will differ for the F.L. a.nd' F.R. pointings,
as part of the error will be due to the horizontal axis not
being perpendicular to the vertical axis; but the error, to
whatever cause it be due, is eliminated by the procedure
described above. y

When the horizontal angle between two points, whether
at the same or at different altitudes, is being measured on
one face of the theodolite, the d.iﬂerencg between @he
readings of the horizontal circle will not in general give
the true horizontal angle between the points; but in all
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cases the correction b fan ki is to be applied to the circle
reading for each pointing.

As regards zenith distance, it has already been shown
that index error or collimation in altitude is eliminated by
reversal of the instrument, and as it is assumed that, except
when special reasons for the contrary exist, all observations
will be made on both faces, it may be supposed that the
index error is zero. The vertical circle will then read zero
zenith distance when the telescope is directed towards Z’,
and the observed zenith distance of P will be Z'P, while the
true zenith distance is ZP ; the error is therefore Z’P—ZP,
and if the instrument be reversed, the second reading will
also be affected with the same error, which is not eliminated
by the reversal. The point M, being, as has been shown.
the highest point of the circle Z’PEH, is the point from
which zenith distances ought to be measured ; they would
then be affected with only the very slight error PZ—PM,
which was shown, in treating of inclination of the hori-
zontal axis, to be negligible. M in Fig. 23 corresponds in
fact to Z’ of Fig. 22, in discussing which it was shown that
ZS =Z'S, consequently, in Fig. 23, ZP =PM.

The error in the observed zenith distance is therefore
zero if measured from M, and Z’'M if measured from Z-.

If altitudes are being read, the true altitude of P is PD,
the difference between which and PH is negligible. If a
spirit level were attached to the vernier arm with its axis
parallel to the plane of the vertical circle, the centre of its
bubble would occupy the position corresponding to M in
Fig. 23; and if the diameter joining the zero points of the
verniers were at right angles to IM, the circle reading
would give the altitude correctly, apart from index error.
The diameter joining the zero points will not usually be
exactly at right angles to IM, but its inclination to that
position is given by the displacement of the bubble, In
order to make this clear, the use of the spirit level will now
be explained.

Spirit Level.—The spirit level consists essentially of a
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glass tube, the bore of which is either ba;‘rel-shaped or
curved axially to a circular arc of large radius, and sealed
at the ends after being nearly filled with a liquid such as
alcohol, ether, or petroleum ether. The glass tube is fixed
in a tubular brass casing, open at one side to allow the upper
side of the glass tube to be seen, in such a way that when
the level is in use the plane of the arc is vertical with the
convex side of the arc upwards. The vacant space, termed
the bubble, always occupies the highest part of the tube,
which is graduated on its upper side ; the graduation corre-
sponding to the highest part of the tube can consequently
be read. Various systems of graduation are in use, the most
usual baving a central zero. Anyalteration in the inclination
of the longitudinal axis of the level causes a displacement
of the bubble, the amount of such displacement being pro-
portional to the change of inclination and also to the radius
of curvature of the tube. Thus if a change of inclination
of ¢ radians causes the bubble to move a distance 4 along
the tube, the radius of which is », d =7 x1.

¢ If the change of inclination be ¢ seconds of arc, as T
radian =206265"

rxi . _ 206265 xd
é 206265’ Ao

The displacement for a change of inclination of one

r . .
i —— 3 the radi th
second of arc is therefore 06365 ° the radius » is thus

determined for any required degree of sensitivity ; the
greater the radius the greater the sensitivity, i.e. the smaller
the change of inclination corresponding to one division of
the level scale.

Usually for the ordinary 5-inch theodolite the scale
divisions are about one-tenth of an inch long, and the value
of one level division may be from 10 to 20 seconds of arc,
being, as already explained, the angle subtended at the
centre of curvature of the arc by the length between
adjacent graduation marks.

7
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A level may be an extremely sensitive instrument for indi-
cating changes of inclination, but its readings are not always
reliable for quantitative determinations of inclination,
owing to temperature changes causing distortion of the tube,
with a consequent change in the value of a level division.

The bubble being usually of considerable length, the
position of its centre is derived from the scale readings at
the ends of the bubble; with a central zero, the distance
of the centre of the bubble from the zero is evidently half
the difference between the scale readings at the bubble
ends, provided that the two ends of the bubble are on
opposite sides of the zero, as ought to be the case.

The method of determining an inclination by means of
the level will now be explained. For convenience it will
be supposed that the inclination of a surface is to be deter-
mined, and that each end of the level tube is supported by
a foot resting on that surface. In an ideal level the zero

of the graduations would be exactly at the middle point -
of the arc of the tube and the feet would be of exactly -

equal length, and consequently the two ends of the tube
would be equidistant from the points of contact of the feet
with any surface to which the level were applied. If such
a level were placed on a horizontal plane surface, the centre
of the bubble would coincide with the zero of the gradua-
tions, and would do so, however the feet were moved about
on the surface, even if the level were reversed end for end.
Such a state of affairs cannot be realized in practice, and it
becomes necessary to inquire how the non-fulfilment of
these conditions affects the level, and how its readings are
used to measure the inclination of a surface. Referri
to Fig. 24, it will be assumed that the feet AC and BD are
of unequal height, that the zero O of the graduations does
not coincide with the middle point O’ of the arc CD, and
also that the line AB on the surface to which the level is
applied is inclined at an angle ¢ to the horizontal,

The centre of the bubble occupies the highest point E
of the tube,
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Let V be the value in seconds of arc of one division of
the level scale. I

On account of the inclination ¢ of AB, the bubble is dis-
placed through ;, scale divisions from the position it would

have if AB were horizontal. _

The displacement due to the inequality of the feet may
be called d divisions.

If these two causes of displacement were removed, the
centre of the bubble would be at 0/, the mid-point of CD.

$
Consequently O'E =y +d.
Let the scale readings of the right and left ends of the

o.r E 4
T 'o L) D
e
8
B Porionem W D m -
Fi1G. 24.

bubble be R and L respectively ; the distance OE is then
R-L
2

0'E=0’0+0EL y
i e . ¢
g +@=00"+—— and R—L =5 +2d—2(00’)

If the level be now reversed end for enc}, the bubble wxll,
on account of the fact that AB is not horizontal, change its
position. Let the readings of the right and left ends, as

reversed, be now R’ and L’. . ] )
The above expression for R—L will still apply if the
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necessary changes of sign be applied to such quantities as
are reversed, and the equation becomes

R'—L’ =2T;—-2d +2(00")
Adding the two expressions,
2R-3L =:—’;, ors =E—R4T§‘ xV.

The inclination of the line AB is therefore obtained by
applying the level direct and then reversed, and evaluating

-R:—El'xv, which eliminates both the error due to the

zero not being at the centre of the tube and also that due
to the line CD not being parallel to AB.

In the case of the theodolite, the rotation about the
vertical axis, which is necessary in order to take both face
right and face left readings, reverses the bubble tube end
for end in exactly the same way as assumed above, and
consequently the tilting of the axis in the direction of the
line of sight is obtained by the same method, from the
bubble readings.

The value of a division of the level scale is best deter-
mined by a level-trier, in which the level is rested in a
frame one end of which is supported by a micrometer
screw of known pitch, so that any desired inclination can
be given to the frame and to the level resting in it, and the
value of one division thus found.

It can be determined in the field, in the case of the level
on the miscroscope arm, in the following way. Set up the
theodolite, bring the bubble carefully to the centre of the
graduations, make a careful pointing on any object, and
take the vertical circle readings. Now displace the bubble
through any convenient number of divisions by means of
the clip-screws ; this will throw the cross wires off the
object. Bring the cross wires back to the object by the
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tangent screw ; this will change the reading. The differ-
ence between the new reading and the original reading is
the angle through which the level has been tilted for a
bubble displacement of a number of divisions known from
the readings of its ends, and the angle of tilt for one division
is readily obtained. .

The procedure for eliminating the effect of an inclination
of the vertical axis on observed zenith distances affords
an example of the use of a spirit level for measuring
inclinations.

The inclination of the axis may be regarded as being
the resultant of two component inclinations, one in the
plane of the vertical circle and one at right angles thereto.
The effect of the latter component is to produce a slight
tilting of the horizontal axis, equal in amount to the
said component, and therefore never greater than the
setting-up error of the vertical axis.

The error in observed zenith distances due to this cause
has already been shown, in dealing with inclination of the
horizontal axis, to be negligible. There remains, there-
fore, to be considered only the component of the in-
clination of the vertical axis in a plane parallel to the
vertical circle.

In Fig. 25, let OZ’ represent the projection of the
vertical axis on the plane of the vertical circle, OZ the
true vertical, and OP the direction of the line of sight to
an object P, and ROH the position of the vernier or
microscope arm carrying the reading microscopes.

Reversal of the instrument brings the line of sight into
the position OF’, and in order to bring P again on to the
cross wires the telescope has to be rotated about its hori-
zontal axis through the angle P’OP =2(Z’OP). The micro-
scope arm will now be in the position R°OH’ as it also
has rotated about the axis OZ’, and the reading of the
vertical circle will have changed by an amount indicating
a zenith distance Z’OP, differing from the true zenith
distance by ZOZ'. 1f then ZOZ’ were measured and
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applied as a correction to the observed zenith distan

the true zenith distance would be obtained, A level
attached to any portion of the alidade, with its axis parallel
to the vertical circle, would effect this measurement ;
the level carried by the microscope arm is usually more
sensitive than a plate level, and is therefore used for the
purpose. As explained in connection with the spirit level,

R—ZL
the formula 2——2— xV determines the amount of the

Fi1c. 25.

tﬂgtlg of the vertical axis in the direction of the line of
sight.

The ends of the bubble are in this case usually referred
to as eye end E and object end O, and the angle of tilt

in the direction of the object observed is 20—2E xV,

the correction being additive to altitudes and subtractive
from zenith distances when O is greater than E, and
vice versa.

Accordingly, in the observing of an altitude on both
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faces of the instrument, the application of the level correc-
tion eliminates error due to faulty setting up of the vertical
axis, and as the change of face also eliminates index or
collimation in altitude, it may be taken that an altitude
so observed is the true altitude, apart from flexure of the
telescope tube, which will be referred to in dealing with
latitude observations.

It is advisable, however, for each pointing to bring the
bubble as near as possible to the centre of its run by means
of the clip screws to avoid large level corrections, which
may be unreliable. This virtually transfers the correction
for the bubble displacement to the circle readings. The
adjustment of the bubble should be done before the
pointing on the object, and the bubble ends ought to be
read immediately after the pointing and before the circle
readings are taken, lest any further displacement due to
temperature changes should occur.

Summary of Corrections.—For the practical work of
observing, the foregoing corrections may be summarized

{ as follows :

AsTRONOMICAL CORRECTIONS :
Refraction, applicable to all observed altitudes,
—58”-2 cot h for values of & from 35° to 9o°, where
B is the observed altitude. See Appendix V.
Parallax, applicable to observed altitudes of bodies
of the solar system, particularly the sun, for
which it is +8”-8 cosec k.
- Semi-diameler, applicable to sun observations both
in altitude and azimuth.
In altitude, +s as given for each day in the N.A.
In azimuth, +s.sec k, where % is the altitude and
s the semi-diameter.

INSTRUMENTAL CORRECTIONS :
Collimation in azimuth.—In azimuth, correction
+¢” sec h, necessity for correction eliminated by
reversal of face.
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Collimation in allitude, or index error.—In altitude,
eliminated by reversal of face.

Horizontal axis error—In altitude, resulting error
neglible.

In azimuth, correction +b5 fan k to whatever cause
due, where & is the inclination of the axis as
measured by the striding level.

Vertical axis error—In altitude, error eliminated by
reversal of face and application of T-arm level
correction.

In azimuth, correction included in & fan % as above.

CHAPTER VI
LATITUDE AND LONGITUDE

Latitude and Longitude.—The co-ordinates used in
defining the position of a point or station on the earth are
its latitude and longitude. As a first approximation, the
form of the earth may be assumed to be that of a sphere,
as shown in Fig. 26, in which PP’ represents the axis of
rotation, P and P’ being the poles, and A a station situated
on the great circle PAP’.

AT, the tangent plane at A, represents the horizon at
that point, and it has been shown that the angle TAp or

# @ is the altitude of the elevated celestial pole at A. As

the two lines AO and OQ are respectively at right angles
to the lines AT and Ap enclosing the angle ¢, the angle
AOQ also is equal to @. This angle ¢, being (for the
assumed spherical earth) both the altitude of the celestial
pole, viz. the angle TAp, and the angular distance of the
station A from the equator, viz. the angle AOQ, is called
the latitude of the station A, and is either north or south
according to whether the station A is north or south of the
equator. A plane parallel to the equator and passing
through A cuts the surface of the sphere in a small circle
called a parallel of latitude. For purposes of computation
north and south latitudes must be given opposite signs ;
usually north latitudes are treated as positive, and south
latitudes as negative.

The longitude of A is the angular distance between its
terrestrial meridian plane QAR and the meridian plane
of Greenwich, i.e. the longitude of the station A is the
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angle GPA (Fig. 26, b). Longitudes are, for astronomical
work, usually stated in hours, minutes, and seconds of

|
!
|
| (®)
FiG. 26.

time East or West of Greenwich; if stated in degrees,
minutes, and seconds of angle they are converted into
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hours, minutes, and seconds of time by reckoning 15° of
angle to one hour of time. The conversion is most con-
veniently done by division or multiplication by 15, as
the case requires, thus:

Example.—Convert 84° 45" 30" difference of longitude
into time :
5)84° 45" 30”
3)16 57 06
sh 3g9m oz2s

Example—Express 3h 35m 42s difference of longitude
in angular measure :
3h 35m 42s
5

17 58 30

3
-l

The difference of longitude between two meridians
expressed as above in time represents the mean time
interval between the passage of the mean sun across the
two meridians, or the sidereal time interval between the
passage of a star across the two meridians ; further, it repre-
sents the difference between the hour angles of any heavenly
body at the two places at any given instant.

Figure of the Earth.—The actual circumstances are,
however, not quite so simple, careful measurements of the
earth by geodetic methods having shown that the form of
the earth is not quite spherical, but approximates closely
to an oblate spheroid, i.e. the figure formed by the revolu-
tion of an ellipse about its minor axis, the polar diameter
being the minor axis, and the equatorial diameter the
major axis.
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The most recent determinations of the dimensions of the
earth give the following result :

The semi-axis major =20,925,871 feet.
» 5 Minor=20,8s55721 ,,

The radius R for a given latitude ¢ may be taken as
R =semi-axis major (1 —C sin? ¢), where C is the com-
pression or ellipticity and is equal to ;

semi-axis major—semi-axis minor
semi-axis major

I
and consequently has the value 2983

This departure from the spherical form does not affect
the definition of longitude, which remains as for the
assumed spherical earth, viz., the angular distance between
two meridian planes, one passing through the place, the
other through Greenwich, but the question of latitude
becomes slightly more complicated, as will be shown.

If a non-rotating homogeneous fluid earth be imagined,
of which the particles are subject only to their mutual
gravitational forces, such an earth would assume a spherical
form and the direction of the plumb line at any point of
it would be radial, the attraction on the plumb bob being
directed towards the centre. Now if such a sphere could
be rotated, the particles of the earth as well as those of the
plumb line would be affected by centrifugal force. It can
be shown mathematically that for a rotating fluid mass, of
which the particles are subject only to gravitational forces
amongst themselves, one figure of equilibrium is a spheroid,
of which the minor axis is the axis of rotation, correspond-
ing to the polar axis of the earth. The ocean surface of
such an earth would, owing to rotation, assume a spheroidal
form, i.e. all meridian sections would become ellipses,
having the polar diameter as their common minor axis,
The plumb line will not be directed towards the centre of
the ellipse, as both the centrifugal force and the altered
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isposition of the particles of the earth will operate to
glaupszs it to be directlz?irtowards a point such as N (Fig. 27)
on the polar axis, but the plumb line will still be normal to
the free liquid surface, which latter is, in fact, an equi-
potential surface, while the plumb line takes the dlref.tlc_m
of a line of force and is therefore normal to the liquid

surface.
| 'b |
| .

T

- o
|

Fi1G. 27.

Fig. 27 represents a meridian section of such a rotating
body, PP’ being the polar axis and A any station on the
surface. The horizon plane at any point will be the
tangent plane to the free liquid surface, i.e. to the spheroid
and the plumb line will be the normal to the surface at the
point. AT is a tangent at A to the ellipse and represents
the horizon at A, while AN, perpendicular to AT, is the
normal and represents the direction of the plumb line
at A; NA produced gives Z, the zenith of A. OA pro-
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duced gives Z’, the geocentric zenith. If a spirit level were
placed at A, its bubble would take up a position as near to
Z as the tube would permit, the liquid in the tube being
virtually a part of the free liquid surface of the earth.
Although the earth as now existing has not a surface all
of which is liquid, the foregoing represents fairly accurately
the existing state of the earth as regards mean surface,
rotation, and resultant direction of gravity. However,
according to the most precise determinations, the actual
figure of the earth, i.e. of the mean surface, is not quite
what it should be for a fluid mass rotating in the period of
oneday, but it is at least approximately so.

Latitude.—Returning now to the question of latitude
on a spheroidal earth, as shown in Fig. 27, and considering
a station at any point A, the altitude of the celestial pole
is the angle TAp. This is called the astronomical, geodetic,
or geographical latitude.

The angular distance of A from the equator, i.e. the
angle AOQ), is called the geocentric latitude, and is clearly less
than the geodetic latitude TAp, because

angle TAp =angle AMQ =angle AOQ +angle OAM.

The angle OAM, the quantity by which the astronomical
or geodetic latitude exceeds the geocentric latitude, is
called the reduction to geocentric latitude.

The latitudes in general use and shown on maps are
geodetic not geocentric, and correspond in general to the
angle TAp, i.e. to the altitude of the celestial pole, but
there may be a slight apparent difference at any station
arising from a local deviation of the plumb line due to
irregularity in the distribution of matter in the earth in the
neighbourhood.

The objects of work in field astronomy are in all cases
purely terrestrial, i.e. observations are not done with a
view to investigations in astronomy, but they have for
their object :
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Determination of co-ordinates (latitude and longitude of
a station),
& ,»  meridian or azimuth of a line,
= »  local deviations of the plumb line.

Determination of Latitude by Meridian Altitudes.—

Fi1G. 28.

The determination of latitude to a moderate degree of
accuracy is one of the simpler operations in field astronomy
and, as a knowledge of the latitude is usually required
before the results of any other observations can be com-
puted, it is also one of the first operations to be carried out
on arrival at a station.

Fig. 28 represents the celestial sphere as seen by an
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observerat O. P is the elevated pole, NESW the observer’s
horizon, Z his zenith, and SZPN his meridian plane.

The latitude, being the altitude of the elevated pole,
is the angle PON.

As there is no star precisely at P it becomes necessary,
in order to find the latitude, to deduce the altitude of
P by means of observations on other heavenly bodies of
known polar distance. The most obvious method of doing
so is by measuring the altitude of a star at the instant of
its culmination or transit; for if 3 be the declination of a
star culminating at §’, the angle QOS’ =8, and if A, be
its altitude at transit,

then the angle PON =90°—PO0Z
=90°—00S
=00°—(S5'0S—S'0Q)
=00°—Ap +3
=2Zm +0, where z, is the meridian
zenith distance,
or go°—angle PON =h,,—d.

But go°—angle PON is the complement of the latitude

and is known as the colatitude.

Hence colatitude =meridian altitude—declination. The
declination is to be treated as positive if it is of the same
name (i.e. north or south) as the latitude, and as negative
if of different name.

In any particular case a rough diagram of the relative
positions of pole, zenith, equator, and observed star will
obviate any possibility of error.

Procedure in Observing.—If a star is to be observed
on the meridian with a theodolite, as the star is on the
meridian only for an instant, it cannot be observed both
F.R. (face right) and F.L. (face left) at that instant.
The best procedure is to observe the star alternately F.R.
and F.L. for some minutes before and after the previously
computed clock time of transit. The pair of consecutive
observations giving the highest mean is taken, and the
said mean treated as the observed meridian altitude.
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The observation is quickly carried out, and this method
has the advantage that the approximate latitude is
obtained quickly with a minimum of computation. The
declination of the star is taken from the N.4., from the
section giving apparent places of slars, in which section
the R.A. and declination are given for every tenth day
throughout the year, or in the case of circumpolar stars
for every day of the year, at the instant of upper transit
at Greenwich. The declination at the instant of observa-
tion is got by interpolation from the tabulated declina-
tions, which need not be done with great accuracy, as a
single meridian observation, i.e. a pair of pointings F.R.
and F.L., with an ordinary theodolite would not be ex-
pected to give a result correct to within a few seconds
of arc, more precise methods being available if greater
accuracy is desired.

The star’s observed altitude has to be corrected for
refraction.

The observation may be carried out on the sun, in which
case the declination at the instant of observation has to
be obtained by the method given on page 33.

The alternate F.R. and F.L. pointings should, in the
case of the sun, be made alternately on the upper and
lower edges or limbs of the disc, as this eliminates the
correction for semi-diameter and also tends to eliminate
errors arising from the difficulty of making a perfect
contact with the horizontal wire of the theodolite, as it is
likely that these errors on upper and lower limbs will
balance one another.

For the sun, the correction for parallax will have to be
applied.

Balancing of Observations.—Any error in the assumed
refraction will affect the computed latitude by the amount
of the said error. This error can be partially eliminated
or reduced, in the case of star observations, by observing
two stars, one north and one south of the zenith and at
as nearly as possible the same altitude. The errors in the

8
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deduced latitudes arising from the error in the assumed
refraction will then be equal, but of opposite sign, in the
two cases, and the mean of the two deduced latitudes will
be free of refraction errors.

For, let z; and z, be the observed zenith distances affected
with refraction ;
7, and 7, the assumed refractions ;

r the error in refraction being equal in
the two cases, provided that z, and
zy are nearly equal ;

6, and J, the declinations at the moment of
observation ;

then (z, +7; —7) and (2, +#, —7) are the true zenith distances,

and the latitude is (z;+7,—7) +8;, or —(zo+73—7) +0s;

or, taking half the sum, latitude = #1272 *+21 ;(z* +19) +3y
Now the latitude deduced from the first star observed is
Pr=2+7+0y,
and the latitude deduced from the second star is
@y =—(23+7y) +0
+7;) +8; — (29 +75) +0,

and the mean is (& which is the

2

expression just deduced for the true latitude, i.e. the
refraction error has been eliminated by observing two
stars, one north and one south of the zenith and of nearly
equal zenith distances.

If a constant instrumental error exists in the altitudes
given by the instrument, such as an index error, this has,
of course, been eliminated by the described procedure,
as each star has been observed on both faces : but if two
stars, one north and one south of the zenith, are to be
observed, it will be sufficient to observe each star on one
and the same face, and to take the mean of the deduced
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latitudes ; in this case each of the deduced latitudes will
be affected with the index error, but with opposite signs
in the two cases; the mean will then be the correct
latitude.

It frequently happens that latitudes determined from
observations north and south of the zenith differ by an
appreciable amount, however carefully made. This is
accounted for by droop or flexure, which is present in
most theodolites. Its effect is not eliminated by reversal
of face, but is, however, eliminated by balancing observa-
tions on both sides of the zenith.

The stars for observing should be selected beforehand,
and should be such that the interval separating their
transit is not more than ro or 15 minutes, if possible, so
that there may be little or no change in the refraction
for the two observations.

This method can be relied on to give a result correct to
within a few seconds with a field theodolite reading to 20”.
For more accurate work a special instrument called the
zenith telescope having a micrometer eyepiece is used ;
two stars which transit at nearly the same time and at
very nearly equal altitudes, one north and one south of the
zenith, are observed at transit on one face of the instru-
ment, the difference in their altitudes being measured
by the micrometer eyepiece without reference to circle
readings, from which difference the latitude can readily
be deduced. The method is known as Talcotl's method,
having been first used by Captain Talcott.

Latitude from Polaris.—An alternative method for
finding latitude is by an altitude of the Pole Star. This
method has the advantage that it can be adopted at any
time when the Pole Star (Polaris) can be seen in the
theodolite, without waiting for the transit of any particular
star. The method consists in observing the altitude of
Polaris and noting the clock time of the observation, from
which the star’s hour angle can be deduced, and the
latitude computed by an approximate formula, applicable
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only to stars of small polar distance, which is given
below.

In observing, the usual procedure for determining a star’s
altitude and the corresponding clock time is followed,
viz. a pointing on one face, two on the other face, and
finally one on the original face, the clock time bemg
recorded for each of the four pointings. The micrometer
or vernier readings for each pointing are corrected for
level error, and the mean of the four altitudes is taken as
being the observed altitude at the mean of the clock times.
The level correction may, of course, equally well be applied
to the mean of the circle readings, in one operation, which
is simpler.

This observed altitude is corrected for refraction to
obtain the true altitude at the instant of observation ; the
clock time is corrected for the known error of the clock,
and the star’s hour angle deduced from the right ascension
given in the N.4. and the longitude, which will be known
at least approximately.

Let z be the true zenith distance of Polaris,

¢ ,, polar distance of Polaris,
¢ ,  colatitude of the station,
¢t ,, hour angle.

The latitude ¢ of the place of observation will differ from
the altitude % of Polaris by a quantity which may be
called x, and which will in no case exceed the polar distance
p of Polaris,

Then @=h+x.
Then in the triangle ZPS (Fig. 13) from equation (1)

€0s z=C0s P cos ¢ +sin p sin ¢ cos ZPS,
or sin i =sin @ cos p +cos @ sin p cos ZPS
=sin (h+x) cos p+cos (h+x) sin p cos ZPS.

The angle ZPS will be equal either to ¢ or —¢.
.. sin A=sin (k+x) cos p+cos (h+x) sin p cos £
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The solution of this equation is given on page 47, where
it is shown that

x=—p cos t+}(p sin #)? tan A,

which is the correction to be applied to the altitude % to
obtain the latitude ¢.

In this equation the angle $ is in circular measure, i.e.
in radians, and the resulting value of the correction %
will also be in radians, which is inconvenient.

To obtain the value of x in seconds of arc, let # be the
number of seconds of arc in one radian. Then, since 1”
is a very small angle, sin 1”=numerical value of 1” in

radjans=5.
n
x# p# P# 3 s 2
e cost+§(-;i) sin® ¢. tan A.

x" =—p" cos £+ }(p” sin £)® tan % sin 17,
The expression for the latitude ¢ then becomes
@ =h—7 cos ¢+ }(p sin ¢)* tan . sin 17,

where p is in seconds of arc. The angle ¢ is most con-
veniently taken the shortest way from upper transit ; e.g.
if the computed hour angle is 18h 25m 35s, the value of ¢
used in the formula will be the equivalent in angular
measure of 24h—18h 25m 35s, ie. sh 35m 255 x15, or
83° 51’ 15",

It can be shown that in the case of Polaris, the polar
distance of which is about 1° 57, the error due to admitting
the approximation as used in deriving the above expres-
sion for ¥ cannot amount to as much as 1” of arc, The
formula can therefore be used for any latitude determina-
tion in which greater accuracy is not required, but in
low latitudes the uncertainty of the amount of refraction
at the low altitude of Polaris in such latitudes renders the
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A correction for the clock error on G.M.T. is applied, and the
hour angle computed thus :
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method unsuitable for accurate work. It is, however.
susceptible of considerable accuracy in latitudes higher
than about 35° N. The method is less useful for field
work in the southern hemisphere, as the stars in the neigh-

h m s
Clock (mean time)= 4 37 372
error, fast= o0 00 37

bour]:;o:d I::af thci sdouth celestial pole are not sufficiently 8 g.ﬁ!g; 4 37 ?g':
bright to icked up readily. T.G.MN.=14 50 .
P P ’ add for S.T.=00 00 (3)%422
Example— pr B G
G.S.T.=19 28 41-904
OBSERVATION ON POLARIS FOR LATITUDE long. west=og 00 415
LST.=19 28 o004
Clock Times.|[Face| Level. Vertical Circle. oﬁ:?ﬁe RA.=1 36 31
| P.M. E O : Hour angle, HAA.=17 51 20-4 West
} mg = g 08 306 East
‘ A The value of the R.A. is that given in the N.4. for the date of
I' 4 32 30 |FL |20-8]22-8| 51° 26’ 517 26" 56| 25" 22| 25 27"| 51° 26’ 09" the observation. The declination, from the same source, is
: 4 36 33 |FR|22.0/21:7[51 27 09 |27 12|28 31|28 3751 27 352 88° 55’ 04", therefore the polar distance, p, is 1° 04 56" =3896".
g ll 4 38 54 |FR|22-0/21:7|51 27 47 |27 49 |29 15|20 21 |51 28 33
‘ 4 42 32 [FL|200|24-0|51 29 42 [29 40 |28 08 |28 o9 [51 28 33 T=6h 08m 3056 log p=359062 : log p=3-59062
‘ f or 92° 07" 39" log cos t=2-56963 n og sin f=1-99970
i 4,,50 29" 84-8| 902 111’ 29" i s g PIPTER TT 3:50032
| — L] 2 *
4h 37m 3752 51927 5272 log 1st correction=2-16027 n
X 2=7-18064
1st correction= 14476+ log tan ’:'—"?_‘09367
The mean of the circle readings, viz. 51° 27’ 52”2, is affected SRS <5y =2.68§57
with the level error, and a level correction, as explained on page 102, log }=1-69897
ha.'si" I:.o l‘afeﬂapp(l)i{ed tlo ot;tz:tin the o})sertv;d altitu({::. 1-66385
e value of a level division for the particular theodolite used ot
was 10" ; accordingly the level correction is 2nd correction=46"1+

90-2 —84-8
8

and is positive for altitudes, since 20 is greater than ZE.
. The correction for refraction, taken from tables of mean refraction,
is 45" (for a temperature of 50° F. and pressure of 29-6 in.).
Accordingly, mean circle reading is 51°27" 52”2
level correction+ 00 00 6.7
refraction— 00 00 45

X 10" =6"7

¢ True altitude= 51°27’ 13”9
Next, taking the mean clock reading, the hour angle of Polaris
has to be evaluated for that instant.

h=s51°27' 13"9
1st correction=_ 42’ 247-6
2nd ., = 4 401

=51° 30’ 24"6
which is the latitude deduced from the observation.

It will be noticed that the letter » is written after the value of
log cost. This is to indicate that the quantity, viz. cos/, of which
it 1s the logarithm, is negative. ;

It may here be observed that to obtain a result correct to one
second, five-figure logarithms are, in general, sufficient, but where
greater accuracy is required, seven-figure logarithms should be
used.
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Use of Pole Star Tables.—Both the Nautical Almanac
and the corresponding American publication, the American
Ephemeris, give Pole Star tables for facilitating the reduc-
tion of observations on Polaris for latitude, by dispensing
with the computation.

_ The Tables in both publications are based on the equa-
tion given on page 117, but they are constructed some-
“.rhat dl-ﬂerently. In the N.A., the value of the 1st correc-
tion, viz. —p cos 1, is given in Table I for values of ¢
increasing by 2 minutes of S.T. from oh to 24h. The
quantities given in this table have been computed for
a mean value of p; # is, however, not in fact constant,
as the position of the celestial pole varies on account of
precession and nutation.

The quantities in Table I, therefore, require a small
correction, given in Table ITT and called the 3rd correction,
to reduce them to the true values corresponding to the
actual values of the polar distance and R.A. of Polaris
on the date of the observation.

The 2nd correction is given in Table II.

. The quantities for the 3rd correction would be negative
In some cases; but in order that the tabular correction
may in all cases be positive, Table III has been constructed
in such a way that the observed altitude is to be reduced
by 1 minute of arc before application of the corrections.

Application of the tables to the observation just com-
puted, which was taken on 4 November 1927, gives

Altitude reduced by 1 minute ; . 5% o6l gzt
1st correction (for L.S.T. 1gh28moos) . o 2 16
2nd - - i . 0 0 46
3rd & - o ‘T .09
Latitude 51 30" 24™9

The tables do not give such accuracy as the computation,
but even if the degree of accuracy is not sufficient for the
purpose of the observation, they afford a ready means of
checking the computation for any large error.
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An observation on Polaris for latitude ought, if con-
venient, to be combined with a meridian observation of
a star south of the Zenith for the reasons already explained,
viz. that errors in the assumed refraction are largely
reduced and any instrumental errors eliminated.

For the reduction of the observation it is necessary to
know the L.S.T. in order to compute the hour angle, #, of
the star at the instant of observation. The clock will give
the standard meridian time, whether sidereal or mean,
of the instant of observation; the longitude will be
known at least approximately, and may be applied to
the standard meridian time to obtain the local time.

A small error in the assumed local time will not affect the
computed latitude to an appreciable extent, but in any
case the computed latitude will be sufficiently near the
true latitude to enable the observer to take observations
for local sidereal time by the methods to be described in
the chapter on time determinations, and the longitude will
then be found from the difference between the local time
and the standard meridian time. This longitude may then
be used for a more accurate determination of latitude.
In fact, the observations form a series of successive approxi-
mations, and this applies to most, if not to all astronomical
observations, the number of the observations in the series
increasing with the accuracy required.

Latitude by Circum-Meridian Altitudes.—The method
and principle of finding the latitude by the meridian
altitude of a star have already been explained. It is
possible, however, to obtain a more accurate and more
reliable determination by observing a series of altitudes of
a star, with the corresponding clock times, for a few minutes
before and after the transit or culmination of the star, and
applying a correction to each altitude to reduce or correct
it to the altitude the star would have at its transit, the
hour angle corresponding to each observed altitude being
known. In other words the altitude of the star is observed
at a known small hour angle, and a correction corresponding
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to the hour angle is applied, the amount of the correction
representing the difference between the star’s altitude at
the instant of observation and its meridian altitude.

From each separate pointing on the star, with the corre-
sponding known hour angle, the latitude can be computed,
and the mean of the series is taken as being the latitude
deduced from the observation.

The expression for the amount of the correction, or the
reduction to the meridian, is given on page 51 and is

2sin? -
cospcos 2
cos & sin 17

2 sin? ¢
The factor = 1'2 depends only on the hour angle #, and
its value can be tabulated for values of # advancing by one
or more seconds. Such a table will be found in Appendix

No. VI.

In the factor cos___ogsc:s 5' 8 is known, and % is known from
the observation. @ is, however, not known, being in fact
the latitude which it is desired to obtain. An approximate
value of @ is, however, obtained by treating 4 as a meridian
altitude, from which @ is derived by the formula
@—0=90°—h. The best procedure is therefore to take
the pair of consecutive pointings which give the highest
altitude, to treat this highest altitude as 4 in the factor
oos___oﬁst;‘os ?, and the value of ¢ is then got from p—d=
90°—h.

Accordingly for all the pointings the value of

is constant.

In proceeding to determine a latitude by this method,
a star is selected which will transit at a convenient time,
and at a convenient altitude, say about 30° to 50°. Point-

oS @ cos &
cos h

)
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ings on the star are taken from about 10 minutes before
transit to about the same interval after transit, and the
altitudes and corresponding clock times booked. The
pointings are best taken alternately face right and face left,
but face may be changedafter each two pointings if preferred.

If &, be the first observed altitude, after correction for
refraction, the hour angle being then ¢, the corresponding
meridian altitude 4 is

cos @ cos d il Zf
i St e Y
il C;:E—a is constant and may be represented by A.
2 sin® .
- 1,2 depends only on the hour angle #, and may be
sin
represented by m.
o o h=hy+Amy
Similarly h=hy+Am,
and h=hg+Amg
or h=h,+Am,

The meridian altitude corresponding to each pointing is
thus computed, and if there were no instrumental or
observing errors these meridian altitudes ought all to be
equal. Their mean is taken as being the true meridian
altitude, and from it the latitude @ is deduced by the
formula ¢—3 =9o°—h. Such a series of circum-meridian
altitudes gives a more accurate result than a single observa-
tion on the meridian, or a pair of observations one on each
side of the n:w.endlz;\]?1 o 6 R

Any pointing which gives a value o e
from {hgomeﬁmay begrlejected as unreliable. The values

R -
2 sin? -

of m, ie. — 13 are, as already stated, most conveniently
- sin
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taken from tables (Appendix VI), ¢ being for each pointing A x i .
the actual hour angle at the instant of pointing. Observation for Latitude by Circum-Meridian Altitudes.

Accordingly, if a star is being observed, £ is the sidereal 4
interval betgween the instantu:)% pointing and the transit. STAR OBSERVED 4* CETI
If a mean time clock is being used, the clock time of transit R.A. 2h 3om 3353
is first computed, and the clock time of each pointing & 2° 55 s54™2N.
booked. The intervals obtained by subtraction will be
mean time intervals, from which the corresponding sidereal Mean Observed
ill':tervals must be computed or taken from tables, to obtain glao%k) Face| Level | Vertical Circle ii‘é?i’-fg"s Level | "y 1titude
the value of ¢ for each pointing. It will usually be suffi- Bt
ciently accurate to perform the reduction to sidereal S
intervals by adding 10 seconds per hour to the mean time A i
intervals, the accurate quantity being 9-8565 seconds per s % s s et
hour. An equal number of pointings should, if possible, be 62738 | R|70]|65[47 56 > 5‘: 032 1: gi i‘; i 42 04 33
taken before and after transit ; if this be done, the effect of a 239 52 E ;f gg gé;m 37 30| 42 07 15 | —11 | 42 07 04
smallunknownerrorof the clock on local time will be reduced. 6 gg g; L 12616014807 0 08 08 | 43 OF 45 _'__‘g ‘fz i :g
If the observation is being done on the sun, the clock 639 39 | R|62]70]|47 53 30 54 o 42 36 :g o | %206 1%
time of transit, being local apparent noon, L.A.N., is first B [ ofl bod b BB B od e B IR forp 1
computed. The clock will probably be a mean time clock, 6 13 13 N ¢ 70|61 |42 0500 05 30| 42 05 15 | — 9 | 42 05 06
and the sun’s hour angle for any pointing will then be given r

directly by the difference between the clock time of the
transit and the clock time of the pointing. It should be men-
tioned here that the sun’s hour angle at an instant separated

Value of 1 division of level=20".

s preg 3 i
by a mean time interval of ¢ from transit is not exactly /, as 1..S.T. of transit=e 2 ;'; 3 ;:5 Take for m—w;c:—s" bost: pair o PR
the equation of time has, in general, changed during the " "Long. W.= 371 e
. - . 5 . s and F.L. readings:
interval ¢, but the change in the few minutes interval will Akl 9 2 MG F.L.=42° 07’ 29"
in all cases be so small as to be negligible in field work. G'S'TS"%_(;_;[:E;I,=20 02 243 F.R.=42 06 23

The declination to be taken in the case of the sun is, ' e Rl 2 |g4 13 52
for each pointing, the actual declination at the instant of Sidereal interval= 6 37 46-3 — =800,
that pointing, but it will be sufficiently accurate to take M.T, interval, G6h = 5 39 01-023 $EWLE Me RPN
for all the pointings the value of the declination at the i " sym=" 36 53938 | Refrac- cos 3=1-99943
mean of the times of the pointings. The pointings should } g - it ¢ e O ——
preferably be done half on the upper limb and half on the et h=42 035 52 =1-79983
lower limb, as any error in making the contact between the G.M.T.= 6 36 41:134 =2 55 54 . cOSh=1-87040
. ) iy e - 1 18 —_—
limb and the horizontal wire will probably be of the same i IO B 37 58 o
kind in the two cases, and the error will cancel out in taking e o c=39 09 58  log A=1-92043
t_he ooy ¢=50° 50 02" A= -850
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ooy 1 M.T.int.| S.T. int. Altitude
oc ace| to to " Am h4-A
transit | transit . e

2 m s m 8 | m ‘8 a o SRR ey
27 33 | R | 10 18 | 10 197 | 2093 178 42 03 55 2 06

g 29 52 | R 8 o4| 8 o3 128:3 | 109 42 oi 33 :z 06 gg

. 9WIR] 2 43] 143 58 49 | 42 06 23 | 42 06 28

S % R 3 33 3336 | 249 | 211 | 42 06 15 | 42 06 36

8 33 32 /L[ 4 24| 4247 | 382 | 325 | 42 07 04 | 42 07 36

: 3609 |L [ 1 47/ 147 6-2 52 | 42 07 29 | 42 07 34

- 43 10| L 6 14| 6 135 767 652 | 42 06 22 | 42 07 27
46 15 | L 8 19 8 203 | 1364 | 1159 | 42 05 06 | (42 07 02)

o ’ ~

Mean F.R.=42 06 34-
» FL.=42 o7 3=-§

14 071

4z o7 o3
Refraction= o1 045

43 05 595
§=02 55 542

The meridian altitude (42° 07’ 02”) has been rejected, as deviati
considerably from the other values. The adva:{ta.ge of compugx‘;g
the meridian altitude rately for each pointing is that a
pointing such as the one for 6h 46m 15s can be rejected as deviating
too far from the mean of all the pointings, I!rovided, however,
that there is no icular reason to suspect that any pointing
1s a poor one, the reduction of the observation can be shortei;:lg
somewhat by taking a mean value of the altitude i
a.pglym . to 1t the corresponding level and refraction corrections,
and ad to it the quantity A multiplied by the mean value of

m for all pointings. This procedure is correct mathematically,
but does not permit of the rejection of a poor pointing.
hm:"rfl\”‘.

hq=h.+Am,. ete.
Bt Ix,+h,+§3+_ O My 4-mytmg -, ..
g No. of pointings * No. of pointings
ie, hm=mean value of %A X mean value of m
or hm=hy+Am,
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Applying this procedure to the present observation :
Mean M.T.int.|S.T. int.
Clock |pacel Level Circle to to m
(M.T.) Reading | transit | transit
ol 12 S e)
hms SN m 8 |m 8 f
6 27 38 R |70]|6'5|42 04 c0o | 10 18| 10 19-7| 2093
6 29 52 R | 72|60 04 43 8 04| 8 05 1283
6 38 32 | L |71]60 07 13 4 24| 4 247] 382
6309 | L |76|60 07 45 | 1 47| 1 47 6-2
63939 | R|62]70 06 15 I 43| 143 5:8
64129 | R |68]68 o6 15 3 33| 3 336| 249
6 44 10:5} L | 70|62 o6 30 6 14| 6 13 767
6 46 15 L |70]61 05 15 8 10| 8 20-3| 1364
550 506 848 oo 816258
42° 06’ 00" my= 782
Level oomction=%';5°'6 X20=—6"6 A= -85
Amy= 66"5
Refraction= —1 04
Total correction= —1 106
Mean observed altitude = 42 06 o0
h= 42 04 494
Amy= 66-5
hotAmy= 42 05 559
"'%= 2 55 542
c= 39 10 oOI
¢= 50° 49" 583

The reduction by this method is accordingly somewhat shorter,
but the 1 method, viz., by reducing each pointing separately,
is to be rred if time permits of its use.

Methods for determining longitude are given in Chapter
IX.




CHAPTER VII
DETERMINATION OF LOCAL TIME

General.—The determination of local time is frequently
necessary in the operations of field astronomy and naviga-
tion. The determination of the longitude of an observing
station resolves itself into a determination of the difference
between local time and Greenwich or other standard
meridian time, as explained. Conversely, if the longitude
of a station is known accurately, an observation for local
time will, when corrected for longitude of the station,
give the Greenwich time at the instant of observation, and
the difference between this and the chronometer time of the
observation gives the error of the clock on Greenwich time,
It is to be understood that in all cases what is meant by
determination of time is in reality determination of the
clock error on local time, and a chronometer or clock is an
essential part of the equipment.

Time by a Single Altitude.—The method in general
use in field astronomy consists in measuring with a theo-
dolite the altitude of a star and noting the corresponding
clock time. At any definite station, any star reaches a
particular altitude at two definite instants of local sidereal
time, one instant when the altitude is increasing and the
other when the altitude is decreasing. The transit of the
star occurs at the middle of the interval between these two
instants, and the hour angles of the star at the two instants
are such that their sum is 24 hours,
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According to equation (5),
cos P =cos z sec  sec §—tan @ tan &

z is determined by the observation,
is known for the station,
and ¢ is known from the N.A4.
P is then computed by one of the methods given

on pages 43 to 45.

Selection of Stars.—The selection of suitable stars
for time observations is based on the following considera-
tions. It is obviously necessary that the star should be
changing its altitude rapidly, in order that the instant of
its intersection by the horizontal wire of the telescope may
be noted with precision; a star the altitude of which is
changing slowly will remain for an appreciable time inter-
sected by the wire and is unsuitable for time observations.
Further, as the latitude of the station enters into the
formula by which the hour angle is determined, and as the
latitude may not be known with exactitude, stars should
be selected such that an error in the assumed latitude will
produce the least possible error in the local time deduced
from an observation of the star’s altitude. It will now be
shown that these conditions are best fulfilled by stars in
the prime vertical.

The first condition as regards suitability for time observa-
tions is, as stated, that the star’s altitude, and therefore
also its zenith distance, should be changing rapidly. The

rate of change of zenith distance is g’;, which is therefore to
be a maximum.
From equation No. 1,
€OS 2 =c0s $ cos ¢ +sin  sin ¢ cos P.

The star’s polar distance $ is practically constant for
long periods, and may be treated as constant for the purpose
of any one observation. The colatitude ¢ is constant for
any one station. The variables are the angle P and the

9
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zenith distance z. P changes uniformly with the time,

ie. % is constant, being in fact 15° per hour, or 15" of

arc per sidereal second in the case of a star,
Differentiating the above equation with respect to ¢,

s B i - ap
—-smzﬁ—o—smﬁ.smc.sm P'-d-t'

sinz§=sinpsincsiana constant,
ds_sin $ sin ¢ sin P
dt sin z

gag uos

sinZ sin P’
dz sinz.sinZ.sinc

et e x constant,

=sin Z sin ¢ x constant.

x constant ;

but or sin $ sin P =sin z sin Z,

The value of the constant % is 15" of arc per second of

time ; accordingly, if 8¢ represent a short interval of time,
in seconds, and 6z the change in zenith distance, in seconds
of arc, during that interval,

0z” =15 sin Z sin ¢ ¢ in seconds of time.

As sin ¢ is constant, j—: is obviously a maximum when

sin Z has its maximum value, ie. when Z =qo°, i.e. when
the star is on the prime vertical.

The zenith distance, and therefore also the altitude, of
a star is therefore changing most rapidly when the star is
on the prime vertical.

From the equations it is seen that all stars in the same
vertical circle have the same rate of change of altitude, and
stars in the prime vertical have the greatest rate of change
of altitude.
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If the above expression be written

8"
15sin Z sin ¢
it is clear that a small error in the measurement of z pro-
duces least effect on the resulting value of ¢ when sin Z is a
maximum, i.e. when Z =go°.

Taking now the second condition for suitability for time
observations, viz. that the effect of a small error in the
assumed latitude on the resulting computed time is to be
a minimum, we have, as before,

ot in seconds of time =

€Os z =cos P cos ¢+sin p sin ¢ cos P.

Assuming now that the zenith distance z has been correctly
observed, zand p are constant, and the variables are c and P,
Differentiating with respect to ¢,

0=—Ccos  sin c+sinp(coscoosP—sincsinP%§)

or mspsinc—sinpcosaoosP=—sinpsincsinPg...(a)

%pplyzing the cot formula to the four consecutive parts
?l ] C, 'y

cos ¢ cos P =sin ¢ cot p—sin P cot Z.
coscoosP=sincc.°-—s—p'—sinPcotZ
sm p
sinpcotZ=smc.cosp—c?sc.si11ﬁ.cosP
sin p
sin ¢ cos p—cos ¢ sin p cos P =sin p sin P cot Z.
from equation (2) above,

sin  sin P cot Z =—sin  sin ¢ sin PO
@ dP_ cotZ
dc sin ¢

which is a minimum, and is zero, when cot Z =o.
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Now the meaning of % being a minimum is that for a An example of a time observation, taken on 19 January 1928,

: ’ y in latitude 51° 29’ 57° N., on east and west stars, with a 6-in.
small change in ¢, the resulting change in P is a mini- s micrometer theodolite reading direct to 10%, and by estimation to
mum, and as P is the hour angle (east or west), the flol'l ait;iiude level reading 10* per division, using a sidereal clock,
resulting computed value of the local time has the least g
error when cot Z=o, ie. when Z=go°. The error WEST STAR—VEGA (a LYRAE) R.A. 18h 34m 2758
will, in fact, be o if Z is exactly go° i.e. if the star 5 38° 42’ 47" N.
is observed on the prime vertical. The error is clearly Sidereal Level
a minimum when sin ¢ has its maximum possible value, Clock.  [Facel 70 Vertical Circle. Mean.
viz. 1, when ¢ =qo°, i.e. when the observing station is on E _©
theeqmml for both th d, th : ns l

Accordingly, the reasons mentioned, the best 4 3 el TR IR e o s e
stars to select for time observations are those on or near v ii ;? ‘;3-? E‘]ﬁ iii g% ‘;3 i‘; ig i‘; §é 42 -4 429 ‘:*g ‘§‘9’ .:g ;g -i
the prime vertical. 23 24 23 |FR|21°8|2370| 39 21 20 |21 24 |19 54 |10 53| 39 20 375

Balancing by East and West Stars.—Apart from ob- 23 27 55°5 | FL [23°221°1| 38 48 04 |48 OT |49 09 |49 15| 38 48 37
serving errors, an error in the assumed value for the 4|93 02°3 al1s8 02 32 4
refraction will have a direct effect on the corrected altitude, e
and therefore also on the deduced local time. For in- 23 23 156 Io"X(M)= —4"2 level 39° 307 38%x
stance, if an east star is being observed, and too high a - 3t palbting
value be assumed for the refraction, the corrected altitude
will be lower than téne true altitude, and the computed —1'14"2 —1 14 "2
hour angle, measured eastwards from the meridian, will _ e RPN
be too great. The deduced instant of observation will Sin ‘§= m(:in:}sfc(s_‘] - il
therefore be earlier than the true instant of observation, logs b c= 38 30 03
being in fact the instant corresponding to a lower altitude ‘ sin (s—p) 1'5095908 sin p 1'8922548 p= 51 17 13
than the true one. If now a west star be observed at ";n (s—¢) 17190111 sin ¢ 1°7941575 )
about the same altitude, and if, as is likely, too high a -y 3y 0'3135877 16864123 2i:'472 i7 ?é
value be assumed for the refraction in this case also, the 2 l?~5430896 s—p= 18 51 43
computed hour angle, measured westwards from the 4 I gy Y—— $=om 3t 35 53
meridian, will also be too great. The deduced instant of i log sin 5 =1"7715448
observation will therefore, corresponding as it does to | P_ 60147 26"
too great an hour angle, be later than the true instant i g 2 &
of observation. An error in the assumed refraction is I el abailis
therefore largely eliminated by taking an observation on t_h —
both an east and a west star; and this should be done in RA. g ﬁ g-g
all cases, if convenient. Instrumental errors such as LST. 23 24 153
droop are also eliminated by this procedure. Clock 23 23 156

Slow oo oo 59'7onL.S.T.
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EAST STAR (« TAURI)

R.A. 4h 58m 4757
3 21°29'20"N.

Sidereal A F
Clocr? Face| Level Vertical Circle. Mean.
E O
h m s
00 44 50-5| L [23-1[211 133° 13’ 49" | 13’ 46”| 12’ 47" | 12" 53" | 33° 13" 18"
00 49 36 | R |22:6[22:0(33 57 47 |57 51 |58 21 |58 20 | 33 5g 05 8
00 53 07:5| R [22:8122-0 134 30 45 |30 50 30 14 (30 13 | 34 30 30§
01 00 28-5| L |21-1123-3(35 38 oI (37 50136 44 136 40 | 35 37 21
4|3 28 o02-3 o Gl
v (89:6—88:4 o 719 e
00 52 056 10 x( 3 )= —1"5 level 37 10 458
—1’23"  refraction
. - 1 24-
| -l 24'.5 .—..;—.-...-—4-_5
h=34° 18" 24"3
lt_:rgs f AghionT =55 4% 357
sin (s—p) 1-3468501  sinp 1.9687111 ¢=38 30 03
sin (s—¢) 1-8325752  sinc¢ 1-7941575 p=68 30 40
Gmpanc 0-2371314 ?-7628686 25=162° 42" 18"-7

2 [1-4165567
| log sin !;- 1-7082783

m s
= 4 05 45-3 East

i t=19 54 147 West
RA.= 4 38 477

LS.T.=00 53 024
Clock=00 352 00-6

b Slow=o00 1 01'8

up for each pointing.

s= 81 21 003
s—p= 12 50 293
s—c= 42 51 06}

m s
West star=00 59-7 slow
East star=01 o01:8

"

,» onL,ST.

Mean 1 007

Note.—The star being faint in twilight accounts for the delay in picking

CHAPTER VIII
DETERMINATION OF AZIMUTH

General.—In making a survey, other than a compass sur-
vey, covering a small extent of ground, it is usual to
observe the magnetic bearing of one line of the survey,
i.e. the inclination or direction of that line referred to the
magnetic north and south line. This magnetic bearing is not
used except to plot on the map of the ground the direction
of magnetic north; generally a line is also drawn inclined
to the direction of magnetic north at an angle equal to the
declination or variation of the compass, and therefore showing
the direction of geographical north. This declination or
variation is not constant, but for any one place it is subject
to periodic changes, both of short and of long pericds ;
further, its amount differs at different places, the lines of
equal declination being curved in a rather irregular manner.
In London, the magnetic compass pointed due north about
the year 1657; the declination then became westerly,
and reached a maximum of about 24° in 1816 ; since then
it has been decreasing, the declination being at present
(1928) about 14° W., with an annual decrease of about 10"
Apart from this long-period change, the declination has
also changes of shorter periods, of respectively eleven
years, one year, and one day. Admiralty charts show
the amount of the declination for the area covered by the
chart, together with its rate of annual change.

In view of the perturbations to which it is subject, the
magnetic compass is not to be regarded as a means of
determining direction with precision, and the direction

135
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of the geographical meridian deduced from it by correction
for declination is liable to considerable error. In addition
the_:re is, in all probability, an error due to the magnetic
axis of the needle not coinciding with its axis of figure.

For the purposes for which a survey of a small area is
usually undertaken, an accurate determination or plotting
of a north and south line is unnecessary, and the accuracy
of the survey itself is not affected.

When a survey over an extended area is undertaken,
the directions with reference to one another of the various
lines forming the network of the survey are determined
by angular measurements, as, for example, in triangula-
tion or traversing. The lengths of the lines are either
computed or measured, and, their lengths and relative
angular positions being known, the network can be plotted,
due regard being paid to the figure of the earth. For
the details of the method, the reader is referred to any
standard work on Geodetic Surveying.

It will obviously be necessary to fix the absolute position
of this network on the earth’s surface by the determina-
tion of the latitude and longitude of one point or more
and by the determination of the directions of one line
or more from such a point referred, for convenience, to
the geographical meridian of that point. Such a direction
is the azimuth of the line and is the horizontal angle
bet“feen the meridian plane through the point and the
vertical plane at the point and containing the line. Methods
for the determination of azimuth for this and other pur-
po%s W\_nﬂrlilgo;v be described.

[ clear on reference to Fig. 5 that for any defini
latftude, at any definite instant gf 5loca.l time, 3Ir:N:v‘ch tﬁ:
altitude and azimuth of any star have definite values, and
vary continuously with the time ; consequently if any one
of the three quantities time, altitude, or azimuth be
known, the remaining two can be computed by solving the
spherical triangle concerned; it being remarked that for
any value of the altitude above the horizon there are two

f
r

DETERMINATION OF AZIMUTH 187

corresponding values for the time, at equal intervals before
and after the time of transit of the star.

It is thus possible to compute the azimuth of a star from
a knowledge of either the L.S.T. or the star’s altitude, and
either quantity may be used as the basis of an observation.

The observation in either case consists essentially in
observing the intersection of the star by the vertical wire
of the theodolite, taking the reading of the horizontal circle
and comparing it with the reading of that circle when the
vertical wire of the telescope is directed to the terrestrial
object the azimuth of which is to be determined.

To provide the data necessary for the computation of
the star’s azimuth at the instant of intersection, either the
clock time of the intersection or the altitude at intersection
has to be noted, as has been explained. According to
whichever of these procedures is adopted, the method may
be called azimuth by hour angle or azimuth by altitude.

The former method is to be preferred in general, for the
reason that the observation is simpler ; the computation is,
however, rather longer. As it is probable that the observa-
tion will have to be done after dark, it is necessary to
arrange for the illumination of the terrestrial object the
azimuth of which is to be determined; this object is
usually called the reference mark (R.M.) or reference object
(R.0.). Any convenient box having a vertical slit about
1 in. to } in. wide, according to the distance at which it is
to be placed, and a lamp which can be set inside the box, is
all that is necessary. The wires of the diaphragm will, of
course, also have to be illuminated, as in other night observa-
tions. A great deal of this inconvenience may be avoided,
and the observations taken while there is still sufficient
daylight to point accurately on the R.M., by making a
rough determination of the meridian by sun observations
of the same kind as the star observations under discussion.
The sun observation, although less accurate than star
observations, will give a result of a fair degree of accuracy,
by means of which the star can be found and observed
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before dark, and greater accuracy obtained than from the
preliminary sun observation. In the determination of
azimuth it is assumed that the latitude and longitude of the
observing station are known.

Azimuth by a Star at Elongation.—An azimuth
observation may be made on any star, but there are certain
circumstances which will influence the observer in his
selection. The most obvious of these is the condition that
at the time of the observation the star should not be moving
rapidly in azimuth, otherwise a small error in the assumed
time of the observation may produce a considerable error
in the computed azimuth. It is therefore advisable to
select a star which has the slowest possible motion in
azimuth. Further, as the latitude of the observing station
enters into the computation, the star selected should be
such that an error in the assumed latitude produces a
minimum error in the resulting azimuth. It will now be
explained that certain stars, at two particular points in
their diurnal paths, have no motion at all in azimuth, their
motion being at those points entirely vertical.

Referring to Fig. 29, which represents the celestial
sphere, the apparent daily path of a star S in the vicinity
of the elevated celestial pole P is the small circle shown
as an ellipse. The star will always be in an approximately
northerly or southerly direction, according to whether the
latitude is north or south ; if its motion be followed with
the telescope of the theodolite from the instant of its lower
transit, when it has no motion in altitude, the star will be
seen to be moving eastwards in azimuth and upwards in
altitude. When the star has reached a position such as S,
the vertical plane containing the axis of the telescope is in
the position ZS in Fig. 29 (), i.e. the azimuth of the star is
the angle PZS. As the motion of the star progresses, its
azimuth increases, i.e. the angle PZS increases, until after
the lapse of some hours from the instant of lower transit
the telescope will have been turned in azimuth until the
line ZS is tangential at ¢ to the ellipse representing the
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path of the star. At that instant the star has no motion
in azimuth, its motion being entirely vertical. The star is

—

b
. ’P'/'w

N
(b)
FiG. 20.
said to be then at eastern elongation. Similarly, the other

tangent from Z to the ellipse at w gives the azimuth of the
star at western elongation ; and if it were possible to see
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the star during the whole sidereal day, the telescope of the

theodolite would have to be swung about the vertical axis
through an angle limited by the two tangents to the ellipse.
For some time before and after each elongation, the motion
of the star in azimuth is very slow: a star at or near
elongation is therefore a very suitable object for observing
for determination of true meridian, as during the interval
required to take pointings on the star on both faces of the
theodolite the azimuth of the star will not have changed
appreciably. Tt will easily be seen that only stars fulfilling
certain conditions will elongate at all. If a star be so far
from the pole that the point Z falls within the ellipse repre-
senting the plan of its path, it will be impossible to draw a
tangent to the ellipse from the point Z. This will be the
case if the star’s polar distance is greater than the co-
latitude ; the star’s upper and lower transits will then be on
opposite sides of the zenith, and in order to follow the
star's motion with the theodolite during a sidereal day
the telescope would have to be turned completely round the
vertical axis. If the polar distance of the star were equal
to the colatitude, the star would pass through the zenith
at upper transit, and the point Z in the plan would lie on
the ellipse representing the plan of the star’s diurnal circle.

The hour angle at elongation is ZPe. To determine its
value, consider the spherical triangle of which the plan is
PZe. Ze being tangential to the circle described by the star,
the angle PeZ is go°. Applying the four-part or cot formula
to the four consecutive parts ZP, ZPe, Pe, and PeZ,

cos Pe cos ZPe =sin Pe cot ZP—sin ZPe cot PeZ.

Now Pe =, the polar distance of the star,
ZPe =t, the hour angle of the star at elongation,
ZP =¢, the colatitude,
and PeZ =qo°,
€os p cos ¢ =sin p cot c—o.
cost =tangpcotec
=cot § tan @,

’
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is equation the hour angle of the star at elonga-
tioir?lénc?ﬁpz{ged, and if this hour angle be applied :;:th
positive and negative signs to the R.A. of the star, whic e;s
the L.S.T. of its upper dtranstlt, tl:; resutlltosl:l are respectively
.T. of western and eastern elongation.
th?l‘llad;asc'grn(gutation is made beforc_ehand s sultaple stars for
both northern and southern latitudes are given in the
N.A., in which the apparent places of a number of close
circumpolar stars are given, for both north and gouth
celestial poles. In the northern ;ezr::ls.phere a very suitable
imuth observations is Polaris. 1

sta.Fr::r soa:l?minutes before and after elongation the motion
of the star in azimuth is so small that for approximate w:ork it
may be neglected. The rate of motion in azimuth obviously
depends on the latitude of the station and on the declination
of the star, being less in low than in high latitudes, and less
for stars near the pole than for stars further from the pole.
The expression for the azimuth of the star at elongation
is easily obtained by consideration of the spherical triangle

PZe in Fig. 29, Z¢P being in this case a right angle.

sin ZP _ sin Pe
sin ZeP sin PZe
sin¢ _sinp

or sin go° sin PZe
: _sinp _ )
sin P - cos J sec P

is expression for azimuth at elongation is identical
wiEhm:he oorreclt?:)ln for the sun’s semi-diameter in azimuth
given on page 86, viz.

sin A =sin s cosec z,
where s corresponds to the star’s polar distance =go°—3,
and z corresponds to the colatitude go°—9 ;
whence sin 8A =sin (go°—8) cosec (90°—@)
=os 0 sec Q.
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In making the observation the star is observed on the
vertical wire, and it is of course necessary to take pointings
on the star both F.R. and F.L. in order to eliminate such
instrumental errors as are eliminated by that procedure.
Consequently it is probable that neither the F.R. nor
the F.L. pointing will have been made at the precise
instant of elongation, but as the rate of change of azimuth
is very slow for several minutes before and after that
instant, the observation will give a result correct to within
a few seconds of arc. If the instrument be provided with
a striding level, it should be used for this as for all azimuth
observations, to obtain the correction b fan h correspond-
ing to the inclination of the horizontal axis.

To avoid the necessity for refocusing the telescope
when the latter is redirected from the star to the R.M. or
vice versa, the R.M. ought in all azimuth observations to
beatasgreatadistanoeascanbean'anged. This will
also reduce the error due to inaccurate centring of the
instrument over the observing station, as even a slight
inaccuracy in setting up the instrument over the station
may produce an appreciable difference in the azimuth of
a near R.M. compared with its azimuth from the true
position of the observing station. The R.M. should also
preferably be near the horizon to obviate the necessity
of applying the striding level correction to the horizontal
circle readings on the R